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ABSTRACT

This dissertation develops an algorithmic approach to linguistics through the study of topics

in unsupervised learning of linguistic structure related to morphological paradigms. This

work emphasizes reproducibility, accessibility, and extensibility in linguistic research.

The first major chapter studies stem extraction, focusing on analyzing morphological

paradigms one at a time. Given a morphological paradigm, what is the stem, and how can

we tell algorithmically? While it might appear trivial to extract “jump” from the English

verbal paradigm jump-jumps-jumped-jumping, any non-concatenative morphology in any

language presents an immediate challenge to an algorithm based on a substring approach

to stem extraction. From the perspective of minimizing description length, the stem is best

modeled as the longest common subsequence across word forms in a given morphological

paradigm.

The next chapter explores paradigm similarity, considering multiple morphological par-

adigms at a time. The linguistic phenomenon of interest is inflection classes. Cross-

linguistically, inflection classes tend to exhibit partial similarity. For instance, while Spanish

verbs are customarily categorized as -ar, -er, and -ir verbs, the -er and -ir verbs are conju-

gationally more similar to each other than either to the -ar verbs. This chapter develops a

hierarchical clustering algorithm that characterizes such partial similarity across morpholog-

ical paradigms in a tree structure.

The final major chapter explores how tables of morphological paradigms can be learned

from raw data, such as an unannotated text corpus. The point of departure is Linguistica

(Goldsmith 2001). While Linguistica induces morphological paradigms from a raw text by

learning recurring morphological patterns called signatures, the relationship between signa-

tures is unknown, which means signatures that differ by inflection classes are not connected.

This chapter aligns the signatures from Linguistica by leveraging syntagmatic information

available in a raw text corpus to induce what is akin to word category knowledge.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Words in a language are related to one another in many ways. This dissertation is interested

in one particular kind of relationships among words: morphological paradigms. Familiar

examples include the English verbal paradigm for jump which has the four surface word

forms of jump-jumps-jumped-jumping.1 The focus of this dissertation is the surface word

forms, which give rise to structure within and across morphological paradigms. This means

that in general, our discussion of morphological paradigms abstracts away from language-

specific morphosyntax and semantics. As will be clear below, this is necessarily the case when

we are interested in unsupervised learning of linguistic structure, with the use of unlabeled

and unstructured datasets.

While this dissertation is on natural language morphology and morphological paradigms,

a central theme that ties all topics studied is how humans learn language. Linguists have

long been interested in the problem of language acquisition. A primary goal of linguistics is

to understand the grammar of the world’s languages. Knowing how humans learn language

is tantamount to understanding how grammar comes into being and why it is the way

it is – precisely the goal of linguistics just mentioned. This dissertation falls within this

general research area of language acquisition, and focuses on the learning of natural language

morphology from a computational perspective.

In this introductory chapter, I contextualize the topics on morphological paradigms to be

studied and discuss some foundational issues with regard to the kind of linguistic research

for which this dissertation argues. First, in section 1.2, I introduce the topics studied in

this dissertation and their connection. Then, I provide some background on morphological

1. By convention in the linguistic literature, words typeset in small capitals (e.g., jump) represent lexemes,
i.e., as a shorthand to refer to a particular morphological paradigm.
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paradigms in section 1.3. Finally, I discuss the significance of doing linguistic research

in a computationally rigorous manner in comparison to traditional theoretical linguistics

(section 1.4), and justify the importance of computational linguistics in terms of reproducible,

accessible, and extensible research (section 1.5).

While this dissertation is dated 2022, much of the work reported was accomplished by

late 2016.

1.2 Synopsis

This dissertation studies three topics with regard to morphological paradigms: (i) structure

within a morphological paradigm, (ii) structure across morphological paradigms, and (iii)

induction of morphological paradigms from unstructured data. The first two parts explore

the questions we can ask when a list of morphological paradigms are given. The third part

is a twist, and asks where morphological paradigms come from in the first place.

1.2.1 Stem identification: Structure within a morphological paradigm

To represent the morphophonological relationship between a regular English singular and its

corresponding plural, let us suppose there is templatic knowledge of some form which might

look like the following:

(1) /X/ singular ∼ /Xz/ plural

(1) states the phonological relationship between regular singular-plural pairs in English:

the two forms in a pair differ phonologically in that the plural form has an additional /z/ at

the right edge (and the actual phonetic realization of /z/ for plurals follows its allomorphic

distribution for [s, z, @z]).

Where does knowledge like (1) come from? It is reasonable to conjecture that a pattern

of this form must have come from numerous singular-plural pairs:

2



(2) Some regular singular-plural pairs in English:

singular plural

table tables

chair chairs

book books

church churches

...
...

It is the pairs like those in (2) which give rise to generalized knowledge like (1) that

enables one to think that for instance, ‘wugs’ is the plural form of the singular, nonce word

‘wug’. How can knowledge akin to (1) be extracted?

In (1), ‘X’ represents the shared phonological material in the singular-plural pair. The

ability to identify what this shared material is appears to be essential, although it might seem

rather trivial for English singular-plural pairs where the crucial difference is the right-edge

/z/ for plurality. When we think of English singular-plural pairs as morphological paradigms

and broaden our consideration to other paradigms in and beyond English, such identification

of the shared material in a given morphological paradigm is demonstrably more complex in

formal terms and warrants much more thorough and comprehensive characterization. The

common material in a paradigm, represented as ‘X’ so far, is what linguists call the stem of the

morphological paradigm. Although identifying the stem for languages like English appears

straightforward, many other languages display much more complex types of word structure.

In Arabic, for example, the morphological paradigms for words related to writing has the

stem “k-t-b” with non-continuous material, e.g., kataba ‘he wrote’, yaktubu ‘he writes/will

write’.

At first glance, languages like English look intuitively quite different from those like

Arabic. They demonstrate the common distinction of concatenative and non-concatenative

morphology, respectively. Researchers in both theoretical linguistics and computational lin-
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guistics use drastically different terms and models to characterize these two types of mor-

phology. If the goal of linguistics is to understand language as a whole, then there are no

aprioristic reasons to assume that fundamental learning strategies—and their modeling—of

stem identification should be different depending on the specific languages. The first part of

my dissertation (chapter 2) focuses on the problem of stem identification, devising general

and language-independent strategies for identifying stems and addressing long standing is-

sues ranging across the nature of morphemes, linearity, and the diverse morphological types

across the world’s languages.

1.2.2 Paradigm similarity: Structure across morphological paradigms

In a morphological paradigm, if the stem is the shared material across all word forms, then

what they do not share is the affixal material. Labels such as singular and plural are

morphosyntactic values of some given morphosyntactic feature (number, in this example

with singular and plural). As far as the English plural is concerned, there is general

agreement that /-z/ is the default exponence for plural; this is what is observed for the

non-existent ‘wug’ as discussed. However, it is by no means the only morphological expo-

nence of plural in English. Other possible plural suffixes are the non-default cases, e.g.,

goose∼geese, octopus∼octopi, ox∼oxen. Although they are for the most part tied to lexi-

cally specific nouns, it is arguably possible that non-default plural morphology is productive;

Bauer (2001, 3) provides examples of invented English nouns which might be subject to non-

default plural morphology: brox∼broxen, ceratopus∼ceratopi. If we go beyond nouns, there

is strong evidence that non-default morphology is extensible to non-existent words. Albright

and Hayes (2002, 2003) propose a computational model which predicts English past tense

forms and whose results correlate with laboratory-based behavioral data. For instance, they

predict that there is non-trivial probability that the non-existent English verb spling has

splung as the past tense form, and they show that experimental subjects did rate splung as
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a plausible candidate. What do Bauer’s point on English plurals and Albright and Hayes’s

empirical results on English past tense tell us? What appears to be non-default, unproduc-

tive morphology is far from being stagnant. On the contrary, knowledge of such morphology

is constantly being called upon in a non-random way. This has much to do with structure

across morphological paradigms, in connection to topics ranging across inflection classes and

allomorphy.

On structure across morphological paradigms, the traditional descriptions and analyses

of patterns across morphological paradigms deserve some remarks at this point. Focusing on

inflection classes, we take Spanish verbs as examples. Spanish verbs are described in terms of

three distinct inflection classes, namely the -AR, -ER, and -IR verbs. The verb hablar ‘to

speak’ is an -AR verb and has word forms such as hablo-habla-hablamos (I speak; you speak;

we speak), with the suffixes underlined. Other verbs take different patterns, e.g., the -ER

verb comer ‘to eat’ with como-come-comemos and the -IR verb vivir ‘to live’ with vivo-

vive-vivimos. These three Spanish verbs—hablar, comer, vivir—illustrate the kind of

similarities and differences across morphological paradigms that this part of my dissertation

models. Hablo, como and vivo share the -o suffix, which makes the three verbs alike. However,

Hablamos, comemos and vivimos all have distinct suffixes. Crucially, comes and vives share

the -es suffix to the exclusion of hablas with -as. This Spanish verbs show that inflection

classes are partially similar to one another with partial overlapping patterns. Traditional

descriptions and analyses of inflection classes focus only on the overall differences which the

grammatical endings display, but ignore this type of partial similarities among them; see

also Costanzo (2011) on similar observations. This part of my dissertation develops the

notion of paradigm similarity, and fills the gap in the current literature for the fine-grained

modeling of structure across morphological paradigms, encompassing both their similarities

and differences.
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1.2.3 Paradigm induction and alignment: Learning paradigms from raw

data

So far, the discussion assumes the availability of some full paradigms as the source of training

data (for the template of English singular-plural morphology as in (1), for example). From

the perspective of machine learning, if one attempts to predict that ‘wugs’ is the plural of

‘wug’ on the basis of a list of English singular-plural pairs, then this is supervised learning:

the list of singular-plural pairs are the training data which trains a learning algorithm capable

of predicting ‘wugs’ given ‘wug’. For English past tense forms, this is exactly what Albright

and Hayes do; their model is trained by a list of pairs of English bare verbs and their past

tense forms, which in turn predicts ‘splung’ to be one of the likely past tense forms for the

non-existent verb ‘spling’. Now, the big question here is: where does a full paradigm table

come from?

By a “full paradigm table”, I refer to a table of morphological paradigms where each

row contains word forms from the same lexeme and each column contains word forms from

the same morphosyntactic category. The table in (2) for English singular-plural nouns is

an example. It is clear to us—and to toddlers acquiring their first language—that full

paradigm tables are not readily available for free. They must come from the tremendous

amount of accumulated linguistic experience, to the point where it is possible for a competent

speaker to sit down and construct a full paradigm table seemingly without much effort. This

dissertation sets out to ask a challenging question: is it possible to induce paradigm tables

from unstructured data, such as a text corpus? This is an unsupervised learning task, in

the sense that the problem is to induce paradigm tables from raw data only and nothing

else, without reference to any a priori given paradigm tables or individual paradigms. What

makes this task challenging is the well-recognized properties of lexical statistics such as the

Zipfian distribution of words and the pervasive problem of incomplete paradigmatic forms

in a corpus.
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1.3 On morphological paradigms

Morphology is the study of word structure. This dissertation research is concerned with

structure across words related in certain particular ways – words that participate in mor-

phological paradigms (sometimes simply “paradigms” for short). A morphological paradigm

is a set of morphologically related words of the same lexeme; a lexeme is an abstract linguis-

tic unit of words related by meaning. It is often—but not always—the case that a lexeme

consists of words sharing a great deal in terms of their surface forms. A standard example is

the English lexeme jump with word forms of jump, jumped, jumping, jumps, which share the

surface phonological material of “jump”, and the English lexeme be represents an example

where word forms share little among them, with be, is, am, are, was, were, been, being.

Word forms in a morphological paradigm can be either inflectionally or derivationally re-

lated; no strict distinction is drawn in this dissertation (cf. Spencer (2013)). The distinction

of inflection versus derivation is not controversial. Inflectional paradigms can be construed

as a matrix of lexemes as rows and morphosyntactic features as columns, with each cell

occupied by some word form. Derivational paradigms are quite different and appear to be

less consistently structured in terms of the matrix analogy for inflectional paradigms, for

there are issues of world knowledge and productivity, to just name two. In computational

morphology (see Goldsmith et al. 2017), there is a general tendency that many systems

for automatically learning morphology focus on inflectional morphology, although they also

learn derivational morphology, albeit to a much lesser extent. For example, it is entirely pos-

sible that a morphological learner concludes that both -s (inflectional) and -tion (derivation)

are suffixes for a sizeable English dataset. As input datasets are usually void of semantic

representation or world knowledge, this behavior of learning mostly inflectional morphology

and some derivation is expected.

Morphological paradigms are considered central objects of study (Matthews, 1972; Bybee,

1985; Carstairs, 1987), in line with research under the rubric of Word and Paradigm Mor-
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phology (Hockett, 1954; Blevins, 2013). Various paradigm uniformity and analogical effects

(see papers in Downing et al. (2004)) speak for the position that morphological paradigms

must be a legitimate category in the study of morphology that should receive serious atten-

tion from the linguistic research community. This contrasts with approaches to morphology

that treat paradigms as epiphenomenal, e.g., syntax-based frameworks such as Distributed

Morphology.

Languages can be classified in terms of morphological types. The traditional taxonomy—

one that has been developed by and inherited from as far as the von Schlegel brothers in the

early 19th century, and through Wilhelm von Humboldt and August Schleicher to Edward

Sapir’s Language (Sapir, 1921) and contemporary introductory linguistics texts—can be said

to distinguish languages by the correlation among form, meaning, and wordhood. The widely

recognized morphological types are isolating, fusional, agglutinative, and polysynthetic lan-

guages. As hypothetical and extreme types of languages, isolating languages have both

lexical and grammatical morphemes as individual words, whereas polysynthetic languages

are just the opposite, with a large number morphemes in a word that would correspond to

sentences in English-type languages. The focus of this dissertation is morphological para-

digms, particularly those in fusional and agglutinative languages whose morpheme-to-word

ratio is in-between those of isolating and polysynthetic languages. On the one hand, we

would like to work on non-isolating languages where word forms overtly contain both lexi-

cal and grammatical information, and on the other, we are also interested in the syntactic

distribution of word forms and need relatively short words available in non-polysynthetic

languages.

One reason why morphological paradigms are of great interest is their strong flavor of

unseenness tied paradoxically with predictability. The particular kind of morphology under

study in this dissertation research is not just words that are actually heard or written, but

also those that are not. No matter how large a corpus of naturally occurring language is,
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we are certain to find morphological paradigms for which not all possible word forms are

observed in the corpus. While English verb lexemes have maximally five distinct word forms

(take, takes, taking, took, taken for take), a Spanish verb lexeme has over 50 distinct forms

due to combinations of tense (present, past, and future) and mood (indicative, subjunctive,

etc.) – it is hard to imagine a Spanish verb lexeme has all its word forms observed in a

corpus. In other languages such as Basque and Finnish with even more complex morphology,

the number of distinct forms of a single verb lexeme is in the order of hundreds, or even

millions for Archi (Kibrik, 1998). Building on previous work, this dissertation develops a

comprehensive computational system that induces morphological paradigms from a raw text

and predicts unobserved paradigmatic forms.

1.4 Doing linguistic research computationally

Beyond morphological paradigms, this dissertation has the general goal of exploring and

making explicit what a linguistic analysis is about. In the following, I elaborate in section

1.4.1 on the connection between this question and this dissertation, and argue in sections

1.4.2 and 1.4.3 for the computational perspective taken in this dissertation.

1.4.1 The relationship between data and analysis

In linguistics, what does it mean to come up with an analysis for some data? This section

reflects upon this by discussing two seemingly incompatible positions as an answer to it and

providing my view that reconciles the apparent paradox.

The first position for how a linguistic analysis comes into being is the more traditional

approach. In theoretical linguistics, this actually goes by and large unnoticed. Given data,

the job of a linguist is to provide the best analysis that captures the full range of the available

data. This is all too familiar to those who have undertaken graduate-level linguistic training

in the field, in the sense that when you are given a linguistics problem set and asked to analyze
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the data, your job is to come back a while later with an analysis—the best analysis—in your

write-up. Nobody would ask exactly what enables you to know the analysis and what has

happened in you and your brain between the moment you receive the problem set and the

moment you submit the analysis. What goes between the data and analysis is very much

like a black box. This first mode of linguistic research can be represented by this diagram:

(3) Traditional approach to linguistic research

data → linguist → analysis

The second position for doing linguistics can be regarded as ”the algorithmic approach”.

Most importantly, what mediates between the data and analysis is an algorithm or proce-

dure of some sort, entirely external to the human mind and, once established, free from any

human biases. In the mode of doing linguistic analysis, the human analyst still has access to

both data and analysis, but restricts direct access and manipulation to only the algorithm

that takes the data and outputs the analysis. If the analysis is suboptimal (as evaluated

by the analyst), then changes can be made only to the algorithm. At any given point, the

algorithm can be externally and objectively examined. Given its nature of absolute explic-

itness, the algorithmic approach to linguistics is usually practiced by the computationally

oriented researchers who implement algorithms as computer programs. This second mode of

linguistic research can be represented by the following diagram – note how it contrasts with

the previous diagram above:

(4) An algorithmic approach to linguistic research

data → algorithm → analysis

↑

linguist

Prima facie, these two approaches to linguistics appear incompatible. Indeed, as will be

clear, this dissertation shows the value of the algorithmic approach to linguistics, but it does
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not mean that we should ditch the more traditional approach. It is important to recognize

that, after all, the algorithmic approach to linguistics depends on the insights of the human

analyst who develops an algorithm. Such insights do stem from the human intuition. Also,

whether an algorithm is deemed successful relies on some evaluation metric which is devised,

necessarily, based on the human analysts’ judgment as to what it means to be a good algo-

rithm or analysis. My dissertation shows that theoretical linguistics stemming from human

insights and computational linguistics built on rigorous implementation complement each

other, and that neither of them is dispensable for the explicit modeling of the relationship

between data and analysis.

1.4.2 Empiricism, language acquisition, and machine learning

I take a strongly empirical view of language and linguistic research. More specifically, my

view is based on the rather uncontroversial position that the relationship between grammar

and data is one that is partially overlapping:

The term “data” refers to what is objectively and empirically observed in the real world,

i.e., what one actually hears and utters. ”Grammar” refers to what an individual knows

about a particular language. The view of the partial overlapping between grammar and

data is uncontroversial, as depicted here, in the following sense. On the one hand, there is

something which we have never heard or uttered but which we know is part of the language

in question, i.e., in the grammar but not in the data. On the other hand, there is a small

portion of the observed data that can be considered the noise in the data, analogous to

errors, slips of tongue, or anything that goes under the heading of “I heard it before but I’d

never say that” – this is part of the observed data but not in one’s grammar.

Arguably, mainstream linguistic research focuses on what is referred to as “grammar”

above. Linguists are interested in characterizing what is not observed and yet considered part

of grammar. This is reflected by the widespread use of the introspection methodology leading
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to grammaticality judgments (often from by the authors themselves) that advance theoretical

arguments. A related and increasingly popular methodology is to conduct behavioral studies

to obtain data from a much larger pool of subjects who are native-speaker consultants for

more fine-grained grammaticality judgments.

While one of the most intriguing aspects of language is our implicit knowledge of gram-

mar, it is important to recognize that grammar ultimately comes from data. This point

is especially true for morphology – for the wug-type knowledge described in section 1.2

above. This dissertation asks how knowledge of this sort can be acquired from data and

modeled computationally, and therefore argues for a strongly empirical and learning-focused

approached to language and linguistic research. A research program on how grammar results

from data echoes the recent literature on learnability, especially regarding the observation

that most mainstream theoretical linguistic work focuses on characterizing the grammar and

ignores questions of how it comes into being (cf. Clark 2015). In addition, focusing on

language acquisition and learning is also what will ultimately shed light on other challenging

aspects of language, such as variation and change which are intimately connected to learning.

From this perspective, my dissertation research is generally couched within the area of

language acquisition. How do humans acquire language? How do we go from nothing to

something, as it were, from real-world linguistic data to an abstract grammar? The view

that there is an abstract grammar is strongly supported by the wug-related observations and

productivity. This dissertation shows that we gain insights about acquisition by studying

language from the perspective of unsupervised learning.

By unsupervised learning, I refer to the ensemble of computational tools and concepts

from computer science and statistics employed in learning patterns from unlabeled data.

The criterion of using unlabeled data distinguishes unsupervised learning from supervised

learning which, by definition, relies on the availability of training data. All else being equal,

supervised learning strategies lead to better results. In the area of natural language pro-
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cessing for applied and engineering purposes, this is desirable for practical reasons, so long

as training data are available. In contrast, unsupervised learning has its own importance

for different reasons. Particularly relevant in the context of this dissertation is the use of

unsupervised learning techniques as a way to model first language acquisition (Clark and

Lappin, 2010), given that toddlers acquiring their first language have to induce an abstract

grammar based only on the unlabeled linguistic data from the ambient environment. While

using unsupervised learning techniques to model a linguistic property or phenomenon might

lead to poorer accuracy compared to supervised methods, unsupervised learning comes closer

to the real-world linguistic scenario, where there is no gold standard neatly prepared (i.e.,

training data with labeled answers).

For language acquisition, the relevance of unsupervised learning for morphological para-

digms is clear from the discussion above on the wug problem with a raw text as the starting

point. In authentic conversations and texts, there is never a full paradigm table available

in front of a child acquiring their native language. Compounding the apparent difficulty

of learning morphological paradigms are the problems of insufficient positive evidence and

lack of negative evidence: a child does not typically encounter all word forms of all possible

paradigms, and they are usually not explicitly corrected when they make an error. Such

apparent empirical challenges in language acquisition are part of the Poverty of the Stimulus

argument (Chomsky, 1965) for the nativist view about language. The dual problem of no

negative evidence and insufficient positive evidence in naturally occurring linguistic data will

have to be overcome in unsupervised approaches of language acquisition.

1.4.3 Grammar evaluation and algorithms

Criss-crossing this dissertation is the question of what it means for an analysis to be the best

for some given linguistic data. Linguists seem to share the intuition—be it vague or not—for

what makes an analysis good or bad, including such factors as how complex the formalism
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is and how much data the analysis can capture; see Halle (1962) on measuring grammar

complexity in terms of counting symbols and Bochner (1992) specifically on morphology.

This dissertation pursues the view that much as we have to be explicit about what it means

for an analysis to be the best, it is no less important that we are explicit about how we

advance an analysis. The “what” question is discussed in terms of the trade-off between

grammar complexity and data compression, whereas the answer to the “how” question relies

on the use of computationally implementable algorithms; both parts are closely connected.

On the goal of linguistic theory, Chomsky (1957, ch.6) discusses several possibilities and

argues for this particular one:

“[G]iven a corpus and given two proposed grammars G1 and G2, the theory

must tell us which is the better grammar of the language from which the corpus

is drawn. In this case we might say that the theory provides an evaluation

procedure for grammars.” (Chomsky, 1957, 51; original emphasis)

This is graphically represented on the same page as follows:

(5) Chomsky (1957, 51) on the evaluation procedure of grammars

G1

G2

Corpus

G1

G2

Early responses to this position appear to be somewhat cautious, but by no means neg-

ative. Garvin (1964, 36-37) wrote:

“I do not wish to become embroiled in the ultimate issue raised, namely, whether

an evaluation procedure is indeed the only reasonable goal for linguistics. In my

opinion it is not.
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I should instead like to discuss a more immediate question: how to provide a

practical evaluation procedure, where by practical I mean something that can

actually be done in practice.

It appears to me first of all that an evaluation procedure for grammars – that

is, entire grammars – is rather a tall order, if the procedure is to be interpreted

operationally.

It seems to imply that two grammars (that is, two complete descriptions from

phoneme – or morphoneme [sic] – to sentence) are to be compared to each other

and to a corpus, in order to ascertain which is to be preferred. As to the criterion

by which this is to be judged, let me quote Chomsky again: “Suppose that we

use the word ‘simplicity’ to refer to the set of formal properties of grammars

that we shall consider in choosing among them.” For the choice to be feasible

in practice, there should first of all exist two such grammars, each meeting what

Chomsky calls “the external criteria of adequacy for grammars”. Assuming such

a condition, the two adequate grammars would then have to be compared in

their entirety which, if taken seriously, might mean a comparison page by page,

or statement by statement, or chapter by chapter. Each partial comparison

may then result in a judgement of simplicity. If it is possible to weight each

part judgement appropriately, one may assume that an overall judgement can

be computed by some reasonable statistical operation. It is also thinkable that

instead of this series of partial comparisons (which presupposes a matching of

parts that are not necessarily susceptible to clear-cut matches), one might take

each grammar separately and by some procedure to be defined when available

take an independent measure of simplicity. The two measures could then be

compared and a final evaluation made.

I wonder whether, at the present state of the art in linguistics, any of this is very
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practical.

If an evaluation procedure for entire grammars is deemed impractical, under what

conditions does an evaluation procedure in linguistics become practical, and is it

then relevant to the objectives of linguistics? (Garvin, 1964, 36-37)

Although Garvin’s remarks quoted above may seem less than positive, they are concerned

with entire grammars. He actually went on—with a much more positive tone—showing how

grammar evaluation might be done for a subpart of grammar; as it happens, his example is

about morphological analysis. Like Garvin, we attempt to explore and implement evaluation

in linguistic analysis. If this is the way to do linguistics, the question we ask now is this:

How exactly do we evaluate which grammar or analysis is the best among competing ones?

The answer we adopt here is to incorporate the Minimum Description Length philosophy

(MDL; Rissanen 1989) in an algorithmic approach. There are two parts here, which have

been argued for in linguistics, see Goldsmith (2011a) on MDL, and Goldsmith (2004) on

algorithms.

For any grammar or linguistic analysis, we would like a way of formalizing how complex

it is. In the parlance of computer science, complexity can be formalized as description

length in terms of bits: the longer the description length, the more complex the analysis is.

Furthermore, we also ask how good the analysis is for fitting the given data, and for this we

measure it by the number of bits needed to encode data using a particular grammar. The

notion of the best analysis, then, is formalized as searching for the one with the smallest sum

of the two measurements. This is in line with the philosophy of MDL approaches in machine

learning. In other words, for grammar selection, an MDL analysis asserts that the best

analysis is one which minimizes the sum of the grammar complexity and the data cost given

the grammar (Goldsmith, 2011a). There are two major appealing aspects stemming from

an MDL approach. First, MDL embodies Occam’s razor. Minimizing grammar complexity

is the computational analog to advancing the simplest analysis in theoretical linguistics.
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Second, MDL eschews over-fitting. In traditional theoretical linguistics, an often unnoticed

assumption is the emphasis placed on accounting for all the given data points at all costs,

typical in linguistic training, and consequently the reduced concern over increasing grammar

complexity. In a nutshell, the insight from MDL is this: we do not want to fit the data too

well at the cost of a highly complex grammar, and at the same time we also do not want

a grammar that is too simple, one that fits the given data too poorly. MDL says that the

best analysis is a trade-off between how complex the analysis is, on the one hand, and the

goodness-of-fit by that analysis for the given data, on the other.

On algorithms, we show the value of using them as they provide a computationally

explicit and falsifiable means to derive and test analyses. More often than not, in theoretical

linguistics, the focus is the analysis but not how that analysis comes into being in the first

place. This claim is supported by the way how linguists are typically trained: given a

linguistic dataset, we are asked to come up with an analysis for a given question, but we are

never asked to explicitly and meticulously pin down the steps through which the analysis

comes into being. The procedure which leads to an analysis is as important as, if not more,

the analysis itself (Goldsmith, 2004). Such a procedure is an algorithm. An algorithmic

approach is especially relevant in the computer age. With the high computational power

right at our fingertips, an algorithm can easily run through a huge amount of data, perhaps

from different languages. We shift our focus to the procedure resulting in an analysis and

to the interpretation of the analysis. An important advantage of algorithmic approaches to

linguistic analysis is how they potentially shed light on questions of language learning. An

algorithm in the context of this dissertation research is the computational implementation of

an explicit model of precisely how linguistic generalizations are learned for some given data.
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1.5 Axioms of Computational Linguistic Research

My doctoral research reflects my commitment to reproducible, accessible, and extensible

research. Whereas the value of reproducible research is widely recognized across the scientific

community, I argue that it is insufficient for linguistics: linguistic research must also be

accessible and extensible. In order that linguistic research be reproducible, accessible, and

extensible, I also argue that this goal is concretely achievable by constructing user-friendly

and freely available computer software.

1.5.1 Reproducible research

Reproducible research refers to the idea that the publication of academic research is the en-

semble of published papers together with all datasets and tools (experimental stimuli, com-

puter code, etc.) which produce the reported results. The notion of reproducible research,

especially for computationally oriented research like this dissertation, was first articulated by

Claerbout and Karrenbach (1992) in the field of geophysics. They went as far as suggesting

that a publication should be an electronic document which is coupled with all the relevant

software and datasets, and which have buttons that a reader can click to regenerate all anal-

yses and figures. While technologies have advanced between now and then, the version of

reproducible research I describe in this dissertation is along the lines of Claerbout and Kar-

renbach (1992) in spirit as well as congruent with the current technical standards. The very

high bar set by Claerbout and Karrenbach is unlikely to be generalizable and applicable to

multiple fields. Publication of scientific articles has remained the major focus in academia,

as is the case for linguistics. A viable option for reproducible research in linguistics, at

least given the present-day circumstances, seems to be that authors can point to a website

with code and datasets together with clear instructions for how to rerun everything. This is

arguably not ideal, but until a universal solution comes, it is the author’s responsibility for

maintaining the availability of their materials online.

18



Note that our focus here is reproducible research, as opposed to replicable research. A

key difference is that reproducible research is about using the exact same dataset and code

to regenerate results, whereas replicable research is about collecting data afresh by following

a previous study and attempting to achieve comparable main results. In linguistics, there-

fore, replicable research is more amenable to experimental work, though if the researcher

makes the experimental dataset publicly available, it will allow reproducible research for re-

and meta-analysis. Relatedly, Mark Liberman’s Language Log blog post “Replicability vs.

reproducibility – or is it the other way around?” discusses their distinction and how they

might be confused.2

There are a multitude of philosophical, academic, and administrative reasons why abiding

by the protocol of reproducible research is desirable. Here I mention two major reasons. First,

reproducible research facilitates data reanalysis and comparison of results across researchers.

For a variety of reasons, however, reproducible research has not been a widespread prac-

tice, which has led to growing concerns in fields as diverse as psychology (Wicherts and

Bakker, 2012), pharmacology (Prinz et al., 2011), and computational engineering (Mitchell

et al., 2012). For linguistics, recent works which express such concerns include Pedersen

(2008) on computational linguistics and Maxwell (2012) on grammar descriptions. The open

access online journal Journal of Experimental Linguistics, as part of the Linguistic Society

of America’s eLanguage initiative, represents an effort of encouraging reproducible research

in the field.3

Given the specific circumstances of linguistics, reproducibility alone is insufficient for

linguistics. For linguistic research to be practically and meaningfully reproducible, it must

also be accessible and extensible.

2. http://languagelog.ldc.upenn.edu/nll/?p=21956, accessed in June 2016

3. http://elanguage.net/journals/jel
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1.5.2 Accessible research

Accessible research is the idea that research should be relatively accessible by the prac-

titioners in a given field. This is significant for linguistics. For historical and institutional

reasons, linguistics departments at universities are usually located within social sciences or

humanities; at universities without a linguistics department, linguistics is at the English

department or a foreign language department. Given the general research methodologies in

social sciences and (even more so) in humanities, it is both unrealistic and unreasonable to

expect scholars in these areas to possess a high level of computing skills (e.g., for opera-

tions with computer scripts and tasks involving the command-line interface alone). Being

able to communicate one’s research—however technical it is—to other practitioners in the

field is among our priorities. To achieve this, a clear direction is to create user-friendly

computational tools.

Another component of accessible research for linguistics is data visualization. On the

one hand, the focus of linguistic research has shifted from categoricity to gradience, thereby

employing a wide range of experimental, quantitative, and computational methodologies. On

the other, parallel with the phenomenon of Big Data, linguists are increasingly dealing with

datasets (experimental data, corpora, etc) whose sizes are ever-growing; it is no accident

that the Linguistic Society of America’s Summer Institute 2015 at the University of Chicago

had the theme of “Linguistic Theory in a World of Big Data”.4 This trend requires tools to

explore patterns and present information from linguistic data of huge sizes as well as high

complexity and gradience.

1.5.3 Extensible research

Extensible research in linguistics refers to the idea that analyses should be amenable to

extensions for both modularity and cross-linguistic coverage. If we study language in terms

4. http://lsa2015.uchicago.edu
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of various subfields, then it must be the case that our knowledge about language from all the

fields has to all come together in some integrated way as a general model of language. The

fact that knowledge is studied in a segregated way in linguistics does not mask the empirical

fact the language works as a whole. If the goal of linguistics is to search for a general

understanding of how language works, then research from any linguistic subfields must have

ramifications for and contributions to other subfields. This view is expressed most concretely

by all kinds of linguistic interface research; see, for example, the papers in the edited volumes

by Ramchand and Reiss (2007) as well as Folli and Ulbrich (2010). To make it possible for

research to cross subfields given their compartmentalization, it is best for linguistic research

to be modular with well-defined input and output points so that different research can be

connected – this will be clear below with my dissertation research as an example.

The second aspect of extensible research is the familiar goal that general linguistic re-

search be cross-linguistically relevant. Although many technical papers in linguistics are

in-depth case studies of a very small number of languages, most of them attempt to convey

the message that they have something to say about language in general according to the

insights learned from their case studies. For non-computational research, to see how claims

based on a few languages bear on other languages usually requires the same huge amount of

work in terms of time, labor, and mental energy as the original paper where the claims come

from. To the extent that this is a form of extensible research, computational work has the

added advantage of being much more efficient to reproduce given suitably prepared datasets

from other languages.

Reproducible, accessible, and extensible research can be achieved by the development of

open-source and user-friendly software. In computational research both within and outside

linguistics, open-source software with computer code publicly available allows reproducible

research. Creating a GUI makes computational linguistic research easily accessible to more

practitioners, both in terms of usage and data visualization, as well as extensible to other
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languages and further work.

All components of my dissertation are associated with user-friendly software applications

which linguists can use with easily prepared datasets. The verifiability and replicability of

linguistic analyses are among the strong reasons why producing software is important; we

need a consistent, objective, and accessible way of applying linguistic analyses to different

datasets from different linguists and sources. Creating software and making it available to

other analysts is precisely a concrete and convincing way to achieve this goal.

All the software, source code, and datasets that are used in connection with my disser-

tation research are hosted online.5

1.5.4 Linguistica 5

A significant effort of this dissertation research was devoted to the development of software

packages, in line with reproducible, accessible, and extensible research. A focus point is

Linguistica 5 (Lee and Goldsmith, 2016a). Its linguistic results will be discussed in the

relevant chapters. Here, I briefly note its software engineering aspects.

Previous versions of Linguistica (Goldsmith, 2001) are written in C++ and built in the

Qt framework. These versions are designed to be GUI software out of the box. The major

drawback is that the core backend is intimately tied with the GUI code, which makes further

development and debugging challenging. To solve this problem, the new Linguistica 5 takes

a radically different approach.

First, we choose Python to be the new programming language for Linguistica, because

it has been widely used in computational linguistics and natural language processing for its

strengths in fast coding, strong library support for machine learning and other computational

tools.

Second, the focus of the Linguistica 5 development is its backend as a Python library,

5. https://github.com/jacksonllee
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with a GUI wrapper written in PyQt. This new architecture has several advantages. In

terms of the user interface, there are two independent choices. As in previous versions of

Linguistica, the GUI allows convenient data analysis – and visualization, a new development

in Linguistica 5Ȧnother novelty is that Linguistica 5 is a Python library by design. Re-

searchers are able to use Linguistica 5 in a computationally dynamic and automatic fashion

by calling it in their own programs for any research and computational work of their interest.
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CHAPTER 2

STEM EXTRACTION

2.1 Introduction

This chapter is about stem extraction. The goal is two-fold. First, this chapter characterizes

structure within a morphological paradigm; the subsequent chapters go beyond a single

morphological paradigm. Second, we develop unsupervised methods of stem extraction based

on properties of a morphological paradigm.

We begin with a question that may look deceptively simple: Given a morphological

paradigm, what can be said about it linguistically? An intuitive response is that most if

not all the words in a morphological paradigm share some phonological material. This is

illustrated by the following examples.

(6) Some morphological paradigms cross-linguistically

person.number Spanish hablar “speak” English jump

1.sg hablo jump

2.sg hablas jump

3.sg habla jumps

1.pl hablamos jump

2.pl habláıs jump

3.pl hablan jump

(6) shows two verbal morphological paradigms, one from Spanish and the other from

English; these paradigms are all in their present tense form. For our present purposes, it is

sufficient to treat orthography as an adequate representation of phonology.

(6) first shows the Spanish paradigm for hablar ‘to speak’ in present indicative. The

six word forms in this paradigm are different but all share some phonological material. In
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particular, we would say that they all share the material “habl” (not worrying about the

phonetically silent “h” in Spanish). The second paradigm in (6) is the one for English jump.

Similar to the Spanish hablar paradigm, all six word forms in the jump paradigm share

some phonological material, and it is uncontroversially “jump”. Statements such as these

about “habl” being the shared material for Spanish hablar and “jump” for English jump

are what this chapter attempts to understand. For Spanish hablar, what makes us claim

that “habl” is what the six words share? Why would we not say it is “hab”, for instance?

We shall see in this chapter that what it means to be shared material among word forms is

far from being trivial.

The observation that word forms in a morphological paradigm share a fair amount of

phonological material makes it reasonable to ask if there are principled ways of extracting

such common material—call it stem, following the linguistic literature—from a morphologi-

cal paradigm, hence the task of stem extraction. Pursuing this task bears both theoretical

and practical interests. On the one hand, we would like to develop a deeper understanding

of a task that appears to be second nature to linguists performing morphological analy-

ses. Identifying the stem in a paradigm entails that the affixes—what is not shared among

the word forms in the paradigm—are also identified, a central component of morphological

analysis. On the other hand, stem extraction finds practical applications in language tech-

nologies, e.g., as part of stemming and information retrieval implemented in databases and

search engines.

To further illustrate the types of morphological patterns that stem extraction should

be able to handle, there is non-concatenative morphology where the stem is not formed by

contiguous symbols, e.g., the root-and-pattern morphology in Semitic languages. (7) shows

an Arabic paradigm for “write”, for which the stem is the non-contiguous k-t-b.

(7) Arabic “k-t-b”
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‘he wrote’ kataba

‘we wrote’ katabnā

‘he writes, will write’ yaktubu

‘we write, will write’ naktubu

‘writer’ kātib

‘he dictated’ aktaba

‘he dictates, will dictate’ yuktibu

In addition, many languages have morphological paradigms of both contiguous and non-

contiguous types of stems, contiguous and non-contiguous. Spanish comer in present indica-

tive, in (8), has the contiguous stem “com”, whereas poder, in (9), has the non-contiguous

“p-d”.

(8) Spanish “com”

I eat como

you (sg) eat comes

he/she/it eats come

we eat comemos

you (pl) eat coméis

they eat comen

(9) Spanish “p-d”

I can puedo

you (sg) can puedes

he/she/it can puede

we eat podemos

you (pl) can podéis

they can pueden
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To identify the stem in a paradigm, the intuition is that we wish to find the maximal com-

mon material across all word forms (Spencer, 2012). By drawing insights from mathematics

and bioinformatics, I describe three language-independent and algorithmic approaches—

substrings, submultisets, and subsequences—which define the notion of “common material”,

and conclude that the subsequence approach most closely matches what is desirable (see also

Hulden et al. (2014)). Preliminary results were presented in Lee and Goldsmith (2016b).

2.2 Formal Aspects

This section develops the formal background of representing morphological paradigms, draw-

ing from formal language theory and standard views of morphological paradigms in linguis-

tics.

2.2.1 Total and Partial Words

Following standard practice in formal language theory, we first define words. Then we extend

words to partial words which allow unspecified symbols.

A word w is defined as a sequence of symbols from a non-empty finite alphabet Σ =

{l1, l2, ..., lk} with k symbols (e.g., the English alphabet, the IPA symbols); for instance, the

word “apple” is formally the sequence 〈a, p, p, l, e〉 whose length is 5. The set of all words in

a language is V = {w1, w2, ...} ⊂ Σ∗, where Σ∗ is set of all possible sequences over Σ. The

(unique) empty string is designated as ǫ with its length |ǫ| = 0.

On simple concatenation, the multiplicative notation is used. For instance, given wi =

〈a, b〉 and wj = 〈c, d〉, we write wiwj = 〈a, b〉〈c, d〉 = 〈a, b, c, d〉.

What we have been referring to as words can be more precisely be called total words, in

contrast to partial words. Partial words are intuitively words that have unspecified letters.

This section benefits from background on partial words in Blanchet-Sadri (2008) (?).

To start with, we define partial functions as well as holes.
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Definition 1. Let f be a function with the set X as the domain. If f is not necessarily defined

for all x ∈ X, then f is a partial function.

Definition 2. Let f be a partial function with the set X as the domain. The set of holes

H(f) in X is the elements in X for which f is undefined (denoted by ↑).

That is, H(f) = { x : x ∈ X and f(x) = ↑ }

We now consider a word to be a function mapping a set of indices to a set of letters from

Σ. Indices are the set of non-negative integers {0, 1, 2, ...}. For instance, a word w could

be intuitively “apple”, and formally w : {0, 1, 2, 3, 4} → {a, p, l, e} defined as follows (w(i)

means the index i of w):

w(0) = a

w(1) = p

w(2) = p

w(3) = l

w(4) = e

In this example, w is a total function, where each element in the relevant domain (=

each index) is mapped to an element in the codomain (= one of the symbols in {a, p, l, e}).

Because w is a total function, there are no holes, i.e., H(w) = Ø.

We are now ready to define partial words.

Definition 3. A partial word of length n over Σ is a function w : {0, 1, 2, ..., n− 1} → Σ

with H(w) 6= Ø. In other words, there exists at least one index i and w(i) = ↑.

An example of a partial word is v : {0, 1, 4} → {a, p, e} defined as follows:

v(0) = a

v(1) = p

v(2) = ↑

v(3) = ↑
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v(4) = e

Comparing v and w in these two examples, we can think of v as the word “apple” but

with two missing symbols. While the concept of partial words allows us to refer to words

with missing symbols, we would like to concretely represent partial words in a way analogous

to how we usually think of words. We introduce two notations for unspecified symbols.

Definition 4. The notation represents one and only one unspecified symbol from Σ.

Definition 5. The notation ∼ represents a sequence x of unspecified symbols from Σ, where

|x| ≥ 0. That is, ∼ is a wild card for anything in Σ∗.

Note that both and ∼ are not in Σ. Given these notations for unspecified symbols, v

from above can be thought of as 〈a, p, , , e〉, in contrast with w = 〈a, p, p, l, e〉. Alternatively,

v can also be represented as 〈a, p,∼, e〉. Unspecified symbols are going to be important for

the discussion on stem extraction.

2.2.2 Morphological Paradigms: Stems, Affixes, and Paradigm Sets

Loosely speaking, a morphological paradigm is a set of words in a natural language that are

morphologically related. Both inflectional paradigms (e.g., jump-jumps-jumped-jumping)

and derivational paradigms (e.g., create-creation) are relevant, although in this dissertation

the discussion focuses on inflectional paradigms.

Formally, especially in the context of our discussion developed so far, a morphological

paradigm is a set of words. Let us say this more concretely as a first step of defining a

morphological paradigm:

Definition 6 (morphological paradigms, first version). A morphological paradigm is a

set of words W = {w1, w2, ...} ⊂ Σ∗.

We are interested in how morphological paradigms are connected to the notion of stems.

To this end, we first need to define stems.
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Definition 7. A stem t is a sequence in (Σ ∪ {∼})∗.

An example of stems which match linguistic intuition for English is 〈j, u,m, p,∼〉 for the

jump paradigm with the word forms jump-jumps-jumped-jumping, where ∼ in the stem is

materialized as ∅-s-ed-ing.

Given a word, the part that is not the stem is the affix. Focusing on form, affixes are

formally the same as stems.

Definition 8. An affix a is a sequence in (Σ ∪ {∼})∗.

A stem and an affix form a word, for which a word composition operation is defined.

Definition 9. A word composition operation ⊕ takes a stem t and an affix a, and

returns a total word w ∈ Σ∗.

w = t⊕ a

The algorithmic details of ⊕ depend on what types of stems we are concerned with;

more details on this in section ?? on stem extraction. As a quick illustration of what a

morphological paradigm looks like in our set-up so far, consider the jump paradigm:



































〈j, u,m, p〉

〈j, u,m, p, e, d〉

〈j, u,m, p, i, n, g〉

〈j, u,m, p, s〉



































= 〈j, u,m, p,∼〉 ⊕
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〈∼, e, d〉

〈∼, i, n, g〉

〈∼, s〉



































Here, we assume that ⊕ can be applied distributively for one given stem with multiple

affixes to produce the corresponding (total) words.

A revised definition of a morphological paradigm is as follows:

Definition 10 (morphological paradigms, second version). A morphological paradigm

is a set of words W = {w1, w2, ...} ⊂ Σ∗ such that there exists a stem t, a set of affixes A =

{a1, a2, ...} ⊂ (Σ ∪ {∼})∗, and W = t⊕ A.
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What counts as a stem requires further restrictions. For instance, we would not want

to claim that English table-tired-toy is a paradigm sharing the stem “t”; meaning could

certainly be part of the restrictions. If we focus on form, it is helpful to speak of a lower

bound on the number of stems compatible for a given set of affixes. This leads us to paradigm

sets.

An important reason why we say that jump-jumped-jumping-jumps is a paradigm in

English is because there exist other paradigms with the same affixes: the walk, treat

paradigms are among the examples. In other words, implicitly, when linguists speak of a

morphological paradigm, what is also being referred to is a paradigm set in the background:

the jump paradigm is a paradigm due to the paradigm set consisting of jump and other verb

paradigms with a similar affix pattern of ∅-ed-ing-s. A paradigm set with two paradigms is

as follows:

(10) A paradigm set with two paradigms









































































































































〈j, u,m, p〉

〈j, u,m, p, e, d〉
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〈j, u,m, p, s〉





































































〈w, a, l, k〉

〈w, a, l, k, e, d〉

〈w, a, l, k, i, n, g〉

〈w, a, l, k, s〉
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〈j, u,m, p,∼〉

〈w, a, l, k,∼〉
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〈∼, e, d〉
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〈∼, s〉



































If we require that a paradigm set have at least a certain number of paradigms, unwanted

paradigm such as {car-carp, pee-peep} can be ruled out. The Linguistica morphological

learner (Goldsmith, 2001) requires a user input parameter for this minimum number of
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stems of a given affix pattern.

We further revise the definition of a morphological paradigm:

Definition 11 (morphological paradigms, final version). A morphological paradigm is a

set of words W = {w1, w2, ...} ⊂ Σ∗ such that there exists a stem t, a set of affixes A = {a1,

a2, ...} ⊂ (Σ∪{∼})∗, and W = t⊕A. Ideally, this stem t is an element of a set of stems T

= {t1, t2, ..., tk} that can compose words with the same affix set A to form a paradigm set

with k morphological paradigms.

2.2.3 Formulating the Problem of Stem Extraction

With all components of a morphological paradigm in place, stem extraction of a morphologi-

cal paradigm W can be defined as the function of argmint,ACost(t, A) such that W = t⊕A.

That is, for a given morphological paradigm, stem extraction finds a stem and its associated

affixes compatible to this paradigm, such that the cost of the analysis due to the stem and

its affixes is at the minimum.

The cost function takes a stem t and a set of affixes A and returns their total cost; a

simple version can be the number of letters of the stem and all the affixes.

Taking the argmin follows the MDL principle (section ??). Given a morphological par-

adigm, the word forms can potentially be decomposed in multiple ways to yield different

analyses of stems and affixes. If we compute the cost associated with each analysis, MDL

provides a guiding principle that the best analysis is the one with the minimum cost.

The stem extraction function of argmint,ACost(t, A) tells us how to select a winning

tuple of (t, A), given multiple candidate tuples, but does not say how to do so – this is the

subject of the next section.
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2.3 Substrings, Subsequences, and Submultisets

Several ways of how a stem can be extracted from a morphological paradigm are considered.

The basic idea follows the linguistic intuition: the stem is the maximal common material of

all word forms in a paradigm (Spencer, 2012). The question is what exactly this means and

how exactly we can extract the stem in an algorithmically explicit way.

It has turned out that it is useful to think of sequences of symbols in terms of linearity

and contiguity. For stem extraction, the basic approach is to extract some common subpart

of all word forms in a paradigm. The different combinations of properties in terms of linearity

and contiguity give rise to three major ways of interest for pinning down a subpart of a word

– substrings, subsequences, and submultisets:

(11) Differences between substrings, subsequences, and multisets

substrings subsequences multisets

linearity ✓ ✓ ✗

contiguity ✓ ✗ ✗

Definition 12. A string x is a substring of y just in case when y = vxw for some v, w ∈ Σ∗.

To illustrate linearity and contiguity of symbols in a substring of a word, take the string

〈a, b, c, d, e〉 as an example. From this string, 〈a, b, c〉 is a substring. 〈a, c〉 is not, because “a”

and “c” are not contiguous in 〈a, b, c, d, e〉. 〈b, a〉 is not a substring of 〈a, b, c, d, e〉, because

“a” does not come after “b”.

The substring approach chooses the longest common substring among the word forms

in a paradigm. The substring approach to identifying stems works well for the common

type of morphology where different parts of a word are strung together by simple concate-

nation. For instance, given the present indicative paradigm of Spanish cantar ‘to sing’,

canto-cantas-canta-cantamos-cantáis-cantan, the longest common substring among these six

forms is “cant”, which corresponds to what a linguist would say is the stem for the cantar
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paradigm. However, weaknesses of this approach emerge when there is any deviation from

simple concatenation. For illustration, we consider the stem-changing Spanish verb poder

‘can’ whose present indicative paradigm is puedo-puedes-puede-podemos-podéis-pueden. For

this paradigm, the substring approach to stem identification gives three analyses, with “p”,

“e”, “d” as the three longest common substrings:

(12) Stem as the longest common substring for Spanish verb poder

stem puedo puedes puede podemos podéis pueden

analysis 1 p puedo puedes puede podemos podeis pueden

analysis 2 e puedo
puedes

puedes

puede

puede
podemos podeis

pueden

pueden

analysis 3 d puedo puedes puede podemos podeis pueden

At least both “p” and “d”, the lexically specific information for the poder paradigm,

should be part of the stem, but none of the three substring analyses above give a stem

satisfying this. Therefore, the substring approach is suboptimal for morphology deviating

from simple concatenation.

Definition 13. A subsequence x of a total word y is a partial word such that count(∼

, x) ≥ count(∼, y) and there exists x’ = y where x’ is x but with all occurrences of ∼ filled by

elements in Σ∗.

For subsequences, an example from above is 〈j, u,m, p,∼〉 as a subsequence of 〈j, u,m, p, e, d〉;

∼ in 〈j, u,m, p,∼〉 can be replaced by 〈e, d〉 from Σ∗ in order to yield 〈j, u,m, p, e, d〉. Sub-

sequences obey linearity of symbols but does not necessarily maintain contiguity.

The subsequence approach to stem extraction chooses the longest common subsequence

among word forms in a paradigm. For the Spanish poder paradigm:

(13) Stem as the longest common subsequence for Spanish verb poder
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stem puedo puedes puede podemos podéis pueden

analysis 1 p-d puedo puedes puede podemos podeis pueden

analysis 2 p-e puedo
puedes

puedes

puede

puede
podemos podeis

pueden

pueden

The longest common subsequences are “p-d” and “p-e”; the subsequence-based stem “p-

d” is desirable because both “p” and “d” are included but the problematic “e” is excluded.

This Spanish example also illustrates the point that there can be multiple stem analyses for

a given paradigm, which can be teased apart by the MDL principle for comparing analyses

(section 1.4.3). In the example here, there are no a priori reasons why an unsupervised

learning algorithm could judge whether either “p-d” in analysis 1 or “p-e” in analysis 2 is

superior over the other. Consider that we have a Spanish dataset with multiple paradigms

including poder. All else being equal, due to the two analyses above for poder, there are at

least two possible grammars g1 and g2 for the entire dataset. Given that there are other

Spanish paradigms with only one unique subsequence analysis for stem extraction (i.e., the

non-stem-changing verbs), the MDL principle would prefer the grammar whose the specific

set of affixes associated with poder better match those with other paradigms.

Definition 14. A submultiset x of a total word y for |y| = n is the multiset of symbols

{x1, x2, ..., xk} (possibly with repeating symbols) where k < n and xi ∈ y (0 ≤ i < k).

The submultiset approach to stem extraction disregards both requirements of linearity

and contiguity altogether. It treats each word as if it were a bag of symbols. To identify stem

material in a paradigm, the submultiset approach chooses the largest common submultiset

among the word forms in a paradigm. For Spanish poder, the submultiset approach gives

the unordered {p,d,e} as the stem:

(14) Stem as the largest common submultiset for the Spanish verb poder
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stem puedo puedes puede podemos podéis pueden

{p,d,e} puedo
puedes

puedes

puede

puede
podemos podeis

pueden

pueden

The submultiset approach improves on the substring approach, because both “p” and

“d” are in the submultiset-based stem. However, a new problem arises: {p,d,e} cannot tell

if “e” is part of the suffix or is stem-internal between “p” and “d”. Abandoning the linear

ordering in stem extraction appears to be undesirable.

2.3.1 Space Complexity

An important difference between these three concepts of substrings, subsequences, and sub-

multisets for stem extraction is in terms of space complexity. We ask how many substrings,

subsequences, and submultisets there are for a given string of length n:

(15) Formulae for counting substrings, subsequences, and submultisets of an n-character

string

Number of substrings = 1 + 2 + ...+ n =
n
∑

k=1

k

Number of subsequences =

(

n

1

)

+

(

n

2

)

+ ...+

(

n

n

)

=
n
∑

k=1

(

n

k

)

Number of submultisets =

(

n

1

)

! +

(

n

2

)

! + ...+

(

n

n

)

! =
n
∑

k=1

(

n

k

)

!

The number for submultisets deserves a note. Submultisets do not necessarily obey

linearity, but when we render a submultiset as a word, a linear ordering is needed. This is

why we need the factorial of each term of the n-choose-k combinations.
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More concretely, let us consider a string of length n for 1 ≤ n ≤ 10 in the following table.

For instance, a string with ten symbols has 55 possible substrings.

(16) Number of substrings, subsequences, and submultisets for strings of different lengths

n substrings subsequences submultisets

1 1 1 1

2 3 3 3

3 6 7 13

4 10 15 769

5 15 31 7.26E+06

6 21 63 2.43E+18

7 28 127 2.07E+40

8 36 255 1.20E+100

9 45 511 4.74E+211

10 55 1023 2.04E+497

For stem extraction, the worst-case scenario would be that one could exhaustively find all

subparts (any of these three approaches) of all the word forms for a given paradigm and the

stem will be the longest one that all word forms share. For space complexity, the substring

approach is O(n log n), the subsequence approach is O(n2), and the submultiset approach is

O(n!).

Fortunately, in practice, regardless of whether we pick the substring, subsequence, or

submultiset approach, we simply have to consider the subpart options of the shortest word

for a given paradigm. Under our assumption of the stem being the maximal common material

for all word forms, the paradigm jump-jumped-jumping-jumps cannot possibly have a stem

longer than “jump”.

Moreover, linguistically it is clear that linearity is important in natural languages, and

that the submultiset approach (the worst approach for space complexity) is untenable.

37



Among the three approaches considered, the subsequence approach for stem extraction ap-

pears the most promising, both for being able to handle concatenative and non-concatenative

morphology, as well as for not having a space complexity as high as that of the submultiset

approach.

2.4 Results

This section illustrates the results of stem extraction by the methods of longest common

substring, longest common subsequence, and largest common submultiset, using morpholog-

ical paradigms from English and Arabic. Detailed outputs for English are provided in the

appendix.

It will become clear that, if we are in search of a language-independent stem extraction

method, it is reasonable to model the stem as the longest common subsequence in a mor-

phological paradigm, among the options explored in this work. The substring approach is

too restrictive, as it breaks down as soon as there is any kind of non-concatenative morphol-

ogy. The submultiset approach accommodates non-concatenative stems, but at the cost of

admitting a large amount of possible affixes.

The cost function takes the number of symbols—letters and the ∼ wild card —in a given

analysis (stems plus affixes for each stem) and multiplies this number by five. The factor

of five is to get an approximate cost in terms of bits, as 25 = 32, roughly the number of

symbols in the Latin alphabet.

2.4.1 English

The English data is verbal morphological paradigms from the top 100 most frequent verbs

according to COCA. Here are the top 10 in order: be, have, do, say, go, get, know, make,

think, take. For this dataset, my implementation as well as the cost function, modeling

the stem as the longest common subsequence incurs the lowest cost of 11,619, compared to
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12,005 for the substring approach and 14,329 for the submultiset approach.

Pure concatenative morphology does not distinguish between the substring and subse-

quence approaches by cost. This is because a substring can be viewed as a special case of

a subsequence, where all symbols happen to be contiguous. The following is the result of

the want paradigm. Both substring and subsequence analyses each cost 85, which is the

symbol count of { want, ∼, ∼s, ∼ed, ∼ed, ∼ing } (17 symbols) times 5.

(17) Stem extraction for English verb want

want, wants, wanted, wanted, wanting

substring (cost: 85)

want s ed ed ing
∼ ∼s ∼ed ∼ed ∼ing

subsequence (cost: 85)

want s ed ed ing
∼ ∼s ∼ed ∼ed ∼ing

submultiset (cost: 116)

antw s ed ed ing, n i g
∼ ∼s ∼ed ∼ed ∼ing, ∼n∼i∼g

The submultiset analysis for want exposes the problem that abandoning linearity would

lead to multiple analyses in the affixes that would increase the cost of the analysis. In the

word form “wanting”, the stem is the multiset {a, n, t, w}, whereas the corresponding affix is

an indeterminancy between 〈 , , , , i, n, g〉 and 〈 , , n, , i, , g〉 due to the ambiguous “n”.

When there is at least one suppletive form in the paradigm, all the three stem extraction

methods output an empty stem, and therefore all the affixes are identical to the word forms.

The be paradigm is an example:

(18) Stem extraction for English verb be

be, is, was, been, being

substring (cost: 80)

subsequence (cost: 80)
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submultiset (cost: 80)

The get paradigm is an example with non-concatenative morphology that shows the

subsequence approach for stem extraction is superior to the substring or submultiset ap-

proach.

(19) Stem extraction for English verb get

get, gets, got, gotten, getting

substring (cost: 344)

g et ets ot otten etting, gettin
∼et ∼ets ∼ot ∼otten ∼etting, gettin∼

t ge ge s go go ten, got en ge ting, get ing
ge∼ ge∼s go∼ go∼ten, got∼en ge∼ting, get∼ing

subsequence (cost: 192)

gt e e s o o ten, ot en e ting, et ing
∼e∼ ∼e∼s ∼o∼ ∼o∼ten, ∼ot∼en ∼e∼ting, ∼et∼ing

submultiset (cost: 263)

gt e e s o o ten, ot en e ting, et ing, ge tin , get in
∼e∼ ∼e∼s ∼o∼ ∼o∼ten, ∼ot∼en ∼e∼ting, ∼et∼ing, ge∼tin∼, get∼in∼

Apart from get, other paradigms listed in the English results in the Appendix with

similar non-concatenative morphology include take, come, find, come, tell, give.

2.4.2 Arabic

The Arabic data is 20 verbal paradigms. Similar to the English results, the subsequence

approach outperforms the other two for most verbs. Overall, in our settings, the subse-

quence approach incurs a cost of 24,038, compared to 29,510 for submultisets and 48,018 for

substrings.

The root-and-pattern morphology highlights the sharp contrast between the substring

and subsequence approaches to stem extraction. Consider the “write” paradigm with k-t-b:
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katabtu

katabtu, katabta, katabti, kataba, katabat, katabnaa, katabtum, katabtunna, katabuu, katabna, aktubu, taktubu, tak-
tubiyna, yaktubu, taktubu, naktubu, taktubuuna, taktubna, yaktubuuna, yaktubna

substring (cost: 4439)
a k tabtu, kat btu k tabta, kat bta, katabt k tabti, kat bti k taba, kat ba, katab
b kata tu kata ta kata ti kata a
k atabtu atabta atabti ataba
t ka abtu, katab u ka abta, katab a ka abti, katab i ka aba
subsequence (cost: 1471)
atb k a tu k a ta k a ti k a a k a at k a naa k a tum k a tunna k a uu

k∼a∼tu k∼a∼ta k∼a∼ti k∼a∼a k∼a∼at k∼a∼naa k∼a∼tum k∼a∼tunna k∼a∼uu
ktb a a tu a a ta a a ti a a a a a at a a naa a a tum a a tunna a a uu

∼a∼a∼tu ∼a∼a∼ta ∼a∼a∼ti ∼a∼a∼a ∼a∼a∼at ∼a∼a∼naa ∼a∼a∼tum ∼a∼a∼tunna ∼a∼a∼uu
submultiset (cost: 1824)
abkt a tu, ta u, a tu, at u a ta, ta a, a ta, a a t , at a, ata

∼a∼tu, ∼at∼u, ∼ta∼u ∼a∼a∼t∼, ∼a∼ta, ∼at∼a, ∼ata∼, ∼ta∼a
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In the subsequence analyses, k-t-b, as would be desired in a linguistic analysis, is one

of the extracted stem. In contrast, the substring analyses are forced to list each of the

symbols k-t-b in the individual extracted stems, thereby increasing the overall cost of the

substring approach by a fair amount. Similar to English “wanting” above, the submultiset

analyses bear additional costs due to ambiguous symbols, particularly the intervening vowels

for Arabic here.

2.5 Remarks

2.5.1 Stem allomorphy

The example with Spanish poder above illustrates a phenomenon common across the world’s

languages: stem allomorphy. From the perspective of Spanish morphophonology, a standard

analysis treats the vowel-alternating patterns such as o∼ue in poder as diphthongization in

connection with stress shifting. Under this view, it is legitimate to say that pod- and pued-

are stem allomorphs for poder in present indicative. However, stem identification in the

context of this dissertation makes a binary distinction of stem versus affixal material within

a paradigm, where some phonological material being shared by all word forms in a paradigm

is the necessary and sufficient condition to qualify as stem material. This is why only “p-d”

for poder above is regarded as the stem by the subsequence analysis, and everything else,

including the o∼ue alternation together with the inflectional suffixes, is considered affixal

material.

At first blush, this might appear counter-intuitive, but the goal of this dissertation re-

search is to develop language-independent strategies of morphological analysis (no knowledge

of diachronic development, meaning, and so forth). In the case of Spanish verbs, such philos-

ophy of linguistic analysis is actually beneficial. Spanish verbs are well known to consist of

both stem-changing (like poder with o∼ue) and non-stem-changing stems. This means that
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when we examine structure across morphological paradigms in Spanish verbs, such a distinc-

tion of allomorphy (or the lack thereof) should emerge in one way or another. Treating o∼ue

and the like as affix material leads to the straightforward computational treatment that all

material not shared by all word forms in a paradigm will be subject to cross-paradigmatic

comparison.

2.5.2 Linearity, Contiguity, and Morphemes

Stem identification is an essential step in morphological analysis. Its importance has long

been recognized (Nida, 1949). My doctoral research with respect to stem identification

invites rethinking of assumptions that have been implicitly taken for granted: linearity

versus contiguity and the nature of morphemes.

The alphabetic writing system is used extensively both within and without linguistic

research. Its properties are therefore carried over throughout linguistic analyses. Of par-

ticular interest here is the assumption of linearity: we represent language using a finite

set of symbols concatenated linearly. There are two important properties: (i) there is one

and only one tier, to use an autosegmental term; and (ii) contiguity of adjacent symbols is

assumed. The assumption of linearity and contiguity has been explicitly discussed in con-

nection with the strictly linear use of phonemes to represent language (de Saussure, 1916;

Hockett, 1947). While strict linearity was still assumed in classical generative phonology

(Chomsky and Halle, 1968), various linguistic phenomena for which a multilinear represen-

tational system is needed have been identified, e.g., Goldsmith (1976, 1990) on tone and

McCarthy (1979) on root-and-pattern morphology; Ladd (2014) also critically examines the

notion of linearity in phonology. At first blush—and rightly so—Goldsmith’s work differs

from McCarthy’s: Goldsmith’s work is in part motivated by the simultaneity of tone and

consonant-vowel sequencing, while McCarthy’s deals with the non-contiguity across roots

and vocalic patterns in Semitic languages. Importantly, their work shares the property that
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the segments (tone, consonant, or vowel) in each tier of a multilinear representation are lin-

early ordered. My doctoral research on stem identification also points to the conclusion that

the linear ordering among segments is essential; the submultiset approach is suboptimal.

However, contiguity—though misleadingly and inevitably encoded in the alphabetic writing

system—does not necessarily hold in stem identification, very much like what McCarthy’s

autosegmental treatment of Semitic languages attempts to demonstrate. Discarding contigu-

ity while retaining linear ordering appears to be a promising approach to stem identification,

especially for non-concatenative morphology ranging across root-and-pattern morphology,

stem allomorphy, and infixation (Yu, 2007). Research in phonology also supports this view,

especially recent works on how non-local phonological processes (e.g., harmony phenomena)

can be modeled as local processes (Heinz et al., 2011; Goldsmith and Riggle, 2012).

The departure from contiguity inherent in the alphabetic writing system begs the ques-

tion of how we are to understand the concept of morphemes. The various stem identification

algorithms described in this chapter make the explicit assumption that a word is composed

of some stem material plus some affixal material and nothing else, but there is no formal

commitment to the concept of morphemes. Because the principal goal of my dissertation

research is to devise computational tools without language-specific knowledge, two conse-

quences follow. First, the datasets (paradigm tables for supervised learning or unlabeled

raw text for unsupervised learning) do not encode meaning. Second, as a corollary of the

first consequence, what we call “affix” is entirely analogous with non-stem material, and

there is no attempt to further segment affixes into smaller pieces (except when the stem is

non-contiguous and therefore the affix is intertwined with the stem). Without meaning from

the input data, we are not concerned with issues of form-meaning mapping. The stems and

affixes, understood purely in terms of their surface forms in this dissertation, might be called

morphemes for convenience, but morphemes do not have a formal status in this dissertation

research. This brings us closer to theories of morphology that reject the notion of morphemes
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(Anderson, 1992) and approaches to morphological analysis without morpheme consistency,

e.g., Pham and Lee (2014, 2018) on truncation.

2.5.3 Correspondence

Extracting the common material as the stem from a morphological paradigm and treating

the residue as the affix in each word form makes all the word forms stand in an alignment

relationship. Take puedo∼podemos from the Spanish discussion above as an example:

(20) Alignment between puedo∼podemos

a. stem alignment

p u e d o

p o d e m o s

b. affix alignment

p u e d o

p o d e m o s

Stem identification is closely related to a wide variety of linguistic phenomena. The

longest common subsequence approach for the Spanish poder present indicative paradigm,

as described in this section, identifies p-d as the stem. In other words, all the six word forms

in the poder paradigm have p-d aligned as the same element. With the pair puedo∼podemos

for a simplified illustration, this stem alignment is visualized in (20a). What is not aligned

is the affix in each word form. If all affixal elements across word forms are also aligned such

that there is no line crossing and all elements are aligned (very much reminiscent of the

Well-formedness Conditions in Goldsmith’s autosegmental phonology), then affix alignment

is illustrated for the current example with dashed lines in (20b). Such alignment relationships

among word forms are among the basis of research on the interaction between morphology
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and phonology, most notably the large body of work that stems from the Correspondence

Theory (McCarthy and Prince, 1995), proposed largely in the context of modeling redupli-

cation in Optimality Theory. Phenomena that hinge at some correspondence relationship

among morphologically related words (reduplication, paradigmatic effects such as apparent

uniformity, cyclic effects, and so forth; Steriade (2009); Inkelas (2014)) have been studied

mostly in a way where the exact correspondence relationships of the segments appear to come

from the analyst’s intuition rather than an explicit algorithm for how correspondence is com-

puted. Algorithmic approaches to stem identification will shed light on the methodological,

and ultimately theoretical, issues involved.
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CHAPTER 3

PARADIGM SIMILARITY

3.1 Introduction

While the previous chapter is about structure within a morphological paradigm, this chapter

is about structure across morphological paradigms. We are interested in learning structure

from morphological paradigmatic data such as (21) for English verbs.

(21)

jump jumping jumps jumper jumped

walked walks walker walking walk

moving mover moved moves move

loves love loving mover loved

...
...

...
...

...

Data such as (21) has several characteristics that are central to the learning task of

interest. Each row represents one paradigm from a lexeme (jump, walk, move, etc.; small

caps denote lexemes in the linguistic convention). All rows have the same number of forms

for distinct morphological realizations; there are five forms in each row in (21). Moreover,

all rows have forms for the exact same morphosyntactic categories. In (21), it is always the

same five morphosyntactic categories of English verbal paradigms in every row: the bare

form, the third singular present sense with -s, the simple past typically with -ed, and the

-ing form. Lastly, within a row, the different forms of the paradigm can be horizontally

ordered in an arbitrary way. (21) happens to be English verbs, but it could have been from

another language, or from another part of speech.

Given a paradigm data set like (21), we ask if we are able to learn structure algorithmi-

cally. Specifically, in this chapter we are interested in clustering. We propose an algorithm

which learns the cross-paradigmatic structure based purely on surface strings for (i) mor-

phological groupings of the paradigms akin to conjugation and declension classes, and (ii)
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the hierarchical patterns among these morphological groupings.

This chapter is based on results reported in Lee (2014).

3.2 Clustering Morphological Paradigms

In many languages with inflectional morphology, paradigms tend to exhibit patterns which

form groups, or clusters. For verbal paradigms, we call them conjugation classes. For

paradigms of other parts of speech, we call them declension classes. In this paper, the goal

of clustering is to algorithmically find out these conjugation/declension classes given some

paradigmatic data.

Arguably, English verbal paradigms in (21) also display conjugation classes (Bloch, 1947).

For instance, there is a group of verbs which share the ablaut pattern in sing-sang-sung,

drink-drank-drunk. If we allow a broader reading of ‘conjugation’ for English, then we may

admit orthographical alternations as well, at least in the sense that how we write present-

day English indeed reflects a non-contemporary version of English, or that the orthography

shows what we observe in other languages with well-established inflectional classes. For (21)

plus a few more paradigms, some ‘conjugation classes’ for English are as follows:
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(22) Some English ‘conjugation classes’

Property Paradigms

Regular jump jumping jumps jumped jumper

walk walking walks walked walker

With ‘e’ move moving moves moved mover

love loving loves loved lover

Consonant doubling nod nodding nods nodded nodder

clap clapping claps clapped clapper

‘y/ie’ try trying tries tried tryer

cry crying cries cried cryer

{o,a}ught buy buying buys bought buyer

catch catching catches caught catcher

Our task is to perform clustering on morphological paradigms like these English verbs,

based purely on surface strings. As a quick illustration whose details are to be discussed in

subsequent sections, our algorithm produces the following hierarchical representation (very

much simplified here) for an English data set similar to (21).

(23) An inheritance hierarchy for some English ‘conjugation classes’

jump
walk talk

move
love wade

push touch

nod clap clip
try cry fry buy

catch teach
seek

go
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Not only do we attempt to look for the inflectional classes, we also infer higher-order

structure, namely the hierarchical relationship among the inflectional classes. This is lin-

guistically significant, because many inflectional morphological systems do not have entirely

distinct string-based patterns across inflectional classes, although the number of classes could

logically be as many as there are lexemes; this observation is termed paradigm economy in

Carstairs (1983, 1987). The different combinations of some small number of inflectional

patterns are what result in the partial overlapping and similarity among inflectional classes.

3.3 On Inflectional Classes

This section explains why linguists should care about clustering introduced in the previous

section. The linguistic relevance of clustering is inflectional classes, a well-known yet under-

studied linguistic phenomenon. If inflectional morphology is what is relevant to syntax

(Anderson, 1982), then the very existence of inflectional classes presents challenges to our

understanding of language. Inflectional classes are the groupings, usually but not always

arbitrary, of the lexemes of a given lexical category in terms of inflectional patterns; their

existence is often attributed to diachronic reasons, see Dammel (2009) for a case study. A

familiar example of inflectional classes is Spanish verbal morphology, which has three major

groups— -AR, -ER, and -IR verbs— with no phonological, syntactic, or semantic basis. In

the call for papers for the special session on “Inflectional Classes in the Languages of the

Americas” at the 87th Annual Meeting of the Linguistic Society of America in 2013, the

crux of the problem and the reason why we are interested in inflectional classes are aptly

summarized:

“Inflection classes are seemingly useless in functional terms, and yet they are

widely found across languages and remarkably resilient over time. [...] Inflectional

classes, as they resist a syntactic or phonological explanation, are in themselves

an interesting object of study for a theory of language because they introduce
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into the linguistic system a layer of complexity which is purely morphological.”1

A quick survey of morphology textbooks and linguistics glossaries reveals that the treat-

ment of and attention to inflectional classes are somewhat uneven (Jensen, 1990; Spencer,

1991; Trask, 1999; Haspelmath, 2002; Bauer, 2003, 2004; Matthews, 2007; Crystal, 2008;

Haspelmath and Sims, 2010; Lieber, 2010; Aronoff and Fudeman, 2011). In more technical

works, the situation is similar. In formal studies of inflectional morphology, so long as in-

flectional classes are not the focus of discussion, a popular treatment of inflectional classes is

simply assign diacritic or class features of some sort to lexemes. For example, a binary fea-

ture such as [±strong] is used to distinguish strong and weak verbs in English in Distributed

Morphology (Halle and Marantz, 1993).

3.3.1 The connection between inflectional classes and clustering

This section underscores the connection between inflectional classes and clustering. The

discussion will be illustrated with the well-known Spanish conjugation classes:

(24) The Spanish present indicative suffixes

1st conjugation 2nd conjugation 3rd conjugation

1.sg -o -o -o

2.sg -as -es -es

3.sg -a -e -e

1.pl -amos -emos -imos

2.pl -áis -éis -́ıs

3.pl -an -en -en

Clustering of morphological paradigms is tantamount to learning inflectional classes and

their string-based hierarchical relationship. If descriptive grammars and current morphologi-

1. From http://linguistlist.org/callconf/browse-conf-action.cfm?ConfID=147727
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cal theory recognize inflectional classes, or at least take inflectional morphology seriously (cf.

Aronoff 1994; Blevins 2006; Matthews 1972; Spencer 1991; Stump 2001a, and others), one

must ask whether (and how) these classes can be learned. Once the inflectional classes are

established, we are also curious if there exists any structure across them. Cross-linguistically,

it is observed that inflectional classes exhibit partial similarity – part of Carstairs’ (1983;

1987) notion of paradigm economy. The Spanish conjugation system as presented in (24)

provides a convenient illustration: intuitively, -ER and -IR verbs are more similar to each

other than either to -AR verbs.

As the table in (24) above shows, the three Spanish conjugation classes are distinct for

the first- and second-person plurals, e.g., -amos, -emos, and -imos for the first-person plurals.

It is differences of this type which give rise to inflectional classes. At the same time, these

conjugation classes share a great deal in common. Across all three classes, the first-person

singular suffixes are -o, the second-person singular suffixes end with -s, and so forth. It is

these similarities which make alignment possible. An algorithmic approach to alignment and

clustering will reveal structured similarities and differences across morphological paradigms.

3.3.2 String-based inheritance hierarchies

Inflectional classes do not differ from one another in an arbitrary way. There is a good

amount of partial similarity among inflectional classes (Matthews, 1991), and there appears

to be an upper bound of the number of inflectional classes given the number of inflectional

affixes (Müller, 2007). As such similarity is usually uneven across inflectional classes in vari-

ous combinations, it is reasonable to think of inflectional classes as having a nested structure

(Corbett and Fraser, 1993; Stump, 2001b) based on the complex overlapping patterns; these

patterns have been studied in depth in terms of principal parts (Stump and Finkel, 2013),

specific frameworks such as Network Morphology (Brown and Hippisley, 2012), and a com-

bination of these (Baerman, 2012). In general, to study structure of this type, clustering is
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a suitable and explicit tool to explore and display the hierarchical structure of inflectional

classes. In the following, we discuss a highly intuitive and illustrative example on Greek

nominals by Haspelmath (2002). We will see that some of Haspelmath’s goals and results

are very similar to ours in this chapter.

Haspelmath considers seven declension classes of Greek nominals, in (25), and discusses

what he calls the inheritance hierarchies among them. The very fact that his data have

the morphosyntactic features such as number, gender, and case means that we are not

dealing with alignment. Working out the inheritance hierarchies among inflectional classes

for Haspelmath is exactly our clustering problem.

(25) Seven classes of Greek nominals, data from Haspelmath (2002, 125)

sg pl

Class nom acc gen nom acc gen

os nomos nomo nomu nomi nomus nomon ‘law (masc.)’

as pateras patera patera pateres pateres pateron ‘father (masc.)’

us papus papu papu papuDes papuDes papuDon ‘grandfather (masc.)

a imera imera imeras imeres imeres imeron ‘day (fem.)’

i1 texni texni texnis texnes texnes texnon ‘art, skill (fem.)’

i2 poli poli poleos poles poles poleon ‘town (fem.)’

u maimu maimu maimus maimuDes maimuDes maimuDon ‘monkey (fem.)’

Haspelmath observes that, in terms of surface forms, these declension classes are not

completely distinct from one another. The partial similarity is illustrated by comparing the

a- and i1-declension classes.
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(26) Greek a- and i1-declension classes, from Haspelmath (2002, 125)

a-declension i1-declension

sg nom imera texni

acc imera texni

gen imeras texnis

pl nom imeres texnes

acc imeres texnes

gen imeron texnon

‘day (fem.)’ ‘art, skill (fem.)

If we replace the common portion among all the forms within a class by “X”, it become

clear that these two classes differ by only a vowel in the singular forms. Haspelmath illus-

trates this by means of “V” as a variable for the vowel, and postulates a common template

for both classes in a hierarchical representation:

(27) The hierarchy of a- and i1-declension classes, from Haspelmath (2002, 127)

XV Xes

XV Xes

XVs Xon

Xa Xes

Xa Xes

Xas Xon

Xi Xes

Xi Xes

Xis Xon

Then, Haspelmath makes a giant leap forward, by presenting an inheritance hierarchical

analysis of all the seven Greek nominal classes we saw earlier.
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(28) An inheritance hierarchy of seven Greek declension classes, from Haspelmath (2002,

128)

XVZ XVZ

XV XVs

XVZ Xon

XVs XVZ

XV XVs

XV Xon

Xos Xi

Xo Xus

Xu Xon

nom-

XVs Xes

XV Xes

XV Xon

Xas Xes

Xa Xes

Xa Xon

pater-

Xus XuDes

Xu XuDes

Xu XuDon

pap-

XV Xes

XV Xes

XVs Xon

XV Xes

XV Xes

XVs Xon

Xa Xes

Xa Xes

Xas Xon

imer-

Xi Xes

Xi Xes

Xis Xon

texn-

Xu XuDes

Xu XuDes

Xus XuDon

maim-

Xi Xes

Xi Xes

Xeos Xeon

pol-

The tree in (28) can be a sophisticated answer to the question of how many classes there

are among the seven Greek paradigms concerned. It may range from two (macro-classes

in Haspelmath’s terminology), referring to masculine classes (the three leaves together on

the left in (28)) and feminine ones (the other four leaves on the right), to four or seven

(micro-classes). Furthermore, the tree also indicates the defaults and principal parts for

the given data. The plural genitive can be considered a default, since all the given seven
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paradigms end with -on. The top node with “Xon” for plural genitive in (28) indicates that

all paradigms in question here share, or inherit, such a morphological characteristic. On the

other hand, the singular genitive is a possible principal part, because the seven paradigms

have almost distinct realizations (with six unique ones) for this cell: -u, -a, -u, -as, -is, -us,

-eos.

Both Haspelmath’s work and ours are about learning inflectional classes and their hier-

archical patterning, but we do not assume knowledge of morphosyntactic alignment at the

outset. Interestingly, Haspelmath does not explain how exactly the rest of the tree with hi-

erarchical clusters in (28) is obtained. We work on the same clustering problem, with fewer

assumptions, and more explicitly.

3.4 Algorithm

This section describes in detail the algorithm to perform alignment and clustering. In brief,

we treat the tasks at hand as an iterative, greedy optimization problem. At each iteration,

the complexity of the system, to be defined and explained below, is minimized. Here is the

algorithm in brief pseudocode:

56



(29) The alignment-clustering algorithm

Data: n paradigms, each with k forms

1 Initialize stems and affixes;
2 n paradigms → n stemplexes;
3 Initialize overall complexity (grammar cost + data cost);

4 while n > 1 do

5 for i← 1 to
(n
2

)

do

6 (for the i-th merging possibility of the 2 stemplexes);
7 for j ← 1 to k! do
8 Compute dij , the decrease in complexity for the j-th alignment choice of

the i-th merging possibility;

9 For the largest dij , actually perform the i-th merging for those 2 stemplexes at

the j-th alignment choice;
10 n←− n− 1;

3.4.1 Initializing stemplexes

The first initialization step is to create stemplexes from the paradigms. We have felt the

need to coin the word stemplex which refers to a new entity: a composite object with a list of

stems, a list of (union) affixes, and a list of morphological paradigms which look very much

like the input data. In its simplest form, a stemplex has only one morphological paradigm,

together with its stem and affixes.

The starting point is a data set with n rows (paradigms), each with k forms:

(30) An n× k data set

k columns

jump jumping jumps jumped jumper

n rows clap clapping claps clapped clapper

...
...

...
...

...
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Stems and affixes

For each paradigm, the algorithm defines its stem and affixes. A stem is the multiset of the

letters/sounds shared by all the forms in the paradigm, and what remains in each form is

an affix; the detailed discussion on strings as multisets is in section 3.4.1. Deriving stems

and affixes is not the focus of this paper, but we need some hypothesis to get off the ground

(as in Haspelmath’s work on Greek nominals discussed above) for alignment and clustering.

As it stands, the algorithm does not update the stems and affixes once they are initialized.

Some paradigms with their stem and affixes are illustrated below.

(31) Deriving stems and affixes by the algorithm

Paradigm Stem + affixes

jump, jumping, jumps, jumped jump + {Ø, ing, s, ed}

clap, clapping, claps, clapped clap + {Ø, ping, s, ped}

go, going, goes, went Ø + {go, going, goes, went}

If one examines the stems and affixes in (31, it appears at first blush that some of them

do not quite make sense to a linguist. In particular, the go paradigm has the null string Ø

as its stem, and all the forms of this paradigm have been shoveled to the affix slots. There is

no bug here: this is necessarily the case because the verb forms go and went do not share any

letters at all. Indeed, the stem and affixes thus derived for go may look odd, but as alluded

to above, getting the stems and affixes right (however one defines “right” here) is tangential

to alignment and clustering, our main goals in this paper.2 To use the airplane-versus-bird

analogy as in Jurafsky and Martin (2006, 14), both airplanes and birds have wings, both fly,

but airplanes do not flap their wings. In our case, we think that we do need some hypothesis

of stems and affixes, as many linguists do when they work on morphology.3 However, we

2. Goldsmith (2011b) proposes a string algebra to learn morphophonology in paradigms, which has the
potential to learn stem allomorphy between Ø and go for go, for instance.

3. This is naturally true for a linguist operating within a morpheme-based framework of morphology and
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need stems and affixes for other purposes, and therefore having our stems and affixes match

what one would think they should look like is a non-issue. As will be clear in section 3.5 on

results, a paradigm such as go with a peculiar stem-affix hypothesis does not have adverse

effects in alignment and clustering. Naturally, there have been explicit attempts to infer the

stem and affixes of a morphological paradigm with varying assumptions (see the survey on

morpheme segmentation in Goldsmith 2010; Hammarström and Borin 2011), but this is not

our objective here.

Strings as multisets of symbols

An important remark is in order regarding the representation of strings. Our algorithm actu-

ally treats all word forms, stems, and affixes as bags of letters with both adjacency and linear

ordering of letters/sounds removed.4 For example, the word jump is computationally repre-

sented as the alphabetized “jmpu”, if it has to be represented as a string at all. This strategy

has multiple advantages. First, it makes it computationally easy to derive stems and affixes.

Second, it does not assume whether the language at hand is a prefixing, suffixing, or even

infixing language.5 This point is illustrated by the potential of the algorithm to deal with

languages with templatic morphology with consonantal roots such as Semitic languages.6 To

give a concrete example, we use the well-known Arabic forms with the triconsonantal root

k-t-b (loosely meaning ‘to write’):

morphosyntax. But even in word-based approaches, it is difficult, if not impossible, to get away from the idea
that a morphologically complex word typically has some phonological material (i.e., the affixal exponence)
shared by other words (Anderson, 1992; Booij, 2010).

4. It is also possible to treats strings with only linear ordering while adjacency is ignored. For stem
extraction, this way of treating word forms leads to the idea that the stem is the longest common subsequence

of all word forms in a paradigm, cf. the previous chapter.

5. Austronesian languages, for example, are well-known to employ infixation in their inflectional mor-
phology; see Yu (2007) for a general survey of infixation.

6. For languages with templatic morphology, there are sophisticated unsupervised approaches such as
Goldsmith and Xanthos (2009), who use a graph theoretical approach to separate vowels and consonants in
order to learn consonantal roots in Arabic.
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(32) Arabic k-t-b forms and their alphabetized representations in the algorithm 7

Arabic form Alphabetized representation

‘he wrote’ kataba aaabkt

‘we wrote’ katabnā aaābknt

‘he writes, will write’ yaktubu abktuuy

‘we write, will write’ naktubu abkntuu

‘writer’ kātib ābikt

‘he dictated’ aktaba aaabkt

‘he dictates, will dictate’ yuktibu biktuuy

‘he asked s.o. to write s.th.’ istaktaba aaabikstt

(imperfect of above) yastaktibu aabiksttuy

‘office’ maktab aabkmt

Using these Arabic forms for illustration, the way the algorithm derives the stem and affixes

for a given paradigm is as follows. First, the shortest word form is located, i.e., ābikt

(alphabetized for kātib). Then, the algorithm scans it from left to right, asking whether each

letter is present in all word forms. If it is, the letter is part of the stem, but if not, the letter

is part of an affix. In this case, for ābikt, only bkt is shared by all word forms in (32), and

therefore is the stem. This stem is exactly the alphabetized version of the triconsonantal root

k-t-b. Right from Harris (1955) on the unsupervised learning of morphological structure, it

is customary that the linear ordering of letters or sounds is assumed and used. Indeed, this

necessarily has to be the case for tasks such as morpheme segmentation. But for objectives

like ours, if discovering morphemes is at best secondary, then removing the linear ordering

of letters gives rise to interesting and useful consequences.

Using our terminology, we have n stemplexes initialized from n paradigms. Next, the

7. Arabic forms are from http://en.wikipedia.org/wiki/Semitic_root accessed May 16, 2013. The
way in which the orthographic ā (for /a:/) is alphabetized does not affect our points of interest.
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algorithm initializes an important measurement, the complexity of the stemplexes.

3.4.2 The complexity computation

What is the complexity of an analysis? The notion of complexity is frequently appealed to

in theoretical linguistics. A typical scenario consists of multiple competing analyses from

different frameworks for some given linguistic data, and the argumentation goes in favor

of one analysis, argued to be the least complex, and therefore the particular theoretical

framework within which the analysis is couched is superior. Complexity is often characterized

qualitatively without rigorous quantification. This makes comparison of analyses rest on

intuitive and subjective terms. This paper represents a step forward towards an objective and

testable measure of complexity. For our purposes, we speak of the complexity computation

of some morphological analysis. Two distinct but related questions are asked: (i) How is

complexity computed? (ii) How is complexity used?

This section focuses on providing an answer to the first question. We propose a way

to represent the complexity of a stemplex, using a number whose computation is detailed

below. The next section is to answer the second question, where we detail the use of the

complexity measurements in the algorithmic steps of alignment and clustering.

The complexity computation is explained by means of an example. Consider the jump

stemplex with five word forms:8

8. As explained above, the algorithm actually treats everything as bags of letters. For reasons of read-
ability, however, we use the human-friendly representations throughout this paper.
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(33) The jump stemplex

jump jumps jumping jumped jumper ⇐ TARGET FORMS

STEM ⇒ jump Ø s ing ed er ⇐ AFFIXES

Complexity is a trade-off between two related components:

(34) Complexity = Grammar cost + Data cost given the grammar

Some remarks are in order as to why we need both components. First, the grammar cost

measures how complex a grammar is. Second, we also need a measure for the forms actually

observed, and that is the data cost. We need both costs because a grammar provides only

generalizations in abstract terms for some given data but not the actual linguistic forms we

use. For instance, we may well utter the sentence The dog chased the cat but not Article

Noun Verb Article Noun given by a part-of-speech analysis. The actual forms are generated

by the grammar, and they incur a cost.

The grammar cost is dependent on the set of p stems {t1, . . . , tp} and affixes {x1, . . . , xk}:

(35) Grammar cost = λ · (
∑p

i=1 |ti|+
∑k

j=1 |xj |+ k)

The grammar cost of a stemplex composed of p paradigms hinges on three terms: the

length of all the p stems (|s| denotes the length of a string s), the length of all the k affixes,

and k (the number of word forms in each paradigm). λ is set to be 5, because 25 = 32

is roughly the number of letters in the alphabet for languages of interest, and five bits are

needed to encode one letter. To illustrate the computation, we use the jump stemplex as in

(33), i.e., p = 1, with only one paradigm in this stemplex, and k = 5 for five word forms.

(36) Grammar cost of the jump stemplex9

9. As it stands currently, the algorithm treats the null string Ø as a letter of zero letters long.
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5 · (|jump|+ |Ø|+ |s|+ |ing|+ |ed|+ |er|+ 5)

=5 · (4 + 0 + 1 + 3 + 2 + 2 + 5)

=85

The data cost computation is arguably more complicated. Several parameter values rep-

resent the different weights for various components of generating the data. They are assigned

some (arbitrarily) chosen values. γ denotes the vector representing these parameters.

(37) Data cost parameters

StemUsed 4

StemNotUsed ?

AffixUsed 1

AffixNotUsed 2

Extra ?

γ =

























4

0

1

2

0

























Conceptually, the set-up has five parameters as shown in (37), which means that the

linguistic system incurs complexity in terms of five different components in order to generate

the observed forms. We have to pay for (i) each stem letter used, (ii) each stem letter not

used, (iii) each affix letter used, (iv) each affix letter not used, and (v) each extra letter

from neither the stem or the affix. Nevertheless, given the simple way how the stems and

affixes are derived, only three of these data cost components currently play an actual role in

the algorithm; their weights are shown in (37). In further work, if we allow changes of the

stem-affix boundaries, then there may be situations where a stem letter from the grammar

is not used to generate the observed word (analogous to deleting a vowel or consonant from

the stem’s underlying form), or where an extra letter is needed (i.e., epenthesis). Until then,
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the parameters StemNotUsed and Extra are inactive. We still choose to include them

here for completeness.

For every target word, i.e., each of {jump, jumps, jumping, jumped, jumper} in (33), the

goal is to use the stem and the relevant affix to generate it, and the algorithm keeps track of

the cost associated. Formally, we define ui ⊆ ti as the set of stem letters used from the stem

ti. It follows that ūi = ti \ ui is the set of stem letters not used from the stem ti. Similarly,

vj ⊆ xj is the set of affix letters used from the affix xj , v̄j = xj \ vj is the set of affix letters

not used from the affix xj . e is the set of letters used from neither the stem nor the affix.

(38) Data cost for a target word wij = γ⊤

























|ui|

|ūi|

|xj |

|x̄j |

|e|

























Take the target word jumps as an example. Its stem is jump, its affix is s, and so the

data cost is as follows:
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(39)

Data cost to generate jumps from stem jump and affix s

=γ⊤

























4
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1

0
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=

[

4 0 1 2 0

]

























4

0

1

0
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=17 (sum of all entries in

[

16 0 1 0 0

]⊤

, the second column in (40))

Performing the same procedure for all target word forms in a given stemplex results in a

data cost matrix, here the one for the jump stemplex:

(40) Data cost of the jump stemplex in (33)
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jump jumps jumping jumped jumper

jump Ø s ing ed er

16 16 16 16 16 (StemUsed)

0 0 0 0 0 (StemNotUsed)

0 1 3 2 2 (AffixUsed)

0 0 0 0 0 (AffixNotUsed)

0 0 0 0 0 (Extra)

Summing all entries in the data cost matrix gives 88 as the total data cost for the jump

stemplex. The overall complexity of this stemplex, grammar plus data, is 85 + 88 = 173.

The algorithm computes the grammar cost and data cost in the way just described for

all stemplexes. The total complexity of the stemplexes is the sum of all grammar costs and

data costs.

3.4.3 Greedy optimization and Minimum Description Length

The previous section presented in detail how complexity is computed. This section explains

how the computed complexity is used for alignment and clustering.

With the stemplexes and total complexity initialized based on the input data, the al-

gorithm undergoes an iterative, greedy process of minimizing the total complexity. This

is achieved by iteratively merging two stemplexes. “Merge” here has nothing to do with

Merge in the current Minimalist syntactic theory, but instead means: choose two stem-

plexes, compute the optimal alignment between them, and create a new stemplex based on

this alignment, such that the total complexity decreases the most at the given particular

iteration.
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Union affixes and optimal alignment

The goal of alignment is to learn, for instance, that jumps is best aligned with loves, jumped

with loved, and so forth. The key is the creation and comparison of union affixes. As an

example, we consider the merging of the jump and love stemplexes. The love stemplex

looks like the following, with a total complexity of 90 + 70 = 160; note that this verb is

different from jump and belongs to the group with e-final stems:

(41) The love stemplex

love loves loving loved lover ⇐ TARGET WORD FORMS

STEM ⇒ lov e es ing ed er ⇐ AFFIXES

(42) Grammar cost of the love stemplex

5 · (|lov|+ |e|+ |es|+ |ing|+ |ed|+ |er|+ 5)

=5 · (3 + 1 + 2 + 3 + 2 + 2 + 5)

=90
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(43) Data cost of the love stemplex

love loves loving loved lover

lov e es ing ed er

12 12 12 12 12 (StemUsed)

0 0 0 0 0 (StemNotUsed)

1 2 3 2 2 (AffixUsed)

0 0 0 0 0 (AffixNotUsed)

0 0 0 0 0 (Extra)

Total data cost = 70

The discussion is first in qualitative and intuitive terms, introducing the idea of union

affixes. According to the algorithm (and our knowledge about English), the best alignment

for the jump and love stemplexes is in (44a); an affix is boxed if it differs from the union

affix:

(44) Aligning jump and love

a. Optimal alignment

Union affixes -e -ed -ing -es -er

jump- Ø jump-ed jump-ing jump- s jump-er

lov-e lov-ed lov-ing lov-es lov-er

b. Suboptimal alignment

Union affixes -es -ed -ing -es -er

jump- s jump-ed jump-ing jump- Ø jump-er

lov- e lov-ed lov-ing lov-es lov-er

To merge the stemplexes jump and love into a new stemplex, the algorithm considers

all 5! = 120 alignment possibilities. Given a particular alignment, the union affixes are
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computed by taking the union of the affixes from the same column. For example, in the

fourth column in (44a), the union affix -es is the union of the individual affixes -e and -

es.10 For this new jump-love stemplex, the union affixes thus derived under this particular

alignment are the new affixes, and are what counts towards the grammar cost of this new

stemplex.

Because the grammar has been updated, the data cost for generating the observed forms

for both jump and love has to be recalculated based on the new affixes. For instance, in

(44a), to generate jumps, the stem is jump-, and the union affix is -es. All four stem letters

from jump- are used, but only one letter, -s, from the union affix -es is used. The unused

union affix letter -e incurs a cost in the algorithm (the affix -s is boxed for differing from the

corresponding union affix). Any other alignment deviating from (44a), such as (44b) with

more boxed affixes, incurs a higher data cost than that of (44a). The alignment in (44a),

with the lowest overall cost, is the best alignment for merging jump and love.

Here are the quantitative details of the alignment just explained. Before merging, the

total complexity of the jump is 173, and that of the love is 160. The combined complexity

of the two stemplexes is 173 + 160 = 333. Finding the optimal alignment is to merge the

stemplexes such that the resultant new stemplex has the lowest complexity. Below are the

cost details of the two alignments illustrated in (44).

(45) Data costs for aligning jump and love

a. Optimal alignment

10. As always, we are dealing with bags of letters, not sets in the mathematical sense. So in a case with
the same double letters in two individual affixes (hypothetically, abb and bbc), the union affix preserves the
double letters (abbc as the union affix for this example).
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-e -ed -ing -es -er

jump- jump-Ø jump-ed jump-ing jump-s jump-er

16 16 16 16 16

0 0 0 0 0

0 1 3 2 2

2 2 0 0 0

0 0 0 0 0

lov- lov-e lov-ed lov-ing lov-es lov-er

12 12 12 12 12

0 0 0 0 0

1 2 3 2 2

0 0 0 0 0

0 0 0 0 0

Data cost = 92 + 70 = 162

b. Suboptimal alignment
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-es -ed -ing -es -er

jump- jump-s jump-ed jump-ing jump-Ø jump-er

16 16 16 16 16

0 0 0 0 0

0 1 3 2 2

4 2 0 0 0

0 0 0 0 0

lov- lov-e lov-ed lov-ing lov-es lov-er

12 12 12 12 12

0 0 0 0 0

2 1 3 2 2

0 2 0 0 0

0 0 0 0 0

Data cost = 94 + 72 = 166

(46) Grammar costs for aligning jump and love

a. Optimal alignment

5(|jump|+ |lov|+ |e|+ |ed|+ |ing|+ |es|+ |er|+ 5)

= 5(4+ 3 + 1 + 2 + 3 + 2 + 2 + 5)

= 110

b. Suboptimal alignment

5(|jump|+ |lov|+ |es|+ |ed|+ |ing|+ |es|+ |er|+ 5)

= 5(4+ 3 + 2 + 2 + 3 + 2 + 2 + 5)

= 115

Examining the cost details in (45) and (46) reveals how the best alignment beats all

other competing alignments. In terms of grammar cost, it is the differences in union affixes
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in different alignments. As for data cost, the locus is the mismatches between union affixes

and individual affixes.

The optimal alignment has a total complexity of 162 + 110 = 272. For the suboptimal

alignment discussed, the complexity is 166 + 115 = 281. Both are lower than the pre-merging

complexity of 333, but the complexity of the optimal alignment is the lowest among all 5!

alignment permutations by saving 333 − 272 = 61. It is only 333 − 281 = 52 that this

particular suboptimal alignment saves. The following table shows the cost saved of the best

ten alignments.

(47) Costs saved of the best ten alignments for jump and love

Rank Cost saved

1 61

2 52

3 52

4 52

5 43

6 43

7 43

8 43

9 43

10 43

MDL-based iterative merging

With n stemplexes initially, each with k target word forms, there are
(n
2

)

distinct ways of

picking a pair of stemplexes for merging. For each of these
(n
2

)

merging possibilities, there

are k! alignment permutations. The algorithm checks all
(n
2

)

k! options for the particular

alignment in a specific merging option which lowers the total complexity the most.
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Merging is performed iteratively as greedy MDL-based optimization. At each iteration,

two stemplexes are merged with the best alignment between them, such that the grand total

complexity for the overall data set is minimized. This is schematized as follows:

(48) Derive stems and affixes

Initialize complexity

1

1 1 1

2

1 1 1

... ...
(n
2

)

1

1 1 1

2

1 1 1

... ...
(n−1

2

)

1 1 1

After the first iteration, the system has n − 1 stemplexes left, and therefore the second

iteration has
(n−1

2

)

merging possibilities. The iterative merging process ends when there is

only one stemplex left in the system.

A remark on the greediness of the algorithm. Once two stemplexes are merged with their

best alignment, the new stemplex stays as is. No un-merging or re-alignment is allowed. The

algorithm does the best it can to lower complexity at each iteration. In brief, the algorithm

does not look back, nor look ahead. Even if there may be globally less costly merging options

down the road in future iterations that would require a locally suboptimal merging choice,

the algorithm does not consider them. In fact, there is a practical, computational reason for

the strict greediness: when merging involves a complex stemplex, if the algorithm took away

the established alignments within that complex stemplex, then the number of (re-)alignment

possibilities would grow exponentially over the factorials and the computation would take

way too long.
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The clustering effect

Finally, what is left to be accounted for is the clusters that mimic inflectional classes for

conjugation and declension. The key is the MDL-based and greedy nature of the algorithm.

The more similar the paradigms, the earlier they merge in the iteration. From the perspective

of machine learning, since all clustering algorithms employ some notion of distance among

the objects in question, we can say that this paper proposes a measure for morphological

similarity among paradigms in order to perform bottom-up, agglomerative clustering.

Let us for the moment consider the merging of the jump and walk stemplexes.

(49) The grammar (stems and affixes) for merging jump and walk

a. Before merging, with individual affixes for each stemplex:

jump- -Ø -ed -ing -s -er

walk- -Ø -ed -ing -s -er

b. After merging, with union affixes for the new stemplex:

jump-
-Ø -ed -ing -s -er

walk-

The union affixes thus created for jump and walk are identical to the individual affixes

of both paradigms. This is doubly good in terms of complexity minimization. For the new

grammar, one of the two (identical) sets of the individual affixes are effectively wiped out

from the system. For the data cost, there is no increase. If the two sets of individual affixes

were not identical, as is the case between jump (regular) and love (with silent e) discussed

in detail above, there would not be such advantages. The more similar paradigms attract

one another.
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3.4.4 Back to Greek Nominals

If we now have an algorithm which learns hierarchical patterns of inflectional classes, then

it should be interesting to try it with the Greek nominal data that Haspelmath (2002)

considers. With everything unchanged in the algorithm, including all the grammar and data

cost parameters, the seven Greek paradigms in (25) are analyzed as follows for alignment

and clustering.

(50) Alignment results of the seven Greek nominal paradigms from (25)

mno nomos nomo nomu nomi nomus nomon

aeprt pateras patera patera pateres pateres pateron

eimr imeras imera imera imeres imeres imeron

appu papus papu papu papuDes papuDes papuDon

aimmu maimus maimu maimu maimuDes maimuDes maimuDon

entx texnis texni texni texnes texnes texnon

lop poleos poli poli poles poles poleon

(51) Clustering results of the seven Greek nominal paradigms from (25)

628

nom 541

280

pater imer

447

180

papu maimu

367

texn pol

The alignment in (50) does not match the original Greek data with morphosyntactic fea-
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tures indicating the correct alignment in (25). As for clustering, the resultant tree looks quite

distinct from what Haspelmath has come up with. For ease of comparison, Haspelmath’s

tree is simplified as follows:
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(52) Haspelmath’s inheritance hierarchy for the Greek nominals concerned

nom
pater papu

imer texn maimu

pol

While the Greek results may be less satisfactory than the English ones, this is not en-

tirely bad new for us. Understanding why we have obtained our results is instructive for

further research. For alignment, one factor contributing to the undesirable results is that

the algorithm is not (and should not be) able to see a strong generalization within the given

data separating the masculine classes from the feminine ones. The singular nominative in

the given masculine classes all ends with -s, but without it in the singular genitive. This

pattern is the exact opposite in the feminine classes.

The crucial difference between Haspelmath’s work and ours here is that Haspelmath

knows a priori the alignment by the knowledge of morphosyntactic knowledge. His goal

is to deal only with clustering. Indeed, as illustrated in (52), Haspelmath’s inheritance

hierarchical analysis has all masculine classes cluster together, the three leaves on the left.

The other four leaves on the right are the feminine classes.

Juxtaposing Haspelmath’s work and ours confronts us with the question of whether we

assume prior assumption that, for instance, jumping and loving belong to the same morpho-

logical category in English. It is “yes”, as in Haspelmath’s discussion, if we assume knowledge

of morphosyntactic features, their distribution, and all that (which non-computational lin-

guists often do), but it is the “no” side that we would like to explore in this paper and related

work: we would like to explore how much we can learn if we remove assumptions which we

are so used to and which we take for granted.
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3.5 Results

The clustering results are visualized arboreally. With the 19 English verbal paradigms like

those in (21) as input, the following are the first three merges.

(53) The first three merges

195

cry fry

295

try 195

cry fry

380

catch teach

The first merge is between the cry and fry stemplexes, represented by the first tree

in (53). The mother node says “1”, which means this is the first merge. There is also the

subscript “95”, which tells us that this merge saves 95 units in complexity. The second merge

is between a complex stemplex, created from merge 1, and the try stemplex. This merge

also saves 95 units, which indicates that the order of merging among cry, fry, and try

does not matter; this makes good sense, as they are morphologically identical. At the third

iteration, the algorithm decides that it is best to merge catch and teach, which makes

the total complexity drop by 80 units.

With 19 paradigms at the outset, there are 18 merges altogether (n − 1 merges for n

input paradigms). The following table shows the cost saved at each merge.

(54) Costs saved by merging
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Merge Cost saved Merge Cost saved

1 95 10 65

2 95 11 53

3 80 12 53

4 80 13 51

5 75 14 34

6 75 15 30

7 70 16 -7

8 68 17 -26

9 65 18 -43

Importantly, the costs saved by successive merges are decreasing, or at least non-increasing

for ties between two merges. This is the case because the algorithm aims at decreasing the

total complexity as quickly as possible. From the 16th merge onwards, the costs saved are

negative. The algorithm can no longer actually decrease the total complexity. Nonetheless,

algorithm does not stop until there is only one stemplex left, and the best it can do is to in-

crease complexity the least. In other words, from merge 16 through 18, the total complexity

increases as little as possible.

For more interpretation of the clustering results, let us examine the complete tree:

(55) Clustering results
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18
−43

1253

1065

jump 965

walk talk

868

675

move 575

love wade

770

push touch

17
−26

16
−7

1153

nod 480

clap clip

1530

295

try 195

cry fry

1434

buy 1351

380

catch teach

seek

go

From (55), one can visually identify English ‘conjugation groups’ such as the following;

they are reminiscent of Bloch’s (1947) grouping of English verbal inflectional classes:
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(56) Some English ‘conjugation classes’

Property Paradigms

Regular jump, walk, ...

Silent ‘e’ love, move, ...

Consonant doubling nod, clap, ...

‘y/ie’ try, cry, ...

‘es’ for 3sg push, touch, ...

‘{a,o}ught’ for past buy, seek, ...

Suppletive go, ...

At another level, the negative saved costs in (54) can be interpreted as indicators of more

general, major clusters (Haspelmath’s macro-classes). This is a way of interpreting them,

and in this particular one, they tell us where the algorithm should not have merged, so to

speak. In (55), the boxes indicate the main clusters under this interpretation. The groupings

appear to reflect suppletiveness or the amount of ‘morphophonological alternations’ involved

in the paradigms.

Given the generality of the algorithm and to point to directions of further work, we briefly

examine in the following the preliminary clustering results of Spanish verbal paradigms

alluded to from time to from in the discussion above.

We take as input data the 50 most common verbs in Spanish, conjugated in the present

indicative; each verb lexeme has six inflected forms, such as hablo-hablas-habla-hablamos-

habláıs-hablan for hablar ‘to speak’. The algorithm takes the given alignment in the input

data as is (section 3.4.4) and assumed the same cost parameter γ (37). The resultant

clustering tree, with merge numbers and costs removed for simplicity of exposition, is as

follows:11

11. The dataset and output files are also found here (showing a partial tree here for reasons of space):
https://github.com/JacksonLLee/morph-align-cluster
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haber

estar ir

dar

llegar pasar

quedar hablar

llevar dejar

llamar tomar

tratar mirar

esperar buscar

entrar trabajar

pensar empezar

saber

tener querer perder

entender

venir

poner

deber creer parecer conocer

seguir pedir

hacer decir

salir

vivir existir

escribir ocurrir

recibir

producir

ver

82



The boxes at some of the leaves in the tree above indicate that the paradigms in the same

box are determined to be morphological identical, i.e., having the same inflectional pattern;

the largest box is the one with non-stem-changing -AR verbs such as llegar, quedar.

3.6 Conclusion

We have proposed a language-independent clustering algorithm which learns structure across

morphological paradigms for inflectional classes and their hierarchical patterns. The work

is a step forward, built on top of Haspelmath’s illustration of Greek nominals; we have also

shown results from other languages such as English and Spanish. The starting point of

this chapter is the availability of morphological paradigms like the English verbs in (21). A

question lurking in the background is the following: Where do these paradigms come from

in the first place? This is the subject of the next chapter.
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CHAPTER 4

PARADIGM INDUCTION AND ALIGNMENT

4.1 Introduction

The previous chapters on stem extraction and paradigm similarity assume that morphological

paradigms are given to the analyst. In particular, for paradigm similarity, the morphological

paradigm datasets are neatly in the form of tables, where each row is the paradigm of one

lexeme, and each column is the word form of a particular morphosyntactic feature. This

chapter asks the following question: how we do obtain tables of morphological paradigms,

just like those we have used in the previous chapters? To answer this question, this chapter

takes the approach of unsupervised learning of morphological paradigms from raw text; the

text or language in question has orthographic word boundaries (e.g., spaces), as we are

not handling word segmentation in this dissertation. Specifically, this chapter discusses two

tasks: paradigm induction and paradigm alignment.

When we discussed structure within a paradigm and across paradigms in the previous

chapters, we assumed that a full paradigm table, as in (57) below, is available to a computer

program.

(57) A full paradigm table (e.g., English verbs)

talk talks talked talked talking

take takes took taken taking

move moves moved moved moving

...
...

...
...

...

A full paradigm table has three defining properties which the exploration of paradigmatic

structure in previous chapters makes use of:

(58) Properties of a full paradigm table (as in (57)):
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a. Each row contains word forms from one lexeme, e.g., talk (first row above) as

opposed to take (second row).

b. Each column contains word forms from the same morphosyntactic category, e.g.,

talks, takes, moves for third person singular (second column) as opposed to talked,

took, moved for simple past (third column).

c. The table is complete with no empty cells.

Paradigm induction is about how to learn the paradigms, such as the individual rows in

(57), from raw text. For instance, in English, the rows learned can be {jump, jumps, jumped,

jumping} as one row, or {create, creates created, creating} as another. While each row is

a set of word forms that belong to a lexeme, paradigm induction is not responsible for the

way how one row of word forms should be aligned with another row – this is where paradigm

alignment plays the role of figuring out what the columns should be. Ideally, the results of

paradigm alignment are in line with the morphosyntactic features of the word forms involved.

Using the English examples here, jump and create should be placed in the same column in

an English paradigm table, whereas jumps and creates in another. It is when both paradigm

induction and paradigm alignment are solved that we obtain a paradigm table such as (57).

4.2 Learning Morphology from Raw Text

The use of raw text in learning paradigm tables begs the following questions: How do we

know (i) which and how many rows of paradigms exist in the raw text data, (ii) which and

how many columns of morphosyntactic categories are there?

These questions bear closely on language acquisition research, for the question of how

the learner of a language acquires its morphological structure from the natural linguistic

input. In the present context, learning morphology from raw text by a computer program is

different from the human naturalistic setting. Raw text has linguistic data transformed into

a machine-readable form with word-level segmentation given, very much like the text of this
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dissertation with which the reader is presented. Although word segmentation is given, the

task of morphological paradigm learning is still faced with empirical challenges associated

with the “poverty of the stimulus” (Chomsky 1980; Pullum and Scholz 2002; Niyogi 2006).

First, there is no negative evidence, in the sense that humans acquiring their first language

do not normally obtain explicit feedback for producing ungrammatical utterances. Second,

there is not sufficient positive evidence in the linguistic input. This point is widely discussed

in terms of data sparsity in the computational literature (e.g., not all n-grams of possible

word sequences are observed in any finite size of corpus; Jurafsky and Martin 2006), and in

terms of (morphological) productivity in the more traditional linguistic literature (Hockett,

1960; Bauer, 2001). For morphological paradigms, for instance, it is entirely possible to

observe only {jump, jumped, jumping} but jumps in a particular text. Another observed,

incomplete paradigm may well be {loves, loving}. Even if a computer program succeeded at

the paradigm induction problem by learning these paradigms, there would still be the issue

of paradigm alignment, e.g., aligning “loving” with “jumping”, while not aligning “loves”

with either “jump” or “jumped”.

4.3 Paradigm Induction

The paradigm induction problem is to look for morphologically related words by lexeme

in a text corpus. These related wordforms are the basis for the rows in a paradigm table.

There has been a good amount of work on inducing paradigms from a corpus text in one

way or another (Yarowsky and Wicentowski, 2000; Goldsmith, 2000, 2001, 2006; Schone and

Jurafsky, 2000, 2001; Baroni et al., 2002; Creutz, 2003; Creutz and Lagus, 2005; Zeman,

2008; Dreyer, 2011; Dreyer and Eisner, 2011; Borg and Gatt, 2014). This dissertation builds

on the results from Linguistica by Goldsmith (2000, 2001, 2006).

Linguistica by Goldsmith (2000, 2001, 2006) takes a sizeable wordlist of an unknown

language as the input and induces groups of paradigms with the associated stems and affix
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patterns by the minimum length description principle (Rissanen, 1989). These groups are

known as signatures. For example, {Ø, s} is a morphological signature very likely to be

induced in any sizable English datasets, with possible associated stems such as walk-, jump-

(which entails that the wordforms walk, walks, jump, jumps occur in the data).

4.3.1 Results from Linguistica 5

Using the Brown corpus (about 50,000 word types from one million word tokens) for written

American English, Linguistica 5 finds over 300 morphological signatures. Those with the

most associated stems are shown in the screenshot in Figure ??; the signature {Ø, ed, ing, s}

is highlighted, with its associated stems displayed on the right.

As an example, with Brown corpus (Kučera and Francis, 1967) as the input corpus text

from which an English wordlist is derived, Linguistica induces the following top ten signatures

ranked by the number of stems associated with each signature:

(59) English signatures induced from Brown corpus by Linguistica

Signature Sample paradigm Stem count

NULL-s airport airports 2341

’s-NULL barber’s barber 784

NULL-ly abnormal abnormally 658

NULL-d-s assume assumed assumes 362

NULL-d choke choked 317

’-NULL cousins’ cousins 187

ies-y faculties faculty 186

’s-NULL-s actor’s actor actors 184

NULL-ed-ing-s allow allowed allowing allows 184

ed-ing darkened darkening 184
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In (59), a row consists of a signature, i.e., a unique set of affixes. The most common

signature by stem count is NULL-s. A sample paradigm is airport∼airports, where the stem

is airport-. The Linguistica program finds 2,341 stems such as airport- which are associated

with the signature NULL-s. In other words, there are 2,341 paradigms with this exact same

affixal pattern with NULL-s, and another 784 paradigms with the signature ’s-NULL, and

so forth. Although some signatures share identical or similar affixes, Linguistica treats all

signatures as completely distinct from one another and makes no attempt to find relationships

among them.

An examination of these corpus-derived paradigms reveals the contrast between them and

the paradigms in a full paradigm table, and demonstrates how challenging it is to properly

construct a paradigm table from a text corpus alone. Consider English verbal paradigms.

For regular verbs, there are four distinct inflected forms, e.g., jump∼jumped∼jumping∼jumps

for jump. The signature NULL-ed-ing-s corresponds to this verbal inflectional pattern in

English, and happens to be in (59) as one of the most common signatures. But there are

two issues here, as (59) shows. First, despite the large sizes of corpora, a lexeme is typically

observed to be inflected only in some but not all of its possible forms. The issues are those

of data sparsity and strongly skewed distributions among lexemes (Baayen, 2001). The sig-

nature ed-ing in (59) is a case in point, with darkened∼darkening being one of the associated

paradigms: if both darken and darkens were in Brown corpus, then this darken paradigm

would be in the signature NULL-ed-ing-s. The second issue has to do with morphophonol-

ogy, for both phonological and orthographic alternations. Both NULL-d-s and NULL-d are

among the most common signatures in (59), and they are clearly verbal paradigms. What

is shared by the paradigms associated with both signatures is the silent ‘e’ in the infinitival

form. We would want to put these paradigms from NULL-d-s and NULL-d (with silent ‘e’)

with those from NULL-ed-ing-s and others (without silent ‘e’) into a single paradigm table,

because they are all verbal paradigms.
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Now that we have a way to learn morphological paradigms from a text corpus as signa-

tures, we have the rows of a paradigm table, where each row is the wordforms of a lexeme.

What is missing is the alignment by columns. For instance, given the signatures NULL-ed-

ing-s and NULL-d-s, both of which are presumably for English verbal paradigms, we would

want the NULL wordforms from both signatures to belong to the same column in the para-

digm table, ”ed” should go with ”d”, ”s” from both signatures should be in another column,

and finally the ”ing” wordforms from the first signature should not be aligned with any

paradigms in the NULL-d-s signature. The next section discusses this paradigm alignment

problem.

4.4 Paradigm Alignment

In this dissertation, the approach to solving the paradigm alignment problem is inspired by

how we appear to have acquired morphosyntactic knowledge naturally.

Intuitively, a simple subset principle might seem to be able to do this: if signature A has

all affixes in signature B, and if signature A has more affixes than signature B, then collapse

signatures A and B by keeping A, moving all paradigms from B to A, and removing B.

Both over-collapsing and under-collapsing arise as potential issues out of this strategy. On

over-collapsing, due to (accidental) syncretism, collapsing NULL-s (with both nominal and

verbal paradigms in English) and the verb-only NULL-ed-ing-s signature, though obeying

this subset principle, would be problematic. As for under-collapsing, because of surface

affixal differences between NULL-d-s and NULL-ed-ing-s, these two verbal signatures cannot

be straightforwardly collapsed by the subset principle alone.

As Goldsmith (2009) points out, aligning signatures and their resulting morphological

paradigms is a challenge. The crux of the problem appears to be the lack of some kind of

syntactic information. Linguistica takes as the input a plain wordlist with no annotations or

labels whatsoever. If we had, say, part-of-speech annotations (which Chan (2006) assumes
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in paradigm induction, for instance), then both over-collapsing and under-collapsing would

be mitigated. The paradigms in NULL-s would presumably be distinguished as verbal and

nominal paradigms. All paradigms belonging to the same part of speech, irrespective of

signatures, could be forced into the same paradigm table, with the correct morphological

alignment computed by an algorithm similar to the one described in the previous chapter

on paradigm similarity.

The goal of this dissertation is to induce morphological structure by a fully unsupervised

approach; assuming annotations such as part-of-speech labels would be a clear violation.

The following sections describe the induction of morphosyntactic alignment across words in

a raw text, and how such learned morphosyntactic knowledge is used in solving paradigm

alignment.

4.4.1 Unsupervised Word Category Induction

The problem of inducing morphosyntactic categories for words from a text corpus is very

much the problem of unsupervised word category induction (Christodoulopoulos et al. (2010)).

What are morphosyntactic categories? As a first approximation, they are what is known

as lexical categories, or parts of speech, or word classes, e.g., nouns, verbs, and so on. There

are eight broad categories of this type widely recognized for English: nouns, verbs, pronouns,

adjectives, adverbs, prepositions, conjunctions, and interjections. This means that all the

word tokens in a large corpus of English can, in principle, be assigned one of the members

from this much small set of categories. One can make finer distinctions among these broad

categories. For instance, the Brown corpus (Kučera and Francis, 1967) uses a part-of-speech

tagset with more than 80 distinct tags; for verbs, VBD labels verbs in simple past tense and

VBG verbs in the -ing form. In this dissertation, we use “morphosyntactic categories” as a

cover term to mean both broad and narrow types of categories.

Morphosyntactic categories have been treated in various ways in the literature. In the
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more traditional linguistic studies, the focus is to model the syntactic and semantic similar-

ities and differences across the (broad) morphosyntactic categories. In generative studies,

early attempts include the parametric ones using different features of [± X] and the natu-

ral classes thus formed (Chomsky, 1970; Jackendoff, 1977; Déchaine, 1993). However, Baker

(2003), among others, observes that formal approaches such as these do not seem to have had

strong ramifications; indeed, regardless of theoretical frameworks, current linguistic practice

appears to be already content with the more traditional and descriptive labels such as N(oun)

and V(erb) and therefore speaks of NPs and VPs.

In the computational literature, works of our interest are under the rubric of part-of-

speech (POS) tagging. The focus is to assign a part-of-speech (equivalent to morphosyntactic

category in our sense) label. These studies can be divided into those using supervised learning

techniques and those using unsupervised ones. As discussed above (sec 1.4.2), the main

difference is what the input looks like, and how much is assumed to be given. In actual

practice, most works in this area are supervised in one way or another. If a learning system

assigns POS tags in a truly unsupervised manner, then there should only be a raw text as the

input, and the system must have no language-specific knowledge at all. If this is the case, then

there is no way to obtain outputs with such labels as nouns or verbs. For practical purposes,

this is not desirable. A good amount of work on POS tagging is essentially what Goldwater

and Griffiths (2007) call POS disambiguation, which means there is a dictionary wordlist

with each word associated with multiple possible POS labels or the system a priori knows the

list of POS labels each with some prototype words (Merialdo, 1994; Banko and Moore, 2004;

Wang and Schuurmans, 2005; Smith and Eisner, 2005; Haghighi and Klein, 2006). Fully

unsupervised approaches to POS tagging typically make use of the distribution of words in

an unannotated corpus and define a distance metric between words for clustering, possibly

with additional information such as morphology learned from the raw corpus (Schütze, 1995;

Clark, 2000, 2003). Despite the attractiveness of fully unsupervised learning techniques such
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as clustering, it might not be straightforward to evaluate results as gold standards do not

normally exist in the form of (unlabeled) clusters.

In this dissertation, we employ a fully unsupervised graph-theoretic approach to inducing

morphosyntactic categories, drawing from Goldsmith and Wang (2012). In the discussion

that follows, we focus on the intuition of how Goldsmith and Wang’s method can take

a text corpus and use distributional information across words to help us infer that, for

example, jumps, takes, walks belong to a morphosyntactic category where jump, take, walk

are excluded.

Given an unannotated corpus, the distributional information is derived from the word-

based trigrams of the corpus. To the extent that morphosyntactic and semantic information

is reflected by the distribution of the words, using n-grams is a valid approach. Moreover,

n-grams are readily available in an unannotated corpus, which makes unsupervised learning

possible with minimal language-specific assumptions. This unsupervised learning approach

of using distributional information only in some unlabeled linguistic data has also been

employed in other areas of linguistics such as phonology, see, e.g., Riggle (2011); Goldsmith

and Riggle (2012).

The following are the ten most frequent trigrams in the Brown corpus:

(60) The most frequent trigrams in the Brown corpus
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Rank Trigram Count

1 , and the 662

2 one of the 403

3 the united states 328

4 , however , 321

5 , in the 266

6 , he said 257

7 as well as 238

8 , it is 234

9 , and he 225

10 of course , 220

Each word token is associated with three sets of trigrams. Take beginning in the sequence

“In the beginning God created...” that begins the Bible. The first trigram has beginning as

the third word, i.e., (In, the, beginning). The second trigram has beginning in the middle,

(the, beginning, God). The third one has beginning at the end, (beginning, God, created).

Information of this sort for all word types in the corpus is collected; intuitively, two word

types such as modals would and must have similar patterns of neighboring words, which

would suggest that would and must share similar neighboring words and therefore similar

morphosyntactic distributions.

Then, a series of graph-theoretic operations compute the distributionally (and mor-

phosyntactically) most similar words for each word types. First, a graph of word similarity

for all pairs of word types is computed based on the number of shared word ngram contexts.

We compute the most significant eigenvectors of the normalized Laplacian of the graph.

Each word is embedded in R
k based on the coordinates derived from the k eigenvectors.

A new graph of word similarity is obtained based on the Euclidean distance of the word

coordinates. Words in this resultant graph are connected to one another in such a way that
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corresponds to syntactic neighborhood. For instance, the word “the” likely has other articles

or determiners such as “a” and “an” as syntactic neighbors that occur in syntactically similar

positions. Using the Brown corpus Kučera and Francis (1967), several syntactic neighbors

for the word types “the”, “would”, and “after” are in Table ??.

(61) Syntactic neighbors

Word Most similar words

all such some after than like about even before then

over about on into up at like out from with

its our their my this his such the some these

before after like about then that than when all what

had has have did said do made first like who

to in at for by from on of into with

only also even made now no more any so one

has had have did said first do who like )

then now before what when that like but after than

them me him her it you up out do my

Importantly, the syntactic neighbors of a given word are themselves word types in the

given dataset. The interconnectedness of words in the syntactic neighborhood results calls

for network visualization. This can be done in Linguistica 5 as one of the key new features.

Figure 4.1 shows a screenshot of Linguistica 5 displaying the syntactic word neighborhood

network for the most frequent 1,000 word types in the Brown corpus, as rendered by the

force-directed graph layout in the JavaScript D3 library Bostock et al. (2011). Figure 4.2

zooms in for the cluster of words that would be categorized as modal verbs such as “could”,

“would”, and “must”.

With induced knowledge analogous to word categories in natural language, results of un-

supervised morphological learning could be improved. For instance, morphophonology could
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Figure 4.1: Syntactic word neighborhood network in Linguistica 5

be learned. Induced morphological signatures such as {Ø, ed} (walk-walked) and {Ø, d}

(love-loved) could be aligned for orthographic allomorphy across signatures (words with ed

and d belonging to the same word category in this case).

A word in the left-hand column in (61) above can be one of the most similar words for

another word. For example, the first row has all and its nine most similar words, while

the fourth row has before with all being one of the most similar words of before. This sort

of intertwining relationship among words can be more meaningfully visualized as a graph,

where a node represents a word and is connected by an edge to the word’s most similar

words. For example, take would as our seed word, and ask what the five distributionally

most similar words are. For each of these most similar words, we ask again what its five most

similar words are, and we repeat this process twice; in other words, we generate a graph with

three generations of nodes seeded by would. The graph is as followed:

In the graph (4.3) above, the orange node would is the seed with five blue nodes connected

to it. These five nodes represent may, will, could, do, to. Each of these five blue nodes is
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Figure 4.2: Zooming in Figure 4.1 for modal verbs

further connected to five nodes. If these latter nodes are not one of those already present

(either orange or blue) in the graph, then they will be yellow. With five blue nodes each

connected to another five nodes, there could be 25 (= 5× 5) yellow nodes in principle, but

there are only 11 in the graph above. This means that some of the blue words (and the

orange would) are highly connected among themselves. This translates into the observation

that these words together are distributionally very similar; in this particular case, they are

words typically followed by a bare verb form. If we move on to the next generation of nodes,

the same observation applies. With 11 yellow nodes, we might expect 55 (= 11×5) connected

nodes (the green ones in the graph above), but there are only 10. This is because the yellow

nodes are strongly inter-connected; most of them are prepositions typically followed by a

noun.

The graph for would above shows how the Goldsmith-Wang algorithm clusters words
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Figure 4.3: would as seed word, 3 generations of 5 most similar words

by what is analogous to morphosyntactic categories. This graph of would can be seen as a

snippet of a much larger picture, both literally and computationally. The following shows

the graph for the 1,000 most frequent word types in the Brown corpus:

In this particular two-dimensional rendering of the 1,000-node graph, there are portions

which stick out prominently, much like the legs of an amoeba. If we zoom in onto the

“northwest” corner of this graph and examine the nodes, we see what is desirable with

respect to morphosyntactic categories:

Modals and auxiliaries cluster together, and so do verbs in their infinitival form; see (4.5).

Clusters of nodes of this sort are what we look for. Computationally, they are the minor
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Figure 4.4: Graph of the 1,000 most frequent words from the Brown corpus

subgraphs (“minor” in the sense of having a much smaller number of nodes compared to the

major subgraph) which have densely connected nodes within themselves but are connected

to the major subgraph with a relatively small number of edges.

Finally, to map words in a graph to their induced word categories, we apply a community

detection method, such as the Louvain algorithm (Blondel et al. 2008). Community detection

is a common technique in network analysis, where the interest is how entities in a network

may cluster together. Given the discussion about words’ morphosyntactic behavior and

how they may cluster together, it would seem that community detection is appropriate for

our purposes of inducing word category induction. (4.6) visualizes the result of community

detection by coloring a graph of the same top 1,000 most frequent words from the Brown

corpus by their induced categories.

Now that we have an unsupervised method to induce word categories from a raw text, the

next section discusses how to combine morphological knowledge from paradigm induction

and morphosyntactic, distributional knowledge in order to solve paradigm alignment.
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Figure 4.5: English modal verbs and infinitival verbs as separate clusters

4.4.2 Combining Morphological and Distributional Knowledge

To morphosyntactically align morphological paradigms, a simple algorithm based purely on

the learned word categories is as follows:

• For each signature (e.g., NULL-s), the goal is to find the word category assignment for

each affix (”NULL” and ”s”).

• The word category assignment for an affix is based on the associated wordforms in

that signature. For each of these wordforms, we know the learned word category by

the graph-based approach in the previous section.

• The wordforms for a given affix would likely disagree for the overall word category

assignment. A simple resolution would be by simple majority: The word category that

has the most number of wordforms for that affix is the final word category assignment

for that affix as well.

With all affixes of all signatures assigned a word category, we can visualize the result in

a table:
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Figure 4.6: Graph of the 1,000 most frequent words from the Brown corpus, colored by
induced word categories

(62) Aligning morphological signatures
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

NULL-s s NULL

’s-NULL ’s NULL

NULL-ly ly NULL

NULL-d-s s d NULL

NULL-d d

ies-y y ies

NULL-ed-ing-s s ed NULL ing

’s-NULL-s NULL

’-NULL NULL

ed-ing

d-s s d

e-ed-es-ing ing ed e es

NULL-ed

NULL-ed-ing NULL

d-r r d

e-y e y

d-r-rs d r

NULL-ing NULL

ng-on ng

NULL-ed-s NULL

e-ed-ing

’-g g

ng-on-ons on

ce-t ce

NULL-al-s NULL al

NULL-es

ed-ion ion

NULL-al NULL

NULL-ly-s NULL

NULL-y NULL

’s-NULL-s-s’ NULL s

NULL-n

m-t

d-rs d

In (62), the columns represent the word categories 1, 2, and so on. Each row is for a

signature, and its affixes are indicated in the row for which word category it is assigned to.

Some of the columns would appear to be desirable, e.g., word category 8 for what would

seem to be the past tense or past participle words with ”-(e)d”. Note that this method

of alignment is based only on the distributional knowledge. Further work may incorporate

knowledge of the surface string similarity to improve the result, e.g., the ”(i)ng” affixes

should presumably be aligned to the same column.
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CHAPTER 5

CONCLUSION

5.1 Introduction

Two themes have emerged from this dissertation research:

• Learning linguistic structure from raw data – as exemplified by the several topics in

computational morphology studied in this dissertation

• Reproducible, accessible, and extensible research – as operationalized by modern soft-

ware engineering practice

While there are multiple directions in which this research can continue. in this concluding

chapter I sketch one of them of particular interest to me, and describe some of the related,

ongoing work.

Across the topics of computational morphology discussed in this dissertation—stem ex-

traction, paradigm similarity, as well as paradigm induction and alignment—the data being

used starts from the more linguistic structured to the less: first morphological paradigms

given by lexeme, and then unannotated raw text. What is at odds is that learning linguistic

structure from raw text (such as the Brown text used extensively in this work, or Wikipedia,

or another large text dump) is not how humans acquire language. Humans acquire language

incrementally, in two important senses: (i) there is a time dimension, such that the linguis-

tic input data becomes available continuously over time, and (ii) the input data increases

in complexity for both its content and grammatical structure. Feeding linguistic data as a

single batch to a computer program, as has been done in this dissertation so far, eliminates

these two incremental aspects of language acquisition. My ongoing work attempts to fill this

gap, by modeling the learning of linguistic structure using naturalistic language acquisition
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data, and by building tools related to this line of work for reproducibility, accessibility, and

extensibility.

5.2 Working with CHILDES Data Programmatically

Natural language data often come in the form of conversations transcribed in some specific

format for the purposes of linguistic research and other domains that require a consistent rep-

resentation of conversational data. A very commonly used format is the CHAT transcription

format (MacWhinney, 2000). CHAT (Codes for the Human Analysis of Transcripts) is the

transcription format particularly developed for CHILDES (Child Language Data Exchange

System) for language acquisition research. As CHAT is well documented and can have very

rich annotations, it is also used more generally outside the field of language acquisition, for

areas such as conversational analysis, corpus linguistics, and clinical linguistics.

Research using data in the CHAT format necessitates tools for extracting information

and doing analysis in an efficient and automatic manner. This is particularly relevant for

the computational modeling of language acquisition, a growing field of study across lin-

guistics, psychology, and computer science (cf. Alishahi 2010; Villavicencio et al. 2013).

The CHILDES project has the associated tool CLAN (Computerized Language Analysis),

a widely used toolkit with a graphical user interface which facilitates both transcription

and analysis of conversational linguistic data. As a standalone computer program, however,

CLAN does not straightforwardly allow customized manipulation and analysis of CHAT

transcripts that deviates from the functionalities directly provided by CLAN itself. To this

end, a solution would be to come up with something that parses CHAT transcripts and al-

lows researchers to devise any tools and programs for their purposes. For instance, it would

be desirable to be able to parse CHAT data, perform computational and statistical analyses,

as well as visualize data and results all in one single system.

Indeed, the Python-based NLTK (Natural Language Toolkit; Bird et al. 2009) has a
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CHILDES corpus reader (by Tomonori Nagano and Alexis Dimitriadis, presented as Nagano

and Valian 2011) and, thanks to Python being a general-purpose programming language,

this allows virtually anything to be done with the parsed data structure. There is, however,

one crucial criterion if one would like to use NLTK to handle CHAT transcripts: NLTK

currently requires the XML version (a mark-up schema devised by the CHILDES team)

of the CHAT transcripts. Such a requirement adds an additional layer of work and effort,

thereby increasing the chance of introducing errors in the workflow. Although CHILDES does

provide tools that convert CHAT transcripts into their specified XML format, this requires

that the CHAT format specifications and the associated tools (all updated from time to

time) be mutually compatible, which could be overlooked in actual use and create confusion.

Moreover, it is clear that human researchers work most comfortably and conveniently with

CHAT transcripts directly, not with the derived XML version with rich mark-up language

that is not intended to be handled by humans.

Given this background, there is a need for a general tool that parses CHAT transcripts

and allows researchers to write their own scripts and programs to interact with the parsed

data structure. In this report, we introduce the Python library PyLangAcq for exactly these

purposes.1 Our choice of programming language is due to the widespread use of Python

in computational linguistics and natural language processing. PyLangAcq makes it possible

that the great variety of machine learning as well as other computational and statistical tools

available via Python can be used to model any phenomena of interest with respect to CHAT

datasets. As the CHAT format is used for speech transcriptions more generally, PyLangAcq

will be useful for researchers of many other linguistically related fields.

PyLangAcq is ever expanding and evolving, with its official detailed documentation

hosted online and regularly updated (http://pylangacq.org/). At the time of writing,

PyLangAcq is fully operational for parsing CHAT transcripts and extracting information of

1. https://pylangacq.org/
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interest, including but not limited to the following:

• participants (e.g., CHI (target child), MOT (mother)) and their demographic information

• age (of the target child, most typically)

• transcriptions in various data structures

• word frequency information and ngrams

• word search and concordance

• dependency graphs (based on %gra tiers)

• standard language development measures such as type-token ratio (TTR), mean length

of utterance (MLU), and index of productive syntax (IPSyn)

The reader is directed to the online documentation of the library for any of these items

and more. They are the building blocks of advanced modules and functions currently being

developed and added to the library.

In the rest of this report, we illustrate the use of PyLangAcq for measuring the mean

length of utterance in morphemes (MLUm; section 5.2), studying bilingualism (section 5.1),

and exploring phonological development (section 5.2).

The mean length of utterance in morphemes (MLUm)

We illustrate how the mean length of utterance in morphemes (MLUm) can be computed by

PyLangAcq for some given CHILDES dataset in language acquisition research. Our example

uses Eve’s data from the Brown portion (Brown, 1973) of CHILDES. As MLUm is often used

as a measure of language development, we may ask if MLUm is correlated with age in Eve’s

data. Figure 5.1 shows the results:
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Filename Age (months) MLUm

eve01.cha 18 2.267

eve02.cha 18 2.449

eve03.cha 19 2.763

eve04.cha 19 2.576

eve05.cha 20 2.859

eve06.cha 21 3.177

eve07.cha 21 3.123

eve08.cha 21 3.374

eve09.cha 22 3.818

eve10.cha 22 3.792

eve11.cha 23 3.866

eve12.cha 23 4.157

eve13.cha 24 4.239

eve14.cha 24 3.960

eve15.cha 25 4.450

eve16.cha 25 4.424

eve17.cha 26 4.466

eve18.cha 26 4.288

eve19.cha 27 4.348

eve20.cha 27 3.163

16 18 20 22 24 26 28

Eve's age in months

1.5
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Figure 5.1: Eve’s MLUm at different ages (Pearson’s r = 0.84, p < 0.001)

The results show that Eve’s age is significantly (and positively) correlated with MLUm

(Pearson’s r = 0.84, p < 0.001).

The code for MLUm computation illustrated above is available online. The computation

of MLUm is performed entirely in Python from reading the dataset all the way to data
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analysis and visualization, combining PyLangAcq with other Python libraries and tools.2

Language dominance measured by MLUw

As the mean length of utterance is commonly used as a measure of language development,

it is used in a wide variety of research topics in language acquisition. We illustrate how

PyLangAcq can be used in research on bilingualism, specifically in the area of bilingual first

language acquisition.

An important aspect of bilingualism concerns how various factors might contribute to

the developmental trajectories of different languages spoken by a bilingual speaker. Essential

in this research area is a reliable means of measuring language dominance, for whether (and

by how much) a bilingual speaker is more competent in one language than in another. Here,

we use PyLangAcq to replicate some of the results of—and possibly provide new insights

for—Yip and Matthews (2007) for language dominance.

We focus on the datasets from the three siblings Timmy (eldest), Sophie, and Alicia

(youngest) from the “YipMatthews” corpus in the “Biling” section of CHILDES. Born and

raised in Hong Kong, they are Cantonese-English bilinguals whose mother is a native speaker

of Cantonese and whose father is a native speaker of English. Following Yip and Matthews

(2007, 73-81), we compare patterns of language dominance (measured by MLUw, the mean

length of utterance in words) of these three children acquiring Cantonese and English simul-

taneously:3

2. The complete code is here: http://pylangacq.org/papers/tech-report-2016.html
Other libraries and tools of Python (van Rossum and Drake Jr, 1995) we have used are IPython Notebook
(Pérez and Granger, 2007), SciPy (Jones et al., 2001–), pandas (McKinney, 2010), and Seaborn (Waskom,
2015) (built upon matplotlib (Hunter, 2007)).

3. The complete code is also available online. See footnote 2.
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Figure 5.2: MLUw of Timmy, Sophie, and Alicia from CHILDES YipMatthews

For the purposes of comparison, the three plots in Figure 5.2 are produced with the same

axes and ranges of values. For each language of each child, the best fit lines showing the

overall trajectory (with shaded error regions at the 95% confidence interval) are also given.

Based on Figure 5.2, several observations are borne out, which are also discussed by

Yip and Matthews. The three children appear to exhibit Cantonese dominance in general,

but with interesting differences. Timmy, the eldest sibling, shows higher competence in

Cantonese early on, but his English caught up quickly during the period of study. For

Sophie and Alicia, Yip and Matthews (2007, 77) point out that they show a consistent

pattern of Cantonese dominance. This seems to be the case as shown in Figure 5.2, although

Alicia shows the pattern of relatively increasing preference of Cantonese, whereas Sophie’s

competence in Cantonese and English matures in a more or less comparable rate. And yet

Sophie and Alicia’s patterns contrast sharply with Timmy’s, whose preferential growth of
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English competence during the period of study is unobserved in his sisters. It is interesting

to see how divergent bilingual development can be – even within the same family. While

these finer-grained observations are possibly tangential to the particular research that Yip

and Matthews (2007) focus on, the fact that more detailed statistical analyses and data

visualization are available in a purely Python environment incorporating PyLangAcq shows

that PyLangAcq can facilitate language acquisition research for large datasets and more

sophisticated computational and statistical analysis.

Phonological development

PyLangAcq also facilitates research by use in conjunction with other Python tools developed

particularly for linguistics. Continuing with Cantonese, one of the languages exemplified

above, we use PyCantonese (Lee, 2015b), a Python library for Cantonese linguistic research.

In the following, we briefly explore phonological development – child tone production in

particular; Cantonese is a tone language with six tones. In this example, PyLangAcq handles

the CHILDES Cantonese monolingual child development data from Lee and Wong (1998),

and PyCantonese parses Cantonese romanization for extracting tone information.

We use the data from the child MHZ. There are altogether 16 CHAT data files, with

the age range of 24.5-32.2 months. As a first step for future work, we briefly explore the

distribution of tones produced by MHZ. For each file, we count the number of times a

particular tone is produced by MHZ. The results are presented in the following heatmap:4

4. The complete code for this part is also available online. See footnote 2.
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Figure 5.3: MHZ’s tone production

With the aid of heatmap visualization in Figure 5.3, we can see that the level tones (tones 1,

3, 6) and the low-falling/level tone 4 appear to be most frequently produced by the child. The

observation that the level tones are empirically more frequent than contour tones is similar

to findings with regards to adult Cantonese corpus studies (Leung et al., 2004). Possible

further research which could be performed using PyLangAcq includes comparing children’s

speech, as shown above, to child-directed speech, and modeling the development of tone

production distribution over time.

5.3 Modeling Human Morphological Acquisition

The previous chapter on paradigm induction and alignment introduced Linguistica 5 for

learning morphological paradigms from raw text. A powerful feature of Linguistica 5 is that

it is a Python library by design and is therefore callable in other Python-based programs.

This is significant, because it is now possible to run the Linguistica algorithms dynamically.

With PyLangAcq available, we can ask how it can be used to model human morphological

110



learning using child-directed speech data. An important criterion is that for the model to

be cognitively plausible, it has to simulate the incremental nature of the input data. This

means that the Linguistica algorithm for morphological learning must be called and applied

flexibly over some growing data.

Concretely, we tested Linguistica 5 for its ability to model morphological acquisition

using Eve’s data in the Brown portion Brown (1973) of the CHILDES database MacWhinney

(2000), an idea sketched in Lee (2015a). The child-directed speech (CDS) at different ages

of the target child in the data was extracted by the PyLangAcq library Lee et al. (2016)

and fed into Linguistica 5. Table 5.1 shows the results of morphological signature induction

from growing word types up to the ages of 18, 21, and 24 months, respectively.

Age # word types Induced signatures

18 mths 610 {’s Ø}{Ø s}
21 mths 1,246 {’s Ø}{Ø s}{Ø ing}{ll s}
24 mths 1,601 {’s Ø}{Ø s}{Ø ing}{ll s}{’s Ø s}

Table 5.1: Morphological signatures from CDS to Eve

The classic study of first language acquisition by Brown (1973) reports that the first

three morphological patterns acquired by English-speaking children are the third-person

singular inflection {Ø, s}, the possessive {’s, Ø}, and the progressive {Ø, ing}. Table 5.1

shows these are patterns that Linguistica 5 successfully discovers in Eve’s child-directed

speech. Other induced signatures are {ll, s} (as in she’ll-she’s) and {’s, Ø, s}, a more complex

pattern found when more data becomes available to the learner. The results for modeling

language acquisition here contrast sharply with those from the Brown corpus in section ??,

for the much larger amount of input data and results in the latter. But of particular interest

is the incremental nature of learning in the former case. The fact that Linguistica 5 is a

Python library makes it possible to devise tools embedding it for multiple learning iterations

run automatically.
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APPENDIX: STEM EXTRACTION RESULTS FOR ENGLISH
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substring: 12005
subsequence: 11619
submultiset: 14329

be

be, is, was, been, being

substring (cost: 80)

subsequence (cost: 80)

submultiset (cost: 80)

have

have, has, had, had, having

substring (cost: 80)
ha ve s d d ving

∼ve ∼s ∼d ∼d ∼ving
subsequence (cost: 80)
ha ve s d d ving

∼ve ∼s ∼d ∼d ∼ving
submultiset (cost: 80)
ah ve s d d ving

∼ve ∼s ∼d ∼d ∼ving

do

do, does, did, done, doing

substring (cost: 111)
d o oes id, di one oing
∼o ∼oes ∼id, di∼ ∼one ∼oing
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subsequence (cost: 111)
d o oes id, di one oing
∼o ∼oes ∼id, di∼ ∼one ∼oing

submultiset (cost: 111)
d o oes id, di one oing
∼o ∼oes ∼id, di∼ ∼one ∼oing

say

say, says, said, said, saying

substring (cost: 90)
sa y ys id id ying
∼y ∼ys ∼id ∼id ∼ying

subsequence (cost: 90)
sa y ys id id ying
∼y ∼ys ∼id ∼id ∼ying

submultiset (cost: 111)
as y ys, s y id id ying
∼y ∼ys, s∼y∼ ∼id ∼id ∼ying

go

go, goes, went, gone, going

substring (cost: 95)

subsequence (cost: 95)

submultiset (cost: 95)

get

get, gets, got, gotten, getting

substring (cost: 344)
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g et ets ot otten etting, gettin
∼et ∼ets ∼ot ∼otten ∼etting, gettin∼

t ge ge s go go ten, got en ge ting, get ing
ge∼ ge∼s go∼ go∼ten, got∼en ge∼ting, get∼ing

subsequence (cost: 192)
gt e e s o o ten, ot en e ting, et ing
∼e∼ ∼e∼s ∼o∼ ∼o∼ten, ∼ot∼en ∼e∼ting, ∼et∼ing

submultiset (cost: 263)
gt e e s o o ten, ot en e ting, et ing, ge tin , get in
∼e∼ ∼e∼s ∼o∼ ∼o∼ten, ∼ot∼en ∼e∼ting, ∼et∼ing, ge∼tin∼, get∼in∼

know

know, knows, knew, known, knowing

substring (cost: 110)
kn ow ows ew own owing

∼ow ∼ows ∼ew ∼own ∼owing
subsequence (cost: 115)
knw o o s e o n o ing

∼o∼ ∼o∼s ∼e∼ ∼o∼n ∼o∼ing
submultiset (cost: 172)
knw o o s e o n, no o ing, no i g

∼o∼ ∼o∼s ∼e∼ ∼no∼, ∼o∼n ∼no∼i∼g, ∼o∼ing

make

make, makes, made, made, making

substring (cost: 100)
ma ke kes de de king

∼ke ∼kes ∼de ∼de ∼king
subsequence (cost: 100)
ma ke kes de de king

∼ke ∼kes ∼de ∼de ∼king
submultiset (cost: 100)
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am ke kes de de king
∼ke ∼kes ∼de ∼de ∼king

think

think, thinks, thought, thought, thinking

substring (cost: 150)
th ink inks ought ought inking
∼ink ∼inks ∼ought ∼ought ∼inking

subsequence (cost: 222)
th ink inks ought, houg t ought, houg t inking
∼ink ∼inks ∼houg∼t, ∼ought ∼houg∼t, ∼ought ∼inking

submultiset (cost: 354)
ht ink inks ought, houg t, t ough , thoug
∼ink ∼inks ∼houg∼t, ∼ought, t∼ough∼, thoug∼

take

take, takes, took, taken, taking

substring (cost: 251)
k ta e ta es too ta en ta ing

ta∼e ta∼es too∼ ta∼en ta∼ing
t ake akes ook aken aking
∼ake ∼akes ∼ook ∼aken ∼aking

subsequence (cost: 130)
tk a e a es oo a en a ing
∼a∼e ∼a∼es ∼oo∼ ∼a∼en ∼a∼ing

submultiset (cost: 130)
kt a e a es oo a en a ing
∼a∼e ∼a∼es ∼oo∼ ∼a∼en ∼a∼ing

see

see, sees, saw, seen, seeing
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substring (cost: 126)
s ee ees, see aw een eeing
∼ee ∼ees, see∼ ∼aw ∼een ∼eeing

subsequence (cost: 126)
s ee ees, see aw een eeing
∼ee ∼ees, see∼ ∼aw ∼een ∼eeing

submultiset (cost: 126)
s ee ees, see aw een eeing
∼ee ∼ees, see∼ ∼aw ∼een ∼eeing

come

come, comes, came, come, coming

substring (cost: 241)
c ome omes ame ome oming
∼ome ∼omes ∼ame ∼ome ∼oming

m co e co es ca e co e co ing
co∼e co∼es ca∼e co∼e co∼ing

subsequence (cost: 125)
cm o e o es a e o e o ing

∼o∼e ∼o∼es ∼a∼e ∼o∼e ∼o∼ing
submultiset (cost: 125)
cm o e o es a e o e o ing

∼o∼e ∼o∼es ∼a∼e ∼o∼e ∼o∼ing

want

want, wants, wanted, wanted, wanting

substring (cost: 85)
want s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 85)
want s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
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submultiset (cost: 116)
antw s ed ed ing, n i g

∼ ∼s ∼ed ∼ed ∼ing, ∼n∼i∼g

look

look, looks, looked, looked, looking

substring (cost: 85)
look s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 85)
look s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
submultiset (cost: 85)
kloo s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing

use

use, uses, used, used, using

substring (cost: 85)
us e es ed ed ing
∼e ∼es ∼ed ∼ed ∼ing

subsequence (cost: 106)
us e es, se ed ed ing
∼e ∼es, ∼se∼ ∼ed ∼ed ∼ing

submultiset (cost: 106)
su e es, se ed ed ing
∼e ∼es, ∼se∼ ∼ed ∼ed ∼ing

find

find, finds, found, found, finding

substring (cost: 115)
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nd fi fi s fou fou fi ing
fi∼ fi∼s fou∼ fou∼ fi∼ing

subsequence (cost: 120)
fnd i i s ou ou i ing

∼i∼ ∼i∼s ∼ou∼ ∼ou∼ ∼i∼ing
submultiset (cost: 156)
dfn i i s ou ou i ing, in i g

∼i∼ ∼i∼s ∼ou∼ ∼ou∼ ∼i∼ing, ∼in∼i∼g

tell

tell, tells, told, told, telling

substring (cost: 334)
l te l, tel te ls, tel s to d to d te ling, tel ing

te∼l, tel∼ te∼ls, tel∼s to∼d to∼d te∼ling, tel∼ing
t ell ells old old elling
∼ell ∼ells ∼old ∼old ∼elling

subsequence (cost: 213)
tl e l, el e ls, el s o d o d e ling, el ing
∼e∼l, ∼el∼ ∼e∼ls, ∼el∼s ∼o∼d ∼o∼d ∼e∼ling, ∼el∼ing

submultiset (cost: 213)
lt e l, el e ls, el s o d o d e ling, el ing
∼e∼l, ∼el∼ ∼e∼ls, ∼el∼s ∼o∼d ∼o∼d ∼e∼ling, ∼el∼ing

give

give, gives, gave, given, giving

substring (cost: 282)
g ive ives ave iven iving, givin
∼ive ∼ives ∼ave ∼iven ∼iving, givin∼

v gi e gi es ga e gi en gi ing
gi∼e gi∼es ga∼e gi∼en gi∼ing

subsequence (cost: 130)
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gv i e i es a e i en i ing
∼i∼e ∼i∼es ∼a∼e ∼i∼en ∼i∼ing

submultiset (cost: 161)
gv i e i es a e i en i ing, gi in

∼i∼e ∼i∼es ∼a∼e ∼i∼en ∼i∼ing, gi∼in∼

work

work, works, worked, worked, working

substring (cost: 85)
work s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 85)
work s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
submultiset (cost: 85)
korw s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing

call

call, calls, called, called, calling

substring (cost: 85)
call s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 85)
call s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
submultiset (cost: 85)
acll s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing

try

try, tries, tried, tried, trying
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substring (cost: 105)
tr y ies ied ied ying
∼y ∼ies ∼ied ∼ied ∼ying

subsequence (cost: 105)
tr y ies ied ied ying
∼y ∼ies ∼ied ∼ied ∼ying

submultiset (cost: 105)
rt y ies ied ied ying
∼y ∼ies ∼ied ∼ied ∼ying

ask

ask, asks, asked, asked, asking

substring (cost: 80)
ask s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 80)
ask s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
submultiset (cost: 96)
aks s, s ed ed ing

∼ ∼s, ∼s∼ ∼ed ∼ed ∼ing

need

need, needs, needed, needed, needing

substring (cost: 85)
need s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 219)
need s ed, de , ed , e d ed, de , ed , e d ing

∼ ∼s ∼de∼, ∼e∼d∼, ∼ed, ∼ed∼ ∼de∼, ∼e∼d∼, ∼ed, ∼ed∼ ∼ing
submultiset (cost: 287)
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deen s ed, de , e d, ed , e d, e d
∼ ∼s ∼de∼, ∼e∼d, ∼e∼d∼, ∼ed, ∼ed∼

feel

feel, feels, felt, felt, feeling

substring (cost: 211)
el fe fe s f t f t fe ing

fe∼ fe∼s f∼t f∼t fe∼ing
fe el els lt lt eling
∼el ∼els ∼lt ∼lt ∼eling

subsequence (cost: 100)
fel e , e e s, e s t t e ing, e ing

∼e∼ ∼e∼s ∼t ∼t ∼e∼ing
submultiset (cost: 100)
efl e , e e s, e s t t e ing, e ing
∼e∼ ∼e∼s ∼t ∼t ∼e∼ing

become

become, becomes, became, become, becoming

substring (cost: 130)
bec ome omes ame ome oming

∼ome ∼omes ∼ame ∼ome ∼oming
subsequence (cost: 135)
becm o e o es a e o e o ing

∼o∼e ∼o∼es ∼a∼e ∼o∼e ∼o∼ing
submultiset (cost: 244)
bcem o e, e o o es, e o s a e, e a o e, e o o ing

∼e∼o∼, ∼o∼e ∼e∼o∼s, ∼o∼es ∼a∼e, ∼e∼a∼ ∼e∼o∼, ∼o∼e ∼o∼ing

mean

mean, means, meant, meant, meaning
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substring (cost: 75)
mean s t t ing

∼ ∼s ∼t ∼t ∼ing
subsequence (cost: 101)
mean s t t ing, ni g

∼ ∼s ∼t ∼t ∼ing, ∼ni∼g
submultiset (cost: 101)
aemn s t t ing, ni g

∼ ∼s ∼t ∼t ∼ing, ∼ni∼g

leave

leave, leaves, left, left, leaving

substring (cost: 115)
le ave aves ft ft aving
∼ave ∼aves ∼ft ∼ft ∼aving

subsequence (cost: 172)
le ave, eav aves, eav s ft ft aving
∼ave, ∼eav∼ ∼aves, ∼eav∼s ∼ft ∼ft ∼aving

submultiset (cost: 172)
el ave, eav aves, eav s ft ft aving
∼ave, ∼eav∼ ∼aves, ∼eav∼s ∼ft ∼ft ∼aving

let

let, lets, let, let, letting

substring (cost: 65)
let s ting

∼ ∼s ∼ ∼ ∼ting
subsequence (cost: 96)
let s ting, t ing

∼ ∼s ∼ ∼ ∼t∼ing, ∼ting
submultiset (cost: 96)
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elt s ting, t ing
∼ ∼s ∼ ∼ ∼t∼ing, ∼ting

put

put, puts, put, put, putting

substring (cost: 65)
put s ting

∼ ∼s ∼ ∼ ∼ting
subsequence (cost: 96)
put s ting, t ing

∼ ∼s ∼ ∼ ∼t∼ing, ∼ting
submultiset (cost: 96)
ptu s ting, t ing

∼ ∼s ∼ ∼ ∼t∼ing, ∼ting

keep

keep, keeps, kept, kept, keeping

substring (cost: 211)
ep ke ke s k t k t ke ing

ke∼ ke∼s k∼t k∼t ke∼ing
ke ep eps pt pt eping
∼ep ∼eps ∼pt ∼pt ∼eping

subsequence (cost: 100)
kep e , e e s, e s t t e ing, e ing

∼e∼ ∼e∼s ∼t ∼t ∼e∼ing
submultiset (cost: 100)
ekp e , e e s, e s t t e ing, e ing

∼e∼ ∼e∼s ∼t ∼t ∼e∼ing

talk

talk, talks, talked, talked, talking
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substring (cost: 85)
talk s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 85)
talk s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
submultiset (cost: 85)
aklt s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing

turn

turn, turns, turned, turned, turning

substring (cost: 85)
turn s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 111)
turn s ed ed ing, ni g

∼ ∼s ∼ed ∼ed ∼ing, ∼ni∼g
submultiset (cost: 111)
nrtu s ed ed ing, ni g

∼ ∼s ∼ed ∼ed ∼ing, ∼ni∼g

seem

seem, seems, seemed, seemed, seeming

substring (cost: 85)
seem s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 85)
seem s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
submultiset (cost: 138)
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eems s, s ed, e d, e d ed, e d, e d ing
∼ ∼s, s∼ ∼e∼d, ∼ed ∼e∼d, ∼ed ∼ing

begin

begin, begins, began, begun, beginning

substring (cost: 115)
beg in ins an un inning

∼in ∼ins ∼an ∼un ∼inning
subsequence (cost: 192)
begn i i s a u i ning, in ing, inni g

∼i∼ ∼i∼s ∼a∼ ∼u∼ ∼i∼ning, ∼in∼ing, ∼inni∼g
submultiset (cost: 308)
begn i i s a u

∼i∼ ∼i∼s ∼a∼ ∼u∼

help

help, helps, helped, helped, helping

substring (cost: 85)
help s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 85)
help s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
submultiset (cost: 127)
ehlp s ed, e d ed, e d ing

∼ ∼s ∼e∼d, ∼ed ∼e∼d, ∼ed ∼ing

start

start, starts, started, started, starting

substring (cost: 90)
start s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
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subsequence (cost: 90)
start s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
submultiset (cost: 101)
arstt s, s ed ed ing

∼ ∼s, s∼ ∼ed ∼ed ∼ing

show

show, shows, showed, showed, showing

substring (cost: 85)
show s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 85)
show s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
submultiset (cost: 96)
hosw s, s ed ed ing

∼ ∼s, s∼ ∼ed ∼ed ∼ing

hear

hear, hears, heard, heard, hearing

substring (cost: 75)
hear s d d ing

∼ ∼s ∼d ∼d ∼ing
subsequence (cost: 75)
hear s d d ing

∼ ∼s ∼d ∼d ∼ing
submultiset (cost: 75)
aehr s d d ing

∼ ∼s ∼d ∼d ∼ing

play
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play, plays, played, played, playing

substring (cost: 85)
play s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 85)
play s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
submultiset (cost: 85)
alpy s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing

run

run, runs, ran, run, running

substring (cost: 283)
n ru ru s ra ru ru ning, run ing, runni g

ru∼ ru∼s ra∼ ru∼ ru∼ning, run∼ing, runni∼g
r un uns an un unning
∼un ∼uns ∼an ∼un ∼unning

subsequence (cost: 182)
rn u u s a u u ning, un ing, unni g
∼u∼ ∼u∼s ∼a∼ ∼u∼ ∼u∼ning, ∼un∼ing, ∼unni∼g

submultiset (cost: 182)
nr u u s a u u ning, un ing, unni g
∼u∼ ∼u∼s ∼a∼ ∼u∼ ∼u∼ning, ∼un∼ing, ∼unni∼g

happen

happen, happens, happened, happened, happening

substring (cost: 95)
happen s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 121)
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happen s ed ed ing, ni g
∼ ∼s ∼ed ∼ed ∼ing, ∼ni∼g

submultiset (cost: 163)
aehnpp s ed, e d ed, e d ing, ni g

∼ ∼s ∼e∼d, ∼ed ∼e∼d, ∼ed ∼ing, ∼ni∼g

like

like, likes, liked, liked, liking

substring (cost: 90)
lik e es ed ed ing

∼e ∼es ∼ed ∼ed ∼ing
subsequence (cost: 90)
lik e es ed ed ing

∼e ∼es ∼ed ∼ed ∼ing
submultiset (cost: 116)
ikl e es ed ed ing, i ng

∼e ∼es ∼ed ∼ed ∼i∼ng, ∼ing

move

move, moves, moved, moved, moving

substring (cost: 90)
mov e es ed ed ing

∼e ∼es ∼ed ∼ed ∼ing
subsequence (cost: 90)
mov e es ed ed ing

∼e ∼es ∼ed ∼ed ∼ing
submultiset (cost: 90)
mov e es ed ed ing

∼e ∼es ∼ed ∼ed ∼ing

believe

believe, believes, believed, believed, believing
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substring (cost: 105)
believ e es ed ed ing

∼e ∼es ∼ed ∼ed ∼ing
subsequence (cost: 105)
believ e es ed ed ing

∼e ∼es ∼ed ∼ed ∼ing
submultiset (cost: 210)
beeilv e, e , e es, e s, e s

∼e, ∼e∼ ∼e∼s, ∼es

hold

hold, holds, held, held, holding

substring (cost: 105)
ld ho ho s he he ho ing

ho∼ ho∼s he∼ he∼ ho∼ing
subsequence (cost: 110)
hld o o s e e o ing

∼o∼ ∼o∼s ∼e∼ ∼e∼ ∼o∼ing
submultiset (cost: 110)
dhl o o s e e o ing

∼o∼ ∼o∼s ∼e∼ ∼e∼ ∼o∼ing

live

live, lives, lived, lived, living

substring (cost: 90)
liv e es ed ed ing

∼e ∼es ∼ed ∼ed ∼ing
subsequence (cost: 90)
liv e es ed ed ing

∼e ∼es ∼ed ∼ed ∼ing
submultiset (cost: 116)
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ilv e es ed ed ing, i ng
∼e ∼es ∼ed ∼ed ∼i∼ng, ∼ing

bring

bring, brings, brought, brought, bringing

substring (cost: 150)
br ing ings ought ought inging
∼ing ∼ings ∼ought ∼ought ∼inging

subsequence (cost: 191)
brg in in s ou ht ou ht in ing, ingin

∼in∼ ∼in∼s ∼ou∼ht ∼ou∼ht ∼in∼ing, ∼ingin∼
submultiset (cost: 191)
bgr in in s ou ht ou ht in ing, ingin

∼in∼ ∼in∼s ∼ou∼ht ∼ou∼ht ∼in∼ing, ∼ingin∼

write

write, writes, wrote, written, writing

substring (cost: 135)
wr ite ites ote itten iting

∼ite ∼ites ∼ote ∼itten ∼iting
subsequence (cost: 171)
wrt i e i es o e i ten, it en i ing

∼i∼e ∼i∼es ∼o∼e ∼i∼ten, ∼it∼en ∼i∼ing
submultiset (cost: 171)
rtw i e i es o e i ten, it en i ing

∼i∼e ∼i∼es ∼o∼e ∼i∼ten, ∼it∼en ∼i∼ing

provide

provide, provides, provided, provided, providing

substring (cost: 105)
provid e es ed ed ing

∼e ∼es ∼ed ∼ed ∼ing
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subsequence (cost: 147)
provid e es ed, de ed, de ing

∼e ∼es ∼de∼, ∼ed ∼de∼, ∼ed ∼ing
submultiset (cost: 173)
dioprv e es ed, de ed, de ing, i ng

∼e ∼es ∼de∼, ∼ed ∼de∼, ∼ed ∼i∼ng, ∼ing

sit

sit, sits, sat, sat, sitting

substring (cost: 268)
s it its, sit at at itting
∼it ∼its, sit∼ ∼at ∼at ∼itting

t si si s sa sa si ting, sit ing
si∼ si∼s sa∼ sa∼ si∼ting, sit∼ing

subsequence (cost: 146)
st i i s a a i ting, it ing
∼i∼ ∼i∼s ∼a∼ ∼a∼ ∼i∼ting, ∼it∼ing

submultiset (cost: 162)
st i i s, si a a i ting, it ing
∼i∼ ∼i∼s, si∼ ∼a∼ ∼a∼ ∼i∼ting, ∼it∼ing

stand

stand, stands, stood, stood, standing

substring (cost: 130)
st and ands ood ood anding
∼and ∼ands ∼ood ∼ood ∼anding

subsequence (cost: 135)
std an an s oo oo an ing

∼an∼ ∼an∼s ∼oo∼ ∼oo∼ ∼an∼ing
submultiset (cost: 161)
dst an an s, s an oo oo an ing

∼an∼ ∼an∼s, s∼an∼ ∼oo∼ ∼oo∼ ∼an∼ing
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lose

lose, loses, lost, lost, losing

substring (cost: 80)
los e es t t ing

∼e ∼es ∼t ∼t ∼ing
subsequence (cost: 101)
los e es, se t t ing

∼e ∼es, ∼se∼ ∼t ∼t ∼ing
submultiset (cost: 101)
los e es, se t t ing

∼e ∼es, ∼se∼ ∼t ∼t ∼ing

include

include, includes, included, included, including

substring (cost: 105)
includ e es ed ed ing

∼e ∼es ∼ed ∼ed ∼ing
subsequence (cost: 147)
includ e es ed, de ed, de ing

∼e ∼es ∼de∼, ∼ed ∼de∼, ∼ed ∼ing
submultiset (cost: 219)
cdilnu e es ed, de ed, de

∼e ∼es ∼de∼, ∼ed ∼de∼, ∼ed

pay

pay, pays, paid, paid, paying

substring (cost: 90)
pa y ys id id ying

∼y ∼ys ∼id ∼id ∼ying
subsequence (cost: 90)
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pa y ys id id ying
∼y ∼ys ∼id ∼id ∼ying

submultiset (cost: 90)
ap y ys id id ying

∼y ∼ys ∼id ∼id ∼ying

meet

meet, meets, met, met, meeting

substring (cost: 191)
et me me s m m me ing

me∼ me∼s m∼ m∼ me∼ing
me et ets t t eting

∼et ∼ets ∼t ∼t ∼eting
subsequence (cost: 90)
met e , e e s, e s e ing, e ing

∼e∼ ∼e∼s ∼ ∼ ∼e∼ing
submultiset (cost: 90)
emt e , e e s, e s e ing, e ing

∼e∼ ∼e∼s ∼ ∼ ∼e∼ing

set

set, sets, set, set, setting

substring (cost: 65)
set s ting

∼ ∼s ∼ ∼ ∼ting
subsequence (cost: 96)
set s ting, t ing

∼ ∼s ∼ ∼ ∼t∼ing, ∼ting
submultiset (cost: 107)
est s, s ting, t ing

∼ ∼s, s∼ ∼ ∼ ∼t∼ing, ∼ting
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continue

continue, continues, continued, continued, continuing

substring (cost: 110)
continu e es ed ed ing

∼e ∼es ∼ed ∼ed ∼ing
subsequence (cost: 110)
continu e es ed ed ing

∼e ∼es ∼ed ∼ed ∼ing
submultiset (cost: 192)
cinnotu e es ed ed ing, n i g, i ng, in g, n i g, n i g

∼e ∼es ∼ed ∼ed ∼i∼ng, ∼in∼g, ∼ing, ∼n∼i∼g

watch

watch, watches, watched, watched, watching

substring (cost: 95)
watch es ed ed ing

∼ ∼es ∼ed ∼ed ∼ing
subsequence (cost: 95)
watch es ed ed ing

∼ ∼es ∼ed ∼ed ∼ing
submultiset (cost: 95)
achtw es ed ed ing

∼ ∼es ∼ed ∼ed ∼ing

learn

learn, learns, learned, learned, learning

substring (cost: 90)
learn s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 116)
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learn s ed ed ing, ni g
∼ ∼s ∼ed ∼ed ∼ing, ∼ni∼g

submultiset (cost: 158)
aelnr s ed, e d ed, e d ing, ni g

∼ ∼s ∼e∼d, ∼ed ∼e∼d, ∼ed ∼ing, ∼ni∼g

change

change, changes, changed, changed, changing

substring (cost: 100)
chang e es ed ed ing

∼e ∼es ∼ed ∼ed ∼ing
subsequence (cost: 152)
chang e es ed ed ing, gin , ngi

∼e ∼es ∼ed ∼ed ∼gin∼, ∼ing, ∼ngi∼
submultiset (cost: 182)
acghn e es ed ed ing, gin , n i g, ngi

∼e ∼es ∼ed ∼ed ∼gin∼, ∼ing, ∼n∼i∼g, ∼ngi∼

lead

lead, leads, led, led, leading

substring (cost: 95)
le ad ads d d ading
∼ad ∼ads ∼d ∼d ∼ading

subsequence (cost: 90)
led a a s a ing

∼a∼ ∼a∼s ∼ ∼ ∼a∼ing
submultiset (cost: 90)
del a a s a ing

∼a∼ ∼a∼s ∼ ∼ ∼a∼ing

stop

stop, stops, stopped, stopped, stopping
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substring (cost: 100)
stop s ped ped ping

∼ ∼s ∼ped ∼ped ∼ping
subsequence (cost: 183)
stop s ped, p ed ped, p ed ping, p ing

∼ ∼s ∼p∼ed, ∼ped ∼p∼ed, ∼ped ∼p∼ing, ∼ping
submultiset (cost: 194)
opst s, s ped, p ed ped, p ed ping, p ing

∼ ∼s, s∼ ∼p∼ed, ∼ped ∼p∼ed, ∼ped ∼p∼ing, ∼ping

understand

understand, understands, understood, understood, understanding

substring (cost: 155)
underst and ands ood ood anding

∼and ∼ands ∼ood ∼ood ∼anding
subsequence (cost: 160)
understd an an s oo oo an ing

∼an∼ ∼an∼s ∼oo∼ ∼oo∼ ∼an∼ing
submultiset (cost: 370)
ddenrstu an , n a an s, s an , n a s, n s a

∼an∼, ∼n∼a∼ ∼an∼s, ∼n∼a∼s, ∼n∼s∼a∼, ∼s∼an∼

follow

follow, follows, followed, followed, following

substring (cost: 95)
follow s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 95)
follow s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
submultiset (cost: 95)
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flloow s ed ed ing
∼ ∼s ∼ed ∼ed ∼ing

create

create, creates, created, created, creating

substring (cost: 100)
creat e es ed ed ing

∼e ∼es ∼ed ∼ed ∼ing
subsequence (cost: 100)
creat e es ed ed ing

∼e ∼es ∼ed ∼ed ∼ing
submultiset (cost: 179)
acert e, e es, e s ed, e d ed, e d ing

∼e, ∼e∼ ∼e∼s, ∼es ∼e∼d, ∼ed ∼e∼d, ∼ed ∼ing

add

add, adds, added, added, adding

substring (cost: 80)
add s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 174)
add s ed, de , d e ed, de , d e ing

∼ ∼s ∼d∼e∼, ∼de∼, ∼ed ∼d∼e∼, ∼de∼, ∼ed ∼ing
submultiset (cost: 174)
add s ed, de , d e ed, de , d e ing

∼ ∼s ∼d∼e∼, ∼de∼, ∼ed ∼d∼e∼, ∼de∼, ∼ed ∼ing

speak

speak, speaks, spoke, spoken, speaking

substring (cost: 135)
sp eak eaks oke oken eaking
∼eak ∼eaks ∼oke ∼oken ∼eaking
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subsequence (cost: 266)
spe ak aks ok ok n aking

∼ak ∼aks ∼ok∼ ∼ok∼n ∼aking
spk ea ea s o e o en ea ing

∼ea∼ ∼ea∼s ∼o∼e ∼o∼en ∼ea∼ing
submultiset (cost: 141)
ekps a a s, s a o o n a ing

∼a∼ ∼a∼s, s∼a∼ ∼o∼ ∼o∼n ∼a∼ing

allow

allow, allows, allowed, allowed, allowing

substring (cost: 90)
allow s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 90)
allow s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
submultiset (cost: 90)
allow s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing

spend

spend, spends, spent, spent, spending

substring (cost: 90)
spen d ds t t ding

∼d ∼ds ∼t ∼t ∼ding
subsequence (cost: 121)
spen d ds t t ding, ndi g

∼d ∼ds ∼t ∼t ∼ding, ∼ndi∼g
submultiset (cost: 142)
enps d ds, s d t t ding, ndi g

∼d ∼ds, s∼d∼ ∼t ∼t ∼ding, ∼ndi∼g

1
3
9



read

read, reads, read, read, reading

substring (cost: 65)
read s ing

∼ ∼s ∼ ∼ ∼ing
subsequence (cost: 65)
read s ing

∼ ∼s ∼ ∼ ∼ing
submultiset (cost: 65)
ader s ing

∼ ∼s ∼ ∼ ∼ing

walk

walk, walks, walked, walked, walking

substring (cost: 85)
walk s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 85)
walk s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
submultiset (cost: 85)
aklw s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing

open

open, opens, opened, opened, opening

substring (cost: 85)
open s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 111)
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open s ed ed ing, ni g
∼ ∼s ∼ed ∼ed ∼ing, ∼ni∼g

submultiset (cost: 153)
enop s ed, e d ed, e d ing, ni g

∼ ∼s ∼e∼d, ∼ed ∼e∼d, ∼ed ∼ing, ∼ni∼g

win

win, wins, won, won, winning

substring (cost: 283)
n wi wi s wo wo wi ning, win ing, winni g

wi∼ wi∼s wo∼ wo∼ wi∼ning, win∼ing, winni∼g
w in ins on on inning
∼in ∼ins ∼on ∼on ∼inning

subsequence (cost: 182)
wn i i s o o i ning, in ing, inni g

∼i∼ ∼i∼s ∼o∼ ∼o∼ ∼i∼ning, ∼in∼ing, ∼inni∼g
submultiset (cost: 182)
nw i i s o o i ning, in ing, inni g

∼i∼ ∼i∼s ∼o∼ ∼o∼ ∼i∼ning, ∼in∼ing, ∼inni∼g

grow

grow, grows, grew, grown, growing

substring (cost: 110)
gr ow ows ew own owing
∼ow ∼ows ∼ew ∼own ∼owing

subsequence (cost: 115)
grw o o s e o n o ing

∼o∼ ∼o∼s ∼e∼ ∼o∼n ∼o∼ing
submultiset (cost: 151)
grw o o s e o n o ing, g o in

∼o∼ ∼o∼s ∼e∼ ∼o∼n ∼o∼ing, g∼o∼in∼

141



remember

remember, remembers, remembered, remembered, remembering

substring (cost: 105)
remember s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 105)
remember s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
submultiset (cost: 147)
beeemmrr s ed, e d, e d, e d

∼ ∼s ∼e∼d, ∼ed

offer

offer, offers, offered, offered, offering

substring (cost: 90)
offer s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 90)
offer s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
submultiset (cost: 132)
effor s ed, e d ed, e d ing

∼ ∼s ∼e∼d, ∼ed ∼e∼d, ∼ed ∼ing

love

love, loves, loved, loved, loving

substring (cost: 90)
lov e es ed ed ing

∼e ∼es ∼ed ∼ed ∼ing
subsequence (cost: 90)
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lov e es ed ed ing
∼e ∼es ∼ed ∼ed ∼ing

submultiset (cost: 90)
lov e es ed ed ing

∼e ∼es ∼ed ∼ed ∼ing

wait

wait, waits, waited, waited, waiting

substring (cost: 85)
wait s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 85)
wait s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
submultiset (cost: 111)
aitw s ed ed ing, i ng

∼ ∼s ∼ed ∼ed ∼i∼ng, ∼ing

consider

consider, considers, considered, considered, considering

substring (cost: 105)
consider s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 105)
consider s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
submultiset (cost: 312)
cdeinors s, s ed, e d, d e , de

∼ ∼s, ∼s∼ ∼d∼e∼, ∼de∼, ∼e∼d, ∼ed

buy

buy, buys, bought, bought, buying
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substring (cost: 261)
b uy uys ought ought uying
∼uy ∼uys ∼ought ∼ought ∼uying

u b y b ys bo ght bo ght b ying
b∼y b∼ys bo∼ght bo∼ght b∼ying

subsequence (cost: 120)
bu y ys o ght o ght ying

∼y ∼ys ∼o∼ght ∼o∼ght ∼ying
submultiset (cost: 120)
bu y ys o ght o ght ying

∼y ∼ys ∼o∼ght ∼o∼ght ∼ying

appear

appear, appears, appeared, appeared, appearing

substring (cost: 95)
appear s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 95)
appear s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
submultiset (cost: 137)
aaeppr s ed, e d ed, e d ing

∼ ∼s ∼e∼d, ∼ed ∼e∼d, ∼ed ∼ing

serve

serve, serves, served, served, serving

substring (cost: 95)
serv e es ed ed ing

∼e ∼es ∼ed ∼ed ∼ing
subsequence (cost: 95)
serv e es ed ed ing

∼e ∼es ∼ed ∼ed ∼ing
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submultiset (cost: 210)
ersv e, e es, e s, s e , se ed, e d ed, e d ing

∼e, ∼e∼ ∼e∼s, ∼es, s∼e∼, se∼ ∼e∼d, ∼ed ∼e∼d, ∼ed ∼ing

die

die, dies, died, died, dying

substring (cost: 253)
d ie ies ied, die ied, die ying
∼ie ∼ies ∼ied, die∼ ∼ied, die∼ ∼ying

i d e d es d ed d ed dy ng
d∼e d∼es d∼ed d∼ed dy∼ng

subsequence (cost: 90)
di e es ed ed y ng
∼e ∼es ∼ed ∼ed ∼y∼ng

submultiset (cost: 132)
di e es ed, d e ed, d e y ng
∼e ∼es ∼ed, d∼e∼ ∼ed, d∼e∼ ∼y∼ng

stay

stay, stays, stayed, stayed, staying

substring (cost: 85)
stay s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 85)
stay s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
submultiset (cost: 96)
asty s, s ed ed ing

∼ ∼s, s∼ ∼ed ∼ed ∼ing

fall

fall, falls, fell, fallen, falling
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substring (cost: 115)
ll fa fa s fe fa en fa ing

fa∼ fa∼s fe∼ fa∼en fa∼ing
subsequence (cost: 120)
fll a a s e a en a ing
∼a∼ ∼a∼s ∼e∼ ∼a∼en ∼a∼ing

submultiset (cost: 120)
fll a a s e a en a ing
∼a∼ ∼a∼s ∼e∼ ∼a∼en ∼a∼ing

build

build, builds, built, built, building

substring (cost: 90)
buil d ds t t ding

∼d ∼ds ∼t ∼t ∼ding
subsequence (cost: 90)
buil d ds t t ding

∼d ∼ds ∼t ∼t ∼ding
submultiset (cost: 126)
bilu d ds t t ding, i d ng

∼d ∼ds ∼t ∼t ∼ding, ∼i∼d∼ng

send

send, sends, sent, sent, sending

substring (cost: 85)
sen d ds t t ding

∼d ∼ds ∼t ∼t ∼ding
subsequence (cost: 116)
sen d ds t t ding, ndi g

∼d ∼ds ∼t ∼t ∼ding, ∼ndi∼g
submultiset (cost: 137)
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ens d ds, s d t t ding, ndi g
∼d ∼ds, s∼d∼ ∼t ∼t ∼ding, ∼ndi∼g

cut

cut, cuts, cut, cut, cutting

substring (cost: 65)
cut s ting

∼ ∼s ∼ ∼ ∼ting
subsequence (cost: 96)
cut s ting, t ing

∼ ∼s ∼ ∼ ∼t∼ing, ∼ting
submultiset (cost: 96)
ctu s ting, t ing

∼ ∼s ∼ ∼ ∼t∼ing, ∼ting

expect

expect, expects, expect, expected, expecting

substring (cost: 85)
expect s ed ing

∼ ∼s ∼ ∼ed ∼ing
subsequence (cost: 85)
expect s ed ing

∼ ∼s ∼ ∼ed ∼ing
submultiset (cost: 122)
ceeptx s ed, e d, e d ing

∼ ∼s ∼ ∼e∼d, ∼ed, e∼d ∼ing

kill

kill, kills, killed, killed, killing

substring (cost: 85)
kill s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
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subsequence (cost: 85)
kill s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
submultiset (cost: 111)
ikll s ed ed ing, i ng

∼ ∼s ∼ed ∼ed ∼i∼ng, ∼ing

suggest

suggest, suggests, suggested, suggested, suggesting

substring (cost: 100)
suggest s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 100)
suggest s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
submultiset (cost: 200)
eggsstu s, s , s ed, e d ed, e d

∼ ∼s, ∼s∼, s∼ ∼e∼d, ∼ed ∼e∼d, ∼ed

reach

reach, reaches, reached, reached, reaching

substring (cost: 95)
reach es ed ed ing

∼ ∼es ∼ed ∼ed ∼ing
subsequence (cost: 95)
reach es ed ed ing

∼ ∼es ∼ed ∼ed ∼ing
submultiset (cost: 158)
acehr es, e s ed, e d ed, e d ing

∼ ∼e∼s, ∼es ∼e∼d, ∼ed ∼e∼d, ∼ed ∼ing

remain
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remain, remains, remained, remained, remaining

substring (cost: 95)
remain s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 147)
remain s ed ed ing, ni g, in g

∼ ∼s ∼ed ∼ed ∼in∼g, ∼ing, ∼ni∼g
submultiset (cost: 214)
aeimnr s ed, e d ed, e d ing, ni g, i ng, in g

∼ ∼s ∼e∼d, ∼ed ∼e∼d, ∼ed ∼i∼ng, ∼in∼g, ∼ing, ∼ni∼g

require

require, requires, required, required, requiring

substring (cost: 105)
requir e es ed ed ing

∼e ∼es ∼ed ∼ed ∼ing
subsequence (cost: 105)
requir e es ed ed ing

∼e ∼es ∼ed ∼ed ∼ing
submultiset (cost: 210)
eiqrru e, e es, e s ed, e d ed, e d ing, i ng

∼e, ∼e∼ ∼e∼s, ∼es ∼e∼d, ∼ed ∼e∼d, ∼ed ∼i∼ng, ∼ing

thank

thank, thanks, thanked, thanked, thanking

substring (cost: 90)
thank s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 90)
thank s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
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submultiset (cost: 121)
ahknt s ed ed ing, n i g

∼ ∼s ∼ed ∼ed ∼ing, ∼n∼i∼g

report

report, reports, reported, reported, reporting

substring (cost: 95)
report s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 95)
report s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
submultiset (cost: 137)
eoprrt s ed, e d ed, e d ing

∼ ∼s ∼e∼d, ∼ed ∼e∼d, ∼ed ∼ing

sell

sell, sells, sold, sold, selling

substring (cost: 360)
l se l, sel se ls, sel s so d so d se ling, sel ing

se∼l, sel∼ se∼ls, sel∼s so∼d so∼d se∼ling, sel∼ing
s ell ells, sell old old elling
∼ell ∼ells, sell∼ ∼old ∼old ∼elling

subsequence (cost: 213)
sl e l, el e ls, el s o d o d e ling, el ing
∼e∼l, ∼el∼ ∼e∼ls, ∼el∼s ∼o∼d ∼o∼d ∼e∼ling, ∼el∼ing

submultiset (cost: 259)
ls e l, el e ls, el s, se l , sel o d o d e ling, el ing
∼e∼l, ∼el∼ ∼e∼ls, ∼el∼s, se∼l∼, sel∼ ∼o∼d ∼o∼d ∼e∼ling, ∼el∼ing

pull

pull, pulls, pulled, pulled, pulling
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substring (cost: 85)
pull s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
subsequence (cost: 85)
pull s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing
submultiset (cost: 85)
llpu s ed ed ing

∼ ∼s ∼ed ∼ed ∼ing

raise

raise, raises, raised, raised, raising

substring (cost: 95)
rais e es ed ed ing

∼e ∼es ∼ed ∼ed ∼ing
subsequence (cost: 116)
rais e es, se ed ed ing

∼e ∼es, ∼se∼ ∼ed ∼ed ∼ing
submultiset (cost: 142)
airs e es, se ed ed ing, i ng

∼e ∼es, ∼se∼ ∼ed ∼ed ∼i∼ng, ∼ing

pass

pass, passes, passed, passed, passing

substring (cost: 90)
pass es ed ed ing

∼ ∼es ∼ed ∼ed ∼ing
subsequence (cost: 137)
pass es, se , s e ed ed ing

∼ ∼es, ∼s∼e∼, ∼se∼ ∼ed ∼ed ∼ing
submultiset (cost: 137)
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apss es, se , s e ed ed ing
∼ ∼es, ∼s∼e∼, ∼se∼ ∼ed ∼ed ∼ing
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