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Abstract

This thesis uses methods from hyperbolic dynamics, Riemannian geometry, and analysis on

metric spaces to obtain new rigidity results for negatively curved Riemannian manifolds.

We prove that closed, negatively curved locally symmetric spaces are locally characterized

up to isometry by the Lyapunov spectra of the periodic orbits of their geodesic flows. This

is done by constructing a new invariant measure for the geodesic flow that we refer to as the

horizontal measure. We show that the Lyapunov spectrum of the horizontal measure alone

suffices to locally characterize these locally symmetric spaces up to isometry.

Our methods extend to give rigidity theorems for smooth flows obtained as perturba-

tions of the geodesic flows of these locally symmetric spaces. The techniques developed in

this paper are focused on the symmetric spaces of nonconstant negative curvature and ex-

tend many methods used to prove rigidity theorems for uniformly quasiconformal Anosov

diffeomorphisms and flows.
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1 Introduction

This thesis is based on the paper [14]. Proofs of some of the propositions in Section 3 3

appeared previously in [13]. Section 4 is based on results from [13].

The primary objective of this thesis is to show how geometric properties of an Anosov flow

may be derived from properties of the Lyapunov spectra of its invariant measures. Our focus

will be on the geodesic flows of negatively curved Riemannian manifolds that are obtained

as perturbations of negatively curved locally symmetric spaces. The connection between

the Lyapunov spectra of invariant measures of the geodesic flow and the geometry of the

manifold itself is mediated through the quasiconformal geometry of the visual boundary

of the universal cover. This connection will feature prominently in our proofs. While we

cover primarily geometric applications in this paper, many of the techniques developed here

are more widely applicable, particularly to the study of the geometry of perturbations of

hyperbolic toral automorphisms.

All Riemannian manifolds we consider in this work are assumed to be closed. Given a

Riemannian manifold Y , we consider the geodesic flow gtY : T 1Y → T 1Y on its unit tangent

bundle T 1Y . Set n = dimY . By applying the multiplicative ergodic theorem [48] to the

derivative cocycle DgtY of the geodesic flow, we may associate to each gtY -invariant ergodic

probability measure ν a list of real numbers

λ1(gtY , ν) ≤ λ2(gtY , ν) ≤ · · · ≤ λ2n−1(gtY , ν),

such that for ν-a.e. unit tangent vector v ∈ T 1Y and every unit vector ξ ∈ TvT 1Y , we have

lim
t→∞

‖DgtY (ξ)‖
t

= λi(g
t
Y , ν),

for some 1 ≤ i ≤ 2n− 1. These are known as the Lyapunov exponents of gtY with respect to

ν; they describe all possible asymptotic exponential growth rates of vectors ξ ∈ TvT 1Y for ν-
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a.e. v ∈ T 1Y . Equivalently, they describe the possible asymptotic exponential growth rates

of Jacobi fields along a randomly chosen geodesic in Y , where this random choice is made

according to the distribution ν. We write ~λ(gtY , ν) for the vector in Rn whose components

are the Lyapunov exponents λi(g
t
Y , ν), written in increasing order. For any choice of ergodic

invariant measure ν we always have λn(gtY , ν) = 0; this corresponds to the fact that gtY acts

isometrically on the direction of its flow. The smooth involution v → −v on T 1Y conjugates

gtY to g−tY and thus we also have λi(g
t
Y , ν) = −λ2n−i(g

t
Y , ν) for 1 ≤ i ≤ 2n− 1.

When X is a negatively curved locally symmetric space, the Lyapunov spectrum does

not depend on the choice of invariant measure ν, i.e., there is a fixed vector ~λ(gtX) ∈ Rn such

that ~λ(gtX , ν) = ~λ(gtX) for all gtX-invariant ergodic probability measures ν. Hence we will

omit the choice of invariant measure when we refer to the Lyapunov spectrum of gtX . The

vector ~λ(gtX) depends only on the isometry type of the universal cover of X; for example, any

negatively curved locally symmetric space with universal cover the real hyperbolic space H3
R

has Lyapunov spectrum (−1,−1, 0, 1, 1), while any locally symmetric space with universal

cover the complex hyperbolic plane H2
C has Lyapunov spectrum (−2,−1,−1, 0, 1, 1, 2), pro-

vided we normalize H2
C to have sectional curvatures −4 ≤ K ≤ −1. The Lyapunov spectra

of negatively curved locally symmetric spaces in general are described in Section 2.1 below.

For our rigidity theorems, we let X be a negatively curved locally symmetric space with

dimX ≥ 3. We consider a neighborhood of X in the space of Riemannian manifolds in the

following sense: let S denote the underlying smooth manifold obtained by forgetting the

Riemannian metric on X. We then think of X as (S, ηX), where ηX is the inner product

on TS defining the Riemannian metric on X. We say that a Riemannian manifold Y is Cr

close to X if Y = (S, ηY ), where the inner product ηY on TS is Cr close to ηX .

Throughout this paper we fix a particular open neighborhood UX of X in the space of

Riemannian manifolds that is described in Section 3.5. The neighborhood UX is C2 open

when X is complex hyperbolic, and C3 open when X is quaternionic or Cayley hyperbolic.

When X is real hyperbolic one may take UX to be the space of all closed Riemannian
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manifolds of strictly 1/4-pinched negative curvature.

We say that Y is homothetic to X if there is a constant c > 0 such that Y is isometric

to (S, c · ηX). For each periodic point p of the geodesic flow gtY we let ν(p) denote the unique

gtY -invariant probability measure supported on the orbit of p. Our theorem below shows

that the Lyapunov spectra of gtY with respect to the invariant measures ν(p), ranging over

all periodic orbits p of gtY , suffices to determine whether Y is homothetic to X.

Theorem 1.1. Let X be a closed negatively curved locally symmetric space with dimX ≥ 3.

Let Y ∈ UX . Then Y is homothetic to X if and only if, for each periodic point p of gtY , there

exists a constant ξ(p) > 0 such that

~λ(gtY , ν
(p)) = ξ(p)~λ(gtX).

Note that we only need to assume a priori that the Lyapunov spectrum of gtY at a given

periodic point p is some multiple ξ(p) of the Lyapunov spectrum of gtX , where ξ(p) is allowed

to depend in an arbitrary fashion on p. As part of the conclusion of the theorem one obtains

that ξ(p) is actually constant in p.

Theorem 1.1 will be deduced as a corollary of Theorem 1.2 below, which characterizes the

locally symmetric space X up to isometry by the Lyapunov spectrum of a single invariant

measure of the geodesic flow. We associate to each Y ∈ UX a certain canonically defined

gtY -invariant ergodic probability measure µY that we refer to as the horizontal measure for

gtY . We give a brief description of the horizontal measure here, using the thermodynamic

formalism. For the formal construction of the horizontal measure see Section 2.1.

Given Y ∈ UX , we will construct a Hölder continuous function

ζY : T 1Y → (−∞, 0),

in a natural way out of the action of DgtY on a certain DgtY -invariant subbundle of T (T 1Y ).

We then solve the Bowen equation P (sζY ) = 0, s > 0, where P (sζY ) denotes the topological
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pressure of the function sζY with respect to the flow gtY . We obtain a unique number QY > 0

such that P (QY ζY ) = 0; we refer to QY as the horizontal dimension of gtY . The horizontal

measure µY is then defined to be the unique equilibrium state of the potential QY ζY . For

the locally symmetric space X itself, ζX is a constant function, QX is easily described in

terms of the Lyapunov spectrum ~λ(gtX), and µX coincides with the Liouville measure mX ,

which is the invariant volume for gtX .

Theorem 1.2. Let X be a closed negatively curved locally symmetric space with dimX ≥ 3.

Let Y ∈ UX . Then Y is isometric to X if and only if

~λ(gtY , µY ) = ~λ(gtX).

The horizontal measure µY is a gtY -invariant measure that is specifically adapted to the

nonconstant negative curvature case; in general it does not coincide with any well-known

previously considered invariant measures, such as the Liouville measure or the measure of

maximal entropy for gtY . One of the objectives of this paper is to show that, for rigidity

problems involving Lyapunov exponents, the horizontal measure is often the natural invariant

measure to consider.

Remark 1.3. Like the Liouville measure and the Bowen-Margulis measure of maximal en-

tropy, for Y, Z ∈ UX the horizontal measure is a homothety invariant in the following sense:

a homothety F : Y → Z gives a derivative map DF : T 1Y → T cZ for some constant c > 0.

Let Π : T cZ → T 1Z denote the natural projection. Then (Π ◦ DF )∗(µY ) = µZ . The hori-

zontal dimension is a homothety invariant as well, i.e., QY = QZ if Y is homothetic to Z.

See Proposition 6.7 below.

The author [13] previously obtained the conclusions of Theorems 2.2 and 1.2 in the

case in which X has constant negative curvature. In that setting one may replace µY in

Theorem 1.2 with an equilibrium state for gtY with respect to any given Hölder potential.

The novelty of Theorems 1.1 and 1.2 is that they treat the case of locally symmetric spaces
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of nonconstant negative curvature, which is significantly more delicate and difficult than the

constant negative curvature case, and which requires many fundamentally new ideas.

Hernandez [34] and independently Yau and Zheng [62] proved that any 1/4-pinched

negatively curved metric on a closed complex hyperbolic manifold is isometric to the standard

symmetric metric. Gromov [24] extended these theorems to obtain 1/4-pinching rigidity

for closed quaternionic hyperbolic manifolds as well. Our final geometric rigidity theorem

addresses possible ways to generalize these rigidity theorems by weakening hypotheses on

curvature pinching to hypotheses on pinching inequalities among the Lyapunov exponents

of the geodesic flow.

Recall that we set n = dimY . We say that the Lyapunov spectrum of gtY with respect

to a gtY -invariant ergodic probability measure ν is 1/2-pinched if there is a constant a > 0

such that

a ≤ |λi(gtY , ν)| ≤ 2a, for 1 ≤ i ≤ 2n− 1, i 6= n,

i.e., excluding the exponent corresponding to the flow direction of gtY , the Lyapunov expo-

nents of gtY are pinched in absolute value between a and 2a.

Curvature pinching estimates on a negatively curved Riemannian manifold Y give rise

to pinching estimates on the Lyapunov exponents of gtY : if the sectional curvatures of Y

satisfy −b2 ≤ K ≤ −a2 for constants b > a > 0, then for any given gtY -invariant ergodic

probability measure ν we have a ≤ |λi(gtY , ν)| ≤ b for all i 6= n. In particular, if Y has

1/4-pinched negative curvature then the Lyapunov spectrum of gtY with respect to any

ergodic invariantmeasure ν is 1/2-pinched. Theorem 1.4 below gives a partial result toward

understanding whether the curvature 1/4-pinching hypothesis in the rigidity theorems of

Hernandez, Yau and Zheng, and Gromov above can be weakened to a 1/2-pinching hypothesis

on the Lyapunov spectrum of a special choice of invariant measure for the geodesic flow.

Recall that, for Y ∈ UX , we denote the horizontal measure for gtY by µY and denote the

horizontal dimension of gtY by QY . Our theorem shows that, under the additional hypothesis

of a lower bound on the horizontal dimension QY , one can obtain a Lyapunov spectrum
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1/2-pinching rigidity theorem for gtY with respect to the measure µY .

Theorem 1.4. Let X be a closed negatively curved locally symmetric space of nonconstant

negative curvature. Let Y ∈ UX . Suppose that QY ≥ QX and that the Lyapunov spectrum of

gtY with respect to µY is 1/2-pinched. Then Y is homothetic to X.

Establishing the lower bound QY ≥ QX under the hypothesis that ~λ(gtY , µY ) = ~λ(gtX) is

a critical step in the proof of Theorem 1.2. This, together with the role of this lower bound

in the hypotheses of Theorem 1.4, prompts the following question.

Question 1.5. Let X be a closed negatively curved locally symmetric space of nonconstant

negative curvature. Let Y ∈ UX . Do we always have QY ≥ QX?

An affirmative answer to this question would give a full generalization of the 1/4-curvature

pinching rigidity theorems for nonconstant negative curvature locally symmetric spaces to

1/2-pinching rigidity theorems for their Lyapunov spectra with respect to their horizontal

measures. It would also lead to a positive answer to a question of Boland and Katok [8] that

is presented in Section 2.2.

Our rigidity results should be viewed in conjuction with other dynamical rigidity results

that characterize negatively curved locally symmetric spaces using dynamical invariants.

Perhaps the most famous of these dynamical invariants is the topological entropy htop(gtY )

of the geodesic flow of Y . For nonpositively curved Riemannian manifolds the topological

entropy measures the exponential growth rate of the volumes of metric balls in the universal

cover. For X a hyperbolic surface of genus g ≥ 2 and Y another negatively curved surface

of the same area and genus, Katok [42] proved that htop(gtY ) ≥ htop(gtX) with equality

if and only if Y has constant negative curvature. The minimal entropy rigidity theorem

of Besson, Courtois, and Gallot [6] gives a remarkable generalization of Katok’s theorem

to higher dimensions: on a negatively curved locally symmetric space X, the topological

entropy among all negatively curved metrics on X of the same volume is uniquely minimized
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at the symmetric metric on X. Hence the symmetric metrics are extremal for topological

entropy, and are actually characterized by the topological entropy of their geodesic flows.

A previous result in the spirit of Theorem 1.2 is Hamenstädt’s hyperbolic rank rigidity

theorem [28]. In our context her theorem is best viewed through the perspective of an exten-

sion due to Connell: if Y is a closed negatively curved Riemannian manifold with sectional

curvatures satisfying K ≤ −a2 for a given a > 0 then Y is isometric to a locally symmetric

space X if and only if the minimal positive Lyapunov exponent of gtY with respect to mY is

a. These hyperbolic rank rigidity theorems have been extended further by Constantine [18]

and Connell, Nguyen, and Spatzier [17]. These theorems all have a fundamentally geometric

character; hypotheses on hyperbolic rank impose very strong restrictions on the geodesic flow

of the manifold, e.g. the existence of proper smooth invariant subbundles for the flow if the

manifold does not have constant negative curvature. In contrast, as we explain in Section

2.2, our theorems extend beyond the geometric setting to cover arbitrary perturbations of

the geodesic flows of negatively curved locally symmetric spaces among smooth flows.

There is a natural question that arises from the statement of Theorem 1.2 and the

methods that are used in its proof. Recall that we let mY denote the Liouville measure

for a Riemannian manifold Y .

Question 1.6. Let X be a closed negatively curved locally symmetric space of nonconstant

negative curvature and let Y ∈ UX . Suppose that ~λ(gtY ,mY ) = ~λ(gtX). Is Y isometric to X?

As remarked above, the author [13] obtained a positive answer to the analogous question

in the case in which X has constant negative curvature. There is a specific technical ob-

struction to obtaining a positive answer to Question 1.6 using the techniques from the proof

of Theorem 1.2; this is discussed in Remark 7.3.

One can also ask whether our theorems hold globally, that is, only under the hypothesis

that Y is a negatively curved manifold quasi-isometric to X, instead of Y being in the open

neighborhood UX of X. Our techniques make strong use of the persistence of certain gtX-

invariant structures to gtY -invariant structures for Y close to X; it’s unclear whether these
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techniques would continue to be effective globally. In particular, it is less clear how to define

the horizontal measure and how to use it effectively when Y is far from X.

2 The dynamical rigidity theorems

2.1 The horizontal measure

Let X be a locally symmetric space of negative curvature. In this section we construct

the horizontal measure µY for Riemannian manifolds Y that are C2 close to X. To do

this we recall some basic concepts in smooth dynamics. We will also need a description

of the dynamics of the geodesic flow on negatively curved symmetric spaces. We take this

opportunity to establish conventions for notation and terminology, as these vary in the

literature. A standard reference for the claims made below about Anosov flows is [44].

Let M be a closed Riemannian manifold and let f t : M →M be a Cr flow on M , r ≥ 1.

We say that f t is an Anosov flow if there is a Df t-invariant splitting TM = Eu ⊕ Ec ⊕ Es

such that Ec is tangent to the flow direction of f t, and there are constants C ≥ 1 and a > 0

such that for every v ∈ Es and t ≥ 0,

‖Df t(v)‖ ≤ e−at‖v‖,

and for every v ∈ Eu and t ≥ 0,

‖Df−t(v)‖ ≤ e−at‖v‖.

In other words, Es is exponentially contracted by f t, and Eu is exponentially contracted by

f−t. For all of the Anosov flows considered in this paper, the distributions Eu and Es will

have the same dimension; we set l = dimEu = dimEs. Each of the distributions Eu, Ec,

Es, Ec ⊕ Eu, and Ec ⊕ Es is uniquely integrable and tangent to a foliation W u, W c, W s,

W cu, and W cs respectively. The geodesic flow gtY of a negatively curved manifold Y is an

8



Anosov flow on T 1Y .

We define two continuous flows f t and gt : M → M to be orbit equivalent if there

is a homeomorphism ϕ : M → M and a continuous map α : R × M → R such that

ϕ(gt(x)) = fα(t,x)(ϕ(x)) for all t ∈ R and x ∈M . We say that ϕ is a conjugacy if α(t, x) ≡ t.

A key fact that we will use about Anosov flows is that they are structurally stable: if f t

is a Cr Anosov flow and gt is a Cr flow that is C1 close to f t, then gt is also an Anosov flow,

and furthermore there is a Hölder continuous orbit equivalence ϕ from f t to gt. The orbit

equivalence ϕ is close to the identity and is unique up to time changes in the flow direction.

The invariant subbundles Eu, Ec, and Es all depend continuously on f t in the C1 topology.

The negatively curved Riemannian symmetric spaces fit into four families: the real hy-

perbolic spaces Hn
R, the complex hyperbolic spaces Hn

C, the quaternionic hyperbolic spaces

Hn
H, and the Cayley hyperbolic plane H2

O. We normalize Hn
R to have sectional curvatures

K ≡ −1, and we normalize the other nonconstant negative curvature hyperbolic spaces

to have sectional curvatures −4 ≤ K ≤ −1. A reference for the discussion below on the

structure of these spaces is [49].

The structure of the unstable manifolds of the geodesic flows of each of these symmetric

spaces is given by a 2-step Carnot group G, where for Hn
R this group is simply Rn−1, and for

Hn
C, Hn

H, and H2
O the groups G are the complex, quaternionic, and octonionic Heisenberg

groups respectively. We recall from [49] that a 2-step Carnot group is a 2-step nilpotent Lie

group G whose Lie algebra g splits as g = h ⊕ v, where [h, h] = g. We will consider G as

equipped with a left-invariant Riemannian metric for which h and v are orthogonal.

In the identification of the unstable manifolds with G, the geodesic flow acts by an

expanding automorphism on G. More precisely, for the left-invariant inner product 〈 , 〉 on

TG, we have

〈DgtX(v), DgtX(w)〉 = et〈v, w, 〉; v, w ∈ h,

and

〈DgtX(v), DgtX(w)〉 = e4t〈v, w, 〉; v, w ∈ v.

9



Hence DgtX expands h by a factor of et and v by a factor of e2t.

Letting K ∈ {R,C,H,O} we have for the K-hyperbolic spaces that dim v = dimR K− 1,

where dimR K is the dimension of the division algebra K as a vector space over R. For a

negatively curved locally symmetric space X we then set

k(X) := dim h = dimX − dimR K

Then for a K-hyperbolic space X the geodesic flow gtX has k(X) positive Lyapunov exponents

of value 1 and has dimR K−1 positive Lyapunov exponents of value 2. Similarly the geodesic

flow has k(X) negative Lyapunov exponents of value -1 and has dimR K−1 negative Lyapunov

exponents of value -2. Lastly we set

h(X) := htop(gtX) = k(X) + 2(dimR K− 1)

The splitting g = h ⊕ v gives rise to a global DgtX-invariant splitting Eu,g = Hu,g ⊕ V u,g,

where, in the G-coordinates, Hu,g and V u,g are the left-invariant distributions tangent to

h and v respectively. This splitting is dominated and therefore persists under C1 small

perturbations of the flow gtX . For the definition and properties of dominated splittings used

below, see Section 3.2.

We conclude from the above that, for a Cr Anosov flow f t : T 1X → T 1X that is C1

close to gtX , there is also a dominated splitting Eu,f = Hu,f ⊕ V u,f that is close to the

corresponding splitting for gtX . The subbundles Hu,f and V u,f are Hölder continuous and

the restriction of V u,f to W cu,f leaves is a Cr−1 subbundle; see Proposition 3.5 below. We

set Bu,f = Eu,f/V u,f , to be the quotient bundle of Eu,f by V u,f . The bundle Bu,f is Hölder

continuous and is Cr−1 along W cu,f leaves as well.

We define a potential function ζf : M → R on x ∈ T 1X by,

ζf (x) = − d

dt

∣∣∣∣
t=0

log Jac
(
Df tx|Bu,fx

)
.
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The potential ζf is Hölder continuous and strictly negative. We show at the beginning of

Section 6.3 that there is a unique number Q(f) > 0 such that the topological pressure of

Q(f)ζf with respect to f t satisfies P (Q(f)ζf ) = 0. The unstable horizontal measure µf for f t

is defined to be the unique equilibrium state for Q(f)ζf . We define Q(f) to be the unstable

horizontal dimension of f t.

Considering X = (S, ηX) and Y = (S, ηY ) as Riemannian manifolds with the same

underlying smooth manifold S and with ηY being C2 close to X, we may consider gtX and

gtY as smooth flows on TS. The codimension-one submanifolds T 1X and T 1Y of TS are C2

close to one another and thus we have a natural smooth diffeomorphism Ψ : T 1X → T 1Y

obtained by projecting T 1X to T 1Y . We then consider f t = Ψ−1 ◦ gtY ◦ Ψ as a smooth

flow on T 1X. The flow f t is C1 close to gtX and so the above discussion applies; letting µf

be the horizontal measure for f t and Q(f) the horizontal dimension, we set µY = Ψ−1
∗ (µf )

and QY = Q(f). Both µY and QY are independent of the choice of diffeomorphism Ψ by

Proposition 6.7.

For the locally symmetric space X we have ζgtX ≡ −k(X), and therefore µX is the measure

of maximal entropy for gtX , which is just the Liouville measure mX . The horizontal dimension

QX is given by the formula QX = h(X)
k(X)

.

Remark 2.1. When we vary f t in the C2 topology, the potential ζf varies continuously in the

β-Hölder topology for a small enough exponent β > 0. The pressure function (s, f)→ P (sζf )

is then jointly continuous in f t in the C2 topology and in s ∈ R [55], [10]. We conclude that

Q(f) and µf vary continuously with f t.

2.2 The dynamical rigidity theorems

Our main dynamical rigidity theorems extend beyond the geometric setting to cover all Cr

small perturbations of the geodesic flow gtX on T 1X, with r = 1 or 2 depending on X.

We say that a continuous map ψ : M → N between two Cr-manifolds M and N is Cr+α

for some r ≥ 0, 0 ≤ α < 1, if ψ is Cr and the rth-order derivatives of ψ are α-Hölder
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continuous. For a Cr Anosov flow f t that is C1-close to gtX , our standard for rigidity in

this section is the existence of an orbit equivalence ϕ : T 1X → T 1X from gtX to f t such

that, for each x ∈ T 1X, the restriction ϕ : W cu,g(x)→ W cu,f (ϕ(x)) is C1+α for some α > 0

independent of x. We will refer to this as the orbit equivalence ϕ being C1+α on center-

unstable leaves. Since f t is C1 close to gtX , an orbit equivalence between these flows always

exists by structural stability. The questions the theorems below address is: under what

conditions can the regularity of this orbit equivalence be improved?

To state our theorems, we first recall the formal definition of the Lyapunov exponents

of an f t-invariant ergodic probability measure ν. For a linear transformation T : V → W

between two l-dimensional inner product vector spaces V and W , we let σ1(T ) ≤ · · · ≤ σl(T )

denote the singular values of T with respect to these inner products, listed in increasing order.

As a consequence of the multiplicative ergodic theorem [48], for each f t-invariant probability

measure ν there are positive constants 0 < λu1(f t, ν) ≤ · · · ≤ λul (f
t, ν) – referred to as the

unstable Lyapunov exponents of f t with respect to ν – such that for each 1 ≤ i ≤ l we have

λui (f
t, ν) = lim

t→∞

log σi(Df
t
x|Eu

x)

t
for ν-a.e. x ∈M.

We write ~λu(f t, ν) for the vector whose components are the unstable Lyapunov exponents

written in increasing order. Likewise we have negative constants 0 > λs1(f t, ν) ≥ · · · ≥

λsl (f
t, ν) – referred to as the stable Lyapunov exponents of f t with respect to ν – such that

for each 1 ≤ i ≤ ls we have

λsi (f
t, ν) = lim

t→∞

log σl−i+1(Df tx|Es
x)

t
for ν-a.e. x ∈M.

We write ~λs(f t, ν) for the vector whose components are the stable Lyapunov exponents

written in decreasing order. We have chosen the differing orders on the stable and unstable

Lyapunov exponents in order for the equation ~λs(f t, ν) = −~λu(f−t, ν) to hold. We note that
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what we called ~λ(gtY , ν) before is described in this notation as the vector

~λ(gtY , ν) = (~λ
s
(gtY ,mY ), 0, ~λu(gtY ,mY )).

where ~λ
s
(gtY ,mY ) denotes the vector ~λs(gtY ,mY ) with its entries written in reverse order.

Below we write VX for a certain Cr open neighborhood of gtX in the space of C3 Anosov

flows on T 1X. This neighborhood is described in Section 3.5. When X is complex hyperbolic

we may take r = 1, and when X is quaternionic or Cayley hyperbolic we may take r = 2.

Note that if two Riemannian manifolds X and Y are Cr close then their geodesic flows are

Cr−1 close, once we smoothly identify T 1X and T 1Y as at the end of Section 2.1.

We first state the counterpart of Theorem 1.1 for flows.

Theorem 2.2. Let X be a closed negatively curved locally symmetric space with dimX ≥ 3.

Let f t ∈ VX . Suppose that, for each periodic point p of f t, there exists a constant ξ(p) > 0

such that

~λu(f t, ν(p)) = ξ(p)~λu(gtX).

Then there is an orbit equivalence ϕ from gtX to f t that is C1+α on center-unstable leaves.

We next state the counterpart of Theorem 1.2 for flows.

Theorem 2.3. Let X be a closed negatively curved locally symmetric space with dimX ≥ 3.

Let f t ∈ VX . Suppose there exists a constant ξ > 0 such that

~λu(f t, µf ) = ξ~λu(gtX).

Then there is an orbit equivalence ϕ from gtX to f t that is C1+α on center-unstable leaves.

Lastly we state the counterpart of Theorem 2.5 for flows. Theorem 2.5 below is motivated

by the following question of Boland and Katok [8].
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Question 2.4. Let X be a closed complex hyperbolic manifold, dimX ≥ 4. Let f t be

a contact Anosov flow that is a C1 small perturbation of gtX . Suppose that λul (f
t, ν) ≤

2λu1(f t, ν), l = dimX − 1, for all f t-invariant ergodic probability measures ν. Is f t smoothly

orbit equivalent to gtX?

Our theorem uses the 1/2-pinching inequality of Question 2.4 for the horizontal measure,

together with a lower bound on the horizontal dimension of f t, to build an orbit equivalence

from f t to gtX that is C1+α on center-unstable leaves.

Theorem 2.5. Let X be a closed negatively curved locally symmetric space of nonconstant

negative curvature. Let l = dimX − 1. Let f t ∈ VX . Suppose that

Q(f) ≥ QX , and λul (f
t, µf ) ≤ 2λu1(f t, µf ).

Then there is an orbit equivalence ϕ from gtX to f t that is C1+α on center-unstable leaves.

Observe that in the theorems above we do not make any assumptions on the specific values

of the Lyapunov exponents of f t. We instead only make assumptions on the structure of

the Lyapunov exponents of the flow. We are only imposing the condition that the Lyapunov

spectrum of f t should have the same multiplicities and ratios between exponents as the flow

gtX . We assume no structure on f t beyond this.

We are able to deal with such general flows f t because our techniques draw on the classi-

fication theorems for uniformly quasiconformal Anosov diffeomorphisms and Anosov flows.

The cumulative results of Kanai [41], Sadovskaya [56], Kalinin and Sadovskaya [38], [37], and

Fang [19], [20] show that all such Anosov diffeomorphisms are linear toral automorphisms

and that all such Anosov flows are smoothly orbit equivalent to the geodesic flow of a real

hyperbolic manifold. The uniform quasiconformality condition – defined at the beginning

of Section 3 – is strong enough on its own to obtain these rigidity theorems without addi-

tional hypotheses. In the proof of Theorem 2.3, we will exploit a limited form of uniform

quasiconformality on a certain proper invariant subbundle for Df t inside of Eu.

14



Remark 2.6. By replacing gtX and f t with g−tX and f−t in the above theorems, one obtains

analogues of these rigidity theorems for the stable Lyapunov exponents of f t, which gives a

similar conclusion that there is an orbit equivalence from gtX to f t that is C1+α on center-

stable leaves. When f t is a contact Anosov flow, the hypotheses of the above dynamical

rigidity theorems hold for the unstable Lyapunov exponents if and only if they hold for

the stable Lyapunov exponents. In this case one can show that f t is actually C1+α orbit

equivalent to gtX .

2.3 The real hyperbolic case

In the case of real hyperbolic manifolds we do not need to use perturbative techniques. This

allows us to obtain global rigidity results in terms of the Lyapunov spectrum for Anosov flows

that are only orbit equivalent to the geodesic flow of some negatively curved Riemannian

manifold. In this case we do not need to use perturbative techniques.

In the hypotheses of Theorem 2.7 we impose two conditions, one on the flow f t and the

other on the f t-invariant ergodic probability measures νu and νs under consideration, which

are defined later in the paper. The 1-bunching condition on f t should be thought of as the

analogue of the strict 1/4-pinching hypothesis for Anosov flows. 1-bunching is defined at the

beginning of Section 3.3. The local product structure condition on the measures νu and νs

should be thought of as both a nontriviality and a regularity hypothesis on the measures,

which requires them to respect the structure of the invariant foliations of f t. Local product

structure for f t-invariant measures is defined at the beginning of Section 3. All equilibrium

states associated to Hölder continuous potentials for a transitive Anosov flow have local

product structure [10], [9].

Theorem 2.7. Let f t be a C∞ Anosov flow which is orbit equivalent to the geodesic flow of a

closed negatively curved manifold of dimension l+1, with l ≥ 2. Suppose that f t is 1-bunched

and that there exist fully supported f t-invariant ergodic probability measures νu and νs for

f t with local product structure such that λu1(f t, νu) = λul (f
t, νu) and λs1(f t, νs) = λsl (f

t, νs).
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Then there exists a closed real hyperbolic manifold X such that f t is C∞ orbit equivalent to

gtX .

Note that we do not assume any relationship between the measures νu and νs. The

hypotheses imply that all positive Lyapunov exponents of νu with respect to f t are equal

and all negative Lyapunov exponents of f t with respect to νs are equal. Although we do

not pursue this direction here, the condition that f t is orbit equivalent to the geodesic flow

of a negatively curved manifold can likely be weakened to the hypothesis that f t is orbit

equivalent to the geodesic flow of a closed Finsler manifold of negative flag curvature or the

geodesic flow of a Riemannian manifold whose geodesic flow is Anosov.

As with the above theorems, we have a theorem that characterizes by periodic orbits as

well. This theorem does not require the bunching condition of Theorem 2.7.

Theorem 2.8. Let f t be a C∞ Anosov flow which is orbit equivalent to the geodesic flow

of a closed negatively curved manifold of dimension l + 1, with l ≥ 2. Suppose that f t is

1-bunched and that for each periodic point p of f t we have

λ∗1(f t, ν(p)) = λ∗l (f
t, ν(p)), ∗ ∈ {s, u}.

Then there exists a closed real hyperbolic manifold X such that f t is C∞ orbit equivalent to

gtX .

We prove Theorems 2.7 and 2.8 at the end of Section 5.1.

3 Uniform quasiconformality and Anosov flows

In this section we recall in detail the setup of our previous work [13], closely following the

presentations of Sections 2 and 4 from that paper. This requires us to introduce linear co-

cycles over Anosov flows and several concepts associated to them, e.g. dominated splittings,
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holonomies, and uniform quasiconformality. We caution that we have made some changes

in notation from our previous paper.

3.1 Holonomies for invariant foliations

Throughout the paper we will use a convention that we also used in [15]: let f t : M →M be

an Anosov flow on a Riemannian manifold M and let W ∗ denote any one of the dynamically

defined invariant foliations for f t. We fix constants R > r > 0 depending only on f t and, for

each x ∈M , we write W ∗
loc(x) for any connected open neighborhood of x inside W ∗(x) that

satisfies B∗(x, r) ⊆ W ∗
loc(x) ⊆ B∗(x,R), where B∗(x, r) is the ball of radius r inside W ∗(x)

of the restriction of the metric d on M to W ∗(x). The constants r, R are chosen such that

all of the neighborhoods W ∗
loc(x) lie inside foliation charts for the foliation W ∗.

Given two nearby transversals T (x) and T (y) to an invariant foliation W ∗ of f t passing

through x and y respectively, for each z ∈ T (x) we define h∗xy(z) to be the unique point in

the intersection W ∗
loc(z)∩T (y). We refer to these as the holonomy maps for the foliation W ∗.

The choice of transversals we are taking will always be clear from context; we will often be

taking local leaves of another invariant foliation as transversals. In this case, for example,

for x ∈M , y ∈ W cs
loc(x) when we write the center-stable holonomy

hcsxy : W u
loc(x)→ W u

loc(y),

this should be understood as saying that the neighborhoods W u
loc(x) and W u

loc(y) have been

chosen such that hcsxy is a homeomorphism onto its image, and such that they satisfy the

hypotheses imposed in the previous paragraph. Similar interpretations should be used for

all other holonomy maps.

We will further choose the local neighborhoods W ∗
loc to be compatible with the local prod-

uct structure of the invariant foliations for f t: for any x ∈M there is an open neighborhood

Ux of x such that, if we consider the transversal W cs
loc(x) to the local unstable leaf W u

loc(x)
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of x, then we have W u
loc(x) × W cs

loc(x) ∼= Ux via the map (y, z) → hcsxz(y), where we are

considering cs-holonomy from W u
loc(x) to W u

loc(z). We also require that we have a similar

homeomorphism W cu
loc(x)×W s

loc(x) ∼= Ux.

We say that a fully supported f t-invariant ergodic probability measure µ has local product

structure if for every x ∈ M there is a neighborhood Ux of x and a uniformly continuous

function ξx : Ux → (0,∞) such that in the holonomy chart Ux ∼= W u
loc(x) × W cs

loc(x) the

measure µ splits as a product

µ = ξx · (µx × µ′x),

of conditional measures µx and µ′x on W u
loc(x) and W cs

loc(x) respectively. We also require

that the analogous statement is true when we consider the product splitting Ux ∼= W cu
loc(x)×

W s
loc(x) instead. We require the functions ξx to also be uniformly continuous in the vari-

able x ∈ M . Equilibrium states of Hölder continuous potentials always have local product

structure [10].

3.2 Dominated splittings

Let M be a compact metric space. We define an l-dimensional vector bundle π : E →M over

M to be α-Hölder continuous if there is an open cover of M by open sets Ui admitting linear

trivializations Ti : π−1(Ui) → Ui × Rl such that the transition maps Ti ◦ T−1
j are α-Hölder

continuous with respect to the Riemannian metric on M and the Euclidean metric on Rl. We

equip E with an α-Hölder continuous inner product 〈 , 〉 coming from these trivializations

which gives rise to a norm ‖ · ‖.

Let f t : M → M be an α-Hölder continuous flow. We define an α-Hölder linear cocycle

on E over f t to be an α-Hölder flow At : E → E , such that f t ◦ π = π ◦At, and such that for

each x ∈ M and t ∈ R the map Atx : Ex → Ef t(x) is a linear isomorphism. Observe that the

linear maps Atx satisfy the cocycle condition: for every s, t ∈ R and x ∈M ,

At+sx = Asf tx ◦ Atx
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When dim E = 1 we refer to ψt := At as a multiplicative cocycle. When we consider multi-

plicative cocycles in this paper we will always consider the case where E is trivial and ψt is

positive, so that we obtain a map ψt : M → (0,∞) for each t ∈ R which satisfies the cocycle

condition above. We define a continuous map (t, x) → τ(t, x) for t ∈ R, x ∈ M to be an

additive cocycle over f t if it satisfies the additive cocycle identity,

τ(t+ s, x) = τ(s, f t(x)) + τ(t, x).

Additive cocycles correspond to multiplicative cocycles through exponentiation τ → exp(τ).

A dominated splitting of index k for the linear cocycle At over f t is an At-invariant

splitting E = H ⊕ V of E into two continuous subbundles H and V , with dimH = k, such

that there are constants C ≥ 1, χ > 0 for which we have for all x ∈M and t ≥ 0,

σk(A
t
x|Hx)

σ1(Atx|Vx)
≤ Ce−χt,

where we recall that σi denotes the ith singular value of a linear transformation between

two normed vector spaces, listed in increasing order. Here we equip H and V with the norm

induced from our norm on E . The domination condition implies that there is a uniform

exponential gap between the largest singular value of At on H and the smallest singular

value of At on V . The subbundles of a dominated splitting for an α-Hölder linear cocycle At

are always uniformly β-Hölder continuous for some exponent β that only depends on α and

the exponential expansion rates of At on H and V respectively. In particular the restrictions

At|H and At|V are both Hölder continuous linear cocycles as well.

Remark 3.1. It is always possible to choose a new continuous Riemannian metric on E such

that the domination estimate for the splitting E = H ⊕ V above holds for all t ≥ 0 with

constant C = 1 and the same exponent χ [23]. In particular this holds for the trivial splitting

E , for which we conclude that if we have bounds for x ∈ M , t ≥ 0, a ≤ b ∈ R, and some
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constant C ≥ 1,

C−1eat ≤ σ1(Atx) ≤ σl(A
t
x) ≤ Cebt,

then a new Riemannian metric on E can be chosen such that these bounds hold with the

same exponents a and b but with constant C = 1. We will require this fact at a few points

in the paper.

Dominated splittings are stable under C0-small perturbations of the linear cocycle At

[58]. Thus if Bt is a linear cocycle which is C0-close to At and At admits a dominated

splitting E = H ⊕ V of index k then Bt also admits a dominated splitting E = H ′ ⊕ V ′ of

index k with H ′ and V ′ uniformly close to H and V respectively.

We define a linear cocycle At to be uniformly quasiconformal if there is a constant C ≥ 1

such that for all x ∈M and t ∈ R we have

C−1 ≤ σ1(Atx)

σl(Atx)
≤ C,

where we recall that l = dim E . We say that At is conformal if this holds with C = 1. Note

that the uniform quasiconformality condition is trivial if l = 1 but highly nontrivial if l ≥ 2.

We will see in Sections 5.1 and 5.2 below that one can often derive uniform quasiconformality

of a cocycle At from information about the Lyapunov exponents of At, with respect to those

f t-invariant ergodic probability measures which carry a certain amount of structure. Lastly,

by Remark 3.1, given a uniformly quasiconformal linearly cocycle At it is always possible to

choose a Riemannian metric on E for which At is conformal in that metric.

3.3 Holonomies for linear cocycles

We now assume that At is an α-Hölder linear cocycle on an α-Hölder l-dimensional vector

bundle E over an Anosov flow f t on a closed Riemannian manifold M . The standard example

one should keep in mind in this section is the restriction of the derivative cocycle Df t to a

Df t-invariant α-Hölder continuous subbundle of TM .
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We say that At is fiber bunched if there is some constant C ≥ 1 such that for all x ∈ M

and t ≥ 0 we have,

σl(A
t
x)

σ1(Atx)
< C min{σl(Df tx|Es), σ1(Df tx|Eu)−1}−α. (1)

Fiber bunching is a technical condition which guarantees the existence of At-equivariant

identifications of the fibers of E along stable and unstable manifolds of f t which we refer

to as holonomies. These identifications are essential for our work in this paper. If At is

uniformly quasiconformal then it is fiber bunched. Fiber bunching should be thought of as

a bound – in terms of the hyperbolicity of the base system – on the defect of At from being

uniformly quasiconformal.

Sometimes it will be necessary to specify the choice of exponent in the fiber bunching

inequality (1). We define At to be fiber bunched with exponent α if At is an α-Hölder

continuous linear cocycle which satisfies the inequality (1), with exponent α on the right-

hand side. This is stronger than the fiber bunching condition alone: if At is β-Hölder

continuous for some β > α then it can be fiber bunched – meaning it satisfies (1) with

exponent β – without being fiber bunched with exponent α.

We next define unstable holonomies for At. The definition and basic properties of these

maps are given in Proposition 3.2 below; we refer to [39] for the proof of this proposition

and additional discussion. As a consequence of α-Hölder continuity of the vector bundle E ,

there is an open neighborhood O of the diagonal {(x, x) : x ∈M} in M ×M such that, for

each (x, y) ∈ O, there is a linear isomorphism Ixy : Ex → Ey for which Ixy depends uniformly

α-Hölder continuously on the points (x, y) ∈ O. We state Hölder continuity properties of

the unstable holonomies Luxy below through comparison to the identifications Ixy.

Proposition 3.2. Let At be an α-Hölder linear cocycle over an Anosov flow f t and suppose

that At is fiber bunched. Then for each x ∈ M , y ∈ W u
loc(x) there is a linear isomorphism

Luxy : Ex → Ey with the following properties,
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1. Luxx = Id and Luyz ◦ Luxy = Luxz;

2. Luxy = (Aty)
−1 ◦ Luf txf ty ◦ Atx for every t ∈ R.

3. There is a constant C ≥ 1 such that ‖Luxy − Ixy‖ ≤ Cd(x, y)α for all y ∈ W u
loc(x).

Furthermore the family of linear maps Lu satisfying the above properties is unique.

Note that from the third property and the Hölder continuity of the identifications Ixy we

obtain that the maps Luxy are jointly α-Hölder in x and y.

In the proof of Proposition 3.8 below, we will need a more explicit statement of the

uniqueness of u-holonomies. The following may be extracted from the proofs of [39] (or

alternatively derived from the statements of Proposition 3.2 above),

Proposition 3.3. Let At be an α-Hölder linear cocycle over an Anosov flow f t. Suppose

that At is β-fiber bunched for some β ≤ α. Let x ∈ M , y ∈ W u
loc(x) be given. Let tn → ∞

be a sequence of real numbers and let Jn be a sequence of linear maps Jn : Ef−tnx → Ef−tny

satisfying

‖Jn − If−tnxf−tny‖ ≤ Cd(f−tnx, f−tny)β,

for some constant C ≥ 1. Then Df tnf−tny ◦ Jn ◦Df
−tn
x → Luxy as tn →∞.

We refer to the family of maps Lu as the unstable holonomies for At. Likewise, by con-

sidering the cocycle A−t over f−t and applying Proposition 3.2, we obtain an At-equivariant

family of linear isomorphisms Lsxy : Ex → Ey for y ∈ W s
loc(x) which we refer to as the stable

holonomies of At. We also define center holonomies for At along the flow direction of f t: if

x ∈ M and y = f sx ∈ W c
loc(x) then we set Lcxy := As(x). When x ∈ M and y ∈ W cs

loc(x) we

define center-stable holonomies Lcsxy of At by

Lcsxy = Lchsxy(x)y ◦ Lsxhsxy(x) = Lshcxy(x)y ◦ Lcxhcxy(x).

In the second expression we are considering stable holonomy hs : W c
loc(x) → W c

loc(y) and in

the third expression we are considering center holonomy hc : W s
loc(x)→ W s

loc(y). The maps
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Lc and Ls commute by the At-equivariance properties of the stable holonomies. For x ∈M

and y ∈ W cu
loc(x) we define the center-unstable holonomies Lcuxy similarly, replacing Ls by Lu

in the above. As a shorthand we will often refer to unstable holonomies as u-holonomies,

center-stable holonomies as cs-holonomies, etc.

Lastly we state a proposition that we will use in Section 7 to upgrade measurable con-

jugacies between linear cocycles to Hölder continuous conjugacies. We let f t : M → M be

a volume-preserving C2 transitive Anosov flow on a closed Riemannian manifold M , and let

E be an α-Hölder vector bundle over M . We write m for the invariant volume for f t. Given

two α-Hölder linear cocycles At and Bt over f t, we say that a fiber-preserving continuous

map Φ : E → E is an α-Hölder conjugacy if Φ : Ex → Ex is a linear isomorphism for each

x ∈ M , and Φ ◦ At = Bt ◦ Φ for every t ∈ R. We say that Φ is a measurable conjugacy

between At and Bt if instead Φ is only defined m-a.e. , and the equation Φ ◦ At = Bt ◦ Φ

only holds m-a.e for each t ∈ R. We assume that both At and Bt are fiber bunched; we write

L∗,A and L∗,B for the holonomies of At and Bt respectively.

Proposition 3.4. Let At, Bt : E → E be uniformly quasiconformal α-Hölder linear cocycles

over f t. Suppose that there is a measurable conjugacy Φ between At and Bt. Then Φ coincides

m-a.e. with an α-Hölder conjugacy Φ̃ between At and Bt such that for x ∈M , y ∈ W ∗
loc(x),

∗ ∈ {u, c, s, cu, cs},

Φ̃y ◦ L∗,Axy = L∗,Bxy ◦ Φ̃x.

Proof. First suppose that the foliations W u and W s for f t are jointly integrable. Then f t

is a special flow constructed over an Anosov diffeomorphism [53]. This easily reduces to the

case in which A and B are instead cocycles over an Anosov diffeomorphism, for which the

above proposition was proved by Sadovskaya in [57].

More precisely, there is some τ > 0 such that we have M = N × [0, τ ]/(x, τ) ∼ (F (x), 0)

for a closed Riemannian manifold N , where F : N → N is a C2 volume-preserving Anosov

diffeomorphism. We consider Aτ and Bτ as uniformly quasiconformal linear cocycles over
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F and apply [57, Theorem 2.7] to obtain that Φ|N×{0} coincides m-a.e. with an α-Hölder

continuous (on N) function Φ̃, for which we have for x ∈ N , y ∈ W ∗
loc(x), ∗ ∈ {u, s}, that

Φ̃y ◦ L∗,Axy = L∗,Bxy ◦ Φ̃x. We then extend Φ̃ to M = N × [0, τ ]/ ∼ by setting, for x ∈ N ,

s ∈ R, Φ̃(x,s) = Asx ◦ Φ(x,0) ◦ (Asx)
−1. It’s then easy to check that Φ̃ is well-defined, α-

Hölder continuous, and equivariant with respect to all holonomies, so we obtain the desired

conclusion.

Now consider the case where the invariant foliations W u and W s for f t are not jointly

integrable. Then, for each s ∈ R\{0}, the map f s is a volume-preserving C2 center-bunched

accessible partially hyperbolic diffeomorphism [12]. Consequently, by recent work of Kalinin

and Sadovskaya [40], for each s 6= 0 the measurable conjugacy Φ coincides m-a.e. with a

continuous conjugacy Φ̃s : E → E such that for x ∈ M , y ∈ W ∗
loc(x), ∗ ∈ {u, s} we have

Φ̃s
y ◦L∗,Axy = L∗,Bxy ◦ Φ̃s

x. Since the conjugacies Φ̃s all coincide m-a.e. with Φ, we conclude that

Φ̃s = Φ̃1 := Φ̃ for all s 6= 0. Consequently Φ̃ is equivariant under c-holonomy as well as s-

and u-holonomy since Φ̃ ◦At = Bt ◦ Φ̃ for all t ∈ R. Since the holonomies L∗,A and L∗,B for

At and Bt are all locally uniformly α-Hölder, we conclude from the equivariance of Φ̃ with

respect to these holonomies that Φ̃ is an α-Hölder conjugacy from At to Bt.

3.4 Anosov flows with dominated splittings

Let f t : M → M be a Cr Anosov flow, r ≥ 2. We say that f t has a u-splitting of index

k if there is a dominated splitting Eu = Hu ⊕ V u for the linear cocycle Df t|Eu, such that

dimHu = k. Here Hu denotes the directions of weaker expansion for Df t, and V u denotes

the directions of stronger expansion in the splitting. We will sometimes refer to Hu as the

horizontal bundle and V u as the vertical bundle. We do not preclude the possibility that the

splitting is trivial; in this case our convention will always be that Hu = Eu and V u = {0}.

In particular we will take Hu = Eu in the proofs of Theorems 2.7 and 2.8. We define

an s-splitting Es = Hs ⊕ V s of index k similarly, with V s being the direction of stronger

contraction under Df t in the splitting.
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Implicit in all of the statements of regularity results below is that the regularity is uniform.

For example, when we say that the leaves of a foliation W ∗ are Cr, we mean that the leaves

are r-times differentiable with uniformly continuous derivatives of order r.

We have the following proposition which guarantees the existence of a foliation tangent

to V u,

Proposition 3.5. Suppose that dimV u ≥ 1. Then the subbundle V u is uniquely integrable.

The foliation W uu tangent to V u is Hölder continuous with Cr leaves. The subbundle V u is

Cr−1 when restricted to W u leaves and thus the foliation W uu gives a Cr subfoliation of each

W u leaf of f .

Proof. We take F := f 1 to be the time one map of f t, Eu,F = V u, Ec,F = Hu ⊕ Ec,

and Es,F = Es. Then F is a Cr partially hyperbolic diffeomorphism of M with V u as its

unstable bundle. From standard results on partially hyperbolic diffeomorphisms, the bundle

Eu,F is uniquely integrable and tangent to a Hölder continuous foliation W u,F with Cr leaves.

Furthermore, since there is a foliation W cu,F = W cu with Cr leaves tangent to Eu,F ⊕ Ec,F

given by the center-unstable foliation for f , we obtain that the unstable foliation of F is a

Cr subfoliation of the center-unstable leaves W cu,F of F , again from standard results. We

refer to [35] for the proofs of these claims.

Since the bundle V u is f t-invariant, the foliation W uu := W u,F is f t-invariant. The

desired conclusions of the proposition then follow from the claims of the previous paragraph.

Since W uu subfoliates W u(x) for each x ∈ M , we may define a quotient space Qu(x) by

the following equivalence relation: y ∼ z if and only if z ∈ W uu(y), for y, z ∈ W u(x). We

establish below that this quotient space is a Cr manifold diffeomorphic to Rk.

Proposition 3.6. For each x ∈ M , there is a proper Cr embedding ιx : Rk → W u(x) with

ιx(0) = p such that ιx(Rk) meets each W uu leaf inside of W u(x) in exactly one point.
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Proof. Let F = f 1 and consider this as a partially hyperbolic map as in Proposition 3.5 with

Eu,F = V u and Ec,F = Hu ⊕ Ec. The theory of partially hyperbolic diffeomorphisms then

tells us that there is some R > 0 such that on any ball of radius R in M , the foliation tangent

to Eu,F = V u is trivial [35]. Furthermore, since there is a foliation tangent to Eu,F ⊕ Ec,F ,

and the unstable foliation W u,F tangent to Eu,F always Cr subfoliates W cu,F , we can choose

this trivialization to be Cr along W u leaves. Choose a sequence of times tn →∞ such that

f−tn(x)→ x in M . For each n ∈ N, let Dn,R be the disk of radius R centered at f−tn(x) in

W u(f−tn(x)).

By shrinking R if necessary, we can assume that f−t is a contracting map on Dn,R for

each n in the induced Riemannian metric on W u, which implies that f tn−ts(Dn,R) ⊂ Ds,R

for s > n. For each n, choose a compact transversal submanifold Kn ⊂ Dn,R to the W uu

foliation which contains f−tn(p) and is tangent to Hu
f−tn (x) at f−tn(x). Kn meets each leaf

of the induced foliation of Dn,R by W uu in exactly one point.

Consider the collection of k-dimensional submanifolds f tn(Kn) of W u(x). We make three

claims. First we claim that if a W uu leaf intersects f tn(Kn), then it intersects f ts(Ks) for

any s > n. Second, we claim that each W uu leaf meets each submanifold f tn(Kn) in at most

one point. Lastly, we claim that for each W uu leaf in W u(x), there is an n ∈ N such that

f tn(Kn) intersects this leaf.

For the first claim, if s > n, then f−ts(f tn(Kn)) ⊂ Ds,R by construction. Since Ks is a

full transversal inside of Ds,R, any W uu leaf intersecting f−ts(f tn(Kn)) also intersects Ks.

By f t-invariance of the W uu foliation, any W uu leaf intersecting f tn(Kn) thus also intersects

f ts(Ks).

For the second claim, suppose that W uu(y) intersects f tn(Kn) in the points y and y′, for

y 6= y′. W u(x) is exponentially contracted under f−t, so for large enough s, there will be

a curve contained entirely in f−ts(W uu(y)) ∩ Ds,R which joins f−ts(y) to f−ts(y′). On the

other hand, since the splitting Eu = V u ⊕Hu is dominated, as s → ∞, the tangent spaces

to f tn−ts(Kn) are uniformly asymptotic to the sequence of planes Hu
f ts (p). Thus for large
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enough s, f tn−ts(Kn) will be a small disk that is almost parallel to Hu
f ts (p); in particular it

will meet each leaf of W uu ∩Ds,R in at most one point. But this contradicts the existence of

the segment joining f−ts(y) to f−ts(y′) inside of f−ts(W uu(y)) ∩Ds,R.

For the last claim, recall that W u(x) is defined as the set of points in M asymptotic to

the orbit of x under f−t. Since f−tn(x) → x, it follows that for any y ∈ W u(x), there is

some n > 0 such that f−tn(y) ∈ Dn,R; the last claim follows.

Having proven those three claims, we now construct the desired embedding inductively.

Set U1 := f t1(K1). To construct Un from Un−1, take the submanifold f tn(Kn) of W u(x) and

use the smoothness of the W uu foliation of W u to map f tn(Kn) smoothly onto a submanifold

of W u(x) which contains y ∈ Un−1 for each y such that W uu(y)∩f tn(Kn) is nonempty. By the

first claim Un ⊂ Us for s ≥ n. By the second and third claim, the submanifold U :=
⋃∞
n=1 Un

meets each W uu leaf in exactly one point. Properness of the embedding follows from the

fact that the W uu foliation is locally trivial and that U meets each W uu leaf in only one

point.

Since the foliation W uu is f t-invariant, for each t ∈ R the map f t descends to a Cr

diffeomorphism f̄ t : Qu(x) → Qu(f t(x)) . When V u = {0}, we set Qu(x) := W u(x) in our

arguments. We let π : W u(x) → Qu(x) denote the projection for each x ∈ M . Note that

the projection map π is Cr-smooth, uniformly as we vary x.

We define Bu = Eu/V u to be the quotient of Eu by the subbundle V u. Note that Bu is a

Hölder continuous vector bundle over M which is Cr−1 when restricted to any W u leaf. The

derivative of the projection map gives a linear isomorphism Dπx : Bux → TxQu(x) for each

x ∈M .

In order to proceed further, we need to impose additional hypotheses on the Anosov

flow f t as well as the linear cocycle Df t|Hu. For β > 0 we say that an Anosov flow f t is

β-u-bunched if there is a constant C ≥ 1 such that for all x ∈M and t ≥ 0,

σl(Df
t|Eu

x)

σ1(Df t|Eu
x)
< C min{σl(Df tx|Es), σ1(Df tx|Eu)−1}−β.
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and we say that f t is β-s-bunched if f−t is β-u-bunched. We say that f t is β-bunched if it

is both β-u-bunched and β-s-bunched. Note that the β-u-bunching condition is equivalent

to requiring that the linear cocycle Df t|Eu over f t be fiber bunched.

When f t is β-u-bunched, the center-unstable foliation W cu is β-Hölder continuous and

likewise, when f t is β-s-bunched, the center-stable foliation W cs is β-Hölder continuous.

When β ≥ 1 the bunching conditions imply that the corresponding foliations are C1+δ

foliations for δ = β − 1 [31]. Furthermore in the case β = 1 one actually obtains that the

foliations are C1+ε for some small ε > 0.

In what follows the β-bunching conditions will not be used explicitly. We will only use the

regularity of the foliations W cu and W cs, which one obtains as a consequence of the bunching

inequalities. The reason we state the bunching inequalities here is that these inequalities are

essentially the only way one can prove regularity of the foliations W cu and W cs in general.

In fact, in many settings these inequalities predict the optimal regularity of these bundles

[32].

For the rest of this section, given a u-splitting Eu = Hu⊕V u for f t we will always assume

that Df t|Hu is fiber bunched as a linear cocycle. We then have holonomy maps L∗ for the

linear cocycle Df t|Hu. The key proposition regarding these holonomy maps, the u-splitting

of f t, and the fiber bunching conditions is that if Df t|Hu is fiber bunched with a small

enough exponent then we can still have differentiability of the center-stable holonomy maps

when restricted to the horizontal bundle Hu. This is despite the fact that the holonomies of

the foliation W cs may not necessarily be C1 under our hypotheses.

Proposition 3.7. Let Eu = Hu ⊕ V u be a u-splitting of f t. Suppose that Eu is α-Hölder

continuous and that Df t|Hu is fiber bunched with exponent α. Then for each x ∈ M ,

y ∈ W cs
loc(x) the local cs-holonomy map hcsxy : W u

loc(x) → W u
loc(y) is differentiable along Hu.

For z ∈ W u
loc(x) and w = hcsxy(z) the derivative is given by

Dzh
cs
xy|Hu = Lcszw : Hu

z → Hu
w.
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In particular, hcsxy maps C1 curves tangent to Hu to C1 curves tangent to Hu.

Proof. Set d = dimM −1. Let x, y be two points in M such that x ∈ W cs
loc(y). Set xn = fnx

and yn = fny. For each n ≥ 0, choose a hypersurface Sn of uniform size and biLipschitz

to an open subset of Rd with Lipschitz constants independent of n that is transverse to

the direction of the flow Ec, and contains W u
loc(xn) and W u

loc(yn). Let gn : Sn−1 → Sn be

the smooth map defined by gn(z) = f t(z)(z) for z ∈ Sn−1, where t(z) is the unique time,

smoothly depending on z, with t(xn−1) = 1 and such that f t(z)(z) ∈ Sn. gn is defined on a

neighborhood of xn−1 of uniform size, independent of n. Further, gn is uniformly hyperbolic

on the interior of this neighborhood with the same contraction and expansion estimates

(up to multiplicative constants) as f 1 on the stable and unstable bundles Eu and Es. Set

F n = gn ◦ gn−1 ◦ · · · ◦ g1. Note that F n is defined on increasingly small neighborhoods of

x as n → ∞; the only points for which F n is defined for all n ≥ 1 are the points on the

intersection of W cs
r (x) with S := S0.

Let β be the minimum of the Hölder exponents of Hu and Eu viewed as subbundles of

TM . As remarked in earlier in this section, there is a β-Hölder system of linear identifications

Ipq : Eu
p → Eu

q defined for p near q with Ipp being the identity on Eu
p . We can choose

these identifications so that Ipq(H
u
p ) = Hu

q . For each n, let An : W u
r (xn) → W u

r (yn) be a

diffeomorphism with An(xn) = yn. Since the unstable foliation is Hölder continuous in the

C1 topology with Hölder exponent β, we can choose An such that

‖Iqp ◦DAn − Id‖ ≤ Cd(p, q)β

‖DAn ◦ Ipq − Id‖ ≤ Cd(p, q)β

for some constant C > 0 and p ∈ W u
r (xn), q ∈ W u

r (yn). For z ∈ Sn, let Ŵ s(z) denote the

smooth projection of W s
r (z) onto Sn along the orbit foliation Ec, given by using gt to flow

these leaves onto Sn. Let Ĥu, Êu, and Ês denote the projection of these subbundles onto

TSn by flowing along the orbit foliation.
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Let ϕ be the holonomy map between W u
r (x) and W u

r (y) induced by the projected stable

foliation Ŵ s. Let ϕn = F−n ◦ An ◦ F n, which is defined on a neighborhood of x (dependent

on n) inside of W u
r (x). Let γ : [−1, 1] be a C1 curve tangent to Hu inside of W u

r (x) with

γ(0) = x. Our first goal is to prove that ϕ ◦ γ is differentiable at 0, i.e., that the image of

the curve γ under Ŵ s-holonomy along the transversal S is differentiable at p.

We first claim that the sequence of linear maps

{
(DF−ny ◦DAn ◦DF n

x )|Hu
x : n ∈ N

}
is Cauchy (note that we have restricted the domain of these maps to Hu

x ). We closely follow

the proof of Proposition 3.2 given in [39]. We begin with the formula

(DF n
y )−1 ◦DAn ◦DF n

x = DA0 +
n−1∑
i=0

(DF i
y)
−1 ◦Ri ◦DF i

x

where Ri = (Dyigi+1)−1◦DAi+1◦Dxigi+1−DAi. For the rest of the proof we will consider all

linear maps as restricted to Êu for the purpose of calculating norms. We want to estimate

the product

‖(DF n
y )−1‖ · ‖DF n

x |Ĥu‖ ≤
n−1∏
i=0

‖(Dyigi)
−1‖ · ‖Dxigi|Ĥu‖

=

(
n−1∏
i=0

‖(Dyigi)
−1‖ · ‖(Dxigi)

−1|Ĥu‖−1

)

·

(
n−1∏
i=0

‖(Dxigi)
−1|Ĥu‖ · ‖Dxigi|Ĥu‖

)

To bound the first factor, we observe that ‖(Dxigi)
−1|Ĥu‖ = ‖(Dxigi)

−1‖ since Ĥu is the less
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expanded term of the dominated splitting Êu = V̂ u ⊕ Ĥu. We then use the estimate

‖(Dyigi)
−1‖

‖(Dxigi)
−1‖
≤
‖(Dyigi)

−1 − Ixiyi ◦ (Dxigi)
−1 ◦ I−1

xi+1yi+1
‖

‖(Dxigi)
−1‖

+
‖Ixiyi ◦ (Dxigi)

−1 ◦ I−1
xi+1yi+1

‖
‖(Dxigi)

−1‖

≤ C ′d(xi, yi)
β + 1

for some constant C ′. Here we use the fact that ‖Ipq‖ is uniformly bounded when p and q

are close (say d(p, q) ≤ r), and that the derivative Dpfi is smooth as a function of p, hence

when we use the identifications Ipq, it becomes Hölder with Hölder exponent β.

To bound the second factor, we note that Dgi|Ĥu is fiber bunched since the cocycle

Df t|Hu we derived it from was fiber bunched. Hence there is a constant δ < 1 such that

‖(Dpgi)
−1|Ĥu‖ · ‖Dpgi|Ĥu‖ ≤ ‖Dpgi|Ês‖−βδ

for all p ∈ Si, where δ is independent of i.

Putting these two bounds together, we obtain

‖(DF n
y )−1‖ · ‖DF n

x |Ĥu‖ ≤
n−1∏
i=0

(C ′d(xi, yi)
β + 1)

n−1∏
i=0

δ‖Dxifi|Ês‖−β

The first product is uniformly bounded since d(xi, yi) → 0 exponentially in i, so we get a

constant C ′′ such that

‖(DF n
y )−1‖ · ‖DF n

x |Ĥu‖ ≤ C ′′δn
n−1∏
i=0

‖Dxigi|Ês‖−β
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Now we can also estimate

‖Ri‖ ≤ ‖(Dyigi+1)−1 ◦DAi+1‖ · ‖Dxigi+1 −DA−1
i+1 ◦Dyigi+1 ◦DAi‖

≤ Cd(xi, yi)
β

≤ Cd(x, y)β
n−1∏
i=0

‖Dxigi|Ês‖β

for some constant C. In the first inequality we used the Hölder closeness of DAi to the

identity, together with uniform bounds on the norms of all of the linear maps involved. In

the second inequality we use the fact that x and y lie on the same stable manifold in S. We

have the basic bound

‖(DF n
y )−1 ◦DAn ◦DF n

x −DA0|Ĥu‖ ≤
n−1∑
i=0

‖(DF i
y)
−1 ◦Ri ◦DF i

x|Ĥu‖

≤
n−1∑
i=0

‖(DF i
y)
−1‖ · ‖DF i

x|Ĥu‖ · ‖Ri‖

We replace the right side with the previously obtained bounds on the factors ‖(DF i
y)
−1‖ ·

‖DF i
x|Ĥu‖ and ‖Ri‖. This gives an upper bound of

n−1∑
i=0

(
C ′′δi

i−1∏
j=0

‖Dxigi|Ês‖−β · Cd(x, y)β
i−1∏
j=0

‖Dxigi|Ês‖β
)
≤ C∗d(x, y)β

for some constant C∗. Also note that

‖(DF n+1
y )−1 ◦DAn+1 ◦DF n+1

x − (DF n
y )−1 ◦DAn ◦DF n

x |Ĥu‖

= ‖(DF n
y )−1 ◦Rn ◦DF n

x |Ĥu‖

≤ C∗δnd(x, y)β
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This second inequality immediately implies that the sequence of linear maps

{
(DF n

y )−1 ◦DAn ◦DF n
x |Hu

x : n ∈ N
}

is Cauchy. Hence this sequence converges to a linear map Txy : Ĥu
x → Êu

y . However, for any

given vector v ∈ Ĥu
x , DAn ◦ DF n

x (v) is a vector which makes an angle θn with Ĥu
y , where

θn is uniformly bounded away from π/2, independent of n. Applying DF−ny exponentially

contracts this angle since the splitting Êu = V̂ u ⊕ Ĥu is dominated, so letting n → ∞, we

conclude that Txy must have image in Ĥu
y .

For each j ≥ 0, we can also consider the sequence of linear maps

{
(DF n+j

y ◦ (DF j
y )−1)−1 ◦DAn+j ◦DF n+j

x ◦ (DF j
x)−1|Hu

x : n ∈ N
}

For the same reasons as for the original sequence, this sequence is Cauchy and converges to

a limit that we denote Txjyj which is a linear map from Ĥu
xj

to Ĥu
yj

. It is straightforward

to check that for each n we have (DF n
y )−1 ◦ Txnyn ◦DF n

x = Txy by writing out the limiting

expression for Txnyn . Since we chose the transversal S to contain W u
r (x) and W u

r (y), we

have Ĥu
x = Hu

x and the same for y. We now consider the center stable holonomy map

Lcsxy : Hu
x → Hu

y . This is equivariant with respect to DF n as well and also depends in a

β-Hölder manner on the points x and y. Then

‖Lcsxy − Pxy‖ = ‖(DF n
y )−1 ◦ (Lcsxnyn − Txnyn) ◦DF n

x |Hu
x‖

≤ ‖(DF n
y )−1‖ · ‖DF n

x |Hu
x‖ · ‖Lcsxnyn − Txnyn‖

≤ Cδn
n−1∏
i=0

‖Dxigi|Ês‖−βd(xn, yn)β

≤ C∗δn

for some constant C∗. As n→∞, δn → 0, so Lcsxy = Txy.
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To prove differentiability of ϕ ◦ γ, take a coordinate chart on S (as well as each of the

transversals Sn) so that we can work with the linear structure on Rd. Let y correspond to

the origin. We will not change the notation for the maps, so they should be understood in

this chart. Let v = γ′(0). We need to show that ϕ(γ(s)) agrees with its claimed linearization

s · Lcsxy(v) to first order at the origin. First observe that the calculations above are valid

if we replace x and y by any two points x′, y′ in S such that y′ ∈ Ŵ s
loc(x

′), whenever n

is small enough (relative to x′ and y′) that the iterates F, F 2, . . . , F n are all defined on a

neighborhood of x′ and y′. This implies that

‖(DF n)−1 ◦DAn ◦DF n
γ(s)(γ

′(s))−DA0(γ′(s))‖ ≤ C|s|β

whenever s is small enough that F n is defined on a neighborhood of γ(s) and An(F n(γ(s)))

lies in the image of F n. The constant C is independent of n, so (DF n)−1◦DAn◦DF n
γ(s)(γ

′(s))

is a Hölder continuous function of s with Hölder exponent and constant independent of n

for |s| small. Note that An(F n(γ(s))) will not necessarily lie on Ŵ s(F n(γ(s))), but it will

be β-Hölder close to the intersection of Ŵ s(F n(γ(s))) with W u
r (yn), so our estimates remain

valid. By the mean value inequality, we thus obtain

‖ϕn(γ(s))− s ·Dϕn(γ′(0))‖ ≤ C|s|1+β

for a constant C.

We next estimate the difference between ϕ and ϕn near γ(0). Observe that ϕ = (F n)−1 ◦

ψn ◦ F n, where ψn is the Ŵ s-holonomy map from Ŵ u
r (xn) to W u

r (yn). Hence for s small

enough that γ(s) is in the domain of definition of the expressions below,

‖ϕn(γ(s))− ϕ(γ(s))‖ = ‖((F n)−1 ◦ An ◦ F n − (F n)−1 ◦ ψn ◦ F n)(γ(s))‖

≤ C‖(DF n)−1|Eu‖ · ‖An ◦ F n(γ(s))− ψn ◦ F n(γ(s))‖
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since F−n exponentially contracts distances on unstable leaves. Next we note that ψn and

An are β-Hölder close in the C0 topology. As a consequence, since they both map x to y,

C‖(DF n)−1|Eu‖ · ‖An ◦ F n(γ(s))− ψn ◦ F n(γ(s))‖

≤ C‖(DF n)−1|Eu‖d(F n(x), F n(y))β‖F n(γ(s))‖

≤ C‖(DF n)−1|Eu‖ · ‖DF n|Es‖β · ‖F n(γ(s))‖

≤ C‖(DF n)−1|Eu‖ · ‖DF n|Es‖β · ‖DF n|Ĥu‖ · |s|

≤ Cδn|s|

where we have not paid much attention to the constant C in front (which will change from

line to line). In the third line we use the exponential contraction of stable leaves by F n,

and in the fourth line we use the fiber bunching property on Hu transferred to the induced

bundle Ĥu, noting that ‖(DF n)−1|Eu‖ = ‖(DF n)−1|Ĥu‖.

We now compare ϕ◦γ to the linearization Lcsxy(v) ·s at 0. Fix n ∈ N. For |s| small enough

that all of the expressions above are defined for this n, we obtain

‖ϕ(γ(s))− Lcsxy(v) · s‖ ≤ ‖ϕ(γ(s))− ϕn(γ(s))‖+ ‖ϕn(γ(s))− s ·Dϕn(v)‖

+ |s| · ‖Dϕn(v)− Lcsxy(v)‖

≤ C(δn|s|+ |s|1+β + |s| · ‖Dϕn(γ′(0))− Lcsxy(v)‖)

Dividing through by |s|, we obtain

‖ϕ(γ(s))− Lcsxy(v) · s‖
|s|

≤ C(δn + |s|β + ‖Dϕn(v)− Lcsxy(v)‖)

We can consider n := n(s) as an integer function of s such that n(s)→∞ as s→ 0. Then

as s → 0, the right side converges to 0. We thus obtain that ϕ ◦ γ agrees to first order

with its linearization at 0, i.e., ϕ ◦ γ is differentiable at 0, and furthermore, (ϕ ◦ γ)′(0) =
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Lcsγ(0)ϕ(γ(0))(γ
′(0)).

Now observe that holonomy from W u
r (x) to W u

r (y) along the projected stable foliation

Ŵ s corresponds precisely to W cs-holonomy in M . Hence the curve ϕ ◦ γ is also the image of

γ under the W cs-holonomy hcsxy. We can apply our calculations to the other points of γ by

recentering at each pair of points x′, y′ lying on γ and ϕ ◦ γ respectively with y′ ∈ W cs
r (x′).

This proves that ϕ ◦ γ is differentiable for every t ∈ [−1, 1], and furthermore we have the

derivative formula

(ϕ ◦ γ)′(t) = Lcsγ(t)ϕ(γ(t))(γ
′(t))

which completes the proof.

The holonomy maps L∗ for Df t|Hu also serve as holonomy maps for the quotient cocycle

Df t|Bu, by the canonical Hölder identification Hu → Bu, which we will still denote by L∗. It

will always be clear from context which bundle we are considering. We extend the definition

of Lu to all of a given unstable leaf by setting, for x ∈M and y ∈ W u(x),

Luxy = Df tf−ty ◦ Luf−txf−ty ◦Df−tx ,

where we choose t such that f−ty ∈ W u
loc(x).

Lemma 3.8. Let x ∈ M and let S1, S2 ⊆ W u(x) be any two local transversals to the W uu

foliation such that πx(S1) = πx(S2) ⊆ Qu(x). Identify the tangent bundles TS1 and TS2 with

the restrictions of Bu to S1 and S2 respectively. Then the derivative of the W uu-holonomy

map huu from S1 to S2 is given by

Dhuu = Lu : Bu|S1 → Bu|S2 .

Proof. Fix a Hölder continuous family of identifications Ixy : Bux → Buy , y ∈ W u
loc(x), that

is uniformly C1 on W u leaves (this can be done since Bu is C1 on W u leaves). Let S1, S2

be two given local transversals to the W uu foliation inside of W u(x) with πx(S1) = πx(S2).
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Let huu : S1 → S2 denote the W uu-holonomy map and for each x ∈M let Dxh
uu denote the

derivative considered as a map Bux → Buhuux. Our goal is to show that Dxh
uu = Luxhuux.

For each t ≥ 0 we consider the holonomy map huu,t : f−t(S1) → f−t(S2) that satisfies

huu = f t ◦ huu,t ◦ f−t. Since Eu = Hu ⊕ V u is a dominated splitting, it is straightforward

to show that, for i = 1, 2, all tangent spaces of the transversal f−t(Si) make a uniformly

small angle with Hu. Since W uu is a uniformly C1 subfoliation of W u, this implies that the

holonomy maps huu,t are uniformly C1 in t. In particular, there is a constant C ≥ 1 such

that, for each y ∈ S1,

∥∥∥Df−ty
huu,t − If−ty huu,t(f−ty)

∥∥∥ ≤ Cd(f−ty, huu,t(f−ty)).

Then, by Proposition 3.3, for each x ∈ S1 we have

Dxh
uu = Df thuu,t(f−tx) ◦Df−txh

uu,t ◦Df−tx → Luxhuux,

as t→∞, which completes the proof.

Let f̄ t be the induced action of f t on the quotient spaces Qu. We define u-holonomies

L̄u for the derivative action Df̄ t on TQu(x) by, for each y, z ∈ Qu(x),

L̄uπ(y)π(z) = Dπz ◦ Luyz ◦ (Dπy)
−1.

Using the relation Luxz = Luxy ◦ Luyz, for x, y, z in the same unstable leaf, together with the

fact that Lu gives the derivative of W uu-holonomy maps between transversals by Proposition

3.8, it is straightforward to show that L̄u does not depend on the choice of preimage of π(y)

or π(z) in W u(x) under π. For any x ∈ M , the u-holonomies L̄uyz on TQu(x) are jointly

uniformly locally Hölder continuous in y, z, and x.

We use the holonomies L̄u to define a connection on TQu(x) whose parallel transport is

given by L̄u.
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Proposition 3.9. For each x ∈ M there is a complete, flat, torsion-free f̄ t-invariant C1

connection ∇ on Qu(x) such that the parallel transport of ∇ on TQu(x) is given by the

u-holonomies L̄u.

Proof. Since V u is a smooth subbundle of Eu when restricted to W u, the quotient bundle

Bu = Eu/V u over W u is smooth. The projection Eu → Bu induces a bundle isomorphism

Hu → Bu which is equivariant with respect to the action of Df t on Hu and the induced

action of Df t on Bu. We push forward the Riemannian metric on Hu to a Riemannian metric

on Bu, with respect to which the induced action of Df t is fiber bunched. The isomorphism

Hu → Bu also induces an unstable holonomy L̄u for the action of Df t on Bu. Since Bu has

a smooth structure along W u leaves with respect to which Df t is smooth and the action of

Df t on Bu is fiber bunched, the unstable holonomy L̄u is C1 along W u leaves.

By Lemma 3.8 above, we have the following alternative construction of L̄u. Take two

compact transversals K1 and K2 to the W uu foliation which meet the same collection of W uu

leaves (or equivalently, they have the same projection to Qu(p)). The projection Eu → Bu

induces natural bundle isomorphisms TKi → Bu over each of these transversals. Then the

derivative of the chart transition map (Π|K2)−1 ◦Π|K1 is the unstable holonomy L̄u when we

make the identifications TKi
∼= Bu.

The projection Π : W u(p) → Qu(x) is smooth and hence induces a derivative map

DΠ : Eu → TQu with V u = kerDΠ. Hence for each x ∈ W u(p) the induced map DΠ :

Bux → TQu
Π(x) is an isomorphism. For w, z ∈ Qu(p) which are the image of x and y ∈ W u(p)

respectively, we define Pwz : TQu
w → TQu

z by Pwz = DΠy ◦ h̄xy ◦DΠ
−1

x . We claim that Pwz

does not depend on the preimages x and y of w and z which were chosen. Suppose that x′

and y′ are two other points projecting to w and z respectively. Then

DΠy′ ◦ L̄x′y′ ◦DΠ
−1

x′ = DΠy ◦ L̄y′y ◦ L̄x′y′ ◦ L̄xx′ ◦DΠ
−1

x

= DΠy ◦ L̄xy ◦DΠ
−1

x
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where we have used the observation that the derivatives of the transition maps for Π are

given by the unstable holonomy L̄u, and also the properties of the unstable holonomy L̄u

itself.

It’s straightforward to check that Pwz is equivariant with respect to the induced derivative

action Df t : TQu(p) → TQu(f t(p)), using the equivariance property of L̄u. Pwz is also C1

in the variables w and z and has the property that for x, y, z ∈ Qu(p), Pyz ◦Pxy = Pxz. This

implies that for each X ∈ TQu(p),

P(X) = {Y ∈ TQu : Pxy(X) = Y for some x, y ∈ Qu(p)}

is a C1 submanifold of TQu which is transverse to the tangent spaces TQu
x. The tangent

spaces to the foliation of TQu by these subfoliations define an Ehresmann connection on

Qu(p) which we can then use to define a connection ∇ on Qu(p). The parallel transport of a

vector by ∇ is given by the linear maps Pwz. Thus ∇ is a C1 flat affine connection on Qu(p).

Since the maps Pwz are equivariant with respect to Df t, ∇ is also f t invariant.

We next show that ∇ is torsion-free. Let T be the torsion tensor of ∇. T is a mixed

tensor of type (2, 1) on TQu which is invariant under f t. But the fact that Df t|Hu is fiber

bunched implies that Df t acts by exponential contraction on tensors of type (2, 1) on TQu.

This forces T ≡ 0 so that ∇ is torsion-free.

Completeness of ∇ follows from the fact that ∇ is locally complete – due to the uniform

continuity properties of L̄u – and the fact that ∇ is f̄−t-invariant, and f̄−t contracts any

given bounded open set to lie inside a small open ball for t large enough.

3.5 The neighborhoods in the theorems

In this section we describe the neighborhoods UX and VX in our main theorems. For X a

complex hyperbolic manifold, we define VX to be the C1 open neighborhood of gtX in the

space of C3 Anosov flows on T 1X such that all of the above discussion applies to any f t ∈ VX ,
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i.e., there is a u-splitting Eu,f = Hu,f ⊕ V u,f and an s-splitting Es,f = Hs,f ⊕ V s,f for f t

such that Df t|Hu,f and Df t|Hs,f are fiber bunched, and the hypotheses of Proposition 3.7

hold.

When X is quaternionic or Cayley hyperbolic, the C1 open neighborhood described

above is sufficient for most of the propositions in this paper. The only exception to this is

Proposition 5.5. Hence for these spaces we take VX to be the C2 open neighborhood of gtX

on which all of the assertions of the previous paragraph hold, and in addition the hypotheses

of Proposition 5.5 are satisfied.

We define the neighborhood UX of X in the space of Riemannian manifolds in terms of

the neighborhood VX . For Y a Riemannian manifold C2 close to X, we let Ψ : T 1X → T 1Y

be the projection diffeomorphism as defined at the end of Section 2.1. We then define UX

by saying that Y ∈ UX if and only if Ψ−1 ◦ gtY ◦ Ψ ∈ VX . Since Ψ−1 ◦ gtY ◦ Ψ is Cr close to

gtX if Y is Cr+1 close to X, we see that we may take UX to be Cr+1 open if VX is Cr open.

4 Continuous Amenable Reduction

We now adapt the main results of [39] to our setting. Let E be a d-dimensional Hölder

continuous vector bundle over a Riemannian manifold X with an Anosov flow gt. We let

µ be a fully supported ergodic gt-invariant measure with local product structure. For the

results in this section we will assume that the stable and unstable distributions Es and Eu

for gt are not jointly integrable; this is true for the geodesic flow because the geodesic flow

is a contact Anosov flow.

Two Riemannian metrics τ and σ on E are conformally equivalent if there is a function

a : X → R such that τp = a(p)σp. A conformal structure on E is a conformal equivalence

class of Riemannian metrics on E . At transforms a conformal structure by pulling back the

associated Riemannian metric. A conformal structure represented by a Riemannian metric
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τ is invariant under A if for each t ∈ R there is a map ψt : X → R satisfying

(At)∗τ = ψtτ

In this case we say that ψt is the multiplicative cocycle associated to the invariant conformal

structure τ . ψt satisfies the cocycle property

ψt+s(p) = ψt(p)ψs(gt(p))

for any t, s ∈ R.

Two multiplicative cocycles ψt and ϕt are cohomologous if there is a map ζ : X → R

such that

ψt

ϕt
=
ζ ◦ gt

ζ

for every t ∈ R.

If a cocycle A over X admits stable and unstable holonomies, we say that a subbundle

V ⊂ E is holonomy invariant if for y ∈ W ∗(x) we have h∗xy(Vx) = Vy for ∗ = u or s. Similarly

we say that a conformal structure is holonomy invariant if it is invariant under pulling back

by stable and unstable holonomies.

Lemma 4.1. Let A be a fiber bunched cocycle over an Anosov flow gt for which Eu and Es

are not jointly integrable. Suppose that

λ+(A, µ) = λ−(A, µ)

Then any measurable A-invariant subbundle V ⊆ E coincides µ-a.e. with a A-invariant

holonomy invariant continuous subbundle. Under the same hypotheses, any A-invariant

measurable conformal structure τ on E coincides µ-a.e. with a A-invariant holonomy in-

variant continuous conformal structure.

41



Proof. The cocycle generated by A1 is a fiber bunched cocycle over the partially hyperbolic

diffeomorphism g1. Since Eu and Es are not jointly integrable, g1 is accessible as a partially

hyperbolic diffeomorphism [12]. In the first case V is a measurable invariant subbundle for

A1; in the second case, τ is an invariant measurable conformal structure for A1. Theorem

3.3 and Theorem 3.1 respectively from [39] then apply to give the desired result.

Lemma 4.2. Let A be a fiber bunched cocycle over an Anosov flow gt such that Eu and Es

are not jointly integrable. Suppose that

λ+(A, µ) = λ−(A, µ).

Then there is a finite cover X of X and a flag

0 ( E1 ( E2 ( · · · ( Ek = Ẽ

of continuous holonomy-invariant subbundles E i which are invariant under the action of the

lifted cocycle Ã on the lifted bundle Ẽ over X . Furthermore the induced action of the cocycle

Ãi on E i/E i−1 preserves a continuous holonomy invariant conformal structure.

Proof. The vector bundle E admits a measurable trivialization on a set of full µ-measure

by Proposition 2.12 in [5]. Since µ is fully supported on X, this implies that there is a

measurable map P : E → X × Rd commuting with the projections onto X and which is

linear on the fibers. B = PAP−1 is a measurable linear cocycle over gt on the trivial vector

bundle X × Rd. We can apply Zimmer’s amenable reduction theorem [63] for R-cocycles

to conclude that there is a measurable map C : X → GL(d,R) such that the cocycle

F = CBC−1 takes values in an amenable subgroup G of GL(d,R).

The maximal amenable subgroups of GL(d,R) are classified in [47]. Any such group G
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contains a finite index subgroup K which is conjugate to a subgroup of a group of the form

H(d1, . . . , dk) =



A1 ∗ ∗ ∗

0 A2 ∗ ∗

0 0
. . . ∗

0 0 0 Ak


where

∑k
i=1 di = d and Ai ∈ R · SO(di,R). Thus, by conjugating the cocycle F if necessary,

we may assume that F takes values in a group G which contains a finite index subgroup K

that is contained in one of the groups H(d1, . . . , dk). Let G∗ be the stabilizer in G of the flag

V 1 ⊂ V 2 ⊂ · · · ⊂ V k = Rd corresponding to the group H(d1, . . . , dk) containing K. Thus V j

is the span of the first
∑j

i=1 di coordinate axes in Rd. Let ` be the index of G∗ in G, which

is finite since K has finite index in G and K ⊂ G∗.

Let V i,j, j = 1, . . . , ` be the at most ` distinct images of the subspace V i under the action

of G. Let U i =
⋃`
j=1 V

i,j. Then let Ê i,jx = (C ◦ P )−1(x) · V i,j, Û i = (C ◦ P )−1(x) · U i. The

proof of Theorem 3.4 in [39] shows that if the union of measurable subbundles Û i is invariant

under a fiber bunched cocycle with equal extremal exponents over an accessible partially

hyperbolic system (which we can take to be the time 1 map A1 of the cocycle A over g1),

then there is a finite cover X of X such that the individual subbundles Ê i,jx lift to subbundles

E i,j of the lifted bundle Ẽ over X which agree µ-a.e. with continuous subbundles which we

will also denote E i,j. By construction the lifts U i are invariant µ-a.e. under the action of

the lift Ã of the cocycle A. This is because we constructed these unions of subbundles using

amenable reduction over the R action given by A, and under our measurable trivialization

A takes values in the group G. Since A is continuous and the lifts U i are continuous after

modification on a µ-null set, we conclude that each U i is everywhere invariant under A.

For each i ∈ {1, . . . , k}, x ∈ X , t ∈ R, and j ∈ {1, . . . , `}, there is thus an integer

Si(x, t, j) such that At(E i,jx ) = E i,S(x,t,j)
gtx . For a fixed i and j, Si(x, t, j) depends continuously

on x and t since both Ãt and all of the subbundles E i,j are continuous. Since for a fixed i and
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j we have that Si(x, t, j) is continuous, integer valued, and has connected domain X ×R, we

conclude that Si(x, t, j) := Si(j) is constant in x and t. Furthermore, since Si(x, 0, j) = j,

we conclude that Si(j) = j. Hence all of the subbundles E i,j are invariant under Ã as well.

In particular A preserves the flag E1 ⊂ · · · ⊂ Ek which arises as the continuous extension of

the lift of the flag coming from the standard flag V 1 ⊂ V 2 ⊂ · · · ⊂ V k.

To prove the second claim, note that for any r ≥ 1, the induced action of the cocycle

F on V
∑r
i=1 di/V

∑r−1
i=1 di = Rdr preserves the standard Euclidean conformal structure on

Rdr . This immediately implies that Ã preserves a measurable conformal structure on the

corresponding quotient bundle E j/E j−1. By Lemma 4.1, this measurable conformal structure

coincides µ-a.e. with a holonomy invariant continuous conformal structure.

Lemma 4.3. Suppose that there is a finite cover X of X such that the lifted cocycle Ã on

the lifted bundle Ẽ preserves a continuous holonomy-invariant conformal structure. Then A

also preserves a continuous holonomy-invariant conformal structure.

Proof. Let C̃x be the space of conformal structures on the vector space Ẽx. C̃x can be identified

with the Riemannian symmetric space SL(d,R)/SO(d,R) and in fact carries a canonical

Riemannian metric of nonpositive curvature for which the induced map C̃x → C̃gtx over the

cocycle Ã is an isometry [39]. In particular, for compact subsets K ⊂ C̃x there is a natural

barycenter map K → bar(K) mapping K to its center of mass.

Let τ be the continuous holonomy-invariant conformal structure preserved by Ã. Let

H be the group of covering transformations for X over X, which also acts as the group of

covering transformations for Ẽ over E . Let Kx =
⋃
ρ∈H{ρ · τρ−1(x)} ⊂ C̃x. The collection

of compact subsets Kx depends continuously on x, is holonomy-invariant, and is invariant

under A. Hence all of the same is true of the family of barycenters σx := bar(Kx). We

thus get a conformal structure σ that is continuous, holonomy-invariant, invariant under Ã,

and also invariant under the action of the deck group H. σ then descends to the desired

conformal structure on E .
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In subsequent sections we will use Lemmas 4.2 and 4.3 together to construct invariant

conformal structures for our cocycles of interest. We will first use Lemma 4.2 to construct

an invariant flag on a finite cover, then we will show this flag must be trivial, then lastly

we will use Lemma 4.3 to push the invariant conformal structure back down to our original

bundle.

Remark 4.4. The assumption that the stable and unstable distributions Eu and Es of gt

are not jointly integrable is likely unnecessary in Lemmas 4.1 and 4.2. Different arguments

are needed in the case that Eu and Es are jointly integrable however, as one cannot use

accessibility of the time one map g1 in this case.

5 From Lyapunov exponents to quasiconformality

5.1 From horizontal exponents to horizontal quasiconformality

In this section we will consider Anosov flows f t that are orbit equivalent to the geodesic

flow of a closed negatively curved Riemannian manifold Y , dimY ≥ 3. We will consider

u-splittings Eu = Hu ⊕ V u for f t and show how to derive uniform quasiconformality of

Df t|Hu from hypotheses on the unstable Lyapunov exponents of f t. We devote this section

to the proof of the following proposition.

Proposition 5.1. Let f t be a C2 Anosov flow which is orbit equivalent to the geodesic flow

of a closed negatively curved manifold Y with dimY ≥ 3. Let Eu = Hu⊕V u be a u-splitting

of index k for f t. Suppose that there is some α > 0 such that Eu is α-Hölder continuous and

Df t|Hu is fiber bunched with exponent α. Suppose further that there exists a fully supported

f t-invariant ergodic probability measure µ with local product structure such that we have

λu1(f t, µ) = λuk(f
t, µ). Then Df t|Hu is uniformly quasiconformal.

The hypothesis that λu1(f, µ) = λuk(f, µ) is equivalent to all Lyapunov exponents of the

linear cocycle Df t|Hu with respect to µ being equal. We use the local product structure of
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µ only to apply the combination of Lemmas 4.2 and 4.3 above.

Proof. Suppose first that f t admits a u-splitting Eu = Hu ⊕ V u of index k such that f t is

β-bunched and Df t|Hu is β-fiber bunched. From the combination of Lemmas 4.2 and 4.3, if

there exists a fully supported f t-invariant ergodic probability measure µ with local product

structure such that we have λu1(f t, µ) = λuk(f
t, µ) – or equivalently, in the terminology of

that paper, the extremal Lyapunov exponents of Df t|Hu with respect to µ are equal – then

either Df t|Hu is uniformly quasiconformal, or there is a proper nontrivial Df t-invariant

subbundle E ⊂ Hu such that E is both s- and u-holonomy invariant. It thus suffices to prove

that, under the additional hypothesis that f t is orbit equivalent to the geodesic flow of a

closed negatively curved manifold, Hu admits no such subbundle E .

We first establish that u-holonomy invariant vector fields tangent to Hu are (not neces-

sarily uniquely) integrable inside of W u leaves. For this first lemma we assume only that

Df t|Hu is fiber bunched and thus admits unstable holonomies Lu.

Lemma 5.2. Let x ∈ M and let X : W u(x) → Hu be a nonzero Lu-invariant vector field.

Then there exists a continuous foliation X of W u(x) by C1 curves tangent to X. Furthermore

every curve of the foliation X is properly embedded in W u(x).

Proof. Let x ∈ M be given and let X : W u(x) → Hu be an Lu-invariant vector field. For

t ≥ 0 let X t = Df t(X) : W u(f t(x)) → Hu. Now smooth X t to obtain a C1 vector field

Zt satisfying ‖Zt −X t‖ ≤ 1 (one can perform the smoothings locally and then glue using a

partition of unity). Since Zt is a C1 vector field it is uniquely integrable; let Z t be the C1

foliation of W u(f t(x)) by C2 curves tangent to Zt.

Observe that Df−t(Zt)→ X as t→∞, as we have

‖Df−t(Zt)−X‖ = ‖Df−t(Zt −X t)‖ ≤ e−at‖Zt −X t‖ ≤ e−at.

for some constant a > 0. This implies that the curves of the foliation Z t converge to a

continuous foliation X of W u(x) by curves tangent to X.
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To prove the last claim, let γ be any curve in the foliation X . The vector field X projects

to an L̄u-invariant vector field X̄ on Qu(x). This implies that X̄ is ∇-parallel, where ∇ is the

invariant connection on the quotient spaces constructed in Proposition 3.9. Thus γ̄ = π ◦ γ

is a ∇-geodesic.

Since ∇ is complete, flat, and torsion-free, it induces a proper affine chart Qu(x) → Rk

in which the ∇-geodesics are straight lines in Rk. It follows that all ∇-geodesics are properly

embedded in Qu(x), so in particular this is true for γ̄. Thus γ̄(t)→∞ as t→ ±∞ in Qu(x).

This immediately implies that γ(t)→∞ as t→ ±∞ in W u(x), and therefore γ is properly

embedded in W u(x).

Now let E be a Df t-invariant subbundle of Hu which is invariant under u-, s-, and c-

holonomies. We will show that, given any two points y, z in an unstable leaf W u(x) of f t, we

can join y and z by a well-behaved C1 curve which is tangent to E . Our argument, applied

to the case E = Hu, gives interesting results on accessibility properties of paths tangent to

Hu even when we do not make any assumptions on the Lyapunov exponents of Df t|Hu. We

will use some standard properties of the visual boundary ∂Ỹ of the universal cover Ỹ of a

negatively curved manifold Y ; we refer to [3] for an exposition of these properties.

Proposition 5.3. Suppose that f t : M → M is a C2 Anosov flow which is orbit equivalent

to the geodesic flow gtY of a closed negatively curved manifold Y . Let Eu = Hu ⊕ V u be a

u-splitting for f t and assume there is an α > 0 such that Eu is α-Hölder continuous and

Df t|Hu is fiber bunched with exponent α. Let E be a nonzero Df t-invariant subbundle of

Hu which is invariant under s- and u-holonomies.

Then for each x ∈ M and y ∈ W u(x) there exists a continuous curve γ : [0, 1]→ W u(x)

such that γ(0) = x, γ(1) = y and γ is C1 on [0, 1) with γ′(t) ∈ E for each t ∈ [0, 1).

Furthermore γ′(t) 6= 0 for all t ∈ [0, 1).

Proof. We write W ∗,f for the invariant foliations of f t and W ∗,g for the invariant foliations

of gtY . Let x ∈ M and y ∈ W u,f (x) be given. We assume that x 6= y, as otherwise the
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proposition is trivial. We also assume that dimY ≥ 3, as for dimY = 2 the proposition

is also trivial. We let ϕ : M̃ → T 1Ỹ denote the lift to the universal cover of the orbit

equivalence ϕ̄ : M → T 1Y from f t to gtY . For a unit tangent vector v ∈ T 1Ỹ , we let ξ+(v)

denote the forward projection (as t→∞) of v to ∂Ỹ along the geodesic flow gtY , and let ξ−

denote the backward projection (as t→ −∞) of this vector to ∂Ỹ .

Choose a point z ∈ M such that its image ϕ(z) ∈ T 1Ỹ satisfies ξ−(ϕ(z)) = ξ+(ϕ(y))

and ξ+(ϕ(z)) = ξ+(ϕ(x)). By construction, we then have ϕ(x) ∈ W cs,g(ϕ(z)) and therefore

x ∈ W cs,f (z). Choose a nontrivial u-holonomy invariant vector field X : W u,f (z) → Hu

which is tangent to E . By Lemma 5.2, there exists a continuous foliation X of W u,f (z) by

C1 curves tangent to X. Consider the curve η in this foliation X for which we have η(0) = z.

By Lemma 5.2, η is properly embedded in W u,f (z), and therefore η(t)→∞ as t→∞.

Since the invariant foliations W ∗,g for gtY have global product structure on T 1Ỹ , the same

is true for the invariant foliations W ∗,f for f t on M̃ . Let σ be the cs-holonomy image of η

in W u,f (x). By cs-holonomy invariance of E and Proposition 3.7, we conclude that σ is a C1

curve tangent to E with σ(0) = x and σ′(t) 6= 0 for all t ∈ [0,∞). We claim that σ(t) → y

as t→∞.

Consider the curve ϕ ◦ η ⊂ W cu,g(ϕ(z)). By construction of η, we have ϕ(η(t))→∞ as

t→∞. Projecting to the boundary ∂Ỹ , this implies that

ξ+(ϕ(η(t))→ ξ−(ϕ(z)) = ξ+(ϕ(y)),

as t→∞. Let ŷ ∈ W u,g(ϕ(x)) be the c-holonomy image of ϕ(y) inside of W u,g(ϕ(x)). The

above implies that if we take the cs-holonomy image η̂ of ϕ ◦ η inside of W u,g(ϕ(x)), then

η̂(0) = ϕ(x) and η̂(t)→ ŷ as t→∞.

The curve σ is the c-holonomy image (projection by f t) of ϕ−1 ◦ η̂ inside of W u,f (x), and

y is the c-holonomy image of ϕ−1(ŷ). We conclude that σ(t) → y as t → ∞. The curve

γ(t) = σ((2/π) arctan(t)), t ∈ [0, 1], then has the desired properties of the proposition.
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We now complete the proof of Proposition 5.1. Fix a point x ∈M . Since E is u-holonomy

invariant, it projects to a ∇-parallel C1 subbundle Ē of TQu(x). Since ∇ is a flat connection,

by the C1 Frobenius theorem [54] there is a C2 foliation F of Qu(x) which is tangent to Ē .

If E is a proper subbundle of Hu, then F is a nontrivial foliation of Qu(x). Hence there

exists a point y ∈ W u(x) such that π(y) /∈ F(x). On the other hand, since we assumed

that f t is orbit equivalent to the geodesic flow gtY of a closed negatively curved Riemannian

manifold Y , we have by Proposition 5.3 that there is a curve γ : [0, 1]→ W u(x) tangent to

E with γ(0) = x, γ(1) = y, and such that γ is C1 on [0, 1). Then π ◦ γ is a C1 curve tangent

to Ē that joins π(x) to π(y) in Qu(x). However, this is impossible since the curve γ must be

contained inside of F(x) and we have assumed that y /∈ F(x).

Thus Df t|Hu has no invariant subbundles which are both s- and u-holonomy invari-

ant. Therefore by the discussion at the beginning of the proof we conclude that Df t|Hu is

uniformly quasiconformal.

We now prove Theorem 2.7.

Proof of Theorem 2.7. We apply Proposition 5.1 to the case Hu = Eu and V u = {0}, un-

der the hypothesis that λu1(f t, νu) = λul (f
t, νu) for an f t-invariant fully supported ergodic

probability measure νu with local product structure. We conclude that Df t|Eu is uniformly

quasiconformal. Using the hypothesis λs1(f t, νs) = λsl (f
t, νs) for another f t-invariant fully

supported ergodic probability measure νs with local product structure, we conclude from ap-

plying Proposition 5.1 to f−t (which has horizontal unstable bundle Hs = Es) that Df t|Es

is uniformly quasiconformal as well. From Fang’s theorem [19, 20], we conclude that f t is

smoothly orbit equivalent to the geodesic flow of a closed real hyperbolic manifold.

We can then deduce Theorem 2.8 from Theorem 2.7.

Proof of Theorem 2.8. By Kalinin’s periodic approximation theorem for Lyapunov expo-

nents [36], the hypothesis λu1(f t, ν(p)) = λul (f
t, ν(p)) for all periodic points p of f t im-

plies that λu1(f t, ν) = λul (f
t, ν) for all f t-invariant measures ν. Likewise the hypothesis
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λs1(f t, ν(p)) = λsl (f
t, ν(p)) for all periodic points p of f t implies that λs1(f t, ν) = λsl (f

t, ν) for

all f t-invariant measures ν.

By [36, Theorem 1.3], we conclude that for every ε > 0 there is a constant cε such that

for all t ≥ 0 we have

σl(Df
t|Eu)

σ1(Df t|Eu)
≤ cεe

εt,

and

σl(Df
t|Es)

σ1(Df t|Es)
≤ cεe

εt.

We can then take ε small enough that these estimates imply that f t is 1-bunched. Now take µ

to be the measure of maximal entropy for f t, which is fully supported and has local product

structure. From the above we have that λu1(f t, µ) = λul (f
t, µ) and λs1(f t, µ) = λsl (f

t, µ).

Hence, by Theorem 2.7, f t is smoothly orbit equivalent to the geodesic flow of a closed real

hyperbolic manifold.

We end this section with an interesting corollary of our arguments. If f t has a u-splitting

Eu = Hu ⊕ V u of index 1, then the linear cocycle Df t|Hu is 1-dimensional. Thus it will

always be the case that there is some α > 0 such that Eu is α-Hölder continuous and

Df t|Hu is fiber bunched with exponent α. Hence we may run the arguments in the proof of

Proposition 5.1 with E = Hu to show that Anosov flows orbit equivalent to geodesic flows

of negatively curved manifolds never admit u-splittings of index 1,

Corollary 5.4. Let f t be a C2 Anosov flow which is orbit equivalent to the geodesic flow of

a closed negatively curved Riemannian manifold Y with dimY ≥ 3. Then f t does not admit

a u-splitting or an s-splitting of index 1.

In particular, if f t = gtY is the geodesic flow of a closed negatively curved 3-manifold,

then f t does not admit a nontrivial dominated splitting of either its unstable or stable bundle.

Proof. It suffices to prove that f t does not admit a u-splitting of index 1, as the claim

regarding s-splittings of index 1 then follows by considering f−t. Assume that f t admits a
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u-splitting of index 1, and choose a point x ∈ M and a point y ∈ W uu
loc (x). By Proposition

5.3, there is a curve γ : [0, 1]→ W u(x) which is C1 on (0, 1), tangent to Hu with γ(0) = x,

γ(1) = y, and such that γ′(t) 6= 0 for all t ∈ (0, 1).

Consider the projection γ̄ = π ◦ γ of γ to Qu(x). Note that γ̄′(t) 6= 0 for all t ∈ (0, 1).

Using the invariant connection ∇ from Proposition 3.9 we identify Qu(x) with R, mapping

π(x) = π(y) to 0. Then γ̄ : [0, 1] → R is a curve which is C1 on (0, 1) such that γ̄(0) =

γ̄(1) = 0 and γ̄′(t) 6= 0 for all t ∈ (0, 1), which is absurd. We conclude that f t cannot admit

a u-splitting of index 1.

The conclusion of Corollary 5.4 for geodesic flows on closed negatively curved 3-manifolds

M should not be surprising: if M has strictly 1/4-pinched negative sectional curvature then

the boundary ∂M̃ has a C1 structure. Using this structure one can show that if f t admits

a u-splitting Eu = Hu ⊕ V u of index 1 then Hu extends to a nonvanishing line bundle on

∂M̃ ∼= S2. This is impossible because S2 has no nonvanishing line bundles.

5.2 From vertical exponents to vertical quasiconformality

In this Section we restrict specifically to the case where we obtain our flow f t by perturbing

the geodesic flow gtX of a closed quaternionic or Cayley hyperbolic manifold X. We assume

dimX ≥ 8 so that X is not also real or complex hyperbolic. In this case, for a C1 small

enough perturbation f t of gtX , the flow f t will have a u-splitting Eu,f = Hu,f ⊕ V u,f with

dimV u,f = 3 if X is quaternionic hyperbolic, or dimV u,f = 7 if X is Cayley hyperbolic.

In the course of the proof of the theorems of Section 2, we must show that the hypotheses

on the Lyapunov exponents of f t imply that Df t is uniformly quasiconformal on both Hu,f

and V u,f . To show uniform quasiconformality on Hu,f , we use Proposition 5.1. However, the

argument we use to derive quasiconformality of Df t on Hu,f from equality of all Lyapunov

exponents on this subbundle breaks down when we consider V u,f instead. In particular,

the cs-holonomy maps between W u,f leaves are not necessarily differentiable along V u,f .

Furthermore, they do not necessarily preserve the vertical unstable foliation W uu,f of f t.

51



Note that this is not an issue when X is complex hyperbolic, as in this case dimV u,f = 1

and therefore uniform quasiconformality on V u,f is trivial.

We will instead use a strategy adapted from our work with D. Xu [15]. This strategy

requires that f t be C2 close to gtX , not just C1 close. This is why we lose C1 openness of the

neighborhood VX in our dynamical theorems in the case where X is quaternionic hyperbolic

or Cayley hyperbolic. Below we set k = k(X).

Proposition 5.5. Let X be a closed quaternionic hyperbolic or Cayley hyperbolic manifold.

There is a C2 open neighborhood VX of gtX in the space of C2 flows on T 1X with the following

property: if f t ∈ VX and there exists a fully supported f t-invariant ergodic probability measure

µ with local product structure such that λuk+1(f t, µ) = λul (f
t, µ), then Df t|V u,f is uniformly

quasiconformal.

Proof. Our arguments follow the methods of [15, Section 7] very closely. Hence we only

sketch the modifications to the argument given there that are necessary. We write gt := gtX .

For f t C1-close enough to gt, we have a u-splitting Eu,f = Hu,f ⊕V u,f which is uniformly

close to the u-splitting Eu,g = Hu,g⊕V u,g for gt. Furthermore, since Dgt is conformal on V u,g,

it’s easy to see that, for f t C1-close enough to gt, we have that Df t|V u,f is fiber bunched.

We conclude that the linear cocycle Df t|V u,f admits u-holonomies Ju,f and s-holonomies

Js,f . We let Ju,g and Js,g denote the u- and s-holonomies for Dgt|V u,g. Let PV u,∗ denote the

projectivization of the bundle V u,∗ over T 1X. Below we will think of T 1X as being equipped

with its Sasaki metric corresponding to the symmetric metric on X.

An su-path for gt is a piecewise C1 path γ consisting of finitely many segments γi, for

which each γi is tangent to either W s,g or W u,g. We refer to each γi as a leg of the path.

An su-loop for gt based at v ∈ T 1X is an su-path which starts and ends at v. We define

su-loops and su-paths similarly for f t, replacing W ∗,g with W ∗,f .

There is a positive integer d such that each unit tangent vector z ∈ T 1X̃ is tangent to a

unique totally geodesic submanifold S(z) of X̃, which is an isometrically embedded copy of

a real hyperbolic space of constant negative curvature K ≡ −4, recalling that we normalized
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X to have sectional curvatures −4 ≤ K ≤ −1. When X is quaternionic hyperbolic we have

d = 4, and when X is Cayley hyperbolic we have d = 8. The tangent bundle T 1S(z) ⊂ T 1X

is a gt-invariant submanifold of T 1X that is subfoliated by the W uu,g and W ss,g foliations,

which in turn are the stable and unstable foliations for gt restricted to T 1S(z).

We now think of the real hyperbolic space S(z) in isolation for a given z ∈ T 1X. Note

that we have T (T 1S(z)) = V u,g⊕Ec,g⊕V s,g, and also dimV u,g = d−1. An su-loop γ based

at z inside of T 1S(v) induces an isometry Tg(γ) : PV u,g
z → PV u,g

z by composing s- and

u-holonomies of Dgt|PV u,g, since the s- and u-holonomies on both the stable and unstable

bundles for real hyperbolic manifolds are conformal, hence isometric after projectivization.

As a consequence of work of Brin and Karcher [11] on the frame flow for real hyperbolic

manifolds, there are finitely many su-loops γ1, . . . , γm such that, identifying PV u,g
z isomet-

rically with the projective space RPd−2, the isometries Tg(γ1), . . . , Tg(γm) generate the Lie

group PO(d − 1) of isometries of RPd−2. Furthermore the total number m of loops used,

and the total lengths of these loops may be chosen to only depend on the curvature and the

dimension of the real hyperbolic space S(z) in question. In particular, they are independent

of the chosen point z.

Given the above, the proposition below is a straightforward exercise with proof identical

to [15, Proposition 34],

Proposition 5.6. For any δ > 0 there is a constant L > 0 and an integer ` > 0 such

that given any z ∈ T 1X there is a finite collection γ1, . . . , γ` of su-loops based at z of total

length at most L for which the collection of points {Tg(γi)(v)}`i=1 is δ-dense in PV u,g
z for any

v ∈ PV u,g
z .

Since S(z) is totally geodesic inside of X̃, the s- and u-holonomies on V s,g and V u,g of

the restriction of gt to T 1S(v) coincide with the s- and u-holonomies of Dgt|V u,g ,when gt

is considered as a flow on all of T 1X̃. Each of the su-loops γi of Proposition 5.6 is also an

su-loop for gt in T 1X, with each leg tangent to either W uu,g or W ss,g. The map Tg(γi) is

thus given as a composition of the holonomy maps Js,g and Ju,g of Dgt|V u,g along each leg
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of the loop.

From this point on the arguments are identical to those given in [15, Section 7], only with

our bundles V u,∗ replacing the bundles Eu,∗ of those arguments. We sketch the concluding

arguments and refer the reader to that paper for more details.

We now pass to our C2-small perturbation f t of gt. We recall that the holonomies of

a fiber bunched linear cocycle vary uniformly continuously with the cocycle in the Hölder

topology [2]. Hence, after perturbing gt to f t, we obtain the following lemma for the corre-

sponding holonomy maps for Df t|V u,f around su-loops for f t.

Lemma 5.7. Given any δ > 0, there is a C2-open neighborhood VX of gt such that, if

f t ∈ VX , we have that for any z ∈ T 1X there is a finite collection γ1, . . . , γ` of su-loops for

f t based at z such that the collection of points {Tf (γi)(v)}`i=1 is δ-dense in PV u,f
z for any

v ∈ PV u,f
z .

There is a technical issue in the proof of Lemma 5.7, since an su-loop based at z for gt is

not necessarily an su-loop for f t based at z. However there will be an su-path γ̂ for f t which

is uniformly close to γ, and whose endpoint is close to z. By using a proposition of Katok and

Kononenko [43] on accessibility properties of partially hyperbolic diffeomorphisms obtained

as C2-small perturbations of the time-1 map g1 of a contact Anosov flow, we can close γ̂ by

a short su-path for f t to obtain an su-loop for f t based at z, which is uniformly close to the

original su-loop γ for gt.

Let δ be given and let f t ∈ VX . Suppose that there exists a fully supported f t-invariant

ergodic probability measure µ with local product structure such that λuk+1(f t, µ) = λul (f
t, µ).

By the work of Avila, Santamaria and Viana [2], there is a Df t-invariant probability measure

ν on PV u, which projects down to the f t-invariant measure µ on T 1X, such that ν has a

disintegration {νz}z∈T 1X into probability measures νz on the projective fibers PV u
z which

depend continuously on the basepoint z. Furthermore this disintegration is equivariant

under s- and u-holonomy.

If Df t|V u,f is not uniformly quasiconformal, then using the equivariance of the con-
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ditional measures of ν on PV fibers under s- and u-holonomy we can construct a point

z ∈ T 1X and a sequence of projective linear maps An : PV u,f
z → PV u,f

z with (An)∗νz = νz

for all n. If we identify PV u,f
z with RPd−2 and realize An as a sequence of elements of the

projective linear group PSL(d−1,R) acting on RPd−2, then An →∞ in PSL(d−1,R). See

the end of the argument of [15, Section 7] for details. This implies that An converges to a

quasi-projective transformation Q of RPd−2 [22]. From this and the equations (An)∗νz = νz,

we conclude that νz is supported on the projectivization of the union of two proper linear

subspaces kerQ and ImQ of V u,f
z .

The support of νz is invariant under holonomies around su-loops based at z. By Lemma

5.7 we conclude that the support of νz must be δ-dense in PV u,f
z . But we can choose δ

small enough that the projectivization of the union of any two proper linear subspaces of

V u,f
z is not δ-dense. This gives the contradiction that implies that Df t|V u,f is uniformly

quasiconformal.

6 Hamenstädt metrics and synchronization

Throughout the rest of the paper we will write � for equality of two quantities up to a

multiplicative constant that is independent of the parameters involved. For example, for two

functions ζ : R ×M → R and ξ : R ×M → R we write ζ � ξ if there is a constant C ≥ 1

such that C−1ξ(t, x) ≤ ζ(t, x) ≤ Cξ(t, x) for all t ∈ R and x ∈M .

6.1 Hamenstädt metrics

Let M be a smooth manifold and let W be a continuous foliation of M with C1 leaves,

such that TW is equipped with a continuous inner product with norm ‖ · ‖ that induces a

Riemannian metric dx on each leaf W (x). Note that dx = dy for y ∈ W (x). We consider

a continuous flow f t : M → M that preserves the W foliation and is C1 when restricted

to each leaf W (x). We assume that f t uniformly expands the leaves of W ; we fix a > 0
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to be a constant such that σ1(Df t|TW ) ≥ eat for every t ≥ 0. This implies that we have

df tx(f
tx, f ty) ≥ eatdx(x, y) for every x ∈M , y ∈ W (x), and t ≥ 0.

We define for x ∈M and y ∈ W (x),

β(x, y) = sup{t ∈ R : df tx(f
t(x), f t(y)) ≤ 1},

Note that β is finite because f t uniformly expands W leaves by hypothesis. We then define

the Hamenstädt metric ρx on W (x) by, for y, z ∈ W (x),

ρx(y, z) = e−aβ(y,z).

We clearly have ρy = ρx for y ∈ W (x). We denote the ball of radius r centered at x in the

metric ρx by Bρ(x, r). Similarly, we denote the ball of radius r centered at x in the metric

dx by Bd(x, r).

Remark 6.1. It is not obvious that ρx satisfies the triangle inequality on W (x). A proof of

this fact may be found in [30]. The constant a in the definition of the Hamenstädt metric

is not canonical; for definiteness we will choose the maximal a such that the inequality

σ1(Df t|TW ) ≥ eat holds for every t ≥ 0.

These metrics were introduced by Hamenstädt [27] in the context where f t is a geodesic

flow and W is the unstable foliation. Hasselblatt [30] showed that her formulation of this

metric extends to the setting of Anosov flows. The metric ρx satisfies ρf tx(f
ty, f tz) =

eatρx(y, z) for every t ∈ R, i.e., f t is conformal on the W foliation in this family of metrics.

It is easy to check that the metrics ρx vary continuously with x, in the sense that the

function (x, y, z)→ ρx(y, z) is jointly uniformly continuous in x ∈M and y, z ∈ W (x). This

implies that the Hamenstädt metrics induce the Euclidean topology on the leaves of W . As

a consequence of this continuity, the Hamenstädt metrics and the Riemannian metrics are

uniformly comparable at any fixed scale: given any r > 0, there is a constant C = C(r) ≥ 1
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such that for all x ∈M ,

Bd(x,C
−1r) ⊆ Bρ(x, r) ⊆ Bd(x,Cr),

and

Bρ(x,C
−1r) ⊆ Bd(x, r) ⊆ Bρ(x,Cr).

6.2 Thermodynamic formalism

In this section we let f t be a transitive C2 Anosov flow on a closed Riemannian manifold

M . We briefly discuss here the thermodynamic formalism for Anosov flows. We refer to

[10] for details and proofs of the claims made in this discussion. Let ζ ′ : M → R be a

Hölder continuous function. Define ζ : R ×M → R by ζ(t, x) =
∫ t

0
ζ ′(f sx) ds. The map ζ

is an additive cocycle over f t as defined at the beginning of Section 3.2. For our purposes

the additive cocycle ζ and the function ζ ′ contain the same information, as we can recover

ζ ′ through the equation ζ ′(x) = d
dt

∣∣
t=0

ζ(t, x). We will use the additive cocycle ζ in what

follows.

We let P (ζ) denote the topological pressure of ζ with respect to f t, given by the formula

P (ζ) = lim
T→∞

1

T
log

 ∑
(x,t):f t(x)=x,

t∈[0,T ]

exp (ζ(t, x))

 .

The variational principle for pressure states that P (ζ) may alternatively be described as

P (ζ) = sup
ν∈Merg(f t)

hν(f
t) +

∫
M

ζ(1, x) dν(x),

where the supremum is taken over all f t-invariant ergodic probability measures ν, and hν(f
t)

denotes the entropy with respect to the measure ν There is a unique f t-invariant ergodic

probability measure µζ – referred to as the equilibrium state for ζ with respect to f t –
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which achieves the supremum in the variational principle. We note that one may replace the

integrand ζ(1, x) in the variational principle with ζ ′(x); that is the usual formulation of the

variational principle.

Two additive cocycles ζ and ψ over f t are cohomologous if there is a continuous function

ξ : M → R such that

ζ(t, x)− ψ(t, x) = ξ(f tx)− ξ(x).

We refer to ξ as the transfer function from ζ to ψ. The transfer function has the same

regularity as ζ and ψ: if both ζ and ψ are Cr+α for some integer r ≥ 0 and some 0 < α < 1

then ξ is Cr+α as well [45]. Two additive cocycles ζ and ψ have the same equilibrium state µ

if and only if there is a constant c ∈ R such that ζ is cohomologous to ψc(t, x) = ψ(t, x) + ct.

The Bowen-Margulis measure of maximal entropy for f t is the equilibrium state asso-

ciated to any additive cocycle of the form ζ(t, x) ≡ ct for some constant c ∈ R. Another

equilibrium state of interest to us is the SRB measure mf for f t; this is the equilibrium state

associated to the additive cocycle (t, x)→ − log Jac(Df t|Eu). The SRB measure is charac-

terized by absolute continuity of the conditional measures mx,f on unstable leaves W u(x);

when f t is volume-preserving, mf is the invariant volume for f t[10].

We recall that, as noted at the beginning of Section 3, equilibrium states for Hölder

potentials (i.e., equilibrium states associated to Hölder continuous additive cocycles) have

local product structure. We take the measures µx on local unstable leaves W u
loc(x) defined

by the local product structure to be the conditional measures of µ on unstable leaves. We

caution that, in general, even if y ∈ W u
loc(x) we only have that the measures µy and µx are

equivalent up to some positive continuous density; they are not necessarily equal. However

we will usually be considering the case where µ is the measure of maximal entropy for f t,

for which we do have µuy = µux for all y ∈ W u(x). This can be seen, for example, from

the Hamenstädt [26] and Hasselblatt [30] constructions of the unstable conditionals for µ as

Hausdorff measures of the Hamenstädt metric ρ defined at the beginning of the section. It can

also be seen from the holonomy invariance of the conditionals µx in Margulis’ construction
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of the measure of maximal entropy for f t [46].

Fix a Riemannian metric on Eu that gives metrics dx on unstable leaves W u(x). The

equilibrium state µ of a Hölder continuous additive cocycle ζ has the Gibbs property : for

any x ∈M , t ≥ 0 and r ≤ 1,

µf−tx(f
−t(Bd(x, r))) � exp (−P (ζ) + ζ(t, x))µx(B(x, r)).

We are particularly interested in the Gibbs property for potentials ζ for which we have

P (ζ) = 0.

We now let µ denote the measure of maximal entropy for f t and let h := htop(f t).

Consider the additive cocycle ζ(t, x) ≡ −ht over f t, for which we have P (ζ) = 0. From the

Gibbs property, we have for any x ∈M and t ≥ 0,

µf−tx(f
−t(Bd(x, 1))) � e−htµx(Bd(x, 1)).

Let a > 0 be given such that σ1(Df t|Eu) ≥ eat for t ≥ 0, and let ρx be the associated

Hamenstädt metric on W u(x) with exponent a. Using the uniform comparability of the

Hamenstädt metric to the Riemannian metric with r = 1 as at the end of Section 6.1, we

conclude that

µx(Bd(x, 1)) � µx(Bρ(x, 1)).

Since f t acts conformally with respect to the Hamenstädt metrics, the previous two

proportionality statements imply that we have, for all x ∈M and t ∈ R,

µx(Bρ(x, e
at)) � eht.

Setting r = eat, and recalling that µy = µx and ρy = ρx for y ∈ W u(x), this implies that for
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all x ∈M , y ∈ W u(x), and r ≥ 0,

µx(Bρ(y, r)) � r
h
a .

This property has an important formalization in analysis on metric spaces. A metric

measure space is a triple (W, ρ, µ), where W is a metric space with metric ρ and µ is a Borel

probability measure on W . Given Q > 0, the metric measure space (W, ρ, µ) is Ahlfors Q-

regular if for all r ≥ 0 we have µ(Bρ(x, r)) � rQ, where the implied multiplicative constant is

independent of r. The Gibbs property estimate for the Hamenstädt metric ρx implies that the

metric measure space (W u(x), ρx, µx) is Ahlfors h
a
-regular. Furthermore, the multiplicative

constant can be taken to be independent of x.

6.3 Synchronization

In this section we carefully review a process known as synchronization for transitive Anosov

flows. This process goes back to Parry [52] and Ghys [21] and has proved useful in the

study of rigidity problems for Anosov flows. Hamenstädt [29] also used it to describe the

unstable conditional measures of an equilibrium state as Hausdorff measures with respect to

modifications of her metrics constructed in Section 6.1. We will adapt the synchronization

procedure to our specific setting.

Throughout this section we will assume that there is some 0 < α < 1 and an integer r ≥ 1

such that our transitive Anosov flow f t is Cr+1+α. Note that this hypothesis is satisfied if f t

is a C3 Anosov flow. Given a Hölder continuous additive cocycle ζ : M → R with ζ(t, x) < 0

for t > 0, we consider the family qζ, q > 0 of additive cocycles. The topological pressure

P (qζ) is analytic and strictly decreasing in q (see [55] for the discrete time case, [10] for the

adaptation of this method to flows). Since P (0) = htop(f) > 0 and P (qζ)→ −∞ as q →∞,

there is a unique Q > 0 such that P (Qζ) = 0. We let µ denote the equilibrium state for Qζ.

We will construct a Hölder time change f̂ t of f t such that there is an f̂ t-invariant measure
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µ̂ equivalent to µ that is the measure of maximal entropy for f̂ t.

We will assume that ζ is Cr+α along W cu-leaves as a function on R × M . This is a

natural hypothesis for the potentials we will consider in this paper, e.g., the additive cocycle

(t, x)→ − log Jac(Df t|Eu) for the SRB measure is Cr+α on W cu leaves if f t is Cr+1+α.

We define an additive cocycle τ : R×M → R by setting, for t ≥ 0 and x ∈M , τ(t, x) to

be the unique positive number such that

ζ(τ(t, x), x) = −t.

and setting τ(−t, x) = −τ(t, f−tx) for t < 0. The solution to the above equation is unique

because we assumed ζ(t, x) < 0 for t > 0. By the implicit function theorem it’s easy to see

that τ is Cr+α along W cu leaves, since ζ is Cr+α along W cu leaves. Furthermore τ is Hölder

continuous on M . We define a new flow f̂ t by f̂ t(x) = f τ(t,x)(x) for x ∈M and t ∈ R. This

flow is Cr+α on W cu leaves but may only be Hölder continuous on M .

We summarize now the discussion from [52] of how time changes transform invariant mea-

sures and entropy. Let Z be the generating vector field for f t, and let Ẑ(x) = τ ′(x)Z(x) be

the vector field generating our time change f̂ t(x), where we recall that τ ′(x) = d
dt

∣∣
t=0

τ(t, x) is

the generator for τ . Let ω(x) = (τ ′(x))−1 and let ω(t, x) =
∫ t

0
ω(f sx) ds. The cocycle τ(t, x) is

the inverse self-homeomorphism of R to ω(t, x), i.e., we have t ≡ ω(x, τ(t, x)) ≡ τ(x, ω(x, t)).

If ν is an ergodic f t-invariant probability measure, then ν̂ = ω(x)ν/
∫
M
ω dν is an f̂ t-

invariant ergodic probability measure equivalent to ν. By Abramov’s formula for the entropy

of time changes of a flow [1], we have hν̂(f̂
t) = hν(f t)∫

M ω dν
.

For the equilibrium state µ for Qζ with respect to f t defined above we let µ̂ be the

corresponding f̂ t = f τ(t,x)-invariant probability measure constructed as above.

Lemma 6.2. The following claims hold for the time change f̂ t of f t,

1. The foliations W cu, W cs, and W c are invariant under f̂ t. The flow f̂ t is Cr+α when

restricted to the leaves of the W cu foliation.
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2. Define for each x ∈M ,

Ŵ u(x) = {y ∈M : d(f̂−t(x), f̂−t(y))→ 0 as t→∞}.

Then Ŵ u(x) is a Cr+α embedded submanifold of W cu(x) which is the graph of a Cr+α

function over W u(x). Ŵ u is tangent to a Cr−1+α subbundle Êu of Eu ⊕ Ec.

3. For each x ∈M define

Ŵ s(x) = {y ∈M : d(f̂ t(x), f̂ t(y))→ 0 as t→∞}.

Then Ŵ s(x) is a Hölder graph over W s(x).

4. The measure µ̂ is the measure of maximal entropy for f̂ t, and we have hµ̂(f̂) =

htop(f̂) = Q.

Proof. Any time-change of f t will preserve the foliations W cu, W c, and W cs. The Cr+α-

smoothness part of claim (1) is obvious from the discussion regarding the regularity of τ on

W cu leaves.

To prove (2), we give an alternative description of Ŵ u(x). For y ∈ W u(x), we define

ξ(x, y) = lim
t→∞

τ(−t, x)− τ(−t, y). (2)

Standard results on additive cocycles over hyperbolic systems imply that this limit exists

and converges uniformly in x ∈ M , y ∈ W u
loc(x); one can see this for instance by applying

the results of 3.2 to the multiplicative cocycle exp(τ). Applying this to τ , as well as its

derivatives, we conclude that ξ(x, y) is Cr+α in x, y. We note that ξ satisfies the equation,

ξ(f t(x), f t(y)) = ξ(x, y) + τ(t, y)− τ(t, x), (3)

for all t ∈ R, x ∈M , y ∈ W u(x).
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We claim that, for x ∈M , we have

Ŵ u(x) = {f ξ(x,y)(y) : y ∈ W u(x)}.

Using (3), and setting ŷ = f ξ(x,y), we have

f̂−t(ŷ) = f τ(−t,y)+ξ(x,y)(y) = f τ(−t,x)+ξ(f−t(x),f−t(y))(y).

Since y ∈ W u(x), we have

d(f τ(−t,x)(x), f τ(−t,x)(y))→ 0 as t→∞.

Since ξ(f−t(x), f−t(y))→ 0 as t→∞, we also have

d(f̂−t(ŷ), f τ(−t,x)(y))→ 0 as t→∞.

These two equations then imply that d(f̂−t(ŷ), f̂−t(x)) → 0 as t → ∞, which implies the

desired description of Ŵ u(x).

For part (3), we carry out the calculations of part (2) with t replacing −t, and W s(x)

replacing W u(x). Since τ is only Hölder along W s(x), we obtain that Ŵ s(x) is a Hölder

graph over W s(x).

Lastly we prove (4). Let B̂(x, r) denote the ball of radius r centered at x in Ŵ u(x). We

have µ̂x(B̂(x, 1)) � µx(Bd(x, 1)), where we recall that Bd(x, r) denotes the ball of radius r

centered at x in W u(x). We now apply f̂−t = f−τ(t,−) to each side; by equation (2) and

the Gibbs property for µ we have µf−τ(t,x)(x)(f̂
−t(Bd(x, 1))) � µf−τ(t,x)(x)(f

−τ(t,x)(Bd(x, 1))).

Applying the Gibbs property for µ again gives

µf−τ(t,x)(x)(f
−τ(t,x)(Bd(x, 1))) � exp (Qζ(τ(t, x), x))µx(Bd(x, 1)) = e−Qtµx(Bd(x, 1)).
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Running this back through our calculations gives µ̂f̂−tx(f̂
−t(B̂(x, 1))) � e−Qtµ̂x(B̂(x, 1)), for

all t ≥ 0. This implies that µ̂ is the equilibrium state for f̂ t with respect to the potential −Q,

which is equivalent to µ̂ being the measure of maximal entropy with hµ̂(f̂) = htop(f̂) = Q,

by the variational principle for pressure.

We now assume that f t admits a u-splitting Eu = Hu ⊕ V u of index k. We will show

that this transforms under synchronization into a u-splitting Êu = Ĥu ⊕ V̂ u of index k for

the flow f̂ t. For each x ∈ M we let ψx : W u(x) → Ŵ u(x) denote the Cr+α-projection map

along the flowlines of f t. The function ψx is given by ψx(y) = f ξ(x,y)(y), where ξ is defined

as in the proof of Lemma 6.2.

Proposition 6.3. Suppose that f t admits a u-splitting Eu = Hu ⊕ V u of index k. Then

1. f̂ t admits a u-splitting Êu = Ĥu⊕ V̂ u of index k that, for each x ∈M , is the image of

the u-splitting for f t under the projection Dψx.

2. The bundles V̂ u and B̂u = Êu/V̂ u are Cr+α along W cu.

3. For each x ∈ M , the image of the W uu-foliation of W u(x) under ψx gives a Cr+α

foliation Ŵ uu of Ŵ u(x) tangent to V̂ u.

Proof. We begin by observing that Dψxy (Eu
y ) = Êu

ψx(y) for each y ∈ W u(x). It’s also easily

checked (using the representation ψx(y) = f ξ(x,y)(y)) that, for y ∈ W u(x), we have

ψf
τ(t,x)(x)(f τ(t,x)(y)) = f τ(t,ψx(y))(ψx(y)) = f̂ t(ψx(y)), (4)

and thus by differentiating (4), we obtain the equation

Dψ
fτ(t,x)(x)

fτ(t,x)(y)
◦Df τ(t,x)

y = Df̂ tψx(y) ◦Dψxy . (5)

For each x ∈ M we define Ĥu
x = Dψxx(Hu

x ) and V̂ u
x = Dψxx(V u

x ). By applying equation (5)

at y = x, we obtain that the splitting Êu = Ĥu ⊕ V̂ u is Df̂ t-invariant. Since both Dψxx and
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V u
x are Cr+α in the variable x ∈ W cu(x), we conclude that V̂ u and B̂u are both Cr+α along

W cu.

For x ∈M we define Ŵ uu(x) = ψx(W uu(x)). We can view Ŵ uu(x) as the intersection of

the leaf W cuu(x) tangent to V u⊕Ec with Ŵ u(x). Then Ŵ uu(x) is tangent to the subbundle

of V u ⊕ Ec, which is tangent to Ŵ u(x), i.e., it is tangent to V̂ u. This proves (3).

It remains only to check that the u-splitting Êu = Ĥu ⊕ V̂ u is a dominated splitting

for Df̂ t|Êu. Since the splitting Eu = Hu ⊕ V u is dominated for Df t, there are constants

C > 0 and χ > 0 such that, for every t ≥ 0 and every x ∈ M , we have σk(Df
t
x|Hu

x‖ ≤

Ce−χtσ1(Df t|V u
x ). Let x ∈ M be given, and let v̂ ∈ Ĥu

x and ŵ ∈ V̂ u
x be a pair of unit

vectors. We set v = D(ψxx)−1(v̂) ∈ Hu
x , w = D(ψxx)−1(ŵ) ∈ V u

x . The domination estimate

for Df t then implies that, for t ≥ 0,

‖Df τ(t,x)
x (v)‖ ≤ Ce−χτ(t,x)‖Df τ(t,x)

x (w)‖.

From the compactness of M and the continuity of τ , there is a positive constant c ≥ 1 such

that, for every x ∈M and t ≥ 0,

τ(t, x) ≥ ct.

We thus conclude that

‖Df̂ tx(v)‖ ≤ Ce−cχt‖Df̂ tx(w)‖.

By the uniform continuity of the function x→ Dψxx this implies that there is a constant C ′

independent of x such that we have

‖Df̂ tx(v̂)‖ ≤ C ′e−cχt‖Df̂ tx(ŵ)‖.

Taking the supremum over all unit vectors on the left side and the infimum over all s on the

right then gives

σk(Df̂
t|Ĥu

x ) ≤ C ′e−cχtσ1(Df̂ t|V̂ u
x ),
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which is our desired domination estimate for the splitting Êu = Ĥu ⊕ V̂ u.

If Df t|Hu is fiber bunched, then the u-holonomies for the linear cocycle Df t|Hu over

f t give rise to u-holonomies for Df̂ t|Ĥu, and likewise if Df t|V u is fiber bunched then the

u-holonomies for this cocycle also translate into u-holonomies for Df̂ t|V̂ u. More precisely,

if L∗ are the u-holonomies for Df t|Hu then we define u-holonomies L̂u for Df̂ t|Ĥu by, for

x ∈M and y ∈ Ŵ u(x),

L̂uxy = Dψxy ◦ Luxy ◦ (Dψxx)−1.

It’s easily checked that the maps L̂u with respect to the linear cocycle Df̂ t|Ĥu over f̂ t satisfy

the properties of Proposition 3.2. This all holds in particular if we assume that Df t|Hu is

uniformly quasiconformal, which we will do in Proposition 6.4 below.

We now consider the case of a particular potential ζf associated to a u-splitting Eu =

Hu ⊕ V u for f t of index k. We set

ζf (t, x) = − log Jac(Df tx|Bux).

Observe that ζf is Cr+α along the W cu-foliation if f t is Cr+1+α, and that we also have ζf < 0.

We let Q(f) be the horizontal dimension of f t, so that P (Q(f)ζf ) = 0. We let f̂ t be the

synchronization of f t with respect to the additive cocycle ζf/k. Lastly we let µf be the

horizontal measure for f t, which is the equilibrium state of the potential Q(f)ζf .

Proposition 6.4. Suppose that Df t|Hu is uniformly quasiconformal. Then the following

claims hold.

1. There is an inner product ( , ) on Ĥu such that, for all v,w ∈ Ĥu
x and all t ∈ R,

(Df̂ tx(v), Df̂ tx(w))f̂ tx = et(v, w)x.
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2. For all y ∈ Ŵ u(x) and v, w ∈ Ĥu
x ,

(L̂uxy(v), L̂uxy(w))y = (v, w)x.

Likewise for all y ∈ W cs(x),

(L̂csxy(v), L̂csxy(w))y = (v, w)x.

3. We have htop(f̂) = kQ(f). The measure of maximal entropy µ̂f for f̂ t corresponds to

the horizontal measure µf for f t.

Proof. Since Df t|Hu is uniformly quasiconformal, we can find an inner product 〈 , 〉 on Hu

such that there is a multiplicative cocycle φt over f t for which we have for every x ∈M and

v, w ∈ Hu
x ,

〈Df tx(v), Df tx(w)〉f tx = (φt)2〈v, w〉x,

and furthermore for y ∈ W ∗
loc(x) we have

〈L∗xy(v), L∗xy(w)〉y = (`∗xy)
2〈v, w〉x,

where `∗xy denotes the holonomies of φt. See [39] for details. Using uniform quasiconformality,

we conclude that we have

‖Df tx(v)‖f tx � exp (−ζf (t, x)) ,

for every x ∈M , every t ∈ R, and every v ∈ Hu
x . This implies, taking ‖v‖ = 1 in the above,

that for all x ∈M and t ∈ R,

φt(x) � exp (−ζf (t, x)) .

This implies that φt is cohomologous to exp (−ζf (t, x)). As a consequence, 〈, 〉 is equivalent
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to another inner product 〈 , 〉′, for which we have instead,

〈Df tx(v), Df tx(w) 〉′f tx = exp (−ζf (t, x)) 〈v, w〉x,

i.e., −ζf gives the rate of expansion of the inner product 〈 , 〉′ under Df t.

We define ( , ) on Ĥu by setting, for v, w ∈ Ĥu
x ,

(v, w)x = 〈(Dψxx)−1(v), (Dψxx)−1(w)〉′x.

Since

Df̂ tx = Dψ
fτ(t,x)(x)

fτ(t,x)(x)
◦Df τ(t,x)

x ◦ (Dψxx)−1,

and exp (−ζf (τ(t, x), t)) = et, it’s straightforward to check that for all x ∈M , t ∈ R, and v,

w ∈ Ĥu
x ,

(Df̂ tx(v), Df̂ tx(w))f̂ tx = et(v, w)x.

This completes the proof of (1).

For (2), the inner product ( , ) is L̂∗-invariant up to a scalar factor, i.e., L̂∗ is conformal

with respect to this inner product, since this conformality also holds for L∗. Furthermore

the holonomies of L̂∗ correspond to the holonomies of the scaling factor of the inner product

with respect to Df̂ t. Since this scaling factor et is independent of the point x ∈ M , we

conclude the holonomies of the scaling factor are trivial. Thus equation (2) holds.

Lastly, part (3) of the lemma follows immediately from part (4) of Lemma 6.2.

We next give a formula for the horizontal dimension that comes from the variational

principle for pressure. This formula is the source of the usefulness of Q(f) for controlling

the behavior of the unstable Lyapunov exponents of µf with respect to f t.
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Proposition 6.5. Suppose that f t admits a u-splitting of index k. Then we have

Q(f) = sup
ν∈Merg(f t)

hν(f
t)

λu1(f t, ν) + · · ·+ λuk(f
t, ν)

,

with equality if and only if ν = µf is the horizontal measure for f t.

Proof. By the variational principle for pressure for the additive cocycle Q(f)ζf defined above,

0 = sup
ν∈Merg(f t)

hν(f
t) +Q(f)

∫
M

ζf (1, x) dν(x)

= sup
ν∈Merg(f t)

hν(f
t)−Q(f)(λu1(f t, ν) + · · ·+ λuk(f

t, ν)).

Note that the sum λu1(f t, ν) + · · ·+ λuk(f
t, ν) is always positive for any f t-invariant measure

ν. The formula for Q(f) then follows by rearranging the above expression.

We end this section by justifying Remark 1.3 of the Introduction. We first show that the

horizontal measure and horizontal dimension are both invariant under a flow conjugacy that

is C1 on unstable manifolds.

Lemma 6.6. Let gt and f t be two C2 Anosov flows on M with u-splittings of index k.

Suppose that there is a constant c > 0 and a flow conjugacy ϕ : M →M from gt to f ct that

is C1 on center-unstable manifolds. Then ϕ∗(µg) = µf and Q(g) = Q(f).

Proof. We first claim that, for a C2 Anosov flow f t with a u-splitting of index k, replacing

f t with f ct for any constant c > 0 does not change the horizontal measure and horizontal

dimension, i.e., µfct = µf t and Q(f ct) = Q(f t). Note that a probability measure ν is invariant

for f t if and only if it is invariant for f ct for all c > 0. For all ergodic f t-invariant probability

measures ν we then have,

hν(f
ct)

λu1(f ct, ν) + · · ·+ λuk(f
ct, ν)

=
chν(f

t)

cλu1(f t, ν) + · · ·+ cλuk(f
t, ν)

=
hν(f

t)

λu1(f t, ν) + · · ·+ λuk(f
t, ν)

.
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We conclude from Proposition 6.5 that Q(f ct) = Q(f t) and µfct = µf t .

Thus we may assume, after possibly replacing f t with f ct, that our map ϕ conjugates gt

to f t. Since ϕ is a conjugacy, we have, for all gt-invariant ergodic probability measures ν,

that hϕ∗ν(f
t) = hν(g

t). Furthermore, since ϕ is C1 on unstable manifolds, we have that

λui (f
t, ϕ∗ν) = λui (g

t, ν),

for each 1 ≤ i ≤ dimEu.

We may write each ergodic f t-invariant probability measure κ as κ = ϕ∗ν for a gt-

invariant probability measure ν. From the above we have

hκ(f
t)

λu1(f t, κ) + · · ·+ λuk(f
t, κ)

=
hν(g

t)

λu1(gt, ν) + · · ·+ λuk(g
t, ν)

.

We thus conclude from Proposition 6.5 that Q(f) = Q(g) and ϕ∗(µg) = µf .

We now prove the claim of the Remark 1.3. Recall that, for a homothety F : Y → Z

of two Riemannian manifolds, we let DF : T 1Y → T cZ be the derivative map (c > 0 a

constant) and let Π ◦DF : T 1Y → T 1Z denote the composition given by composing F with

the natural projection Π : T cZ → T 1Z.

Proposition 6.7. Let X be a closed locally symmetric space of nonconstant negative curva-

ture. Let Y and Z be two Riemannian manifolds that are C2 close to X. Suppose that we

have a homothety F : Y → Z. Then (Π ◦DF )∗(µY ) = µZ and QY = QZ.

Proof. For c > 0, let Zc denote the Riemannian manifold given by scaling the metric on Z

by the constant factor c. By the first half of the proof of Lemma 6.6, under the projection

Π : T 1Zc = T cZ → T 1Z, the horizontal measures of gtZc and gtZ are the same and we have

QZc = QZ .

Hence it suffices to prove the proposition in the case where F : Y → Z is an isometry.

We then have gtZ ◦ DF = DF ◦ gtY , i.e., gtY are smoothly conjugate by DF . We conclude
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from Lemma 6.6 that DF∗(µY ) = µZ and QY = QZ .

6.4 Quasisymmetry of orbit equivalences

We begin this section with an important remark that will be in effect for the rest of the

paper.

Remark 6.8. We will be considering Anosov flows gt : M → M and f t : M → M on a

Riemannian manifold M , together with a Hölder continuous orbit equivalence ϕ : M → M

from gt to f t. We will always assume that gt is at least C2. However, we allow for the

possibility that f t was obtained from another Cr Anosov flow f̃ t by the synchronization

procedure of Section 6.3. This means that f t may only be Hölder continuous. However, we

will always assume that f t is at least C2 on W cu,f = W cu,f̃ leaves.

We will only consider ϕ as a map ϕ : W cu,g(x) → W cu,f (ϕ(x)) for one choice of x at a

time. In particular the transverse regularity of f t along W s,f leaves will never appear in our

proofs.

Let (W, ρW ) and (Z, ρZ) be two metric spaces. A homeomorphism ϕ : W → Z is

quasisymmetric if there is a homeomorphism η : [0,∞) → [0,∞) such that, for all x, y, z ∈

W ,

ρW (x, y) ≤ sρW (x, z)⇒ ρZ(ϕ(x), ϕ(y)) ≤ η(s)ρZ(ϕ(x), ϕ(z)).

When the specific form of η is important, we will say that ϕ is η-quasisymmetric.

We will consider unstable leaves W u(x) for an Anosov flow f t with the Hamenstädt

metric ρx from the beginning of this section, defined as usual using a constant a > 0 such

that σ1(Df tx|Eu
x) ≥ eat for all x ∈M and t ≥ 0.

We now let gt and f t be two Anosov flows on M which are orbit equivalent by a Hölder

continuous function ϕ. We let a > 0 be a common constant such that σ1(Dgtx|Eu,g
x ) ≥ eat

and σ1(Df tx|Eu,f
x ) ≥ eat for all x ∈M and t ≥ 0, and define the Hamenstädt metrics ρg and

ρf accordingly.
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We let α be the Hölder continuous additive cocycle over gt satisfying ϕ ◦ gt = fα(t,x) ◦ ϕ,

i.e., α describes the failure of ϕ to be a flow conjugacy. As in the proof of Lemma 6.2, for

x ∈M , y ∈ W u,g(x), we define

ξ(x, y) = lim
t→∞

α(−t, x)− α(−t, y),

with this limit existing because g−t exponentially contracts W u,g leaves. As before, we have

the relation for t ∈ R and x ∈M , y ∈ W u,g(x),

ξ(gt(x), gt(y)) = ξ(x, y) + α(t, y)− α(t, x).

For each x ∈ M and y ∈ W u,g(x) we define ϕx(y) = f−ξ(x,y)(y). We note that ϕx(y) ∈

W u,f (ϕ(x)), as we have

d(fα(−t,x)ϕx(y), fα(−t,x)ϕ(x)) = d(fα(−t,x)−ξ(x,y)ϕ(y), fα(−t,x)(ϕ(x)))

= d(fα(−t,y)−ξ(g−t(x),g−t(y))ϕ(y), fα(−t,x)(ϕ(x)))

= d(f−ξ(g
−t(x),g−t(y))ϕ(g−t(y)), ϕ(g−t(x))),

and the last expression converges to 0 as t → ∞ since ξ(g−t(x), g−t(y)) → 0. Finally, we

note that we have the equivariance relationship for y ∈ W u,g(x), t ∈ R,

ϕgtx(g
t(y)) = fα(t,x)(ϕx(y)).

We thus have a homeomorphism ϕx : W u,g(x) → W u,f (ϕ(x)). We will show below that

this homeomorphism is η-quasisymmetric with respect to the Hamenstädt metrics on each

of these leaves, with η being independent of the choice of x.

Proposition 6.9. There is a homeomorphism η : [0,∞) → [0,∞) such that, for every

x ∈M , the map ϕx : (W u,g(x), ρx,g)→ (W u,f (ϕ(x)), ρϕ(x),f ) is η-quasisymmetric.
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Proof. By the continuity of ϕ, f t, and gt, and the fact that the Hamenstädt metrics ρx,g and

ρx,f depend continuously on the choice of point x ∈M , there is a constant C ≥ 1 such that,

for every x ∈M and y, z ∈ W u,g
loc (x), if ρx,g(y, z) = 1 then

C−1 ≤ ρϕ(x),f (ϕx(y), ϕx(z)) ≤ C.

Let x ∈ M , and let y ∈ W u,g(x). Let β = β(x, y) be the unique real number such that

ρgβx,g(g
β(x), gβ(y)) = 1. We have from the above that

ρϕ(gβx),f (ϕgβx(g
βx), ϕgβx(g

βy)) � 1

By using equivariance and the scaling property of the dynamical metrics for f t, we have

ρϕ(x),f (ϕx(x), ϕx(y)) � exp(−aα(β(x, y), x)).

We next take two points y, z ∈ W u,g(x) with β(x, y) ≥ β(x, z). The above implies that

ρϕ(x),f (ϕx(x), ϕx(y))

ρϕ(x),f (ϕx(x), ϕx(z))
� exp(−a(α(β(x, y), x)− α(β(x, z), x))).

By the additivity of α we have

α(β(x, y), x)− α(β(x, z), x) = α(β(x, y)− β(x, z), x).

Continuity of α and compactness of M implies that there is a constant b > 0 such that

α(t, x) ≥ bt for all t ≥ 0 and x ∈M . This implies in particular that

α(β(x, y)− β(x, z), x) ≥ b(β(x, y)− β(x, z)),

which implies, recalling the definition of the dynamical metric for gt, that there is a constant
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C ≥ 1, independent of x,y, and z, such that

ρϕ(x),f (ϕx(x), ϕx(y))

ρϕ(x),f (ϕx(x), ϕx(z))
≤ C

exp(−abβ(x, y))

exp(−abβ(x, z))
= C

(
ρx,g(x, y)

ρx,g(x, z)

)b
.

The inequality β(x, y) ≥ β(x, z) holds if and only if ρx,g(x, y) ≤ ρx,g(x, z).

Now let w, y, z ∈ W u,g(x) be any given triple of points. By applying the above with

x = w and recalling that ρw,g = ρx,g, we have the inequality

ρϕ(w),f (ϕw(w), ϕw(y))

ρϕ(w),f (ϕw(w), ϕw(z))
≤ C

(
ρx,g(w, y)

ρx,g(w, z)

)b
,

for ρx,g(w, y) ≤ ρx,g(w, z). For y ∈ W u,g(x) we have the relationship

ϕw(y) = f−ξ(w,y)(y) = f−ξ(w,x)−ξ(x,y)(ϕ(y)) = f−ξ(w,x)(ϕx(y)),

that is, we have ϕw = f−ξ(w,x) ◦ ϕx. This implies, using the conformality of f t with respect

to the Hamenstädt metrics ρf , that we have

ρϕ(w),f (ϕw(w), ϕw(y)) = e−aξ(x,w)ρϕ(x),f (ϕx(w), ϕx(y))

This implies, going back to our inequality for ϕw, that we have

ρϕ(x),f (ϕx(w), ϕx(y))

ρϕ(x),f (ϕx(w), ϕx(z))
≤ C

(
ρx,g(w, y)

ρx,g(w, z)

)b
,

for ρx,g(w, y) ≤ ρx,g(w, z), as the factors of e−aξ(x,w) on the top and bottom cancel. This

inequality again is valid for ρax,g(w, y) ≤ ρax,g(w, z). We conclude that there is a constant

C ≥ 1 such that, for each x ∈M and w, y, z ∈ W u,g(x),

ρx,g(w, y) ≤ ρx,g(w, z)⇒ ρϕ(x),f (ϕx(w), ϕx(y)) ≤ Cρϕ(x),f (ϕx(w), ϕx(z)).
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This implies that ϕx is weakly C-quasisymmetric [33, Chapter 10]. Let µx,g and µx,f be

the unstable conditionals for the measures of maximal entropy of gt and f t respectively.

Since both of the metric measure spaces (W u,g(x), ρx,g, µx,g) and (W u,f (ϕ(x)), ρϕ(x),f , µx,f )

are Ahlfors Qg- and Qf -regular respectively for some Qg, Qf > 0 with constants independent

of x, this implies that ϕx is η-quasiymmetric and that η can be chosen independently of x

[33, Theorem 10.19].

6.5 A criterion for conjugacy

We next give a criterion for two Anosov flows gt and f t to be conjugate, given that we have

a Hölder continuous orbit equivalence ϕ from gt to f t. We will use this criterion in the proof

of Proposition 7.5. We recall that Remark 6.8 is in effect here, so that f t may be a flow

obtained through the synchronization of a C3 Anosov flow f̃ t.

Let m be the measure of maximal entropy for gt and let µ be the measure of maximal

entropy for f t. For an unstable leaf W u,g(x) we let mx denote the conditional measure of

m on W u,g(x), which is a Hausdorff measure for the Hamenstädt metric ρx,g on W u,g(x),

by the discussion at the end of Section 6.2. Likewise for an unstable leaf W u,f (x) we let

µx be the conditional measure of µx on W u,f (x), which is also a Hausdorff measure for the

Hamenstädt metric ρx,f .

We let ϕ be a Hölder continuous orbit equivalence from gt to f t, so that we have

ϕ(gt(x)) = fα(t,x)(ϕ(x)) for a Hölder continuous additive cocycle α. We define ξ(x, y) for

y ∈ W u,g(x) and we define the homeomorphism ϕx : W u,g(x) → W u,f (ϕ(x)) as in Section

6.4. Since the Borel measures mx and µx are σ-finite, by the Radon-Nikodym theorem there

is an mx-integrable function Jx : W u,g(x)→ [0,∞], and a signed measure κx that is mutually

singular with respect to mx, such that we have

d((ϕx)
−1
∗ µϕ(x)) = Jxdmx + dκx.
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We thus have, for every x ∈M , an mx-integrable measurable function Jx : W u,g(x)→ [0,∞].

We give below a criterion for producing flow conjugacies in terms of the functions Jx.

Proposition 6.10. Let gt and f t be two Anosov flows, with gt being C2, and let ϕ be a

Hölder continuous orbit equivalence from gt to f t. The following are equivalent.

1. There is a constant c > 0 and a Hölder continuous function ω : M → R such that

ϕ̂(x) := ϕ(gω(x)(x)) satisfies ϕ̂ ◦ gt = f ct ◦ ϕ̂.

2. We have m ({x ∈M : Jx(y) = 0 for mx-a.e. y ∈ W u(x)}) = 0.

Proof. Suppose that (1) holds. Then ϕ̂ maps the measure of maximal entropy for gt to the

measure of maximal entropy for f ct (which is the same as the measure of maximal entropy

for f t). We thus have ϕ̂∗m = µ. For m-a.e. x ∈M , we then have that ϕ̂−1
∗ µϕ(x) is absolutely

continuous with respect to mx, with a density that is positive mx-a.e. Since gt acts with

positive Jacobian on the conditional measures mx, this implies that for m-a.e. x ∈ M we

have that (ϕ−1
x )∗µϕ(x) is absolutely continuous with respect to mx, again with a density that

is positive mx-a.e. Thus (1) ⇒ (2).

Now suppose that (2) holds. Let hg := htop(f) and hf := htop(f). For z ∈ W u,g(x), we

first relate the measures (ϕz)
−1
∗ µϕ(z) and (ϕx)

−1
∗ µϕ(x) on W u,g(x). As noted in the proof of

Proposition 6.9, we have ϕz = f−ξ(z,x) ◦ ϕx. We then have

(ϕz)
−1
∗ µϕ(z) = (ϕx)

−1
∗ (f−ξ(z,x)

∗ µϕ(x))

= e−hf ξ(z,x)(ϕx)
−1
∗ µϕ(x).

We also compute how these measures behave under iteration by gt. For x ∈M , we have

ϕgtx ◦ gt = fα(t,x) ◦ ϕx. This implies that

(ϕgtx)
−1
∗ µϕ(gtx) = g−t∗ (ϕ−1

x )∗f
α(t,x)
∗ µϕ(gtx)

= ehfα(t,x)−hgt(ϕx)
−1
∗ µϕ(x).
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By the Radon-Nikodym theorem, for each z ∈ W u,g(x) there is a signed measure κz and

a locally mx-integrable function Jz : W u,g(x)→ [0,∞] such that

d(ϕz)
−1
∗ µϕ(z) = Jzdmx + dκz.

By our previous calculations,

(ϕz)
−1
∗ µϕ(z) = e−hf ξ(z,x)(ϕx)

−1
∗ µϕ(x)

= e−hf ξ(z,x)(Jxdmx + dκx).

We conclude that we may take Jz = e−hf ξ(z,x)Jx and dκz = e−hf ξ(z,x)κx in the Radon-Nikodym

decomposition for (ϕz)
−1
∗ µϕ(z). We now define, for mx-a.e. z ∈ W u,g(x),

J(z) := Jz(z) = e−hf ξ(z,x)Jx.

The function J is locally mx-integrable on W u,g(x), so as a consequence we have J(z) <∞

for mx-a.e. z. By the formula J(z) = Jz(z) we can then extend J to a well-defined locally

m-integrable function J : M → [0,∞] that is finite m-a.e. We also have from our calculations

above that

J(gtx) = ehfα(t,x)−hgtJ(x).

We conclude that Z := {x : J(x) 6= 0} is a gt-invariant set.

By ergodicity of gt with respect to m, we have m(Z) = 0 or m(Z) = 1. Suppose that

m(Z) = 0. Then for m-a.e. x ∈M and mx-a.e. z ∈ W u,g(x),

0 = ehf ξ(z,x)J(z) = ehf ξ(z,x)Jz(z) = Jx(z).

Thus for m-a.e. x ∈ M and mx-a.e. z ∈ W u,g(x), we have Jx(z) = 0 This contradicts our

hypothesis that (2) holds.
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Thus m(Z) = 1. Since J(x) <∞ for m-a.e. x, we have

log(J(gtx))− log J(x) = hfα(t, x)− hgt.

Thus
hf
hg
α(t, x) and the linear additive cocycle t are measurably cohomologous over gt. By

the measurably rigidity of the Livsic equation for Anosov flows [45], these additive cocycles

are continuously cohomologous. By the standard criterion for two orbit equivalent flows to

be conjugate [44], this implies that gt is conjugate to f ct with c =
hf
hg

, and this conjugacy

takes the form ϕ̂(x) = ϕ(gω(x)(x)) for some Hölder continuous function ω : M → R. Thus

(2) ⇒ (1).

7 Differentiability of the orbit equivalence

In this section we will complete the proofs of all of our major theorems. We begin by reducing

all of our major theorems to Theorem 2.3. The bulk of the section is then devoted to proving

Theorem 2.3.

7.1 Reductions

We first reduce Theorem 2.5 to Theorem 2.3. To do this we use the following lemma.

Recall that we denote the SRB measure for an Anosov flow f t by mf . We also recall that

l = dimX − 1.

Lemma 7.1. Let X be a closed locally symmetric space of nonconstant negative curvature.

Let f t ∈ VX . Suppose that Q(f) ≥ QX and λul (f
t, µf ) ≤ 2λu1(f t, µf ). Then

1. µf = mf .

2. Q(f) = QX .

3. There is a constant ξ > 0 such that ~λu(f t, µf ) = ξ~λu(gtX).
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Proof. After a homothety of X, we may assume that X has sectional curvatures satisfying

−4 ≤ K ≤ −1, as replacing f t by f ct for a constant c > 0 does not change the hypotheses on

the flow. We then have QX = h(X)/k(X), where k(X) denotes the index of the u-splitting

for gtX and h(X) = k + 2(l − k). Set k := k(X) and h := h(X).

By Ruelle’s inequality we have

Q(f) ≤
∑l

i=1 λi(f
t, µf )∑k

i=1 λ
u
i (f

t, µf )
.

Furthermore, equality holds in the Ruelle inequality if and only if µf = mf [10]. By the

inequalities Q(f) ≥ QX and λul (f
t, µf ) ≤ 2λu1(f t, µf ), we conclude that

QX =
k + 2(l − k)

k
≤
∑l

i=1 λi(f
t, µf )∑k

i=1 λ
u
i (f

t, µf )

≤ 1 +
2(l − k)λu1(f t, µf )∑k

i=1 λ
u
i (f

t, µf )

≤ 1 +
2(l − k)λu1(f t, µf )

kλu1(f t, µf )

=
k + 2(l − k)

k
= QX .

Thus all of the inequalities above are actually equalities. Since the unstable Lyapunov

exponents λui (f
t, µf ) are positive and strictly increasing in i, equality in the second inequality

above holds if and only if λui (f
t,mu

f ) = 2λu1(f t,mu
f ) for all k + 1 ≤ i ≤ l, and equality in the

third inequality holds if and only if λui (f
t,mu

f ) = λu1(f t,mu
f ) for all 1 ≤ i ≤ k. This implies

that there is a constant ξ > 0 such that ~λu(f t, µf ) = ξ~λu(gtX).

The above string of equalities also immediately implies that Q(f) = QX , and also that

equality holds in the Ruelle inequality. Thus we also have µf = mf .

From Lemma 7.1 we see that Theorem 2.3 implies Theorem 2.5. We next show that

Theorem 2.3 implies Theorem 2.2.
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Theorem 2.3 ⇒ Theorem 2.2. We define

`X = {v ∈ Rl : v = c~λu(gtX), c ≥ 0},

to be the positive ray from the origin generated by ~λu(gtX). This is a closed subset of Rl.The

hypotheses of Theorem 2.2 imply that ~λu(f t, ν(p)) ∈ `X for all periodic points p of f t.

By Kalinin’s periodic exponent approximation theorem [36], any f t-invariant ergodic

probability measure ν can have its unstable Lyapunov vector ~λu(f t, ν) approximated arbi-

trarily well by the unstable Lyapunov vectors ~λu(f t, ν(p)) of periodic points. This implies

that ~λu(f t, ν) ∈ `X for all ν. In particular this holds for ν = µf , which implies that the

hypotheses of Theorem 2.3 hold.

We now explain how Theorem 2.3 implies Theorems 1.1, 1.2, and 1.4. First note that

the hypotheses of Theorem 1.1 and Theorem 1.4 imply that the hypotheses of Theorem 2.2

and Theorem 2.5 hold respectively for f t = gtY . In turn this implies from the above that the

hypotheses of Theorem 2.3 hold for f t = gtY . By a homothety of Y we may assume that the

constant ξ is equal to 1.

Clearly the hypotheses of Theorem 1.2 imply that the hypotheses of Theorem 2.3 hold as

well, with ξ = 1. Hence it suffices to show that that if we assume the hypotheses of Theorem

2.3 with f t = gtY and ξ = 1 then Y is isometric to X. We prove this below.

For a Riemannian manifold Y we let σY : T 1Y → T 1Y denote the involution v → −v.

For all t ∈ R we have σY ◦ gtY = g−tY ◦ σY , i.e., σY smoothly conjugates gtY to g−tY .

Theorem 2.3 ⇒ Theorem 1.2. By the conclusion of Theorem 2.3 we have an orbit equiva-

lence ϕ : T 1X → T 1Y from gtX to gtY that is C1+α on center-unstable leaves. By Proposition

7.12 below, we conclude that the center-stable foliation W cs,Y for gtY is C1+α. Since gtY is a

contact Anosov flow, this implies that the stable foliation W s,Y is C1+α. Since the smooth

involution σY maps the W s,Y foliation to the W u,Y foliation, this implies that W u,Y is a

C1+α foliation of T 1Y as well. We conclude that the Anosov splitting of gtY is C1+α. This
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implies that the boundary ∂Ỹ of Ỹ carries a C1+α smooth structure.

Let F : X → Y be the diffeomorphism from X to Y given by these two Riemannian

manifolds having the same underlying smooth manifold S. The map F lifts to a quasi-

isometry F̃ : X̃ → Ỹ that gives rise to a homeomorphism ∂F̃ : ∂X̃ → ∂Ỹ .

Recall that, for v a unit vector in T 1X̃, ξ+(v) denotes the forward projection of v

to ∂X̃ along the geodesic through v, and ξ−(v) denotes the backward projection to ∂X̃.

We use the same notation for projections to Ỹ from T 1Ỹ . Fix some ζ ∈ ∂X̃ and fix a

v ∈ T 1X̃ with ξ+(v) = ζ. Since ϕ is C1+α, it maps W u,X(v) onto a C1+α submanifold

ϕ(W u,X(v)) ⊆ W cu,Y (ϕ(v)) that is transverse to the flow direction of gtY . We then have a

C1+α diffeomorphism,

ξY− ◦ ϕ ◦ (ξX− )−1 : ∂X̃\{ζ} → ∂Ỹ \{∂F̃ (ζ)}.

But the map above is simply ∂F̃ , as can be seen by the standard construction of this boundary

homeomorphism using the Morse-Mostow lemma [3].

We conclude (after performing this construction as well for some ζ ′ 6= ζ) that ∂F̃ is

a C1+α diffeomorphism. In particular it preserves the Lebesgue measure class on these

boundaries. Since the Anosov splitting of gtY is C1, by work of Hamenstädt[25, Corollary

4.6] we conclude that there is some c > 0 such that gtX is C1-conjugate to gctY ; the assumption

that ~λ(gtY , µY ) = ~λ(gtX) implies that c = 1. We can thus apply a corollary of the minimal

entropy rigidity theorem [7, Theorem 1.3] to obtain that X and Y are homothetic. By again

appealing to the equality ~λ(gtY , µY ) = ~λ(gtX), this implies that X and Y are isometric.

7.2 Starting the proof

We proceed now with the proof of Theorem 2.3. We assume that f t ∈ VX and that there

is a constant ξ > 0 such that ~λu(f t, µf ) = ξ~λu(gtX). We will assume that X has sectional

curvatures normalized to K ≡ −1 when X is real hyperbolic and −4 ≤ K ≤ −1 when X
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has nonconstant negative curvature. Since the hypotheses and conclusion of the theorem

are not affected by replacing f t with a rescaling f ct, c > 0, we may assume without loss of

generality that ξ = 1.

We first observe that the equality ~λu(f t, µf ) = ~λu(gtX) implies that f t satisfies the hy-

potheses of Propositions 5.1 and 5.5. We conclude that Df t|Hu,f and Df t|V u,f are both

uniformly quasiconformal. We next apply the synchronization of Proposition 6.4, using the

fact that Df t|Hu,f is uniformly quasiconformal. We obtain a Hölder continuous flow f̂ t that

is a time change of f t, such that this flow is C2 on W cu,f leaves, and we obtain an inner

product 〈 , 〉 on Ĥu,f such that for all x ∈M and v, w ∈ Ĥu,f
x ,

〈Df̂ tx(v), Df̂ tx(v)〉f̂ tx = et〈v, w〉x.

Furthermore the holonomies L̂u of Df̂ t|Ĥu,f are isometric with respect to this inner product.

Fix a continuous inner product on V̂ u,f with norm | · |. Since the splitting Êu,f =

Ĥu,f⊕ V̂ u,f is dominated and obtained as a small perturbation of the corresponding splitting

for gtX , there are constants c > 0 and γ > 1 such that for all x ∈M ,

σ1(Df̂ tx|V̂ u,f
x ) ≥ ceγt.

By Remark 3.1, we may choose a new continuous inner product on V̂ u,f with norm ‖ · ‖ such

that the above inequality holds with the same exponent γ and with c = 1.

We extend the inner product 〈 , 〉 defined above on Ĥu,f to an inner product on Êu,f

by declaring Ĥu,f and V̂ u,f to be orthogonal, and using the inner product with norm ‖ · ‖

described above on V̂ u,f . We then have, for all x ∈M and t ≥ 0,

σ1(Df̂ tx(v)|Êu,f
x ) ≥ et.

We set M := T 1X and let ϕ : M →M be the orbit equivalence from gt := gtX to f t that
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is given by structural stability. We will use ϕ to create a conjugacy ϕ̂ : M → M satisfying

ϕ̂ ◦ gt = f̂ t ◦ ϕ̂, such that ϕ̂ is C1+α on W cu,f leaves. Since ϕ̂ is an orbit equivalence from gt

to f t, this will complete the proof.

To simplify notation, from now on we will write f t, Hu,f , etc. for f̂ t, Ĥu,f ,

etc., i.e., we will proceed as if f t already satisfies the conclusions of the syn-

chronization. This means that Remark 6.8 will be in effect for the rest of the

paper.

As shown above, in our inner product on Eu,f we have σ1(Df t|Eu,f ) ≥ et for t ≥ 0.

We have the analogous inequality for gt, using the inner product on W u,g(x) coming from a

left-invariant inner product on the Carnot group G described in Section 2.1. We let ρx,g and

ρx,f denote the Hamenstädt metrics for gt and f t respectively, taking the constant a = 1 in

the definition. From now on, we will write m for the invariant volume for gt (which is the

measure of maximal entropy) and µ = µf for the horizontal measure for f t (which is also

the measure of maximal entropy for f t).

Lemma 7.2. We have Q(f) ≥ QX .

Proof. For each x ∈M , the metric measure space (W u,g(x), ρx,g,mx) is isometric to a Carnot

group G = GX equipped with its left-invariant Carnot-Caratheodory metric and Lebesgue

measure. This space is Ahlfors kQX-regular. Furthermore this metric measure space admits

a positive kQX-modulus family of curves [50].

By Proposition 6.9, ϕx : (W u,g(x), ρx,g,mx) → (W u,f (ϕ(x)), ρϕ(x),f , µϕ(x)) is a quasisym-

metric homeomorphism between an Ahlfors kQX-regular space and an Ahlfors kQ(f)-regular

space. Since, by the remarks of the previous paragraph, (W u,g(x), ρx,g,mx) admits a positive

kQX-modulus family of curves, by Tyson’s theorem [59] we conclude that kQX ≤ kQ(f),

i.e., Q(f) ≥ QX .

Given the horizontal dimension inequality of Lemma 7.2 and the fact that ~λu(f t, µ) =

~λu(gtX), we conclude from Lemma 7.1 that we actually have Q(f) = QX . This lemma also
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implies that µ is the SRB measure for f t; we will not need to use this until Section 7.5.

Remark 7.3. To provide a positive answer to Question 1.6 using our methods, one would

have to replace the horizontal measure µf in the hypotheses of Theorem 2.3 with the SRB

measure mf . Our methods require the equality Q(f) = QX ; using mf it is possible to prove

the lower bound Q(f) ≥ QX as in Lemma 7.2, but it is unclear how to obtain the upper

bound Q(f) ≤ QX .

7.3 From orbit equivalence to conjugacy

In this section we will assume that Q(f) = QX and that Df t|Hu,f is uniformly quasiconfor-

mal. We will assume that the synchronization of f t has been carried out as above. However,

we will not make any assumptions on the Lyapunov exponents of f t on V u,f for this section

or the next section. Set Q := QX .

Let ∇ be the affine f̄ t-invariant connection on Qu,f (x), x ∈ M , from Proposition 3.9.

Recall that we write π : W u,f (x) → Qu,f (x) for the projection map, f̄ t for the induced

action of f t on Qu,f (x), and L̄u for the holonomies of Df̄ t, which coincide with the parallel

transport maps of the connection ∇. The Lu-invariant inner product 〈 , 〉 on Hu,f descends

by projection to an L̄u-invariant inner product on Qu,f , which we will also denote by 〈 , 〉.

We let dx be the Riemannian metric on W u,f (x) coming from the continuous inner prod-

uct chosen above on Eu,f , and d̄x denote the Riemannian metric on Qu,f (x) given by the

projection of this inner product onto TQu. Of course in our notation dx = dy and d̄x = d̄y

for y ∈ W u,f (x). Then π : W u,f (x)→ Qu,f (x) is a Riemannian submersion; in particular we

have for y, z ∈ W u,f (x),

d̄x(π(y), π(z)) ≤ dx(y, z),

and

d̄x(π(y), π(z)) ≥ inf
π(y)=π(p)
π(z)=π(q)

dx(p, q).

Lastly, since Df̄ t is conformal with respect to our inner products on TQu with expansion
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factor et, we have for each y, z ∈ Qu,f (x),

d̄f̄ tx(f̄
t(y), f̄ t(z)) = etd̄x(y, z).

We show below that π is actually globally Lipschitz for the Hamenstädt metrics ρx,f as

well.

Lemma 7.4. There is a constant C ≥ 1 independent of x ∈ M such that, for each y, z ∈

W u,f (x), we have

d̄x(π(y), π(z)) ≤ Cρx,f (y, z).

Proof. Let x ∈ M be given. By the uniform comparability of the Hamenstädt metric ρx,f

to the Riemannian metric dx, together with the fact that π is a Riemannian submersion, we

conclude that there is a constant c > 0 independent of x such that for any y, z ∈ W u,f (x),

d̄x(π(y), π(z)) = 1⇒ ρx,f (y, z) ≥ c.

Now let y, z ∈ W u,f (x) be arbitrary and set r = d̄x(π(y), π(z)), s = − log r. Then

d̄f tx(π(f sy), π(f sz)) = esd̄x(π(y), π(z)) = 1.

Thus we have

ρfsx,f (f
sy, f sz) ≥ c,

and so

ρx,f (y, z) = e−sρfsx,f (f
sy, f sz)

≥ ce−s

= cd̄x(π(y), π(z)).
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For a given x ∈ M we let Tx : Qu,f (x)→ Rk be the affine chart given by the connection

∇. By ∇-invariance, this maps 〈 , 〉 to the standard Euclidean inner product on Rk.

Furthermore, the transition maps

Tx ◦ T−1
y : Rk → Rk,

are isometries of Rk.

Similarly, recalling that G denotes our 2-step Carnot group on which the unstable man-

ifolds of gt are modeled, for each x ∈ M we have charts Sx : W u,g(x) → G that map G

equipped with its Carnot-Caratheodory metric ρG isometrically onto (W u,g(x), ρx,g). The

transition maps Sy ◦ S−1
x are left translations of G, which are isometries for ρG. We write

mG for the Lebesgue measure on G, which is the kQ-dimensional Hausdorff measure for ρG.

We have a 1-parameter family of expanding automorphisms At of G such that, writing

g = h⊕ v for the Lie algebra of G split into horizontal and vertical subspaces, DAt expands

h by et and v by e2t. Likewise we have the standard 1-parameter family of expanding linear

maps Bt on Rk given by Bt(x) = etx. We say that a homomorphism ψ : G → Rk is

homogeneous if ψ ◦ At = Bt ◦ ψ, i.e., ψ commutes with these dilations.

We say that F is Pansu differentiable at x ∈ G if there is a homogeneous homomorphism

DFx : G→ Rk such that for all y ∈ G we have

DFx(y) = lim
t→∞

B−t(f(x · Aty)− f(x)).

We say that DFx is the Pansu derivative of F at x. See [51] for basic properties of the Pansu

derivative and its uses. The Pansu derivative may be defined more generally for continuous

maps between any pair of Carnot groups, but we will only need the formulation for G and

Rk described above.

We begin with the orbit equivalence ϕ from gt to f t coming from structural stability. We
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will use Proposition 6.10 below to produce a conjugacy between gt and f ct for some constant

c > 0. Since both f t and gt have the same topological entropy kQ, we then have c = 1, and

so gt and f t are conjugate.

Proposition 7.5. There is a Hölder continuous homeomorphism ϕ̂ : M → M such that

ϕ̂ ◦ gt = f t ◦ ϕ̂. Furthermore there is a constant C ≥ 1 independent of x ∈ M such that

ϕ̂ : (W u,g(x), ρx,g)→ (W u,f (ϕ(x)), ρϕ(x),f ) is C-Lipschitz.

Proof. By the remarks above, to produce the conjugacy ϕ̂ it suffices to show that assertion

(2) of Proposition 6.10 holds.

Suppose that this is not the case. Then there is an x ∈ M such that for mx-a.e. y ∈

W u,g(x) we have Jx(y) = 0. From Proposition 6.9 we then have a quasisymmetric homeo-

morphism of Ahlfors kQ-regular metric spaces,

ψ := ϕx ◦ S−1
x : (G, ρG,mG)→ (W u,f (ϕ(x)), ρϕ(x),f , µϕ(x)).

For y ∈ G we define

L(y) = lim sup
r→0

sup{ρx,f (ψ(y), ψ(z)) : ρG(y, z) = r}
r

,

to be the Lipschitz constant of ψ at y. For y ∈ G we define

J (y) = lim
r→0

µϕ(x)(ψ(BρG(y, r)))

mG(BρG(y, r))
.

As per the discussion in [4, Section 4], by the Radon-Nikodym theorem this limit exists and

is finite for mG-a.e. y ∈ G. Since G is a Carnot group, since ψ is quasisymmetric, and since

both G and W u,f (ϕ(x)) are Ahlfors kQ-regular, we may apply [4, Theorem 5.2] to conclude

that L(y)kQ ≤ J (y) for mG-a.e. y ∈ G.

Recall that we have d(ϕ−1
x )∗µϕ(x) = Jxdmx + dκx, where κx is mutually singular with
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respect to mx. Hence we can rewrite the limit defining J as

J (y) = lim
r→0

1

mG(BρG(y, r))

∫
BρG (y,r)

Jx ◦ S−1
x dmG + lim

r→0

(Sx)∗κx(BρG(y, r))

mG(BρG(y, r))

SinceG is Ahlfors kQ-regular andmG is a σ-finite Borel measure, the Lebesgue differentiation

theorem holds on G [33]. Hence, for mG-a.e. y ∈ G, the first limit is Jx(S
−1
x (y)), and the

second limit is 0. We conclude that J (y) = Jx(S
−1
x (y)) for mG-a.e. y ∈ G.

By hypothesis Jx(S
−1
x (y)) = 0 for mG-a.e. y ∈ G. Hence by the inequality L(y)kQ ≤

J (y) we conclude that L(y) = 0 for mG-a.e. y ∈ G. By Lemma 7.4, the projection

Tx ◦ π : (W u,f (x), ρx,f )→ (Rk, dRk),

is C-Lipschitz for some constant C ≥ 1. Set

ψ̄ = Tx ◦ π ◦ ψ : (G, ρG)→ (Rk, dRk),

and observe that

L̄(y) = lim sup
r→0

sup{dRk(ψ̄(y), ψ̄(z)) : ρG(y, z) = r}
r

≤ CL(y) = 0,

for mG-a.e. y ∈ G.

By the Pansu-Rademacher-Stepanov theorem for Carnot groups [61], this implies that

ψ̄ is Pansu differentiable mG-a.e., with Pansu derivative 0 at mG-a.e. point. This implies

that ψ̄ : G → Rk is a constant function, i.e., its image is a single point. But ψ̄ is clearly

surjective, which gives a contradiction. Hence assertion (2) of Proposition 6.10 holds.

We thus have a Hölder continuous conjugacy ϕ̂ : M → M satisfying f t ◦ ϕ̂ = ϕ̂ ◦ gt.

Since m is the measure of maximal entropy for gt and µ is the measure of maximal entropy
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for f t, we have ϕ̂∗m = µ. Since these are measures of maximal entropy, this implies that

ϕ̂∗mx = µϕ̂(x), or in other words, we have Jx ≡ 1.

By the inequality L(y)kQ ≤ J (y) ≡ 1 of [4, Theorem 5.2], this implies that ϕ̂ is Lipschitz

with respect to the Hamenstädt metrics.

7.4 The horizontal derivative

Once again for simplicity of notation, we let ϕ denote the homeomorphism ϕ̂ of the previous

section, so that ϕ ◦ gt = f t ◦ϕ. In this section we will construct a horizontal derivative map

Φ : Hu,g → Hu,f for ϕ. We first give a standard lemma that characterizes rectifiable curves

for the Hamenstädt metric on an unstable leaf (see [28], [16]). Below we let I be a closed

subinterval of R.

Lemma 7.6. Let f t be an Anosov flow with a u-splitting Eu = Hu⊕V u such that ‖Df t(v)‖ =

et‖v‖ for all v ∈ Hu and t ∈ R. Then a continuous curve γ : I → W u(x) is rectifiable with

respect to the Hamenstädt metric ρx,f if and only if γ is Lipschitz on I and for a.e. s ∈ I

we have γ′(s) ∈ Hu
γ(s).

Proof. We first suppose that γ is Lipschitz on I and that for a.e. s ∈ I we have γ′(s) ∈ Hu
γ(s).

By reparametrizing γ with respect to arc length (which does not affect ρx,f -rectifiability),

we may assume that ‖γ′(s)‖ = 1 for all s ∈ I. Pass to Euclidean coordinates on W u
loc(x), for

which we have the affine structure on Euclidean space. Let a < b ∈ I. We can then write

γ(b) = γ(a) +
∫ b
a
γ′(s) ds.

Since γ′(s) ∈ Hu
γ(s), we have ‖Df t(γ′(s))‖ = et‖γ′(s)‖ for all t ∈ R. This implies that,

for t ≥ 0, we have

‖f t(γ(b))− f t(γ(a))‖ ≤
∫ b

a

‖Df t(γ′(s))‖ ds

= et
∫ b

a

‖γ′(s)‖ ds

= et(b− a),
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since γ is parametrized by arc length. Thus, for a fixed T for which ‖fT (γ(b))−fT (γ(a))‖ = 1,

we must have eT (b− a) ≥ 1 which implies that T ≥ − log(b− a). This implies that

β(γ(a), γ(b)) ≥ − log(b− a),

which implies that

ρ(γ(a), γ(b)) = e−β(γ(a),γ(b)) ≤ b− a.

In other words, the restriction of ρx,f to γ in the parametrization of γ with respect to arc

length is 1-Lipschitz. It follows immediately that γ is ρx,f -rectifiable.

Now assume that γ is ρx,f -rectifiable. By uniform comparability of the Hamenstädt

metrics and Riemannian metrics at unit scale, there is a constant c > 0 such that, for all

x ∈M and y, z ∈ W u,f (x),

dx(y, z) = 1⇒ ρx,f (y, z) ≥ c.

By applying f−t to each side and using the estimate ‖Df−t|Eu‖ ≤ e−t for t ≥ 0, this implies

that

df−tx(f
−ty, f−tz) ≤ e−tdx(y, z)

≤ c−1e−tρx,f (y, z)

= c−1ρf−tx,f (f
−ty, f−tz).

From this we see that dx(y, z) ≤ c−1ρx,f (y, z) for x ∈ M , y, z ∈ W u,f
loc (x). Thus rectifiability

of γ with respect to ρx,f implies that γ is also rectifiable with respect to dx. Hence γ is

Lipschitz, and so γ is differentiable at a.e. s ∈ I. By reparametrizing, we may assume

that γ is parametrized with respect to arc length for the metric dx. Let `d denote lengths of

curves measured in the Riemannian metric dx, and let `ρ denote lengths of curves measured

in the Hamenstädt metric ρx,f . Let κ denote the Lipschitz constant of the curve γ in the

metric ρx,f .
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Assume to a contradiction that there is a positive measure subset K ⊆ I on which

γ′(s) /∈ Hu. By passing to a compact subset of K, we may assume that there is a θ > 0 such

that ](γ′(s), Hu
γ(s)) ≥ θ for all s ∈ K. By our domination estimates in the norm ‖ · ‖, there

is a constant χ > 1 and a constant δ > 0 such that for every s ∈ K and t ≥ 0,

‖Df t(γ′(s))‖ ≥ δeχt‖γ′(s)‖.

Let s0 ∈ K be a Lebesgue density point in I for the set K. Let Br denote the interval of

radius r centered at s0. For r small enough we have

|Br ∩K| ≥
|Br|

2
= r.

Let γr : Br → W u,f (x) denote the restriction of γ to Br. There is a constant c > 0 such

that, for t ≥ 0 such that `ρ(f
t ◦ γr) ≤ 1 – so that we can still compare dx and ρx,f locally –

we have

`d(f
t ◦ γr) ≤ c−1`ρ(f

t ◦ γr)

= c−1et`ρ(γr)

≤ κc−1etr

On the other hand we have, recalling that γ is parametrized with respect to arc length,

`d(f
t ◦ γr) ≥ et`d(γr|Br\K) + δeχt`d(γr|Br∩K)

= cet|Br\K|+ δeχt|Br ∩K|

≥ rδeχt.

Choose T large enough that δeχT > κc−1eT . Then choose r = r(T ) > 0 small enough
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that `ρ(f
T ◦ γr) ≤ 1. We conclude from the above that we have

κc−1reT ≥ `d(f
t ◦ γr) ≥ rδeχT ,

which, after canceling r from each side, gives the inequality κc−1eT ≥ δeχT , which contradicts

our choice of T . We conclude that γ′(s) ∈ Hu
γ(s) for a.e. s ∈ I.

Our next proposition gives us, for each x ∈ M , a horizontal derivative of the map

ϕ : W u,g(x)→ W u,f (ϕ(x)).

Proposition 7.7. There is a Hölder continuous homeomorphism Φ : Hu,g → Hu,f , linear

on fibers, such that Φ ◦Dgt = Df t ◦Φ for all t ∈ R, and such that if γ is a C1 curve tangent

to Hu,g then ϕ ◦ γ is a C1 curve tangent to Hu,f satisfying (ϕ ◦ γ)′ = Φ ◦ γ′.

Proof. Fix x ∈M . Recall that Sx : W u,g(x)→ G is the chart for W u,g(x) and the transition

maps Sx ◦ S−1
y : G→ G are isometries of G. Consider the composition of maps

Ψ : G
S−1
x−−→ W u,g(x)

ϕ−→ W u,f (x)
π−→ Qu,f (x)

Tπ(x)−−−→ Rk.

By Proposition 7.5, we have that ϕ is Lipschitz. By Lemma 7.4, π is also Lipschitz. Finally,

Tπ(x) is an isometry to the Euclidean metric on Rk. We conclude that Ψ is Lipschitz with

respect to the Carnot-Caratheodory metric ρG on G and the Euclidean metric dRk on Rk.

By the Pansu-Rademacher-Stepanov theorem for Lipschitz maps between Carnot groups

[51], the map Ψ is Pansu differentiable mG-a.e. on G. The Pansu derivative DΨy : G→ Rk

is a homogeneous homomorphism; since [h, h] = v in the Lie algebra g of G, and since Rk

is abelian, the vertical subgroup V of G satisfies V ⊆ kerDΨy. Hence DΨy descends to a

homogeneous homomorphism DΨy : G/V → Rk; since both G/V and Rk are abelian, DΨy

actually gives a linear map between these two groups.
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For mx-a.e. y ∈ W u,g(x), we then define Φy : Hu,g
y → Hu,f

ϕ(y) by the composition

Φy : Hu,g
y

DSx−−→ G/V
DΨy−−→ Rk

(DT−1
π(x)

)Ψ(πx)

−−−−−−−−→ TQu,f (Dπ)−1
y−−−−→ Hu,f

ϕ(y).

A straightforward exercise gives that Φy is independent of the chosen basepoint x above,

for y ∈ W u(x). We can then extend Φy to be defined m-a.e. on all of M . Since DΨy

is homogeneous and both G/V and Rk have the same scaling factor et, we also have the

equality

Φgty ◦Dgty = Df tϕ(y) ◦ Φy,

for all t ∈ R, for m-a.e. y ∈M .

We next show that Φy is invertible for m-a.e. y ∈M . By the above measurable semicon-

jugacy equation, the set

J := {y ∈M : Φy is invertible},

is gt-invariant and thus either m(J) = 0 or m(J) = 1. Hence it suffices to show that we

cannot have m(J) = 0.

Suppose otherwise, so that for m-a.e. y ∈ M we have that Φy is not invertible at y.

Then, again by the above equation, ker Φ ⊆ Hu,g is a measurable Dgt-invariant subbundle

defined m-a.e. By Proposition 5.1, ker Φ cannot be a nontrivial subbundle of Hu,g, so that

we must have ker Φy = Hu,g
y or ker Φy = {0} for m-a.e. y ∈M . In the first case we conclude

that DΨy = 0 for m-a.e. y ∈ M . This implies that Ψ : G → Rk has Pansu derivative 0

at mG-a.e. y ∈ G, which implies that Ψ is a constant function. This contradicts the fact

that Ψ is surjective. Thus the second case must hold, so that we have ker Φy = {0} for

m-a.e. y ∈M , i.e., Φy is invertible for m-a.e y ∈ G.

Since gt and f t are C1 close, the Hölder continuous subbundles Hu,g and Hu,f of TM

are uniformly close. Hence there is a Hölder continuous homeomorphism IH : Hu,g → Hu,f

that is an isomorphism on fibers. From Df t|Hu,f we define a new Hölder cocycle At on
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Hu,g over gt by Atx = I−1
H ◦Df tϕ(x) ◦ IH . Then Φ̂ = I−1

H ◦ Φ satisfies Φ̂ ◦Dgt|Hu,g = At ◦ Φ̂

m-a.e. for all t ∈ R. Thus, by Proposition 3.4 the map Φ̂ coincides m-a.e. with a Hölder

continuous conjugacy between Dgt|Hu,g and At. Unwrapping the identifications, we obtain

that Φ agrees m-a.e. with a Hölder continuous conjugacy – for which we use the same

notation – Φ : Hu,g → Hu,f such that Φ ◦Dgt = Df t ◦ Φ everywhere for all t ∈ R.

As a consequence, since Φy is Hölder continuous in y we obtain that DΨy is Hölder

continuous in y as well. In particular we conclude that Ψ : G → Rk is continuously Pansu

differentiable with Pansu derivative DΨ. This implies that for any C1 curve γ in G that is

tangent to the horizontal distribution H ⊆ TG, we have that Ψ ◦ γ is a C1 curve in Rk with

(Ψ ◦ γ)′ = DΨ ◦ γ′.

Set Φ̄ = Dπ ◦ Φ. The assertions of the previous paragraph show that if γ : I → W u,g(x)

is a C1 curve tangent to Hu,g, then ϕ̄◦γ is a C1 curve in Qu,f (x) with (ϕ̄◦γ)′ = Φ̄◦γ′. Since

ϕ : (W u,g(x), ρx,g) → (W u,f (ϕ(x)), ρϕ(x),f ) is Lipschitz, the curve σ := ϕ ◦ γ is rectifiable

with respect to ρx,f . By Lemma 7.6, σ is a Lipschitz curve in the Riemannian metric dϕ(x)

on W u,f (ϕ(x)) with σ′(s) ∈ Hu,f
σ(s) for a.e. s. Since π ◦ σ = ϕ̄ ◦ γ, we have

Dπ ◦ σ′ = (ϕ̄ ◦ γ)′ = Φ̄ ◦ γ′,

with this equality holding a.e. on I. Since σ′ ∈ Hu,f a.e. on I, we can invert Dπ in this

equation to obtain

σ′ = Φ ◦ γ′,

a.e. on I. This implies that σ = ϕ◦γ is a C1 curve tangent to Hu,f with (ϕ◦γ) = Φ◦γ′.

Our next lemma shows that ϕ maps the vertical W uu,g-foliation to the vertical W uu,f -

foliation.

Proposition 7.8. For each x ∈M we have ϕ(W uu,g(x)) = W uu,f (ϕ(x)).

Proof. From Proposition 3.4 one obtains that the map Φ is equivariant with respect to
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Lu,g holonomy on Hu,g and Lu,f holonomy on Hu,f . We claim that we may assume that

Φ : Hu,g → Hu,f is an isometry on fibers. If this is not the case, then we replace the norm

‖ · ‖f on Hu,f with the norm | · | given by |v| = ‖Φ−1(v)‖g, which in turn is given by pulling

back by Φ and measuring the norm in Hu,g. By equivariance of Φ with respect to Lu,∗

holonomies, the corresponding inner product ( , ) on Hu,f is preserved by Lu,f holonomies,

and we have |Df t(v)| = et|v| for all v ∈ Hu,f .

We thus assume that Φ : Hu,g → Hu,f is an isometry on fibers. Let x ∈ M and

y ∈ W uu,g(x) be given. It suffices to show that ϕ(y) ∈ W uu,f (ϕ(x)). We view W u,g(x) as a

homogeneous copy of G with x at 0. Since [h, h] = v, there are two orthogonal left-invariant

vector fields X1 and X2 on G, which are tangent to h at 0, such that Y := [X1, X2] is a

left-invariant vector field G for which exp(Y (0)) = y, i.e., y is the image of Y (0) by the

exponential map exp : g→ G.

Let Pg be the plane in Rk spanned by the projection of X1(0) and X2(0) to Rk. Since

[X1, X2] = Y , there is a clockwise oriented rectangle in Pg with sides γ̄i, 1 ≤ i ≤ 4 – each of

which are tangent to either the projection of X1 or the projection of X2 to Rk – such that

the curve γ̄ lifts to a smooth curve γ tangent to Hu,g which has initial point x and endpoint

y. We let γi, 1 ≤ i ≤ 4, denote the lifts of the sides of the rectangle.

Thus σ := ϕ◦γ is a C1 curve tangent to Hu,f which starts at ϕ(x) and ends at ϕ(y). Set

σi := ϕ◦γi. Since the tangent vectors to the curve σ are given by Φ◦γ′, and Φ is an isometry

on fibers of Hu,g and Hu,g, we conclude that `(σi) = `(γi) for 1 ≤ i ≤ 4, where ` denotes the

length of the curve. Since the projections π∗ : W u,∗(x) → Qu,∗ on each side are isometries

on the Hu,∗ bundle (for ∗ ∈ {f, g}), we have that σ̄i := π ◦ σi satisfies `(σ̄i) = `(γ̄i).

Let Pf be the plane in Rk spanned by the vector fields DTϕ(x) ◦Dπf ◦Φ ◦Xi, for i = 1, 2,

where we recall that Tϕ(x) denotes the affine coordinates on Qu(x) given by the f t-invariant

connection ∇. Note that these vector fields are ∇-parallel, and so in the Rk coordinates they

are constant and tangent to a foliation of Rk by parallel lines. Both Φ and the projections

Dπf and Dπg also preserve orientation and angles, so σ̄ gives a clockwise oriented curve
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tangent to Pf such that its sides σ̄1 and σ̄3 are parallel lines of the same length in Pf and

the same is true for σ̄2 and σ̄4. Furthermore, for i = 1, 2, 3 the lines σ̄i and σ̄i+1 meet at

a right angle with the clockwise orientation. This implies that σ̄ is simply a rectangle in

Pf . In particular the endpoint of σ̄4 coincides with the initial point of σ̄1. This implies that

ϕ(y) ∈ W uu,f (ϕ(x)) which completes the proof.

7.5 Vertical differentiability

At this point we split into two cases, depending on whether dimV u,g = 1 or dimV u,g > 1, i.e.,

depending on whether X is complex hyperbolic or quaternionic/Cayley hyperbolic. As in

the proof of Proposition 7.7, since gt and f t are C1 close, the Hölder continuous subbundles

V u,g and V u,f of TM are uniformly close. Thus, as above, there is a Hölder continuous

homeomorphism IV : V u,g → V u,f that is a linear isomorphism on fibers.

We first consider the case where dimV u,g = dimV u,f = 1. We recall that, under our

hypotheses, µ is the SRB measure for f t, as shown in Section 7.2. This implies that µx is

the Riemannian volume on W u,f (x).

Lemma 7.9. Suppose that dimV u,g = dimV u,f = 1. Then we have that ϕ is C1+α on

W uu,g-leaves for some α > 0.

Proof. Let νx,g, x ∈M denote the conditional measures of m on W uu,g-leaves, and similarly

let νx,f denote the conditional measures of µ on W uu,f -leaves. Then νx,g is the Riemannian

arc length on W uu,g(x). Similarly, since µ is the SRB measure for f t, µx is the Riemannian

volume on W u,f (x) and so νx,f is the Riemannian arc length on W uu,f (x).

Since ϕ∗m = µ and ϕ(W uu,g(x)) = W uu,f (ϕ(x)) for each x ∈ M , we have ϕ∗νx,g =

c(x)νϕ(x),f for m-a.e. x ∈ M , where c(x) > 0 is a measurable function of x. We conclude

that for x ∈M , y ∈ W uu,g(x),

L(x) = lim sup
r→0

sup{dx,f (ϕ(x), ϕ(y)) : dx,f (x, y) = r)}
r

<∞,
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form-a.e. x ∈M . This implies by the Rademacher-Stepanov theorem that ϕ is differentiable

a.e. on W uu,g leaves, and thus we have an m-a.e. defined derivative map DϕV : V u,g → V u,f

that satisfies DϕV ◦ Dgt = Df t ◦ DϕV . By the same construction as at the end of the

proof of Proposition 7.7, but with IV instead, we conclude by applying Proposition 3.4 to

this mutiplicative one-dimensional cocycle DϕV that DϕV agrees m-a.e. with a Hölder

continuous homeomorphism from V u,f to V u,g that is linear on fibers. This implies that ϕ

is C1+α on W uu,g-leaves for some α > 0.

For the case when dimV u,∗ > 1, we use the fact that our derivative cocycles are uniformly

quasiconformal on the vertical subbundles as well.

Lemma 7.10. Suppose that dimV u,g = dimV u,f > 1 and that both Dgt|V u,g and Df t|V u,f

are uniformly quasiconformal. Then ϕ is C1+α on W uu,g-leaves for some α > 0.

Proof. We first show that there is a K ≥ 1 independent of x ∈ M such that ϕ|W uu,g
loc (x) is

K-quasiconformal. After replacing the Riemannian metric on V u,f with an equivalent one

(see Remark 3.1) , we may assume that there is a Hölder continuous multiplicative cocycle ψt

over f t such that ‖Df tx(v)‖f tx = ψt(x)‖v‖x. Since G is a Carnot group and we are assuming

Dgt expands Hu,g by et, we then have that Dgt expands V u,g by e2t for each t ∈ R.

Let r > 0 be given and let y, z ∈ W uu,g
loc (x) satisfy dx,g(y, z) = r. Setting t = −(log r)/2,

we then have dx,g(g
ty, gtz) = 1. By the uniform continuity of ϕ, we have

df (f
t(ϕ(y)), f t(ϕ(z)) = df (ϕ(gty), ϕ(gtz)) � 1,

with multiplicative constant independent of y, z, r. Since f t(ϕ(y)), f t(ϕ(z)) ∈ W uu,f (ϕ(x))

(because ϕ preserves the vertical foliations by Proposition 7.8), we then have

df (ϕ(y), ϕ(z)) � (ψ−(log r)/2(y))−1,

for any z ∈ W uu,g(x) that satisfies dx,g(y, z) = r. We conclude that there is a constant K ≥ 1
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such that ϕ : W uu,g(x)→ W uu,f (ϕ(x)) is K-quasiconformal.

As a consequence of the K-quasiconformality, ϕ|Wuu,g(x) is differentiable a.e. on this leaf

with respect to volume [60], and so we obtain a measurable m-a.e. defined derivative map

DϕV : V u,g → V u,f that satisfies DϕV ◦ Dgt = Df t ◦ DϕV . Once again appealing to the

construction at the end of the proof of Proposition 7.7 (with IV instead), we conclude by

Proposition 3.4 that DϕV agrees m-a.e. with a Hölder continuous homeomorphism from

V u,f to V u,g that is linear fibers. This implies that ϕ is C1+α on W uu,g-leaves for some

α > 0.

We use an elementary calculus lemma to show that if f t and gt satisfy all of the hypotheses

of the propositions of this section then ϕ is C1+α. Recall that, by Proposition 7.7, ϕ is C1+α

when restricted to each smooth curve tangent to Hu,g for some α > 0, i.e., ϕ is C1+α along

the subbundle Hu,g.

Lemma 7.11. Let x ∈M and suppose ϕ : W u,g(x)→ W u,f (x) is C1+α along Hu,g and V u,g.

Then ϕ is C1+α.

Proof. Without loss of generality, it suffices to show that ϕ is differentiable at x ∈ W u,g(x).

Pass to coordinates on G for which x corresponds to 0 ∈ G. Let u ∈ g = T0G be the

direction in which we wish to show ϕ is differentiable. Write u = h+ v for h ∈ h and v ∈ v.

We may assume that h 6= 0 and v 6= 0, as otherwise ϕ is differentiable in the direction u by

hypothesis. There are unique left-invariant vector fields X and Y on G tangent to h and v

respectively. Since [X, Y ] = 0, these two vector fields span a plane P in G and we can choose

coordinates on P such that X is parallel to the x-axis (first coordinate direction) and Y is

parallel to the y-axis (second coordinate direction). Then, by hypothesis, ϕ has C1+α partial

derivatives in these coordinates and so ϕ is C1+α on P . Repeating this for all coordinate

directions u, we conclude that ϕ has C1+α partial derivatives in all directions at all points.

We thus conclude that ϕ is C1+α on G.

This completes the proof of Theorem 2.3.
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Our final proposition of this section is required to show that Theorem 2.3 implies Theorem

1.2. We will use the regularity of ϕ to obtain C1+α regularity of the W cs,f foliation for f t.

Note that this invariant foliation is the same for all time changes of f t, and so if we obtained

f t as the synchronization of a C3 Anosov flow f̃ t, then Lemma 7.12 implies that W cs,f̃ is a

C1+α foliation as well.

Proposition 7.12. The W cs,f foliation is C1+α.

Proof. Let x ∈ M and let y ∈ W cs,f
loc (x). Consider the local center-stable holonomy map

hcs,f : W u,f
loc (x) → W u,f

loc (y) for the W cs,f foliation. Since ϕ is a conjugacy from gt to f t, we

have hcs,f = ϕ ◦ hcs,g ◦ ϕ−1, where

hcs,g : W u,g
loc (ϕ−1(x))→ W u,g

loc (ϕ−1(y)),

is the local center-stable holonomy map for the W cs,g foliation. Since the W cs,g foliation is

smooth and ϕ is C1+α on W u,g leaves, this implies that hcs,f is C1+α. We then have two

continuous transverse foliations W u,f and W cs,f with C2 leaves such that the W cs,f holonomy

maps between W u,f leaves are C1+α. By [15, Lemma 31], this implies that W cs,f is a C1+α

foliation.
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[28] Ursula Hamenstädt. A geometric characterization of negatively curved locally symmetric
spaces. J. Differential Geom., 34(1):193–221, 1991.
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Mathematics. Birkhäuser Verlag, Basel, 1984.

103


	Acknowledgments
	Abstract
	Introduction
	The dynamical rigidity theorems
	The horizontal measure
	The dynamical rigidity theorems
	The real hyperbolic case

	Uniform quasiconformality and Anosov flows
	Holonomies for invariant foliations
	Dominated splittings
	Holonomies for linear cocycles
	Anosov flows with dominated splittings
	The neighborhoods in the theorems

	Continuous Amenable Reduction
	From Lyapunov exponents to quasiconformality
	From horizontal exponents to horizontal quasiconformality
	From vertical exponents to vertical quasiconformality

	Hamenstädt metrics and synchronization
	Hamenstädt metrics
	Thermodynamic formalism
	Synchronization
	Quasisymmetry of orbit equivalences
	A criterion for conjugacy

	Differentiability of the orbit equivalence
	Reductions
	Starting the proof
	From orbit equivalence to conjugacy
	The horizontal derivative
	Vertical differentiability

	References

