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ABSTRACT 

Despite decades of study of memory, it remains unclear what makes an image 

memorable. There is considerable debate surrounding the underlying determinants of memory, 

including the roles of semantic (e.g., animacy, utility) and visual features (e.g., brightness) as 

well as whether the most prototypical or most atypical items are best remembered. Prior studies 

have also relied on constrained stimulus sets, preventing a generalized view of the features that 

may contribute to memory. Here, we collected over one million memory ratings (N=13,946) for 

THINGS (Hebart et al., 2019), a naturalistic dataset of 26,107 object images designed to 

comprehensively sample concrete objects. We uncover a model of object features that is 

significantly able to predict image memorability, covering over half of the explainable variance. 

Within this model, we find that semantic features have a stronger influence than visual features 

on what people will remember. Finally, we examined whether memorability could be accounted 

for fully by the atypicality of the objects, by comparing three complementary measures using 

human behavioral data, object feature dimensions, and deep neural network features. We 

discover, surprisingly, that the relationship between memorability and typicality is more complex 

than a simple positive or negative association, however, generally, prototypical objects are the 

most memorable. Taken together, our findings reveal important structural features underlying the 

organization of information in memory.  

 

SIGNIFICANCE STATEMENT  
 

Why is it that we seem to remember and forget the same things? Our lived experiences 

differ, but we observe remarkable consistency in what is remembered across people. Here, we 

collected memory performance scores for a comprehensive and diverse collection of natural 

object images to identify which properties determine our ability to remember. We create one of 

the best performing models for predicting memory from object features. We observe that 

semantic information contributes primarily to memorability and that the most typical items are 

remembered best. Our findings challenge decades of prior research that suggest that the most 

distinct items are most memorable and inform our understanding of the features and 

organizational principles of memory. 



 

   
 

 

   
 

INTRODUCTION 

What is it that makes something memorable? Researchers have been struggling for 

decades to understand the determinants of memory and how information is encoded, processed, 

and retrieved in the brain. The majority of research in memory uses a subject-centric framework, 

attempting to understand the underlying processes of memory and individual differences across 

people. This subject-centric framework is motivated by the highly personal nature of memory, as 

everyone has their own experiences that influence what they will later remember. However, an 

alternative stimulus-centric framework has arisen out of the surprising finding that, despite our 

individual experiences, we largely remember and forget the same images (Isola et al., 2011; 

Bainbridge et al., 2013). This new stimulus-driven perspective allows for a targeted examination 

of what we remember, and why. 

This stimulus-driven perspective has revealed that images have an intrinsic memorability, 

defined for a stimulus as the likelihood that any given person will remember that stimulus later 

(Bainbridge et al., 2019). By using aggregated task scores for each stimulus rather than 

individual participant responses, memorability for a given stimulus can be quantified, repeatedly 

demonstrating a high degree of consistency in what people remember (Isola et al., 2011; 

Bainbridge et al., 2019) across stimulus types (see Isola et al., 2011; Bainbridge et al., 2013; 

Borkin et al., 2013; Xie et al., 2020). These memorability scores can account for upwards of 50% 

of variance in memory task performance (Bainbridge et al., 2013) and demonstrate remarkable 

resiliency across tasks and robustness to attention and priming (Bainbridge, 2020). This high 

consistency allows one to make honed predictions about what people will remember, which 

could have far-reaching implications for fields including advertising, marketing, public safety 

(Bainbridge et al., 2019), patient care (Bainbridge, Berron, et al., 2019), and computer vision 

(Needell & Bainbridge, in press). However, in spite of these high consistencies in what 

individuals remember, what specific factors determine the memorability of an image is still 

largely unknown. 

Prior research has sought to explain memorability as either a proxy for a given stimulus 

feature like attractiveness or brightness, while others have attempted to reduce memorability to a 

linear combination of features in a constrained stimulus set. These studies mostly utilize faces 

(Bainbridge et al., 2013) or scenes (Isola et al., 2014) as stimuli, and none of them have 

explained the majority of variance in memorability using these models. More recently, 

researchers have emphasized the importance of considering items in a multidimensional 

representational space, with memorability arising from the relative location of an item within that 

space (Lukavský & Děchtěrenko, 2017; Bainbridge, 2019; Koch et al, 2020). This theoretical 

framework has sparked debate about the roles of low-level visual features such as color and 

shape and semantic information such as animacy in determining what we remember and what we 

forget (Khosla, 2015; Jaegle et al, 2019; Madan, 2020; Xie et al, 2020). Additionally, researchers 

have disagreed on whether the most memorable items are the most prototypical items 

(Bainbridge, Dilks, & Oliva, 2017; Bainbridge & Rissman, 2018) or the most atypical items 

(Bylinskii et al, 2015; Lukavský & Děchtěrenko, 2017; Mosenzadeh et al, 2019). It is clear that 



 

   
 

 

   
 

there is a lack of consensus surrounding the roles of visual and semantic features as well as 

typicality with regards to what we remember, necessitating further analysis. 

Here, we provide a comprehensive characterization of visual memorability across an 

exhaustive set of picturable object concepts in the English language (THINGS database, Hebart 

et al., 2019). Specifically, we determine the object features and their organizational principles 

that drive our memories. In the largest study of memorability to date, we collected over 1 million 

memory scores for all 26,107 images in the THINGS database, which we have made publicly 

available (https://osf.io/5a7z6/?view_only=675e901c176c4bec9c2540fc4981e5fe). We then 

leveraged three complementary measures—human judgments, multidimensional object features, 

and predictions from a deep convolutional neural network (CNN)—to examine the relationship 

of memorability to object typicality. We discover a feature model that is able to significantly 

predict a majority of the variance in image memorability. Among those features, our results 

uncover a primacy of semantic information over visual information in what we remember. 

Further, while we find evidence of the most typical items being best remembered, the high 

variance across categories suggests that the relationship between memorability and typicality is 

more complex than prior work would suggest. 

RESULTS 

Our analyses characterize memorability across object concepts, addressing whether 

memorability is more visually or semantically driven and whether it is the most prototypical or 

atypical objects that are best remembered. To explore memorability across concrete objects, we 

collected memorability scores for the entire image corpus of the THINGS database of object 

images (Hebart et al., 2019) and uncovered a dispersion of memorability across the hierarchical 

levels of THINGS. We examined the roles of semantic and visual information by attempting to 

predict memorability from semantic and visual features using multivariate regression, where we 

revealed that semantic information contributes primarily to object memorability. We then 

analyzed multiple measures of object typicality along with the memorability scores and found a 

small but robust effect of the most prototypical items being best remembered. 

THINGS is a hierarchically structured dataset containing 26,107 images representing 

1,854 object concepts (such as aardvark, tank, and zucchini) derived from a lexical database of 

picturable objects in the English language (see Methods), 1,619 of which are assigned to 27 

higher categories (such as animal, weapon, and food). The concepts were assigned to categories 

in prior work through a two-stage process where one group of participants proposed categories 

for a given concept while a second group narrowed the potential categories further, with the most 

consistently chosen category becoming the assigned category for the concept (Hebart et al., 

2020). The concepts and images are also characterized by a set of 49 dimensions that capture 

92.25% of the variance in human behavioral similarity judgments of the objects (Hebart et al., 

2020). Each concept and each image thus can be described by a 49-dimensional embedding that 

corresponds to the representation of that item in object feature space. This overall dataset 

structure enables the analysis of memorability at the image, concept, category, and dimensional 

levels. 



 

   
 

 

   
 

Memorability is Diffuse Across Objects 

In order to quantify memorability for all 26,107 images in THINGS, we conducted a 

continuous recognition memory task (N = 13,946) administered over the online experiment 

platform Amazon Mechanical Turk (AMT) wherein participants viewed a stream of images and 

were asked to press a key when they recognized a repeated image that occurred after a delay. 

Memorability was quantified as the corrected recognition (CR) score for a given image, 

calculated as the proportion of correct identifications of the image minus the proportion of false 

alarms on that image (Bainbridge & Rissman, 2018). However, all results replicate when 

corrected recognition is instead substituted with hit rate or false alarm rate (Supplemental 

Information). To test if we observe consistency across people in what they remember and forget, 

we conducted a split-half consistency analysis across 1,000 iterations and found significant 

consistency in what split halves of participants remembered (Spearman-Brown corrected split-

half rank correlation, mean ρ = 0.449, p < .001), which is surprising given the diversity of the 

THINGS images. This consistency in memory performance implies that memorability can be 

considered an intrinsic property of these stimuli.  

When assessing memorability at the concept level, we observe that memorability varied 

strongly across the concepts (Figure 1a). This dispersion of CR suggests that not all concepts in 

THINGS are equally memorable. For example, candy bars were highly memorable overall with 

a maximum CR of 1, a mean of 0.873, and a minimum of 0.756 (range = 0.127), while 

windshields were less memorable with a maximum CR of 0.756, a mean of 0.649, and a 

minimum of 0.404 (range = 0.352). We observe a similar diversity of memorability patterns at 

the higher category level (Figure 1b). The average CR across the THINGS categories is 0.793, 

with some categories demonstrating a higher average memorability than others; body parts 

attained the highest average memorability at 0.855 while car parts had the lowest average 

memorability of 0.753. These measures highlight the rich variation present within the THINGS 

database as it relates to memorability. 

The embeddings along 49 dimensions for each of the object concepts allow us to 

determine if certain dimensions are more strongly reflected in memorable stimuli (Figure 1c). 

Specifically, we examined Spearman rank correlations between the memorability of the THINGS 

concepts and the concepts’ embedding values for each of the 49 dimensions. We found that 36 

dimensions showed a significant relationship to memorability (FDR-corrected q < 0.01), of 

which 9 were positive and the remaining 27 were negative. These correlations reveal that some 

properties used to characterize an object do show a relationship to memorability. For example, 

the positive relationship for the body / body part dimension (ρ = 0.257, p = 1.873 × 10-29) 

indicates that memorable stimuli tend to be more related to body parts, while a negative 

correlation like metal / tools (ρ = -0.323, p = 1.689 × 10-15) implies that more memorable stimuli 

tend to not be made of metal. These patterns of diffusion persist when examining hit rate and 

false alarm rate separately, rather than the combined measure of corrected recognition (see 

supplement). 



 

   
 

 

   
 

 

Figure 1. Descriptive analyses of memorability across the concept and category levels of the THINGS database as 

well as the 49 object dimensions. (A) The spread of corrected recognition (CR) across the 1,854 object concepts 

revealed that not all concepts are equally memorable. For concepts like candy bars, the entire range of component 

image memorability values were contained above the average value for a concept like windshields. (B) Visualizing 

the same spread across higher order categories revealed variation in average memorability across the 27 categories, 

with some categories including car parts displaying a CR score below the overall average memorability of 0.793 

represented by the dotted horizontal line while others like body parts displayed a score above the average. (C) This 

trend of a spread of relationships continues when examining the correlation between memorability and embeddings 

along the object dimensions. 36 out of 49 dimensions displayed a significant association with memorability (shaded 

bars, FDR-corrected q < 0.01), with 9 showing a positive relationship (i.e., body / body parts being more 

memorable), and 27 showing a negative relationship (i.e., metal / tools being less memorable).  

Having explored memorability across the structure of THINGS, we can readily observe 

that memorability varies at the exemplar, concept, higher category, and dimensional levels. With 

this understanding, the question becomes: what causes some concepts/categories/dimensions to 

be more memorable than others? 

Semantic Information Contributes Most to Memorability 

To examine which object features are most important for explaining what is remembered 

and what is forgotten, we predict the average memorability scores of the THINGS concepts 

using the object space dimensions (Table 1). Our regression model utilized the 49-dimensional 



 

   
 

 

   
 

embedding of each concept in the object space to predict the average CR score for the concept. 

Overall, the model explained 38.52% of the variance in memorability (Figure 2B). Because 

memorability scores contain some noise, we also calculated performance of this model in 

comparison to a noise ceiling estimated by predicting split halves of the memory data across 100 

iterations (see Methods). We found our model explained 61.66% of the variance given the noise 

ceiling, implying that these dimensions capture the majority of variance in memorability. 

The explanatory power of our model serves as a strong starting point for an analysis of 

the types of dimensions that contribute most to memorability. We sorted the dimensions into two 

main categories: visual and semantic dimensions. Dimension names were determined in a prior 

study, as the top two-word phrases selected by naïve observers for sets of the most heavily 

weighted images on those dimensions (see Methods; Hebart et al., 2020). We defined visual 

dimensions of an image to be those concerned primarily with color and shape information, such 

as “red / color”, “long / thin”, “round / circular”, and “pattern / patterned” (Table 1). We defined 

semantic dimensions as categorical information that did not include references to color or shape, 

such as “food / carbs”, “technology / electronic”, and “body / body parts”. Any dimensions that 

contained both semantic and visual information as defined above were classified as mixed, such 

as “green / vegetables”, “black / accessories”, and “white / winter”. 

 

Table 1. Categorization of THINGS object space dimensions across semantic, visual, and mixed dimensions. 

Dimension names were derived from naïve observers viewing the highest weighted images on each dimension. 

Dimensions are listed in order of highest to lowest correlation with memorability score. 

Semantic Visual Mixed 

Metal / Tools Colorful / Colors Furniture / Bland to Colorful 

Food / Carbs Circular / Round Green / Vegetables 

Animal / Animals Patterns / Piles Wood / Brown 

Clothes / Clothing Long / Thin Royalty / Gold 

Backyard / Garden Red / Color Dirt / Grainy 

Cars / Vehicles Round / Circular Black / Accessories 

Body / Body Parts Pattern / Patterned Long / Rope 

Technology / Electronic Tall / Big Paper / White 

Sports / Sport Mesh / Nets Rope / Bands 

Tools / Hand Tools  Construction / Long 

Paper / Books  Unknown / Colorful 

Liquids / Containers  White / Winter 

Water / Ocean  Shiny / Jewels 

Feminine / Flowers   

Bathroom / Hygiene   

War / Military   

Instruments / Music   

Flight / Air   

Insects / Bugs   

Feet / Body Parts   

Fire / Heat   

Face / Head   

Wheels / Can Sit On   

Containers / Hold Other Things   

Baby / Children   

Medicine / Medical   

Candles / Crafts   



 

   
 

 

   
 

 

With these categorized dimensions, we can differentiate the contributions of primarily 

semantic and primarily visual dimensions to memorability. By analyzing the embeddings of each 

concept in the multidimensional object space, we revealed that 70.44% of the concepts were 

more heavily embedded in dimensions classified as semantic than dimensions classified as visual 

(Figure 2a). We ran a regression model that predicted memorability only from the dimensions 

strictly classified as either semantic or visual (excluding mixed dimensions). The resulting 36-

dimensional model (27 semantic, 9 visual) explained 35.16% of the variance in memorability, 

and the semantic dimensions contributed 31.22% of the variance while visual dimensions only 

accounted for 1.62% with a shared variance of 2.32% (Figure 2c). This result suggests a clear 

dominance of semantic over visual information in memorability. To examine the effects of 

dimensions labelled as mixed, we also break down the unique and shared variance contributions 

from semantic, visual, and mixed dimensions in the full 49-dimensional model, where we see 

that mixed dimensions contributed 1.03% of variance in memorability (see supplement). 

However, since there are also more semantic dimensions than visual dimensions in that 

model, we conducted a follow-up analysis with a model using just the top 9 highest weighted 

semantic dimensions and top 9 highest weighted visual dimensions. This model accounted for 

19.15% of variance in memorability, with the top 10 semantic dimensions contributing 15.21% 

of variance while the top 10 visual dimensions contributed 1.87% of variance with a shared 

variance of 2.07% (Figure 2d). A summary of all regression results is displayed in Figure 2b. 

 

  



 

   
 

 

   
 

Figure 2. Analyses of relative contributions of semantic and visual information to memorability. (A) Histogram of 

averaged embedding values in semantic (red) and visual (blue) dimensions across concepts. The yellow histogram 

represents the difference between the visual and semantic embeddings (blue - red).  The embeddings of the 1,854 

concepts in the object space reveal that 70.44% of the concepts are more heavily embedded in semantic dimensions 

than in visual dimensions. (B) Table of regression models. The semantic and visual models utilize all 27 semantic 

and 9 visual dimensions respectively to predict memorability and captured 38.52% of the variance in memorability. 

The top models utilized only the 9 most heavily embedded semantic and visual dimensions, to balance the number 

of semantic and visual dimensions in the model. Across models, the majority of variance was captured by semantic 

dimensions. (C) Venn diagram displaying the unique contributions to memorability from semantic and visual 

dimensions. For the model using all non-mixed dimensions, the majority of variance is captured by the 27 semantic 

dimensions, with a smaller contribution from the 9 visual dimensions. Note the larger shared variance than visual 

variance, suggesting that most of the contribution of visual information may be contained in shared variance with 

semantic information. (D) The same type of Venn diagram as in (C) but with a model including equal numbers of 

semantic and visual dimensions (9 regressors each). Again, the majority of explained variance comes from semantic 

dimensions. 

 

Taken together, our results indicate that semantic information contributes far more than 

visual information towards the memorability of an image. While the results reveal contributions 

of visual information, these contributions are largely captured by shared variance with semantic 

information. We observe a similar pattern of results when examining hit rate and false alarm rate 

as dependent variables in place of corrected recognition (see supplement). 

Memorability is More than Typicality 

 While we have determined that semantic features are the most predictive dimensions of 

the object space for memorability, there is still the question of whether it is the most prototypical 

or most atypical items that are best remembered along these dimensions. In terms of the object 

feature space, items that are clustered closely together are the most prototypical items, while 

items spaced further apart are the most atypical items. The relationship between typicality and 

memory has been studied extensively in face processing, scene recognition, and related fields 

(Lee et al., 2000; Bylinskii et al., 2015; Lukavský & Děchtěrenko, 2017), and suggest three 

different hypotheses, where the relationship between typicality and memorability is either always 

negative (Lukavský & Děchtěrenko, 2017), always positive (Bainbridge & Rissman, 2018), or a 

specific combination of the two (Koch et al., 2020). Here, we leverage the scale of THINGS to 

determine this relationship utilizing converging methods for defining typicality based on 

behavioral ratings, the multidimensional object space derived from human similarity judgments, 

and a deep neural network for object recognition. 

 In order to assess whether the most prototypical or most atypical items are best 

remembered, we employ three complementary measures of object typicality. Our first measure of 

typicality we dub “object space typicality”, and it is derived from the object space employed in 

the previous analyses (Figure 3a). The 49-dimensional space has been demonstrated to capture 

human behavior in excess of 90% of ceiling (Hebart, Zheng, & Perreira, 2020) and predict 

memorability with high accuracy. Typicality scores calculated from the object space dimensions 

capture information about both visual and semantic features, which allows for testing hypotheses 



 

   
 

 

   
 

relating object typicality to visual and semantic content. We term our second measure of 

typicality “CNN-based typicality”, as it employs the VGG-F deep CNN to compute similarity 

ratings across the 22 layers of the network (Figure 3b). Deep neural network models have 

demonstrated success in predicting the neural responses of different regions in the visual system 

(Yamins et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014). A critical insight from these 

studies suggests that earlier layers in the network represent low-level visual information such as 

edges, while later layers represent more complex and semantic features like categorical 

information (Güçlü & van Gerven, 2015). Unlike the object space derived scores, these typicality 

values are directly computed from image features, rather than based off of behavioral similarity 

judgments in response to the images themselves. Finally, our third measure of typicality, referred 

to as “behavioral typicality”, consists of behavioral ratings derived from a concept to category 

matching task (Hebart, Zheng, & Perreira, 2020) to capture human intuition regarding typicality 

(Figure 3a). In this prior study, participants on Amazon Mechanical Turk used a 0-10 Likert 

scale to assess the degree to which a given concept was typical of a category (e.g., how typical is 

a snake of animals?). These three complementary approaches allow for testing a wide range of 

hypotheses concerning whether the most prototypical or atypical items are most often 

remembered.  

Figure 3. Generating typicality scores from behavior, object space dimensions, and CNN activations. (A) For 

behavioral typicality, participants on Amazon Mechanical Turk used a 0-10 Likert scale to assess the typicality of a 

given object concept (snake) to its higher category (animals). These typicality scores were then aggregated across all 

of the concepts under a given higher category to generate a typicality score for that category. (B) To generate the 

CNN-computed typicality score, each of the 26,107 images was input to the VGG-F network and had layer 

activations extracted at each of the 22 layers. Correlating the resulting layer values within each of the image 

concepts allowed for the generation of similarity matrices for each object concept. From these matrices, we compute 

the typicality of each image as the mean correlation between the image and all other images of a given object 

concept, resulting in a typicality score for every image in relation to its concept. (C) The procedure for generating 

typicality scores from the object space dimensions is largely the same as the process for the CNN but relying instead 



 

   
 

 

   
 

on embeddings of images in the object space as the representation for each image, which was then correlated to form 

similarity matrices. 

Our first assessment of the relationship between memorability and typicality was to 

examine the overall correlation between the corrected recognition scores and object space 

typicality scores for the 26,107 image corpus of THINGS. This typicality score reflects the 

typicality of a given example image (e.g. a particular example of a squirrel) relative to all other 

examples of that image’s concept (e.g. all images of squirrels in THINGS). Using the typicality 

scores derived from the object space dimensions, we found a significant positive relationship 

between image typicality and memorability across the THINGS dataset (r = 0.309, p = 6.131 × 

10-7). This suggests that more memorable images tend to be more prototypical of their concept in 

their representations across these dimensions, arguing against a general primacy of atypicality in 

memorability. We also analyzed the relationship between object space typicality and 

memorability within each of the 1,854 concepts in THINGS by correlating memorability and 

typicality values across the exemplar images of each concept. In other words, within each 

concept, what is the relationship between typicality and memorability? We again employed the 

typicality scores derived from the object space dimensions and produced a distribution of 

correlations between exemplar corrected recognition and exemplar typicality scores. Overall, the 

concepts were more likely to display a relationship where more prototypical images tended to be 

more memorable (one sample t-test: t(1852) = 2.074, p = 0.038).  

Recent analyses have suggested that the relationship between typicality and memorability 

may differentially depend on similarity across semantic and visual features; for example, for a 

set of scene images, the most visually atypical but semantically prototypical images tended to be 

most memorable (Koch et al., 2020). Based on this hypothesis, it may be that differential 

contributions of semantic and visual features influence whether the most prototypical or atypical 

items are best remembered. To test this, we leveraged the CNN-derived typicality scores and the 

heuristic that early layers represent more visual information and late layers represent more 

semantic features. We visualize the correlation of typicality at both an early layer (2) and a late 

layer (20) with corrected recognition (Figure 4a) and segment the resulting figure into quadrants 

based on correlation magnitude. We observe a significant correlation between the relationship of 

memorability and typicality at early layers and late layers (r = 0.253, p = 2.504 × 10-28), 

suggesting that in general visual and semantic features show a similar relationship of typicality to 

memorability. A chi-square analysis on each quadrant revealed that significantly more concepts 

than chance showed a pattern where the most memorable items were prototypical in terms of 

both early and late layer features (χ2 = 38.046, p = 6.909 × 10-10). In contrast, we find 

significantly fewer concepts than chance show a mixed pattern, where memorable items were 

determined by early layer prototypicality and late layer atypicality (χ2 = 8.454, p = 0.004), or the 

opposite pattern of early layer atypicality and late layer prototypicality (χ2 = 20.286, p = 6.668 × 

10-6). Finally, there was no difference from chance in the proportion of concepts that showed a 

pattern where the most memorable items were the most atypical items for both early and late 

CNN layers (χ2 = 8.3993, p =0.553). These results suggest that in general, memorable images 

tend to be those that are both visually and semantically prototypical of their object concept, 



 

   
 

 

   
 

although there are also concepts for which memorable images may tend to be either visually or 

semantically atypical. We find largely similar patterns of results when examining hit rate and 

false alarm rate in place of corrected recognition (see supplement).  

 

 

Figure 4. Examining relationships between typicality, memorability, and semantic and visual content. (A) 

Visualizing the correlation of CNN-based typicality and memorability for all 1,854 concepts in terms of an early 

layer (layer 2) and late layer (layer 20) allows for the observation of an overall positive relationship between early 

and late layer typicality scores across the concepts (r = 0.253, p = 2.504 × 10-28). A chi square analysis of the four 

quadrants of the scatterplot demonstrated significantly more concepts than chance showed a pattern where the most 

memorable items were prototypical in terms of both early and late layer features (χ2 = 38.046, p = 6.909 × 10-10). 

Contrastingly, we find significantly fewer concepts that demonstrate “mixed” patterns where more memorable items 

demonstrated early layer prototypicality and late layer atypicality (χ2 = 8.454, p = 0.004), or the opposite pattern (χ2 

= 20.286, p = 6.668 × 10-6). We found no significant difference from chance for concepts where the most 

memorable items were atypical across both early and late layer features (χ2 = 8.3993, p =0.553). This suggests that, 

in general, memorable concepts tend to be both visually and semantically prototypical. (B) Example concepts that 

fell into each quadrant of the scatterplot seen in C. 

 The previous findings demonstrate converging evidence for memorability corresponding 

to object prototypicality, however, there are also several counterexamples across the THINGS 

dataset. While, as a whole, a majority of object concepts showed a positive relationship between 

typicality and memorability, still many object concepts (917) show an opposite relationship, 

where more atypical images are more memorable. For example, for coats, more prototypical 

images were more memorable (r = 0.857, p = 3.66 × 10-4), but for other concepts such as 

handles, more atypical images were more memorable (r = -0.798, p = 0.001).  

This mixed evidence is also apparent in analyses relating the typicality of concepts to the 

27 higher categories present in THINGS, in contrast to the previously described analyses that 

tested the typicality of images in relation to their concepts. For any given concept, the category 

typicality score reflects the typicality of that concept (e.g. squirrels) relative to all other concepts 

of its higher category (e.g. animals).  A correlation between CR scores and behavioral typicality 

scores across all higher categories showed no significant relationship between typicality and 

memorability (r = 0.139, p = 0.576). When examining the distribution of correlations between 

typicality and memorability, we observed a marginal effect of more atypical (rather than 



 

   
 

 

   
 

prototypical) concepts being more memorable (t(26) = -2.022, p = 0.054). When examining the 

correlations for each of the 27 categories separately (see supplement), we found that home décor 

(r = -0.384, p = 0.009), office supplies (r = -0.430, p = 0.032), and plants (r = -0.429, p = 0.003) 

showed significant negative relationships, implying that more memorable examples of each 

category were more atypical. In contrast, animals (r = 0.176, p = 0.020), food (r = 0.115, p = 

0.050) and vegetables (r = 0.317, p = 0.041) had positive relationships, implying that more 

memorable examples were more prototypical. A similar set of trends are observed when 

examining these relationships using object space typicality scores rather than behavioral scores 

(see supplement), where containers (r = -0.213, p = 0.029) and electronic devices (r = -0.232, p = 

0.047) showed negative relationships (e.g., more atypical containers are more memorable), while 

animals (r = 0.159, p = 0.034) and body parts (r = 0.473, p = 0.005) demonstrated more positive 

relationships. Overall, across all high-level categories, there were an equal number of positive 

and negative significant relationships, demonstrating further mixed evidence within the THINGS 

dataset. As with our other analyses, we observed similar patterns of results when using hit rate 

and false alarm rate in place of corrected recognition (see supplement). 

 Taking all findings into account, it is clear that memorability cannot be considered 

synonymous with either prototypicality or atypicality, as has been suggested in previous studies 

(e.g., Valentine et al., 1991; Bylinskii et al, 2015; Bainbridge, Dilks, & Oliva, 2017). Certain 

results collected using both object space derived and CNN derived typicality scores suggest a 

trend towards more prototypical stimuli being more often remembered, but the large number of 

counterexamples present across the different typicality scores and levels of analysis suggest that 

the relationship between memorability and typicality is likely more complex than a simple 

positive or negative association, with a strong variance from concept to concept.  

 

DISCUSSION 

 We analyzed a large, representative object image database to uncover what makes certain 

objects more memorable than others. We analyzed the roles of semantic and visual features and 

determined that semantic information more strongly influences what is remembered than visual 

information. We leveraged three complementary measures of object typicality to determine 

whether the most prototypical or most atypical images are best remembered and uncovered some 

evidence suggesting more prototypical items are more memorable, but also a high degree of 

variance across concepts and categories, suggesting that memorability is not just a measure of 

the typicality of an object or image. These findings shed new light on the determinants of what 

we remember and stand in contrast to previous studies that have claimed both that semantic 

information is not required to determine memorability (Lin et al., 2021) and that it is the most 

atypical items that are best remembered (Mohsenzadeh et al., 2019). 

Semantic Primacy of Memorability 



 

   
 

 

   
 

We analyzed the contributions of semantic and visual information to memorability to 

determine if the two types of information contribute differentially to the THINGS stimuli. Our 

results reveal a primacy of semantic information in explaining memorability, based on multiple 

regressions comparing the relationship of the entire object dimensional space to memorability. 

Even after equalizing the number of semantic and visual dimensions inputted to the model, 

88.02% of the variance in memorability captured by the space was exclusively from the top 9 

semantic dimensions. 

Previous findings of the ability of CNNs (Khosla et al., 2015) and monkeys (Jaegle et al., 

2019) to predict human performance on memorability tasks and examples of memory 

performance robust to semantic degradation (Lin et al., 2021) have led to the assertion that 

semantic knowledge is not required to make an image memorable. However, recent research has 

demonstrated that semantic similarity is predictive of memorability and lexical stimuli also 

display intrinsic memorability despite a lack of rich visual information (Xie et al., 2020; Madan 

et al., 2021). More recently, other studies have demonstrated that both visual and semantic 

information contribute differentially with regards to the typicality-memorability relationship, 

where visually atypical but semantically prototypical scene images may be the most memorable 

(Koch et al., 2020). Additionally, recent research in memorability prediction suggests that adding 

semantic information to a deep neural network improves the prediction of memorability scores 

(Needell & Bainbridge, in press). Our results demonstrate a strong semantic primacy in memory 

which lends additional support to recent findings demonstrating the importance of semantic 

information in determining what we remember.  

Beyond behavior, our findings align with the results from recent neuroimaging studies 

that have examined the neural correlates of memorability. One such study found a lack of 

memorability-related activation in the Early Visual Cortex (EVC), suggesting that areas involved 

in lower-level perception may not be sensitive to memorability (Bainbridge et al., 2017). This 

result, coupled with a study demonstrating faster neural reinstatement for highly memorable 

stimuli in the Anterior Temporal Lobe (ATL), an area typically associated with semantic 

processing (Xie et al., 2020), could potentially reflect a neural signature of the observed outsize 

influence of semantic information in determining what is best remembered. In this study, 

memorability for word stimuli could be significantly predicted by the semantic connectedness of 

these words, where words that exist at the roots of a semantic structure tended to be more 

memorable (Xie et al., 2020). This suggests that memorability could reflect our semantic 

organization of items in a memory network. Other work has also found sensitivity to 

memorability in late perceptual areas, such as the Fusiform Face Area (FFA) and the 

Parahippocampal Place Area (PPA) (Bainbridge et al., 2017; Bainbridge & Rissman, 2018), 

often associated with the patterns seen in late CNN layers (Yamins et al., 2014; Khaligh-Razavi 

& Kriegeskorte, 2014).  

Our findings are particularly surprising given the fact that the object space dimensions 

explained 61.66% of the variance in memorability. Unlike previous studies of memorability 

using single attributes (Bainbridge et al., 2017; Isola et al., 2014) or linear combination models 



 

   
 

 

   
 

with constrained stimulus sets (Bainbridge et al., 2013), we are able to explain a large degree of 

the variance in memorability, further highlighting the importance of semantic properties. The 

success of this model also means that this same model can be applied to selecting stimulus sets 

intended to drive memory in specific ways; given an object’s feature space, we can predict which 

items are likely to be remembered or forgotten. However, given the remaining unexplained 

variance, it is clear that there are still lingering questions about the determinants of what we 

remember and what we forget. 

Typicality as it Relates to Memorability 

Here, we observe that across our images, concepts, and categories, there are some by 

which the most prototypical are the most memorable, while there are others where the most 

atypical are the most memorable. These results suggest that memorability does not just reflect an 

object’s typicality, and it is not merely that memorable items are the most distinctive, atypical 

items. In fact, across multiple levels of analysis, we observe the opposite, where in general more 

prototypical items tend to be the most memorable.  

This is surprising, given that atypicality has long been thought to encapsulate the effect of 

memorability based on evidence from faces (Valentine, 1991) and scenes (Bylinskii et al., 2015), 

whereby more atypical items are thought to be easier to remember. Other studies have rebutted 

this claim by demonstrating that semantic similarity is predictive of memorability (Xie et al., 

2020). Furthermore, late visual areas regions show neural patterns reflective of our current 

behavioral findings, where memorable face and scene images show more similar neural patterns 

to each other (i.e., have more prototypical patterns), while forgettable images have more 

dissimilar neural patterns (i.e., more atypical patterns; Bainbridge et al., 2017; Bainbridge & 

Rissman, 2018). Further, Koch and colleagues (2020) found a complex relationship with 

typicality, where visually distinct and semantically similar images were most often remembered 

in an indoor-outdoor classification task. Our divergent findings could possibly be explained by 

the constrained stimulus sets utilized in prior studies. While prior work focused on narrow 

stimulus sets such as faces or a smaller sampling of scene images, our study examines a 

comprehensive, representative set of object images across the human experience. Our divergent 

findings from these earlier studies may suggest that while previous findings are reasonable 

extrapolations from the stimuli domains examined, they are not characteristic of memorability as 

a whole. When assessed at a global scale, it is neither prototypicality nor atypicality of an item 

that makes it memorable. 

The observation of variability in the typicality-memorability relationship may have 

important ramifications for neuroimaging research examining the neural correlates of 

memorability and memory more broadly. Observations of prototypicality in neuroimaging 

research reference a phenomenon called pattern completion as a means by which the 

hippocampus retrieves a complex representation from a given cue (LaRocque et al., 2013). This 

process depends on another hippocampal phenomenon termed pattern separation, where similar 

inputs are assigned distinct representations to facilitate the mnemonic discrimination required in 



 

   
 

 

   
 

memory (Ngo et al., 2020). Whole-brain fMRI analyses have revealed that different areas 

involved in memory utilize separated and overlapping information to facilitate memory 

(LaRocque et al., 2013), suggesting a potential role for both prototypicality (as represented by 

pattern completion) and atypicality (as represented by pattern separation) in facilitating memory. 

Future neuroimaging research could identify potential neural markers of prototypicality and 

atypicality and determine if the effects of semantic and visual information are dissociable at a 

neural level.  

Future Directions 

Recently, a large-scale functional magnetic resonance imaging (fMRI) dataset has been 

created using a subset of the THINGS images. This dataset, termed THINGS-fMRI, leverages 

the comprehensive sampling of picturable objects provided by THINGS to enable researchers to 

examine the neural bases of object perception. The dataset itself employs 8,740 of the 26,107 

THINGS images to cover 720 of the object concepts (Contier et al., 2021). The dataset itself 

comes from three participants, who completed 12 sessions of an oddball detection task on the 

THINGS images, in addition to localizer scans. The whole-brain data was collected using a 3T 

fMRI scanner with a 2mm functional resolution, a 1.5 second TR.  

We seek to extend our findings from behavior into the neural domain by leveraging the 

features present in the THINGS images to better understand a potential neural substrate of 

memorability. Of particular interest is the analysis of medial temporal lobe (MTL) regions and 

examining phenomena known as pattern separation and pattern completion as potential neural 

mechanisms underlying memorability effects and episodic memory more broadly. We intend to 

leverage the THINGS-fMRI dataset and the features employed in the current manuscript to 

assess whether a feature-based model can explain observed associations between pattern 

separation and completion with memorability in the MTL.   

Prior findings have implicated the MTL as a region underlying recognition memory 

(Brewer et al., 1998; LaRocque et al., 2013). Recently, several studies have demonstrated that 

memorability related information is represented in multiple ventral temporal regions such as the 

parahippocampal cortex (PHC), the posterior frontal gyrus (pFG), and the perirhinal cortex 

(PRC) and dissociable from individual memory effects, which are represented in prefrontal 

regions (Bainbridge, Dilks, & Oliva, 2017; Bainbridge & Rissman, 2018). These results suggest 

candidate regions of interest including the hippocampus and perirhinal (PRC) and 

parahippocampal (PHC) cortices as targets for analyses examining the neural mechanisms 

underlying what we remember and what we forget. 

 The roles of the hippocampus and other medial temporal regions in declarative memory 

have been examined for years (Tulving et al., 1998; Eichenbaum, 1999; Eichenbaum, 2001). 

More recently, researchers have begun to examine the role of these regions in facilitating 

episodic memory, sparking debate surrounding the nature of the contributions of various MTL 

structures, including the hippocampus, PRC, and PHC (Eichenbaum and Cohen, 2001; Hannula 

et al., 2006). One account, known as the complementary learning systems or CLS theory states 



 

   
 

 

   
 

that non-hippocampal MTL structures and the hippocampus employ different computational 

strategies for encoding and retrieving information that together support learning and memory 

(McClelland et al., 1995; Norman, 2010). These strategies are referred to as pattern separation 

and pattern completion, which serve to facilitate two critical functions of episodic memory: the 

ability to store a wide range of potentially overlapping memories while distinguishing between 

them (pattern separation), and the ability to holistically recall memories when a cue stimulus is 

perceived (pattern completion; Ngo et al., 2021).  

 Under the CLS model, MTL regions such as PRC and PHC are thought to build 

overlapping representations, while the hippocampus is thought to construct separated 

representations. A recent neural analysis suggests that projections from the dentate gyrus (DG) to 

the CA3 network of the hippocampus facilitate pattern separation, while entorhinal contributions 

and recurrent connections facilitate pattern completion (Ngo et al., 2021).  

 A 2013 study analyzing the CLS model to elucidate the role of medial temporal regions 

in episodic memory demonstrated a dissociation between the hippocampus and PRC and PHC 

through visualization of the representational similarity structure within each region of interest. 

By relating the similarity between image categories (bodies, faces, objects, and scenes) to 

memory performance on the images, the researchers concluded that memory was best predicted 

by greater cross-stimulus similarity in PRC/PHC and greater cross-stimulus distinctiveness in the 

hippocampus (LaRocque et al., 2013). The results of the study track with the CLS model’s 

account that the hippocampus receives pattern separated inputs while the PRC/PHC instead rely 

on overlapping representations.  

In the current manuscript, we demonstrate that a feature-based model accounts for 

approximately 62% of the variance in memorability across the object concepts, largely captured 

by semantic features. We also demonstrate that the relationship between memorability and 

typicality varies across object concepts. Taking these findings along with the discovery of 

memory performance being associated with higher similarity in PRC/PHC and greater 

distinctiveness in the hippocampus, we ask whether a feature-based model similar to the one 

employed in the current manuscript could explain the observed relationship between memory 

performance and differences in similarity/distinctiveness in these MTL regions. As memorability 

is quantified using memory performance scores across participants, this question essentially asks 

if a feature-based model could account for differences in pattern separation and pattern 

completion within these MTL regions that are sensitive to memorability effects. 

This study will be one of the first to relate memorability to a specific set of stimulus 

features within the brain using a highly representative set of object images. By employing the 

THINGS-fMRI dataset and the features presented in our behavioral analyses (object space 

dimensions, DNN activations, behavioral typicality scores), we can test if the predictive power of 

these features in the behavioral space will translate to a neural model of memorability.  

To attempt to answer these questions, we propose a series of analyses on the THINGS-

fMRI dataset. We begin with the generation of a per-stimulus Generalized Linear Model (GLM) 



 

   
 

 

   
 

to produce an activation map across the whole brain for each of the 8,740 images used in the 

fMRI task. This would allow for analyses at the individual image, object concept, and higher 

category levels as implemented within the main manuscript. This is accomplished using AFNI, a 

toolkit for the analysis of fMRI data. After preprocessing the data (slice time correction, motion 

correction, alignment of anatomical to functional data), we create an individual model for each of 

the 8,740 images, essentially creating a map of the response to a given image across the brain. 

Repeating this process for all images gives us a matrix containing a three-dimensional map 

across the volume of the brain for each stimulus. 

 With our whole brain data, we can implement certain quality checks to ensure no 

problems occurred in acquisition or preprocessing. Prior literature has demonstrated functionally 

defined regions within the brain that are preferentially active for certain categories of visual 

stimuli, such as the Fusiform Face Area (FFA, preferentially active for faces) and the 

Parahippocampal Place Area (PPA, preferentially active for scenes) (Kanwisher et al., 1997). 

Given that our dataset contains images of faces, scenes, and many other stimulus categories, we 

can run linear contrasts examining whether these regions display preferential selectivity for face 

stimuli / scene stimuli. If we are unable to find these effects, it is possible that issues during 

acquisition or preprocessing have corrupted the data. 

 Assuming the quality checks do not reveal any major issues with the whole-brain data, 

we can extract our regions of interest: the PRC, PHC, and Hippocampus. By employing 

FreeSurfer’s recon-all pipeline, we can automatically calculate the coordinates of each of these 

regions of interest based on anatomical images of each participant. With the coordinates for each 

region, we can then extract the beta values corresponding to each ROI for analysis in MATLAB.  

 Before we test what features may explain the association between similarity and 

distinctiveness in PRC/PHC and the hippocampus with memorability, we must confirm that this 

pattern holds true within the THINGS-fMRI data. We accomplish this through the 

implementation of Representational Similarity Analysis (RSA, Kriegeskorte et al., 2008). RSA is 

a method for analyzing the similarity in representations of information between multiple sources, 

such as a brain and a computational model, or two brains. In RSA, a matrix of pairwise similarity 

or dissimilarity scores referred to as a representational similarity matrix (RSM) is created for 

each source of interest. These matrices can then be correlated together to gauge the degree of 

similarity in representational structure between the sources. Using RSA, we can examine the 

similarity structure in each region of interest, as well as generate similarity scores for each 

stimulus by taking the mean of the correlations between each stimulus and all other stimuli of its 

object concept. This is the same method as employed in the manuscript to generate the object 

space derived typicality scores.  

 If our data also displays an association between similarity in PRC/PHC and 

distinctiveness in the hippocampus with memorability, we can then generate RSMs for each 

region of interest by correlating the activity in response to each image within the PRC, PHC, and 

hippocampus. These RSMs allow for the calculation of similarity scores for each image relative 

to all others within a given ROI. These RSMs can be correlated with RSMs generated from the 



 

   
 

 

   
 

visual and semantic object space dimension loadings used in the current manuscript, which 

allows for us to test if our prior finding of semantic features exerting stronger influence on 

memorability is reflected in their influence on the representations in the MTL. 

To test if a feature-based model can predict differences in similarity and distinctiveness 

in PRC/PHC and hippocampus, we begin by taking the mean Pearson correlation between the 

activity pattern in response to a given image and the activity patterns in response to all other 

images of its concept, which produces a similarity score for that image. We can then produce 

difference scores between the ROIs by subtracting similarity scores across ROIs for a given 

image. These difference scores serve as the dependent variable in our model. For predictor 

variables, we employ the corrected recognition scores collected for the current manuscript as 

well as the object space dimension loadings and DNN activations for each image in THINGS-

fMRI. This model will allow us to see if our feature-based model for predicting behavioral 

memorability scores is also able to explain the differences in PRC/PHC and hippocampal 

representations.  

 This analysis could represent a significant step forward in our understanding of the neural 

mechanisms underlying episodic memory, as well as suggesting a potential neural substrate of 

memorability in pattern separation and completion in medial temporal regions. This work 

integrates behavioral, neuroimaging, and computational methodologies to tackle a fundamental 

question in cognitive neuroscience: how we encode, navigate, and retrieve information within the 

brain.  

Conclusion 

Here, we have created the best performing model to date of the object features that are 

predictive of image memorability. From this model, we have observed a primacy of semantic 

information in determining what we remember. This underscores recent findings of the important 

role of semantic information in memory (Xie et al., 2020) and emerging work with CNNs that 

demonstrate a classification performance benefit when including semantic information into their 

models (Needell & Bainbridge, in press). 

 Beyond highlighting the roles of semantic and visual information, our results demonstrate 

that neither prototypicality nor atypicality fully explains what makes something memorable, and 

if anything, prototypical items tend to be the most memorable. Our findings challenge decades of 

prior research suggesting we best remember more atypical items (Valentine, 1991; Vokey & 

Read, 1992; Lee, Byatt, & Rhodes, 2001; Bylinskii et al, 2015; Lukavský & Děchtěrenko, 2017). 

This trend towards prototypicality is reflected in recent neuroimaging studies (Bainbridge et al., 

2017; Bainbridge & Rissman, 2018; Xie et al., 2020), suggesting that prototypicality may be 

related to the underlying neural mechanisms governing memory.  

Our findings shed new light on the features and organizational principles of memory, 

opening up a wide variety of potential follow-up studies. In fact, with this large-scale analysis, 

we have identified the stimulus features that govern memorability within and across a 

comprehensive set of objects, and make this data publicly available for use 



 

   
 

 

   
 

(https://osf.io/5a7z6/?view_only=675e901c176c4bec9c2540fc4981e5fe). This will allow 

researchers to make honed predictions of memory within these categories, or use these 

dimensions to design ideal stimulus sets. For example, our analysis found that animal images are 

highly memorable, while manmade, metal images are highly forgettable, and so memorability is 

an important factor to consider in studies looking at visual perception of animacy (Konkle & 

Caramazza, 2013). Further, given the success of our feature model in predicting memorability, 

this model could be potentially used to identify memorable images in other image datasets. 

While THINGS representatively samples concrete object concepts, there are additional stimulus 

domains beyond objects including dynamic stimuli such as movies, scenes, and non-visual 

stimuli that could be analyzed in the context of our results. With the understanding that neither 

prototypicality nor atypicality alone fully characterizes the relationship between typicality and 

memorability, there is the question of what biases certain stimuli towards one or the other.  

We uncover both a semantic primacy in explaining memorability and determine that the 

relationship between typicality and memorability is more complex than either prototypicality or 

atypicality alone. We provide this comprehensive characterization in pursuit of a nuanced 

understanding of the underlying determinants of memorability, and memory more broadly. 

Developing this understanding further will have implications far beyond cognitive neuroscience 

in realms such as advertising, patient care, and computer vision. With the development of 

generative models of stimulus memorability, it is more important than ever before to ground 

these models in an empirical understanding of what makes something memorable. 

METHODS 

 

Participants 

13,946 unique participants completed a continuous recognition repetition detection task 

on the THINGS images over AMT (see “Obtaining Memorability Scores for THINGS”). All 

online participants acknowledged their participation and were compensated for their time, 

following the guidelines of the National Institute of Health Office for Human Subjects Research 

Protections (OHSRP). Participants had to be located within the United States and have 

participated in at least 100 tasks previously on AMT with at least a 98% approval rating overall 

to be recruited for the experiment. Participants who made no responses on the task were removed 

from the data sample. 

 

Stimuli: THINGS 

To examine memorability across a broad range of object concepts, we utilized the entire 

26,107 image corpus of the THINGS database (Hebart et al., 2019, https://osf.io/jum2f/) for all 

of our experiments. The THINGS concepts span the wide range of concrete objects, including 

animate and inanimate, as well as manmade and natural concepts, such as aardvarks, goalposts, 

tanks, and boulders. These 1,854 concepts were generated from the WordNet lexical database 

through a multilevel web scraping process (Hebart et al., 2019). Each concept has a minimum of 

https://osf.io/5a7z6/?view_only=675e901c176c4bec9c2540fc4981e5fe
https://osf.io/jum2f/


 

   
 

 

   
 

12 exemplar images, though some have as many as 35. These concepts were sorted into 27 

overarching categories including animal-related, food-related, and body parts. These higher 

categories were generated using a two-stage AMT experiment.  

At the concept level, we utilized the representational embedding of each concept supplied 

by THINGS as the multidimensional space for our analyses (Hebart et al., 2020). The original 

49-dimensional behavioral similarity embeddings (Hebart et al., 2020) had been generated based 

on the 1,854 object concepts. Dimension names were generated by two pools of naïve observers 

in a categorization task (Hebart et al., 2020). The first pool of observers viewed the most heavily 

reflected dimensions along a given dimension of the space and generated potential labels from 

the images. The second pool of observers then narrowed down the list of labels until the top two 

labels remained for each dimension, which was then assigned as the name for that dimension. To 

derive 49-dimensional embeddings for each of the 26,107 images in the THINGS database, we 

used predictions from a deep neural network as a proxy. The prediction was carried out for each 

dimension separately using Elastic Net regression based on the activations of object images in 

the penultimate layer of the CLIP Vision Transformer (ViT, Radford et al., 2021), which has 

been shown to yield the most human-like behavior of all available CNN models in a range of 

tests (Geirhos et al., 2021). The Elastic Net hyperparameters were tuned and evaluated using 

nested 10-fold cross-validation, yielding high predictive performance in most dimensions (mean 

Pearson correlation between predicted and true dimension scores: r > 0.8 in 20 dimensions, r > 

0.7 is 32 dimensions, r > 0.6 in 44/49 dimensions). We then tuned the hyperparameters on all 

available data using 10-fold cross-validation and applied the regression weights to the CNN 

representations of THINGS images, yielding 49-dimension scores for all 26,107 images. 

Obtaining Memorability Scores for THINGS 

In order to examine memorability in the context of the THINGS space, we collected 

memorability scores for all 26,107 images (publicly available in an online repository:  

https://osf.io/5a7z6/?view_only=675e901c176c4bec9c2540fc4981e5fe). To quantify the 

memorability of each stimulus, each participant viewed a stream of images on their screen and 

was instructed to press the R key whenever they saw a repeated image. Each image was 

presented for 500ms, and the interstimulus interval was 800ms. For each repeated stimulus, there 

was a minimum 60-second delay between the 1st and 2nd presentation of that image, although 

this delay was jittered so that repetitions could not be predicted based on timing. The task also 

included easier “vigilance repeats” of 1-5 images apart, to ensure participants were paying 

attention to the task. The presentation of images was such that approximately 40 participant 

responses were gathered per image. Of the 1,854 concepts in THINGS, each concept was either 

represented with a single exemplar or not represented at all during a HIT in order to control for 

within-concept competition effects on memory performance. To avoid familiarity effects, 

participants were only allowed to participate again after a minimum delay of 2 weeks. 

Memorability was quantified in THINGS using corrected recognition (CR) scores for 

each image. Corrected recognition is calculated by subtracting the false alarm rate for a given 



 

   
 

 

   
 

stimulus from the hit rate for the same stimulus. Hit rate is defined as the proportion of correct 

repetition detections, whereas false alarm rate is defined as the proportion of incorrect detections. 

CR allows for a single metric that integrates information about both hit rate and false alarm rate. 

However, we also replicate all results using hit rate and false alarm rate separately (Supplemental 

Information). 

We ran a split-half consistency analysis to determine if participants were consistent in 

what they remembered. The analysis randomly partitioned participants into two halves and 

calculated a Spearman rank correlation between the CR scores for all images, as defined by the 

two random halves of participants. In other words, this analysis determines how similar the 

memory performance is for each image between these two independent halves of participants. 

This process was repeated across 1,000 iterations and an average correlation rho was calculated. 

This rho was then corrected using the Spearman-Brown correction formula for split-half 

correlations. If there is no consistency in memory performance across participants, we would 

expect a zero value for rho, whereas a high value would suggest that what one-half of 

participants remembered, so did the other. To estimate chance, we correlated one half of 

participants’ scores with those for a shuffled image order of the other participant half, across 

1,000 iterations. The p-value was calculated as the proportion of shuffled correlations higher 

than the mean consistency between halves. 

Semantic/Visual Contribution and Regression Model Analyses 

With memorability scores at the image level available, we can relate the memorability of 

THINGS stimuli with the associated representational space and determine the relative 

contributions of semantic and visual information to memorability. To accomplish this, we 

analyzed the embeddings of the 1,854 concepts in the 49 dimensions and separated them into 

semantic and visual dimensions. Of the 49 dimensions, 27 were identified as semantic, 9 as 

visual, and the remaining 13 as mixed (Table 1).  

To determine the effects of semantic and visual dimensions on memorability, we ran a 

series of multiple regression models. We began with an omnibus model predicting average 

memorability for each of the 1,854 concepts using the full set of 49 dimensions. This model 

assessed the total variance in memorability explained by the dimensions. We then utilized a 

model predicting memorability from the 36 dimensions classified as either semantic or visual to 

determine the differential contributions of each type of information. As there were more 

semantic dimensions than visual dimensions, we also ran a model that only used the 9 most 

heavily reflected semantic and 9 most heavily reflected visual dimensions to control for the 

overrepresentation of semantic information. In order to assess the potential variance explained by 

dimensions classified as mixed, we also break down the unique variance contributed by mixed 

dimensions to the full 49-dimensional model (see supplement). In all models we also analyzed 

the unique and shared variance contributions of the two types of information to memorability 

using variance partitioning. Unique semantic variance was calculated as the overall R2 value for 

the full model minus the R2 value for a model containing only the visual dimensions and vice 



 

   
 

 

   
 

versa for visual variance. The shared variance was calculated as the overall model R2 minus both 

the unique semantic and unique visual variance. 

In order to compare the performance of the omnibus model (all 49 dimensions) to the 

noise ceiling, we conducted a split-half regression analysis. Across 100 iterations, the participant 

sample was split into two random halves, and we ran two models. For the first model, we looked 

at the ability of the 49 dimensions to predict the memorability scores derived from the first half 

of participants. For the second model, we included an additional 50th predictor which was the 

memorability scores derived from the second half of participants, for the same images. This 

second model serves as a noise ceiling of memorability from which we can compare the first 

model. To see the proportion of variance explained in comparison to this noise ceiling, we then 

averaged the ratio of the R2 of the first model to the second model, across iterations. 

Memorability-Typicality Relationship Analyses 

To determine if memorability is highly correlated with prototypicality or atypicality, we 

assessed the relationship between typicality and memorability of the THINGS images. We 

conducted these analyses at two levels: the image level, mapping images to concepts, and the 

concept level, mapping concepts to categories. We utilized typicality scores from behavioral 

data, the object space dimensions, and the VGG-F convolutional neural network.  

For behavioral ratings, we employed the ratings collected as part of the THINGS 

database (Hebart et al, 2020). These ratings were collected for each of the 1,854 THINGS 

concepts and represent the typicality of the concept in relation to its higher category on a scale of 

0 to 10. For example, the typicality rating for stomach under the higher category body parts 

reflects how typical a stomach is as a body part (considering other body parts like legs or 

shoulders).  

We also utilized the object space dimensions to generate typicality scores for each image 

in relation to its concept. For each concept, we generated a similarity matrix containing the 

embedding values of the component images of that concept along all 49 dimensions. From that 

matrix, we can extract a single value for each image that is the average similarity (Pearson 

correlation) between that image’s dimensional embeddings and those of the other images of that 

concept, which we define as the typicality of that image. In other words, a low mean correlation 

would imply a highly atypical stimulus (distinct from other exemplars of the same concept), 

while a high mean correlation would imply a highly prototypical stimulus (very similar to 

exemplars of the same concept). We utilize the same paradigm to generate typicality values for 

each concept in relation to other concepts under a given category using an embedding of each 

concept in the object space and comparing its similarity to the embedding of all other concepts 

within the same category. 

Beyond behavior and the object space, we leveraged the VGG-F object classification 

CNN to synthesize typicality values for each of the 26,107 images in the THINGS dataset. Early 

layers of CNNs are more sensitive to low-level image features, such as edges, while later layers 



 

   
 

 

   
 

are more sensitive to higher-level and semantic features, such as animacy (Güçlü & van Gerven, 

2015). We can therefore extract information at these various points in the network to test the 

separate contributions of visual and semantic typicality.  

The paradigm for extracting typicality values was similar to the object space derived 

values: for each concept, similarity matrices were generated based on the flattened layer output 

values for all component images. The typicality for each exemplar was then calculated as the 

mean of its similarity (Pearson correlations) with all other exemplars in the concept. This 

measure tells us how similar a given exemplar is to all other exemplars in terms of its CNN-

predicted features. This procedure is repeated for every layer in VGG-16, resulting in 21 

typicality values for each image in relation to its object concept, one for each layer of VGG-16. 

To analyze the relationships between typicality and memorability across the THINGS 

dataset, we use behavioral, object dimension based, and CNN based typicality values at two 

different levels of analysis: image level and concept level. At the image level, we analyze the 

object dimension-derived and CNN-derived typicality values to examine their relationship to 

memorability across all 26,107 images in THINGS, which gives a single value for the overall 

typicality-memorability relationship of the THINGS images. Beyond the overall trend, we also 

examine the relationship within each of the 1,854 image concepts by correlating the typicality 

scores and memorability scores of their component images. This allows for the visualization of 

more nuanced relationships between the THINGS concepts. At the concept level, we perform a 

correlation between the behavioral typicality scores and CR scores and examine the resulting 

distribution of the relationships for each of the 27 higher categories.  
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Supplemental Figure 1. This figure was calculated exactly as Figure 1 in the manuscript except using hit rate (HR) and false 

alarm rate (FAR) rather than corrected recognition (CR). The left side corresponds to HR while the right side corresponds to 

FAR. As seen in Figure 1 in the main manuscript, we observe a diffusion of memorability across the concepts (A, B) and 

categories (C, D) of the object space regardless of whether CR, HR (A,C), or FAR (B,D) is used in place of corrected 

recognition. 

  



 

   
 

 

   
 

 
Supplemental Figure 2. This figure was calculated exactly as Figure 1c in the main manuscript except using hit rate 

(HR) and false alarm rate (FAR) rather than corrected recognition (CR). As in Figure 1c in the main manuscript, we 

observe that most of the object space dimensions are significantly correlated with (A) HR and (B) FAR, even when 

accounting for multiple comparisons. 

  



 

   
 

 

   
 

Supplemental Figure 3. This figure was calculated exactly as Figure 2 in the main manuscript but using hit rate rather than 

corrected recognition. (A) Regression output from all models. Utilizing HR as the dependent variable results in slightly higher 

performance across all models, leading to a 49-dimensional model capturing 40.14% of the variance in hit rate. (B) Venn diagram 

for the model excluding mixed dimensions. (C) The same type of Venn diagram as (B) but for the top 9 semantic and visual 

dimensions, leading to an 18-dimensional model.  

  



 

   
 

 

   
 

Supplemental Figure 4. This figure was calculated exactly as Figure 2 in the main manuscript but using false alarm rate rather 

than corrected recognition. (A) Regression output from all models. Utilizing FAR as the dependent variable results in slightly 

lower performance across all models, leading to a 49-dimensional model capturing 27.48% of the variance in false alarm rate. (B) 

Venn diagram for the model excluding mixed dimensions. (C) The same type of Venn diagram as (B) but for the top 9 semantic 

and visual dimensions, leading to an 18-dimensional model.  



 

   
 

 

   
 

 

Supplemental Figure 5. This figure is calculated the same as Figure 4a in the main manuscript except for the use of 

hit rate and false alarm rate rather than corrected recognition. (A) When testing with hit rate, a chi square analysis of 

the four quadrants of the scatterplot demonstrated significantly more concepts than chance showed a pattern where 

the most memorable items were prototypical in terms of both early and late layer features (χ2 = 38.588, p = 5.235 × 

10-10). Contrastingly, we find significantly fewer concepts that demonstrate “mixed” patterns where more 



 

   
 

 

   
 

memorable items demonstrated early layer prototypicality and late layer atypicality (χ2 = 10.638, p = 0.001), or the 

opposite pattern (χ2 = 19.460, p = 1.027 × 10-5). We found no significant difference from chance for concepts where 

the most memorable items were atypical across both early and late layer features (χ2 =0.670, p = 0.413). (B) when 

testing false alarm rate, we also observed significantly more concepts than chance showed a pattern where the most 

false-alarmable items were prototypical in terms of both early and late layer features (χ2 = 26.421, p = 2.745 × 10-7). 

We do not find a significant difference from chance for concepts where more false-alarmable items demonstrated 

early layer prototypicality and late layer atypicality (χ2 = 2.912, p = 0.088), or early layer atypicality and late layer 

prototypicality (χ2 = 0.011, p = 0.917). We also found no significant difference from chance for concepts where the 

most false-alarmable items were atypical across both early and late layer features (χ2 = 15.979, p = 6.406 × 10-5).  

  



 

   
 

 

   
 

Supplemental Figure 6. Examples of mixed typicality-memorability relationships across categories. (A) The 

correlation between behavioral ratings of typicality and memorability across the categories was strong for home 

décor, office supplies, and plants (where atypical concepts are more memorable) as well as animals, food, and 

vegetables (where prototypical concepts are more memorable). (B) The correlation between dimension-based scores 

of typicality and memorability across the categories. Containers and electronic devices display negative 

relationships, while animals and body parts demonstrate positive relationships. For both behavioral and dimension-

based visualizations (A & B), the overall average correlation between typicality and memorability is visualized as a 

dotted line. 

  



 

   
 

 

   
 

Supplemental Table 1. Summary of typicality results. This table reproduces the correlations between object-space 

derived typicality and corrected recognition, hit rate, and false alarm rate, as well as t-tests across all concepts for 

each metric. Compared to corrected recognition, we observe a similar pattern of results for hit rate, with an overall 

positive significant relationship between typicality and memorability, which is also reflected in a general trend 

towards more concepts displaying positive relationships. We also observe a positive overall relationship when 

examining the correlation between false alarm rate and object space-derived typicality, but we do not find a 

significant difference from a normal distribution with a mean of 0 when testing the concepts for relationships 

between false alarm rate and typicality. 

 

  



 

   
 

 

   
 

Supplemental Results 

Impact of “mixed” labelled dimensions on memorability 

 To assess the proportion of variance in memorability explained by dimensions classified 

as mixed (Table 1), we examine the unique and shared variance contributions of mixed, 

semantic, and visual dimensions in the omnibus 49-dimensional model. We see that mixed 

dimensions uniquely contribute 1.03% of the variance in corrected recognition captured by the 

model. 

Hit rate and false alarm rate analyses on CNN-derived typicality 

 When using hit rate rather than corrected recognition, we observe a similar pattern of 

results as in Figure 4a in the main manuscript. As with Figure 4a, we find that significantly more 

concepts than chance showed a pattern where the most memorable items were prototypical in 

terms of both early and late layer features (χ2 = 38.588, p = 5.235 × 10-10). We also find 

significantly fewer concepts than chance show a mixed pattern, where memorable items were 

determined by early layer prototypicality and late layer atypicality (χ2 = 10.638, p = 0.001), or 

the opposite pattern of early layer atypicality and late layer prototypicality (χ2 = 19.460, p = 

1.027 × 10-5). We found there was no difference from chance in the proportion of concepts that 

showed a pattern where the most memorable items were the most atypical items for both early 

and late CNN layers (χ2 =0.670, p = 0.413). 

 Using false alarm rate changes the pattern of results slightly from what is visible in 

Figure 4a and supplemental figure 4a. As with CR and HR analyses, we observed significantly 

more concepts than chance displayed a pattern where the most false-alarmable items were 

prototypical across early and late layer features (χ2 = 26.421, p = 2.745 × 10-7), but we did not see 

a significant difference from chance for either the concepts where the most false-alarmable items 

were visually prototypical and semantically atypical (χ2 = 2.912, p = 0.088) or where the most 

false-alarmable items were visually atypical and semantically prototypical (χ2 = 0.011, p = 

0.917). As before, we found no significant difference from chance for the quadrant where the 

most false-alarmable items were atypical across early and late layers (χ2 = 15.979, p = 6.406 × 10-

5). 

Relating CNN-derived typicality and memorability within CNN layers 

When examining the CNN derived typicality scores as they relate to memorability, we 

found no significant relationship (p > 0.985) between the typicality scores derived across the 21 

layers of the network and memorability. All 21 of the observed correlations failed to exceed a 

maximum magnitude of 0.05, suggesting that this image-computed measure of typicality is not a 

strong predictor of memorability. 

 


