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Chapter 1: Introduction 

All organisms require the ability to respond appropriately to changes in their environment. 

Inhabiting diverse environments (1) from dry deserts (2) to deep-sea hydrothermal vents (3) with 

only membrane layers separating their cytoplasm from the external world, bacteria are constantly 

interacting with their environments and being challenged by them to evolve. They adapt 

exceptionally quickly to these transitions via complex genetic, transcriptional, and post-

transcriptional mechanisms (4–16). Studying the regulated and stochastic responses of bacteria to 

environmental pressures is significant to the advancement of our understanding of biological 

adaptation as well as the improvement of therapeutics for human health. In this dissertation, I 

present two studies investigating the ways in which enteric model organisms adapt genetically to 

host-associated selective pressures and discuss how the findings of these studies provide 

fundamental insights into microbial adaptation that can be used to improve clinical therapies for 

humans. 

In the first story, we investigated extreme antagonistic gene-environment interactions in the 

enteric organism, Escherichia coli, using the clinically relevant antibiotic rifampicin. Extreme 

antagonistic gene-environment interactions occur between genetic and environmental 

perturbations that, individually, decrease fitness of the organism but, when presented together, 

increase the fitness of the organism. First, we addressed the lack of experimental methods to 

systematically identify such interactions by implementing a two-part strategy. Our strategy 

involves serial adaptive evolution by first adapting E. coli to a defined glucose medium, then 

adapting those strains to a sublethal concentration of rifampicin. Extreme antagonistic 

interactions address a fundamentally interesting question in biology concerning gene-
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environment interactions, as well as provide targets for the design of antagonistic antibiotic 

combinations that can select against drug resistance (see: Collateral Sensitivity). 

In the second story, we assess the shifting genetic requirements of a prevalent and abundant 

human gut microbe, Bacteroides thetaiotaomicron (Bt), during colonization of a germ-free 

murine gut. To understand how a bacterium ultimately succeeds or fails in adapting to a new 

environment, it is essential to know not only which genes are involved but when they are 

involved. The mammalian gut, which is regularly bombarded by exogenous microorganisms, 

represents a biologically and clinically relevant system to explore microbial adaptational 

processes. We introduce Bt into the guts of germ-free mice to 1) determine whether the genetic 

requirements for commensal colonization shift over time and, if so, 2) characterize the biological 

functions required for microbial survival at different points of colonization. The results of a high-

throughput functional genetics assay (BarSeq), transcriptomics, and metabolomics converge on 

several conclusions. First, adaptation to the host gut occurs in distinct stages. Second, drastic 

shifts in gene usage occurred throughout the first week, shifting from high expression of amino 

acid biosynthesis to polysaccharide utilization genes. These changes were sustained thereafter, 

except for the continued upregulation of a single PUL responsible for the degradation of 

raffinose-family oligosaccharides (RFOs) rich in the standard chow diet fed to our mice. Finally, 

spontaneous mutations in wildtype Bt introduced to GF mice also evolved around this locus, 

highlighting the importance of efficient carbohydrate metabolism in long-term persistence within 

a monoassociated gut. To improve microbiome-based therapies, it will be important to appreciate 

and meet the distinct needs of the organism during the varying stages of colonization. 
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The Gut Microbiome 

The human gastrointestinal tract (GI) harbors a dynamic and complex repository of 

microorganisms, which are collectively called the gut microbiome (17). The bacterial community 

that inhabits the human body varies across space and time (18). The intimate relationship 

between mammalian hosts and their resident microbes dates to the very beginnings of eukaryotic 

life on earth, and it has been posited that bacteria played an integral role to the dissemination of 

humans across the world by allowing our ancestors to survive in new ecological niches with 

diverse nutrient availability and pathogenic challenges (19). The gut microbiome is important for 

many aspects of host physiology, including resistance to pathogen invasion (20–23), immune 

modulation (20, 24–31), and metabolism (32–40).  

The total genome of commensal microbes has been estimated to contain 150 times more genes 

than the human genome, equipping the host with essential functional traits that human beings 

have not evolved on their own(41). For instance, the carbohydrate-active enzymes (CAZymes) 

encoded in the microbial glycobiome allow the host to extract energy from otherwise 

inaccessible dietary fibers (35, 40, 42, 43). Further supporting human nutrition is the host of 

genes responsible for biosynthesis of vitamins, cofactors, and secondary metabolites (44, 45). 

However, not all host-associated bacteria are friend—a rare, but arguably better-studied, 

population represent pathogenic foe. These bacteria are often treated with oral antibiotics. Oral 

use of antibiotics leads to profound perturbations in the diversity of gut microbiomes and 

enrichment of antibiotic resistance genes (46–48). Emergence of antibiotic resistance is a major 

global health concern. At a concentration of 1010—1011 bacteria g-1 of intestinal content, the gut 

microbiome represents one of the densest and most rapidly evolving ecosystems on Earth, which 

in turn, enables it to act as a highly effective reservoir for antibiotic resistance genes (49–52). 
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Therefore, given the important functions that the gut microbiome performs and the harm it 

causes when it is dysfunctional, the gut microbiome represents a relevant and clinically 

significant environment to study microbial adaptational processes. 

 

Genetic Forces of Adaptation in Microbial Populations 

Adaptation to selective forces depends on a myriad of variables, including but not limited to the 

intensity of environmental pressures, growth rate, mutation rate, and spatial partitioning. Though 

bacteria are many times more diverse and ancient than plants or animals, the evolution and 

adaptation of these populations has historically been much more poorly studied and understood 

than either that of plants or animals. However, this gap in knowledge is rapidly shrinking due to 

the technological advances of the past few decades and a new appreciation for the important 

roles that microbes play in the ecosystems on Earth as well as in human health. Below, I will 

highlight some considerations to frame our discussion of bacterial adaptation within a host-

associated context. 

Bacteria can make adaptations that are transient, semi-permanent, or divergent on an 

evolutionary scale (51–57). Most bacterial adaptations are what one would consider transient or 

semi-permanent, given the quick generation rate of most bacterial species and heterogeneity that 

is maintained even in populations under severe selective pressure. These factors allow rapid 

reversion of the adaptation when the stressor is lifted, whether through true genetic reversion or 

suppressor mutation (58, 60–62). The plasticity of gut microbes has been vital and strategic, 

historically, allowing changes in the lifestyle and dietary habits in the host, whether they be 

transient fluctuations or long-term cultural changes (43). Whereas the timescale of genetic 
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differentiation for plant populations is typically measured in years (63) and in large mammals in 

decades (64), natural bacterial populations and communities have been observed to develop 

genetic divergence in well under a year (65–67). In the case of replicate experimental 

populations, the timescale can be on the order of days (13, 15, 53, 68–71). 

The plasticity of a bacterial genome is in part determined by its mutation rate. Mutation rate 

points to the raw occurrence of mutations and should be distinguished from fixation rate, which 

describes the speed by which the mutation pervades the population (72). Under weak selective 

pressure, most mutations are more deleterious than beneficial; thus, in theory, fixation rates 

should be minimized under these conditions (73). On the other hand, selection for beneficial 

mutations can be much stronger when bacterial populations face environmental transition. These 

populations may evolve a much higher fixation rate. In fact, clinical isolates of bacterial 

pathogens often have mutation rates 10- to 100-fold that of laboratory strains due to strategic 

defects in repair pathways, likely as a competitive evolutionary response against therapeutic 

agents like antibiotics (74, 75).  

The development and increased accessibility of whole genome sequencing (WGS) have been 

instrumental to advancing studies of bacterial evolution. For example, Mycobacterium 

tuberculosis in its latent phase has long been assumed to have a low or non-existent mutation rate, 

since only 10% of patients with latent infection suffer reactivation, but when WGS was used to 

investigate this question in a primate model, latent phase mutation rate was found to be 

comparable to that of active M. tuberculosis (76). Furthermore, genomic analysis comparing 

Pseudomonas aeruginosa isolates during acute and chronic infection revealed that chronic 

isolates had a hypermutator phenotype which inactivate virulence genes and likely promoted 

long-term adaptation to the host (77). These findings advance our understanding of how 



 6 

microbes may take similar or diverse approaches to adapting to different phases of colonization 

within the host and have serious implications for therapeutic treatment of these pathogens. 

Moving beyond raw mutation rate, we should consider the factors that determine how quickly a 

beneficial mutation will pervade a population. In a well-mixed population, we would intuitively 

expect that that mutations will fix at a rate that is relative to the size of the growth-rate benefit. 

However, rarely do bacteria naturally live in a well-mixed environment (78–82). The niches that 

host-associated bacteria inhabit are almost never well-mixed, as they will form structures like 

biofilms on solid substrates like teeth (83) or inhabit distinct sections of the GI tract (84). 

Organisms living within a spatially structured habitat are generally thought to have slower rates 

of adaptation because competitive interactions are more likely to be localized (85–88). Thus, 

spatial partitioning becomes a key determinant to the fixation rate of new beneficial mutations.  

Another factor key to determining the rate of evolutionary responses to environmental change is 

how quickly the environment is changing. At the same time that beneficial mutations arise and 

are being fixed in the environment, the environment itself may be changing on a gradient. 

Theoretical studies suggest that lower rates of change are associated with weaker selection (89, 

90). Experimental evolution experiments in Caenorhabditis elegans demonstrate that under fast 

environmental change, genotypes with high fitness in the most extreme environment are quickly 

selected for; however, when the environmental change is slow and gradual, populations initially 

select for genotypes favoring the intermediate environmental condition and can lose the 

genotypes best suited for the most extreme environment due to genetic drift and founder effects 

(81). Corroborating this finding, a study on the evolution of antibiotic resistance in P. aeruginosa 

suggests that gradual increases in antibiotic concentration allow for more rapid evolution of 

antibiotic resistance but limit the extent of resistance, whereas steep increases in antibiotic 
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concentration slow development of antibiotic resistance but select for bacteria with resistance to 

higher doses of antibiotics (92). Together, these findings suggest that the rate of environmental 

change affects the pace and outcome of adaptive evolution. 

Of course, microbes must strike a balance between genomic plasticity and stability (93). From 

one generation to the next, bacterial genomes are remarkably stable but are shaped by the effects 

of genome rearrangement, horizontal gene transfer (HGT), and the factors mentioned above that 

make them extremely plastic on an evolutionary scale. The evolutionary plasticity of bacterial 

genomes is a double-edged sword that thwarts our attempts to control pathogenesis as much as it 

allows commensal bacteria to shift flexibility to fit the lifestyle of the host. Providing stability to 

the bacterial genome is a host of robust repair, offense, and defensive apparatuses such as 

restrict-modification systems (94, 95). On the other hand, mobile elements, HGT, and genome 

rearrangement introduce variations to the genome and allow for the type of evolution in quantum 

leaps that bacteria are famous for (96). Genomic instability and environmental adaptation can 

occur through nearly countless other mechanisms, a few of which are discussed in the following 

section. 

 

Molecular Mechanisms Supporting Environmental Adaptation 

For all organisms, rapid and robust adaptive responses are essential for life in dynamic 

environments. Bacteria inhabit enormously diverse niches, and as such, have developed tight 

control of global regulatory circuits that coordinate metabolic flux with growth (97), cell 

envelope composition (98, 99), and cell cycle progression (100) to preserve viability in response 

to frequently changing conditions. Defects in these systems render bacteria unable to receive 
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cues and/or respond appropriately to them. This regulation can happen at any level of the central 

dogma of biology, from DNA to protein. Mutations involving deletions, duplications, and 

insertions change the amount of information contained in the genome. They can also result in the 

appearance of new junctions, which have the potential to alter the expression, and therefore 

function, of downstream genes. Point mutations can disrupt or alter the function of the encoded 

protein. Depending on the location of the disruption, mutations might cause loss of function, gain 

of function, or be silent (101). The effects of some mutations are local, whereas others can cause 

global reprogramming of the transcriptome (102–104). In many cases, biological functions 

emerge from interactions rather the sole contribution of a gene or environmental factor, as in 

synergistic or antagonistic gene-gene or gene-environment interactions (105–108). 

Adaptive evolution often occurs in two phases: a "plastic" phase in which the environmental 

transition induces phenotypic changes without genetic mutation, and second phase in which 

accumulating mutations induce more permanent phenotypic changes (109). Plastic adaptations 

are particularly helpful in fluctuating environments, which describe most host-associated niches 

including the human gut. Bacteria respond rapidly and reversibly to new environments through a 

diverse arsenal of complex transcriptional and post-transcriptional regulatory mechanisms. 

Collectively, we refer to the changes in gene expression that allow bacteria to adapt to changing 

or suboptimal environments as stress responses (110). These responses are often regulated by a 

specialized sigma factor, two-component system, or some other transcriptional regulator (88–92). 

The stringent response is a ubiquitous stress signaling pathway used by virtually all bacteria to 

survive nutrient starvation (116, 117). Under nutrient starvation, the guanosine penta- or tetra-

phosphate alarmone commonly referred to as (p)ppGpp accumulates and reshapes the 

metabolism and physiology of bacterial cells. The widespread range of (p)ppGpp targets and 
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diversification of function allows bacteria from vastly different environments to respond to stress 

in ways that are relevant to their niche and lifestyle. However, some common consequences of 

the stringent response include a decrease in DNA replication and rRNA synthesis, and a 

concurrent increase in transcription of amino acid biosynthesis and nutrient transporters. The 

stringent response has been reported to mediate virulence gene expression and survival in 

pathogens (118–120). The human commensal Bt also relies on the stringent response to survive 

carbon starvation and persist in the gut through the stringent response (121). 

Using WGS from bacterial isolates sampled at different points of clinical infections, a recent 

study reported on a common group of genes that undergo adaptation due to host association 

(122). Though it is often difficult to find direct orthologous relationships between specific genes 

undergoing adaptive changes, the authors found similar bacterial cellular processes evolving in a 

host-associated context. Interestingly, transcription factors were prominent among genes 

undergoing adaptive change. This suggests that transcriptional remodeling is one common 

mechanism to host adaptation. Another study followed up on one of the transcription factors in 

Bt and found that it is required for utilization of multiple polysaccharides as well as murine gut 

colonization (123). It will be interesting in future studies to determine whether these adaptive 

requirements result specifically from a lab-to-host transition or if even host-to-host transitions 

would also require global transcriptional reprogramming. 

In the second phase of adaptive evolution, mutations take hold within bacterial genomes. These 

genomes are a mosaic of stable and unstable regions, crafted by genetic events like 

recombination, insertions, deletions, mutations, duplications, inversions, and transpositions (93). 

The most common type of mutation is point mutations, which are regarded as the raw material of 

evolution (124). Single-nucleotide substitutions in DNA may produce a synonymous codon 
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mutation or non-synonymous mutation. Point mutations in non-protein-coding DNA sequences 

can have significant functional consequences if they occur within regulatory regions of the 

genome. Recombination is another common mechanism through which new genetic variants are 

produced. It has dual roles in protecting genome stability as well as increasing genome flexibility 

by introducing new genetic information through incorporation of loci near identical or near-

identical DNA sequences. Gene deletion also shaping bacterial evolution. While bacteria 

increase their DNA content through HGT and gene duplication, they are constantly purging non-

functional sequences through deletions (125). Gene reduction by deletion can provide a selective 

advantage by eliminating functions that are dispensable and/or redundant, thus conserving an 

organism's limited resources (101, 102). This is not to say that insertion/duplication events are 

uncommon or insignificant to the fitness of bacteria. In fact, the occurrence of tandem 

duplications is prevalent among bacteria, and an increasing number of studies have demonstrated 

the examples of bacteria using tandem repeats to reversibly shut down or modulate the function 

of specific genes. For example, the phase-variable acetylation of the K1 antigen of E. coli K1 is 

driven by a heptanucleotide TR tract. Loss or gain of repeat units not in a multiple of three 

results in NeuO expression, which enhances desiccation resistance but reduces biofilm formation 

(128, 129). Tandem repeats also create variation that contributes to adaptation in the face of 

antibiotics for S. haemolyticus (130). This mechanism has also been noted in S. enterica, for 

which the amplification of the isoleucyl-tRNA synthetase gene facilitates resistance to mupirocin 

(131). However, due to the high intrinsic instability of these elements and the fitness cost of 

maintaining redundant copies, these genomic changes tend to be transient, which is why they 

have been underappreciated in the literature despite their immense and significant role in shaping 

microbial genomes.  
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Tandem repeats are often the result of transposable elements (TE) (132). TEs represent a special 

type of recombination in which DNA can migrate to a non-homologous locus. The type of 

transposable element that makes tandem repeats are replicative in that they cause DNA 

replication and produce a cointegrate, but they can also be conservative and only cause insertion 

without creating an additional copy of itself (133). While some transposons are site-specific, 

others are less stringent with their target sequence. Transposons can travel on plasmids and be 

transferred through HGT. (101)The contribution of regulatory elements like promoters is often 

overlooked in the literature. A recent study finds that the promoter activity of two Drosophila 

transposons in the Mariner superfamily can drive transcription of a reporter gene in a distantly 

related organism, including in bacteria (134). Orientation and proximity of the insertion to 

promoter sequences can have major consequences for the genomic impact of the IS, particularly 

if the insertion occurs upstream in an operon. Observation agrees with intuition in that these 

movable elements occur more frequency in bacteria residing within adverse conditions. Their 

contribution to altering pathogenic properties of infection including S. epidermis (135) and M. 

tuberculosis (136, 137) is well-noted in the literature. 

 

Combinatorial Mutations 

Some of the most interesting and complex adaptive mechanisms arise from interaction between 

multiple mutations. Indeed, recent advances in network modeling suggest that a single cellular 

function is rarely carried out by a single gene, and that this is a trend found not only in 

microbiology but generalizable across the life sciences (138–143). For our null hypothesis, we 

assume two non-interacting mutants, and define a "neutral" phenotype as one in which the 
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double mutant has a phenotype that is simply additive of the single mutants'. A double mutant 

with a more extreme phenotype than the neutral phenotype defines a synergistic, or synthetic, 

interaction. Alleviating interactions are defined by a double-mutant phenotype that is less severe 

than expected and may suggest that the gene products operate together or serially within a 

pathway. In the case when the first mutant already impairs the entire pathway, adding another 

mutant within the same pathway will have "diminishing returns" to the phenotype (144). These 

alleviating interactions can also be considered antagonistic, as the fitness impact of the second 

mutation is directly limited by the effect of the first. 

 

Collateral Sensitivity 

 A unique case of antagonistic interactions is synthetic rescue, in which two genetic perturbations 

that are each individually deleterious become beneficial in the presence of each other (145). This 

can be considered an extreme form of antagonistic interactions because the double mutant not 

only confers less negative fitness but flips sign and confers positive fitness to the organism. 

These types of interactions are not constrained to gene-gene combinations, but can be between 

genetic and environmental perturbations, or two environmental perturbations. Antibiotic drugs 

are a clinically significant class of environmental perturbations. Given the current global crisis of 

antibiotic resistance, there is an exigent need for new treatment strategies to combat development 

of resistance. Among the most promising approaches is collateral sensitivity—a phenomenon in 

which acquisition of resistance to one antibiotic causes increase sensitivity to a second antibiotic 

(146). Despite previous efforts to identify extreme antagonistic drug pairs (147–151), there has 

been a lack of a systematic strategy to find these rare combinations. Finally, we need to address a 
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major knowledge gap of understanding the molecular mechanism of collateral sensitivity by 

identifying the transcriptional changes that represent the adaptive response and the cost of 

resistance. 

 

Sources of selective pressure within the mammalian gut 

Recent advances in sequencing technology have allowed us to appreciate the rapidly evolving 

microbial populations in the human gut. This finding is important for basic and translational gut 

microbiome research, but our understanding of the selective forces that act on these communities 

is still lacking. Below, I outline some biotic and abiotic pressures that shape the diversity and 

function of the microbiota. 

 

Nutrient availability 

Among these variables, the metabolic landscape within the gut has proven to be among the most 

critical and complex. A major nutrient source for resident bacteria is the plant-derived complex 

polysaccharides that are provided through the food consumed by the host. Since these fibers are 

indigestible by the host, they reach the gut lumen at higher concentrations than simple sugars and 

are thus more a more abundant nutrient source for the gut microbiota (152). Host-derived 

polysaccharides, such as mucus glycans, provide an alternate nutrient source for microbes that 

resident near the mucosa. Commensal Bacteroides species possess an impressive arsenal of 

polysaccharide utilization loci (PULs) to metabolize a wide variety of plant- and host-associated 

glycans as well as transport the generated simple sugars. These PULs are often integral in 
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determining the niche adaptation of Bacteroides species in the gut; as such, there is complex and 

fascinating regulation of these genes to facilitate quick adaptation to the environmental niche (38, 

99).  

Metabolic genes have been directly linked to commensal colonization. The commensal 

Bacteroides fragilis encodes for a unique class of PULs called commensal colonization factors 

(CCF), which are upregulated at the colonic surface and allow B. fragilis to penetrate the bottom 

of colonic crypts. The CCF facilitates colonization through a combination of regulating the 

biosynthesis of capsular polysaccharide genes, whose expression is also intimately linked with 

nutrient availability; inducing PS-specific IgA responses that improve B. fragilis adherence to 

intestinal epithelial cells; and possible usage of a specific polysaccharide substrate by a putative 

chitobiase (153). Furthermore, hybrid selection RNA sequencing shows that B. fragilis colonized 

in the mucosal niche is significantly more metabolically active than B. fragilis localized to the 

lumen, upregulating a number of important genes for mucin glycan foraging (154). Similar 

observations have been made in Bt, linking CPS expression with polysaccharide utilization, host 

immune response, and gut colonization (38). 

Not only do gut microbiota deploy a specific genetic program for metabolism at different 

biographical sites of the body, but it has also been shown in comparisons between long- and 

short-term dietary changes that timing is another variable that affects the way diet modulates 

bacterial adaptation. Candela et al. 2012 showed that within the gut microbiome, certain groups 

of bacteria were affected by short-term dietary changes while others were exclusively modulated 

by long-term dietary habits (155). 
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Antibiotics 

Though only a small percentage of all bacteria are associated with human disease, those mighty 

few remain a matter of serious concern to global health. A few decades ago, during the golden 

era of drug discovery, there once existed the notion that all pathogens could be eradicated by 

chemotherapeutics and antibiotics. Currently, we live in an era of crisis in terms of the rapid 

emergence of resistant bacteria worldwide. The gut microbiome is considered a reservoir for 

antibiotic resistance genes from commensals to pathogens—called the "resistome" (156–159). 

This is in part in due to the density of this community, which facilitates HGT, as well as routine 

and liberal oral administration of antibiotics, which selects for organisms carrying antibiotic 

resistance genes.  

Resistance has been developed to all current antibiotics, and with the pharmaceutical pipeline 

drying up in antibiotic development, there is a need to understand how we got here, and how to 

develop novel strategies to extend the lifetime of new drugs in the future. One of the greatest 

challenges that we face is the difference in the naturally rapid evolutionary rate of microbes 

(hours to days) compared to the laborious process of drug development (years) (159). In this way, 

it is clear to see that the spread of antibiotic resistance far outpaces that of new drug development. 

Given time, any organism living under selective pressure will inevitably evolve to resist the 

pressure and gain fitness within that environment, but there are ways of finding targets to impede 

the evolutionary process. One such approach is presented in Chapter 2. 

 

 



 16 

Host immune system 

The early life of a human presents a unique window of opportunity for educating the immune 

system. Favorable microbial exposures direct appropriate differentiation of immune cells, 

whereas missed opportunities within this window may result in inappropriate inflammatory 

responses to commensal microbiota later in life (24, 160). 

Though it is assumed that proper development of the immune system provides for protection 

against pathogens and tolerance to commensal microbiota, the line between these groups can 

often in unclear (28, 30). The presence or absence of certain outer membrane components on 

commensal organisms can alter its relationship with the host in different ways. One well studied 

example of this is expression of specific CPS genes in B. fragilis. B. fragilis, much like many 

other Bacteroides species, can produce multiple CPS that comprise a microcapsule layer. One 

such CPS, PSA, has been the subject of many studies for its ability to stimulate an anti-

inflammatory interleukin-10 (161–165). It has also been found in the gut microbe Ruminococcus 

gnavus that isolates with a protective isotype of its CPS promotes a tolerogenic immune response 

while isolates lacking function CPS genes promote inflammation within the host (166). 

It is evident that an intimate and complex interplay occurs between microbes and the host 

immune system. Therefore, genes that promote or suppress host inflammation should be tightly 

regulated, as is the case for the well-studied CPS regulators in Bacteroides. Furthermore, when 

intestinal immune responses are dysregulated, they can result in chronic inflammatory disorders 

for the gut, such as IBD (167, 168) and food allergies (169, 170). These inflammatory 

environments can then, in turn, select for specific strains of microbes that are willing to 

withstand, or even thrive, in these conditions. A longitudinal study of ileal pouch patients 
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identified rapidly evolving genetic elements within Bacteroides species, including unique CPS 

loci (138). It remains unclear whether these adaptations represent attempts to stimulate, suppress, 

or evade host immunity—or if the evolution and selection of these loci are not a response to but a 

stimulus that incited inflammation. 

 

Community effects 

One of the most fascinating selective pressures within the gut is the fact that these bacteria live 

within a dense and diverse community of other microbes, with which they can develop 

cooperative, competitive, or neutral interactions. In many contexts, cooperative phenotypes have 

been observed to be central to the bacterial community functions such as quorum sensing (172), 

biofilm formation (173), and rapid spread of antibiotic resistance (158, 159). As mentioned 

previously, metabolite acquisition is a major driver of bacterial behavior and evolution. A 

fascinating example of cooperativity comes from a dedicated cross-feeding enzyme system 

between the prominent gut commensal Bacteroides ovatus and Bacteroides vulgatus (174). B. 

ovatus digests inulin extracellularly at a cost to itself and the benefit of B. vulgatus, and yet 

extracellular digestion of inulin increases the fitness of B. ovatus due to reciprocal fitness 

benefits it receives. Interestingly, despite cooperativity being a win-win for all members involved, 

natural cooperative interactions are rare and prone to instabilities on both ecological and 

evolutionary timescales as cooperativity renders cells dependent on species that may not always 

be nearby (166, 175–179). 

On the other hand, ecological theory and modeling with recent data suggest that microbial 

competition can increase stability by dampening cooperative networks (175). Indeed, there are 
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many examples of competitive interactions among gut microbes, and bacterial antagonistic 

relationships are appreciated as a critical factor in shaping this complex system. One mechanism 

of interbacterial competition is the type VI secretion system, whereby effector proteins are 

injected into the target organism by the attacking cell (180–183). Competitive mechanisms such 

as these force the attacking and target species into an arms race, as in predator and prey. 

However, the extent of bacterial adaptation that occurs due to selective pressures placed on 

individual species and pairwise interactions depend on the entire community context. A recent 

study demonstrated that community context can dramatically alter evolutionary dynamics in that 

there is a stronger evolutionary response in low-diversity communities, and that bacterial 

adaptation is, to some extent, constrained by the complexity of the surrounding community (184). 

In other words, while environmental factors provide the impetus for adaptation, individual 

species within that population only stand to capitalize on those opportunities if they have the 

capacity within a highly competitive (diverse) environment.  

 

Bacterial Genetic Tools to Study Adaptation 

Genetic Screens 

Genetic tools are required to take full advantage of the wealth of information generated by 

genome sequencing efforts and ensuing global gene and protein expression analyses. Many 

elegant plasmid, cloning, expression, and mutagenesis systems have been developed over the 

years, and many are commercially available within model systems like E. coli and Bacillus 

subtilis. This is not true for most other bacterial species, which are still considered genetically 
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intractable due to many factors such as low conjugation frequency, severe barrier for foreign 

DNA entry due to its restriction-modification system, or lack of available selection markers 

within the system. 

However, advances in sequencing technologies have made it feasible to capture WGS variation 

in organisms for which genetic manipulations are not yet available, such that they may be studied 

in their natural form. Other major advancements in the field of bacterial genetics include the 

increased variety and throughput of genetic screens. Genetic screens are critical tools for 

defining gene functions and assessing mutant organisms for phenotypes of interest. The process 

can be "forward" or "reverse". A forward genetics screen begins with the measurement of a 

phenotype followed by mapping of the causative genes. Reverse genetics starts with a known 

gene and assays for resultant phenotypes due to disruption of that locus. This approach can yield 

knowledge about the function of individual genes but is limited by hypotheses about the 

phenotypic outcome of the targeted mutant, and often involves assaying a single mutant in a 

wide variety of conditions, as in an OmniLog system (149). 

Forward genetic screens generally involve generation of chromosomal mutants either randomly 

or site-specifically. Arguably the most powerful method for generation such a pool of mutants is 

through transposon insertion. Such an approach has been used to generate genome-wide mutant 

libraries in many model and non-model systems (186–190). A large challenge in microbiology is 

the sheer number of uncharacterized genes of unknown function that has been identified by 

genome sequencing. Transposon mutagenesis followed by high throughput screening of 

conditions is a powerful way to annotate gene function in bacteria, but many existing methods 

for TnSeq are often time consuming and require remapping of each library following the 

experiment. This process was linearized through the development of random barcode transposon-
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site sequencing (RB-TnSeq) followed by barcode sequencing (BarSeq) within the experimental 

condition to monitor the abundance of mutants.  

 

Experimental Evolution 

Several studied within the past few years have capitalized on barcoding approaches in 

combination with experimental evolution to monitor bacterial adaptation occurring in real-time. 

For example, Lam and Monack (2014) infected mice with eight Salmonella strains with distinct 

DNA barcodes and observed that distinct subpopulations arose within the GI after 35 days, and 

early inhibitory priority effects excluded certain subpopulations from competing successfully for 

nutrients, thus being shed. Within this experiment, distinct sets of barcodes emerged from the 

individual mice, suggesting that stochastic forces or post-colonization drift occurred within these 

systems (191). Vasquez et al. 2021 took a similar approach, using DNA barcodes to track 

bacterial strain-level dynamics of E. coli in the mouse gut (68). In this set of experiments, 

mutations in motility and metabolic genes were reproducibly selected for. Furthermore, barcode 

tracking allowed them to use a population-genetics model to quantitatively predict transmission 

kinetics and determine that within-case migration accounted for a substantial fraction of the 

resident microbes in cohoused mice. 

 

Metabolomics 

The dynamic interplay between the gut microbiome and the host involves crosstalk between 

many different classes of small molecules (192). Together, these molecules contribute to the 
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evolutionary fitness of both microbe and host. While metagenomics and metatranscriptomics 

have been used extensively to characterize the gene and transcript contents of the gut 

microbiome, it is important to assess not only what genes microbes have and which transcripts 

they are making, but what metabolites are present within the GI milieu. Metabolomics has 

emerged as a technique that helps to characterize biological functions of host and gut, and most 

importantly, the impact of their intersection or dysregulation on risk for certain diseases.  

Mass spectrometry-based metabolomics is a powerful way of detecting a broad range of small 

molecules within complex biological samples (193). This approach is supported by many 

sophisticated tools that have been designed to facilitate processing of the huge volumes of data 

that is generated (194). However, the fact remains that the bottleneck to the metabolomics 

studies often lies at the complexity of data processing. With the advancement of data processing 

tools, metabolomics will certainly become a more commonplace approach to facilitate 

exploration of the biological networks within the gut microbiome. Owing to the complexity of 

the microbiome, studies should increasingly aim to present multi-omics data as a way of cross 

validating the reported results.  

 

Translational significance for studying adaptation of gut-associated bacteria 

The gut is a fascinating environment for studying bacterial adaption owing to the dynamic 

interplay between host and microbe and among the complex community of microbes that 

together thrive within this dense and diverse system. Furthermore, the gut microbiome has great 

clinical significance, as it has been demonstrated to be a reservoir of antibiotic resistance genes, 

serve critical immunological and metabolic functions for the host, and be linked to a whole array 
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of diseases in dysbiosis. Probiotics and fecal microbiota transplantation are two major clinical 

interventions that involve colonization of exogenous bacteria to prevent or treat dysbiosis (195). 

However, the efficacy of both interventions has proven to be inconsistent, owing to a myriad of 

poorly understood variables including the host environment (196–206). Microbiota interventions 

will likely not be a "one size fits all." Thus, it will be vital to understand the genetic determinants 

of bacterial adaptation within the gut while adjusting for community complexity and structure, 

host disease state, genetics, age, and across various timescales such that these studies will inform 

improvement of microbiome-based therapeutics in the future. 
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Chapter 2: Extreme Antagonism Arising from Gene-Environment Interactions  

2.1 Preface 

The contents of this chapter were modified and adapted from its published form: 

Wytock TP, Zhang M, Jinich A, Fiebig A, Crosson S, Motter AE., Biophys J (2020) 

Copyright © 2020 Biophysical Society, Biophysical Journal, 2020 Nov 17;119(10):2074-2086. 

DOI: https://doi.org/10.1016/j.bpj.2020.09.038 

Data Sets may be found online.  

 

Contributions: Under S.C. and A.F.'s guidance, M.Z. designed and performed all wet-lab 

experiments, analyzed the growth data, and mapped the mutants. The T.P.W. performed all 

transcriptional analyses and led writing of the manuscript with input from all authors. 
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2.2 Introduction 

 

Importance:  

Mutations that are deleterious in the absence of an antibiotic can become beneficial in its 

presence, which is an example of an extreme antagonistic gene-environment interaction. Such 

antagonism is of biophysical significance because it reflects nonlocal interactions mediated by 

intracellular networks rather than direct physical or chemical interactions. We develop and apply 

a forward-evolution experimental approach to systematically identify these interactions using 

DNA and RNA sequencing. These analyses reveal differences in the expression of the 

translational machinery between antagonistic and nonantagonistic mutations. Our findings 

demonstrate how distinct single-basepair mutations within the same gene can have divergent 

phenotypic consequences, which give rise to antagonistic interactions that can be explored in 

addressing antibiotic resistance. 

 

Background:  

Complex biological functions generally emerge from interactions rather than solely from the 

contributions of individual genes and environmental factors (131). When the function of interest 

is growth rate, as often considered in fitness studies of single-cell organisms and immortalized 

cell lines, interactions are typically characterized in terms of whether they enhance or suppress 

fitness beyond what is predicted from the individual contributions. In the case of gene-gene and 

drug-drug interactions, pairwise relationships have been systematically identified using gene 
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knockouts and other function-impairing perturbations that effectively query combinatorial effects, 

through large-scale genetic screens (132–136), metabolic modeling (137–139), and collateral 

sensitivity assays (122, 139, 140). Interactions are classified as synergistic if the double-

perturbation fitness is lower than expected from adding the effects of the individual perturbations 

and antagonistic if higher (144). Synergistic and antagonistic interactions are often interpreted as 

the result of local mechanisms (131, 141, 142). In this interpretation, synergistic interactions 

would relate genes in parallel or redundant pathways. Antagonistic interactions, on the other 

hand, would concern serial pathways of nonredundant genes or drug targets contributing to the 

same process. In the latter case, because the loss of either gene alone hampers the process, 

antagonism would emerge because the fitness impact of the second knockout is directly limited 

by the first. 

An interesting exception to this local picture is the case of synthetic rescues, which are extreme 

antagonistic interactions in which a gene knockout becomes beneficial (rather than merely less 

deleterious) when applied after the knockout of another gene (143–146). Synthetic rescues can 

be interpreted as a form of sign epistasis (148) between two genetic perturbations that are each 

individually deleterious, in the sense that the fitness impact of one perturbation changes sign and 

becomes beneficial in the presence of the other. Although some synthetic rescues can be 

attributed to toxicity (149–154), previous work indicates that there exists a combinatorial number 

of synthetic rescues that are mediated by biochemical networks and involve genes in disparate 

processes (145, 155). Even though synthetic circuits have been used to study the evolution of 

extreme antagonism (156, 157), and the identification of gene-gene combinations exhibiting 

nonlocal, network-mediated synthetic rescues is ongoing (145, 146), an open proposition is 

whether analogous extreme antagonistic interactions can be systematically identified for gene-
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environment combinations. Determining the prevalence of extreme antagonism would address a 

fundamental question in biology concerning the nature of possible interactions between genes 

and environmental factors. Furthermore, implementing such environmental factors using 

antibiotic stressors would offer a pathway to design new antibiotic combinations that exhibit 

collateral sensitivity, as discussed below, because the action of one antibiotic disfavors the 

acquisition of resistance to another (123, 124, 140, 157–161). 

Here, we explore a method to systematically identify extreme antagonistic gene-environment 

interactions. These interactions occur between genetic and environmental perturbations that, 

individually, decrease fitness relative to the original condition but that, when combined, increase 

fitness relative to the environmental change alone. In parallel with synthetic rescues vis-à-vis 

sign epistasis, extreme antagonistic gene-environment interactions are an outstanding class of 

environmental sign epistasis (162), in the sense that mutations that are deleterious in a 

permissive environment become beneficial in a more restrictive environment. We identified 

these interactions using serial adaptive evolution of Escherichia coli, which consisted of 1) 

adaptation to a defined glucose medium yielding strains with enhanced fitness, and 2) subsequent 

adaptation of these strains to antibiotic stress defined by a sublethal concentration of rifampicin 

(rif). The gene-environment interactions were characterized by comparing the growth fitness of 

all strains grown in both the presence and the absence of rif, quantifying the cost of resistance 

(156). Previous studies of the cost of rif resistance have focused on strains cultivated in complex 

media and reported mutations in the β-subunit of RNA polymerase (rpoB) that result in a fitness 

disadvantage in such media in the absence of rif (164–166), though adaptive laboratory evolution 

experiments in defined glucose media have proved the same mutations to be beneficial (147). 

Because previously identified adaptive mutations that enhance growth rate and/or rif resistance 
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have pleiotropic effects (167–169), the global transcriptional consequences of adaptation were 

further investigated using RNA sequencing (RNA-Seq) before and after each adaptive step. Our 

experiments and analyses identified mutations in rif-adapted strains that confer growth faster, 

equal, and slower in the absence of rif compared to that of the parent strain. Of these three 

groups, the mutations conferring slower growth exhibit extreme antagonistic interactions with rif. 

These differences in growth can be attributed to widespread transcriptional reprogramming, 

which we map to broader cellular processes including central metabolism, translation, and a 

stringent-like response. 

We propose that extreme antagonistic gene-environment pairs in which the environmental 

perturbation is the addition of a drug, such as rif in our experiments, provide targets for the 

design of antibiotic combinations that can select against resistance. For a pair of extreme 

antagonistically interacting antibiotics, growth inhibition by a drug combination is weaker than 

that of one of the drugs alone, meaning that acquisition of resistance to a second drug would 

cause growth to be suppressed more strongly (44, 45)—a phenomenon referred to as collateral 

sensitivity (140). Although previous studies of collateral sensitivity have found some extreme 

antagonistic drug pairs (122–126, 168), such pairs tend to be rare (160), and are found by 

directly testing existing antibiotics. 

We apply our method to study antagonism as it relates to rif, for which there appear to be no 

antagonistic partner antibiotics (141). Resistance to rif, as with antibiotic resistance in general, 

induces pleiotropic effects on cell physiology that mitigate the action of the drug but are 

otherwise suboptimal (167, 169, 172), which we can characterize transcriptionally using RNA-

Seq in the presence of the drug (to discern adaptative changes) and in the absence of the drug (to 

identify costs of resistance). We expect transcriptional profiles to be predictive of collateral 
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sensitivity, as has been shown for chemogenomic profiles (173), to the extent that both reflect 

the molecular mechanisms underlying adaptation and the cost of resistance. These efforts may 

offer another avenue to manage resistance in bacterial infections that are treated with rif, such 

as Mycoplasma tuberculosis (173, 174). Our approach to find extreme antagonistic gene-drug 

pairs is scalable and can facilitate the systematic design of antagonistically interacting drug 

combinations by providing targets—the gene mutations—against which a second drug may be 

developed. Ultimately, our results provide insights into fundamental and applied aspects of gene-

environment interactions. 
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2.3 Results 

Selection of mutations in multiple conditions and their growth consequences 

To identify antagonistic gene-environment interactions, we undertook a two-step laboratory 

evolution approach in which we evolved the WT strain in a defined medium condition and 

subsequently introduced a sublethal antibiotic stressor (Fig. 1A, Fig. 2).  

First, we serially passaged the WT strain in M9G, thereby selecting for mutants with enhanced 

growth rate in this defined condition. Two Ref strains were sequenced revealing a T1037P 

mutation in rpoB, which encodes the β-subunit of RNA polymerase (RNAP) or a C8Y mutation 

in pykF, which encodes pyruvate kinase (Fig. 1B). These mutations are known to enhance fitness 

in anaerobic conditions (175) and defined media (71), respectively. Then, each Ref strain was 

serially passaged in M9G + rif at a concentration that attenuates growth of both strains (Fig. 2). 

During serial passaging, rif-adapted mutants arose, increasing the overall growth rate of the bulk 

culture and restoring it to pre-rif levels. We isolated a set of 10 independent rif-adapted Mut 

strains, five from each Ref strain. The growth outcomes following each step of our lab evolution 

protocol are shown schematically in Fig. 1C and Fig. 2. In the context of our experiments, it is 

the relative growth rate in M9G between the Mut strains and the Ref strain that determines 

whether the genotype constitutes an extreme antagonistic pair.  

The genetic changes in each Mut strain are reported in Table 1. Rif binds at the active site of 

RNAP and inhibits transcription by preventing translocation (176). We note that the mutations 

conferring enhanced growth rate in M9G found in the Ref strains—pykF(C8Y) 

and rpoB(T1037P)—are distinct from those conferring rif resistance in the Mut strains, even 

though one Ref mutation is in rpoB. Genetic changes that the Mut strains acquired during the 
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process of laboratory evolution in rif all occurred in rpoB and cluster at three previously 

described E. coli rpoB rif-resistance sites: (I) the RNAP active site where rif binds, (II) the fork 

domain which ensures base pair fidelity (177); and (N) the DNA entry channel (178). Mutations 

at sites I and II are reported to effect transcription slippage (177), those at site II can alter 

termination (179), whereas mutations at the N site decrease the open complex lifetime (178). On 

average, strains harboring mutations at site I have the fastest growth, followed by those at site II 

and site N. Because all mutations conferring rif adaptation occur in the same gene, we refer to 

these strains simply by their amino acid substitutions in rpoB from this point forward. 

To evaluate whether the mutations associated with rif resistance result in fitness costs in the 

original cultivation condition (i.e., M9G without rif), we categorize the Mut strains by their 

growth relative to their Ref parents in M9G. The Mut strains may grow 1) faster, revealing that 

mutations are beneficial in both conditions, possibly reflecting incomplete adaptation of the Ref 

strains to M9G; 2) equally fast, revealing that the mutations are neutral in the original condition; 

or 3) slower, revealing that the acquired mutations are deleterious in the first condition, thereby 

indicating antagonism to rif treatment. These three groups are indicated respectively by orange, 

purple, and blue colors in the subsequent figures and tables, such as in Fig. 3, which presents the 

growth rates of each strain, and Table 2-5, which presents doubling times. 

We identified rif-adaptive mutations in each of the growth categories in Fig. 3. The fast-growth 

mutations consist of the uncharacterized, but previously observed (180), S508P mutation 

[derived from the rpoB(T1037P) parent], and the well-described mutations (176, 177, 181, 182) 

at the RNAP active site, D516G and H526Y [derived from the pykF(C8Y) parent]. Compared to 

their Ref parent, these mutations boost growth rate by 8, 15, and 16%, respectively. Although the 

set of mutations we observed are not exhaustive, growth-enhancing active site rpoB mutations 
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were not observed in the rpoB(T1037P) Ref strain. The neutral growth mutations—L511R and 

I572N in rpoB(T1037P) and I572S in pykF(C8Y)—exhibit few transcriptional similarities, and 

the existing similarities mostly occur between the Mut strains deriving from the same parent 

(Table 6). 

 

Correlations between transcriptional responses to the rif-adaptive mutations 

To define the transcriptional changes associated with the mutation combinations in M9G with 

and without rif, we measured transcript levels in all Ref and Mut strains using RNA-Seq and 

determined which genes were differentially expressed between each Mut strain and its Ref parent 

in both M9G and M9G + rif. We calculated the log2 fold changes in each case and the Pearson 

correlations between the fold changes in all genes for each pair of conditions. 

There are five major trends in the transcriptional correlations shown in Fig. 4. Specifically, 1) all 

Mut strains are more highly correlated in the presence of rif than in its absence; 2) the mutations 

at the I572 residue are all correlated, with I572F and I572N being strongly so; 3) the five fastest-

growing Mut strains (relative to their Ref parents), S508P, D516G, H526Y, I572N, and I572S, 

are correlated in the presence and absence of rif; 4) the Q148L and L511R Mut strains derived 

from different Ref parents have strongly correlated transcriptomes; and 5) all the slow-growing 

Q148L and L511R Mut transcriptomes are anticorrelated with those of the fast-growing H526Y, 

D516G, and S508P strains in both conditions. Finding (1) suggests that all Mut strains are in 

similar biochemical/physiologic space when dealing with the challenge of rif, whereas finding (2) 

raises the question of how much the Ref strain mutation determines the transcriptional response 

versus the chemical similarity of the substituted amino acid. Together, findings (3), (4), and (5) 
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imply that mutants that grow faster than their parent Ref converge on a metabolic/physiologic 

profile that is distinct from mutants with slower growth. The correlation values associated 

with Fig. 4 are included in Table 6. 

 

Patterns in the annotations of differentially expressed genes 

To discover functional patterns at the level of gene regulation, we performed annotation analysis 

using the PANTHER annotations (184), COG annotations (185), modulons (185), and origons 

(186) from RegulonDB (187). Of the four annotation schemes we consider, the origon analysis is 

the most fine-grained because it links transcription factors directly with the regulated genes. 

We visualize the origon results in Fig. 5, using a network representation. There are two types of 

network edges: those that connect Mut strains with their differentially expressed origons in M9G 

and rif and those that connect two origons. The latter edge type indicates that the genes 

downstream of the master regulator in the origon at the edge tail are contained within the larger 

origon at the edge head. When considering genes included in origons, we observe all strains 

except H526Y share phoP downregulation in rif, whereas rpoB(T1037P)-derived strains also 

share iscR upregulation. In the absence of rif, the cluster I fast-growth strains 

share zur downregulation and acrR, torR, and slyA upregulation, whereas the I572F and I572N 

strains share acrR and argR upregulation, and the Q148L strains downregulate phoB. 

The origons that are differentially expressed are generally all implicated in E. coli's stress 

response, a trend corroborated by our analysis of modulons. The membrane, GadEWX, and His-

tRNA modulons, the latter two of which are implicated in acid stress response and histidine 
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metabolism, respectively, tend to be upregulated in the presence of rif in all strains. 

Simultaneously, iron utilization and CysB, which are implicated in inorganic sulfate utilization, 

are generally downregulated. Overall, the results in rif exhibit the convergence in transcription 

observed in Fig. 4, that is, the transcription factors that Mut strains express in M9G + rif are 

more similar than those expressed in M9G (see Table with details online). In the absence of rif, 

the modulon activation for slow-growth strains show upregulation of RpoS and GadEWX, which 

is generally anticorrelated with that of fast-growth strains. The anticorrelation is particularly 

strong in the pykF(C8Y) background, whereas the Q148L and I572F strains show few 

similarities with each other despite their similar growth phenotype. 

As several of the most strongly differentially expressed modulons are in stress response genes, 

we analyze genes in the stringent response regulon in Fig. 6, given that genes in this regulon 

were implicated in the evolution of enhanced growth rate in previous experiments (223, 255). 

The E. coli stringent response downregulates genes involved in ribosome synthesis and 

upregulates genes for amino acid biosynthesis to account for poor nutrient conditions (188). For 

each transcriptional profile, we calculated a stringent response score by counting the number of 

genes that change in accordance with their behavior during the stringent response (see Materials 

and Methods). The fastest-growing Mut strains (D516G, H526Y, and S508P) have 

transcriptional profiles that resemble the stringent response in the absence of rif, whereas the 

slower growing strains appear to oppose, or not exhibit, this response. This pattern is particularly 

pronounced in the pykF(C8Y) background but is not apparent in the rpoB(T1037P) background. 

As expected, strains that have a stringent-like transcriptional profile also have decreased 

transcripts corresponding to ribosomal proteins and 5S rRNA (Fig. 7). These strains show 

downregulation of genes classified in translation, nucleotide synthesis, and amino acid synthesis 
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COG groups, as well as exhibit fnr activation and significantly enhanced expression of glycolytic 

genes eno, pgk, pykF, and tpiA. Together, these trends indicate a shift toward overflow 

metabolism in the faster-growing strains, wherein the majority of ATP production is shifted from 

oxidative phosphorylation to glycolysis (266). Meanwhile, transcriptional changes in fast-

growing strains are anticorrelated with those observed in the slow-growth mutants L511R and 

Q148L—including three of the four extreme antagonistic cases—possibly reflecting a 

maintenance of oxidative metabolism, which is more energy efficient (Fig. 6). Thus, slow-

growth and fast-growth mutations appear to restore growth through different means, and 

transcriptional changes that emulate those observed in the stringent response are associated with 

fast growth in the pykF(C8Y) background. 

We analyzed the rRNA and ribosomal protein transcript data for all strains (Fig. 7). Rif-adapted 

mutants harboring I572 mutations and those growing faster than their parent in the absence of rif 

exhibit decreased amounts of ribosomal protein transcripts in that condition. Increased tRNA and 

5S rRNA expression may indicate increased readthrough from more upstream genes in the rRNA 

locus; decreases in expression at the rRNA locus may likewise provide evidence for transcription 

termination. Elevated expression of amino acid biosynthetic genes may reflect a short-lived open 

complex. We note that changes in rRNA (see counts table online) may reflect an imbalance in 

ribosomal components, analogous to suboptimal protein/DNA ratios observed in previous 

extreme antagonistic drug interactions generally (243) and in rif specifically (267). 

The varying transcriptional patterns of genes encoding ribosomal components motivated us to 

more closely examine the reads that mapped to the rRNA loci. This effort was aimed at 

determining whether the mutant RNAPs exhibited differences in transcriptional efficiency along 

the operon. In Fig. 8A, we plot the fold change in read alignment averaged across all rRNA 
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operons for cells cultivated with and without rif. In the presence of rif, we see that both Ref 

strains have a pronounced peak in the 23S rRNA genes, 720 bp downstream of 

the rrl transcriptional start site. We note that the height of the peak correlates with the cost of the 

Ref mutations in rif as the rpoB(T1037P) mutant has slower growth in rif than the pykF(C8Y) 

mutant and a corresponding higher peak. On the antisense strand, we observe a peak immediately 

downstream of this site. Rif-resistance mutations appear to decrease the peak height (Fig. 8B), 

but the extent to which they do so is correlated with growth only in the rpoB(T1037P)-mutant-

derived strains. When cultivated without rif, the change in number of aligning sequences at this 

site is positively correlated with growth (Fig. 8C). Although extreme antagonistic mutations 

appear to constitutively decrease the number of alignments at this site, the fast-growth mutations 

show substantially decreased alignments only in the presence of rif. 

We compared the peak locations to those of pause sites (190) and rho-dependent termination 

sites (191). There is a rho-dependent termination site on the antisense strain 784 bp downstream 

of the rrl start on the sense strain and a pause site 832 bp downstream of the rrl start proximal to 

the 720 bp peak. In addition, a secondary site 1349 bp downstream from the rrl start recapitulates 

the behavior of the primary peak in response rif treatment. When comparing transcription of both 

Ref strains to their derived Mut strains in rif, decreases in alignments are apparent, but the 

ordering of strains is distinct from that observed at the 720 bp site. In the absence of rif, 

alignments increase by a larger amount in the pykF(C8Y) background at this site, which also has 

a predicted rho-dependent termination site. Beyond these two peaks, the alignment trends show 

decreases in transcriptional readthrough at the end of genes in fast-growth strains. 
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2.4  Discussion 

Our identification of extreme antagonistic interactions reveals the role of molecular mechanisms 

fomenting gene-environment antagonism, including connections with transcriptional pausing and 

the stringent response. The application to an antibiotic environment reveals that the rif-adaptive 

evolution mutations alter the kinetic and thermodynamic properties of RNAP to counter the drug 

action but hamper growth in the drug's absence—consistent with the pattern of resistance 

mutations being pleiotropic (171, 172) and suboptimal (166, 168). Our study also demonstrates a 

proof-of-concept approach for the discovery of gene-environment interactions that is scalable to 

multiple genetic and environmental conditions and sufficiently sensitive to identify extreme 

antagonistic interactions. A central aspect of our approach is the two steps of adaptive evolution, 

as schematized in (Fig. 2). The first step, preadaptation to the initial environmental condition 

before applying the environmental perturbation, facilitates the identification of extreme 

antagonistic interactions (192, 193). The second step, adaptation to an antibiotic environment, 

reveals mutations involved in extreme antagonistic interactions that constitute candidate targets 

for the development of new antibiotic combinations. 

Preadaptation to a defined medium reduces the likelihood that adaptive mutations to antibiotic 

stress would enhance fitness in the absence of an antibiotic, as predicted by Fisher's geometric 

model (194, 195). This is a step that was only recently explored in Pseudomonas 

aeruginosa (147), and our transcriptional analysis extends beyond this effort. We distinguish our 

preadapted strains, which are kept in exponential phase, from strains deriving from the long-term 

evolution experiment in E. coli B, in which cells transition daily between exponential and 

stationary phase (69, 192) and from unadapted strains in previous studies focused on nonextreme 

antagonistic interactions (160, 196, 197). The impact of preadaptation is illustrated in Fig. 2A-B, 
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by the intersecting Ref and WT growth lines, which show that M9G-adaptive mutations can 

sensitize strains to the addition of rif. This finding stands in contrast with studies investigating 

random mutations (14, 198), collateral drug resistance (197), and nutrient changes (199, 200), 

which suggest that adaptive mutations desensitize strains to other stresses. Indeed, direct 

selection of mutations conferring antibiotic resistance from unadapted WT strains tends to yield 

mutations that are beneficial in both environments (201–203), including the D516G and H526Y 

mutations in E. coli cultivated in M9G (146). We suggest that the difference originates from a 

higher cost of selection (193) across environments of a different nature, which, in the case of our 

experiment, implies that the same mutation generally cannot provide fast growth in both 

environments (with and without rif). The compatibility between these contrasting results can 

indeed be appreciated by recognizing that previous studies have mainly compared the response 

to environments of the same nature, such as different antibiotics (122, 168, 196) or carbon 

sources (198, 199). Indeed, antibiotic stress causes a targeted impairment of the cell's 

biochemical network that does not necessarily have an equivalent in adaptation to a nutrient 

condition. Our demonstration that adaptation to a nonantibiotic condition sensitizes the organism 

to antibiotic stress is corroborated by recent experiments in Enterococcus faecalis (204), and in 

accordance with observations of nonreciprocating collateral sensitivity between carbenicillin and 

gentamycin (147), we anticipate that the order of adaptive steps matters. 

A possible mechanism explaining this tradeoff between generalization and specialization is a 

difference in transcriptional dynamics (180, 205, 206). Generally, the transcriptional changes 

observed between Ref and Mut strains in the presence of rif highlight the transcriptome-wide 

impact of adaptation, whereas the changes in the absence of rif reflect the cost of resistance. The 

alignment changes in Fig. 8 suggest that termination could play a role in rif resistance, 
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consistent with the observed changes in termination caused by mutations at the D516, H526, and 

I572 residues of rpoB (180) These findings may relate to rif resistance in M. tuberculosis (173), 

as recent work in that organism has implicated termination efficiency as the mechanism 

underlying the cost of resistance (174). 

The experimental requirements to identify extreme antagonistic interactions are arguably more 

involved than those required to identify synergistic and merely antagonistic ones. Although we 

expect extreme antagonistic interactions to be large in number, they are also expected to be 

comparatively rare in the context of all interactions. This renders "reverse" genetic screening 

approaches, such as those based on libraries of gene knockouts (131–135), impractical because 

of the combinatorial explosion. Our "forward" genetic approach identifies point mutations that 

have pleiotropic effects on protein function in essential genes, which is a task that falls outside 

the scope of typical high-throughput approaches, and it is potentially massively parallelizable 

given advances in continuous culture and reductions in the cost of sequencing. Although high-

throughput knockout experiments are not easily scalable in conjunction with preadaptation, 

future implementations of our approach could involve hybrid forward and reverse genetic 

approaches combined with mutagenesis techniques like TnSeq (135, 206) to expand the range of 

possible extreme antagonistic responses. 
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2.5 Materials and Methods 

Strain cultivation 

All strains used in this study were derived from wild-type (WT) E. coli strain K12 substrain 

BW25113 (207). The WT strain was suspended in media supplemented with 0.4% w/v glucose 

(M9G) in triplicate and allowed to grow at 37°C with shaking for 12 h, at which point cultures 

were diluted to an initial optical density at 600 nm (OD600) of 0.01. Growth and dilution 

proceeded in this manner for 21–28 days (216–611 generations) to identify cultures with an 

enhanced growth rate. At the end of this period of evolution, cultures were plated, colonies were 

recovered, and WGS was performed, yielding Ref mutants with the mapped 

mutations pykF(C8Y) and rpoB(T1037P). 

 

Selection for spontaneous mutants that restore fast growth in the presence of rif 

Mutations that enabled fast growth of Ref strains in M9G with 7.5 μg/mL rif (M9G + rif)—an 

inhibitory concentration—were selected according to the following procedure: Three 

independent 5 mL cultures of each of these three strains were cultivated in 20 × 150 mm 

borosilicate tubes and serially passaged with a starting OD600 of 0.01 for 10 days, shaking at 

37°C inclined at a 45° angle at 200 rpm in an Infors Shaker. As before, strains were diluted every 

12 h to ensure the cells remained in exponential phase. Spontaneous acquisition of fast growth 

(i.e., rif-resistance) mutations is random based on published data (209). We observed an 

enhanced growth rate of the rif-containing cultures, as expected, within 4–5 days (8–10 passages; 

∼60–70 generations). Enhanced growth rate of the culture was typically evident after 4–5 days. 



 40 

On the final day of serial passaging, these fast-growing cultures were streaked onto Luria-Bertani 

agar to isolate single clones. Growth rate measurements of clones confirmed that these "Mut" 

strains grew faster in M9G + rif than the Ref strains from which they were derived. The genetic 

identity of the Mut strains was verified by WGS. 

 

Growth rate measurements 

To measure growth rates, overnight cultures were first started from freshly grown colonies in 

2 mL M9G shaken at 37°C overnight. These starter cultures were diluted in triplicates to 

OD600 = 0.01 in 2 mL of M9G either with or without 7.5 μg/mL rif in 13 × 100 mm borosilicate 

tubes and were allowed to grow at 37°C inclined at a 45° angle at 200 rpm in an Infors Shaker. 

The OD600 was measured approximately every 20 min for at least four independent cultures. 

Cultures were grown in the absence of light to prevent it from inactivating rif. To obtain growth 

rates, the log-linear region of the growth curves was fit to the exponential growth equation 

OD600(t) = 2t/D, where t is time and D is the doubling time, measured in minutes. The mean and 

standard deviation were calculated for the doubling time ratio of each derived mutant to its 

corresponding Ref parent. Differences in growth were assessed using a t-test on the ratio of Mut 

strain growth to Ref strain growth to control for possible differences in media preparation Table 

1. 
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Mapping rif-adaptive mutations by WGS 

We isolated genomic DNA from all E. coli mutant strains presented herein using a standard 

guanidinium thiocyanate extraction and isopropanol/ethanol precipitation. Briefly, the DNA was 

randomly sheared, and libraries were prepared for WGS using an Illumina HighSeq 4000 (50-bp 

single-end reads). The WGS data from each strain were assembled to the E. coli BW25113 WT 

genome template, and polymorphisms were identified using the breseq analysis pipeline (210). 

Each sequenced genome library yielded an average of 26 million reads, resulting in average 

depth of coverage greater than 250 times. 

 

Measuring transcript levels by RNA-Seq 

We isolated RNA for sequencing from both Ref strains and their rif-adapted Mut strains in 

triplicates, in both M9G and M9G + rif; cells were grown and harvested across three separate 

days. The growth protocol to prepare cultures for RNA isolation was as follows. All strains were 

cultivated in M9G at 37°C; starter cultures were diluted to OD600 = 0.01 with or without 

7.5 μg/mL rif to an OD600 of ∼0.18–0.22. At that point, RNA was extracted by pelleting cells 

for 30 s and rapidly resuspending the pellets in 1 mL TRIzol (Invitrogen, Life Technologies, 

Carlsbad, CA). RNA was extracted from the TRIzol suspension using the manufacturer's 

protocol. The extracted RNA was next treated with Turbo DNase (Ambion, Life Technologies, 

Carlsbad, CA) and further purified using an RNA purification kit (Qiagen, Hilden, Germany). 

Absence of DNA contamination was confirmed by PCR, where the lack of PCR product 

(∼100 bp in length) relative to a DNA-containing positive control was interpreted as evidence of 

DNA removal. RNA-Seq libraries were prepared with an Illumina TruSeq stranded RNA kit 
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according to manufacturer's instructions. Sequencing (50-bp single-end read) was performed on 

an Illumina HiSeq 4000. Transcript levels were mapped to the E. coli BW25113 WT genome in 

CLC Genomics Workbench 11 (mismatch cost = 2; insertion cost = 3, deletion cost = 3, length 

fraction = 0.8, similarity fraction = 0.8). Sequencing reads for all strains, plus and minus rif 

treatment, have been deposited in the National Center for Biotechnology Information Gene 

Expression Omnibus database (accession number GEO: GSE136977). 

 

Annotation analysis of transcriptional changes 

Determination of differential expression 

We compared the transcript levels measured in Mut strains with their respective Ref parents 

when grown in M9G or M9G + rif. Differential expression was assessed using DESeq2 with the 

“apeglm” shrinkage estimator yielding log2 fold changes and single-gene p-values (211). These 

results were further interpreted in the context of Protein Analysis Through Evolutionary 

Relationships (PANTHER) pathway annotations, PANTHER protein classes, Clusters of 

Orthologous Groups (COG) identifiers, COG groups, modulons derived from independent 

component analysis of gene expression, and origons in the genetic network of the Regulon 

Database (RegulonDB). 

PANTHER analysis 

The log2 fold changes were input into PANTHER version 14.1 using the E. coli annotations for 

PANTHER pathways and PANTHER protein classes using a 5% false discovery rate (FDR) 

threshold for significance (184). 
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COG analysis 

The COG annotation scheme groups genes into five classes, which are subdivided into 23 

categories comprising 2161 identifiers based on protein amino acid sequence (185). We 

interrogated the transcriptional log2 fold changes for enrichment of COG categories and 

identifiers using a bootstrapping approach. For all n genes associated with a term, we calculated 

the rank sum and compared this with the rank sums derived from N = 20,000 randomly selected 

sets of n genes. We calculated the number X of randomly generated rank sums that were smaller 

than the observed rank sum among the distribution of randomly generated rank sums and 

determined a p-value using 1 − |1 − 2X/N|. After determining the p-values, we selected terms for 

further consideration using the Benjamini-Hochberg FDR procedure with a 5% threshold (212). 

RegulonDB transcription factor analysis 

The network of 212 transcription factors and 1814 regulated genes was defined in the 

'generegulation_tmp.txt' file downloaded from RegulonDB (188). Annotation enrichment 

proceeded as before, with the caveat that fold changes were multiplied by the valence of the 

transcription factor-gene interaction before calculating the rank sum. In addition, any 

transcription factors passing the 5% FDR threshold but having log2 fold changes in conflict with 

their downstream targets were excluded from consideration. We record all significant terms and 

their signs in table online for all Mut strains in both M9G and M9G + rif. 

Quantifying the transcriptional signature of the stringent response 

We reanalyzed the data contrasting the transcriptional outcomes of (stringent response-inducing) 

serine hydroxamate treatment between WT E. coli K12 MG1655 and its relA-deficient mutant, 
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which has its stringent response disabled (213). Genes that were differentially regulated between 

the two strains over the 30-min time-course were determined as follows. Linear regression was 

used to fit the parameters m and b in a = mt + b, where a is the gene expression vector and t is 

time. The slope parameters mWT and mΔrelA characterize the rate of transcriptional change in 

each gene. Then, the difference (⟨𝒎𝑊𝑇⟩−⟨𝒎𝛥𝑟𝑒𝑙𝐴⟩) characterizes the difference in gene 

regulation between strains having and lacking the stringent response. Let the standard error 

of ⟨𝒎𝑊𝑇⟩ and ⟨𝒎𝛥𝑟𝑒𝑙𝐴⟩ be ⟨⟨𝒎𝑊𝑇⟩⟩ and ⟨⟨𝒎Δ𝑟𝑒𝑙𝐴⟩⟩, respectively. Then the 

quantity (⟨𝒎𝑊𝑇⟩−⟨𝒎𝛥𝑟𝑒𝑙𝐴⟩)/(⟨⟨𝒎𝑊𝑇⟩⟩2+⟨⟨𝒎𝛥𝑟𝑒𝑙𝐴⟩⟩2)1/2 is normally distributed about zero 

with unit variance, allowing application of a z-test. This test results in 183 genes that are 

differentially regulated (117 upregulated and 66 downregulated) between the two conditions 

(FDR = 5%). 

The stringent response-regulated genes are quantified as a vector v indexed by the genes, g, 

with vg = 1 if gene g is upregulated, −1 if it is downregulated, and 0 otherwise. In our data, each 

transcriptional response to the adaptive evolution mutations is 𝜟𝑠=log2(𝒂𝑠/𝒂𝑅𝑒𝑓), where s is an 

index over Mut strains, a is the gene expression vector with the gene index suppressed, and the 

logarithm is applied elementwise. We define the stringent response score, S, for a given Mut 

strain to be 𝑆=𝜟𝑠·𝒗. Statistical significance of the scores was assessed by bootstrapping, in 

which transcriptional responses were shuffled according to their average expression level across 

both conditions. The elements of Δs were shuffled (with s held fixed) and 𝑆′, the randomized 

stringent response score, was calculated 10,000 times. Using ⟨𝑆′⟩ and ⟨⟨𝑆′⟩⟩ to denote the mean 

and standard deviation of 𝑆′, respectively, the quantity (𝑆−⟨𝑆′⟩)/⟨⟨𝑆′⟩⟩ is normally distributed 

about zero with unit variance. Applying the z-test yields the statistical significance of the score 
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against a null model that accounts for the total amount of transcriptional change across all genes 

in a given Mut strain. 

 

Origon analysis 

Origons are groups of genes reachable from a single master regulator in a transcriptional 

regulatory network, where master regulators are defined as transcription factors that have no 

regulatory inputs from other transcription factors (187). Using RegulonDB, we found 82 master 

regulators and calculated the degree to which they are turned on or off. Let 𝐺 be a subgraph of 

the regulatory network reachable from master regulator 𝑂 and let 𝑥𝑤 be the log2 fold changes for 

all genes 𝑤. Define the sign of each edge, 𝑠(𝑢,𝑣), to be 1 if 𝑢 is an activator of 𝑣, −1 if 𝑢 is a 

repressor of 𝑣, and sign(𝑥𝑢) otherwise, and further define an indexing function ℎ(𝑠(𝑢,𝑣))=1+(1–

𝐼(𝑠(𝑢,𝑣)>0)), where I() is the indicator function, which is 1 if the argument is true and 0 if false. 

We are now able to calculate 𝑦𝑤𝑧, the contributions to the activation of 𝑂 for each node w, 

recursively. If 𝑤=𝑂, the contribution is 𝑦𝑂1=1 and 𝑦𝑂2=0 because expression of the regulator 

should contribute to evidence of its activation. For 𝑤≠𝑂, let 𝑃(𝑤) be the set of direct predecessor 

nodes of 𝑤, and define |𝑃(𝑤)| to be the number of predecessors. 

Then, 𝑦𝑤ℎ(𝑠(𝑢,𝑣))=exp((1/|𝑃(𝑤)|)∑𝑢∈𝑃(𝑤)log(𝑟𝑦𝑢ℎ(𝑠(𝑢,𝑣)))), where 0<𝑟≤1 is a diffusion 

parameter to attenuate the contribution of longer paths. We calculate 𝑦 starting at 𝑂, proceeding 

to its immediate descendants and so on through the network. At each stage, we ensure that 

all 𝑢∈𝑃(𝑤) have been calculated before calculating 𝑦𝑤𝑧. In the case of cycles, there exists 

a 𝑢∈𝑃(𝑤) such that 𝑢∈𝐷(𝑤), where 𝐷(𝑤) is the set of descendants (direct and indirect) of 𝑤. In 
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this case, we ignore the contribution from all edges (𝑣,𝑧), where 𝑧 is the ancestor of 𝑢 and a 

descendant of 𝑤, but 𝑣 is only a descendant of 𝑤. The averaged contributions to the origon 

expression is 𝑦!@@@@=	𝑦𝑤1−𝑦𝑤2, and the total origon expression is 𝑦@⋅𝒙. 

To compare the origon expression against the random expectation, we reshuffle the nodes in the 

transcriptional regulatory network according to their in-degree and out-degree. We grouped by 

each value of in-degree from 0 to 12 and binned nodes with in-degrees higher than 12 together 

(for a total of 14 bins), and we grouped out-degrees into 24 logarithmically spaced groups. Of the 

possible 336 bins, 82 are occupied. To randomize, expression values were randomly permuted 

between nodes in each bin, thus preserving the degree distributions under randomization. The 

results of the origon analysis are reported online. 

 

Modulon analysis 

Modulons are groups of genes that contribute to a particular cell function. We projected our 

transcriptional log2 fold changes onto gene loadings for 92 modulons (186) and compared the 

resulting projections with those generated by reshuffling the transcriptional data. Modulons were 

considered significantly differentially expressed if they passed a 1% FDR threshold. 

Differentially expressed modulons are reported online. 
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RNA alignments of ribosomal RNA genes 

To examine the RNA-Seq data for signs of transcriptional termination and pausing, we used the 

wiggle track formatted (WIG) files generated by Rockhopper and the gene locations 

from NC_000913.3 to calculate a rolling sum (50-bp window) of sequence alignments 

throughout the genome for both strands. These were averaged over three replicates to generate an 

alignment profile for each experimental condition. Next, we averaged the alignments for each 

ribosomal RNA (rRNA) operon over three segments: from the start of the rrs gene to the start of 

the transfer RNA (tRNA) genes, from the start of the tRNA genes to the start of the rrl gene, and 

from the start of the rrl gene to the end of the rrf gene. Because the tRNA genes are of different 

lengths in each operon (from 335 to 447 bp), we rescaled the counts by 447/L, where L is the 

operon length of the tRNA genes, and linearly interpolated the counts at each base before 

averaging. Once averaged, these three segments were concatenated into a single vector and 

annotated with pause sites (190) and termination sites (188, 190, 191). 
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Chapter 3: Dynamic Genetic Requirements for B. thetaiotaomicron Gut Colonization in a 

Murine Model 
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3.2 Introduction 

 

Importance: 

Microbes regularly disperse across and adapt to new environments and ecological niches. A 

clinically significant microbial niche home to trillions of microbes is the mammalian gut. 

Temporal processes of microbial adaptation over the course of gut colonization are poorly 

understood on a genetic, transcriptional, and metabolite level. In this study, we leverage a three-

pronged approach to characterize gut colonization as a dynamic process with shifting genetic 

determinants of microbial fitness. This study sheds light on host colonization by an organism that 

is prevalent and dominant across healthy human microbiomes, Bacteroides thetaiotaomicron, 

and not only identifies key pathways involved in colonization, but determines the timing 

of when these pathways are most vital to colonization success. The findings and approaches of 

this study can inform future investigations using various bacteria and experimental models to 

improve our understanding of the longitudinal process of microbial adaptation within unique 

environments such as the gut. 

 

Background: 

Fast adaptation is paramount to the survival of any species undergoing an environmental 

transition. For microbial taxa, which are frequently and rapidly dispersed across dramatically 

different habitats and microenvironments, processes of local adaptation may arise as primary 

determinants of microbial colonization success and resulting biogeography (214). The 
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mammalian gut is an environment regularly bombarded with a diverse array of exogenous 

microorganisms. As such, it represents a biologically and clinically relevant system to explore 

microbial adaptational processes. 

Canonically, adaptation occurs by way of genetic evolutionary mechanisms: genetic variants 

have differential fitness in the new environment, which establishes variation in survival and 

reproduction, and ultimately leads to shifts in gene frequencies over time. Over shorter 

timescales, organisms may adapt by altering plastic gene expression profiles to optimize 

functional characteristics including resource use, growth strategies, and resistance to 

environmental stressors (215–217). Both processes fundamentally reflect changes in fitness over 

time. To understand how a microbe ultimately succeeds or fails in adapting to a new 

environment, it is therefore essential to assess the temporal dynamics of its fitness over the 

course of colonization. 

In the context of host-microbe interactions, adaptational processes play out within a dynamic 

host environment, in which feedbacks between microbe and host can have significant 

consequences for the fitness and survival of both (218). Understanding genetic and 

transcriptional changes of exogenous microbes upon entering a novel host system is a critical 

step toward elucidating the shifting landscapes created because of this feedback circuit. While 

previous work has evaluated the genetic requirements for colonization success across a variety of 

microbes in the guts of both conventionally raised and germ-free mice, these studies have 

generally assessed fitness at only a single timepoint, and therefore yield an incomplete picture of 

the temporal processes of adaptation and colonization (219–221). Moreover, although host 

transcriptional responses to microbial colonization are regularly documented, few studies have 
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comprehensively assessed microbial gene expression profiles over the course of colonization 

(222–224). 

In the following experiments, we introduce a human-derived commensal organism, Bacteroides 

thetaiotaomicron (Bt), into the guts of germ-free mice to 1) determine whether the genetic 

requirements for colonization shift over time and, if so, 2) characterize the biological functions 

required for microbial survival at different points of colonization. To identify the genes 

important for fitness in the context of gut colonization, we combine two complementary 

unbiased approaches: transcriptomics (RNA-seq), which reveals global gene usage patterns, and 

a functional genetics approach [BarSeq (221, 225)] to assess fitness consequences of gene 

disruptions at a global scale over the course of colonization.  Finally, we evaluate spontaneous 

evolution of wild-type Bt in the gut to survey natural population-level fitness dynamics. Our 

results indicate that adaptation to the host gut occurs in distinct stages. During the earliest stage 

of colonization, genes involved in amino acid and vitamin biosynthesis are upregulated and, in 

some cases, play essential roles in survival of Bt. By the end of the first week, expression of 

these genes is downregulated, and expression of carbohydrate metabolism genes peaks. These 

levels are sustained for the rest of the two-week experimental period, except for the continued 

upregulation of a single PUL responsible for the degradation of raffinose-family 

oligosaccharides (RFOs) rich in the standard chow diet fed to our mice. Spontaneous mutations 

in WT Bt also evolve around this locus, highlighting the importance of efficient carbohydrate 

metabolism in long-term persistence within a monoassociated gut. 

These experiments lay the groundwork for future delineation of shifting colonization pressures in 

various host backgrounds and microbiome compositions. We expect that these insights into the 

temporally dynamic stresses that microbes must overcome to colonize and persist in the gut will 
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prove invaluable to our understanding of microbial adaptation and the development of 

microbiome-based therapies. 
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3.3 Results 

 

Both transcriptional and genetic fitness determinants shift over the course of Bt 

colonization and persistence. 

To evaluate global transcription during colonization, we introduced wildtype (WT) Bt into germ-

free (GF) C57Bl/6 mice and collected cecal contents at Days 1, 7, and 14 after colonization (Fig. 

9A). After rRNA and host RNA depletion, the bacterial RNA samples were sequenced and 

compared in a pairwise fashion across D1-D7 and D7-D14.  In parallel, to assess functional 

genetic requirements during colonization, we introduced a rich library of randomly barcoded Tn 

insertion (RB-Tn) mutants of Bt into four different cohorts of germ-free C57Bl/6 mice and 

collected daily fecal samples (Fig. 9A).  Amplification and sequencing of the transposon 

barcodes reveals the relative abundance of each mutant in the library at each timepoint.    

First, we addressed the question of whether there are differences in Bt gene fitness at different 

times after introduction into the mouse gut. We performed Principal Coordinates Analysis 

(PCoA) using Bray-Curtis dissimilarity on the relative abundance of the RB-Tn mutant strains 

within each mouse across the days of the functional genetics experiment and found that across 

multiple independent cohorts of this experiment, the mutant pool composition shifted across time 

in a deterministic pattern (Fig. 9B). PERMANOVA analysis showed that the data cluster 

significantly by experimental day (p = 1e-4, R2 = 0.457). Qualitatively, the largest shifts in PC1 

occurred between D1 and D7, whereas the mutant pool changed less dramatically between D7 

and D14. Consistent with the global changes in mutant abundance with time, clustering of WT 

Bt gene expression data from our transcriptomics experiment reveals that the largest changes in 
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expression occur during the first week after introduction of B. theta (Fig. 9C). The Bt expression 

profile from D1 clustered distinctly from that of D7 or D14 (p-value < 0.05), whereas D7 and 

D14 profiles were statistically indistinguishable. Together, these data suggest that a large shift 

occurs early during the first week of colonization such that different sets of genes mediate 

colonization and growth of the organism before and after the switch.  

 

Amino acid, vitamin, and capsular polysaccharide biosynthesis are transcriptionally 

upregulated and functionally significant during early invasion of the gut. 

To determine the scale of the observed shifts in gene usage, we compared the transcriptomes of 

WT Bt isolated on D1 and D7. Differentially expressed genes (DEGs) were identified for each 

pairwise comparison using the parameters logFDR < -3, |log2FC| > 2, and max group mean > 50 

TPM. Even using these stringent criteria, we identified a staggering number of DEGs. 154 genes 

were significantly enriched on D1 compared to D7, while 359 genes were significantly enriched 

on D7 compared to D1 (Fig. 10A). 

Next, we asked whether the genes with higher relative expression on D1 correspond to specific 

functions. Though the period immediately following invasion of an exogenous organism has 

been studied in pathogenic infection contexts, very early time points in commensal colonization 

have been neglected in existing studies. This is a critical time for the invading organism, in 

which it must quickly adapt to a different set of stressors unique to the host environment, 

including differences in nutrient availability, pH, salinity, and assaults by the host immune 

system.  
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Previous attempts to characterize Bt colonization within the gut suggest that remodeling of the 

outer membrane is one response to the broad array of new selective pressures in the extracellular 

environment as the cell enters a new host (226–228). As is typical of other Bacteroides, Bt 

dedicates a substantial portion of its genome to its 8 distinct capsular polysaccharide (CPS) 

biosynthesis loci, which exhibit complex gene regulatory mechanisms. It has been shown 

previously that Bt can dynamically change its CPS expression profile in vivo (226), and that 

CPS4 plays a critical role in colonization (227, 228). Indeed, we saw major differences in 

expression of CPS biosynthesis genes between D1 and D7 (Fig. S11A). CPS1, 3, 4, and 8 loci 

have higher relative expression during the first day following introduction of Bt, whereas CPS5 

and 6 are significantly enriched at D7 and beyond (Fig. S11B). Interestingly, mutants with 

disruptions in CPS1, 3, and 8 loci were not significantly depleted during the early days of the 

functional genetics assay. Only CPS4 mutants showed severe fitness defects (Fig. S12). This 

could indicate that CPS1, 3, and 8 serve redundant functions, or that fitness corresponds to 

protein levels or activity that are regulated independently of mRNA levels. Nevertheless, these 

results suggest that regulation of CPS gene expression is a response to the environmental 

changes that Bt encounters upon initial invasion of the murine gut.  

To gain a more comprehensive understanding of the gene pathways expressed during the acute 

phase of adaptation to the host gut, we mapped the genes in the Bt genome to the 181 metabolic 

pathways within the Kyoto Encyclopedia of Genes and Genomes (KEGG) catalog and performed 

Gene Set Enrichment Analysis (GSEA) for each pathway on the differences in transcript 

abundances between D1 and D7 (Fig. 10B). The global expression pattern of Bt during D1 is 

reminiscent of the stringent response, in which growth is inhibited under conditions of nutrient 

limitation in favor of amino acid biosynthesis.   
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Our analysis of gene expression changes revealed that pathways corresponding to the 

biosynthesis of many essential amino acids were enriched specifically at the D1 timepoint, 

including those for histidine, lysine, leucine, and isoleucine This aligns with the findings of 

Watson et al. (229), which identifies biosynthesis of essential amino acids as one of the main 

drivers of microbial colonization outcomes after fecal microbial transplant. Concurrently 

enriched at D1 were genes involved in the biosynthesis of biotin, which is a cofactor required for 

many reactions, including amino acid biosynthesis. These results are supported by our RB-TnSeq 

analysis: when we mapped the significantly depleted mutants (t-statistic < -3σ) on the first day of 

the functional genetics assay using KEGG Orthology (KO), we identified amino acid metabolism 

as the KO group with the largest number of significantly depleted mutants (Fig. 10C). These 

genes are identified by gold stars on the amino acid biosynthesis pathway map in Fig. 13A, 

which gives a clear visualization of the individual reactions whose gene expression is enriched at 

D1 compared to D7. We can see that biosynthesis of most amino acids have either multiple 

reactions in the pathway that are transcriptionally enriched at D1, or one step that is functionally 

essential. Not only do both our transcriptomics analysis and functional genetics screen support a 

key role for amino acid biosynthesis early in colonization, but metabolomic analysis of the cecal 

contents corroborates this finding as well. When we measured the levels of specific amino acids 

in the murine cecum before, post-D1, and post-D7 colonization, we found that amino acid levels 

were generally much higher D1 after colonization than D7 or D14 (Fig. 13B). This difference 

was especially profound and statistically significant for amino acids in the glycine-serine-

threonine pathway, as well as aspartate. On the other hand, glutamate and proline accumulate 

within the cecum during the first week of the time course before being depleted in the second 
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week. The biosynthesis of glycine, glutamate, and aspartate was found to be functionally 

significant to the survival of Bt in the acute phase of colonization (Fig. 13A).  

Interestingly, while amino acid biosynthesis was the predominant functional hit among 

significantly depleted mutants at D1 in the functional genetics assay, over the next two days, 

amino acid biosynthesis becomes less essential to cell fitness as Bt begins to resume its 

carbohydrate metabolism activities, around D3, after overcoming an initial period of starvation 

(Fig. 10C, Fig. 14). 

 

A shift toward enhanced expression of diverse sugar metabolism genes occurs during the 

first week of gut colonization 

Members of the genus Bacteroides are well-known for their ability to digest a wide variety of 

polysaccharides. According to the CAZy database, Bt possesses 359 glycoside hydrolases, 87 

glycosyl transferases, 15 polysaccharide lyases, and 19 carbohydrate esterases. Among the DEGs 

enriched on D7 compared to D1, carbohydrate metabolism stood out as the most prominently 

enriched functional category (Fig. 15). After the acute phase of invasion, Bt shifts toward 

expressing a remarkable number of polysaccharide utilization loci (PULs). Of the 42 total PULs 

that were significantly enriched at any point of the experiment, 34 were enriched on Day 7 or 14. 

These upregulated PULs encode genes belonging to a variety of pathways, including glycolysis, 

galactose degradation, pectin degradation, and D-galacturonate degradation (Fig. 16). Included 

among those are also PULs known to be involved in degradation of O-glycans (15), which 

suggests that B. theta is foraging for sugars through digestion of the mucus layer.  These results, 

along with a 10-fold increase in CFU in the latter half of the experiment (Fig. 17), suggest that 
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within a week after introduction into GF mice, Bt recenters its transcriptome from a stringent 

response-like expression profile to a response centered predominantly on metabolism of the 

available sugars within the host gut. 

 

Upregulation of α-galactosidase activity confers a significant growth advantage to Bt in GF 

mice fed a standard RFO-rich diet 

In stark contrast to the large transcriptional shifts that occurred in the first week after 

introduction, the transcriptional profile at D7 is mostly sustained through the rest of the 

experiment (Fig. 18A). In other words, the transcriptome of host associated Bt has largely 

stabilized by the end of the first week. The one salient exception in the second week is the 

continued upregulation of PUL24, suggesting that PUL24 may enable Bt to gain a competitive 

growth advantage as it proceeds to the persistence stage of engraftment. PUL24 has an operon 

structure typical of a PUL, with regulatory elements, transporter proteins and carbohydrate-

active enzymes (Fig. 18B). Interestingly, the last gene of PUL24 encodes an α-galactosidase 

(BT1871), which is predicted to confer the ability to hydrolyze the α-1,6 glycosidic linkage in 

raffinose family oligosaccharides (RFOs), a major component of the fiber-rich diet that our mice 

were fed (231). Though this study focuses on understanding the shifting genetic determinants of 

colonization over time, we recognize that the effect of diet is intrinsic to the results of any gut 

microbiome study. 

Our functional genetics screen confirmed the importance of PUL24: within the first five days 

after introduction of the RB-Tn mutant library into GF mice, the diversity of the community 

quickly collapses (Fig. 18C) due to strong positive selection for a small pool of hyperfit mutants. 
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RB-Tn mutants with insertions in PUL24 were among the most enriched mutants at the end of 

the two-week experiment, even after controlling for their relatively high abundances in the 

inoculum (Fig. 18D). Furthermore, most of the significantly enriched mutants had TN insertions 

in one of three operons: PUL24 (BT1871-1877), PUL39 (BT2851-2860), or BT3130-3134, all of 

which encode at least one α-galactosidase, situated at the tail end of the operon (Fig 18D). At the 

end of the Tn selection experiments, the populations were overtaken by mutants carrying 

Tn insertions upstream of these α-galactosidase genes (Fig 18E). This was true for all four 

independent experimental runs, which were performed months apart from one another (Fig 18F). 

To note is the fact that in vitro passaging of this library within BHI-S medium also resulted in 

significant, though not as dramatic, decrease in Shannon diversity over two weeks, but the 

mutant library was able to maintain its diversity when passaged in the presence of a specific-

pathogen-free community (Fig. 19). Introduction of this mutant library in a GF mouse is 

frustrated by severe bottlenecking, but the rare population that penetrate the gut is stably 

maintained throughout the course of the next two weeks (Fig. 20. This difference suggests that 

gene-environment interactions for Bt is affected by the presence or absence of other community 

members.  

This RB-Tn pool has previously been assayed in over 300 different conditions including distinct 

carbon or nitrogen sources or specific stress conditions (16). The mutants that we identified in as 

being hyperfit in GF mice exhibit a phenotype significantly deviant from WT only in two 

conditions: within GF mice and in defined culture with melibiose—a disaccharide of glucose and 

galactose—as the sole carbon source. In both these cases, these mutants exhibit a growth 

advantage. Indeed, when we isolated the most abundant strains from D14 of the RB-Tn 

experiment, we found that their growth rate was significantly faster than WT when melibiose is 
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the sole carbon source (Fig. 21A). In this condition, Bt must hydrolyze the alpha 1,6-bond to 

harvest and metabolize the monosaccharide sugars. The competitive advantage of these mutants 

cannot be attributed to either of the monosaccharides, as the mutant growth rates with these 

carbon substrates are indistinguishable from that of WT (Fig. 22). 

Given that release of the monosaccharide sugars of melibiose depends on hydrolysis of an α 

glycosidic bond, we wondered if the fitness phenotypes in both mice and in vitro depended on 

overexpression of the α-galactosidase gene downstream of the TN insertion site. The original 

publication characterizing this Bt RB-Tn library (16) showed that polar effects can be expected 

in which readthrough from the strong promoter driving antibiotic resistance in the transposon can 

overexpress genes downstream from the insertion. To test the hypothesis that the transposon 

insertion enhanced expression of downstream genes, we grew WT and hyperfit mutants in 

melibiose medium and measured the expression of α-galactosidase genes. For this experiment, 

we used two mutants, one carrying an insertion in PUL24 and another carrying an insertion in 

the BT3130-3134 operon. We found that, in both cases, expression of the α-galactosidase 

downstream of the insertion but within the same operon was overexpressed by at least 10 times 

compared to WT (Fig. 21B). Meanwhile, expression of an α-galactosidase (BT2851) located 

outside the operons carrying the insertion was similar between WT and the mutants. We then 

overexpressed BT1871 from a strong, constitutively active promoter (PrpoD) in WT Bt, and 

observed a three-fold increase in log-phase growth rate when melibiose was the sole carbon 

source (Fig. 21A). 

Metabolomic measurements of a carbohydrate panel confirms that high concentrations of 

raffinose and its constituent sugars are among the most abundant substrates within the ceca of 

GF mice fed a standard chow (Fig. 21C). Raffinose and melibiose build up in the lower GI of 



 61 

these mice at high concentrations until Bt is introduced. After 7 days, during which time Bt 

initiates overexpression of alpha-galactosidase genes, these sugars are depleted (Fig. 21C, Fig. 

23A). In contrast, the other disaccharide product of raffinose, sucrose, which does not have a 1,6-

alpha glycosidic bond, is consumed by the host and no significant changes are observed in 

sucrose concentration following the Bt colonization (Fig. 23B). 

Together, we find that when mice are fed a standard high-fiber chow, the high concentration of 

RFOs accumulating in the lower GI tract creates an environment that strongly selects for Bt 

strains that can make efficient use of these sugars through increased expression of α-

galactosidases. We infer that efficient carbohydrate metabolism—particularly for abundant 

dietary fibers—is a major determinant of population-level selective dynamics during the 

persistence phase of Bt engraftment within the gut. 

 

Strong selection for efficient RFO metabolism leads to emergence of spontaneous Bt 

mutants with  duplicates the BT1871 locus through a IS3-family transposable element 

The transposon mutants in our functional genetics experiment were able to gain ~10-fold 

increase in α-galactosidase expression due to readthrough from an extremely strong, synthetic 

promoter. We wondered if the selective pressure for elevated α-galactosidase activity to utilize 

the α 1,6-linked sugars abundant in the diet would drive evolution of a spontaneous mutant with 

enhanced α-galactosidase activity. We inoculated three GF mice with WT Bt. After one week, 

they were each separated into individual cages. At the end of the six-week incubation period, we 

performed shotgun metagenomic sequencing on fecal material from all three mice. When we 

assembled the short-read sequences, we note that there was at least 2x coverage of the BT1871 
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for all the samples (Fig. 24A). The dip in coverage mapped to an IS3-family transposase, of 

which there are six other identical copies in the genome; hence, the corresponding coverage was 

diluted among the different copies. BreSeq analysis (210) identified three new junctions in the Bt 

genome indicative of genome rearrangements (Fig. 24B). All three junctions were formed 

between either BT1872 or BT1873 and a locus downstream of BT1871, which encodes for 

rRNAs, tRNAs, and a ribosome recycling factor. All three new junctions occupied a significant 

portion of the sequencing reads (60-73%), suggesting that the mutants carrying these junctions 

were sufficiently competitive in the gut environment to comprise a significant portion of the 

fecal Bt population. 

IS3-family transposases are known to act by a copy-and-paste mechanism (233). We wondered if 

this transposase could have created multiple copies of the BT1871 locus. We isolated individual 

mutants from the bulk fecal material, cultured the isolates in complex broth (BHI-S), and 

performed long-read sequencing with MinION. In one of the isolates, we identified a tandem 

repeat of the BT1871 locus (Fig. 24C), which places the original copy of BT1871 downstream of 

a strong rRNA promoter. Like the RB-Tn mutants, the mutants isolated in this experiment all 

grew about five times faster than WT in defined minimal media with melibiose (Fig. 25). 

Interestingly, the six identical copies of this IS3-family transposase are often found adjacent to 

PULs in the WT Bt genome. This suggests that these transposable elements confer a mechanism 

to modulate gene expression that may be advantageous in adapting to new metabolic landscapes. 
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3.4 Discussion 

 
Microbial adaptation during colonization is a dynamic process 

Bacteroides species are dominant and prevalent in many human populations. Instrumental to 

their success is their ability not only to tolerate stress, but to quickly adapt at growing in a range 

of conditions. Bt has been used as a model organism to understand the genetic drivers of gut 

colonization for commensal organisms (228, 234, 235). However, by and large, a single 

representative timepoint has been assessed in previous investigations, which fail to take into 

account the dynamism of the adaptational process. For example, contrary to the established 

characterization of Bt as exhibiting constant, rapid growth in the gut based on gene expression at 

a single timepoint (236), our time course data evaluating CFU counts (Fig. 17), transcriptomics, 

and functional genetics suggest that upon entry into the gut ecosystem Bt growth lags for at least 

4 days, during which Bt prioritizes biosynthesis of amino acids and other essential compounds, 

before it begins a period of rapid growth. In this study, we find that the set of genes required for 

Bt to initially establish colonization in the gut are distinct from those required to persist (Fig. 8). 

Though the findings of previous studies do reflect a replicable snapshot of the Bt adaptational 

process, these studies have largely neglected the ecological dynamics of Bt adaptation that play 

out temporally on the scale of weeks. The results presented here suggest that investigators should 

think carefully in selecting the timepoints that are most relevant to their investigation of gut 

colonization and adaptation. 
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Dynamically changing pathways in Bt 

The process of colonizing a new host presents a collection of environmental changes that require 

physiological adaptation. For example, the bacteria experience changes in pH and nutrient 

availability as well as assaults by the host immune system. The largest transcriptomic changes 

that we observed across the two weeks of Bt colonization occurred in the first week: 10% of all 

Bt genes (503 genes) were differentially expressed between D1 and D7, whereas only 0.1% of 

the genes were differentially expressed between D7 and D14 (Fig. 10A).  

Our findings suggest Bt faces amino acid starvation upon arrival in the lower GI tract during the 

earliest stage of colonization. During amino acid starvation, microbes activate a program of 

transcriptional changes called the stringent response, in which carbohydrate metabolism is 

curtailed in favor of amino acid biosynthesis. Schofield et al. (237) previously showed that Bt 

requires the stringent response to establish and maintain colonization in ex-germ-free mice. 

Indeed, in this study we demonstrated that biosynthesis of amino acids is both highly upregulated 

and functionally vital to the initial establishment of Bt colonization. One possible explanation for 

why amino acid biosynthesis pathways have significantly higher expression on D1 compared to 

D7 or D14 is that when Bt first arrives in the uncolonized gut, dietary or host-derived amino acid 

resources are scarce enough to induce the stringent response, which leads to the general 

upregulation of amino acids. Upon adjustment to the environment, it will be more energetically 

favorable to fine-tune expression of only the necessary resources. 

In addition to amino acid biosynthesis, the other major category of genes that were highly 

expressed on D1 but not D7 or D14 are those involved in vitamin biosynthesis. Genes including 

those related to biotin (Vitamin B7), riboflavin (Vitamin B2), and pantothenic acid (Vitamin B5) 
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biosynthesis were significantly enriched on D1. Like amino acids, these vitamins may simply be 

scarce in the lower GI tract early during colonization of ex-germ-free mice, requiring Bt to 

synthesize them itself early in colonization. Indeed, dietary B vitamins are primarily absorbed by 

the host in the small intestine, and although microbe-derived B vitamins can be produced and 

absorbed in the colon, in our germ-free model, we would expect B vitamin levels to be low in the 

distal GI tract prior to colonization (238). It is also possible that the upregulation of biotin and 

other vitamins could be linked to host immunity. Given that microbial biotin biosynthesis genes 

are upregulated during the infection of many pathogens in humans, including pathogenic E. coli 

gastrointestinal infections and Salmonella bloodstream infections (239–241) and host biotin 

deficiency has been demonstrated to increase secretion of proinflammatory cytokines in human 

dendritic cells (242), upregulation of biotin biosynthesis by Bt may serve to dampen 

inflammation from the host in response to bacteria colonization. Though Bt is not traditionally 

regarded as a pathogen, we cannot rule out the possibility that it can induce some level of 

inflammation, especially in mice that have never encountered microbes. Bacteroides fragilis is a 

well-studied species of the same genus that is commonly part of a healthy microbiome but can 

induce inflammation within the host under specific contexts (18, 19). Future investigation will be 

required to understand whether upregulation of vitamins in Bt is related to any of these host 

responses. 

 

Loss of diversity in RB-Tn pools in vivo and in vitro and the impact of complex 

communities 
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In both the mouse gut and in complex broth (BHI-S), our RB-Tn mutant pool exhibited 

significant losses in Shannon diversity during the first week, which extended through the 

remainder of the two-week experimental period (Fig. 18C; Fig. 19). Whereas in vitro loss of 

diversity was primarily attributable to shifts in the relative abundance of the mutants rather than 

extinction of mutant strains, the collapse in diversity observed in the host-associated RB-Tn pool 

was caused by decreases in both strain evenness and richness—and on a much larger scale than 

in the in vitro experiments. This difference in scale suggests that in vivo, strong, directed 

selective pressure for improved melibiose and RFO metabolism led to population sweeps by 

strains carrying gain-of-function mutations. By contrast, the loss of diversity exhibited by our in 

vitro experiments suggests a much weaker selective environment, which is not surprising given 

that the mutant population was generated and has been cultivated in vitro in BHI-S. Moreover, 

WT Bt grows efficiently in BHI-S thus there is limited dynamic range to respond to the selective 

pressures of that environment with improved growth.  By contrast, WT Bt growth on melibiose, 

is highly inefficient, with a doubling time of around 10 hr, and the RB-Tn gain-of-function 

mutations were able to increase growth speed on melibiose by log-fold differences. 

Like our study, a transposon screen for enteric colonization factors in Klebsiella pneumoniae 

also reports that despite robust colonization of the colon by a diverse array of mutants at D1, the 

diversity of the mutant population was greatly reduced by D4 and there was marked expansion of 

a small subset of mutants (20). However, contrary to our findings, diversity of the mutant 

Klebsiella population recovered shortly thereafter. This difference can potentially be accounted 

for by the fact that the Klebsiella experiments were carried out in SPF mice treated with 

antibiotics that reduced, but did not eradicate, the native microbiome to allow for dense 

Klebsiella colonization.  
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We find that, in vitro, addition of an SPF community prevented the loss of diversity in passaging 

the Bt RB-Tn library for 14 days (Fig. 19). In accordance with these observations, a recent 

publication investigating the impact of community complexity on evolution of focal strains 

concluded that microbes have a higher evolutionary capacity in low diversity communities than 

in complex communities (21). Thus, the strong, directed selection observed in our in vivo 

experiments may be rendered more diffuse in the presence of a native microbial community. 

Among other factors, we expect that the results of this study will likely differ depending on the 

presence or absence of a pre-established community. Though we recognize the limitations of 

studying adaptation and colonization in GF mice, these experiments lay foundational 

groundwork for the eventual investigation of community assembly and fitness dynamics in more 

complex communities. Specifically, having a thorough catalog of host-specific colonization 

dynamics in the GF gut will create a basis of comparison from which we can delineate host- 

versus microbiome-induced selective pressures and adaptive dynamics. Preliminary assessments 

of RB-Tn mutant engraftment in complex communities revealed that a strong initial bottleneck in 

colonization led to very low levels of Bt persistence in the community (Fig.17). Moreover, the 

final composition of mutant strains appeared to be dictated by stochastic forces, with high inter-

individual variability, and no consistent selective pattern for particular genes or functions (Fig. 

20). This further supports the notion that addition of a complex community may limit the extent 

of strong, directed selection, although additional follow-up experiments are required to further 

characterize these patterns. 
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IS3 transposable elements: a potential novel mechanism to modulate expression of specific 

CAZymes? 

In GF mice fed a standard RFO-rich diet, the selective pressure for mutants with increased alpha-

galactosidase activity is severe. Mutants in the BT1871 locus were consistently selected for in 

WT Bt allowed to evolve in mice for six weeks. In all three populations, the downstream side of 

the duplicated region ends midway through a ribosomal gene, meaning that there are no known 

transcriptional terminators between the ribosomal promoter and the alpha-galactosidase gene, 

BT1871. It is likely that these mutants have increased alpha-galactosidase activity due to 

readthrough from the strong ribosomal promoter in the upstream copy of the locus. Though 

increased alpha-galactosidase could be simply due to the presence of two copies of BT1871, the 

growth phenotype that these mutants exhibit, in which log phase growth is 5x faster than WT, is 

on par with that of the RB-Tn mutants, for which alpha-galactosidase expression was more than 

10 times greater than that of WT. 

In Bt identical copies of this IS3 transposable element occurs in seven locations, often adjacent 

to PULs and almost always paired with a ribosomal gene. It is well known in both mammals and 

prokaryotes that transposable elements can modulate the expression of nearby and distant genes. 

Transposable elements may be selected for because the genetic "cargo" that they shuttle along 

(such as an antibiotic cassette) is beneficial to the organism or because the position where the 

insertion occurs results in some downstream effect that is beneficial to fitness. Both reasons may 

contribute to the selection of the tandem duplication of the BT1871 locus. Future studies will be 

necessary to investigate whether other IS3 elements in Bt perform similar functions in 

modulating expression of nearby genes and whether such a mechanism can be found in other 

families of bacteria. 
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3.5 Materials and Methods 

 
Mice 

Female mice 8-12 wk-old C57Bl/6J germ-free (GF) mice were bred and maintained in plastic 

gnotobiotic isolators or bioexclusion racks within the University of Chicago Gnotobiotic Core 

Facility and fed ad libitum autoclaved standard chow diet (LabDiets 5K67). The mice were given 

a single dose of either wildtype Bt VPI-5482 or the Bt mutant library (gift from Deutschbauer lab) 

at 106-108 CFU / 200μL. All murine experimental procedures were institutionally approved. 

 

In vivo genome-wide mutant fitness assays 

Several individual cohorts of mice were used, indicated by the month of the experiment. For 

each cohort, mice were housed in a single gnotobiotic isolator for the duration of the experiment 

(December and January), or each individual cage was housed in a bioexclusion rack (March and 

October). Female C57BL/6J GF mice between 8-12 weeks old were fed a standard irradiated diet 

ad libitum, split into cages of n = 2-3 mice/cage, and allowed to acclimate for 3 days prior to 

colonization. The inoculum was prepared by one of two methods: 1) for Mar. and Oct. 

experiments: thawing a 2mL aliquot of the Bt RB-TnSeq library, growing the entire aliquot in 

150mL BHI-S medium overnight with 20 ug/mL erythromycin (16h), and backdiluting the 

culture to OD600=0.05 the next morning to allow for cells to reach mid-log phase (3hr), or 2) for 

Dec. and Jan. experiments: thawing aliquots of the Bt RB-TnSeq library and gavaging the 

thawed Bt cells directly into mice. For each experiment, at least 3 cell pellets of the inoculum 

were collected at Time=0 references. Each mouse was colonized by oral gavage with 200μL of 
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the Bt transposon library. Stool samples were collected daily (excluding weekends), up to 14 

days post-colonization to assess longitudinal shifts in mutant abundance. Mice were monitored 

and weighed daily. Genomic DNA was extracted using the DNeasy PowerSoil Kit. 

 

Pipeline for measuring relative abundance and fitness scores of RB-Tn mutants 

RB-TnSeq strain and gene fitness scores were calculated as described previously from strain-

level count data (322). For temporal abundance analyses of TnSeq mutants for each run, we first 

created a feature table with raw counts of strain-level mutants across each sample. This table was 

filtered to remove strains with counts of 1, as these are likely produced by sequencing error. Next, 

counts were normalized by the count of a synthetic spike-in barcode that was introduced at 20pM 

into each sample during PCR amplification of the barcodes. Samples where the spike-in 

represented > 30% of total reads were discarded. The synthetic spike-in barcode was 

subsequently removed as a feature from the table, and the resulting tables were used for alpha 

diversity analyses via the R package vegan. For all other relative abundance analyses, strains 

were assigned to genes based on previous mapping by Liu et al. 2021 (19), as well as manual 

mapping performed for this experiment. Strains that had not been previously mapped were 

binned together as "non-mapping" strains, and strain-level counts were then summed for each 

gene. For all subsequent analyses, we further filtered out genes that mapped to Bt plasmids, as 

we were more interested in chromosomal gene fitness patterns. The R package phyloseq was 

used to calculate Bray-Curtis dissimilarity for all pairwise combinations of samples, which was 

then used to create PCoA plots. Finally, filtered count tables were adjusted to relative abundance 

based on the total remaining counts, and used to track gene-level relative abundance over time. 
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For linear regression of initial vs final relative abundance of gene mutants, genes with zero-

counts were re-assigned a value of 1e-7 to perform log-transformation of the data. 

 

In vivo transcriptomic experiments 

Mice were sacrificed at 1, 7, and 14 days post-colonization. Luminal contents of the mice cecum 

were immediately snap-frozen in liquid N2 and stored at -80C. About 50mg of the contents were 

transferred into 2mL screw-cap tubes, followed by the addition of 1mL TriZOL reagent for the 

isolation of RNA. The samples were homogenized by beadbeating with 0.1-mm glass beads in a 

Mini-BeadBeater-96 for 2 minutes. Total RNA isolation and purification were performed using 

the TRI reagent protocol and quality checked by BioAnalyzer. All library preparation and 

sequencing work was performed by MiGS (Pittsburgh, PA). Initial DNAse treatment is 

performed with Invitrogen DNAse (RNAse free). Library preparation is performed using 

Illumina's Stranded Total RNA Prep Ligation with Ribo-Zero plus. Custom Ribo-Zero probes 

were designed for Bt and supplemented alongside the standard probe set. Custom probe 

sequences can be found in Table 8. Sequencing was performed on a NextSeq2000 giving 2x50bp 

reads. Post sequencing, we use bcl2fastq (v2.20.0.422) to demultiplex and trim adaptors. 

Gene Set Enrichment Analysis (GSEA) of metabolic pathways 

Metabolism for the Bt genome was first estimated using the anvio-v7 program “anvi-estimate-

genome” that identifies the KEGG Ortholog family (KOfam) annotations for each open reading 

frame.  Gene calls for each metabolic pathway found within the B. theta genomes were then 

transferred into a unique GSEA pathway query list in R ('fgsea').  Pathway enrichment was then 
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calculated using the enriched gene lists derived from the RNA-Seq analyses using 'deseq2'. 

Pathways were filtered for padj>0.05 and the normalized enrichment scores (NES) plotted 

(PRISMv9). Other custom gene lists were created to calculate the enrichment of other gene sets 

including the polysaccharide utilization loci (PULs), genes involved the production of specific 

amino acids, and capsular polysaccharide loci (CPSs). 

 

Isolation of mutants from fecal matter 

Mouse feces were collected and immediately homogenized in 500mL 25% glycerol solution and 

stored at -80C. Prior to isolation, glycerol stocks were allowed to thaw on the benchtop for 10 

minutes, spun for 30 seconds at 2,000 RPM. On each 150mm BHI-S plate, 100uL of 10-3, 10-4, 

or 10-5 dilution of the glycerol stock was spread using 4.5 mm glass beads. The plates were 

incubated anaerobically at 37C for two days. Individual colonies were picked into 1mL 96-well 

plates containing 750uL BHI-S in each well. After 16 hours of growth, glycerol was added to a 

final concentration of 20% and the isolates were stored. The isolate stocks were used as the 

template in PCR amplifying the barcoded region of the mutants. The PCR products were sent for 

Sanger sequencing. 

 

In vitro culture and growth measurements 

Bt was grown in an anaerobic chamber at 37°C either in Brain Heart Infusion Supplemented 

(BHI-S) medium or Varel-Bryant (VB) defined medium. The Varel-Bryant medium base was 

made with no carbon source and was supplemented by 20mM of the indicated carbon source. For 
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growth measurements, colonies of Bt were inoculated into 3mL of BHI-S in plastic culture tubes 

and grown overnight at 37°C, for a total of 6 biological replicates. Sealed Hungate tubes 

containing 10mL of VB medium and a 20mL headspace were used for subsequent growth. 

Immediately before inoculating with the cells, the tubes were inoculated via syringe with 

autoclaved sugar solution and hemin solution for a final concentration of 20mM sugar and 5 

ug/mL hemin. Overnight cultures were diluted to OD600 = 1, and 100uL of the diluted culture 

was inoculated into the prepared media tubes via syringe. Anaerobically sealed cultures were 

grown outside of the chamber in a 37°C incubator with no shaking. Every 45 minutes, the 

cultures were taken from the incubator, cells resuspended by shaking, and their OD600 readings 

measured by a GENSYS 40-Vis spectrophotometer.  

 

Host-associated evolution of spontaneous Bt mutants 

Three female mice 8-12 wk-old C57Bl/6J GF mice were co-housed in the same gnotobiotic 

isolator and fed standard chow diet ad libitum. One week post inoculation of Bt, the three mice 

were separated into individual cages. A fecal sample was taken six weeks post inoculation. DNA 

was extracted from the fecal pellets by the phenol-chloroform method, followed by ethanol 

precipitation, and sent for shotgun sequencing. Individual isolates from each fecal pellet were 

cultured from the bulk material as outlined in Isolation of mutants from fecal matter. We assayed 

for isolates with increased growth in VB-melibiose and selected one isolate from each mouse for 

MinION long-read sequencing. 
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Isolated genomes sequencing, assembly and polishing 

To provide greater context for the delineation of the complex chromosomal rearrangements 

associated with the BT1872/BT1873 operon, a long-read sequencing strategy was employed. The 

isolate genomes assessed were wild-type Bt, the strain used for the mouse experiments, and three 

spontaneous mutant cultivars (MZ55, MZ58 and MZ65), which demonstrated enhanced growth 

rates in the presence of melibiose, recovered from the feces of mice six weeks after initial 

inoculation. Total genomic HMW DNA was extracted by a standard phenol chloroform protocol 

(246) on overnight 25-mL BHIS broth cultures. DNA was resuspended in 0.1-mL 10 mM Tris-Cl, 

pH 8.5. 

Slow pipetting, wide bore pipette tips and steps to minimize velocity gradients were 

implemented throughout to avoid further shearing of DNA molecules. Libraries were prepared 

with the Rapid Barcoding Kit (SQK-RBK004) and the standard protocols from Oxford Nanopore 

Technologies were used with the following modifications. DNA fragmentation was performed 

on 10-ug DNA using 10 passes through a 22G needle in a 250-µL volume before purification 

using 0.5% Agencourt AMPure XP beads (A63882, Beckman Coulter). Each elution step of the 

AMPureXP beads was performed using 10 mM Tris-Cl pH 8.5 instead of water, at 37°C for 5 

min. The gDNA inputs into library preparation ranged between 0.5 µg and 1.2 µg (Table S2), 

based on sample availability in a standard 8.5 ul volume, with 1.5 µl Fragmentation mix added to 

each sample. Barcoded libraries were pooled so each sample contributed an equal input mass 

(~0.5 µg, Table 9). Using MinKNOW (v4.3.4), a single R9.4/FLO-MIN106 flow cell (Oxford 

Nanopore Technologies) sequenced the final prepared library with a starting voltage of −180 mV 

and a run time of 72h. Guppy (v5.0.11) and the sup model were used for post-run basecalling, 

sample de-multiplexing and the conversion of raw FAST5 files to FASTQ files. For downstream 
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analyses, we only used reads with a minimum quality score of 7. We assembled long-reads 

contigs with Flye (247). Additional DNA extractions were carried out for every isolate using a 

standard phenol-chloroform extraction and send for short-read sequencing. We then used the 

short-reads to polish the long-read assemblies using Pilon v1.23 (37). 

 

Metagenomic mapping and coverage visualization 

We used anvi'o v7.1 (249) and the metagenomic workflow to compute and visualize 

metagenomics coverage for each isolate genome. Briefly, the workflow uses (1) Prodigal v2.6.3 

(250) to identify open-reading frames (ORFs), (2) 'anvi-run-hmm' to identify single copy core 

genes from bacteria (n=71, (40) and ribosomal RNAs (n=12, modified from 

https://github.com/tseemann/barrnap) using HMMER v3.3. (252), (3) 'anvi-run-ncbi-cogs' and 

'anvi-run-kegg-kofams' to annotate ORFs with the NCBI's Clusters of Orthologous Groups 

(COGs) (253) and the KOfam HMM database of KEGG orthologs (KOs) (254, 255) respectively. 

We used Bowtie2 v2.3.5.1 (45) to recruit metagenomic short-reads to the contigs, and samtools 

v1.11 (257) to convert SAM files to BAM files. We profiled the resulting BAM files with 'anvi-

profile' and used the program 'anvi-merge' to combine all single profiles into a merged profile for 

downstream visualization. We used 'anvi-get-split-coverages' and 'anvi-script-visualize-split-

coverages' to generate the coverage plots. We used 'anvi-export-gene-calls' and gggenes v0.4.1 to 

visualize the genomics context around BT1871.  
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BT1871 copy number 

We used blast (258) to compute the number of long-reads with two copies of the BT1871 locus 

in the MZ65 isolate. We extracted the gene sequence (1989 bp) from the initial B. theta gnome 

(AMD595) using anvi'o interactive interface and used blastn v2.5.0 to blast the long-reads from 

MZ65. Blast hits with an alignment length > 180% of the gene length were flagged as "two 

copies" and hits with alignment length between 80% and 105% were flagged as "one copy". To 

visualize long-reads with two copies of BT1871, we used minimap2 v2.17 (259) to map the 

MZ65 long-reads to the MZ65 genome, which had two copies of the BT1871 region. We used 

samtools v1.11 to extract the reads with two copies as identified above and used IGV v2.11.1 

(260) to visualize the mapping and generate a figure.  

 

Metabolite Extraction from Cecal Material 

Metabolites were extracted with the addition of extraction solvent (80% methanol spiked with 

internal standards and stored at -80°C, Table 10) to pre-weighed fecal/cecal samples at a ratio of 

100 mg of material per mL of extraction solvent in beadruptor tubes (Fisherbrand; 15-340-154). 

Samples were homogenized at 4°C on a Bead Mill 24 Homogenizer (Fisher; 15-340-163), set at 

1.6 m/s with 6 thirty-second cycles, 5 seconds off per cycle. Samples were then centrifuged at -

10°C, 20,000 x g for 15 min and the supernatant was used for subsequent metabolomic analysis.  
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Metabolite Analysis using GC-EI-MS and Methoxyamine and TMS Derivatization 

Metabolites were analyzed using GCMS with Electron Impact Ionization. 100uL of metabolite 

extract was added to prelabeled mass spec autosampler vials (Microliter; 09-1200) and dried 

down completely under nitrogen stream at 30 L/min (top) 1 L/min (bottom) at 30°C (Biotage 

SPE Dry 96 Dual; 3579M). To dried samples, 50 µL of freshly prepared 20 mg/mL 

methoxyamine (Sigma; 226904) in pyridine (Sigma; 270970) was added and incubated in a 

thermomixer C (Eppendorf) for 90 min at 30°C and 1400 rpm. After samples are cooled to room 

temperature, 80 µL of derivatizing reagent (BSTFA + 1% TMCS; Sigma; B-023) and 70 µL of 

Ethyl Acetate (Sigma; 439169) were added and samples were incubated in a thermomixer at 

70°C for 1 hour and 1400rpm.  Samples were cooled to RT and 400 µL of Ethyl Acetate was 

added to dilute samples. Turbid samples were transferred to microcentrifuge tubes and 

centrifuged at 4°C, 20,000 x g for 15 min. Supernatants were then added to mass spec vials for 

GCMS analysis. Samples were analyzed using a GC-MS (Agilent 7890A GC system, Agilent 

5975C MS detector) operating in electron impact ionization mode, using a HP-5MSUI column 

(30 m x 0.25 mm, 0.25 µm; Agilent Technologies 19091S-433UI) and 1 µL injection. Oven 

ramp parameters: 1 min hold at 60°C, 16°C per min up to 300°C with a 7 min hold at 300°C. 

Inlet temperature was 280°C and transfer line was 300°C. Data analysis was performed using 

MassHunter Quantitative Analysis software (version B.10, Agilent Technologies) and confirmed 

by comparison to authentic standards. Normalized peak areas were calculated by dividing raw 

peak areas of targeted analytes by averaged raw peak areas of internal standards. 
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Chapter 4: Conclusions, Challenges, and Future Directions 

4.1 Preface 

 

Our work studying genetic adaptations of two different model organisms in the context of host-

associated selective pressures has advanced our understanding how these bacteria adapt to 

environmental transitions. In Chapters 2 and 3, I detailed our discoveries with regards to 

identifying antagonistic gene-environment interactions within an antibiotic context and assessing 

the genetic determinants of a major commensal microbe colonizing a mammalian gut. Here, I 

will discuss the major conclusions, challenges, and prospective for future studies. 
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4.2 Contributions to method development 

In addition to the findings of the above studies, we also made significant progress toward 

optimizing the pipeline for these discoveries. 

 

4.2.1 Systematic approach to identify extreme antagonistic interactions 

For the E. coli study, we were interested in studying extreme antagonistic interactions. In the 

current literature, extreme antagonistic literature pairs seem to be quite rare, and there lacked a 

systematic method for identifying such interactions other than testing existing antibiotics in 

pairwise fashion (207). The methodology of our study involves serial adaptive evolution of E. 

coli by first adapting the bug to a defined glucose medium, isolating mutants, then adapting those 

strains to a sublethal concentration of rifampicin. We chose rifampicin because there is not yet an 

antagonistic partner antibiotic for this drug that is still used for the treatment of serious bacterial 

pathogens such as Mycoplasma tuberculosis. 

Currently, antibiotic cycling strategies are implemented on an ad hoc basis, and the effectiveness 

of such a regime is still inconsistent and controversial (188, 327–329). However, if we were to 

implement this regime based on knowledge that resistance to one environmental perturbation 

(Antibiotic 1) increased sensitivity to second environmental perturbation (Antibiotic 2), then we 

could leverage this collateral sensitivity and limit expansion of the resistant strains by cycling 

between the extreme antagonistic pair. In theory, one of the antibiotics will be targeted toward 

suppressing the growth of the pathogen, and the other will be used to suppress resistant mutants 

of the first. An important arm of our strategy is preadapting the organism to the "base" 
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environment such that the adaptive mutations will not also enhance fitness in the absence of an 

antibiotic. In other words, these mutants are sensitized to the addition of rifampicin. Therefore, 

the mutations identified in the second adaptive step constitute candidate for the development of 

antagonistic partners for rifampicin. This is an improvement to the current strategy of selecting 

pairs from existing drugs because we can design and optimize drug pairs for this regime without 

being limited to drugs currently on the market. Finally, this approach is scalable to identifying 

higher order interactions (i.e., antagonism between three or more environmental perturbations), 

and can be further optimized by using mutagenesis methods to accelerate generation of 

variability during the process of target identification. 

 

4.2.2 Three-prong approach for assessing genetic determinants of colonization 

Colonization is a complex process involving inputs from the host, microbes, and abiotic factors 

such as the food being ingested. Severe cut-offs are applied to transcriptomic datasets in 

differential gene expression analysis because there are many sources of biological and technical 

noise and problems inherent in statistical models of count data (330). This is also true for 

calculation of BarSeq fitness scores (331). 

To more comprehensively assess whether the genetic determinants of gut colonization shift over 

time, we combined two complementary approaches: transcriptomics (RNA-Seq) and functional 

genetics (RB-TnSeq). These are both unbiased methods for identifying genes most important to 

the fitness of a given microbe under a particular set of conditions. Bacterial transcriptomics 

offers valuable information about gene usage, allowing us to identify differences in gene 

expression at progressive timepoints after introduction, and to evaluate the functional annotations 
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of those genes. A limitation of this approach is that conditional (or temporal) differences in gene 

importance may not be reflected in changes at the transcriptional level. Furthermore, there are 

examples in which modest transcriptional changes may have major functional consequences 

(332), as well as many examples in which post-transcriptional regulation determine levels of 

functional protein (333–335). 

These are caveats that can be addressed by a functional genetics assay, RB-TnSeq followed by 

BarSeq (300, 331), in which we allow a diverse pool of mutants to compete with one another and 

track their relative abundance at different points in time. Mutants that have disruptions in 

important genes will be depleted from the population, whereas mutants that retain the important 

genes for fitness or carry mutations that further confer further fitness advantages will be enriched 

over time. Therefore, this assay allows us to make conclusions about the functional 

consequences of each genetic disruption. A clear limitation of this approach is that we will not be 

able to identify genes with vital but redundant functions but given that there are significant 

differences in their expression, these genes should still be identified by the transcriptomics 

approach.  

Invariably, sole reliance on a single method, whether it be differential expression or functional 

genetics, will result in false positives as well as false negatives in identifying genes critical for 

survival in each condition (328). All candidate genes selected from these datasets should be 

verified through a series of secondary assays in vitro and in vivo, but these secondary assays are 

often time-consuming and lacking in throughput.  

Another method that we used to further assess the validity of our genetic hits is to measure the 

metabolite levels within the cecal contents of our mice. By measuring a panel of amino acids and 
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carbohydrates, we were able to validate our findings regarding the upregulation and functional 

importance of amino acid biosynthesis during initial introduction of Bt and its subsequent shift 

toward prioritizing carbohydrate metabolism midway through the first week and onwards. 

Furthermore, data from transcriptomics and functional genetics guided our assessment of the 

appropriate metabolites, which is valuable considering that a major challenge in designing 

metabolomics experiments is that important differences may not be detected if those specific 

compounds are not on the common panel of metabolites run by the facility. 

Together these approaches provide complementary insights into genetic requirements through 

time. This method for identifying genetic adaptations to colonization can be extended to various 

models of disease and serve as a basis upon which exploration of more complex microbial 

communities will build. 
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4.3 The stringent response for microbes in environmental transition 

 
We used publicly available data comparing serine hydroxamate treatment between WT E. coli 

K12 and its relA-deficient mutant to identify the transcriptional signature of the stringent 

response. The E. coli stringent response downregulates genes involved in ribosome synthesis and 

upregulated those involved in amino acid biosynthesis in response to starvation. We find that the 

fastest-growing mutants have transcriptional program resembling the stringent response in the 

absence of rifampicin, whereas slower strains do not exhibit this response. This suggests that the 

fast-growing mutants have evolved to grow more efficiently and more narrowly in a certain 

environmental condition (i.e., in the presence of rif) such that when the condition is altered, the 

environment becomes metabolically challenging to the organism and elicits activation of the 

stringent response. Indeed, the metabolic program of these mutants are anticorrelated with those 

of the slow-growing mutants (Fig. 6). This result is also interesting in the context of the findings 

of our colonization study (Chapter 3). Transcriptomics, functional genes, and metabolomics all 

suggest the presence of a stringent response-like regime in which carbohydrate metabolism is 

temporarily suppressed in favor of higher amino acid biosynthesis. 
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4.4 Colonization of commensal microbes in the presence of a defined community 

 
In our study using GF mice as a model to investigate the genetic requirements of a commensal 

organism to colonize a murine gut, we characterize gut colonization as dynamic process 

consisting of multiple stages with shifting genetic determinants of microbial fitness. We not only 

identify key pathways involved in colonization but determine the timing of when these pathways 

will be most vital to colonization success.  

To improve microbiome-based therapies, it will be important to appreciate and meet the distinct 

needs of the organism during each stage of colonization. Finally, the results of this study 

contribute to a growing need to understand adaptative processes in microbes, and the complex 

biotic and abiotic forces which guide them. Future studies will expand on these findings in 

different ecological contexts and host backgrounds and explore the effect of various microbial 

communities on these dynamic genetic requirements. 
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4.5 Evaluating colonization determinants with a pre-established community 

 
We recognize the limitations of studying adaptation and colonization within a GF mouse model. 

Through preliminary testing of our pipeline within a SPF mouse model, we recognize several 

potential challenges. Firstly, when we introduced the RB-Tn mutants into a pre-established 

complex community, we observed a strong initial bottleneck in colonization that led to low 

levels of Bt persistence in the community (Fig. 17). Second, perhaps partly because of this 

bottleneck, the composition of the mutant strains within the SPF model appeared to be dictated at 

least in part by stochastic forces with high variability within each mouse (Fig. 20). Unlike the 

severe uni-directional selection that occurred within the RB-Tn population in GF mice, there was 

no consistent selective pattern for specific genes or function for the same library when there was 

a pre-established community. This may suggest that the presence of a complex community 

limited the extent of adaptation that could occur within a single population of the community. 

When a community is sufficiently diverse, even if the selective pressure is strong overall within 

an environment, the population in question may not have sufficient access to the resources that 

maximize incentive to evolve, the real selective pressure felt by that population might be lower 

(184). Additionally, in a complex community that efficiently utilizes resources, there will not be 

a dominant nutrient available in excess. Furthermore, in the context of entering a pre-established 

community, available niches are much more limited compared to colonizing of a GF gut; 

therefore, mutants that are best adapted to persist in the gut may be lost to the initial bottleneck, 

rendering the mutants in the rare penetrating population effectively neutral in term of fitness.  

To circumvent the problem of low engraftment in a pre-established community, antibiotics have 

been used as a pretreatment before the organism of interest is introduced (302, 329). This is 
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appropriate in contexts when investigating organisms that are given as an FMT, which are often 

administered after antibiotic treatment, but does not help to answer questions of how exogenous 

organisms enter a pre-established community that has not recently received a serious 

perturbation. Therefore, pre-treatment of antibiotics is not always possible as a workaround for 

engrafting an organism of interest into a complex community. In fact, while thinking about how 

to improve engraftment of probiotics, we should consider the biological forces that exclude or 

strongly restrict new exogenous organisms from engraftment. Rather than a large perturbation 

such antibiotics, is it possible to temporarily create a new niche for the exogenous strain such 

that the population can penetrate the gut in large enough numbers to allow for quick and efficient 

adaptation within the new environment? One such solution was proposed in a recent study, 

which generated an exclusive metabolic niche for engraftment of an exogenous Bacteroides 

strain that harbored a rare gene cluster that allowed for metabolism of the marine polysaccharide 

porphyran (337). Strategies such as these open the possibility for engraftment of exogenous 

strains into a pre-established community without annihilation of the density and diversity of the 

gut microbiome, which can make the host susceptible to many health risks. 
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Appendix A – Figures 

 

Figure 1: Experimental approach to identify extreme antagonistic interactions. 

 (A) Diagram of our experimental evolution approach, in which WT E. coli BW25113 was 
adaptively evolved in M9G, yielding two Ref strains with an enhanced growth rate. These Ref 
strains were then evolved in M9G + rif, yielding five rif-adapted Mut strains per Ref parent.  

(B) Analysis of rif-adapted Mut strains and their Ref parents. Selected colonies were analyzed 
for growth in the presence and absence of rif, were subjected to WGS to identify mutations 
associated with adaptation and were RNA-sequenced to detect changes in transcript abundance.  

(C) Fitness of the mutants at each stage of the workflow, as measured by growth rate. The 
growth rate of the rif-adapted strains was compared with that of their Ref parents: Mut strains 
with significantly slower growth rate in the absence of rif meet the conditions for extreme 
antagonistic interactions with the addition of rif (Mut3, bottom), whereas Mut strains with 
growth rate equal (Mut2, middle) or greater (Mut1, top) do not. 
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Figure 2: Schematic of the assay to detect extreme antagonistic interactions. 

The WT strains were adaptively evolved in M9G medium, resulting in Ref strains. The Ref 
strains were shifted to an antibiotic medium condition, which was treatment with 7.5 µg/mL rif. 
Fast-growing, rif adapted, mutants were subsequently evolved, yielding Mut strains. The growth 
rates of the Ref and Mut strains were measured in both the original (M9G) and stressful (M9G + 
rif) media. In the diagram, evolutionary changes are represented by single-headed arrows and 
environmental shifts are represented by double-headed arrows. Green and red edges indicate 
increases and decreases in growth rate, respectively. The node colors match their corresponding 
strains in Fig. 1C.  
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Figure 3: Growth rates of the WT, Ref, and Mut strains in the presence and absence of rif. 

(A and B) Growth rates of the WT strain, Ref strains, and Mut strains derived from the 
pykF(C8Y) parent (A) and the rpoB(T1037P) parent (B). Solid squares, open squares, and open 
circles indicate Mut strains that grow faster, as fast as, and slower than the Ref strain in the 
absence of rif, respectively.  

(C and D) Growth rate comparisons of the Mut strains with the pykF(C8Y) parent (C) and the 
rpoB(T1037P) parent (D) in the presence and absence of rif. The means are denoted by symbols 
and the standard errors of the means are denoted by error bars, which are smaller than the size of 
the symbol in most cases. 
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Figure 4: Transcriptional correlations between the Mut strains in M9G and M9G + rif. 

The color code indicates the correlations between log2 fold changes for each strain in each 
cultivation condition. The colors of the labels indicate the growth of each Mut strain relative to 
its Ref parent as defined in Fig. 1. 
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Figure 5: Network of significant origon expression changes in the Mut strains relative to Ref 
parents.  

Network of activated and repressed transcriptional factors across each Mut genetic background 
in both M9G and rif. The node color, node shape, node size, edge color, and arrow shape are 
defined in the legend, in which G(Mut) denotes the growth rate of the Mut strain in M9G. 
Origons are labeled by their master regulator, and all origons that have a subset relationship with 
another are placed on the gray background. 
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Figure 6: Stringent response score for each Mut strain. 

Comparison between the observed stringent response scores (triangles) and bootstrapped means 
(circles) in M9G (A) and M9G + rif (B). Statistically significant cases are denoted by the open 
symbols, where the error bars correspond to the 95% confidence interval determined by 
bootstrapping. The color code indicates the Mut strain's growth rate relative to the Ref parent as 
defined in Fig. 1. 

 



 93 

 

Figure 7: Expression of rRNA loci and transcripts of ribosomal proteins as a function of growth 
rate. 

(A) and (B), Expression fold change for strains cultivated in M9G (A) and M9G + rif (B), where 
the error bars indicate the standard errors of the mean. The symbols encode the Ref parent strain, 
and the color indicates the transcript identity for a given Mut strain, as indicated by the 
corresponding mutation (top text). Wild type and parent growth rates in M9G are indicated by 
vertical lines and the parental expression is indicated by the horizontal dotted line. The growth 
rates of sensitive strains are omitted in (B) to show the Mut strain growth rates in more detail. 
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Figure 8: Fold change in RNA-Seq alignments on both strands averaged across all rRNA operons. 

(A) Comparison of strains cultivated with and without rif. Data are averaged over the seven 
rRNA operons whose structure is illustrated by the cartoon above the panel. The top panel shows 
the sense strand alignment, and the bottom shows the antisense alignment.  

(B and C) Same as (A), except comparing Mut strains to their Ref parent when cultivated with rif 
(B) or without rif (C). Bold face strains have dashed lines in the figures and legends define the 
meaning of the remaining line colors, color backgrounds, and line styles. 
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Figure 9: Bt gene expression and genetic fitness determinants shift over the course of 
colonization and persistence. 

A) Experimental scheme of functional genetics (top) and transcriptomics (bottom) 
experiments in germ-free mice. 

B) Principal Coordinates Analysis (PCoA) using Bray-Curtis dissimilarity on the relative 
abundance of RB-Tn mutant strains within each mouse, colored by experimental day. 
Four different cohorts of mice (n=3-5 per cohort) are represented. Samples clustered 
significantly by day (p = 0.0001, R2 = 0.457, PERMANOVA), experimental run (p = 
0.0001, R2 = 0.092), and mouse ID (p = 0.0001, R2 = 0.135).  

C) PCoA using Bray-Curtis dissimilarity on the expression profiles of Bt within cecal 
samples at 1, 7, and 14 days after introduction. Bt expression profile from D1 clustered 
distinctly from that of D7 or D14 (p-value < 0.05, pairwise PERMANOVA), whereas D7 
and D14 profiles were statistically indistinguishable. 
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Figure 10: The Bt transcriptome undergoes dramatic remodeling during the first week after 
introduction to the murine gut. 

A) Volcano plot of significant transcriptional differences between D1 and D7 in WT Bt. 
There were 154 genes significantly enriched on D1 compared to D7 (red), while 359 
were significantly enriched on D7 compared to D1 (blue) [cut-off: log(FDR-adjusted p-
value) < -3, |log2(fold change)| > 2, and max group mean > 50 TPM]. 

B) Number of genes mutants significantly depleted in the RB-Tn experiment (t-statistic < -
3σ) on D1 of the experiment. Each gene was assigned a KEGG functional category. Only 
genes with negative fitness are plotted because there were no genes with a positive fitness 
score / t-statistic on D1. 

C) Gene set enrichment analysis (GSEA) of all metabolic pathways in the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) catalog, comparing D1 to D7 expression. 
Only pathways with significant differential expression between D1 and D7 (p<0.05) are 
shown.  
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Figure 11: GSEA of capsular polysaccharide biosynthesis operons 

GSEA of capsular polysaccharide biosynthesis operons, comparing A) D1 to D7 expression or B) 
D1 to D14. Only statistically significant scores are shown (p < 0.05). 
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Figure 12: Measurement of the t-statistic for CPS4 (D1-D3) 

Measurement of the t-statistic of Wetmore et al. in the RB-Tn assay on all days where fitness 
score was measurable (D1-3) shows that gene insertions in CPS4 consistently results in 
statistically significant declines in mutant fitness for all genes within the CPS4 locus except for 
BT1338. 
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Figure 13: Biosynthesis of amino acids is transcriptionally enriched and functionally significant 
to early invasion success. 

A) Pathway map of reactions related to amino acid biosynthesis. Red arrows represent genes 
whose transcript is significantly enriched on D1, while blue arrows represent genes 
whose transcript is significantly enriched on D7 (FDR-adjusted p-value < 0.05). Genes 
whose transcript level did not differ significantly between D1 and D7 are colored in grey. 
Black arrows represent reactions for which the associated gene is unknown in the Bt 
genome. Gold stars represent gene disruptions that were depleted in the RB-Tn assay, as 
in Fig. 2B.  

B) Abundance of various amino acids in the ceca of germ-free mice measured using GCMS 
and normalized to internal standards and GF standards (n=5 mice for GF, n=4 for post-
colonization samples). 



 100 

 

Figure 14: Number of genes mutants significantly depleted early in the RB-Tn experiment. 

Each significantly depleted gene (t-statistic < -3σ) on A) D2 or B) D3 was assigned a KEGG 
functional category if one existed in the database. See Fig. 2D for genes depleted on D1. 
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Figure 15: Number of DEGs enriched on D7 compared to D1. 

Each gene was assigned a KEGG functional category if one existed in the database.  
Cut-off: [log(FDR-adjusted p-value) < -3, |log2(fold change)| > 2, and max group mean > 50 
TPM]. 
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Figure 16: A shift toward higher relative expression of diverse sugar metabolism genes occurs 
during the first week of gut colonization. 

GSEA for genes in the 88 polysaccharide utilization loci of Bt. Only the significant PULs are 
shown. Of the 42 total PULs that were significantly enriched at any point of the experiment, 34 
were enriched on Day 7 or 14. 
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Figure 17: Colonization density for Bt in GF or SPF mice. 

Colony forming units (CFU) for RB-Tn mutants in either germ-free (blue) or specific-pathogen-
free mice (black). CFU were measured by 1/10 dilution titering on BHI-S plates and counting 
visible colonies after 48 hours at 37°C in an anaerobic chamber. CFU is normalized for 1g of 
fecal material. 
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Figure 18: Colonization of a complex Bt mutant library within GF mice selects for disruptions 
upstream of alpha-galactosidase genes. 

A) Volcano plot of significant transcriptional differences between D7 and D14 in WT Bt. 
Using the same cutoff criteria as in Figure 2A, expression of all genes in PUL24 (red 
points) except for BT1877 increased significantly throughout the two weeks of the 
experiment. 

B) Organization of PUL 24 (BT1871-1877), PUL 39 (BT2851-2860), and an unnamed PUL 
containing BT3130-3134. Predicted alpha-galactosidases are colored dark yellow.  
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Figure 18, continued 

C) Shannon diversity of the RB-Tn mutant pool in mice over time. Each point represents the 
RB-Tn pool within a single mouse on a particular day. The mice are initially colonized by 
an extremely diverse pool of mutants (300,000+ strains) but diversity drops significantly 
by D4 (mean = 114,256 strains) and continues to fall throughout the experiment (mean = 
20,269 strains by D14). 

D) Initial (inoculum) versus final (D14) relative abundance of RB-Tn mutant strains for a 
single experimental run (October). Each point represents the summed relative abundance 
of all mutant strains that corresponded to a given gene, averaged across mice. Dashed 
grey line designates a 1:1 relationship between starting and final abundance; red line 
represents a linear regression best-fit line generated from the log-transformed data (p < 
2e-16, R2 = 0.6461, Methods). 

E) Relative temporal abundance of RB-Tn mutant strains from a single experimental run 
(October). Each line represents the summed relative abundance of all mutant strains that 
mapped to a given gene, averaged across mice. Top 15 most abundant gene mutants at 
D14 are colored; all others are black.  

F) D14 fractional abundance of gene mutants mapping to operons that encode alpha-
galactosidase functions (yellow) or other gene functions (green) averaged across mice for 
each experimental run.  
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Figure 19: RB-Tn B. theta library remains more diverse when passaged in the presence of 
complex community than alone. 

In BHI-S, Shannon Diversity of a diverse RB-Tn Bt pool decreases significantly after D4 when 
Bt is alone, but the Bt mutant maintain their diversity over the course of two weeks in the 
presence of an SPF community. Five cultures of each are maintained for 14 days with ½ dilution 
every 12 hours. 
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Figure 20: The variance of RB-Tn B. theta mutant population is better accounted for by mouse-
to-mouse variation than shifts over time in SPF mice. 

Principal Coordinates Analysis (PCoA) using Bray-Curtis dissimilarity on the relative abundance 
of RB-Tn mutant strains within each mouse, colored by A) experimental day or B) by mouse. 
Clustering by mouse was significant, whereas clustering by day was not. 
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Figure 21: Upregulation of α-galactosidase activity confers a significant growth advantage to Bt 
in GF mice fed a standard RFO-rich diet. 

A) Log phase grow rate (k) of the most abundant RB-Tn mutant strains isolated from mice.  
Strains with asterisk carry other mutations in addition to the transposon insertion. The 
WT + BT1871OE strain carries a plasmid copy of BT1871 expressed from the rpoD 
promoter that was integrated into the WT genome at the attN1 site. 

B) Normalized abundance of alpha-galactosidase mRNA (transcripts per million, TPM) 
were measured in WT and hyperfit RB-Tn mutants isolated from mice and grown in 
Varel-Bryant defined medium with 20mM melibiose as the sole carbon substrate. 
Expression of the alpha-galactosidase BT1871 was more than 10 times greater with an 
upstream insertion in BT1872 (Tn_BT1872) compared that of WT, and expression of the 
alpha-galactosidase BT3131 was more than 100 times greater with an upstream insertion 
in BT3133 (Tn_BT3133) compared to WT. Expression of alpha-galactosidase BT2851 
was unaffected in either of the mutant strains, since the transposon insertions were not 
upstream of this gene. 

C) Abundance of various sugars in the GF mouse ceca as measured using GCMS and 
normalized to internal standards. 

D) Abundance of raffinose in the standard chow fed to GF mice, within GF ceca before 
colonization, or 1, 7, or 14 days post colonization. 
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Figure 22: Hyperfit RB-Bt isolates from GF mice grow faster in the presence of 1,6-alpha 
glycosidic bonded sugars. 

The log phase doubling times of Tn_BT3133 and Tn_BT1872 were measured in Varel-Bryant 
medium with 20mM raffinose, 20mM melibiose, 20mM galactose, or 20mM glucose as the sole 
carbon substrate. 
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Figure 23: Melibiose is specifically depleted by Bt whereas sucrose is metabolized by the host. 

Supplemental Fig. 9: Abundance of A) melibiose or B) sucrose in the standard chow fed to GF 
mice, within GF ceca before colonization, or 1, 7, or 14 days post colonization. 
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Figure 24: Under strong selective pressures, Bt duplicates the BT1871 locus with the help of a 
transposable element. 

A) Shotgun whole genome sequencing of bulk fecal sample from three mice inoculated with 
WT Bt for 6 shows at least 2x coverage of the BT1871 locus (RRF = ribosome recycling 
factor). 

B) For each mouse, Breseq analysis of the shotgun whole genome sequencing identified a 
new junction joining a segment up- and downstream of BT1871 in 60-70% of the reads. 

C) Long-read MinION sequencing of an abundant mutant in Mouse C (MZ65) reveals the 
duplication of a long segment including the BT1871 gene, which generates a tandem 
repeat of the locus. 
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Figure 25: Log phase growth of spontaneous Bt mutants from GF mice is significantly faster 
than that of WT.  

Log phase growth rate (k) of isolated strains from feces of mice colonized with WT Bt for 6 
weeks compared to growth rate of WT. 
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Appendix B – Tables 

Table 1: Mutations and Average Doubling Times for E. coli Strains Grown on M9G in the 
Presence and Absence of Rif 

Parent 
Mutation (Ref) 

rpoB Residue 
Substitution 
(Mut) 

Rif-resistance 
Cluster (67) 

Doubling 
Time M9G (min) 

Doubling 
Time M9G + Rif 
(min) 

pykF(C8Y) 

– – 57 120 

Q148L N 60 70 

L511R I 63 70 

D516G I 50 57 

H526Y I 49 53 

I572S II 56 67 

rpoB(T1037P) 

– – 51 162 

Q148L N 57 73 

S508P I 47 68 

L511R I 54 65 

I572N II 52 84 

I572F II 55 62 
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Table 2: Growth without Rif 

M9G Adaptive Mutation Rif Adaptive Mutation Rep1 Rep2 Rep3 Rep4 

BW25113 None 67 66 60 62 

pykF(C8Y) None 60 57 54 57 

pykF(C8Y) rpoB(H526Y) 48 49 49 50 

pykF(C8Y) rpoB(D516G) 52 50 47 49 

pykF(C8Y) rpoB(L511R) 67 67 57 59 

pykF(C8Y) rpoB(I572S) 55 57 55 55 

pykF(C8Y) rpoB(Q148L) 64 62 55 60 

rpoB(T1037P) None 50 51 51 52 

rpoB(T1037P) rpoB(S508P) 46 46 47 49 

rpoB(T1037P) rpoB(L511R) 51 51 57 57 

rpoB(T1037P) rpoB(I572N) 56 50 50 51 

rpoB(T1037P) rpoB(I572F) 55 55 55 54 

Doubling times in minutes for BW25113, pykF(C8Y) and rpoB(T1037P) reference strains, and 
the Rifampicin-adapted strains grown in M9G. 
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Table 3: Growth with Rif 

M9G Adaptive Mutation Rif Adaptive Mutation Rep1 Rep2 Rep3 Rep4 

BW25113 None 117 109 120 113 

pykF(C8Y) None 114 138 106 121 

pykF(C8Y) rpoB(H526Y) 53 55 53 51 

pykF(C8Y) rpoB(D516G) 58 55 58 58 

pykF(C8Y) rpoB(L511R) 72 72 70 68 

pykF(C8Y) rpoB(I572S) 68 69 63 68 

pykF(C8Y) rpoB(Q148L) 71 73 67 69 

rpoB(T1037P) None 179 156 152 162 

rpoB(T1037P) rpoB(S508P) 74 67 63 66 

rpoB(T1037P) rpoB(L511R) 65 64 60 71 

rpoB(T1037P) rpoB(I572N) 88 87 81 81 

rpoB(T1037P) rpoB(I572F) 63 58 64 61 

rpoB(T1037P) rpoB(Q148L) 74 78 70 69 

Doubling times in minutes for BW25113, pykF(C8Y) and rpoB(T1037P) reference strains, and 
the Rifampicin-adapted strains grown in M9G with Rif. 
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Table 4: rpoB(T1037P) analysis 

Adaptive mutation Growth condition t-test p-value t-statistic 

rpoB(I572F) M9G + Rif 2.60E-05 -44.04 

rpoB(I572N) M9G + Rif 7.20E-05 -31.20 

rpoB(L511R) M9G + Rif 4.40E-05 -36.89 

rpoB(Q148L) M9G + Rif 8.90E-05 -29.17 

rpoB(S508P) M9G + Rif 1.00E-06 -123.46 

rpoB(I572F) M9G 5.54E-03 7.19 

rpoB(I572N) M9G 5.36E-01 0.70 

rpoB(L511R) M9G 1.48E-01 1.94 

rpoB(Q148L) M9G 2.01E-02 4.53 

rpoB(S508P) M9G 3.58E-03 -8.37 

Results of a t-test comparing each growth of each Rifampicin-adapted endpoint with that of the 
rpoB(T1037P) strain in the presence and absence of Rif. Negative t-values indicate faster growth 
compared to the parent strain. 
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Table 5: pykF(C8Y) analysis 

Adaptive mutation Growth condition t-test p-value t-statistic 

rpoB(D516G) M9G + Rif 4.95E-04 -16.39 

rpoB(H526Y) M9G + Rif 1.62E-04 -23.81 

rpoB(I572S) M9G + Rif 3.50E-04 -18.41 

rpoB(L511R) M9G + Rif 1.04E-03 -12.74 

rpoB(Q148L) M9G + Rif 4.33E-04 -17.14 

rpoB(D516G) M9G 5.31E-04 -16.00 

rpoB(H526Y) M9G 9.53E-03 -5.94 

rpoB(I572S) M9G 5.50E-01 -0.67 

rpoB(L511R) M9G 4.64E-02 3.28 

rpoB(Q148L) M9G 3.96E-02 3.50 

 

Results of a t-test comparing each growth of each Rifampicin-adapted endpoint with that of the 
pykF(C8Y) strain in the presence and absence of Rif. Negative t-values indicate faster growth 
compared to the parent strain. 
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Table 6: Correlations between transcriptional responses to mutations 
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pykF(C8Y
)_Q148L_

Rif 
1.00 0.49 0.19 -0.23 -0.32 0.39 0.21 0.27 0.00 0.05 0.34 0.24 -0.17 -0.37 -0.40 0.19 0.06 0.06 -0.22 -0.23 

pykF(C8Y
)_L511R_

Rif 
0.49 1.00 0.17 -0.12 -0.30 0.32 0.37 0.39 0.19 0.07 0.22 0.59 -0.13 -0.45 -0.61 0.09 0.21 0.20 -0.14 -0.24 

pykF(C8Y
)_I572S_

Rif 
0.19 0.17 1.00 0.12 0.06 0.08 0.13 0.15 0.22 0.15 -0.01 0.02 0.11 0.02 -0.04 -0.01 0.00 0.01 0.03 0.00 

pykF(C8Y
)_D516G_

Rif 
-0.23 -0.12 0.12 1.00 0.79 -0.50 0.01 -0.27 0.29 -0.05 -0.27 -0.16 0.70 0.68 0.44 -0.14 0.07 0.03 0.31 0.39 

pykF(C8Y
)_H526Y_

Rif 
-0.32 -0.30 0.06 0.79 1.00 -0.47 -0.10 -0.32 0.25 0.11 -0.29 -0.37 0.43 0.69 0.67 -0.19 -0.06 -0.12 0.28 0.51 

rpoB(T10
37P)_Q14

8L_Rif 
0.39 0.32 0.08 -0.50 -0.47 1.00 0.60 0.82 0.36 0.54 0.25 0.11 -0.53 -0.49 -0.44 0.24 0.04 0.17 -0.13 -0.34 

rpoB(T10
37P)_I572

F_Rif 
0.21 0.37 0.13 0.01 -0.10 0.60 1.00 0.80 0.77 0.54 0.08 0.19 -0.07 -0.19 -0.37 0.07 0.49 0.39 0.25 -0.13 

rpoB(T10
37P)_L51

1R_Rif 
0.27 0.39 0.15 -0.27 -0.32 0.82 0.80 1.00 0.56 0.63 0.15 0.23 -0.37 -0.31 -0.39 0.13 0.26 0.42 0.14 -0.19 

rpoB(T10
37P)_I572

N_Rif 
0.00 0.19 0.22 0.29 0.25 0.36 0.77 0.56 1.00 0.53 -0.08 0.02 0.16 0.10 -0.07 -0.01 0.45 0.23 0.47 0.11 

rpoB(T10
37P)_S50

8P_Rif 
0.05 0.07 0.15 -0.05 0.11 0.54 0.54 0.63 0.53 1.00 0.05 -0.09 -0.29 -0.01 0.02 -0.01 0.08 0.14 0.18 0.18 

pykF(C8Y
)_Q148L_

M9G 
0.34 0.22 -0.01 -0.27 -0.29 0.25 0.08 0.15 -0.08 0.05 1.00 0.20 -0.19 -0.24 -0.27 0.15 0.03 0.09 -0.14 -0.17 

pykF(C8Y
)_L511R_

M9G 
0.24 0.59 0.02 -0.16 -0.37 0.11 0.19 0.23 0.02 -0.09 0.20 1.00 0.02 -0.25 -0.43 0.13 0.38 0.27 0.13 -0.09 

pykF(C8Y
)_I572S_

M9G 
-0.17 -0.13 0.11 0.70 0.43 -0.53 -0.07 -0.37 0.16 -0.29 -0.19 0.02 1.00 0.50 0.31 -0.07 0.19 0.04 0.26 0.21 

pykF(C8Y
)_D516G_

M9G 
-0.37 -0.45 0.02 0.68 0.69 -0.49 -0.19 -0.31 0.10 -0.01 -0.24 -0.25 0.50 1.00 0.75 -0.15 0.09 -0.12 0.47 0.51 

pykF(C8Y
)_H526Y_

M9G 
-0.40 -0.61 -0.04 0.44 0.67 -0.44 -0.37 -0.39 -0.07 0.02 -0.27 -0.43 0.31 0.75 1.00 -0.14 -0.22 -0.28 0.27 0.53 

rpoB(T10
37P)_Q14
8L_M9G 

0.19 0.09 -0.01 -0.14 -0.19 0.24 0.07 0.13 -0.01 -0.01 0.15 0.13 -0.07 -0.15 -0.14 1.00 0.05 0.09 0.01 -0.10 

rpoB(T10
37P)_I572

F_M9G 
0.06 0.21 0.00 0.07 -0.06 0.04 0.49 0.26 0.45 0.08 0.03 0.38 0.19 0.09 -0.22 0.05 1.00 0.33 0.68 0.12 

rpoB(T10
37P)_L51
1R_M9G 

0.06 0.20 0.01 0.03 -0.12 0.17 0.39 0.42 0.23 0.14 0.09 0.27 0.04 -0.12 -0.28 0.09 0.33 1.00 0.24 -0.01 

rpoB(T10
37P)_I572
N_M9G 

-0.22 -0.14 0.03 0.31 0.28 -0.13 0.25 0.14 0.47 0.18 -0.14 0.13 0.26 0.47 0.27 0.01 0.68 0.24 1.00 0.45 

rpoB(T10
37P)_S50
8P_M9G 

-0.23 -0.24 0.00 0.39 0.51 -0.34 -0.13 -0.19 0.11 0.18 -0.17 -0.09 0.21 0.51 0.53 -0.10 0.12 -0.01 0.45 1.00 

 

Fold change in gene expression was assessed between each Mut strain and its Ref parent. The 
color-coded correlation coefficients between pairs of log2 fold changes are reported in the table. 
The formula for row and column identifiers is <parent>_<adaptive mutation in rpoB>_<growth 
condition>. Strain names are color coded by their growth in M9G relative to the parent strain 
using the same scheme defined in Fig. 1. The information in the upper triangle of this table is 
reported in Fig. 3. 
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Table 7: Strains used in this work 
 
Identifier Genotype Source 

AMD595 
Bacteroides thetaiotaomicron VPI-5482 
wildtype 

Gift from 
Deutschbauer lab 

AMD790 AMD595-derived RB-Tn library 
Gift from 
Deutschbauer lab 

Tn_BT1874 

RB-Tn mutant isolated from monocolonized 
mice with barcoded transposon insertion in 
BT1874 This work 

Tn_BT1876 

RB-Tn mutant isolated from monocolonized 
mice with barcoded transposon insertion in 
BT1876 This work 

Tn_BT1872-83 

RB-Tn mutant isolated from monocolonized 
mice with barcoded transposon insertion in 
the intergenic region between BT1872 and 
BT1873 This work 

Tn_BT1872 

RB-Tn mutant isolated from monocolonized 
mice with barcoded transposon insertion in 
BT1872 This work 

Tn_BT1874/BT313
2 

RB-Tn mutant isolated from monocolonized 
mice with barcoded transposon insertion in 
BT1874 and BT3132 This work 

Tn_BT3133 

RB-Tn mutant isolated from monocolonized 
mice with barcoded transposon insertion in 
BT3133 This work 

WT+BT1871OE 

WT Bt with a copy of BT1871 integrated 
into the Bt genome at the attN1 site under 
the BT1311 (rpoD) constitutive promoter. This work 

MZ65 

Bt mutant isolated from feces after 6-week 
monoassociation of Bt; carries a tandem 
repeat of the BT1871 locus (see Fig. 7). This work 
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Table 8: Custom Ribo-Zero Plus probes 

Pool name Sequence 
Supplemental 
Probe Pool 

ATCAACGTCATCGTCTTTAACGACCCTAAGAAATCTAATCTTGTGG
CTGG 

Supplemental 
Probe Pool 

ACAGTGTCCTCGCAACTACGAGTTAGAACTCAAATAATCAAAGGGC
CGTA 

Supplemental 
Probe Pool 

CACAAATACTGGCGTACCTGCTTCAAAGTCTCCGGCCTATCCTACA
CATC 

Supplemental 
Probe Pool 

AGAAAGGAGGTGTTCCAGCCGCACCTTCCGGTACGGCTACCTTGTT
ACGA 

Supplemental 
Probe Pool 

AGCCAGTATCAACTGCAATTTTACGGTTGAGCCGCAAACTTTCACA
ACTG 

Supplemental 
Probe Pool 

TATTTGGGGACCTTAGCTGATGGTCTGGATTCTTCTCCTTTAGGACA
TGG 

Supplemental 
Probe Pool 

CCTCGCATCTTATCAGTCGCTCTACCTCACATTAGTAACTCACAAGG
CTG 

Supplemental 
Probe Pool 

GCACGGAGTTAGCCGATCCTTATTCATATGGTACATACAAAATTCC
ACAC 

Supplemental 
Probe Pool 

CGCTCGTTATGGCACTTAAGCCGACACCTCACGGCACGAGCTGACG
ACAA 

Supplemental 
Probe Pool 

TTGTTAGTCTCCCAGTCAAGCGCCCTTATGCCATTACACTCTACGGA
CGG 

Supplemental 
Probe Pool 

TACGCTCCCTTTAAACCCAATAAATCCGGATAACGCTCGGATCCTC
CGTA 

Supplemental 
Probe Pool 

CCAGCGGTCAGTCCAACACGGTCCTCTCGTACTAGTGTCAGAGCCA
CGCA 

Supplemental 
Probe Pool 

ATCTTACGACGGCAGTCTCTCTAGAGTCCTCAGCATGACCTGTTAGT
AAC 

Supplemental 
Probe Pool 

GCTGCACATCTCAAGATGCTTAACCTTGCCGGAAAAAGTAACTCGT
AGGT 

Supplemental 
Probe Pool 

ATACCACTACGCTTAATTTGACTTCGTATACCGGACTATCACCGTCT
ATG 

Supplemental 
Probe Pool 

AGGGCACCTTTAGAAGCCTCCGTTACTATTTTGGAGGCGACCACCC
CAGT 

Supplemental 
Probe Pool 

CCTTTATCGTTACTTATACCTACATTTGCTTTTCCACACGCTCCAGC
AAA 

Supplemental 
Probe Pool 

CGACTTGCATGTGTTAAGCCTGTAGCTAGCGTTCATCCTGAGCCAG
GATC 

Supplemental 
Probe Pool 

ACGTGTTACTCACCCGTGCGCCGGTCGCCATCTCCAGTTTGCAAGC
AAAC 

Supplemental 
Probe Pool 

GGATTCTACTCATCAAATGTCTTGCGACATCGTGGTCCTACAACCCC
ACA 

Supplemental 
Probe Pool 

CCCATATAAAAGAAGTTTACAACCCATAGGGCAGTCATCCTTCACG
CTAC 
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Table 8, continued 
Supplemental 
Probe Pool 

CAATGTGGGGGACCTTCCTCTCAGAACCCCTATCCATCGAAGGTTT
GGTG 

Supplemental 
Probe Pool 

TAAGGATTAAGTTTAGCGGATTTTCTTGGGAGTATGCTTACACGCA
CTAT 

Supplemental 
Probe Pool 

GAACAGCCCAACCCTTGGGACCTTCTCCAGCCCCAGGATGTGACGA
GCCG 

Supplemental 
Probe Pool 

TATATCGCAAACAGCGAGTATTCATCGTTTACTGTGTGGACTACCA
GGGT 

Supplemental 
Probe Pool 

ACATTTGCCTTACGGCTATACTGTTTCCAATATATTCAAATGCAATT
TAA 

Supplemental 
Probe Pool 

GATTATACCATCGGGTATTAATCTTTCTTTCGAAAGGCTATCCCCGA
GTT 

Supplemental 
Probe Pool 

AAAGAAAGTGAACGGGCAATTAGTAATGCTCGGCTTTGATGTTACC
ACCT 

Supplemental 
Probe Pool 

CTTTTCAACGCTTATCGGTTCGGTCCTCCAGTTAGTGTTACCTAACC
TTC 

Supplemental 
Probe Pool 

CCCTCACTCCTGTGATAGAACTAATGCGCATTCGGAGTTTATCAAG
ACTT 

Supplemental 
Probe Pool 

CACGCCGTCACTGCTTAAGCAGCTCCGACCGCTTGTAGGCGCACGG
TTTC 

Supplemental 
Probe Pool 

CTAACCCTGATCCGATTAGCGTTGATCAGGAAACCTTAGTCTTTCG
GCGA 

Supplemental 
Probe Pool 

TCGACGCAGAGTGGAATGCTCCCCTACCGATCATTACTGATCCCAT
AGCT 

Supplemental 
Probe Pool 

TTGAGCGATGTCCCTTCCATACGGAAACACCGGATCACTATGCTCT
AGTT 

Supplemental 
Probe Pool 

ATTTAGCCTTACCGGATGGTCCCGGCAGATTCACGCAAGATTTCTC
GTGT 

Supplemental 
Probe Pool 

ATACCCACACTTTCGAGCATCAGTGTCAGTTGCAGTCCAGTGAGCT
GCCT 

Supplemental 
Probe Pool 

GTGGTTTGGGCTATTCCCCGTTCGCTCGCCACTACTAGGGGAATCAT
TAT 

Supplemental 
Probe Pool 

CGATAGATAGAGACCGAACTGTCTCACGACGTTCTGAACCCAGCTC
GCGT 

Supplemental 
Probe Pool 

ATGCCGGGTTGTCCCATTCGGAAATCTCTGGATCAAAGGTTATTTG
CACC 

Supplemental 
Probe Pool 

GCCATGGCTGATGCGCGATTACTAGCGAATCCAGCTTCACGAAGTC
GGGT 

Supplemental 
Probe Pool 

CAGTTTTACCCTAGGACGCTCCTTGCGGTTACGTACTTCAGGTACCC
CCG 

Supplemental 
Probe Pool 

GCAGCTTATCACGTCCTTCATCGCCTCCGAGAGCCAAGGCATCCGC
CATG 

Supplemental 
Probe Pool 

GTAATCTTTCAATTTGGCACAGCCCTGTGTTTTTGTTAAACAGTTGC
CTG 
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Table 8, continued 
Supplemental 
Probe Pool 

CTTCTATTCGAAGTGCTTTTCACCTTTCCTTCACAGTACTGGTTCGCT
AT 

Supplemental 
Probe Pool 

AGTTTCACCGTTGCCGGCGTACTCCCCAGGTGGAATACTTAATGCTT
TCG 

Supplemental 
Probe Pool 

CGGGGAGTACGAGCTATCTCCAAGTTTGATTAGCCTTTCACCCCCA
CCCT 

Supplemental 
Probe Pool 

AGATCACTTGGTTTCGCGTCTACTCCTTCCGACTCGACGCCCTGTTC
AGA 

Supplemental 
Probe Pool 

ATGTTAAGCTATAGTAAAGGTTCACGGGGTCTTTTCGTCCCATCGC
GGGT 

Supplemental 
Probe Pool 

CTTTCAGCACTTATCCAATCCCGACTTAGATACCCAGCAATGCACCT
GGC 

Supplemental 
Probe Pool 

ATGCTTCTCTTGCGATGACATCTCCTCTTAACCTTCCAGCACCGGGC
AGG 

Supplemental 
Probe Pool 

CAGGTACTAAGATGTTTCAGTTCCCTGCGTTAGCTTCCATCAAAGAT
GGA 

Supplemental 
Probe Pool 

GGCTGCTTCCAAGCCAACATCCTAGCTGTCTTAGCAATCTGACTTCG
TTA 

Supplemental 
Probe Pool 

ATGCCCGATTATTATCCACGCCAAACTCCTCGACTAGTGAGCTGTT
ACGC 

Supplemental 
Probe Pool 

CTTCAACGGACTATTCCGTCAGTCCGCGGCGCTGTCACTGCTCCGTC
TCC 

Supplemental 
Probe Pool 

TTCGTGATATCTAAGCATTTCACCGCTACACCACGAATTCCGCCCAC
CTC 

Supplemental 
Probe Pool 

GAATCACTCAAGCGCCTTAGTATATTCAACCCGACTACGTGTGTCC
GTTT 

Supplemental 
Probe Pool 

GTAGTACAGGAATATTAACCTGTTCTGCCATCGGCCTCACCGTTCG
GCTG 

Supplemental 
Probe Pool 

AACGCTCCATACTATCAGGTTCGACTCTCATCCCGGATTTGCCTGGG
ATG 

Supplemental 
Probe Pool 

GAACTGAGAGAGGCTTTTGGGATTAGCATCCTGTCACCAGGTAGCT
GCCT 

Supplemental 
Probe Pool 

AACTGCCTAATGGAACGCATCCCCATCGATAACCGAAATTCTTTAA
TAAC 

Supplemental 
Probe Pool 

ACCCCTCCGTCGATATGAGCTCTTGGGAGGGATCAGCCTGTTATCC
CCGG 

Supplemental 
Probe Pool 

GTAACACGTGTGTAGCCCCGGACGTAAGGGCCGTGCTGATTTGACG
TCAT 

Supplemental 
Probe Pool 

CCCAACTCTCGTTGGGACCCTTTATCCCGAAGTTACAGGGTCAATTT
GCC 

Supplemental 
Probe Pool 

CTGCGCCCATTGACCAATATTCCTCACTGCTGCCTCCCGTAGGAGTT
TGG 

Supplemental 
Probe Pool 

CGATACTACAATTTCACTGAGCTCACGGTTGAGACAGTGTCCAGAT
CATT 
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Table 9: MinION Sequencing Attributes 
 

 AMD595 MZ55 MZ58 MZ65 
Library Kit SQK-RBK004 SQK-RBK004 SQK-RBK004 SQK-RBK004 
Flowcell ID FAQ98839 FAQ98839 FAQ98839 FAQ98839 

Pore Type R9.4.1 (FLO-
MIN106) 

R9.4.1 (FLO-
MIN106) 

R9.4.1 (FLO-
MIN106) 

R9.4.1 (FLO-
MIN106) 

Start Materials (ng) 10,000 10,000 10,000 10,000 

DNA Shearing 22G needle 
10X, 250ul 

22G needle 
10X, 250ul 

22G needle 
10X, 250ul 

22G needle 
10X, 250ul 

Barcoding Input (ng) 994.5 792.2 494.7 1249.5 
Pool Volume (ul) 5 6 10 4 
Pool DNA Input (ng) 497.3 475.3 494.7 499.8 
Total Pool Volume 
(ul) 25 25 25 25 

Total Reads ~1,510,000 
Total Pass Reads (%) 1,343,227 (88.95) 
Total Pass Reads per 
Barcode 344,988 298,543 445,074 113,979 

Average length (bp) 7,226 8,857 7,882 8,266 
Max. length (bp) 108,747 141,745 114,845 109,375 
N50 (bp) 12,596 16,820 14,970 15,675 
Top 25% Templates 
(bp) 9,643 11,730 10,532 11,037 

Total Called bases 2,493,077,325 2,644,475,924 3,508,117,512 942,158,294 
Base Calling Guppy v5.0.11 Guppy v5.0.11 Guppy v5.0.11 Guppy v5.0.11 
MinKNOW version 4.3.4 4.3.4 4.3.4 4.3.4 
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Table 10: Metabolomics Internal Standards 
 

Panel ITSD Vendor Product 
Number Concentration Mass/Volume for 

1L 

SCFA D3-Acetate CIL DLM-
3126-25 4 mM  340 mg 

SCFA D5-Propionate CIL DLM-
1601-1 1 mM 101.1 mg 

SCFA D7-Butyrate CIL DLM-
7616-PK .5 mM 58.56 mg 

SCFA D9-Valerate CIL DLM-
572-5 .25 mM 29.60 µL  

SCFA D8-Valine CIL DLM-
488-0.25 .05 mM 6.26 mg 

SCFA D6-Succinate CIL DLM-
831-PK 1 mM 124.14 mg 

SCFA D6-Phenol CIL DLM-
370-PK .025 mM 2.5 mg 

TMS U13C-Palmitate CIL CLM-
409-PK .04 mM 10.9 mg 

TMS/SCFA D7N15-Proline CIL DLNM-
7562-0.25 .02 mM 2.46 mg 

Bile Acids D4-Cholic Acid CIL DLM-
2611-0.05 1 ug/mL 1 mL of 1 mg/mL 

stock 

Bile Acids D4-Deoxycholic 
Acid CIL DLM-

2824-0.01 1 ug/mL 1 mL of 1 mg/mL 
stock 

Bile Acids D4-Glycocholic 
Acid CIL DLM-

2742-0.01 1 ug/mL 1 mL of 1 mg/mL 
stock 

Bile Acids 
D4-
Glycodeoxycholic 
Acid 

CIL DLM-
9554-0.01 .5 ug/mL .5 mL of 1 mg/mL 

stock 

Bile Acids D4-Litchocholic 
Acid CIL DLM-

9560-0.05 5 ug/mL 5 mL of 1 mg/mL 
stock 
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Table 10, continued 

Bile Acids D4-Taurocholic 
Acid CIL DLM-

9572-0.01 1 ug/mL 1 mL of 1 mg/mL 
stock 

Bile Acids 
D4-
Taurodeoxycholic 
Acid 

CIL DLM-
9568-0.01 .5 ug/mL .5 mL of 1 mg/mL 

stock 

Bile Acids D5-Alpha-
Muricholic Acid CIL DLM-

10627-PK 3.5 ug/mL 3.5 mL of 1 mg/mL 
stock 

Indoles 13C11-L-
Tryptophan CIL CLM-

4290-H 500 nM 50 µL of 10 mM 
stock 

Indoles 13C9-L-
Phenylalanine CIL CLM-

2250-H 500 nM 50 µL of 10 mM 
stock 

Indoles 13C9-L-Tyrosine CIL CLM-
2263-H 500 nM 50 µL of 10 mM 

stock 

Indoles D4-Serotonin CIL DLM-
11030-0 500 nM 50 µL of 10 mM 

stock 

Indoles 
13C6-5-
Hydroxyindole-3-
acetic acid 

CIL CLM-
9936-0 500 nM 50 µL of 10 mM 

stock 

Indoles D4-Tryptamine CIL DLM-
6989-0 500 nM 50 µL of 10 mM 

stock 

Indoles D3-Melatonin CIL DLM-
7101-0 500 nM 50 µL of 10 mM 

stock 

Indoles 13C6-Niacin CIL CLM-
9954-0 2 µM 200 µL of 10 mM 

stock 

Indoles 13C10-L-
Kynurenine CIL CLM-

9884-0 500 nM 50 µL of 10 mM 
stock 

Indoles D5-Kynurenic Acid CIL DLM-
7374-0 500 nM 50 µL of 10 mM 

stock 

Indoles Anthranilic Acid, 
Ring-13C6 CIL CLM-

701-0 500 nM 50 µL of 10 mM 
stock 
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