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ABSTRACT 

We previously developed Upside, a near-atomic, fast molecular dynamics algorithm for protein folding.    

A key feature of the model’s efficiency is the representation of sidechains as single coarse grained beads 

and a rapid calculation of their rotamer free energies for each time-step, giving a smoother energy 

surface for the backbone to evolve on. We used the contrastive divergence technique from machine 

learning to train from simulations of 450 proteins for which our model’s efficiency allows for better 

representations of the Boltzmann ensembles for precise tuning and greater accuracy. The model is 

afterward able to de novo fold proteins up to 100 residues on a single core in days. 

Here we were inspired by Upside’s folding performance to adapt the model to predict protein-

protein binding. Predicting protein binding is a core problem of computational biophysics. That this 

objective can be partly achieved with some amount of success using docking algorithms based on rigid 

protein models is remarkable, although going further requires considering the effect of protein flexibility. 

However, accurately capturing the conformational changes of the proteins upon binding remains an 

enduring challenge for docking algorithms. We use Upside to investigate when backbone flexibility helps 

docking predictions, what types of interactions are important, and what is the impact of coarse-graining on 

accuracy. These efforts also shed new light on the relative challenges posed by folding and docking. After 

training the Upside potential for docking, the model is competitive with established methods, but with 

some loss of accuracy due to the absence of atomistic side chains. Allowing for backbone flexibility during 

docking appears to be generally detrimental, as the presence of comparatively minor (3-5 Å) deviations 

relative to the native folded structure has a negative effect on performance. While this issue appears to 

be inherent to current forcefield-guided flexible docking methods, antibody-antigen complexes represent a 

major exception. These systems involve the co-folding of flexible loops that benefit from Upside’s 

backbone flexibility. 
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CHAPTER 1 

INTRODUCTION 

Proteins are the major end effectors of biology. They carry out functions of the immune system, signaling, 

metabolism [1] and even regulate the earlier stages of the central dogma through interactions with nucleic 

acids [2,3]. The study of proteins is therefore essential to understanding the processes of life and can 

lead to biomedical applications when investigated in the context of their malfunction. It is also rewarding 

to study proteins for their own merit as fundamental units of complexity: somehow a balance of energies 

and entropy expressed through a sequence of simple chemical constructs from a finite library of possible 

types (the amino acid residues) leads to a well-organized structure that can embody a function. This 

sequence-structure relationship is broadly described as “the protein folding problem”. Human curiosity 

cannot but help to distill the principles that govern the emergence of this complexity. 

Experimental techniques such as x-ray crystallography, nuclear magnetic resonance (NMR) 

spectroscopy and cryoElectron microscopy (cryoEM) have revealed the details of many individual protein 

structures and a fewer but growing number of protein complex structures. However, these techniques 

suffer from limitations. For example, in x-ray crystallography, these include solubility and aggregation 

issues and non-directional nucleation stemming from flexible regions of proteins for x-ray crystallography 

[4]. NMR can face issues of time-consuming sample preparation, difficulty in analysis, and limitations on 

size and resolution [5,6]. Proteomic experiments suggest that there are many potential protein 

complexes, often with weak and transient interactions, which would be precluded from study with these 

structural characterization techniques [7]. 

Proteins are also not static structures; they fluctuate in their native state and may undergo 

conformational changes. Furthermore, stabilities and kinetics of proteins and their complexes impact their 

biological functions. Thus, it is important to study proteins beyond their native structure. Hydrogen-

deuterium exchange (HDX) is a powerful experimental technique to provide residue-level information 

about thermodynamics and dynamics [8,9]. While advances have been made to ease the conduction of 

HDX experiments [10], they are still labor intensive. 
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The development of computational approaches for determining protein and protein complex 

structure, dynamics, and thermodynamics, are therefore promising for the study of cases that are difficult 

for experimental methods. Computational approaches may also enable higher-throughput study than 

experiment through parallel computing. This is supported by the remarkable accuracy and efficiency of 

recent neural network approaches for protein (complex) structure prediction [11–14]. However, these 

approaches are not able to account for thermodynamics and kinetics, unlike molecular dynamics (MD) 

simulation methods. 

MD methods thus are comprehensive tools for the study of proteins. They also allow for a more 

physical interpretation of the determinants of protein folding and binding compared to neural network 

methods because of their use of explicitly defined forcefields that describe interactions and these 

forcefields are often physically based. However, successful prediction with MD of full protein behavior is 

predicated on the dual challenges of an appropriate representation and balance of energies in the 

forcefield to produce an accurate Boltzmann ensemble of states, and efficiently sampling that ensemble. 

This thesis presents two major instances of my contributions to Upside, a fast, near-atomic MD 

algorithm [15,16]. Upside addresses both issues of energies and sampling. The model contains a single 

coarse grained (CG) bead in place of explicit sidechains and a quick, iterative procedure is used to 

determine side chain rotamer probabilities per MD step to give a smoother free energy surface for the 

backbone to move on. This and other approximations such as a lack of explicit solvent allows for rapid 

sampling on single CPU cores. Energy balance is achieved through machine learning (ML) based training 

of physically inspired potential energy terms to best reproduce different experimental observations, which 

are described below for each chapter. Interestingly, the different energy terms and training for each 

scenario indicate that Upside, as with other MD methods, does not (yet) present a unified model of 

protein behavior. An examination of Upside’s limitations is still instructive in gaining fundamental insight 

into the nature of proteins, such as what interactions are important for binding compared to folding. 

The first chapter describes my major project of extending Upside to the prediction of protein-

protein interactions, specifically for protein docking. Capturing the conformational changes that occur at 

protein interfaces for binding remains a considerable challenge according to the community-wide protein 

docking prediction competition, Critical Assessment of PRedicted Interactions (CAPRI) [17]. This 
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motivated us to attempt to utilize Upside’s protein folding capability for docking. This also involved the 

addition of new binding specific energy terms and training these terms using a maximum likelihood 

approach on a protein complex benchmark set [1].  

The second chapter highlights my contributions to one of the seminal Upside papers where we 

predicted protein folding [16]. In this paper, sidechain and backbone potential energy terms are trained in 

concert using contrastive divergence to stabilize the native wells centered on the structures of proteins in 

our training set taken from the PDB. We achieved de novo, reversible folding for several proteins at an 

accuracy level compared to much more computationally expensive all-atom methods with better, though 

not perfect, denatured states. 

I also contributed to the other original Upside paper that validated our sidechain model [15], but 

do not include it in this thesis. In this paper, a maximum-likelihood approach was used to train our 

sidechain interaction parameters to maximize the probability of the native χ1 rotamer given the native 

backbone configuration observed in our training set of proteins from the Protein Data Bank (PDB) [18]. 

We obtained similar accuracy as other state-of-the-art methods but using only a fraction of the 

computational time. 

This thesis mainly focuses on structural predictions with Upside, with some thermodynamics in 

the case of the contrastive divergence paper. I also contributed to a study with a fuller account of 

Upside‘s thermodynamics through the prediction of HDX patterns [9]. That study demonstrated that, 

although significant challenges remain for accurate free energy surface generation, MD methods remain 

relevant for the study of proteins considering the advent of neural network methods. Upside in particular 

is suited for this with its careful consideration of the denatured state ensemble. Additionally, the ideas for 

training against docking decoys in my protein binding work were adapted for the training of an 

intermediate improved folding force field against misfolded states [19]. 

1.1 References 
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CHAPTER 2 

PROTEIN DOCKING 

2.1 Introduction 

Because of the central role protein-protein interactions play in many biological processes ranging 

from cell signaling pathways to antigen recognition, characterizing and predicting these interactions 

remains an important challenge of computational biophysics. The ability to accurately predict the 

conformation and binding affinity of protein complexes using computational approaches would be 

transformative. In this paper, we focus on the conformational aspect of protein-protein interactions: tools 

and limitations for flexibly docking proteins and the scoring of docked poses.  

Two general approaches to protein docking are template based, which tends to be the most 

successful if homologous complexes can be identified, and free docking, often using Fast Fourier 

Transform (FFT) grid representations or basis function expansions to accelerate the generation of 

docking poses [1, 2]. The top “human” performer in the Round 46 joint Critical Assessment of Predicted 

Interactions (CAPRI) and Critical Assessment of protein Structure Prediction (CASP) experiment for 

protein docking used a hybrid pipeline based on the quality of templates but noted that manual 

intervention using prior knowledge of interface residues during modeling and scoring plays an important 

part in their success [3, 4]. The incorporation of evolutionary information also contributed to recent 

improved performance in CAPRI [5, 6].  

In a comparison of free docking algorithms, the ones that incorporated protein flexibility were the 

best performers on Vreven et al.’s benchmark set of complexes [7]. Two methods for including protein 

flexibility are normal mode deformations (e.g., SwarmDock), and Molecular Dynamics (MD) refinement 

(e.g., HADDOCK) [7–9]. The HADDOCK approach also made use of bioinformatics predictions of 

interface residues and antibody loops to guide docking [7]. 

Two recent forcefield guided (pseudo-)dynamics protein docking methods also warrant mention. 

At one end of the scale of molecular details and computational resources is the all-atom explicit solvent 

replica-exchange MD approach of Pan et al. run on the Anton supercomputer [10]. At the other end of the 

scale is the CABS CG model, consisting of Cα, Cβ, united sidechain atom placed at the sidechain center 



7 
 

of mass, and the peptide bond center, with a knowledge-based statistical potential that drives replica-

exchange Monte Carlo pseudo-dynamics [19, 20]. 

AlphaFold 2 [13] and RoseTTAFold [14] are recent neural network approaches that combine 

evolutionary and structural features for protein structure prediction, with abilities to predict complexes. 

AlphaFold 2 achieved leading performance by a wide margin in the CASP14 experiment, while 

RoseTTAFold was developed afterward and comes in second place in a post evaluation of CASP14 

targets but is smaller than AlphaFold 2 in terms of model size. Both have been trained only on single 

protein chains, but the authors of RoseTTAFold report some surprising success in predicting the structure 

of complexes, with backbone flexibility in the docking intrinsically built into the method due to its 

construction for protein folding. 

The scientific community also started exploring protein complex structure prediction with modified 

AlphaFold 2 protocols upon its open source release with great success. One study using extended 

multiple sequence alignments obtained an accuracy of up to ~60% according to certain metrics in a test 

where traditional docking methods achieved only 22% accuracy [15]. Another study by the AlphaFold 

team at DeepMind with an AlphaFold model trained on multimers achieved 67% accuracy in predicting at 

least acceptable-quality heteromeric interfaces [16]. Traditional docking approaches, including template-

based and free docking with statistical or physical potentials, may soon become obsolete for the sole 

purpose of structure prediction. However, it is still extremely important to improve molecular dynamics 

approaches for docking for studying the thermodynamics and kinetics of protein association, and the 

associated conformational changes. 

The CAPRI experiment [17] has encouraged the development of docking algorithms through a 

blind prediction challenge open to the scientific community, with 47 rounds held since its inception. 

Reflections on recent rounds by CAPRI organizers and participants have highlighted the continued 

challenge of accounting for conformational changes during docking [3, 5, 17]. Round 46 was run jointly 

between CAPRI and the CASP experiment and continued to emphasize that considerable challenges 

remain. In this CASP-CAPRI round, only sequence information was provided, whereas in regular CAPRI 

rounds the unbound structures of the subunits were available. The hard targets that were poorly predicted 

did not have high quality templates available for homology modeling and so predictors often had only 
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subunits with large RMSD to their native bound states in their docking pipeline. It is thus attractive to 

consider leveraging a method with protein folding capability to capture the flexibility required to reach the 

bound conformations in such situations. 

We also examine the recent information-driven antibody-antigen docking study by the HADDOCK 

developers [19]. They compared four different docking algorithms on antibody-antigen complexes from 

the Vreven et al. benchmark with different levels of information about the antibody hypervariable loops, 

also known as complementarity-determining regions (CDRs), and epitope to bias the search. Their own 

algorithm, HADDOCK, performs the best in part due to the information being incorporated as a restraining 

potential during the search as opposed to a simple filtering mechanism as used in the other algorithms, 

and due to their flexible refinement procedure. However, they have mixed performance for predicting the 

conformation of loop H3, the most variable antibody loop.  

We recently developed the coarse-grained (CG) Upside model for protein folding simulations and 

now consider its suitability for docking prediction. Upside is a physics-based MD algorithm that is able to 

fold proteins 103-104 fold faster than all-atom methods with comparable accuracy. Upside's speed arises 

from explicitly accounting only for the backbone N, Cα, and C atoms during the dynamics portion, while 

during force calculation it infers the position of amide hydrogens, carbonyl oxygens, and Cβ atoms, and 

places the multi-position beads that represent the sidechains. Free energies of the side chain rotameric 

states are solved for between each dynamics step and pushed back onto the backbone atoms, which 

results in a smoother energy surface for dynamics as opposed to all-atom representations that face side 

chain friction and kinetic locking [20].  

Upside can be slotted into a multitude of docking pipelines to make use of the extra information 

mentioned earlier in the context of other docking approaches, and below we discuss the case of 

information driven antibody-antigen docking. However, the primary goal of this paper is to assess the 

Upside model’s suitability for predicting protein-protein interactions taking advantage of its backbone 

folding capability and rapid side chain sampling. To transition from folding, we extend Upside for protein 

docking by training new binding-specific energy terms with a maximum likelihood approach using Vreven 

et al.’s benchmark set of non-redundant complexes [7].  



9 
 

Our updated model is compared to other docking algorithms using a subset of the benchmark set 

according to the widely used CAPRI experiment criteria [17]. We identify the penalty for coarse graining 

sidechains and examine the impact of flexibility, including for other forcefield guided dynamics methods. 

We then assess flexibility and the performance enhancements of extra information in the case of antibody 

docking, following the reasonable assumption that Upside may perform relatively well for this class of 

complexes due to the inclusion of backbone dynamics enabling co-folding of the flexible CDR loops 

during binding. Finally, we conclude on a broader discussion of the different challenges of protein docking 

versus folding, and the merit of MD approaches in light of the recent performance of neural network 

methods. 

The source code and examples for the docking version of Upside can be found at 

https://github.com/nffaruk/upside-docking. The release tagged v2.0.0 corresponds to this thesis. 

2.2 Methods 

2.2.1 Data sets for training and testing 

The Docking Benchmark v5 provided 230 nonredundant binary complexes, of which 175 of the 

complexes from the previous version were used for training and the 55 new complexes were used for 

testing [7]. The benchmark set spans a diverse set of enzyme containing, antibody-antigen, and other 

types of complexes. The set also contains both bound and unbound forms of the subunits at high 

sequence identity; the unbound forms are required to compare against other docking algorithms 

according to the CAPRI methodology. FRODOCK v3 [2], a rigid body docking algorithm based on 

spherical harmonics, was used to generate 1000 decoys per complex based on the bound conformation 

of the subunits. FRODOCK has various energy terms that can be used for decoy generation and ranking. 

Here, we used the defaults for the van der Waals, electrostatics, and SOAP all-atom statistical potential 

[21], but omitted the desolvation term. 

In addition, antibody-antigen (Ab-Ag) complexes were considered to evaluate the impact of 

backbone flexibility, considering the flexible nature of the antibody hypervariable loops that impart 

specificity. Ambrosetti et al. recently tested four docking algorithms for Ab-Ag docking using various levels 

of external information about the Ab loops and epitope to bias the results. Their evaluation set was 16 

https://github.com/nffaruk/upside-docking
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new Ab-Ag complexes added to the Docking Benchmark v5, and so to enable comparison we also used 

these complexes. Although these complexes are already included in the general “diverse” set, we docked 

them anew for two cases of extra information to take advantage of how the CDR loops are known a priori 

and how a rough estimate of the epitope can be sourced from experiment and other predictive tools. 

Whereas Ambrosetti et al. used the exact Ab loop residues and defined their coarse epitope by those 

residues within 9 Å of the loops in the native bound structures, for simplicity we defined the loops as 

residues involved in native interface contacts (Cα distances < 10 Å) plus a zone of up to 3 residues on 

either side and same for the coarse epitope. While our definitions and use of the loop and epitope 

information are different from Ambrosetti et al., we think they are sufficiently similar to allow for a 

meaningful comparison. 

For the modeling using only Ab loop information, decoys were again generated with FRODOCK, 

except beginning with up to 20000 decoys and filtering down to 1000 around the interface by requiring a 

minimal number of loop contacts. For the Ab loop information plus coarse epitope information case, 

200,000 decoys were first filtered down with the frodockonstraints program in the FRODOCK suite to 

keep the two furthest residues of the loops within 55 Å of the two furthest residues on the coarse epitope. 

These decoys were further filtered down to 1000 or less by selecting those that had contacts between at 

least one third of the residues of the loops and epitope.  

2.2.2 New energy terms for docking 

Side chain-side chain (SC-SC) interactions and burial (desolvation) provide important contributions to 

protein-protein interactions, and, for this reason deserve special attention. Upside’s basic potential 

represents sidechains by a single, directional bead that may be in up to six different states (positions and 

orientations) to mimic the diversity in the side chain rotamers [20]. The interaction between beads is given 

by a pairwise potential composed of radial and angular terms using cubic splines that offer flexibility in the 

form of the potential. This 2-body SC-SC interaction potential is used to determine the SC state 

probabilities, and in conjunction with intrinsic 1-body rotamer probabilities of the preference to be in a 

state in the absence of other sidechains, give rise to side chain free energies. These free energies are 

solved for in a self-consistent iterative procedure during each MD step using belief propagation (method 

of inference on graphical models) [14, 15]. Sidechain-backbone hydrogen bonding and sidechain-
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backbone main atom interactions are incorporated into the 1-body rotamer probabilities during the free 

energy solution. The forces from these free energies are then back propagated onto the backbone atoms. 

In the present treatment, additional corrective terms to the basic Upside potential was introduced. 

An interprotein SC-SC term, 𝑉inter_rot, copying the functional form of the original rotameric SC-SC term was 

added but it acts only between SC beads on different proteins. This was done such that the additional 

term would not affect the internal folding behavior of either protein. The SC-BB 1-body terms are 

excluded in this new term for simplicity. The cutoff was extended from the 7 Å of the base rotameric term 

to 10.5 Å to better account for possible long-range interactions of electrostatic residues that are more 

prevalent at protein interfaces [23]. 

Upside also has a many-body environment term to capture the effects of burial and desolvation. 

With this term, the number of sidechain beads are counted within a hemisphere above a virtual C of a 

residue, weighted by their rotamer state probabilities and residue types. This count is then coupled to a 

residue-specific energy composed of cubic splines. A new interprotein environment term, 𝑉inter_env, is 

added, again copying most of the functional form of the original implementation. However, this new 

interfacial term requires at least one bead from the opposite protein within the hemisphere for its 

activation. 

The new potential is then given by 𝑉 = 𝑉orig + 𝑉inter_rot(𝑟, 𝜃1, 𝜃2) + 𝑉inter_env(𝑁; 𝑤), where 𝑟 is the distance 

between beads, 𝜃1, 𝜃2 are the angles between the bead orientation vectors and the displacement vector 

between the beads, N is the bead count weighted by rotamer probabilities and residue type weights 𝑤. 

We use the Upside folding forcefield v1.5 for our 𝑉orig, which was developed with more diverse training 

ensembles and longer training cycles for better results than the first publication [24]. 

2.2.3 Training of the potential 

To train and optimize the potential for protein docking, we initially used our original Contrastive 

Divergence machine learning methodology that we previously developed for protein folding studies [22]. 

This approach was based on populations (free energies) and minimizing the difference between the 

approximate distribution of states generated by Upside and the "true" distribution of crystal structures 
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found through experiment. However, it proved challenging to achieve the thermodynamic sampling 

required for this method to correct for a myriad possible misbound poses.  

Therefore, we used simpler objective of minimizing the native poses’ potential energies compared 

to the decoy poses and therefore maximize their Boltzmann probability. In this new strategy, we consider 

the average potential energy after short simulations for a set of i, …, N proteins complexes starting in k, 

…, m poses 

 ⟨𝐸⟩𝑘
𝑖 ,     

𝑘 = 0 is native
𝑘 ≠ 0 is decoy

 2.1 

We desire to maximize the Boltzman weight (population fraction) of the correct docking poses for the 

training set by minimizing the negative logarithm of the fraction: 
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where 𝛼 denotes the energy term parameters. Rearranging and adding a term for regularization gives the 

objective function 
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Taking the gradient of this expression with respect to the parameters 𝛼 yields 
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where the derivatives are averaged over j frames, s is a temperature scale factor for numerical stability 

(𝑠 = 100 in practice), and 𝑐 > 5 is a condition to exclude well performing complexes. Such complexes 

were excluded from contributing to the parameter update if their native pose was in the top 5 of all poses 

because the information content of this pair largely had been extracted. The parameters are then updated 

for the subsequent training cycle according to 

 
𝛼𝑡+1 = 𝛼𝑡 − 𝑟

𝜕𝐹

𝜕𝛼𝑡

 2.5 

where t denotes the current cycle. In practice, the training set is divided into five minibatches that are 

cycled, and each training cycle involves 500 Upside Time Units ≈ 5 - 50 ns of simulation to relax the 
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poses of each complex up to 1000 residues. The frame output interval is 2 Upside Time Units. For larger 

complexes, the simulation time is scaled down by the number of residues according to 𝑡sim
′ =

𝑡sim/𝑡int ×
1

25
⌊𝑡int (

1000

𝑛res
)

3/2

⌋ for performance reasons. 

Cubic spline parameters for the new protein-protein terms are initialized to low values, 𝛼 < 1. We trained 

on the top 100 decoys of the bound subunit forms ranked according to Upside energy from an initial 

relaxation run. We did not find much benefit in conducting multiple training rounds, where decoys were 

reordered according to their new energies and a new top 100 selected for training. 

2.2.4 Testing and evaluation using the optimized potential 

We ran with two cases of restraints applied to the backbones, a semirigid case and a fully flexible 

case. In the “semirigid” case, C atoms were kept within ~3 Å of their initial positions with spherical flat-

bottom quadratic potentials. The flexible case involves no restraints. Run duration was relatively short, 

1000 Upside Time Units for 𝑛res ≤ 1000 and scaled down for larger complexes. The first half of each 

trajectory was discarded as equilibration, and centroid structures and their respective potential energies 

were selected as representatives for CAPRI Criteria evaluation and ranking. 

We also check whether there is a performance benefit with full sidechains. The sidechains of the 

Upside structures from the semirigid restraint case are rebuilt using the SCWRL4 algorithm, which 

minimizes the energy from an atomic interaction model in conjunction with observed backbone-dependent 

rotamer frequencies to find the most likely rotamer states [25]. With the full sidechains rebuilt, the poses 

are rescored with SOAP-PP [21], an atomistic statistical potential used in the consensus scoring method 

of a former top CAPRI experiment group’s docking server [6] and as a component in the scoring model of 

FRODOCK v3 [2].      

For the Ab-Ag antibody set, we examined docking with both fully flexible and semi-rigid loops. For 

the flexible case, antibody residues involved in the native interface plus along with up to 5 residues on 

either side were kept flexible, in essence allowing the CDR loop residues to remain flexible, while the rest 

of the Ab fold was restrained with flat-bottom potentials. The semi-rigid case used the same restraints as 

the semi-rigid case in the full Diverse Set. Antigens were held within ~2Å C-RMSD with harmonic 

restraints, and able to move as a rigid body up to 10 Å of their starting positions.  
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To mimic Ambrosetti et al.’s “Scheme 2”, whereby a restraining potential between the CDR loops 

and a coarsely defined epitope is used to bias the results, we apply C sigmoid contact potentials of -0.5 

kBT Upside energy units between all combinations of antibody interface residues and epitope residues. A 

note about Upside energy units is warranted: the correspondence to physical temperature is not well 

established for the new training, so we simply provide thermal energies in units of “kBT”. Unlike the 

Ambiguous Information Restraints used by the HADDOCK algorithm in Ambrosetti et al. that offers a level 

of smoothness and uniformity, our approach is simply pairwise additive. 

Trajectories for each decoy pose are were clustered according to IRMSD for up to 3 clusters of 

frames within 1 Å IRMSD of the minimum energy structure of each cluster. The minimum energy 

structures of all clusters for all poses were sorted according to their energies and the top 100 are selected 

for further CAPRI Criteria evaluation. 

2.3 Results 

2.3.1 Training and testing of the potential 

Upside’s forcefield parameters were originally trained on a set of single domain proteins for folding [22]. A 

preliminary analysis of protein-protein docking performance with the original energy terms and 

parameters yielded many misbound poses that were energetically favored over the native bound state. In 

this work we sought to correct for these deficiencies by training new energy terms for protein docking 

using Vreven et al.’s benchmark set of non-redundant complexes [7]. These new terms are similar in form 

to existing ones, but only apply at the interface. We explore the question of whether more drastic changes 

to the single sidechain bead model are required, i.e. if we are limited by our degree of coarse graining, 

and postulate on the differences between protein folding and docking that gives rise to our differing 

performance on capturing the two tasks. 

We followed the force field training protocol of maximizing the probability of the native pose as explained 

in Methods. The objective function decreased after training the new energy terms, leveling off after 15 

cycles (Fig S2.1). This training procedure improved our ability to distinguish the native from the decoy 

poses, as compared to the ability of the original forcefield (Fig 2.1). The cumulative counts of finding the 

native poses at a higher rank (1 being the highest) increases compared to the decoys for all complexes 
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after relaxing the poses with Upside simulations with spherical flat-bottom restraints to keep each semi-

rigid. For the training set (Fig 2.1a), the original forcefield predicts the native pose ranking in the top 10 for 

only about 8 of the 175 complexes (4.6%), whereas the force field trained for docking does so for about 

42 complexes (24%), a substantial improvement (dashed lines in figure). The improvement is smaller for 

the test set, 1.8% → 12.7% (Fig 2.1b). Future training could benefit from a k-fold cross-validation scheme 

to prevent overfitting. 

 

 

Figure 2.1: Cumulative counts of native pose rank for trained protein-protein forcefield compared 
to original forcefield. a) Training set performance, 175 complexes total. b) Test set performance, 55 
complexes total. 

The contributing factors to the improved scoring are hinted at by representative plots of the new 

residue specific potentials (Fig 2.2). Pairwise charge-charge interactions became more pronounced, 

particularly the repulsive ones (eg. Lys-Lys), with a signal extending beyond the original 7 Å cutoff (Fig 

2.2a). Surprisingly, some hydrophobic interactions (eg. Leu-Leu) are among the most strengthened. 

Although the original folding training contains ample information for hydrophobic sidechain interactions, 

here at the interface they play a different role in the balance of energies because backbone hydrogen 

bonding does not play as large a role in binding as it does in folding. Fig S2.2a summaries the 

magnitudes of change for different residue pairs. 

The environmental term potentials (Fig 2.2b) are more difficult to parse, due in in part to the burial 

number, a measure of desolvation, being determined by a summation of the burial weights of whatever 

residue types are within the hemisphere of the buried residue. The burial weights of the new potentials do 
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not appear to have a strong correlation with the size of the neighboring residues (not shown). However, 

the new potential allows some charged residues to have some favorable combination of burial, as shown 

for Asp at high burial numbers in Fig 2.2b, and as expected for charged residues to form an interface. 

Also, a compensation occurs with the pairwise sidechain potential that complicates interpretation. For 

example, the new Leu potential has unfavorable energies at most low burial numbers that likely helps 

refine the pairwise attraction term. 

 

Figure 2.2: Changes upon training for complexes for representative potentials. a) Radial part of 
pairwise SC-SC potentials. The “after" plots are of the original potential along with the corrective 
contribution of the trained protein-protein potential b) Many body environmental potential and residue 
weights for the burial number (weights apply only to the new potentials). The “old” and “new” plots are of 
the separate contributions of the original and new interprotein terms. 

2.3.2 Evaluation according to CAPRI criteria 

We investigated combinations of subunit starting structures (from bound and unbound conformations) and 

restraints (semirigid and free) which were assessed with the full CAPRI criteria. In this criteria, the quality 

level of a prediction is assigned according to three metrics: Interfacial Root Mean Squared Deviation 

(IRMSD), Ligand Root Mean Squared Deviation (LRMSD), Fraction of Native Contacts (fnat) [17,26].  

Given imperfections in our scoring, there may be other poses acceptably close to native-like that fare 

better than the native pose. An evaluation with CAPRI criteria is more generous than looking at 

cumulative native ranks because decoys that are native-like according to CARPI and score well are 

included as successes. 

Fig 2.3 shows CAPRI criteria performance of the trained protein-protein Upside forcefield in 

comparison with other docking algorithms featured in Vreven et al. 2015. Fig 2.3a Is adapted from Vreven 
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et al. and duplicated for comparison to the two subunit starting structure conditions (bound or unbound) 

for the Upside results. The bars indicate how many complexes have predicted native-like structures of a 

particular quality at different threshold levels of ranking/scoring, with T1 being the top 1 complex and 

T100 meaning that they are found in the top 100 complexes. 

 

Figure 2.3: CAPRI criteria evaluation. a) Performance of four docking algorithms, adapted from Vreven 
et al., 2015; note that the plots are duplicated for comparison purposes with Upside results in b) and c). 
Their assessment was done on the same set of complexes as our test set. Notation: “TX”, native pose 
found within the top X predictions. b) Upside results using bound forms of the subunits. From left to right 
are FRODOCK: ranking of FRODOCK poses according to the FRODOCK scores; Upside Semirigid: 
results using Upside relaxed poses using spherical flat-bottom restraints for the backbone (with added 
sidechains) ranked according to the Upside energy function; SOAP-PP: results for representative 
semirigid Upside structures scored according to the SOAP-PP atomic statistical potential; Upside Flexible: 
Results for complexes allowing for full backbone motions. c) Upside results using unbound forms of the 
subunits, with same types of subplots as in panel b). 

Fig 2.3b highlights the results from the Upside pipeline starting from the bound forms of the 

subunits from the Dockground testing set. From left to right, there are the native-like poses from the initial 

FRODOCK rigid body docking ranked using their FRODOCK scores compared to the other decoys. Next 

are the rankings of representative structures from Upside after a minor (<3 Å) relaxation of the 

FRODOCK starting poses using semirigid backbone restraints. These structures are first scored using the 

Upside energy function. Sidechains are then added with SCWRL4 [25] (required for fnat calculation) and 
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rescored with the all-atom statistical potential SOAP-PP [21]. This rescoring with complete atomistic 

sidechains examines Upside’s loss of accuracy due to the use of a single (albeit multi-position) bead for 

each side chain. Finally, there are the results for representative structures from Upside simulations 

without restraints. 

When starting with the bound forms of the two partners including the native side chain rotamers, 

the FRODOCK results have a high success rate with a majority of the targets having high quality native-

like predictions (red bar). This success is due in large part to the backbones and interfacial sidechains 

being fixed in their native conformations and rotamers, and FRODOCK can find a well-matched, 

interdigitated interface between the native positions of the binding partners. Once processed into Upside, 

the exact atomistic positions of the sidechains are lost. This situation could occur with low resolution 

structures, for which the side chains positions are not as well determined as the backbone (e.g., in 

nuclear magnetic resonance spectroscopy or cryo-electron microscopy-based structure determination). 

Nevertheless, Upside still performs well on ranking native-like poses compared to the other docking 

algorithms of Vreven et al. (Fig. 2.3a) when the Upside backbones are kept semirigid (note however, that 

the predictions of the other algorithms use the unbound forms of the subunits, while Upside is using the 

bound forms. So this comparison is not completely valid). 

The SOAP-PP results are calculated using Upside’s optimized structures, followed by full 

sidechain addition by SCRWL4 [25] and then scored using the SOAP-PP energy function. The results 

with full side chains are notably better only for predicting the native-like pose as the lowest energy 

structure (T1 performance:  .4% → 12.7%). For being in the top 5+ lowest energy predictions, however, 

there is minimal difference apart from the cumulative effect from the T1 performance increase. This may 

suggest that for most situations, there is only a very mild decrease in performance when using Upside’s 

single sidechain bead at the scoring stage once the backbone is determined. However, the limitations of 

SCWRL4 and SOAP-PP must be considered. The χ1+2 accuracy of SCWRL4 was 80% on a test set of 

proteins when compared to the crystal positions of sidechains with high electron density, and less for 

higher χ angles (e.g. 47% χ3 accuracy for Arg) [25]. Furthermore, in SOAP-PP’s original paper, it only had 

40% success in placing native-like predictions in the top 10 on a prior version of the Vreven et al. docking 

benchmark when the subunit backbones and sidechains were in their exact native positions (i.e., it had 
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the best possible starting structures to score) [21]. Thus, there is still room to benefit from a more 

accurate model for the sidechains, which is supported by the high success rate of the FRODOCK results 

with the native sidechain rotamers. 

Another major finding is the drop in quality and ranking of native-like structures that occurs when 

the proteins are allowed to be fully flexible during the Upside simulations. The subunits drift away from 

their native bound forms, indicating that there is insufficient accuracy in the underlying folding component 

of the Upside forcefield. Such deviations are not compensated for by that the optimized interprotein 

energy terms. We characterize this issue further in subsequent sections and investigate to what extent it 

may be general for all forcefield-guided dynamics methods. And, although there is movement away from 

the native state when starting from the bound forms, at this point we were hoping there would be 

movement towards the native state when starting with the unbound forms, which is the more relevant 

scenario. 

Fig 2.3c shows the results when starting from the subunit in their unbound conformations. In this 

case, the FRODOCK results are much worse compared to the bound form results since the tight fit at the 

native interface is lost due to backbone and sidechain conformational differences. FRODOCK still 

performs better than the other docking algorithms, possibly since it incorporates SOAP-PP in its scoring 

and may have other advancements since it is a newer algorithm. 

Upside’s decrease in performance due to coarse-graining of the side chains would be acceptable 

if it improved on the FRODOCK results of the unbound forms by compensating with its ability to sample 

different backbone conformations and sidechain rotamers to find a better fit at the interface. However, 

Upside and its conformational sampling exhibit poorer performance, even under semirigid restraints, with 

both fewer native-like poses ranked highly and more lower quality structures. SOAP-PP is able to improve 

performance for some of the T1-T5 predictions for the semirigid Upside structures rebuilt with full 

sidechains. Although there is still some backbone deviation, we expect the semirigid case to emphasize 

the role of the sidechains and new interprotein energy terms. The results indicate that Upside’s ability to 

repack the coarse-grained sidechain beads did not yield an overall scoring advantage over FRODOCK. 

However, Upside with semirigid restraints achieves comparable performance to many of the docking 
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methods in Vreven et al., which we view as a partial success considering Upside’s disadvantage due to 

coarse-graining of the side chains.  

Most importantly, the predicted structures have larger deviations from the native bound state 

when Upside is allowed full backbone flexibility, i.e., even the starting poses with the subunits in their 

unbound conformations are overall more native-like as compared to those generated when Upside is 

allowed to move the backbone. In the section “Energetic costs of retaining native-like subunits”, we 

will return to this issue and characterize the energetic compensation required to shift the subunits from 

their unbound to bound backbone conformations in order to establish the magnitude of forcefield 

improvements needed.  

The best performing methods in Vreven et al. are SwarmDock and HADDOCK. SwarmDock 

performs the best in terms of the percentage of acceptable quality native-like structures or better ranked 

in the Top 10, whereas HADDOCK has the most high-quality native-like structures. SwarmDock’s 

success likely is partly due to its approach to backbone flexibility via normal mode deformation, allowing it 

to better address the more difficult targets that have a greater change between bound and unbound forms 

of the subunits. SwarmDock was the only successful method for the sole “easy” target, having a ΔIRMSD 

< 1 Å between bound and unbound forms.  The authors hypothesize that this is due to SwarmDock being 

able to widen the narrow opening of the receptor binding site. In SwarmDock, the normal mode 

coefficients are updated in the search procedure in the direction of minimum energy, but the energy 

evaluations include only the interaction energy between the two binding partners and not their internal 

normal mode energy [8]. In effect, the range of allowed protein flexibility is somewhat artificial, as it is 

highly constrained by the selection of the normal modes with lowest frequency. With this strategy, 

SwarmDock is not penalized by backbone strain during search and scoring, whereas the backbone 

energy is an integral part of the physical forcefield that guides the dynamical motions in fully flexible 

models such as Upside. With such physical models, structural deformations are governed by the 

intramolecular potential energy and occurs spontaneously during the sampling, and their influence is 

implicitly included in scoring poses. 

In HADDOCK, Vreven et al. utilized bioinformatics predictions of the interfaces and knowledge of 

antibody CDR loops to bias the docking results to make use of HADDOC ’s “ambiguous information 
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restraints”. HADDOC ’s high-quality native-like structures may be a result of this extra information, in 

combination with HADDOC ’s all-atom explicit solvent flexible refinement and an all-atom energy 

function. In the antibody section of this paper, we also test Upside’s performance with additional 

information to enable a more valid comparison to HADDOCK. 

The latest studies for SwarmDock and HADDOCK reassessed their performance for a subset of the 

docking benchmark set with enhancements to their procedures (cross-docking diversification of the 

starting conformations for SwarmDock, use of higher levels of informational restraints for HADDOCK). 

These new studies show that there is still room for improvements in flexible docking for both normal mode 

and MD methods [10, 11]. 

2.3.3 Dissecting the impact of backbone flexibility 

To quantify the impact of backbone flexibility on docking predictions and separate the latter from any 

deficiencies in our search process, we next ran a series of “best case” simulations starting from the native 

pose for all complexes (Fig 2.4). All complexes were run for the same base duration as the CAPRI 

evaluation runs (the run duration of larger complexes was not reduced). Each point in the plots is the 

average of three runs of a specific complex, where a centroid representative structure was taken from the 

second half of trajectories that began from the native bound state of the complex. The left and right 

columns present two different measures of backbone flexibility using either total subunit RMSD to the 

native bound state (left) or RMSD of the individual subunit interface (right). Note that the plotted subunit 

RMSD is taken from the Euclidean norm of both subunit’s RMSDs, which was important for observing a 

pattern (‖𝑥‖2 = √RMSD1
2 + RMSD2

2). There is a stronger correlation between subunit conformations and 

the IRMSD of the complex when considering the RMSDs at each individual subunit interface compared to 

whole subunit RMSDs, as expected. 
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Figure 2.4: Impact of Upside backbone flexibility's on IRMSD. Left: Whole subunit RMSDs to their 
native bound forms. Right: RMSDs of the interfaces for each individual subunit. These subunit RMSDs 
are the Euclidean norm of both subunits. The y-axis is the IRMSD of the complex. The top row: no 
backbone restraints applied to the subunits; the middle row: harmonic restraints applied to either of the 
subunits to keep the backbones within ~1 Å of their native bound states (data from both cases combined); 
bottom row: restraints separately applied to both subunits. The points are colored according to change in 
accessible surface area, ΔASA. 

When no backbone restraints are applied to the subunits (top row), we see that the subunit 

RMSDs mostly lie between 2 – 5 Å as are the IRMSD values. Conformations that are 2 – 5 Å RMSD from 

native conformation are generally considered a success for protein folding prediction, so Upside’s ability 

to maintain that RMSD for the subunit conformations could be considered laudable for a de novo coarse 

grained model. However, a substantial number of subunit RMSDs are above 5 Å. For those complexes, 

medium quality docking results are not achievable, as the requirements are IRMSD < 2 Å or LRMSD < 5 

Å (if fnat < 0.5). The net effect of inaccuracies for both subunits, which increases the challenge of 

predicting the interface, largely explains why allowing for backbone flexibility can be detrimental.  
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The simulations are improved to 1.5 – 4 Å subunit RMSDs and IRMSD after applying harmonic 

restraints to either subunit to keep its RMSD to ~1 Å of the original bound conformation (middle row). 

When both subunits are restrained, the IRMSD is largely below 3 Å. This doubly restrained case 

emphasizes the role of interprotein interactions and the quality of our training of these interactions by 

reducing the contributions of the backbone strain caused by imperfections in the folding portion of the 

forcefield. It is reassuring that for most cases the interprotein interactions are at a high enough fidelity to 

maintain a low IRMSD. For the complexes where both subunits are restrained yet have a large IRMSD, 

there are significant rigid body-like translocations of the subunits from the native bound pose. For these 

examples, our interprotein interaction terms are inadequate. The high IRMSD points correspond to low 

ΔASA complexes and we further examine the impact of interfacial area in a later section. 

Another perspective on the effect of subunit backbone restraints is provided by 2D densities of 

native state simulations of 16 complexes in Fig Figure S2.3. Here, the densities are shifted to more 

native-like values of IRMSD and fnat for most cases with subunit backbone restraints. 

2.3.4 Energetic costs of retaining native-like subunits 

The previous section examined the increase in subunit RMSDs when the proteins are in the complexes. 

We now focus on the role of backbone flexibility on individual, isolated subunits to examine the magnitude 

of free energy that would be required to shift the backbones into their native bound conformations, a 

necessity for obtaining good docking predictions. We again ran the subunits with Upside for the same 

base duration as the CAPRI evaluation runs, starting from their native bound conformations. Fig 2.5a 

shows representative plots of the Potentials of Mean Force (PMFs) generated from Gaussian kernel 

density estimates of the RMSDs to the bound native state taken from the second half of the trajectories. 

The two lines in each plot are for each of the two partners run separately and plotted from the lowest to 

the highest observed RMSDs. For subunits with RMSD  2+ Å, we observe free energies of up to 4.6 kBT 

at their lower RMSD bounds (e.g., 3V6Z in Fig 2.5a). Conformations with lower RMSD would correspond 

to an even higher free energy cost, indicating that a substantial improvement of the folding portion of 

Upside’s energy function would be needed to consistently obtain structures with RMSD  smaller than 2 Å. 

We next examined the relationship between the individual RMSDs of the separated subunits and 

the IRMSDs of the unrestrained simulations of the complexes from Fig 2.4. The results in Fig 2.5b show a 
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classification of those simulated complexes, with yellow dots corresponding to complexes with one or 

both subunits are nonnative-like while red dots corresponding to complexes where both partners remain 

native-like. Complexes are considered native-like when both the partners have 50% of their RMSD 

distribution below 3 Å when individually simulated. Native-like subunits tend to have native-like IRMSDs, 

but there is large overlap between the classes. The existence of low IRMSD, but nonnative-like subunits 

indicate that regions of the proteins away from the binding interface experience the bulk of the 

conformational difference. On the other hand, a high IRMSD with native-like subunits is a situation where 

the binding partners experience rigid-body displacement, indicating a deficiency in the inter-protein terms 

of our energy function for those complexes. 

 

Figure 2.5: RMSD difference between the native bound structure and the simulated monomers. a) 
PMFs from RMSD distributions referenced to the native bound state to visualize the energy required to 
adopt bound native-like conformations. b) Classification plot of IRMSDs from unrestrained simulations 
starting from the native complex using the following threshold criterion on the RMSD distributions of the 
PMFs: complex with native-like subunits if 50% of both of their individual RMSD distributions are below 3 
Å (red dots), otherwise they are considered nonnative subunits (yellow dots). The x-axis spread is artificial 
jitter to aid in the distinguishing of the points. 

2.3.5 Backbone flexibility affects other molecular dynamics methods 

We now compare Upside with other recent forcefield-guided methods to determine the generality of 

Upside’s decrease in performance when backbone movement is allowed. The all-atom explicit solvent MD 

approach of Pan et al. uses enhanced sampling akin to simulated tempering, which they call tempered 

binding [10]. The CABS CG model uses Replica Exchange with Monte Carlo moves that capture 
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transitions on physical timescales, which they call pseudo-dynamics [19, 20]. Both approaches let the 

dynamics guide the association of the protein partners, unlike the search process used in the Upside 

docking pipeline to start with up to 1000 pre-docked poses. The docking problem can be broken into three 

parts, the generation of many possibly bound poses followed by their refinement and scoring. In this work 

we focus on the last two steps for Upside as they are sufficient to address whether our model is capable 

of identifying the true native pose and to what degree does backbone flexibility help in this identification. 

The CABS CG model is similar to Upside, but has slightly lower level detail, e.g., it includes 

angular dependance of SC-SC interactions, but single sidechain states [15, 19]. Hence, it offers an 

independent insight into the potential benefits of backbone flexibility for docking. In the CABS docking 

study, 12 complexes are free docked, which as mentioned earlier means that the binding partners begin 

separated at different initial positions for each replica and associate over the course of the simulation. 

The partners begin in their unbound native conformations and they applied restraints individually to each 

partner, with strengths such that the receptor fluctuates only around 1 Å and the ligand between 2-12 Å 

[28]. This setup is overall more flexible than the Upside unbound subunit semi-rigid case for the CAPRI 

evaluations, and the Upside case involves FRODOCK pre-docked starting states. 

Fig 2.6 is a comparison of the Upside unbound subunit semi-rigid results and the CABS results 

taken from Table 1 of Kurcinski et al. for the 7 complexes common to both test sets. The Upside semirigid 

situation generally performs better than CABS for both lowest IRMSD observed from all poses (Fig 2.6a) 

and much better for lowest IRMSD in the top 10 ranked poses (Fig 2.6b), indicated by points below the 

diagonal. Thus, backbone flexibility is a detriment to the CA S CG model as well. “Simple” rigid-body 

docking, for example using FRODOCK, would have been better, considering that FRODOCK was used 

for the starting states of Upside for these targets and Upside tends to do worse than FRODOCK as 

shown previously. This test should have been ideally conducted as a “CA S semirigid” versus “CA S 

flexible” setup to remove influence from differences in force fields, but we think that Upside as a CG 

model is a suitable stand-in for the semirigid scenario. We also recognize that the CABS study had a 

focus on whether low IRMSD states could be sampled at all even if they were not among the top 10 

predictions, and the authors acknowledge that scoring improvements for their model are required. 
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However, our comparison highlights how much of a detriment backbone flexibility can be when sampling 

and scoring are coupled.  

 

Figure 2.6: Comparison of Upside with CABS docking for 7 complexes common to both studies. a) 
Overall best IRMSD out of all poses. b) Best IRMSD among the top 10 ranked poses. 

To see whether the issue of backbone flexibility is limited to CG models and their inherent 

inaccuracies, we next examine the binding MD approach of Pan et al. These all-atom explicit-solvent 

simulations combined with combined with an Hamiltonian tempering enhanced sampling procedure 

exploited the computing power of Anton 2 to allow the observation of reversible binding to the native state 

for five out of six of the complexes (the sixth irreversibly bound into a native-like pose). The native state 

was the most populated for each, with the IRMSDs of the most stable poses for all six complexes being 

below 1.3 Å. Upside does not have the same complexes as their set, but none of the top 10 poses for any 

complex were at that level of accuracy. 

However, a few issues are worth noting. The chosen complexes in this study bind in a very rigid 

manner, with an IRMSD smaller than 2 Å between the unbound and bound forms of the subunits. 

Secondly, the simulations from each individual subunit are started in their bound conformation. And most 

notably, they apply backbone torsional restraints centered at the bound native structures for both subunits 

for four complexes, while the remaining two complexes have such restraints applied to one subunit. As 

we have seen from the Upside results, even slight backbone deviations can be very detrimental to the 

accuracy of the simulation and adding some restraints can substantially improve performance. Pan et al. 

note that the restraints help prevent conformational degradation at the microsecond timescales they need 
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to simulate in order to observe reversible association. This is observation is very consistent with the 

results presented here. While an in-depth assessment of the effects of torsional restraints was not 

provided (presumably limited by computational feasibility), the association rates of barnase–barstar with 

and without restraints was also examined with conventional MD. Interestingly, the predicted association 

rate was about five times slower without restraints than with restraints compared to experiment. In the 

end, it was concluded that detailed forcefields will have difficulty modeling systems for which the unbound 

subunit conformations differ significantly from the bound states when torsional corrections cannot be 

relied upon [10]. 

2.3.6 Determining features that contribute to performance 

To identify areas of weakness in the present model or with the training of the potential function, we 

conducted an analysis of which factors contribute to the overall performance. We begin with a feature 

related to backbone flexibility, the amount of conformational change at the interface between bound and 

unbound forms of the subunits (Fig 2.7). The difficulty categories are as follows, Easy: IRMSD < 1.5 Å 

and fnon-nat < 0.40, Difficult: I-RMSD > 2.2 Å, Medium: all others [7]. The performance labels for each 

complex (e.g., Native-like in Top 10, Poor Performers) are taken from the previous CAPRI criteria 

evaluation from the respective cases of starting conformation and whether backbone flexibility was 

allowed during the Upside simulations. 
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Figure 2.7: Upside’s perform nce with difficulty cl ss of complexes. Each subplot corresponds to the 
subunit starting conformation and backbone flexibility scenarios of the CAPRI evaluation in Fig 3. Easy: 
IRMSD < 1.5 Å and fnon-nat < 0.40, Difficult: I-RMSD > 2.2 Å, Medium: all others [Vreven 2015]. 

The bound semirigid case of Fig 2.7 again represents a best-case scenario, since backbone 

conformational search is removed and backbone drift minimized, thereby focusing on the scoring 

performance of Upside’s energy function.  In this situation, we find that the performance is not very 

different between the difficulty classes. This finding is partly expected since we trained on the bound 

forms of the complexes, but also it also indicates that Upside does not have a harder time learning the 

properties of the interfaces for the different difficulty classes. In the bound flexible situation, performance 

decreases across the board due to issues with our and most other MD forcefields, as discussed in the 

previous section.  

In the unbound and semirigid case, we have fewer native-like (top) performers in large part 

because the subunit backbones are being held in their unbound conformations. A contributing factor to 

this lack of native-like poses comes from the rigid-body docking stage of our pipeline where FRODOCK is 

unable to find the general binding interface due to a loss of lock and key fit of the surfaces. And even if 

the general native binding interface is found, the unbound conformation subunit backbone RMSD can be 
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a detriment to the IRMSD and CAPRI evaluation. The performance correlates with the difficulty class of 

the complexes as expected. When we allow for backbone flexibility in the unbound flexible scenario, we 

lose some performance on the easy complexes, but gain for the difficult complexes, implying that there 

exist some cases where our energy function can drive the backbones in the correct direction. 

We next examine the effects of interface composition and size (Fig 2.8). The performance is 

judged according to the CAPRI bound semirigid scenario in order to focus on the binding energy instead 

of backbone conformation search. In Fig 2.8a, we compare performance based on the amount of pairwise 

interactions between Apolar, Polar, and Charged residues. The values for each type of pair interaction 

are normalized according to the maximum of the fraction at the interface between the good and poor 

performers to make it easier to compare the performance (i.e., the greatest value in each subplot is 1.0). 

 

Figure 2.8: Upside’s perform nce with types of inter ctions  nd interf ce size. The performance 
labels correspond to the bound semirigid scenario in the CARPI evaluation. a) Comparison of the different 
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Figure 2.8: Upside’s perform nce with types continued. 
types of pairwise interactions between good and poorly performing complexes. A: Apolar, P: Polar, C: 
Charged. The values for each type of pair interaction are normalized according to the maximum amount 
between the good and poor performers. b) Comparison of the interface size between the good and poor 
performers. c) Comparison of the different types of pairwise interactions between the training and test 
sets. d) Comparison of the interface size between the training and test sets. 

There are significant differences between the distributions of Apolar-Apolar and Apolar-Charged 

interactions for good and poor performers at 95% confidence level according to the Kolmogorov-Smirnov 

test. In Fig 2.8c, we see several significant differences in the interface compositions between the training 

set and the test set. Notably, Apolar-Charged interactions tend to be more numerous for the test set and 

hence, Upside had fewer examples of high Apolar-Charged interfaces to learn from during training. This 

may explain why Apolar-Charged interactions tend to be greater for the poor performing complexes. This 

suggests that Upside’s docking forcefield may be improved in the future by reducing the size of the test 

set from the current ~24% of the entire set to ~10%, considering that we have relatively few training 

examples for our number of parameters (albeit multiplied by the number of decoy poses). The training set 

should be divided further into k-fold cross-validation to find the best stopping point of training to prevent 

overfitting. Irrespective of whether these suggestions would produce significant improvements, for 

comparison purposes, we chose the current size and membership of the test set to correspond to that of 

Vreven et al. 

Complexes with larger interfaces tend to perform better (Fig 2.8b). This finding may be because 

larger interfaces allow more opportunity for the cancellation of errors in the forcefield across all 

interactions, whereas smaller interfaces have higher variability. Larger native interfaces may also be more 

separated in size compared to other decoy poses of the complexes, and so generally are more attractive 

due to the van der Waals component of interactions, which Upside may have effectively learned in its 

training.  

Vreven et al. were able to find a separating line of performance of the docking algorithms that 

they tested based on interface area versus experimental binding energy of the complexes, with 79% 

success on the side of greater interface area in combination with greater binding energy, whereas each 

individual feature was only weakly predictive of success. They used a much looser criteria for success in 

their assessment compared to us (theirs: native-like in top 100, ours: top 10); nevertheless, it suggests 

that binding energy (Kd), which is easier to obtain experimentally than the structure, could be used in a 
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filter to select complexes for which we can be more confident in our predictions. The training and test sets 

have about the same median interface size and lower bounds (Fig 2.8c), so performance gains from a 

rearrangement in the train-test split and k-fold cross-validation may not be as influenced by interface size. 

Next we tested whether we can find a linear combination of features that separate the 

performance classes. Accordingly, we combined the interface pair interaction type features and the 

interface size feature of Fig 2.8 for the entire set of complexes and performed Linear Discriminant 

Analysis (LDA) (Fig 2.9a). We used the labels of good (Native-like in Top 10) and poor Upside 

performance as the classes to separate in this analysis. LDA returns an output one dimension less than 

the number of labels/classes. However, this one-dimensional treatment does a poor job of separating our 

performance classes. So we increased the number of labels with information about whether the complex 

belonged to the training or test set for a total of four labels ([train, test] × [good, poor]), since earlier we 

noticed that some differences in the distribution of features correspond with differences in their 

distribution in the training and test sets (Fig 2.9b). However, even this three-dimensional LDA lacks a 

strong separating surface between the performance classes. Considering that Upside’s energy function 

contains non-linear terms (e.g., the environment energy) and details such as distance and orientation 

between sidechain beads, classification may not be feasible with a linear method and with the simple 

features that we have chosen. 
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Figure 2.9: LDA of interface pair interaction features and interface size for the entire set of 
complexes. There are five types of pair interactions, which along with the interface size gives six total 
features. a) One-dimensional LDA using two performance labels (Native-like in Top 10, Poor Performers). 
The spread in the x-axis is artificial jitter to aid in distinguishing points. b) Three-dimensional LDA using 
four labels (training set good performers, training set poor performers, testing set good performers, 
testing set poor performers). 

2.3.7 Information driven antibody-antigen docking 

In some cases, additional sources of information about a complex exist beyond the structure and 

sequence of the unbound forms of the binding partners. For example, the use of experimental information 

for challenging complexes is recognized by CAPRI organizers, and they have provided small angle X‐ray 

scattering (SAXS) and cross linking/mass spectrometry (XL/MS) data in the Round 46 CAPRI-CASP 

experiment for one such complex [3]. For antibody-antigen docking, the CDR loops can be identified 

based on the sequence of the conserved protein framework around them, and one could use hydrogen 

exchange (HX) or mutational scanning experiments to glean information about the location of the epitope 

[29]. It is illustrative to examine the extent that limitations of docking algorithms can be overcome by the 

incorporation of this extra information. 

Results for the information-driven antibody-antigen docking are presented in Fig 2.10 according 

to CAPRI criteria with the same ranking of native-like structures as used in Fig 2.3. We follow Ambrosetti 

et al.’s comparative study [19] that presents the performance of individual complexes as opposed to the 
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aggregate of all complexes, to obtain finer grained insights on the impact of both flexibility and auxiliary 

information on prediction accuracy.  

Ambrosetti et al. found that their HADDOCK algorithm, which involves torsional and explicit solvent 

flexible refinement stages, does not perform well with biasing information solely from the antibody HV 

loops (HV-Surf), with several complexes lacking any native-like pose in the top 100 ranks (Fig 2.10a). 

However, the biasing of interactions between HV loops along with a coarse definition of epitope residues 

produces substantial gains (Fig. 2.10a, column heading HV – Epi 9). Likewise, Upside lacks native-like 

predictions for many complexes when just filtering for poses in contact with the Ab loops (Fig. 2.10b, HV 

Filtered). However, as with HADDOCK, Upside shows improvement when augmented with coarse epitope 

information (HV – Coarse Epi) for filtering to include poses where both loops and epitope are in contact 

and biasing the interactions between them during the Upside runs. 

 

Figure 2.10: Antibody-antigen information-driven docking predictions. a) CAPRI criteria docking 
performance of HADDOCK using different levels of informational restraints (adapted from Ambrosetti et 
al., 2019). b) Upside results with either flexible Ab loops or loops held semi-rigid with spherical flat-bottom 
restraints. HV Filtered uses loop contact information to filter poses, but with no biasing potential during 
Upside runs to approximately correspond to HADDOC ’s HV – Surf protocol. Upside’s HV – Coarse Epi 
protocol uses both loop and coarsely defined epitope information to filter poses, and pairwise sigmoidal 
contact potentials to bias interactions during Upside runs. Upside’s HV – Coarse Epi roughly corresponds 
to HADDOC ’s HV – Epi 9. Both HADDOCK and Upside results use the unbound forms of the subunits 
as inputs for docking. 

However, the inclusion of loop flexibility has mixed outcomes for Upside. First, a comparison of 

the HV Filtered runs between the flexible and semi-rigid loop cases finds that some complexes either 

worsen their ranking or quality of their poses when backbone flexibility is allowed (eg. 3G6D, 3HI6, 3LW5, 
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4FQI, 4G6M) although others gain in ranking or quality (e.g., 2VXT, 4DN4, 3HMX, 3MXW). To obtain 

more consistent results in the future when only loop information is known, a scheme that combines 

flexible and semi-rigid poses and ranking them together might help (untested). Only the inter-protein 

terms of the energy function can be considered for ranking in such a setup because the flexible poses will 

likely benefit from less backbone strain. 

When epitope information is used (e.g., HV – Coarse Epi), flexibility generally produces better 

predictions (e.g., 3G6D, 3V6Z, 3HI6, 4G6J). The contact biasing potentials in this case compensate for 

inaccuracies in the folding and protein-protein energy terms. Ambrosetti et al. similarly observed that 

biasing with higher levels of information was required to help with packing the antibody H3 loops during 

their flexible refinement stage. Improvement is required in the underlying models and forcefields of both 

Upside and HADDOCK for unaided flexible docking. 

This analysis indicates that Upside and HADDOCK perform similar but have different strengths, 

appreciating that their filtering and biasing schemes are not exactly the same. When epitope information 

is used and loops are flexible, Upside does better for some medium difficulty complexes (3V6Z, 3HI6, 

3EO1). This improvement demonstrates the benefit of Upside’s greater flexibility. However, HADDOCK 

produces high-quality predictions for some of the more rigid complexes (4G6M, 3MXW, 3EOA), whereas 

Upside is unable to produce any high-quality structures as noted before with the general data set in Fig 

2.3. This finding may again reflect the limitations of Upside’s coarse-graining of side chains. 

As each CDR loop is known to favor certain clusters of canonical structures [30], we also 

compare our predicted cluster assignments of the loops to those of the native antigen bound structures. 

This analysis is based on the Upside structures from the Loops Flexible CAPRI evaluation scenario of the 

preceding discussion. The PyIgClassify server [30] was used to assign CDR loop structures to known 

clusters according to the loop’s backbone dihedral angles. 

Cluster assignments were done for all 16 antibody complexes, and with the four different 

scenarios for each complex using either: 1) the known bound forms of the loops; 2) the unbound forms of 

the loops, which were the starting structures of the Upside relaxation simulations; 3) best scoring native-

like structure from Upside using only CDR loop information to assist the docking; 4) best scoring native-

like structure from Upside using a bias between the loops and the coarse epitope to assist the docking.  
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Fig 2.11 summarizes CDR loop prediction accuracy, where the bars count the number of loops 

that have been assigned to a wrong, non-native cluster. The 3G6D complex, where no bars are visible, 

indicates that unbound and Upside structures for that complex have the same cluster assignments as the 

native conformations for all six CDRs. At the other end, the 3EO1 complex has three or more CDRs that 

are not predicted to be in the native cluster. 

 

Figure 2.11: Number of incorrect CDR loop cluster assignments compared to the native 
assignment by PyIgClassify. The blue bars represent CDR loops in the unbound conformation, which 
are the starting points for the Upside relaxation simulations. The orange and green bars are from the best 
scoring native-like Upside prediction under the two different information conditions. The orange bars are 
for the loop information only case, where the antigen was simply filtered to be in contact with the CDR 
loops. The green bars are for the case with bias between the loops and the coarsely defined epitope. ▼ 
designate cases where structures are missing for the no bias case because no native pose scored within 
the top 100 poses. 

More importantly, the loops in the Upside simulations largely remain in their original clusters 

irrespective of the information level used to assist the docking. Buried portions likely encounter steric 

hinderance and interactions that trap them in their original conformation. Literature suggests that the CDR 

loops (particularly H3) span a spectrum of flexibility, and even among our test set, examples exist of 

complexes with loops that undergo conformational change between unbound and bound states, so there 

is motivation to improve the conformational sampling of the more flexible regions [25, 26]. 

Fig S2.4 further illustrates this point with visualizations of the loop structures for the two 

complexes (3EO1, 3HI6) that have the largest discrepancy between our predicted loop structure cluster 

assignments and the native assignments. During the Upside simulations, the loops generally do not 

0

1

2

 

4

 

6

 
 I
n
c
o
rr
e
c
t 
C
D
R
 L
o
o
p
 C
lu
s
te
rs   Unbound Starting

  Upside: Loop Info Only

  Upside: Loop   Coarse Epi

Lower Is  etter

 

  



36 
 

change their backbone RMSD by more than ~3 Å from the starting structures. Although the internal loop 

conformations are retained, the loops still undergo center of mass shifts and tilts when referenced to the 

rest of the entire antibody (Fig S2.5) and so the binding surface changes and explains we can obtain 

better CAPRI predictions in the flexible loop with epitope bias scenario. 

For comparison, Ambrosetti et al. investigated the RMSD of H3 loop of their predicted models 

after flexible refinement with alignment of the framework residues to the antigen bound structure (i.e., 

overall shifts in position and orientation were included in their RMSDs). The accuracy tended to get worse 

by up to ~1.5 Å for the easy complexes that already start with low H3 RMSD in the unbound forms. They 

saw an improvement by up to 1.25 Å in some of their predictions for medium difficulty complexes when 

coarse epitope information was used, but they also saw a degradation for some others. Overall, 

HADDOCK has mixed performance with CDR loop prediction. 

Our temperature replica exchange molecular dynamics (TREMD) simulations of 3EO1 starting from its 

unbound conformation in the absence of antigen found that the H1 loop can sample lower RMSD states 

compared to those previously found during the docking (Fig 2.12). The previous docking simulations were 

done at a relatively low and constant temperature. This suggests that to sample the native conformation, 

we likely require enhanced sampling procedures. 

 

Figure 2.12: H1 CDR loop RMSD (in Å) from TREMD of 3EO1 antibody separated from antigen. -- 
indicates the RMSD from the best scoring model docking model used in the previous figures. 

In conclusion, the docking algorithms, including Upside, do a relatively poor job of predicting antibody 

binding with CDR loop information only. Biasing interactions using a coarse definition of the epitope 

greatly improves the results, with Upside’s greater efficiency in flexible backbone sampling over 

HADDOCK enabling better predictions of medium difficulty complexes. While center of mass position and 
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orientation of the loops shift during this flexible sampling in the reference frame of the framework 

residues, and thus the binding surface changes, the internal structures of the loops do not change much 

over the course of Upside simulations in contact with antigen. Enhanced sampling or a conformational 

selection scheme (e.g., cross docking different pre-sampled unbound conformations) may be required to 

better predict the internal CDR loop structures. 

2.4 Discussion 

Ultimately, models representing protein molecules should capture all aspects of their behavior. 

However, depending on our immediate objectives and available computational resources, we must make 

approximations. Importantly, identifying which kinds of approximations perform well for a given problem 

often provides new insight on the fundamental nature of proteins. We explored these issues using 

Upside, a very fast MD algorithm designed to model protein dynamics in which the side chains are 

represented by multi-position beads. By any standards, Upside performs fairly well regarding the protein 

folding problem [22]. By adapting Upside to protein-protein docking, our hope was that its backbone 

sampling capabilities would spontaneously result in better prediction complexes that undergo 

conformational change upon binding and overcome the lack of explicit side chains. The reality turned out 

to be more complicated. 

2.4.1 Limitations of model  

We found that the addition of specific inter-protein energy terms considerably improved our ability 

to score native-like structures compared to the original folding forcefield. Combinations of pairwise polar 

and charge sidechain interactions and the burial of hydrophilic sidechains were underrepresented in the 

protein folding training set. Therefore, it is not surprising that the original forcefield designed for folding is 

not optimized for protein-protein docking. One important limitation appeared to originate from the coarse-

grained representation of the side chains. 

Even with the single bead representation of the side chains, Upside’s performance was 

comparable to traditional full sidechain methods when the subunit structures were restrained in their 

unbound conformations. Only in a few cases where the subunits did not change conformation by more 

than a few Å in the Upside simulations did the addition of sidechains with SCWRL4 [25] and rescoring 
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with SOAP-PP [21] produce a significant benefit. The CABS CG method was also able to find some low 

IRMSD predictions in the top 10 scored predictions [28], which when considered with our results indicates 

that moderate success in docking can be achieved without explicit side chains. 

However, we must note that SCWRL4 and SOAP-PP do not give a perfect reconstruction and 

scoring of sidechains and it is still likely that explicit sidechains are required for high accuracy predictions. 

This is supported by the much higher success rate of FRODOCK [2] with bound conformations of the 

subunits and native full sidechain rotamers compared to Upside using the same structures as initial states 

and restraining the subunits to their bound conformations. The recent neural network approaches to 

docking also utilize explicit side chains and are successful in high accuracy predictions [13–16]. 

Surprisingly, inclusion of backbone flexibility exhibited both advantages and disadvantages 

regarding the protein docking problem. The accuracy of the approach generally decreased when full 

backbone flexibility was allowed even starting from the native pose. Generally, this outcome is due to the 

lowest energy structure, which is the product of both the folding and binding energy terms, was not within 

3 Å of the bound subunit structures (“ oth Subunits  ree” panels in Fig. 2.4). The PMF-determined 

energy needed to shift the structures of the subunits to their bound conformations often was too large to 

overcome using the energy of the binding terms (e.g., >4 kBT). This steep penalty for what would seem to 

be a relatively minor error prevented Upside from being successful in flexible docking. To improve our 

procedure would require better training and/or more sophisticated forcefield terms that contribute to 

folding as well as binding. 

The decrease in performance with backbone flexibility is likely endemic to most current forcefield 

guided dynamics docking methods, as we found that rigid docking performs better than the large 

conformational search of the CABS CG method [28]. Even the extensively sampled, MD simulations of 

Pan et al. benefitted from imposing backbone constraints based on the bound conformation of the 

subunits to circumvent the structural degradation occurring over time during a simulation based on a 

classical all-atom MD force field [10]. In the specific case of antibody docking, biased simulations using 

information on antibody CDR loops and epitopes can overcome forcefield inaccuracies, and flexible 

docking with Upside produced better results than with backbone restraints and was comparable to 

HADDOCK [19].  
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For predicting antibody CDR loop conformations during docking, we noticed that conformational 

selection may play a role, as opposed to induced fit only, because the internal loop conformations did not 

change very much while in contact with the antigen due to high energy barriers. This is supported by the 

presence of more native-like loops in the antibody-only simulations. In this scenario, the natural 

fluctuations of the unbound antibody access the native bound conformation of the CDR loops, and this 

state binds the antigen. But attempting to improve the loop conformation after initial contact of the 

unbound forms of the antibody and antigen (as done in the Upside docking pipeline) may not succeed 

because of the aforementioned issue of steric hinderance experienced by the loops. The literature is 

divided on the relative weight of conformational selection and induced fit in antibody binding [27, 28]. 

2.4.2 Folding versus binding 

Since Upside was designed for protein dynamics and folding rather than docking, it is worth discussing 

how the challenges faced by these two classes of problems may be different. Proteins seemingly have a 

huge number of possible conformations and yet many manage to fold within seconds [35]. As Rose 

notes, there are strong organizational constraints imposed by backbone sterics and hydrogen bonding 

[30, 31]. A 100-residue domain thus may have only ~10 helices and strands, which could be arranged in 

about 103 fundamental folds. Larger proteins consist of such domains so that conformational diversity 

may grow manageably with length.  

To find the correct fold using simulations, the energy terms must be balanced and considerable 

searching is required. In practice, imperfections in force fields can readily result in kinetic trapping. For 

example, Upside is able to fold some proteins less than 100-residues, in part due to careful consideration 

of backbone potential terms and training against misfolded structures. But the method is not perfect since 

some misfolded states are stable and some native states are not the global energy minimum. This issue 

becomes much more problematic with longer sequences.  

In contrast, the search problem is substantially simpler for rigid-body protein docking. According 

to  anin’s model of barnase-barstar binding, about 70,000 poses are needed to find the native well if 

states are discretized every 14 degrees with respect to each of the angles about their center to center 

vector [38]. For larger complexes, the number of poses required likely is proportional to the square of the 

surface area, and the area grows as the mass with a fractional power of 0.7 [39], Hence, the number of 
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decoys grows manageably and it is possible to generate and score the 105-106 poses needed to sample 

docking space. 

However, when docking the unbound structures of the subunits and presented with the docked 

set of 105-106 poses, the traditional approaches only have a success rate of finding a native-like pose in 

the top 10 predictions (i.e., ten predictions are needed for one to be native-like) for less than ~30% of the 

complexes. Improvement likely necessitates generating docking poses with subunits that have structures 

closer to their true bound conformations. Relaxation of the complexes with Upside results in 3-4 Å C 

RMSD for the subunits at best; this accuracy can be considered a good folding prediction, but it still 

produces only medium quality docking poses and the situation is not much improved. Generating high 

accuracy binding poses requires having subunit structures that are close to their bound structures, and 

effectively, the challenge of binding becomes a challenge in high accuracy structure refinement that 

incorporates elements of folding. 

2.4.3 Recent machine learning methods 

Our results that pointed to a possible conformational selection mechanism for antibody loops 

illustrates the utility of molecular dynamics tools to learn about pathways of protein binding and folding, as 

opposed to the recent neural network approaches for protein structure prediction. In AlphaFold 2 and 

RoseTTAFold, backbone sterics, especially of the peptide bond, are not explicitly represented in the 

primary stages of the models such that when coupled to distance information of specific residue pairs, the 

models are able to unnaturally search for the optimal positions of residues over long distances while the 

backbone “clips” or “ghosts” through itself [10, 11]. So, these neural network methods would not be able 

to differentiate between induced fit and conformational selection binding mechanisms. With molecular 

dynamics simulations, backbone sterics and non-specific interactions hinder the search, but provide an 

avenue to predict thermodynamics, kinetics, and pathways. 

Better antibody loop predictions will require either fully flexible free docking or rigid-body crossdocking of 

antibodies with different pre-sampled loop conformations followed by refinement. Flexible docking thus 

encompasses the difficulties of protein folding and adds to it. Indeed, even AlphaFold 2, that although 

earned the title of solving the protein folding problem during the CASP 14 experiment, still had trouble 

with a multidomain protein whose domain associations were like that of protein complexes [40]. Further 
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advancements are required for de novo flexible docking, in the case of Upside this may entail joint 

training of folding and inter-protein energy terms. 
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2.6 Supporting Information 

 

Figure S2.1: Objective function during training 

 

 

Figure S2.2: Magnitude of changes to potentials with the new docking FF. a) Integral of the absolute 
value of the radial part of the new interprotein pairwise sidechain potential. b) Integral of the new 
interprotein environment potentials up to 10 Å. 
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Figure S2.3: 2D probability distributions from native state simulations. The green dots are the 
starting native states in Upside, which are away from the exact native position in bottom right corners 
(IRMSD = 0 Å, fnat = 1.0) due to the coarse-graining. The red distributions are simulations run without 
backbone restraints, while the green ones are with backbone restraints. Each condition is run in triplicate 
and the second halves of the trajectories concatenated to produce the distributions.   
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Figure S2.4: Visualization of CDR loops. The green segment is from the best ranked native-like Upside 
prediction using epitope biasing superimposed onto the native antigen bound loop structure (magenta) or 
unbound structure (blue). The rest of the complex is shown in grey in the native bound form. The red 
stars denote mismatch between the PyIgClassify cluster classifications between the Upside prediction 
and the reference loop structure. 

 

 

Figure S2.5: Structural alignment of the entire antibody. Reveals center of mass shift and tilt of the 
3EO1 H3 loop after Upside relaxation (green) from the unbound starting structure (blue), although there is 
not much difference in the loop conformations in terms of dihedrals as shown in Fig Figure S2.4. 
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CHAPTER 3 

PROTEIN FOLDING 

3.1 Attribution and contributions 

This chapter has been reproduced almost in full from 

Jumper JM, Faruk NF, Freed KF, Sosnick TR. Trajectory-based training enables protein simulations with 
accurate folding and Boltzmann ensembles in cpu-hours. PLOS Comput Biol. 2018 Dec 
27;14(12):e1006578. 
 
in accordance with its Creative Commons Attribution License (CC BY 4.0). I was credited with “formal 

analysis, Investigation” for the publication, with major contributions of running many of the protein folding 

simulations, including the CASP targets, and conducting much of the analysis in the sections “3.5.2 

Accuracy of structure prediction” and “3.5.3 Comparison with other physics-based approaches”.  

 

3.2 Chapter abstract 

An ongoing challenge in protein chemistry is to identify the underlying interaction energies that capture 

protein dynamics. The traditional trade-off in biomolecular simulation between accuracy and 

computational efficiency is predicated on the assumption that detailed force fields are typically well-

parameterized, obtaining a significant fraction of possible accuracy. We re-examine this trade-off in the 

more realistic regime in which parameterization is a greater source of error than the level of detail in the 

force field. To address parameterization of coarse-grained force fields, we use the contrastive divergence 

technique from machine learning to train from simulations of 450 proteins. In our procedure, the 

computational efficiency of the model enables high accuracy through the precise tuning of the Boltzmann 

ensemble. This method is applied to our recently developed Upside model, where the free energy for side 

chains is rapidly calculated at every time-step, allowing for a smooth energy landscape without steric 

rattling of the side chains. After this contrastive divergence training, the model is able to de novo fold 

proteins up to 100 residues on a single core in days. This improved Upside model provides a starting 

point both for investigation of folding dynamics and as an inexpensive Bayesian prior for protein physics 

that can be integrated with additional experimental or bioinformatic data. 
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3.3 Introduction 

Since Anfinsen’s original demonstration that a protein’s sequence determines its structure, multiple 

computational strategies have been developed to predict a protein’s structure from its sequence. An 

additional facet of this challenge is to replicate the energy landscape that defines both the folding process 

and other dynamical properties. In the absence of other information, coarse-grained models with one or a 

few beads per residue are too simplistic for de novo structure prediction. Cβ level models having authentic 

protein backbones with ϕ/ψ dihedral angles, but lacking side chain rotamers, have achieved some 

success [1–3]. Within the last decade, all-atom, explicit solvent methods have become successful for the 

folding of some small proteins, although the ability to replicate the properties outside the native basin 

requires substantial improvement [4]. For the folding process, it is unclear which representation provides 

the optimal combination of detail and computational expense to replicate protein folding and dynamics. 

Integral to the choice of representation is which interactions to include, such as hydrogen bonding, van 

der Waals interactions and hydrophobic burial. 

Another factor is the parameterization of the energy function with the training algorithm needing to 

balance the influences of all interactions. Protein thermodynamics reflects a delicate balance between the 

free energy of the folded and unfolded states. If one interaction is slightly too large, the entire landscape 

can be severely distorted. For example, if backbone hydrogen bonding energies are too large compared 

to backbone-solvent interactions (which includes hydrogen bonds between the backbone and water), an 

excess of hydrogen bonding ensues and pathways become dominated by unrealistically stable native- 

and non-native secondary structures. In an extreme situation, the lowest energy structure may have long 

helices involving nearly all residues. 

The balancing of these various energies has been a major effort, and the balance is continually 

being adjusted as new force field biases are identified [5]. However, the adjustment of some parameters 

to correct one deficiency can inadvertently degrade performance of other quantities. In order to achieve 

the correct balance, all terms in the model should be trained together, rather than adjusted with an ad hoc 

procedure to correct each identified deficit. 

To achieve this balance with a detailed interaction model, we use our recently developed, 

extremely rapid Upside implicit solvent molecular dynamics program [6]. Each residue In Upside is 
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represented with a polypeptide backbone and a side chain interaction site or bead which can adopt up to 

6 positions representing up to six different side chain χ1/χ2 states. The key advance of the model is the 

smoothing of the energy surface by approximate analytic integration of free energies for the side chains’ 

discrete states. When trained to predict side chain conformations from the Protein Data Bank (PDB), the 

method can fold a few small proteins with moderate accuracy in a cpu core-day. The majority of speedup 

of the procedure is a result of a unique side chain algorithm which directly calculates the side chain 

probability distribution and the free energy. This free energy calculation, performed at every time step, 

avoids the steric rattling of the side chains which can occur in the condensed phase in all-atom 

simulations, and so allows the backbone to move on a smoother energy landscape. 

Here, we demonstrate that we can achieve de novo folding for a diverse collection of proteins by 

combining our fast-equilibrating Upside model with a contrastive divergence procedure that optimizes the 

stability of the native well. We demonstrate that gradient descent on energy terms using only data from 

sampled trajectories is sufficient to parameterize a protein model with tens of thousands of parameters. 

The resulting parameters are sufficiently balanced and accurate to achieve reversible folding for many 

proteins in our validation set. In addition, the resulting model is an excellent starting point for large scale 

protein simulations using more detailed models as well as the integration of large quantities of external 

information (such as predictions of residue contacts). 

3.4 Methods 

3.4.1 Coarse-grained model 

In our recently-developed Upside model, only the N, Cα, and C atoms for each residue undergo dynamics. 

This simple representation of the protein allows for molecular dynamics on a smooth landscape but also 

makes it challenging to include the entirety of the protein physics. To address this challenge, we build 

additional layers of derived coordinates during the energy computation, much like virtual sites in a 

traditional force field. These layers include amide hydrogens, carbonyl oxygens, hydrogen bonding and 

residue burial scores, and the possible locations of protein side chains. All of the derivative information 

required is backpropagated through these layers of representation during the computation of forces for 

molecular dynamics. The side chain positions are the most challenging to represent because we must 
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solve a side chain packing problem in order to determine the distribution of side chain positions for a 

given backbone geometry. To pack the side chains probabilistically and obtain a side chain free energy, 

we use a rapid self-consistent iteration as described in our recent work [6] (Fig 3.1). The major 

computational steps are: 

Step 1. The loop begins (upper left corner) with each residue in the protein being represented 

with   backbone atoms, the N, Cα and C.  ased on the position of these atoms, the carbonyl 

oxygen, O, and amide proton, H, are deterministically placed. 

Step 2. Each side chain, represented by a single oriented bead, is assigned an initial probability 

for being in 1–6 states, depending on the residue type and the average frequency observed in the 

PDB. The state of the bead is defined by its position and an orientation, (x,y,z,v), where v is a unit 

vector, relative to the peptide plane. 

Step 3. The pair-wise state probabilities of all side chains are simultaneously and rapidly 

calculated using belief propagation to produce the lowest system free energy. 

Step 4. Forces on the 3 backbone atoms, as well as on the O, H and side chain beads are 

calculated from the derivative of the free energy. 

Step  .  orces on the O, H and bead are “pulled back” and added to the forces on the   

backbone atoms by reversing the placement process. 

Step 6. Langevin dynamics (implicit solvent with friction) are run on the 3 backbone atoms using 

the forces calculated in Steps 4 and 5. 
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Figure 3.1: Computational inner loop for Upside. The positions of the protein side chains are added 
during each energy or force computation, then an approximate Boltzmann distribution is estimated for the 
side chains, and the free energy of the side chains is computed using the approximate Boltzmann 
ensemble. The resulting energy derivatives are pulled back to the backbone coordinates to update the 
backbone momenta. 

The majority of parameters in Upside define the pairwise interactions between side chains, where 

each side chain is represented by a single directional bead. Concretely, each interaction pair is described 

by bead positions 𝑦1 and 𝑦2 and their orientations 𝑛1 and 𝑛2. From the distance 𝑟12 = |𝑦1 − 𝑦2| and 

displacement unit vector 𝑛12 = (𝑦1 − 𝑦2)/𝑟12 are calculated. All of the pairwise interactions have the 

functional form 

 𝑉 = 𝜅 (𝑉radial(𝑟12) + ang1(−𝑛1 ∙ 𝑛12)ang2(𝑛2 ∙ 𝑛12)𝑉angular(𝑟12)), 3.1 

where 𝑉radial, ang1, ang2, and  𝑉angular are smooth curves represented by cubic splines for increased 

flexibility, rather than fixed functional forms such as a van der Waals 6-12 potential. The potential for each 

of the (
20
2

) + 20 = 210 types of amino acid pairs are described with 62 spline coefficients per pair, giving 
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13020 parameters. There are also five interaction sites on the backbone, roughly representing the H, O, 

N, Cα, and C atoms, with 54 parameters per interaction due to a smaller cutoff distance (10 versus 8 Å). 

The total number of side chain-backbone interaction parameters is 5400. 

We add an additional term to capture desolvation effects by computing the approximate number of side 

chains 𝑁𝑖 within a hemisphere above the Cβ (see S1 Text in Supporting Information of Jumper et al.). 

High values of Ni correspond to buried residues. The total energy is 

 𝑉env = ∑ 𝑉𝑎𝑖
env(𝑁𝑖)

𝑖

, 3.2 

which is the sum of the values from individual 𝑉𝑎𝑖
env potential curves for each residue 𝑖. Although more 

sophisticated solvation potentials exist, our implementation is very fast and easily optimized by the 

contrastive divergence procedure, while remaining flexible enough to represent many of the solvation 

effects omitted by the pairwise side chain potential. 

The backbone dihedral angle Ramachandran potential is ∑ 𝑉𝑖
Rama(𝜙𝑖 , 𝜓𝑖)𝑖 , where 𝑉𝑖

Rama depends 

on the chemical identity of the 𝑖 − 1, 𝑖, and 𝑖 + 1 residues. The Ramachandran potentials are based on 

the turn, coil, or bridge (TCB) Ramachandran probability models in the NDRD backbone library [7]. We 

introduce a single parameter controlling extra stabilization of angles consistent with β-sheet geometries to 

allow training to counteract an observed tendency for our model to overstabilize helices. The backbone 

non-bonded interactions are governed by a distance- and angle-dependent hydrogen bonding potential 

whose magnitude (but not geometry) is chosen by contrastive divergence. The backbone N, Cα, Cβ and C 

feel a steric repulsive interaction when their internuclear distance is approximately 3.0 Å. 

Source code for Upside can be obtained from https://github.com/sosnicklab/Upside-md, and the 

results of this paper can be reproduced using the version tagged trajectory_training_paper.     

3.4.2 Contrastive divergence  

Our implementation of contrastive divergence considers two ensembles, one closely restrained to the 

native (crystal) structure and another that is free to diffuse away during simulations (Fig 3.2). In a perfect 

model, an unrestrained ensemble would remain close to the native structure. For an inexact model, 

differences arise, such as an excess of backbone-backbone hydrogen bonding in the free ensemble. 

Reducing the hydrogen bond energy would shift the free ensemble closer to the native ensemble. The 

https://github.com/sosnicklab/upside-md
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parameter modification must be small, however, because shifting the hydrogen bond energy may 

adversely affect other features of the ensemble, e.g., by reducing the burial of hydrophobic residues. 

Accordingly, after simulations are run on the first set or “minibatch” of 12 proteins in our 4 6 protein 

training set, we modify all the parameters with small updates to shift the simulation ensemble to better 

match the native-restrained ensemble. Simulations are repeated on the next of the 38 subsets of 12 

proteins, and the parameters are updated again. The algorithm is converged when no parameter can be 

altered to shift the free ensemble closer to the native-restrained ensemble. 

 

Figure 3.2: Contrastive divergence training. (A) Schematic of the training procedure depicting how the 
native state is stabilized relative to other states upon parameter updates. (B)-(E) In all plots, the blue 
curves indicate larger initial step-size training and the green plots indicate smaller step-size (fine-tuning). 
(B) The upper left plot shows the decline in minibatch-averaged RMSD over the course of the 
optimization. The remaining plots show (C) the convergence of the hydrogen bonding and side chain-side 
chain interaction parameters over the optimization for (D) Met-Met and (E) Val-Val potential. The larger 
step-size optimization of the side chain parameters exhibits large oscillations that inhibit convergence. 
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The free ensemble is generated using 5000 time units of dynamics (approximately 10 wall-clock 

minutes), with the first half being discarded as equilibration. Unless the native state is particularly 

unstable, this time is insufficient for exploration of the conformational landscape much beyond the native 

basin (RMSD within 6 Å) and so produces only a locally-equilibrated ensemble. 

The native ensemble is traditionally defined as a single conformation. This δ-function distribution 

is problematic for proteins because they are dynamical molecules. Additionally, the solution ensemble 

may differ from the crystal structure for multiple reasons, including crystallographic packing. To reduce 

the impact of these issues, we replace the exact ensemble structures with the ensemble restrained to be 

near the crystal structure, within approximately 1 Å Cα-RMSD. This procedure is analogous to the 

restrained equilibration of crystal structures required to prepare systems for all-atom molecular dynamics. 

To account for changing parameters, we apply the restrained relaxation at every optimizer step. 

After generation of the free and native-restrained ensembles, we change the energy parameters 

𝛼𝑖, where 𝑖 is the optimizer step, in proportion to the amount that the change can differentiate the two 

ensembles. This procedure is a form of gradient descent to reduce the “distance” between the free and 

native-restrained ensembles, 

 
𝛼𝑖+1 = 𝛼𝑖 +

𝜖

𝑀
∑ (⟨

𝑑𝑉

𝑑𝑥𝑖

⟩
restrained

− ⟨
𝑑𝑉

𝑑𝑥𝑖

⟩
free

)

𝑀

𝑎=1

, 3.3 

where 𝜖 is the step size, 𝑀 is the number of proteins, and 𝑎 indexes the simulated proteins. The quantity 

⟨
𝑑𝑉

𝑑𝑥𝑖
⟩

restrained
− ⟨

𝑑𝑉

𝑑𝑥𝑖
⟩

free
 represents a pseudo-derivative of the free energy of restraining the simulation to be 

near the crystal structure (see SI for details). In the limit that the simulation duration is infinite, this 

difference is the exact derivative of the free energy. In practice, this difference chooses a suitable 

direction to improve the parameters. 

The simulations use temperature replica exchange with eight replicas to enhance barrier crossing 

[8], while the temperature intervals of the replicas scale with to encourage efficient replica exchange for 

proteins of various sizes. The progress of the replica exchange is monitored by the average RMSD-to-

crystal structure over the simulation for each “minibatch”, the 12 protein subset used for a single gradient-

descent step. 
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3.5 Results 

3.5.1 Training 

The parameters are initially set to those used to optimize side chain (χ1) accuracy [6]. The contrastive 

divergence training rapidly improves the model’s average RMSD over a minibatch from 6 Å to 3 Å. This 

decline is accompanied by rapid change in the parameters. To reduce parameter fluctuations and fine-

tune the results, we reduce the optimizer step size by a factor of four after two full passes through the 38 

minibatches. 

Although the slope has greatly decreased of RMSD change with respect to the number of steps 

over the iterations, there are indications that the parameters have not yet converged. Earlier tests, 

however, showed that continuing the contrastive divergence until convergence does not necessarily 

produce better results, as has been previously observed [9]. When large barriers surround the native 

states, minimal relaxation of the conformation occurs, which in turn provides little new information, and 

further fine-tuning may even reduce the accuracy of the model. Potentially the decreased exploration in 

the native well in the later stages overtrains the model to distinguish between native and near-native 

structure at the expense distinguishing against a more diverse ensemble. Early termination of 

optimization has been observed to favor simpler models [10]. 

The hydrogen bond strength unexpectedly appears to converge to a significantly smaller value 

during the late, fine-tuning stage than during the early phase with larger optimizer steps. We speculate 

that the extra noise in the side chain interactions during the larger optimizer steps may in aggregate 

cause stronger side chain interactions for the protein. This effect would necessitate a large hydrogen 

bond energy to balance the increase in side chain interactions. The final pair-wise energy functions 

between the side chain beads and either the backbone carbonyl oxygen or the amide proton, and the 

bead-bead interactions are shown in Fig 3.3. 
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Figure 3.3: Representative pair interaction potentials from the contrastive divergence training. (A) 
Side chain bead-to-carbonyl oxygen and bead-to-amide proton (blue/red) and (B) side chain bead-to-
bead (blue/green). Thin lines indicate 𝑉radial(𝑟) while thick lines indicate 𝑉radial(𝑟) + 𝑉angular(𝑟) with a plot 

range of (−6kT, 6kT). The heat maps show the angular product ang1(𝜃1)ang2(𝜃2). 
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3.5.2 Accuracy of structure prediction 

Contrastive divergence training has been shown to be effective for many machine learning problems [11], 

even without having simulations that converge to the Boltzmann ensemble. To test the accuracy of 

contrastive divergence on our protein model, we attempt de novo folding of a benchmark set of small, 

fast-folding proteins similar to those used in references [12–14] as well as various CASP11 targets 

investigated by other physics-based approaches (Figs 3.4 and 3.5) [15, 16]. Before training, we remove 

homologous proteins from the training set to help ensure that this would be a true de novo prediction. 

 

Figure 3.4: Predicted structures and Cα-RMSD distributions. After equilibration phase for the lowest 
temperature of replica exchange simulations (see S1 Text of Jumper et al.). The simulations start from 
either the native (blue) or a random unfolded state (red). For the refolding simulations, the lowest Cα-
RMSD to native structures is provided along with the value for the centroid of largest cluster (in 
parentheses). RMSD calculations exclude three residues at the amino- and carboxy-termini to account for 
possible disorder at the ends. Each replica is run for about three days with one CPU-core. 
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Figure 3.5: Upside, UNRES and MEL ’s perform nce on seven   SP11 T rgets. (A) Hubbard plots 
for the centroid of Upside’s top five clusters are compared to the UNRES’s and MELD’s five submitted 
structures. The length and the relevant residue range used in CASP11 analysis for each protein is shown 
along with the structure. (B) Upside’s secondary structure predictions for the centroid of the top cluster 
(Cα-RMSD and secondary structure accuracy provided at top). The sequences provided by CASP11 
organizers can be longer than the sequences used for evaluation due to disorder (e.g., for T0769-D1, 
simulations are conducted on 112 residues, but only the 97 folded residues are evaluated). The RMSD 
values provided are based on the CASP11-defined folded regions, and hence may differ slightly than 
those provided in Fig 3.4. 

Two temperature replica exchange simulations are run for each of the 23 proteins (14 replicas 

each). The first set is initialized from the native configuration to assess the stability of the experimental 

structure for the potential obtained from contrastive divergence training. The second set is initialized from 

an unfolded state (random Ramachandran ϕ and ψ angles) to test Upside’s capability to find the native 
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structure which is reflection of both the accuracy of the energy function and the method’s ability to search 

conformational space. Each range of temperatures is chosen to be large enough to cover the unfolding 

transition for each given protein. We judge the accuracy and equilibration from the histograms of the Cα-

RMSD from the native structure after discarding the initial third of the simulation as equilibration (Fig 3.4). 

The majority of the proteins show a small number of well-defined basins that represent the 

dominant conformations with the current potential. While the simulations often produce several 

conformations quickly, equilibration of their populations takes longer, on the order of CPU-days for some 

proteins, though still extremely short in comparison to typical molecular dynamics simulations. 

For all 20 proteins below 100 residues, the lowest Cα-RMSD structure obtained starting from an 

unfolded state is within     of the native state ( 4% within    ). In some cases, the lowest Cα-RMSD 

structure is in the largest cluster, while for other proteins, the best structure is in a minor cluster even 

when it is within 3 Å (e.g., gpW, NTL9). The designed 3-helix bundle, α d [17], has a mirror image as a 

second heavily populated cluster. 

When the native-initialized and unfolded-initialized structures have similar Cα-RMSD distributions, 

the simulations are likely converged. Half of the proteins are approximately converged by this criterion 

(e.g.,   A, protein  , homeo domain, α d and   ), but others are not, (e.g., protein L and ubiquitin). 

Convergence is achieved for a variety of proteins with the native or near-native structure being the 

dominant conformation (e.g., BBA, homeo domain, protein B). These proteins represent the ideal 

scenario in terms of both accuracy and convergence. But, convergence can be achieved even when the 

native conformation is not the dominant conformation (e.g.,   L, λ-repressor, NuG2). This result indicates 

that for these proteins, our energy function is inadequate in regards to identifying the native structure 

even though there is adequate sampling. For cspA, a relatively small protein having a complex all β fold, 

additional simulations run at constant temperature can find a stable structure having significantly lower 

Cα-RMSD (3.6 rather than 6.1 Å); this finding points to the search process being the limiting factor rather 

than Upside’s energy function. 

 

The Upside simulations tend to achieve the correct secondary structure with a small number of 

distinct tertiary arrangements. This diversity in tertiary structures occurs as mirrored three helix bundles 
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for α d and protein  , as well as the subtle re-arrangements of NuG2. For the three largest CASP11 

targets we investigated (115–178 residues), the secondary structure performance is noticeable poorer, 

implying a strong coupling between secondary and tertiary structure formation for these larger systems 

(Fig 3.5). 

3.5.3 Comparison with other physics-based approaches 

Simmerling and coworkers folded 17 sub93 residue proteins using GPUs to obtain a microsecond of 

simulation time per day with their pairwise Generalize Born (GB) model trained to reproduce Poisson–

Boltzmann solvation along with their ff99SB force field [14]. Impressively, their replex protocol folded 16 of 

the 17 proteins to within     Cα-RMSD although the top cluster was greater than 10Å for five of the six 

largest proteins. Over-all, the performance is very similar to Upside’s in that 1-    Cα-RMSD structures 

are achievable on most proteins but the structures are not always in the largest cluster. 

For seven CASP11 targets between 65-178 residues, we compared Upside with two physics-

based approaches that participated in CASP11 (Fig 3.5): the Cornell-Gdansk group’s coarse-grained 

united residue model “UNRES” [16] and MacCallum, Perez and Dill’s highly accelerated molecular 

simulation method “MELD” (Modeling Employing Limited Data), a  ayesian approach that utilizes 

physically-based heuristics combined with atomistic implicit solvent simulations [15]. It should be noted 

that both methods employ PsiPred, a secondary structure predictor employing evolutionary information 

[18]. In contrast, Upside’s secondary structures emerge during folding solely are a result of our energy 

function. 

For T0765-D1, a 76 residue α/β protein, Upside’s major cluster contains the native fold ( ig 3.5). 

The performance is reflected in a low flat trace for the cluster centroid in the Hubbard plot of the Global 

Distance Test (GDT) versus sequence percentage. This performance is superior to all five of UNRES’s 

submissions (there were no MELD submissions). For T0769-D1, a 112 residue α/β protein, both Upside 

and MELD perform very well, with UNRES’s best submission being only slightly worse.  or T0771-D1 and 

T0803-D1, 17  and 1 4 residue α/β proteins, respectively, neither Upside nor UNRES’s performance is 

very good (no MELD submissions). For T0773-D1, a 77 residue α/β protein, MELD performs extremely 

well while one of Upside structure also has the native fold. UNRES performance is much poorer. For 

T0816-D1, a 68 residue helical bundle, MELD performs astonishingly well while Upside’s and UNRES’s 
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performances also are commendable. For T0855-D1, a 115 residue α/β protein, both MELD and UNRES 

perform similarly and better than Upside, but none succeed in finding the native fold. Generally, the three 

approaches are capable of folding proteins of up to 94 residues, but are challenged with larger proteins. 

3.5.4 Characterization of folding behavior 

In constant temperature simulations, we observe reversible folding to the native state for a number of 

proteins in our test set in core-days (Figs 3.6 and 3.7). The time scales of folding indicated by these 

trajectories imply that the time scales we employed in the contrastive divergence simulations are far less 

(often a factor of 100 or more) than required to equilibrate these proteins, implying that contrastive 

divergence is optimizing only over fluctuations in or near the native well. 

 

Figure 3.6: Constant temperature simulations. Trajectories are selected by the highest temperatures 
that still produce a significant population for the native state. Note that pivot Monte Carlo moves are 
attempted periodically which has little effect on folded dynamics but greatly decreases correlation time in 
the unfolded state. 
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Figure 3.7: Constant temperature trajectory of ubiquitin. Simulation conducted at T = 1.00, initialized 
from the native structure, with representative structures along the trajectory highlighted. The 2nd and 4th 
structures are chosen for having a high Rg while the last structure is chosen based on minimum RMSD 
(2.3 Å.) after achieving full unfolding. Red and blue colors in lower right panel refer to helical and sheet 
secondary structures. 

Note that conditional on low hydrogen bonding, the radius of gyration (Rg) at high temperature 

and at the peak of the heat capacity are quite similar. This suggests the increase in Rg for the unfolded 

state as temperature increases is driven by a reduction in backbone-backbone hydrogen bonds rather 

than side chain effects. 

Based on these results, two observations should be reconciled. The first observation is the 

presence of a sharp phase transition with a single peak for the heat capacity. The shape of the phase 

transition, but not its amplitude, is consistent with a cooperative folding transition. The second observation 

is the unrealistically large level of residual hydrogen bonding in the denatured state at temperature of the 

maximum in the heat capacity. Although the hydrogen bonding is less than that in the native state, the 

residual hydrogen bonding indicates that the transition is not fully cooperative. These observations may 

be explained by the essential feature of the contrastive divergence process, that it must balance the 

competing energy terms of the model so that no one energy dominates. More extensive training, for 
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example using a more diverse ensembles that contain conformations outside the native well, may remove 

the excess hydrogen bonding. 

The Upside model exhibits concerted melting behavior over a small range of temperatures (Fig 

3.8). While the temperature of the model in Upside is not exactly comparable to a physical temperature, it 

is reasonable to assume T = 1 corresponds roughly to a temperature of 300-310 K. The ubiquitin 

transition occurs over a temperature range of approximately 0.07 temperature units, or approximately a 

20 K range, similar to that observed experimentally [20]. 

 

Figure 3.8: Thermodynamic behavior. The heat capacity is computed using the fluctuation relation 𝐶p =

(var 𝐸)/𝑇2. The self-avoiding random walk 𝑅𝑔 is computing using 𝑅𝑔 = (1.9Å)(𝑁res)0.6 chemically-

denatured proteins [19]. In the upper two panels (A) and (B), the 𝐶p and 𝑅𝑔 values are obtained from 

simulations started from either the native (blue line) or a random unfolded state (red line). In the lower two 
panels (C) and (D), the brown points are from high temperature simulations, while the green points 
(unfolded state) and blue points (folded state) are from simulations at the peak of the heat capacity. The 
simulation units are converted to physical units by assuming that the physical energy unit is 0.6 kcal/mol 
and that T = 1 corresponds to 300 K. 

 Furthermore, our temperature-denatured states have high Rg near the midpoint of the transition, 

consistent with experimental results and inconsistent with many all-atom molecular dynamics folding 
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simulations [4, 21]. At the peak of the heat capacity, the Rg is ∼15% smaller than the predicted from 

experimental data while the Rg at high temperature is ∼10% larger than the experimental value. Both Rg 

values are significantly larger than those in most atomistic molecular dynamics simulations [4]. 

3.6 Discussion 

A major challenge in protein chemistry is to extract from a set of proteins the underlying interaction 

energies that capture the physiochemistry governing their folded structures and dynamics. We addressed 

this challenge by showing that a strong connection exists between properties of the native basin and the 

rest of the protein’s conformational landscape, and this connection is strong enough to train a potential for 

de novo folding simulations. Furthermore, the resulting potential is inexpensive enough to equilibrate 

simulations of small proteins in CPU core-days on a commodity computer. 

Specifically, we have developed a procedure involving extremely short simulations in the native 

energy well, coupled with optimization using contrastive divergence, to parameterize a sophisticated 

coarse-grain model. Underlying the model is a re-evaluation of the common assumption that increased 

detail is the path to greater accuracy. This requirement for detail is mitigated with trajectory-based training 

because less expensive models allow more extensive exploration leading to higher accuracy. We have 

also shown that very large numbers of parameters (even ∼20000 in our case) are no obstacle to 

producing accurate proteins models using trajectory-based training. While over-fitting is always a 

concern, the severity is greatly reduced because contrastive divergence is training against the vast 

possibilities of alternative protein conformations explored by conformational sampling. Additionally, 

contrastive divergence automatically obtains balanced parameters such that no particular interaction 

overwhelms the others. We contend that this balance between parameters is more important than the 

accuracy of any particular term. 

Decoupling representations of protein physics is a key aspect of the Upside model. In particular, 

Upside decouples the representation of the protein used for dynamics, an N–Cα–C backbone model, from 

the representation used for computing energies and forces, a complex representation that includes 

oriented side chain interactions. This combination allows us to build up the sophisticated coordinates 

needed to represent solvent exposure of side chains, geometry of hydrophobic packing, and side chain-

backbone hydrogen bonding without the cost of running dynamical simulation on a complex model with 
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slow equilibrium. The largest improvement comes from applying belief propagation to the side chain 

degrees of freedom so that we represent detailed side chain physics at the χ1/χ2-level without incurring 

the roughening of the energy landscape and slowing of the dynamics normally associated with detailed 

sterics of side chain interactions. It is an open question to determine how much molecular detail must be 

retained for accurate protein energetics, but Upside provides a flexible framework to explore these issues 

without compromising the simple backbone representation of dynamics. 

3.6.1 Related work 

Contrastive divergence optimization has been applied to Gō-like protein potentials sampled with 

crankshaft Monte Carlo moves [22, 23]. These works optimized only tens of parameters, and the resulting 

model is used to fold protein G and 16-residue peptides. 

Other studies have trained protein energy functions using libraries of decoys [24]. Such efforts 

are challenging because atomic energy functions have rugged energy landscapes where even small 

structural differences can produce large energy differences. This ruggedness implies that scoring decoys 

by energy without first relaxing them is problematic for the sharply-defined force fields necessary to 

describe protein physics, a problem that contrastive divergence avoids. 

A distinction between contrastive divergence and traditional training methods, such as Z-score 

optimization [25], relates to the goal and the source of the decoys. In contrastive divergence, the critical 

task is to produce a high population of low RMSD structures with the model. Z-scoring training attempts to 

make the energy of the native state much lower than the average energy of an pre-constructed decoy 

library. This is problematic because the decoys may not have structures that exhibit the pathologies of a 

poorly-trained model. Additionally, we believe optimization should concentrate on the lowest energies that 

have significant Boltzmann probability, not the average energy which is dominated by highly-unlikely 

structures. Furthermore, it is difficult to evaluate the reliable energies of decoys without relaxing the 

decoys. Methods based on simulation ensembles (such as maximum likelihood and contrastive 

divergence) are well-defined and do not need pre-constructed decoy libraries. 

Podtelezhnikov et al. [26] apply contrastive divergence to few-parameter protein models to 

optimize the parameters of hydrogen bond geometry. Their work is similar to this paper but narrower in 

scope. 
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The maximum likelihood method requires the computation of the derivative of the free energy, 

which involves a summation over an equilibrium ensemble. Such a requirement necessitates a very long 

simulation to update parameters. Still, this approach can be viable when used with very small proteins on 

which the simulations converge quickly. A variant of maximum likelihood is given in Ref. [27], where 

decoys are generated and a maximum likelihood model is fit to adjust the parameters to distinguish 

between near-native and far-from-native conformations. The potential is trained on a single protein, 

tryptophan cage, and then the resulting potential is applied to a number of α-helical proteins with some 

success. 

3.6.2 Time and temperature scale 

The precise time scale and temperature scale of the Upside models is intentionally left arbitrary because 

the coarse-graining process may leave us without a linear relationship to physical time and temperature. 

The speed-up of Upside simulation due to the smoothing of side chain interactions is likely to have a 

disproportionate effect on time scales for condensed structures as compared to extended structures. 

Regardless, the equilibrium population distribution that determines the free energy is expected to be 

approximately correct, as well as the order of dynamical folding events. The precise relationship of 

Upside time scales to physical time scales is left to future work. 

3.6.3 Conclusion 

By employing the computationally fast yet detailed Upside model, we can use multiple trajectories to train 

tens of thousands of parameters simultaneously to simulate protein folding and dynamics. The training 

successfully produces low-energy, native or near-native structures with sharp folding transitions for most 

of our validation proteins. The strategy’s success argues that simpler (in atomic representation) models 

that can be globally parameterized can rival more detailed but slower models whose parameterization is 

more challenging. We achieve success for some proteins in terms of accurately folding to low energy 

native state and achieve thermodynamic equilibration, but still fail on others. We hypothesize that the 

short-time contrastive divergence we are using does not provide a sufficient library of large changes in 

the tertiary structure to enable the potential to properly distinguish the various conformations. This issue 

will be addressed in future studies. Coupling large computational resources with Markov state models [28] 
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should improve training of the Upside model by exploring a larger and more diverse conformational 

landscape on each contrastive divergence step. 

The ready generation of Boltzmann ensembles allows for a wide range of computational studies 

of protein folding, dynamics, and binding. For example, computational screening of large numbers of 

proteins for foldability should be tractable as is the study of hydrogen exchange and folding kinetics. 

Additionally, in studies that incorporate experimental or bioinformatics data, including contact predictions, 

Upside provides an inexpensive Bayesian prior distribution over protein structures that may be updated 

using experimental information. This provides accurate predictions that make essential use of the totality 

of protein physics as encoded in the Upside model, while being inexpensive enough to allow validation 

and iteration on large numbers of proteins. 

3.7 Supporting information 

The supporting information for the original paper, “S1 Text. Derivation, model, and optimization details.” 

can be obtained from https://doi.org/10.1371/journal.pcbi.1006578.s001 (PDF). 
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CHAPTER 4 

CONCLUSION 

This thesis has demonstrated Upside’s capability of folding many sub-100 residue proteins to near-native 

structures and how the model is competitive with other physics-based approaches. Upside was 

established on the paradigm that ineffective model parameterization was a more limiting factor for MD 

simulation models compared to the level of force field detail. This view is upheld by the comparable 

folding results to other methods with our CG model using the native state simulation contrastive 

divergence training procedure. However, further improvements to folding performance in subsequent 

work required better training and expansion of energy terms [1, 2] to give a more accurate account of the 

full Boltzmann ensemble. This ability to probe thermodynamics and kinetics sets MD methods, and 

Upside in particular, apart from recent neural network native structure prediction methods, and makes 

Upside a worthwhile model to continue developing. 

 We also found that Upside is comparable to traditional atomistic docking methods after addition of 

inter-protein energy terms and training on a docking benchmark set. We consider this a notable 

achievement for a CG model that is a new entrant to the world of protein docking. The new energy terms, 

including a pairwise sidechain-sidechain term and a multibody sidechain burial term to capture 

desolvation effects, were informed by the greater role of sidechain interactions in protein binding. 

Reconstruction of explicit sidechains with SCWRL4 [3] and rescoring with the atomistic SOAP-PP 

potential [4] only provided a minor boost to our performance, which supports again our view that effective 

parameterization of our CG model outweighs limitations from its level of detail. However, explicit side 

chains are likely necessary for high accuracy predictions, considering how tight packing at the native 

interface helps with its selectivity. 

We further found that allowing for backbone flexibility tends to be detrimental. Prediction of 

native-like poses among the top predicted docking poses decreased for the fully flexible setup of Upside 

compared to a semirigid setup with backbone restraints. Allowing for backbone flexibility appeared to 

make the subunit conformations move further away from their native bound conformations, which was 

confirmed with native state simulations. Through these native state simulations, we observed how our 
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folding performance indicated via subunit RMSDs provided a bound on our docking performance, which 

comes from a joint measure of the IRMSDs and subunit RMSDs. Although our folding performance of 

maintaining 2–5 Å subunit RMSDs for many complexes is commendable, we have greater than 5 Å 

RMSD for many other cases, which precludes the prediction of medium quality complexes. The 

distribution of CAPRI metrics moves to more native-like values for most complexes when subunit 

backbone restraints are applied. In this case, it is satisfying that we can maintain a local minimum near 

the native state. There are still some high IRMSD deviations for complexes that have low interfacial area, 

which highlights deficiencies in our interprotein terms. In a comparison with the CG CABS method [5], 

and all-atom explicit solvent tempered binding method [6], we argued how problems with backbone 

flexibility are general to MD/MC methods where backbone energies are involved in driving the 

conformational search.   

The case of antibody-antigen docking showed that Upside’s backbone flexibility and sampling 

efficiency can be beneficial when inaccuracies in the forcefield are compensated for by sequence-based 

biasing information. Upside with fully flexible CDR loops achieved more native-like top 10 predictions than 

HADDOCK [7] and Upside with semirigid loops for medium difficulty antibody complexes. However, we 

found that internal structures of the CDR loops do not change much from their unbound starting states 

during our simulations. The loops encounter steric hinderance and attractive interactions that lock them 

into a conformation, although there may be overall center of mass shifts and rotations in the reference 

frame of the entire antibody. Simulations of the free antibody allow the CDR loops to sample lower RMSD 

conformations. This points to a conformational selection mechanism for the folding of the CDR loops, 

which highlights the continued utility of MD methods to investigate mechanisms. 

 In the future, we can attempt joint training of the folding and binding components of the Upside 

forcefield in a procedure similar to [1]. In this method, instead of a maximum likelihood approach on 

potential energies, we can optimize on free energies using contrastive divergence by using replica 

exchange of decoy decoys and the native pose. We may also benefit from adding an additional bead to 

the sidechain model. 

 We conclude on a summary of the discussion on the differences between protein folding and 

protein binding and challenges to model them. In Rose’s model of protein folding, backbone hydrogen 
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bonding and sterics impose the major organizational constraints that reduces a myriad of conformations 

to about 10,000 fundamental folds [8]. Larger proteins are constructed as modules of these folds, such 

that complexity grows tractably. The challenge for computer models is representing the perfect balance of 

energy terms and undertaking considerable sampling to find the native structure; imperfections in the 

force field lead to kinetic trapping and misfolded states being more stable than the native state. 

For protein binding, sidechain interactions with other sidechains and solvent dominate. One 

challenge for computer models is in tuning these interactions with a lower margin of error than in folding 

since the backbone interactions cannot help to compensate to the same extent. In terms of sampling, 

 anin’s simple model of precomplex formation indicates about 67,000 poses are required to find the 

native pre-complex of barnase-barstar [9]. For larger complexes, 𝑁decoy ∝ (𝑆𝐴)2 ∝ (𝑀𝑝𝑟𝑜𝑡
0.73 )

2
 [10], which 

can be easily covered by rigid-body docking algorithms that can generate 100,000s of poses in minutes 

with modern parallel computing. However, we have demonstrated how high accuracy binding is limited by 

accuracy of refining subunits to their bound conformations, and in this way protein binding has its own 

challenges in addition to those of protein folding. Although other MD studies have looked at the interplay 

between binding and flexible refinement, such as with HADDOCK and the prediction of H3 loop 

conformations [7], we believe that Upside is ideally situated for a comprehensive analysis because of its 

ground-up design and efficiency for protein folding.  
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