
THE UNIVERSITY OF CHICAGO

MULTI-MODAL VALIDATION OF MR MICROSTRUCTURE IMAGING IN THE

MOUSE BRAIN

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE BIOLOGICAL SCIENCES

AND THE PRITZKER SCHOOL OF MEDICINE

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

COMMITTEE ON MEDICAL PHYSICS

BY

TIMOTHY SCOTT TRINKLE

CHICAGO, ILLINOIS

DECEMBER 2021



Copyright © 2021 by Timothy Scott Trinkle

All Rights Reserved



To my family.



Contents

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Diffusion MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Diffusion tensor imaging . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 High angular resolution diffusion imaging . . . . . . . . . . . . . . . . 5
1.1.3 Tractography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Dissertation overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 VALIDATION OF DMRI ORIENTATION DISTRIBUTION FUNCTIONS USING
SYNCHROTRON X-RAY MICROCOMPUTED TOMOGRAPHY . . . . . . . . 10
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Diffusion MRI Validation . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Synchrotron x-ray microcomputed tomography . . . . . . . . . . . . . 11
2.1.3 Author contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Animal procedures and tissue preparation . . . . . . . . . . . . . . . 13
2.2.2 MRI acquisition and analysis . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Synchrotron x-ray microCT acquisition . . . . . . . . . . . . . . . . . 15
2.2.4 Calculation of microCT fODFs . . . . . . . . . . . . . . . . . . . . . 16
2.2.5 Spatial registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.6 Multi-modal fODF comparisons . . . . . . . . . . . . . . . . . . . . . 21
2.2.7 Tractography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 MicroCT fODFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 Spatial correspondence of fODFs . . . . . . . . . . . . . . . . . . . . 25

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.1 Interpretation of fODFs . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.2 Comparison of microCT with optical methods . . . . . . . . . . . . . 35
2.4.3 Future work and limitations . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Appendix: Structure tensor parameter selection . . . . . . . . . . . . . . . . 39

3 VALIDATION OF DMRI BRAIN NETWORKS USING NEURAL TRACER IMAG-
ING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Author contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

iv



3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.1 Construction of the primary tracer graph . . . . . . . . . . . . . . . . 45
3.2.2 Additional tracer data . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.3 Animal procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.4 Diffusion MRI acquisition . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.5 Diffusion MRI processing . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.6 Construction of tractography graphs . . . . . . . . . . . . . . . . . . 48
3.2.7 Construction of surrogate graphs . . . . . . . . . . . . . . . . . . . . 49

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.1 Comparison of edge-weight values . . . . . . . . . . . . . . . . . . . . 52
3.3.2 Comparison of weight-distance relationships . . . . . . . . . . . . . . 53
3.3.3 Comparison of network organization . . . . . . . . . . . . . . . . . . 56
3.3.4 Comparison of additional network properties . . . . . . . . . . . . . . 67
3.3.5 Validation with independent tracer measurements . . . . . . . . . . . 71

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.5 Appendix: Graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.6 Appendix: Tractography parameter selection . . . . . . . . . . . . . . . . . . 75
3.7 Appendix: Parcellation structure information . . . . . . . . . . . . . . . . . 77

4 IDENTIFICATION OF SPECTRAL BIASES IN BIOPHYSICAL EPSI WHITE-
MATTER MODELS WITH DMRI . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1.1 Author contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2.2 MR imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2.3 EPSI data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.4 Model fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2.5 Asymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2.6 Additional model-derived metrics . . . . . . . . . . . . . . . . . . . . 97
4.2.7 dMRI processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2.8 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3.1 Comparison of asymmetry values . . . . . . . . . . . . . . . . . . . . 100
4.3.2 Sensitivity to shiverer white matter . . . . . . . . . . . . . . . . . . . 106

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A DATA AVAILABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

v



List of Figures

1.1 Sample FA and directionally-encoded color images. . . . . . . . . . . . . . . . . 5
1.2 The dMRI tractography pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Representative sagittal slice of microCT data. . . . . . . . . . . . . . . . . . . . 16
2.2 Expansion of orientations onto SH functions. . . . . . . . . . . . . . . . . . . . . 18
2.3 Demonstration of structure tensor analysis pipeline on real data. . . . . . . . . . 19
2.4 Multi-modal spatial registration pipeline . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Visualization of microCT data and fODFs across two axial slices . . . . . . . . . 23
2.6 Fiber density measure derived from microCT fODFS . . . . . . . . . . . . . . . 25
2.7 Multi-modal spatial registration results . . . . . . . . . . . . . . . . . . . . . . . 26
2.8 Comparison of microCT-derived FD and dMRI-derived FA metrics . . . . . . . 27
2.9 Identification of primary fiber orientations . . . . . . . . . . . . . . . . . . . . . 28
2.10 Angular correlation coefficient of cross-modality fODFs . . . . . . . . . . . . . . 29
2.11 Tractography results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.12 Deterministic tractography results . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.13 dMRI diffusion direction sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.14 A multi-scale, multimodal pipeline for imaging the same brain from MRI to EM 37
2.15 Example microCT ring artifacts. . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.16 Structure tensor parameter phantom . . . . . . . . . . . . . . . . . . . . . . . . 40
2.17 Structure tensor parameter ACC heatmaps. . . . . . . . . . . . . . . . . . . . . 41

3.1 Edge-weight values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Scatterplots of the log-weights for tracer vs. tractography connectivity matrices 52
3.3 Distance curves for weights and residuals for all network construction methods . 54
3.4 Sample geometric surrogate connectivity matrix . . . . . . . . . . . . . . . . . . 55
3.5 Normalized weight-distance relationships . . . . . . . . . . . . . . . . . . . . . . 55
3.6 Confusion matrices for module assignment . . . . . . . . . . . . . . . . . . . . . 57
3.7 Module diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.8 Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.9 Scatterplots showing the relationship between participation coefficients assigned

to each node by different network construction methods . . . . . . . . . . . . . . 61
3.10 Visualization of network structure for tracer, endpoint, and dense graphs in phys-

ical coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.11 Violin plots showing the distribution of distances between the center of mass of

individual hub nodes and the center of mass of the brain. . . . . . . . . . . . . . 64
3.12 Violin plots showing distributions of the average fiber distance to each node’s

neighbors, split into hub and feeder nodes defined using eigenvector centrality . 66
3.13 Mean binary clustering coefficients for each method as a function of network density 67
3.14 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.15 Comparison to empirical, retrograde tracer data in the cortex from Gămănuţ, 2018 70
3.16 Tractography parameter selection distributions . . . . . . . . . . . . . . . . . . . 77

4.1 EPSI SNR as a function of echo time . . . . . . . . . . . . . . . . . . . . . . . . 92
vi



4.2 Demonstration of Atropos tissue segmentation results . . . . . . . . . . . . . . 94
4.3 Scatterplots of data-derived asymmetry values calculated with a cutoff frequency

of ±38 Hz vs. ±76 Hz, ±114 Hz, ±152 Hz, and ±178.6 Hz . . . . . . . . . . . . 97
4.4 Histograms of data- and model-derived asymmetries . . . . . . . . . . . . . . . . 101
4.5 Scatterplots of data- and model-derived asymmetries for the magnitude-fit and

complex-fit models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.6 Model adjusted R2 vs. asymmetry difference and representative FID and spectra. 103
4.7 Distributions of absolute differences in BIC between the magnitude- and complex-

fit models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.8 2D histograms showing the relationship between data asymmetry and model-

predicted frequency shifts for the myelin and axonal water compartments in voxels
with FA > 0.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.9 Violin plots illustrating distributions of control and shiverer asymmetries derived
from data, the magnitude-fit model, and the complex-fit model as a function of
FA bin for voxels with single and crossing fibers . . . . . . . . . . . . . . . . . . 106

4.10 Values for the area under the ROC curve using asymmetry as a one-variable
classifier for control vs. shiverer data . . . . . . . . . . . . . . . . . . . . . . . . 107

4.11 Values for the area under the ROC curve using data asymmetry, model-based
MWF, and R∗2 as one-variable classifiers for control vs. shiverer data . . . . . . 108

4.12 Representative coronal slices of spectral asymmetry and MWF images . . . . . . 109
4.13 Relationship between asymmetry and Γ, the angle between the orientation of the

primary fiber population and B0 . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.14 Values for the area under the ROC curve (AUC) using asymmetry as a one-

variable classifier for control vs. shiverer data. FIDs were first truncated to 32
echoes prior to model-fitting and calculation of spectral asymmetry . . . . . . . 113

4.15 AUC values using data-derived asymmetry as a one-variable classifier for control
vs. shiverer data as a function of the number of echoes in the FID . . . . . . . . 113

4.16 Scatterplots of data-derived asymmetry and R∗2 . . . . . . . . . . . . . . . . . . 115

vii



List of Tables

3.1 Percent agreement in consensus node-module assignment . . . . . . . . . . . . . 59
3.2 Percent of total hub node strength contained in select major brain divisions . . 63
3.3 Tractography parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.4 Parcellation structure information from the Allen Mouse Brain Atlas. . . . . . . 77

4.1 Initial values and search ranges of the parameters for the magnitude-fit and
complex-fit models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

viii



ACKNOWLEDGMENTS

The work presented in this dissertation would not have been possible without the assistance

and support of a number of people I would like to thank here. I am very grateful to have

worked under the guidance of my advisor Patrick La Rivière. Patrick is a truly inspiring

and creative scientist who has been a continually encouraging teacher, mentor, friend, and

fellow coffee enthusiast during my time at the University of Chicago. Sean Foxley collected

all MRI data presented in this dissertation and directly supervised the work presented in

Chapter 4. He also served with Sam Armato and Tim Carroll on my thesis committee; I

would like to thank all three of them for their valuable feedback and suggestions. Bobby

Kasthuri, Vandana Sampathkumar, and others in the Kasthuri Lab acquired the microCT

and electron microscopy data used in chapter 2, and assisted with sample preparation for

MRI data used in chapters 3 and 4. I would also like to thank Răzvan Gămănuţ and Henry

Kennedy for sharing additional tracer data for work presented in Chapter 3.

Insights from discussions with Talon Chandler made their way into nearly every page

of this dissertation. I would like to thank him for his constant encouragement, advice,

and friendship, for yelling about Python and Emacs from day one, and for many car rides

to the rock climbing gym. Phil Vargas, Dimple Modgil, Bryan Quigley, Corey Smith, Ben

Preusser, Hadley Smith, Geneva Schlafly, Nikolaj Reiser, Baiyang Dai, Chineze Egwudo, and

all rotating members of the La Rivière lab have also helped foster a supportive, collaborative

research environment and have been a pleasure to work with.

Sam Hendley, Adam Hasse, and Jennie Crosby were phenomenal classmates, friends,

and fellow travelers with me on a particularly unpleasant afternoon on Martha’s Vineyard.

I would like to thank the three of them as well as Neville Eclov, Eyjólfur Guðmundsson,

Kayla Robinson, Joe Foy, Jordan Fuhrman, Isabelle Hu, Brittany Broder, Lindsay Douglas,

Linnea Kremer, Mira Liu, Natalie Baughan, Julian Bertini, Mena Shenouda, Andrew McVea,

Madeleine Durkee, and other current and former members of the GPMP community for

ix



friendship, journal clubs, and lunch breaks at the duck pond.

I would like to thank Ruth Magaña, Julie Hlavaty, Hoang Ngo, Maya Suraj and Elena

Rizzo for providing valuable administrative assistance, as well as Chun-Wai Chan for helpful

computational support.

Throughout my academic career, I have benefited from the instruction of multiple ex-

ceptional teachers. I would like to specifically thank Joel Adams, Rajasekhar Narisetty, and

Richard Horner, all of whom introduced me to subjects and modes of analysis that continue

to deeply shape how I think.

My time at the University of Chicago would not have been nearly as enjoyable without

the friendship of Inna Gertsenshteyn and Zion Rodman, I would like to thank them for many

coffee breaks, walks, movie nights, and open mics, as well as their cats Obie and Pushkin

for their unwavering support. Amar Risbud has been a great friend and roommate while

completing this research from home through quarantines and lockdowns. I would like to

specifically thank him for multiple much-needed rewatches of Stop Making Sense. I would

also like to thank Will Deyo, Logan Greenhaw, and Jessica Alvarez for their multiple phone

calls, visits, and lifelong friendship.

Finally, I want to thank Tim and Cheryl, my parents and earliest teachers, as well as

Caitlyn, Bryan, Matthew, Jack, Jones, and Leonora for their constant love and support.

This work was supported by funds from the National Institutes of Health under grants

F31NS113571, U01MH109100, R01EB026300, EB026300, S10OD025081, S10RR021039, and

P30CA14599. This research also used resources of the Advanced Photon Source and Argonne

Leadership Computing Facility, both of which are U.S. Department of Energy (DOE) Of-

fice of Science User Facilities operated for the DOE Office of Science by Argonne National

Laboratory: contract No. DE-AC02-06CH11357.

x



ABSTRACT

The mammalian nervous system consists of a complicated network of biological structures,

with functional subsystems constrained by a structural architecture that operates at scales

spanning many orders of spatial magnitude. Our understanding of the architecture of the

brain has been mediated through developments in biological imaging, though all imaging

approaches are constrained by tradeoffs in achievable resolution, sensitivity, and field of

view. Electron microscopy can be used to image nano-scale synapses, but only across small

volumes, while magnetic resonance imaging (MRI) can be used to image whole brains but

with spatial resolutions more coarse by several orders of magnitude.

Developments in MR microstructural imaging methods such as diffusion MRI (dMRI)

and echo-planar spectroscopic imaging (EPSI) help bridge the resolution and field of view

gap by estimating cellular properties such as fiber orientations, myelin integrity, and long-

range connectivity across the brain using clinically feasible acquisition sequences. These

MR approaches rely on biophysical signal models to reconstruct sub-resolution properties

of the underlying tissue. The theme of this dissertation is the development of tools and

analysis methods used to perform multi-modal validation studies for these MR microstruc-

tural imaging models in the mouse brain, with specific focus on dMRI reconstructions and

tractography.

First, we demonstrate the utility of whole-brain synchrotron microcomputed tomography

as a validation modality for the estimation of nerve fiber orientations with dMRI. MicroCT

provides isotropic resolution across whole mouse brains with no physical sectioning, address-

ing limitations in existing optical-based dMRI validation methods. Computer vision tools

were developed to estimate fiber orientations that were spatially registered to dMRI data

of the same specimen. Comparisons between modalities show good agreement in the rep-

resentation of local fiber geometries and long-range trajectories, demonstrating the utility

of synchrotron microCT for future dMRI validation studies. Furthermore, we show that

xi



microCT is compatible with follow-up electron microscopy, forming a multi-modal imaging

pipeline capable of colocalizing structures across five orders of magnitude of resolution.

Next, we perform statistical analysis with geometric surrogate graphs to explore the role

of spatial embedding in the topological properties of the mouse structural brain network mea-

sured with neural tracer imaging and dMRI tractography. We find that spatial embedding

plays a considerably larger role in the topology of tractography networks than tracer net-

works. Tractography underestimates long-range connectivity, which leads to geometric biases

in the estimated modular structure and placement of hub nodes. Our results demonstrate

the caution required in the interpretation of tractography-derived network measurements

that rely on long-range connections and motivate additional geometric consideration in the

design of future tractography validation studies.

Finally, we analyze MR spectra from control and dysmyelinated mouse brain with EPSI to

reveal limitations in existing biophysical compartmental models traditionally used for myelin

imaging. We show that spectra estimated from these biophysical models fail to accurately

predict the extent of asymmetric broadening in white-matter voxels, leading ultimately to

compromised sensitivity to important differences in white-matter structure.

Throughout, we highlight the value that high-resolution ground-truth imaging brings

towards an understanding of the nature of the MR reconstruction problems themselves.
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CHAPTER 1

INTRODUCTION

The mammalian nervous system consists of an incredibly complicated network of bio-

logical structures, with functional subsystems shaped and constrained by a structural

architecture that operates at scales spanning many orders of spatial magnitude. Individual

neurons communicate via nanometer-scale junctions called synapses, while groups of neurons

form complex feedback circuits and white-matter tracts that integrate spatially segregated

functional regions across centimeter scale distances within the brain.

Our understanding of the architecture of the brain has been mediated through develop-

ments in biological imaging since the early microscopy experiments of Santiago Ramón y

Cajal1. Optical imaging methods have helped uncover the structure of neurons and glial

cells in the brain and have guided cell recording studies responsible for countless advances in

basic neuroscience. On the macro scale, imaging modalities such as computed tomography,

positron emission tomography, and magnetic resonance imaging (MRI) have revolutionized

clinical diagnosis and the understanding of a number of neurological disease processes. No

single imaging modality, however, is capable of fully characterizing the architecture of the

mammalian brain; each is constrained by tradeoffs in achievable resolution, sensitivity, and

field of view. At the smallest spatial scale, automated serial electron microscopy (EM)

methods can achieve nanometer-level resolutions and produce saturated reconstructions of

neurons and glial cells with subcellular detail2, but only across extremely small volumes:

imaging just a single cubic millimeter of brain tissue with an isotropic voxel size of 4 nm

would result in nearly 16 petabytes of data3. MRI and other clinical modalities are sensitive

to microstructural tissue features across volumes as large as entire human brains, but are

limited to macroscopic spatial resolutions on the order of millimeters.

Accordingly, a full understanding of the basic structure and function of the mammalian

nervous system and its pathologies requires the development of multi-modal imaging pipelines,

1



where low-resolution modalities can provide important spatial context for information de-

rived from high-resolution modalities, and high-resolution modalities can provide insight into

the fundamental microstructural basis of signals from low-resolution modalities.

The theme of this dissertation is the development of tools and analysis methods for per-

forming such multi-modal imaging studies for the validation of MRI microstructural imaging

methods in the mouse brain, with specific focus on diffusion MRI (dMRI) reconstructions

and tractography methods.

1.1 Diffusion MRI

The Brownian motion of spins measured with nuclear magnetic resonance (NMR) causes a

small amount of dephasing that leads to a measurable decrease in signal magnitude. In 1965,

Stejskal and Tanner designed a pulsed-gradient spin-echo NMR sequence to map this signal

attenuation to a measurement of the apparent diffusion coefficient (ADC)4. In his landmark

1973 paper5 introducing the concept of MRI, Paul Lauterbur speculated on the capacity of

the new imaging technique to perform similar spatial measurements of water diffusion:

Variations on the experiment, to be described later, permit the generation of

two- or three-dimensional images displaying chemical compositions, diffusion co-

efficients [emphasis added] and other properties of objects measurable by spec-

troscopic techniques.

The amount of diffusion-caused spin dephasing in an MRI experiment depends on γ, the

gyromagnetic ratio of the water proton, the diffusion time t during which the spins diffuse

and dephase, and |G|, the magnitude of the diffusion gradient vector6. These properties are

combined into a quantity called the b-value. For a standard Stejskal-Tanner sequence with

pulses of duration δ separated by a time interval ∆, the b-value is given by

b = γ2|G|2δ2 (∆− δ/3) . (1.1)
2



As the b-value increases, either via the use of stronger diffusion gradients or a longer diffusion

time, the spins are allowed to dephase more and the signal will become more attenuated,

which can be modeled with the following simplistic monoexponential decay relationship:

S(b) = S0 exp (−bD) , (1.2)

where S(b) is the signal at b-value b, S0 is the baseline T2-weighted signal without diffusion

sensitization (also referred to as the b0 image), and D is the ADC6. Accordingly, spatial

measurements of the ADC can be made by acquiring images with multiple b-values and

fitting the data to equation 1.2 to estimate D.

1.1.1 Diffusion tensor imaging

Further development in dMRI came in 1990, when Moseley observed that the diffusion

process was anisotropic in white matter7: neurons in white matter fiber bundles can be

modeled as densely packed cylinders where water molecules are free to diffuse down the

long axis but restricted in their abiliity to diffuse in the orthogonal plane by the axonal

cell membranes. Accordingly, the ADC measurement in equation 1.2 is dependent on the

orientation of the diffusion gradient G. To derive gradient-independent measures of ADC,

investigators proposed to acquire a baseline S0 image as well as three diffusion images along

orthogonal directions and average the three resulting ADC estimates, a simple approach that

remains clinically useful today6.

Douek et al.8 recognized that the diffusion anisotropy that complicated ADC estimates

offered an opportunity to recover the orientation of white-matter fibers. This work was

expanded on by Peter Basser et al. in two seminal papers in 19949,10 providing a fully 3D

mathematical framework for diffusion tensor imaging (DTI). The diffusion tensorD is simply
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a 3× 3 symmetric, positive definite matrix, written as

D =


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 , (1.3)

which leads to an expansion of the scalar diffusion equation (equation 1.2) to

S(g, b) = S0 exp
(
−bgTDg

)
, (1.4)

where g is a unit vector in the direction of the diffusion gradient G. Accordingly, with

at least six diffusion-weighted images and one S0 image, it is possible to estimate the six

unknown coefficients of the D at each voxel with a simple linear or nonlinear least-squares

reconstruction. The quantity

gTDg = Dxxg
2
x +Dyyg

2
y +Dzzg

2
z + 2Dxygxgy + 2Dxzgxgz + 2Dyzgygz (1.5)

is just the equation of an ellipsoid in three dimensions. Properties of the DTI ellipsoid at

each voxel can be calculated from eigenanalysis of the corresponding diffusion tensor. For

example, fractional anisotropy11 (FA) is a rotationally invariant scalar metric that quantifies

the anisotropy of a diffusion tensor from 0–1:

FA =
3

2

√
(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2

λ2
1 + λ2

2 + λ2
3

, (1.6)

where λ1, λ2, and λ3 are the three eigenvalues of the diffusion tensor. FA is used clinically

as a biomarker for white-matter integrity, since a high FA value corresponds to a highly

anisotropic tensor that reflects the presence of highly organized, coherent fiber bundles ori-

ented primarily along a single direction. An example axial slice of a mouse brain FA image is
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shown in Figure 1.1a. The principal diffusion direction can also be extracted as the principal

eigenvector of the diffusion tensor and indicates the primary orientation of white matter

nerve fibers. This orientation is commonly visualized using a directionally encoded color

scheme in which red, green, and blue color channels are mapped to orientation components

along the left–right, inferior–superior, and anterior–posterior axes, respectively. A sample

directionally-encoded color image is shown in Figure 1.1b.

a b

Figure 1.1: Sample FA and directionally-encoded color images. (a) Axial slice of an FA
image. Note the gray-white matter contrast. (b) A directionally-encoded color image. Red,
green, and blue color channels are mapped to orientation components along the left–right,
inferior–superior, and anterior–posterior axes, respectively, and brightness is mapped to FA
in order to emphasize white-matter tracts.

1.1.2 High angular resolution diffusion imaging

One limitation of DTI is that it rests on a Gaussian diffusion model assumption6 and can

thus only model a single fiber population at each voxel. In the extremely common condition

of a voxel containing multiple crossing or fanning fiber populations, the Gaussian assump-
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tion is violated and DTI-derived metrics such as the FA and principal diffusion direction

are biased. The attempt to overcome this limitation led to the development of so-called

high angular resolution diffusion imaging (HARDI) techniques6. HARDI describes a family

of acquisition and modeling approaches unified in their goal to use new sampling and re-

construction techniques to recover more high-fidelity estimates of the diffusion process and

underlying tissue microstructure.

The true diffusion process at every voxel can be represented by a diffusion propagator

function p(r, t), which gives the probability of any displacement r during the diffusion time

t. Some HARDI techniques, such as diffusion spectrum imaging12,13, attempt to directly

estimate the diffusion propagator by acquiring a large number of diffusion-weighted images

with diffusion gradient orientations and b-values sampling a 3D Cartesian grid. A faster

and more clinically relevant approach is to sample multiple diffusion directions along a sin-

gle “shell” of b-values and instead estimate the orientation distribution function (ODF) Ψ,

defined as the radial integral of the diffusion propagator in spherical coordinates6:

Ψ(θ, φ) =

∫ ∞
0

p(r, θ, φ)r2dr, (1.7)

where θ and φ are the polar and azimuth angles, respectively.

An early approach to recovering the ODF was the model-free q-Ball imaging method de-

veloped by Tuch14,15, which made use of the Funk-Radon transform and a basis of spherical

harmonic functions to efficiently map the HARDI signal to an ODF aligned with the under-

lying fiber population without any a priori knowledge about the number or organization of

fiber populations.

A more common current approach is to model the diffusion signal as a spherical convo-

lution16,17 of the underlying fiber orientation distribution and a “fiber response function”

or kernel. In this method, the response function is typically estimated directly from the

data using voxels with high FA or within tracts known to be highly homogeneous such as
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the corpus callosum. The fiber ODF (fODF) is then estimated using spherical deconvolu-

tion techniques. A number of metrics can then be extracted from the fODF to characterize

the underlying tissue microstructure, including the number, orientation, and “apparent fiber

density” 18 of distinct fiber populations.

1.1.3 Tractography

The estimation of fiber orientations from dMRI measurements allows for the development

of fiber tractography pipelines, where local orientation measurements are used to trace the

potential trajectories of long-range white-matter pathways19. Tractography reconstructions

have the potential to estimate an in vivo wiring diagram or “connectome” of the brain20,

and have also been used for neurosurgical planning21.

Basser et al. used a DTI reconstruction to deterministically trace pathways from the prin-

cipal diffusion directions of neighboring voxels in vivo22. Recent HARDI efforts have focused

instead on the development of probabilistic approaches in which fODF reconstructions from

HARDI data are treated as spherical probability distributions giving the likelihood of a fiber

continuing along any given direction. With these approaches, tractography experiments are

performed multiple times to quantify the likelihood of connectivity between two regions23.

Both deterministic and probabilistic tractography are typically performed with the use

of streamlines. Streamlines begin with the selection of a “seed” point. The local orientation

information is sampled at the seed point, taken from the principal diffusion direction in

the case of deterministic methods, or sampled from the fODF in the case of probabilistic

methods. A step with a user-defined length is then taken in the direction of the chosen

fiber orientation, at which point a new orientation is sampled. Typically, this process con-

tinues until a user-defined stopping criteria is reached. Common heuristic criteria include

terminating or discarding a streamline when it exits the brain, reaches an fODF or tensor

with a low fiber density or FA, has a curvature exceeding a given threshold, or reaches a
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maximum length constraint. Tractography results are also often regularized with additional

approaches such choosing anatomically-meaningful initial seed locations24 and the use of

quantitative post-processing techniques to filter spurious streamlines25,26. Some pipelines

also take a global optimization approach to simultaneously reconstruct the configuration of

all fiber pathways that best explain the estimated fiber orientation information rather than

propagate individual streamlines27,28.

A visual demonstration of the entire dMRI tractography pipeline is shown in Figure 1.2.

Figure 1.2a shows a representative coronal slice of a mouse brain b0 image. Figure 1.2b

shows a grid of fODFs overlaying the b0 image constructed using spherical deconvolution.

These fODFs were used to generate streamlines with probabilistic tractography, shown in

Figure 1.2c. Note the strong fiber density along the known white-matter pathways of the

corpus callosum and anterior commissure.

a b c

Figure 1.2: The dMRI tractography pipeline. (a) Representative coronal slice of a mouse
brain b0 image. (b) b0 image with fODFs represented as 3D glyphs. (c) Streamline trac-
tography. visualization. Red, green, and blue color in (b) and (c) represent orientation
components along the left–right, inferior–superior, and anterior–posterior axes, respectively.

1.2 Dissertation overview

In all applications of dMRI, the macroscopic signal is used to estimate properties of the

local tissue microstructure that are not directly resolvable by the imaging system; axons

have diameters on the order of microns29, whereas clinical dMRI voxels are on the order of

millimeters. Likewise, long-range fiber trajectories estimated from tractography streamlines
8



represent only potential pathways consistent with the underlying diffusion data. Accordingly,

new methods for fODF reconstruction, tractography, and connectivity analysis need to be

benchmarked with additional high-resolution imaging modalities.

Chapter 2 gives an overview of existing validation techniques and introduces synchrotron

x-ray microcomputed tomography (microCT) as a novel validation modality for dMRI. By

performing fiber orientation extraction with a computer-vision technique called structure

tensor analysis, we demonstrate that whole-brain microCT addresses a number of limitations

of existing validation pipelines and will be important for future fODF and tractography

validation studies.

Chapter 3 introduces the concept of the “connectome” and the use of graph theory for

characterizing brain networks. We then use public neural tracer optical imaging data and

a statistical analysis framework using random geometric surrogate graphs to demonstrate

geometric bias in current dMRI tractography routines stemming from a dramatic underesti-

mation of connectivity at long distances.

Chapter 4 demonstrates how dMRI itself can be used for validation and characterization

of additional MR microstructural imaging techniques. Specifically, we examine biases in

popular biophysical models for myelin imaging with spectroscopic MR data and use dMRI

to identify white matter voxels and characterize water proton resonance spectra with respect

to the presence of crossing fibers and the relative angle between fiber orientations and the

main magnetic field.

Finally, we summarize results and offer concluding remarks in Chapter 5.
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CHAPTER 2

VALIDATION OF DMRI ORIENTATION DISTRIBUTION

FUNCTIONS USING SYNCHROTRON X-RAY

MICROCOMPUTED TOMOGRAPHY

2.1 Introduction

2.1.1 Diffusion MRI Validation

Diffusion magnetic resonance imaging (dMRI) is an MRI method that seeks to recover

microanatomical tissue properties from a macroscopic, spatio-angular profile of the

MRI signal attenuation resulting from the restricted diffusion of water molecules30,31. Sev-

eral dMRI acquisition and modeling approaches have been developed to exploit the mapping

between tissue microstructure and the resulting diffusion signal in order to estimate various

tissue properties, including fiber integrity32,33, cellular compartmental analysis34–36, axon

diameters37,38, and long-range fiber trajectories19. Metrics derived from dMRI reconstruc-

tions have played an important role in the understanding and clinical diagnosis of several

neurological disease processes39 but are limited by the relatively poor spatial resolution of

the data. Axons have diameters on the order of microns29, while typical clinical dMRI

voxels are on the order of millimeters for in vivo human acquisitions. This discrepancy in

scale introduces uncertainties in the reconstruction of microstructural tissue properties and

long-range fiber pathways. Accordingly, dMRI methods require validation with ground-truth

imaging across spatial scales capable of resolving micron-level cellular architectures as well

as centimeter-level fiber pathways and measures of connectivity across whole brains.

Efforts to validate dMRI reconstructions have primarily relied on optical imaging tech-

niques. For the validation of local fiber orientation and dispersion properties estimated

from dMRI, several groups have used histological analysis of tissue sections40–44, polarized
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light imaging45,46 and optical coherence tomography47,48. Various optical imaging methods

have also been combined with fluorescent neural tracer injections to validate tractography

pipelines in a number of species49–53.

While optical imaging methods provide sufficient detail to characterize tissue microstruc-

ture and specifically delineate white matter pathways, they also come with a number of

limitations. The low penetration depth of optical light requires the tissue to be physi-

cally sectioned into thin slices. Three-dimensional (3D) representations of the tissue sample

are generated either by virtual stacking of natively two-dimensional images of each slice54

or through deconvolution methods with confocal acquisitions44,55. In both cases, the slice

thickness is generally several times greater than the best achievable in-plane resolution, lead-

ing to anisotropic voxel sizes. Furthermore, the slice cutting and mounting are associated

with tissue distortions that make slice alignment difficult56, preventing the ability to con-

fidently trace small structures such as individual myelinated axons across slice boundaries.

These limitations potentially bias the estimation of 3D fiber orientations and complicate the

process of spatially registering the ground-truth and dMRI datasets. Optical acquisitions

can also be prohibitively labor-intensive to deliver sufficient volumetric data across whole

brains, requiring a method of preselecting target regions for imaging. Neural tracer studies

are similarly limited to imaging projections to or from a single injection region per specimen,

making ground-truth, whole-brain connectivity studies extremely costly.

2.1.2 Synchrotron x-ray microcomputed tomography

In contrast to optical photons, x-rays have high penetration depth in biological tissues,

allowing for whole-sample imaging without physical sectioning. While x-rays have poor

absorption contrast in biological tissues, advances in metal staining57,58 protocols allow for

the high-contrast imaging of ex vivo samples.

A synchrotron is a form of particle accelerator that can generate an extremely high
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photon flux of potentially monochromatic x-rays with a high brilliance and small beam

divergence59. In the standard detection chain, synchrotron x-rays transmitted by the sample

are absorbed by a scintillating material, and the emitted scintillation light is focused onto a

charge-coupled device camera60. The high photon flux and detector optics allow for rapid

acquisitions at histological resolutions. Together with a rotating sample stage, tomographic

reconstruction techniques have been used to create volumetric microcomputed tomography

(microCT) images of neurological biological samples from mice61, zebrafish62, and other

samples.

Recent work has shown the ability to acquire micron-level microCT scans of the whole

mouse brain and register them with both prior whole-brain dMRI and subsequent region-

of-interest electron microscopy (EM) data63. In this chapter, we demonstrate that this

whole brain MRI–microCT imaging and registration pipeline provides a potential alterna-

tive, complementary ground-truth dataset to optical techniques for the validation of dMRI.

Synchrotron microCT addresses the limitations of optical imaging by providing isotropic,

micron-level spatial resolution across whole mouse brains with no physical sectioning, allow-

ing for future studies validating dMRI methods at the scale of local microstructural features

up to long-range white matter pathways.

2.1.3 Author contributions

This chapter was originally published in Magnetic Resonance in Medicine under the title

“Synchrotron X-ray micro-CT as a validation dataset for diffusion MRI in whole mouse

brain.” 64 with co-authors Sean Foxley, Narayanan Kasthuri and Patrick La Rivière. The

author was responsible for all analysis, figures, and text in the chapter, while the co-authors

were responsible for the conception of the imaging pipeline project, the collection of all

data, and manuscript review. Figure 2.14 was created by the author for inclusion in an

additional manuscript titled “Multi-modal imaging of a single mouse brain over five orders
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of magnitude of resolution” 63, published in NeuroImage with co-authors Sean Foxley, Van-

dana Sampathkumar, Vincent De Andrade, Anastasia Sorokina, Katrina Norwood, Patrick

La Rivière, and Narayanan Kasthuri. The author performed the multi-modal registration

presented in the figure, while the additional authors were responsible for project conception,

data acquisition, additional analysis, and manuscript writing.

2.2 Methods

2.2.1 Animal procedures and tissue preparation

All procedures performed on animals followed protocols approved by the Institutional Animal

Care and Use Committee and were in compliance with the Animal Welfare Act and the NIH

guide for the Care and Use of Laboratory Animals. An eight week-old, female C57BL/6

mouse (26 g) was anesthetized with 60 mg/kg pentobarbital. The animal was then injected

with heparin intraperitoneally and sacrificed by intercardial perfusion with 0.01 M phosphate

buffer saline solution. This was immediately followed by 4% paraformaldehyde (pH 7.4)/PBS

fixative solution. The brain was extracted from the skull and post-fixed in the same fixative

overnight at 4◦C and washed in PBS for 74 hours to remove fixative before imaging.

2.2.2 MRI acquisition and analysis

Prior to MRI experiments, the brain was submerged in Fluorinert (FC-3283, 3M Electronics)

to improve shimming and mitigate susceptibility-mismatch artifacts. Data were acquired at

9.4 Tesla (20 cm internal diameter, horizontal bore, Bruker BioSpec Small Animal MR

System, Bruker Biospin, Billerica, MA) using a 6 cm performance gradient insert (maximum

gradient strength: 1000 mT/m, Bruker Biospin) and a 35 mm internal diameter quadrature

volume coil (Rapid MR International, Columbus, Ohio). Diffusion data were acquired with a

conventional 3D spin-echo/Stejskal-Tanner diffusion-weighted sequence at 150 µm isotropic
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resolution across 30 diffusion-encoding directions at a b-value of 3000 s/mm2 (TR=400 ms,

TE=18.5 ms, δ=5 ms, ∆=11.04 ms, receiver bandwidth=200 kHz, partial Fourier along first

phase encoding direction=7/8, number of b0s = 10, duration=55 h 19 min 40 sec).

For anatomical reference, a water peak-height image was constructed from 3D echo-

planar spectroscopic imaging (EPSI) data of the same sample. This technique has been

shown to be a high fidelity T2∗-weighted source of image contrast65 and is particularly

sensitive to local susceptibility changes associated with the presence of myelin in white

matter66. Data were acquired at 50 µm isotropic resolution using a multi-gradient echo

sequence with an oscillating readout gradient train. Sequence parameters were chosen so that

the entire voxel-wise free induction decay was sampled to the noise floor with sufficiently high

temporal resolution (TR=1000 ms, TE of first echo=3.41 ms, echo spacing=3.41 ms, number

of echoes=128, receiver bandwidth=100 kHz, flip angle=84.3◦, 50 µm isotropic resolution, 4

averages, and duration=21 h 23 min 44 s). Image contrast in the water peak-height image

was produced by taking the maximum voxel-wise signal amplitude of the water spectrum.

A number of preprocessing steps were performed on the diffusion data before further

analysis. The raw data were denoised using the dwidenoise protocol in the MRTrix3 software

package67–69. The diffusion data and associated b-vectors were then rotated until they were

aligned with the neurological display convention. Brain segmentation was performed on the

10 averaged b0 volumes, using a thresholding routine implemented in the Dipy package70.

The resulting brain mask was inspected in ImageJ71 to manually remove any segmentation

errors.

Fiber orientation distribution functions (fODFs) were calculated from the data within

the brain mask using constrained spherical deconvolution16,17. The response function was

estimated directly from the data using the tournier algorithm72 implemented in MRTrix3.

Fitting was then performed with the Dipy package for further analysis in Python, with λ=3

and τ = 0.1, up to a maximum spherical harmonic order of `max = 4. The data were also fit
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to a weighted least-squares tensor model10 in Dipy in order to calculate the scalar fractional

anisotropy (FA) metric30.

2.2.3 Synchrotron x-ray microCT acquisition

The sample preparation and data acquisition protocol used for microCT imaging has been

published in an additional study63 and is summarized here for completeness. Following dMRI

acquisition, the brain was stained using the brain-wide reduced-osmium staining pyrogallol-

mediated amplification protocol57,58. This protocol is widely used for EM imaging of large bi-

ological samples and its utility for improving contrast in microCT has been demonstrated61.

MicroCT data were acquired at the sector 32-ID beamline of the Advanced Photon Source at

Argonne National Laboratory with a central x-ray beam energy of 25.5 keV. Raw projection

data had a field of view of 2.25×1.41 mm2. A 6×18 grid of such acquisitions was collected

to cover a total field of view sufficient to image the whole brain rotated around its rostral-

caudal axis. This process was repeated across 3600 rotation angles. The projections were

digitally aligned and stitched together using a mosaic tomography technique73 and recon-

structed into a single volume with an isotropic voxel size of 1.17 µm using the open-source

TomoPy package74, developed at the Advanced Photon Source.

A representative sagittal slice of the microCT data is shown in Figure 2.1. Insets in the

figure highlight the visibility of individual myelinated axons and neuronal soma in the brain-

stem. The full microCT data can be viewed online through Neuroglancer at the following

link: http://tinyurl.com/cxmbjy6b.
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Figure 2.1: A representative sagittal slice of whole-brain microCT data. Insets show individ-
ual myelinated axons (left/green) and neuronal somas (right/blue, cell manually highlighted)
in the brainstem.

2.2.4 Calculation of microCT fODFs

Voxel-wise fiber orientations were estimated throughout the microCT data using an image

processing technique called structure tensor analysis75 that has been used in previous his-

tological validation studies40–44. The structure tensor ST(f ;σN )(r) of image f at each

position r is constructed by taking the outer product of the image intensity gradient vector

∆f with itself, followed by averaging over a local neighborhood using a 3D gaussian filter

gσN of width σN :

ST(f ;σN )(r) =
(
∇f∇fT

)
~ gσN =


f2
x fxfy fxfz

fxfy f2
y fyfz

fxfz fyfz f2
z

~ gσN , (2.1)

where ~ denotes a convolution. More information on implementation details and parameter

selection is available in section 2.5. The result is a symmetric, 3 × 3, semi-positive definite
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tensor at each voxel. The eigenvector of the tensor corresponding to the smallest eigenvalue

indicates the direction of smallest intensity variation in the local neighborhood. For voxels

representing nerve fibers, we make the assumption that this eigenvector is parallel to the

local fiber orientation. Confidence in the orientation estimate can be represented by a scalar

fractional anisotropy metric constructed from the eigenvalues of the tensor:

FA =

√
1

2

(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2

λ2
1 + λ2

2 + λ2
3

, (2.2)

where λ1, λ2, and λ3 represent the first, second, and third eigenvalues of the structure tensor

at each voxel. This metric is bounded from 0 to 1, where a higher value represents more

confidence in the orientation estimate.

The voxel-wise orientation estimates were used to directly construct fODFs within larger

regions of interest (ROIs) across the whole brain. First, the data were divided into cubic

ROIs matching the size of the corresponding dMRI voxels (150 µm). Of the N ≈ 2×106 total

microCT voxels in each dMRI-voxel-sized region, N ′ voxels containing fibers were identified

by thresholding the raw grayscale values to discard voxels representing microvasculature,

as well as by thresholding the FA metric to discard voxels with low orientation confidence.

Within each region, the fODF, ψ, can be directly expressed as the sum ofN ′ fiber orientations

represented as Dirac delta functions in spherical coordinates76,77,

ψ(θ, φ) =
1

N

N ′∑
j=1

δ(cos θ − cos θj)δ(φ− φj), (2.3)

where θ ∈ [0, π] and φ ∈ [0, 2π] are the polar and azimuth angles, respectively, and j indexes

the N ′ fiber orientations.

ψ represents a band-unlimited distribution of voxel-wise fiber orientations in a specified

region of microCT data. It is convenient to expand ψ onto a finite (i.e., band-limited) number

of spherical harmonic functions for computational ease and direct comparison with dMRI-
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N ′ orientations fODF on SH basis

Figure 2.2: Demonstration of the expansion of simulated orientations onto SH functions.
(Left) Structure tensor analysis within each dMRI-voxel-sized region results in a list of N ′
fiber orientations. (Right) These fiber orientations can be used to create an fODF by ex-
pansion onto a basis of real, even spherical harmonic functions. In this demonstration, the
individual orientations cluster around two distinct fiber populations, with 60% of the orien-
tations belonging to the up–down population (green) and 40% of the orientations belonging
to the left–right population (red). The population differences are visualized by the density
of unit-length “sticks” on the left, and the height of the lobes on the right.

derived fODF representations. It can be shown78 that the spherical harmonic coefficients,

Ψm
` , of a sum of N ′ discrete orientations are given by

Ψm
` =

1

N

N ′∑
j=1

Ȳm` (θj , φj), (2.4)

where Ym` is the spherical harmonic function of degree ` and orderm and the overbar denotes

a complex conjugate. As with dMRI, we assume that these fODFs have even symmetry, so

coefficients were calculated for even harmonic degrees. For this study, we chose to expand

the fODF to `max = 8, in accordance with recommendations for the highest `max typically

used in dMRI studies72. A visual demonstration of the expansion of simulated orientations
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onto spherical harmonic functions is shown in Figure 2.2, and a demonstration of the en-

tire structure tensor analysis pipeline is shown on an ROI of microCT data from a mouse

hippocampus in Figure 2.3.

a b c

f e d

Figure 2.3: Demonstration of the entire structure tensor analysis pipeline on real microCT
data. (a) Intensity data displaying oriented dendritic fibers in the hippocampus. (b) Zoom-
in display of a dMRI-voxel-sized region. (c) Orientation vectors over each voxel showing
the 3D direction of the lowest intensity change within a local neighborhood. Orientation is
encoded by vector direction as well as vector color: here red is left–right, green is up–down,
and blue is in–out of the page. (d) Orientation vectors from the entire ROI in (c) expressed
as a spherical histogram (ψ(θ, φ) in equation 2.3). (e) The fODF from (d) expressed in terms
of even spherical harmonic functions (Ψm

` in equation 2.4). (f) The full ROI from (a) with
fODFs calculated at dMRI resolution.

2.2.5 Spatial registration

Compared to optical techniques, spatial registration of the microCT and dMRI datasets was

simplified by the fact that unsectioned, volumetric, ground-truth data and fODFs were avail-
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able across the whole brain, meaning that existing whole-brain dMRI registration routines

could be applied directly. An overview of the registration pipeline is shown in Figure 2.4.

Figure 2.4: Multi-modal spatial registration pipeline. Downsampled microCT data were
registered to EPSI peak-height data using affine and symmetric diffeomorphic (SyN) trans-
forms. EPSI data were registered to the b0 template using affine transforms. The concate-
nated transforms were then applied to the microCT fODFs calculated at dMRI resolution.
Scale bars are 1 mm.

The strategy was to calculate the spatial transformation from microCT space to dMRI space

by leveraging the higher anatomical detail of the EPSI peak-height image, then to apply this

transformation to the structure tensor-derived microCT fODFs. First, the ten b0 images of

the dMRI dataset were averaged to form an anatomical template in dMRI space. The EPSI

peak-height image was registered to the b0 template using an affine transformation calculated

with the ANTS registration package79,80. The microCT data were directly downsampled to

dMRI resolution using the same binning ROIs used for fODF construction. Downsampled

microCT data were then registered to the EPSI peak-height image using affine and sym-

metric diffeomorphic transformations calculated using the SyN algorithm81 in ANTs. The

concatenated transforms from microCT to EPSI to b0 were then applied to the microCT

fODFs using the mrtransform command in MRtrix3, which reorients82 and modulates18 of

the fODFs to preserve the apparent fiber densities across fiber bundles before and after the
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transformation. All spatial registrations were calculated using a five-level, multi-resolution

scheme with mutual information as the similarity metric and a convergence value of 10−7.

2.2.6 Multi-modal fODF comparisons

Several scalar metrics were used to analyze agreement in the fiber orientation representa-

tions from dMRI and microCT. The peaks_from_model peak-finding routine in Dipy was

performed to identify the orientations and magnitudes of distinct fiber populations in every

fODF from both modalities. In this algorithm, the fODFs were mapped from a spherical

harmonic basis to a dense basis of 7500 discrete points on the sphere. Peak candidates were

defined as points on the discrete-basis fODF that are greater than at least one neighbor or

equal to all neighbors. A number of thresholding heuristics used commonly in the litera-

ture44,83 were then implemented to determine the final peaks. To avoid the inclusion of

spurious peaks introduced by noise, peaks were discarded if their magnitudes were smaller

than 20% of the largest fODF value found for each modality. Peaks were also discarded if

they fell within 20◦ of a larger peak. The angular distance between corresponding primary

peaks from both modalities was calculated to assess agreement in the identification of fiber

population orientations.

The angular correlation coefficient (ACC)84 between the fODF SH coefficients from each

modality was also calculated to assess agreement in their overall shape.

The angular distance between peaks and ACC across all voxels were further categorized

by tissue type. Tissue masks for white matter, gray matter, and cerebrospinal fluid were

generated through voxel-wise classification of the EPSI peak-height data using the Atropos85

algorithm in ANTs. Finally, the comparison metrics were evaluated as a function of the dMRI

tensor-derived FA metric to assess fODF agreement as a function of fiber coherence.
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2.2.7 Tractography

While voxel-wise comparisons of individual fODFs demonstrate the potential use of microCT

for validation of local dMRI metrics, a final study was conducted to demonstrate the utility of

microCT for multi-modality, long-range connectivity studies. Tractography was performed

with both the dMRI and microCT fODFs using the probabilistic iFOD2 algorithm86 in

MRTrix3 to map and segment two fiber pathways of interest: the anterior commissure tract

and the corticospinal tract. Delineation of the fiber tracts was achieved with the manual

placement of three ROIs within the pathway of each tract. Since both tracts of interest

display a similar posterior–anterior branching pattern, one ROI was placed near the central,

posterior terminal and the remaining two were placed on the left and right anterior branches

of each tract. The ROIs were used as inclusion gates for tractography, such that accepted

streamlines had to pass through both the posterior gate and at least one of the anterior

gates in order to be accepted. The step size was set to 37.5 µm (0.25 × voxel size) and the

maximum angle between successive steps was set to 35◦. The number of streamlines was

selected separately for each tract in order to ensure adequate coverage of the pathway volume,

with 300 for the anterior commissure tract and 6000 for the corticospinal tract. Finally, tract

segmentations were further refined and spurious streamlines were removed using additional

manual ROIs that functioned as exclusion gates.

Whole-brain deterministic tractography was also performed with the SD_STREAM al-

gorithm67 in MRTrix3 using registered fODFs for each dataset to demonstrate the utility of

microCT for long-range connectivity studies. A total of 200,000 streamlines were generated

from each modality, with a step size of 37.5 µm (1/4 of a dMRI voxel) and a maximum angle

between successive steps of 35◦.
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Figure 2.5: Visualization of microCT data and fODFs across two axial slices. Structure
tensor-derived fODFs are visualized as 3D glyphs overlaying ROIs of raw microCT data.
Each fODF was calculated from microCT data contained in a 150 µm3 volume indicated by
the black lines. RGB color in the fODFs represents orientation, with red encoding left–right,
green encoding anterior–posterior, and blue encoding the superior–inferior direction. Color
borders around the ROIs indicate the position of each inset within the whole slices. Scale
bars are 1 mm.

2.3 Results

2.3.1 MicroCT fODFs

Structure tensor analysis was used to calculate a total of n=151,094 fODFs from the mi-

croCT data, covering the whole brain at an isotropic resolution of 150 µm. Background

regions were avoided by directly downsampling the microCT data to the target isotropic

23



voxel size of 150 µm and generating a brain mask using segmentation routines in Dipy.

Full computation of the voxel-wise fiber orientations and expansion onto spherical harmonic

coefficients required a total of around 120 hours using 128 cores of a local computing cluster.

Figure 2.5 shows representative, full-resolution axial slices of the microCT data, with

insets displaying structure tensor-derived fODFs visualized as 3D glyphs. Each square in

the 3× 3 grid within the inset images represents a cube of microCT data the size of a single

dMRI voxel. The fODFs agree qualitatively very well with the fiber orientations observed in

the microCT data, closely following the arc in the curved region of the anterior commissure

(yellow) and corpus callosum (red), capturing the parallel fibers of the posterior (blue) and

anterior (pink) commissures, and capturing the change in fiber orientation at the intersection

of the lateral septal complex of the striatum with the fornix system (green).

Because each fODF was generated from N ′ separate orientation estimates but normalized

by N ≈ 2× 106, where N ′ < N (Eq. 2.4), the relative size of the fODFs reflects the fraction

of microCT voxels within each ROI that were identified as representing valid fibers. This

is clearly seen along the limb of the anterior commissure (Figure 2.5, pink): the fODFs

calculated within fiber-dense, in-tract ROIs are much larger than those outside the main

tract. The fraction of identified fiber voxels can be considered a proxy for the fiber density

(FD) within each ROI, and can be calculated directly from the c00 coefficient of the SH

representation of the fODFs:

FD =
N ′

N
=
c00

Y 0
0

, (2.5)

where Y 0
0 =

√
1/4π is the constant ` = 0 SH function. Representative slices from a map of

FD values are shown in Figure 2.6a–c. The FD metric shows good contrast between gray

and white matter, indicating that the structure-tensor pipeline was successful in correctly

identifying white matter fibers. Full-resolution data corresponding to ROIs calculated as

having high, medium, and low values of FD are shown in Figures 2.6d–f . Notably, Figure 2.6f

24



contains an example of a partial volume effect, where a small region with high fiber density

(lower right) is present with a larger region with low fiber density (upper left), resulting in

an overall low FD value.

Figure 2.6: Fiber density measure derived from microCT fODFS. (a-c) Representative FD
slices showing contrast between gray and white matter. Scale bars are 1 mm. (d-f) Examples
of microCT data from 150 µm3 cubic regions calculated as having (d) high (FD = 0.41),
(e) medium (FD = 0.32), and (f) low (FD = 0.20) fiber density. Arrows in (f) indicate an
example of a partial volume effect, where a small region with high fiber density (lower right)
is present with a larger region with low fiber density (upper left), resulting in an overall low
FD value.

2.3.2 Spatial correspondence of fODFs

An example of registered and reoriented microCT fODFs is shown across a representative

axial slice of downsampled microCT data in Figure 2.7 alongside the corresponding dMRI

fODFs. Individual fODFs have been normalized for clear visualization. Overall, the two
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Figure 2.7: Multi-modal spatial registration results. fODFs from both modalities are rep-
resented as 3D glyphs overlaying EPSI peak-height data and downsampled microCT data,
both spatially aligned to the b0 of the dMRI dataset. The inset shows the correspondence
in fODF shapes along visible fiber tracts. fODFs have been normalized to a maximum value
of 1 for visualization. Note that the sharpness of the angular profile of the fODFs differs be-
tween the two modalities, resulting from the fact that they have different angular bandlimits
(`max = 4 and `max = 8 for dMRI and microCT, respectively). Scale bars are 1 mm.
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modalities show good qualitative correspondence in anatomical structures and fODF shapes,

particularly along the coherent fiber pathways shown in the inset. Note that the sharpness

of the angular profile of the fODFs differs between the two modalities, resulting from the fact

that they have different angular bandlimits (`max = 4 and `max = 8 for dMRI and microCT,

respectively).
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Figure 2.8: Comparison of microCT-derived FD and dMRI-derived FA metrics. (a) Violin
plots showing the distribution of FD values for the low (<25th percentile) and high (>75th
percentile) FA classes. (b) Violin plots showing the distributions of FA values for increasing
number of distinct fiber populations as identified with the peak-finding algorithm. (c) Violin
plots showing the distributions of FD values for increasing number of distinct fiber popula-
tions. As expected, FA values tend to decrease for higher number of fiber populations, while
the FD values stay relatively constant.

The relationship between the dMRI-derived FA metric and the microCT-derived FD metric

was analyzed to demonstrate the utility of microCT for use in the validation of dMRI-

derived microstructural features. White-matter voxels were grouped into classes of “low-

FA” (<25th percentile) and “high-FA” (>75th percentile). Figure 2.8a shows that there is

good separation between the distribution of FD values in these two groups, indicating loose

correlation between the two metrics and suggesting that FA is successfully reporting some

measure of fiber density, as expected. However, it is known that FA values are heavily biased

in the presence of multiple, non-parallel fiber populations. This effect is demonstrated in

the data: the distribution of FA values decreases with an increasing number of distinct fiber
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populations (Figure 2.8b), while the fiber density derived from microCT remains more stable

(Figure 2.8c), indicating that the drop in FA for voxels with multiple fiber populations is a

result of modeling bias rather than a reflection of true change in the density or organization

of fiber populations in these voxels.
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Figure 2.9: Identification of primary fiber orientations. (a) Histogram of angular distance
between primary fiber orientations from microCT and dMRI fODFs, grouped by tissue class.
(b) Scatter plot of angular distance of primary fiber orientations in white matter vs. frac-
tional anisotropy.
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Figure 2.10: Angular correlation coefficient of cross-modality fODFs. (a) Histogram of ACC
between microCT and dMRI fODFs, grouped by tissue class. (b) Scatter plot of white-
matter ACC values vs. fractional anisotropy. (c) Visualization of sample fODF pairs with
increasing ACC values for reference.

The multi-modal correspondence between fODF shapes was assessed quantitatively through

measurement of the angular distance between primary fiber orientations and the ACC of

corresponding SH coefficients. The angular distances in primary fiber orientations between

the two modalities are shown categorized by tissue type in Figure 2.9a. White matter

fODFS had a lower mean angular error (peaking in the 10◦–20◦ bin) than gray matter
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fODFs (peaking in the 30◦–40◦ bin). Primary angular distance is shown plotted against FA

for white matter voxels in Figure 2.9b. A weak linear relationship is shown (r= −0.23),

indicating that the modalities show stronger agreement in the orientation of the primary

fiber orientation for voxels with a high degree of fiber coherence.

The ACC metric evaluates the overall agreement in shape between two fODFs. Distribu-

tions of ACC values are shown in Figure 2.10a, grouped by tissue type, with white matter

fODFs having a higher mean ACC (peaking in the 0.8–0.9 bin) than gray matter fODFs

(peaking in the 0.7–0.8 bin). ACC also shows a weak linear relationship (r= 0.18) with FA

in white matter voxels (Figure 2.10b), indicating that the modalities show more similar rep-

resentations of the fODFs in voxels with single, coherent fiber orientations. Representative

pairs of fODFs with different ACC values are demonstrated in Figure 2.10c.

Tractography

Probabilistic tractography was used to segment two major white matter tracts in both

datasets in order to further demonstrate the correspondence in fiber orientation informa-

tion between modalities and to show the potential for the use of microCT in long-range

connectivity studies. Figure 2.11 shows tractography results for the anterior commissure

and corticospinal tracts, generated using fODFs from both modalities. Overall, tracts from

the two modalities show good visual agreement with each other and with the known trajec-

tories of these fiber pathways. The Spearman rank correlation coefficient between the FD

metric and the streamline count density for voxels containing at least one streamline was

0.18 and 0.19 for the dMRI and microCT anterior commisure tracts, respectively, and 0.20

and 0.23 for the dMRI and microCT corticospinal tracts, respectively, indicating a compa-

rable relationship between streamline count and fiber density in these tract segmentations

for both modalities.
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Figure 2.11: Tractography results. Both modalities were able to recover the general shape
and orientation of the anterior commissure and corticospinal tracts.

Deterministic tractography was also used to map long-range white matter pathways

across both datasets. Whole-brain tractography results are shown in Figure 2.12. Over-

all, tracts from the two modalities show good visual agreement in the mapping of major

tracts, indicating the success of dMRI tractography algorithms on structure tensor-derived
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fODFs, further demonstrating the multi-modal correspondence in fiber orientation informa-

tion and motivating the use of microCT in future connectivity and tractography validation

studies.

Figure 2.12: Deterministic tractography results, visualized as streamlines (a) across the
whole brain and (b) overlaying five coronal slices of registered dMRI and microCT data, on
the top and bottom rows, respectively. Slice numbers in (b) correspond to numbered lines
crossing whole-brain results in (a)

2.4 Discussion

Full characterization of the strengths and weaknesses of various dMRI methods will require

the application of several complementary ground-truth imaging approaches. This study set

out to introduce and qualitatively probe the capabilities of whole-brain synchrotron x-ray

microCT as a new approach that specifically addresses some limitations in optical-based
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Figure 2.13: dMRI diffusion direction sampling. Yellow points represent the direction of
each of the 30 noncolinear diffusion gradients used for the dMRI data. Axis orientations are
encoded with color, with red encoding left–right, green anterior–posterior, and blue encoding
the superior–inferior direction. As can be seen here, a software error led to nonuniform
sampling of the diffusion gradients, with oversampling along the super–inferior axis and
undersampling of the orthogonal plane.

techniques.

We note that while quantitative evaluation of the distributions of angular distance in

primary fiber orientations (Figure 2.9) and the ACC (Figure 2.10) between fODFs from

both modalities are similar to values reported in histological studies44,47, our results show

slightly worse performance from dMRI than expected. We believe this effect is due to the

relatively poor angular resolution of the dMRI data collected for this study, which is also

why we chose to forego additional efforts to quantitatively evaluate dMRI performance across

different reconstruction approaches. Our data were acquired with only 30 diffusion directions

which were found after acquisition to be non-uniformly spaced across the sphere (Figure 2.13)

due to a software malfunction. Accordingly, we chose to limit reconstructions to `max = 4

(15 coefficients) to provide robustness to noise. For this reason, our goal was to introduce

microCT and show meaningful, qualitative correspondence between reconstructions from
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the two modalities, rather than draw conclusions on the performance of any specific dMRI

method. To that end, we are encouraged by the level of multi-modal correlation seen in the

fODFs (Figures 2.7–2.12) and believe it demonstrates the utility of synchrotron microCT for

future validation studies.

2.4.1 Interpretation of fODFs

The results presented in this study primarily analyze the correspondence of fODFs between

the two modalities. It is important to note the differences in interpretation between fODFs

derived from microCT and dMRI. Raw dMRI data provide a measure of the restricted dif-

fusion of water in tissue; each measurement is influenced by the local orientation, shape,

dispersion, and density of fibers, the free diffusion in extra-axonal water components, and

other facets of the local cellular architecture. Structure tensor-derived fODFs from microCT

directly estimate the orientation of contrast structures in the data, with nerve fiber orien-

tations selected specifically through thresholding of intensity values and the tensor-derived

confidence metric. Accordingly, in microCT, dispersion around the peak value of an indi-

vidual lobe in the fODF comes from geometric undulation of the corresponding nerve fibers

as well as from finite expansion onto SH functions (infinite angular resolution would require

`max = ∞). In other words, microCT fODFs are representations of fiber geometries, not of

water diffusion. Use of these fODFs as ground-truth for dMRI is justified to the extent that

they are compared to dMRI reconstructions that also seek to provide representations of fiber

geometries. The spherical deconvolution method used in this work estimates a single “fiber

response” function from the data that describes how individual point-like fiber orientation

distributions map to a dMRI signal, then uses this response to reconstruct fiber orientations

from the data. Like microCT, dispersion around fODF peaks derived in this manner comes

from geometric undulation of nerve fibers and finite expansion onto SH functions, but also

from sub-cellular diffusion effects and error associated with the response function estimation
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and deconvolution process. In effect, comparison with ground-truth fODFs can provide eval-

uation of the conditions and fiber geometries under which the assumptions underlying this

and other dMRI reconstruction methods hold.

2.4.2 Comparison of microCT with optical methods

This study set out to probe the ability of whole-brain synchrotron x-ray microCT to function

as a ground-truth modality for the validation of dMRI while specifically addressing some lim-

itations in optical-based validation techniques. Optical imaging techniques achieve in-plane

resolutions on the order of hundreds of nanometers. For volumetric acquisitions, however,

the through-plane resolution is significantly higher, dictated by slice thicknesses on the or-

der of tens of microns and the limits of deconvolution methods for volumetric acquisitions.

Accordingly, while in-plane optical images are sufficient for resolving individual myelinated

axons and other details of neural tissue microstructure, the limited through-plane resolution

and geometric corrections required after tissue sectioning complicate the 3D reconstruction

of large volumes and might bias the estimation of microstructural features relevant to dMRI

validation, such as 3D fiber orientations. The microCT data used in this study has a nominal

resolution of 1.17 µm. While this is lower than the in-plane resolution achievable through op-

tical methods, our results show that it is sufficient for resolving the orientation and structure

of local fiber bundles, microvasculature, and cell bodies. Importantly, the data are natively

volumetric upon acquisition, with isotropic resolution across the whole brain, avoiding the

need for extensive post-processing to estimate the true architecture of the neural tissue.

Limitations on feasible data acquisition times and storage have required previous optical-

based dMRI validation studies to preselect a fixed number of specific ROIs for high-resolution

3D imaging, based either on prior anatomical knowledge44 or through automated, data-

driven approaches48. Alternatively, synchrotrons provide enough x-ray flux to image the

entire mouse brain at full resolution with sufficient a signal-to-noise ratio in a single day
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of data acquisition. This provides much more high-resolution, volumetric data for each

specimen and removes potential user bias in the selection of individual regions for validation.

Optical imaging methods rely on neural tracer injections to map long-range fiber path-

ways for validation of dMRI tractography and connectivity studies. These methods provide

unparalleled specificity at the cost of only allowing one injection per dataset, which pro-

hibits multi-modal comparisons of whole connectomes in individual specimens. We have

shown in previous work63 the potential for direct tracing of individual axons in synchrotron

microCT datasets without the need for neural tracers. This direct approach is not feasible

with standard optical methods, as slice cutting and mounting are associated with tissue

distortions56 that make it prohibitively challenging to reliably trace individual axons across

slice boundaries after digital alignment. The tractography results presented in this study

suggest an additional benefit of the whole-brain information available with microCT. With

fODFs available across the whole brain, tractography can be applied to fiber orientations

derived directly from the ground-truth dataset and correlated with axon tracings and dMRI

tractography all in the same specimen. This rich validation dataset can be used to better

understand the upper bounds of tractography performance in dMRI data and to explore new

approaches and priors to better condition the tractography problem.

This work also demonstrates that volumetric imaging of whole samples with microCT

greatly eases the spatial registration challenge for multi-modal comparison studies (Figures

2.4 and 2.7). Optical-based dMRI validation studies have typically depended on complicated,

multi-step registration pipelines involving multiple histological acquisitions at different scales

to map individual histological ROIs to the corresponding dMRI voxels44,48. With high-

resolution, isotropic voxels across the whole brain, microCT data can be registered directly

to MRI using existing registration pipelines after appropriate downsampling.
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2.4.3 Future work and limitations

While this study was limited to data from a single specimen, we believe our qualitative

results are promising and motivate the collection of additional data for future quantitative

dMRI validation studies. Various fODF reconstruction methods will be benchmarked against

microCT at different spatial scales, evaluating agreement in fODF shape, peak identification,

and fiber dispersion metrics. Furthermore, we have demonstrated in additional work63 the

Figure 2.14: A multi-scale, multimodal pipeline for imaging the same brain from MRI to
EM. The same brain was imaged using (a–b) diffusion MRI, (c–d) microCT, and (e–f) large
volume serial electron microscopy (EM, ~3 nm/voxel resolution). (b–c) show the same field
of view from the whole brain MRI and microCT imaging, corresponding to the red ROI in
(a). (d–e) show a smaller field of view in both the microCT and EM data, corresponding
to the green ROI in (c). Yellow arrows indicate corresponding blood vessels, and a single
neuron is labeled purple. Panel (f) highlights an individual somatic synapse (white arrows)
on that soma, colored orange. The field of view of (f) is indicated by the blue ROI in (e).
This pipeline demonstrates the ability to identify corresponding structures in a single brain
imaged across four orders of magnitude of spatial resolution.
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potential for subsequent imaging with serial EM on the same sample. Our full imaging

pipeline is demonstrated in Figure 2.14. The ability to colocalize structures across multiple

orders of magnitude of spatial resolution will allow unprecedented insight into the nanos-

tructural drivers of the diffusion MRI signal.

The tractography results presented in this study (Figures 2.11–2.12) suggest an additional

benefit of large-volume microCT. With fODFs available across the whole brain, ground-

truth tractography can be correlated with axon tracings and dMRI tractography at different

scales in the same specimen. Such a rich dataset could be used in future studies to better

understand the upper bounds of tractography performance and to explore new priors to

better condition the tractography problem.

a b

Figure 2.15: Example microCT ring artifacts across coronal slices. (a) Mild artifact. (b)
Severe artifact.

While we believe synchrotron x-ray microCT is a valuable tool for dMRI validation, it also

presents some limitations. Raw x-ray data are log-normalized by the incident beam intensity

profile to account for spatial variation in the synchrotron output. These spatial variations

can fluctuate and drift during the data acquisition time due to natural thermal fluctuations

at various points in the synchrotron–detector chain, leading to inaccurate normalization that

results in the appearance of ring artifacts in the data following tomographic reconstruction.

These artifacts vary in severity across the dataset and can particularly bias fiber orientations
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in the structure tensor algorithm. Example ring artifacts are shown across coronal slices

in Figures 2.15a (mild) and 2.15b (severe). There are a number of successful processing

algorithms designed to mitigate this artifact, based on filtering of the sinogram data87,88 or

the reconstructed image89. Full correction of this artifact was outside the scope of this work

but will be important for future dMRI validation studies.

MicroCT is also limited by the achievable field of view and resolution. The narrow

beam width necessitates the use of mosaic tomography for imaging large volumes. The

computational challenge of precise sinogram registration currently limits achievable voxel

sizes to around one micron, biasing orientation estimates towards fibers of this length scale.

With limitations on feasible stain penetration depth, whole mouse brains represent an upper

limit of volumes that can be imaged with this method. This prohibits the use of microCT

for whole-brain studies of larger species, though smaller brain volumes from these species

can still deliver valuable information.

2.5 Appendix: Structure tensor parameter selection

For the structure tensor implementation in this chapter, the image gradient f(r) was calcu-

lated by convolving the image f(r) with the partial derivatives of a gaussian of width σD.

As discussed in section 2.2.4, the structure tensor is also convolved with a separate gaussian

of width σN in order to average results across a local neighborhood.

To explore the role of the σD and σN parameters, a series of phantoms was created con-

sisting of groups of cylindrical fiber bundles crossing at angles from 25–85◦ in 10◦ increments.

A sample phantom with fiber bundles crossing at 45◦ is shown in Figure 2.16a–b along with

the resulting true fODF in Figure 2.16c. Phantoms were defined to be 150 µm along each

dimension in order to match the resolution of the dMRI data. Underlying vasculature pat-

terns were segmented with a simple k-means clustering approach from real data, and the

fiber bundles were manually defined as cylinders with a radius of 9.6 µm (8 microCT voxels).
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a b c

Figure 2.16: Sample structure tensor parameter phantom consisting of two populations of
fiber bundles crossing at 45◦. (a) 2D cross section. (b) 3D rendering of the fiber masks. (c)
True fODF.

fODFs were calculated for each crossing-fiber phantom along a grid of parameter values for

both σD and σN from 1–10 µm in 0.5 µm increments. For each pair of values, the structure-

tensor fODF was compared to the true phantom fODF using the ACC. The resulting ACC

heatmaps are shown in Figure 2.17.

In general, across all crossing angles, performance was more dependent on σD than σN ,

with low values of σD leading to a misestimation of the true number of fiber populations

(gray pixels in Figure 2.17). Otherwise, the ACC was not found to be particularly sensitive

to the choice of parameters, and final values were selected as the average of the optimal

values at each crossing angle: σD = 7.5 µm and σN = 6.5 µm. These choices were manually

confirmed through visual examination of resulting fODFs using real data, as in Figures 2.5

and 2.7.
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Figure 2.17: ACC heatmaps between the true phantom fODF and the structure-tensor fODF
using different combinations of σD and σN for fiber bundle populations crossing at (a) 25◦,
(b) 35◦, (c) 45◦, (d) 55◦, (e) 65◦, (f) 75◦, and (g) 85◦. Gray pixels correspond to parameter
combinations in which the resulting fODF miscalculated the number of peaks in the true
fODF.
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CHAPTER 3

VALIDATION OF DMRI BRAIN NETWORKS USING

NEURAL TRACER IMAGING

3.1 Introduction

The structural connectome20 is the comprehensive map of connections among all neu-

rons in the brain. Constructing such a map represents a major frontier in neuroscience

that relies on the development of novel imaging techniques across a range of spatial scales

and model organisms and will provide insight into the basic function and development of the

brain90 and its pathologies91. Diffusion MRI tractography is currently the only noninvasive

method for mapping the human structural connectome92 and forms the basis of research ini-

tiatives such as the Human Connectome Project93. Together with mathematical tools from

graph theory92,94–96 (see section 3.5), tractography studies have helped reveal a number of

important network properties in the human brain such as efficiency97, modularity98, and

the organization of network hubs99.

Despite these advances, diffusion MRI also suffers from relatively poor spatial resolution

and fundamental ambiguities in the mapping between the underlying white matter fiber

orientations and the resulting diffusion signal100. Recent efforts to validate tractography

have uncovered several limitations, and even modern approaches still produce high numbers

of both false positive and false negative tracts101–104. A specific limitation inherent to

probabilistic streamline tractography is the fiber-length bias: local uncertainties in the fiber

orientation distribution at each step in the tracking process accumulate to produce global

errors for longer streamlines, leading to an underestimation of connectivity weights at greater

distances. Characterizing this sort of geometric bias is complicated by the fact that the brain

is itself a spatially embedded network with properties partially inherited from geometry:

there is a metabolic wiring cost in the establishment of long-range connections, and true
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falloff of both structural and functional connectivity with distance has been shown with high-

resolution invasive imaging as well as tractography in a number of mammalian species105–110.

With tractography alone, it is challenging to distinguish the role spatial embedding plays in

the true network properties of the brain from the potentially exaggerated representation of

that geometric effect resulting from biases inherent to the imaging process.

To characterize methodological biases and improve tractography approaches, tractogra-

phy experiments need to be validated with additional high-resolution imaging. Neural tracer

data is the gold standard for mesoscale connectivity studies in a number of model organ-

isms106,111–115. Data from the Allen Institute Mouse Brain Connectivity Atlas112 (AMBCA)

form the most comprehensive whole-brain mesoscale brain network in a mammalian species.

The AMBCA dataset was constructed using enhanced green fluorescent protein-expressing

adeno-associated viral vectors to trace axonal projection pathways from cell bodies located

within a given tracer injection region to corresponding axon terminals located throughout

the brain. After infection, the animal is sacrificed and its whole brain imaged using serial

two-photon tomography116. For the AMBCA database, hundreds of such experiments were

performed with injection regions spanning an entire hemisphere of the brain. For each ex-

periment, fluorescent signals were segmented to generate projection density images which

were then registered to the Allen Reference Atlas117 to create a single mesoscale structural

mouse brain connectome. This database has been used in multiple previous tractography

validation studies, primarily to characterize agreement in voxel-wise streamline density maps

with consideration for the role of specific algorithm parameters53,104,118.

In this chapter, we expand the use of the Allen Institute tracer data as a validation tool

for tractography connectomics in the mouse brain. Specifically, we use a graph-theoretical

approach previously developed for human tractography data108 of benchmarking empirical

brain graphs against an ensemble of random geometric surrogates. The random geometric

surrogate graphs are constructed from each empirical graph in such a way that the node
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strength distribution and low-order relationships between connectivity and fiber distance

are preserved, but the topology is otherwise destroyed, allowing for determination of the

extent to which certain properties of the mouse structural brain network can be explained

through spatial embedding alone.

Previous studies have also explored the influence of spatial embedding and geometry

on the topology of the structural brain network in different mammalian species105–108,119.

While many of these studies explored the results in an evolutionary context in terms of

pressures of wiring cost and efficiency120, our aim is instead to use the same tools across

the two imaging modalities to specifically assess methodological geometric bias in tractogra-

phy, taking the tracer-derived network as a significantly higher-fidelity representation of the

true mesoscale connectome of the mouse brain. Furthermore, we explore the performance

of different tractography approaches by assessing the use of two different streamline node

assignment strategies. Accordingly, our analysis aims to do two things: (1) explore and

compare the role spatial embedding plays in the topology of graphs derived from tractogra-

phy and neural tracer imaging and (2) explore the extent to which graphs constructed from

different tractography methods reflect the topological properties observed in the empirical

tracer model.

3.1.1 Author contributions

This chapter was originally published in NeuroImage under the title “The role of spatial

embedding in mouse brain networks constructed from diffusion tractography and tracer

injections” 121 with co-authors Sean Foxley, Gregg Wildenberg, Narayanan Kasthuri and

Patrick La Rivière. The author was responsible for the conception of the project and all

analysis, figures, and text in the chapter, while the co-authors were responsible for sample

preparation, data acquisition, and manuscript review.
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3.2 Methods

3.2.1 Construction of the primary tracer graph

Our work uses a high-resolution model of the Allen Institute mouse brain structural brain

network published by Knox et al.122 The Knox et al. model provides estimates of connec-

tivity at the scale of 100 µm isotropic voxels in the Allen Mouse Brain Common Coordinate

Framework (CCF v3), and is derived from 428 whole-brain anterograde fluorescent viral

tracer experiments in wild-type C57BL/6J mice collected for the AMBCA112. Underlying

tracer data are available at http://connectivity.brain-map.org. The Knox et al. model can

be accessed publicly through the repository available at

https://github.com/AllenInstitute/mouse_connectivity_models. While derived from tracer

experiments with injection locations that may span multiple distinct regions, the model

allows for the efficient creation of regionalized connectivity models using custom brain par-

cellations based on labeled structures in the Common Coordinate Framework. For this study,

we chose to define graph nodes as 286 of the 291 gray matter regions used to construct the

regionalized voxel model analyzed in Knox et al122. Five small regions were excluded due to

being located almost exactly along the sagittal midline. A full list of gray matter structures

used for the parcellation is available in section 3.7. The model allows for four different con-

nectivity metrics. Our tracer graph was constructed using the normalized connection density

metric, which takes raw projection volume fractions and normalizes them by the volume of

the source and target regions for each edge. The anterograde tracers used to produce the

Knox et al. model provide a directed graph, whereas tractography graphs are derived from

symmetric diffusion data and inherently produce undirected graphs. For fair comparison, the

tracer graph was manually made to be undirected by summing all bidirectional connectivity

between every pair of nodes. The AMBCA also assumes hemispheric symmetry, as all un-

derlying tracer images were formed from injections into the right hemisphere. Hemispheric
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symmetry was manually enforced in the final graph in order to yield square connectivity

matrices for subsequent analysis.

3.2.2 Additional tracer data

The Knox et al. model has been shown to outperform the homogeneous model originally pub-

lished in Oh et al.112 and produces a graph that is nearly 100% fully connected at the scale

of the parcellation used in this study. The true density of the whole mouse brain network

is an ongoing subject of research. Initial modeling of the Allen Institute data estimated

cortical density to vary from 32–52%112 to 59-73%123. A recent study by Gămănuţ, et

al.124 observed a much higher cortical density in the mouse brain of 97% using tract-tracing

measurements from independent retrograde tracer data. While only available for select

ipsilateral intra-cortical edges, the Gămănuţ, et al. data have the benefit of representing

empirical neuron counts that do not rely on the fixed parcellation template and downstream

computational modeling required for the Knox et al. model. Accordingly, our cortical trac-

tography connectivity weights were further benchmarked against these additional weighted

connectivity data provided by the authors. These edge-weight values correspond to neuron

count fractions within manually defined gray-matter region boundaries corresponding to the

parcellation from the Allen Institute (Figure S6B in Gămănuţ, et al.124). As with the Knox

et al. model, the Gămănuţ, et al. cortical subgraph was manually made to be undirected by

summing bidirectional connectivity weights between every pair of nodes.

3.2.3 Animal procedures

Procedures for the collection of the diffusion MRI data used for this study have been pub-

lished in a previous study125 and are repeated here for completeness. All procedures per-

formed on animals followed protocols approved by the Institutional Animal Care and Use

Committee and were in compliance with the Animal Welfare Act and the National Insti-
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tutes of Health Guide for the Care and Use of Laboratory Animals. Five adult mice were

deeply anesthetized with 60 mg/kg pentobarbital and sacrificed by intercardial perfusion

with a solution (pH 7.4) of 0.1 M sodium cacodylate and heparin (15 units/ml). This was

immediately followed by a solution of 2% paraformaldehyde, 2.5% glutaraldehyde, and 0.1 M

sodium cacodylate (pH 7.4). Brains were carefully removed from the skulls and post-fixed in

the same fixative overnight at 4◦C. Brains were soaked in phosphate buffered saline (PBS)

prior to imaging for at least 72 hours to remove fixative from the tissue.

3.2.4 Diffusion MRI acquisition

Resected mouse brains were dried of excess PBS and placed in 10 ml Falcon tubes. Tubes

were filled with Fluorinert (FC-3283, 3M Electronics) for susceptibility matching and to

improve shimming. Data were acquired at 9.4 T (20 cm internal diameter, horizontal bore,

Bruker BioSpec Small Animal MR System, Bruker Biospin, Billerica, MA) using a 6 cm high

performance gradient insert (maximum gradient strength: 1000 mT/m, Bruker Biospin) and

a 35 mm internal diameter quadrature volume coil (Rapid MR International, Columbus,

Ohio). Third-order shimming was iteratively performed over an ellipse that encompassed

the entire brain, but did not extend beyond the boundaries of the Falcon tube/Fluorinert

interface, using the Paravision mapshim protocol. Diffusion MRI was performed using a

standard diffusion-weighted 3D spin-echo sequence (TR = 600 ms, TE = 11.389 ms, b-value

= 3000 s/mm2, δ = 3.09 ms, ∆ = 6 ms, spatial resolution = 125 µm isotropic, number of b0s

= 8, number of directions = 30, receiver bandwidth = 150 kHz, duration = 36h 28min 48s).

3.2.5 Diffusion MRI processing

Data and diffusion gradient vectors were manually reoriented to the standard RAS neuro-

logical display convention. Subsequent processing was performed with the MRtrix3 software

package126. Data were denoised using the dwidenoise protocol68,69. Binary brain masks

47



were generated for subsequent processing using the dwi2mask routine. The data were first

fit to a diffusion tensor model10 to calculate the fractional anisotropy metric30. The data

were then fit to fiber orientation distribution functions (fODFs) using constrained spherical

deconvolution16,17 up to a maximum spherical harmonic order of `max = 6 (28 coefficients).

The fractional anisotropy image from each dataset was spatially registered to the Allen refer-

ence mouse brain template at an isotropic voxel size of 100 µm using affine and diffeomorphic

transformations calculated with the ANTS registration package80,81. The Allen template

and structure-level annotations in the Common Coordinate Framework were accessed using

the allensdk software tool (https://allensdk.readthedocs.io). The spatial transforms calcu-

lated in ANTS were then applied to the fODFs using the mrtransform protocol in MRTrix3,

which applies appropriate reorientation82 and modulation18 of the fODFs in order to pre-

serve fiber densities across each lobe after transformation.

3.2.6 Construction of tractography graphs

Probabilistic tractography was performed in MRTrix3 using the iFOD2 algorithm86 (step

size = 12.5 µm, maximum curvature = 30 µm, minimum length = 0.5 mm, maximum

length = 30 mm, fODF cutoff = 0.055). Streamlines were seeded uniformly throughout each

of the 286 gray matter regions in the right hemisphere used in the regionalized tracer model,

with 2000 seeds per voxel, amounting to around 400 million total streamlines per dataset.

Edge weights were determined from each tractography dataset using two different streamline

node assignment strategies in order to compare their effects on downstream network struc-

ture. For “endpoint” connectivity, streamlines were assigned to the two nodes corresponding

to the gray matter regions closest to their endpoints, within a maximum radius of 125 µm,

corresponding to the size of the underlying diffusion data voxels. For “dense” connectivity,

streamlines were assigned to all node-pairs corresponding to pairs of gray matter regions they

traverse, not just those corresponding to their endpoints. Edge-weight values between two
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nodes were then taken to be the number of streamlines assigned to the two nodes under both

endpoint and dense assignment strategies, resulting in two different graphs per tractography

dataset. To match the normalized connection density metric used for the tracer graph, the

weights for each node pair were then divided by the product of the two node volumes. As

with the tracer graph, hemispheric symmetry was manually enforced to create square con-

nectivity matrices. Also similar to the tracer graph, the probabilistic tractography seeding

used in this work led to nearly fully connected graphs.

3.2.7 Construction of surrogate graphs

The goal for the construction of geometric surrogate graphs was to create an ensemble of

graphs that preserve both the distribution of node strengths (the sum of weights at each

node) and the low-order weight-distance relationships of a given empirical graph but are

otherwise random. Geometric surrogate graphs were constructed from all empirical tracer

and tractography graphs by directly following the methodology described in Roberts et

al.108, repeated here for completeness. First, the fiber distance between each pair of nodes

was quantified based on tractography results. The distance fij between nodes i and j was

defined as the length of the shortest streamline connecting them, averaged across all datasets.

To estimate first-order weight-distance effects, we follow Roberts et al. in fitting the logarithm

of the edge-weights wij to a curve given by logwij ≈ g(fij), where g is a cubic polynomial.

This relationship was subtracted from the raw weights, and an additional parabolic curve

was then fit to the residuals. After normalizing by this second curve, low-order distance-

dependent effects were effectively removed from the weight values and they were randomly

shuffled. After randomization, the transformations were applied in reverse order to reimpose

low-order weight-distance effects. The original weight values were then reordered to match

the random rank order of the surrogate weights. Finally, the node-strength distribution was

restored using an iterative procedure that updates the sums of the rows and columns of the
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surrogate weight matrix towards the empirical values.

This procedure resulted in an ensemble of geometric surrogate graphs Wgeo for each

network construction method that preserve the low-order distance-dependent characteristics

and node-strength distribution of the underlying empirical graph Wemp, but have all other

topological properties destroyed. We make the assumption that network properties that

are preserved in the geometric surrogate graphs represent those that have been inherited

from the spatial embedding of the brain. Likewise, we assume that differences in network

properties between empirical and geometric surrogate graphs represent the extent to which

those properties arise from other, non-geometric factors.

A similar procedure without the use of distance transformations was used to construct

an ensemble of random surrogate graphs Wrand, which preserve the exact strength-sequence

of the underlying empirical graphs, but are otherwise completely random. The geometric

surrogates Wgeo represent the null hypothesis that topological properties of brain networks

arise from the falloff of edge weights with distance for a given node-strength distribution,

while the random surrogates Wrand represent the null hypothesis that topological properties

of brain networks arise solely from the particular distribution of node strengths and locations.

3.3 Results

Here we report analysis of brain networks constructed using tracer imaging data and two trac-

tography approaches: “endpoints” and “dense” corresponding to two methods of streamline

node assignment. For each metric, our goal is to explore how graphs from each tractography

approach compare to the tracer graph, specifically with respect to the relationship between

empirical and geometric surrogate graphs. Unless otherwise noted, all results labeled “tracer”

correspond to the whole-brain graph derived from the Knox et al. connectivity model. All

analysis was performed in Python, with graph theoretical measures calculated using the

networkx package127.
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Figure 3.1: Edge-weight values. (a–c) Connectivity matrices for (a) tracer, (b) endpoint
tractography, and (c) dense tractography. Rows represent nodes comprised of 286 gray mat-
ter regions across 12 major brain divisions. Columns represent the same nodes for ipsilateral
(left) and contralateral (right) connections. Values are shown on a log-color scale spanning
five orders of magnitude centered on the mean edge-weight value for each matrix. ρ values
represent Spearman rank correlation coefficients between tractography and tracer weights
across the whole brain. (d) Edge-weight distributions. Empirical weight histograms (solid
lines) with corresponding normal fits (dashed lines). (e–f) Spearman correlations between
tracer and (e) endpoint and (f) dense tractography edge-weights across 12 major brain di-
visions: Isocortex (ICTX), Olfactory areas (OLF), Hippocampal formation (HPF), Cortical
subplate (CTXsp), Striatum (STR), Pallidum (PAL), Thalamus (TH), Hypothalamus (HY),
Midbrain (MB), Pons (P), Medulla (MY), Cerebellum (CB). “-I” and “-C” in (e–f) refer to
ipsilateral and contralateral correlations, respectively. All tractography values represent av-
erages across 5 datasets.
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3.3.1 Comparison of edge-weight values

Structural connectivity matrices and edge-weight distributions are shown for all empirical

graphs in Figures 3.1a–c. Differences in the mean weight values across tractography ap-

proaches in Figure 3.1d follow predictable trends: dense node assignment resulted in higher

weights than endpoint node assignment. Note that the physical interpretation of edge weights

differs between modalities, so direct comparison of the edge-weight means between modalities

is not meaningful. Tracer weights reflect normalized projection volumes and tractography

weights reflect normalized streamline counts under different node assignment strategies. Re-

gardless, edge-weight distributions had a comparable and approximately log-normal shape

for all empirical graphs.

Figure 3.2: Scatterplots of the log-weights for tracer vs. tractography connectivity matri-
ces. Color indicates fiber distance. Tractography weight values represent averages across 5
datasets. ρ values indicate Spearman rank correlation coefficients, with standard deviations
across 5 tractography datasets.

Overall agreement in edge-weight values was assessed using the Spearman rank correlation

coefficient, a nonparametric correlation metric used in previous studies53,128 to assess non-

linear agreement between connectivity values. Spearman correlation values between tracer
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and tractography weights across all edges are shown above each tractography matrix in Fig-

ures 3.1b–c. Edge weights constructed with dense node assignment had a slightly higher

Spearman correlation with the tracer weights than those constructed with endpoint node

assignment. The difference in correlations was statistically significant (p < 0.01) using a t-

test. Scatterplots of edge weights between the tracer and tractography graphs are available

in Figure 3.2.

Spearman correlations between tractography and tracer weights assessed at the level of

major brain divisions are shown in Figures 3.1e–f. All tractography methods showed rela-

tively high correlations in ipsilateral intra-division connectivity (diagonals in Figures 3.1e–f),

and weaker contralateral connectivity to homologous regions, reflecting not only a falloff in

weight for longer-distance connections, but a falloff in agreement with tracer values. Dense

node assignment led to higher Spearman correlations than endpoints for nearly all connec-

tions to the pons, and for connections between the hypothalamus, midbrain, and medulla.

3.3.2 Comparison of weight-distance relationships

The raw weight-distance distributions and polynomial fits used to construct the geometric

surrogate graphs are available in Figure 3.3a–b. Transformed weights (Figure 3.3c) show

effectively zero correlation with fiber distance using both Pearson and Spearman correlation

coefficients, indicating that low-order distance relationships have been effectively removed

prior to randomization for the construction of the geometric surrogate graphs. Sample

connectivity matrices from empirical and geometric surrogate tracer graphs are shown in

Figure 3.4. The visible structure that persists from the empirical matrix to the geometric

surrogate matrix corresponds to connectivity patterns that can be explained in part through

the weight-distance relationship.
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Figure 3.3: Distance curves for weights (left) and residuals (center) for all network construc-
tion methods. The resulting weight-distance relationships after transformation are shown
on the right with corresponding linear fits (green line). r and ρ values indicate Pearson and
Spearman correlation coefficients, respectively. Counts of individual edges within weight-
distance bins are represented as a heatmap on a log color scale. Polynomial fits are shown
as green curves. Tractography values represent averages across 5 datasets.

Because the weight values have different physical interpretations for each network con-

struction method, the weight-distance relationships cannot be directly compared. Instead,

Figure 3.5 visualizes the relative relationships between methods after the log-weights were

first standardized to zero mean and unit variance. Figure 3.5a shows the relative falloff of

mean normalized log-weights with fiber distance, and Figure 3.5b shows the change in the

standard deviation of normalized log-weights with fiber distance for each method.
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Figure 3.4: Sample connectivity matrices for (a) Wemp and (b) Wgeo graphs from the tracer
model data.
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0 5 10 15 20 25
Fiber distance (mm)

2

1

0

1

2

M
ea

n 
of

 n
or

m
al

ize
d 

lo
g 1

0 w
ei

gh
ts

Tracer
Endpoints
Dense

0 5 10 15 20 25
Fiber distance (mm)

0.50

0.75

1.00

St
. d

ev
 o

f n
or

m
al

ize
d 

lo
g 1

0 w
ei

gh
tsa b

Figure 3.5: Normalized weight-distance relationships. (a) Circles represent the average log-
weight z-scores for each method within 1 mm fiber distance bins. (b) Circles represent the
standard deviation of the log-weight z-scores for each method within 1 mm fiber distance
bins. Shaded regions represent 1 standard deviation across 5 tractography datasets. The
widths of the horizontal lines at the top of each subfigure indicate the range of fiber distance
bins with statistically significant differences (p < 0.01) between tracer and tractography
values for each tractography method, calculated using a one-sample t-test after correcting
for multiple comparisons.

distance between around 17-22 mm. These results suggest that the tractography methods
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explored in this work underestimate relative long-range connectivity by as much as two or-

ders of magnitude. For most fiber distances, both tractography methods also underestimate

the standard deviation of normalized weights compared to tracers. A smaller relative stan-

dard deviation around the mean weight-distance relationship is consistent with tractography

weights being more strictly determined by fiber distance than tracer weights are, though

these differences were only statistically significant between around 3–15 mm for endpoint

node assignment and for a smaller range around 4–6 mm for dense node assignment.

3.3.3 Comparison of network organization

Modular structure

The modular structure of each brain graph was determined by optimizing the modularity

(Q) using the Louvain algorithm129. Modularity expresses the extent to which a graph can

be subdivided into distinct modules such that intra-modular connectivity is maximized and

inter-modular connectivity is minimized130. The confusion matrices for consensus node-

module assignments are shown in Figure 3.6 for comparisons between empirical tractogra-

phy and tracer modules as well as between empirical and geometric surrogate modules for

all methods. Consensus node-module assignments represent the module ID label most fre-

quently assigned to each node across 5 tractography datasets and ensembles of 100 geometric

surrogates. ID labels were first standardized across tractography and geometric surrogate

graphs by assigning labels to identified modules such that the overall agreement with the

identified modules in the empirical tracer graph was maximized.
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Figure 3.6: Confusion matrices for module assignment. Module IDs correspond to those
identified with the colorbar in Figure 3.7. (a–b) Module assignments between empirical tracer
and empirical (a) endpoints and (b) dense tractography graphs. (c–e) Assignments between
empirical (c) tracer, (d) endpoint, and (e) dense graphs and those from their corresponding
geometric surrogate graphs. Values represent consensus assignments across 5 tractography
datasets and an ensemble of 100 geometric surrogate graphs.

The resulting consensus modular decompositions are visualized in physical coordinates for

the empirical and geometric surrogate graphs derived with all network construction methods

in Figure 3.7. Spheres represent the physical location of distinct gray-matter nodes, which

are colored according to their identified module. Intra-module edges are also visualized

as colored lines. Overall, modules identified in the tractography networks are much more

spatially clustered together than those in the tracer network. Intra-module edges are more

likely to be shorter range for both tractography methods than for tracers, consistent with

tractography modular structure being partially determined by geometric bias against long-
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Figure 3.7: Module diagrams for (a) tracer, (b) endpoint, and (c) dense graphs in physical
coordinates. Spheres represent the center of mass of each node, colored by module assign-
ment. Intra-module edges are shown as colored lines. Graphs are visualized along the axial
(left), sagittal (middle), and coronal (right) planes with labeled orientations: A=anterior,
S=superior, R=right, L=left. Module assignments represent consensus values across 5 em-
pirical tractography graphs and an ensemble of 100 geometric surrogate graphs.
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range connections. This result

Tracer Endpoints Dense

Tractography vs. tracer — 54 54

Empirical vs. geometric surrogates 53 66 67

Table 3.1: Percent agreement in consensus node-module assignment.

is further quantified in Table 3.1, which shows the percent agreement in node-module as-

signment for pairs of graph construction methods. Graphs from both tractography methods

show only modest agreement in module assignment with the tracer graph. The tracer graph

also shows only modest agreement in module assignment with its geometric surrogates, sug-

gesting that modules in the true mouse brain network are less spatially clustered than they

would be if determined by geometry alone, while both tractography methods show much

higher overlap in module assignment between their empirical and geometric surrogates.

The optimized Q value itself is a metric of network segregation, indicating a capacity for

specialized processing to occur in different regions of the brain. Raw Q values are shown for

all graphs in Figure 3.8a. Figure 3.8b shows the empirical Q values normalized by the Q

values from their corresponding random surrogate graphs, Wrand, constructed by randomly

shuffling weights within each empirical graph such that the node strength sequence is pre-

served. While raw Q values are comparable between the tracer and two tractography graphs,

the tracer graph shows a substantially higher Wrand-normalized modularity relative to all

tractography methods, suggesting that tractography graphs underrepresent the modularity

of the mouse structural brain network beyond what would be expected from a random graph

with the same strength sequence. In Figure 3.8c, empirical Q values have been normalized
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Figure 3.8: Modularity. (a) Raw Q values for empirical (Wemp), geometric surrogate (Wgeo),
and random (Wrand) surrogate graphs. Error bars represent 1 standard deviation across 5
tractography datasets for empirical graphs, and 1 standard deviation across ensembles of
100 geometric and random surrogate graphs per method. (b) Empirical Q values normalized
by their corresponding mean random surrogate Q value. (c) Empirical Q values normalized
by their corresponding mean geometric surrogate Q value. Red stars indicate statistical sig-
nificance (p < 0.01) in the difference between Wemp and Wgeo data calculated with Tukey’s
range test, and blue diamonds indicate statistical significance (p < 0.01) in the difference
between Wrand- and Wgeo-normalized tracer and tractography data, calculated with a per-
mutation test.

by the Q values from their corresponding geometric surrogate graphs. This ratio repre-

sents the additional modular structure present in the empirical graphs beyond what would

be predicted by spatial embedding alone, with a ratio of 1 indicating complete geometric

determination. Both tractography methods show values significantly closer to 1 than the

tracer graph does. Overall, these results suggest that modular structure in the mouse struc-

tural brain network is both underestimated overall and more geometrically determined in

tractography relative to neural tracer imaging.

Hub node organization

The arrangement of the subnetwork of central “hub” nodes is key to understanding overall

brain network structure. Hub nodes can be identified using a number of complementary

centrality measures. The participation coefficient P is based on a particular modular de-

composition and expresses the diversity of intermodular connections for a given node, with

a value of 1 indicating a node is connected uniformly to all modules and a value of 0 indicat-
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ing a node is connected exclusively to its own module130,131. Figure 3.9 shows scatterplots

of participation coefficients for empirical tractography and tracer graphs (Figure 3.9a–b)

and for each empirical graph method and its geometric surrogates (Figure 3.9c–e). Both

tractography methods show only weak correlation with the values from the corresponding

tracer graph, but significantly stronger correlations with the values from their own geometric

surrogates.
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Figure 3.9: Scatterplots showing the relationship between participation coefficients assigned
to each node by different network construction methods. (a–b) Correlations between empir-
ical tracer and empirical (a) endpoints and (b) dense tractography participation coefficients.
(c–e) Correlations between empirical (c) tracer, (d) endpoint, and (e) dense participation
coefficients and those from their corresponding geometric surrogate graphs. Values represent
averages across 5 tractography datasets and an ensemble of 100 geometric surrogate graphs.

Previous work with human tractography datasets108 has revealed that the human brain

places its strongest nodes further into geometrically peripheral regions than would be ex-
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Figure 3.10: Visualization of network structure for (a) tracer, (b) endpoint, and (c) dense
graphs in physical coordinates. Spheres represent the center of mass of each node, colored
by relative strength. Edges between the top 15% strongest “hub” nodes (larger spheres)
are shown as teal lines. Graphs are visualized along the axial (left), sagittal (middle), and
coronal (right) planes with labeled orientations: A=anterior, S=superior, R=right, L=left.
Tractography node strengths are calculated as averages across 5 datasets. Geometric surro-
gate graphs are single representative samples.
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pected by weight-distance effects alone. In Figure 3.10, we extend this analysis into the

mouse brain and compare physical hub organization using node strength as a centrality

measure. Hub node locations are visualized in physical coordinates for all empirical and

geometric surrogate graphs. Hub nodes are identified as the top 15% of nodes for each graph

by node strength and are visualized as large spheres. The remaining bottom 85% of nodes

by strength are identified with smaller spheres. Edges between hub nodes are colored teal.

For visual clarity, the remaining edges have been omitted.

Region Tracer Endpoints Dense

Hypothalamus 29 57 22

Medulla 19 9 7

Isocortex 17 0 0

Midbrain 10 12 22

Thalamus 9 9 31

Table 3.2: Percent of total hub node strength contained in select major brain divisions.

Through visual comparison of empirical and geometric surrogate tracer graphs, we find

the expected result that the mouse brain network as measured with tracer data places its

hub nodes further towards the periphery of the brain than would be predicted by geometry

alone, with the strongest nodes located across the isocortex, medulla, and inferior hypotha-

lamus. Empirical tractography graphs, however, place the strongest nodes deeper towards

the center of the brain compared to the tracer graph, with hubs organized into a ball-like

structure comparable to their corresponding geometric surrogates. Table 3.2 shows the per-

cent of total hub node strength located within select major brain divisions for each network

construction method. 17% of the total tracer hub strength was located along the isocortex,
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while no isocortex nodes in either of the tractography graphs were identified as hubs. Trac-

tography graphs likewise underestimated hub strength in the medulla and overestimated hub

strength in the midbrain and thalamus, particularly for the dense node assignment strategy.

Overall, only 11 individual structures were co-identified as hubs between the tracer and both

tractography methods.

In the case of dense node assignment, the tendency to cluster hub nodes near the center

of the brain appears even more pronounced than would be predicted by geometric surrogate

graphs with the same weight-distance relationship. These results suggest a strong geomet-

ric determination in the organization of hub nodes in tractography above and beyond the

geometric relationship expected from tracer data.

Tracer Endpoints Dense0

10

20

30

40

50

60

Di
st

an
ce

 fr
om

 c
en

te
r o

f m
as

s (
m

m
)

Wemp
Wgeo

Figure 3.11: Violin plots showing the distribution of distances between the center of mass of
individual hub nodes and the center of mass of the brain. Horizontal bars indicate the means
of each distribution. Distributions represent per-node values across all datasets. Wgeo data
are taken from an ensemble of 100 random graphs per network construction method. Red
stars indicate statistical significance (p < 0.01) in the difference between Wemp and Wgeo

data, and blue diamonds indicate statistical significance (p < 0.01) in the difference between
empirical tracer and tractography data. p-values were calculated using Tukey’s range test.

The geometric centrality of hub nodes is further quantified in Figure 3.11, which shows

the mean distance between hub nodes and the center of mass of the brain for all empirical and
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geometric surrogate graphs. As visualized in Figure 3.10, the tracer empirical graph places

its hubs further from the center of mass than its corresponding geometric surrogates, while

dense tractography not only places its hubs closer to the center of the brain than the tracer

graph does, but also places its hubs slightly more central than its own geometric surrogates.

Endpoint tractography graphs also place their hub nodes more geometrically central overall

than the tracer graph, with distances from the center of mass comparable to their geometric

surrogates. However, Figure 3.10 shows that the endpoint graphs are better able than dense

graphs to capture some of the more peripheral hubs along the inferior hypothalamus.

In addition to the participation coefficient and node strength, hubs were identified and

characterized using their eigenvector centrality (EC), a robust measure of relative node

importance calculated by taking the elements of the leading eigenvector of the connectivity

matrix130. Each node’s EC is related to the weight of the connections to its neighbors, such

that a node could acquire a high EC either by having a large number of very weak connections

or by having a small number of very strong connections. Figure 3.12 shows distributions

of the average fiber distance to each node’s neighbors 〈Dneighbors〉 for all empirical and

geometric surrogate graphs. Distributions are split into hub (top 15%) and “feeder” (bottom

85%) nodes defined using EC. Nodes with a low 〈Dneighbors〉 imply physical, geometric

centrality with respect to their neighbors, and nodes with a high EC imply high topological

centrality and node importance.

Geometric surrogate graphs from all network construction methods have much lower

mean 〈Dneighbors〉 for hub nodes than for feeder nodes, meaning they predict the most

topologically central hub nodes to also be the most geometrically central. The empirical

tracer graph predicts the opposite relationship: not only are tracer hub nodes located further

from their neighbors than predicted by geometry, they are also less geometrically central than

the remaining feeder nodes, reflecting their peripheral placement seen in Figures 3.10 and

3.11.
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Figure 3.12: Violin plots showing distributions of the average fiber distance to each node’s
neighbors, split into hub (top 15%) and feeder (bottom 85%) nodes defined using eigenvector
centrality. Distributions from empirical graphs are shown in blue colors, and distributions
from geometric surrogate graphs are shown in red colors. Lighter shades of each color indicate
hub nodes and darker shades indicate feeder nodes. Horizontal bars indicate the means of
each distribution. Distributions represent per-node values across all datasets. Green squares
indicate statistical significance (p < 0.01) in the difference between empirical hub and feeder
distributions. Red stars indicate statistical significance (p < 0.01) in the difference between
Wemp and Wgeo hub values. Blue diamonds indicate statistical significance (p < 0.01) in the
difference between empirical tracer and tractography hub values. p-values were calculated
using Tukey’s range test.

This effect is not observed in any of the empirical tractography graphs. The dense

tractography graphs predict 〈Dneighbors〉 values for their hub nodes more similar to those

from the tracer graph, but the distributions from both tractography approaches are much

more similar to those from their corresponding geometric surrogates than the empirical tracer

distributions are to theirs. Particularly, both empirical tractography graphs have lower mean

〈Dneighbors〉 values for hub nodes than for feeder nodes, the reverse of the relationship seen

in the tracer graph. This once again indicates a strong geometric bias in the placement of

topologically important nodes in tractography graphs.
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3.3.4 Comparison of additional network properties
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Figure 3.13: Mean binary clustering coefficients for each method as a function of network
density. Shaded regions represent 1 standard deviation across 5 tractography datasets and
ensembles of 100 geometric and random surrogate graphs. (a) Raw mean clustering coefficient
values for all empirical graphs. (b) Mean clustering coefficients for all empirical graphs
randomized against the mean value from their corresponding random surrogates. (c) Mean
clustering coefficients for all empirical graphs randomized against the mean value from their
corresponding geometric surrogates. The widths of the horizontal lines at the top of the
figures indicate the range of network densities with statistical significance (p < 0.01) in the
difference between tracer and tractography values for each tractography method, calculated
with (a) Tukey’s range test and (b–c) a permutation test.

Binary clustering coefficient

The binary clustering coefficient94 is calculated as the ratio of all existing to all possible tri-

angles around an individual node. The mean clustering coefficient 〈C〉 across the whole graph

is thus an additional metric of network segregation similar to the modularity (Figure 3.8),

indicating the prevalence of densely interconnected clusters around individual nodes. The

tracer and tractography graphs used in this study are nearly fully connected. Accordingly,

we thresholded the graphs by edge weight and show the 〈C〉 values as a function of result-

ing network density in Figure 3.13. Raw values are shown for tracer, endpoint, and dense

empirical graphs in Figure 3.13a. While the raw clustering values are higher in tractography

than in tracer graphs, the Wrand-normalized values in Figure 3.13b show the tracer graphs
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with a higher normalized 〈C〉 at all densities, indicating that the tractography methods un-

derestimate the true clustering of the mouse brain. In Figure 3.13c, empirical 〈C〉 values

have been normalized by the values from their corresponding geometric surrogates. As with

modularity, at all network densities, the Wgeo-normalized values for tractography graphs are

much closer to 1 than for the tracer graph, indicating a stronger geometric component of

clustering in tractography than in tracer data for all tractography methods.

Comparison of network efficiency

While analysis of modular structure and related metrics describe aspects of network segre-

gation, the global and local efficiencies are metrics of integration for unweighted networks.

Local efficiency is calculated as the average inverse shortest path length between a node and

all of its neighbors, while global efficiency is the average inverse shortest path length between

all pairs of nodes in a network. Accordingly, networks with high global efficiencies are able

to efficiently communicate information across different regions. Raw global efficiency values

are shown in Figure 3.14a. As the underlying weighted graphs are nearly fully connected

for all methods, binary efficiencies are characterized as a function of network density after

thresholding low-weight edges. Global efficiencies normalized by the values from Wrand- and

Wgeo-surrogate graphs are shown in Figures 3.14b–c, respectively. Across all threshold levels

and normalizations, global efficiencies from endpoint tractography provided a good match

to those from the tracer model. Dense tractography significantly underestimated global effi-

ciency at all densities, even after normalization with the values from its geometric surrogates,

which suggests that dense tractography underestimates the role of geometry in network in-

tegration relative to the tracer model. Figure 3.14d–e shows scatterplots demonstrating

the relationship of per-node local efficiencies between tractography- and tracer-derived net-

works across multiple densities. Pearson correlations were weak across both methods and

all densities, indicating that while endpoint tractography performs well in estimating global
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efficiency, neither tractography method is able to accurately predict the local efficiency of

individual nodes.

10 20 30 40 50
Network density (%)

0.2

0.4

0.6

0.8

Gl
ob

al
 e

ffi
cie

nc
y

Raw values

Tracer
Endpoints
Dense

10 20 30 40 50
Network density (%)

0.6

0.8

1.0

Re
la

tiv
e 

gl
ob

al
 e

ffi
cie

nc
y Wrand-normalized

10 20 30 40 50
Network density (%)

0.6

0.8

1.0

Re
la

tiv
e 

gl
ob

al
 e

ffi
cie

nc
y Wgeo-normalized

0.5 0.75 1
0.5

0.75

1

En
dp

oi
nt

s l
oc

al
 e

ffi
cie

ny

r=0.10±0.02

Density: 10%

0.5 0.75 1

r=0.15±0.02

Density: 20%

0.5 0.75 1

r=0.15±0.02

Density: 30%

0.5 0.75 1

r=0.20±0.01

Density: 40%

0.5 0.75 1

r=0.28±0.03

Density: 50%

0.5 0.75 1

0.5

0.75

1

De
ns

e 
lo

ca
l e

ffi
cie

ny

r=-0.06±0.10

0.5 0.75 1

r=0.28±0.10

0.5 0.75 1

r=0.38±0.04

0.5 0.75 1

r=0.32±0.04

0.5 0.75 1

r=0.27±0.02

Tracer local efficiency

a b c

d

e

Figure 3.14: Efficiency. (a–c) Global efficiencies for each method as a function of network
density. Shaded regions represent 1 standard deviation across 5 tractography datasets. (a)
Raw global efficiency values for all empirical graphs. (b) Global efficiencies for all empirical
graphs randomized against the mean value from their corresponding random surrogates. (c)
Global efficiencies for all empirical graphs randomized against the mean value from their
corresponding geometric surrogates. The widths of the horizontal lines at the top of (a–c)
indicate the range of network densities with statistical significance (p < 0.01) in the difference
between tracer and tractography values for each tractography method, calculated with (a)
Tukey’s range test and (b–c) a permutation test. (d–e) Scatterplots showing local efficiencies
calculated with empirical tracer and (d) endpoint and (e) dense tractography graphs across
a range of network densities. r values indicate Pearson correlations.
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Figure 3.15: Comparison to empirical, retrograde tracer data in the cortex from Gămănuţ,
2018. (a–d) Cortical connectivity matrices for (a) the Knox, 2019 tracer model, (b) the
Gămănuţ, 2018 empirical data, (c) endpoint tractography, and (d) dense tractography. (e–
f) Scatterplots showing correlations between (e) endpoint and (f) dense tractography edge
weights and values from the two tracer graphs. ρ values indicate Spearman correlation
coefficients with standard deviations calculated across 5 tractography datasets. (g) Normal-
ized weight-distance relationships. Circles represent the average log-weight z-scores for each
method within 1 mm fiber distance bins. Shaded regions represent 1 standard deviation
across 5 tractography datasets. The widths of the dotted and solid horizontal lines at the
top of the figure indicate the range of fiber distance bins with statistically significant dif-
ferences (p < 0.01) between Knox, 2019 (dotted) and Gămănuţ, 2018 (solid) tracer values
and tractography values for each tractography method, calculated using a one-sample t-test
after correcting for multiple comparisons. 70



3.3.5 Validation with independent tracer measurements

For independent validation of the whole-brain network analysis results from the compu-

tational tracer model from Knox et al., tractography edge-weights were also compared to

ipsilateral cortical connectivity measurements published in Gămănuţ, et al. 2018124. Fig-

ures 3.15a–d show connectivity matrices of 18 cortical regions from both tracer datasets

and tractography methods. Scatterplots between tractography and tracer edge-weights are

shown for endpoints and dense tractography in Figures 3.15e–f, respectively. For both node

assignment methods, Spearman correlations between tractography and tracer weights are

significantly higher with the Knox et al. model than the Gămănuţ et al. data. Figure 3.15g

shows the mean relationship between edge weights and fiber distance after the log-weight

distributions were normalized to a mean of 0 and standard deviation of 1. Even though

the overall range of distances is shorter between ipsilateral cortical nodes than across the

whole brain, the tractography methods both still demonstrate a significant underestimation

of long-range connectivity relative to empirical tract-tracing measurements in the cortex,

which is consistent with the resulting geometric bias in network properties found through

comparison to computational tracer-derived connectivity estimates in the whole brain.

3.4 Discussion

Across nearly all metrics explored in this study, we find that the topological properties of

tractography-derived graphs are much more influenced by spatial embedding than would be

predicted by the more accurate role of spatial embedding represented by the tracer model.

Tractography graphs underestimate connectivity weights at long distances, leading to a con-

flation of topological and geometric centrality that biases the estimated modular structure

and the architecture of hub subnetworks. These results serve as an important reminder for

consideration in future tractography studies: given that many properties of the true brain

network can be reasonably predicted strictly by spatial embedding, tractography methods
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development and validation efforts should be targeted towards the ability to predict network

properties beyond a geometric baseline. While we expect that methodological geometric bias

plays a similar role in human tractography networks, some studies have shown encouraging

results. For example, Roberts et al.108 demonstrated that empirical human tractography

graphs exhibit a more peripheral hub network structure than predicted by their correspond-

ing geometric surrogate graphs, similar to our tracer results in Figure 3.10 and in contrast

to what we observed with tractography networks. Nevertheless, conclusions from human

tractography networks cannot be verified with additional ground-truth imaging, and cau-

tion should be taken when interpreting tractography-derived brain networks in all species,

particularly for metrics which rely more on long-range connections.

One aim of this chapter was to explore differences in tractography network structure re-

sulting from the streamline node-assignment strategy. Ultimately, we found our results were

largely independent of the specific node-assignment approach. The geometric bias in tractog-

raphy was not mitigated by either method; despite small differences, network characteristics

of both tractography graphs were far more similar to each other than either of them were

to characteristics of the tracer graph. While endpoint tractography might represent a more

physically intuitive model of brain connectivity, the comparable performance of dense trac-

tography reflects the ambiguous physical definition of tractography streamlines. Particularly

at this spatial resolution and in the absence of stronger anatomical regularization, tractog-

raphy streamlines strictly represent potential probabilistic pathways of white matter fibers

that are consistent with symmetric diffusion data. When streamlines are made to terminate

under reasonably enforced constraints such as on fODF magnitude or streamline curvature,

this enforces a penalty on unrealistic fiber geometries or the use of lower-confidence diffusion

data, but does not yield a physical sense of the actual origin or termination points of the

underlying neuronal fibers. This compromises the intuitive appeal of “endpoint” streamline

node assignment as used in this study. In fact, without additional constraints, we expect
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the endpoint locations of any given streamline to be more noisy and erroneous as streamline

length increases due to the fiber orientation errors accumulated at each step in the tracking

process, an inherent tradeoff that exists even with more sophisticated forms of anatomic

regularization. With dense tractography, the effective signal-to-noise ratio for connectivity

similarly falls off for points further away from the seed location, but since a single streamline

is allowed to contribute to the connectivity estimate between multiple node-pairs at vary-

ing distances, a greater proportion of points from each streamline contribute connectivity

estimates that are less noisy than those from the endpoints. Dense tractography also serves

as a potentially more physically meaningful match to the tracer data used in this study, as

connectivity values in the Knox et al. model are derived from segmented projection volumes

of a viral tracer that fluoresces along the entire length of any given neural projection.

For the data used in this study, we took the approach of seeding only from the gray

matter to avoid known tract-length connectivity biases19,132, and normalized the streamline

counts by the volumes of each node-pair in order to better match the normalized connection

density metric used in the Knox et al. model. Since our data were acquired with a single,

relatively low b-value, we opted against the use of more advanced streamline quantitation al-

gorithms such as SIFT226. This also provides a more direct comparison between our results

and those of similar studies that have used the Allen tracer data to benchmark tractography

performance without reference to the role of spatial embedding53,104,118. Even with these

relatively simple post-processing approaches, the results of this study serve to echo recent

tractography validation reviews that suggest that the future of tractography connectomics

hinges on the incorporation of more advanced anatomical and microstructural priors to trac-

tography pipelines in order to address geometric and other biases and make streamlines more

quantitative and physically meaningful101,103. Network analysis with geometric surrogate

graphs can be an important tool to evaluate such quantitative tractography pipelines in the

future. A recent study by Girard et al.115 rigorously benchmarked 15 tractography algo-
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rithms and a number of regularization approaches such as the “anatomically constrained

tractography” framework24 and the SIFT2 post-processing algorithm26 against tracer data

in the macaque cortex, though it did not present analysis of downstream network measures.

Our future work will similarly explore the adoption of more advanced tractography and reg-

ularization approaches in the mouse brain, where whole-brain tracer data are more readily

available. Benchmarking these approaches with the use of geometric surrogate graphs will

allow for a deeper understanding of the value of existing quantitative strategies designed to

mitigate tractography biases.

The results in this study rely on the assumption of the tracer data as a ground truth

representation of the underlying mesoscale mouse brain network architecture. While tracer

data is certainly ideal in many respects for the benchmarking of diffusion tractography, there

are also limitations to this assumption. Both anterograde and retrograde tracer studies pro-

duce inherently directed graphs, whereas tractography is based on inherently symmetric

diffusion measurements and produces undirected graphs. This requires the use of directional

symmetry enforcement for fair comparison that may alter the underlying network properties

represented by the tracer data. Besides any biases in the imaging and registration process

itself, the Knox et al. model relies on computational estimates of connectivity based on seg-

mented volume fractions of underlying tracer experiments that may span multiple different

gray-matter regions. Accordingly, the Knox et al. model itself is only an estimate that may

carry its own biases of the true underlying density of neurons connecting each region pair.

For this reason, we are encouraged by the validation of our tractography results against

the more empirical measurements of neuronal connectivity from the retrograde tract-tracing

experiments published by Gămănuţ et al. (Figure 3.15). Correlations between tractography

and tracer edge-weights are even lower for the Gămănuţ et al. data than for the Knox et

al. model, while tractography shows a comparably dramatic falloff in weight with distance

relative to both tracer datasets, suggesting that our overall conclusion that tractography
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graphs are more determined by geometry than tracer graphs would persist if empirical mea-

surements similar to those from the Gămănuţ et al. study were available across the whole

brain.

3.5 Appendix: Graph theory

Graph theory is a powerful branch of mathematics concerned with modeling and quantifying

topological characteristics of network systems92. Its core structure is the graph which is used

to model pairwise relationships between objects. Graphs are comprised of nodes connected

by edges. These edges represent connections between nodes and can be either directed or

undirected. The cellular-level structural connectome as well as its mesoscale representation

in the AMBCA tracer data are examples of directed graphs, where nodes are defined by

individual neurons or structural brain regions, and edges represent the synapses connecting

them. These connections are not necessarily symmetric due to the directed nature of neu-

rons themselves. Brain graphs constructed from tractography are examples of undirected

graphs. Since tractography is based on a fundamentally symmetric diffusion measurement,

connections between nodes represent bidirectional probabilistic pathways. Edges between

nodes can also be binary or weighted. Weights in the brain graphs in this chapter are defined

for each modality such that higher weights correspond to a greater degree of connectivity

between two nodes.

3.6 Appendix: Tractography parameter selection

Numerous studies have explored the variability of tractography performance with respect to

parameters such as curvature, fODF cutoff, and step size50,51,104,118. Tractography param-

eters were chosen for this study based on a subset of the whole tracer connectivity matrix

from the AMBCA. Eight tracer experiments were chosen such that projections from the
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corresponding injection regions reached all target regions used in the full connectivity anal-

ysis. The injection masks were used to seed probabilistic tractography over a grid search of

parameters given in Table 3.3. Tracking was done with dMRI data registered to the Allen

reference space, as discussed in sections 3.2.5–3.2.6. With 5 datasets, 8 injection regions,

5 fODF cutoff values, 2 step sizes, and 2 curvature values, this resulted in a total of 800

tractography experiments. Connectivity matrices were then constructed from each group

of tractography experiments using both “endpoint” and “dense” connectivity definitions, as

discussed in section 3.2.6.

fODF cutoff 0.02 0.0375 0.055 0.0725 0.09

Step size [µm] 12.5 25

Curvature [µm] 18 30

Algorithm iFOD2

Number of streamlines 500,000

Minimum streamline length 0.5 mm

Maximum streamline length 30 mm

Table 3.3: Tractography parameters.

Receiver operating characteristic (ROC) analysis was performed on the connectivity ma-

trices constructed from all parameter combinations, using values from the Allen mesoscale

connectome112 as ground truth. To construct the curves, the streamline count threshold

used to define a positive connection in the tractography matrices was swept at 150 loga-

rithmically spaced values from the minimum to the maximum value in each matrix, and

the true positive fraction and false positive fraction were calculated for each threshold. The

area under the ROC curve (AUC) was then determined by numerically integrating under

each ROC curve. Distributions of AUC values for each parameter combination are shown

in Figure 3.16. From these results, remaining tractography was performed using an fODF
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cutoff of 0.055, a step size of 12.5 µm, and a maximum curvature of 30 µm.
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Figure 3.16: Tractography parameter selection distributions. Values along the x-axis corre-
spond to fODF cutoff, step size [µm], and curvature [µm], respectively.

3.7 Appendix: Parcellation structure information

Table 3.4: Parcellation structure information from the Allen Mouse Brain Atlas.

Abbreviation Allen structure ID Major brain division

FRP 184 Isocortex

MOp 985 Isocortex

MOs 993 Isocortex

SSp-n 353 Isocortex

SSp-bfd 329 Isocortex

SSp-ll 337 Isocortex

SSp-m 345 Isocortex

SSp-ul 369 Isocortex

SSp-tr 361 Isocortex

SSp-un 182305689 Isocortex

SSs 378 Isocortex

GU 1057 Isocortex

VISC 677 Isocortex

AUDd 1011 Isocortex

Continued on next page
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Table 3.4, continued

Abbreviation Allen structure ID Major brain division

AUDp 1002 Isocortex

AUDpo 1027 Isocortex

AUDv 1018 Isocortex

VISal 402 Isocortex

VISam 394 Isocortex

VISl 409 Isocortex

VISp 385 Isocortex

VISpl 425 Isocortex

VISpm 533 Isocortex

VISli 312782574 Isocortex

VISpor 312782628 Isocortex

ACAd 39 Isocortex

ACAv 48 Isocortex

PL 972 Isocortex

ILA 44 Isocortex

ORBl 723 Isocortex

ORBm 731 Isocortex

ORBvl 746 Isocortex

AId 104 Isocortex

AIp 111 Isocortex

AIv 119 Isocortex

RSPagl 894 Isocortex

RSPd 879 Isocortex

RSPv 886 Isocortex

VISa 312782546 Isocortex

VISrl 417 Isocortex

TEa 541 Isocortex

PERI 922 Isocortex

ECT 895 Isocortex

Continued on next page
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Table 3.4, continued

Abbreviation Allen structure ID Major brain division

MOB 507 OLF

AOB 151 OLF

AON 159 OLF

TT 589 OLF

DP 814 OLF

PIR 961 OLF

NLOT 619 OLF

COAa 639 OLF

COAp 647 OLF

PAA 788 OLF

TR 566 OLF

CA1 382 HPF

CA2 423 HPF

CA3 463 HPF

DG 726 HPF

FC 982 HPF

IG 19 HPF

ENTl 918 HPF

ENTm 926 HPF

PAR 843 HPF

POST 1037 HPF

PRE 1084 HPF

SUB 502 HPF

CLA 583 CTXsp

EPd 952 CTXsp

EPv 966 CTXsp

LA 131 CTXsp

BLA 295 CTXsp

BMA 319 CTXsp

Continued on next page
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Table 3.4, continued

Abbreviation Allen structure ID Major brain division

PA 780 CTXsp

CP 672 STR

ACB 56 STR

FS 998 STR

OT 754 STR

LSc 250 STR

LSr 258 STR

LSv 266 STR

SF 310 STR

SH 333 STR

AAA 23 STR

BA 292 STR

CEA 536 STR

IA 1105 STR

MEA 403 STR

GPe 1022 PAL

GPi 1031 PAL

SI 342 PAL

MA 298 PAL

MS 564 PAL

NDB 596 PAL

TRS 581 PAL

BST 351 PAL

BAC 287 PAL

VAL 629 TH

VM 685 TH

VPL 718 TH

VPLpc 725 TH

VPM 733 TH

Continued on next page
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Table 3.4, continued

Abbreviation Allen structure ID Major brain division

VPMpc 741 TH

SPFm 414 TH

SPFp 422 TH

SPA 609 TH

PP 1044 TH

MG 475 TH

LGd 170 TH

LP 218 TH

PO 1020 TH

POL 1029 TH

SGN 325 TH

AV 255 TH

AM 127 TH

AD 64 TH

IAM 1120 TH

IAD 1113 TH

LD 155 TH

IMD 59 TH

MD 362 TH

SMT 366 TH

PR 1077 TH

PVT 149 TH

PT 15 TH

RE 181 TH

RH 189 TH

CM 599 TH

PCN 907 TH

CL 575 TH

PF 930 TH

Continued on next page
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Table 3.4, continued

Abbreviation Allen structure ID Major brain division

RT 262 TH

IGL 27 TH

LGv 178 TH

SubG 321 TH

MH 483 TH

LH 186 TH

SO 390 HY

ASO 332 HY

PVH 38 HY

PVa 30 HY

PVi 118 HY

ARH 223 HY

ADP 72 HY

AVP 263 HY

AVPV 272 HY

DMH 830 HY

MEPO 452 HY

MPO 523 HY

PD 914 HY

PS 1109 HY

PVp 126 HY

PVpo 133 HY

SBPV 347 HY

SCH 286 HY

SFO 338 HY

VLPO 689 HY

AHN 88 HY

LM 210 HY

MM 491 HY

Continued on next page
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Table 3.4, continued

Abbreviation Allen structure ID Major brain division

SUM 525 HY

TMd 1126 HY

TMv 1 HY

MPN 515 HY

PMd 980 HY

PMv 1004 HY

PVHd 63 HY

VMH 693 HY

PH 946 HY

LHA 194 HY

LPO 226 HY

PST 356 HY

PSTN 364 HY

RCH 173 HY

STN 470 HY

TU 614 HY

ZI 797 HY

SCs 302 MB

IC 4 MB

NB 580 MB

SAG 271 MB

PBG 874 MB

MEV 460 MB

SNr 381 MB

VTA 749 MB

RR 246 MB

MRN 128 MB

SCm 294 MB

PAG 795 MB

Continued on next page
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Table 3.4, continued

Abbreviation Allen structure ID Major brain division

APN 215 MB

MPT 531 MB

NOT 628 MB

NPC 634 MB

OP 706 MB

PPT 1061 MB

CUN 616 MB

RN 214 MB

III 35 MB

IV 115 MB

VTN 757 MB

AT 231 MB

LT 66 MB

SNc 374 MB

PPN 1052 MB

IF 12 MB

IPN 100 MB

RL 197 MB

CLI 591 MB

DR 872 MB

NLL 612 P

PSV 7 P

PB 867 P

SOC 398 P

B 280 P

DTN 880 P

PCG 898 P

PG 931 P

PRNc 1093 P

Continued on next page
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Table 3.4, continued

Abbreviation Allen structure ID Major brain division

SG 318 P

SUT 534 P

TRN 574 P

V 621 P

CS 679 P

LC 147 P

LDT 162 P

NI 604 P

PRNr 146 P

RPO 238 P

SLC 350 P

SLD 358 P

AP 207 MY

DCO 96 MY

VCO 101 MY

CU 711 MY

GR 1039 MY

ECU 903 MY

NTB 642 MY

NTS 651 MY

SPVC 429 MY

SPVI 437 MY

SPVO 445 MY

VI 653 MY

VII 661 MY

ACVII 576 MY

AMB 135 MY

DMX 839 MY

GRN 1048 MY

Continued on next page

85



Table 3.4, continued

Abbreviation Allen structure ID Major brain division

ICB 372 MY

IO 83 MY

IRN 136 MY

ISN 106 MY

LIN 203 MY

LRN 235 MY

MARN 307 MY

MDRNd 1098 MY

MDRNv 1107 MY

PARN 852 MY

PAS 859 MY

PGRNd 970 MY

PGRNl 978 MY

NR 177 MY

PRP 169 MY

PPY 1069 MY

LAV 209 MY

MV 202 MY

SPIV 225 MY

SUV 217 MY

x 765 MY

XII 773 MY

y 781 MY

LING 912 CB

CENT 920 CB

CUL 928 CB

DEC 936 CB

FOTU 944 CB

PYR 951 CB

Continued on next page
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Table 3.4, continued

Abbreviation Allen structure ID Major brain division

UVU 957 CB

NOD 968 CB

SIM 1007 CB

AN 1017 CB

PRM 1025 CB

COPY 1033 CB

PFL 1041 CB

FL 1049 CB

FN 989 CB

IP 91 CB

DN 846 CB
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CHAPTER 4

IDENTIFICATION OF SPECTRAL BIASES IN BIOPHYSICAL

EPSI WHITE-MATTER MODELS WITH DMRI

4.1 Introduction

Myelin is a lipid-rich substance produced by oligodendrocytes in the central nervous system

that physically surrounds axons in order to improve the transmission of action potentials133.

Its importance to the normal function of the human brain has been demonstrated through the

symptoms of demyelination disorders such as multiple sclerosis, as well as through additional

disorders related to defective myelin structure such as hypomyelination, dysmyelination, and

myelinolysis134.

Conventional clinical MRI approaches to the diagnosis of myelin disorders use combina-

tions of T1-weighted, T2-weighted, and FLAIR acquisitions and have been shown to have poor

specificity to myelin135–137, prompting the development of approaches such as myelin water

imaging138,139, which uses a multi-echo spin-echo sequence to estimate a myelin component

within the T2 distribution. Recently, the use of a multi-gradient echo (MGE) sequence, also

referred to as echo-planar spectroscopic imaging (EPSI), has emerged as an alternative to

myelin water imaging65,66,125,140–144. EPSI measures a portion of the voxel-wise T ∗2 de-

cay curve, and results in faster scan times, a larger volume coverage, and a lower specific

absorption rate than the sequences used for myelin water imaging145. To estimate myelin

content and integrity from the EPSI signal, the free induction decay (FID) curves are fit to

a biophysical model that typically assumes the white matter is composed of three distinct,

nonexchanging water components: myelin water, intra-axonal water, and extracellular wa-

ter, each with distinct T ∗2 values and potential magnetic susceptibility-dependent frequency

shifts140,143–146.

Previous work66 has shown that a simple metric quantifying asymmetric broadening
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of the water resonance line-shape from the fully-sampled FID is sensitive to the presence of

white matter as well as to the angle between the principal orientation of the constituent fibers

and the main magnetic field (B0). An additional study performed further spectral asymmetry

analysis through a comparison of data from both control and mutant “shiverer ” (MbpShi)

postmortem, fixed mouse brains125. Shiverer mice serve as a dysmyelination model due to a

mutation that leads to the production of abnormal, thin, loosely-packed myelin sheaths147.

The study found measurable differences in spectral asymmetric broadening between control

and shiverer mice, leading to the hypothesis that myelin is a likely contributing source of

the sensitivity of the spectral asymmetry to white matter.

In this chapter, we extend the analysis of water spectra from control and shiverer mouse

brains to explore the performance of two biophysical compartmental models published by

Van Gelderen et al.146 and Nam et al.143. We quantify the asymmetric broadening predicted

after fitting the data to these models and compare it to the broadening measured directly

in the data itself to show that both models fail to recover important spectral features in the

data.

4.1.1 Author contributions

This chapter is currently under review as a manuscript in Magnetic Resonance in Medicine

under the title “Model-free analysis in the spectral domain of postmortem mouse brain

EPSI reveals inconsistencies with model-based analyses of the free induction decay” with co-

authors Gregg Wildenberg, Narayanan Kasthuri, Patrick La Rivière, and Sean Foxley. The

author was responsible for all analysis, figures, and text in the chapter, while the co-authors

were responsible for the conception and supervision of the project, sample preparation, data

acquisition, and manuscript review.
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4.2 Methods

4.2.1 Sample preparation

Procedures for the collection of the EPSI and diffusion MRI data used for this study have

been published in a previous study125 and are repeated here for completeness. All procedures

performed on animals followed protocols approved by the Institutional Animal Care and

Use Committee and were in compliance with the Animal Welfare Act and the National

Institutes of Health Guide for the Care and Use of Laboratory Animals. Adult mice were

deeply anesthetized with 60 mg/kg pentobarbital and sacrificed by intercardial perfusion

with a solution (pH 7.4) of 0.1 M sodium cacodylate and heparin (15 units/ml). This was

immediately followed by a solution of 2% paraformaldehyde, 2.5% glutaraldehyde, and 0.1 M

sodium cacodylate (pH 7.4). Brains were carefully removed from the skulls and post-fixed in

the same fixative overnight at 4◦C. Brains were soaked in phosphate buffered saline (PBS)

prior to imaging for at least 72 hours to remove fixative from the tissue.

4.2.2 MR imaging

Resected control (n = 5) and shiverer (n = 4) mouse brains were dried of excess PBS and

placed in 10 ml Falcon tubes. Tubes were filled with Fluorinert (FC-3283, 3M Electronics)

for susceptibility matching and to improve shimming.

Data were acquired at 9.4 T (20 cm internal diameter, horizontal bore, Bruker BioSpec

Small Animal MR System, Bruker Biospin, Billerica, MA) using a 6 cm high performance

gradient insert (maximum gradient strength: 1000 mT/m, Bruker Biospin) and a 35 mm

internal diameter quadrature volume coil (Rapid MR International, Columbus, Ohio). Brains

were aligned such that the anterior/posterior portion of the olfactory limb of the anterior

commissure was approximately parallel to B0 and the hemispheric midline was parallel to

the scanner YZ plane. This ensured consistency of position relative to B0 across samples.
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Third-order shimming was iteratively performed over an ellipse that encompassed the

entire brain, but did not extend beyond the boundaries of the Falcon tube/Fluorinert in-

terface, using the Paravision mapshim protocol. B0 maps were produced by recording the

voxel-wise frequency of the peak of the resonance, including additional sub-spectral reso-

lution frequency produced by estimating the maximum peak amplitude of the resonance,

described below. This was consistent with previously reported work65,66 which described a

high degree of field homogeneity across samples.

Diffusion MRI (dMRI) was performed using a conventional 3D spin-echo/Stejskal-Tanner

diffusion-weighted sequence (TR = 600 ms, TE = 11.389 ms, b-value = 3000 s/mm2, δ =

3.09 ms, ∆ = 6 ms, spatial resolution = 125 µm isotropic, number of b0s = 8, number of

directions = 30, receiver bandwidth = 150 kHz, duration = 36h 28min 48s).

3D-EPSI data were acquired using a MGE sequence with an oscillating readout gradient

train. Note that while the terms MGE and EPSI are synonymous, in the context of this

paper, we will refer to MGE for data analysis in the temporal domain and EPSI for data

analysis in the frequency domain. Sequence parameters were chosen so that the entire voxel-

wise free induction decay was sampled to the noise floor with sufficiently high temporal

resolution to ensure a large spectral bandwidth of ± 360 Hz around the main water peak.

This ensured that resultant spectra did not have FID truncation-related ringing artifacts,

and that they had sufficient bandwidth, respectively (TR = 1000 ms, TE of first echo =

2.74 ms, echo spacing = 2.74 ms, number of echoes = 192, receiver bandwidth = 75 kHz,

flip angle = 68◦, 100 µm isotropic resolution, four averages, duration = 12 h). The average

signal to noise ratio (SNR) is shown as a function of TE in Figure 4.1. It is worth noting that

scan times using this approach can be made more clinically relevant by acquiring 2D data

with more modest spatial resolution and covering more targeted slabs of tissue. Previous

work has shown in vivo human brain imaging performed with acquisition times on the order

of 90 s with 1.5 × 1.5 × 4 mm3 voxels over five slices148,149.
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Figure 4.1: SNR as a function of echo time. SNR was measured by taking the ratio of
the average in-brain signal volume and the standard deviation of a rectangular patch of
background voxels at each TE. Lines represents averages across datasets and the shaded
region represents ± 1 standard deviation.

4.2.3 EPSI data processing

The following EPSI data processing and data analysis steps have also been reported else-

where66,125 but are summarized here for completeness. Modifications reflecting differences

in this work have been made.

EPSI data were processed and analyzed with IDL (ITT Visual Information Solutions,

Boulder CO), Matlab (The MathWorks Inc., Natick, MA, 2012), and FSL (FMRIB Software

Library, FMRIB, Oxford, UK). 3D multiple-gradient echo data were processed to produce

voxel-wise water spectra. Each 4D complex array (kx×ky×kz×t) was Fourier transformed in

all dimensions to produce three spatial dimensions and one spectral dimension (x×y×z×ν).

For the complex spectrum, ν, spectral ghosting was corrected at each point in space (x, y,
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z)150. The maximum peak magnitude was estimated in each voxel by applying the Fourier

shift theorem to the complex data; the addition of a linear phase term in the temporal domain

performs sub-spectral resolution shifts in the frequency domain allowing for the identification

of the maximum signal magnitude for voxels in which the peak was located between Fourier

components151. This process was alternately iterated with a zeroth-order phase correction

to produce pure absorption spectra152.

Water peak height (PH) images were constructed with image contrast produced by the

maximum voxel-wise signal amplitude of the water spectrum153. This can be achieved by

shifting the position of the maximum peak amplitude of the water resonance to the central

Fourier component of the frequency axis. This step also serves to eliminate any relative

background field information from each spectrum with little computational effort; this is

analogous to implementing a background field removal technique, such as the PDF154 or the

SHARP155 filter, to T∗2-weighted gradient echo data processed in the temporal domain.

The EPSI datasets contained a number of regions with signal drop-out resulting from

the magnetic susceptibility mismatch between the tissue and bubbles stuck to the surface of

the brain or trapped in the ventricles. To exclude these regions from downstream analysis,

artifact masks were constructed for each dataset using the Atropos tissue segmentation

algorithm in the ANTs85 software package on the water peak-height images. First, brain

masks were automatically generated using the bet protocol in FSL156. The algorithm was

then initialized with a three-class K-means classification of the water peak-height images,

with the classes representing white matter, gray matter, and joint CSF/artifact. Voxels in

the CSF/artifact class were excluded from all further analysis. A sample image showing

tissue classification and artifact filtering is shown in Figure 4.2.
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Figure 4.2: Demonstration of Atropos tissue segmentation results. Voxels in the
CSF/susceptibility artifact class (dark gray, indicated by red arrow) were excluded from
all analysis. A–R axis labels correspond to the Anterior and Right directions, respectively.

4.2.4 Model fitting

Myelin imaging with MGE data has typically relied on the use of a three-compartment

model for white matter, with separate T ∗2 and frequency shifts stemming from axonal water,

extracellular water, and myelin water. At its simplest, the time-dependent magnitude |Si(t)|

of the MGE signal at voxel i is modeled as a sum of exponentials for each compartment140,145:

|Si(t)| = Amye
−t/T ∗2,my + Aaxe

−t/T ∗2,ax + Aexe
−t/T ∗2,ex , (4.1)

where Amy, Aax, and Aex refer to the amplitudes of the myelin, axonal, and extracellular

compartments in voxel i, respectively.

In Van Gelderen et al.146, the model was modified to include two frequency offsets for

myelin (∆fmy−ex) and axonal (∆fax−ex) water relative to extracellular water. This model
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was also fit to magnitude data:

|Si(t)| =
∣∣∣Amye

−(1/T ∗2,my+i2π∆fmy−ex)t + Aaxe
−(1/T ∗2,ax+i2π∆fax−ex)t + Aexe

−(1/T ∗2,ex)t
∣∣∣ .
(4.2)

In Nam et al.143, the model was fit to the full complex data and further extended to

include frequency offset terms for all three compartments with respect to the background as

well as a background phase term φ0:

Si(t) =
[
Amye

−(1/T ∗2,my+i2π∆fmy+bg)t + Aaxe
−(1/T ∗2,ax+i2π∆fax+bg)t

+ Aexe
−(1/T ∗2,ex+i2π∆fex+bg)t

]
e−iφ0 .

(4.3)

Our analysis focused on these final two models, which for simplicity we will refer to as

the “magnitude fit” (Eqn. 4.2) and “complex fit” (Eqn. 4.3). Note that though Eqn. 4.2 is

fit to magnitude data, it still represents a complex model with frequency shifts that produce

asymmetric broadening of the water spectrum.

Table 4.1: Replicated from Table 1 in Nam et al.143 Initial values and search ranges of
the parameters for the magnitude-fit and complex-fit models. S1 = S(TE1). ∆fbg,init =

∠

{∑N−1
n=1 S∗nSn+1

}
2π∆TE : initial ∆fbg (N = number of echoes used in fitting).

Both models

Amy Aax Aex T ∗
2,my T ∗

2,ax T ∗
2,ex

(ms) (ms) (ms)

Initial value 0.1 × |S1| 0.6 × |S1| 0.3 × |S1| 10 64 48
Lower bound 0 0 0 3 25 25
Upper bound 2 × |S1| 2 × |S1| 2 × |S1| 25 150 150

Magnitude fit Complex fit

∆fmy−ex ∆fax−ex ∆fmy+bg ∆fax+bg ∆fex+bg φ0

(Hz) (Hz) (Hz) (Hz) (Hz) (rad)

Initial value 5 0 ∆fbg,init ∆fbg,init ∆fbg,init ∠S1

Lower bound -75 -25 ∆fbg,init − 75 ∆fbg,init − 25 ∆fbg,init − 25 −π
Upper bound 75 25 ∆fbg,init + 75 ∆fbg,init + 25 ∆fbg,init + 25 π
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Model fitting was performed by first converting the preprocessed EPSI spectral data

into the temporal domain using an inverse fast Fourier transform. The two models were

then fit to the resulting voxel-wise FIDs in Python using a non-linear least-squares approach

implemented with the curve_fit function in the SciPy package. Optimization parameters

for the fitting were identical to those presented in Table 1 of Nam et al.143 and are available

for reference in Table 4.1.

4.2.5 Asymmetry

To quantify asymmetric broadening of the water resonance, we use a unitless spectral asym-

metry metric66,125,157,158. At each voxel, the high-field half of the spectrum is subtracted

from the low-field half and normalized by the total integral of the spectrum.

Asymmetry(x, y, z) =

∫ νmax
0 f(x, y, z, ν) dν −

∫ 0
−νmax

f(x, y, z, ν) dν∫ νmax
−νmax

f(x, y, z, ν) dν
, (4.4)

where f(x, y, z, ν) is the value of the water spectrum at a given position (x, y, z) and frequency

ν. Integration was performed to νmax = ±38 Hz from the main water peak (identified at 0 Hz

for simplicity) to ensure that resonance details are captured while still reaching the spectral

baseline. This cutoff value was shown in a previous study125 to lead to asymmetry values

sensitive to the differences between control and shiverer white matter. Overall, asymmetry

results are robust to the specific choice of threshold (Figure 4.3). Integration was performed

numerically in Python using the trapezoid rule. Before calculating asymmetry from the

biophysical models, spectra were first computed by evaluating the analytic time-domain

models at the echo points measured in the data using the parameters estimated for each

voxel, then taking a fast Fourier transform.

96
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Figure 4.3: Scatterplots of data-derived asymmetry values calculated with a cutoff frequency
of ±38 Hz vs. (a) ±76 Hz, (b) ±114 Hz, (c) ±152 Hz, and (d) ±178.6 Hz. r-values indi-
cate Pearson’s correlation coefficients, which remain above 0.8 for both control and shiverer
datasets out to ±178.6 Hz.

4.2.6 Additional model-derived metrics

Three-compartment models are commonly fit to MGE data in order to calculate the myelin

water fraction (MWF) metric, taken as the ratio of the myelin-compartment amplitude Amy

to the total sum of amplitudes from each compartment:

MWF =
Amy

Amy + Aex + Aax
. (4.5)

This metric was calculated at each voxel from the amplitude parameters estimated from

both the magnitude- and complex-fit models in order to compare and evaluate the utility of

the asymmetric metric. As an additional baseline, R∗2 values were estimated at each voxel

by fitting the FID signal Si(t) at each voxel i to a simple monoexponential model:

Si(t) = Ai exp
(
−R∗2,it

)
. (4.6)
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4.2.7 dMRI processing

fODF fitting and registration

dMRI processing was performed with the MRtrix3 software package126. Data were de-

noised using the dwidenoise routine68,69. Binary brain masks were generated with the

dwi2mask routine to speed further processing. The datasets were fit to a tensor model9 us-

ing dwi2tensor to calculate the fractional anisotropy (FA) metric used as a proxy for white

matter content. The data were then fit to fiber orientation distribution functions (fODFs) us-

ing constrained spherical deconvolution16,17 to estimate the orientation of the principal fiber

populations and to evaluate the presence of additional crossing fiber populations within each

voxel. Comparison of fODFs across datasets requires global intensity normalization of the

diffusion data prior to reconstruction, since the data are not first log-normalized with the b0

volume. First, the data were bias-corrected using the N4BiasFieldCorrection algorithm159

in ANTs, then global intensity normalization was done with the dwinormalise group rou-

tine in MRTrix3. White matter response functions were then calculated for each dataset

using the tournier algorithm72, with `max = 6 (28 coefficients). The group-averaged re-

sponse function was then used to fit the bias-corrected diffusion-weighted images to fODFs

with the dwi2fod command.

The FA images were spatially registered to the corresponding EPSI peak-height images

using affine transformations calculated in ANTs using a mutual information maximization ap-

proach. The FA images were chosen for registration because they exhibit greater white/gray

matter contrast, particularly for the shiverer data. The resulting affine transformations were

used to warp, reorient82, and modulate18 the fODFs using the mrtransform command in

MRTrix3, which preserves apparent fiber densities across fODF lobes before and after spatial

transformation.
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Microstructural analysis

As in Foxley et al.125, voxels across the entire dataset were binned according to FA value with

thresholds of FA ≤ 0.3, 0.3 < FA ≤ 0.45, 0.45 < FA ≤ 0.6, and FA > 0.6. Visual inspection

of the resulting voxel masks suggests that the lower FA ≤ 0.3 bin consists of predominately

gray matter while the upper FA > 0.6 bin consists of predominately white matter, with the

additional two bins composed of mixed populations. To account for known biases in FA in

voxels with crossing fibers160, voxels were further characterized by the number of distinct

fiber populations. Individual lobes of each fODF were segmented in MRTrix3 using the

fod2fixel and fixel2peaks commands. The number of populations (Nf ) at each voxel

was recorded as either “single” (Nf = 1) or “crossing” (Nf > 1). Voxel-wise changes in

T ∗2
161,162 and spectral asymmetry66,125 have been observed to change as a function of the

angle between the orientation of the principal fiber populations and B0, which has been

described as evidence of the susceptibility anisotropy of myelin162–165. To explore this effect

in the model-derived spectra, the angle between principal fiber orientations and B0 was

calculated as Γ = cos−1 (sz), where ŝ = (sx, sy, sz) is the fiber orientation unit vector at a

given voxel and B0 points along ŝB0
= (0, 0, 1). Due to the symmetry of the fODFs, Γ values

were manually constrained to be within [0◦, 90◦]. Voxels with both single and crossing fibers

were pooled by angle into bins in 5◦ increments based on the orientation of the primary fiber

population.

4.2.8 Statistical analysis

Direct relationships between model- and data-derived asymmetries were evaluated through

comparison of overall distributions and assessment of linear correlations with respect to FA

and the number of fiber populations. The relationship between the model fit and asymme-

try accuracy was assessed by analyzing correlations between the adjusted R2 of the model

fits to the absolute difference between data- and model-derived asymmetries. We similarly
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evaluated correlations between estimated compartmental frequency shifts and the resulting

data-measured asymmetry.

We evaluated the sensitivity of the data- and model-derived to the white-matter differ-

ences between control and shiverer mice by considering asymmetry as a one-variable binary

classifier for control or shiverer data and using the area (AUC) under the receiver operating

curve (ROC) as a function of FA and the number of fiber populations. For this analysis, ROC

curves were created by taking the distribution of voxel-wise control and shiverer asymmetries

for each FA bin and fiber population number group, varying the asymmetry threshold value

used to identify test voxels from the control datasets, and calculating the overall sensitivity

and specificity at each threshold. The AUC was then calculated by numerical integration of

the ROC curve. This procedure was repeated for the MWF and R∗2 metrics for comparison

to asymmetry.

4.3 Results

Here we present analysis comparing spectral asymmetric broadening measured directly from

the data to asymmetric broadening estimated with two biophysical models fit to the same

data. Our goal is not to propose asymmetry as a novel imaging biomarker, but to demon-

strate the utility of model-free spectral analysis towards revealing biases in current models

and guiding future model development. Our assumption throughout is that the differences

in white matter between control and shiverer mice reveal biologically meaningful sensitivities

that allow for fair comparison of the performance of the data- and model-derived spectral

asymmetry metrics as well as the MWF and R∗2.

4.3.1 Comparison of asymmetry values

Figure 4.4 shows the distribution of asymmetry values calculated from the raw data and both

models across all voxels from control and shiverer samples. At the whole-brain level there is
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a small but clear separation between control and shiverer asymmetry values observed in the

data, whereas both model-derived asymmetry distributions are virtually indistinguishable

between control and shiverer. Spectra derived from each of the two biophysical models also

dramatically underestimate the range of asymmetry magnitudes observed in the data. Across

all voxels in both tissue types, data-derived asymmetry has a standard deviation of 0.0427,

while the magnitude- and complex-fit asymmetries have standard deviations of 0.0140 and

0.0058, respectively.

a b c

Figure 4.4: Histograms of asymmetries from spectra derived from (a) data, (b) the
magnitude-fit model, and (c) the complex-fit model.

Voxel-wise comparisons between data- and model-derived asymmetries are shown as scat-

terplots across different FA bins in Figure 4.5. Asymmetries from the magnitude-fit model

show negligible correlation (R2 ≈ 0) with data-derived asymmetries from both control and

shiverer samples across all FA bins. The complex-fit model performs slightly better, with R2

values that increase with increasing FA for control data, up to a maximum of R2 = 0.403 for

the highest FA bin. All R2 values were found to be significant at the α = 0.1 level using an

F-test. Complex-fit correlations are lower in shiverer data than in control data and do not

increase with FA.
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Figure 4.5: Scatterplots of data- and model-derived asymmetries for the (a) magnitude-fit
and (b) complex-fit models. Dashed lines represent the results of linear regressions and the
R2 values are the square of the Pearson correlation coefficients.

Figures 4.6a–b show 2D histograms of the absolute asymmetry difference between the

models and data vs. the adjusted R2 assessing the goodness-of-fit of the models to the FID

data for voxels with FA > 0.6. Both models generally fit the FID data very well overall,

with the mean adjusted R2 values across all voxels from both tissue types being 0.994 and

0.988 for the magnitude-fit and complex-fit models, respectively.

102



0

10

20

30

40

50

60

70

Co
un

ts

A

R

0.0 0.1 0.2 0.3 0.4 0.5
Time (s)

Ar
bi

tra
ry

 u
ni

ts

Adj. R2 = 0.993
Adj. R2 = 0.994

Data
Magnitude fit
Complex fit

20 0 20
Frequency (Hz)

Ar
bi

tra
ry

 u
ni

ts

A =  -0.038
A =   0.006
A =   0.001

FFT

0.0 0.1 0.2 0.3 0.4 0.5
Time (s)

Ar
bi

tra
ry

 u
ni

ts

Adj. R2 = 0.983
Adj. R2 = 0.988

Data
Magnitude fit
Complex fit

20 0 20
Frequency (Hz)

Ar
bi

tra
ry

 u
ni

ts

A =   0.054
A =  -0.013
A =   0.001

FFT

a b

c

Figure 4.6: (a-b) 2D histograms of the absolute difference between measured and model-
estimated asymmetries vs. the model goodness-of-fit in terms of adjusted R2 for the (a)
magnitude-fit and (b) complex-fit models for voxels with FA > 0.6. Green dashed lines
show linear regressions with associated R2 values indicating a negligible relationship. (c)
Water peak-height image showing the anterior commissure tract of a control mouse with
two representative voxels demonstrating the mismatch between the model goodness-of-fit
and asymmetry difference. A–R axis labels correspond to the Anterior and Right directions,
respectively.

However, the high adjusted R2 of the models in the temporal domain does not corre-

spond to accuracy in reproducing the asymmetric spectral broadening observed in the data

— correlations between the adjusted R2 and asymmetry difference are negligible for both

models. This effect is visually demonstrated further in Figure 4.6c, which shows two repre-

sentative white-matter voxels from the anterior commissure tract of a control mouse. In both
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sample voxels, the two models fit very closely to the data in the temporal domain (adjusted

R2 > 0.98) but greatly underestimate asymmetry in the frequency domain. For example, in

the case of the voxel highlighted in green, both models clearly miss a prominent secondary

peak around 8 Hz (black arrow in Figure 4.6c, bottom right) corresponding to an oscillation

in the FID around 0.05-0.18 seconds.

Model fits were further evaluated with the Bayesian information criterion (BIC). The

distributions of the differences in BIC between the magnitude-fit model (8 free parameters)

and the complex-fit model (10 free parameters) are shown in Figure 4.7. For all FA bins

and both control and shiverer data, BICs were lower from the magnitude-fit model than the

complex-fit model.
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Figure 4.7: Distributions of absolute differences in BIC between the magnitude- and complex-
fit models, separated by control/shiverer, FA bin, and (a) single and (b) crossing fiber voxels.
The magnitude-fit model led to a consistently lower BIC than the complex-fit model.

Figure 4.8 shows additional 2D histograms for high FA (FA > 0.6) voxels demonstrating

the relationship between the asymmetry directly measured in the spectral data and the

compartmental frequency shifts predicted by the models. Note that the magnitude-fit model

(Eqn. 4.2) includes frequency shift terms for two compartments: ∆fmy−ex and ∆fax−ex,

defined as the difference between the myelin and axonal water shift with the the extracellular

water shift, respectively. The complex-fit model (Eqn. 4.3) includes frequency shift terms

for all three components: ∆fmy+bg, ∆fax+bg, ∆fex+bg, defined as the additional shifts in
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myelin, axonal, and extracellular water, respectively, above a background. For consistent

comparison between the two models, the extracellular shifts have been subtracted from

the complex-fit model frequencies reported in Figure 4.8. The magnitude-fit frequencies

again show virtually no correlation with the measured asymmetry, while the complex-model

frequencies show only weak correlation (R2 = 0.114) in the axonal compartment.
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Figure 4.8: 2D histograms showing the relationship between data asymmetry and model-
predicted frequency shifts for the myelin and axonal water compartments in voxels with
FA > 0.6. Green dashed lines show linear regressions with associated R2 values.
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Figure 4.9: Violin plots illustrating distributions of control and shiverer asymmetries derived
from (a–b) data, (c–d) the magnitude-fit model, and (e–f) the complex-fit model as a function
of FA bin for voxels with single (a,c,e) and crossing (b,d,f) fibers. Distribution means are
indicated by black lines. Note the difference in y-axis limits between (a–b), (c–d), and (e–f).

4.3.2 Sensitivity to shiverer white matter

While Figure 4.4 showed the range of asymmetry values across the entire dataset, Figure 4.9

shows data- and model-derived asymmetry distributions grouped by FA bin for single- and

crossing-fiber voxels. Previous work has shown that data-derived spectral asymmetry is

sensitive to white-matter differences between control and shiverer mice125, with spectra

exhibiting consistent upfield broadening along white-matter tracts in control mice that de-

creases in magnitude in shiverer mice. This is demonstrated in Figures 4.9a–b, which show

an increasing separation between control and shiverer data-derived asymmetries as FA in-

creases, independent of the number of fiber populations. This effect is not observed to the

same extent after fitting the data to models, as shown in Figures 4.9c–f. The separation

between the control and shiverer distributions is quantified in Figure 4.10 by treating spec-

tral asymmetry as a one-variable classifier and reporting the resulting AUC as a function of

FA for single- and crossing-fiber voxels. An AUC value of 0.5 is consistent with a “random
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guessing” classifier (i.e. no separation), while a value of 1.0 indicates perfect classification

(i.e. complete separation). While separation between the control and shiverer distributions

did increase marginally with FA for both models, data-derived asymmetry led to a sub-

stantially higher AUC than either of the model-based approaches under all microstructural

conditions. Notably, the performance of data-derived asymmetry in classifying control from

shiverer tissue was robust to the number of fiber populations, with only slight decreases in

AUC for higher FA voxels with crossing fibers (FA > 0.45) compared to single fibers and

slight increases for lower FA voxels with crossing fibers (FA ≤ 0.45) compared to single

fibers, potentially owing to the fact that voxels with tightly packed, coherent fibers are likely

to lead to artificially low FA values
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Figure 4.10: Values for the area under the ROC curve (AUC) using asymmetry as a one-
variable classifier for control vs. shiverer data. Values represent AUCs for subsets of voxels
in different FA bins containing either (a) single or (b) crossing fiber populations.
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Figure 4.11: Values for the area under the ROC curve (AUC) using data asymmetry (blue),
model-based MWF (orange and green), and R∗2 (red) as one-variable classifiers for control vs.
shiverer data. Values represent AUCs for subsets of voxels in different FA bins containing
either (a) single or (b) crossing fiber populations.

if they contain multiple distinct populations.

In Figure 4.11, data-derived asymmetry AUCs are compared to AUC results from a

similar ROC analysis procedure performed using the MWF metric calculated with both

models as well as the R∗2 calculated with a simple monoexponential fit. Data asymmetry led

to a greater separation between control and shiverer data than both model-derived MWF

values for low-FA voxels (FA ≤ 0.6), while asymmetry and magnitude-fit MWF AUCs were

comparable for high-FA voxels (FA > 0.6). AUCs for the R∗2 were considerably higher in

high-FA voxels (FA > 0.6) than AUCs for both asymmetry and MWF.

The white-matter sensitivity of the data-derived asymmetry is further demonstrated in

the left column of Figure 4.12, which shows representative coronal slices of asymmetry im-

ages. While the data-derived asymmetry leads to observable gray/white-matter contrast

in the control image comparable to the MWF images in Figures 4.12g–j, asymmetry im-

ages calculated from each of the models (Figures 4.12c–f) show markedly lower contrast,

with virtually no distinguishable white matter tracts visible in the images derived from the
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magnitude-fit model in particular.
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Figure 4.12: Representative coronal slices of images derived from (top) control and (bottom)
shiverer samples. Images represent spatial distributions of (a–b) data-derived asymmetry,
(c–d) magnitude-fit asymmetry, (e–f) complex-fit asymmetry, (g–h) magnitude-fit MWF,
and (i–j) complex-fit MWF.

To explore the orientation-dependence of the model-estimated spectra, Figure 4.13 shows

the mean asymmetry as a function of Γ, the angle between the orientation of the primary

fiber population and B0 for voxels with FA ≥ 0.6. Color-shaded regions represent the

interquartile range (25–75th percentile) across all voxels within each angular bin, and gray-

shaded regions represent regions where the difference between control and shiverer values

was not found to be statistically significant using a t-test with α = 0.01 after correcting

for multiple comparisons. Both the data and the complex-fit asymmetry values show a

clear relationship between asymmetry and Γ with good agreement with the susceptibility

anisotropy model162,

asym(Γ) = c0 + c1 sin(2Γ + φ0) + c2 sin(4Γ + φ1), (4.7)

though the angular effect is much less pronounced for the magnitude-fit model and both mod-

els once again show far less separation between control and shiverer values than observed

from the data before model-fitting. Note that data-based adjusted R2 values to the sus-
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ceptibility anisotropy model are slightly lower for voxels with crossing fibers (Figure 4.13b)

than for voxels with single fibers (Figure 4.13a), again suggesting that the performance of

macroscopic imaging models are sensitive to the microstructural geometry of the underlying

tissue.
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Figure 4.13: Relationship between asymmetry and Γ, the angle between the orientation of
the primary fiber population and B0 for (a–b) data (c–d) the magnitude-fit model, and (e–
f) the complex-fit model. Points represent averages within angular bins with a width of 5◦
across all voxels with FA ≥ 0.6 containing either (a,c,e) single fibers or (b,d,f) crossing fibers.
Color-shaded regions represent the interquartile range (25-75th percentiles) across all voxels.
Dotted lines represent fits to the susceptibility anisotropy model with associated adjusted
R2 values. Gray regions represent angular bins for which the difference between control and
shiverer values was not found to be significant with a t-test at α = 0.01.

4.4 Discussion

This study aimed to characterize the extent to which water spectra derived from two bio-

physical signal models fit to EPSI MRI data are able to replicate the spectral characteristics

observed directly from the data itself, specifically with respect to sensitivity to white-matter

differences between control and shiverer mice. We used spectral asymmetry around the main
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water peak as a summary metric to explore how data- and model-derived spectra differ over

a range of microstructural environments, covering variations in white matter content using

FA as a proxy metric, the role of crossing fibers, and the angle between the orientation of the

primary fiber population and B0. The goal was to use the asymmetry as a demonstrative

spectral metric to reveal areas of improvement for future model development. Our over-

all finding is that independent of how well the models fit the temporal FID data, neither

model was able to accurately reproduce the asymmetric broadening observed directly in the

data. The simplicity of the models provides interpretability and computational advantage

at the expense of failing to capture the full complexity of the spectra. This results in a dra-

matic underestimation of the magnitude of the asymmetric broadening effect (Figure 4.4),

with model-derived values for asymmetry that only loosely correlate with those measured in

the data in high-FA voxels (Figure 4.5). Most importantly, the process of fitting the data

to these simple biophysical models effectively leads to compromised spectral sensitivity to

changes in white matter structure under all microstructural conditions explored in this work

(Figure 4.10 and 4.12).

While the above conclusions apply broadly to both the magnitude- and complex-fit mod-

els, the complex-fit model did perform slightly better with respect to certain spectral charac-

teristics, a finding consistent with previous work comparing these two models143. Complex-

fit asymmetries correlated more strongly with data-measured asymmetries across all FA bins

(Figure 4.5) than did magnitude-fit asymmetries. Similarly, the axonal water compartment

frequency shift estimated from the complex-fit model was the only compartmental frequency

shown to have any correlation with the raw-data asymmetry (Figure 4.8). Complex-fit

asymmetries were also shown to have a stronger relationship to the angle between the fiber

orientation and B0 than magnitude-fit asymmetries (Figure 4.13). Overall, however, both

models showed relatively poor performance with respect to spectral white-matter sensitivity

and contrast (Figures 4.10 and 4.12). The complex-fit model also showed slightly worse per-
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formance than the magnitude-fit model with respect to white-matter sensitivity using the

MWF metric, as well as consistently lower BIC values (Figure 4.7).

The data-derived asymmetry results presented in this work are consistent with previous

studies demonstrating the utility of model-free analysis of fully-sampled MGE/EPSI data

in the frequency domain towards white-matter imaging65,66,125. This work extends such

analyses to reveal biases in existing biophysical models due in part to the simplicity of their

underlying geometric assumptions164. Through full sampling of the FID to the noise floor,

our results indicate that these biases are indeed present in the explored compartmental

models even at the level of compressing the full spectral information into a single scalar

asymmetry metric, promoting caution in the downstream interpretation of model-predicted

spectra.

Notably, this work also demonstrates the robustness of the asymmetry metric under

complex microstructural conditions. Measured asymmetries were shown to have comparable

sensitivities to white matter (Figure 4.10) and demonstrate similar behavior with respect to

fiber angle (Figure 4.13) in voxels with single and crossing fibers. A direction of future work

will be to more rigorously characterize the spectral response to the specific number as well

as relative strength and position of fiber populations within the voxel.

This analysis method of benchmarking spectroscopic MR data in the temporal domain

against data in the spectral domain can be extended to existing datasets after applying a

linear transform to the FID to produce absorption spectra. We note, however, the importance

of sampling to the results in this work – the sensitivity of the spectral analysis is dependent

on the increased spectral resolution that comes by sampling the FID into the noise floor.

Figure 4.14 shows AUCs similar to Figure 4.10, and demonstrates that after truncating

the FID to just the first 32 echoes, neither the data- nor the model-derived asymmetries

show meaningful sensitivity to myelin, while Figure 4.15 shows that myelin sensitivity as

represented by the AUC stabilizes for data-derived asymmetry around 64 echoes.
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Figure 4.14: Values for the area under the ROC curve (AUC) using asymmetry as a one-
variable classifier for control vs. shiverer data. FIDs were first truncated to 32 echoes prior
to model-fitting and calculation of spectral asymmetry. Values represent AUCs for subsets
of voxels in different FA bins containing either (a) single or (b) crossing fiber populations.
With 32 echoes, neither the data nor either of the models is able to demonstrate meaningful
sensitivity to myelin from the asymmetry, highlighting the need for high spectral resolution,
or equivalently, extended FID sampling.
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Figure 4.15: AUC values using data-derived asymmetry as a one-variable classifier for control
vs. shiverer data as a function of the number of echoes in the FID. Subsampled-FIDs were
created by truncating the full (192 echo) FIDs to the specified values prior to calculating
asymmetry in the frequency domain. Values represent AUCs for subsets of voxels in different
FA bins containing either (a) single or (b) crossing fiber populations. This demonstrates the
importance of spectral resolution, or equivalently, extended FID sampling, and provides a
roadmap for future benchmarking studies using EPSI spectral data.
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As in previous work125, the relationship of asymmetry to fiber angle was shown to be

present, but diminished in magnitude in dysmyelinated shiverer mice relative to control

mice. We hypothesize that differences in myelin content and structure between control

and shiverer mice play a sizable role both in this effect and in additional findings of this

study. We note, however, that we are unable to isolate myelin as a specific driver of spectral

asymmetry without independent histological validation of myelin content. This raises the

importance of such quantitative histological validation in future studies for analysis of both

asymmetry and model-derived parameters such as MWF. Incorporating full demyelination

models in future studies will also help further clarify the specific role of myelin in driving

asymmetric broadening of the spectrum. More robust analysis of data from control and fully

demyelinated mice will also help to identify specific spectral features beyond asymmetry

that could potentially form new imaging biomarkers and motivate the development of new

biophysical models that remain interpretable and clinically useful without compromising

myelin sensitivity.

Notably, the highest AUC observed for the task of classifying structural differences in

white matter between control and shiverer data came from the simple monoexponential R∗2

estimate in high-FA voxels (Figure 4.11), which outperformed both the data-derived spectral

asymmetry and model-derived MWF values. This suggests that the failure of the multi-

exponential models to faithfully estimate relevant spectral features in the data potentially

weakened their sensitivity to the meaningful differences in white matter between control

and shiverer mice. Equivalently, this suggests that improvements to the spectral compo-

nents of future biophysical modeling pipelines could lead to improved sensitivity to relevant

white-matter features such as myelin. While the R∗2 fit also outperformed the data-derived

asymmetry in terms of AUC, we note that these two metrics provide independent, com-

plementary information pertaining to white matter structure, highlighting the importance

of both accurate temporal- and spectral-domain components to biophysical white-matter
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models. This is demonstrated through scatterplots of data spectral asymmetry and R∗2 in

Figure 4.16. Correlations between the two values are negligible; while the R∗2 metric indi-

cates the total amount of broadening of the water resonance line, it does not communicate

any information about the asymmetric nature of that broadening and whether it is up- or

down-field.

Figure 4.16: Scatterplots of data-derived asymmetry and R∗2 split by control (blue) and
shiverer (orange) and FA bin. Correlations were negligible for all FA bins.

Overall, we feel that our analysis reveals that there is underutilized spectral information

within EPSI data that yields important insight to white matter structure complementary to

information from traditional temporal-domain metrics such as MWF and R∗2. This motivates

further the development of spectral-domain components of biophysical white-matter models.

Model development and physical parameter ranges have typically relied on simulations using

a simple underlying geometric model of white matter that uses nested, circular cylinders to

describe axons144,166,167. A recent study164 simulated the MR signal arising from axons

under different 2D geometric models. It showed that as the axon geometry model becomes

more realistic through the use of warped cylinders and segmented cross-sections from elec-

tron micrographs, the generated microscopic magnetic field becomes increasingly complex

and the compartment-specific components of the resulting water spectra become much less

pronounced and distinct, leading to asymmetric broadening around the main peak as op-

posed to discernible narrow peaks corresponding to each compartment. Though part of this

effect could potentially be attributed to fixation-related warping of the axons imaged with
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electron microscopy for the study, these results still suggest that quantitative microstructural

imaging pipelines that rely on biophysical models might be biased by the models’ assumed

geometries. Recent analysis of mouse brain data using a novel multi-scale, multi-modal imag-

ing pipeline63 has demonstrated that the geometric complexity of axon populations increases

dramatically in three dimensions; non-cylindrical nerve fibers undulate, fan, and cross within

MRI-sized-voxels. Such datasets will be important for future MR simulation studies that

use realistic 3D white-matter models to further explore the spectral signatures of white-

matter tissue microstructure under different geometric configurations. In many results of

this work, we observed that model performance was highly sensitive to the underlying tissue

microstructure; for example, complex-fit asymmetry correlations to data-derived asymmetry

increased with FA for control data but not for shiverer data. The results of realistic 3D

simulation studies could potentially guide the development of hybrid microstructural myelin

imaging approaches where geometric and structural information from dMRI data could be

used for selection of relevant model components and parameters for EPSI data.
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CHAPTER 5

CONCLUSIONS

In this work, we have seen that MR microstructure imaging methods such as dMRI and

EPSI offer the potential to provide cellular-level neurological information at a macro-

scopic scale in vivo. By estimating sub-resolution tissue parameters, these methods show

great promise in helping to bridge the gap between cellular imaging modalities that are

prohibitively destructive for in vivo human imaging. By necessity, these MR approaches

rely on heuristic or biophysical signal models in order to reconstruct relevant biological

properties of the underlying tissue. Throughout this dissertation, we have introduced multi-

modal datasets and analysis methods that demonstrate the necessity for validation of these

MR methods with additional ground-truth imaging. A common theme has been that high-

resolution information from validation modalities allows for the quantification of biases in

MR signal and reconstruction models and these insights in turn can help guide the develop-

ment of improved acquisition and reconstruction pipelines.

In Chapter 2, we demonstrated a processing pipeline developed for dMRI validation

with synchrotron microCT. MicroCT provides isotropic resolution across whole mouse brains

with no physical sectioning, addressing limitations in existing optical-based dMRI validation

methods. Fiber orientations were estimated and processed into fODFs across the whole brain

and spatially registered to dMRI data of the same specimen. Comparisons between modali-

ties showed good agreement in the representation of local fiber geometries and the mapping

of long-range fiber trajectories, demonstrating the utility of synchrotron microCT for fu-

ture dMRI validation studies. Future analysis with the full multi-modal pipeline including

follow-up imaging of small volumes with serial EM could potentially lead to sample-specific

tractography connectome validation using automated machine-learning based axon segmen-

tation routines, as well as to improvements in MR white-matter models through simulation

studies built off of 3D EM datasets matched directly to MRI data from the same sample.
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In Chapter 3, we used geometric surrogate graphs to explore the role of spatial embed-

ding in the topological properties of the mouse structural brain network measured by neural

tracer imaging and diffusion MRI tractography. We found that spatial embedding played

a considerably larger role in the topology of tractography networks than tracer networks.

Tractography approaches underestimate long-range connectivity, which leads to geometric

biases in the estimated modular structure and placement of high-strength hub nodes. Our

results demonstrate the caution required in the interpretation of tractography-derived net-

work measurements that rely on long-range connections and motivate additional geometric

consideration in the design of future tractography validation studies.

Through analysis of fully-sampled MR spectra from control and dysmyelinated mouse

brain in Chapter 4, we revealed limitations in spectra estimated with existing biophysical

compartmental models traditionally used for myelin imaging. We showed that spectra es-

timated from these biophysical models fail to accurately predict the extent of asymmetric

broadening in white-matter voxels, leading ultimately to compromised sensitivity to impor-

tant differences in white-matter structure. This work further demonstrates the utility of

model-free analysis of the water resonance spectrum with fully-sampled EPSI data, promot-

ing its continued development as a tool to benchmark novel biophysical signal models and

as a potential future in vivo MRI biomarker for dysmyelination.

Throughout, we have aimed to highlight the value that high-resolution ground-truth

imaging brings towards an understanding of the nature of the MR reconstruction problems

themselves. The dMRI fODFs analyzed in Chapter 2 nominally represent orientation distri-

butions of nerve fibers, but are actually driven by the process of water molecules diffusing

and interacting with an extraordinarily complex microstructural tissue environment con-

taining different cell types and geometric configurations. Structure tensor-derived fODFs

from microCT do not characterize this diffusion process but instead provide benchmark

estimations for the ultimately desired parameter of nerve fiber orientations. Accordingly,
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while these two fODFs represent fundamentally different processes, we have demonstrated

how structure tensor-derived fODFs can help filter out the “noise” parameters from diffusion

data. Similarly, the geometric biases analyzed and discussed in Chapter 3 highlight the fact

that tractography streamlines do not represent individual neurons; they instead represent

probabilistic pathways through a field of estimated fiber orientations. Comparison to highly

specific tracer measurements revealed limitations both in terms of connectivity reconstruc-

tion (step-wise reconstructions magnify errors at long distances) as well as a sense of the null

space of diffusion tractography (tractography based on symmetric diffusion measurements

cannot be used to reconstruct directed brain graphs).

In the future, our overall outlook on MR microstructure imaging of the brain is that addi-

tional multi-modal validation studies will be needed in order to optimize novel MR imaging

pipelines that themselves make use of multi-modal information. Analysis methods such as

the use of geometric surrogate graphs can be used to benchmark new tractography methods

that seek to address the geometric biases identified in this work. Such validation studies will

be particularly useful for the identification of additional MRI biomarkers that can be used

as regularizers to help better condition the tractography problem103. New tractography

pipelines will need to make use of a suite of MRI approaches that incorporate anatomic reg-

ularization for streamline seeding and termination, navigate crossing fiber populations using

measures of axon diameters and myelin integrity, etc. Large-volume validation datasets from

microCT and EM in model organisms will be important for understanding and developing

MR signal models that can be used to reconstruct these meaningful priors, ultimately help-

ing to deliver key clinical and basic insights into the structure and function of the human

brain.
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APPENDIX A

DATA AVAILABILITY

MicroCT data from Chapter 2 can be viewed online through Neuroglancer at the following

link: http://tinyurl.com/cxmbjy6b. Tools developed for the calculation and visualization of

fiber orientations and ODFs from 3D intensity data in Chapter 2 have been released as the

open-source Python package “Fiberorient” available for download at https://github.com/scott-

trinkle/fiberorient. The package can also be installed with pip: pip install fiberorient

Raw diffusion data, connectivity matrices, and distance matrices for the construction of

geometric and random surrogate graphs in Chapter 3 are available for download at

https://knowledge.uchicago.edu/record/3310. Analysis and visualization tools developed for

Chapter 3 have been released as the open-source Python package “Braingraphgeo” available

for download at https://github.com/scott-trinkle/braingraphgeo. The package can also be

installed with pip: pip install braingraphgeo.
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