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ABSTRACT

In the eukaryotic genome, DNA is organized into nucleosomes, which are comprised by
147bp of DNA wrapped around a core of eight histone proteins. These histones can then be post-
translationally modified to regulate the function and status of the associated genomic region. The
primary method to determine the genomic distribution of these modifications is chromatin im-
munoprecipitation (ChIP). However, this method, as traditionally practiced, has many problems
hampering its interpretability insofar as it is non-quantitative and has indeterminate specificity. In-
ternally calibrated ChIP (ICeChIP) can address some of these issues by employing nucleosomal
internal standards, but many open questions remain as to the specificity of commercially available
antibodies and many paradigms which are less easily resolved by traditional native I[CeChIP. Here,
I present my work on methods to extend the use cases of ICeChIP and applications therein. First,
I show that many commercially available antibodies against H3K4 methylation states are of low
quality and that common methods of antibody validation fail to reflect performance in ChIP, ulti-
mately showing that this low specificity contributed to incorrect biological conclusions in several
high-profile studies. Second, I describe our work on the study of bivalency, in which we devel-
oped a sequential form of ICeChlIP to study nucleosomes bearing both H3K4me3 and H3K27me3,
ultimately showing that many paradigms concerning such a combination are incorrect. Third, I
describe our development of denaturative ICeChIP and use it to study the role of H3K79me2 in
MLL-rearranged leukemias. Finally, I discuss our development of SmartMap, a tool to allocate
next-generation sequencing reads that align ambiguously to the genome, demonstrate its ability to
improve read depth at regions with low-mappability, and use it to study the role of histone modifica-
tions at repetitive elements. Overall, this work shows the power of using specific and quantitative

methods in studying histone modifications.
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CHAPTER 1: INTRODUCTION

Epigenetics and Chromatin

By the early twentieth century, it was widely accepted that many traits of an organism could be
inherited in units now referred to as genes'?>. Though initial hypotheses focused on the role of
proteins in this process, over the next several decades, researchers accumulated evidence instead
pointing to DNA as the carrier of genetic information®*. By the early 1950s, it had become clear
that DNA was the primary heritable genetic material and that, in this role, it served to encode the
instructions governing the development and activities each cell and the organism as a whole. What
remained unclear was how these instructions were carried out in the cellular context.

This question posed a particular challenge for the field of developmental biology. Complex
multicellular organisms all have multiple organ systems, each with numerous different cell types
with distinct properties, activities, and functions. And yet, these cells all derive from a single
fertilized egg, which must then grow, divide, and transform into the myriad cell types of the body.
This process, referred to differentiation, was famously analogized by Conrad Waddington as a
marble rolling down a contoured terrain which he called the “epigenetic landscape” (Figure 1.1)
established by the interactions and effects of different genes on development®. As he described in

his book The Strategy of the Genes:

Consider a more or less flat, or rather undulating, surface which is tilted so that points
representing later states are lower than those representing earlier ones... Then if some-
thing, such as a ball, were placed on the surface it would run down towards some final
end state at the bottom edge... say, to the eye, and another to the brain, a third to the
spinal cord, and so on for each type of tissue or organ. ... Since each gene must be
regarded as a distinct chemical entity, the path of development as it is observed by the
anatomist must be viewed as the resultant of all the very numerous processes in which

these genes are involved in the cells concerned.’

1



Figure 1.1: Waddington’s Epigenetic Landscape.

Conrad H. Waddington’s characterization of the pathway of cellular differentiation being akin to a
marble rolling down a surface with multiple branch points and final states, representative of different
cell types. Adapted from Waddington®.

As appealing as this model of gene-directed development was, it still left the question: how
could the single set of genetic instructions encoded in the DNA of the fertilized egg specifically
direct the development and functions of a vast array of different cell types? One hypothesis was
that over the course of differentiation, cells would lose portions of the genome that were no longer
relevant for that cell type such that the terminally differentiated cells only contained those genes
that were necessary for the functions of that cell type!. This model was ultimately put to rest in
1970, when Laskey and Gurdon showed that the nucleus of a terminally differentiated somatic cell
could drive embryogenesis in an enucleated ovum lacking a genome, thereby showing that even
adult cells carried the full genome in their nuclei®. This left an alternate hypothesis as the prevailing
model: rather than modifying the sequence of the genome, differentiation proceeded by modifying
some yet-unspecified regulatory mechanisms that governed the activity and expression of each gene.
The study of these regulatory mechanisms would go on to become the central question underlying
the field of epigenetics.

Over the course of the last several decades, that term has represented several different

concepts. Waddington, for example, defined epigenetics as the study of how genotype and environ-
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mental factors impacted developmental phenotypes®. The developmental biologist Adrian Bird, by
contrast, defined epigenetics much more broadly as the study of the structural changes applied to
the genome in order to modulate its activity’. As a working definition, we will use the formulation
put forth by Riggs and colleagues, which strikes a useful conceptual balance between the restrictive-
ness of some definitions and the breadth of others. Per their conceptualization, epigenetics refers
to the study of heritable traits that are not encoded by modifications to the DNA sequence or the
proper pairing of corresponding nucleotides®. Rather, epigenetics concerns itself with the other
regulatory mechanisms by which genes can be regulated and coordinated. Critically, these traits are
not simply transient fluctuations of activity in response to temporary environmental stimuli; rather,
this regulation occurs in a manner that can be inherited across cellular divisions or even organismal
generations. Over the course of the last several decades, epigenetics has been critical for furthering
our understanding of both physiological and pathophysiological processes, including development

16-20 "and cancer biology?!'"?*. The mechanisms

and differentiation’!°, regulation of transcription
implicated in these pathways represent different ways by which cells can interpret a single genome
containing all the genes of the organism so as to identify and selectively express the genes that are
needed for each of the different cell types in the body.

In the nucleus, DNA is organized in complex with histone proteins into nucleosomes?®2%,
which in turn interact with proteins and RNA molecules that associate closely with the genome;
these complexes are collectively referred to as chromatin®®, which ultimately associates into flexible
and dynamic higher-order strucutres, enabling compaction of the genome®’. Epigenetic regulatory
pathways, in turn, largely fall into one of three categories®!, each primarily involving one of these

three components of chromatin: DNA modifications, involving modifications to the DNA that do

not affect the DNA sequence; non-coding RNA (ncRNA) regulation, in which RNA molecules that



do not code for proteins regulate the transcription and translation of other genes; and nucleosome
variants and modifications, which regulate the most fundamental units of chromatin and DNA

organization (Figure 1.2).

Figure 1.2: Forms of Epigenetic Regulation.

Difterent forms of epigenetic regulation at every level of chromatin organization, including DNA
modifications (depicted as cytosine methylation) to histone modifications and non-coding RNA
interactions. Adapted from Jones et al.’!.

The first of these levels of regulation is the language of covalent DNA modifications. In
this context, we refer not to modifications that affect the identity of a DNA base or the canonical
Watson-Crick base-pairing of a given sequence; we refer to those changes as mutations. Rather, the
epigenetic DNA modifications represent covalent modifications to the portions of the DNA bases

that do not participate in base pairing (Figure 1.3). The best-characterized and most prominent such

4



modification is the methylation of carbon 5 of cytosine (5-methylcytosine, abbreviated 5-mC)*2.
This modification, installed in humans by the DNA methyltransferases DNMT1, DNMT3A, and

DNMT3B?3?, was first described in the 1970s as a repressor of transcription that could be inherited

34-37

through semiconservative replication as part of its role in X chromosome inactivation®’. Since

then, DNA methylation has been found to be a critical repressor of transcription more broadly, with

roles including terminal silencing of unnecessary genes over the course of cellular differentiation’®,

1,39

repression of repetitive regions/endogenous retroviruses to promote genomic stability ~”, and im-

printing of genes in the germ line***?. Indeed, dysregulation of DNA methylation and its effector
proteins is now known to be important for the genesis of malignancy** or developmental disorders
(e.g. Rett syndrome, imprinting disorders)'®. In addition to the canonical 5-mC form of DNA
methylation, several other potentially functional DNA modifications have been described in recent
years (Figure 1.3)*2. These include oxidized forms of 5-mC, such as 5-hydroxymethylcytosine,

44-49,

which has been associated with neurodevelopment and neuronal functions™*; and methylation of

nitrogen 6 of adenine (6-methyladenine, abbreviated 6-mA), the function of which is less clear’>*°.

H3C
NH, OH  NH, NH
H,;C
| XN | XN </ XN
NH o NH X0
5-methylcytosine 5-hydroxymethylcytosine 6-methyladenine
(5-mC) (5-hmC) (6-mA)

Figure 1.3: Examples of DNA Modifications.

Structures of 5-methylcytosine, 5-hydroxymethylcytosine, and 6-methyladenine DNA modifica-
tions. Note that the hydrogen bond acceptors and donors involved with Watson-Crick base pairing
are unaffected by these covalent modifications.



The second category of epigenetic regulation is the modification of transcription and trans-
lation by ncRNAs. Indeed, though only 1-3% of the human genome is comprised by protein-coding

5152 it has been shown that roughly 75-90% of the human genome is transcribed into RNA>>>4,

genes
with the vast majority of those transcripts existing as non-coding RNAs. The role of some non-
coding RNAs have long been clear — for example, ribosomal RNA (rRNA) serves as the catalytic
machinery for translation, with transfer RNA (tRNA) serving as the carrier of amino acids and
decoder of mRNA in this process. More recently, other ncRNAs have been shown to be critical
epigenetic regulators of transcription. One of the first ncRNAs to be so identified was Xist, which
was identified in the 1990s as essential®® for X-inactivation (at least for stabilization of the inacti-
vated state®®) and subsequently found to be sufficient for the same®’. Since then, many different
classes of ncRNAs have been identified as modulators of transcription or transcript stability. These
types of ncRNAs include, amongst others: enhancer RNAs (eRNAs), which are short transcripts
produced from enhancer regions®®®° that are thought to specifically regulate transcription of the
promoters under enhancement®!; microRNAs (miRNAs), which are short RNAs that endogenously
downregulate transcripts with which they hybridize®2%*; Piwi-interacting RNAs (piRNAs), which
are small RNAs that silence transposable elements and maintain genomic stability, particularly in
germ line cells®7; circular RNAs (circRNAs), a variable-length class of RNAs that are thought
to absorb excess miRNAs®; and chromatin-enriched RNAs (cheRNAs), which are long ncRNAs
associated with chromatin that serve as cell-type-specific cis-regulatory activators or repressors of
transcription®®~’!. Collectively, these ncRNAs — and others — are able to positively and negatively
regulate the transcription and function of the protein-coding segments of the genome through a
variety of mechanisms, often in a cell-type specific manner and without modifying the sequence of

the genomic DNA itself.



Figure 1.4: Structure of the nucleosome.

Structure of the nucleosome, showing DNA wrapped around an octamer of histone proteins, which
can be post-translationally modified. Adapted from Werner and Ruthenburg’.

The third mechanism of epigenetic regulation is through modification of the nucleosomes
and, in particular, the histone proteins. As previously noted, in the eukaryotic genome, DNA is
organized into nucleosomes, which are comprised by 147 base pairs of DNA wrapped about a
core octamer of histone proteins : two copies each of histones H2A, H2B, H3, and H4 (Figure
1.4)*. Nucleosomes, particularly in their higher-order complexes and structures, provide organized
compaction to the genome so it can feasibly fit in the nucleus while remaining sufficiently organized
to be functional?®?”3! This compaction must, however, be balanced with the accessibility of the
genome; if a region of the genome is highly compacted by nucleosomes (a state of chromatin
referred to as heterochromatin), then it will not be easily accessible for transcriptional machinery,
thereby repressing gene expression’>’3. Conversely, if a region of the genome is less compacted
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and more accessible (a state of chromatin referred to as euchromatin), then it will be more available
for transcription. This provides another method of epigenetic regulation; if the compaction of the
genome can be modified at a given location, then that can be used to activate or repress transcription
at that locus. This modulation is achieved through post-translational modifications (PTMs) of the
histones that comprise the nucleosomes’’*.

Many different types of histone modifications have been identified with a broad range of
roles’®. These modifications can be largely classified into two categories (which are not mutu-
ally exclusive): function through direct impact on structure and function through interaction with
binding partners. Members of the first of those classes of histone modifications are thought to act
by disruption of the local chromatin structure. For example, some modifications are thought to
function by introducing negative charges onto the histone surface and reducing its overall positive
charge, weakening the electrostatic interactions between the histone surface and the negatively
charged DNA phosphodiester backbone and thus driving transcription. Such modifications include
histone phosphorylation, which has been associated with active transcription and DNA damage
repair’’, and histone acetylation, which is broadly thought to activate transcription and demarcate

enhancer regions!>78-8!1

. Other modifications serve to disrupt local chromatin structure through
non-electrostatic modulation of steric interactions. These include histone ubiquitylation, which
introduces a large modification that sterically disrupts neighboring nucleosomes and activates tran-

scription®%%

, and proteolytic cleavage of the histone tail (also called histone tail clipping), which is
through to be important for differentiation® . These modifications all have the capacity to directly
modify the structure of the local chromatin by modulating the favorability of the physical associa-

tions within or between nucleosomes and, thereby, to modify the accessibility of the chromatin for

transcriptional machinery.



The second class of histone modifications is the set of modifications that function through
interactions with specific binding partners. This is not mutually exclusive with the former category;
for example, histone lysine acetylation modifications are bound by bromodomain-containing pro-
teins to enact some of their functions®”*®. However, this class of histone modifications also includes
more subtle chemical changes that are unlikely to have significant direct impacts on the structure.
One example of such a modification is histone methylation, wherein a proton is replaced with a
methyl group. This substitution does not change the charge of a given residue and represents a
very subtle change in size relative to the unmodified residue, making significant steric interactions
unlikely. Nonetheless, histone methylations are critical for many epigenetic regulatory pathways
with a broad range of functions’>’®. Though recent work has examined the role of histone argi-
nine methylation as an epigenetic regulator®, the best-studied histone methylations are those

3LT3.74.76 "3 class of histone PTMs with highly varied regulatory roles conferred

on lysine residues
by their recruitment of specific protein binding partners. H3K4 trimethylation (H3K4me3), for
example, is bound by PHD fingers domains on proteins such as BPTF?'? and TAF3** to remodel
chromatin, make the chromatin more accessible, and activate gene transcription'’?%%, H3K27

1695 particularly a

trimethylation (H3K27me3), by contrast, is bound by Polycomb group proteins
subset of chromeobox (Cbx) proteins’®®’, to cause chromatin to be more tightly compacted, less
accessible, and transcriptionally repressed. H3K9 di- and trimethylation (H3K9me2 and H3K9me3,
respectively) are similarly bound by HP1 family members to similarly cause heterochromatin forma-
tion, particularly at repetitive elements and at centromeres or telomeres’®~'"!. Many other histone
methyllysine PTMs have been described in the literature, with varying degrees of biochemical or

functional validation”76:102,



Studying the Genomic Distribution of Histone Modifications
Collectively, histone PTMs represent critical regulators of local genomic structure and function
with important roles in gene regulation, physiologically cellular differentiation, pathological cellular

23,103,104 * A ccordingly, much work over the last several decades has

dysregulation, and oncogenesis
focused on better understanding the role of histone PTMs in a broad range of cellular, developmental,
and/or clinical contexts. But to understand the functions of histone modifications and the genomic
features with which they associate, it is first critical to understand the genomic distribution of the
same. To that end, the critical first step for most studies of histone modifications is to ask: where
in the genome are these histone modifications located, and how prevalent is each modification?
Several methods have been developed to answer those questions, each with their own limitations.

In the past, it has been challenging to answer those two questions simultaneously. Broadly,
the study of histone modifications coalesced around two classes of methods: those that make
quantitative measurements globally and those that make relative measurements locally. The former
category describes methods that can quantify histone modifications globally; with these methods,
it is possible to measure the absolute abundance of a histone modification (i.e. the proportion of
histones or nucleosomes with the modification of interest) across all the histones or nucleosomes
in the genome. These methods primarily profile the histone proteins directly to detect the presence
and quantity of modifications without concern for the accompanying DNA.

One of the most common methods for this purpose is Western blotting!'®, in which a pro-
tein sample is separated by SDS-PAGE, transferred to a membrane, and bound by an antibody
specific for the target of interest (in this case, a particular histone modification), which can then
be detected directly or with a secondary antibody. With appropriate quantitative Western blotting

106,107

procedures , including using protein standards on the membrane as calibrants and employing
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108 Western blotting can be used to measure the abundance of an

a reasonable-quality antibody
individual histone modification quickly and cheaply. However, quantifying more than one his-
tone modification requires separate experiments with separate protein standard calibrants processed
alongside the cellular protein samples of interest. Further, this method is critically reliant on the
antibody reagent used, which is problematic given that many commercially available antibodies
have very low specificity or, on occasion, bind to the wrong target entirely!*®-'!2. Despite these
limitations, for measuring histone modification abundance (and changes therein) genome-wide for
a limited set of modifications, Western blotting remains a powerful tool for molecular biologists.
Another method that is often used for global histone modification abundance measurements
is mass spectrometry. In most of these workflows, histones are purified, digested, and subjected
to liquid chromatography (LC) coupled to tandem mass spectrometry (MS/MS)!!*!14_ The post-
digestion fragments are separated by the liquid chromatography step, after which they are separated
by charge/mass ratio in the first mass spectrometry step!'!*>~!', Peptides with a given approximate
charge/mass ratio are then subjected to the second mass spectrometry step, which fragments the
peptide further and measures the mass/charge ratio of those fragments. This fragmentation pattern
can then be analyzed for the hallmarks of different histone modifications and, based on the relative
contributions of each modification to the fragmentation pattern, the abundance of each such modi-
fication!!>!!% Altogether, this method is able to measure the global abundance of a broad range of
histone modifications without needing to find new reagents or generate new standards for each such
mark. More recent work has extended this process to the purification of entire nucleosomes, fol-
lowed by a similar LC-MS/MS method to quantify the abundance of different histone modification

combinations on a nucleosome, even on different histone proteins'!’. The result there, however,

is the same: measurements of a broad range of histone modification global abundances. Though
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extremely powerful, mass spectrometry analysis is nowhere near as inexpensive or straightforward
as Western blotting; whereas Western blotting can be done in a matter of hours with standard lab
equipment and expertise, mass spectrometry experiments can be considerably more involved and
require much more expensive and specialized equipment with specialized techniques. As such, it
is a useful “gold standard” for quantifying histone modifications but is not as commonly used as
Western blotting.

These techniques belong to the class of methods that measure global absolute abundance of
the histone modification of interest without any information on its localization. Another class essen-
tially takes the inverse approach, making local measurements of relative modification abundance.
These methods primarily focus their readouts on the DNA fragments bound to the nucleosomes
with the modification of interest rather than directly probing the protein itself!!®. Though some
proof-of-concept work has shown that nucleosomes with a modification of interest can be directly
identified and sequenced by microscopy-based methods!!®, the vast majority of the methods in this
category function by purifying nucleosomes with the target PTM, then recovering and analyzing

the associated DNA.

Chromatin immunoprecipitation and its limitations

The most common method operating under that workflow, by a wide margin, is chromatin immuno-
precipitation, or ChIP!!812% In this method (Figure 1.5A), chromatin is fragmented into mono- or
oligonucleosomal fragments and incubated with antibodies that will bind with high affinity to the
modification of interest. The Fc stem of the antibody is then captured by a Protein A or Protein G
resin, along with anything bound to the variable domain of the antibody (i.e. the nucleosomes of

interest). After several washing steps to remove weakly bound off-target nucleosomes, the DNA
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Figure 1.5: Chromatin Immunoprecipitation and Problems.

(A) ChIP workflow. Chromatin is fragmented into mononucleosomal fragments and bound by an
antibody targeting a modification of interest. DNA is purified from the recovered nucleosomes
and mapped to the genome as a proxy for the histone modification of interest. Adapted from Grzy-
bowski et al.!!® and Shah et al.!**. (B) Problems of ChIP, presented as problems with H3K27me3
ChIP. Conventional ChIP is a relative metric and is thus susceptible to misquantification, making
comparison of different marks impossible. Off-target binding of the antibodies also complicates
interpretation of a ChIP experiment.

can be recovered from the nucleosomes still bound to the antibody and mapped to the genome using
either quantitative polymerase chain reaction (qQPCR) or next-generation sequencing (NGS). The
interpretation is that the DNA is a proxy for the targeted histone modification; if more DNA is
recovered from a given locus than from a control region, then it is assessed that the PTM of interest
is enriched at that particular locus''®. Some similar methods (e.g. CUT&RUN'"?!, CUT&TAG'??,
ChIP-exo0'?*) make modifications on this protocol at various stages to serve particular purposes, but
the overall interpretation is the same: the amount of DNA from a given location recovered reflects
the amount of histone modification at that locus relative to other loci and the rest of the genome.

)125 and in

Since it was first described in 1984 by Gilmour and Lis (for bacterial proteins
1988 by Solomon et al. (for histones in eukaryotic cells)'?°, ChIP has become one of the mainstays
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17-20.78,126.127  However, it also has several critical limitations that

of modern molecular biology
hamper its interpretability in many applications. As noted above, conventional ChIP measures
the enrichment of a histone modification at a given location relative to the rest of the genome,
normalized either to control loci (in the case of ChIP-qPCR) or total next-generation sequencing
(NGS) read depth (in the case of ChIP coupled to NGS, or ChIP-seq). This can be problematic even
for comparisons between loci of a single sample if the loci have different nucleosome occupancies
or fragment unevenly!'®. This can be accommodated by sequencing fragmented input chromatin
and measuring enrichment as the fold change in the IP over the input, but input sequencing can be
expensive due to the high read depths necessary to obtain adequate genomic coverage.

Even with input normalization, standard ChIP-seq experiments cannot be easily compared
to each other, making it difficult to compare ChIPs for different modifications or in different cellular
contexts. As previously noted, traditional ChIP-seq is a non-absolute quantification method, mea-
suring the relative amount of a given histone modification at a locus as compared to the rest of the
genome or a control region''®. This relative measurement can be adequate for comparing the histone
modification levels of different loci within a single cellular context and for a single histone modifi-
cation. However, if there is a global difference in the abundance of histone modifications, then it
is impossible to quantitatively compare ChIP signals from these two different experiments (Figure
1.5B). If a locus has a change in histone modification abundance that is proportional to the change in
global abundance, then standard ChIP-seq normalization will not reveal a difference because there
is no change in the relative abundance at that locus. Indeed, some work has shown that even a 75%
difference in global abundance results in virtually no change to traditional ChIP-seq measurements

with global normalization!?®. Because different ChIP-seq experiments are normalized to separate

quantities and thus exist on distinct and separate scales, it is impossible to quantitatively compare
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two different ChIP-seq tracks — whether they are for two different histone modifications or two
different cellular contexts with a global abundance difference!'®!28,

Even for a single ChIP experiment, where such questions of quantitative comparison are
less relevant, standard ChIP still has one more crucial limitation that hampers its interpretability:
antibody specificity. ChlIP is critically dependent on the antibody binding the target of interest with
high specificity and excluding other species. It has been repeatedly shown, however, that this is
not always the case; though the extent of the antibody problem was not fully grasped for some
time, it has now been shown in multiple contexts that antibodies often have a propensity to bind
histone modifications other than those that they are targeted towards'%!10%111112.118,124.129 (Fjoyre
1.5B). Indeed, in some cases, commercial antibodies have been highly specific for the wrong target

entirely'®®

. Without methods to assess the specificity of the antibody, it is difficult to know whether
the signal at any given locus represents primarily on- or off-target binding — let alone to know
whether signal from two different loci represents equally specific binding.

To address some of these problems, the Ruthenburg Lab developed internally calibrated

chromatin immunoprecipitation (ICeChIP)!!8

. At the very beginning of this workflow, the sample
is spiked with a set of nucleosome standards (Figure 1.6). These standards represent semisynthetic
nucleosomes bearing on- or off-target modifications, each with a unique DNA “barcode” for later
downstream identification and quantification'!®. These standards are introduced into the workflow
prior to chromatin fragmentation, and the remainder of the ICeChIP protocol proceeds as standard
for a native ChIP experiment; the pulldown is conducted, DNA is purified, and sequencing reads are
mapped to the genome. At this point, the relative pulldown of each of the standards can be computed

as a proportion of that present in the input; for example, the uniquely identifiable DNA from the

on-target nucleosome standard may have a 35% recovery (or enrichment). This represents the
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proportion of nucleosomes that have the modification of interest that would be recovered genome-
wide; this number is then used to calibrate the ChIP signal, yielding the absolute proportion of
nucleosomes at a given genomic locus with the modification of interest, or the histone modification
density (HMD)!!8. Further, the recovery of the off-target standards can be compared to the recovery
of the on-target standard; if the on-target standard is recovered with much greater efficiency than

the off-target standards, then that is an indication that the IP proceeded with high specificity!'®.
Nuclei Spike

semi-
f synthetic
ﬂ on-target

and
lMNase % off-target
N‘ﬁ% * nucleosome
% standards
5 % \ Ab:Bead Conjugate
¥ -

lIP and wash
recover DNAL

compute specificity and HMD

Figure 1.6: Internally Calibrated Chromatin Immunoprecipitation.

Internally calibrated chromatin immunoprecipitation (ICeChIP) workflow. Adapted from Grzy-
bowski et al.!'® and Shah et al.!**.

The result of the I[CeChIP experiment is a measurement of absolute histone modification
abundance at any given genomic locus, along with a broad assessment of the overall specificity of
the pulldown. In this way, ICeChIP addresses both the problem of misquantification of different
histone modifications as well as the problem of antibody quality (at least insofar as it becomes

possible to measure its specificity).
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Open Questions and This Work

Despite its advantages, however, ICeChIP has not solved every problem of chromatin immuno-
precipitation. In this work, I will describe my inquiries into four separate knowledge gaps in
quantitative chromatin immunoprecipitation.

First is the question of antibody specificity; though it was well-described that antibodies
could bind off-target species, it was less clear how prevalent this was in the context of ChIP. This
would be of particular concern for pulldowns of different methylation states because of the subtlety
of the chemical changes therein. In Chapter 2, I describe my work on this question in the context of
H3K4 methylation states, wherein I characterize antibodies targeting the H3K4 methylation states
and identify weaknesses in common methods of antibody validation. In the process, I show that
low-quality antibodies can drive faulty biological interpretations and, conversely, use high-quality
data to develop new quantitative insight into enhancer regulation.

Second is the question of co-occupancy and co-occurrence of different histone modifica-
tions on a single nucleosome. ICeChIP remains highly useful for measuring the abundance of
an individual modification but, in its published form, is not capable of simultaneously measuring
whether a nucleosome has two distinct modifications. At best, it can be determined that two dif-
ferent modifications are enriched at a given genomic locus and that some nonzero quantity must
coexist, but the extent of that coexistence (as opposed to the existence of distinct cellular popu-
lations with different histone modifications) remained unclear. In Chapter 3, I describe my work
on H3K4me3/H3K27me3 bivalent histone modification patterns, in which both H3K4me3 and
H3K27me3 modifications exist on a single nucleosome. I describe the development of a sequential
form of ICeChlIP that can purify nucleosomes with both modifications and use this method to study

the role (or lack thereof) of this modification in developmental poising of gene expression.
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Third is the question of internal histone modifications. ICeChlIP is a native protocol, meaning
that it does not massively disrupt the structure of the nucleosome through the immunoprecipitation
step. This is perfectly fine for the highly accessible histone tails, which can be easily bound by an
antibody even in the native conformation. However, the native structure of the nucleosome presents
a challenge for internal modifications on the nucleosome globular domain, such as the H3K79me?2
modification, where the antibody is less able to reach and bind the modification of interest resulting
in low-specificity pulldowns. In Chapter 4, I describe my work on denaturative ICeChIP, which
modifies the ICeChlIP procedure to denature the nucleosome in the immunoprecipitation, thereby
making internal modifications more highly accessible for antibody capture. With this procedure, I
profile H3K79me?2 in a variety of cellular contexts to explore its role in leukemogenesis and the
maintenance of the leukemic transcriptional profile.

Fourth is the backend of the ICeChIP-seq protocol: alignment and processing of next-
generation sequencing reads. The critical first step of NGS read processing is alignment of each
read to the reference genome. However, given how highly repetitive most commonly studies
genomes are, a given NGS read may map to many distinct loci with acceptable alignment quality.
Most analyses simply discard these ambiguously mapped reads, but such a practice leaves many
regions of the genome unanalyzed despite the abundance of potentially functional elements in these
repetitive regions. In Chapter 5, I describe my work to develop SmartMap, a tool employing a
Bayesian reweighting algorithm to allocate ambiguously mapped reads. I then use SmartMap to
study the histone modification patterns at several classes of repetitive elements, identifying new
classes of repetitive elements with potential functional significance.

Collectively, this document seeks to address knowledge gaps in each of the major variabil-

ity points of a ChIP-seq experiment: the antibody, the pulldown protocol, and the quantification
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backend. In doing so, it is my hope that my work illuminates several of the critical flaws with
ChIP-seq as it is traditionally practiced and shows how those flaws can be avoided, thereby driving

new insight into the mechanisms of epigenetic regulation.
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CHAPTER 2: ON THE STUDY OF H3K4 METHYLATION STATES

Attributions

This chapter has been adapted from: Shah, R. N. et al. Examining the Roles of H3K4 Methylation
States with Systematically Characterized Antibodies. Molecular Cell 72, 162—-177 (2018). Peptide
array experiments were conducted by members of the Rothbart Laboratory at the Van Andel Insti-
tute, and mouse embryonic stem cell lines were cultured and gifted by members of the Wysocka
Laboratory at Stanford University. [CeChIP experiments in Fig. 2.7D-E and 2.8B were conducted

by Adrian Grzybowski, PhD’18. The other experiments were conducted by the author.

Abstract

Histone post-translational modifications (PTMs) are important genomic regulators often studied by
chromatin immunoprecipitation (ChIP), whereby their locations and relative abundance are inferred
by antibody capture of nucleosomes and associated DNA. However, the specificity of antibodies
within these experiments have not been systematically studied. Here, we use histone peptide arrays
and internally calibrated ChIP (ICeChlIP) to characterize 52 commercial antibodies purported to
distinguish the H3K4 methylforms (mel, me2, and me3, with each ascribed distinct biological
functions). We find that many widely used antibodies poorly distinguish the methylforms and
that high- and low-specificity reagents can yield dramatically different biological interpretations,
resulting in substantial divergence from the literature for numerous H3K4 methylform paradigms.
Using ICeChlIP, we also discern quantitative relationships between enhancer H3K4 methylation
and promoter transcriptional output and can measure global PTM abundance changes. Our results
illustrate how poor antibody specificity contributes to the “reproducibility crisis,” demonstrating

the need for rigorous, platform-appropriate validation.
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Introduction

Over the past several decades, ChIP has contributed many seminal insights into histone PTM

17-20,126,127,130-132

regulation and distribution . However, the interpretation of a ChIP experiment

critically relies on the assumption of near-perfect antibody specificity. The validity of this conjecture
for the thousands of existing ChIP-seq datasets is uncertain, given that many commercial antibodies

display considerable off-target binding in other experimental formats!0%:111:112,118,133,134

Histone H3 Lysine Methylforms

Figure 2.1: Nucleosome with H3K4 methylation states.

Structure of the nucleosome with histone H3 lysine 4 (H3K4) highlighted and schematic of methyl-
forms of H3K4. Adapted from Werner and Ruthenburg’.
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Figure 2.2: ENCODE ChIP-seq datasets display internal inconsistency and incongruity.

(A) ICeChIP-seq and ENCODE ChlIP-seq tracks at distal HoxA cluster in K562 cells. Highly
specific antibodies reveal absence of H3K4me3; low-specificity antibodies detect appreciable signal
from lower methyl forms. ENCODE tracks are reminiscent of ICeChlIP tracks but differ from one
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Figure 2.2, continued:

another and do not show true H3K4me3 signal. Green oval shows ICeChIP methylform specificity
for each antibody , orange circle with E indicates antibody validated to ENCODE standards, purple
circle with M indicates monoclonality, and red oval shows percentage of peaks in each ENCODE
dataset found in all three of the other ENCODE datasets. Bars below tracks represent peaks. (B)
Abbreviation codes, specificities in ICeChIP and peptide arrays, and target IP enrichments for
antibodies referred to in the main text. Values represent average = SD.

Here, we have interrogated the specificity of antibodies targeting the three methylation
states of lysine 4 on histone H3 (H3K4mel, H3K4me2, and H3K4me3; Fig. 2.1), each ascribed
distinct roles in chromatin regulation. H3K4mel (~5-20% global abundance!*’) is thought to mark

18,19,131

enhancers and flanks promoters'’. H3K4me2 (~1-4% global abundance'®®) is associated

1 136-138

with tissue-specific transcription factor binding sites'3®, enhancers'3!, and promoter edges

17,20,92-94,132

H3K4me3 (~1% global abundance'*®) defines active transcription at promoters , and is

also implicated in V(D)J recombination'*”, meiotic crossovers'*’, and pre-mRNA splicing!'4!-142,
Critically, many of these conclusions were drawn presuming that ChIP could discriminate between
the three methylation states. Concerningly, apparent ChIP-seq replicates with different antibodies
for a single such can radically differ, even within a single cell line and when using the highly
standardized protocols of the ENCODE consortium (Fig. 2.2, 2.3), raising concerns that antibodies
cannot specifically discriminate between these different modifications. As such, we sought to
systematically investigate the capacity of antibodies to distinguish different methylation states of
H3K4.

To this end, we assessed the specificities of 52 commercial “ChIP grade” antibodies using
histone peptide microarrays and ICeChIP (Fig. 2.4, 2.5). In the first approach, antibody is incu-
bated with slide-immobilized peptides, and bound regions identified with a fluorescently labeled

secondary antibody (Fig. 2.6A). Peptide microarray measurements allow simultaneous testing of a

broad range of different off target, on target, and combinatorial PTMs!911L112.133 " The technique
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Figure 2.3: ENCODE ChIP-seq datasets are incongruous with each other and ICeChIP-seq.
(A) Concordance of replicated peaks for each H3K4me3 ENCODE dataset with indicated anti-

body in K562

cells. Top row shows number of called peaks replicated across the two biological
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Figure 2.3, continued:

replicates for each dataset, and bottom row the number and percentage of such peaks that intersect
with peaks common to all four of the ENCODE H3K4me3 datasets. (B) Peak shape and inten-
sity analysis by pairwise correlation between pre-cosinusoidal factors of eight-component discrete
Fourier cosine transform of fold changes over control about peaks from ENCODE H3K4me3 Sam-
ple 1 (ENCSRO00AKU, left), Sample 2 (ENCSRO00EWA, centre), or Sample 3 (ENCSRO00DWD,
right). If only intensity of signal was different (i.e. same data with different scaling, the R? would
approach 1, and scalar factor reflecting difference would be apparent from the slope. These com-
parisons (Movie S1) indicate very limited similarity amongst any of two ENCODE data sets, with
modest large-scale similarity (early terms) decaying to negligible fine-scale similarity (late terms).
(C) R? of correlation between pre-cosinusoidal factors of eight-component discrete Fourier cosine
transform on antibody-measured peaks of corrected ICeChIP-seq HMD versus antibody-measured
fold change over control for H3K4me1l, H3K4me2, and H3K4me3 ENCODE ChIP-seq datasets in
K562 cells. (D) Example scatterplots showing high correlation (top) and low correlation (bottom)
of Fourier Transform components on peaks from ENCODE H3K4me3 Sample 3. (E) Genome
browser view at the HOX locus for antibodies not shown in Figure 1A. Green circle represents
ICeChlIP aggregate specificity, and purple circle with M indicates monoclonality.

is considered the current gold standard of antibody characterization, but whether it recapitulates
antibody performance in ChIP is unclear due to marked differences in experimental format'**. In
contrast, [ICeChIP uses DNA-barcoded semisynthetic nucleosome standards encompassing panels
of histone PTMs directly spiked into a chromatin sample, allowing the measurement of antibody
specificity in situ, and the determination of histone modification density (HMD), the absolute

)18 However, each nucleosome standard must

amount of PTM over a genomic interval (Fig. 2.6B
be independently synthesized, which is labor-intensive and technically challenging. Though peptide
arrays and ICeChIP have been compared in a very limited way'!?, the small scale of such studies
precluded broader conclusions. Further, previous studies centered on antibody discrimination be-
tween different lysine residues (e.g. H3K4me3 vs. H3K9me3) rather than different methylation
states of a single lysine (e.g. H3K4me2 vs. H3K4me3), the latter representing a potentially greater

challenge. Integrating peptide array and ICeChIP analyses now enables us to critically evaluate

antibodies and determine the extent of data transferability between each format.
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Figure 2.4: Anti-H3K4 methylation antibodies display a broad range of peptide array specificities.

The specificity of H3K4 methylform antibody binding on peptide arrays expressed relative to on-
target capture. Black error bars represent SD of off-target specificity; colored error bars represent
average standard error of on-target signal. Purple bar represents raw fluorescence signal from
secondary axis and maps onto secondary axis. Fluorescence measurements for each antibody (n=6),
independent at the level of spotting, but simultaneously measured against one antibody dilution.
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Figure 2.5: Anti-H3K4 methylation antibodies display a broad range of ICeChlIP specificities.

The specificity of H3K4 methylform antibody binding in ICeChlIP relative to on-target capture.
Black error bars represent SD of off-target specificity; colored error bars represent average standard
error of on-target signal. Purple bar represents ChIP enrichment and maps onto secondary axis
(right). ICeChIP was conducted with 3 pg of mammalian chromatin and 3 pg of each antibody (see
Methods). Enrichment of each standard was measured by qPCR; n represents independent I[CeChIP
experiments averaged for each antibody.
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Figure 2.6: Histone 3 lysine 4 (H3K4) antibodies display a range of methylform specificities.

(A, B) Experimental workflows of (A) peptide arrays and (B) ICeChIP. (C, D) A representative
selection of methylform binding (target relative to other forms on the left axis) by antibody from
(C) peptide arrays and (D) ICeChlIP is presented in bar graph form (extracted from the larger set
of 52 antibodies: Fig. 2.4, 2.5). Purple bar represents raw fluorescence signal or ChIP enrichment,
and maps to right axis (log;, scale). Black error bars represent SD of off-target specificity; colored
error bars represent average SD of on-target signal.

Results

Antibody specificities range widely and often diverge across methods

A representative cohort from the 52 antibodies screened with both peptide array and ICeChIP (Fig.
2.4, 2.5) is shown in Fig. 2.6C and 2.6D. High-specificity antibodies, with >90% aggregate methyl-
specificity, were identified by both approaches (e.g. abMel-1 and abMe3-3 in Fig. 2.6C-D; Tables
2.1-2.4), but notably, these reagents are often infrequently used (Tables 2.1-2.4). When present,
cross-reactivity most commonly occurred between states differing by a single methyl group (Fig.

2.4, 2.5) and was most severe for the anti-H3K4me3 antibodies.
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Table 2.1: Characteristics for antibodies targeting H3K4meO.
IP Methyl. PA Methyl. Target IP

Manufact.  Product Lot Arét:)lzioedy Specificity Specificity Efficiency Citat.
(% H3K4) (% H3K4) (% Input)
EMD
o 05-1341 2453179 - 54+5 64+6 5+£2 2
Millipore

Table 2.2: Characteristics for antibodies targeting H3K4mel.

Abcam ab8895 GR305231-1 abMel-1 90+4 96 +£3 64+22 218

Abclonal  A2355 46694 _ 37435 57419 0.06+0.04 0
Abclonal  A2355 46695 _ 8242 78 +2 3+7 0
e 39297 01714002  abMel-2 76+ 1 100£0  07+04 11
Motif
Active 39297 21008001 - 88 + 2 99+2  07+04 11
Motif
At 39635 30615011  abMel-3 66+ 17 64 + 4 341 |
Motif
Cell
e 5326 | abMel-6 944+0.1  76+2 46+7 2
Signaling
(Gel 5326BF 7 abMel-4 93 +2 99 + 1 33+27 2
Signaling
Diagenode C15310037  A399-001 _ 88+ 4 99+1  44+02 0
Diagenode C15410037 A1657D — 86+ 3 87+5 14+£0.5 2
Diagenode C15410194  A1862D _ 90 + 3 97 + 8 16+22 7
Diagenode C15410194 A1863-001D _ 88 42 100 £ 0 412 7
EMD 0.179 +
Millipore 07436 DAMI687548 - 87 + 1 9746 0003 16
EpiGentek A-4031-050 606359 _ 83 +3 74 +2 3245 0
RevMADb 31-1046-00  P-01-00415 _ 8746 999+02 1341 0
Thermo ) 795 QL230603 abMel-5 94.7+0.5  98+2 20£5 0
Fisher
Thermo ) 507 RB226262 _ 86+ 4 95+ 2 40+11 0
Fisher
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Table 2.3: Characteristics for antibodies targeting H3K4me?2.

Abcam  ab32356  GR253788-9 — 5842
Abcam ab7766 GR289627-1 abMe2-1 804
Abclonal ~ A2356 46696 - 94 +1
Abclonal  A2356 46697 - 81.3+0.7
Active
Motif 39141 01008001 - 91 £2
Active 39679 15515008 _ 89+ 1
Motif
cell 9725 9 - 56+ 1
Signaling
Diagenode C15200151 001-11 - 94 £ 2
Diagenode C15310035  A391-001 — 83.8+£0.2
Diagenode C15410035  A9360014P — 88+ 2
EMD 05-1338 2757107 abMe2-2 95.6 +0.1
Millipore
.EMD 07-030 DAM1479603 - 89.8+0.2
Millipore
Epicypher 13-0013 14247001 — 90 +£5
EpiGentek A-4032-050 606360 - 92 +£4
Thermo 4o 1004 A391001161216  — 74 +2
Fisher
Thermo ;16706 QL230606  abMe2-3 953+ 0.4
Fisher
Thermo 20073 QL226263 - 81+ 1
Fisher

81+2
57+4
68+3
61+3

65+ 1

78+3

42+3

62+13
60£2

77+5

68 +2

62+4
72+ 6

97+4

99.5+0.8

866

70 £ 29
55+11
16 £10
51+21

18+3

3+1

56+ 16

6+2
1.1£04
58+8

21+5

4.8+0.4

19+ 4
66 £+ 45

0.8+0.4

25+5

19+9

35
55

126

[a—

Remarkably, apparent specificity in peptide arrays and ICeChlIP is only weakly correlated

(R?=0.2337: Fig. 2.7A) and is independent of both raw fluorescence in peptide arrays (Fig. 2.7B)

and IP enrichment in ICeChIP (Fig. 2.7C), suggesting that antibody specificity trends are not

driven by affinity alone. Notably, there was much greater platform disagreement for antibodies to

H3K4me?2 than for those to H3K4mel or H3K4me3 (Fig. 2.8A).

30



Table 2.4: Characteristics for antibodies targeting H3K4me3.

Abcam ab12209

Abcam ab8580

Abcam ab8580
Abclonal  A2357
Abclonal A2357

Active

Motif 39159

Active

Motif 61379

cell 9727
Signaling

cell 9751
Signaling

Diagenode C15200152

Diagenode C15410003

Diagenode C15410003
EMD

Millipore 05-745R
EMD
Millipore 07473

Epicypher 13-0004
EpiGentek A-4033-050
RevMAb 31-1039-00

Thermo
Fisher

Koide Lab 304M3B

PAS5-40086

GR275790-1

GR190229-1

GR273043-4
46698
46699

12613005

24615006

9

001-11
A1052D
A5051-001P

2813867

DAM1623866

13171001
606361
P-09-00676

RL2301825
040416AG

abMe3-4
abMe3-1

abMe3-5

abMe3-8

abMe3-11

abMe3-7
abMe3-9

abMe3-6

abMe3-2

88+3
60=£3
55+4
91 £2
86+2

66 + 11

67+ 1

65+3

59+7

73 £ 12
72£5
65+8

72 +£8

56+7
71+5

abMe3-10 84 +10

abMe3-3 96.5+0.5

67=+5

76 £ 1

88+9
66 £ 2
58+4
90+9
75+£4

62+5

57+3

58+4

57+2

86£9
78 £7
78 +5

89+3

81=+5

93 +2
81+3
86+2

100 £ 0

5+1
63 +17
59+4
13+£3
43 £8

55

04+0.3

31+£0.7

59 +£22

1.4+0.8
40 £ 24
35+£16

55+ 18

54+7

1.1+£04
48 £ 25
42+5

17+7
36 19

6
418
418

0

0

80

11

24

43
43

10

189

S O O

0

We found that specificity in [CeChIP was not substantially affected by changes in relative

methylform abundances for the antibodies screened (Fig. 2.8B), suggesting that different chromatin

abundances of the methylforms do not mask true antibody ChIP specificity. Yet, for approximately

half of the antibodies screened in peptide arrays, changing the amount of epitope or antibody altered

observed specificity (Fig. 2.7D-E and 2.8C-D). We speculate that these differences in antibody
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Figure 2.7: Antibodies can display different specificities in peptide arrays and ChIP.

(A) Specificity computed for each antibody (of 52 tested) as target H3K4 methylform (indicated by
dot colour) enrichment normalized to the sum of all H3K4 methylform enrichments. (B) Methylform
specificity versus on-target signal in peptide arrays. (C) Methylform specificity versus on-target
enrichment in ICeChlIP. (D) Aggregate specificity in peptide arrays of abMe2-2, varying concentra-
tion of modified peptide (left) or antibody dilution (right). (E) Aggregate specificity of abMe2-2 in
ICeChIP when varying amount of input chromatin (left) or amount of antibody (right). (F) Heatmap
of peptide array antibody binding normalized to target for select combinatorial modifications (full
peptide set detected in Figure S5). (G) Binding in ICeChIP and peptide arrays of selected anti-
H3K4me3 antibodies to H3K4me3K9acK14acK18ac relative to singly modified H3K4me3. All
peptide arrays were conducted with six fluorescence measurements, and all ICeChIPs with one of

signal relative to target epitope

each pulldown. Error bars represent SD.
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Me1-1 120 Me2-2 Me3-4 120 Me3-1
ICeChIP  Approx. Equally  Pept. Arrays Total abMe abiie abMie3 abiie3
More Specific Specific More Specific 100 100 100
a-H3K4me0 0 1 0 1 g 80 g 8 £ 80 £ 80
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a-H3K4me1 1 1 5 17 - e g e e
o o o o
a-H3K4me2 12 2 2 16 5 % 5" 5" 5 "
2 2 2 2
S 2 S 20 S 20 S 2
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0 0 0
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Figure 2.8: ICeChIP and peptide arrays have discrepancies that can be modulated.

(A) Agreement of antibody of methyl-form specificity between ICeChIP and peptide arrays, to
within 10 percentage points. (B) ICeChIP aggregate specificity for four antibodies when H3K4me?2
nucleosomes bearing a different DNA sequence is added in excess of endogenous H3K4me2. One
replicate per ICeChIP experiment for a total of four ICeChIPs per antibody. (C, D) Antibody speci-
ficity on EpiTitrate peptide arrays with varying amounts of (C) antibody and (D) modified peptide.
Approximately half the antibodies tested show marginally altered specificity with increasing dilu-
tion, albeit not always in the same direction. Most antibodies show decreased specificity at the
most dilute modified peptide concentration, and approximately a third show decreasing specificity
with increased modified peptide dilution more broadly. Six fluorescence readings per peptide array
experiment, with one independent experiment per antibody dilution.
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specificities are the result of the different physical interactions underpinning the two methods: in
peptide arrays, dilute antibody binds densely packed epitope on a surface, whereas ICeChIP (and
ChIP more generally) is the opposite. However, a complete understanding of these differences
remains a challenge for future inquiry.

Peptide arrays permit simultaneous querying of combinations of H3K4 methylations with
other PTMs!9:11L112,133 Ty this context, many antibodies displayed reduced affinity for their target
with flanking lysine acetylation (Fig. 2.7F, all except abMe2-1 and abMe3-2; and Fig. 2.9), which
are thought to occasionally coexist!**!*#, Yet in ICeChIP, we largely do not observe such reduced
binding, with several antibodies displaying the opposite trend (Fig. 2.7G). Although these proximal
modifications do impact apparent H3K4me3 capture in both platforms, the effects are subtle and

poorly aligned between the two methods.
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H3T3pK4me3K9acK1:
H3T3pKame3

H3R2M
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Figure 2.9: Combinatorial modifications can impact antibody binding in peptide arrays.

Heatmap of antibody binding to a wide range of combinatorial and off-target peptides on peptide
arrays. Signal is normalized to singly modified target epitope.
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Figure 2.10: Antibodies with different specificities yield markedly different ChIP-seq profiles in
K562 cells.

(A) Specificity profiles of anti-H3K4me3 antibodies measured by ICeChIP-seq (full range of stan-
dards in Fig. 2.11A). (B) A representative chromosomal coordinate view showing several antibody
ICeChIP-seq modification profiles and ENCODE project H3K4me3 modification profiles in K562
cells, with a putative promoter-enhancer connection (Li et al., 2012). Bars below tracks represent
peaks. (C) Anti-H3K4me3 antibodies and signal-corrected H3K4me3 modification profiles con-
toured over all TSSs for all Refseq genes. (D) Average HMD measured by anti-H3K4me3 antibodies
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Figure 2.10, continued:

(sorted in descending order) at the +1 and +2 nucleosomes of genes with signal-corrected H3K4me3
HMD <0 (7,666 Refseq genes). Vertical axis represents position in sorted gene list. (E) Correlation
between average HMD of signal-corrected H3K4me3 versus antibody-measured HMD at antibody
peaks for anti-H3K4me3 antibodies. Error bars represent 99.99% CI of regression slopes. (F)
Correlation between pre-cosinusoidal factors of eight-component discrete Fourier cosine transform
on antibody-measured peaks of signal-corrected H3K4me3 versus antibody-measured HMD for
abMe3-3 (left) and abMe3-2 (right). Error bars represent 99.99% CI of regression slopes. (G)
Correlation between pre-cosinusoidal factors of eight-component discrete Fourier cosine transform
of measured HMDs by abMe3-3 versus abMe3-4 (left) or abMe3-1 (right), on peaks from abMe3-4
(left) or abMe3-1 (right). (H, I, J) Signal-corrected H3K4me3 modification profiles, generated
from abMel-5, abMe2-3, and the noted H3K4me3 antibody, contoured over (H) stringently defined
enhancers, (I) H3K9me3 peaks, and (J) ENCODE H3K9ac peaks.

Antibodies with different off-target specificities yield materially different ICeChIP-seq profiles
We next examined 15 antibodies with a range of H3K4 methylform specificities on chromatin
from K562 cells, a tier one ENCODE cell line'?’. Using our described method!!®, we isolated
the on-target ChIP-seq signal for four antibodies to generate signal-corrected tracks (Fig. 2.10A
and 2.11A). As anticipated from its performance in both peptide arrays and ICeChIP-qPCR (Fig.
2.6C-D), abMe3-2 captures substantial H3K4me?2 (which is more abundant than H3K4me3) in
ICeChlIP-seq (Fig. 2.10A). Consequentially, its distribution appeared more similar to that of high-
specificity H3K4me?2 than H3K4me3 antibodies (Fig. 2.10B). Similar off-target capture issues were
observed for all other low-specificity antibodies used for ICeChIP-seq (Fig. 2.11).

We then sought to determine if high-specificity and low-specificity antibodies had demon-
strably different ChIP-seq profiles genome-wide. High-specificity and corrected H3K4me3 profiles
are similar about transcription start sites (TSSs), whereas low-specificity antibodies show inflated
apparent HMD, consistent with off-target signal leakage (Fig. 2.10C). Strikingly, at TSSs with no
measured H3K4me3 in the corrected profile, the high-specificity anti-H3K4me3 profiles display

fewer genes with nonzero apparent HMD than do the low-specificity profiles (Fig. 2.10D). More-
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Figure 2.11, continued:

(A) Specificities of antibodies in I[CeChIP-seq experiments are identical within experimental error
to those measured by qPCR, and a broader range of off-target internal standards are sampled. Er-
ror bars represent SD of estimate based on internal variability of ladder members. (B) Metagene
contours about Refseq TSSs of anti-H3K4mel (upper panel) and anti-H3K4me?2 (lower panel) an-
tibodies and corresponding corrected profiles. (C) Correlation between antibody-measured HMD
and corrected HMD at antibody called peaks for anti-H3K4mel and anti-H3K4me?2 antibodies. (D)
Antibody-measured HMD at +1/+2 nucleosomes of genes with no measured HMD in corrected
profile for anti-H3K4mel and anti-H3K4me?2 antibodies. (E) Correlation and magnitude analysis
of pre-cosinusoidal factors for eight term Fourier series comparing corrected HMD versus antibody-
measured HMD for anti-H3K4mel and anti-H3K4me?2 antibodies contoured over called peaks in
the corrected. (F) Similar analysis of pre-cosinusoidal factors of eight-component discrete Fourier
cosine transform of measured HMDs by listed antibodies versus high-specificity reference antibod-
ies abMel-1 (upper panel) or abMe2-2 (lower panel) on peaks from listed antibodies. (G, H, I)
Metacontours about TSSs of H3K4me1/2/3 HMD for (G) all TSSs (58,951 TSSs), (H) TSSs with
a transcription factor binding site (Wang et al. 2014) within 200bp of the TSS (32,531 TSSs), and
(I) TSSs without a transcription factor binding site (Wang et al. 2014) within 200bp of the TSS
(26,420 TSSs). (J, K, L) Average (J) H3K4mel, (K) H3K4me2, and (L) H3K4me3 corrected HMD
of +1/+2 nucleosomes versus In RPKM of genes. Error bars for all correlations represent 99.99%
CI for correlation slope.

over, the HMD of peaks from high-specificity antibodies correlate more closely with the corrected

profile than do low-quality antibodies (Fig. 2.10E).

To compare the shapes of the ChIP-seq profiles, we applied a discrete cosine transform to
the HMD distributions at called peaks genome-wide for both antibody and corrected profiles. This
calculation allowed us to assess concordance of peak shape separately from HMD magnitude. The
regression slope for the pre-trigonometric factors indicates concordance of HMD value, whereas
the correlation coefficient indicates similarity of distribution shape. For each term, the linear
correlation with corrected profile is stronger and the slope closer to unity for high- versus low-
specificity antibodies (Fig. 2.10F), demonstrating that the shape and magnitude of high-specificity
HMD profiles more closely resemble the signal-corrected profile. Similar comparisons between
two additional high- or low-specificity antibodies for each methylform recapitulate these results
(Fig. 2.10G and 2.11B-C). Together, these data suggest that the profiles of high- and low-specificity
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antibodies are distinct, with different patterns genome-wide. Given that the most widely used ChIP
antibodies show poor methylform specificity (Tables 2.1-2.4, Fig. 2.4, 2.5), conclusions drawn
from datasets generated with these reagents should be tempered.

Beyond H3K4 methylform analysis, our ICeChIP spike-in pool also contained synthetic
barcoded nucleosomes representing H3K9me1/2/3, H3K27me1/2/3, H3K36me3, H3K79me1/2/3,
and H4K20me1/2/3 nucleosomes (Fig. 2.11). With the exception of the low-specificity abMel-3,
the tested antibodies did not substantially capture PTMs on other lysines in histone H3, although
we note several that showed substantial binding to H4K20me3 in either array testing (Fig. 2.9)
or ICeChlIP (Fig. 2.11). Off-target recognition of H4K20me3 is surprising given the low primary
sequence similarity with H3K4, but such binding has previously been noted in qualitative peptide
arrays'>*. As H4K20me3 is relatively rare in rapidly dividing cells!#¢, this cross-reactivity, though
concerning, may be modest in impact.

Several antibodies displayed different sensitivity to flanking additional modifications in
peptide arrays, allowing us to test whether those same patterns were apparent in ICeChIP-seq.
On peptide arrays, abMe3-3 showed enhanced binding to H3K4me3 paired with H3K9me2 but
reduced binding in combination with acetylation marks, whereas the opposite trend was seen for
abMe3-9 and abMe3-10 (Fig. 2.9). However, when signal-corrected tracks are generated with these
antibodies, at stringently defined enhancers, where H3 acetylation is expected, and H3K9me3 peaks,
the differences between the profiles are small and often the opposite of what is predicted by peptide
arrays (Fig. 2.10H-I). Similarly, at ENCODE H3K9ac peaks, the profile corrected with abMe3-3
has ~10% higher apparent H3K4me3 HMD over abMe3-10 despite showing reduced capture of
acetylated peptides in arrays (Fig. 2.9, 2.10J). Collectively, these results suggest that biases in our

ICeChIP analyses due to these combinatorial modifications are modest.
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1CeChlIP with high-specificity antibodies yields new insights into transcriptional control
Prior studies have relied on ChIP-seq without in situ antibody specificity information or calibration,
so we next used our robust ICeChlIP-seq datasets to critically re-evaluate previous findings and

search for new biological insights. In particular, we chose to investigate distal enhancers and the

17,20,93,94,132 92-94

promoters they regulate'*’. H3K4me3 is phenomenologically and biochemically
associated with active promoters!!®, where it is flanked by the lower H3K4 methylforms; our
present high-quality data recapitulates this general pattern (Fig. 2.10C and 2.11G-L). H3K4mel
and H3K4me?2 are canonically thought to be indicative of enhancers, but not of relative enhancer ac-

12,18,19,131

tivity . There are scattered reports of H3K4me3 demarcating active enhancers'*®, but the ac-

cumulated evidence suggests that H3K27ac, rather than H3K4me3, marks active enhancers!>!%13!,

Our data confirm that H3K4me1 and H3K4me?2 decorate stringently defined enhancers; how-
ever, we detect little evidence for H3K4me3 at these sites (Fig. 2.10H and 2.12). Importantly, though
the high-specificity antibodies show little H3K4me3 at a putative enhancer, the low-specificity anti-
H3K4me3 antibodies show substantial apparent H3K4me3 at such locations, as do the ENCODE
H3K4me3 ChIP-seq tracks (Fig. 2.10B and 2.12F). This artefactual capture, apparent in the low-
specificity (but commonly used; see Table S1) anti-H3K4me3 antibodies (abMe3-1 and abMe3-2)
and ENCODE data (some of which was performed with the same reagents), is attributable to signal
leakage from lower methyl forms, which are abundant at enhancers.

Although there are some differences between datasets using different high-specificity anti-
bodies (Fig. 2.10C-F and 2.10H-J), they all indicate extremely low H3K4me3 levels at enhancers
(Fig. 2.10H, 2.12F). If some of the apparent signal inflation of abMe3-3 versus abMe3-4 (Fig.

2.10H-J) was due to enhanced capture of H3K4me3 in the context of flanking acetylation (Fig.

2.7G), these differences are quite modest. While this does not rule out the possibility that other
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Figure 2.12: High-quality H3K4 methylation HMD datasets reveal quantitative relationships be-
tween enhancer H3K4 methylation and promoter activity.
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Figure 2.12, continued:

(A, B, C) Average (top) and sum (bottom) of (A) H3K4mel, (B) H3K4me2, and (C) H3K4me3
corrected HMD across all enhancers contacting corresponding promoter regions versus In RPKM
for all classes of genes (left), metabolic genes (centre-left), multicellular system process genes
(centre-right), and developmental process genes (right). (D) From left to right: abMe3-3 measured
HMD sum versus In RPKM. abMe3-3 measured HMD average across enhancers versus In RPKM,
average corrected H3K4me2 enhancer HMD, and average corrected H3K4me3 enhancer HMD. (E)
Heatmaps of stringently defined enhancer HMD averages for H3K4mel, H3K4me2, and H3K4me3.
All heatmaps sorted by In RPKM of target genes. Ryq% represents R? of linear correlation between
actual and predicted/modeled HMD. (F) Signal-corrected H3K4mel, H3K4me?2, and H3K4me3
modification profiles contoured over stringently defined enhancers.

proximal modifications could have more severe impacts on capture efficiency, leading to bias in
the interpretation agnostic of such effects, for H3K4me and flanking lysine acetylation we observe
a less severe dependence than anticipated.

We next investigated the relationship between enhancer H3K4 methylation and target gene
expression, as defined by RNA Polymerase II ChIA-PET contacts'4’. Though we find that transcrip-
tion from a given promoter modestly correlates with the average H3K4mel HMD across contacting
enhancers (Fig. 2.12A; left, top), the sum of H3K4me1 HMD across all contacting enhancers corre-
lates much more strongly (Fig. 2.12A; left, bottom). Similar properties were observed for H3K4me?2
(Fig. 2.12B). We interpret these data to mean that the number and collective H3K4mel/me2 density
of enhancers predicts promoter activity, suggesting that enhancers may operate en masse rather
than as isolated elements, and that the lower H3K4 methylforms may play some role in this process.
Conversely, neither averages nor sums of enhancer H3K4me3 HMD correlated as well with expres-
sion (Fig. 2.12C), nor did the ratio of enhancer H3K4me3 to H3K4mel (Fig. 2.13A), contrary to
prior uncalibrated ChIP studies'*®.

H3K4 methylation at enhancers is thought to primarily regulate cell-type specific and de-
velopmental genes!®!*!3! To investigate this, we compared gene expression and enhancer modifi-

cation levels for metabolic, developmental, and multicellular system process-genes (Fig. 2.12A-C).
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Figure 2.13: H3K4mel and H3K4me2 HMD across enhancers contacting promoter regions is
correlated to gene expression for all, metabolic, and developmental genes.

(A) Ratio of enhancer H3K4me3 HMD to H3K4mel HMD versus In (RPKM). (B) abMe3-2 mea-
sured HMD sum (left) or average (centre and right) across enhancers versus In RPKM (left), average
corrected H3K4me?2 enhancer HMD (centre), and average corrected H3K4me3 enhancer HMD. (C-
F) Average transcript production, measured by average In GRO-Cap reads, of unstable-unstable
classified genes® versus (C) average H3K4mel, (D) H3K4me2, (E) H3K4me3 HMD, and (F)
median H3K4me3/H3K4mel ratio. All scatterplots, unless otherwise noted, use corrected H3K4
methylation profiles and show binwise averages; bins contain fifty elements each and were created
by sorting on In (RPKM).

Remarkably, our signal-corrected datasets showed no substantial differences between these gene on-
tology classes, indicating that enhancer-potentiated transcriptional activation may be more universal
in mammalian gene expression than formerly appreciated!®!%-13!,

To determine if low-specificity antibodies can materially affect these new observations,
we analyzed the HMD sum across enhancers as measured by abMe3-2, which cross-reacts with
H3K4me2 (Fig. 2.5, 2.6D, 2.10A, and 2.11A). Here, the apparent H3K4me3 HMD sums at en-
hancers correlate strongly with gene expression (Fig. 2.13B), unlike corrected or high-specificity

H3K4me3 abMe3-3 sums (Fig. 2.12C-D and 2.13B). This apparent HMD at these loci is driven
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primarily by H3K4me?2 rather than H3K4me3, so the low-specificity abMe3-2 incorrectly attributes
this function to the latter PTM (Fig. 2.13B). Importantly, other normalization methods with spike-
in chromatin'?®, which normalize ChIP experiments but cannot control for specificity, would be
similarly susceptible to this misleading artefact, highlighting the importance of internal standard

calibration that is sensitive to antibody specificity.

Revisiting literature enhancer mark paradigms with high-specificity antibodies
Multiple reports have implied a role for H3K4me3 at enhancers®®!*¥, further suggesting that the

H3K4me3:H3K4mel ratio marks active enhancers'#®

. Our calibrated data, which enable meaningful
ratiometric comparisons, show the opposite trend in K562 cells. Specifically, we find that the ratio of
calibrated H3K4me3 to H3K4mel is inversely related to enhancer activity (Fig. 2.13A), consistent
with our observation that enhancers lack substantial H3K4me3 (Fig. 2.10G, 2.12C-F, 2.13C). The
prior work relied upon an antibody (abMe3-1) for which two lots performed poorly in our study (Fig.
2.6A,2.4,2.5, and 2.10A-B)'*8; the substantial cross-reactivity we observe with H3K4me2, which
is abundant at enhancers, may account for the disparity (Fig. 2.12B). The use of crosslinking ChlIP,

which has been previously noted to reduce specificity!4*15!

, represents another potential source of
the discrepancy. Regardless, several independent lines of evidence (Fig. 2.12, 2.13A) lead us to
conclude that the H3K4me3/H3K4mel ratio is not positively correlated with enhancer activity in
K562 cells, and, we suspect this to be more general.

Similarly, based on ENCODE ChIP-seq data, it has been suggested that H3K4me3 levels
and the H3K4me3:H3K4mel ratio at eRNA TSSs are positively correlated with eRNA transcription

levels, as measured by GRO-Cap reads in K562 cells®®. However, there are several potential

issues with the ENCODE H3K4 methylation ChIP-seq datasets. Those for H3K4me3 in K562
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cells (the only H3K4 methylation state with multiple independent datasets) display substantial
divergence from one another (Fig. 2.2, 2.3A-B, 2.10B) and are all very different from our high-
specificity I[CeChIP-seq datasets (Fig. 2.3C). This could be due to a wide variety of factors, including
different antibody quality; sequencing depth; the use of crosslinked ChIP, which leads to greater oft-
target binding'4*~!°!; sonication, which can generate a large size distribution of fragments and can
damage epitopes!*?; and the effect of single-end sequencing and read extension, which can result in
oligonucleosome avidity distortion!'®. Conversely, our ICeChIP-seq datasets were generated with
a native procedure, high sequencing depth, and by filtering out fragments with lengths greater than
200bp to avoid oligonucleosome avidity distortion. Whatever the cause, these differences lead to
markedly different interpretations when coupled to readouts of eRNA in the same cell line®. We
find that neither H3K4mel (Fig. 2.13C), H3K4me2 (Fig. 2.13D), H3K4me3 (Fig. 2.13E), nor
the H3K4me3:H3K4mel ratio (Fig. 2.13F) is substantially correlated to the transcriptional level
of eRNAs. This example highlights the need for ChIP-seq procedures that minimize off-target

capture and underscores the pitfalls of treating ENCODE datasets as gold standards for these sorts

of analyses.

Examining catalytically dead MLL3/4 mutants with high-specificity antibodies and calibration

To further investigate enhancer biology, we conducted ICeChIP-seq in R1 mouse embryonic stem
cells (mESCs) with wild-type (WT) and catalytically dead MLL3/4 mutants (dCD MLL3/4) reported
to have markedly reduced H3K4mel global abundance!>*. Sequencing confirms the high specificity
of abMel-6, both relative to H3K4 methylforms and cross-lysine reactivity (Fig. 2.14A). Globally,
we observe that WT H3K4mel abundance is consistent with other global abundance measurements

of this PTM in mESCs'#* and we observe roughly three-fold loss of H3K4mel in dCD mESCs
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Figure 2.14: Highly specific anti-H3K4mel 1CeChIP-seq can reveal differences between MLL3/4
WT and /catalytically dead cell lines.

(A) Specificity of H3K4mel ICeChIP-seq in WT and dCD MLL3/4 R1 mESCs. (B) Global
H3K4mel abundances, as proportion of nucleosomes (left) and globally integrated HMD (right).
(C) A representative genome browser view of H3K4mel HMD in WT and dCD MLL3/4 R1 mESCs
near an enhancer'>*. (D) Heatmap of H3K4mel HMD about enhancers in WT and dCD MLL3/4
R1 mESCs, sorted by MLL3/4 ChIP-seq signal'*.

relative to WT, measured either as proportion of nucleosomes or integrated HMD (Fig. 2.14B),

confirming that abMe1-6 is specific enough to detect such global abundance differences.

These datasets further serve to highlight the importance of calibration for ChIP-seq. Indeed,
ICeChlIP-seq genome browser views (Fig. 2.14C) and heatmaps (Fig. 2.14D) of H3K4mel about
enhancer centers for WT and dCD lines show a much more pronounced difference between the two

lines than previously reported!>, likely due to inappropriate assumptions inherent in normalization
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of uncalibrated data. These discrepancies emphasize the importance both of the absolute quantifi-
cation offered by ICeChlIP and its ability to provide robust quantification amidst to global changes

of histone modification abundances, as with these lines.

Reexamining other H3K4 methylform paradigms with high-specificity antibodies
Beyond enhancers, the H3K4 methylforms have been broadly correlated with transcription factor
binding. It has been suggested that the H3K4me3 and H3K4mel profiles are similar in both shape

and magnitude between both genic and intergenic TBP sites'>*

. Although we cannot confirm the
lot of abMe3-1 used in these prior experiments is identical to ours, we recapitulate their results,
where the apparent H3K4me3 distribution with abMe3-1 is comparable in shape and magnitude
at both genic and intergenic TBP sites (Fig. 2.15A, abMe3-1, grey profile). However, two lots of
abMe3-1 show substantial cross-reaction with H3K4me?2 (Fig. 2.4, 2.5, 2.10A-B), and its apparent
binding profile appears entirely attributable to this methylform. Our H3K4me2 HMD profiles all
look quite similar at genic and intergenic TBP sites, whereas the calibrated H3K4me3 distributions
are distinct, with little H3K4me3 at the intergenic sites (Fig. 2.15A, red lines). This demonstrates
that specificity information within the ChIP experiment is essential for interpretation, as without it,
seemingly incorrect conclusions are drawn about the H3K4 methylation state at TBP sites'>*.

In addition to enhancers and TFBS, H3K4 methylation is thought to serve biological roles
within gene bodies. As an example, there are reportedly two H3K4me3 peaks of comparable
magnitude flanking the first exon of genes: the first (canonical) at the TSS!-?, and the second
atop the 5’-spice site that defines the end of the first exon!#'. These observations were based on re-

analysis of ENCODE data from K562 cells. Our studies with the same reagent (abMe3-2) indicate

its considerable cross-reactivity with H3K4me?2 (Fig. 2.4, 2.5, 2.6, 2.11). When we conduct similar
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Figure 2.15: Use of low- vs. high-specificity reagents in the literature may yield demonstrably
different biological interpretations for many proposed paradigms.

(A) Apparent HMD profiles of H3K4mel, H3K4me2, H3K4me3 and abMe3-1 about intergenic
(left) and genic (right) TATA-binding protein (TBP) sites that have been previously described!*.
(B) Apparent HMD profiles of H3K4mel, H3K4me2, H3K4me3, and abMe2-1 about transcription
factor binding sites (TFBS) that have been previously described'*°. (C) Apparent HMD profiles
of H3K4me3 and abMe3-2 about the first exon splice site (SS) for transcripts with a first exon
between 750-1000 nucleotides in length. Gradient indicates the region in which the TSS of this set
of genes could be. (D) Apparent HMD profiles about TSS for H3K4mel, H3K4me2, H3K4me3,
and abMe2-1. Clusters were generated using k-means clustering of HMD distribution about TSS!38,
(E) -Ln (p) of gene ontology enrichment for the clusters profiled in panel (D). (F) -Ln (p) of gene
ontology enrichment for genes by quantile of H3K4me3 peak breadth at said gene. (G) Corrected
H3K4me3 profiles about TSSs by gene ontology classes in K562 cells.
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analyses on genes with the first exon between 750-1000nt (the first length at which the two putative
peaks clearly resolve in the original study'#"), we fail to see such a peak at the first exon-intron
boundary (Fig. 2.15C), indicative of no H3K4me3 enrichment specific to this splice site. In addition
to the above concerns regarding the ENCODE datasets, the previous report used raw H3K4me3
sequencing reads from ENCODE'*!, which would not accommodate any differences in nucleosome
density at the TSS and the first splice site, whereas ICeChIP (and many conventional ChIP) datasets
are normalized to input density and are therefore largely independent of such differences!'®. In this
example as well, our high-quality ICeChIP datasets yield different biological interpretations than
those proposed in the literature.

Another such example can be found in analysis of the distribution of H3K4me2 over gene
bodies. It has been reported that H3K4me? is highly elevated over the gene body of tissue-specific,

138 When we apply the same procedure to iden-

immune system process genes in CD4+ T-cells
tify such genes in K562 cells, we find there is indeed a cluster of genes with somewhat elevated
H3K4me?2 across the entire gene body (Fig. 2.15D, Cluster 2), though it appears less dramatic and
spread-out than may be expected from prior studies. However, we also see that H3K4mel is more
highly spread-out and elevated over this gene class (Fig. 2.15D), reminiscent of their description
of the H3K4me?2 distribution'*®. We also note that the antibody used by the prior study, abMe2-
1, produces results more similar, but not identical results in our analyses (Fig. 2.15D). abMe2-1
displayed some cross-reactivity to H3K4mel (Fig. 2.4, 2.5, 2.6, and 2.11; abMe2-1), and is likely
further compromised by the greater relative abundance (2-10 fold across a variety of cell types)
of H3K4mel over H3K4me2!*®. We also find that this cluster of genes that display the described

gene body enrichment profile is, in K562 cells, highly enriched for metabolic processes and not

as enriched for cell-type specific processes as previously described (Fig. 2.15E). Thus, while the
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differences between our findings and prior reports may be attributable to antibody quality, ChIP
procedure, or cell type, the former is likely the most consequential.

Finally, we examined the role of H3K4 methylation domain breadth at gene promoters. It has
been proposed that broad H3K4me3 domains mark cell identity genes across a range of cell types,

155157 "To critically assess this phenomenon

including K562 cells, driving transcriptional constancy
with our datasets, we analysed the enriched gene ontology classes in K562 cells across different
quantiles of H3K4me3 peak breadth. To our surprise, we instead found that metabolic genes were
the most enriched class (Fig. 2.15F) and that metabolic processes have, on average, a broader peak
structure at TSSs (Fig. 2.15G), suggesting that the proposed role of broad H3K4me3 domains does
not apply to K562 cells. As the conclusions in previous publications were largely based on the
ENCODE H3K4me3 ChlP-seq tracks, which we have found to be substantially different from our
datasets in K562 cells (and indeed, from each other), it is possible that prior interpretations were
similarly compromised by antibody quality. All together, these vignettes suggest that in numerous

cases, it appears that off-targeting binding by low-specificity antibodies, amongst other factors, has

directly led to inaccurate conclusions.

Discussion

Methodological strengths and limitations of peptide arrays and ICeChIP

The largest concern with poor-quality antibodies is that off-target binding will lead to erroneous
biological interpretation. In conventional ChIP, with no effective metrics to assess antibody speci-
ficity in situ, the researcher is effectively blind to this pitfall, potentially compromising their results.
Peptide arrays present the only practical way to broadly examine the impact of flanking combi-

natorial PTMs and have predictive value for other epitope-dense experimental formats, such as
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immunoblotting'*8. However, our results suggest that peptide arrays, though commonly used for
ChIP antibody validation!®!!L12.133 "o ften fail to accurately reflect antibody performance within
ChIP experiments, either for methylform specificity or the impact of combinatorial PTMs. We have
begun to examine the physical underpinnings of these differences, but given the distinct experimen-
tal formats, they are unlikely reducible to a single concrete principle and in any case, are largely
immaterial to the practical matter: that peptide arrays are inappropriate for predicting antibody
performance in ChIP.

ICeChlIP is not without its limitations. The specificity information afforded by ICeChIP
is restricted to the breadth of the semisynthetic nucleosomal standards available. However, these
standards, particularly those bearing combinatorial modification patterns, are laborious to construct.
If there is a discrepancy between datasets at loci that potentially bear combinatorial modifications,
without these additional standards, it is difficult to assess which view is correct. For example, we see
modest differences between datasets generated with different highly specific H3K4me3 antibodies
(Fig. 2.10H-J) even when the measurement error is reduced by the massive signal averaging implicit
in metanalysis. These apparent differences are attributable to several possible sources: differential
sensitivity to flanking modifications (either increasing affinity, thereby artifactually inflating the
HMD, or the converse); differential off-target nucleosome capture of marks not represented in the
panel of nucleosomal standards deployed; and for individual loci, input and IP sampling error can
also drive more pronounced peak shape and height differences.

Further, even if a broad range of nucleosome standards bearing combinatorial modifications
were constructed, the analysis of histone modifications at co-modified loci would not be straight-
forward. It is possible, for example, that at a given locus, there are two sub-populations of cells

with different PTM states that the two PTMs do not actually coexist on the same nucleosomes. To
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evaluate this possibility, a sequential ICeChIP protocol would need to be developed, sequentially
selecting for nucleosomes with each PTM. However, to date, the sequential ChIP protocols in the
literature®13%13-162 have tended towards denaturative, crosslinked protocols with the questionable

specificity and IP enrichment inherent in crosslinked ChIP!49-151

. To this end, sequential native
ICeChIP remains an active area of study for us, but nonetheless, represents a present limitation of
the method.

Beyond combinatorial modifications, ICeChlIP is limited in its ability to accurately assess
nucleosome-depleted regions. At such regions, input coverage is sparse, leading to low sampling and
high uncertainty in HMD values. Though in principle this could be addressed by higher sequencing
depth, the relevance of the histone modification density at locations with such low nucleosome
occupancy would be questionable. Additionally, ICeChIP assumes that native nucleosomes are
stable enough to survive the ChIP protocol, but it has been previously observed certain histone

163,164 Tfthese nucleosomes are unstable

variants and modifications may reduce nucleosome stability
during the ChIP experiment, then that may result in artifactually reduced representation in the IP,
whereas the DNA will still exist in the input, resulting in deflated apparent HMD.

In this study, we reduced the impact of variability of input preparation, cellular heterogene-
ity and authentic biological differences between samples by performing the bulk of comparative
immunoprecipitations side-by-side from the same pool of input. In other contexts, these factors
could become significant contributors to apparent signal.

We often use signal correction in order to more effectively isolate on-target signal from the
antibody-measured signal, which is a convolution of on- and off-target binding. Yet such signal

correction is not strictly necessary. Indeed, because signal correction uses multiple antibodies to

compute a given modification track, the track will often have greater uncertainty than ICeChIP-seq
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with a single antibody. We use signal correction for making more nuanced and accurate comparisons
in the aggregate, where many loci are being treated and analyzed as one dataset. In these analyses,
the error is reduced by averaging. However, when examining individual loci, where the error in a
signal-corrected track is more substantial, it may be better to use a single high-quality antibody for
the most accurate view of mark distributions.

It is important to note that these limitations also exist with uncalibrated ChIP. However,
in that approach, the researcher is completely blind to the questions of specificity and accurate
quantification, whereas ICeChlP at least offers some information to that end. Despite its limitations,

ICeChIP represents a powerful tool to enable quantitative studies of histone PTMs.

Discrepancies with the literature due to antibody and ChIP quality

Here, we have used our ICeChlIP datasets to critically re-examine ENCODE project datasets and
other H3K4-methylform paradigms related to transcriptional control. As disagreement between our
data and prior literature could reflect cell-type specific differences, we have focused on findings pro-
posed as general features of mammalian chromatin. The examples we have presented here comment
on the role of antibodies and ChIP-seq procedures generally in the widely publicized biological “re-
producibility crisis”'®. For a variety of potential reasons, particularly antibody specificity, several
of the interpretations currently in the literature are not recapitulated by the high-quality ICeChIP
datasets we have produced herein, casting some doubt on the many thousands of existing datasets
that currently exist for histone PTMs across a wide range of organisms and cell types, and their use
to draw a great many biological conclusions. In several instances, we were able to reproduce the

phenomena reported with our K562 ICeChIP datasets using the same antibody catalogue numbers.

53



However, in each of these cases, the precise interpretation was flawed owing to off-target antibody
capture, which the authors could not have known at the time due to inadequate validation criteria.

This set of discrepancies makes a powerful argument for in situ metrics of antibody speci-
ficity within ChIP experiments as distinct from spike-in normalization for the purposes of compari-
son®®118128 Tt is unfortunately commonplace for authors to omit the specific antibody lot numbers
used, but if distinctions between our data and the literature arise from lot-to-lot variation'** this is
equally troubling with regard to the scientific reproducibility crisis'®.

Although it is impractical to perform similar analyses of the thousands of papers in the
literature that have used the antibodies described here in ChIP experiments, we fear that what
we have discovered for a small selection of H3K4 methylation paradigms may represent a larger
problem for the field. Furthermore, while we focus here on the specificity problems for antibodies
raised to H3K4-methylforms, our ongoing (and comparably extensive) studies of other “PTM-
specific” antibodies show similar promiscuity issues (data not shown), and a dose of skepticism
for precise conclusions drawn from uncalibrated ChIP with many of these reagents is similarly
warranted.

Our results strongly indicate that the field needs to establish and adopt more rigorous quality
control standards for ChIP reagents to ensure more robust and reproducible data in the future.
Crucially, this includes more careful validation of ChIP antibodies, ideally by direct testing to panels
of related internal nucleosome standards that encompass the broadest achievable range of possible

18~ Apart from calibration, we propose that the norms of ChIP-seq

cross-reactivities in a ChIP setting
data publication should include clear indication of antibody catalogue and lot numbers, sequencing

of input, and quantitative analysis rather than use of called peaks, which reduces quantitative data

to a mere binary. Different protocols can also affect the specificity of the ChIP-seq experiment, and
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though ICeChIP effectively accommodates for this variation!!®, we also suggest the use of native
ChIP rather than the oftentimes far more noisy, low-efficiency, idiosyncratic and artefact-prone
cross-linked ChIP with sonication for accessible histone tails'**~'>!. All told, our study demonstrates
both the danger of using unvalidated antibodies in ChIP and the power of calibrated ChIP to robustly

measure histone PTMs and drive new biological discovery.
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Methods and Materials
Cell Culture
K562 cell lines were grown at 37°C with 5% CO, and 95% humidity in Dulbecco’s Modified Eagle

Media (DMEM, Gibco; K562 cells only) with 10% (v/v) HyClone FBS Characterized U.S. and
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1x Penicillin/Streptomycin (Gibco). Cells were seeded into vented flasks to a density of 200,000
cells/mL of culture and were passaged at 1-2 million cells/mL of culture.
R1 wild-type (WT) and MLL3/4 knockout mESC lines were cultured by the Wysocka Lab

as previously described'>* and were generously provided as cell pellets.

Octamer Reconstitution
Symmetric H3K4me3, H3K9me3, H3K27me3, H3K36me3, H3K79me2, and H3K4me3K27me3
octamers were reconstituted from semisynthetic histones as previously described’!>!!%166.167  Re-
combinant core histones were expressed in BL21 (DE3) with pPRARE?2 and mixed to equimolarity
with the relevant semisynthetic histones in freshly prepared filter sterilized Unfolding Buffer (50
mM Tris-HCI pH 8.0, 6.3 M Guanidine-HCI, 10 mM 2-mercaptoethanol, 4 mM EDTA) to a final
concentration of > 1 mg histone per mL. The histone reconstitution was then added to 3500 MWCO
SnakeSkin dialysis tubing (Pierce) and dialyzed overnight at 4°C against 500-1000 volumes of filter
sterilized Refolding Buffer (20 mM Tris-HC1 pH 7.5, 2 M NaCl, 5 mM DTT, 1 mM EDTA).
After dialysis, the histone mixture was centrifuged at 18,000 g for 1 hour at 4°C, and sub-
jected to gel filtration chromatography (Superdex 200 10/300 GL, GE Healthcare, resolved with
Refolding Buffer). Each fraction that displayed a peak on the UV chromatogram was analysed by
SDS-PAGE (22 mA current in 1x Laemmli Buffer for 70 minutes), stained with SYPRO Ruby (Bio-
Rad) per manufacturer instructions, and imaged with a 610BP emission filter at 600V PMT setting.
Octamer fractions with equimolar quantities of each core histone were pooled and concentrated
(Amicon Ultra-4 Centrifugal Filters, 10,000 MWCO, Millipore) to 5-15 uM octamer, diluted with
one volume of Octamer Storage Buffer, and stored at -20°C.

All other octamers were obtained from EpiCypher, Inc.
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Nucleosome Reconstitution
Nucleosomes were reconstituted onto 147bp DNAs composed of the core Widom 601 sequence!¢®
modified with a 22bp barcode on each end, with each barcode composed of two distinct 11bp
sequences not found in the human or mouse genomes. The DNA and octamer were mixed to a final
concentration of 1uM each in 2 M NaCl, and then dialyzed in dialysis buttons (Hampton Research)
and a 10,000 MWCO SnakeSkin dialysis membrane (Pierce) against 200 mL of Refolding buffer
for 10 minutes. Dialysis then continued as 2L of Buffer 10 (20 mM Tris-HCI pH 7.5, 1| mM EDTA,
ImM DTT) was added (flow rate 2-2.5 mL per minute).

Dialyzed samples were diluted with an equal volume of Nucleosome Dilution Buffer (20
mM Sodium Cacodylate pH 7.5, 10% v/v glycerol, ] mM EDTA, 10 mM 2-mercaptoethanol, Filter
Sterilized), and 1 pl was analysed by native PAGE (100 V in 1x TBE for 30 minutes), stained with
SYBR Gold in 1xTBE for one hour, and visualized with a UV transilluminator gel imager. Fractions
containing nucleosomes and minimal free DNA were pooled and diluted to a working concentration
of ~ 1 nM with filter sterilized Nucleosome Storage Buffer (10 mM Sodium Cacodylate pH 7.5,
100 mM NacCl, 50% v/v glycerol, 1 mM EDTA, 1x Protease Inhibitor Cocktail [l mM PMSF, ImM
ABESEF, 0.8 uM aprotinin, 20 uM leupeptin, 15 uM pepstatin A, 40 uM bestatin, 15 uM E-64 from

a 200x DMSO stock]) and stored at -20°C.

Peptide Microarrays

Peptide microarray experiments were conducted by the Rothbart Lab. Peptide microarrays were
fabricated using an Aushon 2470 microarrayer and used as described!!%!'2, Briefly, antibodies were
diluted according to the manufacturers recommended western blot concentration (unless otherwise

indicated) in Array Hybridization Buffer (PBS [137 mM NaCl, 2.7 mM KCI, 10 mM Na,HPOy,,

57



1.8 mM KH,POy,, pH 7.6], 5% BSA, 0.1% Tween-20), and 500 pL (5 pL for 48-well format) was
hybridized onto a peptide microarray for 1 hour at 4°C. Slides were washed in PBS and probed with
a fluorescently labelled secondary antibody (Life Technologies A-21244 or A-21235). Microarrays
were scanned using an Innopsys InnoScan 110AL microarray scanner and analysed using ArrayN-
inja!®. Specificity was calculated as described below for ICeChIP data from the raw fluorescent

signal.

1CeChIP

ICeChlIP was performed as previously described!!®124170:171 "Briefly, cell pellets were washed twice
with 5 mL of PBS, then washed twice with 5 ml of filter sterilized Buffer N (15 mM Tris-HCI pH
7.5, 15 mM NaCl, 60 mM KClI, 8.5% w/v Sucrose, 5 mM MgCl,, 1| mM CaCl,, | mM DTT, 200
uM PMSF, 50 pg/mL BSA, 1x Roche Protease Inhibitor Cocktail), with each wash consisting of
complete resuspension of the pellet, centrifugation at 500 g for 5 minutes at 4°C, and removal of
supernatant. The washed pellet was then resuspended in at least 2 packed cell volumes (PCV) of
Buffer N and mixed with 1 volume of 2x Lysis Buffer (Buffer N supplemented with 0.6% NP-40
Substitute) and incubated on ice for 10 minutes to lyse cells.

The crude nuclei were spun down at 500 g for 5 minutes at 4°C before being resuspended
in at least 6 packed nuclear volumes (PNV) of Buffer N and applied to the top of 7.5 mL of filter
sterilized Sucrose Cushion N (15 mM Tris-HCI pH 7.5, 15 mM NaCl, 60 mM KCI, 30% w/v
Sucrose, 5 mM MgCl,, 1 mM CaCl,, 1 mM DTT, 200 uM PMSF, 50 pg/mL BSA, 1x Roche
Protease Inhibitor Cocktail) in a 15 ml centrifuge tube, then spun down at 500 g for 12 minutes at

4°C in a swinging-bucket rotor. The supernatant was discarded, and the pellet resuspended in ~ 2

PNV of Buffer N.
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The nucleic acid content of the nuclei per unit volume was quantified by diluting 2 uL of
nuclei suspension into 48 puL of 2 M NaCl, water-bath sonicating to solubilize DNA, and spec-
troscopically measuring nucleic acid concentration by Nanodrop (where one Asgonm = 50 ng/uL
chromatin). After accounting for the 25-fold dilution of the measurement sample, the concentration
of the nuclei was adjusted to 1 pg/uL of chromatin. Nuclei were dispensed to 100 uL aliquots, flash
frozen, and stored at -80°C prior to use.

For use, nuclei aliquots were thawed and spiked with ~ 1 pl of each barcoded nucleosome
standard per 50 pug of chromatin. This suspension was then mixed by pipette, transferred to a new
tube, and warmed to 37°C for 2 minutes. 1 unit of micrococcal nuclease (MNase, Worthington) per
4.375 ng of chromatin was added, and samples incubated at 37°C while shaking at 900 rpm for 12
minutes. Digestions were stopped by adding 1/9 volume of filter sterilized 10x MNase Stop Buffer
(100 mM EDTA, 100 mM EGTA) while slowly vortexing, and nuclei lysed by adding 5 M NaCl
to a final concentration of 600 mM while slowly vortexing. 66 mg of HAP resin (BioRad, CHT™
Ceramic Hydroxyapatite, Type I, 20 um) per 100 pg of chromatin digested was rehydrated with
200 pl of filter sterilized HAP Buffer 1 (5 mM Sodium Phosphate pH 7.2, 600 mM NaCl, 1 mM
EDTA, 200 uM PMSF) per 100 pg of chromatin digested. Lysed nuclei were centrifuged at 18,000
g for 1 minute to pellet insoluble nuclear debris, and the soluble fraction added to the rehydrated
HAP resin and incubated for 10 minutes at 4°C with rotation.

After incubation, the HAP resin slurry was added to a centrifugal filter unit (Millipore
Ultrafree MC-HV Centrifugal Filter 0.45 um) and spun at 1000 g for 30 seconds at 4°C. The HAP
resin left on the filter unit was then washed 4 times with 200 pL HAP Buffer 1, and 4 times with 200
ul filter sterilized HAP Buffer 2 (5 mM Sodium Phosphate pH 7.2, 100 mM NaCl, 1 mM EDTA,

200 uM PMSF) by spinning at 1000 g for 30 seconds at 4°C. HAP resin was eluted into a clean
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tube with three 100 pl solutions of filter sterilized HAP Elution Buffe r(500 mM Sodium Phosphate
pH 7.2, 100 mM NaCl, 1 mM EDTA, 200 uM PMSF). The nucleic acid content of the elution was
then quantified by Nanodrop.

Antibodies and quantities used for each ICeChIP experiment are shown in Appendix A. With
the exception of the 304M3B and 309M3B antibodies, the indicated amount of Protein A Dynabeads
(Invitrogen) for each ICeChIP was washed with 50 uLL of ChIP ChIP Buffer 1 by use of a magnetic
rack, then resuspended in 50 pL of ChIP Buffer 1. In a separate set of tubes, the antibody was
diluted to 100 pL with ChIP Buffer 1. The antibody and Protein A Dynabead suspensions were
combined and incubated on a rotator at 4°C for at least one hour, then washed with 200 pL of ChIP
Buffer 1 by use of a magnetic rack and resuspended in 50 pL of ChIP Buffer 1 (25 mM Tris pH 7.5,
5 mM MgCl,, 100 mM KCI, 10% v/v glycerol, 0.1% v/v NP-40 Substitute, 50 pg/ml of BSA).

The antibodies 304M3B and 309M3B were prepared similarly with Streptavidin M-280
Dynabeads (Invitrogen) rather than Protein A Dynabeads. The beads were washed and antibodies
added and incubated as above. After incubation, the beads were washed twice with 200 puL of ChIP
Buffer 1 by use of a magnetic rack. They were then washed twice with 200 pL of ChIP Buffer 1
supplemented with 5 pM of biotin by incubating for 10 minutes at 4°C on a rotator, then removing
supernatant by use of a magnetic rack.

After antibodies were prepared and washed, the input chromatin concentration adjusted to
20 ng/ul with filter sterilized ChIP Buffer 1, and the amount of chromatin specified in Appendix A
was added to each antibody-bead conjugate and incubated for 15 minutes on a rotator at 4°C. Beads
were then washed twice with filter sterilized ChIP Buffer 2 (25 mM Tris pH 7.5, 5 mM MgCl,, 300
mM KCl, 10% v/v glycerol, 0.1% v/v NP-40 Substitute) and once with filter sterilized ChIP Buffer

3 (10 mM Tris pH 7.5, 250 mM LiCl, 1 mM EDTA, 0.5% Sodium Deoxycholate, 0.5% v/v NP-40
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Substitute), with a wash consisting of removal of the existing supernatant by use of a magnetic rack,
resuspension into 150 pl of buffer, transfer to a new siliconized tube, and incubation on the rotator
for 10 minutes at 4°C. After these washes, the supernatant was removed, the beads resuspended in
ChIP Buffer 1, transferred to a new siliconized tube, rinsed once with 200 pl of TE before being
resuspended in 50 pl of ChIP Elution Buffer (50 mM Tris pH 7.5, 1 mM EDTA, 1% w/v SDS, Filter
Sterilized) and incubated at 55°C for 5 minutes.

After incubation, the supernatant was transferred to a new set of siliconized tubes, and the
beads discarded. To each supernatant was then added 2 pl of 5 M NaCl, 1 pl of 500 mM EDTA,
and 1 pl of 10 mg/mL Proteinase K. 15 pl of Input DNA was also diluted to 50 pl with 35 pl of
ChIP Elution Buffer and was supplemented with 2 uL of 5 M NaCl, 1 pL of 500 mM EDTA, and
1 pL of 10 mg/mL Proteinase K. The IP elutions and diluted input were then incubated at 55°C
for 2 hours for a Proteinase K digestion. After digestion, the DNA was purified by adding 1.5
volumes of Serapure HD (1:50 dilution of Sera-Mag SpeedBeads [Fisher], 20% PEG-8000, 2.5
M NaCl, 10 mM Tris pH 7.5, 1 mM EDTA, 0.05% Tween-20, Filter Sterilized prior to addition
of SpeedBeads), incubating at room temperature for 15 minutes, then collecting the beads on a
magnetic rack, washing twice with 150 ul of 70% ethanol, and eluting into 50 ul ddH20, which

was then recovered and stored at -20°C.

DNA Quantification and Analysis by Quantitative PCR

To assess local histone modification density and/or antibody specificity, our DNA from the ChIP
experiments was quantified by quantitative PCR (qPCR). qPCR was conducted using TagMan Gene
Expression Master Mix (Applied Biosystems) using the primers and hydrolysis probes previously

described!'®. These primers and probe for the barcoded sequences were previously gPCR validated
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for effectiveness and quality!''®. Primers were used at 900 nM; hydrolysis probe at 250 nM, in the
TagMan Gene Expression Master Mix (Applied Biosystems). The qPCR program was run at 95°C
for 10 minutes, followed by 40 cycles, each consisting of 15 seconds at 95°C followed by 1 minute
at 60°C and concluding with a plate read.

Cq values were analysed using the AACq method. Briefly, the Cq values for each target for
each sample were averaged together to obtain the mean Cq value. Enrichment for each barcode was
then computed as Enrichment = 2Ceur — Car 10, accounting for the 10-fold dilution of Input
relative to [P and multiplying by 100% for Enrichment as a percentage of target. Off-target binding
to alternate PTMs were computed by normalizing each enrichment to that of the on-target PTM:
referred to as “Specificity (% Target)”. For H3K4 methylform specificity analyses, overall speci-
ficity was computed by dividing the enrichment of the target PTM by the sum of the enrichments
for all H3K4 methylforms (i.e. H3K4me0 + H3K4mel + H3K4me2 + H3K4me3); this is referred

to as “Aggregate Specificity.”

lllumina Library Preparation and Sequencing

Illumina libraries were prepared as described''®, with minor modifications. Briefly, Serapure pu-
rified DNA was quantified using Quant-iT™ PicoGreen (Thermo Fisher) as per manufacturer
instructions. Libraries were then generated from up to 10 ng of each DNA sample (input or IP) with
the NEBNext Ultra II DNA Library Prep kit (New England Biolabs) per manufacturer instructions.
The DNA content of each library was then quantified and pooled for [llumina sequencing. Cluster
generation and paired-end sequencing was conducted using standard Illumina protocols by the Uni-
versity of Chicago Genomics Facility on the [llumina NextSeq. One replicate of each antibody was

sequenced.
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Bioinformatic Analyses

To align reads, a reference genome was first created, which consisted of the either human genome
(GRCh38/hg38) or the mouse genome (mm9) appended respectively by the sequences of each of
the nucleosome standard barcodes. Reads were then mapped to the appropriate reference genome
using Bowtie2 using the sensitive pre-set and end-to-end alignment options!’2. Using SAMTools!”?,
any reads which were not paired, not mapped in a proper pair, or mapped with a map quality <
20 were discarded to prevent low-quality reads from impacting downstream analyses. Reads were
then flattened to create a single mapping from each matched pair of reads by retaining only one
fragment per pair, and any mappings with lengths > 200bp were also discarded to ensure only
mononucleosomes were being analyzed!'3.

Bedgraphs of genome coverage were then generated using BEDTools!™

, and IP / input
genome coverage bedgraphs were merged using BEDTools!’*. The sum of reads across ladder
members for each nucleosomal standard was computed for each sample and HMD bedgraphs were

then generated from the merged bedgraphs using awk to apply the following formula:

IP)ocus/Inputy .,

HMD (%) = 100% x
( 0) ° IPbarcode/ Inputbarcode

Error and 95% confidence intervals were computed with Poisson statistics and error propa-

gation from the merged bedgraphs using awk to apply the following formula:

1 n 1
IPjocus  Inputy

95CI Error (%) = 1.96 x HMD (%) x \/

Bigwig files were generated for visualization using the bedGraphToBigWig tool'”>.
Correction was conducted using the antibodies AB 8895 (abMel-1), AB 7766 (abMe2-1),
AB 12209 (abMe3-4), and AB 8580 (abMe3-1), unless otherwise noted. Correction was done using

our previously described method!'® against H3K4mel, H3K4me2, H3K4me3, and H4K20me3
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off-target binding. Briefly, measured HMD by each antibody can be described by a vector M, and
the measured specificities by each antibody described by a square matrix S. Then, we can state, if
other off-target binding is negligible, that the correct HMDs for H3K4mel, H3K4me2, H3K4me3,
and H4K20me3 can be expressed by the vector C such that M=CS. As such, the vector C can be
computed as CSS? = C = MS. The elements of S were then used to compute the HMD and
Error of the corrected profiles using awk to linearly combine the AB 8895 (abMel-1), AB 7766
(abMe2-1), AB 12209 (abMe3-4), and AB 8580 (abMe3-1) profiles.

Peak calling was conducted for all H3K4 methylation antibodies using Macs2 using the
bdgpeakcall command'’®, with the input being the HMD bedgraphs computed for each sample. To
compute average HMD across a series of intervals, a “double mapping” procedure was used. First,
the HMD bedgraph was mapped onto 1bp windows made for each interval using BEDTools!7*.
Then, the mapped windows were mapped onto the original intervals using BEDTools!7*. This
procedure ensured that the degree of overlap of the interval with each value of the HMD bedgraph
was accounted for in the mapping procedure. Using this double-mapping procedure, the average
HMD and average 95% CI Error of each called peak was computed. At this point, those peaks with
greater average HMD than average 95% CI Error were selected as “high-confidence” peaks. All
subsequent peak analyses were conducted with these “high-confidence” peaks. For the H3K9me3
antibody, peak calling was conducted using Macs2 using the bdgbroadcall command!’®, with the
input being the HMD bedgraph. These peaks were treated as the H3K9me3 broad peaks. Peak
HMD correlations, were conducted by computing average HMD as measured by antibody and
corrected profile across antibody-measured peaks and subsequently correlating these computed
average HMDs using R, forcing through origin. Stringently defined enhancers were defined as

those that are not overlapping with a Refseq promoter and have a transcription factor binding site!¢,
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GRO-Cap TSS*®, ATAC-seq peak!”’, and ENCODE H3K27ac peak, FAIRE-seq peak, DNase HS
site, and P300 peak'?”) which make contact with at least one promoter by pol II ChIA-PET!#,

For Fourier analyses, the 1200bp region centered upon each peak centre was sectioned into
eight 150bp windows using BEDTools!”*. For each window, the average HMD as measured by the
antibodies or corrected profile to be used, depending on the analysis employed, was computed as
above. The eight windows were then assembled into eight-element vectors for each peak interval,
and the pretrigonometric factors of a Fourier Discrete Cosine Transform computed on these vectors
using Mathematica 10.2 with the command FourierDCT. The pretrigonometric factors were then
correlated using R for each of the eight components, forcing through origin.

Profiles of HMD distributions about features including transcription start sites, first exons,
and TBP sites were generated using HOMER annotatePeaks'”®. Gene ontology was conducted using
HOMER findGO!”8. Gene ontology terms were largely classed into the overarching PANTHER
GOSlim terms!”.

Integrated genome-wide HMD was computed by computing average of HMD across all
base-pairs in genome. Nucleosome global modification abundance was computed as ratio of total
genomic IP to input reads divided by ratio of barcode IP to input reads, much like computation of
locus-specific HMD. The integrated genome-wide HMD represents the proportion of the genome
that has the modification of interest; the nucleosome global modification abundance represents the
proportion of nucleosomes bearing the modification of interest. These two would be equivalent
if nucleosomes were uniformly distributed about the genome but are otherwise not necessarily
equivalent.

Statistical details of experiments can be found in the relevant figure legends. Linear corre-

lations with R were forced through origin for more appropriate slope comparison.
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Data and Software Availability
The ICeChIP-seq datasets generated in this study have been deposited in the Gene Expression

Omnibus under accession number GSE103543.
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CHAPTER 3: RETHINKING THE ROLE OF NUCLEOSOMAL BIVALENCY IN EARLY

DIFFERENTIATION

Attributions

This chapter has been adapted from: Shah, R. N. et al. Re-evaluating the role of nucleosomal
bivalency in early development. Preprint at bioRxiv, doi: 10.1101/2021.09.09.458948. (2021).
Asymmetric disulfide-linked H3K4me3-H3K27me3 were synthesized and provided by the Fierz
Laboratory at Ecole polytechnique fédérale de Lausanne, Switzerland. The 304M3B-1xHRV3C
antibody was developed by the Koide Lab at New York University with Adrian Grzybowski, PhD’18.
Dr. Grzybowski also developed the rel[CeChIP method, conducted relCeChIP-seq on naive mouse
embryonic stem cells, and conducted methyltransferase assays. Jimmy Elias cultured primed mouse
embryonic stem cells and neuronal precursor cells. The other experiments and analyses were

conducted by the author.

Abstract

Nucleosomes, composed of DNA and histone proteins, represent the fundamental repeating unit
of the eukaryotic genome; posttranslational modifications of these histone proteins influence the
activity of the associated genomic regions to regulate cell identity. Traditionally, trimethylation of
histone 3-lysine 4 (H3K4me3) is associated with transcriptional initiation, whereas trimethylation
of H3K27 (H3K27me3) is considered transcriptionally repressive. The apparent juxtaposition of
these opposing marks, termed “bivalent domains”, was proposed to specifically demarcate of small
set transcriptionally poised lineage-commitment genes that resolve to one constituent modification
through differentiation, thereby determining transcriptional status. Since then, many thousands of

studies have canonized the bivalency model as a chromatin hallmark of development in many cell
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types. However, these conclusions are largely based on chromatin immunoprecipitations (ChIP)
with significant methodological problems hampering their interpretation. Absent direct quantitative
measurements, it has been difficult to evaluate the strength of the bivalency model. Here, we present
relCeChlP, a calibrated sequential ChIP method to quantitatively measure H3K4me3/H3K27me3
bivalency genome-wide, addressing the limitations of prior measurements. With reICeChIP, we
profile bivalency through the differentiation paradigm that first established this model®'*°: from
naive mouse embryonic stem cells (mESCs) into neuronal progenitor cells (NPCs). Our results cast
doubt on every aspect of the bivalency model; in this context, we find that bivalency is widespread,
does not resolve with differentiation, and is neither sensitive nor specific for identifying poised de-
velopmental genes or gene expression status more broadly. Our findings caution against interpreting

bivalent domains as specific markers of developmentally poised genes.

Introduction

17,18,20,92794’ whereas

H3K4me3 is canonically considered to be a marker of active transcription
H3K27me3 is thought to be a transcriptional repressor!'89-183 In its original conception, the bi-
valency model posits that the combination of H3K4me3 and H3K27me3 (or a so-called “bivalent
domain”®!3%184) represents a specific regulatory marker of developmentally staged genes. Specif-
ically, lineage commitment genes are thought to be held in a low-expression, transcriptionally
“poised” state by promoter nucleosomes bearing both H3K4me3 and H3K27me3%13%185186 [Jpon
differentiation, the bivalent domain “resolves” into a monovalent state, and the associated gene is

either transcriptionally activated or terminally repressed if H3K27me3 or H3K4me3 is lost, respec-

tively” 1301857188 " The elegance of this instructive model inspired a host of follow-on studies that
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160,189-195 14,15,184,196,197

have suggested that bivalency is important in differentiation , embryogenesis ,

185,198-201 25,202-205

genome architecture , and oncogenesis

In the absence of unambiguous biochemical or functional validation'3+200207 these studies
have largely relied upon ChIP, with the vast majority of studies defining loci with independent
ChIP enrichment for H3K4me3 and H3K27me3 as bivalent domains. However, this analysis cannot
distinguish whether the two modifications coexist or represent two distinctly marked subpopulations
of alleles or cells. Further, because different ChIPs are normalized separately, they exist on separate
relative scales and cannot be quantitatively compared without internal calibration''®!2417! " Ag such,
it is impossible to quantify the extent of bivalency at a given locus or to measure its changes through
differentiation.

To address the first problem, several studies have used sequential ChIP?!4:159,160,162

mea-
suring coexistence by using the eluent of an IP against H3K4me3 as the substrate for an IP against
H3K27me3 (or vice versa). However, these experiments were uncalibrated, were often undersam-

pled!'1%2and used antibodies of unknown specificity?®!4>15%:160,162

, precluding quantification of
the extent of modification. Moreover, many used relatively large chromatin fragments in their
pulldowns, making it difficult to determine whether modifications coexisted on one nucleosome or
discretely marked neighbouring nucleosomes®!>%16%:162 The limitations of these sequential ChIP
studies preclude accurate assessment of key properties of bivalency.

Our previous work introduced internally calibrated ChIP (ICeChlIP), in which barcoded nu-
cleosome internal standards are used to measure antibody specificity and as analytical calibrants that
enable computation of the histone modification density (HMD), or the proportion of nucleosomes at

a given locus with the modification of interest!'!®124!7! By identifying regions with high H3K4me3

and H3K27me3, we indirectly identified many promoters with a nonzero amount of bivalency, in-
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18 However, this analysis was limited;

cluding those regulating developmental and metabolic genes
it was not sensitive for bivalency at less extensively modified loci, nor could it quantify the extent
of bivalency. Here, we directly quantify this nucleosomal mark pattern by calibration of a modified

sequential ChIP approach to critically evaluate the bivalency model in the differentiation system in

which the foundational observations were made.

Results

Measuring bivalency with rel[CeChIP

To directly measure bivalency and evaluate its role in differentiation, we first attempted to deploy
our calibrants with published sequential ChIP methods. However, when evaluated with internal
standards, these methods®!*>1% displayed extremely low enrichment and variable specificity (Fig.
3.1A), with common elution methods either failing to release most of the captured material'> or
compromising the specificity of the second IP (Fig. 3.1B-C). With such heavy losses, we became
concerned that we would undersample and potentially bias the measurement of bivalent nucleo-
somes. We sought a method of elution from the primary IP that was both more efficient and would
preserve nucleosome integrity for the second IP. To that end, we modified a recombinant biotiny-
lated Fab (304M3-B) specific for H3K4me32%® with an intervening HRV 3C endoprotease cleavage
site to enable quantitative elution by enzymatic cleavage under mild conditions.

We then leveraged this reagent to develop relICeChlIP (Fig. 3.2A). The first pulldown was
conducted with the cleavable a-H3K4me3 Fab from native mononucleosomes''®!7° spiked with
nucleosome internal standards. We then eluted the captured nucleosomes from streptavidin resin
by cleaving the antibody with HRV 3C endoprotease’” and, with this eluent, conducted a second

pulldown against H3K27me3 with a conventional antibody. This method eluted material from the
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Figure 3.1, continued:

(A) Enrichment of on- and off-target nucleosome standards under sequential ChIP protocols devel-
oped by Bernstein et al.”, Voigt et al.!**, and Seenundun et al.!*’. (B-C) Enrichment at different
sequential ICeChIP steps with (B) chemical denaturant elution and (C) immunoglobulin and serum
elution. (D) Enrichment of different nucleosome standards with I[CeChIP-qPCR performed against
H3K4me3, H3K27me3, and bivalency, with beads showing very little retention of chromatin (n=3
technical replicates). Error bars represent standard deviation. (E) Different configurations of
bivalency on a single nucleosome. Of these, only trans-bivalency has been identified by mass
spectrometry!!6143,
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Figure 3.2: Workflow and evaluation of reICeChIP-seq.

(A) Schematic of reICeChIP-seq. The recombinant a-H3K4me3 Fab 304M3-B achieves high affin-
ity by “clasping” the histone tail between two Fab molecules®®®, a binding mode readily achieved
by multiple copies of the Fab presented on a bead, but not by the Fab in solution. Thus, protease
cleavage not only elutes nucleosomes from the beads but also likely from the Fab complex. (B)
Enrichment of different barcoded nucleosomes in reICeChIP-seq (n=3 biological replicates). Error
bars represent S.D. (C) Representative line plot showing histone modification density of H3K4me3,
H3K27me3, and bivalency ICeChlP-seq presented with 95% confidence intervals (lighter shade)
and input read depth in naive mESCs. Bivalency is calibrated to the trans-bivalency nucleosome
standard and corrected for off-target H3K9me3 pulldown.
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Figure 3.3: Evaluation of reICeChlP specificity and standards.
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Figure 3.3, continued:

(A) Representative genome browser view of H3K4me3, H3K27me3, and bivalency, shown as a
range of possible values by normalization to trans-bivalent (upper limit) or cis-bivalent (lower limit)
nucleosome standards. (B) Relative pulldown of different nucleosome standards in ICeChIP-seq,
normalized to the most-enriched standard. (C) Scatterplots of reads from DNA barcodes applied
to nucleosome standards in ICeChIP-seq. (D) Violin plots of peak breadth (consecutive segment
of 50bp windows overlapping promoter with >25% HMD) for H3K4me3 (green) and bivalency
(blue) at non-bivalent and bivalent genes (>25% HMD) in naive mESCs. (E-F) Autocorrelation of
(E) H3K4me3 and (F) bivalency HMDs between nucleosomes in naive mESCs. Nucleosomes are
defined as sequential 200bp windows from the TSS.

primary pulldown more efficiently (Fig. 3.1D), resulting in 1000-2500x higher enrichment of the
target over the published methods (Fig. 3.1A, 3.2B). This improvement enabled genome-wide
measurement of bivalency HMD (Fig. 3.2C), representing the proportion of nucleosomes at a
given locus modified with both H3K4me3 and H3K27me3, using the trans-bivalent nucleosome

standards®!” as the calibrant (Fig. 3.1E, 3.3; Supplementary Note 3.1).

Bivalency through differentiation

With relCeChlIP, we sought to study the role of bivalency in development by tracking its changes
across a differentiation pathway that was used in several classic studies of bivalency®!3%2!!: differen-
tiation from naive mESCs?!! through the primed mESC state?!! to NPCs. In naive mESCs, we noted
that bivalency was far more widespread than previously reported (Fig. 3.4A-B); rather than ~1000

211

bivalent genes in naive mESCs”"", we observed at least 10% bivalency HMD at most promoters

(25768/42622), with almost 5000 promoters bearing bivalency at more than 50% of their nucleo-
somes (Fig. 3.4A,C; Supplementary Note 3.2, 3.3). This trend is recapitulated with primed mESCs,

130,185,2007212’ as

with the consensus set of bivalent promoters representing fewer than 2000 genes
compared to more than 25,000 that are >25% bivalent in our analysis.

Even more striking were the changes in bivalency across this differentiation scheme. Pre-

vious studies suggested that bivalency largely disappears upon differentiation to NPCs?!30:187.188
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Figure 3.4: Bivalency is widespread and does not resolve over differentiation.
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Figure 3.4, continued:

(A) Bivalency, H3K4me3, and H3K27me3 at all Refseq promoters in naive mESCs, with relative
enrichment of GO terms. Genes are rank ordered by bivalency HMD at promoter, defined as
the region from 0 to +400 bp relative to the TSS. (B) Representative locus view of H3K4me3,
H3K27me3, and bivalency at promoters in naive mESCs (top), primed mESCs (centre), and NPCs
(bottom), presented on the same scale of 0-125% HMD. (C) Number of promoters with bivalency
HMDs above the given thresholds in each cell type out of a total of 42,622 Refseq promoters. (D)
Metaprofiles of H3K4me3, H3K27me3, and bivalency at all promoters in naive mESCs, primed
mESCs, and NPCs. Heatmaps for primed mESCs and NPCs are presented in Extended Data Fig.
3b. (E) Distribution of bivalency HMDs at all Refseq promoters in three cell states, zoomed to
below 125% HMD. Overall, 99.5% of naive promoters, 87.3% of primed promoters, and 91.6% of
NPC promoters have an HMD below 100%. Full plot in Extended Data Fig. 3a. (F) Metaprofiles
of H3K4me3, H3K27me3, and bivalency at promoters identified as bivalent in naive mESCs (25%
HMD threshold), tracked from naive mESCs to primed mESCs to NPCs. Heatmaps for bivalency
are presented in Extended Data Fig. 3f. (G-H) Alluvial plots of dominance and bivalency of genes
from (G) naive mESCs to NPCs or (H) primed mESCs to NPCs. Bivalency [>25% HMD] can
be subcategorized into dominance classes by independent ICeChIP for the constituent marks, with
H3K27me3 in excess (H3K27me3/H3K4me3 > e’), H3K4me3 dominant (H3K27me3/H3K4me3 <
e’!), or intermediate ratios (no dominance). (I) Bivalency metaprofiles for gene subsets indicated
in panel (h) from -3kb to +3kb relative to the TSS. ****p < 2.221071F,

However, we found the opposite; promoter bivalency increases upon differentiation (Fig. 3.4D-E,
3.5A-B), with thousands more genes meeting bivalency HMD thresholds relative to naive mESCs
(Fig. 3.4C). Similarly, we find that bivalent domains do not resolve upon differentiation; tracking
bivalent genes from naive mESCs through differentiation, we observe that bivalency is higher at
these same promoters in primed mESCs and NPCs (Fig. 3.4F, 3.5C-F). As previously reported,
primed mESCs have the most bivalency, likely related to the high level of promoter H3K27me3 in
this state?!! (Fig. 3.4D). Accordingly, there are 27% fewer bivalent genes in NPCs than in primed
mESCs (Fig. 3.4E). However, this decrease is nowhere near the previously reported decrease of
92%"% and bivalent genes from primed mESCs remain highly bivalent in NPCs (Fig. 3.5G-H).
Collectively, these data suggest that bivalency is far more widespread in this system than previously
appreciated and remains elevated through differentiation, rather than resolving to one of the two

monovalent states.
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Figure 3.5: Tracking bivalent genes through differentiation.
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Figure 3.5, continued:

(A) Distribution of bivalency HMDs at all Refseq promoters in three cell states. (B) Heatmaps of
bivalency at all Refseq promoters in primed mESCs and NPCs. Genes are ordered by bivalency
HMD at the promoter. (C) Venn diagram showing overlap of bivalent genes (25% HMD threshold)
in naive mESCs, primed mESCs, and NPCs. (D-E) Metaprofiles of H3K4me3, H3K27me3, and
bivalency for bivalent genes in naive mESCs with a (D) 10% or (E) 50% HMD threshold. (F)
Heatmaps and metaprofiles of bivalent genes from naive mESCs. (G) Metaprofiles of H3K4me3,
H3K27me3, and bivalency at genes tracked from primed mESCs to NPCs for bivalent genes in
primed mESCs (>25% HMD). (H) Heatmaps and metaprofiles of bivalent genes in primed mESCs
that are not bivalent in naive mESCs.

To investigate this discrepancy with the literature, we compared promoters identified as
bivalent by other studies!3%!82% to ours. The previously identified genes had 50-100% more
H3K27me3 than do most bivalent genes in our set (Fig. 3.6A-B), suggesting that the previous studies
undersampled H3K27me3 and thus could only identify regions with high H3K27me3 as bivalent.
Accordingly, H3K27me3 dominant bivalent genes had the greatest proportional overlap with these
canonical bivalent loci compared to other dominance classes (i.e. whether the bivalent genes have
excess H3K27me3, excess H3K4me3, or roughly equal levels as measured by independent I[CeChIP
experiments for these two marks; Fig. 3.6C). The common practice of measuring bivalency as
regions of overlapping H3K4me3 and H3K27me3 is also problematic, even with calibrated data''®;
many promoters with high H3K4me3 and H3K27me3 bear less than 25% bivalency (Fig. 3.6D).
Notably, even for the previously identified bivalent genes, bivalency still increases relative to naive
mESCs upon differentiation. And in our datasets, this holds true across modification dominance
classes —even the H3K27me3 dominant bivalent genes, which most closely resemble the canonically
bivalent loci (Fig. 3.6-3.7). To the extent that any bivalency class resolves from naive mESCs to

NPCs, the largest set of genes is from the H3K4me3 dominant bivalent genes (p = 1.78 x 107133;

Fig. 3.4G), despite its minimal overlap with the canonical bivalent loci (Fig. 3.6C).
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Figure 3.6: Comparing our bivalent genes to other studies.
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Figure 3.6, continued:

(A-B) Contingency tables and metaprofiles for genes that are identified as >25% bivalent in our
study and by Mikkelsen et al.!*’, Mas et al.??’, and Xiao et al.?'?, wherein: (A) gene is identified
as bivalent in the external study if overlapping H3K4me3 and H3K27me3 peaks overlap the 0 to
+400bp region of a gene relative to the TSS, or (B) gene is identified as bivalent in the external study
if overlapping H3K4me3 and H3K27me3 peaks overlap the region from 2.5kb upstream of the TSS
to the end of the gene'®. (C) Overlap of bivalent genes from external datasets (as defined in part
A) with each of our bivalent gene dominance classes in naive mESCs. Significance computed by
two-tailed Fisher hypergeometric test. (D) Overlap of genes with bivalency HMD > 25% and with
H3K4me3 + H3K27me3 HMD > 25% in all three cell states.
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Figure 3.7: Bivalency changes across differentiation by modification dominance class.

(A-C) Metaprofiles of H3K4me3, H3K27me3, and bivalency for bivalent genes (>25% HMD)
in naive mESCs that are (A) H3K27me3 dominant (H3K27me3/H3K4me3 > e’), (B) H3K4me3
dominant (H3K27me3/H3K4me3 <), or (C) have no dominance in naive mESCs, tracked through
three cell states. (D-E) Metaprofiles of H3K4me3, H3K27me3, and bivalency for bivalent genes
(>25% HMD) in primed mESCs that are for indicated dominance classes tracked from primed
mESCs to NPCs.

Having found that bivalency is unexpectedly common and persistent in early differentiation,

we investigated the enzyme complexes that could potentially account for this ubiquity. Previous
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work suggested that H3K27me3 and H3K4me3 each inhibit deposition of the other!43-210-213.214 par.
ticularly when symmetric (Supplementary Note 3.4), raising questions as to whether the pervasive
bivalency we observe is plausible. To address this concern, we performed histone methyltransferase
(HMTase) assays with Set1B and the full panel MLL-family core complexes (MLL1, MLL2, MLL3,
MLL4), which collectively account for the bulk of H3K4 methylation in humans?'>. We find that
these complexes all tolerate a wide spectrum of H3K27me3-decorated nucleosomes (Fig. 3.8),
indicating that the formation of bivalent nucleosomes is not precluded by allosteric modulation
of H3K4me3 installation by core factors. Although it has been suggested that Setla?!®, M1122!7,
Ezh1%'®, and Ezh2°' are all important for establishing bivalency, only MII12 appears to be sensitive
for identifying bivalent promoters in naive mESCs, with none showing high specificity for the
same (Fig. 3.9). Together, these data support the proposed specialized role for MII2 in bivalency?!”,
indicate a pleiotropic role for PRC2 beyond its role in establishing bivalency, and provide plausible

enzymatic avenues to the prevalent bivalency we observe by relCeChlIP.

Bivalency, gene expression, and ontology

A key pillar of the bivalency hypothesis is that bivalent promoters are associated with transcrip-
tionally repressed genes poised to be activated or terminally silenced upon differentiation®!30-185-186
However, bivalency is not solely found at genes with low expression in any of our measurements
(Fig. 3.10A, 3.11A-B). Rather, bivalent genes had higher average expression than did non-bivalent
genes or the set of all genes, and these genes display modestly higher average expression through
differentiation (Fig. 3.10A), with bivalency being similar across most expression deciles (Fig.

3.11C). Bivalency associated similarly with bulk gene expression (Fig. 3.10B) and the proportion

of cells expressing the associated transcripts in single cell RNA-seq (Fig. 3.10C), suggesting that
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Figure 3.8: Methyltransferase assays identifying potential pathways for establishment of bivalency.

(A-B) Methyltransferase assays for MLL1, MLL2, MLL3, MLLA4, and Set1B core HMTase com-
plexes using (A) 15 ng/uL (n=6) and (B) 20 ng/uL (n=5) semisynthetic nucleosomes as substrates
for methylation. Endpoints were established at 180 min by kinetic evaluation to be sensitive to
difference in activity for this panel. Signal is corrected for background and no nucleosome substrate
activity. Error bars represent standard deviation.
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the association of bivalency with higher-expressed genes is not solely driven by intercellular het-
erogeneity. Consistent with previous observations'*°, bivalency was higher at promoters with high
CpG content (Fig. 3.11D) and associated with lower DNA methylation compared to non-bivalent
genes (Fig. 3.11E, also holds for each dominance class). These data all suggest that bivalent genes
are more highly expressed than non-bivalent genes as a whole, and this latter class is seemingly
more subject to regulation by DNA methylation.

Another pillar of the bivalency model is that bivalent genes are poised to be differentially
regulated through differentiation. To test this, we computed the sensitivity and specificity of differ-
ent bivalency and non-bivalency classes for differentially expressed genes (DEGs; Supplementary

9.130.186 "ywe found that bivalency

Note 3.5). Counter to the bivalency hypothesis and previous results
was a very poor marker of DEGs; from naive mESCs to NPCs, bivalency was roughly as sensitive
and specific for identifying DEGs as was a lack of bivalency (Fig. 3.10D). Though H3K27me3-
dominant bivalent genes showed an increase in average gene expression (Fig. 3.11F-G), this class
still only had 60% specificity for identifying DEGs, with very low sensitivity (Fig. 3.10D). Promot-
ers of DEGs and non-DEGs from naive mESCs to NPCs have highly similar histone modification
metaprofiles in naive mESCs (Fig. 3.10E-F) and across differentiation (Fig. 3.11H-K). Compar-
ison of primed mESCs to NPCs displayed similar trends (Fig. 3.10G-H); though sensitivity was
higher because most genes are bivalent in primed mESCs, the specificity remained similar between
bivalent and non-bivalent genes. Interestingly, whether genes were upregulated, downregulated,
or non-DEGs, bivalency still increased over differentiation (Fig. 3.11H-K). Collectively, these
analyses show that bivalency is neither sensitive nor specifical for poised DEGs in this system.

We next examined whether bivalency is primarily associated with developmental genes, a

central tenet of the original model®!3°. The first ICeChIP study indirectly hinted that there may be at
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Figure 3.10: Bivalency is neither sensitive nor specific for identifying poised or developmental

genes.

(A) Violin plots of gene expression??’ for all genes in naive mESCs, non-bivalent genes (<25%
HMD) in naive mESCs, and bivalent genes (>25% HMD) tracked from naive mESCs to the same
genes in the indicated lineages. Significance computed by Welch’s two-tailed #-test. (B) Gene
expression vs. HMD for H3K4me3, H3K27me3, and bivalency (genes are binned into HMD
deciles). (C) Proportion of actively transcribing cells by single-cell RNA-seq®*! vs. HMD for
H3K4me3, H3K27me3, and bivalency (genes are binned into HMD deciles). (D) Sensitivity and
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Figure 3.10, continued:

specificity (Supplementary Note 3.5) of bivalent and non-bivalent genes in naive mESCs identifying
differentially expressed genes (DEGs) from the naive state to the NPC state. (E) Metaprofiles of
H3K4me3, H3K27me3, and bivalency and (f) heatmaps of bivalency in naive mESCs at DEGs
and non-DEGs relative to NPCs. (g) Sensitivity and specificity of bivalent and non-bivalent genes
in primed mESCs identifying DEGs from the primed state to the NPC state. (h) Metaprofiles
of H3K4me3, H3K27me3, and bivalency in primed mESCs at DEGs and non-DEGs. (i) Gene
ontology term enrichment of H3K27me3-dominant bivalent genes, H3K4me3-dominant bivalent
genes, or bivalent genes with no clear dominance (q-value two-tailed Fisher hypergeometric test).
(j) Metaprofiles of H3K4me3, H3K27me3, and bivalency in naive mESCs at developmental and
metabolic genes. (K) Gene ontology term enrichment of genes following the classic bivalency model:
DEGs that lose bivalency from naive mESCs (>25% HMD) to NPCs (<10% HMD). Significance
computed by two-tailed Fisher hypergeometric test. *¢ < 0.05. **¢ < 0.01. ***p or ¢ < 2.221071°,

least two classes of bivalent promoters: an H3K27me3 dominant class associated with developmen-
tal genes, and an H3K4me3 dominant class enriched for metabolic genes!'®. Direct measurements
of bivalency herein unambiguously demonstrate this phenomenon more broadly (Fig. 3.4A, 3.101).
Overall, bivalent genes are enriched for a broad range of ontology terms, including developmental,
metabolic, and immune system process genes (Fig. 3.101-J), with nearly identical bivalency profiles
in naive mESCs (Fig. 3.10I, 3.12A). These classes all not only retained, but increased bivalency
into NPCs — even immune system process genes, despite being seemingly unrelated to neuronal
development. We only found 543 genes that did obey the classic bivalency model (Fig. 3.10K), rep-
resenting less than 5% of the bivalent genes from naive mESCs, with little difference in bivalency
between upregulated and downregulated genes (Fig. 3.12B). Interestingly, these genes were most
significantly enriched for metabolic rather than developmental genes (Fig. 3.10K). Taken together,
these data suggest that bivalency is neither primarily nor specifically associated with developmental

genes in this system.
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Figure 3.11: Bivalency and differential gene expression.

(A-B) Violin plots of gene expression for (A) all genes and (B) bivalent (>25% HMD) genes in each
cell state. (C) Bivalency metaprofiles in naive mESCs at promoters binned by gene expression decile.
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Figure 3.11, continued:
(D) Violin plots of bivalency HMD in naive mESCs at promoters with and without CpG islands.
Inset shows proportion of genes that are bivalent in sets of genes classified by CpG content: high-
CpG promoters (HCP), intermediate-CpG promoters (ICP), and low-CpG promoters (LCP), defined
as previously described by Mikkelsen et al.!3°. Total number of genes in each class is provided as n.
(E) Violin plots of DNA methylation at bivalent and non-bivalent genes (top), broken by dominance
class for bivalent genes (bottom). (F-G) Violin plots of gene expression in (F) non-bivalent (<25%
HMD) and (G) bivalent (>25% HMD) genes from naive mESCs that are H3K27me3 dominant
(H3K27me3/H3K4me3 > e’; left), have no clear dominance (centre), or are H3K4me3 dominant
(H3K27me3/H3K4me3 < e/; right). (H-K) Metaprofiles of H3K4me3, H3K27me3, and bivalency
at genes tracked from naive mESCs to primed mESCs to NPCs for (H) DEGs, (I) non-DEGs, (J)
genes upregulated from naive mESCs to NPCs, and (K) genes downregulated from naive mESCs
to NPCs. ***p < 10716 (Welch’s two-tailed t-test).
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Figure 3.12: Bivalency at different classes of genes.
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Figure 3.12, continued:

(A) Metaprofiles of H3K4me3, H3K27me3, and bivalency at genes tracked from naive mESCs to
primed mESCs to NPCs for bivalent genes of indicated gene ontology terms. (B) Metaprofiles of
H3K4me3, H3K27me3, and bivalency at genes tracked across differentiation for genes that lose
bivalency at the promoters (0 to +400bp relative to TSS) from naive mESCs (>25% HMD) to NPCs
(<10% HMD) and are upregulated (top) or downregulated (bottom) over differentiation.

Predicting DEGs with histone PTMs

The premise of the bivalency hypothesis is that the coexistence of H3K4me3 and H3K27me3 syner-
gistically provides additional predictive information about the associated genes upon differentiation
beyond that provided by H3K4me3 and H3K27me3 alone. With quantitative measurements of these
modifications, this hypothesis can be tested by modelling. We first determined which individual
parameters best identified DEGs by measuring the area under the curve (AUC) of receiver opera-
tor characteristic (ROC) curves of parameter thresholds. Of the individual histone modifications,
H3K4me3 levels were best for identifying DEGs, with the highest AUC of the ROC (Fig. 3.13A,
3.14A). Bivalency was less predictive of DEGs than were either the log ratio of H3K27me3 and
H3K4me3 or DNA methylation (Fig. 3.13A, 3.14A). And in primed mESCs, far from being predic-
tive of poised genes, bivalency was inversely associated with DEGs upon differentiation to NPCs
(Fig. 3.14A).

If bivalency provides additional information over H3K4me3 and H3K27me3, then a model
without bivalency will be markedly less explanatory than a model with bivalency. To test this, we
conducted logistic regressions with linear models to identify parameters most important for iden-
tifying DEGs. Bayes Information Criterion analyses preliminarily hinted that bivalency provided
minimal information to this end (Fig. 3.14B; Supplementary Note 3.6). To more definitively iden-
tify whether bivalency provides meaningful predictive information, we conducted hold-out cross-

validation on models with H3K4me3, H3K27me3 and either nothing else, bivalency, H3K9me3, or
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logistic regression > 0.5; left) and by ROC area under curve (right). (D) ROC curves for identifying
DEGs from naive mESCs to NPCs by different GLMs. For each point, logistic regression threshold
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Figure 3.14: Quantifying the additional information content provided by bivalency over H3K4me3
and H3K27me3 alone.
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Figure 3.14, continued:

(A) ROC curves for identifying DEGs from primed mESCs to NPCs by H3K4me3, H3K9me3,
H3K27me3, bivalency, In(H3K27me3/H3K4me3), or DNA methylation in primed mESCs. For
each point, parameter value threshold used to compute true positive rate (TPR) and false positive
rate (FPR) is indicated by the colour. Traits with thresholds identifying non-DEGs rather than
DEGs are marked with “rev.” (B) Bayes Information Criterion (BIC) for logistic models identifying
DEGs from naive mESCs or primed mESCs to NPCs with different parameters. (C) Legend for
generalized linear models (GLMs). (D) Accuracy of trivial model and GLMs by threshold accuracy
(gene identified as DEG if logistic regression > 0.5; left) and by ROC area under curve (right). (E)
ROC curves for identifying DEGs from primed mESCs to NPCs by different GLMs. For each point,
logistic regression threshold value used to compute TPR and FPR is indicated by the colour.

DNA methylation (Fig. 3.13B, 3.14C; Supplementary Note 3.6). Parameters other than H3K4me3
and H3K27me3 barely improved model accuracy by two separate metrics (Fig. 3.13C-D, 3.14D-E;
Supplementary Note 3.4), suggesting that those parameters provide virtually no additional informa-
tion content to identify DEGs. These data suggest that, in this developmental system, there is little
evidence that bivalency has emergent properties in identifying poised genes beyond the combined

independent properties of H3K4me3 and H3K27me3.

Discussion
The bivalency hypothesis is one of the more influential ideas in epigenetics and molecular de-
velopmental biology. Persistent interest over the years coupled with widespread deployment and
acceptance of sub-optimal bivalency measurement methods has ossified the hypothesis into dogma
that extends well beyond any of the experimental data that informed it.

However, this coalescence has not been reached based on functional assays. Indeed, to the
extent that functional validation of the bivalency model has been attempted, it has primarily been
through deletion of enzymes with pleiotropic effects and functions throughout the genome beyond

installation of bivalency?*%-17222223  Qverwhelmingly, the prevailing views on the role of bivalency

150 108,111,124,133,134

are derived from ChIP experiments. However, ChIP protocols'>” and antibodies are
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often highly susceptible to off-target pulldown, and uncalibrated ChIP without exogenous nor-
malization can distort signal and the ability to compare experiments!!®124128 'Jeading to spurious
conclusions'?*. From the quantitative and specific measurements we made with relCeChIP, we fear
that this has been the case with the bivalency hypothesis, at least as far as these analyses in early
mESC differentiation permit.

It has been held that bivalency is present at a small, restricted set of promoters early in devel-
opment; we find that bivalency is widespread, with many thousands of promoters displaying high
bivalency levels. It has been held that bivalency primarily exists early in development and resolves
upon differentiation; we find that bivalency persists at least through the NPC stage and increases
over baseline in that span. It has been held that bivalency demarcates poised, developmental genes
associated with lineage commitment; we find that bivalency is neither sensitively nor specifically
associated with developmental nor differentially expressed genes — and, at worst, may be inversely
associated with the latter. Moreover, bivalent genes are predominantly not poised in an off state,
but are more highly expressed than those that are not bivalent. All told, we find little evidence
that bivalency provides more information in predicting poised gene status than do H3K4me3 and
H3K27me3 in an independently additive manner in this system, raising questions as to whether it
represents any more than a coincidental overlap of the aforementioned two marks.

Our study is not without caveats. First, we are only able to comment meaningfully on the
differentiation paradigm presented here; we cannot definitively infer that these results will hold for
the other developmental or clinical contexts. Although the original studies on bivalency indicated
that bivalency almost entirely disappeared by the NPC stage®!®°, this stage is not terminally differen-
tiated, so it is possible that bivalency could resolve in later stages of differentiation. Future studies

will be needed to address this possibility in other developmental contexts. Second, though the extant
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evidence suggests that only trans-bivalency is present at meaningful levels, our method cannot selec-
tively distinguish between cis-, trans-, and intermediate bivalency conformations (Supplementary
Note 3.1).

The reICeChIP method is not inherently restricted to the study of H3K4me3/H3K27me3 bi-

valency. With cleavable recombinant affinity reagents targeting other histone modifications?’%22* it

could be used to quantify other combinatorial modification patterns®>3-228

or modification symmetry.

Without serious changes to the standards of ChIP, the limitations of conventional ChIP-seq
will continue to pose an existential challenge to the field. Indeed, the divergence between our
observations of bivalency and those in the literature can be attributed to the historical lack of tools
needed to make quantitative and specific measurements; in that context, the experimental designs
and interpretations of the past were reasonable. Fortunately, such tools now exist. And as we have
shown in this work, these methods offer a chance for the field to critically evaluate its orthodox

models and pave the way for new insights on the chromatin determinants of cell identity and the

regulation of development.
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Supplementary Notes

Supplementary Note 3.1: Configurations of bivalent nucleosomes and impact on avidity.

As each nucleosome has two H3 protomers, there are several different configurations of bivalency
that a bivalent nucleosome can theoretically adopt, each with a different avidity for ChIP pulldown
with immobilized antibody. At one extreme, with the highest avidity, is the symmetric cis-bivalency
form, where both H3K4 and both H3K27 residues are trimethylated (Fig. 3.1E). This nucleosome
has the most epitopes for antibody binding and will thus have the highest avidity in pulldown
reflected in apical pulldown efficiency (Fig. 3.1D). At the other extreme, with the lowest avidity, is
the frans-bivalency form, where single H3K4me3 and H3K27me3 marks decorate different histone
tails (Fig. 3.1E). This has the fewest epitopes for antibody binding and will thus have no avidity in
pulldown.

This poses a theoretical challenge in normalization and calibration of a ChIP study; because
we cannot separately measure trans-bivalency, symmetric cis-bivalency, nor any intermediate states,
it is impossible for us to definitively state whether a given locus with a given HMD has relatively
few nucleosomes that are symmetric cis-bivalent or whether it has relatively many nucleosomes
that are trans-bivalently modified. To accommodate for this limitation, we include two different
bivalent calibrants in our set of nucleosome standards: one that is symmetric cis-bivalent and one

that is rans-bivalent. The bivalency sequential ChIP can then be normalized to either one of these
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standards, and because these two cases represent the limits of pulldown avidity, normalization to
these calibrants will define the theoretical “range” in which true bivalency HMD (i.e. the proportion
of nucleosomes with some bivalent configuration) exists (Fig. 3.1E). We note that, because the
signal from calibration to these standards are scalar multiples of each other, we cannot uniquely dis-
tinguish these two configurations in the genome. Absent any prior information about the dominant
configuration of bivalency, the proportion of bivalently modified nucleosomes at a given locus will
exist in the range defined by calibration to symmetric cis- or frans-bivalent standards (Fig. 3.3A).

In practice, there are a few reasons why this is not a major concern. First, there is no mass
spectrometry evidence that H3K4me3 and H3K27me3 exist on the same histone tail, despite specific

enrichment for these marks and sensitive detection limits!'6-14

, suggesting that configurations other
than trans-bivalency are at most, extremely minor in abundance. Second, the scarcity of these cis-
tail modifications is consistent with the biochemical literature prior to this work that suggests the
biogenesis of these cis-tail modifications is enzymatically challenging due to antagonistic allosteric
effects (see Supplementary Note 3.4). Third, even if symmetric cis-bivalency does exist at some
loci, for the purposes of tracking changes in bivalency across differentiation, we can still observe
an increase or decrease in bivalency by this calibration method; we simply cannot precisely discern
whether the effect is driven by nucleosomes gaining/losing frans-bivalency, cis-bivalency, or some
combination of the two. The overall amount of bivalency would still increase or decrease in all
those scenarios, and so long as our choice of calibrant remains consistent, we can still measure that
change regardless of the calibrant that we use for our normalization. Therefore, though we have

generated datasets using both calibrants, we present our bivalency pulldowns as calibrated to the

trans-bivalent standards.
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Supplementary Note 3.2: Definition and interpretation of HMD at promoters.

Throughout this study, we have defined gene promoters to be the region from 0 to +400bp relative
to the TSS, representing the +1 and +2 nucleosomes of each gene. These nucleosomes tend to
be well-positioned**® and, accordingly, are most likely to provide us with adequate read depth to
robustly quantify each histone modification. This definition is conservative; we find that H3K4me3
and bivalent domains, which tend to be peak-like, have a median breadth of 550bp at bivalent genes
(Fig. 3.4D).

The width of these domains raises an important point regarding the measurement of histone
modification density as a continuous variable. At a given nucleosome in a single allele of a single
cell, there are only three possible states for a histone modification: symmetric, asymmetric or not
present. However, nucleosome readers do not typically bind only a single nucleosome at a single
position; rather, the local density of the modification across multiple nucleosomes is crucial in
localizing these effectors through multivalent avidity-based interactions’>**2*2, Indeed, we find
that the HMD across sequential nucleosomes relative to the TSS is well autocorrelated (Fig. 3.4E).
This means that the interpretation of the HMD across a multinucleosomal span becomes more
nuanced; a given histone modification may exist at one or more of those nucleosomes. Accordingly,
despite the fact that a single nucleosome is essentially ternary in whether it has a given histone
modification or not (i.e. HMD of 0% or 100%), a region spanning multiple nucleosomes could
have an intermediate HMD; it is this latter quantity that is most relevant for the biological function
imparted to the nearby genomic regions, and this is the quantity we analyse through this work.
Though it is not employed in this work, similar arguments would apply to analyses of HMD over

larger spans, such as gene bodies.
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Supplementary Note 3.3: Limits of HMD and impacts of avidity biases.

For the datasets presented in this work, the vast majority of promoters have a histone modification
density between 0-100%, representing the proportion of nucleosomes at those promoters with the
modification of interest (Fig. 3.4C, 3.5A). However, at some loci, the measured HMD exceeds
100%. There are several possible reasons for this.

The most important of these possibilities is low input depth. The ICeChIP datasets are
normalized to the input read depth at every genomic interval to accommodate for differences in
local nucleosome density when computing the HMD. However, this means that at regions that are
relatively nucleosome-depleted, there will be few reads in the input, meaning that the denominator of
the HMD computation is quite small (Methods). This increased Poisson noise in these regions of low
input can result in inflated apparent HMD beyond the physical limit of 100%. To accommodate for
this, we can compute 95% confidence intervals for the HMD of each modification at each genomic
position, and these confidence intervals virtually always overlap the physically possible range of
HMD values (e.g., Fig. 3.2C). In naive mESCs, only 0.5% of the promoters have a bivalency HMD
above 100%, and for the vast majority of these promoters (86.1%), the 95% confidence interval error
estimate ranges below 100%. The fact the apparent bivalency HMD calibrated by trans-bivalent
standards, is broadly constrained to less than 100% further supports the idea that this choice of
calibrant is appropriate and not inflationary (Supplementary Note 3.1).

There are also several other possibilities that are more challenging to accommodate for.
First, some regions of the genome are known to be more artefact-prone for sequencing and map-
ping?®?; if the IP sample is enriched for these sequences relative to the input, then that could be
disproportionately represented in the IP and have an apparent HMD greater than 100%. Second,

the antibodies themselves could skew the apparent HMD. If the antibody is capturing substantial
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off-target material, then that will result in systematic inflation of the IP, resulting in an inflated
HMD. Though ICeChlIP barcoded nucleosome standards can help monitor off-target pulldown of
some nucleosome species, we can only measure the capture of the standards that we actually have
spiked into the experiment. If we do not have nucleosome standards available for a potential oft-
target modification, then we cannot definitively state that the antibody is not capturing that material.
In this context, that is likely most important for H3K27me3 pulldowns; though we cannot state
this definitively due to the lack of H3K27me2 standards, it is plausible that we are pulling down
some amount of H3K27me?2 with these IPs, resulting in slightly inflated apparent H3K27me3 HMD.
However, this may not be too problematic; H3K27me2 and H3K27me3 are thought to be recognized
by many of the same proteins and to have highly similar functions®!, so the conflation of the two —
if present — likely does not pose a significant problem in ascribing biologic function.

On a related note, at some loci, the bivalency HMD goes below 0%. In naive mESCs, 8.8%
of the promoters have a bivalency HMD below 0%, yet for the vast majority of these promoters
(90.8%), the 95% confidence interval error estimate ranges above zero. This is because we employ
in silico signal-correction for the bivalency dataset to remove signal that is attributable to H3K9me3.
In essence, we can measure the amount of H3K9me3 pulldown in our bivalency ICeChlIP dataset
due to nucleosome standards employed, and we can separately measure H3K9me3 HMD by a
highly specific IP. We can then a linear combination correction matrix to remove the signal that is
attributable to directly measured H3K9me3 at these loci. This method can effectively reduce the
impact of modest off-target binding H3K9me3, but at some loci, will result in a subzero apparent
HMD due to random sampling of read depth in the two distinct pulldowns employed.

Finally, at some sets of gene promoters, the trans-bivalency HMD is shown to be greater

than the H3K4me3 or H3K27me3 HMD. This apparent discrepancy has a few possible reasons.
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First, there is some nuance in the interpretation of HMD in the context of single-target ICeChIP
and relCeChlIP. A nucleosome has two copies of each of its core histone proteins, including histone
H3. This means that there are two possible sites of modification on each nucleosome for for each
individual modification; if only one of those sites is modified, then that corresponds to an HMD
of 50% because only half the possible modification sites are actually modified. However, this is
different for the trans-bivalency HMD; by definition, only one trans-bivalency modification pattern
can exist on a given nucleosome at any given time. If two “trans-bivalent” modification patterns
existed on the same nucleosome simultaneously, then both H3K4 and both H3K27 residues would
be trimethylated — which is symmetric cis-bivalency. As such, if one H3K4 and one H3K27 residue
are trimethylated, then 100% of the possible trans-bivalency configurations for the nucleosome of
interest are satisfied, meaning that the trans-bivalency HMD will be 100%. However, in this case,
the H3K4me3 and H3K27me3 HMDs will only be 50% because only half the modifiable residues
are actually modified.

The other caveat is that symmetrically modified nucleosomes will be pulled down more
efficiently than asymmetrically modified nucleosomes due to avidity effects, as can be seen in the
pulldown of symmetric vs. asymmetric H3K4me3 and cis-bivalency vs. trans-bivalency (Fig. 3.3),
and observed previously!'®. This means that calibration to symmetric nucleosome standards will
have a larger denominator in computation of HMD and thereby yield lower apparent HMDs; this
can also contribute to the lower apparent HMD of H3K4me3 and H3K27me3 relative to trans-
bivalency. Accommodating for this phenomenon would require detailed profiling of asymmetric
H3K4me3 (which is currently difficult due to the low quality of H3K4me0 antibodies), asymmetric
H3K27me3 (which is not currently possible), and distinguishing between trans-bivalency and cis-

bivalency (which is also not currently possible).
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However, as noted in Supplementary Note 1, so long as the method of calibration remains
consistent, increases in apparent HMD will still correspond to increases in the modification of inter-
est. Whether that increase in the target modification is due to asymmetric modification becoming
symmetric or due to new gain of the modification at a previously unmodified locus in an instanta-
neous subpopulation remains unclear, but in both cases, modification density is still being gained at
that locus. As such, even with these caveats, we can still quantitatively compare different datasets

to each other as we use consistent calibration standards.

Supplementary Note 3.4: Enzymology of installation of bivalency.
Intriguingly, the catalytic activity of the EZH2-PRC2 core complex on nucleosome substrates is

3234235 yet inhibited by H3K4me3, particularly when sym-

potentiated by pre-existing H3K27me
metric!4>219214 " Conversely, symmetric H3K27me3 has been reported to modestly inhibit several
of the human COMPASS-family complexes by qualitative assays, although only SET1 complexes
were examined at the nucleosome level?!®. This presents a potential concern for our data — if the
enzyme complexes that install these marks are mutually antagonized by the opposing mark, how
might the widespread bivalency we observe arise? As the PRC2 effects are well established with

145.210.214 "which we recapitulate (data not shown), we deployed

detailed quantitative enzymology
more quantitative HMTase assays with a larger panel of relevant nucleosomal substrates to evalu-

ate the COMPASS/SET1B/MLL-family core complexes for allosteric modulation by pre-existing

marks (Fig. 3.8).

Supplementary Note 3.5: Sensitivity and specificity of DEGs.
In this context, sensitivity refers to the proportion of DEGs that are represented in a specific class

of genes (e.g. H3K27me3-dominant bivalent genes), whereas specificity refers to the proportion of
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that class of genes that are differentially expressed. Under the prevailing bivalency model, bivalency
1s associated with poised genes that become upregulated or downregulated upon differentiation; as

such, it should have high specificity for DEGs.

Supplementary Note 3.6: Generalized linear model evaluation and parameter selection.

The first way we evaluate different models for predicting DEGs is to compute the Bayes Information
Criterion (BIC). Though not definitive, this metric estimates whether addition of a parameter to a
model improves it more than expected from chance alone. When comparing two models, the model
with the lower BIC will tend to have more explanatory parameters and/or fewer non-explanatory
parameters than the model with the higher BIC. To this end, if BIC increases when a parameter
is added, then it can be interpreted that the parameter being added contributes minimal additional
explanatory power. Here, we find that adding bivalency to a model increases the BIC, meaning that
it is likely (though not definitively) not contributing meaningfully more information in predicting
DEG status in this differentiation paradigm.

A more definitive way to evaluate model accuracy is to use hold-out cross-validation. In
this method, we split the set of all genes into two groups, one with 80% of the genes (the training
set) and one with 20% of the genes (the testing set). We then train our GLMs on the training set
and use the derived models to predict DEG status in the testing set. Hold-out cross-validation is
a highly effective way of testing whether a model is overfit or underfit upon addition or removal
of a parameter. If model accuracy increases substantially, then that would suggest the parameter
has explanatory power over that provided by the other parameters. Conversely, if model accuracy

decreases substantially, then that suggests that the additional parameter causes overfitting. Minimal

102



changes in model accuracy suggest that the additional parameter contributes little to the model over
the existing parameters, positively or negatively.

There are two metrics we use to test the accuracy of the predictions in the testing set. The
first is by logistic regression thresholding, in which the gene is predicted to be a DEG if the modelled
probability is greater than 0.5. The second is by computing the area under the receiver operator
characteristic curve to measure true and false positive rates using different modelled probabilities
as the thresholds. Overall, we find that the GLM with bivalency barely changes model accuracy
by either metric on hold-out cross-validation, with the magnitude of change being similar to that
observed by instead adding H3K9me3 or DNA methylation. As such, we can interpret that none
of these parameters — including bivalency — meaningfully contributes to the prediction of DEGs

beyond that achieved with H3K4me3 and H3K27me3 in this system.

Methods and Materials

This section has been adapted from the following:

» Shah, R. N. et al. Examining the Roles of H3K4 Methylation States with Systematically

Characterized Antibodies. Molecular Cell 72, 162—177 (2018).

» Shah, R. N. ef al. Re-evaluating the role of nucleosomal bivalency in early development.

Preprint at bioRxiv, doi: 10.1101/2021.09.09.458948. (2021).

Cell Culture
Naive mouse embryonic stem cells (mESCs) were grown from the mESC E14 line (129/0la back-
ground) in high glucose DMEM (Invitrogen), supplemented with 15% (v/v) FBS (Gibco), 1% (v/v)

non-essential amino acids (Gibco), 1x penicillin/streptomycin (Gibco), 0.1mM 2-mercaptoethanol
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(Gibco), 2mM L-glutamine (Gibco), 1000U/mL LIF (ESG1107 Millipore), 3uM CHIR99021 (LC
Laboratories), 1uM PD0325901 (LC Laboratories), sterilized using 0.1um filter flask (Millipore),
stored up to 1 week in 4°C.

Primed mESCs were grown from the mESC E14 line (129/0la background) in high glu-
cose DMEM (Invitrogen), supplemented with 15% (v/v) FBS (Gibco), 1% (v/v) non-essential
amino acids (Gibco), 1x penicillin/streptomycin (Gibco), 0.1mM 2-mercaptoethanol (Gibco), 2mM
L-glutamine (Gibco), 1000U/mL LIF (ESG1107 Millipore), sterilized using 0.1pm filter flask (Mil-
lipore), stored up to 1 week in 4°C.

Naive and primed mESCs were grown on plates coated with 0.1% bovine gelatin (Sigma),
grown to 70-90% confluence and passaged daily at a 1:3 ratio, with a media change 3 hours before
passaging, supplemented with 1 vol. of fresh media 8 hours after passaging.

To start the adherent monolayer differentiation process to neuronal progenitor cells (NPCs;
Day 0)*%237 naive mESCs cells were split onto a gelatinized 6 cm plate at 1 x 10* cells/cm? and
allowed to grow for 24 hours. On Day 1, the media was switched to RHB-A (Takara, Y40001)
and was subsequently changed every other day. On day 4, cells were split and plated onto Poly-
L-Ornithine, laminin-treated 6-cm plates. Prior to cell seeding the plates were treated with 0.01%
Poly-L-Ornithine (Millipore, A004C) for at least 20 min, followed by 5 ug/cm? of laminin (Fisher,
CB40232) resuspended in basal RHB-A medium (Takara, Y40000). After washing off this treatment,
cells were seeded in fresh RHB-A, supplemented with 10 ng/mL of bFGF (PeproTech, 100-18B)
and EGF (PeproTech, 315-09). Cells were then split every 4 days at > 20,000 cells/cm? until an

appropriate amount of NPCs were cultured for ICeChIP.
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Octamer Reconstitution

Symmetric H3K4me3, H3K9me3, H3K27me3, H3K36me3, H3K79me2, and H3K4me3K27me3
octamers were reconstituted from semisynthetic histones as previously described’!-!1%166.167  Re-
combinant core histones were expressed in BL21 (DE3) with pPRARE?2 and mixed to equimolarity
with the relevant semisynthetic histones in freshly prepared filter sterilized Unfolding Buffer (50
mM Tris-HCI pH 8.0, 6.3 M Guanidine-HCI, 10 mM 2-mercaptoethanol, 4 mM EDTA) to a final
concentration of > 1 mg histone per mL. The histone reconstitution was then added to 3500 MWCO
SnakeSkin dialysis tubing (Pierce) and dialyzed overnight at 4°C against 500-1000 volumes of filter
sterilized Refolding Buffer (20 mM Tris-HCI pH 7.5, 2 M NaCl, 5 mM DTT, 1 mM EDTA).

After dialysis, the histone mixture was centrifuged at 18,000 g for 1 hour at 4°C, and sub-
jected to gel filtration chromatography (Superdex 200 10/300 GL, GE Healthcare, resolved with
Refolding Buffer). Each fraction that displayed a peak on the UV chromatogram was analysed by
SDS-PAGE (22 mA current in 1x Laemmli Buffer for 70 minutes), stained with SYPRO Ruby (Bio-
Rad) per manufacturer instructions, and imaged with a 610BP emission filter at 600V PMT setting.
Octamer fractions with equimolar quantities of each core histone were pooled and concentrated
(Amicon Ultra-4 Centrifugal Filters, 10,000 MWCO, Millipore) to 5-15 uM octamer, diluted with
one volume of Octamer Storage Buffer, and stored at -20°C.

Asymmetrical H3K4me3 octamers were prepared as above, with modifications. Equimolar
amounts of histone H2A, H2B, H3 and H4 were mixed in Unfolding Buffer to the total of 1-2mg,
where 90% of histone H3 was trimethylated on Lys 4 and the remaining 10% was unmethylated
and had a Hise-tag at N-terminus with TEV cleavage site. Octamers were reconstituted overnight
by dialysis in 1000 volumes of Phosphate Refolding Buffer (50 mM sodium phosphate, 2 M NaCl,

pH 7.5). Octamers were purified by S200 gel filtration chromatography, and his-tagged octamers
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were isolated using cobalt-based immobilized metal affinity chromatography Dynabeads magnetic
particles. Octamers were incubated with magnetic beads for 10 min at 4°C on a rotator, followed
by two 1 ml washes with Octamer Wash Buffer (50 mM sodium phosphate, 2 M NaCl, 10 mM
imidazole, pH 7.5), then eluted six times, each with 50 pL of Octamer Elution Buffer (50 mM
sodium phosphate, 2 M NaCl, 250 mM imidazole, ] mM EDTA, 1 mM DTT, pH 7.5). Fractions
were characterized spectroscopically, pooled, diluted with one volume of Octamer Storage Buffer,
and stored at -20°C.

Asymmetrical trans-bivalent H3K4me3-H3K27me3 octamers were prepared similarly to
symmetrical octamers with the following differences. Histones H2A, H2B, H4, and asymmetric
disulfide-linked histones H3K4me3-H3K27me3 were mixed in a 1.2:1.2:1:0.5 molar ratio. The
remaining steps were done as above, but no reducing agents were used until octamer particles were

formed.

Nucleosome Reconstitution
Nucleosomes were reconstituted onto 147bp DNAs composed of the core Widom 601 sequence!¢®
modified with a 22bp barcode on each end, with each barcode composed of two distinct 11bp
sequences not found in the human or mouse genomes. The DNA and octamer were mixed to a final
concentration of 1uM each in 2 M NaCl, and then dialyzed in dialysis buttons (Hampton Research)
and a 10,000 MWCO SnakeSkin dialysis membrane (Pierce) against 200 mL of Refolding buffer
for 10 minutes. Dialysis then continued as 2L of Buffer 10 (20 mM Tris-HCl pH 7.5, 1 mM EDTA,
ImM DTT) was added (flow rate 2-2.5 mL per minute).

Dialyzed samples were diluted with an equal volume of Nucleosome Dilution Buffer (20

mM Sodium Cacodylate pH 7.5, 10% v/v glycerol, 1 mM EDTA, 10 mM 2-mercaptoethanol, Filter
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Sterilized), and 1 pl was analysed by native PAGE (100 V in 1x TBE for 30 minutes), stained with
SYBR Gold in 1xTBE for one hour, and visualized with a UV transilluminator gel imager. Fractions
containing nucleosomes and minimal free DNA were pooled and diluted to a working concentration
of ~ 1 nM with filter sterilized Nucleosome Storage Buffer (10 mM Sodium Cacodylate pH 7.5,
100 mM NacCl, 50% v/v glycerol, 1 mM EDTA, 1x Protease Inhibitor Cocktail [l mM PMSF, ImM
ABESF, 0.8 uM aprotinin, 20 uM leupeptin, 15 uM pepstatin A, 40 uM bestatin, 15 uM E-64 from

a 200x DMSO stock]) and stored at -20°C.

Design, Expression, and Purification of 304M3B-1xHRV3C

The 304M3B-1xHRV3C Fab is based on previously described Fab 304M3B(PDB:4YHZ)*%. The
gene encoding the Fab was modified to contain HRV3C cleavage site at the C-terminus of the heavy
chain. To that end, we inserted SSSLEVLFQGP (AGC AGC AGC CTT GAA GTC CTCTTT CAG
GGA CCC) sequence just after the position T229 of heavy chain (numbered as in PDB:4YHZ)
and before biotinylation acceptor peptide (GLNDIFEAQKIEWHE)?3®. The Fab was expressed in
the 55244 strain of E.coli in the TBG media (Terrific Broth (FisherBrand), 0.8% (v/v) glycerol)
with 100 pg/ml carbenicilin, grown for 24 hours, at 30°C, 200 rpm in the Fernbach non-baffled
flasks, with constricted airflow. Fab was purified using Protein G-A 1'% affinity chromatography,
followed by cation-exchange chromatography (Resource S, GE Healthcare). Purified Fab was in

vitro biotinylated using BirA biotin ligase.

ICeChlIP Input Preparation
Input was prepared for ICeChIP and relCeChIP experiments as previously described!!$:124170.171

Briefly, cell pellets were washed twice with 5 mL of PBS, then washed twice with 5 ml of filter

sterilized Buffer N, with each wash consisting of complete resuspension of the pellet, centrifugation
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at 500 g for 5 minutes at 4°C, and removal of supernatant. The washed pellet was then resuspended
in at least 2 packed cell volumes (PCV) of Buffer N and mixed with 1 volume of 2x Lysis Buffer
and incubated on ice for 10 minutes to lyse cells.

The crude nuclei were spun down at 500 g for 5 minutes at 4°C before being resuspended
in at least 6 packed nuclear volumes (PNV) of Buffer N and applied to the top of 7.5 mL of filter
sterilized Sucrose Cushion N in a 15 ml centrifuge tube, then spun down at 500 g for 12 minutes at
4°C in a swinging-bucket rotor. The supernatant was discarded, and the pellet resuspended in ~ 2
PNV of Buffer N.

The nucleic acid content of the nuclei per unit volume was quantified by diluting 2 pL of
nuclei suspension into 48 pL of 2 M NaCl, water-bath sonicating to solubilize DNA, and spec-
troscopically measuring nucleic acid concentration by Nanodrop (where one Ajgonm = 50 ng/ul
chromatin). After accounting for the 25-fold dilution of the measurement sample, the concentration
of the nuclei was adjusted to 1 pg/uL of chromatin. Nuclei were dispensed to 100 uL aliquots, flash
frozen, and stored at -80°C prior to use.

For use, nuclei aliquots were thawed and spiked with ~ 1 pl of each barcoded nucleosome
standard per 50 pug of chromatin. This suspension was then mixed by pipette, transferred to a new
tube, and warmed to 37°C for 2 minutes. 1 unit of micrococcal nuclease (MNase, Worthington) per
4.375 ng of chromatin was added, and samples incubated at 37°C while shaking at 900 rpm for 12
minutes. Digestions were stopped by adding 1/9 volume of filter sterilized 10x MNase Stop Buffer
while slowly vortexing, and nuclei lysed by adding 5 M NacCl to a final concentration of 600 mM
while slowly vortexing. 66 mg of HAP resin (BioRad, CHT™ Ceramic Hydroxyapatite, Type I, 20
um) per 100 pg of chromatin digested was rehydrated with 200 ul of filter sterilized HAP Buffer 1

per 100 pg of chromatin digested. Lysed nuclei were centrifuged at 18,000 g for 1 minute to pellet
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insoluble nuclear debris, and the soluble fraction added to the rehydrated HAP resin and incubated
for 10 minutes at 4°C with rotation.

After incubation, the HAP resin slurry was added to a centrifugal filter unit (Millipore
Ultrafree MC-HV Centrifugal Filter 0.45 pm) and spun at 1000 g for 30 seconds at 4°C. The HAP
resin left on the filter unit was then washed 4 times with 200 uLL HAP Buffer 1, and 4 times with
200 pl filter sterilized HAP Buffer 2 by spinning at 1000 g for 30 seconds at 4°C. HAP resin was
eluted into a clean tube with three 100 pl solutions of filter sterilized HAP Elution Buffer. The

nucleic acid content of the elution was then quantified by Nanodrop.

Antibody Preparation for I[CeChlP
Antibodies and quantities used for each ICeChIP experiment are shown in Appendix A. With the
exception of the 304M3B-1xHRV3C and 309M3B antibodies, the indicated amount of Protein A
Dynabeads (Invitrogen) for each ICeChIP was washed with 50 uL. of ChIP ChIP Buffer 1 by use of a
magnetic rack, then resuspended in 50 uL of ChIP Buffer 1. In a separate set of tubes, the antibody
was diluted to 100 pL with ChIP Buffer 1. The antibody and Protein A Dynabead suspensions were
combined and incubated on a rotator at 4°C for at least one hour, then washed with 200 uL of ChIP
Buffer 1 by use of a magnetic rack and resuspended in 50 puL of ChIP Buffer 1.

The antibodies 304M3B-1xHRV3C and 309M3B were prepared similarly with Streptavidin
M-280 Dynabeads (Invitrogen) rather than Protein A Dynabeads. The beads were washed, and
antibodies added and incubated as above. After incubation, the beads were washed twice with 200
uL of ChIP Buffer 1 by use of a magnetic rack. They were then washed twice with 200 puL of ChIP
Buffer 1 supplemented with 5 uM of biotin by incubating for 10 minutes at 4°C on a rotator, then

removing supernatant by use of a magnetic rack.
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Standard ICeChIP Immunoprecipitation

After antibodies were prepared and washed, the input chromatin concentration adjusted to 20 ng/ul
with filter sterilized ChIP Buffer 1, and the amount of chromatin specified in Appendix A was added
to each antibody-bead conjugate and incubated for 15 minutes on a rotator at 4°C. Beads were then
washed twice with filter sterilized ChIP Buffer 2 and once with filter sterilized ChIP Buffer 3, with
a wash consisting of removal of the existing supernatant by use of a magnetic rack, resuspension
into 150 pl of buffer, transfer to a new siliconized tube, and incubation on the rotator for 10 minutes
at 4°C. After these washes, the supernatant was removed, the beads resuspended in ChIP Buffer 1,
transferred to a new siliconized tube, rinsed once with 200 ul of TE before being resuspended in
50 ul of ChIP Elution Buffer and incubated at 55°C for 5 minutes.

After incubation, the supernatant was transferred to a new set of siliconized tubes, and the
beads discarded. To each supernatant was then added 2 pl of 5 M NaCl, 1 pl of 500 mM EDTA,
and 1 pl of 10 mg/mL Proteinase K. 15 pul of Input DNA was also diluted to 50 pl with 35 pl of
ChIP Elution Buffer and was supplemented with 2 pL of 5 M NaCl, 1 pL of 500 mM EDTA, and 1
pL of 10 mg/mL Proteinase K. The IP elutions and diluted input were then incubated at 55°C for 2
hours for a Proteinase K digestion. After digestion, the DNA was purified by adding 1.5 volumes
of Serapure HD, incubating at room temperature for 15 minutes, then collecting the beads on a
magnetic rack, washing twice with 150 pl of 70% ethanol, and eluting into 50 ul ddH20, which

was then recovered and stored at -20°C.

relCeChIP Immunoprecipitation
After antibodies were prepared and washed, the input chromatin concentration adjusted to 20 ng/ul

with filter sterilized ChIP Buffer 1, and the amount of chromatin specified in Appendix A was added
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to each antibody-bead conjugate and incubated for 15 minutes on a rotator at 4°C. After incubation,
the beads were washed three times with ChIP Buffer 1, with a wash consisting of removal of the
existing supernatant by use of a magnetic rack, resuspension into 150 ul of buffer, transfer to a new
siliconized tube, and incubation on the rotator for 10 minutes at 4°C. The chromatin was then eluted
into 20 pL of ChIP Buffer 1 supplemented with 4 ug HRV3C (GE Healthcare) by incubating on ice
for 60 minutes. The elution was saved and repeated once more; both elutions were then combined.
With the eluted sample, ICeChIP was conducted against H3K27me3 as per the Standard ICeChIP

Immunoprecipitation instructions with the antibody and resin quantities in Appendix A.

DNA Quantification and Analysis by Quantitative PCR
To assess local histone modification density and/or antibody specificity, our DNA from the ChIP
experiments was quantified by quantitative PCR (qPCR). qPCR was conducted using TagMan Gene
Expression Master Mix (Applied Biosystems) using the primers and hydrolysis probes previously
described''®. These primers and probe for the barcoded sequences were previously qPCR validated
for effectiveness and quality!'®. Primers were used at 900 nM; hydrolysis probe at 250 nM, in the
TagMan Gene Expression Master Mix (Applied Biosystems). The qPCR program was run at 95°C
for 10 minutes, followed by 40 cycles, each consisting of 15 seconds at 95°C followed by 1 minute
at 60°C and concluding with a plate read.

Cq values were analysed using the AACq method. Briefly, the Cq values for each target for
each sample were averaged together to obtain the mean Cq value. Enrichment for each barcode was
then computed as Enrichment = 2C4neur — Cdr 4 10, accounting for the 10-fold dilution of Input

relative to IP and multiplying by 100% for Enrichment as a percentage of target. Off-target binding
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to alternate PTMs were computed by normalizing each enrichment to that of the on-target PTM:

referred to as “Specificity (% Target)”.

lllumina Library Preparation and Sequencing
Illumina libraries were prepared as described!'®, with minor modifications. Briefly, Serapure pu-

T™ PicoGreen (Thermo Fisher) as per manufacturer

rified DNA was quantified using Quant-i
instructions. Libraries were then generated from up to 10 ng of each DNA sample (input or IP) with
the NEBNext Ultra II DNA Library Prep kit (New England Biolabs) per manufacturer instructions.
The DNA content of each library was then quantified and pooled for Illumina sequencing. Clus-

ter generation and paired-end sequencing was conducted using standard Illumina next-generation

sequencing protocols by the University of Chicago Genomics Facility on the Illumina NextSeq.

Next-Generation Sequencing Alignment and HMD Computation

To align reads, a reference genome was first created, which consisted of the either human genome
(GRCh38/hg38) or the mouse genome (mm9) appended respectively by the sequences of each of
the nucleosome standard barcodes. Reads were then mapped to the appropriate reference genome
using Bowtie2 using the sensitive pre-set and end-to-end alignment options!”?. Using SAMTools!"3,
any reads which were not paired, not mapped in a proper pair, or mapped with a map quality <
20 were discarded to prevent low-quality reads from impacting downstream analyses. Reads were
then flattened to create a single mapping from each matched pair of reads by retaining only one
fragment per pair, and any mappings with lengths > 200bp were also discarded to ensure only
mononucleosomes were being analyzed'!®.

174

Bedgraphs of genome coverage were then generated using BEDTools' ™, and IP / input

174

genome coverage bedgraphs were merged using BEDTools' ™. The sum of reads across ladder
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members for each nucleosomal standard was computed for each sample and HMD bedgraphs were

then generated from the merged bedgraphs using awk to apply the following formula:

IP1ocus /Inputy, ¢

HMD (%) = 100% *
( ) IPbarcode/ Inputbarcode

Error and 95% confidence intervals were computed with Poisson statistics and error propa-

gation from the merged bedgraphs using awk to apply the following formula:

1 1
IPiocus  Inputy

95CI Error (%) = 1.96 « HMD (%) * \/

Bigwig files were generated for visualization using the bedGraphToBigWig tool'”>. For
computation of HMD for bivalency, the trans-bivalency standard was used.

Correction was conducted using the H3K9me3 and frans-bivalency HMD datasets. using our
previously described method''® against H3K9me3 and trans-bivalency off-target binding. Briefly,
measured HMD by each antibody can be described by a vector M, and the measured specificities
by each antibody described by a square matrix S. Then, we can state, if other off-target binding is
negligible, that the correct HMDs for H3K4mel, H3K4me2, H3K4me3, and H4K20me3 can be
expressed by the vector C such that M=CS. As such, the vector C can be computed as CSS” = C =
MS!. The elements of S/ were then used to compute the HMD and Error of the corrected profiles
using awk to linearly combine the two HMD profiles.

For all analyses, the HMD averaged over the N+1 and N+2 nucleosomes (taken to be 0 to
+400bp into the gene body) was employed as representative of the promoter—this captures the most

substantial H3K4me3 and H3K27me3 enrichment.
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Genomic browser views were made using IGV. Heatmaps and gene ontology analysis was
made using Homer software!’®. Further analysis and sectioning of data was conducted in R using

the R code provided in Data and Software Availability.

Analysis of External Data
Bisulfite sequencing data was obtained from GEO series accession number GSE41923, dataset
accession IDs GSM 1027571, GSM 1027572, GSM 1027573, and GSM1027574. Methylation count
files were obtained for each dataset and lifted to mm10. The average methylation for each promoter
was then calculated for the 0 to +400bp region relative to the TSS of Refseq promoters using
BEDTools.

Bulk RNA-seq data was obtained from GEO series accession numbers GSE108832 and
GSE65697, dataset accession IDs GSM2913929, GSM2913930, GSM2913931, GSM 1603282,
GSM1603283, GSM 1603284, GSM 1603285, GSM1603286, and GSM1603287. Pseudoalignment

23 with fragment length mean

was conducted against the Refseq mm10 transcriptome using kallisto
and standard deviation of 200 and 20, respectively, and 100 iterations. Pseudoalignments were
then loaded into R for differential expression analysis using sleuth®*®, with correction for batch
effects between primed mESCs and NPCs due to contribution to principal components of the same.
Differentially expressed genes were identified as ¢ < 0.05. Single-cell RNA-seq data was obtained
from GEO series accession number GSE113417 and aligned as above with kallisto.

Suz12 ChIP data to measure PCR2 localization for WT, Ezh2 KO, and Ezhl KO/Ezh2

KO cells was obtained from GEO series accession number GSE116603, dataset accession IDs

GSM3243624, GSM3243625, and GSM3243626. Peak files were obtained for all these datasets
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lifted to mm10. Ezh2 peaks were identified as peaks lost in Ezh2 KO relative to WT cells. Ezhl
peaks were identified as peaks lost in Ezh1 KO/Ezh2 KO relative to Ezh2 KO cells.

Setl A ChIP data was obtained from GEO series accession number GSE98988, dataset
accession IDs GSM2629676, GSM2629677, GSM2629678, and GSM2629691. FastQ files were
downloaded for the input and ChIP datasets for each replicate, then aligned to mm10 using Bowtie2
in end-to-end mode with the sensitive preset. Peak calling was then conducted on the alignments
with MACS2!7¢, and consensus peaks for each replicate were identified.

MII2 ChIP data was obtained from GEO series accession number GSE78708, dataset acces-

sion number GSM2073022. Peaks were obtained and lifted to mm10.

Methyltransferase assays

Enzymatic complexes were procured from Reaction Biology Corporation. Methyltransferase re-
actions were done using 200nM hsMLL1 (3745-3969), 200nM hsMLL2 (5319-5537), 400nM
hsMLL3 (4689-4911), 200nM hsMLL4 (2490-2715), 800nM hsSet1 A (1418-1707), or 800nM hs-
Set1B (1629-1923), in acomplex with hsWDRS (22-334), haRbBP5 (1-538), hsAsh2L (2-534), 2x
(hsDPY-30(1-99)), supplemented with 4% (v/v) RBC MLL enhancer (Reaction Biology Corp);
800nM hsEzh1 (2-747) or 120 nM hsEzh2 (2-746), in a complex with hsAEBP2 (2-517), hsEED
(2-441), hsRbAp48 (2-425) and hsSUZ12 (2-739) supplemented with 3.6mM hsJarid2 (119-574)
provided by Dr.Peter Lewis’s laboratory. 30 ng/ul of semi-synthetic nucleosome substrate, 10uM
[*H]-SAM (50-80 Ci/mmol, Perkin Elmer Health Sciences), and enzymatic complexes were mixed
in the Reaction Buffer (50 mM TrispH8.0, 91 mM NaCl, 5 mM MgCl,, 1 mM DTT, 10% glycerol,
1 mM PMSF) and incubated at 30°C. At designated time points, 4 pl of reactions were spotted on

P81 Ion Exchange Cellulose Chromatography Paper (Reaction Biology Corp). Spotted paper was
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washed 4 times with 250 ml of 50 mM NaHCO; pH 9.0, for 5 minutes on a platform shaker, briefly
washed with acetone, air-dried and immersed in scintillation fluid. *H decay rate was measured by

scintillation counter (LS 6000IC, Beckman).

Data and Software Availability

ICeChIP-seq data generated for this study has been deposited at the Gene Expression Omnibus
(GEO) under accession numbers GSE108747 and GSE183155. R markdown file for analysis and

sectioning of datasets is provided at https://www.github.com/shah-rohan/bivalency/.
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CHAPTER 4: QUANTIFYING INTERNAL HISTONE MODIFICATIONS WITH

DENATURATIVE ICECHIP

Attributions

The ICeChlIP-seq datasets used for Fig. 4.14 were generated by Bill Richter, Ph.D.’20, and previ-
ously published as: Richter, W. F. ef al. Non-canonical H3K79me2-dependent pathways promote
the survival of MLL-rearranged leukemia. eLife 10, 64960 (2021). All other work was conducted

by the author.

Abstract

Though valuable for pulldowns of modifications on the highly accessible histone tails, native ChIP
often fails to specifically target modifications on the globular domain of the nucleosome core particle,
making it difficult to understand the role of these internal modifications. Though previous reports
have indicated that denaturative ChIP methods involving sonication may enable specific capture of
these internal modifications, such sonication-based protocols suffer from an inability to separate
the process of chromatin fragmentation from that of epitope exposure, making it challenging to
reliably achieve optimal levels of both functions. Here, we present denaturative ICeChlP, a robust
method to reproducibly pull down internal modifications with high specificity. We establish a novel
paradigm of denaturative ChIP in which we separate the processes of fragmentation and denaturation,
allowing for more complete and reproducible crosslinking and denaturation of chromatin. We
further use this denaturative ChIP method to study H3K79me2, an internal modification critical
for the survival and proliferation of MLL-rearranged leukemias, ultimately identifying a potential

cross-talk pathway between H3K79me2 and H3K27me3. Our work thus highlights the importance
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of using reproducible methods and demonstrates the power of quantitative data to identify new

pathways of biological function.

Introduction
Broadly speaking, the nucleosome has two regions with distinct structural characteristics: the tails
and the globular domain (Fig. 4.1)?®. The tails, which are distal to the center of the nucleosome,

d?#1242 and are highly accessible to solvent?**. This has several implications,

are largely unstructure
primarily driven by the ease of accessing and interacting with the histone tails. First, the tails interact
with other portions of the nucleosome (including other histone protein regions or DNA elements),
increasing the stability of the complex as a whole?**247. Second, the histone tails interact with other
nucleosomes and/or histone tails on other nucleosomes, facilitating compaction and organization

into nucleosome arrays and fibers?+-2%

. Third, the histone tails are highly accessible to other
proteins, including histone modifying complexes as well as the protein binding partners that “read”
histone PTM patterns. Contained within these highly accessible tails are residues harboring some
of the best-studied histone modifications, including H3K4, H3K9, H3K27, H4K 16, and H4K208.

By contrast, the globular domain has been less well characterized. Compared to the freely
accessible and poorly structured histone tails, the nucleosome globular domain has a much more
clearly defined and organized structure (Fig. 4.1). The residues here are also much less accessible;
many residues are buried inside the core of the globular domain, and even those that are relatively
more solvent-accessible tend to be more sterically restrictive to binding than those in the disordered
environment of the tails. There are still some modifications on this globular domain (i.e. internal

modifications), most notably H3K79 methylation®*>°!-2>2_ but these modifications tend to be much

more poorly studied than the modifications on the tail.
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Figure 4.1: Nucleosome with select tail and internal residues highlighted.

Structure of the nucleosome with select H3 residues highlighted. H3K4, H3K9, H3K27, and H3K36
are on the histone tail. H3K79 is an internal modification and is located on the globular domain.
Adapted from Werner and Ruthenburg”.

This difference in relative understanding of tail and internal modifications is driven in part by
the relative accessibility and structure of the two regions. The tail represents a highly accessible and
disordered region without meaningful secondary structure?*!>*?, This means that, to a reasonable
first approximation, the native local structure of a tail PTM is similar to that of a peptide with
the local primary structure and modification of interest. Like the histone tail, these short peptides
have little to no secondary structure?>*, meaning that they can present a reasonably similar binding
interface to potential binding partners as that same PTM would in vivo. Modified peptides also have
the advantage of being straightforward to synthesize in relatively large quantities with very high

133,254,255

purity , offering a standardized substrate that approximates the tail modification of interest.
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This structural similarity is important not just for biochemical studies (e.g. binding and
competition assays), but also for genomic studies such as ChIP-seq. Antibodies against specific
proteins or histone modifications are generated by immunizing an animal with a peptide bearing
the modification of interest, then purifying those antibodies that bind to the modification of inter-
est?>¢2%  Because modifications on the histone tail can be structurally approximated by peptides,
it is theoretically straightforward to raise an antibody that can bind to a tail modification by im-
munization against a readily available modified peptide. Though this is often more challenging
in practice!%!11L118:124 "there are nonetheless numerous antibodies that can be used to specifically
recognize and purify nucleosomes bearing tail modifications in the context of a native ChIP experi-

t'18124 'meaning that many anti-tail-PTM antibodies can both access and recognize their targets

men
in their native conformations.

This is not as straightforward for internal modifications. Internal modifications are located
on the globular domain of the nucleosome core particle, which is much less accessible and more
highly structured. This means that a short peptide, which lacks secondary structure of note, will
not be as representative of the native structure of the modification in the context of the native
nucleosome, meaning that antibodies that are raised against peptides may not be able to recognize
the target PTM in its native, highly structured conformation. Even if the antibody is able to recognize
the modification in that context, the structure of the globular domain may hinder the approach and
binding of the antibody to the PTM target, making the pulldown more challenging. The result is
that pulldowns of internal modifications often proceed less efficiently and less specifically than

pulldowns of tail modifications (Fig. 4.2), resulting in high off-target capture and inflated apparent

HMDs, often in excess of the physical limit of 100%!'8.
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Figure 4.2: Poor measurement of H3K79me2 with native ICeChlIP.

(A) Specificity of native ICeChIP pulldown of H3K79me2. (B) Apparent HMD from H3K79me?2
pulldown by native ICeChIP, showing highly inflated apparent HMD. Dashed line represents HMD

of 100%, the physical limit of histone modification density. Adapted from Grzybowski et al.,
20158,

One modification that is particularly difficult to study for this reason is methylation of hi-
stone H3K79 (H3K79me). This mark, located on the globular domain of the nucleosome core
particle (Fig. 4.1), was first described in S. cerevisiae, where it is installed by the highly conserved
enzyme Dot126°23, Dot1 or Dotl1L (Dotl-like) knockouts in S. cerevisiae*®?, D. melanogaster**,

or M. musculus®>

show global abrogation of H3K79 methylation, suggesting that it is the sole
methyltransferase responsible for installing this mark. Though very abundant in yeast, this modifi-
cation is relatively rare in humans, typically comprising fewer than 4% of the histones in a variety
of cell lines'**. Nonetheless, the modification has been shown to be physiologically important.
Early on, H3K79 dimethylation (H3K79me2) was found to be associated with actively transcribed
genes?%®, and it has been shown that Dot1L disruption hampers hematological and immunological
functions such as erythropoiesis?®’ and antiviral immune activation?s®

Yet another clue to the function of H3K79 methylation came from the proteins associated

with Dotl1L in clinical contexts. One of the most prevalent classes of leukemia in infants is the MLL-

rearranged leukemias, which harbor a translocation of the mixed lineage leukemia (MLL) gene?®%-?7°,
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The MLL gene itself is an H3K4 methyltransferase featuring a catalytic SET domain“’'. However, in

MLL-rearranged leukemias, the SET domain is truncated from the full protein, with the remainder

272,273

of the protein being translocated to a fusion partner on another protein , ultimately driving

transcription at their target genes?’*

. Many of the MLL fusion partners, however, were members of
the Dot1L complex?”>27°. Given the association between H3K79 methylation and transcriptional
activity, this suggested that H3K79 methylation was dysregulated at MLL-fusion target genes, a
notion that was confirmed by subsequent studies**. Even more strikingly, it was later found that
251,252,269

H3K79me2 is essential for the survival and proliferation of MLL-rearranged leukemias

with pharmacological inhibition of DotlL killing leukemic cells and suppressing the tumor in

1280—282 1283

preclinica and clincial*® studies.

And yet, despite this modification’s clinical significance, H3K79me?2 presents a challenge
for chromatin immunoprecipitation, with native ChIP failing to specifically capture it (Fig. 4.1).
However, in 2014, Orlando et al. presented new insights into ChIP for H3K79me2 in a study
describing their new method ChIP-Rx!?®. ChIP-Rx is conceptually similar to ICeChIP, relying on
the principle that an exogenous spike-in normalization standard is necessary to measure differences
in global abundances between samples. However, rather than using the nucleosome standards used
in ICeChlIP, Orlando et al. spiked in chromatin from D. melanogaster as an exogenous reference
material; this allowed them to normalize their ChIP-seq profiles across the human cells to the total
number of reads mapped to the internally invariant D. melanogaster chromatin'2®,

To test their method, Orlando et al. conducted pulldowns in pools of MV4;11 cells, a cell
line derived from MLL-rearranged leukemia. They cultured cells in the presence or absence of

the specific Dot1L inhibitor pinometostat at a concentration that would result in near-total ablation

of H3K79me?2 globally. They then mixed these cells in varying proportions and conducted ChIP-
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Figure 4.3: Exogenously normalized denaturative ChIP for H3K79me2.

ChIP-Rx of H3K79me?2 with traditional read depth normalization (left) and normalization to exoge-
nous read depth (right). Percentages represent the proportion of cells in each pool that were treated
with Dot1L inhibitor pinometostat. Adapted from Orlando et al., 201428,

Rx on the samples against H3K79me2. Strikingly, they found that with their method, they could
see a decrease in the exogenously normalized H3K79me2 ChIP-seq signal, concomitant with the
proportion of inhibitor-treated cells in the pool used for the ChIP-seq'?® (Fig. 4.3). Notably, in
the pool with 100% of cells treated with pinometostat, the This finding showed that ChIP-Rx was
sensitive to global changes in histone modification abundance and could reveal such changes by use
of exogenous normalization. But even more fundamentally, this result showed that it was possible to
specifically immunoprecipitate H3K79me2; the fact that the 100% inhibitor-treated sample showed
very little pulldown of H3K79me2 implied that there was little off-target binding and was thus
indicative of apparent specificity.

The greatest apparent difference between ICeChIP and ChIP-Rx, apart from the type of
calibrant used, was the form of ChIP-seq employed. ICeChlIP is a native protocol, largely keeping
the nucleosome in its folded state and relying on micrococcal nuclease (MNase) digestion for
chromatin fragmentation!'®. Such a protocol tends to improve the pulldown specificity'*°, but at the
cost of inhibiting pulldowns of internal modifications. By contrast, ChIP-Rx utilized crosslinking

and sonication to shear chromatin, denaturing the nucleosome in the process'?®. We hypothesized
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that this denaturation was able to unfold the globular domain of the nucleosome core particle and
better expose the H3K79me?2 epitope, thereby making the presented antigen more closely resemble
an unstructured peptide and making it more accessible.

Based on this hypothesis, we sought to develop a form of ICeChIP that utilized denaturation
to expose the epitope and permit specific pulldowns of internal modifications. Here, after a close
examination of sonication-based ChIP, we have developed denaturative ICeChIP, which uses thermal
denaturation to reliably denature nucleosomes and specifically pull down H3K79me2. We then use
denaturative ICeChlIP to study the role of H3K79me?2 in MLL-rearranged leukemias, finding genes
with transcriptional dysregulation potentially explainable by changes in H3K79me?2 and identifying

new patterns of histone PTM crosstalk in that context.

Results

Sonication in denaturative ChIP

As a starting point, we first attempted to use the protocol described by Orlando et al. to assess its
usefulness as a basis for our denaturative ICeChIP method. This method was previously described
to have nearly 100% variability in its normalized enrichment measurements'?®, and our ChIP-Rx-
qPCR measurements recapitulated that finding (Fig. 4.4), indicating to us that this method did not
provide sufficiently precise measurements to be useful as a basis for a quantitative ChIP protocol.
Even more concerningly, we found that the trend of the change in normalized enrichment across
replicates was different when normalizing to different genes, suggesting high variability in pulldown
of even the invariant chromatin (Fig. 4.4). This problem was likely driven by the low enrichment
at the target genes and would likely be resolvable by ChIP-Rx-seq, but the fact that the method was

unreliable for ChIP-qPCR also indicated that it was suboptimal.
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Figure 4.4: High variability in ChIP-Rx protocol.

Normalized H3K79me2 enrichment across three replicates at (A) HoxA9 promoter, (B) GAPDH
promoter, and (C) EuNeg locus in K562 cells, normalized to D. melanogaster gene on X-axis.

We thus sought to develop a more robust and reproducible form of denaturative ChIP for use
with our quantitative internal standards. Based on the hypothesis that the sonication of the chromatin
was responsible for denaturing the nucleosome core particle and making the epitope more accessible
and recognizable to the antibody, we first attempted to use sonication as our shearing method rather
than MNase, much like Orlando et al.'?® (Fig. 4.5A). Rather than spiking in exogenous cells,
however, we spiked in our nucleosome standards to the nuclei mixture immediately prior to cross-
linking in the hopes that this would remove one element of variability from the procedure and
improve reproducibility (Fig. 4.5A).

Our first goal was to better understand the effects of sonication on the efficiency and speci-
ficity of internal modification pulldowns. To do this, we sonicated our samples for 10, 20, 30,
or 60 minutes to fragment and denature the chromatin. As expected, increasing the sonication
time decreased the size of the fragments, with the 30-minute sonication time resulting in a roughly
mononucleosomal population (Fig. 4.5B). Increasing the amount of sonication applied from 10

minutes to 30 minutes resulted in increased efficiency of H3K79me2 pulldown (Fig. 4.5C), sug-
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Figure 4.5: Specificity and enrichment of sonication-based denaturative ChIP.

(A) Workflow of sonication-based denaturative ICeChIP. (B-C) (B) Size distribution of fragments,

(C) enrichment of nucleosome standards, and (D) pulldown specificity after sonication for the
indicated amount of time.

gesting that the sonication did indeed denature and expose the epitope to the antibody for more
efficient binding. Interestingly, this increased efficiency was accompanied by increased specificity
of pulldown, with 30 minutes of sonication resulting in both the most efficient and specific IP (Fig.
4.5C-D). Though the reason for this was not entirely clear, it is possible that the increased specificity
seen with the more denatured nucleosomes arises from successful competition by the H3K79me2
epitope to capture antibody and prevent off-target epitopes from binding free antibodies. All told,

the H3K79me?2 pulldown was markedly improved in specificity by adding sonication.
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However, this method was imperfect; too much sonication could harm the quality of the
pulldown. Applying 60 minutes of sonication generated a sample with subnucleosomal fragment
sizes (Fig. 4.5B) with a low-efficiency pulldown (Fig. 4.5C). This indicated that oversonication
could result in destruction of the nucleosome itself rather than the linker DNA, reducing the available
nucleosomes for binding. Accordingly, the antibody was free to bind to off-target nucleosomes at a
higher rate, reducing the apparent specificity of the ChIP (Fig. 4.5D). It thus appeared that using
sonication for internal modification ChIP had a fundamental tradeoff between adequate epitope
exposure and excessive destruction of the target, necessitating a balance between the two, despite

the fact that such a balance may be variable between cell types.
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Figure 4.6: Variability of sonication-based denaturative ChIP.

(A) BioAnalyzer trace of fragment size distribution, (B) enrichment of nucleosome standards, and
(C) pulldown specificity of two replicates.

With this tradeoff in mind, we next sought to test the robustness of the sonication-based
denaturative ICeChIP method. To do this, we carried out our procedure in two replicates in par-
allel, with the cells being split immediately before crosslinking and processed simultaneously per
the same protocol. And yet even between these highly standardized replicates, there were still
marked differences. The relative size distributions of the fragments in these two replicates varied

significantly after sonication (Fig. 4.6A), which was concerning given that the samples came from
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the same cell population, were cross-linked in parallel, and sonicated using the same settings on
the same machine. And after the pulldown, we observed that there was a vast difference in the
pulldown efficiency of the two samples (Fig. 4.6B), with further differences between the samples
in specificity as well (Fig. 4.6C). And even at its best, the off-target binding remained rather high,
representing roughly 10-fold enrichment over unmodified nucleosomes (Fig. 4.6C) when the un-

modified nucleosomes are roughly 20-fold more abundant'*3

. Given the high apparent variability
of the method and the relatively low specificity, we determined that we needed a more reproducible

and specific denaturation ICeChlIP protocol.

Thermal denaturation for ICeChIP

To more reliably denature the nucleosomes without excessive epitope destruction, we modified
our overall denaturative [CeChIP workflow. In the previous experiments, based on the method
published by Orlando et al., we crosslinked and sonicated cells or nuclei directly. However, for
our new versions of denaturative ICeChIP, we instead chose to first digest chromatin with MNase
and purify mononucleosomes (both genomic and spike-in) as in a native protocol. Only once the
nucleosomes were purified was crosslinking and denaturation conducted (Fig. 4.7A).

This had two major advantages. First, this method ensured that the genomic and spike-in
nucleosomes were subjected to the same conditions. With the previous protocols, spike-in nucleo-
somes were on the outside of the cell or nuclear membrane, whereas the genomic nucleosomes were
inside. This meant that spike-in nucleosomes were subjected to higher effective crosslinker concen-
trations and greater physical stress upon sonication. By purifying nucleosomes prior to crosslinking
and denaturation, the genomic and spike-in nucleosomes would be subjected to the same chemical

and physical environment, making the spike-ins more representative of the genomic nucleosomes
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Figure 4.7: Denaturative ICeChIP workflow and panel of denaturation methods.

(A) Generalized denaturative ICeChIP workflow. (B) Pulldown specificity of denaturative ICeChIP
with indicated denaturation methods.

and thus increasing quantitative power. Second, our new method decoupled fragmentation from
denaturation. With sonication-based methods, the fragmentation and denaturation were coupled
such that it was difficult to reduce or increase chromatin fragmentation without a concomitant
change in denaturation. In this method, the two processes were conducted separately such that
denaturation could be tuned without compromising the efficient fragmentation of chromatin into
mononucleosomes.

With this framework, we tested several methods designed to denature the nucleosomes
immediately prior to the pulldown. Our goal was to find a denaturation protocol that could reliably
and completely denature nucleosomes in the denaturation step but could still permit pulldown by
an antibody in subsequent steps. Many of the methods we tried were not successful in improving

pulldown specificity (Fig. 4.7B). All of these methods had low specificity, often had low enrichment,
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and would likely present a significant source of variability for the methods that required physical
disruption (e.g. vortexing and water bath sonication). In particular, we noted that detergent was not
inherently capable of denaturing the nucleosome and improving specificity, even in the presence
of high salt (Fig. 4.7B). However, we did note that the sample with 1% SDS and vortexing had
marginally higher specificity than a native pulldown (Fig. 4.7B), hinting that it may be possible to
improve pulldown specificity by denaturing the nucleosome in the presence of a detergent such as
SDS. Our rationale was that though the detergent itself would not be able to denature the nucleosome,
it could coat a denatured protein and thereby stabilize a nucleosome that was denatured by other
means. Having exhausted the other physical means of denaturing a protein, we turned to thermal

denaturation.
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Figure 4.8: Thermal denaturation for ICeChlIP.

(A) Enrichment of on-target standard and (B) pulldown specificity of denaturative ICeChIP against
H3K79me?2 using thermal denaturation with the indicated temperatures.

Thermal denaturation in the context of a crosslinked sample has theoretical drawbacks.
Formaldehyde crosslink reversal is frequently done by heating the sample for an extended period of
time; as such, we wanted to limit the amount of time for which we heated our crosslinked chromatin

to prevent decrosslinking and, accordingly, loss of chromatin upon denaturation. As such, we heated
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our samples for one minute in the presence of 1% SDS to either 37, 55, or 65 degrees Celsius, then
diluted the samples ten-fold to bring the final SDS concentration down to 0.1%, which would permit
antibody binding. To our surprise, this protocol was effective. Across the range of temperatures
tested, the thermal denaturation permitted an H3K79me?2 pulldown with reasonably high efficiency
(Fig. 4.8A) and high specificity (Fig. 4.8B). Given these positive results, we moved forward with
thermal denaturation for denaturative ICeChIP, with the denaturation step being conducted at 55°C

to balance efficiency, specificity, and risk of decrosslinking the sample.

Evaluating reproducibility of denaturative I[CeChIP

We next sought to better characterize the benefits and drawbacks of denaturative ICeChlIP in different
pulldown contexts. To do this, we conducted both native ICeChIP and denaturative ICeChIP on
two modifications: H3K4me3 and H3K79me2. H3K4me3 is a tail modification (Fig. 4.1) that can

18,124 " whereas H3K79me?2 is an internal

be readily immunoprecipitated with native ChIP protocols
modification that requires denaturative ChIP. As expected, the H3K79me2 pulldown was markedly
more specific under denaturative ICeChIP conditions than native ICeChIP conditions (Fig. 4.9A),
in line with previous descriptions native ICeChIP against H3K79me2!'® (Fig. 4.2). Interestingly,
however, the H3K4me3 pulldown was more specific under native conditions (Fig. 4.9A), consistent
with previous reports that crosslinked material is “stickier” and that pulldowns of the same are
less specific than native IPs'>’. These data suggest that both native and denaturative ICeChIP are
contextually useful; for tail modifications, native ChIP will be simpler and more specific, whereas
for internal modifications, denaturative ICeChIP may succeed where native will not.

Our next question was on the robustness of our denaturative ICeChIP method. The prior

sonication-based method had resulted in marked variability at the level of fragment sizes, enrich-
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Figure 4.9: Specificity and reproducibility of denaturative I[CeChlIP.

(A) Specificity of native and denaturative ICeChIP against H3K4me3 and H3K79me2. Error bars
represent standard deviation across three distinct biological replicates. (B) Metagene profiles of de-
naturative ICeChlIP-seq signal targeting H3K4me3 (left) and H3K79me?2 (center, right) at transcrip-
tion start sites (TSS; left, center) and gene bodies (right), showing reproducibility of denaturative
ICeChlIP. Each color represents a distinct biological replicate.

ment, and specificity (Fig. 4.6). This error is markedly reduced by instead using thermal denatura-
tion. Replicates of denaturative ICeChlIP using thermal denaturation had highly similar pulldown
specificities (Fig. 4.9A). Further, metagene profiles of denaturative ICeChIP-seq were highly
similar across replicates (Fig. 4.9B), indicating that the pulldowns were quantitatively similar at ge-
nomic loci at well. All told, these results indicated that thermal denaturation yields high-specificity

pulldowns with a high degree of reproducibility.

132



Given that this method worked with our nucleosome standards, we next sought to revisit
the more commonly used spike-ins: exogenous chromatin from another organism, such as D.
melanogaster or S. cerevisiae. To be sure, these methods are inherently suboptimal. Such a spike-in
would lack the ability to measure specificity of the pulldown except in cases where the spike-in chro-
matin lacks the targeted histone modification entirely (e.g. H3K27 methylation in S. cerevisiae®®*),
and even then would not indicate which modifications contribute to off-target binding. Further,
exogenous genomic spike-ins are likely to have significant lot-to-lot variation, as the amount of
genomic histone modification cannot be precisely controlled, whereas semisynthetic nucleosomes
are precisely formulated and can thereby limit lot-to-lot variation. Nonetheless, it remains a fact
that many people use exogenous chromatin as spike-ins rather than nucleosome standards!?%-283,
so we sought to evaluate whether our denaturative ICeChIP protocol can improve upon the high
variability previously observed with these methods'?® (Fig. 4.4).

To do this, we modified the ChIP-Rx protocol to more closely resemble ICeChIP (Fig.
4.10A). First, rather than spiking crude D. melanogaster cells into a human cell sample, we spiked in
highly purified and well-quantified D. melanogaster and S. cerevisiae nuclei into a sample of human
nuclei, so the spike-in chromatin was treated more similarly to the human chromatin. Second, rather
than crosslinking and shearing by sonication, we fragmented the chromatin by MNase digestion,
which is more reliable. We then conducted either native ICeChIP against H3K4me3, denaturative
ICeChIP against H3K4me3, or denaturative ICeChIP against H3K79me2, all in triplicate.

Given the previously described high reproducibility of native ICeChIP, we anticipated that
the relative pulldown of both human and spike-in chromatin would be highly similar across repli-
cates, meaning that metagene profiles of the datasets should be highly similar across replicates after

normalization to the spike-ins. This was, in fact, the case; TSS metaprofiles of the native H3K4me3
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Figure 4.10: Exogenous chromatin normalization with denaturative ICeChIP protocol.

(A) Workflow for modified exogenous chromatin normalization ChIP. (B-D) Metagene profiles of
(B) H3K4me3 native ChIP, (C) H3K4me3 denaturative ChIP, and (D) H3K79me2 denaturative ChIP,
normalized to endogenous read depth (left), D. melanogaster read depth (center), or S. cerevisiae

read depth (right).

pulldown were highly reproducible with exogenous chromatin normalization (Fig. 4.10B). Indeed,

the native ICeChIP pulldown procedure is so robust that even the endogenously normalized data

metaprofiles were quite similar (Fig. 4.10B).

Denaturative ICeChIP was less reproducible with endogenous normalization; the denatura-

tive H3K4me3 and H3K79me2 pulldown metaprofiles showed marked variability between repli-

cates (Fig. 4.10C-D). However, normalization to the exogenous chromatin rectified much of this
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variability, resulting in highly similar metaprofiles (Fig. 4.10C-D). These data suggested that the
denaturative ICeChIP pulldown protocol is also workable for use with exogenous chromatin. Again,
this method is inherently suboptimal compared to nucleosome standard spike-in for the reasons
stated above. Nonetheless, if a researcher is particularly inclined towards exogenous chromatin

spike-ins, our denaturative ICeChIP protocol improves reproducibility even in that context.

Calibration by denaturative ICeChIP
To validate the calibration ability of our denaturative ICeChIP protocol, we compared our de-
naturative and native ICeChlIP data targeting H3K4me3. H3K4me3, as a tail modification, is
well-measured by native ICeChIP to an extent in line with mass spectrometry estimates''®. Our
expectation was that our measurements of H3K4me3, then, would be roughly similar between the
denaturative and native ICeChlIP protocols. To our surprise, however, this was not the case. Denat-
urative ICeChIP HMDs were, on average, roughly 48% that measured by native [CeChIP across
TSSs (Fig. 4.11A). The discrepancy appeared to be because of the way in which the standards
were pulled down; the nucleosome standards, bearing the high-affinity 601 DNA sequence!®, were
pulled down roughly three times as efficiently as genomic nucleosomes in denaturative ICeChIP
compared to native ICeChIP (Fig. 4.11B). This meant that the apparent enrichment that would be
expected of a locus that was 100% modified with H3K4me3 was higher than appropriate for the
genomic nucleosomes and, accordingly, that the denaturative H3K4me3 HMDs were systematically
deflated relative to the native H3K4me3 HMDs.

We hypothesized that the nucleosome standards were being differentially captured relative
to the genomic nucleosomes because of the affixed DNA sequence on the nucleosome. Our rationale

was that this was the major point of difference between the standard and genomic nucleosomes; the
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Figure 4.11: Denaturative ICeChIP HMD deflation and differential standard enrichment.

(A) Denaturative vs. native ICeChIP H3K4me3 HMD of 10,000 randomly selected genomic win-
dows using nucleosome standards with the 601 DNA sequence. (B) Fold change of enrichment
of nucleosome standards bearing indicated DNA sequence in denaturative/native ICeChIP against
H3K4me3, normalized to read depth. (C) Fold change of enrichment of nucleosomes with 601
DNA sequence/indicated MMTV DNA sequence in denaturative ICeChIP against H3K4me3. Red
line indicates average ratio across the different MMTYV barcodes; red shaded area indicates standard
deviation about average ratio.

semisynthetic histones were essentially identical to genomic histones?*®, whereas the 601 sequence

is designed to have supraphysiological affinity for histones!'®%2%,

To test this hypothesis, we developed nucleosome barcodes based on other DNA sequences
that would bind to the histone octamer with lower affinity?®’. These included a sequence based on
the mouse mammary tumor virus (MMTYV) long terminal repeat®®®, a sequence based on the mouse
minor satellite (MMS)?*, and a purely synthetic sequence based on genomic unwords (Space Alien;
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SA). We assembled these sequences into nucleosomes bearing H3K4me3, then measured their
enrichment in denaturative and native ICeChlIP-seq. The new barcode sequences had considerably
lower enrichment in the denaturative ICeChIP-seq than did the 601-based standards (Fig. 4.11B),
with the ratio of enrichment in the MMTYV and SA standards between denaturative and native
[CeChlIP appearing similar to that of the genomic reads. Curiously, the MMS-based barcodes had
an even lower enrichment in denaturative ICeChIP for reasons not fully understood. This was found
to be applicable for MMTYV sequences with a broad range of nucleosome barcodes, wherein the 601
sequence was pulled down an average of 2.27 times as efficiently as MMT V-based sequences in
denaturative ICeChIP against H3K4me3 (Fig. 4.11C). These data suggested that the DNA sequence
identity of the nucleosome standards affected the pulldown efficiency in denaturative ICeChIP.
What remained unclear was the reason for this difference. We first hypothesized that the
nucleosomes with different DNA affinities were being differentially decrosslinked by the thermal
denaturation. This would not affect the presence of the DNA in the input sample, but if the nucle-
osome completely fell apart, then there would be less nucleosome to pull down and, accordingly,
a lower apparent enrichment. To test this, we conducted denaturative ICeChIP with our input nor-
malization being conducted against either input DNA (as standard) or against an H3 pulldown with
one of two H3 C-terminal domain (CTD) antibodies. If differential nucleosome destruction was the
problem, then the H3 pulldowns (which would only measure intact nucleosomes) should resolve
this difference if used as the input. Unfortunately, this was not the case; whether the input chromatin
was true DNA input or an H3 CTD pulldown, the measured genomic HMD was virtually identical
(Fig. 4.12A). This suggested that the difference was not driven by mere differential susceptibility to
decrosslinking and destruction, but rather, by some unknown intrinsic property of the nucleosome

itself.
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Figure 4.12: Associations with deflation of HMDs in denaturative ICeChIP.

(A) Denaturative ICeChIP against H3K4me3 using H3 pulldowns or raw DNA input as the input for
computation of efficiency and specificity. (B) Denaturative/Native (left) or In(Denaturative/Native)
(right) ICeChIP H3K4me3 HMD vs. energy of DNA sequence binding?®” of 200bp windows across
the D. melanogaster genome. (C) Denaturative/Native (left) or In(Denaturative/Native) (right)
[CeChIP H3K4me3 HMD vs. GC content of 200bp windows across the D. melanogaster genome.

To try to find an apparent reason for this deflation, we searched for associations between
genomic deflation and different factors. Given that it appeared that DNA sequences with differ-
ent nucleosome binding energies had different pulldown efficiencies in denaturative ICeChIP, we
wanted to compare the extent of deflation with nucleosome binding affinity in the genome. To do
this, we computed the predicted nucleosome binding energy of 200bp genomic windows?®’ with the
deflation ratio of HMDs at that same window (Fig. 4.12B). Interestingly, there was essentially no
correlation between the predicted binding energy and the deflation ratio or a log transform therein,

suggesting that binding energy is not directly responsible or associated with such HMD deflation
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(Fig. 4.12B). More curiously, however, lower GC content was associated with greater deflation of
HMDs than was higher GC content (Fig. 4.12C). This is consistent with our nucleosome barcode
findings; the 601 sequence has relatively high GC content, so it would have higher IP efficiency in
denaturative ICeChIP than would genomic loci.

This finding was startling, however, because it violated a fundamental assumption in ChIP:
that the identity of the DNA bound to the nucleosome does not impact the pulldown targeting the
protein component. Our findings, however, suggest that in denaturative ICeChIP, the DNA bound
to the nucleosome can impact the efficiency of pulldown, meaning that denaturative ChIP is DNA-
sequence biased. The extent to which this concerning discovery holds true in other denaturative
ChIP paradigms remains to be seen.

After all these inquiries, we concluded that we could not easily correct for this apparent
deflation of HMD. Though this makes it challenging to treat the nucleosome standards as calibrants
(placing the pulldown on a biologically meaningful scale), our denaturative ICeChIP protocol and
nucleosome standards still enable measurement of antibody specificity and for normalization to
an invariant exogenous standard. With this caveat in mind, we proceeded to use our denaturative
ICeChIP method to investigate the biology of MLL-rearranged leukemias by studying the associa-

tion of H3K79me?2 dysregulation with the transcriptional changes of leukemogenesis.

Examining the role of H3K79me2 in MLL-rearranged leukemia

In studying the role of H3K79me?2 on the genesis of MLL-rearranged leukemias, we first sought to
study its impacts on transcription. MLL-rearranged leukemias were previously described to have a
distinctive transcriptional program?’™ featuring activation of several genes including HOXA9 and

MEIS1. Similarly, H3K79me?2 is known to be dysregulated in MLL-rearranged leukemias, often
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at several of the genes dysregulated transcriptionally®**%*2%2, However, determining the impact of
H3K79me?2 on gene expression is somewhat more complex; many of the genes that are differentially
marked with H3K79me2 may be incidental and unimportant for the process of leukemogenesis; it
is possible they display increased H3K79me? as a side effect of the rearrangement rather than as a
driving factor of the liquid tumor. Similarly, not all of the transcriptional changes will be directly
driven by the H3K79me2 increase; some of the changes in transcription are likely to be reactive to
other changes rather than primary effects.

To identify a candidate list of genes that may be dysregulated primarily as a result of
H3K79me2 increase in MLL-rearranged leukemias, we searched for genes that had both dysreg-
ulation of H3K79me?2 and gene expression. To do this, we sought to first identify genes that had
dysregulated H3K79me2 in MLL-rearranged leukemias by conducting denaturative [CeChIP-seq
against H3K79me?2 in six MLL-rearranged leukemia lines and K562 cells (Fig. 4.13). We then iden-
tified genes that were differentially modified in each cell line relative to the K562 outgroup (both
in absolute HMD differences and relative HMD differences). The 3834 genes that were present
in all these lists were identified as the genes that were differentially modified with H3K79me2 in
MLL-rearranged leukemia cells.

We next sought to identify genes that were differentially regulated in response to changes in
H3K79me?2 in MLL-rearranged leukemia. To do this, we reanalyzed previously published RNA-seq
data in different cell lines with and without the presence of pinometostat?®®. To separate the effects
of pinometostat more broadly from the effects of pinometostat in MLL-rearranged leukemia, we
separated our datasets into those from MLL-rearranged or non-MLL-rearranged leukemias, then
conducted separate differential expression analyses for each group and subtracted any genes that

were differentially regulated in the latter, ultimately identifying 1420 genes that were differentially
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Figure 4.13: Differentially expressed and modified genes in MLL-rearranged leukemias.

Identification workflow for genes that are differentially marked by H3K79me2 HMD relative to
K562s and/or differentially expressed in MLL-rearranged leukemias specifically in response to

changes in H3K79me2. Overall, 384 genes were found that were differentially expressed and
differentially modified with H3K79me2.
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expressed in MLL-rearranged leukemia with changes in H3K79me?2 levels (Fig. 4.13). Combining
the H3K79me2 and RNA-seq analyses, we found 384 genes that were common between the lists of
differentially marked and expressed genes (Fig. 4.13), which served as our list of candidate genes
that had transcriptional dysregulation potentially as a result of H3K79me2 dysregulation.

This set of genes represented only a minority of the genes that were either differentially
modified or expressed in MLL-rearranged leukemias, leading us to wish to better characterize these
genes. Some of these 384 genes were among the canonical MLL-rearranged leukemia target loci,
including HOXA9 and MEIS1, which was promising for the sensitivity and specificity of our anal-
ysis. To better understand the types of genes that fell into this list, we conducted gene ontology
against the genes that were differentially methylated and expressed (Table 4.1), differentially methy-
lated but not differentially expressed (Table 4.2), or differentially expressed by not differentially
modified (Table 4.3). In this, several interesting trends emerged. We observed that the genes that
were differentially expressed, regardless of H3K79me2 modification status, tended to be immune
system process genes, with most of the top gene ontology terms having to do with immune system
activation or cellular migration (Tables 4.1-2). However, the genes that were differentially modified
but not differentially expressed tended to be quite different, focusing more heavily on metabolic
genes (Table 4.3).

This constellation of findings had two primary interpretations. First, the genes that pri-
marily changed their transcriptional program upon H3K79me2 changes were primarily immune
system process genes, and this transcriptional program tended towards coherent changes whether
the individual genes were differentially marked by H3K79me2 or not. Second, the relative paucity
of immune system process genes in the “differentially modified but not differentially expressed”

category suggested that many genes were only incidentally marked with H3K79me2, indicating
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Table 4.1: Top twenty gene ontology terms for genes that are differentially modified by H3K79me2
and differentially expressed.

GO.ID Term Significant Expected Enrichment  Adj. p-value

B cell receptor

o 11 1.22 9.02 <2.2x101°
signaling pathway

GO:0050853

antigen receptor-
GO0:0050851 mediated signaling 20 4.03 4.96 <2.2x1071°
pathway
immune response-
activating cell
surface receptor
signaling pathway

G0:0002429 25 5.14 4.86 <22x1071°

immune response-
GO0:0002757 activating signal 25 5.14 4.86 <22x101®
transduction

immune response-
regulating cell
surface receptor
signaling pathway

GO0:0042113 B cell activation 22 5.43 4.05 <22x 10716

GO:0002253 activation of 27 6.91 3.91 <22x% 10716
mmmune response

G0:0002768 25 5.77 4.33 <22x1071°

peptidyl-serine

phosphorylation 24 6.47 3.71 <22x107°

GO:0018105

GO:0007015 actin filament 34 9.41 3.61 <22x 1076
organization

immune response-
GO:0002764 regulating signaling 31 9 3.44 <22x101¢
pathway

that other mechanisms may be responsible for transcriptional activation rather than direct activation

of gene expression by H3K79me?2.

To understand some of the other mechanisms by which H3K79me2 may impact gene reg-
ulation, we examined its association with other histone modifications. To do this, we examined
changes in histone modifications observed in response to pinometostat treatment in the MV4;11

cells, which was previously published®!. As expected, H3K79me2 decreased dramatically with
143



Table 4.2: Top twenty gene ontology terms for genes that are differentially modified by H3K79me2
but not differentially expressed.

GO.ID

G0:0032273

GO:0048813

GO:1902905

GO:0016358

GO:1903311

GO:0051056

G0O:0006325
GO:0016570

GO:0010975

GO:0007264

Term

positive regulation
of protein
polymerization
dendrite
morphogenesis
positive regulation
of supramolecular
fiber organization
dendrite
development
regulation of mRNA
metabolic process
regulation of small
GTPase mediated
signal transduction
chromatin
organization

histone modification

regulation of neuron
projection
development

small GTPase
mediated signal
transduction

Significant

51

52

69

78

102

98

136
132

125

143

Expected

25.56

26.12

38.07

43.22

56.64

55.72

84.05
83.13

79.08

91.77

Enrichment

1.99

1.81

1.8

1.76

1.62
1.59

1.58

1.56

Adj. p-value

<22x101¢

<2.2x101°

<22x1071°

<22x1071°

<22x101¢

<2.2x1071°

<22x1071°
<22x101¢

<22x101¢

<22x101¢

pinometostat treatment (Fig. 4.14). Beyond that change, we observed that H3K4me3 HMD at TSSs
increased markedly with pinometostat treatment (Fig. 4.14), suggesting that H3K79me2 may either
oppose or compensate for H3K4me3 in this context (seeing as both modifications are associated
with active transcription). However, beyond that, only modest changes were seen in H3K27me3
and H3K36me3 at TSSs (Fig. 4.14), at least with the pinometostat treatment parameters used in the

treatment of the cells under these conditions.
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Table 4.3: Top twenty gene ontology terms for genes that are differentially modified by H3K79me2
but not differentially expressed.

GO.ID Term Significant Expected Enrichment  Adj. p-value
positive regulation

G0:0032273 of protein 51 25.56 2 <22x101
polymerization

GO:004gg13 dendrite 52 26.12 199  <22x10'
morphogenesis

positive regulation
GO0:1902905 of supramolecular 69 38.07 1.81 <22x101°
fiber organization

GO:0016358 dendrite 78 43.22 1.8 <22x10°6
development
GOy e PEmED G RN 102 56.64 1.8 <22x 10716

metabolic process

regulation of small
GO:0051056 GTPase mediated 98 55.72 1.76 <2.2x1071°
signal transduction

GO:0006325 Chromatin 136 84.05 1.62 <22x10716
organization

GO:0016570 histone modification 132 83.13 1.59 <2.2x 1016

regulation of neuron
GO:0010975 projection 125 79.08 1.58 <22x101¢
development

small GTPase
GO:0007264 mediated signal 143 91.77 1.56 <22x101¢
transduction

Further hints at crosstalk patterns of H3K79me2, however, are present in the literature.
Previous work suggested that H3K79me?2 inhibition was inhibited by H3K27me3 existing on the
same nucleosome; this was determined on the basis of biochemical studies showing that the Dot1L
complex member AF10 is able to bind to H3K27me3 as a negative regulator to Dot1L activity?*?.
However, when we conduct ICeChIP against H3K79me2 and H3K27me3, we see an even starker

anticorrelation between the two modifications, with regions of high H3K27me3 bearing very little

H3K79me?2 and vice versa (Fig. 4.15). Indeed, the anticorrelation is so strong that there are virtually
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no regions with high H3K27me3 and high H3K79me2 (Fig. 4.15). There are two possible explana-
tions for this behavior from a systems level. First, these results could be observed if H3K79me?2 is
installed and removed much more rapidly than H3K27me3 and thus demonstrates a quasi-steady-
state phenomenon with regards to H3K27me3. However, this is questionable — though some have
claimed to have identified an H3K79me2 demethylase?®, H3K79me2 disappears at a slow rate
(consistent with dilution by cellular division) in the presence of pinometostat?®’. Given this slow
removal process, it becomes more likely that instead, H3K79me2 and H3K27me3 mutually inhibit
the installation of the other mark, a process which would result in the strong anticorrelation observed
above even with slow H3K79me?2 dynamics. Thus, though more study is needed, it is plausible that
H3K79me2 and H3K27me3 demonstrate mutual inhibition to a degree not previously identified —

directly or otherwise.
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Figure 4.14: Histone modification changes with pinometostat treatment.

H3K4me3, H3K27me3, H3K36me3, and H3K79me2 HMD with and without pinometostat Dot1L
inhibitor. Data taken from Richter et al., 2021%°!.

Discussion
Despite their biological and clinical importance, internal histone modifications have to date repre-
sented a major blind spot of quantitative studies of histone modifications. Their structure makes

it challenging to find high-confidence binding partners biochemically, and the low specificity of
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Figure 4.15: Anticorrelation of H3K79me2 and H3K27me3.

Anticorrelation of H3K79me2 and H3K27me3 at genomic windows in D. melanogaster S2 cells,
with example genomic locus.

native pulldowns against such modifications makes genomic studies therein similarly challenging.
Our work here represents a deep dive into the tunable parameters of ChIP input preparation and how
their impacts on fragmentation and denaturation ultimately impacts the quality of the pulldown.
The most common methods of denaturative ChIP — including those typically used against
H3K79me2!%® — involve sonication, which necessarily convolute the effects of fragmentation and
denaturation (Fig. 4.5)(, making it impossible to change the extent of denaturation/epitope expo-
sure without also changing the extent of chromatin fragmentation or epitope destruction. Further,

as a physical method of denaturation that will be highly dependent on temperature, crosslinking
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efficiency, and handling variation, sonication has highly variable impacts on both fragmentation
and denaturation, making it suboptimal as the basis of a ChIP protocol (Fig. 4.6).

Rather than using sonication, we instead focus on deconvoluting fragmentation and denatu-
ration so they can be tuned separately. Fragmentation, under native conditions, is straightforward
to conduct reproducibly and consistently between cell types by MNase digestion!!®17°, Further,
crosslinking and denaturation of nucleosomes is more reproducible starting with a highly purified
sample that does not have as many “excess” proteins that can absorb the crosslinking reagent or
shield the nucleosomes. Further, the fact that fragmentation occurs before denaturation means that
we are able to aggressively denature without excessively digesting the chromatin to subnucleosomal
fragments, an advantage that is not present for sonication-based methods. With this method, we
are able to thoroughly denature nucleosomes with detergent and a short pulse of heat, allowing for
high-quality, reproducible, and specific pulldowns of nucleosomes (Fig. 4.8, 4.9).

The method we present here is not without its limitations. As we noted, denaturative
ICeChIP demonstrates widespread relative deflation of histone modification densities relative to
native ICeChlIP (Fig. 4.11) in a manner biased by sequence GC content (Fig. 4.12), suggesting that
our denaturative ChIP method is at least marginally biased by DNA sequence. This is particularly
concerning if it is generalizable to other denaturative ChIP paradigms; as previously noted, the fun-
damental premise of ChIP is that the identity of the DNA sequence is not relevant to the pulldown
efficiency, allowing comparison of pulldown efficiencies at different loci. The fact that this is not
necessarily true in our context is concerning ad raises questions as to whether denaturative ChIP
more broadly is sequence biased. Moving forward, we would seek to better define why different
regions show deflation relative to native ICeChlP. If the deflation at various genomic regions can be

better defined, different nucleosome sequences can be developed to span the range of possibilities
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in the genome, allowing for computational application of the appropriate calibration sequence to
the relevant genomic regions.

Nonetheless, despite these limitations, we were able to use our denaturative ChIP method
to explore the biology of H3K79me2 in the context of MLL-rearranged leukemias and identify new
potential cross-talk pathways between H3K79me2 and H3K27me3, potentially shedding light on
the role of this histone modification that, to date, has been very poorly characterized. Though imper-
fect, our method offers a way to avoid the irreproducibility of physical denaturation/fragmentation
methods and allows for a basis for more reproducible pulldowns, in the current method and as the

basis for future ones.
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Methods and Materials
This section has been adapted from: Shah, R. N. ef al. Examining the Roles of H3K4 Methylation

States with Systematically Characterized Antibodies. Molecular Cell 72, 162—177 (2018).

Cell Culture
K562, MV4;11,RS4;11, MOLM-13, SEM, KOPN-8, and THP-1 cell lines were grown at 37°C with
5% CO; and 95% humidity in Dulbecco’s Modified Eagle Media (DMEM, Gibco; K562 cells only)

or RPMI 1640 (Gibco; other cell lines) supplemented with 10% (v/v) HyClone FBS Characterized
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U.S. and 1x Penicillin/Streptomycin (Gibco). Cells were seeded into vented flasks to a density of
200,000 cells/mL of culture and were passaged at 1-2 million cells/mL of culture.

S. cerevisiae yeast (S288C strain) were cultured in YPDA on a shaker at 30°C for approxi-
mately 24 hours to an ODg of approximately 1.0. S2 cells were cultured and provided as a cell

pellet by the Fehon Laboratory.

Octamer Reconstitution
Symmetric H3K4me3, H3K9me3, H3K27me3, H3K36me3, H3K79me2, and H3K4me3K27me3
octamers were reconstituted from semisynthetic histones as previously described®!-!18:166.167  Re-
combinant core histones were expressed in BL21 (DE3) with pPRARE?2 and mixed to equimolarity
with the relevant semisynthetic histones in freshly prepared filter sterilized Unfolding Buffer (50
mM Tris-HCI pH 8.0, 6.3 M Guanidine-HCI, 10 mM 2-mercaptoethanol, 4 mM EDTA) to a final
concentration of > 1 mg histone per mL. The histone reconstitution was then added to 3500 MWCO
SnakeSkin dialysis tubing (Pierce) and dialyzed overnight at 4°C against 500-1000 volumes of filter
sterilized Refolding Buffer (20 mM Tris-HCI pH 7.5, 2 M NaCl, 5 mM DTT, 1| mM EDTA).
After dialysis, the histone mixture was centrifuged at 18,000 g for 1 hour at 4°C, and sub-
jected to gel filtration chromatography (Superdex 200 10/300 GL, GE Healthcare, resolved with
Refolding Buffer). Each fraction that displayed a peak on the UV chromatogram was analysed by
SDS-PAGE (22 mA current in 1x Laemmli Buffer for 70 minutes), stained with SYPRO Ruby (Bio-
Rad) per manufacturer instructions, and imaged with a 610BP emission filter at 600V PMT setting.
Octamer fractions with equimolar quantities of each core histone were pooled and concentrated
(Amicon Ultra-4 Centrifugal Filters, 10,000 MWCO, Millipore) to 5-15 uM octamer, diluted with

one volume of Octamer Storage Buffer, and stored at -20°C.
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All other octamers were obtained from EpiCypher, Inc.

Nucleosome Reconstitution
Nucleosomes were reconstituted onto 147bp DNAs composed of the core Widom 601 sequence!¢®
the Mouse Mammary Tumor Virus (MMTV) long terminal repeat®®®, or the Mouse minor satel-
lite?872% (MMS) modified with a 22bp barcode on each end, with each barcode composed of two
distinct 11bp sequences not found in the human or mouse genomes, or a fully synthetic 143bp
sequence of DNA comprised of eleven 13bp distinct sequences not found in the human or mouse
genomes (Space Alien sequences). The DNA and octamer were mixed to a final concentration of
1uM each in 2 M NaCl, and then dialyzed in dialysis buttons (Hampton Research) and a 10,000
MWCO SnakeSkin dialysis membrane (Pierce) against 200 mL of Refolding buffer for 10 minutes.
Dialysis then continued as 2L of Buffer 10 (20 mM Tris-HCl pH 7.5, 1 mM EDTA, 1mM DTT) was
added (flow rate 2-2.5 mL per minute).

Dialyzed samples were diluted with an equal volume of Nucleosome Dilution Buffer (20
mM Sodium Cacodylate pH 7.5, 10% v/v glycerol, 1 mM EDTA, 10 mM 2-mercaptoethanol, Filter
Sterilized), and 1 pl was analysed by native PAGE (100 V in 1x TBE for 30 minutes), stained with
SYBR Gold in 1xTBE for one hour, and visualized with a UV transilluminator gel imager. Fractions
containing nucleosomes and minimal free DNA were pooled and diluted to a working concentration
of ~ 1 nM with filter sterilized Nucleosome Storage Buffer (10 mM Sodium Cacodylate pH 7.5,
100 mM NacCl, 50% v/v glycerol, 1 mM EDTA, 1x Protease Inhibitor Cocktail [l mM PMSF, ImM
ABESF, 0.8 uM aprotinin, 20 uM leupeptin, 15 uM pepstatin A, 40 uM bestatin, 15 uM E-64 from

a 200x DMSO stock]) and stored at -20°C.
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1ICeChIP Nuclei Preparation: Mammalian and Insect Nuclei

Mammalian and insect nuclei preparation was performed as described!!®124170:171 = Briefly, cell
pellets were washed twice with 5 mL of PBS, then washed twice with 5 ml of filter sterilized Buffer
N (15 mM Tris-HCI pH 7.5, 15 mM NacCl, 60 mM KCl, 8.5% w/v Sucrose, 5 mM MgCl,, | mM
CaCl,, 1 mM DTT, 200 uM PMSF, 50 pg/mL BSA, 1x Roche Protease Inhibitor Cocktail), with
each wash consisting of complete resuspension of the pellet, centrifugation at 500 g for 5 minutes at
4°C, and removal of supernatant. The washed pellet was then resuspended in at least 2 packed cell
volumes (PCV) of Buffer N and mixed with 1 volume of 2x Lysis Buffer (Buffer N supplemented
with 0.6% NP-40 Substitute) and incubated on ice for 10 minutes to lyse cells.

The crude nuclei were spun down at 500 g for 5 minutes at 4°C before being resuspended
in at least 6 packed nuclear volumes (PNV) of Buffer N and applied to the top of 7.5 mL of filter
sterilized Sucrose Cushion N (15 mM Tris-HCI pH 7.5, 15 mM NaCl, 60 mM KCl, 30% w/v
Sucrose, 5 mM MgCl,, 1 mM CaCl,, 1 mM DTT, 200 uM PMSF, 50 ug/mL BSA, 1x Roche
Protease Inhibitor Cocktail) in a 15 ml centrifuge tube, then spun down at 500 g for 12 minutes at
4°C 1n a swinging-bucket rotor. The supernatant was discarded, and the pellet resuspended in ~ 2
PNV of Buffer N.

The nucleic acid content of the nuclei per unit volume was quantified by diluting 2 uL of
nuclei suspension into 48 puL of 2 M NaCl, water-bath sonicating to solubilize DNA, and spec-
troscopically measuring nucleic acid concentration by Nanodrop (where one Ajgonm = 50 ng/uL
chromatin). After accounting for the 25-fold dilution of the measurement sample, the concentration
of the nuclei was adjusted to 1 pg/uL of chromatin. Nuclei were dispensed to 100 uL aliquots, flash

frozen, and stored at -80°C prior to use.
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ICeChIP Nuclei Preparation: Yeast Nuclei

Yeast were collected from culture by centrifugation at 4,500 g for 5 minutes; supernatant was
discarded. The cell pellet was then resuspended into 20 mL of PBS into a single-cell suspension
and pelleted by centrifugation at 500 g for 15 minutes at 4°C; supernatant was discarded. The pellet
was then resuspended into Sorbitol Buffer (1.4 M sorbitol, 40 mM Tris-HCL, 0.5 mM MgCl,, 1
mM PMSF, 2 mM B-mercaptoethanol, pH 7.5, filter sterilized) into a single-cell suspension and
transferred into a weighed empty tube. The cells were pelleted by centrifugation at 500 g for 15
minutes at 4°C; supernatant was discarded. The cell pellet was then weighed by measuring weight
of the tube and subtracting blank weight. Cells were then resuspended into 4 mL of Sorbitol Buffer
per gram of cell pellet into a single-cell suspension. The suspension was placed on a shaker at 30°C
for 20 minutes.

While incubating, Zymolase (Fisher) was added to the cell suspension to a final concen-
tration of 0.5 mg/mL of Zymolase. The sample was then incubated for two hours to break down
cell wall and produce spheroplasts. Spheroplasts were pelleted by centrifugation at 500 g for 15
minutes at 4°C. Spheroplasts were then washed once with Sorbitol Buffer and twice with Buffer
N, with each wash consisting of complete resuspension of the pellet, centrifugation at 500 g for 5
minutes at 4°C, and removal of supernatant. The washed pellet was then resuspended in at least 2
PCV of Buffer N and mixed with 1 volume of 2x Lysis Buffer and incubated on ice for 10 minutes
to lyse cells.

The crude nuclei were spun down at 3000 g for 10 minutes at 4°C. If two layers were
observed in the pellet, the top layer was saved and the bottom discarded; the top layer contains
the nuclei, and the bottom layer contains unlysed cells. The nuclei were resuspended into 6 PNV

of Buffer N and applied to the top of 7.5 mL of filter sterilized Sucrose Cushion N in a 15 mL
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tube, then spun down at 3000 g for 15 minutes at 4°C in a swinging-bucket rotor. The supernatant
was discarded, and the pellet resuspended in ~ 2 PNV of Buffer N. The nucleic acid content of
the nuclei per unit volume was quantified by diluting 2 uL of nuclei suspension into 48 pL of 2
M NaCl, water-bath sonicating to solubilize DNA, and spectroscopically measuring nucleic acid
concentration by Nanodrop (where one Asgonm = S0 ng/uLL chromatin). After accounting for the
25-fold dilution of the measurement sample, the concentration of the nuclei was adjusted to 1 ug/uLL

of chromatin. Nuclei were dispensed to 100 pL aliquots, flash frozen, and stored at -80°C.

1[CeChIP Input Preparation
Input was prepared for ICeChIP and denaturative ICeChlIP, and relCeChIP experiments as previ-
ously described!!®124170.171 " For yse, nuclei aliquots were thawed and spiked with ~ 1 ul of each
barcoded nucleosome standard per 50 pg of chromatin. This suspension was then mixed by pipette,
transferred to a new tube, and warmed to 37°C for 2 minutes. 1 unit of micrococcal nuclease
(MNase, Worthington) per 4.375 pg of chromatin was added, and samples incubated at 37°C while
shaking at 900 rpm for 12 minutes. Digestions were stopped by adding 1/9 volume of filter sterilized
10x MNase Stop Buffer while slowly vortexing, and nuclei lysed by adding 5 M NacCl to a final
concentration of 600 mM while slowly vortexing. 66 mg of HAP resin (BioRad, CHT™ Ceramic
Hydroxyapatite, Type I, 20 um) per 100 pg of chromatin digested was rehydrated with 200 pl of
filter sterilized HAP Buffer 1 per 100 pg of chromatin digested. Lysed nuclei were centrifuged
at 18,000 g for 1 minute to pellet insoluble nuclear debris, and the soluble fraction added to the
rehydrated HAP resin and incubated for 10 minutes at 4°C with rotation.

After incubation, the HAP resin slurry was added to a centrifugal filter unit (Millipore

Ultrafree MC-HV Centrifugal Filter 0.45 pum) and spun at 1000 g for 30 seconds at 4°C. The HAP
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resin left on the filter unit was then washed 4 times with 200 pL HAP Buffer 1, and 4 times with
200 pl filter sterilized HAP Buffer 2 by spinning at 1000 g for 30 seconds at 4°C. HAP resin was
eluted into a clean tube with three 100 pl solutions of filter sterilized HAP Elution Buffer. The

nucleic acid content of the elution was then quantified by Nanodrop.

Antibody Preparation for [CeChIP

Antibodies and quantities used for each ICeChIP experiment are shown in Appendix A. The indicated
amount of Protein A Dynabeads (Invitrogen) for each ICeChIP was washed with 50 puL of ChIP
ChIP Buffer 1 by use of a magnetic rack, then resuspended in 50 pL of ChIP Buffer 1. In a separate
set of tubes, the antibody was diluted to 100 uLL with ChIP Buffer 1. The antibody and Protein A
Dynabead suspensions were combined and incubated on a rotator at 4°C for at least one hour, then
washed with 200 pL of ChIP Buffer 1 by use of a magnetic rack and resuspended in 50 pL of ChIP

Buffer 1.

Standard ICeChIP Immunoprecipitation

After antibodies were prepared and washed, the input chromatin concentration adjusted to 20 ng/ul
with filter sterilized ChIP Buffer 1, and the amount of chromatin specified in Appendix A was added
to each antibody-bead conjugate and incubated for 15 minutes on a rotator at 4°C. Beads were
then washed twice with filter sterilized ChIP Buffer 2 (25 mM Tris pH 7.5, 5 mM MgCl,, 300 mM
KCl, 10% v/v glycerol, 0.1% v/v NP-40 Substitute) and once with filter sterilized ChIP Buffer 3
(10 mM Tris pH 7.5, 250 mM LiCl, 1 mM EDTA, 0.5% Sodium Deoxycholate, 0.5% v/v NP-40
Substitute), with a wash consisting of removal of the existing supernatant by use of a magnetic rack,
resuspension into 150 pl of buffer, transfer to a new siliconized tube, and incubation on the rotator

for 10 minutes at 4°C. After these washes, the supernatant was removed, the beads resuspended in
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ChIP Buffer 1, transferred to a new siliconized tube, rinsed once with 200 pl of TE before being
resuspended in 50 pl of ChIP Elution Buffer (50 mM Tris pH 7.5, 1 mM EDTA, 1% w/v SDS, Filter
Sterilized) and incubated at 55°C for 5 minutes.

After incubation, the supernatant was transferred to a new set of siliconized tubes, and the
beads discarded. To each supernatant was then added 2 pl of 5 M NaCl, 1 pl of 500 mM EDTA,
and 1 pl of 10 mg/mL Proteinase K. 15 pul of Input DNA was also diluted to 50 pl with 35 pl of
ChIP Elution Buffer and was supplemented with 2 uL of 5 M NaCl, 1 pL of 500 mM EDTA, and
1 pL of 10 mg/mL Proteinase K. The IP elutions and diluted input were then incubated at 55°C
for 2 hours for a Proteinase K digestion. After digestion, the DNA was purified by adding 1.5
volumes of Serapure HD (1:50 dilution of Sera-Mag SpeedBeads [Fisher], 20% PEG-8000, 2.5
M NaCl, 10 mM Tris pH 7.5, 1 mM EDTA, 0.05% Tween-20, Filter Sterilized prior to addition
of SpeedBeads), incubating at room temperature for 15 minutes, then collecting the beads on a
magnetic rack, washing twice with 150 pl of 70% ethanol, and eluting into 50 pul ddH20, which

was then recovered and stored at -20°C.

Denaturative ICeChlP Immunoprecipitation

After purification of input chromatin and preparation of antibodies, the input chromatin was cross-
linked with 1/9 volume of 2.5% formaldehyde stock (final concentration 0.25% formaldehyde) on
a rotator at room temperature for 8 minutes. Cross-linking was then quenched with 1/5 volume of 1
M Tris-HCI, pH 7.5 on a rotator at room temperature for 5 minutes. 50 uL cross-linked chromatin
was aliquoted into a thin-walled PCR tube, and 2.5 puL of 20% SDS was added (final concentration

1% SDS). This sample was then heated to 55°C for 60 seconds, then immediately put on ice. After
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cooling, the sample was diluted with 450 pL of water. The concentration of chromatin will be 7.5%
of the concentration from the end of input preparation.

The amount of chromatin specified in Appendix A was added to each antibody-bead con-
jugate and incubated for 15 minutes on a rotator at 4°C. Beads were then washed once with filter
sterilized Crosslink ChIP Buftfer 1 (50 mM HEPES, 140 mM NaCl, | mM EDTA, 1 mM EGTA,
0.75% Triton-X-100, 0.1% SDS, 0.05% DOC, pH 7.5) and once with filter sterilized Crosslink
ChIP Buffer 2 (50 mM HEPES, 500 mM NaCl, 1 mM EDTA, 1 mM EGTA, 0.75% Triton-X-100,
0.1% SDS, 0.05% DOC, pH 7.5), with a wash consisting of removal of the existing supernatant by
use of a magnetic rack, resuspension into 150 pl of buffer, transfer to a new siliconized tube, and
incubation on the rotator for 10 minutes at 4°C. After these washes, the supernatant was removed,
the beads resuspended in ChIP Buffer 1, transferred to a new siliconized tube, rinsed once with 200
pl of TE before being resuspended in 50 pl of ChIP Elution Buffer and incubated at 55°C for 5
minutes.

After incubation, the supernatant was transferred to a new set of siliconized tubes, and the
beads discarded. To each supernatant was then added 2 pl of 5 M NaCl, 1 ul of 500 mM EDTA,
and 1 pl of 10 mg/mL Proteinase K. 15 pl of Input DNA was also diluted to 50 pl with 35 pl of
ChIP Elution Buffer and was supplemented with 2 uLL of 5 M NaCl, 1 uL of 500 mM EDTA, and 1
uL of 10 mg/mL Proteinase K. The IP elutions and diluted input were then incubated at 55°C for 2
hours for a Proteinase K digestion. After digestion, the DNA was purified by adding 1.5 volumes
of Serapure HD, incubating at room temperature for 15 minutes, then collecting the beads on a
magnetic rack, washing twice with 150 pl of 70% ethanol, and eluting into 50 ul ddH2O, which

was then recovered and stored at -20°C.
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DNA Quantification and Analysis by Quantitative PCR

To assess local histone modification density and/or antibody specificity, our DNA from the ChIP
experiments was quantified by quantitative PCR (qPCR). qPCR was conducted using TagMan Gene
Expression Master Mix (Applied Biosystems) using the primers and hydrolysis probes previously
described''®. These primers and probe for the barcoded sequences were previously gPCR validated
for effectiveness and quality!'®. Primers were used at 900 nM; hydrolysis probe at 250 nM, in the
TagMan Gene Expression Master Mix (Applied Biosystems). The qPCR program was run at 95°C
for 10 minutes, followed by 40 cycles, each consisting of 15 seconds at 95°C followed by 1 minute
at 60°C and concluding with a plate read.

Cq values were analysed using the AACq method. Briefly, the Cq values for each target for
each sample were averaged together to obtain the mean Cq value. Enrichment for each barcode was
then computed as Enrichment = 2%neur = Car % 10, accounting for the 10-fold dilution of Input
relative to [P and multiplying by 100% for Enrichment as a percentage of target. Off-target binding
to alternate PTMs were computed by normalizing each enrichment to that of the on-target PTM:

referred to as “Specificity (% Target)”.

lllumina Library Preparation and Sequencing

Illumina libraries were prepared as described''®, with minor modifications. Briefly, Serapure pu-
rified DNA was quantified using Quant-iT™ PicoGreen (Thermo Fisher) as per manufacturer
instructions. Libraries were then generated from up to 10 ng of each DNA sample (input or IP) with
the NEBNext Ultra II DNA Library Prep kit (New England Biolabs) per manufacturer instructions.

The DNA content of each library was then quantified and pooled for Illumina sequencing. Clus-
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ter generation and paired-end sequencing was conducted using standard Illumina next-generation

sequencing protocols by the University of Chicago Genomics Facility on the Illumina NextSeq.

Next-Generation Sequencing Alignment and HMD Computation

To align reads, a reference genome was first created, consisting of the human genome (hg38)
appended respectively by the sequences of each of the nucleosome standard barcodes for the relevant
barcode set. Reads were then mapped to the appropriate reference genome using Bowtie2 using

the sensitive pre-set and end-to-end alignment options'’?. Using SAMTools!"?

, any reads which
were not paired, not mapped in a proper pair, or mapped with a map quality < 20 were discarded
to prevent low-quality reads from impacting downstream analyses. Reads were then flattened to
create a single mapping from each matched pair of reads by retaining only one fragment per pair,
and any mappings with lengths > 200bp were also discarded to ensure only mononucleosomes were
being analyzed''®.

Bedgraphs of genome coverage were then generated using BEDTools!"™

, and IP / input
genome coverage bedgraphs were merged using BEDTools!’*. The sum of reads across ladder

members for each nucleosomal standard was computed for each sample and HMD bedgraphs were

then generated from the merged bedgraphs using awk to apply the following formula:

IPlocus / Inputlocus
IPbarCOde/ Inputbarcode

HMD (%) = 100%

Error and 95% confidence intervals were computed with Poisson statistics and error propa-

gation from the merged bedgraphs using awk to apply the following formula:
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1 L 1
IPjocus  Inputy

95CI Error (%) = 1.96 + HMD (%) \/

Bigwig files were generated for visualization using the bedGraphToBigWig tool'”.

For all analyses, the HMD averaged over the N+1 and N+2 nucleosomes (taken to be 0 to
+400bp into the gene body) was employed as representative of the promoter—this captures the most
substantial H3K4me3 and H3K27me3 enrichment.

Genomic browser views were made using IGV. Heatmaps and gene ontology analysis was
made using Homer software!”®. Further analysis and sectioning of data was conducted in R using

the R code provided in Data and Software Availability.

Data and Software Availability

R markdown file for analysis and sectioning of datasets is provided at https://www.github. com/

shah-rohan/h3k79_analysis/.
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CHAPTER 5: BAYESIAN RESOLUTION OF AMBIGUOUSLY MAPPED READS

Attributions
This chapter has been adapted from: Shah, R. N. & Ruthenburg, A. J. Sequence deeper without

sequencing more: Bayesian resolution of ambiguously mapped reads. PLOS Computational Biology

17, 1008926 (2021). All work for this chapter was conducted by the author.

Abstract

Next-generation sequencing (NGS) has transformed molecular biology and contributed to many
seminal insights into genomic regulation and function. Apart from whole-genome sequencing, an
NGS workflow involves alignment of the sequencing reads to the genome of study, after which the
resulting alignments can be used for downstream analyses. However, alignment is complicated by
the repetitive sequences; many reads align to more than one genomic locus, with 15-30% of the
genome not being uniquely mappable by short-read NGS. This problem is typically addressed by
discarding reads that do not uniquely map to the genome, but this practice can lead to systematic
distortion of the data. Previous studies that developed methods for handling ambiguously mapped
reads were often of limited applicability or were computationally intensive, hindering their broader
usage. In this work, we present SmartMap: an algorithm that augments industry-standard aligners to
enable usage of ambiguously mapped reads by assigning weights to each alignment with Bayesian
analysis of the read distribution and alignment quality. SmartMap is computationally efficient,
utilizing far fewer weighting iterations than previously thought necessary to process alignments
and, as such, analyzing more than a billion alignments of NGS reads in approximately one hour on
a desktop PC. By applying SmartMap to peak-type NGS data, including MNase-seq, ChIP-seq, and

ATAC-seq in three organisms, we can increase read depth by up to 53% and increase the mapped
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proportion of the genome by up to 18% compared to analyses utilizing only uniquely mapped reads.
We further show that SmartMap enables the analysis of more than 140,000 repetitive elements that
could not be analyzed by traditional ChIP-seq workflows, and we utilize this method to gain insight
into the epigenetic regulation of different classes of repetitive elements. These data emphasize
both the dangers of discarding ambiguously mapped reads and their power for driving biological

discovery.

Introduction

The impact of next-generation sequencing (NGS) on molecular biology can hardly be overstated. In
a typical short-read NGS workflow, DNA fragments from an experiment are loaded onto a sequencer,
which reports the sequence of 40-200bp of one end or both ends of each fragment (in single-end or
paired-end sequencing, respectively)***. These reads/read pairs can then be aligned to the genome
by one of several alignment tools, and the set of alignments can be used to compute the number of
reads aligned to any given genomic locus. This genome-wide read depth dataset can then be used
in downstream workflows.

Even beyond applications for whole genome sequencing, many critical methods have lever-
aged NGS to enable truly genome-wide biological studies. RNA sequencing (RNA-seq) has enabled
quantification of gene expression®> as well as the discovery and characterization of new elements
of the transcriptome, such as enhancer RNAs>*%153-2% and chromatin-associated RNAs’®’!. Chro-
matin immunoprecipitation coupled to NGS (ChIP-seq) has similarly become a mainstay of molec-
ular biology, being used in many seminal works of the field!’-!%:127:130.131.297-299  Other common
techniques, including ATAC-seq’?, Hi-C3>*°, CUT&RUN'?!, and TAB-seq’!, similarly rely on NGS

and associated workflows to provide important insights into genomic regulation.
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Crucially, these workflows all rely upon alignment of each read to its corresponding ge-
nomic location. However, this can be problematic when analyzing non-unique or repetitive regions
of the genome, particularly given the short window of a 40-200bp sequencing read. Indeed, some
estimates suggest that a majority of the human genome is comprised by repetitive elements?39%303,
Accordingly, between 15-30% of the human genome is not uniquely mappable by single-end se-

quencing with typical read lengths3+303

, and the genomes of other model organisms, such as M.
musculus or D. melanogaster, present similar challenges®**. Paired-end sequencing can partially
improve genome mappability, but of the regions that are not uniquely mappable by single-end
sequencing, 70-85% will not be resolved by paired-end sequencing®*.

Many NGS pipelines address this ambiguity by masking repetitive regions to prevent align-
ment of reads to more than one genomic locus or by filtering only for reads that align unambiguously
to the genome (hereafter referred to as unireads)**. This includes groups such as the ENCODE
Consortium, whose ChIP-seq pipeline filters for uniquely mapped reads by default'?’. Indeed, in
several of our past studies, we ourselves have utilized filters to exclude ambiguously mapping
reads!!®124171 However, filtering out reads that map to multiple loci (hereafter referred to as mul-
tireads) sacrifices the ability to critically examine many repetitive regions of the genome, which
have important roles in gene regulation®®. Further, by definition, discarding reads reduces read
depth, which makes quantitative comparisons more challenging by increasing error or the neces-

sary sequencing depth®®

. Given the many problems with ignoring repetitive regions or ambiguous
alignments, it is critical to develop and utilize methods to appropriately analyze multireads.

To date, several studies have attempted to develop methods and algorithms to resolve multi-
read alignments for a variety of applications. Some have targeted their analysis methods towards

RNA-seq and quantifying transcripts®>3%-2%; indeed, in recent years, there has been a sharp in-
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crease in the tools available for quantification of pre-defined genomic features in RNA-seq®.
Others have developed tools designed for ChIP-seq or DNA-seq more broadly?!9314,

Despite the wide array of tools that have been previously developed for this problem, there
are still several outstanding problems. First, several of the previously published tools (particularly
for RNA-seq) focus on quantification of a distinct set of genomic features rather than generating

truly genome-wide coverage maps?>°>-307-309:313,314

, rending them inappropriate for ChIP-seq or other
unbiased/de novo NGS analyses. Even amongst these remaining tools for “peak type” ChIP-seq or
similar analyses, several of these tools focusing on comparison to external datasets for peak call-
ing’!3314 leaving even fewer analysis methods for a single dataset without an exogenous reference.
Second, while many existing methods use alignment weighting algorithms to allocate multiread
depth, there is disagreement as to the degree to which iterative reweighting is required to properly
weight the multireads without over-refining the weights; some employ no iterative reweighting at
all?*>312 whereas others use up to 200 reweighting cycles®!?. In addition, most of the above methods
do not consider the alignment quality when resolving read ambiguity or does so in a computationally
intensive manner that would likely scale poorly with the number of reads commonly obtained from
modern NGS platforms®!'. Further, these tools often focused on single-end sequencing and do not
make use of the intervening length information in paired-end sequencing, limiting the scope of
their applicability!°. Finally, many of these tools do not accommodate strand-specific analyses
genome-wide, limiting their application to strand-independent experiments3!%-311:313.314,

In this work, we seek to resolve some of these issues. We describe SmartMap: an algorithm
that uses iterative Bayesian reweighting of ambiguous mappings, with assessment of alignment

quality as a factor in assigning weights to each mapping. We find that SmartMap markedly increases

the number of reads that can be analyzed and thereby improves counting statistics and read depth
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recovery at repetitive loci. This algorithm and software implementation is compatible with both
paired-end and single-end sequencing and can be used for both strand-independent and strand-

specific methods employing NGS backends to generate genome-wide read depth datasets.

Results

Development and validation of a Bayesian multiread allocation algorithm

We initially developed our SmartMap algorithm and software for application in ChIP-seq using a set
of internally calibrated ChIP-seq (ICeChIP-seq) datasets. These datasets were previously generated
by our lab and, with one exception, were previously published as components of past studies!!®!24,
We chose to use ICeChIP-seq datasets because the included internal standards allow for computation
of antibody specificity and for normalization to calculate the histone modification density (HMD),
or the absolute proportion of nucleosomes at a given genomic locus bearing the targeted histone
modification. These additional factors which we can compute using ICeChIP-seq datasets afford us
additional points of quantitative comparison to assess differences between uniread and SmartMap
analyses. However, this tool is not designed solely (or even primarily) for use with ICeChIP-seq
datasets; the SmartMap algorithm does not make special use of the internal standards. Rather, this
software is designed to be usable for NGS workflows more broadly.

The workflows for uniread analyses (typical of ChIP-seq) and our SmartMap analysis are
shown in Fig. 5.1A. For both analyses, the immunoprecipitation (IP) and MNase-seq Input se-
quences are aligned to the appropriate reference genome and are filtered to select for properly
mapped reads in a proper pair. At that point, the two methods diverge. In the uniread analysis,

118,124,171

which represents our published analysis pipeline for ICeChIP-seq data , any reads that don’t
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Figure 5.1: Summary of the SmartMap analysis workflow and algorithm.

(A) Flowchart outlining the workflow for traditional ChIP-seq (or ICeChIP-seq) analysis
utilizing only unireads (left, green) vs. the workflow for SmartMap analysis utilizing multireads
with an iterative Bayesian reweighting algorithm (right, blue). (B) Schematic showing the Bayesian
reweighting algorithm utilized in the SmartMap analysis. Each mapping associated with a read is
assigned a weight such that the weight is greater for those mappings associated with loci of greater
map weight density. For more detailed description of the algorithm, see Methods.

118,124,171
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align uniquely are discarded, and the remainder are used to compute genome-wide read depth in

the IP and Input, fold-change, and (if internal standards are present) HMD.

In the SmartMap analysis, however, rather than discarding ambiguously mapped reads, we
instead feed our alignments into our iterative Bayesian reweighting algorithm, outlined in Fig. 5.1B.

Our algorithm, like other alignment weighting algorithms?°>-310-312

, is motivated by the assumption
that regions with more alignments are more likely to be the true source of an multiread than those
with fewer alignments. In addition, like BM-Map?!!, SmartMap utilizes both paired-end sequencing
information and alignment quality in making these assessments. Accordingly, our tool first assigns
each alignment a weight proportional to its alignment quality, computed from the alignment software
output. We then iteratively reassign weights to each alignment of each read; alignments with
higher alignment quality and more overlapping alignments are assigned higher weights, and those
alignments with lower quality and fewer overlapping alignments are assigned lower weights (Fig.
5.1B). After the specified number of reweighting cycles, the resulting weights are used to compute
the read depth for the IP and the Input genome-wide, which can then be used to compute fold-change
or, if applicable, HMD in a similar manner as the uniread analysis. For computational efficiency, we
use binary-indexed (Fenwick) trees to store genomic coordinates and associated alignment weights,
much like the previously described CSEM>!°. Our implementation of these binary-indexed trees is
modified to enable use of paired-end sequencing reads and, if needed, operate in a strand-specific
manner.

To test this method, we created a set of simulated 50bp paired-end sequencing reads from a
defined set of randomly selected genomic loci (the “true origin” loci) and used the simulated dataset

to conduct uniread and SmartMap analyses (Fig. 5.2A). The read simulation tool produces reads

with “sequencing” error and also includes coverage at off-target loci to better represent the noise
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Figure 5.2: Characteristics of validation dataset.

(A) Schematic outlining the workflow to validate and optimize SmartMap. A set of six million ran-
domly selected 200bp loci were used to simulate paired end reads. The true read depth distribution
was then compared to both uniread and SmartMap analyses, with each analysis conducted in both
“scored” and “unscored” modes, per Methods. (B, C) Number of (B) alignments or (C) reads vs.
number of alignments per read for the validation datasets. (D) Mean absolute error of read depth
at true origin loci in SmartMap scored mode vs. number of reweighting iterations (E) Genome
browser view showing the read depth in the (top) uniread, (center) SmartMap (0 iterations), and
(bottom) SmartMap (1 iteration) datasets of an example locus.

and off-target capture inherent in a biological experiment. Notably, the simulation enabled us to

obtain the true distribution of reads (the Gold Standard), allowing us to compute the error associated
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with each analysis method (Fig. 5.2A). This is particularly important because we wish to avoid
over-refining the multiread weights with our inferential analysis; accordingly, the Gold Standard
dataset allows us to evaluate the accuracy of our reweighting algorithm and reallocation.

We were particularly interested in the ability of SmartMap to recover read depth at regions of
differing mappability. To investigate this relationship, we used the UMAPS0 score as a measure of
read mappability. The UMAPS50 score for a given genomic coordinate is computed as the proportion
of the 50mers covering the genomic coordinate of interest that are unique in the set of all 50mers
from the genome®®. For example, if the sequences of two of the fifty 50mers containing the
genomic coordinate of interest were non-unique across the genome of study, then the UMAPS50
score would be 48/50, or 0.96. As such, a genomic coordinate with a UMAPS50 score closer to 1
is uniquely identified by a greater proportion of the S0mers spanning it than is a coordinate with
a lower UMAPS50 score, and a higher UMAPS50 score can thus be interpreted as a more easily
mappable region. Many of the true origin loci had low mappability scores (Fig. 5.3A), with the
distribution of mappability scores being similar to that of the human genome at large (Fig. 5.3B),

making this dataset useful for validating the SmartMap algorithm.
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Figure 5.3: Mappability of sampled loci and human genome.

(A) Number of regions from the true origin loci vs. average mappability (UMAPS50) score of the
loci. (B) Density of UMAPS50 scores of 200bp windows across the human genome (hg38).
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The first step of our analysis was to align the simulated 50bp paired-end reads to the genome.

We used Bowtie2!"?

with a maximum of 51 alignments reported per read and charted the distributions
of the number of alignments per read (Fig. 5.2B-C). Notably, we observed that there were many
reads that did not uniquely align to the genome; approximately 17.1% of the simulated reads mapped
to more than one locus (Fig. 5.2B-C and Table 5.1).

Our first goal was to determine the optimal number of iterations to use for our SmartMap
analyses. To test this, we computed the mean absolute error of SmartMap read depth at the true
origin loci with varying numbers of reweighting cycles, as compared to the Gold Standard read
depth. Surprisingly, we found that the lowest error occurred after only one reweighting cycle (Fig.
5.2D), with genome browser views showing refinement of peak structure (Fig. 5.2E), which is
particularly important given the importance that has been placed on peak breadth!'>®. This stands
in stark contrast with previous works, which have used up to 200 iterations of reweighting*!°. Our
analysis here, however, shows that may be suboptimal, suggesting that applying Bayesian alignment
reweighting more than once may over-refine the data.

We wanted to explore whether these increases in mean absolute error were systematic or
driven by random “overshoot” of weight at each locus. In the former case, we might expect to
see that the true origin loci would either show systematic increases or decreases in read weight
with greater numbers of reweighting cycles. In the latter case, we would expect that the changes to
each weight might increase or decrease by too much in the initial iteration, which would present as
random, relatively unbiased errors.

To distinguish between these two possibilities, we conducted two analyses. First, we com-

puted mean error of weights at the true origin loci (Fig. 5.4A) rather than the mean absolute error

(Fig. 5.2D). If there was a systematic erroneous increase or decrease in the average read depth of
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Table 5.1: Alignment statistics for the datasets used for multiread analysis.

Simulated

ARS AR7

AR9

AR16

Multireads
Sample Genome  Assay Cells  Unireads Analyzable Un- % Incr.
analyzable

?:)f;lated’ hg38 Simulation — 245,079,644 34,136,124 7,661,326 13.93%

_Slfrl“(;llated’ hg38 Simulation — 244,391,815 35,520,969* 6,973,053* 14.53%

?ggs;ated’ hg38 Simulation - 123,730,306 16,769,189 2,802,056 13.55%

Input mmiox MNAse- mESC 50y 000 607 85,018,787 15,184,872 27.33%
Rep. 1 seq El4

H3K4me3 — 110%  ChiP-seq ™E5C 119,014,494 19,662,529 5,603,383 16.52%
Rep. 1 El4

Input mml0* ChIPseq "roC 304,127,899 83,629,528 17,160,012 27.50%
Rep. 2 El4

H3K4me3 — 10%  ChiP-seq ™E5C 01,518,104 14,549,072 4,657,032 15.90%
Rep. 2 El4

Input dm3* Mfézse' S2 18,678,956 7,117,520 977,776 38.10%

H3K27me3 dm3' ChIP-seq S2 8,855,114 3,249,005 389,227 36.69%

Input mmiot MNAse- mESC o0 503 002 131,960,514 26,577,525 27.01%
seq El4
mESC

H3K4me3 mml0" ChiP-seq ;1" 169,335,369 32,089,449 7,918,756 18.95%
mESC

H3K9me3 mml0" ChiP-seq "5 136,008,760 73,118,061 13,012,319 53.76%
' mESC

H3K27me3 mml0' ChlP-seq ;" 155,322,021 43,508,387 9,267,806 28.01%

Input hg38! Mljézse' K562 285,996,344 56,595,547 12,902,707 19.79%

H3K4mel hg38' ChIP-seq K562 92,422,802 16,475,108 2434216 17.83%

H3K4me2 hg38! ChIP-seq K562 70,987,452 12,931,282 2,558,979 18.22%

H3K4me3  hg38! ChIP-seq K562 40,483,145 5488996 803,892 13.56%
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Table 5.1, continued:

Multireads
Sample Genome  Assay Cells  Unireads Analyzable Un- % Incr.
analyzable
_ Input hg38: Mfézse' K562 256,373,920 48,634,887 11,216,500 18.97%
% H3K9me3 hg38! ChIP-seq K562 193,011,406 40,618,196 10,337,413 21.04%
H3K27me3 hg38' ChIP-seq K562 173,915,939 32,770,085 7,107,199 18.84%
Snyder he3s  MTAC Kser 32,095.035 6484804 299834 19.65%
Rep. 1 seq
g Snyder he3s  ATAC kser 24414870 4210386 149,154 17.25%
8 Rep. 2 seq
S
z }(i;lrl)gelras hg38% RNA-seq K562 60,184,580 20,651,064 29231 34.31%
g;gezms hg38® RNA-seq K562 63,238,387 13,087,755 14,070 20.70%

For all except the ENCODE RNA-seq datasets, analysis is conducted on 200bp genomic windows.
For ENCODE RNA-seq datasets, analysis is conducted on distinct Refseq genes.

% Reg. Inc.: Percent of the total regions in the SmartMap dataset with increased read depth relative
to the Uniread dataset.

% Inc. Reg.: Percent increase in the number of regions with reads in the SmartMap dataset relative
to the Uniread dataset.

Genome includes ICeChIP barcodes: * Series 1. T Series 2. * Series 3.

¥ Genome includes ENCODE ERCC standards.

each locus, then we would observe a corresponding increase or decrease in mean error with more
iterations, respectively. However, what we instead observe is that the mean error is relatively stable
from iterations 2-8 (Fig. 5.4A), suggesting that the marked increase in mean absolute error with
increasing iterations is not primarily caused by systematic erroneous increases or decreases in locus
weight depth. Put differently, it does not appear that the true loci are systematically “pulling in” or

“pushing out” read depth with each reweighting cycle.
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Figure 5.4: Characteristics of SmartMap with increasing iterations.

(A) Mean error of read depth at true origin loci in SmartMap scored mode vs. number of reweighting
iterations. (B) Mean absolute error of read depth at true origin loci in SmartMap scored mode with
a reweighting rate of 0.25 vs. number of reweighting iterations. (C, D) QQ plots of read depth in
Gold Standard dataset vs. (C) uniread or (D) SmartMap (1 iteration) scored datasets. Color scale
represents percentile of each point, from 1% to 99" percentiles. Dashed line represents line with
slope of unity.

Second, we explored the possibility that the reweighting “overshoots” the weight adjustment
for reads at random. If this was the case, then we would expect that the errors would increase
relatively randomly, with both positive and negative errors. Indeed, this is what we observe in our
analysis of mean error by iteration (Fig. 5.4A). In addition, we would predict slowing the rate of
weight adjustment with each cycle would decrease the amount of overshoot and thereby lead to a
lesser increase in error. To test this, we introduced a tunable reweighting rate parameter such that

the weights could be changed less with each reweighting iteration. When applying a reweighting
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rate of 0.25 (wherein the weights only change by 25% as much in normal SmartMap analysis), we
found that the mean absolute error was markedly more stable after one iteration (Fig. 5.4B). Indeed,
after two cycles of standard SmartMap, the mean absolute error exceeds that of the dataset with
no reweighting (Fig. 5.2D); by contrast, with eight cycles of SmartMap with a reweighting rate of
0.25, the mean absolute error is considerably below that of the iteration 0 dataset and comparable
to the minimum mean absolute error after one iteration (Fig. 5.4B). This suggests that the increase
in error with increasing iterations observed with standard SmartMap may be due to “overshoot”
of reweighting, which compounds in magnitude with further reweighting. Interestingly, we found
that the mean absolute error with one iteration of standard SmartMap analysis was on par with (and
even slightly lower than) that of the slow-reweighting dataset (Fig. 5.2D and 5.4B), suggesting that
this potential overshoot error may not be too detrimental after only one iteration of reweighting. By
command line switch, these two algorithms are both available in the SmartMap software.

After determining the optimal number of reweighting cycles, we compared SmartMap and
uniread analyses of our simulated datasets (Fig. 5.2A). To determine the relative impact of using
alignment quality for multiread analysis, we ran SmartMap in both scored and unscored modes. All
the SmartMap analyses had greater read depth (and were closer to the Gold Standard dataset) at
true origin loci than the corresponding uniread analyses (Fig. 5.5A). Interestingly, the increases in
read depth were not uniform across the entire set of loci; indeed, approximately 70% of the true
origin loci saw no excess read depth, defined as the difference between SmartMap and uniread read
depths (Fig. 5.5B). This is similarly observed in the QQ plot comparing uniread and SmartMap
analyses; a shoulder is seen at low uniread depth, with the plot converging onto a slope of unity at
higher read depths (Fig. 5.4C and 5.5C), suggesting that the gains in read depth were primarily at

regions of low uniread depth.
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Figure 5.5: SmartMap and uniread analyses of the validation dataset.

Iteration 0 and iteration 1 refer to SmartMap analysis with 0 and 1 iterations of reweighting, re-
spectively. Scored and unscored refer to whether alignment score was considered in analysis, per
Methods. Dashed lines are presented for readability of overlapping curves rather than disconti-
nuities in data throughout this figure. (A) Quantile plot of read depth at the true origin loci, with
Gold Standard dataset and analysis conducted in (left) scored mode or (right) unscored mode. (B)
Quantile plot of excess read depth in SmartMap datasets relative to corresponding uniread dataset
at true origin loci in (left) scored mode and (right) unscored mode. (C) QQ plot of read depth at
true origin loci in the SmartMap (1 iteration) scored dataset vs. uniread scored dataset. Color scale
represents percentile of each point, from 1% to 99" percentiles. (D-E) Median (D) read depth or
(E) excess read depth vs. mappability score (UMAP50)*% of the true origin loci. (F-G) Average
read depth (F) at true origin loci and (G) outside true origin loci. (H) Mean absolute error of read
depth at true origin loci for each dataset, with Gold Standard as the reference point. (I) Mean
proportion of alignments intersecting with the true read of origin for each weight after SmartMap
with no reweighting (green) and one iteration of reweighting (red) in scored mode. Dashed line
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Figure 5.5, continued:

represents line with slope of unity. (J) Mean weighted overlap proportion score between alignments
intersecting the true read of origin and the true read locus for each weight after SmartMap with
no reweighting (green) and one iteration of reweighting (red) in scored mode. Weighted overlap
proportion score is meant to represent the proportion of a read’s weight that maps to the correct
location due to a particular alignment and is computed as a weighted geometric mean of the pro-
portion of the alignment covered by the true read and the proportion of the true read covered by the
alignment.

While SmartMap does not fully recover the read depth of the Gold Standard at the low end
of the QQ plot, the shoulder is nonetheless much less prominent than with the uniread analysis
(Fig. 5.4D), indicating considerably greater depth recovery. Consistent with that observation, the
uniread analyses and the SmartMap analyses both performed well at highly mappable regions, with
read depths approximately at the level of the Gold Standard (Fig. 5.5D). However, at regions of
lower mappability, the SmartMap analyses recovered a markedly greater proportion of the read
depth than did the uniread analyses (Fig. 5.5D-E). As expected from prior analyses (Fig. 5.4D),
the SmartMap analyses with one iteration of reweighting recovered greater read depth than those
with no reweighting (Fig. 5.5D-E). Importantly, though they performed similarly at regions of
lower mappability, the SmartMap scored analyses recovered greater read depth than their unscored
counterparts at regions with moderate mappability (Fig. 5.5D-E).

Genome-wide, SmartMap analyses had lower on-target read depth than the Gold Standard
dataset but were still able to recover greater depth at the on-target loci than corresponding uniread
analyses (Fig. 5.5F). Similarly, the SmartMap analyses had marginally higher off-target read depth
than the Gold Standard and uniread datasets (Fig. 5.5G); however, the increased off-target depth
relative to uniread datasets can be explained by the overall lower read depth in the uniread datasets
(Fig. 5.6A). Consistent with the notion that improved priors enhance Bayesian predictions, the

unscored SmartMap analyses had lower on-target and higher off-target read depth than the cor-
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Figure 5.6: Validation and comparison of multiple mapping analysis.
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Figure 5.6, continued:

(A) Average read depth of each dataset genome-wide. (B) Base pairs covered by MACS2 called
peaks for each dataset. (C) Percentage of MACS2 peaks in the Gold Standard dataset intersecting
with MACS2 peaks in each other analysis, as percentage of base pairs covered. (D) Percentage of
MACS?2 peaks in each analysis intersecting with MACS2 peaks in the Gold Standard dataset, as per-
centage of base pairs covered. (E) Average mean absolute error vs. mappability score (UMAPS50)
of each dataset. Dashed lines are presented for readability of overlapping curves rather than discon-
tinuities in data. (F) Mean absolute error of read depth at true origin loci for each dataset, with Gold
Standard as the reference point, stratified by average Gold Standard read depth at true origin locus.
(G) Mean error of read depth at true origin loci for each dataset, with Gold Standard as the reference
point, stratified by average Gold Standard read depth at true origin locus. (H) Mean unweighted
overlap proportion between alignment and true read origin as a function of alignment weight for
the no-iteration (green) and one-iteration (red) scored SmartMap analyses. Overlap proportion is
computed as a geometric mean of the proportion of the alignment and of the true read origin that
overlaps with the other.

responding scored analyses (Fig. 5.5F-G), and the no-iteration SmartMap analyses had similarly

lower on-target and higher off-target read depth than their one-iteration counterparts.

As another metric to evaluate each analysis, we conducted MACS2 peak calling on each
dataset and assessed the degree to which they overlap. The SmartMap analyses had similar (albeit
slightly higher) base pair coverage with called peaks relative to the Gold Standard dataset and
considerably higher coverage on called peaks than the uniread analyses (Fig. 5.3B), consistent
with the genome-browser views that suggest a similar pattern of peak boundary sharpening (Fig.
5.3). As a measure of sensitivity, we computed the proportion of the Gold Standard peaks that
were covered by SmartMap or uniread peaks (Fig. 5.6C). Conversely, to measure specificity, we
computed the proportion of SmartMap or uniread peaks that were covered by Gold Standard peaks
(Fig. 5.6D). As expected, there was considerably lower coverage by the uniread datasets than the
SmartMap datasets, and the one-iteration SmartMap analyses had very slightly lower coverage over
the Gold Standard peaks than the no-iteration analyses (Fig. 5.6C). However, the one-iteration

analyses were better-covered by Gold Standard peaks than were their no-iteration counterparts (Fig.
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5.6D). Together, these data suggest that SmartMap analyses with one iteration of reweighting have a
marked increase in specificity relative to the no-iteration analyses at the expense of a slight decrease
in sensitivity.

We then evaluated the overall mean absolute error of read depth at the true origin loci
relative to Gold Standard. The uniread analyses had the highest average mean absolute error, with
all SmartMap analyses outperforming all uniread analyses (Fig. 5.5H). The scored SmartMap
analyses also all had lower error than did the unscored analyses, and the one-iteration SmartMap
analyses slightly outperformed the no-iteration analyses (Fig. 5.5H). The error in all datasets tended
to primarily be concentrated at regions of lower mappability (Fig. 5.6E). Interestingly, though
SmartMap with one iteration had lower mean absolute error overall, the no-iteration modality
had slightly lower mean absolute error at true origin loci of lower read depth (Fig. 5.5H and
5.6F). The reason for this difference is not clear; across all read depth classes, the one-iteration
analyses had slightly less negative mean error, suggesting that there wasn’t a large-scale difference
in over- or underweighting after iteration as a function of read depth (Fig. 5.6G). With that said,
we feel it is important to contextualize these results; these differences between the no-iteration and
one-iteration analyses are small in magnitude and are comparatively dwarfed by the differences
between SmartMap and uniread analyses (Fig. 5.5H and 5.6E-G). Accordingly, though there may be
small differences between the no-iteration and one-iteration SmartMap analyses, the one-iteration
analyses still performed better in aggregate, and both of these scored SmartMap analyses consistently
outperformed their unscored or uniread counterparts.

The above analyses all focused on validating SmartMap from the perspective of the total read
depth across a set of genomic intervals. However, given that we had a Gold Standard dataset listing

the true positions of each read, we also wished to evaluate whether our reweighting method could
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improve the estimated of the probability that an alignment was properly mapped — and, by proxy,
improve the MAPQ score estimate for each alignment. Without reweighting, the probability of
correct alignment ranged from 0-0.67 and 1, with no alignments with correct alignment probability
between 0.67 and 1. One iteration of SmartMap reweighting expanded the spectrum of possible
alignment weights to the full range of 0-1. Without reweighting, the weight of alignments did not
correlate well with the proportion of alignment intersecting the true genomic position, with many
large deviations seen from linearity (Fig. 5.5I). By contrast, though one iteration of reweighting
still showed some deviations from linearity by this analysis, the weight of alignments more closely
concorded with the proportion of the alignments intersecting the true read origin (Fig. 5.51). This
suggests that by this measure, SmartMap reweighting improved the estimates of the probability that
the alignment intersects with the true genomic position of the corresponding read.

Similarly, we compared the weighted proportion of overlap between the true read positions
and any intersecting alignments as a function of alignment weight. This is meant to represent the
proportion of a read’s weight that is mapped to the correct location due to a given alignment and
incorporates both the confidence of the alignment selection (i.e. the weight) and the overlap of the
alignment with the true origin of the read. In both the no-reweighting and one iteration analyses, the
overlap proportion score was closely linearly related to the alignment weight, though the reweighted
analysis showed a slightly smoother curve with fewer marked deviations from linearity (Fig. 5.5J).
This is roughly expected, as the overlap proportion score is itself a function of weight; however,
this analysis is comforting insofar as it shows that the SmartMap reweighting does not markedly
inflate or deflate the expected weight contribution of a given alignment to a proper intersection
with the true origin. Similarly, we find that the unweighted overlap proportion of alignments with

the true origin of the read is roughly constant near one for both the no-iteration and one-iteration
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datasets, though again, the one-iteration SmartMap analysis reduces the deviations from this level
(Fig. 5.6H). These analyses suggested that in addition to improving measurement of read depths in
aggregate, the SmartMap reweighting procedure can also improve the estimates of correct alignment
for individual reads and alignments.

The biological ChIP-seq and MNase-seq datasets presented in the remainder of this work
used 50bp read lengths or shorter, which is why we used 50bp read lengths for our simulated
dataset. However, in recent years, 100bp read lengths have become commonplace, and indeed, the
ENCODE datasets we present later in this work employed paired-end 100bp NGS. As such, we
examined the degree to which SmartMap can improve recovery of sequencing depth with longer
reads by conducting a similar analysis as the above with a similarly simulated dataset employing
100bp paired-end reads. For facile comparison to the other Fig. and analyses in this work, we have
continued to use the UMAPS50 score as our mappability score. This choice is in spite of the fact
that UMAPS50 measures mappability by 50mers rather than 100mers and will thus underestimate
mappability by 100bp reads. Therefore, regions with lower mappability scores will often be more
easily mapped than the score would indicate, blunting differences between SmartMap and uniread
analyses. As such, our analyses using the UMAPS50 score will offer a conservative view at the
impact of SmartMap analysis on read depth recovery and error.

Despite this conservative choice of mappability score, we still see that SmartMap analysis
improves sequencing depth recovery nearly as well with 100bp reads as it does with 50bp reads.
The simulated dataset with 50bp reads shows a 13.9% increase in analyzable reads due to the high
number of multireads (Fig. 5.2B-C and Table 5.1); the simulation with 100bp reads shows a 13.6%
increase in analyzable reads and a similar proportion of multireads (Fig. 5.7A-B and Table 5.1).

Along the same lines, the two simulations increase read depth over similar proportions of the genome
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Figure 5.7: SmartMap and uniread analyses of the 100bp read length validation dataset.

(A, B) Number of (A) alignments or (B) reads vs. number of alignments per read. (C) Quantile plot
of read depth at the true origin loci. (D) Median read depth vs. mappability score (UMAP50) of the
true origin loci. (E-G) QQ plot of read depth at true origin loci in the (E) SmartMap vs. uniread,
(F) Gold Standard vs. uniread, and (G) Gold Standard vs. SmartMap scored datasets. Color scale
represents percentile of each point, from 1st to 99th percentiles. (H) Mean absolute error of read
depth at true origin loci for each dataset, with Gold Standard as the reference point. (I) Average
mean absolute error vs. mappability score (UMAPS50) of each dataset.
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Table 5.2: Analysis of reads across genomic windows.

Simulated

AR7

ARS

AR9

AR16

Regions with reads in:

. . % Reg. % Inc.
Sample Genome  Assay Regions  Uniread SmartMap Inc. Reg.
?:)Il‘)‘;lated’ he38 Simulation 15,498,848 10,486,482 11,994,872 28.74% 14.38%
_Sli“fgllated’ hg38 Simulation 15,498,848 10,463,337 12,012,046 29.07% 14.80%
f(‘)%l;‘;ated’ hg38 Simulation 15,498,848 9,956,521 11,475,027 32.77% 15.25%
g‘f;tl mmi0* Mfﬁlse' 13,654,300 12,129,867 13,243,873 33.49% 9.18%
E:f“fm mm10* ChIP-seq 13,654,309 11,329,858 12,999,672 27.21% 14.74%
Input
Fion, 2 mm10* ChIP-seq 13,654,309 12,115,174 13,242,243 31.96% 9.30%
E2§42me3 mm10* ChIP-seq 13,654,309 10,952,182 12,750,113 27.25% 16.42%
Input dm3* Mfé:se' 698,569 617,424 681,457 17.92% 10.37%
H3K27me3 dm3" ChIP-seq 698,569 612,050 680,193 17.39% 11.13%
Faput mmi0f Mfézse' 13,654,300 12,214,070 13,245,567 35.60% 8.45%
H3K4me3 mml0" ChIP-seq 13,654,309 11,775,058 13,208,421 30.83% 12.17%
H3K9me3 mml0" ChIP-seq 13,654,309 12,027,438 13,245,567 32.11% 10.04%
H3K27me3 mml0" ChIP-seq 13,654,309 12,012,091 13,237,339 31.99% 10.20%
Tnput hg38? Mfilse' 15,498,848 13,879,635 14,629,457 34.59% 5.40%
H3K4mel  hg38" ChIP-seq 15,498,848 13,310,801 14,423,602 31.07% 8.36%
H3K4me2  hg38' ChIP-seq 15,498,848 13,298,178 14,443,778 30.56% 8.61%
H3K4me3  hg38' ChIP-seq 15,498,848 10,338,102 12,270,858 25.24% 18.70%
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Table 5.2, continued:

Regions with reads in:

% Reg. % Inc.

Sample Genome  Assay Regions  Uniread SmartMap Inc. Reg.
_ Input hg38! Mljilse' 15,498,848 13,896,029 14,634,051 34.56% 5.31%
% H3K9me3  hg38! ChIP-seq 15,498,848 13,856,547 14,626,552 34.14% 5.56%
H3K27me3 hg38% ChIP-seq 15,498,848 13,803,814 14,618,351 33.66% 5.90%
Ezzdir hg38 AZ‘;C' 15,498,848 10,389,635 11,970,867 28.34% 15.22%
= ;‘gdzr hg38 A:‘;lc' 15,498,848 9,772,547 11,251,766 21.53% 15.14%
= .
S
z g:;gelms hg38% RNA-seq 41,929 21,755 25,711 22.85% 18.18%
I({};rligezras hg38% RNA-seq 41,929 12,399 14485 11.96% 16.82%

Unireads refers to the number of reads with one alignment.

For all except the “Simulated, -k 101 dataset, Analyzable Multireads refers to reads with between
2-50 alignments; Unanalyzable Multireads refers to reads with 51 reported alignments, the limit for
reported alignments per read.

For the “Simulated, -k 101 dataset, Analyzable Multireads refers to reads with 2-100 alignments,
and Unanalyzable Multireads refers to reads with 101 reported alignments.

% Incr.: Increase in the number of analyzable reads with SmartMap analysis, computed as the
number of Analyzable Multireads as a percentage of the number of Unireads.

Genome includes ICeChlIP barcodes: * Series 1. T Series 2. * Series 3.

¥ Genome includes ENCODE ERCC standards.

(Table 5.2). Over the true origin loci, much like the 50bp simulation, the 100bp simulated dataset
shows an increase in read depth on quantile plots (Fig. 5.7C) under SmartMap analysis, with this
increase in read depth primarily occurring at regions of low UMAPS50 mappability score (Fig. 5.7D),
conservative though this measurement of mappability is. Much like the 50bp simulated datasets, the

increases in read depth under SmartMap analysis are primarily seen at regions of low mappability
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and low uniread read depths; QQ plots comparing the uniread analysis with the SmartMap or Gold
Standard show a shoulder at low uniread depths, with the plot converging onto a slope of unity at
higher uniread depths (Fig. 5.7E-F). It should be noted that, as with the 50bp simulated dataset (Fig.
5.7D), the SmartMap dataset still fails to fully recover read depth as compared to Gold Standard
with 100bp reads (Fig. 5.7G). Nonetheless, the SmartMap analysis still shows considerably lower
mean absolute error than does the uniread analysis at true origin loci (Fig. 5.7H), with this decrease
in error being particularly prominent at regions with lower UMAP50 mappability scores (Fig. 5.71).
In total, these analyses suggest that even for datasets employing 100bp paired-end sequencing reads,
multiread analysis still has nearly undiminished importance and that SmartMap can still markedly
improve read depth recovery while decreasing overall error.

The above analyses all restricted Bowtie2 to report a maximum of 51 alignments for com-
putational efficiency. Subsequently, only those reads aligning to fewer than 51 alignments were
used for SmartMap analysis. However, this practice excluded more than 7 million reads (Table
5.1), likely including reads that map to the most highly repetitive regions of the genome. Notably,
this is a restriction on alignment itself, not SmartMap; there’s no reason that SmartMap would
inherently be unable to handle greater numbers of alignment. Nonetheless, to evaluate the impact
of this restriction on the SmartMap datasets, we reanalyzed our simulated 50bp read length dataset
with a maximum of 101 alignments per read (hereafter, the k101 dataset) and compared it to the
previous analysis (the k51 dataset). To our surprise, the two analyses were highly similar despite
the near-doubling in the maximum-alignments threshold in the former dataset. The increase in the
number of analyzable reads was nearly identical between the two analyses (Fig. 5.8A-B and Table
5.1), with similar increases in depth over genomic windows (Table 5.2). At the true origin loci, the

SmartMap read depths in both the k51 and k101 datasets were very similar at the level of read depth
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(Fig. 5.8C-D). Mean absolute error relative to the Gold Standard was actually very slightly lower in
the k51 dataset, though they were quite similar in magnitude compared to the uniread dataset (Fig.
5.8E-F). Even specifically examining repetitive elements, read depth was very similar between the
k51 and k101 SmartMap analyses at all repeats (Fig. 5.8G), LINEs (Fig. 5.8H), SINEs (Fig. 5.8I),
and Alu elements (Fig. 5.8J), closely approximating the Gold Standard read depth in both cases.
Accordingly, though there is still a large proportion of reads that mapped to still greater numbers
of loci, we find that at the range we have tested, the SmartMap analyses are robust to differences
in maximum-alignments reporting thresholds and that there is little practical difference between
restricting datasets to a maximum of 51 or 101 alignments per read besides the additional time and
storage space needed for the latter.

To be sure, the reweighting used for SmartMap is not without concerns. In particular, one of
the potential problems for SmartMap is the existence of high-signal regions, which can show falsely
high read depth in NGS experiments due to sequencing or alignment error?*3. If there are regions of
falsely high weight, then those regions could be skewed by the SmartMap reweighting algorithm to
report even greater weights, thus exacerbating these artifactually high signals. To assess the degree
to which these regions represent an issue for SmartMap, we computed the number of genomic
windows with more than 60, 70, 80, or 90 reads in our simulated datasets (Table 5.3). We used
these benchmarks as rough thresholds for defining high-signal regions because the Gold Standard
dataset had a maximum read depth across a genomic window of approximately 83 reads. Notably,
the Gold Standard did not require sequencing or mapping and should thus not be susceptible to
these high-signal artifacts. Unfortunately, one iteration of SmartMap reweighting did increase the
proportion of high-signal regions considerably; there were fewer than 600 genomic windows with

an average depth of more than 70 in the Gold Standard, Iteration 0, and Uniread datasets, compared
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Figure 5.8: Characteristics of the -k 101 SmartMap dataset.

(A, B) Number of (A) alignments or (B) reads vs. number of alignments per read. (C) Quantile plot
of read depth at the true origin loci. Dashed lines are presented for readability of overlapping curves
rather than discontinuities in data. (D) Median read depth vs. mappability score (UMAPS50) of the
true origin loci. (E) Mean absolute error of read depth at true origin loci for each dataset, with Gold
Standard as the reference point. (F) Average mean absolute error vs. mappability score (UMAPS50)
of each dataset. (G-J) Average read depth across the bodies of (G) all repetitive elements, (H)
LINEs, (I) SINEs, and (J) Alu elements.

to more than 10,000 in the SmartMap dataset with one reweighting cycle. It’s important to note

that these regions represent a very small proportion of the genome; only 0.066% of the genomic

windows had more than 70 reads on average, and even fewer had more than 80 or 90 reads (Table
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5.3), leaving considerably more than 99.9% of the genome as not having abnormally high-signal
attributable to SmartMap. In contrast, almost 15% of the genome is hidden from uniread analysis
(Table 5.2). Nonetheless, we feel it is fair to say that the reweighting algorithm used for SmartMap
will increase the weights of multiread alignments at high signal regions, which can exacerbate

artifactually high read depths.

Table 5.3: Analysis of high-depth regions under SmartMap analysis.

Number of genomic windows with: Percent of genomic windows with:
Dataset >60rds. >70rds. >80rds. >90rds. | >60 rds. >70rds. >80rds. >90 rds.
Gold Std. 34,468 463 1 0 0.22 0.0030 6.5x10° 0
Iteration 0 | 26,969 571 85 36 0.17 0.0037 55x10*23x10*
Iteration 1 | 44,185 10,193 6,337 4,296 0.29 0.066 0.041 0.028
Uniread 24,344 321 1 0 0.16 0.0021 6.5x10° 0

Number of genomic windows refers to the number of 200bp genomic windows for each dataset
with an average depth or average weight greater than that indicated in each column. Percent of
genomic windows refers to the number of genomic windows as a percentage of the total number
of 200bp genomic windows in hg38 (15,498,848). The median read depth was 10.5 and the mean
read depth was 16.1 in the Gold Standard dataset.

Even so, on the whole, these analyses suggest that SmartMap recovers read depth at a large
set of loci that would otherwise be missed by the uniread analyses and that of the SmartMap analyses,
one iteration of reweighting with use of alignment scores largely outperforms the other modalities.
Accordingly, for the remainder of this work, we use SmartMap analysis with one iteration in scored

mode as our default SmartMap method.

Using SmartMap on MNase-seq and ChIP-seq datasets
Having validated our method on the simulated dataset, we turned to the biological samples. We
deployed a total of 21 datasets derived from three different organisms for our analysis (Table 5.1). Of

these datasets, six were control ICeChIP Inputs, generated by MNase-seq!!®!24, 11 were ICeChIP-
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Figure 5.9: Alignments per ICeChlIP-seq dataset.
Number of alignments vs. alignments per read for each ICeChIP-seq dataset analyzed.
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Figure 5.10: Reads per ICeChIP-seq dataset.
Number of reads vs. alignments per read for each ICeChP-seq dataset analyzed.
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seq IP datasets, two were ATAC-seq datasets, and two were RNA-seq datasets. After alignment, the
samples showed a 13-50% increase in the number of usable reads for SmartMap analysis relative
to uniread (Fig. 5.9, 5.10 and Table 5.1).

To evaluate the impact of our algorithm on the ICeChIP-seq datasets, we first conducted
SmartMap and uniread analysis on each of the Input datasets and computed the average read depth
on 200bp genomic windows. As with the simulated dataset, the SmartMap analyses of the Inputs
had increased read depth relative to the uniread datasets (Fig. 5.11A and 5.12A), with markedly
greater depth in the SmartMap analysis at windows of lower mappability (Fig. 5.11B and 5.12B).
Similarly, this excess read depth was not distributed across all reads, but rather, was concentrated
onto 17-35% of windows (Fig. 5.11C and 5.12C and Table 5.2), primarily at regions of lower
mappability (Fig. 5.11D and 5.12D). The QQ plots of the SmartMap vs. the uniread read depths
showed a shoulder at low uniread depth (Fig. 5.11E and 5.12E), again suggesting that the increase
in read depth from the SmartMap analysis is primarily at loci where the uniread analysis performs
poorly. This difference in the distributions of read depths further comments on the importance of
analyzing multireads.

With our Input datasets, we could also examine the reproducibility of the MNase-seq exper-
iments under uniread and SmartMap analyses. There were three biological replicates of Input in
mESC E14 cells (AR7 Replicate 1, AR7 Replicate 2, and AR9), and two biological replicates of
Input in K562 cells (AR16 and AR17). For all loci with nonzero read depth, we computed the depth
normalized log ratios of reads in a pairwise manner for biological replicates, shown as quantile
plots in Fig. 5.11F. These plots are highly similar under SmartMap and uniread analyses across
all pairwise comparisons (Fig. 5.11F). Accordingly, the average magnitudes of these ratios are

similar between the two analyses — and indeed, are slightly lower in the SmartMap datasets (Fig.
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Figure 5.11: SmartMap and uniread analyses of ICeChIP-seq input depth.
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Figure 5.11, continued:

All analyses conducted on 200bp genomic windows for the Inputs defined in Table 1. (A) Quantile
plot of read depth for SmartMap and uniread analyses. (B) Median read depth vs. mappability score
(UMAPS50) for SmartMap and uniread analyses. (C) Quantile plot of excess read depth in SmartMap
relative to uniread analysis. (D) Median excess read depth vs. mappability score (UMAPS50). (E)
QQ plot of read depth in SmartMap vs. uniread analysis. Color scale represents percentile of each
point, from 1 to 99" percentiles. Dashed line represents line with slope of unity. (F) Quantile
plots of depth-normalized log ratio of read depths of biological input replicates under SmartMap
and uniread analysis. Graph breaks are present on both the upper and lower ends of the graphs. (G)
Mean absolute depth-normalized log ratio for the comparisons presented in panel F.
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Figure 5.12: SmartMap and uniread analysis of ARS8 input.

All analyses conducted on 200bp tiled genomic windows. (A) Quantile plot of read depth for
SmartMap and uniread analyses. (B) Median read depth vs. mappability score (UMAP50) for
SmartMap and uniread analyses. (C) Quantile plot of excess read depth in SmartMap relative to
uniread analysis. (D) Median excess read depth vs. mappability score (UMAP50). (E) QQ plot of
read depth in SmartMap vs. uniread analysis. Color scale represents percentile of each point, from
1 to 99'" percentiles. Dashed line represents line with slope of unity.
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5.11G). This suggests that the two modalities show highly similar estimates of reproducibility of

data between biological replicates of MNase-seq.

Having examined the Input datasets, we then used the ICeChIP-seq datasets to compute
histone modification densities (HMD) across 200bp genomic windows with uniread and SmartMap
analyses. Interestingly, we noted that the mean HMD was quite similar between the SmartMap
and uniread datasets across a broad range of mappability scores (Fig. 5.13A and 5.14A). However,
the median HMD of those same datasets were divergent, with the SmartMap analyses having
considerably higher median HMD across bins of low mappability than the uniread analyses (Fig.
5.13B and 5.14B). The difference between mean and median HMD may be attributable to the fact
that HMD is a scaled-version of fold-change of IP over Input. We attribute the median HMD
divergence to sparser distribution of read depth in the uniread dataset at lower mappability scores
(Fig. 5.11B). As such, there are fewer regions with nonzero read depth in both the IP and Input.
The result of this mismatch in read distribution is that more regions have an apparent HMD of zero
under uniread analysis. That the mean HMDs are similar between the two analyses suggests that the
ratios of the total read depths in IP over Input are similar between SmartMap and uniread analyses.
Together, these data suggest that the SmartMap analyses preserve the overall HMD across a wide
range of mappability scores while also enabling measurement of HMD at a broader range of loci
than do uniread analyses.

One of the major benefits of using ICeChIP-seq data is the ability to measure antibody
specificity!1%124171 In ICeChIP, internal standards bearing a variety of different histone modifica-
tions can be simultaneously spiked into an experiment, and the relative pulldown efficiency of each
modification can be quantified as a proportion of the target to measure the off-target binding of the

antibody. We wished to determine whether the SmartMap analyses would yield similar specificity
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Figure 5.13: ICeChIP-seq histone modification density in SmartMap and uniread analyses.

All analyses conducted on 200bp tiled genomic windows. (A-B) (A) Mean or (B) Median HMD
vs. mappability score (UMAPS50) for SmartMap and uniread analyses. (C-D) Scatterplots of (C)
specificity or (D) log specificity for uniread vs. SmartMap analyses. Specificity is measured as the
enrichment of each internal standard nucleosome as a percentage of on-target enrichment.

estimates as did the uniread analyses. First, we found that the ratio of the reads from the on-target
nucleosome in the IP over the Input was highly similar between the uniread and SmartMap analyses
(Table 5.4). Moreover, the scatterplots of specificity (Fig. 5.13C and 5.15A) and log specificity

(Fig. 5.13D and 5.15B) under each modality show slopes close to unity and high coefficients of
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Figure 5.14: SmartMap and uniread analyses of AR7, ARS8, and AR9 HMDs.

(A) Mean or (B) Median HMD vs. mappability score (UMAP50) for SmartMap and uniread
analyses. Red line represents SmartMap analysis; blue line represents uniread analysis.
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determination. This further shows that the specificity measurements in SmartMap and uniread

analyses are absolutely (Fig. 5.13C and 5.15A) and relatively (Fig. 5.13D and 5.15B) similar.

Table 5.4: Analysis of ICeChIP calibrant barcodes.

P /(Izlrll)-lirl%eel:[[io: Specificity Plot:
Sample Series Barcodes Uniread SmartMap Species Slope R
1;254?63 Ser. 1 11 19.88  20.05 1 - -
AR7
Egi‘gnﬁ Ser. 1 11 18.95 18.99 1 - -
AR8 H3K27me3 Ser. 2 100 0.877 0.879 1 - -
H3K4me3 Ser. 2 100 27.7 28.3 7 1.051 0.9984
AR9 H3K9me3 Ser. 2 100 1.34 1.26 7 1.012 0.9972
H3K27me3 Ser. 2 100 0.678 0.677 7 1.022  0.9995
H3K4mel Ser. 3 136 4.34 4.84 17 1.005 0.9967
AR16 H3K4me2 Ser. 3 136 3.98 3.75 17 1.004 0.9992
H3K4me3 Ser. 3 136 324 31.1 17 1.009 0.9987
ARLT H3K9me3 Ser. 3 136 2.45 2.23 17 1.005 0.9996
H3K27me3 Ser. 3 136 1.82 1.73 17 1.002  0.9998

Barcodes: the number of unique DNA barcode sequences in the ICeChIP calibrant series.

Species: the number of distinct modified nucleosomes marked by the barcodes, including the target
modification and, if there is more than one species, the off-target modifications.

Specificity plot: summary of the specificity plots shown in Fig. 5.13C and 5.15A.

Extending the utility of SmartMap to ATAC-seq and RNA-seq

We also found that SmartMap could be applied to ATAC-seq data to obtain more global measure-
ments of chromatin accessibility. To demonstrate this, we used two replicates of K562 ATAC-seq
data, originally generated by the Snyder Lab as part of the ENCODE Consortium'?’. As with the
ICeChlIP-seq datasets, we found that SmartMap analysis could utilize 17-20% more reads than

uniread analysis (Table 5.1); this increased read depth was primarily concentrated at 20-30% of
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Figure 5.15: Specificity scatterplots for AR9.

Scatterplots of (A) specificity or (B) log specificity for uniread vs. SmartMap analyses. Targets of
pulldowns are H3K4me3 (left), H3K9me3 (centre), and H3K27me3 (right). Specificity is measured
as the enrichment of each internal standard nucleosome as a percentage of on-target enrichment.

the genome (Fig. 5.16A-C and Table 5.2), particularly those loci with low mappability scores (Fig.
5.16D-F). SmartMap and uniread analyses also showed similar levels of reproducibility between
the two isogenic replicates, though SmartMap showed slightly lower reproducibility between the
two datasets than did the uniread analysis (Fig. 5.16G-H). These data suggest that SmartMap is
also useful for ATAC-seq data and can reveal accessible regions of the genome at poorly mappable
loci that would have been missed by uniread analysis alone.

In addition to the MNase-seq, ChIP-seq, and ATAC-seq datasets, we also sought to apply our

SmartMap analysis to RNA-seq experiments. Specifically, we analyzed two replicates of K562 bulk
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Figure 5.16: SmartMap analysis of ENCODE ATAC-seq datasets.

(A-B) Quantile plot of read depth at genomic windows in SmartMap and uniread analyses for (A)
Replicate 1 or (B) Replicate 2. (C) Quantile plot of excess read depth in SmartMap datasets relative
to corresponding uniread dataset for Replicates 1 and 2. (D-E) Median read depth vs. mappability
score (UMAP50) in SmartMap and uniread analyses for (D) Replicate 1 or (E) Replicate 2. (F)
Median excess read depth vs. mappability score (UMAPS50). (G) Quantile plot of depth-normalized
log ratio of read depth in Replicate 1 over Replicate 2, for SmartMap and uniread analyses. Graph
breaks are present at both ends of the graph. (H) Mean absolute depth-normalized log ratio of the
analyses shown in panel G.

RNA-seq data, originally generated by the Gingeras Lab as part of the ENCODE Consortium!?’,
Our SmartMap RNA-seq analyses showed that for each replicate, relative to uniread analysis, there
was a 20-35% increase in usable reads (Table 5.1) concentrated into a minority of distinct Refseq
genes (Fig. 5.17A-C and Table 5.2). The reproducibility of the two datasets was also similar
between the SmartMap and uniread analyses, though as with the ATAC-seq data, the SmartMap
analysis showed marginally lower reproducibility between the two RNA-seq experiments than did
the uniread analysis (Fig. 5.17D-E). With that said, these differences in read depth are relatively
minor in magnitude, especially when normalized to differences in read depth in the SmartMap and

uniread analyses. Given the other concerns with using this multiread allocation algorithm in gapped
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reads or spliced transcripts (as noted in the Discussion), it is likely that SmartMap is not optimally

configured for use in RNA-seq analysis.
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Figure 5.17: SmartMap analysis of ENCODE RNA-seq datasets.

(A-B) Quantile plot of read depth at distinct Refseq genes in SmartMap and uniread analyses for (A)
Replicate 1 or (B) Replicate 2. (C) Quantile plot of excess read depth in SmartMap datasets relative
to corresponding uniread dataset for Replicates 1 and 2. (D) Quantile plot of depth-normalized
distinct Refseq gene log ratio of read depth in Replicate 1 over Replicate 2, for SmartMap and
uniread analyses. Pseudocount of 10”7 was added to each gene due to the high number of genes
with zero read depth. Graph breaks are present at both ends of the graph. (E) Mean absolute
depth-normalized log ratio of the analyses shown in panel D.

SmartMap drives new biological insights about repetitive DNA elements

With this method, we sought to better explore the role of histone modifications at repetitive re-
gions. Traditionally, the epigenetic profile of repetitive elements is viewed in light of the “genome
defense” hypothesis, which suggests that regulation of repetitive elements (and particularly trans-
posable elements) serves to silence the elements and thereby prevent transposition®’. Consequently,
much previous work on this topic has primarily pointed towards repetitive elements being enriched
with heterochromatin-associated modifications such as H3K9me23!'>, H3K9me33%101:130:316317 "and
H3K27me33*1%0318 " In recent years, some studies have described a role for canonically activat-
ing histone modifications at a subset of repetitive elements*!*?*, Indeed, this body of work has
suggested that some long interspersed nuclear elements (LINEs) can bear marks such as the transcrip-

tionally activating H3K4me3 modification, particularly early in development®'%*23324 " Similarly,
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other work has suggested that a class of mammalian-wide interspersed repeats (MIRs) may be

321 Much of this work, however, has

transcriptionally active and play a role in enhancer regulation
relied upon uncalibrated ChIP with antibodies of uncertain specificity, both of which can result
in data distortion and biologically incorrect conclusions'?*. Further, the ChIP-seq and RNA-seq
studies have used a variety of different methods of aligning and filtering for reads to reach their
conclusions, none of which used a method similar to our Bayesian SmartMap analysis, which may
further affect the interpretations of the experiments. As such, we sought to use our calibrated and
highly specific ICeChIP-seq datasets in conjunction with SmartMap to gain new insights into the
epigenetic landscape of repetitive elements and to examine the degree to which uniread analysis
yields an incomplete view of the data.

To accomplish this, we examined the histone modification landscape at the promoters of
all repetitive elements, LINEs, short interspersed nuclear elements (SINEs), and Simple Repeats.
K-means clustering analysis on all repetitive elements revealed four classes of promoters, each
with a different histone modification profile: Cluster 1, enriched for H3K27me3 and H3K9me3;
Cluster 2, enriched for H3K4mel and H3K4me2; Cluster 3, enriched for H3K4me2 and H3K4me3;
and Cluster 4, which is relatively depleted of histone modifications (Fig. 5.18A). These clusters
are roughly reminiscent of the functional classifications of the ENCODE hidden Markov model,
where Clusters 1, 2, and 3 correspond to silenced promoters, enhancers, and active promoters, re-

325

spectively”>. Interestingly, in all but Cluster 4, a greater proportion of nucleosomes is enriched

with H3K27me3 than H3K9me3, despite the previous emphasis on the latter in repetitive element

Sﬂencing39,101,130,316,317

, emphasizing the importance of calibration in ChIP-seq studies for com-
paring different modifications!!®!2* Similar histone modification profiles are seen for the LINEs

(Fig. 5.19A), SINEs (Fig. 5.19B), and Simple Repeats (Fig. 5.19C). Across all these classes,
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Figure 5.18: Assessment of histone modifications at promoters of repetitive DNA elements.

(A) Mean histone modification densities (HMDs) about promoters for classes of all repetitive
elements, as defined by k-means clustering. Corresponding analyses of LINE, SINE, and Simple
Repeat elements in S13 Fig. (B) Heatmap of repeat promoters with newly measurable HMD in
SmartMap analysis, sorted on first principal component of repetitive elements. (C) Proportion of
each cluster comprised by each repeat class or family for all repeats (left), LINE elements (center),
and SINE elements (right). All significance tests performed as post-hoc Bonferroni-corrected
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Figure 5.18, continued:

pairwise 2x2 chi-square tests. (D) Quantile boxplots of average normalized RNA-seq read depth
across LINE elements for each LINE cluster. Solid line with marker represents 90" percentile;
dashed line with marker represents 95™ percentile. Significance test shows difference in median by
Bonferroni-corrected pairwise Mood’s median tests. Significance markers: *p < 0.01, **p < 1075,
***p < 10—10.

Cluster 3 had the highest ATAC-seq signal (Fig. 5.19D-G), consistent with the presence of histone

modifications associated with transcription and accessible chromatin!7!8:32¢

Importantly, SmartMap analysis enabled us to more accurately measure HMD and assign
clusters than did uniread analysis. Overall, there were 142,392 promoters with nonzero HMD in
the SmartMap analysis that displayed no measurable HMD within 200bp of the TSS across all
five histone modifications in the uniread dataset; similarly little HMD was detected within 1kb
of the same in the uniread dataset (Fig. 5.20). This increase in HMD was substantial; most such
sites had meaningful levels of histone modifications (Fig. 5.18B). A small subset was primarily
H3K4me2/me3 predominant; a larger subset had high levels of H3K4mel/me2, and the remainder
were primarily characterized by H3K27me3 and H3K9me3 (Fig. 5.18B). These represent promoters
that would have been misclassified as histone-modification-depleted under uniread analysis; it is
only through proper allocation of multireads that we can measure their HMDs and assign them to
the appropriate cluster of repeat elements.

The distribution of repetitive elements across these clusters revealed interesting patterns.
The distribution of the repeat classes or families across the clusters are presented in Table 5.5 for
all repeats, Table 5.6 for LINEs, and Table 5.7 for SINEs, and summarized in Fig. 5.18C. Notably,
amongst SINEs, MIRs were enriched in Cluster 3 (Fig. 5.18C), consistent with previous descriptions
of a class of transcriptionally active MIRs*?!. In addition, Cluster 3 was enriched for Simple Repeats

across all repeat promoters, consistent with descriptions of Simple Repeats in and around protein
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Figure 5.19: Histone modification and ATAC-seq profiles on subset clusters.

(A-C) HMDs of modifications about promoters of (A) LINEs, (B) SINEs, or (C) simple repeats
separated by k-means clustering conducted on the appropriate set of repetitive elements. (D-G)
Total ATAC-seq read depth across both replicates about promoters of (D) all repeats, (E) LINEs,
(F) SINEs, or (G) simple repeats.
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Figure 5.20: Heatmaps of repeat promoters under uniread analysis.

Heatmap of repeat promoters with measurable nonzero HMD only in SmartMap analysis, sorted on
first principal component of repetitive elements.

coding genes in the literature®?’. Interestingly, Cluster 3 was enriched for the L2 subtype of LINEs,

despite previous work primarily focusing on the role of H3K4me3 at L1 elements®!®

, Tepresenting a
novel prediction of transcriptional activity of this family. To this end, using SmartMap analysis of
the RNA-seq data, we found that the Cluster 3 LINEs had greater transcriptional activity than did
the other clusters (Fig. 5.18D), confirming the transcriptional activity suggested by the presence of
H3K4me3. Collectively, these data demonstrate the risk in only focusing on unireads — namely, the

risk of missing important classes of genomic features — and highlights the role of multiread analysis

of both DNA and RNA in driving new biological discovery.

Discussion
In this work, we have described a method to markedly increase sequencing depth genome-wide by
analyzing ambiguously mapped reads rather than discarding them. This is of particular importance

given that a significant portion of commonly studied genomes are not uniquely mappable by single-
205



Table 5.5: Clustering of repetitive elements.

Repeat Class Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

DNA 240,787 28,465 763 232,324 502,339
LINE 754,991 78,670 2,133 734,556 1,570,350

LTR 393,797 39,911 707 319,769 754,184

Simple Repeat 357,734 50,395 7,555 287,900 703,584
SINE 818,624 119,404 5,478 908,873 1,852,379

Other 61,336 10,461 2,038 62,635 136,470
Total | 2,627,269 327,306 18,674 2,546,057 5,519,306

Table 5.6: Clustering of LINEs.

LINE Family Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total
L1 463,275 46,376 828 490,788 1,001,267
L2 233,599 32,236 1,289 207,410 474,534
Other 43,993 6,221 146 44,189 94,549
Total 740,867 84,833 2,263 742,387 1,570,350

Table 5.7: Clustering of SINEs.

SINE Family | Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total
Alu 520,927 72,223 2,880 590,748 520,927
MIR 319,283 38,836 2,587 241,855 319,283
FLAM 17,988 3,069 148 18,782 17,988
Other 11,943 1,634 61 9,415 11,943
Total 870,141 115,762 5,676 860,800 870,141

end or paired-end sequencing***%_ This difficulty arises in no small part due to the repetitiveness of

the genome??, but despite their difficulty to map, repetitive elements play critical roles in genomic

6

regulation and function®®. It is common discard these multireads entirely, despite these reads

representing up to 30% of the sequencing depth. Works that do utilize multireads often simply

select an alignment at random. We demonstrate that our SmartMap algorithm can better map reads
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to the repetitive portion of the genome, facilitating better understanding their functions. Importantly,
we find that the usage of alignment quality scores and paired-end sequencing can markedly increase

the accuracy of alignment weights.
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Figure 5.21: Analysis of increased usable read depth.

This figure graphically represents the data in Tables 5.1 and 5.2. (A) The percent increase in the
number of reads usable in SmartMap analysis (reads with 1-50 alignments) relative to uniread
analysis (reads with 1 alignment). (B) Percentage of the total number of regions with an increase
in read depth in the SmartMap dataset relative to the uniread dataset. For all datasets except the
ENCODE RNA-seq datasets, the list of regions analyzed is the set of 200bp genomic windows
across the relevant genome (hg38, mm10, or dm3). For the ENCODE RNA-seq dataset, the list of
regions analyzed is the set of distinct Refseq genes. (C) Percent increase in the number of regions
with nonzero read depth in the SmartMap dataset relative to the uniread dataset.

Just by incorporating multireads with 2-50 alignments, we were able to increase the read
depth of our samples by 13-53% (Fig. 5.21A and Table 5.1). This increase in read depth was not
simply distributed across the entire genome, which is critical for the usefulness of this method. If the
multireads were distributed uniformly, it would only modestly decrease error by slightly increasing
read depth at all loci'!®. However, that is not the case; rather, the multireads are concentrated in a
minority of the genome (Fig. 5.21B and Table 5.2), bringing regions of lower mappability to read
depths comparable with highly mappable loci (Fig. 5.11A). The multiread samples have a 5-20%

increase over unireads in loci with nonzero read depth (Fig. 5.21C and Table 5.2), representing a
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sizable proportion of the genome that is completely ignored by uniread analysis and can be recovered
only by utilizing ambiguously mapped reads.

Our method requires no particular experimental modifications or additional controls for
analysis of multireads and can be applied post hoc to existing datasets. As such, SmartMap can be
used to leverage the existing compendium of NGS datasets more accurately. Though we primar-
ily used ICeChlIP-seq data to demonstrate and explore the capabilities of SmartMap, this tool is
not solely designed for ICeChIP and does not require the internal standards used therein. Indeed,
SmartMap is designed to be a general tool for a broad range of next-generation sequencing exper-
iments, including ChIP-seq, MNase-seq, and ATAC-seq, as we showed in this work. In addition,
though we have used paired-end sequencing here, there is little reason to believe this method could
not be used for a single-end sequencing experiment. In principle, an algorithm using the principles
of SmartMap can be applied to any NGS experiment, past or future, that involves alignment to a
genome.

Previously published methods have utilized a variety of techniques to allocate multireads;
however, our analysis suggests that many of these methods may be problematic. One heuristic
assumes that multireads and unireads have similar genomic distributions and, accordingly, assigned
multireads weights in proportion with uniread depth?*>*?%. Our data, by contrast, shows that multi-
reads instead concentrate into a minority of loci (Table 5.2) and particularly those with low uniread
depth (Fig. 5.4C-D and 5.5C). This suggests that the unireads and multireads have different genomic
distributions, violating the critical assumption underlying proportional allocation of multireads. An-
other method of resolving multireads is to select one alignment at random for each read***!?. The
expected value of the read distribution under this procedure converges to that of SmartMap without

reweighting, which we found to have higher error than SmartMap with a Bayesian reweighting

208



cycle (Fig. 5.2D, 5.5H and Table 5.8). Indeed, explicit comparison to an instance of random read
comparison revealed even higher error as compared to SmartMap with and without reweighting

(Table 5.8).

Table 5.8: Benchmarking SmartMap software.

Alignnfl);-ta:i ng?(ﬁ:essing Read Allocation Algorithm
Read Processing Reading
Alignment Alignments Alignments
Proc.
CPU Wall CPU File CPU Max. | Algorithm | Avg.

Algorithm Time Time Time Size Time Memory Time MAE
SmartMap | 317:30:25 6:39:46 | 1:34:29 59GB | 0:16:49 53 GB 0:42:38 4.04
BM-Map | 317:30:25 6:39:46 | N/A  820GB| 6:25:09 146 GB | ERROR —
Iteration 0 | 317:30:25 6:39:46 | 1:34:29 59GB | 0:16:10 53 GB 0:35:16 4.12
Random | 317:30:25 6:39:46 | 2:15:12 15GB | 0:03:58 39 GB 0:15:46 5.48
Uniread | 36:08:04 0:45:34 | 0:17:07 13 GB | 0:03:19 39GB 0:14:43 6.50

Benchmarking conducted on computer with Ubuntu 20.04.1 LTS with 224 GB of RAM and dual Intel
Xeon CPU E5-2690 v3 @ 2.60GHz processors, running on one thread except the read alignment,
which used 48 threads. All times are represented in hours:minutes:seconds.

Alignment conditions are identical for all but Uniread. Parsing reads is typically conducted in
parallel with alignment. File size represents the size of the required file after read parsing needed
for the algorithm in question. Reading alignments is part of each algorithm and is included in the
Algorithm Total Time.

Average Mean Absolute Error (Avg. MAE) is computed against the gold standard on the set of
true origin loci. These benchmarking analyses were conducted separately with separate alignments
from the analyses in Fig. 5.5, and the avg. MAEs vary slightly in magnitude from those presented
in Fig. 5.5.

SmartMap is also computationally efficient as compared to the most similar previous al-
gorithms and software for the assignment of multireads. This is due in part to the low number of
reweighting iterations our algorithm uses, which decreases the computational burden of the soft-
ware. In addition, the Fenwick tree data structure used with our method allows for more efficient

processing of reads by accessing and updating of genomic weights. Previous implementations
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of a scored-alignment reweighting algorithm, as done by BM-Map, have required more than five
hours to process approximately seven million aligned reads after alignment in previous studies®!!.
Unfortunately, we were not able to fully measure the time requirements for BM-Map for ourselves;
implementing both CSEM3!® and BM-Map®!! proved challenging, as described in the Methods.
However, using our simulated dataset (with 50bp reads), including more than 740 million align-
ments from more than 275 million reads, even just reading the alignments with BM-Map on our
hardware took more than 6 hours after alignment (Table 5.8). By contrast, our algorithm can com-
pletely process that same aligned dataset in less than 2.5 hours, representing more than 100-fold
less CPU time than the alignment itself (Table 5.8). As such, the low CPU-time requirements of
SmartMap drastically increases our ability to use this algorithm on data from modern NGS experi-
ments, particularly given the ever-increasing depth and decreasing cost of sequencing®?’. Though
it is, admittedly, faster to solely process unireads than to conduct SmartMap (Table 5.8), the added
time is not egregiously high; on our system, the full benchmarking (including alignment) required
roughly eight more hours of wall time in the SmartMap analysis than in the uniread analysis.

This SmartMap method is, however, not without its limitations. Primary amongst these
limitations is that rather than yielding a list of alignments, the SmartMap software either outputs
the read depth at each base pair genome-wide or a list of alignments with associated weights. While
this is useful for any analysis that utilizes the read depth at a given position, this makes it difficult to
use downstream methods or tools that primarily utilize the full list of alignments using off-the-shelf
tools. In particular, this makes it challenging to compute gene expression in RNA-seq per common
methods such as FPKM, which uses the number of reads overlapping a transcript as a measure
of expression rather than the read depth per base pair. This is partially alleviated by the fact that

SmartMap provides the option to write lists of alignments with their corresponding weights, but
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even so, incorporating these weights into existing downstream analyses, pipelines, and software
may remain challenging.

In addition, the SmartMap method also may face challenges with any alignments with
significant gaps relative to the alignment templates, such as those created by RNA splicing (or Hi-C
experiments). Because our reweighting algorithm assigns weights based on the average read depth
across an alignment, an alignment spanning a splice junction in RNA-seq may be unfairly assigned
a lower weight due to decreased read depth in the intron. As such, highly spliced genes may be
given a lower read depth than a similarly expressed gene with fewer introns. This could be partially
accommodated by weighting with the total read depth over an alignment rather than the average
read depth over the same, but this method would potentially unfairly increase weight of longer
alignments, which could pose another challenge.

In addition, from a computational perspective, the SmartMap method is memory intensive.
This is in large part due to the data structure used for storing genome-wide weight data. Because
this tool is designed to be compatible with reweighting of paired-end reads and obtaining the total
weight across a paired-end read, the data structure needs to efficiently conduct both range update
and range query operations. Accordingly, for the strand-independent method, we have used a dual
binary-indexed tree data structure; for strand-specific analysis, we use a dual binary-indexed tree
structure for each strand, for a total of four binary-indexed trees. For this reason, for our simulated
dataset, the SmartMap analysis required almost 60 GB of memory. In principle, a lower-memory
method could be developed that would only use one binary-indexed tree per strand, but this would
require iteration over each base position of each alignment and would thereby dramatically decrease
time-efficiency. However, it’s important to note that BM-Map, the only other tested software that

was even able to successfully read the alignments, required almost 150 GB to read that same set
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of alignments into memory (Table 5.8). In practice, with the decreasing costs of memory and the
increasing availability of computational servers and clusters for a wide variety of bioinformatic tools
and analyses, the memory requirements are likely workable for many users, particularly because of
the low CPU time required.

Finally, even the best SmartMap analysis can only be as good as the alignment itself. In this
work, we have largely restricted our Bowtie2 alignments to report a maximum of 51 alignments, with
the exception of the analysis with a maximum of 101 alignments. This was conducted for feasibility;
as the maximum number of reported alignments increases, so too does the computational overhead
needed for alignment of the reads by Bowtie2. However, this does place an inherent limitation on
our ability to look at the most repetitive regions of the genome, which can be found at hundreds of
loci throughout the genome and can thus pose a significant challenge to alignment and multiread
analysis. Granted, raising this threshold to a maximum of 101 alignments per reads had practically
no impact on the analysis on the human genome (Fig. 5.8, Tables 5.1 and 5.2), but nonetheless,
there were still nearly seven million reads that aligned to the maximum of 101 loci, representing
a significant number of reads with even more potential alignments. Further, some genomes have
even greater repetitiveness than does the human genome; for example, repetitive elements comprise

330 'making alignment all the more challenging and raising the

roughly 85% of the maize genome
number of plausible alignment sites for each read. It is important to note that this is not a limitation
that is inherent to SmartMap, but rather, to alignment itself. If the end user was able to generate an
alignment with an arbitrarily high maximum number of reportable alignments, there is no reason that

SmartMap should fail; it is not inherently capped at a maximum number of alignments per read. It

should be remembered that SmartMap will not be able to “fix” an alignment with too few alignments
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per read. Accordingly, it may be necessary to tune the maximum number of alignments per read to
appropriately analyze data originating from some genomes despite the added computational load.
Despite these limitations, we were nonetheless able to demonstrate the usefulness of our
SmartMap tool to process reads from a variety of NGS workflows (e.g. MNase-seq, ChIP-seq,
ATAC-seq, and RNA-seq) and to investigate biological questions — in this case, the epigenetic
regulation of repetitive elements. Just as importantly, we demonstrated the risk of using only
unireads — namely, that biologically relevant regions will be hidden from analysis because the
multireads have been discarded. Given the critical role that repetitive regions play in biological
regulation®*®, being able to analyze these regions is crucial to gaining a more complete understanding
of genomic structure and function. Accordingly, we hope this method will help enable researchers
to use their sequencing data more completely and thereby gain more useful information from their

experiments.
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Methods and Materials
Sequencing Data Sources
The ICeChIP-seq datasets analyzed in this work, with the exception of AR17 H3K27me3 IP, were

sourced from previously published ICeChIP-seq datasets''®!?4. The FASTQ files for datasets
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AR7, ARS8, and AR9 can be obtained from Gene Expression Omnibus (GEO) Accession Number
GSE60378. The FASTQ files for datasets AR16 and AR17 can be obtained from GEO Accession
Number GSE103543. Inputs for each ICeChlIP are generated by MNase-seq.

The AR17 H3K27me3 ICeChIP-seq was conducted at the same time as the AR17 H3K9me3
ICeChIP-seq experiment using the same AR17 Input, but was not published previously'?*. It was
generated by ICeChIP-seq as previously described'?* using an anti-H3K27me3 antibody (Cell
Signaling Technologies, Product Number 9733, Lot 8). This dataset has been made available at
GEO Accession Number GSE103543.

RNA-seq data was obtained from the ENCODE Project®*!, experiment ENCSROO0AEL.
The FASTQ files for Isogenic Replicate 1 was obtained from the dataset for library ENCLB053ZZZ
(FASTQ accession numbers: ENCFFOOIRFF, ENCFFOO1RFE). The FASTQ files for Isogenic
Replicate 2 was obtained from the dataset for library ENCLB054ZZZ (FASTQ accession numbers:
ENCFFO001RFD, ENCFFO001RFC).

ATAC-seq data was obtained from the ENCODE Project®*!, experiment ENCSR483RKN.
The FASTQ files for Isogenic Replicate 1 was obtained from the dataset for library ENCLB918NXF
(FASTQ accession numbers: ENCFF391BFJ, ENCFF186CQZ). The FASTQ files for Isogenic
Replicate 2 was obtained from the dataset for library ENCLB758GEG (FASTQ accession numbers:

ENCFF440UAD, ENCFF350ZZR).

Mappability Scores
The mappability score chosen was the UMAPS50 score, which represents the proportion of 50bp
kmers overlying a given point that are unique in the genome®®. The approximate UMAP50 score

of the dm3 genome was computed by computing all 50-mers in the genome and determining those
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that are unique; the genome coverage of the unique 50-mers was then determined to compute

approximate UMAPS50 score of the genome.

Simulated Dataset
The simulated dataset was generated as followed. First, 6 million loci of length 200bp in the genome
were randomly selected and designated as the target loci. Paired-end Illumina sequencing reads

were then simulated using NEAT-genReads?*?

using the list of target loci as the target file and the
following settings: 50bp read length, 30-fold target coverage, default off-target coverage, and insert
size 175bp average and 10bp standard deviation. The output list of true read locations was then
used to compute a Gold Standard genome coverage BedGraph using BEDTools genomecov!’*. The
average Gold Standard read depth of the target loci was then computed as described below, and
the target loci with nonzero Gold Standard read depth were designated as the “true origin” loci and
used for downstream analysis.

To generate the simulated dataset with 100bp read length, the same procedure was used on
the same set of 6 million loci, with the NEAT-genReads tool being set to output 100bp reads rather

than 50bp reads. Unless otherwise specified, this work uses “simulated dataset” or similar to refer

to the simulated dataset with 50bp reads.

Computing average value of BEDGRAPH at target loci

Because the BEDTools map software does not compute base-pair-wise averages of BEDGRAPH
signals, the following procedure was used to compute read depth at a list of target loci. Overlapping
loci were merged using BEDTools merge, and the resultant list of loci were partitioned into 1bp

windows using BEDTools makewindows. The BEDGRAPH was then mapped onto the windows
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using BEDTools map, and the mapped windows were then mapped with the mean function onto

the original list of target loci using BEDTools map.

Mappability estimation and binning

The mappability of a list of loci was computed by computing the average value of the UMAP50
bedgraph for the relevant genome at those loci using the method described above. To compute the
number of regions per UMAPS50 score, the loci were binned by average UMAPS50 score in bins
of width 0.01. The number of loci at each bin were then computed to determine the approximate

distribution of UMAPS50 score across the selected loci.

MACS?2 Peak Calling

Peak calling was conducted on the simulated datasets using MACS2!7® with the bdgpeakcall function

with the relevant BEDGRAPH file and default settings.

Alignment and Read Filtering and Processing

FASTQ files for ICeChIP-seq or the simulated dataset were aligned using Bowtie2!”* due to its
common usage in the field and due to its ability to report alignment scores for each mate for each
alignment reported as opposed to for just the best alignment. Bowtie2 alignment was run on the
paired-end sequencing samples with the following settings: end-to-end alignment, very-fast preset
settings, no discordant alignments, no mixed alignments, report up to 51 alignments, insert size
minimum 100bp, insert size maximum 250bp. In the case of the analysis with up to 101 alignments
(the k101 dataset), the above settings were used with up to 101 alignments reported per read. The

genomes used for alignment were as follows: AR7, mm10 with ICeChIP barcodes series 1; ARS8,
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dm3 with ICeChlIP barcodes series 1; AR9, mm10 with ICeChIP barcodes series 2; AR16 and AR17,
hg38 with ICeChlIP barcodes series 3; simulated datasets, hg38.

FASTQ files for RNA-seq were aligned using Hisat2** for the same reasons as the choice
to use Bowtie2. Hisat2 alignment was run on the paired-end sequencing samples with the following
settings: no discordant alignments, no mixed alignments, report up to 51 alignments. The genome
used for alignment was hg38 with the ENCODE ERCC standards.

FASTQ files for ATAC-seq were aligned using Bowtie2!”? on the paired-end sequencing
samples with the following settings: no discordant alignments, no mixed alignments, report up to
51 alignments, insert size maximum 2000bp. The genome used for alignment was hg38.

Alignments were then filtered to select for reads that are paired, mapped in a proper pair,
and mate on the reverse strand, corresponding to SAM flags of 99, 163, 355, and 419. For non-
strand-specific applications, the selected SAM file records were then extracted into a file containing
the following fields: chromosome, start position, stop position, read ID, read alignment score (field
labeled “AS:i:”), mate alignment score (field labeled “YS:i:”). For strand-specific applications, the
selected SAM file records were extracted into a file containing the following fields: chromosome,
start position, stop position, read ID, strand, read alignment score (field labeled “AS:i:”’), mate
alignment score (field labeled “YS:i:”). The reads were then split into separate BED files based
on the number of alignments per read. For downstream uniread analyses, only the reads with 1
alignment were used; for downstream SmartMap analyses, reads with 1-50 alignments were used
except for the k101 dataset, in which case reads with 1-100 alignments were used.

The file with 51 alignments per read (or that with 101 alignments per read for the k101
analysis) was not used for downstream analyses to prevent confounding by reads with fewer reported

than possible reads.
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Uniread and SmartMap Analysis of Genome Coverage

For the uniread analysis, our SmartMap software was used with only the file containing reads with
only 1 alignment per read. For the SmartMap analysis, our SmartMap software was used with the
files containing reads with fewer than 51 alignments per read.

The SmartMap software uses a set of dual Binary Indexed Trees to store map counts and
weights across the genome and uses an iterative Bayesian reweighting algorithm to assign weights
to each of the different alignments. These steps are outlined below. Unless otherwise specified, all
analyses are conducted with 1 iteration in scored mode. For the strand-specific analyses, there is a

separate set of dual Binary Indexed Trees for each strand.

STORAGE OF MAP COUNTS IN THE GENOME

To facilitate efficient summation and updating of map counts and weights across the genome,
each chromosome is stored as a pair of Binary Indexed Trees (BIT), also known as Fenwick Trees.
The BIT is a data structure that is efficient for computing prefix sums of an ordered dataset from
the beginning of the dataset to the given index. Because we used a 1-based coordinate system for
the genome, the datasets to which we refer as being represented by a BIT should be assumed to be
1-based datasets unless otherwise specified.

For a dataset of length L, the BIT is represented by L + 1 nodes, which are stored in an array.
To increment a dataset represented by a BIT 7" at index 7 by the value v, the following algorithm
is used. Let 7[i] represent the ith node of T'. Let [sb(i) represent the lowest significant bit in the

binary representation of ¢. Then:

T[] =T+ v (Eqn. 5.1)
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i =1+ lsb(i) (Eqn. 5.2)

If the new value of ¢ < L + 1, Eqn. 5.1-5.2 are iterated until = > L + 1. For brevity, we will
refer to this operation to increment the BIT 7' representing the 1-based dataset by v in the value ¢
as BITUpdate(T', i, v).

To compute the prefix sum of the dataset at index ¢ (i.e. the sum of all values with indices
[1,1] of a 1-based dataset), the following algorithm is used, using the above definitions of 7[i] and

Isb(i). Let the prefix sum be represented by sum, where sum is initially set to zero. Then:

sum = sum + T'i] (Egn. 5.3)

i =1 — lsb(1) (Eqn. 5.4)

If the new value of 7 > 0, Eqn. 5.3-5.4 are iterated until = < 0. For brevity, we will refer to
this operation to obtain the prefix sum of the T" at value ¢ as BIT Sum(T, ).

To understand how we here use BITs to efficiently store values across the genome and
efficiently sum the values across loci, consider the following.

Consider a dataset C' represented by BITs 77 and 75. If the values of C' for indices in
range [[,r) are incremented by v, then let the resulting dataset be represented by C’. Let the
prefix sum of the resulting dataset C” at index ¢ be represented by PointSum/(C’,i). Then let
APointSum(C,i) = PointSum/(C’,i) — PointSum(C, ). PointSum/(C",i)is changed in one
of three ways:

Case 1: i < [. The increment on range [/, ) will not change PointSum/(C’, ). As such:

APointSum(C,i) = 0 (Eqn. 5.5)
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Case 2: [ < ¢ < r. In this case:
APointSum(C i) =vxi—v* (I —1)
However, per Eqn. 5.5, APointSum(C,l — 1) = 0. As such:
APointSum(C i) =vxi—vx* (I —1) (Eqn. 5.6)

Case 3: i > r. In this case, the increment on range [/, r) will not change the values of C' past index
r — 1. Accordingly:
PointSum(C’,i) = PointSum(C,i) + PointSum/(C’,r) — PointSum(C,r)
PointSum(C",i) — PointSum(C,i) = PointSum(C',r) — PointSum(C,r)  (Eqn. 5.7)
APointSum(C,i) = APointSum(C, 1)
However, per Eqn. 5.6, APointSum(C,r) =v*r —v* (Il —1). As such:
APointSum(C,i) = (v+ (—v)) *i — (v (I = 1) —v*7)

(Egn. 5.8)

=vxr—uvx*(l—1)

These three cases will provide the basis for our use of BITs to store and efficiently sum
values across the genome. Each chromosome C' in the genome is stored as a pair of BITs, to which
we shall here refer as T} and 75. Let L represent the length of the chromosome. Accordingly, 7T
and 75 have L + 1 nodes.

To increment the value associated with the base pairs in the range [/, ) by an increment
value v, the following procedure is used.

BITUpdate(Ty,1,v)
BITUpdate(Ty,r, —v)

(Egn. 5.9)
BITUpdate(T5, 1, v * 1)

BITUpdate(Ty,r, —v * 1)
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The value associated with base pair i is then BIT'Sum/(1y,i). To obtain the prefix sum
of the chromosome dataset C' at base pair index i, represented by PointSum(C, 1), the following

equation is used.
PointSum(C,i) = BITSum(Ty,i) xi — BITSum(T5, 1) (Eqn. 5.10)

The sum of the values associated with each base pair in the range [[,7) = [, — 1] on
chromosome C, represented by LocusSum/(C, 1, ), can thus be described by:
LocusSum/(C,l,r) =PointSum(C,r — 1) — PointSum(C,l — 1)
=BITSum(Ty,r — 1) x (r — 1) — BITSum(Ty,7r — 1) (Eqn. 5.11)
—BITSum(Ty,l — 1)« (I — 1) + BITSum(T5,1 — 1)
This dual-BIT data structure allows for efficient handling of data with respect to time com-
plexity. The BITUpdate and BITSum steps occur with time complexity O(log L), and the updates
to ranges (Eqn. 5.8) and range summations (Eqn. 5.10) use four BITUpdates and four BITSums,

respectively. As such, both range updates and range queries occur with time complexity O(log L).

ITERATIVE BAYESIAN REWEIGHTING OF MAPPED READS

To assess and appropriately weight reads mapped to different portions of the genome, we
implemented a Bayesian approach which iteratively reweights the mappings associated with each
read. For each read, we assign to each associated map a weight representative of the prior probability
that the map is the origin of the associated read. We then iteratively use the distribution of the
assigned maps and their weights (the prior probabilities) to determine the posterior probability for
each map being the true origin of the associated read and assign that as the weight for that map,

which then becomes the prior probability for the next iteration.
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Let the set of all sequencing reads be represented as R, with an individual sequencing read
being represented as r;. Then R = {r;...r,}, where n represents the total number of sequencing
reads obtained for the dataset in question.

Each read r; is associated with a true genomic origin locus /; and a set of genomic alignments
M; = {m;:...m,;}, where each m, ; represents a reported alignment of 7; and k represents the
total number of alignments reported for r; such that k < k4., the maximum number of possible
reported alignments. Each reported alignment m; ; is associated with an alignment score s; ;, a
weight w; ;, and an alignment genomic locus g; ;. We will define the set of all alignment scores
associated with read r; as S; = {s;1 ... s;}, with the set of all alignment weights associated with
read r; being represented as W; = {w; ; ... w;}, and with the set of all alignment loci associated
with read r; being defined as G; = {g;1 ... gix}-

For this algorithm, we assume that for each alignment m; associated with a given read r;,
one of the associated alignment loci g; ; is the true origin locus /;. Then each weight w; ; is defined
as the probability w; ; = Pr(g;; = [;), or the probability that the alignment associated with the
weight w; ; is equal to the true origin locus.

The set of all true genomic origin loci /; will be defined as L = {l;...l,}. The set of
all alignment scores, weights, and loci associated with every read in R will be defined as S =
{S1...8,}, W={W..W,},and G = {G;...G,}.

These variables will define our analysis. Our observed variables are the set of alignment
scores S and the set of alignment loci G. Our latent variable is the true genomic origin distribution
L. We will be modeling to generate the set of alignment weights W with the goal of estimating the

true read origin distribution L as the expected value of the set of reported alignments G with the
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set of weights W being treated as the probability distribution of G upon which the expected value
1s computed.

When conducting analyses in “scored mode,” we wish to consider the quality of each
alignment. To do this, for each alignment g; ; of each read r;, we will transform the associated
alignment score s; ; into a pseudo-MAPQ score z; ; as per Bowtie2 computation of MAPQ for
unireads. Let the minimum alignment score for reported alignments in Bowtie2 be represented as

Smin = —0.6 — 0.6 x (2 x read length). Then:
(

42 if 24 € [0,0.2]

40 if 25 € (0.2,0.3]

Smin

24 if 2 € (0.3,0.4]

Smin

%ij = 23 if 25 € (0.4,0.5] (Eqn. 5.12)

Smin

8 if 2 € (0.5,0.6]

Smin

3 if 25 € (0.6,0.7)

0 if =L € (0.7,1]
k min

If the analysis is being run in unscored mode, the quality of each alignment ¢; ; is set to 1.
When conducting analyses in scored mode, from this pseudo-MAPQ score, we can compute the

alignment quality ¢, ; as the probability that the alignment is aligned to the correct genomic locus

from the definition of MAPQ as:
gi; =1—107%3/10 (Eqn. 5.13)

The set of alignment qualities associated with each read r; is defined as Q; = {qi1 .- - Gix}-
We will define our initial weights w; ; by setting our initial prior probabilities Pr(g; ; = [;) to be

proportional to the alignment quality ¢; ;. Because we assume that for each read r;, one of the
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associated g; ; = [;, then for each read r;, we set the associated alignment weights w; ; as:

Wiy = el (Eqn. 5.14)
qu@i q

In scored mode, it is possible for the sum of the alignment qualities in (); for a given read ;
to be equal to zero; if this is the case, the read is discarded. Similarly, any alignments with alignment
with a weight of zero are discarded. For all remaining reads and alignments, each weight w; ; is
added to the appropriate chromosome dataset at the associated alignment locus g; ;. Those reads
with £ = 1 are then removed from the list of reads over which to iterate because the weight of the
associated alignment is fixed at w = 1.

When the initial assignment of prior probabilities as weights and addition of weights to the
genome dataset is complete, then for each read r;, the new weights can be computed as the posterior
probabilities of Pr(g;; = [; | total distribution of reads). First, we will represent the length of
an alignment locus g; ; as |g; ;|. Let ¢, be the sum of all weights associated with all alignments
containing the genomic coordinate b. Then, we define C; ; as the average weight across the genomic

coordinates of each alignment g, ; by the equation:

1

= — Cp (Egn. 5.15)
|gi,j|

beg;,;

i,J

Our algorithm assumes that the probability Pr(g;; = [; | total distribution of reads) is

proportional to C; ; and proportional to the alignment quality ¢; ;. Based on this assumption, we

define our likelihood function F; ; as the ratio of the average quality-weighted weight across the
alignment locus to the weight of the alignment itself:

Cij i

Fi; =
Wi,

(Egn. 5.16)

By Bayes’ theorem, we then state that our posterior probability is proportional to the likeli-

hood and to the prior probability of a given event. To accommodate for slow fitting, we will define
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r as the learning rate such that if » = 0, the weight will not change at all, and if » = 1, the new
weight will be defined as per Bayes’ theorem. When r = 1, then, we thus set our new weight w; ;

as our posterior probability Pr(g; ; = ; | total distribution of reads) by the equation:
W' = —kwi’jFi’j
D i Wi
_ Cijti;
> Cigdig
If r is not equal to 1 (i.e. if fitting is conducted more slowly or faster), then per the above

(Egn. 5.17)

definition of the learning rate:

/ Ci 34
Wij =\ A4 o T Wij | rtwg
> =1 Cijdi;

e (Egn. 5.18)
= —7]; AL + (1 - 7”) Wy 5
> i1 Ciiti
Per this definition, when fitting is disabled (i.e. when » = 0), the new weight is not

changed; when the fitting rate is set to » = 1, then Eqn. 5.17 is equal to Eqn. 5.16. Slower
fitting can be achieved by setting 0 < r < 1. The new weights are updated at the appropriate
corresponding genomic loci, and the posterior weight wy; ; is treated as the prior weight w; ; for the
next iteration. This process defined by Eqn. 5.15-5.17 is conducted iteratively for the specified
number of iterations.

After the specified number of iterations are complete, the output file is written by writing
the prefix sum of the BIT 77 for each chromosome at each position. If desired, the set of reads with

corresponding weights are also written.

Histone Modification Density and Specificity Computation
Because the ICeChlIP-seq datasets have internal nucleosome standards bearing the targeted nucle-

osome modifications with uniquely identifying DNA “barcodes”, we were able to calibrate our
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ChIP-seq results to yield the histone modification density (HMD), or the proportion of nucleosomes
bearing the modification of interest. HMD for each dataset was computed as follows.

The average value of the BEDGRAPH for each of the calibrant barcodes was computed as
above, and these values were grouped by the nucleosome modification associated with the barcode
and summed, as previously described!!®!?* for both the IP and the Input datasets. The ratio of the
summed values for the targeted modification in IP over the same in Input was designated as the
target enrichment ;.

The HMD at each genomic locus was then computed as follows, where /P and Input

represent the value of the IP and the Input at that genomic locus:

IP
HMD (%) = Fy 100% (Eqn. 5.19)

To generate genome-wide HMD BEDGRAPH files, the IP and corresponding Input genome
coverage BEDGRAPH files outputted by the SmartMap software were merged with BEDTools
unionbedg, and the HMD computation in (18) was used to compute HMD. Any region with an
Input value of zero was set to an HMD of zero, as there is no nucleosome coverage to be modified
at those loci.

To compute the specificity, for those ICeChlP-seq datasets with calibrants bearing more than
one modification with uniquely identifying DNA barcodes (AR9, AR16, and AR17), the enrichment
of every species F; was computed analogously to the F;, and the specificity (as percent of target

enrichment) was computed as:

E;
Specificity(% target) = ¥ 100% (Eqn. 5.20)

t
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Alignment Overlap Analysis

To assess for overlap of alignments, we conducted SmartMap on the simulated dataset with the
read weight output setting activated. Using bedtools intersect, we then identified alignments that
intersected with the true read origin in the Gold Standard dataset. From this, by weight, we were able
to compute three metrics. First, we computed the number of alignments by weight that were present
in the intersected dataset as a proportion of the total number of alignments by weight. Second, we
computed the alignment weighted overlap proportion score, a measure of the proportion of a read’s
overall weight that overlaps with a given true origin of the read due to a given alignment. This is
computed as the product of the weight of the alignment with the geometric mean of the proportion of
overlap between the true read locus and the alignment locus. Finally, we computed the unweighted
overlap proportion score, which is computed as the geometric mean of the proportion of overlap

between the true read locus and the alignment locus.

Repetitive Element Analysis
Repetitive elements for hg38 were obtained from the HOMER list of repeats'’®. The promoter was
defined as the most upstream portion of the annotated repeat. This dataset was used for analyzing
all repeats; for analyzing LINE elements, SINE elements, or Simple Repeats, the corresponding
subset of the repeats was used.

The HMD profiles in Fig. 5.15 and 5.18A were generated by computing the average HMD
(from SmartMap analysis of AR16 and AR17) in 50bp windows from -1000bp to +1000bp relative
to the promoter, with HMDs above 100% being set to 100% (because an HMD above 100% is
definitionally impossible), and corresponding windows were averaged together to yield the average

HMD profile for each set of elements.
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To conduct clustering, first, the average HMD of the region -100bp to +100bp relative to
each promoter in the relevant dataset was computed using the SmartMap analysis of AR16 and
AR17, with HMDs above 100% being set to 100%. The data was then transformed to orthonormal
basis by principal component analysis in R with scaling and centering. The resultant coordinate
matrix used for k-means clustering, starting with 2 clusters and increasing the number of clusters
until the decrease in total within-cluster sum of squares became markedly diminished; for each
dataset (all repeats, LINE elements, SINE elements, and Simple Repeats), this occurred with 5 or
more clusters and, accordingly, 4 clusters were used for each dataset.

RNA-seq analysis was conducted as follows. The average value of the RNA-seq SmartMap
BEDGRAPH datasets were found across each LINE element. These values were then normalized
to the SmartMap read count for each replicate (as average reads per million reads analyzed) and
averaged to yield the average normalized read depth for each LINE element. These were then

grouped by cluster and used to generate the quantile boxplots.

Heatmap Generation

Heatmaps of regions with nonzero HMD only in SmartMap analyses were generated as follows.
The average HMD of the region -100bp to +100bp relative to each promoter was computed using
both the uniread and SmartMap analyses of AR16 and AR17, with HMDs above 100% being set
to 100%. Principal component analysis was conducted on the set of SmartMap HMDs in R with
scaling and centering. Promoters with HMDs of zero in all of the uniread analyses and at least one
nonzero SmartMap HMD were then selected and sorted by the first principal component. There
were 142,392 such promoters. HMD profiles were then generated for each of the selected promoters

as described above in 50bp windows from -1000bp to +1000bp relative to the promoter but were
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not averaged together on corresponding windows. A field was added to the beginning of each row
containing the value 100 as a calibration point for threshold adjustment.

The list of HMD profiles sorted on the first principal component was then imported into
ImagelJ as a Text Image. The height of the image was scaled down to 500pts with bilinear interpo-
lation, and the thresholds were set from 0-100. The resultant image was exported as a PNG file,
which was then opened in Photoshop in Indexed Color mode. The color table was then adjusted
such that the lowest value was set to white and the highest value was set to the appropriate color.
The leftmost point of the image (corresponding to the added field with the calibration point value

of 100) was then removed from the image to generate the final heatmap.

Genome Browser Visualization

Genome browser visualization was conducted using Integrative Genomics Viewer (IGV)?*4.

Comparison to Other Methods

CoMPARISON TO CSEM

Comparison was attempted against the CSEM software for multiread allocation?!® by only
using the first read mate of our ICeChIP samples. However, the CSEM software returned a segmen-

tation fault within the first minute of runtime, rendering comparison difficult.

COMPARISON TO BM-MAP

Comparison was attempted against the BM-Map software for multiread reweighting®!! by
aligning the simulated read dataset with Bowtie2 per the settings used for SmartMap, followed by
use of the BM-Map software with seven threads, the maximum permitted by the software. The first

step of BM-Map (reading the alignments into memory) proceeded uneventfully, using one thread.
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However, shortly after the second step of BM-Map began, the software returned an error and exited
without returning an output. This was observed with existing binaries and with compilation of the

software from source. As such, we were unable to compare to BM-Map.

COMPARISON TO ITERATION O AND RANDOM ALIGNMENTS

The simulated dataset was aligned with Bowtie2 per the settings used for SmartMap. The
reads were then parsed to yield a single extended BED file as per SmartMapPrep. For the Random
Alignment selection analysis only, the reads were then split into separate files based on the number of
alignments per read, and the random_read selection.R script from the SmartMap-analysis GitHub
repository was used to randomly select one alignment per read. These datasets were then used
in the SmartMap software with the score set to -60.6. For the iteration 0 dataset, the number of
reweighting cycles was set to zero; for the Random Alignments analysis, the number of reweighting

cycles was set to one.

COMPARISON TO UNIREAD

The simulated dataset was aligned with Bowtie2 per the settings used for SmartMap, with
the modification that no value was specified for the option -k. Unireads were then parsed from
the output SAM file by selecting for reads with MAPQ scores of: 3, 8, 23, 24, 40, 42; these are
the MAPQ scores that are assigned to unireads by Bowtie2!”?. Reads were then parsed as per
SmartMapPrep into a single extended BED file. This file was then used for SmartMap with one

iteration, a minimum score of -60.6 and a maximum of one alignment per read.
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Statistical Analyses

Statistical analysis for Fig. 5.18C was conducted first with chi-square analysis on full contingency
table and with post-hoc tests on collapse contingency tables as follows. For each of the datasets in
Fig. 5.18C, chi-square test for goodness-of-fit was conducted on the corresponding contingency
table presented in Tables 4-6. The p-value for each of these tests was p < 2.2210716 and, accord-
ingly, post-hoc tests were conducted. The post-hoc tests consisted of collapsing each contingency
table into a set of 2x2 contingency tables with the cluster of interest and family/type of interest
compared to all other clusters and/or all other families within the contingency table. Chi-square
goodness-of-fit tests were then conducted on each of these 2x2 contingency tables, and the p-values
were Bonferroni corrected to adjust for the number of tests. These adjusted p-values for each 2x2
contingency table test were used to label the graphs in Fig. 5.18C as follows: *p < 0.01, **p < 1075,
wery < 10710,

Statistical analysis on Fig. 5.18D was conducted to compare median average normalized
RNA-seq depth by cluster. Because the difference between cluster 3 and all of the other clusters
appeared to be the most biologically meaningful, only pairwise comparisons were conducted be-
tween cluster 3 and the other clusters to limit the number of statistical comparisons and, accordingly,
the degree of Bonferroni correction needed. Mood’s median tests were solely conducted as pair-
wise comparisons between cluster 3 and each of the other clusters with Bonferroni correction to
p-values with n=3 for Bonferroni correction. The adjusted p-values for each of these comparisons

was p < 2.221071¢ and was marked appropriately on the graph.
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CHAPTER 6: CONCLUSION

Histone modifications are critical epigenetic regulators, with important roles in maintaining tran-
scriptional programs and, ultimately, helping to drive cellular identity and differentiation — or a lack
thereof. To study these important marks, it is critical to be able to accurately and quantitatively
measure their genomic distributions in order to identify the features with which they associate and
to observe their changes across developmental or pathological states. Chromatin immunoprecip-
itation, as the method of choice for this task, is a powerful tool for probing the localization of a
given histone modification genome-wide, but its canonical implementation has many problems that
impact its accuracy and interpretability. The antibody employed may be of uncertain quality. The
fragmentation and pulldown procedure may not enable high-quality IPs even with a highly specific
antibody. The relative nature of traditional ChIP data may make it difficult to compare difterent cell
types or cells with different treatment conditions. The next-generation sequencing backend may
be unable to cover a large portion of the genome. As we have discussed through this work, these
issues are all prevalent in the field and frequently result in major problems of interpretation that are
often sufficiently severe to compromise the ultimate biological conclusions. Though ICeChIP can
alleviate some of these problems, even it has limitations, and it is not yet universally employed. In
this final chapter, we discuss some of the salient conclusions from this work and their implications

for future practice.

Antibody specificity
In Chapter 2, we have primarily focused on the question of antibody specificity, its measurement,
and the impacts of low-quality antibodies on interpretation and divination of biological meaning.

We chose to focus on antibodies targeting the different methylation states of histone H3K4 — namely,
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H3K4mel, H3K4me?2, and H3K4me3. These different modifications are highly chemically similar;
the methylation reaction consists of the replacement of a proton with a methyl group, a change that
is charge-neutral and physically small in the context of the entire nucleosome (or even a small frag-
ment therein). But despite this chemical similarity, these modifications have each canonically been
associated with distinct functions, with H3K4mel being held to mark enhancers'®!%13! H3K4me2
being held to mark transcription factor binding sites!*®, and H3K4me3 being held to mark tran-

17.2092-94.102.132 " amongst many other proposed paradigms. Given that

scriptionally active promoters
many of these conclusions were driven by chromatin immunoprecipitation, the question was whether
antibodies could actually specifically discriminate between these highly similar modifications.

Fortunately, it seems that some antibodies were actually capable of this task. Though many
antibodies displayed low specificity, there were many antibodies that were specific towards each
methylform (Fig. 2.5). However, the most commonly used antibodies were often of low quality
(Tables 2.1-2.4), including many employed (at great expense) by the ENCODE consortium in a
broad variety of cellular contexts (Fig. 2.2-2.3). This is likely because of inadequate screening
and antibody validation criteria. Most antibody validation procedures for ChIP involve screening
by peptide arrays!%!110:112.129.193 "4y no small part because they provide the ability to screen a large
number of modifications and combinations therein on a single plate (Fig. 2.9). However, as we
showed, specificities measured by this method have little correlation with ChIP specificity (Fig.
2.7-2.8), making them less useful for validation of purported ChIP-grade antibodies.

This problem is not merely one of idle curiosity; low-quality antibodies have a demonstrable
and material impact on ChIP-seq profiles. We showed that the antibodies with considerable oft-

target binding had excess pulldown relative to high-specificity antibodies, by developing and using

a novel Fourier transform-based shape analysis method, had markedly different shapes of peaks
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as compared to high-specificity antibodies (Fig. 2.10). These differences ultimately compromised
the biological interpretations; as we highlighted, several studies employing low-quality antibodies
came to conclusions that ultimately did not hold up to scrutiny with high-quality antibodies (Fig.
2.13-2.15). That is, ultimately, the cost of low specificity in the antibody reagents employed, and it
is why the use of high-quality antibodies is of paramount importance for the field moving forward.

In recent years, particularly following the publication of our study on H3K4 methylation
state antibodies'**, some antibody manufacturers and purveyors have begun employing nucleo-
some standard validation for their ChIP grade antibodies to validate their specificity for such an
application; this is certainly an improvement in the field and one that should be employed by more
manufacturers. However, even then, differences in ChIP conditions may result in differences in
antibody specificity, and our work strongly suggests that researchers should take care to validate

their own antibodies within the context in which they are employed.

Pulldown procedures
A high-quality antibody is necessary for a high-quality ChIP pulldown, but it is by no means
sufficient. The other important factor in the specificity of the pulldown is the protocol employed. In
Chapter 3 and Chapter 4, we describe the development of different pulldown protocols with distinct
goals and advantages not afforded by traditional ChIP methods.

In Chapter 3, we developed a new pulldown protocol for sequential ChIP, in which the
eluent of one IP is used as the substrate for a secondary IP. Here, we can already see the impact
of the procedure on the IP quality; even when using the same high-quality antibodies, previously

published sequential ChIP protocols had extremely low efficiency and often had low specificity (Fig.
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3.1A), particularly as compared to the method that we developed involving a cleavable antibody
(Fig. 3.2-3.3).

An even more dramatic representation of this protocol-dependent specificity change is found
in Chapter 4, in which we examine the impact of different fragmentation and denaturation methods
on the specificity and enrichment of the resulting pulldown. Indeed, the entire premise of this section
is that native pulldown protocols are inadequate for assessing internal modifications, meaning that
denaturative protocols are necessary. And as we observed, many of the denaturation methods,
including sonication and many chemical denaturation methods, demonstrate high variability and
low specificity (Fig. 4.5-4.7). It is only by employing thermal denaturation that we were able to
achieve robust and specific pulldowns of the internal modification H3K79me2 (Fig. 4.8). This
came at the cost of facile calibration (Fig. 4.11-4.12), but nonetheless enabled new inquiries into
MLL-rearranged leukemias.

The ultimate takeaway from these studies is that the protocol employed matters considerably
for the pulldown quality, and it is difficult to predict a priori whether a particular method will work or
not. For example, it would not be unreasonable to hypothesize that any of the chemical denaturation
methods employed in Fig. 4.7 would result in adequate denaturation of the nucleosome and a high-
quality pulldown,; it just so happened that this was not true. Ultimately, it is difficult to know for
certain whether an IP method is actually viable or not, making it all the more critical to use internal

standards to validate the method in situ.

Calibration
The other major reason to use internal standards to validate the method is for the purposes of

calibration. Normalization and calibration to an exogenous reference is what enables comparisons
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of ChIPs conducted in different cell types or in cells with different treatment conditions that can
result in global changes in modification abundance. This exogenous reference does not, strictly
speaking, have to be a set of semisynthetic nucleosome standards — as we showed in Chapter 4,
the proper protocol can enable use of exogenous native chromatin as the normalization reference
(Fig. 4.10). However, internal standards carry the advantage of enabling specificity measurement
and making it possible to calibrate the experiment (particularly in native ICeChIP) to measure the
histone modification density, enabling comparison of different IPs.

This calibration is consistently critical throughout this work. In Chapter 2, we find that
previous studies about H3K4me3 at enhancers have been potentially flawed because of inadequate
ability to compare H3K4mel and H3K4me3 levels without the use of internal standard calibration
(Fig. 2.13). This can also be detrimental to the ability to detect true differences; previous work on
changes in H3K4mel in cells with catalytically dead MLL3/MLL4 showed only a blunted change in
H3K4mel levels as compared to wild type cells, whereas [CeChIP revealed a much more pervasive
loss of the same (Fig. 2.14). Similarly, and relevant to Chapter 4, Orlando et al. previously showed
that exogenous reference normalization is necessary to detect global changes in H3K79me?2 levels
in response to treatment with Dot1L inhibitor'?%, which we also find (Fig. 4.14).

However, the best example in this work on the importance of calibration for interpreta-
tion is presented in Chapter 3. The bivalency hypothesis was fundamentally based on finding
regions that had both enrichment for H3K4me3 and H3K27me3, as measured by independent tradi-
tional ChIPs®'3°. This is already problematic for H3K4me3 without the use of calibration, but this
modification is at least distributed in a relatively peak-like manner, so regions with high absolute
amounts of H3K4me3 are also likely to have high relative amounts of the same. This is not true for

H3K27me3; this modification is both abundant and broadly distributed; as such, the regions with a
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higher-than-baseline level of H3K27me3 (which will be the only ones detected without calibration)
represent only a fraction of the H3K27me3 in the genome and ignore the remainder. To use an
analogy, this can be though of as being similar to a forest, with some trees in the forest standing
high above the canopy. Traditional ChIP methods, which only can find regions with relatively high
amount of modification, would only detect these tallest trees and conclude that these are the only
regions in which trees exist; calibration allows for the recognition that there are trees of different
heights everywhere.

This was ultimately the problem for the bivalency hypothesis; because they only looked at
regions with high H3K27me3 over baseline, previous studies were only able to identify a fraction
of the regions of the genome that bear bivalent histone modifications (Fig. 3.6). Further, without
the benefits of calibration, previous studies were unable to accurately compare bivalency levels in
different cell types, meaning that they were unable to find that bivalency actually increased across
differentiation rather than resolving (Fig. 3.4). There are other issues with the canonical bivalency
hypothesis, as we explored in Chapter 3, but the fundamental problem in identifying bivalent regions
boils down to a lack of calibration.

Calibration is not just useful for avoiding errors. As a quantitative metric, it also enables
quantitative modeling to better study the impact of these modifications. In Chapter 2, for example,
we used the quantitative measurements of H3K4mel, H3K4me2, and H3K4me3 to conduct mod-
eling showing that the sum of HMDs of enhancers contacting a promoter is more associated with
transcriptional control than is the average HMD (Fig. 2.12), suggesting that these enhancers may
operate in concert with each other. Similarly, in Chapter 3, we use our quantitative ICeChIP data
to predict DEG status and show that bivalency contributes minimal information content to such an

endeavor. In Chapter 4, we use our quantitative data to identify differentially modified loci, which
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we ultimately use as a comparison point against DEGs in MLL-rearranged leukemias. These are all
tasks that would have been essentially impossible to conduct without quantitative data and is only
possible because of the insights afforded by ICeChIP.

Collectively, this work shows both the dangers of using uncalibrated data to attempt to
develop biological paradigms and shows the power of calibration to enable new quantitative analyses

into the role of histone modifications in a broad range of contexts.

Next-generation sequencing read alignment

The final area that this work focuses on is the backend of the modern ChIP experiment: next-
generation sequencing and its analysis. The most common method for handling reads that align to
more than one locus in the genome is to systematically discard such ambiguously mapped reads.
The rationale is that this ensures that the reads that remain are properly mapped, which is a fair
concern, but it also results in systematic undersampling of less-mappable and highly repetitive
regions of the genome (Fig. 5.2, 5.5). For obvious reasons, ignoring such a large portion of the
genome is potentially problematic and, as we show, results in many repetitive regions being poorly
mapped (Fig. 5.20-5.21).

To address this problem, we developed SmartMap**°, a tool that uses Bayesian reweighting
of alignments to allocate reads of peak-type data that map ambiguously based on the distribution of
the other reads in the dataset. This method successfully increased read depth genome-wide by up to
50% (Table 5.1-5.2), particularly at regions with lower mappability (Fig. 5.5), ultimately enabling
new analyses of histone modification status and chromatin accessibility at repetitive elements (Fig.

5.18-5.21). SmartMap uses a dual-binary indexed tree structure for efficient updates and query of
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the data, resulting in considerably greater efficiency and accuracy than other methods of multiread
allocation (Table 5.8).

SmartMap represents a powerful tool for more completely using sequencing data to get a
more truly genome-wide analysis. However, there are several directions in which SmartMap can be
improved in the future. First, as we showed, it is currently not particularly useful for RNA-seq data
(Fig. 5.17), in no small part because the algorithm is not compatible with large gaps such as those
caused by introns; further tuning of the algorithm can address this problem. Further, SmartMap is
presently not usable for trans-contact methods such as microC for a similar reason. This method
can be adapted to this end, but would likely require modeling both of the contact probability as
a function of distance as well as the modeling of the read distribution, adding another layer of
complexity to the analysis. Nonetheless, there is nothing that, in principle, prevents the binary

indexed tree data structures of SmartMap from being applied for these methods.

Significance

The problems with traditional ChIP-seq represent an existential problem for the field of molecular
biology, and this work highlights the importance of using accurate and quantitative methods. As
we emphasized repeatedly, many of the problems that are highlighted here occurred through no
fault of the scientists conducting the previous studies; at the time, the tools that we can now use
for better ChIP and ChIP-seq analysis simply did not exist, and the experimental design decisions
employed in that historical context are reasonable. However, with the advent of new tools such as
ICeChlIP, and the broader availability of internal standards for experimental contexts more broadly,
it is essential that the field changes its practices and raises its standards for data quality wholesale.

Without such improvements, researchers will continue to make unreliable measurements, and they
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will continue to draw incorrect conclusions from those data. But by employing the methods that are
now available, researchers can make high-quality, quantitative measurements, and can ultimately
use those data to drive new insights into the role of histone modifications. To not raise the standards

of data quality where it is now possible is to forego those valuable opportunities for discovery.
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APPENDIX A: ICECHIP PARAMETERS

This section lists antibody and chromatin used for the ICeChIP experiments in each data chapter.

Supplier Abbreviations
AB = Abcam; ABC = Abclonal; AM = Active Motif; CST = Cell Signaling Technologies; DIA =
Diagenode; EMD = EMD Millipore; EPC = Epicypher; EPG = EpiGentek; KL = Koide Lab; REV

= RevMADb; TF = Thermo Fisher.

Experiments from Chapter 2

Table A.1: ICeChIP Parameters from Chapter 2.

Target Antibody ID Antibody (ng) Beads (uL) Chromatin (png)
EMD 05-1341
H3K4me0 Lot 2453179 3 12.5 3
AB 8895

H3K4mel Lot GR305231-1 3 12.5 3
ABC A2355

H3K4mel Lot 46694 3 12.5 3
ABC A2355

H3K4mel Lot 46695 3 12.5 3
AM 39297

H3K4mel Lot 01714002 3 12.5 3
AM 39297

H3K4mel Lot 21008001 3 12.5 3
AM 39635

H3K4mel Lot 30615011 3 12.5 3

H3K4mel CST 5326 3 125 3

Lot 1
H3K4mel CST 5326BF 3 12.5 3
Lot 2
DIA C15310037
H3K4mel Lot A399-001 3 12.5 3

Table A.1 continues on next page.
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Table A.1, continued:

Target Antibody ID Antibody (ng) Beads (uL) Chromatin (ng)
okamer | DIACIS410057 ; 23 :
H3K4mel DIIitCAIf gégﬁ)% 3 12.5 3
Hokamer | PIACIS410194 ; 23 ;
H3K4mel Lo]tzll\)/[fh%égg% 3 12.5 3
H3K4mel Epfof‘gz)%éls'g 30 3 12.5 3
H3K4mel RL?;_ 5'11_832'1050 3 12.5 3
H3K4mel LoTtFQ7leO3709 6503 3 12.5 3
H3K4mel L;I;'lzzofgzi , 3 12.5 3
H3K4me2 Lo t‘g{;ﬁgg 0.0 3 12.5 3
H3K4me2 Lot é§2787966627-1 3 12.5 3
H3K4me2 Aﬁf 422639566 3 12.5 3
H3K4me2 ALIi f 2263;6 3 12.5 3
ke | AMIUL ; 123 ;
H3K4me2 Lil\fgl%% . 3 12.5 3
H3K4me2 CSLTO?;% 3 12.5 3
H3K4me2 DI‘EO(E 3)321??11 > 3 12.5 3
okame | DIACIS3I003s ; 123 ;
e | ; 125 ;
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Table A.1, continued:

Target Antibody ID Antibody (ng) Beads (uL) Chromatin (ng)
H3K4me2 Eﬁ\;{:}zg;llﬁg 3 12.5 3
H3K4me2 Lo?glz?l\/([) 17;1%%03 3 125 3
H3K4me2 g’tcl 24—1(;%1)31 3 12.5 3
H3K4me2 EPSO‘:_\Z(‘)?,’%'S 30 3 12.5 3
H3K4me2 1 g;%bllo 1064 1216 3 125 3
H3K4me2 LOTtFQ7Ll203709 660 - 3 12.5 3
H3K4me2 LOTtFQ7LZ202067§63 3 12.5 3
H3K4me3 Lo tAGliég?;g 0-1 3 12.5 3
H3K4me3 Lot 2;895(?202 0.1 3 12.5 3
HiKemes | | ABSSO ; 123 ;
H3K4me3 ALli(t: 4;22639587 3 12.5 3
H3K4me3 A]i(tj fé;? 3 12.5 3
H3K4me3 L(il\f;;é%% 5 3 12.5 3
H3K4me3 Lﬁf; 46611353)% ; 3 12.5 3
H3K4me3 CSLTO ?;27 3 12.5 3
H3K4me3 CSLTO ?;51 3 12.5 3
H3Kdme3 | Dl Ciaddl? 3 12.5 3
e | DACSE ; 123 ;
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Table A.1, continued:

Target Antibody ID Antibody (ng) Beads (uL) Chromatin (ng)
DIA C15410003
H3K4me3 Lot A5051-001P 3 12.5 3
EMD 05-745R
H3K4me3 Lot 2813867 3 12.5 3
EMD 07-473
H3K4me3 Lot DAM1623866 3 12.5 3
EPC 13-0004
H3K4me3 Lot 13171001 3 12.5 3
EPG A-4033-050
H3K4me3 Lot 606361 3 12.5 3
REV 31-1039-00
H3K4me3 Lot P-09-00676 3 12.5 3
TF PA5-40086
H3K4me3 Lot RL2301825 3 12.5 3
KL 304M3B
H3K4me3 Lot 040416AG 3 60 3
KL 309M3B
H3K9me3 Lot 072913TH 0.5 10 3
Experiments from Chapter 3
Table A.2: ICeChIP Parameters from Chapter 3.
Target Antibody ID Antibody (ng) Beads (uL) Chromatin (pug)
KL 304M3B-1xHRV3C
H3K4me3 Lot 103015AG 3 60 3
KL 309M3B
H3K9me3 Lot 072913TH 0.5 10 3
H3K27me3 CST 5326 0.6 5 0.8
Lot 8
H3K4me3 | KL 304M3B-1xHRV3C 3 60 3
(relCeChlIP) Lot 103015AG
H3K27me3 CST 5326 0.6 5 Eluent of
(reICeChlP) Lot 8 ' H3K4me3 IP
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Experiments from Chapter 4

Table A.3: ICeChIP Parameters from Chapter 4.

Target Antibody ID Antibody (ng) Beads (uL) Chromatin (png)
EPC 13-0001
H3 CTD Lot 12346001 3 12.5 3
EMD 05-928
H3 CTD Lot 2676583 3 12.5 3
AM 39159
H3K4me3 Lot 12613005 3 12.5 3
H3K27me3 CST 5326 0.6 5 0.8
Lot 8
AB 3594
H3K79me2 Lot GR173874 3 12.5 3
H3K79me2 CST 5427
(AR19 only) Lot 4 3 12.5 3
Experiments from Chapter 5
Table A.4: ICeChIP Parameters from Chapter 5.
Target Antibody ID Antibody (ng) Beads (uL) Chromatin (pug)
H3K27me3 CST 5326 0.6 5 0.8
Lot 8

245




APPENDIX B: NUCLEOSOME BARCODE SEQUENCES

This section lists the sequences of the barcoded DNA applied to the nucleosome standards for use

in ICeChlIP.

601 _CXXX Sequences

The 601 CXXX sequences are based on the Lowary and Widom 601 nucleosome binding se-

quence'®® with one barcode.

Table B.1: 601 CXXX nucleosome barcode sequences.

Barcode ID Sequence

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGCGCATAATAATCGCGC
GATTTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGTCGACGATCGTCGAA
TCGTTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTATACGCGTCGACGATTC
GCGTTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGCGTAATCGTTTCGAC

GCGTTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTTAACGTCGCGCGTTCGA
ACGTTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTTTCGTACGCGCGACG
TAATTC

601_C002

601 C005

601_CO008

601 _C009

601_C010

601 CO13

Table B.1 continues on next page.
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Table B.1, continued:

Barcode ID

Sequence

601 _CO014

601 _CO015

601 _CO017

601 _CO019

601 C021

601 C022

601_C025

601 _C026

601 C028

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGCGTATACGTACGCGC
GAATTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGCGTAATACGCGCGAAA
TTCGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTACGAAACGCGTTAAC
GTCGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTTACGCGTACCAACGCGT
ATCGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGGTACGCTATCGTACG
ATCGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACGCGTATACGAATTT
CGCGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTATCGCGTCGAGTGATAT
CGCGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGCGTAATCGATACGTTA
CGCGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTATTCGCGCGATCGCGAT
TACGTC

Table B.1 continues on next page.
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Table B.1, continued:

Barcode ID

Sequence

601 _C029

601 _CO031

601 _C032

601 _C033

601 C034

601_C037

601 CO038

601_C039

601_C040

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGATTACGCGAACGATTC
GACGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTAGCGTACCGACGACGTT
AACGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCATCGTCGACGAACGTTCG
AACGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGAATCGACGATAGTTCG
CGACTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGCGACGTTAACGCGATA
TCACTC
CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGCGTATCGGTCGCGTAA
CGTATC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACGAACGGTGTCGCGA
ACTATC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGAACGGTCGTTTCGCGC
GATATC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCCGACGATCGTACGACGC
GATATC

Table B.1 continues on next page.
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Table B.1, continued:

Barcode ID

Sequence

601 C041

601_C042

601 _C043

601 C044

601 _C046

601_C047

601_C049

601_CO051

601 C052

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACGTACCGTTTACGCG
TCGATC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTACGACGCTACGAACG
TCGATC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCCGCGCGATATTTTCGTC

GCGATC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGCGCGACATCGTAATC
GCGATC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGCGTATTCGGTTCGTAC

GCGATC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGATCGTCGGCGATCGT
ACGATC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACGTATCGGCGATACG
ACGATC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACGTAACGGACGCGAA
ACGATC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCACGACCGTTCGCGTCGCG
TTAATC
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Table B.1, continued:

Barcode ID

Sequence

601 _C054

601_CO055

601 _C056

601_C058

601 _C060

601 C061

601 C062

601 _C063

601_CO066

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCTCGTTCGTCGTTCGCGC
GTAATC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCACCGTTCGTCGTCGACGC
GTAATC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTACGTCCGTCGCGACGCG
ATAATC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCACGGTACGTCGTTACGCG
CGAATC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGCACGATCGCGCGATA
CGAATC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGCCGAATCGACGCGTC
GAAATC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTATGCGTCGCGTCGCGAC
GAAATC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCATATCGCGCGCGTATCG
CGGTTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCCGAATACGCGTCGACGA
CCGTTC
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Table B.1, continued:

Barcode ID

Sequence

601_C067

601 _C068

601 _C070

601_C071

601_C073

601_C075

601_C076

601_C077

601 CO078

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGTACGACCGCGGTCGA
ACGTTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCAGCGTCGTACGTCGCGAC
GAGTTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACCGATACGCGCGGTA
CGATTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTTCGAGCGACGCGGCGTA
CGATTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCGACGCGTAACGCCGCGCG
TAATTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACGAACGAGTCGTATC
GCGGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTTACGCGTCTTATCGC

GCGGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTAACGTCGCGCATTACGC
GCGGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTACGCTCGGACTATACGC
GCGGTC
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Table B.1, continued:

Barcode ID

Sequence

601 _CO079

601_C080

601 CO081

601 _C082

601 C083

601 C084

601_C085

601 _C086

601 C087

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTCGTTCGACACGACGT
ACGGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCGCGCGACGTTACGATTCG
ACGGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTGTCGCGCGTATACGCTC
GTCGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCGTCCGAGCGTAGTATCGC
GTCGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGCGACCGTAGTTACGC
GTCGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACGGACGTACGTATCC
GTCGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGCGACGCATAGCGTTAC
GTCGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCTACGCGTCGACGCGTTA
GTCGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCCGACGATCGATCGGCGT
ATCGTC
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Table B.1, continued:

Barcode ID

Sequence

601 _CO088

601 _C089

601 _C090

601 C091

601 _C092

601 _C093

601_C094

601_C096

601 C097

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGATCGTGCGACGCGACT
ATCGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGATTCGGCGATGCGACG
ATCGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTACGGTCGCGACCGTCGA
ATCGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCATGTCGCGCGACGCGTCA
ATCGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGGTCGTACGACGCGATA
TGCGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTACGCGCGACACGTAATC
GGCGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTCGCTCGAATATCGGT
CGCGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGCGTTACGCGCGATAGT
CGCGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGCGTAACGCGGTCGTAT
CGCGTC
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Table B.1, continued:

Barcode ID Sequence

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGGTACGCGCCGGATAT
CGCGTC

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCCGTCGAACGCCGCATAT
CGCGTC
CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCGCGCGTACCGATACCGAT
CGCGTC

601 _C098

601_C099

601 _C100

C001_CXXX Sequences
The C001_CXXX sequences are based on the Lowary and Widom 601 nucleosome binding se-

quence'®® with two barcodes.

Table B.2: 601 CXXX nucleosome barcode sequences.

Barcode ID Sequence

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGTCGATTCGACGCGAA
TCGTTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTATACGCGTCGACGATTC
GCGTTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGCGTAATCGTTTCGAC

GCGTTC

C001_C006

C001_C008

C001_C009
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Table B.2, continued:

Barcode ID

Sequence

C001_C010

C001_CO11

C001 _Co014

C001_CO015

C001_CO016

C001_CO017

C001 _CO018

C001_C019

C001_C022

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTTAACGTCGCGCGTTCGA
ACGTTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTATTACGCGAATCGCG
CGATTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGCGTATACGTACGCGC
GAATTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGCGTAATACGCGCGAAA
TTCGTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCGATAGTCGACGTTATCGC
GTCGTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTACGAAACGCGTTAAC
GTCGTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTCGACTATCTCGTCGT

ATCGTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTTACGCGTACCAACGCGT
ATCGTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACGCGTATACGAATTT
CGCGTC
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Table B.2, continued:

Barcode ID

Sequence

C001_C023

C001_C024

C001_C025

C001_C028

C001_C029

C001_C030

C001_C032

C001_C034

C001_C035

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGACGCGATAATTACGT
CGCGTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGCGCGAATATTCGTAT
CGCGTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTATCGCGTCGAGTGATAT
CGCGTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTATTCGCGCGATCGCGAT
TACGTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGATTACGCGAACGATTC
GACGTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTATACGCGATTAACGC
GACGTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCATCGTCGACGAACGTTCG
AACGTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGCGACGTTAACGCGATA
TCACTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCGGTACGCGTAACGCGTCG
ATTATC
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Table B.2, continued:

Barcode ID

Sequence

C001_CO036

C001_C037

C001_C038

C001_C039

C001_C040

C001_Co041

C001_C042

C001_C043

C001 C044

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGCGACGTAAATTCGCG
CGTATC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGCGTATCGGTCGCGTAA
CGTATC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACGAACGGTGTCGCGA
ACTATC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGAACGGTCGTTTCGCGC
GATATC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCCGACGATCGTACGACGC
GATATC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACGTACCGTTTACGCG
TCGATC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTACGACGCTACGAACG
TCGATC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCCGCGCGATATTTTCGTC

GCGATC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGCGCGACATCGTAATC
GCGATC
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Table B.2, continued:

Barcode ID

Sequence

C001_C047

C001_C048

C001_C049

C001_C050

C001_C051

C001_C052

C001_C053

C001_C055

C001_C056

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGATCGTCGGCGATCGT
ACGATC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCACGATCGTCGGTCGTTCG
ACGATC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACGTATCGGCGATACG
ACGATC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCATATCGCGCGGTCGTCGA
ACGATC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACGTAACGGACGCGAA
ACGATC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCACGACCGTTCGCGTCGCG
TTAATC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTATCGGTCGCGATCGC
GTAATC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCACCGTTCGTCGTCGACGC
GTAATC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTACGTCCGTCGCGACGCG
ATAATC
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Table B.2, continued:

Barcode ID

Sequence

C001_C057

C001_C058

C001_C060

C001_Co061

C001_C063

C001_Co064

C001_CO065

C001_C066

C001_C070

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCCGTTACGTCGTATCGCG
CGAATC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCACGGTACGTCGTTACGCG
CGAATC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGCACGATCGCGCGATA
CGAATC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGCCGAATCGACGCGTC
GAAATC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCATATCGCGCGCGTATCG
CGGTTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTATAGCGCGCCGTACG
TCGTTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCACCGATACGCGTAGCGAC
GCGTTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCCGAATACGCGTCGACGA
CCGTTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACCGATACGCGCGGTA
CGATTC
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Table B.2, continued:

Barcode ID

Sequence

C001_C071

C001_C072

C001_C073

C001_C074

C001_C075

C001_C077

C001_C079

C001_Co081

C001_C082

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTTCGAGCGACGCGGCGTA
CGATTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCGTCGAACGACGCGGTCGA
CGATTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCGACGCGTAACGCCGCGCG
TAATTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGACGCGTAGCGCGACG
CAATTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACGAACGAGTCGTATC
GCGGTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTAACGTCGCGCATTACGC
GCGGTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTCGTTCGACACGACGT
ACGGTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTGTCGCGCGTATACGCTC
GTCGTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCGTCCGAGCGTAGTATCGC
GTCGTC
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Table B.2, continued:

Barcode ID Sequence

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGCGACGCATAGCGTTAC
GTCGTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGATTCGGCGATGCGACG
ATCGTC
GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTACGGTCGCGACCGTCGA
ATCGTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCATGTCGCGCGACGCGTCA
ATCGTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGGTCGTACGACGCGATA
TGCGTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCTACGCGCGACACGTAATC
GGCGTC

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC
TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG
CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTCGCTCGAATATCGGT
CGCGTC

C001_CO085

C001_C089

C001_C090

C001_C091

C001_C092

C001_C093

C001_C094

MMTV_CXXX Sequences

The MMTV_CXXX sequences are based on the mouse mammary tumor virus (MMTV) long

)288

terminal repeat (LTR)~*® with one barcode.

261



Table B.3: MMTV_CXXX nucleosome barcode sequences.

Barcode ID

Sequence

MMTV_C001

MMTV_C002

MMTV_C003

MMTV_C004

MMTV_C005

MMTV_C006

MMTV_C007

MMTV_C008

MMTV_C009

GAAACGCGTATCGCGCGCATAATACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GAAATCGCGCGATTATTATGCGCGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GAACGAACGTCGAACGCGCGATATCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GAACGACGCGATAATATCGCGCGTCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GAACGATTCGACGATCGTCGACGACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GAACGATTCGCGTCGAATCGACGACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GAACGCGAAACGACGAATCGCGTACTCTTGTGTGTTTGTGTCTGTTC
GCCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCC
CCCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTT
TTTTG

GAACGCGAATCGTCGACGCGTATACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GAACGCGTCGAAACGATTACGCGACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG
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Table B.3, continued:

Barcode ID

Sequence

MMTV_C010

MMTV_CO11

MMTV_CO012

MMTV_C013

MMTV_C014

MMTV_CO015

MMTV_C016

MMTV_C017

MMTV_CO018

GAACGTTCGAACGCGCGACGTTAACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GAATCGCGCGATTCGCGTAATACGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GAATTACGCGCGACGCGTAATCGACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GAATTACGTCGCGCGTACGAAACGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GAATTCGCGCGTACGTATACGCGACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGAATTTCGCGCGTATTACGCGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGACGCGATAACGTCGACTATCCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGACGTTAACGCGTTTCGTACGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGATACGACGAGATAGTCGACGCTCTTGTGTGTTTGTGTCTGTTC
GCCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCC
CCCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTT
TTTTG

Table B.3 continues on next page.

263




Table B.3, continued:

Barcode ID

Sequence

MMTV_C019

MMTV_C020

MMTV_C021

MMTV_C022

MMTV_C023

MMTV_C024

MMTV_C025

MMTV_C026

MMTV_C027

GACGATACGCGTTGGTACGCGTAACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGATCGCGTAATACGCGATTCGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGATCGTACGATAGCGTACCGACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGCGAAATTCGTATACGCGTCGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGCGACGTAATTATCGCGTCGACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGCGATACGAATATTCGCGCGACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGCGATATCACTCGACGCGATACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGCGTAACGTATCGATTACGCGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGCGTCGATTATCGCGACGTAACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG
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Table B.3, continued:

Barcode ID

Sequence

MMTV_C028

MMTV_C029

MMTV_C030

MMTV_C031

MMTV_C032

MMTV_C033

MMTV_C034

MMTV_C035

MMTV_C036

GACGTAATCGCGATCGCGCGAATACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGTCGAATCGTTCGCGTAATCGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGTCGCGTTAATCGCGTATACGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGTTAACGTCGTCGGTACGCTACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGTTCGAACGTTCGTCGACGATCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GAGTCGCGAACTATCGTCGATTCGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GAGTGATATCGCGTTAACGTCGCGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GATAATCGACGCGTTACGCGTACCCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GATACGCGCGAATTTACGTCGCGACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG
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Table B.3, continued:

Barcode ID

Sequence

MMTV_C037

MMTV_C038

MMTV_C039

MMTV_C040

MMTV_C041

MMTV_C042

MMTV_C043

MMTV_C044

MMTV_C045

GATACGTTACGCGACCGATACGCGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GATAGTTCGCGACACCGTTCGTCGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GATATCGCGCGAAACGACCGTTCGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GATATCGCGTCGTACGATCGTCGGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GATCGACGCGTAAACGGTACGTCGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GATCGACGTTCGTAGCGTCGTACGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GATCGCGACGAAAATATCGCGCGGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GATCGCGATTACGATGTCGCGCGACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GATCGCGCGTAATCATATCGCGCGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG
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Table B.3, continued:

Barcode ID

Sequence

MMTV_C046

MMTV_C047

MMTV_C048

MMTV_C049

MMTV_C050

MMTV_C051

MMTV_C052

MMTV_C053

MMTV_C054

GATCGCGTACGAACCGAATACGCGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GATCGTACGATCGCCGACGATCGACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GATCGTCGAACGACCGACGATCGTCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GATCGTCGTATCGCCGATACGTCGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GATCGTTCGACGACCGCGCGATATCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GATCGTTTCGCGTCCGTTACGTCGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GATTAACGCGACGCGAACGGTCGTCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GATTACGCGATCGCGACCGATACGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GATTACGCGCGAACGACGAACGAGCTCTTGTGTGTTTGTGTCTGTTC
GCCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCC
CCCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTT
TTTTG
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Table B.3, continued:

Barcode ID

Sequence

MMTV_C055

MMTV_C056

MMTV_C057

MMTV_C058

MMTV_C059

MMTV_C060

MMTV_C061

MMTV_C062

MMTV_C063

GATTACGCGTCGACGACGAACGGTCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GATTATCGCGTCGCGACGGACGTACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GATTCGCGCGATACGACGTAACGGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GATTCGCGCGTAACGACGTACCGTCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GATTCGTACGCGACGACGTATCGGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GATTCGTATCGCGCGATCGTGCGACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GATTTCGACGCGTCGATTCGGCGACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GATTTCGTCGCGACGCGACGCATACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GAACCGCGATACGCGCGCGATATGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG
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Table B.3, continued:

Barcode ID

Sequence

MMTV_C064

MMTV_C065

MMTV_C066

MMTV_C067

MMTV_C068

MMTV_C069

MMTV_C070

MMTV_C071

MMTV_C072

GAACGACGTACGGCGCGCTATACGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GAACGCGTCGCTACGCGTATCGGTCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GAACGGTCGTCGACGCGTATTCGGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GAACGTTCGACCGCGGTCGTACGACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GAACTCGTCGCGACGTACGACGCTCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GAATCGCGGTACGCGTATAGCGCGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GAATCGTACCGCGCGTATCGGTCGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GAATCGTACGCCGCGTCGCTCGAACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GAATCGTCGACCGCGTCGTTCGACCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG
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Table B.3, continued:

Barcode ID

Sequence

MMTV C073

MMTV_C074

MMTV_CO075

MMTV_C076

MMTV_C077

MMTV_C078

MMTV_C079

MMTV_C080

MMTV_C081

GAATTACGCGCGGCGTTACGCGTCCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GAATTGCGTCGCGCTACGCGTCGACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACCGCGATACGACTCGTTCGTCGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACCGCGCGATAAGACGCGTAACGCTCTTGTGTGTTTGTGTCTGTTC
GCCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCC
CCCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTT
TTTTG

GACCGCGCGTAATGCGCGACGTTACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACCGCGCGTATAGTCCGAGCGTACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACCGTACGTCGTGTCGAACGACGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACCGTCGAATCGTAACGTCGCGCCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGACGAGCGTATACGCGCGACACTCTTGTGTGTTTGTGTCTGTTC
GCCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCC
CCCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTT
TTTTG
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Table B.3, continued:

Barcode ID

Sequence

MMTV_C082

MMTV_C083

MMTV_C084

MMTV_C085

MMTV_C086

MMTV_C087

MMTV_C088

MMTV_C089

MMTV_C090

GACGACGCGATACTACGCTCGGACCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGACGCGTAACTACGGTCGCGACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGACGGATACGTACGTCCGTCGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGACGTAACGCTATGCGTCGCGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGACTAACGCGTCGACGCGTAGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGATACGCCGATCGATCGTCGGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGATAGTCGCGTCGCACGATCGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGATCGTCGCATCGCCGAATCGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGATTCGACGGTCGCGACCGTACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG
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Table B.3, continued:

Barcode ID

Sequence

MMTV_C091

MMTV_C092

MMTV_C093

MMTV_C094

MMTV_C095

MMTV_C096

MMTV_C097

MMTV_C098

MMTV_C099

GACGATTGACGCGTCGCGCGACATCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGCATATCGCGTCGTACGACCGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGCCGATTACGTGTCGCGCGTACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGCGACCGATATTCGAGCGACGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGCGACGCAATCCGTCGAACGCCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGCGACTATCGCGCGTAACGCGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGCGATACGACCGCGTTACGCGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGCGATATCCGGCGCGTACCGACTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

GACGCGATATGCGGCGTTCGACGGCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG
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Table B.3, continued:

Barcode ID Sequence

GACGCGATCGGTATCGGTACGCGCCTCTTGTGTGTTTGTGTCTGTTCG
CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC
CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT
TTTG

MMTV_C100

MMS DXXX Sequences
The MMS DXXX sequences are based on the mouse minor satellite (MMS) sequence®® with one

barcode.

Table B.4: MMS DXXX nucleosome barcode sequences.

Barcode ID Sequence

ATGATATTCGTACCCGTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGATAACGTAGACCGTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGTAGTTCGTACGACTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT
ATGGAAGCGAACGTATTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT
ATGACGTCGACTATTATTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

MMS_D001

MMS_D002

MMS D003

MMS_D004

MMS_D005
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Table B.4, continued:

Barcode ID

Sequence

MMS_D006

MMS_D007

MMS D008

MMS_D009

MMS_DO010

MMS_DO11

MMS_D012

MMS_DO013

MMS_D014

ATGCGCGATTAGACTATTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGATGGTACGCGATTTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGTAGATCGCGTAAGTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGTCTAGTAACGACGTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGTTATACCTCGCGTTTTGTAGAACAGTGTATATCAATGAGTTACAA
TGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTAG
ATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACGA
ATGTGTTT

ATGAATACGCGCGTAATTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGGCGTTATCGTACATTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGTGTTTAGCGAACGTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGAGATTATCGACCGTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT
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Table B.4, continued:

Barcode ID

Sequence

MMS D015

MMS D016

MMS D017

MMS_DO018

MMS_DO019

MMS_D020

MMS_D021

MMS_D022

MMS_D023

ATGTATAGTACGCGTCTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

ATGTCTATTCGGCGTATTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGCGTCGATAACCTATTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGCTTCGATACGTAATTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGTCGTAACGCGAATTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGATCGCTCTAACGTTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGCTTATCGCGTTGATTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGTCGTTACGTCCTATTTGTAGAACAGTGTATATCAATGAGTTACAA
TGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTAG
ATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACGA
ATGTGTTT
ATGTGAACGTCGTAGTTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT
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Table B.4, continued:

Barcode ID

Sequence

MMS D024

MMS D025

MMS D026

MMS D027

MMS_D028

MMS_D029

MMS_D030

MMS_DO031

MMS_D032

ATGCGTTATACACGACTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGTCGTACGTTAGACTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT
ATGAACGACGGTACATTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGTACGACGTAAGGTTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGTACTATCGTCACGTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGACTACGCTACGATTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGTAATCGCGCTAACTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGATTTAGGCGTACGTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGTCGATAGCGTAAGTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT
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Table B.4, continued:

Barcode ID

Sequence

MMS_D033

MMS D034

MMS D035

MMS_D036

MMS D037

MMS_D038

MMS_D039

MMS_D040

MMS_D041

ATGCGCGTTAGATAGTTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGCGGTTACGCTATATTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT
ATGTATCGCTAACTCGTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGCGCGTAATAGTACTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGCGTACGCTATCTATTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT
ATGCCGCGAACTTATATTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGTTACAATACGCGCTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGTAGTTTACGCGAGTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT
ATGCTCGAATTGACGTTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT
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Table B.4, continued:

Barcode ID

Sequence

MMS D042

MMS D043

MMS D044

MMS D045

MMS_D046

MMS_D047

MMS_D048

MMS_D049

MMS_D050

ATGCGTCGTACTACATTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGCGTAATACCTACGTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGTCATTACGATCGCTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGGTAATGCGCGATATTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGCGCGAATACTAAGTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGTAACGTCCGGTAATTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGTATTCGTATCCCGTTTGTAGAACAGTGTATATCAATGAGTTACAA
TGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTAG
ATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACGA
ATGTGTTT

ATGTAGTAACGTCGAGTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGCCGTTATAGTACGTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT
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Table B.4, continued:

Barcode ID

Sequence

MMS D051

MMS D052

MMS D053

MMS D054

MMS D055

MMS_D056

MMS D057

MMS_D058

MMS D059

ATGGATAACGCGAAACTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGACGTAGGTATTCGTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT
ATGCGTACTTTAGACGTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGGAATACGCGAATCTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGCAGTATTCGCGTATTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

ATGCGTACTAATCGTCTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGGATCGCGTACTATTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGATACGCGATGTATTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGTTCAATACGCGACTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT
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Table B.4, continued:

Barcode ID

Sequence

MMS_D060

MMS D061

MMS D062

MMS_D063

MMS_D064

MMS_D065

MMS_D066

MMS D067

MMS_D068

ATGCGAAAGACGTATCTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGACGCCGTAATAGTTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGCGATCGCGTATTATTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGAGACCGATTAACGTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGGTTCGGACGTAATTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGAGATAGCGACGTATTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGTATAGTATCGCGATTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGATACTACGCCGATTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGTATCGCGAACTTATTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

Table B.4 continues on next page.

280




Table B.4, continued:

Barcode ID

Sequence

MMS_D069

MMS_D070

MMS D071

MMS D072

ATGCTATCGAGCGATATTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGACGTTCGAACTAGTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGTATCGAATACGGCTTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

ATGGCGAACGTAGTTATTTGTAGAACAGTGTATATCAATGAGTTACA
ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA
GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG
AATGTGTTT

Space Alien Sequences

The Space Alien (SA) sequences are synthetically designed.

Table B.5: Space Alien nucleosome barcode sequences.

Barcode ID

Sequence

S001

S002

S003

ATTAGCGACGTGATAATCTTTTAGACTACGTCGTGTCGCGTATAACC
CGACACGTAATCGACACTACGTCGACTACGACGTGTTAGTAAAATAC
GTCGCGATATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA
CTATTA

ATTAGCGACGTGATAATCTTCGTACTAAGACGTATCTAGCGCGATAC
CGACACGTAATCGACACTACGTCGACTATTCACGACGTATAACGTCG
TACTAACTATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA
CTATTA

ATTAGCGACGTGATAATCTTCGCGAGTAATAAGTACGCGAGATAGTC
CGACACGTAATCGACACTACGTCGACTATACGCGATACTCATAGTAT
TTCGCGATATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA
CTATTA
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Table B.5, continued:

Barcode ID

Sequence

S004

S005

S006

S007

S008

S009

S010

SO011

S012

ATTAGCGACGTGATAATCTTACGAATAACGCGTCGCTATACTTCGAC
CGACACGTAATCGACACTACGTCGACTATACGTCGTAGAGACTACGG
TCGATATTATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA

CTATTA

ATTAGCGACGTGATAATCTTATACGTAACCGGTAGACTTATACGCGC
CGACACGTAATCGACACTACGTCGACTACGAATTACGTCGTCGTATT
CGCGTTATATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA
CTATTA

ATTAGCGACGTGATAATCTTGATTACGACCGTTTATTCGCGAACCAC
CGACACGTAATCGACACTACGTCGACTAGATATATCGACCGTTACGT
TCGCGATTATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA
CTATTA

ATTAGCGACGTGATAATCTTCGCGTTAAGTATGCGAACCGTATAGAC
CGACACGTAATCGACACTACGTCGACTATCTTTTCGGCGTATAGACC
GCGAATATATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA
CTATTA

ATTAGCGACGTGATAATCTTTAGACGACCGAATTCTACTATTCGCGC

CGACACGTAATCGACACTACGTCGACTAACACTATCGCGAATTATGT
TCGGACGTATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA
CTATTA

ATTAGCGACGTGATAATCTTACGTACTACGATCTCGACGCGTAAAAC
CGACACGTAATCGACACTACGTCGACTAGTCGTATAACGGTAGTATA
CTCGCGATATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA
CTATTA

ATTAGCGACGTGATAATCTTCTTATTTCGCGTCACGACTAATTCCGCC
GACACGTAATCGACACTACGTCGACTAGACGTAGTTACGTTTGTATA
CCGCGATATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATAC
TATTA

ATTAGCGACGTGATAATCTTCGCTATACGAGAATAACGCGTCGTAAC
CGACACGTAATCGACACTACGTCGACTATAATCGCACGGTACATTAC
TCGCGAATATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA
CTATTA

ATTAGCGACGTGATAATCTTATAACGAGACCGAGTTCGCTTATACGC
CGACACGTAATCGACACTACGTCGACTAAGGTACGACGATAATCCTA
CGCGTAATATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA
CTATTA

Table B.5 continues on next page.
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Table B.5, continued:

Barcode ID

Sequence

S013

S014

S015

S016

S017

S018

S019

S020

S021

ATTAGCGACGTGATAATCTTCGATGTATCGTAGTCGGAGTACGTAAC
CGACACGTAATCGACACTACGTCGACTATCGTATACTCCGATTACGC
GACGTTATATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA
CTATTA

ATTAGCGACGTGATAATCTTCGTAACGCGTTTAGAGTATTCGTACGC

CGACACGTAATCGACACTACGTCGACTACGCGACGTATTATATAAGT
CGCGTACTATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA
CTATTA

ATTAGCGACGTGATAATCTTCCTTACGCGAATTCGAACTAATCACGC

CGACACGTAATCGACACTACGTCGACTATTCGCGATAGTGTACCGTA
AGTTCGTTATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA

CTATTA

ATTAGCGACGTGATAATCTTATGATACGTCCGATACGCGTATTCGTC
CGACACGTAATCGACACTACGTCGACTAAGTCAATACGCGATATAGA
CGTTGCGTATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA
CTATTA

ATTAGCGACGTGATAATCTTCGTACGAATTACCTTACCGTCGATTGCC
GACACGTAATCGACACTACGTCGACTACGTAATATCGAGGTACTACG
TCGAAATATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATAC
TATTA

ATTAGCGACGTGATAATCTTCATAACGGTTCGACGTACCGATGTAAC
CGACACGTAATCGACACTACGTCGACTATACATCGCGTCATCGCCGA
ACTATAATATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA
CTATTA

ATTAGCGACGTGATAATCTTACCATTACGCGATAACTACGCACGATC
CGACACGTAATCGACACTACGTCGACTAATACCGTCGTAATTTAGGT
CGTCGTATATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA
CTATTA

ATTAGCGACGTGATAATCTTTACGCGCACTAATGTATCGACCGTTAC
CGACACGTAATCGACACTACGTCGACTAGTCGTAACGTACTACGTCT
CGACATATATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA
CTATTA

ATTAGCGACGTGATAATCTTCGATTAGTACTCGAATACGCTACCGTC
CGACACGTAATCGACACTACGTCGACTAACTTACGTCCGTATATGTA
CGGATCGTATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA
CTATTA

Table B.5 continues on next page.
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Table B.5, continued:

Barcode ID

Sequence

S022

S023

S024

S025

ATTAGCGACGTGATAATCTTTACGTCGGATACATATCCGCGAACTAC
CGACACGTAATCGACACTACGTCGACTAATACGTCGGATTGCCGATA
CTACGTATATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA
CTATTA
ATTAGCGACGTGATAATCTTTATTCGATGCGGTGATTACTACGCGAC
CGACACGTAATCGACACTACGTCGACTATACGGTCGTTTACAGGTCG
TATCGTTTATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATAC
TATTA
ATTAGCGACGTGATAATCTTTCCGTAAACGACAGACGATCTCGTAAC
CGACACGTAATCGACACTACGTCGACTATCGCGTCGTATTACATAAC
GTTGTCGTATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA
CTATTA
ATTAGCGACGTGATAATCTTTCGACGAACCTTATCGTGTAACTACGC
CGACACGTAATCGACACTACGTCGACTATCGTGTCTCGATAACTATT
ACTCGCGTATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA
CTATTA
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APPENDIX C: PRIMERS AND PROBES

This section lists the primers used for mutagenesis of barcode sequences, as well as the primers and

probes used for qPCR of genomic targets and barcode sequences.

Primers for barcode mutagenesis and amplification

Mutagenesis of 601 CXXX barcodes

Table C.1: 601 CXXX mutagenesis primers.

Barcode

Forward Primer

Reverse Primer

601 Base

601 _C002
601_C005
601 _CO008
601 _C009
601 _CO010
601 _CO013
601 _C014
601 _CO15
601 _CO017
601 _CO019

601 C021

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

ACAGGATGTATATATCTGACACG
TG
GAAATCGCGCGATTATTATGCGC
GGCCTGGAGACTAGGGAG
GAACGATTCGACGATCGTCGACG
AGCCTGGAGACTAGGGAG
GAACGCGAATCGTCGACGCGTAT
AGCCTGGAGACTAGGGAG
GAACGCGTCGAAACGATTACGC
GAGCCTGGAGACTAGGGAG
GAACGTTCGAACGCGCGACGTTA
AGCCTGGAGACTAGGGAG
GAATTACGTCGCGCGTACGAAAC
GGCCTGGAGACTAGGGAG
GAATTCGCGCGTACGTATACGCG
AGCCTGGAGACTAGGGAG
GACGAATTTCGCGCGTATTACGC
GGCCTGGAGACTAGGGAG
GACGACGTTAACGCGTTTCGTAC
GGCCTGGAGACTAGGGAG
GACGATACGCGTTGGTACGCGTA
AGCCTGGAGACTAGGGAG
GACGATCGTACGATAGCGTACCG
AGCCTGGAGACTAGGGAG
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Table C.1, continued:

Barcode

Forward Primer

Reverse Primer

601 C022
601 C025
601_C026
601 C028
601 C029
601_C031
601 C032
601 C033
601_C034
601 C037
601 C038
601_C039
601_C040
601 C041
601_C042
601_C043
601 C044

601 _C046

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

GACGCGAAATTCGTATACGCGTC
GGCCTGGAGACTAGGGAG
GACGCGATATCACTCGACGCGAT
AGCCTGGAGACTAGGGAG
GACGCGTAACGTATCGATTACGC
GGCCTGGAGACTAGGGAG
GACGTAATCGCGATCGCGCGAAT
AGCCTGGAGACTAGGGAG
GACGTCGAATCGTTCGCGTAATC
GGCCTGGAGACTAGGGAG
GACGTTAACGTCGTCGGTACGCT
AGCCTGGAGACTAGGGAG
GACGTTCGAACGTTCGTCGACGA
TGCCTGGAGACTAGGGAG
GAGTCGCGAACTATCGTCGATTC
GGCCTGGAGACTAGGGAG
GAGTGATATCGCGTTAACGTCGC
GGCCTGGAGACTAGGGAG
GATACGTTACGCGACCGATACGC
GGCCTGGAGACTAGGGAG
GATAGTTCGCGACACCGTTCGTC
GGCCTGGAGACTAGGGAG
GATATCGCGCGAAACGACCGTTC
GGCCTGGAGACTAGGGAG
GATATCGCGTCGTACGATCGTCG
GGCCTGGAGACTAGGGAG
GATCGACGCGTAAACGGTACGTC
GGCCTGGAGACTAGGGAG
GATCGACGTTCGTAGCGTCGTAC
GGCCTGGAGACTAGGGAG
GATCGCGACGAAAATATCGCGC
GGGCCTGGAGACTAGGGAG
GATCGCGATTACGATGTCGCGCG
AGCCTGGAGACTAGGGAG
GATCGCGTACGAACCGAATACG
CGGCCTGGAGACTAGGGAG
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Table C.1, continued:

Barcode

Forward Primer

Reverse Primer

601 C047
601 C049
601_CO051
601 C052
601 C054
601_C055
601_C056
601_C058
601_C060
601 C061
601 C062
601_C063
601_C066
601_C067
601_C068
601_C070
601 CO071

601_C073

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

GATCGTACGATCGCCGACGATCG
AGCCTGGAGACTAGGGAG
GATCGTCGTATCGCCGATACGTC
GGCCTGGAGACTAGGGAG
GATCGTTTCGCGTCCGTTACGTC
GGCCTGGAGACTAGGGAG
GATTAACGCGACGCGAACGGTC
GTGCCTGGAGACTAGGGAG
GATTACGCGCGAACGACGAACG
AGGCCTGGAGACTAGGGAG
GATTACGCGTCGACGACGAACG
GTGCCTGGAGACTAGGGAG
GATTATCGCGTCGCGACGGACGT
AGCCTGGAGACTAGGGAG
GATTCGCGCGTAACGACGTACCG
TGCCTGGAGACTAGGGAG
GATTCGTATCGCGCGATCGTGCG
AGCCTGGAGACTAGGGAG
GATTTCGACGCGTCGATTCGGCG
AGCCTGGAGACTAGGGAG
GATTTCGTCGCGACGCGACGCAT
AGCCTGGAGACTAGGGAG
GAACCGCGATACGCGCGCGATAT
GGCCTGGAGACTAGGGAG
GAACGGTCGTCGACGCGTATTCG
GGCCTGGAGACTAGGGAG
GAACGTTCGACCGCGGTCGTACG
AGCCTGGAGACTAGGGAG
GAACTCGTCGCGACGTACGACGC
TGCCTGGAGACTAGGGAG
GAATCGTACCGCGCGTATCGGTC
GGCCTGGAGACTAGGGAG
GAATCGTACGCCGCGTCGCTCGA
AGCCTGGAGACTAGGGAG
GAATTACGCGCGGCGTTACGCGT
CGCCTGGAGACTAGGGAG
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Table C.1, continued:

Barcode

Forward Primer

Reverse Primer

601 CO075
601_C076
601_C077
601 C078
601_C079
601_C080
601_CO081
601_C082
601_C083
601_C084
601_C085
601_CO086
601_C087
601 C088
601_C089
601_C090
601 C091

601_C092

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

GACCGCGATACGACTCGTTCGTC
GGCCTGGAGACTAGGGAG
GACCGCGCGATAAGACGCGTAA
CGGCCTGGAGACTAGGGAG
GACCGCGCGTAATGCGCGACGTT
AGCCTGGAGACTAGGGAG
GACCGCGCGTATAGTCCGAGCGT
AGCCTGGAGACTAGGGAG
GACCGTACGTCGTGTCGAACGAC
GGCCTGGAGACTAGGGAG
GACCGTCGAATCGTAACGTCGCG
CGCCTGGAGACTAGGGAG
GACGACGAGCGTATACGCGCGA
CAGCCTGGAGACTAGGGAG
GACGACGCGATACTACGCTCGGA
CGCCTGGAGACTAGGGAG
GACGACGCGTAACTACGGTCGC
GAGCCTGGAGACTAGGGAG
GACGACGGATACGTACGTCCGTC
GGCCTGGAGACTAGGGAG
GACGACGTAACGCTATGCGTCGC
GGCCTGGAGACTAGGGAG
GACGACTAACGCGTCGACGCGTA
GGCCTGGAGACTAGGGAG
GACGATACGCCGATCGATCGTCG
GGCCTGGAGACTAGGGAG
GACGATAGTCGCGTCGCACGATC
GGCCTGGAGACTAGGGAG
GACGATCGTCGCATCGCCGAATC
GGCCTGGAGACTAGGGAG
GACGATTCGACGGTCGCGACCGT
AGCCTGGAGACTAGGGAG
GACGATTGACGCGTCGCGCGACA
TGCCTGGAGACTAGGGAG
GACGCATATCGCGTCGTACGACC
GGCCTGGAGACTAGGGAG
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Table C.1, continued:

Barcode

Forward Primer

Reverse Primer

601_C093
601_C094
601_C096
601_C097
601_C098

601 _C099

601_C100

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

CTGGAGAATCCCGGTGC

GACGCCGATTACGTGTCGCGCGT
AGCCTGGAGACTAGGGAG
GACGCGACCGATATTCGAGCGA
CGGCCTGGAGACTAGGGAG
GACGCGACTATCGCGCGTAACGC
GGCCTGGAGACTAGGGAG
GACGCGATACGACCGCGTTACGC
GGCCTGGAGACTAGGGAG
GACGCGATATCCGGCGCGTACCG
AGCCTGGAGACTAGGGAG
GACGCGATATGCGGCGTTCGACG
GGCCTGGAGACTAGGGAG
GACGCGATCGGTATCGGTACGCG
CGCCTGGAGACTAGGGAG

Mutagenesis of C001 _CXXX barcodes

Table C.2: C001 CXXX mutagenesis primers.

Barcode

Forward Primer

Reverse Primer

601 Base

C001_C006
C001_C008
C001_C009
C001_C010
C001_CoO011
C001 _Co014

C001_CO015

CTGGAGAATCCCGGTGC

GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA

ACAGGATGTATATATCTGACACG
TG
GAACGATTCGCGTCGAATCGACG
AGCCTGGAGACTAGGGAG
GAACGCGAATCGTCGACGCGTAT
AGCCTGGAGACTAGGGAG
GAACGCGTCGAAACGATTACGC
GAGCCTGGAGACTAGGGAG
GAACGTTCGAACGCGCGACGTTA
AGCCTGGAGACTAGGGAG
GAATCGCGCGATTCGCGTAATAC
GGCCTGGAGACTAGGGAG
GAATTCGCGCGTACGTATACGCG
AGCCTGGAGACTAGGGAG
GACGAATTTCGCGCGTATTACGC
GGCCTGGAGACTAGGGAG
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Table C.2, continued:

Barcode

Forward Primer

Reverse Primer

C001_C016
C001_C017
C001_CO18
C001_C019
C001_C022
C001_C023
C001_C024
C001_C025
C001_C028
C001_C029
C001_C030
C001_C032
C001_C034
C001_C035
C001_C036
C001_C037
C001_C038

C001_C039

GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA

GACGACGCGATAACGTCGACTAT
CGCCTGGAGACTAGGGAG
GACGACGTTAACGCGTTTCGTAC
GGCCTGGAGACTAGGGAG
GACGATACGACGAGATAGTCGA
CGGCCTGGAGACTAGGGAG
GACGATACGCGTTGGTACGCGTA
AGCCTGGAGACTAGGGAG
GACGCGAAATTCGTATACGCGTC
GGCCTGGAGACTAGGGAG
GACGCGACGTAATTATCGCGTCG
AGCCTGGAGACTAGGGAG
GACGCGATACGAATATTCGCGCG
AGCCTGGAGACTAGGGAG
GACGCGATATCACTCGACGCGAT
AGCCTGGAGACTAGGGAG
GACGTAATCGCGATCGCGCGAAT
AGCCTGGAGACTAGGGAG
GACGTCGAATCGTTCGCGTAATC
GGCCTGGAGACTAGGGAG
GACGTCGCGTTAATCGCGTATAC
GGCCTGGAGACTAGGGAG
GACGTTCGAACGTTCGTCGACGA
TGCCTGGAGACTAGGGAG
GAGTGATATCGCGTTAACGTCGC
GGCCTGGAGACTAGGGAG
GATAATCGACGCGTTACGCGTAC
CGCCTGGAGACTAGGGAG
GATACGCGCGAATTTACGTCGCG
AGCCTGGAGACTAGGGAG
GATACGTTACGCGACCGATACGC
GGCCTGGAGACTAGGGAG
GATAGTTCGCGACACCGTTCGTC
GGCCTGGAGACTAGGGAG
GATATCGCGCGAAACGACCGTTC
GGCCTGGAGACTAGGGAG
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Table C.2, continued:

Barcode

Forward Primer

Reverse Primer

C001_C040
C001_C041
C001_C042
C001_C043
C001_C044
C001_C047
C001_C048
C001_C049
C001_C050
C001_C051
C001_C052
C001_C053
C001_C055
C001_C056
C001_C057
C001_C058
C001_C060

C001_Co061

GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA

GATATCGCGTCGTACGATCGTCG
GGCCTGGAGACTAGGGAG
GATCGACGCGTAAACGGTACGTC
GGCCTGGAGACTAGGGAG
GATCGACGTTCGTAGCGTCGTAC
GGCCTGGAGACTAGGGAG
GATCGCGACGAAAATATCGCGC
GGGCCTGGAGACTAGGGAG
GATCGCGATTACGATGTCGCGCG
AGCCTGGAGACTAGGGAG
GATCGTACGATCGCCGACGATCG
AGCCTGGAGACTAGGGAG
GATCGTCGAACGACCGACGATC
GTGCCTGGAGACTAGGGAG
GATCGTCGTATCGCCGATACGTC
GGCCTGGAGACTAGGGAG
GATCGTTCGACGACCGCGCGATA
TGCCTGGAGACTAGGGAG
GATCGTTTCGCGTCCGTTACGTC
GGCCTGGAGACTAGGGAG
GATTAACGCGACGCGAACGGTC
GTGCCTGGAGACTAGGGAG
GATTACGCGATCGCGACCGATAC
GGCCTGGAGACTAGGGAG
GATTACGCGTCGACGACGAACG
GTGCCTGGAGACTAGGGAG
GATTATCGCGTCGCGACGGACGT
AGCCTGGAGACTAGGGAG
GATTCGCGCGATACGACGTAACG
GGCCTGGAGACTAGGGAG
GATTCGCGCGTAACGACGTACCG
TGCCTGGAGACTAGGGAG
GATTCGTATCGCGCGATCGTGCG
AGCCTGGAGACTAGGGAG
GATTTCGACGCGTCGATTCGGCG
AGCCTGGAGACTAGGGAG
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Table C.2, continued:

Barcode

Forward Primer

Reverse Primer

C001_C063
C001_C064
C001_C065
C001_C066
C001_C070
C001_C071
C001_C072
C001_C073
C001_C074
C001_C075
C001_C077
C001_C079
C001_C081
C001_C082
C001_C085
C001_C089
C001_C090

C001_C091

GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA
GAAACGCGTATCGCGCGCATAAT
AGCTCAATTGGTCGTAGACA

GAACCGCGATACGCGCGCGATAT
GGCCTGGAGACTAGGGAG
GAACGACGTACGGCGCGCTATA
CGGCCTGGAGACTAGGGAG
GAACGCGTCGCTACGCGTATCGG
TGCCTGGAGACTAGGGAG
GAACGGTCGTCGACGCGTATTCG
GGCCTGGAGACTAGGGAG
GAATCGTACCGCGCGTATCGGTC
GGCCTGGAGACTAGGGAG
GAATCGTACGCCGCGTCGCTCGA
AGCCTGGAGACTAGGGAG
GAATCGTCGACCGCGTCGTTCGA
CGCCTGGAGACTAGGGAG
GAATTACGCGCGGCGTTACGCGT
CGCCTGGAGACTAGGGAG
GAATTGCGTCGCGCTACGCGTCG
AGCCTGGAGACTAGGGAG
GACCGCGATACGACTCGTTCGTC
GGCCTGGAGACTAGGGAG
GACCGCGCGTAATGCGCGACGTT
AGCCTGGAGACTAGGGAG
GACCGTACGTCGTGTCGAACGAC
GGCCTGGAGACTAGGGAG
GACGACGAGCGTATACGCGCGA
CAGCCTGGAGACTAGGGAG
GACGACGCGATACTACGCTCGGA
CGCCTGGAGACTAGGGAG
GACGACGTAACGCTATGCGTCGC
GGCCTGGAGACTAGGGAG
GACGATCGTCGCATCGCCGAATC
GGCCTGGAGACTAGGGAG
GACGATTCGACGGTCGCGACCGT
AGCCTGGAGACTAGGGAG
GACGATTGACGCGTCGCGCGACA
TGCCTGGAGACTAGGGAG
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Table C.2, continued:

Barcode Forward Primer Reverse Primer

C001 C092 GAAACGCGTATCGCGCGCATAAT | GACGCATATCGCGTCGTACGACC
- AGCTCAATTGGTCGTAGACA GGCCTGGAGACTAGGGAG

C001 C093 GAAACGCGTATCGCGCGCATAAT | GACGCCGATTACGTGTCGCGCGT
- AGCTCAATTGGTCGTAGACA AGCCTGGAGACTAGGGAG

C001 C094 GAAACGCGTATCGCGCGCATAAT | GACGCGACCGATATTCGAGCGA
- AGCTCAATTGGTCGTAGACA CGGCCTGGAGACTAGGGAG

Mutagenesis of MMTV CXXX barcodes

Table C.3: MMTV_CXXX mutagenesis primers.

Barcode

Forward Primer

Reverse Primer

MMTV_C001

MMTV_C002

MMTV_C003

MMTV_C004

MMTV_C005

MMTV_C006

MMTV_C007

MMTV_C008

GAAACGCGTATCGCGCGCATAAT
ACTCTTGTGTGTTTGTGTCTGTTC
GCC

GAAATCGCGCGATTATTATGCGC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

GAACGAACGTCGAACGCGCGAT
ATCTCTTGTGTGTTTGTGTCTGTT
CGCC

GAACGACGCGATAATATCGCGC
GTCTCTTGTGTGTTTGTGTCTGTT
CGCC

GAACGATTCGACGATCGTCGACG
ACTCTTGTGTGTTTGTGTCTGTTC
GCC

GAACGATTCGCGTCGAATCGACG
ACTCTTGTGTGTTTGTGTCTGTTC
GCC

GAACGCGAAACGACGAATCGCG
TACTCTTGTGTGTTTGTGTCTGTT
CGCC
GAACGCGAATCGTCGACGCGTAT
ACTCTTGTGTGTTTGTGTCTGTTC
GCC

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT
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Table C.3, continued:

Barcode

Forward Primer

Reverse Primer

MMTV_C009

MMTV_C010

MMTV_CO011

MMTV_C012

MMTV_C013

MMTV_C014

MMTV_CO015

MMTV_C016

MMTV_C017

MMTV_CO018

MMTV_C019

MMTV_C020

GAACGCGTCGAAACGATTACGC
GACTCTTGTGTGTTTGTGTCTGTT
CGCC

GAACGTTCGAACGCGCGACGTTA
ACTCTTGTGTGTTTGTGTCTGTTC
GCC

GAATCGCGCGATTCGCGTAATAC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

GAATTACGCGCGACGCGTAATCG
ACTCTTGTGTGTTTGTGTCTGTTC
GCC

GAATTACGTCGCGCGTACGAAAC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

GAATTCGCGCGTACGTATACGCG
ACTCTTGTGTGTTTGTGTCTGTTC
GCC
GACGAATTTCGCGCGTATTACGC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC
GACGACGCGATAACGTCGACTAT
CCTCTTGTGTGTTTGTGTCTGTTC
GCC
GACGACGTTAACGCGTTTCGTAC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC
GACGATACGACGAGATAGTCGA
CGCTCTTGTGTGTTTGTGTCTGTT
CGCC
GACGATACGCGTTGGTACGCGTA
ACTCTTGTGTGTTTGTGTCTGTTC
GCC
GACGATCGCGTAATACGCGATTC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT
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Table C.3, continued:

Barcode

Forward Primer

Reverse Primer

MMTV_C021

MMTV_C022

MMTV_C023

MMTV_C024

MMTV_C025

MMTV_C026

MMTV_C027

MMTV_C028

MMTV_C029

MMTV_C030

MMTV_C031

MMTV_C032

GACGATCGTACGATAGCGTACCG
ACTCTTGTGTGTTTGTGTCTGTTC
GCC

GACGCGAAATTCGTATACGCGTC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

GACGCGACGTAATTATCGCGTCG
ACTCTTGTGTGTTTGTGTCTGTTC
GCC

GACGCGATACGAATATTCGCGCG
ACTCTTGTGTGTTTGTGTCTGTTC
GCC

GACGCGATATCACTCGACGCGAT
ACTCTTGTGTGTTTGTGTCTGTTC
GCC

GACGCGTAACGTATCGATTACGC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

GACGCGTCGATTATCGCGACGTA
ACTCTTGTGTGTTTGTGTCTGTTC
GCC
GACGTAATCGCGATCGCGCGAAT
ACTCTTGTGTGTTTGTGTCTGTTC
GCC

GACGTCGAATCGTTCGCGTAATC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

GACGTCGCGTTAATCGCGTATAC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

GACGTTAACGTCGTCGGTACGCT
ACTCTTGTGTGTTTGTGTCTGTTC
GCC
GACGTTCGAACGTTCGTCGACGA
TCTCTTGTGTGTTTGTGTCTGTTC
GCC

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT
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Table C.3, continued:

Barcode

Forward Primer

Reverse Primer

MMTV C033

MMTV C034

MMTV_C035

MMTV_C036

MMTV_C037

MMTV_C038

MMTV_C039

MMTV_C040

MMTV_C041

MMTV_C042

MMTV_C043

MMTV_C044

GAGTCGCGAACTATCGTCGATTC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

GAGTGATATCGCGTTAACGTCGC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

GATAATCGACGCGTTACGCGTAC
CCTCTTGTGTGTTTGTGTCTGTTC
GCC

GATACGCGCGAATTTACGTCGCG
ACTCTTGTGTGTTTGTGTCTGTTC
GCC

GATACGTTACGCGACCGATACGC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

GATAGTTCGCGACACCGTTCGTC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

GATATCGCGCGAAACGACCGTTC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC
GATATCGCGTCGTACGATCGTCG
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

GATCGACGCGTAAACGGTACGTC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

GATCGACGTTCGTAGCGTCGTAC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

GATCGCGACGAAAATATCGCGC
GGCTCTTGTGTGTTTGTGTCTGTT
CGCC
GATCGCGATTACGATGTCGCGCG
ACTCTTGTGTGTTTGTGTCTGTTC
GCC

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT
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Table C.3, continued:

Barcode

Forward Primer

Reverse Primer

MMTV_C045

MMTV_C046

MMTV_C047

MMTV_C048

MMTV_C049

MMTV_C050

MMTV_CO051

MMTV_C052

MMTV_C053

MMTV_C054

MMTV_C055

MMTV_C056

GATCGCGCGTAATCATATCGCGC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

GATCGCGTACGAACCGAATACG
CGCTCTTGTGTGTTTGTGTCTGTT
CGCC

GATCGTACGATCGCCGACGATCG
ACTCTTGTGTGTTTGTGTCTGTTC
GCC

GATCGTCGAACGACCGACGATC
GTCTCTTGTGTGTTTGTGTCTGTT
CGCC

GATCGTCGTATCGCCGATACGTC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

GATCGTTCGACGACCGCGCGATA
TCTCTTGTGTGTTTGTGTCTGTTC
GCC

GATCGTTTCGCGTCCGTTACGTC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC
GATTAACGCGACGCGAACGGTC
GTCTCTTGTGTGTTTGTGTCTGTT
CGCC

GATTACGCGATCGCGACCGATAC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

GATTACGCGCGAACGACGAACG
AGCTCTTGTGTGTTTGTGTCTGTT
CGCC

GATTACGCGTCGACGACGAACG
GTCTCTTGTGTGTTTGTGTCTGTT
CGCC
GATTATCGCGTCGCGACGGACGT
ACTCTTGTGTGTTTGTGTCTGTTC
GCC

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

297

Table C.3 continues on next page.




Table C.3, continued:

Barcode

Forward Primer

Reverse Primer

MMTV_C057

MMTV_C058

MMTV_C059

MMTV_C060

MMTV_C061

MMTV_C062

MMTV_C063

MMTV_C064

MMTV_C065

MMTV_C066

MMTV_C067

MMTV_C068

GATTCGCGCGATACGACGTAACG
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

GATTCGCGCGTAACGACGTACCG
TCTCTTGTGTGTTTGTGTCTGTTC
GCC

GATTCGTACGCGACGACGTATCG
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

GATTCGTATCGCGCGATCGTGCG
ACTCTTGTGTGTTTGTGTCTGTTC
GCC

GATTTCGACGCGTCGATTCGGCG
ACTCTTGTGTGTTTGTGTCTGTTC
GCC

GATTTCGTCGCGACGCGACGCAT
ACTCTTGTGTGTTTGTGTCTGTTC
GCC

GAACCGCGATACGCGCGCGATAT
GCTCTTGTGTGTTTGTGTCTGTTC
GCC
GAACGACGTACGGCGCGCTATA
CGCTCTTGTGTGTTTGTGTCTGTT
CGCC

GAACGCGTCGCTACGCGTATCGG
TCTCTTGTGTGTTTGTGTCTGTTC
GCC

GAACGGTCGTCGACGCGTATTCG
GCTCTTGTGTGTTTGTGTCTGTTC
GCC
GAACGTTCGACCGCGGTCGTACG
ACTCTTGTGTGTTTGTGTCTGTTC
GCC
GAACTCGTCGCGACGTACGACGC
TCTCTTGTGTGTTTGTGTCTGTTC
GCC

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT
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Table C.3, continued:

Barcode

Forward Primer

Reverse Primer

MMTV_C069

MMTV_C070

MMTV_C071

MMTV_C072

MMTV_C073

MMTV_C074

MMTV_CO075

MMTV_C076

MMTV C077

MMTV_C078

MMTV_C079

MMTV_C080

GAATCGCGGTACGCGTATAGCGC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

GAATCGTACCGCGCGTATCGGTC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

GAATCGTACGCCGCGTCGCTCGA
ACTCTTGTGTGTTTGTGTCTGTTC
GCC

GAATCGTCGACCGCGTCGTTCGA
CCTCTTGTGTGTTTGTGTCTGTTC
GCC

GAATTACGCGCGGCGTTACGCGT
CCTCTTGTGTGTTTGTGTCTGTTC
GCC

GAATTGCGTCGCGCTACGCGTCG
ACTCTTGTGTGTTTGTGTCTGTTC
GCC

GACCGCGATACGACTCGTTCGTC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC
GACCGCGCGATAAGACGCGTAA
CGCTCTTGTGTGTTTGTGTCTGTT
CGCC

GACCGCGCGTAATGCGCGACGTT
ACTCTTGTGTGTTTGTGTCTGTTC
GCC

GACCGCGCGTATAGTCCGAGCGT
ACTCTTGTGTGTTTGTGTCTGTTC
GCC
GACCGTACGTCGTGTCGAACGAC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC
GACCGTCGAATCGTAACGTCGCG
CCTCTTGTGTGTTTGTGTCTGTTC
GCC

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT
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Table C.3, continued:

Barcode

Forward Primer

Reverse Primer

MMTV C081

MMTV_C082

MMTV_C083

MMTV_C084

MMTV_C085

MMTV_C086

MMTV_C087

MMTV_C088

MMTV_C089

MMTV_C090

MMTV_C091

MMTV_C092

GACGACGAGCGTATACGCGCGA
CACTCTTGTGTGTTTGTGTCTGTT
CGCC

GACGACGCGATACTACGCTCGGA
CCTCTTGTGTGTTTGTGTCTGTTC
GCC

GACGACGCGTAACTACGGTCGC
GACTCTTGTGTGTTTGTGTCTGTT
CGCC

GACGACGGATACGTACGTCCGTC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

GACGACGTAACGCTATGCGTCGC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

GACGACTAACGCGTCGACGCGTA
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

GACGATACGCCGATCGATCGTCG
GCTCTTGTGTGTTTGTGTCTGTTC
GCC
GACGATAGTCGCGTCGCACGATC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

GACGATCGTCGCATCGCCGAATC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

GACGATTCGACGGTCGCGACCGT
ACTCTTGTGTGTTTGTGTCTGTTC
GCC

GACGATTGACGCGTCGCGCGACA
TCTCTTGTGTGTTTGTGTCTGTTC
GCC
GACGCATATCGCGTCGTACGACC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT
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Table C.3, continued:

Barcode

Forward Primer

Reverse Primer

MMTV_C093

MMTV_C094

MMTV_C095

MMTV_C096

MMTV_C097

MMTV_C098

MMTV_C099

MMTV_C100

GACGCCGATTACGTGTCGCGCGT
ACTCTTGTGTGTTTGTGTCTGTTC
GCC

GACGCGACCGATATTCGAGCGA
CGCTCTTGTGTGTTTGTGTCTGTT
CGCC

GACGCGACGCAATCCGTCGAAC
GCCTCTTGTGTGTTTGTGTCTGTT
CGCC

GACGCGACTATCGCGCGTAACGC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

GACGCGATACGACCGCGTTACGC
GCTCTTGTGTGTTTGTGTCTGTTC
GCC

GACGCGATATCCGGCGCGTACCG
ACTCTTGTGTGTTTGTGTCTGTTC
GCC

GACGCGATATGCGGCGTTCGACG
GCTCTTGTGTGTTTGTGTCTGTTC
GCC
GACGCGATCGGTATCGGTACGCG
CCTCTTGTGTGTTTGTGTCTGTTC
GCC

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

CAAAAAACTGTGCCGCAGT

Mutagenesis of MMS DXXX barcodes

Table C.4: MMS DXXX mutagenesis primers.

Barcode

Forward Primer

Reverse Primer

MMS Base

MMS D001

MMS D002

TTTGTAGAACAGTGTATATCAAT
GAGTT
ATGATATTCGTACCCGTTTGTAG
AACAGTGTATATCAATGAGTT
ATGATAACGTAGACCGTTTGTAG
AACAGTGTATATCAATGAGTT

CCGTTTCCAACGAATGTGTTT

ATACTACGTATCGTCCCGTTTCC
AACGAATGTGTTT
ATACTACGTATCGTCCCGTTTCC
AACGAATGTGTTT
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Table C.4, continued:

Barcode Forward Primer Reverse Primer

MMS D003 ATGTAGTTCGTACGACTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D004 ATGGAAGCGAACGTATTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D005 ATGACGTCGACTATTATTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D006 ATGCGCGATTAGACTATTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D007 ATGATGGTACGCGATTTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D008 ATGTAGATCGCGTAAGTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D009 ATGTCTAGTAACGACGTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D010 ATGTTATACCTCGCGTTTTGTAG |ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS DO11 ATGAATACGCGCGTAATTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D012 ATGGCGTTATCGTACATTTGTAG |ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D013 ATGTGTTTAGCGAACGTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D014 ATGAGATTATCGACCGTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D015 ATGTATAGTACGCGTCTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D016 ATGTCTATTCGGCGTATTTGTAG |ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D017 ATGCGTCGATAACCTATTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D018 ATGCTTCGATACGTAATTTGTAG |ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D019 ATGTCGTAACGCGAATTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D020 ATGATCGCTCTAACGTTTTGTAG |ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT
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Table C.4, continued:

Barcode Forward Primer Reverse Primer

MMS D021 ATGCTTATCGCGTTGATTTGTAG |ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D022 ATGTCGTTACGTCCTATTTGTAG |ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D023 ATGTGAACGTCGTAGTTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D024 ATGCGTTATACACGACTTTGTAG |ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D025 ATGTCGTACGTTAGACTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D026 ATGAACGACGGTACATTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D027 ATGTACGACGTAAGGTTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D028 ATGTACTATCGTCACGTTTGTAG |ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D029 ATGACTACGCTACGATTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D030 ATGTAATCGCGCTAACTTTGTAG |ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D031 ATGATTTAGGCGTACGTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D032 ATGTCGATAGCGTAAGTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D033 ATGCGCGTTAGATAGTTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D034 ATGCGGTTACGCTATATTTGTAG |ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D035 ATGTATCGCTAACTCGTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D036 ATGCGCGTAATAGTACTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D037 ATGCGTACGCTATCTATTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D038 ATGCCGCGAACTTATATTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT
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Table C.4, continued:

Barcode Forward Primer Reverse Primer

MMS D039 ATGTTACAATACGCGCTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D040 ATGTAGTTTACGCGAGTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D041 ATGCTCGAATTGACGTTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D042 ATGCGTCGTACTACATTTTGTAG |ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D043 ATGCGTAATACCTACGTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D044 ATGTCATTACGATCGCTTTGTAG |ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D045 ATGGTAATGCGCGATATTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D046 ATGCGCGAATACTAAGTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D047 ATGTAACGTCCGGTAATTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D048 ATGTATTCGTATCCCGTTTGTAG |ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D049 ATGTAGTAACGTCGAGTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D050 ATGCCGTTATAGTACGTTTGTAG |ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D051 ATGGATAACGCGAAACTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D052 ATGACGTAGGTATTCGTTTGTAG |ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D053 ATGCGTACTTTAGACGTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D054 ATGGAATACGCGAATCTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D055 ATGCAGTATTCGCGTATTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D056 ATGCGTACTAATCGTCTTTGTAG |ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT
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Table C.4, continued:

Barcode Forward Primer Reverse Primer

MMS D057 ATGGATCGCGTACTATTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D058 ATGATACGCGATGTATTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D059 ATGTTCAATACGCGACTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D060 ATGCGAAAGACGTATCTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D061 ATGACGCCGTAATAGTTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D062 ATGCGATCGCGTATTATTTGTAG |ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D063 ATGAGACCGATTAACGTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D064 ATGGTTCGGACGTAATTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D065 ATGAGATAGCGACGTATTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D066 ATGTATAGTATCGCGATTTGTAG |ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D067 ATGATACTACGCCGATTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D068 ATGTATCGCGAACTTATTTGTAG |ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D069 ATGCTATCGAGCGATATTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D070 ATGACGTTCGAACTAGTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D071 ATGTATCGAATACGGCTTTGTAG | ATACTACGTATCGTCCCGTTTCC
- AACAGTGTATATCAATGAGTT AACGAATGTGTTT

MMS D072 ATGGCGAACGTAGTTATTTGTAG | ATACTACGTATCGTCCCGTTTCC

AACAGTGTATATCAATGAGTT

AACGAATGTGTTT
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Amplification of Space Alien barcodes

Table C.5: Space Alien amplification primers.

Barcode Forward Primer Reverse Primer
Space Alien | \ 1\ GCGACGTGATAATCT TAATAGTATGACGCGCG
Amplification

Primers and probes for qPCR of genomic targets and barcodes

601 CXXX barcode gPCR

Table C.6: 601 CXXX barcode qPCR primers and probe.

Target Forward Primer Reverse Primer Hydrolysis Probe
/56-FAM/TCTAGCACC
601 _C002 giéCA%ATTGGTCGTA :? ggGCGCGATTATT GCTTAAACGCACGTA
/3TABKFQ/
/56-FAM/TCTAGCACC
601 _C005 giECA%ATTGGTCGTA "(F} g étf GATTCGACGA GCTTAAACGCACGTA
/3TABKFQ/
/56-FAM/TCTAGCACC
601 C008 gi’lc":CAzéATTGGTCGTA i?:TCGTCGACGCGT GCTTAAACGCACGTA
/3TIABKFQ/
/56-FAM/TCTAGCACC
601 _C009 g/(i"éi/(\}ATTGGTCGTA ,?,ESCGTCGAAACGA GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 _CO010 gigi%ATTGGTCGTA SiACGCGCGACGTT GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 CO013 gig%éATTGGTCGTA ECGCGCGTACGAAA GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
6o1_cora | ICAATTOCTEGTA AL TCGCOCETACETA Gerraaacaeacara
/3IABKFQ/

Table C.6 continues on next page.
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Table C.6, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe
/56-FAM/TCTAGCACC
601 CO015 gigi%ATTGGTCGTA gg:é TTTCGCGCGTA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
601 CO17 ggé(Al/(\}ATTGGTCGTA ](EGTTAACGCGTTTCG GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601_CO019 gigi%ATTGGTCGTA ggATACGCGTTGGTA GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 C021 giECA%ATTGGTCGTA g?i;l;CGTACGATAGC GCTTAAACGCACGTA
/31IABKFQ/
/56-FAM/TCTAGCACC
601 _C022 gg(l;i‘éATTGGTCGTA ggi?éGA TTCGTATACG GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 _C025 gi};iéATTGGTCGTA ggi?ﬁTCACTCGACG GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 _C026 giECA[éATTGGTCGTA %,igg TAACGTATCGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
601 C028 gi](’;CA%ATTGGTCGTA XICGATCGCGCGAAT GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
601 _C029 gigi%ATTGGTCGTA ;l;i(,l}éATCGTTCGCGT GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
601 CO31 ggé(Al/(\}ATTGGTCGTA SEEAACGTCGTCGGT GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601_C032 gigi%ATTGGTCGTA S?ACGTTCGTCGACG GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601_CO033 giECA%ATTGGTCGTA iff}"? ((j} AACTATCGTCG GCTTAAACGCACGTA
/31IABKFQ/

Table C.6 continues on next page.
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Table C.6, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe
/56-FAM/TCTAGCACC
601 _C034 gigi%ATTGGTCGTA gé(;ééATCGCGTTAA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
601 C037 ggé(Al/(\}ATTGGTCGTA ESTTACGCGACCGAT GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
601 C038 ggéi%ATTGGTCGTA gTTCGCGACACCGTT GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 C039 giECA%ATTGGTCGTA l{éTCGCGCGAAACG GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 C040 gg’(l;i%ATTGGTCGTA r}:é("l;CGCGTCGTACGA GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 C041 gi};iéATTGGTCGTA (C}?(C:GTAAACGGTAC GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 C042 gi’(l;CA/éATTGGTCGTA ?XGTTCGTAGCGTCG GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 _C043 giECA%ATTGGTCGTA éggAAAATATCGCG GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 C044 gi’gizéATTGGTCGTA g(éGCGATTACGATGT GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
601 _C046 gigi%ATTGGTCGTA E,CF}ESTACGAACCGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
601 _C047 gigi%ATTGGTCGTA TCGTACGATCGCCGA | GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
601 C049 giECA%ATTGGTCGTA %“ZGTCGTATCGCCGA GCTTAAACGCACGTA
/3IABKFQ/

Table C.6 continues on next page.
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Table C.6, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe
/56-FAM/TCTAGCACC
601 CO51 gi’gizéATTGGTCGTA [EGTTTCGCGTCCGTT GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
601 _C052 ggéi%ATTGGTCGTA I‘EAACGCGACGCGA GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 _C054 gigi%ATTGGTCGTA ETACGCGCGAACGA GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 CO55 gi’{:CA%ATTGGTCGTA %’CGACGACGAACGG GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601_C056 gizi‘éATTGGTCGTA TCGCGACGGACGTA | GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 CO058 gij(;CAéATTGGTCGTA ggCGTAACGACGTA GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 C060 gi’(l;iléATTGGTCGTA ETCGTATCGCGCGAT GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 C061 gi’l(’;CAzéATTGGTCGTA }"ETCGACGCGTCGAT GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 _C062 gigi‘éATTGGTCGTA CGACGCGACGCATA |GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
601 _C063 ggéi%ATTGGTCGTA TACGCGCGCGATATG | GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 C066 gi’gi%ATTGGTCGTA ?gCGTCGACGCGTAT GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 _C067 giFéCA%ATTGGTCGTA CCGCGGTCGTACGA |GCTTAAACGCACGTA
/3IABKFQ/

Table C.6 continues on next page.
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Table C.6, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe
/56-FAM/TCTAGCACC
601 _C068 gigi%ATTGGTCGTA ACTCGTCGCGACGTA | GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
601 _C070 gigi%ATTGGTCGTA GTACCGCGCGTATCG | GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
601 _C071 gigi%ATTGGTCGTA ATCGTACGCCGCGT |GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 _C073 giECA%ATTGGTCGTA ATTACGCGCGGCG GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 _CO075 gg(l;i‘éATTGGTCGTA ?gg ACLACIERATIE GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 _C076 gi};iéATTGGTCGTA EES(A}TAAGACGCGT GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 CO77 gi’(l;CA/éATTGGTCGTA %STAATGCGCGACGT GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 CO78 gi](’;CA%ATTGGTCGTA ggiTATAGTCCGAGC GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 CO79 gi’gizéATTGGTCGTA [EGTACGTCGTGTCGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
601 C080 ggé(Al/(\}ATTGGTCGTA gggTCGAATCGTAAC GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
601 COSI ggéi%ATTGGTCGTA EGTATACGCGCGAC GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
601 C082 giECA%ATTGGTCGTA giGATACTACGCTCG GCTTAAACGCACGTA
/3IABKFQ/

Table C.6 continues on next page.
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Table C.6, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe
/56-FAM/TCTAGCACC
601 C083 gi’gizéATTGGTCGTA giTAACTACGGTCGC GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
601 CO84 ggé(Al/(\}ATTGGTCGTA ]g}é}éTACGTACGTCCG GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
601 _CO085 gigi%ATTGGTCGTA ggACGTAACGCTATG GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 C086 giECA%ATTGGTCGTA ESACTAACGCGTCG GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 _C087 gg(l;i‘éATTGGTCGTA i,(r}éTACGCCGATCG GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 CO088 gi};iéATTGGTCGTA TCGCGTCGCACGAT |GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 _C089 giECA[éATTGGTCGTA TCGCATCGCCGAATC | GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 _C090 giECA%ATTGGTCGTA CGATTCGACGGTCGC | GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
601 _C091 gigi%ATTGGTCGTA ATTGACGCGTCGCG |GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
601 _C092 gigi%ATTGGTCGTA CGCATATCGCGTCGT | GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
601 _C093 gigi%ATTGGTCGTA TACGTGTCGCGCGTA | GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
601 C094 giECA%ATTGGTCGTA S(C}GATATTCGAGCGA GCTTAAACGCACGTA
/3IABKFQ/

Table C.6 continues on next page.
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Table C.6, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe
/56-FAM/TCTAGCACC

601 C096 gi’gi/éATTGGTCGTA [ESACTATCGCGCGTA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC

601 C097 gg{;i%ATTGGTCGTA i(C}ATACGACCGCGTT GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC

601 _C098 gigi%ATTGGTCGTA TATCCGGCGCGTACC | GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC

601 C099 gi’gCA%ATTGGTCGTA éTATGCGGCGTTCGA GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC

601_C100 gizi‘éATTGGTCGTA CGCGATCGGTATCGG | GCTTAAACGCACGTA
/3IABKFQ/

C001 _CXXX barcode gPCR

Table C.7: C001 _CXXX barcode qPCR primers and probe.

Target Forward Primer Reverse Primer Hydrolysis Probe
/56-FAM/TCTAGCACC

C001_C006 gngTCGCGCGCATA ?CCGATTCGCGTCGAA GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC

C001_C008 ig{ATCGCGCGCATA ICA‘}?:TCGTCGACGCGT GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC

C001_C009 EFF}EATCGCGCGCATA :?%SCGTCGAAACGA GCTTAAACGCACGTA
/3TABKFQ/
/56-FAM/TCTAGCACC

C001_CO010 ESF}EATCGCGCGCATA iiACGCGCGACGTT GCTTAAACGCACGTA
/3TABKFQ/
/56-FAM/TCTAGCACC

C001 CO11 ingTCGCGCGCATA ESCC}GATTCGCGTAAT GCTTAAACGCACGTA
/3TABKFQ/

Table C.7 continues on next page.
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Table C.7, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe
/56-FAM/TCTAGCACC
C001 €014 [(;EF}EATCGCGCGCATA ?EECGCGCGTACGTA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
C001_Co015 igiATCGCGCGCATA Sﬁfg TTTCGCGCGTA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
C001_Co016 i,i{ATCGCGCGCATA igfr}gGATAACGTCG GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001 €017 IESF}EATCGCGCGCATA gGTTAACGCGTTTCG GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001_CO018 E,CF}EATCGCGCGCATA ?géggéCGAGATAG GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001 €019 ingTCGCGCGCATA ggATACGCGTTGGTA GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001_C022 igﬁATCGCGCGCATA gg?gg UIEGLANALG GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001 €023 ingTCGCGCGCATA ](?SGCSTAATTATCGCG GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001_C024 [(;;}EATCGCGCGCATA gééﬁCGAATATTCGC GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
C001_C025 igiATCGCGCGCATA ggiiiTCACTCGACG GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
C001 C028 ifi{ATCGCGCGCATA SCGATCGCGCGAAT GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
C001 €029 IESF}EATCGCGCGCATA I‘i?éATCGTTCGCGT GCTTAAACGCACGTA
/3IABKFQ/

Table C.7 continues on next page.
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Table C.7, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe
/56-FAM/TCTAGCACC
C001_C030 [(;;}EATCGCGCGCATA %i}ggTTAATCGCGTA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
C001 €032 ingTCGCGCGCATA S?ACGTTCGTCGACG GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001_C034 i,i{ATCGCGCGCATA gg}gééATCGCGTTAA GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001 C035 IESF}EATCGCGCGCATA géATCGACGCGTTAC GCTTAAACGCACGTA
/31IABKFQ/
/56-FAM/TCTAGCACC
C001_C036 igr}iATCGCGCGCATA "(I“}I%SGCGCGAATTTAC GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001 C037 ingTCGCGCGCATA ESTTACGCGACCGAT GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001 C038 ig{ATCGCGCGCATA gTTCGCGACACCGTT GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
C001 €039 ingTCGCGCGCATA }éTCGCGCGAAACG GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
C001 €040 [(;EF}EATCGCGCGCATA iééCGCGTCGTACGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
C001_C041 igiATCGCGCGCATA ggr}gGTAAACGGTAC GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001 C042 ifi{ATCGCGCGCATA ?EGTTCGTAGCGTCG GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001 €043 igr}zATCGCGCGCATA é((}?gAAAATATCGCG GCTTAAACGCACGTA
/31IABKFQ/

Table C.7 continues on next page.
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Table C.7, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe
/56-FAM/TCTAGCACC
C001 C044 [(;EF}EATCGCGCGCATA g(éGCGATTACGATGT GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
C001_Co047 igiATCGCGCGCATA TCGTACGATCGCCGA | GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
C001 €048 ifi{ATCGCGCGCATA };EEGAACGACCGACG GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001 €049 IESF}EATCGCGCGCATA %“ZGTCGTATCGCCGA GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001_C050 igr}iATCGCGCGCATA ?CGACCGCGCGATA GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001 CO51 ingTCGCGCGCATA EGTTTCGCGTCCGTT GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001 C052 ig{ATCGCGCGCATA ZEAACGCGACGCGA GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001 €053 ingTCGCGCGCATA géTCGCGACCGATA GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001 €055 [(;EF}EATCGCGCGCATA iCGACGACGAACGG GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
C001_CO056 igiATCGCGCGCATA TCGCGACGGACGTA |GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
C001_C057 i,i{ATCGCGCGCATA TTCGCGCGATACGAC | GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
C001_C058 IESF}EATCGCGCGCATA ggCGTAACGACGTA GCTTAAACGCACGTA
/3IABKFQ/

Table C.7 continues on next page.
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Table C.7, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe
/56-FAM/TCTAGCACC
C001 €080 [(;(T}EATCGCGCGCATA "(ijCGTATCGCGCGAT A ACCCACOTA
/3IABKFQ/
/56-FAM/TCTAGCACC
Co01 cos1 /S;}IATCGCGCGCATA ETCGACGCGTCGAT TAAACCCACeTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001_C063 ii{ATCGCGCGCATA TACGCGCGCGATATG | GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001_C064 iﬂATCGCGCGCATA ACGGCGCGCTATAC | GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001_C065 igj{ATCGCGCGCATA GCTACGCGTATCGGT | GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001 CO6 E%IATCGCGCGCATA ?gCGTCGACGCGTAT kb s
/3IABKFQ/
/56-FAM/TCTAGCACC
C001_C070 igATCGCGCGCATA GTACCGCGCGTATCG | GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001_CO71 ig{{ATCGCGCGCATA ATCGTACGCCGCGT | GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001_CO72 IS(T}EATCGCGCGCATA TCGACCGCGTCGTT | GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001_CO73 gngTCGCGCGCATA ATTACGCGCGGCG | GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001_C074 ii{ATCGCGCGCATA ATTGCGTCGCGCTAC | GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
Co01 Cos ingTCGCGCGCATA ?éCT]ACGACTCGTTCG T AAACCCA A
/3IABKFQ/

Table C.7 continues on next page.
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Table C.7, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe
/56-FAM/TCTAGCACC
C001 CO77 [(;EF}EATCGCGCGCATA gSTAATGCGCGACGT GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
C001_C079 ingTCGCGCGCATA EGTACGTCGTGTCGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
C001_CO081 ifi{ATCGCGCGCATA EGTATACGCGCGAC GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001 €082 igr}zATCGCGCGCATA giGATACTACGCTCG GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001_CO85 igr}iATCGCGCGCATA ggACGTAACGCTATG GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001_C089 ingTCGCGCGCATA TCGCATCGCCGAATC | GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001_C090 igﬁATCGCGCGCATA CGATTCGACGGTCGC | GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001_C091 ingTCGCGCGCATA ATTGACGCGTCGCG |GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
C001_C092 [(;;}EATCGCGCGCATA CGCATATCGCGTCGT | GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
C001_C093 igiATCGCGCGCATA TACGTGTCGCGCGTA | GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
C001_C094 ifi{ATCGCGCGCATA SE}GATATTCGAGCGA GCTTAAACGCACGTA
/31ABKFQ/
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MMTV _CXXX barcode gPCR

Table C.8: MMTV_CXXX barcode qPCR primers and probe.

Target Forward Primer Reverse Primer Hydrolysis Probe
/56-FAM/TCTAGCACC
MMTV_C001 Eﬁ:ﬁATCGCGCGCATA iiié?éfggiAGGA GCTTAAACGCACGTA
/31ABKFQ/
AATCGCGCGATTATT | TGGAAAGTGAAGGA /S6-FAM/TCTAGCACC
MMTV_C002 ATGC TAAGTGACGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C003 ,(F:S,}: CGAACGCGCGA %ggg?éfggﬁAGGA GCTTAAACGCACGTA
/3IABKFQ/
ACGACGCGATAATA | TGGAAAGTGAAGGA R
MMTV_C004 TCGC TAAGTGACGA GCTTAAACGCACGTA
/31IABKFQ/
GAACGATTCGACGA | TGGAAAGTGAAGGA [36-FAM/TCTAGCACC
MMTV_C005 TCGT TAAGTGACGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C006 ? g GATTCGCGTCGAA %gié?égggﬁAGGA GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
MMTV_C007 ﬁﬁgCGAAACGACGA ,}ﬂggé?é‘gggiAGGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C008 E?QTCGTCGACGCGT ,}:ggé?éfggﬁAGGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C009 ?,ESCGTCGAAACGA iiié?éfggiAGGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_CO010 SiACGCGCGACGTT ?iié?éggg:AGGA GCTTAAACGCACGTA
/31ABKFQ/
CGCGATTCGCGTAAT | TGGAAAGTGAAGGA |20 FAMTCTAGCACC
MMTV_CO011 ACG TAAGTGACGA GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
MMTV_C012 SCGACGCGTAATCG ?gié?égggﬁAGGA GCTTAAACGCACGTA
/31ABKFQ/
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Table C.8, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe

/56-FAM/TCTAGCACC

MMTV_CO013 ECGCGCGTACGAAA iggg?ggggﬁAGGA GCTTAAACGCACGTA
/3IABKFQ/

/56-FAM/TCTAGCACC

MMTV_C014 %IECGCGCGTACGTA iiié?égggﬁAGGA GCTTAAACGCACGTA
/3IABKFQ/

CGAATTTCGCGCGTA | TGGAAAGTGAAGGA |20 FAM/TCTAGCACC

MMTV_CO015 TTAC TAAGTGACGA GCTTAAACGCACGTA
/3IABKFQ/

ACGCGATAACGTCG |TGGAAAGTGAAGGA |20 FAM/TCTAGCACC

MMTV_CO016 ACTA TAAGTGACGA GCTTAAACGCACGTA
/3IABKFQ/

/56-FAM/TCTAGCACC

MMTV_C017 gGTTAACGCGTTTCG iggé?égggﬁAGGA GCTTAAACGCACGTA
/3IABKFQ/

MMTV CO18 ATACGACGAGATAG |TGGAAAGTGAAGGA ggf?ﬁ;%g%i%é%i
- TCGACG TAAGTGACGA /3IABKFQ/

/56-FAM/TCTAGCACC

MMTV_C019 ggATACGCGTTGGTA iiié?éfggﬁAGGA GCTTAAACGCACGTA
/3IABKFQ/

GACGATCGCGTAAT | TGGAAAGTGAAGGA DEARANTCTAGLACL

MMTV_C020 ACGC TAAGTGACGA GCTTAAACGCACGTA
/3IABKFQ/

CGATCGTACGATAGC | TGGAAAGTGAAGGA |0 FAM/TCTAGCACC

MMTV_C021 GTAC TAAGTGACGA GCTTAAACGCACGTA
/3IABKFQ/

CGAAATTCGTATACG | TGGAAAGTGAAGGA e

MMTV_C022 CGTCG TAAGTGACGA GCTTAAACGCACGTA
/3IABKFQ/

GACGTAATTATCGCG | TGGAAAGTGAAGGA /56-FAM/TCTAGCACC

MMTV_C023 TCGA TAAGTGACGA GCTTAAACGCACGTA
/3IABKFQ/

GATACGAATATTCGC | TGGAAAGTGAAGGA BEo-FARMITCT G AT

MMTV C024 GCTTAAACGCACGTA
- GCGA TAAGTGACGA /3IABKFQ)/
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Table C.8, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe
CGATATCACTCGACG | TGGAAAGTGAAGGA [56-FAMITCTAGCACC
MMTV_C025 CGATA TAAGTGACGA GCTTAAACGCACGTA
/31ABKFQ/
CGCGTAACGTATCGA | TGGAAAGTGAAGGA |20 FAMITCTAGCACC
MMTV_C026 TTAC TAAGTGACGA GCTTAAACGCACGTA
/31ABKFQ/
GTCGATTATCGCGAC | TGGAAAGTGAAGGA [56-FAMITCTAGCACC
MMTV_C027 GTAA TAAGTGACGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C028 SCGATCGCGCGAAT %ggé?éfggﬁAGGA GCTTAAACGCACGTA
/31ABKFQ/
TCGAATCGTTCGCGT | TGGAAAGTGAAGGA [S6-FAMITCTAGCACC
MMTV_C029 AATC TAAGTGACGA GCTTAAACGCACGTA
/31ABKFQ/
CGCGTTAATCGCGTA | TGGAAAGTGAAGGA [S6-FAMITCTAGCACC
MMTV_C030 TACG TAAGTGACGA GCTTAAACGCACGTA
/31ABKFQ/
GTTAACGTCGTCGGT | TGGAAAGTGAAGGA [36-FAM/TCTAGCACC
MMTV_C031 ACG TAAGTGACGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C032 E?ACGTTCGTCGACG iiié?éggg:AGGA GCTTAAACGCACGTA
/31ABKFQ/
CGCGAACTATCGTCG | TGGAAAGTGAAGGA | />0 FAMITCTAGCACC
MMTV_CO033 ATTC TAAGTGACGA GCTTAAACGCACGTA
/31ABKFQ/
GTGATATCGCGTTAA | TGGAAAGTGAAGGA [S6-FAMITCTAGCACC
MMTV_C034 CGTCG TAAGTGACGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C035 géATCGACGCGTTAC ,}:igé?éfggﬁAGGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C036 éégGCGCGAATTTAC %ggé?éfggﬁAGGA GCTTAAACGCACGTA
/31ABKFQ/
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Table C.8, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe
/56-FAM/TCTAGCACC
MMTV_C037 igTTACGCGACCGAT ,}:ggg?ggggﬁAGGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C038 STTCGCGACACCGTT iiié?égggﬁAGGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C039 :iéTCGCGCGAAACG ,}:igg?égggﬁAGGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C040 iééCGCGTCGTACGA %ggé?égggﬁAGGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C041 g?gGTAAACGGTAC iggé?é‘gggﬁAGGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C042 %SGTTCGTAGCGTCG iggé?égggﬁAGGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C043 éggAAAATATCGCG iiié?éfggﬁAGGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C044 EEGCGATTACGATGT iiié?éggg:AGGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C045 ESgCGCGTAATCATA ,}:ggg?gfggﬁAGGA GCTTAAACGCACGTA
/31ABKFQ/
CGCGTACGAACCGA |TGGAAAGTGAAGGA |2OTAM/TCTAGCACC
MMTV_C046 ATAC TAAGTGACGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C047 | TCGTACGATCGCCGA TGGAAAGTGAAGGA GCTTAAACGCACGTA
- TAAGTGACGA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C048 ngAACGACCGACG %ggé?égggﬁAGGA GCTTAAACGCACGTA
/31ABKFQ/
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Table C.8, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe
/56-FAM/TCTAGCACC
MMTV_C049 ?iGTCGTATCGCCGA iggé?éfggﬁAGGA GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
MMTV_C050 f? COALUGUETIEATTA igié?éggg:AGGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_CO051 iGTTTCGCGTCCGTT ,}:igg?éfggﬁAGGA GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
MMTV_C052 ZéAACGCGACGCGA %’gﬁé?éfggﬁAGGA GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
MMTV_CO053 (C}éTCGCGACCGATA ?ggé?ggggﬁAGGA GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
MMTV_C054 ETACGCGCGAACGA ?ggé?égggﬁAGGA GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
MMTV_CO055 }“CGACGACGAACGG iiié?éfggﬁAGGA GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
MMTV C056 | TCGCGACGGACGTA MEGAAMGTTGAMETA GCTTAAACGCACGTA
- TAAGTGACGA
/3IABKFQ/
/56-FAM/TCTAGCACC
MMTV C057 | TTCGCGCGATACGAC TGGAAAGTGAAGGA GCTTAAACGCACGTA
- TAAGTGACGA
/3IABKFQ/
/56-FAM/TCTAGCACC
MMTV_C058 ggCGTAACGACGTA igié?éggg:AGGA GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
MMTV_C059 éCGCGACGACGTAT ,}:igg?éfggﬁAGGA GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
MMTV_C060 ETCGTATCGCGCGAT %’gﬁé?éfggﬁAGGA GCTTAAACGCACGTA
/3IABKFQ/
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Table C.8, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe
/56-FAM/TCTAGCACC
MMTV_C061 %ETCGACGCGTCGAT ;ggg?gfggﬁAGGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C062 | CGACGCGACGCATA TGGAAAGTGAAGGA GCTTAAACGCACGTA
- TAAGTGACGA
/3IABKFQ/
/56-FAM/TCTAGCACC
MMTV_C063 | TACGCGCGCGATATG TGGAAAGTGAAGGA GCTTAAACGCACGTA
- TAAGTGACGA
/3IABKFQ/
/56-FAM/TCTAGCACC
MMTV_C064 | ACGGCGCGCTATAC TGGAAAGTGAAGGA GCTTAAACGCACGTA
- TAAGTGACGA
/3IABKFQ/
/56-FAM/TCTAGCACC
MMTV_C065 | GCTACGCGTATCGGT | 1 S UAAAGTOAAGGA | GerraaacGeACGTA
- TAAGTGACGA
/31IABKFQ/
/56-FAM/TCTAGCACC
MMTV_C066 ?gCGTCGACGCGTAT iggé?égggﬁAGGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C067 | CCGCGGTCGTACGA TGGAAAGTGAAGGA GCTTAAACGCACGTA
- TAAGTGACGA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C068 | ACTCGTCGCGACGTA TGGAAAGTGAAGGA GCTTAAACGCACGTA
- TAAGTGACGA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C069 ?ECGCGGTACGCGTA ;ggg?gfggﬁAGGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C070 | GTACCGCGCGTATCG TGGAAAGTGAAGGA GCTTAAACGCACGTA
- TAAGTGACGA
/3IABKFQ/
/56-FAM/TCTAGCACC
MMTV_C071 | ATCGTACGCCGCGT TGGAAAGTGAAGGA GCTTAAACGCACGTA
- TAAGTGACGA
/31IABKFQ/
/56-FAM/TCTAGCACC
MMTV_C072 | TCGACCGCGTCGTT TGGAAAGTGAAGGA GCTTAAACGCACGTA
- TAAGTGACGA /3IABKFQ)/
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Table C.8, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe
/56-FAM/TCTAGCACC
MMTV_C073 | ATTACGCGCGGCG TGGAAAGTGAAGGA GCTTAAACGCACGTA
- TAAGTGACGA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C074 | ATTGCGTCGCGCTAC TGGAAAGTGAAGGA GCTTAAACGCACGTA
- TAAGTGACGA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_CO075 ?g(’}[ACGACTCGTTCG ,}:igg?éfggﬁAGGA GCTTAAACGCACGTA
/31ABKFQ/
GCGATAAGACGCGT |TGGAAAGTGAAGGA | 2STAMITCTAGCACC
MMTV_C076 AACG TAAGTGACGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C077 ,?XJTAATGCGCGACGT ,}ﬂggé?é‘gggﬁAGGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C078 ggﬁTATAGTCCGAGC ?ggé?égggﬁAGGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C079 EGTACGTCGTGTCGA iiié?éfggﬁAGGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C080 ESIESTCGAATCGTAAC ?iié?égggﬁAGGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_CO081 gGTATACGCGCGAC ;ggg?gfggﬁAGGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C082 giGATACTACGCTCG iiié?gggg:AGGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_CO083 giTAACTACGGTCGC ,}:igg?éfggﬁAGGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C084 1(,} ((j} é TACGTACGTCCG %ggé?égggﬁAGGA GCTTAAACGCACGTA
/31ABKFQ/
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Table C.8, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe
/56-FAM/TCTAGCACC
MMTV_CO085 ggACGTAACGCTATG ;ggg?gfggﬁAGGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C086 igACTAACGCGTCG iiié?égggﬁAGGA GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
MMTV_CO087 E,CF}CATACGCCGATCG %ggé?éfggiAGGA GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
MMTV_C088 | TCGCGTCGCACGAT TGGAAAGTGAAGGA GCTTAAACGCACGTA
- TAAGTGACGA
/3IABKFQ/
/56-FAM/TCTAGCACC
MMTV_C089 | TCGCATCGCCGAATC | L GUAAAGTGAAGGA | GerraaacGeaCGTA
- TAAGTGACGA
/31IABKFQ/
/56-FAM/TCTAGCACC
MMTV_C090 | CGATTCGACGGTCGC TGGAAAGTGAAGGA GCTTAAACGCACGTA
- TAAGTGACGA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C091 | ATTGACGCGTCGCG TGGAAAGTGAAGGA GCTTAAACGCACGTA
- TAAGTGACGA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C092 | CGCATATCGCGTCGT TGGAAAGTGAAGGA GCTTAAACGCACGTA
- TAAGTGACGA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C093 | TACGTGTCGCGCGTA TGGAAAGTGAAGGA GCTTAAACGCACGTA
- TAAGTGACGA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C09%4 ggGATATTCGAGCGA iiié?égggﬁAGGA GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
MMTV_C095 ﬁgGCAATCCGTCGA %ggé?éfggiAGGA GCTTAAACGCACGTA
/31IABKFQ/
/56-FAM/TCTAGCACC
MMTV_C096 ECC}ACTATCGCGCGTA ?gﬁé?égggﬁAGGA GCTTAAACGCACGTA
/3IABKFQ/
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Table C.8, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe
/56-FAM/TCTAGCACC
MMTV_C097 E(C}ATACGACCGCGTT }wggé?éfggﬁAGGA GCTTAAACGCACGTA
/31ABKFQ/
/56-FAM/TCTAGCACC
MMTV_C098 | TATCCGGCGCGTACC TGGAAAGTGAAGGA GCTTAAACGCACGTA
- TAAGTGACGA
/3IABKFQ/
/56-FAM/TCTAGCACC
MMTV_C099 éTATGCGGCGTTCGA ,}:igg?éfggﬁAGGA GCTTAAACGCACGTA
/3IABKFQ/
/56-FAM/TCTAGCACC
MMTV_C100 | CGCGATCGGTATCGG TGGAAAGTGAAGGA GCTTAAACGCACGTA
- TAAGTGACGA /3IABKFQ)/

Space Alien barcode gPCR

Table C.9: Space Alien barcode qPCR primers and probe.

Target Forward Primer Reverse Primer Hydrolysis Probe
/56-FAM/ACGTAATCG
3001 ECA}TCGTGTCGCGTAT gﬁ?ﬁGAACGCCGGTT ACACTACGTCGACT
/3IABKFQ/
CGTACTAAGACGTAT | CAATGAACGCCGGTT [S6-FAM/ACGTAATCG
S002 CTAGCG AATA ACACTACGTCGACT
/3IABKFQ/
GAGTAATAAGTACG |CAATGAACGCCGGTT [S6-FAM/ACGTAATCG
S003 CGAGATAG AATA ACACTACGTCGACT
/3TABKFQ/
/56-FAM/ACGTAATCG
3004 ?CGCGTCGCTATACT ii?iGAACGCCGGTT ACACTACGTCGACT
/3TABKFQ/
ACGTAACCGGTAGA |CAATGAACGCCGGTT [36-FAM/ACGTAATCG
S005 CTTAT AATA ACACTACGTCGACT
/3TABKFQ/
/56-FAM/ACGTAATCG
3006 ?g(l;léCGACCGTTTAT EQ{RZGAACGCCGGTT ACACTACGTCGACT
/31IABKFQ/
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Table C.9, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe
GTTAAGTATGCGAAC | CAATGAACGCCGGTT| >0 FAWACGTAATCG
S007 CGTATAG AATA ACACTACGTCGACT
/31ABKFQ/
TTAGACGACCGAATT | CAATGAACGCCGGTT| >0 FAMACGTAATCG
S008 CTACT AATA ACACTACGTCGACT
/3IABKFQ/
/56-FAM/ACGTAATCG
3009 égCC}TACTACGATCTC iﬁ?{iGAACGCCGGTT ACACTACGTCGACT
/3IABKFQ/
/56-FAM/ACGTAATCG
3010 iCGCGTCACGACTAA iﬁ?ﬁGAACGCCGGTT ACACTACGTCGACT
/31ABKFQ/
CGCTATACGAGAAT |CAATGAACGCCGGTT [36-FAM/ACGTAATCG
SO011 AACGC AATA ACACTACGTCGACT
/31ABKFQ/
/56-FAM/ACGTAATCG
3012 ﬁ:?AAgCGAGTTCGCTT EQ?EGAACGCCGGTT ACACTACGTCGACT
/31ABKFQ/
/56-FAM/ACGTAATCG
3013 gj:égyTATCGTAGTCG ii{?zGAACGCCGGTT ACACTACGTCGACT
/31ABKFQ/
CGTAACGCGTTTAGA | CAATGAACGCCGGTT [S6-FAM/ACGTAATCG
S014 GTATT AATA ACACTACGTCGACT
/31ABKFQ/
/56-FAM/ACGTAATCG
3015 iiggGAATTCGAACT EQ?EGAACGCCGGTT ACACTACGTCGACT
/31ABKFQ/
/56-FAM/ACGTAATCG
3016 égATACGTCCGATAC ii?EGAACGCCGGTT ACACTACGTCGACT
/3IABKFQ/
GAATTACCTTACCGT | CAATGAACGCCGGTT| >0 FAMACGTAATCG
S017 CGATIG AATA ACACTACGTCGACT
/3IABKFQ/
/56-FAM/ACGTAATCG
3018 {iiGACGTACCGATG iﬁ?ﬁGAACGCCGGTT ACACTACGTCGACT
/31ABKFQ/
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Table C.9, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe
/56-FAM/ACGTAATCG
3019 %SQE}TACGCGATAAC ii?iGAACGCCGGTT ACACTACGTCGACT
/31ABKFQ/
/56-FAM/ACGTAATCG
020 %};?gGCGCACTAATG ii?EGAACGCCGGTT ACACTACGTCGACT
/3IABKFQ/
/56-FAM/ACGTAATCG
021 ?S”C[éCTCGAATACGC iﬁ?{iGAACGCCGGTT ACACTACGTCGACT
/3IABKFQ/
/56-FAM/ACGTAATCG
S022 iié:ll:ACATATCCGCG ii?iGAACGCCGGTT ACACTACGTCGACT
/3IABKFQ/
/56-FAM/ACGTAATCG
3023 E(;GATGCGGTGATTA iﬁ?};GAACGCCGGTT ACACTACGTCGACT
/31IABKFQ/
/56-FAM/ACGTAATCG
S024 g?iiAGACGATCTC iﬁ?}:GAACGCCGGTT ACACTACGTCGACT
/3IABKFQ/
GACGAACCTTATCGT | CAATGAACGCCGGTT [S6-FAM/ACGTAATCG
S025 GTAAC AATA ACACTACGTCGACT
/31ABKFQ/

Human genomic locus gPCR

Table C.10: Human genomic locus barcode qPCR primers and probe.

Target Forward Primer Reverse Primer Hydrolysis Probe
CGCCGCTCTCATTCT | GCTTGTGGTTCTCCT |20 TAMAAACAACCC

HoxA9 CAG CCAG AGCGAAGGCGC
/3TABKFQ/
/56-FAM/TAGCCTCGC

GAPDH Z}gCTGCCGGTGACTA gi"i(i};%CCGGAGGA TCCACCTGACTTC
/3TABKFQ/
/56-FAM/ACCATATAG

EuNeg gﬁggCTGTAACCAAC g”{:?TGGGCTGGCTTC AGAAAGCCTGCTT
/3TABKFQ/
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D. melanogaster genomic locus gPCR

Table C.11: D. melanogaster genomic locus barcode qPCR primers and probe.

Target Forward Primer Reverse Primer Hydrolysis Probe
CCTATGCCAGGCAG |CTCAAAGTGTGGGAT [36-FAM/ACATCAGGC/
Fz3 GTAAAT CTAGAAGG ZEN/AGAAAGCAATG
AAAGT/3TABKFQ/
We CAGCGGAATTAATC | GCGCACTATAAATG | HOTAMITUAGEATEA
GCACAAATA AGGCATAATC GCA/3IABKFQ/
/56-FAM/ATGACGACG/
Lab ?ééCACGACTCCCGT %gi;g'(l;CACGACTTGG ZEN/ACGACGTGCTG/3
IABKFQ/
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APPENDIX D: SEQUENCING DATASETS

This section lists details of the next-generation sequencing datasets generated for this work. Datasets

used beyond those here listed were generated by Adrian Grzybowski, Ph.D.’18 or Bill Richter,

Ph.D.20.

Table D.1: Next-generation sequencing dataset reference information.

Identifier Source ChIP Target Antibody
IIAerl;litl_-rle-p 1 native ?2 Teelllal?r?f o None None None
ﬁllgli‘tlirle-pZ_native ZSDZ Teelllal?gf wer None None None
ﬁll;lltl_-rle-m_native 32 Zieelllal;iigeg “ None None None
fl?lgl-rrll-e?)_rep 1 native Isji Teelllallfgf @ Native H3K4me3 ﬁ)\f 13 2961 1539005
313{121;’111:33_rep2_native 18)2 ’c?:leelllal’iqr?ég e Native H3K4me3 é(l)\:[ 132961 1539005
313{121-1111;3_rep3_native ls)i ?eelllallfgeg W Native H3K4me3 ﬁ)\f 132961 1539005
Iﬁ?lé%lr;ld_rep 1 _native 32 T;ial?gf “ Native H3K79me2 éf"[ éslgfﬁ 874
ﬁ?ll;;r;le2_rep2_native 18)2 ’Zjeelllal’iqrifr w Native H3K79me2 fcl)gt 2}5;?73 874
313{1217-911;162_rep3_native IS)2 Teelllal’iil(l)eg “ Native H3K79me2 éc])gt 3}512?73 874
ﬁllgllltl_-rze-p 1 _denat 18)2 Teelllalliqr?eg w None None None
ﬁlﬁig;fc;pZ_denat 18)2 r:eelllal?r?eg o None None None
ﬁll;itl_-rze;m_denat ZSDZ Zieelllalliir?eg we None None None
ﬁ[?lgl-ri-e?a_rep 1 denat 52 21(3e111al’i11(1)§ o Denaturative | H3K4me3 égf 132961 1539005
31;121;121;3_rep2_denat Isji Teelllallfr(l)eg " | Denaturative | H3K4me3 ﬁ)\f 13 2961 1539005
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Table D.1, continued:

(4d)

Identifier Source ChIP Target Antibody
fl?lgje:s_rem_denat ls)i quelllal}fr(:eg " | Denaturative | H3K4me3 Iﬁ\f 13 2961 1539005
ﬁl?lé;;zr;e2_rep 1 denat 52 quelllca?r?eg w Denaturative | H3K79me2 é(])gt 2513?73 874
313{1217_921;162_rep2_denat ISDZ Zieelllalliqr?eg “ DN |SELR 2 ﬁ]i 2}51{9;173 874
ﬁ?liiézr;e2_rep3_denat 18)2 Tceelllalrilgf we Denaturative | H3K79me2 f(])st 2}5[5?73 874
ﬁilvse_lugfeljfergf_ I\D/Il\\g;(l)lmd) Native H3K4me3 icl)\:[ 13 2961 15 39005
e umscaed 2 |DMSO @4y | Nove | HIKame3 L
filvi_luﬂfife?? - g[l\\/fs%l(M) Native H3K4me3 Iﬁ\f 132961 1539005
iﬁf_ﬁﬁiﬁi 613_ g%‘st;(l)lmd) Denaturative | H3K4me3 ﬁ)\f 13 2961 1539005
ﬁﬁif_iﬁii:ﬁ 623_ %41\\/?3%1(4@ Denaturative | H3K4me3 ﬁ)\f 13 2961 1539005
omat unreated 3| DMSO (4g) | Denaturstive | H3Kame3 | FUEO O
dAeIr{lallf_-lllr-lI‘;ziZc?ﬁez_ %/[1\\/;3;(1)1(4(1) DGO SIS écli ?(’}SIE?B 874
ﬁ;i;ts__;trH;i?_rgez_ I\D/%AS%I(M) Denaturative | H3K79me?2 f?t 2}513?73 874
fenat umreated 3 |DMSO g | Denatuatve | HIKTOm2 | Ty

MV4;11
ﬁ‘:t‘ilvz j;ii;“mﬁ - (1 fd;LM EPZ-5676 | Native H3K4me3 fz{ 13296115390 05
g‘;g_}i&gjﬁqgmez— il\:{):l;i\’/ll }EPZ-S 676 | Denaturative | H3K79me2 é(]i éslzit7 1874
AR15-3 untreated Input glﬁg’é 1( Ad) None None None

MV4:11
AR15-4 treated Input 10 uM EPZ-5676 | None None None
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Table D.1, continued:

Identifier Source ChIP Target Antibody
AR16-1-Input K562 None None None
AR16-2-AB-8895 K562 Native H3K4mel S(I)Bt 2?3;50523 1-1
AR16-2-EMD-05-1338 | K562 Native H3K4me2 52?2)7%57_11573 i
AR16-2-TF-710795 K562 Native H3K4mel 11:1(: tgg;?sg 603
AR16-3-AB-7766 K562 Native H3K4me?2 é(]i 7G7£2689627-1
AR16-3-AM-39635 K562 Native H3K4mel f})\f 3309 66 13550 1
AR16-3-CST-9725 K562 Native H3K4me?2 ES,[T 99725
AR16-4-AB-12209 K562 Native H3K4me3 ﬁ]:[ gég? 5790-1
AR16-4-AB-8580 K562 Native H3K4me3 é(l)%t 2515? 90229-1
AR16-4-ABC-46698 K562 Native H3K4me3 fﬁi%zsgﬁ
AR16-4-EMD-07-473 K562 Native H3K4me3 Elg/tﬂlggiﬁ?ﬂ 366
AR16-4-TF-PA5-40086 | K562 Native H3K4me3 Eztfﬁsiig(l)gg 5
AR16-5-CST-5326BF K562 Native H3K4mel SS,[T 25326BF
AR16-5-EMD-05-745R | K562 Native H3K4me3 Eg/tﬂggoé-g 275 R
‘8‘5%1 6-5-EPG-A-4031- K562 Native H3K4mel 55?636_:(5); 1-050
AR16-5-TF-710796 K562 Native H3K4me?2 Ez tggggg 606
AR17-1 K562 Input K562 None None None
e <15 Native H3K27me3 |01 >0
ks | Kse2 Natve | HOKdme | ioeon
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Table D.1, continued:

Identifier Source ChIP Target Antibody
AR17-3-EPG-A-4033- . EPG A-4033-050
053-K562 K562 Native H3K4me3 Lot 606361
AR17-3-Taka-309M3B- . KL 309M3B
K562 K562 Native H3K9me3 Lot 072913TH
B R i) BITEN mESC R1 None None None
mESC-Input
AR17-6and7 dCD-R1- |mESC Rl Non Non Non
mESC_Input MLL3/4 dCD one one one
ARI7-8-CST-5326-WT- | o0 Native H3kame] | CST 5326
mESC Lot 1
AR17-8-CST-5326-dCD- | mESC R1 . CST 5326
mESC MLL3/4dCD | hauve H3Kamel 1y
. mESC E14
AR18-1-Primed_Input Serum/LIF None None None
KL 304M3B-
AR18-2-Primed_Bivalent ‘snESrfl /ﬂ; relCeChIP ﬁggrﬁf’ g 1XHRV3C/
et © 1 cST 5326
ARI18-2- mESC E14 . CST 5326
Primed_H3K27me3 Serum/LIF Native H3K27me3 |1 ot 8
KL
1’3‘31 8;12-1{31( de ‘S“ESC /EII; Native H3K4me3 | 304M3B-1xHRV3C
rimee_HoRathe erum Lot 103015AG
ARI18-2- mESC E14 . KL 309M3B
Primed H3K9me3 Serum/LIF Native H3KOme3 1yt 072013TH
AR18-3-NPC Input NPC None None None
KL 304M3B-
AR18-4-NPC Bivalent |NPC relCeChIP ggg?ﬁ /3 1XHRV3C/
© | cST 5326
AR18-4- . CST 5326
NPC_H3K27me3 NPC Native H3K27me3 Lost 8
KL
AR18-4-NPC_H3K4me3 | NPC Native H3K4me3 | 304M3B-1xHRV3C
Lot 103015AG
. KL 309M3B
AR18-4-NPC H3K9me3 | NPC Native H3K9me3 Lot 072913TH
AR19-1-RS411-Input RS4;11 None None None
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Table D.1, continued:

Identifier Source ChIP Target Antibody
AR19-1-RS411- . CST 5427
H3K 79me? RS4;11 Denaturative | H3K79me?2 Lot 4
AR19-2-Kopn8-Input Kopn8 None None None
AR19-2-Kopn8- . CST 5427
H3K79me? Kopn8 Denaturative | H3K79me?2 Lot 4
AR19-3-K562-Input K562 None None None
AR19-3-K562- . CST 5427
H3K79me2 K562 Denaturative | H3K79me?2 Lot 4
AR19-4-Molm13-Input | Molm13 None None None
AR19-4-Molm13- . CST 5427
H3K79me?2 Molm13 Denaturative | H3K79me2 Lot 4
AR19-5-THP1-Input THP1 None None None
AR19-5-THP1- . CST 5427
H3K79me? THP1 Denaturative | H3K79me?2 Lot 4
AR19-6-SEM-Input SEM None None None
AR19-6-SEM- . CST 5427
H3K79me?2 SEM Denaturative | H3K79me?2 Lot 4
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