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“What then is truth? A movable host of metaphors, metonymies, and anthropomorphisms:

in short, a sum of human relations which have been poetically and rhetorically intensified,

transferred, and embellished, and which, after long usage, seem to a people to be fixed,

canonical, and binding. Truths are illusions which we have forgotten are illusions- they are

metaphors that have become worn out and have been drained of sensuous force, coins which

have lost their embossing and are now considered as metal and no longer as coins.”

— Friedrich Nietzsche

“Once you free your mind about a concept of harmony, and of music being correct, you can

do whatever you want.”

— Giorgio Moroder
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ABSTRACT

Weyl semimetals are three dimensional topological states of matter whose band structures

are characterized by the presence of points of degeneracy between bands near the Fermi

energy. These points can appear in three-dimensional materials that break at least one of

inversion or time reversal symmetry. Their presence in a band structure, and the consequent

emergence of chiral species of particles that are mirror images of one another, leads to

macroscopic behavior that is qualitatively different from normal metals, including Chiral

Anomaly and the related phenomenon of Negative Magnetoresistance. In this thesis, we

develop a hydrodynamic description for Weyl semimetals, suitable for modelling slow non-

equilibrium situations such as are commonly encountered in typical transport experiments.

Our analysis is based on macroscopic reasoning such as symmetry considerations and the 2nd

law of thermodynamics. Using this phenomenological model, we explain magnetoresistance,

and the related effect of magnetic enhancement to the thermoelectric conductivity. We also

touch upon some general aspects of formulation of hydrodynamic theories for solid state

electronic systems, and motivate their construction in clean electronic systems.
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CHAPTER 1

INTRODUCTION

1.1 Hydrodynamics

Hydrodynamics1 is a theory that describes the dynamics of a physical system at long length

and time scales. The physical system is assumed to be composed of interacting microscopic

constituents, with microscopic processes occuring on some typical timescale τmicro and length

lmicro. For example, if we envision our physical system to be composed of microscopic par-

ticles colliding with each other, τmicro ∼ τmft, the mean free time that elapses between

collisions. Processes that evolve over times τ >> τmicro and over lengths l >> lmicro may

be described by a physical theory that is universal, or independent of the details of the micro-

scopic constituents and their interactions. Such a theory is called a theory of Hydrodynamics.

It is assumed that if such a system is left isolated from external influences for a very

long time, the system approaches a state of global thermal equilibrium. Under such circum-

stances, the system is described by thermodynamics. In thermodynamics, a macroscopic

system is described by a few conserved charges, such as total energy of the system E or

total number of particles N (along with the total volume V ), and their thermodynamically

conjugate variables, such as temperature T , chemical potential µ and pressure p.

The ‘conserved’ charges are so called because they represent extensive macroscopic vari-

ables that remain constant in an isolated system. The thermodynamic variables are con-

strained by an equation of state whose form is dependent upon the details of the microscopic

theory. This may be written in the form S = S(E,N, V...), where S is the total entropy

of the system. Alternately, we may represent the equation of state in terms of pressure

1. This section is based on lecture notes from PHYS 429: Advanced Hydrodynamics taught during Winter
2021 at the University of Chicago by D. T. Son
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as p = p(T, µ, ...), or in terms of densities: S/V ≡ s = s(ε, n, ..), where ε = E/V is the

energy density, n is the number density etc. Other than this relation, thermodynamics is

not dependent on the details of how the microscopic constituents behave; the relations of

thermodynamics are completely general and universal.

Thermodynamics represents a universal theory to describe states of global equilibrium;

hydrodynamics can be seen as an extension of thermodynamics to describe situations of

local equilibrium. Let us imagine a situation in which the macroscopic medium above has

been perturbed off equilibrium by a sudden change. We assume that within a few τmicro,

the system is locally thermalized. By this, we mean that we may assign a nearly constant

T , µ over macroscopically large regions of the medium, which may nevertheless be small

relative to the dimensions of the overall system. Now, the state of the overall system may

be represented by smoothly varying functions of space and time: T (x, t), µ(x, t), which we

call hydrodynamic variables, and conserved densities, ε(x, t) or n(x, t). The resolution of x

and t required to describe the state of the system are much larger than lmicro and τmicro.

This separation of scales between microscopic processes and macroscopic phenomena are an

essential assumption in any hydrodynamic theory.

The equations of hydrodynamics consist of differential equations that take the form of

local conservation laws for the conserved charges. For example, in an electrically charged

medium, the electric charge satisfies the continuity equation ∂tn+∇ ·j = 0, where j is the as-

sociated electric current. This must be supplemented by the equation of state n = n(T, µ, ..),

as well as the ‘constitutive relations’, which describe the dependence of the currents on the

hydrodynamic variables, j = j[T, µ..].

The constitutive relations are functionals of the hydrodynamic variables: the currents
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depend not just on the local values, but also on the derivatives of the hydrodynamic vari-

ables. Roughly speaking, O(∂n) contribution to the current j is of the order of (lmicro/L)
n in

importance, where L is the typical lengthscale of external perturbations driving the system

off equilibrium. It follows that when the non-equilibrium processes being described occur

on much larger time and length scales relative to the microscopic scales, we may retain only

the lowest derivative orders in the hydrodynamic theory. This is the situation where the

hydrodynamic theory is useful in describing the physics of the system.

In this situation, one may write the currents or ‘fluxes’ as j =
∑

i αiXi, where Xi are

O(∂1) ‘forces’ that are driving the currents, such as gradients of hydrodynamic variables,

∇T, ∇µ, or external electric field E etc. The coefficients α are called ‘Kinetic coefficients’.

Like the densities, the kinetic coefficients are also functions of the hydrodynamic variables.

The most familiar hydrodynamic theory is what is traditionally called ‘fluid dynam-

ics’ [35], describing the dynamics of everyday fluids (such as water). In this hydrodynamic

theory, there are three conserved charges: ε, mass density ρ and momentum density π.

Correspondingly, there are three hydrodynamic variables: T , µ and flow velocity, v, or

equivalently, T , v and p. The presence of v, a vector, in the set of hydrodynamics variable,

means that currents now have the form j = nv +
∑

i αiXi, where n is a thermodynamic

function. The O(∂0) contribution to the current corresponds to ‘convection’, whereby the

flow of the fluid advects a conserved charge even in the absence of any external forces driving

the currents.

From thermodynamics, we know that any change in the state of a system is reversible

if the process is adiabatic, i.e. where the total entropy of the universe is unchanged dur-

ing the process, whereas, ‘dissipative’ processes, where entropy production takes place, are
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irreversible. Since hydrodynamics is the description of how non-equilibrium processes that

bring about change in the state of the system unfold, it should not be surprising that this

link between dissipation and reversibility can be explicitly seen in hydrodynamics.

In conventional fluid dynamics, the O(∂1) currents correspond to irreversible flows,

whereas the convective currents are reversible. Let us imagine that at some time t = t0, the

state of the fluid is described by T (x, t0) = T0(x), p(x, t0) = p0(x) and v(x, t0) = v0(x).

This evolves to T1(x), p1(x) and v1(x) at some time t1 > t0. The flow is said to be ‘re-

versible’ if the reverse flow is also possible. This means if we describe the initial configuration

at time −t1 as the time reversed version of the original final state, i.e. TT
1 (x) = T1(x), etc.

but vT1 (x) = −v1(x), then this evolves to the time reversed version of the original initial

state, T0(x), p0(x), −v0(x) at time −t0 > −t1.

This is only possible if the currents are also reversed in going from the final state at t1

to the time reversed initial state prepared at time −t1, jT (x,−t1) = −j(x, t1). Clearly, this

is true when j ∼ v, as in the time reversed state, vT (x) = −v(x). However, if we have a

current that depends on a gradient of some thermodynamic variable, e.g. j ∼ ∇T , then in

the time reversed state, this does not reverse, as TT (x,−t) = T (x, t), so ∇TT = ∇T . So,

advective currents are reversible, whereas the O(∂1) currents are irreversible.

It can be explicitly seen that only the irreversble flows contribute to local production of

entropy. For this, we need to write down the continuity equation for local entropy density

s. The 2nd law of thermodynamics states that entropy of the universe can only increase. In

the context of hydrodynamics, this means that

∂ts+∇ · js ≡ R ≥ 0 (1.1)
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where js is the entropy current; i.e. entropy can only be locally produced at the rate R ≥ 0.

In order to express R in terms of the conserved charge currents, we may use the 1st law of

thermodynamics, which, in the case of conventional fluid dynamics, where energy density ε,

number (or ‘mass’) density n and momentum density π, takes the form:

Tds = dε− µdn− v.dπ (1.2)

This may be used to relate ∂ts to ∂tε, ∂tn and ∂tπ, and hence, to the conserved currents.

Doing this exercise in detail shows us that the contribution to the convective parts of the

currents to ∂ts is precisely −∇ · (sv), i.e. − the convective part of the entropy current js.

Hence, these do not contribute to R. On the other hand, the irreversible flows remain in

the expression for R, which takes a form R =
∑

i j
(R)
i ·Xi, i.e. inner products of dissipative

fluxes and thermodynamically conjugate forces.

The currents that appear in the expression for R are themselves linear combinations of

the forces, ji = αijXj, eventually R may be expressed in a quadratic form involving only

forces: R = αijXi · Xj . The fact that R ≥ 0 for arbitrary (externally induced) forces

imposes constraints on the allowed structure of j. For the kinetic coefficients that appear

in the above expression for R, the constraints take the form of inequalities. These are the

dissipative kinetic coefficients. These are the only form of kinetic coefficients we meet in

text-book fluid dynamics.

It is not always necessary that all currents controlled by external forces lead to dissipa-

tion. For example, in the presence of a force that behaves like v under time reversal, then,

the corresponding kinetic coefficients would be ‘non-dissipative’, i.e. instead of appearing

in the final expression for R, they would instead cancel out by some special arrangement,

much like the convective parts of the currents entering the expression for ∂ts must exactly
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cancel out the convective part of ∇ · js. We shall explore in this thesis electronic systems,

where magnetic field B is a relevant forcing, which also flips under time reversal like v. The

associated kinetic coefficients will indeed be seen to have the structure we are describing here.

Conventional fluid dynamics is a hydrodynamic theory describing slow deformations off

equilibrium for a material medium. It is intuitively clear why a certain quantity of water

possesses mass or energy; We can see and feel it. However, hydrodynamics has much wider

applicability. For example, we may apply hydrodynamics to situations where these conserved

charges are emergent quantities, and may not be as easy to intuitively motivate as in the

case of a material medium such as water. Consider an electronic system, such as a metal or

a semiconductor, which is our system of interest in this thesis. Here too, one may see that

there are certain conserved charges (electric charge density n, energy density ε, and in the

case of very clean electronic conductors, also momentum density π) that are transported by

the underlying electrons.

In the existing literature on electronic systems, the word ‘hydrodynamics’ is usually used

in the context of physical systems which have ‘flow’ v, that is, in systems where momentum

is conserved. This is the case in exceptionally clean metals at low temperatures, where the

dominant mode of relaxation is momentum conserving collisions between electrons, rather

than momentum non-conserving collisions between electrons and impurities, or electrons

and phonons [21], [16]. Recent examples in the literature of momentum conserving hydro-

dynamics include the observation of Dirac fluid in clean graphene [15], [41], and evidence of

viscous dynamics in wires made of PdCoO2 [42]. However, the machinery of hydrodynamics

is equally well applicable to systems without momentum conservation [34].
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Figure 1.1: Crowds of people often show hydrodynamic behavior. Coherent and coopera-
tive behaviour at the macroscopic level emerges from the actions of individual constituents
interacting with their neighbors at the microscopic level. (Photograph courtesy: Mrinalini
Pandey [48])

A hydrodynamic theory must be universal, i.e. independent of the details of the un-

derlying microscopic theory. As such, the construction of hydrodynamic theory for a given

physical system makes use of macroscopic organizing principles to constrain the structure

of the constitutive relations, with minimal input from the underlying microscopics. The

positivity of entropy production discussed earlier is one such ingredient that goes into the

construction of the hydrodynamic theory.

Another such ingredient are the symmetries obeyed by the system. The presence of ro-

tational invariance, or the presence of boost invariance, either Lorentz or Galilean, simplifies

the structure of hydrodynamics. For example, consider the flow of heat in response to a

temperature gradient in a fluid such as water. The heat current Q and the gradient of

temperature ∇T are both vectors, and in general, the kinetic coefficient is a rank-2 object:

Qi = −κij∇jT , where i, j are now spatial indices. κij is the thermal conductivity tensor.
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Now, because from any point in the fluid, all directions look the same (local isotropy), κij

can only be constructed from rotationally invariant tensors and any thermodynamic degrees

of freedom that are vectors. In 3 dimensions, there are 2 rotationally invariant tensors: Kro-

necker Delta δij , and totally antisymmetric Levi-Civita symbol ϵijk. In the hydrodynamic

theory of fluids, one also has v, which is an O(∂0) vector, that can be used to construct

higher rank objects. Using these, one may come up with 3 distinct tensor structures, which

therefore, correspond to 3 kinetic coefficients: κij = κ1δij + κ2vivj + κ̃ϵijkvk. where the

scalar coefficients can be functions of the thermodynamic variables, i.e. κ1 = κ1(T, p, |v|) etc.

However, the hydrodynamic theory describing fluids such as water must also obey invari-

ance under Galilean boosts, i.e. the equations should look the same in two frames of reference

related by a Galilean boost. Clearly, in such a fluid, one can only have one coefficient of

thermal conductivity κ1, and that too has to be independent of |v|. Another physical way to

motivate the same result is by using the fact that pure convection, that is, a fluid moving with

a constant velocity at all points, is dissipationless. Hence, the rate of entropy production in

a non-equilibrium process, R must be the same irrespective of the frame it is measured from.

From our previous discussion, we know that we may write R = αijXiXj , so, one contribu-

tion to R would be of the form κij∇iT∇jT . The rate R can only be independent of the

frame in which it was measured if it is independent from v. This leads to the same conclusion.

Time reversal invariance of the underlying microscopic system is a further principle that

can be used to limit the constitutive relations. The macroscopic manifestation of reversibility

of motion at the microscopic level are the Onsager reciprocal relations [40]. These are rela-

tions between dissipative kinetic coefficients that reduce the number of independent kinetic

coefficients required to characterize the system. The simplest example is that of a rank-2
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kinetic coefficient, such as the thermal conductivity, in an anisotropic medium. In a general

system without isotropy, one cannot reduce the κij into a single coefficient. However, due to

Onsager reciprocity, one may still relate the off diagonal elements, i.e. κij = κji, where i, j

are spatial degrees of freedom. So, in a 3 dimensional anisotropic material that can conduct

heat, one may only have 6 independent coefficients of thermal conductivity, instead of 9.

Generally, the Onsager reciprocal relations take the form αij = αji, where i, j can be spatial

or thermodynamic degrees of freedom.

1.2 Topological phases of matter

One learns in elementary school that matter exists in different forms, or ‘phases’. The first

classification we are exposed to is that of solids, liquids, and gases. Solids are rigid, liquids

and gases can flow. Liquid water, when in a jar, will sit at the bottom, but in vapor form,

it will fill the jar, and even escape if allowed. It makes sense to classify things as solid and

liquids because all liquids can flow, and all solids are rigid. Ice may be the same substance

as water, but as far as its response to an external force is concerned, it would have more in

common with a log of wood than its liquid form. We are also made to understand that the

transition between phases, such as melting, is a sharp process, accompanied by qualitative

change in physical properties.

Some time later, we are taught that all matter is ultimately composed of atoms and

molecules, which are nothing but electrons revolving around nuclei made of protons and

neutrons. One therefore begins to understand that even though the basic constituents of

all matter is the same, they can organize in ways that can lead to very different observable

behavior on our (macroscopic) scale of observation. At around the same time, the suspi-

cion also starts taking root that the story of phases as taught in elementary school must be

incomplete. What is a magnet, for example? Surely, it is a solid, but there is something
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different about a magnet from ordinary solids. Not all solids can attract a bar of iron for

example.

If one’s curiosity towards physics holds a few more years, one finally begins to understand

that the story as taught in elementary school is indeed incomplete. Matter can exist in three

forms specifically in reference to its mechanical properties, and there too, the story is quite

murky. There can be amorphous substances (like glass) that can look quite solid on our

(human) scale of observation, but really, are not ‘rigid’ in the same way as crystalline solids;

something that eludes the simple categorization of solid vs liquid. Or, the fact that beyond

a certain critical temperature and pressure, the phenomenon of boiling, accompanied by a

discontinuous jump in density between the liquid and vapor phase, disappers entirely, so

perhaps, they aren’t distinct phases of matter after all in any well defined manner. One also

learns that it is indeed acceptable to refer to magnets as a distinct phase of matter, and in-

deed, it is one of many distinct forms of macroscopic behavior that matter can display with

respect to its electromagnetic properties. Materials that can conduct electricity (conduc-

tors), compared to materials that cannot (insulators). Materials that can conduct electricity

without resistance (superconductors) compared to materials that can conduct electricity, but

not dissipationlessly (ordinary conductors) etc.

A substance that can exist in more than one phase will undergo phase transitions. Many

phase transitions are accompanied by a change in the symmetries obeyed by the thermody-

namically favorable configuration on either side of the phase transition. For example, a liquid

enjoys the full symmetry of the dynamics of its microscopic constituents, and thus, obeys

continuous translation symmetry. However, at low temperatures, the liquid solidifies into a

state of lower symmetry (crystal), that only obeys discrete translation symmetry. Similarly,

below the Curie temperature, the thermodynamically stable configuration for a ferromag-
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net to exist in is one with a non-zero magnetic moment, spontaneously chosen, that breaks

rotational symmetry. This is the general pattern of spontaneous symmetry breaking, a phe-

nomenon whereby at high temperatures a substance exists in a symmetric phase, enjoying

the full set of microscopic symmetries, whereas at lower temperatures, it exists in a symmetry

breaking phase, characterized by an order parameter (like magnetization) that breaks the

symmetry explicitly. These ideas were first developed by Landau and then later expanded

upon by development of Renormalization Group analysis of critical phenomena [33] [68].

For a long time, it was believed that symmetry was the only organizing principle by

which different types of order in which matter may exist may be classified. However, the

discovery of the Quantum Hall Effect led to the realization that symmetry and symmetry

breaking alone do not encompass all the distinct phases of matter than exist. In QHE, a

2D electronic system subject to a strong perpendicular magnetic field shows quantization

of Hall conductance σxy (defined as the ratio of current Ix flowing in the x direction and

the Hall voltage Vy that develops perpendicular to the current; B = Bẑ). As one sweeps

through a range of values for the magnetic field, the Hall conductance shows a staircase

like variation; Sudden changes followed by plateaux where σxy is constant. Moreover, the

longitudinal conductance σxx is zero on each plateau, and only shows a spike in the narrow

ranges of magnetic field where the Hall conductance jumps from one step to the next.

At any of these plateaux, the value of the Hall conductance is precisely quantized to be

σxy = νe2/h, where ν can be an integer [66], or a rational fraction [62]. Moreover, this phe-

nomenon is insenitive to details such as the amount of impurities present, or the geometric

shape of the experimental sample. Each plateau characterized by a distinct ν is a distinct

state of matter, that exists for some range of magnetic fields. However, all these phases enjoy

the same symmetries, so symmetry cannot be the principle that classifies them. Rather, the
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emergence of integers and rational fractions suggests that the basis of classification in this

case is topological.

There is an intuitive connection between integers and topology. Indeed, the popular per-

ception of the word ‘topology’ has to do with how a coffee cup is equivalent to a donut, and

how these are distinct from a ball. A coffee cup can be deformed into a donut, but not a

ball, because of differing number of holes. If we now imagine a generalization of this idea,

the number of holes, or the ‘genus’ of a closed surface is topological information, as opposed

to its precise shape, which is a matter of geometry. Obviously, any closed surface can only

have an integer number of holes.

Formally, the emergence of topological information from geometry in this context is en-

coded in the famous Gauss-Bonnet theorem, which relates the surface integral of the local

curvature over a closed surface to the genus of the surface. This is instructive, because it

shows us that topological information about a geometric space emerges when we consider

its global properties. The local curvature is a locally defined quantity, sensitive to geometric

details. However, its surface integral is a global property of the object, and hence, should be

insensitive to smooth changes in geometric details. This is why the surface integral carries

topological information about the object.

The topology referred to in the case of topological phases is that of the Hilbert space

of states of the underlying quantum mechanical system. In this sense, electronic states of

matter referred to as ‘topological’ are macroscopically quantum mechanical, and the under-

lying quantum mechanical nature is reflected in macroscopic properties of the system. This

does not make these states of matter special though. Even the phenomenologically sim-

plest electronic state of matter, ordinary insulator, requires quantum mechanics to explain
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its insulating behavior. Electrons in crystalline substances reside in energy bands. Due to

the quantum mechanical phenomenon of level repulsion, these bands usually are separated

in energy, much like the energy levels in an atom. In a spatially finite sample, each band

contains a finite number of states. Pauli exclusion principle implies that at most, only one

electron can occupy each energy state in the band. So, it is possible for band to be com-

pletely full. Insulators are precisely substances where the last occupied band (and the ones

below in energy) are completely full, and the next unoccupied band has a large energy gap.

In essence, insulators cannot conduct electricity because there is nowhere for the electrons

to go. In contrast, conductors are substances that have a partially filled band.

What instead makes topological phases special is that they arise when the underlying

Hilbert space of states has a topologically non-trivial structure. Since the discovery of the

QHE, it has been realized that topological effects are more widely spread than in the 2D

electron systems subjected to strong perpendicular magnetic fields. Some highlights have

included the work of Haldane [23], who presented a model of realizing QHE with a magnetic

field that is zero on average (the so called Quantum Anomalous Hall Effect), and the recent

prediction and discovery of Topological insulators, time reversal invariant states of matter

that can exist in 2 or 3 dimensions. Like ordinary insulators, topological insulators are in-

sulating in the bulk, but have metallic surfaces [24] [51].

In each case, the topological phases are characterized by the presence of ‘topological

invariants’, that are dependent on the global properties of the state space. In IQHE, the

topological invariant is called the ‘Chern number’, which can take up values belonging to

the set of integers, Z. In the TI state, the integer (or set of integers, dependent upon the

dimensionality of the system) can only take up two values, even or odd, in trivial and topo-

logical insulators respectively; accordingly, the topological invariant is called the Z2 invariant.
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The topological invariants characterizing these states of matter are physical observables.

The physical consequences of the Chern number is the quantization of σxy into integer mul-

tiples of e2/h [61]. The Z2 invariant, on the other hand, counts the number of propagating

boundary modes localized at the edge of an insulator. Only an odd number of modes en-

sures that the surface conducts. Hence, the relevant physical observable in this case is the

metallicity of the surface. In each case, the topological invariant is insensitive to smooth

changes of the system. In order to change the topological invarant characterizing a certain

topological state, one would have to change the topology of the underlying space of states,

leading the system through a quantum phase transition.

Quantum Hall Effect, Topological insulators, are all insulating states of matter, i.e. their

band structure is gapped, and the lack of conduction is a result of the finite energy gap sepa-

rating the conduction and the valence bands. However, topological effects are not restricted

to gapped systems alone, and may also be observed in conductors. Weyl semimetals, the

subject of this thesis, is such a gapless phase of matter that are nevertheless topologically

distinct in their macroscopic properties than ordinary conductors.

1.3 Topological band theory

1.3.1 Berry phase

The basic concept that is useful in describing the topological character of the state space of

a quantum mechanical system is Berry phase, which we will review briefly here. A compre-

hensive review to the subject may be found in [70], [64].

Berry phase is the name given to the geometric phase accumulated for a quantum mechan-
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ical state evolving adiabatically through some parameter space. To make things concrete, we

consider a system with a Hamiltonian that depends on a set of parameters R = (R1, R2, ...);

H = H(R). For any given R, we assume that the Schroedinger equation has a discrete

spectrum:

H(R)|n(R)⟩ = ϵn(R)|n(R)⟩ (1.3)

The label n label the energy bands of the system. The spectrum is assumed to be

non-degenerate, and gapped at a generic value of R, although, there may be isolated band

touchings. We imagine slowly evolving the system through some curve C in parameter space;

R = R(t). By ‘slow’, we mean such that the typical timescale of variation 1/ω >> ℏ/∆ϵ,

where ∆ϵ is the typical size of the energy gap between successive bands. Then, the quan-

tum adiabatic theorem guarantees that if a system is prepared at time t = 0 in the state

|n(R(0)⟩, then at any successive time t > 0, the system remains in eigenstate |n(R(t)⟩; i.e.

no interband transitions happen when the evolution is slow enough.

This, however, is still not enough information to determine the state at time t; we are

yet to address the issue of its phase. In general, the quantum mechanical state vector |ψ⟩

signifies the same physical state as eiϕ|ψ⟩, for an arbitrary real phase ϕ. This applies to the

eigenstates |n(R)⟩ as well; solving the eigenvalue equation does not fix their phase. Since we

are considering a variation through parameter space, we need to specify some convention for

fixing this phase, such that its variation is smooth and single valued along the trajectory the

system traverses. This is called gauge choice. Ideally, we would like to make a gauge choice

that works over the entire parameter space of R. In topologically non-trivial band structures

however, this may not be possible. Even in such cases though, it can be assumed that one can

make a consistent gauge choice in a finite neighborhood of any given R; the whole parame-

ter space may be covered by overlapping patches where consistent gauge choice may be made.
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Assuming, therefore, that |n(t)⟩ = |n(R(t))⟩ has a well defined phase relation with |n(0)⟩,

we may then write the state at time t as:

|ψ(t)⟩ = eiγn(t)e−
i
ℏ
∫ t
0 dt

′ϵn(R(t′))|n(t)⟩ (1.4)

The second factor is the dynamical phase that is associated with Hamiltonian evolution.

The first phase factor is the so called Berry phase. Plugging this into the Schroedinger

equation iℏ∂t|ψ(t)⟩ = ϵn(R(t))|ψ(t)⟩, we find that the Berry phase γn(t) satisfies:

γn(t) = i

∫ t

0
dt′⟨n,R(t′)|∂t′|n,R(t′)⟩ ≡

∫
C
dR · An(R) (1.5)

where An(R) is called the ‘Berry connection’, or the Berry vector potential, and is given by:

An(R) = i⟨n(R)|∇R|n(R)⟩ (1.6)

The Berry connection is not gauge invariant: making the gauge transformation |n(R)⟩ →

eiϕ(R)|n(R)⟩ results in An(R) → An(R)−∇Rϕ(R). This led to the belief in the early years

of the development of quantum mechanics that the Berry phase is unimportant, as one can

always make a suitable gauge choice so that γn(t) → γn(t) + ϕ(R(0)) − ϕ(R(t)) can be be

cancelled out over the path C .

This belief persisted till the work of Berry [9], who considered the case of a closed contour

R(t) = R(0). Once a gauge is chosen, a unique phase factor eiϕ(R) is associated with each

R. For closed contour C , R(t) = R(0) is the same point in parameter space. It follows that

ϕ(0) − ϕ(t) is restricted to be 2πm, where m ∈ Z. So, when the contour C is closed, the

accumulated Berry phase γn can only change by an integer multiple of 2π under a gauge

transform. Since we are only interested in eiγn , this makes γn accumulated along a closed
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contour C a gauge invariant (and hence, physically relevant) quantity.

The Berry phase is a physical quantity, which encodes information about topology of the

parameter space, but needs a contour C to be defined. This is inconvenient; it would be

convenient to have a local (in parameter space) observable that encodes topological infor-

mation. This can be found by using Stoke’s theorem to convert the contour integral over C

into an area integral over a 2-dimensional surface S bounded by C . Then, we may write the

Berry phase as:

γn =

∮
C
dR · An(R) ≡ 1

2

∫
S
dRi ∧ dRjΩ

n
ij (1.7)

where, the ‘Berry curvature’ Ωn is given as:

Ωn
ij =

∂An
j

∂Ri
− (i↔ j) = i

(
⟨ ∂Ri

n(R) | ∂Rj
n(R) ⟩ − (i↔ j)

)
(1.8)

If the parameter space is 3-dimensional, then we may convert the Berry curvature tensor

to its dual vector, Ωi
n, which is related to the antisymmetric tensor by the relation Ωn

ij =

ϵijkΩ
i
n. The vector Berry curvature, like Magnetic field, can be written in cross product

form in terms of the vector potential:

Ωn(R) = ∇R ×An

γn =

∫
S
dS ·Ωn(R)

(1.9)

The Berry curvature is a gauge invariant, locally defined observable quantity that encodes

information about the topology of the energy bands in parameter space. As such, the berry

curvature Ωn has observable consequences on the microscopic dynamics of the system under

consideration.

We started this construction with the assumption of adiabatic evolution. This is an

17



approximation restricting dynamics of the system to be contained in a single band n. The

Berry curvature encodes information about the residual effects of the other bands n′ ̸= n,

which can still affect the dynamics within the n-th band through virtual transitions. Indeed,

it is possible to write the expression for Berry Curvature tensor in an alternate form that

suggests this interpretation [70]. As a result, if we study the full problem (without the

approximation of projecting to a single band n), we would find that the Berry Curvatures

of all bands at any given R sum to 0:

∑
n

Ωn(R) = 0 (1.10)

1.3.2 Band theory of electronic solids

In this thesis, we are concerned with the properties of electronic crystalline matter. The basic

properties of electronic crystals are explained by band theory of solids. The cornerstone of

band theory is the Bloch theorem, that tells the structure of energy eigenstates available to

an electron residing in a crystalline solid. Solving the single particle Schroedinger equation

with Hamiltonian H = p2/2m+ VL(x), where VL is the lattice potential, the eigenfunctions

organize into discrete bands n, and within each band, may be labelled by wavevector k. For

a given n, k, the eigenfunctions take the form:

ψn,k(x) = eik·xun,k(x) (1.11)

where un,k is periodic with the periodicity of the lattice. The eik·x term is the term that

leads to variation across primitive cells of the lattice, whereas u looks the same in every unit

cell.

The extent of each band is finite in k-space, and is called the ‘Brillouin Zone’. Let
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{ai} be the set of primitive vectors for the lattice. The set of vectors {bj} that satisfies

ai · bj = 2πδij are the primitive vectors of the ‘Reciprocal Lattice’; Fourier Transform

of a cell-periodic function in real space x can only have non-zero Fourier components for

k that lie on the Reciprocal lattice. For any lattice translation R =
∑

i niai and recipro-

cal lattice translation G =
∑

jmjbj for some {ni}, {mj} ∈ Z, R ·G = 2πn, for some n ∈ Z.

Bloch functions may only be uniquely defined for k modulo arbitrary reciprocal lattice

translationG. To see this, one needs to solve the Schroedinger equation in Fourier space [31].

Since the potential is cell-periodic, its Fourier transform will include contributions at all G;

VL(x) =
∑

G VGe
iG·x. Expanding ψ(x) =

∑
k e

ik·xψk, the Schroedinger equation takes the

form (ℏ2k2/2m− ϵ)ψk+
∑

G VGψk−G = 0, which generically will have a discrete spectrum

of eigensolutions ϵn for a given k. The lattice potential mixes the mode ψk with all ψk+G.

As a result of this, an energy eigenstate at k naturally contains contributions from Fourier

modes at all k +G. Energy eigenstates are defined uniquely for each k only if we restrict

ourselves to k belonging to a single primitive cell in the Reciprocal space. Conventionally,

this is chosen to be the set of points in k-space that are closer to the point k = 0 than any

G, in which case, it is called the ‘First Brillouin Zone’, or simply ‘Brillouin Zone’.

Because the wavevector k is physically equivalent to the wavevector for k+G, it follows

that the edges of the Brillouin Zone physically represent the same physical state. Hence, the

Brillouin Zone of a d-dimensional crystal is topologically equivalent to a d-torus.

Wavevector k takes the role of the parameter R from the previous section. In order to

adapt the machinery of Berry phase to this context, we define the ‘Bloch Hamiltonian’ H(k):

Ĥ(k) = e−ik·x̂Ĥeik·x̂ =
(p̂+ ℏk)2

2m
+ VL(x̂) (1.12)

19



where ˆ notation has been introduced to demarcate the operators from the parameter k.

The cell periodic part of the Bloch function, |unk⟩ is the energy eigenstate corresponding to

the Bloch Hamiltonian: H(k)|unk⟩ = ϵn,k|unk⟩. Using the Bloch states, we may define the

Berry curvature vector Ωn as:

Ωn = i∇k × ⟨unk|∇k|unk⟩ (1.13)

which works in 3-dimensions, as well as 2 (where Berry curvature can have only a single

component, ⊥ to the plane).

1.3.3 Spin and symmetry

So far, we haven’t said anything about the spin of electrons. Electrons possess a quantum

mechanical degree of freedom, which may be interpreted as an intrinsic form of angular mo-

mentum. Electrons are spin-12 particles. Measurement of spin angular momentum s along

an arbitrary direction n̂, s · n̂, yields two possible results of measurements: ±ℏ
2 . Charged

matter with angular momentum generally possesses magnetic moment, and can couple to

and be manipulated by a magnetic field. Spinful charged particles like the electron, there-

fore, possess magnetic moment just as a result of their intrinsic spin degree of freedom.

Under the assumption that there are no magnetic fields, and none of the orbital degrees

of freedom interact with the spin degree of freedom (basically, nothing interacts with spin),

[H, s] = 0; i.e. electronic energy levels are 2-fold degenerate. The 2-fold degeneracy is ac-

counted for by an extra quantum number sz, the projection of s along an arbitrarily chosen

z axis. Accordingly, the Bloch functions should now be written as |u↑n,k⟩ and |u↓n,k⟩. In gen-

eral, electrons will be found in states that are linear superpositions of both ↑ and ↓ states.

Hence, states vectors representing the physical state of a spin-12 should be 2-dimensional
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‘spinors’, instead of the 1-dimensional objects we have been dealing with so far. In this spin

space, the spin angular momentum acts as ℏ
2σ = s is the spin angular momentum operator,

and σ = (σx, σy, σz) are the Pauli matrices.

In the presence of a non-zero magnetic field along the z direction B = Bẑ, the ↑ and ↓

states are still the energy eigenstates, however, the degeneracy is lifted by the coupling of spin

magnetic moment with the magnetic field, which takes the form HZeeman ∼ Bsz. However,

now, the choice of z direction is not arbitrary; it is decided by the B field. If instead, the spin

degree of freedom enters the Hamiltonian in the form h(k) · s, not only will the degeneracy

be lifted, but also, sz along any fixed direction z becomes a bad quantum number to label

energy eigenstates by. We may call these states |u+n,k⟩ and |u−n,k⟩. It may be seen that the

energy eigenstates are still ‘spin polarized’, i.e., in eigenstates of spin along some particular

direction. However, this direction is locally defined in momentum space as the direction of h.

Generically, we should expect the spin degrees of freedom to be coupled to the orbital

degrees of freedom. A rough picture of how this coupling comes about is to realize that the

orbital motion of the electron gives rise to an effective magnetic field, which then couples

with the spin of the electron. The general form taken by this ‘Spin-Orbit’ interaction is

Hso ∼ (s× p) ·∇VL [53]. Once again, this makes [H, s] ̸= 0, as a result of which sz, is not

a good quantum number.

It is immediately clear how the Zeeman interaction leads to the breaking of 2-fold spin

degeneracy. However, it is not immediately clear if (or when) the spin-orbit interaction lifts

this degeneracy. Note that p and VL are operators, unlike B and k, which are parameters.

More broadly, we would like to know when the Bloch bands are two fold degenerate, and

when this degeneracy is lifted, and we get two spin-polarized energy bands with energies
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ϵ+n,k ̸= ϵ−n,k. In order to answer this question, we need to consider the behavior of our system

under two discrete symmetry operations, time reversal T and spatial inversion I

The action of I on observable quantities is: IxI−1 = −x , IpI−1 = −p , and IsI−1 = s.

Spatial inversion flips x and p, but leaves angular momentum s invariant. The system is said

to possess inversion symmetry if : IHI−1 = H. For the single particle hamiltonian consid-

ered in presence of lattice potential, this implies VL(x) = VL(−x). For an inversion symmet-

ric hamiltonian, the Bloch hamiltonianH(k) = e−ik·xHeik·x satisfies: IH(k)I−1 = H(−k).

Since H(k)|u±n,k⟩ = ϵ±n,k|u
±
n,k⟩, it follows that I|u

±
n,k⟩ = |u±n,−k⟩, and ϵ

±
n,k = ϵ±n,−k.

The action of T is more subtle. The basic action of T is to reverse the direction

of unitary evolution in time. This implies that for a time-reversal symmetric system,

T U(t)|ψ⟩ = U(−t)T |ψ⟩, for an arbitrary state ψ, where U(t) = e−
i
ℏ
∫ t
0 dt

′H(t′) is the unitary

time evolution operator. That is, the time reversed version of a state |ψ⟩ evolved to time t

is the same as the time reversed version of the initial state, T |ψ⟩ evolved to time −t. For

infinitesimal time δt, U(δt) ≃ 1− i
ℏHδt, so in order to reverse the direction of time evolution,

T (iH) = −iHT . Naively, we may expect that this imples that T H = −HT . However, this

is an unphysical imposition, as this would imply that if we have an energy eigenstate of

energy ϵ, then, its time reversed state would also be an energy eigenstate, with energy −ϵ.

This would signify that the system has no ground state, and hence, is unstable.

The solution is that for a time-reversal symmetric system, T H = HT , but T i = −i. To

see how this is possible, note that T and I are both ‘symmetry operations’. This means

that under these transforms, probabilities are preserved. Probabilities in quantum mechanics

take the form |⟨α|β⟩|2. An old theorem by Wigner says that any symmetry operation must

be either unitary, leaving the amplitude ⟨α|β⟩ invariant, or anti-unitary, transforming the
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amplitide ⟨α|β⟩ to ⟨β|α⟩ = ⟨α|β⟩∗. Time reversal T is of the second variety. This leads to

the required behavior. In general, we may write T as UT K, where UT is a unitary matrix,

and K is complex conjugation operator.

T xT −1 = x. However, T pT −1 = −p. Time reversal should reverse the direction of

motion, and hence, the momentum. Alternately, writing p = −iℏ∇x leads to the same con-

clusion. Finally, T should flip spin, T sT −1 = −s. Within the constraint of the anti-unitary

structure that T must possess, this can be accomplished by choosing UT = eiδσy, where σy

is the only Pauli matrix with imaginary elements, and δ is an arbitrary phase. Commonly,

this phase factor is chosen to be −i.

From this it follows that for a time-reversal invariant system, T |u±n,k⟩ = ∓|u∓n,−k⟩, and

ϵ±n,k = ϵ∓n,−k. This is the so called ‘Kramer degeneracy’. As an aside, let us note that for

spin-12 particles, T 2 = −1.

If a system has both T and I symmetries, ϵ+n,k = ϵ−n,−k = ϵ−n,k, i.e. the energy bands are

everywhere doubly degenerate. If one of these two symmetries are broken, then generically,

we should expect these bands to be split in energy.

How does one break T or I symmetry? We have already seen that I is broken when

VL is not inversion symmetric. If we can assume that T symmetry holds, we can still say

that ϵ+n,k = ϵ−n,−k. However, if Hso = 0, the energy bands will still look doubly degenerate;

nothing interacts with spin, so automatically ϵ+n,k = ϵ−n,k. If Hso ̸= 0, it will break I

symmetry (because of its dependence on VL) and lift the± degeneracy, because of its coupling

to s. The simplest example of a situation where T symmetry is broken is in the presence of

an external magnetic field B. HZeeman explicitly breaks T symmetry (provided we define
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the T operation to be limited to the system alone, and not external sources giving rise to the

B field). In ferromagnetic materials, below the Curie temperature, a non-zero spontaneous

magnetization m can play the same role as an external B field.

1.3.4 Accidental degeneracies

So far, we have motivated that it is reasonable to expect the splitting of bands n into 2

spin-polarized sub-bands n,+ and n,− in non-centrosymmetric crystals and ferromagnetic

materials. These bands should be close energetically, compared to ∆ϵn, the typical bandgap

between successive n, provided that the influence of the degeneracy lifting perturbation is

small enough relative to VL. It is The most general hamiltonian that can be written down

for this 2-level system is:

H(k) = h0(k)1+ h(k) · σ (1.14)

where 1 is the identity matrix, and h0 and the components of h are real.

The question now arises when these bands can touch, i.e. when can we expect to en-

counter points k0 in k-space where h(k0) = 0? Since there are 3 Pauli Matrices, one in

general needs to tune three parameters to tune all 3 components of h to 0. Thus, in a

3-dimensional crystal, we can expect to generically encounter bands touching at isolated

points. These band touchings are accidental. In graphene, which is a 2 dimensional mate-

rial, bands (that arise from sublattice degree of freedom, instead of spin) touch at K and

K ′ points at the corners of the hexagonal Brillouin zone. However, these band touchings

cannot be accidental by the argument above; instead, they only arise under the assumption

of T and I symmetries, and are lifted by perturbations that break either symmetry [8].

In contrast, accidental degeneracies are stable [26]. One can imagine a smooth deforma-

tion to the system that takes h(k) → h+δh(k), will only shift the point of degeneracy from
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k0 to some k0+ δk0, but will not lift the degeneracy. Once created, accidental degeneracies

are stable; their existence is insensitive to smooth deformations. This suggests that they are

actually topological objects.

To investigate, consider the direction specified by h, given as ĥ. Clearly, ĥ is not defined

at k0. Let us now imagine surrounding k0 by a sphere in momentum space. The unit vector

ĥ is then a map from the 2-sphere to itself: ĥ : S2 → S2. Such a map has a ‘winding

number’ w which counts the number of times the the map wraps the first sphere around the

second. This has to an integer. Note that the trivial map h = k has a winding number

w = 1. The fact that each point of degeneracy is associated with an integer is a further sign

of the topological origins of its stability. Essentially, creation of a k0 ‘wraps’ the eigenstates

on an S2 around S2; To lift the degeneracy, we would have to ‘unwrap’ this wrapping.

Figure 1.2: Winding number of map S1 → S1. Note that the choice of segment does not
matter in evaluating the winding number. Image from [12]

For a general h, w about a general point k (not necessarily a point of degeneracy) is
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specified by the following surface integral defined on a S2 containing k:

wk =
1

4π

∮
S2
d2aiϵabcϵijkĥa

∂ĥb
∂kj

∂ĥc
∂kk

(1.15)

where a is the area element on S2. Now, it is possible to explicitly compute the Berry curva-

ture for the two band hamiltonian specified by h explicitly, by diagonalizing the Hamiltonian

and then finding the eigenstates |u±n,k⟩ [8]. The Berry curvature is given as:

Ω±
i = ∓1

2
ϵabcϵijkĥa

∂ĥb
∂kj

∂ĥc
∂kk

(1.16)

for the upper and the lower bands. We see that the winding number of h around k0 is

nothing but w = 1
2π

∮
S2 da · Ω for some S2 containing k0, that is points of degenracy are

monopoles of Berry curvature! This is an explicit demostration of the fact that the Berry

curvature encodes the topology of the Hilbert space of states. For linear band touchings

h(k) = ± vF(k− k0), the winding number is wk0 = ±1. There is no topological reason why

points of degeneracy with |w| > 1 should not split up into several points of |w| = 1. So

generic perturbations can split up monopoles with higher charge w. Hence, generally, one

encounters monopoles with charge w = ±1.

So, does this all mean that once a k0 is created in the Brillouin Zone of a crystalline

solid, nothing can ever destroy it, just move it around in the BZ? Not quite. The reason is

the Nielsen Ninomiya theorem [44], which states that the sum of winding numbers of all k0

in the Brillouin Zone is zero: ∑
k0∈BZ

wk0 = 0 (1.17)

There must be an equal number of Berry monopoles and anti-monopoles in the Brillouin

Zone. It is possible to imagine that a strong enough perturbation to the system can move
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around a monopole k0 with w = 1 across the Brillouin Zone till it meets with a monopole

of charge w = −1. This would then accomplish the unwrapping that we mentioned above.

The basic reason for the Nielsen Ninomiya theorem is that the Brillouin Zone is a torus,

S1 × S1 × S1 in 3 dimensions. An elegant proof due to Witten [69] goes as follows.

Consider ∇i(ϵijkĥ · (∇jĥ×∇kĥ), where the vector operations · and × are acting on the

ĥ’s and ∇ = ∂/∂k. This reduces to ϵijk∇iĥ ·(∇jĥ×∇kĥ) = 0 identically, because ∇1,2,3ĥ

are 3 vectors that lie tangent to the 2 dimensional sphere S2 on which ĥ belongs. Now, con-

sider BZ ′, which we get by removing small balls Sk0 around every monopole in the BZ. ĥ

is well defined everywhere on BZ ′. So, we may write 0 =
∫
BZ ′ ∇i(ϵijkĥ · (∇jĥ × ∇kĥ).

By Stoke’s theorem, this reduces to
∮
∂BZ ′ daiϵijkĥ · (∇jĥ ×∇kĥ), where ∂BZ

′ is the 2-d

boundary of BZ ′. But the fact that BZ is a torus means that the BZ has no boundary, and

consequently, the boudary of BZ ′ is just ∪k0Sk0 . Hence, it follows that the sum of winding

numbers for all the k0’s is zero.

So, the minimum number of monopoles that need to exist in the BZ is 2, of opposite

charge. In a I-symmetric ferromagnet, this conclusion still holds, because under I, σ → σ,

and k → −k, so w → −w; I transforms a monopole of charge w at k0 to a monopole of charge

−w at −k0. In other words, w and −w are ‘chiral’ partners, two inequivalent objects (such

as hands) that transform into one another under reflection. Hence, I-symmetry guarantees

that a monopole will be accompanied by an anti-monopole in the BZ. However, in a T -

symmetric anisotropic crystal, the minimum number of monopoles required is 4, as T does

not flip w. Note that it follows that a material with both T and I cannot have a monopole

of Berry flux. This ties in neatly with our previous understanding; essentially, when T and

I are both symmetries, both bands are glued together everywhere, so there is no question

of a point degeneracy.
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1.3.5 Semiclassical approximation

The discussion so far has been within the frramework of single-particle quantum mechan-

ics. The energy bands that we have found are solutions to the problem of a single particle

moving in a periodic lattice. In reality though, electrons do interact on account of their

mutual Coulomb repulsion. Does this imply that everything we have discussed so far needs

to be discarded? Surprisingly, the answer is no. It turns out that the approximation of

almost free electrons works to explain the properties of most (but not all) electronic mate-

rials. This may roughly be understood in the following manner. Let us say that interaction

related processes are occuring at some characteristic timescale τmicro. The effect on the

single particle states that we have been envisioning so far is that now, we can no longer

pretend that these are exact stationary energy eigenstates. Instead, their energy acquires

a width, ∆ϵ ∼ 1/τmicro, which follows from the uncertainty principle for energy. In other

words, instead of corresponding to plane waves, e−i(ϵpt−p·x) that propagate forever, it is

more appropriate to imagine the single particle states as being described by a wavefunction

ψp(x, t) ∼ e−t/τmicroe−i(ϵpt−p·x); objects that decay with timescale τmicro.

Now, let us consider a ‘Fermi gas’, a collection of fermions assumed to be so weakly

interacting that it can be modelled as a gas of independent particles that suffer occasional

collisions. By virtue of obeying Fermi-Dirac statistics, fermions must obey the Pauli exclusion

principle. Accordingly, in equilibrium, the occupancy of the single particle energy levels ϵ(p)

is given by the Fermi distribution

f(p) =
1

e(ϵ(p)−µ)/kBT + 1
(1.18)
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Macroscopic densities are given by integrals of f over p- space:

n =

∫
d3p

(2π)3
f(p) (1.19a)

ε =

∫
d3p

(2π)3
f(p)ϵ(p) (1.19b)

For ϵ−µ >> T , then f → 0. When µ− ϵ >> T , f → 1. We can therefore see that only in a

band of energy T around µ host particle states that are capable of participating in collisions.

Much above µ, there are no electrons, and much below, there are no nearby vacant states for

an electron to move to as a result of the collision. This also means that the typical collision

between two electrons will change their energy by ϵf − ϵi ∼ T .

When can an interacting collection of fermions be treated like a gas? When the collisional

width ∆ϵ << T . In this situation, the ‘Fermi liquid’ can be said to possess ‘Quasiparticles’,

elementary excitations that can be labelled by the same charge, spin, momentum as the orig-

inal electron, and which have a sharply defined energy relative to T . Note that although the

quasiparticles look like electrons, they are emergent objects, which emerge as an effective

single particle description from an underlying theory of correlated electrons. This effec-

tive description is called ‘Fermi Liquid theory’ and was first developed by Landau to explain

the properties of helium-3 in its normal state (above the T for superfluid transition) [39] [49].

The quasiparticle energy dispersion is not the same as that of the underlying ‘bare’

electrons, but are instead ‘renormalized’ to take into account interactions. In general, de-

termination of the energy dispersion of quasiparticles is a problem that requires the full

machinery of many-body quantum theory [1] [54] [50]. However, the point is that we can

treat this problem of quantum field theory (which is the quantum theory of many-body

systems) with an effectively classical picture of particles with a well defined p and ϵ. This
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is the ‘Semiclassical’ description. In 3 dimensions, a simple dimensional argument suggests

that τmicro ∼ T−2. This explains why the Fermi liquid theory works at low temperatures,

T → 0, which is where helium-3 exists in its liquid phase (boiling point of He-3 ≃ 3 K). Note

also that Helium atoms are neutral, and only interact via short-range forces.

In contrast, electrons interact via long range Coulomb interaction. However, that is at

the level of the bare ingredients that go into the field theoretic formulation. The effective

quasiparticles that emerge only interact via short range interactions; i.e. the influence of

far-off charges is effectively ‘screened’ out. Also, in typical crystalline conductors, room tem-

perature is actually low when compared to the ∆ϵband, the typical energetic spread of bands.

So, typically, these are also well described by semiclassical theory (see [52] for exceptions).

When we have a semiclassical description at our disposal, we can utilize it to describe

non-equilibrium processes in this gas of quasiparticles. These quasiparticles reside in an

effectively classical x − p phase space. In this space, there are two main processes that

displace quasiparticles. One is the Hamiltonian evolution ẋ(t) and ṗ(t) of a particle tracing

trajectory (x(t),p(t)) through phase space. The second is the effect of collisions. The result

is the Boltzmann equation [40], or ‘kinetic theory’, after the Kinetic Theory proposed by

Boltzmann as the description of the classical many-body state. This equation takes the

form of a conservation law for distribution f(x,p, t):

∂tf + ẋ ·∇xf + ṗ ·∇pf = W [f ] (1.20)

where the collision term W tracks the rate at which collisions deflect particles into a phase

space element dxdp around (x,p). Most generally, it has to track how many particles are

being collided into the element dp, and how many are being collided out of it. W is generally

a complex functional of f even at the classical level. Under the assumption that collisions
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are only pairwise, and that a state of ‘molecular chaos’ exists, that is, 2 (and higher)-particle

probability distributions reduce to products of 1-particle distributions f , W may be written

as:

W(x,p) =

∫
ddp′

(2π)d
ddp′′

(2π)d
ddp′′′

(2π)d
(2π)d+1δϵδpw{fp′′fp′′′(1− fp)(1− fp′)− (pp′ ↔ p′′p′′′)}

(1.21)

where w is the transition probability due to collisions between 2-particle states at (p,p′)

and (p′′,p′′′), δϵ is short hand for δ(ϵ + ϵ′ − ϵ′′ − ϵ′′′), and δp is similarly defined; i.e. total

energy and momentum are conserved by collisions. Pauli exclusion principle is reflected by

the factors of (1− f), which would be absent in a truly ‘classical’ gas. The molecular chaos

hypothesis is an assumption that ‘collisions’ are essentially instantaneous, and local in x

‘events’ suffered by otherwise ‘free’ particles whose motion is uncorrelated.

The transition probability w is the same for both p,p′ → p′′,p′′′ and the reverse process.

This principle of ‘detailed balance’ is just an expression of T invariance at the microscopic

level. The probability of a microscopic reaction to occur is the same as the reverse reaction.

That does not, however guarantee that there will be no net flow from (p,p′) to (p′′,p′′′).

This can still occur if the {#in −#out} in the expression above does not cancel out. This

is precisely the case in generic non-equilibrium situations. Essentially, the fact that in non-

equilibrium, ∇xf , or ∂tf , or ṗ ̸= 0 forces W ≠ 0. Thus, f is deformed into feq + δf , where

feq is the local equilibrium distrbution function Eq.(1.18), that may be derived from the

condition W [f ] = 0, and δf is the non-equilibrium deformation of the distribution function.

Of course, now, ϵ = ϵ[n, ε..], so strictly speaking now Eq.(1.18) represents a complicated

implicit functional relationship.

The limit where hydrodynamics is useful (when the gradient approximation works) is

when t, the non-equilibrium scale, is much longer than τmicro; Since δf is the response of
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the system to non-equilibrium perturbation to the system, it follows that δf << feq as well.

In particular, we may solve for δf for a given non-equilibrium situation (specified by T (x, t),

µ(x, t) etc.) using:

∂tf
eq + ẋ ·∇xf

eq + ṗ ·∇pf
eq = W [δf ] (1.22)

where feq = feq(x, t) is the local equilibrium distribution, and W is now linearized to

leading order in δf . This is more tractable than Eq.(1.20), but still hard to solve. The

approximation that is simplest is the so called ‘Relaxation Time Approximation’ which col-

lects all the non-equilibrium processes contained in W into a charactersitic timescale τmicro.

Also, broadly, the effect of of W is to establish local equilibrium, i.e. to decay any δf ̸= 0

to 0. Putting these two together, we obtain W ∼ −δf/τmicro.

What about the rates of evolution of the quasiparticle in phase space, ẋ and ṗ? If these

are truely classical particles, then, we should have [4] (e = c = ℏ = 1):

ẋ = ∇pϵp (1.23a)

ṗ = E+ ẋ×B (1.23b)

However, a more careful analysis involving wavepackets of Bloch states [13] [60] [70] reveals

that this classical intuition misses the effect of the Berry curvature Ωp experienced by the

quasiparticles due to the bandstructure. This is the ‘Anomalous velocity’, a term that has

been known for a long time [30], but whose geometric significance was not appreciated till

Berry’s work. Including this, we obtain:

ẋ = ∇pϵp + ṗ×Ωp (1.24a)

ṗ = E+ ẋ×B (1.24b)
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We can see from the form of the above equation that Berry curvature can be interpreted as a

magnetic field in momentum space. A direct consequence is the fact the phase space element

occupied by a wavepacket, dxdp(t), is no longer conserved as it evolves in time, but instead

acquires a factor of (1 +B ·Ω)−1, which generally depends on x and p. This is problematic

though, because, under the assumption that the element dxdp contains the same number

of states irrespective of its location in phase space (a reasonable assumption to make in a

gas of classical particles), this implies that the number of states covered by the w-p is not a

constant as it evolves; in other words, there is no defininite particle number associated with

a quasiparticle. So, the assumption of uniformity of density of states does not hold in our

quantum gas of quasiparticles; instead, it acquires a factor:

ρ(x,p) = (1 +B ·Ω) (1.25)

This allows us to associate quasiparticles with a definite number, which is a conserved quan-

tity (as a result of the U(1) gauge symmetry at the field theoretic level). Now, computation

of macroscopic densities must that ρ into account as well, e.g. n(x) =
∫
p ρ(x,p)f(x,p).

Note that strictly speaking, this treatment is only valid under ‘weak’ B fields; The solu-

tion to the quantum mechanical problem of a particle in a magnetic field is the emergence

of ‘Landau Levels’ as single particle eigenstates. B enters the hamiltonian H through the

‘minimal substitution’ of replacing p by p− eA, where A is the vector potential associated

with B. So, HB = w vFσ · (p − eA) for a single Berry monopole of charge w. The impli-

cation is that now [p, HB] ̸= 0; momentum is no longer a good quantum number to label

energy eigenstates by. However, since B = ∇ × A, A can only be non-zero in the plane

⊥ to B; so [p · B̂, HB] = 0. That is, only momentum along the direction of B, p · B̂, is

still a simulataneous observable with HB, and accordingly, there is only one component of

momentum, and correspondingly, one momentum quantum number given by wave-number k.
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The 2-dimensional momentum degree of freedom ⊥ to the B field collapses into states

labelled by a new quantum number n, which takes values ∈ Z. Accordingly, each Landau

Level n has enormous degeneracy. In essence, there is a hidden quantum number that does

not appear in the dispersion relation, which labels the degenerate states within each Lan-

dau Level. The dispersion relation for HB may be explicitly computed. For n ̸= 0, ϵ±
n,k =

±
√

ℏ2ω2cn+ vF
2ℏ2k2, where ωc is the ‘cyclotron frequency’ given as ωc = vF

√
2eB/ℏc.

That is, ϵ±k⊥,k
= ±

√
vF

2ℏ2k2⊥ + vF
2ℏ2k2, a continuous spectrum in k⊥, breaks up into a

discrete spectrum labelled by n as we turn on B. The lowest Landau level is special; the

n = 0 eigenstates are chiral, with dispersion ϵn=0,k = w vFℏk. There is only one, and it

propagates either parallel or anti-parallel to B depending upon the sign of w.

The Landau bands have the following feature: for fixed k, the band gaps get smaller and

smaller as we go to higher and higher n. For high n, therefore, the energy levels approximate

a continuous spectrum, i.e. the energy levels start resembling the spectrum at B = 0. This

in particular means that if we only have to deal with high-n levels, then, it may be a good

approximation to replace ϵn by ϵk⊥ in our semiclassical analysis (and capture the effect of

the B field through the coupling of Ω and B in the modified ẋ above. This is precisely

the case when ϵ >>
√
B, where ϵ is the typical energy of a particle. The typical energy

ϵ (of particles free to participate in collisions) lies in the range µ ± T . Hence, we get the

condition(s) that for kinetic theory to be valid one needs to have µ >>
√
B, and µ >> T .

Note that the second condition is a separate constraint from the first, but also ensuring that

states at ϵ ∼ B cannot participate in collisions, and hence, there is no need of describing the

discrete character of these low lying states correctly. In the context of hydrodynamics, the

first condition directiy translates to B ∼ O(∂); kinetic theory can only describe electrons

under the influence of weak B fields.
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The second condition is a general condition for the kinetic approach to work, not just in

the presence of a B field. Quasiparticles participating in collisional processes should come

for a thin shell of width T around the ‘Fermi Surface’, defined by ϵp = µ. This is the ‘low’

temperature mentioned earlier required for a picture of interacting quasiparticles to be valid.

1.4 Weyl semimetals

So far, we have seen that points of accidental degeneracy k0’s can appear in bandstructures

of 3-dimensional materials, provided at least one of T or I symmetries is broken. Once

formed, these points are stable. This, as we saw, makes sense because they are topological

objects, monopoles of Berry curvature with integer topological charge w. The question now

is, when do these Berry monopoles have observable effects? The answer is: when they lie

‘near’ the Fermi level.

Figure 1.3: Winding number wS associated with a Fermi surface S is the sum of winding
numbers wk0 for all Berry monopoles k0 ∈ S

When µ ± T ∼ ϵk0 , the energy of the degeneracy points, then the Fermi surface is no
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longer connected. Instead, it splits up into a collection of balls, each enclosing one (or

more) monopole, reducing to points when µ = ϵk0 . These disconnected pieces all enclose

topologically charged objects with charge w; moreover, this charge is associated with the F.S.

itself, through Gauss’ law for Berry curvature. This a situation which is topologically distinct

(from the point of view of F.S. topology) from a ‘normal’ metal, in which either, there are no

charges w, or, each disconnected piece S of the Fermi surface is such that wS ≡
∑

w∈S w = 0.

This topologically distinct phase is called the ‘Weyl semimetal’ (WSM) [3] [63] [27] [11].

1.4.1 Chiral anomaly

What makes WSM a distinct phase, therefore, is the presence of closed Fermi surfaces S with

non-zero topological charge wS . The Nielsen Ninomiya theorem now reads
∑

S⊂BZ wS = 0.

One suspects that the F.S. charges wS should somehow be able to classify WSMs in much

the same way as Hall conductance classifies the different QHE states, i.e. in the form of a

physical response. As it turns out, this is precisely the case. The relevant number here is

1
2

∑
S⊂BZ |wS |; i.e. a count of the total number of Berry monopoles of of given sign of w

contained in the BZ. The physical response that is characterized by this number is called

the ‘Chiral anomaly’.

In a WSM, electrons are trapped in ‘valleys’ defined by the disconnected Fermi surfaces

S. Each valley is defined by the topological charge wS . The magnitude, |wS |, defines the

degree of mapping ĥ from S to the S2 on which the map lies. Generically, when |wS | > 1,

we expect to find several monopoles of charge 1 contained within S. The sign, wS
|wS |

, which

can take up values ±, is a quantity that inverts under the action of spatial inversion I on

the band structure. Physically, this means that there are effectively two chiral species of

particles, L and R, that are mirror images of one another. The presence of L/R-handed

species is the defining characteristic of a WSM.

36



Figure 1.4: The defining characteristic of WSMs is the presence of Fermi surfaces S with
wS ̸= 0, leading to emergence of chiral valleys.

Experimental signatures of the WSM phase, therefore, would be observed by introduc-

ing a perturbation that couples differently to the L/R species. Such a perturbation indeed

exists: E ·B. Without thinking in detail, the key fact that motivates us to suspect that this

can somehow be used to differentiate between L/R species is that E ·B flips sign under I,

and so does n5 ≡ nL − nR, where nL and nR are the number densities associated with the

L/R species; both are pseudoscalars under I.

To see how, let us imagine the system at T ∼ 0, and µ >>
√
B, so that the semiclassical

picture is valid. Now, consider the typical microscopic collision, between either two electrons,

or, elastic (energy conserving, but momentum nonconserving) collisions between electrons

and impurities, whose collision rate takes the form W(p) =
∫
p′ ρ(p′)δ(ϵ−ϵ′)wp→p′(fp′−fp).

In both types of collisions suffered by electrons, the typical change of momentum of an e−

will be ‘small’ relative to the size of the overall Brillouin Zone. So, rarely will an electron

suffer a collision so violent that it ends up from one valley to another. Some may end up

random walking across the empty states available across the BZ (in an energetically unfa-

vorable landscape; the empty states are all higher in energy), but again, this will take a long
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time. This is why, the electrons in each valley are effectively ‘trapped’.

This means that if we could create a ‘chiral imbalance’, i.e. nL−nR ̸= 0, it would persist

for a much longer time τ than the timescale on which all other (intra-valley) processes oc-

cur, τmicro. Recall that τmicro is the timescale on which local equilibriation occurs within a

valley; if we have a nonequilibrium deformation δf to the equlibrium distribution feq, then

δf → 0 in a few τmicro’s. However, if δf instead signifies an imbalance between different val-

leys, then the inter-valley equilibriation will occur at rate τ−1, which is significantly slower.

But how to create the chiral imbalance in the first place? This is where the E ·B comes

in. One can show that in the presence of E · B ̸= 0, chiral imbalance is produced at a

constant rate proportional to E ·B. This can be shown directly from the kinetic approach;

we will reproduce here the calculation of Son and Spivak [57]:

In order to get conserved densities, one has to integrate out the p dependence of the

quasiparticle distribution f(p,x, t) to produce conserved densities such as n(x, t) etc. It

makes sense to separate f out into the distribution functions for the individual valleys S,

fS . We will introduce a new variable, ‘valley momentum’ q, defined relative to an origin

that lies within S. For example, if there is only one monopole in S, q can represent the

distance of a point in the valley from the monopole. So a p in the full BZ is represented by

(q,S). Accordingly, f(p) = fS(q). We can write down a Boltzmann equation for the fS ’s

separately. This takes the form:

∂tf
S + ẋ ·∇xf

S + q̇ ·∇qf
S = WS→S +

∑
S≠S ′

WS ′→S (1.26)

where we have separated out the intra and intervalley collision terms in the first and second

terms.
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Valley density nS is given as
∫
q ρqf

S
q , so to get the hydrodynamic equation for nS , we

need to integrate the above equation with respect to
∫
q ρq. First, let us focus on

∫
q ρqWq.

The first term, WS→S , gives 0. The intra-valley collision rate counts the rate at which parti-

cles from other parts of the valley are being deflected into the momentum space element at q.

Since ‘number’ is a conserved quantity in each collision, any particle deflecting into a given

element must have been collided out of another one. It follows that if we integrate over q,

we should get 0. It can in general be said that W that takes particles from a space S to itself

never (directly) contributes to the hydrodynamic equation for any conserved quantity that

is defined as an integral over S. For example, in the case of energy density ε =
∫
p ρpϵpfp,

where p ∈ BZ, the e − i collision term contributes
∫
p

∫
p′ ρpρp′ϵpδ(ϵp − ϵp′)(fp′ − fp) = 0

due to the δϵ.

On the other hand, inter-valley collisions do not average to 0 automatically. Assum-

ing a model of elastic collisions, we may write
∫
S d

3qWS ′→S =
∫
S
∫
S ′ d3qd3q′ρS(q)ρS ′(q′)[

wS→S ′δ(ϵS,q − ϵS ′,q′)
(
fS

′
(q′) − fS(q)

)]
, which is not automatically guaranteed to be

equal to 0. For this term to contribute exactly 0, one would have to ensure that there

is no chiral imbalance, i.e. fS(ϵ) = fS
′
(ϵ). However, if we imagine each valley is associ-

ated with a different chemical potential µS , this condition will not be met. In this case,∫
q

∑
S ′ ̸=S WS ′→S ∼ (nS0 − nS)/τ , where nS0 is the density that would be associated with

valley S if µS = µS
′ ∀ S ≠ S ′, i.e. when the Fermi surface is at the same energy over the

entire BZ.

To simplify our life, we will assume that the system is in a spatially homogenous state,

i.e. ∇xf = 0. This means that hydrodynamic variables such as T are constant in x. Since

the situation we are trying to describe is the production of chiral imbalance in the pres-
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ence of E parallel to B, this is enough to isolate the relevant response. This means that∫
q ρqẋ ·∇xf

S = 0 as well. Formally, it may be seen that this term integrates to ∇x · jS ,

where jS is the current density associated with nS , as it is the only source of ∇x in the

equation.

This leaves us with the q̇ term. Before proceeding further, it is helpful to decouple

Eq.(1.24) into uncoupled equations for ẋ and q̇ (e = c = ℏ = 1):

ẋ = ρ−1
q

(
v + E ·Ωq + (Ωq · v)B

)
(1.27a)

q̇ = ρ−1
q

(
(E+ v ×B) + (E ·B)Ωq

)
(1.27b)

where v(q) ≡ ∇qϵq. We need to find the integral
∫
q ρqq̇ · ∇qf . We can immediately see

that ρq cancels the ρ−1
q . Also, let us recall that we are in the linearized limit, and f on the

LHS is to be interpreted as the local equilibrium function feq.

Now, feq(q) = feq(ϵq); the local equilibrium function only depends on q through the de-

pendence of the q-p energy ϵq on it. This means that∇qf = (∂f/∂ϵ)v(q). The first term in q̇

gives:
∫
qE·v(q)(∂f/∂ϵ). We will break up the volume integral into surface integrals over sur-

faces of constant energy ϵ. Then we may write d3q as d2adq⊥, where d
2a is the area element

of some constant energy surface Sϵ, and dq⊥ is the infinitesimal element in the direction ⊥ to

the surface Sϵ at q. This may alternately be written as dq⊥ = dϵ/|v|. So, writing, v = |v|v̂,

the integral may be represented as
∫
dϵ(∂f/∂ϵ)

∮
Sϵ |da|v̂ · E =

∫
dϵ(∂f/∂ϵ)

∮
Sϵ da · E = 0,

where the last equality follows from the fact that integral of a constant vector E over a

closed surface Sϵ is 0 by the divergence theorem. Similarly, the second term also contributes

0 because v · (v ×B) = 0.
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So, we are only left with the final term, which contributes :
∫ d3q

(2π)3
(E ·B)Ωq · v(q)∂f∂ϵ .

Once again, the E ·B is a constant in q and may be pulled out of the integral. Splitting up

the integral into constant energy surfaces Sϵ, we get: 1
(2π)3

(E · B)
∫
dϵ∂f∂ϵ

∮
Sϵ da · Ω. Now,

the surface integral just yields (2π)wS (when ϵ lies in the upper band, or µ > 0). The energy

integral on the other hand, yield -1; f varies from 1 to 0 as we cross µ. So, putting everything

together, we get:

∂tn
S +∇ · jS = wS

1

(2π)2
(E ·B) +

nS0 − nS

τ
(1.28)

The total charge density n =
∑

S n
S obeys:

∂tn+∇ · j =
∑
S

wS
1

(2π)2
(E ·B) +

1

τ

∑
S

(nS0 − nS) = 0 (1.29)

owing to the Nielsen Ninomiya theorem, and the fact that
∑

S n
S
0 =

∑
S n

S ; particles can

change the valley they belong to, but their total number should be conserved. The chiral

charge density, n5 =
∑

S
wS
|wS |

nS , on the other hand, is not conserved;

∂tn
5 +∇ · j5 =

(∑
S

|wS |
) 1

(2π)2
(E ·B) +

1

τ

∑
S

wS
|wS |

(nS0 − nS)

= CE ·B− n5

τ

(1.30)

Where we have defined the ‘Anomaly coefficient’:

C ≡ 1

(2π)2

∑
S

|wS | (1.31)

The second equality follows from the fact that when all the µ’s are the same,
∑

S+ nS0 =∑
S− nS0 , where S+ and S− are the sets of valleys of L or R type; densities of L and R

species should be equal in chiral equilibrium.

41



Note that a mechanism for the Chiral anomaly can be motivated in the strong-B regime

as well, using Landau Levels. This was indeed the original setting in which it was shown

possible to realize the chiral anomaly in a 3-dimensional crystal [45]. The basic picture, as

we saw, is that in the presence of B, the n = 0 level becomes chiral, only carrying particles

that move parallel or anti-parallel to B depending upon the sign of w of the nearby monopole.

Now, an E can only displace these particles if it is along B, since the Landau levels only

propagate (possess momentum) along the direction of B. In the presence of an E, therefore

‘charge pumping’ occurs between valleys of ± chirality at a rate ∼ E ·B.

In the context of field theory (where the concept originated), an Anomaly is a symme-

try of a classical field theory that does not survive quantization. Since symmetries lead to

conservation laws, an anomaly will be associated with ‘anomalous non-conservation’ of some

classically conserved density. An example is relativistic Dirac fermions in the massless limit,

also known as Weyl fermions, which have an identical dispersion as that we have encountered

(two bands touching at a point, with linear dispersion, with velocity c, the speed of light,

instead of vF, which is a material dependent parameter for a given WSM). Weyl fermions

are locked into eigenstates of ‘helicity’, the projection of spin along angular momentum.

Accordingly, there are L/R species of Weyl fermions.

At the classical level, both the total charge current jα and the chiral charge density j5µ

are exactly conserved quantities. However, when the theory is quantized, it turns out that

after including quantum corrections, j
µ
5 is no longer conserved when the fermion is coupled

to an electromagnetic field. Instead, ∂µj
µ
5 = e2

16π2
ϵµναβFµνFαβ . The right hand side reduces

to E ·B, where E and B are the electric and magnetic fields in some reference frame. There-

fore, in the presence of parallel electric and magnetic fields, the chiral charge is no longer

conserved. This was first discovered by Adler, Bell and Jackiw, and proposed to decay the
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fact that the neutral pi meson, π0, decays predominantly by decaying into two photons, a

process that should be forbidden classically [2] [7]. Note however, that the analogy to our

case is only approximate; even in the absence of E ·B, the chiral density in a WSM is only

approximately conserved, owing to intervalley relaxation process happenning at rate τ−1.

When dealing with hot ultrarelativistic charged matter, a situation may be encountered

when the masses of the interacting fermions may be negligible, in which case, one may

observe macroscopic effects of the anomaly. Experimentally, this is realized in the ‘Quark

Gluon Plasma’, a hot, dense, deconfined form of nuclear matter thought to be realized for

extremely brief periods of time during high energy nuclear collision experiments performed

in particle accelerators. In such a situation, one observes macroscopic manifestations of the

chiral anomaly. These effects are universal, in the sense that they are fixed to a definite

functional dependence just as a result of positivity of entropy production, and hence, inde-

pendent of the precise nature of the microscopics. This was shown by Son and Surowka [59]

in the context of relativistic hydrodynamics; these effects take the form of non-dissipative

currents along magnetic field and fluid vorticity, the ‘Chiral Magnetic Effect’ (CME) and

the ‘Chiral vortical effect’, in relativistic hydrodynamics. The main work in this thesis is

adapting the algorithm presented in [59] to the condensed matter context of WSMs.

The CME, and a related effect, the large positive enhancement to conductance in the

presence of a B along the direction of current flow (known as ”Large negative magnetoresis-

tance’ in the literature), may be worked out from the kinetic theory [57]. However, as we will

show, this is a direct consequence of the fact that the semiclassical machinery automatically

guarantees R ≥ 0. In fact, the first rigorous expression of this principle was given by Boltz-

mann himself, the famous ‘H-theorem’ of Boltzmann(e.g. see [40]). The crux of the matter

is that any microscopic description compatible with positivity of entropy production will al-
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ways produce these auxilliary effects whenever there is a chiral anomaly. This suggests that

we may isolate these dependences without any further recourse to the microscopic theory,

based on purely macroscopic principles. This is the hydrodynamic approach we shall work

through in detail in the following chapters.

‘Large negative magnetoresistance’ (NMR) encompasses two related physical effects.

First is the positive enhancement of conductivity in the presence of a B field; and sec-

ond is the fact that this enhancement falls off roughly as cos2ϕ, where ϕ is the angle between

the current carrying direction and B. This is known as ‘current locking’: σ → σ + σB,

where σB ∼ #B2cos2ϕ, where # > 0. These effects have been claimed to have been ob-

served [28] [72] [46]. Note, however, that magnetoresistance effects seem to be extremely

sensitive to the experimental geometry, and shows non-trivial effects related to contact ge-

ometry, which go by the name of ‘current jetting artifacts’, which makes it difficult to confirm

Weyl semi-metallic behavior using NMR experiments [17] [38] [47].

A related effect is Magneto-thermoelectric conductivity. In this, the measured response

is electric current j in response to a temperature gradient ∇T , which also shows a B2 depen-

dence. This has been explained as an effect related to ‘Mixed Axial-gravitational anomaly,

which is an anomolous non-conservation of the axial current j5 in a relativistic fluid on

curved spacetime [18]. It turns out that in this situation, remnant effects of the gravita-

tional anomaly can be observed even in flat space-time. We will present phenomenological

explanations for both effects based on the hydrodynamic theory we will formulate in the

next chapter.

44



1.4.2 Anomalous Hall Effect & other effects

As we have mentioned earlier, one of the classes of materials in which WSM behavior is pos-

sible is T -breaking ferromagnets. There is a host of magnetization effects that are observed

in magnets, chief among which is the so called ‘Anomalous Hall Effect’ [43], which is an

observation of a Hall effect in ferromagnetic materials that goes as j ∼ m × E, where m is

the magnetic polarization density. These magnetization related effects are sister effects that

are present in T breaking WSMs. However, as our hydrodynamic analysis will reveal, these

effects do not interact with the anomaly related effects, and reside in a separate sector of

the hydrodynamic theory we will develop.

Finally, there is another effect observed in WSMs that is considered a good experimental

diagnostic for Weyl semi-metallic behavior. This is the presence of special surface states

called ‘Fermi Arcs’, which are surface localized states that lie along 1-dimensional arcs con-

necting the projections of degeneracy points k0’s on the surface Brillouin Zone [67] [71].

These may be observed using surface spectroscopy (ARPES) techniques, which map out the

occupied surface states. Fermi arcs lie at the Fermi-level. When the Fermi-level is above ϵk0 ,

the energy at which the degeneracy exists, then these take the form of arcs connecting the

projections of the bulk Fermi-surfaces on the surface Brillouin Zone [22]. Their existence may

be postulated simply from the condition of conservation of spln angular momentum [69]. A

particle reflecting off a boundary has its momentum p reversed; however, its spin σ does not

change. It follows that the reflection off the boundary flips the chirality of particles L↔ R,

from which it may be worked out that the surface must provide a conduit between valleys

of different chirality. The main effect of Fermi Arcs in the context of non-equilibrium phe-

nomenon seems to be that n5 = 0 at the surfaces of a WSM. Any chiral imbalance produced

in the bulk is neutralized when it its the boundary.
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CHAPTER 2

CONSTRUCTION OF THE HYDRODYNAMIC THEORY FOR

DIRTY WEYL SEMIMETAL

In this chapter, we will construct a hydrodynamic theory for a system where there are three

conserved charges (in the absence of external electromagnetic fields). Energy density ε, total

charge density n and chiral charge density n5. The conservation of n5 is assumed to be

exact in the absence of external electromagnetic fields, which is an idealization in a real

Weyl semimetal, where there are always intervalley scattering processes that relax a chiral

imbalance. This idealization is applicable when τmicro ≪ t≪ τ , where τmicro represents the

typical timescale over which intra-valley processes occur, τ is the typical timescale of inter-

valley scattering processes, and t is the timescale over which the macroscopic phenomena are

evolving. That is, non-equilibrium situations that are ‘fast’ relative to intervalley relaxation,

(but slow relative to other timescales emerging from the microscopic theory). In this case,

we may write down hydrodynamic equations where the density at each valley is separately

conserved. The conservation of n5 is anomalous, breaking in the presence of parallel E and

B fields.

This hydrodynamic theory is expected to be applicable when one has a Weyl semimetal

where the primary mode of relaxation is elastic collisions of electrons with random impurities,

in other words, a ‘dirty’ Weyl semimetal. These collisions do not conserve the momentum of

the electron system. Hence, momentum is not one of the conserved quantities in this system.

With the development of fabrication technologies, it has become possible to grow ma-

terials from single crystals, resulting in what are exceptionally ‘clean’ materials, which are

almost entirely free of external dopants or impurities. A hydrodynamic theory for a clean

system, while being an ideal limit, may indeed be a good starting point in such a case.
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However, even in the case that the material is built by crystal growth, a situation may be

imagined where the dirty hydrodynamic theory may be applicable. Namely, if the crys-

tal growth process is sufficiently fast, and therefore uncontrolled, we may end up with a

macroscopic material that has a grained structure, with domain boundaries separating small

volumes which have a consistent crystal structure. The overall material would then be a

patchwork with no consistent crystal structure. The interaction of charge carriers with these

domain walls, which are oriented randomly, can plausibly be modelled in the same way as

the presence of random impurities: by momentum non-conserving collisions. Therefore, even

in this case, the dirty hydrodynamic theory developed here might find application. Note also

that generally, ‘clean’ experimental samples are usually what would be called mesoscopic,

i.e. not truly macroscopic (on our human scale). Typically, this is of the order of µm’s (for

example, see [18]). It may be reasonable to imagine that in the fabrication of larger samples,

uncontrolled growth may be unavoidable.

By corollary then, we will also assume that the system is rotationally invariant; a dirty

system is isotropic, as no information about special crystalline directions survives at the

macroscopic level. We also assume microscopic T symmetry (broken by the presence of

B and/or m), which will allow us to simplify the dissipative structure of the constitutive

relations via Onsager relations. As we discussed earlier, in order to realize the WSM phase,

at least one of spatial inversion symmetry or Time-reversal symmetry must be broken. Our

hydrodynamic theory encompasses both cases. Note that in both cases, the separate conser-

vation of valley species, and the fact that the sign of the Berry index of a valley flips under

I, means that we will have the emergence of a density (n5) that is a pseudo-scalar under

I, and a current (j5) that is a pseudo-vector, in our hydrodynamic theory. However, it is

important to note that these signals will be observed even in WSMs with I symmetry (i.e.

ferromagnetic WSMs). Their presence does not imply that the system necessarily breaks I
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symmetry at the microscopic level. It only implies that there are 2 mirror-species that are

separately conserved, that interchange their identities under I.

We shall start off by assuming that the background magnetic field B is O(∂0) in order

of derivatives, i.e. a ‘strong’ magnetic field. As such, B would be at par with temperature

T , chemical potential µ and chiral chemical potential µ5, in the sense that B now needs

to be considered as an intensive thermodynamic variable; thermodynamics depends on B.

A natural consequence is that we need to worry about magnetization effects (even in the

non-ferromagnetic case), because nearly all materials exhibit magnetic response at strong

enough magnetic fields. We will see that this allows us to glean useful information about

the structure of the hydrodynamic theory in the ferromagnetic case.

When B ∼ O(∂0), the kinetic coefficients will also in general depend on the B field.

However, E ∼ O(∂1), the reason for which will become apparent when we write down the

expression for entropy production rate R. This is the regime that is usually referred to

as ‘Magnetohydrodynamics’ [25]. We will find that reconciling the anomaly with the 2nd

law produces macroscopic effects similar to the ones found in [59] (where B ∼ O(∂1)).

Namely, there is are currents along B field; the Chiral Magnetic Effect. It is also seen that

the effect of the anomaly on the constitutive relation is entirely captured by the weak-B

part of the constitutive relations. There are no additional currents related to the anomaly

when the B field is made strong. Instead, we see that in strong B field, the currents do

acquire additional terms, but they are all related to the magnetization effects. There are no

hydrodynamic responses that are dependent on both the anomaly and the magnetization.
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2.1 Basic ingredients

2.1.1 Thermodynamics

We first discuss the thermodynamics of the system. For generality we assume that the

magnetic field B can be both time- and space-dependent. The grand potential Ω = −pV ,

where V is the volume and the pressure p is a function of temperature, chemical potentials,

and the magnetic field, specified by the equation of state:

p = p(T, µL, µR,B). (2.1)

Differentiating p we obtain thermodynamically conjugate variables,

dp = sdT + nLdµL + nRdµR +m · dB (2.2)

where s is the volume density of entropy, nL,R are the densities of left- and right-handed

particles, and m is the magnetic polarization density.

Instead of dealing with separate densities for the separately conserved L/R species, it is

convenient to work with total and chiral charge densities, which are defined as:

n = nL + nR, n5 = nL − nR, (2.3)

The corresponding total and chiral chemical potentials are given as:

µ =
1

2

(
µL + µR

)
, µ5 =

1

2

(
µL − µR

)
, (2.4)
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Formulating equation (2.2) in this new basis gives us:

dp = sdT + ndµ+ n5dµ5 +m · dB. (2.5)

The energy density ε is related to p by a Legendre transform:

ε = Ts+ µn+ µ5n5 − p (2.6)

Its differential gives us the 1st law of thermodynamics for this system:

dε = Tds+ µdn+ µ5dn5 −m · dB (2.7)

2.1.2 Conservation laws

To write down the hydrodynamic equations, we start from the conservation laws. They have

the following form:

∂tn+∇ · j = 0 (2.8a)

∂tn
5 +∇ · j5 = CE ·B (2.8b)

∂tε+∇ · jε = j · E (2.8c)

where j, j5, and jε are the currents of the total particle number, chiral particle number, and

energy. C is the anomaly coefficient. We add to this system of equations one of Maxwell’s

equations:

∂tB+∇× E = 0 (2.9)

which has the form of a conservation law and for convenience will be treated on equal footing

as the other three equations (2.8).
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Using the 1st law of thermodynamics (2.7), we get:

∂ts =
1

T
∂tε−

µ

T
∂tn− µ5

T
∂tn

5 +
m

T
∂tB (2.10)

which, by using the conservation laws, can be rewritten as:

∂ts =
1

T
(−∇ · jε + j · E) + µ

T
∇ · j+ µ5

T

(
∇ · j5 − CE ·B

)
− 1

T
m · (∇× E) (2.11)

Instead of the energy current, it is convenient to use the ‘heat current’, defined as:

Q = jε − µj− µ5j5 (2.12)

in terms of which the equation for time evolution of the entropy has the form:

∂ts = − 1

T

(
∇ ·Q+ j · (∇µ− E) + j5 ·∇µ5 + Cµ5E ·B+m · (∇× E)

)
(2.13)

2.2 Constitutive relations

2.2.1 Chiral magnetic effect and Magnetization current

Our goal is to write down the most general constitutive relations that express the currents

Q, j, j5 in terms of the thermodynamic variables T , µ, µ5, and B and their derivatives. The

constraint that the structure of the currents is subject to is positivity of entropy production.

The general structure of the constitutive relations are as follows: Each of the currents

has a dissipative contribution, that participates in local entropy production. The dissipative

part of the currents contain kinetic coefficients that are subject to Onsager reciprocity and
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inequalities that ensure the positivity of entropy production.

In addition, there are non-dissipative currents that do not participate in entropy pro-

duction. These come in two varieties: The first is currents that must be present to ensure

the compatibility of the anomaly and magnetization terms with positivity of entropy pro-

duction. These terms can be constrained, and may be evaluated as exact functions of the

hydrodynamic variables.

The second variety is non-dissipative currents that may be present, but are not to re-

quired to in order to cancel the anomaly and magnetization dependent contributions. These

unconstrained non-dissipative currents enter the constitutive relations in special arrange-

ments to ensure compatibility with 2nd law. We will leave these aside in this section.

Isolating the fixed non-dissipative terms, terms, we may write the constitutive relations as:

j = Cµ5B+∇×m+ ν, (2.14a)

j5 = CµB+ ν5, (2.14b)

Q = −Cµµ5B+m× (E−∇µ) + νQ (2.14c)

We have isolated in the above constitutive relations the Chiral magnetic effect(s), which

take the form of non-dissipative currents along the B field. In addition, we have also isolated

the magnetization current, the contribution ∇×m in the electric current j, and the related

contribution to the heat current Q. The dissipative and the unconstrained non-dissipative

contributions to the currents are contained within the ν’s. Inserting these into Eq. (2.13),

we find after many cancellations,

∂s

∂t
= − 1

T
∇ · νQ +

1

T
ν · (E−∇µ)− 1

T
ν5 ·∇µ5 (2.15)
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As promised, the anomaly and magnetization dependent contributions have cancelled out.

Finally, identifying the relation between entropy and heat current js as

js =
νQ

T
(2.16)

allows us to finally write the following expression for the rate of entropy production:

R =
∂s

∂t
+∇ · js = −

(νQ
T 2

·∇T +
ν

T
·∇µ̄+

ν5

T
·∇µ5

)
(2.17)

We have defined a shorthand ∇µ̄ ≡ ∇µ− E. Note that E and ∇µ appear together in the

expression, which makes sense as that first signifies the ’external’ electric field, whereas the

latter signifies the effective electric field induced by a gradient in chemical potential. This

is where their influence on the system enters together into the constitutive relations. This

is the reason why for reasons of consistency, E ∼ O(∂), as alluded to earlier [25]. This is

generally always going to be the case in the hydrodynamic theory for a system with itinerant

charges.

2.2.2 Dissipative structure

We are now in a position to analyize the structure of the dissipative currents. In general,

we expect that in the ’linear response’ or first order gradient approximation regime, there

should be currents that are linear in gradients of hydrodynamic variables, or electric field E.
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We will expand ν’s as linear combinations of gradients as:

νi = λTia∇aT + λ
µ
ia∇aµ̄+ λcia∇aµ

5 (2.18a)

ν5i = ξTia∇aT + ξ
µ
ia∇aµ̄+ ξcia∇aµ

5 (2.18b)

ν
Q
i = κTia∇aT + κ

µ
ia∇aµ̄+ κcia∇aµ

5 (2.18c)

where the indices i, a are spatial indices. In general, kinetic coefficients are rank-2 objects.

Therefore, in a 3-dimensional anisotropic medium, each kinetic coefficient is composed of

6 scalar coefficients (accounting for Onsager reciprocity) that can each be functions of the

hydrodynamic variables: T , µ, µ5 and B ≡ |B|.

However, when we further impose the requirement of isotropy, we can see that we are

only allowed to build up higher rank objects using the isotropic tensors, Kronecker delta,

δia, the Levi-Civita symbol ϵiab and any available hydrodynamic variables which possesses

indices. In this case, that is magnetic field Ba. Out of these, there are 3 combinations that

may be built, which are:

λ
µ
ia = λ

µ
1δia + λ

µ
2BiBa + λ̃µϵiabBb (2.19)

where, the scalar coefficients (such as λ
µ
1 ) are functions of the hydrodynamic variables;

λ
µ
1 = λ

µ
1 (T, µ, µ

5, B). All the kinetic coefficients in Eq.(2.18) can be decomposed in an iden-

tical manner.

We will now invoke Onsager reciprocity to limit the number of independent dissipative

coefficients. In order to do so, it is helpful to first reduce the expression forR into a quadratic
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form by plugging Eq.(2.18) into Eq.(2.17):

−R = ∇iT∇aT

(
κTia
T 2

)
+∇iµ̄∇aµ̄

(
λ
µ
ia

T

)
+∇iµ

5∇aµ
5
(
ξcia
T

)

+∇iT∇aµ̄

(
κ
µ
ia

T 2
+
λTai
T

)
+∇iT∇aµ

5

(
κcia
T 2

+
ξTai
T

)

+∇iµ̄∇aµ
5

(
λcia
T

+
ξ
µ
ai

T

) (2.20)

Onsager’s original reciprocity relations assume that there are no time reversal symmetry

breaking effects at the microscopic level [40]. This of course precludes the presence of a B

field. However, we may still write Onsager relations in the presence of B fields, by extending

the action of T operation to not just the electronic system at hand, but also the external

sources that give rise to B in the first place. Magnetic fields are produced by currents; in

this extended definition of T , we need to flip these currents, thus flipping the direction of B

as well. The reciprocal relations for the diagonal terms are:

κTia(B) = κTai(−B)

λ
µ
ia(B) = λ

µ
ai(−B)

ξcia(B) = ξcai(−B)

(2.21)

which are identically true for kinetic coefficients of the form Eq.(2.19), and hence, are trivial.

On the other hand, the Onsager relations between the off-diagonal terms takes the form:

κ
µ
ia(B) = TλTai(−B)

κcia(B) = TξTai(−B)

λcia(B) = ξ
µ
ai(−B)

(2.22)

which is a non-trivial constraint that reduces the number of independent coefficients. For
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example, the first equation above implies that κ
µ
1,2 = TλT1,2 and κ̃µ = T λ̃T .

Finally, we are able to write R in a form that involves just the dissipative coefficients.

Using the decomposition discussed earlier, and the Onsager relations, we get:

−R = ∇T ·∇T

(
κT1
T 2

)
+∇µ̄ ·∇µ̄

(
λ
µ
1

T

)
+∇µ5 ·∇µ5

(
ξc1
T

)

+∇T ·∇µ̄

(
2λT1
T

)
+∇T ·∇µ5

(
2ξT1
T

)
+∇µ̄ ·∇µ5

(
2λc1
T

)

+ (∇T ·B)2

(
κT2
T 2

)
+ (∇µ̄ ·B)2

(
λ
µ
2

T

)
+ (∇µ5 ·B)2

(
ξc2
T

)

+ (∇T ·B)(∇µ̄ ·B)

(
2λT2
T

)
+ (∇T ·B)(∇µ5 ·B)

(
2ξT2
T

)

+ (∇µ̄ ·B)(∇µ5 ·B)

(
2λc2
T

)

(2.23)

There are 12 independent scalar dissipative coefficients. The positivity of entropy pro-

duction R ≥ 0 imposes inequalities that must be satisfied by these dissipative coefficients.

On the other hand, we can see that the coefficients that involve ϵijk, e.g. λ̃
T , identically

cancel out from the expression, as a result of the off-diagonal Onsager relations Eq.(2.22).

This is just as well, as these terms give contributions of the type ∇µ̄ · (∇T ×B) to R, that

cannot be constrained to be positive definite by imposing inequalities.

This is the first example of how unconstrained non-dissipative currents come about in

the constitutive relations. They require some special arrangement that ensures cancellation

of offending terms. Here, this is arranged for by Onsager reciprocity. These non-dissipative

currents are subject to no further constraints. So, the ν’s may be separated into dissipative
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and non-dissipative parts,

ν = ν(R) + ν̃

νQ = νQ(R) + ν̃Q

ν5 = ν5(R) + ν̃5

(2.24)

The non-dissipative part has 6 independent coefficients, and is given by:

ν̃ = λ̃µ(∇µ̄×B) + λ̃T (∇T ×B) + λ̃c(∇µ5 ×B)

ν̃Q = T λ̃T (∇µ̄×B) + κ̃T (∇T ×B) + κ̃c(∇µ5 ×B)

ν̃5 = λ̃c(∇µ̄×B) +
κ̃c

T
(∇T ×B) + ξ̃c(∇µ5 ×B)

(2.25)

Note, that λ̃µ in particular, and the ν̃’s in general, correspond to what is commonly known

as the ‘Hall Effect’. This belongs in the category of non-dissipative currents that cannot be

fixed by positivity of R.

2.3 General non-dissipsative structure

In this section, we will systematically explore non-dissipative currents that cannot be fixed

by anomaly or magnetization. So far, the constitutive relations read:

j = Cµ5B+∇×m+ ν(R) + ν̃ (2.26a)

j5 = CµB+ ν5(R) + ν̃5 (2.26b)

Q = −Cµµ5B+m× (E−∇µ) + νQ(R) + ν̃Q (2.26c)

js =
νQ(R)

T
+

ν̃Q

T
(2.26d)

These are not the most general constitutive relations that are compatible with positivity
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of entropy production. There are yet more unconstrained non-dissipative currents aside from

that ν̃’s that may be presesnt in a general situation. Some of these may be discovered easily.

For example, from Eq.(2.13), we have:

R = ∇ · js − 1

T

(
∇ ·Q+ j · (∇µ− E) + j5 ·∇µ5 + Cµ5E ·B+m · (∇× E)

)
(2.27)

By inspection it may be seen that because of the appearance of ∇ · Q and ∇ · js in the

expression, we may add magnetization type currents, ∇ × m̃Q and ∇ × m̃s to Q and js

respectively. The ’Entropy Magnetization’ and ’Heat Magnetization’, m̃s and m̃Q, are con-

strained by rotational symmetry to be parallel to B (just like magnetization m is). However,

the magnitudes, |m̃s| and |m̃Q| are unconstrained.

There are two more sets of unconstrained non-dissipative currents that may be present

in a general case, but which are harder to realize by mere inspection. To uncover these, we

follow an alternate algorithmic approach to derive the non-dissipative contributions to the

currents.

Let us focus first on the case when B ∼ O(∂) first. In the weak-B field case, the analysis

is much simpler; thermodynamics does not depend upon B. So we may ignore magnetization

related effects. The kinetic coefficients do not depend upon B as well, and hence, are just

scalar functions of T , µ and µ5. Eq.(2.13) now reduces to

R = ∇ · js − 1

T

(
∇ ·Q+ j · (∇µ− E) + j5 ·∇µ5 + Cµ5E ·B

)
(2.28)

To ensure positivity of R, we must ensure that all terms of the form #.B should cancel

out. In order to build a minimal set of constitutive relations compatible with R ≥ 0, we

may identify the non-dissipative currents required through inspection. We can see that the
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Cµ5E.B term necessitates a non-dissipative contribution to j equal to Cµ5B. Now, adding

CµB to the chiral current j5, we may combine the left over terms dependent on B from j

and j5 into ∇ · (Cµµ5B). In order to cancel this, we need a non-dissipative current in Q

that goes as −Cµµ5B. This is what we have so far from our discussion earlier.

The algorithmic method would proceed by realizing that in order to accomodate the E.B

term, we should have non-dissipative currents along the B field. That is the only piece of

information we are allowed to use. Then, we would then write the constitutive relations as:

j = ν + λBB (2.29a)

j5 = ν5 + ξBB (2.29b)

Q = νQ + κBB (2.29c)

js =
Q

T
+DBB (2.29d)

Since we have B ∼ O(∂), the ν’s are entirely dissipative. For example, ν = λµ∇µ̄ +

λT∇T + λc∇µ5. The dissipative and the non-dissipative coefficients are only allowed to

be functions of T , µ and µ5. Plugging into Eq.(2.28) the condition that terms involving B

should cancel out translates to:

B.
(κB
T 2

∇T +
λB

T
∇µ+

ξB

T
∇µ5 −∇DB

)
+B.E

(Cµ5 − λB

T

)
= 0 (2.30)

The second term fixes λB = Cµ5. In the first term, we can expand ∇DB = DB
T ∇T +

DB
µ ∇µ + DB

µ5
∇µ5, where DB

T = ∂TD
B |µ,µ5 etc. Solving TDB

µ = λB = Cµ5 gives us

DB = Cµµ5

T + F̃(T, µ5). The only constraint on F̃ is that it cannot be a function of µ. Apart

from this requirement, F̃ is completely unconstrained. Using this to solve for ξB and κB , it
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follows that:

j = ν + Cµ5B (2.31a)

j5 = ν5 + (Cµ+ T F̃µ5)B (2.31b)

Q = νQ + (−Cµµ5 + T 2F̃T )B (2.31c)

js =
νQ

T
+ (F̃+ T F̃T )B (2.31d)

where, once again, F̃T = ∂T F̃|µ5 etc. This represents the most general constitutive relations

allowed when B ∼ O(∂).

Note that F̃ is not totally unconstrained. Some information about it may be gleaned by

considering its behavior under the action of I. Under spatial inversion, all the terms present

in any of the currents must behave the same way; either they all flip, or they all do not. In

order for this to be so, it may be seen that F̃ can only be an odd function of µ5, which is a

pseudoscalar under the action of I. We should have made similar remarks in our analysis

of dissipative structures as well; ξT and ξµ are odd functions of µ5, and ξc is an even function.

There is another set of unconstrained non-dissipative currents that is present at strong-B

fields. These may be discovered in a similar algorithmic manner. When B ∼ O(1), retaining

terms in the constitutive relations up to O(∂1), we should include spatial derivatives of the

B field as well. In addition, expressing m = χB, where χ = χ(T, µ, µ5, B) is the magnetic

susceptibility, it can be seen that we must have terms proportional to the external electric

field E as well in the non-disspative parts of the currents. In order to see this, it is sufficient

to expand the magnetization dependent term in Eq.(2.27). We have −m·(∇×E)
T , which can

be written as −∇ ·
(
m
T ×E

)
+E ·

(
∇×m

T

)
, i.e. a total derivative part (that can be absorbed

into the entropy current js) and a leftover piece of the form # ·E, which will have to cancel
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with other terms entering Eq.(2.27)

We can express the second term explicitly in terms of E, B, and the gradients of the

hydrodynamic variables by separating out the susceptibility. Doing this gives us:

E ·
(
∇× m

T

)
=
(χ
T

)
T
E · (∇T ×B) +

χµ
T

E · (∇µ×B)

+
χµ5

T
E · (∇µ5 ×B) +

χB
BT

ϵijkEiBaBk(∇jBa)

(2.32)

To cancel the above, one clearly needs non-dissipative currents along E.

We will initially assume that χB = 0, i.e. magnetization m is linear in B, to simplify

the algebra. In analogy with what we did in the low-B case, we may write the constitutive

relations as:

ji = νi + λBBi + λEiaEa + λ∂Biab∇aBb (2.33a)

j5i = ν5i + ξBBi + ξEiaEa + ξ∂Biab∇aBb (2.33b)

Qi = ν
Q
i + κBBi + κEiaEa + κ∂Biab∇aBb (2.33c)

js =
Q

T
+DBB+DE(E×B) +D∂B(∇×B) (2.33d)

where we have pre-empted something about the form of λE , λ∂B etc. in the constitutive

relation for js. Plugging these constitutive relations into Eq.(2.27), and demanding that only

the dissipative part (involving the ν’s) survives, we arrive at the following expressions for
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the currents:

j = ν + λBB+∇×m−
(
χµ(∇µ̄×B) + χT (∇T ×B) + χµ5(∇µ5 ×B)

)
(2.34a)

j5 = ν5 + ξBB+∇×m5 −
(
χ5µ(∇µ̄×B) + χ5T (∇T ×B) + χ5

µ5
(∇µ5 ×B)

)
(2.34b)

Q = νQ + κBB+∇×mQ −
(
χ
Q
µ (∇µ̄×B) + χ

Q
T (∇T ×B) + χ

Q
µ5
(∇µ5 ×B)

)
(2.34c)

js =
Q

T
+DBB+∇×ms −

(
χsµ(∇µ̄×B) + χsT (∇T ×B) + χs

µ5
(∇µ5 ×B)

)
(2.34d)

where the anomaly dependent coefficients λB etc. are identical to the ones we found in the

low-B case in Eq.(2.31). The ’magnetizations’ m5, mQ and ms are given as ms = χsB

etc. where the ’susceptibilities’ can be solved in terms of the magnetic susceptibility χ. We

obtain: χs =
∫
µ

(
χ
T

)
+ f(T, µ5), where f is an undetermined integration constant. For the

rest of the susceptibilities, we have χQ = T 2χsT and χ5 = Tχs
µ5
.

Of course, in general, χB ̸= 0. However, (seemingly) quite miraculously, even though

these expressions are derived for the case when magnetization χ is not a function of B, they

still work even in the case when χB ̸= 0 .

However, from the form of Eq.(2.34), it is also clear that there are redundancies, and

many of the terms may be absorbed into the unconstrained, non-dissipative parts of the ν’s

from Eq.(2.25), and m̃Q and m̃s that we discussed earlier. Starting with j, we can see that

all the extra terms of the form ∇(#)×B can be absorbed into ν̃. Combining the two, we

see that we may replace ν̃ by ν̃ ′, which may be expanded as

ν̃ ′ = λ̃µ
′
(∇µ̄×B) + λ̃T

′
(∇T ×B) + λ̃c

′
(∇µ5 ×B) (2.35)

where the new coefficients are given as λ̃µ
′
= λ̃µ − χµ, λ̃T

′
= λ̃T − χT and λ̃c

′
= λ̃c − χµ5 .
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So, we see that all the extra terms in j have been absorbed into a redefinition of the uncon-

strained ν̃

Turning our attention next to the heat current Q, we see that the term mQ can be

absorbed into the unconstrained m̃Q. Collecting the terms of the form ∇(#)×B together

with the terms from ν̃Q, we have:

(κ̃µ − χ
Q
µ )(∇µ̄×B) + (κ̃T − χ

Q
T )(∇T ×B) + (κ̃c − χ

Q
µ5
)(∇µ5 ×B) (2.36)

we are free to absorb χ
Q
T and χ

Q
µ5

into redifinitions of κ̃T and κ̃c, by defining κ̃T
′
= κ̃T −χ

Q
T

and κ̃c
′
= κ̃c−χ

Q
µ5
. However, by Onsager reciprocity, κ̃µ = T λ̃T , and we have already rede-

fined λT to λ̃T
′
= λ̃T −χT . The new primed coefficients must also obey Onsager reciprocity,

so we are no longer free to redefine κ̃µ.

From χQ = T 2χsT , and χ
s =

∫
µ

(
χ
T

)
+ f(T, µ5), we get χ

Q
µ = TχT − χ. So, it follows

that (κ̃µ − χ
Q
µ ) = T (λ̃T − χT ) + χ = T λ̃T

′
+ χ, where λ̃T

′
is as previously redefined. So,

after redefinition of ν̃Q, we still have a left over piece, χ(∇µ−E)×B. Combining χ and B

into m, we get:

Q = νQ(R) + κBB+ ν̃Q
′
+m× (E−∇µ) (2.37)

Once again, all the extra terms found in Q in Eq.(2.34) have been absorbed into consistent

redefinitions of the unconstrained terms present in the currents.

Finally, we focus on j5. Collecting the extra terms together with ν̃5, we have:

∇×m5 +
(
(ξ̃µ − χ5µ)(∇µ̄×B) + (ξ̃T − χ5T )(∇T ×B) + (ξ̃c − χ5

µ5
)(∇µ5 ×B)

)
(2.38)

We are free to define ξ̃c
′
= ξ̃c−χ5

µ5
. However, by Onsager reciprocity, ξ̃µ = λ̃c and ξ̃T = κ̃c

T ,
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and we already have defined λ̃c
′
= λ̃c − χµ5 and κ̃c

′
= κ̃c − χ

Q
µ5
. So, in effect, we have

already defined ξ̃µ
′
and ξ̃T

′
.

Focussing first on ξ̃µ
′
, we can write ξ̃µ

′
= λ̃c

′
= λ̃c − χµ5 . Furthermore, we have

χ5 = Tχs
µ5
, and plugging in χs, we find that χ5µ = χµ5 . So, it follows that ξ̃µ

′
= ξ̃µ − χ5µ,

which is what we have prefixing ∇µ̄×B in the expression above.

The final term we consider does lead to something non-trivial; ∇T × B term is pre-

fixed by ξ̃T − χ5T . We can write ξ̃T
′
= κ̃c

′
/ T = (κ̃c − χ

Q
µ5
)/ T . Expressing χQ and χ5

in terms of χs, it can be seen that χ5T = χ
Q
µ5
/ T + χ5/ T . So, it follows that ξ̃T − χ5T =

(ξ̃T − χ
Q
µ5
/ T )− χ5/ T = ξ̃T

′
− χ5/ T .

To recap; our algorithmic method led to Eq.(2.34). After absorbing all trivial contribu-

tions into the currents already present, we still have two pieces left over in j5: These are

coupled: ∇× µ5, a ‘Chiral Magnetization’ current, as well as a ‘Chiral Thermal Hall’ effect

which is controlled by the same chiral magnetization µ5, as χ5B = µ5. So, after all possible

redefinitions, we obtain:

j5 = ν5(R) + ξBB+ ν̃5
′
+∇×m5 − ∇T ×m5

T
(2.39)

We do not need to do this analysis with js in Eq.(2.34) to find which terms survive after re-

definition of the existing unconstrained contributions. For that, we examine the contribution

of the two terms containing m5 in j5 to the rate of entropy production R. From Eq.(2.27),

the contribution of j5 to R is − j5 · ∇µ5/ T . Plugging in j5 = ∇ × m5 − (∇T × m5)/ T ,

it can be seen that the contribution to R reduces to −∇ ·
(
m5×∇µ5

T

)
. Clearly, to cancel

this, we must have a compensating piece in the entropy current js that is (m5 ×∇µ5)/ T .

Moreover, we can see that this arrangement works out for arbitrary m5, and hence, is also
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an unconstrained term allowed in the constitutive relations. The only restriction on this

term is that it must be parallel to B.

In fact, this illustrates why this arrangement works. All the unconstrained terms we

have discovered so far essentially cancel out through general vector identities; hence, they

encompass a certain amount of generality. The m̃Q and m̃s too need not be along B to

not contribute to R. Anything will work, because ∇ · (∇ × #) = 0. It is the assumption

of isotropy that forces them to. In a non-cubic crystal, we should expect these to also be

controlled by the crystal directions, for example.

This implies that if we now consider an (locally) isotropic Ferromagnet with spontaneous

magnetization m0, subject to weak B fields, then too, the constitutive relations we have

uncovered should accurately describe the possible currents. The entire dependence of the

dissipative currents and the magnetization currents on B is transferred onto m0. The only

exception are the anomally related terms, and F̃, which belong in the weak B sector of the

hydrodynamic theory we have developed.

Therefore, the most general constitutive relations, encompassing all possible currents are

j = ν(R) + Cµ5B+∇×m+ ν̃ (2.40a)

j5 = ν5(R) + (Cµ+ T F̃µ5)B+ ν̃5 +∇× m̃5 − ∇T × m̃5

T
(2.40b)

Q = νQ(R) + (−Cµµ5 + T 2F̃T )B+m× (E−∇µ) + ν̃Q +∇× m̃Q (2.40c)

js =
νQ(R)

T
+ (F̃+ T F̃T )B+

ν̃Q

T
+∇× m̃s +

m̃5 ×∇µ5

T
(2.40d)

where, all terms with the ∼ on top are unconstrained terms. The only condition on the Hall

response ν̃’s are the Onsager reciprocal relations.The only conditions on F̃ are that it cannot
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be a function of µ, and it can only be an odd function of µ5. Finally, the sole constraint on

m̃s, m̃Q and m̃5 is that these terms must be parallel to the only O(∂0) vector available to

us, which is B, or m, in Ferromagnet. Other than these conditions, these terms are totally

unconstrained. In the ferromagnetic case, λµ is now to be interpreted as the Anomalous Hall

effect.

For the rest of this thesis, we will restrict ourselves to exploring the consequences of the

low-B theory, when the currents are given by Eq.(2.31).
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CHAPTER 3

STEADY STATE TRANSPORT OF WEYL SEMIMETALS

In this chapter, we will explore the consequences of the low-B part of the hydrodynamic

theory of the previous section in the context of ‘slow’ transport. By slow, we mean non-

equilibrium processes that are slow enough that the chiral charge density n5 can no longer be

though of being exactly conserved; i.e., when t ∼ τ , where t is the timescale over which the

non-equilibrium phenomena are evolving, and τ is the timescale of chiral relaxation. This en-

compasses the situation of DC transport, which is the main subject of interest in this chapter.

First, we will have to examine if our hydrodynamic theory works in the slow case. As we

have seen earlier, the appropriate hydrodynamic equations are in this limit are:

∂tn+∇ · j = 0 (3.1a)

∂tn
5 +∇ · j5 = CE ·B− n5

τ
(3.1b)

∂tε+∇ · jε = j · E (3.1c)

Assuming that B ∼ O(∂1), we can neglect magnetization effects. In this case, we may write:

∂ts+∇ · js = ∇ · js + 1

T
∂tε−

µ

T
∂tn− µ5

T
∂tn

5

=
[
∇ · js + 1

T
(∇ · jε + j · E) + µ

T
∇ · j+ µ5

T
(∇ · j5 − CE ·B)

]
+
µ5n5

Tτ

(3.2)

where, we have separated out the extra term that is present in ∂ts when we include chiral

relaxation.

We have already seen in the previous chapter that the constitutive relations for the

currents Eq.(2.31), along with inequalities constraining the dissipative parts of the currents,
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guarantee that the contribution of the terms within the
[ ]

to R is ≥ 0. The contribution

of the relaxation term µ5n5/ Tτ to R is guaranteed to be ≥ 0 provided that

χ5 ≡ n5/ µ5 ≥ 0 (3.3)

that is, n5 is an odd function of µ5. No additional constraints on the constitutive relations

are required to ensure R ≥ 0. We shall later see that the fact that χ5 ≥ 0 plays a crucial role

in explaining the positivity of magnetoconductance in Weyl semimetals using our theoretical

framework.

3.1 Definitions

There are three standard steady-state transport experiments that are usually performed on

materials that conduct heat and electricity, to measure 3 kinetic coefficients required to

characterize the transport properties of the material: (i) Electrical conductivity σ, where

j = σE is the electric current in response to an external electric field E, (ii) Thermoelectric

conductivity α, where j = α∇T is the electric current induced by a temperature gradient

∇T , and (iii) Thermal conductivity κ, where jε = −κ∇T , when j = 0, i.e. measurement

of the energy current in response to a gradient of temperature in the situation when electric

current j = 0. When a material supports a thermoelectric current, this is only possible if

there is an electric field E ̸= 0 as well present, so that the electric currents driven by E and

∇T cancel out. Note that owing to Onsager reciprocity, the fourth transport experiment

that can be imagined (flow of energy in response to an E field) is not independent.

We will first formulate these standard steady-state transport experiments in a normal

metal [34]. In a normal metal, when there are only two conserved charges n and ε, the
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equations of motion are given by:

∂tn+∇ · j = 0 (3.4a)

∂tε+∇ · jε = j · E (3.4b)

Adopting our naming scheme from the previous chapter, the constitutive relations would

read:

j = λµ∇µ̄+ λT∇T (3.5a)

Q = jε − µj = κµ∇µ̄+ κT∇T (3.5b)

By Onsager reciprocity κµ = TλT ; there are only three independent dissipative coefficients.

Using dε = Tds+ µdn, we may evaluate entropy production rate to be:

R = −
(κT
T 2

∇T ·∇T +
λµ

T
∇µ̄ ·∇µ̄+ 2

λT

T
∇µ̄ ·∇T

)
(3.6)

The condition R ≥ 0 imposes the following conditions on the kinetic coefficients:

κT ≤ 0

λµ ≤ 0

T (λT )2 ≤ κTλµ

(3.7)

From the definition of the standard kinetic coefficients, in the presence of E and ∇T , the

electric current is given as j = σE+α∇T . Comparing with the constitutive relations above,

we see:

σ = −λµ

α = +λT
(3.8)
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Moreover, from the fact that λµ ≤ 0, it follows that:

σ ≥ 0 (3.9)

Electrical conductivity must be positive to ensure the positivity of entropy production.

To work out the constraint imposed on thermal conductivity κ, we note that in order

for j = 0, we need to apply an electric field E = −α∇T/ σ in addition to the temperature

gradient. In this case, energy current and heat current are equal; jε = Q = κT∇T − κµE =

κT∇T −TαE. Plugging in E in terms of ∇T into jε, we get
(
κT +Tα2/ σ

)
∇T . From this,

we get:

κ = −
(
κT +

Tα2

σ

)
(3.10)

The last inequality imposed by positivity of entropy production can be written as −κT ≥

Tα2/ σ. From this, we have:

κ ≥ 0 (3.11)

Thermal conductivity must also be positive to ensure R ≥ 0.

Now, we will try to develop some intution about how steady state experiments work.

To measure σ, the system is subjected to a constant E field. We assume that the E field

can be treated as an ‘external’ field, and satisfies ∇ · E = 0. A long time after the E field

is switched on, the state of the system is described by a steady state solution to Eq.(3.4).

In this steady state, charge should not accumulate. This implies ∂tn = 0. Moreover, the

external E field is spatially constant, which should lead us to expect that the resulting state

is spatially homogenous, i.e. ∇T = ∇µ = 0. We can check that the charge conservation

equation is satisfied, as ∇ · j = ∇ · (σE) = 0, as both ∇ · E = 0, and ∇σ = 0. The latter

condition follows from the fact that σ = σ(T, µ), and the spatial homogeneity of the state
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we are describing.

Condunting materials get hot due to passage of electric current under an E field (Joule

heating). The energy current is given as jε = Q+µj = (µσ−Tα)E. So,∇·jε = 0 for the same

reason as ∇ · j = 0. The energy conservation equation reads: ∂tε = j ·E = σE ·E ̸= 0. That

is, even though we are in a ‘steady state’, the internal energy (and hence, the temperature

etc.) are rising as a result of the heat dissipated due to conduction of electric current through

the metal. In real experiments though, the material is finite, and in contact with the external

environment. If we wait long enough after turning on E, the sample reaches an equilibrium

with its surroundings such that its temperature etc. are constant, but is radiating heat into

its surroundings a constant rate:

PJoule = V (σE · E) (3.12)

Note that joule heating is only possible in the presence of an E field.

The analysis of transport under ∇T is more subtle, as the assumption of spatial homo-

geneity no longer holds. T is obviously not constant in the material; ∇T ̸= 0. The naive

expectation though, would be that µ may be held constant independetly in the sample. How-

ever, this is not true in the typical experiment for thermoelectric transport. Recall that a in

standard thermoelectric setup, the system is only sibjected to ∇T , i.e. there is no E field.

Assuming that the steady state is homogenous with respect to µ, we may write j = α∇T .

This must satisfy ∇ · j = 0, which gives us α∇2T +αT |∇T |2 = 0, where αT ≡ ∂Tα|µ. This

reduces to a linear profile in T , satisfying ∇2T = 0, when αT = 0. Now, since there is no E

field, ∂tε = 0 as well in the steady state. The energy current jε = Q+µj = (κT +µλT )∇T .

Plugging in the standard coefficients, we get: jε =
(
µα − (κ + Tα2/ σ)

)
∇T ≡ α′∇T .

So, ∇ · (α′T ) = 0 and ∇ · (αT ) = 0 need to be simultaneously satisfied, which is only
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the case when αα′T − α′αT = 0. However, this represents a very strong constraint on the

kinetic coefficients, and in general, will not be true. So it looks like we have an inconsistency.

The solution to this conundrum is that the statement ∇µ = 0 is only true to leading

order in ∂. For the purposes of describing the leading order behavior of the currents, it is

sufficient to write j = α∇T . However, if we wish to evaluate the profile of the temperature

within the sample, T (x), we would have to retain the∇µ dependence as well; just the leading

order approximation is insufficient.

3.2 DC transport with B-field in WSMs

Now, we turn our attention to WSMs. We want to model steady state experiments involving

the flow of a steady current in the presence of an E field or a temperature gradient ∇T .

From Eq.(2.31), in the presence of a B field, the currents are given as:

j = σE+ α∇T + Cµ5B (3.13a)

j5 = σ5E+ α5∇T + (Cµ+ T F̃µ5)B (3.13b)

Q = κT∇T − TαE+ (−Cµµ5 + T 2F̃T )B (3.13c)

3.2.1 Positive magneto-electric conductivity

First, we model the experiment to measure Electrical conductivity in Weyl semimetal. Again,

in this case it is reasonable to assume that the steady state is spatially homogenous. The

electric current is given by:

j = σE+ Cµ5B (3.14)

Once again, we can check that this current satisfies the continuity equation, as ∇ · j = 0, as

a result of the spatial homogeneity of the state, and the fact that ∇ ·E = 0 and ∇ ·B = 0.
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The latter is one of the homogenous Maxwell’s equations, and is an exact relation.

In the equation of motion for chiral charge n5, there are two competing effects. The

anomaly CE · B has the effect of ‘pumping’ chiral imbalance, whereas the relaxation term

−n5/ τ relaxes it. In the steady state, ∂tn
5 = 0, so, we have ∇ · j5 = CE ·B − n5/ τ . The

chiral current in a spatially homogenous state in the presence of external E and B fields is

j5 = σ5E+(Cµ+T F̃5µ)B. Once again, we can see that ∇ · j5 = 0. So, the equation of motion

for n5 reduces to:

µ5 =
τCE ·B
χ5

(3.15)

where, we have used n5 = χ5µ5. Plugging this back into the expression for j, we obtain:

ji =
(
σδij +

τC2

χ5
BiBj

)
Ej (3.16)

When the B field is parallel to the E field, the electric current is j = σ∥E, where:

σ∥ = σ +
τC2B2

χ5
(3.17)

The extra term is quadratic in B. Also, the magnetoconductivity effect is positive. As we

showed earlier, χ5 ≥ 0 in order to ensure that the hydrodynamic equations including the

relaxation term are compatible with positivity of entropy production. It follows the enhance-

ment over the Drude conductivity is σ∥ − σ ≥ 0

When B is not ∥ to E, the additional piece in j is
(
τC2E ·B/ χ5

)
B, i.e. the additional

piece in the current density is along B, not E. However, in a typical experiment, the direction

of E defines the conducting direction of the sample. So, the effective enhancement to the
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conductivity, σB, is given as:

σB =
τC2B2cos2ϕ

χ5
(3.18)

where ϕ is the angle between E and B. This is the ‘locking’ phenomenon alluded to earlier.

In order to compute the energy dissipated into the environment, we look at the equation

of motion for ε: ∂tε = j · E = σE · E + τC2(E · B)2/ χ5. For a sample of Weyl semimetal

of volume V supporting a steady electric current under an E and a B, the rate of heat

dissipated into the environment is:

P = V
(
σE · E+

τC2(E ·B)2

χ5

)
(3.19)

The additional term in P is precisely TVR5, where R5 is the contribution to the local

entropy production rate R by the relaxation term µ5n5/ Tτ .

3.2.2 Magneto-thermoelectric conductivity

Next, we turn our attention to the experiment for thermo-electric conductivity. In this case,

we can write:

j = α∇T + Cµ5B (3.20)

We will show that similar enhancement to the longitudinal conductivity occurs in the ther-

moelectric case as well. The mechanism is once again a saturation of µ5 to a non-zero value

in the steady state; however, now, this is driven by ∇T ·B instead of E ·B.

Let us focus on the chiral current j5. This is given by: j5 = α5∇T + (Cµ+ T F̃µ5)B. In

the steady state, this must satisfy:

∇ · j5 = −n
5

τ
(3.21)
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Note that there is no anomaly term on the RHS, as E = 0. The LHS reduces to∇·(α5∇T )+

CB ·∇µ+ (B ·∇T )(T F̃µ5)T .

Now, let us recall some facts we have encountered. First, as we mentioned after Eq.(2.31),

the dissipative coefficient ξT = α5 is an odd function of µ5. Based on what we have experi-

enced so far, the leading order contribution to µ5 is O(∂2). So, the first term ∇ · (α5∇T )

is O(∂4) to leading order. The leading order contribution to ∇µ is O(∂2). Therefore, the

second term is O(∂3). For the final term, let us recall that F̃ is an odd function of µ5 as

well, and may in general be written as:

F̃ = F̃(1)(T )µ5 + F̃(3)(T )(µ5)3 + . . . (3.22)

Retaining the leading order term, we see that the final term has a leading order contribution,

(B ·∇T )(T F̃(1)(T ))T , that is O(∂
2). So, to leading order, the equation for j5 reduces to:

µ5 = −τ C̃
χ5

(B ·∇T ) (3.23)

where C̃(T ) ≡ (T F̃
(1)
T + F̃(1)) is a pure function of T alone. Plugging this back into the

expression for electric current j, we obtain:

ji =
(
αδij −

τCC̃

χ5
BiBj

)
∇jT (3.24)

Note that the presence of both C and C̃ means that we cannot say anything definite about

the sign of the magnetic enhancement to α.
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3.3 Alternate considerations

3.3.1 Kinetic theory

It would be satisfying at this stage to identify a microscopic mechanism for the term F̃ and

the associated C̃. To investigate, let us turn now to kinetic theory, from which currents can

be directly computed. We are interested in the coefficients of B in the currents, κB , λB and

ξB . So it will be sufficient to assume that E = 0 and the steady state is spatially homoge-

nous. Recall from our earlier discussion in (1.4.1) that kinetic theory is valid in the limit

µ >> T . To leading order, therefore, the currents will not involve T , which then precludes

the possibility of finding F̃. Our strategy therefore will be to isolate next to leading order

corrections. Also, we will imagine that it is possible to create left and right-handed magnetic

fields, BL and BR to couple separately to particles belonging to valleys with ŵS ≡ wS
|wS |

= ±.

We will discuss the implications of this assumption in the next section.

Recall that we mentioned in (1.4.1) that macroscopic currents are obtained by integrating

the ẋ ·∇xf
S term in Eq.(1.26) with respect to valley momentum q. Then, by shifting the

∇x outside, the current for valley S, jS may be computed as (e = ℏ = c = 1):

jS =

∫
d3q

(2π)3
(v + (Ωq · v)BS)fSq (3.25)

where fSq = (e(ϵq−µS)/T + 1)−1 is the local equilibrium function, and µS = µL/R when

ŵS = +/−. Following what we did in (1.4.1), we break up the volume integral into sur-

face integrals over surfaces Sϵ of constant energy ϵ. So, we may write the volume integral

d3q = |da|dq⊥, where da is the area element on Sϵ and dq⊥ is an infinitesimal perpendicular

to it. This may be transformed into an integral over energy; dq⊥|v| = dϵ, where vq = ∇qϵq.

Also, since v is ⊥ to Sϵ, da = |da|v̂.
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We can immediately see that the first term contributes 0. The integral
∫
q vfq =

∫
dϵ

f(ϵ)
∮
Sϵ da = 0, because

∮
S da = 0 for any closed surface S by the divergence theorem. The

second term gives a non-zero contribution. In this case, the surface integral is
∮
Sϵ da ·Ω =

2πwS when the Fermi-surface S, defined by µ, lies in the upper band. The energy integral

is
∫
dϵf(ϵ). We need to think carefully about the limits of this integral, as the bands have

a finite spread in energy. The upper and lower limits should be the highest and lowest

energy states in the 2-band structure lie at energy ϵmax and ϵmin = 0. The integral can be

explicitly computed by representing f = (e(ϵ−µ)/T + 1)−1 as −T ∂
∂ϵ ln

(
1 + e−(ϵ−µ)/T

)
[5].

It can be seen that if (ϵmax − µ) >> T and (µ − ϵmin) >> T , then, the integral gives

µ− ϵmin+O(e−(ϵmax−ϵmin)/T ). The exponentially suppressed corrections may be neglected

if the Fermi level lies far from the extremeties of the band. So, putting everything together,

we obtain:

jS =
1

(2π)2
wSµ

SBS (3.26)

where µS ∀ S are measured from the lowest energy in the bandstructure, ϵmin. One may

wonder if it matters if the Fermi surface S lies in the upper or the lower band. The answer

is it does not matter, as the integrand remains the same; Ω → −Ω and v → −v in the lower

band. We want the total currents j =
∑

S jS and j5 =
∑

S ŵS j
S . Using

∑
S

1
(2π)2

|wS | = C for

the anomaly coefficient, and defining the ‘magnetic field’ B ≡ BL+BR

2 and ‘Pseudo-magnetic

field’ B5 ≡ BL−BR

2 we get:

j = Cµ5B+ CµB5 (3.27a)

j5 = CµB+ Cµ5B5 (3.27b)

Focusing on just the B dependent part, we can see that there is no evidence of a T dependent

correction. Recall that the form that we are trying to uncover is j5 = (C+ T F̃(1)(T ))B.
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For completeness, we should also compute the energy current jε and heat current Q. For

jε, the contribution of each valley S to the total energy current is given as:

jεS =

∫
d3q

(2π)3
ϵq(v + (Ωq · v)BS)fSq (3.28)

Once again, only the second term contributes. As above, the surface integral gives 2πwS .

The energy integral is now
∫
dϵf(ϵ)ϵ, which may be broken up as fS(ϵ) = Θ(µS−ϵ)+

(
f(ϵ)−

Θ(µS − ϵ)
)
, i.e. a T = 0 part that is a step function and a T ̸= 0 part. The T = 0 part

gives
(µS)2

2 , whereas the T ̸= 0 part gives π2T 2

6 upto exponentially suppressed corrections.

So, we may write:

jεS =
wS

(2π)2

((µS)2
2

+
π2T 2

6

)
BS (3.29)

The total energy current is given as jε =
∑

S jεS . This reduces to:

jε = Cµµ5B+ C
((µ2 + (µ5)2)

2
+
π2T 2

3

)
B5 (3.30)

The heat current Q = jε − µj− µ5j5 then reduces to:

Q = −Cµµ5B+ C
(
−(µ2 + (µ5)2)

2
+
π2T 2

3

)
B5 (3.31)

Once again, we see that there seems to be no freedom in κB . Recall that the form we are

trying to find in this case should look like Q =
(
−Cµµ5+T 2F̃(1)(T )µ5

)
B upto leading order

in µ5.

3.3.2 Pseudo-Electromagnetic fields

Note that we may derive the basic form of the currents derived using kinetic theory using

hydrodynamic analysis. In particular, using the algorithmic method of (2.3), we may derive

the basic form of the allowed corrections to the T = 0 expressions for the currents. But first,
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let us assume that it is possible for L/R species of particles to experience different electric and

magnetic fields EL/R and BL/R. Accordingly, in additional to the usual E = EL+ER

2 and B,

one also has a ‘Pseudo-electric field’ E5 = EL−ER

2 and B5. These pseudo-electromagnetic

fields now appear in the equations of motion:

∂tn+∇ · j = C(E5 ·B+ E ·B5) (3.32a)

∂tn
5 +∇ · j5 = C(E ·B+ E5 ·B5) (3.32b)

∂tε+∇ · jε = j · E+ j5 · E5 (3.32c)

Accordingly, we may write our trial constitutive relations as

j = ν + λBB+ λBcB5 (3.33a)

j5 = ν5 + ξBB+ ξBcB5 (3.33b)

Q = νQ + κBB+ κBcB5 (3.33c)

js =
Q

T
+DBB+DBcB5 (3.33d)

Plugging this into the expression for ∂ts + ∇ · js, and ensuring all terms dependent on B

and B5 cancel out, we get: λB = ξBc = Cµ5, λBc = ξB = Cµ, κB = −Cµµ5 + G̃(1)(T ) and

κBc = −C
(
µ2+(µ5)2)

2

)
+ G̃(2)(T ), where G̃(1,2) are arbitrary functions of T . Note however

that all parts of the currents must transform the same under spatial inversion I. Since µ5

flips under I and B does not, G̃(1)(T ) has the wrong parity, and hence is forbidden. So,

we are left with just κB = −Cµµ5 and κBc = −C
(
µ2+(µ5)2)

2

)
+ G̃(T ), which captures the

basic form derived using kinetic theory. This is not surprising, that a microscopic picture

that allows for E5 and B5 is compatible with a hydrodynamic formulation allowing the same

freedom. However, the hydrodynamic description does show beyond doubt that if it were

possible to turn on E5 and B5, this would preclude the existence of the F̃ term (and hence,
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the phenomenological explanation we have offered for magneto-theormoelectric conductivity

involving C̃) based on the genral requirement of positivity of R. So the question is, can these

fields exist?

The most basic objection to the presence of E5 and B5 is that total electric charge n is no

longer a conserved quantity. However, there is a recent proposal in the literature about how

this problem may be circumvented. This involves the use of so called ‘Bardeen counterterms’,

which have their origin in the field theoretic treatment of anomalies. The basic construction

in the case of WSMs may be found in [29] [6], which we outline here. We begin by considering

the Hamiltonian of a WSM with just two points of degenracy, located in momentum space

at ±b and separated in energy by 2b0. The hamiltonian would be represented as:

H(p) = w vFσ · (p− wb) + wb0 (3.34)

One can see that the b and b0 appear in H in a similar manner to how the scalar and vector

potential (A0,A) associated with electromagnetic fields would appear, except that there is

now a w in front. So, it’s as if this correspomds to a ‘pseudo’ set of electromagnetic fields that

couples differently to the L/R species. This motivates us to define pseudo-electromagnetic

fields given as:

E5 = ∂tb−∇b0 (3.35a)

B5 = −∇× b (3.35b)

Real electric fields E flip under the action of spatial inversion I and are unaffected by T ,

whereas B flips under T alone. In contrast, E5 remains unchanged under both I and T ,

whereas B5 flips under both; The action of I is: ∇ → −∇, b → b and b0 → −b0, whereas

under T : ∂t → −∂t, b → −b and b0 → b0. It follows that : I : E5 → E5, T : E5 → E5,
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I : B5 → −B5, and T : B5 → −B5.

But when can thes E5 and B5 fields be observed? Obviously only when b → b(t,x) etc.

That is, b0 and b are functions of space and time. This is argued to happen if the material

is subjected to elastic deformations. Note however that this (x, t) dependence should not

be interpreted as signalling a ‘non-equilibrium’ situation in the hydrodynamic sense, as this

inhomogeneity affects the system at the level of the structure of the Bloch space. Recall that

in our treatment, the structure of the energy bands in p space is a constant in space and

time; it is the occupancy of these bands that changes as a function of (x, t).

To get around the non-conservation of n in the presence of E5 and B5, the use of the

Bardeen counterterm construction is made [19] [20]. It is argued that the charge density

and the current n and j actually are composed of an observable part and an unobservable

part. The observable, or ‘transport’ [14] currents and charges are actually measurable in

an experimental setup, whereas the extra Bardeen counterterms are unobservable. In this

context, the full currents are called the ‘Covariant’ currents, whereas the observable part is

called the ‘Consistent’ form of the currents [36]. The relation of the full currents with the

observable parts may be written as:

n = ntrans + Cb ·B (3.36a)

j = jtrans − Cb0B− Cb× E (3.36b)

The full n and j satisfy an equation that dislays non-conservation of charge. However, using

the definitions of E5 and B5 introduced above, it may be seen that the transport parts do

not violate charge conservation;

∂tntrans +∇ · jtrans = 0 (3.37)
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So it seems that pseudo-electromagnetic fields can exist without catastrophic conse-

quences. However, we would like to point out a few concerns we have regarding the validity

of this construction below:

• Frame choice in non-relativistic systems : In the construction above, the n differs from its

B = 0 value by an O(∂) quantity (b · B). This seems to be a matter of choice of a ‘hy-

drodynamic frame’, which generically exists in the formulation of any hydrodynamic theory

(see [32] [10] for a discussion of these ideas within the context of relativistic fluid dynamics).

Let us consider a system with just two conserved charges, n and ε. Complementarily, we

have two intensive variables T and µ. T and µ are well defined in equilibrium, however, out

of equilibrium, these are no longer well defined. This is in the sense that whereas ε and n

correspond to phsyically measurable quantities, T and µ are merely parameters. Now, given

a parametrization T, µ, we are not guaranteed that ε and n will be represented by the same

expressions εeq and neq as they were in equilibrium. In general,

ε(T, µ) = εeq(T, µ) + ∆ε(∂T, ∂µ)

n(T, µ) = neq(T, µ) + ∆n(∂T, ∂µ)

(3.38)

where ∆ε etc. are O(∂) corrections (including both ∂t and ∇ in general) that must be

included out of equilibrium. This means that we are free to redefine T → T ′ = T +

δT (∂T, ∂µ), and µ → µ′ = µ + δµ with O(∂) deformations δT and δµ as long as the

measured densities are the same in both parametrizations; n(T, µ) = n′(T ′, µ′) etc. So, the

first order corrections in the primed and unprimed parametrizations are related:

∆ε = ∆′
ε +

∂εeq

dT
δT +

∂εeq

∂µ
δµ

∆n = ∆′
n +

∂neq

dT
δT +

∂neq

∂µ
δµ

(3.39)
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Since there are 2 conserved densities and 2 degrees of freedom available via frame redefini-

tion, we can always choose a parametrization in which ∆ε = ∆n = 0, or, n and ε can be

represented by the same functions of hydrodynamic variables out of equilibrium as they were

in equilibrium. Note that the form of the constitutive relations we have been using (only

using ∇, and not ∂t) follows as a corollary of this choice. This is the choice we have been

making so far, so it seems that in our framework, there is no room for the b ·B type term.

In other words, we can always choose a frame in which this is not present.

• Net flux of currents : In general, a current may be called ‘unobservable’ if it has zero

net flux across any surface [14]. This is clearly the case in a magnetization current, where

j ∼ ∇×m, so tha
∫
A dA · j = 0 for any spatial 2-surface A. Here however, this cannot be the

case, as the current is Cb0B. While B = ∇×A, but b0 = b0(x, t) is deemed to be possible,

in which case the current j ̸= ∇×#. So this is not a current that will have a zero net flux

across any surface, and hence, is an observable current.

• Equilibrium CME : This problem is no longer there if b0 is a constant in space and time.

In this case, we may write j = Cb0B ∼ ∇ × A. This would ‘unobservable’ in the sense

defined above, but suffers from several conceptual issues. First, such a current would imply

a ‘magnetization’ (presumably a physically well defined quantity) ∼ the magnetic vector

potential A, a quantity that is not gauge invariant [37]. It has also been pointed out that

a band whose Fermi surface is an equal energy surface cannot lead to a a non-zero current.

Non-zero currents are produced by deformations of the Fermi-surface from its equilibrium

configuration [65]. Indeed, this term is an artifact of where we measure µL/R from. Since all

valleys are part of the same bandstructure, it is appropriate that they should all be measured

from the lowest energy state in the band ϵmin. Lastly, if an equilibrium CME were allowed, it

would be possible to extract energy from the system at T = 0, which is impossible physically,
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Figure 3.1: Proposed mechanism for b0. Note that the valleys are joined below, and hence,
µL and µR should be measured from ϵmin, the energetic bottom of the band.

since at T = 0, the system is already in its ground state [5], although, this last critique may

not apply if we imagine only the transport part of the current to participate in Joule heating.

• Anomalous Hall effect : b has the same properties as m under the action of I and T . As

such, b may be interpred as a magnetization. It follows that the term b×E is an anomalous

hall effect, which also appears in our hydrodynamic theory, but in a sector independent of the

anomaly. The main concern here is that b is crystal information; it defines the momentum

displacement of the Weyl nodes in Brillouin zone. As such, information about b should not

survive in a hydrodynamic theory formulated for a dirty WSM.

• Gravitational anomaly and 2-fluid model : If it is indeed possible to physically realize

E5, B5, then, our phenomenological model for magneto-thermoelectric conductivity cannot

work. There is another proposal recently of how this phenomenon arises in a WSM [18].

In this proposal, the thermoelectric conductivity is related to the so called ‘Mixed Axial

Gravitational anomaly’, an anomalous nonconservation of chiral charge in a relativistic fluid

on a curved spacetime. At the level of transport phenomena, the model seems to suggest that
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in Weyl semimetals, it is not just nL and nR that are separately conserved, but also εL and

εR. The explanation of the magnetoconductivity experiments then relies on the saturation

of both n5 and ε5 in the steady state. The implication is that the two species L and R are

allowed to be at different temperatures TL and TR). Note that even at the field theoretic

level, the action has two separate U(1) symmetries that lead to the separate conservation of

jµ and j5µ, but there seems to be no basis on which to motivate that the stress energy tensor

Tµν may be similarly broken up into separately conserved L and R parts.
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CHAPTER 4

HYDRODYNAMICS OF CLEAN WEYL SEMIMETALS

So far, we have been discussing the case of a dirty Weyl semimetal. In this final section, we

will finally start imagining what happens in the limit that the Weyl semimetal sample can

be approximated as being ‘clean’. This will mean that the momentum non-conserving e− i

collisions may be neglected, and consequently, momentum density π is a conserved quantity.

So, we have to include the flow velocity v among the hydrodynamic variables. However,

the fluid that emerges is qualitatively different from conventional fluids. Conventional fluids

have no special frame of reference. Hence, transforming from one inertial frame to another,

the equations of hydrodynamics remain invariant. In other words, hydrodynamics possesses

boost invariance. In contrast, the electronic fluid does possess a special frame, that is, the

static frame of the background lattice of ions. There is no need for the equations of motion

for an electron fluid to appear the same across an equivalence class of frames related by

boost transform.

The general philosophy of hydrodynamics we have seen so far is, that whatever forms

are not forbidden by considerations of symmetry or the 2nd law of thermodynamics are in

general allowed, and may be present in a particular system displaying the given symmetries.

Accordingly, boost invariance is constraint, just like isotropy or the Onsager relations on

the structure of hydrodynamics. Removing this constraint leads to a larger set of possible

structures. This is what we explore first, in the context of a normal metal.
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4.1 Fluids without boost invariance

In a normal metal in its clean limit, the three conserved quantities are ε, n and momentum

density π. We will assume that the system is isotropic. This immediately means that π = ρv,

where ρ = ρ(T, µ, |v|) is the ‘mass’ density (but does not possess the usual connotations of

the term in the absence of boost invariance). Note that in the clean limit, the crystal is

not grained; instead, it should have a consistent crystal structure on the macroscopic scale.

As such, the assumption of isotropy is only valid in cubic crystals. The three conserved

quantities are related via the thermodynamic relation:

dp = Tds+ ndµ+ π · dv (4.1)

The energy density ε is now ε = sT + nµ + π · v − p, so, the infinitesimal form of the first

law is given as:

ds =
dε

T
− µdn

T
− v · dπ

T
(4.2)

∂ts may be computed by using the equations of motion, which now are:

∂tε+∇ · jε = j · E (4.3a)

∂tn+∇ · j = 0 (4.3b)

∂tπj +∇i j
π
ij = nEj + (j×B)j (4.3c)

In hydrodynamics with v, the possibility exists of convection, i.e. non-dissipative O(∂0)

currents. The ideal parts of the currents are completely fixed by thermodynamics. Isolating
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these, one may write:

j = ν + nv (4.4a)

jε = νε + (ε+ p)v (4.4b)

jπij = νπij + (ρvivj + pδij) (4.4c)

When collected in the expression for ∂ts, the ideal parts contribute exactly −∇ · (sv), i.e.

exactly cancel with the ideal part of the entropy current. This is just evidence of the fact

that the form of the 1st law in a momentum-conserving hydrodynamic system completely

fixes hydrodynamics at the ideal order. This connection can be put on a rigorous footing

with the use of the Poisson Bracket Formalism (e.g. see [55] [58]), that treats the conserved

densities as classical limits of quantum operators, and makes use of this correspondence to

establish Poisson bracket relations between the densities. Using this approach, the ideal hy-

drodynamics of any momentum conserving system can be systematically worked out, given

a description of how its thermodynamic degrees of freedom interact via the 1st law.

The ν’s contain the O(∂1) currents. Defining heat current as Qi = νεi −µνi−vjν
π
ij , the

usual manipulations give:

∂ts+∇ · (sv) = − 1

T

(
∇ ·Q+ j ·∇µ̄+ jπij∇ivj

)
(4.5)

where we have defined ∇µ̄ ≡ ∇µ − E − v × B. We can see that choosing the dissipative

part of the entropy current, νs to be Q
T reduces R to the manifestly positive definite form:

R = −

[
Q ·∇T

T 2
+

ν ·∇µ̄

T
+

(νπij)(∇ivj)

T

]
(4.6)

We may now examine the dissipative structure of the currents. The most general constitutive
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relations one can write down to O(∂) is:

Qi = κTia∇aT + κ
µ
ia∇aµ̄+ κviab∇avb (4.7a)

νi = λTia∇aT + λ
µ
ia∇aµ̄+ λviab∇avb (4.7b)

νπij = γTija∇aT + γ
µ
ija∇aµ̄+ γvijab∇avb (4.7c)

The constraints on the kinetic coefficients are: (i) Rotational symmetry, which means that

they can only be composed of vi, δij , and ϵijk; (ii) Onsager reciprocity, of which, the

non-trivial ones are: κ
µ
ij(v) = TλTji(−v), κviab(v) = −TγTabi(−v), λviab(v) = −γµabi(−v),

and γvijab(v) = γvabij(−v); (iii) the requirement of conservation of total angular momen-

tum of the system, which is a consequence of the assumption of isotropy. This condi-

tion translates to the requirement that νπij = νπji, i.e. the stress tensor is symmetric.

This follows from representing the total (orbital) angular momentum of the system as

Lij(t) =
∫
dx
(
xiπj(x, t)− xjπi(x, t)

)
and imposing that dL

dt = 0.

It may be seen that 17 scalar dissipative coefficients are compatible with the constraints

listed above. There are: (i)3 independent rank-2 kinetic coefficients (κT , λµ and λT ) that

correspond to 2 scalar coefficients each:

λ
µ
ia = λ

µ
1δia + λ

µ
2vivj (4.8)

(ii) 2 independent rank-3 kinetic coefficients (γT and γµ) that correspond to 3 scalar coeffi-

cients each:

γTiab = γT1 viδab + γT2 vivavb + γT3 (δiavbδibva) (4.9)
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(iii) 1 rank-4 object (γv) that corresponds to 5 scalar coefficients:

γvijab = γv1 δijδab + γv2 (δiaδjb+ δibδja) + γv3 vivjvavb + γv4 (vivjδab + vavbδij)

+ γv5 (vivaδjb + vjvbδia + vivbδja + vjvaδib)

(4.10)

Plugging all of this in, after some algebra, the rate of entropy production R may be reduced

to:

R =−
[ κT1
T 2

(∇T )2 +
κT2
T 2

(v ·∇T )2 +
λ
µ
1

T
(∇µ̄)2 +

λ
µ
2

T
(v ·∇µ̄)2

+
γv1
T

(∇ · v)2 +
γv2
2T

(∇ivj +∇jvi)
2 +

γv3
T

(vi(v ·∇)vi)
2

+
2γv4
T

(∇ · v)(vi(v ·∇)vi) +
γv5
T

(
vj(∇ivj +∇jvi)

)2
+

2λT1
T

(∇µ̄ ·∇T ) +
2λT2
T

(v ·∇µ̄)(v ·∇T )

+
2γ

µ
1

T
(∇ · v)(v ·∇µ̄) +

2γ
µ
2

T
(vi(v ·∇)vi)(v ·∇µ̄) +

2γ
µ
3

T
(∇iµ̄)(vj(∇ivj +∇jvi))

+
2γT1
T

(∇ · v)(v ·∇T ) +
2γT2
T

(vi(v ·∇)vi)(v ·∇T ) +
2γT3
T

(∇iT )(vj(∇ivj +∇jvi))
]

(4.11)

where the scalar kinetic coefficients are functions of µ, T , and |v| subject to inequalities

arising from R ≥ 0.

The set of coefficients is enlarged from the usual Galilean hydrodynamics. When, the

fluid enjoys Galilean boost symmetry, R should be independent of the frame of reference the

measurement takes place in. So, all the terms with free v’s drop out. Only 5 survive; κT1 ,

λ
µ
1 , λ

T
1 , and 2 coefficients of viscosity, γv1 and γv2 . At this stage, this represents a Galilean

hydrodynamics for a 2-species fluid [35].

To get conventional fluid dynamics for a one species fluid, we need to take into account
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effect of Galilean invariance, that is, that the number current is fixed to be proportional to

the momentum density. The obvious effect is that λT and λµ drop out of the set of allowed

coefficients, and hydrodynamics is characterized by just 3 kinetic coefficients: thermal con-

ductivity and 2 coefficients of viscosity. The second effect is more subtle [56]. Writing the

thermodynamic relations for dε and dp as:

d

(
ε− ρv2

2

)
= Tds+ µdn+

v2

2
dρ (4.12a)

dp = sdT + ndµ+ ρd
v2

2
(4.12b)

The condition for Galilean invariance implies that ρ = mn, where m is the mass of a single

microscopic particle. This is mass density in the usual sense. We can see that in this case,

p = p(T, µ+ mv2

2 ), where µ+ mv2

2 ≡ µ0 can be interpreted as chemical potential in the rest

frame of the fluid element. Complementarily, ε0 ≡ ε− ρv2

2 may be interpreted as the energy

density in the rest frame. In other words, this gives us a definite law of transformation law

for thermodynamic quantities under Galilean boost transform.

4.2 WSM with momentum conservation

In a Weyl semimetal, in addition to the three conserved quantities considered so far, we have

the chiral charge n5 as well that is conserved:

∂tn
5 +∇ · j5 = CE ·B (4.13)

The currents will now have a non-dissipative response that is forced by the anomaly. To

uncover this response, we will use the algorithmic method of (2.3). Similar to Eq.(4.14), we

will assume the most general form that these can take. Once again, the anomaly nessecitates

a response controlled by the B field. Accordingly, the coefficients κB , λB and ξB are now
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rank-2 objects (due to the presence of v, an O(1) vector, among the list of hydrodynamic

variables). Similarly, γB is a rank-3 object. The most general constitutive relations one may

write are:

νi = ν
(R)
i + λBiaBa (4.14a)

ν5i = ν5
(R)
i + ξBiaBa (4.14b)

νπij = νπ
(R)
ij + γBijaBa (4.14c)

Q = νQ
(R)
i + κBiaBa (4.14d)

νs =
Q

T
+DBB (4.14e)

where the (R) superscript emphasizes that we have separated out the dissipative parts. All

the coefficients introduced are now functions of T , µ, µ5 and |v|. Note that we haven’t

elevated DB to a rank-2 object as well, unlike the other coefficients. This is because if we

did, then ∇ · js would give us ∇i(D
B
iaBa) = Ba∇i(D

B
ia) +DB

ia(∇iBa); i.e. because of the

presence of off-diagonal components of DB , we can no longer use ∇ ·B to exclude terms that

involve (∇iBa), which are O(∂2) when B ∼ O(∂). Plugging everything into the expression

for R and demanding that all terms dependent on B cancel, we obtain:

Ba

[
κBia
T 2

(∇iT ) +
λBia
T

(∇iµ) +
ξBia
T

(∇iµ
5) +

γBija
T

(∇ivj)

]
+(Cµ5δab−λBab)

EaBb

T
−B·∇DB = 0

(4.15)

we can immediately see that the EaBb term forces λBab = Cµ5δab, just like in the dirty

case. Expanding ∇iD
B = DB

T ∇iT +DB
µ ∇iµ +DB

µ5
∇iµ

5 +DB
|v|

va
|v|∇iva, we can see that

this implies DB = Cµµ5

T + F̃(T, µ5, |v|). From the Ba∇iT and Ba∇iµ
5 terms, we get

κBia = (−Cµµ5 + T 2F̃T )δia and ξBia = (Cµ + T F̃µ5)δia. This is exactly what we had in the

dirty case.
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The new coefficient is γB . This, as we can see, only recieves contributions from the uncon-

strained F̃ part, as the constrained part of DB does not depend upon |v|. γBija = Tδai
vj
|v| F̃|v|.

However, this gives a contribution to the stress tensor jπij ∼ T
Bivj
|v| F̃|v|. As we have men-

tioned earlier, the stress tensor must be symmetric so that angular momentum is conserved.

So, this term is forbidden. We seem to have isolated all the anomaly related responses within

the dirty sector alone.

This shows us that the boost free hydrodynamic setup we are considering is qualitatively

different from conventional fluids, and is pretty much the dirty hydrodynamics with an

extra degree of freedom that doesn’t interact with the anomaly at all. Another example

that shows this fact is the absence of anomaly enforced Chiral Vortical Effect in boost free

hydrodynamics. It was shown in the case of a Relativistic fluid by Son and Surowka [59],

that the presence of an anomaly forces not just a chiral magnetic effect, but also a chiral

vortical effect; a non-dissipative current along the flow vorticity. In our context that would

translate to ν = ν(R)+λBµ5B+λv∇×v, where like λB , λv is also fixed to be some definite

function of the hydrodynamic variables. However, we can see that this is forbidden in our

case, as Onsager reciprocity would then imply a contribution to the stress tensor that goes

as νπij ∼ ϵijk(∇kµ̄) which is again forbidden by the constraint that the stress tensor must

be symmetric.
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CHAPTER 5

CONCLUSION

In this thesis, we have formulated a hydrodynamic theory for Weyl semimetals. Weyl

semimetals are topological conductors that possess chiral species of charge L/R that in-

terchange under the action of spatial inversion I. Hydrodynamical theories are unversal

theories that describe macroscopic non-equilibrium phenomena. They are universal in the

sense that their construction does not rely on the precise details of the microscopic con-

stituents of the system and their dynamics, but rather, on macroscopic principles such as

symmetries the system obeys, and the 2nd law of thermodynamics. As such, identifying all

the degrees of freedom allowed in the hydrodynamic constitutive relations is equivalent to

identifying all possible transport phenomena in a given system. We have performed this

exercise in detail for a dirty WSM, where only n, n5 and ε are conserved (approximately, in

the case of chiral charge density n5), but momentum density π is not, owing to the presence

of electron-impurity collisions.

We have also proposed a phenomenological model, based on the hydrodynamic theory we

have formulated for a dirty WSM, for the phenomena of Positive magnetoconductivity and

magneto-thermoelectric conductivity. Our explanation of the thermoelectric effect in WSMs

is reliant on an allowed (but unconstrained) contribution to the chiral current density j5 that

emerges from our hydrodynamic theory. We discuss in detail the conditions of validity of

this contribution.

Finally, we have constructed of a hydrodynamic theory for clean metals, and motivated

how the ‘fluid’ that emerges in this case is qualitatively different from conventional fluids

that enjoy symmetry with respect to Boost transformation. Using this construction, we have

shown that in a clean WSM, all interesting (anomaly related) responses are contained within
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the dirty sector of the theory itself; addition of the extra π degree of freedom to the list of

conserved quantities produces no extra anomaly related transport effects.

One interesting future investigation would be to carefully analyze the boundaries of the

system, given that all experimental samples are finite (and hence, posess boundaries). While

some things are understood about the surfaces of Weyl semimetals (the presence of Fermi

Arc surface states), a careful analysis of the surface at the level of boundary conditions

imposed on solutions of the hydrodynamic equations is required to be able to model the

experimental behavior of realistic samples of Weyl semimetals.
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Figure 5.1: The full picture (Images courtesy : Mrinalini Pandey [48])
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Figure 5.2: City by night
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