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ABSTRACT

In the eukaryotic genome, DNA is organized into nucleosomes, which are comprised by

147bp of DNAwrapped around a core of eight histone proteins. These histones can then be post-

translationally modified to regulate the function and status of the associated genomic region. The

primary method to determine the genomic distribution of these modifications is chromatin im-

munoprecipitation (ChIP). However, this method, as traditionally practiced, has many problems

hampering its interpretability insofar as it is non-quantitative and has indeterminate specificity. In-

ternally calibrated ChIP (ICeChIP) can address some of these issues by employing nucleosomal

internal standards, but many open questions remain as to the specificity of commercially available

antibodies and many paradigms which are less easily resolved by traditional native ICeChIP. Here,

I present my work on methods to extend the use cases of ICeChIP and applications therein. First,

I show that many commercially available antibodies against H3K4 methylation states are of low

quality and that common methods of antibody validation fail to reflect performance in ChIP, ulti-

mately showing that this low specificity contributed to incorrect biological conclusions in several

high-profile studies. Second, I describe our work on the study of bivalency, in which we devel-

oped a sequential form of ICeChIP to study nucleosomes bearing both H3K4me3 and H3K27me3,

ultimately showing that many paradigms concerning such a combination are incorrect. Third, I

describe our development of denaturative ICeChIP and use it to study the role of H3K79me2 in

MLL-rearranged leukemias. Finally, I discuss our development of SmartMap, a tool to allocate

next-generation sequencing reads that align ambiguously to the genome, demonstrate its ability to

improve read depth at regions with low-mappability, and use it to study the role of histone modifica-

tions at repetitive elements. Overall, this work shows the power of using specific and quantitative

methods in studying histone modifications.
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CHAPTER 1: INTRODUCTION

Epigenetics and Chromatin

By the early twentieth century, it was widely accepted that many traits of an organism could be

inherited in units now referred to as genes1,2. Though initial hypotheses focused on the role of

proteins in this process, over the next several decades, researchers accumulated evidence instead

pointing to DNA as the carrier of genetic information3,4. By the early 1950s, it had become clear

that DNAwas the primary heritable genetic material and that, in this role, it served to encode the

instructions governing the development and activities each cell and the organism as a whole. What

remained unclear was how these instructions were carried out in the cellular context.

This question posed a particular challenge for the field of developmental biology. Complex

multicellular organisms all have multiple organ systems, each with numerous different cell types

with distinct properties, activities, and functions. And yet, these cells all derive from a single

fertilized egg, which must then grow, divide, and transform into the myriad cell types of the body.

This process, referred to differentiation, was famously analogized by Conrad Waddington as a

marble rolling down a contoured terrain which he called the “epigenetic landscape” (Figure 1.1)

established by the interactions and effects of different genes on development5. As he described in

his book The Strategy of the Genes:

Consider a more or less flat, or rather undulating, surface which is tilted so that points

representing later states are lower than those representing earlier ones… Then if some-

thing, such as a ball, were placed on the surface it would run down towards some final

end state at the bottom edge… say, to the eye, and another to the brain, a third to the

spinal cord, and so on for each type of tissue or organ. … Since each gene must be

regarded as a distinct chemical entity, the path of development as it is observed by the

anatomist must be viewed as the resultant of all the very numerous processes in which

these genes are involved in the cells concerned.5
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Figure 1.1: Waddington’s Epigenetic Landscape.

Conrad H. Waddington’s characterization of the pathway of cellular differentiation being akin to a

marble rolling down a surface with multiple branch points and final states, representative of different

cell types. Adapted fromWaddington5.

As appealing as this model of gene-directed development was, it still left the question: how

could the single set of genetic instructions encoded in the DNA of the fertilized egg specifically

direct the development and functions of a vast array of different cell types? One hypothesis was

that over the course of differentiation, cells would lose portions of the genome that were no longer

relevant for that cell type such that the terminally differentiated cells only contained those genes

that were necessary for the functions of that cell type1. This model was ultimately put to rest in

1970, when Laskey and Gurdon showed that the nucleus of a terminally differentiated somatic cell

could drive embryogenesis in an enucleated ovum lacking a genome, thereby showing that even

adult cells carried the full genome in their nuclei6. This left an alternate hypothesis as the prevailing

model: rather than modifying the sequence of the genome, differentiation proceeded by modifying

some yet-unspecified regulatory mechanisms that governed the activity and expression of each gene.

The study of these regulatory mechanisms would go on to become the central question underlying

the field of epigenetics.

Over the course of the last several decades, that term has represented several different

concepts. Waddington, for example, defined epigenetics as the study of how genotype and environ-
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mental factors impacted developmental phenotypes5. The developmental biologist Adrian Bird, by

contrast, defined epigenetics much more broadly as the study of the structural changes applied to

the genome in order to modulate its activity7. As a working definition, we will use the formulation

put forth by Riggs and colleagues, which strikes a useful conceptual balance between the restrictive-

ness of some definitions and the breadth of others. Per their conceptualization, epigenetics refers

to the study of heritable traits that are not encoded by modifications to the DNA sequence or the

proper pairing of corresponding nucleotides8. Rather, epigenetics concerns itself with the other

regulatory mechanisms by which genes can be regulated and coordinated. Critically, these traits are

not simply transient fluctuations of activity in response to temporary environmental stimuli; rather,

this regulation occurs in a manner that can be inherited across cellular divisions or even organismal

generations. Over the course of the last several decades, epigenetics has been critical for furthering

our understanding of both physiological and pathophysiological processes, including development

and differentiation9–15, regulation of transcription16–20, and cancer biology21–25. The mechanisms

implicated in these pathways represent different ways by which cells can interpret a single genome

containing all the genes of the organism so as to identify and selectively express the genes that are

needed for each of the different cell types in the body.

In the nucleus, DNA is organized in complex with histone proteins into nucleosomes26–28,

which in turn interact with proteins and RNA molecules that associate closely with the genome;

these complexes are collectively referred to as chromatin29, which ultimately associates into flexible

and dynamic higher-order strucutres, enabling compaction of the genome30. Epigenetic regulatory

pathways, in turn, largely fall into one of three categories31, each primarily involving one of these

three components of chromatin: DNAmodifications, involving modifications to the DNA that do

not affect the DNA sequence; non-coding RNA (ncRNA) regulation, in which RNAmolecules that

3



do not code for proteins regulate the transcription and translation of other genes; and nucleosome

variants and modifications, which regulate the most fundamental units of chromatin and DNA

organization (Figure 1.2).

Figure 1.2: Forms of Epigenetic Regulation.

Different forms of epigenetic regulation at every level of chromatin organization, including DNA

modifications (depicted as cytosine methylation) to histone modifications and non-coding RNA

interactions. Adapted from Jones et al.31.

The first of these levels of regulation is the language of covalent DNA modifications. In

this context, we refer not to modifications that affect the identity of a DNA base or the canonical

Watson-Crick base-pairing of a given sequence; we refer to those changes as mutations. Rather, the

epigenetic DNAmodifications represent covalent modifications to the portions of the DNA bases

that do not participate in base pairing (Figure 1.3). The best-characterized and most prominent such

4



modification is the methylation of carbon 5 of cytosine (5-methylcytosine, abbreviated 5-mC)32.

This modification, installed in humans by the DNAmethyltransferases DNMT1, DNMT3A, and

DNMT3B33, was first described in the 1970s as a repressor of transcription that could be inherited

through semiconservative replication34–37 as part of its role in X chromosome inactivation37. Since

then, DNAmethylation has been found to be a critical repressor of transcription more broadly, with

roles including terminal silencing of unnecessary genes over the course of cellular differentiation38,

repression of repetitive regions/endogenous retroviruses to promote genomic stability1,39, and im-

printing of genes in the germ line40–42. Indeed, dysregulation of DNAmethylation and its effector

proteins is now known to be important for the genesis of malignancy43 or developmental disorders

(e.g. Rett syndrome, imprinting disorders)13. In addition to the canonical 5-mC form of DNA

methylation, several other potentially functional DNAmodifications have been described in recent

years (Figure 1.3)32. These include oxidized forms of 5-mC, such as 5-hydroxymethylcytosine,

which has been associated with neurodevelopment and neuronal functions44–49; and methylation of

nitrogen 6 of adenine (6-methyladenine, abbreviated 6-mA), the function of which is less clear32,50.

N
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N N

N
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CH3
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NH2

O

CH3

5-methylcytosine
(5-mC)
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Figure 1.3: Examples of DNAModifications.

Structures of 5-methylcytosine, 5-hydroxymethylcytosine, and 6-methyladenine DNA modifica-

tions. Note that the hydrogen bond acceptors and donors involved with Watson-Crick base pairing

are unaffected by these covalent modifications.
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The second category of epigenetic regulation is the modification of transcription and trans-

lation by ncRNAs. Indeed, though only 1-3% of the human genome is comprised by protein-coding

genes51,52, it has been shown that roughly 75-90% of the human genome is transcribed into RNA53,54,

with the vast majority of those transcripts existing as non-coding RNAs. The role of some non-

coding RNAs have long been clear – for example, ribosomal RNA (rRNA) serves as the catalytic

machinery for translation, with transfer RNA (tRNA) serving as the carrier of amino acids and

decoder of mRNA in this process. More recently, other ncRNAs have been shown to be critical

epigenetic regulators of transcription. One of the first ncRNAs to be so identified was Xist, which

was identified in the 1990s as essential55 for X-inactivation (at least for stabilization of the inacti-

vated state56) and subsequently found to be sufficient for the same57. Since then, many different

classes of ncRNAs have been identified as modulators of transcription or transcript stability. These

types of ncRNAs include, amongst others: enhancer RNAs (eRNAs), which are short transcripts

produced from enhancer regions58–60 that are thought to specifically regulate transcription of the

promoters under enhancement61; microRNAs (miRNAs), which are short RNAs that endogenously

downregulate transcripts with which they hybridize62–64; Piwi-interacting RNAs (piRNAs), which

are small RNAs that silence transposable elements and maintain genomic stability, particularly in

germ line cells65–67; circular RNAs (circRNAs), a variable-length class of RNAs that are thought

to absorb excess miRNAs68; and chromatin-enriched RNAs (cheRNAs), which are long ncRNAs

associated with chromatin that serve as cell-type-specific cis-regulatory activators or repressors of

transcription69–71. Collectively, these ncRNAs – and others – are able to positively and negatively

regulate the transcription and function of the protein-coding segments of the genome through a

variety of mechanisms, often in a cell-type specific manner and without modifying the sequence of

the genomic DNA itself.
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Figure 1.4: Structure of the nucleosome.

Structure of the nucleosome, showing DNAwrapped around an octamer of histone proteins, which

can be post-translationally modified. Adapted fromWerner and Ruthenburg75.

The third mechanism of epigenetic regulation is through modification of the nucleosomes

and, in particular, the histone proteins. As previously noted, in the eukaryotic genome, DNA is

organized into nucleosomes, which are comprised by 147 base pairs of DNA wrapped about a

core octamer of histone proteins : two copies each of histones H2A, H2B, H3, and H4 (Figure

1.4)28. Nucleosomes, particularly in their higher-order complexes and structures, provide organized

compaction to the genome so it can feasibly fit in the nucleus while remaining sufficiently organized

to be functional26,27,31.This compaction must, however, be balanced with the accessibility of the

genome; if a region of the genome is highly compacted by nucleosomes (a state of chromatin

referred to as heterochromatin), then it will not be easily accessible for transcriptional machinery,

thereby repressing gene expression72,73. Conversely, if a region of the genome is less compacted
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and more accessible (a state of chromatin referred to as euchromatin), then it will be more available

for transcription. This provides another method of epigenetic regulation; if the compaction of the

genome can be modified at a given location, then that can be used to activate or repress transcription

at that locus. This modulation is achieved through post-translational modifications (PTMs) of the

histones that comprise the nucleosomes73,74.

Many different types of histone modifications have been identified with a broad range of

roles76. These modifications can be largely classified into two categories (which are not mutu-

ally exclusive): function through direct impact on structure and function through interaction with

binding partners. Members of the first of those classes of histone modifications are thought to act

by disruption of the local chromatin structure. For example, some modifications are thought to

function by introducing negative charges onto the histone surface and reducing its overall positive

charge, weakening the electrostatic interactions between the histone surface and the negatively

charged DNA phosphodiester backbone and thus driving transcription. Such modifications include

histone phosphorylation, which has been associated with active transcription and DNA damage

repair77, and histone acetylation, which is broadly thought to activate transcription and demarcate

enhancer regions12,78–81. Other modifications serve to disrupt local chromatin structure through

non-electrostatic modulation of steric interactions. These include histone ubiquitylation, which

introduces a large modification that sterically disrupts neighboring nucleosomes and activates tran-

scription82,83, and proteolytic cleavage of the histone tail (also called histone tail clipping), which is

through to be important for differentiation84–86. These modifications all have the capacity to directly

modify the structure of the local chromatin by modulating the favorability of the physical associa-

tions within or between nucleosomes and, thereby, to modify the accessibility of the chromatin for

transcriptional machinery.
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The second class of histone modifications is the set of modifications that function through

interactions with specific binding partners. This is not mutually exclusive with the former category;

for example, histone lysine acetylation modifications are bound by bromodomain-containing pro-

teins to enact some of their functions87,88. However, this class of histone modifications also includes

more subtle chemical changes that are unlikely to have significant direct impacts on the structure.

One example of such a modification is histone methylation, wherein a proton is replaced with a

methyl group. This substitution does not change the charge of a given residue and represents a

very subtle change in size relative to the unmodified residue, making significant steric interactions

unlikely. Nonetheless, histone methylations are critical for many epigenetic regulatory pathways

with a broad range of functions73,76. Though recent work has examined the role of histone argi-

nine methylation as an epigenetic regulator89,90, the best-studied histone methylations are those

on lysine residues31,73,74,76, a class of histone PTMs with highly varied regulatory roles conferred

by their recruitment of specific protein binding partners. H3K4 trimethylation (H3K4me3), for

example, is bound by PHD fingers domains on proteins such as BPTF91,92 and TAF393,94 to remodel

chromatin, make the chromatin more accessible, and activate gene transcription17,20,94. H3K27

trimethylation (H3K27me3), by contrast, is bound by Polycomb group proteins16,95, particularly a

subset of chromeobox (Cbx) proteins96,97, to cause chromatin to be more tightly compacted, less

accessible, and transcriptionally repressed. H3K9 di- and trimethylation (H3K9me2 and H3K9me3,

respectively) are similarly bound by HP1 family members to similarly cause heterochromatin forma-

tion, particularly at repetitive elements and at centromeres or telomeres98–101. Many other histone

methyllysine PTMs have been described in the literature, with varying degrees of biochemical or

functional validation73,76,102.
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Studying the Genomic Distribution of Histone Modifications

Collectively, histone PTMs represent critical regulators of local genomic structure and function

with important roles in gene regulation, physiologically cellular differentiation, pathological cellular

dysregulation, and oncogenesis23,103,104. Accordingly, much work over the last several decades has

focused on better understanding the role of histone PTMs in a broad range of cellular, developmental,

and/or clinical contexts. But to understand the functions of histone modifications and the genomic

features with which they associate, it is first critical to understand the genomic distribution of the

same. To that end, the critical first step for most studies of histone modifications is to ask: where

in the genome are these histone modifications located, and how prevalent is each modification?

Several methods have been developed to answer those questions, each with their own limitations.

In the past, it has been challenging to answer those two questions simultaneously. Broadly,

the study of histone modifications coalesced around two classes of methods: those that make

quantitative measurements globally and those that make relative measurements locally. The former

category describes methods that can quantify histone modifications globally; with these methods,

it is possible to measure the absolute abundance of a histone modification (i.e. the proportion of

histones or nucleosomes with the modification of interest) across all the histones or nucleosomes

in the genome. These methods primarily profile the histone proteins directly to detect the presence

and quantity of modifications without concern for the accompanying DNA.

One of the most common methods for this purpose is Western blotting105, in which a pro-

tein sample is separated by SDS-PAGE, transferred to a membrane, and bound by an antibody

specific for the target of interest (in this case, a particular histone modification), which can then

be detected directly or with a secondary antibody. With appropriate quantitative Western blotting

procedures106,107, including using protein standards on the membrane as calibrants and employing
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a reasonable-quality antibody108, Western blotting can be used to measure the abundance of an

individual histone modification quickly and cheaply. However, quantifying more than one his-

tone modification requires separate experiments with separate protein standard calibrants processed

alongside the cellular protein samples of interest. Further, this method is critically reliant on the

antibody reagent used, which is problematic given that many commercially available antibodies

have very low specificity or, on occasion, bind to the wrong target entirely108–112. Despite these

limitations, for measuring histone modification abundance (and changes therein) genome-wide for

a limited set of modifications, Western blotting remains a powerful tool for molecular biologists.

Another method that is often used for global histone modification abundance measurements

is mass spectrometry. In most of these workflows, histones are purified, digested, and subjected

to liquid chromatography (LC) coupled to tandem mass spectrometry (MS/MS)113,114. The post-

digestion fragments are separated by the liquid chromatography step, after which they are separated

by charge/mass ratio in the first mass spectrometry step113–116. Peptides with a given approximate

charge/mass ratio are then subjected to the second mass spectrometry step, which fragments the

peptide further and measures the mass/charge ratio of those fragments. This fragmentation pattern

can then be analyzed for the hallmarks of different histone modifications and, based on the relative

contributions of each modification to the fragmentation pattern, the abundance of each such modi-

fication113,114. Altogether, this method is able to measure the global abundance of a broad range of

histone modifications without needing to find new reagents or generate new standards for each such

mark. More recent work has extended this process to the purification of entire nucleosomes, fol-

lowed by a similar LC-MS/MS method to quantify the abundance of different histone modification

combinations on a nucleosome, even on different histone proteins117. The result there, however,

is the same: measurements of a broad range of histone modification global abundances. Though
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extremely powerful, mass spectrometry analysis is nowhere near as inexpensive or straightforward

as Western blotting; whereas Western blotting can be done in a matter of hours with standard lab

equipment and expertise, mass spectrometry experiments can be considerably more involved and

require much more expensive and specialized equipment with specialized techniques. As such, it

is a useful “gold standard” for quantifying histone modifications but is not as commonly used as

Western blotting.

These techniques belong to the class of methods that measure global absolute abundance of

the histone modification of interest without any information on its localization. Another class essen-

tially takes the inverse approach, making local measurements of relative modification abundance.

These methods primarily focus their readouts on the DNA fragments bound to the nucleosomes

with the modification of interest rather than directly probing the protein itself118. Though some

proof-of-concept work has shown that nucleosomes with a modification of interest can be directly

identified and sequenced by microscopy-based methods119, the vast majority of the methods in this

category function by purifying nucleosomes with the target PTM, then recovering and analyzing

the associated DNA.

Chromatin immunoprecipitation and its limitations

The most common method operating under that workflow, by a wide margin, is chromatin immuno-

precipitation, or ChIP118,120. In this method (Figure 1.5A), chromatin is fragmented into mono- or

oligonucleosomal fragments and incubated with antibodies that will bind with high affinity to the

modification of interest. The Fc stem of the antibody is then captured by a Protein A or Protein G

resin, along with anything bound to the variable domain of the antibody (i.e. the nucleosomes of

interest). After several washing steps to remove weakly bound off-target nucleosomes, the DNA
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Figure 1.5: Chromatin Immunoprecipitation and Problems.

(A) ChIP workflow. Chromatin is fragmented into mononucleosomal fragments and bound by an

antibody targeting a modification of interest. DNA is purified from the recovered nucleosomes

and mapped to the genome as a proxy for the histone modification of interest. Adapted from Grzy-

bowski et al.118 and Shah et al.124. (B) Problems of ChIP, presented as problems with H3K27me3

ChIP. Conventional ChIP is a relative metric and is thus susceptible to misquantification, making

comparison of different marks impossible. Off-target binding of the antibodies also complicates

interpretation of a ChIP experiment.

can be recovered from the nucleosomes still bound to the antibody and mapped to the genome using

either quantitative polymerase chain reaction (qPCR) or next-generation sequencing (NGS). The

interpretation is that the DNA is a proxy for the targeted histone modification; if more DNA is

recovered from a given locus than from a control region, then it is assessed that the PTM of interest

is enriched at that particular locus118. Some similar methods (e.g. CUT&RUN121, CUT&TAG122,

ChIP-exo123) make modifications on this protocol at various stages to serve particular purposes, but

the overall interpretation is the same: the amount of DNA from a given location recovered reflects

the amount of histone modification at that locus relative to other loci and the rest of the genome.

Since it was first described in 1984 by Gilmour and Lis (for bacterial proteins)125 and in

1988 by Solomon et al. (for histones in eukaryotic cells)120, ChIP has become one of the mainstays
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of modern molecular biology17–20,78,126,127. However, it also has several critical limitations that

hamper its interpretability in many applications. As noted above, conventional ChIP measures

the enrichment of a histone modification at a given location relative to the rest of the genome,

normalized either to control loci (in the case of ChIP-qPCR) or total next-generation sequencing

(NGS) read depth (in the case of ChIP coupled to NGS, or ChIP-seq). This can be problematic even

for comparisons between loci of a single sample if the loci have different nucleosome occupancies

or fragment unevenly118. This can be accommodated by sequencing fragmented input chromatin

and measuring enrichment as the fold change in the IP over the input, but input sequencing can be

expensive due to the high read depths necessary to obtain adequate genomic coverage.

Even with input normalization, standard ChIP-seq experiments cannot be easily compared

to each other, making it difficult to compare ChIPs for different modifications or in different cellular

contexts. As previously noted, traditional ChIP-seq is a non-absolute quantification method, mea-

suring the relative amount of a given histone modification at a locus as compared to the rest of the

genome or a control region118. This relative measurement can be adequate for comparing the histone

modification levels of different loci within a single cellular context and for a single histone modifi-

cation. However, if there is a global difference in the abundance of histone modifications, then it

is impossible to quantitatively compare ChIP signals from these two different experiments (Figure

1.5B). If a locus has a change in histone modification abundance that is proportional to the change in

global abundance, then standard ChIP-seq normalization will not reveal a difference because there

is no change in the relative abundance at that locus. Indeed, some work has shown that even a 75%

difference in global abundance results in virtually no change to traditional ChIP-seq measurements

with global normalization128. Because different ChIP-seq experiments are normalized to separate

quantities and thus exist on distinct and separate scales, it is impossible to quantitatively compare
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two different ChIP-seq tracks – whether they are for two different histone modifications or two

different cellular contexts with a global abundance difference118,128.

Even for a single ChIP experiment, where such questions of quantitative comparison are

less relevant, standard ChIP still has one more crucial limitation that hampers its interpretability:

antibody specificity. ChIP is critically dependent on the antibody binding the target of interest with

high specificity and excluding other species. It has been repeatedly shown, however, that this is

not always the case; though the extent of the antibody problem was not fully grasped for some

time, it has now been shown in multiple contexts that antibodies often have a propensity to bind

histone modifications other than those that they are targeted towards108,109,111,112,118,124,129 (Figure

1.5B). Indeed, in some cases, commercial antibodies have been highly specific for the wrong target

entirely108. Without methods to assess the specificity of the antibody, it is difficult to know whether

the signal at any given locus represents primarily on- or off-target binding – let alone to know

whether signal from two different loci represents equally specific binding.

To address some of these problems, the Ruthenburg Lab developed internally calibrated

chromatin immunoprecipitation (ICeChIP)118. At the very beginning of this workflow, the sample

is spiked with a set of nucleosome standards (Figure 1.6). These standards represent semisynthetic

nucleosomes bearing on- or off-target modifications, each with a unique DNA “barcode” for later

downstream identification and quantification118. These standards are introduced into the workflow

prior to chromatin fragmentation, and the remainder of the ICeChIP protocol proceeds as standard

for a native ChIP experiment; the pulldown is conducted, DNA is purified, and sequencing reads are

mapped to the genome. At this point, the relative pulldown of each of the standards can be computed

as a proportion of that present in the input; for example, the uniquely identifiable DNA from the

on-target nucleosome standard may have a 35% recovery (or enrichment). This represents the
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proportion of nucleosomes that have the modification of interest that would be recovered genome-

wide; this number is then used to calibrate the ChIP signal, yielding the absolute proportion of

nucleosomes at a given genomic locus with the modification of interest, or the histone modification

density (HMD)118. Further, the recovery of the off-target standards can be compared to the recovery

of the on-target standard; if the on-target standard is recovered with much greater efficiency than

the off-target standards, then that is an indication that the IP proceeded with high specificity118.

recover DNA
IP and wash

semi-
synthetic
on-target

and
off-target

nucleosome
standards

Spike

MNase

Nuclei

Ab:Bead Conjugate

compute specificity and HMD

Figure 1.6: Internally Calibrated Chromatin Immunoprecipitation.

Internally calibrated chromatin immunoprecipitation (ICeChIP) workflow. Adapted from Grzy-

bowski et al.118 and Shah et al.124.

The result of the ICeChIP experiment is a measurement of absolute histone modification

abundance at any given genomic locus, along with a broad assessment of the overall specificity of

the pulldown. In this way, ICeChIP addresses both the problem of misquantification of different

histone modifications as well as the problem of antibody quality (at least insofar as it becomes

possible to measure its specificity).
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Open Questions and This Work

Despite its advantages, however, ICeChIP has not solved every problem of chromatin immuno-

precipitation. In this work, I will describe my inquiries into four separate knowledge gaps in

quantitative chromatin immunoprecipitation.

First is the question of antibody specificity; though it was well-described that antibodies

could bind off-target species, it was less clear how prevalent this was in the context of ChIP. This

would be of particular concern for pulldowns of different methylation states because of the subtlety

of the chemical changes therein. In Chapter 2, I describe my work on this question in the context of

H3K4 methylation states, wherein I characterize antibodies targeting the H3K4 methylation states

and identify weaknesses in common methods of antibody validation. In the process, I show that

low-quality antibodies can drive faulty biological interpretations and, conversely, use high-quality

data to develop new quantitative insight into enhancer regulation.

Second is the question of co-occupancy and co-occurrence of different histone modifica-

tions on a single nucleosome. ICeChIP remains highly useful for measuring the abundance of

an individual modification but, in its published form, is not capable of simultaneously measuring

whether a nucleosome has two distinct modifications. At best, it can be determined that two dif-

ferent modifications are enriched at a given genomic locus and that some nonzero quantity must

coexist, but the extent of that coexistence (as opposed to the existence of distinct cellular popu-

lations with different histone modifications) remained unclear. In Chapter 3, I describe my work

on H3K4me3/H3K27me3 bivalent histone modification patterns, in which both H3K4me3 and

H3K27me3 modifications exist on a single nucleosome. I describe the development of a sequential

form of ICeChIP that can purify nucleosomes with both modifications and use this method to study

the role (or lack thereof) of this modification in developmental poising of gene expression.

17



Third is the question of internal histonemodifications. ICeChIP is a native protocol, meaning

that it does not massively disrupt the structure of the nucleosome through the immunoprecipitation

step. This is perfectly fine for the highly accessible histone tails, which can be easily bound by an

antibody even in the native conformation. However, the native structure of the nucleosome presents

a challenge for internal modifications on the nucleosome globular domain, such as the H3K79me2

modification, where the antibody is less able to reach and bind the modification of interest resulting

in low-specificity pulldowns. In Chapter 4, I describe my work on denaturative ICeChIP, which

modifies the ICeChIP procedure to denature the nucleosome in the immunoprecipitation, thereby

making internal modifications more highly accessible for antibody capture. With this procedure, I

profile H3K79me2 in a variety of cellular contexts to explore its role in leukemogenesis and the

maintenance of the leukemic transcriptional profile.

Fourth is the backend of the ICeChIP-seq protocol: alignment and processing of next-

generation sequencing reads. The critical first step of NGS read processing is alignment of each

read to the reference genome. However, given how highly repetitive most commonly studies

genomes are, a given NGS read may map to many distinct loci with acceptable alignment quality.

Most analyses simply discard these ambiguously mapped reads, but such a practice leaves many

regions of the genome unanalyzed despite the abundance of potentially functional elements in these

repetitive regions. In Chapter 5, I describe my work to develop SmartMap, a tool employing a

Bayesian reweighting algorithm to allocate ambiguously mapped reads. I then use SmartMap to

study the histone modification patterns at several classes of repetitive elements, identifying new

classes of repetitive elements with potential functional significance.

Collectively, this document seeks to address knowledge gaps in each of the major variabil-

ity points of a ChIP-seq experiment: the antibody, the pulldown protocol, and the quantification
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backend. In doing so, it is my hope that my work illuminates several of the critical flaws with

ChIP-seq as it is traditionally practiced and shows how those flaws can be avoided, thereby driving

new insight into the mechanisms of epigenetic regulation.
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CHAPTER 2: ON THE STUDYOFH3K4 METHYLATION STATES

Attributions

This chapter has been adapted from: Shah, R. N. et al. Examining the Roles of H3K4 Methylation

States with Systematically Characterized Antibodies. Molecular Cell 72, 162–177 (2018). Peptide

array experiments were conducted by members of the Rothbart Laboratory at the Van Andel Insti-

tute, and mouse embryonic stem cell lines were cultured and gifted by members of the Wysocka

Laboratory at Stanford University. ICeChIP experiments in Fig. 2.7D-E and 2.8B were conducted

by Adrian Grzybowski, PhD’18. The other experiments were conducted by the author.

Abstract

Histone post-translational modifications (PTMs) are important genomic regulators often studied by

chromatin immunoprecipitation (ChIP), whereby their locations and relative abundance are inferred

by antibody capture of nucleosomes and associated DNA. However, the specificity of antibodies

within these experiments have not been systematically studied. Here, we use histone peptide arrays

and internally calibrated ChIP (ICeChIP) to characterize 52 commercial antibodies purported to

distinguish the H3K4 methylforms (me1, me2, and me3, with each ascribed distinct biological

functions). We find that many widely used antibodies poorly distinguish the methylforms and

that high- and low-specificity reagents can yield dramatically different biological interpretations,

resulting in substantial divergence from the literature for numerous H3K4 methylform paradigms.

Using ICeChIP, we also discern quantitative relationships between enhancer H3K4 methylation

and promoter transcriptional output and can measure global PTM abundance changes. Our results

illustrate how poor antibody specificity contributes to the “reproducibility crisis,” demonstrating

the need for rigorous, platform-appropriate validation.

20



Introduction

Over the past several decades, ChIP has contributed many seminal insights into histone PTM

regulation and distribution17–20,126,127,130–132. However, the interpretation of a ChIP experiment

critically relies on the assumption of near-perfect antibody specificity. The validity of this conjecture

for the thousands of existing ChIP-seq datasets is uncertain, given that many commercial antibodies

display considerable off-target binding in other experimental formats108,111,112,118,133,134.
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Figure 2.1: Nucleosome with H3K4 methylation states.

Structure of the nucleosome with histone H3 lysine 4 (H3K4) highlighted and schematic of methyl-

forms of H3K4. Adapted fromWerner and Ruthenburg75.
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Figure 2.2: ENCODE ChIP-seq datasets display internal inconsistency and incongruity.

(A) ICeChIP-seq and ENCODE ChIP-seq tracks at distal HoxA cluster in K562 cells. Highly

specific antibodies reveal absence of H3K4me3; low-specificity antibodies detect appreciable signal

from lower methyl forms. ENCODE tracks are reminiscent of ICeChIP tracks but differ from one

22



Figure 2.2, continued:

another and do not show true H3K4me3 signal. Green oval shows ICeChIP methylform specificity

for each antibody , orange circle with E indicates antibody validated to ENCODE standards, purple

circle with M indicates monoclonality, and red oval shows percentage of peaks in each ENCODE

dataset found in all three of the other ENCODE datasets. Bars below tracks represent peaks. (B)

Abbreviation codes, specificities in ICeChIP and peptide arrays, and target IP enrichments for

antibodies referred to in the main text. Values represent average ± SD.

Here, we have interrogated the specificity of antibodies targeting the three methylation

states of lysine 4 on histone H3 (H3K4me1, H3K4me2, and H3K4me3; Fig. 2.1), each ascribed

distinct roles in chromatin regulation. H3K4me1 (~5-20% global abundance135) is thought to mark

enhancers18,19,131 and flanks promoters17. H3K4me2 (~1-4% global abundance135) is associated

with tissue-specific transcription factor binding sites136, enhancers131, and promoter edges136–138.

H3K4me3 (~1% global abundance135) defines active transcription at promoters17,20,92–94,132, and is

also implicated in V(D)J recombination139, meiotic crossovers140, and pre-mRNA splicing141,142.

Critically, many of these conclusions were drawn presuming that ChIP could discriminate between

the three methylation states. Concerningly, apparent ChIP-seq replicates with different antibodies

for a single such can radically differ, even within a single cell line and when using the highly

standardized protocols of the ENCODE consortium (Fig. 2.2, 2.3), raising concerns that antibodies

cannot specifically discriminate between these different modifications. As such, we sought to

systematically investigate the capacity of antibodies to distinguish different methylation states of

H3K4.

To this end, we assessed the specificities of 52 commercial “ChIP grade” antibodies using

histone peptide microarrays and ICeChIP (Fig. 2.4, 2.5). In the first approach, antibody is incu-

bated with slide-immobilized peptides, and bound regions identified with a fluorescently labeled

secondary antibody (Fig. 2.6A). Peptide microarray measurements allow simultaneous testing of a

broad range of different off target, on target, and combinatorial PTMs108,111,112,133. The technique
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Figure 2.3: ENCODE ChIP-seq datasets are incongruous with each other and ICeChIP-seq.

(A) Concordance of replicated peaks for each H3K4me3 ENCODE dataset with indicated anti-

body in K562 cells. Top row shows number of called peaks replicated across the two biological
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Figure 2.3, continued:

replicates for each dataset, and bottom row the number and percentage of such peaks that intersect

with peaks common to all four of the ENCODE H3K4me3 datasets. (B) Peak shape and inten-

sity analysis by pairwise correlation between pre-cosinusoidal factors of eight-component discrete

Fourier cosine transform of fold changes over control about peaks from ENCODE H3K4me3 Sam-

ple 1 (ENCSR000AKU, left), Sample 2 (ENCSR000EWA, centre), or Sample 3 (ENCSR000DWD,

right). If only intensity of signal was different (i.e. same data with different scaling, the R2 would

approach 1, and scalar factor reflecting difference would be apparent from the slope. These com-

parisons (Movie S1) indicate very limited similarity amongst any of two ENCODE data sets, with

modest large-scale similarity (early terms) decaying to negligible fine-scale similarity (late terms).

(C) R2 of correlation between pre-cosinusoidal factors of eight-component discrete Fourier cosine

transform on antibody-measured peaks of corrected ICeChIP-seq HMD versus antibody-measured

fold change over control for H3K4me1, H3K4me2, and H3K4me3 ENCODE ChIP-seq datasets in

K562 cells. (D) Example scatterplots showing high correlation (top) and low correlation (bottom)

of Fourier Transform components on peaks from ENCODE H3K4me3 Sample 3. (E) Genome

browser view at the HOX locus for antibodies not shown in Figure 1A. Green circle represents

ICeChIP aggregate specificity, and purple circle with M indicates monoclonality.

is considered the current gold standard of antibody characterization, but whether it recapitulates

antibody performance in ChIP is unclear due to marked differences in experimental format143. In

contrast, ICeChIP uses DNA-barcoded semisynthetic nucleosome standards encompassing panels

of histone PTMs directly spiked into a chromatin sample, allowing the measurement of antibody

specificity in situ, and the determination of histone modification density (HMD), the absolute

amount of PTM over a genomic interval (Fig. 2.6B)118. However, each nucleosome standard must

be independently synthesized, which is labor-intensive and technically challenging. Though peptide

arrays and ICeChIP have been compared in a very limited way112, the small scale of such studies

precluded broader conclusions. Further, previous studies centered on antibody discrimination be-

tween different lysine residues (e.g. H3K4me3 vs. H3K9me3) rather than different methylation

states of a single lysine (e.g. H3K4me2 vs. H3K4me3), the latter representing a potentially greater

challenge. Integrating peptide array and ICeChIP analyses now enables us to critically evaluate

antibodies and determine the extent of data transferability between each format.
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Figure 2.4: Anti-H3K4 methylation antibodies display a broad range of peptide array specificities.

The specificity of H3K4 methylform antibody binding on peptide arrays expressed relative to on-

target capture. Black error bars represent SD of off-target specificity; colored error bars represent

average standard error of on-target signal. Purple bar represents raw fluorescence signal from

secondary axis and maps onto secondary axis. Fluorescence measurements for each antibody (n=6),

independent at the level of spotting, but simultaneously measured against one antibody dilution.
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Figure 2.5: Anti-H3K4 methylation antibodies display a broad range of ICeChIP specificities.

The specificity of H3K4 methylform antibody binding in ICeChIP relative to on-target capture.

Black error bars represent SD of off-target specificity; colored error bars represent average standard

error of on-target signal. Purple bar represents ChIP enrichment and maps onto secondary axis

(right). ICeChIP was conducted with 3 µg of mammalian chromatin and 3 µg of each antibody (see

Methods). Enrichment of each standard was measured by qPCR; n represents independent ICeChIP

experiments averaged for each antibody.
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Figure 2.6: Histone 3 lysine 4 (H3K4) antibodies display a range of methylform specificities.

(A, B) Experimental workflows of (A) peptide arrays and (B) ICeChIP. (C, D) A representative

selection of methylform binding (target relative to other forms on the left axis) by antibody from

(C) peptide arrays and (D) ICeChIP is presented in bar graph form (extracted from the larger set

of 52 antibodies: Fig. 2.4, 2.5). Purple bar represents raw fluorescence signal or ChIP enrichment,

and maps to right axis (log10 scale). Black error bars represent SD of off-target specificity; colored

error bars represent average SD of on-target signal.

Results

Antibody specificities range widely and often diverge across methods

A representative cohort from the 52 antibodies screened with both peptide array and ICeChIP (Fig.

2.4, 2.5) is shown in Fig. 2.6C and 2.6D. High-specificity antibodies, with >90% aggregate methyl-

specificity, were identified by both approaches (e.g. abMe1-1 and abMe3-3 in Fig. 2.6C-D; Tables

2.1-2.4), but notably, these reagents are often infrequently used (Tables 2.1-2.4). When present,

cross-reactivity most commonly occurred between states differing by a single methyl group (Fig.

2.4, 2.5) and was most severe for the anti-H3K4me3 antibodies.
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Table 2.1: Characteristics for antibodies targeting H3K4me0.

Manufact. Product Lot
Antibody

Code

IP Methyl.

Specificity

(% H3K4)

PAMethyl.

Specificity

(% H3K4)

Target IP

Efficiency

(% Input)

Citat.

EMD

Millipore
05-1341 2453179 – 54 ± 5 64 ± 6 5 ± 2 2

Table 2.2: Characteristics for antibodies targeting H3K4me1.

Manufact. Product Lot
Antibody

Code

IP Methyl.

Specificity

(% H3K4)

PAMethyl.

Specificity

(% H3K4)

Target IP

Efficiency

(% Input)

Citat.

Abcam ab8895 GR305231-1 abMe1-1 90 ± 4 96 ± 3 64 ± 22 218

Abclonal A2355 46694 – 37 ± 35 57 ± 19 0.06 ± 0.04 0

Abclonal A2355 46695 – 82 ± 2 78 ± 2 43 ± 7 0

Active

Motif
39297 01714002 abMe1-2 76 ± 1 100 ± 0 0.7 ± 0.4 11

Active

Motif
39297 21008001 – 88 ± 2 99 ± 2 0.7 ± 0.4 11

Active

Motif
39635 30615011 abMe1-3 66 ± 17 64 ± 4 3 ± 1 1

Cell

Signaling
5326 1 abMe1-6 94.4 ± 0.1 76 ± 2 46 ± 7 2

Cell

Signaling
5326BF 2 abMe1-4 93 ± 2 99 ± 1 33 ± 27 2

Diagenode C15310037 A399-001 – 88 ± 4 99 ± 1 4.4 ± 0.2 0

Diagenode C15410037 A1657D – 86 ± 3 87 ± 5 14 ± 0.5 2

Diagenode C15410194 A1862D – 90 ± 3 97 ± 8 16 ± 22 7

Diagenode C15410194 A1863-001D – 88 ± 2 100 ± 0 4 ± 2 7

EMD

Millipore
07-436 DAM1687548 – 87 ± 1 97 ± 6

0.179 ±

0.003
16

EpiGentek A-4031-050 606359 – 83 ± 3 74 ± 2 32 ± 5 0

RevMAb 31-1046-00 P-01-00415 – 87 ± 6 99.9 ± 0.2 13 ± 1 0

Thermo

Fisher
710795 QL230603 abMe1-5 94.7 ± 0.5 98 ± 2 20 ± 5 0

Thermo

Fisher
720072 RB226262 – 86 ± 4 95 ± 2 40 ± 11 0
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Table 2.3: Characteristics for antibodies targeting H3K4me2.

Manufact. Product Lot
Antibody

Code

IP Methyl.

Specificity

(% H3K4)

PAMethyl.

Specificity

(% H3K4)

Target IP

Efficiency

(% Input)

Citat.

Abcam ab32356 GR253788-9 – 58 ± 2 81 ± 2 70 ± 29 35

Abcam ab7766 GR289627-1 abMe2-1 80 ± 4 57 ± 4 55 ± 11 55

Abclonal A2356 46696 – 94 ± 1 68 ± 3 16 ± 10 0

Abclonal A2356 46697 – 81.3 ± 0.7 61 ± 3 51 ± 21 0

Active

Motif
39141 01008001 – 91 ± 2 65 ± 1 18 ± 3 8

Active

Motif
39679 15515008 – 89 ± 1 78 ± 3 3 ± 1 0

Cell

Signaling
9725 9 – 56 ± 1 42 ± 3 56 ± 16 4

Diagenode C15200151 001-11 – 94 ± 2 —- 6 ± 2 0

Diagenode C15310035 A391-001 – 83.8 ± 0.2 62 ± 13 1.1 ± 0.4 0

Diagenode C15410035 A9360014P – 88 ± 2 60 ± 2 58 ± 8 6

EMD

Millipore
05-1338 2757107 abMe2-2 95.6 ± 0.1 77 ± 5 21 ± 5 6

EMD

Millipore
07-030 DAM1479603 – 89.8 ± 0.2 68 ± 2 4.8 ± 0.4 126

Epicypher 13-0013 14247001 – 90 ± 5 62 ± 4 19 ± 4 1

EpiGentek A-4032-050 606360 – 92 ± 4 72 ± 6 66 ± 45 0

Thermo

Fisher
49-1004 A391001161216 – 74 ± 2 97 ± 4 0.8 ± 0.4 2

Thermo

Fisher
710796 QL230606 abMe2-3 95.3 ± 0.4 99.5 ± 0.8 25 ± 5 0

Thermo

Fisher
720073 QL226263 – 81 ± 1 86 ± 6 19 ± 9 0

Remarkably, apparent specificity in peptide arrays and ICeChIP is only weakly correlated

(R2 = 0.2337: Fig. 2.7A) and is independent of both raw fluorescence in peptide arrays (Fig. 2.7B)

and IP enrichment in ICeChIP (Fig. 2.7C), suggesting that antibody specificity trends are not

driven by affinity alone. Notably, there was much greater platform disagreement for antibodies to

H3K4me2 than for those to H3K4me1 or H3K4me3 (Fig. 2.8A).
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Table 2.4: Characteristics for antibodies targeting H3K4me3.

Manufact. Product Lot
Antibody

Code

IP Methyl.

Specificity

(% H3K4)

PAMethyl.

Specificity

(% H3K4)

Target IP

Efficiency

(% Input)

Citat.

Abcam ab12209 GR275790-1 abMe3-4 88 ± 3 88 ± 9 5 ± 1 6

Abcam ab8580 GR190229-1 abMe3-1 60 ± 3 66 ± 2 63 ± 17 418

Abcam ab8580 GR273043-4 – 55 ± 4 58 ± 4 59 ± 4 418

Abclonal A2357 46698 abMe3-5 91 ± 2 90 ± 9 13 ± 3 0

Abclonal A2357 46699 – 86 ± 2 75 ± 4 43 ± 8 0

Active

Motif
39159 12613005 – 66 ± 11 62 ± 5 5 ± 5 80

Active

Motif
61379 24615006 abMe3-8 67 ± 1 57 ± 3 0.4 ± 0.3 2

Cell

Signaling
9727 2 – 65 ± 3 58 ± 4 31 ± 0.7 11

Cell

Signaling
9751 9 abMe3-11 59 ± 7 57 ± 2 59 ± 22 24

Diagenode C15200152 001-11 abMe3-7 73 ± 12 86 ± 9 1.4 ± 0.8 0

Diagenode C15410003 A1052D abMe3-9 72 ± 5 78 ± 7 40 ± 24 43

Diagenode C15410003 A5051-001P – 65 ± 8 78 ± 5 35 ± 16 43

EMD

Millipore
05-745R 2813867 abMe3-6 72 ± 8 89 ± 3 55 ± 18 10

EMD

Millipore
07-473 DAM1623866 abMe3-2 56 ± 7 81 ± 5 54 ± 7 189

Epicypher 13-0004 13171001 – 71 ± 5 93 ± 2 1.1 ± 0.4 1

EpiGentek A-4033-050 606361 abMe3-10 84 ± 10 81 ± 3 48 ± 25 0

RevMAb 31-1039-00 P-09-00676 – 67 ± 5 86 ± 2 42 ± 5 0

Thermo

Fisher
PA5-40086 RL2301825 abMe3-3 96.5 ± 0.5 100 ± 0 17 ± 7 0

Koide Lab 304M3B 040416AG – 76 ± 1 —- 36 ± 19 0

We found that specificity in ICeChIP was not substantially affected by changes in relative

methylform abundances for the antibodies screened (Fig. 2.8B), suggesting that different chromatin

abundances of the methylforms do not mask true antibody ChIP specificity. Yet, for approximately

half of the antibodies screened in peptide arrays, changing the amount of epitope or antibody altered

observed specificity (Fig. 2.7D-E and 2.8C-D). We speculate that these differences in antibody
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Figure 2.7: Antibodies can display different specificities in peptide arrays and ChIP.

(A) Specificity computed for each antibody (of 52 tested) as target H3K4 methylform (indicated by

dot colour) enrichment normalized to the sum of all H3K4methylform enrichments. (B)Methylform

specificity versus on-target signal in peptide arrays. (C) Methylform specificity versus on-target

enrichment in ICeChIP. (D)Aggregate specificity in peptide arrays of abMe2-2, varying concentra-

tion of modified peptide (left) or antibody dilution (right). (E)Aggregate specificity of abMe2-2 in

ICeChIPwhen varying amount of input chromatin (left) or amount of antibody (right). (F)Heatmap

of peptide array antibody binding normalized to target for select combinatorial modifications (full

peptide set detected in Figure S5). (G) Binding in ICeChIP and peptide arrays of selected anti-

H3K4me3 antibodies to H3K4me3K9acK14acK18ac relative to singly modified H3K4me3. All

peptide arrays were conducted with six fluorescence measurements, and all ICeChIPs with one of

each pulldown. Error bars represent SD.
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Figure 2.8: ICeChIP and peptide arrays have discrepancies that can be modulated.

(A) Agreement of antibody of methyl-form specificity between ICeChIP and peptide arrays, to

within 10 percentage points. (B) ICeChIP aggregate specificity for four antibodies when H3K4me2

nucleosomes bearing a different DNA sequence is added in excess of endogenous H3K4me2. One

replicate per ICeChIP experiment for a total of four ICeChIPs per antibody. (C, D)Antibody speci-

ficity on EpiTitrate peptide arrays with varying amounts of (C) antibody and (D) modified peptide.

Approximately half the antibodies tested show marginally altered specificity with increasing dilu-

tion, albeit not always in the same direction. Most antibodies show decreased specificity at the

most dilute modified peptide concentration, and approximately a third show decreasing specificity

with increased modified peptide dilution more broadly. Six fluorescence readings per peptide array

experiment, with one independent experiment per antibody dilution.
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specificities are the result of the different physical interactions underpinning the two methods: in

peptide arrays, dilute antibody binds densely packed epitope on a surface, whereas ICeChIP (and

ChIP more generally) is the opposite. However, a complete understanding of these differences

remains a challenge for future inquiry.

Peptide arrays permit simultaneous querying of combinations of H3K4 methylations with

other PTMs108,111,112,133. In this context, many antibodies displayed reduced affinity for their target

with flanking lysine acetylation (Fig. 2.7F, all except abMe2-1 and abMe3-2; and Fig. 2.9), which

are thought to occasionally coexist144,145. Yet in ICeChIP, we largely do not observe such reduced

binding, with several antibodies displaying the opposite trend (Fig. 2.7G). Although these proximal

modifications do impact apparent H3K4me3 capture in both platforms, the effects are subtle and

poorly aligned between the two methods.
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Figure 2.9: Combinatorial modifications can impact antibody binding in peptide arrays.

Heatmap of antibody binding to a wide range of combinatorial and off-target peptides on peptide

arrays. Signal is normalized to singly modified target epitope.
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Figure 2.10: Antibodies with different specificities yield markedly different ChIP-seq profiles in

K562 cells.

(A) Specificity profiles of anti-H3K4me3 antibodies measured by ICeChIP-seq (full range of stan-

dards in Fig. 2.11A). (B)A representative chromosomal coordinate view showing several antibody

ICeChIP-seq modification profiles and ENCODE project H3K4me3 modification profiles in K562

cells, with a putative promoter-enhancer connection (Li et al., 2012). Bars below tracks represent

peaks. (C) Anti-H3K4me3 antibodies and signal-corrected H3K4me3 modification profiles con-

toured over all TSSs for all Refseq genes. (D)Average HMDmeasured by anti-H3K4me3 antibodies
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Figure 2.10, continued:

(sorted in descending order) at the +1 and +2 nucleosomes of genes with signal-corrected H3K4me3

HMD ≤ 0 (7,666 Refseq genes). Vertical axis represents position in sorted gene list. (E) Correlation

between average HMD of signal-corrected H3K4me3 versus antibody-measured HMD at antibody

peaks for anti-H3K4me3 antibodies. Error bars represent 99.99% CI of regression slopes. (F)

Correlation between pre-cosinusoidal factors of eight-component discrete Fourier cosine transform

on antibody-measured peaks of signal-corrected H3K4me3 versus antibody-measured HMD for

abMe3-3 (left) and abMe3-2 (right). Error bars represent 99.99% CI of regression slopes. (G)

Correlation between pre-cosinusoidal factors of eight-component discrete Fourier cosine transform

of measured HMDs by abMe3-3 versus abMe3-4 (left) or abMe3-1 (right), on peaks from abMe3-4

(left) or abMe3-1 (right). (H, I, J) Signal-corrected H3K4me3 modification profiles, generated

from abMe1-5, abMe2-3, and the noted H3K4me3 antibody, contoured over (H) stringently defined

enhancers, (I) H3K9me3 peaks, and (J) ENCODE H3K9ac peaks.

Antibodies with different off-target specificities yield materially different ICeChIP-seq profiles

We next examined 15 antibodies with a range of H3K4 methylform specificities on chromatin

from K562 cells, a tier one ENCODE cell line127. Using our described method118, we isolated

the on-target ChIP-seq signal for four antibodies to generate signal-corrected tracks (Fig. 2.10A

and 2.11A). As anticipated from its performance in both peptide arrays and ICeChIP-qPCR (Fig.

2.6C-D), abMe3-2 captures substantial H3K4me2 (which is more abundant than H3K4me3) in

ICeChIP-seq (Fig. 2.10A). Consequentially, its distribution appeared more similar to that of high-

specificity H3K4me2 than H3K4me3 antibodies (Fig. 2.10B). Similar off-target capture issues were

observed for all other low-specificity antibodies used for ICeChIP-seq (Fig. 2.11).

We then sought to determine if high-specificity and low-specificity antibodies had demon-

strably different ChIP-seq profiles genome-wide. High-specificity and corrected H3K4me3 profiles

are similar about transcription start sites (TSSs), whereas low-specificity antibodies show inflated

apparent HMD, consistent with off-target signal leakage (Fig. 2.10C). Strikingly, at TSSs with no

measured H3K4me3 in the corrected profile, the high‑specificity anti‑H3K4me3 profiles display

fewer genes with nonzero apparent HMD than do the low-specificity profiles (Fig. 2.10D). More-
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Figure 2.11: Specificity of antibodies is broadly recapitulated in ICeChIP-seq and can impact

measured modification profiles.
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Figure 2.11, continued:

(A) Specificities of antibodies in ICeChIP-seq experiments are identical within experimental error

to those measured by qPCR, and a broader range of off-target internal standards are sampled. Er-

ror bars represent SD of estimate based on internal variability of ladder members. (B) Metagene

contours about Refseq TSSs of anti-H3K4me1 (upper panel) and anti-H3K4me2 (lower panel) an-

tibodies and corresponding corrected profiles. (C) Correlation between antibody-measured HMD

and corrected HMD at antibody called peaks for anti-H3K4me1 and anti-H3K4me2 antibodies. (D)

Antibody-measured HMD at +1/+2 nucleosomes of genes with no measured HMD in corrected

profile for anti-H3K4me1 and anti-H3K4me2 antibodies. (E) Correlation and magnitude analysis

of pre-cosinusoidal factors for eight term Fourier series comparing corrected HMD versus antibody-

measured HMD for anti-H3K4me1 and anti-H3K4me2 antibodies contoured over called peaks in

the corrected. (F) Similar analysis of pre-cosinusoidal factors of eight-component discrete Fourier

cosine transform of measured HMDs by listed antibodies versus high-specificity reference antibod-

ies abMe1-1 (upper panel) or abMe2-2 (lower panel) on peaks from listed antibodies. (G, H, I)

Metacontours about TSSs of H3K4me1/2/3 HMD for (G) all TSSs (58,951 TSSs), (H) TSSs with

a transcription factor binding site (Wang et al. 2014) within 200bp of the TSS (32,531 TSSs), and

(I) TSSs without a transcription factor binding site (Wang et al. 2014) within 200bp of the TSS

(26,420 TSSs). (J, K, L)Average (J) H3K4me1, (K) H3K4me2, and (L) H3K4me3 corrected HMD

of +1/+2 nucleosomes versus ln RPKM of genes. Error bars for all correlations represent 99.99%

CI for correlation slope.

over, the HMD of peaks from high-specificity antibodies correlate more closely with the corrected

profile than do low-quality antibodies (Fig. 2.10E).

To compare the shapes of the ChIP-seq profiles, we applied a discrete cosine transform to

the HMD distributions at called peaks genome-wide for both antibody and corrected profiles. This

calculation allowed us to assess concordance of peak shape separately from HMD magnitude. The

regression slope for the pre-trigonometric factors indicates concordance of HMD value, whereas

the correlation coefficient indicates similarity of distribution shape. For each term, the linear

correlation with corrected profile is stronger and the slope closer to unity for high- versus low-

specificity antibodies (Fig. 2.10F), demonstrating that the shape and magnitude of high-specificity

HMD profiles more closely resemble the signal-corrected profile. Similar comparisons between

two additional high- or low-specificity antibodies for each methylform recapitulate these results

(Fig. 2.10G and 2.11B-C). Together, these data suggest that the profiles of high- and low-specificity
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antibodies are distinct, with different patterns genome-wide. Given that the most widely used ChIP

antibodies show poor methylform specificity (Tables 2.1-2.4, Fig. 2.4, 2.5), conclusions drawn

from datasets generated with these reagents should be tempered.

Beyond H3K4 methylform analysis, our ICeChIP spike-in pool also contained synthetic

barcoded nucleosomes representing H3K9me1/2/3, H3K27me1/2/3, H3K36me3, H3K79me1/2/3,

and H4K20me1/2/3 nucleosomes (Fig. 2.11). With the exception of the low-specificity abMe1-3,

the tested antibodies did not substantially capture PTMs on other lysines in histone H3, although

we note several that showed substantial binding to H4K20me3 in either array testing (Fig. 2.9)

or ICeChIP (Fig. 2.11). Off-target recognition of H4K20me3 is surprising given the low primary

sequence similarity with H3K4, but such binding has previously been noted in qualitative peptide

arrays133. As H4K20me3 is relatively rare in rapidly dividing cells146, this cross-reactivity, though

concerning, may be modest in impact.

Several antibodies displayed different sensitivity to flanking additional modifications in

peptide arrays, allowing us to test whether those same patterns were apparent in ICeChIP-seq.

On peptide arrays, abMe3-3 showed enhanced binding to H3K4me3 paired with H3K9me2 but

reduced binding in combination with acetylation marks, whereas the opposite trend was seen for

abMe3-9 and abMe3-10 (Fig. 2.9). However, when signal-corrected tracks are generated with these

antibodies, at stringently defined enhancers, where H3 acetylation is expected, and H3K9me3 peaks,

the differences between the profiles are small and often the opposite of what is predicted by peptide

arrays (Fig. 2.10H-I). Similarly, at ENCODE H3K9ac peaks, the profile corrected with abMe3-3

has ~10% higher apparent H3K4me3 HMD over abMe3-10 despite showing reduced capture of

acetylated peptides in arrays (Fig. 2.9, 2.10J). Collectively, these results suggest that biases in our

ICeChIP analyses due to these combinatorial modifications are modest.

39



ICeChIP with high-specificity antibodies yields new insights into transcriptional control

Prior studies have relied on ChIP-seq without in situ antibody specificity information or calibration,

so we next used our robust ICeChIP-seq datasets to critically re-evaluate previous findings and

search for new biological insights. In particular, we chose to investigate distal enhancers and the

promoters they regulate147. H3K4me3 is phenomenologically17,20,93,94,132 and biochemically92–94

associated with active promoters118, where it is flanked by the lower H3K4 methylforms; our

present high-quality data recapitulates this general pattern (Fig. 2.10C and 2.11G-L). H3K4me1

and H3K4me2 are canonically thought to be indicative of enhancers, but not of relative enhancer ac-

tivity12,18,19,131. There are scattered reports of H3K4me3 demarcating active enhancers148, but the ac-

cumulated evidence suggests that H3K27ac, rather than H3K4me3, marks active enhancers12,19,131.

Our data confirm that H3K4me1 andH3K4me2 decorate stringently defined enhancers; how-

ever, we detect little evidence for H3K4me3 at these sites (Fig. 2.10H and 2.12). Importantly, though

the high-specificity antibodies show little H3K4me3 at a putative enhancer, the low-specificity anti-

H3K4me3 antibodies show substantial apparent H3K4me3 at such locations, as do the ENCODE

H3K4me3 ChIP-seq tracks (Fig. 2.10B and 2.12F). This artefactual capture, apparent in the low-

specificity (but commonly used; see Table S1) anti-H3K4me3 antibodies (abMe3-1 and abMe3-2)

and ENCODE data (some of which was performed with the same reagents), is attributable to signal

leakage from lower methyl forms, which are abundant at enhancers.

Although there are some differences between datasets using different high-specificity anti-

bodies (Fig. 2.10C-F and 2.10H-J), they all indicate extremely low H3K4me3 levels at enhancers

(Fig. 2.10H, 2.12F). If some of the apparent signal inflation of abMe3-3 versus abMe3-4 (Fig.

2.10H-J) was due to enhanced capture of H3K4me3 in the context of flanking acetylation (Fig.

2.7G), these differences are quite modest. While this does not rule out the possibility that other
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Figure 2.12: High-quality H3K4 methylation HMD datasets reveal quantitative relationships be-

tween enhancer H3K4 methylation and promoter activity.
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Figure 2.12, continued:

(A, B, C) Average (top) and sum (bottom) of (A) H3K4me1, (B) H3K4me2, and (C) H3K4me3

corrected HMD across all enhancers contacting corresponding promoter regions versus ln RPKM

for all classes of genes (left), metabolic genes (centre-left), multicellular system process genes

(centre-right), and developmental process genes (right). (D) From left to right: abMe3-3 measured

HMD sum versus ln RPKM. abMe3-3 measured HMD average across enhancers versus ln RPKM,

average corrected H3K4me2 enhancer HMD, and average corrected H3K4me3 enhancer HMD. (E)

Heatmaps of stringently defined enhancer HMD averages for H3K4me1, H3K4me2, and H3K4me3.

All heatmaps sorted by ln RPKM of target genes. Rmod
2 represents R2 of linear correlation between

actual and predicted/modeled HMD. (F) Signal-corrected H3K4me1, H3K4me2, and H3K4me3

modification profiles contoured over stringently defined enhancers.

proximal modifications could have more severe impacts on capture efficiency, leading to bias in

the interpretation agnostic of such effects, for H3K4me and flanking lysine acetylation we observe

a less severe dependence than anticipated.

We next investigated the relationship between enhancer H3K4 methylation and target gene

expression, as defined by RNAPolymerase II ChIA-PET contacts147. Though we find that transcrip-

tion from a given promoter modestly correlates with the average H3K4me1 HMD across contacting

enhancers (Fig. 2.12A; left, top), the sum of H3K4me1 HMD across all contacting enhancers corre-

lates muchmore strongly (Fig. 2.12A; left, bottom). Similar properties were observed for H3K4me2

(Fig. 2.12B). We interpret these data to mean that the number and collective H3K4me1/me2 density

of enhancers predicts promoter activity, suggesting that enhancers may operate en masse rather

than as isolated elements, and that the lower H3K4 methylforms may play some role in this process.

Conversely, neither averages nor sums of enhancer H3K4me3 HMD correlated as well with expres-

sion (Fig. 2.12C), nor did the ratio of enhancer H3K4me3 to H3K4me1 (Fig. 2.13A), contrary to

prior uncalibrated ChIP studies148.

H3K4 methylation at enhancers is thought to primarily regulate cell-type specific and de-

velopmental genes18,19,131. To investigate this, we compared gene expression and enhancer modifi-

cation levels for metabolic, developmental, and multicellular system process-genes (Fig. 2.12A-C).
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Figure 2.13: H3K4me1 and H3K4me2 HMD across enhancers contacting promoter regions is

correlated to gene expression for all, metabolic, and developmental genes.

(A) Ratio of enhancer H3K4me3 HMD to H3K4me1 HMD versus ln (RPKM). (B) abMe3-2 mea-

sured HMD sum (left) or average (centre and right) across enhancers versus ln RPKM (left), average

corrected H3K4me2 enhancer HMD (centre), and average corrected H3K4me3 enhancer HMD. (C-

F) Average transcript production, measured by average ln GRO-Cap reads, of unstable-unstable

classified genes58 versus (C) average H3K4me1, (D) H3K4me2, (E) H3K4me3 HMD, and (F)

median H3K4me3/H3K4me1 ratio. All scatterplots, unless otherwise noted, use corrected H3K4

methylation profiles and show binwise averages; bins contain fifty elements each and were created

by sorting on ln (RPKM).

Remarkably, our signal-corrected datasets showed no substantial differences between these gene on-

tology classes, indicating that enhancer-potentiated transcriptional activation may be more universal

in mammalian gene expression than formerly appreciated18,19,131.

To determine if low-specificity antibodies can materially affect these new observations,

we analyzed the HMD sum across enhancers as measured by abMe3-2, which cross-reacts with

H3K4me2 (Fig. 2.5, 2.6D, 2.10A, and 2.11A). Here, the apparent H3K4me3 HMD sums at en-

hancers correlate strongly with gene expression (Fig. 2.13B), unlike corrected or high-specificity

H3K4me3 abMe3-3 sums (Fig. 2.12C-D and 2.13B). This apparent HMD at these loci is driven
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primarily by H3K4me2 rather than H3K4me3, so the low-specificity abMe3-2 incorrectly attributes

this function to the latter PTM (Fig. 2.13B). Importantly, other normalization methods with spike-

in chromatin128, which normalize ChIP experiments but cannot control for specificity, would be

similarly susceptible to this misleading artefact, highlighting the importance of internal standard

calibration that is sensitive to antibody specificity.

Revisiting literature enhancer mark paradigms with high-specificity antibodies

Multiple reports have implied a role for H3K4me3 at enhancers58,148, further suggesting that the

H3K4me3:H3K4me1 ratio marks active enhancers148. Our calibrated data, which enable meaningful

ratiometric comparisons, show the opposite trend in K562 cells. Specifically, we find that the ratio of

calibrated H3K4me3 to H3K4me1 is inversely related to enhancer activity (Fig. 2.13A), consistent

with our observation that enhancers lack substantial H3K4me3 (Fig. 2.10G, 2.12C-F, 2.13C). The

prior work relied upon an antibody (abMe3-1) for which two lots performed poorly in our study (Fig.

2.6A, 2.4, 2.5, and 2.10A-B)148; the substantial cross-reactivity we observe with H3K4me2, which

is abundant at enhancers, may account for the disparity (Fig. 2.12B). The use of crosslinking ChIP,

which has been previously noted to reduce specificity149–151, represents another potential source of

the discrepancy. Regardless, several independent lines of evidence (Fig. 2.12, 2.13A) lead us to

conclude that the H3K4me3/H3K4me1 ratio is not positively correlated with enhancer activity in

K562 cells, and, we suspect this to be more general.

Similarly, based on ENCODE ChIP-seq data, it has been suggested that H3K4me3 levels

and the H3K4me3:H3K4me1 ratio at eRNATSSs are positively correlated with eRNA transcription

levels, as measured by GRO-Cap reads in K562 cells58. However, there are several potential

issues with the ENCODE H3K4 methylation ChIP-seq datasets. Those for H3K4me3 in K562
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cells (the only H3K4 methylation state with multiple independent datasets) display substantial

divergence from one another (Fig. 2.2, 2.3A-B, 2.10B) and are all very different from our high-

specificity ICeChIP-seq datasets (Fig. 2.3C). This could be due to awide variety of factors, including

different antibody quality; sequencing depth; the use of crosslinked ChIP, which leads to greater off-

target binding149–151; sonication, which can generate a large size distribution of fragments and can

damage epitopes152; and the effect of single-end sequencing and read extension, which can result in

oligonucleosome avidity distortion118. Conversely, our ICeChIP-seq datasets were generated with

a native procedure, high sequencing depth, and by filtering out fragments with lengths greater than

200bp to avoid oligonucleosome avidity distortion. Whatever the cause, these differences lead to

markedly different interpretations when coupled to readouts of eRNA in the same cell line58. We

find that neither H3K4me1 (Fig. 2.13C), H3K4me2 (Fig. 2.13D), H3K4me3 (Fig. 2.13E), nor

the H3K4me3:H3K4me1 ratio (Fig. 2.13F) is substantially correlated to the transcriptional level

of eRNAs. This example highlights the need for ChIP-seq procedures that minimize off-target

capture and underscores the pitfalls of treating ENCODE datasets as gold standards for these sorts

of analyses.

Examining catalytically dead MLL3/4 mutants with high-specificity antibodies and calibration

To further investigate enhancer biology, we conducted ICeChIP-seq in R1 mouse embryonic stem

cells (mESCs) with wild-type (WT) and catalytically deadMLL3/4mutants (dCDMLL3/4) reported

to have markedly reduced H3K4me1 global abundance153. Sequencing confirms the high specificity

of abMe1-6, both relative to H3K4 methylforms and cross-lysine reactivity (Fig. 2.14A). Globally,

we observe that WT H3K4me1 abundance is consistent with other global abundance measurements

of this PTM in mESCs145 and we observe roughly three-fold loss of H3K4me1 in dCD mESCs
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Figure 2.14: Highly specific anti-H3K4me1 ICeChIP-seq can reveal differences between MLL3/4

WT and /catalytically dead cell lines.

(A) Specificity of H3K4me1 ICeChIP-seq in WT and dCD MLL3/4 R1 mESCs. (B) Global

H3K4me1 abundances, as proportion of nucleosomes (left) and globally integrated HMD (right).

(C)Arepresentative genome browser view of H3K4me1 HMD inWT and dCDMLL3/4 R1 mESCs

near an enhancer153. (D) Heatmap of H3K4me1 HMD about enhancers in WT and dCD MLL3/4

R1 mESCs, sorted by MLL3/4 ChIP-seq signal153.

relative to WT, measured either as proportion of nucleosomes or integrated HMD (Fig. 2.14B),

confirming that abMe1-6 is specific enough to detect such global abundance differences.

These datasets further serve to highlight the importance of calibration for ChIP-seq. Indeed,

ICeChIP-seq genome browser views (Fig. 2.14C) and heatmaps (Fig. 2.14D) of H3K4me1 about

enhancer centers for WT and dCD lines show a much more pronounced difference between the two

lines than previously reported153, likely due to inappropriate assumptions inherent in normalization
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of uncalibrated data. These discrepancies emphasize the importance both of the absolute quantifi-

cation offered by ICeChIP and its ability to provide robust quantification amidst to global changes

of histone modification abundances, as with these lines.

Reexamining other H3K4 methylform paradigms with high-specificity antibodies

Beyond enhancers, the H3K4 methylforms have been broadly correlated with transcription factor

binding. It has been suggested that the H3K4me3 and H3K4me1 profiles are similar in both shape

and magnitude between both genic and intergenic TBP sites154. Although we cannot confirm the

lot of abMe3-1 used in these prior experiments is identical to ours, we recapitulate their results,

where the apparent H3K4me3 distribution with abMe3-1 is comparable in shape and magnitude

at both genic and intergenic TBP sites (Fig. 2.15A, abMe3-1, grey profile). However, two lots of

abMe3-1 show substantial cross-reaction with H3K4me2 (Fig. 2.4, 2.5, 2.10A-B), and its apparent

binding profile appears entirely attributable to this methylform. Our H3K4me2 HMD profiles all

look quite similar at genic and intergenic TBP sites, whereas the calibrated H3K4me3 distributions

are distinct, with little H3K4me3 at the intergenic sites (Fig. 2.15A, red lines). This demonstrates

that specificity information within the ChIP experiment is essential for interpretation, as without it,

seemingly incorrect conclusions are drawn about the H3K4 methylation state at TBP sites154.

In addition to enhancers and TFBS, H3K4 methylation is thought to serve biological roles

within gene bodies. As an example, there are reportedly two H3K4me3 peaks of comparable

magnitude flanking the first exon of genes: the first (canonical) at the TSS17,20, and the second

atop the 5’-spice site that defines the end of the first exon141. These observations were based on re-

analysis of ENCODE data from K562 cells. Our studies with the same reagent (abMe3-2) indicate

its considerable cross-reactivity with H3K4me2 (Fig. 2.4, 2.5, 2.6, 2.11). When we conduct similar
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Figure 2.15: Use of low- vs. high-specificity reagents in the literature may yield demonstrably

different biological interpretations for many proposed paradigms.

(A) Apparent HMD profiles of H3K4me1, H3K4me2, H3K4me3 and abMe3-1 about intergenic

(left) and genic (right) TATA-binding protein (TBP) sites that have been previously described154.

(B)Apparent HMD profiles of H3K4me1, H3K4me2, H3K4me3, and abMe2-1 about transcription

factor binding sites (TFBS) that have been previously described136. (C) Apparent HMD profiles

of H3K4me3 and abMe3-2 about the first exon splice site (SS) for transcripts with a first exon

between 750-1000 nucleotides in length. Gradient indicates the region in which the TSS of this set

of genes could be. (D)Apparent HMD profiles about TSS for H3K4me1, H3K4me2, H3K4me3,

and abMe2-1. Clusters were generated using k-means clustering of HMD distribution about TSS138.

(E) -Ln (p) of gene ontology enrichment for the clusters profiled in panel (D). (F) -Ln (p) of gene

ontology enrichment for genes by quantile of H3K4me3 peak breadth at said gene. (G) Corrected

H3K4me3 profiles about TSSs by gene ontology classes in K562 cells.

48



analyses on genes with the first exon between 750-1000nt (the first length at which the two putative

peaks clearly resolve in the original study141), we fail to see such a peak at the first exon-intron

boundary (Fig. 2.15C), indicative of no H3K4me3 enrichment specific to this splice site. In addition

to the above concerns regarding the ENCODE datasets, the previous report used raw H3K4me3

sequencing reads from ENCODE141, which would not accommodate any differences in nucleosome

density at the TSS and the first splice site, whereas ICeChIP (and many conventional ChIP) datasets

are normalized to input density and are therefore largely independent of such differences118. In this

example as well, our high-quality ICeChIP datasets yield different biological interpretations than

those proposed in the literature.

Another such example can be found in analysis of the distribution of H3K4me2 over gene

bodies. It has been reported that H3K4me2 is highly elevated over the gene body of tissue-specific,

immune system process genes in CD4+ T-cells138. When we apply the same procedure to iden-

tify such genes in K562 cells, we find there is indeed a cluster of genes with somewhat elevated

H3K4me2 across the entire gene body (Fig. 2.15D, Cluster 2), though it appears less dramatic and

spread-out than may be expected from prior studies. However, we also see that H3K4me1 is more

highly spread-out and elevated over this gene class (Fig. 2.15D), reminiscent of their description

of the H3K4me2 distribution138. We also note that the antibody used by the prior study, abMe2-

1, produces results more similar, but not identical results in our analyses (Fig. 2.15D). abMe2-1

displayed some cross-reactivity to H3K4me1 (Fig. 2.4, 2.5, 2.6, and 2.11; abMe2-1), and is likely

further compromised by the greater relative abundance (2-10 fold across a variety of cell types)

of H3K4me1 over H3K4me2135. We also find that this cluster of genes that display the described

gene body enrichment profile is, in K562 cells, highly enriched for metabolic processes and not

as enriched for cell-type specific processes as previously described (Fig. 2.15E). Thus, while the
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differences between our findings and prior reports may be attributable to antibody quality, ChIP

procedure, or cell type, the former is likely the most consequential.

Finally, we examined the role of H3K4methylation domain breadth at gene promoters. It has

been proposed that broad H3K4me3 domains mark cell identity genes across a range of cell types,

including K562 cells, driving transcriptional constancy155–157. To critically assess this phenomenon

with our datasets, we analysed the enriched gene ontology classes in K562 cells across different

quantiles of H3K4me3 peak breadth. To our surprise, we instead found that metabolic genes were

the most enriched class (Fig. 2.15F) and that metabolic processes have, on average, a broader peak

structure at TSSs (Fig. 2.15G), suggesting that the proposed role of broad H3K4me3 domains does

not apply to K562 cells. As the conclusions in previous publications were largely based on the

ENCODE H3K4me3 ChIP-seq tracks, which we have found to be substantially different from our

datasets in K562 cells (and indeed, from each other), it is possible that prior interpretations were

similarly compromised by antibody quality. All together, these vignettes suggest that in numerous

cases, it appears that off-targeting binding by low-specificity antibodies, amongst other factors, has

directly led to inaccurate conclusions.

Discussion

Methodological strengths and limitations of peptide arrays and ICeChIP

The largest concern with poor-quality antibodies is that off-target binding will lead to erroneous

biological interpretation. In conventional ChIP, with no effective metrics to assess antibody speci-

ficity in situ, the researcher is effectively blind to this pitfall, potentially compromising their results.

Peptide arrays present the only practical way to broadly examine the impact of flanking combi-

natorial PTMs and have predictive value for other epitope-dense experimental formats, such as
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immunoblotting158. However, our results suggest that peptide arrays, though commonly used for

ChIP antibody validation108,111,112,133, often fail to accurately reflect antibody performance within

ChIP experiments, either for methylform specificity or the impact of combinatorial PTMs. We have

begun to examine the physical underpinnings of these differences, but given the distinct experimen-

tal formats, they are unlikely reducible to a single concrete principle and in any case, are largely

immaterial to the practical matter: that peptide arrays are inappropriate for predicting antibody

performance in ChIP.

ICeChIP is not without its limitations. The specificity information afforded by ICeChIP

is restricted to the breadth of the semisynthetic nucleosomal standards available. However, these

standards, particularly those bearing combinatorial modification patterns, are laborious to construct.

If there is a discrepancy between datasets at loci that potentially bear combinatorial modifications,

without these additional standards, it is difficult to assess which view is correct. For example, we see

modest differences between datasets generated with different highly specific H3K4me3 antibodies

(Fig. 2.10H-J) even when the measurement error is reduced by the massive signal averaging implicit

in metanalysis. These apparent differences are attributable to several possible sources: differential

sensitivity to flanking modifications (either increasing affinity, thereby artifactually inflating the

HMD, or the converse); differential off-target nucleosome capture of marks not represented in the

panel of nucleosomal standards deployed; and for individual loci, input and IP sampling error can

also drive more pronounced peak shape and height differences.

Further, even if a broad range of nucleosome standards bearing combinatorial modifications

were constructed, the analysis of histone modifications at co-modified loci would not be straight-

forward. It is possible, for example, that at a given locus, there are two sub-populations of cells

with different PTM states that the two PTMs do not actually coexist on the same nucleosomes. To
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evaluate this possibility, a sequential ICeChIP protocol would need to be developed, sequentially

selecting for nucleosomes with each PTM. However, to date, the sequential ChIP protocols in the

literature9,130,159–162 have tended towards denaturative, crosslinked protocols with the questionable

specificity and IP enrichment inherent in crosslinked ChIP149–151. To this end, sequential native

ICeChIP remains an active area of study for us, but nonetheless, represents a present limitation of

the method.

Beyond combinatorial modifications, ICeChIP is limited in its ability to accurately assess

nucleosome-depleted regions. At such regions, input coverage is sparse, leading to low sampling and

high uncertainty in HMD values. Though in principle this could be addressed by higher sequencing

depth, the relevance of the histone modification density at locations with such low nucleosome

occupancy would be questionable. Additionally, ICeChIP assumes that native nucleosomes are

stable enough to survive the ChIP protocol, but it has been previously observed certain histone

variants andmodifications may reduce nucleosome stability163,164. If these nucleosomes are unstable

during the ChIP experiment, then that may result in artifactually reduced representation in the IP,

whereas the DNAwill still exist in the input, resulting in deflated apparent HMD.

In this study, we reduced the impact of variability of input preparation, cellular heterogene-

ity and authentic biological differences between samples by performing the bulk of comparative

immunoprecipitations side-by-side from the same pool of input. In other contexts, these factors

could become significant contributors to apparent signal.

We often use signal correction in order to more effectively isolate on-target signal from the

antibody-measured signal, which is a convolution of on- and off-target binding. Yet such signal

correction is not strictly necessary. Indeed, because signal correction uses multiple antibodies to

compute a given modification track, the track will often have greater uncertainty than ICeChIP-seq
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with a single antibody. We use signal correction for making more nuanced and accurate comparisons

in the aggregate, where many loci are being treated and analyzed as one dataset. In these analyses,

the error is reduced by averaging. However, when examining individual loci, where the error in a

signal-corrected track is more substantial, it may be better to use a single high-quality antibody for

the most accurate view of mark distributions.

It is important to note that these limitations also exist with uncalibrated ChIP. However,

in that approach, the researcher is completely blind to the questions of specificity and accurate

quantification, whereas ICeChIP at least offers some information to that end. Despite its limitations,

ICeChIP represents a powerful tool to enable quantitative studies of histone PTMs.

Discrepancies with the literature due to antibody and ChIP quality

Here, we have used our ICeChIP datasets to critically re-examine ENCODE project datasets and

other H3K4-methylform paradigms related to transcriptional control. As disagreement between our

data and prior literature could reflect cell-type specific differences, we have focused on findings pro-

posed as general features of mammalian chromatin. The examples we have presented here comment

on the role of antibodies and ChIP-seq procedures generally in the widely publicized biological “re-

producibility crisis”165. For a variety of potential reasons, particularly antibody specificity, several

of the interpretations currently in the literature are not recapitulated by the high-quality ICeChIP

datasets we have produced herein, casting some doubt on the many thousands of existing datasets

that currently exist for histone PTMs across a wide range of organisms and cell types, and their use

to draw a great many biological conclusions. In several instances, we were able to reproduce the

phenomena reported with our K562 ICeChIP datasets using the same antibody catalogue numbers.

53



However, in each of these cases, the precise interpretation was flawed owing to off-target antibody

capture, which the authors could not have known at the time due to inadequate validation criteria.

This set of discrepancies makes a powerful argument for in situ metrics of antibody speci-

ficity within ChIP experiments as distinct from spike-in normalization for the purposes of compari-

son98,118,128. It is unfortunately commonplace for authors to omit the specific antibody lot numbers

used, but if distinctions between our data and the literature arise from lot-to-lot variation134 this is

equally troubling with regard to the scientific reproducibility crisis165.

Although it is impractical to perform similar analyses of the thousands of papers in the

literature that have used the antibodies described here in ChIP experiments, we fear that what

we have discovered for a small selection of H3K4 methylation paradigms may represent a larger

problem for the field. Furthermore, while we focus here on the specificity problems for antibodies

raised to H3K4-methylforms, our ongoing (and comparably extensive) studies of other “PTM-

specific” antibodies show similar promiscuity issues (data not shown), and a dose of skepticism

for precise conclusions drawn from uncalibrated ChIP with many of these reagents is similarly

warranted.

Our results strongly indicate that the field needs to establish and adopt more rigorous quality

control standards for ChIP reagents to ensure more robust and reproducible data in the future.

Crucially, this includes more careful validation of ChIP antibodies, ideally by direct testing to panels

of related internal nucleosome standards that encompass the broadest achievable range of possible

cross-reactivities in a ChIP setting118. Apart from calibration, we propose that the norms of ChIP-seq

data publication should include clear indication of antibody catalogue and lot numbers, sequencing

of input, and quantitative analysis rather than use of called peaks, which reduces quantitative data

to a mere binary. Different protocols can also affect the specificity of the ChIP-seq experiment, and
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though ICeChIP effectively accommodates for this variation118, we also suggest the use of native

ChIP rather than the oftentimes far more noisy, low-efficiency, idiosyncratic and artefact-prone

cross-linked ChIPwith sonication for accessible histone tails149–151. All told, our study demonstrates

both the danger of using unvalidated antibodies in ChIP and the power of calibrated ChIP to robustly

measure histone PTMs and drive new biological discovery.
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Methods and Materials

Cell Culture

K562 cell lines were grown at 37°C with 5% CO2 and 95% humidity in Dulbecco’s Modified Eagle

Media (DMEM, Gibco; K562 cells only) with 10% (v/v) HyClone FBS Characterized U.S. and
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1x Penicillin/Streptomycin (Gibco). Cells were seeded into vented flasks to a density of 200,000

cells/mL of culture and were passaged at 1-2 million cells/mL of culture.

R1 wild-type (WT) and MLL3/4 knockout mESC lines were cultured by the Wysocka Lab

as previously described153 and were generously provided as cell pellets.

Octamer Reconstitution

Symmetric H3K4me3, H3K9me3, H3K27me3, H3K36me3, H3K79me2, and H3K4me3K27me3

octamers were reconstituted from semisynthetic histones as previously described91,118,166,167. Re-

combinant core histones were expressed in BL21 (DE3) with pRARE2 and mixed to equimolarity

with the relevant semisynthetic histones in freshly prepared filter sterilized Unfolding Buffer (50

mM Tris-HCl pH 8.0, 6.3 M Guanidine-HCl, 10 mM 2-mercaptoethanol, 4 mM EDTA) to a final

concentration of ≥ 1 mg histone per mL. The histone reconstitution was then added to 3500 MWCO

SnakeSkin dialysis tubing (Pierce) and dialyzed overnight at 4°C against 500-1000 volumes of filter

sterilized Refolding Buffer (20 mM Tris-HCl pH 7.5, 2 M NaCl, 5 mM DTT, 1 mM EDTA).

After dialysis, the histone mixture was centrifuged at 18,000 g for 1 hour at 4°C, and sub-

jected to gel filtration chromatography (Superdex 200 10/300 GL, GE Healthcare, resolved with

Refolding Buffer). Each fraction that displayed a peak on the UV chromatogram was analysed by

SDS-PAGE (22 mA current in 1x Laemmli Buffer for 70 minutes), stained with SYPRO Ruby (Bio-

Rad) per manufacturer instructions, and imaged with a 610BP emission filter at 600V PMT setting.

Octamer fractions with equimolar quantities of each core histone were pooled and concentrated

(Amicon Ultra-4 Centrifugal Filters, 10,000 MWCO, Millipore) to 5-15 µM octamer, diluted with

one volume of Octamer Storage Buffer, and stored at -20°C.

All other octamers were obtained from EpiCypher, Inc.
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Nucleosome Reconstitution

Nucleosomes were reconstituted onto 147bp DNAs composed of the core Widom 601 sequence168

modified with a 22bp barcode on each end, with each barcode composed of two distinct 11bp

sequences not found in the human or mouse genomes. The DNA and octamer were mixed to a final

concentration of 1µM each in 2 M NaCl, and then dialyzed in dialysis buttons (Hampton Research)

and a 10,000 MWCO SnakeSkin dialysis membrane (Pierce) against 200 mL of Refolding buffer

for 10 minutes. Dialysis then continued as 2L of Buffer I0 (20 mM Tris-HCl pH 7.5, 1 mM EDTA,

1mM DTT) was added (flow rate 2-2.5 mL per minute).

Dialyzed samples were diluted with an equal volume of Nucleosome Dilution Buffer (20

mM Sodium Cacodylate pH 7.5, 10% v/v glycerol, 1 mM EDTA, 10 mM 2-mercaptoethanol, Filter

Sterilized), and 1 µl was analysed by native PAGE (100 V in 1x TBE for 30 minutes), stained with

SYBRGold in 1xTBE for one hour, and visualized with a UV transilluminator gel imager. Fractions

containing nucleosomes and minimal free DNAwere pooled and diluted to a working concentration

of ~ 1 nM with filter sterilized Nucleosome Storage Buffer (10 mM Sodium Cacodylate pH 7.5,

100 mM NaCl, 50% v/v glycerol, 1 mM EDTA, 1x Protease Inhibitor Cocktail [1 mM PMSF, 1mM

ABESF, 0.8 μM aprotinin, 20 μM leupeptin, 15 μM pepstatin A, 40 μM bestatin, 15 μM E-64 from

a 200x DMSO stock]) and stored at -20°C.

Peptide Microarrays

Peptide microarray experiments were conducted by the Rothbart Lab. Peptide microarrays were

fabricated using anAushon 2470 microarrayer and used as described110,112. Briefly, antibodies were

diluted according to the manufacturers recommended western blot concentration (unless otherwise

indicated) in Array Hybridization Buffer (PBS [137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4,
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1.8 mM KH2PO4, pH 7.6], 5% BSA, 0.1% Tween-20), and 500 μL (5 μL for 48-well format) was

hybridized onto a peptide microarray for 1 hour at 4°C. Slides were washed in PBS and probed with

a fluorescently labelled secondary antibody (Life Technologies A-21244 or A-21235). Microarrays

were scanned using an Innopsys InnoScan 110AL microarray scanner and analysed using ArrayN-

inja169. Specificity was calculated as described below for ICeChIP data from the raw fluorescent

signal.

ICeChIP

ICeChIPwas performed as previously described118,124,170,171. Briefly, cell pellets were washed twice

with 5 mL of PBS, then washed twice with 5 ml of filter sterilized Buffer N (15 mM Tris-HCl pH

7.5, 15 mM NaCl, 60 mM KCl, 8.5% w/v Sucrose, 5 mM MgCl2, 1 mM CaCl2, 1 mM DTT, 200

µM PMSF, 50 µg/mL BSA, 1x Roche Protease Inhibitor Cocktail), with each wash consisting of

complete resuspension of the pellet, centrifugation at 500 g for 5 minutes at 4°C, and removal of

supernatant. The washed pellet was then resuspended in at least 2 packed cell volumes (PCV) of

Buffer N and mixed with 1 volume of 2x Lysis Buffer (Buffer N supplemented with 0.6% NP-40

Substitute) and incubated on ice for 10 minutes to lyse cells.

The crude nuclei were spun down at 500 g for 5 minutes at 4°C before being resuspended

in at least 6 packed nuclear volumes (PNV) of Buffer N and applied to the top of 7.5 mL of filter

sterilized Sucrose Cushion N (15 mM Tris-HCl pH 7.5, 15 mM NaCl, 60 mM KCl, 30% w/v

Sucrose, 5 mM MgCl2, 1 mM CaCl2, 1 mM DTT, 200 µM PMSF, 50 µg/mL BSA, 1x Roche

Protease Inhibitor Cocktail) in a 15 ml centrifuge tube, then spun down at 500 g for 12 minutes at

4°C in a swinging-bucket rotor. The supernatant was discarded, and the pellet resuspended in ~ 2

PNV of Buffer N.
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The nucleic acid content of the nuclei per unit volume was quantified by diluting 2 µL of

nuclei suspension into 48 µL of 2 M NaCl, water-bath sonicating to solubilize DNA, and spec-

troscopically measuring nucleic acid concentration by Nanodrop (where one A280nm = 50 ng/µL

chromatin). After accounting for the 25-fold dilution of the measurement sample, the concentration

of the nuclei was adjusted to 1 µg/µL of chromatin. Nuclei were dispensed to 100 µL aliquots, flash

frozen, and stored at -80°C prior to use.

For use, nuclei aliquots were thawed and spiked with ~ 1 µl of each barcoded nucleosome

standard per 50 µg of chromatin. This suspension was then mixed by pipette, transferred to a new

tube, and warmed to 37°C for 2 minutes. 1 unit of micrococcal nuclease (MNase, Worthington) per

4.375 µg of chromatin was added, and samples incubated at 37°C while shaking at 900 rpm for 12

minutes. Digestions were stopped by adding 1/9 volume of filter sterilized 10x MNase Stop Buffer

(100 mM EDTA, 100 mM EGTA) while slowly vortexing, and nuclei lysed by adding 5 M NaCl

to a final concentration of 600 mM while slowly vortexing. 66 mg of HAP resin (BioRad, CHTTM

Ceramic Hydroxyapatite, Type I, 20 um) per 100 µg of chromatin digested was rehydrated with

200 µl of filter sterilized HAP Buffer 1 (5 mM Sodium Phosphate pH 7.2, 600 mM NaCl, 1 mM

EDTA, 200 µM PMSF) per 100 µg of chromatin digested. Lysed nuclei were centrifuged at 18,000

g for 1 minute to pellet insoluble nuclear debris, and the soluble fraction added to the rehydrated

HAP resin and incubated for 10 minutes at 4°C with rotation.

After incubation, the HAP resin slurry was added to a centrifugal filter unit (Millipore

Ultrafree MC–HV Centrifugal Filter 0.45 µm) and spun at 1000 g for 30 seconds at 4°C. The HAP

resin left on the filter unit was then washed 4 times with 200 µLHAPBuffer 1, and 4 times with 200

µl filter sterilized HAP Buffer 2 (5 mM Sodium Phosphate pH 7.2, 100 mM NaCl, 1 mM EDTA,

200 µM PMSF) by spinning at 1000 g for 30 seconds at 4°C. HAP resin was eluted into a clean

59



tube with three 100 µl solutions of filter sterilized HAP Elution Buffe r(500 mM Sodium Phosphate

pH 7.2, 100 mM NaCl, 1 mM EDTA, 200 µM PMSF). The nucleic acid content of the elution was

then quantified by Nanodrop.

Antibodies and quantities used for each ICeChIP experiment are shown inAppendixA.With

the exception of the 304M3B and 309M3B antibodies, the indicated amount of ProteinADynabeads

(Invitrogen) for each ICeChIP was washed with 50 μL of ChIP ChIP Buffer 1 by use of a magnetic

rack, then resuspended in 50 µL of ChIP Buffer 1. In a separate set of tubes, the antibody was

diluted to 100 μL with ChIP Buffer 1. The antibody and Protein A Dynabead suspensions were

combined and incubated on a rotator at 4°C for at least one hour, then washed with 200 μL of ChIP

Buffer 1 by use of a magnetic rack and resuspended in 50 μL of ChIP Buffer 1 (25 mM Tris pH 7.5,

5 mM MgCl2, 100 mM KCl, 10% v/v glycerol, 0.1% v/v NP-40 Substitute, 50 µg/ml of BSA).

The antibodies 304M3B and 309M3B were prepared similarly with Streptavidin M-280

Dynabeads (Invitrogen) rather than Protein ADynabeads. The beads were washed and antibodies

added and incubated as above. After incubation, the beads were washed twice with 200 μL of ChIP

Buffer 1 by use of a magnetic rack. They were then washed twice with 200 μL of ChIP Buffer 1

supplemented with 5 μM of biotin by incubating for 10 minutes at 4°C on a rotator, then removing

supernatant by use of a magnetic rack.

After antibodies were prepared and washed, the input chromatin concentration adjusted to

20 ng/µl with filter sterilized ChIP Buffer 1, and the amount of chromatin specified in Appendix A

was added to each antibody-bead conjugate and incubated for 15 minutes on a rotator at 4°C. Beads

were then washed twice with filter sterilized ChIP Buffer 2 (25 mM Tris pH 7.5, 5 mMMgCl2, 300

mM KCl, 10% v/v glycerol, 0.1% v/v NP-40 Substitute) and once with filter sterilized ChIP Buffer

3 (10 mM Tris pH 7.5, 250 mM LiCl, 1 mM EDTA, 0.5% Sodium Deoxycholate, 0.5% v/v NP-40
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Substitute), with a wash consisting of removal of the existing supernatant by use of a magnetic rack,

resuspension into 150 µl of buffer, transfer to a new siliconized tube, and incubation on the rotator

for 10 minutes at 4°C. After these washes, the supernatant was removed, the beads resuspended in

ChIP Buffer 1, transferred to a new siliconized tube, rinsed once with 200 µl of TE before being

resuspended in 50 µl of ChIP Elution Buffer (50 mMTris pH 7.5, 1 mM EDTA, 1% w/v SDS, Filter

Sterilized) and incubated at 55°C for 5 minutes.

After incubation, the supernatant was transferred to a new set of siliconized tubes, and the

beads discarded. To each supernatant was then added 2 µl of 5 M NaCl, 1 µl of 500 mM EDTA,

and 1 µl of 10 mg/mL Proteinase K. 15 µl of Input DNA was also diluted to 50 µl with 35 µl of

ChIP Elution Buffer and was supplemented with 2 µL of 5 M NaCl, 1 µL of 500 mM EDTA, and

1 µL of 10 mg/mL Proteinase K. The IP elutions and diluted input were then incubated at 55°C

for 2 hours for a Proteinase K digestion. After digestion, the DNA was purified by adding 1.5

volumes of Serapure HD (1:50 dilution of Sera-Mag SpeedBeads [Fisher], 20% PEG-8000, 2.5

M NaCl, 10 mM Tris pH 7.5, 1 mM EDTA, 0.05% Tween-20, Filter Sterilized prior to addition

of SpeedBeads), incubating at room temperature for 15 minutes, then collecting the beads on a

magnetic rack, washing twice with 150 µl of 70% ethanol, and eluting into 50 µl ddH2O, which

was then recovered and stored at -20°C.

DNA Quantification and Analysis by Quantitative PCR

To assess local histone modification density and/or antibody specificity, our DNA from the ChIP

experiments was quantified by quantitative PCR (qPCR). qPCR was conducted using TaqMan Gene

Expression Master Mix (Applied Biosystems) using the primers and hydrolysis probes previously

described118. These primers and probe for the barcoded sequences were previously qPCR validated
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for effectiveness and quality118. Primers were used at 900 nM; hydrolysis probe at 250 nM, in the

TaqMan Gene Expression Master Mix (Applied Biosystems). The qPCR program was run at 95°C

for 10 minutes, followed by 40 cycles, each consisting of 15 seconds at 95°C followed by 1 minute

at 60°C and concluding with a plate read.

Cq values were analysed using the ΔΔCq method. Briefly, the Cq values for each target for

each sample were averaged together to obtain the mean Cq value. Enrichment for each barcode was

then computed as Enrichment = 2CqINPUT − CqIP ∗ 10, accounting for the 10-fold dilution of Input

relative to IP and multiplying by 100% for Enrichment as a percentage of target. Off-target binding

to alternate PTMs were computed by normalizing each enrichment to that of the on-target PTM:

referred to as “Specificity (% Target)”. For H3K4 methylform specificity analyses, overall speci-

ficity was computed by dividing the enrichment of the target PTM by the sum of the enrichments

for all H3K4 methylforms (i.e. H3K4me0 + H3K4me1 + H3K4me2 + H3K4me3); this is referred

to as “Aggregate Specificity.”

Illumina Library Preparation and Sequencing

Illumina libraries were prepared as described118, with minor modifications. Briefly, Serapure pu-

rified DNA was quantified using Quant-iTTM PicoGreen (Thermo Fisher) as per manufacturer

instructions. Libraries were then generated from up to 10 ng of each DNA sample (input or IP) with

the NEBNext Ultra II DNA Library Prep kit (New England Biolabs) per manufacturer instructions.

The DNA content of each library was then quantified and pooled for Illumina sequencing. Cluster

generation and paired-end sequencing was conducted using standard Illumina protocols by the Uni-

versity of Chicago Genomics Facility on the Illumina NextSeq. One replicate of each antibody was

sequenced.
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Bioinformatic Analyses

To align reads, a reference genome was first created, which consisted of the either human genome

(GRCh38/hg38) or the mouse genome (mm9) appended respectively by the sequences of each of

the nucleosome standard barcodes. Reads were then mapped to the appropriate reference genome

using Bowtie2 using the sensitive pre-set and end-to-end alignment options172. Using SAMTools173,

any reads which were not paired, not mapped in a proper pair, or mapped with a map quality <

20 were discarded to prevent low-quality reads from impacting downstream analyses. Reads were

then flattened to create a single mapping from each matched pair of reads by retaining only one

fragment per pair, and any mappings with lengths > 200bp were also discarded to ensure only

mononucleosomes were being analyzed118.

Bedgraphs of genome coverage were then generated using BEDTools174, and IP / input

genome coverage bedgraphs were merged using BEDTools174. The sum of reads across ladder

members for each nucleosomal standard was computed for each sample and HMD bedgraphs were

then generated from the merged bedgraphs using awk to apply the following formula:

HMD (%) = 100% ∗ IPlocus/Inputlocus
IPbarcode/Inputbarcode

Error and 95% confidence intervals were computed with Poisson statistics and error propa-

gation from the merged bedgraphs using awk to apply the following formula:

95CI Error (%) = 1.96 ∗ HMD (%) ∗

√
1

IPlocus
+

1

Inputlocus

Bigwig files were generated for visualization using the bedGraphToBigWig tool175.

Correction was conducted using the antibodies AB 8895 (abMe1-1), AB 7766 (abMe2-1),

AB 12209 (abMe3-4), andAB 8580 (abMe3-1), unless otherwise noted. Correction was done using

our previously described method118 against H3K4me1, H3K4me2, H3K4me3, and H4K20me3
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off-target binding. Briefly, measured HMD by each antibody can be described by a vector M, and

the measured specificities by each antibody described by a square matrix S. Then, we can state, if

other off-target binding is negligible, that the correct HMDs for H3K4me1, H3K4me2, H3K4me3,

and H4K20me3 can be expressed by the vector C such that M=CS. As such, the vector C can be

computed as CSS-1 = C = MS-1. The elements of S-1 were then used to compute the HMD and

Error of the corrected profiles using awk to linearly combine the AB 8895 (abMe1-1), AB 7766

(abMe2-1), AB 12209 (abMe3-4), and AB 8580 (abMe3-1) profiles.

Peak calling was conducted for all H3K4 methylation antibodies using Macs2 using the

bdgpeakcall command176, with the input being the HMD bedgraphs computed for each sample. To

compute average HMD across a series of intervals, a “double mapping” procedure was used. First,

the HMD bedgraph was mapped onto 1bp windows made for each interval using BEDTools174.

Then, the mapped windows were mapped onto the original intervals using BEDTools174. This

procedure ensured that the degree of overlap of the interval with each value of the HMD bedgraph

was accounted for in the mapping procedure. Using this double-mapping procedure, the average

HMD and average 95% CI Error of each called peak was computed. At this point, those peaks with

greater average HMD than average 95% CI Error were selected as “high-confidence” peaks. All

subsequent peak analyses were conducted with these “high-confidence” peaks. For the H3K9me3

antibody, peak calling was conducted using Macs2 using the bdgbroadcall command176, with the

input being the HMD bedgraph. These peaks were treated as the H3K9me3 broad peaks. Peak

HMD correlations, were conducted by computing average HMD as measured by antibody and

corrected profile across antibody-measured peaks and subsequently correlating these computed

average HMDs using R, forcing through origin. Stringently defined enhancers were defined as

those that are not overlapping with a Refseq promoter and have a transcription factor binding site136,
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GRO-Cap TSS58, ATAC-seq peak177, and ENCODE H3K27ac peak, FAIRE-seq peak, DNase HS

site, and P300 peak127) which make contact with at least one promoter by pol II ChIA-PET147.

For Fourier analyses, the 1200bp region centered upon each peak centre was sectioned into

eight 150bp windows using BEDTools174. For each window, the average HMD as measured by the

antibodies or corrected profile to be used, depending on the analysis employed, was computed as

above. The eight windows were then assembled into eight-element vectors for each peak interval,

and the pretrigonometric factors of a Fourier Discrete Cosine Transform computed on these vectors

using Mathematica 10.2 with the command FourierDCT. The pretrigonometric factors were then

correlated using R for each of the eight components, forcing through origin.

Profiles of HMD distributions about features including transcription start sites, first exons,

and TBP sites were generated using HOMER annotatePeaks178. Gene ontology was conducted using

HOMER findGO178. Gene ontology terms were largely classed into the overarching PANTHER

GOSlim terms179.

Integrated genome-wide HMD was computed by computing average of HMD across all

base-pairs in genome. Nucleosome global modification abundance was computed as ratio of total

genomic IP to input reads divided by ratio of barcode IP to input reads, much like computation of

locus-specific HMD. The integrated genome-wide HMD represents the proportion of the genome

that has the modification of interest; the nucleosome global modification abundance represents the

proportion of nucleosomes bearing the modification of interest. These two would be equivalent

if nucleosomes were uniformly distributed about the genome but are otherwise not necessarily

equivalent.

Statistical details of experiments can be found in the relevant figure legends. Linear corre-

lations with R were forced through origin for more appropriate slope comparison.
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Data and Software Availability

The ICeChIP-seq datasets generated in this study have been deposited in the Gene Expression

Omnibus under accession number GSE103543.
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CHAPTER 3: RETHINKING THE ROLE OF NUCLEOSOMALBIVALENCY IN EARLY

DIFFERENTIATION

Attributions

This chapter has been adapted from: Shah, R. N. et al. Re-evaluating the role of nucleosomal

bivalency in early development. Preprint at bioRxiv, doi: 10.1101/2021.09.09.458948. (2021).

Asymmetric disulfide-linked H3K4me3-H3K27me3 were synthesized and provided by the Fierz

Laboratory at École polytechnique fédérale de Lausanne, Switzerland. The 304M3B-1xHRV3C

antibody was developed by the Koide Lab at NewYork University withAdrian Grzybowski, PhD’18.

Dr. Grzybowski also developed the reICeChIP method, conducted reICeChIP-seq on naïve mouse

embryonic stem cells, and conducted methyltransferase assays. Jimmy Elias cultured primed mouse

embryonic stem cells and neuronal precursor cells. The other experiments and analyses were

conducted by the author.

Abstract

Nucleosomes, composed of DNA and histone proteins, represent the fundamental repeating unit

of the eukaryotic genome; posttranslational modifications of these histone proteins influence the

activity of the associated genomic regions to regulate cell identity. Traditionally, trimethylation of

histone 3-lysine 4 (H3K4me3) is associated with transcriptional initiation, whereas trimethylation

of H3K27 (H3K27me3) is considered transcriptionally repressive. The apparent juxtaposition of

these opposing marks, termed “bivalent domains”, was proposed to specifically demarcate of small

set transcriptionally poised lineage-commitment genes that resolve to one constituent modification

through differentiation, thereby determining transcriptional status. Since then, many thousands of

studies have canonized the bivalency model as a chromatin hallmark of development in many cell
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types. However, these conclusions are largely based on chromatin immunoprecipitations (ChIP)

with significant methodological problems hampering their interpretation. Absent direct quantitative

measurements, it has been difficult to evaluate the strength of the bivalency model. Here, we present

reICeChIP, a calibrated sequential ChIP method to quantitatively measure H3K4me3/H3K27me3

bivalency genome-wide, addressing the limitations of prior measurements. With reICeChIP, we

profile bivalency through the differentiation paradigm that first established this model9,130: from

naïve mouse embryonic stem cells (mESCs) into neuronal progenitor cells (NPCs). Our results cast

doubt on every aspect of the bivalency model; in this context, we find that bivalency is widespread,

does not resolve with differentiation, and is neither sensitive nor specific for identifying poised de-

velopmental genes or gene expression status more broadly. Our findings caution against interpreting

bivalent domains as specific markers of developmentally poised genes.

Introduction

H3K4me3 is canonically considered to be a marker of active transcription17,18,20,92–94, whereas

H3K27me3 is thought to be a transcriptional repressor11,180–183. In its original conception, the bi-

valency model posits that the combination of H3K4me3 and H3K27me3 (or a so-called “bivalent

domain”9,130,184) represents a specific regulatory marker of developmentally staged genes. Specif-

ically, lineage commitment genes are thought to be held in a low-expression, transcriptionally

“poised” state by promoter nucleosomes bearing both H3K4me3 and H3K27me39,130,185,186. Upon

differentiation, the bivalent domain “resolves” into a monovalent state, and the associated gene is

either transcriptionally activated or terminally repressed if H3K27me3 or H3K4me3 is lost, respec-

tively9,130,185–188. The elegance of this instructive model inspired a host of follow-on studies that

68



have suggested that bivalency is important in differentiation160,189–195, embryogenesis14,15,184,196,197,

genome architecture185,198–201, and oncogenesis25,202–205.

In the absence of unambiguous biochemical or functional validation184,206,207, these studies

have largely relied upon ChIP, with the vast majority of studies defining loci with independent

ChIP enrichment for H3K4me3 and H3K27me3 as bivalent domains. However, this analysis cannot

distinguish whether the twomodifications coexist or represent two distinctly marked subpopulations

of alleles or cells. Further, because different ChIPs are normalized separately, they exist on separate

relative scales and cannot be quantitatively compared without internal calibration118,124,171. As such,

it is impossible to quantify the extent of bivalency at a given locus or to measure its changes through

differentiation.

To address the first problem, several studies have used sequential ChIP9,145,159,160,162, mea-

suring coexistence by using the eluent of an IP against H3K4me3 as the substrate for an IP against

H3K27me3 (or vice versa). However, these experiments were uncalibrated, were often undersam-

pled119,162, and used antibodies of unknown specificity9,145,159,160,162, precluding quantification of

the extent of modification. Moreover, many used relatively large chromatin fragments in their

pulldowns, making it difficult to determine whether modifications coexisted on one nucleosome or

discretely marked neighbouring nucleosomes9,159,160,162. The limitations of these sequential ChIP

studies preclude accurate assessment of key properties of bivalency.

Our previous work introduced internally calibrated ChIP (ICeChIP), in which barcoded nu-

cleosome internal standards are used to measure antibody specificity and as analytical calibrants that

enable computation of the histone modification density (HMD), or the proportion of nucleosomes at

a given locus with the modification of interest118,124,171. By identifying regions with high H3K4me3

and H3K27me3, we indirectly identified many promoters with a nonzero amount of bivalency, in-
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cluding those regulating developmental and metabolic genes118. However, this analysis was limited;

it was not sensitive for bivalency at less extensively modified loci, nor could it quantify the extent

of bivalency. Here, we directly quantify this nucleosomal mark pattern by calibration of a modified

sequential ChIP approach to critically evaluate the bivalency model in the differentiation system in

which the foundational observations were made.

Results

Measuring bivalency with reICeChIP

To directly measure bivalency and evaluate its role in differentiation, we first attempted to deploy

our calibrants with published sequential ChIP methods. However, when evaluated with internal

standards, these methods9,145,160 displayed extremely low enrichment and variable specificity (Fig.

3.1A), with common elution methods either failing to release most of the captured material159 or

compromising the specificity of the second IP (Fig. 3.1B-C). With such heavy losses, we became

concerned that we would undersample and potentially bias the measurement of bivalent nucleo-

somes. We sought a method of elution from the primary IP that was both more efficient and would

preserve nucleosome integrity for the second IP. To that end, we modified a recombinant biotiny-

lated Fab (304M3-B) specific for H3K4me3208 with an intervening HRV 3C endoprotease cleavage

site to enable quantitative elution by enzymatic cleavage under mild conditions.

We then leveraged this reagent to develop reICeChIP (Fig. 3.2A). The first pulldown was

conducted with the cleavable α-H3K4me3 Fab from native mononucleosomes118,170 spiked with

nucleosome internal standards. We then eluted the captured nucleosomes from streptavidin resin

by cleaving the antibody with HRV 3C endoprotease209 and, with this eluent, conducted a second

pulldown against H3K27me3 with a conventional antibody. This method eluted material from the
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Figure 3.1: Evaluation of sequential ChIP methods.
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Figure 3.1, continued:

(A) Enrichment of on- and off-target nucleosome standards under sequential ChIP protocols devel-

oped by Bernstein et al.9, Voigt et al.145, and Seenundun et al.160. (B-C) Enrichment at different

sequential ICeChIP steps with (B) chemical denaturant elution and (C) immunoglobulin and serum

elution. (D) Enrichment of different nucleosome standards with ICeChIP-qPCR performed against

H3K4me3, H3K27me3, and bivalency, with beads showing very little retention of chromatin (n=3

technical replicates). Error bars represent standard deviation. (E) Different configurations of

bivalency on a single nucleosome. Of these, only trans-bivalency has been identified by mass

spectrometry116,145.
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Figure 3.2: Workflow and evaluation of reICeChIP-seq.

(A) Schematic of reICeChIP-seq. The recombinant α-H3K4me3 Fab 304M3-B achieves high affin-

ity by ”clasping” the histone tail between two Fab molecules208, a binding mode readily achieved

by multiple copies of the Fab presented on a bead, but not by the Fab in solution. Thus, protease

cleavage not only elutes nucleosomes from the beads but also likely from the Fab complex. (B)

Enrichment of different barcoded nucleosomes in reICeChIP-seq (n=3 biological replicates). Error

bars represent S.D. (C) Representative line plot showing histone modification density of H3K4me3,

H3K27me3, and bivalency ICeChIP-seq presented with 95% confidence intervals (lighter shade)

and input read depth in naïve mESCs. Bivalency is calibrated to the trans-bivalency nucleosome

standard and corrected for off-target H3K9me3 pulldown.
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Figure 3.3: Evaluation of reICeChIP specificity and standards.
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Figure 3.3, continued:

(A) Representative genome browser view of H3K4me3, H3K27me3, and bivalency, shown as a

range of possible values by normalization to trans-bivalent (upper limit) or cis-bivalent (lower limit)

nucleosome standards. (B) Relative pulldown of different nucleosome standards in ICeChIP-seq,

normalized to the most-enriched standard. (C) Scatterplots of reads from DNA barcodes applied

to nucleosome standards in ICeChIP-seq. (D) Violin plots of peak breadth (consecutive segment

of 50bp windows overlapping promoter with >25% HMD) for H3K4me3 (green) and bivalency

(blue) at non-bivalent and bivalent genes (>25% HMD) in naïve mESCs. (E-F)Autocorrelation of

(E) H3K4me3 and (F) bivalency HMDs between nucleosomes in naïve mESCs. Nucleosomes are

defined as sequential 200bp windows from the TSS.

primary pulldown more efficiently (Fig. 3.1D), resulting in 1000-2500x higher enrichment of the

target over the published methods (Fig. 3.1A, 3.2B). This improvement enabled genome-wide

measurement of bivalency HMD (Fig. 3.2C), representing the proportion of nucleosomes at a

given locus modified with both H3K4me3 and H3K27me3, using the trans-bivalent nucleosome

standards210 as the calibrant (Fig. 3.1E, 3.3; Supplementary Note 3.1).

Bivalency through differentiation

With reICeChIP, we sought to study the role of bivalency in development by tracking its changes

across a differentiation pathway that was used in several classic studies of bivalency9,130,211: differen-

tiation from naïve mESCs211 through the primed mESC state211 to NPCs. In naïve mESCs, we noted

that bivalency was far more widespread than previously reported (Fig. 3.4A-B); rather than ~1000

bivalent genes in naïve mESCs211, we observed at least 10% bivalency HMD at most promoters

(25768/42622), with almost 5000 promoters bearing bivalency at more than 50% of their nucleo-

somes (Fig. 3.4A,C; Supplementary Note 3.2, 3.3). This trend is recapitulated with primed mESCs,

with the consensus set of bivalent promoters representing fewer than 2000 genes130,185,200,212, as

compared to more than 25,000 that are >25% bivalent in our analysis.

Even more striking were the changes in bivalency across this differentiation scheme. Pre-

vious studies suggested that bivalency largely disappears upon differentiation to NPCs9,130,187,188.
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Figure 3.4: Bivalency is widespread and does not resolve over differentiation.
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Figure 3.4, continued:

(A) Bivalency, H3K4me3, and H3K27me3 at all Refseq promoters in naïve mESCs, with relative

enrichment of GO terms. Genes are rank ordered by bivalency HMD at promoter, defined as

the region from 0 to +400 bp relative to the TSS. (B) Representative locus view of H3K4me3,

H3K27me3, and bivalency at promoters in naïve mESCs (top), primed mESCs (centre), and NPCs

(bottom), presented on the same scale of 0-125% HMD. (C) Number of promoters with bivalency

HMDs above the given thresholds in each cell type out of a total of 42,622 Refseq promoters. (D)

Metaprofiles of H3K4me3, H3K27me3, and bivalency at all promoters in naïve mESCs, primed

mESCs, and NPCs. Heatmaps for primed mESCs and NPCs are presented in Extended Data Fig.

3b. (E) Distribution of bivalency HMDs at all Refseq promoters in three cell states, zoomed to

below 125% HMD. Overall, 99.5% of naïve promoters, 87.3% of primed promoters, and 91.6% of

NPC promoters have an HMD below 100%. Full plot in Extended Data Fig. 3a. (F)Metaprofiles

of H3K4me3, H3K27me3, and bivalency at promoters identified as bivalent in naïve mESCs (25%

HMD threshold), tracked from naïve mESCs to primed mESCs to NPCs. Heatmaps for bivalency

are presented in Extended Data Fig. 3f. (G-H)Alluvial plots of dominance and bivalency of genes

from (G) naïve mESCs to NPCs or (H) primed mESCs to NPCs. Bivalency [>25% HMD] can

be subcategorized into dominance classes by independent ICeChIP for the constituent marks, with

H3K27me3 in excess (H3K27me3/H3K4me3 > e1), H3K4me3 dominant (H3K27me3/H3K4me3 <

e-1), or intermediate ratios (no dominance). (I) Bivalency metaprofiles for gene subsets indicated

in panel (h) from -3kb to +3kb relative to the TSS. ∗∗∗∗p < 2.2x10−16.

However, we found the opposite; promoter bivalency increases upon differentiation (Fig. 3.4D-E,

3.5A-B), with thousands more genes meeting bivalency HMD thresholds relative to naïve mESCs

(Fig. 3.4C). Similarly, we find that bivalent domains do not resolve upon differentiation; tracking

bivalent genes from naïve mESCs through differentiation, we observe that bivalency is higher at

these same promoters in primed mESCs and NPCs (Fig. 3.4F, 3.5C-F). As previously reported,

primed mESCs have the most bivalency, likely related to the high level of promoter H3K27me3 in

this state211 (Fig. 3.4D). Accordingly, there are 27% fewer bivalent genes in NPCs than in primed

mESCs (Fig. 3.4E). However, this decrease is nowhere near the previously reported decrease of

92%130, and bivalent genes from primed mESCs remain highly bivalent in NPCs (Fig. 3.5G-H).

Collectively, these data suggest that bivalency is far more widespread in this system than previously

appreciated and remains elevated through differentiation, rather than resolving to one of the two

monovalent states.
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Figure 3.5: Tracking bivalent genes through differentiation.
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Figure 3.5, continued:

(A) Distribution of bivalency HMDs at all Refseq promoters in three cell states. (B) Heatmaps of

bivalency at all Refseq promoters in primed mESCs and NPCs. Genes are ordered by bivalency

HMD at the promoter. (C) Venn diagram showing overlap of bivalent genes (25% HMD threshold)

in naïve mESCs, primed mESCs, and NPCs. (D-E) Metaprofiles of H3K4me3, H3K27me3, and

bivalency for bivalent genes in naïve mESCs with a (D) 10% or (E) 50% HMD threshold. (F)

Heatmaps and metaprofiles of bivalent genes from naïve mESCs. (G)Metaprofiles of H3K4me3,

H3K27me3, and bivalency at genes tracked from primed mESCs to NPCs for bivalent genes in

primed mESCs (>25% HMD). (H) Heatmaps and metaprofiles of bivalent genes in primed mESCs

that are not bivalent in naïve mESCs.

To investigate this discrepancy with the literature, we compared promoters identified as

bivalent by other studies130,188,200 to ours. The previously identified genes had 50-100% more

H3K27me3 than domost bivalent genes in our set (Fig. 3.6A-B), suggesting that the previous studies

undersampled H3K27me3 and thus could only identify regions with high H3K27me3 as bivalent.

Accordingly, H3K27me3 dominant bivalent genes had the greatest proportional overlap with these

canonical bivalent loci compared to other dominance classes (i.e. whether the bivalent genes have

excess H3K27me3, excess H3K4me3, or roughly equal levels as measured by independent ICeChIP

experiments for these two marks; Fig. 3.6C). The common practice of measuring bivalency as

regions of overlapping H3K4me3 and H3K27me3 is also problematic, even with calibrated data118;

many promoters with high H3K4me3 and H3K27me3 bear less than 25% bivalency (Fig. 3.6D).

Notably, even for the previously identified bivalent genes, bivalency still increases relative to naïve

mESCs upon differentiation. And in our datasets, this holds true across modification dominance

classes – even the H3K27me3 dominant bivalent genes, whichmost closely resemble the canonically

bivalent loci (Fig. 3.6-3.7). To the extent that any bivalency class resolves from naïve mESCs to

NPCs, the largest set of genes is from the H3K4me3 dominant bivalent genes (p = 1.78 x 10-133;

Fig. 3.4G), despite its minimal overlap with the canonical bivalent loci (Fig. 3.6C).
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Figure 3.6: Comparing our bivalent genes to other studies.
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Figure 3.6, continued:

(A-B) Contingency tables and metaprofiles for genes that are identified as >25% bivalent in our

study and by Mikkelsen et al.130, Mas et al.200, and Xiao et al.212, wherein: (A) gene is identified

as bivalent in the external study if overlapping H3K4me3 and H3K27me3 peaks overlap the 0 to

+400bp region of a gene relative to the TSS, or (B) gene is identified as bivalent in the external study

if overlapping H3K4me3 and H3K27me3 peaks overlap the region from 2.5kb upstream of the TSS

to the end of the gene185. (C) Overlap of bivalent genes from external datasets (as defined in part

A) with each of our bivalent gene dominance classes in naïve mESCs. Significance computed by

two-tailed Fisher hypergeometric test. (D) Overlap of genes with bivalency HMD > 25% and with

H3K4me3 + H3K27me3 HMD > 25% in all three cell states.
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Figure 3.7: Bivalency changes across differentiation by modification dominance class.

(A-C) Metaprofiles of H3K4me3, H3K27me3, and bivalency for bivalent genes (>25% HMD)

in naïve mESCs that are (A) H3K27me3 dominant (H3K27me3/H3K4me3 > e1), (B) H3K4me3

dominant (H3K27me3/H3K4me3 < e-1), or (C) have no dominance in naïve mESCs, tracked through

three cell states. (D-E)Metaprofiles of H3K4me3, H3K27me3, and bivalency for bivalent genes

(>25% HMD) in primed mESCs that are for indicated dominance classes tracked from primed

mESCs to NPCs.

Having found that bivalency is unexpectedly common and persistent in early differentiation,

we investigated the enzyme complexes that could potentially account for this ubiquity. Previous
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work suggested that H3K27me3 and H3K4me3 each inhibit deposition of the other145,210,213,214, par-

ticularly when symmetric (Supplementary Note 3.4), raising questions as to whether the pervasive

bivalency we observe is plausible. To address this concern, we performed histone methyltransferase

(HMTase) assays with Set1B and the full panel MLL-family core complexes (MLL1, MLL2, MLL3,

MLL4), which collectively account for the bulk of H3K4 methylation in humans215. We find that

these complexes all tolerate a wide spectrum of H3K27me3-decorated nucleosomes (Fig. 3.8),

indicating that the formation of bivalent nucleosomes is not precluded by allosteric modulation

of H3K4me3 installation by core factors. Although it has been suggested that Set1a216, Mll2217,

Ezh1218, and Ezh2219 are all important for establishing bivalency, only Mll2 appears to be sensitive

for identifying bivalent promoters in naïve mESCs, with none showing high specificity for the

same (Fig. 3.9). Together, these data support the proposed specialized role for Mll2 in bivalency217,

indicate a pleiotropic role for PRC2 beyond its role in establishing bivalency, and provide plausible

enzymatic avenues to the prevalent bivalency we observe by reICeChIP.

Bivalency, gene expression, and ontology

A key pillar of the bivalency hypothesis is that bivalent promoters are associated with transcrip-

tionally repressed genes poised to be activated or terminally silenced upon differentiation9,130,185,186.

However, bivalency is not solely found at genes with low expression in any of our measurements

(Fig. 3.10A, 3.11A-B). Rather, bivalent genes had higher average expression than did non-bivalent

genes or the set of all genes, and these genes display modestly higher average expression through

differentiation (Fig. 3.10A), with bivalency being similar across most expression deciles (Fig.

3.11C). Bivalency associated similarly with bulk gene expression (Fig. 3.10B) and the proportion

of cells expressing the associated transcripts in single cell RNA-seq (Fig. 3.10C), suggesting that
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Figure 3.8: Methyltransferase assays identifying potential pathways for establishment of bivalency.

(A-B)Methyltransferase assays for MLL1, MLL2, MLL3, MLL4, and Set1B core HMTase com-

plexes using (A) 15 ng/uL (n=6) and (B) 20 ng/uL (n=5) semisynthetic nucleosomes as substrates

for methylation. Endpoints were established at 180 min by kinetic evaluation to be sensitive to

difference in activity for this panel. Signal is corrected for background and no nucleosome substrate

activity. Error bars represent standard deviation.
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Figure 3.9: HMTase peaks and bivalency.

Contingency tables and metagene profiles in naïve mESCs for genes with and without overlapping

HMT peaks. Ezh1 and Ezh2 peaks were identified as Suz12 peaks lost upon Ezh1 or Ezh2 knock-

out81. Set1A peaks were identified by ChIP against Set1A216. Mll2 peaks were identified by ChIP

against Mll2206.
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the association of bivalency with higher-expressed genes is not solely driven by intercellular het-

erogeneity. Consistent with previous observations130, bivalency was higher at promoters with high

CpG content (Fig. 3.11D) and associated with lower DNAmethylation compared to non-bivalent

genes (Fig. 3.11E, also holds for each dominance class). These data all suggest that bivalent genes

are more highly expressed than non-bivalent genes as a whole, and this latter class is seemingly

more subject to regulation by DNAmethylation.

Another pillar of the bivalency model is that bivalent genes are poised to be differentially

regulated through differentiation. To test this, we computed the sensitivity and specificity of differ-

ent bivalency and non-bivalency classes for differentially expressed genes (DEGs; Supplementary

Note 3.5). Counter to the bivalency hypothesis and previous results9,130,186, we found that bivalency

was a very poor marker of DEGs; from naïve mESCs to NPCs, bivalency was roughly as sensitive

and specific for identifying DEGs as was a lack of bivalency (Fig. 3.10D). Though H3K27me3-

dominant bivalent genes showed an increase in average gene expression (Fig. 3.11F-G), this class

still only had 60% specificity for identifying DEGs, with very low sensitivity (Fig. 3.10D). Promot-

ers of DEGs and non-DEGs from naïve mESCs to NPCs have highly similar histone modification

metaprofiles in naïve mESCs (Fig. 3.10E-F) and across differentiation (Fig. 3.11H-K). Compar-

ison of primed mESCs to NPCs displayed similar trends (Fig. 3.10G-H); though sensitivity was

higher because most genes are bivalent in primed mESCs, the specificity remained similar between

bivalent and non-bivalent genes. Interestingly, whether genes were upregulated, downregulated,

or non-DEGs, bivalency still increased over differentiation (Fig. 3.11H-K). Collectively, these

analyses show that bivalency is neither sensitive nor specifical for poised DEGs in this system.

We next examined whether bivalency is primarily associated with developmental genes, a

central tenet of the original model9,130. The first ICeChIP study indirectly hinted that there may be at
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Figure 3.10: Bivalency is neither sensitive nor specific for identifying poised or developmental

genes.

(A) Violin plots of gene expression220 for all genes in naïve mESCs, non-bivalent genes (<25%

HMD) in naïve mESCs, and bivalent genes (>25% HMD) tracked from naïve mESCs to the same

genes in the indicated lineages. Significance computed by Welch’s two-tailed t-test. (B) Gene

expression vs. HMD for H3K4me3, H3K27me3, and bivalency (genes are binned into HMD

deciles). (C) Proportion of actively transcribing cells by single-cell RNA-seq221 vs. HMD for

H3K4me3, H3K27me3, and bivalency (genes are binned into HMD deciles). (D) Sensitivity and
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Figure 3.10, continued:

specificity (Supplementary Note 3.5) of bivalent and non-bivalent genes in naïve mESCs identifying

differentially expressed genes (DEGs) from the naïve state to the NPC state. (E)Metaprofiles of

H3K4me3, H3K27me3, and bivalency and (f) heatmaps of bivalency in naïve mESCs at DEGs

and non-DEGs relative to NPCs. (g) Sensitivity and specificity of bivalent and non-bivalent genes

in primed mESCs identifying DEGs from the primed state to the NPC state. (h) Metaprofiles

of H3K4me3, H3K27me3, and bivalency in primed mESCs at DEGs and non-DEGs. (i) Gene

ontology term enrichment of H3K27me3-dominant bivalent genes, H3K4me3-dominant bivalent

genes, or bivalent genes with no clear dominance (q-value two-tailed Fisher hypergeometric test).

(j)Metaprofiles of H3K4me3, H3K27me3, and bivalency in naïve mESCs at developmental and

metabolic genes. (k)Gene ontology term enrichment of genes following the classic bivalencymodel:

DEGs that lose bivalency from naïve mESCs (>25% HMD) to NPCs (<10% HMD). Significance

computed by two-tailed Fisher hypergeometric test. ∗q < 0.05. ∗∗q < 0.01. ∗∗∗∗p or q < 2.2x10−16.

least two classes of bivalent promoters: an H3K27me3 dominant class associated with developmen-

tal genes, and an H3K4me3 dominant class enriched for metabolic genes118. Direct measurements

of bivalency herein unambiguously demonstrate this phenomenon more broadly (Fig. 3.4A, 3.10I).

Overall, bivalent genes are enriched for a broad range of ontology terms, including developmental,

metabolic, and immune system process genes (Fig. 3.10I-J), with nearly identical bivalency profiles

in naïve mESCs (Fig. 3.10I, 3.12A). These classes all not only retained, but increased bivalency

into NPCs – even immune system process genes, despite being seemingly unrelated to neuronal

development. We only found 543 genes that did obey the classic bivalency model (Fig. 3.10K), rep-

resenting less than 5% of the bivalent genes from naïve mESCs, with little difference in bivalency

between upregulated and downregulated genes (Fig. 3.12B). Interestingly, these genes were most

significantly enriched for metabolic rather than developmental genes (Fig. 3.10K). Taken together,

these data suggest that bivalency is neither primarily nor specifically associated with developmental

genes in this system.
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Figure 3.11: Bivalency and differential gene expression.

(A-B)Violin plots of gene expression for (A) all genes and (B) bivalent (>25% HMD) genes in each

cell state. (C)Bivalencymetaprofiles in naïvemESCs at promoters binned by gene expression decile.
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Figure 3.11, continued:

(D) Violin plots of bivalency HMD in naïve mESCs at promoters with and without CpG islands.

Inset shows proportion of genes that are bivalent in sets of genes classified by CpG content: high-

CpG promoters (HCP), intermediate-CpG promoters (ICP), and low-CpG promoters (LCP), defined

as previously described by Mikkelsen et al.130. Total number of genes in each class is provided as n.

(E)Violin plots of DNAmethylation at bivalent and non-bivalent genes (top), broken by dominance

class for bivalent genes (bottom). (F-G) Violin plots of gene expression in (F) non-bivalent (<25%

HMD) and (G) bivalent (>25% HMD) genes from naïve mESCs that are H3K27me3 dominant

(H3K27me3/H3K4me3 > e1; left), have no clear dominance (centre), or are H3K4me3 dominant

(H3K27me3/H3K4me3 < e-1; right). (H-K)Metaprofiles of H3K4me3, H3K27me3, and bivalency

at genes tracked from naïve mESCs to primed mESCs to NPCs for (H) DEGs, (I) non-DEGs, (J)

genes upregulated from naïve mESCs to NPCs, and (K) genes downregulated from naïve mESCs

to NPCs. ∗∗∗∗p < 10−16 (Welch’s two-tailed t-test).
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Figure 3.12: Bivalency at different classes of genes.

88



Figure 3.12, continued:

(A)Metaprofiles of H3K4me3, H3K27me3, and bivalency at genes tracked from naïve mESCs to

primed mESCs to NPCs for bivalent genes of indicated gene ontology terms. (B)Metaprofiles of

H3K4me3, H3K27me3, and bivalency at genes tracked across differentiation for genes that lose

bivalency at the promoters (0 to +400bp relative to TSS) from naïve mESCs (>25% HMD) to NPCs

(<10% HMD) and are upregulated (top) or downregulated (bottom) over differentiation.

Predicting DEGs with histone PTMs

The premise of the bivalency hypothesis is that the coexistence of H3K4me3 and H3K27me3 syner-

gistically provides additional predictive information about the associated genes upon differentiation

beyond that provided by H3K4me3 and H3K27me3 alone. With quantitative measurements of these

modifications, this hypothesis can be tested by modelling. We first determined which individual

parameters best identified DEGs by measuring the area under the curve (AUC) of receiver opera-

tor characteristic (ROC) curves of parameter thresholds. Of the individual histone modifications,

H3K4me3 levels were best for identifying DEGs, with the highest AUC of the ROC (Fig. 3.13A,

3.14A). Bivalency was less predictive of DEGs than were either the log ratio of H3K27me3 and

H3K4me3 or DNAmethylation (Fig. 3.13A, 3.14A). And in primed mESCs, far from being predic-

tive of poised genes, bivalency was inversely associated with DEGs upon differentiation to NPCs

(Fig. 3.14A).

If bivalency provides additional information over H3K4me3 and H3K27me3, then a model

without bivalency will be markedly less explanatory than a model with bivalency. To test this, we

conducted logistic regressions with linear models to identify parameters most important for iden-

tifying DEGs. Bayes Information Criterion analyses preliminarily hinted that bivalency provided

minimal information to this end (Fig. 3.14B; Supplementary Note 3.6). To more definitively iden-

tify whether bivalency provides meaningful predictive information, we conducted hold-out cross-

validation on models with H3K4me3, H3K27me3 and either nothing else, bivalency, H3K9me3, or
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Figure 3.13: Bivalency does not provide appreciably more information than H3K4me3 and

H3K27me3 alone for DEG prediction.

(A)Receiver operator characteristic (ROC) curves for identifying DEGs from naïve mESCs to NPCs

by H3K4me3, H3K9me3, H3K27me3, bivalency, ln(H3K27me3/H3K4me3), or DNAmethylation

in naïve mESCs. For each point, parameter value threshold used to compute true positive rate (TPR)

and false positive rate (FPR) is indicated by the colour. Traits with thresholds identifying non-DEGs

rather than DEGs aremarkedwith “rev.” (B)Legend for generalized linear models (GLMs) in panels

c-d. (C) Accuracy of trivial model and GLMs by threshold accuracy (gene identified as DEG if

logistic regression > 0.5; left) and by ROC area under curve (right). (D) ROC curves for identifying

DEGs from naïve mESCs to NPCs by different GLMs. For each point, logistic regression threshold

value used to compute TPR and FPR is indicated by the colour.

90



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

GLM #1
AUC: 0.5825625

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

GLM #2
AUC: 0.5828533

E

0.3 0.4 0.5
GLM Resp.

0.2

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

GLM #3
AUC: 0.5807692

B
Parameters BIC Model Rank BIC Model Rank

H3K4me3, H3K27me3, log of each, DNA methylation 31678.11 1 28572.21 1
H3K4me3, H3K27me3, log of each 31681.10 2 28690.06 4

H3K4me3, H3K27me3, Bivalency, log of each 31694.95 3 28698.28 5
H3K4me3, H3K27me3, Bivalency, log of each, DNA methylation 31695.11 4 28575.32 2

H3K4me3, H3K27me3 31755.64 5 28743.02 6
H3K4me3, H3K27me3, Bivalency 31765.15 6 28749.58 7

H3K4me3 31799.66 7 28812.13 8
DNA methylation 32013.54 8 28642.26 3

Bivalency 32049.27 9 29061.58 11
Trivial Model 32182.03 10 29060.79 10
H3K27me3 32190.74 11 29019.73 9

H3K9me3 32191.98 12 29070.02 12

Naïve to NPC Primed to NPC

C
GLM ID Parameters

GLM #1
H3K4me3, H3K27me3,
ln(H3K4me3), ln(H3K27me3)

GLM #2
H3K4me3, H3K27me3,
ln(H3K4me3), ln(H3K27me3),
bivalency, ln(bivalency)

GLM #3
H3K4me3, H3K27me3,
ln(H3K4me3), ln(H3K27me3),
H3K9me3

GLM #4
H3K4me3, H3K27me3,
ln(H3K4me3), ln(H3K27me3),
DNA methylation

D
GLM #2

Trivial Model
GLM #1

GLM #3
GLM #4

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Thresh. Acc. ROC AUC

C
ha

ra
ct

er
is

tic

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Bivalency (rev.)
AUC: 0.510697

0 25 50 75 100
HMD (%)

0.00

0.25

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Ln(H3K27me3/H3K4me3) (rev.)
AUC: 0.5778506

0.50

Tr
ue

 P
os

iti
ve

 R
at

e

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

H3K9me3 (rev.)
AUC: 0.5093957

0 25 50 75 100
HMD (%)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

H3K27me3 (rev.)
AUC: 0.529262

0 25 50 75 100
HMD (%)

A

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

H3K4me3
AUC: 0.5723725

0 25 50 75 100
HMD (%)

-2 0 4
Log Ratio

2

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

0 0.5 1
DNA methyl.

DNA methylation (rev.)
AUC: 0.6005669

GLM #4
AUC: 0.5907042

Figure 3.14: Quantifying the additional information content provided by bivalency over H3K4me3

and H3K27me3 alone.
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Figure 3.14, continued:

(A) ROC curves for identifying DEGs from primed mESCs to NPCs by H3K4me3, H3K9me3,

H3K27me3, bivalency, ln(H3K27me3/H3K4me3), or DNA methylation in primed mESCs. For

each point, parameter value threshold used to compute true positive rate (TPR) and false positive

rate (FPR) is indicated by the colour. Traits with thresholds identifying non-DEGs rather than

DEGs are marked with “rev.” (B) Bayes Information Criterion (BIC) for logistic models identifying

DEGs from naïve mESCs or primed mESCs to NPCs with different parameters. (C) Legend for

generalized linear models (GLMs). (D)Accuracy of trivial model and GLMs by threshold accuracy

(gene identified as DEG if logistic regression > 0.5; left) and by ROC area under curve (right). (E)

ROC curves for identifying DEGs from primed mESCs to NPCs by different GLMs. For each point,

logistic regression threshold value used to compute TPR and FPR is indicated by the colour.

DNAmethylation (Fig. 3.13B, 3.14C; Supplementary Note 3.6). Parameters other than H3K4me3

and H3K27me3 barely improved model accuracy by two separate metrics (Fig. 3.13C-D, 3.14D-E;

Supplementary Note 3.4), suggesting that those parameters provide virtually no additional informa-

tion content to identify DEGs. These data suggest that, in this developmental system, there is little

evidence that bivalency has emergent properties in identifying poised genes beyond the combined

independent properties of H3K4me3 and H3K27me3.

Discussion

The bivalency hypothesis is one of the more influential ideas in epigenetics and molecular de-

velopmental biology. Persistent interest over the years coupled with widespread deployment and

acceptance of sub-optimal bivalency measurement methods has ossified the hypothesis into dogma

that extends well beyond any of the experimental data that informed it.

However, this coalescence has not been reached based on functional assays. Indeed, to the

extent that functional validation of the bivalency model has been attempted, it has primarily been

through deletion of enzymes with pleiotropic effects and functions throughout the genome beyond

installation of bivalency200,217,222,223. Overwhelmingly, the prevailing views on the role of bivalency

are derived from ChIP experiments. However, ChIP protocols150 and antibodies108,111,124,133,134 are
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often highly susceptible to off-target pulldown, and uncalibrated ChIP without exogenous nor-

malization can distort signal and the ability to compare experiments118,124,128, leading to spurious

conclusions124. From the quantitative and specific measurements we made with reICeChIP, we fear

that this has been the case with the bivalency hypothesis, at least as far as these analyses in early

mESC differentiation permit.

It has been held that bivalency is present at a small, restricted set of promoters early in devel-

opment; we find that bivalency is widespread, with many thousands of promoters displaying high

bivalency levels. It has been held that bivalency primarily exists early in development and resolves

upon differentiation; we find that bivalency persists at least through the NPC stage and increases

over baseline in that span. It has been held that bivalency demarcates poised, developmental genes

associated with lineage commitment; we find that bivalency is neither sensitively nor specifically

associated with developmental nor differentially expressed genes – and, at worst, may be inversely

associated with the latter. Moreover, bivalent genes are predominantly not poised in an off state,

but are more highly expressed than those that are not bivalent. All told, we find little evidence

that bivalency provides more information in predicting poised gene status than do H3K4me3 and

H3K27me3 in an independently additive manner in this system, raising questions as to whether it

represents any more than a coincidental overlap of the aforementioned two marks.

Our study is not without caveats. First, we are only able to comment meaningfully on the

differentiation paradigm presented here; we cannot definitively infer that these results will hold for

the other developmental or clinical contexts. Although the original studies on bivalency indicated

that bivalency almost entirely disappeared by the NPC stage9,130, this stage is not terminally differen-

tiated, so it is possible that bivalency could resolve in later stages of differentiation. Future studies

will be needed to address this possibility in other developmental contexts. Second, though the extant
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evidence suggests that only trans-bivalency is present at meaningful levels, our method cannot selec-

tively distinguish between cis-, trans-, and intermediate bivalency conformations (Supplementary

Note 3.1).

The reICeChIP method is not inherently restricted to the study of H3K4me3/H3K27me3 bi-

valency. With cleavable recombinant affinity reagents targeting other histone modifications208,224 it

could be used to quantify other combinatorial modification patterns225–228 or modification symmetry.

Without serious changes to the standards of ChIP, the limitations of conventional ChIP-seq

will continue to pose an existential challenge to the field. Indeed, the divergence between our

observations of bivalency and those in the literature can be attributed to the historical lack of tools

needed to make quantitative and specific measurements; in that context, the experimental designs

and interpretations of the past were reasonable. Fortunately, such tools now exist. And as we have

shown in this work, these methods offer a chance for the field to critically evaluate its orthodox

models and pave the way for new insights on the chromatin determinants of cell identity and the

regulation of development.
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Supplementary Notes

Supplementary Note 3.1: Configurations of bivalent nucleosomes and impact on avidity.

As each nucleosome has two H3 protomers, there are several different configurations of bivalency

that a bivalent nucleosome can theoretically adopt, each with a different avidity for ChIP pulldown

with immobilized antibody. At one extreme, with the highest avidity, is the symmetric cis-bivalency

form, where both H3K4 and both H3K27 residues are trimethylated (Fig. 3.1E). This nucleosome

has the most epitopes for antibody binding and will thus have the highest avidity in pulldown

reflected in apical pulldown efficiency (Fig. 3.1D). At the other extreme, with the lowest avidity, is

the trans-bivalency form, where single H3K4me3 and H3K27me3 marks decorate different histone

tails (Fig. 3.1E). This has the fewest epitopes for antibody binding and will thus have no avidity in

pulldown.

This poses a theoretical challenge in normalization and calibration of a ChIP study; because

we cannot separately measure trans-bivalency, symmetric cis-bivalency, nor any intermediate states,

it is impossible for us to definitively state whether a given locus with a given HMD has relatively

few nucleosomes that are symmetric cis-bivalent or whether it has relatively many nucleosomes

that are trans-bivalently modified. To accommodate for this limitation, we include two different

bivalent calibrants in our set of nucleosome standards: one that is symmetric cis-bivalent and one

that is trans-bivalent. The bivalency sequential ChIP can then be normalized to either one of these
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standards, and because these two cases represent the limits of pulldown avidity, normalization to

these calibrants will define the theoretical “range” in which true bivalency HMD (i.e. the proportion

of nucleosomes with some bivalent configuration) exists (Fig. 3.1E). We note that, because the

signal from calibration to these standards are scalar multiples of each other, we cannot uniquely dis-

tinguish these two configurations in the genome. Absent any prior information about the dominant

configuration of bivalency, the proportion of bivalently modified nucleosomes at a given locus will

exist in the range defined by calibration to symmetric cis- or trans-bivalent standards (Fig. 3.3A).

In practice, there are a few reasons why this is not a major concern. First, there is no mass

spectrometry evidence that H3K4me3 and H3K27me3 exist on the same histone tail, despite specific

enrichment for these marks and sensitive detection limits116,145, suggesting that configurations other

than trans-bivalency are at most, extremely minor in abundance. Second, the scarcity of these cis-

tail modifications is consistent with the biochemical literature prior to this work that suggests the

biogenesis of these cis-tail modifications is enzymatically challenging due to antagonistic allosteric

effects (see Supplementary Note 3.4). Third, even if symmetric cis-bivalency does exist at some

loci, for the purposes of tracking changes in bivalency across differentiation, we can still observe

an increase or decrease in bivalency by this calibration method; we simply cannot precisely discern

whether the effect is driven by nucleosomes gaining/losing trans-bivalency, cis-bivalency, or some

combination of the two. The overall amount of bivalency would still increase or decrease in all

those scenarios, and so long as our choice of calibrant remains consistent, we can still measure that

change regardless of the calibrant that we use for our normalization. Therefore, though we have

generated datasets using both calibrants, we present our bivalency pulldowns as calibrated to the

trans-bivalent standards.
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Supplementary Note 3.2: Definition and interpretation of HMD at promoters.

Throughout this study, we have defined gene promoters to be the region from 0 to +400bp relative

to the TSS, representing the +1 and +2 nucleosomes of each gene. These nucleosomes tend to

be well-positioned229 and, accordingly, are most likely to provide us with adequate read depth to

robustly quantify each histone modification. This definition is conservative; we find that H3K4me3

and bivalent domains, which tend to be peak-like, have a median breadth of 550bp at bivalent genes

(Fig. 3.4D).

The width of these domains raises an important point regarding the measurement of histone

modification density as a continuous variable. At a given nucleosome in a single allele of a single

cell, there are only three possible states for a histone modification: symmetric, asymmetric or not

present. However, nucleosome readers do not typically bind only a single nucleosome at a single

position; rather, the local density of the modification across multiple nucleosomes is crucial in

localizing these effectors through multivalent avidity-based interactions91,230–232. Indeed, we find

that the HMD across sequential nucleosomes relative to the TSS is well autocorrelated (Fig. 3.4E).

This means that the interpretation of the HMD across a multinucleosomal span becomes more

nuanced; a given histone modification may exist at one or more of those nucleosomes. Accordingly,

despite the fact that a single nucleosome is essentially ternary in whether it has a given histone

modification or not (i.e. HMD of 0% or 100%), a region spanning multiple nucleosomes could

have an intermediate HMD; it is this latter quantity that is most relevant for the biological function

imparted to the nearby genomic regions, and this is the quantity we analyse through this work.

Though it is not employed in this work, similar arguments would apply to analyses of HMD over

larger spans, such as gene bodies.
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Supplementary Note 3.3: Limits of HMD and impacts of avidity biases.

For the datasets presented in this work, the vast majority of promoters have a histone modification

density between 0-100%, representing the proportion of nucleosomes at those promoters with the

modification of interest (Fig. 3.4C, 3.5A). However, at some loci, the measured HMD exceeds

100%. There are several possible reasons for this.

The most important of these possibilities is low input depth. The ICeChIP datasets are

normalized to the input read depth at every genomic interval to accommodate for differences in

local nucleosome density when computing the HMD. However, this means that at regions that are

relatively nucleosome-depleted, there will be few reads in the input, meaning that the denominator of

the HMD computation is quite small (Methods). This increased Poisson noise in these regions of low

input can result in inflated apparent HMD beyond the physical limit of 100%. To accommodate for

this, we can compute 95% confidence intervals for the HMD of each modification at each genomic

position, and these confidence intervals virtually always overlap the physically possible range of

HMD values (e.g., Fig. 3.2C). In naïve mESCs, only 0.5% of the promoters have a bivalency HMD

above 100%, and for the vast majority of these promoters (86.1%), the 95% confidence interval error

estimate ranges below 100%. The fact the apparent bivalency HMD calibrated by trans-bivalent

standards, is broadly constrained to less than 100% further supports the idea that this choice of

calibrant is appropriate and not inflationary (Supplementary Note 3.1).

There are also several other possibilities that are more challenging to accommodate for.

First, some regions of the genome are known to be more artefact-prone for sequencing and map-

ping233; if the IP sample is enriched for these sequences relative to the input, then that could be

disproportionately represented in the IP and have an apparent HMD greater than 100%. Second,

the antibodies themselves could skew the apparent HMD. If the antibody is capturing substantial
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off-target material, then that will result in systematic inflation of the IP, resulting in an inflated

HMD. Though ICeChIP barcoded nucleosome standards can help monitor off-target pulldown of

some nucleosome species, we can only measure the capture of the standards that we actually have

spiked into the experiment. If we do not have nucleosome standards available for a potential off-

target modification, then we cannot definitively state that the antibody is not capturing that material.

In this context, that is likely most important for H3K27me3 pulldowns; though we cannot state

this definitively due to the lack of H3K27me2 standards, it is plausible that we are pulling down

some amount of H3K27me2 with these IPs, resulting in slightly inflated apparent H3K27me3 HMD.

However, this may not be too problematic; H3K27me2 and H3K27me3 are thought to be recognized

by many of the same proteins and to have highly similar functions81, so the conflation of the two –

if present – likely does not pose a significant problem in ascribing biologic function.

On a related note, at some loci, the bivalency HMD goes below 0%. In naïve mESCs, 8.8%

of the promoters have a bivalency HMD below 0%, yet for the vast majority of these promoters

(90.8%), the 95% confidence interval error estimate ranges above zero. This is because we employ

in silico signal-correction for the bivalency dataset to remove signal that is attributable to H3K9me3.

In essence, we can measure the amount of H3K9me3 pulldown in our bivalency ICeChIP dataset

due to nucleosome standards employed, and we can separately measure H3K9me3 HMD by a

highly specific IP. We can then a linear combination correction matrix to remove the signal that is

attributable to directly measured H3K9me3 at these loci. This method can effectively reduce the

impact of modest off-target binding H3K9me3, but at some loci, will result in a subzero apparent

HMD due to random sampling of read depth in the two distinct pulldowns employed.

Finally, at some sets of gene promoters, the trans-bivalency HMD is shown to be greater

than the H3K4me3 or H3K27me3 HMD. This apparent discrepancy has a few possible reasons.
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First, there is some nuance in the interpretation of HMD in the context of single-target ICeChIP

and reICeChIP. A nucleosome has two copies of each of its core histone proteins, including histone

H3. This means that there are two possible sites of modification on each nucleosome for for each

individual modification; if only one of those sites is modified, then that corresponds to an HMD

of 50% because only half the possible modification sites are actually modified. However, this is

different for the trans-bivalency HMD; by definition, only one trans-bivalency modification pattern

can exist on a given nucleosome at any given time. If two “trans-bivalent” modification patterns

existed on the same nucleosome simultaneously, then both H3K4 and both H3K27 residues would

be trimethylated – which is symmetric cis-bivalency. As such, if one H3K4 and one H3K27 residue

are trimethylated, then 100% of the possible trans-bivalency configurations for the nucleosome of

interest are satisfied, meaning that the trans-bivalency HMD will be 100%. However, in this case,

the H3K4me3 and H3K27me3 HMDs will only be 50% because only half the modifiable residues

are actually modified.

The other caveat is that symmetrically modified nucleosomes will be pulled down more

efficiently than asymmetrically modified nucleosomes due to avidity effects, as can be seen in the

pulldown of symmetric vs. asymmetric H3K4me3 and cis-bivalency vs. trans-bivalency (Fig. 3.3),

and observed previously118. This means that calibration to symmetric nucleosome standards will

have a larger denominator in computation of HMD and thereby yield lower apparent HMDs; this

can also contribute to the lower apparent HMD of H3K4me3 and H3K27me3 relative to trans-

bivalency. Accommodating for this phenomenon would require detailed profiling of asymmetric

H3K4me3 (which is currently difficult due to the low quality of H3K4me0 antibodies), asymmetric

H3K27me3 (which is not currently possible), and distinguishing between trans-bivalency and cis-

bivalency (which is also not currently possible).
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However, as noted in Supplementary Note 1, so long as the method of calibration remains

consistent, increases in apparent HMD will still correspond to increases in the modification of inter-

est. Whether that increase in the target modification is due to asymmetric modification becoming

symmetric or due to new gain of the modification at a previously unmodified locus in an instanta-

neous subpopulation remains unclear, but in both cases, modification density is still being gained at

that locus. As such, even with these caveats, we can still quantitatively compare different datasets

to each other as we use consistent calibration standards.

Supplementary Note 3.4: Enzymology of installation of bivalency.

Intriguingly, the catalytic activity of the EZH2-PRC2 core complex on nucleosome substrates is

potentiated by pre-existing H3K27me3234,235, yet inhibited by H3K4me3, particularly when sym-

metric145,210,214. Conversely, symmetric H3K27me3 has been reported to modestly inhibit several

of the human COMPASS‑family complexes by qualitative assays, although only SET1 complexes

were examined at the nucleosome level213. This presents a potential concern for our data – if the

enzyme complexes that install these marks are mutually antagonized by the opposing mark, how

might the widespread bivalency we observe arise? As the PRC2 effects are well established with

detailed quantitative enzymology145,210,214, which we recapitulate (data not shown), we deployed

more quantitative HMTase assays with a larger panel of relevant nucleosomal substrates to evalu-

ate the COMPASS/SET1B/MLL-family core complexes for allosteric modulation by pre-existing

marks (Fig. 3.8).

Supplementary Note 3.5: Sensitivity and specificity of DEGs.

In this context, sensitivity refers to the proportion of DEGs that are represented in a specific class

of genes (e.g. H3K27me3-dominant bivalent genes), whereas specificity refers to the proportion of
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that class of genes that are differentially expressed. Under the prevailing bivalency model, bivalency

is associated with poised genes that become upregulated or downregulated upon differentiation; as

such, it should have high specificity for DEGs.

Supplementary Note 3.6: Generalized linear model evaluation and parameter selection.

The first way we evaluate different models for predicting DEGs is to compute the Bayes Information

Criterion (BIC). Though not definitive, this metric estimates whether addition of a parameter to a

model improves it more than expected from chance alone. When comparing two models, the model

with the lower BIC will tend to have more explanatory parameters and/or fewer non-explanatory

parameters than the model with the higher BIC. To this end, if BIC increases when a parameter

is added, then it can be interpreted that the parameter being added contributes minimal additional

explanatory power. Here, we find that adding bivalency to a model increases the BIC, meaning that

it is likely (though not definitively) not contributing meaningfully more information in predicting

DEG status in this differentiation paradigm.

A more definitive way to evaluate model accuracy is to use hold-out cross-validation. In

this method, we split the set of all genes into two groups, one with 80% of the genes (the training

set) and one with 20% of the genes (the testing set). We then train our GLMs on the training set

and use the derived models to predict DEG status in the testing set. Hold-out cross-validation is

a highly effective way of testing whether a model is overfit or underfit upon addition or removal

of a parameter. If model accuracy increases substantially, then that would suggest the parameter

has explanatory power over that provided by the other parameters. Conversely, if model accuracy

decreases substantially, then that suggests that the additional parameter causes overfitting. Minimal
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changes in model accuracy suggest that the additional parameter contributes little to the model over

the existing parameters, positively or negatively.

There are two metrics we use to test the accuracy of the predictions in the testing set. The

first is by logistic regression thresholding, in which the gene is predicted to be a DEG if the modelled

probability is greater than 0.5. The second is by computing the area under the receiver operator

characteristic curve to measure true and false positive rates using different modelled probabilities

as the thresholds. Overall, we find that the GLM with bivalency barely changes model accuracy

by either metric on hold-out cross-validation, with the magnitude of change being similar to that

observed by instead adding H3K9me3 or DNAmethylation. As such, we can interpret that none

of these parameters – including bivalency – meaningfully contributes to the prediction of DEGs

beyond that achieved with H3K4me3 and H3K27me3 in this system.

Methods and Materials

This section has been adapted from the following:

• Shah, R. N. et al. Examining the Roles of H3K4 Methylation States with Systematically

Characterized Antibodies. Molecular Cell 72, 162–177 (2018).

• Shah, R. N. et al. Re-evaluating the role of nucleosomal bivalency in early development.

Preprint at bioRxiv, doi: 10.1101/2021.09.09.458948. (2021).

Cell Culture

Naïve mouse embryonic stem cells (mESCs) were grown from the mESC E14 line (129/Ola back-

ground) in high glucose DMEM (Invitrogen), supplemented with 15% (v/v) FBS (Gibco), 1% (v/v)

non‑essential amino acids (Gibco), 1x penicillin/streptomycin (Gibco), 0.1mM 2‑mercaptoethanol
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(Gibco), 2mM L-glutamine (Gibco), 1000U/mL LIF (ESG1107 Millipore), 3µM CHIR99021 (LC

Laboratories), 1µM PD0325901 (LC Laboratories), sterilized using 0.1µm filter flask (Millipore),

stored up to 1 week in 4°C.

Primed mESCs were grown from the mESC E14 line (129/Ola background) in high glu-

cose DMEM (Invitrogen), supplemented with 15% (v/v) FBS (Gibco), 1% (v/v) non‑essential

amino acids (Gibco), 1x penicillin/streptomycin (Gibco), 0.1mM 2‑mercaptoethanol (Gibco), 2mM

L-glutamine (Gibco), 1000U/mL LIF (ESG1107 Millipore), sterilized using 0.1µm filter flask (Mil-

lipore), stored up to 1 week in 4°C.

Naïve and primed mESCs were grown on plates coated with 0.1% bovine gelatin (Sigma),

grown to 70‑90% confluence and passaged daily at a 1:3 ratio, with a media change 3 hours before

passaging, supplemented with 1 vol. of fresh media 8 hours after passaging.

To start the adherent monolayer differentiation process to neuronal progenitor cells (NPCs;

Day 0)236,237, naïve mESCs cells were split onto a gelatinized 6 cm plate at 1 x 104 cells/cm2 and

allowed to grow for 24 hours. On Day 1, the media was switched to RHB-A (Takara, Y40001)

and was subsequently changed every other day. On day 4, cells were split and plated onto Poly-

L-Ornithine, laminin-treated 6-cm plates. Prior to cell seeding the plates were treated with 0.01%

Poly-L-Ornithine (Millipore, A004C) for at least 20 min, followed by 5 ug/cm2 of laminin (Fisher,

CB40232) resuspended in basal RHB-Amedium (Takara,Y40000). After washing off this treatment,

cells were seeded in fresh RHB-A, supplemented with 10 ng/mL of bFGF (PeproTech, 100-18B)

and EGF (PeproTech, 315-09). Cells were then split every 4 days at ≥ 20,000 cells/cm2 until an

appropriate amount of NPCs were cultured for ICeChIP.
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Octamer Reconstitution

Symmetric H3K4me3, H3K9me3, H3K27me3, H3K36me3, H3K79me2, and H3K4me3K27me3

octamers were reconstituted from semisynthetic histones as previously described91,118,166,167. Re-

combinant core histones were expressed in BL21 (DE3) with pRARE2 and mixed to equimolarity

with the relevant semisynthetic histones in freshly prepared filter sterilized Unfolding Buffer (50

mM Tris-HCl pH 8.0, 6.3 M Guanidine-HCl, 10 mM 2-mercaptoethanol, 4 mM EDTA) to a final

concentration of ≥ 1 mg histone per mL. The histone reconstitution was then added to 3500 MWCO

SnakeSkin dialysis tubing (Pierce) and dialyzed overnight at 4°C against 500-1000 volumes of filter

sterilized Refolding Buffer (20 mM Tris-HCl pH 7.5, 2 M NaCl, 5 mM DTT, 1 mM EDTA).

After dialysis, the histone mixture was centrifuged at 18,000 g for 1 hour at 4°C, and sub-

jected to gel filtration chromatography (Superdex 200 10/300 GL, GE Healthcare, resolved with

Refolding Buffer). Each fraction that displayed a peak on the UV chromatogram was analysed by

SDS-PAGE (22 mA current in 1x Laemmli Buffer for 70 minutes), stained with SYPRO Ruby (Bio-

Rad) per manufacturer instructions, and imaged with a 610BP emission filter at 600V PMT setting.

Octamer fractions with equimolar quantities of each core histone were pooled and concentrated

(Amicon Ultra-4 Centrifugal Filters, 10,000 MWCO, Millipore) to 5-15 µM octamer, diluted with

one volume of Octamer Storage Buffer, and stored at -20°C.

Asymmetrical H3K4me3 octamers were prepared as above, with modifications. Equimolar

amounts of histone H2A, H2B, H3 and H4 were mixed in Unfolding Buffer to the total of 1‑2mg,

where 90% of histone H3 was trimethylated on Lys 4 and the remaining 10% was unmethylated

and had a His6-tag at N-terminus with TEV cleavage site. Octamers were reconstituted overnight

by dialysis in 1000 volumes of Phosphate Refolding Buffer (50 mM sodium phosphate, 2 M NaCl,

pH 7.5). Octamers were purified by S200 gel filtration chromatography, and his-tagged octamers
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were isolated using cobalt‑based immobilized metal affinity chromatography Dynabeads magnetic

particles. Octamers were incubated with magnetic beads for 10 min at 4°C on a rotator, followed

by two 1 ml washes with Octamer Wash Buffer (50 mM sodium phosphate, 2 M NaCl, 10 mM

imidazole, pH 7.5), then eluted six times, each with 50 µL of Octamer Elution Buffer (50 mM

sodium phosphate, 2 M NaCl, 250 mM imidazole, 1 mM EDTA, 1 mM DTT, pH 7.5). Fractions

were characterized spectroscopically, pooled, diluted with one volume of Octamer Storage Buffer,

and stored at -20°C.

Asymmetrical trans-bivalent H3K4me3-H3K27me3 octamers were prepared similarly to

symmetrical octamers with the following differences. Histones H2A, H2B, H4, and asymmetric

disulfide-linked histones H3K4me3-H3K27me3 were mixed in a 1.2:1.2:1:0.5 molar ratio. The

remaining steps were done as above, but no reducing agents were used until octamer particles were

formed.

Nucleosome Reconstitution

Nucleosomes were reconstituted onto 147bp DNAs composed of the core Widom 601 sequence168

modified with a 22bp barcode on each end, with each barcode composed of two distinct 11bp

sequences not found in the human or mouse genomes. The DNA and octamer were mixed to a final

concentration of 1µM each in 2 M NaCl, and then dialyzed in dialysis buttons (Hampton Research)

and a 10,000 MWCO SnakeSkin dialysis membrane (Pierce) against 200 mL of Refolding buffer

for 10 minutes. Dialysis then continued as 2L of Buffer I0 (20 mM Tris-HCl pH 7.5, 1 mM EDTA,

1mM DTT) was added (flow rate 2-2.5 mL per minute).

Dialyzed samples were diluted with an equal volume of Nucleosome Dilution Buffer (20

mM Sodium Cacodylate pH 7.5, 10% v/v glycerol, 1 mM EDTA, 10 mM 2-mercaptoethanol, Filter
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Sterilized), and 1 µl was analysed by native PAGE (100 V in 1x TBE for 30 minutes), stained with

SYBRGold in 1xTBE for one hour, and visualized with a UV transilluminator gel imager. Fractions

containing nucleosomes and minimal free DNAwere pooled and diluted to a working concentration

of ~ 1 nM with filter sterilized Nucleosome Storage Buffer (10 mM Sodium Cacodylate pH 7.5,

100 mM NaCl, 50% v/v glycerol, 1 mM EDTA, 1x Protease Inhibitor Cocktail [1 mM PMSF, 1mM

ABESF, 0.8 μM aprotinin, 20 μM leupeptin, 15 μM pepstatin A, 40 μM bestatin, 15 μM E-64 from

a 200x DMSO stock]) and stored at -20°C.

Design, Expression, and Purification of 304M3B-1xHRV3C

The 304M3B-1xHRV3C Fab is based on previously described Fab 304M3B(PDB:4YHZ)208. The

gene encoding the Fab was modified to contain HRV3C cleavage site at the C-terminus of the heavy

chain. To that end, we inserted SSSLEVLFQGP (AGCAGCAGC CTT GAAGTC CTC TTT CAG

GGA CCC) sequence just after the position T229 of heavy chain (numbered as in PDB:4YHZ)

and before biotinylation acceptor peptide (GLNDIFEAQKIEWHE)238. The Fab was expressed in

the 55244 strain of E.coli in the TBG media (Terrific Broth (FisherBrand), 0.8% (v/v) glycerol)

with 100 μg/ml carbenicilin, grown for 24 hours, at 30°C, 200 rpm in the Fernbach non‑baffled

flasks, with constricted airflow. Fab was purified using Protein G-A1109 affinity chromatography,

followed by cation-exchange chromatography (Resource S, GE Healthcare). Purified Fab was in

vitro biotinylated using BirA biotin ligase.

ICeChIP Input Preparation

Input was prepared for ICeChIP and reICeChIP experiments as previously described118,124,170,171.

Briefly, cell pellets were washed twice with 5 mL of PBS, then washed twice with 5 ml of filter

sterilized Buffer N, with each wash consisting of complete resuspension of the pellet, centrifugation
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at 500 g for 5 minutes at 4°C, and removal of supernatant. The washed pellet was then resuspended

in at least 2 packed cell volumes (PCV) of Buffer N and mixed with 1 volume of 2x Lysis Buffer

and incubated on ice for 10 minutes to lyse cells.

The crude nuclei were spun down at 500 g for 5 minutes at 4°C before being resuspended

in at least 6 packed nuclear volumes (PNV) of Buffer N and applied to the top of 7.5 mL of filter

sterilized Sucrose Cushion N in a 15 ml centrifuge tube, then spun down at 500 g for 12 minutes at

4°C in a swinging-bucket rotor. The supernatant was discarded, and the pellet resuspended in ~ 2

PNV of Buffer N.

The nucleic acid content of the nuclei per unit volume was quantified by diluting 2 µL of

nuclei suspension into 48 µL of 2 M NaCl, water-bath sonicating to solubilize DNA, and spec-

troscopically measuring nucleic acid concentration by Nanodrop (where one A280nm = 50 ng/µL

chromatin). After accounting for the 25-fold dilution of the measurement sample, the concentration

of the nuclei was adjusted to 1 µg/µL of chromatin. Nuclei were dispensed to 100 µL aliquots, flash

frozen, and stored at -80°C prior to use.

For use, nuclei aliquots were thawed and spiked with ~ 1 µl of each barcoded nucleosome

standard per 50 µg of chromatin. This suspension was then mixed by pipette, transferred to a new

tube, and warmed to 37°C for 2 minutes. 1 unit of micrococcal nuclease (MNase, Worthington) per

4.375 µg of chromatin was added, and samples incubated at 37°C while shaking at 900 rpm for 12

minutes. Digestions were stopped by adding 1/9 volume of filter sterilized 10x MNase Stop Buffer

while slowly vortexing, and nuclei lysed by adding 5 M NaCl to a final concentration of 600 mM

while slowly vortexing. 66 mg of HAP resin (BioRad, CHTTM Ceramic Hydroxyapatite, Type I, 20

um) per 100 µg of chromatin digested was rehydrated with 200 µl of filter sterilized HAP Buffer 1

per 100 µg of chromatin digested. Lysed nuclei were centrifuged at 18,000 g for 1 minute to pellet
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insoluble nuclear debris, and the soluble fraction added to the rehydrated HAP resin and incubated

for 10 minutes at 4°C with rotation.

After incubation, the HAP resin slurry was added to a centrifugal filter unit (Millipore

Ultrafree MC–HV Centrifugal Filter 0.45 µm) and spun at 1000 g for 30 seconds at 4°C. The HAP

resin left on the filter unit was then washed 4 times with 200 µL HAP Buffer 1, and 4 times with

200 µl filter sterilized HAP Buffer 2 by spinning at 1000 g for 30 seconds at 4°C. HAP resin was

eluted into a clean tube with three 100 µl solutions of filter sterilized HAP Elution Buffer. The

nucleic acid content of the elution was then quantified by Nanodrop.

Antibody Preparation for ICeChIP

Antibodies and quantities used for each ICeChIP experiment are shown in Appendix A. With the

exception of the 304M3B-1xHRV3C and 309M3B antibodies, the indicated amount of Protein A

Dynabeads (Invitrogen) for each ICeChIPwas washed with 50 μL of ChIPChIPBuffer 1 by use of a

magnetic rack, then resuspended in 50 µL of ChIP Buffer 1. In a separate set of tubes, the antibody

was diluted to 100 μL with ChIP Buffer 1. The antibody and Protein ADynabead suspensions were

combined and incubated on a rotator at 4°C for at least one hour, then washed with 200 μL of ChIP

Buffer 1 by use of a magnetic rack and resuspended in 50 μL of ChIP Buffer 1.

The antibodies 304M3B-1xHRV3C and 309M3B were prepared similarly with Streptavidin

M-280 Dynabeads (Invitrogen) rather than Protein A Dynabeads. The beads were washed, and

antibodies added and incubated as above. After incubation, the beads were washed twice with 200

μL of ChIP Buffer 1 by use of a magnetic rack. They were then washed twice with 200 μL of ChIP

Buffer 1 supplemented with 5 μM of biotin by incubating for 10 minutes at 4°C on a rotator, then

removing supernatant by use of a magnetic rack.
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Standard ICeChIP Immunoprecipitation

After antibodies were prepared and washed, the input chromatin concentration adjusted to 20 ng/µl

with filter sterilized ChIP Buffer 1, and the amount of chromatin specified inAppendixAwas added

to each antibody-bead conjugate and incubated for 15 minutes on a rotator at 4°C. Beads were then

washed twice with filter sterilized ChIP Buffer 2 and once with filter sterilized ChIP Buffer 3, with

a wash consisting of removal of the existing supernatant by use of a magnetic rack, resuspension

into 150 µl of buffer, transfer to a new siliconized tube, and incubation on the rotator for 10 minutes

at 4°C. After these washes, the supernatant was removed, the beads resuspended in ChIP Buffer 1,

transferred to a new siliconized tube, rinsed once with 200 µl of TE before being resuspended in

50 µl of ChIP Elution Buffer and incubated at 55°C for 5 minutes.

After incubation, the supernatant was transferred to a new set of siliconized tubes, and the

beads discarded. To each supernatant was then added 2 µl of 5 M NaCl, 1 µl of 500 mM EDTA,

and 1 µl of 10 mg/mL Proteinase K. 15 µl of Input DNA was also diluted to 50 µl with 35 µl of

ChIP Elution Buffer and was supplemented with 2 µL of 5 M NaCl, 1 µL of 500 mM EDTA, and 1

µL of 10 mg/mL Proteinase K. The IP elutions and diluted input were then incubated at 55°C for 2

hours for a Proteinase K digestion. After digestion, the DNAwas purified by adding 1.5 volumes

of Serapure HD, incubating at room temperature for 15 minutes, then collecting the beads on a

magnetic rack, washing twice with 150 µl of 70% ethanol, and eluting into 50 µl ddH2O, which

was then recovered and stored at -20°C.

reICeChIP Immunoprecipitation

After antibodies were prepared and washed, the input chromatin concentration adjusted to 20 ng/µl

with filter sterilized ChIP Buffer 1, and the amount of chromatin specified inAppendixAwas added
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to each antibody-bead conjugate and incubated for 15 minutes on a rotator at 4°C. After incubation,

the beads were washed three times with ChIP Buffer 1, with a wash consisting of removal of the

existing supernatant by use of a magnetic rack, resuspension into 150 µl of buffer, transfer to a new

siliconized tube, and incubation on the rotator for 10 minutes at 4°C. The chromatin was then eluted

into 20 μL of ChIP Buffer 1 supplemented with 4 μg HRV3C (GE Healthcare) by incubating on ice

for 60 minutes. The elution was saved and repeated once more; both elutions were then combined.

With the eluted sample, ICeChIP was conducted against H3K27me3 as per the Standard ICeChIP

Immunoprecipitation instructions with the antibody and resin quantities in Appendix A.

DNA Quantification and Analysis by Quantitative PCR

To assess local histone modification density and/or antibody specificity, our DNA from the ChIP

experiments was quantified by quantitative PCR (qPCR). qPCR was conducted using TaqMan Gene

Expression Master Mix (Applied Biosystems) using the primers and hydrolysis probes previously

described118. These primers and probe for the barcoded sequences were previously qPCR validated

for effectiveness and quality118. Primers were used at 900 nM; hydrolysis probe at 250 nM, in the

TaqMan Gene Expression Master Mix (Applied Biosystems). The qPCR program was run at 95°C

for 10 minutes, followed by 40 cycles, each consisting of 15 seconds at 95°C followed by 1 minute

at 60°C and concluding with a plate read.

Cq values were analysed using the ΔΔCq method. Briefly, the Cq values for each target for

each sample were averaged together to obtain the mean Cq value. Enrichment for each barcode was

then computed as Enrichment = 2CqINPUT − CqIP ∗ 10, accounting for the 10-fold dilution of Input

relative to IP and multiplying by 100% for Enrichment as a percentage of target. Off-target binding
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to alternate PTMs were computed by normalizing each enrichment to that of the on-target PTM:

referred to as “Specificity (% Target)”.

Illumina Library Preparation and Sequencing

Illumina libraries were prepared as described118, with minor modifications. Briefly, Serapure pu-

rified DNA was quantified using Quant-iTTM PicoGreen (Thermo Fisher) as per manufacturer

instructions. Libraries were then generated from up to 10 ng of each DNA sample (input or IP) with

the NEBNext Ultra II DNA Library Prep kit (New England Biolabs) per manufacturer instructions.

The DNA content of each library was then quantified and pooled for Illumina sequencing. Clus-

ter generation and paired-end sequencing was conducted using standard Illumina next-generation

sequencing protocols by the University of Chicago Genomics Facility on the Illumina NextSeq.

Next-Generation Sequencing Alignment and HMD Computation

To align reads, a reference genome was first created, which consisted of the either human genome

(GRCh38/hg38) or the mouse genome (mm9) appended respectively by the sequences of each of

the nucleosome standard barcodes. Reads were then mapped to the appropriate reference genome

using Bowtie2 using the sensitive pre-set and end-to-end alignment options172. Using SAMTools173,

any reads which were not paired, not mapped in a proper pair, or mapped with a map quality <

20 were discarded to prevent low-quality reads from impacting downstream analyses. Reads were

then flattened to create a single mapping from each matched pair of reads by retaining only one

fragment per pair, and any mappings with lengths > 200bp were also discarded to ensure only

mononucleosomes were being analyzed118.

Bedgraphs of genome coverage were then generated using BEDTools174, and IP / input

genome coverage bedgraphs were merged using BEDTools174. The sum of reads across ladder
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members for each nucleosomal standard was computed for each sample and HMD bedgraphs were

then generated from the merged bedgraphs using awk to apply the following formula:

HMD (%) = 100% ∗ IPlocus/Inputlocus
IPbarcode/Inputbarcode

Error and 95% confidence intervals were computed with Poisson statistics and error propa-

gation from the merged bedgraphs using awk to apply the following formula:

95CI Error (%) = 1.96 ∗ HMD (%) ∗

√
1

IPlocus
+

1

Inputlocus

Bigwig files were generated for visualization using the bedGraphToBigWig tool175. For

computation of HMD for bivalency, the trans-bivalency standard was used.

Correctionwas conducted using theH3K9me3 and trans-bivalencyHMDdatasets. using our

previously described method118 against H3K9me3 and trans-bivalency off-target binding. Briefly,

measured HMD by each antibody can be described by a vector M, and the measured specificities

by each antibody described by a square matrix S. Then, we can state, if other off-target binding is

negligible, that the correct HMDs for H3K4me1, H3K4me2, H3K4me3, and H4K20me3 can be

expressed by the vector C such thatM=CS. As such, the vector C can be computed as CSS-1 = C =

MS-1. The elements of S-1 were then used to compute the HMD and Error of the corrected profiles

using awk to linearly combine the two HMD profiles.

For all analyses, the HMD averaged over the N+1 and N+2 nucleosomes (taken to be 0 to

+400bp into the gene body) was employed as representative of the promoter—this captures the most

substantial H3K4me3 and H3K27me3 enrichment.
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Genomic browser views were made using IGV. Heatmaps and gene ontology analysis was

made using Homer software178. Further analysis and sectioning of data was conducted in R using

the R code provided in Data and Software Availability.

Analysis of External Data

Bisulfite sequencing data was obtained from GEO series accession number GSE41923, dataset

accession IDs GSM1027571, GSM1027572, GSM1027573, and GSM1027574. Methylation count

files were obtained for each dataset and lifted to mm10. The average methylation for each promoter

was then calculated for the 0 to +400bp region relative to the TSS of Refseq promoters using

BEDTools.

Bulk RNA-seq data was obtained from GEO series accession numbers GSE108832 and

GSE65697, dataset accession IDs GSM2913929, GSM2913930, GSM2913931, GSM1603282,

GSM1603283, GSM1603284, GSM1603285, GSM1603286, and GSM1603287. Pseudoalignment

was conducted against the Refseq mm10 transcriptome using kallisto239 with fragment length mean

and standard deviation of 200 and 20, respectively, and 100 iterations. Pseudoalignments were

then loaded into R for differential expression analysis using sleuth240, with correction for batch

effects between primed mESCs and NPCs due to contribution to principal components of the same.

Differentially expressed genes were identified as q ≤ 0.05. Single-cell RNA-seq data was obtained

from GEO series accession number GSE113417 and aligned as above with kallisto.

Suz12 ChIP data to measure PCR2 localization for WT, Ezh2 KO, and Ezh1 KO/Ezh2

KO cells was obtained from GEO series accession number GSE116603, dataset accession IDs

GSM3243624, GSM3243625, and GSM3243626. Peak files were obtained for all these datasets
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lifted to mm10. Ezh2 peaks were identified as peaks lost in Ezh2 KO relative to WT cells. Ezh1

peaks were identified as peaks lost in Ezh1 KO/Ezh2 KO relative to Ezh2 KO cells.

Set1A ChIP data was obtained from GEO series accession number GSE98988, dataset

accession IDs GSM2629676, GSM2629677, GSM2629678, and GSM2629691. FastQ files were

downloaded for the input and ChIP datasets for each replicate, then aligned to mm10 using Bowtie2

in end-to-end mode with the sensitive preset. Peak calling was then conducted on the alignments

with MACS2176, and consensus peaks for each replicate were identified.

Mll2 ChIP data was obtained from GEO series accession number GSE78708, dataset acces-

sion number GSM2073022. Peaks were obtained and lifted to mm10.

Methyltransferase assays

Enzymatic complexes were procured from Reaction Biology Corporation. Methyltransferase re-

actions were done using 200nM hsMLL1 (3745‑3969), 200nM hsMLL2 (5319‑5537), 400nM

hsMLL3 (4689‑4911), 200nM hsMLL4 (2490‑2715), 800nM hsSet1A (1418‑1707), or 800nM hs-

Set1B (1629‑1923), in acomplex with hsWDR5 (22‑334), haRbBP5 (1‑538), hsAsh2L (2‑534), 2x

(hsDPY‑30(1‑99)), supplemented with 4% (v/v) RBC MLL enhancer (Reaction Biology Corp);

800nM hsEzh1 (2‑747) or 120 nM hsEzh2 (2‑746), in a complex with hsAEBP2 (2‑517), hsEED

(2‑441), hsRbAp48 (2‑425) and hsSUZ12 (2‑739) supplemented with 3.6mM hsJarid2 (119-574)

provided by Dr.Peter Lewis’s laboratory. 30 ng/µl of semi-synthetic nucleosome substrate, 10µM

[3H]-SAM (50-80 Ci/mmol, Perkin Elmer Health Sciences), and enzymatic complexes were mixed

in the Reaction Buffer (50 mM TrispH8.0, 91 mM NaCl, 5 mM MgCl2, 1 mM DTT, 10% glycerol,

1 mM PMSF) and incubated at 30°C. At designated time points, 4 μl of reactions were spotted on

P81 Ion Exchange Cellulose Chromatography Paper (Reaction Biology Corp). Spotted paper was
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washed 4 times with 250 ml of 50 mM NaHCO3 pH 9.0, for 5 minutes on a platform shaker, briefly

washed with acetone, air-dried and immersed in scintillation fluid. 3H decay rate was measured by

scintillation counter (LS 6000IC, Beckman).

Data and Software Availability

ICeChIP-seq data generated for this study has been deposited at the Gene Expression Omnibus

(GEO) under accession numbers GSE108747 and GSE183155. R markdown file for analysis and

sectioning of datasets is provided at https://www.github.com/shah-rohan/bivalency/.
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CHAPTER 4: QUANTIFYING INTERNALHISTONE MODIFICATIONSWITH

DENATURATIVE ICECHIP

Attributions

The ICeChIP-seq datasets used for Fig. 4.14 were generated by Bill Richter, Ph.D.’20, and previ-

ously published as: Richter, W. F. et al. Non-canonical H3K79me2-dependent pathways promote

the survival of MLL-rearranged leukemia. eLife 10, e64960 (2021). All other work was conducted

by the author.

Abstract

Though valuable for pulldowns of modifications on the highly accessible histone tails, native ChIP

often fails to specifically targetmodifications on the globular domain of the nucleosome core particle,

making it difficult to understand the role of these internal modifications. Though previous reports

have indicated that denaturative ChIP methods involving sonication may enable specific capture of

these internal modifications, such sonication-based protocols suffer from an inability to separate

the process of chromatin fragmentation from that of epitope exposure, making it challenging to

reliably achieve optimal levels of both functions. Here, we present denaturative ICeChIP, a robust

method to reproducibly pull down internal modifications with high specificity. We establish a novel

paradigm of denaturative ChIP inwhichwe separate the processes of fragmentation and denaturation,

allowing for more complete and reproducible crosslinking and denaturation of chromatin. We

further use this denaturative ChIP method to study H3K79me2, an internal modification critical

for the survival and proliferation of MLL-rearranged leukemias, ultimately identifying a potential

cross-talk pathway between H3K79me2 and H3K27me3. Our work thus highlights the importance

117



of using reproducible methods and demonstrates the power of quantitative data to identify new

pathways of biological function.

Introduction

Broadly speaking, the nucleosome has two regions with distinct structural characteristics: the tails

and the globular domain (Fig. 4.1)28. The tails, which are distal to the center of the nucleosome,

are largely unstructured241,242 and are highly accessible to solvent243. This has several implications,

primarily driven by the ease of accessing and interacting with the histone tails. First, the tails interact

with other portions of the nucleosome (including other histone protein regions or DNA elements),

increasing the stability of the complex as a whole243–247. Second, the histone tails interact with other

nucleosomes and/or histone tails on other nucleosomes, facilitating compaction and organization

into nucleosome arrays and fibers245–250. Third, the histone tails are highly accessible to other

proteins, including histone modifying complexes as well as the protein binding partners that “read”

histone PTM patterns. Contained within these highly accessible tails are residues harboring some

of the best-studied histone modifications, including H3K4, H3K9, H3K27, H4K16, and H4K2028.

By contrast, the globular domain has been less well characterized. Compared to the freely

accessible and poorly structured histone tails, the nucleosome globular domain has a much more

clearly defined and organized structure (Fig. 4.1). The residues here are also much less accessible;

many residues are buried inside the core of the globular domain, and even those that are relatively

more solvent-accessible tend to be more sterically restrictive to binding than those in the disordered

environment of the tails. There are still some modifications on this globular domain (i.e. internal

modifications), most notably H3K79 methylation23,251,252, but these modifications tend to be much

more poorly studied than the modifications on the tail.
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H3K4

H3K9

H3K27
H3K36

H3K79

Figure 4.1: Nucleosome with select tail and internal residues highlighted.

Structure of the nucleosome with select H3 residues highlighted. H3K4, H3K9, H3K27, and H3K36

are on the histone tail. H3K79 is an internal modification and is located on the globular domain.

Adapted fromWerner and Ruthenburg75.

This difference in relative understanding of tail and internal modifications is driven in part by

the relative accessibility and structure of the two regions. The tail represents a highly accessible and

disordered region without meaningful secondary structure241,242. This means that, to a reasonable

first approximation, the native local structure of a tail PTM is similar to that of a peptide with

the local primary structure and modification of interest. Like the histone tail, these short peptides

have little to no secondary structure253, meaning that they can present a reasonably similar binding

interface to potential binding partners as that same PTMwould in vivo. Modified peptides also have

the advantage of being straightforward to synthesize in relatively large quantities with very high

purity133,254,255, offering a standardized substrate that approximates the tail modification of interest.
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This structural similarity is important not just for biochemical studies (e.g. binding and

competition assays), but also for genomic studies such as ChIP-seq. Antibodies against specific

proteins or histone modifications are generated by immunizing an animal with a peptide bearing

the modification of interest, then purifying those antibodies that bind to the modification of inter-

est256–259. Because modifications on the histone tail can be structurally approximated by peptides,

it is theoretically straightforward to raise an antibody that can bind to a tail modification by im-

munization against a readily available modified peptide. Though this is often more challenging

in practice108,111,118,124, there are nonetheless numerous antibodies that can be used to specifically

recognize and purify nucleosomes bearing tail modifications in the context of a native ChIP experi-

ment118,124, meaning that many anti-tail-PTM antibodies can both access and recognize their targets

in their native conformations.

This is not as straightforward for internal modifications. Internal modifications are located

on the globular domain of the nucleosome core particle, which is much less accessible and more

highly structured. This means that a short peptide, which lacks secondary structure of note, will

not be as representative of the native structure of the modification in the context of the native

nucleosome, meaning that antibodies that are raised against peptides may not be able to recognize

the target PTM in its native, highly structured conformation. Even if the antibody is able to recognize

the modification in that context, the structure of the globular domain may hinder the approach and

binding of the antibody to the PTM target, making the pulldown more challenging. The result is

that pulldowns of internal modifications often proceed less efficiently and less specifically than

pulldowns of tail modifications (Fig. 4.2), resulting in high off-target capture and inflated apparent

HMDs, often in excess of the physical limit of 100%118.
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Figure 4.2: Poor measurement of H3K79me2 with native ICeChIP.

(A) Specificity of native ICeChIP pulldown of H3K79me2. (B)Apparent HMD from H3K79me2

pulldown by native ICeChIP, showing highly inflated apparent HMD. Dashed line represents HMD

of 100%, the physical limit of histone modification density. Adapted from Grzybowski et al.,

2015118.

One modification that is particularly difficult to study for this reason is methylation of hi-

stone H3K79 (H3K79me). This mark, located on the globular domain of the nucleosome core

particle (Fig. 4.1), was first described in S. cerevisiae, where it is installed by the highly conserved

enzyme Dot1260–263. Dot1 or Dot1L (Dot1-like) knockouts in S. cerevisiae262, D. melanogaster264,

or M. musculus265 show global abrogation of H3K79 methylation, suggesting that it is the sole

methyltransferase responsible for installing this mark. Though very abundant in yeast, this modifi-

cation is relatively rare in humans, typically comprising fewer than 4% of the histones in a variety

of cell lines135. Nonetheless, the modification has been shown to be physiologically important.

Early on, H3K79 dimethylation (H3K79me2) was found to be associated with actively transcribed

genes266, and it has been shown that Dot1L disruption hampers hematological and immunological

functions such as erythropoiesis267 and antiviral immune activation268.

Yet another clue to the function of H3K79 methylation came from the proteins associated

with Dot1L in clinical contexts. One of the most prevalent classes of leukemia in infants is the MLL-

rearranged leukemias, which harbor a translocation of the mixed lineage leukemia (MLL) gene269,270.
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TheMLLgene itself is an H3K4methyltransferase featuring a catalytic SET domain271. However, in

MLL-rearranged leukemias, the SET domain is truncated from the full protein, with the remainder

of the protein being translocated to a fusion partner on another protein272,273, ultimately driving

transcription at their target genes274. Many of the MLL fusion partners, however, were members of

the Dot1L complex275–279. Given the association between H3K79 methylation and transcriptional

activity, this suggested that H3K79 methylation was dysregulated at MLL-fusion target genes, a

notion that was confirmed by subsequent studies23. Even more strikingly, it was later found that

H3K79me2 is essential for the survival and proliferation of MLL-rearranged leukemias251,252,269,

with pharmacological inhibition of Dot1L killing leukemic cells and suppressing the tumor in

preclinical280–282 and clincial283 studies.

And yet, despite this modification’s clinical significance, H3K79me2 presents a challenge

for chromatin immunoprecipitation, with native ChIP failing to specifically capture it (Fig. 4.1).

However, in 2014, Orlando et al. presented new insights into ChIP for H3K79me2 in a study

describing their new method ChIP-Rx128. ChIP-Rx is conceptually similar to ICeChIP, relying on

the principle that an exogenous spike-in normalization standard is necessary to measure differences

in global abundances between samples. However, rather than using the nucleosome standards used

in ICeChIP, Orlando et al. spiked in chromatin from D. melanogaster as an exogenous reference

material; this allowed them to normalize their ChIP-seq profiles across the human cells to the total

number of reads mapped to the internally invariant D. melanogaster chromatin128.

To test their method, Orlando et al. conducted pulldowns in pools of MV4;11 cells, a cell

line derived from MLL-rearranged leukemia. They cultured cells in the presence or absence of

the specific Dot1L inhibitor pinometostat at a concentration that would result in near-total ablation

of H3K79me2 globally. They then mixed these cells in varying proportions and conducted ChIP-
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Figure 4.3: Exogenously normalized denaturative ChIP for H3K79me2.

ChIP-Rx of H3K79me2 with traditional read depth normalization (left) and normalization to exoge-

nous read depth (right). Percentages represent the proportion of cells in each pool that were treated

with Dot1L inhibitor pinometostat. Adapted from Orlando et al., 2014128.

Rx on the samples against H3K79me2. Strikingly, they found that with their method, they could

see a decrease in the exogenously normalized H3K79me2 ChIP-seq signal, concomitant with the

proportion of inhibitor-treated cells in the pool used for the ChIP-seq128 (Fig. 4.3). Notably, in

the pool with 100% of cells treated with pinometostat, the This finding showed that ChIP-Rx was

sensitive to global changes in histone modification abundance and could reveal such changes by use

of exogenous normalization. But even more fundamentally, this result showed that it was possible to

specifically immunoprecipitate H3K79me2; the fact that the 100% inhibitor-treated sample showed

very little pulldown of H3K79me2 implied that there was little off-target binding and was thus

indicative of apparent specificity.

The greatest apparent difference between ICeChIP and ChIP-Rx, apart from the type of

calibrant used, was the form of ChIP-seq employed. ICeChIP is a native protocol, largely keeping

the nucleosome in its folded state and relying on micrococcal nuclease (MNase) digestion for

chromatin fragmentation118. Such a protocol tends to improve the pulldown specificity150, but at the

cost of inhibiting pulldowns of internal modifications. By contrast, ChIP-Rx utilized crosslinking

and sonication to shear chromatin, denaturing the nucleosome in the process128. We hypothesized
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that this denaturation was able to unfold the globular domain of the nucleosome core particle and

better expose the H3K79me2 epitope, thereby making the presented antigen more closely resemble

an unstructured peptide and making it more accessible.

Based on this hypothesis, we sought to develop a form of ICeChIP that utilized denaturation

to expose the epitope and permit specific pulldowns of internal modifications. Here, after a close

examination of sonication-based ChIP, we have developed denaturative ICeChIP, which uses thermal

denaturation to reliably denature nucleosomes and specifically pull down H3K79me2. We then use

denaturative ICeChIP to study the role of H3K79me2 in MLL-rearranged leukemias, finding genes

with transcriptional dysregulation potentially explainable by changes in H3K79me2 and identifying

new patterns of histone PTM crosstalk in that context.

Results

Sonication in denaturative ChIP

As a starting point, we first attempted to use the protocol described by Orlando et al. to assess its

usefulness as a basis for our denaturative ICeChIP method. This method was previously described

to have nearly 100% variability in its normalized enrichment measurements128, and our ChIP-Rx-

qPCR measurements recapitulated that finding (Fig. 4.4), indicating to us that this method did not

provide sufficiently precise measurements to be useful as a basis for a quantitative ChIP protocol.

Even more concerningly, we found that the trend of the change in normalized enrichment across

replicates was different when normalizing to different genes, suggesting high variability in pulldown

of even the invariant chromatin (Fig. 4.4). This problem was likely driven by the low enrichment

at the target genes and would likely be resolvable by ChIP-Rx-seq, but the fact that the method was

unreliable for ChIP-qPCR also indicated that it was suboptimal.
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Figure 4.4: High variability in ChIP-Rx protocol.

Normalized H3K79me2 enrichment across three replicates at (A) HoxA9 promoter, (B) GAPDH

promoter, and (C) EuNeg locus in K562 cells, normalized to D. melanogaster gene on X-axis.

We thus sought to develop a more robust and reproducible form of denaturative ChIP for use

with our quantitative internal standards. Based on the hypothesis that the sonication of the chromatin

was responsible for denaturing the nucleosome core particle and making the epitope more accessible

and recognizable to the antibody, we first attempted to use sonication as our shearing method rather

than MNase, much like Orlando et al.128 (Fig. 4.5A). Rather than spiking in exogenous cells,

however, we spiked in our nucleosome standards to the nuclei mixture immediately prior to cross-

linking in the hopes that this would remove one element of variability from the procedure and

improve reproducibility (Fig. 4.5A).

Our first goal was to better understand the effects of sonication on the efficiency and speci-

ficity of internal modification pulldowns. To do this, we sonicated our samples for 10, 20, 30,

or 60 minutes to fragment and denature the chromatin. As expected, increasing the sonication

time decreased the size of the fragments, with the 30-minute sonication time resulting in a roughly

mononucleosomal population (Fig. 4.5B). Increasing the amount of sonication applied from 10

minutes to 30 minutes resulted in increased efficiency of H3K79me2 pulldown (Fig. 4.5C), sug-
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Figure 4.5: Specificity and enrichment of sonication-based denaturative ChIP.

(A)Workflow of sonication-based denaturative ICeChIP. (B-C) (B) Size distribution of fragments,

(C) enrichment of nucleosome standards, and (D) pulldown specificity after sonication for the

indicated amount of time.

gesting that the sonication did indeed denature and expose the epitope to the antibody for more

efficient binding. Interestingly, this increased efficiency was accompanied by increased specificity

of pulldown, with 30 minutes of sonication resulting in both the most efficient and specific IP (Fig.

4.5C-D). Though the reason for this was not entirely clear, it is possible that the increased specificity

seen with the more denatured nucleosomes arises from successful competition by the H3K79me2

epitope to capture antibody and prevent off-target epitopes from binding free antibodies. All told,

the H3K79me2 pulldown was markedly improved in specificity by adding sonication.
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However, this method was imperfect; too much sonication could harm the quality of the

pulldown. Applying 60 minutes of sonication generated a sample with subnucleosomal fragment

sizes (Fig. 4.5B) with a low-efficiency pulldown (Fig. 4.5C). This indicated that oversonication

could result in destruction of the nucleosome itself rather than the linker DNA, reducing the available

nucleosomes for binding. Accordingly, the antibody was free to bind to off-target nucleosomes at a

higher rate, reducing the apparent specificity of the ChIP (Fig. 4.5D). It thus appeared that using

sonication for internal modification ChIP had a fundamental tradeoff between adequate epitope

exposure and excessive destruction of the target, necessitating a balance between the two, despite

the fact that such a balance may be variable between cell types.

1

10
0

20
0

30
0

40
0

50
0

10
00

30
00

60
00

Fragment Size (bp)

R
el

at
iv

e 
flu

or
es

ce
nc

e

Replicate 1
Replicate 2

LM UM
A

0

10

20

30

40

50

60

70

80

90

100

Replicate 1 Replicate 2

S
pe

ci
fic

ity
 (%

 T
ar

ge
t) H3K4me3

H3K9me3
H3K27me3
H3K36me3
H3K79me2
Unmodified

0

2

4

6

8

10

12

Replicate 1 Replicate 2

E
nr

ic
hm

en
t 

(%
 In

pu
t)

B C

Figure 4.6: Variability of sonication-based denaturative ChIP.

(A) BioAnalyzer trace of fragment size distribution, (B) enrichment of nucleosome standards, and

(C) pulldown specificity of two replicates.

With this tradeoff in mind, we next sought to test the robustness of the sonication-based

denaturative ICeChIP method. To do this, we carried out our procedure in two replicates in par-

allel, with the cells being split immediately before crosslinking and processed simultaneously per

the same protocol. And yet even between these highly standardized replicates, there were still

marked differences. The relative size distributions of the fragments in these two replicates varied

significantly after sonication (Fig. 4.6A), which was concerning given that the samples came from
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the same cell population, were cross-linked in parallel, and sonicated using the same settings on

the same machine. And after the pulldown, we observed that there was a vast difference in the

pulldown efficiency of the two samples (Fig. 4.6B), with further differences between the samples

in specificity as well (Fig. 4.6C). And even at its best, the off-target binding remained rather high,

representing roughly 10-fold enrichment over unmodified nucleosomes (Fig. 4.6C) when the un-

modified nucleosomes are roughly 20-fold more abundant135. Given the high apparent variability

of the method and the relatively low specificity, we determined that we needed a more reproducible

and specific denaturation ICeChIP protocol.

Thermal denaturation for ICeChIP

To more reliably denature the nucleosomes without excessive epitope destruction, we modified

our overall denaturative ICeChIP workflow. In the previous experiments, based on the method

published by Orlando et al., we crosslinked and sonicated cells or nuclei directly. However, for

our new versions of denaturative ICeChIP, we instead chose to first digest chromatin with MNase

and purify mononucleosomes (both genomic and spike-in) as in a native protocol. Only once the

nucleosomes were purified was crosslinking and denaturation conducted (Fig. 4.7A).

This had two major advantages. First, this method ensured that the genomic and spike-in

nucleosomes were subjected to the same conditions. With the previous protocols, spike-in nucleo-

somes were on the outside of the cell or nuclear membrane, whereas the genomic nucleosomes were

inside. This meant that spike-in nucleosomes were subjected to higher effective crosslinker concen-

trations and greater physical stress upon sonication. By purifying nucleosomes prior to crosslinking

and denaturation, the genomic and spike-in nucleosomes would be subjected to the same chemical

and physical environment, making the spike-ins more representative of the genomic nucleosomes
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Figure 4.7: Denaturative ICeChIP workflow and panel of denaturation methods.

(A)Generalized denaturative ICeChIPworkflow. (B) Pulldown specificity of denaturative ICeChIP

with indicated denaturation methods.

and thus increasing quantitative power. Second, our new method decoupled fragmentation from

denaturation. With sonication-based methods, the fragmentation and denaturation were coupled

such that it was difficult to reduce or increase chromatin fragmentation without a concomitant

change in denaturation. In this method, the two processes were conducted separately such that

denaturation could be tuned without compromising the efficient fragmentation of chromatin into

mononucleosomes.

With this framework, we tested several methods designed to denature the nucleosomes

immediately prior to the pulldown. Our goal was to find a denaturation protocol that could reliably

and completely denature nucleosomes in the denaturation step but could still permit pulldown by

an antibody in subsequent steps. Many of the methods we tried were not successful in improving

pulldown specificity (Fig. 4.7B).All of these methods had low specificity, often had low enrichment,
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and would likely present a significant source of variability for the methods that required physical

disruption (e.g. vortexing and water bath sonication). In particular, we noted that detergent was not

inherently capable of denaturing the nucleosome and improving specificity, even in the presence

of high salt (Fig. 4.7B). However, we did note that the sample with 1% SDS and vortexing had

marginally higher specificity than a native pulldown (Fig. 4.7B), hinting that it may be possible to

improve pulldown specificity by denaturing the nucleosome in the presence of a detergent such as

SDS. Our rationale was that though the detergent itself would not be able to denature the nucleosome,

it could coat a denatured protein and thereby stabilize a nucleosome that was denatured by other

means. Having exhausted the other physical means of denaturing a protein, we turned to thermal

denaturation.
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Figure 4.8: Thermal denaturation for ICeChIP.

(A) Enrichment of on-target standard and (B) pulldown specificity of denaturative ICeChIP against

H3K79me2 using thermal denaturation with the indicated temperatures.

Thermal denaturation in the context of a crosslinked sample has theoretical drawbacks.

Formaldehyde crosslink reversal is frequently done by heating the sample for an extended period of

time; as such, we wanted to limit the amount of time for which we heated our crosslinked chromatin

to prevent decrosslinking and, accordingly, loss of chromatin upon denaturation. As such, we heated

130



our samples for one minute in the presence of 1% SDS to either 37, 55, or 65 degrees Celsius, then

diluted the samples ten-fold to bring the final SDS concentration down to 0.1%, which would permit

antibody binding. To our surprise, this protocol was effective. Across the range of temperatures

tested, the thermal denaturation permitted an H3K79me2 pulldown with reasonably high efficiency

(Fig. 4.8A) and high specificity (Fig. 4.8B). Given these positive results, we moved forward with

thermal denaturation for denaturative ICeChIP, with the denaturation step being conducted at 55°C

to balance efficiency, specificity, and risk of decrosslinking the sample.

Evaluating reproducibility of denaturative ICeChIP

Wenext sought to better characterize the benefits and drawbacks of denaturative ICeChIP in different

pulldown contexts. To do this, we conducted both native ICeChIP and denaturative ICeChIP on

two modifications: H3K4me3 and H3K79me2. H3K4me3 is a tail modification (Fig. 4.1) that can

be readily immunoprecipitated with native ChIP protocols118,124, whereas H3K79me2 is an internal

modification that requires denaturative ChIP. As expected, the H3K79me2 pulldown was markedly

more specific under denaturative ICeChIP conditions than native ICeChIP conditions (Fig. 4.9A),

in line with previous descriptions native ICeChIP against H3K79me2118 (Fig. 4.2). Interestingly,

however, the H3K4me3 pulldown was more specific under native conditions (Fig. 4.9A), consistent

with previous reports that crosslinked material is “stickier” and that pulldowns of the same are

less specific than native IPs150. These data suggest that both native and denaturative ICeChIP are

contextually useful; for tail modifications, native ChIP will be simpler and more specific, whereas

for internal modifications, denaturative ICeChIP may succeed where native will not.

Our next question was on the robustness of our denaturative ICeChIP method. The prior

sonication-based method had resulted in marked variability at the level of fragment sizes, enrich-
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Figure 4.9: Specificity and reproducibility of denaturative ICeChIP.

(A) Specificity of native and denaturative ICeChIP against H3K4me3 and H3K79me2. Error bars

represent standard deviation across three distinct biological replicates. (B)Metagene profiles of de-

naturative ICeChIP-seq signal targeting H3K4me3 (left) and H3K79me2 (center, right) at transcrip-

tion start sites (TSS; left, center) and gene bodies (right), showing reproducibility of denaturative

ICeChIP. Each color represents a distinct biological replicate.

ment, and specificity (Fig. 4.6). This error is markedly reduced by instead using thermal denatura-

tion. Replicates of denaturative ICeChIP using thermal denaturation had highly similar pulldown

specificities (Fig. 4.9A). Further, metagene profiles of denaturative ICeChIP-seq were highly

similar across replicates (Fig. 4.9B), indicating that the pulldowns were quantitatively similar at ge-

nomic loci at well. All told, these results indicated that thermal denaturation yields high-specificity

pulldowns with a high degree of reproducibility.
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Given that this method worked with our nucleosome standards, we next sought to revisit

the more commonly used spike-ins: exogenous chromatin from another organism, such as D.

melanogaster or S. cerevisiae. To be sure, these methods are inherently suboptimal. Such a spike-in

would lack the ability to measure specificity of the pulldown except in cases where the spike-in chro-

matin lacks the targeted histone modification entirely (e.g. H3K27 methylation in S. cerevisiae284),

and even then would not indicate which modifications contribute to off-target binding. Further,

exogenous genomic spike-ins are likely to have significant lot-to-lot variation, as the amount of

genomic histone modification cannot be precisely controlled, whereas semisynthetic nucleosomes

are precisely formulated and can thereby limit lot-to-lot variation. Nonetheless, it remains a fact

that many people use exogenous chromatin as spike-ins rather than nucleosome standards128,285,

so we sought to evaluate whether our denaturative ICeChIP protocol can improve upon the high

variability previously observed with these methods128 (Fig. 4.4).

To do this, we modified the ChIP-Rx protocol to more closely resemble ICeChIP (Fig.

4.10A). First, rather than spiking crudeD. melanogaster cells into a human cell sample, we spiked in

highly purified and well-quantifiedD. melanogaster and S. cerevisiae nuclei into a sample of human

nuclei, so the spike-in chromatin was treated more similarly to the human chromatin. Second, rather

than crosslinking and shearing by sonication, we fragmented the chromatin by MNase digestion,

which is more reliable. We then conducted either native ICeChIP against H3K4me3, denaturative

ICeChIP against H3K4me3, or denaturative ICeChIP against H3K79me2, all in triplicate.

Given the previously described high reproducibility of native ICeChIP, we anticipated that

the relative pulldown of both human and spike-in chromatin would be highly similar across repli-

cates, meaning that metagene profiles of the datasets should be highly similar across replicates after

normalization to the spike-ins. This was, in fact, the case; TSS metaprofiles of the native H3K4me3
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Figure 4.10: Exogenous chromatin normalization with denaturative ICeChIP protocol.

(A)Workflow for modified exogenous chromatin normalization ChIP. (B-D)Metagene profiles of

(B) H3K4me3 native ChIP, (C) H3K4me3 denaturative ChIP, and (D) H3K79me2 denaturative ChIP,

normalized to endogenous read depth (left), D. melanogaster read depth (center), or S. cerevisiae

read depth (right).

pulldown were highly reproducible with exogenous chromatin normalization (Fig. 4.10B). Indeed,

the native ICeChIP pulldown procedure is so robust that even the endogenously normalized data

metaprofiles were quite similar (Fig. 4.10B).

Denaturative ICeChIP was less reproducible with endogenous normalization; the denatura-

tive H3K4me3 and H3K79me2 pulldown metaprofiles showed marked variability between repli-

cates (Fig. 4.10C-D). However, normalization to the exogenous chromatin rectified much of this
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variability, resulting in highly similar metaprofiles (Fig. 4.10C-D). These data suggested that the

denaturative ICeChIP pulldown protocol is also workable for use with exogenous chromatin. Again,

this method is inherently suboptimal compared to nucleosome standard spike-in for the reasons

stated above. Nonetheless, if a researcher is particularly inclined towards exogenous chromatin

spike-ins, our denaturative ICeChIP protocol improves reproducibility even in that context.

Calibration by denaturative ICeChIP

To validate the calibration ability of our denaturative ICeChIP protocol, we compared our de-

naturative and native ICeChIP data targeting H3K4me3. H3K4me3, as a tail modification, is

well-measured by native ICeChIP to an extent in line with mass spectrometry estimates118. Our

expectation was that our measurements of H3K4me3, then, would be roughly similar between the

denaturative and native ICeChIP protocols. To our surprise, however, this was not the case. Denat-

urative ICeChIP HMDs were, on average, roughly 48% that measured by native ICeChIP across

TSSs (Fig. 4.11A). The discrepancy appeared to be because of the way in which the standards

were pulled down; the nucleosome standards, bearing the high-affinity 601 DNA sequence168, were

pulled down roughly three times as efficiently as genomic nucleosomes in denaturative ICeChIP

compared to native ICeChIP (Fig. 4.11B). This meant that the apparent enrichment that would be

expected of a locus that was 100% modified with H3K4me3 was higher than appropriate for the

genomic nucleosomes and, accordingly, that the denaturative H3K4me3 HMDs were systematically

deflated relative to the native H3K4me3 HMDs.

We hypothesized that the nucleosome standards were being differentially captured relative

to the genomic nucleosomes because of the affixed DNAsequence on the nucleosome. Our rationale

was that this was the major point of difference between the standard and genomic nucleosomes; the
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Figure 4.11: Denaturative ICeChIP HMD deflation and differential standard enrichment.

(A) Denaturative vs. native ICeChIP H3K4me3 HMD of 10,000 randomly selected genomic win-

dows using nucleosome standards with the 601 DNA sequence. (B) Fold change of enrichment

of nucleosome standards bearing indicated DNA sequence in denaturative/native ICeChIP against

H3K4me3, normalized to read depth. (C) Fold change of enrichment of nucleosomes with 601

DNA sequence/indicated MMTV DNA sequence in denaturative ICeChIP against H3K4me3. Red

line indicates average ratio across the different MMTV barcodes; red shaded area indicates standard

deviation about average ratio.

semisynthetic histones were essentially identical to genomic histones255, whereas the 601 sequence

is designed to have supraphysiological affinity for histones168,286.

To test this hypothesis, we developed nucleosome barcodes based on other DNA sequences

that would bind to the histone octamer with lower affinity287. These included a sequence based on

the mouse mammary tumor virus (MMTV) long terminal repeat288, a sequence based on the mouse

minor satellite (MMS)289, and a purely synthetic sequence based on genomic unwords (SpaceAlien;
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SA). We assembled these sequences into nucleosomes bearing H3K4me3, then measured their

enrichment in denaturative and native ICeChIP-seq. The new barcode sequences had considerably

lower enrichment in the denaturative ICeChIP-seq than did the 601-based standards (Fig. 4.11B),

with the ratio of enrichment in the MMTV and SA standards between denaturative and native

ICeChIP appearing similar to that of the genomic reads. Curiously, the MMS-based barcodes had

an even lower enrichment in denaturative ICeChIP for reasons not fully understood. This was found

to be applicable for MMTV sequences with a broad range of nucleosome barcodes, wherein the 601

sequence was pulled down an average of 2.27 times as efficiently as MMTV-based sequences in

denaturative ICeChIP against H3K4me3 (Fig. 4.11C). These data suggested that the DNA sequence

identity of the nucleosome standards affected the pulldown efficiency in denaturative ICeChIP.

What remained unclear was the reason for this difference. We first hypothesized that the

nucleosomes with different DNA affinities were being differentially decrosslinked by the thermal

denaturation. This would not affect the presence of the DNA in the input sample, but if the nucle-

osome completely fell apart, then there would be less nucleosome to pull down and, accordingly,

a lower apparent enrichment. To test this, we conducted denaturative ICeChIP with our input nor-

malization being conducted against either input DNA (as standard) or against an H3 pulldown with

one of two H3 C-terminal domain (CTD) antibodies. If differential nucleosome destruction was the

problem, then the H3 pulldowns (which would only measure intact nucleosomes) should resolve

this difference if used as the input. Unfortunately, this was not the case; whether the input chromatin

was true DNA input or an H3 CTD pulldown, the measured genomic HMD was virtually identical

(Fig. 4.12A). This suggested that the difference was not driven by mere differential susceptibility to

decrosslinking and destruction, but rather, by some unknown intrinsic property of the nucleosome

itself.
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Figure 4.12: Associations with deflation of HMDs in denaturative ICeChIP.

(A)Denaturative ICeChIP against H3K4me3 using H3 pulldowns or raw DNA input as the input for

computation of efficiency and specificity. (B) Denaturative/Native (left) or ln(Denaturative/Native)

(right) ICeChIP H3K4me3 HMD vs. energy of DNA sequence binding287 of 200bp windows across

the D. melanogaster genome. (C) Denaturative/Native (left) or ln(Denaturative/Native) (right)

ICeChIP H3K4me3 HMD vs. GC content of 200bp windows across the D. melanogaster genome.

To try to find an apparent reason for this deflation, we searched for associations between

genomic deflation and different factors. Given that it appeared that DNA sequences with differ-

ent nucleosome binding energies had different pulldown efficiencies in denaturative ICeChIP, we

wanted to compare the extent of deflation with nucleosome binding affinity in the genome. To do

this, we computed the predicted nucleosome binding energy of 200bp genomic windows287 with the

deflation ratio of HMDs at that same window (Fig. 4.12B). Interestingly, there was essentially no

correlation between the predicted binding energy and the deflation ratio or a log transform therein,

suggesting that binding energy is not directly responsible or associated with such HMD deflation
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(Fig. 4.12B). More curiously, however, lower GC content was associated with greater deflation of

HMDs than was higher GC content (Fig. 4.12C). This is consistent with our nucleosome barcode

findings; the 601 sequence has relatively high GC content, so it would have higher IP efficiency in

denaturative ICeChIP than would genomic loci.

This finding was startling, however, because it violated a fundamental assumption in ChIP:

that the identity of the DNA bound to the nucleosome does not impact the pulldown targeting the

protein component. Our findings, however, suggest that in denaturative ICeChIP, the DNA bound

to the nucleosome can impact the efficiency of pulldown, meaning that denaturative ChIP is DNA-

sequence biased. The extent to which this concerning discovery holds true in other denaturative

ChIP paradigms remains to be seen.

After all these inquiries, we concluded that we could not easily correct for this apparent

deflation of HMD. Though this makes it challenging to treat the nucleosome standards as calibrants

(placing the pulldown on a biologically meaningful scale), our denaturative ICeChIP protocol and

nucleosome standards still enable measurement of antibody specificity and for normalization to

an invariant exogenous standard. With this caveat in mind, we proceeded to use our denaturative

ICeChIP method to investigate the biology of MLL-rearranged leukemias by studying the associa-

tion of H3K79me2 dysregulation with the transcriptional changes of leukemogenesis.

Examining the role of H3K79me2 in MLL-rearranged leukemia

In studying the role of H3K79me2 on the genesis of MLL-rearranged leukemias, we first sought to

study its impacts on transcription. MLL-rearranged leukemias were previously described to have a

distinctive transcriptional program274 featuring activation of several genes including HOXA9 and

MEIS1. Similarly, H3K79me2 is known to be dysregulated in MLL-rearranged leukemias, often
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at several of the genes dysregulated transcriptionally23,269,283. However, determining the impact of

H3K79me2 on gene expression is somewhat more complex; many of the genes that are differentially

marked with H3K79me2 may be incidental and unimportant for the process of leukemogenesis; it

is possible they display increased H3K79me2 as a side effect of the rearrangement rather than as a

driving factor of the liquid tumor. Similarly, not all of the transcriptional changes will be directly

driven by the H3K79me2 increase; some of the changes in transcription are likely to be reactive to

other changes rather than primary effects.

To identify a candidate list of genes that may be dysregulated primarily as a result of

H3K79me2 increase in MLL-rearranged leukemias, we searched for genes that had both dysreg-

ulation of H3K79me2 and gene expression. To do this, we sought to first identify genes that had

dysregulated H3K79me2 in MLL-rearranged leukemias by conducting denaturative ICeChIP-seq

against H3K79me2 in six MLL-rearranged leukemia lines and K562 cells (Fig. 4.13). We then iden-

tified genes that were differentially modified in each cell line relative to the K562 outgroup (both

in absolute HMD differences and relative HMD differences). The 3834 genes that were present

in all these lists were identified as the genes that were differentially modified with H3K79me2 in

MLL-rearranged leukemia cells.

We next sought to identify genes that were differentially regulated in response to changes in

H3K79me2 in MLL-rearranged leukemia. To do this, we reanalyzed previously published RNA-seq

data in different cell lines with and without the presence of pinometostat290. To separate the effects

of pinometostat more broadly from the effects of pinometostat in MLL-rearranged leukemia, we

separated our datasets into those from MLL-rearranged or non-MLL-rearranged leukemias, then

conducted separate differential expression analyses for each group and subtracted any genes that

were differentially regulated in the latter, ultimately identifying 1420 genes that were differentially
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Figure 4.13: Differentially expressed and modified genes in MLL-rearranged leukemias.

Identification workflow for genes that are differentially marked by H3K79me2 HMD relative to

K562s and/or differentially expressed in MLL-rearranged leukemias specifically in response to

changes in H3K79me2. Overall, 384 genes were found that were differentially expressed and

differentially modified with H3K79me2.
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expressed in MLL-rearranged leukemia with changes in H3K79me2 levels (Fig. 4.13). Combining

the H3K79me2 and RNA-seq analyses, we found 384 genes that were common between the lists of

differentially marked and expressed genes (Fig. 4.13), which served as our list of candidate genes

that had transcriptional dysregulation potentially as a result of H3K79me2 dysregulation.

This set of genes represented only a minority of the genes that were either differentially

modified or expressed in MLL-rearranged leukemias, leading us to wish to better characterize these

genes. Some of these 384 genes were among the canonical MLL-rearranged leukemia target loci,

including HOXA9 and MEIS1, which was promising for the sensitivity and specificity of our anal-

ysis. To better understand the types of genes that fell into this list, we conducted gene ontology

against the genes that were differentially methylated and expressed (Table 4.1), differentially methy-

lated but not differentially expressed (Table 4.2), or differentially expressed by not differentially

modified (Table 4.3). In this, several interesting trends emerged. We observed that the genes that

were differentially expressed, regardless of H3K79me2 modification status, tended to be immune

system process genes, with most of the top gene ontology terms having to do with immune system

activation or cellular migration (Tables 4.1-2). However, the genes that were differentially modified

but not differentially expressed tended to be quite different, focusing more heavily on metabolic

genes (Table 4.3).

This constellation of findings had two primary interpretations. First, the genes that pri-

marily changed their transcriptional program upon H3K79me2 changes were primarily immune

system process genes, and this transcriptional program tended towards coherent changes whether

the individual genes were differentially marked by H3K79me2 or not. Second, the relative paucity

of immune system process genes in the “differentially modified but not differentially expressed”

category suggested that many genes were only incidentally marked with H3K79me2, indicating
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Table 4.1: Top twenty gene ontology terms for genes that are differentially modified by H3K79me2

and differentially expressed.

GO.ID Term Significant Expected Enrichment Adj. p-value

GO:0050853
B cell receptor

signaling pathway
11 1.22 9.02 < 2.2 x 10-16

GO:0050851

antigen receptor-

mediated signaling

pathway

20 4.03 4.96 < 2.2 x 10-16

GO:0002429

immune response-

activating cell

surface receptor

signaling pathway

25 5.14 4.86 < 2.2 x 10-16

GO:0002757

immune response-

activating signal

transduction

25 5.14 4.86 < 2.2 x 10-16

GO:0002768

immune response-

regulating cell

surface receptor

signaling pathway

25 5.77 4.33 < 2.2 x 10-16

GO:0042113 B cell activation 22 5.43 4.05 < 2.2 x 10-16

GO:0002253
activation of

immune response
27 6.91 3.91 < 2.2 x 10-16

GO:0018105
peptidyl-serine

phosphorylation
24 6.47 3.71 < 2.2 x 10-16

GO:0007015
actin filament

organization
34 9.41 3.61 < 2.2 x 10-16

GO:0002764

immune response-

regulating signaling

pathway

31 9 3.44 < 2.2 x 10-16

that other mechanisms may be responsible for transcriptional activation rather than direct activation

of gene expression by H3K79me2.

To understand some of the other mechanisms by which H3K79me2 may impact gene reg-

ulation, we examined its association with other histone modifications. To do this, we examined

changes in histone modifications observed in response to pinometostat treatment in the MV4;11

cells, which was previously published291. As expected, H3K79me2 decreased dramatically with
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Table 4.2: Top twenty gene ontology terms for genes that are differentially modified by H3K79me2

but not differentially expressed.

GO.ID Term Significant Expected Enrichment Adj. p-value

GO:0032273

positive regulation

of protein

polymerization

51 25.56 2 < 2.2 x 10-16

GO:0048813
dendrite

morphogenesis
52 26.12 1.99 < 2.2 x 10-16

GO:1902905

positive regulation

of supramolecular

fiber organization

69 38.07 1.81 < 2.2 x 10-16

GO:0016358
dendrite

development
78 43.22 1.8 < 2.2 x 10-16

GO:1903311
regulation of mRNA

metabolic process
102 56.64 1.8 < 2.2 x 10-16

GO:0051056

regulation of small

GTPase mediated

signal transduction

98 55.72 1.76 < 2.2 x 10-16

GO:0006325
chromatin

organization
136 84.05 1.62 < 2.2 x 10-16

GO:0016570 histone modification 132 83.13 1.59 < 2.2 x 10-16

GO:0010975

regulation of neuron

projection

development

125 79.08 1.58 < 2.2 x 10-16

GO:0007264

small GTPase

mediated signal

transduction

143 91.77 1.56 < 2.2 x 10-16

pinometostat treatment (Fig. 4.14). Beyond that change, we observed that H3K4me3 HMD at TSSs

increased markedly with pinometostat treatment (Fig. 4.14), suggesting that H3K79me2 may either

oppose or compensate for H3K4me3 in this context (seeing as both modifications are associated

with active transcription). However, beyond that, only modest changes were seen in H3K27me3

and H3K36me3 at TSSs (Fig. 4.14), at least with the pinometostat treatment parameters used in the

treatment of the cells under these conditions.
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Table 4.3: Top twenty gene ontology terms for genes that are differentially modified by H3K79me2

but not differentially expressed.

GO.ID Term Significant Expected Enrichment Adj. p-value

GO:0032273

positive regulation

of protein

polymerization

51 25.56 2 < 2.2 x 10-16

GO:0048813
dendrite

morphogenesis
52 26.12 1.99 < 2.2 x 10-16

GO:1902905

positive regulation

of supramolecular

fiber organization

69 38.07 1.81 < 2.2 x 10-16

GO:0016358
dendrite

development
78 43.22 1.8 < 2.2 x 10-16

GO:1903311
regulation of mRNA

metabolic process
102 56.64 1.8 < 2.2 x 10-16

GO:0051056

regulation of small

GTPase mediated

signal transduction

98 55.72 1.76 < 2.2 x 10-16

GO:0006325
chromatin

organization
136 84.05 1.62 < 2.2 x 10-16

GO:0016570 histone modification 132 83.13 1.59 < 2.2 x 10-16

GO:0010975

regulation of neuron

projection

development

125 79.08 1.58 < 2.2 x 10-16

GO:0007264

small GTPase

mediated signal

transduction

143 91.77 1.56 < 2.2 x 10-16

Further hints at crosstalk patterns of H3K79me2, however, are present in the literature.

Previous work suggested that H3K79me2 inhibition was inhibited by H3K27me3 existing on the

same nucleosome; this was determined on the basis of biochemical studies showing that the Dot1L

complex member AF10 is able to bind to H3K27me3 as a negative regulator to Dot1L activity292.

However, when we conduct ICeChIP against H3K79me2 and H3K27me3, we see an even starker

anticorrelation between the two modifications, with regions of high H3K27me3 bearing very little

H3K79me2 and vice versa (Fig. 4.15). Indeed, the anticorrelation is so strong that there are virtually
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no regions with high H3K27me3 and high H3K79me2 (Fig. 4.15). There are two possible explana-

tions for this behavior from a systems level. First, these results could be observed if H3K79me2 is

installed and removed much more rapidly than H3K27me3 and thus demonstrates a quasi-steady-

state phenomenon with regards to H3K27me3. However, this is questionable – though some have

claimed to have identified an H3K79me2 demethylase293, H3K79me2 disappears at a slow rate

(consistent with dilution by cellular division) in the presence of pinometostat280. Given this slow

removal process, it becomes more likely that instead, H3K79me2 and H3K27me3 mutually inhibit

the installation of the other mark, a process which would result in the strong anticorrelation observed

above even with slow H3K79me2 dynamics. Thus, though more study is needed, it is plausible that

H3K79me2 and H3K27me3 demonstrate mutual inhibition to a degree not previously identified –

directly or otherwise.
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Figure 4.14: Histone modification changes with pinometostat treatment.

H3K4me3, H3K27me3, H3K36me3, and H3K79me2 HMD with and without pinometostat Dot1L

inhibitor. Data taken from Richter et al., 2021291.

Discussion

Despite their biological and clinical importance, internal histone modifications have to date repre-

sented a major blind spot of quantitative studies of histone modifications. Their structure makes

it challenging to find high-confidence binding partners biochemically, and the low specificity of
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Figure 4.15: Anticorrelation of H3K79me2 and H3K27me3.

Anticorrelation of H3K79me2 and H3K27me3 at genomic windows in D. melanogaster S2 cells,

with example genomic locus.

native pulldowns against such modifications makes genomic studies therein similarly challenging.

Our work here represents a deep dive into the tunable parameters of ChIP input preparation and how

their impacts on fragmentation and denaturation ultimately impacts the quality of the pulldown.

The most common methods of denaturative ChIP – including those typically used against

H3K79me2128 – involve sonication, which necessarily convolute the effects of fragmentation and

denaturation (Fig. 4.5)(, making it impossible to change the extent of denaturation/epitope expo-

sure without also changing the extent of chromatin fragmentation or epitope destruction. Further,

as a physical method of denaturation that will be highly dependent on temperature, crosslinking
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efficiency, and handling variation, sonication has highly variable impacts on both fragmentation

and denaturation, making it suboptimal as the basis of a ChIP protocol (Fig. 4.6).

Rather than using sonication, we instead focus on deconvoluting fragmentation and denatu-

ration so they can be tuned separately. Fragmentation, under native conditions, is straightforward

to conduct reproducibly and consistently between cell types by MNase digestion118,170. Further,

crosslinking and denaturation of nucleosomes is more reproducible starting with a highly purified

sample that does not have as many “excess” proteins that can absorb the crosslinking reagent or

shield the nucleosomes. Further, the fact that fragmentation occurs before denaturation means that

we are able to aggressively denature without excessively digesting the chromatin to subnucleosomal

fragments, an advantage that is not present for sonication-based methods. With this method, we

are able to thoroughly denature nucleosomes with detergent and a short pulse of heat, allowing for

high-quality, reproducible, and specific pulldowns of nucleosomes (Fig. 4.8, 4.9).

The method we present here is not without its limitations. As we noted, denaturative

ICeChIP demonstrates widespread relative deflation of histone modification densities relative to

native ICeChIP (Fig. 4.11) in a manner biased by sequence GC content (Fig. 4.12), suggesting that

our denaturative ChIP method is at least marginally biased by DNA sequence. This is particularly

concerning if it is generalizable to other denaturative ChIP paradigms; as previously noted, the fun-

damental premise of ChIP is that the identity of the DNA sequence is not relevant to the pulldown

efficiency, allowing comparison of pulldown efficiencies at different loci. The fact that this is not

necessarily true in our context is concerning ad raises questions as to whether denaturative ChIP

more broadly is sequence biased. Moving forward, we would seek to better define why different

regions show deflation relative to native ICeChIP. If the deflation at various genomic regions can be

better defined, different nucleosome sequences can be developed to span the range of possibilities
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in the genome, allowing for computational application of the appropriate calibration sequence to

the relevant genomic regions.

Nonetheless, despite these limitations, we were able to use our denaturative ChIP method

to explore the biology of H3K79me2 in the context of MLL-rearranged leukemias and identify new

potential cross-talk pathways between H3K79me2 and H3K27me3, potentially shedding light on

the role of this histone modification that, to date, has been very poorly characterized. Though imper-

fect, our method offers a way to avoid the irreproducibility of physical denaturation/fragmentation

methods and allows for a basis for more reproducible pulldowns, in the current method and as the

basis for future ones.
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Methods and Materials

This section has been adapted from: Shah, R. N. et al. Examining the Roles of H3K4 Methylation

States with Systematically Characterized Antibodies. Molecular Cell 72, 162–177 (2018).

Cell Culture

K562, MV4;11, RS4;11, MOLM-13, SEM, KOPN-8, and THP-1 cell lines were grown at 37°C with

5% CO2 and 95% humidity in Dulbecco’s Modified Eagle Media (DMEM, Gibco; K562 cells only)

or RPMI 1640 (Gibco; other cell lines) supplemented with 10% (v/v) HyClone FBS Characterized
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U.S. and 1x Penicillin/Streptomycin (Gibco). Cells were seeded into vented flasks to a density of

200,000 cells/mL of culture and were passaged at 1-2 million cells/mL of culture.

S. cerevisiae yeast (S288C strain) were cultured in YPDA on a shaker at 30°C for approxi-

mately 24 hours to an OD600 of approximately 1.0. S2 cells were cultured and provided as a cell

pellet by the Fehon Laboratory.

Octamer Reconstitution

Symmetric H3K4me3, H3K9me3, H3K27me3, H3K36me3, H3K79me2, and H3K4me3K27me3

octamers were reconstituted from semisynthetic histones as previously described91,118,166,167. Re-

combinant core histones were expressed in BL21 (DE3) with pRARE2 and mixed to equimolarity

with the relevant semisynthetic histones in freshly prepared filter sterilized Unfolding Buffer (50

mM Tris-HCl pH 8.0, 6.3 M Guanidine-HCl, 10 mM 2-mercaptoethanol, 4 mM EDTA) to a final

concentration of ≥ 1 mg histone per mL. The histone reconstitution was then added to 3500 MWCO

SnakeSkin dialysis tubing (Pierce) and dialyzed overnight at 4°C against 500-1000 volumes of filter

sterilized Refolding Buffer (20 mM Tris-HCl pH 7.5, 2 M NaCl, 5 mM DTT, 1 mM EDTA).

After dialysis, the histone mixture was centrifuged at 18,000 g for 1 hour at 4°C, and sub-

jected to gel filtration chromatography (Superdex 200 10/300 GL, GE Healthcare, resolved with

Refolding Buffer). Each fraction that displayed a peak on the UV chromatogram was analysed by

SDS-PAGE (22 mA current in 1x Laemmli Buffer for 70 minutes), stained with SYPRO Ruby (Bio-

Rad) per manufacturer instructions, and imaged with a 610BP emission filter at 600V PMT setting.

Octamer fractions with equimolar quantities of each core histone were pooled and concentrated

(Amicon Ultra-4 Centrifugal Filters, 10,000 MWCO, Millipore) to 5-15 µM octamer, diluted with

one volume of Octamer Storage Buffer, and stored at -20°C.
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All other octamers were obtained from EpiCypher, Inc.

Nucleosome Reconstitution

Nucleosomes were reconstituted onto 147bp DNAs composed of the core Widom 601 sequence168

the Mouse Mammary Tumor Virus (MMTV) long terminal repeat288, or the Mouse minor satel-

lite287,289 (MMS) modified with a 22bp barcode on each end, with each barcode composed of two

distinct 11bp sequences not found in the human or mouse genomes, or a fully synthetic 143bp

sequence of DNA comprised of eleven 13bp distinct sequences not found in the human or mouse

genomes (Space Alien sequences). The DNA and octamer were mixed to a final concentration of

1µM each in 2 M NaCl, and then dialyzed in dialysis buttons (Hampton Research) and a 10,000

MWCO SnakeSkin dialysis membrane (Pierce) against 200 mL of Refolding buffer for 10 minutes.

Dialysis then continued as 2L of Buffer I0 (20 mM Tris-HCl pH 7.5, 1 mM EDTA, 1mM DTT) was

added (flow rate 2-2.5 mL per minute).

Dialyzed samples were diluted with an equal volume of Nucleosome Dilution Buffer (20

mM Sodium Cacodylate pH 7.5, 10% v/v glycerol, 1 mM EDTA, 10 mM 2-mercaptoethanol, Filter

Sterilized), and 1 µl was analysed by native PAGE (100 V in 1x TBE for 30 minutes), stained with

SYBRGold in 1xTBE for one hour, and visualized with a UV transilluminator gel imager. Fractions

containing nucleosomes and minimal free DNAwere pooled and diluted to a working concentration

of ~ 1 nM with filter sterilized Nucleosome Storage Buffer (10 mM Sodium Cacodylate pH 7.5,

100 mM NaCl, 50% v/v glycerol, 1 mM EDTA, 1x Protease Inhibitor Cocktail [1 mM PMSF, 1mM

ABESF, 0.8 μM aprotinin, 20 μM leupeptin, 15 μM pepstatin A, 40 μM bestatin, 15 μM E-64 from

a 200x DMSO stock]) and stored at -20°C.
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ICeChIP Nuclei Preparation: Mammalian and Insect Nuclei

Mammalian and insect nuclei preparation was performed as described118,124,170,171. Briefly, cell

pellets were washed twice with 5 mL of PBS, then washed twice with 5 ml of filter sterilized Buffer

N (15 mM Tris-HCl pH 7.5, 15 mM NaCl, 60 mM KCl, 8.5% w/v Sucrose, 5 mM MgCl2, 1 mM

CaCl2, 1 mM DTT, 200 µM PMSF, 50 µg/mL BSA, 1x Roche Protease Inhibitor Cocktail), with

each wash consisting of complete resuspension of the pellet, centrifugation at 500 g for 5 minutes at

4°C, and removal of supernatant. The washed pellet was then resuspended in at least 2 packed cell

volumes (PCV) of Buffer N and mixed with 1 volume of 2x Lysis Buffer (Buffer N supplemented

with 0.6% NP-40 Substitute) and incubated on ice for 10 minutes to lyse cells.

The crude nuclei were spun down at 500 g for 5 minutes at 4°C before being resuspended

in at least 6 packed nuclear volumes (PNV) of Buffer N and applied to the top of 7.5 mL of filter

sterilized Sucrose Cushion N (15 mM Tris-HCl pH 7.5, 15 mM NaCl, 60 mM KCl, 30% w/v

Sucrose, 5 mM MgCl2, 1 mM CaCl2, 1 mM DTT, 200 µM PMSF, 50 µg/mL BSA, 1x Roche

Protease Inhibitor Cocktail) in a 15 ml centrifuge tube, then spun down at 500 g for 12 minutes at

4°C in a swinging-bucket rotor. The supernatant was discarded, and the pellet resuspended in ~ 2

PNV of Buffer N.

The nucleic acid content of the nuclei per unit volume was quantified by diluting 2 µL of

nuclei suspension into 48 µL of 2 M NaCl, water-bath sonicating to solubilize DNA, and spec-

troscopically measuring nucleic acid concentration by Nanodrop (where one A280nm = 50 ng/µL

chromatin). After accounting for the 25-fold dilution of the measurement sample, the concentration

of the nuclei was adjusted to 1 µg/µL of chromatin. Nuclei were dispensed to 100 µL aliquots, flash

frozen, and stored at -80°C prior to use.
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ICeChIP Nuclei Preparation: Yeast Nuclei

Yeast were collected from culture by centrifugation at 4,500 g for 5 minutes; supernatant was

discarded. The cell pellet was then resuspended into 20 mL of PBS into a single-cell suspension

and pelleted by centrifugation at 500 g for 15 minutes at 4°C; supernatant was discarded. The pellet

was then resuspended into Sorbitol Buffer (1.4 M sorbitol, 40 mM Tris-HCl, 0.5 mM MgCl2, 1

mM PMSF, 2 mM β-mercaptoethanol, pH 7.5, filter sterilized) into a single-cell suspension and

transferred into a weighed empty tube. The cells were pelleted by centrifugation at 500 g for 15

minutes at 4°C; supernatant was discarded. The cell pellet was then weighed by measuring weight

of the tube and subtracting blank weight. Cells were then resuspended into 4 mL of Sorbitol Buffer

per gram of cell pellet into a single-cell suspension. The suspension was placed on a shaker at 30°C

for 20 minutes.

While incubating, Zymolase (Fisher) was added to the cell suspension to a final concen-

tration of 0.5 mg/mL of Zymolase. The sample was then incubated for two hours to break down

cell wall and produce spheroplasts. Spheroplasts were pelleted by centrifugation at 500 g for 15

minutes at 4°C. Spheroplasts were then washed once with Sorbitol Buffer and twice with Buffer

N, with each wash consisting of complete resuspension of the pellet, centrifugation at 500 g for 5

minutes at 4°C, and removal of supernatant. The washed pellet was then resuspended in at least 2

PCV of Buffer N and mixed with 1 volume of 2x Lysis Buffer and incubated on ice for 10 minutes

to lyse cells.

The crude nuclei were spun down at 3000 g for 10 minutes at 4°C. If two layers were

observed in the pellet, the top layer was saved and the bottom discarded; the top layer contains

the nuclei, and the bottom layer contains unlysed cells. The nuclei were resuspended into 6 PNV

of Buffer N and applied to the top of 7.5 mL of filter sterilized Sucrose Cushion N in a 15 mL
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tube, then spun down at 3000 g for 15 minutes at 4°C in a swinging-bucket rotor. The supernatant

was discarded, and the pellet resuspended in ~ 2 PNV of Buffer N. The nucleic acid content of

the nuclei per unit volume was quantified by diluting 2 µL of nuclei suspension into 48 µL of 2

M NaCl, water-bath sonicating to solubilize DNA, and spectroscopically measuring nucleic acid

concentration by Nanodrop (where one A280nm = 50 ng/µL chromatin). After accounting for the

25-fold dilution of the measurement sample, the concentration of the nuclei was adjusted to 1 µg/µL

of chromatin. Nuclei were dispensed to 100 µL aliquots, flash frozen, and stored at -80°C.

ICeChIP Input Preparation

Input was prepared for ICeChIP and denaturative ICeChIP, and reICeChIP experiments as previ-

ously described118,124,170,171. For use, nuclei aliquots were thawed and spiked with ~ 1 µl of each

barcoded nucleosome standard per 50 µg of chromatin. This suspension was then mixed by pipette,

transferred to a new tube, and warmed to 37°C for 2 minutes. 1 unit of micrococcal nuclease

(MNase, Worthington) per 4.375 µg of chromatin was added, and samples incubated at 37°C while

shaking at 900 rpm for 12 minutes. Digestions were stopped by adding 1/9 volume of filter sterilized

10x MNase Stop Buffer while slowly vortexing, and nuclei lysed by adding 5 M NaCl to a final

concentration of 600 mM while slowly vortexing. 66 mg of HAP resin (BioRad, CHTTM Ceramic

Hydroxyapatite, Type I, 20 um) per 100 µg of chromatin digested was rehydrated with 200 µl of

filter sterilized HAP Buffer 1 per 100 µg of chromatin digested. Lysed nuclei were centrifuged

at 18,000 g for 1 minute to pellet insoluble nuclear debris, and the soluble fraction added to the

rehydrated HAP resin and incubated for 10 minutes at 4°C with rotation.

After incubation, the HAP resin slurry was added to a centrifugal filter unit (Millipore

Ultrafree MC–HV Centrifugal Filter 0.45 µm) and spun at 1000 g for 30 seconds at 4°C. The HAP
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resin left on the filter unit was then washed 4 times with 200 µL HAP Buffer 1, and 4 times with

200 µl filter sterilized HAP Buffer 2 by spinning at 1000 g for 30 seconds at 4°C. HAP resin was

eluted into a clean tube with three 100 µl solutions of filter sterilized HAP Elution Buffer. The

nucleic acid content of the elution was then quantified by Nanodrop.

Antibody Preparation for ICeChIP

Antibodies and quantities used for each ICeChIPexperiment are shown inAppendixA. The indicated

amount of Protein A Dynabeads (Invitrogen) for each ICeChIP was washed with 50 μL of ChIP

ChIP Buffer 1 by use of a magnetic rack, then resuspended in 50 µL of ChIP Buffer 1. In a separate

set of tubes, the antibody was diluted to 100 μL with ChIP Buffer 1. The antibody and Protein A

Dynabead suspensions were combined and incubated on a rotator at 4°C for at least one hour, then

washed with 200 μL of ChIP Buffer 1 by use of a magnetic rack and resuspended in 50 μL of ChIP

Buffer 1.

Standard ICeChIP Immunoprecipitation

After antibodies were prepared and washed, the input chromatin concentration adjusted to 20 ng/µl

with filter sterilized ChIP Buffer 1, and the amount of chromatin specified inAppendixAwas added

to each antibody-bead conjugate and incubated for 15 minutes on a rotator at 4°C. Beads were

then washed twice with filter sterilized ChIP Buffer 2 (25 mM Tris pH 7.5, 5 mM MgCl2, 300 mM

KCl, 10% v/v glycerol, 0.1% v/v NP-40 Substitute) and once with filter sterilized ChIP Buffer 3

(10 mM Tris pH 7.5, 250 mM LiCl, 1 mM EDTA, 0.5% Sodium Deoxycholate, 0.5% v/v NP-40

Substitute), with a wash consisting of removal of the existing supernatant by use of a magnetic rack,

resuspension into 150 µl of buffer, transfer to a new siliconized tube, and incubation on the rotator

for 10 minutes at 4°C. After these washes, the supernatant was removed, the beads resuspended in
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ChIP Buffer 1, transferred to a new siliconized tube, rinsed once with 200 µl of TE before being

resuspended in 50 µl of ChIP Elution Buffer (50 mMTris pH 7.5, 1 mM EDTA, 1% w/v SDS, Filter

Sterilized) and incubated at 55°C for 5 minutes.

After incubation, the supernatant was transferred to a new set of siliconized tubes, and the

beads discarded. To each supernatant was then added 2 µl of 5 M NaCl, 1 µl of 500 mM EDTA,

and 1 µl of 10 mg/mL Proteinase K. 15 µl of Input DNA was also diluted to 50 µl with 35 µl of

ChIP Elution Buffer and was supplemented with 2 µL of 5 M NaCl, 1 µL of 500 mM EDTA, and

1 µL of 10 mg/mL Proteinase K. The IP elutions and diluted input were then incubated at 55°C

for 2 hours for a Proteinase K digestion. After digestion, the DNA was purified by adding 1.5

volumes of Serapure HD (1:50 dilution of Sera-Mag SpeedBeads [Fisher], 20% PEG-8000, 2.5

M NaCl, 10 mM Tris pH 7.5, 1 mM EDTA, 0.05% Tween-20, Filter Sterilized prior to addition

of SpeedBeads), incubating at room temperature for 15 minutes, then collecting the beads on a

magnetic rack, washing twice with 150 µl of 70% ethanol, and eluting into 50 µl ddH2O, which

was then recovered and stored at -20°C.

Denaturative ICeChIP Immunoprecipitation

After purification of input chromatin and preparation of antibodies, the input chromatin was cross-

linked with 1/9 volume of 2.5% formaldehyde stock (final concentration 0.25% formaldehyde) on

a rotator at room temperature for 8 minutes. Cross-linking was then quenched with 1/5 volume of 1

M Tris-HCl, pH 7.5 on a rotator at room temperature for 5 minutes. 50 uL cross-linked chromatin

was aliquoted into a thin-walled PCR tube, and 2.5 μL of 20% SDS was added (final concentration

1% SDS). This sample was then heated to 55°C for 60 seconds, then immediately put on ice. After
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cooling, the sample was diluted with 450 μL of water. The concentration of chromatin will be 7.5%

of the concentration from the end of input preparation.

The amount of chromatin specified in Appendix A was added to each antibody-bead con-

jugate and incubated for 15 minutes on a rotator at 4°C. Beads were then washed once with filter

sterilized Crosslink ChIP Buffer 1 (50 mM HEPES, 140 mM NaCl, 1 mM EDTA, 1 mM EGTA,

0.75% Triton-X-100, 0.1% SDS, 0.05% DOC, pH 7.5) and once with filter sterilized Crosslink

ChIP Buffer 2 (50 mM HEPES, 500 mM NaCl, 1 mM EDTA, 1 mM EGTA, 0.75% Triton-X-100,

0.1% SDS, 0.05% DOC, pH 7.5), with a wash consisting of removal of the existing supernatant by

use of a magnetic rack, resuspension into 150 µl of buffer, transfer to a new siliconized tube, and

incubation on the rotator for 10 minutes at 4°C. After these washes, the supernatant was removed,

the beads resuspended in ChIP Buffer 1, transferred to a new siliconized tube, rinsed once with 200

µl of TE before being resuspended in 50 µl of ChIP Elution Buffer and incubated at 55°C for 5

minutes.

After incubation, the supernatant was transferred to a new set of siliconized tubes, and the

beads discarded. To each supernatant was then added 2 µl of 5 M NaCl, 1 µl of 500 mM EDTA,

and 1 µl of 10 mg/mL Proteinase K. 15 µl of Input DNA was also diluted to 50 µl with 35 µl of

ChIP Elution Buffer and was supplemented with 2 µL of 5 M NaCl, 1 µL of 500 mM EDTA, and 1

µL of 10 mg/mL Proteinase K. The IP elutions and diluted input were then incubated at 55°C for 2

hours for a Proteinase K digestion. After digestion, the DNAwas purified by adding 1.5 volumes

of Serapure HD, incubating at room temperature for 15 minutes, then collecting the beads on a

magnetic rack, washing twice with 150 µl of 70% ethanol, and eluting into 50 µl ddH2O, which

was then recovered and stored at -20°C.
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DNA Quantification and Analysis by Quantitative PCR

To assess local histone modification density and/or antibody specificity, our DNA from the ChIP

experiments was quantified by quantitative PCR (qPCR). qPCR was conducted using TaqMan Gene

Expression Master Mix (Applied Biosystems) using the primers and hydrolysis probes previously

described118. These primers and probe for the barcoded sequences were previously qPCR validated

for effectiveness and quality118. Primers were used at 900 nM; hydrolysis probe at 250 nM, in the

TaqMan Gene Expression Master Mix (Applied Biosystems). The qPCR program was run at 95°C

for 10 minutes, followed by 40 cycles, each consisting of 15 seconds at 95°C followed by 1 minute

at 60°C and concluding with a plate read.

Cq values were analysed using the ΔΔCq method. Briefly, the Cq values for each target for

each sample were averaged together to obtain the mean Cq value. Enrichment for each barcode was

then computed as Enrichment = 2CqINPUT − CqIP ∗ 10, accounting for the 10-fold dilution of Input

relative to IP and multiplying by 100% for Enrichment as a percentage of target. Off-target binding

to alternate PTMs were computed by normalizing each enrichment to that of the on-target PTM:

referred to as “Specificity (% Target)”.

Illumina Library Preparation and Sequencing

Illumina libraries were prepared as described118, with minor modifications. Briefly, Serapure pu-

rified DNA was quantified using Quant-iTTM PicoGreen (Thermo Fisher) as per manufacturer

instructions. Libraries were then generated from up to 10 ng of each DNA sample (input or IP) with

the NEBNext Ultra II DNA Library Prep kit (New England Biolabs) per manufacturer instructions.

The DNA content of each library was then quantified and pooled for Illumina sequencing. Clus-
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ter generation and paired-end sequencing was conducted using standard Illumina next-generation

sequencing protocols by the University of Chicago Genomics Facility on the Illumina NextSeq.

Next-Generation Sequencing Alignment and HMD Computation

To align reads, a reference genome was first created, consisting of the human genome (hg38)

appended respectively by the sequences of each of the nucleosome standard barcodes for the relevant

barcode set. Reads were then mapped to the appropriate reference genome using Bowtie2 using

the sensitive pre-set and end-to-end alignment options172. Using SAMTools173, any reads which

were not paired, not mapped in a proper pair, or mapped with a map quality < 20 were discarded

to prevent low-quality reads from impacting downstream analyses. Reads were then flattened to

create a single mapping from each matched pair of reads by retaining only one fragment per pair,

and any mappings with lengths > 200bp were also discarded to ensure only mononucleosomes were

being analyzed118.

Bedgraphs of genome coverage were then generated using BEDTools174, and IP / input

genome coverage bedgraphs were merged using BEDTools174. The sum of reads across ladder

members for each nucleosomal standard was computed for each sample and HMD bedgraphs were

then generated from the merged bedgraphs using awk to apply the following formula:

HMD (%) = 100% ∗ IPlocus/Inputlocus
IPbarcode/Inputbarcode

Error and 95% confidence intervals were computed with Poisson statistics and error propa-

gation from the merged bedgraphs using awk to apply the following formula:
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95CI Error (%) = 1.96 ∗ HMD (%) ∗

√
1

IPlocus
+

1

Inputlocus

Bigwig files were generated for visualization using the bedGraphToBigWig tool175.

For all analyses, the HMD averaged over the N+1 and N+2 nucleosomes (taken to be 0 to

+400bp into the gene body) was employed as representative of the promoter—this captures the most

substantial H3K4me3 and H3K27me3 enrichment.

Genomic browser views were made using IGV. Heatmaps and gene ontology analysis was

made using Homer software178. Further analysis and sectioning of data was conducted in R using

the R code provided in Data and Software Availability.

Data and Software Availability

Rmarkdown file for analysis and sectioning of datasets is provided at https://www.github.com/

shah-rohan/h3k79_analysis/.
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CHAPTER 5: BAYESIAN RESOLUTION OFAMBIGUOUSLYMAPPED READS

Attributions

This chapter has been adapted from: Shah, R. N. & Ruthenburg, A. J. Sequence deeper without

sequencingmore: Bayesian resolution of ambiguouslymapped reads. PLOSComputational Biology

17, e1008926 (2021). All work for this chapter was conducted by the author.

Abstract

Next-generation sequencing (NGS) has transformed molecular biology and contributed to many

seminal insights into genomic regulation and function. Apart from whole-genome sequencing, an

NGS workflow involves alignment of the sequencing reads to the genome of study, after which the

resulting alignments can be used for downstream analyses. However, alignment is complicated by

the repetitive sequences; many reads align to more than one genomic locus, with 15-30% of the

genome not being uniquely mappable by short-read NGS. This problem is typically addressed by

discarding reads that do not uniquely map to the genome, but this practice can lead to systematic

distortion of the data. Previous studies that developed methods for handling ambiguously mapped

reads were often of limited applicability or were computationally intensive, hindering their broader

usage. In this work, we present SmartMap: an algorithm that augments industry-standard aligners to

enable usage of ambiguously mapped reads by assigning weights to each alignment with Bayesian

analysis of the read distribution and alignment quality. SmartMap is computationally efficient,

utilizing far fewer weighting iterations than previously thought necessary to process alignments

and, as such, analyzing more than a billion alignments of NGS reads in approximately one hour on

a desktop PC. By applying SmartMap to peak-type NGS data, including MNase-seq, ChIP-seq, and

ATAC-seq in three organisms, we can increase read depth by up to 53% and increase the mapped
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proportion of the genome by up to 18% compared to analyses utilizing only uniquely mapped reads.

We further show that SmartMap enables the analysis of more than 140,000 repetitive elements that

could not be analyzed by traditional ChIP-seq workflows, and we utilize this method to gain insight

into the epigenetic regulation of different classes of repetitive elements. These data emphasize

both the dangers of discarding ambiguously mapped reads and their power for driving biological

discovery.

Introduction

The impact of next-generation sequencing (NGS) on molecular biology can hardly be overstated. In

a typical short-read NGSworkflow, DNAfragments from an experiment are loaded onto a sequencer,

which reports the sequence of 40-200bp of one end or both ends of each fragment (in single-end or

paired-end sequencing, respectively)294. These reads/read pairs can then be aligned to the genome

by one of several alignment tools, and the set of alignments can be used to compute the number of

reads aligned to any given genomic locus. This genome-wide read depth dataset can then be used

in downstream workflows.

Even beyond applications for whole genome sequencing, many critical methods have lever-

aged NGS to enable truly genome-wide biological studies. RNAsequencing (RNA-seq) has enabled

quantification of gene expression295 as well as the discovery and characterization of new elements

of the transcriptome, such as enhancer RNAs58,59,153,296 and chromatin-associated RNAs70,71. Chro-

matin immunoprecipitation coupled to NGS (ChIP-seq) has similarly become a mainstay of molec-

ular biology, being used in many seminal works of the field17–19,127,130,131,297–299. Other common

techniques, includingATAC-seq72, Hi-C300, CUT&RUN121, and TAB-seq301, similarly rely on NGS

and associated workflows to provide important insights into genomic regulation.
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Crucially, these workflows all rely upon alignment of each read to its corresponding ge-

nomic location. However, this can be problematic when analyzing non-unique or repetitive regions

of the genome, particularly given the short window of a 40-200bp sequencing read. Indeed, some

estimates suggest that a majority of the human genome is comprised by repetitive elements22,302,303.

Accordingly, between 15-30% of the human genome is not uniquely mappable by single-end se-

quencing with typical read lengths304,305, and the genomes of other model organisms, such as M.

musculus or D. melanogaster, present similar challenges304. Paired-end sequencing can partially

improve genome mappability, but of the regions that are not uniquely mappable by single-end

sequencing, 70-85% will not be resolved by paired-end sequencing304.

Many NGS pipelines address this ambiguity by masking repetitive regions to prevent align-

ment of reads to more than one genomic locus or by filtering only for reads that align unambiguously

to the genome (hereafter referred to as unireads)306. This includes groups such as the ENCODE

Consortium, whose ChIP-seq pipeline filters for uniquely mapped reads by default129. Indeed, in

several of our past studies, we ourselves have utilized filters to exclude ambiguously mapping

reads118,124,171. However, filtering out reads that map to multiple loci (hereafter referred to as mul-

tireads) sacrifices the ability to critically examine many repetitive regions of the genome, which

have important roles in gene regulation306. Further, by definition, discarding reads reduces read

depth, which makes quantitative comparisons more challenging by increasing error or the neces-

sary sequencing depth306. Given the many problems with ignoring repetitive regions or ambiguous

alignments, it is critical to develop and utilize methods to appropriately analyze multireads.

To date, several studies have attempted to develop methods and algorithms to resolve multi-

read alignments for a variety of applications. Some have targeted their analysis methods towards

RNA-seq and quantifying transcripts295,307,308; indeed, in recent years, there has been a sharp in-
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crease in the tools available for quantification of pre-defined genomic features in RNA-seq309.

Others have developed tools designed for ChIP-seq or DNA-seq more broadly310–314.

Despite the wide array of tools that have been previously developed for this problem, there

are still several outstanding problems. First, several of the previously published tools (particularly

for RNA-seq) focus on quantification of a distinct set of genomic features rather than generating

truly genome-wide coverage maps295,307–309,313,314, rending them inappropriate for ChIP-seq or other

unbiased/de novo NGS analyses. Even amongst these remaining tools for “peak type” ChIP-seq or

similar analyses, several of these tools focusing on comparison to external datasets for peak call-

ing313,314, leaving even fewer analysis methods for a single dataset without an exogenous reference.

Second, while many existing methods use alignment weighting algorithms to allocate multiread

depth, there is disagreement as to the degree to which iterative reweighting is required to properly

weight the multireads without over-refining the weights; some employ no iterative reweighting at

all295,312, whereas others use up to 200 reweighting cycles310. In addition, most of the above methods

do not consider the alignment quality when resolving read ambiguity or does so in a computationally

intensive manner that would likely scale poorly with the number of reads commonly obtained from

modern NGS platforms311. Further, these tools often focused on single-end sequencing and do not

make use of the intervening length information in paired-end sequencing, limiting the scope of

their applicability310. Finally, many of these tools do not accommodate strand-specific analyses

genome-wide, limiting their application to strand-independent experiments310,311,313,314.

In this work, we seek to resolve some of these issues. We describe SmartMap: an algorithm

that uses iterative Bayesian reweighting of ambiguous mappings, with assessment of alignment

quality as a factor in assigning weights to each mapping. We find that SmartMap markedly increases

the number of reads that can be analyzed and thereby improves counting statistics and read depth
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recovery at repetitive loci. This algorithm and software implementation is compatible with both

paired-end and single-end sequencing and can be used for both strand-independent and strand-

specific methods employing NGS backends to generate genome-wide read depth datasets.

Results

Development and validation of a Bayesian multiread allocation algorithm

We initially developed our SmartMap algorithm and software for application in ChIP-seq using a set

of internally calibrated ChIP-seq (ICeChIP-seq) datasets. These datasets were previously generated

by our lab and, with one exception, were previously published as components of past studies118,124.

We chose to use ICeChIP-seq datasets because the included internal standards allow for computation

of antibody specificity and for normalization to calculate the histone modification density (HMD),

or the absolute proportion of nucleosomes at a given genomic locus bearing the targeted histone

modification. These additional factors which we can compute using ICeChIP-seq datasets afford us

additional points of quantitative comparison to assess differences between uniread and SmartMap

analyses. However, this tool is not designed solely (or even primarily) for use with ICeChIP-seq

datasets; the SmartMap algorithm does not make special use of the internal standards. Rather, this

software is designed to be usable for NGS workflows more broadly.

The workflows for uniread analyses (typical of ChIP-seq) and our SmartMap analysis are

shown in Fig. 5.1A. For both analyses, the immunoprecipitation (IP) and MNase-seq Input se-

quences are aligned to the appropriate reference genome and are filtered to select for properly

mapped reads in a proper pair. At that point, the two methods diverge. In the uniread analysis,

which represents our published analysis pipeline for ICeChIP-seq data118,124,171, any reads that don’t
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Figure 5.1: Summary of the SmartMap analysis workflow and algorithm.

(A) Flowchart outlining the workflow for traditional ChIP-seq (or ICeChIP-seq) analysis118,124,171

utilizing only unireads (left, green) vs. the workflow for SmartMap analysis utilizing multireads

with an iterative Bayesian reweighting algorithm (right, blue). (B) Schematic showing the Bayesian

reweighting algorithm utilized in the SmartMap analysis. Each mapping associated with a read is

assigned a weight such that the weight is greater for those mappings associated with loci of greater

map weight density. For more detailed description of the algorithm, see Methods.
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align uniquely are discarded, and the remainder are used to compute genome-wide read depth in

the IP and Input, fold-change, and (if internal standards are present) HMD.

In the SmartMap analysis, however, rather than discarding ambiguously mapped reads, we

instead feed our alignments into our iterative Bayesian reweighting algorithm, outlined in Fig. 5.1B.

Our algorithm, like other alignment weighting algorithms295,310–312, is motivated by the assumption

that regions with more alignments are more likely to be the true source of an multiread than those

with fewer alignments. In addition, like BM-Map311, SmartMap utilizes both paired-end sequencing

information and alignment quality in making these assessments. Accordingly, our tool first assigns

each alignment a weight proportional to its alignment quality, computed from the alignment software

output. We then iteratively reassign weights to each alignment of each read; alignments with

higher alignment quality and more overlapping alignments are assigned higher weights, and those

alignments with lower quality and fewer overlapping alignments are assigned lower weights (Fig.

5.1B). After the specified number of reweighting cycles, the resulting weights are used to compute

the read depth for the IP and the Input genome-wide, which can then be used to compute fold-change

or, if applicable, HMD in a similar manner as the uniread analysis. For computational efficiency, we

use binary-indexed (Fenwick) trees to store genomic coordinates and associated alignment weights,

much like the previously described CSEM310. Our implementation of these binary-indexed trees is

modified to enable use of paired-end sequencing reads and, if needed, operate in a strand-specific

manner.

To test this method, we created a set of simulated 50bp paired-end sequencing reads from a

defined set of randomly selected genomic loci (the “true origin” loci) and used the simulated dataset

to conduct uniread and SmartMap analyses (Fig. 5.2A). The read simulation tool produces reads

with “sequencing” error and also includes coverage at off-target loci to better represent the noise
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Figure 5.2: Characteristics of validation dataset.

(A) Schematic outlining the workflow to validate and optimize SmartMap. A set of six million ran-

domly selected 200bp loci were used to simulate paired end reads. The true read depth distribution

was then compared to both uniread and SmartMap analyses, with each analysis conducted in both

“scored” and “unscored” modes, per Methods. (B, C) Number of (B) alignments or (C) reads vs.

number of alignments per read for the validation datasets. (D)Mean absolute error of read depth

at true origin loci in SmartMap scored mode vs. number of reweighting iterations (E) Genome

browser view showing the read depth in the (top) uniread, (center) SmartMap (0 iterations), and

(bottom) SmartMap (1 iteration) datasets of an example locus.

and off-target capture inherent in a biological experiment. Notably, the simulation enabled us to

obtain the true distribution of reads (the Gold Standard), allowing us to compute the error associated
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with each analysis method (Fig. 5.2A). This is particularly important because we wish to avoid

over-refining the multiread weights with our inferential analysis; accordingly, the Gold Standard

dataset allows us to evaluate the accuracy of our reweighting algorithm and reallocation.

We were particularly interested in the ability of SmartMap to recover read depth at regions of

differing mappability. To investigate this relationship, we used the UMAP50 score as a measure of

read mappability. The UMAP50 score for a given genomic coordinate is computed as the proportion

of the 50mers covering the genomic coordinate of interest that are unique in the set of all 50mers

from the genome305. For example, if the sequences of two of the fifty 50mers containing the

genomic coordinate of interest were non-unique across the genome of study, then the UMAP50

score would be 48/50, or 0.96. As such, a genomic coordinate with a UMAP50 score closer to 1

is uniquely identified by a greater proportion of the 50mers spanning it than is a coordinate with

a lower UMAP50 score, and a higher UMAP50 score can thus be interpreted as a more easily

mappable region. Many of the true origin loci had low mappability scores (Fig. 5.3A), with the

distribution of mappability scores being similar to that of the human genome at large (Fig. 5.3B),

making this dataset useful for validating the SmartMap algorithm.
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Figure 5.3: Mappability of sampled loci and human genome.

(A) Number of regions from the true origin loci vs. average mappability (UMAP50) score of the

loci. (B) Density of UMAP50 scores of 200bp windows across the human genome (hg38).
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The first step of our analysis was to align the simulated 50bp paired-end reads to the genome.

We usedBowtie2172with amaximumof 51 alignments reported per read and charted the distributions

of the number of alignments per read (Fig. 5.2B-C). Notably, we observed that there were many

reads that did not uniquely align to the genome; approximately 17.1% of the simulated reads mapped

to more than one locus (Fig. 5.2B-C and Table 5.1).

Our first goal was to determine the optimal number of iterations to use for our SmartMap

analyses. To test this, we computed the mean absolute error of SmartMap read depth at the true

origin loci with varying numbers of reweighting cycles, as compared to the Gold Standard read

depth. Surprisingly, we found that the lowest error occurred after only one reweighting cycle (Fig.

5.2D), with genome browser views showing refinement of peak structure (Fig. 5.2E), which is

particularly important given the importance that has been placed on peak breadth155. This stands

in stark contrast with previous works, which have used up to 200 iterations of reweighting310. Our

analysis here, however, shows that may be suboptimal, suggesting that applying Bayesian alignment

reweighting more than once may over-refine the data.

We wanted to explore whether these increases in mean absolute error were systematic or

driven by random “overshoot” of weight at each locus. In the former case, we might expect to

see that the true origin loci would either show systematic increases or decreases in read weight

with greater numbers of reweighting cycles. In the latter case, we would expect that the changes to

each weight might increase or decrease by too much in the initial iteration, which would present as

random, relatively unbiased errors.

To distinguish between these two possibilities, we conducted two analyses. First, we com-

puted mean error of weights at the true origin loci (Fig. 5.4A) rather than the mean absolute error

(Fig. 5.2D). If there was a systematic erroneous increase or decrease in the average read depth of
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Table 5.1: Alignment statistics for the datasets used for multiread analysis.

Multireads

Sample Genome Assay Cells Unireads Analyzable
Un-

analyzable
% Incr.

Simulated,

50bp
hg38 Simulation – 245,079,644 34,136,124 7,661,326 13.93%

Simulated,

-k 101
hg38 Simulation – 244,391,815 35,520,969* 6,973,053* 14.53%

S
im
u
la
te
d

Simulated,

100bp
hg38 Simulation – 123,730,306 16,769,189 2,802,056 13.55%

Input

Rep. 1
mm10*

MNAse-

seq

mESC

E14
311,090,692 85,018,787 15,184,872 27.33%

H3K4me3

Rep. 1
mm10* ChIP-seq

mESC

E14
119,014,494 19,662,529 5,603,383 16.52%

Input

Rep. 2
mm10* ChIP-seq

mESC

E14
304,127,899 83,629,528 17,160,012 27.50%

A
R
7

H3K4me3

Rep. 2
mm10* ChIP-seq

mESC

E14
91,518,104 14,549,072 4,657,032 15.90%

Input dm3†
MNAse-

seq
S2 18,678,956 7,117,520 977,776 38.10%

A
R
8

H3K27me3 dm3† ChIP-seq S2 8,855,114 3,249,005 389,227 36.69%

Input mm10†
MNAse-

seq

mESC

E14
488,503,092 131,960,514 26,577,525 27.01%

H3K4me3 mm10† ChIP-seq
mESC

E14
169,335,369 32,089,449 7,918,756 18.95%

H3K9me3 mm10† ChIP-seq
mESC

E14
136,008,760 73,118,061 13,012,319 53.76%

A
R
9

H3K27me3 mm10† ChIP-seq
mESC

E14
155,322,021 43,508,387 9,267,806 28.01%

Input hg38‡
MNAse-

seq
K562 285,996,344 56,595,547 12,902,707 19.79%

H3K4me1 hg38‡ ChIP-seq K562 92,422,802 16,475,108 2,434,216 17.83%

H3K4me2 hg38‡ ChIP-seq K562 70,987,452 12,931,282 2,558,979 18.22%A
R
1
6

H3K4me3 hg38‡ ChIP-seq K562 40,483,145 5,488,996 803,892 13.56%

Table 5.1 continues on next page.
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Table 5.1, continued:

Multireads

Sample Genome Assay Cells Unireads Analyzable
Un-

analyzable
% Incr.

Input hg38‡
MNAse-

seq
K562 256,373,920 48,634,887 11,216,500 18.97%

H3K9me3 hg38‡ ChIP-seq K562 193,011,406 40,618,196 10,337,413 21.04%A
R
1
7

H3K27me3 hg38‡ ChIP-seq K562 173,915,939 32,770,085 7,107,199 18.84%

Snyder

Rep. 1
hg38

ATAC-

seq
K562 32,995,935 6,484,894 299,834 19.65%

Snyder

Rep. 2
hg38

ATAC-

seq
K562 24,414,870 4,210,386 149,154 17.25%

Gingeras

Rep. 1
hg38§ RNA-seq K562 60,184,580 20,651,064 29,231 34.31%

E
N
C
O
D
E

Gingeras

Rep. 2
hg38§ RNA-seq K562 63,238,387 13,087,755 14,070 20.70%

For all except the ENCODE RNA-seq datasets, analysis is conducted on 200bp genomic windows.

For ENCODE RNA-seq datasets, analysis is conducted on distinct Refseq genes.

% Reg. Inc.: Percent of the total regions in the SmartMap dataset with increased read depth relative

to the Uniread dataset.

% Inc. Reg.: Percent increase in the number of regions with reads in the SmartMap dataset relative

to the Uniread dataset.

Genome includes ICeChIP barcodes: * Series 1. † Series 2. ‡ Series 3.

§ Genome includes ENCODE ERCC standards.

each locus, then we would observe a corresponding increase or decrease in mean error with more

iterations, respectively. However, what we instead observe is that the mean error is relatively stable

from iterations 2-8 (Fig. 5.4A), suggesting that the marked increase in mean absolute error with

increasing iterations is not primarily caused by systematic erroneous increases or decreases in locus

weight depth. Put differently, it does not appear that the true loci are systematically “pulling in” or

“pushing out” read depth with each reweighting cycle.
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Figure 5.4: Characteristics of SmartMap with increasing iterations.

(A)Mean error of read depth at true origin loci in SmartMap scored mode vs. number of reweighting

iterations. (B)Mean absolute error of read depth at true origin loci in SmartMap scored mode with

a reweighting rate of 0.25 vs. number of reweighting iterations. (C, D) QQ plots of read depth in

Gold Standard dataset vs. (C) uniread or (D) SmartMap (1 iteration) scored datasets. Color scale

represents percentile of each point, from 1st to 99th percentiles. Dashed line represents line with

slope of unity.

Second, we explored the possibility that the reweighting “overshoots” the weight adjustment

for reads at random. If this was the case, then we would expect that the errors would increase

relatively randomly, with both positive and negative errors. Indeed, this is what we observe in our

analysis of mean error by iteration (Fig. 5.4A). In addition, we would predict slowing the rate of

weight adjustment with each cycle would decrease the amount of overshoot and thereby lead to a

lesser increase in error. To test this, we introduced a tunable reweighting rate parameter such that

the weights could be changed less with each reweighting iteration. When applying a reweighting
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rate of 0.25 (wherein the weights only change by 25% as much in normal SmartMap analysis), we

found that the mean absolute error was markedly more stable after one iteration (Fig. 5.4B). Indeed,

after two cycles of standard SmartMap, the mean absolute error exceeds that of the dataset with

no reweighting (Fig. 5.2D); by contrast, with eight cycles of SmartMap with a reweighting rate of

0.25, the mean absolute error is considerably below that of the iteration 0 dataset and comparable

to the minimum mean absolute error after one iteration (Fig. 5.4B). This suggests that the increase

in error with increasing iterations observed with standard SmartMap may be due to “overshoot”

of reweighting, which compounds in magnitude with further reweighting. Interestingly, we found

that the mean absolute error with one iteration of standard SmartMap analysis was on par with (and

even slightly lower than) that of the slow-reweighting dataset (Fig. 5.2D and 5.4B), suggesting that

this potential overshoot error may not be too detrimental after only one iteration of reweighting. By

command line switch, these two algorithms are both available in the SmartMap software.

After determining the optimal number of reweighting cycles, we compared SmartMap and

uniread analyses of our simulated datasets (Fig. 5.2A). To determine the relative impact of using

alignment quality for multiread analysis, we ran SmartMap in both scored and unscored modes. All

the SmartMap analyses had greater read depth (and were closer to the Gold Standard dataset) at

true origin loci than the corresponding uniread analyses (Fig. 5.5A). Interestingly, the increases in

read depth were not uniform across the entire set of loci; indeed, approximately 70% of the true

origin loci saw no excess read depth, defined as the difference between SmartMap and uniread read

depths (Fig. 5.5B). This is similarly observed in the QQ plot comparing uniread and SmartMap

analyses; a shoulder is seen at low uniread depth, with the plot converging onto a slope of unity at

higher read depths (Fig. 5.4C and 5.5C), suggesting that the gains in read depth were primarily at

regions of low uniread depth.

174



B

4

4.5

5

5.5

6

6.5

7

7.5

Av
g.

 R
ea

d 
D

ep
th

G

0

10

20

30

40

50

60

Ite
ra

tio
n 

1 
Sc

or
ed

 D
ep

th

0 10 20 30 40 60
Uniread Scored Depth

50

0 25 50 75 100

Percentile

C

JH

0

1

2

3

4

5

6

7

8

I0S I1S M1S I0U I1U M1U

Av
g.

 M
ea

n 
Ab

s.
 E

rro
r

I

Gold Standard Iteration 0 Scored = I0S Iteration 1 Scored = I1S Uniread Scored = M1S
Iteration 0 Unscored = I0U Uniread Unscored = M1UIteration 1 Unscored = I1U

A

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

R
ea

d 
D

ep
th

Percentile

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100
R

ea
d 

D
ep

th

Percentile

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

Ex
ce

ss
 R

ea
ds

Percentile

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

Ex
ce

ss
 R

ea
ds

Percentile

29

30

31

32

33

34

35

36

37

38

Av
g.

 R
ea

d 
D

ep
th

F

0

5

10

15

20

25

30

35

40

45

0 0.2 0.4 0.6 0.8 1

M
ed

ia
n 

R
ea

d 
D

ep
th

UMAP Score

D

0
2
4
6
8

10
12
14
16
18
20

0 0.2 0.4 0.6 0.8 1
M

ed
ia

n 
Ex

ce
ss

 R
ea

ds

UMAP Score

E

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Pr
op

. a
lig

nm
en

ts
 a

t t
ru

e 
re

ad

Weight

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

W
ei

gh
te

d 
ov

er
la

p 
pr

op
.

Weight

Figure 5.5: SmartMap and uniread analyses of the validation dataset.

Iteration 0 and iteration 1 refer to SmartMap analysis with 0 and 1 iterations of reweighting, re-

spectively. Scored and unscored refer to whether alignment score was considered in analysis, per

Methods. Dashed lines are presented for readability of overlapping curves rather than disconti-

nuities in data throughout this figure. (A) Quantile plot of read depth at the true origin loci, with

Gold Standard dataset and analysis conducted in (left) scored mode or (right) unscored mode. (B)

Quantile plot of excess read depth in SmartMap datasets relative to corresponding uniread dataset

at true origin loci in (left) scored mode and (right) unscored mode. (C) QQ plot of read depth at

true origin loci in the SmartMap (1 iteration) scored dataset vs. uniread scored dataset. Color scale

represents percentile of each point, from 1st to 99th percentiles. (D-E) Median (D) read depth or

(E) excess read depth vs. mappability score (UMAP50)305 of the true origin loci. (F-G)Average

read depth (F) at true origin loci and (G) outside true origin loci. (H)Mean absolute error of read

depth at true origin loci for each dataset, with Gold Standard as the reference point. (I) Mean

proportion of alignments intersecting with the true read of origin for each weight after SmartMap

with no reweighting (green) and one iteration of reweighting (red) in scored mode. Dashed line
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Figure 5.5, continued:

represents line with slope of unity. (J)Mean weighted overlap proportion score between alignments

intersecting the true read of origin and the true read locus for each weight after SmartMap with

no reweighting (green) and one iteration of reweighting (red) in scored mode. Weighted overlap

proportion score is meant to represent the proportion of a read’s weight that maps to the correct

location due to a particular alignment and is computed as a weighted geometric mean of the pro-

portion of the alignment covered by the true read and the proportion of the true read covered by the

alignment.

While SmartMap does not fully recover the read depth of the Gold Standard at the low end

of the QQ plot, the shoulder is nonetheless much less prominent than with the uniread analysis

(Fig. 5.4D), indicating considerably greater depth recovery. Consistent with that observation, the

uniread analyses and the SmartMap analyses both performed well at highly mappable regions, with

read depths approximately at the level of the Gold Standard (Fig. 5.5D). However, at regions of

lower mappability, the SmartMap analyses recovered a markedly greater proportion of the read

depth than did the uniread analyses (Fig. 5.5D-E). As expected from prior analyses (Fig. 5.4D),

the SmartMap analyses with one iteration of reweighting recovered greater read depth than those

with no reweighting (Fig. 5.5D-E). Importantly, though they performed similarly at regions of

lower mappability, the SmartMap scored analyses recovered greater read depth than their unscored

counterparts at regions with moderate mappability (Fig. 5.5D-E).

Genome-wide, SmartMap analyses had lower on-target read depth than the Gold Standard

dataset but were still able to recover greater depth at the on-target loci than corresponding uniread

analyses (Fig. 5.5F). Similarly, the SmartMap analyses had marginally higher off-target read depth

than the Gold Standard and uniread datasets (Fig. 5.5G); however, the increased off-target depth

relative to uniread datasets can be explained by the overall lower read depth in the uniread datasets

(Fig. 5.6A). Consistent with the notion that improved priors enhance Bayesian predictions, the

unscored SmartMap analyses had lower on-target and higher off-target read depth than the cor-
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Figure 5.6: Validation and comparison of multiple mapping analysis.
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Figure 5.6, continued:

(A) Average read depth of each dataset genome-wide. (B) Base pairs covered by MACS2 called

peaks for each dataset. (C) Percentage of MACS2 peaks in the Gold Standard dataset intersecting

with MACS2 peaks in each other analysis, as percentage of base pairs covered. (D) Percentage of

MACS2 peaks in each analysis intersecting with MACS2 peaks in the Gold Standard dataset, as per-

centage of base pairs covered. (E)Average mean absolute error vs. mappability score (UMAP50)

of each dataset. Dashed lines are presented for readability of overlapping curves rather than discon-

tinuities in data. (F)Mean absolute error of read depth at true origin loci for each dataset, with Gold

Standard as the reference point, stratified by average Gold Standard read depth at true origin locus.

(G)Mean error of read depth at true origin loci for each dataset, with Gold Standard as the reference

point, stratified by average Gold Standard read depth at true origin locus. (H) Mean unweighted

overlap proportion between alignment and true read origin as a function of alignment weight for

the no-iteration (green) and one-iteration (red) scored SmartMap analyses. Overlap proportion is

computed as a geometric mean of the proportion of the alignment and of the true read origin that

overlaps with the other.

responding scored analyses (Fig. 5.5F-G), and the no-iteration SmartMap analyses had similarly

lower on-target and higher off-target read depth than their one-iteration counterparts.

As another metric to evaluate each analysis, we conducted MACS2 peak calling on each

dataset and assessed the degree to which they overlap. The SmartMap analyses had similar (albeit

slightly higher) base pair coverage with called peaks relative to the Gold Standard dataset and

considerably higher coverage on called peaks than the uniread analyses (Fig. 5.3B), consistent

with the genome-browser views that suggest a similar pattern of peak boundary sharpening (Fig.

5.3). As a measure of sensitivity, we computed the proportion of the Gold Standard peaks that

were covered by SmartMap or uniread peaks (Fig. 5.6C). Conversely, to measure specificity, we

computed the proportion of SmartMap or uniread peaks that were covered by Gold Standard peaks

(Fig. 5.6D). As expected, there was considerably lower coverage by the uniread datasets than the

SmartMap datasets, and the one-iteration SmartMap analyses had very slightly lower coverage over

the Gold Standard peaks than the no-iteration analyses (Fig. 5.6C). However, the one-iteration

analyses were better-covered by Gold Standard peaks than were their no-iteration counterparts (Fig.
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5.6D). Together, these data suggest that SmartMap analyses with one iteration of reweighting have a

marked increase in specificity relative to the no-iteration analyses at the expense of a slight decrease

in sensitivity.

We then evaluated the overall mean absolute error of read depth at the true origin loci

relative to Gold Standard. The uniread analyses had the highest average mean absolute error, with

all SmartMap analyses outperforming all uniread analyses (Fig. 5.5H). The scored SmartMap

analyses also all had lower error than did the unscored analyses, and the one-iteration SmartMap

analyses slightly outperformed the no-iteration analyses (Fig. 5.5H). The error in all datasets tended

to primarily be concentrated at regions of lower mappability (Fig. 5.6E). Interestingly, though

SmartMap with one iteration had lower mean absolute error overall, the no-iteration modality

had slightly lower mean absolute error at true origin loci of lower read depth (Fig. 5.5H and

5.6F). The reason for this difference is not clear; across all read depth classes, the one-iteration

analyses had slightly less negative mean error, suggesting that there wasn’t a large-scale difference

in over- or underweighting after iteration as a function of read depth (Fig. 5.6G). With that said,

we feel it is important to contextualize these results; these differences between the no-iteration and

one-iteration analyses are small in magnitude and are comparatively dwarfed by the differences

between SmartMap and uniread analyses (Fig. 5.5H and 5.6E-G).Accordingly, though there may be

small differences between the no-iteration and one-iteration SmartMap analyses, the one-iteration

analyses still performed better in aggregate, and both of these scored SmartMap analyses consistently

outperformed their unscored or uniread counterparts.

The above analyses all focused on validating SmartMap from the perspective of the total read

depth across a set of genomic intervals. However, given that we had a Gold Standard dataset listing

the true positions of each read, we also wished to evaluate whether our reweighting method could

179



improve the estimated of the probability that an alignment was properly mapped – and, by proxy,

improve the MAPQ score estimate for each alignment. Without reweighting, the probability of

correct alignment ranged from 0-0.67 and 1, with no alignments with correct alignment probability

between 0.67 and 1. One iteration of SmartMap reweighting expanded the spectrum of possible

alignment weights to the full range of 0-1. Without reweighting, the weight of alignments did not

correlate well with the proportion of alignment intersecting the true genomic position, with many

large deviations seen from linearity (Fig. 5.5I). By contrast, though one iteration of reweighting

still showed some deviations from linearity by this analysis, the weight of alignments more closely

concorded with the proportion of the alignments intersecting the true read origin (Fig. 5.5I). This

suggests that by this measure, SmartMap reweighting improved the estimates of the probability that

the alignment intersects with the true genomic position of the corresponding read.

Similarly, we compared the weighted proportion of overlap between the true read positions

and any intersecting alignments as a function of alignment weight. This is meant to represent the

proportion of a read’s weight that is mapped to the correct location due to a given alignment and

incorporates both the confidence of the alignment selection (i.e. the weight) and the overlap of the

alignment with the true origin of the read. In both the no-reweighting and one iteration analyses, the

overlap proportion score was closely linearly related to the alignment weight, though the reweighted

analysis showed a slightly smoother curve with fewer marked deviations from linearity (Fig. 5.5J).

This is roughly expected, as the overlap proportion score is itself a function of weight; however,

this analysis is comforting insofar as it shows that the SmartMap reweighting does not markedly

inflate or deflate the expected weight contribution of a given alignment to a proper intersection

with the true origin. Similarly, we find that the unweighted overlap proportion of alignments with

the true origin of the read is roughly constant near one for both the no-iteration and one-iteration
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datasets, though again, the one-iteration SmartMap analysis reduces the deviations from this level

(Fig. 5.6H). These analyses suggested that in addition to improving measurement of read depths in

aggregate, the SmartMap reweighting procedure can also improve the estimates of correct alignment

for individual reads and alignments.

The biological ChIP-seq and MNase-seq datasets presented in the remainder of this work

used 50bp read lengths or shorter, which is why we used 50bp read lengths for our simulated

dataset. However, in recent years, 100bp read lengths have become commonplace, and indeed, the

ENCODE datasets we present later in this work employed paired-end 100bp NGS. As such, we

examined the degree to which SmartMap can improve recovery of sequencing depth with longer

reads by conducting a similar analysis as the above with a similarly simulated dataset employing

100bp paired-end reads. For facile comparison to the other Fig. and analyses in this work, we have

continued to use the UMAP50 score as our mappability score. This choice is in spite of the fact

that UMAP50 measures mappability by 50mers rather than 100mers and will thus underestimate

mappability by 100bp reads. Therefore, regions with lower mappability scores will often be more

easily mapped than the score would indicate, blunting differences between SmartMap and uniread

analyses. As such, our analyses using the UMAP50 score will offer a conservative view at the

impact of SmartMap analysis on read depth recovery and error.

Despite this conservative choice of mappability score, we still see that SmartMap analysis

improves sequencing depth recovery nearly as well with 100bp reads as it does with 50bp reads.

The simulated dataset with 50bp reads shows a 13.9% increase in analyzable reads due to the high

number of multireads (Fig. 5.2B-C and Table 5.1); the simulation with 100bp reads shows a 13.6%

increase in analyzable reads and a similar proportion of multireads (Fig. 5.7A-B and Table 5.1).

Along the same lines, the two simulations increase read depth over similar proportions of the genome
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Figure 5.7: SmartMap and uniread analyses of the 100bp read length validation dataset.

(A, B) Number of (A) alignments or (B) reads vs. number of alignments per read. (C) Quantile plot

of read depth at the true origin loci. (D)Median read depth vs. mappability score (UMAP50) of the

true origin loci. (E-G) QQ plot of read depth at true origin loci in the (E) SmartMap vs. uniread,

(F) Gold Standard vs. uniread, and (G) Gold Standard vs. SmartMap scored datasets. Color scale

represents percentile of each point, from 1st to 99th percentiles. (H)Mean absolute error of read

depth at true origin loci for each dataset, with Gold Standard as the reference point. (I) Average

mean absolute error vs. mappability score (UMAP50) of each dataset.
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Table 5.2: Analysis of reads across genomic windows.

Regions with reads in:

Sample Genome Assay Regions Uniread SmartMap
% Reg.

Inc.

% Inc.

Reg.

Simulated,

50bp
hg38 Simulation 15,498,848 10,486,482 11,994,872 28.74% 14.38%

Simulated,

-k 101
hg38 Simulation 15,498,848 10,463,337 12,012,046 29.07% 14.80%

S
im
u
la
te
d

Simulated,

100bp
hg38 Simulation 15,498,848 9,956,521 11,475,027 32.77% 15.25%

Input

Rep. 1
mm10*

MNAse-

seq
13,654,309 12,129,867 13,243,873 33.49% 9.18%

H3K4me3

Rep. 1
mm10* ChIP-seq 13,654,309 11,329,858 12,999,672 27.21% 14.74%

Input

Rep. 2
mm10* ChIP-seq 13,654,309 12,115,174 13,242,243 31.96% 9.30%

A
R
7

H3K4me3

Rep. 2
mm10* ChIP-seq 13,654,309 10,952,182 12,750,113 27.25% 16.42%

Input dm3†
MNAse-

seq
698,569 617,424 681,457 17.92% 10.37%

A
R
8

H3K27me3 dm3† ChIP-seq 698,569 612,050 680,193 17.39% 11.13%

Input mm10†
MNAse-

seq
13,654,309 12,214,070 13,245,567 35.60% 8.45%

H3K4me3 mm10† ChIP-seq 13,654,309 11,775,058 13,208,421 30.83% 12.17%

H3K9me3 mm10† ChIP-seq 13,654,309 12,027,438 13,245,567 32.11% 10.04%

A
R
9

H3K27me3 mm10† ChIP-seq 13,654,309 12,012,091 13,237,339 31.99% 10.20%

Input hg38‡
MNAse-

seq
15,498,848 13,879,635 14,629,457 34.59% 5.40%

H3K4me1 hg38‡ ChIP-seq 15,498,848 13,310,801 14,423,602 31.07% 8.36%

H3K4me2 hg38‡ ChIP-seq 15,498,848 13,298,178 14,443,778 30.56% 8.61%A
R
1
6

H3K4me3 hg38‡ ChIP-seq 15,498,848 10,338,102 12,270,858 25.24% 18.70%

Table 5.2 continues on next page.
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Table 5.2, continued:

Regions with reads in:

Sample Genome Assay Regions Uniread SmartMap
% Reg.

Inc.

% Inc.

Reg.

Input hg38‡
MNAse-

seq
15,498,848 13,896,029 14,634,051 34.56% 5.31%

H3K9me3 hg38‡ ChIP-seq 15,498,848 13,856,547 14,626,552 34.14% 5.56%A
R
1
7

H3K27me3 hg38‡ ChIP-seq 15,498,848 13,803,814 14,618,351 33.66% 5.90%

Snyder

Rep. 1
hg38

ATAC-

seq
15,498,848 10,389,635 11,970,867 28.34% 15.22%

Snyder

Rep. 2
hg38

ATAC-

seq
15,498,848 9,772,547 11,251,766 21.53% 15.14%

Gingeras

Rep. 1
hg38§ RNA-seq 41,929 21,755 25,711 22.85% 18.18%

E
N
C
O
D
E

Gingeras

Rep. 2
hg38§ RNA-seq 41,929 12,399 14,485 11.96% 16.82%

Unireads refers to the number of reads with one alignment.

For all except the “Simulated, -k 101” dataset, Analyzable Multireads refers to reads with between

2-50 alignments; Unanalyzable Multireads refers to reads with 51 reported alignments, the limit for

reported alignments per read.

For the “Simulated, -k 101” dataset, Analyzable Multireads refers to reads with 2-100 alignments,

and Unanalyzable Multireads refers to reads with 101 reported alignments.

% Incr.: Increase in the number of analyzable reads with SmartMap analysis, computed as the

number of Analyzable Multireads as a percentage of the number of Unireads.

Genome includes ICeChIP barcodes: * Series 1. † Series 2. ‡ Series 3.

§ Genome includes ENCODE ERCC standards.

(Table 5.2). Over the true origin loci, much like the 50bp simulation, the 100bp simulated dataset

shows an increase in read depth on quantile plots (Fig. 5.7C) under SmartMap analysis, with this

increase in read depth primarily occurring at regions of low UMAP50mappability score (Fig. 5.7D),

conservative though this measurement of mappability is. Much like the 50bp simulated datasets, the

increases in read depth under SmartMap analysis are primarily seen at regions of low mappability
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and low uniread read depths; QQ plots comparing the uniread analysis with the SmartMap or Gold

Standard show a shoulder at low uniread depths, with the plot converging onto a slope of unity at

higher uniread depths (Fig. 5.7E-F). It should be noted that, as with the 50bp simulated dataset (Fig.

5.7D), the SmartMap dataset still fails to fully recover read depth as compared to Gold Standard

with 100bp reads (Fig. 5.7G). Nonetheless, the SmartMap analysis still shows considerably lower

mean absolute error than does the uniread analysis at true origin loci (Fig. 5.7H), with this decrease

in error being particularly prominent at regions with lower UMAP50 mappability scores (Fig. 5.7I).

In total, these analyses suggest that even for datasets employing 100bp paired-end sequencing reads,

multiread analysis still has nearly undiminished importance and that SmartMap can still markedly

improve read depth recovery while decreasing overall error.

The above analyses all restricted Bowtie2 to report a maximum of 51 alignments for com-

putational efficiency. Subsequently, only those reads aligning to fewer than 51 alignments were

used for SmartMap analysis. However, this practice excluded more than 7 million reads (Table

5.1), likely including reads that map to the most highly repetitive regions of the genome. Notably,

this is a restriction on alignment itself, not SmartMap; there’s no reason that SmartMap would

inherently be unable to handle greater numbers of alignment. Nonetheless, to evaluate the impact

of this restriction on the SmartMap datasets, we reanalyzed our simulated 50bp read length dataset

with a maximum of 101 alignments per read (hereafter, the k101 dataset) and compared it to the

previous analysis (the k51 dataset). To our surprise, the two analyses were highly similar despite

the near-doubling in the maximum-alignments threshold in the former dataset. The increase in the

number of analyzable reads was nearly identical between the two analyses (Fig. 5.8A-B and Table

5.1), with similar increases in depth over genomic windows (Table 5.2). At the true origin loci, the

SmartMap read depths in both the k51 and k101 datasets were very similar at the level of read depth
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(Fig. 5.8C-D). Mean absolute error relative to the Gold Standard was actually very slightly lower in

the k51 dataset, though they were quite similar in magnitude compared to the uniread dataset (Fig.

5.8E-F). Even specifically examining repetitive elements, read depth was very similar between the

k51 and k101 SmartMap analyses at all repeats (Fig. 5.8G), LINEs (Fig. 5.8H), SINEs (Fig. 5.8I),

and Alu elements (Fig. 5.8J), closely approximating the Gold Standard read depth in both cases.

Accordingly, though there is still a large proportion of reads that mapped to still greater numbers

of loci, we find that at the range we have tested, the SmartMap analyses are robust to differences

in maximum-alignments reporting thresholds and that there is little practical difference between

restricting datasets to a maximum of 51 or 101 alignments per read besides the additional time and

storage space needed for the latter.

To be sure, the reweighting used for SmartMap is not without concerns. In particular, one of

the potential problems for SmartMap is the existence of high-signal regions, which can show falsely

high read depth in NGS experiments due to sequencing or alignment error233. If there are regions of

falsely high weight, then those regions could be skewed by the SmartMap reweighting algorithm to

report even greater weights, thus exacerbating these artifactually high signals. To assess the degree

to which these regions represent an issue for SmartMap, we computed the number of genomic

windows with more than 60, 70, 80, or 90 reads in our simulated datasets (Table 5.3). We used

these benchmarks as rough thresholds for defining high-signal regions because the Gold Standard

dataset had a maximum read depth across a genomic window of approximately 83 reads. Notably,

the Gold Standard did not require sequencing or mapping and should thus not be susceptible to

these high-signal artifacts. Unfortunately, one iteration of SmartMap reweighting did increase the

proportion of high-signal regions considerably; there were fewer than 600 genomic windows with

an average depth of more than 70 in the Gold Standard, Iteration 0, and Uniread datasets, compared
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Figure 5.8: Characteristics of the -k 101 SmartMap dataset.

(A, B) Number of (A) alignments or (B) reads vs. number of alignments per read. (C) Quantile plot

of read depth at the true origin loci. Dashed lines are presented for readability of overlapping curves

rather than discontinuities in data. (D)Median read depth vs. mappability score (UMAP50) of the

true origin loci. (E)Mean absolute error of read depth at true origin loci for each dataset, with Gold

Standard as the reference point. (F)Average mean absolute error vs. mappability score (UMAP50)

of each dataset. (G-J) Average read depth across the bodies of (G) all repetitive elements, (H)

LINEs, (I) SINEs, and (J) Alu elements.

to more than 10,000 in the SmartMap dataset with one reweighting cycle. It’s important to note

that these regions represent a very small proportion of the genome; only 0.066% of the genomic

windows had more than 70 reads on average, and even fewer had more than 80 or 90 reads (Table
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5.3), leaving considerably more than 99.9% of the genome as not having abnormally high-signal

attributable to SmartMap. In contrast, almost 15% of the genome is hidden from uniread analysis

(Table 5.2). Nonetheless, we feel it is fair to say that the reweighting algorithm used for SmartMap

will increase the weights of multiread alignments at high signal regions, which can exacerbate

artifactually high read depths.

Table 5.3: Analysis of high-depth regions under SmartMap analysis.

Number of genomic windows with: Percent of genomic windows with:

Dataset >60 rds. >70 rds. >80 rds. >90 rds. >60 rds. >70 rds. >80 rds. >90 rds.

Gold Std. 34,468 463 1 0 0.22 0.0030 6.5 x 10-6 0

Iteration 0 26,969 571 85 36 0.17 0.0037 5.5 x 10-4 2.3 x 10-4

Iteration 1 44,185 10,193 6,337 4,296 0.29 0.066 0.041 0.028

Uniread 24,344 321 1 0 0.16 0.0021 6.5 x 10-6 0

Number of genomic windows refers to the number of 200bp genomic windows for each dataset

with an average depth or average weight greater than that indicated in each column. Percent of

genomic windows refers to the number of genomic windows as a percentage of the total number

of 200bp genomic windows in hg38 (15,498,848). The median read depth was 10.5 and the mean

read depth was 16.1 in the Gold Standard dataset.

Even so, on the whole, these analyses suggest that SmartMap recovers read depth at a large

set of loci that would otherwise be missed by the uniread analyses and that of the SmartMap analyses,

one iteration of reweighting with use of alignment scores largely outperforms the other modalities.

Accordingly, for the remainder of this work, we use SmartMap analysis with one iteration in scored

mode as our default SmartMap method.

Using SmartMap on MNase-seq and ChIP-seq datasets

Having validated our method on the simulated dataset, we turned to the biological samples. We

deployed a total of 21 datasets derived from three different organisms for our analysis (Table 5.1). Of

these datasets, six were control ICeChIP Inputs, generated by MNase-seq118,124, 11 were ICeChIP-
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Figure 5.9: Alignments per ICeChIP-seq dataset.

Number of alignments vs. alignments per read for each ICeChIP-seq dataset analyzed.
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Figure 5.10: Reads per ICeChIP-seq dataset.

Number of reads vs. alignments per read for each ICeChP-seq dataset analyzed.
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seq IP datasets, two were ATAC-seq datasets, and two were RNA-seq datasets. After alignment, the

samples showed a 13-50% increase in the number of usable reads for SmartMap analysis relative

to uniread (Fig. 5.9, 5.10 and Table 5.1).

To evaluate the impact of our algorithm on the ICeChIP-seq datasets, we first conducted

SmartMap and uniread analysis on each of the Input datasets and computed the average read depth

on 200bp genomic windows. As with the simulated dataset, the SmartMap analyses of the Inputs

had increased read depth relative to the uniread datasets (Fig. 5.11A and 5.12A), with markedly

greater depth in the SmartMap analysis at windows of lower mappability (Fig. 5.11B and 5.12B).

Similarly, this excess read depth was not distributed across all reads, but rather, was concentrated

onto 17-35% of windows (Fig. 5.11C and 5.12C and Table 5.2), primarily at regions of lower

mappability (Fig. 5.11D and 5.12D). The QQ plots of the SmartMap vs. the uniread read depths

showed a shoulder at low uniread depth (Fig. 5.11E and 5.12E), again suggesting that the increase

in read depth from the SmartMap analysis is primarily at loci where the uniread analysis performs

poorly. This difference in the distributions of read depths further comments on the importance of

analyzing multireads.

With our Input datasets, we could also examine the reproducibility of the MNase-seq exper-

iments under uniread and SmartMap analyses. There were three biological replicates of Input in

mESC E14 cells (AR7 Replicate 1, AR7 Replicate 2, and AR9), and two biological replicates of

Input in K562 cells (AR16 andAR17). For all loci with nonzero read depth, we computed the depth

normalized log ratios of reads in a pairwise manner for biological replicates, shown as quantile

plots in Fig. 5.11F. These plots are highly similar under SmartMap and uniread analyses across

all pairwise comparisons (Fig. 5.11F). Accordingly, the average magnitudes of these ratios are

similar between the two analyses – and indeed, are slightly lower in the SmartMap datasets (Fig.
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Figure 5.11: SmartMap and uniread analyses of ICeChIP-seq input depth.
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Figure 5.11, continued:

All analyses conducted on 200bp genomic windows for the Inputs defined in Table 1. (A) Quantile

plot of read depth for SmartMap and uniread analyses. (B)Median read depth vs. mappability score

(UMAP50) for SmartMap and uniread analyses. (C)Quantile plot of excess read depth in SmartMap

relative to uniread analysis. (D)Median excess read depth vs. mappability score (UMAP50). (E)

QQ plot of read depth in SmartMap vs. uniread analysis. Color scale represents percentile of each

point, from 1st to 99th percentiles. Dashed line represents line with slope of unity. (F) Quantile

plots of depth-normalized log ratio of read depths of biological input replicates under SmartMap

and uniread analysis. Graph breaks are present on both the upper and lower ends of the graphs. (G)

Mean absolute depth-normalized log ratio for the comparisons presented in panel F.
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Figure 5.12: SmartMap and uniread analysis of AR8 input.

All analyses conducted on 200bp tiled genomic windows. (A) Quantile plot of read depth for

SmartMap and uniread analyses. (B) Median read depth vs. mappability score (UMAP50) for

SmartMap and uniread analyses. (C) Quantile plot of excess read depth in SmartMap relative to

uniread analysis. (D)Median excess read depth vs. mappability score (UMAP50). (E) QQ plot of

read depth in SmartMap vs. uniread analysis. Color scale represents percentile of each point, from

1st to 99th percentiles. Dashed line represents line with slope of unity.
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5.11G). This suggests that the two modalities show highly similar estimates of reproducibility of

data between biological replicates of MNase-seq.

Having examined the Input datasets, we then used the ICeChIP-seq datasets to compute

histone modification densities (HMD) across 200bp genomic windows with uniread and SmartMap

analyses. Interestingly, we noted that the mean HMD was quite similar between the SmartMap

and uniread datasets across a broad range of mappability scores (Fig. 5.13A and 5.14A). However,

the median HMD of those same datasets were divergent, with the SmartMap analyses having

considerably higher median HMD across bins of low mappability than the uniread analyses (Fig.

5.13B and 5.14B). The difference between mean and median HMD may be attributable to the fact

that HMD is a scaled-version of fold-change of IP over Input. We attribute the median HMD

divergence to sparser distribution of read depth in the uniread dataset at lower mappability scores

(Fig. 5.11B). As such, there are fewer regions with nonzero read depth in both the IP and Input.

The result of this mismatch in read distribution is that more regions have an apparent HMD of zero

under uniread analysis. That the mean HMDs are similar between the two analyses suggests that the

ratios of the total read depths in IP over Input are similar between SmartMap and uniread analyses.

Together, these data suggest that the SmartMap analyses preserve the overall HMD across a wide

range of mappability scores while also enabling measurement of HMD at a broader range of loci

than do uniread analyses.

One of the major benefits of using ICeChIP-seq data is the ability to measure antibody

specificity118,124,171. In ICeChIP, internal standards bearing a variety of different histone modifica-

tions can be simultaneously spiked into an experiment, and the relative pulldown efficiency of each

modification can be quantified as a proportion of the target to measure the off-target binding of the

antibody. We wished to determine whether the SmartMap analyses would yield similar specificity
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Figure 5.13: ICeChIP-seq histone modification density in SmartMap and uniread analyses.

All analyses conducted on 200bp tiled genomic windows. (A-B) (A) Mean or (B) Median HMD

vs. mappability score (UMAP50) for SmartMap and uniread analyses. (C-D) Scatterplots of (C)

specificity or (D) log specificity for uniread vs. SmartMap analyses. Specificity is measured as the

enrichment of each internal standard nucleosome as a percentage of on-target enrichment.

estimates as did the uniread analyses. First, we found that the ratio of the reads from the on-target

nucleosome in the IP over the Input was highly similar between the uniread and SmartMap analyses

(Table 5.4). Moreover, the scatterplots of specificity (Fig. 5.13C and 5.15A) and log specificity

(Fig. 5.13D and 5.15B) under each modality show slopes close to unity and high coefficients of
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Figure 5.14: SmartMap and uniread analyses of AR7, AR8, and AR9 HMDs.

(A) Mean or (B) Median HMD vs. mappability score (UMAP50) for SmartMap and uniread

analyses. Red line represents SmartMap analysis; blue line represents uniread analysis.
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determination. This further shows that the specificity measurements in SmartMap and uniread

analyses are absolutely (Fig. 5.13C and 5.15A) and relatively (Fig. 5.13D and 5.15B) similar.

Table 5.4: Analysis of ICeChIP calibrant barcodes.

On-target

IP/Input Ratio:
Specificity Plot:

Sample Series Barcodes Uniread SmartMap Species Slope R-2

H3K4me3

Rep. 1
Ser. 1 11 19.88 20.05 1 – –

AR7
H3K4me3

Rep. 2
Ser. 1 11 18.95 18.99 1 – –

AR8 H3K27me3 Ser. 2 100 0.877 0.879 1 – –

H3K4me3 Ser. 2 100 27.7 28.3 7 1.051 0.9984

H3K9me3 Ser. 2 100 1.34 1.26 7 1.012 0.9972AR9

H3K27me3 Ser. 2 100 0.678 0.677 7 1.022 0.9995

H3K4me1 Ser. 3 136 4.34 4.84 17 1.005 0.9967

H3K4me2 Ser. 3 136 3.98 3.75 17 1.004 0.9992AR16

H3K4me3 Ser. 3 136 32.4 31.1 17 1.009 0.9987

H3K9me3 Ser. 3 136 2.45 2.23 17 1.005 0.9996
AR17

H3K27me3 Ser. 3 136 1.82 1.73 17 1.002 0.9998

Barcodes: the number of unique DNA barcode sequences in the ICeChIP calibrant series.

Species: the number of distinct modified nucleosomes marked by the barcodes, including the target

modification and, if there is more than one species, the off-target modifications.

Specificity plot: summary of the specificity plots shown in Fig. 5.13C and 5.15A.

Extending the utility of SmartMap to ATAC-seq and RNA-seq

We also found that SmartMap could be applied to ATAC-seq data to obtain more global measure-

ments of chromatin accessibility. To demonstrate this, we used two replicates of K562 ATAC-seq

data, originally generated by the Snyder Lab as part of the ENCODE Consortium127. As with the

ICeChIP-seq datasets, we found that SmartMap analysis could utilize 17-20% more reads than

uniread analysis (Table 5.1); this increased read depth was primarily concentrated at 20-30% of
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Figure 5.15: Specificity scatterplots for AR9.

Scatterplots of (A) specificity or (B) log specificity for uniread vs. SmartMap analyses. Targets of

pulldowns are H3K4me3 (left), H3K9me3 (centre), and H3K27me3 (right). Specificity is measured

as the enrichment of each internal standard nucleosome as a percentage of on-target enrichment.

the genome (Fig. 5.16A-C and Table 5.2), particularly those loci with low mappability scores (Fig.

5.16D-F). SmartMap and uniread analyses also showed similar levels of reproducibility between

the two isogenic replicates, though SmartMap showed slightly lower reproducibility between the

two datasets than did the uniread analysis (Fig. 5.16G-H). These data suggest that SmartMap is

also useful for ATAC-seq data and can reveal accessible regions of the genome at poorly mappable

loci that would have been missed by uniread analysis alone.

In addition to the MNase-seq, ChIP-seq, andATAC-seq datasets, we also sought to apply our

SmartMap analysis to RNA-seq experiments. Specifically, we analyzed two replicates of K562 bulk
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Figure 5.16: SmartMap analysis of ENCODEATAC-seq datasets.

(A-B) Quantile plot of read depth at genomic windows in SmartMap and uniread analyses for (A)

Replicate 1 or (B) Replicate 2. (C) Quantile plot of excess read depth in SmartMap datasets relative

to corresponding uniread dataset for Replicates 1 and 2. (D-E)Median read depth vs. mappability

score (UMAP50) in SmartMap and uniread analyses for (D) Replicate 1 or (E) Replicate 2. (F)

Median excess read depth vs. mappability score (UMAP50). (G)Quantile plot of depth-normalized

log ratio of read depth in Replicate 1 over Replicate 2, for SmartMap and uniread analyses. Graph

breaks are present at both ends of the graph. (H)Mean absolute depth-normalized log ratio of the

analyses shown in panel G.

RNA-seq data, originally generated by the Gingeras Lab as part of the ENCODE Consortium127.

Our SmartMap RNA-seq analyses showed that for each replicate, relative to uniread analysis, there

was a 20-35% increase in usable reads (Table 5.1) concentrated into a minority of distinct Refseq

genes (Fig. 5.17A-C and Table 5.2). The reproducibility of the two datasets was also similar

between the SmartMap and uniread analyses, though as with the ATAC-seq data, the SmartMap

analysis showed marginally lower reproducibility between the two RNA-seq experiments than did

the uniread analysis (Fig. 5.17D-E). With that said, these differences in read depth are relatively

minor in magnitude, especially when normalized to differences in read depth in the SmartMap and

uniread analyses. Given the other concerns with using this multiread allocation algorithm in gapped
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reads or spliced transcripts (as noted in the Discussion), it is likely that SmartMap is not optimally

configured for use in RNA-seq analysis.
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Figure 5.17: SmartMap analysis of ENCODE RNA-seq datasets.

(A-B)Quantile plot of read depth at distinct Refseq genes in SmartMap and uniread analyses for (A)

Replicate 1 or (B) Replicate 2. (C) Quantile plot of excess read depth in SmartMap datasets relative

to corresponding uniread dataset for Replicates 1 and 2. (D) Quantile plot of depth-normalized

distinct Refseq gene log ratio of read depth in Replicate 1 over Replicate 2, for SmartMap and

uniread analyses. Pseudocount of 10-7 was added to each gene due to the high number of genes

with zero read depth. Graph breaks are present at both ends of the graph. (E) Mean absolute

depth-normalized log ratio of the analyses shown in panel D.

SmartMap drives new biological insights about repetitive DNA elements

With this method, we sought to better explore the role of histone modifications at repetitive re-

gions. Traditionally, the epigenetic profile of repetitive elements is viewed in light of the “genome

defense” hypothesis, which suggests that regulation of repetitive elements (and particularly trans-

posable elements) serves to silence the elements and thereby prevent transposition39. Consequently,

much previous work on this topic has primarily pointed towards repetitive elements being enriched

with heterochromatin-associated modifications such as H3K9me2315, H3K9me339,101,130,316,317, and

H3K27me339,101,318. In recent years, some studies have described a role for canonically activat-

ing histone modifications at a subset of repetitive elements319–324. Indeed, this body of work has

suggested that some long interspersed nuclear elements (LINEs) can bearmarks such as the transcrip-

tionally activating H3K4me3 modification, particularly early in development319,323,324. Similarly,
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other work has suggested that a class of mammalian-wide interspersed repeats (MIRs) may be

transcriptionally active and play a role in enhancer regulation321. Much of this work, however, has

relied upon uncalibrated ChIP with antibodies of uncertain specificity, both of which can result

in data distortion and biologically incorrect conclusions124. Further, the ChIP-seq and RNA-seq

studies have used a variety of different methods of aligning and filtering for reads to reach their

conclusions, none of which used a method similar to our Bayesian SmartMap analysis, which may

further affect the interpretations of the experiments. As such, we sought to use our calibrated and

highly specific ICeChIP-seq datasets in conjunction with SmartMap to gain new insights into the

epigenetic landscape of repetitive elements and to examine the degree to which uniread analysis

yields an incomplete view of the data.

To accomplish this, we examined the histone modification landscape at the promoters of

all repetitive elements, LINEs, short interspersed nuclear elements (SINEs), and Simple Repeats.

K-means clustering analysis on all repetitive elements revealed four classes of promoters, each

with a different histone modification profile: Cluster 1, enriched for H3K27me3 and H3K9me3;

Cluster 2, enriched for H3K4me1 and H3K4me2; Cluster 3, enriched for H3K4me2 and H3K4me3;

and Cluster 4, which is relatively depleted of histone modifications (Fig. 5.18A). These clusters

are roughly reminiscent of the functional classifications of the ENCODE hidden Markov model,

where Clusters 1, 2, and 3 correspond to silenced promoters, enhancers, and active promoters, re-

spectively325. Interestingly, in all but Cluster 4, a greater proportion of nucleosomes is enriched

with H3K27me3 than H3K9me3, despite the previous emphasis on the latter in repetitive element

silencing39,101,130,316,317, emphasizing the importance of calibration in ChIP-seq studies for com-

paring different modifications118,124. Similar histone modification profiles are seen for the LINEs

(Fig. 5.19A), SINEs (Fig. 5.19B), and Simple Repeats (Fig. 5.19C). Across all these classes,
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Figure 5.18: Assessment of histone modifications at promoters of repetitive DNA elements.

(A) Mean histone modification densities (HMDs) about promoters for classes of all repetitive

elements, as defined by k-means clustering. Corresponding analyses of LINE, SINE, and Simple

Repeat elements in S13 Fig. (B) Heatmap of repeat promoters with newly measurable HMD in

SmartMap analysis, sorted on first principal component of repetitive elements. (C) Proportion of

each cluster comprised by each repeat class or family for all repeats (left), LINE elements (center),

and SINE elements (right). All significance tests performed as post-hoc Bonferroni-corrected
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Figure 5.18, continued:

pairwise 2x2 chi-square tests. (D) Quantile boxplots of average normalized RNA-seq read depth

across LINE elements for each LINE cluster. Solid line with marker represents 90th percentile;

dashed line with marker represents 95th percentile. Significance test shows difference in median by

Bonferroni-corrected pairwise Mood’s median tests. Significance markers: ∗p < 0.01, ∗∗p < 10−5,
∗∗∗p < 10−10.

Cluster 3 had the highest ATAC-seq signal (Fig. 5.19D-G), consistent with the presence of histone

modifications associated with transcription and accessible chromatin17,18,326.

Importantly, SmartMap analysis enabled us to more accurately measure HMD and assign

clusters than did uniread analysis. Overall, there were 142,392 promoters with nonzero HMD in

the SmartMap analysis that displayed no measurable HMD within 200bp of the TSS across all

five histone modifications in the uniread dataset; similarly little HMD was detected within 1kb

of the same in the uniread dataset (Fig. 5.20). This increase in HMD was substantial; most such

sites had meaningful levels of histone modifications (Fig. 5.18B). A small subset was primarily

H3K4me2/me3 predominant; a larger subset had high levels of H3K4me1/me2, and the remainder

were primarily characterized by H3K27me3 and H3K9me3 (Fig. 5.18B). These represent promoters

that would have been misclassified as histone-modification-depleted under uniread analysis; it is

only through proper allocation of multireads that we can measure their HMDs and assign them to

the appropriate cluster of repeat elements.

The distribution of repetitive elements across these clusters revealed interesting patterns.

The distribution of the repeat classes or families across the clusters are presented in Table 5.5 for

all repeats, Table 5.6 for LINEs, and Table 5.7 for SINEs, and summarized in Fig. 5.18C. Notably,

amongst SINEs, MIRswere enriched in Cluster 3 (Fig. 5.18C), consistent with previous descriptions

of a class of transcriptionally activeMIRs321. In addition, Cluster 3 was enriched for Simple Repeats

across all repeat promoters, consistent with descriptions of Simple Repeats in and around protein
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Figure 5.19: Histone modification and ATAC-seq profiles on subset clusters.

(A-C) HMDs of modifications about promoters of (A) LINEs, (B) SINEs, or (C) simple repeats

separated by k-means clustering conducted on the appropriate set of repetitive elements. (D-G)

Total ATAC-seq read depth across both replicates about promoters of (D) all repeats, (E) LINEs,

(F) SINEs, or (G) simple repeats.
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Figure 5.20: Heatmaps of repeat promoters under uniread analysis.

Heatmap of repeat promoters with measurable nonzero HMD only in SmartMap analysis, sorted on

first principal component of repetitive elements.

coding genes in the literature327. Interestingly, Cluster 3 was enriched for the L2 subtype of LINEs,

despite previous work primarily focusing on the role of H3K4me3 at L1 elements319, representing a

novel prediction of transcriptional activity of this family. To this end, using SmartMap analysis of

the RNA-seq data, we found that the Cluster 3 LINEs had greater transcriptional activity than did

the other clusters (Fig. 5.18D), confirming the transcriptional activity suggested by the presence of

H3K4me3. Collectively, these data demonstrate the risk in only focusing on unireads – namely, the

risk of missing important classes of genomic features – and highlights the role of multiread analysis

of both DNA and RNA in driving new biological discovery.

Discussion

In this work, we have described a method to markedly increase sequencing depth genome-wide by

analyzing ambiguously mapped reads rather than discarding them. This is of particular importance

given that a significant portion of commonly studied genomes are not uniquely mappable by single-
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Table 5.5: Clustering of repetitive elements.

Repeat Class Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

DNA 240,787 28,465 763 232,324 502,339

LINE 754,991 78,670 2,133 734,556 1,570,350

LTR 393,797 39,911 707 319,769 754,184

Simple Repeat 357,734 50,395 7,555 287,900 703,584

SINE 818,624 119,404 5,478 908,873 1,852,379

Other 61,336 10,461 2,038 62,635 136,470

Total 2,627,269 327,306 18,674 2,546,057 5,519,306

Table 5.6: Clustering of LINEs.

LINE Family Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

L1 463,275 46,376 828 490,788 1,001,267

L2 233,599 32,236 1,289 207,410 474,534

Other 43,993 6,221 146 44,189 94,549

Total 740,867 84,833 2,263 742,387 1,570,350

Table 5.7: Clustering of SINEs.

SINE Family Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

Alu 520,927 72,223 2,880 590,748 520,927

MIR 319,283 38,836 2,587 241,855 319,283

FLAM 17,988 3,069 148 18,782 17,988

Other 11,943 1,634 61 9,415 11,943

Total 870,141 115,762 5,676 860,800 870,141

end or paired-end sequencing304,305. This difficulty arises in no small part due to the repetitiveness of

the genome22, but despite their difficulty to map, repetitive elements play critical roles in genomic

regulation and function306. It is common discard these multireads entirely, despite these reads

representing up to 30% of the sequencing depth. Works that do utilize multireads often simply

select an alignment at random. We demonstrate that our SmartMap algorithm can better map reads
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to the repetitive portion of the genome, facilitating better understanding their functions. Importantly,

we find that the usage of alignment quality scores and paired-end sequencing can markedly increase

the accuracy of alignment weights.

C

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

Si
m

ul
at

ed
 5

0b
p

Si
m

ul
at

ed
 -k

 1
01

Si
m

ul
at

ed
 1

00
bp

In
pu

t R
1

H
3K

4m
e3

 R
1

In
pu

t R
2

H
3K

4m
e3

 R
2

In
pu

t
H

3K
27

m
e3

In
pu

t
H

3K
4m

e3
H

3K
9m

e3
H

3K
27

m
e3

In
pu

t
H

3K
4m

e1
H

3K
4m

e2
H

3K
4m

e3
In

pu
t

H
3K

9m
e3

H
3K

27
m

e3
Sn

yd
er

 R
1

Sn
yd

er
 R

2
G

in
ge

ra
s 

R
1

G
in

ge
ra

s 
R

2

AR7 AR8 AR9 AR16 AR17 ENCODE

%
 In

cr
ea

se
 (

R
eg

io
ns

 w
/ R

ea
ds

)

A

0%

10%

20%

30%

40%

50%

60%

Si
m

ul
at

ed
 5

0b
p

Si
m

ul
at

ed
 -k

 1
01

Si
m

ul
at

ed
 1

00
bp

In
pu

t R
1

H
3K

4m
e3

 R
1

In
pu

t R
2

H
3K

4m
e3

 R
2

In
pu

t
H

3K
27

m
e3

In
pu

t
H

3K
4m

e3
H

3K
9m

e3
H

3K
27

m
e3

In
pu

t
H

3K
4m

e1
H

3K
4m

e2
H

3K
4m

e3
In

pu
t

H
3K

9m
e3

H
3K

27
m

e3
Sn

yd
er

 R
1

Sn
yd

er
 R

2
G

in
ge

ra
s 

R
1

G
in

ge
ra

s 
R

2

AR7 AR8 AR9 AR16 AR17 ENCODE

%
 In

cr
ea

se
 (

R
ea

d 
D

ep
th

)

B

0%

5%

10%

15%

20%

25%

30%

35%

40%

Si
m

ul
at

ed
 5

0b
p

Si
m

ul
at

ed
 -k

 1
01

Si
m

ul
at

ed
 1

00
bp

In
pu

t R
1

H
3K

4m
e3

 R
1

In
pu

t R
2

H
3K

4m
e3

 R
2

In
pu

t
H

3K
27

m
e3

In
pu

t
H

3K
4m

e3
H

3K
9m

e3
H

3K
27

m
e3

In
pu

t
H

3K
4m

e1
H

3K
4m

e2
H

3K
4m

e3
In

pu
t

H
3K

9m
e3

H
3K

27
m

e3
Sn

yd
er

 R
1

Sn
yd

er
 R

2
G

in
ge

ra
s 

R
1

G
in

ge
ra

s 
R

2

AR7 AR8 AR9 AR16 AR17 ENCODE

%
 R

eg
io

ns
 w

/ I
nc

re
as

ed
 D

ep
th

Figure 5.21: Analysis of increased usable read depth.

This figure graphically represents the data in Tables 5.1 and 5.2. (A) The percent increase in the

number of reads usable in SmartMap analysis (reads with 1-50 alignments) relative to uniread

analysis (reads with 1 alignment). (B) Percentage of the total number of regions with an increase

in read depth in the SmartMap dataset relative to the uniread dataset. For all datasets except the

ENCODE RNA-seq datasets, the list of regions analyzed is the set of 200bp genomic windows

across the relevant genome (hg38, mm10, or dm3). For the ENCODE RNA-seq dataset, the list of

regions analyzed is the set of distinct Refseq genes. (C) Percent increase in the number of regions

with nonzero read depth in the SmartMap dataset relative to the uniread dataset.

Just by incorporating multireads with 2-50 alignments, we were able to increase the read

depth of our samples by 13-53% (Fig. 5.21A and Table 5.1). This increase in read depth was not

simply distributed across the entire genome, which is critical for the usefulness of this method. If the

multireads were distributed uniformly, it would only modestly decrease error by slightly increasing

read depth at all loci118. However, that is not the case; rather, the multireads are concentrated in a

minority of the genome (Fig. 5.21B and Table 5.2), bringing regions of lower mappability to read

depths comparable with highly mappable loci (Fig. 5.11A). The multiread samples have a 5-20%

increase over unireads in loci with nonzero read depth (Fig. 5.21C and Table 5.2), representing a
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sizable proportion of the genome that is completely ignored by uniread analysis and can be recovered

only by utilizing ambiguously mapped reads.

Our method requires no particular experimental modifications or additional controls for

analysis of multireads and can be applied post hoc to existing datasets. As such, SmartMap can be

used to leverage the existing compendium of NGS datasets more accurately. Though we primar-

ily used ICeChIP-seq data to demonstrate and explore the capabilities of SmartMap, this tool is

not solely designed for ICeChIP and does not require the internal standards used therein. Indeed,

SmartMap is designed to be a general tool for a broad range of next-generation sequencing exper-

iments, including ChIP-seq, MNase-seq, and ATAC-seq, as we showed in this work. In addition,

though we have used paired-end sequencing here, there is little reason to believe this method could

not be used for a single-end sequencing experiment. In principle, an algorithm using the principles

of SmartMap can be applied to any NGS experiment, past or future, that involves alignment to a

genome.

Previously published methods have utilized a variety of techniques to allocate multireads;

however, our analysis suggests that many of these methods may be problematic. One heuristic

assumes that multireads and unireads have similar genomic distributions and, accordingly, assigned

multireads weights in proportion with uniread depth295,328. Our data, by contrast, shows that multi-

reads instead concentrate into a minority of loci (Table 5.2) and particularly those with low uniread

depth (Fig. 5.4C-D and 5.5C). This suggests that the unireads and multireads have different genomic

distributions, violating the critical assumption underlying proportional allocation of multireads. An-

other method of resolving multireads is to select one alignment at random for each read39,312. The

expected value of the read distribution under this procedure converges to that of SmartMap without

reweighting, which we found to have higher error than SmartMap with a Bayesian reweighting
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cycle (Fig. 5.2D, 5.5H and Table 5.8). Indeed, explicit comparison to an instance of random read

comparison revealed even higher error as compared to SmartMap with and without reweighting

(Table 5.8).

Table 5.8: Benchmarking SmartMap software.

Pre-algorithm

Alignment and Processing
Read Allocation Algorithm

Read

Alignment

Processing

Alignments

Reading

Alignments

Algorithm

CPU

Time

Wall

Time

CPU

Time

Proc.

File

Size

CPU

Time

Max.

Memory

Algorithm

Time

Avg.

MAE

SmartMap 317:30:25 6:39:46 1:34:29 59 GB 0:16:49 53 GB 0:42:38 4.04

BM-Map 317:30:25 6:39:46 N/A 820 GB 6:25:09 146 GB ERROR –

Iteration 0 317:30:25 6:39:46 1:34:29 59 GB 0:16:10 53 GB 0:35:16 4.12

Random 317:30:25 6:39:46 2:15:12 15 GB 0:03:58 39 GB 0:15:46 5.48

Uniread 36:08:04 0:45:34 0:17:07 13 GB 0:03:19 39 GB 0:14:43 6.50

Benchmarking conducted on computer withUbuntu 20.04.1 LTSwith 224GBof RAMand dual Intel

Xeon CPU E5-2690 v3 @ 2.60GHz processors, running on one thread except the read alignment,

which used 48 threads. All times are represented in hours:minutes:seconds.

Alignment conditions are identical for all but Uniread. Parsing reads is typically conducted in

parallel with alignment. File size represents the size of the required file after read parsing needed

for the algorithm in question. Reading alignments is part of each algorithm and is included in the

Algorithm Total Time.

Average Mean Absolute Error (Avg. MAE) is computed against the gold standard on the set of

true origin loci. These benchmarking analyses were conducted separately with separate alignments

from the analyses in Fig. 5.5, and the avg. MAEs vary slightly in magnitude from those presented

in Fig. 5.5.

SmartMap is also computationally efficient as compared to the most similar previous al-

gorithms and software for the assignment of multireads. This is due in part to the low number of

reweighting iterations our algorithm uses, which decreases the computational burden of the soft-

ware. In addition, the Fenwick tree data structure used with our method allows for more efficient

processing of reads by accessing and updating of genomic weights. Previous implementations

209



of a scored-alignment reweighting algorithm, as done by BM-Map, have required more than five

hours to process approximately seven million aligned reads after alignment in previous studies311.

Unfortunately, we were not able to fully measure the time requirements for BM-Map for ourselves;

implementing both CSEM310 and BM-Map311 proved challenging, as described in the Methods.

However, using our simulated dataset (with 50bp reads), including more than 740 million align-

ments from more than 275 million reads, even just reading the alignments with BM-Map on our

hardware took more than 6 hours after alignment (Table 5.8). By contrast, our algorithm can com-

pletely process that same aligned dataset in less than 2.5 hours, representing more than 100-fold

less CPU time than the alignment itself (Table 5.8). As such, the low CPU-time requirements of

SmartMap drastically increases our ability to use this algorithm on data from modern NGS experi-

ments, particularly given the ever-increasing depth and decreasing cost of sequencing329. Though

it is, admittedly, faster to solely process unireads than to conduct SmartMap (Table 5.8), the added

time is not egregiously high; on our system, the full benchmarking (including alignment) required

roughly eight more hours of wall time in the SmartMap analysis than in the uniread analysis.

This SmartMap method is, however, not without its limitations. Primary amongst these

limitations is that rather than yielding a list of alignments, the SmartMap software either outputs

the read depth at each base pair genome-wide or a list of alignments with associated weights. While

this is useful for any analysis that utilizes the read depth at a given position, this makes it difficult to

use downstream methods or tools that primarily utilize the full list of alignments using off-the-shelf

tools. In particular, this makes it challenging to compute gene expression in RNA-seq per common

methods such as FPKM, which uses the number of reads overlapping a transcript as a measure

of expression rather than the read depth per base pair. This is partially alleviated by the fact that

SmartMap provides the option to write lists of alignments with their corresponding weights, but
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even so, incorporating these weights into existing downstream analyses, pipelines, and software

may remain challenging.

In addition, the SmartMap method also may face challenges with any alignments with

significant gaps relative to the alignment templates, such as those created by RNA splicing (or Hi-C

experiments). Because our reweighting algorithm assigns weights based on the average read depth

across an alignment, an alignment spanning a splice junction in RNA-seq may be unfairly assigned

a lower weight due to decreased read depth in the intron. As such, highly spliced genes may be

given a lower read depth than a similarly expressed gene with fewer introns. This could be partially

accommodated by weighting with the total read depth over an alignment rather than the average

read depth over the same, but this method would potentially unfairly increase weight of longer

alignments, which could pose another challenge.

In addition, from a computational perspective, the SmartMap method is memory intensive.

This is in large part due to the data structure used for storing genome-wide weight data. Because

this tool is designed to be compatible with reweighting of paired-end reads and obtaining the total

weight across a paired-end read, the data structure needs to efficiently conduct both range update

and range query operations. Accordingly, for the strand-independent method, we have used a dual

binary-indexed tree data structure; for strand-specific analysis, we use a dual binary-indexed tree

structure for each strand, for a total of four binary-indexed trees. For this reason, for our simulated

dataset, the SmartMap analysis required almost 60 GB of memory. In principle, a lower-memory

method could be developed that would only use one binary-indexed tree per strand, but this would

require iteration over each base position of each alignment and would thereby dramatically decrease

time-efficiency. However, it’s important to note that BM-Map, the only other tested software that

was even able to successfully read the alignments, required almost 150 GB to read that same set
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of alignments into memory (Table 5.8). In practice, with the decreasing costs of memory and the

increasing availability of computational servers and clusters for a wide variety of bioinformatic tools

and analyses, the memory requirements are likely workable for many users, particularly because of

the low CPU time required.

Finally, even the best SmartMap analysis can only be as good as the alignment itself. In this

work, we have largely restricted our Bowtie2 alignments to report a maximum of 51 alignments, with

the exception of the analysis with a maximum of 101 alignments. This was conducted for feasibility;

as the maximum number of reported alignments increases, so too does the computational overhead

needed for alignment of the reads by Bowtie2. However, this does place an inherent limitation on

our ability to look at the most repetitive regions of the genome, which can be found at hundreds of

loci throughout the genome and can thus pose a significant challenge to alignment and multiread

analysis. Granted, raising this threshold to a maximum of 101 alignments per reads had practically

no impact on the analysis on the human genome (Fig. 5.8, Tables 5.1 and 5.2), but nonetheless,

there were still nearly seven million reads that aligned to the maximum of 101 loci, representing

a significant number of reads with even more potential alignments. Further, some genomes have

even greater repetitiveness than does the human genome; for example, repetitive elements comprise

roughly 85% of the maize genome330, making alignment all the more challenging and raising the

number of plausible alignment sites for each read. It is important to note that this is not a limitation

that is inherent to SmartMap, but rather, to alignment itself. If the end user was able to generate an

alignment with an arbitrarily high maximum number of reportable alignments, there is no reason that

SmartMap should fail; it is not inherently capped at a maximum number of alignments per read. It

should be remembered that SmartMap will not be able to “fix” an alignment with too few alignments
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per read. Accordingly, it may be necessary to tune the maximum number of alignments per read to

appropriately analyze data originating from some genomes despite the added computational load.

Despite these limitations, we were nonetheless able to demonstrate the usefulness of our

SmartMap tool to process reads from a variety of NGS workflows (e.g. MNase-seq, ChIP-seq,

ATAC-seq, and RNA-seq) and to investigate biological questions – in this case, the epigenetic

regulation of repetitive elements. Just as importantly, we demonstrated the risk of using only

unireads – namely, that biologically relevant regions will be hidden from analysis because the

multireads have been discarded. Given the critical role that repetitive regions play in biological

regulation306, being able to analyze these regions is crucial to gaining amore complete understanding

of genomic structure and function. Accordingly, we hope this method will help enable researchers

to use their sequencing data more completely and thereby gain more useful information from their

experiments.
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Methods and Materials

Sequencing Data Sources

The ICeChIP-seq datasets analyzed in this work, with the exception of AR17 H3K27me3 IP, were

sourced from previously published ICeChIP-seq datasets118,124. The FASTQ files for datasets
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AR7, AR8, and AR9 can be obtained from Gene Expression Omnibus (GEO) Accession Number

GSE60378. The FASTQ files for datasets AR16 and AR17 can be obtained from GEOAccession

Number GSE103543. Inputs for each ICeChIP are generated by MNase-seq.

TheAR17 H3K27me3 ICeChIP-seq was conducted at the same time as theAR17 H3K9me3

ICeChIP-seq experiment using the same AR17 Input, but was not published previously124. It was

generated by ICeChIP-seq as previously described124 using an anti-H3K27me3 antibody (Cell

Signaling Technologies, Product Number 9733, Lot 8). This dataset has been made available at

GEOAccession Number GSE103543.

RNA-seq data was obtained from the ENCODE Project331, experiment ENCSR000AEL.

The FASTQ files for Isogenic Replicate 1 was obtained from the dataset for library ENCLB053ZZZ

(FASTQ accession numbers: ENCFF001RFF, ENCFF001RFE). The FASTQ files for Isogenic

Replicate 2 was obtained from the dataset for library ENCLB054ZZZ (FASTQ accession numbers:

ENCFF001RFD, ENCFF001RFC).

ATAC-seq data was obtained from the ENCODE Project331, experiment ENCSR483RKN.

The FASTQ files for Isogenic Replicate 1 was obtained from the dataset for library ENCLB918NXF

(FASTQ accession numbers: ENCFF391BFJ, ENCFF186CQZ). The FASTQ files for Isogenic

Replicate 2 was obtained from the dataset for library ENCLB758GEG (FASTQ accession numbers:

ENCFF440UAD, ENCFF350ZZR).

Mappability Scores

The mappability score chosen was the UMAP50 score, which represents the proportion of 50bp

kmers overlying a given point that are unique in the genome305. The approximate UMAP50 score

of the dm3 genome was computed by computing all 50-mers in the genome and determining those
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that are unique; the genome coverage of the unique 50-mers was then determined to compute

approximate UMAP50 score of the genome.

Simulated Dataset

The simulated dataset was generated as followed. First, 6 million loci of length 200bp in the genome

were randomly selected and designated as the target loci. Paired-end Illumina sequencing reads

were then simulated using NEAT-genReads332 using the list of target loci as the target file and the

following settings: 50bp read length, 30-fold target coverage, default off-target coverage, and insert

size 175bp average and 10bp standard deviation. The output list of true read locations was then

used to compute a Gold Standard genome coverage BedGraph using BEDTools genomecov174. The

average Gold Standard read depth of the target loci was then computed as described below, and

the target loci with nonzero Gold Standard read depth were designated as the “true origin” loci and

used for downstream analysis.

To generate the simulated dataset with 100bp read length, the same procedure was used on

the same set of 6 million loci, with the NEAT-genReads tool being set to output 100bp reads rather

than 50bp reads. Unless otherwise specified, this work uses “simulated dataset” or similar to refer

to the simulated dataset with 50bp reads.

Computing average value of BEDGRAPH at target loci

Because the BEDTools map software does not compute base-pair-wise averages of BEDGRAPH

signals, the following procedure was used to compute read depth at a list of target loci. Overlapping

loci were merged using BEDTools merge, and the resultant list of loci were partitioned into 1bp

windows using BEDTools makewindows. The BEDGRAPH was then mapped onto the windows
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using BEDTools map, and the mapped windows were then mapped with the mean function onto

the original list of target loci using BEDTools map.

Mappability estimation and binning

The mappability of a list of loci was computed by computing the average value of the UMAP50

bedgraph for the relevant genome at those loci using the method described above. To compute the

number of regions per UMAP50 score, the loci were binned by average UMAP50 score in bins

of width 0.01. The number of loci at each bin were then computed to determine the approximate

distribution of UMAP50 score across the selected loci.

MACS2 Peak Calling

Peak callingwas conducted on the simulated datasets usingMACS2176with the bdgpeakcall function

with the relevant BEDGRAPH file and default settings.

Alignment and Read Filtering and Processing

FASTQ files for ICeChIP-seq or the simulated dataset were aligned using Bowtie2172 due to its

common usage in the field and due to its ability to report alignment scores for each mate for each

alignment reported as opposed to for just the best alignment. Bowtie2 alignment was run on the

paired-end sequencing samples with the following settings: end-to-end alignment, very-fast preset

settings, no discordant alignments, no mixed alignments, report up to 51 alignments, insert size

minimum 100bp, insert size maximum 250bp. In the case of the analysis with up to 101 alignments

(the k101 dataset), the above settings were used with up to 101 alignments reported per read. The

genomes used for alignment were as follows: AR7, mm10 with ICeChIP barcodes series 1; AR8,
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dm3 with ICeChIP barcodes series 1; AR9, mm10 with ICeChIP barcodes series 2; AR16 andAR17,

hg38 with ICeChIP barcodes series 3; simulated datasets, hg38.

FASTQ files for RNA-seq were aligned using Hisat2333 for the same reasons as the choice

to use Bowtie2. Hisat2 alignment was run on the paired-end sequencing samples with the following

settings: no discordant alignments, no mixed alignments, report up to 51 alignments. The genome

used for alignment was hg38 with the ENCODE ERCC standards.

FASTQ files for ATAC-seq were aligned using Bowtie2172 on the paired-end sequencing

samples with the following settings: no discordant alignments, no mixed alignments, report up to

51 alignments, insert size maximum 2000bp. The genome used for alignment was hg38.

Alignments were then filtered to select for reads that are paired, mapped in a proper pair,

and mate on the reverse strand, corresponding to SAM flags of 99, 163, 355, and 419. For non-

strand-specific applications, the selected SAM file records were then extracted into a file containing

the following fields: chromosome, start position, stop position, read ID, read alignment score (field

labeled “AS:i:”), mate alignment score (field labeled “YS:i:”). For strand-specific applications, the

selected SAM file records were extracted into a file containing the following fields: chromosome,

start position, stop position, read ID, strand, read alignment score (field labeled “AS:i:”), mate

alignment score (field labeled “YS:i:”). The reads were then split into separate BED files based

on the number of alignments per read. For downstream uniread analyses, only the reads with 1

alignment were used; for downstream SmartMap analyses, reads with 1-50 alignments were used

except for the k101 dataset, in which case reads with 1-100 alignments were used.

The file with 51 alignments per read (or that with 101 alignments per read for the k101

analysis) was not used for downstream analyses to prevent confounding by reads with fewer reported

than possible reads.
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Uniread and SmartMap Analysis of Genome Coverage

For the uniread analysis, our SmartMap software was used with only the file containing reads with

only 1 alignment per read. For the SmartMap analysis, our SmartMap software was used with the

files containing reads with fewer than 51 alignments per read.

The SmartMap software uses a set of dual Binary Indexed Trees to store map counts and

weights across the genome and uses an iterative Bayesian reweighting algorithm to assign weights

to each of the different alignments. These steps are outlined below. Unless otherwise specified, all

analyses are conducted with 1 iteration in scored mode. For the strand-specific analyses, there is a

separate set of dual Binary Indexed Trees for each strand.

STORAGE OF MAP COUNTS IN THE GENOME

To facilitate efficient summation and updating of map counts and weights across the genome,

each chromosome is stored as a pair of Binary Indexed Trees (BIT), also known as Fenwick Trees.

The BIT is a data structure that is efficient for computing prefix sums of an ordered dataset from

the beginning of the dataset to the given index. Because we used a 1-based coordinate system for

the genome, the datasets to which we refer as being represented by a BIT should be assumed to be

1-based datasets unless otherwise specified.

For a dataset of length L, the BIT is represented by L+1 nodes, which are stored in an array.

To increment a dataset represented by a BIT T at index i by the value v, the following algorithm

is used. Let T [i] represent the ith node of T . Let lsb(i) represent the lowest significant bit in the

binary representation of i. Then:

T [i] = T [i] + v (Eqn. 5.1)

218



i = i+ lsb(i) (Eqn. 5.2)

If the new value of i ≤ L+1, Eqn. 5.1-5.2 are iterated until i > L+1. For brevity, we will

refer to this operation to increment the BIT T representing the 1-based dataset by v in the value i

as BITUpdate(T, i, v).

To compute the prefix sum of the dataset at index i (i.e. the sum of all values with indices

[1, i] of a 1-based dataset), the following algorithm is used, using the above definitions of T [i] and

lsb(i). Let the prefix sum be represented by sum, where sum is initially set to zero. Then:

sum = sum+ T [i] (Eqn. 5.3)

i = i− lsb(i) (Eqn. 5.4)

If the new value of i > 0, Eqn. 5.3-5.4 are iterated until i ≤ 0. For brevity, we will refer to

this operation to obtain the prefix sum of the T at value i as BITSum(T, i).

To understand how we here use BITs to efficiently store values across the genome and

efficiently sum the values across loci, consider the following.

Consider a dataset C represented by BITs T1 and T2. If the values of C for indices in

range [l, r) are incremented by v, then let the resulting dataset be represented by C ′. Let the

prefix sum of the resulting dataset C ′ at index i be represented by PointSum(C ′, i). Then let

∆PointSum(C, i) = PointSum(C ′, i) − PointSum(C, i). PointSum(C ′, i)is changed in one

of three ways:

Case 1: i < l. The increment on range [l, r) will not change PointSum(C ′, i). As such:

∆PointSum(C, i) = 0 (Eqn. 5.5)
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Case 2: l ≤ i < r. In this case:

∆PointSum(C, i) = v ∗ i− v ∗ (l − 1)

However, per Eqn. 5.5, ∆PointSum(C, l − 1) = 0. As such:

∆PointSum(C, i) = v ∗ i− v ∗ (l − 1) (Eqn. 5.6)

Case 3: i ≥ r. In this case, the increment on range [l, r) will not change the values of C past index

r − 1. Accordingly:

PointSum(C ′, i) = PointSum(C, i) + PointSum(C ′, r)− PointSum(C, r)

PointSum(C ′, i)− PointSum(C, i) = PointSum(C ′, r)− PointSum(C, r)

∆PointSum(C, i) = ∆PointSum(C, r)

(Eqn. 5.7)

However, per Eqn. 5.6, ∆PointSum(C, r) = v ∗ r − v ∗ (l − 1). As such:

∆PointSum(C, i) = (v + (−v)) ∗ i− (v ∗ (l − 1)− v ∗ r)

= v ∗ r − v ∗ (l − 1)

(Eqn. 5.8)

These three cases will provide the basis for our use of BITs to store and efficiently sum

values across the genome. Each chromosome C in the genome is stored as a pair of BITs, to which

we shall here refer as T1 and T2. Let L represent the length of the chromosome. Accordingly, T1

and T2 have L+ 1 nodes.

To increment the value associated with the base pairs in the range [l, r) by an increment

value v, the following procedure is used.

BITUpdate(T1, l, v)

BITUpdate(T1, r,−v)

BITUpdate(T2, l, v ∗ l)

BITUpdate(T2, r,−v ∗ r)

(Eqn. 5.9)
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The value associated with base pair i is then BITSum(T1, i). To obtain the prefix sum

of the chromosome dataset C at base pair index i, represented by PointSum(C, i), the following

equation is used.

PointSum(C, i) = BITSum(T1, i) ∗ i−BITSum(T2, i) (Eqn. 5.10)

The sum of the values associated with each base pair in the range [l, r) = [l, r − 1] on

chromosome C, represented by LocusSum(C, l, r), can thus be described by:

LocusSum(C, l, r) =PointSum(C, r − 1)− PointSum(C, l − 1)

=BITSum(T1, r − 1) ∗ (r − 1)−BITSum(T2, r − 1)

−BITSum(T1, l − 1) ∗ (l − 1) +BITSum(T2, l − 1)

(Eqn. 5.11)

This dual-BIT data structure allows for efficient handling of data with respect to time com-

plexity. The BITUpdate and BITSum steps occur with time complexity O(log L), and the updates

to ranges (Eqn. 5.8) and range summations (Eqn. 5.10) use four BITUpdates and four BITSums,

respectively. As such, both range updates and range queries occur with time complexity O(log L).

ITERATIVE BAYESIAN REWEIGHTING OF MAPPED READS

To assess and appropriately weight reads mapped to different portions of the genome, we

implemented a Bayesian approach which iteratively reweights the mappings associated with each

read. For each read, we assign to each associated map a weight representative of the prior probability

that the map is the origin of the associated read. We then iteratively use the distribution of the

assigned maps and their weights (the prior probabilities) to determine the posterior probability for

each map being the true origin of the associated read and assign that as the weight for that map,

which then becomes the prior probability for the next iteration.
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Let the set of all sequencing reads be represented as R, with an individual sequencing read

being represented as ri. Then R = {ri . . . rn}, where n represents the total number of sequencing

reads obtained for the dataset in question.

Each read ri is associated with a true genomic origin locus li and a set of genomic alignments

Mi = {mi,1 . . .mi,k}, where each mi,j represents a reported alignment of ri and k represents the

total number of alignments reported for ri such that k < kmax, the maximum number of possible

reported alignments. Each reported alignment mi,j is associated with an alignment score si,j , a

weight wi,j , and an alignment genomic locus gi,j . We will define the set of all alignment scores

associated with read ri as Si = {si,1 . . . si,k}, with the set of all alignment weights associated with

read ri being represented asWi = {wi,1 . . . wi,k}, and with the set of all alignment loci associated

with read ri being defined as Gi = {gi,1 . . . gi,k}.

For this algorithm, we assume that for each alignment mi associated with a given read ri,

one of the associated alignment loci gi,j is the true origin locus li. Then each weight wi,j is defined

as the probability wi,j = Pr(gi,j = li), or the probability that the alignment associated with the

weight wi,j is equal to the true origin locus.

The set of all true genomic origin loci li will be defined as L = {l1 . . . ln}. The set of

all alignment scores, weights, and loci associated with every read in R will be defined as S =

{S1 . . . Sn},W = {W1 . . .Wn}, and G = {G1 . . . Gn}.

These variables will define our analysis. Our observed variables are the set of alignment

scores S and the set of alignment loci G. Our latent variable is the true genomic origin distribution

L. We will be modeling to generate the set of alignment weightsW with the goal of estimating the

true read origin distribution L as the expected value of the set of reported alignments G with the
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set of weightsW being treated as the probability distribution of G upon which the expected value

is computed.

When conducting analyses in “scored mode,” we wish to consider the quality of each

alignment. To do this, for each alignment gi,j of each read ri, we will transform the associated

alignment score si,j into a pseudo-MAPQ score zi,j as per Bowtie2 computation of MAPQ for

unireads. Let the minimum alignment score for reported alignments in Bowtie2 be represented as

smin = −0.6− 0.6 ∗ (2 ∗ read length). Then:

zi,j =



42 if
si,j
smin

∈ [0, 0.2]

40 if
si,j
smin

∈ (0.2, 0.3]

24 if
si,j
smin

∈ (0.3, 0.4]

23 if
si,j
smin

∈ (0.4, 0.5]

8 if
si,j
smin

∈ (0.5, 0.6]

3 if
si,j
smin

∈ (0.6, 0.7]

0 if
si,j
smin

∈ (0.7, 1]

(Eqn. 5.12)

If the analysis is being run in unscored mode, the quality of each alignment qi,j is set to 1.

When conducting analyses in scored mode, from this pseudo-MAPQ score, we can compute the

alignment quality qi,j as the probability that the alignment is aligned to the correct genomic locus

from the definition of MAPQ as:

qi,j = 1− 10−zi,j/10 (Eqn. 5.13)

The set of alignment qualities associated with each read ri is defined as Qi = {qi,1 . . . qi,k}.

We will define our initial weights wi,j by setting our initial prior probabilities Pr(gi,j = li) to be

proportional to the alignment quality qi,j . Because we assume that for each read ri, one of the
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associated gi,j = li, then for each read ri, we set the associated alignment weights wi,j as:

wi,j =
qi,j∑
q∈Qi

q
(Eqn. 5.14)

In scored mode, it is possible for the sum of the alignment qualities inQi for a given read ri

to be equal to zero; if this is the case, the read is discarded. Similarly, any alignments with alignment

with a weight of zero are discarded. For all remaining reads and alignments, each weight wi,j is

added to the appropriate chromosome dataset at the associated alignment locus gi,j . Those reads

with k = 1 are then removed from the list of reads over which to iterate because the weight of the

associated alignment is fixed at w = 1.

When the initial assignment of prior probabilities as weights and addition of weights to the

genome dataset is complete, then for each read ri, the new weights can be computed as the posterior

probabilities of Pr(gi,j = li | total distribution of reads). First, we will represent the length of

an alignment locus gi,j as |gi,j|. Let cb be the sum of all weights associated with all alignments

containing the genomic coordinate b. Then, we defineCi,j as the average weight across the genomic

coordinates of each alignment gi,j by the equation:

Ci,j =
1

|gi,j|
∑
b∈gi,j

cb (Eqn. 5.15)

Our algorithm assumes that the probability Pr(gi,j = li | total distribution of reads) is

proportional to Ci,j and proportional to the alignment quality qi,j . Based on this assumption, we

define our likelihood function Fi,j as the ratio of the average quality-weighted weight across the

alignment locus to the weight of the alignment itself:

Fi,j =
Ci,j qi,j
wi,j

(Eqn. 5.16)

By Bayes’ theorem, we then state that our posterior probability is proportional to the likeli-

hood and to the prior probability of a given event. To accommodate for slow fitting, we will define
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r as the learning rate such that if r = 0, the weight will not change at all, and if r = 1, the new

weight will be defined as per Bayes’ theorem. When r = 1, then, we thus set our new weight w′
i,j

as our posterior probability Pr(gi,j = li | total distribution of reads) by the equation:

w′
i,j =

wi,jFi,j∑k
j=1wi,jFi,j

=
Ci,jqi,j∑k
j=1Ci,jqi,j

(Eqn. 5.17)

If r is not equal to 1 (i.e. if fitting is conducted more slowly or faster), then per the above

definition of the learning rate:

w′
i,j =

(
Ci,jqi,j∑k
j=1 Ci,jqi,j

− wi,j

)
r + wi,j

=
rCi,jqi,j∑k
j=1Ci,jqi,j

+ (1− r)wi,j

(Eqn. 5.18)

Per this definition, when fitting is disabled (i.e. when r = 0), the new weight is not

changed; when the fitting rate is set to r = 1, then Eqn. 5.17 is equal to Eqn. 5.16. Slower

fitting can be achieved by setting 0 < r < 1. The new weights are updated at the appropriate

corresponding genomic loci, and the posterior weight w′
i,j is treated as the prior weight wi,j for the

next iteration. This process defined by Eqn. 5.15-5.17 is conducted iteratively for the specified

number of iterations.

After the specified number of iterations are complete, the output file is written by writing

the prefix sum of the BIT T1 for each chromosome at each position. If desired, the set of reads with

corresponding weights are also written.

Histone Modification Density and Specificity Computation

Because the ICeChIP-seq datasets have internal nucleosome standards bearing the targeted nucle-

osome modifications with uniquely identifying DNA “barcodes”, we were able to calibrate our
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ChIP-seq results to yield the histone modification density (HMD), or the proportion of nucleosomes

bearing the modification of interest. HMD for each dataset was computed as follows.

The average value of the BEDGRAPH for each of the calibrant barcodes was computed as

above, and these values were grouped by the nucleosome modification associated with the barcode

and summed, as previously described118,124 for both the IP and the Input datasets. The ratio of the

summed values for the targeted modification in IP over the same in Input was designated as the

target enrichment Et.

The HMD at each genomic locus was then computed as follows, where IP and Input

represent the value of the IP and the Input at that genomic locus:

HMD (%) =
IP

Et ∗ Input
∗ 100% (Eqn. 5.19)

To generate genome-wide HMD BEDGRAPH files, the IP and corresponding Input genome

coverage BEDGRAPH files outputted by the SmartMap software were merged with BEDTools

unionbedg, and the HMD computation in (18) was used to compute HMD. Any region with an

Input value of zero was set to an HMD of zero, as there is no nucleosome coverage to be modified

at those loci.

To compute the specificity, for those ICeChIP-seq datasets with calibrants bearing more than

one modification with uniquely identifying DNAbarcodes (AR9,AR16, andAR17), the enrichment

of every species Ei was computed analogously to the Et, and the specificity (as percent of target

enrichment) was computed as:

Specificity(% target) =
Ei

Et

∗ 100% (Eqn. 5.20)
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Alignment Overlap Analysis

To assess for overlap of alignments, we conducted SmartMap on the simulated dataset with the

read weight output setting activated. Using bedtools intersect, we then identified alignments that

intersected with the true read origin in the Gold Standard dataset. From this, by weight, we were able

to compute three metrics. First, we computed the number of alignments by weight that were present

in the intersected dataset as a proportion of the total number of alignments by weight. Second, we

computed the alignment weighted overlap proportion score, a measure of the proportion of a read’s

overall weight that overlaps with a given true origin of the read due to a given alignment. This is

computed as the product of the weight of the alignment with the geometric mean of the proportion of

overlap between the true read locus and the alignment locus. Finally, we computed the unweighted

overlap proportion score, which is computed as the geometric mean of the proportion of overlap

between the true read locus and the alignment locus.

Repetitive Element Analysis

Repetitive elements for hg38 were obtained from the HOMER list of repeats178. The promoter was

defined as the most upstream portion of the annotated repeat. This dataset was used for analyzing

all repeats; for analyzing LINE elements, SINE elements, or Simple Repeats, the corresponding

subset of the repeats was used.

The HMD profiles in Fig. 5.15 and 5.18Awere generated by computing the average HMD

(from SmartMap analysis of AR16 and AR17) in 50bp windows from -1000bp to +1000bp relative

to the promoter, with HMDs above 100% being set to 100% (because an HMD above 100% is

definitionally impossible), and corresponding windows were averaged together to yield the average

HMD profile for each set of elements.
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To conduct clustering, first, the average HMD of the region -100bp to +100bp relative to

each promoter in the relevant dataset was computed using the SmartMap analysis of AR16 and

AR17, with HMDs above 100% being set to 100%. The data was then transformed to orthonormal

basis by principal component analysis in R with scaling and centering. The resultant coordinate

matrix used for k-means clustering, starting with 2 clusters and increasing the number of clusters

until the decrease in total within-cluster sum of squares became markedly diminished; for each

dataset (all repeats, LINE elements, SINE elements, and Simple Repeats), this occurred with 5 or

more clusters and, accordingly, 4 clusters were used for each dataset.

RNA-seq analysis was conducted as follows. The average value of the RNA-seq SmartMap

BEDGRAPH datasets were found across each LINE element. These values were then normalized

to the SmartMap read count for each replicate (as average reads per million reads analyzed) and

averaged to yield the average normalized read depth for each LINE element. These were then

grouped by cluster and used to generate the quantile boxplots.

Heatmap Generation

Heatmaps of regions with nonzero HMD only in SmartMap analyses were generated as follows.

The average HMD of the region -100bp to +100bp relative to each promoter was computed using

both the uniread and SmartMap analyses of AR16 and AR17, with HMDs above 100% being set

to 100%. Principal component analysis was conducted on the set of SmartMap HMDs in R with

scaling and centering. Promoters with HMDs of zero in all of the uniread analyses and at least one

nonzero SmartMap HMD were then selected and sorted by the first principal component. There

were 142,392 such promoters. HMD profiles were then generated for each of the selected promoters

as described above in 50bp windows from -1000bp to +1000bp relative to the promoter but were
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not averaged together on corresponding windows. A field was added to the beginning of each row

containing the value 100 as a calibration point for threshold adjustment.

The list of HMD profiles sorted on the first principal component was then imported into

ImageJ as a Text Image. The height of the image was scaled down to 500pts with bilinear interpo-

lation, and the thresholds were set from 0-100. The resultant image was exported as a PNG file,

which was then opened in Photoshop in Indexed Color mode. The color table was then adjusted

such that the lowest value was set to white and the highest value was set to the appropriate color.

The leftmost point of the image (corresponding to the added field with the calibration point value

of 100) was then removed from the image to generate the final heatmap.

Genome Browser Visualization

Genome browser visualization was conducted using Integrative Genomics Viewer (IGV)334.

Comparison to Other Methods

COMPARISON TO CSEM

Comparison was attempted against the CSEM software for multiread allocation310 by only

using the first read mate of our ICeChIP samples. However, the CSEM software returned a segmen-

tation fault within the first minute of runtime, rendering comparison difficult.

COMPARISON TO BM-MAP

Comparison was attempted against the BM-Map software for multiread reweighting311 by

aligning the simulated read dataset with Bowtie2 per the settings used for SmartMap, followed by

use of the BM-Map software with seven threads, the maximum permitted by the software. The first

step of BM-Map (reading the alignments into memory) proceeded uneventfully, using one thread.
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However, shortly after the second step of BM-Map began, the software returned an error and exited

without returning an output. This was observed with existing binaries and with compilation of the

software from source. As such, we were unable to compare to BM-Map.

COMPARISON TO ITERATION 0 AND RANDOM ALIGNMENTS

The simulated dataset was aligned with Bowtie2 per the settings used for SmartMap. The

reads were then parsed to yield a single extended BED file as per SmartMapPrep. For the Random

Alignment selection analysis only, the reads were then split into separate files based on the number of

alignments per read, and the random_read_selection.R script from the SmartMap-analysis GitHub

repository was used to randomly select one alignment per read. These datasets were then used

in the SmartMap software with the score set to -60.6. For the iteration 0 dataset, the number of

reweighting cycles was set to zero; for the RandomAlignments analysis, the number of reweighting

cycles was set to one.

COMPARISON TO UNIREAD

The simulated dataset was aligned with Bowtie2 per the settings used for SmartMap, with

the modification that no value was specified for the option -k. Unireads were then parsed from

the output SAM file by selecting for reads with MAPQ scores of: 3, 8, 23, 24, 40, 42; these are

the MAPQ scores that are assigned to unireads by Bowtie2172. Reads were then parsed as per

SmartMapPrep into a single extended BED file. This file was then used for SmartMap with one

iteration, a minimum score of -60.6 and a maximum of one alignment per read.
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Statistical Analyses

Statistical analysis for Fig. 5.18C was conducted first with chi-square analysis on full contingency

table and with post-hoc tests on collapse contingency tables as follows. For each of the datasets in

Fig. 5.18C, chi-square test for goodness-of-fit was conducted on the corresponding contingency

table presented in Tables 4-6. The p-value for each of these tests was p < 2.2x10−16 and, accord-

ingly, post-hoc tests were conducted. The post-hoc tests consisted of collapsing each contingency

table into a set of 2x2 contingency tables with the cluster of interest and family/type of interest

compared to all other clusters and/or all other families within the contingency table. Chi-square

goodness-of-fit tests were then conducted on each of these 2x2 contingency tables, and the p-values

were Bonferroni corrected to adjust for the number of tests. These adjusted p-values for each 2x2

contingency table test were used to label the graphs in Fig. 5.18C as follows: ∗p < 0.01, ∗∗p < 10−5,

∗∗∗p < 10−10.

Statistical analysis on Fig. 5.18D was conducted to compare median average normalized

RNA-seq depth by cluster. Because the difference between cluster 3 and all of the other clusters

appeared to be the most biologically meaningful, only pairwise comparisons were conducted be-

tween cluster 3 and the other clusters to limit the number of statistical comparisons and, accordingly,

the degree of Bonferroni correction needed. Mood’s median tests were solely conducted as pair-

wise comparisons between cluster 3 and each of the other clusters with Bonferroni correction to

p-values with n=3 for Bonferroni correction. The adjusted p-values for each of these comparisons

was p < 2.2x10−16 and was marked appropriately on the graph.
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CHAPTER 6: CONCLUSION

Histone modifications are critical epigenetic regulators, with important roles in maintaining tran-

scriptional programs and, ultimately, helping to drive cellular identity and differentiation – or a lack

thereof. To study these important marks, it is critical to be able to accurately and quantitatively

measure their genomic distributions in order to identify the features with which they associate and

to observe their changes across developmental or pathological states. Chromatin immunoprecip-

itation, as the method of choice for this task, is a powerful tool for probing the localization of a

given histone modification genome-wide, but its canonical implementation has many problems that

impact its accuracy and interpretability. The antibody employed may be of uncertain quality. The

fragmentation and pulldown procedure may not enable high-quality IPs even with a highly specific

antibody. The relative nature of traditional ChIP data may make it difficult to compare different cell

types or cells with different treatment conditions. The next-generation sequencing backend may

be unable to cover a large portion of the genome. As we have discussed through this work, these

issues are all prevalent in the field and frequently result in major problems of interpretation that are

often sufficiently severe to compromise the ultimate biological conclusions. Though ICeChIP can

alleviate some of these problems, even it has limitations, and it is not yet universally employed. In

this final chapter, we discuss some of the salient conclusions from this work and their implications

for future practice.

Antibody specificity

In Chapter 2, we have primarily focused on the question of antibody specificity, its measurement,

and the impacts of low-quality antibodies on interpretation and divination of biological meaning.

We chose to focus on antibodies targeting the different methylation states of histone H3K4 – namely,
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H3K4me1, H3K4me2, and H3K4me3. These different modifications are highly chemically similar;

the methylation reaction consists of the replacement of a proton with a methyl group, a change that

is charge-neutral and physically small in the context of the entire nucleosome (or even a small frag-

ment therein). But despite this chemical similarity, these modifications have each canonically been

associated with distinct functions, with H3K4me1 being held to mark enhancers18,19,131, H3K4me2

being held to mark transcription factor binding sites136, and H3K4me3 being held to mark tran-

scriptionally active promoters17,20,92–94,102,132, amongst many other proposed paradigms. Given that

many of these conclusions were driven by chromatin immunoprecipitation, the question was whether

antibodies could actually specifically discriminate between these highly similar modifications.

Fortunately, it seems that some antibodies were actually capable of this task. Though many

antibodies displayed low specificity, there were many antibodies that were specific towards each

methylform (Fig. 2.5). However, the most commonly used antibodies were often of low quality

(Tables 2.1-2.4), including many employed (at great expense) by the ENCODE consortium in a

broad variety of cellular contexts (Fig. 2.2-2.3). This is likely because of inadequate screening

and antibody validation criteria. Most antibody validation procedures for ChIP involve screening

by peptide arrays108,110,112,129,143, in no small part because they provide the ability to screen a large

number of modifications and combinations therein on a single plate (Fig. 2.9). However, as we

showed, specificities measured by this method have little correlation with ChIP specificity (Fig.

2.7-2.8), making them less useful for validation of purported ChIP-grade antibodies.

This problem is not merely one of idle curiosity; low-quality antibodies have a demonstrable

and material impact on ChIP-seq profiles. We showed that the antibodies with considerable off-

target binding had excess pulldown relative to high-specificity antibodies, by developing and using

a novel Fourier transform-based shape analysis method, had markedly different shapes of peaks
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as compared to high-specificity antibodies (Fig. 2.10). These differences ultimately compromised

the biological interpretations; as we highlighted, several studies employing low-quality antibodies

came to conclusions that ultimately did not hold up to scrutiny with high-quality antibodies (Fig.

2.13-2.15). That is, ultimately, the cost of low specificity in the antibody reagents employed, and it

is why the use of high-quality antibodies is of paramount importance for the field moving forward.

In recent years, particularly following the publication of our study on H3K4 methylation

state antibodies124, some antibody manufacturers and purveyors have begun employing nucleo-

some standard validation for their ChIP grade antibodies to validate their specificity for such an

application; this is certainly an improvement in the field and one that should be employed by more

manufacturers. However, even then, differences in ChIP conditions may result in differences in

antibody specificity, and our work strongly suggests that researchers should take care to validate

their own antibodies within the context in which they are employed.

Pulldown procedures

A high-quality antibody is necessary for a high-quality ChIP pulldown, but it is by no means

sufficient. The other important factor in the specificity of the pulldown is the protocol employed. In

Chapter 3 and Chapter 4, we describe the development of different pulldown protocols with distinct

goals and advantages not afforded by traditional ChIP methods.

In Chapter 3, we developed a new pulldown protocol for sequential ChIP, in which the

eluent of one IP is used as the substrate for a secondary IP. Here, we can already see the impact

of the procedure on the IP quality; even when using the same high-quality antibodies, previously

published sequential ChIP protocols had extremely low efficiency and often had low specificity (Fig.
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3.1A), particularly as compared to the method that we developed involving a cleavable antibody

(Fig. 3.2-3.3).

An even more dramatic representation of this protocol-dependent specificity change is found

in Chapter 4, in which we examine the impact of different fragmentation and denaturation methods

on the specificity and enrichment of the resulting pulldown. Indeed, the entire premise of this section

is that native pulldown protocols are inadequate for assessing internal modifications, meaning that

denaturative protocols are necessary. And as we observed, many of the denaturation methods,

including sonication and many chemical denaturation methods, demonstrate high variability and

low specificity (Fig. 4.5-4.7). It is only by employing thermal denaturation that we were able to

achieve robust and specific pulldowns of the internal modification H3K79me2 (Fig. 4.8). This

came at the cost of facile calibration (Fig. 4.11-4.12), but nonetheless enabled new inquiries into

MLL-rearranged leukemias.

The ultimate takeaway from these studies is that the protocol employed matters considerably

for the pulldown quality, and it is difficult to predict a priori whether a particular method will work or

not. For example, it would not be unreasonable to hypothesize that any of the chemical denaturation

methods employed in Fig. 4.7 would result in adequate denaturation of the nucleosome and a high-

quality pulldown; it just so happened that this was not true. Ultimately, it is difficult to know for

certain whether an IP method is actually viable or not, making it all the more critical to use internal

standards to validate the method in situ.

Calibration

The other major reason to use internal standards to validate the method is for the purposes of

calibration. Normalization and calibration to an exogenous reference is what enables comparisons
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of ChIPs conducted in different cell types or in cells with different treatment conditions that can

result in global changes in modification abundance. This exogenous reference does not, strictly

speaking, have to be a set of semisynthetic nucleosome standards – as we showed in Chapter 4,

the proper protocol can enable use of exogenous native chromatin as the normalization reference

(Fig. 4.10). However, internal standards carry the advantage of enabling specificity measurement

and making it possible to calibrate the experiment (particularly in native ICeChIP) to measure the

histone modification density, enabling comparison of different IPs.

This calibration is consistently critical throughout this work. In Chapter 2, we find that

previous studies about H3K4me3 at enhancers have been potentially flawed because of inadequate

ability to compare H3K4me1 and H3K4me3 levels without the use of internal standard calibration

(Fig. 2.13). This can also be detrimental to the ability to detect true differences; previous work on

changes in H3K4me1 in cells with catalytically deadMLL3/MLL4 showed only a blunted change in

H3K4me1 levels as compared to wild type cells, whereas ICeChIP revealed a much more pervasive

loss of the same (Fig. 2.14). Similarly, and relevant to Chapter 4, Orlando et al. previously showed

that exogenous reference normalization is necessary to detect global changes in H3K79me2 levels

in response to treatment with Dot1L inhibitor128, which we also find (Fig. 4.14).

However, the best example in this work on the importance of calibration for interpreta-

tion is presented in Chapter 3. The bivalency hypothesis was fundamentally based on finding

regions that had both enrichment for H3K4me3 and H3K27me3, as measured by independent tradi-

tional ChIPs9,130. This is already problematic for H3K4me3 without the use of calibration, but this

modification is at least distributed in a relatively peak-like manner, so regions with high absolute

amounts of H3K4me3 are also likely to have high relative amounts of the same. This is not true for

H3K27me3; this modification is both abundant and broadly distributed; as such, the regions with a
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higher-than-baseline level of H3K27me3 (which will be the only ones detected without calibration)

represent only a fraction of the H3K27me3 in the genome and ignore the remainder. To use an

analogy, this can be though of as being similar to a forest, with some trees in the forest standing

high above the canopy. Traditional ChIP methods, which only can find regions with relatively high

amount of modification, would only detect these tallest trees and conclude that these are the only

regions in which trees exist; calibration allows for the recognition that there are trees of different

heights everywhere.

This was ultimately the problem for the bivalency hypothesis; because they only looked at

regions with high H3K27me3 over baseline, previous studies were only able to identify a fraction

of the regions of the genome that bear bivalent histone modifications (Fig. 3.6). Further, without

the benefits of calibration, previous studies were unable to accurately compare bivalency levels in

different cell types, meaning that they were unable to find that bivalency actually increased across

differentiation rather than resolving (Fig. 3.4). There are other issues with the canonical bivalency

hypothesis, as we explored in Chapter 3, but the fundamental problem in identifying bivalent regions

boils down to a lack of calibration.

Calibration is not just useful for avoiding errors. As a quantitative metric, it also enables

quantitative modeling to better study the impact of these modifications. In Chapter 2, for example,

we used the quantitative measurements of H3K4me1, H3K4me2, and H3K4me3 to conduct mod-

eling showing that the sum of HMDs of enhancers contacting a promoter is more associated with

transcriptional control than is the average HMD (Fig. 2.12), suggesting that these enhancers may

operate in concert with each other. Similarly, in Chapter 3, we use our quantitative ICeChIP data

to predict DEG status and show that bivalency contributes minimal information content to such an

endeavor. In Chapter 4, we use our quantitative data to identify differentially modified loci, which
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we ultimately use as a comparison point against DEGs in MLL-rearranged leukemias. These are all

tasks that would have been essentially impossible to conduct without quantitative data and is only

possible because of the insights afforded by ICeChIP.

Collectively, this work shows both the dangers of using uncalibrated data to attempt to

develop biological paradigms and shows the power of calibration to enable new quantitative analyses

into the role of histone modifications in a broad range of contexts.

Next-generation sequencing read alignment

The final area that this work focuses on is the backend of the modern ChIP experiment: next-

generation sequencing and its analysis. The most common method for handling reads that align to

more than one locus in the genome is to systematically discard such ambiguously mapped reads.

The rationale is that this ensures that the reads that remain are properly mapped, which is a fair

concern, but it also results in systematic undersampling of less-mappable and highly repetitive

regions of the genome (Fig. 5.2, 5.5). For obvious reasons, ignoring such a large portion of the

genome is potentially problematic and, as we show, results in many repetitive regions being poorly

mapped (Fig. 5.20-5.21).

To address this problem, we developed SmartMap335, a tool that uses Bayesian reweighting

of alignments to allocate reads of peak-type data that map ambiguously based on the distribution of

the other reads in the dataset. This method successfully increased read depth genome-wide by up to

50% (Table 5.1-5.2), particularly at regions with lower mappability (Fig. 5.5), ultimately enabling

new analyses of histone modification status and chromatin accessibility at repetitive elements (Fig.

5.18-5.21). SmartMap uses a dual-binary indexed tree structure for efficient updates and query of
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the data, resulting in considerably greater efficiency and accuracy than other methods of multiread

allocation (Table 5.8).

SmartMap represents a powerful tool for more completely using sequencing data to get a

more truly genome-wide analysis. However, there are several directions in which SmartMap can be

improved in the future. First, as we showed, it is currently not particularly useful for RNA-seq data

(Fig. 5.17), in no small part because the algorithm is not compatible with large gaps such as those

caused by introns; further tuning of the algorithm can address this problem. Further, SmartMap is

presently not usable for trans-contact methods such as microC for a similar reason. This method

can be adapted to this end, but would likely require modeling both of the contact probability as

a function of distance as well as the modeling of the read distribution, adding another layer of

complexity to the analysis. Nonetheless, there is nothing that, in principle, prevents the binary

indexed tree data structures of SmartMap from being applied for these methods.

Significance

The problems with traditional ChIP-seq represent an existential problem for the field of molecular

biology, and this work highlights the importance of using accurate and quantitative methods. As

we emphasized repeatedly, many of the problems that are highlighted here occurred through no

fault of the scientists conducting the previous studies; at the time, the tools that we can now use

for better ChIP and ChIP-seq analysis simply did not exist, and the experimental design decisions

employed in that historical context are reasonable. However, with the advent of new tools such as

ICeChIP, and the broader availability of internal standards for experimental contexts more broadly,

it is essential that the field changes its practices and raises its standards for data quality wholesale.

Without such improvements, researchers will continue to make unreliable measurements, and they
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will continue to draw incorrect conclusions from those data. But by employing the methods that are

now available, researchers can make high-quality, quantitative measurements, and can ultimately

use those data to drive new insights into the role of histone modifications. To not raise the standards

of data quality where it is now possible is to forego those valuable opportunities for discovery.
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APPENDIXA: ICECHIP PARAMETERS

This section lists antibody and chromatin used for the ICeChIP experiments in each data chapter.

Supplier Abbreviations

AB = Abcam; ABC = Abclonal; AM = Active Motif; CST = Cell Signaling Technologies; DIA =

Diagenode; EMD = EMD Millipore; EPC = Epicypher; EPG = EpiGentek; KL = Koide Lab; REV

= RevMAb; TF = Thermo Fisher.

Experiments from Chapter 2

Table A.1: ICeChIP Parameters from Chapter 2.

Target Antibody ID Antibody (µg) Beads (µL) Chromatin (µg)

H3K4me0
EMD 05-1341

Lot 2453179
3 12.5 3

H3K4me1
AB 8895

Lot GR305231-1
3 12.5 3

H3K4me1
ABCA2355

Lot 46694
3 12.5 3

H3K4me1
ABCA2355

Lot 46695
3 12.5 3

H3K4me1
AM 39297

Lot 01714002
3 12.5 3

H3K4me1
AM 39297

Lot 21008001
3 12.5 3

H3K4me1
AM 39635

Lot 30615011
3 12.5 3

H3K4me1
CST 5326

Lot 1
3 12.5 3

H3K4me1
CST 5326BF

Lot 2
3 12.5 3

H3K4me1
DIA C15310037

Lot A399-001
3 12.5 3

Table A.1 continues on next page.
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Table A.1, continued:

Target Antibody ID Antibody (µg) Beads (µL) Chromatin (µg)

H3K4me1
DIA C15410037

Lot A1657D
3 12.5 3

H3K4me1
DIA C15410194

Lot A1862D
3 12.5 3

H3K4me1
DIA C15410194

Lot A1863-001D
3 12.5 3

H3K4me1
EMD 07-436

Lot DAM1687548
3 12.5 3

H3K4me1
EPGA-4031-050

Lot 606359
3 12.5 3

H3K4me1
REV 31-1046-00

Lot P-01-00415
3 12.5 3

H3K4me1
TF 710795

Lot QL230603
3 12.5 3

H3K4me1
TF 720072

Lot RB226262
3 12.5 3

H3K4me2
AB 32356

Lot GR253788-9
3 12.5 3

H3K4me2
AB 7766

Lot GR289627-1
3 12.5 3

H3K4me2
ABCA2356

Lot 46696
3 12.5 3

H3K4me2
ABCA2356

Lot 46697
3 12.5 3

H3K4me2
AM 39141

Lot 01008001
3 12.5 3

H3K4me2
AM 39679

Lot 15515008
3 12.5 3

H3K4me2
CST 9725

Lot 9
3 12.5 3

H3K4me2
DIA C15200151

Lot 001-11
3 12.5 3

H3K4me2
DIA C15310035

Lot A391-001
3 12.5 3

H3K4me2
DIA C15410035

Lot A9360014P
3 12.5 3

Table A.1 continues on next page.
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Table A.1, continued:

Target Antibody ID Antibody (µg) Beads (µL) Chromatin (µg)

H3K4me2
EMD 05-1338

Lot 2757107
3 12.5 3

H3K4me2
EMD 07-030

Lot DAM1479603
3 12.5 3

H3K4me2
EPC 13-0013

Lot 14247001
3 12.5 3

H3K4me2
EPGA-4032-050

Lot 606360
3 12.5 3

H3K4me2
TF 49-1004

Lot A391001161216
3 12.5 3

H3K4me2
TF 710796

Lot QL230606
3 12.5 3

H3K4me2
TF 720073

Lot QL226263
3 12.5 3

H3K4me3
AB 12209

Lot GR275790-1
3 12.5 3

H3K4me3
AB 8580

Lot GR190229-1
3 12.5 3

H3K4me3
AB 8580

Lot GR273043-4
3 12.5 3

H3K4me3
ABCA2357

Lot 46698
3 12.5 3

H3K4me3
ABCA2357

Lot 46699
3 12.5 3

H3K4me3
AM 39159

Lot 12613005
3 12.5 3

H3K4me3
AM 61379

Lot 24615006
3 12.5 3

H3K4me3
CST 9727

Lot 2
3 12.5 3

H3K4me3
CST 9751

Lot 9
3 12.5 3

H3K4me3
DIA C15200152

Lot 001-11
3 12.5 3

H3K4me3
DIA C15410003

Lot A1052D
3 12.5 3

Table A.1 continues on next page.
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Table A.1, continued:

Target Antibody ID Antibody (µg) Beads (µL) Chromatin (µg)

H3K4me3
DIA C15410003

Lot A5051-001P
3 12.5 3

H3K4me3
EMD 05-745R

Lot 2813867
3 12.5 3

H3K4me3
EMD 07-473

Lot DAM1623866
3 12.5 3

H3K4me3
EPC 13-0004

Lot 13171001
3 12.5 3

H3K4me3
EPGA-4033-050

Lot 606361
3 12.5 3

H3K4me3
REV 31-1039-00

Lot P-09-00676
3 12.5 3

H3K4me3
TF PA5-40086

Lot RL2301825
3 12.5 3

H3K4me3
KL 304M3B

Lot 040416AG
3 60 3

H3K9me3
KL 309M3B

Lot 072913TH
0.5 10 3

Experiments from Chapter 3

Table A.2: ICeChIP Parameters from Chapter 3.

Target Antibody ID Antibody (µg) Beads (µL) Chromatin (µg)

H3K4me3
KL 304M3B-1xHRV3C

Lot 103015AG
3 60 3

H3K9me3
KL 309M3B

Lot 072913TH
0.5 10 3

H3K27me3
CST 5326

Lot 8
0.6 5 0.8

H3K4me3

(reICeChIP)

KL 304M3B-1xHRV3C

Lot 103015AG
3 60 3

H3K27me3

(reICeChIP)

CST 5326

Lot 8
0.6 5

Eluent of

H3K4me3 IP
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Experiments from Chapter 4

Table A.3: ICeChIP Parameters from Chapter 4.

Target Antibody ID Antibody (µg) Beads (µL) Chromatin (µg)

H3 CTD
EPC 13-0001

Lot 12346001
3 12.5 3

H3 CTD
EMD 05-928

Lot 2676583
3 12.5 3

H3K4me3
AM 39159

Lot 12613005
3 12.5 3

H3K27me3
CST 5326

Lot 8
0.6 5 0.8

H3K79me2
AB 3594

Lot GR173874
3 12.5 3

H3K79me2

(AR19 only)

CST 5427

Lot 4
3 12.5 3

Experiments from Chapter 5

Table A.4: ICeChIP Parameters from Chapter 5.

Target Antibody ID Antibody (µg) Beads (µL) Chromatin (µg)

H3K27me3
CST 5326

Lot 8
0.6 5 0.8
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APPENDIX B: NUCLEOSOME BARCODE SEQUENCES

This section lists the sequences of the barcoded DNA applied to the nucleosome standards for use

in ICeChIP.

601_CXXX Sequences

The 601_CXXX sequences are based on the Lowary and Widom 601 nucleosome binding se-

quence168 with one barcode.

Table B.1: 601_CXXX nucleosome barcode sequences.

Barcode ID Sequence

601_C002

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGCGCATAATAATCGCGC

GATTTC

601_C005

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGTCGACGATCGTCGAA

TCGTTC

601_C008

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTATACGCGTCGACGATTC

GCGTTC

601_C009

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGCGTAATCGTTTCGAC

GCGTTC

601_C010

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTTAACGTCGCGCGTTCGA

ACGTTC

601_C013

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTTTCGTACGCGCGACG

TAATTC

Table B.1 continues on next page.
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Table B.1, continued:

Barcode ID Sequence

601_C014

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGCGTATACGTACGCGC

GAATTC

601_C015

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGCGTAATACGCGCGAAA

TTCGTC

601_C017

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTACGAAACGCGTTAAC

GTCGTC

601_C019

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTTACGCGTACCAACGCGT

ATCGTC

601_C021

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGGTACGCTATCGTACG

ATCGTC

601_C022

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACGCGTATACGAATTT

CGCGTC

601_C025

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTATCGCGTCGAGTGATAT

CGCGTC

601_C026

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGCGTAATCGATACGTTA

CGCGTC

601_C028

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTATTCGCGCGATCGCGAT

TACGTC

Table B.1 continues on next page.
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Table B.1, continued:

Barcode ID Sequence

601_C029

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGATTACGCGAACGATTC

GACGTC

601_C031

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTAGCGTACCGACGACGTT

AACGTC

601_C032

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCATCGTCGACGAACGTTCG

AACGTC

601_C033

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGAATCGACGATAGTTCG

CGACTC

601_C034

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGCGACGTTAACGCGATA

TCACTC

601_C037

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGCGTATCGGTCGCGTAA

CGTATC

601_C038

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACGAACGGTGTCGCGA

ACTATC

601_C039

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGAACGGTCGTTTCGCGC

GATATC

601_C040

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCCGACGATCGTACGACGC

GATATC

Table B.1 continues on next page.
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Table B.1, continued:

Barcode ID Sequence

601_C041

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACGTACCGTTTACGCG

TCGATC

601_C042

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTACGACGCTACGAACG

TCGATC

601_C043

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCCGCGCGATATTTTCGTC

GCGATC

601_C044

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGCGCGACATCGTAATC

GCGATC

601_C046

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGCGTATTCGGTTCGTAC

GCGATC

601_C047

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGATCGTCGGCGATCGT

ACGATC

601_C049

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACGTATCGGCGATACG

ACGATC

601_C051

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACGTAACGGACGCGAA

ACGATC

601_C052

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCACGACCGTTCGCGTCGCG

TTAATC

Table B.1 continues on next page.
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Table B.1, continued:

Barcode ID Sequence

601_C054

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCTCGTTCGTCGTTCGCGC

GTAATC

601_C055

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCACCGTTCGTCGTCGACGC

GTAATC

601_C056

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTACGTCCGTCGCGACGCG

ATAATC

601_C058

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCACGGTACGTCGTTACGCG

CGAATC

601_C060

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGCACGATCGCGCGATA

CGAATC

601_C061

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGCCGAATCGACGCGTC

GAAATC

601_C062

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTATGCGTCGCGTCGCGAC

GAAATC

601_C063

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCATATCGCGCGCGTATCG

CGGTTC

601_C066

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCCGAATACGCGTCGACGA

CCGTTC

Table B.1 continues on next page.
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Table B.1, continued:

Barcode ID Sequence

601_C067

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGTACGACCGCGGTCGA

ACGTTC

601_C068

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCAGCGTCGTACGTCGCGAC

GAGTTC

601_C070

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACCGATACGCGCGGTA

CGATTC

601_C071

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTTCGAGCGACGCGGCGTA

CGATTC

601_C073

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCGACGCGTAACGCCGCGCG

TAATTC

601_C075

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACGAACGAGTCGTATC

GCGGTC

601_C076

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTTACGCGTCTTATCGC

GCGGTC

601_C077

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTAACGTCGCGCATTACGC

GCGGTC

601_C078

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTACGCTCGGACTATACGC

GCGGTC
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Table B.1, continued:

Barcode ID Sequence

601_C079

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTCGTTCGACACGACGT

ACGGTC

601_C080

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCGCGCGACGTTACGATTCG

ACGGTC

601_C081

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTGTCGCGCGTATACGCTC

GTCGTC

601_C082

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCGTCCGAGCGTAGTATCGC

GTCGTC

601_C083

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGCGACCGTAGTTACGC

GTCGTC

601_C084

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACGGACGTACGTATCC

GTCGTC

601_C085

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGCGACGCATAGCGTTAC

GTCGTC

601_C086

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCTACGCGTCGACGCGTTA

GTCGTC

601_C087

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCCGACGATCGATCGGCGT

ATCGTC
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Table B.1, continued:

Barcode ID Sequence

601_C088

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGATCGTGCGACGCGACT

ATCGTC

601_C089

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGATTCGGCGATGCGACG

ATCGTC

601_C090

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTACGGTCGCGACCGTCGA

ATCGTC

601_C091

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCATGTCGCGCGACGCGTCA

ATCGTC

601_C092

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGGTCGTACGACGCGATA

TGCGTC

601_C093

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTACGCGCGACACGTAATC

GGCGTC

601_C094

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTCGCTCGAATATCGGT

CGCGTC

601_C096

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGCGTTACGCGCGATAGT

CGCGTC

601_C097

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGCGTAACGCGGTCGTAT

CGCGTC
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Table B.1, continued:

Barcode ID Sequence

601_C098

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGGTACGCGCCGGATAT

CGCGTC

601_C099

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCCGTCGAACGCCGCATAT

CGCGTC

601_C100

CTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCGCGCGTACCGATACCGAT

CGCGTC

C001_CXXX Sequences

The C001_CXXX sequences are based on the Lowary and Widom 601 nucleosome binding se-

quence168 with two barcodes.

Table B.2: 601_CXXX nucleosome barcode sequences.

Barcode ID Sequence

C001_C006

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGTCGATTCGACGCGAA

TCGTTC

C001_C008

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTATACGCGTCGACGATTC

GCGTTC

C001_C009

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGCGTAATCGTTTCGAC

GCGTTC

Table B.2 continues on next page.

254



Table B.2, continued:

Barcode ID Sequence

C001_C010

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTTAACGTCGCGCGTTCGA

ACGTTC

C001_C011

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTATTACGCGAATCGCG

CGATTC

C001_C014

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGCGTATACGTACGCGC

GAATTC

C001_C015

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGCGTAATACGCGCGAAA

TTCGTC

C001_C016

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCGATAGTCGACGTTATCGC

GTCGTC

C001_C017

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTACGAAACGCGTTAAC

GTCGTC

C001_C018

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTCGACTATCTCGTCGT

ATCGTC

C001_C019

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTTACGCGTACCAACGCGT

ATCGTC

C001_C022

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACGCGTATACGAATTT

CGCGTC
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C001_C023

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGACGCGATAATTACGT

CGCGTC

C001_C024

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGCGCGAATATTCGTAT

CGCGTC

C001_C025

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTATCGCGTCGAGTGATAT

CGCGTC

C001_C028

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTATTCGCGCGATCGCGAT

TACGTC

C001_C029

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGATTACGCGAACGATTC

GACGTC

C001_C030

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTATACGCGATTAACGC

GACGTC

C001_C032

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCATCGTCGACGAACGTTCG

AACGTC

C001_C034

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGCGACGTTAACGCGATA

TCACTC

C001_C035

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCGGTACGCGTAACGCGTCG

ATTATC
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C001_C036

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGCGACGTAAATTCGCG

CGTATC

C001_C037

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGCGTATCGGTCGCGTAA

CGTATC

C001_C038

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACGAACGGTGTCGCGA

ACTATC

C001_C039

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGAACGGTCGTTTCGCGC

GATATC

C001_C040

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCCGACGATCGTACGACGC

GATATC

C001_C041

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACGTACCGTTTACGCG

TCGATC

C001_C042

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTACGACGCTACGAACG

TCGATC

C001_C043

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCCGCGCGATATTTTCGTC

GCGATC

C001_C044

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGCGCGACATCGTAATC

GCGATC
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C001_C047

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGATCGTCGGCGATCGT

ACGATC

C001_C048

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCACGATCGTCGGTCGTTCG

ACGATC

C001_C049

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACGTATCGGCGATACG

ACGATC

C001_C050

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCATATCGCGCGGTCGTCGA

ACGATC

C001_C051

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACGTAACGGACGCGAA

ACGATC

C001_C052

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCACGACCGTTCGCGTCGCG

TTAATC

C001_C053

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTATCGGTCGCGATCGC

GTAATC

C001_C055

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCACCGTTCGTCGTCGACGC

GTAATC

C001_C056

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTACGTCCGTCGCGACGCG

ATAATC
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C001_C057

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCCGTTACGTCGTATCGCG

CGAATC

C001_C058

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCACGGTACGTCGTTACGCG

CGAATC

C001_C060

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGCACGATCGCGCGATA

CGAATC

C001_C061

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGCCGAATCGACGCGTC

GAAATC

C001_C063

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCATATCGCGCGCGTATCG

CGGTTC

C001_C064

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTATAGCGCGCCGTACG

TCGTTC

C001_C065

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCACCGATACGCGTAGCGAC

GCGTTC

C001_C066

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCCGAATACGCGTCGACGA

CCGTTC

C001_C070

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACCGATACGCGCGGTA

CGATTC

Table B.2 continues on next page.

259



Table B.2, continued:

Barcode ID Sequence

C001_C071

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTTCGAGCGACGCGGCGTA

CGATTC

C001_C072

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCGTCGAACGACGCGGTCGA

CGATTC

C001_C073

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCGACGCGTAACGCCGCGCG

TAATTC

C001_C074

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTCGACGCGTAGCGCGACG

CAATTC

C001_C075

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGACGAACGAGTCGTATC

GCGGTC

C001_C077

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTAACGTCGCGCATTACGC

GCGGTC

C001_C079

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTCGTTCGACACGACGT

ACGGTC

C001_C081

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTGTCGCGCGTATACGCTC

GTCGTC

C001_C082

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCGTCCGAGCGTAGTATCGC

GTCGTC
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C001_C085

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGCGACGCATAGCGTTAC

GTCGTC

C001_C089

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGATTCGGCGATGCGACG

ATCGTC

C001_C090

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTACGGTCGCGACCGTCGA

ATCGTC

C001_C091

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCATGTCGCGCGACGCGTCA

ATCGTC

C001_C092

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGGTCGTACGACGCGATA

TGCGTC

C001_C093

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCTACGCGCGACACGTAATC

GGCGTC

C001_C094

GAAACGCGTATCGCGCGCATAATAGCTCAATTGGTCGTAGACAGCTC

TAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCG

CCAAGGGGATTACTCCCTAGTCTCCAGGCCGTCGCTCGAATATCGGT

CGCGTC

MMTV_CXXX Sequences

The MMTV_CXXX sequences are based on the mouse mammary tumor virus (MMTV) long

terminal repeat (LTR)288 with one barcode.
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MMTV_C001

GAAACGCGTATCGCGCGCATAATACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C002

GAAATCGCGCGATTATTATGCGCGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C003

GAACGAACGTCGAACGCGCGATATCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C004

GAACGACGCGATAATATCGCGCGTCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C005

GAACGATTCGACGATCGTCGACGACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C006

GAACGATTCGCGTCGAATCGACGACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C007

GAACGCGAAACGACGAATCGCGTACTCTTGTGTGTTTGTGTCTGTTC

GCCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCC

CCCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTT

TTTTG

MMTV_C008

GAACGCGAATCGTCGACGCGTATACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C009

GAACGCGTCGAAACGATTACGCGACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG
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MMTV_C010

GAACGTTCGAACGCGCGACGTTAACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C011

GAATCGCGCGATTCGCGTAATACGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C012

GAATTACGCGCGACGCGTAATCGACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C013

GAATTACGTCGCGCGTACGAAACGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C014

GAATTCGCGCGTACGTATACGCGACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C015

GACGAATTTCGCGCGTATTACGCGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C016

GACGACGCGATAACGTCGACTATCCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C017

GACGACGTTAACGCGTTTCGTACGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C018

GACGATACGACGAGATAGTCGACGCTCTTGTGTGTTTGTGTCTGTTC

GCCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCC

CCCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTT

TTTTG

Table B.3 continues on next page.

263



Table B.3, continued:

Barcode ID Sequence

MMTV_C019

GACGATACGCGTTGGTACGCGTAACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C020

GACGATCGCGTAATACGCGATTCGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C021

GACGATCGTACGATAGCGTACCGACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C022

GACGCGAAATTCGTATACGCGTCGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C023

GACGCGACGTAATTATCGCGTCGACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C024

GACGCGATACGAATATTCGCGCGACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C025

GACGCGATATCACTCGACGCGATACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C026

GACGCGTAACGTATCGATTACGCGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C027

GACGCGTCGATTATCGCGACGTAACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG
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MMTV_C028

GACGTAATCGCGATCGCGCGAATACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C029

GACGTCGAATCGTTCGCGTAATCGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C030

GACGTCGCGTTAATCGCGTATACGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C031

GACGTTAACGTCGTCGGTACGCTACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C032

GACGTTCGAACGTTCGTCGACGATCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C033

GAGTCGCGAACTATCGTCGATTCGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C034

GAGTGATATCGCGTTAACGTCGCGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C035

GATAATCGACGCGTTACGCGTACCCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C036

GATACGCGCGAATTTACGTCGCGACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG
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MMTV_C037

GATACGTTACGCGACCGATACGCGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C038

GATAGTTCGCGACACCGTTCGTCGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C039

GATATCGCGCGAAACGACCGTTCGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C040

GATATCGCGTCGTACGATCGTCGGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C041

GATCGACGCGTAAACGGTACGTCGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C042

GATCGACGTTCGTAGCGTCGTACGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C043

GATCGCGACGAAAATATCGCGCGGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C044

GATCGCGATTACGATGTCGCGCGACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C045

GATCGCGCGTAATCATATCGCGCGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG
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MMTV_C046

GATCGCGTACGAACCGAATACGCGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C047

GATCGTACGATCGCCGACGATCGACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C048

GATCGTCGAACGACCGACGATCGTCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C049

GATCGTCGTATCGCCGATACGTCGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C050

GATCGTTCGACGACCGCGCGATATCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C051

GATCGTTTCGCGTCCGTTACGTCGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C052

GATTAACGCGACGCGAACGGTCGTCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C053

GATTACGCGATCGCGACCGATACGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C054

GATTACGCGCGAACGACGAACGAGCTCTTGTGTGTTTGTGTCTGTTC

GCCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCC

CCCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTT

TTTTG
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MMTV_C055

GATTACGCGTCGACGACGAACGGTCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C056

GATTATCGCGTCGCGACGGACGTACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C057

GATTCGCGCGATACGACGTAACGGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C058

GATTCGCGCGTAACGACGTACCGTCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C059

GATTCGTACGCGACGACGTATCGGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C060

GATTCGTATCGCGCGATCGTGCGACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C061

GATTTCGACGCGTCGATTCGGCGACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C062

GATTTCGTCGCGACGCGACGCATACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C063

GAACCGCGATACGCGCGCGATATGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

Table B.3 continues on next page.

268



Table B.3, continued:

Barcode ID Sequence

MMTV_C064

GAACGACGTACGGCGCGCTATACGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C065

GAACGCGTCGCTACGCGTATCGGTCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C066

GAACGGTCGTCGACGCGTATTCGGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C067

GAACGTTCGACCGCGGTCGTACGACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C068

GAACTCGTCGCGACGTACGACGCTCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C069

GAATCGCGGTACGCGTATAGCGCGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C070

GAATCGTACCGCGCGTATCGGTCGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C071

GAATCGTACGCCGCGTCGCTCGAACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C072

GAATCGTCGACCGCGTCGTTCGACCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG
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MMTV_C073

GAATTACGCGCGGCGTTACGCGTCCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C074

GAATTGCGTCGCGCTACGCGTCGACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C075

GACCGCGATACGACTCGTTCGTCGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C076

GACCGCGCGATAAGACGCGTAACGCTCTTGTGTGTTTGTGTCTGTTC

GCCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCC

CCCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTT

TTTTG

MMTV_C077

GACCGCGCGTAATGCGCGACGTTACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C078

GACCGCGCGTATAGTCCGAGCGTACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C079

GACCGTACGTCGTGTCGAACGACGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C080

GACCGTCGAATCGTAACGTCGCGCCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C081

GACGACGAGCGTATACGCGCGACACTCTTGTGTGTTTGTGTCTGTTC

GCCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCC

CCCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTT

TTTTG
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MMTV_C082

GACGACGCGATACTACGCTCGGACCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C083

GACGACGCGTAACTACGGTCGCGACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C084

GACGACGGATACGTACGTCCGTCGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C085

GACGACGTAACGCTATGCGTCGCGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C086

GACGACTAACGCGTCGACGCGTAGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C087

GACGATACGCCGATCGATCGTCGGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C088

GACGATAGTCGCGTCGCACGATCGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C089

GACGATCGTCGCATCGCCGAATCGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C090

GACGATTCGACGGTCGCGACCGTACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG
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MMTV_C091

GACGATTGACGCGTCGCGCGACATCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C092

GACGCATATCGCGTCGTACGACCGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C093

GACGCCGATTACGTGTCGCGCGTACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C094

GACGCGACCGATATTCGAGCGACGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C095

GACGCGACGCAATCCGTCGAACGCCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C096

GACGCGACTATCGCGCGTAACGCGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C097

GACGCGATACGACCGCGTTACGCGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C098

GACGCGATATCCGGCGCGTACCGACTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMTV_C099

GACGCGATATGCGGCGTTCGACGGCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG
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MMTV_C100

GACGCGATCGGTATCGGTACGCGCCTCTTGTGTGTTTGTGTCTGTTCG

CCATCCCGTCTCCGCTCGTCACTTATCCTTCACTTTCCAGAGGGTCCC

CCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCACAGTTT

TTTG

MMS_DXXX Sequences

The MMS_DXXX sequences are based on the mouse minor satellite (MMS) sequence289 with one

barcode.

Table B.4: MMS_DXXX nucleosome barcode sequences.

Barcode ID Sequence

MMS_D001

ATGATATTCGTACCCGTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D002

ATGATAACGTAGACCGTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D003

ATGTAGTTCGTACGACTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D004

ATGGAAGCGAACGTATTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D005

ATGACGTCGACTATTATTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT
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MMS_D006

ATGCGCGATTAGACTATTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D007

ATGATGGTACGCGATTTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D008

ATGTAGATCGCGTAAGTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D009

ATGTCTAGTAACGACGTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D010

ATGTTATACCTCGCGTTTTGTAGAACAGTGTATATCAATGAGTTACAA

TGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTAG

ATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACGA

ATGTGTTT

MMS_D011

ATGAATACGCGCGTAATTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D012

ATGGCGTTATCGTACATTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D013

ATGTGTTTAGCGAACGTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D014

ATGAGATTATCGACCGTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT
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MMS_D015

ATGTATAGTACGCGTCTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D016

ATGTCTATTCGGCGTATTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D017

ATGCGTCGATAACCTATTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D018

ATGCTTCGATACGTAATTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D019

ATGTCGTAACGCGAATTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D020

ATGATCGCTCTAACGTTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D021

ATGCTTATCGCGTTGATTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D022

ATGTCGTTACGTCCTATTTGTAGAACAGTGTATATCAATGAGTTACAA

TGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTAG

ATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACGA

ATGTGTTT

MMS_D023

ATGTGAACGTCGTAGTTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT
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MMS_D024

ATGCGTTATACACGACTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D025

ATGTCGTACGTTAGACTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D026

ATGAACGACGGTACATTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D027

ATGTACGACGTAAGGTTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D028

ATGTACTATCGTCACGTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D029

ATGACTACGCTACGATTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D030

ATGTAATCGCGCTAACTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D031

ATGATTTAGGCGTACGTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D032

ATGTCGATAGCGTAAGTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT
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MMS_D033

ATGCGCGTTAGATAGTTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D034

ATGCGGTTACGCTATATTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D035

ATGTATCGCTAACTCGTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D036

ATGCGCGTAATAGTACTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D037

ATGCGTACGCTATCTATTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D038

ATGCCGCGAACTTATATTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D039

ATGTTACAATACGCGCTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D040

ATGTAGTTTACGCGAGTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D041

ATGCTCGAATTGACGTTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT
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MMS_D042

ATGCGTCGTACTACATTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D043

ATGCGTAATACCTACGTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D044

ATGTCATTACGATCGCTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D045

ATGGTAATGCGCGATATTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D046

ATGCGCGAATACTAAGTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D047

ATGTAACGTCCGGTAATTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D048

ATGTATTCGTATCCCGTTTGTAGAACAGTGTATATCAATGAGTTACAA

TGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTAG

ATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACGA

ATGTGTTT

MMS_D049

ATGTAGTAACGTCGAGTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D050

ATGCCGTTATAGTACGTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT
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MMS_D051

ATGGATAACGCGAAACTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D052

ATGACGTAGGTATTCGTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D053

ATGCGTACTTTAGACGTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D054

ATGGAATACGCGAATCTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D055

ATGCAGTATTCGCGTATTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D056

ATGCGTACTAATCGTCTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D057

ATGGATCGCGTACTATTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D058

ATGATACGCGATGTATTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D059

ATGTTCAATACGCGACTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT
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MMS_D060

ATGCGAAAGACGTATCTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D061

ATGACGCCGTAATAGTTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D062

ATGCGATCGCGTATTATTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D063

ATGAGACCGATTAACGTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D064

ATGGTTCGGACGTAATTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D065

ATGAGATAGCGACGTATTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D066

ATGTATAGTATCGCGATTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D067

ATGATACTACGCCGATTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D068

ATGTATCGCGAACTTATTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

Table B.4 continues on next page.

280



Table B.4, continued:

Barcode ID Sequence

MMS_D069

ATGCTATCGAGCGATATTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D070

ATGACGTTCGAACTAGTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D071

ATGTATCGAATACGGCTTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

MMS_D072

ATGGCGAACGTAGTTATTTGTAGAACAGTGTATATCAATGAGTTACA

ATGAGAAACATGGAAAATGATAAAAACCACACTGGAGAACAGATTA

GATGAGTGAGTTACACTGAAATACTACGTATCGTCCCGTTTCCAACG

AATGTGTTT

Space Alien Sequences

The Space Alien (SA) sequences are synthetically designed.

Table B.5: Space Alien nucleosome barcode sequences.

Barcode ID Sequence

S001

ATTAGCGACGTGATAATCTTTTAGACTACGTCGTGTCGCGTATAACC

CGACACGTAATCGACACTACGTCGACTACGACGTGTTAGTAAAATAC

GTCGCGATATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA

CTATTA

S002

ATTAGCGACGTGATAATCTTCGTACTAAGACGTATCTAGCGCGATAC

CGACACGTAATCGACACTACGTCGACTATTCACGACGTATAACGTCG

TACTAACTATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA

CTATTA

S003

ATTAGCGACGTGATAATCTTCGCGAGTAATAAGTACGCGAGATAGTC

CGACACGTAATCGACACTACGTCGACTATACGCGATACTCATAGTAT

TTCGCGATATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA

CTATTA
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S004

ATTAGCGACGTGATAATCTTACGAATAACGCGTCGCTATACTTCGAC

CGACACGTAATCGACACTACGTCGACTATACGTCGTAGAGACTACGG

TCGATATTATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA

CTATTA

S005

ATTAGCGACGTGATAATCTTATACGTAACCGGTAGACTTATACGCGC

CGACACGTAATCGACACTACGTCGACTACGAATTACGTCGTCGTATT

CGCGTTATATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA

CTATTA

S006

ATTAGCGACGTGATAATCTTGATTACGACCGTTTATTCGCGAACCAC

CGACACGTAATCGACACTACGTCGACTAGATATATCGACCGTTACGT

TCGCGATTATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA

CTATTA

S007

ATTAGCGACGTGATAATCTTCGCGTTAAGTATGCGAACCGTATAGAC

CGACACGTAATCGACACTACGTCGACTATCTTTTCGGCGTATAGACC

GCGAATATATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA

CTATTA

S008

ATTAGCGACGTGATAATCTTTAGACGACCGAATTCTACTATTCGCGC

CGACACGTAATCGACACTACGTCGACTAACACTATCGCGAATTATGT

TCGGACGTATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA

CTATTA

S009

ATTAGCGACGTGATAATCTTACGTACTACGATCTCGACGCGTAAAAC

CGACACGTAATCGACACTACGTCGACTAGTCGTATAACGGTAGTATA

CTCGCGATATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA

CTATTA

S010

ATTAGCGACGTGATAATCTTCTTATTTCGCGTCACGACTAATTCCGCC

GACACGTAATCGACACTACGTCGACTAGACGTAGTTACGTTTGTATA

CCGCGATATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATAC

TATTA

S011

ATTAGCGACGTGATAATCTTCGCTATACGAGAATAACGCGTCGTAAC

CGACACGTAATCGACACTACGTCGACTATAATCGCACGGTACATTAC

TCGCGAATATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA

CTATTA

S012

ATTAGCGACGTGATAATCTTATAACGAGACCGAGTTCGCTTATACGC

CGACACGTAATCGACACTACGTCGACTAAGGTACGACGATAATCCTA

CGCGTAATATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA

CTATTA
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S013

ATTAGCGACGTGATAATCTTCGATGTATCGTAGTCGGAGTACGTAAC

CGACACGTAATCGACACTACGTCGACTATCGTATACTCCGATTACGC

GACGTTATATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA

CTATTA

S014

ATTAGCGACGTGATAATCTTCGTAACGCGTTTAGAGTATTCGTACGC

CGACACGTAATCGACACTACGTCGACTACGCGACGTATTATATAAGT

CGCGTACTATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA

CTATTA

S015

ATTAGCGACGTGATAATCTTCCTTACGCGAATTCGAACTAATCACGC

CGACACGTAATCGACACTACGTCGACTATTCGCGATAGTGTACCGTA

AGTTCGTTATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA

CTATTA

S016

ATTAGCGACGTGATAATCTTATGATACGTCCGATACGCGTATTCGTC

CGACACGTAATCGACACTACGTCGACTAAGTCAATACGCGATATAGA

CGTTGCGTATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA

CTATTA

S017

ATTAGCGACGTGATAATCTTCGTACGAATTACCTTACCGTCGATTGCC

GACACGTAATCGACACTACGTCGACTACGTAATATCGAGGTACTACG

TCGAAATATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATAC

TATTA

S018

ATTAGCGACGTGATAATCTTCATAACGGTTCGACGTACCGATGTAAC

CGACACGTAATCGACACTACGTCGACTATACATCGCGTCATCGCCGA

ACTATAATATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA

CTATTA

S019

ATTAGCGACGTGATAATCTTACCATTACGCGATAACTACGCACGATC

CGACACGTAATCGACACTACGTCGACTAATACCGTCGTAATTTAGGT

CGTCGTATATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA

CTATTA

S020

ATTAGCGACGTGATAATCTTTACGCGCACTAATGTATCGACCGTTAC

CGACACGTAATCGACACTACGTCGACTAGTCGTAACGTACTACGTCT

CGACATATATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA

CTATTA

S021

ATTAGCGACGTGATAATCTTCGATTAGTACTCGAATACGCTACCGTC

CGACACGTAATCGACACTACGTCGACTAACTTACGTCCGTATATGTA

CGGATCGTATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA

CTATTA
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S022

ATTAGCGACGTGATAATCTTTACGTCGGATACATATCCGCGAACTAC

CGACACGTAATCGACACTACGTCGACTAATACGTCGGATTGCCGATA

CTACGTATATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA

CTATTA

S023

ATTAGCGACGTGATAATCTTTATTCGATGCGGTGATTACTACGCGAC

CGACACGTAATCGACACTACGTCGACTATACGGTCGTTTACAGGTCG

TATCGTTTATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATAC

TATTA

S024

ATTAGCGACGTGATAATCTTTCCGTAAACGACAGACGATCTCGTAAC

CGACACGTAATCGACACTACGTCGACTATCGCGTCGTATTACATAAC

GTTGTCGTATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA

CTATTA

S025

ATTAGCGACGTGATAATCTTTCGACGAACCTTATCGTGTAACTACGC

CGACACGTAATCGACACTACGTCGACTATCGTGTCTCGATAACTATT

ACTCGCGTATTAACCGGCGTTCATTGCGCGATATAACGCGCGTCATA

CTATTA
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APPENDIX C: PRIMERSAND PROBES

This section lists the primers used for mutagenesis of barcode sequences, as well as the primers and

probes used for qPCR of genomic targets and barcode sequences.

Primers for barcode mutagenesis and amplification

Mutagenesis of 601_CXXX barcodes

Table C.1: 601_CXXX mutagenesis primers.

Barcode Forward Primer Reverse Primer

601 Base CTGGAGAATCCCGGTGC
ACAGGATGTATATATCTGACACG

TG

601_C002 CTGGAGAATCCCGGTGC
GAAATCGCGCGATTATTATGCGC

GGCCTGGAGACTAGGGAG

601_C005 CTGGAGAATCCCGGTGC
GAACGATTCGACGATCGTCGACG

AGCCTGGAGACTAGGGAG

601_C008 CTGGAGAATCCCGGTGC
GAACGCGAATCGTCGACGCGTAT

AGCCTGGAGACTAGGGAG

601_C009 CTGGAGAATCCCGGTGC
GAACGCGTCGAAACGATTACGC

GAGCCTGGAGACTAGGGAG

601_C010 CTGGAGAATCCCGGTGC
GAACGTTCGAACGCGCGACGTTA

AGCCTGGAGACTAGGGAG

601_C013 CTGGAGAATCCCGGTGC
GAATTACGTCGCGCGTACGAAAC

GGCCTGGAGACTAGGGAG

601_C014 CTGGAGAATCCCGGTGC
GAATTCGCGCGTACGTATACGCG

AGCCTGGAGACTAGGGAG

601_C015 CTGGAGAATCCCGGTGC
GACGAATTTCGCGCGTATTACGC

GGCCTGGAGACTAGGGAG

601_C017 CTGGAGAATCCCGGTGC
GACGACGTTAACGCGTTTCGTAC

GGCCTGGAGACTAGGGAG

601_C019 CTGGAGAATCCCGGTGC
GACGATACGCGTTGGTACGCGTA

AGCCTGGAGACTAGGGAG

601_C021 CTGGAGAATCCCGGTGC
GACGATCGTACGATAGCGTACCG

AGCCTGGAGACTAGGGAG
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601_C022 CTGGAGAATCCCGGTGC
GACGCGAAATTCGTATACGCGTC

GGCCTGGAGACTAGGGAG

601_C025 CTGGAGAATCCCGGTGC
GACGCGATATCACTCGACGCGAT

AGCCTGGAGACTAGGGAG

601_C026 CTGGAGAATCCCGGTGC
GACGCGTAACGTATCGATTACGC

GGCCTGGAGACTAGGGAG

601_C028 CTGGAGAATCCCGGTGC
GACGTAATCGCGATCGCGCGAAT

AGCCTGGAGACTAGGGAG

601_C029 CTGGAGAATCCCGGTGC
GACGTCGAATCGTTCGCGTAATC

GGCCTGGAGACTAGGGAG

601_C031 CTGGAGAATCCCGGTGC
GACGTTAACGTCGTCGGTACGCT

AGCCTGGAGACTAGGGAG

601_C032 CTGGAGAATCCCGGTGC
GACGTTCGAACGTTCGTCGACGA

TGCCTGGAGACTAGGGAG

601_C033 CTGGAGAATCCCGGTGC
GAGTCGCGAACTATCGTCGATTC

GGCCTGGAGACTAGGGAG

601_C034 CTGGAGAATCCCGGTGC
GAGTGATATCGCGTTAACGTCGC

GGCCTGGAGACTAGGGAG

601_C037 CTGGAGAATCCCGGTGC
GATACGTTACGCGACCGATACGC

GGCCTGGAGACTAGGGAG

601_C038 CTGGAGAATCCCGGTGC
GATAGTTCGCGACACCGTTCGTC

GGCCTGGAGACTAGGGAG

601_C039 CTGGAGAATCCCGGTGC
GATATCGCGCGAAACGACCGTTC

GGCCTGGAGACTAGGGAG

601_C040 CTGGAGAATCCCGGTGC
GATATCGCGTCGTACGATCGTCG

GGCCTGGAGACTAGGGAG

601_C041 CTGGAGAATCCCGGTGC
GATCGACGCGTAAACGGTACGTC

GGCCTGGAGACTAGGGAG

601_C042 CTGGAGAATCCCGGTGC
GATCGACGTTCGTAGCGTCGTAC

GGCCTGGAGACTAGGGAG

601_C043 CTGGAGAATCCCGGTGC
GATCGCGACGAAAATATCGCGC

GGGCCTGGAGACTAGGGAG

601_C044 CTGGAGAATCCCGGTGC
GATCGCGATTACGATGTCGCGCG

AGCCTGGAGACTAGGGAG

601_C046 CTGGAGAATCCCGGTGC
GATCGCGTACGAACCGAATACG

CGGCCTGGAGACTAGGGAG
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601_C047 CTGGAGAATCCCGGTGC
GATCGTACGATCGCCGACGATCG

AGCCTGGAGACTAGGGAG

601_C049 CTGGAGAATCCCGGTGC
GATCGTCGTATCGCCGATACGTC

GGCCTGGAGACTAGGGAG

601_C051 CTGGAGAATCCCGGTGC
GATCGTTTCGCGTCCGTTACGTC

GGCCTGGAGACTAGGGAG

601_C052 CTGGAGAATCCCGGTGC
GATTAACGCGACGCGAACGGTC

GTGCCTGGAGACTAGGGAG

601_C054 CTGGAGAATCCCGGTGC
GATTACGCGCGAACGACGAACG

AGGCCTGGAGACTAGGGAG

601_C055 CTGGAGAATCCCGGTGC
GATTACGCGTCGACGACGAACG

GTGCCTGGAGACTAGGGAG

601_C056 CTGGAGAATCCCGGTGC
GATTATCGCGTCGCGACGGACGT

AGCCTGGAGACTAGGGAG

601_C058 CTGGAGAATCCCGGTGC
GATTCGCGCGTAACGACGTACCG

TGCCTGGAGACTAGGGAG

601_C060 CTGGAGAATCCCGGTGC
GATTCGTATCGCGCGATCGTGCG

AGCCTGGAGACTAGGGAG

601_C061 CTGGAGAATCCCGGTGC
GATTTCGACGCGTCGATTCGGCG

AGCCTGGAGACTAGGGAG

601_C062 CTGGAGAATCCCGGTGC
GATTTCGTCGCGACGCGACGCAT

AGCCTGGAGACTAGGGAG

601_C063 CTGGAGAATCCCGGTGC
GAACCGCGATACGCGCGCGATAT

GGCCTGGAGACTAGGGAG

601_C066 CTGGAGAATCCCGGTGC
GAACGGTCGTCGACGCGTATTCG

GGCCTGGAGACTAGGGAG

601_C067 CTGGAGAATCCCGGTGC
GAACGTTCGACCGCGGTCGTACG

AGCCTGGAGACTAGGGAG

601_C068 CTGGAGAATCCCGGTGC
GAACTCGTCGCGACGTACGACGC

TGCCTGGAGACTAGGGAG

601_C070 CTGGAGAATCCCGGTGC
GAATCGTACCGCGCGTATCGGTC

GGCCTGGAGACTAGGGAG

601_C071 CTGGAGAATCCCGGTGC
GAATCGTACGCCGCGTCGCTCGA

AGCCTGGAGACTAGGGAG

601_C073 CTGGAGAATCCCGGTGC
GAATTACGCGCGGCGTTACGCGT

CGCCTGGAGACTAGGGAG
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601_C075 CTGGAGAATCCCGGTGC
GACCGCGATACGACTCGTTCGTC

GGCCTGGAGACTAGGGAG

601_C076 CTGGAGAATCCCGGTGC
GACCGCGCGATAAGACGCGTAA

CGGCCTGGAGACTAGGGAG

601_C077 CTGGAGAATCCCGGTGC
GACCGCGCGTAATGCGCGACGTT

AGCCTGGAGACTAGGGAG

601_C078 CTGGAGAATCCCGGTGC
GACCGCGCGTATAGTCCGAGCGT

AGCCTGGAGACTAGGGAG

601_C079 CTGGAGAATCCCGGTGC
GACCGTACGTCGTGTCGAACGAC

GGCCTGGAGACTAGGGAG

601_C080 CTGGAGAATCCCGGTGC
GACCGTCGAATCGTAACGTCGCG

CGCCTGGAGACTAGGGAG

601_C081 CTGGAGAATCCCGGTGC
GACGACGAGCGTATACGCGCGA

CAGCCTGGAGACTAGGGAG

601_C082 CTGGAGAATCCCGGTGC
GACGACGCGATACTACGCTCGGA

CGCCTGGAGACTAGGGAG

601_C083 CTGGAGAATCCCGGTGC
GACGACGCGTAACTACGGTCGC

GAGCCTGGAGACTAGGGAG

601_C084 CTGGAGAATCCCGGTGC
GACGACGGATACGTACGTCCGTC

GGCCTGGAGACTAGGGAG

601_C085 CTGGAGAATCCCGGTGC
GACGACGTAACGCTATGCGTCGC

GGCCTGGAGACTAGGGAG

601_C086 CTGGAGAATCCCGGTGC
GACGACTAACGCGTCGACGCGTA

GGCCTGGAGACTAGGGAG

601_C087 CTGGAGAATCCCGGTGC
GACGATACGCCGATCGATCGTCG

GGCCTGGAGACTAGGGAG

601_C088 CTGGAGAATCCCGGTGC
GACGATAGTCGCGTCGCACGATC

GGCCTGGAGACTAGGGAG

601_C089 CTGGAGAATCCCGGTGC
GACGATCGTCGCATCGCCGAATC

GGCCTGGAGACTAGGGAG

601_C090 CTGGAGAATCCCGGTGC
GACGATTCGACGGTCGCGACCGT

AGCCTGGAGACTAGGGAG

601_C091 CTGGAGAATCCCGGTGC
GACGATTGACGCGTCGCGCGACA

TGCCTGGAGACTAGGGAG

601_C092 CTGGAGAATCCCGGTGC
GACGCATATCGCGTCGTACGACC

GGCCTGGAGACTAGGGAG
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Barcode Forward Primer Reverse Primer

601_C093 CTGGAGAATCCCGGTGC
GACGCCGATTACGTGTCGCGCGT

AGCCTGGAGACTAGGGAG

601_C094 CTGGAGAATCCCGGTGC
GACGCGACCGATATTCGAGCGA

CGGCCTGGAGACTAGGGAG

601_C096 CTGGAGAATCCCGGTGC
GACGCGACTATCGCGCGTAACGC

GGCCTGGAGACTAGGGAG

601_C097 CTGGAGAATCCCGGTGC
GACGCGATACGACCGCGTTACGC

GGCCTGGAGACTAGGGAG

601_C098 CTGGAGAATCCCGGTGC
GACGCGATATCCGGCGCGTACCG

AGCCTGGAGACTAGGGAG

601_C099 CTGGAGAATCCCGGTGC
GACGCGATATGCGGCGTTCGACG

GGCCTGGAGACTAGGGAG

601_C100 CTGGAGAATCCCGGTGC
GACGCGATCGGTATCGGTACGCG

CGCCTGGAGACTAGGGAG

Mutagenesis of C001_CXXX barcodes

Table C.2: C001_CXXX mutagenesis primers.

Barcode Forward Primer Reverse Primer

601 Base CTGGAGAATCCCGGTGC
ACAGGATGTATATATCTGACACG

TG

C001_C006
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GAACGATTCGCGTCGAATCGACG

AGCCTGGAGACTAGGGAG

C001_C008
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GAACGCGAATCGTCGACGCGTAT

AGCCTGGAGACTAGGGAG

C001_C009
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GAACGCGTCGAAACGATTACGC

GAGCCTGGAGACTAGGGAG

C001_C010
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GAACGTTCGAACGCGCGACGTTA

AGCCTGGAGACTAGGGAG

C001_C011
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GAATCGCGCGATTCGCGTAATAC

GGCCTGGAGACTAGGGAG

C001_C014
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GAATTCGCGCGTACGTATACGCG

AGCCTGGAGACTAGGGAG

C001_C015
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GACGAATTTCGCGCGTATTACGC

GGCCTGGAGACTAGGGAG

Table C.2 continues on next page.
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Barcode Forward Primer Reverse Primer

C001_C016
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GACGACGCGATAACGTCGACTAT

CGCCTGGAGACTAGGGAG

C001_C017
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GACGACGTTAACGCGTTTCGTAC

GGCCTGGAGACTAGGGAG

C001_C018
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GACGATACGACGAGATAGTCGA

CGGCCTGGAGACTAGGGAG

C001_C019
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GACGATACGCGTTGGTACGCGTA

AGCCTGGAGACTAGGGAG

C001_C022
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GACGCGAAATTCGTATACGCGTC

GGCCTGGAGACTAGGGAG

C001_C023
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GACGCGACGTAATTATCGCGTCG

AGCCTGGAGACTAGGGAG

C001_C024
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GACGCGATACGAATATTCGCGCG

AGCCTGGAGACTAGGGAG

C001_C025
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GACGCGATATCACTCGACGCGAT

AGCCTGGAGACTAGGGAG

C001_C028
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GACGTAATCGCGATCGCGCGAAT

AGCCTGGAGACTAGGGAG

C001_C029
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GACGTCGAATCGTTCGCGTAATC

GGCCTGGAGACTAGGGAG

C001_C030
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GACGTCGCGTTAATCGCGTATAC

GGCCTGGAGACTAGGGAG

C001_C032
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GACGTTCGAACGTTCGTCGACGA

TGCCTGGAGACTAGGGAG

C001_C034
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GAGTGATATCGCGTTAACGTCGC

GGCCTGGAGACTAGGGAG

C001_C035
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GATAATCGACGCGTTACGCGTAC

CGCCTGGAGACTAGGGAG

C001_C036
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GATACGCGCGAATTTACGTCGCG

AGCCTGGAGACTAGGGAG

C001_C037
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GATACGTTACGCGACCGATACGC

GGCCTGGAGACTAGGGAG

C001_C038
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GATAGTTCGCGACACCGTTCGTC

GGCCTGGAGACTAGGGAG

C001_C039
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GATATCGCGCGAAACGACCGTTC

GGCCTGGAGACTAGGGAG
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Barcode Forward Primer Reverse Primer

C001_C040
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GATATCGCGTCGTACGATCGTCG

GGCCTGGAGACTAGGGAG

C001_C041
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GATCGACGCGTAAACGGTACGTC

GGCCTGGAGACTAGGGAG

C001_C042
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GATCGACGTTCGTAGCGTCGTAC

GGCCTGGAGACTAGGGAG

C001_C043
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GATCGCGACGAAAATATCGCGC

GGGCCTGGAGACTAGGGAG

C001_C044
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GATCGCGATTACGATGTCGCGCG

AGCCTGGAGACTAGGGAG

C001_C047
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GATCGTACGATCGCCGACGATCG

AGCCTGGAGACTAGGGAG

C001_C048
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GATCGTCGAACGACCGACGATC

GTGCCTGGAGACTAGGGAG

C001_C049
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GATCGTCGTATCGCCGATACGTC

GGCCTGGAGACTAGGGAG

C001_C050
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GATCGTTCGACGACCGCGCGATA

TGCCTGGAGACTAGGGAG

C001_C051
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GATCGTTTCGCGTCCGTTACGTC

GGCCTGGAGACTAGGGAG

C001_C052
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GATTAACGCGACGCGAACGGTC

GTGCCTGGAGACTAGGGAG

C001_C053
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GATTACGCGATCGCGACCGATAC

GGCCTGGAGACTAGGGAG

C001_C055
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GATTACGCGTCGACGACGAACG

GTGCCTGGAGACTAGGGAG

C001_C056
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GATTATCGCGTCGCGACGGACGT

AGCCTGGAGACTAGGGAG

C001_C057
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GATTCGCGCGATACGACGTAACG

GGCCTGGAGACTAGGGAG

C001_C058
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GATTCGCGCGTAACGACGTACCG

TGCCTGGAGACTAGGGAG

C001_C060
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GATTCGTATCGCGCGATCGTGCG

AGCCTGGAGACTAGGGAG

C001_C061
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GATTTCGACGCGTCGATTCGGCG

AGCCTGGAGACTAGGGAG
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Barcode Forward Primer Reverse Primer

C001_C063
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GAACCGCGATACGCGCGCGATAT

GGCCTGGAGACTAGGGAG

C001_C064
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GAACGACGTACGGCGCGCTATA

CGGCCTGGAGACTAGGGAG

C001_C065
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GAACGCGTCGCTACGCGTATCGG

TGCCTGGAGACTAGGGAG

C001_C066
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GAACGGTCGTCGACGCGTATTCG

GGCCTGGAGACTAGGGAG

C001_C070
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GAATCGTACCGCGCGTATCGGTC

GGCCTGGAGACTAGGGAG

C001_C071
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GAATCGTACGCCGCGTCGCTCGA

AGCCTGGAGACTAGGGAG

C001_C072
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GAATCGTCGACCGCGTCGTTCGA

CGCCTGGAGACTAGGGAG

C001_C073
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GAATTACGCGCGGCGTTACGCGT

CGCCTGGAGACTAGGGAG

C001_C074
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GAATTGCGTCGCGCTACGCGTCG

AGCCTGGAGACTAGGGAG

C001_C075
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GACCGCGATACGACTCGTTCGTC

GGCCTGGAGACTAGGGAG

C001_C077
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GACCGCGCGTAATGCGCGACGTT

AGCCTGGAGACTAGGGAG

C001_C079
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GACCGTACGTCGTGTCGAACGAC

GGCCTGGAGACTAGGGAG

C001_C081
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GACGACGAGCGTATACGCGCGA

CAGCCTGGAGACTAGGGAG

C001_C082
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GACGACGCGATACTACGCTCGGA

CGCCTGGAGACTAGGGAG

C001_C085
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GACGACGTAACGCTATGCGTCGC

GGCCTGGAGACTAGGGAG

C001_C089
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GACGATCGTCGCATCGCCGAATC

GGCCTGGAGACTAGGGAG

C001_C090
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GACGATTCGACGGTCGCGACCGT

AGCCTGGAGACTAGGGAG

C001_C091
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GACGATTGACGCGTCGCGCGACA

TGCCTGGAGACTAGGGAG
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Barcode Forward Primer Reverse Primer

C001_C092
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GACGCATATCGCGTCGTACGACC

GGCCTGGAGACTAGGGAG

C001_C093
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GACGCCGATTACGTGTCGCGCGT

AGCCTGGAGACTAGGGAG

C001_C094
GAAACGCGTATCGCGCGCATAAT

AGCTCAATTGGTCGTAGACA

GACGCGACCGATATTCGAGCGA

CGGCCTGGAGACTAGGGAG

Mutagenesis of MMTV_CXXX barcodes

Table C.3: MMTV_CXXX mutagenesis primers.

Barcode Forward Primer Reverse Primer

MMTV_C001

GAAACGCGTATCGCGCGCATAAT

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C002

GAAATCGCGCGATTATTATGCGC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C003

GAACGAACGTCGAACGCGCGAT

ATCTCTTGTGTGTTTGTGTCTGTT

CGCC

CAAAAAACTGTGCCGCAGT

MMTV_C004

GAACGACGCGATAATATCGCGC

GTCTCTTGTGTGTTTGTGTCTGTT

CGCC

CAAAAAACTGTGCCGCAGT

MMTV_C005

GAACGATTCGACGATCGTCGACG

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C006

GAACGATTCGCGTCGAATCGACG

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C007

GAACGCGAAACGACGAATCGCG

TACTCTTGTGTGTTTGTGTCTGTT

CGCC

CAAAAAACTGTGCCGCAGT

MMTV_C008

GAACGCGAATCGTCGACGCGTAT

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT
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Barcode Forward Primer Reverse Primer

MMTV_C009

GAACGCGTCGAAACGATTACGC

GACTCTTGTGTGTTTGTGTCTGTT

CGCC

CAAAAAACTGTGCCGCAGT

MMTV_C010

GAACGTTCGAACGCGCGACGTTA

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C011

GAATCGCGCGATTCGCGTAATAC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C012

GAATTACGCGCGACGCGTAATCG

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C013

GAATTACGTCGCGCGTACGAAAC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C014

GAATTCGCGCGTACGTATACGCG

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C015

GACGAATTTCGCGCGTATTACGC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C016

GACGACGCGATAACGTCGACTAT

CCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C017

GACGACGTTAACGCGTTTCGTAC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C018

GACGATACGACGAGATAGTCGA

CGCTCTTGTGTGTTTGTGTCTGTT

CGCC

CAAAAAACTGTGCCGCAGT

MMTV_C019

GACGATACGCGTTGGTACGCGTA

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C020

GACGATCGCGTAATACGCGATTC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT
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Barcode Forward Primer Reverse Primer

MMTV_C021

GACGATCGTACGATAGCGTACCG

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C022

GACGCGAAATTCGTATACGCGTC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C023

GACGCGACGTAATTATCGCGTCG

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C024

GACGCGATACGAATATTCGCGCG

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C025

GACGCGATATCACTCGACGCGAT

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C026

GACGCGTAACGTATCGATTACGC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C027

GACGCGTCGATTATCGCGACGTA

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C028

GACGTAATCGCGATCGCGCGAAT

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C029

GACGTCGAATCGTTCGCGTAATC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C030

GACGTCGCGTTAATCGCGTATAC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C031

GACGTTAACGTCGTCGGTACGCT

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C032

GACGTTCGAACGTTCGTCGACGA

TCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT
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Barcode Forward Primer Reverse Primer

MMTV_C033

GAGTCGCGAACTATCGTCGATTC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C034

GAGTGATATCGCGTTAACGTCGC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C035

GATAATCGACGCGTTACGCGTAC

CCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C036

GATACGCGCGAATTTACGTCGCG

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C037

GATACGTTACGCGACCGATACGC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C038

GATAGTTCGCGACACCGTTCGTC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C039

GATATCGCGCGAAACGACCGTTC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C040

GATATCGCGTCGTACGATCGTCG

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C041

GATCGACGCGTAAACGGTACGTC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C042

GATCGACGTTCGTAGCGTCGTAC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C043

GATCGCGACGAAAATATCGCGC

GGCTCTTGTGTGTTTGTGTCTGTT

CGCC

CAAAAAACTGTGCCGCAGT

MMTV_C044

GATCGCGATTACGATGTCGCGCG

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT
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Barcode Forward Primer Reverse Primer

MMTV_C045

GATCGCGCGTAATCATATCGCGC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C046

GATCGCGTACGAACCGAATACG

CGCTCTTGTGTGTTTGTGTCTGTT

CGCC

CAAAAAACTGTGCCGCAGT

MMTV_C047

GATCGTACGATCGCCGACGATCG

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C048

GATCGTCGAACGACCGACGATC

GTCTCTTGTGTGTTTGTGTCTGTT

CGCC

CAAAAAACTGTGCCGCAGT

MMTV_C049

GATCGTCGTATCGCCGATACGTC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C050

GATCGTTCGACGACCGCGCGATA

TCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C051

GATCGTTTCGCGTCCGTTACGTC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C052

GATTAACGCGACGCGAACGGTC

GTCTCTTGTGTGTTTGTGTCTGTT

CGCC

CAAAAAACTGTGCCGCAGT

MMTV_C053

GATTACGCGATCGCGACCGATAC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C054

GATTACGCGCGAACGACGAACG

AGCTCTTGTGTGTTTGTGTCTGTT

CGCC

CAAAAAACTGTGCCGCAGT

MMTV_C055

GATTACGCGTCGACGACGAACG

GTCTCTTGTGTGTTTGTGTCTGTT

CGCC

CAAAAAACTGTGCCGCAGT

MMTV_C056

GATTATCGCGTCGCGACGGACGT

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT
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Barcode Forward Primer Reverse Primer

MMTV_C057

GATTCGCGCGATACGACGTAACG

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C058

GATTCGCGCGTAACGACGTACCG

TCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C059

GATTCGTACGCGACGACGTATCG

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C060

GATTCGTATCGCGCGATCGTGCG

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C061

GATTTCGACGCGTCGATTCGGCG

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C062

GATTTCGTCGCGACGCGACGCAT

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C063

GAACCGCGATACGCGCGCGATAT

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C064

GAACGACGTACGGCGCGCTATA

CGCTCTTGTGTGTTTGTGTCTGTT

CGCC

CAAAAAACTGTGCCGCAGT

MMTV_C065

GAACGCGTCGCTACGCGTATCGG

TCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C066

GAACGGTCGTCGACGCGTATTCG

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C067

GAACGTTCGACCGCGGTCGTACG

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C068

GAACTCGTCGCGACGTACGACGC

TCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT
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Barcode Forward Primer Reverse Primer

MMTV_C069

GAATCGCGGTACGCGTATAGCGC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C070

GAATCGTACCGCGCGTATCGGTC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C071

GAATCGTACGCCGCGTCGCTCGA

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C072

GAATCGTCGACCGCGTCGTTCGA

CCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C073

GAATTACGCGCGGCGTTACGCGT

CCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C074

GAATTGCGTCGCGCTACGCGTCG

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C075

GACCGCGATACGACTCGTTCGTC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C076

GACCGCGCGATAAGACGCGTAA

CGCTCTTGTGTGTTTGTGTCTGTT

CGCC

CAAAAAACTGTGCCGCAGT

MMTV_C077

GACCGCGCGTAATGCGCGACGTT

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C078

GACCGCGCGTATAGTCCGAGCGT

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C079

GACCGTACGTCGTGTCGAACGAC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C080

GACCGTCGAATCGTAACGTCGCG

CCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

Table C.3 continues on next page.

299



Table C.3, continued:

Barcode Forward Primer Reverse Primer

MMTV_C081

GACGACGAGCGTATACGCGCGA

CACTCTTGTGTGTTTGTGTCTGTT

CGCC

CAAAAAACTGTGCCGCAGT

MMTV_C082

GACGACGCGATACTACGCTCGGA

CCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C083

GACGACGCGTAACTACGGTCGC

GACTCTTGTGTGTTTGTGTCTGTT

CGCC

CAAAAAACTGTGCCGCAGT

MMTV_C084

GACGACGGATACGTACGTCCGTC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C085

GACGACGTAACGCTATGCGTCGC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C086

GACGACTAACGCGTCGACGCGTA

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C087

GACGATACGCCGATCGATCGTCG

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C088

GACGATAGTCGCGTCGCACGATC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C089

GACGATCGTCGCATCGCCGAATC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C090

GACGATTCGACGGTCGCGACCGT

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C091

GACGATTGACGCGTCGCGCGACA

TCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C092

GACGCATATCGCGTCGTACGACC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

Table C.3 continues on next page.
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Table C.3, continued:

Barcode Forward Primer Reverse Primer

MMTV_C093

GACGCCGATTACGTGTCGCGCGT

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C094

GACGCGACCGATATTCGAGCGA

CGCTCTTGTGTGTTTGTGTCTGTT

CGCC

CAAAAAACTGTGCCGCAGT

MMTV_C095

GACGCGACGCAATCCGTCGAAC

GCCTCTTGTGTGTTTGTGTCTGTT

CGCC

CAAAAAACTGTGCCGCAGT

MMTV_C096

GACGCGACTATCGCGCGTAACGC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C097

GACGCGATACGACCGCGTTACGC

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C098

GACGCGATATCCGGCGCGTACCG

ACTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C099

GACGCGATATGCGGCGTTCGACG

GCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

MMTV_C100

GACGCGATCGGTATCGGTACGCG

CCTCTTGTGTGTTTGTGTCTGTTC

GCC

CAAAAAACTGTGCCGCAGT

Mutagenesis of MMS_DXXX barcodes

Table C.4: MMS_DXXX mutagenesis primers.

Barcode Forward Primer Reverse Primer

MMS Base
TTTGTAGAACAGTGTATATCAAT

GAGTT
CCGTTTCCAACGAATGTGTTT

MMS_D001
ATGATATTCGTACCCGTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D002
ATGATAACGTAGACCGTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

Table C.4 continues on next page.
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Table C.4, continued:

Barcode Forward Primer Reverse Primer

MMS_D003
ATGTAGTTCGTACGACTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D004
ATGGAAGCGAACGTATTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D005
ATGACGTCGACTATTATTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D006
ATGCGCGATTAGACTATTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D007
ATGATGGTACGCGATTTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D008
ATGTAGATCGCGTAAGTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D009
ATGTCTAGTAACGACGTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D010
ATGTTATACCTCGCGTTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D011
ATGAATACGCGCGTAATTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D012
ATGGCGTTATCGTACATTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D013
ATGTGTTTAGCGAACGTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D014
ATGAGATTATCGACCGTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D015
ATGTATAGTACGCGTCTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D016
ATGTCTATTCGGCGTATTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D017
ATGCGTCGATAACCTATTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D018
ATGCTTCGATACGTAATTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D019
ATGTCGTAACGCGAATTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D020
ATGATCGCTCTAACGTTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

Table C.4 continues on next page.
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Table C.4, continued:

Barcode Forward Primer Reverse Primer

MMS_D021
ATGCTTATCGCGTTGATTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D022
ATGTCGTTACGTCCTATTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D023
ATGTGAACGTCGTAGTTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D024
ATGCGTTATACACGACTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D025
ATGTCGTACGTTAGACTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D026
ATGAACGACGGTACATTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D027
ATGTACGACGTAAGGTTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D028
ATGTACTATCGTCACGTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D029
ATGACTACGCTACGATTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D030
ATGTAATCGCGCTAACTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D031
ATGATTTAGGCGTACGTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D032
ATGTCGATAGCGTAAGTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D033
ATGCGCGTTAGATAGTTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D034
ATGCGGTTACGCTATATTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D035
ATGTATCGCTAACTCGTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D036
ATGCGCGTAATAGTACTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D037
ATGCGTACGCTATCTATTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D038
ATGCCGCGAACTTATATTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

Table C.4 continues on next page.
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Table C.4, continued:

Barcode Forward Primer Reverse Primer

MMS_D039
ATGTTACAATACGCGCTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D040
ATGTAGTTTACGCGAGTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D041
ATGCTCGAATTGACGTTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D042
ATGCGTCGTACTACATTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D043
ATGCGTAATACCTACGTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D044
ATGTCATTACGATCGCTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D045
ATGGTAATGCGCGATATTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D046
ATGCGCGAATACTAAGTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D047
ATGTAACGTCCGGTAATTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D048
ATGTATTCGTATCCCGTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D049
ATGTAGTAACGTCGAGTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D050
ATGCCGTTATAGTACGTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D051
ATGGATAACGCGAAACTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D052
ATGACGTAGGTATTCGTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D053
ATGCGTACTTTAGACGTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D054
ATGGAATACGCGAATCTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D055
ATGCAGTATTCGCGTATTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D056
ATGCGTACTAATCGTCTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT
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Table C.4, continued:

Barcode Forward Primer Reverse Primer

MMS_D057
ATGGATCGCGTACTATTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D058
ATGATACGCGATGTATTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D059
ATGTTCAATACGCGACTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D060
ATGCGAAAGACGTATCTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D061
ATGACGCCGTAATAGTTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D062
ATGCGATCGCGTATTATTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D063
ATGAGACCGATTAACGTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D064
ATGGTTCGGACGTAATTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D065
ATGAGATAGCGACGTATTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D066
ATGTATAGTATCGCGATTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D067
ATGATACTACGCCGATTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D068
ATGTATCGCGAACTTATTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D069
ATGCTATCGAGCGATATTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D070
ATGACGTTCGAACTAGTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D071
ATGTATCGAATACGGCTTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT

MMS_D072
ATGGCGAACGTAGTTATTTGTAG

AACAGTGTATATCAATGAGTT

ATACTACGTATCGTCCCGTTTCC

AACGAATGTGTTT
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Amplification of Space Alien barcodes

Table C.5: Space Alien amplification primers.

Barcode Forward Primer Reverse Primer

Space Alien

Amplification
ATTAGCGACGTGATAATCT TAATAGTATGACGCGCG

Primers and probes for qPCR of genomic targets and barcodes

601_CXXX barcode qPCR

Table C.6: 601_CXXX barcode qPCR primers and probe.

Target Forward Primer Reverse Primer Hydrolysis Probe

601_C002
GCTCAATTGGTCGTA

GACAG

AATCGCGCGATTATT

ATGC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C005
GCTCAATTGGTCGTA

GACAG

GAACGATTCGACGA

TCGT

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C008
GCTCAATTGGTCGTA

GACAG

GAATCGTCGACGCGT

ATA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C009
GCTCAATTGGTCGTA

GACAG

ACGCGTCGAAACGA

TTA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C010
GCTCAATTGGTCGTA

GACAG

GAACGCGCGACGTT

AA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C013
GCTCAATTGGTCGTA

GACAG

TCGCGCGTACGAAA

C

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C014
GCTCAATTGGTCGTA

GACAG

ATTCGCGCGTACGTA

TAC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

Table C.6 continues on next page.
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Table C.6, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe

601_C015
GCTCAATTGGTCGTA

GACAG

CGAATTTCGCGCGTA

TTAC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C017
GCTCAATTGGTCGTA

GACAG

CGTTAACGCGTTTCG

T

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C019
GCTCAATTGGTCGTA

GACAG

CGATACGCGTTGGTA

CG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C021
GCTCAATTGGTCGTA

GACAG

CGATCGTACGATAGC

GTAC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C022
GCTCAATTGGTCGTA

GACAG

CGAAATTCGTATACG

CGTCG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C025
GCTCAATTGGTCGTA

GACAG

CGATATCACTCGACG

CGATA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C026
GCTCAATTGGTCGTA

GACAG

CGCGTAACGTATCGA

TTAC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C028
GCTCAATTGGTCGTA

GACAG

GCGATCGCGCGAAT

A

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C029
GCTCAATTGGTCGTA

GACAG

TCGAATCGTTCGCGT

AATC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C031
GCTCAATTGGTCGTA

GACAG

GTTAACGTCGTCGGT

ACG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C032
GCTCAATTGGTCGTA

GACAG

GAACGTTCGTCGACG

AT

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C033
GCTCAATTGGTCGTA

GACAG

CGCGAACTATCGTCG

ATTC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

Table C.6 continues on next page.
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Table C.6, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe

601_C034
GCTCAATTGGTCGTA

GACAG

GTGATATCGCGTTAA

CGTCG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C037
GCTCAATTGGTCGTA

GACAG

CGTTACGCGACCGAT

AC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C038
GCTCAATTGGTCGTA

GACAG

GTTCGCGACACCGTT

C

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C039
GCTCAATTGGTCGTA

GACAG

TATCGCGCGAAACG

AC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C040
GCTCAATTGGTCGTA

GACAG

TATCGCGTCGTACGA

TCG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C041
GCTCAATTGGTCGTA

GACAG

CGCGTAAACGGTAC

GTC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C042
GCTCAATTGGTCGTA

GACAG

ACGTTCGTAGCGTCG

TA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C043
GCTCAATTGGTCGTA

GACAG

ACGAAAATATCGCG

CGG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C044
GCTCAATTGGTCGTA

GACAG

TCGCGATTACGATGT

CG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C046
GCTCAATTGGTCGTA

GACAG

CGCGTACGAACCGA

ATAC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C047
GCTCAATTGGTCGTA

GACAG
TCGTACGATCGCCGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C049
GCTCAATTGGTCGTA

GACAG

TCGTCGTATCGCCGA

TA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

Table C.6 continues on next page.
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Target Forward Primer Reverse Primer Hydrolysis Probe

601_C051
GCTCAATTGGTCGTA

GACAG

CGTTTCGCGTCCGTT

A

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C052
GCTCAATTGGTCGTA

GACAG

TTAACGCGACGCGA

AC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C054
GCTCAATTGGTCGTA

GACAG

TTACGCGCGAACGA

C

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C055
GCTCAATTGGTCGTA

GACAG

TCGACGACGAACGG

T

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C056
GCTCAATTGGTCGTA

GACAG
TCGCGACGGACGTA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C058
GCTCAATTGGTCGTA

GACAG

CGCGTAACGACGTA

CC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C060
GCTCAATTGGTCGTA

GACAG

TTCGTATCGCGCGAT

C

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C061
GCTCAATTGGTCGTA

GACAG

TTTCGACGCGTCGAT

TC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C062
GCTCAATTGGTCGTA

GACAG
CGACGCGACGCATA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C063
GCTCAATTGGTCGTA

GACAG
TACGCGCGCGATATG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C066
GCTCAATTGGTCGTA

GACAG

GTCGTCGACGCGTAT

TC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C067
GCTCAATTGGTCGTA

GACAG
CCGCGGTCGTACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

Table C.6 continues on next page.
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Table C.6, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe

601_C068
GCTCAATTGGTCGTA

GACAG
ACTCGTCGCGACGTA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C070
GCTCAATTGGTCGTA

GACAG
GTACCGCGCGTATCG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C071
GCTCAATTGGTCGTA

GACAG
ATCGTACGCCGCGT

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C073
GCTCAATTGGTCGTA

GACAG
ATTACGCGCGGCG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C075
GCTCAATTGGTCGTA

GACAG

GATACGACTCGTTCG

TCG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C076
GCTCAATTGGTCGTA

GACAG

GCGATAAGACGCGT

AACG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C077
GCTCAATTGGTCGTA

GACAG

CGTAATGCGCGACGT

TA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C078
GCTCAATTGGTCGTA

GACAG

GCGTATAGTCCGAGC

GTA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C079
GCTCAATTGGTCGTA

GACAG

CGTACGTCGTGTCGA

A

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C080
GCTCAATTGGTCGTA

GACAG

CCGTCGAATCGTAAC

GTC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C081
GCTCAATTGGTCGTA

GACAG

CGTATACGCGCGAC

A

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C082
GCTCAATTGGTCGTA

GACAG

GCGATACTACGCTCG

GA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

Table C.6 continues on next page.
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Table C.6, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe

601_C083
GCTCAATTGGTCGTA

GACAG

CGTAACTACGGTCGC

GA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C084
GCTCAATTGGTCGTA

GACAG

GGATACGTACGTCCG

TCG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C085
GCTCAATTGGTCGTA

GACAG

CGACGTAACGCTATG

CG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C086
GCTCAATTGGTCGTA

GACAG

CGACTAACGCGTCG

AC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C087
GCTCAATTGGTCGTA

GACAG

CGATACGCCGATCG

ATC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C088
GCTCAATTGGTCGTA

GACAG
TCGCGTCGCACGAT

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C089
GCTCAATTGGTCGTA

GACAG
TCGCATCGCCGAATC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C090
GCTCAATTGGTCGTA

GACAG
CGATTCGACGGTCGC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C091
GCTCAATTGGTCGTA

GACAG
ATTGACGCGTCGCG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C092
GCTCAATTGGTCGTA

GACAG
CGCATATCGCGTCGT

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C093
GCTCAATTGGTCGTA

GACAG
TACGTGTCGCGCGTA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C094
GCTCAATTGGTCGTA

GACAG

CCGATATTCGAGCGA

CG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/
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311



Table C.6, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe

601_C096
GCTCAATTGGTCGTA

GACAG

CGACTATCGCGCGTA

AC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C097
GCTCAATTGGTCGTA

GACAG

CGATACGACCGCGTT

AC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C098
GCTCAATTGGTCGTA

GACAG
TATCCGGCGCGTACC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C099
GCTCAATTGGTCGTA

GACAG

ATATGCGGCGTTCGA

C

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

601_C100
GCTCAATTGGTCGTA

GACAG
CGCGATCGGTATCGG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_CXXX barcode qPCR

Table C.7: C001_CXXX barcode qPCR primers and probe.

Target Forward Primer Reverse Primer Hydrolysis Probe

C001_C006
CGTATCGCGCGCATA

ATA

ACGATTCGCGTCGAA

TC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C008
CGTATCGCGCGCATA

ATA

GAATCGTCGACGCGT

ATA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C009
CGTATCGCGCGCATA

ATA

ACGCGTCGAAACGA

TTA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C010
CGTATCGCGCGCATA

ATA

GAACGCGCGACGTT

AA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C011
CGTATCGCGCGCATA

ATA

CGCGATTCGCGTAAT

ACG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

Table C.7 continues on next page.
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Table C.7, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe

C001_C014
CGTATCGCGCGCATA

ATA

ATTCGCGCGTACGTA

TAC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C015
CGTATCGCGCGCATA

ATA

CGAATTTCGCGCGTA

TTAC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C016
CGTATCGCGCGCATA

ATA

ACGCGATAACGTCG

ACTA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C017
CGTATCGCGCGCATA

ATA

CGTTAACGCGTTTCG

T

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C018
CGTATCGCGCGCATA

ATA

ATACGACGAGATAG

TCGACG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C019
CGTATCGCGCGCATA

ATA

CGATACGCGTTGGTA

CG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C022
CGTATCGCGCGCATA

ATA

CGAAATTCGTATACG

CGTCG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C023
CGTATCGCGCGCATA

ATA

GACGTAATTATCGCG

TCGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C024
CGTATCGCGCGCATA

ATA

GATACGAATATTCGC

GCGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C025
CGTATCGCGCGCATA

ATA

CGATATCACTCGACG

CGATA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C028
CGTATCGCGCGCATA

ATA

GCGATCGCGCGAAT

A

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C029
CGTATCGCGCGCATA

ATA

TCGAATCGTTCGCGT

AATC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

Table C.7 continues on next page.
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Table C.7, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe

C001_C030
CGTATCGCGCGCATA

ATA

CGCGTTAATCGCGTA

TACG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C032
CGTATCGCGCGCATA

ATA

GAACGTTCGTCGACG

AT

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C034
CGTATCGCGCGCATA

ATA

GTGATATCGCGTTAA

CGTCG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C035
CGTATCGCGCGCATA

ATA

TAATCGACGCGTTAC

GC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C036
CGTATCGCGCGCATA

ATA

TACGCGCGAATTTAC

GTC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C037
CGTATCGCGCGCATA

ATA

CGTTACGCGACCGAT

AC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C038
CGTATCGCGCGCATA

ATA

GTTCGCGACACCGTT

C

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C039
CGTATCGCGCGCATA

ATA

TATCGCGCGAAACG

AC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C040
CGTATCGCGCGCATA

ATA

TATCGCGTCGTACGA

TCG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C041
CGTATCGCGCGCATA

ATA

CGCGTAAACGGTAC

GTC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C042
CGTATCGCGCGCATA

ATA

ACGTTCGTAGCGTCG

TA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C043
CGTATCGCGCGCATA

ATA

ACGAAAATATCGCG

CGG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/
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Table C.7, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe

C001_C044
CGTATCGCGCGCATA

ATA

TCGCGATTACGATGT

CG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C047
CGTATCGCGCGCATA

ATA
TCGTACGATCGCCGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C048
CGTATCGCGCGCATA

ATA

TCGAACGACCGACG

AT

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C049
CGTATCGCGCGCATA

ATA

TCGTCGTATCGCCGA

TA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C050
CGTATCGCGCGCATA

ATA

ACGACCGCGCGATA

T

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C051
CGTATCGCGCGCATA

ATA

CGTTTCGCGTCCGTT

A

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C052
CGTATCGCGCGCATA

ATA

TTAACGCGACGCGA

AC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C053
CGTATCGCGCGCATA

ATA

GATCGCGACCGATA

CG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C055
CGTATCGCGCGCATA

ATA

TCGACGACGAACGG

T

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C056
CGTATCGCGCGCATA

ATA
TCGCGACGGACGTA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C057
CGTATCGCGCGCATA

ATA
TTCGCGCGATACGAC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C058
CGTATCGCGCGCATA

ATA

CGCGTAACGACGTA

CC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/
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Table C.7, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe

C001_C060
CGTATCGCGCGCATA

ATA

TTCGTATCGCGCGAT

C

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C061
CGTATCGCGCGCATA

ATA

TTTCGACGCGTCGAT

TC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C063
CGTATCGCGCGCATA

ATA
TACGCGCGCGATATG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C064
CGTATCGCGCGCATA

ATA
ACGGCGCGCTATAC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C065
CGTATCGCGCGCATA

ATA
GCTACGCGTATCGGT

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C066
CGTATCGCGCGCATA

ATA

GTCGTCGACGCGTAT

TC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C070
CGTATCGCGCGCATA

ATA
GTACCGCGCGTATCG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C071
CGTATCGCGCGCATA

ATA
ATCGTACGCCGCGT

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C072
CGTATCGCGCGCATA

ATA
TCGACCGCGTCGTT

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C073
CGTATCGCGCGCATA

ATA
ATTACGCGCGGCG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C074
CGTATCGCGCGCATA

ATA
ATTGCGTCGCGCTAC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C075
CGTATCGCGCGCATA

ATA

GATACGACTCGTTCG

TCG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/
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Table C.7, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe

C001_C077
CGTATCGCGCGCATA

ATA

CGTAATGCGCGACGT

TA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C079
CGTATCGCGCGCATA

ATA

CGTACGTCGTGTCGA

A

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C081
CGTATCGCGCGCATA

ATA

CGTATACGCGCGAC

A

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C082
CGTATCGCGCGCATA

ATA

GCGATACTACGCTCG

GA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C085
CGTATCGCGCGCATA

ATA

CGACGTAACGCTATG

CG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C089
CGTATCGCGCGCATA

ATA
TCGCATCGCCGAATC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C090
CGTATCGCGCGCATA

ATA
CGATTCGACGGTCGC

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C091
CGTATCGCGCGCATA

ATA
ATTGACGCGTCGCG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C092
CGTATCGCGCGCATA

ATA
CGCATATCGCGTCGT

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C093
CGTATCGCGCGCATA

ATA
TACGTGTCGCGCGTA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

C001_C094
CGTATCGCGCGCATA

ATA

CCGATATTCGAGCGA

CG

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/
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MMTV_CXXX barcode qPCR

Table C.8: MMTV_CXXX barcode qPCR primers and probe.

Target Forward Primer Reverse Primer Hydrolysis Probe

MMTV_C001
CGTATCGCGCGCATA

ATA

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C002
AATCGCGCGATTATT

ATGC

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C003
CGTCGAACGCGCGA

TAT

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C004
ACGACGCGATAATA

TCGC

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C005
GAACGATTCGACGA

TCGT

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C006
ACGATTCGCGTCGAA

TC

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C007
ACGCGAAACGACGA

ATC

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C008
GAATCGTCGACGCGT

ATA

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C009
ACGCGTCGAAACGA

TTA

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C010
GAACGCGCGACGTT

AA

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C011
CGCGATTCGCGTAAT

ACG

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C012
GCGACGCGTAATCG

A

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/
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Table C.8, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe

MMTV_C013
TCGCGCGTACGAAA

C

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C014
ATTCGCGCGTACGTA

TAC

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C015
CGAATTTCGCGCGTA

TTAC

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C016
ACGCGATAACGTCG

ACTA

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C017
CGTTAACGCGTTTCG

T

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C018
ATACGACGAGATAG

TCGACG

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C019
CGATACGCGTTGGTA

CG

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C020
GACGATCGCGTAAT

ACGC

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C021
CGATCGTACGATAGC

GTAC

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C022
CGAAATTCGTATACG

CGTCG

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C023
GACGTAATTATCGCG

TCGA

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C024
GATACGAATATTCGC

GCGA

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/
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MMTV_C025
CGATATCACTCGACG

CGATA

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C026
CGCGTAACGTATCGA

TTAC

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C027
GTCGATTATCGCGAC

GTAA

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C028
GCGATCGCGCGAAT

A

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C029
TCGAATCGTTCGCGT

AATC

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C030
CGCGTTAATCGCGTA

TACG

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C031
GTTAACGTCGTCGGT

ACG

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C032
GAACGTTCGTCGACG

AT

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C033
CGCGAACTATCGTCG

ATTC

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C034
GTGATATCGCGTTAA

CGTCG

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C035
TAATCGACGCGTTAC

GC

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C036
TACGCGCGAATTTAC

GTC

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

Table C.8 continues on next page.

320



Table C.8, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe

MMTV_C037
CGTTACGCGACCGAT

AC

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C038
GTTCGCGACACCGTT

C

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C039
TATCGCGCGAAACG

AC

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C040
TATCGCGTCGTACGA

TCG

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C041
CGCGTAAACGGTAC

GTC

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C042
ACGTTCGTAGCGTCG

TA

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C043
ACGAAAATATCGCG

CGG

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C044
TCGCGATTACGATGT

CG

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C045
TCGCGCGTAATCATA

TCG

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C046
CGCGTACGAACCGA

ATAC

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C047 TCGTACGATCGCCGA
TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C048
TCGAACGACCGACG

AT

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/
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MMTV_C049
TCGTCGTATCGCCGA

TA

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C050
ACGACCGCGCGATA

T

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C051
CGTTTCGCGTCCGTT

A

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C052
TTAACGCGACGCGA

AC

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C053
GATCGCGACCGATA

CG

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C054
TTACGCGCGAACGA

C

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C055
TCGACGACGAACGG

T

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C056 TCGCGACGGACGTA
TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C057 TTCGCGCGATACGAC
TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C058
CGCGTAACGACGTA

CC

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C059
ACGCGACGACGTAT

C

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C060
TTCGTATCGCGCGAT

C

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/
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MMTV_C061
TTTCGACGCGTCGAT

TC

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C062 CGACGCGACGCATA
TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C063 TACGCGCGCGATATG
TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C064 ACGGCGCGCTATAC
TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C065 GCTACGCGTATCGGT
TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C066
GTCGTCGACGCGTAT

TC

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C067 CCGCGGTCGTACGA
TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C068 ACTCGTCGCGACGTA
TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C069
ATCGCGGTACGCGTA

TA

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C070 GTACCGCGCGTATCG
TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C071 ATCGTACGCCGCGT
TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C072 TCGACCGCGTCGTT
TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/
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MMTV_C073 ATTACGCGCGGCG
TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C074 ATTGCGTCGCGCTAC
TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C075
GATACGACTCGTTCG

TCG

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C076
GCGATAAGACGCGT

AACG

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C077
CGTAATGCGCGACGT

TA

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C078
GCGTATAGTCCGAGC

GTA

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C079
CGTACGTCGTGTCGA

A

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C080
CCGTCGAATCGTAAC

GTC

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C081
CGTATACGCGCGAC

A

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C082
GCGATACTACGCTCG

GA

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C083
CGTAACTACGGTCGC

GA

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C084
GGATACGTACGTCCG

TCG

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/
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MMTV_C085
CGACGTAACGCTATG

CG

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C086
CGACTAACGCGTCG

AC

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C087
CGATACGCCGATCG

ATC

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C088 TCGCGTCGCACGAT
TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C089 TCGCATCGCCGAATC
TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C090 CGATTCGACGGTCGC
TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C091 ATTGACGCGTCGCG
TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C092 CGCATATCGCGTCGT
TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C093 TACGTGTCGCGCGTA
TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C094
CCGATATTCGAGCGA

CG

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C095
ACGCAATCCGTCGA

AC

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C096
CGACTATCGCGCGTA

AC

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/
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MMTV_C097
CGATACGACCGCGTT

AC

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C098 TATCCGGCGCGTACC
TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C099
ATATGCGGCGTTCGA

C

TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

MMTV_C100 CGCGATCGGTATCGG
TGGAAAGTGAAGGA

TAAGTGACGA

/56-FAM/TCTAGCACC

GCTTAAACGCACGTA

/3IABkFQ/

Space Alien barcode qPCR

Table C.9: Space Alien barcode qPCR primers and probe.

Target Forward Primer Reverse Primer Hydrolysis Probe

S001
CGTCGTGTCGCGTAT

AA

CAATGAACGCCGGTT

AATA

/56-FAM/ACGTAATCG

ACACTACGTCGACT

/3IABkFQ/

S002
CGTACTAAGACGTAT

CTAGCG

CAATGAACGCCGGTT

AATA

/56-FAM/ACGTAATCG

ACACTACGTCGACT

/3IABkFQ/

S003
GAGTAATAAGTACG

CGAGATAG

CAATGAACGCCGGTT

AATA

/56-FAM/ACGTAATCG

ACACTACGTCGACT

/3IABkFQ/

S004
ACGCGTCGCTATACT

T

CAATGAACGCCGGTT

AATA

/56-FAM/ACGTAATCG

ACACTACGTCGACT

/3IABkFQ/

S005
ACGTAACCGGTAGA

CTTAT

CAATGAACGCCGGTT

AATA

/56-FAM/ACGTAATCG

ACACTACGTCGACT

/3IABkFQ/

S006
ATTACGACCGTTTAT

TCGC

CAATGAACGCCGGTT

AATA

/56-FAM/ACGTAATCG

ACACTACGTCGACT

/3IABkFQ/
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S007
GTTAAGTATGCGAAC

CGTATAG

CAATGAACGCCGGTT

AATA

/56-FAM/ACGTAATCG

ACACTACGTCGACT

/3IABkFQ/

S008
TTAGACGACCGAATT

CTACT

CAATGAACGCCGGTT

AATA

/56-FAM/ACGTAATCG

ACACTACGTCGACT

/3IABkFQ/

S009
ACGTACTACGATCTC

GAC

CAATGAACGCCGGTT

AATA

/56-FAM/ACGTAATCG

ACACTACGTCGACT

/3IABkFQ/

S010
TCGCGTCACGACTAA

T

CAATGAACGCCGGTT

AATA

/56-FAM/ACGTAATCG

ACACTACGTCGACT

/3IABkFQ/

S011
CGCTATACGAGAAT

AACGC

CAATGAACGCCGGTT

AATA

/56-FAM/ACGTAATCG

ACACTACGTCGACT

/3IABkFQ/

S012
AGACCGAGTTCGCTT

ATAC

CAATGAACGCCGGTT

AATA

/56-FAM/ACGTAATCG

ACACTACGTCGACT

/3IABkFQ/

S013
GATGTATCGTAGTCG

GAGT

CAATGAACGCCGGTT

AATA

/56-FAM/ACGTAATCG

ACACTACGTCGACT

/3IABkFQ/

S014
CGTAACGCGTTTAGA

GTATT

CAATGAACGCCGGTT

AATA

/56-FAM/ACGTAATCG

ACACTACGTCGACT

/3IABkFQ/

S015
ACGCGAATTCGAACT

AATC

CAATGAACGCCGGTT

AATA

/56-FAM/ACGTAATCG

ACACTACGTCGACT

/3IABkFQ/

S016
TGATACGTCCGATAC

GC

CAATGAACGCCGGTT

AATA

/56-FAM/ACGTAATCG

ACACTACGTCGACT

/3IABkFQ/

S017
GAATTACCTTACCGT

CGATTG

CAATGAACGCCGGTT

AATA

/56-FAM/ACGTAATCG

ACACTACGTCGACT

/3IABkFQ/

S018
TTCGACGTACCGATG

TAA

CAATGAACGCCGGTT

AATA

/56-FAM/ACGTAATCG

ACACTACGTCGACT

/3IABkFQ/

Table C.9 continues on next page.

327



Table C.9, continued:

Target Forward Primer Reverse Primer Hydrolysis Probe

S019
CCATTACGCGATAAC

TACG

CAATGAACGCCGGTT

AATA

/56-FAM/ACGTAATCG

ACACTACGTCGACT

/3IABkFQ/

S020
TTACGCGCACTAATG

TATC

CAATGAACGCCGGTT

AATA

/56-FAM/ACGTAATCG

ACACTACGTCGACT

/3IABkFQ/

S021
AGTACTCGAATACGC

TACC

CAATGAACGCCGGTT

AATA

/56-FAM/ACGTAATCG

ACACTACGTCGACT

/3IABkFQ/

S022
GGATACATATCCGCG

AACT

CAATGAACGCCGGTT

AATA

/56-FAM/ACGTAATCG

ACACTACGTCGACT

/3IABkFQ/

S023
TCGATGCGGTGATTA

CT

CAATGAACGCCGGTT

AATA

/56-FAM/ACGTAATCG

ACACTACGTCGACT

/3IABkFQ/

S024
CGACAGACGATCTC

GTAA

CAATGAACGCCGGTT

AATA

/56-FAM/ACGTAATCG

ACACTACGTCGACT

/3IABkFQ/

S025
GACGAACCTTATCGT

GTAAC

CAATGAACGCCGGTT

AATA

/56-FAM/ACGTAATCG

ACACTACGTCGACT

/3IABkFQ/

Human genomic locus qPCR

Table C.10: Human genomic locus barcode qPCR primers and probe.

Target Forward Primer Reverse Primer Hydrolysis Probe

HoxA9
CGCCGCTCTCATTCT

CAG

GCTTGTGGTTCTCCT

CCAG

/56-FAM/AAACAACCC

AGCGAAGGCGC

/3IABkFQ/

GAPDH
GCCTGCCGGTGACTA

AC

CATCACCCGGAGGA

GAAATC

/56-FAM/TAGCCTCGC

TCCACCTGACTTC

/3IABkFQ/

EuNeg
GCTCCTGTAACCAAC

CACT

CTCTGGGCTGGCTTC

ATT

/56-FAM/ACCATATAG

AGAAAGCCTGCTT

/3IABkFQ/
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D. melanogaster genomic locus qPCR

Table C.11: D. melanogaster genomic locus barcode qPCR primers and probe.

Target Forward Primer Reverse Primer Hydrolysis Probe

Fz3
CCTATGCCAGGCAG

GTAAAT

CTCAAAGTGTGGGAT

CTAGAAGG

/56-FAM/ACATCAGGC/

ZEN/AGAAAGCAATG

AAAGT/3IABkFQ/

Wg
CAGCGGAATTAATC

GCACAAATA

GCGCACTATAAATG

AGGCATAATC

/56-FAM/TGAGCAGCA/

ZEN/ATATCGGCATAC

GCA/3IABkFQ/

Lab
AAACACGACTCCCGT

TGG

TCAGTCACGACTTGG

TAAGC

/56-FAM/ATGACGACG/

ZEN/ACGACGTGCTG/3

IABkFQ/
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APPENDIX D: SEQUENCING DATASETS

This section lists details of the next-generation sequencing datasets generated for this work. Datasets

used beyond those here listed were generated by Adrian Grzybowski, Ph.D.’18 or Bill Richter,

Ph.D.’20.

Table D.1: Next-generation sequencing dataset reference information.

Identifier Source ChIP Target Antibody

AR11-1-

Input_rep1_native

D. melanogaster

S2 cell line
None None None

AR11-1-

Input_rep2_native

D. melanogaster

S2 cell line
None None None

AR11-1-

Input_rep3_native

D. melanogaster

S2 cell line
None None None

AR11-1-

H3K4me3_rep1_native

D. melanogaster

S2 cell line
Native H3K4me3

AM 39159

Lot 12613005

AR11-1-

H3K4me3_rep2_native

D. melanogaster

S2 cell line
Native H3K4me3

AM 39159

Lot 12613005

AR11-1-

H3K4me3_rep3_native

D. melanogaster

S2 cell line
Native H3K4me3

AM 39159

Lot 12613005

AR11-1-

H3K79me2_rep1_native

D. melanogaster

S2 cell line
Native H3K79me2

AB 3594

Lot GR173874

AR11-1-

H3K79me2_rep2_native

D. melanogaster

S2 cell line
Native H3K79me2

AB 3594

Lot GR173874

AR11-1-

H3K79me2_rep3_native

D. melanogaster

S2 cell line
Native H3K79me2

AB 3594

Lot GR173874

AR11-2-

Input_rep1_denat

D. melanogaster

S2 cell line
None None None

AR11-2-

Input_rep2_denat

D. melanogaster

S2 cell line
None None None

AR11-2-

Input_rep3_denat

D. melanogaster

S2 cell line
None None None

AR11-2-

H3K4me3_rep1_denat

D. melanogaster

S2 cell line
Denaturative H3K4me3

AM 39159

Lot 12613005

AR11-2-

H3K4me3_rep2_denat

D. melanogaster

S2 cell line
Denaturative H3K4me3

AM 39159

Lot 12613005

Table D.1 continues on next page.
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Table D.1, continued:

Identifier Source ChIP Target Antibody

AR11-2-

H3K4me3_rep3_denat

D. melanogaster

S2 cell line
Denaturative H3K4me3

AM 39159

Lot 12613005

AR11-2-

H3K79me2_rep1_denat

D. melanogaster

S2 cell line
Denaturative H3K79me2

AB 3594

Lot GR173874

AR11-2-

H3K79me2_rep2_denat

D. melanogaster

S2 cell line
Denaturative H3K79me2

AB 3594

Lot GR173874

AR11-2-

H3K79me2_rep3_denat

D. melanogaster

S2 cell line
Denaturative H3K79me2

AB 3594

Lot GR173874

AR15-1-H3K4me3_

native_untreated_1

MV4;11

DMSO (4d)
Native H3K4me3

AM 39159

Lot 12613005

AR15-1-H3K4me3_

native_untreated_2

MV4;11

DMSO (4d)
Native H3K4me3

AM 39159

Lot 12613005

AR15-1-H3K4me3_

native_untreated_3

MV4;11

DMSO (4d)
Native H3K4me3

AM 39159

Lot 12613005

AR15-1-H3K4me3_

denat_untreated_1

MV4;11

DMSO (4d)
Denaturative H3K4me3

AM 39159

Lot 12613005

AR15-1-H3K4me3_

denat_untreated_2

MV4;11

DMSO (4d)
Denaturative H3K4me3

AM 39159

Lot 12613005

AR15-1-H3K4me3_

denat_untreated_3

MV4;11

DMSO (4d)
Denaturative H3K4me3

AM 39159

Lot 12613005

AR15-1-H3K79me2_

denat_untreated_1

MV4;11

DMSO (4d)
Denaturative H3K79me2

AB 3594

Lot GR173874

AR15-1- H3K79me2_

denat_untreated_2

MV4;11

DMSO (4d)
Denaturative H3K79me2

AB 3594

Lot GR173874

AR15-1- H3K79me2_

denat_untreated_3

MV4;11

DMSO (4d)
Denaturative H3K79me2

AB 3594

Lot GR173874

AR15-2-H3K4me3_

native_treated

MV4;11

10 µM EPZ-5676

(4d)

Native H3K4me3
AM 39159

Lot 12613005

AR15-2- H3K79me2_

denat_treated

MV4;11

10 µM EPZ-5676

(4d)

Denaturative H3K79me2
AB 3594

Lot GR173874

AR15-3_untreated_Input
MV4;11

DMSO (4d)
None None None

AR15-4_treated_Input

MV4;11

10 µM EPZ-5676

(4d)

None None None

Table D.1 continues on next page.
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Table D.1, continued:

Identifier Source ChIP Target Antibody

AR16-1-Input K562 None None None

AR16-2-AB-8895 K562 Native H3K4me1
AB 8895

Lot GR305231-1

AR16-2-EMD-05-1338 K562 Native H3K4me2
EMD 05-1338

Lot 2757107

AR16-2-TF-710795 K562 Native H3K4me1
TF 710795

Lot QL230603

AR16-3-AB-7766 K562 Native H3K4me2
AB 7766

Lot GR289627-1

AR16-3-AM-39635 K562 Native H3K4me1
AM 39635

Lot 30615011

AR16-3-CST-9725 K562 Native H3K4me2
CST 9725

Lot 9

AR16-4-AB-12209 K562 Native H3K4me3
AB 12209

Lot GR275790-1

AR16-4-AB-8580 K562 Native H3K4me3
AB 8580

Lot GR190229-1

AR16-4-ABC-46698 K562 Native H3K4me3
ABCA2357

Lot 46698

AR16-4-EMD-07-473 K562 Native H3K4me3
EMD 07-473

Lot DAM1623866

AR16-4-TF-PA5-40086 K562 Native H3K4me3
TF PA5-40086

Lot RL2301825

AR16-5-CST-5326BF K562 Native H3K4me1
CST 5326BF

Lot 2

AR16-5-EMD-05-745R K562 Native H3K4me3
EMD 05-745R

Lot 2813867

AR16-5-EPG-A-4031-

050
K562 Native H3K4me1

EPGA-4031-050

Lot 606359

AR16-5-TF-710796 K562 Native H3K4me2
TF 710796

Lot QL230606

AR17-1_K562_Input K562 None None None

AR17-2-CST-C36B11-

K562
K562 Native H3K27me3

CST 5326

Lot 8

AR17-2-DIA-15410003-

K562
K562 Native H3K4me3

DIA C15410003

Lot A1052D

Table D.1 continues on next page.
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Table D.1, continued:

Identifier Source ChIP Target Antibody

AR17-3-EPG-A-4033-

053-K562
K562 Native H3K4me3

EPGA-4033-050

Lot 606361

AR17-3-Taka-309M3B-

K562
K562 Native H3K9me3

KL 309M3B

Lot 072913TH

AR17-4and5_WT-R1-

mESC-Input
mESC R1 None None None

AR17-6and7_dCD-R1-

mESC_Input

mESC R1

MLL3/4 dCD
None None None

AR17-8-CST-5326-WT-

mESC
mESC R1 Native H3K4me1

CST 5326

Lot 1

AR17-8-CST-5326-dCD-

mESC

mESC R1

MLL3/4 dCD
Native H3K4me1

CST 5326

Lot 1

AR18-1-Primed_Input
mESC E14

Serum/LIF
None None None

AR18-2-Primed_Bivalent
mESC E14

Serum/LIF
reICeChIP

H3K4me3/

H3K27me3

KL 304M3B-

1xHRV3C/

CST 5326

AR18-2-

Primed_H3K27me3

mESC E14

Serum/LIF
Native H3K27me3

CST 5326

Lost 8

AR18-2-

Primed_H3K4me3

mESC E14

Serum/LIF
Native H3K4me3

KL

304M3B-1xHRV3C

Lot 103015AG

AR18-2-

Primed_H3K9me3

mESC E14

Serum/LIF
Native H3K9me3

KL 309M3B

Lot 072913TH

AR18-3-NPC_Input NPC None None None

AR18-4-NPC_Bivalent NPC reICeChIP
H3K4me3/

H3K27me3

KL 304M3B-

1xHRV3C/

CST 5326

AR18-4-

NPC_H3K27me3
NPC Native H3K27me3

CST 5326

Lost 8

AR18-4-NPC_H3K4me3 NPC Native H3K4me3

KL

304M3B-1xHRV3C

Lot 103015AG

AR18-4-NPC_H3K9me3 NPC Native H3K9me3
KL 309M3B

Lot 072913TH

AR19-1-RS411-Input RS4;11 None None None

Table D.1 continues on next page.
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Table D.1, continued:

Identifier Source ChIP Target Antibody

AR19-1-RS411-

H3K79me2
RS4;11 Denaturative H3K79me2

CST 5427

Lot 4

AR19-2-Kopn8-Input Kopn8 None None None

AR19-2-Kopn8-

H3K79me2
Kopn8 Denaturative H3K79me2

CST 5427

Lot 4

AR19-3-K562-Input K562 None None None

AR19-3-K562-

H3K79me2
K562 Denaturative H3K79me2

CST 5427

Lot 4

AR19-4-Molm13-Input Molm13 None None None

AR19-4-Molm13-

H3K79me2
Molm13 Denaturative H3K79me2

CST 5427

Lot 4

AR19-5-THP1-Input THP1 None None None

AR19-5-THP1-

H3K79me2
THP1 Denaturative H3K79me2

CST 5427

Lot 4

AR19-6-SEM-Input SEM None None None

AR19-6-SEM-

H3K79me2
SEM Denaturative H3K79me2

CST 5427

Lot 4
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