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ABSTRACT

Accurate calculation of quantum electron correlation effects is essential for understanding

the molecular electronic structure of organometallic chemicals. Electron correlation and de-

localization contribute to stabilization of chemical species, and provide a mechanism through

which non-classical and non-intuitive chemical behaviors occur. Oxidation and reduction of

metal complexes, for example, are classically thought to occur at the metal site; stabilization

of delocalized electrons throughout the ligand field, however, can allow for ligand-centered

redox processes. These ligand-centered processes, known as ligand non-innocence, are central

to an emerging area of investigation relevant to the catalysis, chemical transformation, and

energy transfer fields. Computation of the correlation effects in these large organometallic

species is hindered by the exponential scaling of traditional wavefunction methods which

explicitly treat electron correlation. I describe several methods that are based on the two-

electron reduced density matrix (2-RDM) that avoid the exponential cost of computing the

entire wavefunction. Since the energy of a quantum electronic system is an exact linear

functional of the 2-RDM, direct determination of the 2-RDM with respect to the electronic

Hamiltonian allows the determination of the energy and correlation effects with polynomially

scaling algorithms. This favorable scaling allows for the description of electron correlation

for organometallic systems which are far beyond the computational capabilities of tradi-

tional wavefunction techniques. I also describe the use of analytical gradient techniques in

this methodological context and show how large-scale correlated calculations offer predicted

geometries of metal complexes that differ from smaller correlated calculations.
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CHAPTER 1

INTRODUCTION

1.1 N-Electron Wavefunction Theory

Molecular electronic structure is described by the time-independent Schrödinger equation,

ĤΨn = EΨn, (1.1)

where Ĥ, the Hamiltonian, is the sum of one- and two-body interactions,

Ĥ = 1ĥ(i) + 2V̂ (i, j). (1.2)

The one-body terms, 1ĥ, contain the nuclear-electron repulsion terms as well as the kinetic

energy of the electron, and the two-body piece, 2V̂ , contains the electron-electron repulsion

term which is inversely proportional to the inter-electron distance. Here we are assuming

the Born-Oppenheimer approximation which decouples the motion of the electrons from the

nuclei.1

The wavefunction, Ψn, in Eq. 1.1 describes the electronic state of the molecule. The

wavefunction contains all information about the electronic state of the molecule, including

the complete excited state spectrum, therefore calculating the wavefunction is the primary

goal of electronic structure theory. Computing the wavefunction, however, is challenging

because of the difficulty in solving Eq. 1.1; exact solution of the equation scales exponentially

with the number of electrons. This scaling is dictated by the two-particle interactions of the

2V̂ term.

There are many approximations to the solution of the Schrödinger equation, one of the

most basic, and fundamental, is the Hartree-Fock approximation. Hartree-Fock is known as

a mean-field theory, because instead of solving the electron-electron repulsion exactly, the

terms are computed in the average field of the other electrons. Instead of the Hamiltonian

1



operator in Eq. 1.1 we define the Fock operator which is an effective one-electron potential

derived from the total molecular Hamiltonian,

F̂ = 1ĥ+ 1Ĵ − 1K̂, (1.3)

where 1Ĵ and 1K̂ are the Coulomb and exchange operators respectively.2 Modern implemen-

tations of Hartree-Fock theory efficiently scale as O(r3) where r is the rank of the orbital

basis. The Hartree-Fock energy is always an underestimation of the stability of the elec-

tronic state, i.e. the predicted energy is too high. The energy predicted from the exact

solution to the Schrödinger equation will always be exactly equal to or, more commonly,

less than the Hartree-Fock solution. Hartree-Fock theory provides a rich framework to view

electronic structure theory, but it is lacking a fundamental feature. Hartree-Fock is explicitly

formulated as a one-electron picture and neglects the solution to the two-electron part of

the molecular electronic Hamiltonian. In spite of this, Hartree-Fock energies almost always

recover about 90% of the electronic energy and typically recover over 99% of the electronic

energy.

In spite of the success of Hartree-Fock theory at recovering many important features of

electronic structure, the lack of a two-electron treatment is a problematic approximation.

Even while recovering enormous proportions of the energy with the Fock operator, the two-

electron interactions frequently tune the electronic structure of the molecule in a significant

way making the one-electron approximation inappropriate. Methods which seek to treat

two-electron interactions are generally known as post-Hartree-Fock methods. One of the

most fundamental of these methods is known as configuration interaction (CI).3

Configuration interaction finds a solution to the Schrödinger equation by computing the

interaction between all possible determinants in an orbital basis. Consider the expansion of

the wavefunction into of a basis of anti-symmetrized functions, χi,

2



Ψn =
∑
i

ciχi. (1.4)

The basis functions χi are in this case determinants which describe the filling of the orbital

basis with the electrons. These determinants are in turn expanded in terms of an orbital

basis, which are usually contracted Gaussian functions. The Hartree-Fock determinant,

for example, is the configuration in which the orbital filling proceeds from most-stable to

least-stable until all electrons are in orbitals, and in accordance with the Pauli exclusion

principle, which requires that no two electrons share all four quantum numbers. A singly-

excited determinant, on the other hand, would move one electron from a low-lying orbital

into a previously unoccupied high-lying orbital. Each of these determinants is called a

configuration, and the solving for their interactions is called the configuration interaction.

If all possible excitations are taken into account, the full configuration interaction (FCI)

is computed. FCI is an exact solution to Eq. 1.1, and scales exponentially in system size,

O(rN ), where N is the number of electrons and r is the size of the orbital basis. Currently

implementations of FCI limit the number of electrons and orbitals to about 18, which is a

significant prohibition on system size. One common approach to treating systems of much

larger size is through active space treatments. These methods choose a particular set of

orbitals and electrons to solve exactly through CI, while treating the remaining electrons

and orbitals in a less sophisticated fashion, usually with Hartree-Fock. Even in the active

space ansatz, the correlated space is still limited to about 18 electrons and orbitals, since

the correlated active space is described exactly with the CI. I describe active space methods

in Chapter 2.

3



1.2 Reduced Density Matrix Formalism

The wavefunction contains all information about the molecular electronic state. The N -

electron density matrix is the outer product of the N -electron wavefunction with itself,

ND = Ψ(1, ..., N)Ψ∗(1, ..., N). (1.5)

Integration over all electrons except two yields the two-electron reduced density matrix, or

2-RDM,

2D =

(
N

2

)∫
Ψ(1, ..., N)Ψ∗(1, ..., N)d3...dN (1.6)

The Hamiltonian in Eq. 1.2 is explicitly composed of one-electron and two-electron terms.

The Hamiltonian can be expressed as a two-body operator, properly normalized, with,

2K =
2

N − 1

(
−∇2

1 −
∑
j

Zj
r1j

)
+

1

2

1

r12
(1.7)

Finally, because electrons interact pairwise and are indistinguishable, the energy of a elec-

tronic system, as in Eq. 1.1, can be written as an exact linear functional of the 2-RDM and

2K,4

E = Tr( 2K 2D). (1.8)

From this equation it is clear that determination of the energy of a fermionic quantum sys-

tem depends only on the 2-RDM, and not the entire wavefunction.5–7 Techniques which

attempt to determine the 2-RDM directly, instead of through explicit integration of the full

wavefunction may avoid the exponential complexity of the full wavefunction.8–18 In Chap-

ter 2 I describe two methods that determine the 2-RDM directly, namely variational 2-RDM

(V2RDM) theory19–25 and the anti-Hermitian contracted Schrödinger equation (ACSE).26–34
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Figure 1.1: Schematic MO’s for the dissociation of hydrogen fluoride.

1.3 Electron Correlation

In molecular electronic structure the terms electron correlation, and more particularly two-

electron correlation refer to the pairwise nature of electronic interactions.35 Hartree-Fock

theory treats the two-electron interactions in an average, or mean field description. By the

variational theorem, treating the two-electron part of the Hamiltonian beyond mean-field

will always lower the energy of the system. These treatments are intended to go beyond

the mean-field description of the two-electron energy and provide an approximation of the

correlation energy. The exact correlation energy is defined relative to the Hartree-Fock and

FCI energies, as in Eq. 1.9.

ECorr = EFCI − EHF (1.9)

The correlation energy is defined as a negative quantity, which is evident from the fact that

the FCI energy is always less than or equal to the Hartree-Fock energy by the variational

theorem. While Equation 1.9 defines the exact correlation energy, other methods that do

not yield the exact FCI solution will approximate the correlation energy.

Two-electron correlation has important effects in single atoms, small molecules, and large

complexes. In single atoms for instance, electron correlation is important in understanding

the near-degeneracies in the 4s and 3d orbitals in the first row transition metals.36 In small

5



molecules, accurate treatment is required for the dissociation of diatomics like N2 and HF.37

Fig. 1.1 schematically shows the dissociation of the HF molecule and the changes to the

molecular orbital (MO) diagram. On the left, the diatomic is near the equilibrium geometry,

and in this case the MO diagram is dominated by one configuration. On the right, however,

near dissociation, the π and σ orbitals become quasidegenerate, and several MO diagrams

must be used to characterized the ground state. These MO diagrams, or references, or

configurations, all contribute to the overall ground state in the dissociation limit. I show

examples of electron correlation in large and complex molecules in detail in Chapter 4. These

examples include correlation effects in oxidations of vanadium oxo pyridine structures, nickel

dithiolates, as well as the effects of electron correlation on geometry of chromium hexaflouride

and titanium, chromium, and zinc diiminoquinonephenolate complexes.38,39
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CHAPTER 2

AB INITIO QUANTUM CHEMICAL METHODS FOR

COMPUTING ELECTRON CORRELATION

2.1 Introduction

As described in Chapter 1 the FCI solution to all but the most trivial systems is generally

intractable due to the rN scaling of the method. We can modify the FCI method and instead

choose a subset of orbitals from the orbital basis and designate this subset the active space.

We then first, compute the FCI solution for the active space, and then perform orbital

rotations in order to lower the energy. This procedure is repeated until a self-consistent

solution is achieved. This method is the general procedure of complete active space self-

consistent field (CASSCF) theory, which is explained in Section 2.2.

The electronic energy of the molecular electronic Hamiltonian is an exact linear functional

of the 2-RDM, therefore computing the energy alone does not require the solution of the

entire wavefunction, but only the 2-RDM.1,2 This applies as well in CASSCF theory, so

computation of the correlation energy using the CASSCF method can also be driven by

a 2-RDM approach. Variational 2-RDM theory (V2RDM) computes the 2-RDM alone, at

polynomial cost instead of the exponential cost of computing the entire wavefunction.3–17

Using V2RDM correlation energy and other correlation metrics can be computed for much

larger systems than using wavefunction driven CASSCF.18–34 2-RDM driven CASSCF is

described in Section 2.3.

CASSCF gives a description of the static correlation in a molecule, or a description of how

multiple electronic configurations contribute to the overall electronic state. Static correlation

is related to the degeneracy of electronic configurations. Dynamic correlation, on the other

hand, is generally estimated with perturbative techniques. The distinction between static

and dynamic correlation is somewhat artificial because the physical correlation energy is

exactly determined by the full configuration interaction. On the other hand, methods which
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approximate the FCI energy, like perturbation theory and CASSCF, frequently compute

correlation energies of different orders of magnitude, so it is clear that the different treatments

yield different insight.

Perturbation theory and configuration interaction approaches are also combined for mul-

tireference perturbation theory (MRPT).35–38 MRPT is most frequently used in its second-

order form MRPT2. These techniques have many variants to improve scaling and accuracy,

but in general the perturbative correction to the energy of a configuration interaction wave-

function is computed. Another approach at computing the so-called dynamic correlation

energy is by computing the solution to the anti-Hermitian contracted Schrödinger equation

(ACSE), which is an RDM-driven method through the solution of a series of differential

equations. Solving the ACSE is known to give energies that are as or more accurate than

MRPT2 results.32,39–58 These methods are briefly described in Section 2.4.

Finally in Section 2.5 I discuss analytical gradient techniques for CASSCF. Analytical

gradients are used to compute optimized molecular geometries of different stationary points

on the potential energy surface. Importantly, the gradient of the CASSCF energy depends

only 2-RDM, and the basis and configuration of the nuclei. I describe the standard derivation

of the analytical gradients for CASSCF before describing an alternative derivation using a

Cholesky decomposition.

2.2 Complete Active Space Self Consistent Field Theory

The CASSCF method is a size-consistent method which approximates the correlation energy

in a quantum system. As noted in previous sections, the solution to FCI scales as O(rN )

which significantly limits the number of orbitals and electrons that can be explicitly corre-

lated. Instead of computing the FCI for the entire orbital space, r, the CASSCF calculation

only correlates a subset of orbitals, ra, called the active orbitals. A FCI calculation is per-

formed spanning the active space, and a subsequent set of orbital rotations are performed

to achieve a self-consistent field.59–61
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CASSCF is an iterative two-step method, and the most common procedure is first the

CI calculation followed by the orbital rotation. Even though the CI space is substantially

smaller than the full orbital basis, CI calculations in the most advanced traditional imple-

mentation can only correlate up to 18 electrons in 18 orbitals. Active spaces of this size are

frequently far too small to sufficiently capture the electronic interactions in organometal-

lic and other large molecule chemistry.62 A significant portion of contemporary correlated

electronic structure theory efforts focus on the approximate solution to the CI problem,

frequently in the CASSCF ansatz. Examples include density matrix renormalization group

(DMRG), restricted active space (RAS) methods, as well as reduced density matrix (RDM)

methods described below.63,64

2.3 Variational 2-RDM Theory

We use the variational 2-RDM method to approximate the static correlation present in the

wavefunction. As with wavefunction CASSCF,59,60,65 RDM-based CASSCF variationally

solves the Schrödinger equation in the active space to account for most of the strong corre-

lation, and then rotates the orbitals to lower the energy until self-consistency.14,17,18,23,28,66

The active-space variational 2-RDM method calculates the 2-RDM directly, which avoids

the explicit calculation of the entire wavefunction.7 Thus the 2-RDM method benefits from

polynomial scaling in system size, whereas traditional wavefunction CASSCF scales expo-

nentially.10 While the systems studied here are tractable with wavefunction CASSCF, the

current limit for active-space size is about [18,18], which eliminates wavefunction CASSCF

as a viable method for studying transition-metal complexes with large active spaces.

The energy of an electronic system is a linear functional of the 2-RDM,

E = Tr( 2K 2D), (2.1)

where 2D is the 2-RDM and 2K is the reduced electronic Hamiltonian.4 We minimize the
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energy of a 2-RDM that is constrained to be approximately N -representable by imposing

a set of constraints in a semidefinite programming optimization.10 Since the 2-RDM is not

directly contracted from the full wavefunction, we must impose constraints to ensure the

N -representability of the 2-RDM:1

2D � 0

2Q � 0

2G � 0

(2.2)

where D, Q, and G matrices are the two-particle, two-hole, and particle-hole matrices re-

spectively, and M � 0 indicates that the matrix M is positive semidefinite. A matrix is

positive semidefinite if and only if its eigenvalues are nonnegative. The 2-positivity (or

DQG) conditions ensure that the probability distributions of two particles, two holes, and a

particle and a hole are nonnegative.

Beyond the 2-positivity conditions we enforce a subset of three-particle constraints known

as the T2 condition. While the T2 condition is generated by keeping the sum of two three-

particle density matrices positive semidefinite, it can be written explicitly as a linear func-

tional of only the 2-RDM.5,8,10 Several other constraints are also enforced, including the

Hermiticity and antisymmetry of the 2-RDM along with appropriate trace and spin con-

straints.8,15 This set of constraints has been shown to give nearly quantitative accuracy in

a variety of contexts when compared to wavefunction CASSCF.5,22 While CASSCF scales

exponentially with system size O(rN ), the variational 2-RDM method with D, Q, and G

conditions scales as O(r6) with r being the number of active orbitals and N the number of

active electrons. The present paper uses the conventional form of the T2 condition which

scales as O(r9), but for larger systems a polar-cone formulation of the T2 condition has been

developed which scales as O(r6).13
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2.4 Anti-Hermitian Contracted Schrödinger Equation

The 2-RDM from the active-space calculation includes correlation of the active orbitals

only. Correlation from the inactive orbitals can be included from a solution to the ACSE,

seeded with the 2-RDM from the active-space variational 2-RDM calculation.40,43–45,48,58

Conventionally, the correlation added by the ACSE would be described as dynamic corre-

lation. ACSE and MRPT2 both describe dynamic correlation in a quantum system; here

we use a variant of MRPT2 known as N -electron valence second-order perturbation theory

(NEVPT2).36

The ACSE can be expressed as

〈ψ|[â†i â
†
j âlâk, Ĥ]|ψ〉 = 0, (2.3)

where Ĥ is the electronic Hamiltonian operator, â† and â are creation and annihilation oper-

ators in second quantization respectively, and the square brackets indicate the commutator.

Rearrangement of the creation and annihilation operators shows that the ACSE depends

on the 3-RDM. However, the 3-RDM can be approximated through a cumulant reconstruc-

tion with the 1- and 2-RDMs

3D
i,k,m
j,l,n ≈

1Di
j ∧

1Dk
l ∧

1Dm
n + 3(2D

i,k
j,l −

1Di
j ∧

1Dk
l ) ∧ 1Dm

n , (2.4)

where ∧ is the Grassmann wedge product.39,67 While this approximation to the 3-RDM is

correct through second order of many-body perturbation theory, the iterative solution of the

ACSE incorporates higher orders of perturbation theory in a form of renormalization. An

approximation is said to be size extensive if and only if the error in its energy and 2-RDM

scales linearly with system size. Because the part of the 3-RDM neglected in Eq. (2.4) is the

cumulant part, which scales linearly with system size, the error in solving the ACSE with

this approximation scales linearly with system size, and hence, the energies and 2-RDMs are
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size extensive.44,58 Multiple spin states can be computed with the ACSE. The initial 2-RDM

guess can be chosen from the solution of the target spin state by CASSCF or the variational

2-RDM method. Practically, the ACSE is solved for an improved 2-RDM by a series of

unitary transformations that preserve the spin symmetry.48 The solution to the ACSE scales

as O(r2
ar

4
i ) where ra and ri are active and inactive orbitals respectively. Further details of

the iterative solution to the ACSE can be found elsewhere.40,44,48,58

2.5 Analytical Gradient Techniques for CASSCF

2.5.1 Analytical Gradient of Variational 2-RDM Theory

The energy of a molecular electronic state is a linear functional of the 2-RDM (Eq. 2.1).

Minimizing the energy of a given Hamiltonian with respect to the 2-RDM can be achieved

through a semi-definite program (SDP) written as

minimize
2D,M

E = Tr(2S−1 2K 2S−1 2D)

subject to 2D � 0

M � 0

fi(
2D,M, 2S−1) = bi.

(2.5)

The matrix M is the metric matrix which enforces the positivity of the particle-hole and

hole-hole matrices introduced above, and 2D and 2K are expressed in the atomic orbital

basis. The objective, E, is minimized subject to the set of linear equalities, fi = bi. The

tensor 2S−1 is the antisymmetric product of the inverse overlap matrix with itself. The

overlap matrix is required since Eq. 2.1 holds only if the basis is orthonormal. The gradient

of Eq. 2.5 is seemingly non-trivial because, while the 2-RDM is stationary at the minimum,

the overlap matrix need not be.
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This difficulty can be over come by modifying the SDP in Eq. 2.5 as,

minimize
2D,M

E = Tr(2K̄2D̄)

subject to 2D̄ � 0

M̄ � 0

f̄i(
2D̄, M̄) = b̄i.

(2.6)

In Eq. 2.6 we have transformed the 2-RDM and the reduced Hamiltonian using the relations,

2S−1 = 2L 2LT

2K̄ = 2LT 2K 2L

2D̄ = 2LT 2D 2L.

(2.7)

Here we have used a Cholesky decomposition of the inverse overlap matrix to compute a lower

triangular matrix, L. This formulation of the SDP minimizes the objective with respect

to 2D̄ and so ensures that 2D̄ is stationary with respect to infinitesimal changes in the

nuclear coordinates. This approach is conceptually similar to that of Helgaker and Almlöf,

except that our formulation avoids all reference to the molecular orbitals, and generates

the transformation from the Cholesky decomposition of the overlap matrix.68 The overlap

matrix is invertible, so the inverse overlap matrix is positive definite, which implies that the

Cholesky decomposition of the inverse overlap matrix is unique. The gradient can therefore

be written in a manner which is similar to the Hellmann-Feynman theorem.

Theorem 1.

∂E

∂R
= Tr

(
∂ 2K̄

∂R
2D̄

)
(2.8)
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Proof. Differentiating the energy with respect to a nuclear coordinate, R,

∂E

∂R
= Tr

(
∂ 2K̄

∂R
2D̄

)
+ Tr

(
2K̄

∂ 2D̄

∂R

)
= Tr

(
∂ 2K̄

∂R
2D̄

)
,

(2.9)

where the second term of the chain rule vanishes because the energy is stationary with re-

spect to 2D̄,

∂E

∂ 2D̄
= 0. (2.10)

Furthermore, the gradient of the energy can then be written in terms of the gradient of

the overlap matrix and the gradient of the Hamiltonian.

Theorem 2. The gradient of the electronic energy can be written in terms of the gradients

of the overlap matrix and the Hamiltonian,

∂E

∂R
= Tr

([
∂ 2LT

∂R
2K 2L+ transpose + 2LT

∂2K

∂R
2L

]
2D̄

)
(2.11)

where

∂ 2L

∂R
= − 2Lπ̂

(
2LT

∂ 2S

∂R
2L

)
, (2.12)

and π operates on a matrix, maintains the lower triangular portion of the matrix and halves

the diagonal, and the gradient of 2L is symmetric.

Proof. The gradient of the energy expressed in Eq. 2.8 depends on the nuclear gradient of

2K̄, which can be expressed in terms of the gradients of the overlap matrix and Hamiltonian,

∂ 2K̄

∂R
=

∂

∂R

(
2LT 2K 2L

)
=
∂ 2LT

∂R
2K 2L+ transpose + 2LT

∂ 2K

∂R
2L. (2.13)

Substitution into Eq. 2.9 yields Eq. 2.11.
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Using the equations of motion of the orthogonality condition and the Cholesky decom-

position69 and rearranging, one arrives at Eq. 2.12,

∂ 2S−1

∂R
=− 2S−1∂

2S

∂R
2S−1

∂ 2S−1

∂R
=
∂ 2L

∂R
2LT + L

∂ 2LT

∂R
.

(2.14)

2.5.2 Analytical Gradient for CI Wavefunctions

Analytical gradients for electronic wavefunctions are practical for computing stationary

points in the nuclear potential energy surface. Geometry optimization with CI gradients

yield insight into the effect of strong correlation on nuclear geometry, and has wide-spread

use.70–76 Gradients for CASSCF have also been used in the RDM context to study many

small molecules and pentacene,77 and analytical response theories and gradients for closely

related methods like density-matrix renormalization group (DMRG)78,79 natural orbital

functional theory are also known.80,81

The nuclear gradient for the electronic part of CI wavefunction, in the molecular orbital

basis, is

∂E

∂R
=
∑
ij

∂1Ki
j

∂R
1Di

j +
∑
ijkl

∂ 2V
ij
kl

∂R
2D

ij
kl −

∑
ij

∂Sij
∂R

Xi
j , (2.15)

Where the first term depends on the derivatives of the one-electron integrals and the 1-RDM

and the second term depends on the derivatives of two-electron integrals and the 2-RDM.

If the CASSCF wavefunction is stationary with respect to all orbital rotations, the term Xi
j

can be written in terms of the one- and two-electron integrals of the initial geometry as well

as the RDMs,
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Xi
j =

∑
k

1K
i
k

1D
k
j + 2

∑
klm

2V
ik
ml

2D
jr
ml. (2.16)

The conditions for Eq. 2.16 are always met in a FCI calculation. For a CASSCF calculation

these conditions are met when all orbitals are optimized during the orbital rotation step,

i.e. no orbitals are frozen.82 The use of frozen orbitals requires the solution to the couple-

perturbed Hartree-Fock equations.83 All calculations in this paper are performed with no

frozen orbitals. Because the Lagrangian of the SDP is stationary with respect to nuclear

perturbations in the 2-RDM, we can use the V2RDM method to calculate the gradient of

CASSCF wavefunctions with large active spaces.77

This formulation of the gradient is similar to the formulation presented in the previous

section. In both cases, the gradient depends on the derivative of the Hamiltonian, as well

as the derivative of the overlap matrix. In our formulation, however, the derivative of the

overlap matrix is explicitly incorporated in the Hamiltonian by the Cholesky decomposition

transformations.
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CHAPTER 3

ELECTRONIC STRUCTURE METHODS FOR

ORGANOMETALLIC CHEMISTRY

3.1 Introduction

Molecules constituted of both metals and organic components are known as organometal-

lic molecules; the organic substructures are generally known as ligands. Organometallic

chemistry is of significant experimental and theoretical interest. The field of catalysis, in

particular, has greatly benefited from a better understanding of the electronic structure of

organometallic compounds. Examples of organometallic catalysis include olefin transforma-

tion, nitrogen fixation, CO2 reduction, and water splitting. Organometallic molecules inherit

their robust and diverse electronic structures from the combination of the metal center with

the unique properties of the ligands. In metal chemistry, the metal-ligand orbital interactions

dictate the nature of the frontier orbitals, and therefore strongly influence the reactivity and

optical and electronic behavior of metallic complexes.

In this Chapter I describe several methodologies of varying sophistication that describe

the electronic structure of organometallic chemistry. First I describe ligand field theory

(LFT), which provides a generally accurate first-approximation to qualitative orbital inter-

actions. While LFT can be quantitative, it is not well equipped to describe situations where

two-electron interactions are important. Well-understood concepts like backbonding, and

electron donation are nonetheless useful in providing an intuitive accounting of the elec-

tronic structure.

Next I describe several theoretical methods used for computing properties of organometal-

lic complexes. Historically density functional theory (DFT) has been very widely used to

study these complexes. Many years of DFT research in this field has clarified myriad issues in

the theoretical treatment of these complexes, including basis set considerations, relativistic

effects in the heavier metals, and the behavior of highly charged complexes. DFT benefits
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from very favorable computational scaling, and so many properties can be approximated by

a skilled DFT practitioner.

Finally, I describe ab initio methods in treating organometallic complexes. These treat-

ments have been applied more recently due to the relatively expensive computational cost

compared to DFT. We will see, however, that this increase in cost can be essential to describe

the electronic structure of organometallics. While DFT includes some treatment of electron

correlation, it is not systematic in the way some ab initio methods are, and this can yield

inconsistent results. Ab initio methods include the systematic treatment of electron correla-

tion, which can influence the electronic structure of organometallics to such an extent that

the intuitive picture from LFT and the quantitative picture from DFT can be inaccurate.

3.2 Ligand Field Theory

Ligand field theory (LFT) provides many of the basic concepts in describing organometallic

chemistry.1,2 Three such fundamental concepts are the field splitting parameter, σ-donation,

and π-backbonding. Each describes how the metal and ligand orbitals interact and gives a

qualitative picture for how to describe the orbitals and electron distribution in organometallic

molecules.

The central idea of LFT is that the metal atom’s d orbitals should dominate the molecular

orbital frontier. In the presence of the ligands’ electronic structure, the ligand field, the

otherwise degenerate set of five d orbitals split in various ways and become non-degenerate.

The way the d orbitals split is depends on how the ligand and metal orbitals mix, and this

in turn effects the electronic filling for the frontier orbitals. The field splitting parameter,

∆, is used to predict the electronic filling of the d orbitals. Consider an arbitrary octahedral

complex ML6 with four d electrons, where M is the metal and L is the ligand (Figure 3.1). On

the left the field splitting parameter is small, so the higher energy eg orbitals are accessible

to the fourth electron, in contrast to the right side with large field splitting parameter. If ∆

is large relative to the pairing energy of two electrons, the complex will preferentially take
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Figure 3.1: Ligand field splitting for ML6 with two different field splitting parameters, ∆

on a “low-spin” configuration with only two unpaired electrons. In the case of small ∆,

the complex will take on the “high-spin” configuration. In this example a small ∆ results

in all four spins unpaired. Ligand splitting parameters are generally useful at predicting

the spin-state of metal-ligand complexes, as demonstrated by the spectrochemical series of

ligands and metals.

Beyond predicting the spin-state of a complex, LFT can also describe the relative electron

distribution in a complex, and thus yield a qualitative picture of the strength of the bonds

in the molecule. Two effects, σ-donation and π-backbonding give indications about how the

electron distribution will change based on orbital interaction effects.

When a ligand like NH3 binds to a metal center, the lone pair on the nitrogen is used

to bond with the metal. Since both electrons came from the ligand, NH3 is described as a

σ-donor. Since they are donating electrons, σ-donors generally increase electron density on

the metal. A similar situation arises with π-donating ligands, although due to symmetry the

donation generally occurs in the t2g orbitals, which are are the same symmetry of π-type

orbitals.

Finally, π-backbonding also effects the electron distribution and bonding situation in

metallic complexes. Several things are generally necessary in order for this backbonding to

occur. First, the metals should be relatively electron rich, second, the ligand π-bonding

orbitals should be very stable relative to the metal d orbitals, and finally the ligand π-

antibonding orbitals should be able to mix with the metal d orbitals. In this way, the metal

t2g orbitals are stabilized through mixing with the π∗ orbitals. At the same time, however,

since more electron density now occupies the ligand π∗ orbitals by virtue of their mixing
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with the d orbitals, the π bond in the ligand becomes weaker.

Ligand field splitting, σ-donation, and π-backbonding provide good first approximations

to spin-states, orbital mixing, and electron distribution in simple metal complexes. On

the other hand, the degree and nature of orbital mixing can be extremely non-intuitive in

organometallic complexes, generally because of the presence of extended π-bonded ligands.

The ligand field splits the degeneracy of the metal d orbitals, and this effect is the groundwork

for ligand field theory; degeneracies, however, can also be introduced by this same interaction.

When many π and π∗ orbitals in an organometallic complex interact with the metal d orbitals,

complicated sets of degenerate or near-degenerate orbitals can arise. In these cases LFT is

unable to provide a reliable quantitative description, so more accurate quantum chemical

methods must be used instead.

3.3 Density Functional Theory and ab initio Methods

The electronic description of organometallic molecules faces a challenge from the outset due

to the typical size of those molecules. Conjugated ring systems and other substituent groups

along with the metal center results in molecules with many heavy atoms. Furthermore,

the complicated electronic structure of these complexes generally requires the use of non-

minimal basis sets for an accurate description. Because of this organometallic computational

chemistry has grappled with these size constraints.3

Density functional theory (DFT) is typically used to describe these compounds.4–8 DFT

is essentially a one-electron picture with the added component of the electronic exchange-

correlation.9 DFT also benefits from favorable scaling in system size, which allows for treat-

ment of large molecules in large basis sets. Furthermore, DFT is generally packaged as a

black-box program which allows for experimentalists and other non-computational special-

ists to approach these molecules in a first-approximation. Specialized applications of DFT

can provide insight into other properties of organometallic complexes. Optical and magnetic

properties are of particular interest to the experimental community, and DFT applications
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can provide accurate results in these contexts, provided sufficient care is taken by the prac-

titioner.

Where DFT scales favorably with respect to system size, another class of methods called

ab initio methods scale less favorably. As explained in Chapter 1 the full configuration inter-

action (FCI) scheme scales exponentially in system size, but gives the exact solution to the

electronic Schrödinger equation. The complete active space self-consistent field (CASSCF)

method, and the 2-RDM implementation of this method, are approximations to the FCI

scheme. Increasing the size of the active space yields a better approximation to the exact

(FCI) solution. In this way ab initio CASSCF is systematically improvable in a way that

DFT is not. For this reason, CASSCF is a more suitable method in systematically describing

the effects of electronic correlation in molecules compared to DFT. While DFT is inexpen-

sive and does provide some insight into the electron correlation, FCI and similar ansätzen

provide a systematic framework to understand electron correlation.
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CHAPTER 4

EXAMPLES OF ELECTRON CORRELATION IN

ORGANOMETALLIC CHEMISTRY

4.1 Vanadium oxo 2,6-bis[1,1-bis(2-pyridyl)ethyl]pyridine

Reprinted with permission from A.W. Schlimgen, C.W. Heaps, and D.A. Mazziotti, Journal

of Physical Chemistry Letters 7 627-631 (2016). Copyright 2016 American Chemical Society.

4.1.1 Introduction

Recent experimental interest in the catalytic properties of organometallic complexes has

generated significant questions about the nature of the reduction/oxidation (redox) event

with respect to the metal center and its ligand field. It is well known that the redox properties

of organometallic species can be dramatically altered via what are commonly known as

non-innocent ligand effects.1–7 In contrast the role of quantum entanglement, manifested

through two-electron correlation, is not so well understood in the context of ligand non-

innocence. Much work has shown that the nature of the redox event can be influenced

by tuning the electronic structure of the ligand field.8–12 As Wieghardt et al. suggested,

however, there seems to be no a priori way of determining whether a redox event will be

metal or ligand-centered.13 Chang and coworkers have also suggested the importance of

electron delocalization over ligand π orbitals in the apparent ligand-centered reduction of a

cobalt species.14 Furthermore, near degeneracies in the metal and ligand orbitals can provide

for circumstances in which ligand-centered redox events become favored over metal centered

events.15,16 Both of these effects are clues suggesting that two-electron correlation effects

may help tune ligand non-innocence, and may practically alter the character of a redox

event.

We suggest, therefore, that predicting the ligand non-innocence of these species may re-
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Figure 4.1: Structure of vanadium oxo 2,6-bis[1,1-bis(2-pyridyl)ethyl]pyridine. Vanadium is yellow, oxygen
red, nitrogen blue, carbon grey, and hydrogen white.

quire a two-electron correlated description. Unfortunately, well-established electronic struc-

ture methods like density functional theory (DFT), as a single-reference method, or complete

active space self-consistent field (CASSCF), as size limited, are systematically disadvantaged

in dealing with these effects in species of this complexity. Therefore we present a study uti-

lizing a two-electron correlated method that is generally applicable in the context of compli-

cated redox chemistry of non-innocent ligands. We demonstrate that a large-scale, explicitly

correlated method can be necessary to predict and characterize the ligand non-innocence in

redox active organometallic complexes.

While vanadium oxo transition-metal complexes are important in catalytic, bioinorganic,

and organometallic chemistries, the synthesis of a vanadium oxo complex with low-valent

vanadium (III) has been elusive.17–19 The recent reduction of vanadium (IV) oxo 2,6-bis[1,1-

bis(2-pyridyl)ethyl]pyridine dication (Fig. 4.1) to a dark blue substance suggested the poten-

tial first synthesis of low-valent vanadium (III) in a vanadium oxo complex (monocation).20

Despite its elusiveness, both ligand-field theory and conventional wave function calcula-

tions predict a metal-centered reduction of vanadium (IV) to vanadium (III) in the complex

through the addition of an electron to the dxy molecular orbital. Here we use large-scale

calculations, based on the two-electron reduced density matrix (2-RDM),21,22 to show that

quantum entanglement redirects the electron transfer to the pyridine ligands. The calcula-

tions reveal that the reducing electron becomes entangled among the five pyridine ligands
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with each ligand accepting a fraction (approximately one-fifth) of an electron. The results

imply that the synthesis of a low-valent vanadium oxo complex remains elusive, but more

importantly, reveal that the quantum entanglement, known for its central role in the Einstein-

Podolsky-Rosen (EPR) paradox,23,24 is responsible for altering the practical outcome of a

chemical electron transfer process.

In a pure quantum state quantum entanglement occurs when a particle, such as an

electron, has nonzero probability of being found in two or more domains where the domains

may be characterized by distinct positions or momenta. Formally, a pure quantum state

manifests entanglement between two or more domains if and only if its density matrix is

not expressible as a product of the density matrices of each domain.23,24 Furthermore, the

correlation of N electrons is a special type of quantum entanglement in which the N -electron

density matrix cannot be expressed as an anti-symmetrized product of one-electron density

matrices.21,22 Strong electron correlation is generally characterized as electron correlation

that cannot be expressed as a small perturbation of an uncorrelated (non-entangled) state.

The variational 2-RDM theory is a powerful approach to describing strongly correlated,

entangled electrons in molecular chemistry and condensed-matter physics.25–34 Previous

wave function calculations of the vanadium oxo complex did not correlate all of the electrons

and orbitals of each ligand’s π system due to computational limitations.20 While recently

developed wave function methods, like density matrix renormalization group, are potentially

applicable, such methods have well-documented limitations from their required topological

ordering of their orbitals, which has limited their applications to some transition-metal and

bioinorganic complexes.35,36 The present 2-RDM calculations, which are independent of the

orbital order, use approximately a million variables in the 2-RDM to represent implicitly

a wave function with sextillion (1021) variables and thereby, correlate all of the π orbitals

of the five pyridine ligands.37 The larger 2-RDM-based calculations uncover a dramatically

different quantum picture in which strong correlation and entanglement make ligand-centered

reduction favorable over metal-center reduction. The redirection of electron transfer by
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quantum entanglement as well as the computation of this redirection by 2-RDM methods

have important implications for electron-transfer phenomena including catalysis in chemical

and biological materials.

Two sets of advanced electronic structure calculations are analyzed to understand the

quantum entanglement in the reduction of the vanadium (IV) oxo complex to the vanadium

(III) oxo complex. In the first set, similar to prior calculations, 12 electrons and 10 orbitals on

the vanadium and the oxygen are correlated. In general agreement with ligand-field theory

and conventional chemical intuition, these calculations show a metal-centered reduction in

which the electron adds to the vanadium. The electrons in the computed wave function (or

2-RDM) do not exhibit appreciable correlation or entanglement. A second set of much larger

calculations, corresponding to 1021 quantum degrees of freedom, correlates 42 electrons and

40 orbitals on the vanadium, the oxygen, as well as all of electrons and orbitals associated

with the π orbitals of pyridine ligands. From these calculations we find a ligand-centered

reduction in which the reducing electron becomes entangled among the five pyridine ligands.

4.1.2 Results and Discussion

Comparison of the two starkly different results shows that quantum entanglement stabilizes

the reduction of the pyridine ligands and thereby, redirects the electron transfer from the

metal to the ligands. Hitherto, the second, larger calculation has not been attempted because

it requires a conventional wave function with 1021 variables, which is a trillion times more

variables than treatable by the fastest supercomputers. The present results were obtained

by computing each molecule’s 2-RDM directly without computation or storage of the many-

electron wave function. The computed 2-RDM displays multiple signatures of the quantum

entanglement including fractional occupations of the molecular orbitals and delocalization

of the electron density to the pyridine ligands.38

Ligand-field theory predicts that in the reduction of the vanadium (IV) oxo complex to

the vanadium (III) oxo complex an electron is added to the dxy highest occupied molecular
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Figure 4.2: Contour plots of electron density from the (HOMO) natural orbital of the (a) vanadium (IV)
oxo and the (b) vanadium (III) oxo complexes are compared. The electron densities are computed at the
[42,40] level of theory by the 2-RDM method. In (a) all of the electron density is located on the vanadium
oxide moiety in agreement with the ligand-field picture. In (b), however, electron density is spread over
not only vanadium oxide moiety but also the π space of the four equatorial pyridine ligands, reflecting the
entanglement of the electron among the nearly energetically degenerate pyridine ligands. Generated with
contour value 0.03, grid size 1, and 150 grid points. Vanadium is yellow, oxygen is red, nitrogens are blue,
carbons are black, and hydrogens are white.

orbital (HOMO) on the vanadium atom of the complex.39 Fig. 4.2 compares the contour plots

of electron density from the HOMO natural orbital of the (a) vanadium (IV) oxo and the (b)

vanadium (III) oxo complexes, respectively, computed by the [42,40] 2-RDM method where

[42,40] denotes 42 electrons in 40 orbitals. In (a) all of the electron density is located on the

vanadium oxide moiety in agreement with the ligand-field picture (Fig. 4.3). In (b), however,

electron density is spread over not only the vanadium oxide moiety but also the π space of

the four equatorial pyridine ligands. The contour-plot in (b) reveals a clear entanglement of

the electron among the nearly energetically degenerate pyridine ligands.

Analysis of the computed 2-RDM of the vanadium (III) oxo complex in the larger [42,40]

space reveals not only entanglement of the added (reducing) electron among the pyridine

ligands but also strong correlation of the added electron and the remaining electrons in which

the electronic wave function cannot be well represented by the perturbation of a mean-field

wave function. An important manifestation of the strong electron correlation is appearance

of partially occupied molecular orbitals, often called fractional orbital occupations. The frac-

tional orbital occupations from the [42,40] 2-RDM calculations are contrasted schematically

in Fig. 4.3 with the integer occupations from ligand field theory (LFT) and the [12,10] set.
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Figure 4.3: Ligand field theory (LFT) and 2-RDM theory predict different electronic pictures for the reduction
of vanadium (IV) oxo (left) to vanadium (III) oxo (right). While the vanadium (IV) oxo complex’s electronic
structure can be well approximated by the schematic molecular orbital diagram from LFT (left), two different
pictures of the vanadium (III) oxo product emerge from the [42,40] 2-RDM and LFT treatments (right).
An LFT treatment results in an uncorrelated picture where electrons are localized at the vanadium (III)
metal center, but a [42,40] 2-RDM treatment results in correlated electrons that are entangled throughout
the ligand π manifold, where fractional occupation numbers are represented by arrows of different size.
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Orbital Occupations
IV III

LFT [12,10] [42,40] LFT [12,10] [42,40]
HOMO - 1 2.000 1.913 1.881 2.000 1.974 1.876

HOMO 1.000 0.995 0.970 2.000 1.969 1.372
LUMO 0.000 0.087 0.147 0.000 0.031 0.258

LUMO + 1 0.000 0.056 0.106 0.000 0.026 0.221

Table 4.1: Orbital occupations indicate strong correlation and entanglement in the vanadium (III) complex
with the [42,40] active space: a quantitative comparison of the occupations for the highest and lowest
occupied molecular (natural) orbitals (HOMO and LUMO) as well as the next highest and next lowest
orbitals (HOMO-1 and LUMO+1). While LFT is uncorrelated with HOMO and LUMO occupations of 2
and 0 and the [12,10] set is close to the LFT limit, the [42,40] set is strongly correlated with HOMO and
LUMO occupations of 1.372 and 0.258, respectively.

The comparison of the [12,10] and [42,40] sets reveals starkly that the smaller orbital set

masks important strong electron correlation and entanglement effects that only emerge in

the larger [42,40] set when the π electrons (orbitals) of the pyridine ligands are allowed to

correlate with each other and the electrons (orbitals) of the vanadium oxide moiety.

Table 4.1 provides a quantitative comparison of the occupations for the highest and lowest

occupied molecular (natural) orbitals (HOMO and LUMO) as well as the next highest and

next lowest orbitals. While LFT is uncorrelated with HOMO and LUMO occupations of 2

and 0, the [42,40] set is strongly correlated with HOMO and LUMO occupations of 1.372

and 0.258. Furthermore, the correlation responsible for the fractional occupations generates

molecular orbitals that, in contrast to LFT and the [12,10] set, are substantially different

from the traditional d orbitals of the vanadium metal (denoted by V in Fig. 4.3), displaying

significant mixing with the ligand orbitals (denoted by L). Prior investigations only utilized

the smaller orbital set and thereby masked the significant entanglement effects.

Charges from Mulliken population analysis are shown for different moieties of the vana-

dium (IV) and vanadium (III) oxo complexes in Table 4.2.40 Mulliken populations reveal

the approximate electron populations per atomic orbital. While Mulliken populations are

most often computed from mean-field wave functions, in the present case they are computed

from highly correlated calculations including [12,10] and [42,40] 2-RDM calculations. For
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Mulliken Charges
[12,10] 2-RDM [42,40] 2-RDM

IV III ∆ IV III ∆
1 Vanadium 1.724 1.587 -0.147 1.684 1.721 0.037
1 Oxygen -0.493 -0.787 -0.305 -0.455 -0.479 -0.024
1 Pyridineax 0.22 0.134 -0.086 0.209 0.058 -0.151
4 Pyridineeq 0.874 0.429 -0.444 0.872 0.046 -0.826
2 Ethyl -0.336 -0.364 -0.028 -0.311 -0.346 -0.036

Table 4.2: Mulliken charges in the [12,10] and [42,40] sets provide two different pictures of reduction of
the vanadium oxo complex. In the [12,10] 2-RDM calculation the decrease in the charge of the vanadium
and oxygen atoms is substantial, which is in agreement with ligand-field theory’s prediction of a metal-
centered reduction. In contrast, the [42,40] 2-RDM calculation predicts a ligand-centered reduction in which
the electron is primarily added to the pyridine ligands. The calculations were performed utilizing DQG
N -representability conditions.

each complex charges are shown for the following moieties: (1) the vanadium atom, (2) the

oxygen atom, (3) the four equatorial pyridine ligands, (4) the axial pyridine ligand, and (5)

the four C2H3 groups connecting the equatorial pyridine ligands. Many types of population

analysis are available, and all of them have their limitations; however, changes, ∆, in charge

between the III and IV complexes, especially for collections of atoms such as the pyridine

ligands, are less sensitive to the specific analysis. In this case we use the populations to

summarize information contained in the computed 2-RDMs and reinforce other data such as

the electron densities in Fig. 4.2.

In the [12,10] space, reduction of the vanadium oxo complex reduces the charges on

the vanadium atom, the oxygen atom, and the pyridine ligands. The reduction of the

vanadium and oxygen atoms is substantial, which is in reasonable agreement with ligand-

field theory’s prediction of a metal-centered reduction. In contrast, the [42,40] 2-RDM

calculation shows no significant change in the net charge of the vanadium oxide moiety

with the charge of the oxygen decreasing slightly and the charge of the vanadium actually

increasing slightly. While prior investigations in restricted active spaces predicted a metal-

centered reduction, the present large [42,40] calculations predict a ligand-centered reduction

in which the electron is primarily added to the pyridine ligands. The reduction of the pyridine

ligands is stabilized through strong electron correlation and entanglement effects that are
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not included in either the ligand-field theory or the [12,10] electronic structure calculations.

Because of the entanglement, each pyridine ligand only needs to accept one-fifth of the

reducing electron.

The design of a spectroscopic experiment to probe the entangled electrons in the vana-

dium (III) oxo complex is an important open question. Vibrational spectroscopy, such as

infrared spectroscopy, is not likely to provide a sufficiently clear signature of the entangled

electrons. Even though the orbitals of the vanadium (III) oxo complex are fractionally oc-

cupied due to the entanglement, all of the electrons are spin paired because the vanadium

(III) oxo complex has a singlet ground state. Consequently, electron paramagnetic reso-

nance (EPR) spectroscopy cannot be employed to probe the molecular environment of the

electrons. EPR has been applied to the doublet vanadium (IV) oxo complex,20 but this

complex is not predicted by the theory to show any entanglement. Furthermore, an EPR

experiment on the triplet state of the vanadium (III) oxo complex would be a poor proxy for

the ground singlet state because the triplet state is significantly higher than the singlet state.

(DFT calculations show the triplet state to be 5-6 kcal/mol higher in energy than the singlet

state20 (8-9 kcal/mol in an STO-6G basis set) while parametric 2-RDM calculations41 in a

minimal (STO-6G) basis set show the triplet state to be 32.5 kcal/mol higher in energy than

the singlet state. The singlet-triplet gap from the 2-RDM method is larger than the gap

from DFT because the former method better captures the multi-reference correlation effects

that stabilize the singlet state.

4.1.3 Conclusions

While the quantum entanglement of the Einstein-Podolsky-Rosen (EPR) paradox may seem

esoteric, quantum entanglement has a significant role in real-world phenomena from super-

conductivity to photosynthesis.42 Here we find that quantum entanglement redirects the

electron transfer in the reduction of a transition metal vanadium oxo complex. While pre-

vious electronic structure calculations, restricted by computational limitations, supported
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conventional chemical wisdom in predicting a metal-centered reduction, much larger cal-

culations reveal a much richer interplay between chemistry and physics in which quantum

entanglement stabilizes a ligand-centered addition. The electron added in the reduction

becomes entangled among the pyridine ligands. The conventional chemical notion that pyri-

dine is not a good oxidizing agent is overturned by quantum entanglement where in the

entangled picture each pyridine ligand accepts only a fraction of the electron. The larger

calculations, required to observe the quantum entanglement, were enabled by 2-RDM theory

in which a two-electron quantity (2-RDM) with a million variables represents a wave function

with sextillion (1021) variables.25,26 The use of quantum entanglement to alter the outcome

of electron transfer in chemical processes has important chemical, physical, and biological

applications to both the prediction and the control of electrons in catalysis and materials.
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4.2 Nickel Dithiolates

Reprinted with permission from A.W. Schlimgen and D.A. Mazziotti, Journal of Physical

Chemistry A 121 9377-9384 (2017). Copyright 2017 American Chemical Society.

4.2.1 Introduction

Metal dithiolates are highly tunable,1,2 and have a wide range of applications and properties

including catalysis in water splitting and olefin transformations,3–5 proton-coupled electron

transfer,6 non-linear optical responses,7 and molecular conductivity and magnetization.8–17

We examine the oxidation series of bis(ethylene-1,2-dithiolato) nickel, or [Ni(edt)2](−2,−1,0)

where edt is ethylene dithiolate ligand (Fig. 4.4), which is paradigmatic of other more

substituted nickel dithiolate complexes.18,19

S

S S

S
Ni

Figure 4.4: Skeletal structure of bis(ethylene-1,2-dithiolato)nickel, or Ni(edt2)

The electronic structure of metal dithiolates has been widely studied in the density func-

tional theory (DFT) framework. DFT combined with X-ray absorption spectroscopy (XAS)

data has shown that the ligands in these species act as the source or sink of electrons during

the redox process, and the ligands are described as redox non-innocent.20–26 Ligand non-

innocence is not limited to metal dithiolates, however, and generally allows the metal ions to

assume unexpected oxidation states.27–30 In the case of nickel dithiolates the metal remains

in a Ni(II) oxidation state throughout the oxidative series.31 Along with a wide range of

DFT studies on this class of molecules, several ab initio studies have largely focused on pre-

dicting the singlet-triplet gap of the neutral complex.32–36 Finally, photoelectron37–39 and

femtosecond40 spectroscopy have recently been used to study the ionization and ultrafast

dynamics of these compounds.

We use two complementary 2-RDM methods to describe these compounds: the variational
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two-electron reduced density matrix (2-RDM) and anti-Hermitian contracted Schrödinger

equation (ACSE) methods (see Theory section for details).41,42 The variational 2-RDM

method scales polynomially in system size, unlike traditional ab initio wavefunction meth-

ods which scale exponentially, allowing variational 2-RDM to treat systems beyond the reach

of wavefunction methods. Variational 2-RDM theory has been used to describe static corre-

lation in a wide variety of applications including organometallic complexes, conducting poly-

mers, quantum dots, organic molecules, and hydrogen chains.43–52 Static (multi-reference)

correlation arises when the electronic structure of a system cannot be describe by a sin-

gle molecular-orbital diagram. Instead, two or more determinants must be included in the

zeroth-order (reference) description of the correlation. These previous applications have

shown the need for correlating large numbers of orbitals and electrons to capture entan-

glement beyond the limits of traditional wavefunction methods. In complete-active-space

calculations the orbitals that are correlated are known as active orbitals while the orbitals

that are not correlated are known as inactive orbitals. Here we compare two active spaces,

one in which only the ligand π orbitals and electrons are correlated, and another in which

both the ligand π and the five 3d orbitals of the nickel are correlated. While previous cal-

culations on the nickel complex have only treated the π space as the active space, 2-RDM

results from the of the vanadium oxo complex and manganese superoxide dismutase indicate

that both the π and d orbitals must be correlated to achieve a reasonable description of the

electron transfer.

ACSE has been applied to excited states in organic molecules, conjugated π systems,

conical intersections, and photoexcitation reactions, where it has been shown to achieve a

balanced description of static and dynamic correlation.53–63 To compute the singlet-triplet

energy gaps of the nickel complexes, we use the 2-RDM from the variational calculation

as an initial guess for the solution of the ACSE. The ACSE correlates all of the orbitals

in the molecule, capturing single-reference (dynamic) correlation from the inactive orbitals.

Although the ACSE depends upon not only the 2-RDM but also the 3-RDM, we reconstruct
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the 3-RDM from the 2-RDM by its cumulant expansion to approximate the solution to the

ACSE.64,65

4.2.2 Theory and Computational Details

We use the variational 2-RDM method to generate a correlated 2-RDM for the active space.

We seed the ACSE with this 2-RDM to further add the correlation from the inactive orbitals

including their interaction with the active orbitals. Here we utilize the PYSCF package for

the Hartree-Fock, integral generation, and orbital rotation steps for the variational 2-RDM

method. We also use PYSCF for the wavefunction CASSCF and multi-reference second-order

perturbation theory (MRPT2) calculations along with the DFT calculations and reported

meta-Löwdin populations.66,67

We optimized all molecular structures enforcing D2h point-group symmetry using the

B3LYP68,69 DFT functional with the GAMESS-US electronic structure package.70,71 The z

axis of the geometry is the normal of the square plane, and the x axis is oriented along the

long axis of the molecule. We call the σ anti-bonding (B1g) orbital the dx2−y2 orbital by

convention. We used a series of basis sets to study these molecules, cc-pVDZ, aug-cc-pVDZ,

cc-pVTZ, and aug-cc-pVTZ, but because we did not find significant variation in the results,

we report here the results from the cc-pVDZ basis set. The cc-pVDZ72,73 basis set has been

shown to be sufficient to model the fundamental, if not quantitative, chemistry of these

complexes.74

We utilize three different active spaces in this study. The π space is a ten electron and

eight orbital, or [10,8], active space for the neutral complex;36 we denote the treatment of this

space by the variational 2-RDM method as RDM(π). Including the eight 3d electrons in five

3d orbitals yields an [18,13] active space for the neutral complex, denoted by RDM(π & 3d).

We also study an [8,8] active space to study the singlet-triplet gap in the neutral complex,

which is constructed from the molecular orbitals corresponding to the eight natural orbitals

at the frontier of the [18,13] calculation. All core orbitals are frozen, i.e. they retain the

53



Hartree-Fock coefficients throughout the optimization. The molecular-orbital visualizations

presented here were generated with GMolden.75

4.2.3 Results

Static Correlation and Nickel d Orbitals

The reason for choosing the π and nickel d orbitals derives from the XAS transition assign-

ments for these complexes. In particular, the neutral complex exhibits transitions of metal

to ligand σ donation through the B1g orbital, and two transitions of B2g and B3g symmetry

which are metal to ligand π back-donation. In the monoanion the σ donation transition is

again present, along with a transition of a sulfur core electron to the ligand B2g π transi-

tion.22 While most other correlated studies have focused on the interplay of the π orbitals,

we show here that explicitly correlating the metal d orbitals is important.

Table 4.3 shows the resulting differences between the two active spaces. In the π active

Table 4.3: Natural-Orbital Descriptions for Ni(edt)2

RDM(π) RDM(π & 3d)
species type symmetry occupation type symmetry occupation

[Ni(edt)2]−2 π Au 1.999 dxz B2g 1.939
π B1u 1.922 π B1u 1.918

π-dxz B2g 1.920 π-dxz B2g 1.911
π-dyz B3g 0.081 dx2−y2 B1g 0.133

[Ni(edt)2]−1 π-dxz B2g 1.956 π B1u 1.862
π B1u 1.867 dxz B2g 1.411

π-dxz B2g 1.071 dx2−y2 B1g 0.986

π-dyz B3g 0.084 π-dxz B2g 0.719

[Ni(edt)2]0 π Au 1.941 π Au 1.549
π B1u 1.640 π B1u 1.343

π-dxz B2g 0.404 π-dxz B2g 0.622
π-dyz B3g 0.064 dx2−y2 B1g 0.608

Natural-orbital occupation numbers, symmetries and dominant atomic orbital de-
scription from variational 2-RDM with DQGT conditions in both active spaces.

space the dianion and monoanion are single referenced, as indicated by the near integer
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(c) B1u: 1.87 e-

(a) B3g: 0.08 e-
(d) B2g: 0.72 e-

(b) B2g: 1.07 e- (e) B1g: 0.99 e-

(f) B2g: 1.41 e-

LUNO

HONO

HONO - 1

RDM(π) RDM(π & 3d)

Figure 4.5: Visualized orbitals for the two active spaces in the monoanion with occupation numbers and
symmetry below. The larger active space includes the singly occupied 3dx2−y2 orbital, along with two
correlated B2g orbitals, which are completely uncorrelated in the smaller active space.

occupation numbers of the active orbitals. On the other hand, the neutral species clearly

exhibits multireference character based on the B1u, B2g, and B3g orbital occupations. In-

clusion of the d orbitals induces a significant change. Most interestingly we find that the

monoanion exhibits multireference correlation with the inclusion of the d orbitals. There

are two B2g type orbitals which have fractional occupation, along with the lone electron in

the B1g orbital. While the small active space predicted a B2g ground state, the large active

space predicts a B1g ground state. The fractional occupation numbers also yield insight into

the biradicaloid nature of the neutral complex.76

The inclusion of the d orbitals does little to change the occupation spectrum of the

dianion and neutral species. However, we observe that the last eight orbitals of the [18,13]

active space, which includes the metal-based B1g orbital, are critical to converging the active

space to a solution similar to the [18,13] result. Although the resulting [8,8] active space is

smaller than the π-only active space, it correlates several π and d orbitals, unlike the π only

active space. In the discussion of the singlet-triplet gaps we will use the 2-RDM from the

[8,8] active space to seed the solution of the ACSE.

Figure 4.5 visualizes the natural orbitals of the monoanion for the two active spaces.

55



Table 4.4: Ionization Potentials (Efinal − Einitial) for Ni(edt)2 (kcal/mol)

ionization potential (kcal/mol)
transition Hartree-Fock DFT RDM(π) RDM(π & 3d)

[Ni(edt)2]−2 to [Ni(edt)2]−1 -29.03 -51.36 -28.91 -41.67

[Ni(edt)2]−1 to [Ni(edt)2]0 70.71 56.95 45.17 58.91

The first oxidation is similar to the Hartree-Fock description when only correlating
the π system. Including the 3d orbitals as well results in the second oxidation being
very similar to the DFT/B3LYP result.

While the ligand π system plays a key role in the frontier orbitals in both cases, the natural-

orbital occupation numbers are significantly different for the two active spaces. The inclusion

of the 3d orbitals reveals the electron correlation in the B2g orbitals (Fig. 4.5 (d) and (f)).

The B2g orbital in the π-only active space has slight mixing with the metal B2g orbital (Fig.

4.5 (b)), but the important interactions between the metal and ligand B2g orbitals is fully

revealed only with the larger active space. Also, the monoanion is expected to be a Class III

delocalized species, which means the species is not only delocalized, but is expected to have

a non-integer valence occupation.77,78 This fractional occupation scheme is only elucidated

with the larger active space.

The different active spaces also predict differing degrees of static correlation and alters

the predicted ionization potentials for this series. Table 4.4 shows the ionization potentials

for Hartree-Fock, B3LYP, and the two active spaces studied here. We see that the small π-

only active space replicates the Hartree-Fock result for the first ionization, which is expected

because in this active space both the dianion and monoanion are not correlated. Since the

small π space already predicts strong correlation in the neutral species, the second ionization

is decreased relative to Hartree-Fock because of the correlation energy in the neutral species.

Because B3LYP treats the weakly correlated neutral molecule accurately but does not

capture the static correlation of the monoanion, B3LYP overestimates the first ionization

energy. In contrast, since both the monoanion and the neutral species in the larger active

space are correlated, the second ionization energy from B3LYP is close to that from the 2-

RDM method. The overestimation of the first correlation energy emphasize the challenge of
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Table 4.5: Ni(edt)2 Ligand Electron Count

ligand electron counta

species Hartree-Fock DFT RDM(π) RDM(π + 3d)

[Ni(edt)2]−2 113.64 113.21 113.64 113.66

[Ni(edt)2]−1 112.59 112.26 112.59 112.76

[Ni(edt)2]0 111.57 111.25 111.56 111.57

a The electron count is given by meta-Löwdin population analysis
and shows that vast majority of the oxidation occurs not in the
nickel 3d orbitals, which indicates a Ni(II) species in all cases with
a ligand-centered oxidation.

characterizing these species with single-reference methods that does not provide a balanced

description of single- and multi-reference electron correlation.74,79,80

We can also examine the non-innocent nature of the ligand with a simple population anal-

ysis. Table 4.5 gives the meta-Löwdin populations for everything except nickel 3d orbitals.

It is clear that for all methods studied here that the ligands are the source of the oxidized

electron. In all cases there are about eight nickel 3d electrons implying a Ni(II) oxidation

state. The differences associated with electron correlation do not affect the non-innocent

ligand picture significantly.

Singlet-Triplet Gaps and Dynamic Correlation

It is known from experiment that both the dianion and neutral species have diamagnetic

ground states, and calculations suggest a singlet diradical ground state for the neutral com-

plex.22 The degree of diradical character for metal dithiolates has been difficult to describe

for a variety of reasons, and the results are strongly method dependent.34,36,81 In contrast

to the ligand non-innocence results discussed above, the singlet-triplet gap is sensitive to

dynamic correlation not contained in the chosen active space.

We use MRPT2 (NEVPT2) and ACSE to describe the correlation beyond the active-

space correlation energy. As described above, the iterative solution to the ACSE incorporates

higher orders of perturbation theory than MRPT2.42 For the neutral complex we checked
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Table 4.6: [Ni(edt)2]0 Singlet-Triplet Gap (kcal/mol)

Esing - Etrip (kcal/mol)a

wavefunction methods RDM methods
Active-Space CASSCF NEVPT2 V2RDM ACSE

[8, 8] -9.67 -12.99 -9.45 -18.14

a Negative gaps indicate singlet ground states.

for convergence in the active space, and determined that an [8,8] active space is large enough

to observe the occupation spectrum in the [18,13] active space. We also checked for the

importance of the second d-shell effect, but the natural-orbital occupation spectrum is basi-

cally invariant to the addition of the 4d orbitals.82 With the second d-shell, an [18,18] active

space is required, which is also the far limit of wavefunction CASSCF capabilities. We built

the [8,8] active space using the Hartree-Fock orbitals corresponding to the last eight natural

orbitals from the [18,13] calculation.

Table 4.6 compares the singlet-triplet gap for CASSCF, NEVPT2, variational 2-RDM

and ACSE methods. Importantly, the variational 2-RDM and wavefunction CASSCF results

are very similar, and the correlation included by ACSE or NEVPT2 widens the singlet-triplet

gap considerably. We note that the singlet-triplet gap of the neutral species in the π and

d active space is positive, implying a triplet ground state. Including dynamic correlation,

however, yields a singlet ground state solution, and the ACSE result from the [8,8] active

space is very similar to that of the larger active-space ACSE solution.

While the ACSE can match the accuracy of the larger active space with a pruned [8,8]

active space including orbitals with the symmetries of critical π and d orbitals, the sufficiency

of such a pruned active space may not be apparent until after a larger active-space calculation

is performed. Ni(edt2) is the smallest of the nickel dithiolates, and expansion of the π

system or including polymetallic systems will be far beyond the capabilities of wavefunction

CASSCF, and therefore also beyond the reach of MRPT2 methods. Thus, the combination

of variational 2-RDM and ACSE is a useful tool for describing these systems: checking for

converging active spaces with variational 2-RDM, and capturing dynamic correlation with
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ACSE regardless of the active-space size.

Balancing the static and dynamic correlation in these species is essential to achieve even

a qualitatively correct picture of the singlet-triplet gap. Most studies have shown that the

singlet is the ground state in the neutral complex, so the [18,13] CASSCF/RDM description

fails in this respect. Some methods32–34 have assigned a singlet ground state for species

similar to this one with a singlet-triplet gap in the range of about 2000-9000 cm−1 or about

6-26 kcal/mol, which is consistent with the present results.

4.2.4 Conclusions

By comparing several correlation techniques including both wavefunction and RDM-based

methods, we have elucidated various ways electron correlation plays a critical role in the

electron transfer in nickel dithiolates. Entanglement of the electrons among the ligands leads

to a ligand-centered oxidation, while correlation of the electrons between the metal d and

ligand π orbitals contributes to nontrivial orbital filling in this oxidation series. Despite the

transfer being almost entirely ligand-centered, calculations correlating the π and d orbitals

reveal that the nickel dx2−y2 orbital plays an important role in accurately characterizing the

oxidation process. The monoanion is stabilized by a singly-occupied nickel dx2−y2 orbital

when it is included in the active space, in contrast to previous results that predict a π-type

singly-occupied orbital, while neglecting the d orbitals in the active space.

The singlet-triplet gap of the neutral complex in the nickel dithiolate series offers an-

other layer of complexity in the correlation picture. The complex, which is experimentally

diamagnetic, should exhibit a singlet ground state. Calculations correlating the π-only or

[8,8] active space predict singlet ground states, but including the full d orbital set leads to

a triplet ground state. However, the experimentally correct ground state, we observe, can

be recovered from the larger active spaces by including correlation of the inactive orbitals

through the solution to the ACSE.

The metal dithiolates, in particular, provide a rich set of examples to prove ligand non-
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innocence and electron correlation. In previous studies including the vanadium (III) oxo

complex and the manganese superoxide dismutase mimic the connection between electron

correlation and ligand non-innocence played an important role in the electron-transfer pro-

cess. Large variational 2-RDM calculations beyond the degrees of freedom treatable by

traditional wave functions were necessary to observe the stabilization of ligand-centered

reduction from the entanglement of the reducing electron among the ligands (or ligand or-

bitals)..43,45 For example, in the case of the vanadium oxo complex, active-space calculations

using CASSCF, limited in size by memory constraints, do not capture the entanglement and

hence, predict a metal-centered reduction.45,83 In the present case we observe that electron

correlation plays a critically important role in the fractional orbital occupations and singlet-

triplet gap while contributing significantly but not exclusively to the ligand non-innocence.

The present calculations, in conjunction with previous 2-RDM calculations, reveal that the

effects of strong electron correlation must often be included for accurate prediction of orbital

interactions, spin states, and non-innocent ligand effects.

The present 2-RDM study of nickel dithiolate can be expanded to more complex ligand

and multi-metallic transition-metal complexes. While larger π spaces and additional metal

d orbitals render wavefunction calculations like CASSCF and MRPT2 intractable, 2-RDM

methods like the variational 2-RDM method and ACSE can treat such systems with a com-

putational cost that grows polynomially with molecular system size. The present study of the

nickel dithiolates provides an early step in using 2-RDM methods to study the relationship

between electron correlation and chemical properties in the rich landscape of transition-metal

based chemistries.
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Avarvari, N. Localization versus Delocalization in Chiral Single Component Conduc-

tors of Gold Bis(dithiolene) Complexes. Journal of the American Chemical Society

2016, 138, 6838–6851.

(9) Valade, L.; Faulmann, C. In Conducting and Magnetic Organometallic Molecular

Materials,, M. F., Ouahab, L., Eds.; Topics in Organometallic Chemistry, Vol. 27;

Springer-Verlag Berlin Heidelberg: 2009, p 141.

61



(10) Kubo, K.; Kato, R. In Conducting and Magnetic Organometallic Molecular Materi-

als, Fourmigue, M., Ouahab, L., Eds.; Topics in Organometallic Chemistry, Vol. 27;

Springer-Verlag Berlin Heidelberg: 2009, pp 35–53.

(11) Miyazaki, A.; Enoki, T. In Conducting and Magnetic Organometallic Molecular Mate-

rials, Fourmigue, M., Ouahab, L., Eds.; Topics in Organometallic Chemistry, Vol. 27;

Springer-Verlag Berlin Heidelberg: 2009, pp 77–96.

(12) Kato, R. Conducting Metal Dithiolene Complexes: Structural and Electronic Proper-

ties. Chemical Reviews 2004, 104, 5319–5346.

(13) Stiefel, E. I., Dithiolene Chemistry: Synthesis, Properties, and Applications ; Karlin,

K. D., Ed.; Progress in Inorganic Chemistry, Vol. 52; John Wiley and Sons, Inc.:

Hoboken, NJ, USA, 2003.

(14) Olk, R.-M.; Olk, B.; Dietzsch, W.; Kirmse, R.; Hoyer, E. The chemistry of 1,3-dithiole-

2-thione-4,5-dithiolate (dmit). Coordination Chemistry Reviews 1992, 117, 99 –131.

(15) Coomber, A. T.; Beljonne, D.; Friend, R. H.; Bredas, J. L.; Charlton, A.; Robertson,

N.; Underbill, A. E.; Kurmoo, M.; Day, P. Intermolecular interactions in the molecular

ferromagnetic NH4Ni(mnt)2·H2O. Nature 1996, 380, 144–146.

(16) Cassoux, P.; Valade, L.; Kobayashi, H.; Kobayashi, A.; Clark, R.; Underhill, A. Molec-

ular metals and superconductors derived from metal complexes of 1,3-dithiol-2-thione-

4,5-dithiolate (dmit). Coordination Chemistry Reviews 1991, 110, 115 –160.

(17) Mahadevan, C. 1,2-Dithiolene complexes of transition metals-structural systematics

and physical properties. Journal of Crystallographic and Spectroscopic Research 1986,

16, 347–416.

(18) Bushnell, E. A. C.; Burns, T. D.; Boyd, R. J. The one-electron oxidation of a dithiolate

molecule: The importance of chemical intuition. Journal of Chemical Physics 2014,

140, 18A519.

62



(19) Bushnell, E. A. C.; Burns, T. D.; Boyd, R. J. The one-electron reduction of dithiolate

and diselenolate ligands. Physical Chemistry Chemical Physics 2014, 16, 10897–10902.

(20) Ray, K.; DeBeerGeorge, S.; Solomon, E.; Wieghardt, K.; Neese, F. Description of the

Ground-State Covalencies of the Bis(dithiolato) Transition-Metal Complexes from X-

ray Absorption Spectroscopy and Time-Dependent Density-Functional Calculations.

Chemistry – A European Journal 2007, 13, 2783–2797.

(21) Queen, M. S.; Towey, B. D.; Murray, K. A.; Veldkamp, B. S.; Byker, H. J.; Szilagyi,

R. K. Electronic structure of [Ni(II)S4] complexes from S K-edge X-ray absorption

spectroscopy. Coordination Chemistry Reviews 2013, 257, 564 –578.

(22) Sproules, S.; Wieghardt, K. Dithiolene radicals: Sulfur K-edge X-ray absorption spec-

troscopy and Harry’s intuition. Coordination Chemistry Reviews 2011, 255, 837 –860.

(23) Eisenberg, R.; Gray, H. B. Noninnocence in Metal Complexes: A Dithiolene Dawn.

Inorganic Chemistry 2011, 50, 9741–9751.

(24) Lim, B. S.; Fomitchev, D. V.; Holm, R. H. Nickel Dithiolenes Revisited: Structures and

Electron Distribution from Density Functional Theory for the Three-Member Electron-

Transfer Series [Ni(S2C2Me2)2]0,1−,2−. Inorganic Chemistry 2001, 40, 4257–4262.

(25) Herman, Z. S.; Kirchner, R. F.; Loew, G. H.; Mueller-Westerhoff, U. T.; Nazzal, A.;

Zerner, M. C. Electronic spectra and structure of bis(ethylene-1,2-dithiolato)nickel

and bis-(propene-3-thione-1-thiolato)nickel. Inorganic Chemistry 1982, 21, 46–56.

(26) Ray, K.; Begum, A.; Weyhermüller, T.; Piligkos, S.; van Slageren, J.; Neese, F.;

Wieghardt, K. The Electronic Structure of the Isoelectronic, Square-Planar Com-

plexes [FeII(L)2]2− and [CoIII(LBu)2]− (L−2 and (LBu)−2 = Benzene-1,2-dithiolates):

An Experimental and Density Functional Theoretical Study. Journal of the American

Chemical Society 2005, 127, 4403–4415.

63



(27) Kaim, W. Electron Transfer Reactivity of Organometallic Compounds Involving Radical-

Forming Noninnocent Ligands. Proceedings of the National Academy of Sciences, India

Section A: Physical Sciences 2016, 86, 445–457.

(28) Lyaskovskyy, V.; de Bruin, B. Redox Non-Innocent Ligands: Versatile New Tools to

Control Catalytic Reactions. ACS Catalysis 2012, 2, 270–279.

(29) Kaim, W. The Shrinking World of Innocent Ligands: Conventionaland Non-Conventional

Redox-Active Ligands. European Journal of Inorganic Chemistry 2012, 2012, 343–

348.

(30) Hoffmann, R.; Alvarez, S.; Mealli, C.; Falceto, A.; Cahill 3rd, T. J.; Zeng, T.; Manca,

G. From Widely Accepted Concepts in Coordination Chemistry to Inverted Ligand

Fields. Chemical Reviews 2016, 116, 8173–92.

(31) Stiefel, E. I.; Waters, J. H.; Billig, E.; Gray, H. B. The Myth of Nickel(III) and

Nickel(IV) in Planar Complexes. Journal of the American Chemical Society 1965,

87, 3016–3017.

(32) Herebian, D.; Wieghardt, K. E.; Neese, F. Analysis and Interpretation of Metal-

Radical Coupling in a Series of Square Planar Nickel Complexes: Correlated Ab

Initio and Density Functional Investigation of [Ni(LISQ)2] (LISQ=3,5-di-tert-butyl-

o-diiminobenzosemiquinonate(1-)). Journal of the American Chemical Society 2003,

125, 10997–11005.

(33) Ray, K.; Weyhermüller, T.; Neese, F.; Wieghardt, K. Electronic Structure of Square

Planar Bis(benzene-1,2-dithiolato)metal Complexes [M(L)2]z (z = 2, 1, 0; M = Ni, Pd,

Pt, Cu, Au): An Experimental, Density Functional, and Correlated ab Initio Study.

Inorganic Chemistry 2005, 44, 5345–5360.

(34) Bachler, V.; Olbrich, G.; Neese, F.; Wieghardt, K. Theoretical Evidence for the Sin-

glet Diradical Character of Square Planar Nickel Complexes Containing Two o- Semi

quinonato Type Ligands. Inorganic Chemistry 2002, 41, 4179–4193.

64



(35) Petrenko, T.; Ray, K.; Wieghardt, K. E.; Neese, F. Vibrational Markers for the Open-

Shell Character of Transition Metal Bis-dithiolenes: An Infrared, Resonance Raman,

and Quantum Chemical Study. Journal of the American Chemical Society 2006, 128,

4422–4436.

(36) Serrano-Andrés, L.; Avramopoulos, A.; Li, J.; Labéguerie, P.; Bégué, D.; Kellö, V.;
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4.3 Geometry Optimization of CrF6 and Nickel Dithiolate

Revisited

4.3.1 Introduction

Analytical gradient evaluation is an important tool for accurately and efficiently describing

properties and geometries for electronic structure theory. Formulations of the analytical nu-

clear gradients have been described for a wide range of wavefunction methods. The first order

gradient for Hartree-Fock is known as well as several higher order derivatives, and analytical

gradients for many explicitly correlated methods have been described. Gradients for config-

uration interaction (CI) as well as several active space variants have been implemented,1–7

along with analytical gradients of several multireference perturbation theory (MRPT) meth-

ods.8–10 The coupled-cluster (CC) analytical gradients are known for CCSD, CCSD(T), and

more recently described for CCSDT.11–15 First and second order derivatives are known for

natural orbital function theory (NOFT),16,17 as well as for density-matrix renormalization

group (DMRG).18,19 Calculation of the CI gradient using a variationally optimized two-

electron reduced density matrix (2-RDM) has also been recently implemented.20

The analytical gradient for the molecular electronic Hamiltonian is generally non-trivial

to calculate because the basis set of atomic orbitals is typically centered on the nuclei, which

results in complicated dependence on the overlap integral derivatives. The atomic orbital

basis is in general not variationally optimized for the wavefunction, so the gradient does not

take the simple form of the Hellmann-Feynman theorem.21 Here we describe a transformation

of the atomic orbital basis which allows for the variational optimization of all parameters that

yields a gradient expression similar to the Hellmann-Feynman theorem. Direct minimization

of the energy with respect to the transformed 2-RDM can be achieved using a semi-definite

program (SDP) subject to N -representability constraints.22–24 Analytical gradients of the

full two-electron Hamiltonian can be used to study the geometry dependence of species when

two-electron correlation is explicitly accounted for.
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Electronic structure methods that accurately capture electron correlation are useful for

describing molecules which cannot be described by a single-reference, or one-electron picture.

These molecules must be described by multireference methods, which explicitly calculate the

two-electron correlation energy that is neglected in a mean-field or Hartree-Fock picture. Tra-

ditional methods which explicitly calculate the electronic wavefunction scale exponentially

in system size, which considerably limits the complexity of molecules those methods can

treat. This unfavorable scaling can be avoided by recognizing that the electronic energy

is an exact linear functional of the two-electron reduced density matrix (2-RDM). Here we

utilize a polynomially scaling algorithm to generate the 2-RDM directly, instead of from

the contraction of a wavefunction. This allows us to treat correlated systems far beyond

the reach of traditional wavefunction methods. Here we present two examples of geometry

optimizations using the analytical gradients of the molecular Hamiltonian. First we describe

the CrF6 molecule using a nearly full-valence active space, and predict the preferred confor-

mation and bond lengths with good accuracy. We also describe the geometry dependence of

correlation in a square-planar strongly correlated nickel complex.

Computational Details

All active space calculations were performed with the pyscf package using an integrated

V2RDM module for the RDM-CASSCF calculations.25 CCSD(T), Hartree-Fock, and DFT

calculations were performed with GAMESS-US.26,27 All DFT calculations were performed

with the B3LYP functional.28,29 Testing of other functionals (PBE0 and ωb97x-D) yielded

similar results to B3LYP. The geometry optimization procedure for RDM-CASSCF is imple-

mented in pyscf using the standard python package scipy to perform the BFGS optimization.

The CASSCF geometry optimizations utilized no symmetry and is not a constrained opti-

mization, while the CCSD(T), CCSD, Hartree-Fock, and DFT calculations are symmetry

constrained optimizations for the CrF6 results.

For the CrF6 RDM-CASSCF calculations, we selected the initial guess orbitals from a
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Hartree-Fock calculation. We include all fluorine 2pz orbitals, the chromium 3d orbitals as

well as the chromium 3p orbitals. This active space is 42 electrons in 26 spatial orbitals, or

[42,26]. We present results from two basis sets: cc-pvdz, and cc-pvtz. Similar results were

obtained in the aug-cc-pvdz basis.

We also present results from the nickel dithiolate compound, (ethylene-1,2-dithiolato)nickel,

or Ni(edt)2 (Fig 4.7). We expand upon recently published results to examine the geome-

try dependence of the electronic structures of the doublet monoanion and singlet neutral

complex. We use an active space of all of the π and d orbitals ([19,13] for the monoanionic

complex) and compute the optimal geometry using the V2RDM method as well as wave-

function generated RDMs. These calculations are computed with the cc-pvdz basis, and we

compute both symmetry constrained and unconstrained geometries. Previous calculations

were performed using B3LYP optimized geometries.

4.3.2 Results

CrF6

Chromium hexafluoride (CrF6) can exist in both an octahedral (Oh) or trigonal prismatic

(D3h) geometric conformation (Fig. 4.6). The strong covalency of the Cr-F bond suggests

that static correlation effects should be important for this compound.30 While we expect

static correlation to be important in describing the electronic structure, calculations with

small active spaces and no dynamic correlation included suggest that the D3h conformer is

energetically favored over the octahedron. Using the analytical gradients for CASSCF with

V2RDM with a large active space we confirm that the Oh conformation is favored.

CrF6 has proven challenging to describe spectroscopically as well as theoretically.31–33

Theoretical methods utilizing Hartree-Fock, small active space CASSCF, and single reference

perturbation theory indicated that the D3h structure was favored.34 Couple-cluster (CC) and

multireference second-order perturbation theory (MRPT2), and density functional theory

73



(a)

(b)

Figure 4.6: Structures for CrF6 in octahedral, (a), and trigonal prismatic, (b), conformations

(DFT) on the other hand convincingly predict that the Oh structure is favored.31,35,36 The

success of CC and MRPT2 over Hartree-Fock and CASSCF suggests that the CrF6 molecule

has important energetic effects stemming from dynamic correlation, but active space studies

utilizing MRPT2 also indicate that a multireference wavefunction is necessary for a quantita-

tively accurate MRPT2 result. CrF6 provides a good example to test geometry optimization

using a large active space to clarify the balancing of static and dynamic correlation in the

energetic favorability of one conformer over the other.

The active space for CrF6 is [42,26] which includes the five 3d and three 3p chromium

orbitals, along with 18 fluorine 2p orbitals. MRPT2 studies with different active spaces

showed that correlating the Cr 3p and F 2p orbitals significantly lowers the predicted barrier.

Smaller active spaces with MRPT2 suggest that the Oh conformation is significantly more

stable than the D3h conformation relative to CCSD(T) results. A full [42,26] calculation

was not possible with the RASPT2 method,36 although a smaller calculation excluding the

chromium 3p orbitals suggests that all fluorine 2p orbitals are essential in the active space.
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Table 4.7: Differences in bond lengths and energies for various methods for two different conformations of
CrF6. The V2RDM result consistently predicts a longer bond than CCSD(T), and predicts a slightly smaller
energy difference.

Basis Method ∆E (kcal/mol)a rOh
(Å) rD3h

(Å)

cc-pvdz
V2RDM [42,26] 9.6 1.77 1.78

CCSD(T) 11.9 1.74 1.75
CCSD -4.0 1.72 1.74

cc-pvtz
V2RDM [42,26] 10.5 1.74 1.75

CCSD(T) 12.4 1.72 1.73
CCSD 2.1 1.70 1.71

ANO-rcc
CASPT2[10,10] b 49.0 1.75 1.73

RASPT2[42,26]b 15.4-17.8 - -

a ∆E = ED3h
− EOh

b These are the results of several RASPT2[42,26] single-point calcu-
lations36 using the optimized geometries from the CASPT2[10,10] re-
sults.37

V2RDM is, on the other hand, capable of computing the 2-RDM of the active space including

the 3p orbitals. We also computed the results from an active space excluding the chromium

3p orbitals, and while the trigonal prismatic species is higher in energy and the splitting is

reasonable (∼10 kcal/mol), the D2h symmetric conformer is preferred over the Oh conformer.

It is clear that all fluorine 2p and chromium 3p orbitals are required for an accurate active

space picture.

The V2RDM results in Table 4.7 are very close to the CCSD(T) results. The overes-

timation of the bond lengths is likely due to N -representability error in the semidefinite

programming optimization. N -representability error will overestimate the correlation en-

ergy in a system, and it will also tend to overestimate bond lengths by over-delocalizing

the electron density. The failure of CCSD implies that the perturbative triples from the

CCSD(T) method are essential for a correct description of the correlation. The V2RDM re-

sults correctly predict the relative energy from purely configuration interaction picture with

no perturbative correction.

Table 4.8 shows the natural orbital occupation numbers from the V2RDM and CCSD

calculations. Both the octahedral and trigonal prismatic complexes are similarly correlated.
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Table 4.8: Natural orbital occupations near the occupied-unoccupied gap for the active space RDM calcu-
lation and CCSD for the octahedral conformation of CrF6. All RDM results are from the [42,26] active
space.

Oh D3h
cc-pvdz cc-pvtz cc-pvdz cc-pvtz

Index RDM CCSD RDM CCSD RDM CCSD RDM CCSD
34 1.92 1.96 1.93 1.96 1.94 1.96 1.95 1.96
35 1.91 1.96 1.93 1.96 1.88 1.95 1.91 1.95
36 1.91 1.96 1.93 1.96 1.87 1.93 1.89 1.94
37 1.91 1.96 1.93 1.96 1.87 1.93 1.89 1.94
38 1.91 1.95 1.92 1.96 1.86 1.93 1.88 1.94
39 1.91 1.95 1.92 1.96 1.86 1.93 1.88 1.94
40 0.30 0.07 0.24 0.06 0.35 0.08 0.27 0.07
41 0.30 0.07 0.24 0.06 0.23 0.08 0.19 0.07
42 0.30 0.06 0.24 0.06 0.23 0.08 0.19 0.07
43 0.18 0.06 0.15 0.06 0.18 0.08 0.15 0.07
44 0.18 0.06 0.15 0.06 0.18 0.05 0.15 0.05

S

S S

S
Ni

Figure 4.7: Skeletal structure of Ni(edt)2.

The CCSD results, however, show significantly less multireference character compared to the

V2RDM results, which is indicated by the lack of fractional occupation numbers near the

occupied-unoccupied gap. The correlation that CCSD does not capture can be accounted

for with CCSD(T), but is already accounted for with the V2RDM treatment.

Previous calculations involving the electronic structure of CrF6 suggested that balancing

static and dynamic correlation is essential for accurately comparing the two conformers.

Our large active space calculations shows that both effects can be accounted for with a large

enough active space. The relative energies and predicted bond lengths from the purely active

space calculation are in good agreement with the CCSD(T) calculations, so the additional

perturbative correction may be avoided with the large active space treatment.
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(a)

(b)

Figure 4.8: Representative natural orbitals for the Ni(edt)2 complex. The B1g σ-type orbital, (a), and the
B2g π-type orbital, (b), play an important role at the occupied-unoccupied gap in the monoanion Ni(edt)2

complex.

Nickel Dithiolates

Recent RDM calculations showed that the doublet monoanionic species is a strongly corre-

lated species with a previously unreported radical occupying the B1g dxy-type orbital, with

significant occupation in the π-type B3g orbital as well.38 Furthermore, we showed that the

singlet-triplet gap of the closed-shell species can be improved by additional calculations that

include dynamic correlation. Here we examine both the neutral and monoanion and the

effects of geometry on the electronic structure.

The monoanion case presents an interesting dependence on geometry. Previous single-

point RDM calculations suggested that the metal-sulfer σ-antibonding orbital (B1g) was

singly occupied. This is in contrast to the DFT result which suggest that the π-type B2g

orbital was singly occupied. These orbitals are presented in Figure 4.8. The RDM results

also indicated that the monoanion is multireferenced, with non-negligable occupation in

the B2g orbital. Optimizing the geometry with wavefunction CASSCF with the symmetry
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Table 4.9: Selected bond lengths for the [Ni(edt)2]−1 optimized geometries for a [19,13] active space of the
D2h and C1 wavefunctions as well as the C1 V2RDM solution, and the B3LYP D3h minimum.

Parameter WF D2h WF C1 RDM C1 B3LYP D2h
Ni-S1 2.4324 2.3058 2.3187 2.2167
Ni-S2 2.4324 2.3060 2.3189 2.2167
S1-C1 1.7242 1.7638 1.7466 1.7426
S2-C2 1.7242 1.7637 1.7466 1.7426
C1-C2 1.3720 1.3418 1.3544 1.3596

Table 4.10: Occupation numbers and atomic orbital description for [Ni(edt)2]−1 using a [19,13] active space
including all π and nickel 3d orbitals.

WF D2h WF C1 RDM C1
Index Occupation Type Occupation Type Occupation Type

59 1.922 π 1.906 π 1.930 σ
60 1.379 π-dxz 1.805 σ 1.527 π
61 1.047 dx2−y2 1.055 π-dxz 1.028 π-dxz
62 0.681 π-dxz 0.238 dx2−y2 0.592 dx2−y2
63 0.077 π 0.085 π 0.047 π
64 0.069 π 0.083 π 0.009 π

constrained to the D2h point group gives a similar result (Table 4.10). Intriguingly, when the

symmetry constraint is relaxed, the complex slightly prefers (about 7mH) a non-symmetric

solution which is closer to a C2v conformation, and slightly shorter Ni-S bond lengths. Both

the C1 and D2h solutions, however, predict slightly longer bond lengths than the B3LYP

optimized geometry. While there is a stationary point on the C1 B3LYP surface it is favored

over the D2h solution by only about 10−6 a.u.; we compare several geometries in Table 4.9.

Most significantly, the occupations of the B1g and B2g orbitals switch relative the D2h

solution, and the π-type orbital is predicted to be singly occupied (Table 4.10). Importantly,

the degree of multireference correlation is similar for both the symmetric and non-symmetric

solutions, which is indicated by the occupation spectrum.

Finally, we note that in our previous study of nickel dithiolates, the singlet-triplet gap

of the neutral complex at the B3LYP optimized geometry with an active space of π and d

orbitals was qualitatively incorrect. This active space predicting a triplet ground state. This

was corrected either with the inclusion of dynamic correlation, or utilizing a smaller active
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space. Optimizing the geometry using this active space resulted in a qualitatively correct

singlet-triplet gap of about 4.3 kcal/mol, which is consistent with previously published results

using several different methods.

In spite of several decades of probing with DFT and ab initio methods, it seems clear that

the electronic structure of nickel dithiolates is not completely understood from an electron

correlation perspective. These complexes are likely strongly influenced by multireference cor-

relation, and that a careful treatment of correlation is important for finding energy minima

on the potential energy surface. While in the case of the monoanion described above, the

differences in geometric parameters between the DFT and RDM minima are not particularly

striking, the stationary points provide significantly different pictures of the electronic struc-

ture. The neutral species has been studied as an example of a singlet diradical, and it the

present results make clear that the relaxation of the geometry are important for predicting

a qualitatively correct singlet-triplet gap.

4.3.3 Conclusions

Using a polynomially scaling correlated treatment of several transition metal complexes

along with analytical gradients for the CASSCF wavefunction, we have demonstrated the

importance of large active spaces in determining reasonable geometries for strongly correlated

molecular systems. The CrF6 results show that large active spaces are required to predict

reasonable conformational energy differences without resorting to perturbative corrections.

The case of the nickel dithiolates is intriguing since the electronic structure seems strongly

influenced by slight changes in the geometry. The significant multireference character of

these complexes, and their many analogues, will likely add another layer of complexity to

the understanding of their ligand non-innocent character, as well as their interesting charge-

transfer and other excited states.

The V2RDM method combined with the analytical gradients of the CASSCF ansatz

provides a powerful tool to interrogate large active spaces and their geometric dependencies.

79



Molecules with extended π systems, multiple metal centers, and strongly covalent bonding

all require large active spaces which are frequently out of reach for traditional wavefunction

methods, but are tractable with V2RDM.
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