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ABSTRACT

Advances in genetic sequencing technology have given us an abundance of whole genome

sequencing data that can tell us much about evolutionary processes and population history.

Coalescent hidden Markov models (CHMMs) are a powerful class of methods that use both

genetic variation and genetic linkage information to untangle the complex demographic his-

tories of natural populations. This thesis presents CHIMP (CHMM History-Inference ML

Procedure), a novel CHMM implementation that can use both the height (TMRCA) and the

total branch length (L) of the underlying genealogical tree as the latent variable in the HMM

as the method moves sequentially along the genome. The primary application of CHIMP is

in demographic inference problems, and we perform a suite of simulations to benchmark the

performance of CHIMP among other state of the art CHMMs. We also demonstrate the use

of CHIMP to perform demographic inference in structured populations. Finally we introduce

CHIMP-PD, an extension that is used to decode the posterior probability of the CHMM, and

explore its use in uncovering patterns of adaptive variation. This work ultimately demon-

strates that CHIMP provides a flexible, efficient alternative to other methods, particularly

when analyzing unphased and pseudohaploid data.
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CHAPTER 1

INTRODUCTION

Technological advances in full-genome sequencing in the recent decades have made it possible

to collect increasingly large amounts of genomic data sampled from individuals across diverse

population groups and even species. These data can be used to study relatedness among

individuals and can also infer complex demographic histories, helping to unravel population

size changes, population structure and migration events. In addition, adaptation of beneficial

alleles and other forms of genetic selection often leave characteristic signatures in the genome

that can be studied to better understand the selective processes that continue to shape our

DNA. Thus, this wealth of genomic data gives us a unique window into many of the forces

that shape our genetic material.

Population history is one such force that has been of particular interest to population

geneticists. Understanding the evolutionary history of humans can be both culturally and

anthropologically illuminating, but it is also important in other medical and health-related

applications. For example, genome wide association studies (GWAS), a popular tool used

to detect associations between genetic factors and specific phenotypic outcomes, can be

confounded by genetic variation arising from demographic history [1]. Thus it is crucial

to develop population genetic tools for analyzing whole-genome sequencing data that can

infer the underlying demographic history and establish appropriate null models for these

associations and other studies.

To date, many methods have been presented in the literature that infer different aspects

of demographic histories from different signals in the data. The primary focus in this study

is on the inference of the size history of a single population, and here we briefly review

methods with a similar focus. Several methods perform inference using the site frequency

spectrum (SFS), either assuming no linkage between sites [2, 3], or complete linkage [4].

These methods can be efficiently applied to large sample sizes which particularly improves

1



their ability to infer recent population size changes [3, 5]. However, these methods do not

leverage information about decay of linkage disequilibrium along the chromosome, which has

been shown to increase power. Other methods make use of linkage information by fitting

demographic models to the empirical distribution of long shared tracts of Identity-By-Descent

directly [6, 7]. Since most such methods consider tracts above a certain length threshold,

they are also most powerful at inferring recent population size changes. While these methods

account for some linkage information, they do not model the correlation in tract length along

the genome. Some recent methods aim to directly reconstruct the multi-locus genealogy

relating the sampled individuals from high-quality genomic sequencing data [8, 9, 10]. Such

genealogies are useful for a variety of down-stream analyses and can be used for demographic

inference as well.

A powerful class of methods to infer population size histories that account for linkage,

both in terms of length of shared haplotypes and correlation along the genome, are Coalescent

Hidden Markov Models (CHMMs). These methods are based on the Sequentially Markovian

Coalescent (SMC) introduced by [11], based on work by [12]. In this framework, the cor-

relations among the marginal genealogies relating the sampled individuals at each locus in

the genome due to chromosomal linkage and ancestral recombination events is approximated

by a Markov chain. The observed genetic variation is subsequently modeled by a mutation

process on these marginal genealogies. Using the full marginal genealogies as latent states in

a Hidden Markov Model (HMM) framework is prohibitive, but employing lower-dimensional

summaries of these genealogies facilitates computationally efficient inference of population

size histories.

A number of different CHMM-based inference tools have been developed, including

PSMC [13], MSMC [14], MSMC2 [15], SMC++ [16], and diCal [17, 18]. These methods differ in the

sample size that they can analyze and in how the marginal genealogies are represented in

the respective CHMM. For example, PSMC can only be applied to samples of size 2, whereas
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MSMC2 can process more samples. However, the computational cost of the latter does increase

substantially with sample size. SMC++ can be applied to large samples and the data does not

need to be phased, whereas diCal requires phased data and is only applicable to moderate

sample sizes. The specific implementation details result in each method performing well for

certain sample sizes and for certain time periods [19, 20], but no method performs uniformly

well across all parameter regimes.

This thesis presents a novel CHMM method, CHIMP (CHMM History-Inference ML

Procedure), that can handle unphased and pseudo-haploid data and scales efficiently to

large sample sizes. Chapter 2 describes the modeling framework for CHIMP and describes

our two implementations that differ in the hidden state space that they use for the CHMM.

One implementation uses the TMRCA, the time to most recent common ancestor of the

local genealogical tree, while the other uses L, the total branch length of the tree. This

chapter also describes how to numerically solve certain systems of differential equations to

compute the necessary transition and emission probabilities for the CHMM, thus extending

previous work done on the subject [21]. Chapter 3 incorporates the CHMM model presented

in Chapter 2 into a standard Expectation-Maximization (EM) framework to perform de-

mographic inference and presents the results of a suite of tests comparing CHIMP to other

similar methods. Chapter 4 explores how CHIMP can be applied in cases with more struc-

tured populations. Finally, Chapter 5 uses the machinery of CHIMP to study the posterior

distribution of the latent state. We demonstrate how tree shape can be affected by selection,

and how CHIMP-PD can be used as a tool for detecting adaptive variation.

The methods and results presented in Chapters 2 and 3 are available as a pre-print on

the bioRxiv and are under review for further publication. The software for CHIMP is available

at https://github.com/steinrue/chimp.
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CHAPTER 2

CHIMP - MODEL AND IMPLEMENTATION

In this chapter we will provide the relevant background on the Sequentially Markovian Co-

alescent (SMC) which is the basis for CHMMs. We will then introduce our novel CHMM

model, CHIMP, including two versions that use different representations of the local genealog-

ical trees as the hidden state: one uses the tree height TMRCA, the other uses the total

branch length L. We will describe how we compute the necessary probabilities for our HMM

for each of these versions, and will introduce the likelihood models and computational al-

gorithms that we use. Finally in section 2.6, we will describe some details regarding our

software implementation.

2.1 Background on CHMMs

The genetic variation observed in a sample of n haploid sequences from a given population is

affected by its population size history N(k), where N(k) is the number of diploid individuals

in the population k generations before present. We use coalescent theory to model the effects

that a time varying population size has on the genealogy relating a sample together, which

in turn affects the pattern of observed genetic variation. In the coalescent framework, it is

convenient to measure time in units of 2N(0) generations and to consider the population

size relative to the size at present. To this end, we introduce the relative coalescent-scaled

population size

η(t) :=
N(2N0t)

N0
,

where k = 2N0t is the rescaled time and N0 ≡ N(0) is the present population size, but can

just as easily be an arbitrarily chosen reference size.

The single-locus coalescent models the genetic variation among n sampled haploids at a

particular locus in the genome [22]. In the coalescent, the genealogy of the sample is described
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by following the ancestral lineages of the n haplotypes (sampled at present) back in time.

Each pair of lineages can coalesce (find a common ancestor) at a given rate λ(t) that can vary

with time t. The coalescent rate is the inverse of the relative population size λ(t) = 1/η(t),

which reflects the fact that ancestral lineages coalesce faster in small populations but coalesce

more slowly in larger populations. This process proceeds until all lineages coalesce into a

single lineage, referred to as the most recent common ancestor (MRCA), the genetic ancestor

of all haplotypes in the sample. The time of this final coalescent event is denoted by TMRCA.

The coalescent thus gives the distribution of genealogies at a single locus. One can model the

observed genetic variation at the given locus by superimposing mutations on the genealogy

according to a Poisson process with rate θ/2, where θ = 4N0µ is the population-scaled

mutation parameter and µ is the per-generation per-site mutation probability.

The standard coalescent models the marginal genealogy at a single locus. To analyze ge-

nomic sequence data, one can use the ancestral recombination graph (ARG), which extends

the regular coalescent model to describe the full multi-locus genealogy for n sampled haplo-

types across L loci [23, 24]. Specifically, the ARG models the genealogies at each individual

locus and their correlations induced by the presence or absence of ancestral recombination

events. Just as in the single-locus case, mutations can be superimposed onto these genealo-

gies to model the observed genetic variation in multi-locus genomic sequence data. While

the ARG is a useful tool to simulate genomic data [24, 25], in many scenarios its applicability

in likelihood-based population genetic inference is hindered by its complexity: The space of

possible ARGs grows quickly with the number of samples and the length of the genome.

One factor contributing to the complexity of the ARG is the fact that the marginal

genealogies at distant loci can depend on each other [12]. The Sequentially Markovian

Coalescent (SMC), introduced by [11], simplifies the model by assuming that the distribution

of the marginal genealogy at a given locus only depends on the genealogy at the previous locus

in the sequence, that is, it assumes that the sequence of marginal genealogies is a Markov
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A)

Sample 1

Sample 2

Sample 3
Locus along genome

B)

Sample 1

Sample 2

Sample 3
Locus along genome

C)

Sample 1

Sample 2

Sample 3

Locus along genome
GT A A C A

GC G A C A

GC G A C G

T G

G A C A

Figure 2.1: Panel A) shows the marginal genealogy being propagated unchanged along the
genome until an ancestral recombination event is encountered, and the genealogy modified
accordingly. In panel B), the new genealogy is propagated until a second recombination
event is encountered. Panel C) demonstrates a realization of the mutation process along the
genealogy at each locus and the resulting observed genetic data, where the ancestral allele
is changed to a derived allele at samples that are subtended by the mutation event.
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chain. Under the SMC, the sequence of marginal genealogies is generated as follows. The

genealogy at the first locus is distributed according to the standard coalescent. To proceed

from one locus to the next, ancestral recombination events occur according to a Poisson

process at rate ρ
2 on the branches of the current genealogy, where ρ = 4N0r, and r is the per

base-pair per generation recombination probability. If no recombination events occur, the

marginal genealogy is copied unchanged to the next locus. However, if recombination does

occur, the lineage above the recombination event is removed up to the next coalescent event

involving this lineage. To obtain the genealogy at the next locus, the removed lineage is then

replaced by a new lineage that undergoes the standard coalescent dynamic, that is, it can

coalesce with the regular coalescent rate into the other ancestral lineages. The distribution

of the genealogical trees at each locus is fully determined by the genealogy at the previous

locus in the sequence, and thus the sequence of genealogical trees is a Markov chain. An

illustration of this generative process for the marginal genealogies is depicted in panels A)

and B) of Figure 2.1.

CHMMs use the SMC as the basis for computing likelihoods of observed genomic sequence

data. Given the local genealogy at a locus, we can imagine that ancestral mutations may

have occurred along the genealogical branches. By modeling mutations as a Poisson process

on these trees we can produce mutations that are inherited by our present-day samples, with

patterns of variation that are dependent on the tree structure. In this way, the likelihood of

the observed genetic variation can be computed as emissions conditional on the hidden state

at a given locus (panel C of Figure 2.1).

2.2 CHIMP: A CHMM Using TMRCA or L

While it is possible, in principle, to implement the full SMC as a CHMM by representing the

full local genealogy as a hidden state (as depiceted in Figure 2.1), such an implementation

would make likelihood-based inference intractable due to the prohibitively large hidden state
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space resulting from the continuous nature of the genealogical times and the fact that the

number of topologies grows super-exponentially with the number of samples. Thus, most ex-

isting implementations of CHMMs use a suitable discretization of time and approximate the

full local genealogical trees using lower-dimensional summaries (often only one-dimensional)

to arrive at a finite hidden states space for the HMM (a summary of some common CHMM

implementations and their choices for the hidden states can be found in [19, Fig 1]). Our

method, CHIMP, is a CHMM with a one-dimensional hidden state. We either use the TMRCA

(time to most recent common ancestor, i.e. tree height) or L (total branch length of the tree)

as the hidden state. We use S + 1 increasing times (or lengths) t0 = 0 < t1 < . . . < tS =∞

to partition the positive real numbers into S discrete intervals. The CHMM is in state si

at locus ` if ti−1 ≤ T` < ti, where T` denotes the TMRCA at locus ` (and likewise for L`).

The set of possible states {s1, ..., sS} is denoted by S. The sequence of states the CHMM

occupies along the complete genome is ~s = (s1, . . . , sL), where s` is the state at locus `.

For the emission observed at a given locus, our method uses the number of derived alleles

d at that locus. Since the data consists of n haplotype sequences, we can observe up to

n − 1 derived alleles at a locus, thus the set of possible emissions is D := {0, ..., n − 1}.

Note that D includes 0 to model loci where all samples share the same allele. The vector of

observations across the genome is ~d = (d1, . . . , dL}, where d` is the number of derived alleles

at locus `. With these definitions for the state space and emission space for our CHMM, we

introduce the transition and emission probabilities, given by matrices A and B, respectively,

with elements

Aij = P[s`+1 = sj |s` = si], (2.1)

Bid = P[d` = d|s` = si], and (2.2)

Πi = P[s` = si]. (2.3)
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Figure 2.2: Schematic of our CHMM for a sample of size 4. Information about the underlying
tree at each locus is captured by the state si. S = {s1, . . . , s5} is the set of intervals into
which the respective summary of the tree (TMRCA or L) can fall. The states change from
each locus to the next in accordance with the transition matrix A and the observed number
of derived alleles at each locus is emitted in accordance with the emission probabilities B.

The quantity Π is the marginal distribution of the hidden states, and thus it is also

the distribution of s0, the first state in the CHMM. Figure 2.2 depicts a schematic of the

transition and emissions in this CHMM.

To summarize, the essential elements of our model are the sequence of latent states along

the genome ~s, the observed emission sequence ~d, the transition matrix A, the emission matrix

B, and the marginal distribution of hidden states Π. In the next few sections, we show how

we implement this model. In section 2.3 and section 2.4 we show how to compute entries

of A, B, and Π based on the population history η(t) and the biological parameters ρ and

θ. Once these probabilities are computed, we can infer the hidden state sequence given the

observed data and compute the posterior likelihood.

2.3 Computing Probabilities with TMRCA

To use TMRCA as the hidden state in our CHMM, we discretize the continuous random vari-

able into discrete intervals partitioned at certain ti as previously described in Section 2.2.

9



We now describe the analytic and numerical methods used to compute the corresponding

transition and emission probabilities in equation (2.1), (2.2), and (2.3). This is a critical

step in our model because it links the parameters of demographic history of the popula-

tion to the key quantities of our CHMM. Briefly, we first define an augmented version of

the ancestral process with recombination (for transitions) or with mutation (for emissions).

These ancestral processes are modifications of the regular coalescent process that allow the

modeling of recombination events between loci and mutation events. The distribution of

these continuous-time Markov processes can be obtained by solving the associated system of

ODEs defined by the respective rate matrices. We numerically obtain the solutions for these

ODEs and combine them appropriately to compute the transition and emission probabilities

of the CHMM. The mutation and recombination rates are given in units of coalescent-time

as before, denoted by θ and ρ, respectively.

2.3.1 Transition Probabilities

To compute the transition probabilities, we employ an augmented ancestral process with

recombination, Aρ, introduced by [21]. This process closely resembles the regular ancestral

process with recombination described by [26] and describes the joint distribution of the

genealogies of n samples for two adjacent loci separated by a recombination distance of ρ.

We use Aρ to compute the respective transition probabilities in the matrix A.

The process Aρ(t) is initialized at the present (t = 0) and tracks the ancestral lineages

at two loci, a and b, simultaneously as they evolve backwards in time. Initially, there are n

lineages, each ancestral to both loci a and b of one of the n sampled haplotypes. As in the

standard coalescent with varying population size, ancestral lineages coalesce with rate λ(t).

Additionally, recombination events can occur on each lineage ancestral to two loci at rate

ρ
2 and decouples the dynamics of the two loci by splitting the respective lineage into two

lineages that are ancestral at only a single locus. The two decoupled lineages then evolve
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(3,0,0,0)

(2,1,1,1)

(2,1,0,1)

(1,2,1,2)

(1,1,1,2)

(2,0,0,2)

(1,0,0,2)

a b a b a b

Figure 2.3: Example trajectory of Aρ(t) with the state denoted by tuples. At t = 0 there are
three lineages of type kab ancestral to both loci for their respective samples. The lineages
split at ancestral recombination events and combine at coalescence events where they find
a common ancestor. The trajectory ultimately culminates in the state (1, 0, 0, 2), signifying
that there is one lineage ancestral to both loci in all present-day samples, and that two
recombination events occurred in this genealogy.

independently and yield distinct genealogies for each of the loci. Ultimately all lineages

coalesce into a common ancestor for both loci.

The states of Aρ(t) are denoted by (kab, ka, kb, r) which are tuples describing the configu-

ration of lineages. Here, kab is the number of active lineages ancestral to both loci (coupled),

ka are the lineages ancestral only to locus a, and kb are the lineages ancestral only to b

(uncoupled). Finally, r explicitly tracks the number of recombination events that have oc-

curred since t = 0. While kab ∈ {1, 2, ..., n}, the decoupled lineages are constrained such that

ka, kb ∈ {0, 1, ..., r} since there can be at most as many uncoupled lineages as recombination

events. In the full ancestral process, r takes values from 0 to ∞, since there can be an

arbitrary number of recombination events between the two loci.

Figure 2.3 shows an example trajectory of this augmented ancestral process. Recombina-

tion events decouple a shared lineage, while coalescence events fuse two active lineages. If an

uncoupled lineage (one of type ka or type kb) coalesces with a coupled lineage (one of type
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kab), the resulting lineage contains ancestry that traces to both loci a and b in our sample,

and is therefore a coupled lineage. We note that Aρ allows for a joint lineage to recombine

(split) and immediately coalesce back together making this process consistent with the SMC’

formulation [27], which is a more faithful model of the true genetic process than the original

SMC formulation [11].

The unboundedness of r renders this full process difficult to solve. In the remainder of

this work, we restrict r to be at most 1 (and consequently also restrict ka and kb to be 0

or 1). This restriction is an approximation that is accurate when the recombination rate

between two adjacent loci is low. In such a case, we expect to see at most one ancestral

recombination event separating the genealogies at two neighboring loci. This approximation

is justified because in many real world organisms, such as humans, the recombination rate

is low. Henceforth, Aρ(t) will refer to this restricted process.

We set Aρ(0) = (n, 0, 0, 0), which corresponds to initializing the process in a state with

n lineages at the present time, each ancestral to both loci in a single sample. The absorbing

states are (1, 0, 0, 1) and (1, 0, 0, 0), which correspond to the states where all lineages for both

loci have fully coalesced after 0 or 1 recombination events have occurred.

The possible transitions between states and their respective rates are given in Table 2.1.

The rates in the first three rows of this table correspond to all possible coalescent events.

These rates are all proportional to the time-dependent coalescent rate λ(t). The first row

describes coalescence among the lineages ancestral to locus a and b, which results in reducing

the number of these lineages by 1. The rate for these events is proportional to all possible

pairs of such lineages. The second row describes events that reduce the number of lineages

ancestral to only a by one, which can either be a coalescent event among the a lineages, or a

coalescence event between one lineage ancestral to a and another ancestral to a and b. Again,

the rate is proportional to the number of such lineage pairings. The third row describes the

respective events for the b lineages. The fourth row corresponds to recombination events,

12



Transition from (kab, ka, kb, r) to: Rate

(kab − 1, ka, kb, r) λ(t)
(kab
2

)
(kab, ka − 1, kb, r) λ(t)

[(ka
2

)
+ kakab

]
(kab, ka, kb − 1, r) λ(t)

[(kb
2

)
+ kbkab

]
(kab − 1, ka + 1, kb + 1, r + 1)

{
kab

ρ
2 , if r = 0

0, else

Table 2.1: Possible transitions from a given state (kab, ka, kb, r) and their respective rates.
The first row gives the rate for coalescence between two lineages that are ancestral to both
loci. The second row gives rate for two types of events, coalescences between two lineages
ancestral to only locus a, and coalescences of a lineage ancestral only to a with a lineage
ancestral to both. The third row reflects similar events for locus b. The last row gives the
rate of recombination events. Note that these rates are defined to permit a maximum of 1
ancestral recombination event occurring between locus a and b.

with a rate proportional to the recombination rate ρ/2. These recombination events can only

happen in lineages ancestral to a and b and reduces their number by one. Such events result

in one lineage ancestral to only a and one only to b, increasing the respective numbers by

one, and also increasing r by one. Note that the rates for the recombination events reflect

the fact we restrict the process to have at most one recombination event.

Define g
ρ
σ(t) := P[Aρ(t) = σ] to be the probability that the augmented ancestral process

is in state σ ∈ R at time t, where R is the set of all possible states. Then ~gρ(t) =
(
g
ρ
σ(t)

)
σ∈R

is the distribution of the process at time t, a vector of probabilities over all the states σ ∈ R.

Since Aρ is a continuous-time Markov process, the evolution of ~g(t) is given by the system

of ordinary differential equations (ODEs)

d

dt
~gρ(t) = ~gρ(t) ·Qρ(t), (2.4)

where Qρ(t) is the rate matrix consisting of the rates given in Table 2.1. The rate ma-

trix is time-dependent, since the coalescent rates λ(t) are as well. We can now obtain the
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probabilities ~g(t) by numerically integrating equation (2.4) (see 2.6.2 for details).

Moreover, from the distribution ~g(t), we can compute the cumulative joint distribution

function (CDF) of the TMRCA at the two loci, P[Ta ≤ τa;Tb ≤ τb], where 0 ≤ τa, τb < ∞,

and Ta and Tb are the TMRCA’s at a and b respectively. Without loss of generality, we

assume that τa < τb and obtain

P[Ta ≤τa;Tb ≤ τb]

= P[Ta ≤ τa;Tb ≤ τa] + P
[
Ta ≤ τa;Tb ∈ (τa, τb]

]
= g(1,0,0,0)(τa) + g(1,0,0,1)(τa) + P

[
Ta ≤ τa;Tb ∈ (τa, τb]

]
= g(1,0,0,0)(τa) + g(1,0,0,1)(τa) + g(1,0,1,1)(τa)·

P
[
σ(τb) = (1, 0, 0, 1) | σ(τa) = (1, 0, 1, 1)

]
= g(1,0,0,0)(τa) + g(1,0,0,1)(τa) + g(1,0,1,1)(τa) ·

[
1− e−

∫ τb
τa
λ(t)dt]. (2.5)

In the first equality, we partition the probability according to whether Tb < τa or Tb > τa.

The second equality holds, because P[Ta ≤ τa;Tb ≤ τa] is the probability that the ancestral

process is in an absorbing state where both loci have found the TMRCA by time τa. The

third equality follows from the fact that P
[
Ta ≤ τa;Tb ∈ (τa, τb]

]
is the probability that

the lineages at a found a common ancestor by time τa and the lineages at b find a common

ancestor after τa, but before τb, which is only possible if a recombination event occurred.

Since this term is conditional on a having found its TMRCA, only 2 lineages can be remaining

(one ancestral only to b, and one the common ancestor of a) due to the assumption that

r ≤ 1, and thus the term simplifies to the coalescence probability of two lineages between

times τa and τb. The final equality follows.

By evaluating equation (2.5) at the values τa, τb ∈ {ti}Si=0, the interval boundaries for the

discretized state space, we can obtain a joint cumulative distribution matrix for Ta and Tb,
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denoted ACDF . From this it is straightforward to compute the matrix of joint probabilities,

APDF . Dividing the joint probabilities by the marginal probabilities, we arrive at A, the

transition probability matrix itself:

ACDFij := P[Ta ≤ ti;Tb ≤ tj ]

APDFij := ACDFij − ACDFi−1,j − A
CDF
i,j−1 + ACDFi−1,j−1 (2.6)

Aij :=
APDFij∑
k∈S A

PDF
ik

(2.7)

Additionally, we can obtain the vector of marginal probabilities Π as

Πi =
∑
j∈S

APDFij . (2.8)

2.3.2 Emission Probabilities

To compute the emission probabilities with TMRCA as the hidden state, we introduce an

augmented single-locus ancestral process with mutation Aθ which is an extension to the reg-

ular ancestral process [23] that is motivated by the fact that, conditional on the coalescent

tree, mutations are Poisson distributed along the branches with rate θ
2 . Similar to the recom-

bination case, we only consider at most one mutation event (motivated by the assumption

that the per locus mutation rate is low). The states of this process are denoted by (k, k∗),

where k is the number of active lineages ancestral to the n samples, and k∗ is the number of

lineages that were active at the time of the first mutation event along the genealogy (going

backwards in time). If no mutation has occurred yet, k∗ assumes a value of −1.

The process is initialized in (n,−1), a state before any mutation has occurred with one

ancestral lineage for each sample. The transition rates are given in Table 2.2 and an example

trajectory is shown in Figure 2.4. The possible transitions are either two lineages coalescing
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A C C(3,-1)

(2,-1)

(2,2)

(1,2)

Figure 2.4: Example trajectory of the ancestral process with mutation for n = 3 samples
with the state (k, k∗) indicated on the left. The mutation process is superimposed onto the
regular genealogical process. In this example, the mutation happens when there are two
ancestral lineages, resulting in two samples carrying the derived allele.

or a lineage mutating. The rate for coalescence is given by the coalescent rate λ(t) times the

number of possible pairs that can coalesce, and such an event reduces the number of lineages

by one. The rate for a transition via mutation is given by the mutation rate θ
2 multiplied

with the number of lineages that a mutation can occur on. The number of lineages that were

active at the time of the mutation event is recorded in the second component of the state.

Since we restrict to one mutation event at most, if this number is set once, it will not be

set again. The process is absorbed in any state (1, k∗) with k∗ ∈ {−1, 2, . . . , n}. Note that

it is important to continue the process after a mutation event occurred until all lineages are

coalesced so that we obtain the full distribution of the TMRCA.

Transition Rate

(k, k∗)→ (k − 1, k∗) λ(t)
(k
2

)
(k,−1)→ (k, k) k θ2

Table 2.2: The transition rates of the augmented ancestral processAθ. The first row gives the
rate of a coalescence event of two lineages, while the second row gives the rate for mutation
events. Note that only one mutation event is permitted.

Similar to the procedure for Aρ, we collect all transition rates in a matrix Qθ(t). We

further define gθσ(t) := P[Aθ(t) = σ] as the probability that the ancestral process Aθ is in a
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state σ ∈M at time t, whereM is the set of all possible states. The evolution of the vector

of all probabilities ~gθ(t) =
(
gθσ(t)

)
σ∈M is given by the system of ODEs

d

dt
~g θ(t) = ~g θ(t) ·Qθ(t).

Again, we obtain the solution to these ODEs numerically as described in 2.6.2.

Using the distribution of this process, we can compute the cumulative distribution of

TMRCA jointly with the probability of emitting d derived alleles as

P[TMRCA ≤ τ ; 0 derived alleles] = P[Aθ(τ) = (1,−1)],

since this gives the probability that all lineages are coalesced by τ and no mutation occurred,

and

P[TMRCA ≤ τ ; d derived alleles]

= P[Aθ(τ) = (1, k∗) for k∗ ∈ {2, . . . , n}; d derived alleles]

=
∑

k∗∈{2,...,n}
gθ(1,k∗)(τ) · P

[
d derived alleles|mutation while k∗ lineages

]

=
∑

k∗∈{2,...,n}
gθ(1,k∗)(τ) ·

(n−d−1
k∗−2

)( n−1
k∗−1

) (2.9)

for d ∈ {1, . . . , n − 1}. The first equality in equation (2.9) follows from the fact that

TMRCA < τ if and only if the ancestral process has found an absorbing state (all lineages

have coalesced) before τ . In the second equality, we partition this probability with respect

to the specific number of lineages active when the mutation occurred, which is encoded

in the absorbing state. For the last equality, we substitute the probability of emitting a

certain number of derived alleles given that there were k∗ active lineages at the time of the
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mutation. This probability is given by the probability that one of the k∗ lineages subtends

d leafs [e.g. 28, Ch. 2.1]. It is independent of the time of the mutation.

By evaluating these probabilities at times τ ∈ {ti}Si=0, we compute the discretized joint

CDF for the emissions, BCDF , which is again used to compute the joint probabilities BPDF

and ultimately the emission probabilities B for the CHMM by conditioning on the hidden

state:

BCDFid := P[TMRCA ≤ ti; y = d] (2.10)

BPDFid := BCDFid −BCDFi−1,d

Bid :=
BPDFid∑
k B

PDF
ik

. (2.11)

2.4 Computing Probabilities with L

We now describe the implementation of our CHMM with the total branch length (sum of all

branch lengths) of the genealogical tree L as the hidden state at each locus. As before, we

discretize L by partitioning the real line with a set of values t0 = 0, < t1 < . . . < tS =∞, and

say that the CHMM is in state si at the given locus, if ti−1 ≤ L < ti. In order to compute the

joint distributions for ACDF and BCDF , we employ the approach first outlined in [21] using

partial differential equations (PDEs) associated with the augmented ancestral processes Aρ

and Aθ. We numerically solve the respective systems and use the solutions to obtain the

transition and emission probabilities as follows.

2.4.1 Transition Probabilities

We follow the approach in [21] to compute the joint distribution of the marginal total tree

length at locus a and b. We begin by computing the joint distribution of the total tree length

accumulated up to a certain time t in the past. Using both the augmented ancestral process
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Aρ (introduced in Section 2.3.1) to compute the requisite distributions for TMRCA and

v`(kab, ka, kb, r) := (kab + k`)1{kab+k`>1}, (2.12)

we can define

Aa(t) = va
(
Aρ(t)

)
and

Ab(t) = vb
(
Aρ(t)

)
to count the number of active lineages that are ancestral to locus a or b at a given time

t. Note that this includes the lineages ancestral to both loci. We define the marginally

accumulated tree length

L`(t) :=

∫ t

0
A`(s)ds. (2.13)

The quantities La(t) and Lb(t) can be thought of as the total branch lengths that has

aggregated at each locus as the process evolves back in time. This holds because the integrand

in equation (2.13) is the number of lineages at a specific locus at a given time and total

branch length is accumulated linearly along each active lineage. The indicator function in

equation (2.12) signifies that the process stops accumulating tree length once only a single

lineage is left, ie. the TMRCA is reached. Using this notation, we can define the probabilities

Fσ(t, x, y) := P
[
Aρ(t) = σ, La(t) ≤ x, Lb(t) ≤ y

]
which give the joint distribution of tree length accumulated at both loci up to time t and of

the ancestral process Aρ(t) being in state σ

The values of ~F :=
(
Fσ(t, x, y)

)
σ∈R can be obtained as solutions to the system of PDEs

∂t ~F + ∂x ~F ·Va + ∂y ~F ·Vb = ~F ·Qρ(t) (2.14)
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and its corresponding boundary conditions

Fσ(t, x, y) =


P
[
Aρ(t) = σ, Lb(t) ≤ y

]
, if x ≤ nt

P
[
Aρ(t) = σ, La(t) ≤ x

]
, if y ≤ nt

0, if x = 0 or y = 0

(2.15)

as shown in [21]. These equations are given in terms of the rate matrix Qρ(t) of the aug-

mented ancestral process Aρ and the diagonal matrices

V` := diag{v`(σ)},

which represent the accumulation of tree length along the active ancestral lineages.

In [21], the authors show that the quantities P
[
Aρ(t) = σ, La(t) ≤ x

]
=: Fσ(t, x) (and

the corresponding quantities for b) can in turn be obtained as the solution of the PDEs

∂t ~F + ∂x ~F ·Va = ~F ·Qρ(t) (2.16)

with boundary conditions

Fσ(t, x) =


P
[
Aρ(t) = σ

]
= g

ρ
σ(t), if x ≤ nt

0, if x = 0.

We implemented the scheme outlined in [21, Appendix B] to compute the solutions to these

PDEs and provide additional details of our implementation in Section 2.6.3.

Lastly, the joint distributions of tree length at loci a and b can be obtained from the
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solutions of the absorbing states of Aρ and are given by

P[La ≤ x,Lb ≤ y] =
[
F(1,0,0,0)(t, x, y) + F(1,0,0,1)(t, x, y)

] ∣∣∣
t=

max(x,y)
2

, (2.17)

where La and Lb denote the total branch length of the genealogies at locus a and b respec-

tively [21]. Evaluating these probabilities at x, y ∈ S = {t0, t1, . . . , tS} yields the elements of

the joint cumulative probability matrix ACDF . This discretized joint distribution can then

be used in equations (2.6) and (2.7) to compute APDF and ultimately the transition prob-

abilities A for the CHMM when using the total tree length L as the hidden state. Similarly,

the initial distribution can be obtained using equation (2.8).

2.4.2 Emission Probabilities

Computing the emission probabilities closely follows the steps for the transition probabilities

outlined in the previous section. However, we use the ancestral process with mutation Aθ

instead of the process with recombination Aρ, and instead of one variable for time and two

for tree length (t, x, y), we only need to use one variable for time and one for tree length

(t, x) since we only consider emission at one locus. Before we can compute the emission

probabilities, we first need to compute the joint probability of accumulating a certain tree

length by t and Aθ(t) occupying a certain state:

F(k,k∗)(t, x) = P
[
Aθ(t) = (k, k∗), L(t) ≤ x

]
.

Here, L(t) is the accumulated tree length at this locus, defined similarly to equation (2.13)

as

L(t) :=

∫ t

0
vθ
(
Aθ(s)

)
ds,
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where vθ(k, k∗) = k1{k>1}. Similar to Section 2.4.1 and [21], the vector of these probabilities

can be obtained as the solution to the following system of PDEs

∂t ~F + ∂x ~F ·Vθ = ~F · ~Qθ(t), (2.18)

with boundary conditions

F(k,k∗)(t, x) =


P
[
Aθ(t) = (k, k∗)

]
gθ
(k,k∗)(t), if x ≤ nt

0, if x = 0,

where ~Qθ(t) is the matrix of transition rates of the process Aθ and the diagonal matrix

Vθ := diag{vθ(σ)}.

Solving this system is similar to solving the PDEs in Section 2.4.1, and our method is

described in Section 2.6.3. Similar to equation (2.9), we can then combine the probabilities for

the absorbing states with the respective combinatorial factors to obtain the joint probability

distribution of the tree length L and the observed number of derived alleles as

P[L ≤ x; y = d] =
∑
k∗

F θ(1,k∗)(t, x)
∣∣∣
t=x

2

·
(n−d−1
k∗−2

)( n−1
k∗−1

) .
We can then again evaluate these probabilities at x ∈ S = {t0, t1, . . . , tS}, the discretization

points of the L states, to obtain the entries of the matrix of cumulative probabilities BCDF ,

which can be substituted into equation (2.10) and (2.11) to obtain BPDF , and ultimately the

emission probabilities B for the CHMM using L as the hidden state, that is, the probabilities

of observing a certain number of derived alleles, given the tree length.
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2.5 Computing Likelihoods and Inferring Hidden States

In this section, we describe how we infer the hidden state sequence ~s given the observed

emission sequence ~d, and how to compute the likelihood of observing ~d given the model

parameters (A, B, and Π). We also describe augmentations we make to the standard

HMM machinery in order to improve the efficiency. These include strategies to improve the

speed of the forward-backwards algorithm, and a composite-likelihood model that allows

efficient analysis of large sample sizes. This section contains some details about our specific

implementation of CHIMP that go beyond the theory and models.

2.5.1 The Forward-Backward Algorithm

The sequence of hidden states for our CHMM can be inferred by applying the Forward-

Backward algorithm [29, Ch. 13.2.2] to the observed genotype data ~d = (d1, . . . , dL), where d`

is the number of derived alleles at locus `. This is a well known algorithm which first traverses

the emission sequence forwards and then backwards, computing intermediate probabilities

that are ultimately combined to compute the posterior distribution across states for each

locus,

γi(`) = P[s` = si|~d], (2.19)

and P[~d], the likelihood of observing data given the specified model. The scaled version of

the Forward-Backward algorithm [29, Ch. 13.2.4] allows for greater numerical stability since

the small probabilities involved in the standard algorithm can be much smaller than machine

precision.

Additionally, performing computations at each nucleotide site in the genome can be

computationally prohibitive, so we can employ one of two strategies to speed the Forward-

Backward computations up: a locus-skipping method detailed in 2.5.2 and a meta-locus
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model detailed in 2.5.3.

2.5.2 Locus-Skipping

The locus-skipping method to improve efficiency of the Forward-Backward algorithm was

first described in the supplement of [16], and our implementation follows this blueprint.

This is a modification to the forward and backward algorithm that computes the exact

likelihood for tracts of monomorphic sites in a single-step, thereby greatly improving effi-

ciency. Briefly, this method uses the eigendecomposition of the single-step transition matrix

at monomorphic sites to efficiently exponentiate the respective matrix and integrate large

tracts of monomorphic sites in a single step. It is important to note that the underlying

likelihood model is exact and equal to the model that considers each site individually. Thus,

this method improves the efficiency of the Forward-Backward algorithm with no trade-offs in

accuracy. We also note that for the locus-skipping step some of the probabilities are stored

as log values to avoid machine precision issues. Even with this measure numerical errors

arise when the tract being skipped is too large, and in practice we cap the size of these skips

at 1000 loci. The two types of monomorphic tracts that our implementation can handle are

tracts of non-segregating sites where there is no genetic variation across the samples, and

tracts of missing data where the sequencing process is inconclusive. These types of tracts

tend to appear commonly in genomic data, so using the locus-skipping method shows clear

payoff.

2.5.3 Meta-Locus Model

The meta-locus model is an alternative to the locus-skipping, and involves a slight modifica-

tion of the underlying likelihood model itself, following a strategy that has been described

in [18, Suppl. Text 4.2]. Rather than implementing the CHMM with a hidden state and an

emission at each nucleotide site, we combine a specified number of sites into a meta-locus,
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Figure 2.5: Schematic for meta-locus model with s = 4. Each meta-locus represents 4 sites.
Recombination does not happen within a meta-locus, but between at elevated rates. The
emission probabilities Bid, 4 for each meta-locus, are the same as in the single-step model.

with a single hidden state but with several emissions for all nucleotides that are grouped

into this meta-locus. We specify in advance the number of nucleotide sites s that a meta-

locus spans, which also determines the number of emissions per locus. Figure 2.5 shows a

schematic of this approximation.

The emission probabilities for each site in this model are identical to those used in the

full model. However, by assuming a single hidden state for all sites in a meta-locus, we

effectively suppress recombination between these, and thus it is necessary to implement

recombination between two meta-loci at correspondingly elevated rates. To this end, the

transition probabilities are obtained by raising the single-site transition matrix to the power

s (the number of sites in the meta-locus).

A potential drawback of this strategy is that linkage information is lost within each

metal-locus. However, using meta-loci also offers the potential for a tremendous speedup of

the Forward-Backward algorithm and is extremely useful to offset additional computational

costs that are incurred when using large numbers of CHMM states. We find that, in general,

there is a sweet spot where the gains in efficiency are significant and the loss of information

is negligible.
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2.5.4 Composite Likelihood

Another feature of our likelihood model is the way in which we handle large sample sizes.

As input, our method takes genotype data of a sample of n haploids at L consecutive sites of

the genome. The numerical procedures to compute the transition and emission probabilities

are computationally more expensive for larger sample sizes, so to efficiently scale up, we

use a composite likelihood scheme that partitions the full collection of n samples into a

number of non-overlapping sub-groups, each of size ns. The genomic data is then split into

separate sequences, ~d(i) where the superscript i here indexes the subgroups. The Forward-

Backward algorithm is then performed for each ~d(i) independently and the contributions of

each subgroup are added together to obtain the composite likelihood

b nns c∑
i=1

logP[
~
d(i)].

Given our implementation of the composite likelihood model, the complexity of the

Forward-Backward algorithm scales linearly with number of samples (doubling the sam-

ple size doubles the number of independent genomic tracts spanning ns samples), although

in principle each subgroup could be processed in parallel to make the run-time invariant to

sample size.

Since the composite likelihood model equips our method to handle multiple independent

contiguous genomic sequences spanning ns samples each, data from multiple chromosomes

can straightforwardly be handled in the same analysis by treating them as independent

sequences.
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2.6 Additional Implementation Details

2.6.1 Choosing Interval Boundaries for Hidden States

For both TMRCA and L, we have the task of deciding how to partition the continuous

values for these quantities into discrete states to use for the CHMM. A possible strategy

would be to divide the continuum into equidistant intervals on a logarithmic or geometric

scale [e.g. 13]. However, here we choose a different strategy and divide the continuum into

states such that the marginal probabilities of the CHMM occupying any one state at a given

locus are approximately uniform. We compute this partition for the uniform distribution in a

model of constant population size, where we estimate the size from the number of segregating

sites in the given sample using Watterson’s estimator (fixing the per generation mutation

rate). This causes each state to have comparable weight in the analysis, and avoids having

infrequently-visited states that contribute little information. CHMM methods gather much

of their power from observing the various transitions between the different states, since these

are informative in estimating off-diagonal elements of the transition matrix which contain

much of the signal used to distinguish between population size histories during estimation.

In order to partition the continuum, we numerically partition it so that the distribution

of TMRCA or L is uniform across the states. The analytical formulas for the distributions

of these quantities in the case of a constant population size are

fTMRCA
(t) =

n∑
i=2

n(n− 1) · · · (n− i+ 1)

n(n+ 1) · · · (n+ i− 1)
(2i− 1)(−1)i

(
i

2

)
e−(i2)t

and

fL(t) =
n− 1

2
e−t/2

(
1− e−t/2

)n−2
,

see for example equations (3.28) and (3.34) of [30]. By numerically evaluating these distri-

butions, we find the respective uniform partitions.
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2.6.2 Numerically Integrating ODEs

While computing transition and emission probabilities, for both TMRCA and L, we numer-

ically have to solve systems of ODEs. For TMRCA, the solutions of the ODE are directly

used in computing the probabilities (equation (2.5) and equation (2.9)), whereas for L the

solutions to the ODEs are used in defining the boundary conditions of the PDE problem that

has to be solved (equation (2.15)). For all these applications, we use the Apache Commons’

implementation of a Dormand-Prince algorithm of order 8(5,3) [31].

2.6.3 Solving PDEs for L

To numerically compute the requisite solutions to the PDEs (2.14) and (2.18), we implement

the solution scheme outlined in [21]. We will give a brief overview of the scheme here, but

refer the reader to the original publication for more details. Moreover, we will focus on the

solution scheme for the joint distribution of the tree length Fσ(t, x, y) in equation (2.14)

here, but a similar scheme can be used for the emission distribution (2.18).

In this scheme, Fσ(t, x, y) is computed for each state sequentially, beginning with the

initial state (n, 0, 0, 0). Because we explicitly keep track of the number of recombination

events, we can ensure that each transition of the associated Markov chain either increases

the number of recombination events or decreases some number of lineages. The states are

thus ordered, and following this order in the evaluation, we can ensure that when computing

Fσ(t, x, y), all preceding Fσ′(t, x, y) that are necessary for the respective computations have

already been computed. In other words, since there are no loops in the probability flow

through states, we can solve them sequentially following the natural ordering.

To compute the solution for a specific Fσ(t, x, y), we favor a bespoke implementation of

the PDE solutions as opposed to using a black box numerical PDE solver, since the actual

solutions for each state are computed using the Method of Characteristics. This allows us to

take advantage of partially analytic results which can reduce numerical errors and increase
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efficiency. Moreover, in terms of efficiency, we believe solving the states sequentially is faster

and more accurate than attempting to simultaneously solve for all states using a general

purpose method.

For each state σ = (kab, ka, kb, r) we then define a three dimensional grid of points for

the function Fσ(t, x, y), with 0 ≤ t ≤ tS−1
2 , va(σ) · t ≤ x ≤ n · t, and vb(σ) · t ≤ x ≤ n · t.

The grid consists of slices in the x-y plane that are spaced across t according to a specified

discretization D :=
{
t0 = 0, . . . , tK =

tS−1
2

}
into K values. Each successive grid along t is

defined by propagating along the direction of the characteristic (x0 + va(σ)τ, y0 + vb(σ)τ)

from the previous grid, with a new column and row for x = n · t and y = n · t on the outer

boundaries. Note that the first grid consists of the point (0, 0, 0) only. The next step extends

the characteristic out of this point and adds the correct values at the boundaries, and thus

the initalization of the scheme is well defined.

To ultimately fill all grids with the correct values, we start at each grid point along the

boundary and fill in values for Fσ by integrating along the characteristic direction. This fills

in lines of points in the interior of the volume, and once all boundary points are processed,

all interior points will be computed. For σ = (kab, ka, kb, r), take a point (t0, x0, y0) on the

boundary, that is, t0 ∈ D (the discretization grid), and either x0 = n · t0 or y0 = n · t0.

Moreover, let Fσ(t0, x0, y0) =: Fσ0. Then, for (t0 + τ) ∈ D, the values on the grids along

the characteristic can be computed according to:

Fσ
(
t0 + τ, x0 + va(σ)τ, y0 + vb(σ)τ

)
= e−Hk(τ)

(
Fσ0 +

∫ τ

0
gσ(α)eHk(α)dα

)
where gσ(τ) :=

∑
σ′→σ

Fσ′
(
t0 + τ, x0 + va(σ)τ, y0 + vb(σ)τ

)
Q
ρ
σ′,σ(t0 + τ),

Hσ(τ) :=

∫ τ

0
qσ(α)dα,

qσ(τ) := −Qρσ,σ(t0 + τ), and

σ′ → σ is the set of states σ′ that precede σ.
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This scheme, which implements the method of characteristics, propagates the boundary

values along the characteristic vectors. While the integral for Hσ(τ) is computed exactly

(since we can analytically integrate λ(t) for the spline and piecewise constant representations

described in Section 3.1.1) the integral in the expression for Fσ is computed by approximating

the integrand as piece-wise linear, with the pieces bridging points of the grid for σ (along a

characteristic). This allows us to restrict the evaluations of gσ, Hσ, and qσ to points on the

σ-grid.

As seen in equation (2.14), the values along the boundaries are the solution to another set

of PDEs (2.16), albeit in 2 dimensions rather than 3. The boundary value PDEs can be solved

using a similar scheme with the dimension reduced, following one dimensional characteristics

(along which these boundary points lie). The boundary values for these secondary PDEs are

Fσ(t, x = y = n · t) = g
ρ
σ(t) and can be computed by solving a set of ODEs using a standard

numerical ODE-solver (as was done for TMRCA).

We note that in solving for each state, the solutions for all states immediately upstream

(states preceding σ in the ordering) are required. The grid for each state is based on the

same discretization D of time-steps. However, the x and y values along the grids do depend

on the characteristic direction which can differ between different states, and thus, for a given

t, the x-y grid for a state σ may be different than the grid used for a preceding state σ′.

Thus, in order to compute gσ(τ), we obtain the values for Fσ′ on the x-y grid for the state

σ by linearly interpolating the values from the grid of σ′. We also tested interpolation using

a cubic spline, but it resulted in only marginal improvements in accuracy at the cost of

significant computational time and potential numerical instabilities due to oscillations.

Efficiency of our implementation is improved by explicitly imposing the following sym-

metries and constraints which follow from symmetries in the ancestral process with recom-
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bination Aρ(t):

F(k,r,r,r)(t, x, y) = F(k,r,r,r)(t,min(x, y),min(x, y))

F(k,k′,k′,r)(t, x, y) = Fk,k′,k′,r(t, y, x)

F(k,1,0,1)(t, x, y) = Fk,0,1,1(t, y, x),

for all k ∈ {1, . . . , n} and k′, r ∈ {0, 1}. After computing Fσ(t, x, y) for all σ and all points

on the grids, we can substitute the numerical values into (2.17) to compute the requisite

probabilities for the transitions of our CHMM.

Emission probabilities are computed from the PDEs given in (2.18) using an analagous

scheme for one less dimension (similar to how the boundary condition for the transition

probability was solved in equation (2.16)).

2.6.4 Data Processing

Our algorithm can be applied to full genomic sequencing data for a sample of individu-

als from a population. Such data are often presented as genetic variation at a number of

segregating sites, separated by tracts of monomorphic sites, for example, in the form of a

vcf-file. Additionally, such datasets often have regions in the genome marked as missing.

This suggests that all the sites along the genome can be grouped into tracts of two types:

non-segregating tracts, defined as having a single segregating bi-allelic site at the beginning,

followed by a stretch of non-segregating sites, and missing tracts, where the genetic infor-

mation is flagged as missing in the data. Processing the raw data and opting to store it as a

series of tracts is more efficient than storing information for each individual site, and by also

storing the type of tract, the tract length, and the number of derived alleles at the head of

non-segregating tracts, we retain all the necessary information required for our CHMM. Note

that these tracts are the same monomorphic tracts which can be efficiently skipped over as
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described in 2.5.2. Lastly, our method needs information to distinguish between ancestral

and derived alleles at each segregating site, and this is specified by providing an ancestral

sequence in addition to the population sample.

2.6.5 Missing Data

Non-segregating sites in CHMM

While the non-segregating tracts can be handled straightforwardly by the CHMM, with the

monomorphic non-segregating sites being treated as an emission of 0 derived alleles at the

respective site, the missing tracts are handled slightly different. If a site is missing, the

emission probabilities that are used for that site during the forward-backward algorithm are

modified to reflect the fact that the missing site provides no information on the hidden state

at that location. In practice, this means that each hidden state has an equal probability

of emitting a missing site. For tracts of missing data, this has the effect that the posterior

probability distribution across hidden states at the boundaries is informed by the surrounding

sequence, but further into the interior of such tracts the posterior probability approaches

the marginal distribution of states asymptotically.

Tagging

We note that genomic datasets can contain segregating sites that are not bi-allelic, for

example, segregating sites with 3 alleles, or some forms of structural variation. We treat

all segregating sites that are not bi-allelic as missing sites. This step introduces a potential

bias into the CHMM because it can potentially flag individuals segregating sites as missing,

while the non-segregating sites around this specific sites are still used for the analysis. A

single missing site is more likely to be non-segregating a-priori, and if such a site is between

two tracts of non-segregating sites, the method effectively concatenates them and interprets
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Figure 2.6: Schematic showing the improvement achieved by masking the tract upstream of
a non-biallelic site as missing. In the former case (top), the tract is effectively interpreted
as an artificially long region without variation (marked red), which biases the inference. By
masking the left region as missing (bottom) we avoid this systematic bias.

the whole tract as an artificially long tract with no segregating sites. This biases the CHMM

towards inferring shallow trees. In order to counter this systematic bias, when we tag such

segregating sites that are not bi-allelic as missing, we also mask all the non-segregating sites

upstream as missing, until we reach either a segregating site or a site marked as missing in the

raw data (see Figure 2.6 for a schematic). By marking the tract upstream (or equivalently

downstream) as missing as well, the true non-segregating tracts that are identified better

represent the appropriate lengths of such tracts. At worst, this process loses information

since the inferred trees in missing tracts approach the marginal distribution asymptotically

as the algorithm moves into the interior of these tracts, but it does not introduce systematic

bias.
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CHAPTER 3

DEMOGRAPHIC INFERENCE WITH CHIMP

Having described the model for CHIMP and its implementation, we shift focus to applying

this model for specific population genetic problems. Many of the implementation choices of

CHIMP were made with its application for inferring demographic history in mind. This chapter

will focus on how the model described in Chapter 2 is incorporated into a Expectation-

Maximization (EM) framework that is then used to infer the population size history of a

single population (from which the samples originate). We will present methodological and

implementation details in Section 3.1, before benchmarking CHIMP against MSMC2 and Relate

using a series of simulation studies in Section 3.2 .

3.1 Demographic Inference Using EM

3.1.1 Parameterization of η(t)

While the population size history η(t) is in general a non-singular positive-valued function,

in order to perform efficient inference we restrict η(t) to be parameterized by a finite number

of parameters. We choose to represent η(t) as a piece-wise constant function, where the

number of pieces can be specified by the user and are uniform in log(t) space between

specified bounds. In practice, it is more convenient to directly work with ~λ, defined to

be the piece-wise values for the coalescence rate λ(t), and transform these back into the

population size at the end.

We have also implemented the option to use a cubic-spline representation of the pop-

ulation size history (instead of piece-wise constant), similar to that offered by SMC++ [16].

More specifically we represent λ(t) as a cubic spline, and the population size history is pro-

portional to the inverse of this. The number of nodes can be specified, and we place them

equidistantly on a log(t) scale.
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It is important to note that the epoch times used in parameterizing η(t) are distinct

from the {t1 < . . . < tS} used to partition TMRCA (or L) into discrete states. While other

methods such as MSMC2 choose to link these discretizations closely [15], we do not. This

allows for the states to be specified entirely separately from the population parameters.

3.1.2 Expectation-Maximization Algorithm

We use the Expectation-Maximization (EM) algorithm for HHMs to infer the population

size history parameters ~λ. This is an iterative algorithm with each iteration consisting

of two steps: an E-step during which each we compute the expected numbers of various

transition types and various emission types, and an M-step where we maximize a likelihood

function that is based on these expectations in order to obtain new estimates for the model

parameters. Choosing initial parameters ~λ0 is described in section 3.4.1, and we denote the

parameters in the k-th iteration by ~λk.

This implementation of EM makes use of the composite likelihood scheme in a similar

way to MSMC2 [15], where the authors use all overlapping sub-groups of size ns = 2 for the

E-Step, and combine them in a similar way for the M-Step.

E-Step

For the k-th iteration of the E-step, we compute the initial (Π), transition (A), and emission

(B) probabilities under the coalescent rate function given by ~λk, and use these probabilities

to perform the Forward-Backwards algorithm across the emission sequence ~d (all using the

machinery described in chapter 2).

The Forward-Backward algorithm yields the likelihood of observing the data under the

current demographic parameters and the inferred hidden state sequence, and, consequently,
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it also gives, conditional on the current parameters and the data,

E
~s|~d,~λk [#(i→ j) transitions]

E
~s|~d,~λk [#(i ↓ d) emissions]

E
~s|~d,~λk [s1 = i],

that is, the expected number of transitions from state i to j, the expected number of times

state i emits d derived alleles, and the expected occupation of an initial state, respectively.

These expectations, conditional on the observed data in our composite likelihood model

(section 2.5.4), can simply be computed by adding up the expectations for each sub-sample

of ns haplotypes of genomic data . Thus the run-time of the E-step (as we have implemented

it, without parallelization) scales linearly with the number of total samples, linearly with the

sum of chromosome lengths being analyzed, and quadratically with the number of hidden

states.

M-step

After each E-step, we perform an M-step during which we update the values of ~λ by numer-

ically maximizing the objective function, defined as the expected log-likelihood of ~λ, with

respect to the conditional distribution of the hidden states given the data and the current

parameter estimates ~λk,

Q(~λ|~d,~λk) =
∑
i∈S

log
(
Πi(~λ)

)
· E

~s|~d,~λk [s1 = i]

+
∑
i,j∈S

log
(
Aij(~λ)

)
· E

~s|~d,~λk [#(i→ j) transitions]

+
∑

i∈S,d∈D
log
(
Bid(~λ)

)
· E

~s|~d,~λk [#(i ↓ d) emissions],

(3.1)
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where we explicitly denote the initial, transition, and emission probabilities as functions of ~λ

to stress that they are computed for the parameters that we optimize over. The parameters

that maximize this function yield the updated parameters for the next iteration and are

given by

~λk+1 := argmax
~λ

[
Q(~λ|~d,~λk)

]
.

This objective function can be modified to artificially penalize population size histories

that don’t conform to a priori notions about the form of natural histories. In Section 3.4.2,

we provide details on our implementation of a set of regularizing coefficients that allow the

user to artificially enforce varying degrees of smoothness on the results of inference. While

this option has been implemented, no regularization was used for the simulation studies

presented in Section 3.2.

Since CHIMP evaluates the Q function numerically, we use the Nelder-Mead simplex op-

timization procedure for numerical optimization [32]. Section 3.4.3 includes some details

about this optimization scheme, and some of the hurdles we encountered. The optimization

is performed in a search space of logarithmic coalescence rates, which is a uniquely robust

space in which to perform optimization of coalescent rates [33] and also has the benefit that

the coalescent rates are positive by design. After finding the optimal coalescent rates using

the EM algorithm, we invert and scale them to recover the estimates for the population

size history N(k). Regarding efficiency, since the expectations in the objective function are

summed over all the sub-groups of samples and chromosomes provided for the analysis, the

run-time of the M-step is constant for different sample sizes and total chromosomal lengths.
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3.2 Simulation Studies

To evaluate the accuracy of our method, we performed a series of simulation studies. We

generated data under various demographic scenarios, and then inferred the population size

history from these simulated datasets using CHIMP-TMRCA and CHIMP-L, with TMRCA and

L as the hidden state, respectively, and compared the results to inference using MSMC2 [15,

v2.1.2] and Relate [10, v1.1.3]. For each study we used the specified model of the demo-

graphic history to simulate m = 16 replicates of data using msprime [25, v0.7.4], where each

replicate consists of n = 200 haplotypes of length 200 Mbp. The per generation per site

recombination and mutation rates we used were r = µ = 1.25 · 10−8, to mirror applications

to human genetic data. We inferred the population size history for each of the replicates

using the different methods and visualized the variability of the estimates across replicates.

We noticed that the performance of Relate improved when we simulated and analyzed

data with a human recombination map (see Section 3.4.5 and Figure 3.8). This is likely

due to the fact that Relate benefits from cold spots (regions of low recombination rate) in

the recombination map. However, the performance of CHIMP and MSMC2 were not substan-

tially adversely affected when they were run with the (inaccurate) assumption of a constant

recombination rate. For this reason, we conducted our simulation studies with a uniform

recombination map.

To demonstrate the performance of the different methods for different samples sizes,

we present two analyses for each demographic model, one using the full 200 haplotypes

simulated, and one using a subset of 10 haplotypes chosen uniformly at random. For CHIMP,

we ran the analyses using the full EM algorithm for n = 10. For n = 200, we used the

composite likelihood framework detailed in Section 2.5.4, with sub-groups of size ns = 10, a

value that we found performs well in terms of efficiency and accuracy. The method MSMC2 can

analyze all pairs of haplotypes in the dataset, which we did for the samples of size n = 10,

but was computationally prohibitive for samples of size n = 200. For the later case, we
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instead restricted MSMC2 to analyze a subset of 50 non-overlapping pairs of haplotypes (100

haplotypes total) since memory requirements of the method became a limitation beyond this

number. Moreover, in an effort to ensure a fair comparison between the methods, we ran all

analyses for a piecewise constant parametrization of the population size history, and chose

the same change points across the methods. The change points could be explicitly specified

for CHIMP and Relate. For MSMC2, specifying change points was achieved by providing a

time-segment pattern (as required by the method) that placed the change points as close

to the desired ones as possible. This yielded a close match in most cases, with minor

inaccuracies in more recent times and very ancient times. To initialize the iterative inference

methods, we chose Watterson’s estimator for CHIMP, as detailed in Section 3.4.1, and the

default initialization for MSMC2.

To aid visualizing and summarizing the performance of a method in a specific setting,

as well as comparing the results between methods, we also plot the mean absolute deviation

from the true population size across the replicates in generation k

∆(k) :=
1

m

m∑
j=1

∣∣∣∣∣ log

(
N̂ (j)(k)

Ntrue(k)

)∣∣∣∣∣,
where N̂ (j) is the population size estimated in replicate j, and for each method, compute

the integral of this quantity φ =
∫ kmax
kmin

∆(k)1k dk as a measure of discrepancy from the truth

over the full history. Here kmin and kmax are the minimum and maximum of the respective

discretizations with one logarithmic discretization step subtracted and added, respectively.

Note that the factor 1
k suppresses deviations in the distant past and transforms the integral

to a regular integral of ∆ on a log(k) timescale, which matches the visualization more closely.
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(a) Sample size 10.
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(b) Sample size 200.

Figure 3.1: Results of inference in the bottleneck scenario for sample size (a) 10 and (b)
200. We compare the results of CHIMP, MSMC2, and Relate to infer the three population
sizes, fixing the change points to match the truth (shown in black). Solid lines are averages
over 16 replicates and shaded area indicates standard deviation. Mean signed error ∆(k) is
shown at bottom and has been smoothed using moving average for visualization purposes.
The integral φ is indicated in the legend. (*) Note that for sample size 200, MSMC2 was only
run on 50 non-overlapping pairs.

3.2.1 Demographic Models with Limited Number of Parameters

We first compared the methods on two simple demographic models with three parameters

to estimate. The first models a population that experienced a bottleneck event. In this

scenario, the ancestral population is of constant diploid size 10,000. At 2,000 generations

before present, the population size is reduced to 5,000, but recovers to 10,000 at 1,000

generations before present. The second scenario models a population experiencing piecewise

growth. Here, the ancestral population size is again 10,000 diploid individuals. At 2,000

generations before present, the population size doubles to 20,000, and then doubles again at

1,000 before present to 40,000. In both scenarios, we fixed the demographic parameterization

for each method to estimate a three-parameter piecewise constant population size history

with change points matching those of the true population size histories.

Figure 3.1 shows the results of the inference using the different methods in the bottleneck
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(a) Sample size 10.
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(b) Sample size 200.

Figure 3.2: Results of inference in the piecewise growth scenario for sample size (a) 10 and
(b) 200. We compare the results of CHIMP, MSMC2, and Relate to infer the 3 population sizes,
fixing the change points to match the truth (shown in black). Solid lines are averages over 16
replicates and shaded area indicates standard deviation. Mean signed error ∆(k) is shown in
bottom plot and has been smoothed using moving average for visualization purposes. The
integral φ is indicated in the legend. (*) Note that for sample size 200, MSMC2 was only run
on 50 non-overlapping pairs.
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scenario for sample sizes 10 and 200. In this case, CHIMP-TMRCA, CHIMP-L, and MSMC2

recover the true population size history accurately and show little variability across replicates.

Relate, however, does not recover the underlying true size accurately. For a sample of size

10, it does not infer a bottleneck, and while for sample size 200, a bottleneck is inferred,

the ancestral and contemporary population size are not inferred correctly. Nonetheless, the

inference shows little variability.

The results for the inference in the piecewise growth scenario are depicted in Figure 3.2. In

this scenario, CHIMP-TMRCA and CHIMP-L are again able to infer the population size history

with high accuracy. For a sample of size 10, MSMC2 also recovers the true size, however, for

samples size 200, the inference for the intermediate size is systematically biased, with little

variability. The reason for this deviation is likely the fact that when using MSMSC2 for large

sample sizes, the interface does not allow setting the change points for the inference closer to

the true values. Given this constraint, the inferred population sizes are quite accurate and

we believe that the method would have high accuracy if the appropriate boundaries could be

specified. Again, for a small sample, Relate overestimates especially the intermediate size,

and for the large sample size of 200 the estimates are not as accurate as MSMC2 and CHIMP.

3.2.2 Inference for Piecewise Constant Sawtooth Demography

A benchmark for population size inference that has been used in recent studies is a population

size history that exhibits oscillations, referred to as sawtooth history [14, 16, 10, 20]. We will

analyze a continuous version of this scenario in Section 3.2.3, but we were first interested in

comparing the performance of the methods for a piecewise constant version so that the true

population size history could in principle be exactly recovered using the different methods. To

this end, we simulated data under a piecewise constant sawtooth history, were the population

size oscillates between 50,000, 15,811, and 5,000 at 14 change points that are equidistant on

a logarithmic scale between 57 and 448,806 generations before present. Again, we simulated
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(a) Sample size 10.
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(b) Sample size 200.

Figure 3.3: Results of inference in the piecewise sawtooth scenario for sample size (a) 10 and
(b) 200. We compare the results using CHIMP, MSMC2, and Relate to infer the population sizes
in the intervals, fixing the change points to match the truth (shown in black). Solid lines are
averages over 16 replicates and the standard deviation is indicated by the shaded areas. Mean
signed error ∆(k) is shown in bottom plot and has been smoothed using moving average for
visualization purposes. The integral φ is indicated in the legend. Note that MSMC2 groups
epochs in the very distant past due to limits of the method interface. (*) For sample size
200, MSMC2 was run on 50 non-overlapping pairs, and only 15 of the 16 replicates completed
successfully.
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16 replicates for this scenario and inferred the population sizes using the different methods

for different sample sizes, while keeping the change points fixed to the true values.

The results of this simulation study are depicted in Figure 3.3. We observe that CHIMP-

TMRCA estimates the population sizes in the respective intervals accurately in the intervals

500 generations before present and further in the past. The estimates are accurate even in

the very distant past. It smooths the history in the very recent intervals. The accuracy does

not change substantially when using samples of different sizes. In general, CHIMP-L behaves

more erratically. It also does not infer the very recent times correctly, and is only correct

for some of the intermediate intervals. This is likely due to the fact that we infer many

demographic parameters (when compared to the inference in Section 3.2.1) which results

in a higher dimensional inference problem with a likelihood surface that is more difficult

to navigate and causes the method to converge to a local optimum. The fact that the

direction of the bias replicates over different datasets suggests that the initial parameter

choice and the details of the numerical optimization procedure (Nelder-Mead algorithm)

affect the navigation to the local optima.

MSMC2 shows accurate performance for intermediate times despite smoothing out some

of the oscillations, but demonstrates high variability and a systematic upward bias below

100 generations and above 100,000 generations before present. Its accuracy does not change

much between analyzing samples of different sizes. Relate has a high variability and upward

bias for very recent times if the sample size is low, but the recent sizes are very accurately

estimated when using a large sample size. The accuracy for intermediate and ancient times

is not very high, and this performance is only slightly improved in intermediate times for

larger sample sizes. Ultimately, between the different methods tested, each performs better

in some timeframe or for specific sample sizes and worse for others. Measured in terms of

integrated mean signed error φ, CHIMP-TMRCA shows the overall best performance in this

demographic scenario.
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3.2.3 Inference for Continuously Varying Population Size History

Lastly, we we studied the performance of the inference methods on models of continuously

varying population size history. Specifically, we considered the (continuous) sawtooth model

implemented in stdpopsim [34, ID=Zigzag 1S14 ]. In this model, the population size al-

ternates between a maximum of 14,312 and a minimum of 1,431, with three maxima and

three minima equidistant on a logarithmic scale between 33 and 34,133 generations before

present. Note that the maxima and minima are roughly a fifth of the ones used by [14]

and [16]. We nonetheless decided to use this model here to investigate performance over a

wider range of parameters in our simulation study. The second model we considered here

is a bottleneck followed by exponential growth, a cartoon of an Out-Of-Africa population

size history [35, 36]. In this model, the ancestral population size of 10,000 sharply drops to

2,000 at 4,000 generations before present. At 1,000 generations before present, the popula-

tion size starts growing up to the present at an exponential rate of 0.25% per generation.

Again, we simulated 16 replicates in each scenario with 200 haplotypes of length 200 Mbp

and analyzed each replicate with each method on the full sample and on a subsample of size

10. We used the same discretization across methods for a better comparison, first specifying

a minimum and maximum time and then choose 19 equidistant change points between these

values (inclusive) on a logarithmic scale. The minimum and the maximum time were 40 and

40,000 for the sawtooth, and 200 and 20,000 for the bottleneck followed by growth scenarios,

respectively.

The results in the sawtooth scenario are shown in Figure 3.4. We observe that for CHIMP-

TMRCA, CHIMP-L, and MSMC2, the accuracy does not differ substantially between the different

sample sizes. Again, CHIMP-TMRCA smooths the population sizes earlier then 500 generations

before present, thus underestimating the recent size, and smoothing out part of the first peak.

The more ancient part of the first peak, the second peak and the ancestral population size

are captured accurately. CHIMP-L performs similarly for recent and intermediate times, but
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behaves erratically around 10,000 generations before present. Again, we suspect that this is

due to the difficulty in navigating the high dimensional likelihood surface. MSMC2 captures

both peaks, but slightly overestimates the ancestral size and substantially overestimates the

recent sizes with a high degree of variability between replicates. For a small sample size,

Relate overestimates recent sizes. It does infer two peaks, but the sizes and timing do not

fully align with the truth. For a large sample size, Relate infers recent population sizes with

high accuracy, but still underestimates the sizes of the two peaks. In terms of integrated

mean signed error φ summarizing the overall accuracy, CHIMP-TMRCA and MSMC2 perform

comparably for small sample sizes, and for large samples, Relate reaches the same level of

accuracy.

Figure 3.5 shows the results in the scenario where a bottleneck is followed by exponen-

tial growth. In this scenario, all four methods capture the general trend of the population

size history. Again, the performance of CHIMP-TMRCA, CHIMP-L, and MSMC2 does not dif-

fer substantially between sample sizes used in the analysis, however, Relate overestimates

the size history when using a small sample, but underestimates the history when using a

large sample. MSMC2 and Relate smooth out the abrupt decline of the population size at

the beginning of the bottleneck, whereas CHIMP-TMRCA and CHIMP-L do infer a sharper

decline. However, the latter methods show inaccuracies at the more ancient times, which are

more pronounced for CHIMP-L. In this scenario, the method MSMC2 exhibits the best overall

performance metric φ.

3.2.4 Computational Efficiency

In general, the runtime of the CHMM methods CHIMP and MSMC2 scale linearly with the

number of loci L. In addition, the CHIMP methods scale linearly with the sample size (due

to the composite likelihood framework introduced in Section 2.5.4). If all pairs of samples

are used in MSMC2, the method scales quadratically with the sample size, but when using
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(a) Sample size 10.
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(b) Sample size 200.

Figure 3.4: Results of inference in the continuous sawtooth scenario for sample size (a) 10
and (b) 200. We compare the results of CHIMP, MSMC2, and Relate using a piecewise constant
population size history with 19 change points. Truth shown in black. Solid lines are averages
over 16 replicates and shaded areas indicate standard deviation. Mean signed error ∆(k) is
shown at bottom and has been smoothed using moving average for visualization purposes.
The integral φ is indicated in the legend. (*) For sample size 200, MSMC2 was run on 50
non-overlapping pairs.

CHIMP-TMRCA CHIMP-L MSMC2* Relate

Bottleneck (n = 10, Fig. 3.1a) 0.1 1.3 4.9 0.1
Bottleneck (n = 200, Fig. 3.1b) 1.2 2.4 5.4 7.0
Piecewise Growth (n = 10, Fig. 3.2a) 0.1 1.7 2.1 0.1
Piecewise Growth (n = 200, Fig. 3.2b) 1.1 2.9 9.7 9.2
Piecewise Sawtooth (n = 10, Fig. 3.3a) 0.9 29.7 4.3 0.2
Piecewise Sawtooth (n = 200, Fig. 3.3b) 7.2 35.2 6.2 8.9
Sawtooth (n = 10, Fig. 3.4a) 1.2 29.9 4.1 0.1
Sawtooth (n = 200, Fig. 3.4b) 7.6 37.9 **5.0 3.0
Bottle + Growth (n = 10, Fig. 3.5a) 1.2 28.3 5.7 0.1
Bottle + Growth (n = 200, Fig. 3.5b) 7.5 35.1 3.2 3.7

Table 3.1: Run-times in hours for the analysis of simulated data in the different scenarios,
averaged over the respective 16 replicates in each case. The runtimes for MSMC2 are slightly
inflated, as the number of CHMM states had to be increased to allow for the closest matching
of demographic epochs. (*) For the n = 200 scenarios, MSMC2 was only run on 50 non-
overlapping pairs of samples. (**) For this set of inferences, only the 15 out of the 16
replicates that successfully terminated were averaged.
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(a) Sample size 10.
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(b) Sample size 200.

Figure 3.5: Results of inference in the bottleneck followed by growth scenario for sample size
(a) 10 and (b) 200. We compare the inference of CHIMP, MSMC2, and Relate using a piecewise
constant population size history with 19 change points. Truth shown in black. Solid lines are
averages over 16 replicates and shaded areas indicate standard deviation. Mean signed error
∆(k) is shown in bottom plot and has been smoothed using moving average for visualization
purposes, The integral φ is indicated in the legend. (*) For sample size 200, MSMC2 was run
on 50 non-overlapping pairs.
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non-overlapping pairs, like in our analysis of large samples, it scales linearly. Relate scales

linearly with number of loci and quadratically with samples size. However, the method is

implemented very efficiently and allows fast reconstruction of multi-locus genealogies for

large sample sizes.

To exhibit the actual computational performance of the different methods in the simu-

lation study, we list the average run-times in the different scenarios in Table 3.1. Since we

ran MSMC2 using 50 non-overlapping pairs of samples instead of the full 200, these are the

times that we report. Additionally, runtimes for MSMC2 are slightly inflated, as the number of

CHMM states had to be increased to allow for the closest matching of demographic epochs.

For both CHIMP methods, we observe a difference in performance between small and large

samples, and a difference between the scenarios with few parameters to infer and the more

general scenarios. The latter is a result of fast convergence to an optimum when only a

few parameters describe the model, whereas convergence is slower in a higher dimensional

parameter space. The performance of MSMC2 shows little variability across sample size and

scenarios. Since for a sample of size n = 10, we analyze all
(10
2

)
= 45 pairs, it is expected

that the performance is similar to analyzing 50 non-overlapping pairs. The performance of

Relate depends on the sample size, but shows little variability across scenarios, as expected,

since the reconstruction of the genealogy is not strongly affected by the parameterization of

the demographic model.

For sample size n = 10 and a small number of parameters, inference with CHIMP-TMRCA

is comparably fast to Relate, the former slowing down when the number of parameter

increases, but both are faster than MSMC2. For n = 200, CHIMP-TMRCA performs comparably

to the other methods in most scenarios. The method CHIMP-L is substantially slower than

the other methods, especially in the scenarios where the demographic model is described by

many parameters. In these scenarios, the EM algorithm requires many steps to converge,

and each step requires evaluating PDEs to compute the transition and emission probabilities.
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This is computationally more expensive than, for example, evaluating ODEs as required for

CHIMP-TMRCA.

3.2.5 Analyzing Unphased and Pseudo-haploid Data

Our method CHIMP can also be readily applied to unphased genomic data, and is therefore

a promising method for applications where high quality phased genomes are not available,

for example in human ancient DNA or for non-model organisms. In the simulation studies

presented in this paper, we used simulated data, which is perfectly phased. However, the

parameter inference performed using CHIMP only uses the number of derived alleles at each

locus as input, and is therefore invariant to any phasing of the data. Thus, inference under

the method will not be affected by phasing errors, and can even be performed on completely

unphased data. MSMC2, when run on all possible of pairs of samples, requires phased data. If

it is run on non-overlapping pairs of haplotypes where each pair is associated with a single

individual, as we did here for large samples, it could be run on unphased data. However,

such a scheme is not commonly used in the literature. Since Relate reconstructs multi-locus

genealogies relating haplotypes, it cannot be applied to unphased data and will be adversely

affected by phasing errors.

In addition to being able to analyze unphased data, our method can also take a form of

pseudo-haploid data as input. Generating pseudo-haploid data is a strategy often applied

to low-coverage sequencing data, where reliable diploid genotype calls are not feasible, and

may introduce unwanted biases, for example for ancient human DNA [37]. In pseudo-haploid

data, at each SNP, one sequencing read covering the respective SNP is chosen uniformly at

random, and the allele on this read is then reported as the haploid genotype for the individual.

We implemented an option for CHIMP that extends the CHMM to pseudo-haploid data. To

analyze pseudo-haploid data for a sample of size n, we implement a two layered emission

model. The CHMM is implemented using the TMRCA for a sample of size 2n as the hidden
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Figure 3.6: Results of inference using 10 pseudo-haploids simulated under the piecewise
sawtooth demography. We compare the results of CHIMP−TMRCA using the pseudo-haploid
option, MSMC2, and Relate, fixing the change points to match the truth (shown in black).
Solid lines are averages over 16 replicates and shaded area indicates standard deviation.
Mean signed error ∆(k) is shown in bottom plot and has been smoothed using moving
average for visualization purposes. The integral φ is indicated in the legend. Note that
Relate entirely failed to estimate a population size in the most recent epochs, resulting in
indeterminate values. (*) For MSMC2, only 12 of the 16 runs completed successfully.
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state with the respective transition probability. At each locus, the emission in the first layer

is then the number of derived alleles in a sample of size 2n. In the second layer, this sample is

then down-sampled to a number of derived alleles in a sample of size n using hypergeometric

probabilities.

We performed an additional simulation study, to demonstrate the inference from pseudo-

haploid data using our method. To this end, we simulated 20 haplotypes of length 200 Mbp

using the piecewise constant sawtooth demography (see Section 3.2.2). For each pair of

haplotypes (diploid individual), at each locus, we selected one of the two alleles uniformly

at random to obtain a dataset of 10 pseudo-haploid samples. We performed inference on

the 10 pseudo-haplotypes of this data using CHIMP-TMRCA with the pseudo-haploid option.

We compared the results to those obtained using MSMC2 and Relate for which we naively

treated the data as if it were diploid data in order to perform demographic inference. The

results are shown in Figure 3.3a. Not surprisingly, MSMC2 and Relate do not infer the correct

population size history, with particularly large errors in recent times, whereas CHIMP retains

an accuracy close that demonstrated for full diploid data.

While these results look promising, it is important to note that CHIMP’s performance

makes use of the information that there are no segregating sites between the SNPs in the

data, which might not be a valid assumption in low coverage sequencing data. Despite

this, we do believe that the capability to analyze pseudo-haploid data generated in this way

presents an exciting avenue for future extensions.

3.3 Conclusions

Table 3.2 shows a summary of the performance and some features of the different methods

that we compared in our simulation study. CHIMP-TMRCA, CHIMP-L, and Relate can be

applied to samples of arbitrary sizes, whereas MSMC2 is limited in this regard. Furthermore,

CHIMP-TMRCA, CHIMP-L can be applied to unphased data, and in limited capacity to pseudo-
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Gener. bp CHIMP-TM CHIMP-L MSMC2 Relate

Sample size Large Large Limited Large
Parametrization Flexible Flexible Limited Flexible

Accuracy

Few param. High High High Low
k < 100 Low Low Low High (large n)

100 < k < 500 Low Low High High (large n)

500 < k < 105 High Mixed High Mixed

k > 105 High High Low Low
Runtime Fast Slow Fast (low n) Fast

Unphased data Yes Yes Possible No
Pseudo-haploid Limited Limited No No

Table 3.2: Summary of the performance and features of the different methods compared in
our simulation study. The ranges are given in generations before present.

haploid data. but Relate requires phased data. MSMC2 can be applied to unphased data, if

the appropriate pairs of haplotypes are chosen for the analysis. CHIMP-TMRCA and Relate

can be used to analyze large samples quickly, whereas CHIMP-L was very slow in comparison.

The runtime of MSMC2 was comparable with CHIMP-TMRCA and Relate, but the method

could not be run on the full sample of size n = 200. Moreover, CHIMP-TMRCA, CHIMP-L, and

Relate are very flexible in terms of user-specification of the demographic model, whereas

MSMC2 limits the user to choose an appropriate time-segment string.

The inference using CHIMP-TMRCA, CHIMP-L, and MSMC2 showed very high accuracy when

analyzing scenarios with a limited number of demographic parameters. In contrast, Relate

did not perform well in this case. When performing inference under a flexible piecewise

constant parametrization, CHIMP-TMRCA has limited accuracy in recent and intermediate

times. CHIMP-L did perform worse in intermediate times, but both methods demonstrated

high accuracy in ancient times. MSMC2 did not infer the population size history well in recent

and ancient times, but showed the best performance among the methods tested here in

intermediate times. Relate inferred recent population sizes well, if a large sample was used,

but the performance was less accurate for small samples and intermediate to ancient times.
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We note that the exact time-frames depend on the baseline effective population sizes. The

scenarios that we investigated here ranged from Ne ≈ 4, 000 to 12, 000.

When conducting the analyses presented here and designing comparisons between the

methods that can be deemed fair, the flexibility of the user-interface and the heuristics used

in choosing an a priori discretization of the population size history impacts the applicability

and performance of the different methods. We demonstrate this in Figure 3.7 where we infer

the size history of data simulated under the bottleneck followed by growth scenario, where

all methods are run using their default parameters. In Section 3.4.4 we discuss the heuristic

CHIMP uses for determining the default parameterization, and we find it to be robust in the

scenarios that we considered and believe that it performs well in general. However, exploring

optimal ways of parameterizing models with no prior information about the demographic

history is an important area in which further study is needed. In this context, parameter

free approaches, see for example work by [38], present interesting alternatives.

Overall, CHIMP-TMRCA performs comparably to the other methods tested here in most

scenarios when inferring sizes beyond 500 generations before present, and runs quickly on

large datasets. An advantage is the fact that it can be applied to unphased and, in limited

capacity, pseudo-haploid data; thus it offers a useful alternative to other existing methods in

situations where high quality data is not available. Overall, the inference accuracy and run-

time of CHIMP-L was very poor. We thus do not recommend this approach for inference of

populations size histories, unless improvements can be made in terms of efficiently computing

the probabilities required for the CHMM and navigating the high dimensional optimization

problem. MSMC2 showed very high inference accuracy for intermediate times and thus proves

to be an effective method if the sample size is not too large. Relate is fast and can be

applied to large samples. The inference accuracy is good with sufficient samples, especially

in recent times, but suffers if the recombination map does not have cold spots.
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3.4 Supplementary Details

3.4.1 Initialization of Population Size History

While we allow for the user to directly specify a population size history which is used to

initialize the EM algorith, the default initialization chooses a constant population over time

(N(k) = N̂). For this constant value N̂ , we use the effective population size inferred from the

data using Watterson’s estimator of 4N̂µ, fixing the mutation probability µ to a value ap-

propriate for the data analyzed. We also use the value for N̂ to guide choosing a partition for

the CHMM states (Section 2.6.1) and in computing regularizing coefficients (Section 3.4.2).

3.4.2 Regularization of Inference Results

For demographic inference problems, we might have some prior notion of the shape of the

population size history function. For different applications we may have different tolerances

for sharp changes in population size, or may expect varying strengths of deviations from flat

histories.

Including regularization parameters helps to suitably constrain the inferred population

size histories. For a given choice of population size history parameters that define a coales-

cence rate function λ(t), we define the following four regularization quantities, where λ̂ is

the coalescent rate corresponding to Watterson’s estimate for the effective population size
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in a constant model, computed from the data:

R02(λ(t)) =

∫ (
λ(t)− λ̂

)2
dt

R11(λ(t)) =

∫
|λ′(t)|dt

R12(λ(t)) =

∫ (
λ′(t)

)2
dt

R22(λ(t)) =

∫ (
λ′′(t)

)2
dt.

The quantity R22 is analogous to the regularization quantity that SMC++ uses, if specified [16].

We enforce these regularization constraints into our method by modifying the objective

function during the M-step. The parameter update during EM (from (3.1)) then becomes

~λk+1 = argmax~λ

[
Q(~λ|~d,~λk)−

∑
i

ciRi

]
,

where i spans the various regularization types and ci are the respective weights used to adjust

their relative strengths. The user can forgo the option to include any regularization by simply

selecting 0 for the coefficients (the default behavior of our software implementation).

We note that the above definitions of the regularization quantities are can be readily

computed when the coalescent rate functions are continuous (as in the spline representation),

however for the default piece-wise constant representation of λ(t) we use the generalized

notion of derivatives and integrals for discrete domains instead. The derivatives are computed

from finite differences between the constant values, and integration becomes summation over

the constant pieces.

We also include an option to compute the regularization quantities in log(t) space instead.

The reason for this additional option is that population size histories are often visualized in

this logarithmic scale.
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3.4.3 Simplex-Based Optimization

For the M-step of our inference method we opted to use the Nelder-Mead simplex optimizer

as implemented in the Apache Commons Library (https://commons.apache.org/, v3.6). Sim-

plex optimizers do not require an analytic objective function and use relatively low numbers

of function evaluations. This is advantageous for our purpose since our objective function is

not easily differentiable and is also computationally intensive to compute, since it involves

numerically solving ODE or PDE systems. We also tried the Apache Commons library’s

implementation of a Powell optimizer, however, for our test scenarios this yielded very inac-

curate results compared to the Nelder-Mead optimizer.

Even when using the Nelder-Mead method, we found that inference results were highly

dependent on the initial setup for the simplex. At the start of each M-step, a simplex is

initialized based on the current best estimate of the demographic parameters ~λk. During out

explorations, we found that the inference results depend on the shape and orientation of this

simplex. Among the simplices we compared are: (1) Apache Commons’ default implementa-

tion, where ~λk was used as the first point of the simplex, and all subsequent points were deter-

mined by taking the successive steps (1, 0, 0, ...0), (1, 1, 0, ...0), (1, 1, 1, ...0),...,(1, 1, 1, ...1) (2)

an alternating version of the default where the simplex points are determined by taking the

steps (1, 0, 0, 0...), (1,−1, 0, 0, ...), (1,−1, 1, 0, ...),(1,−1, 1,−1, ...) instead (to mitigate some

of the directional bias) (3) An equilateral simplex, formed by the steps (1, 0, 0, ...),(0, 1, 0, ...),

(0, 0, 1, ...)..., and the equidistant point in the (−1,−1,−1, ...) direction, which is then trans-

lated to be centered on ~λk (it isn’t used as a vertex) (4) An equilateral simplex centered on

~λk which is then given a random n-dimensional rotation. We found that the equilateral sim-

plex that was consistently oriented as described in option (3) yielded the most numerically

stable and accurate results.

We also found some dependence on the size of the simplex. Recall that the simplices are

defined in a space corresponding to Log(λi), where λi are the coalescence rate parameters
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for each epoch i. A step size of (1, 0, 0, 0...) then corresponds to multiplying the most recent

coalescent rate λ0 by e and leaving the other epochs the same. Since we would like our method

to search widely early on in the inference procedure and narrow in later, we initializing the

simplices in a shrinking fashion. Thus for the first EM iteration, the equilateral simplex is

initialized to have larger edge lengths. For each successive iteration it is initialized to have

progressively smaller edge lengths. Note that this procedure only describes the initialization

of the simplex, and that within each M-step the simplex is further transformed as part of

the Nelder-Mead maximization.

3.4.4 Heuristics for Discretization of Population Size History

Figure 3.7 shows the results when inferring the population size history in the bottleneck

followed by exponential growth scenario (see Section 3.2.3), when using the default dis-

cretization for the different methods. For the method CHIMP, the default implementation

chooses the discretization as follows: first we compute N̂ from Watterson’s estimator, and

then partition the interval [ N̂50 , 5 × N̂ ] (in generations) into 18 logarithmically equidistant

epochs with an additional epoch being added above and below the minimum and maxi-

mum. Choosing an inappropriate discretization can have an impact on the accuracy of the

inference, and can also lead to the inference missing important features of the underlying

history.

3.4.5 Simulations with Recombination Map

Here, we explore the effects of varying recombination rates along the chromosome on demo-

graphic inference using the different methods. We used msprime to simulate data under the

sawtooth demography (explored in Section 3.2.3) using the HapMap II recombination rates

on Chromosome 3 [39]. We inferred the population size history using CHIMP-TMRCA, MSMC2,

and Relate, and compared their performance using a the same discretization that was used
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(a) Sample size 10.
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(b) Sample size 200.

Figure 3.7: Results of inference in the bottleneck followed by growth scenario for sample size
(a) 10 and (b) 200. We compare the results of CHIMP-TMRCA, MSMC2, and Relate using the
respective default discretization of the population size history. Truth shown in black. Solid
lines are averages over 16 replicates and shaded area indicates standard deviation. Mean
signed error ∆(k) is shown in bottom plot and has been smoothed using moving average for
visualization purposes and the integral φ is indicated in the legend. (*) For sample size 200,
MSMC2 was run on 50 non-overlapping pairs.
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Figure 3.8: Results of inference for the sawtooth demography simulated using a human
recombination map (for Chromosome 3) for sample size (a) 10 and (b) 200. We compare
the results of CHIMP-TMRCA, MSMC2, and Relate. For Relate we provide the recombination
map used to simulate the data, for CHIMP we specify the constant recombination as the mean
over the recombination map, and MSMC2 is set to infer the best fitting constant rate. Truth
shown in black. Solid lines are averages over 16 replicates and shaded areas indicate standard
deviation. Mean signed error ∆(k) is shown at bottom plot and has been smoothed using
moving average for visualization purposes. The integral φ is indicated in the legend. (*) For
sample size 200, MSMC2 was run on 50 non-overlapping pairs.

in Figure 3.4. We provided the methods with as much information about the recombination

rates as possible: we provided Relate with the recombination map used to simulate the data.

For CHIMP-TMRCA, we specified a constant recombination rate corresponding to the mean

recombination rate. Lastly, MSMC2 was set to infer a recombination rate while optimizing the

population size history.

The results of these inferences are shown in Figure 3.8. Comparing these results to

those in Figure 3.4, we note that CHIMP-TMRCA and MSMC2, while operating under the

assumption of a constant recombination rate, perform similarly well as in Figure 3.4, where

the recombination rate was in fact constant. We also note that Relate, especially for 200

haplotypes, performs much better in the case of varying recombination rates. The reason for

this improvement is likely the fact that the procedure used in Relate to infer genealogical
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trees can be shown to infer the correct tree in regions without recombination. Since there

are many cold spots in the human recombination map, Relate infers the true underlying

genealogies more accurately in these regions, and this yields an overall improvement in

performance.
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CHAPTER 4

DEMOGRAPHIC INFERENCE UNDER MODELS WITH

POPULATION STRUCTURE

4.1 Introduction

The method presented in Chapter 2 and the results in Chapter 3 are for a single population

model, where the population in question is assumed to be panmictic (freely mixing, where

all individuals are equally likely to be the parents of the succeeding generation). However,

many real world examples have the added complexity of population structure, where the

assumption of a panmictic population begins to break down. These scenarios can often be

modeled by demographies where there are multiple populations that coexist in time (and

even space), that are each internally panmictic. Such demographies can include admixture

events, where individuals are transferred between populations, or populations can split and

merge. They also often include migration rates that allow for continuous mixture between

distinct populations, helping emulate realistic behavior.

In this chapter, we introduce CHIMP-S, which reappropriates the ODE machinery used for

computing A and B and uses it to solve for the probabilities in a population-split scenario,

where an ancestral population splits at some point into two extant populations. We also

demonstrate the inference of basic demographic parameters under using CHIMP-S.

4.2 Adapting CHIMP for a Population-Split Model

In Figure 4.1A, we see a diagram for the population-split model which we tackle with

CHIMP-S. We infer demographic parameters for the size history functions N1(t), N2(t) and

NA(t) in addition to the divergence time T all simultaneously, noting that N1(t) and N2(t)

span times from [0, T ), while NA(t) spans [T,∞). The emissions off our model are the
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ordered pairs of derived alleles across the samples at each site, so we denote the vector of ob-

servations across the genome as ~d =
(
(d11, d

1
2), (d21, d

2
2)...(dL1 , d

L
2 )
)
, where the subscripts refers

to the population in whose samples the derived alleles are observed, and the superscript

indexes the position along the genome. The states si are defined as they were in the single

population model, indicating which bin the TMRCA for the entire two population genealogy

falls into (we only focus CHIMP-S on TMRCA, and ignore L). Here we show how we compute

the transition matrix A and emission matrix B for CHIMP-S.

A. B.

Figure 4.1: Schematic for (a) the demographic model under which CHIMP-S performs in-
ference and (b) the ODE scheme which we employ under this model. The (a)panel displays
the ancestral population which splits into two populations at some time T in the past. Each
of the branch populations remain till the present day, where the samples are taken. The (b)
panel shows how independent ODEs are run backwards in time to compute the evolution of
each population independently. At time T, the states that ODE1 and ODE2 can take on
are permuted and mapped to appropriate states of ODEA, which evolves back in time until
the absorbing state (when all samples reach the MRCA) is reached.

4.2.1 Computing the Transition Matrix A

The transition matrix A and emission matrix B are computed using a scaffolding of ODEs to

compute the dynamics of the ancestral process in each sub population, and in the ancestral

population separately (depicted in Figure 4.1B). Here we describe how this is done for the
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elements of the transition matrix A. The ancestral process with recombination Aρ that we

use here is the same as the one used in the single population case. This means that the ODE

and the numerical solution scheme is the same as before as well. In total, for each of the

extant populations and the ancestral population, we have three such ODEs

d

dt
~g
ρ
i (t) = ~g

ρ
i (t) ·Qρ

i (t), (4.1)

where i ∈ {1, 2, A}. Note that while the structure of the ODEs is the same for each

sub-population, the evolution matrix Q
ρ
i (t) will differ between the populations because the

values and structure of Q depends on the total number of samples in the ancestral process

for a particular sub-population and its population size history for that population. We begin

solving the transition matrix by running ODE1 and ODE2 back in time until T . In other

words, we integrate equation (4.1) from
∫ T
0 dt to solve for ~g

ρ
1(T ) and ~g

ρ
2(T ). Note that Q

ρ
1(t)

and Q
ρ
2(t) are defined with N1(t), n1 and N2(t), n2, respectively (n1 and n2 are the numbers

of haplotype samples collected at present day for populations 1 and 2). The initial conditions

for both of these processes are the states corresponding to n1 and n2 lineages ancestral to

both loci A and B, that is, in the notation of the previous chapter, ~g
ρ
1(0) = (n1, 0, 0, 0) and

~g
ρ
2(0) = (n2, 0, 0, 0)

Next, the vectors ~g
ρ
1(T ) and ~g

ρ
2(T ) are used to compute the initial values for ODEA

(i.e. ~g
ρ
A(T )). This is done by mapping ordered pairs of states

(
σ1, σ2

)
to states (σA). This

mapping represents the joining of the two populations, and recalling that the states of the

ODE’s σ are indexed by tuples of 4 numbers (kab, ka, kb, r), in mapping (σ1, σ2) to σA,

elements of the tuples are all summed independently, representing summing the lineages of

each type across the two populations at time T . Since this introduces certain states in the

ancestral population which may have had two recombinations, (from summing r1 = r2 = 1,

we set the probability density in these states to zero (g
(∗,∗,∗,2),ρ
A (T ) = 0), and renormalize

over the remainder of states such that the sum of probability equals 1. Ignoring states with
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two recombinations and renormalizing is equivalent to assuming that the recombination rate

is small, and helps computational tractability. Thus, we define the mapping

(
(kab,1, ka,1, kb,1, r1)1,(kab,2, ka,2, kb,2, r2)2

)
→

(kab,1 + kab,2, ka,1 + ka,2, kb,1 + kb,2, r1 + r2)A, if r1 + r2 ≤ 1

None, otherwise

.

Note that ODEA is defined to allow for a total of nA = n1 + n2 lineages, allowing it to

capture as many of the ordered pairs of the merging ODEs as necessary. With this mapping,

we can write down the full initial condition for ODEA as

g
σA,ρ
A (T ) =

1

z

∑
(σ1,σ2)→σA

g
σ1,ρ
1 (T )g

σ2,ρ
2 (T ),

where the sum is over ordered pairs that map to the respective state σA, and the renor-

malization constant z is equal to the sum of the numerator over all viable states σ′A.

Thus we arrive at the initial condition for ODEA, and integrate equation ( 4.1) again

from
∫ t
T dt, to compute ~g

ρ
A(t). Then, as in the single population case, we use equation ( 2.5)

to obtain the joint cumulative transition probabilities, from which the transition matrix is

computed as before. Note that because the most recent possible TMRCA is the divergence

time T , the probabilities of transitioning into, out of, and between states below T is 0.

4.2.2 Computing the Emission Matrix B

The method for computing the emission probability matrix B for the single population case

is adapted to the population split model in much the same way as was demonstrated for the
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transition probabilities. The ancestral process with mutation Aθ is run separately for the

populations i ∈ {1, 2, A}, using three separate ODEs. At the divergence time T , the ordered

pairs of states (σ1, σ2) belonging to ODE1 and ODE2 are mapped to appropriate states of

ODEA, (cases where mutation has already occurred twice are ignored, and the probabilities

are renormalized across all valid states). In computing the cumulative emission probabilities,

a number of additional combinatorial factors are used to account for various configurations

of derived alleles that subtend a mutation mapping onto the appropriate emission states

(d1, d2).

4.3 Demographic Inference with CHIMP-S

We used the transition and emission probability matrices, as computed above, in an EM in-

ference framework, similarly to the single population case in Chapter 3, to infer demographic

parameters. Forty replicates of data were simulated using msprime, for a population model

where each of the extant populations, as well as the ancestral population, had constant sizes

of 10000 individuals, and the populations diverged 4000 generations in the past. The per

base, per generation recombination and mutation rates were set to r = µ = 10−7, and for

each replicate 5Mbp of genome was simulated.

Then, using CHIMP-S, we inferred the constant ancestral size NA and the divergence time

T jointly, specifying the same mutation rate, recombination rate, N1, and N2 values that

were used in the simulation. Figure 4.2 shows that we obtain reasonably accurate results for

this scenario.

4.4 Conclusion

In this chapter we demonstrate the use of the underlying model of CHIMP in extensions that

perform inference under models with population structure. We presented CHIMP-S a tool
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Figure 4.2: Results for two parameter inference using the split-population model of CHIMP-S.
Estimates for 40 replicates are shown.

that analyzes data under a population-split model, and demonstrated how to compute the

appropriate probabilities and perform inference with it. The simulated scenario and the

corresponding inference was performed in a constrained setting where favorable results were

achieved, and the next step to developing CHIMP-S into a full-fledged inference tool would be

to conduct more extensive studies testing its robustness in different scenarios and comparing

its results to those of other methods. Another highlight of CHIMP’s approach is the fact that

the underlying ODE computational system can be adapted to handle different scenarios.

For example, in much the same way that we handle split-populations with CHIMP-S, we

foresee adapting the ODE’s to handle pulse-admixture events. We could even incorporate

asynchronous samples to allow for inference using ancient DNA samples in tandem with

modern samples, possibly even with more than two populations. Another direction CHIMP can

be developed is to handle cases of continuous migration; in this case, there are complexities
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arising from the populations interacting continuously that would require additional model

extensions. Even if more simplifying assumptions are made to the computational scheme

that make the method less exact, the fact that CHIMP is compatible with unphased and

pseudohaploid data could prove for this to be a fruitful direction for investigation.
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CHAPTER 5

DECODING THE POSTERIOR DISTRIBUTION ACROSS

STATES

5.1 Motivation

While much of the CHMM framework so far has assumed that the genome evolves neutrally,

in reality, selection plays a role in evolution, leaving patterns of adaptive genetic variation.

This form of variation is often the central subject of medical genetic studies that seek to

establish causal links between regions of the genome and phenotypic traits, and thus, methods

that offer new ways to detect and understand patterns of adaptive variation are an important

part of the field.

While CHMM methods have primarily been used to infer the population size history, here

we explore further downstream studies that can be conducted using the posterior distribution

of the hidden states, which are a byproduct computed during the inference process. The

posterior probabilities describe the state the model is in sequentially along the genome, and

can provide scientists with additional information about the evolutionary processes that

are shaping the genetic information, especially if the posterior is markedly different from

what would be expected under the null model of a single neutrally evolving population. In

particular, adaptive genetic variation, or selection, can leave signatures where the patterns

of variation significantly differ from the neutrality. To this end, we developed CHIMP-PD, a

tool that uses the CHMM framework to produce an estimate of the posterior probabilities

that can be interpreted and used in downstream studies of adaptive variation.

We focus on two archetypes of adaptive variation that are brought about by i) selective

sweeps, and ii) balancing selection. CHIMP-PD is well-suited to uncover evidence of these

modes of selection because of the effect they have on the shape of ancestral trees. In a

selective sweep arising from a beneficial allele, all alleles in the genetic sample can be traced
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to a beneficial allele that has quickly established and fixed itself, therefore in such a region,

the trees are often much shorter than under neutrality. Conversely, for an region that displays

balancing selection, multiple variants are maintained in the population for long periods of

time at intermediate frequencies. As a result, the common ancestor of the two allele types

is found in the deep past, and the underlying trees are very tall.

In this chapter we begin by showing how we obtain the posterior probabilities using

CHIMP-PD and evaluate the accuracy of these estimates in neutral simulations. Then we

study the aforementioned archetypes of adaptive variation, selective sweeps and balancing

selection, and demonstrate their detection using CHIMP-PD. We focus on simulated genetic

data first, and then examine examples in real human data.

5.2 Computing Posterior Probabilities

For CHIMP-PD, the posterior distribution across states is computed during the forward back-

ward algorithm as described in Section 2.5.1, and is given by the quantity γi(`) defined in

Equation (2.19). This tells us the probability that the hidden state of the CHMM is in

each state si and is computed for each locus (or meta-locus) along the genome. From these

probabilities we can investigate the TMRCA and L across the genome since the hidden states

model the behavior of these variables.

For large samples, this genomic sequence of posterior probabilities is computed inde-

pendently for each subgroup of ns samples in accordance with our composite likelihood

framework. While the composite likelihood is straightforwardly computed as a sum of the

log-likelihoods of the data for each subgroup of samples, consolidating the information from

the posterior probabilities for each subgroup requires some additional steps. We opt to av-

erage the posterior probabilities across the subgroups, yielding an estimate for the posterior

probability of a random sample of ns haplotypes drawn from the population
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γ̄i(`) =
1

b nns c

b nns c∑
i=1

P[s` = si|~di].

It is important not to confuse this with an estimate for the actual posterior distribution

of the state variable across all the samples, or even the posterior for a particular group of

samples. However, reconstructing an accurate estimate of TMRCA or L can be achieved

choosing ns = n if desired.

5.3 Simulations Under Neutrality

While Chapter 3 shows the efficacy of CHIMP’s model in performing demographic inference,

we would like to more specifically evaluate the ability of the model to accurately infer the

TMRCA and L. To this end, we conducted a series of simulations where the true values of

the TMRCA and L are retained from the simulation, and compared to values inferred using

both CHIMP-PD and Relate [10, v1.1.3].

The simulations were conducted using msprime [25, v0.7.4]. We simulated 16 replicates of

data, where each replicate contains 200Mbp of genomic data for 10 haplotypes, simulated for

a constant population size N = 10000 with r = µ = 1.25 ·10−8 to mimic human parameters.

When analyzing these data with Relate, we specified the true constant population size

and infer the tree sequences. Then we computed TMRCA and L for these estimated trees

based on Relate’s inferred tree output.

For the CHIMP-PD analysis, the posterior probabilities were computed using a constant

population size history based on Watterson’s estimator (as in Section 3.4.1). There is some

ambiguity in estimating the state variable T at locus ` (representing TMRCA or L) given

γ̄i(`), since each state i indicates a range ti−1 ≤ T` < ti for the state variable T (as in

section 2.2).
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To this end, we associate a single intermediate value t̂iwith each state i, computed as the

arithmetic mean of the bounds of the state (except for the last state S which is unbounded

and requires an adjustment) given by

t̂i =


2tS−1 − tS−2, if i = S

ti−1+ti
2 , otherwise.

(5.1)

In the following analysis, we compare the results of using three straightforward estimates

based on the mode, median, and mean of the distribution, computed as follows. Based on

t̂’s defined in equation (5.1), and given the posterior γ̄i for a given locus `, we can define the

mode, median, and mean of T as

Tmode = t̂j , where j = argmax
i

[
γ̄i

]

Tmedian = t̂j , where j = inf

{
k

∣∣∣∣ k∑
i=0

γ̄i ≥ 0.5

}

Tmean =
∑
i

γ̄i · t̂i.

With these estimates for TMRCA and L, we compare the profile of estimated values to

the profile of true values and present the results in figures 5.1 and 5.2. Each individual

plot contains aggregate data from across all 16 replicates of the simulations, ie. a total of

3.2 Gbp of data for 10 haplotypes. The heat map compares the estimate from Relate or

CHIMP-PD to the true value of T , giving equal weight to each base on the genome (not each

inferred tree). In addition to a heat map, we also include one dimensional histograms of the

estimates along the borders.

Figure 5.1 contains the comparison of the truth to results from Relate and CHIMP-PD’s
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mean and median estimates. Both the heatmap and the adjacent 1-D histograms are binned

according to the bins that CHIMP-PD uses for internal states. This can be seen in the roughly

constant distributions of true TMRCA and L since CHIMP-PD chooses its states such that the

marginal distribution across them (based on a prior of constant population size) is constant.

The 1-D histograms show that CHIMP-PD is more accurate in recovering the true (con-

stant) distribution. The distributions for Relate are more highly peaked, and do not give

enough weights to the tails of the distribution. This alone does not show that CHIMP-PD is

performing better, since this distribution could in principal be achieved with results that are

uncorrelated to the true values. However, the heat maps allow us to visualize this correlation.

The red line indicates where the estimated T values match the truth, and perfect recovery

of the true T values would be reflected by a heat density that is uniformly spread along

this line. By this measure, CHIMP-PD is more accurate at inferring T than Relate, since the

density for CHIMP-PD is more concentrated along the red line. The high density ridge for

Relate has a slope less than 1, which indicates that Relate is conservatively inferring values

of T that are closer to a genome-wide average, whereas CHIMP-PD more accurately estimates

T , especially for very high or low values.

CHIMP-PD’s mean and median estimates perform similarly to each other, though the

median estimates seem better able to infer very deep trees. This makes sense given the way

we compute median and mean values from the posterior probabilities, since the fact that

the mean is a weighted sum means that probability density in the lower states can pull the

estimate lower whereas the median can more readily return t̂S as an estimate. Using L as

the state variable yields distributions that match the truth better than TMRCA, and this is

evidenced in the right column where using L produces heat maps that are closer to the red

line, and 1-D histograms with wider distributions.

In Figure 5.2 we present the analogous comparisons using Tmode estimates from CHIMP-PD.

To better visualize the results, each bin for the heatmap and histograms is formed by grouping
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Figure 5.1: Correlations between true and inferred values for the state variables TMRCA (left)
and L (right), comparing inference using Relate and CHIMP (separately using the mean and
median of CHIMP’s posterior distribution as the estimator). The results are aggregated across
3.2 Gbp of simulated data (10 haplotypes simulated under constant 10k population size with
human r and µ using msprime). We also include marginal 1-D histograms for inferred and
true values. Both heatmaps and histograms are binned according to CHIMP’s hidden states.
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4 hidden states of CHIMP-PD, which still preserves the uniform distribution across bins of the

true T values. A log scale is used to more clearly see the crest of high density for the

heat maps. We see that using CHIMP-PD’s Tmode estimates results in a bimodal distribution

that is more heavily weighted at the tails, nominally the opposite problem that Relate has.

Indeed, we can see that the slope of the high-density crest of the heatmap is less than one

in the Relate plots, and is greater than one in the Tmode plots, underscoring the tendency

of Relate to be biased downwards from the mean and of CHIMP-PD Tmode to be biased

upwards.

Figures 5.1 and 5.2 show that, overall, CHIMP-PD has more flexibility than Relate to

accurately recover TMRCA and L along the genome. To quantify this performance, we

compute the deviation of the estimates from the true values of TMRCA and L. We define

σ =

√√√√i = 1

L

L∑
i

(log T̂i − log T̄i)2

where i indexes the sites simulated (L = 3.2 Gbp in total), and T̂i and T̄i denote the

estimated and true values, respectively, of the state variable at a given site i. This measure

of average error across the simulated data for each of the methods is collected in table 5.1.

The σ values show that CHIMP-PD, particularly with the mean and median estimates, is much

more accurate than Relate at recovering the true values of TMRCA and L.

In Figure 5.3 we show the actual estimates for TMRCA and L for a stretch of simulated

genome. We omit the median estimates from CHIMP-PD due to their similarity to the mean

estimates. We see that when the true values of T dips very low, the CHIMP-PD and Relate

do similarly well at recovering T , however when T takes on high values indicating very deep

trees, inference with CHIMP-PD is much more accurate. We also see the different behaviors

of CHIMP-PD’s Tmode and Tmean estimates. The mean estimates take a more ”nuanced”
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Figure 5.2: Correlations between true and inferred values for the state variables TMRCA (left)
and L (right), comparing inference using Relate and CHIMP’s mode estimator. The results
are aggregate across 3.2 Gbp of simulated data (10 haplotypes simulated under constant 10k
population size with human r and µ using msprime). As before, we include marginal 1-D
histograms. To help visualize the density crest, we use a coarse binning in the heatmap such
that every 4 consecutive hidden states are considered as 1 bin. These bins are also used for
the histograms.
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Figure 5.3: Example of inferred TMRCA (top) and L(bottom) along a 100 kbp stretch of
simulated data under neutrality, with the true values included for comparison. The data was
a segment sampled from the 3.2 Gbp used in Figures 5.1 and 5.2. For CHIMP we omit the
median estimator for visual clarity as it is very similar to the mean. The apparent upper
bound on the values inferred by CHIMP is an artifact of the fact that the HMM uses discrete
states and we have assigned a finite value to the last state.
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Table 5.1: Comparison of accuracy (σ) for different estimates of the state variable. Recall
σ = 0 corresponds with perfect accuracy.

Estimated Method σ for

Quantity 3.2 Gbp data

TMRCA

Relate 0.584

CHIMP:Mean 0.431

CHIMP:Mode 0.648

CHIMP:Median 0.425

L

Relate 0.409

CHIMP:Mean 0.317

CHIMP:Mode 0.485

CHIMP:Median 0.315

approach, however the mode estimates often overestimate or underestimate the true features.

Figure 5.3 visually reinforces the findings from table 5.1, showing that CHIMP-PD’s mean

estimator is much more accurate than Relate, and while CHIMP-PD’s mode estimator is less

accurate overall, it does capture the tails (high and low values) of the distribution of the

state variable better.

5.4 Simulations Under Selection

Now that we have shown that CHIMP-PD accurately recovers the TMRCA and L in neu-

tral simulations, we shift our focus to detecting adaptive genetic variation. In this section

we simulate and analyze scenarios of selection using SLiM [40], a forward-time simulation

tool that is well suited for selection. The two types of selection we examine are selective

sweeps, where a beneficial allele rises in frequency and fixes, and balancing selection, where

heterozygote-advantage maintains roughly equal frequencies for two different alleles at a

given locus.
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5.4.1 Selective Sweep

For our simulations of the selective sweep scenario, we simulated (using SLiM) the dynamics

for a (constant-size) population of 5000 diploid individuals with r = µ = 1.25 · 10−8 to

mimic human-scale parameters and focused on a 3Mbp genetic region. During the simulation

this population is allowed to ”burn-in” for 5 · 104 generations, during which random neutral

mutations accumulate along the genome and create a background of neutral genetic variation

that resemble the background characteristic of mutation-drift equilibrium. After this burn-in

period, a beneficial mutation m∗ is introduced at a single base positioned in the middle of the

3Mbp window in one haplotype of the population. This mutation has a dominance coefficient

h = 1/2 and a selection coefficient s that determines the strength of the selective advantage.

The population is allowed to evolve after the introduction of the beneficial variant. If the

mutation is lost (frequency falls to 0), the simulation is restarted after the burn-in period

and m∗ is reintroduced. This is repeated until the frequency of m∗ sweeps to 1. At the

time m∗ is fixed, the full genetic data for 150 individuals are randomly sampled from the

population. We conducted 16 replicates of this simulation for each value of the selection

coefficient s = 0.01, 0.02, and 0.05 (recent studies have shown that s ≈ 0.02 for lactase

persistence in certain human populations [41]).

After simulating this data, we ran CHIMP-PD on each replicate to obtain the posterior dis-

tribution. We computed the mean, mode, and median for this distribution at each metalocus

as described in Section 5.3. For this analysis, CHIMP-PD assumed a constant population-size

history based on Watterson’s estimate computed from the data, and used a metalocus size

of 500 bases. We anticipate that if the beneficial allele was introduced fairly recently and

then sweeps to fixation, the TMRCA and L near the selected locus will reflect very short

trees. So rather than using hidden states defined by an equal probability of occupancy under

neutrality, we broke up the state corresponding to the shortest tree into smaller states at

very recent times to allow CHIMP-PD to infer very short trees with more precision. Breaking
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Table 5.2: Results from analyzing selective sweep simulations with CHIMP-PD.

Selection Strength State Variable True Signals Observed False Signals Observed

(out of 16)

s = .01
TMRCA 10 0

L 10 0

s = .02
TMRCA 15 1

L 15 1

s = .05
TMRCA 16 1

L 16 1

up the smallest state in this way also means that the marginal probability of the CHMM

occupying these states is decreased, so that actually inferring these states constitutes strong

evidence of systematically small trees.

We analyzed all 16 replicates of data for each s = 0.01, 0.02, and 0.05 and tabulate

the results in Table 5.2. For each s value, we record the number of selection signals we

observe across the 16 replicates using both TMRCA and L. To classify whether an observed

pattern of inferred T constitutes a ”signal”, we visually evaluate whether the mode of the

posterior distribution is among the additional states that were added in the very recent past

to increase precision (< 6k generations for TMRCA and < 20k generations for L), and mark

any such contiguous region in the 3Mbp of simulated data as an observed ”signal”. Note

that the regular states have a marginal occupancy probability of 0.02, but these additional

states have probabilities < 0.02 under the prior; this makes them easy to visually identify

at the bottom of the posterior density plots we show. We use the mode of the posterior

for determining whether a signal is observed because of its heightened sensitivity to deviant

behavior of the state variable (seen in Section 5.3), though in the plots we show the mode,

median, and mean. In our results there does not appear to be a significant difference between

TMRCA and L. We see that CHIMP-PD can easily uncover the signals of strong selection,

80



(s = .02 and s = .05), however for weaker selection (s = .01), it becomes more difficult.

Table 5.2 also tabulates the number of ”false signals” we observed across all 16 replicates of

data, ie across 48Mbp of simulated genome. These are patterns in the data that we classify

as signals based on our criterion, but that do not occur in regions that overlapping with the

selected allele. Though a few such false signals appear in these simulations, we note that

they occur very close to the true signal and are likely due to ancestral recombination events

that fall in such a way as to excise some portion of the signal.

We show a few illustrative examples of the posterior obtained with CHIMP, with the mean,

median, and mode computed. Figure 5.4 shows the posteriors for a dataset simulated with

s = 0.2. The mutation under selection is at position 1.5Mbp, and we see high probabilities

of finding very small TMRCA and L values around this region. Near this position, each of

the mean, median, and mode of the posterior are observed in the very recent states included

in the recent past to provide more precision, taking on values much lower than the apparent

floor that is observed in the remainder of the background distribution. Though in Table 5.2

there was no significant difference between the discriminatory power of TMRCA and L, here

we see that the signal observed in the L distribution is wider, and thus more prominent,

than that in the TMRCA distribution. Though only a single base in the genome is under

selection, the evidence of selection extends upstream and downstream of this region because

of the genetic hitchhiking of other neutral mutations from the original haplotype on which

the selected mutant originated. However, as more time elapses between the sweep and the

sampling of data, further recombinations will shrink the region that remains correlated with

the selected position, and the signal will grow weaker. The signal also appears weaker for

weak selective sweeps, like that shown in Figure 5.5 where we do not observe any clear signal

in the L distribution for a dataset simulated under s = 0.01. Our naive criterion using the

mode of the posterior does not indicate any signal in Figure 5.5, though near the selected

site there is visual evidence of L’s that are on average lower than the background. A more
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Figure 5.4: Posterior distributions computed by using CHIMP-PD to analyze data collected
from a selective sweep simulation with s = 0.02. This is computed for both TMRCA (top)
and L (bottom). The genomic segment is centered around the beneficial mutation site. We
further compute the mode, mean, and median of the distribution and overlay these curves.
The regions below TMRCA ≈ 6k and L ≈ 20k generations are subtended by a finer division
of states that were included to increase precision in the recent past, and we see that the
mode, median, and mean all extend into the region near the selected mutation, showing
clear evidence of a signal. The signal for L appears wider and more pronounced than that
for TMRCA. In the heatmap, brighter colors indicate higher inferred probability for the state
spanning that region.
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Figure 5.5: Posterior distribution of L as computed by using CHIMP-PD to analyze data
collected from a selective sweep simulation with s = 0.01 . We also display the mode, mean,
and median of the distribution. By our criteria, we do not detect the selection since we do
not see L extend into the recent states (below ≈ 20k generations), though we do observe a
region with a generally low average value for L.

sophisticated signal processing pipeline would likely enable us to more clearly detect this

evidence of selection.

5.4.2 Balancing Selection

For our simulations of balancing selection, genetic variation in a region under selection is

maintained by heterozygote-advantage of a haplotype. We use the same population size and

demographic parameters as for the selective sweep, and the same burn-in period as well.

We model selection on an extended region of the genome (as opposed to a single site) by

introducing 21 evenly spaced mutations of type m∗ on a single random haplotype from the

population, and label this haplotype h∗. The m∗ mutations are spaced 1kbp apart from

their neighbors, and in total span a 20kbp region that is centered in the middle of the 3Mbp

window. Selection is defined to act such that an individual gains a fitness advantage of

s only if they have one haplotype with 0 m∗ mutations, and one with 21 m∗ mutations.

After introducing h∗, the simulation proceeds for 105 generations before 150 individuals’
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Table 5.3: Results from analyzing balancing selection simulations with CHIMP-PD.

Selection Strength State Variable True Signals Observed False Positive Observed

(out of 16)

s = .01
TMRCA 16 0

L 16 0

s = .02
TMRCA 16 0

L 16 0

s = .05
TMRCA 16 0

L 16 0

data is collected. If at any point h∗ is lost or fixes, the simulation is restarted after the

burn-in. As before, we simulated a total of 16 replicates for each of the selection strengths

s = 0.01, 0.02, and 0.05, and analyzed these replicates using CHIMP-PD, this time breaking

up the highest state (corresponding to the largest trees) into smaller bins to obtain better

resolution in the distant past.

The results for all 16 replicates of data for each s = 0.01, 0.02, and 0.05 are tabulated

in Table 5.2. The criterion for determining whether a signal was observed for a given

simulation replicate was too visually evaluate whether the mode of the posterior achieved

high values in the additional states added in the distant past (> 55k generations for TMRCA

and > 135k generations for L) for a consecutive stretch of data spanning > 10kbp anywhere

in the simulated genome, and to mark each such stretch as a ”signal”. As before, because

the marginal occupancy probability distribution of these states under the prior is < 0.02,

these states are visibly distinct in the density plot of Figure 5.6. For each of the selection

coefficients we used, CHIMP-PD detects clear signals of balancing selection in the appropriate

regions. While we do see some spikes in surrounding regions that somewhat resemble the

profile of our primary signal (as in the L posterior in Figure 5.6), these spikes are likely caused

by random SNPs in the background that happen to maintain intermediate frequencies for
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Figure 5.6: Posterior distributions computed by using CHIMP-PD to analyze data collected
from a balancing selection simulation with s = 0.02 . This is computed for both TMRCA
(top) and L (bottom). The plot is centered around the site of the beneficial mutation. The
mode, mean, and median of the distribution are also computed and displayed. The regions
above TMRCA ≈ 55k and L ≈ 135k generations are subdivided into finer states that were
included to increase precision in the distant past, and we see that the mode, median, and
mean all spike into these states near the selected mutation, showing clear evidence of a signal.
At 1.59mbp, we see an example of a spike in the background, though it is highly localized
compared to the signal due to the 20kbp region under balancing selection.
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long periods of time, and thus span very narrow tracts of the genome. If we simulated

selection over a narrow range (or for a single SNP) instead of a 20kbp region, distinguishing

true signals from these background fluctuations would likely be more difficult. We show a

characteristic example of posterior plots in Figure 5.6), for a dataset with s = 0.02. The

signal appears to be very sharp, with a very steep drop-off away from the selected region.

The suddenness of this drop-off is largely due to the age of the haplotypes under selection,

since over long spans of evolutionary time, recombination has many more opportunities to

decouple the haplotypes of the selected region from the flanking regions of the genome. The

simulated scenarios for s = 0.01, and 0.05 also look quite similar to Figure 5.6), so we omit

these plots.

5.5 Signals of Adaptation in Human Data

Having established that CHIMP-PD is able to uncover patterns of adaptive genetic variation

that are consistent with different modes of selection in simulated data, we turn to analyzing

real data. We choose to use data samples collected in the 1000 Genomes Project [42], and

focus this study on three populations in particular: GBR (British and Scottish samples),

CHB (Han Chinese samples, collected in Beijing), and YRI (Yoruba samples, collected in

Ibadan, Nigeria). After partitioning the individuals by their population labels, we used data

from 90 GBR individuals, 100 CHB individuals, and 175 YRI individuals, and analyzed these

samples using the composite likelihood model where the haplotypes were partitioned into

groups of 10, and the log-likelihoods summed at the end. Under this scheme, we used CHIMP

to infer the demographic history for each population using data across the entire genome

(22 chromosomes). The results of this inference are shown in Figure 5.7. The bottleneck

at ≈ 100, 000 generations in the past in the GBR and CHB populations is evidence of an

out-of-Africa migration, showing general consistency with other results [16] .

After establishing the baseline demographic history using CHIMP, we used CHIMP-PD to
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Figure 5.7: Results of demographic inference for GBR, YRI, and CHB. These results were
computed with a modest amount of regularization to achieve smoother functions. As ex-
pected, we see evidence of a bottleneck for the out-of-Africa migration in the GBR and CHB
populations and similar dynamics in the distant past for all populations.

infer the posterior distributions in two specific regions of the genome: the LCT/MCM6

region, and the MHC locus. These regions provided instances where a selective sweep and

balancing selection, respectively, have been well established in the literature ([41, 43, 44, 45]),

and thus were good candidates to analyze with CHIMP-PD to calibrate it to real data.

5.5.1 Studying LCT/MCM6 with CHIMP-PD

The LCT gene (on Chromosome 2) contains information to produce the protein lactase,

which allows the digestion of milk. All humans produce lactase as infants, and while some

humans decrease their production of LPH (an enzyme that helps break down lactase) after

5-10 years of age [46], many do not. It is believed that lactase-persistence is historically

linked to substantial fitness benefits, due the domesticization of cattle and the increased
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Figure 5.8: L values near LCT, inferred using CHIMP-PD with the mode of the posterior as
the estimator. The purple dashed lines indicate the location of LCT, and near this we see
evidence for the very small trees that are consistent with a recent selective sweep. We see
strongest evidence of this sweep in the European population GBR, and weaker evidence in
CHB, and weakest of all in YRI.

ability to exploit milk as a source of nutrition. Since lactase-persistence is a relatively recent

development in our evolutionary history, we are likely to see evidence of selection in the

genome [43]. This selection is some of the strongest observable selection in the genome, and

the selection coefficient has been estimated to be between 0.02 and 0.05 [41](ie. homozy-

gous presence of the beneficial allele confers a 2-5% fitness advantage). Previous studies have

identified multiple SNPs that are linked to lactase-persistence (all in the MCM6 region just

upstream of LCT), and while different SNPs appear to be tied to lactase-persistence in differ-

ent geographic populations, in northern European populations, lactase persistence has been

primarily tied to SNP rs4988235 [46], though through population diffusion and migration,

the beneficial allele at this location has more recently dispersed to other populations.

For this investigation, we were primarily concerned with the region near aforementioned

SNP rs4988235, and sought to corroborate previous studies with CHIMP-PD by demonstrating

that there is a strong signal of selection in the posterior distribution of TMRCA and L in

European populations. We analyzed the individuals from each population separately (YRI,
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CHB, and GBR) assuming recombination and mutation rates r = µ = 1.25 · 10−8 and the

demographic histories that were inferred in Figure 5.7. The posterior was computed across

chromosome 2 by analyzing the haplotypes in groups of 10 (as described in Section 5.2). For

this analysis, the states for the state variable were determined using partitions such that the

marginal probability of finding the CHMM in each state was 0.02. Then the lowest state

(corresponding to the smallest trees), was broken up further into 5 additional states with

marginal probabilities {0.002, 0.003, 0.005, 0.005, 0.005}. The highest state was also broken

up similarly such that the highest resolution of the state was at the tail of the distribution

(ie. with marginal probabilities {0.005, 0.005, 0.005, 0.003, 0.002}). Thus, the CHMM was

defined with 58 possible states, with very small marginal probabilities of falling in the lowest

or highest state. This is similar to the procedure in Section 5.4, in order to obtain better

resolution for very small and large trees, and to accentuate large deviations from the the

null-hypothesis of a neutral background.

We show the results of inferring L in the LCT/MCM6 region in Figure 5.8. The trajecto-

ries plotted use the mode of the posterior as the estimate. In the GBR and CHB populations,

we see very small trees a little to the left of the LCT gene which indicates a region where the

allele (or set of alleles) under selection have swept to high frequencies. This is not observed

in the YRI population. These results are consistent with the selection signals detected by

other scans that use statistics computed from population genetic data ([47]: fig 1b).

5.5.2 Studying MHC with CHIMP-PD

The major histocompatability complex (MHC) is a region of chromosome 6 that contains

several polymorphic genes that code for proteins involved in the adaptive immune system.

These human leukocyte antigen (HLA) genes are some of the most polymorphic genes that

we know of, and their diversity within a population means that most people are heterozygous

at HLA alleles. Combined with the fact that expression of these alleles is codominant, this
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Figure 5.9: L values near the MHC, inferred using CHIMP-PD with the mode of the posterior
as the estimator. The MHC is the region bounded by the purple dashed lines, and within this
region we see evidence for very large (deep) trees consistent with the signature for balancing
selection in each of the three populations.

allows for each individual to express a great number of HLA molecules, thus aiding in immune

function [45]. For the population as a whole, we see that these dynamics make it desirable

to maintain a diverse pool of alleles, so competing alleles are retained at high frequency

within the broader genetic pool for long periods of time, with little push for one to push the

other out, making this an example of balancing selection dynamics [44]. By analyzing the

MHC region, we will demonstrate that CHIMP-PD can be used to uncover signals of balancing

selection.

Using CHIMP-PD, we computed the posterior distributions for TMRCA and L for each

population separately using the same method as for LCT/MCM6 (including the additional

states for very large and small trees). In Figure 5.9, we show the results of this inference. In

the MHC region, we see very clear evidence for genes that have very large trees, indicating

that the variants observed in each population have to go into the very distant past to find

a common ancestor. This is consistent with the hypothesis that this variation has been

maintained by balancing variation in each of the populations CHB, GBR, and YRI. The fact

that the YRI trees appear larger for these regions under balancing selection also suggests
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that the YRI population is the oldest (or that the variation in the YRI population is similar

to an ancestral pattern of variation), when compared to the GBR and CHB populations,

where the bottleneck due to the out-of-Africa migration may have impacted the diversity of

SNPs, and leads to smaller trees for the variation observed in modern samples. To sum up,

we see that CHIMP-PD is able to uncover such signals of strong balancing selection.

5.6 Conclusion

In this chapter we have begun to explore the possibilities for detecting adaptive variation

using CHIMP-PD. We started by testing the ability of CHIMP-PD to accurately infer the TMRCA

and L in neutral simulations, and explored different estimates for the state variable that can

be obtained from the posterior distribution that CHIMP-PD returns. We saw that the mean

and median estimates performed very well, achieving significantly better accuracy than the

estimates obtained from Relate. The mode estimate did not perform as well overall, but

was more accurate when the true genealogical trees were very large or small, and thus we

believe the mode still has utility in detecting adaptive variation since regions of adaptive

variation are often characterized by these outliers.

We then turned to simulations of selective processes, focusing on the archetypes of a

selective sweep and balancing selection in particular. We simulated multiple replicates of data

for these two scenarios, across a range of selection coefficients, and found that CHIMP-PD has

great potential for detecting strong selection even with a simplistic method to classify a region

as being under selection. For weaker signals in real data, we will likely need an approach

that leverages better signal analysis techniques, and CHIMP-PD can easily be incorporated

into such sophisticated pipelines.

Finally, we looked at two regions of the human genome, LCT and the MHC, and analyzed

data from the 1000 Genomes Project at these loci. At these locations, we demonstrated that

CHIMP-PD is able to replicate the results of other studies, and uncovers strong evidence
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of a selective sweep near LCT, and balancing selection at the MHC. These preliminary

studies suggest that with more sophisticated signal detection criterion, CHIMP-PD can be

developed into a tool with which the genome can be scanned for patterns consistent with

adaptive variation. It can also be as a supplemental tool in other analyses of specific genes to

efficiently understand how the local genealogy fits into a broader narrative of gene function.
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CHAPTER 6

FINAL THOUGHTS

In this work we have described the potential that CHMMs offer as a tool for analyzing the

vast numbers of whole genome sequences that are being collected from across populations.

We have developed, bench-marked, and applied the novel CHMM method CHIMP. We started

by presented two implementations, CHIMP-TMRCA and CHIMP-L, and using them to perform

inference of past population sizes in a single population. The methods use either the TMRCA

or the total branch length L of the local genealogies as the underlying hidden state in this

HMM framework. We detailed systems of differential equations derived from the ancestral

process that can be used to compute the respective transition and emission probabilities.

These differential equations can be computationally intensive to solve, particularly for L,

but we present solution schemes that exploit a combination of approximations and exact

equations to obtain solutions. Furthermore, the framework presented here can be seen as a

generalization of most previous CHMM methods, in that it can readily be modified to use

pairwise coalescent times [PSMC and MSMC2, 13, 15], first-coalescent times [MSMC, 14], as well

as the coalescent time of a distinguished pair [SMC++, 16] as the hidden state.

We applied CHIMP for demographic inference from simulated data in a variety of scenarios

and compared the results to other state-of-the-art methods, specifically MSMC2 and Relate.

While CHIMP-L is intriguing from a theoretical perspective, it currently does not seem suitable

for demographic inference since inference is slow and less accurate than CHIMP-TMRCA,

although more efficient approximations may ameliorate this issue. We observed that CHIMP-

TMRCA performed comparably to other methods in most scenarios for time-frames more

than 500 generations before present and outperformed them for very ancient times beyond

100,000 generations before present. Its runtimes are similar to those of the other methods

in the tests we performed, and CHIMP-TMRCA scales very well to large samples. CHIMP

can also be run on unphased data and certain pseudo-haploid datasets, whereas Relate
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requires phased data, and MSMC2 can only be run in a limited capacity without phased data.

We believe, that this makes CHIMP-TMRCA a flexible alternative to other methods when

analyzing large data sets, especially in scenarios where high quality assessment of haplotype

phase is not available, which includes non-model systems were reliable reference panels are

not available.

Next we showed how the modeling framework that we developed can be extended be-

yond inference for a panmictic single-population model. We described CHIMP-S, a method

that extends this framework to a population-split model, and we demonstrated inference of

demographic parameters using CHIMP-S for simulated data. This highlighted the flexibility

of the modeling framework, and we anticipate that it can be adapted to other demographic

situations such as those with continuous migration or those that incorporate asynchronous

ancient DNA samples.

We then showed how to use CHIMP-PD to obtain the posterior distribution across states,

and how estimates for TMRCA and L can be constructed from these distributions. We bench-

marked the accuracy of these estimates (comparing them to Relate). With CHIMP-PD’s

accurate estimates of the state variable, we showed that signals of selective sweeps and

balancing selection can be uncovered in a series of simulation studies. Then we demonstrated

the use of CHIMP-PD on human data, focusing on signals of selection near the LCT/MCM6

gene and the MHC.

Taken in total, these various projects highlight the flexibility and utility that CHMMs

(and in particular, CHIMP) can provide in aiding genetic studies. They can be used on new

genetic data, when little is known about the populations in question beforehand, to infer

the demographic history, or scan for selection. They can also be used in a more focused

way to understand the variation patterns at specific regions, aiding other studies in trying

to understand the evolutionary narrative behind certain genes.
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[4] Julia A Palacios, Amandine Véber, Lorenzo Cappello, Zhangyuan Wang, John Wakeley,

and Sohini Ramachandran. Bayesian estimation of population size changes by sampling

tajima’s trees. Genetics, 213(3):967–986, 2/15/2021 2019.

[5] Alon Keinan and Andrew G Clark. Recent explosive human population growth has

resulted in an excess of rare genetic variants. Science, 336(6082):740–3, May 2012.

[6] Sharon R. Browning and Brian L. Browning. Accurate non-parametric estimation of

recent effective population size from segments of identity by descent. The American

Journal of Human Genetics, 97(3):404–418, 2021/02/14 2015.

[7] Pier Francesco Palamara, Todd Lencz, Ariel Darvasi, and Itsik Pe’er. Length distribu-

tions of identity by descent reveal fine-scale demographic history. American Journal of

Human Genetics, 91(5):809–22, Nov 2012.

[8] Matthew D. Rasmussen, Melissa J. Hubisz, Ilan Gronau, and Adam Siepel. Genome-

wide inference of ancestral recombination graphs. PLoS Genetics, 10(5):1–27, 05 2014.

[9] Jerome Kelleher, Yan Wong, Anthony W. Wohns, Chaimaa Fadil, Patrick K. Albers,

95



and Gil McVean. Inferring whole-genome histories in large population datasets. Nature

Genetics, 51(9):1330–1338, 2019.

[10] Leo Speidel, Marie Forest, Sinan Shi, and Simon R. Myers. A method for genome-wide

genealogy estimation for thousands of samples. Nature Genetics, 51(9):1321–1329, 2019.

[11] Gilean A.T. McVean and Niall J. Cardin. Approximating the coalescent with re-

combination. Philosophical Transactions of the Royal Society B: Biological Sciences,

360(1459):1387–1393, 2005.

[12] Carsten Wiuf and Jotun Hein. Recombination as a point process along sequences.

Theoretical Population Biology, 55(3):248–259, 1999.

[13] Heng Li and Richard Durbin. Inference of human population history from individual

whole-genome sequences. Nature, 475(7357):493–496, 2011.

[14] Stephan Schiffels and Richard Durbin. Inferring human population size and separation

history from multiple genome sequences. Nature Genetics, 46(8):919–925, 2014.

[15] Ke Wang, Iain Mathieson, Jared O’Connell, and Stephan Schiffels. Tracking human pop-

ulation structure through time from whole genome sequences. PLoS Genetics, 16(3):1–

24, 03 2020.

[16] Jonathan Terhorst, John A. Kamm, and Yun S. Song. Robust and scalable inference

of population history from hundreds of unphased whole genomes. Nature Genetics,

49(2):303–309, 2017.

[17] Sara Sheehan, Kelley Harris, and Yun S Song. Estimating variable effective population

sizes from multiple genomes: A sequentially markov conditional sampling distribution

approach. Genetics, 194(3):647–662, 2/15/2021 2013.

96



[18] Matthias Steinrücken, Jack Kamm, Jeffrey P. Spence, and Yun S. Song. Inference of

complex population histories using whole-genome sequences from multiple populations.

Proceedings of the National Academy of Sciences, 116(34):17115, 08 2019.

[19] Jeffrey P Spence, Matthias Steinrücken, Jonathan Terhorst, and Yun S Song. Inference

of population history using coalescent hmms: review and outlook. Current Opinion in

Genetics & Development, 53:70–76, 2018.

[20] Thibaut Paul Patrick Sellinger, Diala Abu-Awad, and Aurélien Tellier. Limits and
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