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ABSTRACT

In this thesis, we extend the work of Church-Ellenberg-Farb [CEF15] [CEF14] on FI-modules,

representation stability of configuration spaces, and arithmetic statistics. We study two gen-

eralizations of the category FI: namely FIG for G a group, first studied by Sam-Snowden

[SSb], and FIm, first studied by Gadish [Gada]. We use these to study two types of gen-

eralized configuration spaces: the orbit configuration spaces ConfGn (M) associated to a G-

cover M , and the space of ordered 0-cycles Z̃(d1,...dm)
n (X) introduced by Farb-Wolfson-Wood

[FWW]. After establishing basic properties of FIG- and FIm-modules, we obtain representa-

tion stability results for the cohomology of these generalized configuration spaces. We estab-

lish subexponential bounds on the growth of unstable cohomology, and the Grothendieck-

Lefschetz trace formula then allows us to translate these topological stability phenomena to

stabilization of arithmetic statistics for generalized configuration spaces over finite fields.
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CHAPTER 1

INTRODUCTION

In [CEF15], Church-Ellenberg-Farb developed the theory of FI-modules. Recall that FI is

the category whose objects are finite sets and whose morphisms are injections, and that an

FI-module is a functor from FI to the category of k-modules (where k is usually a field).

One of their prominent examples of an FI-module is the cohomology of configuration spaces.

Recall that for a space X, the ordered configuration space is

Confn(X) = {(x1, . . . , xn) ∈ Xn | xi 6= xj}

Confn(X) carries an action of Sn, making the rational cohomology Hi(Confn(X);Q) into

an Sn-representation for each i. For each inclusion [m] ↪→ [n], there is a “forgetting points”

map Confn(M)→ Confm(M),

Church-Ellenberg-Farb [CEF15] developed a theory of FI-modules and used this theory to

obtain strong stability results about the cohomology of configuration spaces of manifolds. In

[CEF14] and [FW], the Grothendieck-Lefschetz trace formula was applied to transform these

topological stability properties of configuration spaces into stability results for arithmetic

statistics of configuration spaces over finite fields.

In this thesis we extend this work, by studying two generalizations of the category FI

and two types of generalized configuration spaces. The first is the category FIG introduced

by Sam-Snowden [SSa]. Just as FI is a way of bundling together the symmetric groups Sn

for all n, the category FIG is a way of bundling together the groups Gn o Sn for all n.

Suppose M is a manifold with free and properly discontinuous action of a group G. Define

the orbit configuration space ConfGn (M) as

ConfGn (M) := {(m1, . . . ,mn) ∈Mn | mi 6= gmj ∀g ∈ G}
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The cohomology Hi(ConfGn (M);Q) is a representation of Gn o Sn. When we consider all n

at once, then Hi(ConfG(M);Q) forms an FIG-module.

The second is the product category FIm = FI× · · · × FI, which was studied by Gadish

[Gada]. In [FWW], Farb-Wolfson-Wood studied a general class of spaces of 0-cycles on a

manifold X that they call Z(d1,...dm)
n (X), which is the subspace of

∏
i Symdi(X) where no

point of X appears n (or more) times in every Symdi(X). (Here Symd(X) := Xd/Sd). They

analyze these spaces in detail, and among other results, prove that they satisfy homological

stability.

In order to study the spaces Z(d1,...dm)
n (X), Farb-Wolfson-Wood pass to an ordered ver-

sion that they denote Z̃(d1,...dm)
n (X), which is the subspace of

∏
iX

di where no point of X

appears n or more times in every Xdi . The space Z̃(d1,...dm)
n (X) has an action of

Sd := Sd1 × · · · × Sdm

with quotient Z(d1,...dm)
n (X). When we consider all such d simultaneously, thenHi(Zd

n (X);Q)

forms an FIm-module.

1.1 Representation stability

By analyzing the Leray spectral sequences associated to the inclusions ConfGn (M) ↪→ Mn

and Zd
n (X) ↪→ Xd, we prove that Hi(ConfG(M);Q) is a finitely generated FIG-modules,

and that H∗(Zd
n (X);Q) is a finitely generated FIm-module. Our work implies the following

about these two spaces.

First, recall that the irreducible representations of GnoSn are given by partition-valued

functions λ on the irreducible representations of G with ‖λ‖ = n. Let c(G) be the set of

conjugacy classes of G. Define an FIG character polynomial to be a polynomial in c(G)-

labeled cycle-counting functions. This is a class function on Wn.

Next, recall that the irreducible representations of Sd are parameterized by lists of parti-

2



tions λ = (λ1, . . . , λm), where λi is a partition of di. For each i, j, let Xi
j be the class function

on
⋃
d Sd that counts the number of j-cycles on Sdi . Define a FIm character polynomial to

be an element of Q[{Xi
j}]. (We will define this and other terminology more precisely in §2).

Theorem 1.1.1 (Polynomiality of characters and representation stability for ConfG(M)).

Let M be a connected manifold with a free action of a finite group G. Assume that dimM ≥ 2

and that each dimHi(M ;Q) <∞. Then:

1. The characters of Hi(ConfGn (M);C) are given by a single FIG character polynomial

for all n� 0.

2. The multiplicity of each irreducible Wn-representation in Hi(ConfGn (M);C) is eventu-

ally independent of n, and dimHi(ConfGn (M);C) is given by a single polynomial for

all n� 0.

Theorem 1.1.2 (Polynomiality of characters and representation stability for Zd
n (X)).

Fix n and i, let X be a connected manifold of dimension at least 2, and let Vd = Hi(Z̃d
n ;Q).

Then:

1. There is a single FIm character polynomial P ∈ Q[{Xi
j}] such that the character

χVd = P for all di � 0. In particular, there is a polynomial Q ∈ Q[y1, . . . , ym] such

that dimVd = Q(d1, . . . , dm) for all di � 0.

2. The multiplicity of each irreducible Sd-representation in Vd is independent of d when

all di � 0.

Plugging in d = (d) and n = 2 into Theorem 1.1.2 recovers representation stability

for Confd(X), as proven by Church [Chu12, Thm 1] and Church-Ellenberg-Farb [CEF15,

Thm 1.8]. Furthermore, just looking at the multiplicity of the trivial representation in

Theorem 1.1.2.2 recovers [FWW, Thm 1.6].

3



1.2 Stability of arithmetic statistics

We consider the case where we replace the manifold M with a scheme X over Z[1/N ].

Thus we can consider the complex points X(C), but also the finite field points X(Fq). We

generalize the results of Farb-Wolfson [FW] on Confn(X) regarding étale representation

stability.

Theorem 1.2.1 (Étale representation stability). Let X be a smooth scheme over Z[1/N ]

with geometrically connected fibers that is smoothly compactifiable. Let K be either a number

field or a finite field over Z[1/N ].

1. For each n and i, the Gal(K/K)-FIm-module Hi
ét(Z̃

•
n(X);Ql) is finitely generated.

2. Suppose a finite group G acts freely on X, such that X is smoothly compactifiable as

a G-scheme. For each i ≥ 0, the Gal(K/K)-FIG-module Hi
ét(ConfG(X)/K ;Ql) is

finitely generated.

The next result concerns bounds on Hi(ConfGn (X)) and Hi(Z̃•n(X)) as i varies, which

are necessary to ensure convergence of the point-counts we are interested in.

Theorem 1.2.2 (Convergent cohomology). Let X be a connected manifold of dimension

at least 2 with dimH∗(X) <∞.

1. For each FIm character polynomial P , the inner product |〈P,Hi(Zd
n (X))〉| is bounded

subexponentially in i and uniformly in n.

2. Suppose a finite group G acts freely on X. For each FIG character polynomial P , the

inner product |〈P,Hi(ConfGn (X))〉| is bounded subexponentially in i and uniformly in

n.

Finally, we use the Grothendieck-Lefschetz trace formula, along with Theorem 1.2.2 and

Theorem 1.2.3, to obtain the following results on arithmetic statistics.
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Theorem 1.2.3 (Stability of arithmetic statistics). Let X be a smooth quasiprojective

scheme over Z[1/N ] with geometrically connected fibers.

1. For any n and any FIm character polynomial P ,

lim
d→∞

q−|d|dimX
∑

y∈Zd
n (X)(Fq)

P (y) =
∞∑
i=0

(−1)i tr
(

Frobq : 〈Hi(Z̃d
n (X)), P 〉

)

2. Suppose a finite group G acts freely on X, such that X is a smoothly compactifiable

G-scheme. Then for any FIG character polynomial P ,

lim
n→∞

q−ndimX
∑

y∈UConfn(X/G)(Fq)
P (σy) =

∞∑
i=0

(−1)i tr
(

Frobq : 〈Hi(ConfG(X(C));L), P 〉
)

(1.1)

Namely, both the limit on the left and the series on the right converge, and they converge to

the same limit.

In particular, Theorems Theorem 1.2.2 and Theorem 1.2.3 recover the results for Confd(X)

proven by Farb-Wolfson [FW, Thm C], either by taking G trivial for the FIG case, or by

taking d = (d) and n = 2 for the FIm.

1.2.1 Gauss Sums

For the specific case G = Z/dZ, the resulting automorphism groups Wn = (Z/dZ)n o Sn

are the so-called main series of complex reflection groups. These directly generalize the

Weyl groups of type BCn of Wilson’s paper, for which d = 2. In particular, we can apply

thref-arith-stats to the action of Z/dZ on C∗ by rotation. In this case, the sum on the

left-hand side of (ref-groth) is over UConfn(Gm)(Fq) = Polyn(F∗q), the space of square-free

polynomials over Fq that do not have 0 as a root. We thus obtain the following result,

generalizing the work of Church-Ellenberg-Farb [CEF14] (see §4.5 for definitions).
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Theorem 1.2.4 (Gauss sums for ConfG(C∗) stabilize). For any prime power q, any

d | q − 1, and any character polynomial P for FIZ/dZ,

lim
n→∞

q−n
∑

f∈Polyn(F∗q)
P (f) =

∞∑
i=0

(−1)i
〈P ∗, Hi(ConfZ/dZ(C∗);C)〉

qi
(1.2)

In particular both the limit on the left and the series on the right converge, and they converge

to the same limit.

Theorem 1.2.4 essentially says that the average value of certain Gauss sums across all

polynomials in Polyn(F∗q) always converges to the series in q−1 on the right. For example,

let χ be a character of Z/(q − 1)Z. Define the character polynomial X
χ
i :=

∑
g∈G χ(g)X

g
i .

Then

lim
n→∞

q−n
∑

f∈Polyn(F∗q)

∑
α 6=β∈Fq

f(α)=f(β)=0

χ(α)χ(β)−1

=
∑
i

(−1)i
〈Xχ

1 X
χ
1 , H

i(ConfZ/(q−1)Z(C∗);Q(ζq−1))〉
qi

= −1

q
+

5

q2
+ · · ·

(1.3)

That is, the average value of the Gauss sum obtained by applying χ to each quotient of pairs

of linear factors of f , across all f ∈ Polyn(F∗q), is equal to the series on the right-hand side

of (1.3) obtained by looking at the inner product of the character polynomial X
χ
1 X

χ
1 with

Hi(ConfZ/(q−1)Z(C∗);Q(ζq−1)). As another example, suppose q is odd and let ψ =
(
−
q2

)
be

the Legendre symbol in F2
q , which is 1 or −1 according to whether its argument is a square

or nonsquare in Fq2 . Then

lim
n→∞

q−n
∑

f∈Polyn(F∗q)

∑
p|f

deg(p)=2

ψ(root(p))

=
∑
i

(−1)i
〈Xψ

2 , H
i(ConfZ/(q−1)Z(C∗);Q(ζq−1))〉

qi
= −1

q
+

3

q2
+ · · ·

(1.4)
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where root(p) denotes a root of p, an irreducible degree 2 factor of f , lying in Fq2 ; the value

ψ(root(p)) turns out not to depend on the choice of root. Thus, (1.4) says that the average

value of the Gauss sum obtained by applying ψ to the quadratic factors of f , across all

f ∈ Polyn(F∗q), is equal to the series on the right obtained by looking at the inner product

of the character polynomial X
ψ
2 with Hi(ConfZ/(q−1)Z(C∗);Q(ζq−1)).

Remark 1.2.5. Just as in [CEF14, §4.3], it is quite likely that one can compute the left-hand

side of (1.2) using twisted L-functions of the form

L(P, s) =
∑
n

∑
f∈Polyn(F∗q)

P (f)q−ns

or by other analytic methods. Zeev Rudnick sketched such an argument for the case of (1.3)

in a private communication. However, Theorem 1.2.4 gives a topological interpretation to

the left-hand side of (1.2). More to the point, the fact that representation stability holds

for orbit configuration spaces is what suggests Theorem 1.2.4 in the first place. In fact,

the bridge to topology provided by the Grothendieck-Lefschetz trace formula gives further

motivation to study such L-functions. One can often go in the other direction, and prove

representation stability by means of counting points over finite fields. Chen [Che] has done

this for the usual configuration spaces, and it would be interesting to investigate this for

orbit configuration spaces as well.

1.2.2 Point-counts for rational maps

In the specific case where d = (

m︷ ︸︸ ︷
d, . . . , d), n = 1, and X = A1, we have Z(d,...,d)

1 (A1) =

Rat∗d(P
m−1) = Rat∗d(CP

m−1), the space of degree d, based rational maps CP1 → CPm−1

with f(∞) = [1 : · · · : 1]. We therefore obtain the following result about rational maps over

finite fields.

7



Theorem 1.2.6. For any prime power q and any character polynomial P ,

lim
d→∞

q−md
∑

f∈Rat∗d(Pm−1)(Fq)
P (f) =

∞∑
i=0

(−1)i tr
(

Frobq : 〈Hi(R̃at
∗
d(CPm−1)), P 〉

)

Namely, both the limit on the left and the series on the right converge, and they converge to

the same limit.

In general, the space R̃at
∗
d(CPm−1) is the complement of a linear subspace arrangement,

one that is not well-behaved enough for us to say what the eigenvalues of Frobenius acting on

its étale cohomology are. However, in the case m = 2 the space R̃at
∗
d(CP1) is the complement

of a hyperplane arrangement, and therefore by [BE97] the action of Frobq on Hi(R̃at
∗
d(CP1))

is multiplication by q−i. So we obtain

lim
d→∞

q−2d
∑

f∈Rat∗d(P1)(Fq)
P (f) =

∞∑
i=0

(−1)i〈Hi(R̃at
∗
d(CP1)), P 〉 q−i

As an example of Theorem 1.2.6, in the case P = 1, we obtain

lim
d→∞

q−md
∣∣Rat∗d(P

m)(Fq)
∣∣ =

∞∑
i=0

(−1)i tr
(

Frobq : Hi(Rat∗d(P
m−1))

)

so that the number of such rational maps, as the degree goes to infinity, stabilizes to the

series on the right. As another example, if P = Xi
1, then Xi

1(f) counts the number (with

multiplicity) of Fq-rational intersection points of the image of f in Pm with the hyperplane

{xi = 0}. Thus,

lim
d→∞

q−md
∑

f∈Rat∗d(Pm)(Fq)
#{f−1{xi = 0}} =

∞∑
i=0

(−1)i tr
(

Frobq : 〈Xi
1, H

i(R̃at
∗
d(Pm−1))〉

)

so that the average number of intersection points, across all such rational maps, stabilizes

as the degree goes to infinity to the series on the right.

8



Remark 1.2.7 (Related work). After distributing the first version of this thesis, we learned

of new work of Rolland-Wilson [RW] investigating the specific case of the type B/C hyper-

plane arrangement. This corresponds to the case d = 2 in Theorem 1.2.4. Their proof of the

necessary convergence results are by completely different methods. Our proof of the general

result Theorem 1.2.2.1 is by the same argument as Farb-Wolfson [FW]. Rolland-Wilson’s

result, [RW, Thm 3.8], is proven using a novel graph-theoretic argument. It would be very

interesting to see if their method could be strengthened to prove the stronger polynomial

bounds of our Theorem 1.2.2.2.

Much of what we prove in Chapter 3 was independently proven by Li-Yu [LY]. In par-

ticular, they obtain Theorem 2.2.5 and Theorem 2.2.6. Their results work in the greater

generality of FIm-modules over arbitrary Noetherian rings. Li-Yu also probe deeply into

the homological algebra of FIm-modules, and in particular study the “FIm-homology” of

FIm-modules, following Church-Ellenberg’s [CE] theory of FI-homology, which we do not

explore at all in this thesis.

9



CHAPTER 2

FIG-MODULES AND FIM-MODULES

In this chapter, we define the categories FIG and FIm and study their modules in detail.

2.1 FIG-modules and their properties

If G is a group, and R and S sets, define a G-map (a, (gi)) : R→ S to be a pair a : R→ S

and (gi) ∈ GR. If (b, (hj)) : S → T is another G-map, their composition is (b◦a, (gi ·ha(i))).

Let FIG be the category with objects finite sets and morphisms G-maps with the function

a injective. This is clearly equivalent to the full subcategory with objects the sets [n] =

{1, . . . , n}. Note that the automorphism group of [n] is

Wn := G o Sn = Gn o Sn

An FIG-module over k is just a functor V : FIG → k -Mod; when k is clear, we simply write

FIG-modules. These form a category, called FIG -Mod. Thus an FIG-module V is a sequence

of Wn-representations Vn, with maps Vn → Vn+1 satisfying certain coherency conditions.

Say that V is finitely generated if there is a finite set of elements v1, . . . , vn ∈ V such that

the smallest FIG-submodule containing the vi is all of V .

For m ≥ 0, define the “free” FIG-module M(m) by setting

M(m)n =


0 n < m

k[HomFIG([m], [n])] n ≥ m

Recall that for an FIG-module V and an element v ∈ Vm, we can also characterize the

submodule generated by v as the image of the map

M(m)→ V, f ∈ HomFIG([m], [n]) 7→ f∗v

10



We can thus characterize finitely generated FIG-modules as those V that admit a surjection⊕N
i=1M(mi) � V .

2.1.1 Noetherianity and representation stability

Recall that a group is polycyclic if it has a composition series with cyclic factors, and is virtu-

ally polycyclic if it has a polycyclic subgroup of finite index. Virtually polycyclic groups are

of interest, among other things, because they are the only known groups to have Noetherian

group rings, and are conjectured to be the only such groups. In [SSb, Cor 1.2.2], Sam-

Snowden proved that if G is a virtually polycyclic group, then FIG -Mod is Noetherian over

any Noetherian ring k. That is, they proved that any finitely generated FIG-module has all

its submodules finitely generated. The crucial property used was that the group ring k[G]

is Noetherian.

For FI-modules, the most important consequence of finite generation is representation

stability, and for G finite, Gan-Li proved in [GL15, Thm 1.10] that this holds for FIG as well.

Technically there are three parts to representation stability according to the definition given

in [CF13], but the first two parts (“surjectivity” and “injectivity”) follow straightforwardly

from the definition of being finitely generated. It is the third part, “multiplicity stability”,

that is really the most interesting, and which we will now describe.

Let us briefly review the representation theory of a finite wreath product (e.g, [Mac95, Ch.

I, Appendix A] ). Take G finite and k a splitting field of characteristic 0 for G, that is, a field

over which all its irreducible representations over C are defined. Let Irr(G) = {χ1, . . . , χr}

denote the set of isomorphism classes of irreducible representations of G. Let λ be a partition-

valued function on Irr(G). Put |λ| = (|λ(χ1)|, . . . , |λ(χr)|), and ‖λ‖ = |λ(χ1)|+ · · ·+ |λ(χr)|.

Also, let E(µ) denote the irreducible representation of S|µ| corresponding to a partition µ.

Then if ‖λ‖ = n, there is an associated irreducible representation of Wn:

L(λ) = IndWn
W|λ|

(
χ
⊗λ(χ1)
1 ⊗ E(λ(χ1))

)
⊗ · · · ⊗

(
χ
⊗λ(χr)
r ⊗ E(λ(χ1))

)
11



where Wµ = Wµ(1)× · · ·Wµ(l), and these comprise all the irreducible representations of Wn

up to isomorphism. Extend λ to n ≥ ‖λ‖+ λ(χ0)1 as follows:

λ[n](χ) =


(n− ‖λ‖, λ(χ0)) if χ = χ0

λ(χ) otherwise

Writing L(λ)n for the irreducible representation corresponding to λ[n], multiplicity stabil-

ity for an FIG-module V says that the decomposition into irreducibles has multiplicities

independent of n for large n:

Vn =
⊕
λ

L(λ)
⊕c(λ)
n for all n ≥ N

where we call N the stability degree of V . In particular, when G is trivial, we recover

(uniform) multiplicity stability for FI-modules in the sense of [CF13, Defn 2.6], and when

G = Z/2Z, we recover (uniform) multiplicity stability for FIBC-modules in the sense of

[Wil13, Defn 2.6].

2.1.2 Projective resolutions and character polynomials

For G finite, [SSb] and [GL15] actually obtain a deeper structural result that implies rep-

resentation stability, and this result has other important consequences for us. To state it,

define a torsion FIG-module to be one with Vn 6= 0 for only finitely many n, and say that

an FIG-module is projective if it is a projective object in the category FIG -Mod. Gan-Li’s

result can then be stated as follows.

Proposition 2.1.1 ([GL15, Thm 1.6]). For any finitely generated FIG-module V , with G

finite, there is a finite resolution of FIG modules

0→ V → T 1 ⊕ P 1 → T 2 ⊕ P 2 → · · · → Tn ⊕ P k → 0

12



with each T i torsion and each P i projective.

In particular, this resolution’s existence means that for n � 0 there is a resolution of

Wn-representations

0→ Vn → P 1
n → · · · → P kn → 0 (2.1)

This is powerful because, as in [CEF15], we have strong control over the structure of

projective FIG-modules. Namely, let Res : FIG -Mod → Wi -Mod be the restriction to a

single group. This functor has a left adjoint IndFIG : Wi -Mod→ FIG -Mod given by

IndFIG(V )i+j = Ind
Wi+j

Wi×Wj
V � k

Then IndFIG(V ) is a projective FIG-module whenever V is a projective Wi-module, and tom

Dieck [tD87, Prop 11.18] proved that any projective FIG-module is of this form (in fact,

for a large class of category representations). Following Ramos [Rama], define a relatively

projective module to be a direct sum of any such induced modules, even if the V ’s are

not projective Wn-representations. Finitely-generated (relatively) projective FIG-modules

thus have a compact description, as direct sums of induced modules from a finite list of

Wn-representations, even for infinite G.

In fact, Ramos [Rama] has found an effective bound for when n occurs in (2.1). To

describe it, we need to refine our notion of finite generation. As we said, finitely generated

modules are those that admit a surjection
⊕N

i=1M(di) � V . Say that such a V is generated

in degree ≤ d = maxi{di}. Next, suppose there is an exact sequence

0→ K →M → V → 0

with M relatively projective and K generated in degree ≤ r. Then say that V is related in

degree ≤ r.

Ramos [Rama, Thm C] then says that if V is a finitely-generated FIG-module generated
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in degree d and related in degree r, then the above resolution (2.1) holds whenever n ≥

r+ min{r, d}. Notice that if V is already relatively projective, then r = 0 and this is sharp.

In particular, when G is finite, the resolution (2.1) implies representation stability: as

Gan-Li verify in [GL15, Thm 1.10], the individual projective modules IndFIG(Vm) satisfy

representation stability, with stability degree ≤ 2m. By semisimplicity of each k[Gn], V

therefore satisfies representation stability as well. Furthermore, this resolution provides a

quick proof of the stabilization of character polynomials for FIG-modules, as follows.

Recall that a character polynomial for Sn is an element of Q[X1, X2, . . . ], which we think

of as a class function on Sn, where Xi counts the number of i-cycles of a permutation.

Church-Ellenberg-Farb [CEF15, Thm 3.3.4] prove that any finitely generated FI-module is

eventually given by a single character polynomial. We generalize this and Wilson’s [Wil13,

Thm 5.15] result for G = Z/2 as follows.

Theorem 2.1.2 (Character polynomials for FIG). Let G be a finite group and k a

splitting field for G of characteristic 0. If V is a finitely generated FIG-module over k,

generated in degree m and related in degree r, then there is a character polynomial

PV ∈ k
[
{XC

i | i ≥ 1, C is a conjugacy class of G}
]

of degree ≤ m, so that for all n ≥ r + min(m, r)

χVn(g) = PV (g).

Proof. If V is a representation of Wm, we can explicitly compute the character of the pro-

jective FIG-module IndFIG(V ). This calculation is done in [Wil13, Lem 5.14] for G = Z/2,

and her proof applies essentially verbatim, but enough small details are different that it is

easier to just give the adapted proof than to describe the necessary changes.
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The character of the induced representation IndFIG(V )n = IndWn
Wm×Wn−m

V � k is

χ
IndFIG(V )n

(w) =
∑

{cosets C |w·C=C}
any s∈C

χV�k(s−1ws)

=
∑

{cosets C |w·C=C}
any s∈C

χV (pm(s−1ws))

where pm : Wm × Wn−m → Wm is the projection, and where the sum is over all cosets

in Wn/(Wm × Wn−m) that are stabilized by w, equivalently, those cosets C such that

s−1ws ∈ Wm ×Wn−m for any s ∈ C.

An element w ∈ Wn can be conjugated in Wm ×Wn−m precisely when its c(G)-labeled

cycles can be split into a set of cycles of total length m, and a set of cycles of total length

(n −m). If we fix a labeled partition λ of m, then the cycles of w can be factored into an

element wm of labeled cycle type λ and its complement wn−m in the following number of

ways (possibly 0):

∏
C∈c(G)

(
XC

1
n1(λ(C))

)(
XC

2
n2(λ(C))

)
· · ·
(

XC
m

nm(λ(C))

)

where nr(µ) is the number of r’s in µ. Each such factorization of w corresponds to a coset

C ∈ Wn/(Wm ×Wn−m) that is stabilized by w. For any representative s ∈ C, pm(s−1ws)

has labeled cycle type λ. So we conclude that

χ
IndFIG(V )n

=
∑
‖λ‖=m

χV (λ)
∏
C

(
XC

1
n1(λ(C))

)(
XC

2
n2(λ(C))

)
· · ·
(

XC
m

nm(λ(C))

)

where the left-hand-side is manifestly a fixed character polynomial independent of n. Notice

that this character polynomial has degree m. The general result therefore again follows from

(2.1) and Ramos [Rama, Thm C] by semisimplicity.

In particular, by taking g = e in Theorem 2.1.2, we see that dimVn is given by a single
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polynomial for n ≥ r + min(m, r), which is [Rama, Thm D].

2.1.3 Arbitrary G and finite presentation degree

Until recently, the Noetherian property was seen as the lynchpin of the theory of FI-modules

and related categories. However, coming out of the work of Church-Ellenberg [CE] on ho-

mological properties of FI-modules, a new perspective has emerged that shifts the emphasis

from finite generation of modules to finite presentation degree of modules, e.g. in the work

of Ramos [Ramc] and Li [Li]. In one sense, this perspective is more “constructive”, because

possessing the knowledge of both the degree of generation and the degree of relation of a

module gives us quantitative control over various stability properties of the module, as we

have seen. The Noetherian property then tells us that any finitely generated module is nec-

essarily finitely presented, which is an important fact but no longer at the absolute center of

the theory. Appealing to Noetherianity is also necessarily ineffective, since we are no longer

able to say what the relation degree is, and thus lose effective bounds on stability.

At the same time, this shift in perspective allows us to expand our scope to situations

where there is no hope of finite generation. For example, we will see later on examples of

FIG-modules V that are not finitely generated simply because the individual pieces Vn are

not finitely-generated Wn-representations. Nevertheless, we will be able to prove that V is

still generated in finite degree, in the sense that all the generators of V (an infinite number)

live only in V1, . . . Vm for some m, and that V is related in finite degree. Of course, in a

sense such V are much less constructive then anything in the finitely-generated world.

This shift also allows us to leave behind the requirement that G be virtually polycyclic.

Indeed, as we have seen, this requirement is based in the fact that, for any kind of Noethe-

rianity to get off the ground, we certainly need the ring k[G] to be Noetherian, which as far

as we know is only true when G is virtually polycyclic. However, once we have accepted

that modules can be infinitely generated, and only care about the degree that that they are

generated (and related) in, we can leave this need behind.
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The central result that informs this perspective is the following, proved simultaneously

by Ramos and Li:

Theorem 2.1.3 ([Ramc, Thm B], [Li, Prop 3.4]). For any group G, the category of FIG-

modules presented in finite degree is abelian.

This is the analogue of Noetherianity for finite presentation degree, since it allows us to

argue that kernels of maps between FIG-modules presented in finite degree are still presented

in finite degree, and therefore for example to chase being presented in finite degree through

a spectral sequence. Indeed, from a certain point of view Theorem 2.1.3 is the fundamental

fact, and Noetherianity as we have seen it so far is just a consequence of Theorem 2.1.3 and

the fact that the individual group rings k[G] are Noetherian.

What we lose at this level of generality is any ability to refer back to stability results in

terms of things like “representation stability” or “stability of character polynomials” that

are not couched explicitly in terms of FIG-modules. All we can say is that the FIG-modules

in question are presented in finite degree, which perhaps is less interesting to someone who

only cares about the individual Wn-representations Vn. At the same time, since these are

infinitely-generated representations of infinite groups, it is hard to say much about the indi-

vidual representations.

2.1.4 FIG ]-modules

The classification of projective modules provided above means that even when G is infinite, if

an FIG module V is projective, then there is still a compact description of the representation

theory of V . We would therefore like to be able to determine when an FIG-module is

projective, so that it has such a description. [CEF15] provide just such a method: they define

a category FI ] with an embedding FI ↪→ FI ] so that FI ]-Mod is precisely the category of

projective FI-modules, so a module is projective just when it extends to an FI ]-module.

Their construction and proof of equivalence carry over to the setting of FIG, as Wilson

[Wil13] proved for the case G = Z/2.
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So define FIG ] to be the category of partial morphisms of FIG: the objects are still

finite sets, but a map X → Y is given by a pair (Z, f), where Z ⊂ X and f : Z → Y is a

G-map. Composition of morphisms is defined by pullback, i.e. with the domain the largest

set on which the composition is defined. Then there is a natural structure of IndFIG(V ) as

an FIG ]-module, as follows.

First we define this structure for M(m) = k[HomFIG(m, •)]. Let (Z, f) : X → Y be an

FIG ] morphism, where Z ⊂ X and f : Z → Y is a G-map. Then for g ∈ HomFIG([m], X)

we put

(Z, f) · g =


f ◦ g if im g ⊂ Z

0 otherwise

∈ k[HomFIG([m], Y )]

and extend by linearity to all of M(m). Next, we note that if V is a representation of Wm,

then IndFIG(V ) = M(m) ⊗Wm
V . Since we have just defined an action of FIG ] on M(m),

this gives an action of FIG ] on IndFIG(V ).

Proposition 2.1.4. Any FIG ] module is isomorphic to
⊕

i IndFIG(Wi) for some represen-

tations Wi of Gi.

Proof. This was proved for G trivial in [CEF15, Thm 4.1.5], and for G = Z/2 in [Wil13,

Thm 4.42]. As Wilson explains, the proof in [CEF15] applies almost verbatim: the only

change that needs to be made is to the definition of the endomorphism E : V → V , which

should be defined as follows, for m ≥ n,

Em : Vm → Vm

Em =
∑
S⊂[m]
|S|=n

IS , where IS = (S, ι) ∈ HomFIG ]([m], [m]) with ι : S ↪→ [m] the inclusion.

Corollary 2.1.5. If V is an FIG ]-module generated in degree m, then χV is given by a

single character polynomial of degree ≤ m, and satisfies representation stability with stability
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degree ≤ 2m.

Proof. This follows from [GL15, Thm 1.10] and Theorem 2.1.2.

2.1.5 Tensor products and FIG-algebras

Here we proceed to generalize the notions introduced in [CEF15, §4.2] from FI to FIG.

Given FIG-modules V and V ′, their tensor product V ⊗ V ′ is the FIG-module with

(V ⊗ V ′)n = Vn ⊗ V ′n, where FIG acts diagonally.

A graded FIG-module is a functor from FIG to graded modules, so that each piece is

graded, and the induced maps respect the grading. If V is graded, each graded piece V i is

thus an FIG-module. If V and W are graded, the tensor product V ⊗W is graded in the usual

way. Say that V is of finitely-generated type if each V i is finitely generated. Say that V is

of finite type if it is of finitely-generated type and furthermore each V in is finite-dimensional.

Notice if G is a finite group, these two notions coincide.

Similarly, an FIG-algebra is a functor from FIG to k-algebras, which can also be graded.

We can also define graded co-FIG-modules and algebras, as functors from FI
op
G . A (co-)FIG-

algebra A is generated (as an FIG-algebra) by a submodule V when each An is generated as

an algebra by Vn.

Finally, there is another type of tensor product that we will need. Suppose V is graded

G-module with V 0 = k. Then the space V ⊗• defined by (V ⊗•)n = V ⊗n has the structure

of an FIG ]-module, as in [CEF15, Defn 4.2.5], with the morphisms permuting and acting on

the tensor factors.

The following theorem characterizes the above constructions.

Theorem 2.1.6. Let G be any group.

1. Let V and V ′ be FIG-modules generated in degree m and m′. Then V ⊗V ′ is generated

in degree m+m′. If V is finitely generated and V ′ is finite type, then V ⊗V ′ is finitely

generated.
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2. Let A be a graded (co-)FIG-algebra generated by a graded submodule V , where V 0 = 0

and V is generated as an FIG-module in degree m. Then the i-th grades piece Ai is

generated in degree m · i. If V is of finite type, then A is of finite type.

3. If V is a graded G-module with V 0 = k, then V ⊗• is an FIG ]-module whose i-th graded

piece is generated in degree i. If V is of finite type, then V ⊗• is of finite type.

4. If X is a connected G-space, then H∗(X•; k) is an FIG ]-algebra whose i-th graded

piece is generated in degree i. If H∗(X; k) is of finite type, then H∗(X•; k) is of finite

type.

Proof.

1. This was proved by Sam-Snowden [SSb, Prop 3.1.6] for G finite, and their proof applies

verbatim even when G is infinite to show that V ⊗ V ′ is always generated in degree

m+m′, though not always finitely.

For the second part, for each k ≤ m+m′, we know (V ⊗ V ′)k = Vk ⊗ V ′k is a finitely-

generated Wk-module, since the tensor product of a finitely-generated Wk-module and

a finite-dimensional module is finitely generated. The result follows.

2. If A is generated as an algebra by V , then A is a quotient of the free algebra k〈V 〉, so

Ai is a quotient of k〈V 〉i = V ⊗i. By (1), V ⊗i is generated in degree m · i, and therefore

Ai is generated in degree m · i. The second part follows from the second part of (1).

3. This was proved for G trivial in [CEF15, Prop 4.2.7], but here we have simplified the

assumptions, by having V just be a single G-module rather than a whole FIG-module,

and so the proof is simpler. To wit, the i-th graded piece is

(V ⊗n)i =
⊕

k1+···+kn=i

V k1 ⊗ · · · ⊗ V kn
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At most i of the nonnegative integers k1, . . . , kn can be nonzero. Let kj1 , . . . , kjl be

the subsequence of nonzero integers, so l ≤ i. Then for any pure tensor

v = v1 ⊗ · · · ⊗ vn ∈ V k1 ⊗ · · · ⊗ V kn ,

since V km = V 0 = k for m /∈ {j1, . . . , jl}, we can take

w =

 ∏
m/∈{j1,... }

vkm

 · vkj1 ⊗ · · · vkjl
and then the inclusion j : [l] ↪→ [n] clearly induces j∗w = v. So by linearity, (V ⊗n)i is

generated in degree i.

If each V i is finite-dimensional, then each V k1 ⊗ · · · ⊗ V kl is finite-dimensional for

l = 1, . . . , i. Therefore (V ⊗n)i is an FIG-module of finite type.

4. This was proved for G trivial in [CEF15, Prop 6.1.2], and their proof applies verbatim.

It essentially follows from (3) and the Künneth formula. As [CEF15] explain, techni-

cally sometimes a sign is introduced in permuting the order of tensor factors, but this

does not change the proof of (3). The assumption that V 0 = k holds by connectivity

of X.

2.2 FIm-modules and their properties

FI is the category introduced by Church-Ellenberg-Farb [CEF15] whose objects are finite sets

and whose morphisms are injections. Here, we consider the m-fold product category FIm for

some fixed m. Thus, FIm has as objects m-tuples of finite sets (S1, . . . , Sm), and morphisms

f : S → T given by tuples (f1, . . . , fm) of injections fi : Si ↪→ Ti. This clearly has a skeleton

with objects indexed by tuples (c1, . . . , cm) of natural numbers, and morphisms c→ d given
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by tuples (f1, . . . , fm) of injections fi : [ci] ↪→ [di], where [n] = {1, . . . , n}. We can define a

partial order on such d by saying that c ≤ d if each ci ≤ di, and then Hom(c,d) 6= ∅ just

when c ≤ d. We see that End(d) = Aut(d) = Sd = Sd1 × · · · × Sdm .

An FIm-module is just a functor FIm → k -Mod, where k is some ring, which we will

always take here to be a field of characteristic 0. If V is an FIm-module, then each Vd is an

Sd-representation. FIm-modules form an abelian category, with maps given by natural trans-

formations of functors. If V is an FIm-module and v1, . . . vm ∈ V , the submodule generated

by the vi’s is the smallest submodule that contains them. V is finitely generated if it is gen-

erated by a finite subset. For any c, we define the “free” module M(c) = k[HomFIm(c,−)].

Thus for any d ≥ c, we have M(c)d = k[HomFIm(c,d)]. Furthermore, if V is an FIm-

module and v ∈ Vd, there is a natural map M(d)→ V taking f to f∗v, whose image is the

submodule of V generated by v. Thus, V is finitely generated just when there is a surjection⊕
iM(di) � V .

Gadish [Gada] proved the Noetherian property for FIm-modules:

Theorem 2.2.1 ([Gada, Prop 6.3]). If V is a finitely generated FIm-module, then any

submodule is finitely generated.

2.2.1 Projective FIm-modules and FI ]m

Let Res : FIn → Sd be the restriction to a single group. This functor has a left adjoint

IndFIn : Sd → FIn given by

IndFIm(V )d+c = Ind
Sd+c
Sd×Sc V � k

Then IndFIn(V ) is a projective FIn-module, and tom Dieck [tD87, Prop 11.18] proved that

any projective FIn-module is of this form (in fact, for a large class of category representa-

tions). Furthermore, any Sd-representation V is a direct sum of external tensor products of
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Sdi-representations, and we have

IndFIm(V1 � · · ·� Vm)d+c = Ind
Sd1+c1×···×Sdm+cm

Sd1×···×Sdm×Sc1×···×Scm
(V1 � · · ·� Vm) � (k � · · ·� k)

= (Ind
Sd1+c1
Sd1×Sc1

V1 � k) � (Ind
Sdm+cm
Sdm×Scm

Vm � k)

=
(

IndFI(V1) � · · ·� IndFI(Vm)
)
d+c

(2.2)

so that any projective FIm-module is a direct sum of tensor product of projective FIm-

modules.

[CEF15] give a convenient way of determining when an FI-module is projective: they

defined a category FI ] in which FI embeds, such that FI ]-modules are exactly the projective

FI-modules. Thus a given FI-module is a direct sum of IndFI(W )’s just when it extends to

an FI ]-module.

The same construction works for FIm: we just take FI ]m. One description of FI ]m is

as the category whose objects are those of FIm, and whose morphisms x → y are given by

pairs (z, f), where z ⊂ x and f : z ↪→ y. Thus, it is the category of “partial morphisms” of

FIm. We then have the following.

Theorem 2.2.2. Every FI ]m-module is isomorphic to
⊕

d IndFIm(Wd) for some represen-

tations Wd of Sd.

Proof. [CEF15] prove that FI ]-modules are precisely the direct sums of IndFI(W )’s, and

thus that FI ] -Mod is semisimple. This implies that (FI ] × FI ]) -Mod is semisimple, and

by induction that FI ]m -Mod is semisimple, and that its simples are just external tensor

products of the simples of FI ] -Mod, which as we said are just the IndFI(W ). The claim

follows by (1).

So FI ]m-modules are always sums of tensor products of FI ]-modules. Note, however,
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that this is not true for general FIm-modules. Indeed, take the FI2-module M with

Ma,b =


0 if (a, b) ∈ {(0, 0), (1, 0), (0, 1)}

k otherwise

and where all morphisms of FI2 induce the identity k → k or the unique map 0→ k. Then

M is not the direct sum of external tensor products of FI-modules.

First, we know M cannot be decomposed as the direct sum of two nonzero FI2-modules.

Indeed, if we could write M = V ⊕V ′, then without loss of generality there would be nonzero

elements v ∈ Vc, v′ ∈ V ′d with c ≤ d, and thus no morphism of FI2 could have f∗v be a

nonzero multiple of v′. But for any nonzero v ∈Mc, v
′ ∈Md with c ≤ d, we have that f∗v

is always a nonzero multiple of v′ for any f ∈ HomFI2(c,d).

But then if we had M = V �W , we would have V1 �W0 = 0, V0 �W1 = 0, V1 �W1 = k,

which is impossible.

Finally, (1) lets us compute the character of an FI ]m-module. First, define a character

polynomial for FIm to be a polynomial in k[X
(1)
1 , . . . X

(m)
1 , X

(1)
2 , . . . ], where X

(k)
i is the class

function on Sd that counts the number of i-cycles in Sdk . We then have the following.

Proposition 2.2.3. If V is a finitely generated FI ]m-module, then χVn is given by a single

character polynomial P for all n.

Proof. If V = IndFIm(V1 � · · · � Vm), then by (1), V = IndFI(V1) � · · · � IndFI(Vm). By

[CEF15, Thm 4.1.7], the character of IndFI(Vi)n is given by a single character polynomial

Pi ∈ k[X
(i)
1 , X

(i)
2 , . . . ] for all m. Then χV = P1 · · ·Pm. By Theorem 2.2.2, a general FI ]m-

module is a direct sum of such V ’s, so the claim follows.
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2.2.2 Shift functors and representation stability

Another basic operation on FIm-modules are the shift functors. For a ∈ FIm, let

S+a : FIm -Mod→ FIm -Mod

be the functor defined by S+a(V )d = Vd+a. Following [CEFN14] and [Nag15], we will use

this functor to establish representation stability for FIm.

Notice that we have S+a ◦ S+b = S+b ◦ S+a = S+(a+b). In particular, if we decompose

a into “unit vectors” as a = a1e1 + · · · + anen, where ei = (0, . . . , 1i, . . . , 0), then Sa =

(S+en)an ◦ · · · ◦ (S+e1)a1 . The following fundamental proposition describes the effect of shift

functors on the “free” modules M(d), generalizing [CEFN14, Prop 2.12]:

Proposition 2.2.4. For any a,d ∈ FIm, there is a natural decomposition

S+aM(d) = M(d)⊕Qa

where Qa is a free FIm-module generated in degree ≤ d− 1.

Proof. It is enough to prove this for the case a = ei, since for a general a, we know that

S+a is a composition of the S+ei ’s. A basis for S+eiM(d)c is the set of tuples of injections

f , where

f1 : [d1] ↪→ [c1]

...

fi : [di] ↪→ [c1] t {?}
...

fm : [dm] ↪→ [cm]

This set can be partitioned into di+1 subsets, according to f−1
i (?)—that is, by which element
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of [di] (or possibly none) gets mapped by fi to ?. Notice that f−1
i (?) is not affected by post-

composing with an FI-morphism. Thus this partition actually defines a decomposition of

S+eiM(d) as a direct sum of FIm-modules.

For T ⊂ [di] of size at most 1, let MT be the submodule of S+eiM(d) spanned by

those f with f−1
i (?) = T . These f are distinguished by the restrictions f |d−T , and we have

(g∗f)|d−T = g ◦ f |d−T . We therefore have M∅ ∼= M(d), and

M{t} ∼= M(d− ei) = M(d1, . . . , di − 1, . . . , dm).

So we have a decomposition

S+eiM(d) = M∅ ⊕
⊕
t∈[di]

M{t} = M(d)⊕
⊕
t∈[di]

M(d− ei).

Following [Nag15], say that a finitely generated FIm-module V is filtered if it admits a

surjection

Π :

g⊕
i=1

M(di) � V

such that the filtration 0 = V 0 ⊂ V 1 ⊂ · · · ⊂ V g = V given by

V r := Π

(
r⊕
i=1

M(di)

)
, 0 ≤ r ≤ d

has successive quotients V r/V r−1 which are projective FIm-modules.

Theorem 2.2.5. For any finitely generated FIm-module V , there is some a ∈ FIm such

that S+aV is filtered.

Furthermore, there are filtered FIm-modules J0, . . . , JN and a sequence

0→ V → J0 → · · · → JN → 0
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which is exact in high enough degree. That is, the sequence

0→ Vd → J0
d → · · · → JNd → 0

is exact for sufficiently large d.

Our proof follows the one given by Nagpal [Nag15, Thm A] and Ramos [Ramb, Thm 3.1]

for the case m = 1. As we mentioned in the introduction, Theorem 2.2.5 was independently

proven by Li-Yu [LY, Thm 1.5, Thm 4.10].

Proof. Let V be an FIm-module generated in degree D and related in degree r. This means

there is an exact sequence

0→ K →
g⊕
i=1

M(di)→ V → 0

where each di ≤ D. We put Ṽ :=
⊕g

i=1M(di). Notice that by Proposition 2.2.3, we may

write

S+aṼ =

g⊕
i=1

M(di)⊕Qa
i

where each Qa
i is free and generated in degree < di. We have the following commutative

diagram with exact rows and columns:

0 - Ũa - S+aṼ - M(di) - 0

0 - Ua

Πa

?
- S+aV

S+aΠ

?
- Aa

φa

?
- 0

0
?

0
?

0
?

Looking at the FIm-module Ka = ker(φa), we observe that the Sdi-modules Ka
di

are in-
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creasing in a, and therefore must stabilize for large a. In fact, we can take a = r.

Fixing such an a, it must be the case that Ka is generated in degree ≤ di. By exactness

of IndFIm , it follows that Aa = IndFIm(W ) for some Sdi-module W. So we are left with the

exact sequence

0→ Ua → S+aV → IndFIm(W )→ 0

By induction on degree, S+bU
a is filtered for sufficiently large b. Since shifting is exact, we

obtain

0→ S+bU
a → S+(a+b)V → S+b IndFIm(W )→ 0

We conclude that S+(a+b)V must be filtered. This completes the first part of the theorem.

For the second part, let a be large enough so that S+aV is filtered. Continuing the

notation of the first part, we have

S+aṼ =
⊕
i

M(di)⊕ Q̃

where Q̃ is generated in degree < D. We thus have an exact sequence

0→ V → S+aV → Q→ 0

where Q is generated in degree < D. By induction, the claim is true for Q, say with filtered

modules K0, . . . , KM . If we form the sequence

0→ V → S+aV → K0 → · · ·KM → 0

the claim then follows.

Recall that the irreducible representations of Sd are just given by tensor products of irre-

ducible representations of each Sdi , which are indexed by partitions of di. If λ = (λ1, . . . , λm)

is a list of partitions of d = (d1, . . . , dm), then write Irr(λ) = Irr(λ1) � · · ·� Irr(λm) for the
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irreducible representation indexed by λ. Extend λ to c ≥ d + (λ
(1)
1 , . . . , λ

(1)
m ) as follows:

λ[c] = ((c1 − |λ1|, λ1), . . . , (cm − |λm|, λm))

Then we obtain the following.

Theorem 2.2.6 (Representation stability for FIm). Let V be a finitely-generated FIm-

module. Then there is a character polynomial P such that for all d � 0, the character

χVd = Pd. In particular, the dimension dimVd is eventually given by a polynomial in the

di’s. Furthermore, the decomposition into irreducibles has multiplicities independent of d for

d large:

Vd =
⊕
λ

Irr(λ[d])cλ for all d� 0

As we mentioned in the introduction, the claim about multiplicity stability was indepen-

dently proven by Li-Yu [LY, Thm 1.8].

Proof. Theorem 2.2.5 gives us filtered FIm-modules J0, . . . , JN and a sequence

0→ V → J0 → · · · → JN → 0

which is exact in high enough degree. By semisimplicity of Q[Sd], it is therefore enough

to prove the claim for the J i. But since each J i is filtered, meaning it has a filtration

whose graded pieces are projective, we can reduce to the case of FI ]m-modules, again by

semisimplicity. By Proposition 2.2.3, the character of FI ]m-modules is given by a single

character polynomial. Finally, by [CEF15, Prop 3.26] we know that each IndFI(Vi) satisfies

representation stability, so since an FI ]m-module is just a direct sum of tensor products of

these, it therefore satisfies representation stability.
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2.2.3 Tensor products and FIm-algebras

Here we proceed to generalize the notions introduced in [CEF15, §4.2] from FI to FIm. Given

FIm-modules V and V ′, their tensor product V ⊗ V ′ is the FIm-module with (V ⊗ V ′)d =

Vd ⊗ V ′d, where FIm acts diagonally.

A graded FIm-module is a functor from FIm to graded modules, so that each piece is

graded, and the induced maps respect the grading. If V is graded, each graded piece V i is

thus an FIm-module. If V and W are graded, their tensor product V ⊗W is graded in the

usual way. Say that V is finite type if each V in is finitely generated.

Similarly, an FIm-algebra is a functor from FIm to k-algebras, which can also be graded.

Here our algebras will always be graded-commutative. We can also define graded co-FIm-

modules and algebras, as functors from (FIm)op. A (co-)FIm algebras is generated (as an

FIm-algebra) by a submodule V when each Ad is generated as an algebra by Vd.

Finally, there is another type of tensor product that we will need. Suppose V is a graded

vector space with V 0 = k. Then the space V ⊗• defined by (V ⊗•)d = �mi=1V
⊗di has the

structure of an FI ]m-module, as in [CEF15, Defn 4.2.5], with the morphisms permuting and

acting on the tensor factors.

The following theorem characterizes the above constructions.

Theorem 2.2.7.

1. If V and V ′ are finitely generated FIm-modules, then V ⊗ V ′ is finitely generated.

2. Let A be a graded FIm-algebra generated by a graded submodule V , where V 0 = 0. If

V is finite type, then A is finite type.

3. Let V be a graded vector space with V 0 = k. If V is finite type as a graded vector

space, then V ⊗• is finite type as a graded FIm-module.

4. Let X be a connected space such that H∗(X; k) is finite type. Then H∗(X•; k) is an

FI ]m-algebra of finite type.
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Proof.

1. It is enough to prove the theorem in the case where V and W are projective. But this

is [Gada, Thm B(1)].

2. Let T (V ) be the tensor algebra on V . It is of finite-type, since

(T (V ))k =
⊕

i1+···+im=k

V i1 ⊗ · · · ⊗ V im

where each summand on the right is finitely generated by (1). But since A is an FIm-

algebra generated by V , there is an FIm-algebra surjection T (V ) � A. Therefore A is

of finite type.

3. We have (V ⊗•)d = (V ⊗•)d1 � · · · � (V ⊗•)dm . Since the FI ]-algebra V ⊗• is finitely

generated [CEF15, Prop 4.2.7], we conclude that the FI ]m-algebra V ⊗• is finitely

generated.

4. As [CEF15, Prop 6.1.2] explain for the case m = 1, this essentially follows from (3)

and the Künneth formula; technically sometimes a sign is introduced when permuting

the order of tensor factors, but this does not change the proof of (3). The degree 0

part is k by connectivity.
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CHAPTER 3

GENERALIZED CONFIGURATION SPACES

In this chapter we define the orbit configuration space ConfGn (X) and space of ordered 0-

cycles Z̃d
n (X) in detail, analyze their cohomology as an FIG-module, resp. FIm-module, and

prove that these are finitely generated.

3.1 Orbit configuration spaces

Let M be a manifold with a free and properly discontinuous action of a group G, so that

M →M/G is a cover. Define the orbit configuration space by:

ConfGn (M) = {(mi) ∈Mn | Gmi ∩Gmj = ∅ for i 6= j}

This was first considered by Xicoténcatl in [Xic97] and later investigated in e.g. [Coh01],

[FZ02], [CX02], [CCX03]. There is a covering map ConfGn (M) → Confn(M/G) with deck

group Gn, given by (mi) 7→ (Gmi). Thus another way to think of ConfGn (M) is as the space

of configurations in M that do not degenerate upon projection to M/G, or as configurations

in M/G which also keep track of a lift in M of each point in the configuration.

If N is a normal subgroup of G, there is an intermediate cover

ConfGn (M)→ Conf
G/N
n (M/N)→ Confn(M/G)

where the first map has deck group Nn, and the second has deck group (G/N)n. Also, notice

that if G is finite, there is an embedding

ConfGn (M) ↪→ Conf |G|n(M), (m1, . . .mn) 7→ (g1m1, g2m1, . . . , g|G|mn)
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3.1.1 FIG-structure and finite generation for finite groups

For any G acting discretely and properly discontinuously on M , if we write
(

ConfG(M)
)
n

=

(ConfGn (M)), then ConfG(M) is a co-FIG-space: given a : [m] ↪→ [n] and (gi) ∈ Gm, there

is a map

(a, g)∗ : ConfGn (M)→ ConfGm(M)

(mi) 7→
(
gima(i)

)

In particular, if G is trivial we recover the usual ordered configuration space, and if M =

C∗ and G = Z/2Z acting as multiplication by −1, we obtain the type BC hyperplane

complement from [Wil13]. Composing with the contravariant cohomology functor, we see

that H∗(ConfG(M), k) has the structure of an FIG-module over the field k.

We are therefore interested in orbit configuration spaces for which G is virtually poly-

cyclic, so that we can apply the results on FIG-modules from §2.1. Interesting examples

include:

• G = Z/2 acting antipodally on M = Sm, so that M/G = RPm. This was analyzed

by Feichtner and Ziegler in [FZ02]. Their computation of the cohomology in Thm 17

shows that dimHi(ConfGn (Sm);Q) is bounded by a polynomial in n. We strengthen

this by proving that it is in fact equal to a polynomial for n� 0. Furthermore, the Gn

action on Hi(ConfGn (Sm)) was analyzed in [GGSX15]: in particular, their Prop 6.6 is

a sort of weak form of representation stability.

• G = Z/2 acting by a hyperelliptic involution on a 2g + 2-punctured Σg, with quotient

a 2g + 2-punctured sphere

• Any finite cover Σh → Σg (so that h = |G|(g − 1) + 1), with G the deck group of the

covering.

• M = R2, with G a lattice isomorphic to Z2, and M/G a torus
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• M = Confd(C) for some fixed d, with G = Sd, so that we are looking at the iterated

configuration space Conf
Sd
n (Confd(C)) and its quotient UConfn(UConfd(C)).

• M = S3, with G any finite subgroup of SO(4), and M/G a spherical 3-manifold

• Baues [Bau04] proved that every torsion-free virtually polycyclic group G acts dis-

cretely, properly discontinuously, and cocompactly on Rd for some d, and furthermore,

the quotient spaces Rd/G precisely comprise the infra-solvmanifolds. Thus for any

such G, consider ConfGn (Rd).

A straightforward transversality argument (e.g., [Bir69, Thm 1]) shows that if dimM ≥ 3,

the map Confn(M) ↪→ Mn induces an isomorphism on π1. Therefore Conf
π1(M)
n (M̃) is in

fact the universal cover of Confn(M) in dimension ≥ 3, which provides further motivation as

to why orbit configuration spaces are natural to study. Note that this does not make the last

example trivial (i.e., contractible), since if dimM > 2, Confn(M) need not be aspherical:

its homotopy groups only agree with Mn up to dim(M)− 2.

We first consider the case where G is finite.

Theorem 3.1.1 (Cohomology of orbit configuration spaces). Let k be a field, let M

be a connected, orientable manifold of dimension at least 2 with dimH∗(M ; k) <∞, and let

G be a finite group acting freely on M . Then the FIG-algebra H∗(ConfG(M); k) is of finite

type.

Following Church-Ellenberg-Farb-Nagpal [CEFN14], we could adapt Theorem 3.1.1 to

handle Z coefficients. As [CEFN14] mention, the proof with Z coefficients is essentially

identical to the one with field coefficients: the difference is that one of the inputs, the

analogue of our Theorem 2.1.6.4, becomes harder to prove. However, their proof of this

analogue, [CEFN14, Lemm. 4.1], is readily adaptable to our context. We do not make use

of this except in §3.1.3.

Proof. The proof is based on modifying the argument of Totaro in [Tot96, Thm 1]. Following

Totaro, consider the Leray spectral sequence associated to the inclusion ι : ConfGn (M) ↪→
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Mn. This spectral sequence has the form

Hi(Mn;Rjι∗k) =⇒ Hi+j(ConfGn (M); k) (3.1)

where Rjι∗k is the sheaf on Mn associated to the presheaf

U 7→ Hj(U ∩ ConfGn (M); k)

As in Totaro’s proof, the sheaf Rjι∗k vanishes outside the appropriate “fat diagonal”,

which in this case is the union of the subspaces ∆a,g,b = {(mi) ∈ Mn | ma = g ·mb}, for

1 ≤ a < b ≤ n and g ∈ G. Consider a point in the fat diagonal,

x = (x1, g11x1, . . . g1i1x1, . . . xs, gs1xs, . . . gsisxs).

Since G acts properly discontinuously, take a neighborhood of each xj small enough to be

disjoint from all translates of all the other neighborhoods. Then use a Riemannian metric

to identify each of these with the tangent space TxjX, Tgj1xjX, etc. dgjk(xj) is then an

isomorphism from TxjX to TgjkxjX, and the condition that a point m1 near x and m2 near

gx satisfy m2 = gm1 becomes, upon passing to the tangent space and under the isomorphism

dg, simply the condition that (v, w) ∈ (TxX)2 satisfy v = w. Thus, for a neighborhood U of

x small enough so that the inverse exponential map is a diffeomorphism,

(Rjι∗k)x = Hj(U ∩ ConfGn (M); k) = Hj(Confi1(Tx1X)× · · · × Confis(TxsX))

Thus, the local picture looks exactly the same as in Confn, which it should since there is a

covering map ConfGn (M)→ Confn(M/G). So as in Totaro, we get generators of Confn(Rd),

where dimM = d. However, for Confn(M), we got just one copy of each generator eab,

coming from the diagonal {ma = mb}. Here, however, we get a generator ea,g,b for each
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g ∈ G, coming from each ∆a,g,b. The permutation action of Wn on the {∆a,g,b} induces an

action on the {ea,g,b}, which is given by

(σ,~h) · ea,g,b = e
σ(a),hagh

−1
b ,σ(b)

(3.2)

As in Totaro, we can explicitly write down the relations that these ea,g,b satisfy:

ea,g,b = (−1)deb,g−1,a

e2
a,g,b = 0

ea,g,b ∧ eb,h,c = (ea,g,b − eb,h,c) ∧ ea,gh,c

(3.3)

To conclude, we use the argument from [CEF15, Thm 6.2.1]. To wit, because the Leray

spectral sequence is functorial, all of the spectral sequences of ConfGn (M) ↪→ Mn, for each

n, collected together form a spectral sequence of FIG-modules. As we just described, the E2

page is generated by H∗(Mn; k) and the FIG-module spanned by the ea,g,b. This latter is

evidently finitely-generated, since it is just generated in degree 2 by e1,e,2, and the former

is of finite type by Theorem 2.1.6.4, so therefore the E2 page as a whole is of finite type.

The E∞ page is a subquotient of E2, so by Noetherianity it is of finite type, and therefore

H∗(ConfG(M); k) is of finite type.

We pause briefly to dwell on the permutation action (3.2) of Wn on the module Vn

spanned by {ea,g,b}, since it will come up repeatedly. Let k[G] be the representation of

G × G where the first factor of G acts by multiplication on the left, and the second by

multiplication on the right by the inverse (two commuting left actions). Therefore

Vn = IndWn
W2×Wn−2

k[G]⊗ k = IndFIG(k[G])n

Recall that, as a (k[G], k[G]op)-bimodule, the regular representation has the following
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decomposition into irreducibles:

k[G] =
⊕

χ∈Irr(G)

Vχ � (Vχ)∗

Thus if we turn this into a k[G] ⊗ k[G]-module by having the right factor act by g−1, this

becomes

k[G] =
⊕

χ∈Irr(G)

Vχ � Vχ =
⊕

χ∈Irr(G)

L((2)χ)

as k[G]⊗ k[G] = k[G×G]-modules. Therefore

V =
⊕

χ∈Irr(G)

IndFIG((2)χ). (3.4)

as an FIG-module, so it is manifestly an FIG ]-module. In particular, if G is trivial, we

obtain IndFI((2)) = Sym2 kn/kn, consistent with the computation done in [CEF15].

Corollary 3.1.2. Let M be a connected, orientable manifold of dimension at least 2 with

each Hi(M ;Q) finite-dimensional, let G be a finite group acting freely on M , and let k

be a splitting field for G of characteristic 0. Then for each i, the characters of the Wn-

representations Hi(ConfGn (M); k) are given by a single character polynomial for all n� 0.

Theorem 3.1.1 has another consequence, which as far as we can tell is a new result (recall

that [CEF15, Thm 6.2.1] only applied to orientable manifolds).

Corollary 3.1.3. Let M be a connected, non-orientable manifold of dimension at least 2

with H∗(M ;Q) of finite type. Then the FI-algebra H∗(Conf(M);Q) is of finite type.

Proof. Consider the orientation cover M̃ →M , which has deck group G = Z/2. Since there

is a covering map ConfGn (M̃) → Confn(M), with deck group Gn, then by transfer there is

an isomorphism

H∗(Confn(M);Q) ∼=
(
H∗(ConfGn (M̃);Q)

)Gn
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By Theorem 3.1.1, H∗(ConfGn (M̃);Q) is a finite type FIG-algebra, and thereforeH∗(Confn(M);Q)

is a finite type FI-algebra.

Homological stability for unordered configuration spaces of non-orientable manifolds,

which is a consequence of this corollary, was proven by Randal-Williams in [RW11].

3.1.2 Dealing with infinite groups

We pause to explain the complications that arise when G is infinite, before proceeding to

at least partially resolve them. As a toy example, forgetting for a moment the setting of

FIG and sequences of spaces, consider the space X = S1 ∨ S1 = K(F2, 1), with one loop

called a and the other b. Let Y be the G := Z cover associated to the kernel of the map

F2 → Z, a 7→ 0, b 7→ 1. Hence Y is an infinite sequence of line segments labeled b joining

loops labeled a. So Y is homotopy equivalent to a wedge of infinitely many circles, and thus

H1(Y ; k) has infinite rank. However, notice that the covering group G acts on Y , and that

H1(Y ; k) ∼= k[G] = k[b±1] as G-modules.

In particular, H1(Y ; k) is finitely-generated as a G-module. However, looking at cohomol-

ogy, H1(Y ; k) = Homk(H1(Y ), k) = Homk(k[G], k) = kG. Thus, H1(Y ; k) consists of finite

linear combinations of elements of G, while H1(Y ; k) consists of infinite linear combinations

of elements of G. In particular, H1(Y ; k) is no longer finitely generated as a G-module.

However, notice that it contains a dense submodule isomorphic to H1(Y ; k).

Now we see why the proof of Theorem 3.1.1 does not suffice when G is infinite: in

general, the E2 page is not just be generated by the ea,g,b, which is to say, by finite linear

combinations of them, but instead it is generated by all infinite linear combinations of them.

Therefore the E2 page is in general not a finitely-generated FIG-module.

If we are willing to settle for “presented in finite degree”—for example, if G is not virtually

polycyclic—then this is good enough:
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Theorem 3.1.4. Let M be a connected, orientable manifold of dimension at least 2. Then

the FIG-algebra H∗(ConfGn (M); k) is presented in finite degree.

Proof. The argument from Theorem 3.1.1 carries over essentially directly. The E2 page of

the spectral sequence (3.1) is generated as a k-algebra by H∗(Mn; k) and the dual space to

〈ea,g,b〉, that is, the space of infinite linear combinations

∑
a,g,b

va,g,bea,g,b =
∑

1≤a<b≤n

∑
g∈G

va,g,bea,g,b


This space is evidently generated as an FI-module by those sums of the form

∑
g∈G vge1,g,2,

since we can get all other a, b by appropriate permutations. These generators evidently live

in degree 2, and the relations (3.3) all live in degree 3, so that the E2 page is presented in

finite degree. By Theorem 2.1.3, taking successive pages in the spectral sequences preserves

being presented in finite degree, as does passing from the E∞ page to the final cohomology.

So we conclude that H∗(ConfGn (M); k) is presented in finite degree.

However, if we want to preserve finite generation, the analysis at the beginning of this

subsection suggests that the correct thing to look at is actually H•(ConfG(M); k) instead.

Unfortunately, on the face of it, H•(ConfG(M); k) is a co-FIG-module, so since the maps go

“in the wrong way”, it is never finitely generated.

However, when the quotient M/G is an open manifold, we obtain the following general-

ization of [CEF15, Prop 6.4.2].

Theorem 3.1.5 (Orbit configuration spaces of open manifolds). Let N be the interior

of a connected, compact manifold N of dimension ≥ 2 with nonempty boundary ∂N , and let

π : M → N be a G-cover, so that G acts freely and properly discontinuously on M . Then

ConfG(M) has the structure of a homotopy FIG ]-space, that is, a functor from FIG ] to

hTop, the category of spaces and homotopy classes of maps.

Proof. We follow the argument in [CEF15]. Fix a collar neighborhood S of one component of
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∂N , let R = π−1(S) and let R0 be a connected component of R, and fix a homeomorphism

Φ : M ∼= M \ R isotopic to the identity (Φ and the isotopy both exist by lifting). For any

inclusion of finite sets X ⊂ Y , define a map

ΨY
X : ConfGX(M)→ ConfGY (M)

up to homotopy, as follows. First, if Y = X, set ΨY
X = id. Next, note that a configuration

in ConfGX(M) is just an embedding X ↪→M (that stays injective upon composition with π).

So fix an element qYX : (Y −X) ↪→ R0 of ConfGY−X(R0). Then any embedding f : X ↪→ M

in ConfGX(M) extends to an embedding ΨY
X(f) : Y ↪→M by

ΨY
X(f)(t) =


Φ(f(t)) t ∈ X

qYX(t) t /∈ X

The image of π◦Φ is disjoint from S, while the image of π◦qYX is contained in S, so the above

map never send points in X into the same G-orbit that it sends points outside of X into,

and therefore this does give an element of ConfGY (M). Furthermore, since ConfGY−X(R0) is

connected (since R0 is, and dimR0 ≥ 2), different choices of qYX give homotopic maps, so

ΦYX is well-defined up to homotopy.

Now, an FIG ] morphism Z → Y consists of an injection X ↪→ Z, an injection X ↪→ Y ,

and a tuple g : X → G. Normally if we were extending from an FIG structure, we would

think of X as being a subset of Z, but since we are extending from a co-FIG structure, it is

more natural to think of X as a subset of Y , with an explicit map a : X → Z. The induced

map is then given by

ConfGZ (M)→ ConfGX(M)
ΨY
X−−→ ConfGY (M)

(mi) 7→ (gima(i))
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It is straightforward to verify that this is functorial up to homotopy, as [CEF15, Prop 6.4.2]

do for trivial G.

In particular, when the conditions of Theorem 3.1.5 hold, then H∗(ConfG(M); k) is an

FIG ]-module. We want to argue that, when G is virtually polycyclic, H∗(ConfG(M); k) is

of finitely-generated type. To do this, we need the following.

Proposition 3.1.6. Let A(G, d) be the FIG ]-algebra where A(G)n has generators {ea,g,b |

1 ≤ a 6= b ≤ n, g ∈ G} of degree d − 1 and action given by (3.2), modulo the following

relations:

ea,g,b = (−1)deb,g−1,a

e2
a,g,b = 0

ea,g,b ∧ eb,h,c = (ea,g,b − eb,h,c) ∧ ea,gh,c

Then A(G, d) is an FIG ]-module of finitely-generated type.

Proof. First, by construction A(G, d) is presented in finite degree, so it remains to show that

each A(G, d)n is of finitely-generated type. For convenience, put D = d−1, so that A(G, d)n

is only nonzero in degree divisible by D. It is straightforward to verify (e.g., see Arnold

[Arn69]) that A(G, d)iDn is spanned as a vector space by all products of the form

v = ea1,g1,b1 ∧ ea2,g2,b2 ∧ · · · ∧ eai,gi,bi where as < bs, b1 < b2 < · · · < bi, gs ∈ G (3.5)

We will describe an explicit procedure which, given such a v, finds an element ~h ∈ Gn so

that

v′ := ~h · v = ea1,e,b1 ∧ ea2,e,b2 ∧ · · · ∧ eai,e,bi

that is, so that each g′i = e in (3.5). We construct ~h inductively. To begin, we put a copy

of g1 in the b1-th coordinate of ~h, which cancels out the g1 in (3.5). We multiply v by this
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partial ~h, which may have the effect of modifying later gi’s. We then proceed and put a

copy of (the new, modified) g2 in the b2-th coordinate of ~h, which cancels the g2 in (3.5).

We can do this with no trouble because we know b1 < b2. Again, we use this to modify v

and proceed to b3, etc. Eventually we have constructed our ~h and modified v so that each

gs = e.

We therefore conclude that A(G, d)iDn is finitely generated as a Gn-module, so a fortiori

as a Wn-module. Therefore A(G, d) is of finitely-generated type.

We therefore obtain the following.

Theorem 3.1.7 (Homology of orbit configuration spaces). Let N be the interior of a

connected, compact manifold of dimension ≥ 2 with nonempty boundary. Let M → N be a G-

cover, with G virtually polycyclic, such that H∗(M) is of finite type. Then H∗(ConfG(M); k)

is a finitely-generated type FIG ]-module.

Proof. We still need to appeal to cohomology, in order to make use of the cup product

structure. So the proof follows that of Theorem 3.1.1, but only considering the sub-FIG-

module of the E2 page that actually is generated by H∗(Mn) and the ea,g,b, and not the

infinite linear combinations of them. Notice that this is isomorphic to the E2 page associated

to the appropriate spectral sequence computing the homology of ConfG(M) (to be technical,

this comes from cosheaf homology).

This submodule of the E2 page is precisely the algebra described in Proposition 3.1.6.

Thus it is of finitely-generated type, and therefore the E2 page for homology is an FIG-

module of finitely-generated type. The same final argument from Theorem 3.1.1 (which

uses Noetheriantiy, since G is virtually polycyclic) thus shows that H∗(ConfG(M); k) is of

finitely-generated type.
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3.1.3 Homotopy groups of configuration spaces

The main application of the theory of FIG-modules until this point has been in Kupers-

Miller’s [KM15] work on the homotopy groups of configuration spaces. They prove that,

for M a simply-connected manifold of dimension at least 3, the dual homotopy groups

Hom(πi(Confn(M)),Z) form a finitely-generated FI-module. In [KM15, §5.2], they sketch

an extension of this result to the non-simply connected case. Kupers-Miller are naturally

led to consider Conf
π1(M)
n (M̃), since as we have said it is the universal cover of Confn(M)

once dimM ≥ 3, and so has the same higher homotopy groups as Confn(M).

Our results on orbit configuration spaces are able to confirm most of Kupers-Miller’s

sketch, while also clarifying some oversights. As stated, their Prop 5.8 is not correct, since

as we have seen, if G is infinite, in general we cannot conclude that cohomology is finitely

generated. Instead, the best we can do is our Theorem 3.1.1 and Theorem 3.1.7, where

we either assume that G is finite or that M is an open manifold. We therefore obtain the

following. Note that, following Kupers-Miller, we work here with Z coefficients, since as we

mentioned, we could rework Theorem 3.1.1 to use Z coefficients.

Theorem 3.1.8 (Homotopy groups of configuration spaces, take 1). Let M be a

connected manifold of dimension ≥ 3 such that G := π1(M) is finite and such that H∗(M)

is finite-dimensional. For i ≥ 2, the dual homotopy groups Hom(πi(Confn(M)),Z) and

Ext1
Z(πi(Confn(M)),Z) are finitely generated FIG-modules.

In particular, if k is a splitting field for G of characteristic 0, then for each i, the char-

acters of the Wn-representations Hom(π1(Confn(M)), k) are given by a single character

polynomial for n� 0, and {Hom(π1(Confn(M)), k)} satisfies representation stability.

Applying Theorem 3.1.4, we obtain the following.

Theorem 3.1.9 (Homotopy groups of configuration spaces, take 2). Let M be a

connected, orientable manifold of dimension at least 2. Then the dual homotopy groups
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Hom(πi(Confn(M)),Z) and Ext1
Z(πi(Confn(M)),Z) are FIG-modules presented in finite de-

gree.

3.1.4 Complex reflection groups

One classical example of a finite wreath product is the complex reflection group G(d, 1, n),

where G = Z/dZ and so Wn = Z/dZ o Sn, also sometimes referred to as the full monomial

group. Because G acts on C as multiplication by d-th roots of unity, Wn acts on Cn by

generalized permutation matrices whose entries are d-th roots of unity. Note that since G is

abelian, a splitting field for G is just the same as a field containing all the character values

of G. So in this case there is a minimal splitting field of characteristic zero, namely the field

generated by the character values, which is Q(ζd).

We can then consider the orbit configuration space where M = C∗ and G = Z/dZ acting,

as just described, as multiplication by d-th roots of unity. Thus

ConfGn (C∗) =
{

(vi) ∈ Cn | vi 6= ζkd vj for i 6= j, vi 6= 0 for all i
}

ConfGn (C∗) is thus the complement of the hyperplanes fixed by the standard complex-

reflection generators of Wn. This arrangement, called the complex reflection arrangement,

is much studied. For instance, Bannai [Ban76] proved that the complement is aspherical;

its fundamental group is referred to as the pure monomial braid group, and sometimes de-

noted P (d, n). Thus the cohomology of ConfGn (C∗) is isomorphic to the group cohomology

of P (d, n).

Orlik-Solomon [OS80] calculated the cohomology of the complement of any hyperplane

arrangement, as follows. Let A be a collection of linear hyperplanes in Cn, and put M(A) =

Cn \
⋃
A. Say that a subset {H1, . . . , Hp} ⊂ A is dependent if H1 ∩ · · · ∩ Hp = H1 ∩

· · · Ĥi · · · ∩Hp; alternately, if the linear forms defining the Hi are linearly dependent. Now
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let

E(A) =
∧
〈eH | H ∈ A〉 =

∧
H1(M(A);Q)

and let I(A) ⊂ E(A) be the ideal

I(A) =

( p∑
i=1

(−1)ieH1
∧ · · · ∧ êHi ∧ · · · ∧ eHp

∣∣∣∣∣H1, . . . , Hp are dependent

)
.

Then H∗(M(A);Q) = E(A)/I(A). We then obtain the following.

Theorem 3.1.10 (Cohomology of complex reflection arrangements). H∗(Conf
Z/dZ
n (C∗);Q) =

H∗(P (d, 1, n);Q) is a finite type FIG ]-algebra. For each i, the characters of the Wn-

representations Hi(P (d, 1, n);Q(ζd)) are given by a single character polynomial of degree

2i for all n, and therefore Hi(P (d, 1, n;Q(ζd)) satisfies representation stability with stability

degree ≤ 4i.

Proof. Since C∗ is the interior of a compact orientable 2-manifold with boundary, Theo-

rem 3.1.7 says that H∗(Conf
Z/dZ
n (C∗);Q) is a finitely-generated FIG ]-module. To deter-

mine the degree this FIG-module is generated in, we use the Orlik-Solmon presentation.

The hyperplane arrangement is:

A = {zi | 1 ≤ i ≤ n} ∪ {ei,a,j | 1 ≤ i 6= j ≤ n; a ∈ G}

where zi is the hyperplane {vi = 0} and ei,a,j is the hyperplane {vi = ζavj}, so that

ei,a,j = ej,a−1,i. To understand I(A), it is helpful to consider the embedding mentioned in

§3.1.1,

ConfGn (C∗) ↪→ Conf |G|n(C), (v1, . . . , vn) 7→ (v1, ζv1, ζ
2v1, . . . , ζ

d−1vn)

This induces a map H∗(Conf |G|n(C);Q) → H∗(ConfGn (C∗);Q). Orlik-Solomon likewise

determines the cohomology of Conf |G|n(Q). The hyperplane arrangement for Conf |G|n(C)
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is

B = {fi,g;j,h | 1 ≤ i, j ≤ n; g, h ∈ G; (i, g) 6= (j, h)}

The induced map H1(Conf |G|n(C);Q)→ H1(ConfGn (C∗);Q) is just given by

fi,g;j,h 7→


ei,h/g,j if i 6= j

zi if i = j

and is thus evidently surjective. Since H∗(ConfGn (C∗);Q) is generated by H1, this means

that the total induced map H∗(Conf |G|n(C);Q)→ H∗(ConfGn (C∗);Q) is surjective. We can

therefore describe the ideal I(A) in terms of the simple relations generating the ideal I(B)

of the braid arrangement. We obtain the following presentation:

H∗(M(A);Q) =
∧
〈ei,a,j , zk〉

/〈ei,a,j ∧ ej,b,k = (ei,a,j − ej,b,k) ∧ ei,ab,k

zi ∧ zj = (zi − zj) ∧ ei,a,j

ei,a,j ∧ ei,b,j = (ei,a,j − ei,b,j) ∧ zi

〉

Another way to view these is by writing ei,a,i = zi for any a 6= 1 ∈ G, as suggested by the

induced map on H1 above: then the first relation, if i, j, k are allowed to equal one another,

implies the others. As described in §3.1.1, Gn o Sn acts on H1 as follows: on the {zi}, Gn

acts trivially and Sn acts in the standard way, and on the {ei,a,j} the action is:

(
σ, ζ

~b
)
· ei,a,j = eσ(i), a−bi+bj , σ(j)

So we see that H∗(Conf
Z/dZ
n (C∗);Q) is generated as an algebra by H1(Conf

Z/dZ
n (C∗);Q),

and that H1 is generated as an FIG-module by {e1,a,2} and z1, and is therefore generated

in degree 2. By Theorem 2.1.6, Hi is generated in degree 2i, and so the stable range follows

from Corollary 2.1.5.

Wilson [Wil13, Thm 7.14] proved the case d = 2, for which the arrangement is the type
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BC braid arrangement. The decomposition for H1, following (3.4), is

H1(P (d, 1, n);Q) = IndFIG((1)χ0)⊕
⊕

χ∈Irr(G)

IndFIG((2)χ)

where χ0 is the trivial character of G. That is, IndFIG((1)χ0) picks out the submodule

spanned by the {zi}, and
⊕

χ∈Irr(G) IndFIG((2)χ) the submodule spanned by the {ei,a,j}.

We can also compute the decomposition for H2:

H2(P (d, 1, n);Q) = IndFIG((2, 1)χ0)2 ⊕ IndFIG((3)χ0)⊕
⊕

χ∈Irr(G)

IndFIG((3, 1)χ)⊕ IndFIG((2)χ)

⊕
⊕

χ∈Irr(G)
χ 6=χ0

IndFIG((2)χ)⊕ IndFIG((1)χ0 , (2)χ)2 ⊕ IndFIG((1)χ0 , (1, 1)χ)⊕ IndFIG((2)χ0 , (2)χ)

These calculations agree with Wilson’s [Wil13, p. 123] for the case d = 2.

3.2 Spaces of 0-cycles

Let M be a manifold, n an integer, and d = (d1, . . . , dm). Define Md :=
∏
iM

di . Then M•

forms a co-FIm-space, where an FI ]m morphism f : c ↪→ d acts on (v1, . . . , vm) ∈Md by

f∗(v1, . . . , vm) = (f∗1 (v1), . . . , f∗m(vm))

where the action of f : [c] ↪→ [d] on v = (m1, . . . ,md) ∈Md is the usual co-FI action:

f∗(m1, . . .md) = (mf(1), . . . ,mf(c))
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Therefore by applying the contravariant functor of taking cohomology, we obtain an FIm-

algebra H∗(M•). We proved in Theorem 2.2.7.4 that H∗(M•) is of finite type. Next, define

Z̃d
n (M) =

{
(v1, . . . , vm) ∈

∏
i

Mdi

∣∣∣∣ no m ∈M appears n or more times in each vi

}

Then Z̃•n(M) is a co-FIm-subspace of M•. Indeed if f : c ↪→ d is an FIm-morphism and

(v1, . . . , vm) ∈ Z̃d
n (M), then f∗(v1, . . . , vm) = (f∗1 (v1), . . . , f∗m(vm)) ∈ Z̃c

n(M). This holds

because the coordinates of f∗i (vi) are just drawn from the coordinates of vi, so the number

of times any m ∈M appears in f∗i (vi) is bounded by the number of times m appears in vi.

Thus we obtain an FIm-algebra H∗(Z̃•n(M)). Our first main theorem is the following.

Theorem 3.2.1. Let k be a field and let M a connected, oriented manifold of dimension at

least 2 with dimH∗(M ; k) <∞. Then the FIm-algebra H∗(Z̃•n(M); k) is of finite type.

In the case of usual configuration space, where m = 1 and n = 2, Theorem 3.2.1 was

proven by Church-Ellenberg-Farb [CEF15, Thm 6.2.1], based on an analysis of the Leray

spectral sequence studied by Totaro [Tot96].

Proof. Following [FWW, §5], the basic strategy for understanding H∗(Z̃•n(M); k) is to an-

alyze the Leray spectral sequence associated to the inclusion Z̃d
n (M) ↪→ Md. This is a

spectral sequence with E2 page

E
p,q
2,d = Hp(Md;U 7→ Hq(U ∩ Z̃d

n (M)))

and converging to H∗(Z̃•n(M)). Since, as we saw, the inclusion Z̃•n(M) ↪→ M• is a map of

co-FIm-spaces, and the Leray spectral sequence is functorial, we actually obtain a spectral

sequence E
p,q
2 of FIm-modules.

Now, the bottom row E
∗,0
2 is just isomorphic to H∗(M•) as an FIm-module. Furthermore,

as Farb-Wolfson-Wood prove [FWW, Thm 5.6], the leftmost column E
0,∗
2 is isomorphic to

H∗(Z̃n(RN )), where N = dimM . Furthermore, they show that the E2 page is generated as
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an FIm-algebra by E
∗,0
2 and E

0,∗
2 . As we showed in Theorem 3.2.1, E

∗,0
2 is finite-type. And

Z̃n(RN ) is a subspace arrangement of the type studied by Gadish [Gadb]. He proves [Gadb,

Thm B] that H∗(Z̃n(RN )) is a finite-type FI ]m-module. Since it is generated as an algebra

by a finite-type FIm-module, the E2 page as a whole is a finite-type FIm-module. The E∞

page is a subquotient of the E2 page, so by Noetherianity it is finite type, and therefore

H∗(Z̃•n(M)) is finite type.

Proof of Theorem 1.1. This is a direct corollary of Proposition 3.2.2 after applying Theo-

rem 2.2.6.

Next, as in [CEF15], if M is the interior of a compact manifold with boundary, we obtain

the following generalization of [CEF15, Prop 6.1.2].

Proposition 3.2.2. Let M be the interior of a connected compact manifold M with nonempty

boundary ∂M . Then Z̃n(M) has the structure of a homotopy FI ]m-space, that is, a functor

FI ]m → hTop, the category of spaces and homotopy classes of maps.

Proof. We follow the argument in [CEF15]. Fix a collar neighborhood R of one component

∂M , and fix a homeomorphism Φ : M ∼= M −R isotopic to the identity. For any m-tuple of

inclusions of m-tuples of finite sets X ⊂ Y, define a map

ΨY
X : Z̃X

n (M)→ Z̃Y
n (M)

up to homotopy, as follows. First, if Y = X, set ΨY
X = id. Next, note that ConftXi(M) ↪→

Z̃X
n (M). So fix an embedding qYX : ti(Yi−Xi) ↪→ R of ConftYi−Xi(M). Then any element

f : tXi →M in Z̃X
n (M) extends to a map ΨY

X(f) : tYi →M by

ΨY
X(f)(t) =


Ψ(f(t)) t ∈ tiXi

qYX(t) t /∈ tiXi
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The image of Φ is disjoint from R, while the image of qYX is contained in R, so the above

map does not have any more coincidences of points than f itself did, and therefore ΨY
X(f)

does give an element of Z̃Y
n (M). Furthermore, since ConftYi−Xi(M) is connected (since R

is, and dimR ≥ 2), different choices of qYX give homotopic maps, so ΦY
X is well-defined up

to homotopy.

Now, an FI ]m morphism Z→ Y consists of a map X ↪→ Z and a map X ↪→ Y . Normally

if we were extending from an FIm-structure, we would think of X as being a subset of Z,

but since we are extending from a co-FIm-structure, it is more natural to think of X as a

subset of Y, with an explicit map a : X→ Z. The induced map is then given by

Z̃Z
n (M)→ Z̃X

n (M)
ΨY
X−−→ Z̃Y

n (M)

(v1, . . . , vm) 7→ (a∗1(v1), . . . , a∗m(vm))

It is straightforward to verify that this is functorial up to homotopy, as [CEF15, Prop 6.4.2]

do for m = 1.

In particular, when the conditions of Proposition 3.2.2 hold, then H∗(Z̃n(M)) is an

FI ]m-module. We therefore obtain the following.

Corollary 3.2.3. Let M be a connected orientable manifold of dimension at least 2 which is

the interior of a compact manifold with nonempty boundary. Then for each i, the characters

of the Sd-representations Hi(Z̃d
n (M ;Q) are given by a single character polynomial for all

d.
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CHAPTER 4

ARITHMETIC STATISTICS

In this chapter, we study generalized configuration spaces as schemes, prove stability and

convergence properties about them, and use the Grothendieck-Lefschetz formula to conclude

results about the stability of arithmetic statistics.

4.1 Étale homological stability

To begin, we extend the theory of étale representation stability, developed by Farb-Wolfon

[FW] for the category FI, to the categories FIG and FIm, and apply them to our generalized

configuration spaces.

4.1.1 Smoothly compactifiable I-schemes

Farb-Wolfson define a notion of étale represention stability for a co-FI scheme Z over Z[1/N ].

They show that if there is a uniform way of normally compactifying the Zn, then the base-

change maps commute with the induced FI maps. This allows them to pass from knowing

that Hi(Z(C)) is a finitely-generated FI-module to knowing that Hi
ét(Z/Fp ;Ql) is a finitely-

generated Gal(K/K)-FI-module. Since Fulton-Macpherson constructed a normal compacti-

fication of Conf(X), this allows them to conclude that Conf(X) satisfies étale representation

stability.

We want to generalize this to the orbit configuration space ConfG(X). However, to do so,

we need to allow for the possibility that Z is only defined over some finite Galois extension

of Q. For example, the orbit configuration space

Conf
Z/dZ
n (Gm) = {(xi) ∈ Gnm | xi 6= ζmxj}

where ζ is a primitive d-th root of unity and the group G = Z/dZ acts on Gm by multi-
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plication by ζ, is naturally defined over Z[ζ]. Thus, rather than reducing modulo primes p,

we now have to reduce modulo prime ideals p of Ok[1/N ]. We then have Ok/p = Fq, where

q = pf with f the inertia degree of p over p.

We therefore make the following definition, following [FW].

Definition 4.1.1 (Smoothly compactifiable I-scheme over k). Let I be a category

and k a Galois number field. A smooth I-scheme over k is a functor Z : I → Schemes

consistings of smooth schemes over Ok[1/N ] for some N independent of i. A smooth I-

scheme is smoothly compactifiable at p - N if there is a smooth projective I-scheme Z and

a natural transformation Z → Z so that for all i ∈ I, Zi → Zi is an open embedding and

Zi − Zi is a normal crossings divisor with good reduction at p.

We then have the following, generalizing [FW, Thm 2.6]:

Theorem 4.1.2 (Base change for I-schemes over k). Let l be a prime, and Z : I →

Schemes be a smooth I-scheme over k which is smoothly compactifiable at p - N · l. Then

for all morphisms i→ j in I, the following diagram of ring homomorphisms commutes:

H∗ét(Zj/Fq ;Zl)
∼
- H∗sing(Zj(C);Zl)

H∗ét(Zi/Fq ;Zl)
? ∼

- H∗sing(Zi(C);Zl)
?

Proof. The proof of [FW, Thm 2.6] applies verbatim, since as they say, theirs is essentially

an I-scheme version of [EVW16, Thm 7.7], which is more than general enough to include our

extension to number fields. Just replace p with p and Fp with Fq everywhere in the proof of

[FW, Thm 2.6].

Now, let Z be a co-FIG scheme over k and l a prime. For each i ≥ 0 the étale cohomology

Hi
ét(Z/k,Ql) is an FIG-module equipped with an action of Gal(k/k) commuting with the FIG
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action. Following [FW], we call such an object a Gal(k/k)-FIG-module. Likewise, if p - N · l

is a prime ideal of k, and we put Fq = Ok/p, then Hi
ét(ZFq ,Ql) is a Gal(Fq/Fq)-FI-module.

For K a number field or finite field of characteristic p, a Gal(K/K)-FIG-module is finitely

generated if it has a finite set of element not contained in any proper Gal(K/K)-FI-module.

We can therefore use Theorem 4.1.2 to pass from knowing finite generation of Hi(Z(C)) as

an FIG-module to finite generation of Hi(Z/K ;Ql) as a Gal(K/K)-FIG-module.

4.1.2 Étale representation stability of ConfG(X)

Let X be a scheme over Ok[1/N ] with a free algebraic action of a finite group G. The orbit

configuration space ConfGn (X) is defined as the functor of points:

ConfGn (X)(R) = {(xi) ∈ X(R)n | xi 6= gxj ∀g ∈ G}

for any Ok[1/N ]-algebra R. Thus ConfGn (X) has the structure of a scheme over Z[1/N ]. If

X is smooth, then ConfGn (X) is smooth.

The group Wn := Gn o Sn acts freely on ConfGn (X), where the copies of G act on each

coordinate and Sn permutes the coordinates. In fact, ConfG(X) forms a co-FIG-scheme: for

an injection a : [m] ↪→ [n] and ~g ∈ Gm, the action on (xi) ∈ ConfGn (X) is given by

(~g, a)(xi) = (gi · xa(i))

It thus follows that Hi(ConfG(X)) is an FIG-module. In [Casb, Thm 3.1], we proved that

Hi(ConfG(X) is finitely generated. We would like to use Theorem 4.1.2 to deduce étale

representation stability for ConfG(X). To do so, we need to know that ConfG(X) is smoothly

compactifiable at all but finitely many primes. Luckily, there are general constructions

of smooth compactifications for the complement of an arrangement of subvarieties. The

basic construction is due to Macpherson-Procesi [MP98] in the complex-analytic setting,

generalizing Fulton-Macpherson’s [FM94] compactification of Confn(X). This work was
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extended to the scheme-theoretic setting by Hu [Hu03] and Li [Li09]. Following Li, define

the wonderful compactification ConfGn (X) to be the closure of the image of the embedding

ConfGn (X) ↪→
∏
i6=j
g∈G

Bl∆i,g,j
(Xn) (4.1)

of the product of the blowups of Xn along the diagonals ∆i,g,j := {(xi) | xi = gxj}.

To carry this out, we first need to know that X itself can be smoothly compactified in a

manner consistent with the action of G. For a smooth scheme X equipped with an action

of a finite group G, say that X is a smoothly compactifiable G-scheme if there is a scheme

X with an action of G and a G-equivariant embedding X ↪→ X such that X − X is a

normal crossings divisor. Note that this is always possible in characteristic 0 by resolution

of singularities, so this assumption is only needed to ensure such a compactification exists

in finite characteristic.

We then have the following.

Proposition 4.1.3 (ConfG(X) is smoothly compactifiable). Let X be a smooth scheme

over Ok[1/N ] with a free action of a finite group G so that X is a smoothly compactifiable

G-scheme. Then ConfGn (X) is a smoothly compactifiable co-FIG-scheme at any prime ideal

p - N of Ok.

Proof. First, note that Xn is a smoothly compactifiable Gn-scheme, since X is smoothly

compactifiable G-scheme. We want to use Li’s [Li09] work on wonderful compactifications,

but to do so we need to check that our arrangement satisfies his hypotheses, that the ar-

rangement is a building set in the sense of [Li09, §2]. This follows from the fact that G acts

freely on X, so that diagonals ∆i,g,j and ∆i,h,j are disjoint for g 6= h.

By definition (3) of ConfGn (X) as the closure in the blowup, we see that Wn acts on

ConfGn (X), and that ConfG(X) forms a co-FIG-space. Furthermore, since X is a scheme

over R := Ok[1/N ], then (3) defines ConfG(X) as a scheme over R. There is a natural open
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embedding ConfG(X) ↪→ ConfG(X), again just given by (3). To see that the complement

ConfG(X) − ConfG(X) is a normal crossings divisor, it is enough to check this at the

geometric fibers over the points of R. This holds by [Li09, Thm 1.2]. Likewise, it is enough

to check smoothness of ConfG(X) at the geometric fibers over the points of R. This holds

by [Li09, Thm 1.2]. Since ConfG(X) is smooth and ConfG(X) − ConfG(X) is a normal

crossings divisor relative to SpecR, in the sense of [EVW16, Prop 7.7], we conclude that

ConfG(X)− ConfG(X) has good reduction at each prime p of R.

Theorem 4.1.4 (Étale representation stability for orbit configuration spaces). Let

X be a smooth scheme over Ok[1/N ] with geometrically connected fibers. Let G be a finite

group acting freely on X, such that X is smoothly compactifiable as a G-scheme. Let K

be either a number field or an unramified finite field over Ok[1/N ]. For each i ≥ 0, the

Gal(K/K)-FIG-module Hi
ét(ConfG(X)/K ;Ql) is finitely generated.

Proof. Again, we follow [FW, Thm 2.8]. Since X has geometrically connected fibers, X(C) is

connected. Since X is smoothly compactifiable, H∗(X;Q) is finitely generated. Since X(C)

is a complex manifold, it is orientable and has real dimension at least 2. Thus X satisfies

the hypotheses of [Casb, Thm 3.1], and so Hi(X(C);Q) is a finitely generated FIG-module.

If K is a number field, we conclude immediately from Artin’s comparison theorem that

Hi
ét(ConfG(X)/K ;Ql) is a finitely generated Gal(K/K)-FIG-module. If K is a finite field,

by Proposition 4.1.3 ConfG(X) is a smoothly compactifiable co-FIG-scheme, and so by

Theorem 4.1.2, the conclusion likewise follows.

4.1.3 Étale representation stability of Z̃d
n (X)

In this section we consider the case where we replace the manifold M with a scheme X over

Z[1/N ], as in Farb-Wolfson [FW]. Here the C-points X(C) take the place of M . However,

now we can also consider the points X(Fq) over a finite field Fq.
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So, if X is a scheme over Z[1/N ], define Z̃d
n (X) as the functor of points

Z̃d
n (X)(R) =

{
(v1, . . . , vm) ∈

∏
i

X(R)di
∣∣∣∣ no x ∈ X(R) appears n or more times in each vi

}

for any Z[1/N ]-algebra R. Thus Z̃d
n (X) has the structure of a scheme over Z[1/N ]. If X is

smooth, then Z̃d
n (X) is smooth. Treated as a single object, Z̃•n(X) forms a co-FIm-scheme.

Let K be a number field or an finite field over Z[1/N ], and let l be a prime num-

ber invertible in K. Then we can base-change to K and consider the etale cohomology

Hi
ét(Z̃

d
n (X)/K ,Ql). Thus Hi

ét(Z̃
•
n(X)/K ,Ql) is an FIm-module equipped with an action

of Gal(K/K) commuting with the FIm action. Following [FW], we call such an object a

Gal(K/K)-FIm-module.

We would like to prove Theorem 1.2, that Hi
ét(Z̃

•
n(X)/K ,Ql) is finitely generated as an

Gal(K/K)-FIm-module. One method of doing this, the one used in Farb-Wolfson [FW] and

Casto [Casa], would be to find an appropriate compactification of Z̃d
n (X), use this to ar-

gue that the étale cohomology Hi
ét(Z̃

d
n (X)/K ,Ql) is isomorphic to the singular cohomology

Hi(Z̃d
n (X)(C),Ql) of the complex points, and then conclude by Proposition 3.2.2. We are

confident that this approach could be made to work. However, constructing and proving the

requisite properties about the desired compactification would involve a fair amount of tech-

nical work that we want to avoid. (In the special case of configuration spaces, this technical

work was done by Fulton-Macpherson [FM94].) Instead, we will reprove Proposition 3.2.2

for étale cohomology, by directly computing with the same Leray spectral sequence for the

inclusion Z̃•n(X) ↪→ X•.

Proof of Theorem 1.2. This argument is essentially the one given in the proof of the second

part of [FWW, Thm 5.6], on page 28. However, Farb-Wolfson-Wood do not quite state the

conclusion in terms of étale cohomology, so we will redo it. Given a variety X, define the
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“big diagonal”

∆d
n(X) :=

{
(v1, . . . , vm) ∈

∏
i

Xdi

∣∣∣∣ some x ∈ X appears at least n times in each vi

}

so that Z̃d
n (X) = Xd − ∆d

n(X). Let m := dimX. By [Mil13, Lem 16.8], the pair

(∆d
n(X), Xd) is locally isomorphic (for the étale topology) to the pair (∆d

n(Am), (Am)d).

Indeed, we can describe this isomorphism explicitly. Choose regular functions f1, . . . , fm

defined on an open neighborhood V in X, giving an étale map F : V → Am. This gives us

an étale map Fd : V d → (Am)d, and under this map, the image of ∆d
n(X) is ∆d

n(Am).

The point is the following: in the classical topology (as in [Tot96]) we were able to argue

about the sheaf U 7→ Hq(U ∩ Z̃d
n (X)) at a point x in the big diagonal by picking an open

set U small enough that it only intersects the irreducible component of ∆d
n(X) containing

x. In the étale topology, we do not have enough fine-grained control over neighborhoods

to find one that only intersects one component. However, the argument still goes through,

because the point is that, as we have just seen, we can find an étale neighborhood V of x

that étale-locally looks like Z̃d
n (Am), and this is enough.

Indeed, from here we can basically follow the proof of the first part of [FWW, Thm 5.6].

As Farb-Wolfson-Wood say (and using their notation), it is enough to give an Sd-equivariant

isomorphism of sheaves

RqjX∗Z ∼=
⊕
I∈Πd

n

εI(q) (4.2)

where jX : Z̃d
n (X) ↪→ Xd and

εI(q) := H̃cd(I,X)−q−2(∆(Πd
n(≤ I));Z)⊗ coor(XI)

But by restricting to the étale neighborhoods V mentioned above, we obtain for each x ∈
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∆d
n(X), an isomorphism of stalks

(RqjX∗Z)x ∼= (RqjAm∗Z)y

where the right hand side denotes the stalk at a generic y in the component of ∆d
n(Am)

containing F (x). This isomorphism of stalks is explicitly mentioned on [FWW, p. 28]. But

now, since [FWW] already verified (4.2) for Am, we conclude that it holds for X.

Our argument from the proof of Theorem 3.2.1 therefore applies directly, since we have

reproven the necessary tools of [FWW, Thm 5.6]. To wit, we have just shown that the

E2 page of the spectral sequence is generated as a Gal(K/K)-FIm-algebra by H∗ét(X
•)

and H∗ét(Z̃n(Ad)). Again, the first is finite-type by Theorem 3.2.1, and second is finite-

type by [Gada, Thm B]—note that Gadish specifically addresses the étale cohomology and

Gal(K/K)-action of this subspace arrangement. Thus the E2 page as a whole is a finite-type

Gal(K/K)-FIm-module. So again by Noetherianity, we conclude that H∗ét(Z̃
•
n(X)) is finite

type.

4.2 Convergence

Recall from Theorem 2.2.6 that if V is a finitely-generated FIG-module, then the characters

χVn are eventually given by a single character polynomial for all large n. Furthermore,

for another FIG character polynomial P , we know that the inner product 〈Pn, Vn〉Wn
is

eventually independent of n. We put

〈P, V 〉 = lim
n→∞

〈P, Vn〉Wn

for the limiting multiplicity.

Thus if Z is a co-FIG-scheme that satisfies étale representation stability, there is a stable

inner product 〈P,Hi
ét(Z;Ql)〉, eventually independent of n. Likewise, if Z is a co-FIm-scheme
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that satisfies étale representation stability, and Q is an FIm character polynomial there is a

stable inner product 〈Q,Hi
ét(Z;Ql)〉, eventually independent of d.

However, for our applications we need to bound how these inner products grow in i. The

following proposition is helpful in doing so:

Proposition 4.2.1. For any graded FIG-module V ∗, the following are equivalent:

1. For each character polynomial P , |〈Pn, V in〉| is bounded subexponentially in i and uni-

formly bounded in n.

2. For every a, the dimension dim(V in)Wn−a is bounded subexponentially in i and uni-

formly bounded in n.

Proposition 4.2.2. For any graded FIm-module V ∗, the following are equivalent:

1. For each character polynomial P , |〈Pd, V id〉| is bounded subexponentially in i and uni-

formly in d.

2. For every a, the dimension dim
(

(V id)Sd−a
)

is bounded subexponentially in i and uni-

formly in d.

Proof. First, note that dim
(

(V id)Sd−a
)

= 〈M(a)d, Vd〉Sd . For any irreducible Sa-representation

W , we have IndFIm(W ) ⊂ IndFIm(k[Sa]) = M(a), and therefore

〈IndFIm(W )d, Vd〉Sd < dim
(

(V id)Sd−a
)

The second condition for arbitrary P follows, since any P is a finite linear combination of

the χ
IndFI

m
(W )

for some irreducible representations W .

The exact same proof works for FIG, replacing Sd with Wn.

If a graded FIG or FIm algebra V ∗ satisfies these two equivalent conditions, we say it is

convergent. Theorem 1.2.2 thus states that, under appropriate conditions, the FIG algebra

H∗(ConfG(X);Q) is convergent, and the FIm-algebra H∗(Z̃d
n (X);Q) is convergent.
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4.2.1 Convergence for ConfG(M)

Proof of Theorem 1.2.2.1. Farb-Wolfson [FW, Thm 3.4] proved this for G = 1 by using the

Leray spectral sequence to reduce to convergence of H∗(Xn)⊗H∗(Conf(Rd)). We will use

the same technique to reduce to their result.

Let A(G, d)n be the graded commutative Q-algebra generated by {ea,g,b | 1 ≤ a 6= b ≤

n, g ∈ G}, each of degree d− 1, modulo the following relations:

ea,g,b = (−1)deb,g−1,a

e2
a,g,b = 0

ea,g,b ∧ eb,h,c = (ea,g,b − eb,h,c) ∧ ea,gh,c

where the action of (~h, σ) ∈ Wn is given by

(~h, σ) · ea,g,b = e
σ(a),hagh

−1
b ,σ(b)

If we let A(d)n = A(1, d)n, then there is an embedding A(d)n ↪→ A(G, d)n given by ea,b 7→

ea,e,b. In [Casb, Thm 3.6], we proved that A(G, d)n is spanned by the Gn-translates of

A(d)n.

In [Casb, Thm 3.1], we proved that H∗(ConfGn (X);Q) is isomorphic as a graded Wn-

representation, to a subquotient of

H∗(Xn;Q)⊗ A(G, d)n.

Thus, it suffices to bound

(H∗(Xn;Q)⊗ A(G, d)n)Wn−a =
(

(H∗(Xn;Q)⊗ A(G, d)n)G
n−a)Sn−a

We know that (H∗(Xn;Q)⊗ A(G, d)n)G
n−a

is a subquotient of H∗(Xn;Q)⊗(A(G, d)n)G
n−a
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as Sn-representations. Next, since A(G, d)n is spanned by the Gn translates of A(d)n, we

know that (A(G, d)n)G
n−a

will be spanned by Ga translates of A(d)n. In conclusion,

dim (H∗(Xn;Q)⊗ A(G, d)n)Wn−a ≤ |G|a dim (H∗(Xn;Q)⊗ A(d)n)Sn−a (4.3)

But the right-hand side of (4.3) is just (a constant times) exactly the term that Farb-Wolfson

considered in [FW, Thm 3.4] and proved was convergent. Therefore H∗(ConfG(X);Q) is

convergent.

4.2.2 Convergence for Z̃d
n (X)

Proof of Theorem 1.2.2.2. Our proof proceeds along the lines of the proofs of [FWW, Thm

3.1 and Lem 7.1]. In order to follow their proofs, we will need to recall some of the definitions

they use. Recall [FWW, Defn 4.1] that the n-equals partition lattice Πd
n, for d ∈ FIm, is the

poset of partitions of d such that each block of the partition either has size 1, or contains

at least n elements from each of the m columns. These are ordered by (reverse) refinement:

I ≤ J if and only if I refines J . We refer to blocks of size 1 as “singleton blocks”, and the

others (of size at least m × n) as “non-singleton blocks”. Recall that an edge in a poset

P is a pair a, b ∈ P with a < b and no elements between them, and a chain of length

r in P is a string a0 < · · · < ar with ai ∈ P . Finally, recall that in [FWW, Thm 4.9],

Farb-Wolfson-Wood determine the three types of edges in Πd
n, which we will make reference

to:

Block creation: A new non-singleton block with n elements each from the m columns is

created from singletons.

Singleton adding A singleton block is merged with a non-singleton block.

Block merging Two non-singleton blocks are merged.
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Now, recall that our goal is to show that

dimH∗ét

(
Z̃d
n (X)/K ;Ql

)Sd−a ≤ Fa(i)

where Fa(i) is a polynomial in i (and independent of d). Recall from the proof of ?THM? ??

that there is a spectral sequence Ep,q =⇒ H
p+q
ét (Z̃d

n (X)/K ;Ql) with

E
p,q
2
∼=
⊕
I∈Πd

n

Hp(XI ; εI(q))

We know that Hi
ét(Z̃

d
n (X)/K ;Ql) is a subquotient of

⊕
p+q=iE

p,q
2 , so it is enough to prove

that dim(E
p,q
2 )Sd−a is bounded by a polynomial in p and q (uniformly in d).

Given I ∈ Πd
n, let SI := SI1 × SI2 × · · ·. Now, we have

(E
p,q
2 )Sd−a =

⊕
I∈Πd

n

Hp(XI ; εI(q))

Sd−a =

⊕
I∈Πd

n

Hp(XI ; εI(q))
SI∩Sd−a

Sd−a

=

⊕
I∈Πd

n

Hp
(
XI ; εI(q)

SI∩Sd−a
)Sd−a

(4.4)

Now, following the argument of [FWW, Lem 7.1], we have that εI(q)
SI∩Sd−a = 0 unless I

consists of exactly k := q/(d(mn− 1)− 1) non-singleton blocks, such that #
(
I|di−ai

)
≤ n.

That is, we know each of the (non-singleton) blocks Ij has at least n elements in each column,

but for these invariants to be nonzero, any extras need to be in the a coordinates. . Denote

by Π′ ⊂ Πd
n the subset of partitions satisfying this condition. It is therefore enough to take

the sum in (3) over Π′.

For a fixed a, it is clear that there are only a bounded number of ways to distribute

the |a| “extra” coordinates to the k blocks. This shows that P := Π′/Sd−a, the set of all
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“shapes” of such partitions, has bounded size. We thus have

(E
p,q
2 )Sd−a =

⊕
I∈Π′

Hp(XI ; εI(q))

Sd−a =
⊕
ρ∈P

⊕
I∈ρ

Hp(XI ; εI(q))

Sd−a

=
⊕
ρ∈P

⊕
I∈ρ

Hp(XI ; εI(q))

Sd−a =
⊕
ρ∈P

(
Ind

Sd−a
stab Iρ

Hp(XIρ ; εIρ(q))
)Sd−a

=
⊕
ρ∈P

Hp(XIρ ; εIρ(q))
stab Iρ

(4.5)

again as in [FWW, Thm 3.1, p. 38-39], where the last equality is by Frobenius reciprocity.

Here Iρ is some partition chosen from the class ρ, and the stabilizer is taken inside the group

Sd−a. We have

Hp(XI ; εI(q))
stab I =

(
Hp(XI ; εI(q))

SI∩Sd−a
)stab I/(SI∩Sd−a)

= Hp(XI ; εI(q)
SI∩Sd−a)stab I/(SI∩Sd−a)

since SI acts trivially on XI . Next, we claim that dim εI(q)
SI∩Sd−a is bounded by a poly-

nomial q and uniformly bounded in d. Indeed, since a is bounded, we know that only a

finite number of the non-singleton Ij ’s can be larger than an m × n block. All the rest are

m × n blocks and singletons. Thus, among all the other Ij ’s of size m × n, there are only

two partitions refined by Ij : the complete partitions 0̂Ij , and Ij itself.

Now, the elements of εI(q) are chains of Πd
n(≤ I) of length 2r(|d| − 1) − q. So the

size of the invariants εI(q)
SI∩Sd−a is bounded by the the number of orbits of these chains

under the action of SI ∩ Sd−a. But up to this group action, such chains just look like a

sequence of block formations, interspersed with a bounded number of singleton-mergers and

block-mergers in the blocks larger than m × n. Notice, first of all, that this number only

depends on the number of non-singleton blocks k = q/(d(mn − 1) − 1) and is independent

of d, since all the extra singletons don’t refine any nontrivial partitions. Furthermore, the

63



number of ways to intersperse the extra moves is bounded by
(k
a

)
a!, which is a polynomial

in q. So our claim is proven.

Now, we have

dimHp(XI ; εI(q)
SI∩Sd−a)stab I/(SI∩Sd−a) ≤ dimHp(XI ;Q)stab I/(SI∩Sd−a)·dim εI(q)

SI∩Sd−a

Among the non-singleton blocks of any I ∈ Π′, only a bounded number will have fall within

the a coordinates; denote this number by b. As discussed earlier, all of the other non-

singleton blocks must have size exactly m × n. Likewise there are only a bounded number

of singletons in I that fall within the a coordinates. Denote the number of singletons in the

i-th column of I by li, and the number of these in the a coordinates by ci. Thus

XI = Xb ×Xk−b ×
∏
i

X li−ci ×Xci

Now, stab I/(SI ∩ Sd−a) consists of those permutations that blockwise permute the k − b

blocks without any a coordinates, as well as permutations of the non-a singletons. Thus

stab I/(SI ∩ Sd−a) ∼= Sk−b × Sl1−c1 × Sl2−c2 × . . .

So we have

dimHp(XI ;Q)stab I/(SI∩Sd−a = dimHp(XI/(stab I/(SI ∩ Sd−a));Q)

= dimHp

(
Xb × Symk−bX ×

∏
i

Xci × Symli−ci X;Q

)

Since b and ci are bounded, the important terms are the Symk−bX and Symli−ci . Note that,

a priori, the second seems concerning, since it depends on d, which we need our bound to be

independent of. However, Macdonald [Mac62] proved that dimHi(SymnX;Q) is eventually

independent of n, and in fact has Poincaré polynomial given by a rational function in i, with
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poles at roots of unity. Such a rational function is known to be bounded by a polynomial.

In particular, we conclude that dimHp(XI ;Q)stab I/(SI∩Sd−a is bounded by a polynomial

in p, uniformly in d. Since we already knew this was likewise true of dim εI(q)
SI∩Sd−a , we

conclude the theorem.

4.3 Arithmetic statistics for FIm

Let Z be a smooth quasiprojective scheme over Z[1/N ]. Suppose that Sd acts generically

freely on Z by automorphisms, and let Y = Z/Sd be the quotient, which is known to be a

scheme.

For any prime power q - N , we can base-change Y to Fq. The geometric Frobenius Frobq

then acts on Y/Fq . The fixed-point set of Frobq is exactly Y (Fq).

Fix a prime l - q. Since all the irreducible representations of Sd are defined over Q, a

fortiori over Ql, there is a natural correspondence between finite-dimensional representations

of Sd over Ql and finite-dimensional constructible l-adic sheaves on Y that become trivial

when pulled back to Z.

Given a representation V of Sd, let χV be its character and let V the associated sheaf on

Y . For any point y ∈ Y (Fq), since Frobq fixes y, then Frobq acts on the fiber p−1(y). Now Sd

acts transitively on p−1)(y) with some stabilizerH, and so we can identify p−1(y) with Sd/H.

The Frobq action on p−1(y) commutes with this Sd action, and so it is determined by its

action on a single basepoint, which we choose once and for all to be H. Now Frobq(H) = σyH

for some σy ∈ Sd. Following Gadish [Gadc], for any Sd-representation V and any coset σH

of Sd, we set

χV (σH) =
1

|H|
∑
h∈H

χv(σh)
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More generally, for any class function P and y ∈ Y (Fq), we define

P (y) :=
1

|H|
∑
h∈H

P (σyh)

It is straightforward to show that this is independent of the choice of coset H, since the

action of Sd is transitive on fibers. With this notation we have

tr(Frobq : Vy) = χV (σyH)

The Grothendieck-Lefschetz trace formula says that

∑
y∈Y (Fq)

tr(Frobq : Vy) =
∑
i

(−1)i tr
(

Frobq : Hi
ét,c(Y/Fq ;V)

)

We then have the following chain of equalities, as in [CEF14], [FW], and [Casa]:

Hi
ét,c(Y/Fq ;V) ∼= (Hi

ét,c(Z; π∗V))Sd by transfer

∼=
(
Hi
ét,c(Z;L)⊗ V

)Sd
by triviality of pullback

∼=
(
H2 dimZ−i
ét (Z;L(− dimZ))∗ ⊗ V

)Sd
by Poincaré duality

∼= 〈H2 dimZ−i
ét (Z;L(− dimZ)), V 〉Sd

and so we obtain

∑
y∈Y (Fq)

χV (σyH) = qdimZ
∑
i

(−1)i tr
(

Frobq : 〈Hi
ét(Z;L), V 〉Sd

)
(4.6)

We would like to apply (4.8) to a collection of schemes Zd that form a co-FIm-scheme, and

then let d → ∞. To make this work, we need to know that Z satisfies étale representation

stability, and that H∗(Z) is convergent in the sense of §3.2. Following [FW] and [Casa], we

have the following.
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Theorem 4.3.1. Suppose that Z is a smooth quasiprojective co-FIm-scheme over Z[1/N ]

such that Hi(Z/Fq ;Ql) is a finitely-generated Gal(Fq/Fq)-FIm-module, and that H∗(Z;Ql)

is convergent. Then for any FIm character polynomial P ,

lim
d→∞

q−dimZd
∑

y∈Yd(Fq)
P (y) =

∞∑
i=0

(−1)i tr
(

Frobq : 〈Hi
ét(Z;L), P 〉

)
(4.7)

Proof. Since each Zd is smooth quasiprojective, we can apply (4.8) to it. By linearity, we

can replace a representation V of Sd with a virtual representation given by a character

polynomial P , so we obtain

q−dimZd
∑

y∈Yd(Fq)
P (y) =

2 dimZd∑
i=0

(−1)i tr
(

Frobq : 〈Hi
ét(Zd;L), P 〉Sd

)

Call this sum Ad. Furthermore, let

Bd =

2 dimZd∑
i=0

(−1)i tr
(

Frobq : 〈Hi
ét(Z;L), P 〉

)

Our goal is thus to show that

lim
d→∞

Ad = lim
d→∞

Bd,

that is, first of all to show that both sides converge, and that their limits are equal.

By the assumption that H∗(Z) is convergent, we know that there is a function FP (i)

which is subexponential in i, such that for all d,

|〈Hi
ét(Zd;L), P 〉Sd | ≤ FP (i)

and so by taking d large enough,

|〈Hi
ét(Z;L), P 〉| ≤ FP (i)
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Furthermore, by [Del80, Thm 1.6], we know that

∣∣∣tr(Frobq : 〈Hi
ét(Zd;L), P 〉Sd

)∣∣∣ ≤ q−i/2
∣∣∣〈Hi

ét(Zd;L), P 〉Sd
∣∣∣

We therefore have

|Ad| ≤
2 dimZd∑
i=0

∣∣∣tr(Frobq : 〈Hi
ét(Zd;L), P 〉Sd

)∣∣∣
≤

2 dimZd∑
i=0

∣∣∣〈Hi
ét(Zd;L), P 〉Sd

∣∣∣
≤

2 dimZd∑
i=0

q−i/2FP (i).

By exactly the same argument, |Bd| ≤
∑2 dimZd
i=0 q−i/2FP (i). Since FP (i) is subexponential

in i, this means that both Ad and Bd converge.

It remains to show that limd→∞Ad −Bd = 0. Let N(d, P ) be the number such that

〈Hi
ét(Zd), P 〉Sd = 〈Hi

ét(Z), P 〉 for all i ≤ N(d, P ).

We thus have

|Bd − Ad| ≤
2 dimZd∑
i=0

q−i/2
∣∣∣〈Hi

ét(Z), P 〉 − 〈Hi
ét(Zd), P 〉Sd

∣∣∣
=

2 dimZd∑
i=N(d,P )+1

q−i/2
∣∣∣〈Hi

ét(Z), P 〉 − 〈Hi
ét(Zd), P 〉Sd

∣∣∣
≤

2 dimZd∑
i=N(d,P )+1

2q−i/2FP (i)

Since N(d, P )→∞ as d→∞, and Fp(i) is subexponential in i, we conclude that |Bd−Ad|

becomes arbitrarily small as d→∞.
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We can now apply this to Z̃d
n (X) to obtain Theorem 1.2.3.2.

Proof of Theorem 1.2.3.2. By Theorem 1.2, Hi
ét(Z̃

•
n(X)/Fq ,Ql) is a finitely generated Gal(Fq/Fq)-

FIm-module. By Theorem 1.2.2, H∗ét(Z̃
•
n(X)/Fq ,Ql) is convergent. We thus conclude by

Proposition 4.2.1.2

4.4 Arithmetic statistics for FIG

Let Z be a smooth quasiprojective scheme over Ok[1/N ]. Suppose that Wn = Gno Sn acts

freely on Z by automorphisms, and let Y = Z/Wn be the quotient, which is known to be a

scheme.

For any prime p of Ok[1/N ], we have Ok/p ∼= Fq, where q is a power of the rational

prime p under p. We can then base-change Y to Fq. The geometric Frobenius Frobq then

acts on Y/Fq . The fixed-point set of Frobq is exactly Y (Fq).

Fix a prime l 6= p, and let L be a splitting field for G over Ql. Since all the irreducible

representations of G are defined over L, there is a natural correspondence between finite-

dimensional representations of Wn over L and finite-dimensional constructible L-sheaves on

Y that become trivial when pulled back to Z.

Given a representation V of Wn, let χV be its character and V the associated sheaf on

Y . For any point y ∈ Y (Fq), since Frobq fixes y, then Frobq acts on the stalk Vy, which

is isomorphic to V . This action determines an element σy ∈ Wn up to conjugacy, so that

tr(Frobq : Vy) = χV (σy). The Grothendieck-Lefschetz trace formula says that

∑
y∈Y (Fq)

tr(Frobq : Vy) =
∑
i

(−1)i tr
(

Frobq : Hi
ét,c(Y/Fq ;V)

)
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We then have the following chain of equalities, as in [CEF14] and [FW]:

Hi
ét,c(Y/Fq ;V) ∼= (Hi

ét,c(Z; π∗V))Wn by transfer

∼=
(
Hi
ét,c(Z;L)⊗ V

)Wn
by triviality of pullback

∼=
(
H2 dimZ−i
ét (Z;L(− dimZ))∗ ⊗ V

)Wn
by Poincaré duality

∼= 〈H2 dimZ−i
ét (Z;L(− dimZ)), V 〉Wn

and so we obtain

∑
y∈Y (Fq)

χV (σy) = qdimZ
∑
i

(−1)i tr
(

Frobq : 〈Hi
ét(Z;L), V 〉Wn

)
(4.8)

We would like to apply (4.8) to a sequence of schemes Zn that form a co-FIG-scheme, and

then let n → ∞. To make this work, we need to know that Z satisfies étale representation

stability, and that H∗(Z) is convergent in the sense of §4.2. Following [FW], we have the

following.

Theorem 4.4.1. Suppose that Z is a smooth quasiprojective co-FIG-scheme over Ok[1/N ]

such that Hi(Z/Fq ;Ql) is a finitely-generated Gal(Fq/Fq)-FIG-module, and that H∗(Z;Ql)

is convergent. Then for any FIG character polynomial P ,

lim
n→∞

q−dimZn
∑

y∈Yn(Fq)
P (σy) =

∞∑
i=0

(−1)i tr
(

Frobq : 〈Hi
ét(Z;L), P 〉

)
(4.9)

Proof. Since each Zn is smooth quasiprojective, we can apply (4.8) to it. By linearity, we

can replace a representation V of Wn with a virtual representation given by a character

polynomial P , so we obtain

q− dimZn
∑

y∈Yn(Fq)
P (σy) =

2 dimZn∑
i=0

(−1)i tr
(

Frobq : 〈Hi
ét(Zn;L), P 〉Wn

)
(4.10)
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Call this sum An. Furthermore, let

Bn =

2 dimZn∑
i=0

(−1)i tr
(

Frobq : 〈Hi
ét(Z;L), P 〉

)

Our goal is thus to show that limn→∞An = limn→∞Bn: that is, first of all that both

sequences converge, and that their limits are equal.

By our assumption that H∗(Z) is convergent, we know that there is a function FP (i)

which is subexponential in i, such that for all n,

|〈Hi
ét(Zn;L), P 〉Wn

| ≤ FP (i)

and thus in particular (taking n large enough)

|〈Hi
ét(Z;L), P 〉| ≤ FP (i)

Furthermore, by Deligne [Del80, Thm 1.6], we know that

∣∣∣tr(Frobq : 〈Hi
ét(Zn;L), P 〉

)∣∣∣ ≤ q−i/2
∣∣∣〈Hi

ét(Zn;L), P 〉
∣∣∣

We thus have

|An| ≤
2 dimZn∑
i=0

∣∣∣tr(Frobq : 〈Hi
ét(Zn;L), P 〉Wn

)∣∣∣
≤

2 dimZn∑
i=0

q−i/2
∣∣∣〈Hi

ét(Zn;L), P 〉
∣∣∣

≤
2 dimZn∑
i=0

q−i/2FP (i)

For exactly the same reason, |Bn| ≤
∑2 dimZn
i=0 q−i/2FP (i). Since FP (i) is subexponential in

i, this means that both An and Bn converge.
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It remains to show that limn→∞An −Bn = 0. Let N(n, P ) be the number such that

〈Hi(Zn), P 〉Wn
= 〈Hi(Z), P 〉 for all i ≤ N(n, P ).

We thus have

|Bn − An| ≤
2 dimZn∑
i=0

q−i/2
∣∣∣〈Hi(Z), P 〉 − 〈Hi(Zn), P 〉Wn

∣∣∣
=

2 dimZn∑
i=N(n,P )+1

q−i/2
∣∣∣〈Hi(Z), P 〉 − 〈Hi(Zn), P 〉Wn

∣∣∣
=

2 dimZn∑
i=N(n,P )+1

2q−i/2FP (i)

Since N(n, P )→∞ as n→∞, and FP (i) is subexponential in i, we conclude that |Bn−An|

becomes arbitrarily small as n→∞.

We can now apply this to ConfGn (X) to obtain Theorem 1.2.3.1.

Proof of Theorem 1.2.3.1. By Theorem 4.1.4, Hi(ConfG(X)/Fq is a finitely-generated Gal(Fq/Fq)-

FIG-module. By Theorem 1.2.2 H∗(ConfG(X)) is convergent. We thus conclude by Theo-

rem 4.4.1.

4.5 Point-counts for polynomials and Gauss sums

For special choices of X in Theorem 1.2.3.1, we can give an interpretation to the left-hand

side of (1.1) in terms of point-counts of polynomials over Fq. The example we consider here

is where X = Gm and G = Z/dZ acting by multiplication by a d-th root of unity. In order

for this action to be well-defined, we need to consider X as a scheme over Z[ζd]. However,

notice that here the action is not free: if we look at the fiber of X over a prime dividing

d, then Z/dZ will act trivially, because these are the primes that ramify in Z[ζd]. Thus,

to satisfy our hypotheses that we have a free action of G, we consider X as a scheme over
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Ok[1/d], where k = Q(ζ) is the cyclotomic field. Thus the finite fields Fq we consider will

satisfy q ≡ 1 mod d, since Fq is a residue field of Z[ζ].

In this case, we have

Conf
Z/dZ
n (Gm)(R) = {(xi) ∈ Rn | xi 6= 0, xi 6= ζkxj}

so that ConfGn (X) is the complement of a hyperplane arrangement. The arithmetic and étale

cohomology of this arrangement was studied by Kisin-Lehrer in [? ], where they obtained

formulas for the equivariant Poincaré polynomial of Conf
Z/dZ
n (Gm).

By Björner-Ekedahl [BE97], the action of Frobq on Hi
ét,c(Z;Ql) is given by multiplication

by qi, and thus (again, by Poincaré duality)

tr
(

Frobq : 〈Hi
ét(ConfGn (X)), P 〉

)
= q−i〈Hi

ét(ConfGn (X)), P 〉

This lets us compute the right-hand side of (1.1) explicitly in this case:

lim
n→∞

q−n
∑

f∈Polyn(F∗q)
P (y) =

∞∑
i=0

(−1)iq−i〈Hi(ConfZ/dZ(C∗);C), P 〉 (4.11)

since we know by Theorem 4.1.4 that Hi
ét(ConfZ/dZ(Gm)/Fq ;Ql)

∼= Hi(ConfZ/dZ(C∗);Ql).

Notice that d | q − 1, so Z/dZ is a quotient of Z/(q − 1)Z. Thus any representation of

Z/dZ oSn lifts to a representation of Z/(q−1)Z oSn, so we can always interpret the left-hand

side of (4.11) as a statement about representations of the single group Z/(q − 1)Z o Sn. On

the other hand, as remarked in [Casb, §3], there is a Galois cover

Conf
Z/(q−1)Z
n (C∗)→ Conf

Z/dZ
n (C∗)
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with deck group (Z/q−1
r Z)n and so by transfer,

Hi(Conf
Z/dZ
n (C∗);Q) =

(
Hi(Conf

Z/(q−1)Z
n (C∗);Q)

)(Z/ q−1r Z)n

and thus the right-hand side of (4.11) is the same whether we consider V as a representation

of Z/dZ o Sn or Z/(q − 1)Z o Sn. Therefore we lose nothing if we simply assume that in fact

d = q − 1.

Now we give some number-theoretic meaning to the left-hand side of (4.11). An element

f ∈ Polyn(F∗q) is a polynomial in Fq[T ] that does not have 0 as a root. The roots of f(T ) are

sitting in some extension field of Fq, and the d-th roots of those roots possibly in some even

higher extension field. The permutation σf is the action of Frobq on all these d-th roots,

which permutes the actual roots (think of these as the columns each containing a set of d-th

roots), and then further permutes the d-th roots cyclically. This precisely gives an element

of Gn o Sn (up to conjugacy).

Recall that a Gauss sum is a certain sum of roots of unity obtained by summing values of

a character of the unit group of a finite ring. Now, suppose that χ is an irreducible character

of G. Write

X
χ
i =

∑
g∈G

χ(g)X
g
i .

For each i, the {Xχ
i }χ∈Ĝ have the same span as {Xg

i }g∈G, and the {Xχ
i } are more natural

to use here.

Since d = q − 1, there is an isomorphism F∗q ∼= G, and in fact such a surjection F∗
qk
→ G

for any k. It therefore makes sense to talk about applying χ to elements of F∗q . For a given

f ∈ Polyn(F∗q), consider first decomposing f into irreducibles factors over Fq, and then each

of these into linear factors over Fq; since none are zero, all the roots actually lie in F∗q . For

a given irreducible degree-i factor p of f , since Frobq acts transitively on the roots of p over

Fq, and since q ≡ 1 mod d, then χ takes the same value on each of the roots. It is then
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straightforward to calculate that

X
χ
i (σf ) =

∑
deg(p)=i

χ(root(p))

where the sum is taken over all irreducible factors p of f of degree i, and root(p) denotes

any of the roots of p in Fq. Thus, X
χ
i is a Gauss sum of χ applied to the roots of degree-i

irreducible factors of f . A general character polynomial is generated as a ring by the X
χ
i ’s,

so this says how to interpret the left-hand-side. Thus, (4.11) says that the average value of

any such Gauss sum across all polynomials in Polyn(F∗q) always converges to the series in q−1

on the right-hand side of (4.11). In particular, the decomposition of H1 and H2 determined

in [Casb, §4.1] allows us to compute the examples (1.3) and (1.4) from the introduction.

75



REFERENCES

[Arn69] V.I. Arnold. The cohomology ring of the colored braid group. Mathematical
Notes, 5(2):138–140, 1969.

[Ban76] E. Bannai. Fundamental groups of the spaces of regular orbits of the finite unitary
reflection groups of dimension 2. J. Math. Soc. Japan, 28:447–454, 1976.

[Bau04] O. Baues. Infra-solvmanifolds and rigidity of subgroups in solvable linear alge-
braic groups. Topology, 43(4):903–924, 2004.

[BE97] A. Björner and T. Ekedahl. Subspace arrangements over finite fields: cohomo-
logical and enumerative aspects. Adv. Math., 129:159–187, 1997.

[Bir69] J. Birman. On braid groups. Comm. on Pure and Appl. Math., 22:41–72, 1969.

[Casa] K. Casto. FIG-modules and arithmetic statistics. arXiv:1703.07295.

[Casb] K. Casto. FIG-modules, orbit configuration spaces, and complex reflection
groups. arXiv:1608.06317, submitted.

[CCX03] D.C. Cohen, F.R. Cohen, and M. Xicoténcatl. Lie algebras associated to fiber-
type arrangements. Int. Math. Res. Not., 2003(29):1591–1621, 2003.

[CE] T. Church and J. Ellenberg. Homology of FI-modules. arXiv:1506.01022.

[CEF14] T. Church, J. Ellenberg, and B. Farb. Representation stability in cohomology and
asymptotics for families of varieties over finite fields. Contemp. Math., 620:1–54,
2014.

[CEF15] T. Church, J. Ellenberg, and B. Farb. FI-modules: a new approach to stability
for Sn-representations. Duke Math. J., 164(9):1833–1910, 2015.

[CEFN14] T. Church, J. Ellenberg, B. Farb, and R. Nagpal. FI-modules over Noetherian
rings. Geom. Topol., 18(5):2951–2984, 2014.

[CF13] T. Church and B. Farb. Representation theory and homological stability. Ad-
vances in Mathematics, 245:250–314, 2013.

[Che] W. Chen. Twisted cohomology of configuration spaces and spaces of maximal
tori via point-counting. arXiv:1603.03931.

[Chu12] T. Church. Homological stability for configuration spaces of manifolds. Invent.
Math., 188(2):465–504, 2012.

[Coh01] D. Cohen. Monodromy of fiber-type arrangements and orbit configuration spaces.
Forum Math., 13:505–530, 2001.

[CX02] F.R. Cohen and M. Xicoténcatl. On orbit configuration spaces associated to the
Gaussian integers: homotopy and homology groups. Topology Appl., 118(1-2):17–
29, 2002.

76



[Del80] P. Deligne. La conjecture de Weil: II. Inst. Hautes Études Sci. Publ. Math.,
52:137–252, 1980.

[EVW16] J. Ellenberg, A. Venkatesh, and C. Westerland. Homological stability for hurwitz
spaces and the cohen-lenstra conjecture over function fields. Ann. of Math.,
183:729–786, 2016.

[FM94] W. Fulton and R. Macpherson. A compactification of configuration spaces. Ann.
of Math., 139(1):183–225, 1994.

[FW] B. Farb and J. Wolfson. Étale homological stability and arithmetic statistics.
arXiv:1512.00415.

[FWW] B. Farb, J. Wolfson, and M.M. Wood. Coincidences between homological densi-
ties, predicted by arithmetic. arXiv:1611.04563.

[FZ02] E.M. Feichtner and G.M. Ziegler. On orbit configuration spaces of spheres. Topol-
ogy Appl., 118(1-2):85–102, 2002.

[Gada] N. Gadish. Categories of FI type: a unified approach to generalizing representa-
tion stability and character polynomials. arXiv:1608.02664.

[Gadb] N. Gadish. Representation stability for families of linear subspace arrangements.
arXiv:1603.08547.

[Gadc] N. Gadish. A trace formula for the distribution of rational g-orbits in ramified
covers, adapted to representation stability. arXiv:1703.01710.
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