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ABSTRACT

This dissertation presents two experiments studying the statistical properties of the undula-

tor radiation in the Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab.

The first experiment studies the turn-to-turn fluctuations in the power of the radiation

generated by an electron bunch (1–3 billion electrons). Generally, these turn-to-turn fluctu-

ations depend on the full 6D phase-space distribution of the electron bunch. This effect is

related to the interference of fields radiated by different electrons. Changes in the relative

electron positions and velocities inside the bunch result in fluctuations in the total emitted

energy per pass in a synchrotron radiation source. This dissertation presents the most com-

plete (to date) theoretical description of this effect. The experiment in IOTA confirms that

the fluctuations depend on the shape, size, and angular divergence of the electron bunch.

It reveals the possibility to measure some electron bunch parameters via the fluctuations.

The bunch length has been measured by this method in previous experiments. In IOTA,

it is shown that it is also possible to measure some transverse properties of the electron

bunch distribution (size, angular divergence). This non-invasive electron beam diagnostic

technique may be particularly beneficial for the existing and next-generation low-emittance

high-brightness ultraviolet and x-ray synchrotron light sources.

The second experiment studies the photon statistics of the undulator radiation generated

by a single electron circulating in the ring. When there is only one electron, any classical

interference-related collective effects are eliminated, and the quantum fluctuations can be

studied in detail. In this experiment, on average, there is only one photocount per several

hundred revolutions. The collected data are analyzed to find possible deviations from the

expected Poisson process exhibiting uncorrelated detection events. In addition, the arrival

times of the photocounts are used to track the longitudinal motion of the single electron and

to compare it with the simulation. This allows to determine several useful parameters of the

storage ring.

xi



CHAPTER 1

INTRODUCTION

The x-ray synchrotrons and free-electron lasers (FELs, [1]) opened a new era in the inves-

tigation of matter on the angstrom length scale and with time resolution on the order of

femtoseconds. The synchrotron radiation of highest quality is currently obtained using the

undulator — a sequence of magnets with alternating polarities, see Fig. 1.1. The magnetic

field in this insertion device forces the electron to wiggle from side to side as it travels

through the undulator. The synchrotron radiation generated along the entire undulator

length is emitted in approximately the same direction, as opposed to the bending-magnet

radiation, where the radiation fields produced in different regions of the dipole magnet travel

in significantly different directions and cannot be focused on the target simultaneously. In

addition, due to the periodicity of the undulator, at certain wavelengths, the fields produced

in different periods can add up constructively. As a result, the spectral intensity distribution

of the undulator radiation is represented by a narrow peak [2, p.34] (the fundamental) and

harmonics of it, as opposed to a very wide spectral intensity distribution of the bending-

magnet (or wiggler) radiation.

Figure 1.1: Illustration of an undulator, the electron trajectory in the undulator, and the
undulator radiation cone.

The x-ray undulator radiation is used in numerous areas of research, such as biology,

chemistry, materials science, and medicine. It allows to study atomic details of viruses
1



(including COVID-19), film chemical reactions [3, 4], decipher the structure of proteins and

other macromolecules. In particular, solving the structure of the ribosome [5] earned the

Nobel Prize in Chemistry in 2009 [6]. The intense x-ray radiation produced in FELs even

allows to study the processes in the interior of planets [7].

Examples of existing or planned x-ray FELs and synchrotrons include LCLS [8] and

LCLS-II [9] at SLAC, European XFEL [4] at DESY, SACLA [10] in Japan, APS [11] (and

APS-Upgrade) at Argonne, and Swiss FEL [12]. These are large machines (e.g., European

XFEL is 3.4 km long) with construction costs reaching or even exceeding a billion dollars.

Because of the very limited number of such machines, they are booked for experiments by

the users for months or years in advance. Due to these reasons, it is crucial to understand the

properties of the electron bunches and the generated synchrotron radiation in these machines

very well, including the statistical properties of the radiation.

In the past few decades, a substantial progress has been made in understanding the

statistical properties of synchrotron radiation. The turn-to-turn intensity fluctuations of in-

coherent spontaneous bending-magnet, wiggler, and undulator radiation in storage rings have

been studied in Refs. [13–18], both theoretically and experimentally. The statistical prop-

erties of the free-electron laser radiation have been studied in Refs. [19–25]. Nevertheless,

to this day, people are mostly interested in pulse-by-pulse average properties of synchrotron

radiation, such as the total radiated power, spectral composition, angular intensity distribu-

tion and brightness [2]. The predictions of classical electrodynamics for these pulse-by-pulse

average characteristics are supported by countless observations. In fact, they are confirmed

every day by routine operations of synchrotron radiation user facilities around the world.

The statistical properties of synchrotron radiation have not been studied to the same level

of detail yet. The goal of this dissertation is to try to close this gap and also to point out

some possible applications.

This dissertation presents experiments studying the statistical properties of undulator

2



(a) (b) (c)

Figure 1.2: (a) Photograph of the IOTA storage ring. Photographed by Giulio Stancari
in May 2021. (b) Photograph of the permanent-magnet undulator installed in IOTA on
a movable stage. Photographed by the author in February 2019. (c) Photograph of the
undulator radiation on the surface of a black screen.

radiation in a storage ring. The relevant theoretical description is presented as well. These

experiments took place at the Fermilab’s Integrable Optics Test Accelerator (IOTA), see

Ref. [26] and Fig. 1.2(a). It is a small 40-meter-circumference storage ring, primarily de-

signed for accelerator science and technology research. This ring can store protons and

electrons. To this moment, it has only stored electrons. The main research avenues in the

ring are the following: the nonlinear beam optics studies [27–32], the optical stochastic cool-

ing (OSC) experiment [33–38], and the electron lens experiments [39–42]. However, there is

also time for other smaller opportunistic experiments, such as the experiments presented in

this dissertation.

A short permanent-magnet undulator has been installed in one of the straight sections

of the ring, see Fig. 1.2(b). This undulator was borrowed from SLAC. The energy of the

electrons was 96.4 MeV. At this energy, the fundamental of the undulator radiation was

about 1.16 µm (near-infrared). The second harmonic was in the visible range and could be

observed in a regular photograph, see Fig. 1.2(c).

Two experiments were carried out to study the statistical properties of the undulator

radiation in IOTA. In the first experiment, there was one electron bunch in the ring, con-

sisting of relatively many electrons (1–3 billion), and the light detector (an InGaAs p-i-n

photodiode) was mostly sensitive to the fundamental of the undulator radiation. These

3



measurements took place during February–April 2019 and during February–March 2020. In

the second experiment, there was a single electron (or a few electrons) circulating in the ring.

A Single Photon Avalanche Diode (SPAD) detector was used, which was mostly sensitive

to the second harmonic of the undulator radiation. These measurements took place during

February–March 2020 and during May–July 2021. In both experiments, the turn-by-turn

data were collected. The results of these two experiments will be described in Chapters 3

and 4, respectively.

In the first experiment with a bunch of electrons, the idea is to record the number (1–

2×107) of detected photons at each revolution in the IOTA ring for about 11 thousand

consecutive revolutions (1.5 ms). These numbers are not the same, there are small fluctua-

tions with the relative magnitude of about 10−4–10−3 (rms). Then, one can calculate the

variance of these 11 thousand numbers and systematically study it as a function of the elec-

tron bunch parameters (charge, size, shape, angular divergence). Further, it will be shown

that it is possible to reverse this procedure and infer some electron bunch parameters using

the measured fluctuations of the number of detected photons.

In the second experiment with a single electron, similar turn-by-turn data are collected.

However, a photon detection does not occur every turn in this case. On average, it occurs

once per several hundred IOTA revolutions. In the first experiment with a bunch of elec-

trons, the fluctuations are dominated by classical effects, related to the interference of the

electromagnetic fields produced by different electrons in the bunch. The second experiment

with a single electron eliminates any classical effects and allows us to scrutinize the quantum

fluctuations of the number of detected photons. This experiment is motivated by the sur-

prizing observation [43, 44] of non-classical sub-Poissonian photon statistics in the seventh

coherent spontaneous harmonic of an FEL. Even though it could have been an instrumen-

tation effect [45], it is interesting to carry out a fairly similar experiment in IOTA and see

the results. In addition, some measurements are taken with two detectors to study possible
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correlation (or anticorrelation) in the detected photon pairs. Lastly, it will be shown that

the collected photocount detection times can be used to study the synchrotron motion of a

single electron in IOTA.
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CHAPTER 2

DERIVATION OF STATISTICAL PROPERTIES OF

UNDULATOR RADIATION

The number of photons, radiated by an electron bunch in an external electromagnetic field

(undulator, wiggler, bending magnet, etc.), fluctuates from pass to pass due to the following

two mechanisms [46]. The first mechanism is the photon shot noise, related to the quantum

discrete nature of light. This effect would exist even if there was only one electron circu-

lating in the ring. Indeed, the electron would radiate photons with Poisson statistics [47–

49]. The second mechanism is related to the interference of fields radiated by different

electrons. Changes in relative electron positions and velocities inside the bunch result in

fluctuations in intensity, and, consequently, in the number of photons. In a storage ring,

given a constant number of electrons in the bunch, the effect arises because of the betatron

motion, synchrotron motion, radiation induced diffusion, etc.; in linacs, there are additionally

bunch-to-bunch fluctuations in beam intensity.

For dense bunches, the fluctuations in the number of detected photons are usually domi-

nated by the latter mechanism [2], as was the case in Refs. [13–15, 17, 18]. In this section, a

unified description of both mechanisms is presented in the framework of quantum optics. Be-

low, let us consider one electron bunch circulating in a storage ring. The number of electrons

in the bunch is assumed to be constant on the time scale of interest. Let us consider the radi-

ation generated in one of the synchrotron radiation sources in the ring, e.g., in an undulator,

a wiggler, a bending magnet, etc. Section 2.1 presents our derivation of the equations for the

mean and the variance of the number of detected photons for an electron bunch of arbitrary

shape and arbitrary degree of coherence of the radiation. These equations assume negligible

angular electron beam divergence and energy spread. Section 2.6 discusses several cases,

where simple closed-form expressions can be obtained. In Section 2.3, our calculations are

compared with the empirical data from the previous experiment carried out at Brookhaven
6



National Laboratory [13]. Unfortunately, the experiment’s parameters are not known to us

with sufficient accuracy. Therefore, in Section 2.4, a new experiment in the IOTA storage

ring is proposed [16, 50], where all relevant parameters are measured with good accuracy.

It will be shown that the angular electron beam divergence cannot be neglected in IOTA

and, therefore, the corresponding modifications to the theoretical description are presented

in Section 2.5.

2.1 Quantum optics description of the fluctuations of the number

of detected photons

Let us assume a detector that can measure the number of detected photons N during each

revolution in a ring. The operator corresponding to this observable will be denoted by N̂ .

The operation principle of the detector will be discussed later. In this section, the goal

is to calculate the average number of detected photons 〈N〉 and its turn-to-turn variance

var(N ) in the framework of quantum optics. In this consideration, the electromagnetic

field of the radiation is quantized. The electrons are classical point-like particles with equal

velocities before entering the synchrotron radiation source. Quantitatively, it means that

the electron momentum spread σp is sufficiently small, so that all of them produce radiation

with approximately the same spectrum. Also, it means that the beam divergence is negligible

compared to the radiation divergence [2, 17, 51],

σx′ � σr,x′ , σy′ � σr,y′ . (2.1)

These conditions are satisfied in the experiments reported in Refs. [13, 17, 52], for exam-

ple.
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2.1.1 Density operator formalism

The density operator [48, 53–55] for the radiation is

ρ̂ =

∫
dξ p(ξ) |ψ(ξ)〉 〈ψ(ξ)| , (2.2)

where |ψ(ξ)〉 represents the state of the radiation field after the passage of the electron bunch

through the synchrotron radiation source. This state is a function of the relative positions

of the electrons in the center of the radiator. To signify this let us use the symbol ξ,

ξ = (r̃1, . . . r̃ne), (2.3)

dξ = dr̃1 . . . dr̃ne , (2.4)

where r̃m = (xm, ym,−ctm), here and below vector quantities will be represented by bold

symbols; tm is the time when mth electron passes the center of the light source, xm and ym

are the transverse coordinates of the mth electron at that moment in time, ne is the number

of electrons in the bunch, p(ξ) is the probability density function for the relative electron

positions configuration ξ,

∫
dξ p(ξ) = 1. (2.5)

In a more general case, ξ should include the velocities of the electrons in the center of

the radiation source. This more general case will be considered in Section 2.5. For now the

velocities are assumed to be equal.

Let us choose the coordinate system where the z-axis goes along the axis of the undulator

(wiggler), and the x- and y-axes are the horizontal and vertical axes in the plane, perpendic-

ular to the z-axis, as illustrated in Fig. 1.1. In a bending magnet, the z-axis can be chosen

to point along the radiation traveling towards the detector.
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The goal is to find the expressions for the average number of detected photons 〈N〉 and

for the turn-to-turn variance of N , var(N ). In the density operator formalism [53], these

quantities can be obtained as

〈N〉 = Tr
(
ρ̂N̂
)

=

∫
dξ p(ξ) 〈ψ(ξ)|N̂ |ψ(ξ)〉 , (2.6)

var(N ) = Tr
(
ρ̂
(
N̂ −〈N〉

)2)
= Tr

(
ρ̂N̂ 2)−〈N〉2 =

∫
dξ p(ξ) 〈ψ(ξ)|N̂ 2|ψ(ξ)〉−〈N〉2 . (2.7)

This dissertation considers the regime of negligible electron recoil, and, thereby, classical

electrons [48, 49]. This is satisfied in all existing storage rings. In this case, according to

Ref. [48], the radiation is in the coherent state, also known as the Glauber state. Let us

begin by considering the radiation in a cube with a finite side length L and periodic boundary

conditions. Hence, there are discrete optical modes with wave-vectors k = (m,n, l)× 2π/L,

where m,n, l are integers, not equal to zero simultaneously. For each wave-vector k, there

are two perpendicular polarizations es(k), s = 1, 2. For simplicity, let us consider only one

polarization s. In this case, each mode is fully described by its wave-vector k. Therefore,

instead of carrying the indices m,n, l, it is sufficient to use a single symbol k as an index in

a sum (or product) over all optical modes. Similarly, k will be used as a subscript of several

functions, quantities, quantum states and operators to indicate which mode they pertain to.

In this convention, the coherent state of the radiation field, as a direct product over all the

optical modes, is

|ψ(ξ)〉 =
∏
k

|αk(ξ)〉k , (2.8)

with ∣∣∣αk(ξ)
〉
k

= e
−1

2

∣∣∣αk(ξ)
∣∣∣2∑

nk

α
nk
k (ξ)√
nk!
|nk〉k , (2.9)

where |nk〉k represents the number state (Fock state) of the optical mode with a wave-vector
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k. According to Ref. [48],

αk(ξ) =
1√

2L3~ω

∫
dt d3r es(k) · j(ξ, r, t)eik·r−iωt, (2.10)

where j(ξ, r, t) represents the current density of the electron bunch with the initial relative

arrangement ξ, ~ is the reduced Planck constant, ω = kc, where c is the speed of light.

The coherent state of each optical mode is the eigenstate of the annihilation operator

corresponding to this mode,

âk

∣∣∣αk(ξ)
〉
k

= αk(ξ)
∣∣∣αk(ξ)

〉
k
. (2.11)

The calculation of αk(ξ) is postponed until Section 2.1.3. Discussion of the regime, where

both polarization components are registered, will be provided later [see Eq. (2.58)].

2.1.2 Detection operator

The specifics of operation of the chosen light detector determine the form of the operator

N̂ . This operator has different forms for photodiodes, homodyne detectors, avalanche pho-

todiodes and multiplexed detection schemes with many avalanche photodiodes [53]. In this

dissertation, the k-dependent (and polarization dependent) quantum efficiency ηk of a non-

ideal detector is considered in the model of a beamsplitter, followed by an ideal detector, see

Ref. [54] and Fig. 2.1.

The input-output relations for the beamsplitter take the form [56]

b̂k =
√
ηk âk + i

√
1− ηk ĉk, (2.12)

d̂k =
√

1− ηk ĉk + i
√
ηk âk , (2.13)

where âk represents the incoming field, ĉk corresponds to the second input port, which
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Figure 2.1: The beamsplitter model for quantum efficiency of a non-ideal detector.

is in the vacuum state in this model, b̂k and d̂k are the transmitted and reflected fields,

respectively. This model is appropriate for quantum efficiency of a photodiode [53], where

the number of detected photons N is determined as the number of photoelectrons coming

from the photodiode. In addition, this model can take into account the spectral transmission

of optical filters, lenses, reflectance of mirrors, and detector acceptance.

Further, let us assume that the operator for the total number of detected photons N̂ is

a superposition over all modes, i.e.,

N̂ =
∑
k

b̂
†
kb̂k. (2.14)

In this model of the detector, the operator N̂ belongs to the Hilbert space composed of

the Hilbert subspaces of both input ports of the beamsplitter. Therefore, the vector state of

the radiation |ψ(ξ)〉 has to be supplemented by the vacuum state of the second input port,

|ψ(ξ)〉 → |0〉c |ψ(ξ)〉 , (2.15)

where the subscript c is used to indicate the Hilbert subspace of the second input port. When
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the substitution, Eq. (2.15), is carried out in Eqs. (2.6) and (2.7), the expectation values in

these equations will take the following form,

〈ψ(ξ)|N̂ |ψ(ξ)〉 → 〈ψ(ξ)| c〈0|N̂ |0〉c |ψ(ξ)〉 , (2.16)

〈ψ(ξ)|N̂ 2|ψ(ξ)〉 → 〈ψ(ξ)| c〈0|N̂ 2|0〉c |ψ(ξ)〉 . (2.17)

Therefore, it is necessary to calculate the expectation values c〈0|N̂ |0〉c and c〈0|N̂ 2|0〉c

for the vacuum state of the second input port |0〉c. Let us start with c〈0|N̂ |0〉c. Using

Eq. (2.12) in Eq. (2.14) one can obtain

N̂ =
∑
k

(
ηk â
†
k âk + i

√
ηk
√

1− ηk â
†
k ĉk − i

√
ηk
√

1− ηk ĉ
†
k âk + (1− ηk)ĉ

†
k ĉk

)
. (2.18)

Since only the first term in the parentheses in Eq. (2.18) will provide a nonzero contri-

bution in c〈0|N̂ |0〉c, one can immediately obtain

c〈0|N̂ |0〉c =
∑
k

ηk â
†
k âk . (2.19)

The derivation of the expression for c〈0|N̂ 2|0〉c is more lengthy,

c〈0|N̂ 2|0〉c = c〈0|
∑
k1

b̂
†
k1
b̂k1

∑
k2

b̂
†
k2
b̂k2|0〉c

= c〈0|
∑
k1,k2

(
ηk1 â

†
k1
âk1 + i

√
ηk1

√
1− ηk1 â

†
k1
ĉk1 − i

√
ηk1

√
1− ηk1 ĉ

†
k1
âk1 + (1− ηk1)ĉ

†
k1
ĉk1
)

(
ηk2 â

†
k2
âk2 + i

√
ηk2

√
1− ηk2 â

†
k2
ĉk2 − i

√
ηk2

√
1− ηk2 ĉ

†
k2
âk2 + (1− ηk2)ĉ

†
k2
ĉk2
)
|0〉c.

(2.20)

After considering the products of each term from the first parentheses with each term
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from the second parentheses in Eq. (2.20), it can be concluded that only the following two

will provide nonzero contributions,

c〈0|N̂ 2|0〉c = c〈0|
∑
k1,k2

(
ηk1ηk2 â

†
k1
âk1 â

†
k2
âk2+

√
ηk1(1− ηk1)ηk2(1− ηk2)â

†
k1
ĉk1 ĉ

†
k2
âk2
)
|0〉c

=
∑
k1,k2

ηk1ηk2 â
†
k1

(â
†
k2
âk1 + δk1,k2)âk2 +

∑
k

ηk(1− ηk)â
†
k âk

=
∑
k1,k2

ηk1ηk2 â
†
k1
â
†
k2
âk1 âk2 +

∑
k

η2
k â
†
k âk +

∑
k

ηk â
†
k âk −

∑
k

η2
k â
†
k âk , (2.21)

where the following commutation relation was used [48],

[âk1 , â
†
k2

] = δk1,k2 =


1, if k1 = k2,

0, otherwise,
(2.22)

and also the fact that

c〈0|ĉk1 ĉ
†
k2
|0〉c = δk1,k2 . (2.23)

After noticing that the second and the forth terms in Eq. (2.21) cancel out, one can arrive

at the final expression,

c〈0|N̂ 2|0〉c =
∑
k

ηk â
†
k âk +

∑
k1,k2

ηk1ηk2 â
†
k1
â
†
k2
âk2 âk1 . (2.24)

The expressions in Eqs. (2.19) and (2.24) are not scalars, they are operators in the Hilbert

subspace of the first input port, to which the vector state |ψ(ξ)〉 belongs.
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2.1.3 General expressions for the mean and the variance of the number of

detected photons

The expectation values of the operators obtained in Eqs. (2.19) and (2.24) with respect to

the vector state |ψ(ξ)〉, defined in Eq. (2.8), can be calculated by using Eq. (2.11). When

the results are used in Eqs. (2.6) and (2.7), the expressions for 〈N〉 and var(N ) in the

beamsplitter model of the detector take the following form,

〈N〉 =
∑
k

∫
dξ p(ξ)ηk

∣∣∣αk(ξ)
∣∣∣2 , (2.25)

var(N ) = 〈N〉+

∫
dξ p(ξ)

(∑
k

ηk

∣∣∣αk(ξ)
∣∣∣2)2 − 〈N〉2 . (2.26)

Now it is necessary to obtain the expression for αk(ξ). The current density of the electron

bunch is

j(ξ, r, t) =
∑
m

evm(t)δ(rm(t)− r), (2.27)

where δ(..) is the Dirac delta function, m = 1, . . . ne; r = (x, y, z) describes the position in

space,

rm(t) = (xm(t), ym(t), zm(t)) (2.28)

is the trajectory of mth electron [not to be confused with r̃m = (xm, ym,−ctm) from

Eq. (2.3)], vm(t) is the velocity vector of mth electron as a function of time.

Without loss of generality one can choose the electron with m = 1 to be the reference

electron. To be specific, for this electron, the time of passing the center of the undulator is

zero, t1 = 0, and its transverse position at this moment in time is zero as well, r̃1⊥ = 0. Let

us assume that in the synchrotron light source under consideration the trajectory of the mth

electron is merely the trajectory of the reference electron offset by r̃m⊥ = (xm, ym, 0). It is
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usually a good approximation in undulators, wigglers, and bending magnets. In this case,

j(ξ, r, t) =
∑
m

ev(t− tm)δ(r(t− tm) + r̃m⊥ − r), (2.29)

where the index “1” was dropped in the position vector and the velocity vector of the reference

electron for brevity, i.e., r1(t− tm)→ r(t− tm) and v1(t− tm)→ v(t− tm).

By integrating over r in Eq. (2.10) using Eq. (2.29), one can obtain

αk(ξ) =

√
α

2L3k

∑
m

∫
dtes(k) · v(t− tm)× eik·r(t−tm)+ik·r̃m⊥−iω(t−tm), (2.30)

where α = e2/(~c) is the fine-structure constant.

By changing the integration variable from t to t− tm in each sum term one arrives at

αk(ξ) =

√
α

2L3k

∑
m

eik·r̃m⊥−iωtm
∫

dtes(k) ·v(t)eik·r(t)−iωt =
(∑
m

eik̃·r̃m
)
×α(1)

k , (2.31)

where k̃ = (kx, ky, k), noting that the last component is k = |k| = ω/c, not kz. The new

function α(1)
k is calculated only for the reference electron,

α
(1)
k =

√
α

2L3k

∫
dtes(k) · v(t)eik·r(t)−iωt. (2.32)

To summarize, assuming a monoenergetic electron bunch with negligible beam divergence

[see Eq. (2.1)], the following expression was derived,

αk(ξ) = α
(1)
k ×

∑
m

eik̃·r̃m , (2.33)

where α(1)
k is given by Eq. (2.32) and calculated only for the reference electron; r̃m =

(xm, ym,−ctm), where xm and ym are the transverse positions of mth electron (relative to
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the reference electron) when mth electron passes through the center of the light source at

the moment in time tm. Similar calculations have been presented in [2, 17, 51].

At this point, one can take the limit L → ∞ and transition from discrete to continuos

optical modes. As a replacement for α(1)
k in this limit, one can introduce a continuous

function Ek of a continuous variable k in the following way

Ek =

√
αk

2(2π)3

∫
dt es(k) · v(t)eik·r(t)−iωt. (2.34)

The square of the magnitude of Ek describes the photon flux produced by a single electron

(s.e.) in the direction of the wave-vector k, i.e., for the number of detected photons one can

write
d3 〈Ns.e.〉
dk d2Ω

= ηk |Ek|2 , (2.35)

where d2Ω is the element of solid angle around the direction of k. The expression for Ek for

the undulator radiation will be presented in Section 2.2. For now, let us assume an arbitrary

synchrotron light source.

It will be necessary to work with the complex function Ek in Section 2.5. In the current

section, however, only
∣∣∣α(1)
k

∣∣∣2 will be encountered (and, therefore, only |Ek|2). Therefore, to

slightly simplify further derivations, let us introduce the “intensity” function for one electron

I
(1)
k as

I
(1)
k =

|Ek|2

k2
. (2.36)

Then, in the limit L → ∞, any sum over discrete optical modes in the current section

can be turned into an integral by the following simple substitution,

∣∣∣α(1)
k

∣∣∣2 → I
(1)
k d3k . (2.37)

Then, Eqs. (2.25) and (2.26) become, respectively,
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〈N〉 =

∫
d3k ηkI

(1)
k

∫
dξ p(ξ)Jk(ξ), (2.38)

var(N ) = 〈N〉+

∫
d3k1 d3k2 ηk1I

(1)
k1
ηk2I

(1)
k2

∫
dξ p(ξ)Jk1(ξ)Jk2(ξ)− 〈N〉2 , (2.39)

where a new function was introduced,

Jk(ξ) ≡

∣∣∣∣∣∑
m

eik̃·r̃m

∣∣∣∣∣
2

. (2.40)

Henceforth, let us consider an electron bunch, where the positions of the electrons are

independent random variables with identical probability density functions, i.e.,

p(ξ) = p(r̃1) . . . p(r̃ne). (2.41)

The function Jk(ξ) can be represented in the following form,

Jk(ξ) =
∑
m

eik̃·r̃m
∑
n

e−ik̃·r̃n =
∑
m,n

eik̃·(r̃m−r̃n)

=
∑
m

1 +
∑
m6=n

eik̃·(r̃m−r̃n) = ne +
∑
m6=n

eik̃·(r̃m−r̃n). (2.42)

Therefore, the integral over ξ in Eq. (2.38) can be calculated as

∫
dξ p(ξ)Jk(ξ) = ne +

∫
dξ p(ξ)

∑
m6=n

eik̃·(r̃m−r̃n)

= ne +
∑
m 6=n

∫
p(r̃m)eik̃·r̃m d3r̃m

∫
p(r̃n)e−ik̃·r̃n d3r̃n = ne + ne (ne − 1)

∣∣∣P(k̃)∣∣∣2 , (2.43)

where the multiplier ne (ne − 1) comes from the sum over m and n from 1 to ne, ignoring
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the diagonal terms, where m = n. Also, the following function was introduced,

P
(
k̃
)
≡
∫
p(r̃)eik̃·r̃ d3r̃ . (2.44)

To summarize, the final expression for 〈N〉 takes the form

〈N〉 = ne

∫
d3k ηkI

(1)
k

(
1 + (ne − 1)

∣∣∣P(k̃)∣∣∣2). (2.45)

Now let us obtain the expression for var(N ). The calculation of the integral over ξ in

Eq. (2.39) is lengthy. One can start by using the following relation in Eq. (2.39),

Jk1(ξ)Jk2(ξ) =

∣∣∣∣∣∑
m

eik̃1·r̃m

∣∣∣∣∣
2 ∣∣∣∣∣∑

n

eik̃2·r̃n

∣∣∣∣∣
2

=

ne +
∑
m6=n

eik̃1·(r̃m−r̃n)

ne +
∑
i6=j

e−ik̃2·(r̃i−r̃j)


= n2

e + ne
∑
m6=n

eik̃1·(r̃m−r̃n) + ne
∑
i6=j

e−ik̃2·(r̃i−r̃j) +
∑
m6=n

e
i
(
k̃1−k̃2

)
·(r̃m−r̃n)

+
∑

m6=n,i6=j
m,n 6=i,j

eik̃1(r̃m−r̃n)−ik̃2(r̃i−r̃j). (2.46)

Then, the next step is to multiply each term of Eq. (2.46) by p(ξ) and integrate over ξ.

The integral of the first term in Eq. (2.46) is trivial. The second, third and fourth terms

have the same form as Eq. (2.43). Therefore, let us simply provide the results,

∫
dξ p(ξ)ne

∑
m 6=n

eik̃1·(r̃m−r̃n) = n2
e(ne − 1)

∣∣∣P(k̃1
)∣∣∣2 , (2.47)

∫
dξ p(ξ)ne

∑
i6=j

e−ik̃2·(r̃i−r̃j) = n2
e(ne − 1)

∣∣∣P(k̃2
)∣∣∣2 , (2.48)
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∫
dξ p(ξ)

∑
m 6=n

e
i
(
k̃1−k̃2

)
·(r̃m−r̃n)

= ne(ne − 1)
∣∣∣P(k̃1 − k̃2

)∣∣∣2 . (2.49)

The fifth (last) term has to be considered separately. It can be represented in the following

form,

∑
m6=n,i 6=j
m,n6=i,j

eik̃1(r̃m−r̃n)−ik̃2(r̃i−r̃j) = A1(ξ) + A2(ξ) + A3(ξ), (2.50)

where

A1(ξ) =
∑
m6=n
j 6=n
j 6=m

ei(k̃1−k̃2)·r̃m−ik̃1·r̃n+ik̃2·r̃j , (2.51)

A2(ξ) =
∑
m6=n
i6=n
i6=m

e−i(k̃1−k̃2)·r̃n+ik̃1·r̃m−ik̃2·r̃i , (2.52)

A3(ξ) =
∑
m6=n
i6=j
i6=m
j 6=n

eik̃1·(r̃m−r̃n)−ik̃2·(r̃i−r̃j). (2.53)

Integration of Eq. (2.50) is analogous to Eq. (2.43), with the exception that counting the

terms in the sums is more difficult. Omitting the details,

∫
dξ p(ξ)A1(ξ) =

(∫
dξ p(ξ)A2(ξ)

)∗
= ne (ne − 1) (ne − 2)P

(
k̃1 − k̃2

)
P∗
(
k̃1
)
P
(
k̃2
)
,

(2.54)

∫
dξ p(ξ)A3(ξ) = ne (ne − 1)

(
n2
e − 3ne + 3

) ∣∣∣P(k̃1
)
P
(
k̃2
)∣∣∣2 . (2.55)
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When Eqs. (2.47) to (2.49), (2.54), and (2.55) are used together with Eq. (2.46) to

calculate the integral over ξ in Eq. (2.39), one arrives at

∫
dξ p(ξ)Jk1(ξ)Jk2(ξ) = n2

e + ne(ne − 1)
∣∣∣P(k̃1 − k̃2

)∣∣∣2
+ ne(ne − 1)

[
ne
(∣∣∣P(k̃1

)∣∣∣2 +
∣∣∣P(k̃2

)∣∣∣2)+ (ne − 2)
(
P
(
k̃1 − k̃2

)
P∗
(
k̃1
)
P
(
k̃2
)

+ c.c.
)

+
(
n2
e − 3ne + 3

) ∣∣∣P(k̃1
)
P
(
k̃2
)∣∣∣2]. (2.56)

Finally, by using Eqs. (2.45) and (2.56) in Eq. (2.39), one can obtain the final expression

for var(N ),

var(N ) = 〈N〉+ne(ne− 1)

∫
d3k1 d3k2 ηk1I

(1)
k1
ηk2I

(1)
k2

[ ∣∣∣P(k̃1 − k̃2
)∣∣∣2− ∣∣∣P(k̃1

)
P
(
k̃2
)∣∣∣2

+ (ne − 2)

[
P∗
(
k̃1
)
P
(
k̃2
)(
P
(
k̃1 − k̃2

)
− P

(
k̃1
)
P∗
(
k̃2
))

+ c.c.

]]
. (2.57)

Equations (2.45) and (2.57) are the most general results of this section. They apply to

any degree of coherence of the radiation (both transverse and temporal), for any number of

the electrons in the bunch ne, and for any probability density function of each electron p(r̃).

If both polarization components are registered by the detector, the following substitution

should be performed,

ηkI
(1)
k →

∑
s=1,2

ηk,sI
(1)
k,s. (2.58)

In Eq. (2.45), the first term represents incoherent radiation. The second term constitutes

coherent synchrotron radiation (CSR). The limit of fully coherent radiation can be obtained

by assuming that all the electrons are concentrated in a single point. Using the Dirac delta
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function, p(r̃) = δ(r̃). In this limit, for any k̃,

P
(
k̃
)

= 1, (2.59)

and in Eq. (2.45) one can obtain the expected result, that the intensity scales as n2
e.

In Eq. (2.57), the first term, namely, 〈N〉, is the photon shot noise contribution. It exists

even in the case of a single electron, ne = 1. The second term arises from the variations in

the relative positions of the classical point-like electrons in the bunch. It vanishes in the case

of fully coherent radiation, as one can see by inserting Eq. (2.59) in Eq. (2.57). However, it

is nonzero in the case of incoherent or partially coherent radiation. Therefore, henceforth,

this term may be called the incoherence contribution to the fluctuations.

In Section 2.1.5, possible simplifications of Eqs. (2.45) and (2.57) will be considered in the

case of temporally incoherent radiation. However, before that, one special example will be

considered in Section 2.1.4, namely, the Gaussian electron bunch. In the case of a Gaussian

electron bunch, a closed-form expression can be obtained for the function P
(
k̃
)
at arbitrary

degree of coherence.

2.1.4 Gaussian electron bunch example. Arbitrary degree of coherence.

Negligible electron beam divergence

In this section, the form of Eqs. (2.45) and (2.57) will be provided for a Gaussian electron

bunch, where each electron has the probability density function

p(r̃) =
1

(2π)3/2 σxσycσt
exp

(
− x2

2σ2
x
− y2

2σ2
y
− (ct)2

2(cσt)2

)
. (2.60)

In this case, the integration over r̃ in Eq. (2.44) can be performed by using the Hub-

21



bard–Stratonovich identity [57]. The results are

〈N〉 = ne

∫
d3k ηkI

(1)
k

(
1 + (ne − 1) e−K·Σ), (2.61)

where K ≡ (k2
x, k

2
y , k

2), Σ ≡ (σ2
x, σ

2
y , c

2σ2
t ),

var(N ) = 〈N〉+ne(ne−1)

∫
d3k1 d3k2 ηk1I

(1)
k1
ηk2I

(1)
k2

[
∆2−Σ2+2(ne−2)Σ(Σ−∆)

]
, (2.62)

where

∆ = e−
1
2∆12·Σ, Σ = e−

1
2K12·Σ, (2.63)

∆12 = ((k1x − k2x)2, (k1y − k2y)2, (k1 − k2)2), (2.64)

K12 = (k2
1x + k2

2x, k
2
1y + k2

2y, k
2
1 + k2

2). (2.65)

2.1.5 Regime of temporal incoherence

In this section, the regime of temporally incoherent radiation will be considered,

ωσt � 1, (2.66)

where σt is the rms bunch duration. It will be shown that Eq. (2.57) agrees with the results

obtained in [17], where this less general regime was studied classically.

Given Eq. (2.66), the integrals of the form of Eq. (2.44) with the arguments k̃1 and k̃2

will be negligible due to the fast oscillations of the phase factor. Only the integral with the

argument k̃1 − k̃2 will result in a non-vanishing contribution. Therefore,

〈N〉 = ne

∫
d3k ηkI

(1)
k , (2.67)
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var(N ) = 〈N〉+ ne(ne − 1)

∫
d3k1 d3k2 ηk1I

(1)
k1
ηk2I

(1)
k2

∣∣∣P(k̃1 − k̃2
)∣∣∣2 . (2.68)

Following the notation of [13, 17] and [2, p. 28], Eq. (2.68) can be rewritten as

var(N ) = 〈N〉+
1

M
〈N〉2 , (2.69)

where the parameter M was introduced. In this dissertation, M is defined by Eq. (2.69).

Then, according to Eqs. (2.67) and (2.68), it follows that

1

M
≡ (1− 1/ne)

∫
d3k1 d3k2 ηk1I

(1)
k1
ηk2I

(1)
k2

∣∣∣P(k̃1 − k̃2
)∣∣∣2(∫

d3k ηkI
(1)
k

)2 . (2.70)

However, this parameter can be identified with the number of coherent modes, defined in [2,

51, 58, 59]. Therefore, let us use this name for the parameterM from now on. Equation (2.70)

is in agreement with Eq. (14) of Ref. [17], which was derived for a relative fluctuation of

classical radiation intensity.

Equation (2.66) is satisfied, for example, in the Brookhaven experiment [13] and in our

experiments in IOTA [16, 50, 60]. In both cases, ωσt ∼ 106.

There is one more possible simplification, which can be used for the above mentioned

experiments. If the probability function can be factorized into temporal and transverse

components,

p(r̃) = pt(t)p⊥(r̃⊥), (2.71)

then,

P
(
k̃1 − k̃2

)
= Pt(k1 − k2)P⊥(k1 − k2), (2.72)
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with

Pt(k1 − k2) =

∫
pt(t)e

ic(k1−k2)tdt, (2.73)

P⊥(k1 − k2) =

∫
p⊥(r̃⊥)ei(k1−k2)·r̃⊥ d2r̃⊥ , (2.74)

where

r̃⊥ = (x, y, 0), d2r̃⊥ = dxdy. (2.75)

The width of Pt(k1−k2) as a function of k1−k2 is of the order of 1/(cσt). If Pt(k1−k2)

is much narrower than any other scale in the problem, such as the width of the radiation

spectrum, or the monochromator’s FWHM (if used), then the following relation, employing

the Dirac delta function, can be used,

|Pt(k1 − k2)|2 =

√
π

c σeff
t

δ(k1 − k2), (2.76)

where σeff
t is the effective electron bunch duration, defined as

σeff
t = 1/

(
2
√
π

∫
p2
t (t) dt

)
. (2.77)

For a Gaussian temporal electron bunch distribution, the effective bunch duration σeff
t is

equal to the rms bunch duration

σt =

√∫
t2 pt(t) dt, (2.78)

where it is assumed that
∫
t pt(t) dt = 0.

In practical calculations, it may be more convenient to use units of length for the temporal

distribution of the electron bunch. Below in this dissertation, the parameters σz and σeff
z
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may be used, which are defined as

σz = c σt, σeff
z = c σeff

t . (2.79)

Strictly speaking, σz and σeff
z , defined by Eq. (2.79), still refer to the temporal distribution of

the electron bunch, simply scaled by a factor of c — the speed of light. However, sometimes

σz and σeff
z will be called the rms bunch length and the effective bunch length, respectively,

because only ultrarelativistic electrons will be encountered in this dissertation, for which it

is a very good approximation.

To prove Eq. (2.77), one can start with the following ansatz,

|Pt(k)|2 = κtδ(k). (2.80)

Then,

κt =

∫
dk |Pt(k)|2 =

∫
dk

∫
pt(t1)eickt1dt1

∫
pt(t2)eickt2dt2

= 2π

∫
pt(t1)pt(t2)

(∫ eick(t1−t2)

2π
dk
)
dt1dt2 = (2π/c)

∫
pt(t1)pt(t2)δ(t1 − t2)dt1dt2

= (2π/c)

∫
p2
t (t)dt, (2.81)

which coincides with the factor in front of the Delta function in Eq. (2.76), when σeff
t is

calculated using Eq. (2.77).

Using Eqs. (2.71) to (2.77) and (2.79), Eq. (2.70) takes the form

1

M
= (1− 1/ne)

√
π

σeff
z

∫
dk d2Ω1 d2Ω2 k

4ηkn1
I

(1)
kn1

ηkn2
I

(1)
kn2

∣∣P⊥(kn1 − kn2
)∣∣2(∫

dkηkI
(1)
k

)2 , (2.82)

where n1 and n2 are two unit vectors,
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ni = (nix, niy, niz), niz =
√

1− n2
ix − n

2
iy, (2.83)

d2Ωi = dnixdniy/niz, (2.84)

where i = 1, 2; d2Ωi is the element of solid angle. Note that the above derivation did not

use the paraxial approximation,

ni ≈ (φix, φiy, 1− φ2
ix/2− φ

2
iy/2), (2.85)

with φix, φiy � 1. However, it can be used in most practical cases. Also, usually ne � 1

and, hence, 1/ne can be neglected.

For a Gaussian electron bunch [see Eq. (2.60)],

∣∣P⊥(kn1 − kn2
)∣∣2 = e−k

2σ2x(n1x−n2x)2−k2σ2y(n1y−n2y)2 , (2.86)

σeff
z = σz. (2.87)

While in a typical electron storage ring the longitudinal momentum distribution is close to

Gaussian, the longitudinal density distribution may not be Gaussian due to beam interaction

with its environment (see [61], for example). This is also the case in IOTA. Equation (2.77)

correctly accounts for the actual longitudinal distribution and it will be used in Section ??

during the calculations of the number of coherent modes M for the experiments in IOTA.

The probability density function pt(t) will be measured using a wall-current monitor [62].

Equations (2.69) and (2.82) do not reveal the exact distribution of N , they only give

the variance var(N ). However, the form of the distribution can be suggested by a simple

qualitative argument when the number of longitudinal modes ML (see [2, p. 28]) is much

larger than one. For bending-magnet radiation ML ∼ ωσt, for undulator radiation ML ∼
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ωσt/Nu, where Nu is the number of undulator periods. Indeed, in this case the total number

of detected photons N is the sum of a large number of independent random numbers of

detected photons coming from small longitudinal slices of the bunch. Therefore, according

to the central limit theorem, N follows a normal distribution with good accuracy. More

details on the exact distribution of N can be found in [2, 18, 59, 63–65] which suggest that,

in the case of incoherent spontaneous radiation, the classical radiated power follows the

Gamma distribution.

2.2 Calculation of spectral-angular distribution of the undulator

radiation

To this point, the exact forms of I(1)
k or Ek have not been discussed. The kind of the

synchrotron light source has not been specified. Below in this dissertation, our focus will be

on the undulator (wiggler) radiation. Therefore, in this section, an expression for Ek for the

undulator (wiggler) radiation is provided at arbitrary value of the undulator parameter Ku.

The case of small Ku � 1 has been considered in Refs. [66, 67], for example. The undulator

parameter Ku is defined as

Ku =
eBλu

2πmec
, (2.88)

where e is the electron charge, B is the amplitude of the vertical magnetic field in the

undulator. The magnetic field in the undulator is assumed to follow a sinusoid inside the

undulator as a function of the longitudinal position z along the undulator with the period

λu, see Fig. 1.1. The number of the undulator periods will be denoted by Nu.

The paraxial approximation k = k(φx, φy, 1−φ2
x/2−φ2

y/2) will be used and, therefore, the

notation will be slightly changed from Ek to Ek,s(φ), where φ = (φx, φy) and the polarization

subscript s = 1, 2 is explicitly included. For specificity, s = 1 and s = 2 will describe the

horizontal and vertical polarizations, respectively.
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The procedure to obtain an expression for Ek,s(φ) is to find the trajectory r(t) of the

electron in Nu periods of a sinusoidal magnetic field with the amplitude B and then calculate

the integral in Eq. (2.34). This rather lengthy calculation has been carried out in Chapter 4

of Ref. [68]. Therefore, only the results will be presented here.

In the vicinity of hth harmonic of the undulator radiation,

Ek,1(φ) =
hγNu

A

√
α

k
L

(
Nu∆k

k1

)[
2γφx

+∞∑
p=−∞

Jn+2p(X)Jp(Y )

−Ku

 +∞∑
p=−∞

Jn+2p−1(X)Jp(Y ) +
+∞∑
p=−∞

Jn+2p+1(X)Jp(Y )

], (2.89)

Ek,2(φ) =
hγNu

A

√
α

k
L

(
Nu∆k

k1

)[
2γφy

+∞∑
p=−∞

Jn+2p(X)Jp(Y )

]
, (2.90)

where φ = (φx, φy), ∆k = k − hk1, k1 = 4πγ2/(λuA), Jm(x) is the Bessel function of the

first kind,

A = 1 +
K2

u

2
+ γ2(φ2

x + φ2
y), (2.91)

X =
2hKuγφx

A
, (2.92)

Y =
hK2

u

4A
(2.93)

L

(
Nu∆k

k1

)
=

sin
(
πNu∆k
k1

)
Nu sin

(
π∆k
k1

) . (2.94)

Notice that in the equations above k1 is a function of (φ2
x + φ2

y). For future reference, in
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the fundamental (h = 1), the peak on-axis intensity is achieved at the wavelength

λ1 =
λu

2γ2

(
1 +

K2
u

2

)
. (2.95)

If Ek,s(φ) needs to be calculated in a wide spectral range including several harmonics,

it may be approximated as a sum over several values of h in Eqs. (2.89) and (2.90). We

developed a python package for calculation of Ek,s(φ) in this way — wigrad [69]. The

infinite sums over p in Eqs. (2.89) and (2.90) are approximated by keeping only a certain

finite number of terms, e.g., 20 . The results obtained by this method are in agreement

with the calculations by the general-purpose synchrotron radiation code srw [70]. After

numerical computation of Ek, one can obtain I(1)
k by Eq. (2.36) and use it in the equations

for 〈N〉, M , and var(N ) derived above.

2.3 Brookhaven experiment

Previously, Eq. (2.82) for the number of coherent modes M was derived for temporally inco-

herent radiation and arbitrary single-electron intensity function I(1)
k . Section 2.2 presented

a way for numerical computation of I(1)
k for the undulator (or wiggler) radiation. In the

current section, it will be checked whether these predictions agree with the experimental

data from the experiment at Brookhaven National Laboratory (BNL) reported in Ref. [13].

In the seminal experiment at BNL, the fluctuations in the wiggler and bending-magnet

radiation were studied in the Vacuum-Ultraviolet (VUV) electron storage ring. The wiggler

radiation data in Fig. 2.2 were extracted from the original paper [13] by digitizing the

plot. The scale was also changed from log-log to a linear scale. This procedure could

have introduced some deviations from the original data, but the deviations are believed to

be negligible.

The data for the wiggler radiation were collected at the fundamental harmonic with the
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Figure 2.2: Experimental data from Ref. [13] for wiggler radiation (points) and predictions
made by our calculation (solid curves). The noise variance (3× 108) has been subtracted
from the data.

on-axis peak at λ1 = 532 nm [see Eq. (2.95)]. An optical interference filter with FWHM

= 3.2 nm and a maximum transmission at λ1 was used. Polarizing filters were not used.

The parameters of the wiggler and the electron bunch are listed in Table 2.1. A silicon

p-i-n photodiode was used to detect the wiggler radiation. A single convex lens was used

to focus the radiation on the sensitive area of the photodiode. The measurements were

carried out with two different lattice configurations, i.e., two different transverse electron

beam profiles — in the language of the authors of Ref. [13], a tightly focused beam and a

loosely focused beam. In this dissertation, let us refer to them as lattice configuration A and

lattice configuration B, respectively.

The mean photoelectron count was mainly varied by using a variable neutral density filter.

Neutral density filters are filters that have constant optical density in the wavelength region

of interest. Such filters linearly scale down the photoelectron count mean, 〈N〉 → ηND 〈N〉,

where ηND is the transmission of the neutral density filter. However, they do not change M ,

because if ηk is replaced by ηNDηk in Eq. (2.82), then ηND cancels out in the numerator and
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Table 2.1: Summary of the parameters of the Brookhaven experiment [13] and the experiment
at Fermilab in the IOTA storage ring [26, 50, 60]. The electron bunch dimensions correspond
to the center of the wiggler (undulator). Both rings store a single electron bunch. The pa-
rameters of IOTA are given at Ibeam = 2.0 mA for an electron beam with a strong transverse
coupling, such that the transverse mode emittances are equal by design . For more details
about the undulator in IOTA, see [71]. Some parameters of the BNL VUV ring are followed
by (A) or (B) to specify the corresponding lattice configuration.

Parameter BNL VUV ring Fermilab IOTA ring
Ring circumference 51.06 m (170.2 ns) 40 m (133 ns)
Beam energy 650 MeV 96.4 MeV
Typical average current 50 mA 2.0 mA
Horizontal emittance (rms), εx 0.80 µm(A), 0.74 µm(B) 95 nm
Vertical emittance (rms), εy 0.20 µm(A), 0.26 µm(B) 95 nm
Relative momentum spread, σp/p (not available) 2.7× 10−4

Horizontal beam size, σx 1.0 mm(A), 0.96 mm(B) 513 µm
Vertical beam size, σy 0.32 mm(A), 0.36 mm(B) 299 µm
Longitudinal bunch size, σz (σt) 6.11 cm (0.204 ns) 29 cm (0.97 ns)
Beam lifetime ≈ 100 min > 10 min
Wiggler (undulator) parameter, Ku 5.7 1.0
Wiggler (undulator) period, λu 10 cm 5.5 cm
Number of wiggler (undulator) periods, Nu 22.5 10.5
Fundamental harmonic wavelength λ1 532 nm 1.16 µm
Photodiode diameter (not available) 1 mm
Quantum efficiency @λ1 78 % 80 %
Monochromator FWHM 3.2 nm (not used)
Simulated number of photon counts per turn, 〈N〉 5.6× 107 4.6× 107

Simulated number of coherent modes, M 5.7× 104(A), 6.0× 104(B) 1.1× 107

Ratio of fluctuation contributions, 〈N〉 /M ≈ 103 ≈ 4

the denominator.

The two solid curves in Fig. 2.2 are the predictions made by Eqs. (2.69) and (2.82) using

the parameters of the electron bunch, the wiggler, and the monochromator, given in Ref. [13].

The Gaussian model for the transmission of the monochromator was used. Equation (2.82)

yields the following results for lattice configurations A and B, respectively: MA = 5.7× 104

and MB = 6.0× 104.

Although our calculation agrees well with the measurements at lattice configuration A,

there is some disagreement at lattice configuration B. In terms of the M parameter, the de-

viation is about 20 %. It is not clear if this disagreement comes from inaccuracy in our model
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or from our incomplete understanding of the experiment configuration from Ref. [13]. The

experiment took place three decades ago and a detailed description is currently unavailable.

This was one of the motivations for carrying out a new dedicated experiment in IOTA.

In particular, only the electron bunch rms dimensions σx, σy, σz are known for the

Brookhaven experiment. The exact Twiss parameters of the electron beam optics in the wig-

gler are unknown. Therefore, our calculation for the Brookhaven experiment using Eq. (2.82)

should be understood as an order-of-magnitude estimate. Equation (2.82) assumes negligi-

ble electron beam divergence, which could or could not be the case in the Brookhaven

experiment (depending on the exact Twiss parameters in the wiggler). Also, a Gaussian

longitudinal electron bunch density distribution is assumed, but there could be deviations.

The exact transmission function of the monochromator and the exact angular acceptance

are not available as well.

Furthermore, in the Brookhaven experiment, the number of coherent modes (MA, MB)

is much smaller than the average number of photoelectrons 〈N〉. Hence, the first term in

Eq. (2.69) is negligible. Therefore, these data do not test Eq. (2.69) in the regime when the

two contributions are comparable. This regime is tested in our independent experiment at

IOTA.

2.4 Preliminary estimates and motivation for the experiment in

IOTA

It will be shown later in this dissertation, that in the IOTA experiment, the angular electron

beam divergence affects the number of coherent modes M and, hence, Eq. (2.82) cannot

be used. For this reason, a more general expression for M will be obtained in Section 2.5.

However, for now, let us broadly discuss what may be expected in the experiment in IOTA

using the simpler Eq. (2.82). The exact description will be provided later.

Because in IOTA the fundamental of the undulator radiation is in the near-infrared
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range, λ1 = 1.16 µm [see Eq. (2.95)], it is necessary to use an InGaAs p-i-n photodiode [72]

instead of the silicon one, used in [13]. A polarizing filter will not be used. Both polarization

components will be registered. The spectral distribution of the number of photons detected

in an aperture with a 2" diameter, located 3.5 m away from the undulator in IOTA is shown

in Fig. 2.3 (the red curve). This curve was obtained by using our simulation package wigrad

[69] and also verified by an independent simulation using the srw software [70]. This curve

is calculated for a single electron (s.e.),

d 〈Ns.e.〉
dk

=
∑
s=1,2

∫
d2φ ηk,s(φ)

∣∣∣Ek,s(φ)
∣∣∣2 , (2.96)

where the notation for the detection efficiency was changed from ηk to ηk,s(φ) to explicitly

include the polarization s. In this calculation, ηk,s(φ) = 1 inside the round �2" aperture

and zero outside. For convenience, in Fig. 2.3, the results are presented in terms of the

distribution over the wavelength λ instead of the magnitude of the wave-vector k.

Figure 2.3: Spectral distribution of the average number of detected photons per turn for
a single electron (s.e.) for the undulator in IOTA (red curve) assuming an ideal detector.
Quantum efficiency of an InGaAs p-i-n photodiode (blue curve).

Assuming no additional losses apart from the quantum efficiency of the InGaAs photo-

diode, some estimations were made for the expected number of photoelectrons 〈N〉 and the
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number of coherent modes M for the proposed IOTA experiment. The results are given

in Table 2.1 and in Fig. 2.4. Since the goal of this section is to obtain order-of-magnitude

estimates, the rms bunch length σz is used instead of the effective bunch length σeff
z . It

is better to avoid using a monochromator in IOTA. This will let us see approximately the

same average photoelectron count 〈N〉 as in the Brookhaven experiment, even though the

beam current, beam energy, undulator (wiggler) parameter Ku, and the number of undula-

tor periods are lower in IOTA. This is important in order to have a signal of a comfortable

amplitude for measurements.

The absence of a monochromator will also make the number of coherent modes M much

larger than in the Brookhaven experiment, see Table 2.1, and comparable to 〈N〉. This

will allow us to probe Eq. (2.69) in the regime where the two sum terms are comparable,

see the last row in Table 2.1. Indeed, the curve denoted by M0 in Fig. 2.4 is rather close

to the green dashed line, representing the photon shot noise fluctuations. The value of M0

was calculated by Eq. (2.82) assuming no additional losses except for the quantum efficiency

of the detector. This is the value of M reported in Table 2.1. The curves denoted by M1

and M2 were calculated with bandpass filters (1050 nm, 1350 nm) and (1150 nm, 1300 nm),

respectively: M1 = 4.6× 106 and M2 = 2.7× 106. These two curves are provided to show

how the data may change due to the spectral properties of additional optical elements in the

measurement apparatus. The real spectral range will be narrower than that of the InGaAs

photodiode. It will be determined by transmission curves of additional optical elements,

such as lenses, mirrors, and, possibly, bandpass filters. It will be important to painstakingly

account for transmission curves of all of the optical elements used in the experiment.

As opposed to neutral density filters, bandpass filters do change the number of coherent

modes M . However, typically, at fixed beam current and shape, the ratio between the inco-

herence contribution and the photon shot noise contribution in Eq. (2.69), namely, 〈N〉 /M ,

stays approximately constant when different bandpass filters are used. For example, it is
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Figure 2.4: Simulations of the photoelectron count variance in IOTA for three different filter
configurations. The green dashed line represents the photon shot noise contribution to the
fluctuations.

clear in a simplified model of a Gaussian spectral-angular distribution of radiation, consid-

ered in [17] and in Section 2.6. In the proposed experiment in IOTA, at Ibeam = 2.0 mA,

〈N〉 /M ≈ 4, see Table 2.1.

In the simulation in Fig. 2.4, the same measurement procedure is assumed as in the

Brookhaven experiment. Namely, in each curve, the mean photoelectron count 〈N〉 is varied

by using a variable neutral density filter. The bunch charge is constant. This means that

σx, σy, σt, and M are constant too. The values used in the simulation are provided in

Table 2.1. In our experiment in IOTA, the bunch charge will also be varied to observe how

the magnitude of the fluctuations var(N ) changes in this case. The dependence of var(N )

on 〈N〉 will be nontrivial (not a parabola) because the dimensions of the electron bunch in

IOTA change significantly with beam current, and so should M , according to Eq. (2.82).

Some examples of the effects that depend on beam current and that determine the electron

bunch shape and size in IOTA include intrabeam scattering [73–75] and interaction of the

electron bunch with its environment [61].
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The proposed measurements in IOTA can help improve our understanding of these effects,

because they can provide some information about the dimensions and the shape of the

electron bunch in IOTA. Indeed, Eqs. (2.82), (2.86), and (2.87) indicate that the magnitude

of the fluctuations depends on the dimensions of a Gaussian bunch. Also, if the longitudinal

shape of the bunch is not Gaussian, it will be reflected in the magnitude of the fluctuations

according to Eq. (2.77).

The transverse beam sizes σx and σy are measured by synchrotron radiation monitors

using the radiation from dipole magnets, while σz and σeff
z are measured by a wall-current

monitor. The existing physical model of beam lifetimes and beam shapes in IOTA (taking

into account intrabeam scattering, gas scattering, quantum excitation, etc.) is not fully

consistent with observations [76]. An independent estimate of σx, σy and σz (or a certain

combination of them) through fluctuations in undulator radiation, see Eq. (2.82), may help

resolve inconsistencies. The results of the IOTA experiment are discussed in Chapter 3.

2.5 Derivation of the fluctuations with a considerable beam

divergence

Previously, an equation forM [Eq. (2.82)] was derived for the case of a monoenergetic electron

beam, zero angular electron beam divergence and temporally incoherent radiation. Below,

the steps are outlined to extend this result to the case of a considerable beam divergence. The

expression for M for this case will be obtained for the first time. In the previous theoretical

derivations [16, 17], only the effect of spatial distribution of the electrons inside the bunch on

the turn-to-turn fluctuations was considered. It was not taken into account that in general

the distribution of electron velocities affects the fluctuations as well.

In this section, our goal is to obtain a general, but practical, expression to be used for the

calculations in IOTA, where the electron beam divergence in the undulator is not negligible.

Therefore, from the beginning, the paraxial approximation [2.85] will be used and both
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polarizations s = 1, 2 will be accounted for. Therefore, the notation ηk,s(φ) and Ek,s(φ)

will be used for the detection efficiency ηk and the complex field amplitude Ek, respectively,

where φ = (φx, φy) specifies the direction of the wave-vector k in the paraxial approximation

k = k(φx, φy, 1− φ2
x/2− φ2

y/2) .

One can start the derivation with Eq. (2.26), but written in the form that accounts for

the beam divergence and converted to an integral over k and φ, namely,

var(N ) = 〈N〉 − 〈N〉2 +

∫
dξ p(ξ)

[ ∑
s=1,2

∫
dk d2φ ηk,s(φ)

∣∣∑
m

E(m)
k,s (φ)

∣∣2]2, (2.97)

where ξ describes the states in the 6D phase-space of all the electrons in the center of the

radiator,

ξ = x̃1, x̃
′
1, y1, y

′
1, t1, δp1 . . . x̃ne , x̃

′
ne , yne , y

′
ne , tne , δpne , (2.98)

where tm is the time when the mth electron passes through the center of the synchrotron

light source, p(ξ) represents the density function for the probability to have the state ξ,

p(ξ) = p(x̃1, x̃
′
1, y1, y

′
1, t1, δp1) . . . p(x̃ne , x̃

′
ne , yne , y

′
ne , tne , δpne), (2.99)

x̃m and x̃′m refer to the monoenergetic component of the motion, because there is also a

contribution from the horizontal dispersion, so that

xm = x̃m +Dxδpm, x′m = x̃′m +Dx′δpm, (2.100)

and the vertical dispersion is assumed to be zero. According to [2, Eq. (2.93)], the complex

field amplitude of the mth electron E(m)
k,s (φ) can be expressed through the amplitude of the

reference electron Ek,s(φ) [see Eqs. (2.34), (2.89), and (2.90)] as

E(m)
k,s (φ) = eikxxm+ikyym−ictmEk,s(φ− r

′
m), (2.101)
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where r′m = (x′m, y
′
m) and it is assumed that E(m)

k,s (φ) does not depend on δpm directly

[only through the dispersion Dx and Dx′ , see Eq. (2.100)]. For the reference electron

x̃, x̃′, y, y′, t, δp are equal to zero.

The electron bunch is assumed to be Gaussian in the transverse plane. The distribution of

δp is assumed to be Gaussian as well. The longitudinal density distribution pt(t) is arbitrary.

The beam focusing optics is assumed to be uncoupled. In this case, the probability density

function for one electron takes the following form,

p(x̃, x̃′, y, y′, t, δp) =
1

4π2εxεy
exp
[
− 1

2ε2x
Cx(x̃, x̃′)− 1

2ε2y
Cy(y, y′)

]
× pt(t)

1√
2πσp

exp
[
− δp

2

2σ2
p

]
, (2.102)

with

Cx(x̃, x̃′) = γxx̃
2 + 2αxx̃x̃

′ + βx(x̃′)2, (2.103)

Cy(y, y′) = γyy
2 + 2αyyy

′ + βy(y′)2. (2.104)

Given Eqs. (2.98) to (2.104), and assuming the regime of temporal incoherence (ωσt � 1),

the integration in Eq. (2.97) is solely a mathematical procedure. It is analogous to the

derivations in Sections 2.1.3 and 2.1.5 where ξ included only xm, ym and tm. The only

difference is the additional integration over x̃′m, y′m and δpm, with m = 1 . . . ne. When the

multidimensional integral in Eq. (2.97) has been calculated, one can compare the result with

Eq. (2.69) and arrive at the following expression for M ,

1

M
= (1− 1/ne)

√
π

σeff
z

∫
dk d2φ1 d2φ2 d2r′Pk(r′,φ1 − φ2)Ik(φ1, r

′)I∗k(φ2, r
′)

〈Ns.e.〉2
, (2.105)
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with

Pk(r′,φ1 − φ2) =
1

4πσx′σy′
e
− (x′)2

4σ2
x′
− (y′)2

4σ2
y′

× e−ik∆x(φ1x−φ2x)x′−ik∆y(φ1y−φ2y)y′e−k
2Σ2

x(φ1x−φ2x)2−k2Σ2
y(φ1y−φ2y)2 , (2.106)

Ik(φ, r′) =
∑
s=1,2

ηk,s(φ)Ek,s(φ)E∗k,s(φ− r
′), (2.107)

〈Ns.e.〉 =
∑
s=1,2

∫
dk d2φ ηk,s(φ)

∣∣Ek,s(φ)
∣∣2, (2.108)

where s = 1, 2 indicates the polarization component, ne is the number of electrons in the

bunch, k = 2π/λ is the magnitude of the wave vector; φ = (φx, φy), φ1 = (φ1x, φ1y) and

φ2 = (φ2x, φ2y) represent angles of direction of the radiation in the paraxial approximation,

the effective bunch length σeff
z in Eq. (2.105) was defined previously in Eqs. (2.77) and (2.79),

it is equal to the rms bunch length σz for a Gaussian bunch; r′ = (x′, y′) represents the

direction of motion of an electron at the radiator center, relative to a reference electron; σx′

and σy′ are the rms beam divergences,

σ2
x′ = γxεx +D2

x′σ
2
p, σ2

y′ = γyεy, (2.109)

Σ2
x = εx/γx + (γxDx +Dx′αx)2βxεxσ

2
p/σ

2
x′ , Σ2

y = εy/γy, (2.110)

∆x = (αxεx −DxDx′σ2
p)/σ2

x′ , ∆y = αy/εy, (2.111)

where αx, βx, γx, αy, βy, γy are the Twiss parameters of an uncoupled focusing optics in the

synchrotron radiation source; Dx, Dx′ are the horizontal dispersion and its derivative, and

the vertical dispersion is assumed to be zero; εx, εy are the unnormalized rms emittances;
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σp is the relative rms momentum spread. The following two useful relations exist,

σ2
x = Σ2

x + σ2
x′∆

2
x, σ2

y = Σ2
y + σ2

y′∆
2
y, (2.112)

where σx and σy are the transverse rms beam sizes. The electrons are assumed to be

ultrarelativistic, γ � 1, where γ is the Lorentz factor.

The parameter 〈Ns.e.〉 in Eq. (2.105) is the average number of detected photons per turn

for a single electron (s.e.) circulating in the ring. The case of incoherent radiation (σzk � 1)

is considered. Therefore, the average number of detected photons for the entire bunch can

be obtained as

〈N〉 = ne 〈Ns.e.〉 . (2.113)

The integrals in Eqs. (2.105) and (2.108) are taken from minus to plus infinity over

all integration variables except for k, which goes from zero to plus infinity. The spectral

sensitivity and the aperture of the detector are assumed to be included in the detection

efficiency ηk,s(φ), which is a function of polarization, k, and φ for that reason.

It was decided to study the undulator radiation in IOTA, because the quadratic term in

Eq. (2.69), sensitive to bunch parameters, is larger for undulators and wigglers than it is for

dipole magnets [16]. If the bending-magnet radiation was used in IOTA, the photon shot

noise term would be dominant in Eq. (2.69). Although it could be interesting to observe

this regime, it was more interesting to study the case where the incoherence contribution in

Eq. (2.69) is considerable and the fluctuations var(N ) have some dependence on the electron

bunch parameters. The complex field amplitude Ek,s(φ), generated by a single electron, can

be numerically calculated using Eqs. (2.89) and (2.90) by our python package wigrad

[69], based on the equations from [68], or by using the srw code library [70]. Then, the

integrals in Eqs. (2.105) and (2.108) can be calculated by a Monte-Carlo algorithm — our

c++ code with python bindings for calculation of Eqs. (2.105) and (2.108) is provided in
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the repository [77].

2.6 Examples of closed-from expressions for the number of

coherent modes. Temporally incoherent radiation

Given certain additional assumptions about the radiation source, the electron beam, and

the detector, the expressions [Eqs. (2.70), (2.82), and (2.105)] for the number of coherent

modes M in the case of temporally incoherent radiation can take simpler forms. Three such

examples are presented in this section.

2.6.1 Single-mode detector

The first example where the expression for M takes a simple form is the extreme approx-

imation of a single mode detector, which can only sense one optical mode with a certain

wave-vector kdet. In this case the detection efficiency can be represented by a Delta function

ηk ∝ δ(k − kdet). It readily follows from Eq. (2.70) that in this model M = (1 − 1/ne)
−1.

Hence,

var(N ) = 〈N〉+ (1− 1/ne) 〈N〉2 . (2.114)

which coincides with the results, reported in Refs. [13, 24, 25, 78, 79]. Equation (2.114) is

correct for any source of temporally incoherent synchrotron radiation, and for any direction

and wavelength of k.

2.6.2 Gaussian electron bunch and radiation profile. Negligible electron beam

divergence

Assume that the following relation is fulfilled for the complex field amplitude Ek,s(φ) and

the detection efficiency ηk,s(φ),

41



√
ηk,s(φ)Ek,s(φ) =

√√√√Cs exp
[
−(k − k0)2

2σ2
k

− φ2
x

2σ2
r,x′
−

φ2
y

2σ2
r,y′

]
, (2.115)

which leads to a Gaussian spectral-angular distribution for the number of detected photons

N , assuming negligible electron beam divergence,

d3 〈N〉
dkdφxdφy

= C exp
[
−(k − k0)2

2σ2
k

− φ2
x

2σ2
r,x′
−

φ2
y

2σ2
r,y′

]
, (2.116)

where k is the magnitude of the wave-vector, φx and φy represent the horizontal and vertical

angles of the direction of the radiation in the paraxial approximation [see Eq. (2.85)], k0

refers to the center of the radiation spectrum, σk is the spectral rms width, σr,x′ and σr,y′

are the angular rms radiation sizes, Cs and C are constants.

In addition, assume a Gaussian electron bunch with rms sizes σx, σy, σz, longitudinally

incoherent radiation k0σz � 1, and a very narrow radiation bandwidth σk � 1/(σxσr,x′),

σk � 1/(σyσr,y′). Then, it follows from Eq. (2.62) that

M = (1− 1/ne)
−1
√

1 + 4σ2
kσ

2
z

√
1 + 4k2

0σ
2
r,x′σ

2
x

√
1 + 4k2

0σ
2
r,y′σ

2
y . (2.117)

This limit of Eq. (2.62) was previously obtained in [17], where the turn-to-turn intensity

fluctuations were considered classically. Also, similar calculations for a one-dimensional

model (longitudinal) were carried out in [2, pp. 26-28].

In general, the parameters of the spectral-angular distribution k0, σk, σr,x′ , σr,y′ are

determined by both the properties of the emitted synchrotron radiation and by the properties

of the detecting system (angular acceptance, detection efficiency as a function of wavelength).

As an approximation, it is possible to use this Gaussian model to consider a certain

harmonic h of the undulator radiation unrestricted by any angular acceptance. In this case,
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the magnitude of the wave-vector corresponding to the central peak k0 can be chosen as

k0 =
4πγ2h

λu

(
1 +

K2
u

2

) . (2.118)

Further, if a very narrow spectral filter is used σk � k0/(hNu), then, the natural angular

sizes of the undulator radiation can be estimated as σr,x′ , σr,y′ ≈
√
λ0/(2Lu) [2, Eq. (2.57)],

where λ0 = 2π/k0 and Lu = Nuλu is the total length of the undulator.

2.6.3 Gaussian electron bunch and radiation profile. Non-negligible electron

beam divergence

It is possible to generalize the result of Eq. (2.117) to the case of non-negligible electron

beam divergence. Namely, one can use the Gaussian radiation profile from Eq. (2.115)

in Eq. (2.105), which can account for the complete 6D phase-space density distribution of

the electron bunch Eq. (2.102). In this section, a Gaussian temporal distribution pt(t) of

the electron bunch is assumed. The same assumptions are made about the parameters of

the spectral-angular distribution of the radiation as in Section 2.6.2. Namely, k0σz � 1,

σk � 1/(σxσr,x′), σk � 1/(σyσr,y′).

After lengthy derivations, which will not be presented here, one can arrive at the following

expression for the number of coherent modes M ,

M = (1− 1/ne)
−1
√

1 + 4σ2
kσ

2
z

√√√√1 + 4k2
0(σ2

xσ
2
r,x′ + σ2

x′Σ
2
x) +

σ2
x′

σ2
r,x′

×

√√√√1 + 4k2
0(σ2

yσ
2
r,y′ + σ2

y′Σ
2
y) +

σ2
y′

σ2
r,y′

, (2.119)

the definitions of Σx and Σy are provided in Eq. (2.110), σx′ and σy′ are the horizontal and

vertical rms angular electron beam divergences, their relation to the corresponding electron

43



beam emittances εx and εy and the rms momentum spread σp is provided in Eq. (2.109).

In the limit of zero rms electron beam divergence (σx′ , σy′ = 0), Eq. (2.119) coincides

with [17, Eq. (17)] and Eq. (2.117), where this less general case was considered.

2.7 Summary

Equation (2.57) was derived within the framework of quantum optics. This equation predicts

the fluctuations var(N ) in spontaneous synchrotron radiation with any degree of coherence

for an electron bunch of arbitrary shape. It is assumed that the electron bunch has negligible

angular divergence and energy spread. Then, several possible simplifications were considered

for temporally incoherent radiation. The formulas properly take into account the discrete

nature of light and the quantum efficiency of the detector, which, in general, is a function

of the radiation wavelength. A spectral filter with any transmission function can be incor-

porated by including the transmission function into ηk in Eqs. (2.57), (2.70), and (2.82).

The detector acceptance can be taken into account by setting ηk to zero outside of a given

angular range.

The predicted variance of the number of detected photons [using Eq. (2.82)] was compared

with the empirical data from a previous experiment at Brookhaven [13] for the case of

wiggler radiation with a dominant incoherence contribution to the fluctuations. A reasonable

agreement within 20 % was observed. However, the exact cause of the deviation cannot be

established because the details of the experiment, carried out three decades ago, cannot be

found.

Therefore, it was proposed to carry out a new experimental study into the undulator

radiation fluctuations in the IOTA storage ring. As will be shown later, in IOTA, the

electron beam divergence can affect the number of coherent modes M and, to account for

this, a more general equation [Eq. (2.105)] was derived. In this experiment, our calculation of

the photoelectron count variance may be tested in a new regime (compared to the Brookhaven
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experiment), when the photon shot noise contribution and the incoherence contribution are

comparable.

In addition, in IOTA, it will be possible to explore the possibility of determining some

electron bunch parameters using the measured value of the photoelectron count variance

var(N ). It was pointed out in [14, 15, 17, 18] that the fluctuations in synchrotron radiation

can be used to determine the bunch length on a picosecond scale, and the proof of principle

experiments were successful. Moreover, references [14, 15] suggest that if the fluctuations

in the radiation spectrum are measured with a high resolution spectrometer, then even the

longitudinal profile of the electron bunch can be reconstructed. In IOTA, the longitudinal

bunch size is relatively large and can be easily measured with a wall-current monitor [62],

σz = 29 cm at Ibeam = 2.0 mA (strong transverse coupling, see Table. 2.1) . On the other

hand, the transverse bunch size (especially vertical size of the uncoupled beam) can be quite

small, down to a few tens of microns, where it may be difficult to measure by conventional

synchrotron radiation monitors [80], because of the diffraction limit and other effects. How-

ever, the number of coherent modesM in the undulator radiation in IOTA is rather sensitive

to the transverse bunch size (or emittance). Therefore, the magnitude of the fluctuations

may help determine the transverse dimensions (or emittances) of the electron bunch.

In any case, the measurement of the undulator radiation fluctuations in IOTA is a mea-

surement of a certain function [see Eqs. (2.69) and (2.82)] of electron bunch dimensions

and shape. This measurement is independent from the wall-current monitor and the syn-

chrotron radiation monitors. Therefore, it may help refine the existing model of the physical

effects determining the electron bunch parameters in IOTA. The results of this effort will be

discussed in detail in Section 3.5.
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CHAPTER 3

MEASUREMENTS WITH A BUNCH OF ELECTRONS IN THE

IOTA RING

3.1 Introduction

Full understanding of the radiation generated by accelerating charged particles is crucial

for accelerator physics and electrodynamics in general. The predictions of classical elec-

trodynamics for pulse-by-pulse average characteristics of synchrotron radiation, such as the

total radiated power, spectral composition, angular intensity distribution and brightness [2],

are supported by countless observations. In fact, they are confirmed every day by routine

operations of synchrotron radiation user facilities. On the other hand, the pulse-to-pulse

statistical fluctuations of synchrotron radiation have not been studied at the same level

of detail yet, although substantial progress has been made in the past few decades. The

turn-to-turn intensity fluctuations of incoherent spontaneous bending-magnet, wiggler, and

undulator radiation in storage rings have been studied in Refs. [13–18], both theoretically

and experimentally. The statistical properties of the free-electron laser (FEL) radiation have

been studied in Refs. [19–25]. Moreover, Refs. [43, 44] claimed to observe a non-classical

sub-Poissonian photon statistics in the seventh coherent spontaneous harmonic of an FEL,

although it could have been an instrumentation effect [45]. In any case, more experimen-

tal studies into the statistical properties of synchrotron radiation are needed. This chapter

presents our observation of turn-to-turn power fluctuations of incoherent spontaneous un-

dulator radiation in the Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab

[26]. The measurements are compared with the predictions made by our expression for the

number of coherent modes Eq. (2.105), which extends the previous theoretical description

[16, 17] (also Section 2.1). Namely, in Refs. [16, 17] (and in Section 2.1), only the effect

of spatial distribution of the electrons inside the bunch on the turn-to-turn fluctuations is
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considered. However, in general, the distribution of electron velocities affects the fluctua-

tions as well. The results presented in this chapter are the first experimental test of our

generalized formula [Eq. (2.105)] for the fluctuations in the case of non-negligible electron

beam divergence.

Most often, fluctuations and noise are encountered in a negative context and are consid-

ered something that needs to be minimized. However, there are multiple examples where

noise is used as a non-invasive probe into the parameters of a certain system, and even to

measure fundamental constants. Some examples are the pioneering determination of the el-

ementary charge e by the shot noise [81], and the determination of the Boltzmann constant

kB by the Johnson-Nyquist noise [82]. In fact, the latter effect is also relevant to accelerators

and storage rings, where it is known as Schottky noise [83] due to the finite number of charge

carriers in the beam, as described by Schottky [84]. Many beam parameters, such as the mo-

mentum spread, the number of particles and even transverse rms emittances, are imprinted

into the power spectrum of Schottky noise. It is often used in beam diagnostics [85–87]. In

fact, the fluctuations in synchrotron radiation are similar to Schottky noise. Both effects are

related to the existence of discrete point-like charges as opposed to a continuos charge fluid.

Because the synchrotron radiation is generated by individual electrons in the beam, one may

even think of the fluctuations in the synchrotron radiation as the Schottky noise in the beam

current passed on to the synchrotron radiation power. Therefore, one could assume that the

synchrotron radiation power noise may carry information about beam parameters as well.

This assumption is, in fact, correct. Three decades ago, Ref. [13] reported the results of an

experimental study into statistical properties of wiggler radiation in a storage ring. It was

noted that the magnitude of turn-to-turn intensity fluctuations depends on the dimensions

of the electron bunch. The potential in beam instrumentation was soon realized [88] and a

number of papers followed. However, to this day, mostly measurements of a bunch length via

these fluctuations were discussed [14, 15, 17]. Only Ref. [18] reported an order-of-magnitude
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measurement of a transverse emittance. Section 3.5 describes a new fluctuations-based tech-

nique for an absolute measurement of a transverse emittance. There are no free parameters

in our equations, nor is a calibration required. However, the transverse and longitudinal

focusing functions of the storage ring are assumed to be known. This technique is tested

at the IOTA storage ring. For a beam with approximately equal and relatively large trans-

verse rms emittances, the results agree with conventional visible synchrotron light monitors

(SLMs) [80]. Then, in a different regime, this new technique is used to measure a much

smaller vertical emittance of a flat beam, unresolvable by the SLMs. These emittance mea-

surements agree with estimates, based on the beam lifetime. Possible further improvements

are discussed.

3.2 Apparatus

In our experiment, a single electron bunch circulated in the IOTA storage ring, see Fig. 3.1(a),

with a revolution period of 133.3 ns and the beam energy of 96.4 ± 1 MeV. Two transverse

focusing configurations were considered in IOTA: (1) strongly coupled, resulting in approx-

imately equal transverse mode emittances and (2) uncoupled, resulting in two drastically

different emittances. Henceforth, let us refer to the beams in these configurations as “round”

and “flat” beams, respectively. In both cases, the bunch length and the emittances depend on

the beam current due to intrabeam scattering [89, 90], beam interaction with its environment

[61], etc.

The longitudinal electron bunch density distribution pt(t) was measured with the help

of a high-bandwidth wall-current monitor [62]. The signal from the wall-current monitor

went to an oscilloscope passing through a long (≈ 100 m) cable and an amplifier on the

way. The transmission functions of the long cable and the amplifier were measured with

a spectrum analyzer. Then, the inverse of the full transmission function (in the Fourier

space) was applied to the oscilloscope’s waveforms. To achieve this, a special program was
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Figure 3.1: (a) Layout of the IOTA storage ring. The electrons circulate clockwise. (b)
Light path from the undulator to the detector (not to scale).

developed. It was running on a Raspberry Pi 3b+ computer. It fetched the waveforms from

the oscilloscope approximately twice per second, applied the transformation to reconstruct

the original waveform from the wall-current monitor, and displayed the results on a webpage

(created using the bokeh library [91]), which could be accessed anywhere on the internal

Fermilab network, called “Controls network”. The program also calculated a number of

useful parameters, such as the rms bunch length, the FWHM bunch length, the effective

bunch length [Eqs. (2.77) and (2.79)], etc. These parameters were also sent to the Fermilab

Accelerator Control System (ACNET). A screenshot of the program is shown in Fig. 3.2, the

source code can be found in the code repository [92].

The longitudinal electron bunch density profile pt(t) was not exactly Gaussian (see

Fig. 3.2), but this fact was properly accounted for by using the effective bunch length σeff
z

[Eqs. (2.77) and (2.79)], which works for any longitudinal bunch shape. The rf cavity in

IOTA operated at 30 MHz (4th harmonic of the revolution frequency) with a voltage am-
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plitude of about 360 V. The rms momentum spread σp was calculated from the known rf

voltage amplitude, the design ring parameters and the measured rms bunch length σz. In

our experiments, the relation was

σp ≈ 9.1× 10−6 × σz[cm]. (3.1)

It is an approximate equation, because of the bunch-induced rf voltage (beam loading) and

a small deviation of pt(t) from the Gaussian shape. However, the effect of σp in Eq. (2.105)

in IOTA was almost negligible. Therefore, such estimation was acceptable.

For the round beam, the IOTA transverse focusing functions (4D Twiss functions) were

chosen to produce approximately equal mode emittances at zero beam current, ε1 ≈ ε1 ≈

12 nm (rms, unnormalized). It was empirically confirmed that they remained equal at all

beam currents with a few percent precision. The expected zero-current emittances for a flat

beam were εx ≈ 50 nm, εy & 0.33 pm (set by the quantum excitation in a perfectly uncoupled

ring). The expected zero-current rms bunch length and the rms momentum spread for both

round and flat beams were σz = 9 cm, σp = 8.3× 10−5. In our experiment, the electron beam

sizes were monitored and recorded by visible synchrotron light image monitors (SLMs) [80]

in seven dipole bend locations, at M1L-M4L and at M1R-M3R, see Fig. 3.1(a) and Fig. 3.3.

The smallest reliably resolvable emittance by the SLMs in our experiment configuration was

about 20 nm. Figure 3.4 illustrates the bunch parameters of the round and flat beams in

IOTA as functions of current. The beam current was measured with a direct-current current

transformer (DCCT). The small vertical emittance of the flat beam was unresolvable by

the SLMs. However, Section 3.5 will demonstrate that it can be reconstructed using the

measured fluctuations.

At the center of the undulator, in the uncoupled optics, the Twiss parameters were

βx = 204 cm, βy = 98 cm, αx = 1.25, αy = −0.87, the horizontal dispersion Dx = 101 cm,

its derivative Dx′ = −4.22 . The strongly coupled optics was created from the uncoupled
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Figure 3.4: Panels (a) and (b) show the mode emittances (ε1 = ε2 = ε) of a round beam
and the horizontal emittance (εx � εy) of a flat beam, respectively, as functions of beam
current in IOTA. The SLMs had a monitor-to-monitor spread of ±8 nm (round beam) and
±50 nm (horizontal emittance of flat beam); these error bars are not shown. All emittances
are rms, unnormalized. Panels (c) and (d) present the bunch lengths (rms and effective) of
round and flat beams, respectively.

optics by changing the current in one skew-quad located at a zero dispersion location. The

coupling parameter u [93] was about 0.5 everywhere in the ring. Therefore, the following

is correct for the coupled case 4D Twiss functions, β1x ≈ β2x, β1y ≈ β2y. Moreover, their

sums, β1x + β2x, β1y + β2y, were approximately equal to the Twiss beta functions in the

uncoupled case, βx, βy. Equation (2.105) assumes uncoupled optics. However, this specific

strongly coupled optics used in IOTA can be approximated by the uncoupled optics with

equal horizontal and vertical emittances εx = εy = ε. More specifically, what is used in

the derivation of Eq. (2.105) (see Section 2.5) is the 6D phase-space distribution of the

electrons, Eq. (2.102). This distribution, for the round beam, when calculated using the

approximation of uncoupled optics with equal emittances εx = εy = ε, and the distribution,

calculated using the exact 4D Twiss functions and equal mode emittances, ε1 = ε2 = ε, are
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almost indistinguishable. This property was intentionally included in the initial design of

the coupled optics in IOTA. The Twiss beta-functions and the horizontal dispersion around

the ring for the uncoupled focusing are shown in Fig. 3.5.

Figure 3.5: The Twiss beta-functions βx and βy and the horizontal dispersion Dx in the
uncoupled focusing in IOTA. The horizontal axis S represents the position along the ring.
The vertical green lines represent the locations of the SLMs, with the exception of M4R,
where our photodiode was installed instead. The purple shaded area represents the location
of the undulator.

The undulator strength parameter [see Eq. (2.88)] was Ku = 1.0 with the number of

periods Nu = 10.5 and the period length λu = 5.5 cm, the total length of the undulator

was Lu = Nuλu = 58 cm. A photodetector was installed in a dark box above the M4R

dipole magnet, see Fig. 3.1(b). The light produced in the undulator was directed to the dark
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box by a system of two mirrors (�2"). Then, it was focused by a lens (�2", focal distance

F = 150 mm) into a spot, smaller than the sensitive area of the detector (�1.0 mm). The lens

was 3.5 m away from the center of the undulator. Because of the two round mirrors, which

are at 45° to the direction of propagation of the radiation, the angular aperture takes an

elliptical shape with the vertical axis smaller than the horizontal by a factor of
√

2. Namely,

the horizontal and the vertical semi-axes were 7.3 mrad and 5.1 mrad, respectively. The

measurements were performed in the vicinity of the fundamental of the undulator radiation,

λ1 = λu(1 +K2
u/2)/(2γ2) = 1.16 µm. As a photodetector, an InGaAs p-i-n photodiode [72]

was used, which has a high quantum efficiency (≈ 80 %) around the fundamental.

Using the elliptical angular aperture mentioned above and the manufacturers’ specifi-

cations for the spectral transmission of the vacuum chamber window at the M4R dipole

magnet, the two mirrors, the focusing lens, and the quantum efficiency of the InGaAs pho-

todiode, it was possible to construct the detection efficiency function ηk,s(φ) for our system.

The lens’s spectral transmission had to be linearly extrapolated for a small interval outside

of the range provided in the manufacturer’s specifications. There were no free adjustable

parameters. We calculated the field amplitude Ek,s(φ), generated by a single electron, for

the parameters of our undulator on a 3D grid (k, φx, φy) with our code [69]. Figure 3.6(a)

shows the simulated spectrum, where the intensity is integrated over the elliptical aperture,

d 〈Ns.e.〉
dk

=
∑
s=1,2

∫
d2φ ηk,s(φ)

∣∣∣Ek,s(φ)
∣∣∣2 . (3.2)

The blue line is calculated for an ideal detection system, where ηk,s(φ) = 1 inside the

elliptical aperture, and zero outside. The red line is calculated with ηk,s(φ), constructed

using the manufacturers’ specifications of the optical elements in our system. This ηk,s(φ) is

equal to zero outside of the elliptical aperture. Whereas, inside, it is equal to the detection

efficiency of our system. In our case, the detection efficiencies for the horizontal and vertical

polarizations (s = 1, 2) are practically the same. Only the reflectance of the mirrors is
55



Figure 3.6: (a) Spectral distribution of the average number of detected photons per turn for
a single electron (s.e.) assuming no losses (blue) and accounting for the detection efficiency
of the system (red). Also, the detection efficiency (dashed, right vertical scale). (b) Angular
distribution of the number of detected photons accounting for the detection efficiency of our
system. Both (a) and (b) are calculated for an elliptical aperture with the horizontal and
the vertical semi-axes 7.3 mrad and 5.1 mrad, respectively.

slightly polarization dependent (under 1 % difference). Moreover, the radiation is dominated

by the horizontal polarization (about 96.5 %). The dashed line in Fig. 3.6(a) is the detection

efficiency of our system for the horizontal polarization. Figure 3.6(b) shows the angular

distribution with ηk,s(φ) of our system,

d2 〈Ns.e.〉
dφxdφy

=
∑
s=1,2

∫
dk ηk,s(φ)

∣∣∣Ek,s(φ)
∣∣∣2 . (3.3)
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With the spectral properties of all optical elements in the system taken into account, the

spectral width of the radiation was 0.14 µm (FWHM), and the angular size was ≈ 2 mrad,

which could be fully transmitted through the �2" optical system.

Figure 3.7 illustrates our full photodetector circuit. First, the radiation pulse is converted

into a photocurrent pulse by the photodiode, see Fig. 3.7(a). Then, the photocurrent pulse

is integrated by an op-amp-based RC integrator, which outputs a longer pulse with a voltage

amplitude that can be easily measured. The op-amp [94] was capable of driving the 50-Ω

input load of a fast digitizing scope, located ≈ 100 m away. The resistor R0 = 580 kΩ in the

circuit in Fig. 3.7(a) was used to remove the offset in the integrator output signal (about

0.3 V), produced by the op-amp input bias current and the photodiode leakage current. The

output voltage pulse of the integrator at the ith IOTA turn can be represented as Aif(t),

where Ai is the signal amplitude at the ith turn and f(t) is the average signal for one turn,

normalized so that its maximum value is 1, see Fig. 3.7(a). The time t in f(t) is in the range

0–133.3 ns, i.e., within one IOTA revolution. The number of photoelectrons, generated by

the light pulse at the ith turn, Ni, can be calculated as the time integral of the output pulse

of the integrator divided by the electron charge e and the resistance Rf , i.e.,

Ni =

∫
Aif(t) dt /(eRf). (3.4)

The function f(t) is known — it was measured with a fast oscilloscope. It was practically the

same during all of our measurements, because f(t) is rather wide (about 30 ns FWHM) and

the length of the input light pulses was much smaller (about 2 ns FWHM); moreover, the

shape of input pulses did not change significantly. Therefore, during all of our measurements

Ni = χAi, (3.5)
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where

χ =

∫
f(t) dt /(eRf) = 2.08× 107 photoelectrons/V, (3.6)

with a ±5 % uncertainty, because of the uncertainty on Rf . Equation (3.5) was verified

empirically at different voltage amplitudes Ai and different bunch lengths, which define the

lengths of the input light pulses. During our experiments at different beam currents, Ai was

in the range between 0 V and 1.2 V.

Since the empirical linear relation between the beam current and the integrator voltage

amplitude was also known, it was possible to use it in Eq. (3.5) to find the average number of

detected photons (photoelectrons) per one electron of the electron bunch. The result of this

calculation was 8.8× 10−3 photoelectrons/electron. This value is quite close to the result

obtained in our simulation,

∑
s=1,2

∫
dk d2φ ηk,s(φ)

∣∣∣Ek,s(φ)
∣∣∣2 = 9.1× 10−3 photoelectrons/electron. (3.7)

In our experiment, the expected relative fluctuation of Ai was 10−4–10−3 (rms), which

is considerably lower than the digitization resolution of our 8-bit broad-band oscilloscope.

To overcome this problem, a passive comb (notch) filter [95] was used, which is shown in

Fig. 3.7(b). The signal splitter divides the integrator output into two identical signals. The

lengths and the characteristics of the cables in the two arms were chosen such that one of the

signals was delayed by exactly one IOTA revolution and, at the same time, the losses and

dispersion in both arms were approximately equal. The time delay in the comb filter could

be adjusted with a 0.1 ns precision. Therefore, the time delay error was negligible, because

the pulses at the entrance of the comb filter were about 30 ns long (FWHM). Finally, a

passive hybrid [96] generated the difference and the sum of the signals in the two arms —
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its output channels ∆ and Σ, respectively. For an ideal comb filter,

∆i(t) = ξ(Ai − Ai91)f (t), (3.8)

Σi(t) = ξ(Ai + Ai91)f (t), (3.9)

where it is assumed that the pulse shape of input and output signals of the comb filter is the

same — f(t). This means that a negligible dispersion in the comb filter is assumed, which

is a very good approximation according to our comparison of input and output pulses with

the oscilloscope. Also, as a result of this comparison, it was determined that the parameter

ξ = 0.31. Of course, our comb filter was not perfect. There was some cross-talk between ∆-

and Σ-channels, some noise in the signals, a small undesirable reflection in one of the arms,

resulting in a small satellite pulse about 85 ns away from the main pulse, see Fig. 3.7(c). In

addition, the hybrid was AC-coupled.

With these effects taken into account Eqs. (3.8) and (3.9) take the form

∆i(t) = ξ(Ai − Ai91)f (t) + µ∆Σi(t) + δrAif(t− tr) + ν∆i
(t)−∆AC, (3.10)

Σi(t) = ξ(Ai + Ai91)f (t) + µΣ∆i(t) + δrAif(t− tr) + νΣi(t)− ΣAC, (3.11)

where t is within one IOTA turn (0–133.3 ns), µ∆ and µΣ describe the cross-talk between

∆- and Σ-channels (< 1 %), δrAif(t − tr) describes the reflected pulse in one of the arms

(perhaps the short one), tr = 85 ns, δr ≈ 1.5× 10−3; and it is assumed that the noise

contributions ν∆i
(t) and νΣi(t) enter the equations as sum terms, independent of the signal

amplitude; the constants ∆AC and ΣAC come from the fact that the hybrid is AC-coupled

and the averages of ∆i(t) and Σi(t) over a long time have to be zero.

For each measurement, 1.5 ms-long waveforms (about nrev = 11 250 IOTA revolutions)

of ∆- and Σ-channels were recorded with the oscilloscope at 20 GSa/s. The beam current

decay was negligible during this 1.5 ms acquisition period.
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In Eq. (3.11), the noise, the cross-talk term, and the reflection term are negligible. The

Σ-channel can be used to measure the photoelectron count mean 〈N〉 during the 1.5 ms.

Using Eq. (3.5) and the non-negligible part of Eq. (3.11),

〈N〉 = χ

〈
Σ(tpeak)

〉
+ ΣAC

2ξ
, (3.12)

where tpeak was introduced — the time within each turn, corresponding to the peak of the

signal, f(tpeak) = 1, 〈
Σ(tpeak)

〉
=

1

nrev

nrev∑
i=1

Σi(tpeak). (3.13)

The idea of using a comb filter is that, in the ideal case, see Eq. (3.8), the ∆-channel

would provide the exact difference between two consecutive turns in IOTA. It would enable

us to look directly at the turn-to-turn fluctuations. The offset would be removed, and the

oscilloscope could be used with the appropriate scale setting, with negligible digitization

noise. In our non-ideal comb filter, see Eq. (3.10), the additional terms have some impact

on the ∆-signal, see Fig. 3.7(c). Nonetheless, by analyzing the ∆-signal in a special way,

described below, it is possible to determine var(N ) with sufficient precision.

Namely, if one takes the variance of Eq. (3.10) with respect to i at a fixed time t, then

the following result is obtained,

var(∆(t)) = 2ξ2var(A)f2(t) + var(ν∆(t)), (3.14)

where the contribution from µ∆Σi(t) and δrAif(t) may be dropped, because the fluctua-

tions of Σi(t) and Ai are strongly attenuated by the factors µ∆ and δr, respectively. Also,

var(∆AC) = 0 since ∆AC is constant during the 1.5 ms. The left-hand side of Eq. (3.14), as

a function of t ∈ [0, 133.3]ns, could be obtained from the collected waveforms of ∆-channel
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as

var(∆(t)) =
1

nrev

nrev∑
i=1

∆2
i (t)−

[ 1

nrev

nrev∑
i=1

∆i(t)
]2
. (3.15)

The results of such calculation for 2000 moments of time t within an IOTA revolution are

shown in Fig. 3.8. These data are for the round beam. The blue, orange, and green lines

correspond to three significantly different values of beam current within the range studied

in our experiment; the red line corresponds to a zero beam current case.

Figure 3.8: The variance of ∆-signal as a function of time [see Eq. (3.14)] within one IOTA
revolution (round-beam data).

Figure 3.8 suggests that there is a constant noise level, which does not depend on time

and signal amplitude. Specifically, it suggests that the noise term in Eq. (3.14) is

var(ν∆(t)) = var(ν∆) = 8.8× 10−8 V2. (3.16)

The observed rms noise amplitude (≈ 0.3 mV) was analyzed by using the noise model for the

detector electrical schematic, Figs. 3.7(a) and (b), as well as the typical electrical character-

istics of the photodiode [72] and the operational amplifier [94]. The three main contributions

to the rms noise in the ∆-channel are the following: the oscilloscope input amplifier noise,
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0.21 mV; the operational amplifier input voltage noise, 0.18 mV; and the operational ampli-

fier input current noise, 0.037 mV. When added in quadrature, these three sources explain

the measured noise level.

The peaks rising above the noise level in Fig. 3.8 can be fitted well with f2(t) (fits not

shown). Thus, their shape is in agreement with Eq. (3.14) as well.

Therefore, using Eqs. (3.5) and (3.14), the photoelectron count variance var(N ) can be

determined as

var(N ) = χ2var(A) = χ2 var(∆(tpeak))− var(ν∆)

2ξ2
, (3.17)

see Eq. (3.15) for the definition of var(∆(tpeak)). The value of the noise level term in

Eq. (3.17) is
χ2var(ν∆)

2ξ2
= 2.0× 108. (3.18)

A dedicated test light source with known fluctuations was employed to verify this method

of measurement of 〈N〉 and var(N ) [Eqs. (3.12) and (3.17)]. This verification is described

in Section 3.3, where the statistical error of the measurement of var(N ) by our apparatus is

also estimated. Namely, the error is ±2.7× 106 — it is approximately constant in the range

of var(N ) observed with the undulator radiation in IOTA.

3.3 Measurements with a test light source

The method of determining 〈N〉 and var(N ) by Eqs. (3.12) and (3.17) was tested with an

independent test light source with known fluctuations. The test light source consisted of a

fast laser diode (1064 nm) with an amplifier, modulated by a pulse generator. The width

of the light pulses and the repetition rate were very close to the experiment conditions in

IOTA. However, the pulse-to-pulse fluctuations in the test light source were significantly

greater than in the undulator radiation in IOTA, namely, var(N ) = 4× 109 as opposed

to var(N ) = 0–1.5× 108 in IOTA. This also means that they were much greater than the

63



instrumental noise level of our apparatus, 2.0× 108. Therefore, the relative fluctuations in

the test light source could be reliably measured, even without subtraction of the noise level,

because it was negligible. The result was

θ =
var(N )

〈N〉2
= 3.31× 10−6, (3.19)

which corresponds to the rms value 1.82× 10−3. These fluctuations primarily came from

the jitter in the pulse generator amplitude.

Further, neutral density filters were used to lower the number of photons detected by

our apparatus. Neutral density filters are filters that have constant optical density in the

wavelength region of interest. As they lower 〈N〉 for the test light source, var(N ) is lowered

in the following known way,

var(N ) = 〈N〉+ θ 〈N〉2 , (3.20)

i.e., the relative fluctuations stay practically constant var(N )/ 〈N〉2 ≈ θ, because they are

caused by the pulse generator amplitude jitter, but at a very low 〈N〉 the photon shot noise

term [the first term in Eq. (3.20)] may have a noticeable contribution, similar to Eq. (2.69).

By using many different neutral density filters and their combinations, ∆- and Σ-channel

waveforms were recorded for a wide range of var(N ), see Fig. 3.9(a), including the range

observed in our experiment in IOTA, shown in Fig. 3.9(b) and highlighted by a red rectangle

in Fig. 3.9(a).

In Figs. 3.9(a) and (b), the parameter θ of the red predicted curve was obtained in a

configuration without any neutral density filters, when the detector noise and the photon

shot noise were negligible, see Eq. (3.19). The blue fluctuation data points, obtained from

the ∆- and Σ-channel waveforms using Eqs. (3.12) and (3.17), agree with the red predicted

curve in the entire range of var(N ), including the range of Fig. 3.9(b) corresponding to

the measurements in IOTA. This means that the method of extracting var(N ) from the
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waveforms, described in Fig. 3.8 and Eq. (3.17), works well, and that the instrumental noise

[var(ν∆) = 2.0× 108] does not depend on the signal amplitude indeed.

Figure 3.9: Photoelectron count variance var(N ) as a function of photoelectron count mean
〈N〉 for the test light source; 〈N〉 was varied by using different neutral density filters. (a)
The entire range of 〈N〉 and var(N ). (b) The region corresponding to the values of var(N )
generated by the undulator radiation in IOTA [highlighted by the red rectangle in (a)].

Further, the statistical error of our measurement of photoelectron count variance in IOTA

was estimated as the rms deviation of the fluctuation data points for the test light source

from the predicted curve in Fig. 3.9(b). The error is ±2.7× 106. It is used in the error bars

in Fig.3.9(b), Fig. 3.10(a), and Figs. 3.11(a),(b) .

3.4 Comparison of measured and simulated fluctuations at IOTA

The measured fluctuations data for the round beam at different values of beam current are

shown in Fig. 3.10(a) (blue points). The blue dashed straight line, var(N ) = 〈N〉, represents
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Figure 3.10: Panel (a) presents the fluctuations measurement for the round electron beam
in IOTA as a function of beam current, a prediction by Eq. (2.105) (red solid line), and a
prediction by Eq. (2.82) (black dashed line), which does not account for the beam divergence.
Panel (b) presents the data of (a) in terms of the number of coherent modes M .

the photon shot noise contribution to the fluctuations — the first sum term in Eq. (2.69).

The values of M extracted from the fluctuation data points using the equation,

M = 〈N〉2 /(var(N )− 〈N〉), (3.21)

are shown in Fig. 3.10(b) (blue points). The error bars in Figs. 3.10(a),(b) correspond

to the ±2.7× 106 statistical error of measurement of var(N ) by our technique. Further,

Fig. 3.10(b) has a curve for M , simulated by Eq. (2.105) (red line), and, for comparison, a

curve for M , simulated by Eq. (2.82) (dashed black line), which neglects beam divergence.

Corresponding curves for simulated var(N ) are shown in Fig. 3.10(a). The shaded light red
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areas in Figs. 3.10(a),(b) show the uncertainty range of our simulation by Eq. (2.105).

For this simulation, it was necessary to know the values of the following four bunch

parameters, entering Eq. (2.105), εx, εy, σp, σeff
z , at all beam currents. Further, it was

necessary to know the values of Twiss functions in the undulator, the parameters of the

undulator and of the detection system. All these aspects were described in Section 3.2.

There were no free parameters in this simulation. Numerical calculation of the integrals in

Eq. (2.105) and Eq. (2.82) was performed by the Monte-Carlo algorithm on the Midway2

cluster at the University of Chicago Research Computing Center using our computer code

[69, 77].

The simulation uncertainty range (shaded light red area) primarily comes from the un-

certainty in the beam energy 96.4 ± 1 MeV. The next source of uncertainty by magnitude,

which is a factor of two smaller, is the SLMs’ ±8 nm monitor-to-monitor variation of ε [for

the round beam, one can use εx = ε and εy = ε in Eq. (2.105)]. The uncertainties of other

parameters (σp, σeff
z , Twiss functions in the undulator, etc.) had negligible effect. The

manufacturers’ specifications for the optical elements of our system did not provide any

uncertainties. Therefore, they were not considered.

The fluctuations predicted by Eqs. (2.69) and (2.105) in the round beam configuration

agree with the measurements within the uncertainties, as shown in Figs. 3.10(a),(b). In

the round beam case, at the beam current value 2.66 mA, for example, the electron beam

divergence in the undulator was about 0.43 mrad (both x and y). It was noticeably smaller

than the rms radiation divergence
√
λ1/(2Lu) = 1.0 mrad [2, Eq. (2.57)], which gives an

estimate of the angular size of Ek,s(φ). Therefore, the effect of beam divergence on the

fluctuations simulation in Figs. 3.10(a),(b) is not too dramatic. However, the deviation from

the measurement of the simulation based on Eq. (2.82), which neglects beam divergence, is

certainly noticeable, whereas the simulation by Eq. (2.105) agrees well with the measurement.

The measured fluctuations data for the flat beam at different values of beam current are
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Figure 3.11: Panel (a) presents the fluctuations measurement for the flat electron beam
in IOTA as a function of beam current. Panel (b) presents the fluctuations measurement
for the flat electron beam at a fixed beam current 2.66 mA with 4 different optical neutral
density filters and one point without any filters, as well as a parabolic fit. Predictions for the
flat beam could not be made, because the vertical emittance of the flat beam was unknown.
Panels (c) and (d) present the data of (a) and (b) in terms of the number of coherent modes
M .

shown in Fig. 3.11(a). The values of M extracted from the fluctuation data points using

Eq. (3.21) are shown in Fig. 3.11(c). For a flat beam, fluctuations data have also been col-

lected for another experiment configuration. Namely, Fig. 3.11(b) shows fluctuation data

points for a flat beam at a fixed beam current 2.66 mA. The corresponding reconstructed
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values of M are shown in Fig. 3.11(d). In this measurement, the photoelectron count mean

(horizontal axis) was varied by using different optical neutral density filters (one point with-

out a filter and four points with filters). Neutral density filters are filters that have constant

attenuation in a certain wavelength range; in our case, around the fundamental harmonic of

the undulator radiation. A new bunch was injected into the ring for each measurement. The

oscilloscope waveforms for ∆- and Σ-channels were recorded when the beam current decayed

to 2.66 mA. The red curve in Fig. 3.11(b) is a fit with a constant M . A corresponding hori-

zontal line is shown in Fig. 3.11(d). The value of M in this fit is Mfit = (4.38± 0.10)× 106.

This value was calculated as the average of the five values of M in Fig. 3.11(d), and the

error was calculated as the standard deviation of these five values. All error bars in Fig. 3.11

correspond to the ±2.7× 106 statistical error of measurement of var(N ) by our apparatus.

In IOTA, the bunch parameters εx, εy, σp, σeff
z depend on the beam current [see Fig. 3.4]

because of various intensity dependent effects, e.g., intrabeam scattering [97], beam interac-

tion with its environment [61], etc. Therefore, M is a function of the beam current too, as

one can see in Fig. 3.10(b) and in Fig. 3.11(c). In Figs. 3.11(b),(d), however, all data points

correspond to one value of the beam current, 2.66 mA. The photoelectron count mean is

varied by using neutral density filters with different attenuation factors ηND. Such filters

linearly scale down the photoelectron count mean, 〈N〉 → ηND 〈N〉. However, they do not

changeM , because if ηk,s(φ) is replaced by ηNDηk,s(φ) in Eq. (2.105), then ηND cancels out

in the numerator and the denominator. This is consistent with Fig. 3.11(d) — all measured

values of M are equal within the uncertainty range. This is one more confirmation that our

understanding of the origin of the fluctuations var(N ) is likely correct.

No simulation results are presented for the fluctuations var(N ) in the uncoupled focusing,

because the SLMs provided very inconsistent estimates for the small vertical emittance εy

of the flat beam — the max-to-min variation for different SLMs reached a factor of eight.

We believe this happened because the beam images were close to the resolution limit, set
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by a combination of factors, such as the diffraction limit, the point spread function of the

cameras, chromatic aberrations, the effective radiator size of the dipole magnet radiation

(≈ 20 µm), and the camera pixel size (≈ 10 µm in terms of beam size). Therefore, the

monitor-to-monitor emittance value variation primarily came from the Twiss beta-function

variation (β(max)
y /β

(min)
y ≈ 12). The diffraction limit is primarily caused by the irises,

used to reduce the radiation intensity to prevent the cameras from saturating at high beam

currents. Alternatively, leaving the irises open and using attenuating optical filters may

improve the resolution. Additional negative effects include the errors in the light focusing

optics, calibration errors of the SLMs, and possible Twiss beta-function errors. The SLMs at

locations with larger beta-functions (M4L, M1L) provide estimates for εy that agree better

with the theoretical predictions [98] at lower beam currents, and with the emittance estimates

presented below in this section. Nevertheless, this is not enough to claim that the SLMs

could provide a reliable estimate for εy during our experiment.

Without εy one cannot use Eq. (2.105) to make a prediction forM and var(N ). However,

it is possible to attempt the reverse of this procedure. One can estimate the emittance of

the electron bunch based on the measured magnitude of the fluctuations of the number of

detected photons var(N ). This will be discussed in the next section, dedicated specifically

to this idea.

3.5 Transverse beam emittance measurement by undulator

radiation power noise

The measured value of the number of coherent modes Mmeas is a function of four bunch

parameters,

Mmeas = M(εx, εy, σp, σ
eff
z ). (3.22)
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The full form of the right-hand side is given by Eq. (2.105). When only one of the four

parameters is unknown, one can numerically solve Eq. (3.22), using our general formula

for M [Eq. (2.105)], to find the unknown bunch parameter. In IOTA, the electron bunch

length is around 20–30 cm and it could be easily measured with the wall-current monitor.

Therefore, we were not interested in measuring it using the fluctuations of the number of

detected photons. However, it was interesting to try measuring the transverse emittances of

the electron bunch using the fluctuations-based technique.

3.5.1 Flat beam. Fixed beam current. Different neutral density filters

Let us start with the flat-beam data from Figs. 3.11(b),(d). These data points were all

collected at the same value of beam current 2.66 mA. Therefore, all four bunch parameters

εx, εy, σp, σ
eff
z were the same during each measurement. The horizontal emittance εx of the

flat beam at a beam current of 2.66 mA could still be reliably measured via the SLMs,

yielding εx = 0.66 µm. The effective bunch length σeff
z could be determined from pt(t)

measured by the wall-current monitor, σeff
z = 29.5 cm. The rms momentum spread σp was

estimated from pt(t) and the ring parameters, σp = 3.0× 10−4. The only unknown in

Eq. (3.22) is εy. Equation (3.22) can be solved for εy by a simple bisection method. The

result is εy = 8.4 ± 1.5 nm, where the uncertainty corresponds to the statistical error of

Mfit, mentioned above. For comparison, if one uses Eq. (2.82) in Eq. (3.22), which neglects

beam divergence, then the following result is obtained, εy = 18.3± 1.3 nm. This shows that,

for the flat beam, accounting for the beam divergence is critical. In this measurement, the

horizontal beam divergence was 0.94 mrad and comparable with the rms radiation divergence√
λ1/(2Lu) = 1.0 mrad [2, Eq. (2.57)], which gives an estimate of the angular size of Ek,s(φ).

Clearly, in this case it has a significant effect on the integral in the numerator of Eq. (2.105).

This is why Eq. (2.105) is used further in this section.

In this reconstruction of εy, there is also a systematic error due to the uncertainty on
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the beam energy (±1 MeV) and due to the systematic error of εx measurement by the SLMs

(±50 nm monitor-to-monitor). We estimated these two contributions to the systematic error

of εy, when εy is determined using Eq. (2.105). They are +2.5
−4.5 nm and +1.6

−1.4 nm, respectively.

These systematic errors are rather significant. However, they are not directly linked to

our measurement technique. They are related to the fact that the beam energy and the

horizontal emittance of a flat beam in IOTA were not known with better precision. Further

improvements in beam characterization in IOTA will reduce the systematic error of our

fluctuations-based technique of εy measurement.

3.5.2 Flat-beam and round-beam data. Variable beam current

The fluctuations-based procedure for the reconstruction of vertical emittance εy of the flat

beam was repeated for each point of the fluctuations data shown in Figs. 3.11(b),(d), where

neutral density filters were not used and the beam current was varied instead. The results

are shown in Fig. 3.12(a). In addition to the statistical error of εy, shown in Fig. 3.12(a),

there was also a systematic error due to the 1 MeV uncertainty on the beam energy (from

2.5 nm at lower currents to 5 nm at higher currents), and a systematic error due to the 50 nm

uncertainty on εx (from 1.3 nm at lower currents to 2.4 nm at higher currents). The measured

vertical emittance is 5–15 nm, most likely due to a nonzero residual transverse coupling.

The expected zero-current flat-beam emittances were εx ≈ 50 nm, εy & 0.33 pm (set by the

quantum excitation in a perfectly uncoupled ring). The smallest reliably resolvable emittance

by the SLMs in our experiment configuration was ≈ 20 nm.

In addition to determining the unknown vertical emittance of the flat beam, it was also

decided to apply our fluctuations-based technique to the round-beam data from Fig. 3.10.

Indeed, since the transverse mode emittances are made equal by design ε1 = ε2 = ε, there

is only one unknown ε and it can be determined using one measured value Mmeas and

Eq. (2.105). The results are shown as the red points in Fig. 3.12(b). This fluctuations-
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Figure 3.12: Panel (a) presents the flat-beam vertical emittance, determined via fluctuations
and via Touschek lifetime. Panel (b) shows the round-beam mode emittance ε, determined
via SLMs, via undulator radiation fluctuations, and via Touschek lifetime, assuming the
effective momentum acceptance 2.0× 10−3. The SLMs had a monitor-to-monitor spread of
±8 nm for the mode emittance ε of the round beam, these error bars are not shown. All
emittances are rms, unnormalized.

based measurement agrees well with the measurement via SLMs [blue line in Fig. 3.12(b)].

Of course, this was expected given the good agreement between the measurement and the

simulation in Figs. 3.10(a),(b). The measured round-beam emittance ε is 75–100 nm (rms,

unnormalized), primarily due to intrabeam scattering [89, 90]. The expected zero-current

value is ε ≈ 12 nm.

The fact that our fluctuations-based technique works well for the round-beam adds cred-

ibility to our fluctuations-based measurements of the small vertical emittance εy of the flat

beam [Fig. 3.12(a)], which is unresolvable by the SLMs. However, it was decided to estimate

the vertical emittance of the flat beam in one more independent way — using the measured
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beam lifetime and a prediction for it, assuming Touschek scattering as the main particle loss

mechanism.

3.5.3 Emittance estimate via Touschek beam lifetime

An independent estimate of the vertical emittance εy of the flat beam could be made based

on the beam lifetime. The beam lifetime could be reliably determined from the measured

beam current I as a function of time, as |I/(dI/dt)|. During all of our measurements the

beam current was measured with a DCCT current monitor, it was reported every second.

Further, the waveforms from the wall-current monitor allowed us to see the distribution of the

electrons among the 4 rf buckets in IOTA. The DCCT current was always corrected to only

account for the main bucket. Typically, the combined population of the remaining 3 buckets

was no more than a few percent. At the beam currents encountered in our experiment

(1–3 mA), the beam lifetime is determined solely by Touschek scattering [93, 98, 99]. In

general, the momentum acceptance is a function of the position along the ring. It is limited

by the longitudinal bucket size δrf and by the dynamic momentum aperture. A constant

effective momentum acceptance δ(eff)
acc can be used [100] to describe the losses due to Touschek

scattering. It is equal to or smaller than δrf . The approach described in [101, 102] was used

to calculate the Touschek lifetime. Figure 3.13 shows the measured beam lifetime for the

round beam (blue points), a calculation with the momentum acceptance limited only by

the rf bucket size δrf = 2.8× 10−3 (green diamonds), and a calculation with an effective

momentum acceptance δ(eff)
acc = 2.0× 10−3 (orange triangles).

The calculation with δ(eff)
acc = 2.0× 10−3 almost perfectly agrees with the measurement.

The emittances and the beam lifetime of the round beam are known with good accuracy,

the only unknown in this Touschek lifetime calculation for the round beam being δ(eff)
acc . We

believe that Fig. 3.13 illustrates that in IOTA δ
(eff)
acc = 2.0× 10−3.

Further, this Touschek lifetime calculation (with δ(eff)
acc = 2.0× 10−3) can be applied to
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Figure 3.13: Lifetimes of round and flat beams in IOTA as functions of beam current.

the flat beam data, shown in Fig. 3.13 as red squares. In this case, the only unknown is εy.

The values of εy determined in this way are shown in Fig. 3.12(a) as black triangles. The

error bars come from the ±50 nm uncertainty on εx of the flat beam. Other sources of error

are much smaller: ±5 sec uncertainty on the measured beam lifetime, uncertainties in the

beam energy, Twiss-functions, and bunch length. The lifetime-based estimates of εy agree

with the fluctuations-based measurements within the uncertainty.

For the flat-beam data collected with different neutral density filters at the beam current

2.66 mA [Figs. 3.11(b),(d)], the fluctuations-based estimate for the vertical emittance was

εy = 8.4 ± 1.5 nm. The lifetime-based estimate is εy = 9.6 ± 1.2 nm. Again, these two

estimates agree within the uncertainties. The black triangles in Fig. 3.12(b) illustrate the

emittance ε of the round beam if it were to be determined from the measured beam lifetime

using the Touschek lifetime calculation with δ(eff)
acc = 2.0× 10−3.

3.5.4 Discussion

Other emittance monitors (wire scanners, Compton-scattering monitors [103, 104]) could

provide better resolution in IOTA. However, if a bright synchrotron light source is available,
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our fluctuations-based monitor may be a good inexpensive non-invasive alternative. There

are two requirements for the technique to work: (A) the fluctuations should not be dominated

by the Poisson noise, so that M can be reliably deduced from var(N ), and (B) M has to

be sensitive to εx, εy. Let us consider the hth harmonic of undulator radiation in the

approximation of Eqs. (2.116) and (2.117) with a narrow Gaussian filter σk � k0/(hNu)

and k0 = 2πh/λ1. By integrating Eq. (2.116) one can obtain 〈N〉 = C(2π)3/2σr,x′σr,y′σk,

where C is the peak on-axis photon flux, C = αN2
uγ

2Fh(Ku)ne/k0 [68, p. 68], α is the

fine-structure constant, ne is the number of electrons per bunch, and the function Fh(Ku),

defined in [68, p. 69], is typically about 0.2–0.4 . If one approximates Eq. (2.117) by M ≈

8 k2
0 σkσr,x′σr,y′σxσyσz, the requirement (A) becomes [see Eq. (2.69)]

〈N〉
M

= α
(π

2

)3
2
Fh(Ku)

γ2N2
une

σxσyσzk3
0

& 1. (3.23)

Figure 3.14: Illustration of the slits and masks that can be used to improve the fluctuations-
based technique for determination of the electron bunch parameters. The original angular
intensity distribution without any slits or masks is shown in Fig. 3.6(b), where the color map
is also provided.

In the model of Eq. (2.117), the requirement (B) becomes σx & 1/(2k0σr,x′), σy &

1/(2k0σr,y′). Notably, one can intentionally make M insensitive to σx (or σy), and, thus,

enable an independent measurement of σy (or σx). For example, by using a vertical slit

[Fig. 3.14(a)], which can be approximated by a very small σr,x′ � 1/(2k0σx), one can

deduce σy from a measured M without the knowledge of σx. The same applies to a hor-
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izontal slit [Fig. 3.14(b)]. Other more unusual radiation masks [for example, Fig. 3.14(c)]

can also be applied to analyze fluctuations in various portions of the angular distribution

of the radiation, which adds flexibility to this method. Assuming no angular restrictions,

σr,x′ , σr,y′ ≈
√
λ0/(2Lu) [2, Eq. (2.57)], and the requirement (B) becomes

σx, σy &
√

2Luλ0/(4π), (3.24)

where λ0 = 2π/k0, Lu is the undulator length. In IOTA, this corresponds to σx, σy & 50 µm,

or εx & 1.0 nm, εy & 2.2 nm; and 〈N〉 /M ∈ [2.3, 5.0] (as per measurements).

Equation (3.24) shows that the resolution limit improves with a shorter wavelength.

Therefore, this technique may be particularly beneficial for existing state-of-the-art and next

generation low-emittance high-brightness ultraviolet and x-ray synchrotron light sources.

Consider the Advanced Photon Source Upgrade (APS-U) with a round beam configuration

for example. The beam energy is 6 GeV, ne = 9.6× 1010, σz = 3.1 cm, εx = 31.9 pm,

εy = 31.7 pm, σx = 12.9 µm, σy = 8.7 µm, σx′ = 2.5 µrad, σy′ = 3.6 µrad [105]. Let us use

the fundamental harmonic λ1 = 4.1Å of the undulator with λu = 28 mm, Ku = 2.459, and

Lu = 2.1 m. Equation (3.23) yields 〈N〉 /M = 19, and Eq. (3.24) becomes σx, σy & 3.3 µm.

Thus, both requirements (A) and (B) are satisfied. These order-of-magnitude estimates were

confirmed by more detailed numerical calculations using Eq. (2.105) and our computer code

[69, 77].

It may be possible to use our fluctuations measurement apparatus, or an improved vari-

ation of it, as a tool for the diagnostics of the Optical Stochastic Cooling (OSC) experiment

in IOTA [34–36]. In this experiment, the beam emittances and the bunch length are signifi-

cantly smaller than in the round and flat beam configurations, considered in this dissertation.

Even in the regime when transverse emittances and bunch lengths cannot be measured indi-

vidually, the fluctuations may serve as an indicator of the cooling process. When the cooling

process starts, the electron bunch shrinks, which, in turn, makes the fluctuations of the
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number of detected photons increase.

3.6 Conclusions

To conclude, power fluctuations in undulator radiation were measured in IOTA under two

different experimental conditions and compared with our theoretical predictions.

In the round-beam configuration, all parameters entering Eq. (2.105) were known. The

predicted fluctuations of the number of detected photons var(N ) agree well with the mea-

surements. If Eq. (2.82) was used, which does not account for the electron beam divergence,

such a good agreement would not be observed. The angular electron beam divergence can

be neglected when it is significantly smaller than the rms radiation divergence. For the

fundamental of undulator radiation it can be estimated as
√
λ1/(2Lu) [2, Eq. (2.57)].

The vertical emittance of the flat beam in IOTA was unresolvable by existing synchrotron

light monitors, therefore a prediction for the fluctuations var(N ) using Eq. (2.105) could not

be made. However, it was possible to perform the reverse of this procedure and infer the

unknown small vertical emittance from the measured fluctuations. The obtained value of

εy agrees with our independent estimate employing a model for the beam lifetime assuming

Touschek scattering as the dominant particle loss mechanism.

It was shown that this non-invasive fluctuations-based technique may be particularly

beneficial for existing state-of-the-art and next generation low-emittance high-brightness ul-

traviolet and x-ray synchrotron light sources. Advanced Photon Source Upgrade at Argonne

was considered as an example. This technique can be enhanced to determine more than one

electron bunch parameter at a time by using various radiation masks, for example, horizontal

and vertical slits.

It would be beneficial to repeat these fluctuation measurements with a longer and brighter

undulator. In this experiment, it was necessary to avoid using a monochromator or restrict-

ing the angular aperture, because all available radiation had to be collected to achieve a
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signal with a voltage amplitude that could be easily measured. Therefore, the integrals in

Eqs. (2.105) and (2.108) had to be calculated over a broad range of angles and wavelengths.

With a monochromator, a slit or a pinhole detector, these integrals could be significantly

simplified. Further, if our undulator had more periods and if we were able to use a monochro-

mator, it would be possible to slowly vary the beam energy and find the energy at which the

detected power is at maximum, i.e., when we are centered on the peak of the fundamental

harmonic. In this case, the systematic error of the εy measurement via the fluctuations, re-

lated to the uncertainty on the beam energy, would be negligible. With a brighter undulator,

it would be possible to use a narrow vertical slit in front of the detector, then the magnitude

of the fluctuations would only depend on εy and the systematic error of the εy measurement

related to the uncertainty of εx, measured by the SLMs, would be minimized, too. Finally,

for a brighter undulator, the statistical error on the measured value of the fluctuations would

be lower as well.

In this chapter, the photon shot noise contribution [the first term in Eq. (2.69)] to the

fluctuations was not studied in detail. Our theoretical derivations in Chapter 2 and most

of the literature [47–49] suggest that this contribution is equal to 〈N〉. This was used as a

fact without confirming it empirically — it was not possible to reduce the incoherence con-

tribution [the second term in Eq. (2.69)] enough to make the photon shot noise contribution

dominant. This will be achieved in the next chapter.
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CHAPTER 4

MEASUREMENTS WITH A SINGLE ELECTRON IN THE IOTA

RING

4.1 Introduction

It was a natural next step in our research to get rid of the collective term (the second term)

in the expression for the turn-to-turn variance of the number of detected photons N ,

var(N ) = 〈N〉+
1

M
〈N〉2 , (4.1)

by considering a single electron circulating in the ring. Indeed, according to Eqs. (2.57),

(2.70), (2.82), and (2.105), 1/M ∝ (ne−1). Therefore, when ne = 1, the second contribution

vanishes. This allows us to study the quantum contribution (the first contribution) in detail.

It can be tested whether the Poissonian photostatistics is observed, which is represented by

the relation

var(N ) = 〈N〉 . (4.2)

There may be some deviations towards super-Poissonian light (var(N ) > 〈N〉) or sub-

Poissonian light (var(N ) < 〈N〉). Poissonian light is very common, examples include laser

radiation, radioactive decay, and, in fact, any strongly attenuated super- or sub-Poissonian

light. Super-Poissonian light is also common. For example, thermal light, or any light with

classical fluctuations of the radiated power. In fact, the undulator radiation generated by an

electron bunch in Chapter 3 was super-Poissonian. Sub-Poissonian photostatistics, however,

is unusual and it would indicate some interesting non-classical state of the radiated field.

An example could be the Fock state (number state) with a certain number of quanta in

it. Another example is the non-classical states observed in the parametric down conversion

[106].
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In consideration of the synchrotron radiation, the crucial parameter is the electron recoil,

χ =
Ephoton

Eelectron
, (4.3)

i.e., the ratio of the photon energy and the electron energy. To properly describe the photo-

statistics of the synchrotron radiation, it should be considered in the framework of quantum

electrodynamics (QED) [107–109], where both the electron and the radiation are quantum

objects. The deviations from the Poissonian photostatistics are closely related to the corre-

lation (or anticorrelation) in the detected photon pairs. The quantum two-photon effects in

the bending-magnet radiation have been considered perturbatively in [110]. To our knowl-

edge, the quantum two-photon effects have not been considered in an undulator. However, a

lot of progress has been made in the QED description of the two-photon Compton process in

the intense laser field [111–114]. In terms of theoretical description, the undulator radiation

generated by ultra-relativistic electrons is equivalent to the Compton process in the intense

laser field. Indeed, due to Weizsäcker-Williams [115–117] approximation, in the electron’s

rest frame, the magnetic field of the undulator can be approximated as a plane electromag-

netic wave. There exists an exact solution of the Dirac equation [107] for an electron in the

field of a plane electromagnetic wave — Volkov states [118]. This allows to obtain an expres-

sion for the differential emission probability of the two-photon process non-perturbatively

using the Dirac-Volkov propagator in the Furry picture [112]. In this description, not only

the emitted radiation, but also the electron is considered as a quantum object, including its

spin properties. This consideration shows that the effects of two-photon correlation and the

deviations from the Poisson photostatistics are proportional to the electron recoil parameter

Eq. (4.3). Typically, in accelerators this parameter is very small. It may be possible to

observe some correlation effects discussed in [111] in FACET-II [119] with an optical undu-

lator. However, in most other linear and circular accelerators these effects are undetectable.

In IOTA, χ ≈ 10−8 and the electron (or electrons) circulating in IOTA can be approximated

81



as a classical current. In this case, it is not necessary to use the Dirac equation and a simpler

model, presented by Glauber in Refs. [47–49], can be used. The Glauber’s model predicts

that the radiated field is in a coherent state (Glauber state), which results in the Poisso-

nian photostatistics and no correlation between the detected synchrotron radiation photons

(undulator or bending magnet).

However, there has been at least one experiment with the synchrotron radiation [43, 44]

two decades ago claiming to observe a non-classical sub-Poissonian photon statistics in the

seventh coherent spontaneous harmonic of an FEL. This could have been an instrumentation

effect [45]. The measured photostatistics could be affected by the low quantum efficiency (/

10 %) and the relatively long dead time of the detector (a photomultiplier tube) used in [43,

44]. Nonetheless, it is interesting to carry out a fairly similar photostatistics measurement

in IOTA with more advanced equipment available today and see the results. Although

we do not anticipate any deviations from the Glauber’s model, they cannot be eliminated

completely.

A single electron circulating in a ring is a well-controlled and repeatable system. It

may be very useful for testing theoretical predictions for the synchrotron radiation. In this

chapter, the photon flux and the statistical properties of the photon detection events will

be considered. Measurements with a single detector and with two detectors, separated by

a beamsplitter, will be presented. In addition, the recorded detection times will be used to

study the synchrotron motion of a single electron in IOTA. Similar previous experiments

with a countable number of electrons in the VEPP-3 storage ring in Novosibirsk have been

reported in [120–122]. A single electron has also been observed in the Metrology Light Source

in Germany [123, 124] and in the first electron-positron collider AdA [125, 126].
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4.2 Apparatus

This experiment with a single electron is carried out with the same undulator and in the

same dark box as in Chapter 3, see Fig. 3.1 . However, the light detector and the data

acquisition system are different in this experiment. Namely, a Single Photon Avalanche

Diode (SPAD) detector is used, see Table 4.1 and [127], which is mostly sensitive to the

second harmonic of the undulator radiation. The pulses from the SPAD detector went to

a picosecond event timer [128], which was also provided with the IOTA revolution marker,

see Fig. 4.1 . This allowed us to create a table containing the IOTA revolution number and

the detection time relative to the IOTA revolution marker for each detection event. The

dead time of the SPAD detector (22 ns) was lower than one IOTA revolution (133.3 ns) and,

combined with a very low dark count rate, it virtually had no effect on the photostatistics.

On the way to the picosecond event timer, the pulses from the SPAD detector also went

through a passive signal inverter (hybrid) and through a discriminator, these elements are

not shown in Fig. 4.1 .

Table 4.1: Specifications of the SPAD detector [127].

Parameter Value
Active area (diameter) 180 µm
Detector efficiency at 650 nm 65 %
Dark count rate ≈ 100 Hz
Dead time 22 ns
Pulse height 2 V
Pulse duration 10 ns
Intrinsic arrival time jitter 0.35 ns

The table shown in Fig. 4.1 is obtained after post-processing of the collected data. The

raw data include absolute arrival times of the IOTA revolution marker pulses and the SPAD

detector pulses. Using the raw data it was possible to calculate the jitter of the IOTA

revolution marker. It was about 14 ps (rms). Below, it will be shown that it is negligible

compared to the intrinsic timing jitter of the SPAD detector and compared to the synchrotron
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Figure 4.1: Block diagram of the data acquisition system.

motion of the electron in IOTA.

A focusing lens with a focal distance of 180 mm was used (different from the one used in

Chapter 3). The SPAD detector was installed on a stage with two picomotors (transverse

motion, x- and y-axes) and a stepper motor (longitudinal motion, z-axis), similar to the

experiment in Chapter 3. A special website was created for this experiment, where all the

controls could be found, a screenshot is shown in Fig. 4.2 . It was created using a Node-RED

server [129] running on a Raspberry Pi 3b+ computer. This website was accessible on the

Fermilab’s secure internal network, called “Controls network”, without access to the internet.

The optimal location of the detector could be found by moving the detector along x, y, and

z iteratively, finding the extremum each time.

4.3 Obtaining a single electron in the ring

Obtaining a single electron in the IOTA ring is a standard and a well-established procedure.

The number of electrons in the ring can be determined by looking at the bending-magnet

radiation photocount rate on the photomultiplier tubes (PMTs) installed at some dipole

magnets in IOTA. In addition, there are high-resolution digital cameras in IOTA looking at

the bending-magnet radiation (SLMs, see Fig. 3.3). They are capable of resolving individual

electrons in the ring as well, when the exposure time is sufficiently long, e.g., one second.

Finally, given optimal alignment, the photocount rate on the SPAD detector is perhaps the
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(a) (b)

Figure 4.3: (a) Count rate on a photomultiplier tube, detecting the bending-magnet radi-
ation, generated by the last 12 electrons in the ring. Adapted from [130]. (b) Count rate
on the SPAD detector, detecting the undulator radiation, generated by the last 3 electrons
in the ring (in this measurement the edge-pass filters were removed and the count rate was
≈ 45 kHz, as opposed to 24.7 kHz with the edge-pass filters).

most accurate measurement of the number of electrons in the ring in the regime of a countable

number of electrons. Due to using the undulator radiation and due to the high detection

efficiency, the count rate on the SPAD is higher than on the PMTs. The signal-to-noise

ratio of the SPAD detector is also superior to that of the PMTs and the digital cameras,

compare Figs. 4.3(a) and (b), for example. However, because of the very small active area of

the SPAD detector, the events of strong scattering of the electrons in the residual gas may

change the photocount rate on the SPAD. This is the origin of the spikes in the photocount

rate in Fig. 4.3(b). The PMTs at IOTA do not have this problem.

There are several ways to obtain a single electron in IOTA: (1) if the beam lifetime is

relatively short, it is possible to simply wait for the beam current to decay down to a single

electron. This is how a single electron was obtained in IOTA for the first time, see Fig. 4.3(a),

just one month after the first beam circulation in IOTA; (2) the process of beam current

decay can be accelerated dramatically by scraping the electron beam by quickly lowering the
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Figure 4.4: Digital camera image created by the bending-magnet radiation, generated by a
single electron circulating in IOTA. Adapted from Ref. [131].

rf cavity voltage and then restoring it to the nominal value; (3) It is possible to inject a single

electron (or a few electrons) into IOTA in the first place, see Ref. [132]. First, the laser of the

FAST linac photo-injector is turned off and only the dark current is produced. Then, several

optical transition radiation (OTR) foils are inserted along the linear accelerator to further

reduce beam intensity. Finally, the strength of the last quadrupole in the linear accelerator

before the injection to IOTA could be varied to fine-tune the number of injected electrons.

The average number of injected electrons could be tuned to be approximately equal to one.

Figure 4.5 shows the measured distribution of the number of injected electrons in a series of

53 injections. These measurements were reported in Ref. [132]. The measured probability

to inject a single electron is 32 %. In this configuration, one can reinject several times until

a single electron is observed in the ring. It is a very quick procedure. When everything is

tuned optimally, a single electron can be injected in less than one minute, on average.

4.4 Measured and predicted radiation properties

It is important to understand that our SPAD detector is binary — it does not feel the

difference between detections of 1,2,3, and so on photons at a time, it always produces the

same pulse (TTL, 10-ns-long). Therefore, the data collected with the SPAD detector and

the picosecond event timer can be represented as a sequence of 0’s and 1’s only, where every

0 represents an IOTA revolution without a detection event, and every 1 represents an IOTA
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Figure 4.5: Distribution of the number of electrons injected into IOTA (yellow histogram)
and a fit by the Poisson distribution (black points). Adapted from Ref. [132].

revolution with a detection event. These data can be used to evaluate the probability of a

photon detection per pass in the undulator as the ratio of the total number of detections and

the number of IOTA revolutions in the data set. This probability will be denoted by p. This

probability p is different from the classically predicted expectation value p0 of the Poisson

distribution for the number of detected photons [47–49] (in the notation of Chapters 2 and

3, p0 = 〈Ns.e.〉). There exists a simple relation between these two probabilities,

p =
∞∑
k=1

pk0
k!
e−p0 = 1− e−p0 , (4.4)

i.e., p is the probability to detect 1 or more photons, because our binary detector does not

resolve the exact number of detected photons. Several data sets were collected with up

to 60 seconds recorded at a time. The measured value of p varied among these data sets

within about 2 % because the detector was moved and realigned between some measurements.

Therefore, let us consider only one 60-second-long uninterrupted data set for now. In this

data set, p = (3.29 ± 0.02) × 10−3, where the uncertainty was estimated as the standard
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deviation of the values of p calculated in ten 6-second-long sub-samples of the entire 60-

second-long data set. This probability value corresponds to about one detection event per

304 revolutions in IOTA (on average), or to a count rate of 24.7 kHz. For comparison, the

dark count rate of the SPAD detector was only 108 Hz. In addition, a 5-ns-long gate was

used around the expected detection arrival time, which allowed us to reduce the effective

dark count rate to 4.0 Hz.

Also, a theoretical prediction was made for the probability p. We used Eqs. (2.89), (2.90),

and (2.108) to calculate p0, which is equivalent to 〈Ns.e.〉. The integral in Eq. (2.108) was

computed using our code repository [77] and the expressions in Eqs. (2.89) and (2.90) were

evaluated using our wigrad package [69] (which agrees with the srw package [70]). The

manufacturers’ specifications were used for the spectral properties of the vacuum chamber

window at the M4R dipole magnet, the two mirrors, the focusing lens, the two edge-pass

filters, and the detection efficiency of the SPAD detector. The following edge-pass filters were

used: a 500-nm longpass filter and a 800-nm shortpass filter. The result of the calculation

was psim = 6.07× 10−3. However, this estimate assumed that the lens focused the radiation

into a spot smaller than the sensitive area of the SPAD detector — �180 µm. Perhaps

this assumption was wrong due to the aberrations in the lens and the diffraction limit, and

because of that about a half of the photons were lost.

Figure 4.6 offers more details on our calculation of the spectral-angular properties of the

undulator radiation in IOTA. Because of the two round mirrors, which are at 45° to the

direction of propagation of the radiation, the angular aperture takes an elliptical shape with

the vertical axis smaller than the horizontal by a factor of
√

2. This aperture was used in

both panels (a) and (b) of Fig. 4.6.

Since the second harmonic of the undulator radiation is considered in this experiment,

the angular distribution of the number of detected photons is represented by two peaks.

The photograph embedded in Fig. 4.6(a) and our measurement with the SPAD detector
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Figure 4.6: (a) Calculated angular distribution of the number of detected photons account-
ing for the detection efficiency of our system. Also, a photograph of the undulator light
spot on a black screen (bottom left). (b) Calculated spectral distribution of the number
of photons, emitted into the angular aperture (red line, left-hand vertical scale) and the
detection efficiency of our system (blue line, right-hand vertical scale). Both (a) and (b) are
calculated for an elliptical aperture with the horizontal and the vertical semi-axes 7.3 mrad
and 5.1 mrad, respectively.

in Fig. 4.7 agree rather well with the simulation shown in Fig. 4.6(a). The measurement

with the SPAD detector in Fig. 4.7 was obtained by recording the photocount rate on the

SPAD detector, while moving it with the x-axis picomotor at seven different y-positions.

The values along x- and y-axes in Fig. 4.7 were obtained assuming that the piezo actuators

were moving with a constant speed indicated in the manufacturer’s specifications. It should

be understood that these values are very approximate, since it is not guaranteed that the

motion was uniform. In addition, the speed of motion could significantly depend on the load.

These measurements were carried out far from the optimal z-position, because the goal was

to see the angular distribution of the number of detected photons. In the optimal z-position,

one would only see a single very narrow peak, defined by the convolution of the focused light

spot and the sensitive area of the SPAD detector.

Let us consider the statistical properties of the collected data. Assuming no correlation

between IOTA revolutions, there are only two possible outcomes at each revolution: (1)

a detection event with probability p and (2) no detection with probability 1 − p . It is a
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Figure 4.7: Seven measured x-scans of the photocount rate at seven different y-positions of
the SPAD detector. This measurement was carried out far from the focal plane of the lens
(far from the optimal z-position).

sequence of Bernoulli trials, for which the mean equals p and the variance equals p(1 − p).

Interestingly, in this case, the statistics is slightly sub-Poissonian, var(N ) = (1 − p) 〈N〉.

However, it is because of the principle of operation of the SPAD detector, not because of the

intrinsic properties of the radiation.

In general, photostatistics can be characterized by the Fano factor [45], which is defined

as

F =
var(N )

〈N〉
. (4.5)

Then, sub-Poissonian, Poissonian, and super-Poissonian photostatistics correspond to F < 1,

F = 1, and F > 1, respectively. For a sequence of Bernoulli trials, F = 1−p . Let us consider

one 60-second-long data set again. One can divide it into 1000 sub-samples and calculate the

value of the Fano factor in each of the sub-samples. Then, it is possible to plot a histogram

for the 1000 obtained values. It is presented in Fig. 4.8 .
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Figure 4.8: A histogram for 1000 values of the deviations of the Fano factor from unity in
1000 sub-samples of a 60-second-long data set of the SPAD’s detection events.

All 1000 obtained values of F are smaller than unity. The vertical lines in Fig. 4.8

represent the 0.16 and 0.84 percentiles (in a normal distribution they correspond to a mi-

nus one sigma and a plus one sigma). The corresponding confidence interval for F − 1 is

(−3.39,−3.21)×10−3. This is in agreement with the expectation for a sequence of Bernoulli

trials F − 1 = −p within the statistical error, since the measured average detection proba-

bility was p = 3.29× 10−3.

Further, some measurements were taken with several different optical neutral density

filters to verify the following relation between the measured Fano factor Fmeasured and the

intrinsic Fano factor of the radiation Fsource [44, 45]

Fmeasured − 1 = η(Fsource − 1), (4.6)

where η is the detection efficiency of the system. A filter wheel was used with seven different

neutral density filters and one open hole. Several data sets were recorded with each filter.

The results of these measurements are shown in Fig. 4.9.

No statistically significant deviations from the expected linear relation Eq. (4.6) were
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Figure 4.9: Fano factor measurements with seven different neutral density filters and one
measurement without any neutral density filter.

observed in Fig. 4.9 . Equation (4.6) illustrates that if the detection efficiency is very low,

then any intrinsic photostatistics will look like Poissonian when measured. This is why in

our measurements the SPAD detector was used, whose quantum efficiency reaches 65 % at

650 nm, which is much higher than in [43, 44] (/ 10 %).

In a sequence of Bernoulli trials, the times between consecutive photocounts (in units of

IOTA revolutions) should follow a geometric distribution, and the number of photocounts

in a certain fixed time window (for example, n = 1000 IOTA revolutions) should follow a

binomial distribution. Figure 4.10 illustrates that both of these expectations are fulfilled.

In both cases, the χ2 goodness-of-fit test [133, p. 637] results in a P-value (see [133, p. 140],

do not confuse with the probability of detection p) above the conventional 0.05 threshold.

Namely, 0.36 for the distribution of the interarrival times and 0.20 for the distribution of

the number of counts in a time window. This means that the null hypothesis (exponential

or binomial distribution, respectively) cannot be rejected, i.e., there are no statistically

significant deviations from the expectations for a sequence of Bernoulli trials. Let us reiterate,

however, that the distribution of the number of photons detected per one pass was not studied
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Figure 4.10: (a) The measured distribution of interarrival times between the photocounts
and a fit by a geometric distribution. (b) The measured distribution of the number of
photocounts in a time window equal to n = 1000 IOTA revolutions and a fit by a binomial
distribution.

— our detector cannot resolve this number, it can only say if there was or was not a detection

event after a pass in the undulator.

4.5 Synchrotron motion of a single electron

Since our apparatus recorded the arrival time relative to the IOTA revolution marker for

each detection event, it could be plotted as a function of the IOTA revolution number, see

Fig. 4.11 . In this figure one can observe a sinusoidal curve — it is, in fact, the synchrotron

motion of a single electron in IOTA.

It was decided to use this as an opportunity to compare the measured synchrotron motion

with a simulation. In Fig. 4.11, the time scale is on the order of a few milliseconds, on a
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Figure 4.11: The measured detection time relative to the IOTA revolution marker as a
function of the IOTA revolution number and a fit by a sinusoidal curve. A single electron
was stored in the ring during this measurement. The deviations of the collected data points
from the sinusoidal fit are due to the intrinsic timing jitter of the detection system.

larger time scale (seconds) the amplitude of the synchrotron motion will change significantly

in a random fashion due to quantum excitation and radiation damping, our simulation will

account for these effects too.

4.5.1 Turn-by-turn map equation

Our simulation [134] used the following transformation of the relative energy deviation δi

and the rf phase φi of a single electron from turn i to turn i+ 1,

δi+1 = δi +
eV0

E0
sinφi −

〈U〉 JE
E0

δi −
Ui
E0

, (4.7)

φi+1 = φi − 2πqηsδi+1 + ξi, (4.8)

where e is the electron charge, E0 = γmec
2 is the average energy of the electron, me is the

electron mass, c is the speed of light, V0 is the rf voltage amplitude, q is the rf harmonic

number, ηs = αc−1/γ2 is the phase slip factor (the variation of η due to the variation of γ is

negligible in IOTA), αc is the momentum compaction factor, JE is the longitudinal damping

95



partition number [135, p. 445], Ui is the radiation energy loss at ith turn, ξi is the rf cavity

phase jitter at the ith turn. It was decided to model ξi as a Gaussian random variable with

a zero average and a certain standard deviation σξ . We refer the reader to [135, Eq. (3.28)]

for the symplectic part of the transformation. The derivation of the synchrotron radiation

damping term, − 〈U〉JEE0
δi, is described in [135, pp. 438–445]. The quantum excitation term,

− Ui
E0

, is considered in [136]. The energy kick from the rf cavity at the synchronous phase φs

compensates for the average energy loss due to the synchrotron radiation, i.e.,

eV0 sinφs = 〈U〉 . (4.9)

In IOTA, during the single-electron experiments, the values of the parameters were the

following, V0 = 380 V, γ = 188.6, E0 = 96.4 MeV, φs = 0.0287 rad, JE = 2.64, q = 4,

αc = 0.070 86, ηs = 0.070 83 .

Using the approximation of an isomagnetic ring, the average emitted energy per turn in

IOTA is [135, pp. 434–435]

〈U〉 =
8παγ

9
uc = 10.9 eV, (4.10)

where α = 1/137 is the fine-structure constant, uc is the critical energy [136, Eq. (11)],

uc =
3

2

~cγ3

ρ
= 2.8 eV, (4.11)

where ρ = 70 cm is the radius of the electron trajectory in the dipole magnets in IOTA, ~ is

the reduced Plank constant. The isomagnetic ring approximation is a very good approxima-

tion in IOTA, the radiation losses in the undulator are negligible compared to the radiation

losses in the bending magnets.

Several other mechanisms of losses and fluctuations of the electron’s energy have also

been considered. However, they proved to be negligible. Namely, we considered the effect of

fluctuations of the betatron amplitudes of the electron on the electron’s synchrotron phase,
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i.e., when the betatron amplitude is larger, the electron’s trajectory is curved stronger and

it takes longer to complete one revolution in the ring, at a fixed electron energy. Using for

a conservative estimation εx = εy = 20 nm (the minimal observed emittance at small beam

currents [98]), it can be concluded that this effect results in the rms synchrotron phase jitter

contributions 2.6× 10−7 rad and 3.2× 10−7 rad, from the horizontal and vertical betatron

motions, respectively. It will be shown below that these contributions are negligible compared

to the estimated rf cavity phase jitter.

Further, we estimated the energy losses by the electron due to the interaction with the

residual gas in the vacuum chamber, namely, due to the collision (ionization) stopping power

and due to the radiation (bremsstrahlung) stopping power. In these order-of-magnitude

estimations, it was assumed that the residual gas is the atomic hydrogen with the effective

pressure 4.2× 10−8 torr [98]. Then, as estimated by [137, Eq. (2.16)], the average collisional

energy loss per turn is 3.6× 10−4 eV. Per [75, p. 268], the average energy loss per turn due

to the bremsstrahlung is 1.3× 10−5 eV. When compared with the average energy loss per

turn due to the synchrotron radiation (10.9 eV) these effects are clearly negligible. It should

be noted that bremsstrahlung could produce very rare events with energy loss comparable

to the average synchrotron radiation energy loss per turn. It is possible to estimate how

often such events occur using the formulas from Ref. [137]. Our estimates indicate that,

on average, such extreme bremsstrahlung events would take place once per tens of hours.

Therefore, most likely there was not even a single such event in all of the collected data.

4.5.2 Distribution of the turn-by-turn energy loss

The average number of bending-magnet radiation photons emitted per turn in an isomagnetic

ring is [136]

〈N〉 =
5πα√

3
γ. (4.12)

97



According to [47–49], in the case of a negligible electron recoil, which is the case in all storage

rings, the number of emitted photons follows a Poisson distribution. In addition, in our own

measurements in Section 4.4 no anomalies were observed in the photostatistics. Therefore,

our simulation [134] will use a Poisson random number generator with the expectation value

〈N〉 given by Eq. (4.12). In IOTA, 〈N〉 = 12.5 .

The energies of these photons follow a distribution with the following density function

[136, Eq. (18)],

n(x) =
3

5π

∞∫
x

K5/3(ξ) dξ , (4.13)

where x is the normalized photon energy, i.e., the energy of an emitted photon u in units of

the critical energy uc,

x =
u

uc
, (4.14)

and K5/3(ξ) is a modified Bessel function of the third kind; n(x) dx gives the probability that

the normalized energy of an emitted photon is between x and x+dx. Reference [136] describes

an implementation of a generator for the random variable x following the distribution from

Eq. (4.13). This implementation will be used in our analysis. A histogram for the energies

(u = ucx) of one million emitted photons, obtained by using this generator, is shown in

Fig. 4.12(a).

The following routine is used to simulate the total energy loss Ui at ith turn in IOTA.

First, the number of emitted photons Ni is generated using a random Poisson variable

generator with the expectation value 〈N〉 = 12.5 . Then, the generator for the photon

energies from [136] is used, which corresponds to the probability density from Eq. (4.13).

This generator is used Ni times. Finally, to obtain Ui, the sum of the obtained Ni values of

energy uj is calculated,

Ui =

Ni∑
j=1

uj . (4.15)
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Figure 4.12: (a) A histogram for a million values of energy carried away by a bending-
magnet radiation photon in IOTA, generated by the algorithm reported in [136]. (b) A
histogram for 100 000 simulated values of energy loss per turn U using Eq. (4.15). Also, a
fit by a Gamma distribution.

The result of such simulation of Ui for 100 000 IOTA revolutions is shown in Fig. 4.12(b)

(blue histogram). However, this simulation is rather time-consuming, because the random

generator for the photon energy has to be called on average 〈N〉 = 12.5 times per IOTA turn.

Therefore, it was decided to approximate the distribution of Ui by a Gamma distribution,

as suggested in [2, p. 121] and in [63]. It has the following probability density function [2,

Eq. (4.75)]

p(U) =
1

Γ(M)

UM−1

〈U〉M
exp

(
−M U

〈U〉

)
, (4.16)

where Γ(M) is the Gamma function and

M =
〈U〉2〈

U2
〉
− 〈U〉2

. (4.17)

The value ofM was obtained from the previously simulated Ui by Eq. (4.15) [blue histogram

in Fig. 4.12(b)]. The result was M = 2.92. The density function of a Gamma distribution

with this value of M is shown in Fig. 4.12(b) (red line). It agrees with the previously

simulated histogram rather well. Therefore, henceforth, the Gamma distribution will be
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used to simulate the turn-by-turn energy loss Ui. In this case, a random generator needs to

be called only once per turn. It makes the simulation of the longitudinal motion of a single

electron ≈ 25 times faster. Another justification for using this approximation is that the

synchrotron motion period in IOTA during our measurements was about 0.313 ms, which

corresponds to about 2351 IOTA revolutions. This means that one IOTA revolution is a

very small part of one synchrotron motion period. Therefore, when simulating the quantum

excitation term, one could choose time intervals longer than one IOTA revolution, i.e., m

IOTA revolutions, with m = 10, 20, or 30 for example. This new energy loss, calculated (as

a sum of m single-turn energy losses) and used in Eq. (4.7) once per m turns would have a

distribution close to a normal distribution according to the central limit theorem, no matter

what the single-turn distribution is (within reason). Although this approach could further

speed up the simulation, it was decided not to pursue it, because the turn-by-turn simulation

with a Gamma distribution had acceptable time performance — one second of synchrotron

motion in IOTA could be simulated in about two seconds.

4.5.3 Comparison of simulations and measurements

Let us start by comparing the measurement and the simulation of the synchrotron motion

amplitude as a function of time. The collected data points could be fitted by short pieces

of sinusoidal curves with different amplitudes, see Fig. 4.13 . The length of each piece was

about 20 synchrotron motion periods. The intervals were chosen to be slightly overlapping

(by approximately 3 synchrotron motion periods). In this way, there is a possibility to

construct a continuous fit for the entire data set by using a weighted average in the overlap

region, with a weight of the left-hand sinusoidal curve going from 1 to 0 and the weight of

the right-hand sinusoidal curve going from 0 to 1 linearly with time.

After performing this fitting procedure on the measured and on the simulated data, one

could extract the sequences of amplitudes and plot them as functions of time, see Fig. 4.14,
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Figure 4.13: Illustration of the fitting procedure. The data points are fitted in short
overlapping intervals.

where σξ = 6.0× 10−5 rad in the simulation.

Figure 4.14: Amplitude of the synchrotron motion of the single electron as a function
of time. The amplitude is extracted from the measured and the simulated data by the
fitting procedure illustrated in Fig. 4.11 . In the simulation, the rms rf cavity phase jitter is
σξ = 6.0× 10−5 rad.

The measured and the simulated plots in Fig. 4.14 look very similar. They both exhibit

a constant fight between the quantum excitation and the radiation damping. The intrinsic

timing jitter of the SPAD detector was about 0.35 ns according to the manufacturer’s spec-

ifications. Also, there could be other sources of timing jitter due to other active elements

in the system (e.g., the signal discriminator). Therefore, what is observed in Figs. 4.11 and

4.13 is a sum of the actual synchrotron motion of the single electron and the random time
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delays introduced by the detection system. Fortunately, when the collected data points are

fitted by short pieces of sinusoidal curves, the values of the amplitudes in the fits are prac-

tically unaffected by the detection system’s timing jitter (see Section 4.5.4). Therefore, the

comparison of the measurement and the simulation in Fig. 4.14 is sound. One could also

plot the dependence on time of the standard deviation of the detection time relative to the

IOTA revolution marker σt, calculated in a small time interval, e.g., 0.1 sec, see Fig. 4.15.

Figure 4.15: Standard deviation of the detection time relative to the IOTA revolution
marker σt, calculated in a time window 0.1 sec, as a function of time. In the simulation, the
SPAD’s timing jitter is added as a random variable with a Gamma distribution with the
mean 0.73 ns and the standard deviation 0.41 ns.

One can see a similar behavior in these plots — the fight between quantum excitation

and radiation damping. However, σt never goes close to zero, because of the timing jitter

of the detection system. In the simulation, shown in Fig. 4.15, this jitter was modeled

as a random variable with a Gamma distribution with the mean 0.73 ns and the standard

deviation 0.41 ns. The choice of Gamma distribution and the values of the parameters of the

distribution will be justified below in Section 4.5.4 .

Now, let us focus on the analysis of the synchrotron motion amplitude (Fig. 4.14), be-

cause it is practically unaffected by the detection system’s timing jitter σ(det)
t . Clearly, one

cannot expect a perfect agreement between the measurement and the simulation in Fig. 4.14,

because it is a stochastic process. However, one can expect a good agreement between the
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Figure 4.16: Panel (a) shows the comparison of the measured and simulated distributions of
the synchrotron motion amplitude. The best agreement is achieved at the rms rf cavity phase
jitter σξ = 6.0× 10−5 rad. Panel (b) presents the measured and the simulated histograms for
the standard deviation of the detection time relative to the revolution marker σt, calculated
in a time window 0.1 sec. The best agreement is achieved at the detection system’s timing
jitter σ(det)

t = 0.40 ns.

distributions of the values of the synchrotron motion amplitude. Such comparison is shown

in Fig. 4.16(a), which presents the measured distribution and the simulated distribution at

three different values of the standard deviation of the rf cavity phase jitter σξ . This allows

us to find the most likely value of σξ in IOTA, namely, σξ = 6.0× 10−5 rad. More than three

values of σξ were considered, but only three are shown in Fig. 4.16(a) to avoid overcrowding.

One can say with certainty that σξ is between 5.0× 10−5 rad and 7.0× 10−5 rad. In the

simulations for Fig. 4.16(a) σ(det)
t = 0.40 ns. However, the histograms in Fig. 4.16(a) are not

sensitive to σ(det)
t .

Further, it was decided to perform similar calculations for the histograms of σt at three

different values of σ(det)
t and a fixed value of σξ = 6.0× 10−5 rad. The results are shown

in Fig. 4.16(b). These results indicate that the value of our detection system’s timing jitter

was about 0.40 ns.

Using the same piecewise sinusoidal fit of the collected data (Fig. 4.13) one can plot the
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Figure 4.17: Synchrotron motion period as a function of synchrotron motion amplitude.

dependance of the synchrotron motion period on the synchrotron motion amplitude. The

results are shown in Fig. 4.17 . Each point in this plot corresponds to an estimation of the

period and the amplitude in a 25-ms-long interval in the collected or simulated data. The

agreement between the simulation and the measurement is rather good. This shows that we

understand the parameters of the IOTA ring well. The small-amplitude approximation for

the synchrotron motion period in IOTA is

Ts = T0

√
2πE0

qηseV0 cosφs
= 0.316 ms, (4.18)

which is very close to the measured small-amplitude synchrotron motion period 0.313 ms,

which is shown in Fig. 4.17 as the black horizontal dashed line. In Eq. (4.18), T0 is the IOTA

revolution period, T0 = 133.3 ns. The relative error between the predicted (0.316 ms) and

the measured (0.313 ms) small-amplitude synchrotron motion periods is under 1 %. Perhaps

this is because of the errors in E0 and V0, which are of the same order of magnitude.

Interestingly, the synchrotron motion period is not a constant as a function of the syn-

chrotron motion amplitude in Fig. 4.17 . This shows that the oscillations are not exactly

harmonic. It is due to the fact that the synchrotron motion Hamiltonian [135, p. 244] is not

a quadratic function of phase φ.
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4.5.4 Reconstruction of the detection system’s delay distribution

Figure 4.18: The distribution of the residuals between the recorded arrival time and the
sinusoidal fit (see Fig. 4.11). A fit by a Gamma distribution with the mean 0.73 ns and
the standard deviation 0.41 ns — the same as in the measured residuals. The histogram for
the residuals had to be shifted horizontally. The optimal shift, 0.73 ns, was determined by
minimizing the Kullback–Leibler divergence between the measured probability distribution
and the Gamma distribution fit.

There exists a better way [than Fig. 4.16(b)] to determine the properties of the random

time delays introduced by our detection system. One can plot the distribution of the residuals

between the collected data points and the sinusoidal fit (see Fig. 4.11). With good accuracy,

this distribution directly describes the random delays introduced by the detection system

(the SPAD detector, the discriminator, and the picosecond event timer). This distribution

is presented in Fig. 4.18, a 60-second-long data set was used. The standard deviation of this

distribution is 0.41 ns. It is close to the value determined in Fig. 4.16(b), namely, 0.40 ns.

It is higher than the manufacturer’s specification for the intrinsic timing jitter of the SPAD

detector (0.35 ns). This either means that our SPAD had a slightly higher timing jitter or

that there was also a contribution from the discriminator (or both). We believe that the

picosecond event timer did not introduce any detectable timing jitter. The distribution in

Fig. 4.18 is asymmetric, because the random time delays cannot be negative. Of course, some

portion of the residuals (see Fig. 4.11) was negative, but the distribution of the residuals

was shifted to obtain Fig. 4.18 . The optimal value of the shift was found by minimizing the
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Kullback-Leibler divergence, which is conventionally used to quantify the distance between

two probability distributions. The optimal shift was 0.73 ns.

Figure 4.19: Panel (a) shows that the simulated distribution of synchrotron motion ampli-
tudes does not depend (within statistical error) on the standard deviation of the detection
system’s delay σ(det)

t used in the simulation. Panel (b) shows that the simulated distribution
of the standard deviation of detection time relative to the IOTA revolution marker σt does
not depend (within statistical error) on the model of the detection system’s delay (Gamma
or Gaussian distribution).

Previously, a statement was made that the detection system’s random time delays do not

affect the synchrotron motion amplitudes obtained by fitting with short sinusoidal curves

(see Fig. 4.13). To substantiate this claim, three simulated distributions of the synchrotron

motion amplitude with three different values of the standard deviation of the detection

system’s delay σ
(det)
t are presented in Fig. 4.19(a). In these simulations, the detection

system’s time delays were modeled by Gamma distributions with different σ(det)
t , but with

the same mean 0.73 ns. All three simulations agree with each other and with the measurement

within the statistical error. Further, the type of the distribution (within reason) does not

affect the results too. The Gamma distribution and the Gaussian distribution models of

the random time delay are compared in Fig. 4.19(b). This comparison is performed for the
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standard deviation σt of the detection time calculated in a time window of 0.1 sec.

4.6 Measurements with two SPAD detectors

In addition, some measurements were taken with an upgraded setup, which included two

SPAD detectors separated by a beamsplitter, see Fig. 4.20 . Similar measurements with such

Brown-Twiss interferometry of undulator radiation have also been reported previously in

Ref. [121].

Figure 4.20: Illustration of the two-SPAD experiment setup.

Since our apparatus recorded the detection events for each detector individually, it was

possible to see if there was any correlation (or anticorrelation) between the detection events

in the two SPADs. The electron in IOTA is believed to be a classical electric current (no

electron recoil after photon emission), which means that the radiated field should be in

a Glauber state (classical state), according to [47–49]. In this case there should be no

correlation (or anticorrelation) between the two detectors, the detection events should be

absolutely independent. It is interesting to see if this is actually the case. If the quantum

state of the radiated field deviates from the Glauber state towards, for example, the Fock

state, then the number of coincidence events (simultaneous detections in both detectors)

will be lower than the one expected for a classical radiation. For a perfect Fock state the
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coincidence rate goes to zero — full anticorrelation. Anticorrelation was previously observed

in a similar experiment with a radioactive cascade, which produces a quantum state close to a

Fock state [138]. This experiment proved the existence of individual photons and, therefore,

the quantum nature of light.

Several single-electron data sets were recorded with the picosecond event timer. Each

data set was either 5-min-long or shorter, if the electron was lost before 5 minutes elapsed.

The total recorded time was 1351.3 s. Henceforth, let us use the name “SPAD1” for the SPAD

detector collecting the transmitted radiation without any change of direction of propagation

and the name “SPAD2” for the SPAD detector collecting the radiation reflected at 90° to

the initial direction of propagation, see Fig. 4.20 . The average photocount rates in SPAD1

and SPAD2 were 30.4 kHz and 15.2 kHz, respectively. The edge-pass filters (see Section 4.4)

were removed here in order to achieve higher photocount rate. The average coincidence rate

was 61.6 Hz. The beamsplitter used in this experiment [139] was a 50-50 beamsplitter, but

only for unpolarized light. For π-polarization the ratio could be as far from 50-50 as 70-30

(depending on the wavelength). The undulator radiation was predominantly π-polarized.

This is why the photocount rates in SPAD1 and SPAD2 have a ratio of about 2 to 1, rather

than 1 to 1.

Using the recorded photocounts in SPAD1 and SPAD2, one could estimate the detection

probabilities p1 and p2 during one revolution in IOTA in each of the two detectors as p1 =

q1/ntot and p2 = q2/ntot, where ntot is the total number of IOTA revolutions in the entire

1351.3-second-long dataset, q1 and q2 are the total numbers of the detection events in SPAD1

and SPAD2, respectively. Then, using these probabilities, one could calculate the expected

number µ of coincidence events during the total observation time 1351.3 s, assuming that

the probability of a coincidence event is a product of the two probabilities,

p12 = p1p2, (4.19)
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i.e., assuming that the detection events in SPAD1 and SPAD2 are independent from each

other. The result was µ = 83 027 . The measured number of coincidence events was m =

83 179 . Further, if the coincidence events are also assumed to be independent from each

other, then they can be considered as another sequence of Bernoulli trials with the probability

p12 that a coincidence event happens and the probability 1 − p12 that it does not happen

during each IOTA revolution. In this case it is possible to calculate the expected standard

deviation of the number of coincidence events as

σm =
√
ntotp12(1− p12) = 288. (4.20)

Thus, a hypothesis test can be constructed, where the null hypothesis is that the detection

events in each SPAD detector are independent from each other and also are independent from

the detection events in the other SPAD detector. If the null hypothesis is true, the measured

number of coincidence events m follows a normal distribution (due to the central limit

theorem) with the mean µ = 83 027 and the standard deviation σm = 288 . The measured

value m = 83 179 corresponds to a P-value equal to 0.60 . The P-value [133, p. 140] is

the probability to observe a deviation from the expected value µ at least as extreme as the

measured m. The obtained P-value is large and well above the conventional threshold value

0.05 . Therefore, the deviation of the measured number of coincidence events m from the

expected value µ is statistically insignificant and the null hypothesis cannot be rejected.

Thus, we do not see any evidence of correlation or anticorrelation between the detection

events in the two SPAD detectors.

4.6.1 Possible application in bunch length measurement

The data collected with two SPAD detectors can be used to determine the rms electron bunch

duration in the ring at vanishing beam currents. An illustration is provided in Fig. 4.21,
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Figure 4.21: Detection time difference histograms for 1 and 2 electrons in the ring. These
histograms are based on two 300-second-long data sets for 1 and 2 electrons.

namely, one can record one data set with a single electron in the ring, and another data

set with two electrons in the ring. Then, one can select the events where a photocount was

observed in each detector (coincidence events). Further, for each such event, the arrival time

difference can be calculated between SPAD1 and SPAD2. Examples of histograms for the

arrival time difference for 1 and 2 electrons in the ring are shown in Fig. 4.21 . Then,

one can calculate the standard deviations of the arrival time difference σ(1el)
t and σ(2el)

t for

the 1- and 2-electron cases, respectively. Finally, the rms electron bunch duration can be

estimated as

σt =

√
(σ

(2el)
t )2 − (σ

(1el)
t )2. (4.21)

The random time delays introduced by the SPAD detectors and the discriminator con-

tribute significantly to σ(2el)
t and σ(1el)

t . However, in the subtraction under the square root in

Eq. (4.21) these contributions cancel each other and what is left is exactly σ2
t . We considered

12 minutes of recorded data for 1 electron and 12 minutes for 2 electrons in the ring. For
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these data sets, σ(1el)
t = 0.503 ns, σ(2el)

t = 0.568 ns, and σt = 0.26 ns (or σz = cσt = 7.9 cm).

To estimate the error of this measurement, the entire 12-minute-long data set was divided

into three 4-minute-long data sets (for 1 and for 2 electrons in the ring), and three cor-

responding values of σz were obtained. The standard deviation of these three values was

0.5 cm. It gives an estimate for the statistical error of the measurement of σz = 7.9 cm by

this method.

4.6.2 Possible further experiments

Figure 4.22: Illustration of the Mach-Zehnder interferometry of the undulator radiation.

A possible extension of the experiment with a single beamsplitter is a Mach-Zehnder

interferometry of the undulator radiation in IOTA, see Fig. 4.22 . In this interferometer, the

incoming radiation pulse is split into two in the first beam splitter. Then, the radiation pulse

in one of the arms of the interferometer is delayed by a certain variable optical delay. In

Fig. 4.22 a double wedge is used for illustration purposes. Further, the two radiation pulses

interact in the second beamsplitter. Nowadays, the optical delay can be adjusted with a very

small step, as small as 10 nm using piezo actuators. It can be shown that when the optical

delay is slowly varied, one can observe oscillations of the intensities in the two outputs of the

interferometer, see [138] for example. This interference pattern contains information about

the temporal shape of the undulator radiation pulses, which are about 30 fs long. It may be
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an interesting diagnostics tool for the radiation pulses in the time domain. One could also

consider the Hong-Ou-Mandel interferometry [140–143].

This experiment can be carried out with a single electron or with an electron bunch. We

believe that this experiment should begin by studying the radiation from an electron bunch

with pinhole masks in front of the SPADs so that (1) the radiation is strongly attenuated

and safe for the SPADs and (2) the on-axis radiation is studied, which results in a more

pronounced interference pattern. In this case it is crucial to work with the fundamental

harmonic of the undulator radiation, which has a maximum on axis, as opposed to the

second harmonic, which has zero intensity on axis. With a 96.4 MeV beam, the SPADs are

only sensitive to the second harmonic 400–800 nm. To move the fundamental harmonic to

this spectral range, the beam energy has to be increased to about 150 MeV. It has not been

achieved until very recently — at the time of writing.
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CHAPTER 5

CONCLUSIONS

In our experiments with an electron bunch in IOTA it was shown that the turn-to-turn

fluctuations var(N ) of the number of detected undulator radiation photons per turn N have

two contributions: (1) the Poisson contribution equal to 〈N〉, due to the discrete quantum

nature of light, and (2) the incoherence contribution 1
M 〈N〉

2, related to the interference of

the fields generated by the electrons in the bunch and the fact that the relative electron

positions and directions of motion change from turn to turn randomly due to the betatron

motion, the synchrotron motion, quantum excitation, etc. Although the two contributions

are different in nature (quantum and classical), there is a unified description in the framework

of quantum optics using the density operator formalism [16].

A new equation was derived for the number of coherent modes M for an electron bunch

with a Gaussian transverse density distribution, an arbitrary longitudinal density distribu-

tion, and non-negligible rms electron beam divergences. The rms bunch length is assumed

to be significantly larger than the radiation wavelength. Equation (2.105) is presented for

the first time, as beam divergence has been neglected in all previous considerations. Beam

divergence can be neglected if it is significantly smaller than the characteristic radiation

angle. Equation (2.105) is complex and includes a multidimensional integral. However, a

computer program [77] has been developed for numerical computation of Eq. (2.105). It can

be easily used for other storage rings if the required parameters are known. A very good

agreement was obtained between the measurements and the simulations for the fluctuations

of the number of detected photons at IOTA for the round electron beam, whose parameters

were well-known. It was shown that such a good agreement would not be achieved if the

electron beam divergence was neglected.

Further, it was proposed to use the measured fluctuations var(N ) and Eq. (2.105) to

infer some parameters of the electron bunch. This new fluctuations-based technique enabled
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a measurement of the small vertical emittance of the flat electron beam in IOTA, which

was unresolvable by the conventional synchrotron light monitors. This measurement was in

agreement with another independent estimate based on the measured beam lifetime and a

model for the beam lifetime assuming that the dominant particle loss mechanism was the

Touschek scattering. This measurement in IOTA was only a proof-of-principle experiment.

It used the undulator radiation in the near-infrared spectral range. The potential of this

noninvasive fluctuations-based technique can be truly realized when it is used with ultraviolet

or x-ray radiation and much smaller electron bunches. It was shown that the sensitivity of

this technique improves with shorter wavelength and smaller bunch sizes. For example, our

estimations indicate that it may be possible to measure the very small transverse beam

emittances εx = 31.9 pm, εy = 31.7 pm of a strongly coupled electron beam in the Advanced

Photon Source Upgrade at Argonne using this new proposed method.

In our experiment with a single electron and a single binary photon detector, we have

not yet observed any deviations of the undulator radiation photostatistics from a memory-

less Bernoulli process. Our measurements with a Brown-Twiss interferometer (two SPAD

detectors separated by a beamsplitter) show no evidence of correlation (or anticorrelation)

in the detected photon pairs. Thus, so far, all of our observations confirm the prediction

[47–49] that at negligible electron recoil the synchrotron radiation, produced by a single elec-

tron, is in a Glauber state. In the future, the Mach-Zehnder interferometry of the undulator

radiation could be carried out in IOTA. It would allow to investigate the structure of the

radiation pulses in the time domain with a sub-femtosecond resolution.

The detection arrival times can be used to study the synchrotron motion of a single

electron and to infer some useful parameters of the ring, such as the rms rf cavity phase

jitter and the synchrotron motion period as a function of amplitude. In the future, in IOTA,

this diagnostics of the longitudinal motion can complement the diagnostics of the transverse

motion [132, 144] and facilitate a complete 3D tracking of a single electron in the ring.
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