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Abstract

This thesis investigates transition metal ions (TMIs) as an emerging platform to create quan-

tum bits (qubits). The electronic orbitals of TMIs can be tuned and designed using basic

guiding principles to form various structures that contain long lived qubits in the ground

state and spin selective optical transitions that form a photonic interface to initialize and

readout the quantum states.

This thesis starts with describing the physics behind electron spin qubits and TMI or-

bitals that host the electrons. We then narrow the focus to a few symmetry configurations

based on basic design principles from understanding TMI physics. Through optical spec-

troscopy we confirm the expected electronic structure that allows for a spin-photon interface

of chromium ions within two different semiconducting hosts: silicon carbide (SiC) and gal-

lium nitride (GaN). We observe a striking similarity of the optical and spin structure between

the qubits in these different semiconducting hosts. This is a result of the similar local en-

vironment of the defects, demonstrating the portability of TMI qubits across various hosts.

We then further narrow our focus to TMI qubits within SiC, a technologically mature semi-

conducting material widely used in industry. We create qubits in this material on demand

through ion implantation and annealing, a first step towards scalable quantum devices based

on transition metal qubits within solid state. In this system, we show long spin lifetimes

for ensembles of chromium ions with high optical initialization and readout fidelities, which

demonstrates their viability as spin qubits with optical addressability. We also characterize
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vanadium ion defect spins that possess an optical interface within the telecom O-band com-

patible with single-ion detection, showing promise for using them in long distance quantum

communication devices that can utilize the existing low-loss telecommunications fiberoptic

infrastructure. Finally, we leverage a new synthetic chemistry approach to atomistically de-

sign the local ligand environment of TMIs to generate optically addressable molecular spin

qubits and show their coherent control. By changing the ligand environment and/or the core

transition metal type, we can keep the physics of the qubit the same while changing both

the optical transition over 200 nm and the microwave transitions over 100 GHz, showing

the promise of transition metal based molecules as tailor-made qubits for different quan-

tum applications that can range from self-assembled individually addressable spin arrays for

quantum computation to highly multiplexed quantum sensors that are a nanometer in size.

The demonstrations of long coherence times with high initialization and readout fidelities,

detection of single emitters within the telecom band, and synthetically tunable molecular

qubits highlight the promise of TMIs as a flexible, emerging quantum technology platform

with potential applications in quantum communication, computation, and sensing.
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Chapter 1

Building Quantum Technologies

I often find that within research communities, a researcher’s family and friends who are

outside of the scientific community have little idea about what the researcher does. I find

this sad, because science explains the world in which we live, creates the foundations for

the technologies that we use and is awesome. I believe if a particular scientific information

explained simply, any person can understand it, find it interesting and enjoy learning it. I

was lucky enough to participate in many teaching activities during my PhD career where

students’ knowledge ranged from high school mathematics and science to PhD students

specializing in quantum technologies. During these activities I had to think deeply about

the field of quantum information science to cater my explanation for each audience. My goal

of this chapter is to take a nontraditional approach and explain quantum information science,

its promises, where we are and the current challenges simply and as accessible as possible.

This is an exceptionally challenging approach for any PhD student who is accustomed to

rigorous scientific writing and it is also a risky one, as there is likely going to be an exception

to any general and simplified statement. Nevertheless I believe this is an important task, as

I hope any friend, family or interested party can read this chapter to understand the field

and the contribution of this thesis to it.

The field of quantum information science is vast, comprised of topics such as: mathemati-
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cal foundations of information theory, experimental quantum platforms, support technologies

and packaging devices. A whole series of books would still be insufficient to paint a complete

picture of the field. Within the limited space and time I have, the perspective I will share

here will be filtered through my research focus of using transition metal ions as optically ad-

dressable spin qubits. My goal is that anyone with some basic science background can read

this chapter and understand what optically addressable spin qubit means, where quantum

information science stands as of 2021 and how this thesis fits into the global effort of building

quantum technologies.

1.1 “Classical” Technologies

The late 20th and 21st century experienced a rapid expansion of computational power,

most commonly characterized by the phenomenological observation called Moore’s Law:

roughly every two years, the number of transistors on a microchip double due to the pace of

technological advancement. A transistor is an electronic switch and the backbone of all the

digital technologies we rely on today, from the laptop on which I am writing these words, to

the smart thermostat that controls the air handling system of my home.

Existing technological infrastructure is built on transistors because we are very good

at making many of them cheaply and densely. There is, however, nothing magical about

transistors. Anything that can ‘switch’ between two states, like a light switch, can technically

be used to build a computer. Transistors are not unique in their capabilities. For example,

neurons are also digital switches that either fire or not fire, and a cluster of them can perform

computation.

A switch can only have two states: on or off. In the case of transistor on means electrons

are flowing and off means electrons are not flowing. The state of the transistor encodes the

binary information of 0 or 1. This is known as a classical bit.1 By combining many of these

1. Only quantum physicists call this a classical bit. Classical computer scientists simply refer to it as a
bit.
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bits, say n-many, we can create 2n different, unique encoding sequences that can correspond

to numbers, text, sound frequency, image and video game logic.

How did we get from a bunch of switches to the interconnected digital world with devices

that can augment reality, and store and provide access to all of the information humankind

has created? This did not happen overnight. It took a lot of investment from governments,

researchers and businesses to build a digital infrastructure. There were a few key components

that were essential for these technologies:

• Processor : A processor is the part of the computer where it takes one set of binary

encoding, and turns it into another set. This is achieved by a 2-bit NAND gate shown

below:

Bit 1 Bit 2 NAND

0 0 1
0 1 1
1 0 1
1 1 0

Table 1.1: NAND logic table.

This gate is universal: any other 2-bit logic can be built by combining various NAND

gates. This is a very powerful tool, by simply using a combination of NAND gates,

we can convert any binary encoding to any other binary encoding! We have developed

computer programming languages to figure out how to do meaningful conversions of

the binary code and employ algorithms which is a fancy way of saying “follow a set

of predetermined rules” to get the job done. We have built many layers of logic that

convert this process into easy to understand human language, but in its essence a

computation is conversion of one set of binary into another one and is done within a

processor.

• Memory : We need to be able to store the sequence of binary bits for later use, reliably.

If the data is corrupted before it can be measured or processed, then valuable infor-
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mation can get lost. In a sense, a processor is by definition a memory since the binary

must be stored to be processed. It is however, costly to use a processor, an architecture

that is optimized for rapid gating of bits, simply as memory as the idle information

occupies unnecessary resources to be saved. Having some excess memory where infor-

mation can be stored for a longer time is a more efficient architecture. Ultimately, the

cost of material, energy, bandwidth and other parameters determine whether the in-

formation is held locally within the processor, temporarily within dedicated processor

memory, permanently in a magnetic disc or the cloud (a remote server farm).

• Interface: How do you flip the millions of binary switches in our pockets to the right

state (0’s and 1’s) for processing, storing or transmitting information? Suppose you

have some data in the memory with a sequence of a million 0’s and 1’s - how do you

make sense out of it? In some science fiction media (e.g. Neo in The Matrix ), one

can look at a sequence of binary on screen and make sense of the data immediately.

This, however, is very far from a realistic depiction of how we use computers. We

need intuitive ways for us to interact with this digital infrastructure. First, we need

a way to input data into a computer, for example with a keyboard (as opposed to

memorizing the unique binary encodings for each letter and flipping switches one by

one). We also need a way to measure the end result of the computation, for example

convert a collection of bits that encode the letter a, into a recognisable pattern of pixels

that light up on our monitors such that we can visually recognize the encoded letter.

A screen and keyboard are just some examples of how one communicates with these

switches. There are many other forms of input (e.g.’s camera, microphone, mouse,

heart rate monitor) and output (speakers, screens, printers, coffee makers). The point

is, an information processing device cannot be a brain in a jar, it needs a way to have

inputs and outputs to be useful.

• Modem: The data that is computed within a processor needs to move around, for exam-
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ple to a memory for storage or a different computer for further processing. Although,

the native binary encoding of “electrons flowing” vs. “electrons not flowing” can easily

move the data within a computer through copper wires, this task becomes more chal-

lenging for longer distances. A modem solves this problem by converting the binary

information encoded within electron flow to other forms of encoding, while retaining

the digital information. For example, when one accesses a web-page, their computer

generates the necessary query in binary, and an internal modem converts it into 5

gigahertz WiFi signal. A microwave receiver within a router detects the information,

and translates the same information in a different microwave signal that is sent into

the web through a coaxial cable. At a certain node, this microwave information gets

translated into a laser beam (terahertz) through another modem and is sent through a

fiber-optic cable. There are many nodes along the way that detect the laser beam, and

repeat the signal to counteract natural losses. Sometimes the signal can traverse half

way across the Earth! Eventually the light signal reaches a node close to the target

server, gets converted into a microwave signal, then deciphered by the server modem.

After all these conversions, the server that is halfway across the globe now has the

query encoding in its own local memory! The server processes it, prepares a response

accordingly and sends the information back into the web where the response binary

traverses the same path backwards to the querying computer. All of this happens in

less than a tenth of a second! The modem enables the conversion of the binary across

multiple encoding architectures and is responsible for what we call the internet.

Within the existing digital framework, the information is converted between many forms.

Transistors can temporarily store information within a central processor unit (CPU) or

a random access memory (RAM), but these elements are not ideal to store information

indefinitely as the “on” switches must be powered the entire time. Once the power is gone,

the information is deleted forever. This is why a computer needs to boot up after it is

powered down, the necessary transistors within the CPU and the RAM need to be turned
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on. A more permanent way of storing information is the good old magnetic memory where

data is encoded as magnetization on a piece of tape. So far, biological evolution holds the

record for the highest density of long term data storage within DNA, where scientists, today,

can encode and readout digital information at will [6]. We already discussed how the digital

information also needs to be both transformed into and transcribed from electromagnetic

waves for the internet to function. The key takeaway for the next part of the discussion is

that transistors are not the only binary encoders of information. There are many other forms

of binary encoding that is used for data storage and its transportation as well as devices

that convert these encoding into each other.

When we discuss quantum technologies at Sec.1.3 we will see very similar ideas to the

ones discussed above, but within the quantum context.

1.2 Need for Quantum Technologies

1.2.1 Quantum Computing

We are rapidly approaching the limits of the Moore’s Law. As the transistors are shrinking

to the size of a few atoms, the quantum effects start kicking in. For example, electrons

can tunnel through electronic potential barriers that would be impossible classically, turning

an ‘off’ transistor into an ‘on’ state and introducing unwanted errors. Given this limit, it

is expected that within the next few decades we will hit a wall of doubling the density of

transistors every two years. In order to continue increasing the computational power, we

will need to employ new strategies that utilize quantum mechanics.

The theory of quantum mechanics explains the universe extremely accurately2 and has

held up to much scrutiny. As far as we know, the universe follows the laws of quantum me-

chanics, explained in detail at Sec.2.1. In order to accurately describe a quantum mechanical

system, one needs to keep track of every possible scenario the system can have. On a macro

2. Except for gravity.
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Figure 1.1: Moore’s Law: the number of transistors are roughly doubling every two years.
Data taken from Wikipedia’s Transistor Count page.

scale, this is not necessary and one simply can use the laws of classical mechanics to model

large scale objects. For example, when one shoots a cannon ball, one just needs to know

the location of the ball and its velocity at some point in time to figure out how it is going

to evolve later. However, quantum mechanically, to predict how an electron is moving, one

would need to keep track of all possible trajectories since the initiation of the problem from

a known state. Furthermore, if one increases the number of possible paths the electron can

take, the problem becomes exponentially harder as all of the new combinations in addition

to the initial ones must now be considered. As a result it is impossible for a classical system

to simulate a large highly entangled3 quantum mechanical system [7]. This has profound

implications.

There are many problems that we care about in the fields of chemistry, biology and

materials science that all act according to the laws of quantum mechanics and thus cannot be

3. A quantum mechanical property with no classical analogs that describe correlations which transcend
space.
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accurately simulated by a classical computer4 using the first principles. A caffeine molecule

with 24 atoms requires 1048 bits just to encode all of its possible configurations [8]. It

is estimated that there are 1050 atoms in the world. In order to just store the data of

all configurations a single caffeine molecule can have so that we can simulate it quantum

mechanically, we need to use 1 out of every 100 atoms on the world! In contrast a 160

quantum bit (qubit) quantum computer can hold the same amount of data in its memory.

Nature is able to keep track of all of the possible configurations and compute a cup containing

full of this simple molecule that was essential for the work done in this thesis, in picoseconds

with no trouble! If nature can do it, we should be able to as well.

I should note that quantum computers are not a golden bullet that will solve all math-

ematical problems; there is a large set of mathematical problems beyond the reach of a

quantum computer. Nevertheless, there is hope that a quantum computer can at least help

approximate solutions for certain problems faster than the classical ones.

So far we only know of ‘quantum mechanical’ problems that a quantum computer can

solve exponentially faster than a classical computer. There are also some quantum algorithms

that can solve non-quantum problems exponentially faster than classical computers. For

example, quantum Fourier transform can find repeating patterns within data and Shor’s

algorithm can factor prime numbers and therefore can decrypt existing digital encryption

systems. It is not yet known whether these are uniquely quantum solutions or if there exists

a classical algorithm which works equally well that is not yet discovered. It is however

encouraging that there exists at least one element (quantum mechanical problems) in the

set of mathematical problems, that only a quantum computer can solve which may indicate

that there may be a quantum advantage for solving other problems beyond materials science,

chemistry and biology.

4. There are very useful approximation methods that allows modeling these quantum mechanical systems
which guide and explain important physics and chemistry. Some of the largest built computers are used to
run such such classical approximation algorithms to explore quantum mechanical phenomena.
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1.2.2 Quantum Communication

A qubit, very similar to a classical bit, can only be measured as a 0 or 1. Unlike a classical bit,

however, a qubit’s measurement outcome is not predetermined, but instead most of the time

probabilistic. The nature of this probabilistic behavior is described by a wavefunction and

its dynamics by quantum mechanics. Once the qubit is measured, however, the probabilistic

nature of the qubit ceases to exist (collapses), and it is permanently in the 0 or 1 state until it

is placed in a different quantum mechanical state (see Sec.2.1 for more detailed description).

It is impossible to decipher the wavefunction of an unknown qubit without repeating a

measurement on identically-prepared qubits many times and building statistics. I should

emphasize that repeatedly measuring the same qubit will not reveal more information about

the original state of the qubit prior to the first measurement, since the initial measurement

fundamentally changed the qubit. The fact that the very act of measuring a qubit changes it

in a testable way and the measurement outcome probability is determined by the quantum

state (wavefunction) is both a resource and a headache.

These quantum mechanical phenomena are a resource: since the measurement physically

changes the qubit, a qubit can be used to build a shared secret code between two parties with

the confidence that nobody else eavesdropped (measured) into their encryption protocol [9].

The fully secure, shared code (one-time pad), can be used to encrypt sensitive information

like medical records or credit card information. Such a network of quantum particles can

create encryption, secured by the laws of physics. The protocol that generates the secret

codes is called quantum key distribution.

On the flip side, the collapse property is a headache, because it means that we cannot use

a classical channel to send an unknown quantum wavefunction, since measuring the quantum

wavefunction will inherently destroy it. Suppose we have a set of quantum sensors that are

separated by long distances that need to communicate to each other, or we would like to

send their wavefunction that contains information about the sensed object to a quantum

computer for a quantum analysis or two quantum computers need to communicate; how
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can these fragile wavefunctions be sent without physically transporting the encoding qubits

or measuring them? Quantum mechanics does allow for quantum communication channels

through a property called quantum-entanglement. A network of quantum entangled particles

would enable teleportation of quantum wavefunctions over long spatial distances without

collapsing the quantum state [10]. This network of quantum entangled particles can both

be used for quantum encryption and wiring of quantum devices together and is called the

quantum internet.

1.2.3 Quantum Sensing

A major challenge for qubits is preserving their quantum states as they are very sensitive to

their local environment. On the flip side, this sensitivity makes them excellent sensors. A

joke I’ve heard many times in the field is: “if you have a bad qubit, you have a good sensor,

and if you have a bad sensor, you have a quantum random number generator”.

The term, quantum sensor encompasses many different sensing strategies. This umbrella

term includes the usage of highly localized and sensitive qubits to sense classical fields to

using highly entangled quantum states to beat classical measurement limits [11].

Advanced quantum sensing schemes utilize quantum properties of the sensors and the

desired signal gets encoded in the wavefunction of a qubit. This signal cannot be measured

with a single experiment due to collapse property of qubits discussed earlier. Generally,

the sensing scheme followed by a measurement is repeated many times to build statistics to

decipher the wavefunction that contains the signal about the sensing target.

A quantum computer can manipulate wavefunctions without collapsing them. Therefore

a quantum computer can extract the acquired information within a quantum sensor by

employing a quantum algorithm where the sensor and the computer would be wired together

by the quantum internet. This hybridization between a quantum sensor and a computer

through a quantum channel could improve sensing techniques and also building quantum
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databases [12]. Converting the existing classical data to a quantum one takes exponential

time scaling and is currently a big bottleneck for quantum computers that require quantum

data for the promised speed-ups [13]. Therefore, quantum sensors are essential to realize the

full potential of quantum computers, with quantum communication channels wiring them

together. All of these components: quantum sensors and processors wired together through

a quantum internet need to work together to form the quantum technological landscape.

1.3 Quantum Technologies

Analogous to classical information technology components we have discussed, we will need

to pioneer certain quantum technologies.

• Quantum Memory : Just like classical memories, we need quantum memories to store

quantum wavefunctions. For example, we would need a quantum-database to be able to

apply a quantum search algorithm (e.g. Grover’s algorithm) which would be square-

root times faster than classical database search. We may wish to train a quantum

neural network, which would require a quantum data set to be trained on - therefore

that database needs to be solidly in memory without corruption. A quantum memory

would allow storing quantum states for long enough times for processing.

• Quantum Interface: Sadly, we are classical beings - so in order to measure the compu-

tational results from a quantum computer, we need to collapse the wavefunction and

present it through a classical monitor or other interfaces for us to understand. All of

the data we have today, including the results of quantum experiments, are stored in

classical databases, and they are generated by classical input devices like a keyboard

or a cell phone camera. As quantum technological landscape grows, it is possible to

imagine a network, where most parts of the information remain quantum mechanical.

We already explored the idea of quantum sensors and quantum computers sharing

quantum wavefunctions to improve sensor sensitivity. It may also be possible to in-
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sert quantum mechanical wavefunctions into ambient environment for a certain task

through quantum actuators. For example Magnetic Resonance Imaging (MRI) polar-

izes the protons in our blood with very large magnetic fields (which makes the machine

large, heavy and expensive) and then measures the polarization decay time to make

deductions about the tissues in which they are. This is an example of quantum sens-

ing. A qubit platform called the NV center in diamond can be used as a quantum

actuator. Instead of using large magnetic fields for proton polarization, one can use

the NV center qubits to insert the polarized quantum states to the ambient protons in

water around the qubit without a large magnetic field. This technique can potentially

enable miniaturizing MRI technology to make it cheaper and more accessible [14]. As

quantum technologies advance, it could be possible to improve measurements through

quantum sensors and control chemical and biological processes through injecting wave-

functions computed in a quantum computer by quantum actuators. Such quantum

interfaces, inputs from quantum sensors and outputs from quantum actuators will be

an essential part of quantum technologies.

• Quantum Processor : Just like classical computers, quantum computers’ objective is

converting one set of binary data into another set of binary data. Unlike classical

computers, however, the data in a quantum computer is encoded within qubits and

the result of a measurement is not deterministic. A measurement of a quantum system

simply samples from all possible configurations that the qubit space can have. The

point of a computation is to amplify the probability of all the results that are answers

to the questions we are asking while minimizing the probability of measuring incorrect

outputs. This wavefunction manipulation must follow certain operations allowed by

quantum mechanics called unitary transformations. Just like the NAND gate was a

universal computation basis for classical computers, it turns out that one two qubit

operation (e.g. Controlled-NOT5), and a simple set of single qubit operations (e.g. X,

5. This is the quantum analog of the classical Exclusive Or (XOR) gate
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Y, Z, T6) can exponentially accurately approximate any arbitrary two qubit opera-

tion in polynomial time [15] and any large unitary transformation can be decomposed

into two qubit unitary transformations [16]. These are very powerful results, as they

imply that it is possible to construct any quantum mechanical transformation within

a quantum processor! A quantum algorithm, in essence, is a unitary transformation

made out of single and two qubit gates that result in the desired final wavefunction

that maximizes the probability of measuring the correct answer.

• Quantum Modem: Just like classical technologies rely on multiple platforms (e.g. tele-

com light, microwaves, electric current running through a transistor, magnetic domain

on a tape etc.) to encode binary information between various physical systems, it

is widely believed that quantum technologies will have to employ a similar strategy.

This means, we will need to master the technology to transfer a quantum wavefunction

(transduct) between multiple physical systems and quantum degrees of freedom that

may be useful for various applications from communication to storage to computation.

Such transduction technologies would open up the doors to bringing together many

different quantum platforms each possessing a different strength for various applica-

tions.

1.4 Quantum Platforms

A qubit is a quantum degree of freedom that can be manipulated and measured. Just like a

classical bit, where the abstract binary of 0 and 1 is attached to a physical object such as a

transistor or a magnetic tape, the qubit is also attached to a physical quantum system. There

are many available platforms that we will briefly discuss. Coherence is a figure of merit used

to quantify the quality of a qubit and it describes qubit memory: how long the quantum

6. X-Gate is the quantum analog of the classical NOT gate which flips the bit. NOT gate is the only
classical single bit operation. Y, Z, T are purely quantum mechanical single qubit gates with no classical
analogs and control a qubits additional available degrees of freedoms.
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wavefunction can be retained within a qubit. All of quantum platforms obey a fundamental,

phenomenological rule: if a qubit is insensitive to the environment and therefore highly

coherent, then it is difficult to manipulate it. Conversely, if one can easily manipulate the

qubit, then the coherence times will also suffer. We commonly refer to this in the lab as:

“nature hardly lets you win”. One can intuitively understand it as follows: if a system is

easy to interface with, then it is also easy for the environment to interact with it too and as

such, the environment can ‘take an unwanted measurement’ and collapse the wavefunction

or do any other undesired operation on the qubit. Therefore, there is not a single quantum

platform available that can rule them all, yet.

Each qubit platform comes with its own set of advantages and challenges. The consensus

in the field is that in order to build various quantum technologies, one needs to use multiple

qubit platforms and convert (transduce) quantum information from one platform into an-

other to take advantage of each platforms strengths for a specific application (e.g. photonic

qubits for quantum communication). Thus, it is important to interface with a qubit with

multiple degrees of control. The platforms I will discuss below at least have either an optical

interface and/or a microwave interface, where a single light particle (photon) or a magnetic

degree of freedom (spin) can itself be a qubit. Having more than one quantum interface

available makes a qubit candidate more appealing for hybrid quantum applications. We will

conclude this chapter with the discussion of transition metal ions, the subject matter of this

thesis, and an emerging quantum bit platform.

1.4.1 Terahertz Photons

Our current information highways transport classical bits by encoding them within light that

propagates through a fiber optic network that connects the entire world. A fiber-optic cable

is essentially a piece of glass, most commonly made out of silica, and the light reflects from

the walls of the cable, forcing it to propagate within it. During its travel through the fiber-

optic cable, light can scatter off of grains within the glass, as silica can have domains with
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different refractive indexes and domain mismatches. This is called Rayleigh scattering and

is responsible for losses within the fiber optic cables and it is highly wavelength dependent

(∝ 1/λ4). The higher the wavelength, the lower the loss is and therefore photons that carry

information can travel further. On the other end of the spectrum, however, photons can

excite the bonds between silicon and oxygen in silica and therefore get absorbed through a

process called multiphonon absorption. The closer the energy of the photon to this absorption

process, the more likely it will be absorbed. Therefore higher wavelengths (lower energy) also

get dissipated within a fiberoptic cable [17]. This leaves a window of maximum transmission

around 1550 nanometer (nm) wavelength called C-band and is the current standard for

telecommunication network. The probability of sending a single photon qubits through the

existing fiberoptic network is maximized for this telecom band. Therefore, most of the

fiberoptic related quantum network experiments are done in this wavelength regime.

800 1000 1200 1400 1600

1
2

3
4

5
6

Wavelength (nm)

A
tt

en
ua

tio
n 

(d
B/

km
)

Rayleigh scattering Multiphonon
Absorption

O-Band
E, S, C, L
- Bands

� �

Figure 1.2: Photons within fiberoptic cables. (A) Illustration of photons traveling within
a fiberoptic cable, contained by reflections from the walls. (B) Photon attenuation plot as
a function of wavelength. The absorption peaks are due to unintentional OH within silica.
Figure is adapted from wikipedia.

A single photon can be used as a qubit in many ways [18]. For example, the existence (1)

or non-existence (0) of a single photon can encode a qubit. For long distance communication

such encoding can be problematic, since a single photon can be absorbed or scattered within

a traveling medium such as a fiberoptic cable or earths atmosphere, turning a 1 into a

0. Photons have a polarization axis which can also encode a qubit and this can be easily

controlled with polarization optics, creating single qubit gates. By the same token, a photon’s
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polarization axis can unintentionally rotate as it is traveling through a material medium and

create errors. A more robust qubit encoding is an early (0) vs. late (1) arrival photon, as one

can easily detect photon losses. One needs to be careful again with real world long distance

quantum communication using an early-late photon qubit as, for example, a fiberoptic cable

can stretch or contract with ambient temperatures, or the location error of a moving satellite

can introducing errors. It is generally possible to correct for timing errors with feedback from

non quantum channels traversing the same photon paths. These three degrees of freedoms

can be more or less easily transduced into each other with some simple optics [19].

One of the main reasons we do not have gate-based photonic quantum computers7 is

that it is extremely difficult to build two qubit gates as photons do not interact with each

other except for very special circumstances, and when they do, the interaction is extremely

weak. On the flip side, this allows for sending a massive amounts of data, multiplexed

in photon energy, or other degrees of freedom without having to worry about one photon

effecting another [20]. A second issue is that the photon is always moving at the speed of

light through a medium, so in order to increase the number of gates, one needs to keep

adding more optical elements to the photons path which makes building arbitrarily large

circuits challenging. In contrast a stationary qubit is only limited by the coherence time and

can be gated many number of times within that time window [21]. Therefore, a good avenue

to explore are material qubits that naturally interface with photons. The material qubit can

perform the two qubit gate operations, or store the quantum information for a long time,

and on demand, that quantum information can be transduced into a photon to be either

measured or sent over long distances through the existing telecommunication network.

7. There are other strategies that photonic qubit based architectures use including effects of measurement
altering quantum states to perform wavefunction evolution.
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1.4.2 Atoms

Just like cows can be approximated as spheres with uniform density in vacuum, atoms can be

approximated as positively charged nuclei with negatively charged electrons orbiting around.

We will have a more realistic description of electronic orbitals of an atom in Sec.2.4. Unlike

planetary systems, in an atomic environment, there are only discrete number of orbitals

available. In a nutshell, in quantum mechanics, everything is treated with probability waves,

including the location of an electron. The front of the electron’s wave must catch its tail

after a full rotation around the atomic core. If this is not satisfied, over many rotations,

the wave averages to zero - meaning the electrons probability of being measured there is

zero. There are, therefore, only a discrete number of non-zero solutions creating the atomic

orbitals. This discretization of solutions is generally true for any bound quantum system; it

also gives the name to quantum physics, as in quantization of energy.

Two electrons cannot occupy the same quantum state, for example be at the same location

at the same time, as we will see in Sec.2.3.2. Just like a ball falling down to minimize its

potential energy due to gravity, an electron also tries to minimize its energy by being in the

lowest energy orbital. However, if that orbital is already occupied, then the electron has

be in the next available lowest energy orbital. When every electron is in the lowest allowed

state, the system is said to be in the ground state. The highest energy electron can be

excited to an even higher energy orbital when given energy, for example with a photon.

After spending some time in this higher energy, unstable state, the system relaxes back to

the ground state, and releases the energy difference in the form of a photon which can be

measured. Since each atom (and molecule) has slightly different energetics depending on

the nucleus (and bonds), it is possible to uniquely identify them by looking at this emitted

or absorbed light through spectroscopy. We use this quantum effect to gather information

about chemical composition of many materials including drugs, biological systems, planets

and stars!

A single atom can be used as a qubit, where the quantum information is encoded within
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Figure 1.3: Atomic orbitals and electronic excitations. (A) If the tail of an electrons prob-
ability wave catches the wave front, then there is a stable orbital, otherwise the probability
of electrons existence averages to zero. (B) Electrons around an atom stack to minimize the
total energy called ground state. An electron can be excited to a higher energy orbital, for
example with a photon and the atom is said to be in an excited state. A while later the atom
decays back to the ground state and emits the energy difference as a photon. Blue sphere is
the atom’s core, yellow spheres are electrons and red sinusoidal line is a photon.

the state of the atom (e.g. ground-state: 0, excited-state: 1) controlled with lasers. Of course,

one needs to well localize the atom, which can be achieved within an ultra-high vacuum

chamber with the aid of electromagnetic forces and/or optical tweezers. The excitation

of the atom changes the physical size of the atom since the outermost electron is now in

a ‘larger’ orbital. This change can be felt by other atoms allowing for two qubit gates.

However, localizing atoms beyond several hundreds in a scalable way to build large quantum

systems is still an open research question [22].

1.4.3 Molecules

Molecules are a cluster of atoms held together with electronic bonds. The field of chemistry

is dedicated to understanding and engineering the bonds between various atoms and the

resultant material properties. Since the electronic energy levels, determined by the nearby

nuclei, are all quantum mechanical, exact calculations of molecular ground and excited states

become impossible beyond a couple of atoms using classical computational techniques. This

is one of the main motivations behind quantum computers as discussed earlier. Such quantum

degrees of freedom within molecules could be used as qubits or quantum simulators.

There are many quantum degrees of freedoms a molecule can have, including electronic
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spins [23], nuclear spins [24], rotation [25], electronic excitation [26] just to name a few. The

topic of this thesis is spin qubits, and therefore, we will focus on spin degrees of freedom of

molecules. Spin is an intrinsic quantum property of subatomic particles including electrons

and certain atomic nuclei. One can think of it as a quantum bar magnet attached to the

subatomic particle. We will be extensively discussing spin physics in Sec.2.2. Just like

bar magnets are influenced by external magnetic fields (e.g. a compass needle that points

to magnetic north) spins can be controlled with both fixed and rotating magnetic fields

allowing for qubit control. As each spin also creates its own magnetic field, multiple spins

can magnetically interact with one another that can create quantum gates between such

qubits.

Historically such quantum control and measurements were performed within an ensemble

of molecules using electron spin resonance (ESR) or nuclear magnetic resonance (NMR) mea-

surements. These measurement techniques are also the basis of magnetic resonance imaging

(MRI). A large magnetic field causes the spins to preferentially point in one direction over

another, called polarization. Thermal effects can cause the spins to flip unintentionally,

therefore most of the non-biological experiments lower the temperature to increase the po-

larization rate. A rotating magnetic field, generally in the radio or microwave regime excites

the spin to another orientation and as the spin relaxes back to the ground state it re-emits

this energy where the emission or the absorption can be inductively detected. As spins within

a material interact with each other based on the makeup of ambient magnetic conditions,

one can decipher certain structural and chemical information of the system, which makes

ESR and NMR a very widely used technique for characterization. The first quantum algo-

rithm was run in such a system using nuclear spins of an ensemble of molecules to factor the

number 15 using Shor’s algorithm [27]. In order to build a functional quantum computer,

one needs to manipulate and detect a single quantum wavefunction. Inductive detection

is extremely weak, and detecting a single molecular spin that way is still an open research

question with the best sensitivity of 12 electron spins [28] so far.

19



1.4.4 Solid State Defects

A crystal is a periodic array of atoms. Sometimes within this array, there can be structural

defects. Among many types of defects an important subset are the point defects where one or

more atoms within the array can be missing and/or an atom could be substituted by another

kind. Similar to atom and molecular qubits discussed earlier, these point defects can form

well-localized quantum states with discrete energy levels or spin states that electrons can

occupy which can encode quantum information and therefore can constitute a qubit [29, 30].

If the host material is conductive, the electrons will flow freely through the crystal and will

not form a well-localized qubit that can be individually controlled and measured. Therefore,

semiconducting crystals are a good host material for such defects. A certain subset of point

defects within semiconductors can be optically active, meaning there are higher energy states

the electrons can occupy within the defect. Another subset of point defects can bear a spin,

just like molecules, that could be used as a qubit. Defects that are both spin bearing

and optically active are particularly interesting [31] as there can be spin-selective optical

interfaces, with prototypical system being the negatively charged nitrogen vacancy center in

diamond [32]. This optical interface allows for preparation (set) and readout (measurement)

of the spin without the need for very high magnetic fields for spin polarization or inductive

readout. Optical excitation can be much more efficient than thermal preparation in ESR

and easier to access with ever improving laser and optical technologies [33, 34]. There are

also easily accessible single photon detectors that enable single spin measurements. Since

defect-center based qubits are within a semiconducting host, it is also relatively easy to build

devices and control electronics around the defects using standard fabrication techniques [35–

40], making solid state defects a scalable platform once some of its challenges are overcome.

A major challenge with solid state defects is material engineering. In an ideal world,

we would have single defect centers in a periodic formation with atomic precision and not

have any other unwanted damage or defects around. None of the existing processes create

single defects reliably, and each defects’ local environment can be slightly different due
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Figure 1.4: Optically active spin defects. (A) Defect spin emits light when probed if the
spin is oriented up and emits less light if it is oriented in the opposite direction. (B) Defects
need to be close together for magnetic interaction to realize quantum gates, but identical
ones lose their individual addressability because they respond to the same optical probe and
microwave color.

to unintentional local differences, slightly altering the quantum properties of defect centers.

Another potential issue is the availability of multi-qubit registers for computation or memory.

Two defect centers could magnetically interact with each other for gating if they are within

a few nanometers of each other. Due to the wave nature of light, an excitation/detection

spot size can be only as small as roughly the wavelength, called the diffraction limit. This is

around a few hundred nanometers for visible to telecom wavelengths. If all the defects are

identical within this spot size, it would not be possible to address or detect a single one of

them because the laser cannot spatially differentiate between them. Similarly, if the magnetic

properties of the defects are also the same, then one cannot individually manipulate a single

defect center. This is potentially even a larger problem, as there are no magnetic monopoles,

meaning it is not possible to confine magnetic fields to individually access a single spin in a

small volume. There are potential solutions where some of the optical transitions could be

shifted with strain gradients [41], and magnetic properties could be shifted with magnetic

field gradients [42], or some of the properties can be altered with local electric fields [43].

Another potential solution is using the nearby nuclear, or other, dark impurity spins as extra

qubit registers [44]. These ‘dark’ spin registers can be interfaced with optically accessible

spin defects magnetically. These extra registers however are probabilistically distributed

within the lattice, and each device would need individual calibration and characterization
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to operate, limited by the number of available nearby spins. Overall, the control of the

material properties at the nanometer scale remains as the largest issue to be resolved for

scalable multi-qubit architectures.

1.4.5 Rare Earth Ions

Lanthanides are a special subset of metals also called rare earth elements. It turns out that

the highest energy orbitals, 4f, are radially closer to the nuclei than some of the lower energy

orbitals. When the electrons are filling the orbitals from the lowest energy to the higher ones,

there are a few unpaired electrons that remain in the f orbitals shielded by lower energy

but radially larger, outer orbitals. This shielding has some important implications. Firstly,

the f -f optical transitions of rare earth elements are almost unchanged between various

hosts as local environment does not change the energetics of the inner f orbitals. This is

especially useful for Erbium 3+ where the transition between the first excited state and the

ground state is right in the telecom band regardless of the host material. Therefore, a photon

emitted by an Erbium 3+ ion will travel much further than other emitters at other wave-

lengths through the already existing optical fiber network, relaxing distance requirements for

fiberoptic based quantum communication channels. Furthermore rare earth ions can have

an unpaired electron within these f -orbitals allowing for a spin qubit that interfaces with

the optical transitions, very similar to the defect spins discussed earlier [45].

The two main problems with rare earth ions are excited state lifetimes and again, material

preparation. f -f transitions are forbidden, and therefore once a rare earth ion is excited

within f -orbitals, it can take up to 10 millisecond for it to decay back [46]. This means that

if every single photon could be collected from a system, one could only measure 100 photons

per second which is a very low number, especially as there are many inefficiencies involved

with capturing single photons. Recently scientists overcame this limitation by building

optical cavities, essentially placing an ion between two very good mirrors, to improve the

ions interaction with photons which allowed for measurement of single rare earth atoms [47]
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and their spin states [48, 49]. The second limitation is that rare earth ions are large compared

to atoms that make up mature semiconductors. One can technically incorporate them into

common semiconductors like silicon, but the rare earth atoms do not occupy a lattice site

due to their size [50]. This technically is not an issue as the ion will continue emitting light

if it is in the right charge state. However many optically active ions each with potentially

different local symmetry configuration make optically controlling the spins in these hosts

challenging [51]. Discovering new material platforms that support rare earths, and developing

new host fabrication techniques are pursued aggressively across different groups, and recent

demonstration of single spin control of rare earth ions is extremely encouraging. Just like

defect centers in the solid state multi-qubit control of closely spaced ions and their individual

addressability is still an open question[52].

1.4.6 Other systems

There are a few other qubit systems such as superconducting qubits [53], which rely on a

single microwave photon to encode and manipulate quantum information, and quantum dots

(also referred as artificial atoms), which use electronic gates to trap single electrons within

semiconductors [54]. I will not spend much space discussing these technologies as they are

tangential to the rest of the thesis. One thing to note however is that there are companies

betting on these technologies such as Intel, Google and IBM. There are even small-scale

quantum computers built by Google that demonstrated advantages of quantum computers

over classical ones [55] and IBM placed a few similar devices on the cloud, open to anyone

to play with as of 2021.

The main advantage of quantum dots and superconducting qubits is that, they are fab-

ricated using the same tools that manufacture our modern electronics. However they also

suffer from wiring issues: each qubit requires at least 3 wires which need cooling to dilu-

tion fridge temperatures. This could be a limiting factor as the number of qubits reaches

the thousands. Material quality is still an active area of research as disorder or strain in
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the material caused during growth or fabrication limits reliable qubit manufacturing. Most

of the instruments, tools and techniques used in these platforms are shared across other

qubit platforms. Generally, technical advances in one of these platforms will advance other

platforms as well.

1.4.7 Transition Metal Ions

Transition metal ions are another metal species distinct from the rare-earth ions, with valance

electrons filling the d -orbitals. Unlike the f -orbitals of the rare-earth ions, the d -orbitals are

not shielded and therefore are highly sensitive to local bond environment (ligands) [56, 57].

These five orbitals have their own unique shapes, and thus their energies are highly dependent

on the geometric configuration of the ligand environment with respect to the metal center.

This flexibility allows for engineering the energy levels the electrons can occupy, allowing for

chemically designing both the spin and optical properties. The tunability of transition metals

provide a highly customizable platform where the spin of the electron forms a qubit that

can be initialized and read-out optically, very similar to the defect spins we have discussed

earlier. As a matter of fact, most of my PhD work investigates these metal centers as defects

in semiconductors.

The key difference between transition metal ions and some of the other discussed plat-

forms (defect centers, atoms and rare earth ions) is tunability of both the spin resonance

energies of the qubit and its optical interface energy. These parameters for defect spins are

determined by the host lattice where they reside. Atoms’ and rare earth ions’ excitation

energies are determined by atomic physics and do not change much. This can be seen as

a strength for reliability, or a weakness as an engineering limitation. This trade off is not

unique in the engineering world and does not imply one platform is superior over another;

these different platforms have different uses. Furthermore, transition metal ions can display

the same physics as defects across multiple host crystals [5, 58]. This is generally not the case

for other non-rare-earth defects as the host material is responsible for creating the electronic

24



structure. Furthermore, one technically does not even need a host crystal, as few chemical

ligands are sufficient to create a desired electronic structure [1]. Such a system can leverage

many of the chemistry and molecular qubit community tools and can overcome qubit initial-

ization and measurement limitations with an engineered optical interface. The tunability of

transition metal based molecular qubits can also allow overcoming individual addressability

of nearby qubits by engineering different colors for optical and microwave access. All of

these properties: portability across multiple hosts, tunability, and atom by atom engineering

of electronic structure through chemical synthesis set up transition metal ions as a highly

flexible and scalable optically accessible spin qubit platform.

25



Chapter 2

Quantum Mechanics

In this part, I will assume that the reader has extensive knowledge of linear algebra, complex

analysis, differential equations and some familiarity with quantum mechanics. My goal is

to build the mathematical machinery that explains the physics of spin qubits and atomic

orbitals that will be used to construct the electronic structure of optically addressable spin

qubits out of transition metal ions in Chapter 3. This chapter uses many sources including

lecture notes, and timeless quantum mechanics textbooks such as Shankar [59] and Sakurai

[60].

2.1 Postulates of Quantum Mechanics

The ontology of quantum mechanics is still being debated among physicists and philosophers

and the interpretation of the following mathematics is still very much an open question [61].

As far as we know, however, the below description of the universe has held up to many

experiments and tests over the last decades and yields accurate predictions. These are the

postulates of quantum mechanics, and the physics we will describe are based on these rules:

• Wavefunction: The quantum state of a particle is described with a wavefunction called

a ket, shown with a |·〉 and labeled with any character in the middle, for example:
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|ψ〉. The wavefunction is a vector in a complex vector space and contains all of the

information about the system an observer possibly can obtain. Another way of saying

this is, |ψ〉 is in the space of all possible states a particle can have. By definition this

statement already allows for superposition, i.e. if |ψ1〉, |ψ2〉 are two states a particle can

have, then |ψ〉 = a |ψ1〉+ b |ψ2〉 where a, b ∈ C is also a valid state. Another important

note is, the vector space, by definition, has an inner product which maps two vectors

in this space to a scalar the following way: |φ〉 · |ψ〉 = 〈φ|ψ〉 =
∫
φ∗(x)ψ(x)dx where x

is a free parameter indexing over the vectors.

• Observables: An observable is a Hermitian operator that maps a ket to another one

within the vector space with left multiplication, i.e. A : |ψ〉 →
∣∣ψ′〉 = A |ψ〉. For every

operator, there are special states that do not change except by a scalar, i.e. A |an〉 =

an |an〉 where an ∈ R and is called an eigenvalue and |an〉 is called an eigenvector.

Another property of a Hermitian operator is, the eigenstates are orthogonal to one

another and they span the vector space, which means the eigenvectors of an observable

form a basis of the vector space.

• Measurement Results: The only possible result of a measurement A is one of its eigen-

values: an. This postulate is the basis of quantization of quantum mechanics. For

a finite dimensional vector space, there are a finite number of possible eigenvalues,

resulting in discrete and quantized measurements.

• Measurement Probability: When A is measured for an arbitrary state |ψ〉, the probabil-

ity of measuring an is given by | 〈an|ψ〉 |2 where |an〉 is the eigenvector corresponding

to the eigenvalue an.

• Collapse: When |ψ〉 is measured to be an, the wavefunction |ψ〉 collapses to |an〉

after the measurement. This is the mathematical description of “measuring alters the

quantum state”. The probability of measuring |ψ〉 as an was | 〈an|ψ〉 |2 by the previous

postulate, but subsequent measurements of A will yield an with a 100% probability.
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• Time Evolution: The time evolution of a wavefunction is given by |ψ(t)〉 = U(t, t0) |ψ(t0)〉

where U is a unitary operator: UU† = U†U = 1. Unitary operators leave the length of

a vector unchanged. Say U |ψ〉 =
∣∣ψ′〉, then |

〈
ψ′
∣∣ψ′〉 |2 = | 〈ψ|U†U

∣∣ψ′〉 |2 = | 〈ψ|ψ〉 |2.

Describing time evolution by a unitary operator makes sense, since an observable cre-

ates a complete basis set for the vector space, any arbitrary wavefunction can be

represented as a superposition of the observable eigenvectors: |ψ〉 =
∑
ci |ai〉 where

the probability of measuring an is |cn|2. By definition, the measurement probabilities

must add up to 1. This means the time evolution should only change the measurement

probabilities, leaving the total sum of all possibilities as 1 which is precisely the def-

inition of a unitary operator. Unitary mapping, therefore, can also be interpreted as

rotations and we will discuss this more in Sec.2.2.6. Quantum gates are constructed

through unitary evolution of a state vector which is a function of time, hence the reason

for calibrating quantum gates as time duration.

One can show that this postulate implies the Schrödinger’s Equation:

i~
∂

∂t
|ψ(t)〉 = H |ψ(t)〉 (2.1)

Where H is called the Hamiltonian and describes the total energy of the system.

2.2 An Example Qubit: Spin

In this part, we will explore a single spin as an example qubit. The step-by-step explanation

may seem trivial but I believe it is valuable to carry out for two reasons: firstly, the equations

that we will derive here will explain the experimental data later on. Secondly, these dynamics

are not unique to spins, and they generally explain any two level quantum system: a qubit.
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2.2.1 Energies and Eigenstates

A qubit is a quantum state that lives in a 2 dimensional complex vector space. An arbitrary

quantum state, or a wavefunction, can be shown as |ψ〉 = α |0〉+ β |1〉, where α, β ∈ C and

|α|2 + |β|2 = 1, with |0〉 , |1〉 define a basis for this vector space.

An example two dimensional quantum system is a spin-1/2 particle. Hamiltonian for it

under a constant magnetic field in the ẑ direction is given by the simple Zeeman interaction

Hamiltonian:

H = µBgBzSz (2.2)

where µb is a constant called the Bohr magneton, g is a constant factor that we will

discuss in Sec.2.4.2, Bz is the magnitude of the magnetic field applied in the ẑ direction,

Sz = σz/2, where σz is the Pauli matrix and is defined in Sec.A.1. In matrix form:

H =
µBgBz

2

1 0

0 −1

 (2.3)

Per postulates, the only energy we can measure are the eigenvalues of this Hamiltonian.

Therefore we need to solve H |ψ〉 = E |ψ〉, where E is a real scalar. This is equivalent to

(H − IE) |ψ〉 = 0 where I is the identity matrix for any arbitrary |ψ〉. This condition

is satisfied for an arbitrary |ψ〉 if det(H− IE) = 0. There are two E values that solve

this equation E± = ±µBg2 Bz. One can only measure relative energy with respect to some

reference point and not absolute values. Therefore a good measurement is the difference

between the two energies: ∆E = E+ − E− = µBgBz. A simple unit analysis allows us

to define constants in frequency domain as opposed to energy domain with the following

definition of γ = gµB/~ , where ~ is a fundamental constant. Thus we find ∆E(Bz) =

γBz ' 2.8Bz MHz/Gauss for a free electron which is g ' 2. This equations shows that for

a spin−1/2 particle, the energy splitting between two spins increase linearly with magnetic
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field. This is a great test of spin measurements as we will see later in this thesis.

For completeness, let’s also find the two eigenstates of this Hamiltonian. I will label the

eigenstate for E+ as |0〉 and E− as |1〉. We are solving H |0〉 = E+ |0〉 or, (H−IE) |0〉 = 0.

Writing this in matrix notation:


E+ 0

0 E−

−
E+ 0

0 E+



a
b

 =

0

0

 (2.4)

Therefore −∆Eb = 0, so b = 0. Knowing the |0〉 must be normalized, a = 1, therefore

|0〉 =

1

0

. Also knowing that the eigenstates of this Hamiltonian must create a basis for

the vector space leaves |1〉 =

0

1

.

Putting all of this information together: an arbitrary spin-1/2 wavefunction can only be

measured E− or E+ and after the measurement, the wavefunction collapses to either |0〉 or

|1〉 respectively depending on the outcome.

2.2.2 Free Time Evolution

For an eigenstate, there is no time evolution. We can easily observe this from Eq.2.1. For

example, assume |ψ(0)〉 is an eigenstate of an arbitrary H, then d
dt |ψ(t)〉 = −iH~ |ψ(t)〉.

Solving this linear equation we get |ψ(t)〉 = e−iHt/~ |ψ(0)〉. One can Taylor expand the

exponential to get
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|ψ(t)〉 =
∑
n

(
−it
~

)n
Hn |ψ(0)〉

=
∑
n

(
−it
~

)n
En |ψ(0)〉

= e−iEt/~ |ψ(0)〉

= e−iγBzt/2 |ψ(0)〉 = |ψ(0)〉

(2.5)

In the last step we removed the global phase since it is not measurable. If the initial

state is an eigenstate of a Hamiltonian, then the state remains unchanged with time. This

statement is tautological, as the physical interpretation of an eigenstate is a stationary one

but it is nevertheless a useful demonstration as we will use the same calculation strategy

below.

Let’s look at what happens if a state is in a superposition instead. Say, our starting

state is an equal superposition this time: |ψ〉 = (|0〉 + |1〉)/
√

2 and we are still working

with Hamiltonian Eq.2.3. At t = 0 the probability of measuring E± are equal and is 1/2

per postulates outlined in Sec.2.1. Using the mathematical procedure demonstrated in the

previous paragraph, we solve the linear Eq.2.1 and find the time evolution:

|ψ(t)〉 = (e−iE+t/~ |0〉+ e−iE+t/~ |1〉)/
√

2

= (|0〉+ ei∆Et/~ |1〉)/
√

2

= (|0〉+ eiγBzt |1〉)/
√

2

(2.6)

where in the second step we renormalize by a global phase. The probability of measuring

E± is unchanged is still 1/2, but the relative phase between |0〉 and |1〉 precesses over

time with the frequency γBz - this is the Larmor precession. We will see that a similar

calculation in the rotating frame where we change references to follow the Larmor precession,
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allows for precise measurements of magnetic field fluctuations in Sec.2.2.4 through Ramsey

interferometry.

Next natural question to ask is, how does one actually build the unitary evolution gates?

The answer is by driving the system.

2.2.3 Driven Time Evolution

Now along with a main field in the ẑ direction, let’s also have a rotating magnetic field (e.g.

microwaves) with a frequency ω0. Then our Hamiltonian is:

H = µBg(BzSz +B1(I cos(ω0t) +Q sin(ω0t))Sx) (2.7)

I and Q are free parameters such that |I|2 + |Q|2 = 1. They determine the phase of the

applied microwave. Sx is the spin matrix defined in Sec.A.2. This appears to be a more

complex Hamiltonian since it is time dependent. Some very clever people realized that if we

look at this problem in a rotating frame, the time dependence may disappear! Mathemati-

cally we use the following assumption: |ψ〉r = eiωSzt |ψ〉l where subscript l denotes the lab

frame and r denotes the rotating frame. Plugging this into Eq.2.1 we get:

i~
∂

∂t
|ψ〉r = i~

d

dt

(
eiωSzt |ψ〉l

)
= −~SzωeiωSzt |ψ〉l + eiωSzti~

d

dt
|ψ〉l

= −~Szω |ψ〉r + eiωSztH |ψ〉l

= −~Szω |ψ〉r + eiωSztHe−iωSzt |ψ〉r

= Hr |ψ〉r

(2.8)

Where:
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Hr = −~Szω + eiωSztHe−iωSzt

= −~ωSz + ~γeiωSzt (BzSz +B1(I cos(ω0t) +Q sin(ω0t))Sx) e−iωSzt

= −~ωSz + ~γBzeiωSztSze−iωSzt + ~γB1(I cos(ω0t) +Q sin(ω0t))e
iωSztSxe

−iωSzt

(2.9)

In order to solve the above Hamiltonian, we need to solve how Sz and Sx transform under

the rotating frame, everything else are just coefficients. To do that we use the relation in

Sec.A.2, eiωSzt = eiωσzt/2 = I cos(ωt/2) + iσz sin(ωt/2). In matrix form this is:

e±iωSzt =

cos(ωt/2)± i sin(ωt/2) 0

0 cos(ωt/2)∓ i sin(ωt/2)

 =

e±iωt/2 0

0 e∓iωt/2


(2.10)

Next, we rewrite the transformation using the matrix representation from Eq. 2.10:

eiωSztSze
−iωSzt =

1

2

eiωt/2 0

0 e−iωt/2


1 0

0 −1


e−iωt/2 0

0 eiωt/2


=

1

2

1 0

0 −1

 = Sz

(2.11)

eiωSztSxe
−iωSzt =

1

2

eiωt/2 0

0 e−iωt/2


0 1

1 0


e−iωt/2 0

0 eiωt/2


=

1

2

 0 eiωt

e−iωt 0


(2.12)
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We also can rewrite the time varying coefficient in the exponential form:

I cos(ω0t) +Q sin(ω0t) = I
eiω0t + e−iω0t

2
− iQe

iω0t − e−iω0t

2

= eiω0t
I − iQ

2
+ e−iω0t

I + iQ

2

(2.13)

Putting derived Eq. 2.11, 2.12, 2.13, into Eq. 2.9 we get:

Hr =
~
2


γBz − ω 0

0 −γBz + ω


+γB1

 0 ei(ω0+ω)t I−iQ
2 + ei(ω−ω0)t I+iQ

2

ei(ω0−ω)t I−iQ
2 + e−i(ω0+ω)t I+iQ

2 0




(2.14)

Now, we realize that if we set the rotating frame to be the same as the driving frequency

i.e. ω = ω0, one of the Sx components time dependence disappears, while a second term

emerges that oscillates rapidly with e±2ω0t. We will assume that this oscillation is fast and

averages to zero in the time scales that we are interested in, hence the name rotating wave

approximation. After this assumption Eq. 2.14 simplifies to:

Hr =
~
2


γBz − ω0 0

0 −γBz + ω0

+ γB1

 0 I+iQ
2

I−iQ
2




= ~
[
(γBz − ω0)Sz +

γB1

2

(
ISx −QSy

)]
= ~

[
∆Sz + A

(
ISx −QSy

)]
(2.15)

Where ∆ = γBz − ω0 is the detuning from the resonance frequency and A = γB1/2 is

the driving strength. As we removed the time dependence from the Hamiltonian in this new
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rotating frame, it is easy to solve for the time dependent wavefunction:

|ψ(t)〉r = e−it[∆Sz+A(ISx−QSy)] |ψ(0)〉r

= [I cos(Ωt/2)− i(n̂ · ~σ) sin(Ωt/2)] |ψ(0)〉r
(2.16)

Where we once again use the Sec.A.2 with Ω =
√

∆2 + A2(I2 +Q2) =
√

∆2 + A2 and

n̂ = [∆ẑ + A(Ix̂−Qŷ)] /Ω. The rotating wave approximation is valid if the Rabi frequency

is much slower than the microwave frequency meaning Ω << ω0 or more generally ∆ << ω0

and A << ω0. We will discuss the geometric interpretation of this time evolution at Sec.2.2.6

after we build the mathematical machinery to understand it.

Now suppose we prepare the state in |0〉l at t = 0, and we are interested in seeing what

the probability of measuring it in |1〉l as a function of t. Using the postulates:

P1(t) = |l 〈1|ψ(t)〉l |
2

= |r 〈1|eiω0tSze−iω0tSz |ψ(t)〉r |
2

= |r 〈1|ψ(t)〉r |
2

= |r 〈1|I cos(Ωt/2)− i(n̂ · ~σ) sin(Ωt/2)|0〉r |
2

=
A2 sin2(Ωt/2)

∆2 + A2

(2.17)

This function is the crux of the experiments we will talk about later on. Firstly, we

observe that when ∆ = 0, the probability of measuring |1〉 oscillates with time Ω = A

which is called a Rabi measurement. Secondly, under continuous driving and measuring

conditions sin2(Ωt/2) → ε > 0 so the probability of measuring |1〉 is ∝ A2/(∆2 + A2)

which is a Lorentzian function and peaks when ∆ = 0 as the driving frequency is swept.

This describes a magnetic resonance experiment where the sharpest point of the peak is the

resonance frequency precisely because of this mathematical description. We also see that
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excess driving power increases the Lorentzian linewidth which is called power broadening.

2.2.4 Ramsey Interferometry

Previously, in the lab frame, we had found that the equal superposition Larmor precessed

with frequency γBz in the lab frame. Let’s look at this state in the rotating frame:

|ψ(t)〉L = (|0〉L + eiγBzt |1〉L)/
√

2

|ψ(t)〉R = (e−iω0tSz |0〉R + e−iω0tSzeiγBzt |1〉R)/
√

2

= (e−iω0tSz |0〉R + eiγBzte−iω0tSz |1〉R)/
√

2

= (e−iω0t/2 |0〉R + eiγBzteiω0t/2 |1〉R)/
√

2

= (|0〉R + ei(γBz−ω0)t |1〉R)/
√

2

= (|0〉R + ei∆t |1〉R)/
√

2

(2.18)

where a global phase is eliminated from step three to four. Looking at the expression

above, we observe that if the microwave frequency is resonant with energy splitting (∆ = 0),

then the equal superposition is a stationary state. If however, there is a detuning, we expect

the time evolution to oscillate with detuning frequency ∆. In its superposition form, this

effect cannot be measured, however, it can be measured through interference by mixing the

two spin states. This can be achieved with a π/2 pulse, or a Hadamard gate, H where

H |0(1)〉R = (|0〉R ± |1〉R)/
√

2. This is a unitary transformation and can be achieved by

turning on the microwave for a specific duration. After this transformation, the new state is

|ψ(t)〉R =

(
1 + ei∆t

2
|0〉R

)
+

(
1− ei∆t

2
|1〉R

)
(2.19)

The probability of measuring |0〉 is:
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P0(t) = |L 〈0|ψ(t)〉L|
2

=
∣∣∣R 〈0| eiω0tSze−iω0tSz |ψ(t)〉R

∣∣∣2
= |R 〈0|ψ(t)〉R|

2

=

(
1 + e−i∆t

2

)(
1 + ei∆t

2

)

=
1 + cos(∆t)

2

(2.20)

The probability of measuring |0〉 oscillates with the detuning frequency. This is the crux

of many quantum sensing schemes. When an effect changes the energy between the two

qubit states, the qubit becomes off resonant with respect to the microwave pulses, which

then can be measured as Ramsey oscillations. This can be used to sense both field induced

effects (e.g. magnetic fields) as well as time keeping to calibrate the microwave source.

2.2.5 Bloch Sphere

In the previous section, we had talked about a qubit as a state living in a 2-dimensional

complex vector space and used a spin-1/2 as an example to show how to calculate eigenvalues

(energies) and the eigenstates they correspond to and how to use Schrödinger equation to

solve for time evolution of states and measurement probabilities for both under constant

magnetic field and time dependent magnetic field. In this section we are going to use the

Bloch Sphere representation to geometrically visualize these concepts.

We recall that a qubit is mathematically represented as |ψ〉 = α |0〉+β |1〉, where α, β ∈ C

and |α|2+|β|2 = 1 per our postulates. We also recall from complex algebra that any complex

number c = a + ib = reiϕ where a, b, r, ϕ ∈ R. Therefore |ψ〉 = rαe
iϕα |0〉 + rβe

iϕβ |1〉,

where rα, rβ , ϕα, ϕβ ∈ R. Since global phases are not measurable quantities, we can rewrite

|ψ〉 = rα |0〉+ rβe
iϕ |1〉, where ϕ = ϕβ − ϕα. Now let rα = z, rβe

iϕ = x+ iy, then we have

|ψ〉 = z |0〉+(x+iy) |1〉. Using the normalization, we can further constrain these parameters,
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z2 + x2 + y2 = 1 - we immediately recognize this is the formula of a spherical surface in

3-dimensions with radius 1! We can use the spherical transformation outlined in Sec.A.1.3:

x = sin θ′ cosϕ y = sin θ′ sinϕ z = cos θ′

|ψ〉 = z |0〉+ (x+ iy) |1〉

= cos θ′ |0〉+ sin θ′(cosϕ+ i sinϕ) |1〉

= cos θ′ |0〉+ sin θ′eiϕ |1〉

(2.21)

In this formalism, we realize that there is a problem. The spherical coordinates are

bound by 0 ≤ θ′ < π, 0 ≤ ϕ < 2π. Let’s say |ψ〉 = cos θ′ |0〉 + sin θ′eiϕ |1〉 and let
∣∣ψ′〉 be

the opposite point at (π − θ′, ϕ+ π), i.e.

∣∣ψ′〉 = cos
(
π − θ′

)
|0〉+ sin

(
π − θ′

)
ei(ϕ+π) |1〉

= − cos θ′ |0〉+ sin θ′eiϕeiπ |1〉

= − cos θ′ |0〉 − sin θ′eiϕ |1〉 = − |ψ〉

(2.22)

These two states only by a global phase which is not measurable, meaning there is a

redundancy between the states mapped to the top hemisphere and the bottom hemisphere.

We can overcome this redundancy by θ = 2θ′. This parameterization allows us to describe

any qubit with two real numbers 0 ≤ θ < π and 0 ≤ ϕ < 2π by

|ψ〉 = cos

(
θ

2

)
|0〉+ eiϕ sin

(
θ

2

)
|1〉 (2.23)

The above form paints a nice geometric picture, where the surface of the Bloch sphere

represents the 2-dimensional complex vector space, and an arbitrary |ψ〉 can be shown as a

point on it. There is also a canonical relationship between the Bloch sphere and the Pauli
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matrices. An important question to ask is, what is the probability of measuring |ψ〉 in the

direction |u〉? This is given by | 〈u|ψ〉 |2 = 〈ψ|u〉 〈u|ψ〉 = 〈ψ|Pu|ψ〉 where Pu is the projection

operator of |u〉. It returns a vector in the direction |u〉 with the length of the projection of

the vector |ψ〉 in that direction, i.e. 〈u|ψ〉. Since |u〉 = cos
(
θ
2

)
|0〉+ eiϕ sin

(
θ
2

)
|1〉 for some

θ, ϕ, this projection operator can be written as:

Pu = |u〉 〈u|

=

(
cos
(
θ
2

)
e−iϕ sin

(
θ
2

)) cos
(
θ
2

)
eiϕ sin

(
θ
2

)


=

 cos2
(
θ
2

)
e−iϕ sin

(
θ
2

)
cos
(
θ
2

)
eiϕ sin

(
θ
2

)
cos
(
θ
2

)
sin2

(
θ
2

)


=

1 + cos θ e−iϕ sin θ

eiϕ sin θ 1− cos θ


=

1

2

 1 + cos θ cosφ sin θ − i sinφ sin θ

cosφ sin θ + i sinφ sin θ 1− cos θ


=

1

2

(
I + sin θ cosφσx + sin θ sinφσy + cos θσz

)
=

1

2
(I + n̂ · ~σ)

(2.24)

Where n̂ = (sin θ cosφ, sin θ sinφ, cos θ) = (x, y, z), by spherical coordinate transforma-

tion. How do we interpret this relation? It means that the probability of measuring any |ψ〉

in the direction of |u〉 on the Bloch sphere can be decomposed as separate measurements of

σx, σy, σz with weights (x, y, z) normalized. Therefore σi can be thought of as the axes that

define the Bloch sphere. And the 6 corner points are the eigenvectors of the corresponding

σi. I will also note that this projection operator has another interpretation called a density

matrix, and this formalism allows for ensemble calculations of quantum states, but we will

not go into its details of density matrices in this thesis.
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θ

Figure 2.1: Bloch sphere can visually represent a qubit with two independent parameters θ, φ
where the 3-space x, y, z axes correspond the the projection of the wavefunction on σx, σy, σz
operators. Therefore, the six corners are the eigenstates of the Pauli operators.

2.2.6 Rabi driving visualized on a Bloch sphere

We are interested in understanding the time evolution of the driven states where we had

derived the Eq.2.16. I claim that this is a rotation about n̂ with a frequency Ω. To prove

this claim, we need to show three things:

1. The |ψ(t)〉 is contained on the surface of the Bloch sphere: this is true by the unitary

nature of the allowed transformation. We can demonstrate this easily

| 〈ψ(t)|ψ(t)〉 |2 = | 〈ψ(0)| eit(n̂·~σ)e−it(n̂·~σ) |ψ(0)〉 |2 = | 〈ψ(0)|ψ(0)〉 |2 = 1 (2.25)

2. Eq.2.16 is a periodic function (a rotation), with frequency Ω, which is also easy to

observe as the transformation will be the identity matrix (up to a phase) when Ω = 2kπ/t

for k ∈ N.

3. Finally, we had claimed that the rotation is by n̂ - this is true only if the projection
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of the state |ψ(t)〉 on |n〉 (the vector pointing in n̂) is always the same for all times t. We

are going to prove this by using the derived identity in Eq.2.24:

Pn |ψ(t)〉 =
1

2
(I + n̂ · ~σ) [I cos(Ωt/2)− i(n̂ · ~σ) sin(Ωt/2)] |ψ(0)〉

=
1

2
[I cos(Ωt/2)− i(n̂ · ~σ) sin(Ωt/2)

+(n̂ · ~σ) cos(Ωt/2)− i(n̂ · ~σ)2 sin(Ωt/2)
]
|ψ(0)〉

=
1

2

[
Ie−iΩt/2 + (n̂ · ~σ)e−iΩt/2

]
|ψ(0)〉

=
e−iΩt/2

2
[I + (n̂ · ~σ)] |ψ(0)〉

= e−iΩt/2Pn |ψ(0)〉 = Pn |ψ(0)〉

(2.26)

Where we used (n̂ · ~σ)2 = 1 identity from the second line to the third, and in the last

equality we removed a global phase. This precisely says that any time dependent evolution of

|ψ(t)〉 projects to |n〉 the same way |ψ(0)〉 projects on |n〉. The mathematical interpretation

of this result is a circle whose center point is on the line in the direction of n̂.

Putting the above three points together, helps use visualize what is happening to the spin

vector on the Bloch sphere during Rabi driving. We understand Eq.2.16 as a time dependent

rotation about an axis n̂ = ∆ẑ+A(Ix̂−Qŷ) with an angle Ωt, where Ω =
√
A2 + ∆2 is the

rotation frequency. When the driving frequency ω0 matches the γBz (resonance), or ∆ = 0

then the spin only precesses by the x̂(ŷ) axis if Q(I) = 0 with frequency A, linearly depending

on the magnetic driving field strength. Therefore the I,Q control of the microwaves allow

rotation axis control of the spin while, detuning both shrinks the angle at which we are

rotating by and adds a ẑ component to it. This 3-axis control around the Bloch sphere

combined with the microwave duration knob, t, allows us to evolve the spin wavefunction

anywhere around the Bloch sphere, giving a full qubit control. These knobs span the Bloch

sphere which building any unitary gate such as H used in Sec.2.2.4.
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Figure 2.2: Rabi driving visualized on Bloch sphere. A wavefunction starting at |0〉 under
driving rotates around a circle on the Bloch sphere (blue dotted trace) whose center is

n̂ = ∆ẑ +A(Ix̂−Qŷ) (red dot). The rotation frequency (not shown) is =
√
A2 + ∆2 where

A is the driving power.

2.3 Multiple Qubits

So far we have only investigated a single qubit. In nature, however, there are many quantum

systems and they interact with each other, so we need to be able to describe them mathe-

matically. This formalism is also useful in the context of computation as we need to describe

multi-qubit architectures mathematically to build useful quantum devices.

The mathematics of describing multiple qubits is straightforward. If there are two quan-

tum states |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2, where H1,2 are square integrable complex vec-

tor (Hilbert) spaces that host quantum states, then the composite quantum state vector

|ψ1〉 ⊗ |ψ2〉 ∈H1⊗H2 where H1⊗H2 is also a Hilbert space. Sometimes, as a short hand

notation |ψ1〉 ⊗ |ψ2〉 can be written as |ψ1ψ2〉. If operators U1,2 act on
∣∣ψ1,2

〉
, then the

operator U1 ⊗ U2 acts on |ψ1〉 ⊗ |ψ2〉 as (U1 ⊗ U2)(|ψ1〉 ⊗ |ψ2〉) = U1 |ψ1〉 ⊗ U2 |ψ2〉.

The measurements also work analogous to the single quantum system. If only |ψ1〉 is

measured for observable A1 out of the composite state |ψ1ψ2〉, to be a1i, the new system
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after the measurement is the renormalized projection on |a1i〉 - the eigenvector corresponding

to the measured energy of A1. For example let:

∣∣Φ+〉 =
1√
2

(|00〉+ |11〉) (2.27)

The probability of measuring 0 for the first particle is calculated by looking at the pro-

jection of the system in that eigenvector:

P1(0) =
〈
Φ+
∣∣ (|0〉 〈0| ⊗ I)

∣∣Φ+〉
=

1

2
(〈0|0〉 〈0|0〉 ⊗ 〈0|0〉 〈0|0〉+ 〈1|0〉 〈0|1〉 ⊗ 〈1|1〉 〈1|1〉) =

1

2

(2.28)

So the probability of measuring the first quantum particle in 0 is 1/2. One can carry a

very similar calculation to see that the probability of measuring |ψ2〉 as 0 is also 1/2. After

measuring the first particle as 0, however, the wavefunction collapses to the renormalized

projection:

∣∣ψ′〉 =
(|0〉 〈0| ⊗ I)

∣∣Φ+
〉√

〈Φ+| (|0〉 〈0| ⊗ I) |Φ+〉

=
1/
√

2(〈0|0〉 |0〉 ⊗ |0〉+ 〈0|1〉 ⊗ |1〉)
1/
√

2
= |00〉

(2.29)

In this case, we find that the probability of measuring the second quantum state after

measuring the first one as 0 as also 0 all the time; the measurement of the first quantum

state collapsed the wavefunction of the second one! This is one of the non intuitive results

of quantum mechanics. We got this result, for this particular wavefunction, because it

describes an entangled quantum state. Famously Einstein described entanglement as spooky

action at a distance, measuring one particle immediately effects another one regardless of

how far apart they are. This effect is non-intuitive because we are used to thinking that
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the physical properties of particles must be where the particles are, i.e. locality. Quantum

mechanics allows for distributing properties over many particles. In a sense, the idea that the

measurement is only on the first quantum particle is misleading which causes the confusion

and the awe about quantum entanglement. The reality is that the measurement is on the

system and the system is made out of these two particles transcending locality, therefore the

second particle is also affected.

Entanglement is the cause of many complexities in nature and also a resource for tech-

nology. When modeling nature, looking at individual particles is not sufficient, as one needs

to model the entire isolated system. This makes a problem exponentially harder - hence

the need for a quantum computer for accurate description of quantum mechanical systems

like chemistry. One way to understand decoherence is - nature can get entangled with a

qubit and then collapse it through measurement. This ties back to the discussion in Sec.1.4.

Entanglement can also be a resource for encryption, since measurement can effect multiple

qubits at different locations, one can measure the existence/absence of eavesdroppers to cre-

ate secret shared keys. This non-local property of quantum systems also raise philosophical

questions about the nature of information, and what it means to do a computation on an

aggregate system made out possibly of many entangled computers all across the globe and

potentially the space.

Now that we know how to mathematically describe larger dimensional Hilbert spaces out

of smaller ones, we will investigate how to describe multi-electron systems that will form the

basis of the spin qubits.

2.3.1 Two Identical Particles

Let |ab〉 be a quantum state for two particles where the first particle is state a and the second

one is state b for a measurement basis, say Sz1,2. If the particles are distinguishable, then the

state |ba〉 is a different state than |ab〉. In the first measurement we can definitively measure

particle-1(2) as a(b) and in the second scenario as b(a). If however these two particles are
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indistinguishable, it is not possible to measure a difference under their exchange. In the

indistinguishable scenario, the two wavefunctions can at most differ by an immeasurable

global phase: |ab〉 = eiφ |ba〉.

We still can measure a sum however Sz1 + Sz2. There are two eigenvectors with the

same eigenvalue |ab〉 and |ba〉. So a good question to ask is, what is the state vector of

Sz1 +Sz2 basis? It must be composed of a linear combination of |ab〉 and |ba〉. Without loss

of generality, we can label this eigenstate as |ψ(a, b)〉. We can see what happens under the

exchange to this state vector:

|ψ(a, b)〉 = α |ab〉+ β |ba〉

= eiφ (α |ba〉+ β |ab〉)

= eiφ |ψ(b, a)〉

(2.30)

So we find α = eiφβ and β = eiφα. Which means α = e2iφα and therefore φ = π, 2π. Just

from this simple argument we find that the state vector for two indistinguishable particles

either need to be symmetric: |ψ(a, b), S〉 = (|ab〉+ |ba〉)/
√

2 or antisymmetric: |ψ(a, b), A〉 =

(|ab〉 − |ba〉)/
√

2.

A given species of particles must either be once and for all symmetric or antisymmetric.

If this was not true, then one could build a |ψ(a, b)〉 = α |ab, S〉 + β |ab, A〉 which is neither

symmetric or antisymmetric and contradicts the above calculation. Therefore a composite

Hilbert space H = HS ⊕HA can be decomposed into linearly independent symmetric and

antisymmetric Hilbert subspaces, where ⊕ denotes the direct sum of vector spaces. The

particles that occupy the symmetric subspace are called Bosons (e.g. photons) and the ones

that occupy the antisymmetric subspace are called Fermions (e.g. electrons). In this thesis

we will be dealing with the properties of electrons mostly, therefore I will not discuss Bosons

and their properties any further.
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2.3.2 Pauli Exclusion Principle

Let’s look at what happens if a = b for a Fermionic wavefunction |ψ(ab, A)〉 = |ψ(aa,A)〉 =

|aa〉− |aa〉 = 0. This means two identical Fermions cannot occupy the same quantum state!

This is also known as the Pauli exclusion principle and the explains why there are at most 2

electrons allowed in each atomic orbital (one spin up and one spin down), extended structures

made out of atoms such as tables and humans and their chemistry.

2.3.3 Multi Electron Spins

Finally, let’s investigate a specific case as an example. Suppose we have two electrons

(identical Fermions) and two spatial quantum states they can occupy (e.g. an atomic orbital).

Therefore in this system, each particle has two quantum degrees of freedom, the orbital ω1,2

and spin state s1,2. The wavefunction of this system must be antisymmetric due to Fermionic

nature of electrons and is

|ω1s1, ω2s2, A〉 = (|ω1s1, ω2s2〉 − |ω2s2, ω1s1〉)/
√

2 (2.31)

This wavefunction is allowed only when either the spin or the orbital components are

antisymmetric. If they are both antisymmetric, each component picks up a minus sign under

the exchange, making the whole wavefunction symmetric which is not allowed for Fermions.

For this particular example, there are 6 such states. Assuming ‘orbital’ wavefunctions are

independent of the ‘spin’ wavefunctions1 we can write the allowed state as:

1. This is the low spin-orbit regime. The new eigenstates must be diagonalized if the spin and orbital
degrees of freedom are mixed
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|ω1s1, ω2s2, A〉 =



|ω1ω2, A〉 ⊗ |s1s2, S〉 = |ω1ω2, A〉 ⊗



|+1/2,+1/2〉

(|+1/2,−1/2〉+ |−1/2,+1/2〉)/
√

2

|−1/2,−1/2〉

|ω1ω2, S〉 ⊗ |s1s2, A〉 =



|ω1ω1〉

(|ω1ω2〉+ |ω2ω1〉)/
√

2

|ω2ω2〉

⊗ |s1s2, A〉

(2.32)

The antisymmetric orbital with symmetric spin has three possible spin values of Sz =

Sz1 + Sz2 , which are ms = 1, 0,−1. This is a total spin-1 system and is called a triplet.

Conversely, the symmetric orbital with anti-symmetric spin part of the wavefunction only

has one Sz outcome and it is ms = 0, therefore it is a total spin-0 system and is called a

singlet. This is the electronic structure we use to construct optically addressable spin qubits

out of transition metal ions. Specifically the spin-1 manifold is the spin qubit ground state

and the spin-0 states are the higher excited states that that allow for the optical access of

the spin qubit.

2.4 Spatial Hamiltonian

Now that we have mastered the electron spin, we would like to explore how we can localize it

to use it as a resource for quantum technologies. In the previous section we just assumed the

existence of two orbitals which allowed us to build a spin triplet and a bunch of spin singlet

systems. As we will see later the spin triplet part will be our spin qubit and its transition to

spin singlet manifolds will enable the optical control of the spin. The question we want to

answer here is, how does one actually get these orbitals, and what do they look like? This

discussion will be crucial for our effort of using valance electrons of transition metal ions to
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engineer electronic structures that can be used as an optically addressable qubit.

Atoms are made out of positively charged nuclei and some electrons ‘orbiting’ around.

The nuclear positive charge at the core is uniform. There is not an inherent orientation to

an atom in a vacuum or another way of saying this is, the system is rotationally symmetric.

Therefore the electronic wavefunction must be rotationally symmetric as well. As we will

see later when we discuss ligand fields, the existence of nearby charges can introduce new

symmetries which further constrain the electronic wavefunction. These point charges, their

symmetry, electric field strength (or bond strength) will allow the engineering of electronic

structures. To understand all of this physics (or chemistry), we need to first study rotational

invariance and what these orbitals look like.

2.4.1 Rotational Symmetry

The purpose of this section is two-fold: (i) demonstrate an example of how the symmetry of

a system translates into a symmetry of the wavefunction and (ii) get a qualitative sense to

what atomic orbitals look like which will help us build intuition about electronic configuration

engineering. To start, we will discuss a hydrogen like atom.

We want to solve the Schrödinger’s equation for a radially symmetric system. The total

energy of the system is the kinetic energy given by P 2/2m, where P is momentum operator

and m is mass and a potential energy V (r) that is radially symmetric and therefore only

depends on radius r. We will see that there are a few quantized numbers/labels that define

the solutions to Hψ = Eψ for this problem. One strategy we will employ is finding states

that are simultaneous eigenstates of both H and some measurable quantity. As we see in

Sec.A.2 if two operators commute, they share eigenvectors, and therefore it is sufficient to

find eigenvectors of only one of the operators. We will employ this technique to construct the

wavefunctions of the Hamiltonian. This is a commonly used strategy in quantum mechanics

and we will revisit it when we discuss other point symmetries later on. For the radially

symmetric wavefunction, one symmetry preserving measurable quantity that also commutes
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with the Hamiltonian is angular momentum, therefore finding its eigenvectors should help

us solve what happens in radially symmetric problem. For that we need to find angular

momentum operators.

The position operator is X = ~x and the momentum operator in space is P = −i~. As

a sanity check, we can confirm the definitions of these operators by observing how they act

on a plane wave particle with the wavefunction: ψ = exp(i(~x · ~p− Et)/~) where ~x and ~p

are the position and momentum vectors, E is the energy and t is the time evolution. By

definition, this free particle wavefunction is normalized, it is in a wave-like form and the

units work out in a physical and expected way. The position operator X = ~x acts in the

obvious way: Xψ = ~xψ - and hence ~x is the eigenvalue and therefore the measurement

outcome. After some algebra, we find the eigenvalue of the momentum operator Pψ =

−i~∇ exp(i(~x · ~p− Et)/~) = ~p exp(i(~x · ~p− Et)/~) = ~pψ - to be ~p and therefore confirming

that P indeed measures the momentum. We will now use these operators to build angular

momentum operator L.

We recall from classical mechanics that angular momentum τ = ~x× ~p. Similarly we can

build the observable

Lz = XPy − Y Px = −i~
(
x
∂

∂y
− y ∂

∂x

)
= −i~ ∂

∂φ
(2.33)

after a spherical coordinate transformation (Sec.A.1.3). There exists an eigenvalue lz for

an eigenvector |lz〉 of this operator such that Lz |lz〉 = lz |lz〉. To find it, let’s write the

wavefunction in spherical coordinates:

− i~
∂ψlz(ρ, θ, φ)

∂φ
= lzψlz(ρ, θ, φ) → ψlz(ρ, θ, φ) = Φ(ρ, θ)eilzφ/~ (2.34)

We can further constrain this problem. Because of the rotational symmetry, we must have

ψlz(ρ, θ, 0) = ψlz(ρ, θ, 2π) this means that ei2πlz/~ = 1 or lz = m~ where m = 0,±1,±2, ...

49



ψlz(ρ, θ, φ) = Φ(ρ, θ)eimφ (2.35)

m is the magnetic quantum number of the system. It is very cumbersome to write ev-

erything in coordinate form when the problem we are dealing with is radially symmetric.

Therefore by finding these quantum numbers, we can form a wavefunction that is an eigen-

value of the physical description of the system. We just found one such operator Lz and

its eigenvalue m~. One can easily show that Lx,y,z do not commute with each other, which

means they cannot be diagonalised simultaneously, which means we cannot use lx, ly as a

quantum number if we are using lz.

Lz in itself is not sufficient to talk about the total angular momentum - it is just a pro-

jection of the total angular momentum in the ẑ direction. Even though we cannot simulta-

neously diagonalize the individual components, we can look at the total angular momentum.

It is customary to talk about L2 = L2
x + L2

y + L2
z as opposed to just L. With some algebra

one can show that L2 commutes with spherically invariant wavefunction and Lz. Therefore,

there must exist a simultaneous eigenvector for both Lz and L2 that we can label as |λm〉

such that L2 |λm〉 = λ~2 |λm〉 , Lz |λm〉 = m~ |λm〉, then we find the following relation:

〈λm|L2 − L2
z|λm〉 = 〈λm|L2

x + L2
y|λm〉 ≥ 0

= ~2(λ−m2)

(2.36)

the inequality follows from L2
x + L2

y being positive definite. This means that λ ≥ m2

and this relation makes sense since the total angular momentum must be greater than its

projection to a single axis. To find the exact relationship between the two quantum numbers,

we define raising and lowering operators L± = Lx ± iLy. Since L2 commutes with each one

of the Lx,y,z, and [Li, Lj ] = i~εijkLk, where i, j, k ∈ {x, y, z} - with a little bit of algebra

one can show that:

50



[L2, L±] = 0

[Lz, L±] = ±~L±
(2.37)

We see two interesting things with these operators:

L2L± |λm〉 = L±L2 |λm〉 = λL± |λm〉

LzL± |λm〉 = (L±Lz ± ~L±) |λm〉 = ~(m± 1)L± |λm〉
(2.38)

The first relation says that the L± operator leaves L2 virtually unchanged, while the Lz

eigenvalue for L± |λm〉 is ~(m ± 1), which is the same eigenvalue for |λ(m± 1)〉 - meaning

L± raised (lowered) the Lz’s quantum number by m~, hence the operators name. Finally,

since we know that there is an upper limit to how much m can be raised, for a m2 ≤ λ let

k be the smallest possible integer such that, Lk+ |λm〉 = 0. Then we have:

0 = L−Lk+1
+ |λm〉 = L−L+L

k
+ |λm〉

=
(
Lx − iLy

) (
Lx + iLy

)
|λ(m+ k)〉

= L2
x + L2

y + iLxLy − iLyLx |λ(m+ k)〉

= L2 − L2
z + i[Lx, Ly] |λ(m+ k)〉

= L2 − L2
z − Lz |λ(m+ k)〉 = ~2

[
λ− (m+ k)2 − (m+ k)

]
(2.39)

This yields a direct relation between the quantum numbers λ,m. Let l = m + k, then

λ = l(l + 1) - since it is easier to keep track of l as opposed to λ, the conventional quantum

number used for angular momentum is l, and states can be labeled as |lm〉 instead where

L2 = ~2l(l + 1) |lm〉. This also means that −l ≤ m ≤ l, where the lower bound comes from

a very similar argument as above in the opposite direction.
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Figure 2.3: Representation of angular momentum of |lm〉. The total angular momentum L
can be interpreted as the surface of a sphere, and the z-projection of the angular momentum
vector (blue arrow) is m. Because lx, ly cannot be diagonalized simultaneously with lz their
projections are unknown, therefore |lm〉 has a circular representation.

For each angular momentum l, there are 2l+1 magnetic numbers m. By Pauli’s exclusion

principle discussed in Sec.2.3.2, each electron can have two spin states, so there are 2m

possible states for each l state of an electron. These l numbers are the electronic orbitals

that are generally taught in basic chemistry with orbital notations such as s, p, d and f.

For example the s orbital is l = 0 configuration and therefore m = 0, so it can only hold 2

electrons, p is l = 1 configuration, has 3 possible magnetic numbers and therefore can hold

6 electrons so on and so forth.

Next question we ask is, what do these |lm〉 states actually look like. Following a similar

strategy to Eq.2.33, we can construct the differential forms for Lx, Ly and put it all together

to find L2:
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Lx = Y Pz − ZPy = i~
(

sinφ
∂

∂θ
+ cot θφ

∂

∂φ

)
Ly = ZPx −XPz = i~

(
− cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ

)
L2 = −~2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

] (2.40)

We recognize this form as the solution to Laplace’s equation in a spherical coordinates

(which is not that surprising given that the kinetic energy term in the Hamiltonian is a

Laplacian). Eigenvectors of this equation are called spherical harmonics and one can solve

it with separation of variables. They are notated by Yml for the two quantum quantum

numbers l,m, which are the same as |lm〉 quantum numbers from the above discussion. The

mathematical expression is:

Yml (θ, φ) = (−1)m
[

2l + 1

4π

(l −m)!

(l +m)!

]1/2

Pml (cos θ)eimφ (2.41)

where Pml (cos θ) is the associated Legendre polynomial. One can check that this indeed

satisfies the eigenvalues we have derived (which is not that surprising because we got this

expression by solving for the eigenvalue problem).

It turns out that Yml (θ, φ) creates a new basis. By design they are normalized, i.e.

| 〈lm|lm〉 |2 =

∫
Yml
∗(Ω)Yml (Ω)dΩ = 1 (2.42)

And furthermore for different quantum numbers l,m, the functions are orthogonal to

each other:

|
〈
l′m′

∣∣lm〉 |2 =

∫
Ym

′
l′
∗
(Ω)Yml (Ω)dΩ = δl′,l, δm′,m (2.43)

Yml only describe the angular part of the electronic orbital. There also is a radial com-

ponent which is shown with Rnl. Where n is the principle quantum number and constrain
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(n − 1) ≥ l ≥ 0. The radial part of the wavefunction can be solved for a free atom, but in

the ligand field picture, these solutions do not translate easily. Therefore we will limit our

discussion to only to the angular part. The model system explored in this thesis is group-3

transition metal ions and their d -orbitals, meaning n = 3, l = 2. The m quantum number

provides 5 degrees of freedom, or orbitals that electrons can occupy. Understanding how

these orbitals are energetically ordered as a function of the ligand environment determines

the electronic structure and creates the basis of optically addressable spin qubits.

2.4.2 Spin-Orbit Effects

So far we have constructed and discussed two different magnetic components of electrons.

The spin S describes the intrinsic angular momentum of electrons, and L describes the orbital

momentum of them due to spatial containment around an atomic charge. If these two degrees

of freedom do not interact, then the relevant electron Hamiltonian can be described as:

HZ = µB ~B · (~L+ ge~S) (2.44)

These two angular momentum vectors can interact which is called ‘spin-orbit interaction’,

described with the following additional Hamiltonian:

HSO = λ~L · ~S = λ
[
Lx · Sx + Ly · Sy + Lz · Sz

]
(2.45)

When evaluating the energies of this mixed Hamiltonian, we need to keep track of both

the spatial and the spin quantum numbers. As we will see in the next chapter (Chapter

3), in a ligand environment (or any system where some electrostatic potential removes de-

generacies of the orbitals), the orbitals, Yml , get mixed. To make our lives simpler, we will

concatenate both angular momentum quantum numbers to G and use orthogonality prin-

ciples. To evaluate the new energies of the system, we will use perturbation theory. We

will focus on the non-degenerate orbitals for this calculation for the reasons that will be
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clear soon. Specifically, the Zeeman effect is much smaller compared to orbital energies, and

therefore the entire Zeeman Hamiltonian below can be treated as a correction to the orbital

Hamiltonian that we will discuss in Chapter 3. The zeroth order energies are the orbital

energies. To the first order, the corrections are the diagonal elements of H = HZ +HSO:

U
(1)
G = 〈Gs|geµBBzSz|Gs〉+ 〈Gs|(µBBz + λSz)Lz|Gs〉 (2.46)

The first term is the ‘spin-only’ electron Zeeman energy, previously discussed in Eq.2.2.

The second term can be decomposed into its individual spin and orbital components and be

rewritten as:

〈s|µBBz + λSz|s〉 〈G|Lz|G〉 (2.47)

As we will see in the next chapter, under a ligand environment, the orbitals become real

(the imaginary components cancel out) for example for transition metal d-orbitals under lig-

and field. If the evaluated state is non-degenerate (i.e d2 ground state), then the expectation

value of 〈G|Lz|G〉 = 〈Lz〉 = 0. Thus to the the first order, there is no spin-orbit correction

and the energy splitting is just given by the Zeeman Hamiltonian. This is not the case for

degenerate orbitals, and this first term must also be considered, as is the case for V4+ in

SiC which makes spin-orbit effects larger. Since the remaining calculation is illustrative of

some of the spin-orbit effects, we will not consider the first order terms for the degenerate

case. The second order correction is given below:

Hss′ = −
∑
n 6=G

∣∣∣ 〈Gs∣∣(µB ~B + λ~S) · ~L+ geµB ~B · ~S
∣∣ns′〉∣∣∣2

U0
n − U

(0)
G

(2.48)

This sum runs over all possible orbital states n. The matrix elements for geµB ~B · ~S are

all zero since 〈G|n〉 = δGn by orthogonality of the orbitals. Thus we are left with:
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Hss′ = −
∑
n 6=G

[ 〈
s
∣∣(µB ~B + λ~S)

∣∣s′〉 〈G|~L|n〉] [ 〈n|~L|G〉 〈s′∣∣(µB ~B + λ~S)
∣∣s〉]

U0
n − U

(0)
G

= −
( 〈
s
∣∣(µB ~B + λ~S)

∣∣s′〉)
∑
n 6=G

〈G|L|n〉 〈n|L|G〉

U0
n − U

(0)
G

( 〈s′∣∣(µB ~B + λ~S)
∣∣s〉)

(2.49)

At this point it is beneficial to define Λ:

Λ = −
∑
n 6=G

〈G|L|n〉 〈n|L|G〉

U0
n − U

(0)
G

(2.50)

which is a 3× 3 symmetric matrix (i, j = x, y, z) whose matrix elements are:

Λij = −
∑
n 6=G

〈G|Li|n〉 〈n|Lj |G〉

U0
n − U

(0)
G

(2.51)

Using this definition in Eq.2.50 we get:

Hss′ =
〈
s′
∣∣µ2
B
~B · Λ · ~B + 2λµB ~B · Λ · ~S + λ2~S · Λ · ~S

∣∣s〉 (2.52)

The first term only shifts the diagonal energy levels by a constant and has no spectroscopic

value - therefore we ignore it. The second and the third terms in the matrix constitute a

Hamiltonian that only operates on the spin levels when combined with the Zeeman term

from Eq.2.44, we get:

H = µB ~B · (ge + 2λΛ) · ~S + λ2~S · Λ · ~S

= µB ~B · g · ~S + ~S ·D · ~S
(2.53)

Where
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g = ge + 2λΛ

D = λ2Λ

(2.54)

where the D term is only valid for systems with total spin S ≥ 1. We have just shown

two effects of spin-orbit interactions. First, although, we may be investigating an isolated

electron, the spin-orbit effects can cause the observed g-factor to deviate from that of a free

electron, and furthermore, can cause anisotropy depending on the Λ matrix. Secondly, the

spin-orbit effects can induce zero-field splitting D. When speaking of D, one also needs to

consider the dipole interaction (where both electron spins prefer to be oriented one way over

another depending on their spatial distribution). Although the non-degenerate ground state

orbitals generally have total angular momentum of zero, as shown in the above calculation,

they can mix with higher energy orbitals with non-zero angular momentum which results in

spin-orbit effects.

Now that we have all the necessary machinery, we will discuss the spin and angular

momentum properties of electrons in transition metal ions within a ligand environment.
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Chapter 3

Transition Metal d− Orbitals

In this part, we will start putting together some of the mathematical machinery we have

thus far built to explain orbital and spin dynamics of transition metal ions. Even though the

example we will follow will be about the main subject of this thesis, a transition metal ion

under a tetrahedral ligand symmetry, the same analysis can be carried for various symmetries

(and charge configurations) to engineer different electronic structures to construct optically

accessible spin qubits. This will not be a complete mathematical description either as it

would take a few textbooks to fully account for all of the effects, for example [56, 57].

The purpose of this chapter is to build a qualitative description and intuition on how

transition metal electronic structures form under symmetry, understanding Tanabe-Sugano

diagrams, and thinking about the electronic structures for optically addressable spin qubits.

3.1 Crystal Field Theory

We will start with a toy model: a transition metal ion surrounded by point charges. Under

this scenario, besides the radial potential exerted by the central ion, there are also the electric

potentials that are present from the neighboring ligands that need to be summed:

58



~V =
∑
i

~v(i, x, y, z) =
∑
i

ezi/rij (3.1)

where e is the coulomb constant, zi is the charge at the ith locations and rij is the

distance from the ith charge to the point (x, y, z). To solve the relative energies of these

orbitals, we will use perturbation theory. We will see that that, under the crystal field, the

Y lm orbitals are no longer the eigenstates of the system, but the real orbitals shown in Sec.B.2

are. As an exercise we will explore the tetrahedral ligand field, and show how the orbitals

split into two sets.

A shorthand way of thinking about the real orbitals however is looking at how much they

overlap with the charges in the crystal environment. Qualitatively we know from Coulomb’s

law that two electrons will repel each other inversely proportional to the distance between

them, captured by Eq.3.1. Therefore the existence of a crystal field does two things: firstly

it creates a preferred axis for the d-orbitals by forming a frame of reference, and secondly

changes the relative energies of the orbitals. Specifically, the more a real orbital overlaps with

the charges around, the more energy an electron will need to occupy that orbital. Therefore

we can qualitatively realize that in a tetrahedral ligand environment shown in Fig.3.1A,

dz2 , dx2−y2 orbitals will be lower energy than dxy, dyz, dxz as they are further away from the

neighboring atoms shown in Fig.3.1B.

3.1.1 A toy model

For intuition building, I will carry out the example calculation of this toy model. Even

though this toy model is far from an accurate description, it demonstrates how the existence

of the ligand environment changes the orbitals to real ones (superposition of orbitals with no

imaginary components), how the ligand symmetry determines splitting of the d-orbitals and

the ligand strength can change this splitting. The transition metal ions investigated in this

thesis are in tetrahedral-like like symmetry environment, therefore we will use this configu-
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Figure 3.1: (A)Transition metal within a tetrahedral symmetry and (B) d-orbital distance
from the nearest atom. The cube that contains the tetrahedral symmetry has a side length
of 2a for illustrative purposes. Orbitals contained in the dt manifold are a away from the
nearest atom while the orbitals within the de manifold are further away with a distance of
a
√

2 and therefore has lower energy.

ration for our example. A free atom’s d-orbital (l = 2) has the following time independent

equation:

H0 |n, l = 2,m〉 = E |n, l = 2,m〉 (3.2)

for some fixed radial quantum number n (e.g. n = 3 for 3d orbitals) and magnetic number

m. The energy eigenvalue is the same for all m, hence we will use degenerate perturbation

theory. Under the perturbative crystal field, the equation is now modified to

(H0 +H1) |ψi〉 = E′i |ψi〉 (3.3)

where H1 is the perturbative Hamiltonian from the ligands, E′i are the new energy eigen-

values and |ψi〉 are the new eigenstates that can be written as a superposition of the eigen-

vectors of the free ion Hamiltonian:

|ψi〉 =
2∑

m=−2

cmi |n, l = 2,m〉 (3.4)
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with cmi normalized complex scalars. To find the energy perturbation, we want to find

det(H1 − E) = 0, where matrix elements are

〈
n, l = 2,m

∣∣H1

∣∣n, l = 2,m′
〉

= e

∫
R∗n,2Y

m
2
∗~V (x, y, z)Rn,2Y

m
2
′dτ (3.5)

We see that by expanding ~V in spherical harmonic functions, we can use the orthonormal-

ity principles to simplify this equation to construct the matrix. rij represents the distance

from point i to point j. The expansion for

1

rij
=
∞∑
n=0

n∑
m=−n

4π

2n+ 1

rn

αn+1
Ymnj Y

m
ni
∗ (3.6)

𝑖

𝑗
r𝑖𝑗

𝜃𝑗
𝜃𝑖

𝜙𝑖
𝜙𝑗

𝜋/4

arctan(�2)

a
a

a

a�2

� �

Figure 3.2: (A) Geometric illustration of two points in 3-space and (B) angular calculation
of tetrahedral charge i = q1.

where the index i labels the location of the neighboring atom, α = a
√

3 is the ligand

length to that atom, and r is the radial distance from the central ion and j is some free index

that spans the 3-space. In the tetrahedral symmetry, there are 4 ligands with the angles

below:
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Point θi φi

q1 (a,a,a) arctan
(√

2
)

π/4

q2 (-a-,a,a) arctan
(√

2
)

5π/4

q3 (a,-a,-a) − arctan
(√

2
)

7π/4

q4 (-a,a,-a) − arctan
(√

2
)

3π/4

Because the odd n will integrate to zeros for the matrix elements we do not need to

consider them. We will see that most of the other matrix elements will also add up to zeros

because of the symmetry. We will expand Eq.3.1 term by term according to Eq.3.6 for even

n to then later compute the perturbation matrix:

n=0

4πze

α
Y 0

0 iY
0
0 j =

4πze

α

(
1

2
√
π

)(
Y 0

0j

)
=
ze

α
(3.7)

Thus the total contribution from all 4 ligands will be 4ze/a.

n=2, m=0

V2,0 = ze
4∑
i=1

4π

5α3
r2Y 0

2 (θi, φi)Y
0
2 (θj , φj) = zeY 0

2 (θj , φj)
4π

5α3
r2

4∑
i=1

Y 0
2 (θi, φi) (3.8)

So it is sufficient to look at the sum of Y 0
2 for the angles we have. Looking at the Eq.B.1

we get:

1

4

√
5

π

[
2
(

3 cos2(arctan
√

2)− 1
)

+ 2
(

3 cos2(arctan
(
−
√

2
)

)− 1
)]

= 0

Therefore the contribution from the V2,0 = 0. I will be summing over only the spherical

contributions of the i component going forward.
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n=2, m=±1,±2

Similar to the above analysis we have V2,±m ∝
∑4
i=1 Y

±m
2
∗(θi, φi). We also know that

Y ±ml
∗ = Y ∓ml therefore it is sufficient to look at only positive m.

Point Y 1
2 /
√

15/(8π) Y 2
2 /
√

15/(32π)

q1 −(1 + i)/3 2i/3

q2 (1 + i)/3 2i/3

q3 (1− i)/3 −2i/3

q4 −(1− i)/3 −2i/3

+ 0 0

Thus all the contributions for the expansion of l = 2 add up to 0.

n=4, m=0

We continue with the expansion:

V4,0 = ze
4∑
i=1

4π

9α5
r4Y 0

4 (θi, φi)Y
0
4 (θj , φj)

= ze
4π

9α5
r4Y 0

4 (θj , φj)
4∑
i=1

Y 0
4 (θi, φi)

= ze
4π

9α5
r4Y 0

4 (θj , φj)

(
4

(
−7

12
√
π

))
= −ze28

√
π

27

r4

α5
Y 0

4 (θj , φj)

(3.9)

There actually is a contribution from this term!

n=4, m=±1,±2,±3,±4

Similar to the above analysis we create a table
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Point Y 1
4 /
√

45/(64π) Y 2
4 /
√

45/(128π) Y 3
4 /
√

315/(64π) Y 4
4 /
√

315/(512π)

q1 2(1 + i)/9 8i/9 2(1− i)/9 −4/9

q2 −2(1 + i)/9 8i/9 −2(1− i)/9 −4/9

q3 −2(1− i)/9 −8i/9 −2(1 + i)/9 −4/9

q4 2(1− i)/9 −8i/9 2(1 + i)/9 −4/9

+ 0 0 0 -16/9

All the contributions for the expansion of l = 4,m = 1, 2, 3 add up to 0. But l = 4,m =

±4 does have a contribution:

V4,±4 = ze
4π

9α5
r4Y ∓4

4 (θj , φj)

(
4

(
−1

12

√
35

2π

))

= −ze2
√

70π

27

r4

α5
Y ∓4

4 (θj , φj)

(3.10)

We need not expand this any further, because

∫
Ω
Ym

∗
l Ym

′

l′ Yml dΩ = 0, l′ > 2l

Thus putting together Eq. 3.7, 3.9, 3.10 we find the pertubrative potential to be

~V = V0,0 + V4,0 + V4,4 + V4,−4

= 4
ze

α
− ze28

√
π

27

r4

α5

[
Y 0

4 (θj , φj) +

√
5

14
(Y 4

4 (θj , φj) + Y −4
4 (θj , φj))

]
(3.11)

The first term can be dropped as it is a constant. Matrix element
∫
Ym2
∗ 4ze
a Ym

′
2 dΩ =

4ze
a δm,m′ shifts all of the orbital energies the same. We are interested in their differences,

therefore this term is not important and will be discarded going forward. I will label the

new potential energy Vtet that doesn’t have the constant term. Next, we can integrate the r

component. The radial distribution is not that important, so we will assume some functional
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form Rn,2 for the d-orbitals within the crystal and integrate out the radial component:

∫ ∞
0

R∗n,2r
4Rn,2r

2dr = r4 (3.12)

where one can interpret r4 as the fourth-power mean of the electron’s location by the

central metal atom. Thus now we can calculate the matrix in Eq.3.4:

〈
n, l = 2,m

∣∣Vtet∣∣n, l = 2,m′
〉

=− ze2 28
√
π

27

r4

α5

∫ [
Ym2
∗Y 0

4 Y
m′
2

+

√
5

14

(
Ym2
∗Y 4

4 Y
m′
2 + Ym2

∗Y −4
4 Ym

′
2

)]
dΩ

(3.13)

where the n dependence no longer matters as it is accounted for in Eq.3.12. A property

of the spherical harmonics is that, for a given integral:

∫ 2π

0
Ym1
l1

Ym2
l2

Ym3
l3

dφ =


2π m1 +m2 +m3 = 0

0 otherwise

(3.14)

For the first term of the integral where m2 = 0, −m1 = m3, but since Y ±ml
∗

= Y ∓ml it

means that m = m′ which are all the diagonal terms. For m2 = ±4, m1 = ∓4−m3, which

means that m′ = ±2,m = ∓2 which are the outermost off-diagonal terms.

The integral of all non-zero terms are:

∫ 2π

0

∫ π

0
Ym2
∗Y 0

4 Y
m
2 sin θdθdφ =



3
7
√
π

m = 0

−2
7
√
π

m = ±1

1
14
√
π

m = ±2

(3.15)

∫ 2π

0

∫ π

0
Y ±2

2
∗
Y ±4

4 Y ∓4
2 sin θdθdφ =

√
5

14π
(3.16)

To easily collect the terms together, we define ∆ = 2ze2r4

27α5
and plugging Eq. 3.15, 3.16
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into Eq. 3.14, get the perturbation matrix in the Ym2 basis:

Vtet =

Y −2
2 Y −1

2 Y 0
2 Y 1

2 Y 2
2



Y −2
2 −∆ 0 0 0 5∆

Y −1
2 0 4∆ 0 0 0

Y 0
2 0 0 −6∆ 0 0

Y 1
2 0 0 0 4∆ 0

Y 2
2 5∆ 0 0 0 −∆

(3.17)

To find the energy corrections, we calculate the secular determinant det(Vtet − E) = 0.

The diagonal terms are easy, and there are three of them, Y ±1
2 has E±1 = 4∆ and Y 0

2 = dz2

has E0 = −6∆. Calculating the secular determinant of the submatrix of Vtet, we find:

det(Vtetsub − E) =

Y −2
2 Y 2

2

Y −2
2 −∆− E 5∆

Y 2
2 5∆ −∆− E

= 0 (3.18)

We find two energy values by solving (∆ + E)2 = 25∆2 and get eigenenergies of E =

−6∆, 4∆ with eigenfunctions (Y 2
2 − Y

−2
2 )/i

√
2 = dxy and (Y 2

2 + Y −2
2 )/

√
2 = dx2−y2 respec-

tively.

This calculation mathematically showed what was already qualitatively argued in Sec.3.1

but it provides more insights. The existence of the ligand environment split the d-orbitals

into two sets, de = {dz2 , dx2−y2} and dt = {dxy, dxz, dyz} with mathematical forms given in

Sec.B.2.1 The orbitals within the sets have degenerate energies, and under the tetrahedral

symmetry, Ee < Et, therefore the orbitals in de will form the ground state. Furthermore, the

energy splitting between these two sets are proportional to ∆ ∼ 1/α5 - therefore the closer

the neighboring atoms (higher the ligand field) the larger the energy separation between

1. A,B refer to orbital singlet configuration, E refers to two degenerate orbitals and T refers to three
degenerate orbitals.
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de and dt will be. Since the energies of the orbitals are degenerate within each set, any

superposition of them is also a valid orbital.

As mentioned earlier, this is a toy model. The treatment of the neighboring atoms as

point charges is far from a realistic description. A more accurate description looks at the

d−orbital interactions with the chemical bonds to the metal center. The main reason this

toy model could capture the physics of this system actually comes from the symmetry of the

ligand environment.

We will not discuss ligand field theory any further, as the subject itself is vast, and

beyond the scope of this thesis. We will however use some of the main principles we have

learned in this consideration:

• The symmetry of the ligand environment determines how and which d−orbitals will

split.

• Qualitatively one can determine the trend by looking at how much the real orbitals

overlap with the neighboring atoms.

• The strength of the ligand will determine the energy magnitude of the splitting.

Based on there qualitative principles, we can see that under an octahedral symmetry

(e.g. Corundum (Al2O3)), the energy of the set of orbitals will be swapped, that is, the

lower energy orbitals will be dt = {dxy, dxz, dyz} and higher energy orbitals will be de =

{dz2 , dx2−y2}. This is the level structure for Cr doped corundum, also known as ruby. The

Cr3+ has three valance electrons occupying the three ground state orbitals and therefore

displays some very similar physics to Cr4+ in tetrahedral environment.

So far we have discussed the orbital energies. Next we will discuss what happens when

we load electrons into these orbitals to create the quantum bit out of their spins and optical

paths for initialization and readout.
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Figure 3.3: d-orbital energies under different symmetries. (A)Transition metal within a
tetrahedral symmetry and (B) the energies of d-orbitals. (C) Transition metal within a
octahedral symmetry (D) has the orbital energies flipped.

3.2 d−Orbital Configurations

The d−orbital electronic structures that emerge in well known symmetries such as octahedral

and tetrahedral are well understood and are plotted in Tanabe-Sugano diagrams. In this

section we will discuss how to make sense out of these graphs and understand how they are

derived. These graphs plot the energies of electronic orbitals that arise from different electron

configurations and how they evolve as a function of the ligand field strength. Not all of the

diagrams are relevant. For example, if an atom has no d orbital electron (d0) or all of the

d orbitals are filled (d10), then we cannot talk about electron energies of d orbitals. If there

is only one electron d1 or nine electrons d9, then the resultant electronic structure closely

follows the orbitals under the ligand field strength, which is already discussed in Sec.3.1.1. In

this case, one does not need to think about configurations that arise from multiple electrons,

and therefore the problem is simple, so there aren’t any diagrams. Tanabe-Sugano diagrams

only exist for 2 to 8 electron configurations.

In this thesis, we are discussing tetrahedral symmetry but as mentioned earlier the oc-

tahedral symmetry results in very similar orbital energetics, but just inverted. In the single

particle picture, one can convince themselves that an electron moving from de to dt manifold

in tetrahedral symmetry is the same as a hole (absence of electron) moving from de to dt to

octahedral symmetry. Therefore Tanabe-Sugano diagrams are the same for dnoct = d10−n
tet .
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We will be using the nXm notation, where n is the total number of spin configurations (1 for

spin−0, 2 for spin-1/2, 3 for spin-1, etc.), m = 1, 2 for symmetric or antisymmetric wavefunc-

tion relative to a rotation axis and X is the symmetry label where A,B are non degenerate

single states symmetric or antisymmetric wavefunction relative to a principal axis, E and T

are labels for doubly and triply degenerate orbitals, defined in Chapter C in detail. Finally,

one will see in Tanabe-Sugano diagrams different orbital manifolds, labeled with S, P, D, F,

G indicating a total character of angular momentum of L = 0, 1, 2, 3, 4 respectively.

3.2.1 d1 configuration

A free transition metal ion with a single electron in the d−orbital will have 10 possible

magnetic configurations, 5 of −2 ≤ ml ≤ 2 angular momentum levels and 2 of ms = ±1/2

spin levels. Therefore, the system will be described as 2D. As derived, under a tetrahedral

ligand field, for example V4+ in silicon carbide discussed in Chapter 6, the degeneracy of the

d orbitals will be lifted and the system will end up with two ground states that is composed

of the de manifold and three excited states composed of the dt manifold. The two orbitals in

the de manifold and the three excited state orbitals dt are degenerate under perfect symmetry

and without an electron and therefore are labeled as 2E and 2T respectively.

When there is an electron present, however, the system tries to minimize the energy by

rearranging the ligand lengths which results in breaking of the degeneracies. This is called

Jahn-Teller distortion. In the d1 configuration, this results in two close ground states. The

composition of the ground states depend on how the system relaxes and requires careful

calculations and modeling beyond the scope of this thesis. We will generically call them GS1

and GS2 when we discuss V4+. Spin orbit effects or second nearest neighbors within the

host can also introduce further splittings both in the ground and the excited state resulting

in different energy splittings between various SiC lattice sites for V4+.
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3.2.2 d2 configuration

In the d2 configuration, the physics get more complicated as we have to both consider the

energies of the orbitals that electrons occupy as well as electron-electron interactions. A

good strategy to understand what happens to a system is looking at it at two extreme limits

and extrapolating the intermediate states with a continuous functional. In this spirit we will

investigate the d2 configuration without any ligands and very strong tetrahedral ligand field.

Although the weak ligand field regime is not relevant to the experimental results of this

thesis, it is important to understand them to understand Tanabe-Sugano diagrams. In this

spirit, we will start the discussion with a transition metal ion in vacuum with five degenerate

orbitals and two electrons.

Both of the valance electrons occupy the d orbitals with the total angular momentum of

L = L1 +L2 = 2× (
√

2(2 + 1)). The lz of each electron can take a value anywhere between

−2, ..., 2 where the total Lz = Lz1 + Lz2 will range −4, ..., 4 with multiple degeneracies. As

we have seen in Sec.2.3.3 where two spin-1/2 electrons can form spin-1 and spin-0 manifolds

(H1/2⊗H1/2 = H1⊕H0), a similar treatment of angular momentum yields a total angular

momentum of L = 4, 3, 2, 1, 0 labeled with G, F, D, P, S respectively (d ⊗ d = G ⊕ F ⊕

D⊕ P ⊕ S). Each one of the these macro states will have a macro-magnetic number shown

with capital letter ML = ml1 + ml2 where −L ≤ ML ≤ L. Since each electron also has a

spin, the macrostates will either be spin-1 or spin-0 that needs identifying. In order to find

the macrostates, we will count various electron occupation combinations of the microstates

below.

To start with, the two electrons occupying the 5 orbitals have
(10

2

)
= 45 different possible

electronic configurations. There are
(5
2

)
= 10 each possible configurations where spins are

symmetric (electrons must be in separate orbitals where order does not matter, given by 5

choose 2 ), creating the triply degenerate spin-1 manifold and the remaining 15 configurations

where spins are anti-symmetric (5 of them where electrons are on the same orbitals, and the

remaining 10 where they are anti-symmetric on separate orbitals) creates the non degenerate
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spin-0 manifold. Next, we calculate how many L levels there are. We realize that if the two

electrons are in two different orbitals, then they span a 4-dimensional spin configuration

space (H1⊕H0), where basis elements can be given with {|↑, ↑〉 , |↑, ↓〉 , |↓, ↑〉 , |↓, ↓〉}. If the

two electrons occupy the same orbital, then they must be anti-aligned due to Pauli exclusion

principal discussed in Sec.2.3.2 and therefore must belong to the spin-0 manifold (H0).

We will talk about only the positive total Ml, since negative part is the same with a

minus sign. The below discussion is pictorially demonstrated in Fig.3.4 below. There is only

1 configuration for Ml = +4 where both electrons occupy the ml = +2 orbital and therefore

L = 4 must be spin-0, creating the character 1G.

𝑚𝑙=2 𝑚𝑙=1 𝑚𝑙=0 𝑚𝑙=-1 𝑚𝑙=-2

𝑀𝑙=4

𝑀𝑙=3

𝑀𝑙=2

𝑀𝑙=1

𝑀𝑙=0

Spin Hilbert Space

ℋ₀

ℋ₀  ⊕  ℋ1

ℋ₀  ⊕  ℋ1  ⊕  ℋ0

ℋ₀  ⊕  ℋ1  ⊕  ℋ0  ⊕  ℋ1

ℋ₀  ⊕  ℋ1  ⊕  ℋ0  ⊕  ℋ1  ⊕  ℋ0

1G    ⊕  3F   ⊕  1D    ⊕  3P    ⊕  1S𝑑2

Figure 3.4: Total angular momentum character of d2 configuration with no ligands. The
total angular momentum Ml is the sum of both electrons occupation of ml of the d orbitals.
Different possible combinations of getting Ml are indicated by multiple rows for each value.
Blue spins indicate only a spin-0 Hilbert space while the red arrows indicate a spin-0 plus a
spin-1 Hilbert space.

There are 4 configurations for total Ml = +3 where one electron is in the ml = +2 and

71



the other one is in ml = +1 orbital. One of the ms = 0 configurations must belong to the

spin-0 space that contains |L = 4,Ml = +3〉. Therefore the remaining |L = 3,Ml〉 must be

spin-1 creating the character 3F .

There are 5 configurations for Ml = +2, four where the electrons are on different orbitals,

one ml = +2 and the other at ml = 0 forming a spin-0 and a spin-1 space and an additional

single configuration where both electrons are at ml = +1 which forms a spin-0 state. One

of the spin-0 states must belong to |L = 4,Ml = +2〉 and the spin-1 state must belong

to |L = 3,Ml = +2〉 which leaves only the remaining spin-0 Hilbert space for |L = 2,Ml〉

forming the character of 1D.

There are 8 configurations for Ml = +1, where both electrons are on different orbitals of

(ml = +2 and ml = −1) and (ml = +1 and ml = 0), creating two spin-0 and two spin-1

Hilbert spaces. The spin-0 spaces must belong to |L = 4,Ml = +1〉 and |L = 2,Ml = +1〉,

while one of the spin-1 space must belong to |L = 3,Ml = +1〉 which leaves |L = 1,Ml〉 with

the other spin-1 Hilbert space creating the character of 3P .

Finally there are 9 remaining configurations for total Ml = 0 four configurations for each

electron are in ml = ±2,±1 orbitals and an additional one where both electrons are anti

parallel in ml = 0 orbital which in total forms 2 spin-1 Hilbert spaces and 3 spin-0 Hilbert

spaces. The spin-1 Hilbert spaces must belong to |L = 3,Ml = 0〉 and |L = 1,Ml = 0〉 while

two spin-0 Hilbert spaces must belong to |L = 4,Ml = 0〉 and |L = 2,Ml = 0〉, leaving the

|L = 0,Ml〉 with the final spin-0 Hilbert space and therefore forming the character 1S.

We therefore find that in the absence of any ligands, the d2 can be broken down as:

d2 →1 S +3 P +1 D +3 F +1 G (3.19)

The relative energies of these subspaces are well understood and is a result of electron-

electron repulsion between different orbital occupation configurations that can be calculated

using Racah parameters [62]. This creates the left axis of a Tanabe-Sugano diagram where

the ground state is 3F and with increasing energies for (1D,3 P ),1G,1 S respectively.
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If one is curious, the single particle wavefunctions of the no-ligand regime can be found

by using ladder operators introduced in Sec.2.4.1. For example, the 1G states highest

Ml = 4 value can only be composed of when both electrons occupy the ml = 2 orbital:

|L = 4,ML = 4〉 = |2,ml = 2〉⊗ |2,ml = 2〉. Knowing that a lowering operator acting on an

arbitrary state will yield L− |l,m〉 =
√
l(l + 1)−m(m− 1) |l,m− 1〉 one can find:

L− |L = 4,ML = 4〉 = L− |l = 2,ml = 2〉 ⊗ |l = 2,ml = 2〉+ |l = 2,ml = 2〉 ⊗ L− |l = 2,ml = 2〉 (3.20)

2
√

2 |L = 4,ML = 3〉 = 2 |l = 2,ml = 1〉 ⊗ |l = 2,ml = 2〉+ |l = 2,ml = 2〉 ⊗ 2 |l = 2,ml = 1〉 (3.21)

|L = 4,ML = 3〉 = 1√
2

(|l = 2,ml = 1〉 ⊗ |l = 2,ml = 2〉+ |l = 2,ml = 2〉 ⊗ |l = 2,ml = 1〉) (3.22)

Firstly we realize that this is indeed the expected expression for a spin-0 system for

Ml = 3 as the spatial wavefunction is symmetric. Secondly, carrying out similar calculations

to the above one, one can construct all 45 microstates. Once a ligand field is introduced how-

ever, these states will mix once more as a function of the ligand symmetry and its strength.

Although the splittings are generally plotted as each total angular momentum space is split-

ting shown in Fig.3.5A, the mixed states within a ligand field need not be contained within a

total angular momentum character space. The microstates for the weak ligand field regime

where electron repulsion can be treated as a simple perturbation, can be found by construct-

ing a secular determinant, a very similar exercise to Sec.3.1.1, where the matrix elements

are given by 〈Ml|Vtet|Ml′〉, where the eigenvalues of this secular determinant show how the

orbitals split and evolve as a function of crystal field strength, and the eigenvectors yield the

wavefunctions that can be degenerate. The symmetry labels and their energetic evolutions

are plotted within a Tanabe-Sugano diagram. An example of d2 evolution under ligand field

is shown in Fig.3.5B.

Now we discuss the very strong ligand field case, shown all the way on the right side of

the diagrams in more concrete terms. Under the very strong ligand field strength, we would
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Figure 3.5: (A) Configuration and Tanabe-Sugano (B) diagrams for d2 under tetrahedral
ligand symmetry. The configuration diagram energies are not to scale, it illustrates how the
atomic orbitals split and evolve under increasing ligand strength. Tanabe-Sugano diagram
summarizes these results, the dashed lines indicate S=0 orbitals and solid lines show S=1
orbitals. Figure B is adapted from wikipedia.

expect the energy splitting between de ground state orbitals and dt excited state orbitals to

be very large, therefore the electrons occupying the de manifold will be the ground state.

Due to electron repulsion interaction, the configuration where each electron is in one orbital

will be lower energy as opposed to two electrons occupying the same orbital. Since this is the

anti-symmetric orbital configuration, per the discussion in Sec.2.3.1, the spin will be in the

symmetric configuration of S = 1 and the spatial wavefunction will be anti-symmetric. There

is only one such configuration available, and therefore the ground state will be 3A2. Next,

the spin-paired electrons will form the anti-symmetric portion of the total wavefunction,

while the orbitals will form the symmetric part. As we have seen in Sec.2.3.3, there are three
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basis elements, two where both electrons are in one orbital and one entangled state between

the two orbitals all of which are S = 0. This three dimensional spin-singlet orbital space

will a doubly degenerate first excited state 1E a higher energy second excited state of 1A1.

These constitute the 6 total possible configurations two electrons can have in two orbitals.

Notice that the electrons in these levels do not jump to a different orbital but stay within

the de manifold. Even if there is an external electric field, strain or another effect that can

shift the absolute energy of the de manifold, the relative energies between 1A1, 1E and 3A2

will remain unchanged as they will be mostly moving all together. One can immediately see

this from the Tanabe-Sugano diagrams, as the energy difference between 3A2, 1E and 1A1

are roughly flat, independent of the ligand field strength. This is an extremely important

property that will allow for narrow transitions and high Debye-Waller factor of d2 electronic

structure under strong tetrahedral symmetry which enables the optical spin interface.

At this point, the next higher energy state is given by transferring an electron from de

manifold to the dt manifold. There are 3 orbitally degenerate options and 2 ground states to

chose from and each configuration will result in a lower energy S = 1 configuration followed

by a higher energy S = 0 manifold creating the next set of 3T and 1T structure. In these

excited states, since one of the electrons are in the dt set, the energy splittings between 3A2

and T states will be highly ligand field strength dependent, resulting in a broad absorption

spectrum. One can carry this analysis out until all possible 45 micro-states are calculated.

3.2.3 d7 configuration

We will not spend much time here but it is good to mention that this the level structure of

Ruby which is Cr3+ doped Al2O3. This crystal has a octahedral symmetry, and therefore

has a dt ground state and a de excited state , as it was discussed at the end of Sec.3.1.1 with

3 valance electrons. Following a similar discussion to d2 structure, at the high ligand field

strength, we expect to see a single spin-3/2 ground state composed of 3 valance electrons

occupying the three different ground state orbitals forming the 4A2 ground state, and eight
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different spin pairing of the 2 electrons (2E+2T1+2T2) within the same dt manifold, forming

the spin-1/2 excited states. These excited states are also insensitive to ligand field strength

(and therefore its fluctuations), which is captured in Tanabe-Sugano diagrams again. This

results in similar to d2 transitions between the excited states and the ground states that are

narrow and relatively strain insensitive.
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Figure 3.6: (A) Configuration and Tanabe-Sugano (B) diagrams for d3(d7) under octahe-
dral (tetrahedral) ligand symmetry. The configuration diagram energies are not to scale, it
illustrates how the atomic orbitals split and evolve under increasing ligand strength. Tanabe-
Sugano diagram summarizes these results, the dashed lines indicate S=1/2 orbitals and solid
lines show S=3/2 orbitals. Figure B is adapted from wikipedia.

3.3 A brief group theory discussion

To summarize what we have done so far, we found the wavefunctions that form the d-orbitals

Ym2 , we characterized how these orbitals shift as a function of ligand field which depends on
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the symmetry of the ligands, explored multi electron systems to construct composite wave-

functions, and followed a similar analysis to see how these multi electron systems form the

electronic structure. All of these considerations arise from looking at the Slater determinant

of the ligand environment (det(H1 − E) = 0) which highly depends on the symmetry of the

system.

Specifically, say, there is a symmetry operation R that leaves the ligand environment

unchanged (e.g. φ→ φ+π rotation for a tetrahedral system) and therefore [H1, R] = 0. Say

|ψ〉 is a normalized eigenvector of H1, such that H1 |ψ〉 = Eψ |ψ〉, then H1R |ψ〉 = EψR |ψ〉.

This means that R |ψ〉 = ± |ψ〉 where the sign determines whether the wavefunction is

symmetric or antisymmetric under this symmetry operation. Just like the our analysis in

Sec.2.4.1, one can also use the eigenvectors of the symmetry operators in the (Yml )⊗n basis

to find the wavefunctions that mimic the symmetry of the system, therefore the electronic

structure under the ligand field.

The group theory treatment of orbitals are very well understood and commonly used

within chemistry. We will not go into any further discussions in this thesis, as building the

necessary mathematics, notation and intuition is not critical to the experimental demonstra-

tions. These techniques, however allow for analysing how the orbitals split under various

ligand symmetries, as briefly discussed in the previous section and how they evolve as the

symmetry is reduced through correlation tables. An example for how the symmetry terms

of Td further split with reduced symmetry are shown below in Table 3.1. The meanings of

symmetry elements and labels are discussed in Appendix C.
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Td D2d C3V S4 D2 C2v C3 C2 Cs

A1 A1 A1 A A A1 A A A’

A2 B1 A2 B A A2 A A A’’

E A1+B1 E A+B 2A A1+A2 E 2A A’+A’’

T1 A2+E A2+E A+E
B1+B2+
B3

A2+B1+
B2

A+E A+2B A’+2A’’

T2 B2+E A1+E B+E
B1+B2+
B3

A1+B1+
B2

A+E A+2B 2A’+A’’

Table 3.1: Correlation table for the Td symmetry. It shows how the orbital characters (rows)
further split into new characters, when the symmetry is reduced (columns).

So far we’ve discussed how the d-orbitals split under the ligand field, how ligand symmetry

determines the orbital configurations and that one can use group theory to deduce a lot of

the basic characteristics. These considerations demonstrate the flexibility of transition metal

ions d-orbitals as a platform to engineer various electronic structures that can be used as

spin qubits. To couple the spin degree of freedom with optical degree of freedom we need to

discuss transitions between the electronic states.

3.3.1 Transitions

For any operator represented with Â, to be allowed, one needs to satisfy

〈
ψi
∣∣Â∣∣ψf〉 =

∫
ψiÂψfdτ 6= 0 (3.23)

where ψi is the initial state and ψf is the final state wavefunctions. Since the result of

this integral is a scalar value, and the volume element dτ is also a scalar quantity, they must
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remain unchanged under any symmetry operation. This means ψiÂψf must also remain

unchanged under any symmetry operation. Furthermore, if the integrand changes sign, the

result must be zero as the positive part would cancel the negative. Therefore, the integral

is non zero if and only if the symmetry of the products Γi ⊗ ΓA ⊗ Γf spans the totally

symmetric representation A1, where Γ is the symmetry representation of the state or the

operator.

In the Td symmetry, electric dipole moment p = qr transforms as the T2 symmetry

element, so one needs to look at Γi ⊗ T2 ⊗ Γf to see which electric dipole transitions are

allowed shown in Table 3.2.

⊗𝑻𝟐⊗ A1 A2 E T1 T2

A1 T2 T1 T1+T2 A2+E+T1+T2 A1+E+T1+T2

A2 T1 T2 T1+T2 A1+E+T1+T2 A2+E+T1+T2

E T1+T2 T1+T2 2T1+2T2
A1+A2+2E
+2T1+2T2

A1+A2+2E
+2T1+2T2

T1 A2+E+T1+T2 A1+E+T1+T2
A1+A2+2E
+2T1+2T2

A1+A2+2E
+3T1+4T2

A1+A2+2E
+4T1+3T2

T2 A1+E+T1+T2 A2+E+T1+T2
A1+A2+2E
+2T1+2T2

A1+A2+2E
+4T1+3T2

A1+A2+2E
+3T1+4T2

Table 3.2: Dipole transition products for the Td symmetry. Green cells contain the totally
symmetric representation A1 and therefore allow a dipole transition while red cells do not.

In the d1 case for the tetrahedral symmetry, the ground state has an E character and the

excited state has a T character. We can read from the table that the transitions between

the two are dipole allowed!2 This is also a spin preserving transition, therefore the electronic

2. The spin-orbit effects cause T → E + A which can forbid the optical transitions in the perfect Td
symmetry. The dipole transition between A and E states are allowed however in C3v
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structures in this configuration will have a fast and therefore bright optical cycle. For example

the excited state lifetimes for SiC:V4+ [3] and SiC:Mo5+[63] are ∼ 100ns.

In the d2 case, under the strong ligand field, the dipole transition between the ground

state 3A2 and the first excited state 1E are not allowed. Furthermore this is a spin flip

transition further forbidding the transition. Despite these effects, it is possible to observe

emission from this configuration albeit with a long life time of order ∼ 100 µs for defects

embedded in crystals (e.g. SiC [4, 5] and GaN [64]) and ∼ 1 µs for d2 molecules [1]. There

are a few possible explanations for breaking this both dipole and spin forbidden transition

[65]. As the Td symmetry is reduced, shown in Table 3.1, the degeneracy of the first excited

state E is lifted, taking A and/or B character. For certain, now reduced symmetries (e.g.

S4 symmetry of Cr4+ molecule in Sec.7.1.3), a dipole transition can be allowed between the

spin-1 3A2 ground state and spin-0 excited state. Another possibility is that, depending on

the ligand field strength, the E state can be energetically close to the T states, which can

result in some mixing between the two, giving the first excited state a spin-1 like character

which then could weakly allow for a transition through spin-orbit effects. It is also possible

for higher orbitals (e.g. p) to mix with the d-orbitals [66], relaxing some of the selection

rules.

Finally when there is centrosymmetric configuration like in the case of Oh (octahedral)

symmetry, there is an additional symmetry subscript g or u (Sec.C) which identifies if the

the system is symmetric by an inversion center. Inversion symmetry is not applicable to Td

so we did not discuss it previously. I will note though, all of the d-orbitals have g character

in Oh symmetry and the dipole transition has character T1u. This means g × u × g = u

cannot contain the totally symmetric representation of A1g therefore any d to d transition is

forbidden under Oh symmetry. Some of the potential mechanisms discussed in the previous

paragraph can play a role to relax this consideration, but this additional restriction further

pushes the spin pairing decay rate especially in Ruby Al2O3:Cr3+ to millisecond regimes

[67].
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The electric dipole transition considerations discussed here can also be applied to other

transitions such as magnetic dipole transitions, quadrupole transitions, vibrational spectra

or other such effects3. The character tables for symmetry groups, their similarity tables and

product tables are all well documented and one can easily access them to figure out electronic

structure evolution under reduced symmetry and various transitions between electronic levels

[68]. This is what we mean, when we say d-orbitals can be used to engineer electronic

structures for optically active spin qubits. We now know how to localize electrons within the

d-orbitals, and engineer its electronic structure through ligand design. The final question we

should answer is: what properties do we want an ideal optically active spin qubit to have?

3.3.2 Optically Addressable Spin Qubits

To have an optically addressable spin qubit, we must have two properties:

• Spin: The spin degree of freedom constitutes the qubit part of the transition metal ions.

Ideally, the ground state spin should be used as the qubit, otherwise, an excited state

spin qubit will be limited by the optical lifetime. Therefore ions with fully occupied

orbitals with no valence electrons to form a spin will not be good candidates for spin-

qubits. This eliminates d0 and d10 configurations as well as the d4 configuration in

the strong field regime, as the de set of orbitals can be filled with 4 electrons, each set

made of two anti-parallel electrons with no total spin labeled with 1A1.

• Optical Interface: An optical-spin interface describes an excited state that is ideally

only coupled with one of the ground spin sublevels. This results in spin selective optical

emission; that is bright spin state emits photons when probed and a different dark spin

state emits preferably no photons when probed. The motivation for an optical spin

interface were discussed in Chapter 1 at great lengths. As we have seen, there are

some basic dipole selection rules one may follow to see which transitions are symmetry

3. Magnetic dipole is much weaker than electric dipole since E = cB where c is the speed of light
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allowed in Sec.3.3.1, but there are also many non-trivial effects such as spin-orbit,

orbital mixing, distortions and/or vibronic couplings. Therefore a lot more theoretical

considerations must be used to understand and predict optical spin interfaces. This

being said, one of the most direct approaches is using the spin flip transition as a way

to couple the ground state with an excited state to form a Λ-like system. This is the

strategy we employ for most of the qubits we will discuss that have d2 configuration.

In the last chapter, Sec.8.2, we will discuss some other important characteristics that

optically active spin qubits to have to build the technologies discussed in Chapter 1. There

is, however, another important criteria when picking an electronic level structure, which is

long spin lifetimes characterized by T1 and T2. T2 time depends mostly on the host material,

and is not a function of the ligand engineering aspect. T1 time, characterizing the spin flip

error rate, depends on spin-lattice relaxation where the magnetization of the system can

be flipped because of either phonons or nearby other magnetic impurities. There are many

possible phonon mediated processes that we will discuss in more detail in Sec.5.3.1 for Cr4+

in 4H-SiC. One main mechanism for T1 decay, called Orbach process, is caused by a close

second ground state that the spin can easily be excited to with little phonon energy. This is

a limiting factor for many defects with closely spaced ground states such as V4+ in 6H- and

4H-SiC that we will discuss in Sec.6.5.1 as well as group-IV in the −1 charge state defects in

diamond [69, 70]. Mo5+ in 4H-SiC also has doubly degenerate ground state orbital structure,

however due to spin-orbit effects, g⊥ = 0, g‖ ' 1.6 and therefore the electron spin is shielded

against magnetic flip-flops both with nearby nuclear spins and other paramagnetic defects

with g = 2 resulting in long T1 times [63]. On the flip side4, the high spin-orbit effect

resulting in g⊥ = 0 limits the magnetic driving of the ground state, inhibiting its control; a

great example of the nature hardly lets you win principle.

One can limit Orbach processes by selecting a symmetry and charge state to produce a

level structure that have spin bearing orbitally non-degenerate ground state to get long

4. Pun intended.
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T1 times. For transition metal based qubits, these are d2 (Sec.3.2.2) and d7(Sec.3.2.3)

configurations as well as d5 in weak ligand field regime in tetrahedral symmetry. This

criteria already constrains the configuration space to investigate. The strain insensitive

spin-flip optical transitions of the d2 symmetry allows us to resolve individual spin sublevels

optically and hence form an optical spin interface which satisfies the second criteria. In order

for this optical interface to exist, however, the transition metal must be under the strong

ligand field regime, which SiC and GaN provides, as well as the deliberately picked aryl

ligands for the molecular spin qubits. As we will see in Chapter 6, the T1 time of V4+ in

SiC indeed suffers due to closely spaced ground states and the the optical spin interface is

still under investigation. Nevertheless this is an exciting qubit system to study because the

optical transition is both bright and lies within the telecom O-band. Although V4+ lacks

high fidelity optical spin initialization and readout, we still can optically characterize both

4H- and 6H-SiC:V4+ spins since any imbalance in population due to selective excitation will

result in contrast. Therefore, d2 level structure produced by Chromium 4+ in SiC, GaN

(Chapters 4 and 5) as well as organometallic compounds (Chapter 7), and Vanadium 4+ in

SiC (Chapter 6) are great candidates to demonstrate the power and flexibility of transition

metal ions as optically addressable spin qubits.
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Chapter 4

Identification and characterization of

as grown Cr4+ in 4H-SiC and GaN

In this chapter we are going to discuss the identification and characterization of chromium

4+ photoluminescence and ground state spin properties through spectroscopy in as-grown

samples. This is the first necessary step to start exploring the d2 electronic configuration

in strong tetrahedral ligand field of transition metal ions as optically accessible spin qubits.

The figures and some of the language in this chapter are reprinted with permission from [5].

Copyright 2017 by the American Physical Society.

4.1 Background

Chromium 4+ in SiC and GaN are observed to substitute the silicon [71, 72] and gallium

[64, 73, 74] sites respectively illustrated in Fig.4.1A,B. Within the 4H-SiC, there are two

distinct silicon sites, quasi-cubic and quasi-hexagonal, whereas within GaN there is only

one: the hexagonal site. Previous studies investigating chromium doped 4H-SiC during

growth observed two distinct, sharp, optical emission lines at 1.1583 and 1.1898 eV under

above bandgap, ultraviolet excitation at cryogenic (T = 6 K) conditions. These emissions

are attributed to the zero phonon lines (ZPL) of SiC:CrA(quasi-cubic) and SiC:CrC(quasi-
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hexagonal) sites. These sharp emissions split into 3, or 6 transitions under large, multi-Tesla

magnetic fields, depending on the field orientation where the set of 3 transitions split as

g ∼ 2 Zeeman relation shown in Fig.4.1C. The additional peak replicas arise from the

excited splitting with low g-factors due to spin-orbit effects (Sec.2.4.2) at high fields [71].

These transitions point at the expected and extensively discussed electronics structure of

d2 configuration under strong tetrahedral symmetry in Sec.3.2.2, namely between the 3A2

ground state and 1E excited state. Furthermore, these observed transitions have weak

phonon sidebands and long lifetimes which is consistent with these assignments.
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Figure 4.1: Structure of chromium 4+ defects in SiC and GaN and its optical identification.
An illustration of substitutional Cr4+ ions in (A) silicon sites of a 4H-SiC lattice and (B) of
gallium site of GaN. (C) is reprinted from [71], with the permission of AIP Publishing and
shows two sharp optical transitions visible under above band gap excitation attributed to
SiC:CrA(k-site) and SiC:CrC(h-site) at 1.1583 eV and 1.1898 eV respectively split according
to the expected level structure under high fields illustrated at (D)

It is a common practice to compensation dope GaN with Fe3+ to pin the Fermi level

midgap. During this doping process, unintentional Cr4+ is also introduced to the crystal.

Within GaN similar measurements reveal a sharp ZPL at 1.193 eV, with weak sideband

emission, consistent, again, with the d2 configuration of Cr4+.

4.2 Samples

The samples under study include a ∼ 5 × 8 mm piece of chromium doped 4H-SiC grown

epitaxially on an off-axis, n-type 4H-SiC substrate, as well as a 1.0 cm2 freestanding bulk
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semi-insulating GaN substrate shown in Fig.4.2. The 4H-SiC:Cr4+ epilayer was grown via

high-temperature chemical vapor deposition (HTCVD) at 2100◦C to a thickness of 60 µm

with a chromium density of 1015 − 1016 cm3. The GaN sample is 468 µm thick and was

grown via hydride vapor phase epitaxy (HVPE) as a commercial substrate by Kyma, Inc.

(part no. GB.SE.010.DSP.D). Other GaN samples purchased from Kyma with nominally

identical specifications exhibit varying amounts of Cr4+ luminescence, depending on the

growth batch.

GaN

4H-SiC

Figure 4.2: GaN and SiC samples grown with chromium dopants. The samples are pictured
within the flow cryostat setup where the SiC sample is mounted on a coplanar waveguide
antenna for microwave excitation.

The SiC sample looks dark and opaque, likely due to low sample quality. It is possible

to visually observe qualitative crystal imperfections with valleys, crevasses and domains

indicating a high strain profile across the sample.

4.2.1 Photoluminescence Characterization

To confirm the existence of the Cr4+ defects, we use a confocal microscopy setup, similar to

the one described in Sec.D.1. The samples are loaded in a Janis flow cryostat set to T = 30
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K, and they are off-resonantly excited with a Ti:sapphire laser tuned to an energy far above

the 1st excited state (710 nm/1.74 eV). The laser is focused and the emission is collimated

with a lens (f = 20 mm) giving a spot size of 30 µm. Cr ions are excited off-resonantly from

the 3A2 ground state to 3T excited state which then rapidly decays nonradiatively to the

1E state and photoluminescences as it decays back to the 3A2 ground state (Fig.4.3A). This

emissions is collected with a spectrometer and a liquid nitrogen cooled InGaAs Princeton

Instruments OMA-V near infrared pixel array. The observed spectra shown in Fig.4.3B

matches with the reported Cr4+ emission in the literature [64, 71].
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Figure 4.3: Photoluminescence of GaN and SiC samples grown with chromium dopants. (A)
Illustration of off-resonant excitation of Cr4+ to 3T excited state which then rapidly decays
nonradiatively to the 1E state and photoluminescences as it decays back to the 3A2 ground
state. (B) The photoluminescence spectra of Cr4+ in 4H-SiC and GaN under 1.74 eV (710
nm) excitation at T = 30 K.

An important figure of merit is called the Debye-Waller (DW) factor, which is the ratio of

light emitted from the ZPL over the entire spectral range. Remote defect spin entanglement

experiments rely on interfering two indistinguishable photons to erase the information of the

defect origin [75]. If the photons are distinguishable for example due to energy differences,

then this scheme will not work. Therefore, it is important to have a large DW factor where

most of the emitted light comes from the indistinguishable ZPL portion of the spectrum. In

order to carefully calibrate the DW factor we accounted for all of the possible wavelength
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dependent absorptions within the optical path with a precalibrated white light source.

We integrate the calibrated photoluminescence data across two regions: light emitted

within the ZPLs only (blue shaded regions), and all light emitted by the chromium impurities

(both the red and blue shaded regions together). Because there are two Cr4+ impurity sites

in 4H-SiC with overlapping emission energies, it is difficult to evaluate them separately.

Therefore, we make the assumption that they possess relatively similar radiative efficiencies

and consider them together as a whole. We find that the fraction of light emitted in the ZPLs

is 75%. Evaluation of GaN:Cr luminescence is complicated by the fact that it is situated on

top of the low-energy tail of Fe3+ luminescence. We compensate for this by approximating

this tail as a straight line, and determine the slope of this line by assuming that the base of

the Cr4+ ZPL feature should normally lie at the dotted blue line. With this approximation,

we determine the ZPL contains 73% of the overall impurity luminescence, which is similar

in magnitude to our result in 4H-SiC.
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Figure 4.4: Debye-Waller factor measurement of GaN:Cr4+ and SiC:Cr4+. The close up
photoluminescence data shows the phonon-sideband structure. Blue shaded regions mark
the zero-phonon line emissions while the red shaded region marks the remaining luminescence
in the phonon sideband.
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4.3 Photoluminescence Excitation

To characterize the optical properties only between the 1E first excited state 3A2 ground

state (Fig.4.5A) we switch to the continuously tunable, narrow line laser with a dichroic

mirror at 1090 nm that reflects the sideband emission to the detector. Sweeping the laser

tone over the tunable window of 1035-1075 nm and picking up 1% of the excitation light

for precise wavelength calibration with a wavemeter, we observe sharp increases at 1.1584

and 1.1898 eV for 4H-SiC (Fig.4.5B), and 1.193 eV for GaN (Fig.4.5C) that match the ZPL

energies observed in PL measurements of the same samples, demonstrating that we are able

to resonantly excite all three forms of chromium ions with the narrow-linewidth, tunable

laser.
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Figure 4.5: Photoluminescence excitation of GaN:Cr4+ and SiC:Cr4+. The narrow line
laser is scanned over the Cr ZPL energies (A) while the sideband is collected at T = 30 K.
There are two sharp peaks at 1.1584 eV and 1.198 eV within the 4H-SiC sample (B) for
SiC:CrAand SiC:CrCrespectively and one sharp peak within the GaN sample (C). Fine scans
for (D) SiC:CrA, (E) SiC:CrCand (F) GaN:Cr with fits to the data for the latter two panels
are shown, where spin sublevels of the electronic ground state can be resolved optically at
zero magnetic field.

Fine frequency scans reveal further details. While only a single maximum is resolved in

the PLE signal for 4H-SiC:CrA ions (Fig.4.5D), two maxima are clearly observed for both

the 4H-SiC:CrC (Fig.4.5E) and GaN:Cr (Fig.4.5F) impurities. In these two latter cases, we
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fit the data to the sum of two Lorentzians, where this functional form was derived at Sec.2.17

for a two level transition (in the context of spin):

PLE(f) =
A

π

(
Γ/2

(f − f0)2 + (Γ/2)2

)
+
B

π

(
Γ/2

(f − f1)2 + (Γ/2)2

)
+ C (4.1)

where f0 and f1 (A and B) are the central frequencies (amplitudes) of the two Lorentzians,

Γ is the full-width at half-maximum (FWHM) linewidth of both Lorentzians, and C is a

constant to account for nonzero background offset in the signal. For the 4H-SiC:CrC defect,

we find that the linewidth of these features is Γ = 7.42(7) GHz at 30 K and 0 G, with an

energy splitting between the two maxima of f0− f1 = 6.46(5) GHz. For the GaN:Cr4+ ions,

these values are Γ = 8.28(14) GHz and f0 − f1 = 6.91(5) GHz. Note that in the case of

4H-SiC:CrC, the energy splitting between the two peaks is roughly similar to the previously

reported values of 6.70 GHz [72] and 6.0 GHz [71] given for the ground state zero-field spin

splitting. This suggests that these two peaks correspond to the ms = 0 and ms = ±1 spin

sublevels of the ion’s purported S = 1 ground state, and we tentatively label them as such

for ease of description in the measurements that confirm this identification detailed below.

4.3.1 Spin sublevel identification

To confirm that the two peaks observed within the SiC:CrCand GaN:CrZPLs and a potential

hidden structure within SiC:CrA, we first study the effect of magnetic field when it is applied

along the c-axis of the crystal at 30 K for all Cr4+ sites. We see that the PLE line shape

indeed changes as the magnetic field is increased from 13–2500 G (Fig.4.6A, B, C), although

the exact nature of this evolution is somewhat obscured by the inhomogeneous broadening of

the optical transitions. By converting the data into a differential measurement in which the

data at B = 13 G is subtracted from each PLE scan Fig.4.6 D, E and F, we see more clearly

what occurs. As the magnetic field is applied, a dip forms that is flanked symmetrically on

either side by two small peaks. This dips are centered at the same frequency as the feature
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labeled ms = ±1 in Fig.4.5D, E and F respectively, and grow in magnitude as the field is

increased. Similarly, the two peaks on either side for each site grow and appear to move

slowly outward away from the dip. This is the expected behavior for an optical transition

between an excited state spin singlet and a ground state spin triplet; under the application

of a magnetic field, the degenerate optical transitions connecting the ms = ±1 sublevels of

the ground state to the singlet excited state will begin to split apart in energy according to

the Zeeman effect discussed in Sec.2.2.1. Note that no signal related to the ms = 0 sublevel

is observed in the differential data since its energy remains unchanged by the magnetic field.
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Figure 4.6: SiC:Cr4+ (A, B) and GaN:Cr4+(C) PLE spectrum as a function of c-axis
magnetic field at T = 30 K. The effect of the magnetic field on the SiC:CrC(D), SiC:CrA(E)
and GaN:Cr(f) PLE spectrum is clarified by subtracting their respective B = 13 G data
from the spectra taken at higher fields. With increasing magnetic field, a single dip forms
at the energy corresponding to the ms = ±1 transitions. Simultaneously, two peaks emerge
on either side while moving symmetrically outward. This is the behavior expected from the
proposed spin singlet to spin triplet optical transition.

4.3.2 Spin polarization

We can characterize the magnetic field dependent behavior more precisely at lower tempera-

tures using optical spin polarization. According to the level structure discussed in Sec.3.2.2
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Figure 4.7: SiC:Cr4+ and GaN:Cr4+optical and spin lifetime. (A-C) Ions are excited non-
resonantly with 710 nm light at T = 20 K and a monochromator in the collection path is
used to collect only the ZPL emission. A fit to the data reveals an optical decay time for
SiC:CrC(A) 145(6) µs, SiC:CrA(B) 146(10) µs and GaN:Cr(C) 110(13) µs. T1 time of of
(D) SiC:CrC, (E) SiC:CrAand (F) GaN:Crspins as a function of temperature. Note that T1
is ∼ 45× longer than Topt near 20 K for SiC:CrC. Error bars are 95% confidence intervals.
All the data is taken at B = 0 G.

and Fig.4.5A, selective optical excitation of one ground state spin sublevel with a narrow-

linewidth laser will pump the system into another sublevel via resonant excitation followed

by spontaneous emission. A polarized ion will then remain dark and inaccessible to the laser

until a spin-flip occurs. As shown in Fig.4.7D-F, this phenomenon allows us to measure the

spin-lattice relaxation time T1 as a function of temperature. To measure this parameter,

the ensemble is first pumped into the ms = ±1 sublevels, using a 500 µs long resonant laser

pulse. After waiting for a predetermined time τ , the degree of remaining spin polarization

is measured optically using a second 500 µs long laser pulse. The spins are then allowed to

relax fully for 25 ms before the pulse sequence is repeated. At each value of τ , the pulse

sequence is repeated for several seconds while PLE emission is collected. After each expo-

sure, the same experiment is repeated with no delay between the laser pulses (a continuous
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1 ms laser pulse). This control data is then subtracted to reveal the effect of the delay τ .

The duty cycle of the laser is kept constant throughout the entire T1 measurement. This all

optical measurement puts a lower bound on the spin-relaxation time, as there may be other,

for example charge related spin-reset mechanisms. Nevertheless, we observe a T1 time of at

least 1 ms at for all Cr species below T = 23 K.

These measurements can be compared to the optical relaxation time Topt of the ions

measured at T = 20 K shown in Fig.4.7A-C. The optical relaxation time is measured by

exciting the ensemble with the off resonant laser pulse and then monitoring the PL that

follows as a function of time. This measurement is repeated for several seconds to build

up sufficient signal. The optical signal of SiC:CrAand SiC:CrCare differentiated with a

spectrometer by only detecting from their ZPL’s. At temperatures below ∼ 20 K, the spin-

lattice relaxation time T1 of all Cr ions becomes much longer than the optical relaxation

time Topt = 145 µs and Topt = 110 µs for 4H-SiC:Cr4+and GaN:Cr4+respectively.
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Figure 4.8: PLE spectra of SiC:Cr4+ and as a function of temperature. Spectra taken at T
= 20 K and below multiplied by a factor for clarity.

As a result, the PLE signal is substantially reduced at lower temperatures due to the long-

lived optical spin polarization within the subensemble of ions excited by the laser (Fig.4.8).
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4.3.3 Optical PLE Recovery
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Figure 4.9: Optical home recovery of SiC:Cr4+ and GaN:Cr4+ at T = 15 K and B = 0 G.
(A) Experimental illustration of hole recovery. Cr spins are polarized into dark ms = ±1
sublevels via resonant optical excitation of ms = 0 sublevel. Recovery of the PLE signal is
observed when a second laser tone is at fEOM = D. (B) D is measured 6.711(1), 1.064(4)
and 7.252(3) GHz for SiC:CrC, SiC:CrAand GaN:Crrespectively.

A recovery of luminescence should be observed if both spin sublevels are excited simulta-

neously. To test this assumption, we perform two-color experiments on the defect ensemble

at T = 15 K and B = 0 G. We set the laser frequency f0 to the frequency of the ms = 0 peaks

for all Cr species. We then add optical sidebands to the laser emission at fs = f0 + fEOM

by modulating the EOM with a microwave signal in the range of 0–10 GHz (Fig.4.9A).

If we are indeed polarizing the impurity spins through resonant optical excitation at f0,

then an increase in PLE should be observed when fEOM = D, the zero-field spin splitting

of the ground state. As shown in Fig.4.9B, this is, in fact, what we observe. Fits to the

data reveal the D value of 6.711(1), 1.064(4) and 7.252(3) GHz for SiC:CrC, SiC:CrAand

GaN:Crrespectively, which are consistent with the splitting measured between the two PLE

maxima of Fig.4.3E,F, for SiC:CrCand GaN:Cras well as with the reported values given in

Refs. [71, 72]. The D value of SiC:CrAis also consistent with the apparent single PLE peak

at low magnetic fields, as the inhomogeneous PLE linewidths are much larger than the D
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value which prevents resolving the multi-peaked structure. Additional features observed at

D/n GHz for integer n are measurement artifacts resulting from the nth order sideband

harmonics generated by the EOM.
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Figure 4.10: Optically measuring ground state Zeeman splitting of SiC:Cr4+ and
GaN:Cr4+at T = 15 K and B = 0 G. (A-C) Two-color excitation experiment as a func-
tion of magnetic field applied along the crystal c-axis. The single feature at Fig.4.9B splits
in two as expected for the electronic structure shown in Fig.4.9A. (D-F) Fits to the peaks
in (A-C) reveal a clear Zeeman relationship with g of 2.01(5), 2.03(4), 2.14(4) for SiC:CrC,
SiC:CrAand GaN:Crrespectively . Error bars are 95% confidence intervals, which are ∼ 2
MHz and smaller than the point size. Additional features at lower frequencies are artifacts
due to higher order optical sidebands generated by the EOM.

Importantly, the linewidth of the hole-recovery peak at the corresponding D values are

much narrower (489(5), 128(4), 773(8) MHz for SiC:CrC, SiC:CrAand GaN:Crrespectively)
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than the PLE linewidths observed in single-color experiments at 30 K in Fig.4.5. This is

because we probe only a subpopulation of the impurity ensemble in these two-color mea-

surements so that the resulting linewidth is set by factors such as the laser linewidth, laser

stability, and ion spectral diffusion [76]. This narrow linewidth allows us to very clearly

observe the Zeeman splitting, as a magnetic field is once again applied along the crystal c-

axis. Using fits to this data, we plot the evolution of this splitting as a function of magnetic

field strength. A Zeeman relationship consistent with an S = 1 system is clearly apparent,

with a linear fit revealing a g-factor of 2.01(5), 2.03(4), 2.14(4) for SiC:CrC, SiC:CrAand

GaN:Crrespectively.

4.3.4 Optically Detected Magnetic Resonance

An increase in the PLE signal at low temperatures will also occur if we apply microwave

radiation resonant with the ground state spin splitting energy. This enables optically de-

tected magnetic resonance (ODMR) of the optically polarized spin ensemble. In Fig.4.11,

we excite the sample at T = 15 K with a single optical frequency tuned to the center of the

ms = 0 optical transition. We then apply continuous microwave excitation to the sample

while scanning the microwave frequency between 0–10 GHz. At zero magnetic field, a single

resonance is observed at 6.707, 1.063 GHz for SiC:CrCand SiC:CrArespectively, consistent

with the data in Fig.4.9. The ODMR data for the GaN:Crspins exhibits a ’dead spot’ at

∼ 7.2 GHz where the signal drops to zero. This is an experimental artifact due to low mi-

crowave transmission to the sample in this frequency range. In the plots, the PLE contrast

is defined as ∆PLE = (ION − IOFF )/IOFF , where ION(IOFF ) is the integrated intensity of

the phonon sideband emission when the microwave driving field is on (off). Therefore, the

intensity of the phonon sideband roughly doubles at B = 0 G under these driving conditions.

The observed contrast is a function of many competing rates including spin T1 time, spec-

tral overlap of various transitions and the microwave driving strengths. The hole recovery

process, and the relevant rates and therefore the contrast will be discussed at great length
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in the next chapter (Chapter 4).
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Figure 4.11: ODMR of SiC:Cr4+ (A, B) and GaN:Cr4+(C) at T = 15 K as a function of
c-axis magnetic field. Spins are polarized into the ms = ±1 sublevels via resonant excitation
of ms = 0 optical transition. When ωRF is resonant with the spin splitting energy, the PLE
signal increases. Small oscillations seen at the base of the signal are artifacts due to imperfect
transmission in the microwave driving lines. Fits to ODMR peaks as a function of magnetic
field reveal a clear Zeeman relationship consistent with an S = 1 spin system with a g of
2.018(4) (D), 2.006(3) (E) and 1.95(17) (F) for SiC:CrC, SiC:CrAand GaN:Crrespectively.
Error bars are 95% confidence intervals, which are ∼ 0.1 MHz and smaller than the point
size.

As a magnetic field is applied, the resonance splits into two roughly equal peaks, as

expected for an S = 1 Zeeman system, with a fit yielding a g-factor of 2.018(4), 2.006(3)

and 1.95(17) for SiC:CrC, SiC:CrAand GaN:Crrespectively. These observations are identical

to those measured using two-color optical excitations in Fig.4.10 and further confirm that

we have been probing the ground state spin of this system. A fit to data taken at lower

microwave power to reduce power broadening and higher magnetic fields to clearly resolve

a transition, reveals linewidths of 8.6(5), 11.95(2), 231(14) MHz for SiC:CrC, SiC:CrAand

GaN:Crrespectively. This corresponds to an inhomogeneous spin coherence time of T ∗2 =

1/(πΓ) = 37, 26, 1 ns in the same order. We note, however, that the 4H-SiC sample under
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study likely has high variation of local strain and is likely contaminated with other para-

magnetic impurities that may limit the coherence times during the doped growth. As we

will see in Chapter 4 improvements in materials quality will lead to increases in observed

coherence times. The measured ∼ 27× larger ODMR linewidth for GaN:Cris expected due

to interactions with the surrounding nuclear spin bath within GaN.
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Figure 4.12: Low power ODMR at T = 15 K of (A) SiC:CrCat B = 289 G, (B) SiC:CrAat
B = 200 G and (C) GaN:Cr4+at B = 300 G all in c-axis magnetic field. The non power
broadened linewidth yield 8.6(5), 11.95(2), 231(14) MHz for SiC:CrC, SiC:CrAand GaN:Cr,
which correspond to a T ∗2 of 37(2), 26(0), 1.4(1) ns respectively.

4.4 Summary

In this chapter, we have shown that Cr4+ ion spins in 4H-SiC and GaN can be directly

manipulated with a narrow-linewidth laser tuned to resonance with the first excited state

ZPL optical transition. The ensemble optical linewidths we observe are similar in magnitude

to the zero-field spin splitting of the electronic ground state, which enables ensemble optical

spin polarization and measurement at liquid helium temperatures and low magnetic fields.

This capability was used to precisely determine the g-factor and zero-field spin splitting D

of all three spin species. Careful optical characterization shows that SiC:Cr4+has more than

75% of the emitted luminescence from the first excited state within the narrow ZPL opti-

cal transitions, which form a very simple lambda structure with no competing intermediate

transitions other than those of the weakly coupled phonon sideband. The ions, therefore,
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exhibit quite atomlike optical properties, while also being embedded within semiconductor

hosts amenable to advanced optoelectronic device design. This suggests their use as quan-

tum emitters that couple efficiently to chip-scale, integrated photonic control structures—an

effort that depends critically on limiting both intrinsic and extrinsic sources of optical and

nonradiative loss [77].

The low coherence times combined with limited microwave power within this set of ex-

periments does not allow for resonant Rabi driving of Cr spins. We overcome this problem

in the next chapter, through creation of high quality SiC:Cr4+sample by ion implantation.
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Chapter 5

Creation and coherent control of Cr4+

in commercial 4H-SiC

In this section we are going to discuss creation of Cr spin ensembles in commercial 4H-SiC

through ion implantation and annealing and coherent characterization of the created Cr spin

ensembles.

5.1 Creation of Cr in commercial SiC

Creation and activation of SiC:Cr4+in commercial SiC is a critical step for devices with

integrated defect qubits. To this end we introduce isotopically pure, nuclear spin-free 52Cr

atoms into commercially purchased (from Norstel AB) high purity semi-insulating 4H-SiC

substrates through implantation at elevated temperatures up to 600 oC.

The samples were co-implanted with 52Cr at 190 keV energy with a dose of 5×1011 cm2,

and 12C at 100 keV energy with a dose of 5 × 1011 cm2 by CuttingEdge Ions, LLC. Both

ions were implanted with a 7 o tilt. Chromium atoms are calculated to have an average

depth of 110 nm and a 30 nm straggle using the program Stopping Range of Ions in Matter

(SRIM). All samples were subsequently cleaned with organic solvents. A photoresist layer

(AZ1518) is spun ∼ 2 µm thick, baked at 95 oC for 1 minute then 350 oC for 30 minutes, as a
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protective surface coating by forming a graphite cap during the high temperature annealing.

The samples are annealed in a tube furnace with high purity argon gas at 800–1400 oC for

15 minutes with ramp rates of 100 oC per hour. The annealing of the samples at 1500–1800

oC was performed by Fraunhofer IISB in an Ar environment for 15 minutes with ramp rates

of 900 oC.

We believe that the implanted chromium atoms sit mainly in interstitial sites of the SiC

lattice and do not photoluminescence with the characteristic 4H-SiC:Cr4+signature. During

the subsequent annealing, Cr atoms move to the silicon (Si) site and form bonds with the

surrounding carbon atoms and get activated. This generates the d2 level structure exten-

sively discussed in Sec.3.2.2. To investigate the electrical activation of the defect ensembles,

we anneal different samples from the same implanted substrate between 800 and 1800 oC

and then measure the ZPL intensities of SiC:CrAand SiC:CrCFig.5.1. Cr4+ activation, not

observable when the samples are not annealed, increases monotonically as a function of

annealing temperature until 1600 oC where it saturates.
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Figure 5.1: SiC:Cr4+ activation as a function of annealing temperature is measured by inte-
grating the zero-phonon lines (ZPLs) intensity of the photoluminescence under off-resonant
(730 nm) excitation at T = 30 K.

5.1.1 Parasitic background luminescence

These aforementioned SiC substrates have native, intrinsic vacancy and divacancy defects.

During the implantation process likely more form as well. These optically active defects
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have fast excited state lifetimes 4 orders of magnitude shorter than 4H-SiC:Cr4+resulting in

bright backgrounds even though their densities may be low.
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Figure 5.2: Background analysis of SiC:Cr4+ at T = 30 K. (A) Integrated background spec-
trum under the SiC:Cr4+zero-phonon lines under 730 nm excitation. (B) SiC:CrCsideband
of the 1800◦C sample under resonant and detuned excitation. The signal is dominated by
the background PL that is insensitive to the detuning. The difference between resonant
and detuned excitation yields the SiC:CrCsideband which makes 4% of the all emitted PL
signal. (C) Time resolved SiC:CrCPLE under pulsed resonant excitation. The shaded col-
ors correspond to the PLE spectra shown on C. The background decays rapidly while the
SiC:CrCtransient persists for the 155 µs lifetime.

Fig.5.2A shows the integrated background photoluminescence at T = 30 K under 730

nm excitation. The data is extracted from the same experiment shown in Fig.5.1. As the

annealing temperature increases, the background PL diminishes. This may be due to the

background defects’ charge states or structures changing with annealing.

The background PL becomes a significant problem under resonant excitation for these

substrates, where only a sub-population of SiC:Cr4+ions are probed and also the resonant

laser excites the ions weakly. To analyze the background, we measure the SiC:CrCspectrum

with the narrow line laser in Fig.5.2B. When the laser is resonant with SiC:CrCof the 1800

◦C sample at T = 30 K, we measure the blue trace. When the laser is detuned outside

of the resonance, the SiC:CrCrelated sideband disappears however the background PL from

other defects persist. The difference between the two traces is the signal of interest: the

SiC:CrCsideband. It makes less then 4% of the entire PL spectrum in intensity. This

sideband signal further diminishes as the temperature decreases to T = 15 K since the
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optical hole linewidth narrows and the accessible sub-ensemble further shrinks in size.

Since the bright PL background decays rapidly, we can reject it temporally by gating the

PLE signal. In order to time resolve this trend (T = 30 K), we pulse the resonant laser and

collect the sideband PLE in 5 µs wide windows. When the counting time bins overlap with

the laser excitation, we measure the steady state of SiC:CrCPLE which is comprised of the

background and the SiC:CrCsignal combined. Right after the laser is off, the background

PL rapidly decays followed by the SiC:CrCPLE decay with its characteristic 155 µs lifetime.

Note that the silicon-vacancy and divacancy (other native optically active spin defects) in

4H-SiC have optical lifetimes of ∼ 5-20 ns [78, 79], and the background decay time is AOM

fall-time limited. For all of the experiments in this chapter, unless stated otherwise, we

integrate the Cr transient for 155 µs, after waiting 2 µs for the background to decay.

5.1.2 Box profile implanted sample

Every photon is valuable. Now that we have a recipe to create Cr ensembles in commercial

SiC, we prepare a new sample to increase the number of ions being probed without increas-

ing the defect density. Here is our strategy: a single energy of Cr implantation results in a

narrow layer of atoms. The objective, however, excites and collects from a Gaussian depth

profile. In order to place more Cr ions into the laser spot, we implant the Cr atoms with

varying energies. We use a commercially purchased 4H-SiC wafer with an epitaxial, undoped

(intrinsic), 20 µm thick 4H-SiC layer that was grown on a 4◦ off axis semi-insulating 4H-

SiC crystal. Both the substrate and the epilayer growth was provided by Norstel AB. The

epitaxial layer is very clean, and has a low defect density before implantation. We implant

isotopically purified 52Cr at four different energies to keep the Cr-Cr distance and damage

densities low. The doses are in Table 5.1.2
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Energy (MeV) Dose (1012 cm−2)

1 1.5

2 2

5 3

10 3

Table 5.1: Implantation parameters

Figure 5.3: SRIM calculated 52Cr density af-
ter the implantation parameters given in the
table

The implantation was performed at Sandia National Laboratories at 690◦C sample tem-

perature. After 52Cr implantation the sample was cleaned, photoresist capped, and annealed

at 1800◦C for 15 minutes using the same procedures detailed above. SRIM calculates the

estimated implantation density profile shown in Fig.5.1.2. The average density of ions is

3(2) × 1016 atoms/cm3. Assuming all of the ions are activated after the annealing, we

find the distance between two Cr4+ to be 23 - 40 nm. Assuming the creation efficiency of

SiC:CrAand SiC:CrCare equal, the distance between each set of species is 30 - 50 nm.

To confirm the creation of Cr ions in this sample, we perform off resonant spectrally re-

solved PL measurements. We image the sample within a confocal microscopy setup discussed

in Sec.D.1. A close cycle Montana Instruments nanoscale workstation (7 -300) K holds the

sample while a room temperature kept compartment within the radiation shield houses a

50× Olympus NIR-objective that allows imaging. A Thorlabs 730 nm, 50 mW TO can laser

off-resonantly excites the SiC:Cr4+and a spectrometer and a Princeton Instruments OMA-V

InGaAs NIR pixel resolves the resultant PL, confirming the creation of the ions shown in

Fig.5.4.
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Figure 5.4: Photoluminescence spectrum of SiC:Cr4+ within the box profile implanted sam-
ple at T = 30 K under 730 nm off-resonant illumination. SiC:CrAand SiC:CrC, ZPL’s and
their sidebands can be observed.

5.2 Steady state resonant characterization

In order to take advantage of the optical spin interface of the electronic structure, we

switch to the resonant excitation scheme. A Newfocus Velocity 6700 tunable (1035-1075

nm), fiber-coupled, external-cavity diode laser resonantly excites to polarize and probe the

SiC:Cr4+ensembles while an electro-optical modulator (EOM) with 12 GHz bandwidth can

generate sidebands around the primary laser frequency for optical probe and second color

excitation. The resonant laser itself is turned on/off with an Aa Opto-Electronic fiber cou-

pled 20 ns rise time acousto-optical modulator for transient background rejection explained

in Sec.5.1.1. A Semrock 1090 nm long pass dichroic beam-splitter placed at an angle of 75◦

separates the sideband from the excitation. After further filtering the SiC:Cr4+sideband

with two 1100 nm Thorlabs long-pass filters we collimate it into a 50 µm core multimode

fiber. An experimental Quantum Opus multimode superconducting nanowire single pho-

ton detector (SNSPD) with a 6-9 kilo counts per second (kcps) dark-counts measure the

photons. Two microwave switches gate the counts from the detector, one to only measure

the transient signal, and the other one to rapidly switch between two different counters for

differential (lock-in style) measurements. We use a vector signal generator (Stanford Re-

search Instruments SG396) with a 30W 0.6–2.7 GHz amplifier (Minicircuits) for microwave

excitation. It is fed to a shorted coplanar wave guide patterned on a custom-made printed
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circuit board situated behind the sample within the cryostat. An arbitrary waveform gener-

ator (Swabian Instruments) synchronizes the time of the laser excitation, probe generation,

microwave excitation with IQ control, collection, and counter gating.

5.2.1 Photoluminescence Excitation
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Figure 5.5: Photoluminescence excitation spectrum of SiC:Cr4+ of box profile implanted
sample at T = 30 K and B = 0 G measured by sweeping the resonant laser and recording
the transient sideband signal in counts per second (cps). Both figures are fit to two Gaussians
with their known D from Chapter 4, (A) SiC:CrAfit with D = 1063 MHz splitting reveals
the full width at half maxima at 6.87(27) GHz for ms = 0 and 3.34(39) GHz for ms = ±1
peak. The one sigma errors of the data are smaller than the point size and are not displayed.
(B) SiC:CrCfit with D = 6707 MHz splitting reveals the full width half maxima at 7.14(16)
GHz for ms = 0 and 3.88(13) GHz for ms = ±1 peak.

We measure the photoluminescence excitation (PLE) spectrum by resonantly exciting

SiC:Cr4+ZPL and collecting the transient phonon sideband (Fig.5.5) at 30 K. A fit to two

Gaussian functions for the ms = 0 and ms = ±1 sublevels with a known ground state crystal

field splitting (D) for SiC:CrA(1063 MHz) and SiC:CrC(6.707 GHz) yields an average PLE

linewidth of 5.1(4) GHz with the ms = 0 linewidth roughly two times larger than the

ms = ±1 linewidth. This trend is more obvious for SiC:CrCas the individual PLE lines are

more resolved due to a larger D. The origin of this behavior is unknown and may be a result of

mass related shift due to 13C, 29Si, and 30Si isotopes [3, 80, 81] that we observe for vanadium

in SiC (Sec.6.3.1), however, the same functional form does not replicate the red-shifted PLE

linewidth, possibly due to more complicated electronic level structure discussed in Sec.3.2.2.
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The overall sharper inhomogeneous linewidth of the implanted sample compared to the as-

grown sample discussed in Chapter 4 allows for better spin sublevel resolution and is likely

due to an improved spatial strain profile.

5.2.2 Hole recovery
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Figure 5.6: Optical hole recovery of SiC:Cr4+ of box profile implanted sample at T = 15 K
and B = 0 G measured by sweeping a second laser tone while the primary one is parked at
the PLE maximum and recording the transient sideband signal in counts per second (cps).
Lorentzian fit to the data reveals (A) for SiC:CrAD = 1062.7(4) MHz with a full width at
half maximum of 31(2) MHz and (B) for SiC:CrCD = 6709.0(4) MHz with a full width at half
maximum of 45(2) MHz. The laser power is reduced to prevent optical power broadening.

To characterize the ground state spins of SiC:Cr4+through resonant hole burning and hole

recovery, we reduce the sample temperature to 15 K where the spin T1 is longer than the

optical lifetime. The population of a spin sub-ensemble excited by the narrow line resonant

laser will be redistributed among the other ground state spin sublevels after spontaneous

emission, leading to hole burning and spin polarization. Since the polarized sub-population

is off-resonant relative to the probe laser, the defect goes dark resulting in a spin selective

optical contrast as we have previously seen in Chapter 4. We can recover the hole by

reintroducing the polarized population into the optical cycle in two ways, either by using

a second laser color to probe the polarized sublevels or by driving ground state spins with

microwaves. A second laser tone generated by a phase modulator recovers the SiC:CrAand

SiC:CrCholes at a D of 1062.7(4) MHz and 6.7090(4) GHz (Fig.5.6) respectively, consistent
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with previous observations. A Lorentzian fit to the data, extracts a 31(2) and 45(2) MHz

ensemble hole linewidths for the SiC:Cr4+sites, which is more than an order of magnitude

narrower than the as grown sample discussed in Chapter 4, demonstrating the superior

material quality of the implanted and annealed sample.

The sharp hole linewidth is also two orders of magnitude narrower than the inhomoge-

neous optical linewidth, indicating only 1% of the created SiC:Cr4+defects are accessed under

resonant excitation. One could increase the net ensemble polarization by further reducing

the inhomogeneous linewidth through material improvements.

The hole can also be recovered by microwave mixing of the ground state spin sub-

levels, enabling optical detection of magnetic resonance (ODMR) (Fig.5.7). Stray magnetic

fields Zeeman split the ms = ±1 ODMR by ∼ 5 MHz centered around D for both of the

SiC:Cr4+species.

ωRF (GHz)

Tr
an

si
en

t P
LE

 (k
cp

s)

� SiC:CrA

1.056 1.060 1.064 1.068

1.6

2.6
2.4
2.2
2.0
1.8

�

Tr
an

si
en

t P
LE

 (k
cp

s)

SiC:CrC

6.700 6.704 6.708 6.712

2.2

2.4

2.6

2.8

3.0

ωRF (GHz)

Figure 5.7: ODMR of SiC:Cr4+ of box profile implanted sample at T = 15 K and B = 0 G
measured by sweeping the frequency of a microwave field while the resonant laser is parked
at the PLE maximum and recording the transient sideband signal in counts per second (cps).
PLE is recovered when the microwave mixes the ground state spins. There is a ∼ 1.7 G stray
magnetic field that splits the ms = ±1 sublevels. A double Lorentzian fit to the data reveals
(A) for SiC:CrAD = 1063.11(1) MHz with a full width at half maximum of 1.32(2) MHz
and (B) for SiC:CrCD = 6707.0(0) MHz with a full width at half maximum of 1.93(4) MHz.

A Lorentzian fit to the non-power broadened ODMR reveals a linewidth of 1.32(2) and

1.93(4) MHz for SiC:CrAand SiC:CrCrespectively. Because the 31 MHz optical hole linewidth

is not confined by the ODMR linewidth, the optical coherence is likely excited-state limited.
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The four orders of magnitude difference between the measured and lifetime limited hole

linewidth (∼2 kHz) may be a result of decoherence induced by the degenerate excited state

orbital doublet structure that can be lifted by applying high magnetic fields [71] or spectral

diffusion due to charge fluctuations that can be addressed by creating charge depletion zones

[38] the exact mechanism and its solution would require further investigation.

As our microwave power amplifiers range is limited, moving forward we will only be

investigating the SiC:CrA, however the techniques and characterizations that we will discuss

should be readily translated to other d2 configurations including SiC:CrC.
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Figure 5.8: Hole recovery of SiC:CrAof box profile implanted sample at T = 15 K and B =
26 G measured by sweeping the frequency of a second laser tone and a microwave field at the
same time and recording the transient sideband signal in counts per second (cps) while the
resonant laser is parked at the PLE maximum. Contrast is achieved when all three ground
state sublevels are probed simultaneously with the high contrast area highlighted within
dashed ellipses.

A c-axis magnetic field lifts the optical degeneracy of the ms = ±1 sublevels by Zeeman

splitting while the S = 0 excited state remains unaffected. It is worth noting that the

population can become trapped in the unprobed third level after using either the optical

sideband probe or the microwave mixing, as these techniques can only address one sub-level

at a time1. By applying both an optical sideband probe and a microwave tone together,

all states can be addressed simultaneously resulting in hole recovery (Fig.5.8). Using a

second laser to trap the population into the third sublevel provides a path for efficient spin

1. This is not a big concern if there exists a competing reset mechanism like short T1 (e.g. in Chapter 4)
or a broad optical excitation that addresses all spin sublevels (e.g. Chapter 7)
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polarization under a magnetic field.

5.3 Transition Rates

To characterize the ground state spin dynamics, we need three ingredients: optical initial-

ization (polarize), microwave manipulation and optical readout (probe + transient readout)

shown below in Fig.5.9. We characterize each one of these rates to maximize the signal to

noise. This is a chicken-and-egg problem, and finding the right rates is an iterative process.

For the discussion below, we assume to have already calibrated a π-pulse.

ωrf

Probe ReadoutManipulatePolarize

f0-�ff0 f0
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Figure 5.9: Cr4+ coherent control pulse sequence.

5.3.1 Spin T1

The first question to answer is: can the control sequence shown above in Fig.5.9 fit within a

spin T1 time. To answer this question and understand the main T1 mechanism, we measure

the spin T1 time at B = 0 G by population inversion relaxation using a microwave π-pulse.

Locking in to the π-pulse allows for eliminating any potential other spin-reset mechanisms

that may be optically induced. By repeating this measurement for temperatures between 15

and 30 K and fitting each data set to an exponential decay function, we extract T1 times and

use this data set to distinguish between Orbach and Raman processes [82] (Fig.5.10). For

the Orbach process, we use T−1
1 = A exp (−E/kbT ) as our fit function where A and E, the

energy difference to a low-lying excited state, are fit parameters. For the Raman process we
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use T−1
1 = A (T −∆T )n where A and ∆T , a constant temperature offset of the sample, are

fit parameters for various fixed odd integers n. The Orbach model fits the data poorly and

returns an energy gap of E = 20(1) meV which is a factor of 50 lower from the first excited

state energy and a factor of 4 lower than the closest phonon line energy, [71] indicating that

Orbach process is not the likely explanation for T1 decay mechanism.
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Figure 5.10: Ground state spin T1 time of SiC:CrAas a function of temperature. After
polarization, the contrast between a microwave π-pulse and a 2π-pulse is measured at various
temperatures. The resulting time-dependences are fit to an exponential decay, where the
displayed error bars are the standard errors of the fits. The extracted T1 times are fit to
both an exponential (Orbach) and a power (Raman) model. The exponential fit (green line)
reveals an E = 20(1) meV with a reduced χ2 = 4.18. The 9th power Raman fit (red line)
reveals a constant temperature miscalibration of ∆T = 3.2(5) K with a reduced χ2 = 1.91.

Out of the Raman processes, here are 3 n powers available [82] for a two phonon process.

These are n = 7, 9, 13. Separately there is a single phonon process where n = 1, however

the fits do not converge and this model does not explain the data shape, therefore we rule

out a single phonon process as the main T1 decay time contributor. Out of the two-phonon

processes:

n = 7 arises from anisotropic Zeeman interaction with the 1/T1 ∝ B2T 7 relation. Given

that SiC:CrAand SiC:CrCboth have rather isotropic g-factors as seen in Chapter 4 and [71]

and we conduct the T1 measurements at B = 0 G, this mechanism is extremely unlikely.

If we do assume it, however, the 1/T1 = A(T − ∆T )7, reveals a reduced χ2 = 2.54 with a

∆T = 7K sample temperature miscalibration. Given the physical interpretation, weak fit

confidence and unreasonably high temperature miscalibration we rule out the n = 7 process.
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n = 9 term arises from spin flipping due to spin orbit interaction. The fit to 1/T1 =

A(T −∆T )9 returns a reduced χ2 = 1.91 and the sample is ∆T = 3.16 K warmer than the

internal sensor, which is highly possible. Another interesting thing to point out is that the

spin orbit energy shift β ∝ Z4. Given that the 52Cr has a defect-mass much greater than it’s

vacancy related counterparts, the spin-orbit effects in SiC:Cr4+should be more pronounced.

n = 13 term arises mostly from sample deformation potentials, sound velocities, etc.

and is a weak process. The fit to 1/T1 = A(T −∆T )13 returns a reduced χ2 = 1.92 with the

sample ∆T = −5.0 K miscalibration, i.e. 5 K colder than the internal sensor. Even though

the model confidence is high, the fit value is physically not possible, hence we rule out this

process as well.

We, therefore, conclude that the most likely explanation is the n = 9 Raman process,

indicating that the T1 is spin-orbit interaction limited. The longest measured spin T1 time

is 1.6(3) s long at T = 15 K, long enough to not limit the spin dephasing times and to offer

a very long window for high fidelity spin initialization.

5.3.2 Readout rates

There are two relevant rates for the readout: the probe duration and excited state lifetime

after the probe. If we underestimate these rates, then we sacrifice valuable signal, and if we

overestimate them then, we waste duty cycle. In order to maximize the signal we will be

using the rise and fall times of these exponential dynamics.

We measure the excited state lifetime (Topt) under resonant excitation at 30 K by his-

togramming the transient PLE and find Topt = 156.3(5) µs (Fig 5.11A). We, therefore, set

the transient readout time to be 155 µs. This value is in agreement with the off-resonant

excited state lifetime for the same sample, but slightly longer than the as grown sample

discussed in Chapter 4. Again, this discrepancy may be attributed to the increased material

quality inhibiting various dark decay pathways.

We continue the measurements at 30 K to prevent hole burning under resonant excitation.
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Figure 5.11: Readout rate calibration data for Cr4+ coherent control at T = 30 K to prevent
hole burning. (A) A 300 µs PLE excitation saturates the defect and 5 µs bin with varying
start time counts the photons. Normalized PLE decay time for SiC:CrAyields a Topt =
156.3(5) µs. (B) The resonant probe time is increased for a fixed 150 µs transient photon
collection window. The fit to the model in Eq.5.1 reveals a pump rate of 46(3) µs.

We vary the laser excitation time to measure the defect saturation. Assuming basic pump

and sink model with two classical levels, where the pump is the laser and the sink is the

optical lifetime Topt, we can derive the following model:

A =

(
1− exp

(
−t
(

1

Topt
+

1

TLaser

)))
(5.1)

where we already have measured Topt = 155 µs. The fit to the data (Fig.5.11B) returns

a laser time of TLaser = 46(3) µs and therefore we set the probe time to 50 µs.

There may be several reasons why the fit does not match the data in the tail that

well. This is an ensemble measurement, and the optical line widths are rather wide at the

elevated temperature, hence there will be some detuned excitations. Also, the laser spot is

in a Gaussian profile, resulting in a distribution of powers as opposed to a single rise time.

But an average TLaser = 46(3) µs gives a reasonable agreement with the data.
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Figure 5.12: Initialization rate calibration data for Cr4+ at T = 15 K and B = 158 G.
(A) ms = 0 state is probed as a function of polarization pulse length. In the absence of
a π-pulse (blue trace) the depletion of the ms = 0 state is measured. When a π-pulse
is applied, the accumulation of the polarized population in the ms = +1 is measured by
coherently transferring the population to ms = 0 (green trace). (D) The contrast is the
difference between the two traces in C. An exponential fit to the contrast shown in red
yields a polarization time of 1.27(3) ms with a maximum contrast of 64(2)% for a 50 µs
probe time. The error bars in are smaller than the mark size and are not shown.

5.3.3 Initialization rates

We time resolve the polarization dynamics of SiC:CrAat T = 15 K and B = 158 G, same

condition we use for coherent control experiments, to optimize for the defect initialization.

We sweep the resonant excitation time in panel 1 of Fig.5.9 using the already discussed

readout rates and previously calibrated π-pulse. After each sequence a π/2 pulse redistributes

the population among the ground states as a spin reset. When no microwave rotations are

applied in panel 2 of Fig.5.9, we measure the depletion of the ms = 0 sub-population. When

the resonant excitation time of the ms = 0 is less than the optical lifetime of 155 µs, the

population in the excited state transferred from the ms = 0 increases, which is manifested

as an increase in signal. Past that point in time, the ms = 0 population depletes as the

sub-ensemble polarizes into the ms = +1 (Fig.5.12A - blue trace). Using a π-pulse to

coherently swap the populations between the ms = 0 and the ms = +1 states, we measure

the polarized population within the ms = +1 sublevel which increases monotonically with

the laser excitation time (Fig.5.12A - green trace). The difference of the two traces is
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the optical contrast shown in Fig.5.12B. An exponential fit to the data yields a rise time

of 1.27(3) ms, corresponding to polarization within ∼10 optical lifetimes with maximum

contrast at 64(2)%. In order to maximize the contrast, we polarize the defect for 5 ms.

5.4 Coherent spin control

Now that we have established a 5 ms initialization time, 50 µs probe time and 155 µs transient

readout time combined with the confidence that we can squeeze in this pulse sequence within

a spin T1 time with plenty more to spare, we characterize the ground state spin properties.

Once the subpopulation is polarized into ms = +1 and is dark, we coherently control the

subpopulation using resonant microwave rotations within the ms = 0,+1 manifold and read

out through the ms = 0 population. We measure Rabi rotations discussed in Sec.2.16 at B

= 158 G by varying the microwave excitation length and obtain a contrast of 63(1)% with

an envelope decay time of 4.76(7) µs at max amplifier power of 46 dBm.2
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Figure 5.13: Coherent control of SiC:CrAat T = 15 K and B = 158 G within ms = 0 and
ms = +1 manifold. Resonantly driven Rabi oscillations of the ground state spin measured
with a 63(1)% contrast and a decay time of 4.76(7) µs.

By varying the driving power (Fig.5.14), as expected, we measure decreased oscillation

frequencies that linearly depend on the square root of the driving power where this relation

is derived in Sec.2.16.

2. This is just the output from the amplifier and there are likely losses through the cables, connectors
and the microwave stripline. These losses are constant however within the dB scale
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Figure 5.14: Power dependence of SiC:CrARabi driving at T = 15 K, B = 158 G same
conditions for Fig.5.13. The contrast for each sequence is around 60-40 % depending on the
driving power. (Inset) As expected, the Rabi frequency linearly increases as a function of√

W where, W is the resonant microwave driving power. The highest data point with 46
dBm driving power is from Fig.5.13

To characterize the ground state spin coherence times, we perform Ramsey interferom-

etry and Hahn echo measurements. For the Ramsey measurement, we detune the resonant

116



microwave frequency by 5 MHz to account for any unintentional small detunings that can

appear as slow oscillations within the expected exponential decay and then scan the delay

between two πx/2 pulses. The characteristic oscillations at the detuning frequency derived

in Sec.2.2.4 have an envelope with a decay time of T ∗2 = 307(17)ns (Fig.5.15A), in agreement

with the ODMR linewidth measurements in Fig.5.7A.
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Figure 5.15: Spin coherence characterization of SiC:CrAat T = 15 K and B = 158 G. (A)
A fit to a 5 MHz detuned Ramsey interferometry measurement returns the expected 5 MHz
oscillation frequency and T ∗2 = 307(17) ns decay envelope. (B) A Hahn echo measurement

reveals a T2 = 81(2) µs with characteristic oscillations of 13C (87.5(3) kHz) and 29Si (68.0(1)
kHz) Larmor precession frequencies at the field.

We measure the T2 coherence time by (±πx/2− τfree/2−πy− τfree/2−πx/2) echo-pulse

sequence. We fit the data to an electron spin echo envelope modulation function where

nuclear Larmor precessions are enveloped by a decay function of

PLE(τ) = exp (−(τ/T2)n)
∏
α

(
1−Kα sin2 (πωατ)

)
(5.2)

with the precession amplitudes (Kα), frequencies (ωα) and decay power (n) and time (T2)

as free fit parameters [83]. We recover the characteristic oscillations at the current B field

for 13C (87.5(3) kHz) and 29Si (68.0(1) kHz) as well as T2 = 81(2) µs with a decay power

dependence of n = 1.9(1) (Fig.5.15B). The average defect density in our sample is roughly

3×1016 atoms/cm3 as discussed in Sec.5.1 and the measured T2 time is in line with similarly

dense divacancy ensembles in SiC[84]. This indicates that the observed coherence times are

likely limited by electron spin–spin interactions between defects, and further reduction of
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the Cr4+ and background defect densities could result in millisecond long coherence times

[79].

5.5 High fidelity readout

When we sacrifice overall signal and reduce the probe time from 50 to 1 µs, the Rabi

contrast increases to 79 (2)% contrast (Fig.5.16). This places a lower bound on the ensemble

polarization of at least 77%.
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Figure 5.16: High contrast Rabi oscillations of SiC:CrAat T = 15 K and B = 158 G are
measured when the probe time is reduced to 1 µs. The total signal is reduced but the
contrast is increased to 79(2)%. Error bars are the one sigma of the data.

This contrast, however, is lower than our estimates about to be discussed and we believe

a spin-reset mechanism induced by the probe itself could be responsible, therefore, further

exploration of this effect could increase the readout fidelity.

5.6 Modeling rates

In order to understand the discrepancy between the measured rates and observed contrast,

we model the population dynamics using Python QuTIP simulation. The simulated system

is in a 5 dimensional Hilbert space, 2 for the excited state, and 3 for the ground state. The

Hamiltonian, without loss of generality, assumes a coherent drive between the upper branch

of the excited state and = 0 ground state. The simulation uses a Lindblad master equation
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with collapse operators to take the following decoherence mechanisms into consideration:

optical T1 and T2, ground state T1 and excited state orbital T1.

We already measured these governing parameters. For example we discussed the optical

lifetime (optical T1) in Sec.5.11. Based on the optical hole linewidth of 30 MHz at T = 15 K,

we can assign an upper bound on the optical T ∗2 . We also measure a T1 = 1.6 s at T = 15.

The laser power has a rise time of 46 µs based on Fig.5.11. The purpose of these simulations

is to see the population dynamics, hence we will omit the spin T2 of the ground state since

it is irrelevant.
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Figure 5.17: QuTIP simulation of Cr4+ dynamics assuming 1/2TExcited
1 = 1/T

∗opt
2 = 30

MHz, T
opt
1 = 155 µs, T

spin
1 = 1.6 s, TLaser = 46 µs. (A) Population of states under resonant

excitation. The 5 ms excitation used in the main manuscript results in 86% polarization
after the excited state decay. (B) Probe time of the polarized defect. The black curve is
the contrast: C = 100 × (PLπ − PL) / (PLπ + PL) where PL ∝ Excited state population.
The red curve is the population in the excited state as a function of probe time which is the
amount of signal extracted.

Fig.5.17A shows the population in the each sublevel. The 5 ms excitation time polarizes

the defect at most 85% but a 20 ms excitation time should achieve more than 99% polar-

ization under no laser induced resetting mechanism. Fig.5.17A is related to the Fig.5.12A

in the following way: the depletion of the ms = 0 is a convolution of the black and the
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blue curve, while the population gain in the = +1 is given by the convolution of the black

and the red curve. Their difference, the contrast, should keep increasing until it hits 99%,

where a 50 µs probe should saturate the readout contrast at that value. However, within our

experiments, the contrast saturates at 64% where likely a reset mechanism induced by the

laser is responsible for the measured lower polarization and the contrast saturation values.

Fig.5.17B shows how much contrast and signal can be extracted from the system as a

function of probe time. The black curve is the contrast after a 5 ms polarization as a function

of probe laser time. The contrast is defined the same way as in the main text, i.e. C = 100×

(PLπ − PL) / (PLπ + PL) where PL ∝ excited state population, shown in red in Fig.5.17B.

The subscript π indicates, a microwave π pulse to swap the populations of = +1 and = 0. We

can immediately observe that the contrast, in ideal conditions, stays constant until efficient

hole burning exposure times in the ms regime. The maximum extractable signal is around

∼ 300 µs (2Topt), and it corresponds to placing roughly 1/8 of the population into the excited

state. Greater laser powers in an ideal case should increase this ratio. Even though the

measured reduced signal with the reduced probe time is consistent with our model, the change

in the contrast is not, since it should have been probe length independent (Fig.5.16). A laser

induced reset mechanism, however, could explain this observed phenomena as speculated

earlier.

5.7 Quantum efficiency

Another important figure of merit is the quantum efficiency of an emitter that is defined as

the ratio of radiative decay rate over all possible decay rates. The closer the number to 1,

the higher quality the emitter is, since otherwise the emitter needs to be probed many times

to get a signal where each probing event can flip the spin and cause an error. We can place

a lower number to this figure by comparing the measured signal to the expected signal.

The Olympus LCPLN50XIR objective has an NA of 0.65. For the 1070 nm excitation,
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the Gaussian waist size of the beam profile is 1.6 µm. The defects are distributed within

a 3 µm layer based on Fig.5.1.2. A cylindrical approximation to the waist combined with

defect distribution depth, reveals a 6 × 10−12cm3 probe volume. Hence, assuming 100%

creation efficiency we probe 1.8(1.2)× 105 defects at most. Assuming half of the defects will

be SiC:CrAand the other half SiC:CrC, the number of SiC:CrAdefects within the spot will

be 9(6)× 104. We measure an EOM linewidth of 67 MHz under the full laser power (same

conditions for the coherent spin measurements). Since this linewidth is a factor of ∼ 75

narrower than the inhomogeneous linewidth, we probe at most 400 − 2000 SiC:CrAdefects

for the ensemble hole burning and spin coherence measurements.

We can place a lower bound to quantum efficiency of SiC:CrAusing this estimation.

Assuming the upper bound of 2000 defects, 25% PL in the sideband with a 6.45 kHz optical

cycle rate, 0.8 quantum efficiency of the detector and no other losses in the collection path

and finally a 4% of the photons getting out of the SiC substrate due to the internal reflections

(NA4H-SiC(1070 nm) ' 2.63)[85], we expect to collect 103200 photons/s. In our coherent

Rabi measurements, the detected count rate exceeds 10000 photons/s after a π pulse which

corresponds to the 63% contrast reported. If a we assume that a 50 µs laser probe, excites

every single probed SiC:CrA, a lower bound of at least 10% quantum efficiency can be set for

SiC:CrA. Any relaxation in these assumptions would yield much higher quantum efficiencies.

5.8 Summary

In this chapter, we have demonstrated successful creation and activation of SiC:Cr4+ions

with exceptional optical and spin properties in commercial semi-insulating SiC substrates.

We will be using the same method in the coming chapter to introduce another transition

metal ion, vanadium, into SiC. The reported defect creation technique can also be extended

to three-dimensional localization of single transition metal ions in SiC for device integration

through nanoimplantation [86, 87] which is a critical step for a scalable quantum device
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manufacturing.

The careful rate characterization allowed for ground state spin initialized and read out

with a high fidelity of at least 79%. Furthermore, the measured ensemble spin coherence time

T2 of 81 µs is spin–spin limited, with spin T1 times exceeding 1 s at moderately cryogenic (15

K) environments, showing the potential of an isolated SiC:Cr4+as an optically addressable

spin qubit [79].
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Chapter 6

d1 spin qubits: vanadium in silicon

carbide

Vanadium 4+ (V4+) in SiC has a bright optical emission within the O-band of the telecom-

munication spectrum which also allows for measuring a single emitter. The importance of

the telecom light was previously discussed in Chapter 1 in the context of quantum commu-

nication. Having a single spin qubit that can be interface through this optical band within

a mature semiconducting host such as SiC can enable remote quantum technologies within

the solid state, wired together through the existing fiberoptic network. In this context, we

will explore the optical and spin properties of d1 electronic structure of 4H-SiC:V4+and

6H-SiC:V4+.

6.1 Experimental details

We purchased V-doped semi-insulating commercial wafers of 4H-SiC and 6H-SiC from II-

VI materials for ensemble measurements. For single defect experiments, a semi-insulating

20 µm epitaxial layer on an n-type 4H-SiC wafer from Norstel AB is implanted with 51V

is hot implanted (500◦C) with a 108 cm−2 dose at 190 keV. This places the implanted V

atoms roughly 100 nm below the surface according to SRIM simulations. The sample is

123



subsequently annealed at 1400◦C for 30 minutes in argon to activate the V centers and with

a carbon cap (later removed) to prevent Si evaporation, similar to the recipe discussed in

Sec.5.1. We were unable to obtain 6H-SiC wafers without background V for single-defect

measurements.

We use the same confocal microscopy setup principles discussed in Sec.D.1. The Mon-

tana Instruments closed cycle cryostat used for these experiments can go down to 3.3 K.

To address the vanadium defects resonantly, we use two tunable narrow line laser: EXFO

T100S-HP (1260-1360 nm) and Newfocus Velocity TLB6700 (1385-1465 nm). A 10:90 beam

splitter separates the excitation and collection paths, while filters within the collection path

eliminates the laser back reflection and allows for the sideband collection. We also use a

365 nm light emitting diode (∼ µW at sample) as an off resonant excitation source and

charge stabilisation for the 4H-SiC sample. We detect the PL/E either with a photodiode

(FEMTO OE-200-IN1), spectrometer and InGaAs camera previously described in Chapter

4, or with a telecom optimized SNSPD from Quantum Opus. All of the outputs and timings

are directly detected with 100 MHz data acquisition card. Unlike other experiments, here

we use two home made PCBs for microwave driving: one under the sample generating a field

perpendicular to the c-axis and a second one on the sample that generates a driving field

parallel to the c-axis within a window that also allows for imaging the sample.

To only resolve the ground state spin parameters we also perform ESR experiment in X-

band (9.7 GHz) using an ELEXSYS E580 Bruker spectrometer (Bruker Biospin) equipped

with a dielectric ring resonator (Bruker EN 4118X-MD4). A quartz tube suspended in the

center of the resonator holds the sample, and a flow cryostat (Oxford Instruments CF935)

with pumped liquid helium (3.3 K) holds and cools the assembly.
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6.2 V in SiC

Similar to Cr in SiC, V also substitutes the Si site within SiC (Fig.6.1A). V4+ has only one

electron (spin-1/2) in its d-shell. As extensively discussed in Sec.3.2.1, under the tetrahedral

symmetry, the 2D orbitals split into 2T excited state and 2E ground state. Due to spin-orbit

interactions, the 2T excited state further splits into a higher energy 2A and a lower energy 2E

orbital configuration shown in Fig.6.1B. 4H-SiC has two inequivalent sites, one quasi-cubic

(k) and one quasi-hexagonal (h), according to the nearest-neighbor atomic configuration.

6H-SiC has two quasi-cubic sites (k1 and k2) and one quasi-hexagonal site (h). Because

the local site symmetry is neither exactly cubic nor hexagonal exact assignment of the V

sites is difficult and sometimes contradictory in literature [88–90]. For generality, we use

the unassigned site names of α and β in 4H-SiC and α, β, and γ in 6H-SiC. Similarly, the

ground and excited states separated by the crystal field are labeled GS1 and GS2 and ES1,

ES2, and ES3 for generality.
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Figure 6.1: SiC:V4+ configuration and electronic structure illustrations. (A) SiC lattices and
their inequivalent sites for the V impurities. (B) Expected energy diagram of the orbital
d1 states from crystal field theory and spin-orbit (S-O) coupling according to [89, 91]. The
quasi-cubic (k) sites mainly have a tetrahedral (Td) symmetry, and the quasi-hexagonal (h)
sites mainly have a C3v symmetry due to additional trigonal distortion.
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6.3 Photoluminescence excitation characterization

We sweep the resonant laser wavelength over the ZPLs of the 5 different V4+ sites in both

samples and collect the sideband emission (Fig.6.2). We first observe the similarity between

the α sites of 4H-SiC and 6H-SiC by comparing their resonant spectra (and other properties

in Table 6.1). This similarity is likely related to the quasi-identical crystal configuration of

the h sites in both polytypes (Fig.6.1). The splitting between GS1 and GS2 is largest in

the α sites (∼ 500 GHz), resulting in substantial thermal polarization at 3.3 K compared

to 15 K in Fig.6.2. For the 4H-SiC β and 6H-SiC γ sites, only two transitions are resolved

with small ground-state splittings of about 10 to 40 GHz, making it challenging to assign

these to specific states. We later solve this issue by looking at the ODMR signal from these

transitions (see Sec.6.5) and find that the smallest ground-state splitting (16 GHz) belongs

to the 6H-SiC γ site, consistent with the most cubic site k2. Lastly, only the 6H-SiC β site

has six distinct optical transitions that enable the identification of all five orbital states (see

Table 6.1).
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Figure 6.2: PLE spectroscopy of all (6)4H-SiC:V4+ sites at 3.3 K (blue) and 15 K (red).
The different transitions are partially identified from the difference in thermal population of
the orbital states. The weak sharp peak at the center of the 6H-SiC γ site spectrum is an
artifact from weak transient laser side modes at this exact wavelength.
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6.3.1 Sensing single isotopes

For all inequivalent sites, there are consistent features in the optical spectra that were pre-

viously unresolved with off-resonant excitation [89, 91]. The resonant peaks are asymmetric

with a longer tail toward higher energies (lower wavelengths) and are also duplicated at

higher energies as shown in Fig.6.4 for the 6H-SiC β site where this is the most visible.

These duplicates cannot be from additional orbital states, which are already fully accounted

for in some of the sites. The single-mode behavior of the tunable laser was confirmed with a

Fabry-Perot to discard the possibility of an experimental effect. Following previous studies

of donor-bound excitons in natural and isotopically purified silicon [92, 93], we attribute

this asymmetry and duplicates to the presence of the minority isotopes of silicon (4.685%

of 29Si and 3.092% of 30Si) and carbon (1.07% of 13C) in the nearest-neighbor sites to the

vanadium impurity. When a neighbor has a minority isotope, there is a variation in the local

mass from the dominant 28Si and 12C that shifts the optical transitions, possibly due to an

effective local strain or change in the bandgap. For example, a single 30Si results in twice the

shift from a single 29Si. Because there are 4 and 12 equivalent sites for carbon and silicon,

respectively, even low abundance of minority isotopes results in significant probability of

occurrence for a configuration different from only 28Si and 12C. The shape of the optical

peaks is attributed to silicon isotopes, while the duplicate (larger shift) is from the carbon

isotopes with larger mass shift ratio than silicon and closer distance to the vanadium.

We model the lineshape of the optical transitions by the presence of minority isotopes

within the two nearest neighbor shells of the vanadium impurity as illustrated in Fig.6.3.

Starting from a pure lattice of 28Si and 12C, any local change to 29Si, 30Si or 13C leads to

a mass and observed linewidth shift. We assume the following:

1. The samples have natural abundance of silicon and carbon atoms.

2. Only the first carbon and silicon shells have a significant influence on the electronic

wavefunction.
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3. Each Si and C sites are equivalent. This simplifies the model, but it is likely that the

c-axis bonds may be different from the basal bonds.

4. One 30Si corresponds to two unit of mass shifts, or equivalently two 29Si.

5. The mass shifts add linearly with each additional local change in isotope.

This leads to the following probability of obtaining a given configuration (and therefore

PL intensity):

P (N29Si, N30Si, N13C) =
NSi!

(
1− f29Si − f30Si

)NSi−N29Si−N30Si f
N29Si
29Si

f
N30Si
30Si(

NSi−N29Si −N30Si

)
!N29Si!N30Si!

×
NC !

(
1− f14C

)NC−N13C f
N13C
13C(

NC −N13C

)
!N13C !

(6.1)

where N29Si = 0, ..., NSi, N30Si = 0, ..., NSi and N13C = 0, ..., NC are the number of

nearest neighbors 29Si, 30Si and 13C respectively, with NSi = 12 and NC = 4 the number of

silicon and carbon inequivalent sites. f29Si = 0.04685, f30Si = 0.03092 and f13C = 0.0107 are

the natural abundance fractions of the isotopes indicated by their labels. This model provides

the relative intensity between each configuration. In order to fit the spectral lineshape in

Fig.6.4, we also use a fixed pseudo-Voigt lineshape (mostly Gaussian) for the sub-peak from

a single configuration.

With only the intrinsic line shape of the subpeaks and frequency (wavelength) shift

per change in atomic mass as free parameters, we are fully able to reproduce the spectra

in Fig.6.4. We find an average shift for all sites of the optical transition frequency by

22(3) GHz u1 or 104 u1 for carbon and by 2.0(5) GHz u1 or 105 u1 for silicon. The fit

also provides an intrinsic inhomogeneous linewidth of about 2 GHz that may be further

reduced considering that it includes multiple transitions between the electron and nuclear

spin states of ground and excited orbital states. The observed isotope effect suggests that

isotopically purified SiC materials may considerably narrow the lines and allow the spin
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Figure 6.3: Examples of multinomially distributed isotopes within SiC lattice
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Figure 6.4: Optical energy shift due to nearby isotopes. PLE spectroscopy of the 6H-SiC β
site at 3.3 K fitted according to an isotope model for the mass shift from neighbor 28Si, 29Si,
30Si, 12C, and 13C.

states to be optically resolved. By contrast, quantum registers including both the vanadium

nuclear spin and a nearest-neighbor carbon or silicon nuclear spin could be directly resolved

optically, providing a competitive system for quantum algorithms such as error correction

or entanglement distillation. Last, these shifts hint that the wave function of the impurity

extends through the first few nearest-neighbor shells and that the optical transitions may be

susceptible to static strain.
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6.3.2 Optical properties

The excited-state lifetime is an important parameter to estimate the brightness of a defect.

Although previous measurements exist for V4+ [88], the resonant excitation here excludes

possible decay pathways allowed by off-resonant light or possible mixtures of lifetimes from

the multiple orbital states. In Fig.6.5A, we characterize the ensemble excited-state lifetime

by measuring the PLE decay after a pulsed-laser excitation between GS1 and ES1. While

the α sites have slower decays (108 and 167 ns) than the β and γ sites (11, 31, and 45 ns), the

α sites appear brighter. This may be attributed to the α sites being more favorable during

the material creation process and therefore more numerous1 or to higher quantum efficiency

in these sites as suggested by density functional calculations in 4H-SiC [88]. Overall, the

lifetimes are much closer to that of vacancy-related defects in diamond and SiC (<20 ns

[79, 94]) than that of erbium dopants (∼ms), providing sufficient brightness to observe single

V4+ emitters without photonic enhancement. Lastly, the DW factor, is resolved for each site

with resonant excitation as shown in Fig.6.5B, with high values ranging between 25 and 50

% (Table 6.1), confirming the viability of vanadium as a telecom emitter of indistinguishable

photons.

6.4 Single V emitter

Although optical cavities are ultimately necessary for any quantum emitter used for efficient

quantum communication, the ability to directly measure single defects using only free-space

optics has provided alternative applications (e.g., quantum sensing) and ease of characteri-

zation in other systems such as the nitrogen-vacancy center in diamond [95]. More generally,

the stability and reproducibility of single emitters are key challenges to address, notably, the

requirement of low spectral diffusion of the optical transitions for entanglement applications

[38, 96].

1. as seems to be the case with Mo dopants in the hexagonal site of 4H- and 6H-SiC [63]
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Figure 6.5: Optical properties of (6)4H-SiC:V4+ sites at T = 3.3 K. (A) Optical lifetimes
after laser excitation of the GS1-ES1 transition for each available site. (B) Optical spectra
for each site is collected two ways: off resonantly with a above bandgap 365 nm light (black)
and resonantly for each of the GS1-ES1 transition with background subtraction from slightly
detuned excitation. The curve in red provides the sum of the resonant contributions with
weights fitted to match the off-resonant excitation. The colored area under the various zero
phonon lines and the resonant spectra are integrated to calculate the Debye-Waller factor.
The error in this factor from the missing spectra at longer wavelength is estimated to be less
than 10 % by Gaussian extrapolation.
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Figure 6.6: Detection of a single 4H-SiC:V4+ at T = 3.3 K and B = 700 G under weak 465
nm continuous illumination for charge stability. (A) Spatial (near-surface) PLE mapping

of single and few V defects by resonant excitation at 1278.8 nm. (B) g(2) autocorrelation
measurement at the marked area in A obtained with a single detector with 20-ns dead time
and 10 ns resolution. The autocorrelation signal is normalized using its value at long delay
time, and the dark count contribution is calculated and subtracted ( 3% of total). The red

line is the fit [g(2)(0) = 0.1(1)], and the red shadowed area is the 95% confidence interval.
In the inset, the autocorrelation intensity is shown for longer times.
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In Fig.6.6A, we scan the surface of the sample while exciting the GS1-ES1 transition of

the α site. Isolated bright spots corresponding to single or few V4+ defects are observed,

with PLE intensity around 100 to 150 counts/s. The combination of low-power resonant

excitation and longer-wavelength emission (long-pass filter at 1300 nm) provides a very low

background signal limited by the dark counts of the detector (∼20 counts/s). We confirm the

single characteristic of one of the spots by autocorrelation g(2)(τ) measurement (Fig. 6.6B),

which shows a clear dip below 0.5 near-zero delay (τ = 0). The intensity was obtained using

a single-photon counter instead of a Hanbury Brown and Twiss configuration and cannot

resolve below 20 ns delay; however, we obtain a g(2)(0) = 0.1(1) from fit using the relation

g(2)(τ) = 1−aeτ/τ1 + beτ/τ2 , where a and b are amplitude parameters and τ1,2 are the short

and long decay times, respectively. The short decay time τ1 at 0.07(2) µs is reduced from the

0.17 µs optical lifetime (identical to ensemble) by optical Rabi driving. The autocorrelation

also rises slightly above 1 (bunching) farther from τ = 0 and is attributed to a shelving state

during optical pumping (with shelving time τ2 ' 2 µs) [97]. The measured single-defect

photon count rate, combined with the lifetime, DW factor, and optical collection efficiency,

provides a lower-bound estimation on the quantum efficiency of the 4H-SiC α site at about

2%. This value may reach about 20% according to theoretical calculations [88] and could be

further improved by Purcell enhancement in a photonic cavity.

We then characterize the spectral properties of the confirmed single V emitter. The

implanted defects are relatively close to the surface with a calculated mean depth of ∼100

nm, a configuration often necessary for photonic integration yet known to cause strong optical

spectral diffusion (linewidth broadening) and blinking (PL intensity fluctuations) for other

emitters [98]. In Fig.6.7, we repeatedly measure the optical spectrum (GS1-ES1 transition)

over the course of 15 hours. The spectrum does not shift, jump, broaden, or lose intensity

during that time and has a linewidth of 750 MHz at full width at half maximum. The

absence of spectral jumps over long time scales near surfaces may indicate that V4+ does

not have a strong electric field response. While the linewidth is orders of magnitude larger
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Figure 6.7: Photostability of a single 4H-SiC:V4+ at T = 3.3 K and B = 700 G under weak
465 nm continuous illumination for charge stability. The same defect imaged at Fig.6.6B is
resonantly probed over a 100 times for a total duration of 15 hours, with averaged intensity
shown in the bottom. The spectrum shows two maxima from the slightly resolved electron
spin states.

than the lifetime limit, it is likely broadened by the many unresolved electron and nuclear

spin states in addition to the more typical inhomogeneous strain and spectral diffusion over

short time scales.

The optical stability is also consistent across various defects with linewidth varying by

about ±100 MHz, as seen in Fig.6.8. The distribution of peak positions follows the measured

inhomogeneous linewidth in ensembles (Fig.6.2). Overall, the optical properties of shallow,

implanted single V4+ impurities in 4H-SiC appear to be mostly unperturbed compared

to ensemble measurements, a crucial result for using these defects in photonic and other

monolithic devices. The single-defect linewidth remains too broad to resolve the individual

spin sublevels, although this may be enabled at higher magnetic fields.

6.5 Spin properties

51V is 100% abundant in nature and has a nuclear spin I = 7/2. The single electron of

SiC:V4+is coupled to the nuclear spin if 51V through hyperfine interaction and the total

Hamiltonian of this system is described below:
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Figure 6.8: Photo variance of potential single 4H-SiC:V4+ defects measured at T = 3.3 K and
B = 700 G under weak 465 nm continuous illumination for charge stability. (A) Resonant

spectrum taken for a variety of likely single emitters [not confirmed with g(2)]. (B) Their
fitted linewidths remain consistent at about 750 MHz full width at half maximum. Error
bars are 1 standard deviation from experimental acquisition.

H = µB ~B0 · ~g · ~S − µNgN ~B0 · ~I + ~S · ~A · ~I (6.2)

where ~S and ~I are electron (S = 1/2) and nuclear (I = 7/2) spin operators defined

in Sec.A.2, µB , µN are the Bohr and nuclear magneton, ~g, gN are the electron and nuclear

g-factors (µNgN = 11.213 MHz/T), ~B0 is the static magnetic field, and ~A is the hyperfine

tensor between the electron and nuclear spin. Each of the orbital states therefore split

into 16 additional spin states under nonzero magnetic field, as illustrated in Fig.6.9A. The

spin properties of the V4+ ground state (GS1) in some sites of 4H-SiC and 6H-SiC were

previously studied using electron spin resonance (ESR) and magnetic circular dichroism

[90, 99]; however, they were realized at high magnetic field where it becomes challenging to

correctly identify anisotropic hyperfine tensors.

We characterize the spin parameters of each site in V4+ defect ensembles using a combina-

tion of ESR, ODMR, and optical pump-probe methods. As previously discussed in Chapter

1, ESR is an inductive detection method that measures resonant microwave absorption by

spin ensembles; it does not require optical excitation and is sensitive only to the thermally

populated ground states. This means that at 3.3 K (where the rest of the measurements
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performed), only GS1 can be measured for the α sites, while both GS1 and GS2 may be

visible for the γ and β sites. Although, there is not a clear Λ like system to effectively

spin polarize the ground state, any imbalance in population due to the optical excitation

can give rise to ODMR as long as the population trapped population in a shelving state

is reintroduced into the optical path through magnetic driving. As ODMR requires optical

excitation, it is sensitive to all orbital states with a preference for ground states when the

excited states’ lifetimes are short.

Similarly one can detect the shelving state optically through a second color, as previously

discussed in Sec.4.3.3. This technique is more sensitive to the orbital excited states and more

complex depending on the type of pumping scheme [63]. Namely there are four pumping

schemes: Λ for transitions between two ground state levels and one excited state level sen-

sitive to the ground-state spin properties (for example used for SiC:Cr4+), ~V for transitions

between one ground state level and two excited state levels sensitive to the excited-state spin

properties, and ~X and Π for transitions between two ground state and two excited state lev-

els sensitive to both ground- and excited-state spin properties. When the spin states cannot

be optically resolved, all pumping schemes occur simultaneously, and assigning the observed

resonances can be challenging.

We use the 4H-SiC β site to discuss the spin measurements as it is the most complete and

resolved one. The data for other sites are shown below in Sec.6.6 and their fit parameters in

Table 6.1. Selective excitation of the GS1 or GS2 resonantly allows for observing the ODMR

from either orbital independently shown in Fig.6.9B,C. Sweeping the magnetic field allows

for identifying the relevant spin parameters. At low magnetic fields, we observe competition

between the hyperfine and Zeeman interactions, enabling precise fitting of the hyperfine

tensor diagonal components in their principal axis. The two ground states GS1 and GS2

can mostly be excited in the parallel configuration, allowed by mixing between the electron

and nuclear spins, but only weakly in the orthogonal configuration indicating an orthogonal

g-factor gxx,yy close to zero. The hyperfine interactions for GS1 have Axx = Ayy 6= Azz
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[axial symmetry, dz2 - like orbital if dipolar [100]] for the α sites and Axx 6= Ayy ' Azz

(rhombic symmetry, dxz,yz-like orbital if dipolar) for the β and γ sites assuming that equal

components have the same sign (not resolved here). These hyperfine aspect ratios may be

related to the local symmetry (and corresponding wave function distortion), where the Si-C

layers stacking is aligned with the c-axis for the h sites and tilted for the k sites. The GS2

hyperfine tensor was only obtained for the β and γ sites (as thermally populated) and shows

a nonzero zz component with a principal axis tilted by about 50◦ to 52◦ from the c-axis.

This angle matches the 52◦ tilt off the c-axis between two nearest-neighbor silicon sites in

separate layers of the SiC lattice.
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Figure 6.9: Ground state ODMR of 4H-SiC:V4+ β−site at T = 3.3 K (A) Energy level
structure including the electron spin (S) and nuclear spin (I) for the GS1, GS2, and ES1
levels. The static magnetic field (B0) dependence is simulated using fitted spin parameters
from (B) ODMR of the lowest ground-state GS1 as a function of B0 and microwave drive
frequency. Both B0 and the microwave drive (B1) are applied parallel to the c-axis. The
dashed lines in black are modeled from fitting the spin Hamiltonian in Eq.6.2. The lines
at low magnetic fields around 400 MHz are attributed to ES1. At high magnetic field
under parallel excitation, the spin transitions become forbidden, and the ODMR contrast
disappears. (C) ODMR of GS2 under similar conditions to B. (D) ODMR as a function of
the laser wavelength to correlate ground states and optical transitions. The red and blue
curves are measured, respectively, at the red and blue circles in B and C. The curves are
fitted (using the isotope model line shape) to extract the individual transitions.

It should be noted that the assignment of the ODMR signal to an orbital state is not

always straightforward, as shown in Fig.6.9D. Spin resonance ascribed to GS2 (blue line)

appears when optically exciting either the GS1-ES1 transition or the GS2-ES1 transition.

This indicates that spin polarization is transferred between the two ground states likely
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from thermal relaxation. The ODMR assignment is resolved in this case by looking at the

spin resonance in GS1 (red line) and comparing the hyperfine tensors of the various sites.

The ODMR-resolved resonant spectroscopy in Fig.6.9D is also a powerful tool to distinguish

close transitions and allows us to separate the GS1, GS2, ES1, and ES2 orbital states for

the 6H-SiC γ site (see Fig.6.17).
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Figure 6.10: ESR of 4H-SiC:V4+ β−site at T = 3.3 K within X-band as a function of B0
and angles from the c-axis. The blue and red lines are simulated from the spin parameters
obtained by ODMR in Fig.6.9 and are shown to compare derivative peak center positions.

For consistency, we compare the ODMR signal with ESR experiments in Fig.6.10. Two

sets of peaks are observed and assigned to GS1 and GS2 of the 4H-SiC β site only. Similarly,

ESR in 6H-SiC presents (Fig. 6.10) two sets of peaks assigned to GS1 and GS2 of the γ

site only. The lack of substantial ESR signal from all other sites results from their lower

orthogonal g-factor, forbidding microwave transitions at high magnetic fields (|gµBB0| >>

|A|). In general, we find large discrepancies for some of the fitted hyperfine values compared

to previous ESR and magnetic circular dichroism experiments [90]. This is explained by the

limited influence of Axx and Ayy on the spin resonance frequencies in the high field limit

where these previous studies occurred.

We lastly characterize in Fig.6.11 the spin properties of the ES1 excited state using both

ODMR and two color measurements. The two color optical signal is negative and shows no

change when exciting either the GS1-ES1 transition or the GS2-ES1 transition, suggesting

that the pump-probe is a ~V scheme and mainly sensitive to the spin levels of the ES1 orbital
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Figure 6.11: Excited state spectroscopy of 4H-SiC:V4+ β−site at T = 3.3 K. (A)ODMR
of the excited state ES1 with B1 orthogonal to B0. Nonfitted signals in the background
are attributed to GS1/2 and are much weaker owing to low g⊥ values. (B) Optical hole
burning recovery using pump-probe excitations between GS1 and ES1 and detuned by the
microwave frequency using an EOM. The transitions are modeled (black dashed lines) using
the parameters obtained in A.

state. The inhomogeneous broadening in these all-optical measurements is quite large (hole

linewidth about 100 MHz) and limits precise fitting of the spin parameters. The 4H-SiC

β site is unique, however, as it shows a clear ODMR contrast under orthogonal B1 drive

that matches the two color experiment, enabling more sensitive measurement of the ES1

hyperfine parameters.

6.5.1 Spin T1

We expect that the V4+ system undergoes rapid spin relaxation due to phonon processes and

the small splitting between the GS1 and GS2 states, similar to silicon vacancies in diamond

[101] as discussed in Sec.3.2.1. At 3.3 K, we characterize this population relaxation (T1)

using all optical hole burning recovery experiment, as previously discussed in Sec.4.3.2 and

shown in Fig.6.5.1 (A and B). A resonant laser pulse excites the GS1-ES1 transition during

which the emitted PL intensity decays because of hole burning. The PL signal requires

some delay to regain full intensity after a second laser pulse, corresponding to the thermal

relaxation between GS1 and GS2, or to the spin relaxation in GS1, both limiting factors

for coherent experiments. The 6H-SiC β site has a short relaxation time of 0.2 µs, and
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Figure 6.12: Ground state T1 of 6H-SiC:V4+ γ−site at T = 3.3 K. (A)Transient detection
of hole burning and recovery in the 6H-SiC γ site. The transition GS1-ES1 is pumped (0
to 2 µs), followed by a moving delay before a second pump measures the intensity of the
peak signal. (B) Optical decays obtained from the sequence in A where the amplitude is the
hole depth [differential between maximum and steady-state amplitudes in A]. For 6H-SiC,
the error bars are within the data point size. For 4H-SiC, the decay has some additional
fluctuations that are not modeled here.

the γ site is longest at 1.2 µs, although we are unable to measure the α sites due to weak

hole burning. As demonstrated in silicon vacancies in diamond [101], these relatively short

lifetimes are not necessarily prohibitive as they are expected to considerably increase at

millikelvin temperatures.

6.5.2 Coherent spin driving

Last, we demonstrate in Fig.6.13 coherent driving between two spin states (≈ 0.74 |1/2,−7/2〉+

0.65 |−1/2, 5/2〉 and −0.6 |1/2,−7/2〉 + 0.74 |−1/2, 5/2〉 in |ms,mI〉 notations) in the GS1

orbital of the 6H-SiC β site. Despite the short lifetime of this site, the corresponding

continuous-wave ODMR had a sufficiently narrow inhomogeneous linewidth (about 8 MHz)

for coherent driving, possibly due to lower strain sensitivity. We fit the time dependence by

a damped Rabi oscillation formula derived in Sec.2.2.3 with an additional dissipation term

Γ to account for population loss:
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Figure 6.13: Coherent driving oscillations of ground state of 6H-SiC:V4+ γ−site at T = 3.3
K and B - 200 G. (A)Coherent Rabi oscillations for two different microwave drive powers.
(B) Pulsed-ODMR spectrum using an inversion pulse calibrated from A. All error bars are
1 SD from experimental acquisition.

Pulsed-ODMR spectrum after calibrating the π-pulse duration from the Rabi oscillations

confirm the source of the contrast from the spin transition. Over the course of many acqui-

sitions, we observe some decay of the pulsed-ODMR contrast, suggestive of a slow nuclear

hyperpolarization within the full electron-nuclear spin system.

6.6 Characterization of all sites

Below are the ODMR, two-color pump-probe data (if exists) for all sites and a table that

summarizes all of the extracted spin Hamiltonian and optical parameters:

6.7 Summary

SiC:V4+ offers O-band telecom optical emission with fast lifetimes which allowed for detec-

tion of a single emitter without the need for any photonic structure, demonstrating V4+s

viability as a single quantum emitter for fiber based long distance quantum architectures.

Creation of V4+ in commercial SiC through implantation and annealing further displays the

feasibility of a scalable device manufacturing scheme. The stable optical properties, despite
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Figure 6.14: Spin properties of 4H-SiC α site at 3.4 K. (A) ODMR of GS1. (B) Pump-
probe (hole recovery) experiment. The dashed lines in black are simulated from the fitted
spin model. The ODMR signal in (A) also shows contribution from ES1 (blue lines at low
frequencies and magnetic fields) which helps fit the spin parameters.
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Figure 6.15: Spin properties of 6H-SiC α site at 3.4 K. (A) ODMR of GS1. (B) Pump-
probe (hole recovery) experiment. The dashed lines in black are simulated from the fitted
spin model. The ODMR signal in (A) also shows contribution from ES1 (blue lines at low
frequencies and magnetic fields) which helps fit the spin parameters.

the defect being only a ∼100 nm away from the surface is very promising for integration

within quantum opto-electronic devices. The defect comes with a spin-1/2 electronic spin

and spin-7/2 nuclear spin creating a 14 dimensional Hilbert space that could be used for

various quantum algorithms. Since the optical transitions are sensitive to a nearest neighbor

isotope changes, it is also possible to optically identify V4+ defects with nearby nuclear spins

to further expand the computational Hilbert space for more advanced algorithms (e.g. error

correction). High-fidelity coherent control will require lower temperatures, single spins for
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Figure 6.16: Spin properties of 6H-SiC β site at 3.4 K. (A) ODMR of GS1. (b) ODMR of
GS2. (c) Pump-probe (hole recovery) experiment. The dashed lines in black are simulated
from the fitted spin model.
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Figure 6.17: Spin properties of 6H-SiC β site at 3.4 K. (A) ODMR of GS1. (b) ODMR of
GS2. (c) Pump-probe (hole recovery) experiment. The dashed lines in black are simulated
from the fitted spin model.

low detuning and drive inhomogeneity, and efficient spin polarization. Eventually, the ability

to reset the V defect to a specific electron and nuclear spin state will be crucial for practical

applications and could be achieved either optically or by magnetic resonance [102]. Never-

theless, the identified spin parameters through ODMR and two-color pump probe schemes

in this chapter, provided all the necessary components for understanding and controlling

the V4+ defects both optically and magnetically, setting them up as a prime candidate as

telecom emitters for quantum applications.

142



4H-SiC 6H-SiC

α β α β γ

Site assignment h k h k1 k2

ES1 – GS1 (nm) 1278.808(6) 1335.331(6) 1308.592(6) 1351.845(6) 1387.806(6)

GS2-GS1 (GHz) 529(1) 43(1) 524(1) 25(1) 16(1)

ES2-ES1 (GHz) 181(1) - 167(1) 628(1) 6(1)

ES3-ES2 (GHz) - - - 72(1) -

DW (~%) 25 50 45 50 40

τ (ns) 167(1) 45(1) 108(1) 11(1) 31(1)

GS1 gxx,yy, gzz 0, 1.748* 0<g<1, 1.870(5) 0, 1.749* -, 1.95(2) 0<g<1, 1.933(5)

GS1 Axx ,Ayy, Azz (MHz) 165,165,232(5) 103,188,174(5) 165,165,232(5) 114,166,171(5) 45,215,175(10)

GS2 gxx,yy, gzz - 0 < g < 1,2.035(5) - -,2.00(2) 0 < g < 1,1.972(5)

GS2 Axx,yy, Azz (MHz) - 0,257(5) - 0,258(5) 0,265(5)

GS2 θxx , θyy, θzz (◦) - 0, 52(2), 0 - 0, 50(2), 0 0, 51(2), 0

ES1 gxx,yy, gzz -,2.24† -,2.03(2) -,2.24* -,2.0(1) -,2.03(2)

ES2 Axx,yy, Azz (MHz) 20,220(20) 112,52(5) 20,200(20) 80,20(20) 110,50(20)†

Table 6.1: Optical and spin properties of V4+ defects in 4H-SiC and 6H-SiC around 3.3
K. The k1 site is assigned to the 6H-SiC β site on the basis of having the closest crystal
configuration and properties to the 4H-SiC β site. k2 is the most cubic-like site and therefore
assigned to γ with the smallest GS1-GS2 splitting. The Debye-Waller (DW) factor is a
coarse estimation as long-wavelength contributions cannot be observed (see Fig.6.5). τ is
the optical lifetime. The spin parameters (absolute values for the diagonal components xx,
yy, and zz) are given in their principal axis with g being the g-factor and A being the
hyperfine interaction. xx and yy components are interchangeable, we cannot distinguish gxx
from gyy, and a good fit is obtained when Axx and Ayy are equal for GS2 and ES1. xx, θyy,
and θzz are the angles between the principal and the c-axis basis. “-” indicates unresolved
parameters. *Parameters taken from literature ([89, 90]). † Partially resolved parameters
obtained by comparison with other sites.
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Chapter 7

Transition metal centered molecular

spin qubits

Thus far the experimental demonstrations of transition metal ions as optically addressable

spin qubits have been limited to a solid state host. As discussed in Chapter 3, the electronic

structure and therefore the optical and spin properties of transition metal ions are determined

by the ligand field and therefore it is possible to build optically addressable molecular spin

qubits out of them. As discussed earlier in Chapter 1, chemical synthesis of molecular spin

systems affords bottom-up qubit design [103, 104]. A chemical approach offers tunability

through atomistic control over the qubit; scalability through chemical assembly of extended

structures; and portability across different environments (e.g., solution, surface, solid-state),

because the qubit is not confined to a specific host. These capabilities provide substantial

control over the intrinsic and extrinsic environment of molecular qubits and can solve many

of the problems faced by the defect spins community.

To engineer an optically addressable spin qubit, in this chapter, we target the d2 config-

uration under strong tetrahedral ligand field, extensively discussed in Sec.3.2.2 and experi-

mentally demonstrated in Chapter 4 and Chapter 5.
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7.1 Cr4+ based molecules

7.1.1 Experimental Details

To demonstrate the power of tunability of transition metal based optically addressable molec-

ular spin qubits, we synthesize three different Cr4+R4[R = o-tolyl, 2,3-dimethylphenyl, 2,4-

dimethylphenyl] molecules (Fig.7.1A). An individual molecule is ∼ 1 nm in size, therefore

we diluted each compound in their S = 0, isostructural tin analogs to reduce interactions

between Cr4+ centers. We then form molecular crystals (1, 2, 3) out of this mixture (Fig.

7.1B) to make sure all of the spins are oriented in the same direction for ensemble measure-

ments. The metal-center symmetry in these crystals varies from relatively high, S4 for 1, to

low, C1 for 3, directly affecting the ground-state spin structure.
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Figure 7.1: Chromium centered organometallic molecules illustration. (A)Molecular struc-
tures for 1–3 determined by single-crystal x-ray diffraction. Hydrogen atoms are omitted for
clarity. Ligand modifications for 2 and 3 are highlighted in green and yellow. Chromium and
carbon atoms are shown in purple and gray, respectively. (B) An illustration of each Cr4+

compound diluted in a single crystal (purple) of the isostructural S = 0 tin (Sn) analog.

The dilute crystals, with linear dimensions ∼ 0.1 − 1mm, are mounted on a coplanar

waveguide (CPW) for microwave excitation and encapsulated with a thin layer of epoxy

(Illumabond, UV curing epoxy, 60-7180RCL13) to prevent air exposure while sample loading.
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This assembly is cooled down with a closed cycle Montana Instruments cryostat and imaged

through a confocal microscopy setup with general guidelines discussed in Sec.D.1. A Thorlabs

785 nm laser diode off-resonantly excites the sample, while a narrow-line tunable Sacher,

LION laser resonantly excites it. A broadband 50:50 beam splitter separates the excitation

and collection paths while corresponding long and short pass filters clean the laser and

PL signal. An Olympus LCPLN100XIR objective both focuses the excitation light and

collimates the PL signal. We estimate there are 107 Cr4+ emitters within the laser spot.

The signal can either be detected with a Princeton Instruments spectrometer InGaAs camera

(Pylon-IR), a fiber coupled Femto OE-200-IN1 photodetector or an SNSPD. A Swawbian

Instruments Time Tagger 20 counted the photon arrival times for lifetime measurements.

For high field optical measurements, we custom built a fiber coupled sample mounting rod

for a Quantum Design Physical Property Measurement System (PPMS) which can generate

single axis magnetic field between −9 and 9 Tesla with design details described in Sec.D.2.

For ESR measurements, the bulk dilute crystals are grounded to form microcrystalline

powders. Samples were loaded into 4 mm outer diameter quartz ESR tubes under a dini-

trogen atmosphere, restrained with eicosane and flame sealed under vacuum. Prior to mea-

surements, samples were primarily stored in the dark to prevent potential degradation [105].

Continuous-wave (cw) ESR spectra were collected at the California Institute of Technology

facility using a Bruker EMX X-band spectrometer and a liquid nitrogen immersion dewar.

All measurements were performed at 77 K. Spectra were acquired with the Bruker Win-ESR

software suite.

7.1.2 Optical and spin characterization

This molecular system, analog to SiC:Cr4+discussed in Chapter 4, exhibits the same elec-

tronic and spin physics. Under the off resonant excitation, ground-state population is pro-

moted to the first S = 1 excited state, undergoes fast intersystem crossing to the S = 0 state,

and decays to the S = 1 ground state, emitting near-infrared PL. For 1–3, this emission
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comprises sharp zero-phonon lines (ZPLs) ranging from 1009 to 1025 nm (Fig.7.2A), along

with longer wavelength phonon sidebands. The minor ligand modifications in 1–3 also result

in distinctive ground-state spin structures, as observed in ground-state electron spin reso-

nance (ESR) measurements (Fig.7.2), with extracted values of D and E lying in the readily

addressable regime of < 5 GHz for each compound.1
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Figure 7.2: Optical and spin properties of molecular spin qubits. (A)PL spectra for 1–3 at
T = 4 K using off-resonant (785 nm) excitation. (B) Zeeman splitting of the zero-phonon
line of 1 at 9 T. (C) X-band continuous-wave electron spin resonance (cw-ESR) spectra
for 1–3 collected at 77 K. Simulations are shown in black, along with extracted D and E
parameters. The central resonances at g ≈ 2− 2.1.

To further confirm the d2 electronic structure under strong tetrahedral ligand environ-

ment discussed in Sec.3.2.2, we measure the emission of 1 under a high magnetic field using

off-resonant excitation (Fig.7.2B), same measurement as in Fig.4.1. Owing to the S = 0

excited state, the Zeeman splitting of the ground state manifests directly as a shift in the

optical emission energies. This effect is clearly shown by taking the difference in PL spectra

at 9 and 0 T: Optical emission into the ms = ±1 spin sublevels shift to lower and higher

energies, giving characteristic peaks on either side of the zero-field ZPL in the differential

1. because the signs of D and E are not determined and only their magnitudes influence our experiments,
we take D,E > 0 for clarity
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spectrum, along with a central dip2.
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Figure 7.3: Optical lifetimes of molecular spin qubits for 1–3 are measured using resonant
excitation at the zero-phonon line at T = 4 K.

To effectively hole burn and spin polarize this level structure, the optical lifetime must be

shorter than the spin T1. We measure the excited state lifetime under off resonant excitation

to be 3.3 µs, 6.9 µs and 5.7 µs for compounds 1, 2 and 3 respectively (Fig.7.3).

7.1.3 Optical-spin interface

To demonstrate an optical-spin interface in these systems, we focus on 1 as an illustrative

example before discussing 2 and 3. Using a narrow-line laser, we resonantly excite the S

= 1 ground state to the S = 0 excited state and collect emission into the phonon sideband

to remove excitation laser scatter. First, we characterize the emission as a function of the

excitation wavelength (Fig.7.4A), and measure a PLE peak with a linewidth of ∼ 150 GHz.

For the rest of the experiments the narrow line laser is parked at the maximal signal point

of the PLE peak shown with the dashed line.

When we rotate the polarization of the incoming light with respect to the crystal ori-

entation, we observe a clear dipole transition between the ground and the excited states.

Although in a Td symmetry a dipole transition between the 1E excited state and 3A2 ground

state are forbidden, as discussed in Sec.3.3.1, within the reduced S4 symmetry of the com-

pound 1, the 1E splits into 1A and 1B, the ground state 3A2 turns into a 3B. In this

2. the feature at 1030 nm arises from the vibrational sideband
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Figure 7.4: All-optical ground-state spin initialization and readout of 1. (A) Photolu-
minescence excitation (PLE) spectrum obtained by sweeping a narrow-line laser over the
zero-phonon line. The dashed line shows the excitation wavelength used for all following
experiments. (Inset) Dependence of the PLE on laser polarization, defined by the angle θ
from the crystal long axis. (B) Time-resolved optical spin initialization. (C) All-optical
measurement of the spin-lattice relaxation time T1.

configuration, the electric dipole operator for light polarized in the S4 symmetry axis has

a B character, while the perpendicular component has has an E character. Going through

the product table in Sec.C.1, we see that the only allowed transition is between 3B ↔1 A in

the crystal axis direction, consistent with the data. Therefore, these electric dipole selection

rules explain the observation of Fig.7.4A inset that PLE is maximized for polarization along

the long axis of the crystal. This may also explain two orders of magnitude faster excited

state lifetimes3 of molecule based transition metal ions compared to more symmetric analogs

within the solid state host such as SiC or GaN. To further maximize emission, we align the

excitation polarization with the optical dipole transition, which is colinear with the long axis

of the needle-like crystal.

Although, the inhomogeneous linewidth is broadened by static energy-level variations,

likely caused by strain, the subensemble linewidth is limited only by dynamical processes

like electron phonon coupling. Therefore, as long as the spectral hole linewidth is similar

3. This may also be a result of increased non radiative decays from the excited state due to vibronic
structure of the molecules
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or smaller than the spin splitting energies, it is still possible to spin-selectively excite a

subpopulation.

We demonstrate this hypothesis by measuring an all-optical initialization and readout of

the ground-state spin using hole burning and recovery. To initialize the spin, we apply the

pulse sequence outlined in Fig.7.4B, consisting of a long optical pulse (2 ms) followed by a

wait time (2 ms) to equilibrate ground-state spin populations before the next pulse. The

emission during the optical pulse shows the characteristic behavior of optical spin polariza-

tion: a gradual drop in emission as population is pumped from the probed ground-state spin

sublevel (the “bright” state) and into the other (“dark”) spin sublevels. The optical contrast

between the start and the end of the pulse places a lower bound on the spin polarization of

14%.

Using this spin initialization, we all optically measure (same experiments as Sec.4.3.2

and Sec.6.5.1) the ground-state spin-lattice relaxation time, T1, by performing the two-pulse

experiment outlined in Fig.7.4C. This sequence consists of an initialization pulse (300 µs),

a variable relaxation time, and a readout pulse (20 µs). The initialization pulse transfers

population to the “dark” spin sublevels. As ground-state spin population relaxes back to

the “bright” sublevel, the emission increases. Measuring this emission at variable relaxation

times yields T1 = 0.22(1) ms. That T1 is much longer than the optical lifetime (Topt = 3.3

µs, Fig.7.3) confirms that many optical cycles can be used to accumulate ground-state spin

polarization.

7.1.4 Spin initialization and readout dynamics

Since the optical hole linewidth is similar to the zero field splitting, it is not possible to

resolve a hole recovery all optically. Instead, knowing the polarization contrast, optical

lifetime, spin T1 and D we can estimate crucial parameters such as spin polarization and

optical hole linewidth.

We consider a kinetic scheme consisting of spin-dependent optical pumping and excited-
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state decay, and spin-lattice relaxation. We neglect coherences between the different levels.

Denoting the populations of the triplet spin sublevels as n0, n+1, and n−1; and the population

of the singlet excited state as ne, the kinetic equations are:

ṅ0 = −g0n0 +
γopt

3
ne +

γT1
2

(n+1 + n−1 − 2n0) (7.1)

ṅ+1 = −g+1n+1 +
γopt

3
ne −

γT1
2

(n+1 − n0) (7.2)

ṅ−1 = −g−1n−1 +
γopt

3
ne −

γT1
2

(n−1 − n0) (7.3)

ṅe = g0n0 + g+1n+1 + g−1n−1 − γoptne (7.4)

 S = 0

D

g0 g1

�s=0
�s=±1n0

n±1

ne

γopt

γT1

Figure 7.5: Λ structure transition rates. nx indicates the amount of population in x =
{0, 1, e} for ms = 0, s = ±1 and ES respectively. gi are spin dependent pumping rates of
the ground state mi sublevels assuming g+1 = g−1 := g1, γopt = T−1

opt and γT1 = T−1
1 .

where gi are spin dependent pumping rates of the ground state mi sublevels, γopt = T−1
opt

and γT1 = T−1
1 . We assume equal decay rates to the three spin sublevels and also assume

g+1 = g−1 := g1 (Fig.7.5).

Hole Burning

To model the hole-burning dynamics in Fig.7.4B, we fit Eq.7.1 to the experimental data.

We use the separately measured optical lifetime and spin-lattice relaxation time, leaving g0

and g1 as the only free parameters. The resulting fit is shown in Fig.7.6, from which we
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extract g0 = 104s−1 and g0/g1 = 3.8. As discussed below, the observed optical contrast of

14% between the start and end of the pulse provides a lower bound on the spin polarization

since the excitation is not perfectly selective i.e. g1, g0 > 0.
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Figure 7.6: Hole-burning dynamics used to extract the spin-selective pumping rates g0 and
g1.

Estimating optical hole linewidth

Using the extracted ratio g0/g1 outlined in the previous section, we can estimate the subensem-

ble optical linewidth Γsub as follows: we assume that the subensemble broadening takes a

Lorentzian form, so that the pumping rate for a transition at center frequency f0 is

gsub = G

 1

1 +
(
f−f0
Γsub

)2

 (7.5)

Without loss of generality, we assume the laser frequency f matches the excitation of the

ms = 0 sublevel, and therefore the excitation of ms = ±1 is detuned by f − f0 ' D - the

zero field splitting parameter. Diving g0 by g1 based on the Eq.7.5 we get:

g0

g1
= 1 +

D2

Γ2
sub

(7.6)

Inserting D = 3.6 GHz extracted from EPR and ODMR measurements that we are about
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describe, and g0/g1 = 3.8 from the fit we find Γsub ' 2 GHz.

Spin polarization

Solving the equations Eq.7.1 in the steady state, optically induced spin polarization is given

by:

P =
n1 − n0

n1 + n1
=

g0 − g1

g0 + g1 + 3γT1
(7.7)

Knowing all these parameters from the above discussion, we find P = 28%.

Spin dependent optical contrast

PL is given by the population in the excited state, and the time it takes for it to decay, i.e.

PL= γradne. To examine the spin dependence, we find the steady state solution twice: first

where ms = 0 and ms = ±1 are only mixed because of the spin T1 process and second where

they are fully mixed because of the microwaves (equivalent to T1 → 0 i.e. γT1 →∞). Then

the optical contrast for ODMR is given by:

C =
PL(γT1 →∞)− PL(γT1)

PL(γT1)
=

2(g0 − g1)2γopt

3(3γopt + g0 + 2g1)(g1γT1 + g0(g1 + γT1/2)
(7.8)

Substituting our extracted values for g0 and g1, along with the experimental γopt and

γT1 , we find C ' 19%, close to the observed optical contrast of 14% in Fig.7.4B.

7.1.5 Optically detected magnetic resonance and coherent driving

We next optically probe the ground-state spin of 1 through hole burning and recovery by

microwave driving that we are familiar with from previous chapters. First, using continuous-

wave (cw) optical excitation, we place a subensemble of spins in the “dark” state and monitor

changes in emission (∆PL) as we sweep the microwave frequency. When this microwave
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frequency matches the spin sublevel splitting, the “dark” and “bright” sublevels are mixed,

resulting in increased PL. Fig.7.7 shows this optically detected magnetic resonance (ODMR)

as a function of both the microwave frequency and an external magnetic field applied along

the long axis of the crystal. The zero-field cw-ODMR spectrum provides D = 3.63 GHz,

and the Zeeman splitting yields a g-factor of 2.0, in agreement with the ESR measurements.

Magnetic Field (mT)

Fr
eq

ue
nc

y 
(G

H
z)

Δ
PL

/P
L 

(%
)

0.05

0.15

2 4 6 8 10

3.4

3.6

3.8

4.0

� = 3.63 GHz
� = 2.0

Figure 7.7: Optically detected magnetic resonance (ODMR) of the ground state of 1 as a
function of magnetic field and microwave frequency using continuous-wave optical excitation.
Dashed lines are a simulation with the stated g and D values.

We measure cw-ODMR linewidths (full width at half maximum) down to ∆f = 42

MHz. We can use this linewidth to estimate the inhomogeneous spin coherence time T ∗2 =

1/(π∆f) = 8 ns. We note that the observed linewidths may be due to strain inhomo-

geneities, possibly induced by the encapsulating epoxy upon cooling the sample, as well as

from hyperfine coupling to nuclear spins. Future synthetic and materials control provides

opportunities to address both these mechanisms to enhance T ∗2 .

To demonstrate coherent control over the ground-state spin, we drive Rabi oscillations

as a function of microwave driving power (Fig.7.8 using the following control sequence: an

optical initialization pulse, a wait time, a variable length microwave pulse, and an optical

readout pulse. We show the expected square-root dependence of the Rabi frequency on the

applied microwave power derived in Sec.2.2.3.

Next, using a π-pulse calibrated from Fig.7.8A, we perform pulsed ODMR at a fixed
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Figure 7.8: Optically detected coherent spin manipulation of the ground state of 1. (A) Rabi
oscillations between the ms = −1 and ms = 0 spin sublevels at B0 = 10 mT as a function
of driving power and (B) their Fourier transform. (C) Microwave-power dependence of the
Rabi oscillation frequency.
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Figure 7.9: Optically detected coherent spin characterization of the ground state of 1. (A)
Pulsed ODMR and Hahn echo pulse sequences. (B) Pulsed ODMR spectrum (B0 = 10 mT)
and double Lorentzian fit (black) confirms the source of the contrast to be the ground state
spins in Fig.7.8. (C) Optically detected ground-state spin coherence (B0 = 2 mT) with
exponential fit (black).

magnetic field, B0 = 10mT , while varying the microwave frequency confirming that the

optical contrast is indeed coming from the spin transitions (Fig.7.9B). Finally, by replacing

the single microwave pulse with a Hahn echo sequence, we measure the spin coherence time
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T2 = 640(60) ns at B0 = 2 mT (Fig.7.9C). In these pulsed ODMR experiments, the wait

time (10 µs ∼ 3Topt) between initialization and microwave manipulation ensures population

is in the ground state prior to coherent control. This wait time, along with the above

agreement between the ODMR and ESR spin parameters, shows that we coherently control

the ground-state spin. Furthermore, the measured T2, likely limited by the surrounding

hydrogen nuclear spins, is comparable to other transition-metal–based molecular qubits in

nuclear spin-rich environments [106, 107], and we expect that ligand deuteration should

greatly enhance T2 [107, 108].

7.1.6 Other compounds
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Figure 7.10: Optical spin addressability with synthetic tunability. (A-C) cw-ODMR spec-
tra and simulations (black) for 1-3, with microwave transitions and ligand modifications
depicted.

Having demonstrated an optical-spin interface and coherent spin control for 1, we high-

light how this functionality is not specific to a single compound. In Fig.7.10, we show

optical initialization, microwave spin manipulation, and optical readout of 2 and 3 through

cw- ODMR. As captured by the simulations, the variable peak intensities arise from ESR se-
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lection rules (23). Notably, the additional ligand methyl groups in 2 and 3 lead to substantial

E by lowering the crystal symmetry.

7.1.7 Quantum efficiency

Quantum efficiency of an emitter is the ratio of radiative decay from the excited state over all

other decay mechanisms and is an important figure of merit for optically accessible qubits.

We can estimate it by using a similar strategy to Sec.5.7:

ηrad =
ηdetneγopt

rsub
(7.9)

where rsub is the steady state subensemble photon count, ηdet is the photon detection

efficiency, ne is the number of molecules in the excited state and γopt is excited lifetime rate.

We estimate the current collection efficiency is ηdet ' 1% from the product of the follow-

ing estimates: objective collection efficiency (20%), transmission through optical components

(40%), fiber coupling (25%), detector efficiency (80%), fraction of photons within the side-

band (70%). Steady state subensemble photon count from the experiments is rsub ' 1

Mcts/s. Finally the number of molecules in the excited state is given by:

ne = nprobedfe (7.10)

where nprobed is the number of probed molecules within the spot size and fe is the

fraction of those within the excited state. We can estimate the number of probed molecules

by knowing the total number of them within the laser spot size, and the subensemble size

that is excited within:

nprobed = cCr
Vconfocal

Vcell/Z

Γsub

Γinhom
(7.11)

where cCr = 0.75% is the concentration of Cr:Sn dilution ratio within the crystal,

Vconfocal = 1.4 µm3 is the laser spot volume, Vcell = 1.12 nm3 is the size of the crystal
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unit cell, Z = 2 is the number of molecules per unit cell, and we had already found Γsub = 2

GHz and Γinhom = 150 GHz. Finally based on the steady state rate equations in Eq.7.1

with already known parameters, we estimate fe ' 1%. Putting all these numbers together,

we approximate a quantum efficiency of ∼ 10%, maybe not so surprisingly similar to the

estimate for SiC:Cr4+calculated in Sec.5.7.

7.2 V3+ based molecules
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Figure 7.11: Physical and electronic structure of trigonal bipyramidal compound. (A) Molec-
ular structure of the compound is determined by single-crystal X-ray diffraction. H atoms are
omitted for clarity. Reprinted with permission from [2]. Copyright 2020 American Chemical
Society. (B) Electronic level structure of the compound and qualitative d-orbital splitting
diagram for the compound in ideal C3v symmetry.

The electronic structure design principles for a transition metal based optically accessible

spin qubit can be realized in many other ways. One such example is the trigonal bipyramidal

compound, (C6F5)3trenVCNtBu shown below. The ligand environment shown in Fig.7.11A

creates the necessary d2 configuration under strong tetrahedral ligand field where V3+ pro-

vides the two valance electrons. The familiar electronic structure that allows for optical

access to ground state spins still form (Fig.7.11B), however, de ground state orbitals are

comprised of dxz, dyz while the higher energy dt orbital splits into de = {dxy, dx2−y2} and

158



da = dz2 .4

Figure 7.12: Electron spin resonance (ESR) of trigonal bipyramidal compound. 240 GHz
cw-ESR spectrum of the dilute crystal powder at 5 K (blue). The asterisk denotes a small
V4+ impurity. Simulations are in black. Reprinted with permission from [2]. Copyright 2020
American Chemical Society.

High frequency EPR experiments (240 GHz) at 5 K of diluted crystals in diamagnetic

analogs confirm the expected S = 1 ground state of the display a D = 108 GHz and an

E = 600 MHz with g ∼ 1.96. The measurements also show a high hyperfine coupling to the

51V A = 250(5) MHz.

Finally the zero phonon line centered at 1237 nm split under high magnetic fields where

individual ground state spin sublevels can be resolved because of the narrow optical emission

and large D value, confirming the singlet excited state structure of this molecule, and the

engineered spin-photon interface that is closer to the telecom band and could be used for

optical control of the ground state spins.

7.3 Summary

In this chapter we demonstrated that transition metal based optically accessible spin qubits

need not be within a solid state host. The same physics explored in Chapter 4 and techniques

developed in Chapter 5 can be immediately applied to chemically synthesized qubit analogs

4. One can immedaitely see how these orbital energetics are shaped based on the qualitative description
explained in Sec.3.1.1
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Figure 7.13: Resolving the ground state spin structure within the photoluminescence of the
vanadium compound.(A) Variable-field PL spectra with simulated Zeeman splitting (black)
and (B) differential PL collected on a single dilute crystal of the compound with the 0 T
spectrum in black. The schematic in white illustrates variable field splitting of the ZPL,
which originates from splitting of the ms sublevels. Reprinted with permission from [2].
Copyright 2020 American Chemical Society.

where we demonstrate optical initialization, microwave coherent control, and optical readout

of the ground-state spin in an ensemble of molecular qubits. Chemical synthesis provides

a lot of benefits. Relative to solid state based spin qubits, molecular qubit preparation is

cheap and scalable. As shown in this chapter, slight modifications of the molecule provide

variable magnetic and electronic structures. Similar spin and electronic structures can also

be engineered with different transition metal atoms and ligands spanning an optical spec-

trum from ∼ 1000 − 1240 nm and a microwave spectrum from ∼ 0.5 − 110 GHz, including

the E values. It is likely possible increase initialization and readout fidelities by enhanc-

ing the spin selectivity of the optical excitation, for example by targeting compounds with

large zero-field splittings such as the vanadium complex, or narrower subensemble optical

linewidths. By lowering the crystal symmetry through chemical design, substantial E terms

can be introduced as shown for compound 2 and 3, which can enhance spin coherence in

these compounds through noise-insensitive (i.e., clock-like) transitions[109]. Furthermore,

multimetallic systems could be synthesized with interacting metal sites that exhibit distinct

optical-spin interfaces, enabling both individual qubit addressability and multiqubit oper-
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ations. Targeted nuclear spin placement around these metal centers could further provide

long-lived quantum memories [110]. Alternatively, ligand functionalization and extension

of these results to biocompatible metal ions [111] may enable sensing of targeted analytes.

Furthermore, self-assembly could facilitate integration with photonic or electronic devices

[112]. Finally, the highly tunable nature of molecules offers promise for rationally designed

properties tailored to a specific purpose, e.g., telecom emission for long-distance quantum

networks, or strong spin-phonon interactions for hybrid quantum systems. These results

highlight pathways to design and create quantum technologies from the bottom-up.
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Chapter 8

Outlook

In Chapter 1, we motivated the need for quantum technologies, and benefits and short-

comings of various platforms. Chapter 2, built the mathematical foundations for spin-qubit

control and the electronic orbitals that contain the spins. Chapter 3 discussed the physics

of orbitals to construct electronic structures that support a ground state spin qubit as well

as an optical-spin interface to initialize and measure the qubit. The remaining chapters

experimentally demonstrated these discussed principles using various transition metals and

hosts. In this chapter we are going to do a quick recap of all of the results, their importance

and how we can resolve some of the outstanding issues.

8.1 Comparison of the discussed platforms

Below is a master table (Table 8.1) summarizing some important parameters from the ex-

perimental demonstrations.

The summarized results are categorized under various qualities we need for optically-

addressable spin qubits. So far, the experiments discussed in this thesis demonstrate a few

important milestones for transition metal based qubits. Namely, we have measured a single

transition metal ion based emitter, showed long coherence times with high initialization and

readout fidelities and created such qubits both in commercially available mature semicon-
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ducting substrates and through chemical synthesis. Furthermore, the synthesized platform

shows both an immense flexibility for creating qubits with different optical and magnetic

interfaces while preserving the physics that allow their control and scalability as identical

qubits can be mass produced. In order to build useful technologies out of transition metal

ions there are a few properties that we would need. Below is a description of them, how

current platforms hold up and some potential solutions.

8.2 Good to haves

Besides the must haves for an optically accessible spin qubit discussed in Sec.3.3.2, there

are also some very important properties that are good to have for a useful system [113].

Most of these properties can be either introduced by engineering electronic structure through

selecting a host crystal and/or ligand design, or through engineering devices and instruments

(e.g. photonic cavities and dilution refrigerators), although some properties are much more

difficult to solve than others.

• Long T1: T1 time is the ultimate limit to the memory time of a qubit and represents

the time it takes for the system to thermalize. We already discussed many mecha-

nisms responsible for spin-lattice relaxation and therefore strategically selected the d2

configuration as a spin qubit candidate system, exemplified by Cr in SiC where T1

time exceeding a second at 15 K. Sometimes closely spaced ground state can be un-

avoidable, especially if some other properties of the system are desirable such as bright

telecom emission (Chapter 5). Some engineering solutions can help with certain T1 de-

cay mechanisms. The most obvious strategy is reducing the temperature of the system

to freeze out the phonons which simply requires more expensive cryogenic instruments.

Depending on the process for the T1 decay, one can also use phononic crystals to reduce

the interaction between the phonons and the spin [114]. Finally, if degenerate ground

states are unavoidable, the further the energy separation between the ground states,
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the higher the T1 time will be for a given temperature [115]. One can potentially try

modifying the ligand environment of a transition metal ion in the d1 configuration by

reducing the symmetry, for example through strain [116], to induce a splitting in the

de orbital set to increase the T1 time.

• Long T2: T2 time is a purely quantum mechanical scale with no classical analog

and is generally referred as a spin dephasing time for the following reason: T2 rep-

resents the error accumulation time for the phase between the two logical states:

|0〉 + eiφ |1〉 → |0〉 + ei(φ+ε) |1〉. For example, we have seen how the phase can be

extracted using interference in Sec.2.2.4, and any error in the phase can cause sensing

and computation errors. The longer the T2, the higher sensitivity a sensor can have,

more qubit operations can be squeezed in within qubit lifetime for more complex calcu-

lations, and longer the quantum memory is, allowing for a larger light-cone, therefore a

quantum network size for photon based entanglement scheme. T2 is measured by using

a refocusing π pulse that eliminates slow evolving and static fluctuations and therefore

is limited by fast noise processes, most commonly caused by the spin bath. It is pos-

sible to increase the dephasing time with dynamical decoupling, where equally spaced

π pulses deliberately flip flop the qubit phase, so the accumulated error cancels out

for faster noise, increasing the T2 time. We have already seen 2-orders of magnitude

increase from T ∗2 to T2 for 4H-SiC:Cr4+ in Sec.5.4 by simply adding a single rephas-

ing pulse. The two biggest magnetic noise contributors are either other paramagnetic

species that belong to the same ensemble or different species, or nuclear spin bath of

the environment. Technically, the upper limit for a T2 is T1, however, the errors of the

π-pulses in a dynamical decoupling sequence can add up, limiting the noise cancelation

capability of dynamical decoupling.

As T2 decay mechanism for spin qubits is bath induced, spin dephasing mitigation

strategies to increase the T2 time is universal across spin qubits, including the ones

made out of transition metal ions. It is important to select a good host matrix with
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minimal nuclear and unwanted paramagnetic spins to increase the T2 time. We have

already seen the effects of the host on spin coherence between 4H-SiC:Cr and GaN:Cr.

Although both systems exhibit the same electronic structure, therefore optically acces-

sible spin-1 ground states, the spin coherence in SiC is two two orders of magnitude

larger than in GaN where nuclear spins of silicon and carbon isotopes are sparse while

there are no stable spin-0 isotopes for nitrogen or gallium. Specifically, group-II,IV,

VI and VIII1 elements are mostly nuclear spin free making hosts made out of them

ideal (Si, SiC, diamond etc.) for spin qubits [117]. Especially, they can be isotopically

purified to further reduce the ambient spin noise to increase the T2 time [118–121].

Finally, the spin system itself can be engineered to be insensitive to ambient magnetic

noise by finding zero first order Zeeman (ZEFOZ) transitions either induced by hy-

perfine interaction with a strongly coupled nuclear spin at a specific magnetic field

[118, 122], or by having an E term [39, 123], generally induced by reduced symme-

try. The former strategy can be employed by selecting the transition metal ion with a

nuclear spin, such as 51V that is nuclear spin-7/2 and the latter strategy can be em-

ployed by reducing ligand symmetry [1]. Finally, although an abundant nuclear spin

bath can limit coherence times, a sparse amount can be beneficial to be used as extra

registers [120]. Furthermore, for molecular spin qubits, chemical design can allow for

placing nuclear spins deliberately within close proximity to the spin qubits to increase

the computational space without handicapping the electronic spin coherence [110].

• Cycling Optical Transition: We have already discussed the key component of an

optical-spin interface in Sec.3.3.2. The Λ-like electronic structure coupled with narrow

emission due to d2 orbital configuration, enabled us to have spin addressability by

selective pumping. However, when addressing a single spin for precise quantum initial-

ization and readout measurements, we need to keep a few things in mind. The system

can have some readout errors that limit readout fidelity and confidence of the correct

1. These elements are not very reactive and therefore are rarely found within materials.
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spin measurement. Firstly, the probability of emitting a photon only in bright state

is not 100% accurate. We have already run into this error in Sec.5.5 where the dark

state wasn’t completely dark which limited the readout fidelity. Secondly, some of the

photons are lost that are emitted from the system due to collection inefficiencies[124].

How can we be confident that if we don’t detect a photon, it is truly a dark state and

not a lost photon from a bright state, or if we detect a photon, it is not a detector dark

count? If the probability of decay from the excited state to the bright spin ground state

is high, one can keep probing the system and with each extra detection event, one can

be more confident that they are indeed measuring the spin state correctly. However,

with each probing event, the spin state can flip, erasing the information of the initial

qubit measurement state. The probability of having the bright state decay back to the

bright state is called a cycling transition and is the key to measuring spins within a

single shot [125] - which is a key requirement for many of the quantum technologies

we discussed in Chapter 1 [126, 127].

Along with other spin and optical properties, the branching ratio of non rare earth

defects within a solid state medium is mostly predetermined by the electronic structure

that arises from the interactions with the host lattice. For rare earth defects f − f

transitions, the transition rates are governed by f -orbital dynamics, and the overlap

integral between the ground state and the excited sublevels, where the f -orbitals are

shielded from the outside influence. For either platform, one cannot deviate much

from the branching ratios given by the system by altering orbitals. One, however, can

engineer the probability of photon emission and absorption using a cavity, and modify

the branching ratio and oscillator strengths. This recently allowed for single shot spin

detection of rare earth ions [48]. A similar strategy may be needed for transition metal

ions in the solid state. For example, the branching ratio for the d2 configuration seems

to be equal decay probability to any of the ground states which is exactly the opposite

of a cycling transition! The same level structure forms a nice Λ-like system that allows
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for high fidelity initialization and readout of most of the systems discussed in this thesis.

This being said, under high magnetic fields, the excited state degenerate orbitals split

and display non-equal branching ratios likely arising from spin-orbit effects as can be

seen in Fig.4.1 [71]. Furthermore, the branching ratio for CrA (quasi-cubic site) is

different from CrC (quasi-hexagonal site), whose only difference is the local symmetry.

Since molecule based transition metal qubits have unlimited tunability capacity of their

immediate ligand environment, aided by computational methods, it may be possible

to engineer a cycling transitions through ligand design.

• Fast optical emission: The brighter the emitter, the more photons per second can be

collected out of the system, shortening the optical initialization and readout times. If

the defect emission is dim, then it becomes very challenging to detect a single emitter,

a key pre-requisite for many of the quantum technologies. V4+ in SiC has the d1

configuration and therefore has a short excited state lifetime of order 100 nanoseconds2,

which allowed for imaging a single emitter discuss in Sec.6.4. In contrast, Cr4+ in SiC

has the d2 configuration, and relies on the spin flip transition, and because they are

forbidden, the excited state is long lived of order 100 microseconds, making detection

of a single emitter without optical enhancement difficult. However, the slow decay rate

can be increased through Purcell enhancement. Such cavities are already available

for SiC, an example host used in this thesis [128]. We have also seen that molecular

platforms offer symmetry flexibility. For example by reducing the symmetry of the

local environment from Td → S4, the spin flip transition can be made dipole allowed

discussed in Sec.7.1.3. Although this cannot overcome the spin-forbidden nature of the

transition, the dipole allowed nature likely played a role in increased optical lifetime

of the molecular Cr4+ ion.

• High quantum efficiency: Every photon that comes out of the system is impor-

2. This rate may be due to non-radiative decay from the excited state as well.
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tant, but sometimes population from the excited state relaxes to the ground state

non-radiatively, generally releasing the energy in the form of phonons. If this non-

radiative rate is high, then one will need to probe the system many more times to

extract signal out of it to determine the ground state spin state, and furthermore, the

cyclical transition can be broken under this non-radiative decay, increasing readout

errors. Therefore it is important for an optical defect to relax radiatively more than

non-radiatively, where the ratio of the radiative decay rate to the total decay rate is

called quantum efficiency. The non radiative decay is complex to understand, and re-

quires extensive theoretical considerations. It is also difficult to experimentally verify

the quantum efficiency [129]. Ideally one needs to collect all of the photons coming from

the defect and compare it the expected number of photons given the excited state life-

time. Since there are many inefficiencies between optical components, photon-emission

profile, and detectors, it is difficult to obtain an accurate measurement. A conservative

comparing of expected number of photons to measured ones allowed us to place quan-

tum efficiency of Cr4+ based qubits over 10% (Sec.5.7, Sec.7.1.7) and SiC:V4+ >2%

(Sec.6.3.2). Vibronic coupling of the 1E ↔3 A2 transition within strong tetrahedral

d2 configuration is especially low because the optical transition is contained within the

non-bonding orbitals of de, likely contributing to the high observed quantum efficien-

cies. The quantum efficiency can also be enhanced by increasing the radiative decay

probability through optical cavities [128].

• High Debye-Waller factor: As we have seen in the PL data, besides the direct

transition from the excited state to the ground state (ZPL), sometimes a phonon and

a photon are emitted at the same time, causing a red shifted sideband emission. The

ratio of the ZPL emission to total emission is called the Debye-Waller factor and we

have already discussed its importance in Sec.4.2.1. To quickly remind the reader, since

the defect emission is entangled with the spin state, |↑, bright〉+ |↓, dark〉, it is possible

to entangle two remote spins by interfering their emission and erasing the information
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where the photon came from. The only way one can erase the information where the

photons came from is if the two photons are identical, and therefore from the ZPL

[75, 130, 131]. The remote spin entanglement rate is proportional to the square of

Debye-Waller factor as both spin qubits need to emit from the ZPL at the same time

for successful entanglement. Some of the vacancy based defect systems such as the

NV center in diamond and divacancy in SiC have a Debye-Waller factor of < 10%

[79, 132]. In contrast d1 configuration (V4+, Mo5+) in SiC has a Debye-Waller factor

25 − 50% (Sec.6.3.2) and the d2 configuration in SiC and GaN has a Debye-Waller

factor of > 73% (Sec.4.2.1) arising from the optical transition weakly coupling with

the phonons as the transition is contained within the de set. All of these numbers

can be further improved, again, with photonic cavities where the probability of optical

emission from a wavelength band, such as the ZPL, can be increased [128, 133].

• Life time limited linewidths: An ideal quantum emitter has optical linewidths that

are excited state lifetime transform limited. However, most of the semiconducting

material systems are filled with stray electrons and holes which create their own local

electric field that can Stark shift the optical emission much faster than detectable band-

width resulting in widened optical linewidths [38] which, for example, can limit photon

based entanglement rates [134]. Recent work demonstrated that one can remove these

charges with electric fields in SiC that allows for reaching lifetime limited linewidths

of divacancy defect in SiC. Currently V4+ and Cr4+ within SiC are 3-4 magnitudes

away from the the lifetime limited emission, and a similar electronic device strategy

can be employed to narrow the optical linewidths. For molecular work, possible ori-

gins of hole linewidths above the transform limit may include optical dephasing from

electron-phonon coupling and spectral diffusion from environmental electronic fluctu-

ations in the crystal due to for example, structural reconfigurations or time-dependent

variations in local photoexcitation density [135]. Depending on the reason, different

strategies need to be employed to reduce the hole linewidths of molecular qubits.
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• Telecom emission: As discussed in Chapter 1, telecom emission is incredibly impor-

tant to integrate a future quantum technology into the existing fiber optic network

to leverage the non-local properties of quantum technologies. For most of the defect

centers, the ZPL emission energy is predetermined and has very limited tuning capa-

bilities. Erbium in 3+ is extremely popular as a rare-earth platform precisely because

the lowest energy f -f transition lies in the middle of the telecom E-band, the optimal

transmission regime. V4+ also emits in the telecom but in O-band, is hosted in SiC a

mature semiconducting host, has a fast lifetime that allows detection of a single emit-

ter without any photonic enhancements and has an embedded electronic and a nuclear

spin that can be used as a qubit. V3+ in SiC has a d2 configuration and emits around

the 2 µm regime [136]. Even though this is outside of the existing telecom range, 2 µm

is the optimal transmission point for ZBLAN fiberoptic cables. A 2 µm photon within

a theoretically perfect ZBLAN can travel for 300 km before the probability of losing

it is 50%, an order of magnitude longer distance than an O-band photon in a stan-

dard fiberoptic cable [137]. V3+ would have the d2 configuration, with potentially long

spin T1 times, and Λ like optical structure. Therefore the techniques explored in this

thesis for spin control, initialization and readout could be readily applied to that plat-

form. The ZPL emission wavelength of transition metal based qubits can also be tuned

through ligand design, so far within a range of 200 nm by either changing the immedi-

ate ligand environment or the transition metal ion itself. This flexibility demonstrates

the great potential for wavelength tunability of molecular transition metal qubits and

it may be possible to design them with O or E band spin-photon interface.

• Reliable creation: For a feasible technology, devices must be created in a reliable

fashion. This is the Achilles heel of defect based quantum platforms. Some defect

platforms are purely composed of intrinsic defects (e.g. vacancy, anti-site, polytype

inclusion etc.) which can be created by damaging the host (e.g. irradiation [38],

implantation[84, 138]) followed by annealing. Localizing such defects and creating

171



them with good efficiencies is still an open research question [139]. If the defect center

needs an extrinsic atom (e.g. Nitrogen in NV centers, transition metal), then they are

easier to localize with techniques such as nano-implantation [86, 87] and delta doping

[140]. In this spirit, we studied implantation characteristics of Cr ions in SiC discussed

in Sec.5.1 and find that they have creation efficiencies > 10% and use this knowledge

to prepare both Cr and V samples in SiC that we study in Chapter 5 and Chapter 6.

During implantation, however, each local site is slightly different due to local strain,

charge traps, other defects and even natural isotopic variation of atoms that are part of

the lattice. Having atomistic control over molecular systems is much easier compared

to defects in host crystals, as each chemically synthesized molecule is the same (up to

statistical isotope distribution), and every electron is accounted for. Molecular qubits

also are extremely portable since they are a self contained unit within a ∼1 nm size

that can be moved around and integrated into electronic devices similarly to other

organic molecular compounds that are widely used in the electronics industry (e.g.

organic LED) [141]. The cheap and reliable creation of molecular qubits sets them up

to be a scalable solution to optically accessible spin qubits.

• Ease of device integration: Most of the solutions we discussed above rely on opto-

electronic devices. When defects are near surfaces [142, 143], or within highly strained

environments due to fabrication, the electronic structure can change, and the surface

charge fluctuations can broaden the optical linewidths [128]. To build reliably produced

multi qubit structures one needs to be able to place defects with lattice site precision

within a device. Since transition metal ions are substitutional defects, and can be

created through implantation it may be possible to well localize them in a host crystal

using a nono-implanter [86, 87] as discussed earlier. V4+ does not blink, spectrally

diffuse or shift within the data point collection time, although only being a 100 nm

from a surface as discussed in Sec.6.4. Similarly, the d2 electronic structures optical

paths are insensitive to strain and therefore may survive within the harsh, highly fabri-
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cated hosts. Both of these qubits could potentially be integrated within optoelectronic

devices. That being said, although a nano-implantation can give nanometer resolution

of qubit placement, this is still a stochastic method and is still not sufficient for exact

lattice placement which can be a challenge for creating large ordered, identical arrays

within devices. Under this consideration, molecular qubits can be a better candidate

for device integration. It may be possible to functionalize molecular qubits to attach

to electrodes for Stark control that are fabricated [144] in a precise relationship to an

optical cavity for ideal coupling [112]. Furthermore, molecules can be synthesized in

1-,2- or 3- dimensional structures [145, 146] to create exactly ordered arrays, where

each molecular spin is individually addressable through their own unique spin-photon

interface and individually controllable through zero field splitting parameters.

8.3 Concluding remarks

To recap, in this thesis we explored transition metal ion d-orbitals as electron hosts to

build optically addressable spin qubits. Careful thinking about the electronic structure that

supports a ground state spin qubit and an optical path that initializes and measures it led

us to explore specific symmetries and charge states. Unlike other solid state platforms, the

electronic structure of transition metal ions and therefore the qubit properties highly depend

on the immediate local environment, making them both portable between similar hosts, such

as GaN and SiC and tunable through ligand design. This flexibility can enable introducing

spin qubits within novel semiconductors as well as engineering electronic structures with

various spin selection rules, for example, a cycling transition. Transition metal based qubits

can impact all three pillars of quantum technologies. Individually addressable, chemically

synthesized arrays of molecular qubits can be dipolarly coupled to explore large information

processing devices. Telecom emission of vanadium can be used for quantum communication,

while potentially high spin-orbit effects of transition metals can be integrated within opto-
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electro-mechanical devices for transducing quantum information across various quantum

degrees of freedom to wire together different platforms to realize a quantum modem. The

nanometer size of molecular spin qubits, combined with mass production capabilities and

the potential of chemical functionalization sets them up as promising quantum sensors that

can be set and measured remotely using light. All of these potentials highlight the strengths

of transition metal ions as optically accessible spin qubits for use in quantum computation,

communication and sensing. The understandings and results demonstrated in this thesis

set transition metal ions as an emerging, highly flexible and very promising quantum bit

platform.
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Appendix A

Mathematics

A.1 Definitions

A.1.1 Pauli Matrices

The three Pauli matrices are defined as:

σx =

0 1

1 0

 σy =

0 −i

i 0

 σz =

1 0

0 −1

 (A.1)

Along with the I matrix, they create a basis for the 2× 2 complex matrix space.

A.1.2 Spin Matrices

S is the spin number of a system is a positive integer multiples of 1/2 (e.g. 1/2, 1, 3/2, ...).

The total dimensions of a spin-S system is 2S + 1 and each basis state can be represented

with the quantization m. Therefore a good label for ket object in the spin S vector space

is |S,m〉 where m = −S, ..., S. Sometimes simply |m〉 is used for short hand notation too.

The general spin matrices are constructed the following way:
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〈
m′
∣∣Sx∣∣m〉 = (δm′,m+1 + δm′+1,m)

1

2

√
S(S + 1)−m′m〈

m′
∣∣Sy∣∣m〉 = (δm′,m+1 − δm′+1,m)

1

2i

√
S(S + 1)−m′m〈

m′
∣∣Sz∣∣m〉 = δm′,mm

(A.2)

For a spin-1/2 system we see that Si = σi/2 where i ∈ {x, y, z} and σ is a Pauli matrix

defined Eq. A.1.

A.1.3 Spherical transformations

Let (x, y, z) be a point in Cartesian coordinates and (r, θ, φ) be the same point in spherical

coordinates. One transforms from one coordinate system to another the following way:

x = r cosφ sin θ (A.3)

y = r sinφ sin θ (A.4)

z = r cos θ (A.5)

r =

√
x2 + y2 + z2 (A.6)

θ = arccos

√
x2 + y2

z
(A.7)

φ = arctan
y

x
(A.8)

The surface and volume integral elements are:

dΩ = sin θdθdφ (A.9) dτ = r2dΩdr = r2 sin θdθdφdr (A.10)

Differential elements are:

∇ =
∂

∂r
r̂ +

1

r

∂

∂θ
θ̂ +

1

r sin θ

∂

∂φ
φ̂ (A.11)

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂

∂φ
(A.12)
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A.2 Proofs

Exponential Pauli Matrices

Claim: eia(n̂·~σ) = I cos a+ i(n̂ ·~σ) sin a where n̂ is a 3-dimensional vector with a unit length,

a is a scalar, and ~σ = (σx, σy, σz)
T , a column vector whose elements are Pauli matrices

defined at Eq. A.1.

Proof: First, we observe that σ2
i = I, where i ∈ {x, y, z}. Then (n̂ · ~σ)2 = (

∑
i niσi)

2 =∑
i(niσi)

2 =
∑
i n

2
i I = I. Therefore (n̂ · ~σ)2k = I and (n̂ · ~σ)2k+1 = (n̂ · ~σ) where k ∈ N.

Finally we can Taylor expand the exponential where p = 2k and q = 2k + 1 :

eia(n̂·~σ) =
∞∑
k=0

ik[a(n̂ · ~σ)]k

k!

=
∞∑
p=0

(i)2pa2p(n̂ · ~σ)2p

(2p)!
+
∞∑
q=0

(i)2q+1a2q+1(n̂ · ~σ)2q+1

(2p+ 1)!

= I
∞∑
p=0

(−1)pa2p

(2p)!
+ i(n̂ · ~σ)

∞∑
q=0

(−1)qa2q+1

(2p+ 1)!

= I cos a+ i(n̂ · ~σ) sin a

(A.13)

Simultaneous Diagonalization

Claim: Suppose A,B are two operators. They can both be simultaneously diagonalized

(share eigenvectors) if and only if they commute.

Proof: We need to prove this claim in both directions. First assume that they share their

eigenvectors and |ψ〉 is an eigenstate for both of them with eigenvalues a, b respectively. This

means:

[A,B] |ψ〉 = (AB −BA) |ψ〉 = AB |ψ〉 −BA |ψ〉

= Ab |ψ〉 −Ba |ψ〉 = bA |ψ〉 − aB |ψ〉 = (ba− ab) |ψ〉 = 0

(A.14)
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Similarly one can show that if two operators commute, then their eigenstates must be

the same. For this proof, assume that the eigenvalues of A are non-degenerate (unique). So

if [A,B] = 0, and A |ψ〉 = a |ψ〉. Then we can look at:

BA |ψ〉 = aB |ψ〉 = a |φ〉

= AB |ψ〉 = A |φ〉
(A.15)

where |φ〉 = B |ψ〉 and in the second line we used the commutation. This means A |φ〉 =

a |φ〉 which is another eigenstate of A with the same eigenvalue, contradicting our non-

degeneracy assumption, unless B |ψ〉 = b |ψ〉. If there are degeneracies in the space spanned

by the eigenvectors, the subspace can be rearranged to be in a block diagonal form, and a

similar proof follows but this time we talk about the degenerate subspace as opposed to a

single eigenvector.
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Appendix B

D Orbitals

B.1 Y m
l Functions

Here is a list of the relevant Ymn (θ, φ) functions:

Y 0
0 (θ, φ) =

1

2

√
1

π
(B.1)

Y 0
2 (θ, φ) =

1

4

√
5

π

(
3 cos2 θ − 1

)
(B.2)

Y ±1
2 (θ, φ) =

∓1

2

√
15

2π
sin θ cos θe±iφ (B.3)

Y ±2
2 (θ, φ) =

1

2

√
15

2π
sin2 θe±2iφ (B.4)

Y 0
4 (θ, φ) =

3

16
√
π

(
3− 30 cos2 θ + 35 cos4 θ

)
(B.5)

Y ±1
4 (θ, φ) =

∓3

9

√
5

π
sin θ cos θ

(
7 cos2 θ − 3

)
e±iφ (B.6)

Y ±2
4 (θ, φ) =

3

8

√
5

2π
sin2 θ

(
7 cos2 θ − 1

)
e±2iφ (B.7)

Y ±3
4 (θ, φ) =

∓3

8

√
35

π
sin3 θ cos θe±3iφ (B.8)

Y ±4
4 (θ, φ) =

3

16

√
35

2π
sin4 θe±4iφ (B.9)

179



B.2 Real d-orbitals

dz2 = Y 0
2 =

3

4

√
5

π

(
z2 − r2/3

r2

)
(B.10)

dyz =
1

i
√

2
(Y 1

2 + Y −1
2 ) =

√
15

4π

sgn(x)yz

r2
(B.11)

dxz =
1√
2

(Y 1
2 − Y

−1
2 ) =

√
15

4π

|x|z
r2

(B.12)

dxy =
1

i
√

2
(Y 2

2 − Y
−2
2 ) =

√
15

4π

xy

r2
(B.13)

dx2−y2 =
1√
2

(Y 2
2 + Y −2

2 ) =

√
15

16π

x2 − y2

r2
(B.14)
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z

dz2
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z
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z

dx2-y2
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y

z

dyz

x

y

z

dxz

Figure B.1: The geometric shape of real d-orbitals.
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Appendix C

Symmetry Elements

C.1 Notation

Below is a summary of notation used within group theory discussions [68].

C.1.1 Schoenflies Symmetry Notation

• E : Identity element. Note: do not confuse this with the Mulliken symbol for the doubly

degenerate orbitals in Sec.C.1.2.

• Cn: Rotation through 2π/n. For example C2 is a 180◦ rotation while C3 is a 120◦

rotation. For example 4H-SiC has C3 symmetry, where the crystal remain unchanged

if rotated by 120◦ by the c-axis.

• σ: Reflection in a plane

• σh: Reflection in a ‘horizontal’ plane which is perpendicular to the highest rotational

symmetry axis Ĉ.

• σv: Reflection in a ‘vertical’ plane which contains the highest rotational symmetry axis

Ĉ. For example there are 3 such planes in 4H-SiC, these planes are made out of the

c-axis and a vector in one of the non c-axis bond directions.
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• σd: Reflection in a ‘diagonal’ plane that contains the highest rotational symmetry axis

Ĉ and bisects the angle between the two fold axes perpendicular to Ĉ.

• i: Inversion i.e. i(x, y, z) → (−x,−y,−z). The point group is reflected across the

central point. Note: For example 4H-SiC or more symmetric configurations such as Td

discussed in this thesis lack inversion symmetry.

• Sn: improper rotation that is first a rotation by 2π/n followed by a reflection in a

horizontal plane: Sn = σhCn. For example Td point group contains S4 symmetry:

first a 90◦ rotation followed by a reflection across the x, y plane.

• iCn: as the label suggests this is a compound rotation-inversion which consists of a

rotation by 2π/n followed by an inversion.

Generally point groups are denoted by the symmetry elements they contain. Cn are

cyclic groups, Cnv contain both Cn symmetry and σv symmetry while Cnh have Cn and

σh. Sn groups have mostly compound operations. Dn are dihedral groups and have non-

equivalent symmetry axes in perpendicular planes and when there is also additional mirror

planes, then we get Dnh groups. There are five qubic groups T,O, Td, Th, Oh where there is

not a principal axis but instead four threefold axes.

C.1.2 Mulliken Symbols

Following symbols are used to describe orbitals and their transformations within a given

geometry.

• A: Non-degenerate state that is symmetric with respect to the rotation about the

principal axis Cn.

• B: Non-degenerate state that is anti-symmetric with respect to the rotation about the

principal axis Cn.
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• E: doubly degenerate (derived from the German word for degenerate: Entartet)

• T: Triply degenerate.

• 1: Symmetric under σh, i.e. symmetric with respect to a horizontal mirror plane

perpendicular to the principal axis Cn.

• 2: Anti-symmetric under σh, i.e. anti-symmetric with respect to a horizontal mirror

plane perpendicular to the principal axis Cn.

• g: Symmetric under i, i.e. symmetric with respect to inversion through the center of

the atom (derived from the German word for even: Gerade)

• u: Anti-symmetric under i, i.e. anti-symmetric with respect to inversion through the

center of the atom (derived from the German word for odd: Ungerade)

• ’: Symmetric under σv, i.e. symmetric with respect to the vertical mirror plane

containing the principal rotation axis.

• ”: Anti-symmetric under σv, i.e. anti-symmetric with respect to the vertical mirror

plane containing the principal rotation axis.

If a property does not exist, the label is omitted. For example, Td lacks inversion sym-

metry and therefore the Mulliken symbol representations of orbitals do not contain g,u

subscripts.

C.2 Dipole Transition Tables

Below are some of examples of transition tables that allow for dipolar transition between

the triplet ground state and the singlet first excited state that would be useful for designing

molecular spins qubits. For example Table 3.1 shows us that as Td deforms into S4, the

ground state of 3A2 → 3B and the excited state 1E → (A+B) and the dipole transition of

T2 → (B + E) which allows us to create the dipole transition table below:
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⊗ (𝑩+ 𝑬)⊗ A B E

A (B+E) A+E 2A+2B+E

B A+E (B+E) 2A+2B+E

E 2A+2B+E 2A+2B+E 2A+2B+4E

Table C.1: Dipole transition products for the S4 symmetry. Green cells contain the totally
symmetric representation A and therefore allow a dipole transition while red cells do not.

As discussed in Sec.7.1.3, although the transition between the first excited state E and

the ground state of A2 was dipolarly forbidden, under the reduced symmetry of S4, the new

ground state B has a dipolar transition to one of the first singlet excited state with the

character A.
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⊗ (𝑨𝟏 + 𝑬)⊗ A1 A2 E

A1 A1+E A2+E A1+A2+2E

A2 A2+E A1+E A1+A2+2E

E A1+A2+2E A1+A2+2E 2A1+2A2+4E

Table C.2: Dipole transition products for the C3v symmetry. Green cells contain the totally
symmetric representation A and therefore allow a dipole transition while red cells do not.

⊗ (𝑨𝟏 +𝑩𝟏
+ 𝑩𝟐) ⊗

A1 A2 B1 B2

A1 A1+B1+B2 A2+B1+B2 A1+A2+B1 A1+A2+B2

A2 A2+B1+B2 A1+B1+B2 A1+A2+B2 A1+A2+B1

B1 A1+A2+B1 A1+A2+B2 A1+B1+B2 A2+B1+B2

B2 A1+A2+B2 A1+A2+B1 A2+B1+B2 A1+B1+B2

Table C.3: Dipole transition products for the C2v symmetry. Green cells contain the totally
symmetric representation A and therefore allow a dipole transition while red cells do not.
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The tables for D2 and D2d do not allow dipole transitions between the first singlet

excited state and the spin triplet ground state. All of the orbital transitions for C3, C2 and

Cs symmetries are dipole allowed.
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Appendix D

Experimental Details

D.1 Confocal Microscopy

An example illustration of a confocal microscopy setup is shown below.

B0

Fiber Optic Cable
Coaxial Cable
Photoluminescence
Laser Excitation

Figure D.1: An example confocal microscopy setup.
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D.1.1 Optical Excitation

The experiments in this thesis both use a resonant and an off resonant laser. The off resonant

excitation for the d2 systems use a red laser with a wavelength ranging from 650nm to 730nm.

4H-SiC:V4+ experiments require a UV excitation (365 nm) achieved by a small diode for

both above bandgap excitation and charge stabilisation. The resonant excitation laser is

picked to address the zero-phonon lines for hole burning experiments. The laser is carefully

characterized when needed with the following tools: a Fabry-Perrot cavity allows detecting

mode hop events, a wavemeter carefully calibrates the wavelength and a powermeter monitors

the laser power stability. The narrow line excitation laser can be modified two ways: an

acousto-optical modulator can turn the laser on and off with 20-100 nanosecond raise/fall

time, and an electro-optic modulator can add sidebands at microwave driving frequencies

up to 12 GHz. Various excitation laser colors are combined with dichroic beam splitters.

The excitation polarization can be modified with optical waveplates. The excitation can be

separated from the collection either by a dichroic mirror or a beam splitter with appropriate

short and long pass filters in each path. The excitation path then can go through a fast

scanning mirror followed by a 4f lens pair for precise sample excitation. The laser then can

get focused onto the sample either by a high NA lens or an objective. Depending on the

setup, the focusing optic can be inside the cryostat in a heated housing, or outside with a

window correction collar.

D.1.2 Optical Collection

The resultant photoluminescence (excitation) traverses the same path back until the beam

splitter or the dichroic mirror. A new path cleans the collected signal with additional filters

and sends the collected light to one of the few different photo detectors. For example, a

spectrometer combined with an array of liquid nitrogen cooled InGaAs detector can measured

the spectral configuration of the signal. When the signal is strong, and the experiments can

be done quickly, a single pixel femtowatt detector can be used in conjunction with a DAQ or
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a lock-in amplifier to detect the optical signal. When the signal is weak (<3 million counts

per second), a superconducting nanowire single-photon detector (SNSPD) will register the

photon counting events. The detection events are converted to TTL pulses with a pulse

converter and a DAQ counter channel registers these events. The counts can be binned by

microwave switches where the output is connected to different counter channels.

D.1.3 Optical Imaging

To image the sample a pellicle beam splitter that prevents ghosting is used. The beam

splitter is mounted on a flip mount to remove it out of the optical path when the data is

collected. The imaging camera is a standard visible CCD with lens focused to infinity. The

imaging path is combined with a white light source via a second pellicle beam splitter. The

white light source is also collimated to infinity which illuminates the sample when imaging.

D.1.4 Microwave Excitation

A microwave source generates the necessary signal. The microwave source can either be a

vector one where I and Q control is done with an on-device bias or an external IQ modulator.

The control electronics do not always reliably output 0V bias so it is a good practice to further

attenuate microwaves with a switch. The output is fed into a microwave amplifier and sent

to the cryostat. The sample is situated by a microwave antenna. In plane microwave field

driving is achieved with a coplanar waveguide that is impedance matched to 50Ω at 1 GHz.

One should be careful and avoid nickel flashing for gold plated PCBs as the residual nickel

can cause significant magnetic field inhomogeneity. For the SiC:V4+ experiments, a second

PCB on top of the sample with a coplanar loop design generates a c-axis oriented driving

field while a window in the middle of the loop still allows optical access. The top mounted

antenna also allowed gluing the sample directly to the cold finger, allowing for better thermal

contact to reduce the sample temperature as low as possible needed for the longer T1 times

for coherent spin measurements.
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D.1.5 Magnetic Field Application

Most of the experiments in this thesis required a c-axis magnetic field. A permanent magnet

on a linear stage is centered at the optical path. The stage can adjust the magnetic field

magnitude. A gaussmeter can be either placed where the sample is or a known distance

away from it, say D, to calibrate the field at the sample. For the latter case, the magnetic

field at the gaussmeter is fit with the following function:

Bgaussmeter(x) =
A

(B + x)3
+ C (D.1)

where x is the linear stage location, and A,B,C are free fit parameters related to mag-

nitude of the field, distance from the magnet and constant field correction. Once these

parameters are extracted, the magnetic field at the sample can be calculated by:

Bsample(x) =
A

(B +D + x)3
+ C (D.2)

This approach allows for calibrating the field at the sample with ±1 Gauss accuracy. For

in plane magnetic fields the sample is flipped sideways as shown in Fig.D.1.

D.1.6 Time synchronization

All of the microwave and optical switches, IQ modulators and photon counter electronics

need to be time synchronized. For experiments that are not logic intensive a digital delay

generator is sufficient for time resolved measurements. When there are many channels that

need to be controlled an arbitrary waveform generator created TTL pulses with at least 1

ns resolution. Excited state lifetime is generally measured by looking at photon arrival time

binning using either photon counting card, or directly looking at photon arrival times with

a DAQ.
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D.2 High Field Measurements

B
Sample

Excitation
Photoluminescence
Shielded Fiber
Bare Fiber

Figure D.2: Illustration of the custom built optical PPMS probe.

High-field measurements up to B = 9T were performed in a cryostat with an integrated

superconducting magnet (Quantum Design Physical Property Measurement System, PPMS.

The sample was cooled to a temperature of 10 K through helium exchange gas. To provide

optical access to the sample, we use an optical fiber (Thorlabs, FP400ERT) mounted in a

custom-built probe. The sample end of the probe mounts to the base of the PPMS through a

sample-mount puck. The (unconnectorized) end of the optical fiber at the sample is mounted

directly on the sample to provide excitation and PL collection, and is clamped in place. A

custom-made vacuum compatible fiber feedthrough connects this fiber to excitation and

collection optics with similar elements discussed in Sec.D.1.
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