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ABSTRACT

Grazing transits present a special problem for statistical studies of exoplanets. Even though

grazing planetary orbits are rare (due to geometric selection effects), for many low to mod-

erate signal-to-noise cases, a significant fraction of the posterior distribution is nonetheless

consistent with a grazing geometry. A failure to accurately model grazing transits can there-

fore lead to biased inferences even for cases where the planet is not actually on a grazing

trajectory. With recent advances in stellar characterization, the limiting factor for many

scientific applications is now the quality of available transit fits themselves, and so the time

is ripe to revisit the transit fitting problem. In this paper, we model exoplanet transits using

a novel application of umbrella sampling and a geometry-dependent parameter basis that

minimizes covariances between transit parameters. Our technique splits the transit fitting

problem into independent Monte Carlo sampling runs for the grazing, non-grazing, and tran-

sition regions of the parameter space, which we then recombine into a single joint posterior

probability distribution using a robust weighting scheme. Our method can be trivially par-

allelized and so requires no increase in the wall clock time needed for computations. Most

importantly, our method produces accurate estimates of exoplanet properties for both graz-

ing and non-grazing orbits, yielding more robust results than standard methods for many

common star-planet configurations.

xiv



CHAPTER 1

INTRODUCTION

Roughly 75% of all known exoplanets have been discovered via transit surveys, giving tran-

siting planets an outsized influence on our ability to constrain both exoplanet demographics

and planet formation models. In most cases, our best answers remain data-limited: the

precision of available transit measurements is insufficient to distinguish between theoretical

models. Until recently, uncertainties on transit parameters were dominated by uncertainties

on stellar quantities (especially stellar radii), but with recent advances in stellar character-

ization via Gaia DR2 astrometry [Gaia Collaboration et al., 2018, Berger et al., 2018] and

via California Kepler Survey spectroscopy [Petigura et al., 2017, Johnson et al., 2017], the

achievable precision on planetary radii and orbital elements derived from transit surveys is

now limited predominantly by the quality of the transit fits themselves [Petigura, 2020].

The keystone transit parameter which must be accurately estimated in order to allow ac-

curate estimates of all underlying planet properties is the impact parameter. Unfortunately,

impact parameters are notoriously difficult to estimate and consequently have seldom been

the focus of transit lightcurve analyses. Instead, most previous studies have focused on

measuring transit depths and durations, both of which are usually well-constrained by ob-

servations [e.g. Mullally et al., 2015, Thompson et al., 2018]. Still, the limiting factor when

converting transit observables into planetary radii, inclinations, and eccentricities is more

often than not the least well constrained variable, so we must address the challenge of measur-

ing impact parameters head-on. The problem is vital because transit observables can rarely

be translated into planet properties on a one-to-one basis, and, furthermore, doing so usually

requires at least some knowledge of the transit impact parameter. For planetary radii, this

requirement arises because transit depths contain information about stellar limb darkening

in addition to information about planetary radius, while for inclinations and eccentricities

the requirement arises because transit durations contain information about transit chord
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length as well as information about orbital velocity. In all cases then, accurately deriving

planet parameters from transit observations requires knowing how far from the stellar center

the planet transits, which is precisely what the impact parameter measures. The methods

developed in this paper thus first and foremost represent a means of obtaining the high-

est quality impact parameter measurements possible as a stepping stone toward obtaining

correspondingly high quality estimates of planetary radii and other orbital elements.

One particularly pressing open question in exoplanet science is whether the so-called

radius valley is fully or only partially depleted of planets [Fulton et al., 2017, Fulton and

Petigura, 2018, Van Eylen et al., 2018, Hardegree-Ullman et al., 2020, Petigura, 2020]. An-

swering this question demands a sharper picture of the exoplanet period-radius distribution,

which can only be developed by making better measurements of planetary radii, which in

turn depend on estimates of transit impact parameters. Better empirical constraints on

the statistics of planets in and around the radius valley will illuminate how planets evolve

over their lifetimes, whether by photoevaporation [Owen and Wu, 2017], by core-powered

mass loss [Ginzburg et al., 2018, Gupta and Schlichting, 2019], or by some combination of

mechanisms [Neil and Rogers, 2020].

In addition to revealing the properties of individual planets, better estimates of individual

exoplanet properties will almost immediately lead to a better understanding of exoplanet

demographics and exo-system architectures. Although 1D distributions of exoplanet sizes,

spacings, inclinations, and eccentricities have been analyzed in detail [Howard et al., 2012,

Fabrycky et al., 2014, Winn and Fabrycky, 2015, Millholland et al., 2017, Weiss et al.,

2018, Mills et al., 2019], parameter uncertainties have thus far precluded a joint analysis

which synthesizes all available data into a single coherent picture that captures trends both

within and between systems. The methods for performing this sort of synthesis have already

begun to be developed [He et al., 2019, Gilbert and Fabrycky, 2020], but progress has been

stymied by insufficiently precise estimates of planet properties for a suitably large sample
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of objects. As soon as such measurements become available, many of their implications

for exoplanet demographics and exo-system architectures will almost immediately become

apparent because we will be able to analyze the new data using existing, already mature

techniques.

Because high-precision impact parameter measurements are rare, dynamical analyses of

exo-systems have often relied on measurements of transit durations [e.g. Fabrycky et al., 2014]

or transit duration variations [e.g. Hamann et al., 2019, Millholland et al., 2021] in order to

make inferences into the structure of dynamically active systems. While transit durations

and their variations present a rich source of information [Dawson, 2020], any conclusion

reached via consideration of these quantities will implicitly depend on assumptions about

the impact parameter (due to the aforementioned degeneracy between orbital speed and

transit chord length). When stellar parameter uncertainties are large, the role of transit

parameter degeneracies will be obscured and we can safely marginalize over uncertainties

introduced by the transit model. But with estimates of stellar properties becoming more

refined every day, we can no longer overlook the interaction between transit durations and

impact parameters —we must consider all quantities simultaneously and in detail.

If we wish to make reliable transit measurements over the full range of exo-system archi-

tectures, we must overcome a trick of geometry that leads to strong degeneracies between

transit parameters for planets on grazing trajectories. In particular, although the planet-to-

star radius ratio, rp/R?, and the normalized impact parameter, b, are largely uncorrelated

for non-grazing orbits, these two parameters become highly correlated for grazing geometries.

Because grazing orbits are rare [Kipping and Sandford, 2016], the standard approach has

been to reject suspected grazing or near-grazing bodies from statistical studies all together

[e.g. Petigura, 2020]. However, for many low to moderate signal-to-noise cases, a significant

fraction of the posterior distribution is nonetheless consistent with a grazing geometry, even

for planets which most likely orbit on non-grazing trajectories. A failure to accurately model
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grazing transits can therefore lead to biased inferences even for cases where the planet is not

actually on a grazing orbit. Although the grazing degeneracy has been known about for some

time [Rowe et al., 2014, 2015], the severity of the problem as it pertains to near-grazing orbits

- i.e. orbits with 0.7 . b < 1− rp/R?, as compared to grazing orbits or non-grazing orbits -

has only recently begun to be appreciated. Because planetary orbits are (probably) isotropi-

cally oriented (formally, cos i is isotropically distributed), the unavoidable conclusion is that

as many as one third of all existing transit measurements may be corrupted by incomplete

consideration of grazing transit geometries. The true situation is probably not so dire, but

without a reliable way to distinguish grazing from near-grazing or non-grazing orbits, it is

difficult to know which transit measurements should be trusted.

The goal of this paper is twofold: first, to find a way to reliably identify grazing and near-

grazing transits, and second, to accurately fit these transits using a method that produces

unbiased estimates of a exoplanet properties. The tool for the job is umbrella sampling [Torrie

and Valleau, 1977], a statistical technique which is closely related to importance sampling.

Although the application of umbrella sampling is standard practice is the field of molecular

dynamics where it originated, umbrella sampling methods have only recently begun to be

applied to astrophysical problems [Matthews et al., 2018]. Umbrella sampling is a powerful

tool for sampling multimodal and other complicated posterior distributions and is suitable for

many astrophysical applications. So, in addition to addressing the specific problem of transit

lightcurve fitting, we aim for this paper to serve as an accessible introduction to umbrella

sampling for astronomers unfamiliar with this fruitful technique. Our present work was

primarily inspired by Matthews et al. [2018], which also stemmed from the twin motivations

of applying umbrella sampling to an astrophysical problem (in their case, sampling the low-

probability tails of distributions in order to compare cosmological models) and introducing

umbrella sampling to astronomers in a pedagogically accessible manner.
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CHAPTER 2

THE GEOMETRY OF GRAZING TRANSITS

In this section, we review a few salient aspects of transit lightcurve modeling relevant to

the analysis of grazing transits. A full pedagogical introduction to the geometry of transit

lightcurves is presented in Winn [2010].

2.1 The transit model

A transit lightcurve can be fully specified by just five parameters when the following as-

sumptions are met: (1) the planet’s orbit is circular, (2) the stellar disk has uniform surface

brightness, (3) the planet is opaque, (4) mp << M?, so that the small planet approximation

holds, (5) the starlight is from a single, unblended star, and (6) at least two transits are ob-

served such that the planet’s orbital period can be determined [Seager and Mallén-Ornelas,

2003]. In practice, conditions 3-6 are met under most ordinary circumstances. Conditions 1

and 2 in general are not met - real planets often have eccentric orbits and real stars typically

have non-negligible limb darkening - but techniques for modifying the simple five parameter

model to account for these complications are well developed [Mandel and Agol, 2002, Ford

et al., 2008, Dawson and Johnson, 2012, Kipping, 2013, Luger et al., 2019]. Regardless, most

real exoplanet transit lightcurves possess a shape similar enough to the idealized case that

an examination of the simple five parameter model is instructive.

The observables which can be directly recovered from a single transit light curve are the

mid-transit time, t0, the transit depth, δ, the transit duration, T , and the ingress/egress

timescale, τ (see Figure 2.1). When multiple transits are observed, the orbital period, P ,

can be inferred as well. From these five observables, one can derive four physical quantities:

the planet-to-star radius ratio, r ≡ rp/R?, the scaled separation, a/R?, the mean stellar

density, ρ? , and the normalized impact parameter, b, defined as
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δ
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b

Figure 2.1: Schematic illustration of a non-grazing transit geometry with the correspond-
ing lightcurve approximated as a trapezoid. The transit depth, δ; transit duration, T ;
ingress/egress duration τ ; mid-transit time, t0; impact parameter, b; and 1st through 4th

contact points, tI - tIV , are indicated. Note that for this study, the transit duration, T ,
will always refer to the full first-to-fourth contact duration, T14, unless otherwise specified
because this is the only duration which is defined for all grazing and non-grazing geometries.
The approximation τ12 = τ34 (i.e. ingress and egress timescales are equal) is valid as long
as eccentricities are not very large. Figure adapted from Winn [2010].

b =
a cos i

R?

(
1− e2

1 + e sinω

)
(2.1)

where i is the sky projected inclination, e is the orbital eccentricity and ω is the argument

of periastron [Seager and Mallén-Ornelas, 2003, Winn, 2010].

When fitting a model to photometric data, the lightcurve can be described by any non-

degenerate combination of the five observables {P, t0, δ, T, τ} and the four physical quantities

{r, a/R?, b, ρ?} or any derivable quantity thereof (e.g. cos i, the sky-projected inclination).

These five parameters constitute the model basis set, and choosing which parameters are
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best for a given problem presents a surprisingly difficult challenge. In practice, P , t0, and δ,

are usually well constrained by the data, so most reasonable basis sets will include P , t0, and

either δ or r (or slight modifications of these quantities) as the first three free parameters.

The transit duration, T , is usually well constrained by the data as well, but for even modestly

noisy lightcurves, τ is difficult to resolve, making the selection of the final basis parameter

a non-trivial task. Moreover, because τ ≈ 5 min is shorter than the observing cadence in

many cases (∆t ≈ 30 min for Kepler long cadence data and TESS primary mission full

frame images), data binning often precludes a precise ingress/egress characterization even

for high signal-to-noise transits [Kipping, 2010, Price and Rogers, 2014]. The ratio T/τ is

as important as the values of T and τ in isolation, so the choices of these final two basis

parameters must be considered in tandem. A straightforward approach is to use the basis

pair {T, τ} directly, although one might just as easily choose {b, ρ?}, {T14, T23} or even more

exotic pairs such as {b2, 1/T}. Numerous basis sets have been proposed in the literature

[e.g. Bakos et al., 2007, Carter et al., 2008, Pál, 2008], although none has yet been adopted

as the standard set applied in all cases. This lack of a standard basis set and the wide

variety of different parameterizations in use speaks to the subtle challenge of transit model

fitting. Often the motivating factor for choosing one basis set over another is the degree

to which model parameters are mutually orthogonal. While state-of-the-art computational

tools can usually handle moderate - or even strong - covariances between parameters [Neal,

2011, Foreman-Mackey et al., 2013], in many circumstances the best tactic for improving

performance is still to reparameterize a model into an orthogonal basis. This is no easy task,

as the optimal choice of basis set is often context dependent. To make matters worse, it

is often not obvious when the “right” basis set has been found, and selecting the “wrong”

basis set can lead to inefficient exploration of the posterior distribution that nevertheless

appears to appears to produce well mixed posterior chains. As we will demonstrate below,

these complications can even propagate through to quantities such as r which are usually

7



assumed to be robust against changes in model parameterization.

Throughout this study, T will refer to the full first-to-fourth contact transit duration

T14 unless otherwise noted, and this will be the transit duration we adopt throughout.

In practice, however, the center-to-center contact transit duration, Tc−c, sometimes called

the 1.5 to 3.5 contact is usually better constrained by the data and is preferred as a model

parameter over T14. We have chosen to adopt T14 here because it is the only transit duration

which is readily defined for all grazing and non-grazing geometries. One could alternatively

use the full width half max transit duration, TFWHM, which can be defined in relation to

the transit depth, δ, for strongly for strongly grazing geometries (b > 1) where Tc−c is

undefined. However, this parameterization would necessitate numerical determination of

the lightcurve and introduce additional covariances, negating a primary motivation for our

parameterization efforts. In §4.2 will discuss how to modify our proposed transit modeling

technique in order to incorporate different duration parameters. For the time being, we limit

consideration to T14, which simplifies our discussion considerably and allows us to focus on

the ideas which are unique to this paper.

In addition to adopting five of the geometric and physical basis parameters discussed

above, most transit lightcurve models will also need to include some way to handle both

nonzero limb darkening and nonzero eccentricity. The former necessitates the introduction

of at least one new model parameter, whereas the latter can be accomplished without any

new parameters at all.

The standard approach for handling nonzero limb darkening is to employ a quadratic

limb darkening law [Mandel and Agol, 2002, Kipping, 2013]. Although other limb darkening

laws exist in the literature [Claret, 2000, Claret and Bloemen, 2011], the quality of avail-

able photometric data rarely justifies using more than two limb darkening parameters. For

some applications one may wish to impose priors on the limb darkening coefficients with

constraints derived from physical laws, but the more general approach is to marginalize over
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uncertain limb darkening using uninformative priors [Kipping, 2013]. The effect of nonzero

limb darkening on the transit shape is to “round out” the bottom of the transit and add

curvature to the ingress and egress. While the inclusion of limb darkening is often neces-

sary, the added flexibility in an already under-constrained problem can make inferring the

ingress/egress duration - and thus the impact parameter and other related quantities - even

more difficult. Changes in stellar surface brightness becomes most extreme near the limb of

the star, making inferences of transit parameters for grazing or near-grazing transits highly

sensitive to changes in the stellar limb darkening profile. Throughout this paper, we adopt

the uninformative quadratic limb darkening treatment advocated for by Kipping [2013].

The standard approach for handling nonzero eccentricity is to employ the so-called photo-

eccentric effect [Ford et al., 2008, Dawson and Johnson, 2012]. A planet on an eccentric

orbit will travel with a variable velocity, and depending on the orientation of the orbit’s

periastron, the planet’s velocity during transit may be either sped up or slowed relative to

the expectation for a circular orbit with the same semimajor axis. An increase (decrease)

in velocity translates into a shortened (lengthened) transit duration, so by comparing the

ratio of the observed transit duration to the predicted circular transit duration, the orbital

eccentricity can be recovered. The situation is complicated somewhat by the interaction of

the periastron and the orbital inclination, and depending on the orientation of the orbit, an

eccentric orbit may produce a higher or lower impact parameter relative to that of a circular

orbit. Once again, impact parameter plays a central role in transit modeling. Predicting the

circular transit duration requires an independent estimate of the stellar density, and so in

practice we usually estimate orbital eccentricity by comparing the transit constrained stellar

density obtained from fitting a circular transit model, ρcirc, to our reference density derived

from independent observations, ρobs. The pertinent equation [Ford et al., 2008, Dawson and

Johnson, 2012] is
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ρcirc
ρobs

=
(1 + e sinω√

1− e2
)3

(2.2)

where e is the eccentricity and ω is the argument of periastron. Although there are

confounding factors which may alter the measured transit duration [Kipping, 2014], nonzero

eccentricity is usually the dominant factor. Tracking eccentricity via the photoeccentric

effect is in fact often a better approach than directly incorporating the variables {e, ω} into

the transit model because only one of the two eccentricity vector components (e sinω) is

constrained by primary transit observations, while the other (e cosω) is not, at least to low

order in e. Eccentricity can thus be seamlessly integrated into the transit model without

introducing any new model parameters.

With all of this in mind, we will take as our fiducial basis set the parameters

{P, t0, log r, b, log T, q1, q2}. The first five variables are drawn from the geometric and phys-

ical transit parameters described above, where the logarithm on r and T enforces positivity

of the two scale parameters and facilitates sampling over multiple orders of magnitude; the

variables q1 and q2 are the quadratic limb darkening coefficients from Kipping [2013], defined

as

q1 = (u1 + u2)2 (2.3)

q2 =
u1

2(u1 + u2)
(2.4)

where u1 and u2 are the standard quadratic limb darkening coefficients [Mandel and Agol,

2002, Claret, 2000]. As we will see shortly, this basis set performs quite well for non-grazing

transits but performs poorly for grazing transits due to an emergent degeneracy between r

and b in the grazing regime.
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2.2 Model degeneracy in the grazing regime

We will now consider the specific challenges that arise when modeling the transit lightcurves

of exoplanets on grazing trajectories. In the discussion that follows, the term “grazing” refers

to any transit geometry for which the planetary disk does not fully overlap the stellar disk

at the mid-transit point. In other words, we consider a transit to be non-grazing if b ≤ 1− r

and grazing if b > 1− r.

Before examining the mathematics of grazing transits, let us first examine the quali-

tative features of grazing vs non-grazing transits. Figure 2.2 illustrates how the transit

shape changes as the planet’s trajectory moves from the non-grazing regime into the grazing

regime. At higher impact parameters, the transit chord is shortened, reducing the transit

duration. Furthermore, at higher impact parameters, the planet crosses a dimmer region

of the limb-darkened stellar disk, reducing the transit depth as well. The change in transit

shape is gradual for 0 ≤ b . 1 − 2r, then changes rapidly as the planet enters the near-

grazing transition region. When the planet crosses the grazing boundary at b = 1 − r, the

transit switches from U-shaped to V-shaped. For high signal-to-noise cases, this change in

morphology can be used to distinguish between grazing and non-grazing transits. For lower

signal-to-noise cases, however, there is enough flexibility in the model that the shape of the

transit is ambiguous and so it is unclear whether a planet is on a grazing or non-grazing

trajectory. In particularly troublesome cases, this ambiguity can lead to a strong degeneracy

between r and b.

If the shape of ingress/egress can be resolved or the mean stellar density is known to

high precision, then the transit lightcurve of a small planet on a center-crossing orbit (b = 0)

can be easily distinguished from that of a larger planet on a grazing or near-grazing orbit

(b ≈ 1). Resolving ingress/egress from a single transit requires a high cadence to adequately

sample the ingress/egress shape. However, many targets have been observed only in Kepler

long cadence mode or TESS full frame images, with τobs ≈ 30 min considerably longer
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than the typical ingress/egress timescale, τ ≈ 5 min. One can in principle sidestep the

binning issue and resolve the ingress/egress shape by observing multiple transits, but this

approach requires a precise estimate of the orbital ephemeris which can be obscured by the

presence of uncertain transit timing variations. So, data binning can still inhibit accurate

characterization of the transit shape, even for high signal-to-noise cases [Kipping, 2010, Price

and Rogers, 2014].

For a typical stellar density precision and a typical photometric noise level, the transit

shape is ambiguous and the basis set {r, b, T} is flexible enough to accommodate a wide range

of transit shapes. These various complications make impact parameters extremely difficult

to measure, and inconsistencies become apparent upon comparing results between different

Kepler data releases. Figure 2.3 plots the impact parameters reported by Kepler DR22

[Mullally et al., 2015] against those reported by Kepler DR25 [Thompson et al., 2018]. Each

point on the figure marks an individual Kepler Object of Interest (KOI) reported in both

catalogs and so points should cluster around the line b22 = b25. The high degree of scatter

indicates that the actual results are inconsistent, despite the fact that they were obtained

from nearly identical input observations and similar data processing pipelines. Although

there is some evident correspondence between the catalogs for high impact parameters (b &

0.7), there is nonetheless a substantial fraction of points which report b ≈ 0 in one catalog

and b ≈ 1 in the other. Even the 1D single-catalog distributions exhibit inhomogeneity, with

a pile-up of reported impact parameters near b = 0 seen in both catalogs. In fact, the pile-up

is most severe in the more recent catalog. Because constraints on r and b inferred from transit

lightcurves are correlated for stars with non-negligible limb darkening, any mismeasurement

of impact parameter will propagate through to a mismeasurement of planetary radius as

well.

A full derivation of the analytic equations governing transit lightcurves for both grazing

and non-grazing geometries is presented in Mandel and Agol [2002], which we summarize
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Figure 2.2: Lightcurve model illustrating how the transit shape changes as a function on
impact parameter, b. This model is for a warm Neptune orbiting a Sun-like star with
model parameters r = 0.05, P = 13.0 days, R? = R�, M? = M�, u = (0.4, 0.25). Warm
colored, solid lines indicate grazing or near-grazing transits (informally defined here as b &
0.8), while cool-colored, dashed lines indicate non-grazing transits. As b increases, transit
duration decreases (due to the shorter transit chord) and transit depth decreases (due to
stellar limb darkening). There is little change in the transit shape between 0 ≤ b . 0.5,
making differences between low impact parameters difficult to resolve. The transit depth
and duration both change more rapidly above b & 0.5. At b = 1 − r = 0.95, the transit
morphology switches from “U-shaped” to “V-shaped”, providing a diagnostic avenue for
distinguishing grazing from non-grazing transits, although the effects of limb darkening blur
this transition somewhat.
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Figure 2.3: Impact parameters reported by Kepler DR22 [Mullally et al., 2015] vs DR25
[Thompson et al., 2018]. Plotted values correspond to best-fit point estimates. Each point
indicates a single Kepler Object of Interest reported in both catalogs, so points should cluster
around the line b22 = b25. The high degree of scatter in the actual data indicates that results
are inconsistent and therefore unreliable. While there is some correspondence of values where
b & 0.7, in a substantial fraction of cases one catalog reports b ≈ 0 while the other reports
b ≈ 1. A pile-up of reported values near b = 0 can be seen in both catalogs, indicating
that results are inaccurate. Because r and b are correlated for stars with non-negligible limb
darkening, any mismeasurement of b will propagate through to a mismeasurement of r.

14



here. For a uniform (i.e. zero limb darkening) stellar source, the fractional change in flux

during transit is

Λ(r, z) =


1
π

[
r2κ0 + κ1 − 1

2ζ
]

1− r < z < 1 + r

r2 0 ≤ z ≤ 1− r
(2.5)

where z = z(t) is the is the normalized separation of centers and

κ0 = cos−1[(r2 + z2 − 1)/2rz]

κ1 = cos−1[(1− r2 + z2)/2z]

ζ =
√
z2 − (1 + z2 − r2)2

(2.6)

Making the substitution z(t0) → b at mid-transit time t0 gives the transit depth, δ =

Λ(r, b). For non-grazing trajectories, Λ is independent of b, whereas for grazing ones Λ has a

complicated dependence on b and r. It is this complicated geometry that leads to parameter

degeneracies and considerable difficulties when modeling grazing transits. The key problem

is that the covariance properties of the transit parameters change drastically in the grazing

regime compared to the not-grazing regime. More specifically, whereas b and r are nearly

uncorrelated for non-grazing geometries, they become highly correlated for grazing ones.

The upshot is that a basis set which performs well in the non-grazing regime may perform

quite poorly in the grazing regime, and vice versa.

In the grazing regime, as a planet moves to higher b with fixed r, the overlap area

between the stellar and planetary disk will decrease, thereby reducing the transit depth.

However, if r is allowed to float as a free parameter, a large b can be compensated for by a

commensurate increase in r. Thus r and b become almost perfectly correlated and sometimes

a sampler will find an extremely large radius (rp � R?) and extremely high impact parameter

(b� 1), which is obviously unphysical. This is a well known problem in transit fitting [Rowe

et al., 2014, 2015] and is a clear case where common sense is in conflict with the analysis.
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Unfortunately, the degeneracy problem is not isolated to a few easily identified cases, but

instead affects any planet for which a grazing geometry can not be conclusively ruled out.

The r − b degeneracy can be readily seen upon inspection of real Kepler data. Figure

2.4 demonstrates that compared to isotropic expectations for the cumulative KOI catalog,1

there is an overabundance of supergiant planets (rp & 2RJ ) found on grazing trajectories.

For objects with astrophysically sensible radii, the fraction of planets inferred to be on

grazing trajectories is roughly in line with expectations, but for implausibly large super-giant

planets, nearly every KOI has a quoted impact parameter consistent with a grazing transit.

Furthermore, a number of these grazing super-giants cluster at the b = 1 + r boundary

that marks where planets are not only on grazing orbits, but on extremely grazing orbits

for which the planetary and stellar disks barely overlap at all. While it is possible there is

some complicated selection effect at play wherein only super-giants on grazing orbits pass

all vetting thresholds necessary to be included in the cumulative KOI catalog, the simpler

explanation is that the majority of these supposed super-giants are actually super-Earths

or mini-Neptunes on non-grazing orbits, with inferred r and b values that are artifacts of a

transit fitting procedure gone awry.

2.3 Experiments using simulated data

In order to illuminate the origin of the skewed r−b distribution seen in real data, we perform

a straightforward experiment which applies a Markov Chain Monte Carlo (MCMC) model

fitting routine to synthetic data. In the next several paragraphs, we describe our method for

simulating data and for subsequently fitting a transit model to that data using Hamiltonian

Monte Carlo [HMC; Neal, 2011]. The casual reader may wish to skim these paragraphs so

as not to become bogged down in the details. The important point is that we simulate an

ordinary transit of an unremarkable star-planet system and then model that transit using

1. https://exoplanetarchive.ipac.caltech.edu
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Figure 2.4: Distribution of rp/R? and b for cumulative Kepler Object of Interest
(KOI) planet candidates. Data were downloaded from the NASA Exoplanet Archive
(https://exoplanetarchive.ipac.caltech.edu) on 18 July 2021. Left panel : joint 2D distri-
bution of rp/R? and b. Each point represents an individual validated or candidate planet.
The red shaded region highlights planets inferred to orbit on a grazing trajectory. There is
a suspicious pile-up of planets near b ≈ 1.25 at the b = 1 − r boundary, hinting that the
radius and impact parameter measurements derived for these planets may not be reliable.
Non-isotropic structure in the distribution among planets on non-grazing trajectories - par-
ticularly near b = 0 - suggests that measurements for these planets should be approached
with some skepticism as well. Right panel : fraction of planets inferred to be on grazing tra-
jectories as a function of radius ratio. The red line plots the relation f = 2r/(1+r), which is
the geometric upper limit on how many planets are expected to be on grazing orbits, ignoring
any reduced detection efficiencies for grazing transits. For planets with physically plausible
radii (rp . 2RJ ), the observed fraction of grazing transits is in line with expectations, but
for super-giant planets an overabundance of KOIs are found on grazing trajectories, again
suggesting that their radius and impact parameter measurements may be unreliable.
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our fiducial basis set and standard Monte Carlo sampling techniques.

The details of our data simulation procedure are as follows. First, we simulate a low

signal-to-noise transit of a warm Jupiter on a near-grazing, P = 13 day circular orbit around

a Sun-like star. The period was calculated in order to create a 3 hr transit duration for an

impact parameter b = 0.85. We generated 500 data points between t0 ± T , each with an

integrated exposure time of 14.4 minutes (0.01 days). The finite data points were spaced

randomly over the interval in order to minimize aliasing artifacts that might arise from a

uniform observing cadence. We then added σF /F = 104 ppm Gaussian noise to the data.

We did not include any long term trends or correlated noise in our simulation. Ground-truth

parameter values are collected as simulation J-85 in Table 2.1, and the simulated photometry

is shown in the middle panel of Figure 2.5.

We parameterized the model using our fiducial basis set - {P, t0, log r, b, log T, q1, q2} -

plus a baseline flux offset, F0, and a jitter term, log σF . We held P fixed at the true value

and placed uninformative priors on all other variables, the mathematical details of which

are collected in Table 2.2. Fixing P is equivalent to assuming that the planet’s ephemeris

is tightly constrained, which is often the case even for noisy transits. Placing uninformative

priors on log T is roughly equivalent to placing uninformative priors on both ρ? and e.

Although in practice most applications will use the best available stellar characterization

to place at least a modestly informative prior on ρ? (and, indirectly, on T and e via the

photoeccentric effect), for our present experiment we are more concerned with the sampler

behavior (i.e. whether MCMC chains are well behaved) rather than the posterior inferences.

Our philosophy is that the model should converge regardless of any particular choice of prior,

so we adopt minimally restrictive priors wherever possible.

We sampled from the posterior distribution using HMC as implemented by PyMC3 [Sal-

vatier et al., 2016] and the No U-Turn Sampler [NUTS; Hoffman and Gelman, 2011]. Each

sampling run consisted of two independent chains tuned for 5000 steps and sampled for 1000
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Parameter Unit J-22 J-85 J-100 SE MN MHZ
Star
R? R� 1.0 1.0 1.0 0.92 0.92 0.37
M? M� 1.0 1.0 1.0 0.86 0.86 0.38
u1 - 0.40 0.40 0.40 0.48 0.48 0.46
u2 - 0.25 0.25 0.25 0.22 0.22 0.28

σF ppm 1× 104 1× 104 5× 103 300 300 200
Planet
P days 3.6 13.0 44.9 21.0 21.0 37.0
rp R⊕ 11.2 11.2 11.2 1.3 2.2 0.38
b - 0.22 0.85 1.00 0.70 0.98 0.70
T hrs 3.0 3.0 3.0 3.24 1.26 2.33

Derived
r - 0.103 0.103 0.103 0.012 0.020 0.009
γ - 7.57 1.36 0.0 25.2 2.48 32.7
λ - 0.091 0.026 0.011 0.004 0.001 0.003

Table 2.1: Ground-truth parameter values for simulated lightcurves used to compare a stan-
dard sampling approach to our new method. The quantities λ and γ are defined in Equation
3.1. All simulated planets were placed on circular orbits. The first set of simulations (J-22,
J-85, & J-100) placed a Jupiter-sized planet around a Sun-like star at three different impact
parameters in order to produce a non-grazing (b = 0.22), nearly grazing (b = 0.85), and
grazing (b = 1.00) geometry; the orbital period was scaled to preserve a circular orbit for a
consistent transit duration T = 3 hrs. The second pair of simulations (SE, MN), placed a
super-Earth (rp = 1.6R⊕) and a mini-Neptune (rp = 2.2R⊕ on a 21 day orbit around a K
star; this experiment was designed to mimic the detection of radius valley planet that will
require a precise impact parameter measurement in order to determine the its composition.
The final simulation (MHZ) placed a small rocky planet in the habitable zone of an M-dwarf.
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Figure 2.5: Simulated lightcurve photometry for a Jupiter-size planet on a circular orbit
around a Sun-like star with various impact parameters. The orbital period was adjusted to
maintain a consistent transit duration of T = 3 hrs. The solid colored lines show the true
underlying model while the grey points have additive Gaussian noise. The low signal-to-noise
ratio of the transit makes the orbital trajectory (grazing vs. non-grazing) ambiguous. Top
panel : b = 0.22, placing the planet on a non-grazing trajectory, corresponding to model J-22
in Table 2.1. Middle panel : b = 0.85, a near-grazing trajectory (model J-85). Bottom panel :
b = 1.0, a grazing trajectory (model J-100).
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Parameter Prior
P fixed
t0 N (0.0, 2.4)
log r U(−4,−0.02)
b U(1− r, 1 + r)
log T U(−0.6, 0.8)
q1, q2 U(0, 1)
F0 N (0, 1)
log σF N (0, 1)
ρ? see text
e see text

Table 2.2: Model priors. Normal distributions N = N (µ, σ) and uniform distributions
U = U(min,max). Note that b is defined as a conditional distribution predicated on r, i.e.
f(b) ≡ f(b|r). The limb darkening treatment of Kipping [2013] places uninformative priors
on the two quadratic limb darkening coefficients.

draws, for a total of 2000 samples per run. We deliberately left the independent chains short

in order to highlight the stochastic nature of the problem, but note that with HMC the

autocorrelation length is typically much shorter than for standard random walk Metropolis-

Hastings algorithms [Metropolis et al., 1953, Hastings, 1970], so that the number of effective

samples is usually & 25% and under ideal circumstances can approach 100%. This high

effective sample rate is achievable with HMC because the algorithm adds a “momentum”

term to the proposal generation which enables much larger steps sizes compared to a random

walk. During the tuning phase (analagous to the burn-in phase of other MCMC routines),

the sampler “learns” the posterior geometry and adaptively selects an optimal steps size for

efficient exploration of the posterior. While the computational cost per step is higher for

HMC compared to random walk Metropolis-Hastings, the cost per effective sample is usually

considerably lower, especially for high dimensional problems. HMC has only recently begun

to gain popularity among astrophysicists, so we direct the interested reader to the excellent

review by Betancourt [2017], as well as tutorials for the Python software packages PyMC32

2. https://docs.pymc.io
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[Salvatier et al., 2016] and exoplanet3 [Foreman-Mackey et al., 2021b,a].

Figure 2.6 illustrates results of four independent attempts to model the simulated transit

data using HMC. The only difference from run-to-run was the random number seed for

the sampler. Despite identical setups, each run produced a remarkably different posterior

distribution, sometimes getting stuck in the grazing regime and sometimes failing to explore

that regime altogether. The issue is not merely that the chains had not converged, and even

increasing the length of the sampling and/or tuning phase by orders of magnitude did not

reliably produce consistent results. The root of the problem is the complicated geometry,

with two “sticking points” for the sampler. One sticking point is at the grazing to non-

grazing transition, b = 1 − r, and the other is in the tails of the distribution at high b and

large r. Because standard sampling methods cannot be counted on to adequately sample

both the grazing and non-grazing portions of the distribution, our inferences are unreliable,

and we must find a new method for modeling exoplanet transit lightcurves.

The problem is two-fold. First, we need to use a different basis set for grazing vs. non-

grazing geometries because the covariance properties of r and b are quite different between

the two regimes. Second, we need to find a way to efficiently explore the full posterior space

without getting stuck at the grazing transition boundary. The solutions to these problems

are interrelated and are discussed in the next two sections of this paper.

3. https://docs.exoplanet.codes
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A B

C D

Figure 2.6: Corner plots of the posteriors from four identical MCMC runs of model J-85
using our fiducial {log r, b} basis. See §3.2 and Table 2.1 for details of the model setup. The
only difference between the runs was the random seed for the Markov chains. Despite their
identical setups, each run produces a remarkably different posterior geometry. Panel A: The
sampler appears to fully explore the posterior region, with most samples consistent with a
non-grazing geometry and a smaller fraction extending into the grazing regime. There is a
“dog leg” feature at b ≈ 1 where the geometry transitions from non-grazing to grazing, and
there is a strong degeneracy between log r and b for grazing transits. Panel B : The sampler
fails to explore the grazing regime entirely, giving the illusion of a well-behaved posterior.
Panel C : The sampler extends to high impact parameters, but catches at the boundary
between grazing and non-grazing geometries, producing a sharp spike at b ≈ 1. Panel D :
The samples pile up at b ≈ 1, leading to a bimodal posterior distribution that barely explores
the grazing regime at all. Increasing the length the tuning phase and/or the sampling phase
does not reliably fix these issues.
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CHAPTER 3

A NEW BASIS FOR GRAZING TRANSITS

Our solution to the grazing transit problem is to split the Monte Carlo sampling into separate

runs for the grazing (b > 1 − r) and non-grazing (b < 1 − r) regimes. We then combine

these independent runs into a single posterior distribution using umbrella sampling (see §4).

Before we describe our full umbrella sampling routine, we first present a new basis set which

is designed for optimal performance in the grazing regime.

3.1 Specification of the model parameters

Of the seven parameters in our fiducial basis set - {P, t0, log r, b, log T, q1, q2} - four can be

carried over to our new grazing basis without modification: P , t0, q1, and q2. Both P and

t0 are generally tightly constrained by the data and are minimally covariant with the other

parameters, and the two uninformative limb darkening coefficients, q1 and q2 [Kipping, 2013],

perform well for both grazing and non-grazing orbits. Only r, b, and T now remain. The

transit duration, T , is usually well constrained by the data (albeit somewhat less so than P

and t0) and is closely related to the eccentricity via the photoeccentric effect; we therefore

maintain log T as one of our seven basis parameters. With five parameters in common

between the fiducial non-grazing basis and our new grazing basis, our reparameterization

effort now hinges on a transformation of r and b (which are highly covariant for grazing

transits) into a new parameter pair which is more nearly orthogonal for grazing geometries.

Rather than producing new parameters wholesale, our strategy is to find some mapping of

{r, b} → {x1, x2} with the desired orthogonality when b > 1− r.

After some experimentation, we identified a suitable pair of quantities, which we define

according to the non-linear combination
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λ = r2 + βr

γ =
β

r

(3.1)

where β ≡ 1 − b is a convenience variable. Because both r and b are unitless, λ and γ

are unitless as well.

The first quantity, λ, is derived from a linear approximation to the area of overlap between

two spheres (Equation 2.5). Thus, λ is closely related to the transit depth in the grazing

regime. But, note that because λ ranges over (0, 2r2) for grazing transits, the relation is closer

to λ ≈ 2δ than to λ ≈ δ. We caution the reader not to use λ as a basis parameter outside

of the grazing regime because it is explicitly tied to the geometry of grazing transits. Figure

3.1 demonstrates that the exact Λ(r, b) curve is well matched by a simple linear function λ(b)

at fixed r as long as r < 1, which will virtually always be the case for exoplanets orbiting

main sequence or giant branch stars. We have not rigorously checked how the validity of

our assumptions break down when r ≥ 1, and so the results in this paper will likely need to

be adjusted if they are to be applied to substellar companions of brown dwarfs [Jung et al.,

2018] or white dwarfs [Vanderburg et al., 2020]. A full derivation of λ(r, b) from Λ(r, b) is

given in the appendix.

The second quantity, γ, indicates the extent to which a transit is grazing or non-grazing,

with transition occurring at γ = 1. When γ ≥ 1, the transit is non-grazing; when −1 < γ <

1, the transit is grazing; when γ ≤ −1 the planet does not transit at all. We refer to γ as

the grazing coordinate , and in §4 we will see that it plays a special role in our umbrella

sampling routine.

When converting from one basis to another, care must taken in order to avoid inad-

vertently introducing unwanted priors. For a thorough discussion of the implicit priors

introduced by our reparameterization and for a recipe to establish sensible prior distribu-

tions for λ and γ, see the appendix. The important point is that in addition to mapping
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Figure 3.1: Planet-star overlap area at mid-transit as a function of impact parameter, b,
for a star with zero limb darkening and a planet-to-star radius ratio r = 0.05. The plot is
restricted to show only the grazing regime, i.e. 1− r < b < 1 + r. The solid black line shows
the exact geometric solution derived by Mandel and Agol [2002] and presented in this paper
as Equation 2.5. Even though the full geometry is quite complicated, the resultant curve is
well approximated by a simple linear function (dashed red line).
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{r, b} → {λ, γ}, we add additional terms to the log-likelihood function as needed to ensure

that our priors remain consistent between parameterizations.

By construction, our new {λ, γ} basis is far more orthogonal than the fiducial {r, b} basis

is for grazing transits. Conversely, {λ, γ} is far less orthogonal than {r, b} is for non-grazing

transits. To achieve good sampler performance, we must therefore make the restriction γ < 1

when using our new basis and the restriction γ ≥ 1 when using the old basis. We stress that

our new {λ, γ} parameterization is specifically designed with grazing transits in mind and

should not be applied to non-grazing geometries.

For many transits, some fraction of the posterior distribution will be consistent with both

grazing and non-grazing trajectories, so fitting a transit will require at least two independent

sampling runs, one to sample the grazing regime using {λ, γ} and the other to sample the

non-grazing regime using {r, b}. Recombining independent posterior chains into a single

posterior distribution can be performed using the statistical technique of umbrella sampling,

which will be introduced in §4. For now, we will restrict our analysis to consideration of the

grazing regime in order to compare the relative performance of the two basis sets.

3.2 Performance of the {r, b} vs {λ, γ} basis

The fiducial basis set we have used thusfar is {P, t0, log r, b, log T, q1, q2}, which we now

compare to our new parameterization {P, t0, log λ, γ, log T, q1, q2}. As a shorthand, we will

continue to refer to these as the {r, b} and {λ, γ} bases, respectively, although any actual

sampling will always be performed using log r and log λ in place of r or λ.

To compare the two basis sets, we simulate a low signal-to-noise transit of a warm-

Jupiter orbiting a Sun-like star and sample from the posteriors using Hamiltonian Monte

Carlo. Simulated photometry is shown in Figure 2.5 and ground truth parameter values are

presented in Table 2.1. Our model setup and sampling routine both follow the procedure

described in §2.2, modified to restrict samples to grazing geometries. For each basis set, we
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perform 100 independent MCMC runs using two chains run for 5000 tuning steps and 1000

draws, generating 2000 samples per run. Rather than merely setting a hard boundary at the

grazing transition, we added a biasing potential, ψ, to the likelihood such that

ψ(γ) =


1 + γ γ ≤ 0

1− γ 0 < γ < 1

(3.2)

which has the effect of preferentially biasing posterior samples toward the middle of the

grazing regime. The term is related to umbrella sampling, and the motivation behind its

inclusion will become apparent in §4.

Our new {λ, γ} basis performs more efficiently and more than the standard {r, b} basis

and produces consistent posterior distributions. For a simulated near-grazing transit (model

J-85), the total runtime for a given run using {r, b} was 389±34 seconds, compared to 386±26

seconds using {λ, γ}, a nearly identical wall clock time. On the balance, the autocorrelation

length of the chains was a little longer when using the new basis compared to the standard

basis, resulting in a larger number of effective samples obtained using our the {λ, γ} basis

compared to the standard {r, b} basis. Evaluated using the autocorrelation length for r, the

time per effect sample was 1.6 seconds using {λ, γ} vs 2.3 seconds using {r, b}, a 29% gain

in efficiency. We repeated this autocorrelation analysis using posterior chains for b and T

finding a gains in efficiency of 28% and 4%, respectively. when using our new basis. The

relative performances of the two bases was comparable for various other simulated transit

geometries (see Table 2.1), typically producing a ∼ 20% gain in efficiency for generating

effective samples of r and b and a roughly equivalent efficiencies for generating effective

samples of T . The two bases produce consistent posterior distributions (Figure 3.2). We

conclude that our new {λ, γ} basis will be preferred under most circumstances.
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r − b λ − γ Direct comparison

Figure 3.2: Posterior distributions of log λ, γ, and log r for transit geometries restricted
to the grazing regime for a near-grazing transit of a warm Jupiter orbiting a Sun-like star
(model J-85). The effects of the biasing potential have been removed. See Table 2.1 for
ground truth simulation parameters and Figure 2.5 for the simulated photometry. The two
parameterizations produce comparable posterior distributions, although the new λ− γ basis
performs ∼ 20% more efficiently. A detailed discussion of the model parameterization is
presented in §3.
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CHAPTER 4

UMBRELLA SAMPLING

Umbrella sampling [Torrie and Valleau, 1977] is a statistical tool designed for estimating

complicated target distributions - e.g. multimodal distributions or degeneracy ridges - for

which standard sampling techniques fail. Umbrella sampling does not replace existing sam-

pling methods, but rather works in tandem with these methods to produce more robust

posterior estimates. The basic idea is to split a complicated sampling problem into mul-

tiple smaller, more manageable problems, each restricted to a narrow region (or window,

in the standard nomenclature) of parameter space. Samples are obtained separately from

each window using whatever sampling technique the user prefers - e.g. Hamlitonian Monte

Carlo [Neal, 2011, Salvatier et al., 2016] or ensemble sampling [Goodman and Weare, 2010,

Foreman-Mackey et al., 2013] - after which the samples are recombined into a single joint

posterior distribution.

Although umbrella sampling has rarely been applied to astrophysical problems, the tech-

nique is widely used in the field of molecular dynamics where it originated [Torrie and Valleau,

1977]. The literature on umbrella sampling is extensive, but because most examples of its use

are presented in the context of highly technical chemical analyses, there exists a precipitous

barrier to entry for many astronomers (this paper’s author included) who lack the domain

expertise to easily comprehend the specialized scientific content surrounding the general sta-

tistical tool we wish to adopt. One goal of this paper is therefore to present an accessible,

high-level introduction to umbrella sampling tailored toward the needs of astronomers in

order to establish a gateway into the wider umbrella sampling literature. For a more rigor-

ous introduction, we direct the interested reader to a recent review of umbrella sampling by

Kästner [2011], as well as to the first astrophysical application of by Matthews et al. [2018].

Indeed, much of the pedagogy in this section was borrowed from Matthews et al. [2018] -

particularly their §2.1 - and any astronomer wishing to implement umbrella sampling them-
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Figure 4.1: Schematic illustration of the umbrella sampling method. The method is designed
to facilitate sampling from multi-modal target distributions (shaded grey region in all panels).
Top left : The target distribution (emphasized with a thick black line) has low-probability
valley which will create a bottleneck for standard sampling techniques. In order to ensure
sampling from the full posterior space, we split the problem into three windows, each assigned
a bias function, ψi. Top right : After sampling independently from each window, we have
three biased sub-distributions πi. Bottom left : Removing the effect of the bias functions,
ψi produces three unbiased sub-distributions with unknown offsets between one another.
Bottom right : calculating the window weights, zi, and recombining all sub-distributions πi
into a single joint posterior recovers the true target distribution. See §4.1 for a detailed
discussion. A tutorial for reproducing this plot by implementing umbrella sampling can be
found at https://gjgilbert.github.io/tutorials/umbrella_sampling/.
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selves will likely benefit from reviewing that paper in tandem with the present manuscript.

Because learning to use new mathematical tools is often best accomplished through a “hands-

on” approach, we have also developed a Python tutorial for implementing umbrella sampling,

available at https://gjgilbert.github.io/tutorials/umbrella_sampling/.

4.1 A brief overview of umbrella sampling

Let us begin by assuming that we wish to sample from some arbitrary target distribution

which possesses a complicated geometry (Figure 4.1). Standard sampling techniques will

do a poor job at traversing the low probability “valleys” between high probability “peaks,”

resulting in poorly mixed posterior chains and incomplete sampling of the target distribution.

One way around this issue is to add an additional bias term to the likelihood in order to

“level out” the peaks and valleys, thereby simplifying the geometry. If the target distribution

were known a priori (which of course it is not), we could add a single bias term to the entire

distribution to make it flat throughout. In practice, however, the more viable approach

is to break the complicated target distribution into several overlapping windows, sample

separately from each window, and then recombine the sub-samples into a joint posterior

distribution. Each window will be assigned its own bias function , sometimes called simply

a bias or umbrella. The bias functions serve to restrict the sampler to a given window and

ensure that a significant fraction of samples are drawn from the low probability valleys.

Before defining our windows and biases, we must first identify a suitable variable, x,

which we will use to construct a sampling framework. In the molecular dynamics literature,

x is usually called the reaction coordinate because it corresponds to a real physical quan-

tity related to chemical reactions such as free energy or molecular bond strength; in this

manuscript we will refer to x as the umbrella coordinate (hence our earlier terminology

for the grazing coordinate). The optimal choice of x will be dictated by the geometry of the

target distribution. For example, if the target distribution consists of several isolated peaks,
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x could be defined along the line connecting those peaks. Such detailed advance knowledge

is not strictly necessary, however, and in many cases it is possible to select a good (though

perhaps sub-optimal) umbrella coordinate even for a blind search. In any case, the prior

information needed to identify a suitable umbrella coordinate is comparable to the prior in-

formation needed to properly specify the model in the first place, and the choice of umbrella

coordinate should follow from the structure of the problem. For a more in-depth discus-

sion of strategies for choosing umbrella coordinates, particularly under information-limited

circumstances, see Matthews et al. [2018].

Once we have selected our umbrella coordinate, x, our next task is to define our window

bounds and a set of N corresponding bias functions, ψi(x) (Figure 4.1, top left panel). Once

again, the optimal choice of windows and biases depends on the geometry, so the more

that can be learned via exploratory analysis, the better. Fortunately, however, the results

of umbrella sampling are insensitive to the particular choice of window bounds and bias

functions provided that two conditions are met: (1) each window is adequately sampled, and

(2) there is sufficient overlap between windows in order to allow accurate determination of

relative window weights. We are thus free to define ψi in whatever manner is most convenient

for the problem at hand.

With windows and biases defined, we now sample from the target distribution, π(x) sep-

arately from each of the N windows, thereby producing N biased posterior sub-distributions

πi(x) (Figure 4.1, top right panel). The sub-distributions relate to the (known) bias functions

and to the (unknown) target distribution, via the equation

πi(x) =
1

zi
ψi(x)π(x) (4.1)

where zi are the window weights quantifying the relative contribution of each πi to the

combined target distribution, π. Because each πi is a probability distribution,
∫
πi(x)dx = 1,

and the window weights zi can be calculated via integration of Equation 4.1 as

33



zi =

∫
ψi(x)π(x)dx = 〈ψi〉π (4.2)

where 〈ψi〉π denotes the average of some function f with respect to π. In other words,

to determine zi, we take the average of each ψi weighted by the empirically sampled target

distribution, π. If the full target distribution π were known, calculating the window weights

zi would be trivial. But of course π is not known - it is precisely the quantity we are trying

to determine! Furthermore, we don’t actually have samples of π yet. Rather, we have N

sets of biased sub-samples, πi, meaning we will need to compute 〈ψi〉πj for each (i, j) and

then combine these to estimate 〈ψi〉π. The challenge is that this final combination step

depends on z, making the whole process a bit circular. Once the zi are known, however, the

biased sub-distributions, πi, can be easily combined into a single joint posterior distribution,

π (Figure 4.1, bottom panels).

Different methods for implementing umbrella sampling more or less come down to dif-

ferent strategies for solving the integral in Equation 4.2. The most popular method is the

Weighted Histogram Analysis Method [WHAM; Kumar et al., 1992], which works by binning

the data and computing a histogram in the overlap region. Another popular method is the

Multistate Bennet Acceptance Ratio [MBAR; Shirts and Chodera, 2008], which does not

require discretization of the data. Both WHAM and MBAR can be derived from maximum

likelihood or minimum asymptotic variance principles (see the references above for proofs).

Recently, Thiede et al. [2016] and Dinner et al. [2017] demonstrated that the determination

of umbrella weights zi can be recast as an eigenvector problem, a method which they term

the Eigenvector Method for Umbrella Sampling (EMUS). Establishing umbrella sampling

as an eigenvector problem has the twin advantages of being computationally efficient and

facilitating accurate error analysis, and so we adopt EMUS as our method of choice here.

Following Matthews et al. [2018], we restate Equation 4.2 as an explicit sum
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zj =
N∑
i=1

〈
ψj(x)∑N

k=1 ψk(x)/zk

〉
πi

(4.3)

where 〈〉πi denotes an average with respect to πi. Because the umbrella weights zi enter

the equation both on the left-hand side of the equation and in the denominator sum on the

right-hand side, Equation 4.3 must be solved iteratively. To do so using EMUS, we first

define a square overlap matrix, F , with each element (i, j) defined as

Fij =

〈
ψj/zi∑N
k=1 ψk/zk

〉
πi

(4.4)

As its name implies, F tracks the extent to which samples drawn within one window fall

under the umbrella of any other window. On diagonal terms will usually have larger values

(because all samples drawn from window i by construction fall under umbrella ψi), and when

windows (i, j) do not overlap, Fij = Fji = 0.

In order to calculate zi using linear algebra, we first define z ≡ [z1, z2, ..., zN ] as a vector.

Taking the product of z and the jth column of F yields

N∑
i=1

ziFij =
N∑
i=1

〈
ψj∑N

k=1 ψk/zk

〉
πi

= 〈ψj〉π (4.5)

Recall from Equation 4.2 that zj = 〈ψj〉π, so
∑
i ziFij = zj . Considering all columns in

F simultaneously yields the left eigenvalue problem

zF = z (4.6)

which when solved provides an estimate of the window weights.

If we knew F a priori, finding the eigenvalues and eigenvectors of Equation 4.6 would be

a straightforward application of linear algebra. But, in practice, we need to estimate both

z and F from our empirical samples, πi. As we noted earlier, this must be done iteratively.
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Our strategy will be to pick a starting guess for z and calculate a first estimate of F from

Equation 4.4. We’ll then use our estimate of F to calculate an updated value for z using

Equation 4.6, and then iterate between Equations 4.4 and 4.6 until the result converges. In

practice the problem is often nearly converged after just one or two iterations, and both the

final result and convergence rate are insensitive to the particular starting estimate of z.

In summary, the steps of umbrella sampling are: (1) choose a suitable umbrella coordinate

x, (2) define windows and biases ψi, (3) sample from each window to produce biased sub-

distributions πi, (4) calculate window weights zi by iteratively solving Equations 4.4 and

4.6, and finally (5) recombine all sub-samples into the joint posterior estimate π by inverting

Equation 4.1. Note that unlike standard direct sampling methods which produce a single

set a unweighted samples, umbrella sampling produces multiple sets of weighted samples

(with weights given by zi), and these weights must be taken into account when estimating

posterior distributions or summary statistics.

A Python tutorial for implementing EMUS can be found at https://gjgilbert.

github.io/tutorials/umbrella_sampling/.

4.2 Applying umbrella sampling to the transit model

We now introduce our full umbrella sampling routine as applied to the transit fitting prob-

lem. Properly implemented, our new method produces posterior estimates which are more

accurate than estimates obtained using standard direct sampling techniques. The key com-

ponents of our method are (1) splitting the transit fitting problem into separate windows for

grazing vs non-grazing geometries and (2) adopting a unique parameter basis within each

window tailored to the specific geometry at hand.

For our umbrella coordinate we adopt the grazing coordinate, γ ≡ (1− b)/r, which was

introduced in §3.1. Defining our windows in terms of γ allows us to easily separate posterior

sampling into grazing and non-grazing runs, with the cutoff occurring at γ = 1. While
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developing our method, we first attempted to implement a simple two-umbrella scheme

wherein the non-grazing window extended slightly into the grazing regime and, conversely,

the grazing window extended slightly into non-grazing regime. However, we found that

the sampler still often became stuck at the grazing to non-grazing transition, leading to

poorly mixed chains and inaccurate results. We therefore found it necessary to restrict the

grazing umbrella to strictly grazing geometries (γ < 1) and the non-grazing umbrella to

strictly non-grazing geometries (γ > 1). Windows must have at least some overlap with

their neighbors, so we introduced a third “transition” umbrella centered on the grazing to

non-grazing boundary at γ = 1 and extending a little way into both the grazing and non-

grazing regimes in order to bridge the gap. We find that this simple three-umbrella scheme

performed well under a wide range of circumstances.

We define our bias functions over the non-grazing (N), transition (T), and grazing (G)

windows as

ψN '


γ − 1 1 < γ < 2

1 γ ≥ 2

(4.7)

ψT '


γ 0 ≤ γ < 1

2− γ 1 ≤ γ < 2

(4.8)

ψG '


1 + γ γ ≤ 0

1− γ 0 < γ < 1

(4.9)

where the symbol “'” denotes an un-normalized distribution. These biases are shown

graphically in Figure 4.2. We have opted to use tent biases out of mathematical convenience,

but as noted above, the results of umbrella sampling are in general insensitive to any par-

ticular choice of bias function. The reader is thus free to chose any other bias function if
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Figure 4.2: Our umbrella bias functions, ψ(γ). The solid blue line is the non-grazing umbrella
(ψN ). The dashed orange line is the transition umbrella (ψT ). The dotted red line is the
grazing umbrella (ψG). We have opted to use tent biases because these are simple to perform
calculations with, but because umbrella sampling is insensitive to the particular choice of bias
functions —provided that windows overlap —many other functional forms would perform
just as well.

they so desire. However, we do caution that while the shape of the bias within each window

is mostly unimportant, altering the window widths (i.e. the range of γ spanned by each ψ)

can have a significant effect. Indeed, while developing this method we undertook consider-

able effort to ensure that windows overlapped enough to facilitate calculation of the window

weights without being so wide as to lead to geometric degeneracies. We therefore advise that

anyone attempting to apply our method should only adjust the window bounds after careful

consideration of the consequences. Unless one has a strongly motivated reason to alter the

windows, the safest approach is to stick with the limits presented in Equations 4.7 - 4.9.

Because each window will be sampled independently of the others, we are free to use a

different parameter basis within each window. Motivated by the results of §3.2, we adopt

the standard {log r, b} basis for the non-grazing umbrella, while for the grazing umbrella we
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adopt our new {log λ, γ} basis. For sampling runs under the transition umbrella, we adopted

the hybrid parameter basis {log r, γ}, which we found worked well over a range of conditions.

Each basis set is tailored to the specific geometry within its corresponding window, and thus

performs well under its own umbrella. Umbrellas are always defined in terms of γ, but γ

is not always a basis parameter. In practice, in order to define our window bounds and

bias functions, we must first calculate gamma from any two out of three basis parameters

{r, b, λ} following Equation 3.1.

We have so far always used the full first-to-fourth contact transit duration T14 as our

transit duration because it is defined regardless of transit geometry. However, the center-

to-center duration (1.5 to 3.5 contact), Tc−c is often better constrained by the data and

is therefore often preferred as a basis parameter as long as it is defined, which it will be

as long as γ > 0. Given our window bounds (Equations 4.7-4.9), this means that we are

free to use Tc−c in place of T14 for the N and T umbrellas. Swapping one T for another

adds an additional step to the procedure, in that a consistent T must be used to produce

the final joint posterior distribution. Fortunately, once samples have been obtained for all

parameters, determining T14 from Tc−c is a matter of straightforward arithmetic, and vice

versa. For this study, we will continue to use T14 as our basis parameter in order to avoid

introducing another complicating factor into an already complicated routine, but keep in

mind that when applying umbrella sampling in the future, Tc−c should probably be adopted

instead of T14 whenever possible.

The stage is now set, and at this point one could in principle draw samples from each

window and then recombine them into a final joint posterior following the weighting pre-

scription described in §4.1. However, there is one final complication that must be addressed

first, namely that we do not know the transit geometry ahead of time and so we cannot be

sure whether samples πT obtained under the T umbrella will overlap with both ψG and ψN .

Recall that umbrella sampling does not merely require that windows overlap, but instead
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imposes the more stringent requirement that at least some samples obtained within each

window fall into the overlap region with their neighboring windows. This subtle condition

demands careful attention, but turns out to be a blessing in disguise.

In order to ensure that our window weights will be properly determined, we first sample

from the transition umbrella, producing a (biased) posterior distribution πT (γ) with samples

restricted by ψT to lie between 0 < γ < 2. Because γ tells us how strongly grazing the transit

is and because all samples πT (γ) must by construction fall near the grazing/non-grazing

transition boundary, we can use πT (γ) to infer whether the transit geometry is grazing or

not. If all samples πT (γ) have γ < 1, we can be confident that the planet is on a grazing

trajectory; conversely if all samples πT (γ) have γ > 1, we can be confident that the planet is

on a non-grazing trajectory. In the former case (all γ < 1) we then need only draw samples

from the grazing window, whereas in the latter case (all γ > 1) we need only draw samples

from the non-grazing window. In fact, under these circumstances umbrella sampling may

no longer be needed, as the N or G windows will by themselves cover the full span of the

relevant parameter space. However, at this point samples from the T umbrella have already

been obtained, so one may as well proceed with a two-umbrella scheme.

We recommend that all future transit modeling efforts — even those which do not in-

tend use umbrella sampling for their final analysis — first conduct an exploration of the

grazing/non-grazing transition boundary, aided by ψT to ensure adequate sampling of the

region immediately surrounding γ = 1. Depending on the circumstances, one may wish to

set a more or less lenient condition for categorizing a transit as grazing/non-grazing than

we have proposed here (i.e. all γ < 1 vs all γ > 1), but the core strategy would remain

the same. Conclusively ruling in/out grazing geometries will afford us greater confidence in

results derived from transiting modeling, and if widely adopted we anticipate our “check the

transition region first” approach will reveal previously unnoticed inaccuracies or systematic

offsets in transiting exoplanet catalogs.
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Samples may be drawn using any suitable sampling method, and provided that all poste-

rior chains are well mixed and pass the necessary convergence checks, the choice of sampler

will be inconsequential to the final results, save perhaps a difference in computational effi-

ciency. Once we have drawn samples from all three windows (or perhaps only two, if πT (γ)

rules out one geometry or another), calculation of the window weights, zi, is a straightfor-

ward application of the EMUS algorithm presented in §4.1; once zi have been calculated, we

can then immediately estimate the posterior distributions and summary statistics.
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CHAPTER 5

COMPARISON OF RESULTS FROM STANDARD SAMPLING

TECHNIQUES TO UMBRELLA SAMPLING

We now test our proposed method by simulating transit lightcurve photometry for several

prototypical star-planet configurations and then comparing posterior inferences obtained

via umbrella sampling to inferences obtained using a standard direct sampling approach.

Throughout these tests, we follow the same data simulation procedure and Hamiltonian

Monte Carlo sampling routine described in §2.3, modified to incorporate a moderately in-

formative prior on eccentricity. Rather than incorporating e and w as free parameters in

our model, we instead inferred these quantities using the photoeccentric effect [Ford et al.,

2008, Dawson and Johnson, 2012], thus necessitating an priors on both e and ρ?. For e we

assumed a Raleigh distribution with scale parameter σe = 0.21, corresponding to the single-

planet value found by Mills et al. [2019]; for ρ?, we assumed a 10% Gaussian measurement

uncertainty. In practice, placing priors on e and ρ serves to place indirect priors on T and b.

We will address the role of eccentricity priors and describe the effects of several alternative

prior distributions in greater detail is §5.1.4 below.

We perform three tests of our method, each focused on a different star-planet architecture.

In the first test (the “J” models; see Table 2.1), we place a warm Jupiter in orbit around a

Sun-like star at various impact parameters in order to simulate grazing, near-grazing, and

non-grazing trajectories. In the second test (models “SE” & “MN”) we place a super-Earth

and mini-Neptune on 21 day orbits around a star typical of the Kepler field, with inclinations

scaled to produce comparable transit depths. In the third (model “MHZ”), we place a rocky

planet in the habitable zone of an M dwarf. Simulated photometry is shown in Figures 2.5,

5.5, and 5.8, and ground truth parameter values for each simulated lightcurve are collected in

Table 2.1. As before, the important point throughout is that we have endeavored to simulate

unremarkable transits, which we then model using techniques which are intended to be as
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uncontroversial as possible.

5.1 A giant planet orbiting a solar twin

For our first test, we placed a warm Jupiter (r = 0.1) on a circular orbit around a Sun-like

star at three different impact parameters in order to create a grazing (b = 1.00, model J-100),

near-grazing (b = 0.85, model J-85), and non-grazing (b = 0.22, model J-22) trajectory. The

transit duration for all three cases was set to T = 3.0 hrs and then the orbital period was

calculated in order to preserve e = 0, resulting in orbital periods of 44.9, 13.0, and 3.6 days,

respectively. In order to produce a comparable signal-to-noise, the simulated Gaussian noise

for the grazing transit (J-100) was reduced by a factor of two relative to the non-grazing

and near-grazing transits. The simulated photometry for all three configurations is shown

in Figure 2.5.

5.1.1 Simulation J-85: a near-grazing transit

We being by placing our warm Jupiter on a P = 13 day orbit around its host star with

b = 0.85, thereby producing a transit chord that is non-grazing yet close enough to the

stellar edge that limb darkening becomes significant. In this near-grazing regime, the transit

morphology begins to shift from U-shaped to V-shaped, so we expect that some fraction of

the posterior distribution will be consistent with both a grazing and non-grazing trajectory.

Examination of γ samples obtained under the transition umbrella, ψT , confirm that this is

indeed the case (Figure 5.1), validating our assertion that umbrella sampling is warranted.

Both direct sampling and umbrella sampling produce comparable distributions for T

and broadly similar estimates of r and b (Figure 5.2). However, direct sampling does not

fully explore the high-b, high-r tail of the distribution. By-eye the differences appear slight,

but the consequences of these skewed distributions become apparent when one calculates the

marginalized 1σ uncertainties for r and b. From direct sampling, we estimate r = 0.098+0.042
−0.013,
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Figure 5.1: Distribution of the grazing coordinate, γ, for posterior MCMC samples obtained
under the transition umbrella, ψT , for three simulated transits of a warm Jupiter orbiting
a Sun-like star at various impact parameters. Simulated parameter values are collected in
Table 2.1 and corresponding simulated lightcurves are shown in Figure 2.5. Unsurprisingly,
the fraction of posterior samples consistent with a non-grazing geometry is highest for the
simulated non-grazing transit (top), and vice-versa for a grazing geometry (bottom). The
near-grazing transit (middle) reflects an intermediate state. In all three cases, at least some
fraction of the posteriors are consistent with both a grazing and a non-grazing trajectory,
indicating the transit geometry is ambiguous and the application of umbrella sampling is
warranted.
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Figure 5.2: Posterior distributions of r, b, and T for a simulated near-grazing transit of a
Jupiter-size planet on a 13 day orbit around a Sun-like star (simulation J-85). See Table
2.1 for simulated model parameters and Figure 2.5 for the simulated photometry. Each thin
line represents a 2000 sample chain from a single independent Monte Carlo run, while the
thick lines give the combined results of 20 such runs. Vertical dashed lines represent ground-
truth parameter values. Both methods produce posterior distributions consistent with the
true value, but only umbrella sampling is able to fully explore the high-b, high-r tail of the
distribution.

whereas from umbrella sampling, we estimate r = 0.108+0.187
−0.021 (based on the 16th, 50th,

and 84th percentiles). Although one might naively prefer the narrower posterior obtained

via direct sampling, this result is inaccurate, and the misleadingly tight constraint on r is

predicated on the false assumption that the high-b high-r tail has been rule out, when in

fact it has simply not been explored. Umbrella sampling, on the other hand, ensures that

the difficult to explore regions of the posterior have indeed been adequately sampled.

5.1.2 Simulation J-22: a non-grazing transit

We next modify our simulated transit by changing the impact parameter to b = 0.22 in

order to place the planet on a non-grazing trajectory. In order to keep the transit duration

consistent at T = 3 hrs, we shifted the orbital period to P = 3.6 days. In this case, the

results of the two methods are entirely consistent with one another (Figure 5.3), as expected

for a planet with negligible posterior mass consistent with a grazing geometry. Because there

is a small but non-zero fraction fraction of samples with b > 1 − r (Figure 5.1), trusting

the results from direct sampling hinges on the implicit assumption that the sampler did not

explore the grazing regime because the model and data are poorly matched there, rather
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Figure 5.3: Posterior distributions of r, b, and T for a simulated non-grazing transit of a
Jupiter-size planet on a 3.6 day orbit around a Sun-like star. See Table 2.1 for simulated
model parameters and Figure 2.5 for the simulated photometry. Each thin line represents a
2000 sample chain from a single independent Monte Carlo run, while the thick lines give the
combined results of 100 such runs. Vertical dashed lines represent ground-truth parameter
values. Both methods produce comparable results, however only umbrella sampling is able
to smoothly explore deep into the grazing regime. This augmented exploration allows us to
confidently rule out a grazing geometry by placing reliable upper limits on r and b.

than because the sampler encountered a bottleneck at the grazing/non-grazing boundary.

The advantage of using umbrella sampling is that we can be more confident is our inferences

because the sampler explores smoothly deep into the grazing regime, allowing us to be sure

that the posterior likelihood there is indeed small.

5.1.3 Simulation J-100: A grazing transit

For our last test we shift the transit to b = 1.0 in order to create a grazing trajectory (model

J-100). Once again, we preserve the transit duration at T = 3 hrs by adjusting the orbital

period, in this case to to P = 45 days. In order to compensate for the reduced transit depth

of the grazing geometry, we reduce the photometric noise level by a factor of two, which

gives this simulated transit (J-100) a similar signal-to-noise ratio compared to the first two

simulations (J-85 & J-22).

The performance of the two methods for fitting a grazing transit is quite similar (Figure

5.4). From direct sampling, we estimate r = 0.148+0.262
−0.077, b = 1.05+0.28

−0.11; whereas from

umbrella sampling, we estimate r = 0.130+0.265
−0.070, b = 1.03+0.29

−0.13. As with the non-grazing

case (simulation J-22), the main advantage of umbrella sampling is that we can be sure we
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Figure 5.4: Posterior distributions of r, b, and T for a simulated grazing transit of a Jupiter-
size planet on a 45 day orbit around a Sun-like star (simulation J-100). See Table 2.1 for
simulated model parameters and Figure 2.5 for the simulated photometry. Each thin line
represents a 2000 sample chain from a single independent Monte Carlo run, while the thick
lines give the combined results of 100 such runs. Vertical dashed lines represent ground-truth
parameter values. In this case, both mehods produce comparable results.

have explored the full posterior geometry, lending us greater confidence in our results.

5.1.4 The role of eccentricity priors

In order to investigate the effect of eccentricity priors, we repeated the experiment for the

near-grazing transit (simulation J-85) using three additional eccentricity priors distributions.

For the first two, we again used a Rayleigh prior, but now with scale parameter σe = 0.0355 or

σe = 0.008. The former corresponds to the value found by Mills et al. [2019] for multiplanet

systems, while the latter corresponds to the value by Lithwick et al. [2012] for systems

exhibiting large-amplitude transit timing variations. Recall that our original test used σe =

0.21, the Mills et al. [2019] single planet value. Our fourth and final test placed uniform

(i.e. uninformative) priors on e. In all cases, we assumed a 10% Gaussian measurement

uncertainty on ρ?.

Both methods show a similar sensitivity to choice of eccentricity prior (see Table 5.1).

5.2 A pair of planets straddling the radius valley

A primary motivation for developing our umbrella sampling method is to accurately deter-

mine the radii of exoplanets in or near the radius valley [Fulton et al., 2017]. More specifically,
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Prior distribution Direct Sampling Umbrella Sampling

Rayleigh, σe = 0.008 0.108+0.037
−0.014 0.118+0.198

−0.021

Rayleigh, σe = 0.0355 0.108+0.038
−0.014 0.120+0.208

−0.022

Rayleigh, σe = 0.21 0.098+0.042
−0.013 0.108+0.187

−0.021

Uniform, e ∼ (0, 1) 0.091+0.033
−0.010 0.097+0.136

−0.015

Table 5.1: Marginalized MCMC posterior values for the planet-to-star radius ratio, r, of a
simulated transit (simulation J-85), assuming four different eccentricity prior distributions.
The true value is r = 0.103. Posterior values quoted in this table correspond to the retrieved
16th, 50th, and 84th percentiles of r, with results arranged from most informative prior (top)
to least informative (bottom). See text of §5.1.4 for discussion.

we would like to be able to measure the size of planets with rp ≈ 1.6R⊕ and periods P . 100

days orbiting FGK stars, i.e. planets typical of the Kepler and K2 samples. For this case

study, we simulate the transits of a pair of planets, each on a circular 21 day orbit around a K

dwarf (R? = 0.92R�). The first planet (simulation SE; a super-Earth) has rp = 1.3R⊕ and

a non-grazing trajectory (b = 0.70). The second planet (simulation MN; a mini-Neptune)

has rp = 2.2R⊕ and a barely grazing trajectory (b = 0.98). These setups produce a pair of

transits with comparable transit depths, albeit distinct transit durations (Figure 5.5). For

these test cases, an accurate estimate of r thus hinges on accurate estimates of both T and

b. Our goal then is to investigate whether our competing sampling methods can constrain

these three parameters with sufficient reliability to determine whether each planet exists on

the rocky or gaseous edge of the radius valley.

5.2.1 Simulation SE: A non-grazing super-Earth

Posterior distributions for the super-Earth simulation produce consistent results regardless

of which method is used (Figure 5.6). Because the transit trajectory is far from grazing

(b = 0.7, r = 0.012) this agreement is to be expected. The marginalized constraints for this
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Figure 5.5: Top panel : Simulated photometry for a mini-Neptune (model MN) orbiting a
K-dwarf star on a barely grazing orbit. Bottom panel : Simulated photometry for a super-
Earth (model SE) orbiting the same star on a non-grazing orbit. Ground truth simulation
parameters are collected in Table 2.1. See §5.2 for discussion.
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Figure 5.6: Posterior distributions of r, b, and T for a simulated non-grazing transit of
a super-Earth orbiting a K-dwarf star (simulation SE). See Table 2.1 for simulated model
parameters and Figure 5.5 for the simulated photometry. Each thin line represents a 2000
sample chain from a single independent Monte Carlo run, while the thick lines give the
combined results of 20 such runs. Vertical dashed lines represent ground-truth parameter
values. The transit trajectory is far from grazing (b = 0.7, r = 0.012), and the two methods
produce comparable results ,as expected.

case are rp = 1.06 ± 0.17R⊕, b = 0.51 ± 0.30, correctly identifying the planet as a rocky

object with a non-zero, non-grazing impact parameter.

Once again, the primary advantage of umbrella sampling is that it affords us confidence

in our results. A small fraction of the posterior samples are consistent with b > 1, and by

employing umbrella sampling we can be sure that we have correctly weighted the high-b

tail of the distribution, whereas with direct sampling alone there would be ambiguity as

to whether the tail has been properly explored. In this case, direct sampling does manage

to produce the correct result, but we only know this because we have also fit the transit

using umbrella sampling. In this specific case, a larger fraction of samples consistent with a

grazing trajectory would have made the radius uncertainty larger, which in turn would make

the composition of the planet ambiguous, a major detriment for studies of planets near the

radius valley.

5.2.2 Simulation MN: A barely grazing mini-Neptune

For our mini-Neptune simulation, posterior inferences made via umbrella sampling are signif-

icantly better than those made via direct sampling (Figure 5.7). Whereas umbrella sampling

returns rp = 2.17+6.16
−0.55, b = 0.96+0.10

−0.02, direct sampling returns rp = 5.3+19.4
−2.95, b = 1.03+0.19

−0.04.
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Figure 5.7: Posterior distributions of r, b, and T for a simulated barely grazing transit of a
mini-Neptune orbiting a K-dwarf star (simulation MN). See Table 2.1 for simulated model
parameters and Figure 5.5 for the simulated photometry. Each thin line represents a 2000
sample chain from a single independent Monte Carlo run, while the thick lines give the com-
bined results of 20 such runs. Vertical dashed lines represent ground-truth parameter values.
In this case, umbrella sampling produces obviously improved results, as direct sampling
struggles to smoothly explore the grazing regime.

The reduced precision in rp from direct sampling will have dramatic consequences for under-

standing the composition of the individual planet. Even though there is indeed a fairly large

uncertainty on the planet radius no matter what method is used - which is to be expected

for grazing transits - the implied planet composition is far more ambiguous using direct

sampling.

5.3 A rocky planet in the M-dwarf habitable zone

For our final test (simulation MHZ), we place a Mercury-sized planet (rp = 0.38R⊕) on a

P = 37 day orbit around a R? = 0.38R� M dwarf, which puts the planet squarely in that

star’s habitable zone. See Figure 5.8 for the simulated photometry and Table 2.1 for the

ground truth simulation parameters.

We find that direct sampling and umbrella sampling perform equally well for this test

case, with both methods recovering the true values for r, b, and T with nearly identical

accuracy (Figure 5.9). Specifically, both methods find rp = 0.32 ± 0.20R⊕ and a broad,

predominantly non-grazing distribution for b. Yet even in this case where marginalized

statistics are nearly identical, umbrella sampling still confers an advantage over direct sam-
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Figure 5.8: Simulated photometry for a Mercury radius planet orbiting in the habitable zone
of an M-dwarf host star (model MHZ). Ground truth simulation parameters are collected in
Table 2.1. See §5.3 for discussion.

pling. Because the posterior distribution for impact parameter extends above b = 1 for

both methods, with direct sampling we cannot be certain that the entire full posterior space

has been adequately explored. Rather, it is possible we encountered the usual bottleneck

at the grazing/non-grazing boundary, leaving the grazing regime undersampled. With um-

brella sampling, however, we can be confident —without the need for follow-up observations

—that the posterior geometry has been fully explored, meaning that the planet is indeed on

a non-grazing orbit and therefore has an accurately measured radius.
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Figure 5.9: Posterior distributions of r, b, and T for a simulated barely grazing transit of a
Mercury-sized planet orbiting in the habitable zone of an M-dwarf star (simulation MHZ). See
Table 2.1 for simulated model parameters and Figure 5.8 for the simulated photometry. Each
thin line represents a 2000 sample chain from a single independent Monte Carlo run, while the
thick lines give the combined results of 100 such runs. Vertical dashed lines represent ground-
truth parameter values. For this test case, both direct sampling and umbrella sampling
perform equally well.
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CHAPTER 6

ANALYSIS OF REAL TARGETS

We will now use umbrella sampling to estimate the impact parameters and radii of several

KOI planet candidates with b > 1 reported by the NASA Exoplanet Archive cumulative

KOI table. For the KOIs in multiplanet systems, we also fit the sibling planets (which are

not on grazing trajectories) in order to verify that our results are consistent with previous

measurements. For the KOIs in single planet systems, we select an unrelated planet with

with a non-grazing b but otherwise similar properties to serve as a basis of comparison.

Our data reduction and transit fitting pipeline is described below. Similarly to our

experiments with simulated data, we have endeavored to use standard techniques wherever

possible, except of course for the steps of the procedure which directly implement umbrella

sampling.

We begin by downloading the Pre-search Data Conditioning Simple Aperature Photom-

etry (PDCSAP) flux from the Mikulski Archive for Space Telescopes (MAST). We then flag

bad cadences and remove any large outliers with iterative sigma clipping at the 5σ level.

We next remove long-term trends using a Gaussian Process (GP) implemented by celerite

[Foreman-Mackey et al., 2017]. For the GP kernel, we adopted a stochastically driven simple

harmonic oscillation SHOTerm1, which has been shown to produce good results for astronom-

ical time series [Foreman-Mackey et al., 2017]. In order to protect the transit shape during

detrending, we mask all cadences within 1.5 transit durations of each expected mid-transit

time and project our GP trend across the masked transit region.

To account for possible transit timing variations (TTVs), we read in the transit time

measurements of Holczer et al. [2016] and fit a smooth model to these using a GP regression

and a Matern-3/2 kernel. We obtain a self-consistent starting estimate for the transit shape

and transit times by first fitting {P, t0, log r, b, T} and holding transit times fixed, then

1. https://celerite.readthedocs.io/
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reversing the procedure to hold transit shape parameters fixed and fitting independent transit

times. Finally, we model the independent transit times using a 1st-3rd order polynomial and

either zero or one single frequency sinusoids. The complexity of the TTV model was selected

based on the Akaike Information Criterion [AIC; Akaike, 1974]. For all steps of this TTVs

initialization procedure we hold limb darkening coefficients fixed to the theoretical values

obtained from the NASA Exoplanet Archive.

While sampling from the posterior, we hold transit times fixed at our low order polynomial

+ sinusoid model and sample each of the umbrellas independently following the prescription

in §4 and §5. This means that the free parameters in the model are {log T, q1, q2, F, log σF },

plus either {r, b} for the N umbrella, {log r, γ} for the T umbrella, or {log λ, γ} for the G

umbrella. For simplicity, we only consider non-overlapping transits and fit planets one at

a time for multiplanet systems. Overlapping transits were defined as any transit pair for

which |t0,b − t0,c| < (Tb + Tc) for any two planets b and c. Each HMC run consisted of two

independent chains, with each chain run for a default length of 10,000 tuning steps and 5,000

draws, generating 10,000 samples total per run. In a few cases, the chains did not converge

on our first attempt to fit the data, in which case extending the length of the tuning phase

remedied the issue.

After drawing samples from all three windows - N, T, and G - we check that the posterior

samples of r, b, and T are consistent between the sub-distributions πN , πT , and πG for each

planet. This does not mean that the distributions must overlap completely (indeed, they are

expected not to), but rather that they have at least some overlap, with perhaps some modest

tension between umbrellas. In practice, we found that posterior sub-distribution were nearly

always either obviously consistent or obviously inconsistent, with the later case indicating

that the algorithm had not been properly tuned prior to sampling. In some cases, even

though sub-distributions were clearly inconsistent when considered simultaneously, results

initially appeared reasonable when each umbrella was considered in isolation. Thus, our
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method provides a new avenue for verifying that the results of a transit fit are trustworthy:

if Markov chains do not properly behave within all three windows and produce self-consistent

results, we know to investigate further. Thus, the sub-distribution comparison step of our

algorithm builds in an extra redundancy for checking convergence.

6.1 KOI-2068

KOI-2068 is a 0.91R� star hosting a single planet candidate at P = 42 days with 1σ upper

limits b ≤ 58 and rp ≤ 42R⊕. With signal-to-noise S/N = 21 and a disposition score of

0.89, the object is unlikely to be a false positive. This combination of degenerate, poorly

constrained r and b values plus a low false positive probability makes this object an ideal

test case for our umbrella sampling scheme. As a comparison target, we select KOI-2285,

a 0.87R� star hosting a single confirmed planet at P = 38 days, with b = 0.26 ± 0.23,

rp = 2.79± 0.30, and S/N = 24.

After sampling, for KOI-2068.01 we recover rp = 5.81 ± 2.38R⊕, b = 0.99 ± 0.03, T =

1.39 ± 0.08 hrs, a marked improvement in precision over the literature values. While the

radius constraint remains somewhat broad, we are nonetheless now able to confidently say

that the object is indeed a planet-sized object on a grazing orbit. For the comparison target,

we recover rp = 2.88 ± 0.15R⊕, b = 0.55 ± 0.27, T = 4.17 ± 0.16 hrs, consistent with the

literature values. We will not comment on the relative precision or accuracy of our results vs

reliable literature results, as any differences in measured values are more likely to be driven

by differences in data reduction techniques than by which sampling method was used. The

important point is that our analysis was able to reproduce known reliable results, validating

our pipeline and affording us confidence in any new measurements which improve upon the

state of the art.
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6.2 KOI-2150

KOI-2150 is a 0.94R� star hosting two planet candidates, both with impact parameters

greater than unity reported on the NASA Exoplanet Archive. The inner planet (P = 19

days) has 1σ upper limits b ≤ 73 and rp ≤ 38R⊕, while the outer planet (P = 45 days) has

b ≤ 72 and rp ≤ 94R⊕. Both candidates have a disposition score > 0.99, indicating that

neither is likely to be a false positive.

After umbrella sampling, for the inner planet we recover b = 0.37 ± 0.29, rp = 2.41 ±

0.19R⊕ (8% radius uncertainty), and for the outer planet we recover b = 0.47 ± 0.39, rp =

1.86 ± 0.39R⊕ (21% radius uncertainty). Thus, umbrella sampling places both objects on

non-grazing trajectories - albeit with poorly constrained impact parameters - and finds a

plausible radius for each. These candidates are probably mini-Neptunes, both possessing

individual properties consistent with a depleted radius valley [Fulton and Petigura, 2018,

Van Eylen et al., 2018] and relative sizes consistent with the “peas in a pod” hypothesis

[Weiss et al., 2018], adding further credulity to our results.

6.3 KOI-1426

KOI-1426 is a 0.90R� star hosting two confirmed planets and one planet candidate. The

two confirmed planets have well-constrained properties reported on the NASA Exopplanet

Archive (KOI-1426.01: P = 39 days, rp = 2.81 ± 0.04 R⊕, b = 0.03+0.33
−0.03, KOI-1426.02:

P = 75 days, rp = 6.39 ± 0.10R⊕, b = 0.80+0.01
−0.06), but the candidate planet (KOI-1426.03:

P = 150 days, rp ≤ 36R⊕, b ≤ 68) exhibits the r− b degeneracy. Unlike either candidate in

the KOI-2150 system, KOI-1426.03 possesses an impact parameter constraint b = 1.25+67
−0.17

that marks its orbit (if real) as unambiguously grazing.

Our umbrella sampling analysis confirms the grazing transit hypothesis for KOI-1426.03,

finding b = 1.03 ± 0.08, r = 16.6 ± 6.9R⊕ and < 4% of posterior samples drawn under
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the transition umbrella consistent with a non-grazing geometry. In contrast, none of the

samples drawn from the transition window for either of the two confirmed planets were

consistent with a grazing geometry (Figure 6.1), highlighting the utility of our approach for

distinguishing grazing from non-grazing transits. Although the uncertainty on the radius of

the grazing candidate planet is somewhat high at 41%, the more physically sensible value

lends us greater confidence that the planet is real. As expected, our posterior results for

the two confirmed planets (KOI-1426.01: rp = 2.72 ± 0.07 R⊕, b = 0.26 ± 0.15, KOI-

1426.02: rp = 6.52 ± 0.16R⊕, b = 0.84 ± 0.02) are consistent with the literature values.

Our constraints are somewhat less precise than those reported on the archive, but recall

that experiments with synthetic data (§5) demonstrated that standard sampling methods

are prone to producing misleadingly narrow posterior distributions. This situation is not

necessarily the case for KOI-1426, and a deeper investigation (which is beyond the scope of

this work) will be needed to resolve the issue.

Revealing the true properties of the KOI-1426 system will likely require a full photody-

namical analysis. In retrospect, this is unsurprising for two reasons. First, all three planets

exhibit large transit timing variations [Diamond-Lowe et al., 2015, Holczer et al., 2016] which

may be insufficiently characterized by our parametric model. Second, grazing transits often

have a time-dependent transit shape [Hamann et al., 2019, Dawson, 2020], and thus our ap-

proximation of an invariant transit shape may yield biased inferences. These complications

do not mean that our present efforts to model the system were a waste of time. On the

contrary, the results obtained with umbrella sampling will serve as useful priors for setting

up the computationally expensive photodynamical model. Informed priors (such as the fact

that KOI-1426.02 is both real and on a grazing trajectory) can place meaningful limits on

the system architecture and thereby greatly improve both the accuracy and efficiency of

the full photodynamical treatment. Furthermore, the techniques of photodynamics and um-

brella sampling are not mutually exclusive, and it may ultimately prove necessary to combine
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the two methods in order to achieve a definitive result for this or other dynamically active

systems.
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Figure 6.1: Samples of γ obtained under the transition umbrella, ψT , for the three planets in
the KOI-1426 system. Neither of the two confirmed objects (top two panels, blue) have any
posterior samples γ < 1, indicating that both planets are almost certainly on non-grazing
trajectories. For these two objects, we can comfortably ignore the grazing umbrella, ψG, and
perform a two-window analysis. The candidate object (bottom panel, orange) has 97% of
samples with γ < 1, indicating that this planet is probably on a grazing trajectory. For this
object, we might choose to ignore the non-grazing umbrella, ψN , but the more conservative
approach would be to perform a three-window analysis as usual. The distributions seen here
for KOI-1426 are typical of Kepler targets, in that samples of γ from the transition umbrella
can often be used to rule out/in certain transit geometries.

60



CHAPTER 7

SUMMARY AND RECOMMENDATIONS

We have introduced a new method for modeling exoplanet transit lightcurves which explicitly

accounts for the differences in transit geometry between grazing and non-grazing trajectories.

Our technique employs the well-established framework of umbrella sampling [Torrie and

Valleau, 1977] by splitting the transit fitting problem into three sub-problems, each restricted

to either the grazing, non-grazing, or transition regions of the parameter space. We draw

samples independently from each window using an MCMC sampler to produce three posterior

sub-distributions which we then recombine into a single joint posterior distribution using the

Eigenvecor Method of Umbrella Sampling [Thiede et al., 2016, Dinner et al., 2017].

Although umbrella sampling is widely used by molecular dynamicists and biochemists,

it has only recently begun to gain the attention of astronomers [Matthews et al., 2018].

Yet umbrella sampling is itself a general statistical tool not tied to any particular con-

tent domain. At heart, umbrella sampling is designed to estimate complicated posterior

geometries (e.g. isolated modes or degeneracy ridges) - geometries of the sort that arise fre-

quently in astrophysical studies. By applying umbrella sampling to a familiar astronomical

problem and illustrating its efficacy, we hope to raise awareness of this powerful statisti-

cal technique which is well suited to astronomical data analysis. To aide astronomers first

learning to use umbrella sampling, we have provided an introductory Python tutorial at

https://gjgilbert.github.io/tutorials/umbrella_sampling/.

Our umbrella sampling routine reliably produces posterior estimates of planetary radii

and impact parameters which are both more accurate than estimates obtained using a stan-

dard approach. We tested our method under a wide range of conditions using both real and

synthetic data, finding that umbrella sampling performed at least as well as —and usually

better than —the standard direct sampling approach for every star-planet configuration we

considered. Moreover, even in cases where umbrella sampling did not provide higher preci-
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sion estimates than direct sampling, we were able to have greater confidence in the results

of umbrella sampling because only this method is able to efficiently explore deep in the the

grazing regime.

Throughout this paper, we have offered numerous suggestions for how to modify existing

transit modeling procedures in order to produce more robust posterior estimates. We now

summarize these recommendation here.

1. Before fitting any transit model, perform an exploratory analysis restricted to the

region of parameter space immediately surrounding the grazing/non-grazing transition

at r = 1 − b. This exploration can be efficiently executed using our {r, γ} basis and

and the transition umbrella, ψT .

2. If all samples πT (γ) are consistent with a non-grazing geometry (i.e. all γ > 1), one

may proceed with a standard analysis, restricting the model to non-grazing geometries.

Conversely, if all samples πT (γ) are consistent solely with a grazing geometry (all

γ < 1), one may instead restrict the model to grazing geometries and sample using our

new {λ, γ} basis.

3. If, however, samples πT (γ) are mixed between grazing and non-grazing geometries, the

transit should be modeled using the scheme we have described in detail in §3.1 and

§4.2.

4. After sampling from under the various umbrellas ψi, compare posterior sub-

distributions πi for each transit parameter to ensure that inferences are consistent

between samples drawn from different windows. If samples are in disagreement, closer

investigation is needed. This comparison step provides an additional convergence check

for the user.

5. For planets inferred to orbit on a grazing trajectory, consider whether a fully photody-

namical analysis is needed. If so, the results obtained via umbrella sampling will serve
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as useful priors for initializing the more computationally expensive photodynamical

model, thereby improving efficiency.

For most of the history of exoplanet science, uncertainties on planetary radii and orbital

parameters have been dominated by uncertainties on stellar parameters. Now, however,

with improved stellar radius estimates from Gaia [Gaia Collaboration et al., 2018], and high

resolution spectroscopy [Johnson et al., 2017, Petigura et al., 2017], the details of the transit

fitting problem have once again become relevant for obtaining state-of-the-art estimates of

planet properties. Statistical studies of exoplanets will remain dominated by the population

of transiting planets for at least the next decade, and so transit modeling will remain at

the foundation of many astrophysical analyses. By adopting umbrella sampling as a new

tool, we will ensure that our understanding of exoplanet demographics, architectures, and

formation histories will reach as far as the data allow.
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dorets, P. Fernique, F. Figueras, F. Filippi, K. Findeisen, A. Fonti, E. Fraile, M. Fraser,
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ralda, A. Gavel, P. Gavras, J. Gerssen, R. Geyer, P. Giacobbe, G. Gilmore, S. Girona,
G. Giuffrida, F. Glass, M. Gomes, M. Granvik, A. Gueguen, A. Guerrier, J. Guiraud,
R. Gutiérrez-Sánchez, R. Haigron, D. Hatzidimitriou, M. Hauser, M. Haywood, U. Heiter,
A. Helmi, J. Heu, T. Hilger, D. Hobbs, W. Hofmann, G. Holland, H. E. Huckle, A. Hypki,
V. Icardi, K. Janßen, G. Jevardat de Fombelle, P. G. Jonker, Á. L. Juhász, F. Julbe,
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M. Žerjal, H. Ziaeepour, J. Zorec, S. Zschocke, S. Zucker, C. Zurbach, and T. Zwitter.
Gaia Data Release 2. Summary of the contents and survey properties. , 616:A1, August
2018. doi: 10.1051/0004-6361/201833051.

Gregory J. Gilbert and Daniel C. Fabrycky. An Information Theoretic Framework for
Classifying Exoplanetary System Architectures. , 159(6):281, June 2020. doi: 10.3847/
1538-3881/ab8e3c.

Sivan Ginzburg, Hilke E. Schlichting, and Re’em Sari. Core-powered mass-loss and the radius
distribution of small exoplanets. , 476(1):759–765, May 2018. doi: 10.1093/mnras/sty290.

Jonathan Goodman and Jonathan Weare. Ensemble samplers with affine invariance. Com-
munications in Applied Mathematics and Computational Science, 5(1):65–80, January
2010. doi: 10.2140/camcos.2010.5.65.

Akash Gupta and Hilke E. Schlichting. Sculpting the valley in the radius distribution of small
exoplanets as a by-product of planet formation: the core-powered mass-loss mechanism. ,
487(1):24–33, July 2019. doi: 10.1093/mnras/stz1230.

Aaron Hamann, Benjamin T. Montet, Daniel C. Fabrycky, Eric Agol, and Ethan Kruse. K2-
146: Discovery of Planet c, Precise Masses from Transit Timing, and Observed Precession.
, 158(3):133, September 2019. doi: 10.3847/1538-3881/ab32e3.

Kevin K. Hardegree-Ullman, Jon K. Zink, Jessie L. Christiansen, Courtney D. Dressing,
David R. Ciardi, and Joshua E. Schlieder. Scaling K2. I. Revised Parameters for 222,088
K2 Stars and a K2 Planet Radius Valley at 1.9 R⊕. , 247(1):28, March 2020. doi:
10.3847/1538-4365/ab7230.
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APPENDIX

A Derivation of lambda

Let Λ(r, z) be the area of overlap area between two spheres (Equation 2.5) for a radius ratio,

r and projected separation of centers, z = z(t). Making the substitution z(t0)→ b gives the

area of overlap at midtransit, Λ0. At the grazing/non-grazing transition boundary, b = 1− r

and Λ0 = r2; at the grazing limit where the planet just barely transits, b = 1+r and Λ0 = 0.

If we define the convenience variable β ≡ 1− b, then the two endpoints of grazing geometries

in (β,Λ0) space for a given r are (r, r2) and (−r, 0). Connecting a straight line between

these two points yields

Λ0 =
( 0− r2

−r − r

)
(β + r) =

r

2
(β + r) =

r

2
β +

r2

2
(1)

Eliminating numerical factors and defining λ ≡ 2Λ0 gives λ = βr + r2, which is the

definition of λ we presented in Equation 3.1 in the main text.

B Accounting for implicit priors

In general, a transformation from one basis set to another can induce spurious priors unless

we properly track the effect of the coordinate transformation on the likelihood. For our

specific case, we have defined the transformation {r, b} → {λ, γ} as

λ = r2 + βr

γ =
β

r

(2)

where β ≡ 1− b. In this case, the Jacobian will be
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J =

∣∣∣∣∣∣∣
∂λ
∂r

∂λ
∂β

∂γ
∂r

∂γ
∂β

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
2r + β r

−β/r2 1/r

∣∣∣∣∣∣∣ (3)

and adding its log-determinant to the log-likelihood will account for implicit priors in-

duced by the coordinate transformation.

One common approach for setting priors on r and b is to assume that these variables

are uncorrelated and then draw (r, b) pairs uniformly from the physically permissible region

of the r − b plane [Espinoza, 2018]. However, this approach introduces a marginal prior on

r, more heavily weighting larger values of r. We instead opt to use a proposal distribu-

tion which produces an uninformative marginal prior on both r and b, replicating the de-

fault ImpactParameter distribution implemented in the popular Python package exoplanet

[Foreman-Mackey et al., 2021a].

Because our variables are correlated in non-trivial ways due to the complicated under-

lying geometry of the problem, in practice we find it convenient to draw our variables from

conditional distributions. For non-grazing transits (the “N” umbrella), we draw r and b

sequentially as

f(r) ∼ U(rmin, rmax)

f(b|r) ∼ U(0, 1− r)
(4)

where U is a uniform distribution and f(b|r) is a conditional distribution of b given r.

These proposal distributions do not automatically produce the desired prior. The Espinoza

[2018] prior can be recovered by adding log(1− r) to the log-likelihood, and the exoplanet

prior can be produced from the Espinoza [2018] prior by subsequently subtracting log(1+r).

For grazing transits (the “G” umbrella), in order to produce our desired priors, we can

draw λ and γ from the proposal distributions
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f(γ) ∼ U(−1, 1)

f(λ|γ) ∼ U
(

(γ + 1)r2min, (γ + 1)r2max

) (5)

Subtracting log(2+2γ) from the log-likelihood reproduces the Espinoza [2018] prior, and

subsequently subtracting log(1 + r) reproduces the exoplanet prior. Coincidentally, the

term required to produce the Espinoza [2018] prior exactly cancels the log-determinant of

the Jacobian.

For the transition window (the “T” umbrella), we sample using the hybrid basis {r, γ}.

Here, we can draw r and γ from the proposal distributions

f(r) ∼ U(rmin, rmax)

f(γ) ∼ U(0, γmax)

(6)

where γmax = 2 if r < 0.5 and γmax = 1/r2 if r ≥ 0.5. This variable upper bound

on γ prevents negative impact parameters from being drawn. The Jacobian determinant

for the transformation {r, b} → {r, γ} is |J | = 1/r. When r < 0.5, adding 2 log 2r to the

log-likelihood reproduces the Espinoza [2018] prior, and when r ≥ 0.5 adding log r does so.

Subsequently subtracting log(1 + r) once again reproduces the exoplanet prior.
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