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Abstract

Direct manipulation is everywhere. While the intuitive point-click-operate workflow of direct

manipulation is the standard mode of interaction for most computer applications, for over half a

century one important application has remained a text-based activity: programming. Can the intu-

itive workflow of direct manipulation be applied to programming—could programming become as

simple as manipulating the program’s output, showing the computer what you want it to do? Alas,

45 years of research on this “programming by demonstration” (PBD) vision has yielded only niche

successes.

To confront this impasse, this dissertation reverses a key assumption of PBD systems. Tra-

ditional PBD systems eschew textual code, assuming that textual code is difficult for users. But,

whatever its faults, textual code is a proven paradigm for understanding and editing programs.

Therefore, this work instead embraces textual code: we start with text-based programming in a

generic programming language and, rather than replace text, augment it with PBD-style direct

manipulation on visualized program outputs. Output manipulations induce changes to the textual

code. Such a system is bimodal: at any time, users may program via text edits on code or via

mouse manipulations on outputs.

To explore the expressiveness of this bimodal approach, this work presents two programming

systems. The first system, called SKETCH-N-SKETCH, mimics a traditional graphics editor, en-

abling users to use standard drawing interactions to create programs that output vector graphics.

The second, called MANIPOSYNTH, brings output-based interaction closer to ordinary program-

ming, offering a graphical interface for constructing OCaml programs that operate on functional

data structures. We show the expressive extent of direct manipulation in both systems through

examples. Overall, this work expands and illuminates the capabilities of bimodal programming.
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Chapter 1

Introduction

As originally defined by Ben Shneiderman, direct manipulation is the workflow characterized by

“visibility of the object of interest; rapid, reversible, incremental actions; and replacement of com-

plex command language syntax by direct manipulation of the object of interest” [135]. Because

of these intuitive affordances, direct manipulation has become the expected way that most peo-

ple interact with computers. Drawing software, presentation applications, and word processors all

function by using the cursor to directly manipulate visual representations of the objects of interest.

But what about programming? Why can’t programs similarly be created by direct manipu-

lation? If direct manipulation could be applied to programming, it might allow novices to learn

programming more easily. And even for experts, program text can be opaque and clumsy—direct

manipulation might also let them more naturally complete some tasks.

Because direct manipulation promises benefits to both novices and experts, many systems have

explored different ways to add direct manipulation to programming. Most of these systems provide

direct interactions on the program’s abstract syntax tree (AST) but not on the products of the pro-

gram—its output. And while a few system allow direct manipulation of program output to change

the program’s code, these manipulations are limited to specific scenarios. Overall, it is unknown

how expressive direct manipulation of output can be for creating programs. Therefore, the

aim of this dissertation is to vastly expand the answer to the question:

What kinds of code can be created via direct manipulation of program outputs?
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1.1 Bimodal Programming

In particular, to leverage the success of text-based programming, we seek to augment rather than

replace text. The programmer’s direct manipulations will be realized as textual code that is always

text editable. Program changes that cannot be accomplished by direct manipulation can still be

achieved by ordinary text editing. Furthermore, text edits will not disable the later use of direct

manipulation. We call this workflow bimodal programming. Bimodal programming is the inter-

action paradigm in which a programmer freely intermixes text edits with direct manipulation of

output in order to craft a program. We answer the question above with the following thesis:

Non-trivial vector graphics programs and functional data structure manipulation pro-

grams can be constructed by output-based interactions in a bimodal programming en-

vironment.

We justify this thesis by building and demonstrating two different bimodal programming sys-

tems, along with one supporting technical mechanism in between. The first system—called Sketch-

n-Sketch [59, 63]—is a development environment for creating programs that output SVG vector

graphics (Chapter 2). Looking forward to manipulation of non-visual data structures, we intro-

duce a mechanism—called Tiny Structure Editors (TSE) [60]—for manipulating program values

by interacting with their toString representation (Chapter 3). The final system—called Mani-

posynth [in submission]—is an environment for bimodal programming of ordinary functional data

structures (Chapter 4).

Before presenting these systems, we will survey related programming techniques (Section 1.2)

and argue that bimodal programming avoids common pitfalls of prior systems (Section 1.3). At

the end, we briefly reflect on these systems and conclude (Chapter 5).

For interested readers, Appendix A supplements the above with a study of a different sort of

bimodal programming: structural direct manipulation of program expressions, rather than values.

Such direct manipulations of program expressions are usually offered only in special structure edi-
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tors rather than in ordinary text buffers, but in the system presented in Appendix A, named DEUCE,

adds structural selection and operation to an ordinary text buffer to streamline the invocation of

code refactorings. Direct manipulation of code expressions is orthogonal to direct manipulation of

output values—a future programming system might incorporate both.

1.2 Related Work

Bimodal programming starts with an ordinary, always-editable text representation of a program

and augments the text with both live display of program values and the ability to perform program

edits by directly manipulating those values. A number of programming systems, surveyed below,

share one or more of the above features. These systems may be divided into three categories: (a)

live programming systems that display program values but require edits to be performed in text,

(b) direct manipulation programming systems that offer various direct manipulation interactions

for program construction, albeit short of the bimodal vision, and finally (c) bimodal programming

systems, i.e., those systems that offer manipulations of program values while simultaneously rep-

resenting the program as always-editable text.

1.2.1 Live Programming

Programmers often want to see values their program produces; either values in the program’s

output, or, perhaps via a debugger, values at some intermediate state of the program. To see output

values after an edit, a programmer must manually trigger and wait for their program to compile and

run. Or, to see intermediate values, they must set up a debug session. These repeated operations

have the potential to become tedious. The goal of live programming is to tighten the programming

feedback loop by automatically updating displayed values in response to program changes. As

envisioned by Tanimoto [143], the greatest level of liveness is when the visual display of the

program state reacts continuously to all program edits as well as to any incoming streaming data.
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A large number of live programming systems have been created. Python Tutor [53, 54] is pop-

ular teaching tool for visualizing Python program state and includes a live programming mode.

Victor’s Inventing on Principle presentation [148] demonstrates several live programming envi-

ronments and served as inspiration for later work [77, 90]. The LightTable IDE [50] obtained

hundreds of thousand dollars of crowd funding [24]; its key selling points were immediately avail-

able documentation and a live updating display of values flowing through code. All these systems

live-update the code display in response to program changes. New live programming ideas con-

tinue to be explored at the yearly LIVE Programming Workshop [1].

Empirical validation of live programming Is live programming effective? Hancock [55] notes

that, intuitively, live programming is like trying to hit a target with a water hose instead of a bow

and arrow—the feedback and reaction are continuous. From this intuition we might assume that

programmers benefit from seeing the values produced by their code as soon as possible. Alas, this

assumption has not yet been empirically validated.

Fabry [41] surveyed four studies and found these existing studies of live programming lacked

quantitative evidence for its effectiveness (a conclusion also reached by Rein et al. [128]). For

example, for program repair tasks in the spreadsheet programming system Forms/3 with and with-

out live re-evaluation, although participants felt more confident with live feedback enabled, they

were no more accurate [154]. And Krämer et al. [82] found that live feedback in Javascript did

not help users complete tasks faster (they were, however, faster to fix bugs they introduced during

program construction). Even so, despite the lack of quantitative evidence, participants often report

qualitative preferences for live programming [41]. Although more recent than Fabry’s survey [41],

Huang et al.’s [69] large study of 237 students came to somewhat similar results: live feedback

had no effect on learning outcomes, even though students rated live feedback as helpful. For some

subtasks, however, students were significantly faster with the live feedback. The subtasks with the

most pronounced speed differences happened to be code tracing tasks, a kind of task in which live

feedback might be expected to help novice programmers who are not as practiced at simulating the
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computer in their head.

Although live programming has not yet been shown to be broadly helpful, a couple qualita-

tive insights about live programming system design have emerged. Via pilot studies, Kang and

Guo [76] observed that two seconds of delay was a good tradeoff between maintaining liveness

and reducing the distraction of UI updates. In contrast, Lerner [90] found that immediately live

information was not necessarily distracting, although user customization to filter the displayed

information is necessary to achieve the best effect.

Despite lack of quantitative evidence, we rely on the qualitative feedback and assume live pro-

gramming is desirable. Moreover, the bimodal vision seeks to make live programming more live

by offering direct manipulation of the execution products. Although in this work we do not quan-

titively investigate the possible benefit of bimodal interaction on top of live programming, there is

a possibility that the addition of bimodal interactions could lead to quantitative improvements in

certain scenarios.

1.2.2 Direct Manipulation Programming

Visual dataflow programming. In his 1966 Ph.D. thesis [142], William Sutherland introduced

a direct manipulation computer system to perform what is now known as visual dataflow program-

ming. In visual dataflow programming, the user graphically creates a computation by laying out

nodes and wires on a canvas, much like a flowchart. Nodes represent operations on data, and wires

carry data between operations.

Although the wires can quickly become noisy and resemble literal “spaghetti code” [153], vi-

sual dataflow programming has been practically applied to domain-specific tasks. A notable exam-

ple is the commercially successful LabVIEW [110] environment which primarily targets engineers

and technicians working with electronics.

While most nodes-and-wires dataflow programming systems use nodes to represent operations

and wires to represent data, the reverse is also possible. PANE [66] is a recent such example: nodes
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display example values and wires represent transformations between values. Because the example

values are foremost in the display and may be clicked to invoke operations on them, PANE’s

workflow bears resemblance to the MANIPOSYNTH system presented in Chapter 4. PANE does

not, however, maintain an editable text representation of the program.

The visual data processing system Enso [39] (formerly Luna) displays both the operation and

output on nodes. Additionally, like the systems presented in this dissertation, Enso is a bimodal

environment offering an always-editable text representation of the program. Enso does not offer

direct manipulation of the displayed output values, however.

Blocks and other structure editors. In block-based programming environments [11], traditional

syntactic constructs such as statements, loops, and if-then-else structures are represented as graph-

ical blocks that can be directly manipulated. Syntactically valid combinations of blocks snap to-

gether like puzzle pieces, allowing the programmer to build up a program with minimal keyboard

input. Additionally, a toolbox of available blocks is provided so that new functionally can be dis-

covered and immediately added to the program. Because blocks obviate the need to memorize

syntax and can be used without being adept at keyboard input, block-based environments have

been used in computer science education, most notably in Scratch [129] and Alice [26].

Block-based editors are a specific instance of structure editors, also known as projectional ed-

itors. In structure editors, instead of editing the program via a raw text buffer, the system offers

tree transformations in order to maintain a syntactically valid program throughout its construc-

tion. Structure editors do not necessarily operate by direct manipulation. For example, the Cornell

Program Synthesizer [144] operated via key commands rather than by a mouse. And, although

inspired by the traditional textual rendering of the program, structure editors also differ in how

closely they support ordinary raw-text editing. Several structure editors combine both direct ma-

nipulation interactions together with a more familiar raw-text editing experience—a combination

we also seek. Barista [81] and Greenfoot [18] offer drag-and-drop structural interactions while

also mimicking an ordinary text buffer for ordinary editing. Similarly, Deuce [62] (Appendix A)

6



augments an ordinary text buffer with a structural multi-selection mode to quickly invoke refactor-

ings. Unlike the work described here, in structure editors the programmer directly manipulates the

code rather than the output.

Constraint-oriented programming (COP). Following in the footsteps of Sketchpad by Ivan

Sutherland [141], constraint-oriented programming (COP) systems explicitly view building a con-

strained system as a programming task [15, 64, 42]. In these systems, the programmer declares a

series of constraints, either graphically (via direct manipulation) or in text. In the graphical setting,

the constraints are common geometric assertions, e.g., “these points should be equidistant from

this other point”; while a non-graphical constraint might be “x should always be twice the value of

y”. Unlike traditional programming, COP systems run a constraint solver alongside the program,

querying the solver during runtime to affect the execution of the program. The systems in this dis-

sertation instead follow a standard execution model—any “constraints” are expressed as ordinary

math in the program (e.g., x2 = x1 + w/2) and are executed normally.

Several systems targeted at visual design also follow a COP model but do not seek to expose

ordinary text-based code (e.g., [156, 73]). Of these systems, Apparatus [131], Recursive Draw-

ing [130], and Geometer’s SketchPad [72] are notable for supporting recursion.

Related to COP systems, feature-based parametric CAD editors record user actions as a series

of steps that together act as a program encoding the creation of the design. Elements may be

parameterized based on previously created elements (e.g., a screw head may be defined to be

1.5x wider than the screw cylinder). If an element property is changed, dependent actions in the

sequence are re-run to update the design. Thus, the design may be considered a sort of declarative

program. Among CAD systems, EBP [122] is notable for allowing the user to perform a step-by-

step demonstration to create loops and conditionals.

Programming by demonstration (PBD). To offer end-users some of the benefits of program-

ming, a class of interactions dubbed programming by demonstration (PBD) [28] allow users to,
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instead of typing out code, specify programs by demonstrating the desired actions to the com-

puter. Taking the role of a learner, the computer infers the intent of the demonstrated actions and

constructs a program.

Several early PBD approaches used shape drawing as a domain for exploring these non-textual

programming techniques. PBD systems usually rely on a visual representation of the program

rather than a textual one (e.g., [83, 92]), or show actions step-by-step [98].

Although not as visual as peer PBD systems, Tinker [93] is notable for supporting recursion

by demonstration—indeed, any Lisp expression may be created. Unlike the systems presented in

this dissertation, manipulations are performed on a symbolic representation of the example not far

removed from the underlying Lisp. But, like the systems presented here, the underlying code in

Tinker is set in a traditional programming language and that code is featured in the UI.

More recently, PBD techniques have been developed with a practical bent. These systems

address a wide variety of domains, such as data visualization [149], mobile applications for collab-

oration [37], web task automation [94], web scraping [20], and API discovery [157]. Each of these

systems focus on solving a particular domain task and, unlike the systems presented here, either do

not expose the program as plain text in ordinary code, or do not offer demonstration-based editing

after the initial program is generated.

1.2.3 Prior Bimodal Systems

Bimodal programming is defined above as the activity of specifying always text editable code

via direct manipulation of program execution products. The systems presented in this disserta-

tion are not the first bimodal systems, although our goal is to push bimodal programming further

than prior work. Most prior bimodal systems only support “small” changes to the code via di-

rect manipulation. For example, output manipulation may change numbers [25, 84, 100, 45],

strings [152, 133, 84, 100], or list literals [100] in the code. That is, direct manipulation can

make minor tweaks to an existing program but does not help create the program to begin with. A
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handful of prior systems, however, like those we present, do enable “larger” program changes via

output manipulation and can assist the programmer in creating and refactoring the program, not

just modifying constant literals. These works will be discussed later in context of the presented

systems.

1.3 Avoiding the Pitfalls of PBD

As discussed above, a long line of work has attempted to make programming a more direct and

immediate experience than simply typing out opaque code. Programming by demonstration (PBD),

in particular, has put forward many ideas over many years for how to make programming more

demonstrational, and therefore more approachable, than the arcana of text-based programming—

by 2003, there were already two full volumes reviewing the major works to date [28, 91]. Despite

all this work, PBD interfaces are rare in practice. Why?

Reflecting on her many years working on PBD systems, Tessa Lau offers five guidelines that

PBD systems often neglect [86]. Below, we recount Lau’s principles and argue how bimodal

programming might satisfy them.

1. “Detect failure and fail gracefully.” In general, PBD systems accept a series of demonstra-

tions from the user and attempt to infer the intended program. Because this inference may involve

a complex constraint satisfaction problem, when a wrong program is produced it can be unclear

why—in the limit, the constraints may simply be unsatisfiable and the system gives no hint about

where the problem might lie. Inference is not fundamental to PBD, however. Each interaction

could instead enact a limited change to the code. Instead of constructing a large constraint satis-

faction problem over several demonstrations, steps can be small and immediate, with the effect of

each step visible and reversible. Where there is ambiguity about the meaning of an interaction, the

programmer can chose the desired result before continuing. Because of its clarity and reversiblity,

we adopt this step-by-step approach for our bimodal systems.
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2. “Make it easy to correct the system.” When a demonstration does not produce the desired

result, the only fix may be to redo the entire demonstration. But if operations are instead stepwise

and small, only a little work is lost if the system misinterprets a user interaction. More importantly,

because the code is always editable as text in our bimodal systems, the programmer is not forced

to fumble endlessly trying to discover the appropriate interaction: if their interaction fails, they can

still enact the change with ordinary text editing.

3. “Encourage trust by presenting a model users can understand.” If the representation of

the program is hidden, or is an inscrutable AI model, users will not be able to trust that their

program does what they want. In bimodal programming, the program is ordinary, readable code.

What the program does is precise and knowable.

4. “Enable partial automation.” Instead of forcing the programmer to always manipulate out-

put, bimodal programming allows the programmer to mix and match direct manipulation with

traditional text-based programming.

5. “Consider the bottom-line value of automation.” Lau admonishes the system designer to

weigh not just the user effort required to perform a single demonstration, but also the additional

costs of learning to use the system and the switching cost of leaving one’s normal workflow to enter

the demonstrational interface. On this point bimodal programming has less to offer. Certain bi-

modal interactions might go unused, despite being notionally superior to their textual counterparts.

For example, in SKETCH-N-SKETCH below it is easier to draw a shape on the canvas rather than

remember how to type the appropriate function call in the code. Even so, a programmer already

typing text may choose to add the function call via the keyboard. A similar phenomena has been

shown in traditional integrated development environments (IDEs). IDEs have long had a large suite

of labor-saving automated refactoring tools, and yet an open problem in the software engineering

community is how to get folks to use those tools—one study found that even when automated tools
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were available, up to 90% of code refactorings were performed manually [109]. Unlike refactoring

tools, however, if a bimodal system offers enough bimodal interactions to cover most of a pro-

grammer’s workflow, for example by also including tools for program construction not covered by

standard refactorings, then it may be possible to switch the programming workflow from a primar-

ily text-editing activity to a primarily direct manipulation activity. As evidence of this possibility,

text edits in the code editor will not be used in the presentations of the SKETCH-N-SKETCH and

MANIPOSYNTH systems below.

As outlined above, bimodal programming addresses many of the problems faced by PBD sys-

tems. Why hasn’t bimodal programming been more thoroughly explored? There are at least two

challenges. First, maintaining two editable representations is non-trivial—most prior bimodal sys-

tems therefore only support code changes in limited scenarios as noted in Section 1.2. Second,

raw output from a program may hide how that output was generated, but the how may be what

the programmer wants to manipulate—e.g., a large program that outputs a single number cannot

be effectively modified just by indicating a desired change to that number. Because these are not

small challenges, the systems presented in the following chapters focus on expanding the expres-

sive power of bimodal programming, i.e., demonstrating new possibilities of what kinds of code

can be created with bimodal interactions. Hence the thesis:

Non-trivial vector graphics programs and functional data structure manipulation pro-

grams can be constructed by output-based interactions in a bimodal programming en-

vironment.

To scope this work, we aim to evaluate expressivity only—what kinds of programs can be

created—and do not directly assess usability. We assume users are expert programmers familiar

with code and that, for the reasons outlined above, bimodal interactions are desirable. Expressivity

will be demonstrated by creating example programs entirely by output-based interactions, without

ordinary text edits to the code (though, of course, these edits remain possible).
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The next three chapters introduce the three environments by which we explore bimodal pro-

gramming— SKETCH-N-SKETCH, TINY STRUCTURE EDITORS (TSE), and MANIPOSYNTH—

followed by a wrap-up chapter to conclude.
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Chapter 2

Sketch-n-Sketch:
Bimodal Programming for SVG

➊
➋ ➌

Figure 2.1: SKETCH-N-SKETCH interface.

2.1 Introduction

Visual designers face a choice: they must choose between using graphical editors or programmatic

tools. Graphical editors offer convenient direct manipulation, but their capabilities are circum-

scribed by the application. Programmatic languages and libraries like Processing [12] instead

This chapter encompasses work published at UIST 2016 (Hempel and Chugh [59]) and UIST 2019 (Hempel
et al. [63]). SKETCH-N-SKETCH was awarded a Best Demo Honorable Mention at UIST 2019. The most concise
explanation of SKETCH-N-SKETCH is the UIST 2019 paper [63], from which this chapter borrows. Compared to [63],
this chapter adds considerable detail about technical implementation mechanisms.
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offer near-infinite flexibility, but the affordances of direct manipulation are lost. Could designers

have both the flexibility of programming and the power of direct manipulation?

In this chapter we introduce SKETCH-N-SKETCH, a graphical editor for creating programs that

output SVG vector graphics. SKETCH-N-SKETCH imitates a traditional graphics editor, with tools

for directly drawing and manipulating shapes. The source code of the drawing, however, is an

ordinary text-based program in an Elm-like [40] functional programming language, allowing for

parametric designs involving repetition, duplication via function abstraction, and alignment via

variable sharing.

We want to see how far this idea can be taken—what kinds of programs can be created only

via direct manipulation on the program’s graphical output? To explore this question in SKETCH-

N-SKETCH we:

1. Provide direct manipulation tools for drawing, relating, grouping, abstracting, and repeating

shapes.

2. Expose intermediate execution values for manipulation, in addition to the final output.

3. Offer focused editing to enable contextual drawing.

4. Expose generic code refactoring tools through output-based interactions.

5. Use runtime tracing to track value provenance, to associate output selections with source

code locations.

Even though text-based editing remains available at any time, we show how these techniques in

SKETCH-N-SKETCH allow a number of designs to be created entirely through direct manipulation.

We show you can have both direct manipulation and programmatic flexibility within the same

system.

To begin, we survey the most closely related bimodal systems for creating graphics-drawing

programs in Section 2.2. In Section 2.3, we introduce SKETCH-N-SKETCH’s workflow with a main

example, followed by three shorter examples to present additional tools. Then, in Section 2.4, we
14



catalog and describe the myriad technical mechanisms that SKETCH-N-SKETCH uses to offer its

bimodal interactions—although SKETCH-N-SKETCH is specialized for programs that output vec-

tor graphics, many of these technical mechanisms are relevant for future bimodal programming

systems in other domains. To explore SKETCH-N-SKETCH’s expressiveness, we created 16 exam-

ple programs which are presented in Section 2.5. Possible future work is explored in Section 2.6

and we reiterate SKETCH-N-SKETCH’s merits to conclude in Section 2.7.

2.2 Related Graphical Bimodal Environments

While a handful of systems have demonstrated the ability to drag shapes around to enact minor

changes on an existing program [45, 25, 84, 78], the ability to enact larger changes to construct a

program—drawing new shapes or refactoring code—is less common. Like SKETCH-N-SKETCH,

two prior systems offer graphical construction capabilities while realizing the direct manipulations

in plain, editable code.

Transmorphic [132] re-implements the Morphic UI framework [97] using static, functional

(i.e., stateless) views. Transmorphic retains Morphic’s ability to directly manipulate morphs (i.e.,

UI elements), but affects the manipulations by changing the view’s text-based code rather than the

usual Smalltalk mechanism of changing live object state. In Transmorphic, the programmer may

use direct manipulation to add morphs, remove morphs, or change a morph’s primitive properties.

To implement its transformations, Transmorphic associates each visual morph with a syntactic lo-

cation in the program via a static analysis pass, whereas SKETCH-N-SKETCH instead uses dynamic

runtime tracing.

Like the work presented here, APX [101, 103] is a two-pane (code box and output canvas)

environment for creating programs that draw pictures. APX additionally supports creation of re-

altime visual simulations, updated live as the programmer edits their code. On the output canvas,

APX supports direct manipulation of, e.g., shape position and size, thus changing numbers in the
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program. A few larger changes—namely, grouping and insertion of new shapes—are supported as

well, although most of APX’s interactions are focused on refactoring code by directly manipulating

program terms in the code box.

Compared to Transmorphic and APX, the tools in SKETCH-N-SKETCH address considerably

more use cases. In particular, the relation, abstraction, refactoring, and repetition capabilities

described below are novel to SKETCH-N-SKETCH. Moreover, neither of the above two systems

envisioned that their direct manipulation tools alone could be sufficient for their target domains—

both present their workflows as mix of text-based coding and output-based interaction. While

SKETCH-N-SKETCH supports this mix and match, in order to highlight the expressivity of its

tools, the presentation of SKETCH-N-SKETCH here only discusses programs constructed entirely

by operations on the canvas, without any text-based programming in the code box.

2.3 Overview

Sketch-n-Sketch File Examples Code Tools Output Tools View Options

 Undo  Redo Clean Up

Current �le: Untitled *

Run 

⦀

Context: Program Built-In Tools

User-De�ned Tools

Standard Library Tools

y = 127 

x = 158

w = 100

logoFunc x y w color strokeWidth =
  let topLeft = [x, y] in
  let square1 = square 140 topLeft w in
  let y2 = y + w in
  let line1 = line color strokeWidth topLeft [ x+ w, y2] in
  let line2 = line color strokeWidth [x, y2] [ (2! * x + w)/ 2!, (2! * y + w) / 
  [square1, line1, line2] 

logo = logoFunc x y w 369 5

logoFunc1 = logoFunc 275 200 38 0 5

logoFunc2 = logoFunc 207 263 65 0 5     

svg (concat [
  logo,
  logoFunc1,
  logoFunc2
])
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Figure 2.2:
Logo example.

SKETCH-N-SKETCH aims to imitate a simple traditional vector graphics

editor, but with the design realized as textual code in a programming

language. The work presented here builds on a prior initial version of

SKETCH-N-SKETCH [25] in which, once a program had been created by

text edits, the user could use their mouse to directly move and resize shapes

and change colors, all on the program’s output canvas. These manipulations

were reified by automatically changing appropriate numbers in the code. Output-based manip-

ulations in the prior work could only modify single numbers in the program. The present work

introduces novel program construction and editing facilities, all via mouse-based manipulations on

the program’s output canvas.

Below, the interactions in SKETCH-N-SKETCH are introduced through the construction of sev-

eral example programs. First, we will introduce the main workflow and most commonly used
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Figure 2.3: SKETCH-N-SKETCH workflow.

tools in SKETCH-N-SKETCH by demonstrating the construction of the SKETCH-N-SKETCH logo,

shown in Figure 2.2. Afterward we will demonstrate other tools by briefly describing key steps in

the construction of three further examples (including the recursive fractal in Figure 2.1). Having

introduced how the tools are used, Section 2.4 will detail the mechanisms by which all the tools

operate.

Figure 2.1 shows the SKETCH-N-SKETCH interface. The code box ➊ on the left is an ordinary

source code text editor. The language in SKETCH-N-SKETCH is a simple, functional programming

language—an extended lambda calculus with syntax inspired by the Elm language [40]. The can-

vas ➋ on the right displays the program’s SVG output. The toolbox ➌ offers various drawing tools

for adding items into the program. The particular program shown in Figure 2.1 uses a recursive

function to draw a von Koch snowflake fractal [151]. This program was constructed entirely with

interactions on the output. Indeed, although we may perform regular text-edits to our programs

at any point during their construction—and we may do so without losing access to the output-

directed tooling for later edits—all examples below will be constructed using only output-based

edits, thereby highlighting the expressive power of SKETCH-N-SKETCH’s tooling.

The paradigmatic SKETCH-N-SKETCH workflow is summarized in Figure 2.3, which the con-

struction of the logo example will follow. After first drawing the needed shapes, the programmer

will relate properties of the shapes (e.g.,, constraining the endpoints of the lines to match the cor-

ners of the square), and afterwards the shapes can be gathered into a group. Because the design is
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a program, the programmer can abstract the shapes into a function, allowing them to reuse their

design. Finally, the programmer may refactor the program, to, e.g., clean up variable names and

choose which shape properties should be arguments to the function. The final code for this example

is shown in Figure 2.6. We walk through these steps below.

2.3.1 Draw

The initial program template provided by SKETCH-N-SKETCH is nearly blank, defining only an

empty list of SVG shapes (the last expression of a program defines the return value for the whole

program):

svg (concat [
])

As in a traditional graphics editor, the programmer clicks on the “square” tool from the tool-

box ➌ and drags their mouse on the canvas. A new square1 definition is added to the program,

sized and positioned in accordance with the mouse movement, and the square1 variable is added

to the shape list so that the square appears in the output.

square1 = square 0 [158, 127] 156

svg (concat [
[square1]

])

The programmer similarly uses the “line” tool to add the needed lines (Figure 2.3a).

2.3.2 Relate

The programmer would like to require that the endpoints of the lines always coincide with the

corners of the rectangle. To relate these positions, the programmer first double-clicks the two

points they would like to be coincident. The x and y coordinates of these points are selected, shown

as green crosses (Figure 2.3b, top; the pink line is an unselected distance feature, introduced in the
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(a) Equalizing points

(b) Change diff

Figure 2.4: The Output Tools panel appears when an item on the canvas is selected. Each tool may
offer multiple results; hovering the mouse over each result previews the change on the code (b) and
on the canvas.

next example in §2.3.6). Whenever a selection is made upon the canvas, SKETCH-N-SKETCH

displays a floating menu of output tools, offering operations on the selected items (Figure 2.4a).

To snap the points together, the programmer chooses the MAKE EQUAL tool. A submenu

offers multiple ways to introduce variables into the program so that the points are always in the

same position. The results differ in which original position is preserved—should the line move to

the square, or vice versa? The programmer may hover their mouse over each result to see its output

on the canvas and the diff in the code (Figure 2.4c). The programmer chooses the first result, which

moves the line to the square. A topLeft variable is introduced and used for both the positions of

the square and the line:

19



7/5/2019 Sketch-n-Sketch

file:///Users/brian/Documents/open_source/sketch-n-sketch/build/out/index.html 1/1

Sketch-n-Sketch File Examples Code Tools Output Tools View Options

Undo Redo Clean	Up

Current le: Untitled	*

Run	

⦀

Context:	Program

line1

line2

Built-In	Tools

User-De ned	Tools

Standard	Library	Tools

y = 127

x = 158

topLeft = [x, y]

w = 156

square1 = square 140 topLeft w

y2 = y + w

line1 = line 0 5 topLeft [ x+ w,

line2 = line 0 5 [x, y2] [ (2! *

svg (concat [
[square1],
[line1],
[line2]

])

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Add	to Output

Dupe ( D)

Output	Tools

Reorder in List

Merge

Group

Abstract

Repeat...

Figure 2.5: When a shape is selected, sliders appear to modify its non-spatial properties, such as
color and stroke width. These properties can be selected by clicking the sliders (drawn in green
when selected).

topLeft = [158, 127]

square1 = square 140 topLeft 100

line1 = line 0 5 topLeft [276, 222]
...

If the programmer moves the square with their mouse, the numbers of the topLeft point will

change and the endpoint of line, because it uses the same variable, will stay pinned to the square’s

corner.

The remaining endpoints can be similarly related with MAKE EQUAL; although the positions

of the other corners and center of the square must be calculated—for example, the right edge of

the square should be x + w. MAKE EQUAL automatically inserts the needed math (visible on lines

11-13 in the final code in Figure 2.6).

Non-spatial properties may also be equalized. When the programmer selects the two lines,

sliders appear to modify their color and stroke width. The sliders themselves may be clicked to

select the corresponding property (Figure 2.5); after selecting both sliders, the programmer applies

MAKE EQUAL on the colors so both line colors are tied to a single variable in the code.

2.3.3 Group

Analogous to the grouping functionality of traditional graphics editors, SKETCH-N-SKETCH offers

a GROUP tool to gather shapes into a single list. The programmer selects the three shapes and
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invokes GROUP, resulting in a new squareLineLine list in the code:

...
squareLineLine = [square1, line1, line2]

svg (concat [
squareLineLine

])

Lists are represented on the canvas as a dotted border encompassing the list items (Figure 2.3c,

Figure 2.32c). To aid comprehension, variable names are also shown on the canvas next to ap-

propriate items—double-clicking on name allows the variable to be renamed. In Figure 2.3c, the

programmer has selected the squareLineLine group list and renamed the variable to logo.

2.3.4 Abstract

The programmer would like to make their logo design reusable—in other words, they would like

to create a function that, given size and color arguments, generates a logo appropriately. With

the logo group list selected, the programmer invokes ABSTRACT from the Output Tools menu.

ABSTRACT performs an ordinary Extract Method refactoring to produce a function that returns the

selected item, namely [square1, line1, line2]. As a heuristic, ABSTRACT (recursively) pulls

in variable bindings used only in the construction of [square1, line1, line2] (provided those

definitions have free variables themselves) resulting in a function named logoFunc parameterized

over y, x, w, color (of the lines), and strokeWidth:

...
logoFunc y x w color strokeWidth =
let topLeft = [x, y] in
let square1 = square 140 topLeft w in
let y2 = y + w in
let line1 = line color strokeWidth topLeft [ x+ w, y2] in
let line2 = line color strokeWidth [x, y2] \

[ (2! * x + w)/ 2!, (2! * y + w) / 2!] in
[square1, line1, line2]

logo = logoFunc y x w color strokeWidth
...
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The logo design is now reusable. To insert more copies of the design, the programmer could

manually write additional calls to this function into the program. Conveniently, however, SKETCH-

N-SKETCH’s type inference notices that this function accepts at least an x, y coordinate and a

width, and this function automatically appears in the toolbox as a custom drawing tool (Figure 2.3d,

top; the type inference mechanism is described in §2.4.7). The programmer uses this custom

drawing tool to draw two more copies of the function (Figure 2.3d, bottom; Figure 2.6 lines 18 and

20).

2.3.5 Refactor

Although the programmer has produced a reusable design, they may want to change the details of

the parameterization. The logoFunc produced by ABSTRACT’s heuristics was parameterized on y,

x, w, color (of the lines), and strokeWidth, in that order. Copies of the design may differ in those

attributes, but all copies must share the same square fill color. The programmer would like the

square fill color to differ between copies and also wants x to come before y. SKETCH-N-SKETCH

offers interactions to perform these refactorings on the canvas.

Items on the canvas that result from a function call are encompassed by a solid border; the bor-

der represents the function call. Clicking the border focuses the function call (Figure 2.3e). Other

shapes on the canvas disappear and the programmer may edit the function. The arguments to the

function also appear, as seen in Figure 2.3e, and may be reordered, removed, or renamed. Argu-

ments may also be added by selecting a property of a shape (e.g., the square color) and invoking

ADD ARGUMENT from the Output Tools menu. Although not exercised in this example, focusing

a function has a further consequence: using a drawing tool will add the new shape to the function

instead of to the top level of the program.

In this example, the programmer reorders the x and y parameters, adds the square color (by

selecting the square, selecting its fill color slider, and invoking ADD ARGUMENT), and renames

the color parameter to lineColor. The final parameterization appears on line 7 of the final code
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1 y = 127
2
3 x = 158
4
5 w = 100
6
7 logoFunc x y w fill lineColor strokeWidth =
8 let topLeft = [x, y] in
9 let square1 = square fill topLeft w in

10 let y2 = y + w in
11 let line1 = line lineColor strokeWidth topLeft [ x+ w, y2] in
12 let line2 = line lineColor strokeWidth [x, y2] \
13 [ (2! * x + w)/ 2!, (2! * y + w) / 2!] in
14 [square1, line1, line2]
15
16 logo = logoFunc x y w 140 0 5
17
18 logoFunc1 = logoFunc 275 200 38 140 0 5
19
20 logoFunc2 = logoFunc 207 263 65 140 0 5
21
22 svg (concat [
23 logo,
24 logoFunc1,
25 logoFunc2
26 ])

Figure 2.6: Final code for the logo example. Numbers annotated with ! will not change when
shapes are moved on the canvas [25].

shown in Figure 2.6. The programmer is satisfied. They were able to to create the program entirely

through output-based manipulations on the canvas by using tools for drawing, relating, grouping,

abstracting, and refactoring their design.

Although this example demonstrated the main workflow for creating designs in SKETCH-N-

SKETCH, it did not exercise all the tools available. Three brief examples below introduce the

remainder of SKETCH-N-SKETCH’s features.
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(a) One-Third Point (b) Equi-Tri Point (c) Curve Points (d) Snowflake

Figure 2.7: Definitions needed to create a Koch snowflake.

2.3.6 Koch Snowflake Fractal (feat. recursive drawing)

In the logo example above, at each step the programmer manipulated items in the final output

of the program. In practice, programs may take many steps of computation before producing a

final output. In the graphical setting, to allow the user some control over execution steps before

the final output, SKETCH-N-SKETCH exposes several forms of intermediate execution products on

the canvas for manipulation. The prior example introduced two in passing (the dotted and solid

borders representing lists and function calls, respectively). To introduce the widgets representing

points, along with additional transformation tools, here we discuss the construction of a program

that draws a von Koch fractal snowflake [151]. This particular example is notable for two reasons:

(a) the program is constructed entirely by operations on intermediates (the program’s output is

technically empty until the user’s final change) and (b) the program involves recursion.1

Figure 2.8: Koch motif.

Figure 2.7d shows the final design. The design is created by

recursively repeating the motif at right. Points labeled 0 are inputs;

points labeled 1 will be placed 1
3 and 2

3 of the way between the

inputs; a final point (labeled 2) will be placed equidistant from the

latter, forming an equilateral triangle. Repeating the motif between pairs of points recursively

defines the fractal.

To construct this motif and build the overall design, four definitions are required (Figure 2.7):

1The supplementary materials at https://doi.org/10.1145/3332165.3347925 include a narrated video walk-
ing through this program’s construction.
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(a) A helper function that, given two points, computes a point 1
3 of the way between them.

(b) A helper function that, given two points, computes a third point that completes the equilat-

eral triangle with the two input points.

(c) A function that uses the above two helpers to create the basic motif, and recursively repeats

the motif within itself. The result is the points of a Koch curve, i.e., one side of the final snowflake.

(d) A snowflake polygon produced by laying out three instances of Koch curve along the sides

of an equilateral triangle.

One-Third Point Function To construct the helper function that takes two

points and returns a point 1
3 of the way between them, We first select the “Point

or Offset” tool from the toolbox (Figure 2.1 ➌). The “Point or Offset” tool can be used to add new

point definitions to the program. Upon clicking the canvas, a new definition is inserted at the top

of the program:

[x, y] as point = [87, 206]

svg (concat [
])

The [x, y] as point pattern is destructuring assignment: the x variable holds 87, y holds 206,

and point holds the whole two-element list [87, 206]. Although these new x, y, and point vari-

ables are not yet used—the shape list at the end of the program is still empty—a dot appears on the

canvas at (87,206). SKETCH-N-SKETCH’s evaluator will draw widgets for intermediate execution

products on the canvas when certain types of values are encountered during execution. Whenever

the evaluator encounters a number-number pair during execution, a point widget is drawn as a be-

nign side effect. Point widgets allow points in the program to be selected or manipulated on the

canvas, even if that point does not occur in the program’s final output.

Continuing with the “Point or Offset” tool, we add two more point definitions in a similar

fashion, and then drag the points with the “Cursor” tool into roughly the right places, with one

point 1
3 of the way between the other two.
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[x3, y3] as point3 = [264, 131]

[x2, y2] as point2 = [153, 178]

[x, y] as point = [87, 206]

svg (concat [
])

We would now like to tell SKETCH-N-SKETCH to relate the 1
3 point (point2 above) in terms

of the other two.

After selecting the three points, we hover the mouse over the RELATE tool in the floating Output

Tools panel (Figure 2.4a). SKETCH-N-SKETCH attempts to synthesize an arithmetic expression

that, were it substituted into the program, would define one of points in terms of the others and

leave our points in roughly the same place. After about 20 seconds of guess-and-check work, three

possible results are shown in the RELATE tool submenu (Figure 2.9).

Figure 2.9: RELATE tool submenu.2

The RELATE tool synthesized three results—although depending on where our points were

placed, there could be as few as zero or as many as 20 or more results. The second result is mathe-

matically equivalent to what we might deduce by hand (e.g., xout = x1 + 1
3(x2 −x1), and similarly

for y), so we choose that result. The point2 definition is rewritten, and the point definition—

which previously was the last definition—is automatically moved upward so its x and y variables

are in scope for point2:

[x3, y3] as point3 = [264, 131]

[x, y] as point = [87, 206]

[x2, y2] as point2 = [ x / 1.5!+ x3 / 3!, y / 1.5! + y3 / 3!]
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To turn this concrete expression into a reusable function, we select all the points again and

invoke ABSTRACT from the Output Tools panel. In this case there are three possible results:

abstracting over only the math for the x coordinate, only the math for the y coordinate, or the

entire 1
3 point. We choose the last result.

[x3, y3] as point3 = [264, 131]

[x, y] as point = [87, 206]

point2Func [x3, y3] [x, y] =
[ x / 1.5!+ x3 / 3!, y / 1.5! + y3 / 3!]

[x2, y2] as point2 = point2Func point3 point
...

Figure 2.10:
One-third-point function.

A new function—called point2Func—has been placed in our

code and the old point2 definition now calls this function to produce

its point; as in the logo example, a call widget (gray border at right)

and function name appears when we hover over the output point.

We click to rename the function to oneThirdPt. Our first helper

function is now complete, so we no longer need the example points

used to build it. We select all three points and press the Delete key. Perhaps surprisingly, only the

definition for point2 disappears, but not the other two points. Only one definition was removed

because both of the other points were also involved in calculating point2—DELETE removed

something about all three points by discarding the point2 binding. We discuss more details on

how SKETCH-N-SKETCH interprets the provenance of values in subsection 2.4.12. Selecting the

remaining two points and pressing Delete again removes their two definitions from the program.

We are left with our oneThirdPt helper function and an empty shape list.

Equi-Tri Point Function We would like our second helper function to take in two

points and return a point equidistant from both, as if forming an equilateral triangle.

As before, we place three points on the canvas in roughly the appropriate positions.
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Unlike before, the math we need to enforce the points’ equidistance is too complicated for the

RELATE tool to discover by guessing. Instead, we select the three points and then click the pink

lines that appear between the points. These pink lines are distance features that represent the

distance between the points (Figure 2.11). Distance features are only shown between selected

points to avoid cluttering the canvas.

Figure 2.11: Distance features.

We invoke the MAKE EQUAL tool with the three distances

selected, which queries a solver (REDUCE [58]) to discover how

to replace constants in our program with mathematical expres-

sions that enforce the desired equality. In our case, because there

are many options for which items might be defined in terms of

the others, we are shown a large number of solutions. We choose

the second result (only to avoid producing an extraneous offset

widget, which are introduced in the tree branch example below).

Now one of the points is mathematically constrained to be equidistant from the other two. As

before, we select the points, ABSTRACT the concrete math into a resuable function which we name

equiTriPt. We delete our example points, leaving the final code for our two helper functions:

equiTriPt [x3, y3] [x2, y2] =
[ (x2 + x3 + sqrt 3! * (y2 - y3))/ 2! \
, (y2 + y3 - sqrt 3! * (x2 - x3)) / 2!]

oneThirdPt [x3, y3] [x, y] =
[ x / 1.5!+ x3 / 3!, y / 1.5! + y3 / 3!]

...

Recursive Koch Curve Points Function The principal component of our design is the frac-

tal motif, which we will repeat inside itself to form the points of the fractal. We choose our

oneThirdPt helper function in the toolbox and draw it on the canvas, resulting in a call to the

helper with two new points:

oneThirdPt2 = oneThirdPt [65, 199] [235, 141]
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Figure 2.12: Snap-drawing.

This call gives us the endpoints of the motif, and one

of our 1
3 points. To get the other, we draw oneThirdPt

backwards, starting from one endpoint (in green at right, de-

picted while still drawing) and then ending at other endpoint

to snap-draw [49] so the existing endpoints are reused in-

stead of adding new points. Snap-drawing is effectively an instantaneous invocation of MAKE

EQUAL—the endpoints are pulled out into variables and used for both calls.

point = [65, 199]

point2 = [235, 141]

oneThirdPt2 = oneThirdPt point point2

oneThirdPt3 = oneThirdPt point2 point
...

We then switch to our equiTriPt helper function and snap-draw it between our 1
3 and 2

3 point.

The just-created oneThirdPt2 and oneThirdPt3 variables are used as arguments to the inserted

function call:

equiTriPt2 = equiTriPt oneThirdPt3 oneThirdPt2

We now have our motif in terms of example points. Selecting our

points, we then ABSTRACT. ABSTRACT notices that our 1
3 and 2

3

point definitions are only used inside this new function, and so they

are pulled into the new function body (as seen in the next code listing below). We name the function

makeKochPts.

Now, we want to repeat the motif inside itself. If we select makeKochPts from the toolbox

and draw it on the canvas, SKETCH-N-SKETCH will just insert another call at the top level of

the program. Instead, we need the function to call itself recursively. We focus makeKochPts by

clicking on its gray call widget border.
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Figure 2.13: Inputs orange,
outputs blue.

With the function focused, the inputs of our function are col-

ored orange, while the outputs are colored blue. We can draw

the function inside itself to create a recursive call. With the

makeKochPts tool, we snap-draw the function between the first

pair of points. SKETCH-N-SKETCH inserts an if-then-else re-

cursive skeleton and the recursive call.

...
makeKochPts point point2 =
let oneThirdPt2 = oneThirdPt point point2 in
let oneThirdPt3 = oneThirdPt point2 point in
let equiTriPt2 = equiTriPt oneThirdPt3 oneThirdPt2 in
if ??terminationCondition then
equiTriPt2

else
let makeKochPts2 = makeKochPts point oneThirdPt3 in
equiTriPt2

...

To avoid infinite recursion, the if-then-else skeleton branches on a specially named hole,

??terminationCondition. During evaluation, ??terminationCondition returns False the first

time the function is encountered in the call stack, and True if the function appears earlier in the

call stack, affecting termination at a fixed depth of two. This allows us to run the program and

manipulate its output even before we replace the hole expression later. We snap-draw makeKochPts

between the remaining three pairs of points; the calls are inserted in the recursive branch.

...
if ??terminationCondition then
equiTriPt2

else
let makeKochPts2 = makeKochPts point oneThirdPt3 in
let makeKochPts3 = makeKochPts oneThirdPt3 equiTriPt2 in
let makeKochPts4 = makeKochPts equiTriPt2 oneThirdPt2 in
let makeKochPts5 = makeKochPts oneThirdPt2 point2 in
equiTriPt2
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Figure 2.14: Non-base case.

Our design looks like a fractal now, but the output of the

function consists only of equiTriPt2, shown in blue. All the

white points are only intermediates. Moreover, most of those

intermediates are inside calls to the base case of our function—

but we are focused on the recursive case. We must first modify

the output of the base case, before finalizing the recursive case.

We hover an output point of a recursive call to expose its call widget, whose border we then click

to focus the base case.

Figure 2.15: Base case.

Focused on the base case (shown at right), we want its output

to consist of the leftmost four points of the motif, rather than just the

blue equiTriPt2. The fifth point will be provided by the neighboring

call to the base case.

We click-select the three additional points we would like to be in

the output, and then invoke ADD TO OUTPUT. In order for the func-

tion to output multiple points, the function must now return a list of points. The return expressions

of both branches of our function are therefore wrapped in lists, and the three selected points are

added to the list in the base case.

...
if ??terminationCondition then
[equiTriPt2, oneThirdPt3, oneThirdPt2, point]

else
...
[equiTriPt2]

...

Alas, the points are not in the proper order with the list. We must fix the ordering so the polygon

we will attach to all our Koch points will be drawn correctly. We select one of our points—which

highlights the variable usage in the code so we know where it is in the list—and invoke REORDER

IN LIST as necessary to move the point forward, backward, to the beginning, or to the end in the

list. When all our points are appropriately reordered in this way, we are done with the base case.
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We hit Escape to defocus the base case, and then re-focus the recursive case.

Figure 2.16: Returned
list.

The recursive case currently only returns [equiTriPt2]; instead, we

need it to combine all the point lists returned from the recursive calls.

Recall from the logo example that lists are represented as dotted gray bor-

ders which may be selected (Figure 2.16). We select all four returned lists

from the calls to the base case and invoke ADD TO OUTPUT, producing

the code below:

...
if ??terminationCondition then
[point, oneThirdPt3, equiTriPt2, oneThirdPt2]

else
let makeKochPts2 = makeKochPts point oneThirdPt3 in
let makeKochPts3 = makeKochPts oneThirdPt3 equiTriPt2 in
let makeKochPts4 = makeKochPts equiTriPt2 oneThirdPt2 in
let makeKochPts5 = makeKochPts oneThirdPt2 point2 in
concat [[equiTriPt2], makeKochPts2, makeKochPts3 \

, makeKochPts4, makeKochPts5]
...

SKETCH-N-SKETCH realizes we are trying to combine lists together and inserts a concat (flat-

ten) call so the function produces a list of points, rather than a list of lists of points. SKETCH-N-

SKETCH remembers the order in which we selected the list widgets and inserts the variable uses in

the same order, so no reordering is required provided we selected the lists in order. (We can inspect

the order by hovering the mouse over each list widget border on the canvas, which highlights the

corresponding expression in the code.)

The [equiTriPt] singleton list from the original return value of the function is extraneous; we

find and DELETE its list widget, leaving a return expression of:

concat [makeKochPts2, makeKochPts3, makeKochPts4, makeKochPts5]

Figure 2.17: All points in output.

All the points are now in the output of makeKochPts (and

therefore displayed in blue). One last item remains: we must

choose a termination condition. The focused call widget for

makeKochPts displays the conditional for the recursive case
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as not <| ??terminationCondition (the not indicates we are in the else case) which we can

click to CHOOSE TERMINATION CONDITION. Currently, SKETCH-N-SKETCH offers only one

kind of automatically generated termination, fixed depth, which we choose. A depth argument is

added to our makeKochPts function which is decremented on the recursive calls (lines 11 and 15

in Figure 2.1). Additionally, the original example call to our function is given a depth of 2 with

a {1-5} range annotation so that SKETCH-N-SKETCH draws a slider on the canvas for modifying

the depth [25].

equiTriPt2 = makeKochPts 2{1-5} point point2

Figure 2.18: Snap-drawing the
snowflake skeleton.

Koch Snowflake Polygon Now to make a snowflake! We

have a function that produces points for one side of the Koch

snowflake. We create an equilateral triangle with equiTriPt

(shown at right) and then snap-draw makeKochPoints along its

sides.

To make a single list of all the points, we select the three list

widgets for the three sides’ points and invoke GROUP. GROUP

means gather into list; here it offers either to make a list of lists

or to concat (flatten) all our lists together. We choose this latter

option. To finish the design, we choose the “Polygon” tool from the toolbox and click the list

widget for our flattened points, which attaches a polygon over the points. To polish the code, we

select and equalize the three depth sliders for each of our three calls to makeKochPts, obtaining a

single depth variable. We’re done!
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Figure 2.19: The completed Koch snowflake fractal, shown at recursion depth 3 with UI widgets
hidden.
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2.3.7 Tree Branch (feat. repetition over list and offsets)

Repetition is common in parametric designs. The prior example demonstrated repetition via re-

cursion, but it may also be accomplished by special tools in SKETCH-N-SKETCH. Additionally,

SKETCH-N-SKETCH supports the common graphical operation of offsetting one position from an-

other by a fixed amount. To demonstrate these features, we construct the tree branch design shown

in Figure 2.22. The construction involves a rhombus abstracted over its center point, which is then

repeated over a list of points we draw in the program. (We omit renaming steps in the presentation

below.)

Figure 2.20: Offset widget

We construct the rhombus around a central point using offsets,

which are simple additions to or subtractions from an x or y coor-

dinate. The “Point or Offset” tool creates an offset when dragged

on the canvas (rather than a click), inserting an addition or sub-

traction operation, e.g., xOffset = x + 102. If not drawn from an existing point, a starting point

is inserted as well.

Offsets may snap their amounts to each other while drawing. If we draw a second offset of the

same length in the opposite direction, a variable is inserted for the offset amount:

...
num = 102

xOffset = x + num

xOffset2 = x - num
...

We leverage this amount-snapping to quickly create the skeleton of the leaf rhombus (Fig-

ure 2.21a). We then draw a polygon, snapping to each offset endpoint, and ABSTRACT the result-

ing shape into a rhombus function parameterized over [x,y], halfW, and halfH. We will attach

instances of this function over the branch.

The branch is also constructed with offsets, so that it forms an axis-aligned isosceles triangle.

We place two additional “deadspace” offsets inward from the ends of the branch to form the start
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(a) (b)

Figure 2.21: Tree branch example construction. (a) A skeleton of of offsets. (b) Using deadspace
offsets as the endpoints for the row of attachment points.

and end of the attachment points for the leaves (Figure 2.21b).

We then create these attachment points by drawing the pointsBetweenSepBy function on

the branch, one of several functions in the standard toolbox that returns a list of points. The

pointsBetweenSepBy function returns points separated from their neighbors by a fixed distance.

With this function, making our branch longer will add more leaves rather than spacing them out.

Finally, to repeat our leaf rhombus over the points, we first select the one copy of the rhombus

on the canvas. The Output Tools panel then offers multiple tools for repeating the shape. We

may REPEAT WITH FUNCTION, repeating the shape over a new call to any one of the point-list-

producing functions available, or we can REPEAT OVER LIST, repeating the shape over an existing

point list in our program. We REPEAT OVER LIST over the attachment points we just drew. The

tool creates a new function abstracted over just a single point (rhombusFunc2 below) and maps

that function over our leafAttachmentPts, completing our leafy branch (Figure 2.22).

...
rhombusFunc2 ([x, y] as point) =
let halfW = 40 in
let halfH = 83 in
rhombusFunc point halfW halfH

...
repeatedRhombusFunc2 =
map rhombusFunc2 leafAttachmentPts

...
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Figure 2.22: The completed tree branch design, utilizing offset widgets and repetition in its con-
struction. Shown with widgets hidden.

2.3.8 Target (feat. repetition by demonstration)

Repeating over a point list allows copies of shapes to vary only in their spatial positions. To

support other repetition scenarios where the varying attributes could be calculated from an index

(e.g., 0,1,2, . . . ), SKETCH-N-SKETCH offers a programming by demonstration workflow which

we now briefly illustrate through the construction of a target.

We draw three concentric circles snapped to the same center point and change the color of the

middle circle. We select the three circles and invoke REPEAT BY INDEXED MERGE, from which

we select the second of two results—which differs from the first only in that it adds a reverse on

the last line below, so that i=0 for the last (topmost) small circle. The tool creates the following

code in our program:

...
circles =

map (\i ->
circle \

??(1 => 0, 2 => 466, 3 => 0) \
point \
??(1 => 114, 2 => 68, 3 => 25))

(reverse (zeroTo 3{0-15}))
...

This code maps an anonymous function that takes an index (\i -> ...) over the list [2,1,0].

Each index is thus transformed into one of our circles. The anonymous function contains an ex-

pression formed by merging our original three circle definitions. The syntactic differences between

the three original circle expressions—radius and color—have been turned into programming-by-
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example (PBE) holes, represented by ??(...). The first PBE hole above can be read as “the first

time this expression is executed it should return 0, the second time it is executed it should return

466, and the third time 0.”

Figure 2.23: Hole filling options.

When a program contains PBE holes,

SKETCH-N-SKETCH remembers the execu-

tion environments seen by each hole and em-

ploys sketch-based synthesis [137] to suggest

possible fillings for each hole. Only the vari-

able i ever differs in the execution environ-

ments at these holes, so all possible fillings are

based upon i, as shown at right.

For the first hole, we choose the mod i 2 == 0! conditional to obtain alternating colors. For

the second we choose the only option, a (base + i∗width) expression, to calculate the radii.

Finally, note in the code listing on the previous page that the expression that generates the

indices, zeroTo 3{0-15}, contains a range annotation which exposes a slider on the canvas [25].

The slider allows us to change the number of circles, similar to depth parameter in the Koch

snowflake example. We choose to display five circles for the final design (Figure 2.24).

Figure 2.24: The final target design, constructed by filling PBE holes produced with REPEAT BY

INDEXED MERGE. Shown with widgets hidden.
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Figure 2.25: SKETCH-N-SKETCH workflow. The program e evaluates to a data structure v which
is interpreted as an SVG and decorated with UI elements. User manipulations on the output are
realized by transforming the program, resulting in new output to match.

2.4 Design and Implementation

SKETCH-N-SKETCH is a browser-based serverless web application written in Elm [40]. We used a

modified standard library (to allow the placement of any type of value in sets) and also added mu-

tation and exception handling to Elm. The SKETCH-N-SKETCH source code is available publicly3

and a live version of SKETCH-N-SKETCH can be tried online at https://ravichugh.github.

io/sketch-n-sketch/releases/uist-2019-acm-archive/.4

At a high level, SKETCH-N-SKETCH operates as follows (Figure 2.25). To facilitate bimodal

programming, the canonical representation of the user’s program is its textual code rather than an

opaque, internal data structure. When the user presses “Run”, the SKETCH-N-SKETCH executes

3https://github.com/ravichugh/sketch-n-sketch/tree/snaps_and_generalized_lambda (The version
of SKETCH-N-SKETCH described in this thesis is on the branch named snaps_and_generalized_lambda).

4Chrome tends to work better than Firefox. If the online version of SKETCH-N-SKETCH is dead, the Supplemen-
tary Materials of [63] has a copy of the artifact—its README explains how to install and run the solver server.
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the code using its evaluator (recording provenance information in the process, discussed in §2.4.2).

The final return value of the program is expected to be a data structure representing an SVG image.

The SKETCH-N-SKETCH interface converts this output structure into an actual SVG and augments

the shapes in the output with event handlers and graphical interface elements for selection and

movement. When the user invokes a transformation (from the Output Tools floating menu shown

in Figure 2.4 or by moving/resizing a shape), SKETCH-N-SKETCH updates the textual code, reruns

the program, and displays the new output.

As detailed in the sections below, a large number of technical mechanisms work together to

offer all the features in the SKETCH-N-SKETCH environment:

§2.4.1 Solver-based Value Updates explains how moving/resizing items with the mouse

changes numeric literals in the code.

§2.4.2 Provenance details the tracing schemes SKETCH-N-SKETCH utilizes to associate

selected items in the output with expressions in the program.

§2.4.3 Shape Selection & Feature Widgets recounts how SVG shapes are overlaid with UI

elements that facilitate movement and selection of drawn elements.

§2.4.4 Intermediate Value Widgets describes the production and display of widgets to al-

low modification of certain intermediate values encountered during execution.

§2.4.5 Value Holes & Location Holes elucidates the mechanisms that snap-drawing and the

MAKE EQUAL tool use to introduce or reuse variables in the program.

§2.4.6 Naming chronicles how SKETCH-N-SKETCH chooses quality names for expressions

extracted into new variable bindings.

§2.4.7 Brands illuminates how types are tagged with extra information so that SKETCH-N-

SKETCH can infer how to turn user code into drawing tools.

§2.4.8 Drawing expounds how drawing actions result in new function calls in the program.
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Static Grammar
Expressions e ∶∶= nℓ ∣ opm e1 ... em

∣ λx.e ∣ e1 e2
∣ true ∣ false ∣ if e1 then e2 else e3

Unitary Numeric Ops op1 ∶∶= cos ∣ sin ∣ acos ∣ asin ∣ abs
∣ floor ∣ ceil ∣ round ∣ sqrt ∣ ln

Binary Numeric Ops op2 ∶∶= + ∣ - ∣ * ∣ / ∣ pow ∣ mod ∣ atan2

Runtime Grammar
Numeric Traces t ∶∶= ℓ ∣ opm t1 ... tm

Values v ∶∶= nt ∣ ⟨E,λx.e⟩ ∣ true ∣ false
Environments E ∶∶= ⋅ ∣ x↦ v,E

Figure 2.26: Grammar for an illustrative subset of SKETCH-N-SKETCH’s language.

§2.4.9 Focusing sets out how users may focus their editing on a single definition.

§2.4.10 Group & Abstract & Merge describes the grouping and abstraction tools.

§2.4.11 Repetition explicates the operation of the repetition tools in SKETCH-N-SKETCH,

including the use of PBE holes for repetition by demonstration.

§2.4.12 Refactoring Tools catalogs SKETCH-N-SKETCH’s output-directed refactoring.

2.4.1 Solver-based Value Updates

When the user drags an item on the canvas—a shape, an edge, a corner, or a property’s slider—

SKETCH-N-SKETCH updates a numeric literal in the program to affect the change. This interaction,

called live synchronization, was the main feature of the initial version of SKETCH-N-SKETCH

by Chugh et al. [25], upon which this dissertation builds. Below, we recount the operation of live

synchronization in the initial SKETCH-N-SKETCH and our improvements to it.5

5Live synchronization, sliders, and freeze annotations are the features this work inherits from Chugh et al. [25].
Outside this section, we do not attempt to distinguish between this work and the initial SKETCH-N-SKETCH.
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E ⊢ nℓ ⇓ nℓ
E ⊢ ei ⇓ n

ti
i n = Jopm n1 ... nmK t = opm t1 ... tm

E ⊢ opm e1 ... em ⇓ nt

E ⊢ λx.e ⇓ ⟨E,λx.e⟩
E ⊢ e1 ⇓ ⟨E′, λx.e⟩ E ⊢ e2 ⇓ v2 x↦ v2,E

′ ⊢ e ⇓ v
E ⊢ e1 e2 ⇓ v

E ⊢ true ⇓ true
E ⊢ e1 ⇓ true E ⊢ e2 ⇓ v

E ⊢ if e1 then e2 else e3 ⇓ v

E ⊢ false ⇓ false
E ⊢ e1 ⇓ false E ⊢ e3 ⇓ v
E ⊢ if e1 then e2 else e3 ⇓ v

Figure 2.27: Recording numeric traces.

To determine which numeric literals to change during live synchronization, the evaluator in

SKETCH-N-SKETCH records control flow-free traces on all numeric values [25]. For example,

consider the simple program let x = 5 in x + 10. Numeric literals are first tagged with unique

locations ℓi: let x = 5ℓ1 in x + 10ℓ2 . SKETCH-N-SKETCH evaluates the program to the

tagged number 15ℓ1+ℓ2 where the expression ℓ1 + ℓ2 is a numeric trace explaining the origin of

the value 15. The trace is a form of “expression provenance” according to the nomenclature of

[2]. The dynamic tracing process is straightforward; the details are exposited in Figure 2.27 for the

simple language of Figure 2.26. Traces t only include numeric operations which, notably, means

that control flow is ignored.

Traces enable mouse manipulations on the output to change a numeric literal in the program.

When, on the canvas, the user manipulates that number 15 (via e.g., a slider) SKETCH-N-SKETCH

chooses a location to change (using heuristics [25]), creates an equation wherein the location to

change is the unknown, solves the equation for the unknown, then replaces the location in the

program with the discovered value. For example, manipulating 15 to 30 induces the equation

30 = ℓ1 + ℓ2. If SKETCH-N-SKETCH chooses ℓ1 to be the unknown, other locations are replaced

with their original values, producing 30 = ℓ1 + 10. Solving the equation yields ℓ1 = 20 which

is substituted into the program, resulting in the new code let x = 20 in x + 10. In this

manner, direct manipulation of numeric properties on the canvas—such as shape locations, sizes,
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and colors—can be immediately realized by updating numeric literals in the program.

Because traces ignore control flow, while the user is dragging the mouse it is possible that some

number will change causing the program to follow a different branch, changing the trace mid-drag.

Consider, if the user manipulates the result of let [x, y] = [0, 0] in if x < 50 then x else y

and, while dragging, the value of x becomes greater than 50, should SKETCH-N-SKETCH suddenly

start changing y instead, before the drag is even complete? If so, the user can’t simply drag their

mouse back to “undo” the change to x. Instead, SKETCH-N-SKETCH handles the scenario naively:

the UI assumes traces do not change during the drag—if x becomes 50 or more, continued dragging

will still change x but the live display will show the result as y so long as x is 50 or more. In

practice, however, control flow changes during live synchronization was never a problem for the

designs we implemented in SKETCH-N-SKETCH.6

We made two improvements to the live synchronization inherited from the initial SKETCH-N-

SKETCH of Chugh et al. [25]. We swapped in a better solver and modified the heuristics SKETCH-

N-SKETCH uses to choose which numeric literal will change upon a mouse manipulation.

We incorporated a more full-featured solver into SKETCH-N-SKETCH. The original solver in

[25] was build for a set of simple examples and could only handle equations where the variable

being solved for did not appear multiple times; this was sufficient for most, but not all, equations

in practice. To handle these equations, we adopted the REDUCE [58] computer algebra system

to serve as SKETCH-N-SKETCH’s solver. REDUCE—a software project over 50 years old!—can

easily solve complex mathematical expressions. We also improved SKETCH-N-SKETCH’s heuris-

tics for choosing which numeric literal to change in the program. Consider live synchronization

of the simple expression 0 * 1. SKETCH-N-SKETCH will deterministically choose whether to

modify the literal 0 or the literal 1. Because this choice is made before attempting a solution,

SKETCH-N-SKETCH would often choose to modify a literal that could never satisfy the needed

6A more pressing quirk to improve is to better handle 2D manipulations when both dimensions could modify the
same literal, such as when dragging the point [a+b,a-b]. Despite the dependency between the x and y coordinate,
the two dimensions are handled independent of each other, producing non-ideal changes.
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equation—here, if SKETCH-N-SKETCH chooses to modify the literal 1, there is no way for the

expression to evaluate to anything other than 0 and therefore no way for the result to match the

user’s mouse movements. These poor choices did occur in practice, so to avoid modifying these

futile locations we now first check that modifying the numeric literal can change the result of the

expression. In particular, SKETCH-N-SKETCH takes the concrete derivative of the expression with

respect to each candidate literal (using forward mode automatic differentiation for efficiency). If

the derivative is 0, ±∞, or NaN, that literal will not be chosen for modification. This improvement

significantly reduced occurrences where an item would not move when attempting to drag it with

the mouse.

2.4.2 Provenance

To affect program transformations, the UI maps selections to output values (an SVG-specific pro-

cess, colored brown below). The provenance of these values is then interpreted as particular pro-

gram expressions (a general-purpose process, in blue below) to which a transformation is applied.

Selections,

Direct Manipulation Values Expressions

New CodeVisualization

Widgets

Output

General PurposeDomain Specific

Canvas Selection Expression(s)Value(s)
UI Interpretation

The numeric traces described in the previous section only record the provenance of number

values. We need to be able to track any value back to expressions of interest. Therefore, we record

the origin of all values using a runtime tracing technique we call “Based On” provenance. To

find larger values that contain the value of interest, we supplement “Based On” provenance with

“Parents” provenance. Below, we introduce the operation of these techniques and discuss how they

are used by SKETCH-N-SKETCH’s tools.

“Based On” Provenance

When the programmer selects a shape or a widget on the canvas and invokes an action such as

DUPE or DELETE, SKETCH-N-SKETCH first needs to trace the selected value back to one or more
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program expressions. After relevant program expressions have been identified, the transformation

will be applied to those expressions. Thus, the main question the system must answer is: “For

a particular selected value, what expression(s) in the program does the programmer most likely

intend to modify?”

As a rough, first-pass filter for discerning the programmer’s intention, we assume the pro-

grammer would like to edit the user-visible program itself but not the provided standard library of

built-in code.7 To further narrow the user’s selection to just an expression or two in the program,

we rely on trace information recorded during runtime and tagged onto values. Below we discuss

the details of the tagging process and the algorithm for translating the tag on a selected value into

expressions in the program.

In the evaluator, at every step of execution the value produced is tagged with two items: (a)

the expression being executed, and (b) the values immediately used to evaluate the expression, i.e.,

the values the result is based on. More formally, compared to a standard big-step semantics, we

employ a tagging evaluation relation E ⊢ e

⇛

vτ , where τ is a tag of the form ⟨e,{vτ11 , . . . , vτnn }⟩

which records the expression that produced the value as well as immediate values used in that

production. We call this “Based On” provenance.

Figure 2.29 presents “Based On” tagging for a core language (Figure 2.28), with v̂ = vτ . For

brevity, the presentation splits evaluation into two mutually recursive relations: An augmented

big-step semantics E ⊢ e ⇓ v,{v̂1, . . . , v̂n} which produces a detagged value v as well as the

set of values {v̂1, . . . , v̂n} that v is immediately “Based On,” and the relation E ⊢ e

⇛

v̂ that

completes the tagging by gathering the immediate expression and the “Based On” values into a tag

⟨e,{v̂1, . . . , v̂n}⟩ that is placed onto the value.

The E ⊢ e ⇓ v,{v̂1, . . . , v̂n} relation in Figure 2.29 highlights which immediate values a re-

sultant value is “Based On.” In particular, control flow is ignored. For example, the result of

7Philosophically, the context for modification could be narrowed even further if the programmer has focused a
particular definition. Our examples have not required this yet. When the programmer focuses their editing on a
particular definition, canvas manipulations almost always affect changes within the focused scope simply because the
canvas only offers the products of that scope for manipulation.
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Expressions e ∶∶= c ∣ x ∣ e1 ⊕ e2 ∣ λx. e ∣ e1 e2
∣ if e1 then e2 else e3
∣ (e1, e2) ∣ fst(e) ∣ snd(e)

Contants c ∶∶= n ∣ b
Detagged Values v ∶∶= c ∣ ⟨E,λx. e⟩ ∣ (v̂1, v̂2)

Tagged Values v̂ ∶∶= vτ

Tags τ ∶∶= ⟨e,{v̂1, . . . , v̂n}⟩
Environments E ∶∶= − ∣ E,x↦ v̂

Figure 2.28: Core language for exposition of “Based On” provenance: a lambda calculus extended
with numbers, booleans, binary operators ⊕, pairs, and if-then-else expressions. During evalua-
tion, all values are tagged with their generating expression and the values the production is “Based
On,” as detailed in Figure 2.29.

an if-then-else expression is based on the value produced by the branch taken, but not on the

conditional. Similarly, the result of a function application is based only on the return value of the

function call—the application is not based on the function called, nor on its arguments. If needed,

any arguments used to produce the result can be found by transitively following the “Based On”

values of the return value; similarly, if the called function is needed, it can be discovered by in-

specting the expressions of those “Based On” values to see what function they appear in.

In a related manner, plucking a value out of a container (via fst() or snd()) does not record

that the plucked value is “Based On” the container. Selecting, e.g., the left edge of a rectangle

should not be interpreted as selecting the whole rectangle itself. Conversely, selecting the whole

rectangle could reasonably be interpreted as referring to all of the rectangle’s constituent values,

thus constructing a container does record that the container is “Based On” its constituents (cf. the

pair construction rule in Figure 2.29). This choice—that contained elements should not be not

“Based On” the containers they are pulled out of—is the main difference between this provenance

scheme and the dependency provenance scheme of Transparent ML [2] used for TINY STRUCTURE

EDITORS in Chapter 3.
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E ⊢ e ⇓ v,{v̂1, . . . , v̂n}
E ⊢ e

⇛

v⟨e,{v̂1,...,v̂n}⟩

E ⊢ c ⇓ c,{}
E(x) = v̂

E ⊢ x ⇓ v,{v̂}

E ⊢ e1

⇛

v̂1 E ⊢ e2

⇛

v̂2 v = v1 ⊕ v2

E ⊢ e1 ⊕ e2 ⇓ v,{v̂1, v̂2}

E ⊢ λx. ef ⇓ ⟨E,λx. ef ⟩,{}
E ⊢ e1

⇛

⟨E′, λx. ef ⟩τ1 E ⊢ e2

⇛

v̂2 E′, x↦ v̂2 ⊢ ef

⇛

v̂3

E ⊢ e1 e2 ⇓ v3,{v̂3}

E ⊢ e1

⇛

trueτ1 e2

⇛

v̂2

E ⊢ if e1 then e2 else e3 ⇓ v2,{v̂2}
E ⊢ e1

⇛

falseτ1 e3

⇛

v̂3

E ⊢ if e1 then e2 else e3 ⇓ v3,{v̂3}

E ⊢ e1

⇛

v̂1 E ⊢ e2

⇛

v̂2

E ⊢ (e1, e2) ⇓ (v̂1, v̂2),{v̂1, v̂2}
E ⊢ e

⇛

(v̂1, v̂2)τ

E ⊢ fst(e) ⇓ v1,{v̂1}
E ⊢ e

⇛

(v̂1, v̂2)τ

E ⊢ snd(e) ⇓ v2,{v̂2}

Figure 2.29: Evaluation rules showing the recording of “Based On” provenance, whereby each
value is tagged with the expression that produced the value, as well as the values immediately
used for that production. Each of those values is also tagged, and so on, except for constants or
abstractions which are not “Based On” anything prior. When both v and v̂ appear in a rule, v is v̂
with its tag removed (i.e., there is an implicit premise v̂ = vτ ).

“Parents” provenance

Recall from Figure 2.29 that containers are “Based On” their constituent values, but not vice versa.

The pair value (10, 20) is based on the value 10 and the value 20, but neither 10 nor 20 is based

on the pair. When a programmer selects a container they may be referring to all of its constituent

values, but if they select a single constituent value it is unlikely they mean the entire container.

If, instead, the programmer selects all the constituent values of a container, then perhaps they

are trying to refer to the container itself. In the vector graphics setting, this scenario most com-

monly occurs with points: if both the x and y coordinates of a point are selected, very likely the
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entire pair (x, y) should be considered selected. “Based On” provenance, unfortunately, does not

allow the discovery of containers from constituents—given x and y, we cannot find where they are

used as a pair value (x, y).

To find containers from constituents, we tag all contained values with what we call “Parents”

provenance. “Parents” provenance operates as follows: if a step of evaluation results in a value that

contains other values, all contained values (and, recursively, their contained values) are mutably

tagged as having been carried by this container value. Thus any value can inspect its “Parents”

provenance tagging to see what other values it has been contained in.

As suggested above, the “Parents” provenance is used to affect changes to (x, y) pairs when

both the x and y coordinates are selected—indeed SKETCH-N-SKETCH does not otherwise allow

pair selection because only primitive coordinates are selectable in its UI. “Parents” provenance is

also used when resolving snaps: if the value to snap to is not in the execution environment, but

there is a variable holding a container that contains the needed value, then the needed value may

be made available by inserting a binding that pattern matches the needed value out of the container

variable.

Although “Parents” provenance as described above works in practice, it will likely be replaced

in a future implementation of SKETCH-N-SKETCH as it suffers from a theoretical flaw. Given a

value, “Parents” provenance is able to answer the question, “What container values carried this

value?” But more often, we instead want to answer, “What container values carried this value to

the canvas?” The user wants to manipulate expressions in the thread of execution that resulted in

the displayed canvas, not in irrelevant side branches of execution that just happened to use some of

the same values. Unfortunately, the “Parents” provenance mechanism described above cannot dis-

tinguish between containers in the primary execution path and containers in other execution paths

but holding the same values. In practice, we have not run into trouble with “Parents” provenance—

these irrelevant paths seem to be rare in practice, at least in our examples—but future versions of

SKETCH-N-SKETCH may record containment using a different mechanism. One possible solution
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may be to explicitly record pattern matches in the execution traces.

Expression IDs

Within the core language of Figure 2.28 it is not possible to distinguish between structurally iden-

tical expressions that occur in different code locations. Consequently, in practice the SKETCH-N-

SKETCH parser tags all expressions with unique IDs. These expression IDs, rather than structural

equality, are used to determine program locations.

As a further consideration, although it is generally impossible to preserve expression IDs be-

tween successive programmer text-edits to a program—the programmer could, e.g., paste in an

entirely different program—some attempt is however made to preserve expression IDs during pro-

gram transformations in order to facilitate composite transformations. For example, the GROUP

tool not only adds a new definition to the program and adds a new variable to the shape list, but

also successively runs DELETE on each of the individual shapes to remove the prior individual

shapes from the output. These sorts of compositions require expression ID references to remain

valid across multiple transforms. AST transformations are structural edits rather than text edits, so

expression ID preservation is usually automatic. But if new expressions inserted by the transform

need to be referenced by later transforms in the composition, the transform must assign new expres-

sion IDs to the inserted expressions. In this scenario, for transform authors, SKETCH-N-SKETCH

provides a convenient freshening function that walks the AST and reassigns expression IDs only

to new or duplicated expressions—all expression IDs that occur exactly once in the AST are pre-

served.

Interpreting Provenance into Program Expressions

“Based On” provenance records an answer the question,“For a particular value, what other values

at other execution steps were used to produce it?” Most of SKETCH-N-SKETCH’s tools need the

answer to a different question: “For a particular selected value, what expression(s) in the program
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Algorithm 1 Interpreting a provenance-tagged value v̂ into a “proximal” set of expressions where
the expressions may be filtered by a predicate PRED.

function INTERP(v⟨e,{v̂1,...,v̂n}⟩, PRED)

if PRED(e) then {e}

else
n

⋃
i=1

INTERP(v̂i, PRED)

end if
end function

does it most likely refer to?” Below are five ways SKETCH-N-SKETCH’s tools discover relevant

program expressions from the “Based On” provenance of a selected value v⟨e,{v̂1,...,v̂n}⟩.

Immediate expression The tool may use the expression e immediately tagged on to the value.

In practice, this is often the expression chosen, albeit the expression is chosen by one of the mech-

anisms below because naively choosing the expression right on the value is not always appropri-

ate—tools often need to limit which expressions in the provenance can be chosen. For example,

we only want to select expressions in the user visible program, not the standard library. Or, a tool

may wish to exclude variable usages. Consequently, provenance interpretation usually follows one

of the strategies below, which allow the possible expressions to be filtered by a predicate.

“Proximal” intepretation matching a predicate To allow filtering of the possible expressions

that “explain” where a value came from, Algorithm 1 may be employed. The INTERP function in

Algorithm 1 starts with a value of interest v⟨e,{v̂1,...,v̂n}⟩ and walks the provenance back as minimally

as possible until it finds a set of expressions that both (a) match the given predicate PRED and (b)

account for all of the value of interest’s “Based On” values v̂1, . . . , v̂n. In practice, the predicate

PRED always at least checks that the expression e is part of user code rather than library code. The

walk-back returns as soon as possible because, intuitively, these recent execution steps are most

“proximal” to the value of interest and thus are more likely to “explain” the value.
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Single expressions Although a selected value may be interpreted as a set of expressions in Algo-

rithm 1, many tools can only operate on a single expression. Consequently, SKETCH-N-SKETCH

also includes a mechanism to return all possible single expression interpretations of a value. The al-

gorithm (not shown) follows the same interpretation principles of Algorithm 1: a single expression

is a valid interpretation of a value v⟨e,{v̂1,...,v̂n}⟩ if (a) that expression satisfies the given predicate and

(b) that single expression accounts for all of the value of interest’s “Based On” values v̂1, . . . , v̂n,

excepting those v̂i whose transitive provenance is located entirely in standard library code.

Several tools use this interpretation mechanism. For example, the REORDER IN LIST tool

searches for an interpretation that is a single expression that occurs inside a list literal.

Unique expressions If the programmer selects a shape and hits DELETE, they are asking to

delete the selected shape but, implicitly, all unselected shapes should remain intact. Since a pro-

gram expression may be involved in the production of multiple canvas shapes, e.g., a function

call in a map expression, it is not appropriate to delete such an expression as such a deletion may

inadvertently remove unselected shapes. To avoid this scenario, the DELETE tool searches for in-

terpretations that are unique to the shape selected, that is, interpretations whose expressions do not

appear in the transitive “Based On” provenance of any of the unselected shapes. In practice, this is

affected by invoking Algorithm 1 with a PRED filter that tests that the expression does not appear

in the transitive “Based On” provenance of unrelated shapes on the canvas.

All expressions Instead of narrowing the interpretation to a single expression or two, certain

tools instead look for all expressions reachable by transitively following the “Based On” values of

the selected value. For example, the MERGE tool internally utilizes a clone detector which, even

if invoked on an entire program, would only find a handful of possible code clones. Consequently,

MERGE first finds all expressions reachable by the “Based On” provenance of the selected values

and then instructs the clone detector to search for clones that intersect that reachable expression

set. Similarly, the ADD ARGUMENT tool—available when some item on the canvas has been
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selected while a function is focused—searches for all expressions within the focused function that

participated in the production of the selected value on the canvas. Each such expression is offered

to become an argument to the function.

Providential Equality for Values

There is one final noteworthy use of provenance. When SKETCH-N-SKETCH needs to compare

that values are not merely structurally equivalent but also came from the same execution path,

SKETCH-N-SKETCH will compare the values’ “Based On” provenance in addition to their struc-

ture. Some execution steps, however, are “inert”: they will change a value’s provenance but oth-

erwise pass the value through unchanged (e.g., using a variable). What is most often desired is to

compare values exempting such inert execution steps. For this comparison, SKETCH-N-SKETCH

will walk the “Based On” provenance of the values backwards as far as possible through inert steps

before comparing the values and their provenance at the most recent non-inert execution step.

2.4.3 Shape Selection & Feature Widgets

The ability to select shapes and parts of shapes is key to graphical editors. SKETCH-N-SKETCH

is no different. Here we discuss how SKETCH-N-SKETCH handles selections, what items are

selectable, and how those selections are interpreted.

Shapes in the output may be selected by single click. Multiple shapes can be selected by

clicking with the Shift key depressed, or via lasso selection by dragging the mouse on the canvas

when the “Cursor” tool is selected. Selecting shapes enables operation on the shapes. Internally,

SKETCH-N-SKETCH represents the selected shapes by their shape number in the output (e.g., in-

ternally, a selection of [2,5] means the second and fifth shape in the output SVG are selected).

Intermediate value widgets (§2.4.4) are assigned negative shape numbers. Referencing selections

by their shape number is not robust across program transformation when the number of shapes

changes or shapes are reordered, but these scenarios did not occur often enough during our testing
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(a) (b)

Figure 2.30: (a) Feature widgets for a rectangle: there are nine point features (dots) and two
features for width and height (pink lines). Via a single click, the x,y coordinates for the top right
corner have been revealed but not yet selected (selected features are green). The rectangle width
and height, and the y coordinate of the revealed point are labeled with numbers. The x coordinate
of the point is not labeled because it is not a primitive value in the program, but rather a computed
value (as a design choice, the math is not shown). If the rectangle were selected, a slider for its
fill color would appear as in Figure 2.5. (b) Pink distance features are drawn between all selected
points to enable selection of distances.

to warrant a more complicated representation for selections.

To select features (properties) of a shape, when a shape is selected or the user hovers their cursor

over a shape, shape feature widgets are overlaid (Figure 2.30a). The feature sliders for fill color,

and (when appropriate) stroke color and width, only appear once a shape is selected. Features may

be selected by clicking so they can then be arguments to a transform (e.g., MAKE EQUAL). Point

features can also be dragged to move or resize the shape. When a feature corresponds to a variable

or number in the program, the name or number is shown—variables may be renamed by clicking.

To reduce clutter, when the “Cursor” tool is selected, feature widgets are only shown for the

shapes under the user’s cursor. When a drawing tool is selected, all shape point features are shown,

since they may serve as anchors for snap-drawing a new shape—shape distance features (e.g.,

width or height) are still only shown on mouse hover.

When multiple point features (or point widgets §2.4.4) are selected, distance features are drawn

between all selected points to allow selection and operation on those distances (Figure 2.30b).

Selecting the distance feature deselects the endpoints. For downstream transformations such as
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Feature Expressions F ∶∶= v̂ ∣ opm F1 ... Fm

Figure 2.31: Feature expressions grammer. opm are operations from Figure 2.26.

MAKE EQUAL, each selected distance is interpreted as
√
(x2 − x1)2 + (y2 − y1)2, where x1, x2,

y1, and y2 are the numeric traces of the endpoint coordinates.

The kinds of feature widgets shown differ per shape kind (e.g., for lines, the two endpoints and

midpoint are shown). These features are hard-coded in SKETCH-N-SKETCH for common SVG

primitives. Selected features are referenced by the shape number plus the kind of feature selected.

x and y coordinates may be selected individually; if both are selected SKETCH-N-SKETCH as-

sumes the user has thereby selected the whole point and relevant transforms (e.g., MAKE EQUAL

or RELATE) will handle the x and y coordinates separately.

Rather than hard-coding the feature widgets per shape kind, a future possible improvement

might to encode the shape features as ordinary functions in the standard library. The features for a

shape are identified via type annotations, e.g., rectTopRight : Rect -> Point or rectWidth :

Rect -> Width. Extra annotation will be necessary, however, to notate where a feature like

rectWidth should be drawn and to notate what values should change when the user drags to resize

(e.g., it is currently hard-coded that dragging the left edge of a rectangle should change both the

rectangle’s x value and also the rectangle’s width so that the right edge stays fixed).

Many shape features represent computed quantities that do not immediately appear in the pro-

gram, for example the right edge of a rectangle must be computed from x + width. Thus, for down-

stream usage, any selected features are first converted to feature expressions8 (Figure 2.31), which

share the same grammar as numeric traces (Figure 2.26) except that terminals are provenance-

tagged values v̂ instead of numeric locations ℓ. If the downstream transform, such as MAKE

EQUAL, operates in numeric locations then the feature expression is converted to a numeric trace

by replacing each v̂ with its numeric trace. If the downstream transform, such as DELETE, instead

8Source code note: these are erroneously named FeatureEquation in the code.
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Figure 2.32: (a) Point, (b) offset, (c) list, and (d) function call widgets for intermediate execution
products. An example of code that produces the widget is shown below each.

needs “Based On” provenance information, then the provenance tags in the feature expression’s v̂s

are consulted.

2.4.4 Intermediate Value Widgets

The goal of bimodal programming is to create a program by manipulating the execution products

of the program. However, if only the final output of a program is shown, only the final output

can be manipulated. Often, what is interesting is how that output was computed. To offer some

opportunities for manipulating that how, SKETCH-N-SKETCH displays certain intermediate exe-

cution products on the canvas, summarized in Figure 2.32. The overview examples in Section 2.3

demonstrated these various intermediates: points, offsets, list widgets, and function call widgets.

Point widgets Whenever the evaluator encounters a number-number pair during execution of the

program, a point widget is emitted. Point widgets are rendered as a movable and selectable dot on

the canvas (Figure 2.32a), allowing the programmer to select or move that point. New, bare points

can be added to the program with the “Point or Offset” drawing tool; a new binding is added to the
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top of the program such as [x, y] as point = [100, 100].

Although drawn the same as the corner and edge dots that allow users to resize and select

shape parts as discussed above in §2.4.3, point widgets are distinct. Point widgets refer to number-

number pairs from execution, unlike shape features which refer to parts of shapes (e.g., the bottom

right corner) they may not have occurred during execution. Point widgets are displayed all the

time, whereas shape part widgets are only displayed when a shape is selected, when the mouse is

over the shape, or when a drawing tool is selected.

In certain programs, multiple point widgets overlap exactly, which can be a source of conster-

nation for the user. Lasso selection will select all the overlapping points, with no clear indication to

the user that multiple points are selected; and transforms may operate unexpectedly when applied

to all the points. A workaround is to avoid lasso selection and use click-selection which will only

select the topmost point. In future work, a sidebar explaining selected items could help alleviate

this problem.

Offsets In graphics code it is common to define offsets from some base x or y value. There-

fore, during evaluation, when a numeric amount is added to or subtracted from an x or y co-

ordinate, an offset arrow is drawn on the canvas (Figure 2.32b). The arrow may be selected or

dragged; selecting/dragging references/changes the amount of the offset (102 in Figure 2.32b).

The “Point or Offset” tool, when dragged on the canvas, adds a new binding to the program, e.g.,

xOffset = x + 102, that will cause an offset to be drawn. (A new point binding is added as well,

if the offset was not drawn from an existing point.)

Although the offset widget, when selected or dragged, refers only to the amount of the offset,

the offset widget itself is defined by three numbers: the base x, the base y, as well as the offset

amount. These widgets are emitted when the evaluator sees a number added to an x or y coordinate,

e.g., x + 102, but how does the evaluator know which side of the addition is the base and which

side is the offset? And what is the y coordinate for drawing the offset? The expression x + 102

does not refer to any y coordinate at all.

56



Detagged Values v ∶∶= ... ∣ nι

Coordinate Info ι ∶∶= − ∣ a, v̂

Axis a ∶∶= X ∣ Y
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Figure 2.33: Provenance for determining offset widgets, extending Figs 2.28 & 2.29.

To determine the base x and y coordinates for offsets, SKETCH-N-SKETCH uses another form

of provenance tracking specifically for offsets. When a point (number-number pair) is introduced,

each coordinate is tagged with an indicator of its axis (X or Y) and the other coordinate. Now when

the evaluator encounters e.g., x + 102, the x value holds the associated y coordinate and an offset

widget can be produced; that, simultaneously. The evaluator determines that 102 is the amount and

x is the base because the x value holds such a tag while 102 does not.

Figure 2.33 formalizes this process. Figure 2.33 builds off Figs 2.28 & 2.29, but note that, in the

actual SKETCH-N-SKETCH user syntax, pairs are written as two-element lists.9 When a number-

9Conflating lists and tuples was a regrettable choice.
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number pair is introduced, each number is tagged with coordinate info ι which is either empty or

a pair a, v̂ consisting of an axis a (either X or Y) along with the other coordinate’s (provenance-

tagged) value v̂. When an addition operation is encountered, if exactly one of the two operands

carries non-empty coordinate info, an offset widget is produced (emitOffset) with the appropriate

values for the axis, whether the operation was addition or subtraction, the base x and y values,

the offset amount, and the ending amount. For subtraction, an offset is only produced if the first

operand carries coordinate info.

As with shape features (§2.4.3), when the user has a drawing tool selected, all offsets are shown.

To reduce clutter, however, when the user has the “Cursor” tool selected, offsets whose endpoint

has been used (e.g., as the anchor for a shape) are hidden until the mouse hovers over either end of

the offset. New, unused offsets are always shown.

Because offsets must be based off of 2D positions, using many offsets can result in programs

with more point definitions than perhaps necessary. A possible future simplification might be to

move all offsets to rulers on the edge of the canvas so that offsets are 1D only. With this change,

multiple shapes could more easily reuse the same coordinate, with fewer extraneous points in the

program. With offsets representing bare x or y coordinates, they could then function as persistent

“magnetic guidelines” [10] that objects may be attached or detached from.

List Widgets List widgets are dotted gray borders that allow the user to select, rename, and

operate on lists (Figure 2.32c). The evaluator produces a list widget whenever a step of execution

in the user’s program (i.e., not library code) resolves to a list; although lists that do not contain

graphical elements are not ultimately drawn on the canvas. The dotting in the border of the widget

is intended to evoke the impression of list elements. The border appears when a user’s mouse

hovers over a subvalue of the list, but is otherwise hidden to reduce clutter.

Traditional graphics editors allow shapes to be grouped together. In SKETCH-N-SKETCH shape

groups are merely ordinary lists—a list of shapes is effectively a group. Selecting the list widget

for the shapes allows the user to operate on the group, e.g., to abstract the group into a function
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or to delete the group. Lists may also be focused (§2.4.9) so that drawing operations add to the

particular list instead of to the final output. SKETCH-N-SKETCH, however, currently does not

allow grouped shapes to be moved simultaneously—live synchronization (§2.4.1) only supports

one moving object at a time.

Call Widgets To allow focusing and refactoring of functions, a call widget is produced when

the program calls a user-defined function. That is, whenever a function application is evaluated,

if the function application was in the user’s program and the called function was also defined in

the user’s program (not the standard library), then a call widget is emitted. Call widgets are drawn

with solid gray borders (Figure 2.32c).

Like list widgets, call widgets allow the function to be renamed or focused for drawing op-

erations. Additionally, when a function call is focused, the function arguments are shown with

buttons next to each to remove or reorder the argument. To add an argument, selecting a shape or

widget feature reveals an option in the Output Tools panel to add the feature as an argument to the

function.

Positioning List & Call Widgets

An item is often a subvalue of many lists at once. In the logo example from the Overview (Sec-

tion 2.3), four nested list widgets appear when the cursor moves over one of the shapes.

...
squareLineLine = [square1, line1, line2]

svg (concat [
squareLineLine

])

When the user hovers over the list widget borders, the appropriate name is shown above the

border and the relevant list is highlighted in the code box. From the innermost to outermost list

widget, these lists are: (a) the initial group [square1, line1, line2], (b) the variable usage

squareLineLine on the second to last line, (c) the unflattened shape list [ squareLineLine ],
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and (d) the final flattened shape list concat [ squareLineLine ].

Naive positioning of these widgets would draw them directly on top of each other, but SKETCH-

N-SKETCH positions list and call widgets so that overlap is minimized. The algorithm proceeds as

follows:10

1. List/call widgets are initially positioned to bound their subvalues. In practice, widgets often

overlap with this positioning.

2. A directed acyclic graph (DAG) is constructed to determine an appropriate visual nesting

order of the list/call widgets. For each pair of widgets A and B, widget A is marked as

enclosing B if B is smaller and at least 75% of B’s interior area overlaps A’s interior area. If

A and B have at least 75% overlap but are the same size, the tie is broken deterministically

and only one will be chosen to enclose the other.

3. Following this containment DAG from innermost to outermost, list/call widget bounds are

expanded to visually bound their enclosed widgets (their DAG descendants).

The above algorithm significantly reduces visual clutter and enables the user to more easily

identify and select the desired list or function call.

2.4.5 Value Holes & Location Holes

Several of SKETCH-N-SKETCH’s tools encode the user’s intention into a temporary intermediary

program with special AST nodes representing equality constraints. These constraints are automat-

ically resolved in a post-processing step and the special AST nodes—“value holes” and “location

holes”—are never shown to the user. These holes are most directly utilized by the snap drawing,

MAKE EQUAL, and RELATE interactions, so we describe the implementation of these interactions

first before explaining how these special holes are resolved.

10ShapeWidgets.computeAndRejiggerWidgetBounds in the source code.
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point = [242, 99] 


line1 = line 0 5 [85, 89] point


line2 = line 0 5 [117, 163] point  


svg (concat [

  [line1],

  [line2]

])

Figure 2.34: Snap-
drawing.

Snap drawing While drawing a new shape, the user may snap-draw [49]

the start and/or end of the shape to an existing point on the canvas to imme-

diately encode a constraint in the code linking the new shape to the existing

point. For example, starting from a single line...

line1 = line 0 5 [80, 80] [200, 100]

...snap-drawing a second line to the first line’s endpoint (as in the inset

above) results in a shared point variable to link the lines’ endpoints:

point = [200, 100]
line1 = line 0 5 [80, 80] point
line2 = line 0 5 [110, 130] point

This variable sharing is effected by the following algorithm. An intermediary program is first

produced that contains value holes representing unresolved snaps. A value hole is a program

expression that contains a (provenance-tagged) value from execution. Although the code is never

shown to the user, the intermediary program in this case is...

line1 = line 0 5 [80, 80] [200, 100]
line2 = line 0 5 [110, 130] [?{200}, ?{100}]

...where ?{200} and ?{100} are value holes that contain copies of the number values originally

produced on the first line; these values have their provenance attached (not shown). More precisely,

the pair on the second line is [?{v̂x}, ?{v̂y}], where v̂x is the actual value produced previously

upon execution of the expression 200 on the first line, as is v̂y for the expression 100 on the first

line. The provenance tags on v̂x and v̂y indicate these are copies of those prior values from those

prior expressions, and this information will be used later to determine how to resolve the holes and

introduce a new variable. The value holes specify that, somehow, the expression at the value hole

should evaluate to the same value as and (ideally) share the same provenance as the expression that

produced the contained value.

The execution semantics for value holes is simple: a value hole evaluates to the contained

value:
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E ⊢ ?{v̂}

⇛

v̂

This evaluation rule is indeed used: to provide a preview while the user is still drawing the

shape, an intermediary program like the above is evaluated with value holes for any snapping.

Values holes can also represent snapping to computed values that are not in the original pro-

gram, e.g., to the midpoint of the line. To snap to the midpoint of the first line in the example

above, SKETCH-N-SKETCH constructs the x and y expressions (?{80} + ?{200}) / 2 and

(?{80} + ?{100}) / 2, evaluates them, and places the resulting values into value holes as before.

A final resolution process will resolve any value holes in the intermediary program, introducing

new shared variables as appropriate. For values produced by expressions not in the program (e.g.,

the addition and division to compute midpoints), the numeric trace of the number value (§2.4.1)

will be reified into expression. The resolution process also resolves “location holes” produced

by the MAKE EQUAL and RELATE tools, which we first discuss before explaining the resolution

algorithm.

Make Equal The MAKE EQUAL tool enables users to select shape properties and instruct SKETCH-

N-SKETCH to introduce shared variables into the program to ensure that the properties are linked

and always the same. 1D properties such as length and width, 2D points, or abstract properties

such as color may all be equalized. The mechanism for MAKE EQUAL differs from the snap draw-

ing above. Partly this is an accident of the history of SKETCH-N-SKETCH development, but also

because with MAKE EQUAL it is not a priori clear which items should be dependent on other

(whereas with snap drawing there is a concept of an “old point” and a “new point”). Additionally,

MAKE EQUAL allows all the properties being equalized to be computed values (e.g., it is possible

to equalize the midpoints of two lines to each other, whereas snaps only allow one of the properties

to be computed). The MAKE EQUAL algorithm proceeds as follows.

If all selected features are points, the x coordinates are first equalized to each other, and then

all y coordinates to each other; otherwise all selected features are mutually equalized. The equal-
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ization algorithm is based on the numeric traces (subsection 2.4.1). Say the user is equalizing

three items: the left edges of two rectangles and the right edge of a third rectangle. Each item

to be equalized is converted to its numeric trace. Recall from Figure 2.26 that numeric traces

contain only mathematical operations opm t1 ... tm and program locations ℓ (the locations of nu-

meric literals in the code). The three traces in this case would be ℓx1 , ℓx2 , and ℓx3 + ℓw3 , for the

two left edges and the right edge of the rectangles. These traces are gathered into a system of

pair-wise equations, in this case the system {ℓx1 = ℓx2 , ℓx2 = ℓx3 + ℓw3}. A system of n equa-

tions may be solved for n variables, in this case two variables, but which locations should be solved

for—which locations should be the dependent variables? For our example, there are many possible

combinations of dependent locations: {ℓx1 , ℓx2}, {ℓx1 , ℓx3}, {ℓx1 , ℓxw}, {ℓx2 , ℓx3}, {ℓx2 , ℓxw}, or

{ℓx3 , ℓxw}. SKETCH-N-SKETCH solves for all possible combinations (via the REDUCE computer

algebra system [58]). The solutions here are:

Dependent Solution

{ℓx1 , ℓx2} ℓx1 = ℓx3 + ℓw3 ℓx2 = ℓx3 + ℓw3

{ℓx1 , ℓx3} ℓx1 = ℓx2 ℓx3 = ℓx2 − ℓw3

{ℓx2 , ℓx3} ℓx2 = ℓx1 ℓx3 = ℓx1 − ℓw3

{ℓx1 , ℓw3} ℓx1 = ℓx2 ℓw3 = ℓx2 − ℓx3
{ℓx2 , ℓw3} ℓx2 = ℓx1 ℓw3 = ℓx1 − ℓx3
{ℓx3 , ℓw3} no solution

A candidate program is produced for each solution wherein each dependent location in the

original code (a numeric literal) is replaced by its solution expression. The locations ℓ in that

solution are temporarily reified as location holes—AST nodes that refer to the location of numeric

literals elsewhere in the program. Like value holes, location holes are temporary and never shown

to the user, but for discussion we will write location holes as ?ℓ. Location holes consist only of

that location identifier ℓ and are thus simpler than value holes which contain a value and its entire

provenance. Location holes do not have an execution semantics.
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For the first solution in the table above, the intermediary candidate program is produced as

follows: the numeric literal for the left edge of rectangle 1 will be replaced by the expression ?ℓx3

+ ?ℓw3
and the literal for the left edge of rectangle 2 will also be replaced by ?ℓx3

+ ?ℓw3
. The

literals for the left edge and width of rectangle 3, at locations ℓx3 and ℓw3 , are left unchanged. The

post-processing step will resolve these holes by lifting the numeric literals at ℓx3 and ℓw3 into new

variables bindings at a scope visible to all corresponding location holes. The location holes will be

replaced by uses of the new variables.

Relate A cousin of MAKE EQUAL, the RELATE transform attempts to guess an equation to relate

one of the selected items in terms of the others; more specifically, one numeric literal among the

selected items will be replaced with an expression in terms of the other numeric literals. As in

MAKE EQUAL, RELATE operates on the numeric trace of each item. A location in the traces is a

candidate to be the single dependent variable (the location ultimately replaced by an expression) if

the location is unique to a single item’s trace (i.e., that location does not appear in the other selected

item’s traces). For each candidate, an expression is guessed in terms of the locations unique to the

other traces (appearing only in a single selected item’s trace).

For only 2 selected items, expressions up to size 3 are guessed; otherwise expressions are

guessed up to size 7. The language for guessed expressions consists of addition, subtraction, mul-

tiplication, division, locations, or numeric constants. The possible locations are as described above

(locations unique to each other selected item). The possible constants are the numeric constants

used in SKETCH-N-SKETCH’s standard library (limited to those constants ≤ 10, if 3 or more items

are selected).

A guessed term is accepted if all of the following are met:

1. The dependent location evaluates to within 20% of its original value.

2. The distance between the dependent item and all other selected items does not change more

than 20% (note that since only a single numeric location will be replaced, and the user’s
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selected items may have complex traces, that location may only be a subpart of the selected

item’s trace; this condition here is a constraint on the ultimate computed value of that selected

item rather than on just the replaced location).

3. The guessed expression uses a location from each other selected item (that is, the expression

is indeed in terms of the other selected items).

As with MAKE EQUAL, x coordinates and y coordinates are related separately (the above pro-

cess happens twice). The 20% constraint is 1D distance along each single coordinate. RELATE

imposes an additional constraint between the x and y coordinates that the guessed arithmetic ex-

pression must be identical for both, modulo variable names.

For each candidate dependent location and for each valid guessed term, an intermediary pro-

gram is produced with that location replaced by the guessed expression, with location holes for the

locations. The location holes are resolved by post-processing, which we now discuss.

Resolving Value Holes & Location Holes

Value holes and location holes are an opportune representation of equality constraints within the

AST. The holes are resolved to concrete expressions in multiple passes. Holes not replaced by

earlier passes will be resolved in later passes. Additionally, to capture larger duplications, in

the passes below SKETCH-N-SKETCH will first attempt to replace ancestor expressions of holes

rather than the holes directly. For example, if the AST contains the expression [?200, ?ℓ1 +

?ℓ2], SKETCH-N-SKETCH will first look for a resolution that replaces that entire expression, then

(if that fails), a replacement for ?ℓ1 + ?ℓ2 , and finally will attempt to resolve any remaining holes

individually. Thus the above expression may be resolved to a simple variable usage, e.g., point1,

instead of rebuilding a new point, e.g., [x, y + h]. The resolution passes are as follows:

1. Execution environment. The execution environment will be examined to see if any variable

in the environment can be used in place of the expression. If so, the expression is replaced
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by a variable usage. For value holes, a value in the environment is a match only if the

“Based On” provenance also matches (modulo inert execution steps, as discussed in §2.4.2).

Location holes match if the number in the environment came from the same location ℓ.

2. Moving or introducing variables. Variables are introduced or moved into scope so that

holes may be filled by variable uses. To find the existing expression that should be refer-

enced, for value holes the “Based On” provenance of the value is walked backwards until an

expression is discovered that is both in the user’s program (not the standard library) and re-

solved to the same value. For a location hole ?ℓ, the desired expression is simply the numeric

literal in the program with the appropriate location ℓ.

If the desired expression is statically bound to a variable, that let-binding is moved upwards

so it is in scope for the hole, otherwise a new let-binding is introduced containing the ex-

pression and the new variable is used in the expression’s original location and for the hole.

All additional variables needed by the moved or introduced definition are recursively moved

up as well (a cycle check prevents an infinite loop). Variables are renamed as necessary to

avoid shadowing (via machinery from Hempel et al. [62]).

Handling larger expressions. As mentioned, SKETCH-N-SKETCH attempts first to replace

ancestor expressions of a hole. When attempting to replace a larger expression (e.g., a pair

with two value holes like [?{200}, ?{100}]) the “Parents” provenance of the values in

the value holes is examined to find a possible program expression that matches the larger

expression to replace. If there are no value holes (e.g., a pair with location holes [?ℓx,

?ℓy]), the whole program is searched for a syntactic match (where the numeric locations ℓ

must match). As above, if an appropriate existing expression is found it is moved to a new

let-binding or its existing let-bind is moved up so it is in scope, then the expression with

holes is replaced by a variable usage.

3. Destructuring. Value holes may not all be resolved at this point if, e.g., the value in a hole

was introduced inside a library function and does not therefore appear directly in the user’s
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program. For example, if the program contains midpt = midpoint pt1 pt2, a value hole

might want the x coordinate of midpt, but that x value was introduced in the library code for

midpoint and does not appear in the program directly. The “Parents” provenance of such

values are examined and, if a parent value is available, a destructuring binding is introduced

into the program to bind the needed value to a variable: the binding [x, _] = midpt in this

case. That variable is then used in place of the value hole.

4. Inlining numeric traces. If all of the above fail to fill a value hole, and the value in the

hole is a number, then the numeric trace (§2.4.1) of the number is converted to an AST

expression, with the numeric locations in the trace converted to location holes. The value

hole is replaced by this arithmetic expression, and the entire process above is repeated from

step 1 to fill the location holes.

The above process has multiple steps because it evolved over time to handle scenarios that

occurred as we implemented example programs. In many cases, the hole resolution will success-

fully use single variables such as point1 instead of rebuilding [x, y] points, and will even avoid

duplicating some math expressions already in the code. Even so, the hole resolution is not perfect.

Notably, the execution environment is estimated. Additionally, attempting to resolve a value hole

outside a function to a value produced inside a function will fail if that value cannot be destruc-

tured from the function’s return—the resolution process is not smart enough to, e.g., introduce

extra return values from a function.

Final results are sorted by program size, with smallest programs first. Individual tools may

provide an additional sort criteria to differentiate between identically-sized programs. For example,

for MAKE EQUAL and RELATE, the program with shortest distance (in number of lines) between

replaced numeric constants is preferred, and in case of a tie for that metric, replacing constants

later in the program is preferred since it is more natural for later items to be based off earlier items.

We found this set of heuristics is quite effective at ranking the most natural MAKE EQUAL result

first.
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2.4.6 Naming

SKETCH-N-SKETCH attempts to provide high quality default names for automatically inserted

variables. While in some cases a new name is trivial to generate—drawing a new call to the rect

standard library function will create a new rect1 let-binding—choosing a good name when an

existing program expression is extracted into a let-binding is not always straightforward. Graphics

programs have many numeric expressions and calling them all num1, num2 etc. is not helpful.

Therefore, to determine an appropriate name for an existing expression before pulling it into a new

let-binding, SKETCH-N-SKETCH examines the program as follows. In the following, “equivalent

expression” means an ancestor or descendent expression that will always return the same value

(e.g., a type ascription expression e ∶ T will return the same value as its child expression e, thus

both are “equivalent” in the below).

1. Variable usage. If the expression is a variable usage, that variable name is chosen.

2. Let-binding RHS. If the expression (or an equivalent) is on the right-hand side of a let-

binding and can be statically matched to a name on the left-hand side, then that name is used

for the expression.

3. Argument at a call site. If the expression (or equivalent) is an argument of a function call

and the called function can be statically determined, then the function definition is examined

to find and use the corresponding function parameter name. This rule is key for provid-

ing reasonable names as the user introduces shared variables to encode constraints between

drawn shapes.

4. Coordinate in a numeric pair. Following SKETCH-N-SKETCH’s idiom that all number-

number pairs are points, if the two elements in a pair literal [e1, e2] are both estimated to

be numeric via static analysis11 and no name better than num is discovered for the elements,

then the names x and y are used for the elements.

11SKETCH-N-SKETCH’s type inference was added later in development but could instead be used here.
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5. Type ascription. If e in e ∶ T can only be named trivially by the final rule below, a name is

instead chosen from the type T .

6. Syntactic form. If none of the above rules apply, a name is chosen based on the syntactic

form of the expression, e.g., num, bool, numList, etc.

2.4.7 Brands

Because SKETCH-N-SKETCH designs are ordinary programs, custom functions that produce shapes

can be incorporated as new drawing tools in the user interface. Any function that takes two points

as input—or one point and a horizontal and/or vertical distance—is exposed as a custom drawing

tool. To determine which numbers represent horizontal/vertical distances and to provide reason-

able default values for e.g., colors and stroke widths, a modified form of type inference is utilized.

In particular, types are tagged with a set of zero or more inferred brands [101] that represent the

role of particular values.

SKETCH-N-SKETCH uses ordinary Hindley-Milner type inference, adopting algorithmJ [105],

but modified as follows. The type at any program location may be tagged with a set of brands.

Brands are simply names such as Ratio, Point, Distance, VerticalDistance, HalfWidth,

Color, etc. New brands are introduced via type aliases, most of which appear at the top of the

SKETCH-N-SKETCH standard library. The standard library functions use these type aliases to note

the roles of function arguments:

type alias Ratio = Num
type alias Point = [Num, Num]
type alias Distance = Num
type alias HorizontalDistance = Num
type alias VerticalDistance = Num
type alias Width = HorizontalDistance
type alias Height = VerticalDistance
...
type alias Rect = SVG

rect : Color -> Point -> Width -> Height -> Rect
rect fill [x, y] w h = ...
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Using superscripts to represent brand set tags, the rect function above has the expanded type:

Num{Color} → [Num{}, Num{}]{Point} → Num{HorizontalDistance,Width} → Num{VerticalDistance,Height} → SVG{Rect}

Brands are propagated during unification. Upon a successful unification of the ordinary types,

the brand tags of the types being unified are unioned. Brands never hinder unification and play

no type-checking role. In practice, brand information usually enters the user’s program via use of

a standard library function and is propagated by unification. User-defined functions rarely need

manual annotation to be correctly identified as drawable.

To provide brand information in more scenarios, SKETCH-N-SKETCH additionally adds brands

based on certain syntactic code structures. The structural rules include our definition of point—a

number-number pair is tagged with the Point brand, its left number with the X brand, its right with

the Y brand—as well as special propagation rules helpful when using offsets—e.g., if an untagged

number is added to an X coordinate, the untagged number is assigned the HorizontalDistance

brand.12

Although similar to dimension types for notating units of measures on numbers [79], brands in

SKETCH-N-SKETCH need not apply only to numbers, and, as implemented, brands play no part in

checking program correctness, whereas dimension types will reject a program that, e.g., attempts

to add centimeters to inches.

The brands concept was originally introduced in the APX [101] bimodal programming environ-

ment for the same purposes as in SKETCH-N-SKETCH. Although, because of its object-oriented

setting, APX implemented brands via named mixin traits rather than as side information.

12Source code note: see the end of AlgorithmJish.elm for the full list of rules.
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2.4.8 Drawing

Figure 2.35: Toolbox

SKETCH-N-SKETCH includes several mechanism for adding new items

into a program. The user may use a toolbox tool and draw with the mouse,

or select and duplicate an existing item, or select an existing intermediate

and add it to the output. Each of these mechanisms are discussed below.

Drawing shapes Functions in the standard library and program with an

appropriate type signature are exposed in the toolbox as drawing tools.

With the exception of the Cursor, Point or Offset, and Polygon tools, all

tools shown in Figure 2.35 at right are such appropriately typed functions.

A function is exposed as a drawing tool if either (a) two of its arguments

are points, or (b) one of its arguments is a point and at least one other

argument is some distance. Type inference with brands (§2.4.7) is used

to determine these roles. The drawn shape position is derived from the

user’s mouse movements. For non-positional arguments, the brand on the

argument determines its default values (e.g., red for the Color brand, 5 for

StrokeWidth, etc.).

When the user draws a new shape, a new definition is inserted into

the program and a usage of the new variable is inserted in a location such

that the shape appears in the output. The process operates by guess-and-

check: SKETCH-N-SKETCH attempts to add the new shape variable to the

list literals in the program and succeeds when the size of the output increases by the expected

amount. Because concat is often used to flatten shape lists, both shapeVar and [shapeVar]

are candidates for insertion into lists. A static dependency analysis is used to avoid drawing into

existing group lists (i.e., the system prefers not to draw into lists that other lists depend on, because

such a list is probably a shape group rather than the main shape list). We use a guess-and-check
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process because it is robust to transformations that the user might apply to the shape list. Consider

a program that, e.g., maps over the final shape list to add an opacity attribute to every shape. A

back-propagation algorithm would need to know about list functions like map and concat in order

to correctly rewind the output backwards to find the shape list in the program (as in Mayer et al.

[100]). While possible, this approaches requires writing custom back-propagation rules for all list

manipulation functions. Additionally, when map is involved, the resulting final shapes in the output

are not structurally equal to the original shapes, meaning we cannot use a structural equality check

to see if the desired new shape is now in the output. Thus overall, we adopt a guess-and-check

process (to avoid implementing extensive back-propagation machinery) and count the change in

the number of shapes in the output (to avoid a structural equality check).

Duplicate The DUPLICATE tool in the floating Output Tools menu (Figure 2.4a) examines the

selected value’s provenance to find a single expression in the program, unrelated to unselected

shapes, which is then duplicated into a new binding and (potentially) added to the shape list. The

duplicated expression is never merely a variable usage.

Add to Output The ADD TO OUTPUT tool attempts to add the selected item(s) to the output of

the focused function. ADD TO OUTPUT is a special case of shape drawing and reuses the same

guess-and-check logic for determining where the new variable usage should be placed.

2.4.9 Focusing

The user may not always want to edit the final output of the program. They may want to mod-

ify only a single definition. As shown in the Koch example (§2.3.6), SKETCH-N-SKETCH offers

the ability to focus on a specific expression. The remainder of the program’s output disappears,

and drawing operations on the canvas add to the focused definition rather than to the program’s

final shape list. And for the Koch example, focused editing enables recursive drawing by drawing
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a function inside itself (a workflow previously shown in Recursive Drawing [130] and Appara-

tus [131]).

SKETCH-N-SKETCH provides three ways to focus an expression or definition. Call widgets on

the canvas may be clicked to focus on that particular function call. Or, if a selected item can be

interpreted as coming from the right hand side of a let-binding, then a FOCUS DEFINITION tool

is displayed in the Output Tools panel. Finally, an enterprising programmer may text-edit special

comments into their code directly.

The focused function, and the example call which provide example arguments for its execu-

tion, are specified by special comments automatically inserted in the program. Comments, unlike

internal expression identifiers, are preserved across arbitrary text edits to the program:

...
-- *** Focused Definition ***
makeKochPts point point2 =
let oneThirdPt2 = oneThirdPt point point2 in
let oneThirdPt3 = oneThirdPt point2 point in
equiTriPt oneThirdPt3 oneThirdPt2

equiTriPt2 = -- *** Example Call ***
makeKochPts point point2

...

The focused display is implemented by aborting execution early. Execution aborts when the

function call marked by *** Example Call *** returns. If there is no example call but there is

a *** Focused Definition *** or a *** Focused Expression ***, execution aborts after

either of those instead. For tooling that requires examining the final execution environment (e.g.,

determining which drawing tools to display), the execution environment from the focused item is

used rather than the environment at an example call.

Shape drawing respects the focused context. The guess-and-check process for determining

where to add new shape definitions only attempts to add shapes to lists within the focused context,

and the “output” that the process examines for success is the output of the focused context.
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2.4.10 Group & Abstract & Merge

Traditional graphics editors let users group items together. In a programmatic setting, a user may

go further and turn a group into an abstract, reusable design (a function). Below we describe the

implementation of SKETCH-N-SKETCH’s tools for grouping (i.e., gathering items into a list) and

then abstracting a new function. The abstraction step may build a new function based on a single

copy of a design—via the ABSTRACT tool—or by diffing between multiple copies of a design—via

the MERGE tool.

Group The GROUP tool gathers the selected items into a list, and is useful for grouping more

than just shapes. A new list literal containing the selected items is placed in the program and bound

to a variable. Internally, this processes uses value holes (§2.4.5) to create the new list expression

containing all the selected items. Once the new list definition is inserted an attempt is made to

add that list to the output. Naively, adding the group to the output duplicates all the shapes on

the canvas, as they were already also individually part of the output. To remove the old individual

shapes from the output, for each variable in the new list other uses of that variable in the program

are speculatively removed to find a removal that decreases the output size. Variable usages that do

not affect the output size are retained. The process is repeated until as many individual shapes in

the group have been removed from the output as possible.

Abstract The ABSTRACT tool attempts to turn some expression into a new function. The chosen

expression is placed into the return position of the newly abstracted function, and the original

expression is replaced by a call to the new funciton. As a heuristic, all bindings used only in

the new function are recursively gathered into the function as local definitions, although bindings

with no free variables are not gathered to ensure there are free variables left to abstract over.

After gathering local definitions into the new function, free variables in the function body become

arguments to the function, with the exception of free variables referring to functions (as determined

by type inference). If the user is unhappy with the default parameterization, they may add and
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remove arguments using SKETCH-N-SKETCH’s refactoring tools (§2.4.12).

The Juno [111] and Juno-2 [64] constraint-oriented programing environments (§1.2.2) also

feature a workflow for creating user-defined procedures in a manner similar to the ABSTRACT

workflow above. In these systems, after constructing a design using a mix of text edits and mouse-

based drawing actions, the programmer may invoke a command to turn the current design into

a procedure parameterized by its input points. Like in SKETCH-N-SKETCH, the new procedure

becomes available as a drawing tool in the interface.

Merge The MERGE tool performs a syntactic merge of the selected expressions, producing a

shared function. Differences between the expressions become arguments to the function created,

and the original selected expressions are each replaced by a call to the new function with appro-

priate arguments. In practice, MERGE operates by running clone detection over the entire program

and offering those clones for elimination that contain at least one expression touched by the se-

lected item’s entire “Based On” provenance. Potential clones must have twice as many AST nodes

as the number of arguments that will be introduced when the clone is extracted into a function.

Clones are replaced by calls to the derived function.

2.4.11 Repetition

SKETCH-N-SKETCH offers two workflows for producing repetitive designs. Users may either re-

peat a design over a list of points, or may manually lay out a repetitive design and ask SKETCH-N-SKETCH

to infer the differences and math for the repetition—a programming by demonstration workflow.

We describe both of these workflows below.

Repeating over a list of points A selected shape may be repeated either over an existing list of

points in the program or over a new call to any function that returns a list of points (there are several

such functions in the standard library, shown at the bottom of the toolbox in Figure 2.35). For ex-

ample, suppose the programmer would like to repeat the logo design. With the nPointsOnSegment
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tool, they can draw on the canvas to produce a list of colinear points. If they select the logo design

and choose to REPEAT OVER EXISTING LIST, the logo is attached to each of the colinear points

via the following code:

logoFunc2 [x, y] =
let w = 100 in
logoFunc x y w 0 5

nPointsOnSegment2 = nPointsOnSegment 3{0-10} [75, 326] [430, 379]

repeatedLogoFunc2 =
concatMap logoFunc2 nPointsOnSegment2

The REPEAT tool creates a function (logoFunc2) that produces a copy of the logo given a single

point, and maps that function (in repeatedLogoFunc2) over the list of points that were drawn

earlier (nPointsOnSegment2). As with the GROUP tool (§2.4.10), the repeated group is added to

the output and the original single shape is removed from the output (indeed, the original sin-

gle shape definition is no longer available at the top level, it is subsumed into the repetition

function—logoFunc2 above).

Instead of repeating over an existing list, the Output Tools also offer options to repeat over any

of the standard library functions that return a list of points. A new call to the appropriate function

will be added to the program, foregoing the need to draw such a call first as in the workflow above.

Repeating by “Indexed Merged’ & PBE Holes The repetition workflow above only allows

shapes to differ in their positions. To allow shapes to differ in other attributes, SKETCH-N-SKETCH

offers the programming demonstration workflow shown in the Target example (§2.3.8). The user

lays out the first few copies of their design (perhaps via the DUPLICATE tool), roughly styles

the shapes as desired, and then invokes the REPEAT BY INDEXED MERGE tool on the shapes,

instructing SKETCH-N-SKETCH that the user believes the differences between the shapes could be

derived from an index value i that takes on the values 0,1,2, ... etc.

The REPEAT BY INDEXED MERGE tool syntactically merges the selected expressions, with the

syntactic differences replaced by what we call programming-by-example (PBE) holes. A skeleton
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map (\i -> merged) (zeroTo n{0-3n}) is inserted into the program, where merged is the

merged expression including PBE holes, n is a numeric literal of the number of items selected, and

3n is a literal three times larger. The tool also offers an optional extra result that reverse the indices.

The {0-3n} is a range annotation that allows the user to change iteration count via a slider on the

canvas [25]. Recall from the target example that the generated code was as follows:

...
circles =

map (\i ->
circle \

??(1 => 0, 2 => 466, 3 => 0) \
point \
??(1 => 114, 2 => 68, 3 => 25))

(reverse (zeroTo 3{0-15}))
...

The merged expression contains PBE holes. Unlike value and location holes, PBE holes appear

in the programmer-visible code. Each is written ??(1 => e1, 2 => e2, ..., n => en), and

contains a number of example expressions which represent what the hole is expected to evaluate

to each successive time the hole expression is evaluated during a program run. The evaluator

thus evaluates the hole accordingly, executing the next example expression on each successive

encounter with the hole. If a PBE hole is encountered too many times during evaluation—i.e., all

its example expressions have already been used—the program crashes.

Figure 2.36: Hole filling options.

To enable filling the hole by program syn-

thesis, the evaluator additionally logs the exe-

cution environments at the hole on each suc-

cessive encounter. The PBE hole filling al-

gorithm examines these environments to see

what variables have changed and what their

values are. This information is used to of-

fer suggestions to fill (i.e., replace) the PBE hole expression. The filling suggestions are of-

fered persistently in the Output Tools panel so long as the program contains unfilled PBE holes
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(as shown in the inset). The hole fillings are currently generated based on a short list of

built-in simple expression sketches [137] (i.e., template expressions), each of which is either

a simple mathematical skeleton (e.g., var + num), or a simple if-then-else skeleton (e.g.,

if var == valFromVarDomain then exampleVal1 else exampleVal2). The hole filler re-

places the various terms in the sketch based on the examples in the PBE hole, perhaps dispatching

the external mathematical solver [58], and offers the finished expression if all the numbers in the

evaluated expression value are within 20% of their original values in each of the example execu-

tion environments. In order for this nearness requirement to be evaluated, PBE hole filling only

operates if all examples return numbers or lists of numbers.

In this work, PBE holes are only generated by the REPEAT BY INDEXED MERGE tool. In

future work, we imagine PBE holes might also be useful to facilitate an interaction that allows a

repetitive design to be modified after-the-fact, to, e.g., change the color of one shape in a series.

PBE holes might also be useful in an interactive programming by example setting, as the holes

themselves are very similar to structures used in the internal state of a traditional programming by

example synthesizer such as Myth [118].

2.4.12 Refactoring Tools

Both programmers and computers rarely produce ideal code the first time. SKETCH-N-SKETCH of-

fers several tools to help the programmer clean up their program. In keeping with SKETCH-N-SKETCH’s

goal of enabling the user to perform as much programming as possible by interacting with the out-

put, these tools are invoked by interacting with the canvas rather than with the code directly.

Figure 2.37: Renaming.

Rename Names aid human program comprehension [87]. In

SKETCH-N-SKETCH, items on the canvas are labeled with an asso-

ciated name or program expression. SKETCH-N-SKETCH attempts

to provide high quality default names in its automatically-generated
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code (§2.4.6), but the user may still want to rename items. Names

shown on the canvas may be clicked to immediately rename the item. Specifically, if the associ-

ated expression for an item is a variable usage or the left hand side of a binding, the pattern for the

binding (the right side of the binding) is displayed and clicking the text allows the user to rename

all the variable(s) in the pattern (Figure 2.37).

7/5/2019 Sketch-n-Sketch

file:///Users/brian/Documents/open_source/sketch-n-sketch/build/out/index.html 1/1

Sketch-n-Sketch File Examples Code	Tools Output	Tools View Options

	Undo 	Redo Clean	Up

Current	�le:	Untitled	*

Run	

⦀

Context:	Program	>	logoFunc

logoFunc
y x w color strokeWidth

Built-In	Tools

User-De�ned	Tools

Standard	Library	Tools

y = 127 

x = 158 

w = 156

color = 0

strokeWidth = 5

-- *** Focused Definition ***
logoFunc y x w color strokeWidth
  let topLeft = [x, y] in
  let square1 = square 140 topLe
  let y2 = y + w in
  let line1 = line color strokeW
  let line2 = line color strokeW
  [square1, line1, line2] 

logo = -- *** Example Call ***
  logoFunc y x w color strokeWid

svg (concat [
  logo
])

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Figure 2.38: Editing arguments.

Add/Remove/Reorder Arguments When a func-

tion call is focused, its arguments are shown with but-

tons next to each to REMOVE or REORDER the argu-

ment (as shown at right).

Additionally, while in a focused call, selecting a shape or widget feature reveals an option in

the Output Tools panel to add the feature as an argument to the function. More specifically, every

expression inside the function that appears in the transitive “Based On” provenance (§2.4.2) of the

selected feature is offered as a candidate expression to be replaced by an argument. For example,

if the programmer selects the right edge of a rectangle, ADD ARGUMENT will separately offer the

rectangle x coordinate and the rectangle width each as a possible new function argument.

When the programmer adds/removes/reorders a function argument, all statically-determinable

calls to the function are modified accordingly. When an argument is removed, the argument’s

expression at the first function call is used as the concrete replacement inside the function and the

argument is removed from all call sites. When an argument is added, the replaced expression in

the function is copied to all call sites. In both cases, possible scoping issues are ignored.

Reorder in List A selected item may be may reordered within a list literal via a REORDER IN

LIST tool in the Output Tool panel. Four options are offered: the selected item may be moved to

the list head, to the list end, one space headwards, or one space endwards. These options were

used in the Koch Curve example (subsection 2.3.6) to ensure points were returned in the correct

from the recursive function. In practice, list reorderings are often just as easy to accomplish with
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text edits, although the REORDER IN LIST tool may be used to affect the “Move to front,” “Move

to back,” etc. actions of a traditional graphics editor (albeit backwards—the front of a shape list is

the shape drawn at the bottom).

Delete Pressing the Delete key interprets the selected values into expression(s) and attempts to

remove them. If the last variable usage of a binding is removed, the binding is also removed.

As discussed in §2.4.2, which expression to delete is determined by transitively examining

the “Based On” provenance of the selected items. Implicitly, items not selected should not be

deleted, so their provenance is also examined to determine what expressions not to delete. When

appropriate expressions are found that are unique to the selected item(s), DELETE successively

attempts to remove those expressions from the program.

2.5 Evaluation (Case Studies)

To explore the expressive breadth of bimodal programming in SKETCH-N-SKETCH, we imple-

mented 16 parametric designs, shown in Figure 2.39. These designs exercise different features:

6 designs are parameterized functions that appear as drawing tools at the end of construction, 7 in-

volve repetition, and 1 uses recursion (the von Koch fractal). All 16 programs, spanning 427 lines

of code total, were built entirely via output-based direct manipulations, without any text editing in

the code box.13

To provide some external basis for assessing SKETCH-N-SKETCH’s expressivity, several of

the examples are taken from the PBD test suite proposed in Watch What I Do: Programming by

Demonstration [125]. The WWID: PBD suite spans diverse domains: 15 of its 32 tasks may be

interpreted as parametric drawings. Of those 15, our work is able to complete 4 and partially

complete another 2. These six are underlined in Figure 2.39.

13Videos of these examples are at https://youtube.com/playlist?list=PLhhQAdToI5I4Qva5FRgOli3ZHLceaslrY
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Sketch-n-Sketch File CSde TSSlW Vie[ OTXiSRW OYXTYX TSSlW

 URdS  RedS CleaR UT

Current ¡le: UnXiXled *

RYR ڽ

⦀

Context: PVSgVam

HTXLTULPW [[3, \3] [[2, \2] =
  [ ([2 + [3 + VTUW 3! * (\2 - \3))/ 2!, (\2 + \3 - VTUW 3! * ([2 - [3)) / 2!]

RQHTKLUdPW [[, \] [[3, \3] =
  [ [ / 1.5!+ [3 / 3!, \ / 1.5! + \3 / 3!]

SRLQW = [39, 314]

SRLQW2 = [490, 301]

PaNHKRcKPWV dHSWK SRLQW SRLQW2 =
  OHW RQHTKLUdPW2 = RQHTKLUdPW SRLQW2 SRLQW LQ
  OHW RQHTKLUdPW3 = RQHTKLUdPW SRLQW SRLQW2 LQ
  OHW HTXLTULPW2 = HTXLTULPW RQHTKLUdPW3 RQHTKLUdPW2 LQ
  LI dHSWK < 2 WKHQ
    [SRLQW, RQHTKLUdPW3, HTXLTULPW2, RQHTKLUdPW2]
  HOVH
    OHW PaNHKRcKPWV2 = PaNHKRcKPWV (dHSWK - 1) SRLQW RQHTKLUdPW3 LQ
    OHW PaNHKRcKPWV3 = PaNHKRcKPWV (dHSWK - 1) RQHTKLUdPW3 HTXLTULPW2 LQ
    OHW PaNHKRcKPWV4 = PaNHKRcKPWV (dHSWK - 1) HTXLTULPW2 RQHTKLUdPW2 LQ
    OHW PaNHKRcKPWV5 = PaNHKRcKPWV (dHSWK - 1) RQHTKLUdPW2 SRLQW2 LQ
      cRQcaW [PaNHKRcKPWV2, PaNHKRcKPWV3, PaNHKRcKPWV4, PaNHKRcKPWV5]

dHSWK = 3^1-5`

WRSPWV = PaNHKRcKPWV dHSWK SRLQW SRLQW2

bRWCRUQHU = HTXLTULPW SRLQW2 SRLQW

ULJKWPWV = PaNHKRcKPWV dHSWK SRLQW2 bRWCRUQHU

1
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(a) Koch Snowflake 
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Sketch-n-Sketch File CSde TSSlW Vie[ OTXiSRW OYXTYX TSSlW

 URdS  RedS CleaR UT

Current ¡le: UnXiXled *

RYR ۼ

⦀

Context: PVSgVam

UKRPEXVFXQF [[, \] KDOIW KDOIH =
  OHW [OIIVHW = [ + KDOIW LQ
  OHW [OIIVHW2 = [ - KDOIW LQ
  OHW \OIIVHW = \ - KDOIH LQ
  OHW \OIIVHW2 = \ + KDOIH LQ
  OHW SWV = [[[, \OIIVHW], [[OIIVHW, \], [[, \OIIVHW2], [[OIIVHW
  OHW [FRORU, VWURNHCRORU, VWURNHWLGWK] = [118, 360, 2] LQ
    SRO\JRQ FRORU VWURNHCRORU VWURNHWLGWK SWV

UKRPEXVFXQF2 ([[, \] DV SRLQW) =
  OHW KDOIW = 40 LQ
  OHW KDOIH = 83 LQ
  UKRPEXVFXQF SRLQW KDOIW KDOIH

EUDQFKHDOIW = 48

\1OIIVHW = EUDQFKY - EUDQFKHDOIW

\1OIIVHW2 = EUDQFKY + EUDQFKHDOIW

[1OIIVHW = EUDQFKLHIW + 405

EUDQFK =
  OHW SWV = [[EUDQFKLHIW, \1OIIVHW], [[1OIIVHW, EUDQFKY], [EUDQF
  OHW [FRORU, VWURNHCRORU, VWURNHWLGWK] = [29, 360, 2] LQ
    SRO\JRQ FRORU VWURNHCRORU VWURNHWLGWK SWV

GHDGVSDFH = 72

OHDIAWWDFKPHQWSWDUWX = EUDQFKLHIW + GHDGVSDFH

OHDIAWWDFKPHQWEQGX = [1OIIVHW - GHDGVSDFH

OHDIAWWDFKPHQWPWV = SRLQWVBHWZHHQSHSB\ [OHDIAWWDFKPHQWSWDUWX, EU

OHDYHV =
  PDS UKRPEXVFXQF2 OHDIAWWDFKPHQWPWV

VYJ (FRQFDW [
  [EUDQFK],
  OHDYHV
])
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(b) Tree Branch 
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Sketch-n-Sketch File CSde TSSlW Vie[ OTXiSRW OYXTYX TSSlW

 URdS  RedS CleaR UT

Current ¡le: UnXiXled *

RYR ۼ

⦀

Context: PVSgVam

SRiQW = [236, 241]

ciUcOeV =
  PaS (\i ->
      ciUcOe (if PRd i 2! == 0! WheQ 0 eOVe 466) SRiQW (22 + i * 
    (UeYeUVe (]eURTR 5^0-15`))    

VYg (cRQcaW [
  ciUcOeV
])

1
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7
8
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10

(c) Target 
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Sketch-n-Sketch File CSde TSSlW Vie[ OTXiSRW OYXTYX TSSlW

 URdS  RedS CleaR UT

Current ¡le: UnXiXled *

RYR ۼ

⦀

Context: PVSgVam

poinW = [82, 136]

h = 239

Z = 444

flooURecW = UecW 36 poinW Z h

WableRecW = UecW 188 poinW (Z / 3!) h

VYg (concaW [
  [flooURecW],
  [WableRecW]
])
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(d) Precision Floor Plan 
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Sketch-n-Sketch File CSde TSSlW Vie[ OTXiSRW OYXTYX TSSlW

 URdS  RedS CleaR UT

Current ¡le: UnXiXled *

RYR ۼ

⦀

Context: PVSgVam

[ , \ ] S [ J ( T (S

KaQJLQJTUa\ WRSPRLQW KaQJDLVWaQcH =
  OHW [[, \] aV SRLQW = WRSPRLQW LQ
  OHW \OIIVHW = \ + KaQJDLVWaQcH LQ
  OHW [[1, \1] aV SRLQW1 = [[, \OIIVHW] LQ
  OHW WUa\HaOIW = 85 LQ
  OHW OHIW = [1 - WUa\HaOIW LQ
  OHW ULJKW = [1 + WUa\HaOIW LQ
  OHW WUa\ = HOOLSVH 46 SRLQW1 WUa\HaOIW 21 LQ
  OHW cRORU = 434 LQ
  OHW VWURNHWLdWK = 5 LQ
  OHW ZLUH2 = OLQH cRORU VWURNHWLdWK SRLQW [ULJKW, \1] LQ
  OHW ZLUH1 = OLQH cRORU VWURNHWLdWK SRLQW [OHIW, \1] LQ
  [WUa\, ZLUH2, ZLUH1]

baVHCHQWHU = [cHQWHUX, 477]

cRORU = 214

SLOOaU = OLQH cRORU 20 SRLQW2 baVHCHQWHU

baVH = HOOLSVH cRORU baVHCHQWHU 147 20

VWURNHWLdWK = 15

OHIWAUP = OLQH cRORU VWURNHWLdWK SRLQW2 SRLQW

ULJKWAUP = OLQH cRORU VWURNHWLdWK SRLQW2 SRLQW3

KaQJDLVWaQcH = 232

KaQJLQJTUa\1 = KaQJLQJTUa\ SRLQW3 KaQJDLVWaQcH

KaQJLQJTUa\2 = KaQJLQJTUa\ SRLQW KaQJDLVWaQcH

VYJ (cRQcaW [
  [SLOOaU],
  [baVH],
  [OHIWAUP],
  [ULJKWAUP],
  KaQJLQJTUa\1,
  KaQJLQJTUa\2
])
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(f) Balance Scale 
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Sketch-n-Sketch File CSde TSSlW Vie[ OTXiSRW OYXTYX TSSlW

 URdS  RedS CleaR UT

Current ¡le: UnXiXled *

RYR ڽ

⦀

Context: PVSgVam

IVWOIIVHW = [13 + baVHW

[_, \13] = RQLLQH2

VQGOIIVHW = \13 - cXWW

[[14, \14] aV SRLQW14 = [IVWOIIVHW, \13]

\14OIIVHW = \14 - cXWW

bR[BacN =
  OHW SWV = [SRLQW10, [[10, \10OIIVHW], [[12, \12OIIVHW], SRLQW
  OHW [cRORU, VWURNHCRORU, VWURNHWLGWK] = [cRORU, 360, 2] LQ
    SRO\JRQ cRORU VWURNHCRORU VWURNHWLGWK SWV

bR[RLJKW =
  OHW SWV = [SRLQW12, [[12, \12OIIVHW], [[14, \14OIIVHW], SRLQW
  OHW [cRORU, VWURNHCRORU, VWURNHWLGWK] = [cRORU, 360, 2] LQ
    SRO\JRQ cRORU VWURNHCRORU VWURNHWLGWK SWV

bR[BRW =
  OHW SWV = [SRLQW10, SRLQW12, SRLQW14, RQLLQH2] LQ
  OHW [cRORU, VWURNHCRORU, VWURNHWLGWK] = [cRORU, 360, 2] LQ
    SRO\JRQ cRORU VWURNHCRORU VWURNHWLGWK SWV

bR[LHIW =
  OHW SWV = [SRLQW10, [[10, \10OIIVHW], [[13, VQGOIIVHW], RQLLQ
  OHW [cRORU, VWURNHCRORU, VWURNHWLGWK] = [cRORU, 360, 2] LQ
    SRO\JRQ cRORU VWURNHCRORU VWURNHWLGWK SWV

bR[FURQW =
  OHW SWV = [[[13, VQGOIIVHW], [[14, \14OIIVHW], SRLQW14, RQLLQ
  OHW [cRORU, VWURNHCRORU, VWURNHWLGWK] = [cRORU, 360, 2] LQ
    SRO\JRQ cRORU VWURNHCRORU VWURNHWLGWK SWV

VYJ (cRQcaW [
  [WRSDRZQTHPSOaWH],
  [bR[BacN],
  [bR[RLJKW],
  [bR[BRW],
  [bR[LHIW],
  [bR[FURQW]
])
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(g) Box Volume 
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Sketch-n-Sketch File CSde TSSlW Vie[ OTXiSRW OYXTYX TSSlW

 URdS  RedS CleaR UT

Current ¡le: UnXiXled *

RYR ڻ

⦀

Context: PVSgVam

VTXaUHB\CHQWHU2FXQF3 FHQWHU2 =
  VTXaUHB\CHQWHU ILOO2 FHQWHU2 (VTXaUHW / 2!)

VTXaUHB\CHQWHU2FXQF4 FHQWHU2 =
  VTXaUHB\CHQWHU ILOO FHQWHU2 (VTXaUHW / 2!)

ER[\XFXQF ([[, \] aV SRLQW) VTXaUHW Q =
  OHW [OIIVHW = [ + VTXaUHW LQ
  OHW [OIIVHW2 = [ - VTXaUHW LQ
  OHW [[1, \1] aV SRLQW1 = [[OIIVHW, \] LQ
  OHW \1OIIVHW = \1 - VTXaUHW LQ
  OHW \SHS =0! - VTXaUHW LQ
  OHW XSRLJKWPWV = QPRLQWVSHSB\ Q [[1, \1OIIVHW] VTXaUHW ( \SHS)
  OHW [[2, \2] aV SRLQW2 = [[OIIVHW2, \] LQ
  OHW \2OIIVHW = \2 - VTXaUHW LQ
  OHW \OIIVHW3 = \2 + VTXaUHW LQ
  OHW \OIIVHW4 = \1 + VTXaUHW LQ
  OHW XSLHIWPWV = QPRLQWVSHSB\ Q [[2, \2OIIVHW] \SHS \SHS LQ
  OHW GRZQRLJKWPWV = QPRLQWVSHSB\ Q [[1, \OIIVHW4] VTXaUHW VTXaU
  OHW GRZQLHIWPWV = QPRLQWVSHSB\ Q [[2, \OIIVHW3] \SHS VTXaUHW L
  OHW VTXaUHB\CHQWHU1 = VTXaUHB\CHQWHU 408 SRLQW (VTXaUHW / 2!) 
  OHW UHSHaWHGSTXaUHB\CHQWHU2FXQF =
    PaS VTXaUHB\CHQWHU2FXQF XSRLJKWPWV LQ
  OHW UHSHaWHGSTXaUHB\CHQWHU2FXQF21 =
    PaS VTXaUHB\CHQWHU2FXQF2 GRZQRLJKWPWV LQ
  OHW UHSHaWHGSTXaUHB\CHQWHU2FXQF3 =
    PaS VTXaUHB\CHQWHU2FXQF3 XSLHIWPWV LQ
  OHW UHSHaWHGSTXaUHB\CHQWHU2FXQF4 =
    PaS VTXaUHB\CHQWHU2FXQF4 GRZQLHIWPWV LQ
  OHW VTXaUHB\CHQWHUSLQJOHWRQ = [VTXaUHB\CHQWHU1] LQ
  FRQFaW [VTXaUHB\CHQWHUSLQJOHWRQ, UHSHaWHGSTXaUHB\CHQWHU2FXQF4

ER[\X = ER[\XFXQF SRLQW VTXaUHW Q

ER[\XFXQF1 = ER[\XFXQF [341, 621] VTXaUHW 3^0-10`

ER[\XFXQF2 = ER[\XFXQF [513, 216] VTXaUHW 1^0-10`               

VYJ (FRQFaW [
  ER[\X,
  ER[\XFXQF1,
  ER[\XFXQF2
])

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63 (h) Xs λ 

44 LOC

Sketch-n-Sketch File CSde TSSlW Vie[ OTXiSRW OYXTYX TSSlW

 URdS  RedS CleaR UT

Current ¡le: UnXiXled *

RYR ۇ

⦀

Context: PVSgVam

[[, \] aV SRiQW = [66, 148]

h4 = 141 

Z = 274

fiOO = 362

h = 73

baWWeU\FXQc ([[, \] aV SRiQW) h4 Z fiOO h =
  OeW bRd\ = UecW fiOO SRiQW Z h4 iQ
  OeW head = UecW fiOO [ [+ Z, (h4 - h + 2! * \) / 2!] 40 h iQ
  [bRd\, head] 

baWWeU\ = baWWeU\FXQc SRiQW h4 Z fiOO h    

VYg (cRQcaW [
  baWWeU\
])
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(i) Battery λ 
13 LOC

Sketch-n-Sketch File CSde TSSlW Vie[ OTXiSRW OYXTYX TSSlW

 URdS  RedS CleaR UT

Current ¡le: UnXiXled *

RYR ۇ

⦀

Context: PVSgVam

[OefW, WRS] aV WRSLefW = [84, 147]

heLghW = 345

VWRQeWLdWh = 85

ZLdWh = 331

aUchFXQc ([OefW, WRS] aV WRSLefW) ZLdWh heLghW VWRQeWLdWh =
    OeW OLQWeO = UecW 124 WRSLefW ZLdWh VWRQeWLdWh LQ
    OeW SLOOaUTRS = WRS + VWRQeWLdWh LQ
    OeW SLOOaUHeLghW = heLghW - VWRQeWLdWh LQ
    OeW OefWPLOOaU = UecW 16 [OefW, SLOOaUTRS] VWRQeWLdWh SLOOaUH
    OeW ULghWPLOOaU = UecW 220 [ ZLdWh - VWRQeWLdWh+ OefW, SLOOaU
    [OLQWeO, OefWPLOOaU, ULghWPLOOaU]

aUch = aUchFXQc WRSLefW ZLdWh heLghW VWRQeWLdWh

VYg (cRQcaW [
  aUch
])

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

(e) Mondrian Arch λ 
15 LOC

Sketch-n-Sketch File CSde TSSlW Vie[ OTXiSRW OYXTYX TSSlW

 URdS  RedS CleaR UT

Current ¡le: UnXiXled *

RYR ۇ

⦀

Context: PVSgVam

Z = 126

cRORU = 366

VWURNeWLdWK = 8   

OLQe1FXQc ([[, \] aV SRLQW) =
  OeW [OIIVeW = [ + Z LQ
  OLQe cRORU VWURNeWLdWK SRLQW [[OIIVeW, \]

OeIW = 104

WRS = 119   

UXQJV =
  PaS OLQe1FXQc (QVeUWLcaOPRLQWVSeSB\ 4^0-10` [OeIW, WRS] 50)

bRW = 346 

OeIWLLQe = OLQe cRORU VWURNeWLdWK [OeIW, WRS] [OeIW, bRW]

ULJKWLLQe = OLQe cRORU VWURNeWLdWK [ OeIW+ Z, WRS] [ OeIW+ Z, bRW

VYJ (cRQcaW [
  UXQJV,
  [OeIWLLQe],
  [ULJKWLLQe]
])
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(j) Ladder 
18 LOC

Sketch-n-Sketch File CSde TSSlW Vie[ OTXiSRW OYXTYX TSSlW

 URdS  RedS CleaR UT

Current ¡le: UnXiXled *

RYR ۈ

⦀

Context: PVSgVam

[OeIW, WRS] aV WRSLeIW = [84, 117]

Z = 320

Ǧ = 23

OaPbdaFXQc ([OeIW, WRS] aV WRSLeIW) Z Ǧ OeIWCRORU bRWCRORU bLJCR
  OeW bRW = WRS + Z LQ
  OeW [[1, bRW] aV bRWLeIW = [OeIW, bRW] LQ
  OeW ULJKW2 = [1 + Z LQ
  OeW ULJKW3 = OeIW + Z LQ
  OeW \OIIVeW2 = WRS + Ǧ LQ
  OeW [OIIVeW2 = OeIW + Ǧ LQ
  OeW OeIWOIIVeW = [1 + Ǧ LQ
  OeW bRWOIIVeW = bRW - Ǧ LQ
  OeW ULJKWOIIVeW = ULJKW2 - Ǧ LQ
  OeW [ULJKW, bRW] aV bRWRLJKW = [ULJKW2, bRW] LQ
  OeW \OIIVeW = bRW - Ǧ LQ
  OeW PLdSRLQW2 = PLdSRLQW WRSLeIW bRWRLJKW LQ
  OeW [[, _] = PLdSRLQW2 LQ
  OeW IVWOIIVeW = [ - Ǧ LQ
  OeW [_, \] = PLdSRLQW2 LQ
  OeW VQdOIIVeW = \ + Ǧ LQ
  OeW OeIWTUL =
    OeW SWV = [[OeIW, \OIIVeW2], [IVWOIIVeW, \], [[1, bRWOIIVeW]
    OeW [cRORU, VWURNeCRORU, VWURNeWLdWK] = [OeIWCRORU, 360, 2] 
      SRO\JRQ cRORU VWURNeCRORU VWURNeWLdWK SWV LQ
  OeW bRWTUL =
    OeW SWV = [[OeIWOIIVeW, bRW], [[, VQdOIIVeW], [ULJKWOIIVeW, 
    OeW [cRORU, VWURNeCRORU, VWURNeWLdWK] = [bRWCRORU, 360, 2] L
      SRO\JRQ cRORU VWURNeCRORU VWURNeWLdWK SWV LQ
  OeW bLJTUL =
    OeW SWV = [[[OIIVeW2, WRS], [ULJKW3, WRS], [ULJKW, \OIIVeW]]
    OeW [cRORU, VWURNeCRORU, VWURNeWLdWK] = [bLJCRORU, 360, 2] L
      SRO\JRQ cRORU VWURNeCRORU VWURNeWLdWK SWV LQ
  [OeIWTUL, bRWTUL, bLJTUL]

OaPbda = OaPbdaFXQc WRSLeIW Z Ǧ 26 234 144

VYJ (cRQcaW [
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(k) Logo (via Three Tris) λ 
40 LOC

Sketch-n-Sketch File CSde TSSlW Vie[ OTXiSRW OYXTYX TSSlW

 URdS  RedS CleaR UT

Current ¡le: UnXiXled *

RYR ڻ

⦀

Context: PVSgVam

bo[eV =
  maS (\i ->
      UecW 200 [ 50 + i * 76, 110] 55 195)
    (]eUoTo 7^0-15`)    

VYg (concaW [
  bo[eV
])

1
2
3
4
5
6
7
8
9

(l) N Boxes 
7 LOC

(m) Ferris Wheel 
25 LOC

Sketch-n-Sketch File CSde TSSlW Vie[ OTXiSRW OYXTYX TSSlW

 URdS  RedS CleaR UT

Current ¡le: UnXiXled *

RYR ۇ

⦀

Context: PVSgVam

SRiQW = [307, 334]

U = 166  

aWWachPeQWPWV = QPRiQWVOQCiUcOe 7^0-10` 0.06280000000000001^-3.14

cRORU = 434 

VSRkeFXQc SRiQW2 =
  OiQe cRORU 5 SRiQW SRiQW2 

VSRkeV =
  PaS VSRkeFXQc aWWachPeQWPWV

caUFXQc ceQWeU2 =
  VTXaUeB\CeQWeU 48 ceQWeU2 25 

caUV =
  PaS caUFXQc aWWachPeQWPWV

caSFXQc SRiQW2 =
  ciUcOe 364 SRiQW2 9 

caSV =
  PaS caSFXQc aWWachPeQWPWV

UiQg1 = UiQg cRORU 7 SRiQW U

hXb = ciUcOe 362 SRiQW 44         

VYg (cRQcaW [
  [hXb],
  caUV,
  VSRkeV,
  [UiQg1],
  caSV
])
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Sketch-n-Sketch File CSde TSSlW Vie[ OTXiSRW OYXTYX TSSlW

 URdS  RedS CleaR UT

Current ¡le: UnXiXled *

RYR ۈ

⦀

Context: PVSgVam

[[, \] aV SRLQW = [118, 193]

ZRRGHaOIL = 98  

WaSHUSWaUWX = [ + ZRRGHaOIL

[[1, \1] aV SRLQW1 = [WaSHUSWaUWX, \]

SHQcLOHaOIW = 45  

WRS = \1 - SHQcLOHaOIW

bRW = \1 + SHQcLOHaOIW

WLSX = [1 + 183

bRG\ = UHcWB\CHQWHU 44 SRLQW ZRRGHaOIL SHQcLOHaOIW

UaWLR = 0.651569678605651 

OHaGSWaUWBRWPW = RQLLQH [[1, bRW] [WLSX, \1] UaWLR

OHaGSWaUWTRSPW = RQLLQH [[1, WRS] [WLSX, \1] UaWLR

VKaYHGWRRG =
  OHW SWV = [[[1, bRW], [[1, WRS], OHaGSWaUWTRSPW, OHaGSWaUWBRWP
  OHW [cRORU, VWURNHCRORU, VWURNHWLGWK] = [464, 360, 0] LQ
    SRO\JRQ cRORU VWURNHCRORU VWURNHWLGWK SWV

OHaG =
  OHW SWV = [OHaGSWaUWBRWPW, OHaGSWaUWTRSPW, [WLSX, \1]] LQ
  OHW [cRORU, VWURNHCRORU, VWURNHWLGWK] = [409, 360, 0] LQ
    SRO\JRQ cRORU VWURNHCRORU VWURNHWLGWK SWV         

VYJ (cRQcaW [
  [bRG\],
  [VKaYHGWRRG],
  [OHaG]
])
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10
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(n) Pencil Tip λ 
28 LOC

Sketch-n-Sketch File CSde TSSlW Vie[ OTXiSRW OYXTYX TSSlW

 URdS  RedS CleaR UT

Current ¡le: UnXiXled *

RYR ۈ

⦀

Context: PVSgVam

SW2 = [351, 271]

SW1 = [122, 382]

aUUoZFXnc SW1 SW2 =
  leW onLine2 = onLine SW1 SW2 0.7754620659147587 in
  leW onPeUSendicXlaULine2 = onPeUSendicXlaULine onLine2 SW2 1! i
  leW onPeUSendicXlaULine3 = onPeUSendicXlaULine onLine2 SW2 -1! 
  leW line1 = line 0 5 SW1 SW2 in
  leW line2 = line 0 5 onPeUSendicXlaULine2 SW2 in
  leW line3 = line 0 5 onPeUSendicXlaULine3 SW2 in
  [line1, line2, line3]

aUUoZ = aUUoZFXnc SW1 SW2

aUUoZFXnc1 = aUUoZFXnc [295, 378] [432, 428]

aUUoZFXnc2 = aUUoZFXnc [324, 535] [245, 413]

VYg (concaW [
  aUUoZ,
  aUUoZFXnc1,
  aUUoZFXnc2
])

1
2
3
4
5
6
7
8
9

10
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(o) Arrows λ 
20 LOC

Sketch-n-Sketch File CSde TSSlW Vie[ OTXiSRW OYXTYX TSSlW

 URdS  RedS CleaR UT

Current ¡le: UnXiXled *

RYR ۈ

⦀

Context: PVSgVam

[[1, \1]= [444, 358]

[= 56

KaOIGaXJH = 58

\OIIVHW = \1 - KaOIGaXJH

\OIIVHW2 = \1 + KaOIGaXJH

UaLOOYHUE[WHQVLRQ = 40

ILUVWTLHX = [ + UaLOOYHUE[WHQVLRQ

\1OIIVHW = \1 - KaOIGaXJH

\1OIIVHW2 = \1 + KaOIGaXJH

HQGTLHVX = [1 - UaLOOYHUE[WHQVLRQ

SRLQWVBHWZHHQSHSB\2 = SRLQWVBHWZHHQSHSB\ [ILUVWTLHX, \1] [HQGTLH

WLHOYHUE[WHQVLRQ = 32

UHFWB\CHQWHU1FXQF SRLQW2 =
  UHFWB\CHQWHU 24 SRLQW2 17.5 (KaOIGaXJH + WLHOYHUE[WHQVLRQ)

UHSHaWHGRHFWB\CHQWHU1FXQF =
  PaS UHFWB\CHQWHU1FXQF SRLQWVBHWZHHQSHSB\2

FRORU = 446

VWURNHWLGWK = 17

OLQH1 = OLQH FRORU VWURNHWLGWK [[, \OIIVHW] [[1, \1OIIVHW]

OLQH2 = OLQH FRORU VWURNHWLGWK [[, \OIIVHW2] [[1, \1OIIVHW2]

VYJ (FRQFaW [
  UHSHaWHGRHFWB\CHQWHU1FXQF,
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10
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(p) Rails 
23 LOC

Figure 2.39: Examples created in SKETCH-N-SKETCH entirely through output-based interac-
tions. LOC = Source lines of code. λ = Final design is a function that appears as a drawing
tool. Source of examples: Tasks marked with underline (dashed = only partially completed) are
from WWID: PBD [125]. (i) Battery is from Lillicon [13]. (j) Ladder is from QuickDraw [21].
(l) N Boxes and (m) Ferris Wheel are from the original, live-sync-only SKETCH-N-SKETCH [25] .

Below we report on our authoring strategies for implementing the designs, including how often

the various tools were used, and then discuss what SKETCH-N-SKETCH would need in order to

complete the remaining WWID: PBD tasks without text edits.

2.5.1 Authoring

The lambda logo walkthrough in the overview framed the SKETCH-N-SKETCH workflow as a

five stage draw-relate-group-abstract-refactor authoring process. In practice, design construction

cannot always be cleanly delineated into precise stages in a fixed order. For example, while con-

structing the designs of Figure 2.39, we often specified the relationships before drawing the shapes:
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Drawing #Ex
DRAW SHAPE 16
DRAW CUSTOM SHAPE 4
DUPE 2
DRAW POINT 3
DRAW OFFSET 9
DELETE 4
FOCUSED DRAWING 1
SNAP DRAWING (UI) 15

Relating #Ex
MAKE EQUAL 12
RELATE 2
DISTANCE FEATURES (UI) 6

Abstracting #Ex
GROUP 8
ABSTRACT 9
MERGE 0
REPEAT OVER FUNCTION CALL 2
REPEAT OVER EXISTING LIST 3
REPEAT BY INDEXED MERGE 2
FILL HOLE 2
LIST WIDGETS (UI) 9

Refactoring #Ex
FOCUS EXPRESSION 3
RENAME IN OUTPUT 15
ADD/REMOVE/REORDER ARG. 6
REORDER LIST 4
ADD TO OUTPUT 1
SELECT TERMINATION COND. 1

Table 2.1: Program transformations and user interface features (UI) in SKETCH-N-SKETCH. The
#Ex column indicates the number of examples in Figure 2.39 in which the feature was used.

we laid out the desired parameterization of the design using points and offsets (as in, e.g., §2.3.7)

and afterwards attached shapes using snap-drawing.

The #Ex column of Table 2.1 lists how many of the Figure 2.39 examples utilized each tool.

Indeed, besides shape drawing and variable renaming, the most widely used functionality was

SKETCH-N-SKETCH’s snap-drawing ability—not surprising given that the goal was to create para-

metric designs.

It is notable that to encode spatial constraints we more often preferred to snap-draw rather

than use the MAKE EQUAL tool. MAKE EQUAL is more flexible, but not only does it require

extra clicks compared to snap-drawing, MAKE EQUAL can offer a large number of different but

hard-to-distinguish ways to enforce a constraint (Figure 2.4a is a tame example). To help, MAKE

EQUAL ranks results, preferring changes that rewrite terms near each other and later in the program

(§2.4.5), which works well in practice. The least used tool for specifying relationships was the

RELATE tool for guessing mathematical relationships—we only used it for constraints involving

thirds.
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Offsets plus snaps and MAKE EQUAL was sufficient, but not always convenient, for creating

reasonable parameterizations of the designs. Laying out offsets beforehand requires forethought.

A future SKETCH-N-SKETCH might benefit from tools to break constraints or invert dependencies

after the fact.

As indicated in Table 2.1, we did not use the MERGE tool and three tools were used only

once, all on the most challenging example, the Koch snowflake. The MERGE tool merges multiple

copies of a shape into a function—we prefer ABSTRACT instead because it requires only a single

example. The three tools only used for the Koch fractal all played a role in the workflow to specify

recursion.

2.5.2 Remaining WWID Tasks

Of the 15 tasks in the Watch What I Do: Programming by Demonstration [125] benchmark suite

that may be interpreted as parametric drawings, our system is able to fully complete four. What is

needed to complete all the tasks without text edits?

Two of these remaining WWID: PBD tasks can be partially completed in this work (Fig-

ure 2.39g,h). To fully complete them, “Box Volume” would require an interaction to compute

and display the numeric volume of the folded box, and “Xs” would require more precise control

over what definitions are abstracted. (Not all uses of a squareWidth parameter are pulled into

the abstraction, causing the design to render incorrectly when drawing an X with different sized

squares.)

The remaining nine tasks are diverse; no single feature would help with more than two or

three. A prominent missing feature is arbitrary text boxes, with other elements placed relative to

the text size. Beyond this, several examples require various list operations, albeit different such

operations (e.g., sorting, pair combinations, repetition over pairs of points, finding and replacing

a middle element, finding a maximum). Beyond minor omissions (rotation handling and drawing

paths with cutouts), SKETCH-N-SKETCH would also need to reason about intersections of lines
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with shape edges, to offer ways to specify overlapping and containment constraints, and to solve

different kinds of such constraints simultaneously. Finally, one example would require creating

if-then-else branches outside of a recursive or hole-filling setting and expose a boolean flag on

the canvas to swap between the branches.

2.6 Discussion

SKETCH-N-SKETCH’s tools are expressive enough to create all the designs in Figure 2.39 without

resorting to ordinary text editing. Why bother having code all, and what improvements can still be

made? We discuss these questions below.

2.6.1 Can you hide the code?

Although we constrained ourselves to only perform manipulations on the canvas, it is not our

future goal to hide the code box and only display the canvas. We do not expect that output-based

manipulations will be optimal for all program transformation tasks and, even supposing they were,

the text-based representation of the program describes the complete operations that construct the

design with a degree of comprehensiveness that cannot be economically represented on the canvas.

For example, consider the expression if bool then rect else circle. The contents of both

branches can immediately be read in the textual code. How can this be represented on the canvas?

We might either show the output of only one branch at a time, or show both branches (e.g., side-

by-side) at the cost of considerable screen space. In contrast, the textual code for the expression

occupies less than half of a single line of this paragraph.

For this reason, we do not envision a future SKETCH-N-SKETCH with hidden code. Instead,

we hope to simultaneously leverage the strengths of textual code—its parsimonious representation

of computation and its tractability for free-form editing—along with the strength of manipulable

visualization—its concrete presentation and opportunities for tangible alteration.
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2.6.2 Limitations & Future Work

Although the tools presented in this work may be used to created a number of designs without

needing to resort to text-based programming, a number of improvements are possible.

Widget Clutter Because program execution may involve a large number of intermediate eval-

uation steps, even simple programs can clutter the canvas with widgets, making the interface un-

usable. Therefore, SKETCH-N-SKETCH hides most widgets by default and uses heuristics to de-

termine when to show them—generally, upon the mouse hovering over some associated shape.

Additionally, widgets from intermediate expressions in standard library code—outside the visible

program—are generally not shown. Even with these techniques, there is still often quite a bit of

visual noise on the canvas. Reducing that visual noise may prove to be a tradeoff with allowing

functionality to be discoverable, and there may be no clear optimum.

Novices SKETCH-N-SKETCH assumes the user is comfortable working in code to understand

program operation. Bimodal interactions might also help those with little programming experience—

such as domain experts or students—to quickly produce rudimentary programs. Design concerns

for novices should be investigated.

Unified Provenance The different types of provenance in this work were sufficient to build the

functionality shown here, but SKETCH-N-SKETCH’s various provenance mechanisms were added

in an ad hoc fashion over time and should be unified. Transparent ML by Acar et al. [2] describes

a generic tracing scheme that preserves almost the entire operational derivation tree [22]. More

focused kinds of provenance can be projected out of the trace [2], and unevaluation can be used

to recover discarded derivation tree information [120]. Transparent ML is a good prospective

foundation for uniting SKETCH-N-SKETCH’s various forms of provenance.
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Practical Considerations The goal of SKETCH-N-SKETCH is to explore the feasibility of bi-

modal programming for creating vector graphics programs. The system currently lacks many

features—such as rotation attributes and a path tool—that would be required in practical tool for

creating parameterized drawings. In particular, while SKETCH-N-SKETCH offers tools for creating

constraints (e.g., MAKE EQUAL), it lacks tools for breaking those constraints.

Additionally, our example programs are starting to get longer than a page. Simply hovering

over a widget to see its expression highlighted in the code may not be sufficient on longer programs:

the expression may be offscreen. Scrolling the code to the relevant expression may be reasonable,

as is done in, e.g., TouchDevelop [19] or jsdare [123]. But in the case that a value is interpreted

into multiple expressions that are not all within one page of each other, some alternative UI for

handling the off-screen expressions may need to be developed.

Finally, on larger examples, running the code can be sluggish. To generalize this work to other

domains, more attention will need to be paid to efficient computation.

2.7 Summary

We presented new techniques for bimodal programming in the SKETCH-N-SKETCH SVG pro-

gramming environment. SKETCH-N-SKETCH enables the programmer create picture-drawing pro-

grams in a general-purpose (functional) programming language with few or no text edits. With the

new techniques, we constructed a variety of non-trivial programs entirely through direct manipu-

lation.

We implemented and demonstrated direct manipulation tools for drawing, relating, grouping,

abstracting, and repeating shapes, as well as tools for refactoring the constructed program. To

facilitate tool operation, we used techniques for tracking value provenance to associate output se-

lections with relevant expressions in the program. In the UI, we exposed various intermediate

execution products on the canvas for manipulation, so the programmer was not limited to manipu-
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lating their final output, and we offered focused editing, allowing the programmer to insert nested

definitions and create recursive functions.

The expressive power of these bimodal programming tools was demonstrated by creating pro-

grams for 16 non-trivial designs using only the bimodal transformations. Overall, SKETCH-N-

SKETCH shows you can have both direct manipulation and programmatic flexibility.

In the long term, we envision that the programming process might become as immediate and

visual as direct-manipulation-based creativity applications—not just for shape-drawing programs

but for non-visual programs as well. SKETCH-N-SKETCH is an early but significant step on that

journey. In the following chapters, we take further steps towards this vision.
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Chapter 3

Tiny Structure Editors for Low, Low Prices!
(Generating GUIs from toString Functions)

Figure 3.1: Selection areas in a structure editor automatically derived from a toString function.

3.1 Introduction

The vision of this dissertation is to apply bimodal programming not only to programs that output

visual artifacts such as vector graphics, but also to discover how bimodal interactions can improve

ordinary, general-purpose programming. Most ordinary programming, however, does not involve

visual-spatial pictures. Instead, the data structures that a programmer works with are more abstract,

and are custom to the program at hand. How should these custom data structures be visualized so

they can be manipulated?

Imagine the programmer has defined a custom data type for ranges on the number line. They

have a value representing the range with a lower bound of negative infinity and an upper bound of

10, inclusive. For the system to display this value, one option (Figure 3.2a) is to draw a pointer

graph showing which data structures point to others in the running program (as in, e.g., Python

This work was published as a short paper at VL/HCC 2020 (Hempel and Chugh [60]). Compared to [60], this
chapter incorporates technical details that did not fit in the published version and were disseminated separately [61].

Excepting Section 3.4, portions of this intro and portions of Section 3.6, this chapter is ©2020 IEEE. Reprinted,
with permission, from B. Hempel and R. Chugh, “Tiny Structure Editors for Low, Low Prices! (Generating GUIs from
toString Functions),” in IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), 2020 [60].
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Tutor [54], FluidEdit [119], or Kanon [114]). The goal, however is not just to display the value

but to also allow manipulation. The system might let the programmer grab and move the arrows

representing pointers. Another option is to render a default textual representation for the value

(Figure 3.2b). For manipulation, the system could overlay a UI on the string allowing the pro-

grammer to change different parts of the value’s internal structure.

Ideally, the system would offer visualizations that match the way the programmer thinks about

the problem in their head. Neither a pointer graph nor the default textual representation are natural

ways to represent contiguous intervals. Ideally the programmer could see and manipulate a natural

representation for contiguous intervals, either the standard mathematical notation (Figure 3.2c) or

a visualization on the number line (Figure 3.2d).

This ideal presents a challenge: the interval data type is a custom creation of the programmer.

While it is fairly straightforward for the programmer write a toString (or a toSvg) function to

produce a custom visualization, it is much more difficult to make a manipulable visualization.

For manipulation, the programming environment might allow the programmer to code their own

interactive UI. For common types, such as colors or regular expressions, this effort might be worth

the trouble. Graphite [115] and mage [80] present the user with such customizable interfaces for

editing subexpressions in their code, and livelits [117] shows how these customizable interfaces

may be composed together by nesting (via type-compatibility). But, even for simple scenarios,

interactive UI programming is not trivial, and creating a bespoke interface may not be worth the

effort for less frequently used custom types such as the interval example here.

As noted, writing a toString function for a custom data type is usually straightforward—

programmers often write toString functions as a matter of course. Could creating a manipulable

visualization be as simple as writing a toString function?
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(a)
Interval

NegInf Before  10   True

(b) "Interval(NegInf(),Before(10,True))"

(c) "(-∞,10]"

(d)
10

Figure 3.2: Ways to represent a custom data type. (a) Pointer graph, (b) default toString, (c)
custom toString, and (d) custom graphical representation.

Tiny Structure Editors (TSE)

In this work, we design a system, called TSE, that given a toString function for a custom data

type, automatically generates tiny structure editors for manipulating values of that type.

To do so, TSE instruments the execution of the toString function applied to a value, and then

overlays UI widgets on top of appropriate locations in the output string (Figure 3.5c). To deter-

mine these locations, TSE employs two key technical ideas: (a) a modified string concatenation

operation that preserves information about substring locations and (b) runtime dependency tracing

(based on Transparent ML [2]) to relate those substrings to parts of the input value.

While some prior systems [152, 133] trace string operations so that the programmer can edit

strings in the output to thereby modify strings in the program, these systems can only modify literal

strings in the code. TSE instead relates the output string to any original value of interest, not just

strings. Thus, TSE allows the user to modify not just strings but also numbers and custom data

values.

In functional languages, custom data structures are represented using algebraic data types

(ADTs), surveyed in the next section. Afterwards, we introduce TSE’s algorithm and discuss

the editors produced by TSE for several common and custom data types.
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type Begin = NegInf() | After(Num, Bool)
type End = Before(Num, Bool) | Inf()
type Interval = Interval(Begin, End)

valueOfInterest : Interval
valueOfInterest =
Interval(NegInf(), Before(10, True))

Figure 3.3: ADT definitions for a custom interval type.

3.2 Algebraic Data Types (ADTs)

Somewhat analogous to inheritance in object-oriented languages, algebraic data types (ADTs)

enumerate the variants of a type and the data associated with each variant [121]. Unlike an object,

an ADT value is raw data, separate from the functions that operate on it. Because ADTs suc-

cinctly describe the variants of plain data, ADTs are beginning to appear in mainstream languages:

“enums” in Swift and Rust are ADTs, as are “case classes” in Scala and “discriminated unions” in

Typescript.

Figure 3.3 shows three ADT definitions comprising a custom interval data type. The lower

bound of an interval (Begin) has two variants representing whether the bound is negative infinity

(NegInf()) or finite (After(...)). If finite, the bound records the finite boundary number and a

boolean indicating whether the boundary is or is not included in the interval (is or is not closed).

The type describing upper boundaries (End) is similar. An interval (Interval) is a lower and upper

boundary together. The first word of each variant (NegInf, After, Before, Inf, Interval) is a

constructor which acts as a function to create a value of the ADT. The last line of Figure 3.3 uses

these constructors to create an interval value representing (−∞,10].

Data inside ADT values is extracted using “pattern matching” in case splits (i.e., switch state-

ments) which define the handling of alternative variants, as shown in the toString functions in

Figure 3.4.
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toString : Begin -> String
toString(begin) = case begin of

NegInf() -> "(-∞"
After(num, isClosed) ->
(if isClosed then "[" else "(") ++ toString(num)

toString : End -> String
toString(end) = case end of
Inf() -> "∞)"
Before(num, isClosed) ->
toString(num) ++ (if isClosed then "]" else ")")

toString : Interval -> String
toString(interval) = case interval of
Interval(begin, end) ->
toString(begin) ++ "," ++ toString(end)

Figure 3.4: toString definitions for a custom interval type.

3.3 Algorithm

TSE’s automatic algorithm for generating tiny structure editors proceeds in three steps. The trac-

ing evaluator relates substrings to portions of the original value, then 2D spatial regions over the

rendered string are computed, and finally actions are assigned to the 2D regions.

3.3.1 Dependency Tracing

TSE utilizes a custom evaluator that traces dependency provenance, following Transparent ML

(TML) [2]. The value of interest and its subvalues are first tagged with projection paths (e.g.,

2.2.●) indicating their location within the value of interest:

Interval(NegInf(){1.●},Before(10{2.1.●},True{2.2.●}){2.●}){●}

Based on the value’s type, the appropriate toString function is invoked on the value of interest and

the tracing evaluator propagates the dependency tags. Additionally, in TSE, string concatenation

operations (++) do not produce a new, flattened string. Instead, the concatenation is deferred,

resulting in a binary tree of substrings when evaluation completes (Figure 3.5a1). Because of the
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(a1) ("(-∞" ++ ("," ++ ("10" ++ "]")))

(a2)

Based on the value’s type, the appropriate toString function
is invoked on the value of interest and the tracing evaluator

("(-∞" ++ ("," ++ ("10" ++ "]")))

(a)

++{•}

"(-∞"{1.•} ++∅

","∅ ++{2.•}

"10"{2.1.•} "]"{2.2.•}

(b)

Fig. 3. A concatenation tree (two views).

propagates the dependency
tags. Additionally, in TSE,
string concatenation oper-
ations (++) do not produce
a new, flattened string.
Instead, the concatenation
is deferred, resulting in
a binary tree of sub-
strings when evaluation
completes (Figure 3). Be-
cause of the tracing eval-
uator, each substring and each concatenation carries a set of
projection paths, relating parts of the string to parts of the
value of interest (Figure 3b).

(a)

(b)

(c)

(d)

Fig. 4. String concatenations
are translated into 2D regions
atop the rendered string.

2) Spatial Regions: In the final
display, selection regions and UI
widgets will be overlaid on top
of the rendered string. To gener-
ate the selection regions, the string
concatenation binary tree is trans-
lated into a binary tree of nested
2D polygons, with each polygon
encompassing the spatial region of
the associated substring (Figure 4a).
Only regions associated with at least
one path will ultimately be rele-
vant (Figure 4b). Although a tree,
the regions are nested tightly (Fig-
ure 4c), which can cause occlusion
(discussed later). For a multiline string, the regions are shrunk
to exclude whitespace, and each region may also exclude a
portion of its first and last line (Figure 4d).

3) Selections and Actions: Once 2D regions of the dis-
played string are associated with corresponding locations in
the value of interest, these 2D regions can be used to facilitate
a number of interactions. Our TSE prototype explores three:
(a) selection of subvalues; (b) base value editing of numbers
and strings; and (c) structural transformations, namely item
insertion, item removal, and constructor swapping.

Selection regions. When the user moves their cursor over
the rendered string, the deepest (equivalently, smallest) region
under their mouse is offered for selection/deselection. For the
interval example, there are four possible selection regions,
shown in Figure 1. Selection is currently inert, but the selection
regions are the basis for positioning UI widgets. In the
future, selection might facilitate cut-copy-paste operations, as
in Vital [15], or might open a floating menu of possible code
refactorings, as in Sketch-n-Sketch [18].

Editing base values. Literal numbers or strings from the value
of interest may pass through to the output unchanged, for
example the number 10 in the interval example. TSE lets the
user manipulate these values. The user may click a number and

drag up and down to scrub [1] the number to a different value.
Both numbers and strings can be double-clicked to reveal a
standard text box to text edit the value.

Structural transformations. Because an ADT definition de-
scribes the allowable structures for a value, TSE is able to
infer possible transformations on the value of interest. For the
interval example, the Begin, End, and Bool types each have
an alternative constructor which can be toggled by clicking
the change constructor button ( ) drawn to the left of the
appropriate subvalue (Figure 1). These buttons allow the user
to, e.g., change the lower bound from −∞ to a finite bound
(0 by default), or to toggle the boolean thus changing a finite
boundary from closed ("]") to open (")"). Which buttons to
display are based on the selection region for the current mouse
position—the deepest (smallest) region under the cursor. Since
deepest regions may completely occlude some of their ances-
tors, TSE also displays the change constructor buttons for any
such ancestor region that has no selectable area. For example,
the End value "10]" is completely occluded by the Num "10"
and the Bool "]", so when the cursor is over the Num or Bool
TSE shows the change constructor button for End (the over
the comma in the right two cases in Figure 1).

For recursive ADTs such as lists or trees, TSE additionally
draws buttons to insert ( ) or remove ( ) items from the data
structure, as shown in Figure 5 for a list. Remove buttons
are associated with item(s) to be removed. Insert buttons are
trickier to position—TSE must predict where an item not
currently in the data structure will appear. This prediction is
occasionally imprecise, as evaluated below.

Finally, in some cases, multiple buttons would be rendered
in identical locations. Such overlapping buttons are coalesced
into a single button that opens a menu offering the different
transformations.

type List<a> = Nil() | Cons(a, List<a>)

Fig. 5. Generated GUI for list Cons(1,Cons(2,Cons(3,Cons(4,Nil())))).

Additional Tracing Details
In ordinary TML [3], certain constant substrings, such as the

opening "[" and closing "]" of a list, are not dependent on the
list because they are always shown. To associate these constant
delimiters with the appropriate value, TSE tags the entire result
of any toString call as dependent on its argument. For similar
scenarios that do not occur at toString boundaries, TSE also
offers a basedOn(dep,x) primitive that the toString author
may use to add dep to the dependencies of x.

On the other hand, to avoid extraneous dependencies, prefix
and suffix strings shared by all branches of a case split
are pulled outside the case split—otherwise, these constant
substrings would be marked as dependent on the the value
being split on. This normalization happens transparently before
every execution and is not displayed to the user.

(b1) (b2) (b3)

(c)

Figure 3.5: Steps in TSE’s generation of a structure editor. Instrumented execution with deferred
concatenation produces a string (a1) with each substring associated with parts of the value of
interest (a2). In the rendered UI, these regions are overlaid on top of the string (b) and the user
may interact with these regions (c) to manipulate the original value of interest.

tracing evaluator, each substring and each concatenation carries a set of projection paths, relating

parts of the string to parts of the value of interest (Figure 3.5a2).

3.3.2 Spatial Regions

In the final display, selection regions and UI widgets will be overlaid on top of the rendered string.

To generate the selection regions, the string concatenation binary tree is translated into a binary

tree of nested 2D polygons, with each polygon encompassing the spatial region of the associated

substring (Figure 3.5b1). Only regions associated with at least one path will ultimately be relevant

(Figure 3.5b2). Although a tree, the regions are nested tightly (Figure 3.5b3), which can cause

occlusion (discussed later). For a multiline string, the regions are shrunk to exclude whitespace,

and each region may also exclude a portion of its first and last line (Figure 3.6).
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Figure 3.6: Multiline regions are contracted to exclude leading and trailing whitespace.

3.3.3 Selections and Actions

Once 2D regions of the displayed string are associated with corresponding locations in the value

of interest, these 2D regions can be used to facilitate a number of interactions. The TSE prototype

explores three: (a) selection of subvalues; (b) base value editing of numbers and strings; and (c)

structural transformations, namely item insertion, item removal, and constructor swapping.

Selection regions When the user moves their cursor over the rendered string, the deepest (equiv-

alently, smallest) region under their mouse is offered for selection/deselection. For the interval

example, there are four possible selection regions, shown in Figure 3.5c. Selection is currently in-

ert, but the selection regions are the basis for positioning UI widgets. In the future, selection might

facilitate cut-copy-paste operations, as in Vital [56], or might open a floating menu of possible

code transformations, as in SKETCH-N-SKETCH (Chapter 2).

Editing base values Literal numbers or strings from the value of interest may pass through to

the output unchanged, for example the number 10 in the interval example. TSE lets the user

manipulate these values. The user may click a number and drag up and down to scrub [147] the

number to a different value. Both numbers and strings can be double-clicked to reveal a standard

text box to text edit the value.

Structural transformations Because an ADT definition describes the allowable structures for

a value, TSE is able to infer possible transformations on the value of interest. For the interval

example, the Begin, End, and Bool types each have an alternative constructor which can be tog-
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gled by clicking the change constructor button ( ) drawn to the left of the appropriate subvalue

(Figure 3.5c). These buttons allow the user to, e.g., change the lower bound from −∞ to a finite

bound (0 by default), or to toggle the boolean thus changing a finite boundary from closed ("]")

to open (")"). Which buttons to display are based on the selection region for the current mouse

position—the deepest (smallest) region under the cursor. Since deepest regions may completely

occlude some of their ancestors, TSE also displays the change constructor buttons for any such

ancestor region that has no selectable area. For example, the End value "10]" is completely oc-

cluded by the Num "10" and the Bool "]", so when the cursor is over the Num or Bool TSE shows

the change constructor button for End (the over the comma in the right two cases in Figure 3.5c).

For recursive ADTs such as lists or trees, TSE additionally draws buttons to insert ( ) or re-

move ( ) items from the data structure, as shown in Figure 3.7 for a list. Remove buttons are

associated with item(s) to be removed. Insert buttons are trickier to position—TSE must pre-

dict where an item not currently in the data structure will appear. This prediction is occasionally

imprecise, as discussed below.

Finally, in some cases, multiple buttons would be rendered in identical locations. Such over-

lapping buttons are coalesced into a single button that opens a menu offering the different transfor-

mations. The next section describes further implementation details; case studies of TSE follow in

Section 3.5.

type List<a> = Nil() | Cons(a, List<a>)

Figure 3.7: Traditional list ADT definition and a generated GUI for the list
Cons(1,Cons(2,Cons(3,Cons(4,Nil())))).
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3.4 Implementation Details

As outlined above, TSE relies on dependency tracing and spatial region overlays to offer its in-

terfaces. The technical mechanisms underlying these steps are described here in more detail. Our

evaluator—combining tracing and dynamic dispatch—is described in §3.4.1. §3.4.2 and §3.4.3

describe cleanup steps to produce better interfaces, and subsection 3.4.4 details the heuristics for

positioning insert and remove buttons.

3.4.1 A Dependency Provenance Algorithm

For tracing, TSE adapts the dependency provenance scheme of Transparent ML (TML) [2]. Prove-

nance tracking in TML is ordinarily performed in two steps: first an execution trace is recorded

during execution, then the desired provenance information is extracted from the trace. This two-

step process enables TML to support multiple definitions of provenance. But because TSE only

uses TML’s dependency provenance scheme, we can simplify this process: we collapse the two

steps together and record the dependencies directly during execution, thus foregoing TML’s need

to define a separate syntax of traces. The final provenance tags are still the same as in original

TML (modulo the TSE-specific syntactic forms in Figure 3.8).

Figure 3.8 describes the syntax of TSE’s core language. The traditional constructs in the

expression language are: variables x, recursive functions f(x).e (where f is the function name),

functional application e1(e2), constructors with multiple arguments C(e1 , . . . , en), case splits

with multiple branches case e of Ci(x1 , . . . , xn) → ei, strings s, numbers n, and numeric binary

operations e1 ⊕ e2. Surface language if-then-else statements are desugared to case splits on

True and False. To track provenance for substrings, string operations are primitives in TSE:

string concatenation e1 ++ e2, string length inspection strLen(e), and number to string conversion

numToStr(e) are part of the expression langauge. TSE also supports manual dependency addition

via basedOn(ed , e), which allows the programmer to explicitly denote that the result of e should
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Expressions e ∶∶= x ∣ f(x).e ∣ e1(e2)
∣ C(e1 , . . . , en)
∣ case e of Ci(x1 , . . . , xn)→ ei
∣ s ∣ e1 ++ e2 ∣ strLen(e)
∣ n ∣ e1 ⊕ e2 ∣ numToStr(e)
∣ basedOn(ed , e)

Projection Paths π ∶∶= ● ∣ i.π

(Tagged) Values w ∶∶= v{π1 , ... , πn}

(Untagged) Pre-Values v ∶∶= [E]f(x).e ∣ C(w1 , . . . , wn)
∣ s ∣ w1 ++w2 ∣ n
∣ dyncall(f)

Tagged Environments E ∶∶= − ∣ E, x↦ w

Figure 3.8: Expressions, values, and, for dependency tracking, projection paths.

be considered dependent on that of ed.

To track how output values are dependent on the input value of interest, Transparent ML (TML)

assigns identifiers to each subvalue of the value of interest. These identifiers take the form of

projection paths π, which denote the tree-descent path from the root of the value of interest to the

identified subvalue. Each (tagged) value w carries a set of these paths indicating the subvalues of

the value of interest that w depends on.

Initially, the value of interest and its subvalues are tagged with singleton sets identifying their

locations,1 as in the example previously:

Interval(NegInf(){1.●},Before(10{2.1.●},True{2.2.●}){2.●}){●}

These projection paths are propagated during evaluation.

Primitive values in TSE, called (untagged) pre-values v to distinguish them from their tagged

forms w, include several traditional forms: recursive function closures [E]f(x).e (where E is the

1Figure 11 in Acar et al. [2] formalizes this initial tagging operation, although in their setting the operation is a
little less trivial: their projection paths allow lookups into variables in the environment because they define program
input to be a full execution environment of variable bindings which may include function closures with nested environ-
ments—for toString tracing in TSE we assume the input is a single value without closures and thus our projection
paths do not need to support variable lookups.
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Evaluation with Dependency Provenance E ⊢ e ⇓ w

[EVALVAR]

E ⊢ x ⇓ E(x)

[EVALDYNVAR]
x ∈ {“toString′′,“showsPrecF lip′′}

E ⊢ x ⇓ dyncall(x){}

[EVALFUN]

E ⊢ f(x).e ⇓ ([E]f(x).e){}

[EVALAPP]
E ⊢ e1 ⇓ ([Ef ]f(x).e)

p1 E ⊢ e2 ⇓ w2 Ef , f ↦ ([Ef ]f(x).e)
p1 , x↦ w2 ⊢ ef ⇓ v

p

E ⊢ e1(e2) ⇓ v
p1 ∪p

[EVALDYNAPP]
E ⊢ e1 ⇓ dyncall(f)

p1 E ⊢ e2 ⇓ v2
p2 typeDispatch(f, v2) = g E, x↦ v2

p2 ⊢ g(x) ⇓ vp

E ⊢ e1(e2) ⇓ v
p1 ∪p (∪p2 iff=“toString′′)

[EVALCTOR]

E ⊢ ei ⇓ wi

E ⊢ C(e1 , . . . , en) ⇓ C(w1 , . . . , wn)
{}

[EVALCASE]
E ⊢ e ⇓ Cj(w1 , . . . , wn)

p E, x1 ↦ w1, . . ., xn ↦ wn ⊢ ej ⇓ vj
pj

E ⊢ case e of Ci(x1 , . . . , xn)→ ei ⇓ vj
p∪pj

[EVALSTR]

E ⊢ s ⇓ s{}

[EVALCONCAT]
E ⊢ e1 ⇓ w1 E ⊢ e2 ⇓ w2

E ⊢ e1 ++ e2 ⇓ (w1 ++w2)
{}

[EVALSTRLEN]
E ⊢ e ⇓ w strLen(w) = n allDepsDeep(w) = p

E ⊢ strLen(e) ⇓ np

[EVALNUM]

E ⊢ n ⇓ n{}

[EVALBINOP]
E ⊢ e1 ⇓ n1

p1 E ⊢ e2 ⇓ n2
p2 n1 ⊕ n2 = v

E ⊢ e1 ⊕ e2 ⇓ v
p1 ∪p2

[EVALNUMTOSTR]
E ⊢ e ⇓ np numToStr(n) = s

E ⊢ numToStr(e) ⇓ sp

[EVALBASEDON]
E ⊢ ed ⇓ vd

pd E ⊢ e ⇓ vp

E ⊢ basedOn(ed , e) ⇓ v
pd ∪p

Figure 3.9: TSE’s adaptation of TML semantics.

captured environment of variable bindings and f is the function name), constructed ADT values

C(w1 , . . . , wn), simple strings s, and numbers n. The TSE-specific forms are deferred string con-

catenation w1 ++w2 (where w1 and w2 are each either deferred concatenations or simple strings),

and a dynamic function call dyncall(f) for late-bound type-based function dispatch to support

multiple implementations of toString (discussed below).

Finally, for evaluation and closure capture, tagged environments E store a mapping from vari-

able names to tagged values.

Figure 3.9 describes TSE’s adaptation of the tracing evaluation semantics of Transparent ML
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(TML) [2]. The tracing evaluation relation E ⊢ e ⇓ w takes a tagged environment E and expression

e for input and produces a tagged value w as output.

Variable names are simply looked up in the execution environment (EVALVAR). Values in

the environment are already tagged with dependencies—these tags are retained unchanged. If the

variable name is one of several special names that require type-based dynamic dispatch, instead of

looking up the name in the environment, a dyncall(x) value is produced representing the deferred

function call (EVALDYNVAR). This value is assigned an empty set of dependencies. The variable

name will be resolved to a function once the type of the argument is known (EVALDYNAPP).

Function definitions resolve to closures that capture the execution environment (EVALFUN).

The closure value has no dependencies. Function application (EVALAPP) is standard. Functions

are singly recursive2: after the argument expression is evaluated, both the argument value and the

function closure are added as new bindings into the captured environment and the function body

is executed. After a function result is produced, the dependencies p1 of the closure are unioned

with the dependencies p of the function result (although typically p1 is the empty set). Notably, the

dependencies of the argument value w2 are not included in the union—if the argument was used

in the computation of the result, these dependencies will already be represented in p.

Type-based dynamic function dispatch (EVALDYNAPP) is dynamically resolved to ordinary

function application. Dynamic dispatch allows the same function variable name to be defined mul-

tiple times, with different type annotations on each definition. The appropriate closure is chosen

when the function is called, based on the type of the argument. The implementation operates as fol-

lows: for those variable names considered dynamic3, a preprocessing step on the code (not shown)

renames those (colliding) variable definition names to unique names. An internal dictionary (not

shown) remembers the association between the type annotation on each definition and its unique

2Before execution, mutual recursion is desugared to single recursion, following Exercise 9 of https://caml.
inria.fr/pub/docs/u3-ocaml/ocaml-ml.html#Exo-9

3Currently the dynamic names are hard-coded in our prototype. There are two dynamic names: toString and,
for the GHC examples, showsPrecFlip.
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name. At the call site, when the argument value v2 is produced, its type is inspected and the dictio-

nary for the non-unique function name f is consulted (typeDispatch in EVALDYNAPP) producing

the unique name g of the implementation whose argument type matches. This function g is then

applied normally to the argument. This scheme for dynamic dispatch means that multi-argument

functions can only be dynamic in their first argument (although a fancy desugaring scheme might

be able to work around this limitation without changing the core semantics presented here). The

dependencies for dynamic dispatch are propagated as in ordinary function application: the paths p1

on the deferred function call dyncall(f) are merged with those paths p from the function result.

Finally, constant delimiters need to be associated the appropriate root value—e.g., the opening "["

and closing "]" of a list should refer to the list. By the standard dependency rules, this would not

ordinarily happen: constant delimiters are constant and therefore will not depend on the function

argument. But, for calls to toString at least, it is reasonable to interpret the entire output as as-

sociated with the argument, so if the dynamic call was a toString function then the dependencies

p2 of the argument are added to those of the result value.

Constructor introduction (EVALCTOR) is standard—each argument expression is evaluated

(the overline denotes multiplicity) and used for the arguments of the constructed value. The con-

structed value is assigned no dependencies.

Case splits (EVALCASE) are also standard. The scrutinee e is evaluated to a constructed value

and the appropriate branch j is taken based on the scrutinee value’s constructor. The constructor’s

arguments are bound to appropriate variable names for the branch and the branch expression ej is

evaluated. Finally, the dependencies p of the scrutinee value are unioned with the dependencies pj

of the branch result. This merger is key! Marking the case result as dependent on the scrutinee

result is vital for TSE to work: this rule allows the UI to offer change constructor actions e.g.,

clicking to toggle a boolean.

String literals are assigned no dependencies (EVALSTR). Deferred string concatenation (EVAL-

CONCAT) is analogous to constructor introduction (EVALCTOR)—the string concatenation opera-
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tor ++ is essentially an infix constructor with two arguments. The concatenation is assigned no de-

pendencies but the dependencies on the left and right children are preserved. Inspecting the string

length (EVALSTRLEN) is a built-in operation whose resulting number is marked as dependent on

all the dependencies throughout the whole string concatenation tree (gathered by allDepsDeep in

the rule).

Numeric operations are standard. Numeric literals (EVALNUM) are assigned no dependencies.

Binary operations on numbers (EVALBINOP) produce a resulting value that is marked as dependent

on both operands. Converting a number to a string (EVALNUMTOSTR) transfers dependencies

from the number to the resulting string.

Finally, TSE supports manual dependency addition through the basedOn(ed , e) built-in, which

returns the result of its second argument e after adding the paths from the result of the first argument

ed (EVALBASEDON). Manual dependency addition is occasionally useful for the same reason

that toString results are marked as dependent on the toString argument: constant delimiters,

being constant, are not normally associated with the item being delimited. The dependency can be

manually added.

3.4.2 Code Normalization

To avoid extraneous dependencies during tracing execution, prefix and suffix strings shared by all

branches of a case split are pulled outside the case split.

Consider the following version of a list toString function:

toString(list) = "[" ++ elemsToString(list) ++ "]"

elemsToString(list) = case list of
Nil() -> ""
Cons(head, tail) -> case tail of

Nil() -> toString(head)
Cons(_,_) -> toString(head) ++ "," ++ elemsToString(tail)

In the final case split, the split on tail, both branches call toString(head). That head element’s

string will be marked as dependent on tail, and therefore, in the UI, moving the mouse over the
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head element will erroneously be interpreted as also referring to the tail—but the tail is the rest of

the list after that element. To avoid this extraneous dependency, prefix and suffix strings shared

by all branches of a case split are automatically moved out of the case split. The above code is

translated to...

elemsToString(list) = case list of
Nil() -> ""
Cons(head, tail) -> toString(head) ++ case tail of

Nil() -> ""
Cons(_,_) -> "," ++ elemsToString(tail)

...which removes the extraneous dependency, so that the head is not associated with the tail. This

normalization happens transparently before every execution and is not displayed to the user.

3.4.3 Concatenation Tree Normalization

After toString execution produces a tree of substring concatenations (Figure 3.5a2), the projec-

tion path tags undergo normalization. Identical projection paths shared by adjacent substrings are

recursively redistributed to their parent concatenation; afterwards nested occurrences of the same

path are removed, retaining only outermost occurrences of a path. This normalization produces no

change in the Interval example.

3.4.4 Positioning Remove and Insert Buttons

For recursive ADTs such as lists or trees, TSE draws buttons to insert or remove items from the

data structure (Figure 3.7). Remove buttons ( ) are associated with the “contained” items that

would disappear if a subvalue were replaced with one of its recursive children. For example,

consider removing the item 2 from the list [1,2,3], which desugars to:

Cons(1,Cons(2,Cons(3,Nil())))

Removing the 2 means replacing the bolded subvalue above with its recursive child (underlined).

Although the bolded Cons(...) is what is being replaced, that Cons(...) subvalue is itself a list
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and it would be inappropriate to imply that the whole sublist is what would be removed. Instead,

the remove button is associated with that subvalue’s non-recursive children, namely the 2, that will

disappear upon removal.

Insertion is roughly the reverse, and is similarly accomplished by looking for recursion in the

ADT definition and using such locations as insertion points. Although generating candidate inser-

tions is straightforward, positioning the insert buttons ( ) is tricky because it relies on predicting

where an item not currently in the data structure will appear. For this prediction, TSE uses the

bottommost, rightmost point out of up to three candidate points: (1) the bottommost, rightmost

point of the region(s) associated with the projection path immediately before the insertion loca-

tion, (2) the topmost, leftmost point of the region(s) associated with the insert location projection

path, and (3) the topmost, leftmost point of the region(s) associated with the projection path imme-

diately after the insert location. Because a large, complicated data structure may include multiple

kinds of containers of various types, these candidate points are subject to the additional constraint

that they must be associated with the same container that is being inserted into. To enforce this

constraint, container root paths are estimated by searching for projection paths whose parent value

has a different type; all candidate points must be prefixed by the same container root. As shown in

Figure 3.7, TSE’s positioning heuristic does not always place insert buttons in an aesthetically con-

sistent location—the first insertion button is above the list while the others are below—but TSE’s

heuristic needs to handle empty and multi-line data structures and we found the above heuristic,

relative to other heuristics we tried, was least likely to place the buttons in confusing locations.

3.5 Case Studies

TSE’s goal is to provide low- to no-cost domain-specific value editors. We tested TSE on toString

functions for a number of datatypes, measuring several properties of the generated editors as shown

in Table 3.1. Table 3.1 reports the percentage of ADT subvalues that could be directly selected (i.e.,
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%Selectable %Reasonable
Data Structure Description Subvalues Items Inserts Notes
Interval "(-∞,10]" 80% (4/5)
Date "May 9, 2020" 100% (4/4) Components represented separately.
JSON (multiline) w/arrays, objects, strings, nums 33% (14/43) 81% (13/16) basedOn used 3x.
List "[1,2,3]" 86% (6/7) 100% (3/3) 100% (4/4)
List ("]" in base case) "[1,2,3]" 100% (7/7) 100% (3/3) 100% (4/4)
List (via join) "[1,2,3]" 71% (5/7) 100% (3/3) 100% (4/4)
List (via different join) "[1,2,3]" 86% (6/7) 100% (3/3) 100% (4/4)
Tree (S-exp) "(2 (1) (4 (3) (5)))" 53% (10/19) 100% (5/5) 14% (2/14) 5 inserts missing; poor placements.
Tree (indented) "2\n 1\n 4\n 3\n 5" 21% (4/19) 100% (5/5) 21% (3/14) 5 inserts missing; shared placements.
Pair [48] "(10,"ten")" 100% (3/3)
List [48] "[1,2,3]" 100% (7/7) 100% (3/3) 100% (4/4)
ADT (recursive) [48] "Ctor4 (Ctor3 True "asdf")" 100% (4/4) 50% (1/2) Bool region too long; same insert 2x.
Record [48] "Record {field1 = . . . , . . . }" 100% (9/9) Bool region too long.
Set [29] "fromList [2,3,5,7]" 100% (4/4) 0% Not 1-to-1 w/ADT definition.

Table 3.1: Case studies of hand-written and translated toString functions.

were not occluded, missing, or sharing a selection region with other subvalues). For data types rep-

resenting containers (e.g., lists or sets), Table 3.1 reports the percentage of contained items that can

be selected. Compared to selecting any subvalue, the ability to select contained items is likely more

important for downstream applications: the user might e.g., select the items they want to extract

from a container.

To evaluate TSE’s heuristic for insert button positioning, Table 3.1 also reports the percentage

of insert transformations placed in reasonable locations. An insert transformation is considered

unreasonably placed if either (a) the insert should be possible but is not assigned to any button in

the UI, or (b) the insert shares a single button with other inserts, or (c) clicking the button inserts

an item at a location other than the button’s position.

To provide evidence that TSE can operate on unmodified toString functions, we translated

several toString functions from Haskell’s standard libraries to TSE’s Elm-like language, as

shown in the bottom half of Table 3.1. These translations were performed as literally as possi-

ble.

Manual inspection of the case studies revealed a few issues to address in subsequent versions

of TSE. Most notably, zero-width regions such as those from empty strings are ignored, which for

some variants of list toString caused the final Nil() to be un-selectable. Additionally, selection

region sharing and occlusion are sometimes troublesome. Two subvalues sharing the same selec-
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tion region is a less of an issue—depending on the application, selecting a shared region could

offer to operate on any of the associated items. Occlusion, however, results in certain subvalues

being un-selectable. One solution might be to expand ancestor regions by a few pixels. Finally,

insert buttons were not placed in reasonable locations for tree-like data structures, but, as discussed

next, how best to handle actions is a domain-specific consideration.

3.6 Limitations and Future Work

The TSE prototype demonstrates how simple interfaces can be derived from the toString func-

tions that programmers already write. Before TSE can be incorporated into a larger system, how-

ever, several details still need to be worked out. In practice, TSE will also need to custom support

actions beyond structural insert/remove, and will need to support more kinds of string operations.

Additionally, how to handle nested pattern matches or how to apply TSE in an object-oriented

setting are both open questions. All these considerations are discussed below.

Further Actions Although TSE is intended to support future bimodal programming systems,

the TSE prototype here is a standalone demonstration system (TSE is not yet part of the MANI-

POSYNTH system presented in Chapter 4). While TSE’s independent implementation highlights

its key techniques, applying TSE to a particular application will require a number of further de-

sign decisions, particularly surrounding the handling of actions. For example, consider the set data

structure in the last row of Table 3.1. The reference implementation [29] is based on a tree and

maintains a number of invariants such as balancing, ordering, and non-duplication. None of these

invariants are expressible in a standard ADT definition alone, and the internal tree structure is not

exposed in the toString output ("fromList [2,3,5,7]"). Therefore, only some of TSE’s selec-

tion regions are relevant—namely, the terminal items, as reported in Table 3.1—and the structural

transformations generated by TSE are not meaningful because they do not enforce the set invari-

ants. TSE does not yet provide an interface for specifying custom insert and remove functions,
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instead we imagine such an interface would be part of a larger, future IDE.

Tracing Substring Provenance As implemented here, the TSE prototype has another minor

limitation. Systems that rely on string tracing [152, 133] provide custom implementations of

string manipulation functions that correctly propagate dependencies. TSE currently only sup-

port string concatenation and string length—supplementing the language with additional string

functions (e.g., substring extraction) remains future work.

Dependence Ambiguity Under Nested Patterns All practical functional languages allow nested

pattern matches, but our core language and TML do not. How dependency semantics should work

for nested patterns is an open question: although a language’s compiler will unnest the patterns [9],

different unnestings can result in different dependency traces. Consider the following nested pat-

tern of tuples:

case boolPair of
(True, True) -> a
(_, _) -> b

The pattern match compiler has two options for un-nesting the patterns. Either the first or the

second element of the pair may be inspected before the other:

case boolPair of
(fst, snd) -> case fst of

False -> b
True -> case snd of

False -> b
True -> a

case boolPair of
(fst, snd) -> case snd of

False -> b
True -> case fst of

False -> b
True -> a

While both versions are semantically equivalent, they can result in different dependency structures.

If, e.g., boolPair is (True, False), in the first version all case splits are executed and the result
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will be marked as dependent on all three scrutinees: boolPair, fst and snd. In the second version,

the deepest case split is not executed and the result is thereby not marked as dependent on fst,

only boolPair and snd.

This example suggests that relying on the pattern match compiler to determine the dependency

structure may not be the right approach. An explicit dependency semantics for nested patterns

might be required. Programmers think about case branches from top to bottom—if the first pattern

does not match, try the second, and so on. Dependency semantics could match that intuition: a

branch result might be marked as dependent on values corresponding to all nested patterns in the

current and prior branches (of the same constructor).

While nested patterns are not uncommon in real-world code, such ambiguous cases did not

occur in our examples.

TSE for Object-Oriented Code Finally, object-oriented (OO) programming is more common

than the functional setting presented here—how might TSE be adapted to OO? Instead of ADTs,

variants in an OO setting can be encoded as subclasses of a shared abstract superclass. With ADTs,

differences between variants are handled via case splits; with objects, each subclass defines its own

version of a particular named method and dynamic (i.e., virtual) method dispatch chooses the ap-

propriate implementation for a particular object. The key tracing rule in TSE, inherited from TML,

dictates that the result of a case split is marked as dependent on the value split upon (EVALCASE

in Figure 3.9). In the interval example, this rule is responsible for 3 of the 5 dependency tags in

the result and this rule is what allows TSE to offer meaningful change constructor actions. In an

OO setting, this rule would be equivalent to marking the result of a dynamic call as dependent on

the receiving object. That is, if the result of a method call could vary between subclasses, then the

result of the call should be marked as dependent on the receiver.4

4Whether the result of a method call can vary between subclasses is only easy to determine in a language like
C++ where such methods are explicitly marked virtual. In OO languages that more fully embrace late binding (e.g.,
Smalltalk and Ruby), the evaluator would have to guess if the method is ever overridden anywhere at anytime, which
is not generally possible in the fully dynamic setting.
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Editors from toSvg Functions TSE instruments the execution of a toString function to pro-

duce an interactive editor for a custom data type. The same tracing scheme could instead be applied

to a user-specified toSvg function, thus automatically turning a graphical representation, such as

the interval on the number line in Figure 3.2d, into an interactive editor. A further intriguing di-

rection is to also extend SKETCH-N-SKETCH (Chapter 2) so that it may be used to help construct

these toSvg functions.

3.7 Summary

TSE generates structure editors based on the toString function for a data type, with little to

no further programmer effort required. The automatically generated interfaces are sufficient for

selecting items out of a container and, for list structures, the interfaces also facilitate item addition

and removal.

Although presented here as a standalone prototype, TSE aims to be a mechanism used by a

larger bimodal programming system. A user might use the interfaces generated by TSE to naturally

specify changes on values and the bimodal system can reify those value changes into the code of

the program. One such bimodal environment that, in the future, could profitably incorporate TSE

is MANIPOSYNTH, presented next.
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Chapter 4

Maniposynth:
Bimodal Tangible Functional Programming

Figure 4.1: A list length function implemented in MANIPOSYNTH.

4.1 Introduction

SKETCH-N-SKETCH (Chapter 2) demonstrated that bimodal programming can be used to pro-

duce non-trivial vector graphics programs without the need to resort to text-based editing. But

SKETCH-N-SKETCH can provide direct manipulation for vector graphics programs because there

is something intuitive to manipulate: the graphical program’s graphical output. What about non-

graphical programs? Could similar interactions be applied to non-visual, general-purpose pro-

gramming? Is there a way to write programs via direct manipulation on live program values?

The work in this chapter is in submission.
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Figure 4.2: (Reproduction of Figure 14 of Elliott [38]). Three tangible values on the non-linear
Eros 2D canvas. Each TV shown here is a partially applied function, with unapplied arguments
on top and output below. Unapplied arguments are shown with (editable) example values. For
example, the leftmost TV has two unapplied arguments: a numeric argument represented as a
slider (corresponding to a scale factor), and an image input (the example input image is black
for positive x values and white for negative x values). The example output (the intersection of
the image with a disk) is shown below. The middle TV is a function producing a checkerboard
pattern, with the scale factor and rotation angle still unapplied. TVs can be composed. The user
has selected the output of the middle TV and the image input argument of the left TV. Compos-
ing these together results in the rightmost TV, in which the output of the middle TV has been
used as the second argument for the right TV. The remaining unapplied arguments of both are the
unapplied arguments of the result TV. (Eros is a strongly typed environment, only allowing com-
position between outputs and inputs of compatible type. As seen in the tooltips above, images are
represented as functions of type (Double, Double) → Bool, i.e., coordinates to black/white.)
Used with permission. Conal M. Elliott. 2007. Tangible Functional Programming. In Proceedings of the 12th ACM
SIGPLAN International Conference on Functional Programming (ICFP ’07). Association for Computing Machinery,
New York, NY, USA, 59-70. Fig. 14. DOI: https://doi.org/10.1145/1291151.1291163.
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The Eros environment by Elliott [38] demonstrated a compelling partial answer to this question.

Eros reimagined the programming space not as a program in text (as in traditional coding), nor as a

draftsman’s drawing of operations connected by wires (as in nodes-and-wires programming [142]),

but as a 2D canvas of manipulable values. These tangible values (TVs) were primarily partially

applied functions, rendered with (graphically editable!) example arguments for their unapplied

inputs, with the corresponding example output displayed below (Figure 4.2). The user could select

the output of one TV, the input of another TV (of corresponding type), and compose the two

together into a new TV.

Eros highlighted that there is a complementarity between non-linear editing and pure functional

programming. Without side effects, the order of computation is negligible. The user may gather

the parts they they need, in any order they please, and worry later about how to assemble them.

Alas, the standard practice of writing functional programs as linear, textual code obscures this

fundamental opportunity for non-linearity. Placing values on a 2D canvas instead highlights it.

Non-linearity matters because not all humans are linear thinkers—not even all programmers

are linear thinkers! A non-linear environment can offer a creative space more inviting to folks

whose standard workflow naturally entails concrete exploration rather than abstract planning.

While Eros highlighted this complementarity between non-linear editing and pure functional

programming, the Eros mechanism of composing TVs may tip the balance too far from the ab-

stract in favor of the concrete. Once a value has been composed, it obscures how it came to be.

The expression at the top of a TV gives some indication (Figure 4.2), but this one line is inadequate

for any computation of modest size. Moreover, once composed, how does one change that compu-

tation that produced a TV? Value manipulation alone may be inadequate for carefully specifying

abstract algorithms. Perhaps there is there a middle ground that allows both non-linear, concrete

direct manipulation on values and traditional editing of ordinary code.

That middle ground is the subject of this chapter. Here, we seek an answer to the question:

How can the approachability of non-linear direct manipulation on concrete values be melded
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with the time-proven flexibility of text-based coding? We would like to create a programming

environment with the following four properties:

(a.) Value-Centric. Like Eros, and unlike most visual programming environments, we want

values—not AST elements!—to be centered in the display and, as much as possible, be the

subject of the user’s direct manipulations.

(b.) Non-linear. To support non-linear thinkers and exploratory programming, we want to allow

the user to gather the parts they need out of order, and compose them together later.

(c.) Synthesis. How to integrate recent advances in program synthesis into a practical workflow

remains an open question. A value-centric interface is a natural environment to specify

assertions on those displayed values, and thus also a natural environment to fulfill those

assertions with a synthesizer—we want to explore this.

(d.) Bimodal. Code is unavoidable: it is the language that describes computation. Ideally,

a visual programming environment would not sacrifice the unique affordances of textual

code—its concision and its amenability to an ecosystem of existing tooling (such as text

editors, language servers, and version control). We want to offer a bimodal interface that

simultaneously offers the non-linear graphical editing interface alongside a text-editable,

traditional representation of the program’s code.

Contributions

To show how value-centric non-linear editing can meld with traditional text-based programming,

we implemented a value-centric, non-linear, bimodal programming environment with synthesis

features called (The Magnificent) Maniposynth. We demonstrate both how non-linear visual

editing can integrate with linear code, as well as show novel editing features made possible by the

value-centric display.
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To gain an initial understanding of the system, we implemented an external corpus of 38 ex-

ample programs.

For additional insights, we conducted an in-depth exploratory study with two external profes-

sional functional programmers, whose feedback informed the evolution of MANIPOSYNTH. We

describe their experiences using the tool and discuss additional observations through investigative

lenses from the Cognitive Dimensions of Notation framework [51].

Section 4.2 introduces MANIPOSYNTH with a running example. Section 4.3 describes the

technical implementation of the tool and the synthesizer. Section 4.4 presents insights from im-

plementing a corpus of examples and the qualitative user study. Section 4.5 presents related work,

and Section 4.6 discusses avenues for continued exploration.

4.2 Overview Example

To provide an overview of interacting with MANIPOSYNTH, we follow a fictional programmer

named Baklava as she re-implements the list length function from scratch.1 Figure 4.1 shows the

final result.

MANIPOSYNTH is a locally running web application designed to be opened in a web browser

alongside the user’s preferred text editor. Baklava creates a blank text file named length.ml

on her computer, starts MANIPOSYNTH in that directory, and navigates to http://localhost:

1111/length.ml in her web browser. She positions her browser window side-by side with Visual

Studio Code and is ready to begin.
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Figure 4.3: List literals offered as autocomplete options.

Figure 4.4: Tangible values (TVs) for the example list binding and the example call to length.

4.2.1 List length, without synthesis

To start, MANIPOSYNTH displays a blank white 2D canvas. Because MANIPOSYNTH is a live pro-

gramming environment, Baklava starts by creating an example list so she can see the length opera-

tion on concrete data. Double-clicking on the canvas opens up a text box to add new code, Baklava

does so and types an open bracket [. Because writing example data is common in MANIPOSYNTH,

concrete literals up to a fixed size are offered as autocomplete options (auto-generated from the data

constructors in scope, Figure 4.3). Baklava selects the list literal [0; 0; 0] from the autocomplete

options and hits Enter.

In the code, a new let-binding for the list is inserted at the top level of length.ml and auto-

matically given the name int_list. On the canvas, this binding is represented as a box display-

ing (in clockwise order, Figure 4.4, left) the binding pattern (int_list), the binding expression

([ 0 ; 0 ; 0 ]), and the result value below (also [ 0; 0; 0 ], but bigger). These three

elements together in a box form a tangible value in MANIPOSYNTH. The box may be repositioned

on the 2D canvas, and the coordinates of the position are stored in the code as an AST attribute

annotation on the binding, written [@@pos 152, 49] in the code. Arbitrary attribute annotations

1A video of this example, as well as an artifact if you would like to follow along yourself, are both available at
http://maniposynth.org.
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Figure 4.5: Tangible value for the function skeleton binding let length x1 = (??).

are supported by the standard OCaml AST which allow these properties to be preserved across

program transformations. Baklava has installed a VS Code plugin to dim these attributes in the

code to avoid becoming distracted by them.

To begin work on the length function, Baklava now creates an example call to the function:

on the canvas, she double-clicks to add new code and types length int_list. As before, a

new binding is inserted in the code (named length_int) and an associated tangible value (TV)

appears on the canvas (Figure 4.4, right). The length_int TV has two differences from the pre-

vious int_list TV. First, its result value (displayed as ?, explained below) has a yellow back-

ground—this indicates the result is not simply a constant introduced in the expression: it came

from computation elsewhere. Second, the int_list variable usage in the TV’s expression bears a

superscript indicating the value of int_list, namely [0; 0; 0].

In MANIPOSYNTH, using a variable that is not yet defined automatically inserts a new let-

binding (TV) for the variable—in this case, length was not defined. Because Baklava used length

as a function, a new function skeleton was inserted in the code (let length x1 = (??)). Function

TVs are displayed specially on the canvas (Figure 4.5). Immediately below the function name,
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a function IO grid displays the function input and output values encountered during execution.

Immediately below the IO grid is a blank white area which is a subcanvas for the bindings (TVs)

inside in the function, of which there are none yet. Below the subcanvas is a (non-movable) TV

for the return expression and overall result value of the function. Currently the function return

expression is a hole expression, written (??). Hole expressions are placeholders, expected to be

filled in later. For this reason, they are displayed larger than normal expressions (to make them

easier targets for clicking) and have a slowly pulsing red background (to remind the user that the

program is unfinished). While the (??) syntax is supported by OCaml’s editor tooling (Merlin2

and its language server protocol wrapper3), programs with holes are ordinarily not executable.

To continue to provide live feedback in the presence of holes, MANIPOSYNTH evaluates hole

expressions (??) to a hole value, displayed as ?. This hole value ? is the current return value of

the function shown below (??)—in green because it was introduced by the immediate expression

above—and also shown in the “Return” row of the IO grid as well as, back on the main top-level

canvas, in the result value of the length int_list function call.

Baklava does not like the default x1 parameter name in the length function and wants to

rename it. Most items in MANIPOSYNTH can be double-clicked to perform a text edit. Baklava

double-clicks the pink-background x1 to rename the variable (patterns are pink), and writes the

name list instead. Figure 4.7a shows the code at this point.

A goal of MANIPOSYNTH is to allow non-linear editing—to not need to have all of a solution

before making progress. Baklava knows she must make a recursive call to the length function,

so, without thinking hard about what might come after, she decides to add length (??) inside

length. She could double-click and type this code, but typing (??) requires some finger gymnas-

tics. MANIPOSYNTH supports a large number of drag-and-drop interactions. Any green expression

can be dragged to a new location to duplicate that expression—dropping on an existing expression

2https://github.com/ocaml/merlin

3https://github.com/ocaml/ocaml-lsp
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Figure 4.6: Toolbar (a), which includes a skeleton expressions menu (b), a menu of functions
defined in the current file (c), and menus of expressions auto-generated from the data types in
scope, such as the list expressions shown in (d).

(e.g., a hole) replaces the existing expression, while dropping on a (sub)canvas inserts a new bind-

ing (TV). Values and patterns can also be dragged to expressions or (sub)canvases—when hovering

over a value or pattern, a tooltip shows what expression will be inserted. Finally, a toolbar at the

top of the window (Figure 4.6a) offers menus containing skeleton expressions: the first menu offers

common expressions such as if (??) then (??) else (??) etc. (Figure 4.6b), the second menu

offers functions defined in this file (Figure 4.6c), and the remaining menus offer constructors and

automatically generated example values of the types in scope (e.g., Figure 4.6d; the expressions

are the same as those offered by autocomplete)—if the user had any custom data types, each would

appear as a menu as well. Baklava drags length (??) from the toolbar into the subcanvas for her

length function (Figure 4.7b). A length2 = length (??) binding is created in the code (Fig-

ure 4.7c) and an associated TV appears inside length (Figure 4.7d). MANIPOSYNTH also changes

the top level let length = ... into let rec length = ....

Because (??) produces hole value ? instead of crashing, the length function is now diverging

as length (??) calls length (??) which calls length (??) etc. MANIPOSYNTH uses fueled
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(a) (b)

(c) (d)

Figure 4.7: Creating a recursive call. (a) Code before. (b) Dragging a new length call into the
length function. (c) Resulting code and (d) resulting length function TV.

execution to cut off infinite loops and keep functioning. In the function IO grid, there are now extra

columns showing these calls (Figure 4.7d) , but other than understanding why these extra columns

are there, Baklava need not pay any mind that her programming is momentarily divergent.

Baklava wants the recursive call to operate on the tail of the input list. When she moves the

cursor over the input list in the IO grid, a “Destruct” button appears (Figure 4.8a), which she clicks.

As shown in Figure 4.8b, a match statement (i.e., case split) appears in her code, with holes for the

return expression of each branch. On the display, there are a number of visual changes. In the IO

grid, hd and tail pink subscripts appear inside the input list [0; 0; 0], labeling the subvalues

that are now bound to names by the match statement. To make these bindings even clearer, they

are also represented as two new TVs in the function subcanvas. Finally, the function now has

two possible return expressions: both appear as (non-movable) TVs at the bottom of the function,
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(a)

(b)

(c)

Figure 4.8: (a) A “Destruct” button appears when the cursor hovers over an input value that is an
ADT. (b) Code and length function TV after destructing on the [0; 0; 0] input value. (c) After
dragging the tail value [0; 0] to the red hole argument (??) for the recursive length call.

one is grayed out indicating it is not the branch taken when the input is [0; 0; 0]. Above the

two return TVs is an indication of the scrutinee, “← list →”, which allows editing of the scrutinee

expression.

Now that the list tail is exposed on the subcanvas, Baklava drags it (either the pink tail name

or the [0;0] value below it) onto the hole in length (??), transforming it into length tail. In

her code, the binding is moved from the top level of the function into the branch in which tail

exists (Figure 4.8c). Because MANIPOSYNTH embraces non-linear editing, the user should not

have to worry about binding order—bindings will automatically be shuffled around as necessary

to place items in the appropriate scope.
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Figure 4.9: Autocompleting to a value in scope.

The additional calls from the recursion appear function IO grid, each still returning hole value

? (Figure 4.8c, right). Baklava would like to edit the base case, so she looks for the column in

the IO grid where the input is [], and then clicks that column to bring that call frame into focus.

Call frames are effectively equivalent to runtime stack frames. The TVs not executed on that call

are grayed out (hd, tail, length2, and the return for the hd::tail branch). Baklava double-

clicks the no longer grayed-out return expression (??) for the base case and sets it to constant 0.

(She could also have double-clicked the green-background hole value ?; values are rendered with

a green background when double-clicking them will effect an edit on the expression immediately

above.)

Baklava now clicks the second-to-last call frame in the IO grid to bring into focus the call where

the input is [0]. The return expression for this branch is still (??). She notes that the TV for the

length tail call now displays a result value of 0. Baklava double-clicks the return expression

(??) and, after typing “1 + ” she pauses (Figure 4.9). When she began to type, MANIPOSYNTH
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recolored the displayed values in scope in different colors, and now, looking at the autocomplete

options, she sees 1 + 0, 1 + 0, and 1 + 0 among the possible autocompletions—each with a

different color 0 corresponding to a similarly colored 0 value elsewhere on screen. The maroon

0 is the return from length tail, so she chooses that. The branch return expression becomes

1 + length2, and Baklava can now see in the IO grid that her function is returned the correct

value for all inputs (Figure 4.1).

4.2.2 Undo and delete

MANIPOSYNTH supports undo/redo. Additionally, any expression may be selected by a single

click and then transformed to a hole by pressing the Delete key. Entire let-binding TVs can sim-

ilarly be selected and deleted, removing them from the program. Uses of the binding must be

deleted before deleting the binding itself—otherwise MANIPOSYNTH will immediately recreate a

binding to satisfy the otherwise unbound variable uses.

4.2.3 Value-centric shortcuts, and synthesis

There are usually multiple ways to complete a task in MANIPOSYNTH. Below are a few variations

Baklava might have performed instead.

Drag-to-extract When Baklava needed to extract the list tail and use it for the recursive call to

length, she clicked “Destruct” on the input value and then dragged the resulting tail name to her

length (??) call. The explicit “Destruct” step can be skipped. Because MANIPOSYNTH’s goal,

as much as possible, is to provide manipulations on values, subvalues can also be manipulated.

Baklava might instead have hovered her mouse over the portion of the input list [0; 0; 0] that is

the is the tail of that list, namely ; 0; 0], and dragged that subvalue directly to her length (??)

call without pressing “Destruct”. The destruction will be performed automatically and the same

code will result.
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Autocomplete-to-extract Similarly, visible subvalues are also offered as autocompletions. Per-

haps the fastest way to write list length is, immediately after the length function skeleton is

created, to double-click the return hole expression, type “1 + length ”, and then finish the new

expression by selecting ; 0; 0], the tail of the input list, from the autocomplete options. The

expression 1 + length tail and the needed pattern match will be inserted, leaving only the base

case to fill in.

Figure 4.10: A satisfied
and unsatisfied assertion.

Assertions Baklava started by creating an example call to

length. To remind herself of the goal, she could have created an

assertion instead: typing length [0; 0; 0] = 3 on the top level

canvas will create an assert statement instead of a binding with a

name. Assertions are rendered in red when unsatisfied, and both the

expected result (in blue) and the actual result (in black) are shown.

When an assertion becomes satisfied, its result value is hidden and the assertion turns green (Fig-

ure 4.10).

Assertions can also be added via the function IO grid: clicking the “+” button at the right of

the IO grid will create a new column in the grid, allowing Baklava to fill in the input values and

expected output. Upon hitting enter, the column is reify by adding a new assertion is added at the

top level, so that the function is indeed called with the specified arguments.

Program Synthesis Assertions facilitate programming by example, a workflow currently avail-

able in Microsoft Excel [52] but not yet available in ordinary programming. After asserting

length [0; 0; 0] = 3, Baklava might have clicked the “Synth” button on the lower-right

corner of the window. MANIPOSYNTH will use a type-and-example based approach (inspired by

the MYTH [118] synthesizer) to guess hole fillings until the assertion is satisfied or the synthe-

sizer gives up (after between 10 and 40 seconds). The synthesizer incorporates a simple statistics

model and other heuristics to improve result quality (§4.3.4). In this scenario, with only the sin-
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Figure 4.11: An undesired synthesis result—the next result (“Try again”) will be correct.

gle assertion, the MANIPOSYNTH synthesizer instantly finds a filling that creates the proper case

split, but places 3 as the return of the base case and length tail as the return of the recursive

case (Figure 4.11). The result is incorporated into the code, but presented to Baklava with buttons

prompting her to “Accept”, “Reject”, or “Try again”. When Baklava clicks “Try again”, in about a

second the synthesizer produces the correct result, which Baklava accepts.

(a) (b) (c)

Figure 4.12: (a) Adding a subvisualization. assertions on a subvisualization, (b) before and (c)
after satisfaction.
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Subvisualizations MANIPOSYNTH offers users the ability to visualize the result of a function

call on all subvalues of a displayed value—for example, the result of calling length on each sublist

of [0; 0; 0] can be displayed as superscripts on the sublists. Assertions can also be specified on

these visualized results, leading to the following workflow:

As before, Baklava first inserts [0; 0; 0] on her blank canvas. But now she clicks the

[0; 0; 0] value to select it; a floating inspector window appears offering various type-compatible

functions in scope to visualize atop [0; 0; 0]. Baklava foregoes these suggestions and navi-

gates to the textbox that allows her to input a custom subvisualization (Figure 4.12a). She types

“length” and hits Enter. The length function skeleton is automatically created, and each subvalue

of [0; 0; 0] now displays a superscript ?, the return result of the unfinished length function

when applied to that subvalue. Baklava double-clicks the superscript corresponding to the whole

[0; 0; 0], which opens a textbox that allows her to assert on length [0; 0; 0]. She types “3”,

hits Enter, and the appropriate assertion is created at the top level.

These subvisualizations allow users to quickly specify multiple assertions without manually

creating new example values. To assert on a list of length 2, Baklava double-clicks the superscript

corresponding to the tail sublist and types “2” (Figure 4.12b). With these two assertions, the

synthesizer finds the intended result in one try (Figure 4.12c shows the satisfied assets).

4.3 Implementation

With the main features of the tool demonstrated, we now describe the technical operation of

MANIPOSYNTH.

4.3.1 Architecture Overview

MANIPOSYNTH is a web application written in about 8600 lines of OCaml (excluding the inter-

preter) and 2000 lines of Javascript. MANIPOSYNTH relies on OCaml’s provided compiler tools
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Figure 4.13: MANIPOSYNTH architecture overview.

and AST data types to handle parsing, type-checking, type environment inspection, and pretty

printing of modified code. Modified code is further beautified by running it through ocamlformat4

if the user has it installed. Comments are (unfortunately) discarded by OCaml’s parser.

For displaying live feedback, we need to run the program and log the runtime values flowing

through the code. We modified the OCaml interpreter from the Camlboot [27] project to emit a

trace of all runtime values at all execution steps. We also performed additional modifications to

handle holes and assertions (described in the next section).

After MANIPOSYNTH runs the code via our modified Camlboot, MANIPOSYNTH associates

runtime values from the logged execution trace with expressions in the program, and then renders

HTML which is sent to the browser and displayed. Almost all OCaml-specific logic is handled

4https://github.com/ocaml-ppx/ocamlformat
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server-side and baked into the HTML. The Javascript on the browser only handles TV positioning

and standard GUI interaction logic. When the user performs an action, the JS sends the action to

the server via HTTP, the code is modified on disk, and the server prompts the browser to reload the

page to re-render the display. The browser also polls the server via HTTP so that when the file is

changed on disk, the display will refresh. This overall architecture is outlined in Figure 4.13.

In the next sections we describe our modifications to the Camlboot interpreter, then how

MANIPOSYNTH handles binding reordering to provide a non-linear experience, and then the me-

chanics of the synthesizer.

4.3.2 Interpreter

MANIPOSYNTH needs to provide live runtime values. Ordinary OCaml does have a bytecode inter-

preter in addition to its native code compiler—ideally we would modify this bytecode interpreter

to emit a log of values during program execution. Unfortunately, OCaml performs type erasure

and its runtime in-memory representation of values is ambiguous, rendering it impossible to in-

spect memory to recover a value’s type. Remembering the types at program locations would only

partially alleviate this problem because many expressions have polymorphic (i.e., generic) type,

which, alas, occurs often during program construction: the function skeleton length x1 = (??)

has type 'a → 'b, but in the IO grid we want to be able to display any example input values as lists,

not as unknown polymorphic values. Therefore, instead of trying to modify the standard OCaml

interpreter or compiler, we base MANIPOSYNTH off of the OCaml interpreter in the Camlboot [27]

project, an experiment in bootstrapping the OCaml compiler. The Camlboot OCaml interpreter is

written in OCaml and represents all runtime values as members of an ordinary OCaml algebraic

data type (ADT), which allows inspecting their type and structure at runtime, at the cost of some-

what slower execution. We modified Camlboot to handle holes and assertions, and to log runtime

values during execution.

126



Programs P ∶∶= type t = T B

Types T ∶∶= (standard OCaml, elided)

Top-level binding groups B ∶∶= let x = e
∣ let rec x1 = e1
∣ let () = assert (e1 = e2)

Expressions e ∶∶= (??) ∣ c ∣ C ∣ C e ∣ C (e1, ei)
∣ x ∣ fun x→ e ∣ e1 ei
∣ let x = e1 in e2
∣ let rec x1 = e1 in eb
∣ (e1, e2, ei)
∣ if e1 then e2 else e3
∣ match e1 with p→ ei

Case Patterns p ∶∶= C ∣ C x ∣ C (x1, xi)

Figure 4.14: The subset of OCaml fully supported by MANIPOSYNTH. Overlines denote zero or
more of the syntactic element. Unsupported expressions and patterns will still be displayed but
will not have full UI support.

Supported subset Unmodified, the Camlboot interpreter will run a large subset of OCaml.

The tooling and display in MANIPOSYNTH, however, currently only fully supports a smaller sub-

set, shown in Figure 4.14. At the top level, programs in MANIPOSYNTH are expected to consist

only of type declarations followed by (potentially recursive) let-bindings; assertions are only ex-

pected to occur at the top level. Only single-name patterns have full UI support (although internal

operations such as free variable analysis will account for names in nested patterns). Supported ex-

pressions include holes, base value constants, argument-less, single-argument, and multi-argument

constructors, variable usages, function introductions with an unlabeled parameter, multi-argument

function applications, (potentially recursive) let-bindings, tuples, if-then-else, and pattern match

case splits. Case splits are only fully supported on constructors.

Records do not have complete UI support. User-defined modules, opening modules, imperative

functions, and object-oriented features are currently unsupported.

The swath of supported syntax was enough to cover the kinds of data structure manipulations

we explored in our evaluation. During the user study exercises, participants rarely missed the
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unsupported syntax. Even so, for the tool to become practical for everyday use, the users noted it

would definitely need to support modules and imperative programming.

Holes and Bombs It is best for the user if live feedback is available even if the program is

incomplete. While we could have the interpreter crash on the first hole, that may still be too

restrictive, e.g., if the expression is new and is still dead code then the presence of the hole should

be inconsequential to the rest of execution. A thorough solution would be to adopt the Hazelnut

Live semantics, which describe how to evaluate around holes [116]. When holes reach elimination

position, terms become stuck (e.g., what should hole plus hole be? Or which case branch should

we take when the scrutinee is a hole?). Hazelnut Live evaluates around the term by, effectively,

turning the stuck term into a value which is propagated until it causes another term to become stuck,

and so on. While this can offer intriguing UI possibilities in its own right (outlined in [116]), it

requires that we display the stuck terms to users as if they are values. MANIPOSYNTH may do so

eventually, but our display is already full of elements to keep track of. Asking users to make sense

of stuck terms, displayed far from their origin, might be confusing.

MANIPOSYNTH instead adopts a middle ground. We evaluate around holes but not around

any other expressions. In practice, hole expression (??) introduces a hole value ? that remembers

the introduction location and captures a closure. (This closure is not displayed to the user but

is occasionally used during synthesis when propagating assertions to constraints on holes.) Hole

values propagate through evaluation—if unused, the evaluation can continue normally. If a hole

value reaches elimination position (e.g., ? + ?), we resolve the expression to a special Bomb value

(displayed as ). Similarly, if a Bomb reaches elimination position, another Bomb is produced. In

this way, execution can continue and expressions unrelated to the unfinished code can continue to

provide live feedback.

Finally, to prevent infinite loops from stalling the interpreter or inhibiting live feedback, MA-

NIPOSYNTH uses fueled execution to abort when the right-hand side of a binding takes too long

to execute. Each top level let-binding is allocated 1000 units of fuel (execution steps), and each
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non-top level let-binding reserves 50 units for later execution in case the binding diverges. When

the interpreter runs out of fuel, execution drops back to the let-binding, all patterns at the binding

are bound to Bomb, and execution continues if there is any remaining fuel. Divergence is mod-

erately common, because recursive call skeletons like length (??) from the Overview Example

will repeated call the function with hole value. Thus it is important that execution bypasses the

divergence with some fuel reserved for later bindings so that later TVs will still show live values

in the display.

Assertion logging When an assertion is encountered during execution, ordinarily OCaml

would evaluate the assertion and then throw an exception if the asserted expression returns false.

Instead, MANIPOSYNTH evaluates the assertion and logs the result for later, but never raises an ex-

ception. The assertion logging only supports equality comparisons for now; unsupported assertions

are skipped. The expected expression (the right-hand side), the subject expression (the left-hand

side), and the result values of both are logged. Logged assertions are used both for synthesis and

to display blue expected values to the user wherever that same expression and value is encountered

during execution (Figure 4.10).

Tracing In addition to logging assertions, MANIPOSYNTH also logs other execution informa-

tion needed to render its display. Our modified interpreter records information in two places: each

execution step is entered into a global log, and we also tag side information onto runtime values.

At each execution step and at each pattern bind we add a log entry to a global trace, recording

the current AST location, the call frame number (from a global counter incremented upon each

function call), the result value or value being pattern matched against, and the execution envi-

ronment of bound variables. When producing the display, this information is queried to discover

which values flowed through which locations and under which call frames, and the appropriate

values are rendered.

For convenience, we also store extra information on values as well. On values we log the type
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of the value when it is introduced (or returned from a built-in external primitive such as addition)

so we have a concrete type associated with the value even if the value is later used in a polymorphic

context. To the value we also attach a list of frame numbers and AST location of the expressions

and patterns the value passes through, to, e.g.,, conveniently interrogate where a value was first

introduced. For example, to display function closure values, we find where the closure was bound

to a name and display that name as the rendered closure value.

The above tracing mechanisms are sufficient to render the live feedback in the MANIPOSYNTH

display. Although the extensive logging might be expected to slow down execution, at present

MANIPOSYNTH is only applied to small programs and HTML rendering tends to take considerably

longer than the initial execution, but the MANIPOSYNTH server is generally able to provide a

response in under 200ms.

4.3.3 Fluid Binding Order

A primary goal of MANIPOSYNTH is to offer a non-linear editing experience. The program is

therefore rendered on a 2D canvas, which means we do not want users to have to worry about

binding ordering. If the user sees a name on the canvas, they should be able to reference that name

in the expression they are editing, even if, in the written code, that name is introduced later in the

program.

Reordering bindings To support this non-linear workflow, only limited variable shadowing

is supported. Nested bindings may shadow a top-level definition, but otherwise all names are

assumed to be unique within each top-level definition. After every user action, MANIPOSYNTH

leverages these assumptions to reorder bindings, move bindings into match statement branches,

and to add a rec flag on bindings that refer to themselves. Only single recursion can be inferred

(multiple recursion must be added manually in the text editor).

The overall consequence is that users rarely have to think about binding ordering in their
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code—they can continue to use the TVs on the display as if they are all appropriately visible

to each other.

Inserting case splits Recall that users can grab any displayed subvalue and drag it into their

program to induce a pattern match. Internally, the process works as follows. Whenever a user hov-

ers their mouse over a value, a tooltip appears previewing the expression that will be inserted. For

subvalues, the expression is an incomplete pattern match, such as match list with | hd::tail

-> tail. Deeper extractions are also possible, e.g., match (match list with | hd::tail ->

tail) with | hd2::tail2 -> tail2, but not often useful.

When the user drops the subvalue into their program, the expression is initially (internally)

inserted as is, e.g., let tail2 = match list with | hd::tail -> tail in .... A series of

program transforms then rearranges match statements as follows:

1. All let-bindings at the beginning of the function are pushed down and duplicated into each

pre-existing case branch. They may be pulled back out at the end of the process below. This

push-down has the effect that all newly inserted match statements are now children of any

prior match statements already inserted.

2. If the user dragged a subvalue that has already been extracted (or has extracted a deeper sub-

value and one of its parents has already been extracted), we do not want to insert superfluous

pattern matches. We want to reuse the case splits that already exist. Relying on the prior

step that ensured all bindings are now in scope of all variables introduced in cases, a static

analysis pass simplifies nested case splits on the same variable: if a match on list already

exists, then the copy of let tail2 = match list with | hd::tail -> tail in ...

that was pushed into the pre-existing cons case will be simplified to let tail2 = tail

in ... and the copy pushed into the pre-existing empty list case will be simplified to let

tail2 = match list with in ..., i.e., a match with no cases, which marks the binding

for removal.
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3. Each let-binding that has such an empty match anywhere in its left-hand-side is removed.

4. Any surviving match statement is not redundant, but still in a non-idiomatic position. A

series of local rewrite rules floats the match statements up to the outermost level of the

function, e.g., f (match list with hd::tail -> tail) becomes match list with

hd::tail -> f tail, etc.

5. All let-bindings, previously floated down into all case branches, are now floated back up as

far as possible to the top level of the function: a binding is pulled up outside of match

branches when both (a) the same binding exists in all branches, i.e., it was valid in all

branches and not removed, and (b) in all branches, the binding is not dependent (or tran-

sitively dependent) on any variables introduced for the case branch.

6. Newly inserted matches are now at the top level, but may still be missing cases. Incomplete

pattern matches are filled in with the missing branches, with a hole expression (??) in each

new case.

7. Bindings that are only simple renamings, such as let tail2 = tail in ..., are re-

moved—these happen when the user performs an extraction of a subvalue that was already

previously extracted.

The above algorithm produces idiomatic match statements, with the match wrapped in all the

let-bindings that are not dependent on variables introduced in the branches. For functions with

a single match, the above algorithm performed well in our evaluation—it was never a source of

trouble. For nested matches with independent scrutinees, a current limitation of MANIPOSYNTH

is there is no refactoring to flip the nesting order.

Inserting undefined variables Finally, in keeping with the goal of non-linearity, we also want

to allow users to use a variable before it has been defined anywhere. Therefore, after the above pro-

cesses, any remaining variables that are used but not defined are introduced in a new let-binding.
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Each new variable is either bound to hole or, if the variable is used as a function in an applica-

tion, bound to a new function skeleton with the appropriate number of parameters. Thus, typ-

ing length [0; 0; 0] on an empty canvas results in the skeleton length function seen in the

Overview Example.

4.3.4 Synthesizer

As discussed in the Overview Example, MANIPOSYNTH includes a programming by examples

(PBE) workflow to help users finish their incomplete code. Here we detail the program synthe-

sizer’s operation and our design choices in its implementation.

The MANIPOSYNTH synthesizer does not contain any new “big” ideas, but the design was

carefully chosen for our setting. To be as practical as possible, we had four goals:

1. Few examples. To reduce the burden on the user, we would like the synthesizer to operate

with few examples. For example, the MYTH synthesizer [118] also targeted a subset of

OCaml, but required the user-provided examples include all needed recursive calls—e.g.,

length [0;0] = 2, length [0] = 1, and length [] = 0. But because this “trace

completeness” requirement is burdensome, we would like our synthesizer to operate with

only one or two examples.

2. No type annotations. Similarly, MYTH and its successor SMYTH [95] require holes to have

types before synthesis, which requires manual annotation. We would like to relieve the user

of this responsibility and operate without explicit type annotations.

3. As simple as possible. The primary goal of MANIPOSYNTH is to explore non-linear editing,

not synthesis per se, so we wanted to keep our synthesizer as simple as possible. For now,

we did not adapt SMYTH because, although it appropriately relaxes the trace-completeness

requirement, SMYTH utilizes a complicated synthesis schedule and requires the Hazelnut

Live machinery [116] for evaluating around holes. Even with the mechanisms described
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Expressions e ∶∶= fun x→ e
∣ match e1 with p→ ei
∣ c
∣ x
∣ x ei
∣ C ∣ C e ∣ C (e1, ei)
∣ if e1 then e2 else e3

Case Patterns p ∶∶= C ∣ C x ∣ C (x1, xi)

Figure 4.15: An overview of the subset of OCaml the synthesizer can emit; also a subset of Fig-
ure 4.14.

below, our synthesizer is around 1300 lines of OCaml, compared to more than 5000 for

SMYTH [95].

4. Quality results. When given only a few examples, synthesizers are notorious for produc-

ing simple but undesirable results,5 which limits their utility. This problem is compounded

when the synthesizer is asked to operate in practical environments with many variables in

scope, rather than unrealistic bare minimal execution environments often used for synthe-

sizer benchmarks. Our synthesizer should operate with the OCaml standard Pervasives li-

brary open in the execution environment so the synthesizer may choose to use e.g., addition

and subtraction. We adopt statistics and heuristics to make this tractable.

MYTH used type information to dramatically reduce the search space and to intelligently intro-

duce case splits. So, to meet the above goals, we built a MYTH-like synthesizer which uses both

types and examples to guide its guessing. Unlike MYTH, however, we relax the trace-completeness

requirement and instead rely on a statistics model to guess more likely terms sooner. Our target

language subset, the statistics model, and our other heuristic choices are described below.

Synthesizable subset Figure 4.15 describes the subset of OCaml that the synthesizer may

produce as it attempts to fill holes in the program. The synthesizer can introduce functions, match

5For example, “January, Febuary, Maruary” https://techcommunity.microsoft.com/t5/excel/
flash-fill-wrong-pattern-for-filling-month-names/m-p/355213
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Expressions e ∶∶= 52%x

∣ 20%e1 ei
∣ 10%fun x→ e

∣ 8.1%ctor

∣ 6.6%c

∣ 1.9%match e1 with C...→ ei
∣ 1.3%if e1 then e2 else e3

Names x ∶∶= 73%localName ∣ 27%pervasivesName

Local names localName ∶∶= 31%MostRecentlyIntroduced

∣ 20%2ndMostRecentlyIntroduced

∣ 11%3rdMostRecentlyIntroduced
∣ ...etc...

Pervasives names pervasivesName ∶∶= 4.0%(+) ∣ 2.9%(=) ∣ 1.9%(-) ∣ ...other non-imperative names...

Constructors ctor ∶∶= 54%pervasivesCtor ∣ 46%localCtor

Pervasives ctors pervasivesCtor ∶∶= e1
24%∶∶ e2 ∣

20%[] ∣ 15%() ∣ 13%false ∣ 8.2%true ∣ ...etc...
User ctors localCtor ∶∶= ...constructors defined in file (uniform probability)...

Constants c ∶∶= 52%int ∣ 45%str ∣ 2.2%char ∣ 0.43%float

Int literals int ∶∶= 37%0 ∣ 26%1 ∣ 10%2 ∣ 3.4%3 ∣ 2.7%4 ∣ 1.6%8 ∣ 1.5%5 ∣ 1.1%-1

String literals str ∶∶= 2.9%"" ∣ 0.62%"." ∣ 0.59%")" ∣ ...other 1-char strs from corpus...

Char literals char ∶∶= 9.1%’\n’ ∣ 8.4%’ ’ ∣ 6.2%’\\’ ∣ ...other chars from corpus...

Float literals float ∶∶= 25%0.0 ∣ 20%1.0 ∣ 18%0.0 ∣ 8.3%0.5 ∣ 5.0%10.0

Figure 4.16: The grammar used for the statistics model. Each production is associated with a
probability.

statements, constants (drawn from a corpus), variable uses, function calls with a variable in func-

tion position, constructor uses, and if-then-else statements.

Statistics model Naively, guess-and-check will produce a large number of unlikely programs.

Incorporating a statistics model guides the synthesizer to guess more likely programs sooner and

can speed up synthesis by multiple orders of magnitude [88, 75]. It also has the potential to offer

the user more reasonable results when fewer examples are given.

We model program likelihood using a probabilistic context-free grammar (PCFG). A PCFG

assigns a probability to each production rule in a grammer. For our synthesizer, we derived the

probabilities of the production rules from a corpus of OCaml code—namely, the source files re-
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quired to build the OCaml native compiler. The overall probability of a program term is the product

of the probability of the production rule of the term with (recursively) the probability of all its sub-

terms.

Our PCFG grammar is given in Figure 4.16. We subdivided several kinds of terms into mul-

tiple production rules in order to provide more precise probabilities: constants are divided by the

constant type, constructors are classified as either a user constructor (i.e., defined in the same mod-

ule or a parent module) or from elsewhere, and, most notably, names are classified as local (i.e.,

defined in the same module or a parent module) or from elsewhere. User constructors are assigned

equal probability with each other. Local names are denoted by how recently they were introduced

into the execution environment—more recently introduced names are much more probable than

less recently introduced names. The probabilities of constant literals and external (e.g., standard

library) names and constructors are derived directly from how often those names and constructors

appear in the corpus.

After calculating these probabilities from the corpus, we further reduced the search space for

the synthesizer. We unscientifically trimmed down the list of possible constant literals to the 5-10

most common in the corpus for each type. We also limited the initial execution environment to con-

structors and functions in the globally-imported Pervasives module, removing functions involving

imperative features (they are not supported by MANIPOSYNTH) as well as several floating point

primitive operators unimplemented by Camlboot. Finally, we also excluded OCaml’s polymor-

phic compare, which, in practice, the synthesizer would often use in surprising ways to produce

the numbers 0 and 1, e.g., compare x x evaluates to 0. For simplicity, we did not renormalize

probabilities after the above trimmings to the production rules.

As an example, the most probable term (i.e., what the synthesizer should guess first) is always

the most recently introduced variable. The production rule for an identifier has probability 52%,

the probability that the identifier is local is 73%, and the probability a local identifier is the most

recently introduced variable is 31%, for an overall probability of 12%.
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Type-based refinement MYTH divides synthesis into two processes. The type-based refine-

ment process introduces program sketches—either function introductions or case splits—at holes

based on the type at the hole and the types of variables in scope (to find an appropriate scrutinee to

introduce a match). These sketches contain further holes to fill (i.e., for the function body and the

match branches). Type-based refinement alternates with the type-directed guessing process, which

performs simple type-constrained term enumeration to guess a term to fill existing holes (guessing

will not introduce functions or match statements).

As part of the type-based refinement process, MYTH will push the user’s examples to the

frontier of synthesis. For example, if the user asserts that a hole should output 0 when given the

input [], MYTH will refine the hole to fun x -> (??) and refine the example to note that (??)

should resolve to 0 when x is bound to []. This allows MYTH to quickly verify when a hole filling

satisfies all given examples.

However, MYTH’s implementation of this example refinement machinery requires that the user

provide all assertions directly on holes. Users cannot write assert (length [] = 0). Instead,

they must write, essentially, let length = ((??) such that { [] => 0 }). It would be better

if users could invoke synthesis on a partial sketch.

To allows assertions on program sketches rather than only on holes, SMYTH uses “Live Un-

evaluation” [95] to push top-level assertions down to constraints directly on holes. Pushing down

the assertions is not fundamentally required to perform synthesis—a synthesizer may guess terms

at the holes and check the top-level assertions (indeed MANIPOSYNTH does so)—but pushing

the assertions down to the holes provides information about the hole. MANIPOSYNTH adapts an

effectively6 identical approach to SMYTH, and refines the examples through the sketch yielding

constraints on holes. MANIPOSYNTH uses these hole constraints for two purposes:

6Some sketches prevent the propagation of constraints—for example, if a sketch has a hole in scrutinee position,
it is impossible to know which branch to take. The push-down procedure is stuck and any holes in the branches will
not be able to receive their constraints. SMYTH resolves this scenario by speculatively filling the scrutinee hole while
pushing down the constraints. We opt to avoid this extra machinery, resulting in a simpler implementation, but at the
cost that we cannot resolve holes in an iterative fashion—satisfying the requirements of one hole before moving on to
the next—which would enable faster synthesis.
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1. Refining a hole into a function requires knowing that the hole is at arrow type. This can

easily be determined if the program is explicitly typed, as required in MYTH and SMYTH.

MANIPOSYNTH, however, allows untyped sketches which often start at polymorphic type.

For example, in an initial sketch let length = (??), the length variable has type 'a.

When assert (length [] = 0) is pushed down to the hole, we know the hole must satisfy

the requirement [] ⇒ 0, i.e., must be a function that when given [] produces 0. If all the

constraints on a hole are of that form v1 ⇒ v2, then MANIPOSYNTH will attempt to refine

the hole into fun x -> (??).

2. To speed synthesis and produce more relevant results, MANIPOSYNTH tracks whether a

generated (sub)term is allowed to be constant or not (e.g., MANIPOSYNTH requires that at

least one argument in a function call must be non-constant). If multiple different examples

reach a hole, MANIPOSYNTH will not generate a constant term for that hole. Similarly, if a

single example reaches a hole, MANIPOSYNTH will exclude all constants from consideration

for that hole, except for the value asserted on the hole.

MANIPOSYNTH currently only performs at most one level of refinement—introducing only

one function or one case split. Further (or initial) case splits can be introduced by the user with

the “Destruct” button in the UI. Introducing functions is rarely needed in practice because, in the

MANIPOSYNTH UI, undefined variables are inserted with a function skeleton.

Type-directed guessing Terms are enumerated (guessed) at holes up to a given probabil-

ity [85]. During term enumeration, the probability bound is treated as a resource that is iteratively

distributed between holes, and then between guessed subterms. When the probability is exhausted,

no further enumeration occurs on a subtree. If a candidate subterm’s probability is above the final

probability bound, the remaining probability is available for enumerating sibling terms.

Within a hole, term enumeration is type-directed, starting from the type of the hole. Leveraging

OCaml’s type checking machinery, subterms are unified during the enumeration process to narrow
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the type. For example, if a hole has type int and the synthesizer guesses a call to max which has

type 'a → 'a → 'a, the return type will be unified with int and the synthesizer will only guess

terms of type int for the arguments.

As discussed above, initial sketches often have polymorphic types unhelpful to the synthesizer.

To tighten these bounds before term enumeration, the input and output types of functions are

speculatively chosen based on the given examples. If the given examples differ in type, multiple

speculative types are explored (terms are guessed in each). Future versions of MANIPOSYNTH

may use anti-unification instead to be more precise. The speculative types are not included in the

final synthesis result in case the inferred code has a more general type.

As briefly mentioned, in order to reduce the number of unnatural synthesis results MANI-

POSYNTH limits where constant terms may appear. The term enumeration eagerly tracks whether

a term may be constant or not. A term is considered to be non-constant if it uses any introduced

function parameter, or any variable introduced under the outermost enclosing function. At most

one hole may be constant, and, when introducing a function call, at least one argument must be

non-constant. If a previously filled hole is constant, or we have reached the last function argu-

ment and all other arguments are constant, then the subterm enumeration will avoid enumerating

constants. This speeds synthesis and produces more reasonable results.

Final heuristics Finally, when all holes have been filled with type-appropriate terms within

the probability bound, the candidate program is accepted if:

1. All assertions are satisfied. (Fueled execution prevents divergence when checking asser-

tions.)

2. At most one hole is filled with a constant.

3. All introduced function parameters are used.

4. The result at a hole has not previously been rejected by the user.
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5. Execution of the examples encounters all filled hole locations (i.e., the execution path does

not somehow avoid a hole).

If no satisfying hole fillings are found at the initial probability bound and a 10 second timeout

has not been reached, guessing is restarted with a new bound 1/20 of the old. If there is a valid

candidate program, the highest probability such program is returned. Enumeration within a given

probability bound is not precisely from highest to lowest probability, however, so timeout will not

interrupt a round of synthesis until the full space of that probability bound is explored. Thus for

the user, the timeout they experience varies between 10 and 40 seconds.

4.4 Evaluation

To evaluate to what degree MANIPOSYNTH meets its goal of providing value-centric, non-linear

editing, we performed two evaluations. In one, an expert user (the dissertation author) used

MANIPOSYNTH to implement 38 functions from the exercises and homework of a course on

functional data structures [112]. In the second, to provide additional qualitative insights on the

operation of the tool, we hired two professional OCaml programmers, and guided and observed

them as they used MANIPOSYNTH to implement a subset of the exercises from the above course.

4.4.1 Study Setups

The first six lessons of the course [112] cover natural numbers (via an ADT), various list functions,

leaf trees, binary trees, binary search trees, and a form of binary search tree that also records

on each node the minimum value of all its descendants. We excluded the six functions on this

specialized tree because of time constraints. The course exercises and homework spanned 38

functions on the remaining data structures. The first author implemented each of these functions

in MANIPOSYNTH with the code editor hidden. MANIPOSYNTH was set up to log the number and

kinds of actions that were preformed. We report on these in the next section. Our aim was to show
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Function LOC Asserts Time Mouse Keybd Un/Re/Del TypeErr Crash
nat_plus 5 0.8 6 5
nat_minus 8 1.9 6 11
nat_mult 9 1.4 8 6
nat_exp 13 2.1 9 6
nat_factorial 13 1.6 8 4
nat_map_sumi 10 2.6 11 5 1
count 9 1.9 9 11
length 4 0.3 1 7
snoc 8 1 2.4 8 12 2
reverse 8 1.5 4 9
nat_list_max 17 4.6 23 21
nat_list_sum 13 1.1 9 4
fold 9 3.2 14 6
shuffles 14 14.5 25 28 2
contains 9 2.2 10 13 1
distinct 16 2.4 9 11 2
foldl 10 1 1.5 10 6 1
foldr 8 1 1.8 10 5
slice 12 3 9.8 19 22 4
append 8 1 1.4 7 9
sort_by 21 3 6.2 17 29
quickselect 13 1 13.1 19 38 1 1
sort 16 3 5.6 11 32 2
ltree_inorder 12 1 2.9 7 20 1 1
ltree_fold 13 1 3.1 13 13
ltree_mirror 11 1 4.4 12 6 1 1
bst_contains 14 3 6.6 11 32 1
bst_contains2 17 5 10.4 20 41 2
btree_join 34 2 61.7 82 64 51 2
bst_delete 36 2 14.4 31 24 4
bstd_valid 29 3 32.2 63 100 4 1
bstd_insert 18 2 8.0 38 23 3
bstd_count 21 1 7.6 15 32 1
bst_in_range 31 3 9.3 23 39 3
btree_enum 29 3 19.2 31 51 6 3
btree_height 15 1 1.9 11 14
btree_pretty 14 1 3.7 4 21 4
btree_same_shape 19 1 8.1 14 34 7
Total 566 44 277.6 628 814 97 13 3

Table 4.1: Example exercises, with lines of code, number of assertions, time in minutes, number of
mouse actions (excluding selection and undo/redo), number of keyboard interactions (e.g., typing
in a textbox), number of undo/redo/deletions, number of type errors encountered, and number of
times MANIPOSYNTH crashed and the file had to be repaired in the text editor.
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that the MANIPOSYNTH interface was able to implement these exercises and to discover if there

were any obvious trouble points.

For our user study, we advertised on https://discuss.ocaml.org/ and hired two profes-

sional OCaml programmers to use the tool for three sessions each. Sessions were spread over three

weeks, with each session lasting two hours. Participant 1 (P1) and Participant 2 (P2) had 5 and

11 years, respectively, of professional OCaml experience. The participants ran MANIPOSYNTH

on their own computers alongside their preferred text editor (Vim for both). The study facilitator

connected via video conference and recorded the sessions. Participants implemented their choice

of exercises from the list, or suggested their own task to complete. The facilitator provided varying

amounts of guidance throughout, starting with close guidance to teach the tool and transitioning

to less intervention as participants became more comfortable. After each exercise and at the end

of each session, participants discussed a series of questions posed by the facilitator. In concert

with MANIPOSYNTH’s four design principles—value-centric operation, non-linearity, supporting

synthesis, and bimodality—we aimed to gain insights about the following four research questions,

along with three supplemental questions:

RQ1. How do users interact with the live values?

RQ2. How do users work non-linearly?

RQ3. How do users interact with program synthesis?

RQ4. How do users interact with their text editor?

SQ1. What are the pain points? How might the system be improved?

SQ2. How comfortable are participants with the tool—can they complete an exercise without

guidance?

SQ3. Using the lenses of the Cognitive Dimensions of Notations [51], what additional insights do

we learn about the tool?
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Figure 4.17: MANIPOSYNTH beautifies tree-like values.

For each participant, the first session introduced to the tool without synthesis, the second ses-

sion introduced synthesis (before the synthesizer had a statistics model), and the third session

concluded with the tool as presented here. Based on participant feedback, we fixed bugs and made

improvements between each session.

4.4.2 Results

Example corpus implementation The expert implementer spent about 4.5 hours total imple-

menting the 38 functions, resulting in about 550 lines of code (including AST annotations and

examples written for live feedback, but excluding whitespace). A quantitative summary of these

example exercises is shown in Table 4.1. There are often many paths to a correct implementation,

so to constrain the workflow the implementer did not use synthesis, and did not use the ordinary

text editor except to copy an earlier function into a later exercise (in case of dependencies) or

when MANIPOSYNTH crashed on the given code. Note that for the functions operating on tree-

like datatypes (ADTs with multiple children of the same recursive type), MANIPOSYNTH’s live

display helpfully draws the trees as trees (Figure 4.17). Primarily, these 38 examples show that the

MANIPOSYNTH UI is expressive enough to create these programs. We also noticed two qualitative

takeaways from the exercises. First, although we believe bimodality is an important property for

the grounding and long-term practicality of the tool, it is possible to hide the text editor and work

entirely in MANIPOSYNTH. Second, even with live feedback available, it is not always used—a

theme that reemerged in our user study. We now discuss these two observations in more detail.
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The implementer used MANIPOSYNTH in fullscreen with their text editor hidden. The text ed-

itor was only used to initialize code by pasting from a previous exercise if prior code was needed,

and in cases where MANIPOSYNTH could not run the code and crashed (e.g., when the imple-

menter tried to raise an exception in unreachable code, but instead raised the exception in reach-

able code!). Overall, MANIPOSYNTH operated well, even without the textual view, with a couple

notable caveats.

The non-linearity machinery largely worked—the implementer did not have trouble with bind-

ing order. Even so, the implementer was careful to name extracted subvalues well, because the

positioning of the extracted TVs on the 2D display did not (by default) reflect the items’ positions

in the original data structure. Particularly for nested matches, there were sometimes a large number

of these extracted values displayed and it was hard to keep track of them. The implementer found

it helpful to reposition the extracted TVs (the TVs representing case split branch patterns) to reflect

those original positions. Ordinary textual code for case split patterns would provide some of these

positional cues without manual interaction.

On a few exercises where nested match statements were needed, MANIPOSYNTH initially cre-

ated the wrong nested match structure; with the non-linear display, this is a bit hard to notice and

requires thinking about the match nesting structure shown in the return TVs area. Regardless,

the implementer was able to work around the trouble by undoing and triggering the destructions

differently.

The second observation from these examples is that, when working with MANIPOSYNTH, the

implementer noticed that they seem to flip between two mental modes: these modes correspond

roughly to focusing on displayed values versus focusing on expressions. In the value-oriented

mode, the implementer would put their attention on the live values to consider if the code is op-

erating correctly; in the expression-oriented mode, the implementer would read expressions and

simulate the computer’s operation in their head.7 As a matter of discipline, the implementer was

7In PL, the term “value-oriented” can refer to the programming paradigm centered around immutable values, in
contrast to an “imperative” or “object-oriented” (OO) paradigm [96]. Here we use “value-oriented” to refer to a focus
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trying to push themself to consider and use the live values, but still often found themself reverting

to thinking only about the expressions instead. We have three hypotheses for why there seems to

be a tendency to revert to focusing on expressions instead of values.

Hypothesis A: Expressions are a concise language that represent abstractions, and programming

is, fundamentally, abstract. Language is how humans handle abstraction and so our brains are good

at language. The concrete values do not immediately represent the abstraction.

Hypothesis B: Seasoned programmers have years and years of experience reading code and

simulating the computer in their head, our brains have adapted to it and it feels natural.

Hypothesis C: MANIPOSYNTH did not provide enough live feedback and forced the imple-

menter to consider the expressions. In some cases this was immediately true: MANIPOSYNTH

currently only displays the first and last three call frames, with no option to see the others. Despite

the implementer’s resolve to try to work with values, sometimes those values were in unavailable

call frames. Additionally, when initially trying to figure out what algorithm was needed at all, the

implementer found it easier to work out the initial algorithm sketch in their head rather than guess

and check in MANIPOSYNTH.

Most likely, all three of these reasons contributed towards a tendency to put attention back on

expressions rather than values. A similar theme was observed in the user study, which we now

discuss.

RQ1. How do users interact with the live values? This theme of value-oriented focus versus

the “old way” of expression-oriented focus appeared in several of the participant’s interactions

with the tool. For example, despite the values featuring prominently in the display, it took until

after the entire first exercise for P2 to fully realize they were looking at and working with live

values. In another scenario, P1 and the facilitator together spent an embarrassingly long time

trying to find a bug in an insert_into_sorted_list helper. After finding the bug they realized

that, had they inspected the live values more closely, they might have found the bug much sooner.

on execution results rather than program expressions, regardless of the language paradigm.
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Additionally, P2 observed that they are so used to reading trees as long lines of serialized text (e.g.,

Node (Leaf 2, Node (Leaf 2, Leaf 3))) that they were subtly repelled by the beautified 2D

rendering of tree values: “I see the splayed-out [rendered] tree and I’m like, ‘Oof, I can’t read this,’

even though it’s much more readable!”

Even so, participants still did use the live display and expressed appreciation for it. P2 also

noted that, when working with trees in ordinary programming, if their function didn’t work they

would be forced to write large amounts of tree pretty-printing code to perform printf-debugging;

the live display ameliorated that issue. (And P2 wished we had introduced trees earlier in the study

so they would have had more time to play with them.)

Live values require the user to switch call frames to see other example function calls, or calls

that hit a different branch in the code. This was not always natural for participants. In the first

session, P2 admitted to sometimes being confused about what branch they were looking at. And,

despite gaining moderate proficiency with the tool by the end of the study, P2 still remarked that

it was hard to think about how you can flip between frames. How to modify the display to help

clarify this operation remains an open question.

RQ2. How do users work non-linearly? We want to know how programmers adapt to MANI-

POSYNTH’s non-linear style. The tool requires a number of “inside-out” (P1) changes in thought,

such as creating an example before defining a function, providing expressions without naming

them first, and not worrying about let-binding order but instead just using an out-of-scope variable

and letting MANIPOSYNTH move the binding. By the end of the study, participants were familiar

with these concepts but did necessarily start out that way. For example, in the first session P1 had

trouble remembering to create functions by first providing an example call, but by the end of the

study was doing so without any prompting from the facilitator. P1 also initially had trouble finding

particular variable definitions on the screen but felt more comfortable by the second session. Near

the end of the second session P2 expressed, “I want a let binding. . . I don’t have any confidence

I can make let bindings,” despite having successfully done so many times by double-clicking the
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subcanvas or dragging values into the subcanvas. P2 instantly understood after a quick reminder

from the facilitator, but it is notable that even after around three hours with the tool it hadn’t quite

sunk in that most TVs are let-bindings.

At the end of the study, we asked the participants their thoughts about writing expressions

without naming them first. P1 expressed they would more likely prefer to instead always have

to provide a name; P2 was unsure, but noted that MANIPOSYNTH’s default names had improved

from the first version we had them try. In particular, at P2’s behest we hard-coded the default names

for list destruction to be hd::tail instead of the original type-based a2::a_list2. Even so, we

rediscovered that naming was important in programming. Function skeletons are still inserted with

generic parameter names, e.g., fun x2 x1 -> (??), which are both unhelpful and backwards.

This indeed resulted in user mistakes during the study, and is a point to improve in future versions

of MANIPOSYNTH.

Despite a few troubles, both participants were positive overall about the non-linear workflow.

P1 noted the non-linear style “fits a lot more with how I like to write code,” and P2 said, “I like it,

I’m excited about it.”

RQ3. How do users interact with program synthesis? We introduced participants to the syn-

thesizer in the second session, at which point the synthesizer lacked a statistics model (instead

enumerating terms from small to large) and did not offer the “Accept / Reject / Try again” buttons

(instead requiring the user to Undo on an undesired synthesis result); these were added for the final

session. We wanted to know how comfortable users were with providing assertions and using the

synthesizer.

Participants were familiar with thinking in assertions. In the first session, the facilitator only

introduced participants to providing example function calls, not asserting on their results. De-

spite this, unprompted, both participants wanted to make assertions once they had an example to

work with. When assertions were formally introduced, participants were generally comfortable

providing examples, although P1 would occasionally write assertions in a polymorphic form, e.g.,
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foldl f acc [] = acc, which would insert new blank bindings for f and acc on the canvas

and P1 would have to recover from the mistake. Even so, P1 appreciated that MANIPOSYNTH

encouraged them to write in a test-driven development (TDD) style, and suspected it prevented

them from making simple errors. When asked if they had trouble writing assertions, P2 responded,

“I had trouble not making assertions,” because P2 enjoyed toying with the synthesizer, but P2 did

observe that constructing trees was a little tricky. MANIPOSYNTH only beautifies tree values, not

tree literal expressions. In the future, MANIPOSYNTH may beautify tree expressions in addition

to tree values. Overall, we asked participants to rate how laborious it was to create examples on a

scale of 1 to 10, P1 and P2 responded with 2 and 4, respectively. Providing assertions was not a

bottleneck.

The facilitator introduced synthesis to the participants with the list length example, which

left a positive first impression on the participants. Synthesis was somewhat less helpful after the

length example. By the third session, the synthesizer was usually able to finish participants’

functions that were mostly sketched-out (if sketched out correctly!), but occasionally still failed.

Even so, participants appreciated the synthesizer when it succeeded and were not bothered when

it did not.

A prior study of synthesizer users revealed that users will sometimes accept synthesis results

they do not understand, but in that study it did not lead to correctness errors [43]. Our study

does provide one counterexample: when P2 invoked synthesis to fill out the final else-branch for

BST insert, P2 examined the resulting expression and did not notice that it erroneously duplicated

the right subtree; had they written the expression by hand, it is possible they would not have

encountered this mistake. It would have been helpful if the synthesizer highlighted the ambiguity

at that location, perhaps by finding solutions within a certain probability bound of the most likely

solution and leveraging an interface similar to [99] to allow the user to choose between alternative

subexpressions.

When initially introduced to the participants, the synthesizer did not have the “Accept / Reject
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/ Try again” buttons, instead participants were required to Undo, but often forgot to do so. With-

out those buttons, there was also no feedback in MANIPOSYNTH that clearly indicated what had

changed—P1 admitted to looking at their Vim window to ascertain what the synthesizer produced.

The addition of the “Accept / Reject / Try again” interface was appreciated by participants and P1

noted this did keep their focus more on the MANIPOSYNTH window.

Overall, the facilitator’s impression was that the participants were comfortable trying to use

synthesis, but did not necessarily obtain mastery of it, in part because synthesis is opaque. P1

noted, “It is really hard to know whether synthesis is failing because I have posed the problem

in an incorrect way or synthesis is failing because I haven’t given it a lot of information. But the

process of trying to give it more information is very illuminating in terms of whether my conception

of the problem is wrong.” P2 as well initially felt that working with the synthesizer was unfamiliar

but remained intrigued by its potential, saying, “It was kind of awkward at first. It sort of seemed

like a cool trick but there were parts where it would actually complete the program which was kind

of nice even though it was not like a very trivial program. That’s a neat feature.” These experiences

suggest that synthesis in this setting is a viable workflow, despite its initial unfamiliarity.

RQ4. How do users interact with their text editor? Participants were not forbidden from using

their text editor, but the heavy focus on learning MANIPOSYNTH meant that they only did so only

as a last resort. When asked, P1 estimated they spent about 40% of their time looking at Vim

when they were trying to figure out what was going on, but, by the end of the third session, only

felt the need to edit in Vim on particularly tricky errors. P2 also felt more comfortable in Vim,

“When I was really stuck, I felt self-conscious and I was like, ‘Alright I’ll just figure this out in

Vim quickly.’ It’s faster, probably, I’ve got years of experience doing that.”

Part of the promise of bimodal editing is that one can do this! Even so, participants performed

the vast majority of their editing the in the MANIPOSYNTH display. As noted, the participants

only occasionally needed to edit in Vim, but even when operating MANIPOSYNTH they did seem

to rely on looking at the textual display to understand what was happening. As noted below,
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MANIPOSYNTH may be over-reliant on shapes and colors to differentiate different kinds of ele-

ments and it can be confusing, which may have driven the participants to look at their Vim window

instead of relying solely on the MANIPOSYNTH display.

SQ1. What are the pain points? How might the system be improved? The participants had

trouble keeping track of what everything was in the MANIPOSYNTH display. MANIPOSYNTH

relies on colors and shapes to distinguish the multitude of different UI elements: expressions,

values, function parameters, assertions, expected values, return expressions, patterns, let-bindings

(TVs), and different (sub)canvases that hold let-bindings. Both participants expressed a desire for

more explicit labeling of what all these different elements were. After the first session, we added

labels on the various subcanvases (“Top level”, “Bindings inside function”, “Return expression(s)

and value(s)”) which P1 expressed appreciation for. We had hoped those would obviate the need

for more labeling, but even by the end of the final session the participants still expressed a desire

for more indication to explicitly notate element kinds.

SQ2. How comfortable are participants with the tool—can they complete an exercise without

guidance? After each exercise we asked participants if they felt comfortable completing the next

task without assistance from the facilitator. By the end of the final session P2 was comfortable with

minimal assistance, whereas P1 still felt the need for help. Although P1 understood the tool well,

they still stumbled over different small issues such as UI corner cases and accidentally trying to

edit a parent expression in the subexpression editor (discussed in SQ3 below).

SQ3. Using the lenses of the Cognitive Dimensions of Notations, what additional insights do

learn about the tool? The Cognitive Dimensions of Notations [51] is a framework of thirteen

lenses for qualitatively assessing design trade-offs. Below, we report a subset of our observations

from considering these lenses.

Diffuseness (How noisy is the display?) MANIPOSYNTH stores extra information, such as 2D
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binding coordinates and previously rejected synthesized expressions, as annotations in the OCaml

code. P1 opined that, “All the annotations do make it less attractive to try to do stuff in Vim,” and

these annotations were a source of confusion. The rejected synthesized expressions were particu-

larly confusing because the whole discarded expression was in text in the code, albeit wrapped with

[@not ... ], and participants would sometimes read these large expressions without realizing it

was not the code they cared about. After the user study, we modified MANIPOSYNTH to store a

short hash of the rejected expression rather than a full copy. Additionally, while MANIPOSYNTH

includes a syntax highlighting rule that will gray out AST annotations, the rule only works in VS

Code with the Highlight extension installed [138].

Secondary Notation (Is there non-semantic notation to convey extra meaning?) MANIPOSYNTH

does not currently support comments. P1 missed having comments, while P2 did not.

Viscosity (How hard is it to make changes?) Three main scenarios arose where changes were

difficult. First, editing a base case requires that some execution hits the base case, otherwise

the base case can never be focused; this was occasionally a hindrance and might be addressed

either by adding a “phantom call frame” that focuses the case without a concrete execution or

by automatically synthesizing an example that hits the case. Second, once an expression was in

the program, it was hard to wrap the existing expression with some new expression; it would be

better if there were a mechanism to indicate whether a new drag-and-dropped expression should

replace or wrap the old. Finally, (sub)expressions could be text-edited by double-clicking them

on the display. However, sometimes participants (and even the first author) would double-click

a subexpression but instead want to edit a parent of that expression, which required a different

interaction. Future versions of MANIPOSYNTH may, upon double-click, open the entire expression

for editing but with the clicked subexpression initially selected out of the whole line of code.

Visibility (Is everything needed visible? Can items be juxtaposed?) Element positioning in

MANIPOSYNTH proved tricky, because elements will change size based on the size of the values

in the TVs—multiple large trees in the function IO grid, for example, can make a function take
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up the whole window. Participants did have to move assertions around. P2 used a large screen

and expected their functions to grow rightward: P2 would position assertions far to the right of

their nascent function. P2 also expressed the desire for snap-to-grid so they could align their TVs

perfectly. P1 used a smaller screen which may have caused trouble: at one point P1 was trying to

debug and realized after-the-fact that they had scrolled the IO grid offscreen—had it been onscreen

and they looked at it, they might have found their mistake quicker. One possible mitigation is to

scale down large values.

4.5 Related Work

Before returning to the above observations and their implications for future work, we now discuss

a number of systems that share MANIPOSYNTH’s goal of centering the programming workflow

around live program values.

Programming by demonstration (PBD) Programming by demonstration (PBD) is an interac-

tion paradigm in which the user demonstrates an algorithm to the computer step-by-step, resulting

in a program. The first PBD system, Pygmalion [136], targeted generic programming and, like

MANIPOSYNTH, displayed the live values in scope as the subject of the user’s manipulations. For

example, a function call with missing arguments was represented as an icon on the canvas. When

all arguments to a function call were supplied, the icon for the function call was replaced with a

display of its result value. To use that result value, the user dragged the value to where they wanted

to use it. Recursion was supported. Although the 2D canvas was non-linear, Pygmalion treated

the program as an imperative, step-by-step movie over time and did not offer a corresponding

always-editable text representation.

Like Pygmalion, Pictorial Transformations (PT) [67] also offered program construction via

step-by-step manipulation of a display of the live program values. PT allowed the user to cus-

tom visualizations, and was in general more expressive than Pygmalion, supporting more compli-
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cated algorithms including those involving lists. Later PBD systems were usually more domain-

specific [28, 91], although ALVIS Live [70] targeted the construction of iterative array algo-

rithms by demonstration, and, notably, represented the resulting program in editable text. Un-

like MANIPOSYNTH, ALVIS Live aimed at imperative code and could not offer non-linear edit-

ing—buttons in its UI were needed to allow users to move backwards and forwards in the timeline.

Some empirical evidence for the possible benefits of a value-centric workflow was provided by

the Pursuit PBD system for creating shell scripts [106]. In evaluating Pursuit, it was discovered

that a comic-strip style representation of a program—with before and after values represented in

the frames of the comic-strip—enabled users to more accurately generate programs compared to

a more textual representation. On the other hand, when Adam et al. [3] compared student per-

formance between Python Tutor [54], providing editable code + live output, and AlgoTouch [44],

providing non-editable code + PBD on values, they found students performed comparably in either

environment. An analogous comparison in ALVIS Live also found similar overall student perfor-

mance when using text or PBD [71]. These results can be interpreted either way: pessimistically,

that value-centric manipulation is not clearly better; or optimistically, that despite non-editable

code, value-centric editing performs as well as ordinary programming. Even so, a PBD environ-

ment may aid in avoiding initial fumbling with syntax and in discovering what a tool can do:

Hundhausen et al. [71] found that on the first task, users in the PBD condition completed the task

faster and more accurately with less time consulting documentation.

Manipulable live objects In the object-oriented paradigm, the Self [146] language and envi-

ronment displayed live objects graphically and allowed a user to send messages to those objects

via direct manipulation (demonstrated in video form in [140]). Although value-centric, the in-

teractions provided by Self and related systems like the Morphic UI framework [97] differ from

all other systems discussed here in that manipulations in Self-like systems modify state, not the

algorithm.

Like Self, Edward’s “Direct Programming” prototype [36] allowed the user to directly invoke
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actions on displayed values, but, unlike Self, reified these actions into lines in a script, blurring

the line between running a program and modifying it. Also blurring the line between runtime

interaction and coding, Boxer [31] was a non-linear programming environment displaying nested

boxes on a 2D canvas. A box could contain a comment, code, a value, or serve as a graphics buffer

for drawing. Boxes can be written to via code or by user interaction, enabling a workflow that

mixes program runtime interaction with program creation. Boxer aimed for its interface to be an

approachable computational medium, resulting in design choices that differ from MANIPOSYNTH.

Boxer is not bimodal—the displayed boxes are the program—and state and code are mixed. Also,

box results are not automatically rendered. Code boxes must be manually invoked and must write

their results to another box, but Boxer includes mechanisms for configuring keys or mouse buttons

to trigger particular boxes.

Live nodes-and-wires In 2D nodes-and-wires programming [142], nodes usually represent trans-

formations (expressions) and the wires represent dataflow (values). Consequently, nodes-and-wires

environments do not necessarily display live values, although some systems do output live values

below the nodes (e.g., natto.dev [134]). Among these environments, Enso [39], formerly known as

Luna, is also bimodal like MANIPOSYNTH, offering both textual and graphical representations for

editing the program.

PANE [66] flips the usual node-and-wires paradigm and instead uses example values for the

nodes and locates transformations (expressions) on the wires, placing values more at the center

of attention compared to its peers. Examples values can be clicked to invoke operations on them.

PANE does not, however, maintain an editable text representation of the program.

Live programming Like MANIPOSYNTH, traditional live programming research seeks to aug-

ment ordinary, text-based coding with display of live program values, although the displayed val-

ues are read-only. There are a growing number of such systems. Python Tutor [54] is popular

teaching tool for visualizing Python program state. Bret Victor’s Inventing on Principle presen-
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tation [148] demonstrated several live programming environments and served as inspiration for

later work [77, 90]. Edwards [35] showed how examples can be incorporated into the IDE for

live execution, and Babylonian-style Programming [126] explored how to better manage multiple

examples—individual examples could be switched on and off, an interaction we could adopt in

MANIPOSYNTH to selectively reduce the number of values shown in the function IO grids.

In-editor PBE/PBD Like MANIPOSYNTH’s programming by examples (PBE) synthesizer, re-

cent work has begun to explore offering PBE and PBD interactions within a traditional, textual

programming environment.

Several systems generate code within a computational notebook via manipulations of visual-

ized values. Wrex [34] adapts the FlashFill [52] PBE workflow to Pandas dataframes in Jupyter

notebooks—after demonstrating examples of a desired data transformation in a dataframe spread-

sheet view, Wrex outputs readable Python code. Similarly, the PBD systems B2 [155], mage [155],

and Mito [30] transform step-by-step interactions on displayed notebook values into Python code

in the notebook. For a Haskell notebook environment, Vital [56, 57] offers copy-paste operations

on visualized algebraic data type (ADT) values, which are realized by changing the textual code

in the appropriate notebook cell. Like MANIPOSYNTH, graphical interactions in Vital can extract

subvalues via pattern matching, although Vital’s workflow focuses on modifying single values in

place rather than building up computations like in MANIPOSYNTH. While these notebook systems

provide some manipulation of intermediate program values, none offer fine-grained non-linearity

as in MANIPOSYNTH.

For a more ordinary IDE setting, CodeHint [46], SnipPy [43], and JDial [68] provide program

synthesis interactions in the live context of the user’s incomplete code. With CodeHint, users set a

breakpoint in their Java program and describe some property about a value they want—CodeHint

will enumerate method calls in the dynamic execution environment at the breakup to find a sat-

isfying expression. Like MANIPOSYNTH, CodeHint leverages a statistics model to rank results.

Notably, users with CodeHint were significantly faster and more successful at completing given
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tasks than users without. For Python, SnipPy [43] adapts the Projection Boxes tabular display of

runtime program values [90] to perform PBE in the context of live Python values. The authors val-

idated that users were able to successfully use the synthesizer to complete portions of given tasks.

JDial [68] records variable values during execution of an imperative Java program and allows the

programmer to directly change incorrect values in the execution trace. The program is repaired to

match the corrections via sketch-based synthesis [137]. JDial, however, is limited to small program

repairs and does not offer program construction features.

Bidirectional, bimodal programming Some systems represent programs as ordinary text, but

also allow direct manipulation on program outputs to be back-propagated to change the original

code. Usually, these changes are “small” changes to literals in the program—such as numbers [25,

84, 100, 45], strings [152, 133, 84, 100], or lists [100]. More full-featured program construction

via output manipulations is available in a few systems for programs that output graphics [101, 132],

including SKETCH-N-SKETCH (Chapter 2) .

Although MANIPOSYNTH also centers values as subjects for manipulation, we do not yet ap-

ply bidirectional techniques to deeply back-propagate a change on a value—direct changes on a

value are only allowed when the value was introduced as a literal in the immediately associated

expression. An earlier version of MANIPOSYNTH did have limited back-propagation abilities, but

we disabled these when we noticed they caused trouble in the user study—manipulation on a value

would inconspicuously change a literal in a very different part of the program. Determining an un-

derstandable meaning of such direct changes on a value remains an avenue for future work. While

the bidirectional programming community offers the “least change” principle [104], that minimal

changes should be performed to maintain a constraint, in the context of a full program a change

may cause confusion not because of its magnitude but because the item changed is far from the

user’s focus. Revealing that far-away code by popping open a “bubble” [16] or “portal” [17] may

be one way to help make the change understandable.
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4.6 Future Work and Conclusion

How close is MANIPOSYNTH to achieving its goals of providing a value-centric, non-linear pro-

gramming environment? Based on the examples we implemented and feedback from our study

participants, MANIPOSYNTH largely succeeded at providing useful live values. The non-linear

features functioned moderately well—users rarely had to think about binding order—but MANI-

POSYNTH was not immediately learnable and would benefit from more explicit labeling of the var-

ious kinds of elements on the canvas. Through our observations, we hypothesize that expression-

oriented and value-oriented modes of thinking are distinct states of mind, and experienced pro-

grammers tend towards the former. An intriguing possibility for future work is to experimentally

validate that expression-oriented and value-oriented thinking are actually modes—i.e., the activ-

ity of considering values discourages considering expressions, and vice versa. More immediately,

there are possible changes to MANIPOSYNTH that might encourage more value-focused interac-

tion.

One experiment we would like to try is to change the display of variable uses so that, instead

of the name of the variable, the current value of the variable is shown instead, with the name

as a tooltip or subscript. This change might nudge users out of the expression-oriented mode of

thinking back towards value-oriented thinking.

An intriguing corollary experiment was requested by P1. To keep track of where values came

from, P1 wanted values to be drawn with unique colors all the time, rather than only when the

autocomplete options were open. Another possibility is, when the cursor is over a variable usage,

to highlight the TV where the variable is defined. We would like to explore these display choices.

Finally, while dragging items onto an expression is quite useful, in the current version of

MANIPOSYNTH dragging items onto values is less-so. When working through the examples, the

implementer dragged some item onto a value on only 4 occasions; dragging onto an expression

happened 209 times. In the future, dragging a value to a value might open a menu of possible ways

to combine the values, further increasing the utility of interacting with values. Ideally, program-
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mers should be able to customize the available actions, as in Vital [57] which includes an API for

this purpose.

MANIPOSYNTH currently focuses on interactions on relatively small values. Larger data sets

might be more more conveniently displayed and manipulated in a spreadsheet-style view. Flow-

sheets [23] demonstrates how expression outputs might be visualized using a spreadsheet layout,

albeit without program synthesis.

In conclusion, building on the insight from Eros [38] that non-linearity complements func-

tional programming, MANIPOSYNTH showed that non-linearity can be maintained even when

the program is ordinary code. Our focus on supporting textual code has resulted in the current

MANIPOSYNTH being somewhat more expression-centric than Eros, but the above are possible

ways MANIPOSYNTH might become more value-centric. Our overall vision is to make program-

ming feel like a tangible process of molding and forming. MANIPOSYNTH points a way forward

to that goal.
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Chapter 5

Conclusion

In the prior chapters we explored the expressive power of output-based interactions within bimodal

programming environments. To conclude, we reflect on overall lessons learned (Section 5.1) and

consider future directions for bimodal programming systems (Section 5.2) before briefly summa-

rizing the work (Section 5.3).

5.1 Lessons Learned

Several themes emerged throughout the implementation and evaluation of SKETCH-N-SKETCH,

TSE, and MANIPOSYNTH. At the implementation level, all three systems leveraged an interpreter

with dynamic provenance tracing and all three utilized information from a static type system.

From the user perspective, our initial experience with the systems suggest takeaways: labeling on

the canvas display is important for understandability, and a bimodal interface with editable code

does work to provide explanation and flexibility. These observations lead us to offer the below

recommendations for future implementers of bimodal programming systems.

5.1.1 Rely on Dynamic Provenance Tracing

SKETCH-N-SKETCH, TSE, and MANIPOSYNTH all run the user’s code through an interpreter that

dynamically logs a trace of program execution steps. The logged information forms the basis for

the output-based interactions: the trace correlates output values to program locations. The three

systems show that this basic approach—dynamic provenance tracing—is an effective means for

facilitating bimodal programming.

In contrast to dynamic tracing in an interpreter, rewriting approaches to provenance are possible
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via source-to-source translation. With a rewriting approach, the code can be run through an exist-

ing language compiler or interpreter at a possible speed benefit compared to a tracing interpreter.

For example, Transmorphic [132] programs run in ordinary ClojureScript. Rewriting approaches,

however, can complicate the association of output values to source code locations, e.g., Transmor-

phic requires users to manually write code to add IDs to shapes produced in loops. Polymorphism

also complicates the story. Because the specific concrete type of the value at a polymorphic lo-

cation is unknown, any logging added there by source-to-source translation cannot log anything

of consequence about the value—neither its structure or concrete type—so long as the language

performs type erasure, as does OCaml. Monomorphization [145]—duplicating and specializing

the polymorphic function for each set of argument types the function is called with—can dodge

this trouble, and an early prototype of MANIPOSYNTH did use monomorphization to log runtime

values via source-to-source translation instead of using an interpreter. Tracing via rewriting can

work fine in a language with better value reflection capabilities, e.g., Java [124]. But if the imple-

menter hopes that, somehow, source-to-source translation might offer a simpler route compared to

writing an interpreter, the required monomorphization is an important consideration. Our experi-

ence has been that, once there is a functioning interpreter, modifying the interpreter to log tracing

information is quite straightforward. Unless there is a need to operate under existing tooling, or

there is some need for speed of the executed code, we advise against relying on source-to-source

translation.

Although our experience with creating bimodal systems leads us to suggest relying on dy-

namic tracing via an interpreter, our experience does not yet suggest a standard form for the

traces. SKETCH-N-SKETCH, TSE, and MANIPOSYNTH all use different—and sometimes con-

tradictory—tracing schemes. For example, TSE marks a case split result as dependent on the scru-

tinee (EVALCASE in Figure 3.9), whereas SKETCH-N-SKETCH effectively does not (ITE, fst,

and snd in Figure 2.29). TSE needs to know where to offer “Change Constructor” actions (a

modification of the scrutinee) whereas SKETCH-N-SKETCH is concerned with selecting a shape’s
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sub-elements (which should not be conflated with the whole shape itself, even if deconstructed

from the shape). Our experience is that it is difficult to anticipate in advance what specific kinds

of tracing will be needed for the desired scenarios. The entire operational derivation tree could be

considered the most thorough form of provenance tracing [22], so familiarity with a rich prove-

nance scheme like Transparent ML [2] is a good place to start thinking about provenance tracing.

TML traces preserve most of the derivation tree, and simpler forms of provenance can be projected

out of them [2]. But again, anticipating the exact forms of provenance that a bimodal environment

will need is difficult in advance, so we recommend implementers start with a tracing interpreter for

its flexibility and only consider optimizations after their provenance needs are clarified.

5.1.2 Leverage Types

The goal of programming environment research is to leverage all the information that can be

gleaned about a program to offer the most intelligent interface for editing that program. It is

no surprise, then, that type information can play a key role. All three systems in this work leverage

static type information to support the bimodal interface.

Type inference in SKETCH-N-SKETCH is used to expose ordinary user-defined functions as

drawing tools. Brands [101] distinguish which arguments are, e.g., coordinates or distances, so

that the a new shape’s (i.e., a new function call’s) position and size are matched to the user’s mouse

movements (§2.4.7, §2.4.8).

In TINY STRUCTURE EDITORS, types are part and parcel of the interface: TSE generates

editors for the values of particular algebraic data types. The types dictate which transformations

are possible. Without types, TSE could not provide meaningful data transformation actions.

In addition to guiding synthesis, MANIPOSYNTH uses static types to offer default example

values that the user can easily add to their program via autocomplete (Figure 4.3) or the toolbar

(Figure 4.6). Also, OCaml’s type inference obviates the need to provide static type annotations

while constructing programs, freeing the user to concentrate on the values they see. In the future,
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MANIPOSYNTH may also use types to refine the autocomplete options offered.

Overall, we recommend bimodal environment implementers leverage languages with robust

static type systems with strong inference capabilities. While live environments like Self [146] show

how dynamically interrogating objects can provide a UI for invoking operations on those objects,

only a static type system enables the bimodal environment to confidently answer the questions

“What is this?” and “What can go here?” for all program locations.

5.1.3 Use Labels

With the visualization of runtime program values and a plethora of direct manipulation tools for

operating on those values, clear labeling in the UI is key for usability in bimodal programming

systems, both for associating output with its code and for explaining the user interface.

To assist in associating output with its code, SKETCH-N-SKETCH draws variable names next to

associated items in the output. To avoid clutter, these names only appear when the cursor is over the

item. These labels also allow items in the output to be renamed, which we found was instrumental

to producing final programs that looked like they could have been written manually by a human

(as in the Logo and Koch Snowflake examples, Figure 2.6 and Figure 2.19). Additionally, when

the user hovers their cursor over an item in the output, SKETCH-N-SKETCH will highlight an

appropriate expression in the program (based on an estimate of what would be deleted were the

user to DELETE the output item). Together, the labels and expression highlighting help the user to

associate appropriate code locations with items in the output.

MANIPOSYNTH similarly labels items on its canvas with their full expressions and patterns.

The labeling is thorough enough that MANIPOSYNTH can be used with the text editor hidden—unlike

SKETCH-N-SKETCH. But because MANIPOSYNTH is not as fully integrated with a text editor,

code expressions in the editor are not highlighted when the cursor on the canvas.

Labels may also help explain the user interface. While we added some labeling based on user

feedback, labels explaining the MANIPOSYNTH interface are still minimal, which may have con-
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tributed to user confusion. Interface explanations are perhaps less needed in SKETCH-N-SKETCH,

as its interface is similar to an ordinary graphics editor. Even so, the entire suite of SKETCH-N-

SKETCH transformations is never enumerated in the interface—only once items are selected are

relevant transforms shown. A complete listing of available transformations could help users dis-

cover which transforms are available (a hypothesis supported by the refactoring interface study in

Appendix A). In addition to interface labels, both MANIPOSYNTH and SKETCH-N-SKETCH might

benefit from more tooltips explaining items.

Because bimodal systems are new and unfamiliar to users, we recommend bimodal environ-

ment implementers pay special attention to labeling. Labeling helps users by disclosing possible

actions the user may perform and shows the correspondence between expression in the code and

items on the canvas.

5.1.4 Embrace Code

The primary goal of this work is to expand the possibilities of output-based interaction in a bimodal

programming environment. Although we have not performed extensive user testing, the example

programs we implemented do showcase capabilities and promise of bimodal programming. From

these initial experiences we offer several additional suggestions for implementers of future bimodal

environments.

You can make your interface bimodal Although building an extensive toolset like that offered

in SKETCH-N-SKETCH is quite an undertaking, adding just a little bimodal interaction is not as

hard as one might expect. A little tracing can go a long way. Once there is any association between

output and code locations, it is straightforward to offer simple manipulations of the code from the

output canvas. The manipulations could be as simple as revealing a text box to edit the associated

code (as in MANIPOSYNTH), or dragging an item around to change the associated numeric literal

in the code. Many systems have demonstrated output interactions to enact these kinds of “small”
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code changes [45, 25, 84, 78, 152, 133, 100]. Traces could be as simple as tagging all values with

the single expression ID at which a value was introduced: even this simple scheme would allow

the user to manipulate literals that pass through to the output.

Aim for human-like code An ideal bimodal environment will produce code that looks as if a

human could have written it. Towards this aim, two important considerations are choosing variable

names and formatting whitespace.

Good names are key for generating comprehensible and human-like code. SKETCH-N-SKETCH

uses a multi-step algorithm for choosing quality default names (§2.4.6). Statistical methods for

choosing names are also possible [4, 5, 127, 74]. MANIPOSYNTH’s naming algorithm is simpler.

A name for an expression is usually chosen based on the first two “words” of the expression’s

code: e.g., fold f [] list will be named foldF. Though simple, this scheme usually produces

more informative names than just using the type of the expression. Unsurprisingly, we discov-

ered that uninformative names such as x1, x2, etc. should be avoided. The one scenario where

MANIPOSYNTH generates such names—new function skeletons—did indeed cause user confu-

sion. At a minimum, renaming variables should be easy. Rename refactorings can be invoked

from both the SKETCH-N-SKETCH and MANIPOSYNTH canvases.

In the SKETCH-N-SKETCH implementation, we paid careful attention to intelligently handling

whitespace and comments in the program. Each expression in SKETCH-N-SKETCH stores its lead-

ing whitespace; and comments are stored as AST nodes. Each transformation tool is responsible

for preserving and inserting whitespace appropriately. Although this carefulness helps preserve the

“naturalness” of the user’s program, it came at some cost to the implementer. To speed develop-

ment, and because the OCaml AST does not explicitly store whitespace, for MANIPOSYNTH we

opted to ignore whitespace and instead rely on the whitespace choices made by ocamlformat1.

Relying on ocamlformat has external validity: automatic code formatting is sometimes part of

professional development workflows. The main weakness of MANIPOSYNTH code handling is

1https://github.com/ocaml-ppx/ocamlformat
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that comments are erased—OCaml’s parser discards them—which is a limitation that must be

remedied if MANIPOSYNTH is to be used for practical work.

Do not be afraid to store state in the code While more transient state—such as the currently

selected items—can be handled in-memory in the browser or with HTML local storage2, both

MANIPOSYNTH and SKETCH-N-SKETCH choose to persist certain state in the user-visible code.

SKETCH-N-SKETCH stores the currently focused expression using special comments (§2.4.9), and

MANIPOSYNTH stores 2D positions for tangible values as AST attribute annotations. Although

such annotations increase the noisiness of the code, they prevent the code from becoming out

of sync were the state to be stored in a separate file. And because inline code annotations tag

expressions directly, there is no need for the annotations to use expression identifiers, which may

not be preserved across text edits.

Embrace—don’t replace—code While both SKETCH-N-SKETCH and MANIPOSYNTH demon-

strated what is possible via edits performed entirely on the canvas, our experience does not suggest

that code can be abolished. In SKETCH-N-SKETCH, the expressivity of output-based manipulation

was only accomplished by implementing a large number of tools (Table 2.1), a multi-year under-

taking. And even though so much of the program can be constructed on the canvas, the canvas

display does not explain the computation clearly enough to hide the code. In MANIPOSYNTH,

we can hide the text editor only because almost all the code is directly represented on the canvas.

These observations point to the original motivation of bimodal programming, which we continue to

endorse: because textual code is familiar, time-proven, and powerful, it may be better to augment

code rather than replace it.

2https://html.spec.whatwg.org/multipage/webstorage.html
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5.2 Future Work

Although SKETCH-N-SKETCH, TSE, and MANIPOSYNTH demonstrate the expressive power of

bimodal programming, none of the systems are ready for practical use. A number of improvements

are possible.

Scaling up The systems in the work have only been run on small programs. Running larger

programs requires managing traces efficiently, and handling practical programs requires manag-

ing side effects such as input and output. The tracing performed by SKETCH-N-SKETCH and

MANIPOSYNTH consumes a considerable amount of memory: every execution step produces a

new portion of the trace. Currently, these traces are all stored in RAM. Future tracing could in-

stead write to persistent storage. And for a large program, only a small portion of the trace will

likely be needed at a time. Tracing can be skipped for code outside the region of interest. When

needed, missing portions of the trace could be rebuilt on demand via program replay, which can

be accomplished efficiently by periodically dumping the program state during the initial execution

and replaying from a checkpoint as needed [14]. With careful logging of system calls, any program

input/output can also be recorded so that replay is deterministic [113].

Managing visual space Effectively using the limited space on the screen is always a concern in

graphical programming, and the story is no different for bimodal environments. A small expres-

sion in the program, say a variable usage x, might resolve to a large value, such as a deep tree,

that must be displayed on the canvas. The live values for a small program fragment can quickly

overwhelm the canvas (e.g., Figure 5.1). For large structures like trees or long strings, one possibil-

ity is to hide uninteresting portions of the data structure or to replace those portions by a variable

name representing the hidden potion [102, 33]. Standard techniques such as scaling, zooming, and

selectively toggling element visibility (akin to code folding in IDEs) are other strategies that may

be employed to better manage visual space on the canvas.
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Figure 5.1: The MANIPOSYNTH interface at the end of the btree_join exercise. Live values fill up
the space on the screen.

Moving canvas and code closer together MANIPOSYNTH and TSE present the code and the

output in two separate panes, with a visible division between the two. Partly this was a disciplined

choice by the author as a way to limit text-oriented thinking from “contaminating” the creative pro-

cess of working out how bimodal programming can operate. But now that these systems have been

created and have demonstrated the expressive extent of output-based interactions, it may be time

to consider dissolving the hard separation between the code and output displays. The dividing line

could be removed and the live values could be drawn near the relevant code expressions, perhaps

even inline with the code (as in [139] and [65], or as is possible when debugging in the Chrome
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DevTools3 or VS Code4). Moving the output next to its code has several advantages. It becomes

easier for the user to associate code with output, and they do not have have to move their eyes as

far. Additionally, it could encourage practical adoption of bimodal programming: programmers

are used to working in text buffers, placing live values in the text buffer may feel more like a aug-

mentation of their ordinary workflow rather than an entirely new paradigm. Finally, placing code

and output together in a bimodal interface opens opportunities for direct manipulation not only

of values but also of expressions. (Appendix A presents an interface for direct manipulation of

expressions.)

Customization For bimodal programming to reach its goal of the user feeling like they are tan-

gibly touching and molding the values in their program, the user will need access to both domain-

specific visualizations and domain-specific interfaces for values. Graphs should be editable as

graphs, trees as trees, images as images, sets as sets, etc. A fully realized bimodal programming

system will need to support custom visualizations and custom user actions on those displayed val-

ues. TSE offers a low effort way to author custom interactive textual representations, but custom

graphical representations, as well as custom actions on those representations, are not implemented

in this work. One intriguing future possibility is to allow users to craft custom visualizations using

a SKETCH-N-SKETCH-style interface rather than by manual coding. Ideally, these custom visual-

izations could be composed together by nesting. Livelits [117] shows how to nest different custom

interfaces within each other based on type compatibility, although in the program the Livelits can

only be used as expressions (as in other visual macro systems, e.g., [6]). There may be a way to

evolve this approach to apply to values as well.

User validation This work primarily focused on demonstrating the expressivity of bimodal pro-

gramming, leaving much to learn about how users interact with such systems. In particular, there

3https://developers.google.com/web/updates/2015/07/preview-javascript-values-inline-while-
debugging

4https://www.youtube.com/watch?v=nWW0997lu6I&t=63s
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are open questions about how bimodal programming might assist novices, about how non-linearity

might affect the programming workflow, and about the possible dichotomy between expression-

oriented and value-oriented modes of thinking.

Part of the vision of bimodal programming is that it might help novices more rapidly create

useful programs. The (few) studies to date do not find a large benefit to bimodal interaction in a

learning setting, nor do they find a detriment. In the ALVIS Live bimodal editor for creating array

iterative algorithms, Hundhausen et al. [71] found that students taught exclusively to use direct

manipulation tools (with code visible) were able to transfer their learning when asked instead

to use only text editing—these students performed similarly to those taught to exclusively use

text editing. As well, Do et al. [32] found no clear differences between students’ textual coding

performance whether or not direct manipulation interactions were available during their system’s

guided tutorial. Likewise, although comparing two different environments (Python Tutor [54]

and AlgoTouch [44]), Adam et al. [3] found that students performed comparably using only text

editing versus using only PBD. All these results do not necessarily mean there is no benefit to

offering direct manipulation interactions. Hypothetically, direct manipulation can help novices in

two related ways: (a) it might reduce fumbling with unfamiliar textual syntax and (b) “drawing

tools” self-document what actions are available. Hundhausen et al. [71] found evidence for both of

these hypotheses: on their very first task, users with direct manipulation tools completed the task

faster and more accurately, and appeared to spend considerably less time consulting documentation

in the process. These preliminary studies indicate that bimodal programming is neither a silver

bullet for teaching novices, nor is it a hindrance. How best to leverage direct manipulation to assist

learners remains an open question, as is the question of whether direct manipulation can speed up

program development once users are familiar with the language and environment.

MANIPOSYNTH presented an initial exploration of non-linear editing in a bimodal environ-

ment. While the two users were positive about non-linear editing, and binding order was rarely

troublesome, we have not performed an explicit user comparison to a more linearly constrained en-
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vironment to see if, e.g., different users prefer one environment over the other, or how much trouble

it is when there are limits on variable shadowing, or if non-linear editing can promote exploratory

problem solving strategies (using the canvas as a scratchpad). These are all relevant questions to

investigate.

Finally, from the experiences with MANIPOSYNTH we hypothesize that when experienced pro-

grammer use a bimodal interface, they intermittently switch between two modes of thinking: either

focusing on expressions or focusing on values, to the exclusion of attention on the other. How to

encourage programmers to avoid ignoring the displayed values, whether these two modes of think-

ing are indeed distinct and mutually exclusive, and what the implications of that might be for the

programming experience are all open questions to address in future work.

5.3 Summary

Bimodal programming augments conventional text-based programming, allowing users to directly

manipulate the output of the program in order to construct and modify their code.

Despite its promise, the bimodal paradigm is under-explored. In this work we seek to explore

and expand the expressive scope of output-based interaction in bimodal environments by building

and demonstrating two bimodal systems and one supporting mechanism.

SKETCH-N-SKETCH is a development environment for creating programs that output vector

graphics. With SKETCH-N-SKETCH it is possible to create parametric designs without ordinary

text editing—although ordinary text editing is always available. The ability to create these pro-

grams without text editing is made possible by a large suite of output-based tools. We described

the design and implementation of these tools and created sixteen parametric designs without the

use of textual coding.

In the long term, bimodal programming environments will need to support custom visualiza-

tions of data types that, despite being custom, can still be directly manipulated to change the user’s
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code. To provide a low-cost mechanism for users to create custom manipulable visualization for

their program’s data types, we created TINY STRUCTURE EDITORS (TSE), a mechanism for au-

tomatically generating structure editors for a custom data value, given only a toString function

for that type. By tracing the execution of the toString function, TSE overlays selection regions

and edit buttons on top of the toString output which allow the user to select and manipulate cor-

responding parts of the original value. We described the tracing mechanism and briefly explored

the editors generated by TSE for several existing toString functions translated from Haskell and

for a handful of toString written from scratch.

Finally, to expand beyond shape-drawing programs and employ the bimodal paradigm in a

general-purpose setting, we built MANIPOSYNTH, a bimodal programming environment for creat-

ing functional data structure algorithms in OCaml. Because side-effect free functional programs do

not require a concept of time, we utilized the 2D canvas to present the user’s program non-linearly,

allowing the user some flexibility in the order in which they choose to build their code. As well,

the live example-centric environment is a fitting setting for program synthesis, so we designed

and incorporated a program synthesizer into the MANIPOSYNTH interface. We implemented 38

example exercises and also trained two professional programmers in the operation of the system

to solicit their feedback. We discovered that, although bimodal programming remains promising,

professionals often habitually focus their attention on program expressions rather than on the live

program values. Attending to expressions versus attending to values may even be two distinct

modes of thought—more research on this hypothesis is needed.

In total, these software systems justify the thesis:

Non-trivial vector graphics programs and functional data structure manipulation pro-

grams can be constructed by output-based interactions in a bimodal programming en-

vironment.

Having demonstrated the expressive extent of bimodal programming, future work may merge

and expand these systems, as well as perform user evaluations to identify the tradeoffs in the
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bimodal design space. These efforts will serve the overall goal of making programming feel like

an approachable and tangible process of manipulating live values.
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Appendix A

Deuce: Bimodal Editing on Expressions

(a) (b) (c)

Figure A.1: To streamline refactoring, DEUCE provides (a) structural multi-selection, revealing
(b) a short menu of context-sensitive refactorings configured with (c) reasonable defaults.

A.1 Introduction

The systems presented in the main chapters of this work explore leveraging direct manipulation

interactions on program outputs without sacrificing ordinary text editing. Direct manipulation of

program expressions is also possible, and has been the subject of a line of work.

Structure editors, Cornell Program Synthesizer [144], treat the program as a tree to offer edit ac-

tions that are syntactically valid. If designed appropriately, a structure editor can eliminate the pos-

sibility of syntax errors during program construction. In most structure editors, such as MPS [150],

tree-structured navigation and editing is primary, with unstructured text editing circumscribed or

imitated. Unstructured text editing, however, is flexible, convenient, and time-proven. Can we have

the best of both worlds? Could we have bimodal editing of expressions—both (keyboard-based)

unstructured and (mouse-based) structured interactions?

Portions of this supplementary chapter are excerpted from a paper at ICSE 2018 (Hempel et al. [62]), focusing
on the dissertation author’s contribution to the work (the user study execution and analysis).
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Figure A.2: Examples of selectable whitespace (“target positions” for refactorings).

To explore direct manipulation structure editing on top of unstructured text in an ordinary code

editor, we constructed DEUCE, a bimodal (keyboard- and mouse-based) text editor for specifying

and invoking code refactorings. DEUCE’s default mode is ordinary text editing, but when the user

holds the Shift key DEUCE switches to a structural multi-selection mode in which the user clicks

to select one or more program expressions (Figure A.1a) and possibly a whitespace target position

(Figure A.2) to serve as a result location for movement refactorings. Depending on the kind of

item(s) selected, a short context-sensitive menu of possible transformations is shown (Figure A.1b),

with several possible default configuration of the transform in a submenu (Figure A.1c). Hovering

the mouse over the result previews its effect on the code, clicking the result applies the refactoring.

We deliberately forgo a dialog box, because it has been shown that a configuration parameter in a

refactoring dialog is only changed around 10% of the time [109].

Ideally, this DEUCE workflow would provide a streamlined interaction for quickly invoking

refactorings while still providing a familiar, ordinary text editing buffer for writing code. We

performed a user study to compare DEUCE to a more traditional mode of invoking refactorings

(i.e., by select and right-click or by finding the tool in a menu, and then configuring via a dialog).

We describe this study and the results below.

A.2 Methodology

DEUCE is incidentally implemented in SKETCH-N-SKETCH [59], albeit in a version that predates

the Elm-like syntax seen in Chapter 2. SKETCH-N-SKETCH’s output-based features were disabled

and hidden for the user study.

To provide a baseline for comparison, we implemented a Traditional Mode to simulate the
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(a) (b) (c)

Figure A.3: Traditional Mode UI elements. (a) Code tools menu listing all the refactorings avail-
able. (b) Right-click menu after a single argument is selected. (c) Configuration panel explaining
refactoring selection requirements and offering results.

traditional process of invoking refactorings in IDEs such as Eclipse. Our Traditional Mode includes

severals ways to invoke a refactoring:

Tools menu first. Participants may explore a menu in the menubar that lists all the available

refactorings (Figure A.3a). After choosing a menu item, prompted by a configuration panel

(Figure A.3c) the user clicks to structurally select appropriate arguments for the transfor-

mation. The panel and structural selection is meant to simulate a configuration dialog in a

traditional IDE. Once enough arguments are selected, the panel offers possible results.

Text-select first. Alternatively, the user may begin a refactoring via ordinary (non-structural)

text selection. As in Eclipse, the whole item must be selected (module leading/trailing

whitespace). The user may then choose a refactoring from the Code Tools menu (as in

Eclipse, all refactorings are shown even if not valid for the selected item), or may instead

right-click the selection to show a contextual menu (Figure A.3b; only valid refactorings are

shown, as in Eclipse). After selecting a refactoring, as above the configuration panel directs

the user to structurally select any remaining arguments.
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Right-click first. As in Eclipse, constants and variables may be immediately right-clicked

without text-selecting them first. The item is instantly selected and the contextual menu

appears as above.

The experimental condition, DEUCE Mode, offered the same refactorings, except that the work-

flow proceeded as described in the introduction: the user holds down the Shift key, structurally

selects one or more desired elements (Figure A.1a), and chooses the refactoring and a result from

a short, context-sensitive menu (Figure A.1b,c). This context-sensitive menu is often shorter than

that shown via right-click in Traditional Mode (Figure A.3b), because DEUCE Mode only shows

those refactorings that are valid for precisely the selected elements, whereas Traditional Mode

must also show those refactorings that could become valid if more elements are selected.

Study Design

We sought to answer the following questions:

• Compared to Traditional Mode, is DEUCE more effective for (a) completing tasks, (b) rapid

editing, or (c) achieving more with fewer transforms?

• Compared to Traditional Mode, is DEUCE preferred by users? In which cases?

We conducted a within-subjects study with 21 undergraduate and graduate students recruited

from the University of Chicago. Each participant individually completed a 2 hour session and was

paid $50. The sessions were structured as follows.

After a guided tutorial in the system walked the participant through the interaction mechanisms

for both Traditional and DEUCE Modes, the user attempted the six tasks summarized in Table A.1.

The first four tasks were “head-to-head” tasks. Each was performed twice, once in each mode,

resulting in eight trials. The order of the trials was randomized. The last two tasks were “open-

ended” tasks. These tasks were performed once each, but with both Traditional and DEUCE Modes
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Name #LOC #Transforms Example Tool Sequence (with minimum number of transforms required)
One Rectangle 9 3 Swap Expressions; Move Definition; Swap Definitions
Two Circles 11 2 Create Function from Definition; Reorder Arguments
Three Rectangles 11 2 Creating Function by Merging Definitions; Rename
Four Rings 7 4 Remove Argument; Rename; Move Definition; Add Arguments
Four Squares 9 7 Create Function by Merging Definitions; Create Function from Arguments; Rename (5x)
Lambda Icon 10 8 Make Equal with Single Variable (6x); Introduce Variable; Rename

Table A.1: Overview of the four head-to-head and two open-ended tasks. #LOC is non-blank lines
of code in the starting program. A way to complete each task with a minimum number of tool
invocations is indicated.

active simultaneously (their operation is orthogonal). The participant was free to mix-and-match

between modes for these two tasks.

Before each trial, the participant was given a reading period to inspect the starting code. Once

they began a trial, a textual description of steps to perform was shown (e.g., “move the ring

definition inside target”), as well as the expected final code. Lines differing between the current

code and the intended solution were highlighted in the sidebar. Participants could click a button to

“Give Up” at any time and were limited to six minutes per head-to-head trial and twelve minutes

per open-ended trial, respectively. To focus on the refactoring interactions, text edits were disabled

throughout. Participants completed an exit survey after the final trial.

A.3 Results

Participants reported between 2 and 10 years of programming experience (mean: 5.1), of which

between 0 and 3 years involved functional programming (mean: 0.76). 10 participants (48%)

reported no prior functional programming experience. 8 participants reported using tools that

supported automated refactoring (Eclipse, IntelliJ, and PyCharm all received multiple mentions). 4

participants reported some prior exposure to previous versions of the SKETCH-N-SKETCH project,

but none reported knowledge of the code tools presented in the study.

For the study itself, 8 users brought their own laptop, the remaining 13 used ours. 15 partic-

ipants used a mouse, and 6 relied on their laptop’s trackpad. Each session took a mean of 1hr
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Figure A.4: Task completion rates pooled over both modes.

44min (range: 1h 11m – 2h 27m). Users spent between 23 and 66 minutes on the tutorial (mean:

41) and 20 and 65 minutes on the tasks (mean: 44). The remaining time was spent on introductory

remarks and the exit survey. All users attempted all tasks. Two trials were discarded because of

tool malfunction, for a final total of 166 head-to-head trials and 42 open-ended tasks suitable for

analysis.

The tasks proved moderately difficult. On average, each participant successfully completed

71% of the trials and open-ended tasks within the time limits, with 3 users completing them all

and 1 user failing to complete any. Figure A.4 shows completion rates by task. The One Rectangle

and Lambda tasks had particularly low completion rates. Based on videos of failed attempts, many

users struggled with choosing appropriate tools—e.g., many chose INTRODUCE VARIABLES rather

than MAKE EQUAL, and some chose INLINE rather than MOVE DEFINITIONS in an attempt to

create a tuple definition. The tutorial was not sufficient for everyone to remember and understand

all the tools needed for the tasks. The task descriptions may have also presented obstacles—e.g., for

Lambda, the phrase “Define and use...”, along with (def [x y w h] ...) in the final code, may

have led some to use INTRODUCE VARIABLES, which would then require several roundabout

transformations to complete the task. We believe these difficulties are largely independent of the

user interface features. We now address each of the research questions in turn.

Is either mode more effective for completing tasks? Figure A.5 breaks down completion rates

for head-to-head tasks by mode. Because each was attempted twice, to assess possible learning
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Figure A.5: Head-to-head task completion rates by mode and by subject’s first/second encounter
with task. Overlaid lines indicated pooled completion rates.

effects from already completing a task in the other mode, Figure A.5 also differentiates between the

user’s first or second encounter with each task. Visually, the data suggest that on the first encounter

with a task, Traditional Mode may better facilitate completion, and is also a better teacher for the

subsequent encounter with DEUCE Mode. In contrast, a first encounter with DEUCE Mode may be

less helpful for the second encounter with Traditional Mode.

To control for learning effects, a mixed effects logistic regression model [47] was fit with

lme4 [8] to predict task completion probability based upon fixed effect predictors for the mode

(coded as 0 or 1), the trial number (1-8), whether the trial was the second encounter with the task

(0 or 1), whether the participant used a mouse (0 or 1), whether the participant used their own

computer (0 or 1), and the interaction of mode with the second encounter (0, or 1 when DEUCE

Mode and a second encounter). To model differences in user skill and task difficulty, a random

effect was added for each participant as well as each task, and a random interaction was added to

model differences in the second encounter difficulty per task. Reported p-values are based on Wald

Z-statistics.

In the fit model, the coefficient for mode was on the edge of significance (p=0.057), indicat-

ing that Traditional Mode did better facilitate task completion on the first encounter with a task.

Given this, DEUCE Mode performed better than expected on the second encounter (interaction
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Figure A.6: Head-to-head task durations for successfully completed trials, scaled relative to the
mean time per task.

term p=0.036), but not enough to confidently say that DEUCE Mode was absolutely better than

Traditional Mode for the second encounter (p=0.17). No other fixed effect coefficients approached

significance.

DEUCE Mode therefore seems to present a learning curve, but may be just as effective as Tradi-

tional Mode once that learning curve is overcome. This interpretation accords with the surveys: 5

participants wrote that Traditional Mode might be better for learning, and 4 participants—including

3 of the previous 5—said DEUCE Mode was better when they knew the desired transformation.

However, the data may be alternatively explained if DEUCE Mode on the first encounter is a poor

teacher, actively misleading users on the second encounter with Traditional Mode.

Is either mode more effective for rapid editing? Among trials successfully completed, the

duration of each trial was measured from the start of configuration of the first refactoring to the

end of the final refactoring. The distribution of these timings is presented in Figure A.6, scaled

relative to the mean duration for each task.

Again, to tease out if any of these differences are significant, from the same predictors de-

scribed above two linear mixed effects models were fit to predict (1) trial duration and (2) the

logarithm of trial duration (i.e., considering effects to be multiplicative rather than additive). Per-
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Figure A.7: Distribution of user preferences for Traditional vs. DEUCE Modes as measured by
the ratio of refactorings performed by the user in each mode on the open-ended tasks. Far left
represents all Traditional Mode refactorings; far-right indicates all DEUCE Mode refactorings.
The 95% confidence interval for the mean preference across all users is indicated (via percentile
bootstrapping, 10,000 samples).

centile bootstrap p-values for the fixed effect coefficients were calculated from 10,000 parametric

simulate-refit samples.1 For the first encounter with a task, Traditional Mode was insignificantly

faster (by 13 seconds, p=0.44; or 9.2%, p=0.52). However, DEUCE Mode was on average 25 sec-

onds (p=0.13) or 36% (p<0.01) faster for the second encounter with a task, suggesting that DEUCE

Mode may be faster once users become familiar with the available tools. Most of the gain comes

from less time spent in configuration—after discounting all idle thinking time between configura-

tions, the model still reveals an 18 second difference.

Is either mode more effective for achieving more with fewer transforms? To determine if

either mode facilitated more efficient use of interactions, the same mixed effects model was fit

to predict the number of refactorings invoked during each successful trial, as well as the number

of Undos. On the first encounter with a task, Traditional Mode accounted for an average of 2.0

fewer refactorings (p<0.01) and 2.1 fewer Undos (p<0.01), but on the second encounter no sig-

nificant difference in number of refactorings or Undos was indicated. As a second encounter with

DEUCE Mode is faster than Traditional Mode, the speed gain thus appears to be explained by faster

invocations rather than fewer invocations.

1See https://www.rdocumentation.org/packages/lme4/versions/1.1-13/topics/bootMer
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Figure A.8: Mode usage for tools used by at least half of participants on the open-ended tasks.
Deuce mode is preferred for most tools. Stars indicate differences significant at the 95% level (via
percentile bootstrapping, 10,000 samples).

Is either mode preferred by users? In which cases? The two final open-ended tasks allowed

participants to mix-and-match the two modes as they pleased. As shown in Figure A.7, on both

tasks the overwhelming number of users performed a greater share of refactorings using DEUCE

Mode. We believe a main advantage of DEUCE Mode is that it simplifies the configuration of refac-

torings that require multiple arguments, as the user may select all the arguments together before

choosing a transformation from a short menu. In Traditional Mode, the workflow is stuttered: the

user must select a single argument, right-click to choose a transformation, then select the remain-

ing arguments. However, for a refactoring requiring only a single argument, Traditional Mode is

more streamlined: a user may simply select the desired transformation immediately after right-

clicking on the first argument. Thus, for single-argument refactorings, DEUCE Mode’s advantages

may be limited. A breakdown of mode usage by popular tools (Figure A.8) lends support to this

hypothesis. For the most commonly used tool, RENAME, which always takes only a single argu-
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Figure A.9: Surveyed subjective preference for Traditional vs. DEUCE Modes for the head-to-
head tasks. The 95% confidence interval for the mean preference across all users is indicated (via
percentile bootstrapping, 10,000 samples).

ment, participants used Traditional and DEUCE Modes with roughly even frequency. Most other

tools showed strong preferences towards DEUCE Mode, with the notable exception of CREATE

FUNCTION BY MERGING DEFINITIONS. Because the Four Squares task required invoking this

tool with four expressions, according to the hypothesis, users should prefer DEUCE Mode. The

videos revealed that several users were unable to discover how to structurally select a function

call, which required hovering on the open parenthesis (not demonstrated in the tutorial). Several

of these users were, however, able to invoke the tool by text-selecting a function call or by starting

from the full Code Tools menu.

Subjectively, the concluding survey asked whether DEUCE or Traditional Mode worked better

for each head-to-head task, measured on a 5-point scale from “Text-Select Mode worked much

better” to “Box-Select Mode worked much better”. For each participant, a random choice deter-

mined which mode appeared at each end of the scale. As shown in Figure A.9, on average a similar

modest preference for DEUCE Mode was expressed for each task.

Altogether, users demonstrated a strong objective and modest subjective preference for DEUCE

over Traditional Mode, suggesting that DEUCE accomplishes its goal to provide a more human-

friendly interface to identify, configure, and invoke refactorings.
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A.4 Related Work

Murphy-Hill and Black [108] demonstrates two relevant mechanisms to help users make valid

selections for invoking refactorings. The first, Selection Assist, shades a region of code under the

cursor indicating the extent of the relevant statement, thereby hinting the user how they may begin

and end their selection at valid expression boundaries. The second, Box View, displays a sidebar

with miniature nested boxes corresponding to the nested expression structure of the adjacent textual

code. Clicking a box text-selects the entire expression in the code. Murphy-Hill [107] presents

a third mechanism, Refactoring Cues, similar to the Traditional Mode in our user study: after

choosing a refactoring from a list, the user may click to structurally select expressions in the code.

Unlike our implementation, once a refactoring is selected Refactoring Cues preemptively draws

boxes (cues) around all expressions in the code rather than just the expression currently under the

mouse.

Of the many structure editors of the 1980’s, PSG [7] is notable for, like DEUCE, offering a

hybrid interface with both textual and structural input supported. Unlike DEUCE, PSG’s structural

actions focused more on AST construction rather than refactoring. More recently, Barista [81] and

Greenfoot [18] are structure editors that also imitate an ordinary text buffer. Code in Greenfoot

is organized into frames which correspond to, e.g., method bodies, if-statements, and looping

constructs. Frames can be dragged and dropped or created via keyboard shortcuts. Statements

within a frame are displayed as ordinary textual code but are still handled as structured elements,

although Greenfoot attempts to make editing of these structured elements behave somewhat like

ordinary text editing. Barista, as well, offers a mix of both box and text-like editing in a structured

environment. Barista additionally enables customized views for certain expressions in a program,

e.g., math expressions may be rendered in a beautified, typeset style.

Lee et al. [89] identify a subset of Eclipse’s refactorings that can be unambiguously invoked via

drag-and-drop, forgoing the need for the configuration dialog step. DEUCE currently requires the

user to select a target position (Figure A.2) for many refactorings, the addition of a drag-and-drop
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capability might make invoking these refactorings more convenient.

A.5 Conclusion

Our user study results suggest that while a traditional refactoring environment may be better for

learning which refactorings exist and how to use them, DEUCE may be faster to use once it is

learned. Moreover, in their actual usage on the open-ended tasks, participants demonstrated a

strong preference for DEUCE mode. These results accord with DEUCE’s aim to provide human-

friendly structural interactions on top of familiar text-based editing.
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