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ABSTRACT 

 Data harmonization is an important issue in computerized analysis of medical images, and 

especially with magnetic resonance imaging (MRI). MRI consists of a complex system of 

radiofrequency pulses at various times that allow for incredible control over the imaging contrast. 

However, with that comes a lack of uniformity in imaging datasets. While radiologists do not 

necessarily need a uniform imaging dataset, this presents a problem when trying to train machine 

learning algorithms to perform tasks using these heterogeneous datasets. Without any uniformity, 

certain imaging features may be skewed or not present, even if the training dataset consists of the 

same MR weightings.  

 Relaxometry or quantitative MRI is a potential solution to this issue. An MR signal is 

created, at its most basic, by adding energy into the tissue in the form of radiofrequency pulses and 

observing how the tissue of interest returns to its original state. The relaxation of the tissue back 

to equilibrium can occur in two ways, either by spin-lattice (T1) relaxation or spin-spin (T2) 

relaxation. The contrast seen in T1-weighted and T2-weighted MRIs between tissues is primarily 

due to this difference in T1 and/or T2 relaxation between tissues of different types. The other 

parameters used to generate the MR image (such as the repetition time, echo time, flip angle, etc) 

are used to highlight certain aspects of the image or affect the image quality or duration. Therefore, 

if it were possible to remove the user-defined scan parameters and generate an image of only T1 

or T2, the issue of a heterogeneous dataset could be solved, and variations in these relaxation times 

would be indicative of some sort of underlying physiology.  

 Current relaxometry techniques are slow, computationally expensive, and not often 

performed. Most clinicians find no additional value in performing these scans, so very few datasets 

include relaxometry images. Because of this, there are few MR imaging datasets that can be used 
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for machine learning applications. It would be beneficial, then, to be able to retrospectively remove 

the effect of scan parameters on previously-acquired MR images and artificially produce 

quantitative T1 and T2 maps for big data studies. By doing this, it would not disrupt any clinical 

workflow and instead be a step in a machine learning pipeline. 

 The research presented in this dissertation presents the following results. First, an algorithm 

to retrospectively quantitate T1 from T1-weighted MR images was developed using a combination 

of sequence-specific MR signal equations and literature values for healthy tissue as references. 

This algorithm, referred to as T1-REtrospective Quantification Using Internal REferences (T1-

REQUIRE), was tested for two specific MR sequences: T1-weighted spin-echo and T1-weighted 

magnetization prepared gradient echo (MPRAGE). It was validated by a combination of digital 

simulations, a dual T1/T2 phantom, and a healthy volunteer study. The results demonstrate that 

T1-REQUIRE is comparable to the reference standard to a clinically-relevant degree and within a 

range of T1 values that are inclusive of most brain tissue and neuropathology. In addition, it was 

shown that T1-REQUIRE also effectively harmonizes data across both sequences and across 

scanners. This is shown by comparing the results from T1-REQUIRE for both the spin-echo and 

MPRAGE images, before completing a study consisting of two subjects having repeated scans 

across multiple scanner models and manufacturers. Finally, T1-REQUIRE was applied for a pilot 

study to determine if it was effective at data harmonization and if it provided any additional 

predictive power. A study was completed looking at the contrast enhancement status of Multiple 

Sclerosis (MS) lesions using a combination of two separately acquired datasets. Although the study 

was too small to find significant differences in the predictive power of T1-REQUIRE, improved 

data harmonization was shown, especially when training on one dataset and testing on the other. 
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 The medical significance of this research is that it has the potential to be an important 

addition to big data and machine learning studies. These studies are of increasing importance as 

the medical system recognizes the importance of harnessing the patient data to improve patient 

outcomes. The REQUIRE algorithm would allow for a simple an efficient way to harmonize MRI 

data and help answer important clinical questions. 

Keywords: MRI, data harmonization, relaxometry, T1, machine learning, big data, Multiple 

Sclerosis, gadolinium-based contrast agents
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CHAPTER 1 

INTRODUCTION 

Magnetic resonance imaging (MRI or MR imaging) is an essential tool for diagnosis and 

management of a multitude of diseases. Annually in the US, upwards of 30-40 million MRIs are 

performed, with a significant portion of these being anatomical and/or functional scans of the 

brain.1 This has led to a large amount of medical imaging data that is often unused for research 

purposes. A primary reason why it remains unused is due to the heterogeneity of the images 

collected; unlike with other imaging modalities, most MRIs only show relative contrast between 

different tissue types, and the contrast can change depending on which scan parameters are used. 

Because of this, it is difficult to complete retrospective studies with previously acquired data. In 

this dissertation, a method for harmonizing retrospective MRI data using a physics-based approach 

is presented and applied to a disease where it could potentially be useful. 

 The introduction of this thesis begins with a general overview of MRI and more specifics 

including weightings, relaxometry, and pulse sequences. It then transitions into the disease that is 

of interest for this work, Multiple Sclerosis (MS), before a brief introduction on machine learning. 

Finally, it is concluded with a discussion of the scope and aims of this dissertation research, as 

well as an outline of the structure of this thesis. 

1.1 Introduction to MRI 

1.1.1  Overview of Spin Physics 

MRI is a noninvasive diagnostic procedure involving the use of non-ionizing radiation to 

produce a detailed anatomical or functional image. By manipulating magnetic gradients and 

radiofrequency (RF) pulses, hydrogen nuclei (the most abundant atom in the human body due to 
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its presence in water molecules) are excited and allowed to relax in specific manners that allow for 

either high soft tissue contrast or useful functional information. This makes MRI a very 

advantageous tool in the fight against both diseases (cancer, stroke, Multiple Sclerosis (MS)) and 

traumatic soft-tissue injuries (muscle, ligament, and tendon tears).  

To generate MR images, the patient or subject is placed inside of a MR scanner that 

produces a strong magnetic field referred to as B0. This B0 field (with strengths typically 1.5 Tesla 

[T] or 3T – about 5 orders of magnitude larger than the Earth’s magnetic field) causes the 

randomly-oriented nuclear spins of the hydrogen nuclei to align either parallel or anti-parallel with 

the direction of the B0 field. A small majority, approximately 1 spin per million, align parallel to 

the B0 field, producing a net magnetization vector M that points in the same direction as the B0 

field.2 

In addition, a short RF pulse, which is simply a magnetic field oscillating at the resonance 

frequency of hydrogen nuclei, is applied in a direction orthogonal to the B0 field. This RF pulse 

causes the net magnetization vector to tip into the transverse plane as energy is added to the system, 

causing more hydrogen nuclei spins to align anti-parallel to the B0 field. When the RF pulse is 

turned off, the net magnetization vector relaxes back towards its initial equilibrium by releasing 

the energy it had gained from the RF pulse. By repeating this process, adding gradient coils to 

position the nuclei gaining and releasing energy from RF pulses, and measuring the amplitude of 

the RF energy released by those nuclei, we can produce a MR image.  

However, the signal that is produced in this process is not the MR image itself. Instead, it 

is the Fourier transform of the image. As the frequency and phase encoding gradients are turned 

on and off, the phase and frequency that nuclei precess at begins to vary depending on where they 

are spatially in relation to the gradient coils. Thus, when we input RF energy into the system and 
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perturb it, the read out will be the time-varying signal of all combined nuclei that were excited in 

a domain referred to as k-space. K-space does, however, have a direct relationship with the image 

domain itself: because the gradient strengths, durations, and sequence timings are all known, it is 

possible to calculate the signal in the image domain as the Fourier transform of the signal in k-

space.  

1.1.2 T1 and T2 Relaxation 

The key to MRI is the way that the excited hydrogen nuclei relax back to equilibrium. The 

composition of the tissue being excited and surrounding those nuclei being excited have a drastic 

effect on how quickly or slowly these excited nuclei return to their resting state. By altering the 

timing parameters and strength of the RF pulse and magnetic gradients, we can maximize the 

different relaxation times between tissues and generate very high tissue contrast, a hallmark of MR 

imaging. 

There are two ways that the excited hydrogen nuclei relax back to equilibrium. First, the 

hydrogen nuclei can give up their energy to the lattice of tissue surrounding it. This is referred to 

as longitudinal relaxation, spin-lattice relaxation, or T1 relaxation, and is characterized by a 

constant known as the T1 relaxation time. The second refers to how the spins of the hydrogen 

nuclei de-phase with one another. When the nuclei are tipped into the transverse plane by the RF 

pulse, their spins are initially aligned. But, through interaction with other nuclei, the spins will de-

phase with one another. This kind of relaxation is referred to as transverse relaxation, spin-spin 

relaxation, or T2 relaxation, and is characterized by a constant known as the T2 relaxation time.  

Because the T1 and T2 relaxation times of tissue vary within the body, we can use sequence 

parameters such as the pulse repetition time (TR) and echo time (TE) to generate the contrast, or 
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weighting, of the MR image. For a T1-weighted image, a short TR and short TE result in a T1-

weighted image, where the difference in contrast between tissues is primarily due to their different 

T1 relaxation times. For a T2-weighted image, a long TR and long TE produces a T2-weighted 

image, where the difference in contrast between tissues in the final image is due to their different 

T2 relaxation times.  

1.1.3  MR Sequences and Signal Equations 

 One of the most basic MR sequence is a spin-echo. In this sequence, a 90-degree RF pulse 

selectively excites a thin region determined by the slice-selection gradient. This tips the net 

magnetization vector into the transverse plane with all the nuclei spins being in-phase. During this 

time, a phase-encoding gradient that is turned on and off spatially encodes phases in a direction 

orthogonal to the B0 field. After a period of TE/2, a 180-degree RF pulse causes the spins which 

are dephasing start to rephase. At the total time of TE, a spin-echo occurs and is read out. This 

repeats after a time of TR for all necessary phase-encoding steps before moving on to the next 

slice.  

The signal (S) that is produced by a spin-echo sequence at any voxel in the MR image is 

dependent on the proton density (ρ), machine parameters and gain (k), TR, TE, T1, and T2 of the 

tissue located within that voxel (Equation 1.1).3  

𝑆 = 𝑘𝜌 (1 − 𝑒
−𝑇𝑅

𝑇1⁄ ) 𝑒
−𝑇𝐸

𝑇2⁄  Equation 1.1 

This gives us a relationship that directly relates any signal intensity produced with either a T1- or 

T2-weighted MR image to its corresponding T1 or T2 relaxation time.  
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Of course, there are much more complicated MR sequences that do not have such a 

simplistic pulse sequence diagram and signal equation. A few of importance for the purposes of 

this thesis are the magnetization-prepared rapid gradient echo (MPRAGE), a 3-dimensional, 

usually T1-weighted sequences that uses a 180-degree inversion pulse followed by a rapid echo 

train readout with small flip angles (see Figure 1.2), and a fluid-attenuated inversion recovery 

(FLAIR), a T2-weighted sequence that uses a 180-degree inversion pulse strategically with the 

known relaxation time of fluid to remove any signal from fluid from the image.  

1.1.4  MR Relaxometry 

 MR relaxometry is a broad term referring to the measurement of the relaxation variables 

of the tissue in MRI. There are three types of relaxation variables: T1, T2, and T2*. T1 and T2 

have been discussed previously, and T2* relaxation is a combination of T2 relaxation (spin-spin) 

and the magnetic field inhomogeneities. For the purposes of this thesis, though, T2* relaxometry 

is not discussed in detail. It is important to note the differences between quantitative T1 and T2 

 

Figure 1.1: Pulse sequence diagram for a spin-echo MRI. 
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(qT1/qT2), the actual measurement of the relaxation variables, and T1- and T2-weighted, the use 

of the differences in T1 and T2 to generate contrast in an MR image.  

 

 

Figure 1.2: The pulse sequence diagram for MPRAGE MRI shows a much more complex 

acquisition.4 

 

MR relaxometry is a very useful technique. By generating qT1 and qT2 images, there is no 

longer a dependence on machine parameters like gain, filters, TE, or TR; instead qT1 and qT2 

maps are only dependent on the tissue properties located in each voxel. This can be advantageous 

when looking for both subtle differences in tissue pathophysiology, like finding regions of hypoxia 

in tumors or regions of demyelination in MS, and in large datasets, like trying to normalize MRIs 

across scanner vendors or different sequences.5-12 
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 To create the qT1 and qT2 images, all variables in a specific sequence (and corresponding 

signal equation) are kept constant except for one. For each voxel, a fit can be applied using the 

signal intensity and dependent variable to solve for either T1 or T2. For the simplest case, a series 

of T1-weighted spin-echo images with varying TR allows for Equation 1.2 to be solved for T1, 

and a series of T2-weighted spin-echo images with varying TE allows for Equation 1.3 to be solved 

for T2. Another technique for calculating T1 involves the use of a series of T1-weighted inversion 

recovery (IR) images. This sequence involves a 180-degree RF inversion pulse, followed by a 

spin-echo sequence after some inversion time (TI). Instead of using Equation 1.1 and varying TR 

under the assumption that there will be minimal T2 weighting, Equation 1.2 can be used with the 

independent variable TI to generate a qT1 map.3 

𝑆 = 𝑘𝜌 (1 − 2𝑒
−𝑇𝐼

𝑇1⁄ ) Equation 1.2 

 The methods mentioned above, however, take too much time to be run during a routine 

MRI exam of a patient. There are more complicated techniques that can be used to generate similar 

qT1 and qT2 maps much more quickly. One of these used to generate a qT1 maps is a Look-Locker 

technique. Developed for cardiac applications, the Look-Locker uses a 180-degree inversion pulse 

with a train of smaller RF pulses after a delay of TI followed by a readout to generate an image. 

TI is again varied, and Equations 1.3-1.4 can be fit to calculate T1 from a voxel-wise fit.13 

𝑆 = A − B𝑒
−𝑇𝐼

𝑇1∗⁄  Equation 1.3 

𝑇1 =  𝑇1∗ (
𝐵

𝐴
− 1) 

Equation 1.4 

For a quicker qT2 method, there are clinically available sequences that essentially run a series of 

T2-weighted images with multiple echoes. These multiple echoes occur at different TEs and can 

be fit as mentioned previously using Equation 1.2 under the assumption that there will be minimal  
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T1 weighting. 

 In addition to these techniques, researchers have developed tools such as MR 

Fingerprinting (MRF) and synthetic MR for measurement of relaxation variables in clinically 

appropriate scan times.14,15 These sequences use a combination of innovative pulse sequences and 

mathematical reconstructions to produce quantitative MR images, and synthetic MR can even 

generate weighted images with almost any desired contrast. However, these tools have not yet 

been integrated into clinical workflow. 

 

Figure 1.3: Example T1w image (top left), qT1 map (top right), T2w image (bottom left), and 

qT2 map (bottom right). All images are of the same subject and are approximately the same 

axial slice. 
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 MR relaxometry is used in a variety of clinical applications, mostly on the research side as 

scientists try and uncover the relationships between quantitative MR maps and corresponding 

pathology. Such applications include cancer detection and progression, iron overload in tissue, 

MS, and aneurysms, to name a few. In addition, relaxometry is a perfect data normalizing method 

for big data and machine learning applications. Yet, there are few large datasets of relaxometry 

data that have been taken.  

1.2 Introduction to MS 

1.2.1 Pathology of MS  

MS is a chronic neuroinflammatory disease of the central nervous system (CNS) 

characterized by the focal demyelination of axons into “lesions” or “plaques” in white matter, 

along with a more diffuse demyelination throughout the CNS. More specifically, MS is an 

autoimmune disease resulting from the loss of oligodendrocytes that form the myelin sheath 

around axons. This myelin sheath helps carry action potentials quickly through the CNS by 

reducing the capacitance of the axonal membrane, resulting in saltatory conduction and the 

“jumping” of the action potential down the length of the axon.  In MS, an inflammatory process 

caused by T cells enter the brain via disruptions in the blood-brain barrier (BBB) and recognize 

myelin as foreign, thereby promoting an inflammatory response. Without myelin, the neuron is 

unable to function properly. Remyelination can occur early in the disease but is often unable to be 

completed fully. Repeated attacks by the immune system lead to the build-up of a scar-like plaque 

(hence the name sclerosis). This can occur throughout the CNS, often involving both the brain and 

spinal cord.16-22  

Because of the interruption in the CNS signaling pathway, patients with MS can have a 

variety of clinical disabilities, including autonomic, visual, motor, and sensory symptoms. There 
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is no known cause for MS, but a multifactorial etiology is generally accepted involving both a 

genetic component and environmental factors such as the Epstein-Barr virus and vitamin D. The 

global prevalence of MS is 33 per 100,000 people, although there is a great variance between 

different regions, especially different longitudes. MS primarily affects people between the ages of 

20-40 years, with a 3:1 female-to-male predominance.16-18, 22-23 

1.2.2 Clinical Presentation and Progression of MS  

The range of clinical symptoms that MS patients can experience is vast and includes pain, 

cognitive dysfunction, gait ataxia, and vision or sensory loss.24,25 However, the hallmark of a MS 

diagnosis is the dual criteria of dissemination of time and space. For clinical symptoms, this would 

be marked by symptoms lasting longer than 24 hours and occurring in two separate anatomical 

locations at two distinct times, e.g. vision loss in one eye followed by a constant tingling in the 

right hand a month later. Without those two criteria fulfilled, MS cannot be diagnosed. 

There are four MS disease courses that have been classified based on symptom onset and 

evolution: clinically isolated syndrome (CIS), relapsing-remitting MS (RRMS), secondary-

progressive MS (SPMS), and primary-progressive MS (PPMS). To quantify the evolution of these 

clinical symptoms as MS progresses, neurologists developed the Expanded Disability Status Scale 

(EDSS) ranging from 1 (normal neurological exam) to 10 (death due to MS), although the accuracy 

of the EDSS is disputed due to its over-reliance on motor function and subjective nature.  

CIS refers to the first clinical manifestation of the disease that is, as stated in the name, 

isolated by definition. CIS may relapse in the same anatomic location over time as well. Although 

the criteria for diagnosis of MS is not fully met by CIS, it is considered a subclass of MS, as CIS 

will lead to a MS diagnosis 80% of the time when lesions are present on the initial baseline MRI 

and 10-20% when lesions are not present.  
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RRMS is the initial diagnosis of about 85% of patients with MS. The RRMS phenotype is 

characterized by relapses of acute neurological symptoms followed by a period of recovery before 

repeating. This recovery period may lead to a complete return to the baseline before the relapse or 

could result in a partial remission and permanent accumulation of some disability with irreversible 

CNS damage.  

SPMS, often evolving from RRMS, consists of the progressive worsening of neurologic 

symptoms (mainly gait impairment) over time with or without distinct relapses. About 80% of 

RRMS patients will evolve into some form of SPMS withing 20 years.  

Finally, PPMS, consisting of about 15% of initial MS diagnoses, is characterized by the 

progressive worsening of neurologic symptoms from the onset of initial symptoms. Much like 

SPMS, there can be periods of relapses and remission, but there is the constant progression of 

symptoms over time.16-18,24-28 

   

Figure 1.4: Varying clinical progression of different types of MS over time.29 
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Because the clinical course of MS is so widely varied from patient to patient, it can be 

difficult to predict when relapses will occur, whether they will result in an accumulation of 

disability, and whether a specific treatment is effective or if normal remission is occurring.  

1.2.3 Role of MRI in MS 

The first documented usage of MRI to evaluate MS lesions occurred in 1981 by Young et 

al and has since been a staple for the assessment of disease diagnosis, monitoring, and 

progression.30 The McDonald Criteria, developed in 2001 by neurologist Ian McDonald and 

colleagues, incorporates clinical evaluation with MRI techniques to establish MS.31-32 The Criteria,  

last updated in 2017, provides an outline for MS diagnosis based on clinical presentation, 

radiological findings, and laboratory tests that allows for the fulfillment of both the dissemination 

of space and time requirements. For example, if a patient has clinical presentation of two or more 

attacks and clinical evidence of one lesion, the dissemination of space criteria can be satisfied by 

either an additional clinical attack implicating a different CNS site or one or more MS-typical T2 

lesions in two or more areas of the CNS.  

Besides the diagnosis of the disease, MRI is typically used regularly to monitor and 

evaluate MS patient both on and off treatment. The most recent guidelines, published via a 

consensus of experts in the imaging of MS, call for routine MRI scanning at least once a year, with 

duration between consecutive scans varying depending on what treatment, if any, the patient is 

using.33 Commonly used sequences on these monitoring scans tend to focus on the brain instead 

of the spinal cord and include a 3D FLAIR, MPRAGE, T2-weighted sequences, and T1-weighted 

sequences pre- and post-injection of gadolinium contrast agent, which shortens the T1 relaxation 

time in areas where there is active inflammation. 
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1.2.4 Role of Quantitative MRI in MS 

Much work has been done to assess disease progression of MS including clinical, 

laboratory, and radiological measures. Currently, the most widely used clinical assessment of 

clinical disease progression is the EDSS, which measures 7 functional scores related to 

neurological performance on ex-amination and is a global score. However, EDSS has been shown 

to have high interobserver variability.34 MRI, by far the best biomarker of disease activity, provides 

a wide range of image contrasts (T1, gadolinium-enhanced T1, T2, susceptibility weighted, MTR, 

quantitative susceptibility mapping (QSM)) each reflecting a different pathophysiologic signature: 

loss of myelin/axons/gliosis, acute inflammation breakdown of the blood-brain barrier, total 

volume of tissue injury, myelin density, and the combination of iron deposition in activated 

 

Figure 1.5: Example MRIs of subject with MS showing the varying contrasts between T1w pre-

contrast (top left), T1w post-contrast (top right), T2w (bottom left), and FLAIR (bottom right). 
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macrophages and chronic inflammation. Thus, MRI could provide an objective measure of disease 

progression in MS. 

Many studies have correlated various MRI markers of disease activity to clinical measures 

of disease progression. Such studies have included correlating the number of T1 contrast-

enhancing lesions, hypo- or hyper-intense lesions, and the magnetization transfer ratio (MTR) to 

EDSS scores.35-44 More recently, assessment of brain atrophy has become an important marker of 

MS disease progression.  Brain atrophy occurs in normal aging population but is enhanced two- to 

three-fold in MS, even at early stages of MS.  Brain atrophy is not only correlated with EDSS but 

also several measures of cognitive disability.45-46 The correlations of MRI measures of disease 

activity to clinical scores of disease progression have been at best moderate, furthering the notion 

that MS is a ‘clinico-radiological paradox’ where disease seen radiologically is not necessarily 

captured on clinical exams of disability.47  

Previous studies have shown that MRI relaxometry (T1, T2, T2*) correlates well with 

histopathology, which is expected as tissue relaxation times change when tissue microstructure 

changes (such as demyelination or inflammation).48-53 However, few have shown that relaxometry 

changes can be correlated with disability. Manfredonia et al found that normal-appearing brain T1 

relaxation times can predict disability in early primary-progressive MS.54 This study provides 

evidence for the hypothesis that cerebral MR relaxometry can be correlated and predictive of 

disability of MS patients, and can potentially be used to quantify treatment response. It reasons 

that MR relaxometry may be used in combination with other geometric- and intensity-based 

features previously described in the literature for improved analysis of MS patients. In turn, 

relaxometry can also be thought of as a standardizing metric, providing further argument of the 

use of quantitative MR maps as input to classification algorithms instead of weighted images. 
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1.3 Machine Learning 

In recent years, machine learning has been a topic of increasing interest as the collection 

of large datasets and the development of more powerful computers and algorithms to analyze those 

datasets have become prevalent. Using these large datasets and improved computational efficacy, 

statistical models can be derived and applied to aid physicians with their normal tasks (such as 

computer-aided detection of lesions) or augment the physician’s knowledge where they have 

limited success (such as computer-aided diagnosis of malignancy). Combining trained machine 

learning algorithms with the expertise of physicians can lead to fewer mistakes or 

misinterpretations of information. 

There are two broad categories of machine learning algorithms, supervised and 

unsupervised. Supervised learning requires a dataset that is annotated with the ground truth, like 

malignancy versus non-malignancy. One can then train a machine learning algorithm with the 

annotated dataset and then apply on non-annotated datasets for prediction. Supervised machine 

learning models are often used in the case of medical imaging, as a radiologist (or multiple 

radiologists) has previously read the image and made a diagnosis. In contrast, unsupervised 

learning does not require annotated data for training, and instead uses inherent differences between 

subsets of data to develop its predictive model.55-57 

To further complicate the matter, there are another two broad categories that machine 

learning algorithms can be separated into, classification and regression. Classification algorithms 

are those whose desired output is a class label. For example, the determination of malignancy 

versus benign tumors would be a classification task. This can be expanded to more than just two 

classes, such as assigning labels to handwritten numbers and letters. Most regression algorithms, 

on the other hand, predict a numerical label from a continuous spectrum. An example of where a 
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regression algorithm is useful could be by predicting housing prices based on the neighborhood 

and features of the house. The outlier of regression algorithms is logistic regression for 

classification of only two classes, where each class is assigned either a 0 or 1 during training and 

a logarithmic curve is fit using the desired features. This produces a curve that is continuous, but 

thresholds can be applied to discriminate between the two classes.55-57 

There are also a range of complexities of machine learning algorithms to choose from 

depending on your application. Linear regression can be considered a machine learning technique, 

as it uses acquired data to form a linear model that can then be used to predict an outcome. This is 

a simplistic model, however, and may have little-to-no practical use in the case of medical imaging. 

Moving up in complexity, linear discriminant analysis (LDA) can be used to separate subsets of 

data for classification purposes. If, for example, we wanted to find the optimal separation of lesions 

that were either malignant or non-malignant using features extracted from those lesions, LDA may 

be an appropriate choice. However, LDA can be susceptible to outliers and can only generate a 

linear classifier, making its utility limited for medical imaging. Moving to the more complex 

algorithms, convolutional and deep neural networks use interconnected layers to complete some 

tasks. For the purposes of this thesis, only simple classification algorithms, such as logistic 

regression, will be used. 

1.4 Research Objectives and Scope of Thesis 

Currently, relaxometry is not clinically relevant for most scenarios, including for MS. This is 

because there is no defined benefit for radiologists and other clinicians. Because of this, there are 

limited datasets that are available to have quantitative MR maps included. For applications such  
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as machine learning, this can potentially be problematic, as weighted MR images can vary 

drastically depending on the sequence run and the scan parameters. Therefore, it would be 

beneficial to have a methodology that uses weighted MR scans to artificially generate estimates of 

quantitative MR maps for analysis. By doing this, we can use previously acquired weighted 

datasets for quantitative MR research without adding any additional scans to clinicians’ workflow. 

Chapter 2 of this dissertation will provide an overview of the proposed algorithm to 

retrospectively quantify weighted MR images into estimated MR maps. A further discussion into 

the important physics and mathematics of the algorithm, referred to as the REtrospecitve 

Quantification Using Internal REferences (REQUIRE) algorithm, will be discussed to provide a 

 

Figure 1.6: Example of logistic regression as a classification algorithm (top) and linear 

regression as a continuous prediction algorithm. 
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better understanding and overview of both the theory behind the algorithm and the actual 

implementation of the REQUIRE algorithm. 

Chapter 3 will discuss the application of the REQUIRE algorithm to the most basic scenario: 

a weighted, spin-echo MR image. Computer simulations on digital phantoms will allow for a better 

understanding of potential pitfalls of the methodology. In addition, phantom studies using a dual 

T1/T2 phantom will be discussed, along with a healthy volunteer study to determine the 

applicability of this method in vivo.  

Chapter 4 will be the continuation of the method described in Chapter 3. However, the 

application will be on more complicated weighted MR sequences to ensure that the REQUIRE 

algorithm is translatable across whatever MR sequence is run. The results are presented and 

compared with the reference standard, as well as with the results in Chapter 3. 

Chapter 5 is the application of this REQUIRE with real world data involving patients with MS. 

The datasets acquired were taken at different times and with different parameters and sequences, 

providing an opportunity to test the developed methodology and apply it to a problem with a 

potential machine learning application. For this thesis, the chosen problem was predicting what 

MS lesions would enhance (or are actively inflaming) by using only features derived from T1-

weighted pre-contrast MR images and their corresponding estimated T1 maps. Chapter 5 will also 

discuss the issues with gadolinium contrast deposition in the brain, and why this is a source of 

concern for patients with MS.  

Finally, Chapter 6 will summarize the results of this dissertation and provide guidelines for 

future endeavors into related research topics.  
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CHAPTER 2 

OVERVIEW OF REQUIRE ALGORITHM 

This section will be dedicated to a general overview of the REQUIRE algorithm, 

specifically focusing on the two sequences highlighted in Chapters 3 and 4 of this dissertation. An 

overview of the theory behind the REQUIRE algorithm will be discussed before more specifics on 

the signal equations and derivations are given. The implementation of the algorithm will also be 

discussed, as the REQUIRE algorithm must be adjusted from an analytical solution for simple MR 

sequences to an iterative solution for more complicated MR sequences.  

2.1 Theory 

As described in Chapter 1, there are a multitude of ways to generate an MR signal that can 

be transformed into an image (T1- versus T2-weighted, 2D versus 3D images, etc). However, all 

have the following in common: inherent microstructural and physiological differences in tissue 

(i.e. white matter versus gray matter) are used to generate contrast in an MR image. This means, 

for example, that to generate a T1-weighted image, the contrast is due to primarily the differences 

in T1 relaxation times between tissues. Additionally, because the entire MR image was acquired 

using the same sequence and parameters, the difference in signal intensities must be only from the 

differences in the inherent tissue properties themselves. Therefore, it should be feasible, if we have 

an appropriate model of the signal in an MR image and references in the image, to calculate these 

tissue properties for each voxel of the image. This is the basis of the REQUIRE algorithm. In the 

next few sections, more details will be provided into how this process unfolds for two scenarios: a 

T1-weighted spin-echo image of the brain and an MPRAGE MR image of the brain. 
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2.1.1 T1-weighted Spin-Echo 

 As given in Chapter 1 via Equation 1.1, the theoretical signal equation of a T1-weighted 

spin-echo MR image is as follows: 

𝑆 = 𝑘𝜌 (1 − 𝑒
−𝑇𝑅

𝑇1⁄ ) 𝑒
−𝑇𝐸

𝑇2⁄  Equation 2.1 

where S is the signal intensity, k is comprised of various scanner settings such as ADC gain, ρ is 

the proton density, TR is the repetition time, T1 is the T1 relaxation time, TE is the echo time, and 

T2 is the T2 relaxation time.3 Inverting this equation and solving for T1, which is the primary goal 

of this portion of the thesis, we find the following: 

𝑇1 =  
−𝑇𝑅

log (1 −
𝑆𝑒

𝑇𝐸
𝑇2⁄

𝑘𝜌 )

 
Equation 2.2 

This equation shows how the T1 value of each voxel of the image varies with the signal intensity 

of the image. However, although the TR and TE are fixed imaging parameters, there are still four 

unknowns in the equation: T1 (what we’re trying to solve for in this instance), T2, k, and ρ. Two 

of those can be estimated by reference values in the literature. If we know, for example, a voxel is 

comprised of primarily gray matter, we can assign a T2 and ρ value for that specific voxel. After 

this occurs, now only two unknowns remain, T1 and k. Much like with the T2 and ρ assumptions, 

we can again make another assumption, this time about T1. If we accept that the T1 relaxation 

time of a specific tissue type as found in the literature is correct on average, we can then solve for 

k. So, for the instance of the brain, if we compute the average signal intensity across three different 

healthy tissue types (gray matter, white matter, and cerebrospinal fluid) and set their corresponding 

T1 values to those found in the literature, it is possible to estimate k and then have an equation that 

relates any S to a corresponding T1 relaxation time in the image. 
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2.1.2 MPRAGE  

 Unlike the T1-weighted spin-echo image, MPRAGE is a much more complicated MR 

sequence. Because of that, there is no compact analytical signal equation and corresponding 

inversion to said signal equation. Instead, a step-by-step iterative solution can be used to estimate 

the signal intensity at each T1 value, compare that to the actual average signal intensities of healthy 

tissues in the image, and then iterate until it converges on the best possibly solution. To do this, 

however, some sort of signal equation is required to estimate signal intensity. Luckily, the one 

described by Brant-Zawadzki et al is a good approximation. Those equations are given as follows: 

In Equations 2.3a-d, SN is the signal at the Nth phase encoding step, MN is the magnetization at the 

Nth phase encoding step, α is the flip angle, Meq is the equilibrium magnetization, TI is the inversion 

time, Trec is the recovery period after readout until the next inversion, and X is the fraction 

𝑆𝑁 =  𝑀𝑁𝑒
−𝑇𝐸

𝑇2∗⁄  

 

 

Equation 2.3a 

𝑀𝑁 =  𝑀0 (1 − 𝑒
−𝑇𝑅

𝑇1⁄ ) ∑ (𝑐𝑜𝑠𝛼 ∙ 𝑒
−𝑇𝑅

𝑇1⁄ )
𝑖

𝑁
2

−2
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Equation 2.3b 

𝑀𝑒𝑞 =  
1

1 − 𝑋 ∙ 𝑒−
𝑇𝑟𝑒𝑐

𝑇1⁄
∙ 𝑀0 (1 − 𝑒

−𝑇𝑟𝑒𝑐
𝑇1⁄ ) 

 

 

Equation 2.3c 

𝑋 =  (1 − 𝑒
−𝑇𝑅
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Equation 2.3d 
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remaining as a result of small-angle excitation. For our purposes, the signal decay due to T2* 

effects was ignored, as they would be small due to the small TE of the sequence.58 

 Using Equations 2.3a-d, it is possible to estimate the signal intensity for the T1s of the 

healthy reference tissues (again, gray matter, white matter, and cerebrospinal fluid). An initial 

guess of M0 can be given, the error between the actual signal intensity and the theoretical signal 

intensity calculated, and then a new value assigned for M0. This can occur until a certain threshold 

is achieved, whatever that may be, and then the signal intensity for each T1 can be calculated. In 

this way, an estimated T1 map can be generated from the MPRAGE image. 

2.2 Algorithm Implementation 

 Ideally, for both implementations of the T1-REQUIRE algorithm described above, an 

analytical solution could be used. However, due to the complexity of MPRAGE, this is not 

possible. This section will walk step-by-step through the implementation of the algorithm in 

MATLAB for both the T1-weighted spin-echo and MPRAGE. Due to the similarities of some 

portions, steps that are individual to one or the other will be noted in the subsection heading; 

otherwise, that subsection will be describing a step that is shared by the two implementations. 

2.2.1 Conversion to NIFTI Format 

 To begin, all images were converted to NIfTI file format from either DICOM or PAR/REC 

file formats. This was done so that the images could be easily imported into both MATLAB and 

used by Statistical Parameter Mapping version 12 (SPM12 - Wellcome Centre for Human 

Neuroimaging, University College London, UK), a toolbox developed specifically for MATLAB 

and originally applied to functional neuroimaging data. To do this, the tool developed by Xiangrui 
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Li called dicm2nii was used. This set of MATLAB functions, useful on both DICOMs and 

PAR/RECs, was used to convert all the images in whichever dataset we were interested into the 

NIfTI file format. 

2.2.2 Segmentation via SPM12 

 After the images are converted to NIfTI format, they can be manipulated in MATLAB 

using the functions included in the SPM12 toolbox. One of these functions is the brain 

segmentation function. The point of it is to take an MRI of the brain and segment out different 

tissue types. SPM12 does this in four steps. First, a bias correction algorithm is run on the MR 

image that removes the spatially varying artifact often present in MR images. Second, the corrected 

MR image is spatially warped onto a reference tissue probability map. This tissue probability map 

consists of spatial probabilities that a specific type of tissue occurs in a specific area. Third, SPM12 

uses these spatial probabilities along with intensity-based information within the image to generate 

a tissue probability map for that MR image, but still warped to the reference space. By 

incorporating both spatial and intensity information, the segmentation returns accurate results, 

even if there is evidence of disease (such as intensity loss in T1-weighted images due to 

demyelination). Finally, the calculated tissue probability map is returned to the original image 

space for use within the REQUIRE algorithm. 

 For the purposes of the REQUIRE algorithm, three of the six default healthy tissue 

segmentations are used: white matter, gray matter, and cerebrospinal fluid. The other three (bone, 

soft tissue, and air/background) are not useful for the purposes of the algorithm. SPM12 returns 

these tissue probability maps as NIfTI files to be imported and manipulated by both SPM12 and 

MATLAB. 
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2.2.3 Skull Stripping 

 Once the segmentation was completed, the brain was then segmented away from the soft 

tissue and skull using the tissue probability maps produced in the previous section. To do this, the 

white matter, gray matter, and cerebrospinal fluid segmentations were added together, each with a 

threshold applied such that only voxels with a probability that it belonged to one of those tissue 

types had to exceed 0.8. Once the three tissue types were added, the resulting mask was dilated, 

filled, and then eroded, with the element used for both the dilation and erosion being equivalent. 

This generated a brain mask that was then applied to the MR image to produce an MR image of 

only the brain. 

2.2.4 Proton Density/T2 Correction for Spin-Echo 

 For the case of the T1-weighted spin-echo images, we found that including both a proton 

density and T2 correction to estimate T1 produced the most accurate qT1 maps.. To do this, the 

healthy tissue segmentations (gray matter, white matter, and cerebrospinal fluid) were all assigned 

a T2 value and proton density value based off previously acquired values found in the literature 

(Table 2.1).59-62 The term 
𝑒

𝑇𝐸
𝑇2⁄

𝜌
 from Equation 2.4 was then calculated for each voxel. However, 

this produced harsh gradients at points where the tissue segmentation changes, so a gaussian 

smoothing filter was applied to generate a smooth estimation of the dual proton density/T2 

correction. The original T1-weighted spin-echo image was then multiplied by this correction, 

generating an image that is, theoretically, only dependent on T1.  

𝑆𝑒
𝑇𝐸

𝑇2⁄

𝜌
= 𝑆𝑇1 = 𝑘 (1 − 𝑒

−𝑇𝑅
𝑇1⁄ ) 

Equation 2.4 
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Table 2.1: Healthy Brain Tissue T2 and ρ Values at 3T 

Tissue Type T2 Relaxation 

Time ± σ (ms) 

ρ ± σ 

(Relative to H2O) 

Gray Matter 110 ± 8.7 .807 ± 0.0160 

White Matter 79.6 ± 2.6 .679 ± 0.0168 

Cerebrospinal Fluid* 1447 ± 52 1 

*Note: The T2 of cerebrospinal fluid was so long compared to TE values for T1-weighted spin-

echo images, as well as compared to the other tissue types, that no T2 effects were accounted 

for in the cerebrospinal fluid 

 

 
Figure 2.1:  Proton density correction before (top left) and after (top right) Gaussian filter 

applied. T1-weighted spin-echo MR image before (bottom left) and after (bottom right) T2/PD 

correction applied. 
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2.2.5 Solving the Spin-Echo Signal Equation 

 Once the dual proton density/T2 correction was applied to the T1-weighted spin-echo 

image, the resulting image should be one that, if the scanner settings k is consistent, is only affected 

by varying T1 values. So, to solve for k so that we can relate any signal intensity in the corrected 

image to a corresponding T1 value, internal references were used. 

 To do this, the average intensity values for our three healthy tissues (gray matter, white 

matter, and cerebrospinal fluid) were calculated from the tissue probability maps and the weighted 

images. Because this needs to be more precise, a threshold of 0.9 was applied to determine which 

voxels were included in this calculation. Once these average signal intensities were calculated, a 

non-linear curve fit was applied in MATLAB using Equation 2.4, the average signal intensities, 

and reference values for T1 of healthy gray matter, white matter, and cerebrospinal fluid found in 

the literature (Table 2.2).59-61 This non-linear curve fitting was completed using a least-squares 

optimization method to solve for k. After this is solved for, Equation 2.4 was manipulated such 

that the entire corrected image could be manipulated to solve for T1 at each voxel. Because this 

process does not use a voxel-by-voxel fit, it is incredibly efficient, reducing computation times by 

over 100x compared to a reference standard T1 mapping algorithm.  

 

Table 2.2: Healthy Brain Tissue T1 Values at 3T 

Tissue Type T1 Relaxation Time ± σ (ms) 

Gray Matter 1331 ± 57 

White Matter 832 ± 44 

Cerebrospinal Fluid* 2500 

*Note: The T1 of cerebrospinal fluid was set to 2500 to increase contrast 

between gray and white matter. Literature values ranged from 2000 to over 

4000 ms. 
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Figure 2.2: Flowchart of T1-REQUIRE algorithm for a spin-echo MRI. 

 

2.2.6 Simulating the MPRAGE Signal Equation 

 Compared with the spin-echo MR sequence, MPRAGE is a much more complicated MR 

sequence, and likewise, has a much more complicated signal equation. Instead of solving the signal 

equation directly, though, it is possible to iteratively estimate the unknown parameter M0 by 

guessing an initial value and minimizing the error between the estimated and actual values. 

 To do this, much like with the spin-echo case, the average intensity values of gray matter, 

white matter, and cerebrospinal fluid were calculated, and they were assigned a T1 value from the 

literature. From there, a set of M0 values are calculate by equally spacing 100 steps between 0 and 

ten times the maximum signal intensity in the image. Iterating through those 100 steps, the 

MPRAGE signal equations, Equations 2.3a-d, are used to calculate the estimated signal intensity 

of the three tissue types. These values are compared with the actual signal intensities, and the root 
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mean square error (RMSE) is calculated. Using the RMSE, the minimum error is found. Then, 

using the M0 values one index above and below that, the process is repeated. This continues until 

the step size between consecutive steps in the range of M0 is less than 0.1% of the maximum 

MPRAGE image intensity. This gives us our M0 value which then can be used to solve the 

MPRAGE equations. This allows for the generation of a lookup table for T1 values ranging from 

10-3000 ms, which can be used to assign a T1 value for every signal intensity in the image. 

 
 

Figure 2.3: Flowchart of T1-REQUIRE algorithm for an MPRAGE MRI. 

 

2.3 Discussion 

 The above chapter described two different implementations of the T1-REQUIRE 

algorithm. However, because the algorithm is entirely self-sufficient, relying only on the input of 

a T1-weighted MR image and the scan parameters surrounding that image, this algorithm should 

be able to be extended to any T1-weighted MR sequence with a defined signal equation or 
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approximation of the signal equation, as well as potentially being extended to include T2 and other 

weightings of MR images. That being said, the scope of this dissertation will include only T1-

weighted MR images taken by either a spin-echo or an MPRAGE sequence. In the following 

chapters (Chapters 3 and 4), the results of applying the T1-REQUIRE algorithm on digital 

phantoms, physical phantoms, and healthy volunteers will be discussed. In Chapter 5, the utility 

of the T1-REQUIRE algorithm will be explored in the setting of MS.  
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CHAPTER 3 

VALIDATION OF T1-REQUIRE ON T1-WEIGHTED SPIN-ECHO MR IMAGES 

 This chapter will introduce the validation process of T1-REQUIRE on T1w spin-echo MR 

images. For clarity, it will be organized as follows: the introduction, digital simulation methods 

followed by the results of the simulation, construction and scanning of a dual T1/T2 phantom and 

the results of that experiment, and finally the healthy volunteer study methods followed by the 

results. All of this will be followed by an overall discussion of this chapter as a whole. 

3.1 Introduction 

 Quantification in MR is a normalization procedure performed to remove the mechanical 

and environmental properties embedded into the MR signal by the imaging process and retain only 

the tissue property that the signal contrast is dependent on, e.g. the T1 (spin-lattice) or T2 (spin-

spin) relaxation times. By successfully quantifying these, along with other tissue properties not 

pertaining to this study, researchers and clinicians can both compare MR information from scans 

take with different imaging systems or imaging parameters, as well as relate these properties to the 

underlying tissue structure and function to potentially find imaging biomarkers of underlying 

physiological processes. However, current quantification techniques are slow and have poor 

resolution, thus limiting clinicians to only taking quantifiable data in cases where it has previously 

been shown to add important information for diagnosis or management of treatment. 

 The REQUIRE algorithm described in Chapter 2 of this dissertation is a novel attempt to 

solve those issues. By using the signal equations of commonly used MR sequences and healthy 

tissue as reference, it may be possible to remove those mechanical and environmental properties 

and efficiently estimate the tissue properties. This can result in a quantitative MR map that retains 
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the same resolution as the original MR scan with no additional scan time, essential for leaving the 

clinical workflow uninterrupted. 

 To ensure that the REQUIRE algorithm is performing at an acceptable level, it is necessary 

to validate the algorithm. To do this, we will begin with the simplest MR imaging sequence, a 

spin-echo. Specifically, this chapter focuses on a T1-weighted spin-echo, as T1-weighted MR 

imaging is key for the work completed in Chapter 5. Validation was completed in three different 

ways. First, digital simulations were used to explore the potential viability of the algorithm as a 

whole, along with determining the effect that assumptions may have on the overall performance 

of T1-REQUIRE. Second, a combined T1/T2 phantom was built and scanned to determine the 

accuracy of T1-REQUIRE as it compares to reference standard T1 mapping sequences, along with 

a comparison between T1 mapping sequences themselves. Finally, a healthy volunteer study 

determined the ability for T1-REQUIRE to be used in vivo in a controlled setting, and a range of 

T1 values that it would be valid in was quantified. 

3.2 Digital Simulation 

3.2.1 Digital Phantom Construction  

Since the primary purpose of this research revolves around neuroimaging, a digital T1 

phantom was constructed in MATLAB with relaxation times commonly found in the brain, 

including fat, gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). To construct 

the phantom, four regions were placed inside a 100x100x20 matrix. Each region was then assigned 

one of the four tissue types. Each pixel inside a tissue region was randomly assigned a T1 

relaxation time from a Gaussian distribution incorporating the mean and standard deviation of T1 

values of that tissue type found in the literature.59-61 Further, a similar process was completed with 
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T2 relaxation times to make a digital T2 phantom, which was used to determine the effects of T2 

and varying TEs within the simulation. 

Table 3.1: MR Relaxation Values for Digital Phantom 

Tissue Type T1 Relaxation Time ± σ (ms) T2 Relaxation Time ± σ (ms) 

Fat 371 ± 8 133 ± 6 

Gray Matter 1332 ± 57 110 ± 8.7 

White Matter 832 ± 44 79.6 ± 2.6 

Cerebrospinal Fluid 3302 ± 170 1447 ± 52 

 

 

Figure 3.1: Center slice from the digital T1 (left) and T2 (right) phantoms with added gaussian 

noise. From the outside to the center, the tissue types represented are fat, GM, WM, and CSF, 

respectively. 

 

3.2.2 Simulation Design 

The simulation was designed to take the T1 and T2 digital phantoms and process them 

through a mock spin-echo sequence, then use the tissue types and known average T1 values to 

back calculate the original T1 phantom. To do this, the phantoms were placed into the spin-echo 

signal equation with user-defined parameters. Then, Gaussian noise was added to the simulated 

MR image, as Rician noise in an image with a signal-to-noise ratio (SNR) higher than three can 

be approximated with a Gaussian distribution. From there, the average signal intensity for each 
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tissue type was measured and fit to a modified version of the spin-echo equation for T1-weighted 

images. This fitting procedure was completed in MATLAB using the native non-linear fitting 

function. Finally, statistical methods were applied to compare the resulting calculated T1 map and 

the original digital T1 phantom. It is important to note that the fitting algorithm used, while similar 

to the end T1-REQUIRE algorithm, varied slightly. No T2 or proton density variations were 

accounted for in the early iterations of the algorithm while the digital simulations were being run. 

 

Figure 3.2: Flowchart depicting the simulation design. 

 

3.2.3 Variation of Imaging Equation Parameters 

 Using this simulation, it is straightforward to vary many of the physical parameters present 

in the more precise signal equation and determine the accuracy of fitting the simpler T1-weighted 
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spin-echo equation retrospectively. For this analysis, the flip angles α1 and α2 (taken to be 90° and 

180° pulses, respectively, to produce a true spin-echo) were varied within 20° of their assigned 

values. TR was varied between 25-5000 ms, and TE between 1-200 ms. Further, analysis was 

completed in the ideal case, where there is no T2 effect and no additional noise from the imaging 

system (TR = 525 ms) and exact flip angles, along with addition of T2 effects (TR = 525 ms, TE 

= 10 ms) but no additional noise from the imaging system and exact flip angles. Finally, the noise 

was varied so that the error could be calculated with different SNRs to determine how the amount 

of noise added by the imaging system affects the fitting procedure. The calculated SNR was 

determined by taking the average signal inside of a region within the GM and dividing it by the 

standard deviation of a region within the signal in the background. 

3.2.4 Data Analysis 

 Correlation plots were generated on a pixel-wise basis for non-zero pixels, and linear 

regression was performed to find the correlation slope and coefficients of determination (R2) for 

each scenario. Further, Bland-Altman plots were created to find bias within the results, further 

confirmed by inspecting the histogram of the percent error images generated automatically. 

Finally, the average of the absolute value of the error was used to compare various scenarios such 

as varying the TR to generate plots for visual analysis. 

3.2.5 Results 

To begin, the digital T1 phantom was run through the simulation with a TR of 525 ms, no 

T2 effects, ideal flip angles, and no noise from the MR imaging systems. This resulted in an almost 

perfect fit, with a correlation slope of 1.00, a correlation coefficient of 1.00, almost no bias present 

(mean bias from Bland-Altman plot of -0.333 ms), and an average percent difference of 0.04%. 
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This was to be expected, as the fitting equation was the same as the signal equation used to generate 

the simulated MR. The purpose of the ideal situation was to ensure that the simulation was 

functioning properly with no outside influence.  

 

Figure 3.3: Average percent error (a), correlation slope (b), and R2 values with varying TR, 

along with (orange) and without (blue) T2 effects (TE = 10ms). 

 

 

After the initial run to test the efficacy of the simulation’s fitting procedure, the input TR 

was varied between 25-5000 ms with and without T2 effects. The purpose of this was to determine 

the impact of fitting with the incorrect TR and that of including T2 effects when the fitting 

algorithm ignored them. The TE of the varied TR with T2 effects was set at 10 ms. Figure 3.3 
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shows the average percent error, correlation slopes, and R2 with and without T2 effects as a 

function of TR. No additional MR noise was added to the system to only analyze the effect of TR. 

At a TR of 525 ms and a TE of 10 ms, the average percent error when T2 effects are included 

increased from 0.04% to 2.24%. The correlation slope decreases from 0.9998 to 0.9636, and the 

R2 decreases from 1.000 to 0.9937. This indicates that T2 effects may be a significant source of 

error in T1-REQUIRE if they are ignored. 

With a set TR of 525 ms, the TE was then varied from 0-200 ms to determine its effects on 

the fit, which does not include any T2 effects. As expected, the higher TEs produced more T2 

effects, which resulted in the fit underestimating the actual T1 relaxation time, as shown with a 

higher average percent error and lower correlation slope and R2 values (Figure 3.4). This shows, 

again, that ignoring T2 effects may not be appropriate, and the impact of doing so increases as TE 

increases. 

 
Figure 3.4: Statistics resulting from varying the TE with a constant TR. 
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Keeping a constant TR of 525 ms with no T2 effects or additional MR noise, both flip 

angles (α1 and α2) were varied within 20 degrees of their specific values. However, this produced 

no increase in error, as the fitting algorithm was able to account for this in M0 such that this effect 

was nullified. 

Noise was introduced into the system by multiplying the simulated MR image with a zero-

mean gaussian distribution with a set variance. By altering the variance of this distribution, the 

SNR could also be altered. The range of variances was set from 0.005% to 1% of the maximum 

signal intensity of the simulated MR image, resulting in statistics shown in Figure 3.5. As 

expected, higher SNRs resulted in better retrospective fits when looking at the average percent 

error, the correlation slope, and the R2 values. 

 
Figure 3.5: Statistics resulting from varying the added imaging noise with a constant TR (525 

ms) and no T2 effects. 

 

 

For a realistic example, the simulation was run with a TR of 525 ms, a TE of 10 ms, ideal 

flip angles (as this does not affect the overall accuracy), and a SNR of 30 (well below what most 
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systems currently operate at). The simulation output is shown in Figure 3.6. The average percent 

error across the phantom was 4.61%, with a correlation slope of 0.969 and a R2 of 0.966. There is 

a slight bias of the retrospective fit to overestimate the actual T1, with a mean bias of 24 ms. 

 

Figure 3.6: Output from simulated T1-weighted spin-echo imaging simulation and 

corresponding REQUIRE T1 mapping. 

 

 

3.3 T1/T2 Phantom 

3.3.1 Construction of the T1/T2 Phantom 

The phantom to be used for this MRI study was constructed from 29 syringes filled with 

varying concentrations of both gadolinium and agarose gel. Agarose was chosen due to its similar 

T2 relaxation time when compared to human tissue (~40-150 ms) and the ability to vary this 

relaxation time by varying the concentration of agarose in the syringe. To begin construction of  
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Figure 3.8: Heat plot showing the average percent difference using T1-REQUIRE with 

variations in T1 and T2. TR and TE were set at 525 ms and 10 ms, respectively 

 

. 

 

  
(a) (b) 

Figure 3.7: Correlation (a) and Bland-Altman (B) plots for a realistic simulation using the digital 

phantoms. 
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the phantom, a serial dilution of the gadolinium-based contrast media was performed to reduce 

concentration to the desired levels. The media of choice was Omniscan from GE Healthcare, often 

used in a clinical setting for MR contrast. The gadolinium was diluted with distilled water such 

that 5 mL of each concentration in a 100 mL total volume would yield the desired concentration. 

10 mL of each concentration was made in case replication of the process was necessary. 

After the serial dilutions were made, 5 mL of each concentration were placed in a beaker 

along with 95 mL of distilled water. Agarose powder was added to achieve the first desired 

concentration of agarose by heating and stirring the solution. After fully dissolved, a syringe was 

used to measure 20 mL of the solution, with extra care being taken to remove any air pockets. The 

process was then repeated with the remaining 80 mL of solution, adding agarose to achieve the 

second concentration, heating and stirring until dissolved, measuring 20 mL. This was done four 

times to each solution, bringing the total number of syringes to 28. Table 2 describes each syringes’ 

concentration of both agarose and gadolinium, with the position in the table corresponding to the 

position in the final phantom. The 29th vial was filled with canola oil to represent fat. After the 

syringes were cooled, a holding container was constructed by cutting circular holes in a sponge. 

The syringes were inserted into the holes and secured by filling the remainder of the container with 

rice.  

3.3.2 MR Imaging of the T1/T2 Phantom 

  These test tubes were imaged in a Philips Ingenia 3T scanner located at the Magnetic 

Resonance Imaging Research Center (MRIRC) at the University of Chicago. Sequences run 

include a T1-mapping Look-Locker with multiple inversion times (TE = 4.6 ms, TR = 8 ms, 
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Inversion Times (TI) = 150, 400, 750, 1500, 3500 ms, α = 12o), a T1-weighted spin-echo (TE = 10 

ms, TR = 525 ms), and a progression of T1-weighted inversion-recovery (IR) images with varying 

TI for ground truth (TE = 7 ms, TR = 7000 ms, TI = 50-5000 ms).  

3.3.3 Data Analysis 

 Gold standard T1 maps were created in MATLAB by fitting Equation 1.2 using the 

multiple-TI IR images. The T1-mapping Look-Locker sequence was used to compare with the 

gold standard, as it is the reference standard in the University of Chicago Medical Center's MS 

imaging protocol. To create a T1 map from the images, the REQUIRE algorithm for spin-echo 

MR images described in Chapter 2 of this dissertation was completed. 

 Data analysis was completed in MATLAB and consisted of correlation plots with fits via 

linear regression and Bland-Altman plots to determine bias. These plots were generated using 

regions-of-interests (ROIs) placed over a single slice of the test tubes via a gray-level thresholding 

method followed by erosion in MATLAB, and visual inspection ensured only voxels in the test 

tube were included. In addition, Pearson’s Correlation Coefficients was calculated to show the 

relationship between the two mapping methods.  

3.3.4 Results 

The constructed phantom resulted in calculated T1 values ranging from ~100 ms to ~ 1650 

ms when using the gold-standard inversion recovery (IR) with multiple inversion time (Figure 

3.9). From these values, test tubes 1 (top row, first column), 8 (second row, fourth column), and 

29 (containing vegetable oil, located between rows 1 and 2) were selected as reference for the T1-

REQUIRE method due to their approximation of the T1 relaxation times of CSF, GM, and fat, 

along with their wide range of T1 values to fit the signal equation as accurately as possible. 
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Figure 3.9: T1 Map of Agarose/Gadolinium phantom. 29th vial (fat) is placed in between rows 

1 and 2. 

 

 The slopes, p-values, Pearson’s correlation coefficients (R) derived from the linear 

regression of the correlation plots, and mean biases from the Bland-Altman plots are summarized 

in Table 3.2. Correlation and Bland-Altman plots are shown in Figures 3.10-3.12. A high 

correlation coefficient between the T1-REQUIRE and gold-standard IR method along with a 

correlation slope close to one confirms that T1-REQUIRE is a good estimate with the gold-

standard T1 quantification method. This table also shows us that the Look-Locker tends to 

underestimate the true T1 value by about 11%. To correct for this, all Look-Locker T1 maps will 

be corrected by dividing the fit image by 0.89. Once this is completed, T1-REQUIRE also agrees 

well with the corrected Look-Locker T1 quantification method. 
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Table 3.2: Summary of Results of T1/T2 Phantom Study 

T1 Quantification 

Method 

Correlation 

Slope 

p R Mean Bias [95% CI] 

(ms) 

Look-Locker vs IR 

 

0.890 << 0.001 0.975 -100 [-306, 106] 

T1-REQUIRE vs 

IR 

 

0.987 << 0.001 0.905 -28.9 [-485, 427] 

T1-REQUIRE vs 

Look- 

Locker 

(uncorrected) 

 

1.09 << 0.001 0.900 71.5 [-410, 553] 

T1-REQUIRE vs 

Look-Locker 

(corrected) 

0.971 << 0.001 0.900 0.458 [-485, 486] 

 

 

  
(a) (b) 

Figure 3.10: Correlation (a) and Bland-Altman (b) plots for the phantom study between the 

Look-Locker and Inversion Recovery T1 mapping techniques. 
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(a) (b) 

Figure 3.11: Correlation (a) and Bland-Altman (b) plots for the phantom study between T1-

REQUIRE and Inversion Recovery T1 mapping techniques. 

 

 

 

  
(a) (b) 

Figure 3.12: Correlation (a) and Bland-Altman (b) plots for the phantom study between T1-

REQUIRE and corrected Look-Locker T1 mapping techniques. 

 

. 
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3.4 Healthy Volunteer Study 

3.4.1 MR Imaging of Subjects 

 Ten healthy controls (34.1 ± 10.3 years, 7 males, 3 females) were scanned in the same 

Philips Ingenia 3T MRI scanner at the University of Chicago MRIRC. This was a HIPAA 

compliant investigation that was approved by the Institutional Review Board of our institution. 

The protocol for these studies included a T1-mapping Look-Locker with multiple inversion times 

(TE = 4.6 ms, TR = 8 ms, TI = 150, 400, 750, 1500, 3500 ms, α = 12o, 240x196x65 mm3 

[240x240x13 pixels] FOV) and a T1-weighted spin-echo (TE = 10 ms, TR = 525 ms, 240x196x65 

mm3 [240x240x13 pixels] FOV). These two sequences were run back-to-back-to-back to reduce 

the risk of movement in between the three scans.  

3.4.2 Data Analysis 

 Images were exported into MATLAB and converted into T1 maps either by the T1-

REQUIRE algorithm as described in Chapter 2 or via the Look-Locker method described by 

Equations 1.3-1.4. The T1 map generated via the Look-Locker was then corrected due to the 

underestimation found in the phantom study. The T1w spin-echo was registered to the Look 

Locker images via SPM12 prior to analysis. After conversion to T1 maps, both were convolved 

with a 4x4x1 Gaussian smoothing kernel to reduce noise prior to analysis. Like both the digital 

simulation and phantom studies, correlation plots were generated, and both Pearson’s and Lin’s 

Concordance Correlation Coefficients were calculated.63  

3.4.3 Results 

The resulting comparison T1 relaxation times from the ten healthy controls using the Look-Locker 

reference standard and T1-REQUIRE with the spin-echo MRIs are shown in Figure 3.13. For each 
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data set, the T1-REQUIRE method for the was completed in less than a minute on a spin-echo 

image, including the conversion of files from DICOM to NIFTI formatting, and the conversion of 

multiple TI Look-Locker images to T1 maps was completed in an average 106 minutes on the 

same machine at the same resolution, a more than 100x increase in computational efficiency.  

 When comparing the T1 relaxation times from the T1-REQUIRE on spin-echo images with 

those from the reference standard Look-Locker, we found a correlation slope of 0.939, intercept 

of 84.2 ms, Pearson’s correlation coefficient of 0.887, and Lin’s concordance correlation 

coefficient of 0.884. This small difference between the Pearson’s and Lin’s correlation coefficients 

indicates a very slight bias in our method. Using the linear regression fit, we can calculate an 

effective range for T1-REQUIRE on T1-weighted spin-echo images as 523 to 3000 ms, the limit 

of our analysis. 

 In addition to correlation plots, the histograms of the culmination of the ten healthy controls 

are shown in Figure 3.14a-b. Although the T1 maps differ slightly, the same general shape can be 

seen, showing improved data harmonization over the T1-weighted images. Finally, representative 

slices of both T1 maps are shown in Figure 3.15. 

3.5 Discussion 

 Overall, the T1-REQUIRE was validated in three different ways. First, a digital simulation 

run in MATLAB determined the feasibility of the algorithm as a whole. However, it did point out 

some potential pitfalls, including the potential need to account for T2, and likewise, proton density 

variations. Second, a phantom study showed that there was good agreement between T1- 

REQUIRE and the gold standard multiple-TI IR mapping sequence. In addition, it also showed 

that the reference standard used for the healthy volunteer study, the Look-Locker, generally  
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Figure 3.13: Results of healthy control study using corrected multiple-TI Look-Locker as 

reference standard T1 mapping and comparing with novel T1-REQUIRE method using spin-

echo images. T1 maps were registered and convolved with an 4x4x1 voxel smoothing kernel 

before comparison. 

 
 

  
(a) (b) 

Figure 3.14:  Histograms of T1 maps from 10 healthy control brains, with the reference Look-

Locker method (a) and T1-REQUIRE on spin-echo images (b). 
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underestimated T1 when compared to the gold standard by about 11%. This was then corrected for 

any Look-Locker mapping sequence. Finally, a healthy volunteer study showed good agreement 

between the corrected reference standard and T1-REQUIRE in the range of 523 to 3000 ms, which 

should be sufficient for most imaging studies. 

Data harmonization of MRI data is an important aspect of machine learning that is often 

overlooked or understated. Without it, any results may be skewed by variability in scan- or 

scanner-specific properties. Relaxometry could have the dual ability to provide data harmonization 

along with providing interesting, tissue-specific information not previously seen. However, the 

downsides of relaxometry measurements often outweigh the benefit for clinicians, resulting in a 

lack of relaxometry datasets that are suitable for analysis via machine learning. By providing 

estimates of T1 using T1-weighted images, previously acquired weighted images can be converted 

to harmonized estimate T1 maps for big data studies. 

 
 

Figure 3.15: Example T1 maps generated by the reference standard Look-Locker (left) and T1-

REQUIRE on spin-echo images (right).  
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Historically, MR relaxometry can be fit in a variety of ways, including an IR sequence with 

multiple TIs and a spin-echo with multiple repetition times. These sorts of methods have the 

advantage of accuracy but require long scan times prohibiting use in clinical studies.  Other 

sequences have been developed to reduce scan times, such as the Look-Locker method and MR 

Fingerprinting (MRF). These can be implemented as a time-efficient method of acquiring 

quantitative MR parameters like T1.64 But, as time-efficient as they can be, both are still an 

additional scan that clinicians do not often order or use for their clinical analysis of disease. In 

addition, MRF was only introduced within the last 5 years, meaning a large portion of information 

even in current datasets would not have been able to have run an MRF sequence. So, while MRF 

is a useful tool, it is a prospective tool with no applications retrospectively that is not very 

frequently utilized by clinicians. T1-REQUIRE can be used retrospectively with no additional 

sequences required, making it a useful addition to workflow for estimating T1. 

These historical T1, T2, and proton density values, found in the literature, present a 

challenge, as T1 values vary across the same tissue type depending on location (i.e. parietal GM 

having a lower T1 than frontal gray matter – 1276 to 1322 ms, respectively). In addition, intra- 

and inter-scanner variability may result in additional error, as studies have found a 1% intra-

scanner variability, 1% intra-vendor/inter-scanner variability, and an 8-10% inter-vendor 

variability across the whole brain due to factors like B0 field differences, B1 map variations, 

shimming procedure, etc.65 

Many assumptions are made in the T1-REQUIRE algorithm. For the T2 correction, T2 

varies along with T1 in diseased tissue which may lead to a source of error due to the T2 map 

being generated with the assumption of healthy tissue. However, error propagation analysis 

(derived from Equation 2.1 showing how S varies with changes in T1 and T2 before equating 
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them) shows that the true T2 value of a voxel of average gray matter having an uncertainty of 50% 

would result in only a 5.6% uncertainty in T1, and the same in a voxel of average white matter 

would result in an uncertainty of 8.7% (Equations 3.1a-c).66 Because of this, we argue that the 

estimation of T2 step for T1-REQUIRE of a spin-echo remains appropriate except in the most 

extreme cases of changes in T2. This is also exemplified in Figure 3.10, where the putamen and 

caudate nuclei visually appear to have T1 values relatively consistent with the literature even with 

the variation of T2 in deep gray matter. 

𝛿𝑆

𝑆
=

𝑇𝑅 ∙ 𝛿𝑇1

𝑇12 (𝑒
𝑇𝑅
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Equation 3.1a 

𝛿𝑆
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𝑇1
=

𝑇𝐸 ∙ 𝛿𝑇2 ∙ 𝑇1 (𝑒
𝑇𝑅

𝑇1⁄ − 1)

𝑇𝑅 ∙ 𝑇22
 

Equation 3.1c 

 

There are limitations to this study. In addition to needing all three tissue types (GM, WM, 

CSF) in each slice for the fit, this study was also performed on a single 3T Philips Ingenia scanner 

with no changes to protocol (altering TR or TE, slice thickness, etc.). Also, factors such as coil 

sensitivity and flip angle variability were ignored in the brain. However, for applications elsewhere 

(i.e. prostate, cardiac, etc.), they may not be able to be ignored. 

 This pilot study shows the potential viability of T1-REQUIRE for retrospective 

quantification of relaxation times from weighted MR data as both an efficient estimation of T1 and 

a data harmonization technique for machine learning applications. More work needs to be done to 

expand the REQUIRE algorithm to other T1- and T2-weighted imaging sequences as well as 

validation of its potential in machine learning pipelines. 
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CHAPTER 4 

VALIDATION OF T1-REQUIRE ON T1-WEIGHTED MPRAGE MR IMAGES 

 For Chapter 4 of this dissertation, the potential of T1-REQUIRE to be extended to more 

complicated MR sequences with more complex physical processes is investigated. The purpose of 

this chapter is to determine if T1-REQUIRE is applicable to sequences where the exact signal 

equation is unable to be derived directly, and instead must be estimated or simulated. The 

validation process will be similar to Chapter 3; however, no phantom studies were used for 

validation. Therefore, this chapter will be organized as follows: the introduction to MPRAGE, 

digital simulation methods and the results from those simulations, and the healthy volunteer study 

followed by the results of T1-REQUIRE via MPRAGE compared with both the reference 

standards and T1-REQUIRE via spin-echo MR images. Much of this Chapter will echo what was 

discussed in Chapter 3. That being said, the purpose of this chapter being separate is to show how 

more complicated sequences may be adapted and validated into the REQUIRE algorithm.  

4.1 Introduction 

 MPRAGE is a widely used clinical and research scan that can generate high resolution, 3-

D T1w MR images in a short period of time. The sequence itself consists of a 180-degree inversion 

pulse followed by a single segment of a 3-D gradient-echo image after an inversion time TI. There 

is a further delay time after the gradient-echo sequence to allow for relaxation, and then the process 

is repeated until the entirety of 3-D k-space has been covered, at which point a 3-D Fourier 

transform will produce an image of the object. This sequence is especially useful in anatomical 

imaging of the brain, as it has a large amount of contrast between gray and white matter to go 

along with its cubic millimeter isotropic resolution or better.  
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 However, with this remarkable resolution, contrast, and speed comes an incredibly 

complex signal. After searching through the literature, there have been no derivations from first 

principles that have yielded a signal equation like there has been with the much simpler T1w spin-

echo. Therefore, a different approach is required to estimate T1 from signal intensity values. As 

described in detail in Chapter 2 of this dissertation, an approximation of the behavior of the signal 

has been described by Brant-Zawadzki et al.58 

The purpose of this chapter is to attempt to validate the T1-REQUIRE algorithm when it 

is not directly solving for the signal equation and instead is iteratively solving for the best 

approximate solution. To do this, validation was completed in two separate ways. First, simulations 

were run on the digital phantom used in Chapter 3 of this dissertation to determine the effects that 

estimating parameters not fully populated in the image headers had on the overall capability of the 

algorithm. Second, a healthy volunteer study allowed for the implementation of T1-REQUIRE in 

vivo to compare with the reference standard T1 mapping sequence. In addition, estimated T1 maps 

generated by running T1-REQUIRE on both the spin-echo and MPRAGE images were compared 

to determine the consistency of the algorithm at harmonizing data across sequences. Finally, a 

study using the same subjects on various scanners was run to determine the ability for T1-

REQUIRE to harmonize data across scanner type and manufacturer. 

4.2 Digital Simulation 

4.2.1 Digital Phantom Construction 

 The same digital phantom that was constructed for Chapter 3 of this dissertation and 

described in detail in Section 3.2.1 was used for this simulation as well. However, only the T1 

phantom was used, as T2 was not involved in the estimated signal equations for MPRAGE. 
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4.2.2 Simulation Design 

 Using the approximation of the signal intensities described previously along with user-

defined parameters, a noiseless MPRAGE image was generated. Noise was then added to the 

image via a Gaussian distribution (again, as Rician noise can be approximated with a normal 

distribution if the SNR is greater than three). Using this new MPRAGE image, T1-REQUIRE was 

run to estimate the original T1 map. More detail on how this was done can be found in Section 

2.2.4.   

4.2.3 Variation of Imaging Equation Parameters 

 For validation of the MPRAGE, the simulation was used for a slightly different purpose. 

For most of the headers of the MPRAGE MR images, some of the required parameters were not 

filled while others were. The most missed parameter was the recovery time. So, to determine the 

effect of inputting the incorrect Trec, the simulation was run with a set value for the imaging (Trec 

= 800 ms) and an incorrect value for T1-REQUIRE (Trec = 500-1500 ms). Similarly, this process 

was repeated for TR (TR = 8ms, TR = 1-20 ms) and the flip angle (α = 9o, α = 5-20o) to determine 

the effects of inputting an incorrect value. Finally, SNR was varied as well to determine the 

minimum SNR that T1-REQUIRE needs for an appropriate approximation (SNR = 5-100). 

4.2.4 Data Analysis 

Correlation plots were generated on a pixel-wise basis for non-zero pixels, and linear 

regression was performed to find the correlation slope and coefficients of determination (R2) for 

each scenario. Further, Bland-Altman plots were created to find bias within the results, further 

confirmed by inspecting the histogram of the percent error images generated automatically. 
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Finally, the average of the absolute value of the error was used to compare various scenarios such 

as varying the Trec to generate plots for visual analysis. 

4.2.5 Results 

 The results of the simulation, shown in Figures 4.1a-d, give an indication of the importance 

of each parameter on determining the fit. The repetition time and flip angle seem to be essential in 

ensuring some sort of accuracy is achieved, as an incorrectly guessed or estimated repetition time 

and flip angle could lead to average percent differences well over 20%. However, this does not 

  

(a) (b) 

  
(c) (d) 

Figure 4.1: Results of T1-REQUIRE simulation using the MPRAGE signal equations and 

guessing potential missed header parameters. 

 

 



55 

 

seem to be the case for the recovery time or SNR; both seem to be relatively robust and could 

change significantly without a significant impact to the resulting T1 map. 

4.3 Healthy Volunteer Study 

4.3.1 MR Imaging of Subjects 

Ten healthy controls (34.1 ± 10.3 years, 7 males, 3 females) were scanned in a Philips 

Ingenia 3T MRI scanner at our local institution. The protocol for these studies included a T1-

mapping Look-Locker with multiple inversion times (TE = 4.6 ms, TR = 8 ms, TI = 150, 400, 750, 

1500, 3500 ms, α = 12o, 240x196x65 mm3
 [240x240x13 pixels] FOV), a T1-weighted spin-echo 

(TE = 10 ms , TR = 525 ms, 240x196x65 mm3
 [240x240x13 pixels] FOV), and an MPRAGE (TE 

= 2.89 ms, TR = 8 ms, α = 9o, TI = 358 ms, Trec = 400 ms, n = 176, 256x256x176 mm3 

[256x256x176 pixels] FOV). These three sequences were run back-to-back-to-back to reduce the 

risk of movement in between the three scans.  

In addition, a second study was run to determine the validity of T1-REQUIRE for 

MPRAGE images across scanners. Two healthy volunteers (38.5 ± 3.5 years, both females) were 

scanned with some version of a MPRAGE sequence on six various 3T MRI scanners: 2 Philips 

Achieva, a Philips Ingenia, 2 GE Discovery MR750w GEM, and a GE Signa Architect. The scan 

parameters for each are listed in Table 4.1. Images were converted into T1 maps via T1-REQUIRE. 

No T1 mapping reference sequence was used; this study was purely to determine the 

reproducibility of T1-REQUIRE across various scanners types and manufacturers. 

4.3.2 Data Analysis 

 Images were exported into MATLAB and converted into T1 maps either by the T1-

REQUIRE algorithm as described in Chapter 2 (for both the T1w spin-echo and MPRAGE images)  
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or via Equations 1.3-1.4. The T1 map generated via the Look-Locker was then corrected due to 

the underestimation found in the phantom study as described in Chapter 3 of this dissertation. The 

T1w spin-echo and MPRAGE images were registered to the Look Locker images via SPM12 prior 

to analysis. After conversion to T1 maps, all three were convolved with a 4x4x1 Gaussian 

smoothing kernel to reduce noise prior to analysis. Like both the digital simulation and phantom 

studies, correlation plots were generated between the T1 map estimated from the T1-REQUIRE 

and the other two T1 maps, and both Pearson’s and Lin’s Concordance Correlation Coefficients 

were calculated. 

For the second study, no reference T1 mapping image was acquired. Instead, the T1-

REQUIRE algorithm converted the MPRAGE images into T1 maps for comparison with each 

other. The T1-weighted images were registered with each other for each individual subject before 

Table 4.1: Scan Parameters for Multi-Scanner Experiment 
 

GE 

Discovery 

#1 
 

GE 

Discovery 

#2 
 

GE Signa 

Architect 

Philips 

Achieva 

#1 

Philips 

Achieva #2 

Philips 

Ingenia 

Orientation Axial Axial Axial Axial Axial Axial 

# Slices 182 174 174 160 180 167 

Slice Thickness 

(mm) 

1 1 1 1 1 1 

FOV (mm) 256/256 256/256 250/256 250/199 250/225 240/240 

Voxel Size (mm) 1x1x1 1x1x1 1 x 1 x1 1x1x1 1x1x1 1x1x1 

TR (ms) 8.5 8.6 7.9 7.9 6.9 8.1 

TE (ms) 3.2 3.2 3.1 3.5 3.5 3.7 

TI (ms) 450 450 450 827.7 810 1010 

# Channels 16 24 16 32 16 8 
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T1-REQUIRE was run. After conversion to T1 maps, a 4x4x1 smoothing kernel was convolved 

with the maps and T1-weighted images to reduce noise prior to comparison. Linear regression was 

run between maps converted from each sequence and the smoothed T1-weighted images, and the 

results were plotted to compare with the line of unity. In addition, a cumulative distribution 

function (CDF) was plotted for each T1-weighted image and T1 map to determine how well 

harmonized the data were.   

4.3.3 Results of T1-REQUIRE vs Reference Standard 

The resulting comparison T1 relaxation times from the ten healthy controls using the Look-

Locker reference standard, T1-REQUIRE with the spin-echo MRIs, and T1-REQUIRE with the 

MPRAGE MRIs are shown in Figure 4.2a-b. For each data set, the T1-REQUIRE method for the 

was completed in less than a minute on a spin-echo image, including the conversion of files from 

DICOM to NIFTI formatting, and the conversion of multiple TI Look-Locker images to T1 maps 

was completed in an average 106 minutes on the same machine at the same resolution, a more than 

100x increase in computational efficiency. For T1-REQUIRE on the MPRAGE images, the 

average computation time was around 7 minutes for a full estimated 3D T1-map, a 15x increase in 

computational efficiency even with a superior resolution over the Look-Locker images. When T1-

REQUIRE was run on the registered MPRAGE images, the average computation time was just 

over a minute, again more than a 100x increase in computation time.  

 When comparing the T1 relaxation times from the T1-REQUIRE on MPRAGE images 

with those from the reference standard Look-Locker, linear regression produced a correlation slope 

of 0.949, intercept of 416 ms, Pearson’s correlation coefficient of 0.849, and Lin’s concordance 

correlation coefficient of 0.838. Again, there is a slight difference between the two correlation  
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(a) (b) 

Figure 4.2: Results of T1-REQUIRE on MPRAGE MR images versus reference standard (a), 

and T1-REQUIRE on MPRAGE MR images versus T1-REQUIRE on spin-echo MR images 

(b). 

 

 

coefficients, but nothing concerning. Using the fit, we can calculate an effective range for T1-

REQUIRE on T1-weighted MPRAGE images as 682 to 3000 ms. 

 To be effective as a data harmonization algorithm, it is important that T1-REQUIRE 

achieve the same or very similar results regardless of what sort of T1-weighted sequence is run. In 

that regard, we can do a similar analysis on T1-REQUIRE using both the spin-echo and MPRAGE 

images. Linear regression produces a correlation slope of 0.992, intercept of 54.7, Pearson’s 

correlation coefficient of 0.896, and Lin’s concordance correlation coefficient of 0.887, showing 

good agreement between the two with very little bias. 

 In addition to correlation plots, the histograms of the culmination of the ten healthy controls 

are shown in Figure 4.3a-b. Figure 4.3a shows the histograms of the weighted images, while 

Figure 4.3b shows those of the T1 maps. Although the T1 maps differ slightly, especially 

comparing the T1-REQUIRE from the MPRAGE image (right) with the reference T1  
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map (left), the same general shape can be seen, showing improved data harmonization over the 

T1-weighted images. Representative slices of the three T1 maps are shown in Figure 4.4. 

4.3.4 Results of T1-REQUIRE Across Scanners 

Figure 4.5 shows the results of the linear regression between either the original MPRAGE 

images (red dotted line) and T1-REQUIRE (black dashed line), along with the line of unity (cyan  

 
(a) 

 
(b) 

Figure 4.3: Histograms of 10 healthy control brains, including T1-weighted spin-echo and 

MPRAGE (a), and T1 maps generated via Look-Locker, T1-REQUIRE on spin-echo images, 

and T1-REQUIRE on MPRAGE images. 
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Figure 4.4: Example T1 maps generated by the reference standard Look-Locker (left), T1-

REQUIRE on spin-echo images (middle), and T1-REQUIRE on MPRAGE images (right). Red 

areas around the cortex are probably due to partial volume effects of GM with CSF. 

 

  
(a) (b) 

Figure 4.5: Results from linear regression analysis comparing MPRAGE vs MPRAGE T1-

weighted images (red dashed line) and corresponding T1-REQUIRE vs T1-REQUIRE (black 

dashed line) from Subject 1 (a) and Subject 2 (b) taken on 6 different scanners, along with the 

line of unity (cyan). Better normalization is indicated by a line closer to the cyan line of unity. 

 

 

filled line) for both Subject 1 (left) and Subject 2 (right). Visual inspection shows that the spread 

of comparisons between T1 maps generated via T1-REQUIRE is much more consistent with each 

other and with the line of unity, providing evidence that T1-REQUIRE is a useful data 

harmonization tool across scanners. This result is consistent with the CDFs shown in Figure 4.6,  
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where the MPRAGE images have drastically varying CDFs that are much more uniform after T1-

REQUIRE is completed. 

4.4 Discussion 

 The results of the experiments run in this chapter show that T1-REQUIRE may be able to 

be expanded to other T1-weighted sequences. This is shown by good correlation between T1-

REQUIRE run on MPRAGE images and the reference standard, along with T1-REQUIRE run on 

  

(a) (b) 

  

(c) (d) 

Figure 4.6: Comparison of CDFs from Subject 1 (a-b) and Subject 2 (c-d) for both the MPRAGE 

images (a,c) and T1-REQUIRE maps (b,d) from 6 different scanners. For both subjects, there 

was clear improvement in the normalization of the CDFs after applying T1-REQUIRE. 
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both MPRAGE and spin-echo MR images. This shows the potential power of this methodology: 

by removing the sequence-dependent contrast from the image, it may now be possible to run 

studies on large datasets that involve weighted MR images but are run using different sequences. 

 In addition, the results of the experiment involving two subjects being scanned with a 

MPRAGE (or variation of MPRAGE) sequence over multiple scanners show the impact that T1-

REQUIRE can have as a data harmonization algorithm across scanners. This, again, could be of 

huge importance as more and more big data studies are being completed. By using the REQUIRE 

algorithm, these studies have shown that the scanner and sequence dependence is removed, leading 

to improved data harmonization and potentially more applicable information, as T1 is a 

quantitative value unlike normal MR contrast. 

 However, the notion of this algorithm being impactful in big data studies needs to be tested 

more thoroughly. This was a pilot study run on a total of twelve subjects and may need to be 

scrutinized further to determine potential pitfalls and biases. That being said, the initial results 

show promise for both data harmonization and MR quantification. This idea will be investigated 

further in the following chapter (Chapter 5) of this dissertation. 
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CHAPTER 5 

PREDICTION OF ACTIVE VERSUS INACTIVE MS LESIONS USING LOGISTIC 

REGRESSION 

5.1 Introduction 

As discussed in the introduction, Multiple Sclerosis (MS) is a chronic neuroinflammatory 

disease of the central nervous system characterized by focal demyelination of axons into lesions 

referred to as “plaques” throughout white matter.67-70 To diagnose and track progression of the 

disease, magnetic resonance imaging (MRI) is used, as lesions show up clearly on standard MR 

weightings. However, MR features have only been shown to be moderately correlated with 

disability, implying that MS is a “clinico-radiological paradox” where disease appearing on MRI 

does not necessarily indicate clinical symptoms.71-72 Studies have shown poor to moderate 

correlations between disability and radiological features such as white matter lesion load.35-37, 73 

Quantitative MR features, such as relaxometry, proton density (PD) imaging, and the 

magnetization transfer ratio (MTR) have been shown to better correlate with clinical outcomes.74-

77 This indicates that quantitative biomarkers may be more indicative of pathophysiology than 

weighted biomarkers. However, these are generally global features and do not always provide 

additional information about the lesions themselves. 

One of the weighted biomarkers of new disease activity in MS is whether new lesions are 

enhanced when a gadolinium-based contrast agent (GBCA) is administered for a T1-weighted 

(T1w) post-contrast image. The current consensus is that disruptions in the blood-brain barrier 

(BBB) that allow for the contrast agent to leak through are indicative of active inflammation in 

that lesion.67-68, 73 Eventually, these axons in these active lesions will begin to lose their myelin 
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sheath and perhaps even die, resulting in permanent damage. These lesions will show up as “black-

holes” or regions of hypointensity on T1w imaging. Because there is no active inflammation in 

that area, the BBB will not allow contrast to leak into the lesion, and the lesion is no longer active. 

There is also an area of active interest in between the two states, where “gray-holes” appear and 

may be indicative of the remyelination process.  

  

(a) (b) 

Figure 5.1: MS lesions on T1w post-contrast MRIs showing dark lesions indicating inactive 

lesions (a) and bright spots indicating active lesions (b) 

 

 

The above illustrates the need for physicians to be able to discern which lesions are active 

versus inactive and whether there is any new activity. Therefore, the GBCA is generally given to 

MS patients during their regular MR scans. This could pose a problem, as some studies have 

indicated that consistent administration of GBCAs can lead to deposition in the brain.78-83 Patients 

in renal failure should also not receive contrast, as it can lead to potentially lethal nephrogenic 

systemic fibrosis.83 In addition, the monetary costs of the GBCA itself, the staff to administer it, 

and the discomfort to the patient due to the intravenous injection all lends itself towards the 

conclusion that reducing the amount of GBCA MS patients receive is beneficial. 
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In this chapter, we investigated two ways to potentially use features derived from T1w pre-

contrast images to predict the enhancement status of lesions. First, features derived directly from 

the T1w pre-contrast segmentations of the lesions were used with logistic regression to predict 

enhancement status. Second, the T1-REQUIRE algorithm described in Chapter 2 and validated in 

Chapters 3 and 4 of this dissertation was used to estimate a T1 map (qT1) from the T1w MR 

images. Using the lesion segmentations from these qT1 images, the same features were calculated 

and used to predict the enhancement status of the lesions. The results from these two predictive 

analyses were compared to determine if estimated quantitative MR features derived from the T1w 

MR images are any more predictive of enhancement status. 

5.2 Methods and Materials 

We performed a retrospective analysis of MRI exams collected as part of the normal evaluation of 

MS patients at our institution to determine the predictive value of features derives from pre-

contrast MRI to predict gadolinium contrast agent enhancement, a marker of active inflammation. 

5.2.1 Subjects 

This study was approved by the Institutional Review Board of our local institution. 40 

patients (32 females, 8 males, average age of 35.9 ± 10.0 years) with clinically diagnosed MS 

according to the revised McDonald criteria were included in this study. The patient data was a 

combination of two separate imaging datasets. 

5.2.2 Imaging 

All imaging was performed on either a Philips Achieva 3T or Philips Ingenia 3T whole-

body scanner with a 16-channel head coil. Imaging data was combined from two independent 

imaging studies. Each patient underwent imaging at baseline, when symptoms first were reported, 
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and some had additional imaging at further time points for a total of 61 imaging datasets. For every 

patient, both a pre-contrast and post-contrast T1w spin-echo image in addition to a fluid-attenuated 

inversion recovery (FLAIR) image and further MR images consistent with the MS imaging 

protocol at our local institution.  

5.2.3 Data Processing 

All data processing was performed in commercially available software (MATLAB v2019b, 

The Mathworks, Nantick, MA, USA). The T1w pre- and post-contrast images at each time point, 

plus the FLAIR images and timepoints further along from the baseline, were all registered to the 

FLAIR baseline image using Statistical Parameter Mapping v12 (SPM12 - Wellcome Centre for 

Human Neuroimaging, University College London, UK). Once registered, MS lesions were 

segmented from all FLAIR images using a lesion prediction algorithm developed by Schmidt et 

al.84 Lesion segmentations with volumes greater than 100 mm3 were applied to the registered T1w 

pre- and post-contrast images, and 8 first-order features were derived from each image (Table 5.1). 

The lesions were separated into two classes. If the lesion had a T1w post-contrast maximum 

intensity greater than two standard deviations above the average white matter intensity on the T1w 

post-contrast image, it was considered to be contrast enhancing (CE). Otherwise, the lesion would 

be labeled as non-contrast enhancing (nCE). This was chosen as the discriminating factor between 

the two classes because it is similar to an assessment a neuroradiologist or neurologist would 

complete to determine enhancement versus non-enhancement. Visually, CE lesions would have 

areas of hyperintensity relative to the white matter, even if the entire lesion volume was not 

enhanced. Each time point, including those of the same patient, was considered independent. 
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In addition, T1-REQUIRE was also applied to the T1w pre-contrast images. As described 

in Chapter 2 of this dissertation, healthy tissue segmented via SPM12 and those tissues’ T1, T2, 

and proton density values referenced in the literature along with the spin-echo signal equation was  

Table 5.1: Chosen first-order features and their definitions. 
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used to generate an estimated T1 map (qT1) was derived from the T1w pre-contrast images (Figure 

1). The lesion segmentations were then applied to the qT1 pre-contrast images, and the same 8 

first-order features were calculated. The lesion class was the same as with the weighted images, as 

the weighted image is used clinically to determine enhancement status so it would be inappropriate 

to redefine what constituted a CE lesion. 
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5.2.4 Data Analysis 

The mean feature values were compared using a Student’s t-test to identify differences 

between CE and nCE lesions. Significance was set at the 95% confidence level (p < 0.05) corrected 

for multiple comparisons via the Bonferroni correction. Logistic regression was performed on the 

8 features extracted from both the T1w and qT1 pre-contrast images using MATLAB, and receiver 

operator characteristic (ROC) analysis was performed and the area under the curve (AUC) was 

used to determined diagnostic accuracy. Comparison of AUC values for significance was achieved 

using the method described by Hanley and McNeil, with p < 0.05 considered significant.85 5-fold 

cross validation was completed on both the T1w and qT1 datasets to determine total accuracy. To 

compare accuracies, a test of hypothesis concerning a system of two proportions was completed, 

again with the results considered significant when p < 0.05.86 

5.2.5 Testing/Training on Distinct Datasets 

 To determine the effectiveness of the qT1 images generated by T1-REQUIRE, the 

collected datasets were separated into training and testing classes based on which of the two 

original datasets they came from (Dataset #1 or Dataset #2). Then, logistic regression analysis was 

completed using Dataset #1 to train and Dataset #2 to test, and vice versa. This was completed for 

both the T1w feature sets and qT1 feature sets to determine if T1-REQUIRE provided additional 

benefit as a data harmonization algorithm. 

5.3 Results 

5.3.1 Segmentation and Classification of Lesions 

From an initial sample of 61 complete exams, 4 (6.5%) were rejected for further analysis 

because incomplete headers caused an error in the image registration step of the analysis pipeline.  
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FLAIR MR 

 

T1w pre-contrast 

 

qT1 pre-contrast 

 

T1w post-contrast 

 

Figure 5.2: Flowchart depicting the analysis pipeline, beginning with the segmentation from 

the FLAIR image, application of the lesion segmentation to the T1w and qT1 pre-contrast 

images, and the comparison of the trained logistic regression classifier output with the truth from 

the T1w post-contrast image. 
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This left 57 time points with the required MR images which were analyzed. After 

segmentation, a total of 1,665 lesions were segmented. Most of these were sparse voxels within 

the “dirty” white matter. After the volume criteria of greater than 100 mm3 was applied, a total of 

263 lesion were identified. Of these, 104 were classified as CE, while the remaining 159 were 

classified as nCE. 

 

Figure 5.3: Flowchart of dataset selection criteria and removal of data. 

 

5.3.2 T1w Analysis 

Using the features derived from the T1w pre-contrast images of the lesions, a student’s t-

test was applied to each feature with a Bonferroni correction for multiple comparisons setting the 

significant p-value at 0.00625 (8 total features). Three features were determined to be significant: 

the standard deviation of the lesion (p = 0.00301), the minimum voxel value within the lesion (p 

= 0.000255), and the range of voxel values (p = 4.1E-12). A boxplot of the features between the 

two classes is shown in Figure 5.4. 

Logistic regression was run on the T1w data for three different combinations of features, 

followed by an ROC curve and AUC value. When all T1w pre-contrast features were included, an 
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AUC of 0.914 was achieved (Figure 5.5). Beta values and p-values for the coefficients are shown 

in Table 5.2. After running 5-fold cross validation (Table 5.3, Figure 5.6), a total accuracy of 0.833 

was calculated.   

 

 

Figure 5.5: ROC curve for logistic regression fit of features extracted from T1w data. 

 

 

 

Figure 5.4: Boxplot for 8 features derived from T1w data divided into two classes: CE and nCE. 

Significant differences indicated by asterisks. 



72 

 

Table 5.2 Beta values and significance from logistic regression analysis of 

features extracted from T1w data. 

Feature Beta p-value 

X0 -0.541 0.401 

X1 (Average) 0.0267 0.676 

X2 (Stdev) -0.188 3.84E-7 

X3 (Median) -0.0261 0.640 

X4 (Max) -7.16E6 0.304 

X5 (Min) 7.16E6 0.304 

X6 (Range) 7.16E6 0.304 

X7 (Skewness) -1.19 0.0555 

X8 (Kurtosis) -0.314 0.0323 

 

5.3.3 qT1 Analysis 

Using the features derived from the qT1 pre-contrast images of the lesions, a student’s t-

test was applied to each feature with a Bonferroni correction for multiple comparisons setting the 

significant p-value at 0.00625 (8 total features). Six features were found to be significantly  

 

Figure 5.6: ROC curves for training and testing datasets using 5-fold cross validation with 

logistic regression operator on T1w data. 
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Table 5.3: AUCs from 5-fold cross validation study on T1w data. 

Fold # AUC Train AUC Test 

1 0.906 0.945 

2 0.902 0.933 

3 0.918 0.881 

4 0.942 0.795 

5 0.910 0.925 

Avg (SD) 0.916 (0.0159) 0.896 (0.0613) 

 

different between the groups: standard deviation (p = 2.07E-8), maximum intensity (p = 6.29E-

17), minimum intensity (p = 1.22E-21), range of intensities (p = 2.97E-22), skewness (p = 1.20E-

11), and kurtosis (p = 9.59E-6). A boxplot of the features between the two classes is shown in 

Figure 5.7. 

Logistic regression was run on the qT1 data for three different combinations of features, 

followed by an ROC curve and AUC value. When all qT1 pre-contrast features were included, an 

AUC of 0.927 was achieved (Figure 5.8). Beta values and p-values for the coefficients are shown 

in Table 5.4. After applying 5-fold cross validation to the qT1 data (Table 5.5, Figure 5.9), an 

accuracy of 0.848 was calculated. 

5.3.4 T1w versus qT1 Comparison 

When comparing the AUC values from the ROC curves using the qT1 and T1w data, there 

was no significant differences in the two (p = 0.328). Similarly, after using a test of hypothesis 

concerning a system of two proportions, we again find no significant difference between the T1w 

and qT1 datasets (p = 0.317).  
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Figure 5.7: Boxplot for 8 features derived from qT1 data divided into two classes: CE and nCE. 

Significant differences indicated by asterisks. 

 

 

 

Figure 5.8: ROC curve for logistic regression fit of features extracted from qT1 data. 
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Figure 5.9: ROC curves for training and testing datasets using 5-fold cross validation with 

logistic regression operator on qT1 data. 

 

 

 

Table 5.4 Beta values and significance from logistic regression analysis of 

features extracted from qT1 data. 

Feature Beta p-value 

X0 4.81 0.0224 

X1 (Average) 0.0144 0.374 

X2 (Stdev) -0.0243 0.0122 

X3 (Median) 0.000830 0.943 

X4 (Max) 1.67E5 0.733 

X5 (Min) -1.67E5 0.733 

X6 (Range) -1.67E5 0.733 

X7 (Skewness) 2.36 0.00259 

X8 (Kurtosis) -0.298 0.00738 
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Table 5.5: AUCs from 5-fold cross validation study on qT1 data. 

Fold # AUC Train AUC Test 

1 0.929 0.920 

2 0.916 0.945 

3 0.932 0.893 

4 0.929 0.903 

5 0.929 0.913 

Avg (SD) 0.927 (0.0063) 0.915 (0.0197) 

 

5.3.5 Testing/Training on Distinct Datasets 

However, an additional test was run. The data acquired were a combination of two datasets. 

To test the usefulness of the T1-REQUIRE algorithm, the T1w and qT1 data from Dataset #1 were 

used to train the logistic regression algorithms for testing on Dataset #2 and vice versa. When the 

T1w data was used, the logistic regression algorithm was able to train on Dataset #1 and test on 

Dataset #2, with a training AUC of 0.927 and testing AUC of 0.889. However, the logistic 

regression algorithm failed to converge to a solution when training on the T1w data in Dataset #2 

and testing on Dataset #1. 

Conversely, the qT1 data converted via T1-REQUIRE was able to successfully train and 

test on both datasets. When Dataset #1 was used to train and Dataset #2 used to test, a training 

AUC of 0.930 and testing AUC of 0.823 was found. When Dataset #2 was used to train and Dataset 

#1 was used to test, a training AUC of 0.944 and testing AUC of 0.797 was calculated. 

5.4 Discussion 

In this chapter, a pipeline was developed that incorporated the automatic segmentation of 

and feature extraction from MS lesions. In addition, it was found that first-order gray-level features 

derived from the T1w pre-contrast MRIs of the lesions had the potential to be indicative of contrast  
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(a) (b) 

Figure 5.10: Training/Testing ROC analysis when training on Dataset #1 and testing on Dataset 

#2 and vice versa for the T1w data (a) and qT1 data (b). 

 

 

enhancement of lesions on the T1w post-contrast MRIs. The AUC of a logistic regression 

algorithm applied to the T1w features was 0.914, with an accuracy of 0.833. In addition, the T1w 

MRIs were converted to estimated T1 maps using a novel post-processing algorithm (T1-

REQUIRE), and a similar analysis showed that logistic regression on the qT1 features resulted in 

a non-significant increase in the AUC (0.927) and accuracy (0.848). However, the qT1 data was 

able to successfully train and test on both datasets, while the T1w data was not, providing evidence 

of the T1-REQUIRE algorithm’s usefulness. 

Regardless of the differences in T1w and qT1 data, this analysis shows that it may be 

possible to use features from the T1w pre-contrast image to predict whether a MS lesion will 

enhance or not if GBCA would be given. This could be essential to cutting costs, reducing scan 

time, and protecting the well-being of patients with MS, and MRIs with contrast are common 

practice for the monitoring of their disease. 
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Other studies have shown that it is possible to use quantitative MR features to determine 

the enhancement status of MS lesion. Such studies have looked at quantitative T1 values, PD, and 

MTR values to determine differences between enhancing and non-enhancing lesions, and some 

have even used models to predict enhancement status.87-89 However, these studies, while resulting 

in significant differences between mean values in enhancing and non-enhancing, have AUCs on 

the order of 0.83, significantly less than this study. In addition, those studies employed complicated 

quantitative techniques that increased time and cost with no benefit clinically for a neurologist or 

neuroradiologist. By using multiple first-order featured derived from both the T1w and qT1 lesion 

segmentations, we outperformed the previous studies using only scans that are already included in 

the clinical workflow. This provides evidence that other features like the texture of the MS lesion 

given by the standard deviation of values may be indicative of the biological process resulting in 

the disruption of the BBB. More research should be performed into the most predictive features 

and their relationship to the microenvironment within the lesion before fully concluding that 

features derived from T1w MRIs or qT1 images are able to accurately determine enhancement 

status. 

One of the most important results of this study, though, was the ability to improve data 

harmonization with T1-REQUIRE. Because future studies may rely on training on one dataset and 

testing on another, it is essential that a data harmonization step must be completed. T1-REQUIRE 

was shown to do this using two separate datasets to an acceptable degree; the logistic regression 

algorithm was able to test and train on both Dataset #1 and Dataset #2 after T1-REQUIRE was 

applied, but not before. This provides initial evidence that T1-REQUIRE could be a useful addition 

to a big data or machine learning pipeline with minimal intrusion. 



79 

 

Limitations to this study include the lack of type of MS diagnosis (primary progressive 

versus secondary progressive versus relapsing remitting) that may confound the results. In 

addition, the lesion segmentation algorithm used is not clinically used, which may result in some 

discrepancies in what would be considered a lesion. However, because the algorithm was shown 

to have dice coefficients similar to that of two independent readers for larger lesion sizes, this 

should not be an issue.84 Finally, this was a small study on only Philips’ MR scanners that was 

intended to investigate the use of multiple features in a logistic regression predictor. A large study 

should be run to validate the accuracy of using T1 features derived from pre-contrast MR images 

before considering replacing the use of GBCA clinically for MS patient.  

In conclusion, the study performed in this chapter shows that a multi-feature analysis using 

features derived from segmentations of T1w pre-contrast MS lesions was effective in predicting 

whether a lesion would enhance if GBCA was administered. In addition, moderate but insignificant 

improvement was shown using the same features derived from the qT1 MR image. However, the 

T1-REQUIRE algorithm did show promise as a data harmonizer when using separate datasets to 

test and train.   

 

  



80 

 

CHAPTER 6 

SUMMARY AND FUTURE DIRECTIONS 

 This chapter presents a summary of the findings and contributions of this dissertation and 

gives outlines some ideas to further the presented work. In summary, this dissertation shows the 

results of an automatic, retrospective MR quantification algorithm and validates this novel 

algorithm against reference standard relaxometry techniques. Furthermore, the REQUIRE 

algorithm was tested on a combination of two datasets consisting of patients with MS in a multi-

feature study of the contrast enhancement status of MS lesions. We did this in two ways; First, we 

compared the same logistic regression algorithm for prediction contrast enhancement with a 

random selection of training and testing data. Second, we compared the results of the same logistic 

regression methodology when we separated the data into its original two datasets. 

6.1 Summary 

 Chapter 2 of this dissertation gives a detailed description of the physics behind and 

implementation of the REQUIRE algorithm. The REQUIRE algorithm differs from normal data 

harmonization algorithms by not only presenting a non-linear, physics-based approach to 

normalization, but also generating MR maps that reflect the properties of the tissue contained in 

each voxel. This can potentially help in both big data studies and relaxometry studies. 

 Chapter 3 shows the results of the validation of the REQUIRE algorithm on T1w spin-echo 

MR images. These were chosen for the initial validation due to the simplicity of the spin-echo MR 

sequence and the applicability of a T1w MRI for our eventual target disease of MS. Because of 

the sensitivity of the spin-echo signal equation to both variations in proton density and T2, 

necessary corrections were developed and applied to the MR image to create a pseudo-T1w image. 
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After being transformed into a T1 map by the REQUIRE algorithm, we found good comparison 

with the reference standard in both the case of a gadolinium/agar phantom and a healthy volunteer 

study. The healthy volunteer study also gave a range of T1 values for T1-REQUIRE to be 

applicable to ± 10% (523 to 3000 ms), which is an appropriate range for most cases of anatomical 

MR studies of the brain. A high correlation coefficient and Lin’s concordance correlation 

coefficient also give evidence for T1-REQUIRE being comparable to the reference standard. 

Visual inspection of the histograms of the reference standard T1 maps and the T1-REQUIRE maps 

show similar overall shapes and distributions, again supporting the fact that a simple, physics-

based, non-linear transform may be used as an estimate of T1. In addition, T1-REQUIRE was able 

to efficiently estimate T1, with over a 100-fold decrease in computation time compared to the 

Look-Locker method. 

 Chapter 4 expanded upon Chapter 3 of this dissertation by applying a similar methodology 

to a T1w MPRAGE MR sequence. By choosing a more complicated sequence, we were hoping to 

show the versatility of the REQUIRE algorithm to even more complex MR methods. Two studies 

were completed in Chapter 4. The first one involved the same healthy volunteer study as in Chapter 

3, where we showed that there was good correlation between T1-REQUIRE with the MPRAGE 

images and the reference standard. Slightly more bias was detected, as shown in the discrepancy 

between the Pearson’s and Lin’s correlation coefficients, but an applicable range where T1 was ± 

10% was determined to be from 682 to 3000 ms. In addition, T1-REQUIRE was compared 

between the MPRAGE and spin-echo MR sequences, with very good agreement and high 

correlation between the two.  

 The second study described in Chapter 4 determined the ability for T1-REQUIRE to 

remove scanner and sequence parameter dependence by using the same two healthy volunteers 
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and scanning them on multiple scanners. This study shows the viability of T1-REQUIRE to aid in 

data harmonization, as there was a marked decrease in variability when comparing T1 maps 

generated by T1-REQUIRE than there was when comparing MPRAGE images. In addition, the 

comparison of T1 maps generated by T1-REQUIRE was much more closely clustered around the 

line of unity for both subjects, thus providing evidence that T1-REQUIRE was effectively 

harmonizing the data. 

 Chapter 5 showed an example of the usage of T1-REQUIRE in a practical, clinical study. 

Using a multi-feature approach on both the T1w and qT1 MR images, logistic regression showed 

that there are defining features that can separate MS lesions into enhancing and non-enhancing 

classes without the need for gadolinium contrast agent injection. This, if confirmed in a larger 

study, could reduce the need for GCBAs, resulting in more patient comfort and less potential side 

effects and risks without removing the necessary information of active versus inactive MS lesions. 

We showed that a multi-feature approach achieved an accuracy of between 83-85%, with AUC 

values around 0.9-0.92. We believe that with more data, this accuracy can increase, potentially 

removing the need for GBCAs with MS patients. In addition, we also showed that although T1-

REQUIRE did not significantly improve results when choosing the testing and training data 

randomly, it did improve the results when testing on one dataset and training on a separate one. 

This, again, highlights the potential use of T1-REQUIRE as a data harmonization algorithm for 

MR studies. 

6.2 Future Directions 

There are two categories of projects that could be explored in the future to further the work 

described in this dissertation. The first involves the development and validation of the REQUIRE 
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algorithm, and the second involves the testing of the applicability of REQUIRE to answer clinical 

questions.  

6.2.1 Furthering the Development and Validation of the REQUIRE Algorithm 

1. Other factors need to be explored in order to better validate the REQUIRE algorithm. 

Specifically, tests that involve the determination of the effect of variability in flip angle 

and coil sensitivity would be of potential interest. More options could include removing 

raw k-space data from the scanner to reconstruct without any proprietary filters. 

2. More exploration should be conducted into scanning the same subjects on the same 

scanners with the same sequence but varied parameters (i.e. varying TR and TE for 

multiple T1w spin-echo images). This was not completed in our studies but could show the 

robustness of the REQUIRE algorithm to remove sequence parameters. Caution must be 

taken to ensure that the weighting remains the same for each image, however; otherwise, 

the signal may become dominated by the opposing weighting and result in significant errors 

in the analysis. 

3. A bigger study should be completed to determine the inter-scanner variability for T1-

REQUIRE among the major scanner manufacturers and models. We included a limited 

study consisting of two subjects with six scanners total, but this is not sufficient. Ideally, 

the REQUIRE algorithm would remove all variability between scanners; we cannot 

confidently say this is the case with such a small study. 

4. The REQUIRE algorithm should be expanded to other T1w MR sequences along with other 

MR weightings. Options that could be of interest for T1w MR imaging could include fast 

low-angle shot (FLASH) and short inversion time recovery (STIR) sequences. It would be 

important to expand the REQUIRE algorithm to other weightings as well, especially T2w 
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images. More specifically, the comparison between a T2w image and a FLAIR image 

would be interesting to explore, as any mismatch could be indicative of underlying 

pathology as with various CNS tumors.90-91 

6.2.2 Applications of REQUIRE Algorithm 

There are a multitude of potential clinical applications of the REQUIRE algorithm. This 

section will highlight a few specific ones. It is worth mentioning that all the diseases mentioned 

involve the brain; this is due to the REQUIRE algorithm only being tested thus far in brain imaging.  

1. As explained in both Chapters 1 and 5 of this dissertation, MS is a very heterogeneous 

disease and is a “clinico-radiological paradox”, where radiological evidence of disease 

is not necessarily indicative of clinical disability or disease progression. In addition, 

MS patients routinely undergo MRI scans to aid in their disease management. This 

means that there are large amounts of longitudinal MS patient data that could be 

explored to answer questions about the disease. The REQUIRE algorithm can 

contribute to this potential analysis by harmonizing the data and providing quantitative 

maps to add even more information to the study. 

2. As mentioned previously in this chapter, CNS tumors could also be a target for the 

REQUIRE algorithm. Various quantitative factors could be used to understand the 

genomic expression within and between similar tumors, and potentially help clinicians 

determine what treatments could be most effective for a patient’s specific tumor type. 

3. Another potential target for the REQUIRE algorithm is aneurysms. Factors such as 

ktrans have been looked at to determine the thickness of the aneurysm wall. The 

REQUIRE algorithm could replace the T1 mapping step necessary for the 

determination of this value.92 
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6.3 Final Thoughts 

More and more research being completed in the world of medical imaging involves the 

usage of quantitative values from large datasets. The REQUIRE algorithm has the ability to be 

easily implemented into these workflows as both a quantification or relaxometry algorithm to 

produce MR maps and as a data harmonization algorithm to reduce inter- and intra-scanner and 

sequence variability for these studies. Although it is in its infancy, the evidence provided shows 

that the REQUIRE algorithm efficiently does both of those tasks and could be a useful addition to 

big data MR studies. 
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