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Abstract 

One of the major open questions in biology today is how cells operate robustly despite the presence 

of biological noise in their environment. Signaling pathways are often depicted as having defined 

responses to environmental signals, and their protein cascades often are shown to have specific 

responses to doses, timings, and signaling behavior(1, 2). One example of this robust signaling is 

the NF-κB immune pathway which controls responses to many pathogens and cytokines. In 

healthy organisms, NF-κB provides a graduated response based on dose that enables its’ 

subsequent clearance efficiently. In tissue, signaling molecules often have fluctuating 

concentrations(1, 3, 4), yet are able to still create these robust gene expression profiles(5–7). Inputs 

received by cells are unavoidably noisy due to variable secretion and translation of signaling 

factors, propagation through tissues, and fluctuations in molecular concentrations(4, 8, 9). The 

molecular mechanisms behind this robust signaling despite presence of input noise are not fully 

understood. 

Understanding the effect of network noise on signaling is an active area of research, however little 

attention has been given to the single cell specificity and sensitivity under noise. It is clear that 

noise is abundant in the input to NF-κB – after detecting pathogens immune cells secrete a wide 

range of cytokines that serve as input to nearby tissue cells. The input received by any single cell 

thus depends on the dynamics of cytokine secretion and is subject to the noise in the extracellular 

environment. Here, I take a microfluidic approach to understand how and why there is 

heterogeneity in activation of NF-κB, how noise in the input affects NF-κB signaling and 

transcription, and what mechanism the cells use to process and filter this noise. 
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Introduction 

Individual cells often show highly variable and heterogeneous responses in a wide range of 

contexts, from immune signaling to transcriptional activation and to drug response(10, 11). 

Following stimulation with signaling molecules, in pathways such as NF-κB, a portion of cells in 

a population will strongly activate, while others will completely ignore the stimulus and will not 

activate(12). Understanding the source of variable specificity in NF-κB activation is of immense 

importance to fundamentally understanding gene regulation, signaling, immunity, and 

development, as well as in predicting variable drug response and tolerance. Understanding how 

this important signaling network behaves can inform behavior in many adjacent biological 

pathways. 

Understanding the effect of network noise on signaling is an active area of research and 

while some of signaling variability can be accounted for by internal fluctuations in protein 

concentrations, little attention has been given to noise in the input itself. This in turn sets up two 

modes of noise that can affect the dynamics and activation of a pathway. The first is the variation 

in cell state that gives rise to intrinsic noise. The second is the external noise in an input that can 

engage the biological pathway. Here we explore the impact of NF-κB sensitivity through variation 

in intrinsic noise, and the impact of NF-κB specificity through perturbation by external noise. 

Despite previous demonstration of heterogeneous signaling responses in a wide range of 

contexts like development, immune response, infection and cancer, it remains difficult to explore 

the molecular and cellular mechanisms that drive variable behavior in single cells and the 

underlying source of individual cell specificity are unknown in many contexts. This is because 
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once a cellular state is perturbed by a signal, that state ceases to exist. To also understand the 

sensitivity of cells to environmental noise, it becomes imperative to probe response to fluctuating 

environments as well. It is clear that noise is abundant in the input to NF-κB – after sensing 

pathogens, immune cells can secrete a wide range of cytokines that serve as input to nearby tissue 

cells(13–15). The input received by any single cell thus depends on the dynamics of cytokine 

secretion and is subject to the noise in the extracellular environment. How cells deal with noisy 

external fluctuations and create appropriate signaling responses is not well understood, and it is 

central to many signaling problems in health and disease.  

The well curated responses generated by cell populations despite noise in the environment 

and single cell variability(16, 17) may be the result of noise dampening features of gene regulatory 

network motifs(18–20). These network motifs can potentially reduce the detrimental effects of 

noise, however, these features inevitably reduce the responsiveness (sensitivity), speed and 

temporal resolution of signaling systems. Many cellular signaling pathways manage to combine 

high sensitivity and fast speed with noise tolerance, which are seemingly conflicting properties to 

exist in the same signaling system. To understand these properties, we first look at the general 

structure and behavior of the NF-κB pathway 

NF-κB Canonical Pathway Dynamics 

Transcription factor dynamics in gene network regulation is an active area of research and NF-κB 

is a historically well studied example of a dynamically regulated gene. Previous studies within the 

Tay Group and elsewhere have shown that oscillations in the localization of NF-κB transcription 

factors like p65 encode the type and timing of the downstream response. 
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Hundreds of genes use NF-κB through a DNA sequence with a consensus of 5’-GGGRNWYYCC-

3’ (R=purine, Y=pyrimidine, W= A or T, N=any) as an enhancer and promotor activation target. 

The site binds dimers of proteins that contain Rel A (p65), Rel B, p50, p52 and c-rel. Of the 15 

combinations, 13 have been demonstrated and the remaining two have yet to be described(21, 22). 

Rel-A, Rel-B and c-Rel are transcriptional activators, while p50 and p52 homodimers are 

repressors unless bound with secondary proteins. As a result of this variability many regulatory 

patterns can be established with these handful of proteins. 

The full network and subnetworks of proteins in the NF-κB cascade is complex and has 

many potential activators and regulators. We look specifically at the canonical pathway of NF-κB. 

Cells in the resting steady state contain cytoplasmic NF-κB proteins. The dedicated inhibitor and 

transporter of these proteins is the IκB-family molecules which shuttle the NF-κB proteins from 

nucleus to cytoplasm(23). The canonical p65/p50 heterodimers is regulated primarily by IκBα. As 

a result of this bottlenecked regulation, IκB becomes a control point for the expression of 

downstream genes and acts as a loaded spring for the downstream translocation and activation of 

inflammatory genes. The canonical NF-κB activation is thus reliant on the modification and 

inhibition of the IκB inhibitors. While this can happen in many ways, in the canonical pathway a 

complex called IκB Kinase (IKK) phosphorylates IκB proteins leading to their degradation(24, 

25). This releases NF-κB dimers from IκB and allow them to actively shuttle and remain in the 

nucleus. 

IKK is canonically composed of three subunits: two kinases, IKKα and iKKβ and an NF-

κB-Essential-Modifier (NEMO) which acts as a regulatory subunit that tethers the two other IKK 

proteins into a complex. The activation of this complex is tied to TNF stimulation and is activated 
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in a well-understood process(26, 27). TNF stimulation recruits TRADD, RIP-1, cIAP, TRAF2, 

TAB and TAK1 into a megacomplex with the linear ubiquitin assembly complex stabilized by 

linear and k63-linked polyubiquitin chains. When IKK is incorporated into the megacomplex, 

NEMO is ubiquitinated and phosphorylation of IKK resulting in kinase activity induction(28, 29). 

The composition of these megacomplexes depend on ubiquitin modifications and in turn result in 

different paths and timings of IKK and NF-κB activation. 

The enormous amount of genes activated by NF-κB proteins and their dynamic activation 

modalities give this network a diverse and complex system of activation resulting in potentially 

many phenotypes and downstream cell behaviors(30). 

Improper signal processing has been linked to many conditions including chronic 

inflammation, infection and cancer. Loss of function studies alongside biochemical and systems 

biology based studies have elucidated the NF-κB network components and the helped the field 

develop mathematical models to understand and predict the behavior of the pathway(12, 31). 

Despite this, the significant heterogeneity and noise in the cellular environment make it difficult 

to reach an accurate and precise answer to many questions that rely on quantitative signaling 

behavior. 

Understanding Dynamics Inputs in NF-κB 

When cells are stimulated with signaling molecules (i.e. TNF or LPS), some of them show 

complete cytoplasm-to-nucleus translocation of the p65 transcription factor (the hallmark of 

pathway activation), while others ignore the stimulus and show no translocation and no NF-κB 

target gene expression(12). The fraction of cells that respond to a stimulus (signaling input) 
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increases according to dose and despite this seemingly heterogeneous activation, NF-κB 

nevertheless manages to mount specific responses to different signaling molecules, taking into 

account their concentrations and temporal ordering(6, 32). 

Through prior studies of NF-κB under time-varying inputs it has been shown that periodic 

stimulation entrains the NF-κB oscillations in single cells and in the population(33). This creates 

synchronous oscillations with dramatically reduced variability and significantly increased target 

mRNA expression. By contrast, with a constant stimulation, the behavior is very varied and as a 

result preserves some heterogeneity in the population. This underscores the heterogeneous input 

dynamics in the signaling pathway; timing, amplitude and duration of stimulation all have 

important roles in encoding NF-κB oscillations. Short-pulsed stimulation revealed that NF-κB 

integrates TNF area-under-curve (AUC). Cellular microenvironments are highly dynamic and 

present time-varying signals for time varying inputs. 

There has been much research into the underlying mechanisms driving NF-κB response under 

dynamic signaling inputs under different ligands and with different time-varying stimuli. Recently 

there has been work into the general response patterns of NF-κB. It has been shown that there NF-

κB responds to absolute differences in cytokine concentrations. This may be partially responsible 

for the differences in expression levels in time-varying signals. Recent work in NF-κB also showed 

comprehensive gene expression changes that are responsible for changing responsiveness to 

signals after the initial signaling cascade. It is likely that epigenetic changes and transcription 

factor mobilization after the initial stimulation is responsible for these developed and evolved 

adaptative responses. These interesting insights pave the way to help us understand how noise 

changes the NF-κB network and leads to downstream responsiveness and adaptability.  
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It was also recently found that intrinsic noise in the TNF receptor and IκB transcription broadens 

entrainment regions in response to periodic stimulation. In this case the intrinsic noise improves 

information processing creating more robust entrainment and oscillation quality. This observation 

led to the discovery that NF-κB can jump between two stable oscillation modes, termed “mode-

hopping” 

Identification of NF-κB network components that deal with noise 

NF-κB is a thoroughly explored pathways and many of the key network components have been 

identified; this has allowed the community to make a comprehensive in-silico model. This has 

facilitated the identification of important regulatory molecules and network motifs that deal with 

noise. These fundamental findings pave the way for the hypotheses presented in the following 

sections. 

One such noise regulator is the IKK amplification cascade between receptor and NF-κB; this 

process leads to the digital activation of the pathways under the canonical stimulation. There are 

many extensions to the canonical modality that could increase the efficiency of the cascade such 

as positive feedback from TRIF-mediated response(14). Digital activation is an efficient strategy 

to deal with noise in transmission; an all or none response makes it easy to determine activated 

cells and can give a graduated response based on input dosage. 

The roles of repression complexes such as the TNFAIP3 complex is thought to act through 

negative feedback on the IKK cascade and thus is crucial to the long-term responsiveness to 

TNF(34). IκB is the well-known mechanism that creates the oscillations in the response and thus 
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may have a key characteristic as a noise regulator. Negative feedback here eliminates long-

residence times of NF-κB in the nucleus and limits exaggerated responses in the population. 

While NF-κB is well prepared with noise reducing mechanism, through simulations, we find that 

IκB and IKK driven oscillations allow NF-κB to take advantage of cellular intrinsic and extrinsic 

noise and encode and decode periodic signals through entrainment and noisy inputs through noise 

adaptive behaviors. This postulate will be experimentally investigated in this thesis. These results 

provide several directions for further study and will help us thoroughly examine the molecular 

mechanisms behind noise tolerance and usage by NF-κB. The experimentally examine and perturb 

live cells to understand the system, we use a microfluidic setup to precisely engage cells and track 

them over the course of a treatment. 

Microfluidic Methods 

The use of lab-on-chip tools has been adopted in a wide variety of scientific fields and hundreds 

of applications that increase the speed of, miniaturize, or enable previously unfeasible assays have 

emerged in the last decade. The microfluidic toolbox offers many advantages that make it a very 

attractive resource for biological study: reduced sample volume, streamlined assays, precise and 

predictable fluid flow, control of spatiotemporal chemical gradients, and integration with sensors, 

controllers, and automation systems. The main avenues of exploration in this field has thus far 

honed in on the development of tools that replace conventional methods with proof-of-principle 

applications.  

Microfluidics takes advantage of fluid physics at small scales. One of the most important 

phenomena that dominates at the micro-scale is laminar flow and as a result the surface effects it 
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facilitates. Laminar flow results in predictable fluid behavior and minimal mixing between fluid 

streams. Manipulation of fluids at the micro-scale are precise and reproducible. These 

characteristics are useful to not only control spatiotemporal chemical gradients but also to 

manipulate samples via the fluid forces. Operating in a laminar flow regime generally implies that 

mixing of fluids requires special consideration. Some assays require the incorporation of channel 

geometries that enable efficient fluid mixing within a desired residence time. Surface effects arise 

when the high surface area to volume ratio of fluids constrained at the micro scale exist.  

Microfluidics has enabled us to cover large distances and fill many gaps in knowledge by 

combining the mathematical modelling that helped bring this network into the light with the use 

of microfluidics to enable unique dynamic signal propagation and single cell analysis. Prior work 

has been done to develop and utilize high-throughput experimental procedures based on 

microfluidic cell culture devices. These devices are tailored to culture and control cells and follow 

NF-κB dynamics to allow for subsequent gene expression analysis. 

The microfluidic chip that we plan to use in this experiment enables dynamic cell stimulation 

across the time domain at a range of concentrations. Stimulating cells with a function generator 

can be a powerful technique for probing gene networks and for understanding signaling pathways. 

The chip that we will use generates a wide-range of precisely formulated dynamic chemical signals 

at a high sampling rate for use in stimulating live cultured cells and to measure their dynamic 

responses. The chip uses a combinatorial selection of discrete input concentrations to create a 

digital to analog conversion of a time domain function. The chip has been validated and can create 

different waveforms and noise features to help in the study of stochasticity in cellular processing. 
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Cells were imaged in a microfluidic chip mounted on a Nikon Eclipse Ti Microscope to record 

fluorescence time lapse movies of p65-dsRed and H2B-GFP via a Retiga-SRV CCD camera 

(QImaging) in 5 min time intervals. After illumination correction the raw data was segmented and 

tracked through the time lapse movie by a, imaging pipeline in MATLAB. 

Objectives 

We will use microfluidic design principles and bioengineering approaches to interrogate the 

implications of noise in NF-κB; the plan of approach is outlined in the following aims: 

Aim 1: Understand the effect of cellular heterogeneity on information processing in NF-κB 

specificity. 

The NF-κB system can identify distinct inputs and mount an input-specific response. This 

information is encoded by the dynamics of the signaling cascade and decoded by the cell’s 

transcriptional machinery. We will test how fluctuations in the internal cellular environment affect 

the specificity of NF-κB response. This will be done using a different computer vision classifiers 

that can predict activated vs non-activating cells. To answer questions about why some cells 

activate, we use a machine learning algorithm to train a classifier, then apply the classifier to 

unstimulated cells. We can then collect classified unstimulated cells to perform downstream 

analysis through methods such as immunofluorescent staining.  

Aim 2: Understand the effect of signal fluctuations on NF-κB sensitivity. 

We will look into comparisons of modes of stimulation (constant signal or periodic signal) with 

one degree of additive noise (white, colored with given amplitude). By testing the effects of noise 

on different parameters of the system such as activation probability, time to nuclear translocation 



10 

 

and expression level of target genes. We began our investigation of noise sensitivity by using a 

mathematical model of NF-κB response in fibroblasts. The model has been extensively validated 

and recapitulates the major dynamics of the system. We then use the predictions from this model 

to establish experimental tests to verify if we see the expected behavior in living cells.  

To do this we rely on a fluorescently tagged p65 mouse fibroblast line, which allows us to 

temporally monitor NF-κB translocation. The cells will grow in a microfluidic cell culture device 

that is able to generate temporal signals at .5 sec intervals using a microfluidic mixing chip. This 

allows us to create custom-inputs for different chambers on the same device. 
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One Sentence Summary: An image-based machine learning approach discovers mechanisms 

underlying variable activation of NF-κB pathway in single cells 

 

Summary  

Individual cells are heterogeneous when responding to environmental cues. Under an external 

signal certain cells activate gene regulatory pathways, while others completely ignore that signal. 

Mechanisms underlying cellular heterogeneity are often inaccessible because experiments needed 

to study molecular states destroy the very states we need to examine. Here, we developed an image-

based support vector machine-learning model to uncover molecular variables controlling 

activation of the immune pathway NF-κB. Computer-vision analysis predicts the identity of cells 
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that will respond to cytokine stimulation and shows that pathway activation is pre-determined by 

minute amounts of “leaky” NF-κB (p65:p50) localization to the nucleus. Mechanistic modeling 

revealed that ratio of NF-κB to its inhibitor IκB pre-determines leakiness and activation probability 

of a cell. While cells transition between molecular states, they maintain their overall probabilities 

for NF-κB activation. Our results demonstrate how computer-vision can study living-cells and 

discovers mechanisms behind heterogenous single-cell activation under pro-inflammatory stimuli. 

 

Introduction 

Individual cells show unpredictable and highly variable responses in a wide range of contexts, 

from immune signaling to transcriptional activation and to drug response(1–7). For example, 

following stimulation with signaling molecules, a portion of cells in a population will strongly 

activate inflammatory response pathways like NF-κB and downstream transcription factors, while 

others will completely ignore the stimulus and will not activate(8). Determining the sources of 

cellular variability is of immense importance for fundamentally understanding gene regulation, 

signaling, immunity, and development, as well as in predicting variable drug response and 

tolerance(9–12). Despite previous demonstration of heterogeneous signaling responses in a wide 

range of contexts(8, 13, 14) like development, immune response, infection and  cancer, it remains 

difficult to explore the molecular and cellular mechanisms that drive variable behavior in single 

cells and the underlying causes of cellular variability are unknown in many contexts. 

Here, we study the NF-κB system to investigate the underlying sources of cellular 

heterogeneity using a computer vision approach applied to microfluidic live-cell imaging 

experiments. NF-κB is a key transcriptional pathway that is activated by many signaling molecules 
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involved in immunity(15, 16) and controls the expression of hundreds of pro-inflammatory and 

cell fate genes(17). Dysregulation of NF-κB is implicated in many physiological conditions 

including infection, autoimmunity, and cancer(15, 18). Live-cell imaging and single-cell analysis 

have shown that NF-κB activation is highly variable in single mammalian cells. When cells are 

stimulated with signaling molecules (i.e. TNF or LPS), some of them show complete cytoplasm-

to-nucleus translocation of the p65 transcription factor (the hallmark of pathway activation), while 

others ignore the stimulus and show no translocation and no NF-κB target gene expression (Figure 

1.1a). The fraction of cells that respond to a stimulus (signaling input) increases in a dose-

dependent manner(19) and despite this seemingly noisy single-cell behavior, NF-κB nevertheless 

manages to mount specific responses to different signaling molecules, taking into account their 

concentrations and temporal ordering, and regulates gene expression in an input specific manner(3, 

13). Despite the plethora of research uncovering response relationships to input conditions, it is 

still unclear as to what underlying molecular components or mechanisms control variability in NF-

κB pathway activation alongside the input. The accurate functioning of signaling pathways like 

NF-κB is crucial to maintaining healthy immunity and immune development and integration of 

internal cell state and external stimuli is important to understand the functional consequences of 

noise in the system (Figure 1.1b). Despite several studies that significantly contributed to our 

understanding of cellular variability and noise(1, 20–24), the ability of NF-κB and other signaling 

pathways to accurately interpret complex environmental signals and create specific gene 

expression responses is mostly unexplained. 
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Figure 1.1: Pre-stimulation cell images can be used to generate a predictive model for NF-

κB activation.  (a) Under TNF stimulation, a fraction of individual cells persists in an un-activated 

state and do not show nuclear NF-κB localization, while others activate and NF-κB transcription 

factor p65 accumulates in the nucleus. Example images show activated cells, indicated with red 

check marks. (b) Analysis of single cells under constant dose of TNF shows variable single cell 

activation in the population: a given cell may or may not respond to the TNF stimulus. It is unclear 

whether single cell variability is due to purely stochastic processes (i.e. if a given cell can randomly 

achieve activated state), or if it is deterministic where only sensitive cells activate under the TNF 

input. (c) We use microfluidic cell culture to stimulate cells with TNF signals and image the 

nuclear localization of NF-κB over time in single cells. Analysis of individual cells reveals NF-κB 

localization traces (0.1ng/mL TNF stimulation shown on the right, stimulation starts at t=0). (d) 

Single cell traces reveal heterogenous activation and subpopulations of active and inactive cells. 

(e) We record pre-stimulation images of mouse 3T3 fibroblast cells that express p65-dsRed and 

H2B-GFP reporters and feed them into our machine learning pipeline.  

 

The challenge in understanding the cause of heterogenous responses in signaling and gene 

regulation is a classic observer effect problem - we can only identify the responding (i.e. activated) 

cells after we stimulate the cell population with signaling molecules, which will inevitably perturb 

the cellular states we wish to examine. Many signaling pathways, including NF-κB, contain 
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multiple feedbacks that upon exposure to an external signal rapidly change the molecular 

composition of the pathway(25) which fundamentally limits the accuracy and power of repeat 

stimulation experiments(8, 26). This presents a fundamental difficulty in determining how pre-

existing cell-to-cell differences impact the probability of any given cell to respond to a stimulus, 

especially in short term cell states that arise from systemic changes in negative and positive 

feedback regulation. One way to circumvent this problem is by use of mathematical modeling(27, 

28). Modeling of pathway dynamics can reveal important insights and general patterns of noisy 

events, but, are bound by the underlying assumptions of the models and can offer many plausible 

explanations for cellular heterogeneity(29) or require monitoring multiple components of the 

system for validation(30). Because of these experimental and theoretical limitations, molecular 

mechanisms underlying important cellular behaviors like variable drug response, digital pathway 

activation, and signal tolerance are limited and often unclear(8, 31–33). 

To study the molecular mechanisms behind variable NF-κB activation in single cells we 

adopted an image-based machine learning approach to predict which individual cells will activate 

the NF-κB pathway in response to an inflammatory stimulus. On many occasions, machine 

learning algorithms have been shown to exceed human decision making on complex game 

problems(34, 35). Machine learning has also previously been used to extract pathophysiological 

outcome predictions from images of tissue and inform classification of differentiation, disease 

state and infection(36, 37). By imaging living cell morphologies before, during and after chemical 

stimulation, we were able to use the cell image before stimulation to predict whether that cell will 

activate the NF-κB pathway or not. We developed an image-based support vector machine (SVM) 

to predict outcomes of chemical stimulation in individual cells (see Supplemental Information). 

Our computer-vision based method classifies cells into responding and non-responding groups 
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based solely on the unperturbed cell’s image and is able to predict which cells will respond to or 

ignore TNF stimulation with 79.4% accuracy. As this prediction is done on cells that are not 

chemically stimulated, our approach allows studying how the cell’s unperturbed state differs 

between responding vs. nonresponding cells.  

 

Results 

Machine learning predicts single-cell NF-κB activation from pre-stimulation images 

To develop a predictive machine learning model for NF-κB activation in individual cells, we first 

performed live-cell stimulation experiments to generate a reference data set. We used a high 

throughput microfluidic cell culture platform(38) to chemically stimulate and quantitatively 

measure NF-κB response in cultured mouse fibroblast cells (Figure 1.1c-e). These cells express 

p65-dsRed and H2B-GFP fluorescent reporters(8) to track NF-κB nuclear translocation in real-

time. In activated cells, cytoplasmic NF-κB (p65) rapidly moves into the nucleus in a digital 

fashion(8). Cells were first imaged unperturbed for 1.5 hours, stimulated using the automated 

microfluidic system with TNF (0.1 ng/mL) and monitored for 6 hours. Custom image analysis 

software was used to track the nuclear localization of p65 and assign a label to each cell (activated 

vs. not-activated)(38). 

To determine the characteristics of single cells that are responsible for activation we then 

assigned representative features for single cell images and analyzed predictor correlations (See 

Supplementary Information) on our defined cell features (Figure 1.2a) in a single dosage dataset 

(Supplementary figure 1.1). We also expanded the experimental dataset from a single TNF dose 

to a range of doses and reported their individual accuracies (0.005 to 5 ng/mL, n=3456, 

Supplementary Figure 1.2a). Analyzed together using the SVM algorithm, the total accuracy is 
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79.4%. We also tested an alternate cell activation criterion using different single cell p65 trace 

patterns as categories (Supplementary Figure 1.3a) on a single dose (0.05 ng/mL) and found that 

while some trace patterns are able to be classified by the model, this does not generally hold and 

has lower accuracy than binary classification (Supplementary Figure 1.3b). For our binary 

classifier labelling we use a mean nuclear p65 peak height threshold of 500 (nuclear p65peak - 

nuclear p65t=0) (Supplementary Figure 1.4a). We also tested with different machine learning 

models and using different thresholding values for activation based on peak height and chose our 

threshold to balance the sample number and prediction accuracy of activated cells. While both 

CNN and tree classifiers are able to classify activation more accurately than the SVM, feature 

analysis for both CNN and tree classifiers is typically inaccessible or difficult. Overall, we can 

accurately predict individual cells’ TNF response from their pre-stimulation images, which 

strongly suggests the existence of deterministic causes underlying NF-κB response in single cells. 
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Figure 1.2: Machine-learning predicts NF-κB activation in single cells from pre-stimulation 

images. (a) We generate descriptive traits for each single cell image and analyze correlations 

between pre-stimulation traits and NF-κB activation probability. (b) Using a subset of highly 

predictive features (n=8), UMAP corroborates the clustering of a highly predictive fraction of cells 

that are TNF sensitive and TNF resistant. The cells indicated with red dots have high probability 

of activating NF-κB under TNF stimulation. (c) We determined the top feature of activation 

probability to be the mean nuclear fluorescence of the NF-κB (p65-dsRed) signal in the nucleus 

before any exposure to TNF. The plot shows the correlation of traits to single cell activation 

probability, with log(fold change) of traits from predicted active cells to predicted inactive cells 

on the x-axis and significance of difference on the y axis determined by t-test. Other highly 

predictive features include the standard deviation of nuclear p65, mean nuclear phase intensity, 

major axis length and a texture feature describing information measure of correlation in the 

nucleus, as well as aggregative image features like Otsu dimension, and SFTA (*** = 0.001). (d) 

UMAP plots of several highly predictive features determining NF-κB activation in single cells.  
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Leaky NF-κB localization is the primary predictor of single-cell activation 

 

To understand the characteristics that underlie activation, we then identified a subset of highly 

predictive features that correlate with the cell’s likelihood to become activated, including the basal 

(pre-stimulus) level and standard deviation of nuclear NF-κB and several texture features (Figure 

1.2b). Using these features, cells can be visualized by Uniform Manifold Approximation and 

Projection (UMAP), which present “TNF-sensitive” and “TNF-resistant” cell regions (Figure 

1.2c). Each point on the UMAP projection represents a cell which occupies a particular state with 

different amplitudes for the image features we previously determined. The UMAP plot shows cells 

segregate through variables unrelated to activation; we found that features relating to size and sum 

of protein are responsible for creating this divide (Supplemental Figure 1.4b). Analysis of the 

contribution of individual cell morphology features to the prediction revealed that most of the 

variation in single cell predictions is explained by a single feature – the nuclear p65-dsRed levels 

before stimulation (r = 0.62), which showed a significant difference between TNF-sensitive and 

TNF-resistant cells. 

While nuclear p65 was the most significant, we also explore the relationship between 

different features to see the effect of coupling on our variables: despite the very significant p-

values for many features, often times many features are coupled in non-linear ways. While a large 

amount of variance can be explained using nuclear NF-κB, additional features increase the 

prediction for different cell states (Supplementary Figure 1.5a,b). Interestingly, the combination 

of p65, H2b and phase features can all used in one decision tree to isolate a subpopulation of 

inactive cells (Supplementary Figure 1.5d). To understand some of the underlying processing 

occurring within the algorithm, we looked into correlations in this subpopulation. Dissecting this 
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highly coupled subpopulation from Supplementary Figure 5d in turn showed remarkable 

correlation with many features that gave high p-values but did not have high fold changes.  

Although nuclear p65 prior to stimulation was the most predictive feature for cell 

activation, nuclear texture features and H2b channel features are also highly predictive components 

of the classifier. To investigate whether other variables were acting as proxies for nuclear p65, we 

look to see if we could substitute phase image alone for biological markers in the other channels 

(accuracy = 73%, Supplementary Figure 1.5c). While some of the features did show high 

correlation (otsu: r=0.600), many other features had much lower correlations (Supplementary 

Figure 1.6). The clustering of correlations shows that there may be multiple underlying biological 

features that are being represented. For example, H2b feature sensitivity may be indicative of 

exogenous factors like nuclear import/export(39) and cell cycle(40) playing a role in NF-κB 

activation probability. Using gray level co-occurrence matrix (GLCM) features from the phase 

channel, we used metrics like entropy and measure of information that reflect different features of 

adjacent image pixels to determine if nuclear texture was predictive of NF-κB activation. The 

mapping of these various texture features onto our UMAP space (Figure 1.2d) show that highly 

activated cells have more heterogenous nuclear morphology with low pixel correlation, and that 

resistant cells have more homogenous nuclei with high pixel correlation. These features are 

suggestive of chromatin openness(41–44) and epigenetic factors having a potential relationship to 

NF-κB activation.  

 

Cells transition between multiple states but maintain their overall propensity for pathway 

activation   
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To further characterize the unperturbed cell states, we look at the time window leading up to 

activation. By using multiple pre-stimulation images, we have the unique opportunity to look at 

the trajectories of individual cells in the UMAP space over time and see the short-term state 

transitions of a given cell before exposure to TNF (Figure 1.3a). Surprisingly, we find that the 

resting (unstimulated) cells do not occupy a fixed parameter state and instead show dynamic 

transitions between different states. In other words, important state features such as nuclear p65 

level and nuclear texture (indicative of chromatin availability) actively fluctuate in unstimulated 

cells. Plotting several features over time for single cells reveals coordinated changes in nuclear 

texture and nuclear NF-κB (p65) before stimulation (Figure 1.3b) and is further observed by 

plotting the covariance between variables (Supplemental Figure 1.6). As cells change over time, 

the image features that are changing are often correlated. This could suggest that there is 

compensation from some features to others as cells dynamically change state. Importantly, while 

there are often changes in state features during these transitions, the overall prediction score for 

NF-κB activation for these single cells does not change significantly (Figure 1.3c). The cells 

maintained their overall propensity for NF-κB activation under TNF stimulation, while actively 

transitioning between multiple cellular states. This result indicates that cellular sensitivity towards 

cytokine stimulation may be stable despite the fluctuations present in our features and within the 

cells before stimulation. To look at how stable the prediction score is at earlier timepoints, we look 

at single cell autocorrelation of the prediction score. The correlation remains high even 35 mins 

prior stimulation (r = 0.78, n = 1109 cells, pairwise Pearson’s Correlation) (Figure 1.3d). While 

35 minutes may not be enough to capture the regime of long term state (ex. Cell cycle), it captures 

the relevant timescales of the NF-κB system state right before stimulation, as cells experience 

changes in pathway protein composition even at steady state(25). This indicates that while the cells 
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do make transitions on the UMAP space to different states, they tend to stay within the same 

grouping with respect to activation prediction. 

 

 

Figure 1.3: Resting cells dynamically transition between different states but maintain their 

overall NF-κB activation probability. Imaging of single cells before, during and after stimulation 

enables analysis of single cell state stability. (a) We use selected cellular features across multiple 

time points to analyze the trajectory of single cells across the latent UMAP space before 

stimulation. Colored lines show the temporal trajectories of 4 example cells on the UMAP plot 

before stimulation with TNF. Cells transition between various points before TNF stimulation.  (b) 

Individual cells show coordinated changes in state features while transitioning. We show the 

dynamic changes in the level of various predictive features for these cells. Time is given in minutes 

before stimulation (stimulation starts at t=0). (c) While cells transition between different points 

with different transition distances, their probability to activate NF-κB (given by the prediction 

score of our algorithm) remains the same. (d) Autocorrelation of the prediction score among single 

cells across pre-stimulation time points remains stable 35 mins before stimulation (r = 0.78, n = 

1109 cells, pairwise Pearson’s Correlation) (e) Single cells are clustered in the UMAP space, by 
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Figure 1.3 (continued) local adjacency into communities to look for activation differences by 

state (color indicates group). (f) Analyzing endpoint data after TNF stimulation by individual state 

clusters shows different fractions of activated cells for different states. There is activation 

similarity in adjacent clusters, and (g) 73.73% of all cell transitions are within or to an adjacent 

cluster. Shown is cumulative distribution function of state transitions by transition distance (Red 

X indicates average distance between clusters). (h) Aggregated trajectories reveal a state velocity 

depicting activation score movement across the population.  

 

To confirm that the cells maintain their activation probability through stimulation, we 

clustered all single cells to look for differences between states after TNF is introduced (Figure 

1.3e) (see Supplementary Information). Analysis of the activation fraction (i.e. the population 

fraction of cells activating NF-κB) after TNF stimulation of the different state clusters reveals that 

the different states indeed have different activation fractions (Figure 1.3f). Adjacent cell clusters 

have similar activation probabilities and 73.71% of all transitions happened within or to an 

adjacent state cluster (Figure 1.3g). In other words, while cells transition between various 

parameter states, they maintain their overall sensitivity towards TNF stimulation. We also looked 

at how dosage plays a part in the magnitude and fraction of activation. Interestingly, while the 

magnitude of activation followed similar behavior across states (Supplementary Figure 1.7b), 

the fraction of activated cells varies across dose for different states (Supplementary Figure 1.7c). 

While some cells remain persistently sensitive or resistant, there are other cells that have their 

activation profiles dictated by TNF dose. This supports the hypothesis that pre-existing cell 

features govern activation or resistance to TNF input.  

To see if there was regularity in transitions, we looked at average cellular transitions across 

the UMAP space. Aggregating single cell trajectories across the UMAP space can be used to 

understand the state velocity across the population (Figure 1.3h). We find that the average 
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transition of single cells follows generalized patterns and indicates that while the transitions might 

appear non-uniform at the single cell level, there are average population level movements. 

 

Mechanistic modelling shows that IκB:p65 ratio drives p65 leakiness and activation probability of 

a given cell 

 

Our machine learning analysis revealed that leaky (pre-stimulation) p65 localization to be the main 

predictor of single cell activation of NF-κB. There are many different NF-κB regulators that can 

influence p65 nuclear localization in resting unstimulated cells. This “leakiness” has been 

attributed to mechanisms of nucleo-cytoplasmic shuttling of IκB and NF-κB (p65) in resting 

cells(39, 45, 46) and observations that basal nuclear NF-κB abundances have important biological 

consequences on pathway activation has been elucidated(47, 48). However, the NF-κB pathway is 

robust to environmental fluctuations and noise, and many built-in negative feedback mechanisms 

(Figure 1.4a) prevent spontaneous activation (nuclear import of p65) in the absence of stimulation. 

Nevertheless, our imaging data reveals that many cells show minute amounts of “leaky” nuclear 

p65 (localization without stimulus) (Supplementary Figure 1.8), which has been observed in 

cells(39) but not thoroughly investigated regarding activation. We find that this small but 

significant pre-stimulus p65 localization pre-determines the sensitivity of the mouse fibroblast 

cells in responding to upcoming TNF challenges.  
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Figure 1.4: Simulations suggest that leaky NF-κB localization and overall NF-κB response is 

predetermined by the ratio of IκB to NF-κB proteins in single cells. (a) Simplified schematic 

of the NF-κB pathway used in simulations. IκB provides negative feedback to the pathway, 

preventing NF-κB nuclear localization in unstimulated cells. (b) tSNE mapping of simulated single 

cells on NF-κB pathway protein levels shows anti-correlated Nuclear NF-κB and IκB/NF-κB ratio 

in single cells. (c) Simulations predict a correlation between nuclear NF-κB at t=0 and NF-κB peak 

height after stimulation and consequently an inverse correlation between NF-κB at t=0 and the 

IκB/NF-κB ratio. (d) Activated live single cells confirm the prediction and show significant 

correlation between nuclear NF-κB at t=0 and NF-κB peak height after stimulation. (e) Pre-

stimulation NF-κB nuclear fluorescence accounts for a high degree of variance and activated live 

single cells have a significantly higher level than inactive cells. (f) Simulations suggest that 

increasing IκB/NF-κB ratio make cells more resistant to activation under TNF stimulation. 

 

To understand the molecular mechanism behind p65 nuclear leakiness, and specifically 

how it could lead to increased TNF sensitivity and NF-κB activation probability, we explored a 

mathematical model of NF-κB pathway in single cells(8, 14). This model accurately reproduces 

the experimentally measured NF-κB dynamics in a wide range of conditions in the mouse 

fibroblast cells used in our study.1,6,11,12 We performed simulations and generated thousands of 
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dynamic traces that describe nuclear NF-κB (p65) localization in single cells stimulated with TNF. 

We then analyzed the molecular composition of each simulated cell and its NF-κB activation 

profile. We found that variability in levels of IκB, the main inhibitor of NF-κB (p65) keeping it in 

the cytoplasm, explains the observed NF-κB leakiness. In addition to binding to p65 and keeping 

it in the cytoplasm in unstimulated cells, IκB acts as a dynamic negative feedback regulator of the 

pathway, since IκB is a direct target gene of NF-κB. IκB is produced when NF-κB pathway is 

activated and p65 enters the nucleus. It is of note that the leaky nuclear p65 we observe is correlated 

to total p65 present in the cell. Because many of these variables are entangled in the pathway, 

changes in one protein typically reflect changes across many proteins in the pathway.  

Using dynamic simulations, we perturbed the IκB/NF-κB ratio in single cells prior to TNF 

stimulation and determined the resulting likelihood of pathway activation for single cells (n=1000) 

(Supplementary Figure 1.9b). We find a major difference in cellular activation probability and 

peak NF-κB amplitude for different IκB levels (Supplementary Figure 1.9c). Counterintuitively, 

cells with high initial IκB levels require a smaller TNF dose to achieve NF-κB activation, whereas 

cells with low initial IκB levels are very resistant to any TNF dose. This surprising finding is 

explained by the facts that the probability of activation depends on the IκB/NF-κB ratio, and not 

the total level of IκB, and that the IκB/NF-κB ratio is anti-correlated to the total IκB level (Figure 

1.4b, Supplementary Figure 1.9a). Expression differences between activators and repressors 

have the capability of producing large variance in phenotype differences like we see with NF-κB 

activation(49–51). Our simulations suggest that a pre-existing imbalance in the NF-κB negative 

feedback is responsible for increased TNF sensitivity in single cells, and that the activation 

probability of individual cells is pre-determined by the molecular ratio of IκB to NF-κB in the cell 

(Figure 1.4c). 
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Experiments show that IκB:NF-κB ratio is the main determinant of cellular activation probability  

 

To validate our modeling predictions experimentally, we analyzed live single cells by time-lapse 

microscopy and immunofluorescence. First, we found that those cells that responded to TNF 

stimulus had total nuclear NF-κB (p65) at t=0 significantly correlated with the NF-κB peak height 

after stimulation (Figure 1.4d, p=1.5e-111), and on average, show a five-fold higher level of 

“leaky” nuclear p65 before stimulation than those that did not respond (Figure 1.4e, p = 1.35E-

13).  It is important to note that the low level of nuclear leakiness we observe is only about 12% 

of the total fluorescence in a given cell and is far below what is seen during activation. This small 

but significant difference shows that the regulation of the steady state (i.e. pre-stimulus) NF-κB 

localization is an important determinant of NF-κB activation and demonstrates the power of 

utilizing computer vision to analyze single cell responses.  

To experimentally validate our hypothesis that the IκB/NF-κB ratio is driving activation 

probability from the modeling, we stained unstimulated cells for IκB-α protein expression and 

analyzed the relationship between IκB and NF-κB in individual cells using immunofluorescence 

(Figure 1.5a). We segmented the nuclear and cytoplasmic compartments and found that, as 

predicted by our simulations, there is a significant inverse correlation between the IκB/NF-κB ratio 

and leaky nuclear p65 localization (Figure 1.5c, ρ=-0.26, p=2.7E-11), which is the main feature 

that determines cell activation upon TNF stimulation.  
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Figure 1.5: Single-cell activation is largely pre-determined by the NF-κB/IκB ratio. We 

validated our machine learning and modeling predictions in immunofluorescence staining 

experiments. (a) Image of unperturbed 3T3 cells stained with IκB-α with fluorescent p65 and H2B 

reporters. (b) High scoring fixed cells are mapped onto UMAP. (c)  There is a significant inverse 

correlation between leaky nuclear NF-κB localization and IκB/NF-κB Ratio. (d) IκB/NF-κB ratio 

is significantly correlated with nuclear NF-κB state at t=0 in predicted fixed cells, and there is a 

significant difference between IκB/NF-κB ratio, leaky nuclear NF-κB localization and total IκB as 

well as cellular area.  

 

Next, we mapped the fixed-and-stained cells onto our UMAP visualization of the previous 

live imaging data (Supplementary Figure 1.2b) allowing us to infer IκB localization on our 

previous experiments for high scoring cells (Figure 1.5b). We find that there is indeed a significant 

difference in nuclear NF-κB, IκB/NF-κB Ratio, and total IκB as well as cellular area, validating 

our prediction that IκB/NF-κB ratio is driving activation probability in NF-κB (Figure 1.5d). 
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Discussion 

 

The underlying molecular sources of noisy and variable cellular responses can be challenging to 

study due to a fundamental difficulty of analyzing cellular states without disturbing them. Here, 

we adopted an image-based machine learning approach to predict the identity of cells that will 

respond to a biochemical signal and experimentally investigated them. Overall, our demonstration 

of machine learning in the identification and exploration of noisy NF-κB activation enables cellular 

analysis through a prospective lens. We supplemented our computer-vision approach with 

additional single cell experiments and mechanistic modeling to study how cellular states affect the 

probability of heterogenous signaling in immune regulation.  

Our study revealed several molecular determinants of cellular states that lead to variable 

signaling responses in the NF-κB pathway. Previously, there has been conjecture as to how NF-

κB signaling is regulated, and metrics such as cell cycle(40) stage and basal NF-κB levels(39) have 

previously been implicated. In addition to this, we find that the cell-to-cell variability in NF-κB 

activation can largely be explained by a pre-existing difference in the ratio of the NF-κB and its 

inhibitor, IκB. In cells that are not stimulated by a ligand, the p65 (NF-κB) transcription factor is 

bound by its inhibitor IκB and is kept in the cytoplasm. When the cells are exposed to a ligand, 

IκB degrades and NF-κB transcription factors like p65 rapidly translocate to the nucleus and 

regulate inflammatory genes. These genes are expressed in a ligand specific manner and have 

important functions in immunity, pathogen-host interactions, as well as development of adaptive 

immune cells. Therefore, studying which cells would show NF-κB translocation (the hallmark of 

NF-κB pathway activation) is important to understanding of cellular information processing and 

cellular variability during immunity. 
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We find that the cells with a lower IκB: NF-κB protein ratio show small amounts of 

translocation to the nucleus even without ligand stimulation, which we term “leakiness”. We also 

found that leaky cells that have a low IκB: NF-κB ratio are more sensitive to TNF stimulation, and 

readily respond when exposed to this signal. It remains an open question as to what leads to this 

variation and leakiness in the IκB/NF-κB ratio: one intriguing possibility is that epigenetic variance 

in genes encoding for NF-κB network components enforce the variable activation chance we 

observe akin to certain modes of drug tolerance(32, 52). Such epigenetic changes could perhaps 

explain the observed predicative power of nuclear texture features we measured (Figure 1.2d), 

and we plan to address this possibility in follow-up studies.  

Another possible explanation for our observations is that cells that are less sensitive to TNF 

(i.e. those that are not leaky) do not have a functioning NF-κB network. However, in our 

experiments the cells that show leakiness as well as those that are not leaky all activate and show 

complete NF-κB translocation at sufficiently high TNF doses, which shows that they have intact 

IKK/ NF-κB network and transport mechanisms. On the other hand, our pathway simulations 

showed that simple changes in the protein abundance of p65 and IκB are sufficient to observe 

leakiness and increased sensitivity to TNF. Such protein abundance changes can happen due to a 

variety of factors, including the possible epigenetic factors that we discussed above, or cells being 

exposed to previous signals that change their transcriptional states. 

Through dynamical imaging of cells before and after stimulation, we found that resting 

(unstimulated) cells mostly maintain their sensitivity state at various time points, indicating the 

stable nature of the underlying NF-κB architecture in response to TNF. However, while cells 

maintain their overall sensitivity towards future TNF stimulation, these cells actively sample 

various molecular states. We find that most of the NF-κB response variability is explainable, but 
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the cells do undergo spontaneous state transitions, which is plausible explanation for the NF-κB 

activation variability that cannot be explained by our algorithm alone. While the NF-κB system 

has many components to help maintain its sensitivity towards chemical signals, there is still an 

element of stochastic state fluctuations that result in creating diversity in single cell and ultimately 

population behavior. Such phenotypic diversity was shown to be advantageous for a cell 

population when responding to rapidly changing environmental conditions. Cytokines like TNF 

often activate multiple signaling pathways, and stratified state-based activation could provide a 

way to achieve specific responses for specific cell states at different dose ranges. 

Our findings suggest an alternate characterization for signaling variability in mammalian 

signal transduction and offers the interesting possibility that activation heterogeneity is a proxy for 

cell state that a cell can interpret and act on(53). The prevalence of these state niches is further 

evidence that cell populations are well equipped at differentiating diverse and dynamic signals 

through cellular specialization even in an equilibrium population. In fact, the matching of 

activation probability, heterogeneity in the IκB/NF-κB ratio and nuclear morphology is indicative 

of regulation mechanisms in place for decoding different signaling patterns for a variety of 

different cellular states.  

 

Materials and Methods 

Experimental Model and Subject Details 

Knockout p65-/- mouse 3T3 fibroblasts were engineered with p65-DsRed under the native p65 promotor 

(Tay et al., 2010) and a minimum fluorescence clone was selected to represent endogenous expression of 
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NF-κB and the pathway dynamics. A ubiquitin-promotor driven H2B-GFP cassette provides a nuclear 

marker for image processing. 

Microfluidic Cell Culture 

Cell culture chambers are made of PDMS and coated with fibronectin (FC010-10MG) overnight. Cells are 

seeded at a constant density of ~20,000 cells/cm2. Cells are taken at 100% confluence by incubating with 

.25% trypsin-EDTA (25200-056) for 5mins prior to loading and are cultured for 5 hours before stimulation. 

Cells were cultured using standard conditions for cell culture (5% CO2 and 37°C) and maintained using an 

incubation chamber during imaging. TNF--α (PMC3014_3671982503) was diluted in Fluorobrite DMEM 

media (A1896701) with 2x glutamax (35050061), pen/strep (15140-122) and FBS (16140071) for 

stimulation of NIH 3T3 cells. Vials of stimulation media was pressurized at 5psi, kept on ice, and connected 

to the chip via microbore tubing (PEEK, Vici). The microfluidic device is mounted on the microscope. 

We image using Nikon eclipse ti2 microscope to capture both phase and fluorescence images of cultured 

cells at a 20x magnification. We use a Hamamatsu ORCA-Flash4.0 V3 Digital CMOS Camera (C13440) 

to capture an image every 5mins for the duration of the experiment. Custom Matlab scripts were used for 

image processing. NF-κB activation was quantified as mean nuclear fluorescence intensity after background 

correction. For peak analysis data was smoothed and normalized (Matlab functions smooth and zscore) 

followed by peak detection. Activation label is crafted from binary threshold for nuclear p65. 

Fixed-Cell immunofluorescence 

Fibroblasts were seeded in microfluidic chamber and allowed to attach. Cells were rinsed with a 1 min wash 

of PBS and fixed using a 4% paraformaldehyde solution at 5 hr post attachment. Cells were fixed for 10 

minutes at room temperature and blocked and permeabilized with a 10% BSA, 0.5% Triton-X solution in 

PBS for one hour. Cells were then incubated with primary antibodies in a staining solution (2% BSA, 0.1% 

Triton-X in PBS) for another one hour at 37°C. Cells were then washed again with PBS and incubated with 
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secondary antibodies in staining solution for 1 hr at 37°C. Primary antibody used was  a Rabbit polyclonal 

to IKB alpha (ab7217). Secondary antibodies was Goat polyclonal Secondary Antibody to Rabbit IgG - 

H&L (Alexa Fluor® 647) (G378361). 

For the image analysis of fixed cells we used cell images taken at the time point immediately preceding 

fixation (5 minutes). We then analyzed fixed images and used cell coordinates to match up the fixation 

analysis with the image analysis that goes into the ML pipeline. The images taken immediately prior to 

fixation are cells in an unperturbed state similar to prestimulation cells in the dosage experiments. We did 

not have to do anything in the way of specifically transforming/aligning either to map with each other in 

UMAP. 

Data processing 

Predicting the activation of cells using microscopy images can be formulated as an object classification 

problem. Data processing details are as follows: we first use min-max normalization to scale the pixel 

intensity into the range of [0, 1]. Then, we crop each cell as a 64 x 64 image patch centered around the cell 

nucleus.  We split the dataset into 10 folds and set up cross-validation experiment to evaluate our model. 

In each run, eight folds are used for training, one-fold is used for validation, and the last fold is used for 

evaluation.  

Extraction of Texture Features and SVM Model 

Hand crafted feature extraction was done during nuclear segmentation and for each tracked single cell. The 

number of all extracted parameters is 236 and are shown in Supplementary Table 2. Texture extraction 

was done using several custom Matlab scripts. SVM Model was run using cubic kernel with an overall 

accuracy of 73%. Fitting was done with 10-fold cross validation with 10% dropout on a dataset with [0.005, 

0.05, 0.5, 5 ng/mL] TNF input images (n=3456) as well as an independent dataset with 0.1ng/mL TNF 
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input images (n=2113) prior to stimulation (Supplementary Figure 1.4). Dose feature is represented as a 

categorical variable in the analysis. Feature creation code is provided at: 

 https://github.com/parthivapatel/ML_cellim.git  

Validation with Additional Models 

We validate and report the accuracies using other classifiers as well (Supplementary Table 1). All models 

use the same 5-fold cross-validation split. The training fold is split into train-validation to grid search the 

best hyper-parameters. Finally, we report the average performance over the test folds. The models have the 

following hyper-parameter settings:  

Logistic Regression: we use Logistic Regression with liblinear solver and L2 regularization, and optimize 

the best C values (for regularization) on the validation folds.  

Support Vector Machine with rbf kernel (SVM-rbf): we tune this SVM with `rbf' kernel to optimize 

different C values and gamma values (for kernel).  

Support Vector Machine with polynomial kernel (SVM-poly): this SVM uses a polynomial kernel. The 

hyper-parameters are the C value and the degree of the polynomial kernel.  

Random Forest: we choose to use 100 decision trees as the base estimators for the random forest classifier. 

Adaboost: this model has the same number of estimators with the random forest. The base estimator is a 

decision tree classifier with a maximum depth of 1.  

Convolutional Neural Network: there are two convolutional layers, each followed by max-pooling layers. 

After flattening the output of the second max-pooling layer, two fully connected layers are applied with a 

tanh activation function. Dropout layers follow both dense layers with a dropout ratio of 0.5 during training. 

The last layer is a sigmoid function to calculate the probability of two classes. We used the Keras library 

(https://keras.io/) for the Convolutional Neural Network implementation. We used tensorflow 

https://github.com/parthivapatel/ML_cellim.git
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(https://www.tensorflow.org) as the backend for Keras.  We used scikit-learn (https://scikit-learn.org/) for 

the other classifiers. 

State Velocity 

Individual cells at time 0 were mapped onto Uniform Manifold Approximation and Projection using 

parameters (nearest neighbors=12, Chebyshev distance metric, minimum distance=.1) across multiple 

doses. Multiple additional pre-stimulation time points were then embedded onto the UMAP projection 

using nearest neighbor embedding. UMAP embedding was turned into a grid of (i,j) components and 

morphological velocity was approximated using 
1

𝑛
∑ 𝑥⃗ 𝑖,𝑗

𝑡
 𝑡

𝑖=0 where 𝑥⃗ 𝑖,𝑗
𝑡

 is the vector of displacement of a pre-

stimulation single cell mapped onto UMAP between t and t-1 in the grid (i,j) for all cells. The average 

displacement vector across all cells is shown in the state velocity.  

 

Clustering 

Clustering in Figure 3 was done using Louvain community detection derived from created adjacency 

matrix from the nearest neighbor descent algorithm on cell database with hand-crafted features. Single cells 

move across Louvain partitions between time points at a frequency of less than 73.71%.  Clustering for cell 

traces used in Supplementary Figure 4 was done through k-means clustering using a k=6.  

Statistical Tests 

Figure 2c uses Two-sample t-test to evaluate p-values with n = 1028 for positive predicted and n = 2428 

for negative predicted. Red line shows significance level of p = 0.001. 

Figure 4e uses Two-sample t-test to evaluate p-value with n = 1028 for positive predicted and n = 2428 for 

negative predicted. 
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Figure 5d uses Two-sample t-test to evaluate p-value on high scoring prediction fixed cells with n = 45 for 

positive predicted and n = 74 for negative predicted. Misclassification error was minimized by using high 

scoring cells only. 

 

Mathematical modeling of NF-κB pathway 

Using a hybrid stochastic deterministic model of the NF-κB pathway, published previously (8, 14), we 

simulated 1000 single cells exposed to 20 TNF concentrations. The hybrid model based on Gillespie 

algorithm uses verified intrinsic noise(8, 14) in TNF receptor-ligand binding and in transcription of IκBα 

and A20 which form the main negative-feedback loops leading to oscillations 

Simulation was done at 100s time steps with 10hour equilibrium period from initial conditions, 6m of a 

single TNF pulse, then 2h of evolution. Analysis was done on first peak of resulting cell traces of Nuclear 

NF-κB. Simulated single cells at t=0 can be found in Supplementary Table 3 for reference TNF 

concentrations. 

See Supplementary Table 4 for abbreviations, and Supplementary Table 5 for parameters. NF-κB and 

TNFR are distributed in a lognormal distribution with means of 105 and 104 molecules and parameters μ 

and σ sigma (-1/4, √1/2) and (-1,√2). ODEs for the model are listed below.  

Fast Reactions 

𝒅[𝑰𝑲𝑲𝑲𝒂]

𝒅𝒕
= 𝒌𝒂 × 𝑩(𝒕) × (𝑲𝑵 − [𝑰𝑲𝑲𝑲𝒂]) ×

𝒌𝑨𝟐𝟎

𝒌𝑨𝟐𝟎 + [𝑨𝟐𝟎]
− 𝒌𝒊 × [𝑰𝑲𝑲𝑲𝒂] 

𝒅[𝑰𝑲𝑲𝒏]

𝒅𝒕
= −[𝑰𝑲𝑲𝑲𝒂]𝟐 × 𝒌𝟏 × [𝑰𝑲𝑲𝒏] + 𝒌𝟒 × (𝑲𝑵𝑵 − [𝑰𝑲𝑲𝑵 − 𝑰𝑲𝑲𝑨 − [𝑰𝑲𝑲𝒊]) 

𝒅[𝑰𝑲𝑲𝒂]

𝒅𝒕
= [𝑰𝑲𝑲𝑲𝒂]𝟐 × 𝒌𝟏 × [𝑰𝑲𝑲𝒏] − 𝒌𝟑 × [𝑰𝒌𝒌𝒂] × (𝒌𝟐 + [𝑨𝟐𝟎]) 
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𝒅[𝑰𝑲𝑲𝒊]

𝒅𝒕
= 𝒌𝟑 × [𝑰𝑲𝑲𝒂] ×

𝒌𝟐 + [𝑨𝟐𝟎]

𝒌𝟐
− 𝒌𝟒 × [𝑰𝑲𝑲𝒊] 

𝒅[𝑰𝜿𝑩𝒑]

𝒅𝒕
= 𝒂𝟐 × [𝑰𝑲𝑲𝒂] × [𝑰𝜿𝑩] − 𝒕𝒑 × [𝑰𝜿𝑩𝒑] 

𝒅[𝑵𝑭𝜿𝑩|𝑰𝜿𝑩𝒑]

𝒅𝒕
= 𝒂𝟑 × [𝑰𝑲𝑲𝒂] × [𝑵𝑭𝜿𝑩|𝑰𝜿𝑩] − 𝒕𝒑 × [𝑵𝑭𝜿𝑩|𝑰𝜿𝑩𝒑] 

𝒅[𝑵𝑭𝜿𝑩]

𝒅𝒕
= 𝒄𝟔𝒂 × [𝑵𝑭𝜿𝑩|𝑰𝜿𝑩] − 𝒂𝟏 × [𝑵𝑭𝜿𝑩] × [𝑰𝜿𝑩] + 𝒕𝒑 × [𝑵𝑭𝜿𝑩|𝑰𝜿𝑩] − 𝒊𝟏 × [𝑵𝑭𝜿𝑩] 

𝒅[𝑵𝑭𝜿𝑩𝒏]

𝒅𝒕
= 𝒊𝟏 × [𝑵𝑭𝜿𝑩] − 𝒂𝟏 × 𝒌𝒗 × [𝑰𝜿𝑩𝒏] × [𝑵𝑭𝜿𝑩𝒏] 

𝒅[𝑨𝟐𝟎]

𝒅𝒕
= 𝒄𝟒 × [𝑨𝟐𝟎𝒕] − 𝒄𝟓 × [𝑨𝟐𝟎] 

𝒅[𝑨𝟐𝟎𝒕]

𝒅𝒕
= 𝒄𝟏 × [𝑮𝑨𝟐𝟎] − 𝒄𝟑 × [𝑨𝟐𝟎𝒕] 

𝒅[𝑰𝜿𝑩]

𝒅𝒕
= −𝒂𝟐 × [𝑰𝑲𝑲𝒂] × [𝑰𝜿𝑩] − 𝒂𝟏 × [𝑰𝜿𝑩] × [𝑵𝑭𝜿𝑩] + 𝒄𝟒 × [𝑰𝜿𝑩𝒕] − 𝒄𝟓𝒂 × [𝑰𝜿𝑩]

− 𝒊𝟏𝒂 × [𝑰𝜿𝑩] + 𝒆𝟏𝒂 × [𝑰𝜿𝑩𝒏] 

𝒅[𝑰𝜿𝑩𝒏]

𝒅𝒕
= −𝒂𝟏 × 𝒌𝒗 × [𝑰𝜿𝑩𝒏] × [𝑵𝑭𝜿𝑩] + 𝒊𝟏𝒂 × [𝑰𝜿𝑩] − 𝒆𝟏𝒂 × [𝑰𝜿𝑩𝒏] 

𝒅[𝑰𝜿𝑩𝒕]

𝒅𝒕
= 𝒄𝟏𝒂 × [𝑮𝑰𝜿𝑩] − 𝒄𝟑 × [𝑰𝜿𝑩𝒕] 

𝒅[𝑵𝑭𝜿𝑩|𝑰𝜿𝑩]

𝒅𝒕
= 𝒂𝟏 × [𝑰𝜿𝑩] × [𝑵𝑭𝜿𝑩] − 𝒄𝟔𝒂 × [𝑵𝑭𝜿𝑩|𝑰𝜿𝑩] − 𝒂𝟑 × [𝑰𝑲𝑲𝒂] × [𝑵𝑭𝜿𝑩|𝑰𝜿𝑩]

+ 𝒆𝟐𝒂 × [𝑵𝑭𝜿𝑩|𝑰𝜿𝑩𝒏] 

𝒅[𝑵𝑭𝜿𝑩|𝑰𝜿𝑩𝒏]

𝒅𝒕
= 𝒂𝟏 × 𝒌𝒗 × [𝑰𝜿𝑩𝒂𝒏] × [𝑵𝑭𝜿𝑩𝒏] − 𝒆𝟐𝒂 × [𝑵𝑭𝜿𝑩|𝑰𝜿𝑩𝒏] 
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Reporter is Transcribed Cooperatively 

𝒅[𝑹𝒕]

𝒅𝒕
= 𝒄𝟏 ×

[𝑮𝑹]𝒏

𝒌𝒓
𝒏 − [𝑮𝑹]𝒏

− 𝒄𝟑 × [𝑹𝒕] 

 

Slow Reactions 

𝒅[𝑩]

𝒅𝒕
= 𝒌𝒃 × [𝑻𝑵𝑭] × (𝑴 − [𝑩]) − 𝒌𝒇 × [𝑩] 

𝒅[𝑮𝑨𝟐𝟎]

𝒅𝒕
= 𝒒𝟏 × [𝑵𝑭𝜿𝑩𝒏] × (𝑨𝑵 − [𝑮𝑨𝟐𝟎]) − 𝒒𝟐 × [𝑰𝜿𝑩𝒏] × [𝑮𝑨𝟐𝟎] 

𝒅[𝑮𝑰𝜿𝑩]

𝒅𝒕
= 𝒒𝟏 × [𝑵𝑭𝜿𝑩𝒏] × (𝑨𝑵𝒂 − [𝑮𝑰𝜿𝑩]) − 𝒒𝟐 × [𝑰𝜿𝑩𝒏] × [𝑮𝑰𝜿𝑩] 

𝒅[𝑮𝑹]

𝒅𝒕
= 𝒒𝟏 × [𝑵𝑭𝜿𝑩𝒏] × (𝑨𝑵𝒓 − [𝑮𝑹]) − 𝒒𝟐 × [𝑰𝜿𝑩𝒏] × [𝑮𝑹] 

 

Stochastic Functions for Receptors, A20, IκB, and reporter genes 

[𝑹𝒓
𝒃] = 𝒌𝒃 × [𝑻𝑵𝑭𝒆𝒙𝒕] 

[𝑹𝒓
𝒅] = 𝒌𝒅 

[𝑹𝒃] = 𝒒𝟏 × [𝑵𝑭𝜿𝑩𝒏] 

[𝑹𝒅] = 𝒒𝟐 × [𝑰𝜿𝑩𝒏] 
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Supplementary Figure 1.1. Independent Repeat of single dose prediction for TNF activation 

(a) tSNE of unstimulated cells at 0.1ng/mL TNF. (b) Highly predictive features for each cell (c) 

Standardized descriptors for unstimulated fibroblasts are shown in boxplots with active cells (red) 

and inactive cells (blue) 
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Supplementary Figure 1.2. Single cell population distribution in tSNE space (a) tSNE of 

different TNF dose stimulations (0.005, 0.05, 0.5, 5.0 ng/mL TNF) from t=0 descriptive variables. 

Cells from a dose are indicated in red and individual SVM model accuracies are listed. (b) tSNE 

visualization for NF-κB peak heights with overlay of fixed cells. 
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Supplementary Figure 1.3. Cell trace dynamics activation criteria for prediction shows 

modest prediction results (a) Single cell traces were clustered using k-means clustering (k=6). 

Median traces for each group is shown. (b) Classifier accuracies show how well individual 

groupings compare to other individual groupings and to all other groupings. (c) Some features, 

including phase nuclear sum, nucleus major axis length, and otsu parameter discriminate between 

trace behavior types. 
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Supplementary Figure 1.4. Activation level thresholding shows minimal differences in ROC 

AUC (a) Cell label assignment using different mean nuclear peak height threshold values. 

Analysis throughout the manuscript uses peak height threshold of 500. (b) Cell features that track 

with the divide between clusters include nuclear size metrics like nuclear eccentricity and major 

axis length. Similarly, protein levels of p65 and total brightfield sum also track with this divide. 

 

  



52 

 

 

Supplementary Figure 1.5. Multiple variable coupling leads to improved prediction (a) A 

single tree model in an ensemble tree classifier is shown with thresholded decision boundaries for 

different variables (blue, under threshold; red, above threshold). An individual tree branch is 

analyzed for the power of variable coupling and accuracy is shown with the addition of addition 

features (b) Individual classification accuracy is shown in each stage in the analyzed tree branch. 

(c) Correlation between the phase classifier and feature variables is shown with no correlation 

between prediction labels and p65 or H2b features. (d) Cell mapping in the UMAP projection is 

shown for the group of analyzed cells in the individual tree branch. Correlation found for features 

in this grouping of cells is shown. Individual features have a higher correlation when predicting 

this individual grouping of cells. 

  



53 

 

 

Supplementary Figure 1.6.  Image feature covariance matrix (a) Covariance matrix for 

features colored by Correlation (red =1, blue =-1). 
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Supplementary Figure 1.7. Phenotypic analysis of cell state reveal both persistent and dose 

regulated states. (a) We use single cells across the UMAP space, clustered by local adjacency 

into communities to look for phenotypic differences in state by dosage (b) Activated single cells 

show consistent phenotype across different doses of TNF (0.05 ng/mL and 0.5ng/mL, left and 

right) (c) but show differences in the fraction of activated cells based on state. There are 

consistently sensitive and resistant groups of cell phenotypes, but also cellular states that have dose 

dependent differences in activation fraction 
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Supplementary Figure 1.8. p65 levels in unstimulated cells (a) Baseline levels of nuclear p65 

is shown in the histogram. Cells that are classified as activated must reach a threshold of >500 

peak-height. Boxplot is shown below comparing active and inactive classifications.  
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Supplementary Figure 1.9. Simulation comparisons between total IκB, IκB:NFκB, and 

Nuclear NFκB (a) Simulation comparisons of key features: total IκB, IκB:NFκB, and Nuclear 

NFκB. (b) Mathematical modeling simulations show single cell nuclear NF-κB peak heights 

increase with increasing TNF dose. (c) High IκB levels in cells require a smaller TNF dose to 

achieve NF-κB activation. 
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Summary:  

Cells communicate effectively in noisy environments despite the detrimental effects of noise on 

information transfer. Understanding how cells deal with environmental perturbations when 

detecting and decoding biochemical inputs has immense importance for studies of healthy and 

dysregulated signaling. Here, we investigate how NF-κB pathway detects, discriminates and 

transcriptionally interprets noisy immune inputs, by using live-cell analysis and mathematical 
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modeling. Surprisingly, we find that single-cell NF-κB activation is dramatically enhanced 

through addition of noisy fluctuations to an otherwise constant cytokine signal. Cells perceive a 

noisy cytokine stimulus to be 10-times more potent than a constant one at the same average dose. 

Noisy stimulation expands cytokine specific transcriptional response and switches its profile to an 

anti-cancer program with acute inflammatory, anti-proliferation and anti-differentiation 

signatures. We find that this noise-enhanced signal sensitivity is explained by nonlinear adaptive 

dynamics – rectified adaptation – in the NF-κB network. Our results indicate a beneficial role for 

external fluctuations for the detection of otherwise undetectable weak signals, and show how cells 

exploit non-trivial molecular mechanisms to thrive in noisy environments. 

 

Introduction:  

Cells are exposed to randomly fluctuating levels of signaling molecules in their natural 

environment 1–5. Burst-like protein secretion, thermal fluctuations, disordered tissue structure and 

interference from neighboring cells all contribute to the noisiness of the extracellular signaling 

environment6–10. Noise is considered detrimental to information transfer and signaling in general, 

both in physical and biological systems11–13. Despite constant influence of noise on cellular inputs, 

biological signaling networks manage to create robust and finely tuned gene expression profiles14–

16. How cells deal with noisy external fluctuations and create appropriate signaling responses is 

not well understood, and it is central to many signaling problems in health and disease.  

The well curated responses generated by cells may be the result of noise dampening features 

of gene regulatory network  motifs17. These network motifs can potentially reduce the detrimental 

effects of noise and limit the response to input fluctuations through mechanisms like time-
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averaging17,18. However, such features inevitably reduce the responsiveness (sensitivity), speed 

and temporal resolution of signaling systems. On the other hand, many cellular signaling pathways 

manage to combine high sensitivity and fast speed with noise tolerance, which are seemingly 

conflicting properties to exist in the same signaling system. Here, we carefully examine such a 

sensitive and dynamic signaling system central to immunity, the NF-κB pathway, for its ability in 

responding and potentially eliminating the effects of noisy fluctuations in a cytokine signal. 

NF-κB is an important example of a dynamically regulated transcriptional network that 

responds to a range of signaling inputs relevant to immunity19–22. NF-κB controls the expression 

of hundreds of genes in response to a wide range of immune stimuli including signaling molecules 

secreted from host cells (i.e. cytokines and chemokines)23–25. NF-κB coordinates basic functions 

in innate immunity, immune development, and is involved in pathophysiological outcomes 

including autoimmune disorders and cancer26–28. Cells in the resting (unstimulated) state contain 

cytoplasmic NF-κB transcription factors, including p65. Upon cellular stimulation, NF-κB 

transcription factors rapidly shuttle to the nucleus and activate downstream gene expression. One 

of the transcriptional targets of NF-κB is its own inhibitor IκB. Newly synthesized IκB causes NF-

κB to shuttle back to the cytoplasm, thereby creating oscillations in nuclear NF-κB and in target 

gene expression. These oscillations enable NF-κB to constantly monitor the signal types and 

amplitude in the extracellular environment and persist while external cytokine signals are present. 

Increasing signal amplitude (cytokine dose) causes more cells in the population to activate, 

and do so in a faster way compared to lower doses14,29. NF-κB response time (activation speed) 

ranges from 15 minutes for the highest doses of cytokine inputs, and can be as slow as 90 minutes 

for the lowest doses. NF-κB has been a model system for understanding the role of protein 
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dynamics in signal specific gene regulation19,30,31, and the influence of cellular variability and 

internal (i.e. transcriptional) fluctuations on dynamic NF-κB signaling has been studied32,33. 

However, the effect of noisy external inputs to an immune signaling pathway like NF-κB has not 

been studied to date, and how cells robustly communicate in noisy signaling environments remains 

a fundamentally important open question (Figure 2.1a).  

The addition of noise to a signal typically degrades the transfer of information to the output, 

both for physical and biological signaling systems7,11,12. Here, we ask how biological systems deal 

with input noise and address if signaling pathways like NF-κB can actually utilize noise in the 

input to improve signaling fidelity. We also investigate how input noise influences the 

transcriptional decoding of cytokine inputs received by cells. Theoretically, the sensitivity of a 

system to small signals can be improved by addition of white noise through a range of effects 

collectively called stochastic resonance34. In stochastic resonance, frequencies in the noise 

spectrum can amplify similar frequencies in the responding system and create greater output11.  

The precise mechanism of stochastic resonance varies, but in general, noise in the input induces a 

state change or excitation11 that would not happen in the absence of noise.  We reasoned that 

biological signaling systems like NF-κB could exhibit stochastic resonance since they are non-

linear and exhibit dynamics of different time scales. NF-κB has multiple feedback loops leading 

to oscillations, and exhibits digital activation14,35: an obvious example of nonlinearity that could 

benefit from noise. Despite the favorable theoretical arguments, stochastic resonance has not been 

experimentally seen in living cells, and whether it plays a role in immune signaling is not known. 

 

Results 
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Dynamic modeling predicts that input noise enhances NF-κB activation in single cells 

 

We hypothesized that the multiple feedback time-scales in the NF-κB network could resonate with 

various frequencies in noisy biochemical inputs and create a more robust activation effect in live 

cells (Figure 2.1b).  To explore this possibility, we first simulated the mathematical model of the 

NF-κB network in single cells under both constant and fluctuating (noisy) concentration of the 

pro-inflammatory cytokine TNF (Figure 2.1c). The simulated input signal, when supplied at a 

constant (noise-free) concentration results in minimal NF-κB translocation (Figure 2.1d). 

Surprisingly, a noisy signal at the same mean dose causes cells to robustly activate, with 100% of 

cells in the population activating the NF-κB pathway. To confirm that cells were not responding 

to the maximum TNF values in the fluctuating noisy signal, we modeled a noisy TNF signal at an 

even lower level than the constant signal, and observed that the cells still activated at a rate higher 

than the constant signal (Figure 2.1e). Our simulations predicted that a noisy input will activate a 

much larger fraction of cells in the population than a constant input dose, even at the maximum 

value of the noisy input. Thus, our simulations suggest that a low dose input can activate cells with 

the addition of chemical noise, and that this enhanced response cannot be explained by the 

maximum dose alone. Such simulations show potential for subthreshold signal detection with the 

addition of noise and imply that noise can help increase the sensitivity of NF-κB response. 
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Figure 2.1: Simulations predict that weak (sub-threshold) cytokine inputs may evoke a strong NF-

κB response upon addition of chemical noise to those inputs. (a) Extra-cellular environments are 

subject to chemical fluctuations, which make signals between cells to become noisy. Signal 

receiving cells process such noisy inputs.  (b) NF-κB pathway has complex non-linear dynamics 

on a wide range of timescales, from fast receptor dynamics to the slower pulse-like nuclear 

translocation of NF-κB. (c) Dynamic input profiles used for simulations with the mathematical 

model of NF-κB pathway, under both constant (blue) and fluctuating (red) input levels from the 

cytokine TNF. (d, e) In simulations, fluctuating TNF levels cause strong activation of NF-κB 

nuclear translocation in all cells. However, constant TNF inputs induce lower NF-κB activity and 

in fewer cells, despite the fact that TNF dose they see exceed maximum of the fluctuating input. 

 

Live-cell experiments reveal increased NF-κB activation under noisy cytokine signals 

 

To experimentally test whether addition of chemical noise to a cytokine input would indeed 

enhance the activation of NF-κB in live cells, we studied nuclear localization dynamics of NF-κB 

in response to real-time fluctuations of TNF. We cultured 3T3 mouse fibroblast cells with p65-
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dsRed reporter in an automated microfluidic cell culture platform, and quantitatively measured 

single cell NF-κB nuclear translocation in live-cell imaging experiments under a range of time-

varying TNF concentrations (Figure 2.2a). Our automated microfluidic device delivers time-

varying dynamic chemical signals to cell culture chambers, including signals that contain 

predetermined levels and frequencies of dose fluctuations. The device creates 154 pre-determined 

concentration levels between 0.01 ng/mL and 0.11 ng/mL TNF with 0.5 second timesteps36 

(Figure 2.2b), which is much faster than the typical timescales of NF-κB activation dynamics 

measured in live cells (tens of minutes). Cells were incubated in this device and exposed to 

constant TNF signals whose concentrations range from 0.001 ng/ml to 1ng/mL (Supplementary 

Figure 2.1; Supplementary Figure 2.2) and a noisy signal (Gaussian white noise) with mean 

concentration of 0.05ng/mL and Signal to Noise Ratio (SNR) of 5/1 (Figure 2.2c; Supplementary 

Figure 2.3). During stimulation experiments, cells were imaged with time-lapse fluorescence 

microscopy, and individual cells were tracked using custom image processing software37.  

We found that cells responded much more sensitively to the noisy input: The fraction of 

responding cells in the population as well as the nuclear NF-κB amplitude in individual cells 

showed significant enhancement under the noisy signal when compared with an equivalent dose 

constant signal (constant dose at 0.05ng/mL) (Figure 2.2d; Supplementary Figure 2.3). A 

randomly selected set of activated single-cell traces demonstrate this dramatic increase in NF-κB 

activity (Figure 2.2e and 2.2f). In experiments with constant TNF at 0.05 ng/mL, only 33% of 

cells are activated, but under Gaussian white noise stimulation at the same time-averaged TNF 

dose, 85% of the single cells in the population are activated (Figure 2.2i).  
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The amplitude of single cell NF-κB traces measured under the low-dose noisy signal are 

similar to those stimulated with much higher constant doses of TNF (mean integrated TNF dose 

for noisy signal is 0.05ng/mL). Furthermore, the fraction of responding cells is also much higher 

under the noisy input. To achieve the 80% activated fraction under constant input, we needed to 

use 1 ng/mL constant TNF, which is a 20-fold dose increase over the mean profile and 10-fold 

increase over the max value of the noisy signal (Figure 2.2g). These results clearly show that 

individual cells perceive a noisy signal to be more than 10-fold more potent and respond 

accordingly. Such noise enhanced signal response is highly surprising and was not experimentally 

seen in living cells before. 
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Figure 2.2 :  Live-cell stimulation experiments show that addition of white noise to a weak TNF 

input causes NF-κB to respond very sensitively to that input. (a) Microfluidic live cell stimulation 

experiments allow analysis of single cells in dynamic environments. Cells cultured under dynamic 

signals are tracked via live cell microscopy, and NF-κB nuclear localization is analyzed in   



66 

 

Figure 2.2 (continued) individual cells. (b) Cells are exposed to signals generated by dynamic 

combination of several TNF concentrations, producing 154 variable exposures at 0.5 second 

timesteps. Actual picture of the microfluidic device is shown on the left. Colors indicate 

controllable valves that regulate input media. (c) Gaussian white noise with 5:1 signal to noise 

ratio (red) is added to the control TNF signal with a mean at 0.05 ng/mL (blue), and this chemical 

signal is delivered to hundreds of live cells. (d) Fluorescent images of cells expressing dsRed-p65 

reporter that are exposed to noisy (red) or noise-free (blue) signals. Activated cells, showing 

nuclear NF-κB localization, are indicated with arrows. (e) Single cell traces under constant TNF 

exposure show significantly less NF-κB translocation to the nucleus. (f) Activated single cell traces 

measured under noisy input. (g) Population fraction of activated cells under different constant 

doses of TNF, measured in the same device. Blue and red arrows indicate the dose perceived by 

cells in stimulation experiments with constant and noisy inputs in (e) and (f). The noisy input is 

perceived by cells to be at a much high dose than the constant input.  (h) NF-κB response time at 

different constant doses of TNF. Both noisy and noise-free inputs lead to the same response time. 

(i) Comparison of activation fraction for noisy vs. constant signals. Noisy input induces more cells 

to activate in the population, despite that fact that both inputs have the same mean TNF dose. (j) 

Comparison of peak height normalized to maximum peak value for noisy vs. constant exposure. 

(k) Comparison of integrated area of fluorescent readout for nuclear translocation normalized to 

maximum integrated area for noisy vs. constant exposure. (l) Peak timings for activated cells 

remain the same despite variation in peak height and integrated area. 

 

There are several components of the single cell NF-κB localization profiles that are relevant 

when comparing NF-κB activation. First peak height and integrated area of nuclear fluorescence 

are linked to target gene expression; different levels of NF-κB in the nucleus are correlated with 

different phenotypic gene response14,25. For a noisy input, while the normalized NF-κB peak height 

and integrated area is consistent with a dramatically higher TNF dose (Figure 2.2j and 2.2k), 

however we found that the NF-κB response time (time to first peak) is similar to the noise-free 

stimulation. Both noisy and noiseless signals show the same response time, with the same single-

cell distribution and mean around 65 mins, which is consistent with activation at a constant dose 

of 0.05ng/mL (Figure 2.2h and 2.2l). This result shows that while noisy fluctuation of TNF signal 

increases the perceived dose for NF-κB activation and amplitude, the speed of NF-κB activation 

is not increased due to the addition of noise.  
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Overall, our experiments confirmed the modeling prediction of dramatically increased noise-

induced activation of NF-κB in living cells; further, the activation arises as a cellular response to 

input fluctuations and cannot be explained as perception of the maximum dose. This remarkable 

demonstration of noise enhanced signaling activation in living cells highlights how biological 

systems can exploit non-trivial physical effects to take advantage of noisy environments. 

 

Noisy cytokine input leads to switching of transcriptional programs to anti-cancer responses  

 

To evaluate the functional effects of cytokine input noise, we probed gene expression response in 

cells under both noisy and constant TNF stimuli. We stimulated cells again through our automated 

microfluidic cell culture platform, then extracted cells at 90min, 180min and 300min timepoints. 

Approximately 150 cells were lysed and frozen for pooling in RNA sequencing (SMART-seq) for 

each timepoint in triplicate (Figure 2.3a). Analyzing the whole transcriptome gene expression 

differences between the two conditions reveals many differences across a range of transcriptional 

programs. We looked at all genes that were significantly upregulated or downregulated (pval < 

0.01, and foldchange > 0.5) through noisy stimulation compared to noise-free stimulation, and 

found 2540 genes that had significant variation of which a majority are upregulated in response to 

noisy stimulation. This indicates that noisy input largely enhances or broadens gene expression 

response compared to a constant cytokine signal, consistent with increased NF-κB activity in these 

cells. We narrowed down our analysis to the two broad categories of noise sensitive gene 

expression response using hierarchical clustering at two different time scales after exposure to 

TNF (early: 90 min, and late: 300 min).  
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We applied gene ontology analysis (GO) to these significantly changed genes using GSEA38. 

Gene ontology aggregates annotations and known information about genes to simplify and 

standardize their function39. We can then analyze GO overlap between our significantly changed 

genes to interpret how expression changes can lead to functional changes in the cell. Gene ontology 

showed upregulation in genes related to cell cycle (e2f, Hdac3), ribonucleotide binding (e2f, 

zbtb12), anti-cancer programs (p53, Jdp2, Sall4, Ubn1, Tead2) and chromosome modifying 

activity (Mta1, Ubn1, Barx2) at the early time point under noisy stimulation. (Figure 2.3b). There 

is also upregulation of NF-κB coregulators: transcription factors with >15%  of total upregulated 

target genes include Jdp2, Mta1, Mzf1, Sall4, Hdac3, e2f and Klf1340–44. These genes bind to and 

have known activity with NF-κB. Such modifications of NF-κB and its co-regulators during the 

early response hint at differences in gene expression that will appear at the later time point. Further, 

this transcription factor response alongside the broad enhancement of the DREAM complex and 

p53 program indicate a cellular effort to limit differentiation and proliferation while preparing to 

address DNA damage within the cell45. This coordinated response at the early 90min timepoint 

suggest that a noisy environment could induce a programmed response to prevent cancer 

progression and proliferation of damaged cells46.  

While some of the early transcription factors continue to be upregulated highly at the 300m 

timepoint (Hdac3, Klf13, Sal4, JDP2), several new transcription factors emerge at this time point 

including Lef1 from the WNT pathway and PRDM6 which inhibits proliferation (Figure 2.3c). 

The chromatin regulating protein Morc2 is upregulated in both early and late noise upregulated 

genes. Morc2 is responsible for many gene silencing effects via modification of chromatin through 

interaction with the HUSH complex47. It is of note that at the late timepoint, there is also an 



69 

 

increase in transcriptional regulation and protein phosphorylation and modification activity. While 

many of the upregulated gene expression programs point towards increased cell cycle regulation, 

there is also upregulation in anti-cancer markers to limit proliferation as well48–50 (Figure 2.3d 

and 2.3e). Exposure to noisy stimuli thus evokes enhanced expression of anti-proliferation and 

anti-differentiation gene expression programs at late time points as well. 

These upregulated gene expression programs combined suggest that noise in the signaling 

environment may create a more robust anti-cancer response in the NF-κB transcriptional response 

(Figure 2.3f). The significant difference in transcriptional phenotype of cells under noisy and noise 

free cytokine levels in the environment is consistent with the pleiotropic response of NF-κB under 

different physiological conditions51. It has been shown that different NF-κB temporal dynamics 

create different gene expression responses52, thus the noise-responsive phenomenon we observed 

appear in agreement with NF-κB studies that show the adaptability of innate immune response to 

different environmental signals. 
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Figure 2.3. RNA sequencing analysis shows gene expression programs that significantly change 

under noisy TNF stimulation. (a) Cells were loaded and stimulated in microfluidic chambers, then 

extracted and pooled for SMART-sequencing. (b) Heatmap of genes that are expressed at 

significantly different rates under noisy and constant input, for each timepoint (p < .01, fold-change 

>.5) (c) Gene Ontology for early and late genes show upregulation of cell cycle and chromosome 

modification related gene expression under noisy TNF stimulation. Late term genes show 

increased transcription regulator activity under noisy input. (d) Transcription factors that are 

upregulated under noisy input include NF-κB coregulators (shown with red arrow) as well as 

transcription factors lef1 and Hdac3. (e) Expression of cell growth, anti-cancer, and anti-

proliferation gene markers are also increased under noisy stimulation. (f) Functional summary of 

the gene expression changes under noisy TNF stimulation. These changes point to increased 

immune cell recruitment, reduced differentiation, reduced proliferation, and activation of DNA 

damage repair programs. 
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Early modifications caused by noisy input change the expression of TNF specific genes at later 

timepoints  

 

Whole transcriptome analysis under noisy stimulation indicated upregulated chromatin 

modifications at early time points and upregulation of NF-κB co-regulators. These early 

modifications may change NF-κB target gene expression at the later time points. To explore this 

possibility we analyzed expression differences between noisy and constant TNF stimulus in genes 

with NF-κB specific binding sites26,53. We use hierarchical clustering to cluster genes that are 

amplified by or dampened by noisy stimulation (Figure 2.4a).  

Interestingly, genes that typically respond within the first 90 minutes after TNF stimulation 

show similar expression profiles between noisy and constant stimulation despite the increased 

overall gene expression response under noisy input. These include the transcription factors Junb 

and Stat5a as well as regulatory proteins Tnfaip3 and Nfkbia. At the later time points, however, 

the NF-κB transcriptional response diverges between the noisy and constant stimulation groups at 

180 minutes and 300 minutes. This behavior suggests that the whole genome transcriptional 

activity that we observe in the early 90 min timepoint dictates and changes the specific NF-κB 

response for later time points. The early NF-κB specific response remains largely unchanged 

despite interaction with NF-κB cofactors like Hdac3 and Klf13. However, many NF-κB target 

genes show upregulation upon noisy stimulation only at later time points54,55. (Supplementary 

Figure 2.4). This suggests that the chromatin modifying and NF-κB coregulator transcription 
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factor activity we observe at 90 minutes is changing the NF-κB-specific response at later time 

points56. 

 

 

 

Figure 2.4. Noisy stimulation achieves early NF-κB pathway modifications that modulate TNF 

specific gene expression at later time points. (a)  NF-κB associated genes were isolated and 

compared across stimulation patterns and time. Most genes increase in amplitude under noisy 

stimulation, but some are dampened. Genes that respond within the first 90 minutes show similar 

expression profiles between noisy and constant stimulation. However, gene expression responses 

at later time points (180 and 300 minutes) are significantly different under noisy and constant 

stimulation, both for noise amplified and noise dampened genes. (b) Mapping the highest 

confidence interactions between NF-κB responsive genes shows that the noise amplified genes 

stem from Cxcl2 interacting partners, whereas noise dampened genes are affiliated with p53 

inhibition and canonical NF-κB response. (c) Overall, noisy stimulation changes NF-κB-specific 

gene expression and also increases the bandwidth of total gene expression through multiple 

coregulated transcription factors. Under constant TNF signal fewer transcription factors and target 

genes are activated. Under the noisy signal at the same dose, a higher number of transcription 

factors and a larger gene expression amplitude is achieved. 

 

To understand where NF-κB specific response functionally changes with the addition of 

noise, we mapped the interactions of the response genes to each other using STRING57. STRING 
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is a platform that maps interactions between different proteins using historical knowledge, and 

enables understanding and visualizing interactions in a pathway. We use STRING to create and 

analyze a network of functional interactions between NF-κB specific proteins. We then specifically 

map the noise dampened and noise induced genes onto the STRING network.  High confidence 

protein interactions are shown in a map of NF-κB response proteins and we then use the clusters 

generated through hierarchical clustering to assign each protein in the interaction network a 

grouping based on expression behavior given noisy stimulation (Figure 2.4b).  

Plotting the network of these response genes shows that genes amplified under noisy input 

stem from Nfkb1, including the CXCL, CCL, and IL proteins, whereas noise dampened genes are 

affiliated with canonical NF-κB response given TNF and p53 inhibition (Myc, Bcl2). Our analysis 

of the general whole transcriptome programs given noisy stimulation add insight on this result as 

well. Cellular release of these Cxcl cytokines is used in neutrophil recruitment58,59 and lef1 is also 

known for mediating cell-cell communication. IL and CCL proteins are also known cell-cell 

communication cytokines involved in immune cell recruitment. The upregulation of these 

cytokines as well as our prior observation of upregulation of anti-differentiation and anti-

proliferation programs show remarkably coordinated action by cells from noisy cytokine signaling. 

These programmed behaviors suggest that a noisy TNF signal can prepare a microenvironment for 

an inflammatory response through immune cell engagement while limiting the growth potential of 

the effected cell. Changing the dynamics of stimulation has many different effects on gene 

expression. Here we observe a noisy stimulation inducing NF-κB-specific gene expression 

changes and also an overall increase to the bandwidth of total gene expression through activation 

of multiple coregulated transcription factors (Figure 2.4c). 
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Rectified adaptation as a mechanism for noise enhanced sensitivity in NF-κB 

 

To study the mechanisms behind input noise enhanced NF-κB activity, we theoretically evaluated 

how fundamental components of the NF-κB signaling network respond to fluctuating inputs. In 

particular, adaptive dynamics17,18,60,61, known to be present in the NF-κB pathway62,63  and also 

widely across biology, show a large response to a change in input but the output soon returns to its 

prior resting value. Hence, the output of adaptive dynamics is naturally more sensitive to input 

fluctuations than to the steady state level of that input. Adaptive dynamics are commonly 

implemented by either Incoherent FeedForward Loops (iFFLs) or negative feedback loops.  

It is known that iFFLs are present in the NF-κB pathway62–64, and given our knowledge of 

gene expression changes with the addition of noise, we simulated a general iFFL in a simple input-

output model upstream of IKK (Figure 2.5a). It is also known that the IKK family proteins are 

mediators for p53 and e2f as well as activators for Nfkb1 signaling65–68. The gene expression 

changes we observe suggest that network features surrounding IKK could be responsible for some 

of the gene expression variability we observe. Under a general iFFL, upward and downward 

fluctuations in the input signal cause equal and opposite changes in the response, thus cancelling 

each other. Consequently, noise in the input has no net impact on the output for a regular iFFL 

network (Figure 2.5c). However, we found that a simple modification of the iFFL led to a 

dramatically different conclusion (Figure 2.5b); if protein concentration (Y) in the network has a 

natural floor, the response to positive and negative input changes is asymmetric. Such a node in 

the network acts much like a diode or a `rectifier’ in an electrical circuit, allowing responses to 

only upward but not downward fluctuations in the input. Such rectification in the presence of noise 
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leads to counterintuitive behaviors in physical systems, from molecular motors to Feynman’s 

ratchet69. In the NF-κB signaling context, we find that such a floor-rectified iFFL responds 

predominantly to upward fluctuations in the input, and thus can lead to a higher sensitivity to noise 

as seen in experiments (Figure 2.5d and 2.5e). 

 

 

Figure 2.5: Rectified adaptation leads to enhanced NF-κB activation in simulations.  (a) The 

Incoherent Feed Forward Loop, shown in the schematic on the left, demonstrates adaptation. A 

step-like change in the input produces a transient response in Y that dies out and the system returns 

to the resting level. Such motifs are found in the NF-κB pathway and molecules like IKK are 
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Figure 2.5 (continued) known to show an adaptive response to step changes in TNF. (b) Rectified 

adaptation, where step ups produce a response, but step downs produce no response because the 

output molecule Y is already at near-zero levels in steady state. (c, d) When subject to fluctuating 

input signals, the response of the conventional adaptive circuit to step ups and downs cancel each 

other out. However, the output of the rectified adaptation circuit builds up over time, since it only 

responds to step ups of TNF input. Consequently, active IKK levels rise with time, causing nuclear 

translocation of NF-κB in simulations. (e) Summary of the theoretical mechanism behind NF-κB 

enhancement by the interaction of noisy input and rectified adaptation. Through rectified 

adaptation, upswings in the noisy input produce pulses in intermediate protein activation, while 

downswing in the input do not. This leads to an increasing NF-κB output response under noisy 

input that accumulates over time. This mechanism also reproduces the slow NF-κB response time 

we observed under noisy stimulation in Fig 2.  

 

Sinusoidal stimulation reveals resonant timescales in NF-κB activation 

 

To evaluate the timescales involved in noise sensitivity of NF-κB, we derived a prediction for NF-

κB response to periodic single frequency stimulation. In stochastic resonance, the response is 

highest when the input timescale (i.e. various frequencies in the noisy input) matches the 

corresponding timescale in the responding system. Our simulation suggested that NF-κB activation 

should be the highest for inputs whose period match the timescale of the adaptive response. For 

longer input periods, cells are expected to behave like they are simply experiencing periodic 

stimulation at the maximum seen dose (Figure 2.6a). The model also predicts that cell activation 

will saturate at frequencies higher than the adaptation timescale (Figure 2.6b). 
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Figure 2.6:  Periodic stimulation uncovers time-scales behind input-noise enhancement of NF-κB 

response. NF-κB shows resonance under fast oscillating TNF inputs. (a) Model simulations allow 

deriving predictions for response to different periodic inputs. Simulations show NF-κB activation 

only for periods comparable of faster than the adaptation timescale τ0. For longer periods, the IKK 

response to different cycles of TNF input do not build on each other and there is no NF-κB 

activation.  (b) The model also predicts that the fraction of cells activated saturates at a high 

fraction for frequencies higher than the adaptation timescale. (c) Experimental stimulation profiles 

for cosine exposure at different periods ranging from 2s to 30s. (d) Activated single cell traces in 

live cell imaging experiments show similar profiles for exposures under 30second period, but 

dramatically reduced peak height for 30second period (mean of populations in red). (e) Low period 

cosine stimulation increases fraction of activated cells in the population but increasing period of 

cosine stimulation after cutoff reduces activated fraction. (f) Cells exposed to slow periods behave 

as an intermediate between cells exposed to fast periods and constant signals. There is a 10-fold 

increase in the perceived dose with the addition of fast fluctuations to the signal. 
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To experimentally test our predictions, we measured single cell activation using a periodic 

cosine TNF stimulus at different periods, ranging from 2 s to 30 s (Figure 2.6c). These chemical 

stimuli are generated using our microfluidic device, and cells were imaged by time-lapse 

microscopy during stimulation. Activated single-cell traces show higher NF-κB peak heights for 

stimulation periods under 30 s (Figure 2.6d; Supplementary Figure 2.5) and faster response 

times with shorter periods (Supplementary Figure 2.6). For 30s and higher, cells fail to show the 

significant activation seen under stimuli with shorter periods. When comparing activation profiles 

under different time-scales, we find that cells perceive fast time scales (<15 sec period) at an 

effective constant dose greater than 1 ng/mL TNF, which is much higher than the actual used mean 

dose of 0.05 ng/mL in these experiments. These results show that NF-κB resonated at the input 

periods shorter than 15 seconds. As we increase the timescale to above 15 sec, cells perceive the 

stimulus at an effective dose of approximately 0.1 ng/mL TNF (Figure 2.6e and 2.6f). Similar 

misperception of oscillatory signals on a minutes timescale has been previously observed in 

yeast70,71. Our experimental results here confirm the predictions from the model and suggest that 

noise perception at fast time scales (~ 5 s to 15 s) via a rectified Incoherent FeedForward Loop is 

contributing to the increased NF-κB activation observed in experiments with gaussian white noise.  

 

Discussion 

 

In summary, our results show that input noise can enhance the strength of NF-κB response to weak 

environmental (cytokine) signals via a mechanism that resembles stochastic resonance, and offer 
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a novel mode of cellular regulation for this important transcription factor. We find that NF-κB is 

sensitive to the dynamics of a pleiotropic factor like TNF, and temporally random modulation of 

the TNF signal can create significantly different phenotypic responses. This raises the intriguing 

possibility that biological noise can help discriminate regulatory signals. For example, the noise 

level in TNF could serve as a proxy for the number of signaling cells in the environment, where 

higher noise corresponds to higher number or density of surrounding cells. In such a scenario, the 

NF-κB signaling properties uncovered here would serve as an quorum sensing-like mechanism72, 

with distinct activation programs only at high cell density for weak signals. Or more generally, a 

noisy environmental signal could mimic an intrinsic biological phenomenon. For example, 

immune regulatory cells such as natural killers have cell membrane associated TNF73, and it is 

possible that attracted natural killers could reproduce such noisy signaling. 

Input noise perception as an unexplored regime in cellular regulation may play an important 

physiological role in communication and signaling in fluctuating environments for many 

additional regulatory systems. The gene expression differences from NF-κB specific transcription 

of noise-stimulated cells show how adaptable the NF-κB pathway is to dynamic stimuli. Not only 

does the signal enhance NF-κB activation, but also leads to alternative response upon a secondary 

stimulation. Changes due to transcription of proteins involved in regulation of the pathway will 

lead to alternative outcomes given a secondary stimulation.  

More generally, we found that cytokine noise induces a broad anti-cancer transcriptional 

response by limiting the growth potential of cells and activating anti-cancer transcriptional 

programs. It also prepares cells for the further recruitment of neutrophils. Interestingly, the 

behavior and expression patterns that we find is also a signature in tumorigenesis74,75. It is possible 
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that key oncogenic mutations could lead to the dysregulation of this program and as a result, induce 

cancer instead protecting against it.  

Transcription factor dynamics in gene network regulation and signaling is an important 

element in mammalian cell response to many agonists - many of these transcription factors do 

behave non-linearly and rely on surpassing concentration thresholds of ligand molecules to 

produce all-or-none responses76. We found that noisy fluctuations of an inflammatory signal 

causes cells to perceive this signal to be much more potent. Our discovery of noise enhanced signal 

sensitivity in living cells, which was theoretically predicted in many settings but was not 

experimentally observed. This behavior emerges from the interaction of noisy cytokine inputs,  

NF-κB pathway resonance at fast time-scales, and rectified adaptation in the NF-κB pathway. 

These results thus demonstrate how biological systems can exploit highly non-trivial and 

interesting physics to turn a limitation such as environmental fluctuations into a strength.  
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Environmental noise enables sensitive detection and transcriptional 

decoding of cytokine inputs   
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Materials and Methods 

TNF-α Stimulation Using Microfluidic Cell Culture 

We use the signal generator chip described previously (18). PDMS chambers coated with 

fibronectin (FC010-10MG) and cells were seeded at constant density ∼20,000 cells/cm2. Cells 

were cultured for 5 hours before stimulation; they were taken at 100% confluence and incubated 

with .25% Trypsin-EDTA for 5mins (25200-056) prior to loading. Standard culture conditions of 

5% CO2 and 37°C were maintained using an incubation chamber for imaging and cell culture. 

Mouse TNF-α (PMC3014_3671982503) was diluted in Fluorobrite DMEM media (A1896701) 

with 2x glutamax (35050061), pen/strep (15140-122) and FBS (16140071) in vials pressured with 

5% CO2 at 5psi and kept on ice. Microbore tubing (PEEK, Vici) was used to connect the TNF-α 

supply to the chip. For continuous pumping input, the on-chip peristaltic pump was operated at a 

sampling rate of .5 seconds of a combination (3,4, or 5 concurrently open) of the following inputs: 

[.2 .1 .05 .025 .0125 .00625 .003125 .001625] ng/mL TNF-α. 
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Image Acquisition and Data Processing 

We use an automated Nikon eclipse ti2 microscope and capture fluorescence images (red and green 

channels for p65 and H2B reporters) at 20× magnification via a Hamamatsu ORCA-Flash4.0 V3 

Camera (C13440) every 3-5 min for 1-10 hr. Microfluidic device is mounted on the microscope. 

Custom Matlab scripts were used for image processing (available on request). NF-κB activation 

was quantified as sum of nuclear fluorescence intensity. For peak analysis, data were smoothed 

followed by peak detection using a combination of integrated area, first derivative and peak height. 

NF-κB Reporter Cell Line 

Creation of mouse (3T3) fibroblasts displaying near-endogenous p65 levels was previously 

described (Tay et al., 2010). Knockout p65−/− mouse 3T3 fibroblasts were engineered to display 

p65-DsRed under the 1.5 kb p65 promoter (4). A minimum fluorescence clone was selected to 

achieve near-endogenous expression level to represent NF-κB wild-type dynamics. Addition of a 

ubiquitin-promoter driven H2B-GFP cassette provides a nuclear marker to facilitate automated 

image processing. 

RNA Sequencing 

Cells were removed from microfluidic chambers using .25% Trypsin-EDTA for 5mins (25200-

056) to free the cells from microfluidic surface, then flushed with water to remove from device. 

Cells were placed in lysis buffer containing 0.2% (vol/vol) Triton X-100, RNase inhibitor, oligoDT 

primer and dntps. Protocol for SMART seq was followed thereafter. Samples were pooled then 

sequenced on NovaSeq platform. Expression levels are expressed as transcripts per million and 

hierarchical clustering was done using the metric: (1-pearson correlation) on gene expression 
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levels. Upregulated and downregulated genes were found using (p < .01, fold-change >.5). Gene 

ontology and transcription factor analysis was done using GSEA analysis on differentially 

expressed genes. STRING network was defined using curated knowledge databases of protein-

protein associations and BIND database using high confidence interactions. Analysis was limited 

to proteins that contain the NF-κB binding motif and are within the interacting genes in the NF-

κB pathway. 

 

Mathematical modeling of NF-κB pathway 

A comprehensive model for the NF-κB system with 26 variables was first elaborated by Hoffman 

in 200220. Krishna et al. reduced the model to only five non-linear coupling equations14,25 while 

still retaining the essential dynamics of the pathway: 

𝑑𝑁𝑛

𝑑𝑡
=

𝐾𝐼

𝐾𝐼 + 𝐼
𝑘𝑁𝑖𝑛(𝑁𝑡𝑜𝑡 − 𝑁𝑛) − 𝑘𝑙𝑖𝑛𝐼

𝑁𝑛

𝐾𝑁 + 𝑁𝑛
   

𝑑𝐼𝑚
𝑑𝑡

= 𝑘𝑡𝑁𝑛
2 − 𝛾𝑚𝐼𝑚 

𝑑𝐼

𝑑𝑡
= 𝑘𝑡𝑙𝐼𝑚 − 𝛼[𝐼𝐾𝐾]𝑎(𝑁𝑡𝑜𝑡 − 𝑁𝑛)

𝐼

𝐾𝐼 + 𝐼
 

𝑑[𝐼𝐾𝐾]𝑎
𝑑𝑡

= 𝑘𝑎[𝑇𝑁𝐹]([𝐼𝐾𝐾]𝑡𝑜𝑡 − [𝐼𝐾𝐾]𝑎 − [𝐼𝐾𝐾]𝑖) − 𝑘𝑖[𝐼𝐾𝐾]𝑎 

𝑑[𝐼𝐾𝐾]𝑖
𝑑𝑡

= 𝑘𝑖[𝐼𝐾𝐾]𝑎 − 𝑘𝑝[𝐼𝐾𝐾]𝑖
𝑘𝐴20

𝑘𝐴20 + [𝐴20][𝑇𝑁𝐹]
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where 𝑁𝑛 is the nuclear NF-κB concentration, 𝐼𝑚 is the IκB mRNA level, 𝐼 is the concentration of 

cytoplasmic IκB protein, [𝐼𝐾𝐾]𝑎 is the level of active IκB kinase, and [𝐼𝐾𝐾]𝑖 is the level of 

inactive IκB kinase. This simple model reproduces spiky NF-κB oscillations seen in experiments 

and entrainment of such oscillations by time-varying TNF signals. The last two equations above 

are a simplified representation of signal transduction from external TNF levels to IKK levels14,25. 

Note the existence of both positive and negative regulation of IKK by TNF, characteristic of an 

incoherent feedforward loop9: TNF increases the amount of active IKK but also decreases active 

IKK indirectly through inactive IKK.   

In reality, signal transduction between external TNF and IKK is known to be more 

complex, involving receptor dynamics and numerous intermediate complexes. These details 

include incoherent feedforward loops of different timescales in addition to the one modelled 

here23,24. Such features may be revealed by the response to high frequency TNF signals used in 

this study but cannot be predicted by the last two equations in this model since they are based on 

experiments involving slowly changing TNF (timescale of hours).  

In this paper we modify the last two equations to capture faster signaling processes that 

might be visible to fast TNF signals (timescale of seconds). We continue to model the pathway 

between 𝑇𝑁𝐹 and 𝐼𝐾𝐾 as having general positive and negative regulation but with an unspecified 

timescale 𝜏0.  This approach gives a simple coarse-grained model of signaling without making 

assumptions about the exact molecular identity of the molecules involved in these fast processes: 

𝑑𝑁𝑛

𝑑𝑡
=

𝐾𝐼

𝐾𝐼 + 𝐼
𝑘𝑁𝑖𝑛(𝑁𝑡𝑜𝑡 − 𝑁𝑛) − 𝑘𝑙𝑖𝑛𝐼

𝑁𝑛

𝐾𝑁 + 𝑁𝑛
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𝑑𝐼𝑚
𝑑𝑡

= 𝑘𝑡𝑁𝑛
2 − 𝛾𝑚𝐼𝑚 

𝑑𝐼

𝑑𝑡
= 𝑘𝑡𝑙𝐼𝑚 − 𝛼[𝐼𝐾𝐾]𝑎(𝑁𝑡𝑜𝑡 − 𝑁𝑛)

𝐼

𝐾𝐼 + 𝐼
 

𝜏0

𝑑𝑋

𝑑𝑡
= −𝛼𝑥(𝑋 − 𝑇𝑁𝐹) 

𝜏0

𝑑𝑌

𝑑𝑡
= −𝛽𝑦(𝑌 − 𝑐0) − 𝛽𝑥𝑋 (

𝑌𝑛

𝑌0
𝑛 + 𝑌𝑛

) + 𝛽𝑇𝑁𝐹𝑇𝑁𝐹 

𝑑[𝐼𝐾𝐾]𝑎
𝑑𝑡

= −𝛾𝐼𝐾𝐾[𝐼𝐾𝐾]𝑎 + 𝛾𝑦(𝑌 − 𝑐0) 

Here  𝑇𝑁𝐹 is the input signal of interest, 𝑋 is promoted by 𝑇𝑁𝐹, and 𝑌  is promoted by 𝑇𝑁𝐹 but 

suppressed by 𝑋. The dynamics downstream of IKK (i.e., NF-κB and IκB) are exactly as in the 

model of Krishna et al.14,25. The value of the parameters we use in these equations are summarized 

in Table 1.  

Parameters for simplified NF-κB model14,25   

Parameter Value Parameter Value 

𝑘𝑁𝑖𝑛 5.4 min-1 𝛼𝑥 10  

𝑘𝑙𝑖𝑛 0.018 min-1 𝛽𝑦 60 

𝑘𝑙 1.03 µM-1min-1 𝛽𝑥 60 

𝑘𝑡𝑙 0.24 min-1 𝛽𝑇𝑁𝐹 60.6 
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𝐾𝐼 0.035 µM 𝑛 10 

𝐾𝑁 0.029 µM 𝑦0 0.001 

𝛾𝑚 0.017 min-1 𝛾𝐼𝐾𝐾 1 

𝛼 1.05 µM-1min-1 𝛾𝑦 30 

𝑁𝑡𝑜𝑡 1 µM 𝜏0 1 min 

  𝜏𝑛𝑜𝑖𝑠𝑒 0.0667 𝜏0 

 

Table 1: The first two columns give parameters of the simplified NF-κB system (𝑘𝑙𝑖𝑛 to 𝑁𝑡𝑜𝑡), 

taken directly from 25. The last columns give parameters for the rectified adaptation model, 

following design principles laid out in 9 for Incoherent Feed-Forward Loop-based adaptive circuits. 

We have two sources of noise in our simulation, one from TNF, and the other from the stochasticity 

inside the NF-κB network. Additive noise in the TNF signal is simulated from two random 

distributions. The amplitude of the noise is drawn from a uniform distribution [−𝜎, 𝜎], and the 

time difference between the change of amplitudes of noise is drawn from an exponential 

distribution with mean equals to 𝜏𝑛𝑜𝑖𝑠𝑒. Meanwhile, the stochasticity inside the NF-κB networks 

(only the first three equations) is simulated from the Langevin noise 𝜂(0, 𝜖) where 𝜖 = 0.01 𝜏0
−1/2

.  

Rectified adaptation 

The existence of both positive and negative interactions (i.e., an Incoherent Feed Forward Loop), 

leads to adaptation9. Adaptation in a chemical circuit refers to a transient response to a step change 
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in the input after which the circuit output eventually settles down to its initial resting value. In our 

model, the resting value of Y is 𝑐0.  For non-zero 𝑐0 = 0.1, we find that Y responds adaptively to 

both step ups and step downs in the input (TNF).  

However, if 𝑐0 = 0, Y only responds to step ups in TNF and not step downs, a phenomenon 

we term `rectified adaptation’. Such a circuit will perceive noise as an ever-increasing signal, and 

trigger an activation threshold much larger than the standard deviation of the noise. Thus, we find 

that a simple limit of the commonly found adaptation motif in biology explains stochastic 

resonance seen in NF-κB activation. 

Details of simulations in each figure 

 

In Figure 1d-f, NF-κB simulated using the rectified adaptative circuit (i.e., 𝑐0 =

0) activates from noisy signal of low moving average. For the constant signal, we set the TNF 

level to be 0.1. For the noisy signal, we set the average value of TNF to be 0.05 and 𝜎 to be 0.04. 

In Figure 3c-d, NF-κB only responds to noisy signal if the adaptation is rectified (i.e., if 𝑐0 = 0) 

but not with conventional adaptation (𝑐0 = 0.1). Similar to Figure 1d-f, for constant signal, we set 

the TNF level to be 0.05. For the noisy signal, we set the average value of TNF to be 0.05 and 𝜎 

to be 0.04. 

In Figure 3e, NF-κB in the rectified adaptive circuit (𝑐0 = 0) shows decreasing responses 

as the period of the input signal increases. In creating Figure 3e, we use noiseless sinusoidal signals 

of periods 0.2667𝜏0, 1.5085𝜏0, 8.5333 𝜏0. For all periods, we set the average value of TNF to be 

0.05 and 𝜎 to be 0.04. 
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In Figure 3f, NF-κB in the rectified adaptive circuit shows decreasing fraction of cells 

activated as the period of the input signal increases. The purpose of Figure 3e-f is to understand 

how the time scale of the adaptation impacts the activation of NF-κB. Here, similar to Figure 3e, 

we remain the same average TNF level and the amplitude of the sine wave at 0.05 and 0.04, 

respectively. We vary the range of period to be from 0.1𝜏0 to 100 𝜏0. 
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Supplementary Figure 2.1: Comparison of NF-κB single cell traces at constant pulse feeding 

for low doses. (a-d) Constant doses of .1ng/mL and less with constant stimulation show 

characteristic response of NF-κB activation. 
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Supplementary Figure 2.2: Comparison of NF-κB single cell traces at constant pulse feeding 

for high doses. (a-d) Constant doses of 1 ng/mL and .5 ng/mL with constant stimulation show 

characteristic response of NF-κB activation with high activated fraction and fast response times. 
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Supplementary Figure 2.3: Cells are sensitive to the addition of noise in TNF signal.  (a) 

Stimulation comparison between different tested conditions (b) single cell traces measured under 

noisy stimulus exposure. (c) Single cell traces under constant TNF exposure with equal integrated 

mean as noisy stimulus show significantly less NF-κB translocation to the nucleus. 
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Supplementary Figure 2.4: NF-κB target genes are show different behaviors when exposed 

to a noisy signal (a) There are three different behaviors that present amongst classic NF-κB target 

genes. The first behavior is an increase expression across multiple time points. (a) The second 

behavior is an increased duration of high expression. This is present amongst CCL class genes. (c) 

The last grouping of gene expression behavior is a downregulation of expression. 
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Supplementary Figure 2.5: Single cell traces of response to cosine stimulus show increasing 

with slower periods (a-e) Activated single cell traces show similar profiles for exposures under 

30second period, but dramatically reduced peak height for 30second period (mean of populations 

in red). 

  



100 

 

 

Supplementary Figure 2.6: Experiments confirm simulation prediction of increasing 

response time with slower period. (a) Experimental stimulation profiles for cosine exposure at 

different periods ranging from 2s to 30s. (b) Activated single cell traces in live cell imaging 

experiments (mean of populations in red) (c) Stochastic simulation of 100 cells using same 

methodology as F6b (simulation of cosine stimulation) comparing peak timing and period of 

stimulation (d) Experiments show increasing mean and tail for peak time in cosine stimulation 

experiments. (e) One tailed heteroskedastic t-test between groups reveal significant differences in 

peak timings between groups 
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Raw Data and Image Analysis Software: Single cell NF-κB fluorescence microscopy images, 

analysis software and analyzed single cell traces for all experiments can be found in the following 

server: 

https://github.com/parthivapatel/NoisyInputSignaling 

 

 

  

https://github.com/parthivapatel/NoisyInputSignaling
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Conclusions 

We attempt to solve a key question in cellular biology: how do cells successfully function despite 

a noisy environment. Using a medically-relevant signaling pathway that is well understood as a 

model system can help yield insight into the mechanisms that use or curtail noise and help us 

fundamentally understand sensitivity and specificity in this medically relevant pathway. Through 

this, we impact a wide range of fields including immunity, pharmacology, and signaling as well 

as systems biology and biophysics. Our research fundamentally increases understanding of how 

cells respond accurately to noisy signals and how signal transduction can be robust in a constantly 

changing environment. Mechanistic investigation into this problem is possible because of the 

unique application of microfluidics and single cell analysis. 

Studying the detrimental or possibly beneficial role of input noise in the NF-κB pathway and its 

signal transduction is highly innovative. Our studies using quantitative single-cell measurements 

show how internal variability in network components play a role in controlling gene expression 

and response to cytokine inputs. Further, studying baseline noisy signal has been investigated for 

the first time in immune signaling networks. The role of input noise has been studied in 

neuroscience previously and theoretical studies exist for other networks, but can only be 

experimentally studied with a system capable of systematically supplying endogenous noisy 

signals and quantitatively measuring response. Further characterization of cells exposed to noisy 

signals showed significant gene expression changes though limitation of growth potential of cells 

by activating anti-cancer transcriptional programs. 
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Similarly, by using a machine learning method to investigate activation a priori we addressed 

questions surrounding the fundamental heterogeneity in NF-κB. This method, however, is useful 

for not only NF-κB, but for many other binary events as well such as drug survival, response in 

many gene circuits that exist outside immune signaling, and infection. This methodology and 

approach illuminates and helps decouple the underlying features of cell signaling without 

perturbing the initial state of those cells. 

Mathematical analysis combined with quantitative analysis of NF-κB dynamics in response to 

noisy and non-uniform signaling continues to produce new insights into signaling, cellular decision 

making, and the study of biological variability. These approaches coupled with advances through 

microfluidic and biological engineering helps us pioneer design principles for single cell research 

for the community. 
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Appendix 

Through the exploration of noise in transcription factor response, we circled around the 

fundamental question of how to measure transcription factor engagement in a high-throughput 

manner while still decoupling the effect of noise in transcription factor binding. Due to the effect 

of cofactors, enhancers, repressors and many other DNA modulating proteins, transcription factor 

response and gene expression does not always adhere to the input.  

In the following section, I explore preliminary efforts to enable the usage of single cell RNA 

sequencing data to gather unique insights into transcription factor engagement and to understand 

some of the fundamental questions underlying noise in transcription factor response. Through 

hidden information within RNA sequencing data relating to the reference genome we are able to 

gather information about underlying motif usage in single cells. Using this we can infer behaviors 

for the transcription factors that bind these motifs.  
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Inform Single Cell Transcriptional Factor Engagement 
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Abstract: 

Single-cell RNA sequencing has emerged as a powerful tool often used to understand 

heterogeneity and transitions in cellular state. Single cell sequencing outputs however are either 

cost prohibitive or have standard levels of gene expression that often limit the scope of the analysis 

to specific target genes. Often, many additional studies and analysis are required to understand 

how noisy single cell data can relate to dynamics of a pathway and the kinetics of transcription 

factors. Here we demonstrate a simple, yet robust, application of sequencing data to derive 

transcription factor regulation from single cell RNA sequencing data. We used our platform, 

motiFATE, on hematapoetic stem cell differentiation, PBMCs and EBV infected cells to 

understand how downstream expression is driven by transcription factor adaptability. MotiFATE 

showcases the adaptability of motif elements and enabled a reconstruction of the cell states, 

differentiation trajectories, transcription factor binding dynamics, and new transcription factor 

identification. This study establishes how RNA-derived transcription binding analysis can be used 

to understand cellular hierarchy and fate decisions in development. 

mailto:tays@uchicago.edu
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Introduction 

Throughout their study, multicellular organisms have been classified and categorized into 

fundamental components, such as organs and tissues. More recently, study has gone into 

organizing cellular hierarchy through cell types and differentiation landscapes(1–4). This 

narrowing of scope in turn comes with understanding of differences in form and function of 

different components. Characterizing differences in cell type and further, cell states has become 

extremely accessible through data-rich experimental techniques such as cytof and rna seq(5–7), 

and in turn has led to large scale analysis of features that correlate with transitions through lineage. 

There has been thorough analysis and methodology used in construction and analyzing these 

lineages(8–10) and these tools have emerged as powerful ways to organize and understand how 

cells transition from one state to another. However, the analysis of what drives changes in state is 

more often focused on expression of genes. Specifically, limitations in multiplexity of different 

sequencing strategies have limited the exploration of transcription factor engagement through the 

course of these cellular lineages. Often, specific prior knowledge of transcription factors is 

required to attribute meaning from data from transcription factor through to gene expression and 

has limited broad unbiased studies of transcription factor engagement. Despite the limited options 

to identify transcription factor states in single cells, tools such as Gene Ontology(11) and 

STRING(12) help to identify known sources of transcription factor utilization. 

Similarly, while exploration of the details of gene expression differences has yielded many insights 

into how groups of cells function, the methods that are used for these experiments often fails to 

encapsulate how adaptable the cellular machine truly is. Despite the same pathway being used, a 

single transcription factor can represent vastly different programs(13). Conventional analysis often 
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serves to undermine the adaptability of these extremely adaptable transcription factors and the 

broad role of cofactors in regulating the binding activity of these transcription factors(14–16). 

Here, using motiFATE, we systematically evaluated RNA-derived features from the host genome 

to map nearly 33,000 motif sequences to their corresponding single cells and quantify how the 

adaptability of known transcription factors plays a role in transcription factor programming across 

cell type differentiation. We then leveraged our findings to construct an unsupervised framework 

for predicting and understanding unknown transcription factor dynamics across cellular 

hierarchies. 

 

RNA sequencing data contains underlying hidden genomic information 

Our initial goal was to identify and map motif sequences to their corresponding single cells. 

Underlying gene expression data contains a wealth of underutilized knowledge and hidden data. 

A single gene transcript can represent data from the promotor and within the gene itself given prior 

knowledge of the genome. To utilize this information in single cell analysis we used known 

information about a population’s genetic information and genome to populate possible motifs for 

each gene within a window of 5000bp from the transcriptional start site. We then used a moving 

window of 8bp to populate the frequency of motifs within each gene and used this information to 

transform single cell gene expression to motif utilization (Figure 3.1a). 
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Figure 3.1: RNA sequencing data hides underlying information about the genome. (a) We 

use underlying genetic information to populate motif utilization by applying motifs used in each 

gene to existing RNA sequencing data (b) Single cell mapping of hematopoietic stem cell 

differentiation onto UMAP space with cell states identified. (c) Comparison of motif state across 

cell types can identify significantly overutilized and underutilized motifs in single cell. (d) Using 

known transcription factor binding motifs, we can visualize and confirm the distribution of 

transcription factor engagement across the population in different cell types.  

 

To explore the value of this additional data we use hematopoietic cell differentiation to benchmark 

known transcription factor dynamics. We compare motif utilization in well understood cell types 

to address the validity of comparing transcription factor engagement in single cells  (Figure 3.1b). 

We used an existing hematopoietic stem cell dataset(5) to mapped single cells onto a dimensionally 

reduced space using UMAP. We can compare the results from using motif-based features alone 

and gene-expression based features alone and find that we are able to recapture the neighborhood 

approximated of different clusters (using k-means; Supplementary Figure 3.1) Here we looked 
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specifically at dendritic cells and populated the single cell distribution of motifs onto a 

dimensionally reduced motif space and compared motif utilization across different cell types. We 

found many significant motifs that have a high prevalence in dendritic cells. Of these, some 

represent known transcription factors (Figure 3.1c). 

While we can use unsupervised classification and comparison of motifs to identify new and 

particularly variable motifs, we can also use known transcription factor binding to inform and 

understand single cell distribution of transcription factor engagement (Figure 3.1d). For example, 

it is known that there is upregulated Gata1 and LRF expression in the erythroid cells, and 

upregulated Klf10 expression in Neutrophils and we can see that the transcription factor 

engagement follows our expectation. Using known motifs allows us to validate transcription factor 

engagement patterns that are known in these different cell types as well as identify new modes and 

timings of engagement in a population. 

Motif utilization variability in single cells recapitulates known variability in transcription factor 

binding variability 

To explore motif binding variability in single cells we looked specifically at the known binding 

motif for NF-κB and look into how NF-κB use similar motifs in PBMC single cell gene-expression 

data (10x 33k single cell dataset). We first mapped motifs into a dimensionally reduced space 

using tSNE (Figure 3.2a) by defining the hamming distance of every motif to 6 benchmark motifs 

including ‘AAAAAAAA’ and ‘GGGGGGGG’ to help visualize hamming distance differences 

among motifs. Hamming distance is a metric often used to measure similarity of two different 

sequences accounting for frameshifts, insertions and deletions. We then identified motifs that fall 

within 2 hamming distance of a general consensus sequence of NF-κB: ‘GAATTCCC’ to look at 
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all motifs that fall under utilization by NF-κB (Figure 3.2b). We term this sum as transcription 

factor engagement. Interestingly in PBMCs, NF-κB engagement appears to fall within two 

populations: one with high engagement and one with low engagement.  
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Figure 3.2: Variability in motif utilization matches known transcription factor consensus. (a) 

Motifs are mapped to dimensionally reduced tSNE space based on hamming distance to 6 

benchmark motifs (b) NF-κB motifs within 2 hamming distance of “GAATTCCC” are used sum 

total NF-κB engagement (c) Comparison of NF-κB motifs across different cell types show 

upregulation of similar motifs for highly engaged cells within the population of each cellular sub-

type (d) Aggregated weighted frequency within the population recapitulates the known consensus 

binding sequence of NF-κB (e) Comparisons across cell type for different transcription factors 

show differences and general trends between transcription factors for different cell types. (f) While 

cell-type specific behavior follows general trends, when all cell types are shown, there are clear 

differences in aggregated motif behavior. 

 



112 

 

We then use these two populations of NF-κB engagement to look at NF-κB-specific binding 

differences among single cells in different cell types. We split the categories by using the sum of 

NF-κB motif utilization and setting the threshold at 0 z-score. What we find is that across multiple 

cell types (cytotoxic T-cells, B-cells, and myeloid cells), there is persistent upregulation of specific 

binding motifs in highly-engaged cells (Figure 3.2c). However, interestingly, there are not 

significant cell-type specific differences across motif utilization and matches up consistently with 

the weighted average across all single cells. While this may be an NF-κB specific feature, 

interestingly, we find that the weighted average of motif utilization matches up with the known 

consensus sequence for NF-κB (Figure 3.2d). 

We next looked at multiple transcription factors to try to understand the landscape for transcription 

factor engagement. We hypothesized that we could tease out effects of crosstalk and inhibition 

across different transcription factors by looking at transcription factor engagement across the 

population for different transcription factor engagement levels (Figure 3.2e). We first use different 

cell types to determine if there are cell type specific differences in crosstalk across transcription 

factors. We compare Myc, NF-κB, and Fos and find that while there are differences in the 

distribution of cells, the overall trend between transcription factors remains the same. While Myc 

is correlated with NF-κB engagement, Fos is the opposite and is anticorrelated. Interestingly when 

we plot al cell types together, the engagement for Myc and NF-κB switches to an overall downward 

trend (Figure 3.2f). This suggests that while the general utilization of transcription factors remains 

consistent within the population, individual cell-types may diverge in cross-talk of transcription 

factors. 
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Motif utilization can be used for transcription factor discovery 

While there is an immense value to understanding existing and known transcription factor 

dynamics and engagement, there is also an equal importance to discovery of new mechanisms and 

transcription factors. We can use motiFATE to probe unknown cellular transitions to identify 

transcription factor dynamics along the transition trajectory. 

We use EBV infected B-cells and look at re-activation in these cells. Re-activation from latency 

has immediate importance in EBV infections and leads to viral relapse in patients affected with 

EBV. We use this model system to investigate why reactivation happens and why some cells are 

able to escape reactivation. To do this, we first track the viral progression of cells after re-activation 

to get an approximate trajectory of cells along the transition landscape (Figure 3.3a). By breaking 

up cells across this viral fraction trajectory we can group cells into multiple groups (Figure 3.3b). 

Across all groups there are motifs that are upregulated and downregulated (Figure 3.3c), however 

in group ‘D,’ due to the high fraction of viral RNA, we find that there are not as many significant 

motifs upregulated. This could be due to the decreased host cell RNA content present within this 

highly infected group.  

We are also able to find some motifs that are highly upregulated in group ‘A.’ Among these motifs 

are candidates for new transcription factor binding sites. We find palindromic motifs among those 

upregulated, which highly suggests the presence of a transcription factor binding site.  
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Figure 3.3: motiFATE can be used for transcription factor discovery. (a) single cell EBV 

reactivation in B cells is shown in dimensionally reduced tSNE. Cells are colored by viral fraction 

(b) Viral fraction separates cells that have undergone reactivation and those that have resisted 

along with cells in transition states (c) High significance motifs can be used to identify 

transcription factor binding targets for further downstream study. 

 

Discussion 

Single-cell RNA sequencing has emerged as a powerful tool often used to understand 

heterogeneity in cellular state for diverse populations. However, the wealth of data that RNA 

sequencing represents is underutilized and hides a wealth of hidden information about the genome. 

Here we demonstrate a simple yet robust application of sequencing data to derive transcription 

factor regulation from single cell RNA sequencing data. We use our platform, motiFATE to 

understand transcription factor engagement across different cell types, differentiation trajectories 

and ultimately use it to identify candidates for novel transcription factors. This study has 

establishes how RNA-derived transcription binding analysis can be used to understand cellular 

hierarchy and fate decisions in development. 

  



115 

 

References 

1.  G. Schiebinger, J. Shu, M. Tabaka, B. Cleary, V. Subramanian, A. Solomon, S. Liu, S. 

Lin, P. Berube, L. Lee, J. Chen, J. Brumbaugh, R. Jaenisch, A. Regev, E. S. Lander, A. 

Affiliations, Reconstruction of developmental landscapes by optimal-transport analysis of 

single-cell gene expression sheds light on cellular reprogramming (2017), 

doi:10.1101/191056. 

2.  C. Trapnell, D. Cacchiarelli, J. Grimsby, P. Pokharel, S. Li, M. Morse, N. J. Lennon, K. J. 

Livak, T. S. Mikkelsen, J. L. Rinn, The dynamics and regulators of cell fate decisions are 

revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014). 

3.  T. Suda, J. Suda, M. Ogawa, Disparate differentiation in mouse hemopoietic colonies 

derived from paired progenitors. Proc. Natl. Acad. Sci. U. S. A. 81, 2520–4 (1984). 

4.  S. Jang, S. Choubey, L. Furchtgott, L. N. Zou, A. Doyle, V. Menon, E. B. Loew, A. R. 

Krostag, R. A. Martinez, L. Madisen, B. P. Levi, S. Ramanathan, Dynamics of embryonic 

stem cell differentiation inferred from single-cell transcriptomics show a series of 

transitions through discrete cell states. Elife. 6 (2017), doi:10.7554/ELIFE.20487. 

5.  I. C. Macaulay, V. Svensson, C. Labalette, L. Ferreira, F. Hamey, T. Voet, S. A. 

Teichmann, A. Cvejic, Single-Cell RNA-Sequencing Reveals a Continuous Spectrum of 

Differentiation in Hematopoietic Cells. Cell Rep. 14, 966–977 (2016). 

6.  C. E. Teh, J.-N. Gong, D. Segal, T. Tan, C. J. Vandenberg, P. L. Fedele, M. S. Y. Low, G. 

Grigoriadis, S. J. Harrison, A. Strasser, A. W. Roberts, D. C. S. Huang, G. P. Nolan, D. H. 

D. Gray, M. E. Ko, Deep profiling of apoptotic pathways with mass cytometry identifies a 

synergistic drug combination for killing myeloma cells. Cell Death Differ. 2020 277. 27, 

2217–2233 (2020). 

7.  K. Street, D. Risso, R. B. Fletcher, D. Das, J. Ngai, N. Yosef, E. Purdom, S. Dudoit, 

Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC 

Genomics. 19, 477 (2018). 

8.  R. Losick, C. Desplan, Stochasticity and cell fate. Science (80-. ). 320 (2008), pp. 65–68. 

9.  A. McKenna, G. M. Findlay, J. A. Gagnon, M. S. Horwitz, A. F. Schier, J. Shendure, 

Whole-organism lineage tracing by combinatorial and cumulative genome editing. 

Science. 353, aaf7907 (2016). 

10.  A. K. Casasent, A. Schalck, R. Gao, E. Sei, A. Long, W. Pangburn, T. Casasent, F. Meric-

Bernstam, M. E. Edgerton, N. E. Navin, Multiclonal Invasion in Breast Tumors Identified 

by Topographic Single Cell Sequencing. Cell. 172, 205-217.e12 (2018). 

11.  M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis, 

K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver, A. 

Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin, G. 

Sherlock, Gene ontology: Tool for the unification of biology. Nat. Genet. 25 (2000), pp. 



116 

 

25–29. 

12.  D. Szklarczyk, A. L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas, M. 

Simonovic, N. T. Doncheva, J. H. Morris, P. Bork, L. J. Jensen, C. Von Mering, STRING 

v11: Protein-protein association networks with increased coverage, supporting functional 

discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 

(2019). 

13.  T. H. Leung, A. Hoffmann, D. Baltimore, One Nucleotide in a κB Site Can Determine 

Cofactor Specificity for NF-κB Dimers. Cell. 118, 453–464 (2004). 

14.  J. Berg, S. Willmann, M. Lässig, Adaptive evolution of transcription factor binding sites. 

BMC Evol. Biol. 2004 41. 4, 1–12 (2004). 

15.  Z. Wang, P. Wang, Y. Li, H. Peng, Y. Zhu, N. Mohandas, J. Liu, Interplay between 

cofactors and transcription factors in hematopoiesis and hematological malignancies. 

Signal Transduct. Target. Ther. 2021 61. 6, 1–16 (2021). 

16.  I. L. Ibarra, N. M. Hollmann, B. Klaus, S. Augsten, B. Velten, J. Hennig, J. B. Zaugg, 

Mechanistic insights into transcription factor cooperativity and its impact on protein-

phenotype interactions. Nat. Commun. 2020 111. 11, 1–16 (2020). 

 

 

 



117 

 

Acknowledgements:  

Author Contributions: P.P. developed and ran computational pipeline; N.D. did RNA-seq pipeline 

for EBV infected cells; S.T supervised the work. 

Correspondence: Savaş Tay, Institute for Molecular Engineering, The University of Chicago, 

tays@uchicago.edu 

Funding: 

Competing Interests:  

Data and Materials Availability:  

 

  



118 

 

Supplementary Information  

motiFATE Uses Hidden RNA-seq Underlying Information to Inform 

Single Cell Transcriptional Factor Activity 

Parthiv Patel1, Nir Drayman1, Savaş Tay1 

 

Materials and Methods 

Motif Utilization Calculation 

We use reference genome “GRCh38.p12.genome.fa” to infer the genetic information of single 

cells in a mouse host. Using this reference genome, we populate all possible motifs that occur 

within 5000bp of the transcriptional start site by using an 8bp sliding window for this study (these 

attributes are tunable based on the use case). By identifying the motifs that are present in all genes 

we construct a matrix that represent the motif counts for each gene. We then transform a given 

single cell RNA-seq dataset by matrix multiplying the motif matrix with single cell RNA-seq 

matrix to get motif utilization for each single cell. 

For visualization of motif-space, we benchmark all motifs to 6 standard sequences including 

‘AAAAAAAA’ and ‘GGGGGGGG’ to find hamming distance between them. We then 

dimensionally reduce this down to two variables and plot an approximation to sequence similarity 

within a 2-d plot.   

Transcription Factor Engagement Calculation 

To find transcription factor engagement, we aggregate motifs that have similar sequences and sum 

the total utilization for each motif. To find similar motifs, we use hamming distance to measure 
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the sequence similarity between a base motif and all other motifs. We then apply a cutoff of 2 

hamming distance to find only very similar motifs to the base. Summing up motifs that are within 

2 hamming distance results in a comprehensive view of transcription factor adaptability and 

generalizability. We then standardize these values for comparison and visualization on t-SNE or 

UMAP. 
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Supplementary Figure 3.1: Motifs can be used to recapture dimensionally reduced 

visualization. (a) Using both tSNE and UMAP shows that we can recapture cell transition states 

from gene-expression alone using just motifs utilization. 

 


