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INTRODUCTION 

 Within each vertebrate there exists a complex microbial ecosystem, composed of millions 

of microorganisms that interact with each other, the host, and the outer environment. 

Microorganisms represent the vast majority of genetic diversity on the planet, driving critical 

ecosystem processes and influencing the evolutionary trajectories of many vertebrate species 

(Henry et al. 2021). Technological advancements in culture-independent molecular approaches 

have substantially increased our ability to identify and catalogue host-associated microorganisms 

(Caporaso et al. 2010, Caporaso et al. 2012). To illuminate key components in the natural history, 

overall biodiversity, and general health of wild animals, a more complete understanding of factors 

driving diversity and abundance of host-associated microbiota is necessary.  

 The research presented in this dissertation is motivated by the need for increased 

understanding of wild animal microbiota. Specifically, I aim to address how geographic and 

temporal variation influence change in the prevalence and diversity of host-associated microbiota 

in migratory birds. Animals that complete bi-annual migrations inherently experience substantial 

variety in diet and habitat throughout the annual cycle, as well as considerable physiological 

changes that often accompany extreme long-distance movements (Bauchinger et al. 2005, Bowlin 

et al. 2008). Change in diet, habitat, or physiological stress have previously been shown to impact 

the composition of host-associated microbiota of migratory animals, but these studies were 

generally limited in scope, focusing on a single time period within the annual cycle (Lewis et al. 

2017, Cao et al. 2020, Capunitan et al. 2020). Migratory birds represent an ideal natural experiment 

in which specific variables, such as change in diet or habitat, can be investigated for their influence 

on microbiota.  
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Through both active collection of new samples and the use of museum accessioned 

specimens, I expand the scope of host-associated microbiota in migratory birds by conducting 

several extensive surveys in which I determine the how changing geographies and time periods 

affect variation in microbiota. The purpose of this introductory chapter is to provide an overview 

of the three primary subject areas of my dissertation: wildlife microbiology, disease ecology, and 

the use of natural history collections in research on host-associated microbiota.   

 

Wildlife microbiology 

 Known collectively as the microbiome, the ecosystems of microbes that exist within 

vertebrates has quickly become recognized as a fundamental aspect of the host – stimulating 

immune system maturation, affecting behaviors, providing defense against pathogens, influencing 

mate choice and success, and directly impacting overall host health (Yeoman et al. 2012, 

Apajalahti and Vienola 2016, Broom and Kogut 2018, Davidson et al. 2020, Slevin et al. 2020, 

Taff et al. 2021).  Of particular interest are the microbes that exist within the gastrointestinal tract 

of vertebrates, colloquially termed gut microbiota, as this community appears to have the most 

substantial impact on host biology (Kinross et al. 2011). The majority of gut microbiota has been 

conducted on humans and model organisms, with nearly 90% of published work on mammals 

(Grond et al. 2018). Although this research has greatly expanded our cumulative knowledge of the 

microbiota, it is becoming increasingly clear that avian microbiomes do not behave in the same 

manner as mammalian microbiomes (Hird 2017, Bodawatta, Hird et al. 2021). This is 

hypothesized to be in part due to the evolution of flight and the resulting physiological adaptations 

to flight that have occurred within the gastrointestinal tract (Song et al. 2020). These physiological 

adaptations are especially evident in birds that undergo bi-annual long-distance flights as part of 
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their annual migratory cycle. Increased understanding of the avian-microbe relationships, 

including the impact of migration, can be achieved through temporally and geographically diverse 

surveys of microbiota. 

 Migratory birds experiencing substantial change in diet and habitat across the annual cycle 

may have corresponding shifts in host-associated microbial diversity. In birds, phenotypic 

flexibility associated with migration invokes numerous changes to the birds’ digestive systems, 

including atrophication of the intestinal tract (Piersma and Gill 1998, McWilliams and Karasov 

2001). These changes may reduce birds’ the overall abundance of colonized gut microbiota and 

promote increase presence of transient bacterial ingested from the local environmental pool, as 

suggested in a study of migratory passerines on stopover after crossing the Gulf of Mexico (Lewis 

et al. 2016). Exposure to different environmental microbial pools at stopover sites could artificially 

inflate avian gut microbial diversity as birds may acquire up to 25% of their gut microbiota from 

environmental sources (Chen et al. 2020).  Shifts in food sources and flocking behaviors 

throughout the annual cycle may similarly impact gut microbiota (Grond et al. 2018, Davidson et 

al. 2020). Comparisons of microbiota within the same host species across multiple periods of the 

annual cycle will reveal how variable the microbial abundance and diversity is over time and 

provide insight into specific factors driving this variation.  

 Exploring the impact of migratory bird movement on gut microbial dynamics provides an 

opportunity to enhance knowledge of the host-microbe relationship within the context of changing 

environments and a known, recurrent physiological stress. Previous research has indicated the 

environment and diet are more influential than host genetics in shaping avian gut microbiota, with 

host taxonomy playing a weakly significant role compared to abiotic factors (Hird et al. 2015, 

Grond et al. 2018, Capunitan et al. 2020, Song et al. 2020). Characterization of migratory bird 



 

 4 
 

microbiota across the annual cycle will best support identification of drivers of variation in 

diversity and abundance.    

 

Disease ecology 

 While the majority of host-associated microorganisms are mutualistic or commensalistic, 

some are parasitic and have detrimental effects on the host. Increased insight into host-associated 

microbiota will be achieved through studies of mutualistic, commesalistic, and pathogenic 

microbes within the same host systems.  A primary focus of disease ecology is to understand the 

distribution and abundance of pathogens across scales. This includes identifying ecological causes 

of disease patterns, for instance – how host population density influences pathogen transmission 

rates.  Insight into the ecology of bird populations is necessary for understanding of the 

epidemiology of bird-associated diseases.   

 Migratory birds can become long-distance vectors for numerous pathogenic microbes and 

are believed to be at least partially responsible for the broad geographic distributions of diseases 

that impact human health, including West Nile Virus, avian influenza and Borrelia burgdorferi, 

which can cause Lyme disease. Of particular interest are a group of pathogenic microbes in Order 

Haemosporidia, which include the causative agent of the disease malaria.  Haemosporidians infect 

nearly all terrestrial vertebrate, with especially detrimental effects on humans (Asghar et al. 2015, 

Galen et al. 2018).  Avian haemosporidians are globally distributed and are primarily classed 

within three genera: Haemoproteus, Plasmodium, and Leucocytozoon (Valkiūnas 2004). 

Prevalence of avian haemosporidians is highly variable in wild populations across the world 

(Louiseau et al. 2012, Lutz et al. 2015, Fecchio et al. 2021). Haemoproteus, Plasmodium, and 

Leucocytozoon share several traits, including near worldwide distribution, transmission via 
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arthropod vector, and frequent host switching (Valkiunas 2004). While they share those 

similarities, they differ in biogeographic distribution patterns and are vectored by different 

arthropods (Valkiunas 2004, Clark et al. 2014, Fecchio et al. 2021). One notable difference is that 

although Haemoproteus and Plasmodium can be found to infect nearly all terrestrial vertebrates, 

Leucocytozoon is so far only known from birds (Outlaw and Ricklefs 2011). Identifying patterns 

in pathogen prevalence within their host communities can yield insights into the forces that shape 

and determine complex host-pathogen associations (Dunn et al. 2010, Louiseau et al. 2010, 

Salkeld et al. 2013). This is especially true of vector-transmitted pathogens where host and vector 

density can impact transmission rates across individuals.  

 Research of avian haemosporidians has repeatedly demonstrated that host genetics and 

ecologies as well as environmental characteristics impact the prevalence and diversity in birds 

throughout the world. However, most of these studies focus on single locations or time periods. 

Investigations into the temporal dynamics of avian haemosporidians are lacking, with few studies 

spanning more than a single season or year. The ecological dynamics of host-pathogen systems 

often change over time, typified in many cases by systemic temporal variation in pathogen 

prevalence (Altizer et al. 2006). Long term datasets are crucial to understanding the temporal 

dynamics of natural populations, allowing for a systemic approach in identifying variability of 

prevalence and diversity over time. Logistical challenges associated with collecting the necessary 

samples for temporal studies often inhibit generating datasets necessary to assess temporal 

dynamics with statistical confidence. Understanding the dynamics of avian haemosporidians in 

migratory birds may elucidate mechanisms of pathogens which impact multiple avian communities 

across geographically disparate areas and throughout the annual cycle. 
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Natural History Collections 

 Housed with natural history museums are massive biorepositories spanning time and 

geography. Historically, vertebrate specimens consisted primarily of prepared skins or skeletons, 

used in studies driven by morphological variations. With the advent of sequencing technologies, 

preservation and accession of genetic specimens became common. In 2013, the concept of the 

extended specimen was introduced at the American Ornithological Union’s annual conference, 

which describes the numerous uses of a single specimen, enabled in large part by advancements 

in technology. Within the framework of the extended specimen, novel avenues of scientific inquiry 

opened (Webster 2017). Of relevance to this dissertation, was the increased use and preservation 

of museum specimens for research of host-associated microorganisms. This promoted research on 

host-associated microorganisms, including investigations into co-evolutionary dynamics of 

ectoparasites and their hosts, descriptions of new species of intestinal helminths, surveys of the 

prevalence and diversity of blood pathogens in communities of wild animals, and characterization 

of gut microbiota of vertebrates.  Museum accessioned specimens provide a powerful resource for 

establishing the spatial and temporal distribution of global biodiversity, including that of microbial 

communities.   

 

Conclusion 

In this dissertation, I present results from several extensive surveys of microbial 

communities and blood pathogens of migratory birds, focusing on how diversity and prevalence 

varies across time and geography. First, I examined the extent to which changing habitats impacted 

the within-individual composition of the gut microbiota of a migratory habitat specialist. Second, 

I characterized the microbiome of four species of widespread migratory birds on spring and fall 
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migration as well as the start of the breeding season. Using observations replicated over three 

years, I found that microbial community diversity is significantly different across different periods 

of the annual cycle, and community composition is more similar within than across years. Third, 

I generated a dataset of avian malaria and malaria-like pathogens from migratory bird specimens 

collected during spring and fall migration over a 24-year time period. I used hierarchical statistical 

modeling to infer periodicity in pathogen prevalence and density-dependent disease modeling to 

explain plausible transmission mechanisms. The overarching results from this research 

demonstrate that significant and often recurrent shifts occur in host-associated microbiota arise 

throughout the annual cycle and over multi-year periods.  
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1 Repeated sampling of individuals reveals impact of tropical and temperate habitats

 on microbiota of a migratory bird1  

 

1.1    ABSTRACT  

Migratory animals experiencing substantial change in diet and habitat across the annual cycle may 

have corresponding shifts in host-associated microbial diversity. Using automated telemetry and 

radio tags to recapture birds, we examined gut microbiota structure in the same population and 

often same individual of Kirtland’s Warblers (Setophaga kirtlandii) initially sampled on their 

wintering grounds in The Bahamas and subsequently resampled within their breeding territories 

in Michigan, USA. Initial sampling occurred in March and April and resampling occurred in May, 

June, and early July. The composition of the most abundant phyla and classes of the warblers’ 

microbiota is similar to that of other migratory birds. However, we detected notable variation in 

abundance and diversity of numerous bacterial taxa, including a decrease in microbial richness 

and significant differences in microbial communities when comparing the microbiota of birds first 

captured in The Bahamas to that of birds recaptured in Michigan. This is observed at the individual 

and population level. Furthermore, we found that 22 bacterial genera exhibit heightened abundance 

within specific sampling periods and are likely associated with diet and environmental change. 

Finally, we described a small, species-specific shared microbial profile that spans multiple time 

periods and environments within the migratory cycle. Our research highlights that the avian gut 

microbiota is dynamic over time, most significantly impacted by changing environments 

associated with migration. These results support the need for full annual cycle monitoring of  

__________________________ 

1 A version of this chapter has been published as: Skeen, H.R., N.W. Cooper, S.J. Hackett, J.M. 
Bates and P.P. Marra. 2021. Repeated sampling of individuals reveals impact of tropical and 
temperate habitats on microbiota of a migratory bird. Molecular Ecology 30(22): 5900-5916.  
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migratory bird microbiota to improve understanding of seasonal host movement ecologies and 

response to recurrent physiological stressors. 

 

1.2    INTRODUCTION  

A healthy gut microbiome is thought to be both resilient and flexible (Voolstra and Ziegler 2020, 

Bodawatta, Freiberga et al. 2021) and may be heavily affected by a variety of extrinsic and intrinsic 

factors, including host genetics, habitat, and diet (Hird et al. 2015, Rothschild et al. 2018). The 

composition of a healthy microbiome may change as animals undergo recurrent physiological 

stressors, such as migration or changing climates across seasons (Sommer et al. 2016, Carey and 

Assadi-Porter 2017, Risely et al. 2018). Increased understanding of both resilience and flexibility 

of gut microbial communities relating to recurrent physiological stressors can further elucidate 

host adaptation to repetitive stress. Here, we ask what changes and what remains consistent within 

the gut microbiota of a migratory bird species across multiple time points and locations within the 

annual cycle.  

 Species experiencing seasonal variation in habitat, diet, or physiological stressors often 

exhibit correlated alterations in their microbiota (Maurice et al. 2015, Sommer et al. 2016, Ren et 

al. 2017, Smits et al. 2017, Drovetski et al. 2018). Migratory animals may undergo seasonal 

fluctuations in metabolic needs that, in combination with changing habitats and diets, result in 

variable microbiota composition across their annual cycles, but the extent to which this occurs 

remains unclear (Jenni and Jenni-Eiermann 1998, Grond et al. 2018). Exploring the impact of 

movement of migratory birds on gut microbial dynamics provides an opportunity to increase 

understanding of the host-microbe relationships within the context of changing environments and 

a known, recurrent physiological stress. 
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 Migratory birds are exposed to a variety of habitats and associated novel environmental 

microbial suites across the annual cycle, which may impact overall gut composition. Recently, 

several studies have illustrated the effect that environment and movement can have on structuring 

the host microbiota (Hird et al. 2014, Wu et al. 2018, Grond, Santo Domingo et al. 2019). For 

example, the microbial community differed between the wintering and breeding grounds in 

migratory geese (Wu et al. 2018), between spring and fall migrants in two passerines (Lewis et al. 

2016), and between migratory and non-migratory barn swallows (Hirundo rustica; Turjeman et 

al. 2020). Additionally, Corl et al. (2020) showed that increased movement, with exposure to more 

varied environments, results in increased diversity of the gut microbiota in breeding barn owls 

(Tyto alba), and Lewis et al. (2017) found that host microbial communities of birds at a migration 

stopover site begin to converge with the local environmental microbial suite within 24 hours. 

Contradicting these results, a study of migratory red-necked stints (Calidris ruficollis) concluded 

that only 0.1% of gut microbiota are sourced directly from the environment, and that individual 

stints in different environments exhibited weak variation in microbial composition (Risely et al. 

2017). Further comparison of recent migrants to individuals that had remained on the non-breeding 

grounds for a full year identified the bacterial genus Corynebacterium as significantly more 

abundant in migratory individuals than non-migratory individuals (Risely et al. 2017). Similarly, 

Corynebacterium and the genus Mycoplasma were identified as more abundant between a 

comparison of migratory and non-migratory sympatrically occurring subspecies of barn swallows 

(Turjeman et al. 2020).  

 In addition to the potential impact of novel habitats associated with long-distance 

movement, physiological adaptations of migratory birds, such as intestinal atrophication, could 

further affect gut microbiota, possibly by reducing the number of/volume of bacteria that the birds 
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harbor (Grond et al. 2018) or by allowing functionally relevant bacteria to proliferate during active 

migration (Risely et al. 2018). In addition to environmental factors, host characteristics, such as 

diet (Song et al. 2020), species (Capunitan et al. 2020), and age (Kreisinger et al. 2017) may play 

additional roles in structuring the microbiota. 

Given the variability of gut microbiota, intrinsic variables such as host genetics, and strong 

environmental effects, it may be difficult to directly correlate variation in gut microbiota to 

ongoing biological processes, specific host traits, or environmental factors without temporal 

sampling across different time points of the annual cycle (Hird et al. 2014, Capunitan et al. 2020, 

Song et al. 2020). Here, we sampled individuals on their subtropical wintering grounds and 

recaptured them multiple times on their temperate breeding grounds to better understand local and 

temporal variability in gut microbiota by reducing sources of variability known to be associated 

with sampling different individuals and different populations (Flores et al. 2014, Hird et al. 2014, 

Baxter et al. 2015). 

Until now, no migratory songbird has been sampled at multiple time points and locations 

across their annual cycles. Migratory birds have complicated annual cycles that involve twice-

annual movements often spanning thousands of kilometers between stationary breeding and 

wintering periods. Once captured, researchers typically have no way to relocate or recapture the 

same individuals outside of the original capture site, especially for species with expansive 

wintering and breeding ranges and with populations that may number in the millions. This inhibits 

sampling from the same population, let alone the same individual, at multiple points in the annual 

cycle. As a result, one must attempt to measure and control for confounding factors, such as 

between population differences, and account for high inter-individual variability (Flores et al. 

2014, Hird et al. 2014, Baxter et al. 2015). This inability to study the same individuals across the 
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annual cycle has impeded identification and understanding of variation within birds associated 

with seasonal movement.  

 The Kirtland’s Warbler (Setophaga kirtlandii) provides an unusual opportunity for 

studying changes across the annual cycle in a migratory species. Their small population size as 

well as restricted breeding and wintering ranges (Cooper, Ewert, et al. 2019) make it feasible to 

relocate individuals across seasons (Cooper et al. 2018, Cooper and Marra 2020). Following 

substantial population declines, only 167 singing males were recorded in 1974 and again in 1987, 

based on breeding surveys (Kepler et al. 1996). Through extensive conservation management 

efforts, the population has increased to approximately 2,300 singing males of which 97% breed 

across a relatively small area in Michigan’s Lower Peninsula. This species winters primarily in the 

scrub forests of The Bahamas (Cooper, Ewert, et al. 2019), more than 2,000 km south of the 

breeding grounds. For this study, we radio-tagged individuals on the wintering grounds and then 

relocated and recaptured the same birds on the breeding grounds in Michigan through the use of 

automated telemetry towers. We used 16S rRNA next generation sequencing technologies to 

catalogue the bacterial communities of individuals. Our goals were to: (1) characterize the bacterial 

diversity of Kirtland’s Warblers at three distinct periods of the annual cycle at the population and 

individual level; (2) evaluate host sex, age, period of annual cycle, and location effect on 

abundance and diversity of gut microbiota; and (3) determine if a shared bacterial profile for 

Kirtland’s Warblers exists and if so, establish a species-specific pattern.  

 

1.3    MATERIALS AND METHODS 

 

1.3.1    Initial sample collection in The Bahamas 
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We captured Kirtland’s Warblers on Cat Island, The Bahamas, in March and April of 2017 and 

2018 using vocalization playback and mist nets. We classified individuals into two age categories 

(SY = second calendar year or ASY = after second year), sexed individuals following Pyle (1997), 

and attached a USGS metal band and three plastic, colored bands. We then fitted a coded radio-

tag (0.35g, Model = NTQBW-2, Lotek Wireless, Inc.) using a modified leg-loop harness (Rappole 

and Tipton 1991). Tags emitted coded pulses at regular intervals (29.3s), which allowed for 

individual identification through handheld or automated telemetry receivers (Taylor et al. 2017). 

After attaching the radio tags, we collected fecal samples by placing birds in a wax paper bag for 

up to ten minutes. We transferred fecal materials from the bag to Whatman FTA Cards (Whatman, 

Florham Park, NJ) using Whatman sterile swabs (Whatman, Florham Park, NJ). Following sample 

transfer, we stored FTA Cards in airtight containers at room temperature until transportation to 

and processing within the molecular laboratory. Whatman FTA Cards are stable long term at room 

temperature, therefore ideal for field work where traditional methods of flash freezing may be 

unavailable (da Cunha Santos 2018). The microbial composition recovered from fecal samples 

stored on FTA cards are comparable to that of flash freezing and storage at -20°C methods (Song 

et al. 2016). 

 

1.3.2    Relocation and recapture in Michigan 

We used 11 automated telemetry towers in Michigan erected as part of ongoing Kirtland’s Warbler 

management and research (Cooper et al. 2018, Cooper and Marra 2020) to detect tagged 

individuals as they arrived at the majority of breeding sites. Birds arrived between May 9 and June 

3. We downloaded tower data daily and used handheld telemetry to search the few areas not well 

covered by towers at least every three days. We used these data to determine arrival dates in 
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Michigan. Following initial detection, we used handheld telemetry to locate each individual’s 

territory and target them for recapture. Birds were captured an average of 7.7 (SD ± 8.1). days 

after their first detection in Michigan. We also attempted to recapture individuals towards the end 

of the breeding season in early July. In May of 2018, we also captured and sampled non-tagged 

Kirtland’s Warblers in Michigan to compare microbial variation in individuals known to be from 

Cat Island with birds that may have wintered on other islands. Regardless of timing, we used 

identical capture and sampling protocols as those used in The Bahamas (see above).  

 

1.3.3    Molecular Methods 

We isolated DNA from fecal samples stored on Whatman FTA Cards using the Qiagen DNeasy 

PowerSoil Pro Kit (Qiagen, Hilden, Germany) following the manufacturer’s extraction protocol. 

We included six blank negative controls to account for possible contamination during extraction 

and polymerase chain reaction (PCR). Following standardized procedures of the Earth 

Microbiome Project, we used PCR to amplify the V4 region of the 16S microbial small subunit 

ribosomal RNA (rRNA) gene using the EMP universal primers 515F/806R (Caporaso et al. 2012). 

We then used the Illumina MiSeq sequencing platform to obtain paired-end 150 base pair reads. 

We performed DNA extractions at the Field Museum of Natural History. All subsequent molecular 

work was conducted at the IGM Genomics Center of the University of California, San Diego.  

 

 

1.3.4    Sequence Processing 

We processed raw sequence data with the Quantitative Insights Into Microbial Ecology (QIIME2 

version 2019.1) pipeline (Caporaso et al. 2010, Bolyen et al. 2019). In QIIME2, following standard 
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demultiplexing and quality filtering, we generated amplicon sequence variants (ASVs) using the 

Divisive Amplicon Denoising Algorithm (DADA2) (Callahan et al. 2016). The DADA2 toolkit 

statistically infers sample sequences and implements quality control elements including exclusion 

of singletons, chimera removal, and sequence error elimination. Using a quality score threshold of 

33, we trimmed all sequences outside base pair positions 13 and 145. We based the threshold of 

quality score on visual assessment of the quality score plots and recommendations in Mohsen et 

al. (2019). We classified ASV taxonomies using the Silva reference database (Quast et al. 2012, 

version 132). After classification, we removed all ASVs identified as Archaea, chloroplasts and 

mitochondria. We aligned all sequences using MAFFT (Katoh and Standley 2013) and then 

inferred a phylogeny of all bacterial sequences with FastTree (Price et al. 2010). We identified 

bacterial contaminants with the R package decontam (Davis et al. 2018). We used six DNA 

extraction blanks processed in parallel with all other samples as negative controls with the default 

parameters for frequency-based contaminant determination. Quality control measures resulted in 

the removal of 10 libraries for poor DNA or PCR yield and 52 contaminant ASVs from the overall 

dataset. Of the 176 total fecal samples, 166 were analyzed in the final dataset.  

 

1.3.5    Normalization of microbial data  

Normalization of microbial data accounts for biases introduced by differing library size, technical 

variability and sampling bias. However, normalization can lead to data loss and may be detrimental 

to interpretation of results (McMurdie and Holmes 2014). To ensure that rarefaction does not bias 

results, we conducted all alpha and beta-diversity analyses on normalized and non-normalized 

data. For normalization, we rarefied all libraries to 7,000 reads. Results from the normalized data 

did not qualitatively differ from the non-normalized data. Therefore, we present and discuss the 
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results of rarefied data for diversity analyses. Identification of shared microbes across individuals 

and sampling periods was conducted on non-normalized data as rarefaction may be ill-suited for 

detection of ASVs with low abundance in individuals.  

 

1.3.6    Statistical Analysis  

We analyzed community alpha diversity using the natural log of observed ASV richness and the 

Shannon diversity index. For modeling diversity, we used a linear mixed model as implemented 

in the R package lme4 (Bates et al. 2007) and evaluated the importance of different variables, 

taking into account the repeated sampling of some birds. We included host age (SY or ASY), sex 

(male or female), year (2017 or 2018) and sampling period (The Bahamas, first recapture in 

Michigan, and second recapture in Michigan) as fixed effects and individual host as a random 

effect. Using lmerTest (Kuznetsova et al. 2015), we generated an ANOVA table from the linear 

model analysis, and subsequently conducted a posteriori pairwise tests to compare the three 

sampling periods. Additionally, we conducted a pairwise t-test to assess differences between 

tagged and randomly caught birds within the first recapture period of 2018. We tested for the 

influence of outliers, which appeared to cause a deviation from normality in ASV richness 

(Shapiro-Wilks test), by repeating the analyses with outliers omitted and obtained very similar 

results. We also tested for the effect of individual-level random effects with a likelihood ratio test 

comparing the model with and without individual ID as the random effect term, and we found 

individuals did not consistently differ from each other. Finally, we used a generalized additive 

model (GAM) to test the impact of time on alpha diversity of recently arrived birds in Michigan 

following the end of spring migration with the R package mgcv (Wood 2012). We used GAMs on 

Shannon diversity index and the natural log of observed ASV richness of individuals that had been 
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present in Michigan for nine days or less. We determined the day of arrival in Michigan from tower 

data. We applied the GAM to fit a smoothed curve for days after arrival in Michigan, the predictor 

variable, to the estimate of variance explained in the alpha diversity metric, the response variable. 

We determined optimal smoothing parameters for our GAM by examining the minimized 

generalized cross-validation score of the GAM for all possible smoothing parameters (k = 3-10). 

The GAM estimated a smoothing function of k = 3, though all possible k values produced results 

that are effectively identical. Results presented here, including in Figure 1.3, are from k = 3 for 

both observed ASV richness and Shannon diversity index.  

To examine community differences in the microbiome (beta diversity), we applied 

permutational multivariate analysis of variance (PERMANOVA) of Bray-Curtis dissimilarity and 

unweighted UniFrac distances, calculated among individual samples (Anderson 2014). For 

variables that showed significant differences in the PERMANOVA analyses, we conducted an a 

posteriori test to assess differences in dispersion or centroids using PERMDISP. We visualized 

beta diversity of significant variables using non-metric multidimensional scaling (nMDS) 

ordination of the Bray-Curtis measurements. Diversity calculations were implemented using the R 

packages vegan and phyloseq (Oksanen et al. 2007, McMurdie and Holmes 2013).  

Finally, to ask which taxa differ in abundance across sampling periods, we implemented 

analysis of composition of microbes with bias correction (ANCOM-BC; Mandal et al. 2015, Lin 

and Peddada 2020). ANCOM-BC uses the underlying structure of the microbiota data to identify 

differentially abundant taxa between categories while controlling for false discovery rates. This 

method applies a library-specific offset term estimated from the observed abundance which is 

incorporated into a linear regression model, providing the bias correction. We used the R package 
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ANCOMBC to test for differences in abundance of bacterial genera with a significance of p <0.05 

with Bonferroni corrections (Lin and Peddada 2020). 

 

1.3.7    Shared microbial profile 

We identified a common, species-specific and temporally persistent microbial profile for 

Kirtland’s Warblers following Risely (2020). We defined the species-specific shared microbial 

profile as ASVs present in over 50% of all individuals in each of the three sampling periods 

(Astudillo-García et al. 2017, Grond et al. 2017). We studied the shared microbial profile at 

multiple taxonomic levels using Phylocore (Ren and Wu 2016). We also identified a temporally 

persistent microbial profile in birds sampled in triplicate, defined as ASVs found at all three 

sampling periods within the same bird (Shade et al. 2012). We calculated the proportion of 

temporally persistent ASVs to those that are transient and not found at all three sampling periods 

to identify the average proportion of ASVs that are retained over time.  

 

1.4    RESULTS  

We collected a total of 166 fecal samples from 116 Kirtland’s Warblers at locations throughout 

Cat Island, The Bahamas (n = 92), where we collected 92 samples, and Michigan’s Lower 

Peninsula (first recapture n = 43, second recapture n =18). Thirty-four birds were sampled twice, 

once during initial capture in The Bahamas and a second time during first recapture in Michigan. 

Of those birds, nine individuals were sampled a third time during the second recapture period in  
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Table 1.1 Individuals sampled per time period, including age (SY = second calendar year, ASY = 
after second calendar year) and sex (M = male, F = female) breakdown. Numbers reflect libraries 
included in analyses and do not include those removed for poor sequencing or PCR yield.  
 

    Samples Age Sex 

Sampling Period Date Collected SY ASY Unk. M F Unk. 

Initial Capture 
(CIB) 

March 29 –  
April 16, 2017 41 18 22 1 38 3 0 

 

March 23 –  
April 24, 2018 51 37 14 0 36 15 0 

First Recapture 
(MI1) 

May 20 –  
June 6, 2017 19 10 9 0 19 0 0 

  
May 13 –  
June 26, 2018 24 18 6 0 23 1 0 

Non-tagged 
Birds (MI1) 

May 13 - 20, 
2018 13 6 6 1 12 0 1 

Second  July 2 - 10, 2017 8 4 4 0 8 0 0 
Recapture (MI2) July 1 - 11, 2018 10 7 3 0 8 2 0 

 Total 166 100 64 2 144 21 1 

 

 

Michigan (Table 4.1). Additionally, 13 non-tagged Kirtland’s Warblers were sampled in May 2018 

in Michigan. Our final dataset is composed of 166 sequenced libraries (Table 1.1) which totaled 

5,007,844 reads, with an average 30,168 reads per library (range: 7,022 – 100,856). We detected 

7,426 unique ASVs across all sampled with a mean of 107.3 ± 96.7 (standard deviation [SD]) per 

library.  

 

1.4.1    Bacterial community composition and diversity 

Across all samples, bacteria from 37 phyla were detected. Firmicutes, Proteobacteria, 

Bacteroidetes, and Actinobacteria composed 91.13% of the total reads; 5.8% of the reads belonged 

to the 33 remaining phyla and 3.07% of reads did not align to any known bacterial phyla (Figure 

1.1A). Clostridia (Phylum Firmicutes), Gammaproteobacteria (Phylum Proteobacteria), and 

Bacteroidia (Phylum Bacteroidetes) were the most abundant classes, representing 70.16% of all  
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Figure 1.1 Relative abundance of bacterial phyla. (1.1A) Stacked barplots showing the relative 
abundance of each phylum with each column representing one individual sample, ordered by day 
of capture and separated by sampling period. Phyla with total abundance less than 1% and 
unclassified phyla are represented by gray. (1.1B) Relative abundance boxplots of the five most 
common phyla per individual by sampling period representing the change in relative abundance 
from Cat Island, The Bahamas (CIB) to the first Michigan recapture period (MI1) and the second 
Michigan recapture period (MI2). Individual points represent the relative abundance of each phyla 
per individual per sampling period. Significance levels are pairwise comparisons between 
sampling periods are shown (ns: p>0.05; * p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001). 
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Table 1.2 Results of the linear mixed model analyses of alpha diversity values for observed ASV 
richness (1.2A) and Shannon Diversity Index (1.2B). Model factors include sex (male or female), 
age (second year or after second year), year (2017 or 2018), and sampling period (initial capture 
in The Bahamas, first recapture in Michigan, or second recapture in Michigan). Asterisks denote 
statistically significant results of model, p < 0.05.  
 
Table 1.2A Alpha diversity comparisons of Observed ASV Richness 

Model factors Sum Sq Mean Sq F value Pr(>F) 

Sex  0.001 0.001 0.027 0.871 
Age <0.001 <0.001 0.001 0.970 
Year 0.080 0.080 2.003 0.160 

Sampling Period 1.178 0.589 14.764 <0.001* 
 
Table 1.2B Alpha diversity comparisons of Shannon Diversity Index 

Model factors Sum Sq Mean Sq F value Pr(>F) 

Sex  <0.001 <0.001 0.000 0.987 
Age 0.140 0.140 0.382 0.538 
Year 0.557 0.557 1.524 0.220 

Sampling Period 21.348 10.674 29.221 <0.001* 
 

reads. The mean abundance of most phyla and classes differed between initial sampling in The 

Bahamas and subsequent samplings in Michigan (Figure 1.1B, Table 4.2). The birds shifted from 

a Firmicutes dominated microbiota in The Bahamas (mean abundance per individual 39.82% [SD, 

±13.97%]) and Michigan following arrival (38.12% [SD, ±16.41%]) to Proteobacteria as the most 

abundant phylum in the second Michigan recapture period (47.07% [SD, ±27.90%]). Bacteroidetes 

and Actinobacteria were also proportionally more  

abundant in The Bahamas than in the second Michigan recapture period. Notably, Cyanobacteria 

represented 1.91% (SD, ±5.93%) of the total microbiota in The Bahamas, but decreased to 0.05% 

(SD, ±0.23%) by the second recapture period in Michigan.  

Alpha diversity was not significantly affected by year, host age or host sex (Table 1.2). 

However, the three sampling periods significantly differed (Type III ANOVA with Satterthwaite’s 
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method; observed richness: F2,116.34 = 14.76, P <0.0001; Shannon diversity: F2,126.91 = 29.22, P 

<0.0001). All Bonferroni corrected pairwise comparisons on the fitted values from the linear model 

were significantly different from each other (observed: Bahamas vs. each recapture period both P 

<0.0001, first vs. second recapture period, P = 0.002; Shannon diversity: all comparisons: P  

<0.0001). Birds in The Bahamas showed higher bacterial diversity compared to either recapture 

period in Michigan, demonstrated through a comparison of all samples (Figure 1.2A) as well as 

with paired sampling of the same individuals (Figure 2B). In the birds sampled in triplicate, alpha 

diversity varied between first and second Michigan recaptures (Figure 1.2C). A comparison of 

tagged and randomly captured birds in the first Michigan sampling period of 2018 revealed no 

significant differences in alpha diversity (pairwise t-test; observed: p = 0.13, Shannon diversity: p 

= 0.22). Generalized additive models showed that 38.4% of the deviance in observed diversity (P-

value = 0.004) and 10.8% of the deviance in Shannon diversity measures (P-value =0.354) could 

be explained by amount of time spent in Michigan following arrival after spring migration. In the 

27 individuals that were found within nine days of arrival to the breeding grounds, we observed a 

decrease in alpha diversity through the first four to five days followed by an increase in alpha 

diversity through the ninth day (Figure 1.3), with each bird represented once in the analysis.  

 Our results indicate that beta diversity was not significantly affected by age or sex of the 

birds within the full dataset or individual sampling periods (Table 1.3), with the exception of age 

in the second Michigan resampling period (unweighted UniFrac: PERMANOVA p = 0.0128, 

PERMDISP p = 0.2213). Community composition of the microbiota significantly differed by  

year in the full dataset and at each sampling period (Table 1.3, Figure 1.4A, Figure 1.5). 

Additionally, our PERMANOVA results suggest that microbiota composition differed 

significantly between sampling periods (Bray-Curtis: p = 0.0002, R2=0.025; unweighted UniFrac: 
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Figure 1.2 Alpha diversity measurements of amplicon sequence variants (ASVs) including 
observed ASV richness (log transformed, top row) and Shannon diversity index (bottom row) 
Boxplots of alpha diversity at each sampling period (Column A). Individual points represent the 
alpha diversity measure of the individual at that period. Significance levels are pairwise 
comparisons between sampling periods are shown (ns: p>0.05; * p<0.05; ** p<0.01; *** p<0.001; 
**** p<0.0001). Alpha diversity change over time in the individuals sampled two (Column B) or 
three times (Column C). Each line connects the measurements of the same individual between the 
respective sampling periods. Continuous lines represent a negative change in alpha diversity and 
dotted lines represent a positive change.  
 

 



 

 24 
 

 
Figure 1.3 Generalized additive model smoothed time series comparing diversity measures 
(observed richness, top panel; Shannon diversity Index, bottom panel) against day(s) after arriving 
in Michigan. Each dot represents the diversity measure of an individual bird. The blue line 
represents the moving average change in diversity over time with the gray area corresponding to a 
95% confidence interval. 
 

p = 0.0001, R2=0.024), though the significant unweighted UniFrac result can be explained through 

variation in spread of the sample composition, rather than with significantly different centroids 

such as with the Bray-Curtis dissimilarity matrix (PERMDISP; Bray-Curtis p = 0.7104, 

unweighted UniFrac p = 3.71e-6). This indicates that although the abundances of microbiota are 

significantly different during sampling periods, the taxonomic variation of bacterial lineages 

present are not. The effect of sampling period on the gut microbiota explained 2.5% and 2.4% of 

the variation in microbiota composition for Bray-Curtis and unweighted UniFrac respectively. 

Taken together, all variables tested (Sampling period, Year, Sex, Age) explained less than 5% of 

the total variation in the microbiota (Bray-Curtis: 4.91%, unweighted UniFrac: 4.6%). No 

consistent changes were observed in the beta diversity of the birds sampled in triplicate (Figure 

1.4B). 
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Table 1.3 Results of permutational multivariate analysis of variance (PERMANOVA) tests 
indicating if ASV beta diversity measures are significantly different for the tested variable based 
on Bray-Curtis dissimilarity (1.3A) and unweighted UniFrac distance metrics (1.3B). Results 
reported for full dataset and within sampling periods for variables year, sex, and age. Asterisks 
denote statistically significant results of PERMANOVA with Bonferroni correction, p < 0.05. 
PERMDISP analysis results reported when PERMANOVA results significant. All tests conducted 
with 999 permutations.  
 
Table 1.3A PERMANOVA Results with Bray-Curtis dissimilarity 

  PERMANOVA PERMDISP 

Variable  Pseudo-F R2 Pr(>F) f-value P-value 

Sampling Period  2.058 0.025 <0.001* 0.343 0.710 
Year (full dataset) 1.900 0.011 0.002* 1.659 0.200 

Year (CIB Only) 1.485 0.016 0.019* 0.936 0.336 
Year (MI1 Only) 2.474 0.044 <0.001* 0.304 0.583 
Year (MI2 Only) 2.223 0.172 0.003* 0.000 0.984 

Sex (full dataset) 1.203 0.007 0.137   
     Sex (CIB Only) 1.035 0.011 0.345   

 Sex (MI1 Only) 1.169 0.216 0.482   
 Sex (MI2 Only) 1.425 0.082 0.082   

Age (full dataset) 0.929 0.006 0.595   
     Age (CIB Only) 0.927 0.010 0.681   
     Age (MI1 Only) 0.926 0.017 0.586   

 Age (MI2 Only)  1.020 0.060 0.343   
 

Table 1.3B PERMANOVA Results with unweighted UniFrac distances metrics 

  PERMANOVA PERMDISP 

Variable  Pseudo-F R2 Pr(>F) F P-value 

Sampling Period  2.001 0.024 <0.001* 13.514 <0.001 
Year (full dataset) 1.314 0.008 0.121   

Year (CIB Only) 2.027 0.022 0.003* 0.180 0.673 
Year (MI1 Only) 1.295 0.025 0.003* 0.7258 0.398 
Year (MI2 Only) 1.541 0.088 0.007* 0.001 0.974 

Sex (full dataset) 1.159 0.007 0.074   
Sex (CIB Only) 0.939 0.010 0.737   
Sex (MI1 Only) 0.862 0.016 0.695   
Sex (MI2 Only) 0.862 0.016 0.695   

Age (full dataset) 1.131 0.007 0.099   
Age (CIB Only) 0.887 0.010 0.925   
Age (MI1 Only) 1.279 0.023 0.013* 1.532 0.221 
Age (MI2 Only)  0.942 0.056 0.615   
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Figure 1.4 Non-metric multidimensional scaling (nMDS) ordination of Kirtland’s Warbler gut 
microbiome community by sampling period, compared using Bray-Curtis dissimilarity (stress = 
0.124, left panel). Ellipses show 95% confidence intervals around the centroid of each sampling 
period.  Ordination of individual birds sampled in triplicate placed within the nMDS space of all 
samples, highlighting intra-individual change over time (right panel).  
 

Across the three sampling periods, 22 bacterial genera were identified by ANCOM-BC as 

differentially abundant, with the majority being significantly more abundant in The Bahamas 

(Figure 1.6, Table 4.3). Ten genera in Phylum Actinobacteria were elevated in The Bahamas with 

one genus, Streptomyces, at higher abundance in the second recapture period in Michigan. Five 

genera of Phylum Firmictures were significantly more abundant in individuals from The  

Bahamas. Bryocella (Phylum Acidobacteria) was found at higher frequency in the first Michigan 

sampling period. Phylum Proteobacteria had genera differentially and significantly abundant at all 

three sampling periods, with Aureimonas, Lysobacter and an uncultured genus of Beijernickiaceae 

at elevated abundances in The Bahamas, Candidatus Hamiltonella in the first Michigan sampling 

period, and Serratia at the second Michigan sampling period.  
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Figure 1.5 Non-metric multidimensional scaling (nMDS) ordination of Kirtland’s Warbler gut 
microbiome community by sampling period and year, compared using Bray-Curtis dissimilarity. 
Ellipses show 95% confidence intervals around the centroid of each sampling year. 
 

1.4.2    Shared microbial profile 

We identified 28 ASVs as representing the species-specific shared microbiota of Kirtland’s 

Warblers (Table 4.4). Two ASVs were from genera Bifidobacterium and Collinsella of Phylum 

Actinobacteria. The genus with the most shared ASVs was Bacteroides (Phylum Bacteroidetes) 

with eight. Fourteen ASVs are members of Firmicutes and are from genera Blautia (1 ASV), 

Eubacterium eligens (1 ASV), Eubacterium hallii (2 ASVs), Fusicatenibacter (1 ASV), 

Roseburia (2 ASVs), Faecalibacterium (3 ASVs), Subdoligranulum (2 ASVs), and two ASVs 

unclassified at the generic level. Finally, four ASVS from Phylum Proteobacteria are shared with  
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Figure 1.6 Analysis of composition of microbiomes with bias-correction (ANCOM-BC) identified 
bacterial genera that were differentially abundance at sampling periods. Bars correspond to the 
effect size (log fold change) of relative abundance of each genera, with negative values associated 
with an increase in abundance in The Bahamas (both panels) and positive values associated with 
an increase in abundance in the first recapture period (A) or second recapture period (B) in 
Michigan. Black bars represent the 95% confidence intervals. Adjusted p-values and confidence 
bounds can be found in Table S5. 
 

one ASV from each genera Ralstonia, Sutterella, Escherichia-Shigella and Alkanindiges. We also 

identified the temporally persistent ASVs in the birds sampled at all three sampling points. 

Individuals retained 18-26 ASVs, present at each sampling period, which represented an average 

of 25.06% (range: 8.58%-50.00%) of ASVs detected per individual per time point.  

 

1.5    DISCUSSION  

Significant variation in both the diversity and community composition of Kirtland’s Warblers 

microbiota was observed in individuals and the population as birds migrate from their wintering 

grounds in The Bahamas to breeding territories in Michigan. Repeated sampling at multiple points 
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across the annual cycle was only possible because we were able to capture, sample, and radio-tag 

individuals on the wintering grounds and then use automated telemetry to relocate the same 

individuals thousands of kilometers away on the breeding grounds (Cooper and Marra 2020). 

Through the resampling of individuals we removed potential biases associated with sampling 

multiple populations. Therefore, the effects observed can be attributed to true changes within 

individuals and our study population. We found that the overall diversity of the microbiota differed 

significantly between sampling periods and warblers on their wintering grounds had a significantly 

different and more diverse community of gut microbiota than those on their breeding grounds. We 

also documented a common, shared microbial profile of Kirtland’s Warbler that persisted 

throughout multiple portions of the annual cycle.  

 

1.5.1    Community composition 

The overarching composition of Kirtland’s Warbler microbiota is consistent with that of most wild 

bird surveys to date, with members of Phyla Bacteroidetes, Firmicutes, Proteobacteria, and 

Actinobacteria comprising the majority of all bacteria detected (Dewar et al. 2014, Lewis et al. 

2016, Grond et al. 2018). However, the relative abundances of all phyla changed, sometimes 

dramatically, as the birds migrated from The Bahamas to Michigan and over time in Michigan. 

Shifts in major bacterial taxa have been observed previously in migratory birds throughout 

different points of the annual cycle (Kreisinger et al. 2015, Lewis et al. 2016), though this is the 

first study to resample the same individuals at different points in the annual cycle of a migratory 

passerine. Population and individual level variation across the annual cycle may reflect difference 

in presence or abundance of environmental bacteria (Wu et al. 2018) and/or responses to altered 

diets (Góngora et al. 2021) that in turn favor some bacteria over others or vary with host 
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characteristics and requirements (Kers et al. 2018). Below, we consider plausible examples of 

each.  

 

1.5.2    Environmental effect 

The avian gut microbiota frequently reflects the local environment (Hird et al. 2014, Hird et al. 

2018, Gillingham et al. 2019, Grond, Santo Domingo et al. 2019, Cao et al. 2020, but see Risely 

et al. 2017), even in cases when migratory birds maintain narrow dietary niches throughout the 

annual cycle (Wu et al. 2018). We observed evidence of environmental sourcing of 

microorganisms within the gut microbiota of Kirtland’s Warblers. Cyanobacteria, found in marine 

and brackish waters (Sivonen 1996), was common in birds in The Bahamas but nearly absent from 

most individuals in Michigan. Cyanobacteria has previously been found in the gut microbiota of 

island birds (García-Amado et al. 2018) and is known to be acquired through food (Birrenkott et 

al. 2004). Kirtland’s Warblers likely acquire environmentally derived Cyanobacteria in The 

Bahamas via food consumption, as most birds were captured within 2km of the ocean and much 

of the groundwater on the island is brackish. The most common class of Cyanobacteria detected 

in Kirtland’s Warblers, Oxyphotobacteria, is an oxygenic phototroph (Shih et al. 2017). 

Oxyphotobacteria has previously been described in an avian host but is unlikely to provide a host 

associated function, suggesting the presence of this class is transient and the result of 

environmental sourcing (Zhu et al. 2020). In addition to Oxyphotobacteria, we detected several 

common environmental, soil-associated bacterial genera, including Acitomycetospora, 

Aureimonas, Solirubrobacter and Nocardioides, as more abundant in birds in The Bahamas (Topp 

et al. 2000, Janssen 2006). The presence and abundance of various groups of bacteria associated 
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with The Bahamas when compared to Michigan indicate a strong environmental effect on the gut 

composition of Kirtland’s Warblers.  

 Variation in microbial community composition of birds is associated with a variety of 

intrinsic and extrinsic factors, including diet, host genetics, and the environment. Across all 

samples, we found that sampling period, including movement from The Bahamas to Michigan, 

accounted for 2.5% (Bray-Curtis) and 2.4% (unweighted UniFrac) of the variation observed. This 

proportion of dissimilarity between locations is smaller than reported in previous studies (Risely 

et al. 2017, Grond, Santo Domingo et al. 2019) yet is the most significant explanatory factor for 

observed differences in community composition. Our results contrast with a study which compared 

the microbiota of co-occurring migratory and resident red-necked stints which identified only 

slight compositional variation between distinct environments (Risely et al. 2017). This indicates 

that the response of the avian gut community is not consistently or uniformly impacted by the local 

environmental suite of microbes.  

During migration birds are exposed to varying environments at stopover sites where they 

could acquire novel microbes (Lewis et al. 2017), possibly resulting in temporarily inflated 

diversity. However, it is unknown if microbial diversity increases or decreases during active 

migration or how the microbiota changes following arrival at breeding grounds. Possible 

adaptations to long distance flight, such as relatively shorter intestinal length and atrophication of 

intestines during active migration, might result in decreased microbial diversity (McWilliams and 

Karasov 2005, Caviedes-Vidal et al. 2007). Using the ability to determine what day individuals 

arrive in Michigan following migration, we observed variation in microbial diversity over the first 

nine days following the end of migration, including a slight decrease over the first three days before 

slowly increasing through day nine. During the first few days at their breeding grounds birds may 
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shed transient microbes acquired at stopover sites. This suggests that during spring migration 

microbial diversity increases due to exposure at stopover sites rather than decreases as an 

adaptation to long-distance flight. However, sample size per day is small and additional research 

with larger sample sizes are needed to further assess these results. 

Gut microbiota are dynamic, displaying influence of novel microbial pools within 24-48 

hours of exposure (Lewis et al. 2017, Grond et al. 2019, Capunitan et al. 2020). Two of our 

findings further support rapid acclimation to local microbiota. First, we observed no significant 

variation in the gut microbial diversity in birds sampled during the first recapture period in 

Michigan when comparing the microbiota of birds known to be from Cat Island and the 12 non-

tagged birds that may have wintered on other islands. This implies rapid turnover of microbiota 

sourced from the local Michigan habitat. Second, we observed significant variation in beta 

diversity between 2017 and 2018 in the full dataset, as well as within each sampling period (Table 

1.2, but for example: PERMANOVA of first Michigan recapture period: Bray Curtis p <0.001, R2 

= 0.044; unweighted UniFrac p=0.003, R2=0.025). Similar results have been observed in greater 

flamingos (Phoenicopterus roseus) during the breeding season, with significant microbial 

variability within the same site at different years (Gillingham et al. 2019). Environmental microbes 

often exhibit high turnover over time (Faust et al. 2015). As such, our observations further support 

significant influence of local environment on the gut microbiota. This highlights the continued 

need for long term monitoring of microbiota as community-wide differences between years are 

demonstrable within the same geographic regions.  

 Though some individuals underwent substantial fluctuations in the gut microbiota structure 

and diversity over time, the community dissimilarity of the Kirtland’s Warblers weakly varied 

between the first and second recapture periods in Michigan. Large individual fluctuations with 
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community-wide relative stability have been observed in other host species (Ren et al. 2016, Risely 

et al. 2017, Hicks et al. 2018). These fluctuations observed within a single location may result 

from changes in host diet, individuals becoming infected with a pathogen or changing 

physiological demands across seasons.  

 

1.5.3    Host diet 

Dietary shifts throughout the annual cycle often correspond to changes in gut microbiota (Ren et 

al. 2016, Smits et al. 2017, Drovetski et al. 2019). Kirtland’s Warblers shift from a fruit-rich diet 

in The Bahamas to a diet composed primarily of insects in Michigan (Deloria-Sheffield et al. 2001, 

Wunderle et al. 2010, Wunderle et al. 2014). Firmicutes and Actinobacteria, which are often 

associated with frugivorous diets and known to aid in digestion through cellulose and carbohydrate 

degradation, were more abundant in The Bahamas where the warblers are consuming more fruit 

(Anand et al. 2012, Segawa et al. 2019). Class Melainobacteria (Phylum Cyanobacteria) is 

prevalent in the guts of herbivorous mammals where it aids in the digestion of plant materials (Di 

Rienzi et al. 2013). Melainobacteria was found in small abundances in some warblers where it 

may provide a similar role in digesting fruits. 

Proteobacteria, often abundant in insectivorous birds and bats (Ben-Yosef et al. 2017, 

Edenborough et al. 2020) more than doubled in relative abundance from The Bahamas to the 

second Michigan recapture period. Specific lineages within this phylum support association with 

an insectivorous diet. Genus Serratia was found to be significantly more abundant in the second 

recapture period in Michigan. Serratia are known to produce chitinase which facilitates the 

degradation of insects’ exoskeletons and is found to be abundant in insectivores such as barn 

swallows (Kreisinger et al. 2017). Similarly, an increased abundance of Candidatus Hamiltonella 
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within the first recapture period in Michigan may be a result of insect ingestion. Hamiltonella is a 

symbiotic bacteria of insects, including aphids, which comprise a portion of Kirtland’s diet 

(Deloria-Sheffield et al. 2001, Dykstra et al. 2014). A recent comparison of diet, fecal and 

intestinal microbiota of bats identified an excess of bacteria associated with food materials in the 

fecal microbiota compared to the gut microbiota, indicating that fluctuations in the fecal 

microbiota are not necessarily indicative of compositional changes of colonizing bacteria that are 

functionally relevant to the host (Ingala et al. 2018). The shift in abundance of Proteobacteria, 

including genera Serratia and Candidatus Hamiltonella, is consistent with the insect-rich diet in 

Michigan, though further examination is needed to identify which bacteria are colonizing the gut 

in response to a changing diet and which are transient bacteria acquired from food materials.  

 

1.5.4    Host-associated processes 

Bacterial taxa presence and abundance may fluctuate in response to host requirements. Phylum 

Firmicutes has been linked to weight gain, increased nutrient uptake, and metabolic efficiency in 

birds (Angelakis and Raoult 2010, Teyssier et al. 2018). Firmicutes, specifically Class Bacilli and 

Clostridia, are abundant in migratory birds and may assist with the metabolism of carbohydrates, 

sugars, and fatty acids, facilitating migration and other energetically demanding activities (Grond 

et al. 2017, Cao et al. 2020). Clostridia and Bacilli were the most abundant classes of Firmicutes 

in Kirtland’s Warblers. The abundance of these classes were lower in the second recapture period 

in Michigan than in the first recapture period or The Bahamas. Initial capture in The Bahamas 

occurred within the two months prior to the start of spring migration. Around this time birds begin 

to accumulate fat deposits to sustain them throughout long-distance migration (Fox and Walsh 

2012). At the first recapture in Michigan, individuals are actively seeking and defending breeding 
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territories. Both activities are energetically expensive and associated with increased metabolism, 

potentially associated with higher abundance of Firmicutes in gut microbiota. It is also possible 

that the bacteria in early Michigan are residual from The Bahamas and stopover sites (Lewis et al. 

2017). Additional sampling is needed to better identify bacterial lineages associated with specific 

metabolic demands of birds throughout the annual cycle.  

 Identifying the purpose or response of specific microbes in relation to host behaviors is 

essential to increasing knowledge of host-microbe interactions. The genera Corynebacterium and 

Mycoplasma have been found to be significantly more abundant in both migratory shorebirds and 

barn swallows when compared to sympatrically occurring, conspecific non-migratory populations 

(Risely et al. 2017, Turjeman et al. 2020). Both genera contain pathogenic bacteria that may 

increase in abundance during the physiological stress of migration. However, Risely et al. (2017) 

suggested that the abundance of Corynebacterium observed in recent migrants may be due to a 

possible inflammatory immune response rather than pathogen invasion. In our study, neither 

Corynebacterium nor Mycoplasma were significantly associated with any sampling period or host 

characteristic. These genera were each found in low abundances in less than 50% of birds. Within 

the recent arrivals to Michigan, we identified two genera of significantly higher abundance – 

Bryocella, an aerobic chemo-organotroph, and Candidatus Hamiltonella. Neither genera are 

presumed to have an increased abundance due to the physiological stress of migration, rather they 

are likely to have been acquired through the ingestion of food materials. We found no specific 

bacterial taxon to be associated with recently migrating individuals that might play a role in or be 

a response to migration.  

Sex specific conditions, such as hormones, behaviors, and reproductive physiology may 

influence or be influenced by the microbiome (Pearce et al. 2017, Escallón et al. 2019). In the 
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breeding season, close proximity of male and female birds can lead to convergence of microbial 

composition resulting in reduced variation between males and females (White et al. 2010). We 

found no significant variation in overall beta diversity between sexes, although female showed 

slightly higher alpha diversity than males. However, our dataset is heavily skewed towards males 

(Nmales=144, Nfemales=21) and these results could vary with the addition of more females. In Rufous-

collared Sparrows (Zonotrichia capensis), cloacal microbiota diversity increased as males 

transitioned from non-breeding to breeding condition (Escallón et al. 2019), whereas we observed 

a decrease in diversity in the fecal microbiota of Kirtland’s Warblers, which showed a decrease in 

diversity. These sparrows are non-migratory and do not experience the same extreme habitat 

change that the Kirtland’s do, which could potentially explain the alpha diversity differences 

between species.  

We generally found no significant compositional differences between age groups in the 

full dataset implying that adult age does not influence the microbiota of these birds. Variation in 

microbial composition between adults and chicks has been well documented (Kreisinger et al. 

2017, Grond et al. 2017, Videvall et al. 2019) but comparisons between age classes of adult wild 

birds is lacking. However, we did see a difference in beta diversity between SY and ASY in the 

first recapture period in Michigan. Second year males often do not successfully establish and 

defend breeding territories against older males which in turn results in these individuals moving at 

larger spatial scales than territorial adults (Cooper and Marra 2020). Increased variation is also 

observed with increased movement in barn owls during the breeding season (Corl et al. 2020). The 

lack of an established breeding territory and subsequent floating behavior could result in those 

individuals being exposed to a different suite of environmental bacteria.  
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1.5.5    Shared Microbial Profile 

Defining the species-specific shared microbial profile is a critical step in understanding the 

consistent components of often dynamic and complex microbial assemblages but can be hindered 

by lack of common parameters defining ‘shared’ (Risely 2020). In this study we define the species-

specific shared microbial profile as ASVs found in >50% of all individuals in each of the three 

sampling periods. These stable components are commonly tied to biological processes within the 

host and their identification may lead to an increased understanding of host-microorganism 

interactions and dependencies (Tschöp et al. 2009). Identifying shared microbes can be 

confounded by environmentally derived, transient bacteria that are common across individuals but 

play no functional role within the host. By resampling the same individuals and within the same 

population we establish a shared microbial profile that is persistent across multiple environments 

and time periods, lessening the probability that transient bacteria are counted as shared. 

Accordingly, our results are in line with a decreased probability of including location or time 

period specific bacteria in that none of the bacterial groups we identified as differentially abundant 

at a specific time period, such as genera Solirubrobacter or Serratia, overlap with ASVs of the 

Kirtland’s Warbler shared microbial profile.  

Identification of microbial taxa that persist with the gut across multiple habitats and time 

periods will help identify those that may play a role in host biological function. Our analyses 

identified a group of microbial lineages, including several that likely play a role in digestion and 

nutrient uptake, as the species-specific shared microbial profile of Kirtland’s Warblers. Eight 

ASVs in genus Bacteroides (Phyla Bacteroidetes) were identified as shared across the majority of 

individuals. Bacteroides are common gut microbes in humans that are frequently associated with 

food material breakdown and production of nutrients and energy (Wexler 2007). Though common 



 

 38 
 

in birds, the exact functions of Bacteroides are unknown; however, it is thought they play a similar 

role in food digestion (Bennett et al. 2013, Waite and Taylor 2015, Grond et al. 2018). Family 

Ruminococcaceae (Phyla Firmicutes), contains numerous bacterial species that degrade cellulose 

(Duncan et al. 2007). Our sampling of Kirtland’s Warblers identified seven ASVs from this family 

that are common throughout the population, including several ASVs from genus 

Faecalibacterium. Similarly, the Greater Sage-Grouse (Centrocercus urophasianus) hosts a rich 

diversity of Ruminococcaceae associated with seasonal variation in foliage consumption 

(Drovetski et al. 2019). These bacteria may aid in the digestion of the various fruits and berries 

ingested throughout the year which become a primary diet component on the wintering grounds. 

Additionally, through repeated sampling of the same birds at three discrete time periods, 

we have documented the proportion of ASVs that individuals retain over time. Although several 

previous studies have described the proportion of core ASVs to total ASVs detected within their 

study, interpretations may vary depending on the number of birds sampled, laboratory methods 

and parameters defining shared bacterial taxa, and may therefore not represent the number of core 

ASVs in each individual (Lewis et al. 2016, Grond et al. 2017). We show that individuals sampled 

in triplicate retain 18-26 ASVs over time. This represents an average of 25.06% of all lineages 

detected per individual per sampling point, and we argue it best reflects the proportion of stable, 

persistent bacteria within an individual. Documenting the species-specific shared microbial profile 

of Kirtland’s Warblers as well as temporally persistent lineages across seasons and changing 

environments provides model data from which we can begin to understand the extent to which 

birds depend on their gut microbiota.  
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1.6    CONCLUSION 

The ability to study the same individuals and populations throughout the annual cycle greatly 

enhances our understanding of the consequences of changing environments and seasonal 

physiological stressors on gut microbiota. We demonstrate that a significant compositional shift 

occurs in the community structure of gut bacteria as Kirtland’s Warblers migrate from The 

Bahamas to Michigan. Additionally, we describe a species-specific shared microbial profile and 

the proportion of bacterial lineages retained across three periods of the annual cycle within 

individuals. Though Kirtland’s Warblers were recently removed from the endangered species list 

after recovering from near extinction, continued management and research is needed for this 

species to survive (Cooper, Rushing, et al. 2019). In species that have experienced severe 

population declines, such as Kirtland’s Warbler, the subsequent decrease in genomic diversity may 

leave the species vulnerable to invading pathogens (Radwan et al. 2010). Gut microbiota may be 

critical in mitigating disease pathogenesis in these species by providing microbially mediated 

protection against invading pathogens (Ubeda et al. 2017, DeCandia et al. 2020). The symbiotic 

relationship birds form with their microbiota can confer immunological, developmental, and 

physiological benefits (Grond et al. 2018). Additionally, as anthropogenic influences continue to 

impact the habitat Kirtland’s occupy, the microbiota of the birds may be used as a proxy for 

individual and population level health (Trevelline et al. 2019). Healthy gut microbiota should be 

included in the maintenance of threatened and endangered species (Allan et al. 2018, Roth et al. 

2019) and this study provides model data as to how species with small population sizes and 

extreme habitat specialization react to changing environments.  
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2 Intestinal microbiota of Nearctic-Neotropical migratory birds more variable over

 time than across host species 

 

 
2.1    ABSTRACT 

Seasonal migration of Nearctic-Neotropical passerine birds may have profound effects on the 

diversity of host-associated microbiota. Migratory birds inherently experience environments and 

diets that can be highly variable over the course of the annual cycle. In this study we characterize 

the intestinal microbiome of four closely related species of migratory Catharus thrushes at three 

time points of their annual migratory cycle: during spring migration, on the summer breeding 

territories and during fall migration. Using observations replicated over three years, we find that 

microbial community diversity of Catharus thrushes is significantly different across different 

periods of the annual cycle, and community composition is more similar within than across years. 

We recovered two phyla, Cyanobacteria and Planctomycetota, that are not commonly described 

from birds to be in relatively high abundance in specific years. We found that few bacterial genera 

were consistently found across individuals, indicating the lack of a species-specific shared 

microbial profile. This study contributes to the growing number of observations of microbiota in 

wild birds throughout varying ecological conditions and reveals potential axes across which an 

animal’s microbial phenotype flexibly adapts to novel environments throughout the annual cycle.  

 

2.2    INTRODUCTION 

Numerous species take advantage of resources that appear in seasonally fluctuating environments 

by completing a biannual migration, including approximately 40% of all bird species (Alerstam et 

al. 2003, Dingle and Drake 2007, Winger et al. 2019). To facilitate long-distance movements 

between breeding and non-breeding areas, migratory birds exhibit flexible phenotypes during their 
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life course, including in their gastrointestinal tracts. For example, internal organs vary in size and 

capacity across the migratory cycle, including the stomach, liver and gizzard (Piersma 1998, 

Battley et al. 2000, Bauchinger et al. 2005). Prior to migration, the intestinal tract of migratory 

birds can increase in size to facilitate increased food intake, metabolic capacity, and energy 

assimilation (McWilliams and Karasov 2005). Before departing, portions of the intestinal tract 

may be reduced in size to decrease weight and increase flight efficiency (Piersma 1998, 

Hedenström 2008). 

 Associated with these physical changes, we expect the community of host-associated 

microbial symbionts that occupy the gastrointestinal tract of migratory birds to shift in abundance 

and composition. These microbes play a pivotal role in numerous host-associated functions. Gut 

microbiota allow for some birds with dietary specialization to ingest food materials which may be 

toxic to other animals, such as for the orange-tufted sunbird (Cinnyris osea) which feeds on nectar 

containing toxic alkaloids (Gunasekaran et al. 2021) or the greater sage-grouse (Centrocercus 

urophasianus) which feeds on the chemically defended plant sagebrush (Artemisia spp.) (Kohl et 

al. 2016). Gut microbiota have also been shown to facilitate immune system maturation, impact 

metabolism, affect behaviors, and correlate with mate choice and breeding success (Yeoman et al. 

2012, Apajalahti and Vienola 2016, Broom and Kogut 2018, Davidson et al. 2020, Slevin et al. 

2021, Taff et al. 2021). These microbial communities are often dynamic, varying in response to 

both intrinsic and extrinsic factors, including environment, diet, or host phylogeny (Hird et al. 

2015, Adair and Douglas 2017, Capunitan et al. 2020, Skeen et al. 2021). An individual bird’s 

microbiota is shaped in large part by the ecologies, diet, and environment of the host, often more 

so than by the host species identity (Michel et al. 2018, Grond, Santo Domingo et al. 2019 
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Capunitan et al. 2020, Song et al. 2020). Additionally, differences in habitat occupancy within a 

single bird species affect the gut microbiota (Hird et al. 2014, Wu et al. 2018).  

Several studies have examined the factors that impact the microbiome of migratory birds, 

such as the effects of pathogens, variable breeding habitats, and migratory period (Grond, Santo 

Domingo et al. 2019, Turjeman et al. 2020, Li et al. 2021). Composition of microbiota has been 

shown to vary at different stages of the migratory cycle within the same population of birds, linked 

to altered feeding patterns (Wu et al. 2018, Skeen et al. 2021). Additionally, both local and long-

distance movement is associated with altered microbial diversity (Wu et al. 2018, Corl et al. 2020). 

A comparison of migrants with non-migratory conspecifics at the same time and in the same place 

identified bacterial taxa which may be associated with migration (Risely et al. 2018, Turjeman et 

al. 2020). In actively migrating birds, the host-associated microbiota may rapidly acclimate to the 

local environmental microbial pools, including on stopover sites (Lewis et al. 2016, Zhang et al. 

2020). Increased understanding of migratory bird microbiota offers the opportunity to identify and 

investigate factors that impact the diversity and dynamics of microbiota when hosts are exposed 

to highly variable environments, changing diets, and extreme physiological stress across the annual 

cycle. 

 In this paper we assess variation in gastrointestinal microbiota across years and seasons in 

four migratory bird species. We predict that the physiological changes that occur in birds in 

preparation for and during migration, as well as the substantial change in habitat and diet, could 

result in significant shifts of abundance and diversity of their gastrointestinal microbiota. We 

characterized the intestinal microbiota of four closely related species of migratory Catharus 

thrushes during spring and fall migration over a period of three years (2017-2019), the Veery (C. 

fuscescens), Hermit Thrush (C. guttatus), Grey-Cheeked Thrush (C. minimus) and Swainson’s 
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Thrush (C. ustulatus). These thrushes were collected through a collaboration between the Field 

Museum of Natural History in Chicago, Illinois and the Chicago Bird Collision Monitors (CBCM) 

volunteer program. Volunteers with CBCM collect birds throughout downtown Chicago that have 

died as a result of window collisions during each spring and fall migration. We also include a small 

sampling of thrushes collected on their breeding grounds in Minnesota (2017), Michigan (2018), 

and Manitoba, Canada (2019). The four species of thrushes were chosen because we could obtain 

sufficient sample sizes and because much is known of their ecologies and physiologies (Winker 

and Pruett 2006, Mack and Wong 2020).  

The genus Catharus (Famly Turdidae, Order Passeriformes) contains 12 species, including 

migrants to North America and the non-migratory nightingale-thrushes of Central and South 

America (Clements and Principe, 2000). The breeding ranges for the species in this study span 

northern Canada through to the northern Midwest of the United States. The non-breeding 

distributions include the southern United States and may reach as far as southern Brazil and 

northern Argentina (Heckscher et al. 2020, Mack and Wong 2020). The four species in this study 

undergo their annual molt prior to fall migration. Additionally, they are all omnivorous, primarily 

consuming insects and berries or other fruits, with the proportion of insects or fruit varying 

throughout the annual cycle (Heckscher et al. 2020, Mack and Wong 2020, Whitaker et al. 2020). 

Bacteria can aid in the digestion of specific food materials. For example, strains within genera 

Serratia and Paenibacillus have chitinolytic capabilities to breakdown insect exoskeletons and 

have been found in heightened abundance in insectivorous animals (Meena et al. 2014, Kreisinger 

et al. 2017). Similarly frugivorous animals have increased abundance of bacteria known to aid in 

cellulose degradation (Karasov and Douglas 2013). Therefore, we would expect variation in 

specific diet-associated bacteria to change with the proportional variation of insects and fruits 
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throughout the annual cycle. Variation in flocking behavior throughout the annual cycle may also 

impact host-associated microbiota, especially as mixed-species flocks form at stopover sites 

(Grond et al. 2018). Some species, like the Hermit Thrush, have been observed in mixed species 

flocks with birds at stopover sites, while other species such as Veery apparently remain solitary 

(Moore et al. 1990).  

 We collected luminal contents of the lower intestines from birds in North America during 

three periods of the annual cycle: spring migration, breeding season, and fall migration and test 

for consistency of these patterns by replicating across three years. The microbiota of the lower 

intestines represents downstream mixing from the previous regions of the gastrointestinal tract and 

therefore can be used to assess general community composition of gut microbiota of the host 

(Wilkinson, Hughes et al. 2016, Drovetski et al. 2018, Yan et al. 2019). In previous studies, the 

bacteria recovered form intestinal samples are comparable to that of fecal matter with similar 

richness and community composition within host species (Wilkinson, Jogler et al. 2016, Drovetski 

et al. 2018, Videvall et al. 2019).  

We predict if shared environmental variables drive the microbiota, similarities will be 

found across species and differ between seasons. For example, all four thrush species flying south 

through Chicago during fall migration may experience more similar habitats and food resources 

than birds flying north on spring migration. In that case, fall birds would have a microbial 

composition more similar to other fall birds than when compared to spring migratory birds, even 

of the same species. If physiological effects, such as increased metabolic activity associated with 

migration, are the primary factor impacting microbiota structure, then spring and fall birds will be 

more similar to each other than when compared to the summer breeding birds. Additionally, if 

birds acquire additional bacteria throughout the annual cycle, we would predict that older birds 
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have a more diverse microbiome. In our evaluations, we also consider that different bacterial 

groups may be impacted differentially and hence show different patterns; for example some 

responding to seasonal change, some to age groupings, and some being species specific.  

 

2.3    METHODS 

 

2.3.1    Bird collection 

 Throughout the spring and fall migratory periods volunteers with the CBCM organization 

collect birds throughout Chicago that have died as a result of window collision. The birds were 

collected in early morning and sent to The Field Museum where they were processed. The four 

thrush species in this study are primarily nocturnal migrants (Winker and Pruett 2006) and were 

recovered by CBCM the morning after collision with buildings. All individuals included in this 

study were processed or frozen within 24 hours of death. Fall migrants were aged based on skull 

ossification and categorized as Hatch Year (HY – birds that hatched the previous breeding season 

and were migrating for the first time) or After Hatch Year (AHY – birds that hatched prior to the 

previous summer). Sex was determined from the gonads. In some cases physical damage from the 

collision prevented age and/or sex determination. A total of 747 individuals were collected 

throughout the spring and fall migratory periods of 2017-2019. A small portion of the birds (n=60) 

were collected early in the breeding season in Minnesota (2017), Michigan (2018), and Manitoba, 

Canada (2019). The summer breeding bird samples were to assess if the microbiota of actively 

migrating birds differed significantly from migratory birds that were not actively migrating.  

 

2.3.2    Intestinal sample collection 
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 Luminal contents of the lower intestines are similar to fecal samples, which are commonly 

used in studies of microbiota of wild birds (Wilkinson, Hughes et al. 2016, Drovetski et al. 2018, 

Videvall et al. 2019). We collected the luminal contents of the lower intestine and stored them on 

Flinders Technology Associates cards (FTA Cards; GE Whattman, Maidstone, Kent, UK). 

Previous studies have shown that results from FTA Cards are comparable to those resulting from 

long term ultra-cold storage (Song et al. 2016, Wang et al. 2018). We used FTA Cards for all 

sample preservation, to be comparable with summer fieldwork, where accessible cold storage was 

unavailable. We used sterilized instruments to detach the lower intestines from the cloaca. We then 

expressed the contents of four to eight centimeters of the posterior end of the lower intestines. We 

noted food materials visible in the luminal contents, such as seed or fruit. We transferred the 

sample to the FTA Cards using a sterile swab. We air dried the FTA Cards and stored them in 

airtight containers with desiccants. Each swab was transferred to a cryotube and stored at -20°C. 

The spring and fall migrant specimens are housed at The Field Museum. The summer bird 

specimens are accessioned at the University of Michigan Museum of Zoology and Cleveland 

Museum of Natural History. All intestinal contents are stored at The Field Museum.  

 

2.3.3    DNA isolation and sequencing 

 We transferred approximately 1 cm2 of the FTA Cards to extraction plates. We randomized 

samples across extraction plates so that plates included samples from all species, seasons, and 

years, to ensure potential differences in microbial composition were not due to laboratory work 

bias. Following the manufacturer’s extraction protocol, we extracted using the Qiagen DNeasy 

PowerSoil kit (Qiagen, Hilden, Germany). We included 16 negative controls, two per extraction 

plate, which included no sample or sample preservation materials, for quality control and to 
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account for possible contamination during extraction and PCR. We used the Earth Microbiome 

Project universal primers 515F/806R to amplify the V4 region of the 16S rRNA genetic Marker 

(Caporaso et al. 2011, Caporaso et al. 2012). We then used the Illumina MiSeq Platform to obtain 

paired-end 150 base pair reads (Kozich et al. 2013). We used four sequencing lanes and loaded 

188 samples and four controls per lane. Subsampling and DNA isolation took place in the Pritzker 

Lab at The Field Museum using a specialized fume hood to reduce possible contamination. All 

subsequent sample processing and sequencing took place at the Argonne National Laboratory 

(Lemont, Illinois, USA).  

 

2.3.4    Sequence analysis 

 We processed raw sequence data with the program QIIME2 (Quantitative Insights Into 

Microbial Ecology, version 2021.4; Bolyen et al. 2019). Following standard demultiplexing and 

quality filtering, we generated amplicon sequence variants (ASVs) using the Divisive Amplicon 

Denoising Algorithm (Callahan et al. 2016). Using a quality score threshold of 35 (Mohsen et al. 

2019) we trimmed all sequences outside of base pair positions 13 and 150. We classified ASV 

taxonomies using the Silva reference database (version 132; Quast et al. 2012). After classification 

we removed all ASVs identified as chloroplasts and mitochondria. We aligned sequencing using 

MAFFT and then built a phylogenetic hypothesis for all bacterial sequences using FastTree (Price 

et al. 2010, Katoh and Standley 2013). Reads that did not align to any known bacterial phylum 

were blasted to confirm their non-bacterial sources and removed from the final dataset. We 

identified bacterial contaminants with the R package decontam using the prevalence-based 

contaminant determination (Davis et al. 2018). We used the 16 extraction blanks that were 

processed in parallel with the other samples as controls. Decontam identified 120 contaminant  



 

 48 
 

Table 2.1 Distribution of Amplicon Sequence Variants (ASVs) found in negative controls and true 
samples, assessed using the R package decontam. The majority of ASVs recovered from all 
samples were not observed in any of the negative controls and 240 ASVs were found in negative 
controls of which 120 were identified as contaminants.  

 

 

 

 

 

 

 
Figure 2.1 The R package decontam uses a prevalence-based algorithm to identify Amplicon 
Sequence Variants (ASVs) which are statistically likely to be contaminants. Each dot in the figure 
represents one ASV and all ASVs in the dataset are represented. Using the prevalence of ASVs 
found in negative controls compared to true samples, ASVs were considered a contaminant based 
on a stringency threshold of 0.5 (from a possible range of 0 to 1). A total of 240 ASVs were 
recovered from negative control samples, of which 120 were removed as true contaminants. The 
true contaminants are colored orange while the non-contaminant ASVs are colored in blue.  
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ASVs using a threshold of 0.5 (from a possible range of 0 to 1), which were subsequently removed 

from all libraries (Figure 2.1, Table 2.1). 

 

2.3.5    Quality control 

 To ensure that biases were not introduced during sample collection or processing, we 

compared alpha and beta diversity measures of sample collector (four people), extraction plate 

(eight plates), MiSeq lane (four lanes), and if samples were taken from fresh birds or those that 

had been frozen prior to processing. Quality control measures of collector and fresh vs. frozen 

birds were compared within the same year so that observed differences between years did not bias 

results. Samples were randomized across extraction plates and therefore also MiSeq lanes so 

quality control measures were analyzed across the full dataset. No significant differences were 

observed with any of the quality control categories (Table 2.2).  

 

2.3.6    Normalization of microbial data 

 We rarefied all libraries to 500 reads and 5,000 reads. This resulted in the removal of 67 

libraries and 279 libraries, respectively. The majority of results were consistent across analyses at 

both levels of normalization. We discuss the results of the libraries normalized at 500 reads and 

note when results differ at 5,000 reads.  

 

2.3.7    Alpha Diversity 

 We estimated alpha diversity of rarefied libraries using both richness and the Shannon 

Diversity Indices with the R package phyloseq (McMurdie and Holmes 2013). The Shannon  
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Table 2.2 Alpha (2.2A: Observed Richness, 2.2B: Shannon Diversity Index) and Beta (2.2C) 
diversity comparisons to ensure biases were not introduced during sample collection or 
sequencing. We compared diversity metrics of sample collector (four people), extraction plate 
(eight plates), MiSeq sequencing lane (four lanes), and if samples were collected from fresh birds 
or those that had been frozen prior to sample collection. Quality control measures of collector and 
fresh vs. frozen birds were compared within the same year so that observed differences between 
years did not bias results. These analyses were conducted on libraries rarefied at 500 reads. *There 
were no frozen birds in 2017.  
 
Table 2.2A Alpha diversity, Observed Richness 

Variable Year Sum Sq. Mean Sq. F value Pr(>F) 

Collector 2017 0.65 0.325 2.328 0.102 

 2018 0.498 0.2488 1.579 0.211 
  2019 0.08 0.081 0.407 0.524 

Fresh vs. Frozen* 2018 0.42 0.423 1.972 0.162 
  2019 0.42 0.422 2.217 0.146 

Extraction Plate All years 2.03 0.0338 1.65 0.134 

MiSeq Lane All years 2.42 2.437 1.734 0.189 
 
Table 2.2B Alpha diversity, Shannon Diversity  

Variable Year Sum Sq. Mean Sq. F value Pr(>F) 

Collector 2017 0.5 0.249 0.327 0.722 

 2018 1.43 0.7154 0.832 0.438 
  2019 1.5 1.509 1.08 0.3 

Fresh vs. Frozen* 2018 2.61 2.61 1.84 0.176 
  2019 1.3 1.28 0.907 0.342 

Extraction Plate All years 5.7 0.955 0.689 0.659 

MiSeq Lane All years 3.8 3.768 2.734 0.099 
 
Table 2.2C Beta diversity, Bray-Curtis and unweighted UniFrac dissimilarity  

   
Bray-Curtis 

 
Unweighted UniFrac 

Variable Year Global R P value  Global R P value 

Collector 2017 -0.067 0.842  0.067 0.177 

 2018 -0.037 0.829  -0.083 0.975 
  2019 0.092 0.1  0.072 0.13 

Fresh vs. Frozen* 2018 0.012 0.08  0.016 0.09 
  2019 0.116 0.21  0.044 0.169 

Extraction Plate All years 0.0526 0.072  0.043 0.09 

MiSeq Lane All years 0.042 0.063  0.065 0.076 
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Diversity Index was approximately normally distributed but we log transformed the observed 

richness measures to meet assumptions of normality. Due to the low level of shared ASVs across 

individuals (see results, including Table 5.1) and possible functional redundancies (Shade 2017, 

Li et al. 2021), we did not conduct alpha diversity analyses at the ASV level but did so at every 

other taxonomic level. We conducted ANOVAs (aov function in the stats R package) with post-

hoc comparisons using Tukey’s HSD test. We tested for and found no significant interaction 

between year and season, so all variables were modeled as independent factors. These variables 

include year (2017, 2018, 2019), season (Spring, Summer, Fall), and species (Grey-Cheeked, 

Hermit, Swainson’s, Veery). We also compared alpha diversity of host sex (male or female) and 

age (HY or AHY) independently on reduced datasets, omitting samples where the host metadata 

was unable to be obtained and, in the case of age, only on fall birds as all spring birds are 

considered AHY. for age and sex variables we conducted a Kruskal-Wallace test to use as a non-

parametric pairwise comparison of alpha diversity measures.  

 

2.3.8    Beta diversity 

 We compared beta-diversity between years, seasons, and host species separately, using the 

Bray-Curtis dissimilarity and weighted UniFrac metrics (Beals 1984, Lozupone et al. 2011). We 

visualized the resulting using nMDS of weighted UniFrac distances setting the number of 

dimensions to four. We determined significance using analysis of similarities (ANOSIM) with 

9,999 permutations (Clarke 1993). The R test statistic derived from the ANOSIM test compares 

the mean of ranked dissimilarities between and within groups. R values closer to 1.0 reflect 

increased levels of dissimilarity between groups while R values close to 0 reflect a distribution of 

ranks that is similar within each group. A significance level of p< 0.05 was applied to test the null 
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hypothesis of no differences between microbial communities of different categories. We 

conducted similar analyses for sex and age, on reduced datasets.  

 

2.3.9    Differential abundance 

 To identify genus and phyla level taxa which differ in abundance across years, seasons, 

and host species, we used ANCOM-BC (analysis of composition of microbiomes with bias 

correction; Lin and Peddada 2020). ANCOM-BC estimates changes between groups using the log-

transformed values of absolute sequence counts, therefore we used all unrarefied libraries of at 

least 500 reads. This method accounts for the compositional nature of microbiome data by using a 

linear regression framework to estimate and eliminate bias introduced by differences among 

sampling fractions, while controlling false discovery rate. We set a significance cutoff of Padj < 

0.05 with a Bonferroni correction.  

 

2.3.10   Species-specific common microbes 

 We quantified microbial profiles common to Catharus and within each species as microbial 

ASVs and genera recovered from >50% of all individuals (Grond et al. 2017, Risely 2020). We 

quantified year and season specific lineages as being present in >50% of all individuals within the 

subset. We analyzed shared microbes at the ASV and genus level using unrarefied libraries of at 

least 500 reads using the microbiome R package (Lahti and Shetty 2018). Additionally, we tested 

for shared ASVs at lower prevalence within the full dataset to determine if and in what proportion 

the majority of ASVs become common across all individuals.  
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2.4    RESULTS 

 

2.4.1    Microbiota community profiling 

We obtained 747 libraries (Hermit, n=262; Gray-cheeked, n=89; Swainson’s, n=326; Veery, n=70) 

throughout nine sampling periods between Spring 2017 and Fall 2019. Table 2.3 gives a 

breakdown of the samples by species, sampling period, age, and sex. In total 60,727,571 reads 

were generated, but a substantial portion (41,308,281; 68%) were from host DNA and 822,060 

reads (1.35%) belonged to Apicomplexan pathogens. We removed host DNA contamination, 

Apicomplexan pathogens, and other non-bacterial or unknown reads for a final dataset of 

17,949,438 reads with an average number of reads per library of 24,029 (±28,088 standard 

deviation [S.D.], range = 1-150,331, median = 11,199; Figure 2.2A). We recovered a total of 

26,895 ASVs with an average of 100 ASVs per individual (± 221, range 1-1,849, median = 20; 

Figure 2.2B, 2.2C). 

 In total 46 bacterial phyla, 142 classes, 367 orders, 677 families, and 1,1735 described 

genera were recovered. The five most common phyla comprising 88% of all reads were 

Proteobacteria (28%), Planctomycetota (23%), Cyanobacteria (18%), Actinobacteriota (12%), and 

Firmicutes (7%) and (Figure 2.3, Table 5.2). Planctomycetes (22%, Phylum Planctomycetes) was 

the most abundant class, followed by Cyanobacteriia (18%, Phylum Cyanobacteria) and 

Alphaproteobacteria (16%, Phylum Proteobacteria). As discussed below, the abundance of 

Planctomycetota and Cyanobacteria recovered in this study is high, relative to previously 

published research (Dewar et al. 2014, Hird et al. 2015, Ambrosini et al. 2019, Trevelline et al. 

2020). The relative abundance of phlya varied by host species, season, and year (Figure 2.4, Figure 

2.5) 
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Figure 2.2 Distribution of number of reads and Amplicon Sequence Variants (ASVs) per library.  
2.2A Distribution of reads per sequenced library. After removal of contaminants and non-Bacteria 
reads, a total of 17, ,438 reads remained. The average number of reads per library was 24,029 
(±28,088 S.D.) and individual libraries ranges from 1-150,331 reads. 2.2B Distribution of number 
of ASVs per sequenced library with absolute values (top) and natural log transformed values 
(bottom). A total of 26,895 ASVs were recovered with an average of 100 ASVs per individual 
(S.D. ± 221) and ranging from 1-1,849 per library. 2.2C Natural log transformation of ASVs per 
library. 
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Table 2.3 Breakdown of samples by species (Grey-Cheeked, Hermit, Swainson’s, Veery), 
sampling Season (Spring, Summer, Fall), Year (2017, 2018, 2019), age (HY – Hatch Year, AHY 
– After Hatch Year), and sex. Age categories include Fall birds only, all spring birds are considered 
AHY.  Table 2.3A shows the breakdown of samples in the full datasets, with 747 sequenced 
libraries. Table 2.3B shows the breakdown of samples when libraries are rarefied at 500 reads, 
resulting in the removal of 67 libraries. Table 2.3C shows the breakdown of samples when libraries 
are rarefied at 5,000 reads, resulting in the removal of 279 libraries.  
 
 
Table 2.3A Full Dataset 

    
Grey-

Cheeked Hermit Swainson's Veery Total 

Total  89 262 326 70 747 

  Spring 25 68 68 34 195 

Season Summer 0 23 26 11 60 

  Fall 64 171 232 25 492 

 2017 18 46 81 5 150 

Year 2018 38 77 107 23 245 

  2019 33 139 138 42 352 

  female 38 129 155 23 345 

Sex male 48 122 154 30 354 

  unknown 3 11 17 17 48 

  AHY 12 27 36 4 79 

Age HY 51 140 186 20 397 

  unknown  1 4 10 1 16 
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Table 2.3B Libraries rarefied at 500 reads, removal of 67 libraries 

    
Grey-

Cheeked Hermit Swainson's Veery Total 

Total   76 246 296 62 680 

  Spring 24 63 61 32 180 

Season Summer 0 22 26 9 57 

  Fall 52 161 209 21 443 

 2017 16 44 70 5 135 

Year 2018 31 68 91 19 209 

  2019 29 134 135 38 336 

  female 29 119 141 21 310 

Sex male 44 117 138 24 323 

  unknown 3 10 17 17 47 

  AHY 7 24 29 4 64 

Age HY 44 133 172 16 365 

  unknown  1 4 8 1 14 

 
 

 

Table 2.3C Libraries rarefied at 5,000 reads, removal of 279 libraries 

    
Grey-

Cheeked Hermit Swainson's Veery Total 

Total  56 169 208 35 468 

  Spring 21 41 38 15 115 

Season Summer 0 16 19 7 42 

  Fall 35 112 151 13 311 

 2017 8 37 49 4 98 

Year 2018 26 42 64 12 144 

  2019 22 90 95 19 226 

  female 19 87 103 11 220 

Sex male 35 75 91 14 215 

  unknown 2 7 14 10 33 

  AHY 4 11 23 1 39 

Age HY 30 99 123 11 263 

  unknown  1 2 5 1 9 
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Figure 2.3 Relative abundance of bacterial phyla with libraries rarefied to 500 (2.3A) and 5,000 
(2.3B) reads. Stacked bars illustrate the relative abundance of the eight most common bacterial 
phyla with each columns representing an individual bird, ordered by date of collection (within the 
respective year), and separated by season. Phyla with total abundance less than 1% are summed in 
the grey bar. 
 

Figure 2.3A Relative abundance of bacterial phyla with libraries rarefied to 500 reads 
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Figure 2.3B Relative abundance of bacterial phyla with libraries rarefied to 5,000 reads 

 
 
 
 
 

Spring Summer Autumn

0.00

0.25

0.50

0.75

1.00

A
b
u
n

d
a

n
c
e

2017

Spring Summer Autumn

0.00

0.25

0.50

0.75

1.00

A
b
u

n
d

a
n
c
e

2018

Spring Summer Autumn

0.00

0.25

0.50

0.75

1.00

Date of Collection

A
b
u

n
d

a
n

c
e

2019

Proteobacteria

Planctomycetota

Cyanobacteria

Actinobacteriota

Firmicutes

Verrucomicrobiota

Campilobacterota

Chloroflexi

<1% abundance



 

 59 
 

Figure 2.4 Relative abundance boxplot of most abundant phyla with libraries rarefied to 500 
(2.4A) and 5,000 (2.4B) reads, representing the variation seen in relative abundance species, 
seasons, and year. Individual points represent the relative abundance of each phyla per individual 
bird. Colors of boxplots correspond to host species. 
 
Figure 2.4A Relative abundance boxplot with libraries rarefied to 500 reads. 
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Figure 2.4B Relative abundance boxplot with libraries rarefied to 5,000 reads. 
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Figure 2.5 Heatmap illustrating the relative abundance of the eight most abundant bacterial phyla 
as well as all phyla constituting less than 1% of total reads summed together of libraries rarefied 
to 500 reads. Each column represents an individual sample, ordered by date of collection and 
separated by season and host species.  
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2.4.2    Differential abundance 

 We determined bacterial genera and phyla that were differentially abundant in host species, 

seasons and years using the ANCOM-BC method on unrarefied datasets of at least 500 reads. 

Variation between host species included four phyla and 11 genera that were differentially abundant 

in pairwise comparisons of host species (Figure 2.6, Table 5.3). The relative abundance of 

Actinobacteria was elevated in Swainson’s and Grey-Cheeked Thrush compared to Hermit. 

Swainson’s showed significant enrichment of Campilobacterota compared to Hermit and 

decreased enrichment of Patescibacteria compared to Grey-Cheeked. Hermit Thrush has lower 

relative abundance of Actinobacteroita compared to Grey-Cheeked.  

 Annual differences in bacterial phyla showed similar distributions when comparing 2017 

and 2018. However, we found a surprising difference in relative abundance between 2019 and the 

previous two years. Planctomycetota and Firmicutes were significantly enriched in 2017 and 2018 

than 2019. In 2019, Cyanobacteria were exceptionally abundant (Figure 2.7, Table 5.4). In addition 

to the seven phyla that displayed significantly different abundances between years, we identified 

28 bacterial genera that were enriched in specific years. This includes Aliterella (Phylum 

Cyanobacteria) as significantly more abundant in 2019 than in 2017 or 2018.  

Twelve phyla differed between seasons (Figure 2.8, Table 5.5). Myxococcota and 

Dependentiae had highest relative abundance in the summer, Proteobacteria and Campilobacterota 

in the fall, and Plactomycetota and Fibrobacterota in both the spring and the fall Our ANCOM-BC 

analyses identified 45 genera to be differentially abundant in across seasons (Figure 2.8, Table 

5.5). Several genera containing common pathogenic microbes were significantly enriched in 

specific sampling periods, such as Escherichia-Shigella in the fall, Neochlamydia in the spring and 

Diplorickettsiaceeae in the summer.  
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Figure 2.6 Analysis of composition of microbiomes with bias-correction (ANCOM-BC) of 
bacterial genera (2.6A) and phyla (2.6B) that were differentially abundant in host species. An 
asterisk (*) indicates significantly different abundances between host species. Within each 
comparison, negative natural log fold change values indicate an increase in abundance with the 
first species listed and positive log fold change values signify an increase in abundance with the 
second host listed. For example, Gaiellas is significantly more abundant in Grey-Cheeked 
Thrushes when compared to Hermit Thrushes.  
 

Figure 2.6A ANCOM-BC analysis of differential abundance in bacterial genera between host 
species.  

 
Figure 2.6B ANCOM-BC analysis of differential abundance in bacterial phyla between host 
species.  
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Figure 2.7 Analysis of composition of microbiomes with bias-correction (ANCOM-BC) of 
bacterial genera (2.7A) and phyla (2.7B) that were differentially abundant in different years. An 
asterisk (*) indicates significantly different abundances between years. Within each comparison, 
negative natural log fold change values indicate an increase in abundance with the first compared 
year and positive log fold change values signify an n increase in abundance with the second 
compared year. For example, Subgroup-17 is significantly more abundant in 2017 and 2018 when 
compared to 2019. There were no significant differences of phyla between 2017 and 2018.  
 

Figure 2.7A ANCOM-BC analysis of differential abundance in bacterial genera between years.  
 

 
Figure 2.7B ANCOM-BC analysis of differential abundance in bacterial phyla between years.  
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Figure 2.8 Analysis of composition of microbiomes with bias-correction (ANCOM-BC) of 
bacterial genera (2.8A) and phyla (2.8B) that were differentially abundant in different seasons. An 
asterisk (*) indicates significantly different abundances between seasons. Within each comparison, 
negative log fold change values indicate an increase in abundance with the first compared season 
and positive log fold change values signify an increase in abundance with the second compared 
season. For example, Anthrobacter is significantly more abundant in the Fall than in the Spring.  
 
Figure 2.8A ANCOM-BC analysis of differential abundance in bacterial genera between seasons.  
 

 
Figure 2.8B ANCOM-BC analysis of differential abundance in bacterial phyla between seasons.  
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2.4.3    Shared microbial profiles 

 Eleven genera and three ASVs within those genera were identified as present in more than 

50% of all libraries (Table 5.1). Thirty-one genera were found in at least 25% of all libraries, 164 

genera in at least 10% and 339 genera in at least 5%. Additionally, at the ASV level, 14 ASVs 

were recovered from at least 25% of all libraries 59 in at least 10% and 241 ASVs were shared by 

at least 5% of all individuals. The three ASVs shared by at least 50% of all libraries were from 

genus Aliterella (Phylum Cyanobacteria), an unnamed genus in the family Gemmataceae (Phylum 

Planctomycetota) and an unnamed genus in the family Geminicoccaceae (Phylum Proteobacteria). 

In addition to the 11 genera found in the majority of individuals from the full dataset, seven other 

genera were common in certain subsets. Lutispora (Phylum Firmicutes) was present in 76% of all 

samples in 2017 and 80% of samples from 2018. Genus Limnochordaceae (Phylum Firmicutes) 

was present in 56% of individuals collected in 2017. Gemmata (Phylum Planctomycetota) and 

Ralstonia (Phylum Proteobacteria) were both found in the majority of summer birds. Aquisphaera 

of Phylum Planctomycetota was common n 2019 birds only, though not restricted to a specific 

season. Table 5.1 lists all additional common microbes. Notably, Aliterella was the most common 

genus in the dataset, found in 77% of individuals. This prevalence was driven by a single ASV, 

whose species identity has not yet been described.  

 

2.4.4   Alpha diversity 

Consistently, across both levels of rarefaction, all taxonomic levels, and both diversity metrics, 

year and season showed significant differences in alpha diversity (Table 2.4). The differences 

across seasons were primarily driven by high diversity in summer compared to lower levels of 

diversity in spring and fall birds (Figure 2.9; Observed Richness [OR]: Spring-Summer padj=0.24,  
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Table 2.4 Results of analyses of alpha diversity values for natural log of Observed ASV richness 
and Shannon Diversity Index compared across bacterial taxonomic levels of genus through 
phylum. Model factors include year (2017, 2018 or 2019), season (spring, summer or fall) or host 
species. Alpha diversity comparisons of host sex (male or female) and host age (hatch year or after 
hatch year) were conducted on reduced datasets. We denoted significant with p <0.05. Table 2.4A 
contains alpha diversity analysis results comparing natural log Observed ASV richness of libraries 
rarefied to 500 reads. Table 2.4B contains alpha diversity analysis results comparing Shannon 
Diversity Index richness of libraries rarefied to 500 reads. Table 2.4C contains alpha diversity 
analysis results comparing natural log Observed ASV richness of libraries rarefied to 5,000 reads. 
Table 2.4D contains alpha diversity analysis results comparing Shannon Diversity Index richness 
of libraries rarefied to 5,000 reads.  
 
Table 2.4A Alpha diversity comparison of Observed ASV richness, libraries rarefied to 500 reads.  
 
 

 

Taxa Variable Sum Sq Mean Sq F value Pr(>F) 

Genus Year 5.83 2.91 15.17 <0.001 

  Season 1.45 0.73 3.78 0.023 

  Species 0.75 0.25 1.3 0.275 
  Sex 0.04 0.04 0.18 0.668 

  Age 0.18 0.18 0.87 0.351 

Family Year 6.11 3.06 17.92 <0.001 

 Season 1.46 0.73 4.28 0.014 

 Species 0.71 0.24 1.39 0.245 

 Sex 0.02 0.02 0.11 0.742 

  Age 0.19 0.19 1.04 0.307 

Order Year 4.91 2.45 17.1 <0.001 

  Season 1.24 0.62 4.33 0.014 

  Species 0.45 0.15 1.05 0.368 
  Sex 0.01 0.01 0.05 0.829 

  Age 0.17 0.17 1.06 0.304 

Class Year 2.6 1.3 15.03 <0.001 

 Season 0.9 0.45 5.18 0.006 

 Species 0.25 0.08 0.97 0.405 

 Sex 0 0 0.03 0.852 

  Age 0.11 0.11 1.21 0.272 

Phylum Year 1.96 0.98 17.95 <0.001 

  Season 0.38 0.19 3.45 0.032 

  Species 0.3 0.1 1.81 0.143 
  Sex 0 0 0.08 0.783 

  Age 0.03 0.03 0.53 0.469 
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Table 2.4B Alpha diversity comparison of Shannon Diversity Index richness, libraries rarefied to 
500 reads.  
 

Taxa Variable Sum Sq Mean Sq F value Pr(>F) 

Genus Year 12.55 6.27 4.92 0.008 

  Season 11.76 5.88 4.61 0.01 

  Species 7.6 2.53 1.99 0.115 
  Sex 0.33 0.33 0.25 0.614 

  Age 2.23 2.23 1.73 0.189 

Family Year 14.4 7.2 6.54 0.002 

 Season 12.53 6.26 5.69 0.004 

 Species 6.37 2.12 1.93 0.124 

 Sex 0.25 0.25 0.22 0.639 

  Age 2.42 2.42 2.18 0.14 

Order Year 11.69 5.84 6.25 0.002 

  Season 11.36 5.68 6.08 0.002 

  Species 4.82 1.61 1.72 0.162 
  Sex 0.12 0.12 0.13 0.72 

  Age 2.21 2.21 2.36 0.125 

Class Year 8.28 4.14 7.54 0.001 

 Season 10.5 5.25 9.56 <0.001 

 Species 2.21 0.74 1.34 0.26 

 Sex 0 0 0 0.964 

  Age 1.71 1.71 3.14 0.077 

Phylum Year 7.23 3.61 10.56 <0.001 

  Season 6.4 3.2 9.35 <0.001 

  Species 1.5 0.5 1.46 0.223 
  Sex 0.02 0.02 0.05 0.831 

  Age 1.86 1.86 5.41 0.02 
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Table 2.4C Alpha diversity comparison of Observed ASV richness, libraries rarefied to 5,000 
reads.  
 

Taxa Variable Sum Sq Mean Sq F value Pr(>F) 

Genus Year 6.22 3.11 13 <0.001 

  Season 2.1 1.05 4.39 0.013 

  Species 1.62 0.54 2.26 0.081 
  Sex 0.04 0.04 0.16 0.687 

  Age 0.05 0.05 0.17 0.676 

Family Year 5.7 2.85 14.34 <0.001 

 Season 1.84 0.92 4.63 0.01 

 Species 1.15 0.38 1.93 0.125 

 Sex 0.02 0.02 0.08 0.777 

  Age 0.05 0.05 0.24 0.625 

Order Year 4.14 2.07 13.71 <0.001 

  Season 1.38 0.69 4.57 0.011 

  Species 0.78 0.26 1.71 0.163 
  Sex 0.01 0.01 0.06 0.808 

  Age 0.05 0.05 0.31 0.576 

Class Year 2.13 1.06 12.93 <0.001 

 Season 0.58 0.29 3.54 0.03 

 Species 0.48 0.16 1.93 0.124 

 Sex 0.01 0.01 0.13 0.717 

  Age 0.03 0.03 0.28 0.598 

Phylum Year 1.28 0.64 15.75 <0.001 

  Season 0.28 0.14 3.44 0.033 

  Species 0.23 0.08 1.9 0.128 
  Sex 0.01 0.01 0.15 0.698 

  Age 0.01 0.01 0.11 0.736 
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Table 2.4D Alpha diversity comparison of Shannon Diversity Index richness, libraries rarefied to 
5,000 reads.  
 

Taxa Variable Sum Sq Mean Sq F value Pr(>F) 

Genus Year 41.83 20.91 11.94 <0.001 

  Season 12.13 6.06 3.46 0.032 

  Species 12.47 4.16 2.37 0.07 
  Sex 1.19 1.19 0.64 0.424 

  Age 2.17 2.17 1.16 0.282 

Family Year 40.37 20.19 13.81 <0.001 

 Season 12.02 6.01 4.11 0.017 

 Species 9.46 3.15 2.16 0.092 

 Sex 0.8 0.8 0.51 0.475 

  Age 2.28 2.28 1.47 0.227 

Order Year 32.45 16.22 13.49 <0.001 

  Season 10.79 5.4 4.49 0.012 

  Species 6.99 2.33 1.94 0.123 
  Sex 0.48 0.48 0.37 0.542 

  Age 2.2 2.2 1.74 0.189 

Class Year 21.05 10.52 16.03 <0.001 

 Season 8.3 4.15 6.32 0.002 

 Species 2.65 0.88 1.35 0.259 

 Sex 0.01 0.01 0.01 0.912 

  Age 1.42 1.42 2.08 0.15 

Phylum Year 15.32 7.66 19.3 <0.001 

  Season 5.54 2.77 6.99 0.001 

  Species 1.3 0.43 1.09 0.353 
  Sex 0.02 0.02 0.04 0.837 

  Age 1.48 1.48 3.52 0.062 
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Figure 2.9 Alpha diversity density plots using the natural log values of observed diversity and 
Shannon Diversity Index of bacterial genera on libraries normalized at 500 (2.9A) and 5,000 (2.9B) 
reads. Density plots generated for collection year (2017, 2018, 2019), season (spring, summer, 
autumn), host species (Grey-Cheeked, Hermit, Swainson’s, Veery), age class (Hatch Year, After 
Hatch Year), and host sex (male, female).  Dashed lines indicate median values for the alpha 
diversity measure of each subgroup. 
Figure 2.9A Alpha diversity of bacterial genera with libraries rarefied to 500 reads 
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Figure 2.9B Alpha diversity of bacterial genera with libraries rarefied to 5,000 reads 
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Spring-Autumn padj=0.37, Summer-Autumn padj=0.03; Shannon Diversity [SD]: Spring-Summer 

padj=0.052, Spring-Autumn padj=0.697, Summer-Autumn padj=0.007). The average diversity of 

birds from 2019 was elevated compared to those from 2018 and the average alpha diversity of 

birds from 2017 was lowest (Figure 2.9). There were no significant differences, at either level of 

rarefaction, any taxonomic level, or diversity metric between host species, sex, or age, with the 

exception of a comparison between hatch year and after hatch year birds at the phylum level (SD: 

p=0.02, Kruskal-Wallace test). Older birds showed slightly elevated alpha diversity compared to 

younger birds. There were no significant differences in pairwise comparisons between species for 

either alpha diversity metric (Table 2.4).  

 

2.4.5   Beta diversity 

 Community-level analysis revealed sharp distinctions of gut microbiota in birds between 

years with both Bray-Curtis dissimilarity (R=0.371, P<0.001) and weighted uniFrac distances 

(R=0.311, P<0.001) (Figure 2.10, Table 2.5). Comparisons of host species also revealed 

significant shifts in microbial composition, however low global R values indicate that this 

significance may be due to dispersion of samples, rather than true differences in community 

composition of microbes (Chapman and Underwood 1999) (BC: R=0.032, P=0.003; WU: 

R=0.047, P<0.001). Visual inspection of the ordination plot shows no clear clustering by species 

(Figure 2.11). No significant differences were detected in community dissimilarity based on season 

(BC: R=0.024, P=0.077; WU: R= -0.021, P<0.898), host age (BC: R=0.068, P=0.989; WU: R=-

0.047, P=0.938) or host sex (BC: R=0.002, P=0.152; WU: R=0.0, P=0.340) (Figure 2.12).  
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Figure 2.10 Unweighted uniFrac based non-metric multidimensional scaling (nMDS) ordination 
of Catharus intestinal microbiota by year (stress = 0.103). The bottom row contains plots within 
the same ordination space and subset by season.  
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Figure 2.11 Unweighted uniFrac based non-metric multidimensional scaling (nMDS) ordination 
of Catharus intestinal microbiota by host species (stress = 0.103).  
 

 

2.5    DISCUSSION 

 Our results highlight that the microbiome is dynamic over time, with both year and season 

impacting the overall composition of thrush microbiota. We find that temporal variation over years 

and seasons has a more observable impact to the diversity and composition of microbiota than host 

species, age, or sex. Migratory birds have evolved numerous physiological adaptations that enable 

them to complete long distance flights (Piersma 1998, Battley et al. 2000, Bauchinger et al. 2005). 

These adaptations, or the act of migration itself, may impact host-associated microbiota 

(Hedenström 2008, Song et al. 2020). Migratory birds inherently experience highly variable 

environments throughout the annual cycle. Our results indicate a strong prevalence of 

environmentally derived microbiota, and the lack of a consistent, shared microbial profile indicate 

that these environmentally derived microbiota may be transient. Finally, some of our results may 

be attributed directly to host-associated processes, such as annual molt. Below, we discuss how 

migration, host characteristics, and the environment influence the microbiota of Catharus thrushes.  
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Figure 2.12 Unweighted UniFrac based non-metric multidimensional scaling (nMDS) ordination 
of Catharus intestinal microbiota by season (stress = 0.103). The bottom row contains plots within 
the same ordination space and subset by year.  
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Table 2.5A Results of analysis of similarity (ANOSIM) comparisons of beta diversity using Bray-
Curtis and weighted UniFrac dissimilarity metrics across the bacterial taxonomic levels of genus 
through phylum with libraries rarefied to 500 reads.  
 

    Bray-Curtis Weighted UniFrac 

Taxa Variable Global R P value Global R P value 

Genus Year 0.371 <0.001 0.311 <0.001 

  Season 0.024 0.077 -0.021 0.898 
  Species 0.032 0.003 0.047 <0.001 

  Sex 0.002 0.152 0.000 0.340 
  Age -0.068 0.989 -0.047 0.938 

Family Year 0.335 <0.001 0.303 <0.001 

 Season 0.018 0.140 -0.014 0.806 

 Species 0.036 0.001 0.047 <0.001 

 Sex 0.003 0.094 0.000 0.343 

 Age -0.076 0.994 -0.049 0.947 

Order Year 0.321 <0.001 0.303 <0.001 

  Season 0.006 0.364 -0.023 0.912 
  Species 0.034 0.001 0.046 <0.001 

  Sex 0.003 0.068 0.001 0.302 
  Age -0.073 0.989 -0.054 0.959 

Class Year 0.244 <0.001 0.281 <0.001 

 Season 0.000 0.499 -0.007 0.673 

 Species 0.036 0.001 0.043 <0.001 

 Sex -0.002 0.773 0.000 0.484 

 Age -0.047 0.945 -0.026 0.815 

Phylum Year 0.211 <0.001 0.254 <0.001 

  Season 0.055 <0.001 0.013 0.169 
  Species 0.006 0.278 0.015 0.050 
  Sex -0.001 0.622 0.000 0.451 
  Age -0.018 0.722 -0.029 0.887 

 
 
 
 
 
 
 
  
 
 



 

 78 
 

Table 2.5B Results of analysis of similarity (ANOSIM) comparisons of beta diversity using Bray-
Curtis and weighted UniFrac dissimilarity metrics across the bacterial taxonomic levels of genus 
through phylum with libraries rarefied to 5,000 reads.  
 

  Bray-Curtis Weighted UniFrac 

Taxa Variable Global R P value Global R P value 

Genus Year 0.319 <0.001 0.219 <0.001 

  Season 0.015 0.238 -0.026 0.876 
  Species 0.041 0.001 0.042 0.003 

  Sex 0.004 0.119 0.000 0.347 
  Age -0.050 0.904 -0.027 0.726 

Family Year 0.268 <0.001 0.212 <0.001 

 Season 0.008 0.356 -0.018 0.788 

 Species 0.045 0.001 0.042 0.003 

 Sex 0.005 0.079 0.001 0.311 
  Age -0.052 0.900 -0.030 0.753 

Order Year 0.253 <0.001 0.213 <0.001 

  Season 0.001 0.477 -0.027 0.893 
  Species 0.043 0.002 0.041 0.004 

  Sex 0.004 0.100 0.001 0.287 
  Age -0.053 0.904 -0.036 0.798 

Class Year 0.174 <0.001 0.197 <0.001 

 Season -0.011 0.695 -0.012 0.705 

 Species 0.038 0.003 0.043 0.002 

 Sex -0.003 0.890 -0.002 0.809 
  Age -0.027 0.754 -0.011 0.596 

Phylum Year 0.144 <0.001 0.168 <0.001 

  Season 0.054 0.004 0.011 0.277 
  Species 0.005 0.336 0.012 0.153 
  Sex -0.003 0.829 -0.003 0.838 
  Age -0.020 0.678 -0.031 0.829 

 

2.5.1 Community composition 

 The high-level composition of Catharus intestinal microbiota is generally similar to that 

previously reported in numerous species of birds, with Proteobacteria, Actinobacteroita and 

Firmicutes representing a large portion of the overall composition (Dewar et al. 2014, Hird et al. 
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2015, Ambrosini et al. 2019, Trevelline et al. 2020). However, unlike these studies, 

Planctomycetota and Cyanobacteria represent a substantial portion of the overall microbiota. 

Additionally, Bacteroidota, found in relatively higher abundances in avian microbial studies which 

used fecal matter or cloacal swabs, was often absent or in low abundance in the intestinal samples 

used in this study (Hird et al. 2014, Videvall et al. 2019, Turjeman et al. 2020). The low relative 

abundance of Bacteroidota reported here, though inconsistent with several previous surveys of bird 

microbiota, may be a true characteristic of migratory thrushes and not an artifact of sample type, 

as an analysis of Swainson’s Thrush microbiota on stopover in Louisiana reported similarly low 

abundances (Lewis et al. 2016, Grond et al. 2017, Ambrosini et al. 2019, Dietz et al. 2020).  

 

2.5.2 Migration  

 Increased abundance of genus Corynebacterium has been correlated with migration, as it 

is found in heightened levels in three species of migratory birds compared to closely related, non-

migratory conspecifics (Risely et al. 2017, Corl et al. 2020). It has been hypothesized that 

Corynebacterium may enable increased fat deposition or may be associated with an immune 

response brought on by the stress of migration (Risely et al. 2017, Zhang et al. 2021). This genus 

appears in less than 20% of the individuals in this study, and we found no significant enrichment 

of Corynebacterium abundance in actively migrating birds compared to those on the breeding 

grounds. 

 Rather than Corynebacterium, we observed increased relative abundance of several 

bacterial genera that contain known pathogen strains in fall or spring birds when compared to 

summer birds. Neochlamydia, Esherichia-Shigella and Coxiella were all significantly enriched in 

actively migrating birds during either spring or fall. Migration is a physically taxing endeavor 
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which may stress the immune system and increase pathogen susceptibility (Owen and Moore 2008, 

Altizer et al. 2011). Though several genera containing known pathogen bacteria were more 

prevalent in actively migrating birds compared to those that were on the summer breeding grounds, 

pathogenicity was not assessed in this study.  

 A caveat is that bacterial genera which may include well known pathogenic species are not 

composed solely of disease-causing strains. For example, most Yersinia in migratory birds in 

Sweden have been identified as non-pathogenic (Niskanen et al. 2003). One study of migratory 

passerines on stopover observed an increased abundance of bacterial genera which contain 

potentially pathogenic strains, but found no evidence of illness within the host, suggesting the 

genera may actually act more as commensals, possibly providing some type of benefit to the host 

(Lewis et al. 2017). For example, while Corynebacterium contains several known pathogenic 

strains (Oliveira et al. 2017), Risely et al. (2017) postulates the prevalence of this genus in healthy 

migratory birds may indicate the presence of a metabolic platform to increase fat deposition (Zhang 

et al. 2021). In this study, though we were limited to post mortem inspection, there were no obvious 

physical indicators of illness in the birds collected. Overall, our observation of the increased 

enrichment of genera such as Neochlamydia, Esherichia-Shigella and Coxiella warrant further 

assessment to determine if these taxa are pathogenic and in increased prevalence due to the 

decrease immune capacity often seen in migratory birds.  

 More generally, there were weak differences between the four species of thrush in this 

study during spring and fall migration, which became slightly more pronounced between birds on 

the breeding grounds. Additionally, summer birds consistently exhibited higher alpha diversity on 

the breeding grounds compared to fall or spring birds. These results suggest that actively migrating 

birds may have a reduced microbiota compared to birds that are not actively migrating. Phenotypic 
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flexibility associated with migration invokes numerous changes to the birds’ digestive system, 

including atrophication of the intestinal tract (Piersma and Gill 1998, McWilliams and Karasov 

2001). These changes may reduce birds’ colonized gut microbiota and promote increased presence 

of bacteria from the local environmental pool, as suggested in a study of migratory passerines on 

stopover after crossing the Gulf of Mexico (Lewis et al. 2016). This results in the gut microbiota 

of different species of birds co-occurring at the same stopover sites to exhibit similar gut 

composition. Our results are consistent with these previous observations and support hypotheses 

that the migration process limits intestinal microbiome diversity and homogenizes intestinal 

microbiota across species.  

 

2.5.3 Host 

 

2.5.3.1 Host species 

 Overall, our results show minimal host species effects observed with weak differences in 

the overall community structure between species. Additionally, few bacterial phyla or genera were 

significantly more abundant in specific host species. These results imply that the four species of 

migratory thrushes do not show unique specifies-specific profiles due to differing physiologies or 

ecologies. Previous research has indicated that environment and diet are more influential than host 

genetics in shaping avian gut microbiota (Grond et al. 2018, Song et al. 2020). Host taxonomy can 

play a weakly significant role compared to abiotic factors (Hird et al. 2015, Capunitan et al. 2020).  
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2.5.3.2 Molt 

Several components of the microbiome may be directly tied to host processes and characteristics. 

Bacillus is a genus which includes feather-degrading bacteria found naturally occurring on many 

species of birds and may play a role in the timing of the annual molt birds undergo as part of the 

annual cycle (Gunderson 2008). Molt occurs when old feathers are shed and replaced by new 

feathers. There is a strong link between the presence of feather degrading Bacillus and feather 

degradation. It has been suggested that the process of molting is an adaptation to microbial control 

(Burtt and Ichida 1999, Giorgio et al. 2018). The species of thrushes studied here all molt prior to 

or at the beginning of fall migration (Cherry 1985, Pyle 1997). We found the genus to be 

significantly more abundant in summer birds than spring or fall birds. The enrichment of Bacillus 

in summer birds may be from bacteria ingested while preening of feathers pre-molt.  

 

2.5.3.3 Age 

 We observe a slight, though not significant, increase in alpha diversity in the AHY fall 

migrants compared to the HY fall migrants. Changes in microbial diversity and community 

structure between adults and chicks has been well documented (Grond et al. 2017, Kreisinger et 

al. 2017, Videvall et al. 2019), but comparisons between age classes of adult wild birds are 

relatively few. Recently, the microbiota of female tree swallows was assessed during the breeding 

season revealing that older birds had significantly higher diversity than birds in their first breeding 

season, possibly due to increased opportunities for mating and therefore increased contact with 

other birds (Hernandez et al. 2021). In thrushes the increased diversity in the older birds may be 

due to increased contact with other birds during the mating season. The increased diversity may 

also be a result of the older birds foraging far from the nest while rearing the hatchlings, leading 
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to more exposure of local environments, which has been shown to increase microbial diversity 

(Corl et al. 2020).  

 

2.5.3.4 Diet 

 Variation in diet is known to influence the microbiome (Grond, Perreau et al. 2019, Li et 

al. 2021, Song et al. 2020). Many species of birds consume different food sources throughout the 

annual cycle. For example, Swainson’s Thrush consume more insects than fruit during spring 

migration and breeding seasons but tend to consume more fruit during fall migration (Parrish 

1997). In general, frugivory in migrants is more prevalent in fall than in spring (Bairlein 2002). 

However, no bacteria known to aid in the digestion of fruit materials, such as those associated with 

complex carbohydrate degradation, were identified as more abundant in the fall or any other period 

of this study. However, Paenibacillus was significantly more abundant in fall birds, a genus which 

contains several chitinolytic bacteria, indicating the birds were consuming insects (Meena et al. 

2014). 

 

2.5.4 Environmental effect 

 Annual differences in climate can affect the composition and turnover of environmental 

microbes (Guo et al. 2018, Averill et al. 2019, De Gruyter et al. 2020). A study of zebra finches 

(Taeniopygia guttata) demonstrated that birds may acquire as much as 25% of the gut microbiota 

from environmental sources, driving some of the variation observed between years (Chen et al. 

2020). Our results suggest that birds acquire a higher proportion of their gut microbiota from 

environmental sources than previously reported. Numerous bacterial genera known to be common 

environmental microbes were recovered from the thrushes in increased abundance in specific 
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years. These genera include Frankiales, Nocardioides, and Lutispora. Additionally, two phyla, 

Cyanobacteria and Planctomycetota were significantly enriched in specific years, with 

Cyanobacteria dominant in 2019 and Planctomycetota relatively more abundant in 2017 and 2018. 

The prevalence of Cyanobacteria was primarily driven by a single ASV in genus Aliterella, which 

is a recently described genus with no described function. It is likely that Aliterella and other 

Cyanobacteria were environmentally acquired or ingested with food materials (Sun et al. 2019) 

Planctomycetes are ubiquitous in the environment (Wiegand et al. 2018). Seasonal and yearly 

variation in the environmental abundances of Cyanobacteria and Plancytomycetes may be driving 

the variation seen within Catharus over time.  

 At all tested taxonomic levels (genus-phylum) the birds showed a high degree of 

interindividual variation in terms of microbial community structure as well as the most abundant 

bacterial taxa. Many previous studies of wild animal microbiota have reported high variation 

between individuals, which likely reflects the numerous environmental and physiological factors 

which can influence microbial assemblages (Hird et al. 2014, Stothart et al. 2019, Capunitan et al. 

2020). The majority of birds were sampled midway through their migration and likely originated 

from different areas of the breeding and non-breeding ranges. However, the variation of 

environmental conditions could have lessened as birds approach Chicago, as they are constrained 

by geographic features such as Lake Michigan. Avian microbiota often reflect perturbations, such 

as new environments, within 24-48 hours (Lewis et al. 2017, Grond, Perreau et al. 2019). 

Community composition of thrush microbiota within seasons and years was more similar than 

microbiota of thrushes from different seasons or years. This may suggest environmental influences 

from locations birds had at nearby stopover sites rather than more long-term carryover from 

breeding or non-breeding areas.  
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2.5.5 Shared microbial profile 

 Although some surveys identify shared taxonomic units of up to 50% (Wu et al. 2018), the 

majority of studies report a much lower percentage of ASVs recovered as shared across the 

majority of samples in the dataset (Grond, Santo Domingo et al. 2019, Escallón et al. 2019, Jose 

et al. 2021). In thrushes, only three of the 26,895 total ASVs were found in at least 50% of all 

individuals, which is exceptionally low. Those three ASVs as well as the 11 shared genera have 

no described functions known to be associated with host processes within the bird, such as 

facilitating nutrient uptake or breakdown of food materials. Additionally, common intestinal flora, 

such as Faecalbacterium, are reported as core microbes in many host species (Grond et al. 2019, 

Escallón et al. 2019, Skeen et al. 2021). The shared microbes across and within Catharus species 

contained no common intestinal flora. The functions of the shared genera of Catharus are generally 

unknown. Functional characterization of the microbiome provides a complementary view of 

variation in microbiota between and within groups (Cadotte et al. 2011, Escalas et al. 2019). A 

study of migratory sympatric overwintering birds revealed that gut microbiota functions are more 

conserved than bacterial diversity structure, indicating that different bacteria function in similar 

ways (Li et al. 2021). 

 

2.6 CONCLUSION 

 This study adds to a growing body of literature demonstrating that the diversity and 

community structure of host-associated microbiota of many, but not all, migratory bird species 

significantly varies at throughout the annual cycle (Risely et al. 2017, Wu et al. 2018, Skeen et al. 

2021). This has important implications for the interpretation of avian microbiota studies, denoting 

the importance of contextualizing the results in the time period from which the samples were 
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collected. We add to this by characterizing Catharus intestinal microbiota from spring and fall 

migratory birds as well as on their breeding grounds. Surprisingly our annual replicates revealed 

that between year variation was significantly higher than across seasons. Additionally, we describe 

weak species-effect impacts on the composition and diversity of the microbiota and identify 

specific components which likely correlate with ongoing host processes. Finally, we note that the 

physiological changes associated with migration may have important effects on microbiota and 

further research is needed in this area.  

One challenge of studying wild birds under natural conditions is untangling the large 

number of uncontrolled variables that can influence host microbial communities. By characterizing 

the microbiome of four closely related Catharus thrushes at three separate portions of the annual 

cycle over three years we are able to identify components of the microbiome that vary 

geographically and temporally, including specific bacterial taxa and overall community 

composition. We highlight the necessity of temporal sampling of species to gain a fuller 

understanding of how the microbiome can vary over time and to better identify specific 

components of the microbiome that are likely to be associated with specific host processes. 
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3 Periodicity and density-dependent dynamics of migratory bird pathogens 

 

3.1 Abstract 

The ecological dynamics of host-pathogen systems often change over time, typified in many cases 

by systemic temporal variation in pathogen prevalence. Long term datasets are crucial to 

understanding the temporal dynamics of natural populations, allowing for a systemic approach in 

identifying variability of prevalence and diversity over time. In this study, we use a novel data 

source of data, in the form of a long-term collection of salvaged birds housed at the Field Museum 

of Natural History in Chicago, Illinois, USA. We document temporal variation in the prevalence 

of three genera of avian Haemosporidians (Haemoproteus, Plasmodium, and Leucocytozoon) in 

4,306 individuals from four species of migratory Catharus thrushes collected during spring and 

fall migration over a 24-year time period (1996-2019). First, we assess the accuracy of our PCR 

diagnostic tests using maximum likelihood estimations and determine pathogen prevalence across 

time periods. Second, we used statistical Bayesian modeling to infer periodicity in pathogen 

prevalence, identifying cycling patterns unique to each host species-pathogen genus pairing. Third, 

we generated a density-dependent model of migratory bird epizootics and identify parameter 

ranges inferred from the results of the identified cycles. We determined that avian haemosporidians 

exhibit distinct seasonality, generally exhibiting higher prevalence in the fall than the spring, multi-

year periodicity spans 8-19 years depending on the host-pathogen pair, and that factors relating to 

host population size, such as net fecundity, reasonably replicate the patterns observed in the 

statistical model, resulting in a plausible mechanism driving periodicity of avian haemosporidians.   
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3.2 INTRODUCTION 

Host-pathogen systems are often dynamic over time, typified in many cases by cyclical 

variation in pathogen prevalence (Anderson and May 1980, Earn et al. 1998, Kallio et al. 2009). 

Long-term datasets are crucial to understanding temporal dynamics of natural pathogen 

populations, allowing for a systemic approach in identifying potential variability of prevalence and 

diversity (Hosseini et al. 2004, Lloyd-Smith et al. 2007, Gisder et al. 2017). Empirical examples 

of disease cycles in animal populations are quite rare, largely due to logistical obstacles to 

collecting time series data of disease prevalence. Yet these studies provide crucial understanding 

of disease ecologies. High levels of temporal variation can make short-term records susceptible to 

errors of interpretation, especially if conditions were anomalous during the period of study. Long-

term studies are particularly important with respect to episodic ecological processes or complex 

phenomena, and therefore play an important role in formulating and testing ecological theory 

(Lindenmayer and Likens 2010). Episodic processes and complex phenomena require long term 

studies in order to separate pattern from noise. 

Environmental change resulting from human driven climatic warming is predicted to 

drastically alter pathogen distribution as well as the ranges of insect vectors that may transmit 

pathogens from host to host (Meyer Steiger et al. 2016, Kamal et al. 2018). Additionally, 

anthropogenic changes have altered both host and pathogen communities resulting in increased 

contact between pathogens and naïve host populations (Keesing et al. 2010, Schmeller et al. 2020). 

Therefore, it is imperative to understand how pathogen dynamics have historically varied across 

recent time scales to inform predictions of future pathogen prevalence and spread. However, a 

persistent challenge in properly assessing changing disease prevalence in long-term, real-life 

datasets is separating noise from pattern and dealing with unpredictable dynamics. This challenge 
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can be met through the use of system-appropriate modeling, sufficient data within and across time 

periods, and a focal study system in which there is sufficient knowledge of both host and pathogen 

associated characteristics.  

In systems where pathogens are endemic, cyclical fluctuations in prevalence can be 

observed within and across years (Gulland 1992, Altizer et al. 2011).  Vector borne pathogens, 

such as those that cause the disease malaria, often peak in prevalence during warm or rainy seasons, 

as the climatic conditions result in increased abundance of pathogen spreading insect vectors 

(Bacaër and Guernaoui 2006). Some airborne respiratory viruses, such as influenza, exhibit strong 

seasonal fluctuations in temperate regions, often peaking in the colder months (Dushoff et al. 2004, 

White et al. 2005). Recurrent outbreaks of avian influenza occur at two to eight year intervals in 

some species of North American waterfowl, theorized to be driven by the intensity of 

environmental transmission (Wang et al. 2012, Sharp et al. 1993). Epizootic events, defined as a 

significant increase in pathogen prevalence, can result from regular variation in host or parasite 

biology, such as waning immunity (Sydenstricker et al. 2005), seasonally fluctuating environments 

(Bacaër and Guernaoui 2006), or host movement between geographically disparate locations (Van 

Dijk et al. 2014). Determining pathogen prevalence dynamics is a key step in identifying drivers 

of pathogen spread, which is especially important with hosts that move between distinct 

environments as those animals may be exposed to numerous pathogen communities throughout 

the course of migration (Jourdain et al. 2007, Fuller et al. 2012).  

Migratory animals are exposed to novel pathogen communities throughout the annual 

cycle, including on the breeding grounds, on migration, and in non-breeding areas, potentially 

resulting in multiple epizootic events throughout the year (Engering et al. 2013, Fritzsche McKay 

and Hoye 2016). In addition to exposure to different pathogen communities, the physiological 
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stress of migration may deplete immune resources, leaving the host vulnerable to infection 

(Reperant et al. 2011). This is especially evident in many species of migratory birds, which 

complete bi-annual migrations that may span multiple continents (Owen and Moore 2006). Birds 

may contract diseases at stopover sites, on the breeding grounds, or at the non-breeding winter 

locations (Altizer et al. 2011, Prosser et al. 2011, Pulgarin et al. 2019). Much research on 

pathogens of migratory birds focuses on how birds may spread disease across flyways, whereas 

few studies have focused on how pathogens act across the annual cycle. This is important to 

understand because migratory birds have several characteristics which may make them more 

vulnerable to pathogens, including exposure to novel pathogen communities and decreased 

immunity resulting from the physiological stress of migration or defending their nests/breeding 

territories, or from increased contact with vectors during nesting.  

One important group of pathogens that are endemic in birds belong to the Order 

Haemosporidia (Phylum Apicomplexa) and include the causative agents of the disease malaria 

(Valkiūnas 2004). Of particular interest are the genera Haemoproteus, Plasmodium and 

Leucocytozoon, each of which are vectored by different groups of insects (Haemoproteus – 

Ceratopogonidae biting midges; Plasmodium – Cuculidae mosquitoes; Leucocytozoon – 

Simuliidae black flies). Haemosporidian infection often persists at low level, chronic conditions 

following the acute infection phase (Manwell 1934, Ortego et al. 2008). Haemosporidia have 

varying impacts on the host, spanning from being the primary driver of extinction in some species 

of Hawaiian honeycreeper to no apparent indicators of detrimental effect on the host (Bensch et 

al. 2007, Atkinson and LaPointe 2009). Although Haemosporidia have been widely studied in 

birds, few studies report time series (Bensch et al. 2007, Wilkinson, Handel et al. 2016). 
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In this study, we screen a set of four species of migratory Catharus thrushes collected over 

a period of 24 years (1996-2019) at the Field Museum of Natural History in Chicago, Illinois 

during both spring and fall migrations. The four host Catharus species in this study are the Veery 

(C. fuscescens), Hermit Thrush (C. guttatus), Grey-Cheeked Thrush (C. minimus) and Swainson’s 

Thrush (C. ustulatus). We detail the prevalence of Haemoproteus, Plasmodium, and 

Leucocytozoon and analyze cyclical temporal variations in pathogen prevalence using a 

hierarchical statistical framework. We complement this analysis with a density-dependent model 

of migratory bird epizootics. We use these methods to determine the length and occurrences of 

peaks in pathogen prevalence and discuss mechanisms by which they may occur.  

 

3.3 METHODS 

 

3.3.1 Sample and data collection 

 

3.3.1.1 Sample collection and storage 

Starting in 1978, Field Museum of Natural History staff and volunteers from the Chicago 

Bird Collision Monitors non-profit organization have led a salvage program to recover birds that 

collide with building in Chicago. Throughout the spring and fall migratory periods, deceased birds 

are collected in early morning and immediately sent to the museum for processing and specimen 

preparation. Live but injured birds are sent to wildlife rehabilitation centers. Individuals that do 

not survive rehabilitation are sent to the museum for processing.   

During specimen preparation, individual birds were aged based on skull ossification and 

categorized as Hatch Year (HY – during fall migration, birds that hatched that summer) or After 
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Hatch Year (AHY – all spring birds and fall birds that were at least one year old). Sex was 

determined through examination of the gonads. In some cases, physical damage from window 

collision prevented age and/or sex determination. Pectoral muscle was subsampled from each 

individual and frozen in liquid nitrogen for long term storage. We used subsampled pectoral 

muscle to screen for haemosporidian pathogens (Fecchio et al. 2019). All specimens used in this 

study are accessioned at The Field Museum.  

 

3.3.1.2 Molecular detection of haemosporidian pathogens 

Pathogen presence was detected through replicated amplification using nested PCR 

methods and products were sequenced to confirm infection status of the host, pathogen genus and 

lineage identity. We extracted genomic DNA from pectoral muscle tissue specimens and then 

conducted multiple nested PCRs targeting the standard 476 base pair barcoding region of the 

haemosporidian cytochrome b (cytb) genetic marker. Primers HAEMNF/HAEMNR2 and 

HAEMF/HAEMR2 targeted Haemoproteus and Plasmodium, with HAEMNF1/HAEMFL3 and 

HAEMFL/HAEMR2L amplifying Leucocytozoon (Hellgren et al. 2004, Waldenström et al. 2004).  

We identified individuals likely positive for haemosporidian infection through 

visualization on gel electrophoresis, then purified and bi-directionally Sanger sequenced all 

inferred positive samples. We cleaned and trimmed all sequence data using Geneious Prime 

(Biomatters, version 2021.0.1). Finally, we confirmed host infection status as well as pathogen 

genus and lineage identity using the MalAvi reference database (Bensch et al. 2009). Lineages 

were identified as known with a 100% match in the MalAvi database or novel with <100% match.  

We determined infection status only after successful sequencing and genus identification 

(Bensch et al. 2021). Subsequently, we marked each bird as positive for Haemoproteus, 
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Plasmodium, or Leucocytozoon. Co-infections occur when multiple lineages of a haemosporidian 

pathogen are detected. We attempted to visually resolved the sequences of co-infections. If visual 

resolution is not possible, those samples were determined to be unresolved co-infections. 

Unresolved co-infections can still be identified to pathogen genera with high confidence but 

lineage identification is not possible.  

 

3.3.1.3 Accuracy of PCR diagnostic test  

False negatives are a common occurrence in blood pathogen detection (Richard et al. 2002, 

Freed and Caan 2006). To reduce the possibility of a false negative, we screened each sample in 

triplicate with independent PCR runs with each of the primer sets (Lutz et al. 2015). To assess 

overall accuracy of PCR pathogen diagnostic tests, we estimated the probability of not detecting 

an infection within an individual sample, a false negative. We did so by quantifying all possible 

outcomes for the triplicate PCR runs per individual. These outcomes are {111}, {110}, {100} and 

{000}, where 1 indicates positive infection and 0 indicates no infection. For example, in the case 

of {110} two of the PCR runs show that the bird is positive for the haemosporidian pathogen while 

one PCR run shows no indication of infection. We used the frequency of {110} and {100} to 

estimate the proportion of {000}, birds that were actually infected but did not indicate so in any 

PCR test and therefore were a false negative. We assumed that if any of the three amplifications 

were positive, as confirmed by sequencing and lineage identification, then the individual was 

infected. We also assume that the probability of successful amplification is the same across all 

samples.  

To determine the proportion of false negatives, we computed the likelihood of the data 

given a probability, p0/1, of no PCR amplification when the individual is infected, and P is the 



 

 94 
 

probability of being infected. For example, the likelihood for an individual with two false 

amplifications is L{100} = 3P( p0/1)2 where the factor of 3 accounts for the possibility of the first, 

second or third round of PCR amplification being successful. Similar expressions apply to the 

other three outcomes, and the total likelihood is calculated as the product over all individuals. We 

conducted a grid search over a range of values for P and p0/1
 to find the maximum likelihood 

solution. Given the relatively high frequency of {111} outcomes in the data, we found that 

maximum likelihood estimated of the proportion of true infections was very close to those of the 

proportion observed, and hence made no corrections.  

 

3.3.1.4 Prevalence and Confidence intervals 

We define prevalence as the fraction of infected individuals compared to the total number 

of individuals screened. We calculated prevalence of each pathogen genus and overall infection 

within the entire dataset, by species, and by sampling period (Spring or Fall migratory period per 

year). We placed binomial 95% confidence intervals on prevalence.  

 

3.3.2 Hierarchical inferential model  

 

3.3.2.1 Statistical model  

We developed a hierarchical Bayesian inference model to estimate length and statistical 

support of seasonal and multi-year oscillations in pathogen prevalence. We implemented our 

model within Stan (Carpenter et al. 2017) via the RStan interface (Stan development team, 2016) 

in R version 3.6 (R core development team, 2016). Four Hamiltonian Monte Carlo chains each 

with 25,000 iterations were used with the first 5% discarded as burn-in. Parameter estimates are 
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reported with medians as well as 80% and 95% credible intervals. We modeled fraction of 

individuals infected across t=1,…,n time periods with a total of 48 time periods. Spring of 1996 

was modeled as the first time periods with all other time periods following in succession through 

Fall 2019. Input data are binomial per individual bird screened with 0 indicating no evidence of 

infection and 1 with a positively identified infection. We tested all host species, pathogen pairings 

as well as each pathogen genus from the full dataset using the following model: 

�1�                 
� = 
�� + 	������ �2� ��2 − ���2 � + ! 	"
#

"$%
��� &2� � ��" − "�' + (� 

Our model specifies:  

• 
: logit transformed predictor for the prevalence  

o  
�� ∈ [0,10]: background 
, the latent prevalence variable for the full dataset 

o  
�: prevalence predictor for time period t 

• 	: weighting of the periodic deviance term 

o 	���: seasonal periodic deviance term 

o 	": multi-year oscillation deviance term 

• : offset term (phase shift) referring to what position of the cycle the dataset begins at  

o ��� ∈ �0,1�: seasonal offset term  

o " ∈ �0,1�: multi-year oscillation offset term 

• K: number of multi-year oscillations to infer 

• � ∈ [1,48]: length, in time periods, of one full oscillation 

• (�: deviance/error 
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Our model specifies that 
 is the logit transformed predictor for the prevalence with 
��, the 

background theta, as the latent prevalence variable for the full dataset and θ� as the prevalence 

predictor for time period t. 	 refers to the weighting of the periodic deviance term with 	��� for 

the within-year periodic deviance and 	" as the deviance term for multi-year oscillations. 

Complementing 	, ϕ is the offset term which indicates what position of the cycle the dataset 

begins with. The within-year offset, ϕ���, will identify if birds peak in spring or fall migratory 

periods while ϕ" will identify where the cycle starts in multi-year oscillations. We directed the 

model to infer k, the number of multi-year oscillations. We tested for k=2 and failed to identify 

multiple multi-year oscillations and therefore ran all subsequent analysis with k=1. Finally, � 

denotes the length, in time periods, of one full multi-year oscillation. We recorded two time periods 

per year, so the model imputed length of one cycle, in years, as λ/2. The term 

	������ �2� .�
/ − 0122/ 3� determines if there are seasonal, within-year oscillations, where 

prevalence consistently peaks in spring or fall migratory birds. In the within-year oscillation term, 

the factor of 2 in the denominator represents the two sampling periods we record per year. The 

term ∑ 	"#"$% ��� �2� . �
56 − "3  identifies k multi-year, intra-annual oscillations.  

We used the following prior distributions 

• 
�� ~ normal(1,10) 

• 	��� ~ exponential(0.01) 

• 	 ~ exponential(0.01) 

• ��� ~ beta(1e-6,1e-6) 

•  ~ uniform (0,1) 

• � ~ uniform (1,48) 



 

 97 
 

We used a normal distribution for background 
 with a range of one to ten. For � we summarized 

the prior distribution as weakly informative. uniform encompassing the full range of time periods, 

in this case from one through 48. This allowed for the model to assess all possible lengths of multi-

year oscillations. We also summarized  with a uniform distribution of zero to one and ���  with 

a strongly informative beta distribution of (1e-6,1e-6).  We used an exponential distribution with a 

value of 0.01 for 	 and 	���. We tested numerous values for 	 and 	���  between 0.001 and 1 

and assessed Bayes factor support to determine best values.  

 

Finally, we inferred τ, the model imputed fraction infected per time period t with the following 

equation: 

 

�2�            τ� = 11 + 89:; 

 

3.3.2.2 Model testing 

We estimated Bayes factor support for our model and evaluated according to Kass and 

Rafferty (1995). Bayes factors are ratios of the marginal likelihoods between two models and are 

commonly used for pairwise comparisons for the relative goodness of fit between two nested 

models. Within our null model (M0), we reduced the prior of seasonal and multi-year cycling 

parameters to zero, resulting in a model with no cycling. We compared our null model against one 

which had seasonal cycling only (M1), multi-year cycling only (M2), and a model which contained 

both seasonal and multi-year cycling (M3). Analysis of Bayes Factors found strongest support for 

the full model, M3 (Table 3.1). We further vetted M3 by testing a range of prior distribution values 
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for 	 and 	��� from which we identified an exponential distribution = 0.01 to be the optimal value 

for both priors.  

 

3.3.3 Migratory bird pathogen epizootic model 

In this model, we investigate epizootic events on the breeding and wintering territories and 

the impact these events have on pathogen prevalence dynamics. We use the results from the 

hierarchical inferential model to inform expected behaviors of modeled pathogen prevalence over 

time. Given the widespread distribution of haemosporidians, we assume all birds have equal 

probability of exposure to pathogens through vectors. To describe the dynamics of pathogen  

 

Table 3.1 Model comparison results using Bayes Factors. Within our null model (M0), we reduced 
the prior of seasonal and multi-year cycling parameters to zero, resulting in a model with no 
cycling. We compared our null model against one which had seasonal cycling only (M1), multi-
year cycling only (M2), and a model which contained seasonal and multi-year cycling (M3). Table 
3.1A reports log likelihood values of each model and Table 3.1B lists comparison values between  
the null model (M0) and each of the three other models (M1, M2, M3).   
 

Table 3.1A Model values 

Pathogen Host M0 M1 M2 M3 

Haemoproteus All Birds -1146.34 -1151.37 -1149.48 -1149.43 
  Hermit -336.54 -340.83 -342.35 -355.95 
  Grey-Cheeked -159.31 -164.61 -164.15 -178.80 
  Swainson's  -520.31 -537.30 -524.03 -537.47 
  Veery -113.87 -119.04 -119.57 -133.82 

Plasmodium All Birds -2484.85 -2482.84 -2477.04 -2490.20 
  Hermit -1150.79 -1156.42 -1155.60 -1173.57 
  Grey-Cheeked -274.20 -279.85 -280.12 -294.73 
  Swainson's  -877.81 -875.79 -877.54 -890.51 
  Veery -171.91 -176.67 -174.04 -187.93 

Leucocytozoon All Birds -2493.69 -2479.18 -2509.20 -2467.43 
  Hermit -801.06 -805.86 -803.40 -815.52 
  Grey-Cheeked -399.40 -404.86 -406.12 -420.73 
  Swainson's  -1045.30 -1054.15 -1050.05 -1066.55 
  Veery -189.98 -195.25 -196.40 -210.57 
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Table 3.1B Comparison of model values 

Pathogen Host M0:M1 M0:M2 M0:M3 

Haemoproteus All Birds 5.03 3.14 3.09 
 Hermit 4.29 5.81 19.41 
 Grey-Cheeked 5.3 4.84 19.49 
 Swainson's 16.99 3.72 17.16 
 Veery 5.17 5.7 19.95 

Plasmodium All Birds -2.01 -7.81 5.35 

 Hermit 5.63 4.81 22.78 
 Grey-Cheeked 5.65 5.92 20.53 
 Swainson's -2.02 -0.27 12.7 

 Veery 4.76 2.13 16.02 

Leucocytozoon All Birds -14.51 15.51 -26.26 
 Hermit 4.8 2.34 14.46 
 Grey-Cheeked 5.46 6.72 21.33 
 Swainson's 8.85 4.75 21.25 
 Veery 5.27 6.42 20.59 

 

 

prevalence of migratory birds experiencing two epizootic events per annual cycle, during the 

reproductive periods and during the overwintering period, we construct a density dependent 

vectored disease model. This model describes disease transmission between birds (B) and the 

insect vectors (V). In equations 4 and 5, 	 is the transmission rate to birds from the insect vectors. 

The rate at which birds cease to be infectious is represented by γ=. Because the insect vectors have 

short life spans, we do not include a similar recovery term for the vector. In equations 6 and 7, 	 

is the transmission rate to the insect vectors from the birds.  

 

�4�             ?@=?� = −	=A@=BA 

 



 

 100 
 

�5�             ?B=?� = 	=A@=BA − D=B= 

 

�6�              ?@A?� = −	A=@AB= 

 

�7�              ?BA?� = 	A=@AB= 

 

The initial conditions of S and I are determined with the following equations:  

 

[8]                @=,%(0) = G�  @=,/(0) = G�H  

        B=,%(0) = I�  B=,/(0) = I�H 

where G� represents the uninfected host density in generation n of fall migratory birds following 

the reproductive period and G�H  represents the uninfected host density of spring migratory birds 

occurring just prior to the reproductive period. Additionally, I� represents the infected host density 

(carriers) in generation n of fall migratory birds following the reproductive period and I�H 

represents the infected host density of spring migratory birds occurring before the reproductive 

period.  

We define two epizootic events which occurs during the reproductive period (represented 

by J%) and the non-breeding time spent on the wintering territories (represented by J/). We connect 

the epizootic periods and inter-epizootic periods by defining: 

�9�             J%(G�, I�) = 1 − @=(L)@=(0) 
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                   J/MG�H , I�HN = 1 − @=(L)@=(0) 

 

Here J%is the cumulative fraction of birds infected during the epizootic on the breeding grounds, 

J/ is the cumulative fractions of birds infected while overwinters, and T represents the end of the 

epizootic.   

 

Finally, we complete our model by nesting the ordinary differential equations within the 

difference equations to produce the following equations:  

 

�10�           G�P% = �% .1 − J/MG�H , I�HN + 
J/MG�H , I�HN3 G�H + �/Q(1 − 
)J/MG�H , I�HNG�H + RG�     
                    I�P% = G�H J/MG�H , I�HN(1 − Q)  

 

�11�            G�H = M1 − J%(G�, I�)NG� + θJ%(G�, I�)G� 

                    I�H = (1 − 
)J%(G�, I�)G� 

 

In equations [10] and [11] λ% represents the fecundity of naïve birds and λ/ represents the fecundity 

of birds that were previously infected but no longer actively transmitting pathogens birds in units 

of uninfected offspring. The fraction of birds infected in the epizootic event that eventually clear 

infection is denoted by θ. The fraction of birds that survive their offspring are represented by ψ 

and ω refers to the fraction of birds that survive until the following time period. ϕ represents the 

fecundity of infected hosts in units of infected offspring; when chronically infected hosts give rise 

to acutely ill offspring.  



 

 102 
 

 

3.4 RESULTS 

3.4.1 Basic prevalence numbers 

In total we screened 4,306 individuals (Grey-cheeked n=596, Hermit n=1,786, Swainson’s 

n=1,578, Veery n=386) originally collected between 1996 and 2019 (Figure 3.1, Figure 6.1). We 

screened 3,314 birds collected during fall migration and 992 birds collected throughout the spring 

migratory period. Individuals screened per year varied between 30 individuals in 1997 and 434 

individuals in 2019 (Table 6.2). In total, 2,240 birds (52%) were infected with at least one 

haemosporidian genus (Table 3.2). Plasmodium (Figure 6.1A) infections were detected in 26.87% 

of all birds and we recovered a total of 80 unique cytochrome b lineages, with one common lineage 

constituting 67% of the total. We detected Haemoproteus (Figure 6.1B) infections in 7.52% of 

birds and recovered 72 lineages of which three were common, representing 63% of all lineages. 

Leucocytozoon was the most diverse pathogen with 187 lineages recovered from 27% of all birds. 

Four lineages of Leucocytozoon were designated as common and represented 65% of all lineages 

recovered (Figure 6.1C, Table 6.1). Prevalence varied from 0%-100% depending on the time 

period, host species, and pathogen genus (Figure 3.2, Figure 6.2 

Table 3.2 Overall prevalence values of host-pathogen pairs, derived from data collected from 
migratory bird specimens. 
 

 

Grey-

Cheeked Hermit Swainson's Veery All Birds 

Plasmodium 16.39% 35.13% 24.30% 15.27% 26.83% 
Haemoproteus 6.62% 4.57% 10.90% 7.89% 7.54% 
Leucocytozoon 36.09% 16.56% 37.95% 18.58% 27.24% 
All Pathogens 50.00% 48.78% 60.31% 32.06% 52.02% 

3.4.2 Accuracy of PCR diagnostic test 
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For the primer set that amplified Haemoproteus and Plasmodium, we saw 2709 samples 

with no PCR positive for the pathogen (outcome = {000}) in the three independent nested PCR 

diagnostic test, 614 samples with one positive ({100}), 366 samples with two positives ({110}), 

and 645 samples with positives from all three PCR diagnostic tests ({111}). These results indicate 

that each individual PCR diagnostic had an average probability of getting a false negative result 

of 19.0%. The possibility of getting a false negative per sample, taking into account the three 

independent PCR diagnostic tests, was 0.69% (=0.193). The results for the primer set amplifying 

Leucocytozoon DNA are as follows: {000}=2919, {100}=398, {110}=313, and {111}=704. The 

per PCR possibility of false negative is 16.0% and the per sample probability of recording a false 

negative is 0.41%. 

  
Figure 3.1 Distribution of host species over time, spanning spring and fall migratory periods of 
1996-2019. Each dot represents a single bird and is colored according to host species. Fall 
migratory birds are represented in the upper band, spring migratory birds are represented in the 
lower band.  
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Figure 3.2 Observed proportion infected of all host-pathogen pairs. The observed proportion 
infected per migratory period is noted with a point and successive migratory periods are connected 
by with a line. There were no birds sampled and therefore no data for one migratory period with 
Hermits and two time periods with Veerys.  
 
 

0.0

0.2

0.4

0.6

0.8

1.0

1998 2001 2004 2007 2010 2013 2016 2019

Year

P
ro

p
o
rt

io
n
 I

n
fe

c
te

d
Grey−Cheeked~Plasmodium

0.0

0.2

0.4

0.6

0.8

1.0

1998 2001 2004 2007 2010 2013 2016 2019

Year

P
ro

p
o
rt

io
n
 I

n
fe

c
te

d

Grey−Cheeked~Haemoproteus

0.0

0.2

0.4

0.6

0.8

1.0

1998 2001 2004 2007 2010 2013 2016 2019

Year

P
ro

p
o
rt

io
n
 I

n
fe

c
te

d

Grey−Cheeked~Leucocytozoon

0.0

0.2

0.4

0.6

0.8

1.0

1998 2001 2004 2007 2010 2013 2016 2019

Year

P
ro

p
o
rt

io
n
 I

n
fe

c
te

d

Hermit~Plasmodium

0.0

0.2

0.4

0.6

0.8

1.0

1998 2001 2004 2007 2010 2013 2016 2019

Year

P
ro

p
o
rt

io
n
 I

n
fe

c
te

d

Hermit~Haemoproteus

0.0

0.2

0.4

0.6

0.8

1.0

1998 2001 2004 2007 2010 2013 2016 2019

Year

P
ro

p
o
rt

io
n
 I

n
fe

c
te

d

Hermit~Leucocytozoon

0.0

0.2

0.4

0.6

0.8

1.0

1998 2001 2004 2007 2010 2013 2016 2019

Year

P
ro

p
o
rt

io
n
 I

n
fe

c
te

d

Swainson's~Plasmodium

0.0

0.2

0.4

0.6

0.8

1.0

1998 2001 2004 2007 2010 2013 2016 2019

Year

P
ro

p
o
rt

io
n
 I

n
fe

c
te

d

Swainson's~Haemoproteus

0.0

0.2

0.4

0.6

0.8

1.0

1998 2001 2004 2007 2010 2013 2016 2019

Year

P
ro

p
o
rt

io
n
 I

n
fe

c
te

d

Swainson's~Leucocytozoon

0.0

0.2

0.4

0.6

0.8

1.0

1998 2001 2004 2007 2010 2013 2016 2019

Year

P
ro

p
o
rt

io
n
 I

n
fe

c
te

d

Veery~Plasmodium

0.0

0.2

0.4

0.6

0.8

1.0

1998 2001 2004 2007 2010 2013 2016 2019

Year

P
ro

p
o
rt

io
n
 I

n
fe

c
te

d

Veery~Haemoproteus

0.0

0.2

0.4

0.6

0.8

1.0

1998 2001 2004 2007 2010 2013 2016 2019

Year

P
ro

p
o
rt

io
n
 I

n
fe

c
te

d

Veery~Leucocytozoon



 

 105 
 

3.4.3 Hierarchical inferential model 

 

3.4.3.1 Seasonal variation 

Across the full dataset, all host-pathogen pairs displayed evidence of seasonality. 

Plasmodium exhibited distinct seasonality in all host species, with prevalence consistently higher 

in the fall migratory period than spring. Seasonality of Haemoproteus showed slightly weaker 

seasonal signals than Plasmodium, with prevalence peaking more in the fall than spring, except in 

Swainson’s Thrush which was higher in the spring. Leucocytozoon shows a strong signal of  

 
Figure 3.3 The posterior probability distribution of the seasonal offset term (ϕ���) 
and the magnitude of the seasonal effect (β���).  The seasonal offset term indicates whether the 
prevalence of the pathogen consistently peaks in the spring (mean value near 1.0) or fall migratory 
period (mean value near 0).  The mean value of the posterior distribution is represented with a 
black dot while the 80% credible intervals (CIs) or 95% CIs are represented by red and black bars, 
respectively. The magnitude of the seasonal offset is visualized with through density plots with 
the outer black vertical bars within each density plot representing the 80% credible intervals and 
the middle vertical bar representing the median value of the posterior.  The expected prior 
distribution, set at exponential (0.01), is represented in the bottom panel.   
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Figure 3.4 The posterior probability distribution of multi-year oscillation length (λ) and the 
magnitude of the multi-year oscillation (β).  The posterior distributions for each parameter are 
visualized as density plots, with the outer black vertical bars representing the 80% credible 
intervals and the middle vertical bar representing the mean value of the posterior. The expected 
prior distributions (for λ: uniform(1,48); for β: exponential(0.01)) are represented in the bottom 
panels.   
 

 

 

peaking in the fall in Swainson’s Thrush, with slightly weaker signals for fall peaks in Grey-

Cheeked and Veery, and Hermit thrushes had higher prevalence levels of Leucocytozoon in the 

spring (Figure 3.3, Table 6.1). When analyzing seasonality of pathogen genus across all host 

species, Plasmodium and Leucocytozoon displayed higher prevalence in the fall migratory period 

while Haemoproteus was consistently highest in the spring.  
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3.4.3.2 Multi-year oscillations  

Multi-year oscillations spanned approximately 8-18 years depending on the host pathogen 

pair (Figure 3.4, Figure 3.6, Table 6.2). In no subset did the 95% credible intervals span to either 

1 or 48. The shortest length of prevalence cycling in prevalence occurred with Plasmodium in  

Veerys, which spanned approximately 8 years (�= 16.31, 95% Credible Interval [C.I.] = 3.68, 

45.41). Leucocytozoon in Grey-Cheeked thrushes peaked approximately every nine years (�= 

17.82, 95% C.I. = 2.0, 45.31). The longest oscillation in pathogen prevalence occurred in Hermits 

infected with Leucocytozoon (�= 18.8, 95% C.I. = 24.17, 46.41). With all three pathogen genera, 

Veerys generally displayed the shortest oscillations while Swainson’s displayed the longest 

(Figure 3.5, Table 6.2). Cycles in Leucocytozoon (�= 22.5) and Haemoproteus (�= 19.5) in all 

hosts were longer than compared to cycle length in a specific host species, while Plasmodium (�= 

10.2) occurred between the upper and lower bounds of what occurred in individual species (Figure 

3.5).  

 

Migratory bird density-dependent epizootic model 

In this model we assessed epizootics that occurred on breeding and non-breeding periods 

of the annual cycle. We used the results of the hierarchical statistical model to inform expected 

behaviors, and therefore model variables (Equation 1). This model accurately reproduces host 

population dynamics when influenced by the spread of a density dependent pathogen (Figure 3.6, 

Table 3.3). We found that four variables in particular influenced the length of a population cycle: 

�%, �/, , and R. Regardless of cycle length, the net fecundity of uninfected birds (�%) was higher 

that of infected birds (�/), which is consistent with previous research into the effects of 

haemosporidian infection on reproductive success (Asghar et al. 2015, Bosholn et al. 2016).  
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Figure 3.5  Hierarchical statistical model output for each host-pathogen pair.  The observed 
prevalence is represented by the red points, the model inferred underlying prevalence per time 
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Figure 3.5 (continued) period is represented by cyan points, the median model fit is shown with 
the black lines throughout with 1000 random samples of the model fit shown in grey.  The upper 
right inset panel shows the posterior distributions for the length of multi-year oscillations (�) and 
magnitude of the oscillations (	).  
 

 

 

 

 

 

 

 

 

 

 

 

Table 3.3 Example parameter values for which the migratory bird epizootic model results in 9, 16, 
and 20 year cycles.   
 
 

Parameter 9-year 
cycle 

16-year 
cycle 

20-year 
cycle 

Parameter explanation 

γ 0.5 0.5 0.5 proportion of birds not transmitting 
pathogen 
 β=A 0.1 0.1 0.1 transmission rate to birds from vectors 
 βA= 0.001 0.001 0.001 transmission rate to vectors from birds 
 λ% 1.15 1.01 1.0001 fecundity of naïve birds 
 λ/ 0.5 0.1 0.1 fecundity of infected but not transmitting 
birds 
 ϕ 25 50 100 fecundity of hosts in units of infected 
offspring 
 ω 0.15 0.145 0.125 fractions of birds surviving to next time 
period 
 ψ 1 1 1 fraction of birds that survive offspring 
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Figure 3.6 Density dependent migratory bird epizootic model dynamics modeled on 9, 16, and 20 
year cycles. The left panels visualize naïve and infectious host density over time. The right panels 
represent the fraction of infected hosts over time with two time periods per generation (year), the 
post reproduction period and pre reproduction period.  
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3.5 DISCUSSION 

9 year cycle

0 10 20 30 40 50

Generation (years)

H
o

s
t 

D
e
n

s
it
y

0 10 20 30 40 50

Generation (years)

F
ra

c
ti
o

n
 i
n

fe
c
te

d

16 year cycle

0 10 20 30 40 50

Generation (years)

H
o

s
t 

D
e

n
s
it
y

0 10 20 30 40 50

Generation (years)

F
ra

c
ti
o

n
 i
n

fe
c
te

d

20 year cycle

0 10 20 30 40 50

Generation (years)

H
o

s
t 

D
e

n
s
it
y

0 10 20 30 40 50

Generation (years)

F
ra

c
ti
o

n
 i
n

fe
c
te

d

Infection status
Naive Host Density

Infectious Host Density
Time Period

Post Reproduction

Pre Reproduction



 

 112 
 

Understanding how pathogens spread across host populations is a key aim in epidemiology. 

Time series data are essential to elucidating patterns of variation in prevalence and identifying 

mechanisms which influence these patterns. In this study we use an extensive collection of 

migratory bird specimens to survey haemosporidian pathogens in spring and fall migrants over a 

24-year time span. Our analysis of avian haemosporidian pathogens in migratory Catharus 

thrushes suggests that pathogens peak in prevalence every eight to 18 years, exhibit distinct 

seasonality, and we show how a density-dependent transmission dynamics model can replicate 

features of the observed data. Additionally, pathogen periodicity varies depending on the host 

species, indicating mechanisms likely specific to host-pathogen pairs. We discuss our results and 

possible influencing factors in relation to seasonality, multi-year oscillations, and heterogeneous 

periodicity of migratory bird pathogens.  

 

3.5.1 Seasonal variation 

Vector borne pathogens are among those most likely to exhibit seasonal variation (Altizer 

et al. 2006) and avian haemosporidians appear to be no exception based on this study and previous 

work (Bensch et al. 2007, Hellgren et al. 2013, Pulgarin et al. 2019). The majority of host-pathogen 

pairs in this study exhibit consistently higher prevalence during fall migration than in the spring, 

with the exception of Haemoproteus in Swainson’s thrush and Leucocytozoon in Hermit thrush. 

We also replicate seasonally fluctuating behaviors in the density-dependent epizootic model. 

Previous work on haemosporidians in North America migratory birds revealed within year 

prevalence profiles which peak during or shortly after the breeding period (Pulgarin et al. 2019). 

Relatively higher prevalence of haemosporidians has been observed in the Garden Warbler (Sylvia 

borin), a migrant to sub-Saharan Africa, at the breeding grounds in Sweden when compared to 
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other portions of the migratory cycle, suggesting the patterns observed in this study may be 

relevant beyond Nearctic-Neotropical migrants (Hellgren et al. 2013).  

Migratory birds are exposed to different pathogen communities throughout the annual 

cycle and may be especially susceptible to infection due to decreased immune capacity induced by 

the stress of migration (Owen and Moore 2006, Reperant et al. 2011). Additionally, 

haemosporidian pathogens are ubiquitous in most avian populations worldwide (Valkiūnas 2004). 

Therefore, one might hypothesize that migratory birds have a similar rate of susceptibility to 

infection throughout the annual cycle. However, given the seasonal differences observed in this 

study as well as in other species of birds (Hellgren et al. 2013, Ferreira Junior et al. 2017, Rivero 

de Aguilar et al. 2018, Pulgarin et al. 2019), we hypothesize that ecological and evolutionary 

factors, such as pathogen adaptations for increased infectiousness within local host communities 

and barriers to dispersal likely inhibit the interchange of haemosporidians across geographically 

separated areas and between birds of disparate taxonomic groups. A comparison of over-wintering 

migratory birds and permanent residents in the Caribbean revealed that each group housed distinct 

haemosporidian pathogen communities with minimal overlap (Soares et al. 2020), indicating 

minimal levels of transmission between resident and non-resident hosts. Accordingly, few lineages 

commonly found in Neotropical birds were recovered from the thrushes. Therefore, we suggest 

that geographical and host specificity of avian haemosporidians contribute to the seasonality 

observed with reduced transmission on stopover and overwintering sites by lineages that are 

common in neotropical but rare in temperate habitats.  

 

 

3.5.2 Multi-year oscillations 
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Few studies of avian haemosporidians have spanned a time period long enough to 

confidently identify prevalence cycles of eight years or longer. When investigating Haemoproteus 

and Plasmodium in great reed warblers (Acrocephalus arundinaceus), Bensch et al. (2007) 

identified a periodicity of 3-4 years in a study that occurred on the summer breeding territories 

between 1987 to 2003 using autoregression analysis. The periodicity observed in great reed 

warblers is substantially smaller than observed in Catharus thrushes here. However, 

haemosporidian transmission appeared to not occur in great reed warblers on the breeding grounds, 

but likely only occurs at overwintering sites in sub-Saharan Africa (Bensch et al. 2007). The lack 

of transmission on the breeding grounds could influence the density dependent dynamics of 

haemosporidians in these birds in comparison to Catharus thrushes. This further supports the view 

that host specific differences influence prevalence and transmission dynamics of avian 

haemosporidians. A survey of Plasmodium in boreal resident species of Alaska collected during 

the non-breeding period over ten years (2001-2010) recorded one noticeable peak in prevalence 

over the course of the survey (Wilkinson, Handel et al. 2018). Due to the length of the study, it is 

impossible to tell if this is a recurrent or singular phenomenon, yet a single noticeable peak in 

prevalence over a period of ten years is not inconsistent with the cycles of at least eight years 

observed in this study. 

Our models imply that pathogen prevalence peaks every eight to 18 years. In an attempt to 

understand mechanisms driving this apparent cyclical variation, we built a density-dependent 

disease transmission model. In this model, the periodicity of pathogen prevalence is impacted most 

by four parameters relating to host population size, including host net fecundity. The net fecundity 

of naïve (�%) and infected but not transmitting (�/) birds could be impacted by local climactic 

conditions, abundance of food sources, or predator populations (Ghalambor and Martin 2001, 
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Jenouvrier et al. 2005, Nagy and Holmes 2005). Chronic infections by avian haemosporidians 

were long thought to be relatively innocuous in the majority of bird species (Bensch et al. 2007). 

However, we now know that survival rate (R) can be reduced by pathogen infection (Altizer et al. 

2011) and recent work has shown that the effect of chronic haemosporidian infection can reduce 

an individual bird’s reproductive capabilities by impacting both mating capabilities and fledgling 

success (Merino et al. 2000, Knowles et al. 2010, Bosholn et al. 2016). Additionally, the negative 

effects of haemosporidian infection may be passed on to the next generation, as Asghar et al. 

(2015) found when comparing the telomere lengths, an indicator of longevity, in chicks from 

infected and infected mothers. The results of our study model the effects of haemosporidian 

infections over time and demonstrate that an increase in host population size will lead to a 

subsequent increase in infected host density, followed by a population decrease of both infected 

and naïve host population density. Our results are consistent with the proposition that 

haemosporidian infections do indeed have a negative impact on the overall host population. As 

infection prevalence increases, the effects will eventually lead to a reduction in population density, 

possibly due to decreased individual and net fecundity. 

 

3.5.3 Heterogeneous periodicity   

Heterogeneity in periodicity across host-pathogen pairs may be due to host characteristics, 

such as genetic or behavioral, or environmental conditions including variation in microclimates 

across habitats (Scordato and Kardish 2014, Barrow et al. 2019, McNew et al. 2021). Different 

lineages of avian haemosporidians exhibit varying levels of host specificity (Galen and Witt 2014), 

with some evidential support that different lineages generate different patterns of periodicity 

(Bensch et al. 2007, Wilkinson, Handel et al. 2018).  In our study, the maximum likelihood 
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solutions differed across most host-pathogen pairs, suggesting oscillations at different lengths of 

time and those that did have similar periodicity lengths were not synchronized. Although thrushes 

in this study are closely related with similar ecologies, certain species-specific characteristics may 

be driving the differences. For example, Veerys exhibited shorter cycling patterns (8-10 years) 

than Swainson’s (14.8-18.8 years). Veerys are primarily ground nesters and feeders while 

Swainson’s are near ground foragers, generally around 1m off the ground, and nest in the 

understory. Several previous studies have shown that nest height and foraging strata impact 

likelihood of haemosporidian infection (Fecchio et al. 2013, Lutz et al. 2015). Birds occupying 

different strata of their habitat encounter different insect populations which may be driving some 

of the variation in cycling length between the species.  

The birds included in this study were collected across a relatively small area of Chicago, 

but the areas in which they originated from span broad geographic regions. While most of these 

thrushes spent the breeding period in what can broadly be categorized as boreal forests, variations 

in local temperature and precipitation likely influence vector abundance and therefore promote or 

hinder spread of pathogens (McNew et al. 2021). Habitat types of the overwintering sites are 

numerous and include savannah, rain forest, and mangroves. Haemosporidian prevalence and 

diversity is heavily impacted by local climatic conditions (Wilkinson, Handel et al. 2018, McNew 

et al. 2021). This introduces an important caveat in that the results we observe here are an 

aggregate of phenomena occurring within the many habitats in which the birds exist throughout 

their annual cycle.  

 

 

3.6 CONCLUSION 
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Our time series data has allowed us to gain insight into the temporal dynamics and plausible 

transmission mechanisms of avian haemosporidians in migratory Catharus thrushes. We used a 

novel source of data in the form of curated museum specimens as a resource for investigating 

disease ecology and we developed an adaptable inferential statistical model to assess data driven 

periodicity in pathogen prevalence. Additionally, we used the results of the statistical model to 

inform a theoretical disease model, which accurately assumes density-dependent behaviors of 

disease transmission. In conclusion, we demonstrate the value of natural history collections and 

biorepositories, given their potential importance for accurate prediction of disease dynamics in 

wild populations of animals.  
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4 Supplemental Tables, Chapter 1 
 

Table 4.1 Host associated metadata including sampling date and location for each individual per sampling period, including age (SY = 
second year, ASY = after second year) and sex (M = male, F = female). 
†Denotes non-tagged birds from the 2018 first recapture period.  
‡For samples included in the comparison of alpha diversity over time in the first recapture period in Michigan individual’s date of arrival 
is included.  
 
Table 4.1 continued    

   Cat Island, The Bahamas First Recapture in Michigan Second Recap. in Michigan 
Host 

ID 
Age Sex 

Date of 

Capt. 
Lat. Long. 

Arrival 

in MI‡ 

Date of 

Cap. 
Lat. Long. 

Date of 

Cap. 
Lat. Long. 

5 SY M    

 
27-5-18 1-6-18 44.45 -84.30    

6 ASY F 24-3-18 24.62 -75.63     1-7-18 44.59 -83.99 
7 SY M 23-3-18 24.66 -75.74        

8 SY M 25-3-18 24.45 -75.54        

9 ASY F 26-3-18 24.58 -75.64        

11 ASY M 30-3-18 24.59 -75.64        

13 SY F 26-3-18 24.44 -75.54        

14 SY M 30-3-18 24.60 -75.63        

15 SY M 25-3-18 24.44 -75.54  12-6-18 44.57 -84.27    

16 SY M 30-3-18 24.61 -75.63 15-5-18 20-5-18 44.54 -84.84 11-7-18 44.54 -84.84 
17 SY M 28-3-18 24.54 -75.62  6-6-18 44.58 -84.02 1-7-18 44.58 -84.02 
18 SY F 3-4-18 24.65 -75.64        

19 SY M 27-3-18 24.61 -75.64        

20 SY M 30-3-18 24.56 -75.64 15-5-18 20-5-18 44.45 -84.30    

21 SY M 29-3-18 24.66 -75.74        

22 SY M     NA      

23 SY F 29-3-18 24.47 -75.55        

24 SY M 4-4-18 24.48 -75.57 17-5-18 20-5-18 44.59 -84.55    

26 SY M 31-3-18 24.44 -75.53  25-6-18 44.50 -84.33    
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Table 4.1 continued    
   Cat Island, The Bahamas First Recapture in Michigan Second Recap. in Michigan 

Host 

ID 
Age Sex 

Date of 

Capt. 
Lat. Long. 

Arrival 

in MI‡ 

Date of 

Cap. 
Lat. Long. 

Date of 

Cap. 
Lat. Long. 

27 SY F 4-4-18 24.61 -75.63     4-7-18 44.51 -84.21 
28 SY M 30-3-18 24.57 -75.62 17-5-18 20-5-18 44.55 -84.41    

29 SY M 30-3-18 24.60 -75.64     6-7-18 44.55 -84.41 
30 SY M 2-4-18 24.52 -75.57        

32 SY F 21-4-18 24.47 -75.55        

33 ASY M 4-4-18 24.49 -75.57 14-5-18 20-5-18 44.55 -84.40    

35 SY F 12-4-18 24.64 -75.64  26-6-18 44.33 -83.60    

38 SY F 31-4-18 24.46 -75.55        

39 SY F 1-4-18 24.44 -75.54        

40 SY M 13-4-18 24.64 -75.64        

41 SY M 8-4-18 24.66 -75.74 28-5-18 6-6-18 44.42 -83.68    

42 SY M     1-6-18 44.65 -83.87    

43 SY M 12-4-18 24.64 -75.64 17-5-18 23-5-18 44.50 -83.57 2-7-18 44.50 -83.57 
44 SY M 14-4-18 24.56 -75.64     4-7-18 44.46 -84.31 
45 SY M 13-4-18 24.64 -75.65 16-5-18 22-5-18 44.66 -83.95    

46 ASY M 7-4-18 24.56 -75.64 14-5-18 17-5-18 44.36 -83.57    

47 ASY M 4-4-18 24.49 -75.57        

48 SY M 6-4-18 24.66 -75.65 14-5-18 17-5-18 44.50 -84.30    

50 SY F 6-4-18 24.66 -75.65        

51 SY F 5-4-18 24.44 -75.54        

54 SY F 22-4-18 24.65 -75.64        

55 ASY F 9-4-18 24.67 -75.76        

56 ASY M 12-4-18 24.64 -75.65        

58 SY M 11-4-18 24.59 -75.64 16-5-18 20-5-18 44.56 -84.40    

59 SY M 10-4-18 24.65 -75.64  6-6-18 44.41 -83.69    

61 SY M 12-4-18 24.66 -75.65 13-5-18 13-5-18 45.16 -84.19 10-7-18 45.16 -84.19 
66 ASY M 17-4-18 24.54 -75.63        

71 ASY M 10-4-18 24.64 -75.64 9-5-18 14-5-18 44.55 -84.36    



 

 119

119 
 

Table 4.1 continued    
   Cat Island, The Bahamas First Recapture in Michigan Second Recap. in Michigan 

Host 

ID 
Age Sex 

Date of 

Capt. 
Lat. Long. 

Arrival 

in MI‡ 

Date of 

Cap. 
Lat. Long. 

Date of 

Cap. 
Lat. Long. 

86 ASY M 13-4-18 24.64 -75.64        

87 ASY M        11-7-18 44.49 -84.29 
91 ASY M 13-4-18 24.64 -75.64 24-5-18 1-6-18 44.86 -84.39    

98 SY M 24-4-18 24.62 -75.63        

99 ASY M 8-4-18 24.66 -75.74  13-6-18 45.21 -84.13 10-7-18 45.21 -84.13 
100 ASY M 2-4-18 24.47 -75.55        

101 SY M 1-4-18 24.44 -75.54        

103 ASY M    21-5-18 23-5-18 44.56 -83.56    

104 SY F 31-4-18 24.62 -75.63        

45219 SY M 14-4-17 24.66 -75.69        

45220 ASY M 13-4-17 24.45 -75.55 18-5-17 22-5-17 44.48 -84.28    

45221 SY M 13-4-17 24.45 -75.55        

45222 SY M 12-4-17 24.54 -75.59        

45223 SY M 9-4-17 24.66 -75.74        

45224 ASY M 9-4-17 24.66 -75.74        

45225 ASY M 8-4-17 24.58 -75.64 16-5-17 24-5-17 44.55 -84.41 7-7-17 44.55 -84.41 
45226 ASY M 7-4-17 24.56 -75.63 17-5-17 20-5-17 44.36 -84.37 9-7-17 44.36 -84.37 
45227 ASY M 6-4-17 24.57 -75.62        

45228 SY M 6-4-17 24.57 -75.63 27-5-17 28-5-17 44.55 -84.37    

45230 ASY M 5-4-17 24.66 -75.65        

45231 ASY M 5-4-17 24.66 -75.65     2-7-17 44.62 -84.64 
45232 ASY M 4-4-17 24.66 -75.65        

45233 SY M 4-4-17 24.65 -75.64        

45234 SY M 3-4-17 24.38 -75.51        

45235 ASY M 2-4-17 24.61 -75.64        

45236 ASY M 1-4-17 24.62 -75.63        

45237 ASY M 1-4-17 24.62 -75.63 22-5-17 23-5-17 45.21 -84.20 8-7-17 45.21 -84.20 
45238 ASY M 31-3-17 24.58 -75.64        
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Table 4.1 continued    
   Cat Island, The Bahamas First Recapture in Michigan Second Recap. in Michigan 

Host 

ID 
Age Sex 

Date of 

Capt. 
Lat. Long. 

Arrival 

in MI‡ 

Date of 

Cap. 
Lat. Long. 

Date of 

Cap. 
Lat. Long. 

45239 ASY M 30-3-17 24.61 -75.63        

45241 SY F 29-3-17 24.61 -75.63        

45242 NA F 29-3-17 24.60 -75.64        

45411 ASY M 29-3-17 24.44 -75.54 2-6-17 5-6-17 44.41 -83.67    

45412 SY M 29-3-17 24.44 -75.54        

45413 ASY M 30-3-17 24.45 -75.54 23-5-17 25-5-17 44.48 -84.28    

45416 SY M 31-3-17 24.45 -75.54  29-5-17 44.58 -84.54 10-7-17 44.58 -84.54 
45418 SY M     31-5-17 24.45 -75.54    

45421 ASY M 1-4-17 24.52 -75.58        

45422 SY M    16-5-17 22-5-17 24.52 -75.58 3-7-17 44.48 -84.28 
45423 SY M 2-4-17 24.52 -75.57 21-5-17 23-5-17 45.21 -84.20    

45425 SY M 3-4-17 24.61 -75.64        

45426 ASY M 4-4-17 24.65 -75.64        

45427 ASY M    23-5-17 29-5-17 44.54 -84.27    

45428 SY M    18-5-17 26-5-17 44.51 -83.53    

45429 SY M 6-4-17 24.66 -75.65        

45431 SY M 7-4-17 24.51 -75.58        

45432 ASY M 7-4-17 24.54 -75.63 17-5-17 26-5-17 45.15 -84.18    

45435 ASY M 8-4-17 24.47 -75.55        

45437 SY M 9-4-17 24.46 -75.55 3-6-17 6-6-17 44.47 -84.35    

45438 ASY M 1-4-17 44.40 -84.39 18-5-17 22-5-17 44.40 -84.39    

45441 SY M 12-4-17 24.44 -75.53     7-7-17 44.55 -84.36 
45443 ASY M 13-4-17 24.19 -75.31        

45445 SY F 13-4-17 24.19 -75.31        

45446 ASY M 14-4-17 24.13 -75.48  28-5-17 44.35 -83.61    

45447 SY M 16-4-17 24.59 -75.64 22-5-17 24-5-17 44.55 -84.42    

45448 SY M    18-5-17 23-5-17 45.15 -84.18    

45472 SY M        10-7-17   
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Table 4.1 continued    
   Cat Island, The Bahamas First Recapture in Michigan Second Recap. in Michigan 

Host 

ID 
Age Sex 

Date of 

Capt. 
Lat. Long. 

Arrival 

in MI‡ 

Date of 

Cap. 
Lat. Long. 

Date of 

Cap. 
Lat. Long. 

62868 NA U     20-5-18      

62881† SY M     13-5-18      

62882† ASY M     13-5-18      

62883† ASY M     14-5-18      

62886† SY M     15-5-18      

62887† ASY M     15-5-18      

62888† SY M     15-5-18      

62889† SY M     15-5-18      

62890† ASY M     15-5-18      

62891† SY M     16-5-18      

62892† SY M     16-5-18      

62894† ASY M     17-5-18      

62895† ASY M     17-5-18      
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Table 4.2 Relative abundance of each bacterial phyla (highlighted in gray) and classes with the standard deviation listed in 
parentheses. Phyla and classes are listed in order of most abundant in the full dataset. Relative abundances were calculated for the full 
dataset and within individual sampling periods.  
 
Table 4.2 continued     

Phylum Class All Samples The Bahamas 
First Recapture in 

Michigan 
Second Recapture in 

Michigan 

Firmicutes 38.08% (±15.41%) 39.82% (±13.87%) 38.12% (±16.41%) 29.02% (±17.38%) 

 Clostridia 31.98% (±15.41%) 34.51% (±14.24%) 30.26% (±15.15%) 24.43% (±19.34%) 

 Bacilli 5.06% (±9.92%) 4.15% (±6.66%) 6.93% (±14.47%) 3.93% (±4.89%) 

 Erysipelotrichia 0.63% (±1.29%) 0.83% (±1.45%) 0.47% (±1.11%) 0.17% (±0.64%) 

 Negativicutes 0.39% (±0.74%) 0.33% (±0.49%) 0.47% (±0.94%) 0.49% (±1.05%) 
Proteobacteria 30.76% (±20.48%) 23.84% (±13.85%) 36.87% (±22.25%) 47.07% (±27.90%) 

 Gammaproteobac. 21.09% (±18.40%) 14.99% (±11.55%) 25.97% (±20.95%) 37.39% (±24.39%) 

 Alphaproteobac. 8.96% (±11.62%) 7.92% (±7.03%) 10.54% (±16.35%) 9.33% (±12.92%) 

 Deltaproteobac. 0.68% (±1.34%) 0.90% (±1.52%) 0.44% (±1.12%) 0.35% (±0.67%) 
Bacteroidetes 17.10% (±10.03%) 17.77% (±9.41%) 16.75% (±10.54%) 14.80% (±11.60%) 

 Bacteroidia 17.09% (±10.03%) 17.75% (±9.41%) 16.73% (±10.55%) 14.80% (±11.60%) 

 Ignavibacteria 0.01% (±0.08%) 0.01% (±0.05%) 0.02% (±0.13%) 0.00% (±0.00%) 

 Rhodothermia 0.01% (±0.06%) 0.01% (±0.08%) 0.00% (±0.00%) 0.00% (±0.00%) 
Actinobacteria 7.34% (±5.92%) 9.72% (±6.66%) 4.63% (±2.82%) 3.66% (±2.86%) 

 Actinobacteria 4.92% (±3.94%) 6.28% (±4.33%) 3.40% (±2.61%) 2.68% (±2.39%) 

 Coriobacteriia 1.49% (±1.56%) 1.84% (±1.88%) 1.10% (±0.88%) 0.96% (±0.83%) 

 Thermoleophilia 0.70% (±1.45%) 1.19% (±1.79%) 0.12% (±0.23%) 0.01% (±0.03%) 

 Acidimicrobiia 0.12% (±0.37%) 0.21% (±0.48%) 0.01% (±0.04%) 0.01% (±0.02%) 

 Rubrobacteria 0.08% (±0.21%) 0.14% (±0.27%) <0.01% (±0.01%) 0.00% (±0.00%) 

 Nitriliruptoria 0.01% (±0.08%) 0.02% (±0.11%) 0.00% (±0.00%) 0.00% (±0.00%) 

 MB-A2-108 0.01% (±0.07%) 0.02% (±0.09%) 0.00% (±0.00%) 0.00% (±0.00%) 

 0319-7L14 0.01% (±0.08%) 0.01% (±0.11%) 0.00% (±0.00%) 0.00% (±0.00%) 



 

 123

123 
 

Table 4.2 continued     

Phylum Class All Samples The Bahamas 
First Recapture in 

Michigan 
Second Recapture in 

Michigan 
Cyanobacteria 1.09% (±4.50%) 1.91% (±5.93%) 0.07% (±0.29%) 0.05% (±0.23%) 

 Oxyphotobacteria 1.09% (±4.50%) 1.91% (±5.93%) 0.07% (±0.29%) 0.05% (±0.23%) 

 Melainabacteria <0.01% (±0.01%) <0.01% (±0.01%) 0.00% (±0.00%) 0.00% (±0.00%) 

 Sericytochromatia <0.01% (±<0.01%) <0.01% (±<0.01%) 0.00% (±0.00%) 0.00% (±0.00%) 
Acidobacteria 0.54% (±1.79%) 0.36% (±0.53%) 0.96% (±2.98%) 0.13% (±0.24%) 

 Acidobacteriia 0.39% (±1.78%) 0.11% (±0.27%) 0.93% (±2.98%) 0.13% (±0.24%) 

 Blastocatellia  0.08% (±0.25%) 0.13% (±0.33%) 0.01% (±0.06%) <0.01% (±<0.01%) 

 Subgroup 6 0.04% (±0.14%) 0.07% (±0.17%) 0.02% (±0.09%) 0.01% (±0.03%) 

 Subgroup 25 0.01% (±0.09%) 0.02% (±0.12%) 0.00% (±0.00%) 0.00% (±0.00%) 

 Thermoanaerobac. 0.01% (±0.05%) 0.01% (±0.07%) 0.00% (±0.00%) 0.00% (±0.00%) 

 Subgroup 17 <0.01% (±0.04%) 0.01% (±0.05%) 0.00% (±0.00%) 0.00% (±0.00%) 

 Holophagae <0.01% (±0.03%) 0.01% (±0.04%) 0.00% (±0.00%) 0.00% (±0.00%) 

 Subgroup 5 <0.01% (±0.02%) <0.01% (±0.02%) 0.00% (±0.00%) 0.00% (±0.00%) 

 FFCH5909 <0.01% (±0.01%) 0.00% (±0.00%) <0.01% (±0.01%) 0.00% (±0.00%) 

 Subgroup 22 <0.01% (±<0.01%) <0.01% (±<0.01%) 0.00% (±0.00%) 0.00% (±0.00%) 
Synergistetes 0.33% (±2.30%) 0.17% (±0.78%) 0.63% (±3.83%) 0.19% (±0.33%) 

 Synergistia 0.33% (±2.30%) 0.17% (±0.78%) 0.63% (±3.83%) 0.19% (±0.33%) 
Planctomycetes 0.31% (±0.59%) 0.47% (±0.72%) 0.12% (±0.26%) 0.06% (±0.12%) 

 Planctomycetacia 0.27% (±0.55%) 0.42% (±0.67%) 0.11% (±0.26%) 0.06% (±0.12%) 

 Phycisphaerae 0.02% (±0.11%) 0.03% (±0.14%) 0.01% (±0.05%) 0.00% (±0.00%) 

 vadinHA49 0.01% (±0.12%) 0.02% (±0.16%) 0.00% (±0.00%) 0.00% (±0.00%) 

 OM190 <0.01% (±0.04%) 0.01% (±0.05%) 0.00% (±0.00%) 0.00% (±0.00%) 
Tenericutes 0.27% (±0.72%) 0.38% (±0.92%) 0.09% (±0.24%) 0.28% (±0.48%) 

 Mollicutes 0.27% (±0.72%) 0.38% (±0.92%) 0.09% (±0.24%) 0.28% (±0.48%) 
Verrucomicrobia 0.21% (±0.53%) 0.27% (±0.64%) 0.15% (±0.36%) 0.04% (±0.11%) 
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Table 4.2 continued     

Phylum Class All Samples The Bahamas 
First Recapture in 

Michigan 
Second Recapture in 

Michigan 

 Verrucomicrobiae 0.21% (±0.53%) 0.27% (±0.64%) 0.15% (±0.36%) 0.04% (±0.11%) 
Chloroflexi 0.18% (±0.43%) 0.29% (±0.51%) 0.05% (±0.25%) 0.04% (±0.15%) 

 Chloroflexia 0.08% (±0.20%) 0.13% (±0.25%) <0.01% (±0.02%) 0.04% (±0.15%) 

 TK10 0.04% (±0.14%) 0.07% (±0.18%) 0.00% (±0.00%) <0.01% (±0.01%) 

 Anaerolineae 0.03% (±0.17%) 0.03% (±0.15%) 0.03% (±0.23%) 0.00% (±0.00%) 

 Gitt-GS-136 0.02% (±0.09%) 0.03% (±0.12%) 0.00% (±0.00%) 0.00% (±0.00%) 

 Ktedonobacteria 0.01% (±0.14%) 0.02% (±0.19%) 0.00% (±0.00%) <0.01% (±0.01%) 

 KD4-96 0.01% (±0.05%) 0.01% (±0.04%) 0.01% (±0.07%) 0.00% (±0.00%) 

 JG30-KF-CM66 <0.01% (±0.02%) <0.01% (±0.03%) 0.00% (±0.00%) 0.00% (±0.00%) 

 AD3 <0.01% (±0.02%) 0.00% (±0.00%) <0.01% (±0.03%) 0.00% (±0.00%) 

 OLB14 <0.01% (±0.01%) <0.01% (±0.01%) 0.00% (±0.00%) 0.00% (±0.00%) 

 Dehalococcoidia <0.01% (±<0.01%) <0.01% (±<0.01%) 0.00% (±0.00%) 0.00% (±0.00%) 
RsaHF231 0.13% (±1.53%) 0.24% (±2.06%) <0.01% (±<0.01%) 0.00% (±0.00%) 

Euryarchaeota 0.12% (±0.42%) 0.20% (±0.54%) 0.02% (±0.09%) 0.05% (±0.22%) 

 Methanobacteria 0.11% (±0.41%) 0.18% (±0.52%) 0.02% (±0.09%) 0.05% (±0.22%) 

 Thermoplasmata 0.01% (±0.06%) 0.02% (±0.07%) 0.00% (±0.00%) 0.00% (±0.00%) 

 Methanomicrobia <0.01% (±0.01%) <0.01% (±0.01%) 0.00% (±0.00%) 0.00% (±0.00%) 

 Halobacteria <0.01% (±0.01%) <0.01% (±0.01%) 0.00% (±0.00%) 0.00% (±0.00%) 
Chlamydiae 0.07% (±0.56%) 0.01% (±0.03%) 0.05% (±0.21%) 0.40% (±1.65%) 

 Chlamydiae 0.07% (±0.56%) 0.01% (±0.03%) 0.05% (±0.21%) 0.40% (±1.65%) 
Gemmatimonadetes 0.06% (±0.17%) 0.10% (±0.22%) 0.01% (±0.09%) 0.01% (±0.06%) 

 Gemmatimonadetes 0.03% (±0.13%) 0.06% (±0.16%) 0.00% (±0.00%) 0.01% (±0.06%) 

 Longimicrobia 0.02% (±0.10%) 0.03% (±0.11%) 0.01% (±0.09%) 0.00% (±0.00%) 

 AKAU4049 <0.01% (±0.02%) <0.01% (±0.02%) 0.00% (±0.00%) 0.00% (±0.00%) 

 S0134 terr. grp <0.01% (±0.01%) <0.01% (±0.01%) 0.00% (±0.00%) 0.00% (±0.00%) 
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Table 4.2 continued     

Phylum Class All Samples The Bahamas 
First Recapture in 

Michigan 
Second Recapture in 

Michigan 
Spirochaetes 0.05% (±0.27%) 0.07% (±0.33%) <0.01% (±0.02%) 0.08% (±0.33%) 

 Spirochaetia 0.05% (±0.27%) 0.07% (±0.33%) <0.01% (±0.02%) 0.08% (±0.33%) 

 Leptospirae <0.01% (±<0.01%) <0.01% (±<0.01%) 0.00% (±0.00%) 0.00% (±0.00%) 
Armatimonadetes 0.05% (±0.21%) 0.05% (±0.24%) 0.04% (±0.18%) <0.01% (±<0.01%) 

 Fimbriimonadia 0.02% (±0.17%) 0.04% (±0.23%) 0.01% (±0.04%) 0.00% (±0.00%) 

 Armatimonadia 0.02% (±0.11%) 0.01% (±0.05%) 0.03% (±0.18%) <0.01% (±<0.01%) 

 Chthonomonadetes <0.01% (±0.02%) <0.01% (±0.03%) 0.00% (±0.00%) 0.00% (±0.00%) 
Thaumarchaeota 0.04% (±0.16%) 0.07% (±0.20%) 0.00% (±0.00%) 0.00% (±0.00%) 

 Nitrososphaeria 0.04% (±0.16%) 0.07% (±0.20%) 0.00% (±0.00%) 0.00% (±0.00%) 
Fusobacteria 0.03% (±0.14%) 0.03% (±0.15%) 0.03% (±0.15%) <0.01% (±0.01%) 

 Fusobacteriia 0.03% (±0.14%) 0.03% (±0.15%) 0.03% (±0.15%) <0.01% (±0.01%) 
Patescibacteria 0.03% (±0.09%) 0.04% (±0.12%) <0.01% (±0.02%) 0.02% (±0.07%) 

 Saccharimonadia 0.02% (±0.06%) 0.02% (±0.07%) <0.01% (±0.01%) 0.01% (±0.04%) 

 Microgenomatia 0.01% (±0.07%) 0.01% (±0.09%) <0.01% (±0.01%) 0.01% (±0.06%) 

 Gracilibacteria <0.01% (±0.01%) <0.01% (±0.02%) 0.00% (±0.00%) 0.00% (±0.00%) 

 Parcubacteria <0.01% (±0.01%) <0.01% (±0.01%) 0.00% (±0.00%) 0.00% (±0.00%) 

 WWE3 <0.01% (±<0.01%) 0.00% (±0.00%) <0.01% (±<0.01%) 0.00% (±0.00%) 
Epsilonbacteraeota 0.02% (±0.22%) 0.03% (±0.26%) 0.03% (±0.19%) 0.00% (±0.00%) 

 Campylobacteria 0.02% (±0.22%) 0.03% (±0.26%) 0.03% (±0.19%) 0.00% (±0.00%) 
Deinococcus-Thermus 0.02% (±0.13%) 0.04% (±0.17%) 0.00% (±0.00%) 0.00% (±0.00%) 

 Deinococci 0.02% (±0.13%) 0.04% (±0.17%) 0.00% (±0.00%) 0.00% (±0.00%) 
Rokubacteria 0.02% (±0.15%) 0.04% (±0.20%) 0.00% (±0.00%) 0.00% (±0.00%) 

 NC10 0.02% (±0.15%) 0.04% (±0.20%) 0.00% (±0.00%) 0.00% (±0.00%) 
FBP   0.01% (±0.07%) 0.02% (±0.10%) <0.01% (±0.02%) 0.00% (±0.00%) 

Entotheonellaeota 0.01% (±0.06%) 0.01% (±0.08%) 0.00% (±0.00%) 0.00% (±0.00%) 
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Table 4.2 continued     

Phylum Class All Samples The Bahamas 
First Recapture in 

Michigan 
Second Recapture in 

Michigan 

 Entotheonellia 0.01% (±0.06%) 0.01% (±0.08%) 0.00% (±0.00%) 0.00% (±0.00%) 
Lentisphaerae <0.01% (±0.04%) 0.01% (±0.05%) 0.00% (±0.00%) 0.00% (±0.00%) 

 Lentisphaeria <0.01% (±0.04%) 0.01% (±0.05%) 0.00% (±0.00%) 0.00% (±0.00%) 
WPS-2   <0.01% (±0.06%) 0.00% (±0.00%) 0.01% (±0.10%) <0.01% (±<0.01%) 

Nitrospirae <0.01% (±0.03%) 0.01% (±0.04%) 0.00% (±0.00%) 0.00% (±0.00%) 

 Nitrospira <0.01% (±0.03%) 0.01% (±0.04%) 0.00% (±0.00%) 0.00% (±0.00%) 
Calditrichaeota <0.01% (±0.03%) <0.01% (±0.05%) 0.00% (±0.00%) 0.00% (±0.00%) 

 Calditrichia <0.01% (±0.03%) <0.01% (±0.05%) 0.00% (±0.00%) 0.00% (±0.00%) 
WS2   <0.01% (±0.03%) <0.01% (±0.04%) 0.00% (±0.00%) 0.00% (±0.00%) 

Kiritimatiellaeota <0.01% (±0.01%) <0.01% (±0.02%) 0.00% (±0.00%) 0.00% (±0.00%) 

 Kiritimatiellae <0.01% (±0.01%) <0.01% (±0.02%) 0.00% (±0.00%) 0.00% (±0.00%) 
Latescibacteria <0.01% (±0.01%) 0.00% (±0.00%) <0.01% (±0.02%) 0.00% (±0.00%) 

WS4   <0.01% (±0.01%) <0.01% (±0.01%) 0.00% (±0.00%) 0.00% (±0.00%) 

Deferribacteres <0.01% (±0.01%) <0.01% (±0.01%) 0.00% (±0.00%) 0.00% (±0.00%) 

 Deferribacteres <0.01% (±0.01%) <0.01% (±0.01%) 0.00% (±0.00%) 0.00% (±0.00%) 
BRC1   <0.01% (±0.01%) <0.01% (±0.01%) 0.00% (±0.00%) 0.00% (±0.00%) 

Fibrobacteres 

<0.01% 

(±<0.01%) <0.01% (±<0.01%) 0.00% (±0.00%) 0.00% (±0.00%) 

 Chitinivibrionia <0.01% (±<0.01%) <0.01% (±<0.01%) 0.00% (±0.00%) 0.00% (±0.00%) 

 Fibrobacteria <0.01% (±<0.01%) <0.01% (±<0.01%) 0.00% (±0.00%) 0.00% (±0.00%) 
Unk.  3.31% (±6.82%) 4.33% (±8.04%) 1.39% (±2.42%) 4.09% (±8.20%) 
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Table 4.3 Results of ANCOM-BC analysis including log fold change, standard error, confidence limits and p-values, comparing 
bacterial abundance in The Bahamas to the first recapture in Michigan (4.3A) and bacterial abundances in The Bahamas to the second 
recapture in Michigan (4.3B) 
 
Table 4.3A ANCOM-BC results comparing bacterial abundance in The Bahamas to the first recapture in Michigan.  

Phylum Genus 

Log fold 

change 

Standard 

Error 

Lower 

C.I. 

Upper 

C.I. 

adjusted    

p-value 

Acidobacteria Bryocella 0.962 0.272 0.429 1.496 0.05 

Actinobacteria Actinomycetospora -0.739 0.179 -1.090 -0.388 <0.001 

Actinobacteria Aeromicrobium -0.789 0.206 -1.192 -0.386 0.01 

Actinobacteria Nocardioides -1.216 0.239 -1.684 -0.748 <0.001 

Actinobacteria Pseudonocardia -0.818 0.198 -1.206 -0.431 <0.001 

Actinobacteria Rubrobacter -1.007 0.187 -1.373 -0.641 <0.001 

Actinobacteria Solirubrobacter -1.655 0.250 -2.145 -1.166 <0.001 

Proteobacteria Aureimonas -1.127 0.310 -1.736 -0.519 0.03 

Proteobacteria Beijerinckiaceae (UG) -0.863 0.201 -1.257 -0.468 <0.001 

Proteobacteria Candidatus Hamiltonella 1.518 0.366 0.801 2.236 <0.001 
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Table 4.3B ANCOM-BC results comparing bacterial abundance in The Bahamas to the second recapture in Michigan.  

Phylum Genus 

Log fold 

change 

Standard 

Error 

Lower 

C.I. 

Upper 

C.I. 

adjusted 

p-value 

Actinobacteria Blastococcus -0.036 0.154 -0.338 0.266 <0.001 

Actinobacteria Cellulomonas -0.034 0.154 -0.335 0.268 <0.001 

Actinobacteria Geodermatophilus -0.090 0.149 -0.383 0.203 <0.001 

Actinobacteria Kineococcus -0.085 0.157 -0.393 0.223 <0.001 

Actinobacteria Nocardioides -1.086 0.240 -1.556 -0.616 <0.001 

Actinobacteria Rubrobacter -0.769 0.188 -1.137 -0.400 <0.001 

Actinobacteria Solirubrobacter -1.519 0.227 -1.963 -1.074 <0.001 

Actinobacteria Streptomyces 0.074 0.141 -0.202 0.350 <0.001 

Firmicutes Candidatus Soleaferrea -0.685 0.242 -1.160 -0.211 <0.001 

Firmicutes Christensenellaceae (UG) -1.159 0.276 -1.699 -0.619 <0.001 

Firmicutes Clostridiales (UG) -0.336 0.195 -0.718 0.046 <0.001 

Firmicutes Clostridium sensu stricto 1 -0.009 0.157 -0.317 0.300 <0.001 

Firmicutes Ruminococcaceae UCG-004 -0.017 0.151 -0.312 0.279 <0.001 

Proteobacteria Aureimonas -1.256 0.274 -1.793 -0.719 <0.001 

Proteobacteria Beijerinckiaceae (UG) -0.628 0.197 -1.013 -0.242 <0.001 

Proteobacteria Lysobacter -0.335 0.201 -0.729 0.060 <0.001 

Proteobacteria Serratia 2.597 0.721 1.183 4.011 0.04 
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Table 4.4 Taxonomic classifications of ASVs identified as shared throughout all sampling periods.  

Phylum Class Order Family Genus #ASVs 

Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium 1 
Actinobacteria Coriobacteriia Coriobacteriales Coriobacteriaceae Collinsella 1 
Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 8 
Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia 1 
Firmicutes Clostridia Clostridiales Lachnospiraceae Eubacterium hallii group 2 
Firmicutes Clostridia Clostridiales Lachnospiraceae Fusicatenibacter 1 
Firmicutes Clostridia Clostridiales Lachnospiraceae Roseburia 2 
Firmicutes Clostridia Clostridiales Ruminococcaceae Faecalibacterium 3 
Firmicutes Clostridia Clostridiales Ruminococcaceae Subdoligranulum 2 
Firmicutes Clostridia Clostridiales Ruminococcaceae Unclassified 2 
Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Ralstonia 1 
Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Escherichia-Shigella 1 
Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Alkanindiges 1 
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5 Supplemental Tables, Chapter 2 

 

Table 5.1 Genera and Amplicon Sequence Variants (ASVs) found in at least 50% of all libraries 
within the full dataset or specific subsets of the dataset. Table includes shared genera, indicated by 
an X, or shared ASVs, indicated by an asterisk (*). Uncultured and unnamed genera are noted with 
(UG) and the closest named taxonomic level is reported. Table 5.1A lists shared microbes across 
the full dataset, Table 5.1B lists shared microbes within individual host species (Grey-Cheeked, 
Hermit, Swainson’s, Veery), Table 5.1C lists shared microbes of specific seasons (Spring, 
Summer, Fall), Table 5.1D lists shared microbes of specific years (2017, 2018, 2019).    
 
Table 5.1A shared microbes across the full dataset 

Phylum Genus 

Entire 

Dataset 

Actinobacteriota Nocardioides X 
Actinobacteriota Gaiellales (UG) X 
Actinobacteriota Conexibacter X 
Actinobacteriota 67-14 X 
Cyanobacteria Aliterella X* 
Planctomycetota Fimbriiglobus X 
Planctomycetota Gemmataceae (UG) X* 
Proteobacteria Geminicoccus X* 
Proteobacteria Diplorickettsiaceae (UG) X 
Proteobacteria Legionella X 

Verrucomicrobiota Neochlamydia X 
 
Table 5.1B shared microbes within host species 

Phylum Genus 

Grey-

Cheeked Hermit Swainson's Veery 

Actinobacteriota Nocardioides X X X 
 

Actinobacteriota Gaiellales (UG) 
 

X X X* 
Actinobacteriota Conexibacter X* X X X 
Actinobacteriota 67-14 

 
X 

  

Cyanobacteria Aliterella X* X* X* X* 
Planctomycetota Fimbriiglobus X X X X 
Planctomycetota Gemmataceae (UG) X* X* X* X* 
Proteobacteria Geminicoccus X* X* X* X* 
Proteobacteria Diplorickettsiaceae 

(UG) 
X X* X X 

Proteobacteria Legionella X X 
  

Verrucomicrobiota Neochlamydia 
 

X X X 
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Table 5.1C shared microbes of specific seasons 

Phylum Genus Spring Summer Fall 

Actinobacteriota Nocardioides X X X 

Actinobacteriota Gaiellales (UG) X* 
 

X 
Actinobacteriota Conexibacter X X X 
Actinobacteriota 67-14 X X* 

 

Cyanobacteria Aliterella X* X* X* 
Planctomycetota Gemmata 

 
X 

 

Planctomycetota Fimbriiglobus X X X 
Planctomycetota Gemmataceae (UG) X* X* X* 
Proteobacteria Geminicoccus X* 

 
X* 

Proteobacteria Ralstonia 
 

X 
 

Proteobacteria Diplorickettsiaceae (UG) X 
 

X* 
Proteobacteria Legionella X X X 
Verrucomicrobiota Neochlamydia X 

 
X 

 
Table 5.1D shared microbes of specific years  

Phylum Genus 2017 2018 2019 

Actinobacteriota Euzebyales (UG) X* 
  

Actinobacteriota Nocardioides 
 

X X 
Actinobacteriota Gaiellales (UG) 

  
X* 

Actinobacteriota Conexibacter 
 

X X 
Actinobacteriota 67-14 

 
X X 

Cyanobacteria Aliterella 
 

X* X* 
Firmicutes Lutispora X* X* 

 

Firmicutes Limnochordaceae X 
  

Planctomycetota Fimbriiglobus X X X 
Planctomycetota Gemmataceae (UG) X* X* 
Planctomycetota Aquisphaera 

  
X 

Proteobacteria Geminicoccus X* X* X* 
Proteobacteria Diplorickettsiaceae 

(UG) 

X* X X 

Proteobacteria Legionella 
  

X 
Verrucomicrobiota Neochlamydia 

  
X 
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Table 5.2 Relative abundances of each bacterial phyla (highlighted in grey) and classes with the standard deviation listed in parentheses. 
Phyla and classes are listed in order of most abundant in the full dataset. Relative abundances were calculated for the full dataset with 
libraries of at least 500 reads, as well as when libraries were rarefied to 500 or 5,000 reads. 
 
Table 5.2 continued     

Phylum Class 
Libraries with at least 
500 reads, unrarefied 

Libraries rarefied at 
500 reads 

Libraries rarefied at 
5,000 reads 

Proteobacteria   28.74% (±31.62%) 28.68% (±31.7%) 31.08% (±33.55%)  
Alphaproteobacteria 16.45% (±25.84%) 16.43% (±25.89%) 17.96% (±27.96%)  
Gammaproteobacteria 12.28% (±23.17%) 12.24% (±23.19%) 13.11% (±24.91%) 

Planctomycetota   22.61% (±31.30%) 22.57% (±31.27%) 24.07% (±32.73%)  
Planctomycetes 22.46% (±31.36%) 22.41% (±31.32%) 23.88% (±32.8%)  
BD7-11 0.10% (±0.98%) 0.11% (±1.03%) 0.13% (±1.13%)  
Phycisphaerae 0.02% (±0.10%) 0.02% (±0.13%) 0.03% (±0.1%)  
OM190 0.01% (±0.09%) 0.01% (±0.13%) 0.01% (±0.03%)  
Pla4 lineage 0.01% (±0.04%) 0.01% (±0.05%) 0.01% (±0.05%)  
Pla3 lineage <0.01% (±0.02%) <0.01% (±0.02%) <0.01% (±0.02%)  
vadinHA49 <0.01% (±0.01%) <0.01% (±0.04%) <0.01% (±0.01%) 

Cyanobacteria   18.36% (±28.72%) 18.33% (±28.76%) 11.54% (±22.34%)  
Cyanobacteriia 18.22% (±28.74%) 18.20% (±28.78%) 11.33% (±22.32%)  
Vampirivibrionia 0.14% (±1.85%) 0.13% (±1.79%) 0.2% (±2.21%)  
Sericytochromatia 0.01% (±0.03%) <0.01% (±0.03%) 0.01% (±0.04%) 

Actinobacteriota   12.46% (±20.13%) 12.54% (±20.2%) 13.53% (±22.18%)  
Thermoleophilia 6.04% (±15.53%) 6.06% (±15.55%) 6.67% (±18.12%)  
Actinobacteria 5.71% (±13.32%) 5.75% (±13.39%) 6.06% (±13.74%)  
Acidimicrobiia 0.40% (±1.22%) 0.41% (±1.24%) 0.46% (±1.22%)  
MB-A2-108 0.18% (±0.70%) 0.18% (±0.75%) 0.16% (±0.47%)  
Rubrobacteria 0.07% (±0.81%) 0.07% (±0.76%) 0.1% (±0.99%)  
Coriobacteriia 0.05% (±0.26%) 0.06% (±0.28%) 0.07% (±0.3%) 
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Table 5.2 continued     

Phylum Class 
Libraries with at least 
500 reads, unrarefied 

Libraries rarefied at 
500 reads 

Libraries rarefied at 
5,000 reads 

Firmicutes   7.42% (±13.94%) 7.41% (±13.97%) 8.27% (±15.22%) 
 Bacilli 4.13% (±11.37%) 4.14% (±11.37%) 5.15% (±12.92%) 
 Clostridia 2.72% (±6.21%) 2.72% (±6.23%) 2.53% (±6.04%) 
 Negativicutes 0.19% (±2.53%) 0.18% (±2.53%) 0.09% (±0.29%) 
 Syntrophomonadia 0.18% (±3.14%) 0.18% (±3.16%) 0.26% (±3.82%) 
 Limnochordia 0.15% (±1.40%) 0.14% (±1.46%) 0.16% (±1.65%) 
 Desulfitobacteriia 0.01% (±0.09%) 0.01% (±0.1%) 0.02% (±0.12%) 
 Desulfotomaculia 0.01% (±0.05%) 0.01% (±0.06%) 0.01% (±0.04%) 
 Thermacetogenia <0.01% (±0.03%) <0.01% (±0.04%) 0.01% (±0.04%) 
 Thermoanaerobacteria <0.01% (±0.03%) <0.01% (±0.03%) <0.01% (±0.03%) 
 Dethiobacteria <0.01% (±0.03%) <0.01% (±0.03%) 0.01% (±0.04%) 
 Incertae Sedis <0.01% (±0.02%) <0.01% (±0.03%) <0.01% (±0.02%) 
 Symbiobacteriia <0.01% (±0.02%) <0.01% (±0.04%) <0.01% (±0.02%) 
 Moorellia <0.01% (±0.02%) <0.01% (±0.03%) <0.01% (±0.02%) 
 D8A-2 <0.01% (±0.02%) <0.01% (±0.01%) <0.01% (±0.02%) 
 Thermaerobacteria <0.01% (±0.02%) <0.01% (±0.02%) <0.01% (±0.01%) 
 Thermovenabulia <0.01% (±0.02%) <0.01% (±0.01%) <0.01% (±0.02%) 
 BRH-c20a <0.01% (±<0.01%) <0.01% (±0.01%) <0.01% (±<0.01%) 
 TTA-B61 <0.01% (±<0.01%) Not present <0.01% (±<0.01%) 
 Sulfobacillia <0.01% (±<0.01%) <0.01% (±0.01%) Not present 
Verrucomicrobiota   2.93% (±9.44%) 2.92% (±9.38%) 3.59% (±10.35%) 
 Chlamydiae 2.20% (±8.98%) 2.17% (±8.89%) 2.59% (±9.79%) 
 Verrucomicrobiae 0.74% (±2.85%) 0.75% (±2.94%) 1.01% (±3.37%) 
 Omnitrophia <0.01% (±0.01%) <0.01% (±0.01%) <0.01% (±0.01%) 
 Kiritimatiellae <0.01% (±<0.01%) <0.01% (±0.01%) <0.01% (±<0.01%) 
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Table 5.2 continued     

Phylum Class 
Libraries with at least 
500 reads, unrarefied 

Libraries rarefied at 
500 reads 

Libraries rarefied at 
5,000 reads 

 Lentisphaeria <0.01% (±<0.01%) <0.01% (±0.01%) <0.01% (±<0.01%) 
Campilobacterota Campylobacteria 1.65% (±8.69%) 1.66% (±8.71%) 1.27% (±7.84%) 

Chloroflexi   1.31% (±5.71%) 1.31% (±5.73%) 1.61% (±6.68%) 
 Gitt-GS-136 0.41% (±4.16%) 0.4% (±4.05%) 0.54% (±4.97%) 
 TK10 0.33% (±3.54%) 0.33% (±3.67%) 0.38% (±4.11%) 
 Anaerolineae 0.31% (±1.56%) 0.31% (±1.61%) 0.41% (±1.84%) 
 Chloroflexia 0.11% (±0.46%) 0.23% (±0.49%) 0.12% (±0.45%) 
 KD4-96 0.07% (±0.27%) 0.07% (±0.26%) 0.07% (±0.22%) 
 Dehalococcoidia 0.05% (±0.67%) 0.05% (±0.7%) 0.04% (±0.41%) 
 JG30-KF-CM66 0.02% (±0.09%) 0.02% (±0.13%) 0.02% (±0.06%) 
 Ktedonobacteria 0.01% (±0.06%) 0.01% (±0.07%) 0.01% (±0.05%) 
 OLB14 <0.01% (±0.03%) <0.01% (±0.04%) <0.01% (±0.03%) 
 AD3 <0.01% (±0.03%) <0.01% (±0.02%) <0.01% (±0.04%) 
 SHA-26 <0.01% (±<0.01%) <0.01% (±0.01%) <0.01% (±<0.01%) 
 P2-11E <0.01% (±<0.01%) <0.01% (±0.01%) <0.01% (±<0.01%) 
Myxococcota   0.91% (±2.61%) 0.94% (±2.73%) 1.01% (±2.67%) 
 Polyangia 0.75% (±2.39%) 0.78% (±2.5%) 0.83% (±2.53%) 
 Myxococcia 0.15% (±0.86%) 0.15% (±0.89%) 0.15% (±0.39%) 
 bacteriap25 0.01% (±0.15%) 0.02% (±0.15%) 0.02% (±0.17%) 
Bacteroidota   0.75% (±4.29%) 0.77% (±4.39%) 0.94% (±5.05%) 
 Bacteroidia 0.75% (±4.29%) 0.77% (±4.39%) 0.94% (±5.05%) 
 SJA-28 <0.01% (±0.07%) 0.01% (±0.07%) <0.01% (±0.02%) 
Acidobacteriota   0.64% (±3.02%) 0.63% (±2.97%) 0.72% (±3.42%) 
 Vicinamibacteria 0.38% (±2.69%) 0.37% (±2.65%) 0.46% (±3.14%) 
 Blastocatellia 0.15% (±1.21%) 0.26% (±1.18%) 0.11% (±1.13%) 
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Table 5.2 continued     

Phylum Class 
Libraries with at least 
500 reads, unrarefied 

Libraries rarefied at 
500 reads 

Libraries rarefied at 
5,000 reads 

 Acidobacteriae 0.06% (±0.28%) 0.06% (±0.26%) 0.08% (±0.32%) 
 Subgroup 25 0.02% (±0.30%) 0.02% (±0.34%) 0.03% (±0.37%) 
 Subgroup 5 0.02% (±0.13%) 0.02% (±0.11%) 0.02% (±0.15%) 
 Thermoanaerobaculia 0.01% (±0.08%) 0.01% (±0.11%) 0.01% (±0.09%) 
 Subgroup 22 <0.01% (±0.01%) <0.01% (±0.03%) <0.01% (±0.02%) 
 Holophagae <0.01% (±0.01%) <0.01% (±0.01%) <0.01% (±0.01%) 
 Subgroup 11 <0.01% (±0.01%) <0.01% (±0.01%) <0.01% (±<0.01%) 
 Subgroup 18 <0.01% (±<0.01%) Not present <0.01% (±<0.01%) 
 AT-s3-28 <0.01% (±<0.01%) Not present <0.01% (±<0.01%) 
Bdellovibrionota   0.61% (±2.31%) 0.61% (±2.33%) 0.63% (±2.52%) 
 Bdellovibrionia 0.19% (±0.58%) 0.19% (±0.6%) 0.24% (±0.64%) 
 Oligoflexia 0.42% (±2.21%) 0.42% (±2.23%) 0.39% (±2.4%) 
Desulfobacterota   0.58% (±4.33%) 0.6% (±4.4%) 0.77% (±5.16%) 
 Desulfobacteria 0.407% (±4.32%) 0.49% (±4.38%) 0.63% (±5.15%) 
 Desulfovibrionia 0.05% (±0.34%) 0.06% (±0.43%) 0.07% (±0.38%) 
 Desulfuromonadia 0.02% (±0.11%) 0.02% (±0.12%) 0.02% (±0.12%) 
 Syntrophobacteria <0.01% (±0.01%) <0.01% (±0.02%) <0.01% (±0.01%) 
 Desulfobulbia <0.01% (±0.01%) <0.01% (±0.01%) <0.01% (±0.01%) 
 Desulfarculia <0.01% (±<0.01%) Not present <0.01% (±<0.01%) 
 Desulfomonilia <0.01% (±<0.01%) Not present <0.01% (±<0.01%) 
 Syntrophia <0.01% (±<0.01%) <0.01% (±0.01%) Not present 
Patescibacteria   0.34% (±0.78%) 0.34% (±0.82%) 0.32% (±0.7%) 
 Saccharimonadia 0.31% (±0.76%) 0.32% (±0.81%) 0.29% (±0.67%) 
 Parcubacteria 0.02% (±0.08%) 0.01% (±0.07%) 0.03% (±0.1%) 
 Microgenomatia <0.01% (±0.03%) <0.01% (±0.03%) 0.01% (±0.03%) 
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Table 5.2 continued     

Phylum Class 
Libraries with at least 
500 reads, unrarefied 

Libraries rarefied at 
500 reads 

Libraries rarefied at 
5,000 reads 

 Gracilibacteria <0.01% (±0.02%) <0.01% (±0.02%) <0.01% (±0.02%) 
 Dojkabacteria <0.01% (±<0.01%) Not present Not present 
 WWE3 <0.01% (±<0.01%) Not present <0.01% (±<0.01%) 
 Berkelbacteria <0.01% (±<0.01%) Not present <0.01% (±<0.01%) 
Dependentiae Babeliae 0.32% (±1.07%) 0.32% (±1.02%) 0.25% (±0.65%) 

MBNT15 MBNT15 0.10% (±0.49%) 0.1% (±0.5%) 0.05% (±0.25%) 

Gemmatimonadota   0.06% (±0.32%) 0.06% (±0.33%) 0.07% (±0.37%) 
 Longimicrobia 0.03% (±0.28%) 0.04% (±0.29%) 0.04% (±0.35%) 
 Gemmatimonadetes 0.02% (±0.15%) 0.02% (±0.13%) 0.02% (±0.09%) 
 BD2-11 terrestrial grp. <0.01% (±0.03%) <0.01% (±0.04%) <0.01% (±0.03%) 
 S0134 terrestrial group <0.01% (±0.02%) <0.01% (±0.03%) <0.01% (±0.02%) 
 AKAU4049 <0.01% (±<0.01%) <0.01% (±0.01%) <0.01% (±0.01%) 
Deinococcota Deinococci 0.05% (±0.52%) 0.05% (±0.62%) 0.06% (±0.61%) 

Elusimicrobiota   0.04% (±1.10%) 0.04% (±1.04%) 0.06% (±1.35%) 
 Lineage IIa 0.04% (±1.10%) 0.04% (±1.04%) 0.06% (±1.35%) 
 Lineage IIb <0.01% (±<0.01%) Not present <0.01% (±<0.01%) 
 Elusimicrobia <0.01% (±<0.01%) <0.01% (±0.01%) <0.01% (±0.01%) 
Fibrobacterota Fibrobacteria 0.04% (±0.15%) 0.04% (±0.18%) 0.06% (±0.18%) 

Abditibacteriota Abditibacteria 0.01% (±0.03%) <0.01% (±0.05%) 0.01% (±0.04%) 

Entotheonellaeota Entotheonellia 0.01% (±0.11%) 0.01% (±0.13%) 0.02% (±0.13%) 

Fusobacteriota Fusobacteriia 0.01% (±0.04%) 0.01% (±0.04%) 0.01% (±0.05%) 

Methylomirabilota Methylomirabilia 0.01% (±0.08%) 0.01% (±0.09%) 0.01% (±0.03%) 

NB1-j NB1-j 0.01% (±0.05%) 0.01% (±0.06%) 0.02% (±0.06%) 

RCP2-54 RCP2-54 0.01% (±0.06%) 0.01% (±0.07%) 0.01% (±0.07%) 

SAR324 clade  SAR324 clade 0.01% (±0.06%) 0.01% (±0.08%) 0.01% (±0.07%) 
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Table 5.2 continued     

Phylum Class 
Libraries with at least 
500 reads, unrarefied 

Libraries rarefied at 
500 reads 

Libraries rarefied at 
5,000 reads 

Sumerlaeota Sumerlaeia 0.01% (±0.03%) <0.01% (±0.04%) 0.01% (±0.04%) 

Synergistota Synergistia 0.01% (±0.05%) <0.01% (±0.06%) <0.01% (±0.04%) 

Armatimonadota   <0.01% (±0.03%) <0.01% (±0.05%) 0.01% (±0.04%) 

 Armatimonadia <0.01% (±0.03%) <0.01% (±0.04%) <0.01% (±0.03%) 
 Chthonomonadetes <0.01% (±0.01%) Not present <0.01% (±0.01%) 
 Fimbriimonadia <0.01% (±0.01%) Not present <0.01% (±0.01%) 
Nitrospirota   <0.01% (±0.03%) <0.01% (±0.03%) <0.01% (±0.04%) 
 Nitrospiria <0.01% (±0.03%) <0.01% (±0.03%) <0.01% (±0.04%) 
 Thermodesulfovibrionia <0.01% (±0.01%) Not present <0.01% (±0.01%) 
Spirochaetota   <0.01% (±0.07%) <0.01% (±0.06%) <0.01% (±0.01%) 
 Spirochaetia <0.01% (±0.07%) <0.01% (±0.06%) <0.01% (±0.01%) 
 Brachyspirae <0.01% (±<0.01%) Not present <0.01% (±<0.01%) 
10bav-F6 10bav-F6 <0.01% (±<0.01%) Not present <0.01% (±<0.01%) 

Dadabacteria Dadabacteriia <0.01% (±<0.01%) Not present Not present 

Deferribacterota   <0.01% (±<0.01%) <0.01% (±0.01%) <0.01% (±<0.01%) 
 Deferribacteres <0.01% (±<0.01%) <0.01% (±0.01%) <0.01% (±<0.01%) 
 Defferrisomatia <0.01% (±0.01%) <0.01% (±0.01%) <0.01% (±0.01%) 
FCPU426 FCPU426 <0.01% (±0.01%) <0.01% (±0.01%) <0.01% (±0.02%) 

Halanaerobiaeota Halanaerobiia <0.01% (±0.02%) <0.01% (±0.02%) <0.01% (±0.02%) 

Hydrogenedentes Hydrogenedentia <0.01% (±<0.01%) Not present Not present 

Latescibacterota Latescibacterota <0.01% (±<0.01%) Not present <0.01% (±<0.01%) 

Marinimicrobia  Marinimicrobia  <0.01% (±<0.01%) <0.01% (±0.01%) Not present 

Nitrospinota P9X2b3D02 <0.01% (±0.02%) <0.01% (±0.01%) <0.01% (±0.02%) 

Rs-K70  Rs-K70 termite group <0.01% (±0.08%) 0.01% (±0.12%) 0.01% (±0.1%) 

WPS-2 WPS-2 <0.01% (±0.01%) Not present <0.01% (±0.02%) 
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Table 5.2 continued     

Phylum Class 
Libraries with at least 
500 reads, unrarefied 

Libraries rarefied at 
500 reads 

Libraries rarefied at 
5,000 reads 

WS1 WS1 <0.01% (±<0.01%) Not present Not present 

WS4 WS4 <0.01% (±<0.01%) Not present <0.01% (±<0.01%) 

Unknown Unknown 0.03% (±0.16%) 0.03% (±0.17%) 0.04% (±0.19%) 
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Table 5.3 Results of ANCOM-BC analysis identifying significant differences in pair-wise comparisons between host species, including 
natural log fold change, standard errors, confidence limits and adjusted p-values, with a padj <0.05 denoting significance. Positive log 
fold change values indicates that the first host species listed was significantly enriched for the bacterial phylum or genus listed while a 
negative log fold change value indicated that the second host species listed was significantly enriched. For example, Veerys were 
significantly enriched in an uncultured genus from family compared to Grey-Cheeked Thrush. Table 5.3A contains the results of the 
ANCOM-BC analysis of differences in bacterial genera between host species. Table 5.3B contains the results of the ANCOM-BC 
analysis of differences in bacterial phlya between host species. 
 
Table 5.3A ANCOM-BC analysis of bacterial genera between host species 

Host Species Phylum Genus 
Log fold 

change 

Std. 

Error 

Lowe

r C.I. 

Uppe

r 

C.I. 

padj 

Veery vs. Grey-Cheeked Proteobacteria D05-2 (UG) 2.24 0.63 1.00 3.48 0.05 

Swainson's vs. Hermit Verrucomicrobiota Parachlamydiaceae 0.56 0.13 0.31 0.81 0.00 

Swainson's vs. Hermit Proteobacteria TRA3-20 -1.40 0.34 -2.07 -0.74 0.01 

Swainson's vs. Hermit Proteobacteria Massilia 0.78 0.19 0.40 1.16 0.01 

Swainson's vs. Hermit Proteobacteria Geminicoccaceae (UG) 0.89 0.23 0.45 1.34 0.01 

Swainson's vs. Hermit Proteobacteria D05-2 (UG) 0.82 0.21 0.41 1.23 0.02 

Swainson's vs. Hermit Proteobacteria Alsobacter 0.99 0.21 0.58 1.41 0.00 

Swainson's vs. Hermit Campilobacterota Alviniconcha 1.47 0.31 0.85 2.09 0.00 

Swainson's vs. Grey-Cheeked Campilobacterota Alviniconcha 1.44 0.37 0.71 2.17 0.01 

Grey-Cheeked vs. Hermit Cyanobacteria Aliterella  -2.02 0.55 -3.09 -0.95 0.04 

Grey-Cheeked vs. Hermit Actinobacteriota Gaiellales (UG) -1.03 0.28 -1.57 -0.49 0.04 
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Table 5.3B ANCOM-BC analysis of bacterial phyla between host species 

Host Species Phylum 
  

Log fold 

change 

Std. 

Error 

Lower 

C.I. 

Upper 

C.I. 
padj 

Grey-Cheeked vs. Hermit Actinobacteriota   1.00 0.33 0.36 1.65 0.04 

Swainson's vs. Grey-Cheeked Patescibacteria   -0.79 0.23 -1.25 -0.33 0.01 

Swainson's vs. Hermit Actinobacteriota   0.60 0.18 0.24 0.95 0.02 

Swainson's vs. Hermit Campilobacterota   1.21 0.29 0.63 1.78 0.00 
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Table 5.4 Results of ANCOM-BC analysis identifying significant differences in pair-wise 
comparisons between years, including natural log fold change, standard errors, confidence limits 
and adjusted p-values, with a padj <0.05 denoting significance. Positive log fold change values 
indicates that the first year was significantly enriched for the bacterial phylum or genus while a 
negative log fold change value indicated that the second year was significantly enriched. For 
example, Conexibacter was significantly enriched in 2017 when compared against 2018. 
Uncultured and unnamed genera and families are noted with (UG) or (UF) respectively and the 
closest named taxonomic level is reported. Table 5.4A contains the results of the ANCOM-BC 
analysis of differential abundance in bacterial genera between 2017 and 2018. Table 5.4B contains 
the results of the ANCOM-BC analysis of differential abundance in bacterial genera between 2018 
and 2019. Table 5.4C contains the results of the ANCOM-BC analysis of differential abundance 
in bacterial genera between 2017 and 2019. Table 5.4D contains the results of the ANCOM-BC 
analysis of differential abundance in bacterial phlya between 2017 and 2018. Table 5.4E contains 
the results of the ANCOM-BC analysis of differential abundance in bacterial phlya between 2018 
and 2019. Table 5.4F contains the results of the ANCOM-BC analysis of differential abundance 
in bacterial phlya between 2017 and 2019. 
 
Table 5.4A Differential abundance in bacterial genera between 2017 and 2018. 
Table 5.4A continued      

Phylum Genus 

Log 

fold 

change 

Std. 

Error 

Lower 

C.I. 

Upper 

C.I. 
padj 

Acidobacteriota Subgroup 17 -0.02 0.18 -0.37 0.33 1 

Actinobacteriota Conexibacter 1.15 0.26 0.63 1.66 <0.01 

Actinobacteriota Euzebyaceae (UG) -2.05 0.27 -2.58 -1.52 <0.01 

Actinobacteriota Frankiales -0.9 0.22 -1.34 -0.47 0.01 

Actinobacteriota Gaiellales (UF) -0.09 0.12 -0.33 0.15 1 
Actinobacteriota Nocardioides 0.71 0.19 0.33 1.09 0.03 

Actinobacteriota Parafrigoribacterium -0.02 0.1 -0.22 0.18 1 
Cyanobacteria Aliterella 0.73 0.23 0.29 1.18 0.14 

Desulfobacterota 
Desulfosarcinaceae 

(UG) 
-0.45 0.21 -0.87 -0.04 1 

Firmicutes 
Clostridium sensu 

stricto 1 
0.39 0.12 0.15 0.62 0.15 

Firmicutes Limnochordaceae -1.45 0.18 -1.79 -1.1 0 

Firmicutes Lutispora 0.32 0.21 -0.1 0.73 1 
MBNT15 MBNT15 0.54 0.12 0.3 0.79 <0.01 

Patescibacteria Saccharimonadales 0.15 0.09 -0.02 0.33 1 
Planctomycetota Fimbriiglobus -0.32 0.27 -0.86 0.22 1 
Planctomycetota Gemmata -0.54 0.32 -1.16 0.09 1 
Planctomycetota Gemmataceae (UG) -0.35 0.38 -1.1 0.39 1 
Planctomycetota Pirellula 0.64 0.18 0.29 0.99 0.04 

Planctomycetota Tundrisphaera -0.4 0.33 -1.05 0.26 1 
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Table 5.4A continued      

Phylum Genus 

Log 

fold 

change 

Std. 

Error 

Lower 

C.I. 

Upper 

C.I. 
padj 

Proteobacteria Alpha I cluster -0.68 0.19 -1.05 -0.31 0.04 

Proteobacteria Amaricoccus -0.24 0.12 -0.47 -0.01 1 
Proteobacteria Aquisphaera -0.23 0.13 -0.48 0.03 1 
Proteobacteria Coxiella 0.23 0.2 -0.17 0.62 1 
Proteobacteria D05-2 -0.71 0.25 -1.19 -0.22 0.51 

Proteobacteria 
Diplorickettsiaceae 

(UG) 
-0.67 0.32 -1.28 -0.05 1 

Proteobacteria Geminicoccus -1.38 0.37 -2.1 -0.65 0.02 

Proteobacteria Legionella 0.37 0.16 0.06 0.68 1 

Verrucomicrobiota Neochlamydia -0.53 0.25 -1.02 -0.04 1 

 
Table 5.4B Differential abundance in bacterial genera between 2018 and 2019. 
Table 5.4B continued    

Phylum Genus 

Log 

fold 

change 

Std. 

Error 

Lower 

C.I. 

Upper 

C.I. 
padj 

Acidobacteriota Subgroup 17 -0.58 0.13 -0.84 -0.32 <0.01 

Actinobacteriota Conexibacter -0.3 0.19 -0.68 0.08 1 
Actinobacteriota Euzebyaceae (UG) -0.49 0.19 -0.87 -0.12 1 
Actinobacteriota Frankiales -0.01 0.17 -0.33 0.31 1 
Actinobacteriota Gaiellales (UF) 3.02 0.12 2.78 3.26 <0.01 

Actinobacteriota Nocardioides -0.08 0.18 -0.43 0.27 1 
Actinobacteriota Parafrigoribacterium -0.34 0.09 -0.52 -0.16 0.05 

Cyanobacteria Aliterella 4.39 0.18 4.04 4.74 0 

Desulfobacterota 
Desulfosarcinaceae 

(UG) 
-0.46 0.16 -0.79 -0.14 0.85 

Firmicutes 
Clostridium sensu 

stricto 1 
0.04 0.12 -0.2 0.29 1 

Firmicutes Limnochordaceae -0.18 0.1 -0.38 0.02 1 
Firmicutes Lutispora -3.38 0.15 -3.68 -3.08 <0.01 

MBNT15 MBNT15 -0.48 0.13 -0.74 -0.22 0.04 
Patescibacteria Saccharimonadales 0.1 0.09 -0.08 0.27 1 
Planctomycetota Fimbriiglobus -0.87 0.21 -1.27 -0.47 <0.01 

Planctomycetota Gemmata -0.71 0.22 -1.15 -0.27 0.27 
Planctomycetota Gemmataceae (UG) -1.81 0.28 -2.36 -1.26 <0.01 

Planctomycetota Pirellula -0.21 0.16 -0.53 0.11 1 
Planctomycetota Tundrisphaera -0.73 0.24 -1.21 -0.26 0.45 
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Table 5.4B continued    

Phylum Genus 

Log 

fold 

change 

Std. 

Error 

Lower 

C.I. 

Upper 

C.I. 
padj 

Proteobacteria alphaI cluster 0.2 0.14 -0.07 0.47 1 
Proteobacteria Amaricoccus 0.71 0.12 0.47 0.95 <0.01 

Proteobacteria Aquisphaera 1.25 0.13 0.99 1.51 <0.01 

Proteobacteria Coxiella -0.61 0.16 -0.92 -0.29 0.03 

Proteobacteria D05-2 -0.27 0.16 -0.58 0.04 1 

Proteobacteria 
Diplorickettsiaceae 

(UG) 
-0.45 0.24 -0.92 0.01 1 

Proteobacteria Geminicoccus -0.99 0.29 -1.55 -0.43 0.09 
Proteobacteria Legionella 0.42 0.14 0.13 0.7 0.68 

Verrucomicrobiota Neochlamydia -0.46 0.21 -0.87 -0.05 1 

 
Table 5.4C Differential abundance in bacterial genera between 2017 and 2019. 
Table 5.4C continued 

Phylum Genus 

Log 

fold 

change 

Std. 

Error 

Lower 

C.I. 

Upper 

C.I. 
padj 

Acidobacteriota Subgroup 17 -0.54 0.15 -0.83 -0.25 0.03 

Actinobacteriota Conexibacter 0.91 0.24 0.44 1.39 0.02 

Actinobacteriota Euzebyaceae (UG) -2.48 0.24 -2.96 -2 <0.01 

Actinobacteriota Frankiales -0.85 0.22 -1.29 -0.41 0.02 

Actinobacteriota Gaiellales (UF) 2.99 0.12 2.74 3.23 <0.01 

Actinobacteriota Nocardioides 0.68 0.17 0.34 1.03 0.01 

Actinobacteriota Parafrigoribacterium 0 0 0 0 <0.01 

Cyanobacteria Aliterella 5.18 0.18 4.81 5.54 <0.01 

Desulfobacterota 
Desulfosarcinaceae 

(UG) 
-0.86 0.18 -1.22 -0.5 <0.01 

Firmicutes 
Clostridium sensu 

stricto 1 
0.49 0.11 0.28 0.7 <0.01 

Firmicutes Limnochordaceae -1.56 0.17 -1.9 -1.23 <0.01 

Firmicutes Lutispora -3.02 0.17 -3.36 -2.68 <0.01 

MBNT15 MBNT15 0.12 0.09 -0.06 0.31 1 
Patescibacteria Saccharimonadales 0.31 0.08 0.15 0.48 0.02 

Planctomycetota Fimbriiglobus -1.12 0.25 -1.62 -0.63 <0.01 

Planctomycetota Gemmata -1.19 0.29 -1.76 -0.62 0.01 

Planctomycetota Gemmataceae (UG) -2.12 0.31 -2.73 -1.52 <0.01 

Planctomycetota Pirellula 0.49 0.16 0.18 0.8 0.32 
Planctomycetota Tundrisphaera -1.08 0.3 -1.66 -0.5 0.04 
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Table 5.4C continued 

Phylum Genus 

Log 

fold 

change 

Std. 

Error 

Lower 

C.I. 

Upper 

C.I. 
padj 

Proteobacteria alphaI cluster -0.42 0.2 -0.8 -0.03 1 
Proteobacteria Amaricoccus 0.53 0.13 0.28 0.79 0.01 

Proteobacteria Aquisphaera 1.09 0.15 0.8 1.37 <0.01 

Proteobacteria Coxiella -0.32 0.16 -0.63 -0.02 1 
Proteobacteria D05-2 -0.92 0.24 -1.38 -0.45 0.02 

Proteobacteria 
Diplorickettsiaceae 

(UG) 
-1.07 0.29 -1.64 -0.5 0.04 

Proteobacteria Geminicoccus -2.32 0.32 -2.96 -1.69 <0.01 

Proteobacteria Legionella 0.85 0.14 0.57 1.13 <0.01 

Verrucomicrobiota Neochlamydia -0.92 0.21 -1.34 -0.5 <0.01 

 
Table 5.4D Differential abundance in bacterial phlya between 2017 and 2018. 

Phylum 
Log fold 

change 

Standard 

Error 

Lower 

C.I. 

Upper 

C.I. 
padj 

Cyanobacteria 0.66 0.23 0.22 1.1 0.06 

Firmicutes 0.14 0.18 -0.21 0.49 1 
MBNT15 0.44 0.16 0.12 0.75 0.11 
Patescibacteria 0.4 0.14 0.12 0.68 0.08 
Planctomycetota -0.22 0.26 -0.73 0.29 1 
Proteobacteria -0.6 0.25 -1.08 -0.12 0.25 

Verrucomicrobiota -0.32 0.22 -0.76 0.11 1 

 

Table 5.4E Differential abundance in bacterial phlya between 2018 and 2019. 

Phylum 
Log fold 

change 

Standard 

Error 

Lower 

C.I. 

Upper 

C.I. 
padj 

Cyanobacteria 3.98 0.17 3.65 4.31 <0.01 

Firmicutes -1.31 0.16 -1.63 -0.99 <0.01 

MBNT15 -0.48 0.15 -0.76 -0.19 0.02 

Patescibacteria 0.32 0.13 0.06 0.58 0.31 
Planctomycetota -1.71 0.19 -2.08 -1.33 <0.01 

Proteobacteria -0.43 0.18 -0.78 -0.07 0.37 

Verrucomicrobiota -0.33 0.2 -0.72 0.05 1 
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Table 5.4F Differential abundance in bacterial phlya between 2017 and 2019. 

Phylum 
Log fold 

change 

Standard 

Error 

Lower 

C.I. 

Upper 

C.I. 
padj 

Cyanobacteria 4.65 0.2 4.26 5.04 <0.01 

Firmicutes -1.16 0.18 -1.51 -0.81 <0.01 

MBNT15 -0.03 0.13 -0.28 0.22 1 
Patescibacteria 0.73 0.12 0.48 0.97 <0.01 

Planctomycetota -1.92 0.22 -2.35 -1.48 <0.01 

Proteobacteria -1.02 0.22 -1.45 -0.58 <0.01 

Verrucomicrobiota -0.65 0.19 -1.03 -0.27 0.01 
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Table 5.5 Results of ANCOM-BC analysis identifying significant differences in pair-wise 
comparisons between seasons, including natural log fold change, standard errors, confidence limits 
and adjusted p-values, with a padj <0.05 denoting significance. Positive log fold change values 
indicates that the first season was significantly enriched for the bacterial phylum or genus while a 
negative log fold change value indicated that the second season was significantly enriched. For 
example, an uncultured genus in family Vicinamibacterales was significantly enriched in spring 
when compared against summer. Table 5.5A contains the results of the ANCOM-BC analysis of 
differential abundance in bacterial genera between spring and summer. Table 5.5B contains the 
results of the ANCOM-BC analysis of differential abundance in bacterial genera between summer 
and fall. Table 5.5C contains the results of the ANCOM-BC analysis of differential abundance in 
bacterial genera between spring and fall. Table 5.5D contains the results of the ANCOM-BC 
analysis of differential abundance in bacterial phlya between spring and summer. Table 5.5E 
contains the results of the ANCOM-BC analysis of differential abundance in bacterial phlya 
between summer and fall. Table 5.5F contains the results of the ANCOM-BC analysis of 
differential abundance in bacterial phlya between spring and fall. 
 
Table 5.5A Differential abundance in bacterial genera between spring and summer.  
Table 5.5A continued 

Phylum Genus 

Log 

fold 

change 

Std. 

Error 

Lower 

C.I. 

Upper 

C.I. 
padj 

Acidobacteriota 
Vicinamibacterales 

(UF) 
1.14 0.31 0.54 1.74 0.03 

Actinobacteriota 67-14 2.01 0.32 1.37 2.64 <0.01 

Actinobacteriota Actinomycetospora -0.16 0.09 -0.34 0.03 1 
Actinobacteriota Arthrobacter 0.75 0.19 0.38 1.11 0.01 

Actinobacteriota Euzebyaceae (UG) 0.09 0.14 -0.19 0.37 1 
Actinobacteriota Frankiales 0.95 0.23 0.49 1.41 0.01 

Bacteroidota Flavobacterium -0.15 0.13 -0.39 0.1 1 
Bacteroidota Sporocytophaga 0.04 0.09 -0.14 0.23 <0.01 

Cyanobacteria Aliterella -0.68 0.53 -1.71 0.35 1 
Dependentiae Babeliales 1.78 0.31 1.17 2.4 <0.01 

Firmicutes Bacillus 1.19 0.33 0.55 1.84 0.05 

Firmicutes Cellulosimicrobium -0.06 0.09 -0.24 0.12 <0.01 

Firmicutes 
Clostridium sensu 

stricto 1 
-0.73 0.21 -1.15 -0.31 1 

Firmicutes Erysipelatoclostridia -0.32 0.14 -0.59 -0.05 1 
Firmicutes Paenibacillus -1.76 0.27 -2.3 -1.23 <0.01 

Myxococcota Nannocystaceae (UG) 1.65 0.33 1 2.29 <0.01 

Patescibacteria LWQ8 0.02 0.29 -0.56 0.59 1 
Patescibacteria Parcubacteria -0.01 0.09 -0.19 0.16 <0.01 

Planctomycetota Gemmataceae (UG) -2.46 0.39 -3.21 -1.7 <0.01 

Planctomycetota Planctomicrobium 0.01 0.08 -0.15 0.18 <0.01 
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Table 5.5A continued 

Phylum Genus 

Log 

fold 

change 

Std. 

Error 

Lower 

C.I. 

Upper 

C.I. 
padj 

Proteobacteria A21b -0.12 0.09 -0.3 0.05 1 
Proteobacteria Alkanindiges -0.26 0.08 -0.42 -0.1 <0.01 

Proteobacteria Amaricoccus 0.88 0.29 0.31 1.44 1 
Proteobacteria Anaeromyxobacter 0.9 0.24 0.43 1.37 0.03 

Proteobacteria Aureimonas 1.03 0.27 0.5 1.56 0.02 

Proteobacteria 
Burkholderia-

Caballeronia-

Paraburkholderia 

-0.17 0.23 -0.63 0.28 1 

Proteobacteria Caulobacter -0.51 0.15 -0.81 -0.22 1 
Proteobacteria D05-2 0.3 0.16 -0.01 0.6 1 

Proteobacteria 
Diplorickettsiaceae 

(UG) 
-0.45 0.31 -1.05 0.16 1 

Proteobacteria Ensifer -0.13 0.13 -0.4 0.13 1 
Proteobacteria Escherichia-Shigella -0.31 0.21 -0.73 0.11 1 
Proteobacteria Geminicoccus -0.64 0.34 -1.32 0.03 1 
Proteobacteria Lysobacter 1.99 0.29 1.41 2.56 <0.01 

Proteobacteria Massilia 1.33 0.3 0.74 1.92 <0.01 

Proteobacteria Ralstonia 1.52 0.34 0.85 2.18 <0.01 

Proteobacteria Reyranella 0.94 0.27 0.4 1.48 1 

Proteobacteria 
Thiomicrospiraceae 

(UG) 
0 0.2 -0.38 0.39 1 

Proteobacteria 
Xanthobacteraceae 

(UG) 
1.36 0.26 0.85 1.87 <0.01 

Verrucomicrobiota 
Christensenellaceae 

R-7 group 
-0.45 0.23 -0.9 0 1 

Verrucomicrobiota Chthoniobacter 0.5 0.33 -0.15 1.15 1 
Verrucomicrobiota Luteolibacter 1.17 0.27 0.65 1.69 <0.01 

Verrucomicrobiota Neochlamydia -0.9 0.43 -1.74 -0.06 1 
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Table 5.5B Differential abundance in bacterial genera between summer and fall.  
Table 5.5B continued 

Phylum Genus 

Log 

fold 

change 

Std. 

Error 

Lower 

C.I. 

Upper 

C.I. 
padj 

Acidobacteriota 
Vicinamibacterales 

(UF) 
-1.24 0.29 -1.81 -0.66 <0.01 

Actinobacteriota 67-14 -2.66 0.31 -3.27 -2.06 <0.01 

Actinobacteriota Actinomycetospora -0.03 0.07 -0.16 0.11 1 
Actinobacteriota Arthrobacter 0 0 0 0 NA 
Actinobacteriota Euzebyaceae (UG) 1.02 0.15 0.72 1.32 <0.01 

Actinobacteriota Frankiales -0.81 0.23 -1.25 -0.36 1 
Bacteroidota Flavobacterium -0.14 0.11 -0.34 0.07 1 
Bacteroidota Sporocytophaga 0 0 0 0 NA 
Cyanobacteria Aliterella -0.17 0.49 -1.14 0.8 1 
Dependentiae Babeliales -1.54 0.3 -2.14 -0.95 <0.01 

Firmicutes Bacillus -1.49 0.32 -2.11 -0.87 <0.01 

Firmicutes Cellulosimicrobium 0 0 0 0 NA 

Firmicutes 
Clostridium sensu 

stricto 1 
0.05 0.18 -0.31 0.41 1 

Firmicutes Erysipelatoclostridia -0.16 0.12 -0.39 0.08 1 
Firmicutes Paenibacillus 0.57 0.21 0.17 0.97 1 
Myxococcota Nannocystaceae (UG) -1.55 0.31 -2.16 -0.93 <0.01 

Patescibacteria LWQ8 -0.67 0.26 -1.18 -0.15 1 
Patescibacteria Parcubacteria 0 0 0 0 NA 
Planctomycetota Gemmataceae (UG) 1.55 0.32 0.92 2.18 <0.01 

Planctomycetota Planctomicrobium 0 0 0 0 NA 
Proteobacteria A21b 0 0 0 0 NA 
Proteobacteria Alkanindiges 0.2 0.06 0.08 0.33 <0.01 

Proteobacteria Amaricoccus -1.05 0.26 -1.57 -0.53 0.01 

Proteobacteria Anaeromyxobacter -0.71 0.23 -1.15 -0.26 1 
Proteobacteria Aureimonas -1.04 0.26 -1.54 -0.53 0.01 

Proteobacteria 
Burkholderia-

Caballeronia-

Paraburkholderia 

-0.29 0.21 -0.71 0.13 1 

Proteobacteria Caulobacter 0.11 0.13 -0.15 0.37 1 
Proteobacteria D05-2 0.56 0.17 0.24 0.89 1 

Proteobacteria 
Diplorickettsiaceae 

(UG) 
1.51 0.31 0.9 2.12 <0.01 

Proteobacteria Ensifer 0 0 0 0 NA 
Proteobacteria Escherichia-Shigella -0.22 0.2 -0.6 0.17 1 
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Table 5.5B continued 

Phylum Genus 

Log 

fold 

change 

Std. 

Error 

Lower 

C.I. 

Upper 

C.I. 
padj 

Proteobacteria Geminicoccus 1.75 0.33 1.11 2.39 <0.01 

Proteobacteria Lysobacter 0 0 0 0 NA 
Proteobacteria Massilia -1.24 0.29 -1.8 -0.67 <0.01 

Proteobacteria Ralstonia -1.55 0.32 -2.19 -0.92 <0.01 

Proteobacteria Reyranella -1.14 0.26 -1.65 -0.63 <0.01 

Proteobacteria 
Thiomicrospiraceae 

(UG) 
-0.44 0.18 -0.8 -0.08 1 

Proteobacteria 
Xanthobacteraceae 

(UG) 
-0.93 0.25 -1.43 -0.44 0.03 

Verrucomicrobiota 
Christensenellaceae 

R-7 group 
0.01 0.21 -0.39 0.41 1 

Verrucomicrobiota Chthoniobacter -1.2 0.31 -1.8 -0.6 0.01 

Verrucomicrobiota Luteolibacter -1.15 0.25 -1.64 -0.66 <0.01 

Verrucomicrobiota Neochlamydia 0.13 0.39 -0.63 0.89 1 

 

Table 5.5C Differential abundance in bacterial genera between spring and fall.  
Table 5.5C continued  

Phylum Genus 

Log 

fold 

change 

Std. 

Error 

Lower 

C.I. 

Upper 

C.I. 
padj 

Acidobacteriota 
Vicinamibacterales 

(UF) 
0.21 0.1 0.01 0.41 1 

Actinobacteriota 67-14 0.77 0.16 0.46 1.08 <0.01 

Actinobacteriota Actinomycetospora 0.3 0.08 0.14 0.46 0.05 

Actinobacteriota Arthrobacter 0 0 0 0 NA 
Actinobacteriota Euzebyaceae (UG) -1 0.17 -1.34 -0.66 <0.01 

Actinobacteriota Frankiales -0.03 0.08 -0.18 0.13 1 
Bacteroidota Flavobacterium 0.4 0.09 0.23 0.57 <0.01 

Bacteroidota Sporocytophaga 0.19 0.09 0.03 0.36 1 
Cyanobacteria Aliterella 0.96 0.26 0.45 1.48 0.04 

Dependentiae Babeliales -0.13 0.12 -0.36 0.11 1 
Firmicutes Bacillus 0.41 0.12 0.18 0.64 1 
Firmicutes Cellulosimicrobium 0.09 0.09 -0.08 0.26 1 

Firmicutes 
Clostridium sensu 

stricto 1 
0.79 0.14 0.53 1.06 <0.01 

Firmicutes 
Erysipelatoclostridiu

m 
0.59 0.09 0.42 0.77 <0.01 

Firmicutes Paenibacillus 1.31 0.22 0.87 1.74 <0.01 
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Table 5.5C continued  

Phylum Genus 

Log 

fold 

change 

Std. 

Error 

Lower 

C.I. 

Upper 

C.I. 
padj 

Myxococcota Nannocystaceae (UG) 0.02 0.13 -0.24 0.27 1 
Patescibacteria LWQ8 0.76 0.16 0.45 1.08 <0.01 

Patescibacteria Parcubacteria 0 0 0 0 NA 
Planctomycetota Gemmataceae (UG) 1.02 0.29 0.45 1.59 1 
Planctomycetota Planctomicrobium 0 0 0 0 NA 
Proteobacteria A21b 0.35 0.08 0.19 0.5 <0.01 

Proteobacteria Alkanindiges 0.17 0.08 0.02 0.32 1 
Proteobacteria Amaricoccus 0.29 0.14 0.02 0.56 1 
Proteobacteria Anaeromyxobacter 0 0 0 0 NA 
Proteobacteria Aureimonas 0.12 0.11 -0.09 0.33 1 

Proteobacteria 
Burkholderia-

Caballeronia-

Paraburkholderia 

0.58 0.12 0.35 0.81 <0.01 

Proteobacteria Caulobacter 0.52 0.1 0.31 0.72 <0.01 

Proteobacteria D05-2 -0.74 0.14 -1.03 -0.46 <0.01 

Proteobacteria 
Diplorickettsiaceae 

(UG) 
-0.95 0.2 -1.35 -0.56 <0.01 

Proteobacteria Ensifer 0.44 0.09 0.27 0.61 <0.01 

Proteobacteria Escherichia-Shigella 0.64 0.11 0.43 0.86 <0.01 

Proteobacteria Geminicoccus -1 0.26 -1.5 -0.5 0.02 

Proteobacteria Lysobacter 0 0 0 0 NA 
Proteobacteria Massilia 0.02 0.12 -0.21 0.25 1 
Proteobacteria Ralstonia 0.15 0.14 -0.12 0.42 1 
Proteobacteria Reyranella 0.31 0.1 0.12 0.5 1 

Proteobacteria 
Thiomicrospiraceae 

(UG) 
0.55 0.09 0.36 0.73 <0.01 

Proteobacteria 
Xanthobacteraceae 

(UG) 
-0.32 0.09 -0.49 -0.14 1 

Verrucomicrobiota 
Christensenellaceae 

R-7 group 
0.55 0.14 0.29 0.82 0.01 

Verrucomicrobiota Chthoniobacter 0.81 0.15 0.51 1.11 <0.01 

Verrucomicrobiota Luteolibacter 0.09 0.1 -0.1 0.29 1 

Verrucomicrobiota Neochlamydia 0.88 0.22 0.44 1.32 0.01 
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Table 5.5D Differential abundance in bacterial phlya between spring and summer. 

Phylum 
Log fold 

change 
Std. Error 

Lower 

C.I. 

Upper 

C.I. 
padj 

Actinobacteriota 0.95 0.24 0.47 1.42 <0.01 

Campilobacterota -0.58 0.22 -1.02 -0.14 0.19 
Chloroflexi 0.99 0.33 0.34 1.63 0.05 

Dependentiae 1.04 0.3 0.46 1.62 0.01 

Desulfobacterota -0.6 0.22 -1.04 -0.17 0.13 
Fibrobacterota -0.73 0.16 -1.05 -0.41 <0.01 

Gemmatimonadota -0.29 0.22 -0.72 0.15 1 
MBNT15 -0.53 0.2 -0.92 -0.14 0.15 
Myxococcota 1.55 0.32 0.93 2.17 <0.01 

Patescibacteria -0.81 0.26 -1.32 -0.3 0.04 

Planctomycetota -1.12 0.32 -1.74 -0.5 0.01 

Proteobacteria 0.78 0.2 0.4 1.17 <0.01 

 

Table 5.5E Differential abundance in bacterial phlya between summer and fall. 

Phylum 
Log fold 

change 
Std. Error Lower CI Upper CI padj 

Actinobacteriota 0.41 0.23 -0.05 0.87 1 

Campilobacterota -1.95 0.23 -2.41 -1.5 <0.01 

Chloroflexi 1.09 0.31 0.49 1.69 0.01 

Dependentiae 0.85 0.28 0.3 1.39 0.04 

Desulfobacterota -1.23 0.21 -1.64 -0.82 <0.01 

Fibrobacterota -1 0.15 -1.29 -0.7 <0.01 

Gemmatimonadota -0.68 0.21 -1.09 -0.28 0.02 

MBNT15 -1.26 0.18 -1.6 -0.91 <0.01 

Myxococcota 1.44 0.3 0.84 2.04 <0.01 

Patescibacteria -0.38 0.24 -0.85 0.1 1 
Planctomycetota -1.11 0.28 -1.66 -0.56 <0.01 

Proteobacteria -0.77 0.19 -1.15 -0.4 <0.01 

 

 

 

 

 

 

 

 

 



 

 151 
 

Table 5.5F Differential abundance in bacterial phlya between spring and fall. 

Phylum 
Log fold 

change 
Std. Error Lower CI Upper CI padj 

Actinobacteriota -0.47 0.13 -0.72 -0.22 0.01 

Campilobacterota -1.31 0.16 -1.63 -0.99 <0.01 

Chloroflexi 0.17 0.16 -0.15 0.49 1 
Dependentiae -0.13 0.13 -0.39 0.12 1 
Desulfobacterota -0.56 0.13 -0.82 -0.3 <0.01 

Fibrobacterota -0.2 0.1 -0.4 0 0.93 
Gemmatimonadota -0.33 0.11 -0.54 -0.12 0.04 

MBNT15 -0.66 0.14 -0.94 -0.38 <0.01 

Myxococcota -0.05 0.13 -0.31 0.21 1 
Patescibacteria 0.5 0.13 0.24 0.75 <0.01 

Planctomycetota 0.07 0.21 -0.34 0.48 1 

Proteobacteria -1.49 0.16 -1.81 -1.18 <0.01 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 152 
 

6 Supplemental Figures and Tables, Chapter 3 

 

 

 

 

 

 

 

 
6.1A Incidences of Plasmodium infection. 
 
Figure 6.1 Distribution of samples over time colored according to positive or not positive status 
for Plasmodium (3.2A), Haemoproteus (3.2B) or Leucocytozoon (3.2C). Figure 3.2D displayed 
the distribution of samples that screened positive for at least one of the pathogens, indicating the 
overall positivity of all samples.  
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6.1B Incidences of Haemoproteus infection. 
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6.1C Incidences of Leucocytozoon infection. 
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6.1D Incidences of overall infection. 
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6.2A Observed prevalence and confidence intervals of Plasmodium. 

 

 

Figure 6.2 Observed prevalence of Plasmodium (6.2A), Haemeoproteus (6.2B), and 
Leucocytozoon (6.2C) with 95% binomial confidence intervals. Confidence intervals are colored 
according to which season birds were collected in, with orange representing spring migratory 
periods and blue representing fall migratory periods. Data derived prevalence per time period is 
denoted by a black dot.  
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6.2B Observed prevalence and confidence intervals of Haemeoproteus. 
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6.2C Observed prevalence and confidence intervals of Leucocytozoon. 
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Table 6.1 Distribution of birds per time period, including the number of birds screened per time period, the number of individuals 
positive for each of the three haemosporidian pathogens and the prevalence of each pathogen. These data are show for all birds (6.1A) 
and for each host species separately (6.1B: Grey-Cheeked thrush, 6.1C: Hermit thrush, 6.1D: Swainson’s thrush, 6.1E: Veery). 
 
Table 6.1A Prevalence of pathogens per time period in all birds. 
Table 6.1A continued 

   Plasmodium Haemoproteus Leucocytozoon Total 

Year Seas. 
Num. 
Scr. 

Num. Pos. Prev. Num. Pos. Prev. Num. Pos. Prev. Num. Pos. Prev. 

1996 Spring 41 6 14.6% 3 7.3% 8 19.5% 16 39.0% 
1996 Fall 50 8 16.0% 1 2.0% 5 10.0% 12 24.0% 
1997 Spring 15 3 20.0% 0 0.0% 3 20.0% 5 33.3% 
1997 Fall 15 5 33.3% 0 0.0% 2 13.3% 6 40.0% 
1998 Spring 11 3 27.3% 4 36.4% 2 18.2% 8 72.7% 
1998 Fall 21 4 19.0% 2 9.5% 2 9.5% 7 33.3% 
1999 Spring 24 6 25.0% 2 8.3% 5 20.8% 10 41.7% 
1999 Fall 22 9 40.9% 1 4.5% 7 31.8% 14 63.6% 
2000 Spring 17 2 11.8% 2 11.8% 7 41.2% 10 58.8% 
2000 Fall 76 19 25.0% 1 1.3% 10 13.2% 26 34.2% 
2001 Spring 27 12 44.4% 5 18.5% 4 14.8% 17 63.0% 
2001 Fall 49 20 40.8% 3 6.1% 6 12.2% 24 49.0% 
2002 Spring 36 4 11.1% 4 11.1% 8 22.2% 13 36.1% 
2002 Fall 68 17 25.0% 7 10.3% 9 13.2% 30 44.1% 
2003 Spring 16 4 25.0% 2 12.5% 4 25.0% 8 50.0% 
2003 Fall 57 19 33.3% 12 21.1% 20 35.1% 38 66.7% 
2004 Spring 34 7 20.6% 6 17.6% 4 11.8% 15 44.1% 
2004 Fall 71 12 16.9% 8 11.3% 13 18.3% 31 43.7% 
2005 Spring 28 5 17.9% 4 14.3% 6 21.4% 14 50.0% 
2005 Fall 134 42 31.3% 13 9.7% 30 22.4% 74 55.2% 
2006 Spring 42 6 14.3% 8 19.0% 8 19.0% 19 45.2% 
2006 Fall 196 67 34.2% 18 9.2% 51 26.0% 117 59.7% 
2007 Spring 61 17 27.9% 9 14.8% 17 27.9% 35 57.4% 
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Table 6.1A continued 
   Plasmodium Haemoproteus Leucocytozoon Total 

Year Seas. 
Num. 
Scr. 

Num. Pos. Prev. Num. Pos. Prev. Num. Pos. Prev. Num. Pos. Prev. 

2007 Fall 274 97 35.4% 21 7.7% 49 17.9% 147 53.6% 
2008 Spring 81 18 22.2% 6 7.4% 21 25.9% 39 48.1% 
2008 Fall 159 42 26.4% 12 7.5% 55 34.6% 93 58.5% 
2009 Spring 53 6 11.3% 11 20.8% 17 32.1% 29 54.7% 
2009 Fall 148 30 20.3% 9 6.1% 68 45.9% 90 60.8% 
2010 Spring 20 3 15.0% 0 0.0% 4 20.0% 6 30.0% 
2010 Fall 60 16 26.7% 8 13.3% 19 31.7% 34 56.7% 
2011 Spring 45 7 15.6% 4 8.9% 21 46.7% 24 53.3% 
2011 Fall 264 97 36.7% 7 2.7% 77 29.2% 159 60.2% 
2012 Spring 25 8 32.0% 5 20.0% 9 36.0% 16 64.0% 
2012 Fall 346 92 26.6% 22 6.4% 109 31.5% 184 53.2% 
2013 Spring 43 9 20.9% 8 18.6% 9 20.9% 21 48.8% 
2013 Fall 205 56 27.3% 12 5.9% 57 27.8% 105 51.2% 
2014 Spring 74 25 33.8% 1 1.4% 23 31.1% 37 50.0% 
2014 Fall 192 58 30.2% 14 7.3% 52 27.1% 107 55.7% 
2015 Spring 14 3 21.4% 1 7.1% 6 42.9% 6 42.9% 
2015 Fall 126 42 33.3% 2 1.6% 33 26.2% 63 50.0% 
2016 Spring 31 12 38.7% 5 16.1% 16 51.6% 21 67.7% 
2016 Fall 143 43 30.1% 11 7.7% 44 30.8% 82 57.3% 
2017 Spring 54 10 18.5% 9 16.7% 17 31.5% 31 57.4% 
2017 Fall 149 48 32.2% 4 2.7% 43 28.9% 80 53.7% 
2018 Spring 81 10 12.3% 8 9.9% 20 24.7% 32 39.5% 
2018 Fall 217 61 28.1% 11 5.1% 40 18.4% 102 47.0% 
2019 Spring 127 25 19.7% 11 8.7% 30 23.6% 57 44.9% 
2019 Fall 307 51 16.6% 11 3.6% 117 38.1% 148 48.2% 
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Table 6.1B Prevalence of pathogens per time period in all Grey-Cheeked thrush. 
Table 6.1B continued 

   Plasmodium Haemoproteus Leucocytozoon Total 

Year Seas. 
Num. 
Scr. 

Num. Pos. Prev. Num. Pos. Prev. Num. Pos. Prev. Num. Pos. Prev. 

1996 Spring 5 0 0.0% 0 0.0% 2 40.0% 2 40.0% 
1996 Fall 11 2 18.2% 0 0.0% 1 9.1% 2 18.2% 
1997 Spring 5 0 0.0% 0 0.0% 2 40.0% 2 40.0% 
1997 Fall 1 0 0.0% 0 0.0% 0 0.0% 0 0.0% 
1998 Spring 1 1 100.0% 0 0.0% 0 0.0% 1 100.0% 
1998 Fall 4 1 25.0% 0 0.0% 1 25.0% 2 50.0% 
1999 Spring 1 1 100.0% 0 0.0% 1 100.0% 1 100.0% 
1999 Fall 4 1 25.0% 0 0.0% 1 25.0% 2 50.0% 
2000 Spring 2 0 0.0% 0 0.0% 1 50.0% 1 50.0% 
2000 Fall 3 0 0.0% 0 0.0% 0 0.0% 0 0.0% 
2001 Spring 3 2 66.7% 1 33.3% 2 66.7% 3 100.0% 
2001 Fall 2 0 0.0% 0 0.0% 0 0.0% 0 0.0% 
2002 Spring 2 1 50.0% 0 0.0% 0 0.0% 1 50.0% 
2002 Fall 7 1 14.3% 0 0.0% 3 42.9% 4 57.1% 
2003 Spring 2 1 50.0% 0 0.0% 1 50.0% 2 100.0% 
2003 Fall 6 1 16.7% 3 50.0% 5 83.3% 6 100.0% 
2004 Spring 2 1 50.0% 0 0.0% 2 100.0% 2 100.0% 
2004 Fall 7 0 0.0% 0 0.0% 1 14.3% 1 14.3% 
2005 Spring 4 0 0.0% 0 0.0% 1 25.0% 1 25.0% 
2005 Fall 10 1 10.0% 1 10.0% 2 20.0% 3 30.0% 
2006 Spring 2 0 0.0% 0 0.0% 1 50.0% 1 50.0% 
2006 Fall 19 4 21.1% 1 5.3% 6 31.6% 9 47.4% 
2007 Spring 7 0 0.0% 0 0.0% 3 42.9% 3 42.9% 
2007 Fall 13 0 0.0% 2 15.4% 2 15.4% 4 30.8% 
2008 Spring 8 2 25.0% 0 0.0% 4 50.0% 4 50.0% 
2008 Fall 21 3 14.3% 1 4.8% 11 52.4% 11 52.4% 
2009 Spring 11 1 9.1% 1 9.1% 2 18.2% 3 27.3% 
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Table 6.1B continued 
   Plasmodium Haemoproteus Leucocytozoon Total 

Year Seas. 
Num. 
Scr. 

Num. Pos. Prev. Num. Pos. Prev. Num. Pos. Prev. Num. Pos. Prev. 

2009 Fall 28 3 10.7% 3 10.7% 16 57.1% 20 71.4% 
2010 Spring 5 1 20.0% 0 0.0% 2 40.0% 2 40.0% 
2010 Fall 34 9 26.5% 4 11.8% 12 35.3% 21 61.8% 
2011 Spring 12 0 0.0% 0 0.0% 5 41.7% 5 41.7% 
2011 Fall 34 4 11.8% 1 2.9% 9 26.5% 14 41.2% 
2012 Spring 5 0 0.0% 2 40.0% 3 60.0% 4 80.0% 
2012 Fall 71 15 21.1% 5 7.0% 28 39.4% 40 56.3% 
2013 Spring 3 0 0.0% 0 0.0% 0 0.0% 0 0.0% 
2013 Fall 32 8 25.0% 2 6.3% 8 25.0% 14 43.8% 
2014 Spring 4 0 0.0% 0 0.0% 1 25.0% 1 25.0% 
2014 Fall 42 3 7.1% 3 7.1% 12 28.6% 17 40.5% 
2015 Spring 3 0 0.0% 0 0.0% 1 33.3% 1 33.3% 
2015 Fall 18 3 16.7% 1 5.6% 4 22.2% 8 44.4% 
2016 Spring 2 1 50.0% 0 0.0% 2 100.0% 2 100.0% 
2016 Fall 24 5 20.8% 3 12.5% 9 37.5% 15 62.5% 
2017 Spring 10 2 20.0% 1 10.0% 4 40.0% 6 60.0% 
2017 Fall 17 3 17.6% 0 0.0% 4 23.5% 7 41.2% 
2018 Spring 17 1 5.9% 1 5.9% 5 29.4% 7 41.2% 
2018 Fall 35 7 20.0% 1 2.9% 13 37.1% 18 51.4% 
2019 Spring 9 2 22.2% 0 0.0% 4 44.4% 5 55.6% 
2019 Fall 32 5 15.6% 3 9.4% 20 62.5% 21 65.6% 
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Table 6.1C Prevalence of pathogens per time period in all Hermit thrush. 
Table 6.1C continued 

   Plasmodium Haemoproteus Leucocytozoon Total 

Year Seas. 
Num. 
Scr. 

Num. Pos. Prev. Num. Pos. Prev. Num. Pos. Prev. Num. Pos. Prev. 

1996 Spring 4 2 50.0% 0 0.0% 1 25.0% 3 75.0% 
1996 Fall 30 5 16.7% 1 3.3% 2 6.7% 7 23.3% 
1997 Spring 0 0 0.0% 0 0.0% 0 0.0% 0 0.0% 
1997 Fall 8 2 25.0% 0 0.0% 0 0.0% 2 25.0% 
1998 Spring 3 1 33.3% 0 0.0% 1 33.3% 2 66.7% 
1998 Fall 5 2 40.0% 0 0.0% 0 0.0% 2 40.0% 
1999 Spring 4 2 50.0% 0 0.0% 1 25.0% 3 75.0% 
1999 Fall 7 5 71.4% 0 0.0% 3 42.9% 6 85.7% 
2000 Spring 7 0 0.0% 0 0.0% 4 57.1% 4 57.1% 
2000 Fall 45 14 31.1% 0 0.0% 6 13.3% 18 40.0% 
2001 Spring 18 8 44.4% 2 11.1% 2 11.1% 11 61.1% 
2001 Fall 35 18 51.4% 2 5.7% 3 8.6% 19 54.3% 
2002 Spring 14 2 14.3% 0 0.0% 3 21.4% 4 28.6% 
2002 Fall 46 12 26.1% 4 8.7% 2 4.3% 17 37.0% 
2003 Spring 7 2 28.6% 0 0.0% 1 14.3% 3 42.9% 
2003 Fall 31 12 38.7% 7 22.6% 5 16.1% 19 61.3% 
2004 Spring 11 4 36.4% 1 9.1% 1 9.1% 5 45.5% 
2004 Fall 31 7 22.6% 2 6.5% 2 6.5% 11 35.5% 
2005 Spring 6 3 50.0% 0 0.0% 1 16.7% 4 66.7% 
2005 Fall 54 22 40.7% 3 5.6% 4 7.4% 26 48.1% 
2006 Spring 26 5 19.2% 3 11.5% 4 15.4% 10 38.5% 
2006 Fall 82 35 42.7% 7 8.5% 9 11.0% 45 54.9% 
2007 Spring 26 13 50.0% 0 0.0% 6 23.1% 17 65.4% 
2007 Fall 194 69 35.6% 12 6.2% 30 15.5% 102 52.6% 
2008 Spring 49 11 22.4% 1 2.0% 12 24.5% 23 46.9% 
2008 Fall 44 12 27.3% 7 15.9% 7 15.9% 21 47.7% 
2009 Spring 6 2 33.3% 0 0.0% 2 33.3% 4 66.7% 
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Table 6.1C continued 
   Plasmodium Haemoproteus Leucocytozoon Total 

Year Seas. 
Num. 
Scr. 

Num. Pos. Prev. Num. Pos. Prev. Num. Pos. Prev. Num. Pos. Prev. 

2009 Fall 15 5 33.3% 0 0.0% 4 26.7% 7 46.7% 
2010 Spring 4 2 50.0% 0 0.0% 0 0.0% 2 50.0% 
2010 Fall 3 2 66.7% 1 33.3% 1 33.3% 3 100.0% 
2011 Spring 15 2 13.3% 1 6.7% 7 46.7% 7 46.7% 
2011 Fall 93 49 52.7% 1 1.1% 9 9.7% 53 57.0% 
2012 Spring 11 5 45.5% 2 18.2% 2 18.2% 7 63.6% 
2012 Fall 113 36 31.9% 6 5.3%% 19 16.8%% 50 44.2%% 
2013 Spring 27 8 29.6% 1 3.7% 5 18.5% 12 44.4% 
2013 Fall 94 28 29.8% 4 4.3% 20 21.3% 45 47.9% 
2014 Spring 50 22 44.0% 0 0.0% 17 34.0% 29 58.0% 
2014 Fall 58 23 39.7% 3 5.2% 8 13.8% 32 55.2% 
2015 Spring 5 3 60.0% 0 0.0% 3 60.0% 3 60.0% 
2015 Fall 87 34 39.1% 1 1.1% 23 26.4% 45 51.7% 
2016 Spring 12 6 50.0% 1 8.3% 7 58.3% 8 66.7% 
2016 Fall 55 25 45.5% 2 3.6% 10 18.2% 30 54.5% 
2017 Spring 17 5 29.4% 2 11.8% 5 29.4% 9 52.9% 
2017 Fall 64 23 35.9% 1 1.6% 7 10.9% 28 43.8% 
2018 Spring 21 7 33.3% 0 0.0% 6 28.6% 12 57.1% 
2018 Fall 76 29 38.2% 1 1.3% 2 2.6% 32 42.1% 
2019 Spring 44 12 27.3% 3 6.8% 8 18.2% 21 47.7% 
2019 Fall 121 29 24.0% 1 0.8% 20 16.5% 43 35.5% 
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Table 6.1D Prevalence of pathogens per time period in all Swainson’s thrush. 
Table 6.1D continued 

   Plasmodium Haemoproteus Leucocytozoon Total 

Year Seas. 
Num. 
Scr. 

Num. 
Pos. 

Prev. 
Num. 
Pos. 

Prev. 
Num. 
Pos. 

Prev. 
Num. 
Pos. 

Prev. 

1996 Spring 4 0 0.0% 2 50.0% 2 50.0% 3 75.0% 
1996 Fall 6 1 16.7% 0 0.0% 2 33.3% 3 50.0% 
1997 Spring 3 1 33.3% 0 0.0% 1 33.3% 1 33.3% 
1997 Fall 6 3 50.0% 0 0.0% 2 33.3% 4 66.7% 
1998 Spring 5 1 20.0% 4 80.0% 1 20.0% 5 100.0% 
1998 Fall 8 0 0.0% 2 25.0% 1 12.5% 2 25.0% 
1999 Spring 7 2 28.6% 2 28.6% 1 14.3% 4 57.1% 
1999 Fall 11 3 27.3% 1 9.1% 3 27.3% 6 54.5% 
2000 Spring 7 2 28.6% 2 28.6% 2 28.6% 5 71.4% 
2000 Fall 24 4 16.7% 1 4.2% 4 16.7% 7 29.2% 
2001 Spring 2 1 50.0% 1 50.0% 0 0.0% 1 50.0% 
2001 Fall 11 2 18.2% 1 9.1% 3 27.3% 5 45.5% 
2002 Spring 4 0 0.0% 2 50.0% 0 0.0% 2 50.0% 
2002 Fall 13 2 15.4% 3 23.1% 4 30.8% 7 53.8% 
2003 Spring 3 0 0.0% 2 66.7% 1 33.3% 2 66.7% 
2003 Fall 18 5 27.8% 1 5.6% 10 55.6% 11 61.1% 
2004 Spring 13 1 7.7% 5 38.5% 1 7.7% 7 53.8% 
2004 Fall 29 4 13.8% 4 13.8% 10 34.5% 16 55.2% 
2005 Spring 13 1 7.7% 4 30.8% 2 15.4% 7 53.8% 
2005 Fall 67 19 28.4% 9 13.4% 23 34.3% 44 65.7% 
2006 Spring 6 1 16.7% 4 66.7% 1 16.7% 5 83.3% 
2006 Fall 85 26 30.6% 10 11.8% 36 42.4% 61 71.8% 
2007 Spring 18 3 16.7% 9 50.0% 6 33.3% 13 72.2% 
2007 Fall 61 25 41.0% 6 9.8% 16 26.2% 37 60.7% 
2008 Spring 11 3 27.3% 3 27.3% 3 27.3% 7 63.6% 
2008 Fall 80 23 28.8% 3 3.8% 32 40.0% 51 63.8% 
2009 Spring 19 3 15.8% 7 36.8% 7 36.8% 14 73.7% 
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Table 6.1D continued 
   Plasmodium Haemoproteus Leucocytozoon Total 

Year Seas. 
Num. 
Scr. 

Num. 
Pos. 

Prev. 
Num. 
Pos. 

Prev. 
Num. 
Pos. 

Prev. 
Num. 
Pos. 

Prev. 

2009 Fall 96 22 22.9% 5 5.2% 46 47.9% 60 62.5% 
2010 Spring 3 0 0.0% 0 0.0% 0 0.0% 0 0.0% 
2010 Fall 5 0 0.0% 1 20.0% 3 60.0% 3 60.0% 
2011 Spring 14 4 28.6% 2 14.3% 7 50.0% 10 71.4% 
2011 Fall 118 36 30.5% 5 4.2% 56 47.5% 82 69.5% 
2012 Spring 5 2 40.0% 1 20.0% 4 80.0% 4 80.0% 
2012 Fall 154 40 26.0% 11 7.1% 61 39.6% 92 59.7% 
2013 Spring 10 1 10.0% 6 60.0% 4 40.0% 8 80.0% 
2013 Fall 69 19 27.5% 5 7.2% 27 39.1% 43 62.3% 
2014 Spring 11 1 9.1% 0 0.0% 2 18.2% 3 27.3% 
2014 Fall 80 26 32.5% 7 8.8% 30 37.5% 50 62.5% 
2015 Spring 1 0 0.0% 1 100.0% 1 100.0% 1 100.0% 
2015 Fall 18 5 27.8% 0 0.0% 6 33.3% 10 55.6% 
2016 Spring 11 5 45.5% 3 27.3% 5 45.5% 9 81.8% 
2016 Fall 62 13 21.0% 6 9.7% 24 38.7% 36 58.1% 
2017 Spring 14 2 14.3% 3 21.4% 4 28.6% 9 64.3% 
2017 Fall 66 22 33.3% 3 4.5% 30 45.5% 43 65.2% 
2018 Spring 33 2 6.1% 7 21.2% 9 27.3% 13 39.4% 
2018 Fall 91 22 24.2% 9 9.9% 24 26.4% 48 52.7% 
2019 Spring 55 10 18.2% 8 14.5% 17 30.9% 29 52.7% 
2019 Fall 140 18 12.9% 4 2.9% 72 51.4% 78 55.7% 
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Table 6.1E Prevalence of pathogens per time period in all Veery. 
Table 6.1E continued 

   Plasmodium Haemoproteus Leucocytozoon Total 

Year Seas. 
Num. 
Scr. 

Num. 
Pos. 

Prev. 
Num. 
Pos. 

Prev. 
Num. 
Pos. 

Prev. 
Num. 
Pos. 

Prev. 

1996 Spring 28 4 14.3% 1 3.6% 3 10.7% 8 28.6% 
1996 Fall 3 0 0.0% 0 0.0% 0 0.0% 0 0.0% 
1997 Spring 7 2 28.6% 0 0.0% 0 0.0% 2 28.6% 
1997 Fall 0 0 0.0% 0 0.0% 0 0.0% 0 0.0% 
1998 Spring 2 0 0.0% 0 0.0% 0 0.0% 0 0.0% 
1998 Fall 4 1 25.0% 0 0.0% 0 0.0% 1 25.0% 
1999 Spring 12 1 8.3% 0 0.0% 2 16.7% 2 16.7% 
1999 Fall 0 0 0.0% 0 0.0% 0 0.0% 0 0.0% 
2000 Spring 1 0 0.0% 0 0.0% 0 0.0% 0 0.0% 
2000 Fall 4 1 25.0% 0 0.0% 0 0.0% 1 25.0% 
2001 Spring 4 1 25.0% 1 25.0% 0 0.0% 2 50.0% 
2001 Fall 1 0 0.0% 0 0.0% 0 0.0% 0 0.0% 
2002 Spring 16 1 6.3% 2 12.5% 5 31.3% 6 37.5% 
2002 Fall 2 2 100.0% 0 0.0% 0 0.0% 2 100.0% 
2003 Spring 4 1 25.0% 0 0.0% 1 25.0% 1 25.0% 
2003 Fall 2 1 50.0% 1 50.0% 0 0.0% 2 100.0% 
2004 Spring 8 1 12.5% 0 0.0% 0 0.0% 1 12.5% 
2004 Fall 4 1 25.0% 2 50.0% 0 0.0% 3 75.0% 
2005 Spring 5 1 20.0% 0 0.0% 2 40.0% 2 40.0% 
2005 Fall 3 0 0.0% 0 0.0% 1 33.3% 1 33.3% 
2006 Spring 8 0 0.0% 1 12.5% 2 25.0% 3 37.5% 
2006 Fall 10 2 20.0% 0 0.0% 0 0.0% 2 20.0% 
2007 Spring 10 1 10.0% 0 0.0% 2 20.0% 2 20.0% 
2007 Fall 6 3 50.0% 1 16.7% 1 16.7% 4 66.7% 
2008 Spring 13 2 15.4% 2 15.4% 2 15.4% 5 38.5% 
2008 Fall 14 4 28.6% 1 7.1% 5 35.7% 10 71.4% 
2009 Spring 17 0 0.0% 3 17.6% 6 35.3% 8 47.1% 
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Table 6.1E continued 
   Plasmodium Haemoproteus Leucocytozoon Total 

Year Seas. 
Num. 
Scr. 

Num. 
Pos. 

Prev. 
Num. 
Pos. 

Prev. 
Num. 
Pos. 

Prev. 
Num. 
Pos. 

Prev. 

2009 Fall 9 0 0.0% 1 11.1% 2 22.2% 3 33.3% 
2010 Spring 8 0 0.0% 0 0.0% 2 25.0% 2 25.0% 
2010 Fall 18 5 27.8% 2 11.1% 3 16.7% 7 38.9% 
2011 Spring 4 1 25.0% 1 25.0% 2 50.0% 2 50.0% 
2011 Fall 19 8 42.1% 0 0.0% 3 15.8% 10 52.6% 
2012 Spring 4 1 25.0% 0 0.0% 0 0.0% 1 25.0% 
2012 Fall 8 1 12.5% 0 0.0% 1 12.5% 2 25.0% 
2013 Spring 3 0 0.0% 1 33.3% 0 0.0% 1 33.3% 
2013 Fall 10 1 10.0% 1 10.0% 2 20.0% 3 30.0% 
2014 Spring 9 2 22.2% 1 11.1% 3 33.3% 4 44.4% 
2014 Fall 12 6 50.0% 1 8.3% 2 16.7% 8 66.7% 
2015 Spring 5 0 0.0% 0 0.0% 1 20.0% 1 20.0% 
2015 Fall 3 0 0.0% 0 0.0% 0 0.0% 0 0.0% 
2016 Spring 6 0 0.0% 1 16.7% 2 33.3% 2 33.3% 
2016 Fall 2 0 0.0% 0 0.0% 1 50.0% 1 50.0% 
2017 Spring 13 1 7.7% 3 23.1% 4 30.8% 7 53.8% 
2017 Fall 2 0 0.0% 0 0.0% 2 100.0% 2 100.0% 
2018 Spring 10 0 0.0% 0 0.0% 0 0.0% 0 0.0% 
2018 Fall 13 2 15.4% 0 0.0% 1 7.7% 3 23.1% 
2019 Spring 19 1 5.3% 0 0.0% 1 5.3% 2 10.5% 
2019 Fall 15 0 0.0% 3 20.0% 5 33.3% 7 46.7% 
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Table 6.2 Summary of posterior distributions for parameter values of the hierarchical statistical model including mean, 80% and 95% 
credible intervals (CIs), and standard deviation. Parameter values include  
�� (Table 6.2A),  	  (Table 6.2B),   (Table 6.2C),  	���  

 (Table 6.2D), ��� (Table 6.2E), and � (Table 6.2F). 
 

Table 6.2A  
�� 
 

Pathogen Host Mean 80% CI 95% CI 
SE of the 

mean 

Haemoproteus All Hosts -2.35 (-2.481, -2.217) (-2.557, -2.131) 0.015 
 Grey-Cheeked -2.92 (-3.255, -2.607) (-3.485, -2.464) 0.005 
 Hermit -3.29 (-3.562, -3.037) (-3.743, -2.921) 0.003 
 Swainson's -1.66 (-1.802, -1.516) (-1.882, -1.44) 0.002 
 Veery -2.66 (-3.009, -2.326) (-3.283, -2.153) 0.008 

Leucocytozoon All Hosts -1.12 (-1.204, -1.027) (-1.253, -0.979) 0.001 
 Grey-Cheeked -0.61 (-0.759, -0.473) (-0.856, -0.385) 0.004 
 Hermit -1.52 (-1.644, -1.393) (-1.717, -1.324) 0.002 
 Swainson's -0.71 (-0.835, -0.588) (-0.912, -0.527) 0.002 
 Veery -1.60 (-1.83, -1.386) (-1.929, -1.272) 0.024 

Plasmodium All Hosts -1.12 (-1.209, -1.044) (-1.26, -0.998) 0.004 

 Grey-Cheeked -1.81 (-2.026, -1.613) (-2.123, -1.518) 0.008 

 Hermit -0.66 (-0.764, -0.557) (-0.826, -0.499) 0.003 

 Swainson's -1.36 (-1.493, -1.225) (-1.568, -1.155) 0.002 

  Veery -1.82 (-2.072, -1.59) (-2.239, -1.474) 0.006 
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Table 6.2B  	 
 

Pathogen Host Mean 80% CI 95% CI 
SE of the 

mean 

Haemoproteus All Hosts 0.33 (0.146, 0.5) (0.044, 0.591) 0.002 
 Grey-Cheeked 0.27 (0.042, 0.567) (0.01, 0.762) 0.005 
 Hermit 0.48 (0.119, 0.834) (0.03, 1.023) 0.004 
 Swainson's 0.37 (0.113, 0.608) (0.032, 0.731) 0.004 
 Veery 0.39 (0.062, 0.782) (0.015, 1.116) 0.013 

Leucocytozoon All Hosts 0.40 (0.256, 0.533) (0.167, 0.606) 0.002 
 Grey-Cheeked 0.50 (0.054, 1.406) (0.015, 1.49) 0.318 
 Hermit 0.34 (0.14, 0.535) (0.045, 0.637) 0.003 
 Swainson's 0.24 (0.054, 0.447) (0.013, 0.565) 0.003 
 Veery 0.40 (0.067, 0.818) (0.017, 1.017) 0.059 

Plasmodium All Hosts 0.14 (0.027, 0.27) (0.006, 0.327) 0.007 
 Grey-Cheeked 0.20 (0.032, 0.414) (0.008, 0.559) 0.010 
 Hermit 0.13 (0.023, 0.253) (0.006, 0.339) 0.005 
 Swainson's 0.21 (0.048, 0.367) (0.012, 0.462) 0.002 
 Veery 0.51 (0.106, 0.93) (0.027, 1.156) 0.061 
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Table 6.2C  

 

Pathogen Host Mean 80% CI 95% CI 
SE of the 

mean 

Haemoproteus All Hosts 0.49 (0.375, 0.634) (0.256, 0.799) 0.004 
 Grey-Cheeked 0.54 (0.148, 0.881) (0.036, 0.966) 0.004 
 Hermit 0.56 (0.372, 0.783) (0.108, 0.928) 0.003 
 Swainson's 0.42 (0.233, 0.674) (0.037, 0.91) 0.014 
 Veery 0.54 (0.133, 0.881) (0.031, 0.966) 0.008 

Leucocytozoon All Hosts 0.75 (0.69, 0.809) (0.655, 0.859) 0.002 
 Grey-Cheeked 0.53 (0.214, 0.845) (0.05, 0.951) 0.018 
 Hermit 0.69 (0.098, 0.942) (0.018, 0.983) 0.012 
 Swainson's 0.69 (0.211, 0.906) (0.034, 0.967) 0.009 
 Veery 0.57 (0.227, 0.849) (0.065, 0.945) 0.021 

Plasmodium All Hosts 0.52 (0.164, 0.88) (0.014, 0.95) 0.022 
 Grey-Cheeked 0.49 (0.118, 0.92) (0.028, 0.981) 0.016 
 Hermit 0.54 (0.126, 0.897) (0.029, 0.975) 0.009 
 Swainson's 0.59 (0.152, 0.895) (0.03, 0.969) 0.007 
 Veery 0.50 (0.138, 0.871) (0.043, 0.962) 0.013 
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Table 6.2D  	��� 
 

Pathogen Host Mean 80% CI 95% CI 
SE of the 

mean 

Haemoproteus All Hosts 0.38 (0.236, 0.542) (0.162, 0.763) 0.026 
 Grey-Cheeked 0.33 (0.071, 0.615) (0.021, 0.807) 0.003 
 Hermit 0.17 (0.027, 0.35) (0.007, 0.484) 0.001 
 Swainson's 0.89 (0.705, 1.013) (0.622, 1.232) 0.032 
 Veery 0.20 (0.033, 0.412) (0.007, 0.572) 0.003 

Leucocytozoon All Hosts 0.05 (0.006, 0.098) (0.001, 0.14) 0 
 Grey-Cheeked 0.29 (0.016, 0.994) (0.004, 1.028) 0.248 
 Hermit 0.42 (0.291, 0.541) (0.228, 0.643) 0.002 
 Swainson's 0.20 (0.085, 0.317) (0.036, 0.379) 0.002 
 Veery 0.11 (0.019, 0.248) (0.005, 0.35) 0.006 

Plasmodium All Hosts 0.20 (0.12, 0.278) (0.074, 0.326) 0.003 
 Grey-Cheeked 0.17 (0.033, 0.343) (0.008, 0.445) 0.004 
 Hermit 0.09 (0.021, 0.178) (0.004, 0.235) 0.002 
 Swainson's 0.27 (0.142, 0.397) (0.077, 0.473) 0.001 
 Veery 0.51 (0.28, 0.731) (0.162, 0.882) 0.008 
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Table 6.2E  ��� 
 

Pathogen Host Mean 80%CI 95%CI 
SE of the 

mean 

Haemoproteus All Hosts 0.95 (0.765, 1) (0.617, 1) 0.025 
 Grey-Cheeked 0.01 (0, 0) (0, 0) 0.001 
 Hermit 0.03 (0, 0) (0, 1) 0.002 
 Swainson's 0.98 (0.98, 1) (0.761, 1) 0.007 
 Veery 0.05 (0, 0) (0, 1) 0.003 

Leucocytozoon All Hosts 0.12 (0, 0.994) (0, 1) 0.007 
 Grey-Cheeked 0.14 (0, 1) (0, 1) 0.025 
 Hermit 0.98 (0.974, 1) (0.753, 1) 0.002 
 Swainson's 0.00 (0, 0) (0, 0) 0.000 
 Veery 0.13 (0, 1) (0, 1) 0.050 

Plasmodium All Hosts 0.00 (0, 0) (0, 0) 0 
 Grey-Cheeked 0.02 (0, 0) (0, 0.001) 0.001 
 Hermit 0.02 (0, 0) (0, 0.01) 0.002 
 Swainson's 0.00 (0, 0) (0, 0) 0.001 
 Veery 0.00 (0, 0) (0, 0) 0.003 
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Table 6.2F  � 
 

Pathogen Host Mean 
Length of cycle 

in years 
80%CI 95%CI 

SE of 

the 

mean 

Haemoproteus All Hosts 39.01 19.51 (29.997, 46.525) (10.707, 47.625) 0.64 
 Grey-Cheeked 23.90 11.95 (4.364, 43.887) (2.165, 46.984) 0.28 
 Hermit 35.07 17.53 (13.445, 46.331) (4.17, 47.588) 0.39 
 Swainson's 37.39 18.69 (17.601, 47.28) (7.283, 47.821) 0.88 
 Veery 22.16 11.08 (4.28, 42.845) (1.8, 46.817) 0.48 

Leucocytozoon All Hosts 45.08 22.54 (42.07, 47.669) (38.295, 47.92) 0.21 
 Grey-Cheeked 17.82 8.91 (1.991, 38.419) (1.985, 45.316) 5.87 
 Hermit 37.60 18.80 (24.17, 46.413) (9.369, 47.6) 0.41 
 Swainson's 36.10 18.05 (15.678, 46.935) (5.797, 47.733) 0.49 
 Veery 20.38 10.19 (5.738, 44.172) (3.548, 46.978) 1.33 

Plasmodium All Hosts 20.47 10.23 (6.515, 37.824) (3.805, 45.658) 0.95 
 Grey-Cheeked 23.18 11.59 (4.464, 42.853) (1.898, 46.666) 0.70 
 Hermit 22.14 11.07 (4.342, 42.547) (2.218, 46.679) 0.70 
 Swainson's 29.59 14.80 (9.7, 45.296) (3.265, 47.32) 0.53 
 Veery 16.32 8.16 (6.447, 36.805) (3.675, 45.405) 1.38 
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