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Abstract

Prior work has shown that neural activity diverges between conservatives and liberals

while viewing political messages. Understanding what psychological factors contribute to these

divergent responses informs our understanding of how people make political decisions. In this

work, we examined the relationship between narrative engagement (i.e. the extent to which

someone is both attending and emotionally involved while listening to or watching a narrative)

and divergent neural responses to political videos. We measured narrative engagement by

applying a predictive model that has been previously shown to predict moment-by-moment

fluctuations in narrative engagement from connectivity patterns in the brain. We then examined

if and how the neural measure of narrative engagement is associated with divergent neural

responses between conservatives and liberals while watching political videos. The result shows a

negative relationship between narrative engagement and political polarization.
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Neural divergence in political narratives

People’s interpretations of the same events can diverge due to different pre-existing

beliefs (Yeshurun et al., 2017). Prior studies have shown that we can measure the biased

assimilation of political information using functional magnetic resonance imaging (fMRI)

(Leong et al., 2020; Van Baar et al.,2021). Subjects’ brain activity synchronizes while watching

or listening to the same story, and those with more similar interpretations of the story have higher

synchrony in their brain responses (Finn et al., 2018; Nguyen et al., 2019; Regev, et al., 2019;

Leong et al., 2020). The measurement of neural activity reveals important features for

understanding human cognitive processes associated with subjective interpretations. Watching

real-life narratives involves activation in early sensory regions like visual and auditory cortical

areas; and specifically for narrative interpretation, higher-order brain areas including the

dorsomedial prefrontal cortex (DMPFC), posterior medial cortex (PMC), middle temporal gyrus

(MTG) are involved (Leong et al., 2020; Honey et al., 2012; Yeshurun et al., 2017; Nguyen et

al., 2019; Regev, et al., 2019).

Political Polarization

In the political domain, partisans with opposing political views respond differently to the

same information (Lord, Ross & Lepper, 1979, Fig. 1). For example, when opponents and

proponents read studies that contain both disconfirming and supporting evidence for the deterrent

efficacy of the death penalty, they are biased by their initial attitudes, and the gap between their

views increases (Lord, Ross & Lepper, 1976). A recent study has shown that this is related to

divergent processing of the same information in the brain, a phenomenon that has been referred

to as “neural polarization” (Leong et al., 2020). In particular, Leong and colleagues had
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conservatives and liberals watch real-world political videos (e.g., vice-presidential debates, news

footage, campaign advertisements), and showed that activity in the DMPFC diverged between

the two groups while watching the videos. This divergence predicted subsequent attitude

polarization. In a related study, Van Baar and colleagues (2021) showed that neural polarization

is related to individual differences in uncertainty tolerance. Specifically, individuals who are less

tolerant of uncertainty exhibit greater neural polarization. Together, both studies demonstrate that

divergent processing of information between conservatives and liberals can be measured using

fMRI.

Figure 1

Schematic diagram of biased assimilation of political information

Note. Prior studies have shown that liberals or conservatives process the same information

differently, which further increases political polarization.
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Narrative Engagement

On the other hand, how engaged people are toward real-life information might also

influence their interpretations and beliefs. In other words, while people are attending to the visual

and auditory information from narratives, the emotional-laden attention, here defined as narrative

engagement, might bias their higher processing in specific brain regions (Regev et al., 2019;

Song et al., 2021). Recent work by Song et al. (2021) demonstrated that narrative engagement

can be predicted from neural activity. In their study, they collected fMRI data and behavioral

ratings of narrative engagement while participants watched an episode of the BBC television

series, “Sherlock”. They then trained a multivariate regression model (specifically, a support

vector regression model) to predict behavioral ratings of narrative engagement from fMRI data.

In a first analysis, they found that engagement was associated with increased across-subject

synchronization of activity in the default mode network (DMN), including the inferior parietal

cortex (IPC), posterior cingulate cortex(PCC) and precuneus, medial prefrontal cortex (mPFC),

and anterior cingulate cortex(ACC). These same areas have been previously associated with

processing narratives (Chen, et al., 2017; Baldassano et al., 2017; Yeshurun et al., 2021).

Furthermore, Song and colleagues were able to accurately predict the behavioral ratings from

functional connectivity data. More impressively, their predictive model generalized to a second

dataset, such that a model trained on one dataset could be used to predict behavioral engagement

in a second dataset. Their work highlights the possibility of predicting narrative engagement in

any fMRI dataset.



6

Examining the relationship between divergent processing of political information and

narrative engagement

The central question of this thesis is to examine the relationship between the divergent

processing of political information and narrative engagement. One hypothesis is that narrative

engagement would positively predict the divergent processing of political information. For

example, when partisans are engaged, they might be more motivated to engage in motivated

political reasoning (cite the Granot paper we read in class). An alternative hypothesis is that

narrative engagement would negatively predict the divergent processing of political information.

For example, when partisans are more engaged by the narrative, they rely more on the

information in the narrative and less on their prior beliefs. Thus, they are less likely to engage in

motivated political reasoning. In this work, we test these two hypotheses by implementing a

prediction with a computational model. Specifically, we measure narrative engagement by

applying the model from Song and colleagues (2021) to a dataset of conservatives and liberals

watching political videos. We then tested if narrative engagement would predict the divergent

processing of these videos, with divergent processing measured by the level of neural

polarization (Leong et al., 2020).

Materials and Methods

Datasets

We used two publicly available datasets. The first is the Polarization dataset, collected by

Leong and his colleagues (2020). The dataset consists of fMRI data from 38 adults with a mean

age of 31.3 (23 male, 15 female). Participants were divided into conservatives and liberals based

on a median split of their responses on a seven-point scale prior to the fMRI experiment. While
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undergoing fMRI, participants watched 24 videos in random order on six immigration policies

(total duration: 35 min 26s). The six policies are 1) the construction of a wall along with the

United States–Mexico border to reduce illegal immigration; 2) allowing illegal/undocumented

immigrants to work legally in the United States without fear of deportation; 3) banning refugees

from majority-Muslim countries from entering the United States; 4) allowing the use of federal

funds to pay for emergency healthcare for undocumented/illegal immigrants; 5) providing a

pathway to citizenship for undocumented individuals brought into the United States illegally as

children; 6) cutting federal funding to sanctuary cities unless the cities agree to fully cooperate

with the US immigration and customs enforcement. Each run contains one video on each policy

(Leong et al., 2020). The behavioral response of political attitudes was measured again using the

same questionnaire as the pre-experiment after the fMRI experiment.

The second dataset is the Sherlock dataset collected by Chen and colleagues (2019). In

this dataset, 17 healthy subjects recruited from Princeton Community (12 male, 10 female, ages

18–26, mean age = 20.8) watched the first 50 minutes of Episode 1 of the BBC television show

Sherlock. All participants are right-handed native English speakers with normal or

corrected-to-normal vision and had not watched Sherlock prior to the experiment. The movie was

split into two parts of approximately equal length (946 and 1030 TRs).

fMRI Data Acquisition and preprocessing

For both datasets, we preprocessed the fMRI data using FSL/FEAT v.5.98 (FMRIB

software library, FMRIB, Oxford, UK). Motion correction, slice-timing correction, removal of

low-frequency drifts using a temporal high-pass filter (100-ms cutoff), and spatial smoothing

(4-mm full width at half maximum) were performed as part of preprocessing. Next, we registered
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participants’ functional data to their high-resolution anatomical image (rigid-body transformation

with 6 degrees of freedom) and then to a template brain in Montreal Neurological Institute space

(affine transformation with 12 degrees of freedom). The preprocessed data were loaded into

MATLAB (Mathworks) with the NIfTI toolbox for functional analysis. In the experimental

measures the video order was randomized; thus to minimize the effect of the different video

combinations in each run for each participant, we z-scored the time course separately within each

video. The preprocessed data were parcellated into 122 region-of-interest (ROIs) with 114

cortical ROIs from the atlas reported in Yeo et al (2015) and 8 subcortical ROIs as part of the

Brainnetome atlas. The subcortical ROIs include the bilateral amygdala, hippocampus, thalamus,

and striatum. For each ROI, the blood oxygen level-dependent (BOLD) time course of the voxels

in the ROI was averaged to a single representative time course.

Neural polarization analysis

To calculate neural polarization from the Politics dataset, we extracted the BOLD

time-course for each participant, and z-scored it separately for each video. We then calculated

the within-group intersubject correlation (ISC) as the voxel-wise Pearson correlation between

each participant and the average of all other participants in the same political group. We

calculated the between-group ISC as the Pearson correlation between each participant and the

average of all participants in the other political group. We then computed the difference between

within-group ISC and between-group ISC. The procedure was repeated for all participants and

all voxels, and then averaged across all participants.

This procedure allowed us to obtain the dorsomedial prefrontal cortex (DMPFC) ROI

identified in Leong et al. (2020). For each voxel, we ran a t-test to assess if the average
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difference between within-group ISC and between-group ISC was greater than zero. To generate

a null distribution, we flipped the sign of the difference in r for a random subset of participants

and recomputed the t-statistic. This procedure was repeated 10,000 times. The p-value was

computed as the proportion of the null distribution that was more positive than the observed

t-statistic. We corrected for multiple comparisons using family-wise error cluster-correction

threshold of p < 0.05 using Gaussian Random Field theory with a cluster-forming threshold of p

< 0.001. DMPFC was defined as the voxels that survived correction for multiple comparison in

the vicinity near the reported coordinates of the DMPFC in the Leong et al. paper. We extracted

the average DMPFC time course separately for conservative and liberal participants. Next, we

computed the absolute difference between average conservative and average liberal time course,

segmented it into 86 segments average of 24.7 seconds (average duration of 24.7 seconds, range

from 12 to 38s) based on the event segmentations identified in Leong et al. (2020), and averaged

the activity within each segment. This 86 segment time-course was used as our measure of neural

polarization.

Neural engagement analysis

To perform the neural engagement analysis on the Sherlock dataset, we followed the

procedure by Song et al. (2021). We re-computed time-resolved functional connectivity (FC)

matrices by calculating the Fisher’s r-to-z-transformed Pearson’s correlations between the BOLD

signal time courses of every pair of regions of interests (122 × 122 ROIs in total) using a tapered

sliding window with a size of 30 repetition time (TR). The Sherlock dataset is a 50 minutes

continuous video; however, the Politics dataset consists of 24 separate videos with a mean

duration of 1 to 2 minutes (35 min 26 s in total). Due to the discontinuity and short video



10

durations of the Politics dataset (Leong et al., 2020), using a 30TR window size is not feasible.

We thus applied a novel time-resolved FC-computation method (“Edge Time Course”, ETC)

developed by (Esfahlani et al., 2020) to substitute the Pearson's correlations implemented in

Song et al. (2021).

The ETC method involves unwrapping the traditional Pearson correlation and directly

computes a covariation measure that results in a set of time series for each time point matched

with each pair of brain regions. Specifically, the networks from fMRI data were constructed by

estimating the statistical dependency, how strongly ROIs are functionally connected, between

every pair of time series. Each time series of each participant in each ROI were z-scored. The

magnitude of moment-to-moment co-fluctuations, which is a vector by multiplying each

matching paired element in the time series of two ROIs, is then calculated (i.e. multiplying the

element i and j at time tth position). The product of the multiplication n is positive when both i

and j simultaneously increase/decrease their activity relative to baseline. In contrast, the product

of the multiplication is negative if i and j have opposite signs relative to the baseline. The

element-wise product was normalized according to the square-root standard deviation of both

time series. This procedure is repeated for all pairs of ROIs for each participant, which results in

a node-by-node-by-time correlation matrix (122 x 122 x 1976 dimensions).

We validated the ETC method by training a nonlinear support vector regression (SVR)

model with the Sherlock dataset and assessing whether we would predict behavioral ratings of

engagement (Song et al., 2021). The time-resolved FC matrices are computed using edge time

courses (Esfahlani et al., 2020) with a 15 sliding window. In order to limit the influence of

outliers, we imposed a threshold of ±3 on the time-resolved FC matrices prior to SVR model

implementation. We also tested other thresholds (±5, ±7) which yielded similar results. By
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z-normalizing the time series of every functional feature across time, the temporal variance

within individuals is retained while across-individual variance is excluded. The SVR model was

implemented with python (sklearn.svm.SVR; rbf kernel, maximum iteration set to 1,000). We

then used the model to predict t behavioral rating data (group-average behavioral measurement)..

Feature selection for the model is performed in every round of cross-validation by selecting

functional connections (i.e., edges) that are significantly (p < .01) correlated with behavioral

measurement in training participants. The model was trained in all but one participant and tested

on the held-out participant for each round of cross-validation. The model prediction performance

is tested for each leave-one-subject-out cross-validation, and an overall prediction performance

was computed as the mean r across results in all cross-validation folds was measured.

Examining the relationship between narrative engagement and neural polarization

We applied the model of engagement trained on the Sherlock dataset using the ETC

method to the Politics dataset to obtain a measure of narrative engagement while participants

were watching political videos. We applied the same processing steps on the Politics dataset,

including computing and thresholding the time-resolved FC matrices (threshold of ±3). In

addition, we averaged the ETC for each of 84 video segments before inputting them into the

model. The proportions of pairwise regions, grouped by the predefined functional network, were

selected from those significantly correlated (p < .01) with narrative engagement in every

cross-validation fold in the within-dataset SVR prediction of the Sherlock dataset. For each

cross-validation fold, we obtain a 1 x 84 vector representing the narrative engagement predicted

from that held-out participant’s ETC data. We then correlate this measure with neural
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polarization in the DMPFC. The prediction performance is then tested against chance using a

two-tailed paired t-test.

Results

Measuring narrative engagement in the Sherlock Dataset

As the ETC method of computing FC is novel, it is important to validate that our model is

able to accurately predict neural engagement from ETC data. Specifically, we validated the edge

time course using the Sherlock dataset to see whether it can produce a similar prediction

performance in the SVR model generated in Song et al., (2021). If performance when training on

ETC is comparable to those obtained in Song et al., (2021), we will then apply it to the Politics

dataset.

In a within-dataset prediction, the SVR model was trained using FC data generated with

ETC (window size = 1) from all but one participant and applied to the held-out participant’s

BOLD activity to predict the group-average engagement observed at every corresponding TR.

The average correlation across participants between predicted engagement and behavioral

engagement was statistically significant, but far weaker when the model was trained using the

sliding window 30 TR approach implemented in Song et al. (2021) results ( r = 0.0615, p < 0.01

vs. r = 0.5551, p < 0.001). To improve model performance, we retrained and tested the ETC

model at different window sizes (3, 5, 10, 15). Model performance increased with increasing

window size (window size 3TR: r = 0.1134, p < 0.001; window size 5TR: r = 0.1475, p < 0.001;

window size 10TR: r = 0.2110, p < 0.001; window size 15TR: r = 0.2964, p < 0.001) (Fig. 2). We

proceeded with computing ETC with a window size of 15 TR as it provided us with the highest

model accuracy among the window size tested.
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Edge Time Course: Thresholding FC time course

When we visualized the ETC, we noticed the presence of high-frequency spikes in the

data, with the highest peak reaching ±15 in the amplitude of the FC time course (Fig. 3A) These

spikes were not present when FC was computed using the dynamic sliding window approach

(Fig. 3B). We note that these spikes likely reflect noise in the signal due to lower noise-to-ratio

compared to the dynamic sliding window approach, and a potential imperfect alignment between

videos and brain activity in every 1.5 s (1 TR).

Thus, to further improve model performance, we performed a thresholding step prior to

entering the ETC FC time courses into the SVR model. Specifically, we thresholded the

amplitude of ETC time courses at +3 and -3. With the increment of window size, the amplitude

peak gradually reaches a smaller range, which further indicates the potential noise or the

mismatching between video and brain activity with small window size (Fig. 4). Hence, to

increase model performance to a level comparable to the dynamic sliding window approach, we

applied a ±3 to limit the presence of high-frequency spikes (Fig. 3C).

As the threshold at +3 and -3 for the amplitude of ETC time courses best limits the

presence of high-frequency spikes (Fig. 3C), the model performance increased substantially

compared to non-thresholded data (Fig. 4). Model performance with a 15 TR window size with

thresholding ±3 was comparable to model performance using the dynamic sliding window

approach (dynamic sliding window (30TR): r = 0.5551, p < 0.001; window size 1TR, threshold

±3: r = 0.1575, p < 0.01; window size 3TR, threshold ±3: r = 0.2213, p < 0.01;window size

5TR,threshold ±3: r = 0.2702, p < 0.001; window size 10TR, threshold ±3: r = 0.3470, p < 0.001;

window size 15TR, threshold ±3: r = 0.3920, p < 0.001). Hence we proceeded with computing

ETC with a window size of 15 TR and a ±3 threshold.
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Figure 2

A comparison of model performance (average r) of dynamic sliding window approach and edge

time course in a within-dataset prediction analysis of the Sherlock dataset

Note. Blue bars (from the left) represent the model performance of the dynamic sliding window

approach with a window size of 30TR, followed by model performance of the ETC approach

with window sizes 1TR, 3TR, 5TR, 10TR, and 15TR.
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Figure 3

Sample functional connectivity time course computing different methods

Note. The x-axis represents the time (1TR = 1.5s), and the y-axis represents the amplitude of the

functional connectivity. (A) Sample FC time courses computed using window-by-window ETC

(Window size = 1TR), with the highest peaks and lowest troughs reaching ±15. Dotted lines

indicate ±3 (B) Sample FC time courses computed using a dynamic sliding window (window

size = 30TR) with values ranging within ±3. (C) Sample FC time courses computed using the

ETC approach with window size 15TR, and thresholded at ±3. All timecourses presented above

have been z-scored.
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Figure 4

The correlation of within-dataset predicted behavioral engagement with observed behavioral

engagement in the Sherlock dataset

Note. The first blue bar on the left is the result of using a dynamic sliding window with a 30TR

size, other blue bars represent applying ETC in different window sizes (1TR, 3TR, 5TR, 10TR,

15TR) without thresholding. The red bars represent the correlation with applying ETC in

different window sizes (1TR, 3TR, 5TR, 10TR, 15TR) with a threshold of ±3. A two-tail paired

t-test is performed for all the correlations compared to a null distribution.
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Neural polarization between conservatives and liberals watching political videos

Our initial analysis for the political dataset focused on reproducing the neural polarization

results from the prior study (Leong et al., 2020). We calculated the “within-group ISC” as the

correlation between each participant and the average of all other participants in the same political

group (i.e., liberal vs. average liberal and conservative vs. average conservative). Also, we

calculated a “between-group ISC” as the correlation between each participant and the average of

all participants in the other political group (i.e., liberal vs. average conservative; conservative vs.

average liberal). The result shows that “within-group ISC” was greater than “between-group

ISC” only in the left DMPFC (Fig. 5A). Further, consistent with the prior result (Leong et al.,

2020), the “within-group ISC” in the DMPFC was higher than the “between-group ISC” in both

conservative and liberal participants. This indicates that the results in DMPFC were not driven

by only one of the two groups. The difference between within-group and between-group ISC

measures the similarity of neural activity between participants with similar political attitudes

rather than between participants with dissimilar political attitudes. We then calculated the

average difference between within-group ISC and between-group ISC, which is proven to be

significant (p<0.05).

This procedure allowed us to obtain the dorsomedial prefrontal cortex (DMPFC) ROI. In

order to calculate the absolute difference between conservatives and liberal groups, we extracted

the average DMPFC time course separately for conservative and liberal participants. Next, we

computed the absolute difference between average conservative and average liberal time courses

and segmented it into 86 segments. This absolute difference between liberals and conservatives

was used as our measure of neural polarization for subsequence analysis using the SVR.
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Figure 5

(A). DMPFC time course diverges between conservatives and liberals. (B). Pearson's correlation

between predicted political polarization and observed political polarization

Note. (A). Within-group ISC was higher than between-group ISC in the left DMPFC (B). Most

participants’ r-value were below 0.
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Narrative engagement predicts neural polarization

As suggested by prior evidence, the whole-brain functional connectivity (FC) predicts

changes in engagement across different stories (Song et al., 2021). Here, we test whether

narrative engagement is associated with neural polarization while viewing political messages.

We computed neural polarization as the absolute difference between average conservative and

liberal group-level time courses. We applied the SVR model trained on the Sherlock dataset to

the Politics datasets to compute narrative engagement in the Politics dataset across the 86

segments. The average correlation between narrative engagement and political polarization was

statistically significant (r = -0.04, P = 0.011). In particular, the distribution of correlation values

is skewed to the left (Fig. 5B), indicating a negative relationship between narrative engagement

and neural polarization in DMPFC. In other words, there is a stronger neural polarization when

there is less narrative engagement.

We examined if our results would be different if we preprocessed the FC data in a

different manner. In particular, we switched the order of the preprocessing procedure in the

Politics FC data such that we first averaged within 86 segments first before computing the ETC

and thresholding the resulting FC data at ±3. Model performance was qualitatively similar, but

not statistically significant (r = -0.038, P = 0.0582).
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Figure 6

The group-averaged predicted engagement time course for conservative (red) and liberal (blue)

participants

Note. The line graph shows different patterns in liberal and conservative at some segments, while

the correlation of predicted engagement with the political polarization is not statistically

significant (liberal: r = -0.037, p = 0.1369; conservative: r = -0.051, p = 0.0708).

Examining the relationship between engagement and neural polarization separately for

conservatives & liberals

Next we examined the relationship between engagement and neural polarization

separately for conservative and liberal participants. Similar to the above analysis, in two separate

across-dataset predictions, the SVR model was trained using FC data from both datasets, in

which the Sherlock FC data was generated with a dynamic sliding window (30TR) and the

Politics FC data of either conservatives/liberals group was generated with ETC, applied with a

threshold of ±3 and averaged within 86 segments. The model was then used to predict the
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engagement neural polarization observed in DMPFC at every corresponding TR separately for

conservatives and liberals. The model performance for predicting the relationship between

engagement in conservatives and neural polarization was not statistically significant (r = -0.051,

p = 0.0708). Similarly, the model performance for predicting the relationship between

engagement in liberals and neural polarization was also statistically non-significant (r = -0.037,

p = 0.1369). Though the prediction for neural polarization is not significant, the group averaged

time course of predicted engagement could possibly indicate a potential difference between

conservatives and liberals in narrative engagement at every segment (Fig. 6).

Exploratory analysis

Functional connectivity pattern  predicting behavioral emotion

Prior fMRI studies have shown that movies and narratives induced robust emotional

responses (Finn et al., 2018; Gruskin et al., 2020; Jääskeläinen et al., 2022). Narrative

engagement has been defined as the emotional-laden attention while watching or listening to a

story (Song et al., 2021). Engagement largely involves emotional change, attention could drift

with emotion. Hence, it is possible that changes in emotional responses are related to neural

polarization in conservatives and liberals while watching political videos. However, it remains

unknown whether behavioral emotional responses could be predicted from the brain pattern with

a computational approach under a narrative context. Further, whether the relationship between

emotion and neural polarization could be predicted. Thus, our initial approach to answering these

questions is to examine whether behavioral emotion change can be predicted from FC neural

activity in the Sherlock dataset with the SVR model. The emotional behavioral valence data in

the Sherlock dataset were separated by (positive/negative) and processed with dynamic window
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30TR. Similar to the prior analysis, in two separate within-dataset predictions, the SVR model

was trained using FC data generated with 30TR dynamic sliding window circular shifting across

the time course from all but one participant and applied to the held-out participant’s BOLD

activity to predict the group-average positive or negative emotion observed at every

corresponding TR.

The average correlation across participants between predicted emotion valence and

behavioral emotional response was statistically significant. Specifically, model performance

successfully predict positive emotion from the FC activity (r = 0.56, p < 0.01, Figure 7A), and

the negative emotion is also predicted (r = 0.475, p < 0.01, Figure 7B). This implies that the

SVR model can be successfully applied as a computational tool to predict emotion valence. Both

positive and negative emotion is highly predictable from brain activity. Thus, we infer that

subsequent across-dataset analysis can ideally be done on neural polarization.

However, due to time limitations, we didn’t manage to conduct the across-dataset

analysis for predicting the relationship between emotion and neural polarization. Based on prior

evidence, for example, individuals with depressive symptoms have a non-synchronization at the

positive-emotion movie moment compared to healthy individuals, and a tendency of focusing on

negative information in movies (Gruskin et al., 2020). It implicates that potential emotional bias

driven by prior experience could potentially shift the attention or engagement towards a

preferential stimulus. Thus, further analysis is necessary to be done in the future to examine the

potential impact of emotional bias toward the biased interpretation of political information in the

brain that drives further change in attitudes.
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Figure 7

The Pearson correlation of predicted emotion with observed behavioral emotion in Sherlock

Dataset

Note. (A). The predicted positive emotion significantly correlated with observed positive

emotional valence (r = 0.56, p < 0.01). (B) The predicted negative emotion significantly

correlated with observed negative emotional valence (r = 0.475, p <  0.01).
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Discussion

Existing attitudes and the process of how individuals interpret political information could

powerfully influence how they respond to political content and participate in political decisions.

Recent evidence shows the occurrence of neural polarization in specific brain regions, mostly in

DMPFC (Leong et al., 2020; Moore-Berg et al., 2020). The divergent patterns in conservatives

and liberals may possibly be explained by the discounting of evidence that contradicts their

political beliefs and reinforcing the evidence that confirms their beliefs while watching the same

political content. In the current study, we first replicate the prior study (Leong et al., 2020) and

generated the neural divergence that occurred in DMPFC between conservative and liberal

participants watching the same political videos related to immigration policy. As the neural

difference between conservatives and liberals only occurs in the DMPFC, DMPFC may play a

significant role in leading to the divergence between groups. As shown in early research,

increased activity in DMPFC is associated with the interpretation of narrative stimuli (Yeshurun

et al., 2017; Finn et al., 2018; Nguyen et al., 2019), and is positively correlated with resistance to

political belief change (Kaplan et al., 2016). These associations with DMPFC may imply that the

difference in narrative interpretation and selectiveness of evidence to resist beliefs may explain

the neural polarization and subsequent polarized political beliefs in conservatives and liberals.

The activity in DMPFC also has been implicated in multiple complex cognitive

functions, including episodic memory retrieval, motivation in reward-seeking, inference of

other’s mental states, choice anxiety in decision making, emotional regulation of negative affect

(Spreng et al., 2009; Overwalle, 2009; Shenhav & Buckner, 2014; Silver et al., 2015, Shigemune

et al., 2017). These disparate finding further implicates a potential construction of an integrative

situation model in DMPFC: the mental representation of the situations described in the narratives
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combined with prior knowledge about the events, characters, actions could create a more detailed

or biased representation of the information from the narratives (Yarkoni et al., 2008; Leong et al.,

2020). The divergent pattern in DMPFC between conservative and liberal groups may thus

reflect their different situation model towards the same content. Under the support of the

situation model, here we focused on examining whether a difference exists in the attentional

processes (e.g. how individuals selecting matched evidence under selective attention and

emotional bias), might impact their higher-level cognition for interpreting the narrative content.

We defined “narrative engagement” as emotional-laden attention, though we

acknowledge that “engagement” has been defined differently across different studies

(Richardson, 2020). We examined narrative engagement as the potential factor that biases an

individual’s higher process in specific brain regions like the DMPFC while they are attending to

information from narratives. We trained the SVR model to predict the relationship between

narrative engagement and neural polarization in DMPFC. The computational model successfully

predicted the relationship between narrative engagement and neural polarization, which is

consistent with our expectation that machine learning combined with neuroimaging data can

connect individuals’ behavioral patterns with higher-level processing in the brain. Furthermore,

the SVR model found a significant negative association between narrative engagement and

neural polarization, which may suggest that when participants are more engaged with the

political video content, they are processing it more similarly. This result is inconsistent with our

second hypothesis that narrative engagement predicts more neural polarization. Several

possibilities may explain this result: 1. the behavioral narrative engagement trained with the

movie dataset may differ from the engagement in political news; 2. Existing individual

differences in the extent of supporting political stands may affect the result; 3. while individuals
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are more engaged with the video content, their brain response is more likely to be influenced by

the narrative information than their prior existing knowledge. As indicated in a prior study

(Leong et al., 2020), neural polarization also tracked subsequent attitude polarization. Combined

with our result, it further implies that conservatives and liberals may be less likely to diverge in

their interpretations and attitudes towards political information when they are more engaged with

the narratives. As indicated, a potential explanation could be that while people are more engaged

with the political content, they may be less likely biased by their existing political beliefs, and

may interpret the political information from a more critical standpoint.

In the subsequent analysis, the SVR model failed to predict the relationship between

narrative engagement and the neural polarization for conservatives and liberals separately. One

potential reason is the lower statistical power due to a smaller number of subjects since we had

separate conservatives and liberals participants for the analysis. Hence, increasing the subject

pool by combining other political datasets may solve this problem and potentially improve our

prediction results to a substantial degree.

As the engagement was defined as emotional-laden attention, the emotional bias could

also potentially be a strong factor to bias individuals’ interpretation of the narrative content (Finn

et al., 2018; Gruskin et al., 2020; Jääskeläinen et al., 2022), which may further correlate with the

neural polarization in DMPFC. In an extended analysis, to better understand how emotion plays

a role in affecting the interpretation of the political content, we first examined whether the

emotional valence can be successfully predicted from the brain activity in the Sherlock dataset.

By implementing the SVR model in a within-dataset analysis, the results show we can

successfully predict negative/positive emotional valence from brain activity. It demonstrates that

the SVR model can be successfully applied to emotion, and a further prediction can be done to
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associate the emotional response with neural polarization. Due to time limitations, we did not

manage to conduct the analysis to predict the relationship between political polarization and

emotional change. Future analysis can be done to examine whether emotional intensity and

valence is related to the divergence in DMPFC.

Together, our findings demonstrate a computational approach for predicting the

relationship between the input process (e.g. narrative engagement) and the divergence that exists

in higher-level processing in the brain (e.g. neural polarization) to study the political brain under

realistic conditions. With this approach, we identified a neural correlate of the biased processing

of political information with narrative engagement, as well as demonstrated a potential

explanation for the subsequent attitude change on political issues. Future work could be further

done to obtain behavioral measurements of engagement while watching political news to

understand the biased interpretation process in the brain and inform interventions to align the

biased evidence selection process between conservatives and liberals.
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