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Abstract 
 

Lupus Nephritis is a chronic inflammatory kidney disease that arises in the context of 

systemic lupus erythematosus (SLE). It is characterized by the deposition of immune 

complexes in the kidney, localized inflammation, and ultimately kidney failure.1 In the 

systemic model of lupus pathogenesis, antigen presenting cells activate auto-reactive 

CD4+ T cells, which in turn provide help to auto-reactive B cells that differentiate into 

plasma cells that produce auto-antibodies. Many therapeutic approaches (such as B cell 

depletion) have been attempted to disrupt this pathway. However, despite the rational 

basis of these approaches, none have demonstrated robust performance in clinical 

trials.2,3 This suggests that our understanding of how the adaptive immune system 

contributes to disease burden is incomplete. This work aims to fill this gap by investigating 

inflammation that is localized in the kidney, using computer vision to identify cells in tissue, 

and spatial analysis to define how these cells are organized.    

We first related cellular features of inflammation with progression to renal failure using 

the biopsies of LuN patients for whom we have at least 2 years of clinical follow-up data. 

Five classes of cells were identified in these biopsies: CD4+ T cells, CD4- T cells, B cells, 

myeloid dendritic cells, and plasmacytoid dendritic cells. Two striking results emerged 

from this work—first, we observed that dense cellular neighborhoods of CD4- T cells are 

associated with progression to renal failure. Second, dense regions of B cells were found 

in a subset of patients who had preserved renal function.  

T cell and B cell phenotypes were further interrogated using a highly-multiplexed 

dataset from a separate cohort of LuN patients. The richness of markers in this second 

dataset allowed for investigation into the spatial distribution of more specific cell 
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phenotypes. We showed that “CD4- T cells” are not exclusively CD8+ but are rather a 

diverse compartment that include CD3+CD4-CD8- (double negative) T cells, roughly 50% 

of which might be gamma-delta T cells. In addition, we found that regulatory T cells were 

relatively rare, while T follicular helper cells were abundant and frequently found in large 

cellular neighborhoods with B cells. Finally, we found that dense cellular neighborhoods 

often exist in the context of larger inflammation, while some smaller neighborhoods are 

isolated within the tissue. Analyzing both image datasets together allowed us to identify 

features of in situ inflammation that associate with patient outcomes in LuN and define 

metrics that can be used to evaluate inflammatory structures in tissue.       

Finally, we developed methods for improving cellular segmentation in inflamed tissue. 

We investigated the generalizability of cellular segmentation algorithms to other diseases 

states and demonstrated techniques by which a segmentation algorithm trained for lupus 

nephritis can be applied to triple negative breast cancer. We also evaluated the effects of 

sample preparation and staining panel choice on the performance of segmentation 

algorithms. These insights will aid the development of robust quantitative pipelines for 

understanding human tissue inflammation.   
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Chapter 1: Introduction—What is lupus nephritis? 
1. Introduction  

Lupus nephritis (LuN) is a manifestation of systemic lupus erythematosus (SLE) 

that is characterized by chronic kidney inflammation and damage.1 This disease has a 

complex etiology, with several branches of the immune system playing a role in either 

driving or mitigating pathology. In order to evaluate the roles of these cells in humans, 

there are 3 main compartments that we evaluate—blood, urine and kidney. It is relatively 

easy and non-invasive to collect blood and urine from patients, and then use flow 

cytometry or transcriptomic analysis to finely detail their cellular constituents.  However, 

these likely provide an incomplete or tangential view of what is happening at the site of 

inflammation. Evaluating the status of inflammation in the kidney itself is difficult, as renal 

biopsies have risks associated with them, and are therefore used sparingly in a clinical 

setting. However, understanding what is happening in the kidney is critical to 

understanding what is actually causing the kidneys to deteriorate and fail, which might 

not be obvious from the blood and urine.   

Because mechanistic insight is difficult to attain from human studies, typically 

investigations into human tissue attempt to relate the abundance of specific cells, 

transcriptional profiles, or cytokines with the type of patient, whether they respond to 

therapy, pathological metrics (activity indices, chronicity indices) and renal function. The 

most mechanistic studies we have are clinical trials, which are as close to an experiment 

as one can do with humans. Here I will describe the clinical picture of lupus nephritis, 

describe what is known about how various components of the immune system contribute 

to pathology, and outline the gap in the field that my work is meant to fill.    
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2. Clinical picture and current standard of care of Lupus Nephritis 

It has been estimated that LuN occurs in up to 50% of SLE patients, but it has been 

observed that there is an increased frequency in patients of African, Asian, and Hispanic 

descent4. Patients with lupus nephritis present with protein and blood in the urine 

(proteinuria, hematuria), and renal insufficiency5. Approximately 10-30% of LuN patients 

proceed to kidney failure, or end-stage renal disease (ESRD) within 10 years4,6, resulting 

in the need for a transplant or dialysis. 

The current standard of care for lupus nephritis is an induction period of intensive 

therapy followed by lower-dose maintenance therapy. Induction usually takes a two-

pronged approach— 1) cytotoxic agents such as mycophenolate mofetil (MMF) or 

cyclophosphamide that target proliferating cells and 2) corticosteroids, which have a 

global immunosuppressive effect.6 Maintenance therapy is usually done with MMF and 

azathioprine, with MMF being the therapy of choice, but azathioprine providing an 

acceptable alternative in situations like pregnancy where MMF in contraindicated.  

Lupus nephritis can follow several courses -- some patients can go into remission 

for periods of time, interspersed with periodic “flares” of poor kidney function.5–7 Other 

patients will have completely normal kidney function and then have sudden, acute kidney 

failure. Still other patients have lowered kidney function that remains remarkably stable 

over many years. For this reason, the optimal period of maintenance therapy varies by 

patient. This disease therefore has a very heterogeneous clinical picture but lacks a 

correspondingly diverse set of therapies.  
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3. Kidney biopsy for evaluating/classifying LuN 

Kidney biopsies are a powerful tool for diagnosing and evaluating lupus nephritis. 

The primary method for classifying LuN in the US is the International Society of 

Nephrology/Renal Pathology Society (ISN/RPS) system, developed in 2003 and revised 

in 2018.8 It classifies biopsies into 6 classes with increasing severity: (I) minimal 

mesangial, (II) mesangial proliferative, (III) focal (<50 involved glomeruli), (IV) diffuse (>50 

involved glomeruli), (V) membranous, and (VI) advanced sclerosing. Classes I and II are 

both considered to be “non-proliferative” while classes III and IV are referred to as 

“proliferative”, the key difference being that proliferative classes have inflammation. This 

standard scoring system focuses exclusively on glomerular inflammation and damage. 

There is an alternative NIH scoring system which provides activity and chronicity 

indices. In this context, “Activity” is a score between 0 and 24 that captures phenomena 

such as endocapillary hypercellularity, neutrophils, tubulointerstitial inflammation (TII), 

cellular crescents, hyaline deposits, and fibrinoid necrosis. Twenty one of 24 points 

capture glomerular activity while only three points capture TII. In short, it is reflective of 

ongoing damage events at the time of biopsy. “Chronicity”, in contrast, is a 0-12 scale 

that refers to glomerulosclerosis, fibrous crescents, tubular atrophy, and interstitial 

fibrosis, all measures of damage that has already occurred at the time of biopsy. It can 

be broken down into two components reflecting distinctive compartments within the 

kidney—six points are associated with glomerular damage and six points with 

tubulointerstitial damage.  

Kidney biopsies are also probed for immune complex (conjugates of antibodies 

with antigen) deposition by staining for immunoglobulin (Ig). “Full house” staining is 
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described when a biopsy tests positive for IgG, IgA, IgM, C1q, and C3, signifying active 

antibody deposition and complement activate in the kidneys.6 These measures are more 

useful in making a definitive diagnosis rather than staging renal disease activity or 

damage. 

The utility of some of these metrics in predicting renal outcomes has been called 

into question, as they primarily focus on glomerular pathology and exclude the 

tubulointerstitium.9 Tubulointerstitial inflammation (TI) can be scored on a 0-3 scale by 

immunohistochemical staining for CD45, a marker for cells of a hematopoietic lineage. It 

has been observed that severe (2-3) TI scores are predictive of renal failure within 5 years 

of the biopsy. However, within the cohort of patients who have moderate/severe 

inflammation, roughly half progress to ESRD in five years, while half have relatively stable 

disease. Similarly, the predictive power of the NIH chronicity scale appears to be driven 

by the tubulointerstitial component of the score.10 This variation in patient outcome 

suggests that glomerular inflammation is not a direct predictor of prognosis, and that the 

diversity in tubulointerstitial inflammation needs to be investigated further. 

4. Mouse models of lupus nephritis 

There are several mouse models of lupus nephritis.11 The MRLlpr model is a 

spontaneous multigenic model that is driven in part by a loss of function mutation in the 

Fas gene, which mediates apoptosis. It is characterized by multi-system disease, 

including glomerulonephritis that is characterized by macrophages, T cells, and 

neutrophils. Disease is independent of FC𝛾Rs which is contrary to the observation that 

mutations in FC𝛾Rs are commonly found in some SLE patients.12 The gld line is another 

spontaneous model that is the result of a mutation in FasL, the ligand to Fas. These mice 
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have reduced glomerular pathology relative to the MRLlpr mice.13 There are several 

spontaneous lupus models that arise from cross between two strains of mice. BXSB mice 

result from a cross between C57BL/6 mice and SB/Le mice, and (unlike humans) male 

mice have greater disease burden. Renal failure in these mice is characterized by 

proliferative nephritis with prominent neutrophil infiltration, which is not characteristic of 

humans.14 F1 mice from a cross between NZB and NZW mice (B/W) are thought to closely 

recapitulate the human disease. From this cross a stable NZM line has been developed 

that resembles the parental cross. This multigenic model is one of the most commonly 

studied mouse models. Intraperitoneal injection of pristane has also been used to 

investigate auto-antibody production, and these mice have exhibited nephritis, with 

substantial monocytic infiltrate and antibody deposition. However, this is generally 

considered to be a suboptimal model due to the other side effects of pristane.       

Each of these models recapitulates some, but not all, aspects of lupus nephritis. It 

has been observed that all of these models are both different from each other and from 

humans.15 Furthermore, while each mouse model represents a single genetic state, lupus 

is genetically very heterogeneous with over 50 susceptibility loci associated with the 

disease.16 Therefore, while each mouse model might represent a specific type of lupus, 

they are not broadly applicable to lupus patients.  

Because the work that I will describe has exclusively been focused on studying 

this disease in humans, I will mostly cover the results of studies that have been done in 

humans, referring to mouse studies only when they were used as a complement for 

observations from human studies.    
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5. Cast of characters—how does adaptive immunity contribute to LuN? 

B cells 

The dominant model of lupus nephritis pathogenesis is that of auto-antibody 

mediated damage to the kidney. It is thought that these auto-antibodies are generated as 

a result of “autovaccination” events, wherein dendritic cells take up self antigens and 

aberrantly present them to CD4+ T cells, which in turn provide help to auto-reactive B 

cells, driving their differentiation into antibody-producing plasma cells.1 This is commonly 

referred to as a break in immunological “tolerance” to self-proteins. Renal damage occurs 

when immune complexes (aggregates of bound antibody-antigen pairs) deposit or form 

de novo in the glomeruli and trigger local complement activation, which in turn engages 

Fc receptors on leukocytes and tubule cells alike, triggering a cascade of inflammatory 

responses.17   

The primary role of B cells in driving lupus nephritis lies in producing auto-

antibodies. Lupus nephritis patients often produce antibodies against specific self-derived 

proteins and molecules. In particular, anti-nuclear antibodies (ANA) are used as 

biomarkers for diagnosing lupus and, to a lesser degree, monitoring disease activity and 

severity.18 Anti-nuclear antibodies are a broad class of antibodies that are specific to 

macromolecules found in the nucleus, including double stranded DNA (dsDNA) and 

ribonuclear proteins (RNPs).19 It has been postulated that anti-nuclear antibodies 

specifically drive nephritis because extracellular dsDNA binds to the glomerular 

membrane, triggering antibody deposition and complement fixation at that site.17,20 In 

addition to ANA, antibodies against the intermediate filament protein vimentin have been 

associated with severe tubulointerstitial inflammation (TII).21  
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Auto-reactive plasma cells therefore drive systemic lupus nephritis pathology by 

generating antibodies against specific “nephritogenic” antigens. Indeed, circulating 

plasma cells have been found to be elevated in LuN patients, and positively correlated 

with disease activity.22,23 There is also evidence of local plasma cell accumulation in the 

kidney itself.24 Recently, the presence of a subset of “age associated” CD11c+IgD-CD27- 

B cells has been identified in both the peripheral blood25 and kidneys14 of lupus patients. 

This subset of cells has been associated with both normal aging and autoimmunity and 

appear to be hyper-responsive to TLR7 stimulation, which causes them to differentiate 

into plasma cells.  

However, circulating antibodies are not the only role that B cells may play in lupus 

pathogenesis. There is abundant evidence that B cells that have not yet differentiated into 

plasma cells infiltrate the kidneys of lupus nephritis patients, leading to the hypothesis 

that they are having additional tissue-localized effects. For example, they could be playing 

a role as an antigen presenting cell to kidney-infiltrating T cells. Indeed, in mouse models, 

the antigen presenting capabilities of B cells is critical for lupus pathogenesis.26  

Given the abundant evidence that B cells play a critical role in driving LuN 

pathology, B cell depletion is an obvious therapeutic approach for treating this disease. 

However, this has not been borne out in clinical trials. Rituximab, an anti-CD20 

monoclonal antibody, has consistently failed to show superiority over standard of care in 

large-scale clinical trials2, despite the fact that it successfully depletes circulating B 

cells27–29 and has been very effective in other autoimmune contexts, such as rheumatoid 

arthritis.30 Intriguingly, B cell depletion has also been found to correspond with increases 

in circulating regulatory T cell markers (CD25, FOXP3, TGF𝛽) within 1-3 months.27,29 
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Similarly ocrelizumab (another anti-CD20 antibody) did not improve renal responses over 

standard of care, and even showed increased adverse events in combination with MMF.31 

On the other hand, a third anti-CD20 antibody, obinutuzumab, has shown some promising 

preliminary results, though the full clinical trial has not been completed.32 Overall, 

depletion of this population of B cells has not remarkably improved therapy over 

MMF/cyclophosphamide. Given that cyclophosphamide and MMF seem to deplete B cells 

effectively33, it is possible that anti-CD20 therapy does not confer an additional benefit.  

Another approach that has been taken to mitigating the role of B cells in this 

disease has been inhibition of the cytokine BAFF, also known as BlyS. Anti-BlyS/BAFF 

antibodies such as belimumab have shown more promise in clinical trials. The BLISS-LN 

trial tested belimumab on top of standard of care vs standard of care in patients with 

active LuN, and partial renal response rates increased from 32 to 43%, with a concomitant 

decrease in anti-dsDNA antibodies in the treatment arm that received the belimumab.34 

Another trial (CALIBRATE) took a multi-pronged approach by testing the efficacy of 

rituximab, corticosteroid and cyclophosphamide, followed by a course of belimumab in a 

population of patients with refractory LuN. Though addition of belimumab was safe, it did 

not significantly improve treatment response rates relative to patients who received just 

rituximab, corticosteroid and cyclophosphamide. They observed B cell depletion by week 

12, and it was better maintained in the belimumab arm; in particular, the people who got 

belimumab had fewer naïve/transitional B cells and more memory B cells, with a 

corresponding decrease in IgG. However, ANA+ transitional B cells rebounded, though it 

was delayed in the belimumab arm.3 Interestingly, a comparison of the transcriptional 

profile of responders vs non-responders to therapy via microarray showed that BAFF 
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expression was associated responders, suggesting that for the patients for whom B cells 

are driving pathology, standard of care successfully addresses their disease.35  

The results of all of these trials indicate that simply depleting B cells from the 

equation does not successfully resolve disease in many patients. Furthermore, some data 

suggest that current standard of care therapies might be effective in treating B cell-driven 

pathologies. This implies that other cellular/inflammatory factors might be contributing to 

the continuing kidney damage, independently of the continuous activity of B cells.    

CD4+ T cells 

There is also plentiful evidence for CD4+ T cells as a major constituent of LuN in 

situ inflammation. CD4+ T cells have substantial heterogeneity in their phenotypes and 

effector functions in terms of their cytokine profiles and effector functions. Therefore there 

is a variety of roles they might play in the pathogenesis of the disease. Patschan et al 

observed that circulating CD4+ T cells  in lupus nephritis patients were enriched for 

costimulatory molecules, particularly CD80 and CD134, suggesting that they are actively 

providing help to other T cells.36  

The most obvious role of CD4+ T cells in the tissue is that of T follicular helper-like 

(Tfh) cells. These cells can have the capacity to provide help to B cells and drive their 

differentiation into plasma cells. Though Tfh are traditionally found in lymphoid tissue, 

Tfh-like cells, or “peripheral Tfh” have been identified numerous times in the context of 

autoimmunity, and typically have a PD1+ICOS+/-CXCR5- phenotype.37–39 Indeed, our 

laboratory has previously demonstrated that in human lupus nephritis, in situ B cells 

present antigen to T cells with characteristics of T follicular helper cells including 

expressing high levels of IL21.37 Bocharnikov et al performed mass cytometry on PBMCs 
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from SLE patients and showed that there is an enrichment for a cluster of “T peripheral 

helper”(Tph) cells that are CD4+CXCR5-PD1+HLADR+. They further identified 

PD1hi/midCD4+ T cells in LuN kidneys that correlate with in situ B cell abundance and 

express CXCL13 and IL21, indicating that they have a role as B cell helpers in inflamed 

LuN kidneys.39 

There is also some evidence that regulatory T cells (Tregs), identified by the 

expression of FoxP3 in CD4+ T cells, might be present in the LuN tissue and might help 

dampen ongoing inflammatory processes through the release of anti-inflammatory 

molecules like IL-10 and TGF𝛽. However, there is contradictory evidence about how 

abundant and active they are in SLE patients, with some studies finding them elevated in 

the circulation of active SLE patients, and others finding them diminished.40–43 Tregs have 

been observed in lupus nephritis renal biopsies by both imaging and single cell RNA 

seq.14,41,44 However, it has been proposed that lupus patients might have defective or 

diminished circulating regulatory T cells.45 Scherlinger et al found that Tregs isolated from 

the blood of patients with SLE overexpressed PSGL1, leading to them to bind and 

aggregate platelets, which serve to reduce their ability to suppress effector T cells.46 

Another study found that Treg and follicular regulatory T cells function (Tregs that exist in 

germinal centers) was diminished in SLE patients through engagement of the 

OX40/OX40L axis by antigen presenting cells.47  It has further been observed that 

regulatory T cells decrease in patients after immunosuppressive therapy, in conjunction 

with decreased SLEDAI scores41. In summary, the role of regulatory T cells in lupus 

nephritis is unclear and needs to be further clarified.  
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The role of other CD4 T helper subsets has also been investigated. Abdirama et 

al identified circulating and urinary CD4 T cells that were reactive to nuclear antigens in 

both healthy controls and SLE patients.48 They found an elevation of IFN𝛾 and IL-10 

producing CD4 T cells in patients with active SLE. Tbet+ Th1 cells have been found to be 

diminished in circulation of LuN patients, with a corresponding increase in urinary Th1 

cells relative to both healthy and disease controls.43 In addition, Th1 cytokines (IL18, IL12, 

IFN𝛾) have been observed to the be elevated in LuN patients, and it has been proposed 

that this contributes to increased type I interferon production by pDCs.49 Th17 were found 

to be elevated in non-proliferative LN patients relative to proliferative, and were observed 

to increase in LN patients post induction therapy.43  

CD8+ T cells 

CD8+ T cells are most often appreciated for their role as cytotoxic effectors, 

wherein they induce cell death in an antigen-specific manner. The AMP single cell RNA 

seq data identified at least 3 groups of CD8+ T cells: cytotoxic GZMB+Perforin+PD1-

CD8+ T cells, resident memory CD8+ T cells, and GZMK+ T cells. Fava et al50 paired this 

dataset with matched urine proteomics and found a chemokine signature in the urine that 

was associated with lupus patients, and downstream of IFN𝛾 and TNF𝛼 signaling. They 

further found that CD8+ and NK cells produce these chemokines and that the signature 

observed in urine was correlated with the abundance of CD8+ T cells for 6 out of 30 

patients. Accordingly, it has been observed that there is increased abundance of urinary51 

and circulating52 CD8+ T cells in LuN patients correlated with periods of renal flare. 

Cyclophosphamide induction has been shown to decrease the frequency of circulating 

CD8+CD44+CD62L- T cells at 15 weeks post-induction33. Several studies have shown 
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an abundance of CD8+ memory T cells in kidney biopsies of patients53,54; showed that 

they proliferate and express GZMB in addition to a potassium channel Kv1.3; showed 

somewhat compelling therapeutic efficacy of Kv1.3 blockade in immunodeficient NOD-

scid-IL2R𝛾null (NSG) mice who had transferred PBMCs from LuN patients.53 Interestingly, 

it has been noted that kidney-infiltrating CD8+CD28- T cells are clonally expanded, 

suggesting an antigen-specific local response.55   

One point of contention in the literature is whether CD8+ T cells associated with 

LuN are exhausted. Chronic antigen stimulation by constitutively available self antigens 

is thought to result in CD8+ T cell exhaustion, and it has been observed that PBMCs from 

SLE patients were enriched for an exhaustion signature that correlated positive with better 

patient outcomes.56,57 Similarly, Buang et al found that circulating CD8+ T cells in SLE 

patients have aberrant metabolism as a result of interferon exposure.58 However, the 

single cell RNA sequencing experiments suggested that CD8+ T cells that reside in the 

kidneys have low expression of exhaustion markers.14 Two possible explanations for this 

discrepancy are 1) the difference between the populations of circulating vs kidney-

infiltrating CD8 T cells and 2) differences between measured protein and RNA expression 

due to regulatory dynamics.  

CD4-CD8- (DN) T cells 

Though most T cells are canonically either CD4+ or CD8+, several studies have 

identified a population of CD4-CD8- T cells in the context of lupus nephritis and other 

autoimmune contexts.59 Crispín et al identified a population of circulating and kidney-

infiltrating TCR𝛼𝛽 DN T cells in SLE patients that appear to express IL17.60 Follow up 

studies from this laboratory suggested that these DN T cells are former CD8+ T cells that 
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have downregulated CD8 in response to apoptotic debris.61 Stratigou et al compared the 

expression of SLAM family receptors on various T cell subsets, including DN T cells, and 

found that DN T cells identified in LuN patients had alterations in the expression of 

SLAMF2, 4, and 7 relative to healthy controls, and that increased expression of SLAMF6 

on DN T cells prior to treatment was associated with a failure to respond to B cell depletion 

via rituximab.62 

One possible subset of CD3+CD4-CD8- T cells in LuN are Natural Killer T (NKT) 

cells. However, they have not been detected in the kidneys of lupus nephritis patients14, 

and their role in mouse models of the disease remains controversial.63    

Another potential subset of DN T cells are gamma delta T cells, which express 

gamma and delta T cell receptor chains (rather than the more common alpha and beta 

chains) and comprise 3-10% of T cells. Yin et al identified a subset of circulating gamma 

delta T cells in a cohort of 15 lupus patients that were associated with increased disease 

activity, and further observed these cells in the kidneys of the patients.64 Similarly, Law et 

al examined the abundance of gamma delta T cells in several “chronic” kidney diseases, 

including lupus nephritis, and found that patients with high numbers of gamma delta T 

cells had more fibrosis and worse kidney function.65 While there was no mechanistic link 

provided, these observations suggest that this relatively minor population of T cells might 

play an outsized role in lupus nephritis.   

Therapies targeting T cells 

 Though T cells have not been targeted with a high level of granularity in lupus 

nephritis, a few therapies have been geared towards diminishing their activity. Abatacept 

(CTLA-4Ig) blocks T cell activation (and possibly also B cell activation) by disrupting the 
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engagement of antigen presenting cells with the co-stimulatory molecule CD28 on T cells. 

A trial examining the effect of adding abatacept to cyclophosphamide and azathioprine 

did not show increased efficacy of abatacept over the standard protocol.66 

 However, there has been some clinical success with calcineurin inhibitors (CNI), 

which also block T cell activation by diminishing some of the early IL2-induced 

transcriptional alterations.67 Tacrolimus and cyclosporine, while not first-line treatments 

for LuN, and occasionally used as add-on therapies for refractory disease.6 In addition, 

voclosporin, and newer CNI, recently showed promising efficacy in clinical trials.68  

 These mixed results, along with the heterogeneity of the T cell compartment, 

suggest that targeting all T cells at once probably has multiple effects. Specifically 

targeting a particular subset (for example, Tfh), would likely be more beneficial.  

Dendritic cells  

Dendritic cells (DCs), which serve as “professional” antigen presenting cells, also 

have a role to play in the pathogenesis of LuN. As previously described, the uptake and 

presentation of self antigens by dendritic cells is considered to be the inciting incident in 

the autovaccination process. Two broad categories of DCs, myeloid (mDCs), and 

plasmacytoid (pDC) have been identified in humans. These two subsets have distinctive 

surface markers and morphology, and have distinctive roles to play. One model of how 

these cells might work in tandem to drive pathology suggests that pDCs are driven to 

maturation by immune complexes and start secreting large quantities of type I interferons. 

This in turn leads monocytes to mature into mDCs, take up autoantigens, and present 

them to both CD4+ and CD8+ T cells.69 It has been observed that circulating mDC and 

pDC populations are diminished in patients with higher classes of LuN and with higher 
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disease activity, and that they might be enriched in the renal biopsies of these 

patients.49,70–72  

Kassianos et al identified both CD1c+ DC-SIGN+ DCs and CD141hiCLEC9A+ 

DCs in the tubulointerstitium of LuN patients, and observed that these subsets were 

positively correlated with fibrosis and poor kidney function. These dendritic cell subsets 

are notable for their capacity to cross-present antigens to CD8+ T cells. They found that 

mDCs were a source of TGF𝛽, a pro-fibrotic cytokine (in addition to being an anti-

inflammatory mediator).73 Another study found that mDCs in early stages of LuN 

expressed increased co-stimulatory molecules.71 Additionally, a subset of inflammatory 

DCs has been identified in the kidneys of LuN patients that are CD11c+FCR𝛾+CD163+, 

and found in the periglomerular space near T cells.74  

Plasmacytoid DCs are typically appreciated for their production of Type I 

interferon, usually interferon alpha (IFN𝛼). Tucci et al found that patient with Class IV and 

V LuN had circulating pDCs that highly expressed IL18R, with a corresponding 

overexpression of IL18 in the patients’ glomeruli and an accumulation of pDCs in the 

periglomerular space.49 Several studies have found that pDCs release IFN𝛼 upon 

engagement with immune complexes, in particular dsDNA complexed with ANA. One 

prominent source of this substrate is NETosis, a process in which neutrophils release 

their DNA to form a net with which to trap microbes. Neutrophil overactivity in SLE patients 

has been implicated in driving pDC maturation and production of IFN𝛼.75–77 Somewhat 

paradoxically, circulating pDCs have been observed to increase in LuN patients at 15 

weeks post- cyclophosphamide induction, suggesting that they might be regulated by a 

cyclophosphamide-sensitive cell subset.33  
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Type I Interferon 

The interferon response is a critical feature of lupus nephritis, as evidenced by 

transcriptomics data from LuN patients.14,35,50,78 Type I interferons have a broad spectrum 

of effects, including inducing the maturation of dendritic cells, activating B cells and T 

cells, and inducing an inflammatory “anti-viral” response in non-immune cells.69 In 

particular, they have been shown to drive germinal center formation in autoimmune 

contexts.79  

Whole-tissue microarray data shows that interferon response is enriched in 

patients who respond to therapy during a flare, relative to those who do not.35 Single cell 

RNA sequencing data from both immune cells14 and tubule cells80 extracted from the 

kidney biopsies of LuN patients showed a positive relationship between B cell abundance 

and interferon signaling response. This corresponded with an association between 

interferon response and higher patient activity indices and poor therapeutic response. 

This suggests that the characteristic “interferon signature” observed in LuN patients might 

help drive pathological B cell activation.  

However, despite the apparent importance of the interferon response, clinical trials 

of interferon blockade have been largely unsuccessful. Two anti-IFN𝛼 antibodies, 

anifrolumab and sifalumumab, have been trialed. Sifalumumab failed outright, and 

anifrolumab succeeded only after the primary endpoints were adjusted downwards.81–84  

6. Gap in the field     

As outlined above, there is a complex array of cells and pathways that contribute 

to the pathology of lupus nephritis. The standard model of pathogenesis is that mDCs 

take up auto-antigens and present them to CD4+ T cells, which activate auto-reactive B 
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cells, which then differentiate into plasma cells and produce auto-antibodies. All of these 

interactions are enhanced by abundant type I interferons, which are often produced by 

pDCs. However, attempts to target this mechanism have often fallen short in terms of 

the successful treatment of lupus nephritis. Therefore, it is necessary to rethink this 

model and interrogate how these cells are interacting with each other in the context of 

inflamed tissue.  

Flow cytometry and RNA sequencing technology have given us the ability to 

deeply understand what cells are present in the blood, kidneys, and urine of lupus 

nephritis patients. Though we have some ideas about the interplay of these cells based 

on correlating their abundance and prior knowledge of their functions, we largely lack 

insight into how these cells are interacting with each other in inflamed kidney tissue. 

Because flow cytometry- and RNA sequencing-based techniques require the 

disaggregation of the tissue, a critical piece of information is lost: the spatial 

arrangement of these various cell populations with respect to each other. This spatial 

information could provide insight into which cell populations are interacting with each 

other72, and how these interactions map to divergent patient outcomes.  

Immunofluorescence staining coupled with confocal microscopy allows for 

visualization of cellular distributions in fine detail. However, this type of data is difficult to 

quantify, as it has historically required a manual count of cells in fields of view, a 

procedure that is both laborious and time-consuming. Advances in computer vision and 

machine learning have enabled the automation of this task, enabling high-throughput 

analysis of large amounts of imaging data, a previously infeasible task. The goal of this 

work is to use immunofluorescence microscopy to probe the spatial distribution and 
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phenotype of T cells, B cells, and dendritic cells in the kidneys of lupus nephritis 

patients, and relate these observations to patient outcome. Our overarching hypothesis 

is that the difference between patients who progress to renal failure and those that do 

not lies in how these immune actors are organized in inflamed tissue  
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Chapter 2: Introduction—Immunofluorescence microscopy and image analysis 
1. Introduction 

Multiplexed immunofluorescence microscopy allows for the interrogation of the spatial 

distribution of multiple biological markers in tissue. The biggest barrier to extracting 

biological insights from this type of data is accurate quantification of cells and structures 

of interest. Though this is certainly a task that a human can perform, manual annotation 

of cellular-level features (i.e. surface marker expression) and tissue-level features (i.e. 

tumor boundaries) is an unfortunate combination of difficult, tedious, and time-consuming. 

It often requires a highly trained observer, such as a pathologist or microscopist, making 

it a difficult task to delegate. Therefore, microscopy data has historically been analyzed 

manually on small datasets, or only used for the purpose of displaying representative 

examples. Quantifying microscopy data in a high-throughput manner has traditionally not 

been a very tractable approach.  

In recent years the field of digital pathology has been revolutionized by the application 

of machine learning and computer vision to image analysis tasks. Machine learning is a 

field of artificial intelligence focused on training computers to perform tasks that they have 

not been explicitly programmed for. Computer vision is a subfield of machine learning that 

enables computers to extract information from digital images, in much the same way the 

human visual system does.85 Computer vision enables the development of software that 

can automate image analysis tasks, such as identifying where objects of interest are in 

an image and classifying those objects. This also opens the door for the development of 

novel metrics that describe image content, such as intercellular distances. Computer 

vision provides the means for high-throughput, standardized, quantitative analysis of 

pathology images. 
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Even as image analysis techniques have become more sophisticated, multiplexed 

microscopy technology has advanced to the point of generating novel computational 

challenges. Improved microscope designs and staining protocols have greatly increased 

the number of markers that can be captured in a given sample, allowing for colocalization 

of upwards of 40 markers in an individual frame.86–88This level of phenotypic resolution 

was previously only accessible through tissue-destructive methods such as flow 

cytometry and RNA sequencing. The destructive processing required by these methods 

does not conserve the spatial arrangement of cells and other tissue structures. In 

contrast, highly multiplexed imaging produces rich datasets that have both detailed 

phenotypic and spatial information. Novel analytical solutions are therefore required to 

locate and segment cells and structures in these phenotype-rich images.86–88 

In this chapter I will describe immunofluorescence microscopy, the various uses of 

machine learning for analyzing immunofluorescence data, as well as the spatial analyses 

that can be performed as a result of automating cellular identification. Much of this chapter 

is adapted from a mini-review that our group published in the American Journal of 

Pathology.89  

2. Introduction to multiplexed immunofluorescence microscopy 

Immunofluorescence is a technique whereby cellular markers in tissue are tagged with 

fluorescent molecules that can be detected with a microscope.90 This tagging is 

performed by depositing “primary” antibodies that are specific to the marker of interest on 

the tissue. The deposition of the antibodies is then detected in one of two ways. The 

primary antibody might be directly conjugated to a fluorescent molecule (fluorophore) and 

imaged at the appropriate wavelength. Alternatively, a fluorophore-conjugated 
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“secondary” antibody that has been raised against the species of animal the primary 

antibody was raised in might be applied and imaged (Fig 2.1). For example, if one is 

detecting CD8, one might apply an anti-CD8 primary antibody raised in mice, followed by 

an anti-mouse IgG antibody that has been conjugated with AlexaFluor 488, a fluorescent 

molecule that is excited at a wavelength of 488 nm, and has a peak emission wavelength 

of 525 nm. Therefore, the distribution of CD8 in the tissue will be identified by the amount 

light that is detected within in a range of wavelength values around 525 nm.    

 

 

 

 

 

 

Figure 2.1. Overview of immunofluorescence microscopy. Primary antibodies 
bind proteins of interest in tissue and are visualized either by direct conjugation to 
a fluorophore, or through the application of fluorophore-conjugated secondary 
antibodies.  
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3. Essential Computer Vision Vocabulary85  

• Machine learning—broad field of computing in which computers (learners) are 

trained to perform a task based on trial and error, rather than being explicitly 

programmed; computer vision is machine learning that is focused on image 

analysis tasks 

• Supervised learning – type of machine learning in which training is accomplished 

by providing the learner with annotated examples (or “ground truth”); In the context 

of image analysis, this means that the algorithm is trained on a set of manually 

labeled images; all of the machine learning that will be described in this work is 

supervised learning 

• Artificial Neural Networks (ANN) – type machine learning algorithm modeled after 

a human brain; a series of inputs are passed through a series of nodes (or neurons) 

where an operation is performed that transforms the inputs into a desired output; 

such that inputs are processed by several nodes in parallel; the operations that 

happen at the nodes typically include a numerical value or “weight” that drives the 

transformation of the input, and the optimal values of the weights that produce the 

correct output are what the network learns during training (Fig 2.2). A common 

type of ANN is a classifier that takes a series of descriptive variables as inputs and 

outputs a probability that the observation belongs to a particular class. 
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• Hyperparameters – aspects of the network such as the number of nodes, the 

number of layers, the functions that are used in the nodes, the type of loss function 

used for training, etc. The collection of a network’s hyperparameters is commonly 

referred to as its architecture. These features can be “tuned” to optimize 

performance on a particular class  

• Training – In a supervised learning context the weights of a network are randomly 

initialized. During the process of training the network produces an output using 

those weights, evaluates how “correct” that output is, and then adjusts the weights 

based on this evaluation. Repeating this procedure many times over the whole 

training dataset allows the network to find the optimal values of the weights that 

produce the correct output most of the time.  

• Deep learning – style of machine learning that utilizes artificial neural networks 

(ANN) 

Figure 2.2. Schematic of a basic ANN. Input variables (X) are passed through 
a series of nodes (represented by the circles), where some function is applied 
to them that includes a series of weights (W), in order to produce an output (Y) 
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• Deep Convolutional Neural Network (DCNN) – subclass of ANNs that are used for 

image analysis; images are passed through a series of filters (convolutions) that 

are used to extract and describe features of the image; all of the machine learning 

algorithms described in this work are DCNNs. 

• Segmentation – task of classifying either pixels (semantic segmentaton) or objects 

(instance segmentation) in an image  

• Training set – collection of images used for training a neural network. Typically 

split into 3 parts: 

o Train: images that the network uses to learn classification 

o Validation: images that the network uses to evaluate network performance 

during training 

o Test: images that the network has never “seen” before; used to evaluate the 

performance of the fully trained network  

• Epochs --  number of times the network iterates through the entire training set 

during training 

• Metrics – methods of evaluating network performance. Commonly used metrics 

include 

o Precision:  $%&'	)*+,-,.'
($%&'	)*+,-,.'0123+'	)*+,-,.')

  

o Recall/Sensitivity:  $%&'	)*+,-,.'
($%&'	)*+,-,.'0123+'	5'62-,.')

  

o Accuracy: $%&'	)*+,-,.'0$%&'	5'62-,.'
($%&'	)*+,-,.'0123+'	5'62-,.'0123+'	)*+,-,.'0$%&'	5'62-,.')

 

o Intersection over union (IOU): 789:;<=;>?	@AB	C8>D?:	=8D=E
789:;<=;>?	FG	C8>D?:	=8D=E
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4. Deep learning in biomedical image analysis 

Deep learning caught hold in image science after AlexNet, a deep convolutional neural 

network (DCNN), achieved a 15% error rate (nearly 10% better than its competitors) on 

the ImageNet challenge, a competition in which machine learning algorithms were 

developed to classify a dataset of over 15 million images with 22 thousand classes91. The 

implications for medical image analysis were immediately apparent. Within the year, 

multiple papers applying DCNNs to pathology and radiology tasks were published, with 

continued growth in the application of deep learning to biomedical image analysis ever 

since92. A variety of DCNN architectures have been developed for specialized medical 

and biological imaging tasks since the success of AlexNet, ranging from lesion detection 

in magnetic resonance imaging to cell segmentation in microscopy.  

DCNNs are powerful because they recognize patterns in raw image data without the 

constraints of human-defined equations. These patterns may not be interpretable by a 

human observer but are iteratively determined to be the most impactful features in making 

robust and accurate decisions in image classification or segmentation. Deep learning 

facilitates rapid analysis of high-content experimental imaging modalities, including 

multiplexed microscopy. DCNNs have been particularly useful for automating the 

segmentation and classification of regions, structures, and cells in tissue.  

5. DCNN architectures for analyzing cells in microscopy images 

DCNNs are typically used for classification tasks in image analysis. This classification 

can occur at the level of the entire image, individual pixels (semantic segmentation), or 

individual objects in the image (instance segmentation). There are many types of neural 

network architectures that are useful for these various classification tasks, and there are 
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often choices to be made about which architecture to use. Considerations for this include 

how well it performs that particular type of task, how computationally expensive the 

method is, and how much training data it requires.  

Image Classification 

In clinical image analysis, it is often of interest to classify an entire image or region. 

For example, pathologists might want to classify a biopsy image patch by subtype of 

cancer93,94, or a fundoscopic image as “diabetic retinopathy” or “healthy”.95 There are 

several DCNN architectures that are commonly used in these types of analysis, including 

AlexNet91, VGG-1696, VGG-1996, ResNet-5097, and ResNet-10097. Though these 

networks vary in terms of the size and number of layers they have and the hyper-

parameters they use, they have a few common features—they all take in images of a 

particular size, pass them through a series of convolutions in order to extract features 

from the images, and based on the features assign a probability of that image belonging 

to one of a pre-defined set of classes. The class that gets the highest probability “wins”, 

and the image is assigned that class. We have used this style of DCNN to classify images 

in our dataset as “inflamed” or “uninflamed” on the basis of lymphocyte signal.   

Semantic segmentation 

For images that have complex and varied content, more granular methods of image 

classification are sometimes required. This next layer of complexity is often achieved with 

semantic segmentation, or pixel-level classification. Encoder-decoder architectures have 

dominated biomedical semantic segmentation since the advent of the U-Net DCNN 

architecture. The contracting or ‘encoder’ portion of the architecture captures contextual 

features within the image, while the expanding or ‘decoder’ portion of the architecture 
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generates precise localization. U-Nets and their derivatives have been applied to 

semantic segmentation tasks in medical imaging across scales, with excellent 

performance on full-organ segmentation in CT scans and nuclear segmentation in high 

resolution microscopy image.98–100 In pathology images, semantic segmentation has 

been used to differentiate between tumor and healthy tissue, or segment pathogenic or 

pre-pathogenic areas of tissue. Cell and cell nucleus segmentation can also be performed 

through semantic segmentation schemes. Quantitative characteristics acquired from 

these segmentations, such as nuclear to cytoplasm ratio, can be indicative of cancer 

grade. However, semantic segmentation of cells can fail in crowded regions or in images 

with a low signal-to-noise or signal-to-background ratio. In this work, I will describe the 

tractability of using U-Nets for cellular segmentation in tissue.  

Instance segmentation 

While semantic segmentation alone is not always sufficient for accurate cell counting 

in images, it can be combined with object-detection methods to generate object-level 

segmentations of cells rather than image-level segmentation. This combined task, called 

instance segmentation, generates object-level segmentations of individual cells in an 

image. This allows for the separation of clustered or overlapping cells, resulting in 

improved cell frequency data. A relatively simple way to do this is to combine a semantic 

segmentation network with a region proposal network (RPN), which exclusively identify 

where an object of interest might be in an image. For example, RPNs have been 

incorporated into U-Net architectures to perform object-level cell segmentation in 

biomedical images.101,102 NuSet, a U-Net + RPN architecture, shows high nuclear 

segmentation accuracy in a variety of contexts, including segmentation of images from 



 28 

different modalities and different tissues and pathologies. The “state of the art” in terms 

of  region-based CNNs is the Fast R-CNN family, which can perform multi-object, multi-

class segmentation with high accuracy in natural images, and have also shown promise 

in biomedical image analysis tasks, including cellular segmentation in a variety of 

contexts.103,104  

An instance segmentation architecture that has been particularly useful to us is the 

Mask R-CNN104, a member of the Fast R-CNN family. This network combines a feature 

pyramid network with a ResNet-100 backbone with a region proposal network to perform 

multi-class instance segmentations. In our data, it has been used to great effect in order 

to identify and segment multiple subsets of immune cells in biopsy tissue.   

6. Generalizability of methods 

A concept that is of great interest in the machine learning community is that of 

generalizability. This refers to the ability of a given algorithm to be applied to a task that 

it was not strictly trained for. The simplest version of this is generalizability to new data of 

that is not in the training set. One pitfall of training a neural network is over-fitting, wherein 

the network simply “memorizes” and performs extremely well on the training data but fails 

when confronted with new data.105 Network generalizability is routinely evaluated by 

checking the performance of the network on a independent test set of images it has never 

encountered.   

However, generalizability can also be extended to using a network for a task that is 

different from its original purpose.106 If the new task is similar enough, this can be done 

without changing the network. However, as the task deviates from the original purpose, 

there is often some manipulation that needs to happen in order to make the algorithm 
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work. Transfer learning refers to a set of methods by which networks that have been 

trained on one task can be repurposed.107 Finetuning is the practice of “freezing” some of 

the layers of the network, and then either retraining the model or training a new set of 

layers, using a different set of ground truth for the new task. In both cases, you leverage 

the training that has already happened in order to use less training data and time for your 

new task.   

The reason why generalizability is a preoccupation of supervised machine learning 

practitioners is that training algorithms from scratch requires a lot of annotated data and 

computation time. Developing clever methods of leveraging pre-existing networks for new 

purposes is therefore an active field of study. In particular, because generating training 

sets for microscopy data is so time and labor intensive, developing generalizable methods 

allows us to avoid developing a specialized analytical method for every dataset.  

7. Examples of current open-source image analysis software 

Several open-source implementations of machine learning tools have been designed 

for use by scientists who may not have the extensive background in programming 

required for low-level algorithm control. Many of these programs employ pre-trained 

DCNNs for common tasks such as nuclear segmentation. Some enable training machine-

learning models from scratch. One of the benefits of these open-source pipelines is that 

they include graphical user interfaces (GUIs), making them user-friendly and accessible 

to a broader audience. However, this comes at the expense of the user losing low-level 

control of the algorithm, making task-specific optimization via hyperparameter tuning or 

transfer learning challenging.  
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ImageJ/Fiji 

ImageJ (also known as Fiji) is an open-source tool that has been used extensively for 

many image-analysis tasks. Users frequently build and share plug-ins that can be used 

to perform complex analyses. To date, several plug-ins have been produced to make 

machine learning-based segmentation more accessible. For example, the “Trainable 

Weka segmentation” plug-in allows users to train segmentation algorithms using the 

ImageJ GUI108. Similarly, the lab that invented the U-Net developed a U-Net plug-in 

(“Unet-segmentation”) that uses the caffe deep learning framework to implement the 

architecture in ImageJ. DeepImageJ can run pre-trained models in ImageJ, and even 

comes with a set of models for particular tasks bundled with it109. One of the bundled 

models is a deep CNN that can “virtually stain” an unlabeled tissue autofluorescence 

image to produce an approximation of the corresponding H&E, Masson’s Trichrome, or 

Jones stain image110. 

CellProfiler  

CellProfiler is a widely used software that has been cited more than 9000 times since 

its original publication in 2006111.  It has a “point and click” GUI that allows users with 

minimal programming experience to string together several image analysis modules into 

an analytical pipeline. CellProfiler comes with more than 50 modules that allow for 

standard image analysis procedures, and further allows users to write their own modules. 

As of 2018, CellProfiler 3.0 featured a pre-trained U-Net based semantic segmentation 

module (ClassifyPixels-Unet)112. The drawback is that no task-specific training or fine-

tuning can be applied, which can limit its utility for tissue microscopy analysis, as tissue 

background can have substantial impact on network generalizability. However, the 
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modularity of CellProfiler allows users to integrate trained models from other sources into 

a large analytical pipeline. For example, Sadanandan et al. wrote a module that allowed 

users to run pre-trained caffe-based models within CellProfiler pipelines113. 

Ilastik  

Ilastik is a deep-learning software that performs semantic segmentation tasks by 

extracting a series of pre-defined pixel-level features to train random forest classifiers.114 

It provides a user interface that enables the generation of “sparse” training labels, and an 

“interactive” mode in which users can provide feedback to the network during training. 

This flexibility has made it a useful tool in the context of highly multiplexed imaging, in 

which training set generation is an expensive process115,116. Several recent papers have 

combined CellProfiler with ilastik for segmenting cells in tissue microscopy images. For 

example, a CellProfiler pipeline can be generated to perform pre-processing steps, then 

ilastik can be used to produce a “probability map” for semantic segmentations87,117.These 

maps are then returned to CellProfiler for object detection.   

QuPath  

QuPath is an open-source platform that was designed specifically for whole-slide 

image analysis and can be used for both immunohistochemistry and immunofluorescence 

imaging118.Like ilastik, it employs random forest classifiers that can be trained to segment 

cell classes on the basis of cell surface marker expression.  It is useful for quantifying the 

distribution of a particular marker across a whole tissue section. 

Limitations of these tools  

While these tools are very useful for making machine learning more widely accessible, 

they are not ideal for every situation. The inability to fine-tune many of the pre-trained 
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networks means that if the method doesn’t work “out of the box”, there is not much 

recourse.  

For example, we evaluated the performance of CellProfiler for segmenting T cells in 

kidney biopsies, according to a published protocol.119 We found that the pipeline did not 

perform well on our data,  in the context of tissue that has dense cells and tissue-specific 

background structures (eg, renal tubules). (Fig 2.3). This level of segmentation was not 

sufficient for the cell frequency data and spatial analysis we were aiming for. Therefore, 

though it was certainly desirable to use one of these methods to analyze our data, we 

ultimately used neural network architectures that gave us greater control over the 

algorithms and the ability to tune them to our purpose.   

 

 

8. Quantifying spatial organization of cells in microscopy images 

Cellular segmentation is often not the end point of the analysis, but the beginning. 

These techniques are widely applied to automate the extraction of quantifiable metrics 

from cellular images to ask biological questions. This section will address how 

“algorithmically defined” features are used in downstream analyses.  

Figure 2.3. Example of CellProfiler performance on kidney biopsy tissue 
stained for CD3. Representative image contains true CD3 signal in addition to 
autofluorescent red blood cells, and tubules  
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Automatic annotation enables more complex spatial analyses than previously 

possible. Specifically, interrogating how various cellular classes are spatially organized 

with respect to each other unlocks the ability to probe how the cellular constituents of 

tissue interact with each other. This allows for the generation of novel features that can 

be used to stratify patients, and for increased understanding of the cellular processes that 

occur in tissue. 

This idea has been applied extensively in the study of tumor immunology. Nearchou 

et al examined sequential sections of surgically resected colorectal cancer specimens 

and developed a “Spatial Immuno-Oncology Index” (SIOI) that was constructed of patient-

level spatial features including average CD3+ density, average number of lymphocytes 

in proximity to tumor buds and the ratio of CD68+/CD163+ macrophages and used as a 

predictor of prognosis.120 Similarly, Lazarus et al examined the abundance and spatial 

distribution of various subsets of T cells, antigen presenting cells (APCs), and tumor cells 

in liver metastases of colorectal cancer.121 The automated detection and segmentation of 

immune cells facilitated the finding that cytotoxic T lymphocytes were typically positioned 

further away from epithelial cells and APCs that were expressing the checkpoint molecule 

PD-L1. Further they found that high levels of “engagement” (defined as intercellular 

distances under 15 um) between CTLs and epithelial cells, helper T cells, and regulatory 

T cells was predictive of superior survival. In another study, the Mask R-CNN architecture 

to segment lymphocytes and tumors cells in whole-slide H&E images of hepatocellular 

carcinoma samples.122 These segmentations were then used to generate 246 image 

features that included tumor nuclei morphology, density of lymphocytes and tumors, and 

the spatial relationships between the two cell types. These features were used to perform 
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unsupervised consensus clustering that identified 3 distinct subgroups within the patient 

population. 

While developing prognostic tools is useful, associating specific intercellular 

interactions with positive or negative patient outcomes is also the first step in identifying 

immunological phenomena that have potential as therapeutic targets. Understanding 

which cellular interactions are taking place in tissue, and how these interactions correlate 

with outcome allow for the identification of interactions that should be promoted and those 

that should be disrupted.   

9. Gap in the field 

In addition to learning about T cell-APC interactions in the specific context of lupus 

nephritis, the goal of this work is to develop comprehensive pipelines for extracting 

meaningful biological insight from microscopy data. In order to make full use of the 

potential of immunofluorescence microscopy, solving the very fundamental problem of 

how to identify cells in tissue is a key obstacle to overcome. Segmenting cells in culture 

is a relatively easier task because there is little background autofluorescence, all of the 

cells are in a single plane of focus, and the density of cells in an area can be controlled. 

Accordingly, there is a substantial set of tools that have been developed for this type of 

task that require little additional development for specific experiments. Segmenting cells 

in tissue is more challenging, as every tissue type has its own morphology, confounding 

structures, and signal to noise ratio. We have done substantial work to develop methods 

and best practices for segmenting cells in renal tissue and demonstrate how methods can 

generalize to other disease contexts.  
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In addition to cellular segmentation, this work has focused on developing ways of 

mathematically probing imaging data for spatial relationships. This fundamentally  means 

taking biological hypotheses and translating them into a concrete metrics (such as 

intracellular distance) that can be extracted from image data and used to compare groups 

in a statistically robust way. The innovation that was required for this project to succeed 

was to take the broad hypothesis that “inflammation is organized in distinct ways that can 

predict patient outcomes” and break it down into discrete, measurable phenomena that 

are captured in image data.   

As I’ve outlined above, this has been done to some degree in the field of cancer, and 

interesting insights have come even from relatively simple metrics such as lymphocyte-

tumor distance. However, there is a lack of similar work in the field of autoimmunity in 

general, and lupus nephritis in particular. Autoimmunity is just as complex and 

heterogeneous as cancer and would benefit in a similar way from these types of analysis. 

Therefore, we have adapted and extended these methods for our purposes, in order to 

investigate in situ inflammation and understand how it is organized.  

Computer vision has transformed microscopy image analysis and is a rapidly evolving 

discipline impacting clinical and basic science research. The automation of image 

classification and cell detection using computer vision techniques facilitates high-

throughput analysis of information-dense microscopy images. Our goal in this work is to 

develop robust pipelines by which machine learning-enabled feature extraction can 

generate novel insights into cellular environments associated with disease. 
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Chapter 3: Cellular segmentation and spatial analysis in the high resolution 
dataset 

 
The work described in Chapters 3-4 was done in collaboration with several people -- 

Dr. Junting Ai acquired the data, Dr. Madeleine Durkee led the development of the 

automated cellular segmentation method, and Gabriel Casella performed some of the 

spatial analyses 

1. Introduction 

The first set of questions we wanted to answer were about whether there is a 

relationship between the inflammatory state of the kidneys of lupus nephritis patients and 

their renal outcomes. Specifically, we were interested in the distribution of T cells, B cells, 

and dendritic cells at the time of diagnostic biopsy. In order to answer these questions, a 

microscopy dataset was acquired for the purpose of interrogating the interactions 

between T cells and antigen presenting cells in the context of lupus nephritis. This 

dataset, which I will refer to as the “high resolution” or HR dataset, was collected from 

formalin fixed, paraffin embedded (FFPE) biopsies from lupus nephritis patients for whom 

we had at least 2 years of follow up.  

In order to extract meaningful information from this dataset we first segmented the 

following cellular classes in the images: CD3+CD4- T cells, CD3+CD4+ T cells, CD20+ 

B cells, CD11c+ mDCs, and BDCA2+ pDCs. We then developed a set of spatial analyses 

with which to probe this data. This work was done as part of an ongoing collaboration with 

the laboratory of Dr. Maryellen Giger.  

2. Data Acquisition 

An 865-image dataset of microscopy images was collected from FFPE kidney biopsies 

of 55 lupus nephritis patients. The biopsies were stained for a panel of 5 cell surface 
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markers, plus a nuclear marker: CD20 (AlexaFluor 488), CD3 (AlexaFluor 546), BDCA2 

(AlexaFluor 594), CD4 (AlexaFluor 647), and CD11c (AlexaFluor 700). These five 

markers were used to identify five classes of cells: CD3+CD4- T cells, CD3+CD4+ T cells, 

CD20+ B cells, CD11c+ myeloid dendritic cells, and BDCA2+ plasmacytoid dendritic cells 

(Figure 3.1). The data was collected on the Leica SP8 laser scanning confocal 

microscope at 63x magnification, with a pixel size of 0.1058 um. The biopsies were 

imaged at this resolution in order to capture cellular shapes and visualize intercellular 

interactions. This produced image stacks that were 1024 pixels x 1024 pixels x 6 

channels, such that every marker was assigned to a channel.  

For this set of patients we had detailed clinical data with at least 2 years of follow-up, 

and an average of 6 years of follow-up. In particular, we were able to group the patients 

by whether or not they progressed to end stage renal disease (ESRD), or kidney failure. 

We split the patients into two groups: 19 ESRD+ and 36 ESRD-. We also did an analysis 

where we split the cohort into three groups, with the ESRD+ group being stratified by 

patients who were within 2 weeks of renal failure (ESRD-current, n=5), and those whose 

kidneys failed later (ESRD+, n=14). This allowed us to relate the cellular content of their 

biopsies with their clinical data. This clinical data is described in detail in Chapter 4.   
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3. Cellular Segmentation 

Ground Truth generation 

The approach we took to automatically segment cells in this dataset falls under the 

category of “supervised learning”, a machine learning approach in which manual 

annotations are the gold standard that the network is trained on. It was therefore 

necessary to manually outline the cells in a training set of 342 images from 31 biopsies. 

This manual annotation was performed with the ImageJ/Fiji software, using the “freehand 

selections” tool. Readers were provided with “spectrally unmixed” versions of the images, 

wherein aberrant and overlapping signal from adjacent wavelengths (aka “spectral bleed-

through”) were removed from each channel. High quality truth was obtained by having two 

readers validate the manual annotations.  

Mask R-CNN 

Mask R-CNN104 is an instance segmentation algorithm that has three main parts: 1) 

a feature pyramid network (FPN) with a ResNet-101 backbone for feature extraction and 

Figure 3.1. Representative images of the staining panel for the high resolution 
dataset, and example RGB segmentation of the 5 classes of interest 
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2) a region proposal network (RPN) for object detection 3) fully connected layers for 

simultaneous mask generation, bounding box regression, and cell classification.  

In the FPN structure, feature maps are generated from the ResNet-101 blocks at 

multiple scales and then merged. These ‘multiscale’ feature maps are passed through 

3x3 convolutional layers in preparation for input into the region proposal network (RPN). 

At each position of the feature map, anchor boxes of predetermined size and aspect ratio 

are extracted as patches to be fed into the RPN, which 1) determines whether each patch 

has a cell in it and 2) defines the bounding box around the cell via bounding box 

regression. The resulting cell proposals are then re-aligned with the feature map, and 

then each one progresses in parallel through 1) fully connected layers for classification 

and further bounding box regression, and 2) mask generation to define cellular 

boundaries (Figure 3.2).123 
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Each instance of Mask R-CNN was trained until the mean average recall for all 

classes stopped improving. A cell was kept for analysis if the network confidence in the 

prediction was above 0.3. Data augmentation is the practice of altering images in the 

training set to artificially increase the number of objects that are trained. For this dataset, 

Figure 3.2. Mask R-CNN architecture. Each network trained to segment and 
classify immune cells is a Mask R-CNN architecture. Object proposals are 
performed on feature maps from the DCNN, then single objects (cells) are 
semantically segmented and classified.  
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random flips and rotations, as well as brightness and gamma augmentation were used 

for data augmentation. 

This work was performed using the Midway2 compute nodes of the University of 

Chicago Research Computing Center. Each network was trained separately on each 

dataset, with a batch size of 4 distributed across 4 Nvidia K80 GPUs (12 GB memory 

each) using the Horovod distributed deep learning framework124.  

Training Strategy 

There was substantial class imbalance in the training set, such that approximately 

85% of the manual annotations were lymphocytes (CD20+, CD3+CD4-, or CD3+CD4+), 

and only 15% dendritic cells (BDCA2+ and CD11c+). Due to this imbalance the network 

performance on lymphocytes was maximized much faster than the performance on 

dendritic cells. Additionally, the dendritic cell images were qualitatively much noisier than 

the lymphocyte images and readers had less confidence in the ground truth cell calls. 

Over-training occurs when the network learns the unique features of the dataset and 

begins to lose generalizability.  In this situation the network was at risk for over-training 

on lymphocytes before it achieved adequate performance on dendritic cells. Even 

bolstering the training set with additional DC-rich images did not mitigate this problem.  

Therefore the task was split into two—separate instances of Mask R-CNN were 

trained for lymphocytes and for dendritic cells. The lymphocyte network was trained on 

stacks of CD20, CD3, CD4, and DAPI, and the DC network was trained on stacks of 

BDCA2, CD11c and DAPI (Figure 3.3). The full 342 image training sets was split into 

training, validation, and testing sets with an 80/10/10 ratio.  
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The predictions were then merged in a hierarchical manner, such that if a cell was 

predicted as two classes, one was chosen. This proved to be a superior method, which 

uncoupled the performance on lymphocyte classes from performance on DCs. The final 

network performance is shown in Table 3.1.  

 

 

 

 

 

 

 

 

 

  Recall Precision Mean IOU 

CD3+CD4+ T cell 0.8 0.77 0.73 

CD3+CD4- T cell 0.72 0.67 0.72 

B cell 0.9 0.87 0.7 
pDC 0.74 0.85 0.76 
mDC 0.46 0.51 0.64 

Average 0.77 0.71 0.71 

Table 3.1 Summary of final network performance  

Figure 3.3. Schematic of segmentation. Each ROI is split into two stacks of images 
(CD20/CD3/CD4/DAPI and BDCA2/CD11c/DAPI) and predicted on by two different 
neural networks; the outputs are then merged into a final joint  prediction.  
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4. Spatial analysis 

All spatial analyses were performed in the programming language Python (3.6.6). The 

following packages were utilized for analysis: pandas (0.24.1), numpy (1.5.4), sklearn 

(0.20.2), and scipy (1.2.0). Plotting was performed with matplotlib (3.0.3) and seaborn 

(0.10.1).  

Per ROI analysis 

The per ROI analyses were performed by separating the 1024x1024 ROIs into pools 

based on the patient’s renal outcome. Each ROI was treated as an observation and 

characterized by the number of cells of each class, and these features were compared 

between the pools using the Mann-Whitney U-test with a Bonferroni correction.    

Bootstrapping  

In order to mitigate the issue of having different numbers of patients in each renal 

outcome group, the individual pools of ROIs were sampled with replacement to produce 

samples of 200 ROIs each for the two class (ESRD+ vs ESRD-) analysis, and 150 ROIs 

each for the three class (ESRD+ vs ESRD- vs ESRD current) analysis. The average of 

each feature in the two groups was calculated, as well as the difference between these 

two averages. This procedure was repeated 1000 times until distributions for the 

difference in means between the cohorts were produced. A 95% confidence interval of 

the differences in means that does not overlap with zero suggests that the two populations 

are significantly different from each other (Figure 3.4). 
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Figure 3.4. Schematic of 2-class and 3-class bootstrapping 
procedures. Pools of ROIs from each renal outcome group are 
sampled with replacement, the feature mean for each sample is 
calculated, as is the difference in the means; the 95% confidence 
interval for the difference in means is used to determine whether 
two groups are significantly different.   
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Nearest Neighbors and Niche Analyses 

We wanted to probe the potential interacting partners of each cellular class. We 

therefore did two related analyses. The first was a nearest neighbors analysis that 

iterated through every cell in the dataset and identified the class of the segmented cell 

that was closest to it based on centroid to centroid distance (Figure 3.5A). The second 

was a niche analysis, inspired by the approach taken by Goltsev et al.125 In this analysis 

the niche of a each cell was defined as all of the cells that were within 100 pixels of the 

“center” cell (Figure 3.5B). Therefore every cell could be described by how many cells it 

had near it, and what the classes of those cells were.       

Neighborhood analysis 

To extend this notion of interacting groups of cells one step further, we then defined 

“neighborhoods” of cells based on spatial proximity. Cells were assigned to 

neighborhoods using Density Based Spatial Clustering of Applications with Noise 

(DBSCAN), a clustering algorithm that assigns points to groups based on whether they 

are within a minimum size cutoff away from each other, with a defined minimum group 

size.126 Any points that cannot be assigned to a group are referred to as “singlets”. For 

this analysis we used a distance cutoff of 100 pixels, which is close to 10 um at this 

resolution (Fig 3.5C).    

 “Types” of cellular neighborhoods were identified by extracting 24 features that 

capture cellular constituency as well as cell and cluster shape were extracted for each 

cluster, and applying K-means clustering with k=6. In order to find the optimal number of 

k cluster for the K-means clustering algorithm, we adopted a bootstrapped clustering 

scoring procedure. During each bootstrap iteration, 70% of the normalized neighborhood 
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data was randomly sampled. Afterwards, the K-means clustering algorithm from k = 2 to 

k = 24 number of clusters was fitted to the data, the within cluster sum of distances 

squared, change in within cluster sum of distances squared was calculated for the K 

clusters. This procedure was repeated a total of N= 250 times. The six clusters were then 

characterized using a leave-one-out t test such that the current cluster of reference was 

treated as the alternative group, all the remaining clusters were then binned together as 

the reference group, and a t-test was performed to identify distinguishing features of that 

cluster.   

 

 

Figure 3.5. Spatial analyses of immune cells. A) Nearest neighbor calculation in 
which the minimum centroid-centroid distance between each cell and its neighbor is 
calculated; B) niche calculation in which for every cell, all of the cells that are within 
100 pixels are identified; C) neighborhood calculation, in which cells are grouped into 
distinct neighborhoods using DBSCAN with a minimum cluster size of 2, and a distance 
cutoff of 100 pixels.   
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5. Summary 

In order to probe the interactions between T cells, B cells, and DCs in lupus nephritis 

patients, we collected immunofluorescence microscopy data from the diagnostic kidney 

biopsies of 55 lupus nephritis patients. Accurate segmentation of the cells in the tissue 

was obtained by training two instances of Mask R-CNN to segment five classes of cells: 

CD20+ B cells, CD11c+ mDCs, BDCA2+ pDCs, CD3+CD4- T cells, and CD3+CD4+ T 

cells. Once we had adequate cellular segmentations we performed a series of spatial 

analyses to quantify the distribution and organization of cells in the tissue.  
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Chapter 4: Identifying inflammatory states that correlate with renal failure in lupus 
nephritis patients 

1. Introduction 

The ultimate objective of the high resolution (HR) LuN dataset was to explore the 

spatial interactions between T cells and antigen presenting cells in the biopsies of our 

cohort of lupus nephritis patients and relate these features to their clinical outcomes. 

Though there is a positive relationship between tubulointerstitial inflammation and renal 

failure10, inflammation is an imperfect predictor of disease outcome. Indeed, of the 

patients in our cohort with at least 2 years of follow up who had moderate/severe TII 

scores of 2-3, roughly 40% did not progress to renal failure. This suggests that the overall 

level of inflammation is not an accurate predictor of patient outcome in lupus nephritis 

and motivates the need to probe the nature of inflammation, including which cellular 

classes are present and how they are interacting with each other. Here, we use spatial 

proximity as a proxy for interactions, given that immunological phenomena like antigen 

presentation require that cells are physically near each other. This suggests that the local 

density of cells that can engage with each other can modulate the overall impact of 

inflammation on tissue. We hypothesized that understanding such spatial relationships 

would provide insights into cognate recognition and the organization of the adaptive 

immune system in in situ inflammation.37,72     

Briefly, this dataset was collected to probe CD3, CD4, CD20, BDCA2 and, CD11c in 

order to capture CD3+CD4- T cells, CD3+CD4+ T cells, CD20+ B cells, CD11c+ mDCs, 

and BDA2+ pDCs. Regions of inflammation were selectively imaged based on the 

presence of a positive CD3 signal. A total of 865 1024x1024 pixel images (0.1058 

µm/pixel) from 55 patients were used in the analysis. Because there is variation in the  
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amount of inflammation present in a given biopsy, the number of images from a given 

sample varies from 1 to 82. For each patient we have clinical follow up data for at least 2 

years, including whether or not they proceeded to end stage renal disease (ESRD) during 

that time.  

2. Clinical description of our patient cohort 

The strength of this dataset comes from the detailed clinical information that we have 

to go with the biopsies. For each biopsy, we have information about the patient’s 

demographics, clinical course, renal function, and whether or not they progressed to 

kidney failure or end stage renal disease (ESRD), defined as needing dialysis or 

transplant. In our patient cohort, 19 patients progressed to end stage renal disease 

(ESRD+), and 36 did not (ESRD-). Table 4.1 provides a description of these two patient 

cohorts. These two groups of patients (ESRD+ vs ESRD-) were not significantly different 

from each other in terms of the time of follow up, duration of disease at the time of biopsy, 

or patient age at the time of biopsy (Fig 4.1A-C). These factors together indicate that 

differences that are observable between these two groups are not merely a function of a 

more advanced disease state in the ESRD+ patients.   

 

 

Feature Categories 
ESRD-  
(n=36) 

ESRD+ 
(n=19) 

Sex Female 33 (92%) 17 (89%) 
 Male 3 (8%) 2 (11%) 

Race African American 29 (81%) 19 (100%) 
 Non-African American 7 (19%) 0 (0%) 

Induction Cyclophosphamide 15 (42%) 9 (47%) 
 MMF 14 (39%) 5 (26%) 
 Unknown 7 (19%) 5 (26%) 

Table 4.1 Summary of clinical features in high resolution LuN dataset 
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Feature Categories 
ESRD-  
(n=36) 

ESRD+ 
(n=19) 

pre-biopsy 
plaquenil Yes 18 (50%) 13 (68%) 

 No 18 (50%) 6 (32%) 
pre-biopsy MMF Yes 8 (22%) 9 (47%) 

 No 27 (75%) 10 (53%) 
 Unknown 1 (3%) 0 (0%) 

pre-biopsy 
prednisone >20 mg Yes 8 (22%) 5 (26%) 

 No 28 (78%) 14 (74%) 
pre-biopsy 

azathioprine Yes 0 (0%) 2 (11%) 
 No 35 (97%) 17 (89%) 
 Unknown 1 (3%) 0 (0%) 

Ace 
inhibitor/ARB Yes 28 (78%) 8 (42%) 

 No 8 (22%) 11 (58%) 
Class 5 

glomerulonephritis Yes 19 (53%) 8 (42%) 
 No 17 (47%) 11 (58%) 

proliferative 
glomerulonephritis Yes 29 (81%) 16 (84%) 

 No 7 (19%) 3 (16%) 
Moderate-

Severe TI (>1) score Yes 21 (58%) 17 (89%) 
 No 15 (42%) 2 (11%) 

Moderate-
Severe Chronicity 

(>=4) score Yes 7 (19%) 14 (74%) 
 No 29 (81%) 5 (26%) 

Hypertension Yes 17 (47%) 12 (63%) 
 No 19 (53%) 7 (37%) 

dsDNA Yes 30 (83%) 18 (95%) 
 No 6 (17%) 1 (5%) 

Doubled serum 
creatinine during 

follow-up 

Yes 9 (25%) 10 (53%) 

No 27 (75%) 9 (47%) 

Table 4.1 Summary of clinical features in high resolution LuN dataset, continued 
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3. Comparison of cellular density in ESRD- and ESRD+ patients 

To evaluate the relative densities of the five cellular classes in the tissue, we looked 

at the cellular content of each 1024x1024 pixel region of interest (ROI), representing 

~1.2x104 um2 of tissue. Comparison of overall cell densities (total cells/ROI) in ESRD- 

patients (437 ROIs) and ESRD+ patients (428 ROIs) revealed no significant differences 

(Fig 4.2A). However, the average total cell count per biopsy was higher in the ESRD+ 

cohort, reflecting larger overall areas of inflammation (Fig 4.2B). In contrast to overall cell 

density, there were apparent differences in the cellular constituents of inflammation 

between these two patient cohorts. Surprisingly, we observed that ROIs from ESRD- 

patients were enriched for CD20+ B cells relative to ESRD+ (p=1.23x10-7) (Fig 4.2C). 

ROIs from ESRD+ patients showed a significantly higher density of CD4- T cells 

(p=3.40x10-15), suggesting an association between a high density of these cells and renal 

failure.  (Fig 4.2D). There were no differences in the number of CD3+CD4+ T cells, 

Figure 4.1. Clinical characteristics of patient cohort. Comparison of ESRD+ and 
ESRD- patients in terms of A) duration of follow up period, B) disease duration and 
C) patient age at the time of biopsy 
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BDCA2+ pDCs, and CD11c+ mDCs per ROI between the two patient cohorts (Fig 4.2E-

G).  

 

 

In order to specifically interrogate regions of dense inflammation, I next considered 

only ROIs that had at least 20 segmented cells in them. Restricting the analysis in this 

manner eliminated images from several samples—reducing the total number of patient 

Figure 4.2. Cellular densities in ESRD+ and ESRD-. Difference in the number 
of cells of each class per ROI between ROIs from patients who progressed to 
ESRD (ESRD+, n=428 ROIs) and those who do not (ESRD-, n=437 ROIs); A) 
Total cells/ROI; B) Total cells/sample;  C) CD20+ cells/ROI; D) CD3+CD4- 
cells/ROI; E) CD3+CD4+ cells/ROI; F) BDCA2+ cells/ROI; G) CD11c+ cells/ROI 
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samples to 45; 28 ESRD- samples (252 ROIs) and 17 ESRD+ samples (295 ROIs). It 

also made apparent differences between the inflamed regions in ESRD- and ESRD+ 

samples. In images from ESRD- patients, there was a substantial increase in the total 

number of cells (p=8.55x10-5) (Fig 4.3A). This suggests that, particularly within inflamed 

regions, there is a tendency for ESRD- ROIs to have more densely packed cells. 

Accordingly, there were on average more CD20+ cells/ROI (p=5.94x10-16), CD3+CD4+ 

cells/ROI (p=0.005), and BDCA2+ cells/ROI (p=0.043) in ESRD- ROIs than ESRD+ (Fig 

4.3B, D-F). Notably, the only cell class that was present at a higher density in ESRD+ 

were CD3+CD4- T cells (p=5.56x10-5), even when all other cell types were diminished 

(Fig 4.3C).  
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Two limitations of this dataset are that there are different numbers of ESRD- and 

ESRD+ patients, and varying numbers of ROIs per patient. Further, the ESRD+ patients 

had more ROIs associated with them on average than ESRD- patients. In order to mitigate 

any effect from these cohort-level and individual-level class imbalances, a bootstrapping 

analysis was performed, as described in Chapter 3, and in Fig 4.4A. For every class we 

Figure 4.3. Cellular densities in dense ROIs from ESRD+ and ESRD-.  
Difference in the number of cells of each class per ROI in dense ROIs (n≥20 
cells) between ROIs from patients who progressed to ESRD (ESRD+, n=295 
ROIs) and those who do not (ESRD-, n=252 ROIs); A) Total cells/ROI; B) 
CD20+ cells/ROI; C) CD3+CD4- cells/ROI; D) CD3+CD4+ cells/ROI; E) 
BDCA2+ cells/ROI; F) CD11c+ cells/ROI 
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plotted both the distribution of means for each patient cohort, as well as the distribution 

of the difference in the means calculated for every iteration. We observed that the 

distributions of the mean CD20+ per ROI and CD3+CD4- T cells per ROI were well 

separated, and that the confidence intervals for the difference in CD20+ per ROI and 

CD3+CD4- T cells per ROI both did not overlap with zero (Fig 4.4B-E). These striking 

differences between the ESRD- and ESRD+ pools reinforced our findings from the 

original analysis. In contrast, the bootstrapping analysis revealed that the observed 

differences in CD4+ T cell and CD11c+ mDC densities likely reflect underlying class 

imbalances, while BDCA2 remained the same between the two groups (Fig 4.4F-K).   
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Overall, the findings from this analysis suggest that there are differences in how 

immune infiltrates are organized in lupus nephritis patients who progress to kidney failure 

and those who do not. There seem to be a subset of patients who have large, dense 

aggregates that contain many B cells, relatively few CD4- T cells, and remarkably stable 

kidney function over time. Conversely, there seems to be a subset of patients who have 

Figure 4.4. Bootstrapping analysis of ESRD+ vs ESRD- ROIs. A) schematic of 
bootstrapping procedure; B, D, F, H, J—distribution of the mean cells/ROI for 1000 
bootstrapped samples; C, E, G, I, K—distribution of the difference in means for every 
pair of ESRD+ and ESRD- samples (ESRD- — ESRD+), lines indicate the 95% 
confidence interval, star indicates that the confidence interval does not overlap with 
zero 
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fewer B cells in a given region and an enrichment for CD4- T cells, and this phenomenon 

seems to be enriched in patients who have higher tubulointerstitial chronicity and 

eventually progress to renal failure (Fig 4.5).  

 

 

4. Comparison of cellular density in ESRD- , ESRD+, and ESRD-current patients 

There was a distinct cohort of 5 patients in our dataset who were currently or 

imminently (within 2 weeks) in renal failure at the time of biopsy. To evaluate whether 

these patients were distinct from the patients who proceeded to renal failure at a later 

date, we broke our patient cohort into 3 groups—ESRD-, ESRD+ (defined as people who 

progressed to renal failure in greater than two weeks), and ESRD-current (defined as the 

people who were in renal failure within two weeks of the biopsy). When we examined the 

differences between the three groups of patients, we found that there was no significant 

difference in the total number of cells in any of the cohorts (Fig 4.6A).    

Figure 4.5. Patient level average cell density. Relationship between patient-
level average (total number of cells per patient/# ROIs per patient) CD20+ cells 
per ROI and average CD3+CD4- cells per ROI; each point weighted by 
tubulointerstitial chronicity; red=ESRD+, blue=ESRD+   
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ROIs from patients in imminent renal failure (ESRD-current) had many fewer B cells 

per ROI relative to both the ESRD+, and ESRD- (Fig 4.6B). They also had more 

CD3+CD4- T cells per ROI than the other two groups (Fig 4.6C). ESRD-current samples 

therefore exhibited the most extreme versions of the B cell/CD4- T cell relationships that 

were found in the analysis of two patient groups. The CD3+CD4+ cells displayed an 

unusual pattern in which ESRD-current samples showed an intermediate number of 

CD4+ T cells relative to ESRD- and ESRD+ (Fig 4.6D). This is difficult to interpret given 

the functional heterogeneity of the CD3+CD4+ T cell compartment.14 Interestingly, there 

was also an observed decline in mDCs in the ESRD current ROIs relative to the other two 

groups (Fig 4.6F).  
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Because we only have 5 of the ESRD “current” patients, we also wanted to ascertain 

that the differences observed in that cohort were robust. Therefore, we repeated the 

bootstrapping analysis with all three classes, using a sample size of 150 ROIs. (Fig 4.7A). 

A lower sample size was used for this analysis due to the small number of images from 

Figure 4.6. Cellular densities in ESRD+, ESRD current, and ESRD-; Difference in 
the number of cells of each class per ROI between patients who did not progress to 
ESRD (ESRD-), people who progressed to ESRD in more than 2 weeks (ESRD+) and 
people who progressed to ESRD within 2 weeks of the biopsy date. A) Total cells/ROI; 
B) CD20+ cells/ROI; C) CD3+CD4- cells/ROI; D) CD3+CD4+ cells/ROI; E) BDCA2+ 
cells/ROI; F) CD11c+ cells/ROI 
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the ESRD-current patient group (n=162 ROIs). For the number of CD20+ cells per ROI, 

the pairwise differences between ESRD-, ESRD+ and ESRD-current were all significantly 

different from zero, suggesting that these were three distinct groups (Fig 4.7B-C). For 

CD3+CD4- T cells the differences between ESRD- vs. ESRD+ and ESRD+ vs. ESRD 

current were not significantly different from zero, while the difference between ESRD- and 

ESRD current was significant (Fig 4.7D-E). This suggests that the ESRD+ cohort could 

be in some sort of intermediate phase between the extreme groups with respect to 

CD3+CD4- T cell density. There were no differences between the groups with respect to 

CD3+CD4+ T cell and pDC density. It was again observed that the ESRD-current patients 

were well separated from the other two cohorts with respect mDC abundance, validating 

the observation that these patients have a particular lack of this cell population (Fig 4.7J-

K). This is a striking difference that has implications for the dynamics of APC populations 

during renal failure.    
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5. Relationship between cellular features and pathologist-defined metrics  

End stage renal disease is an important outcome to understand in lupus nephritis, but 

it was also of interest how cellular features found on biopsy were related to other clinical 

features available from the biopsy. Clinical decision-making is often driven by these 

metrics, so we wanted to investigate whether the enrichment for B cells was associated 

Figure 4.7. Bootstrapping analysis of ESRD+ vs ESRD- vs ESRD current ROIs. 
A) schematic of bootstrapping procedure; B, D, F, H, J—distribution of the mean 
cells/ROI for 1000 bootstrapped samples; C, E, G, I, K—distribution of the difference 
in means for every pair of samples ESRD- — ESRD+ (purple), ESRD+ — ESRD-
current (yellow), and ESRD- — ESRD-current (cyan); stars of the corresponding colors 
indicate that the confidence interval did not overlap with zero 
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with other “positive” prognostic indicators, and if enrichment for CD4- T cells is associated 

with other “negative” prognostic indicators.8,10  

One clinical metric we considered was chronicity index, a semi-quantitative descriptor 

assigned by the pathologist that reflects the long-term damage (eg, atrophy, fibrosis) that 

is observable in the renal tissue. High chronicity at the time of biopsy is associated with 

progression to renal failure8 (Fig 4.8A), so it was of interest whether any particular cell 

classes or patterns of inflammation were correlated with chronicity. The ROIs were binned 

by whether they came from patients who had high tubulointerstitial chronicity (defined as 

greater than or equal to 4, n=326 ROIs) and those with low chronicity (less than 4, n=539 

ROIs). The relationship between tubulointerstitial chronicity and ESRD status in our 

patient cohort can be found in Table 4.2. 

This revealed that high TI chronicity ROIs had on average more total cells per ROI, 

more CD3+CD4+ and CD3+CD4- T cells, fewer CD20+ B cells and no difference in 

BDCA2+ pDCs and CD11c+ mDCs. The results from low versus high chronicity were very 

similar to the results from ESRD- and ESRD+, because most of the low chronicity patients 

were ESRD-, and most of the ESRD+ patients were high chronicity (Fig 4.8B-G).  

 

 
Low chronicity <4 High chronicity ≥4 

ESRD- 31 patients 5 patients 

ESRD+ 8 patients 11 patients 

 39 patients 16 patients 

 

Table 4.2 Relationship between ESRD status and TI chronicity 
score 
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In addition to chronicity is tubulointerstitial inflammation, or TI score, a metric of 

inflammatory infiltrate.9 One would expect that total cell counts will track with this metric. 

However, while very few patients in our cohort with mild TI (0-1) progressed to ESRD, the 

patients with moderate to severe TI (2-3) did not necessarily progress to kidney failure at 

Figure 4.8. Cellular densities in high and low TI chronicity patients; Difference in 
the number of cells of each class per ROI between patients who had low TI chronicity 
indices (<4, n=39 patients, n=539 ROIs), and patients with high TI chronicity indices 
(≥4, n=16 patients, n=326 ROIs). A) distribution of TI chronicity index in patients 
broken down by ESRD status; B) CD20+ cells/ROI; C) CD3+CD4- cells/ROI; D) 
CD3+CD4+ cells/ROI; E) BDCA2+ cells/ROI; F) CD11c+ cells/ROI; G) Total cells/ROI 
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higher rates (Fig 4.9A). The relationship between ESRD status and TI inflammation in 

this cohort is in Table 4.3.  

When the ROIs were binned by whether they came from a biopsy with high TI score 

(2-3, n=654) and low (0-1, n=211 ROIs) TI score, it was found that high TI score samples 

had more CD3+CD4+ T cells per ROI, and fewer CD20+ B cells, and BDCA2+ pDCs per 

ROI. There was no difference in CD3+CD4- T cells, CD11c+ mDCs, and total cells per 

ROI (Fig 4.9B-G).  

 
Low TI 0-1 High TI 2-3 

ESRD- 15 patients 21 patients 

ESRD+ 2 patients 17 patients 

 17 patients 38 patients 

 

Table 4.3 Relationship between ESRD status and TI inflammation 
score 
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The common findings across these different methods of stratifying the patients was 

that “positive” findings (i.e., lack of progression to ESRD, low TI chronicity, TI 

inflammation) were associated with an enrichment for CD20+ B cells. 

However, the fact that ESRD status, chronicity index, and TI score don’t always co-

vary is a point of concern for clinical decision-making. Each one of these metrics (TI 

chronicity, TI inflammation, and cellular features) examines a different aspect of the 

Figure 4.9. Cellular densities in high and low TI inflammation patients. Difference 
in the number of cells of each class per ROI between patients who had low TI 
inflammation (<3, n= 17 patients, n= 211 ROIs), and patients with high TI inflammation 
(≥3, n= 38 patients, n= 654 ROIs). A) distribution of TI score in patients broken down 
by ESRD status; B) CD20+ cells/ROI; C) CD3+CD4- cells/ROI; D) CD3+CD4+ 
cells/ROI; E) BDCA2+ cells/ROI; F) CD11c+ cells/ROI; G) Total cells/ROI 
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tissue. What they have in common is an element of human judgement. In each case, 

whether it is the pathologist deciding what percentage of the tissue is fibrotic, or a 

microscopist choosing which areas of the tissue are sufficiently inflamed to image, a 

person is making a judgement about what aspects of the biopsy to pay attention to. There 

is variation in this judgement between individual observers, and even within the same 

observer at different time.127,128  

6. Relationship between cellular features and renal function at the time of 

biopsy 

In addition to histology metrics, we wanted to know if any of the cellular features 

tracked with renal function. If so, it would suggest that renal inflammation is perhaps 

dynamic enough to reflect shorter-term trends in renal function. We chose to look at serum 

creatinine, as we have both the value that was obtained near the time of biopsy, and an 

additional measurement taken at least 2.5 years after the original measurement. 

Therefore, we can calculate the fold change in serum creatinine between these two time 

points. However, because some of the patients who progressed to kidney failure started 

with very high serum creatinine and had lower creatinine as a result of treatment, this fold 

change should be interpreted with care. Table 4.4 shows the relationship between ESRD 

status and whether patients doubled their creatinine.  

However, a sub-analysis was performed that stratified the ESRD- patients by those 

who doubled their serum creatinine (n=9 patients, n=105 ROIs) during the time of follow-

up and those that did not (n=27 patients, n=332 ROIs) (Fig 4.10A). There were 
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significantly fewer total cells per ROI in the patients who doubled their serum creatinine, 

but no significant differences in the specific cell classes (Fig 4.10B-G).   

 

 

Non-Doubled 

Serum Cr Doubled Serum Cr 

ESRD- 27 patients 9 patients 

ESRD+ 9 patients 10 patients 

 36 patients 19 patients 

Table 4.4 Breakdown of patients with respect to ESRD status and whether or 
not they doubled their serum Cr during the follow up time 
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7. Cellular nearest neighbors and niches  

We next probed the close intercellular distances in the tissue. For every cell in the 

dataset, the class of its “nearest neighbor” was found by identifying the cell with the 

smallest centroid-centroid distance to the cell in question (Fig 4.11A). For both CD20+ B 

cells and CD3+CD4- T cells there was a strong propensity for co-localization with cells of 

the same type (i.e. a given B cell’s nearest neighbor was another B cell). However, in the 

context of ESRD- ROIs, there was an increased proportion of all cells that had a B cell as 

Figure 4.10. Cellular densities in patients with doubled serum Cr and non-
doubled serum Cr. Difference in the number of cells of each class per ROI between 
ESRD- patients who doubled their serum creatinine during the follow-up period (n= 9 
patients, n= 105 ROIs), and patients who did not (n= 27 patients, n= 332 ROIs). A) 
trajectory of serum creatinine in the ESRD- patients; B) CD20+ cells/ROI; C) 
CD3+CD4- cells/ROI; D) CD3+CD4+ cells/ROI; E) BDCA2+ cells/ROI; F) CD11c+ 
cells/ROI; G) Total cells/ROI 
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its nearest neighbor relative to ESRD+ ROIs. For example, 44% of B cells from ESRD- 

patients compared to only 36% of B cells from ESRD+ patients had another B cell as its 

nearest neighbor (Fig 4.11B-C). In contrast, 39% of CD3+CD4- T cells in ESRD- ROIs 

had another CD4-T cell as its nearest neighbor, as opposed to 46% of CD3+CD4- T cells 

in ESRD+ ROIs. In addition, all the other cell types in ESRD+ ROIs displayed an 

enrichment for CD4- T cells as their nearest neighbors. These observations indicate that 

in ESRD+ ROIs there is an enrichment of CD4- T cells in cellular aggregates, and in 

ESRD- ROIs there is an enrichment of B cells in aggregates. The nearest neighbor 

relationships is a function of both the increased prevalence of these cells in the ROIs and 

their propensity for clustering with other cells of interest.  

We extended this approach by examining the entire “niche” of each cell, defined as all 

of the cells with centroids within ~10 µm (100 pixels) of the centroid of the cell in question 

(Fig 4.11D). Differences between the distributions of niche content between cells from 

ESRD+ and ESRD- biopsies were evaluated using the Kolmogorov-Smirnov test. This 

analysis allows us to capture both how densely packed cells are and what their most likely 

interacting partners are. We found that in the context of ESRD-, any given cell is more 

likely to have more cells within a 10 µm radius (p=2.1x10-189) (Fig 4.11E). This calculation 

validated the observation that cellular niches are denser in ESRD- samples relative to 

ESRD+ samples. Interestingly, there was an increased frequency of CD20+ B cells in 

cellular niches from ESRD- samples (p=8.7x10-84) and a corresponding increased 

frequency of CD3+CD4- T cells in ESRD+ niches (p=6.9x10-286), in concordance with 

what was observed in the nearest neighbor analysis (Fig 4.11F-G).   
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For both of these metrics it should be noted that we are only probing cell classes that 

we imaged. That is to say, if the actual “closest” cell to one of the identified cells is not of 

one of the 5 classes that we are interested in, the nearest neighbor analysis will not 

recognize that. This phenomenon will show up in the niche analysis by way of fewer cells 

being counted in a given cell’s niche. The interpretation of these results is therefore 

focused on how T cells, B cells and antigen presenting cells are associating with each 

other, regardless of the local density of other cellular classes. 

 

 

 

 

8. Cellular neighborhoods  

Higher order local cellular organization was then probed by grouping cells into spatially 

discrete neighborhoods. DBSCAN was implemented to perform this task with a maximum 

intercellular centroid-centroid distance of 100 pixels (~10.6 µm) and a minimum 

Figure 4.11. Nearest neighbor and niche analyses. A) Nearest neighbor schematic; 
B) breakdown of what percentage of each cell class has CD20+ B cells and C) 
CD3+CD4- T cells as their nearest neighbor; D) Niche analysis schematic, radius=100 
pixels; E) cumulative distribution functions showing the total niche sizes, F) percentage 
of CD20+ B cells in niches, and G) CD3+CD4- T cells in niches 
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neighborhood size of 2, as this best resolved observable regional behavior across the 

biopsy dataset (Fig 4.12A).  

We detected 5425 cell neighborhoods in the whole dataset which could be described 

by a set of 24 quantitative features including cell type frequency, cell type proportion, 

ratios of cell types, average cell shape features, and the overall area of the neighborhood 

(Table 4.5).  

 

Cell Frequency 
CD20+ count 
CD11c+ count 
BDCA2+ count 

CD3+CD4- count 
CD3+CD4+ count 

Cell Proportion 
CD20+ proportion 
CD11c+ proportion 
BDCA2+ proportion 

CD3+CD4- proportion 
CD3+CD4+ proportion 

Cell Frequency 
ratios 

CD20+/CD11c+ 
CD20/BDCA2+ 
CD20+/CD3+CD4- 
CD20+/CD3+CD4+ 
CD11c+/BDCA2+ 

CD11c+/CD3+CD4- 
CD11c+/CD3+CD4+ 
BDCA2+/CD3+CD4- 
BDCA2+/CD3+CD4+ 
CD3+CD4-/CD3+CD4+ 

Cell shape 
Mean circularity 
Mean eccentricity 
Mean major-minor axis ratio 

Aggregate shape Aggregate area  

 

K-means clustering was applied to these features to define classes of neighborhoods. 

A leave-one-out t-test was used to determine which features or combination of features 

best distinguished the six neighborhood groups (Fig 4.12B). The most distinctive 

feature(s) for each group was used to describe the cell neighborhoods as follows: 1) B 

Table 4.5 Features used to define types of neighborhoods 
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cell enriched, 2) CD4- T cell enriched, 3) Large, lymphocyte-rich, 4) CD4+ T cell enriched, 

5) mDC enriched, and 6) pDC enriched (Fig 4.12C).  

Tertiary lymphoid structures (TLSs) have been previously identified in the context of 

lupus nephritis.10 Although we cannot explicitly define TLSs in this dataset, we 

hypothesized that the large, lymphocyte-rich neighborhoods might approximate TLSs. 

For example, we noted that within the large, lymphocyte-rich neighborhoods on average 

28.6% of the cells were B cells and 48.3% were CD4+ T cells. Furthermore, 96.1% of 

these neighborhoods met the following criteria: 1) contained at least 20 cells, 2) both B 

cells and CD4+ T cells were represented in the neighborhood and 3) at least 50% of all 

cells were B cells and/or CD4+ T cells.  Therefore, the vast majority of large, lymphocyte-

rich neighborhoods, have features consistent with TLSs.  

We then examined how these six neighborhood types were distributed between the 

ESRD- and ESRD+ patients. After normalizing for the number of ROIs captured for each 

patient, ESRD+ patients had significantly higher numbers of CD4- T cell enriched 

neighborhoods relative to the ESRD- patients (p value=0.006) (Fig 4.12E). None of the 

other clusters were different in frequency between ESRD+ and ESRD- patients (Fig 

4.12D,F-I). 
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Figure 4.12 Figure caption on next page  
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9. Discussion  

Here we have demonstrated that lupus nephritis patients who proceed to kidney failure 

have a distinctive inflammatory signature that is characterized by an increased density of 

CD4+CD4- T cells, and a relatively decreased density of B cells. In particular, we observe 

that CD3+CD4- T cells are enriched in dense groups of cells that are putatively interacting 

with each other. In contrast, there are a subset of lupus nephritis patients who have 

preserved long-term renal function and appear to have dense regions of inflammation 

that are enriched for B cells, a surprising finding in the context of an antibody-mediated 

disease. In light of these findings, the clear next step was to obtain more phenotypic 

details about these cells. In particular, it was critical to more specifically identify the 

CD3+CD4- T cells, as they appear to be associated with worse patient outcomes. Further 

work also needed to be done to characterize the distribution of other B cell subsets, in 

particular plasma cells, in order to resolve the apparent paradox of dense regions of B 

cells being present in ESRD- patients. These questions will be addressed in the following 

chapters. Overall, these analyses highlight the utility of examining the spatial distribution 

of cells in tissue in order to tease apart differences associated with divergent patient 

outcomes.  

 

Figure 4.12, continued. Spatial analysis of cellular distribution reveals 
increased CD3+CD4- T cells in cellular neighborhoods. Nearest-neighbors 
analysis, proportions of cells that have A) representative images of the DBSCAN 
algorithm performance; B) heatmap showing test statistics associated with each 
feature for each identified neighborhood type; C) representative examples of each 
type of aggregate; D-I) comparison of the abundance of each type of 
neighborhood in each patient cohort, normalized by the number of ROIs per 
patient; D) CD20+ ; E) CD3+CD4-; F) Large; G) CD3+CD4+; H) CD11c+; I) 
BDCA2+ 
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Chapter 5: Segmentation and analysis of highly multiplexed datasets 
 

The work described in Chapters 5-6 was done in collaboration with several people -- 

Dr. Junting Ai and Margaret Veselits acquired the data and assisted with pre-processing, 

Dr. Madeleine Durkee contributed equally to the development of the automated cellular 

segmentation method. Dr. Junting Ai and Dr. Yuta Asano performed the follow-up studies 

on CD4- T cells.  

1. Introduction 

Though immunofluorescence microscopy is very useful for capturing spatial 

relationships, it is typically limited in the phenotypic detail that it can provide, due to 

technical limitations on the number of markers that can be imaged at one time. Developing 

a robust pipeline for acquiring and analyzing highly multiplexed microscopy (HMP) data 

was of great interest to our laboratory, as it would allow us to ask much more complex 

questions about how in situ inflammation is organized. For this purpose we collected 

highly multiplexed datasets in both lupus nephritis and triple negative breast cancer 

(TNBC). We then used the highly multiplexed LuN data to follow up on the findings from 

the high resolution dataset.  

This part of the project required substantial technical innovation in order to segment 

cells accurately and perform spatial analysis on these segmentations. Here I will describe 

these innovations in every step of the process, including data acquisition, pre-processing, 

segmentation, and spatial analysis (Fig 5.1). I will also describe some work that was done 

to follow up on previous findings about CD4- T cells in the HR dataset. All of this work 

was done in collaboration with the Giger laboratory, and all data storage, preprocessing, 
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cellular segmentation, and spatial analysis was performed on MEL, the computation 

server administered by the Giger laboratory. 

 

 

2. Acquisition of Highly multiplexed (HMP) Immunofluorescence Data 

Standard immunofluorescence techniques typically place a limit on the number of 

markers that can be interrogated in a single panel. However, in order to probe the 

immunological interactions that are taking place in tissue, detailed phenotypic information 

is desirable. When designing a staining panel, there is often a tradeoff between the 

number of distinct cellular classes one can probe, and the phenotypic complexity one can 

achieve within a particular cell class. In order to overcome this tradeoff, our lab utilized a 

“strip and reprobe” approach to collect data on 20 distinct cellular markers from two 

different disease states: lupus nephritis, and triple negative breast cancer TNBC.  

In both cases, the goal was to collect detailed phenotypic information on T cells, B 

cells, antigen presenting cells, and the overall tissue context, across the whole biopsy. In 

order to capture the whole tissue, we used the Caliber-ID RS-G4 large-format confocal 

microscope, which can efficiently image large tissue sections. The sections were imaged 

Figure 5.1 Overview of the analytical pipeline for the highly multiplexed 
datasets 
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at a pixel size of 0.221 um and magnification of 63x. In the strip and reprobe procedure, 

a 2-5 um thick section of a FFPE biopsy was iteratively stained according to a procedure 

outlined by Bolognesi et al.129 The sections were deparaffinized and stained with a 

combination of primary antibodies and secondary antibodies conjugated with AlexaFluor 

488, 546, and 647 fluorophores, in addition to DAPI. They were then imaged at the 405, 

488, 561, and 640 nm wavelengths. Subsequently the coverslips were removed, and the 

antibodies were stripped using a combination of sodium dodecyl sulfate (SDS), Tris-HCl, 

and 2-mercaptoethanol. The samples were re-probed with a new set of primary and 

secondary antibodies, and then imaged again. Repeating this procedure iteratively, with 

the DAPI signal serving as a consistent signal between each day, allowed us to capture 

the large number of markers over the course of several days. The advantage of the large-

format microscope was that we could image the whole tissue sample, mitigating the 

sampling problems inherent in the HR dataset.   

Markers were selected based on the specific questions that were of interest in each 

dataset. They then had to be arranged into sub-panels in such a way that there was only 

one type of antibody from each species (eg, mouse, rabbit, rat) per sub-panel, and so 

that weaker antibodies could be used earlier in the procedure, before the aggressive 

stripping procedure reduced antigen availability.  

Though much effort was made to image the same tissue area at the same focal plane 

every day, it is inevitable that there were some deviations between days that needed to 

be computationally corrected. This was further complicated by tissue 

disruption/destruction that occasionally resulted from removing the coverslip multiple 

times, such that the tissue on the first day was not exactly the same as the tissue on the 



 78 

final day. The computational approaches used to address these issues will be discussed 

later in this chapter. 

Lupus Nephritis (LuN) 

The goal of the highly multiplexed lupus nephritis dataset (n=18 biopsies) was to 

validate and expand on the findings of the high resolution dataset. Imaging the whole 

biopsy allowed for the capture of the full range of inflammation, including sparse regions. 

Some of the biopsies were large enough that they were broken up into multiple imaging 

regions, for a total of 28 large composite regions. The markers were chosen to expand 

on the phenotypes captured by CD20, BDCA2, CD11c, CD3, and CD4, as well as provide 

some contextual information on the tissue (Table 5.1).  

 
 

Cellular 
Class 

Phenotypic markers 

T cell CD3, CD4, CD8, ICOS, PD1, Tbet, FoxP3, Granzyme B, 
SLAMF7 

B cell CD20, IgG, IgM, CD27, CD138 
Dendritic cell BDCA1, BDCA2, CD11c, CD123, CXCR6, FCRL5, RANTES, 

MHC-II, Costimulatory molecules (CD40, OX40L, CD80, CD86) 
Contextual MX1 
 

 
The T cell markers were chosen to capture a range of T cells that are thought to be 

involved in mediating inflammatory processes in lupus.14 This includes Tfh cells 

(CD4+ICOS+/-PD1+),37–39 exhausted T cells (PD1+),130 Th1 cells (CD4+Tbet+),43 

regulatory T cells (CD4+FoxP3+),27,43 cytotoxic CD8 T cells (CD8+GranzymeB+),50 and 

cytotoxic CD4 T cells (CD4+SLAMF7+).131 The B cell markers were chosen to identify 

naïve B cells (IgM+)132, class-switched B cells (IgG+),132 plasma cells (CD138+),133 and 

memory B cells (CD27+).25  The APC markers were chosen to cover myeloid dendritic 

Table 5.1 Highly multiplexed LuN panel 
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cells (BDCA1+, CD11c+),70,71 plasmacytoid dendritic cells (BDCA2+, CD123+),71 and 

“general” APC markers that had been identified in the literature (CXCR6, FCRL5, 

RANTES, MHC-II, Costimulatory molecules).14 Finally, MX1 was chosen to show the 

distribution of interferon response in the tissue.35  

Though these samples did not have the same level of follow up as the high resolution 

data, we were able to collect clinical data (renal function, pathology metrics, etc.) about 

the patients at the time of biopsy, giving us an analogous set of clinical features. (Table 

5.2).  

   

 Feature Categories  (n=18) 
Sex Female 15 (83%) 

  Male 2 (11%) 
  Unknown 1 (6%) 

Race African American 11 (61%) 

  
non African 
American 3 (17%) 

  Unknown 4 (22%) 
Induction Cyclophosphamide 1 (5%) 

  MMF 7 (39%) 
  Unknown 10 (56%) 

pre-biopsy plaquenil Yes 11 (61%) 
  No 3 (17%) 
  Unknown 4 (22%) 

pre-biopsy MMF Yes 6 (33%) 
  No 8 (45%) 
  Unknown 4 (22%) 

pre-biopsy prednisone >=20 mg Yes 4 (22%) 
  No  10 (56%) 
  Unknown 4 (22%) 

pre-biopsy azathioprine  Yes 0 (0%) 
  No 14 (88%) 
  Unknown 4 (12%) 

Ace inhibitor/ARB Yes 4 (22%) 
 

Table 5.2 Summary of clinical features in highly multiplexed LuN dataset 
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Triple-Negative Breast cancer (TNBC)  

Another goal of the project was to extend some of the techniques our laboratories had 

developed for the study of autoimmunity to cancer immunology. It had been previously 

observed that dense aggregates of immune cells in triple negative breast cancer (lacking 

overexpression of HER2, progesterone receptor, and estrogen receptor) were associated 

with positive prognosis.134 The goal of collecting a highly multiplexed dataset in TNBC 

(n=18 biopsies) was to ask similar questions about how T cells, B cells, and antigen 

presenting cells organize and interact in the context of tumor tissue (Table 5.3).  

 

 
Cellular 
Class Phenotypic Markers 

T cell 
CD3, CD4, CD8, FoxP3, PD1, LAG3, Granzyme-B, 
SLAMF7, ICOS 

APC CD20, CD138, CD11c, BDCA2, CD68, CD163, MHC-II 
Context MX1, IFN-gamma, pan-cytokeratin, Ki67 

 
  

These markers were chosen to cover a wide range of T cell phenotypes, including 

regulatory T cells (CD4+FoxP3+),135 Tfh cells (CD4+ICOS+/-PD1+),136 exhausted CD8 T 

 Feature Categories  (n=18) 
  No 10 (56%) 
  Unknown 4 (22%) 

Moderate-Severe TI (>=2) score  Yes 17 (95%) 
  No 1 (5%) 

Moderate-Severe Chronicity (>=4) 
score Yes 10 (56%) 

  No 6 (33%) 
  Unknown 2 (11%) 

Hypertension Yes 9 (50%) 
  No  5 (28%) 
  Unknown 4 (22%) 

Table 5.3 Highly multiplexed TNBC panel 

Table 5.2 Summary of clinical features in highly multiplexed LuN dataset, 
continued 
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cells (CD8+PD1+LAG3+),137 cytotoxic CD4 T cells (CD4+GranzymeB+SLAMF7+), and 

cytotoxic CD8 T cells (CD8+GranzymeB+).138 Antigen presenting cells such as B cells 

(CD20+), plasma cells (CD138+), mDCs (CD11c+), pDCs (BDCA2+), macrophages 

(CD68+, CD163+)139, and all other MHCII+ cells were probed in order to determine which 

APCs were interacting with T cells, and how this relates to regional T cell phenotype. 

Finally, several “contextual” markers were chosen to examine the local tumor conditions 

that were associated with dense cellular aggregates, including interferon (IFN-gamma), 

interferon response (MX1)140, pan-cytokeratin (tumor cells)141 and Ki67 (proliferating 

cells)142.  

Though we are still in the process of analyzing this data, we have completed some 

interesting preliminary work to show that automatic segmentation procedures developed 

for lupus nephritis can be leveraged to analyze data from a completely different disease. 

In addition, the process of collecting this dataset deepened my knowledge of microscopy 

and gave me useful insights that I was able to apply to the lupus nephritis data.  

1. Data preprocessing 

Automatic segmentation of cells in the highly multiplexed dataset is analytically 

challenging. Several challenges arise from the complexity and phenotypic depth of the 

dataset. First, a substantial amount of pre-processing was required in order to get the 

data into a form that was tractable for a segmentation algorithm. Briefly, this included 1) 

stitching the dataset into composites, 2) aligning the resulting composites across rounds 

of imaging, 3) breaking these aligned composites into tiles, and finally 4) filtering those 

tiles to identify those that contain immune cells of interest.  
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Stitching and alignment 

The method of data acquisition, full-section imaging on a strip-scanning microscope, 

made image stitching and alignment necessary to spatially register all stains in the highly 

multiplexed dataset. The data was acquired by collecting imaging data in strips that were 

1024 pixels wide, and the length of the entire imaging region (ranging from 4000 to 70,000 

pixels), with an approximate 10% overlap in the imaging region between adjacent strips. 

To acquire full-section images, it was necessary to stitch the strips together into a single 

composite for every channel. We applied a sliding-window technique and cross-

correlation to identify the area of overlap between consecutive strips.143   

As part of the stripping and reprobing procedure, sample imaging was done over 

several days, with the slide being removed from the stage between rounds of staining. 

Though the same imaging region was selected every day, there was unavoidable shift 

between days, sometimes wider than the width of a strip. To overcome this technical 

limitation, all stitched composites across all days of imaging were aligned with the Day 1 

DAPI channel. Cross correlation was once again used to calculate the x, y, and rotational 

shifts necessary to spatially register all stains across all days of imaging. 

Due to a combination of the fine and sometimes repetitive details found in these 

images (particularly DAPI), cross correlation does not work perfectly. We therefore 

implemented a “semi-automatic method” of alignment. Day 1 DAPI was stitched together 

using cross-correlation, and then each channel was aligned relative to the Day 1 DAPI 

composite (Fig 5.2). Because there is a difference in signal between DAPI and a different 

cell surface marker, this cross correlation is less high-fidelity. Therefore, we developed a 

GUI that allowed the user the to evaluate the quality of alignment and manually adjust the 
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x, y and rotational shifts until the alignment was sufficient. This semi-automatic stitching 

and alignment was a laborious process in which all 20 markers were aligned across 28 

unique image regions from the 18 biopsies. Once alignment was complete, the 

composites were broken up into 512x512 pixel tiles, and empty tiles were filtered out 

based on the intensity of the Day 1 DAPI signal at a given location in the full-section 

composite. The relative position of each tile within the composite was stored such that 

segmented cells in a given tile could be mapped back to a position in the composite. Only 

tiles that contained tissue on the basis of DAPI signal were carried forward.    

 

 

Tile sorting by lymphocyte signal  

At this point in the process, only a fraction of the image tiles contained the immune 

cell populations that we were interested in. Due to the high potential for false positive 

segmentations in  empty image tiles, an 18-layer “VGG-style”96 convolutional neural 

network was trained to classify CD3 and CD20 channel tiles as either “inflamed” or 

“uninflamed” on the basis of lymphocyte signal (Figure 5.3A-B).  

This network was trained by splitting the 18 patients from the highly multiplexed 

dataset into training (n=14), validation (n=2) and test (n=2) sets. 536 CD3 and CD20 

Figure 5.2. Images are stitched into composites and then aligned across days  
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image tiles were manually classified as inflamed or uninflamed and placed in the training, 

validation, or test set based off of this patient split. The CNN was trained with a kernel 

size of (5,5) and a learning rate of 9e-5, using dropout and data augmentation of random 

flips and rotations. Training was stopped once the accuracy of the network on the 

validation set had not improved in 10 epochs. This network was able to distinguish 

between inflamed and uninflamed regions with high fidelity, producing a receiver 

operating characteristic (ROC) area under the curve (AUC) of 0.99 +/- 0.008 on the 

independent test set (Figure 5.3C). This curve was used to select the prediction threshold 

of 0.036, such that tiles with scores greater than this value were considered inflamed. 

Recall (equal to sensitivity) at this threshold was 0.991. We prioritized recall to reduce the 

potential that lymphocyte-containing tiles would be missed.  

It was determined that the best way to reduce false positives was to segment T cell 

markers (CD4, CD8, PD1, ICOS) only in tiles that the network identified as inflamed based 

on the CD3 channel, and to segment B cells (CD20+ and CD138+) only in tiles identified 

as inflamed based on the CD20 channel. Though there was substantial overlap between 

these two sets of images, there were some T cell-only tiles, and some B cell-only tiles.  
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2. Cellular segmentation 

Semi-automated ground truth 

A non-trivial bottleneck for segmenting the many different populations of cells in this 

dataset was the generation of a sufficient amount of high-quality ground truth for each 

cell class. Previously, ground truth datasets had been generated by manually outlining 

cells using the free-hand tool in ImageJ, a task that can take on the scale of hundreds of 

hours for a single training set. With the number of distinct cellular classes that needed to 

be segmented for the highly multiplexed dataset, it was necessary to speed up this 

process (Figure 5.4). An expert was tasked with identifying the cells of interest in the 

image stacks using a single point in ImageJ, rather than outlining the whole cell. We then 

leveraged the Nuclear Segmentation Toolkit (NuSeT)101, a pre-trained network that had 

Figure 5.3. Tiles are sorted into “inflamed” and “uninflamed”; A) schematic of the 
CNN used to identify images that have lymphocytes (“marker present”) and those that 
do not. B) example of training data for “inflamed” and “uninflamed”; C) ROC curve for 
network performance for the classification task   
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a combined U-Net/Region Proposal Network architecture, to automate the segmentation 

of all the nuclei in a tile. NuSeT-segmented nuclei that overlapped with the points marking 

a cell of interest were kept for the ground truth, while all other nuclei were discarded. The 

final step was manual correction of some of the nuclear segmentations by an expert, to 

account for situations in which NuSeT mis-segmented cells in dense regions. The 

assumption here was that lymphocytes typically have little cytoplasm, and therefore a 

nuclear segmentation would closely approximate a segmentation based on cell surface 

markers. Though there was still some manual work involved, this automation reduced the 

amount of time it took to generate a sufficient amount of ground truth for the highly 

multiplexed dataset.  

 

 

Figure 5.4. Semi-automated ground truth generation; Stacks of images are 
manually marked by an expert, preliminary DAPI segmentation is performed by NuSeT 
and the segmented nuclei that overlap with the markers are kept as the final ground 
truth (GT), after manual correction by the expert    
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Training—trained on high resolution data, finetuned on highly multiplexed data  

Even with our efforts to speed up ground truth generation for this dataset, it was still 

difficult to produce enough to segment every single cell type with a unique network. This 

was particularly true for rare cell types, where merely identifying images with positive 

signal required a substantial amount of time spent looking through raw images for positive 

signal. It was therefore important to make use of all available ground truth and train 

networks that could generalize well.  

The approach we took was to train two cellular networks—a T cell network and a B 

cell network. The T cell network was trained to segment 3-channel stacks of CD3/“T cell 

marker”/DAPI, with the “T cell marker” channel being CD4, CD8, or ICOS. In these images 

two classes were identified: CD3+T cell marker(+) cells (double positive T cells), and 

CD3+Tcell marker(-)  cells (single positive T cells). The B cell network was trained to 

segment 2-channel images of either CD20/DAPI or CD138/DAPI, such that only CD20+ 

or CD138+ cells are identified.  

To take advantage of all of the available ground truth, we leveraged the training data 

from the high resolution dataset to pre-train T and B cell networks. We then fine-tuned 

these networks with ground truth from the highly multiplexed dataset. During finetuning, 

the networks were initialized with the weights from the high resolution dataset and trained 

further for the new task, such that the weights for all convolutional, max-pooling, and fully-

connected layers were adjusted.  

For the T cell network, stacks of CD3/CD4/DAPI were constructed from the 342-image 

high resolution training dataset and split into 512x512 tiles (from the original 1024x1024), 

quadrupling the number of available tiles. An instance of Mask R-CNN104 was trained on 
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the high resolution CD3/CD4/DAPI stacks, with a train/validation/test ratio of 75/15/10. 

This network was then fine-tuned on a set of CD3/CD4/DAPI, CD3/CD8/DAPI, and 

CD3/ICOS/DAPI stacks (n=211) from the highly multiplexed dataset. For the B cell 

network this procedure was repeated, but with CD20/DAPI stacks for both initial training 

and fine-tuning, with n=79 images in the finetuning highly multiplexed set. The 

performance of this network on a test set of CD138/DAPI stacks was sufficient to negate 

the need to fine-tune on a training set of CD138 stacks.  

 

T cell detection network 

  
Average 
Recall 

Average 
Precision Average IOU 

CD3+CD4+ T 
cell 0.93 0.91 0.71 

CD3+CD4- T cell 0.85 0.75 0.71 

CD3+CD8+ T 
cell 0.95 0.89 0.72 

CD3+CD8- T cell 0.92 0.87 0.72 

B cell detection network 
CD20+ B cell 0.93 0.91 0.71 
CD138+ B cell 0.85 0.75 0.71 

 

Using the finetuning approach yielded superior network performance compared to 

training from scratch with limited ground truth. The finetuning procedure allowed the 

network to learn how to handle lower resolution, different combinations of fluorophores, 

and new markers. This substantially reduced the amount of highly multiplexed ground 

truth we needed to generate in order to produce good segmentations; the fine-tuning 

highly multiplexed datasets each contained less than 250 image tiles each.  

Table 5.4 T cell and B cell network performances 
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Tubule network 

One challenge that is particular to segmenting cells in kidney tissue is false signal from 

renal tubules. Due to their high collagen content, they have a high level of 

autofluorescence.144,145 In addition, they have rich expression profiles, including at times 

CD138.146 Therefore, the networks consistently produce false positives at the sites of 

tubules, regardless of efforts to include tubules in the training datasets. In order to 

eliminate some of the false segmentations derived from autofluorescent structures, 

another instance of Mask R-CNN104 was trained to segment “tubules”, where tubules are 

broadly defined as renal tubules and blood vessels. The segmentations were performed 

on DAPI tiles, and tubule structures were segmented on the basis of nuclear morphology 

and arrangement into cylindrical structure. The network training set was comprised of 300 

manually annotated images from 18 patients, with 240 images in the training set (80%), 

30 images in the validation set (10%), and 30 images in the test set (10%). Data 

augmentation consisted of random horizontal and vertical flips and rotations.  

The purpose of this network was to produce a binary mask that could be used to 

subtract cellular segmentations that overlap with tubule segmentations (Fig 5.5). 

Therefore, the network performance was evaluated at the pixel level (semantic 

segmentation) by comparing the ground truth masks with the predicted masks. This 

resulted in the following average network performance on the test set:  

 

 

 Average Recall Average Precision Average IOU 

Tubule 0.74 0.79 0.62 

Table 5.5 Tubule network performance 
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Post-processing—compiling the results of the various networks  

Much like the high resolution dataset, our “final” cellular predictions are the 

combination of the outputs of multiple networks—the T cell network, B cell network, and 

tubule networks. Because of the number of classes and networks involved, it was 

necessary to develop robust methods for combining these outputs and incorporate 

additional post processing steps.  

During the course of generating ground truth for these training sets, we noted a 

population of CD3+CD4-CD8- (double negative, DN) T cells. Out of 1083 total manually 

annotated CD3+ T cells, 456 of them were DN, leading us to conclude that they were a 

substantial population in our dataset, though the non-random sample of images used for 

ground truth could not be used to accurately estimate their frequency. Therefore, we 

included DN T cells amongst the cellular classes we were segmenting.  

In total we identified 5 “base” classes of cells – CD3+CD4-CD8- (DN), CD3+CD4+, 

CD3+CD8+, CD20+ and CD138+ (Fig 5.6A). The T cell network predictions for the 

Figure 5.5. Tubule network output and usage in generating final cellular 
predictions; Mask R-CNN output is turned into a binary mask, and cellular predictions 
that fall into the mask are eliminated; second two panels—Blue=Tubule, 
green=CD138, red=CD20; cyan=CD138 overlapping with tubule, magenta=CD20 
overlapping with tubule  
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CD3/CD4/DAPI and CD3/CD8/DAPI tiles were combined to identify the three T cells 

classes (DN, CD3+CD4+, CD3+CD8+), which the DN class being derived from the 

overlap of the CD3+CD4- and CD3+CD8- predictions. The identified cells were then 

further filtered such that predicted cells that overlapped with bright non-specific objects 

(such as red blood cells) were removed using a noise mask derived from finding signals 

that are present across all fluorescence channels. In addition, cells that overlapped with 

the segmented tubules were dropped out, as they were assumed to be spurious bright 

signal from tubules.  For the three T cell subsets (DN, CD4+, CD8+) there was an 

additional step where each cell was identified as ICOS+/-, PD1+/- and FoxP3 +/- (Fig 

5.6B). ICOS and PD1 segmentations were derived by using the T cell network described 

above to predict CD3+PD1+ and CD3+ICOS+ cells, and identifying which of the predicted 

DN, CD4+ or CD8+ T cells overlapped with each one. Because FoxP3 is a nuclear 

marker, the T cell network could not perform well on it. Therefore, binary FoxP3 masks 

were generated by defining positive FoxP3 signal as anything greater than 3.5 standard 

deviations from the mean signal intensity. FoxP3+ cells were identified as those that had 

positive FoxP3 signal overlapping with at least 25% of the cell body.    

Several subsets of T cells were identified using these three markers: regulatory T cells 

were defined as CD3+CD4+ PD1-ICOS- FoxP3+, Tfh cells were defined as CD3+CD4+ 

PD1+ICOS+/-FoxP3- and exhausted CD8 T cells were defined as CD3+CD8+ 

PD1+ICOS-FoxP3-.  

 At the end of this procedure, each tile had a set of cells associated with it, with 

descriptors like class ID and secondary marker expression for each cell.  
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Figure 5.6. HMP Segmentation procedure; A) generation of base classes by 
consolidating the T cell and B cell network predictions and filtering out predictions that 
overlap with noise mask and tubules; B) generation of secondary marker classifications 
by comparing base class predictions with ICOS/PD1 predictions and FoxP3 mask 
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3. Sample-level processing 

MX1 thresholding and analysis 

MX1 thresholding was performed as follows: the composite was Z-score normalized, 

and the resulting tiles were broken into 16x16 pixel sub-regions. If more than 50% of the 

pixels in the sub-region exceeded a pixel intensity of 40 (out of a maximum of 255), that 

whole sub-region was categorized as “MX1+”, and if not it was categorized as “MX1-“. 

This was done to capture continuous MX1 signal and reject small bright spots. The MX1 

positivity of sub-regions of tissue was determined by defining a bounding box in the 

composite that encompassed the area of interest (cells in a cluster), and then calculating 

what percentage of the bounding box was MX1+.  

Area calculation 

The total area of tissue in each sample was calculated by analyzing the DAPI 

composite in the following way: 1) a threshold pixel intensity of 5 was applied to binarize 

the image; 2) the skimage.morphology (version 0.17.2) functions “area_closing” 

(area_threshold=5000), “remove_small_holes” (area_threshold=5000), 

“remove_small_objects” (min_size=100), and “binary dilation” were applied to the image 

in that order to fill in small areas of tissue that don’t contain nuclei; 3) the number of 

positive pixels was then calculated and converted to units of um2 using 0.0488 um2/pixel2 

as the conversion factor. The number of cells per unit area were calculated by dividing 

the cellular content of the full composite by this calculated area.   

4. Spatial Analyses 

All spatial analyses were performed in the programming language Python (3.7.9). The 

following packages were utilized for analysis: pandas (1.2.2), numpy (1.19.2), sklearn 
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(0.23.2), scipy (1.6.1), and tifffile (2021.1.14). Plotting was performed with matplotlib 

(3.3.2) and seaborn (0.11.1).  

Assigning composite-level coordinates to cells 

Coordinates of the cells in the tiles were adjusted to a composite-level coordinate 

system by shifting the tile-level coordinates based on the location of the tile in the 

composite. All subsequent calculations around the distribution of cells in tissue were 

based on these composite-level locations.  

Nearest Neighbors 

The nearest neighbors analyses were performed as described in Chapter 3, such 

that, for every cell in the dataset, the class of its nearest cellular neighbor was identified. 

The biggest change to this procedure was that the calculation was performed using the 

composite-level coordinates, such that cells that were in adjacent tiles could be 

neighbors.  

Defining neighborhoods with DBSCAN 

As in the HR dataset, Density Based Spatial Clustering of Applications with Noise 

(DBSCAN)126 (sklearn 0.23.2) was used to identify cellular neighborhoods with a 

minimum cluster size (“min_samples”)=2, and a distance cutoff of 50 pixels, which 

converts to approximately 10 um. Once again, doing this calculation on the composite 

level allowed us to identify neighborhoods that spanned multiple tiles.  

Neighborhood minimum distance  

In order to evaluate the distances between neighborhoods a bounding box was drawn 

around each cellular neighborhood, and the coordinates of the center of the box was used 
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as an approximate neighborhood centroid. The centroid-centroid distance between each 

neighborhood and the neighborhood closest to it was identified.  

5. Follow-up investigation of CD4-CD8- T cells 

During the course of our investigation we identified the presence of a population of 

CD3+CD4-CD8- T cells in our LuN dataset. We followed up on this finding by 

interrogating a publicly availably single cell RNA sequencing dataset from lupus 

nephritis patients14, and by doing additional staining on a small cohort of LuN samples.   

RNA sequencing analysis 

Single-cell RNA-seq data for human lupus nephritis tissue were obtained from the 

ImmPort repository (accession code SDY997,  

“SDY997_EXP15176_celseq_matrix_ru10_molecules.tsv” raw data file). Quality control 

was performed according to the original paper14, such that  cells that cells were removed 

from the analysis if they expressed <1,000 or >5,000 genes, or if more than 25% of the 

total unique molecular identifiers (UMI) mapped to mitochondrial genes. Gene expression 

values were normalized to library size (UMI count per million) and scaled by log2. 

Clustering implemented in Seurat 3.2.2 and canonical marker expression were used to 

identify cellular subsets. T cells were analyzed if they were assigned to the “Naïve T” or 

“CTL” clusters. T cells were categorized based on CD4, CD8A, and CD8B expression. 

Cells were categorized as “CD4” when they had detectable expression of CD4 transcripts 

but no CD8A or CD8B. They were instead categorized as “CD8”, when they had 

detectable CD8A or CD8B with no CD4 transcripts. Cells were categorized as DP 

(double-positive) or DN (double-negative) when they had both/neither CD4 and/nor 
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CD8A/B. t-SNE was performed by Rtsne (0.15). Plots were generated by ggplot2 (3.3.2) 

and ggridges (0.5.2).  

Additional staining 

Eight lupus nephritis kidney biopsies were stained for CD3, CD4, CD8, TCRδ, and 

DAPI. Inflamed regions were imaged on the Leica Stellaris 8 confocal microscope, with 

40x magnification and a pixel size of 0.225 um. 281 ROIs (35±19 per sample) 

1024x1024 ROIs were obtained, and then post processed with background subtraction, 

despeckling and contrast adjustment using ImageJ. Cells in these images were 

quantified by manual count.  

6. Summary  

Highly multiplexed imaging enables detailed phenotyping of infiltrating immune cells 

in tissue. However, this type of imaging introduces a series of analytical challenges that 

needed to be addressed in order to accurately segment cells in tissue. For the lupus 

nephritis dataset, the images were stitched into composites, aligned across days, and 

broken into tiles. These tiles were then filtered to select for those that had CD3+ or CD20+ 

lymphocytes. Two instances of Mask R-CNN were used to segment CD4+, CD8+ and DN 

T cells and CD20+ and CD138+ B cells in the tissue. A third instance of Mask R-CNN 

was used to identify tubules in the tissue in order to filter out false positives produced by 

the lymphocyte networks. The T cells were further characterized by the expression of 

ICOS, PD1, and FoxP3. Once sufficiently high-quality segmentations were obtained, the 

predictions were stitched back together into composites, allowing for spatial analysis to 

be performed on the scale of the whole section. It should be noted that we have thus far 

only segmented a subset of the markers in the lupus nephritis data, and we still need to 
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apply these methods in the TNBC data. Additional work needs to be done in order to 

make full use of all of the markers in these dataset. Nonetheless this work has led to 

additional insights about the cellular constituents of lupus nephritis and provides a 

framework for analyzing similar datasets.   
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Chapter 6: Spatial analysis of highly multiplexed dataset—probing B-T 
interactions 

1. Introduction 

Given the collective observations from the high resolution (HR) dataset, several 

questions emerged—what is the phenotype of the CD4- T cells that seem to be 

associated with poor outcomes? What is the phenotype of CD4+ T cells that are present 

in large groups of B cells? What is the relative abundance of CD20+ B cells and CD138+ 

plasma cells? These questions were the driving force behind the analyses we chose to 

pursue in the highly multiplexed (HMP) dataset.  

2. Quantifying lymphocyte abundance in the HMP dataset 

Though we had many markers at our disposal, we first segmented the CD20+ B cells, 

CD138+ B cells, CD4+ and CD8+ T cells for the purpose of this analysis. While we were 

developing our segmentation procedure, we determined that there was an additional 

population of CD3+CD4-CD8- (double negative, or DN) T cells, which we also identified 

throughout our dataset (Fig 6.1A).  

Of these five classes, CD4+ T cells were the most abundant subset, comprising 35.2% 

of the segmented lymphocytes. There is substantial between-patient heterogeneity in 

terms of the density of these cellular classes, which is consistent with previous 

observations of (Fig 6.1B)  

As one might expect, there was a high degree of correlation between total CD4+ T 

cells and CD8+ T cells per total biopsy area within patients (R=0.789) (Fig 1C), validating 

the previous observations that these cell types generally track together.  There was also 

a high degree of correlation between CD20+ and CD138+ B cells (R=0.775), suggesting 

that an abundance of CD20+ B cells often corresponds with abundant plasma cells (Fig 
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6.1D). 

 

 

3. Evaluating phenotypic heterogeneity in the T cell compartment 

It was first of critical importance to better understand the T cell compartment. We 

further phenotyped the T cell subsets by marking each cell as positive/negative for FoxP3, 

Figure 6.1. Diverse array of lymphocytes are observable in the HMP 
dataset; A) Distribution of segmented cell classes in entire dataset; B) 
distribution of  the frequency of segmented cell classes per total biopsy area on 
a per-patient basis; C) Sample-level correlation between density (cells/mm^2) of 
CD4+ and CD8+ T cells; D) Sample-level correlation between density 
(cells/mm^2) of CD20+ and CD138+ B cells; E) Distribution of three T cell 
subsets in the dataset 
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ICOS, and PD1. These markers were chosen for their ability to identify regulatory T cells 

(FoxP3), T follicular helper cells (PD1, ICOS), and exhausted T cells (PD1).  

“CD4-“ T cell compartment 

 One of the biggest outstanding questions from the HR dataset was whether the 

entire CD4- T cell compartment is CD8+. In this dataset we have found that 53.4% of the 

T cells are CD4+, 26.1% are CD8+ and 20.5% are DN (Fig 6.1E). It should be noted that 

DN T cells are difficult to quantify accurately in our system, given that they are defined by 

the lack of markers and this designation is derived from two different outputs of the T cell 

network (i.e, CD3+CD4, CD3+CD8-). Nonetheless, their presence was manually 

confirmed in several biopsies, as described in Chapter 5. This indicates that the 

“CD3+CD4-“ T cells that were associated with renal failure in the HR dataset cannot 

automatically be presumed to be CD8+ T cells.  

To further characterize DN T cells, we interrogated public single-cell RNA-seq data of 

immune cells infiltrating the kidney of lupus nephritis patients14. We identified naïve T and 

CTL clusters in intrarenal immune cells by unsupervised clustering and canonical marker 

expression (Fig 6.2A). Within these T cell clusters, 21% were DN, as measured by the 

UMI of CD4, CD8A, and CD8B (Fig 6.2B).  Several T cell subtypes have been reported 

to be DN, such as NKT cells and gamma delta T cells. Indeed, there was a small increase 

in CD3d mRNA is cells assigned to NK cells, suggesting a NKT phenotype. We therefore 

looked for the expression of NCAM1 (CD56) and KLRB1 (CD161) in all of the T cell 

subsets. Neither of these markers were substantially enriched in DN T cells, indicating 

that DN NKT cells are rare in lupus nephritis (Fig 6.2C).  
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Next, we compared TCR alpha and delta chain expression (TRAC and TRDC). There 

were some cells that were apparently positive for both TRAC and TRDC, likely due to 

sequence homology between these genes (Fig 6.2D). However, TRAC- cells and TRDC+ 

cells were both enriched in DN population (Fig 6.2E). These results suggest that at least 

a portion of the DN T cells observed in lupus nephritis are gamma-delta T cells. Given 

this finding, we confirmed the presence of gamma-delta T cells in a new set of 8 lupus 

nephritis biopsies. These biopsies were stained with a panel of CD3 CD4, CD8, TCRẟ, 

and 281 ROIs were captured (Fig 6.2F). In a given biopsy, 51.4% ± 21.3% of CD3+CD4-

CD8- T cells were positive for TCRẟ. These findings indicate that within lupus nephritis a 

substantial fraction of T cells, similar to the prevalence of CD8 T cells, detectably express 

neither CD4 nor CD8. Within this population, approximately half are gamma-delta T cells.  
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Figure 6.2 Figure caption continued on next page 
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The final question around CD4- T cell phenotype we wanted to address was whether 

CD8+ T cells in lupus nephritis biopsies were exhausted. Roughly 30% of CD8+ T cells 

in our dataset are PD1 positive (Fig 6.3A). A more stringent definition of exhausted CD8+ 

T cells (Tex) is CD3+CD8+PD1+ICOS-Foxp3-, and 25% of the total CD8+ T cells were 

“exhausted” by this definition. This is coherent with observations from murine models in 

which tissue-infiltrating CD8+ T cells are receiving chronic antigen stimulation that drives 

them to exhaustion130, but in contrast to single cell RNA sequencing data that has 

suggested that CD8+ T cells in the kidneys are infrequently exhausted.14 This 

discrepancy could be because of the differential dynamics in protein and RNA expression.  

From all of this we conclude that the “CD4-“ T cells observed in lupus nephritis are a 

diverse cohort, that include a subset of CD3+CD4- gamma-delta T cells. Further work will 

need to be done in order to identify which subset of these cells are associated with 

progression to renal failure.   

CD4+ T cell compartment 

We next wanted to understand the diversity of the CD4+ T cell compartment, with a 

particular focus on regulatory T cells and T follicular helper cells.  

Figure 6.2, continued. Gamma-delta T cells are a subset of CD4- T cells in 
lupus nephritis; A) distribution of CD3 in cell clusters identified in single cell 
RNA sequencing data from LuN kidney samples; B) Distribution of CD4/8A/8B 
expression. DP: double-positive, DN: double-negative; C) Distribution of NCAM1 
and KLRB1  expression in DP, DN, CD4 and CD8; D) expression of TRAC and 
TRDC in identified CD3+ cells; E) comparison of TRAC and TRDC expression 
in identified DN, CD8+, CD4+ and DP T cells; F) representative image of double 
negative (CD4-CD8-) gamma delta (TCRd+) cells in LuN biopsy, marked by 
white arrows; representative composite of CD4 negative clusters, red=CD4+ T 
cells, blue=CD8+ T cells, green=DN T cells  
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We specifically defined regulatory T cells (Tregs) as CD3+CD4+PD1-ICOS-FoxP3+. 

A surprisingly small percentage (5.41%) of CD4+ T cells were FoxP3 positive, and an 

even smaller percentage met the more stringent criteria of being PD1-ICOS-, reducing 

the percentage of identified Tregs to 2.46% (Fig 6.3B). In contrast, even fewer CD8+ T 

cells (1.3%) or DN T cells (0.88%) expressed FoxP3, which is in line with our expectation 

that the majority of FoxP3+ regulatory T cells are CD4+ (Fig 6.3A,C). This finding 

indicates that very few of the tissue-infiltrating CD4+ T cells in lupus nephritis are Tregs, 

suggesting that the presence of CD4+ T cells are most often driving pathology rather than 

inhibiting it.   

We additionally identified T follicular helper-like (Tfh) cells based on the expression of 

PD1 and ICOS.  The most stringent definition for these cells using our set of markers 

would be PD1+ICOS+FoxP3- CD4+ T cells, which made up 5.05% of the CD4+ T cell 

compartment. If we use a less stringent definition of PD1+ICOS+/-FoxP3-, this 

percentage goes up to roughly 30% of the CD4+ T cells. It should be noted that one could 

alternatively interpret PD1+ICOS-FoxP3- CD4+ T cells as exhausted. However, given 

that previous investigations have consistently associated PD1 expression with Tfh-like 

cells, we decided to use the less stringent definition to identify this cell subset in our 

data.14,38 (Fig 6.3B).  

Probing regional variation in T cell phenotype 

For the three specific T cell subsets that we were interested in (Tex, Treg, Tfh), we 

probed their potential interacting partners by identifying their nearest neighbors (the cell 

with the shortest centroid-centroid distance). Most Tregs are in fact closest to other Tregs, 

and other non-specific CD4+ T cells (Fig 6.3D). In contrast to the expectation that Tfh 
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would primarily be in close proximity with CD20+ B cells, Tfh by far had other CD4+ T 

cells as their most frequent neighbor, followed by other Tfh (Fig 6.3E). Exhausted CD8+ 

T cells were most frequently found near other exhausted CD8+ T cells, followed by CD4+ 

T cells and CD8+ T cells (Fig 6.3F). These observations lead to the hypothesis that there 

may be localized niches in which most of the CD8 T cells are exhausted.  
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Figure 6.3. Deeper phenotyping of T cells. Distribution of ICOS, PD1, and FoxP3 
expression in A) CD4+, B) CD8+ and C) DN T cells; Distribution of nearest 
neighbors of D) Tregs, E) Tfh, and F) Tex 
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Notably, 58.4% of CD4+ T cells, 64.7% of CD8+ T cells, and 84.4% of DN T cells (Fig 

6.3A-C) expressed none of these three secondary markers, which means that there is 

still substantial phenotypic heterogeneity that was not captured by this panel.   

4. Defining inflammatory aggregates in tissue 

As in the HR dataset, we wanted to define cellular neighborhoods. We again used 

Density Based Spatial Clustering of Applications with Noise (DBSCAN)147 to define these 

neighborhoods, such that every cell in a tissue sample was either assigned to a cellular 

cluster with a minimum cluster size of 2 or was defined as a singlet cell. A distance cutoff 

of 50 pixels was chosen because this is approximately 10 um at the resolution of this 

dataset, and therefore matches the distance cutoff used in the HR dataset. We identified 

a total of 13921 neighborhoods across the 18 samples. With this method we were able to 

capture large aggregates that could span multiple tiles, such that the largest aggregate 

that was captured had 273 cells in it (Fig 6.4A). In contrast, the largest aggregate 

captured in the high resolution dataset (which was restricted to a to ~1.2x104 µm2 of 

tissue), contained only 147 cells.  

We first examined the singlet population, which were 23% of the total segmented cells, 

to identify any cellular subsets that might not be included in dense cellular aggregates. 

However, the class breakdown of singlets was not different from the class breakdown of 

the cells overall (Fig 6.4B). This indicates that none of the cell subsets that we were 

probing were more likely than the rest to be found as singlets and excluded from large 

cellular clusters.  

Next, we looked at “doublets”, or neighborhoods that had exactly 2 cells in them. 

These constituted 46% of the total clusters, but only accounted for 20% of all of the 



 108 

segmented cells. Figure 6.4C shows the breakdown of cell classes that are present in 

the doublets, which is again similar to the overall breakdown of classes in the dataset. 

This again suggests that no particular cell subsets are found in these relatively isolated 

pairs at a higher rate than the others.  

We evaluated all of the possible combinations of class pairs and found that the most 

common pairs were CD4+/CD4+ (24.7%) and CD138+/CD138+ (17.7%). Only 2% of 

doublets were CD4+/CD20+, which suggests that most CD4 T cell-B cell interactions are 

not happening in isolated pairs of cells, but possibly in large neighborhoods (Fig 6.4D).   

 

 

 

 

 

Figure 6.4. Singlets and doublets are a substantial proportion of 
observed neighborhoods A) distribution of neighborhood size; B) 
breakdown of five classes amongst the singlets (cells that were not assigned 
to a neighborhood); C) breakdown of five classes amongst the doublets (cells 
assigned to neighborhoods with n=2 cells); D) heatmap of pairs of cell classes 
found in doublets 
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CD4- neighborhoods 

Given the apparent abundance of CD4- T cell enriched neighborhoods in the ESRD+ 

patients in the HR data, we investigated the CD4- compartment in the HMP data. In 

accordance with the HR data, we classified CD4- neighborhoods as those that had 1) 

25% of their cells as either CD8 T cells or DN T cells; 2) less than 20 cells. This numerical 

cutoff was chosen because neighborhoods larger than this were classified as “large” in 

the HR data. Fig 6.5A shows a representative image of several of these neighborhoods. 

A total of 60.2% of the cells in these neighborhoods are CD4-, with 26% DN T cells and 

34.2% CD8+ T cells (Fig 6.5B). There was a weak negative correlation (R=-0.35) 

between the number of DN T cells and CD8+ T cells in these neighborhoods, suggesting 

that DN and CD8+ T cells are not equally represented in a given neighborhood.  

B-CD4+ T clusters 
 

We next wanted to identify and characterize the analogous “large, lymphocyte-rich” 

neighborhoods in this dataset. In the high dimensional dataset, large B-T neighborhoods 

were defined by the set of criteria that captured most of the “large/mixed identity” 

neighborhoods in the high resolutions data: 1) a minimum of 20 cells, 2) both B cells and 

CD4+ T cells were represented in the neighborhood and 3) at least 50% of all cells were 

B cells or CD4+ T cells. 111 of >13,000 neighborhoods met these fairly stringent criteria 

(representative clusters in Fig 6.5C). Within these aggregates, 52.2% were CD4+ T cells, 

11.9% were CD20+ B cells, 11.7% were CD8+ T cells, 11.6% were DN T cells and 12.7% 

were CD138+ plasma cells (Fig 6.5D).  Tfh made up roughly 36% of CD4+ T cells in 

these B-T neighborhoods (Fig 6.5E). This represents a significantly larger percentage 

than non-B-T neighborhoods (p = 1.45x10-30) (Fig 6.5F). The nearest neighbors of B cells 
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in these neighborhoods were largely enriched for other B cells, Tfh cells, and non-Tfh 

CD4+ T cells (Fig 6.5G). Tfh cells in these neighborhoods were largely found with other 

Tfh cells and other unspecified CD4+ T cells (Fig 6.5H). Unassigned  CD4+ T cells in 

these aggregates were also most likely to be found near other CD4 T cells, followed by 

Tfh (Fig 6.5I).   

To relate this identified type of cluster to the HR dataset, we probed the “large/mixed 

identity” aggregates and found that 96.1% of these identified aggregates matched the 

profile of the B-T aggregates (more than 50% cells are CD4+ T cells and B cells, with at 

least one of each).   
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Figure 6.5 Figure caption continued on next page 
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Higher level organizations are apparent in inflamed biopsies  

Though this neighborhood analysis has provided some useful insights, It should also 

be noted that the manner in which we defined cellular clusters in both datasets was 

defined by the approximate size of a cell body and excluded longer-range interactions. 

We observed that defined clusters often existed within larger apparent aggregates of 

cells, suggesting that there are multiple scales on which cells might organize (Fig 6.6A). 

In order to get a sense of these higher order architectures (or “cities”), we approximated 

the minimum distance from each neighborhood to another neighborhood by drawing a 

bounding box around each neighborhood and calculating the distances between the 

centers of the neighborhood bounding boxes. The average distance between adjacent 

neighborhoods was roughly 158.5 pixels, or 35 um. Fig 6.6B shows that the distribution 

of minimum distances to the nearest neighborhood is heavily skewed towards short 

distances, suggesting that most defined neighborhoods exists within large inflammatory 

structures. An intriguing relationship emerged when we plotted the relationship between 

the number of cells in the neighborhoods and the distance to the nearest neighborhood, 

such that the largest neighborhoods typically were a short distance away from other 

cellular neighborhoods, while there were some small cellular neighborhoods that were 

Figure 6.5, continued. Identification of distinctive CD4- and B-T 
neighborhoods; A) representative composite of CD4-clusters, red=CD4+ T 
cells, blue=CD8+ T cells, green=DN T cells; B) breakdown of frequencies of the 
five base classes in CD4 negative neighborhoods; C) representative composite 
showing identified B-T aggregates (outlined by white boxes), green=DN, red 
=non-Tfh CD4+, yellow=Tfh; blue=CD8+, magenta =CD20+,cyan = CD138+; D) 
breakdown of frequencies of the five base classes in B-T neighborhoods; E) 
breakdown of CD4 T cell phenotypes in B-T neighborhoods; F) comparison of 
proportion of CD4+ T cells that are Tfh in identified B-T aggregates vs non B-T 
aggregates; nearest neighbors of G) CD20+ B cells, H) Tfh, and I) CD4+ T cells 
within B-T aggregates 
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very far away from the nearest neighborhood (Fig 6.6C). This hints at patterns of both 

dense and sparse inflammation in the tissue. Therefore, though we restricted our 

analyses to these short-range interactions, exploring these higher-level structures is an 

important next step.  

 

 

 

Figure 6.6. Higher orders of neighborhoods can be identified in the tissue. A) 
Representative image of neighborhood detection; inset: cells that are the same 
color and spatially close have been assigned to the same neighborhood; distances 
between neighborhoods were calculated based on the centers of the smallest 
bounding box that can be drawn around each neighborhood; B) distribution of the 
minimum distance in pixels of each neighborhood to another neighborhood; C) 
relationship between the number of cells in a neighborhood and the minimum 
distance to another neighborhood.  
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5. Comparing with the high resolution dataset—chronicity as a proxy 

Though we don’t have long-term outcomes data on the patients from the highly 

multiplexed dataset, we do have their tubulointerstitial chronicity scores. Tubulointerstitial 

chronicity roughly correlates with kidney failure, though it is an imperfect proxy. We 

probed the highly multiplexed dataset by splitting the patients by whether they had high 

(4 or greater) TI chronicity or low (less than 4). We found that the neighborhoods were 

larger in high-chronicity patients, both in terms of the average aggregate (5.07 cells in 

high chronicity vs 3.96 cells in low chronicity, p value = 1.2x10-13), and in terms of the 

overall distribution of aggregate sizes (p value by Kolmogorov-Smirnov test=1.9x10-9). 

 In addition to increased phenotypic information, we wanted to use this dataset to 

validate our findings from the high resolution dataset. Though we do not have long-term 

outcomes data from these patients, we do have information about their tubulointerstitial 

chronicity at the time of biopsy. This allows us to compare cellular density high/low 

chronicity patients in both dataset. The tissue area covered by a 512x512 tile in the highly 

multiplexed dataset at 0.221 um/pixel is roughly equivalent to the tissue area covered by 

a 1024x1024 tile in the high resolution dataset at 0.1058 um/pixel, allowing for 

comparisons of ROIs between the two datasets. If we further restrict the tiles that we 

examine in the highly multiplexed dataset to those that were positive for T cells, 

approximating the CD3 entry criterion used during imaging of the high resolution dataset, 

we can look at roughly equivalent sets of images. 

 In keeping with the findings from the high resolution dataset, the total cells per ROI 

were higher in the high chronicity patients than in the low chronicity patients (p value = 

6.87x10-133) (Fig 6.7A). Similarly, there were higher numbers of both CD4- (encompassed 
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by both CD8+ and DN) T cells and CD4+ T cells in the high chronicity patients (Fig 6.7B-

C). However, one finding that was not coherent between the two datasets was that in the 

highly multiplexed dataset there was also an enrichment for CD20+ B cells per ROI in the 

high chronicity patients, whereas the equivalent cohort in the high resolution dataset had 

fewer CD20+ B cells per ROI (Fig 6.7D). This discrepancy is possibly due to the low 

sample number (n=18) in the highly multiplexed dataset, or due to differences in how the 

data was collected (selective imaging of inflamed regions vs whole-biopsy capture). 

Further imaging experiments with a sufficiently large number of patients should be aimed 

towards resolving this apparent contradiction.  
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Figure 6.7. Relationship between TI chronicity and inflammation largely 
consistent between datasets. Comparison of per ROI TI chronicity analysis in HR 
and HMP datasets; A) total cells; B) DN and CD8+/CD3+CD4-; C) CD4+; D) CD20+  
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6. Relationship with MX1 

One question that was of interest for this dataset was the relationship between 

interferon signaling and cellular abundance. High interferon signatures in the urine and 

kidney tissue of patients have been identified in lupus nephritis patients, but studies 

around the pathogenic significance of this have produced mixed results, with some 

associating an interferon signature with responders to therapy35, and others associating 

it with non-responders80. Part of the discrepancy could be that little information exists 

about the tissue-level regional variation in interferon signaling within patients. We probed 

this by quantifying the expression of MX1 across the tissue. We found that there was 

substantial heterogeneity within samples, such that there were regions of high MX1 

signaling, and regions of low MX1 (Fig 6.8A). This suggests that there is local variation 

in the intensity of interferon response. It was therefore of interest to identify what features 

were correlated with increased MX1 expression.    

We then wanted to relate the regional abundance of MX1 to the overall presence of 

lymphocytes, and evaluated to what degree these cells co-localize with MX1 signal. The 

obvious hypothesis is that MX1 rich regions will have abundant lymphocytes, and vice 

versa. To our surprise, there was not a strong correlation between local lymphocyte 

abundance and MX1 signal. While there were certainly observable large aggregates with 

rich MX1 expression, there were also comparably large aggregates with almost no 

expression (Fig 6.8B). To quantify this, a bounding box was established around each 

identified cellular cluster, and the percentage of MX1+ pixels within this bounding box was 

evaluating for each cluster. Of the 356 large (n≥20) clusters identified in the dataset, only 

52 (15%) overlapped with regions that had 50% MX1 expression. In examining the 
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difference in cellular constituency between MX1 rich (>=50% MX1 expression) and MX1 

poor clusters (<50% MX1 expression), we found that there was no difference in overall 

cellular abundance within clusters, and there was a slight increase in CD4+ T cells in MX1 

poor clusters relative to MX1 rich clusters (p=0.015) (Fig 6.8B-C). Notably, there was no 

obvious enrichment for CD8+ T cells in MX1-rich regions, which is surprising given the 

previous association of these cells with interferon production in the kidneys.50 Thus, 

dense aggregates of lymphocytes do not perfectly correlate with regions of high interferon 

response.  

 

 
Figure 6.8 Figure caption continued on next page 
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Discussion  

 This work has allowed us to further characterize how inflammation is organized in 

the context of lupus nephritis. While the HR dataset gave us insight into the relationship 

between lymphocyte distribution and renal failure, the HMP dataset allowed us to delve 

more deeply into the phenotypes of these cells and examine their spatial features on the 

scale of a whole biopsy section, rather than a 1024x1024 pixel tile. This allowed us to 

validate some of the findings from the high resolution dataset around the relationship 

between high chronicity scores and lymphocyte abundance, though some discrepancies 

exist between the datasets.  

This dataset validated previous observations60,61,65 of double negative (CD4-CD8-) T 

cells in the biopsies of LuN patients.  Follow up analysis of single cell RNA sequencing 

datasets and additional imaging revealed that a subset of these cells that are gamma 

delta T cells. We have also quantified regulatory T cells, T follicular helper cells, and 

exhausted CD8+ T cells. Interestingly, we have observed that T cells of a similar 

phenotype were often found to be colocalized. This suggests that specific regions of 

tissue might be enriched for particular cell populations.  

Fig 6.8, continued. Relationship between MX1 and lymphocyte abundance. 
A) representative images showing lymphocyte abundance in MX1 rich and MX1 
poor regions; Neighborhood detection: segmented cells that are the same color 
and spatially close have been assigned to the same neighborhood; Raw data 
composite: Shows distribution of MX1 (green), CD3 (red) and CD20 (blue) marker 
in microscopy image; Segmented composite: shows distribution of MX1 (gray) 
relative to segmented cells (green=DN, red=CD4+, blue=CD8+, 
magenta=CD20+,cyan=CD138+);Distribution of the B) total numbers of cells and 
C) CD4+ T cells in high MX1 (>=50% of pixels MX1+) and low MX1 neighborhoods 
(<50% of pixels MX1+) 
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It is difficult to relate these values to the single cell RNA sequencing data14 that has 

been previously published as they do not provide frequency data, there seems to be a 

mismatch between these datasets, such that we are observing higher numbers of 

exhausted CD8+ T cells and fewer Tregs. This discrepancy could be because, by their 

own admission, their data is limited to the cells from which they obtained high quality 

data, and they are therefore not capturing all of the cells in their representative 

quantities.      

We have defined cellular neighborhoods in tissue, and characterized them in terms 

of their size, constituency, and proximity to each other. This led to the observation that 

many dense cellular neighborhoods exist in close proximity to other cellular 

neighborhoods, while smaller neighborhoods are often more sparsely distributed. 

Amongst these neighborhoods are a subset of large CD20+ B cell, CD4+ T cell rich 

neighborhoods that are enriched for T follicular helper cells, and a subset of small 

neighborhoods that are enriched for CD8+ and DN T cells. Finally, we have made the 

surprising observation that dense neighborhoods of lymphocytes are not always found 

in regions of high MX1 expression. This suggests that there is variation within these 

dense neighborhoods such that some are type I interferon-rich, while others are 

relatively interferon poor. 

All of these findings together demonstrate that there is substantial heterogeneity in 

how lymphocytes are distributed in inflamed tissue, and that highly multiplexed whole-

section imaging enables us to probe this heterogeneity. We have developed useful tools 

for translating visually observable clustering behavior into quantifiable metrics. The next 
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step is to collect a dataset that has more patients with outcomes data so that we can 

use these metrics to identify predictors of renal failure.    
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Chapter 7: Developing generalizable networks—Case studies with the U-net 
architecture 

 
The work described in this chapter was done in collaboration with several people -- 

Dr. Junting Ai and Margaret Veselits acquired the lupus data and assisted with pre-

processing, and Jordan Fuhrman provided the initial code and advice about U-Nets 

1. Introduction 
 
We have used the Mask R-CNN104 architecture throughout the body of this work, 

and it has been an effective method of segmenting cells in tissue. However, the Mask 

R-CNN architecture is very large and computationally expensive, taking on the scale of 

days to train. As we were developing the methods for the HMP dataset, it became clear 

that several networks would be necessary to cover all of the classes of interest, and 

training numerous instances of Mask R-CNN for multiple cellular classes seemed like 

an inefficient approach. Therefore, we sought out alternative methods of segmentation 

to accomplish this task with less overhead.  

Towards this end, we chose the U-Net architecture, first described by Ronneberger et 

al.98,99 Compared to the Mask R-CNN, the U-Net is much less complex, requiring less 

than an hour to train. The use of U-Nets for similar tasks is well-established. In particular, 

they have been used for nuclear segmentation of fluorescently labeled cultured cells to 

great effect148,149. In addition, they have been used to segment structures in hematoxylin 

& eosin-stained and fluorescently labeled slides of paraffin-embedded human tissue.150–

152 One important caveat is that the U-Net architecture is typically used for semantic 

segmentation tasks, while our need was for robust object-level segmentations. To bridge 

this gap, we used standard contour-finding algorithms to identify individual objects in the 

binary U-Net output.  
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As described previously, training a network for every single marker in our dataset was 

not feasible. Simply finding and generating ground truth from enough examples for every 

marker is not tractable, particularly for rare markers. I therefore spent some time 

developing a workflow in which we used U-Nets to perform semantic segmentation of T 

cells in human tissue on the basis of multiple markers (nuclear signal and CD3, and 

another T cell marker), and then defined discrete objects through mask contouring.  

I evaluated the extent to which a network trained for a single cell type in one pathology 

and tissue context can generalize to different cell classes, and how the training set make 

up can affect generalizability. I also evaluated how well networks trained on one pathology 

could generalize to perform the same task in a different pathology (TNBC), and to what 

extent finetuning could be used to improve performance. Though we did not ultimately 

use the U-Net architecture, this work helped us develop the strategies that we ultimately 

implemented with the Mask-RCNN. This chapter is an adaptation of work that was 

submitted to two different conferences—Photonics West 2021, and Medical Imaging 

2021.153,154  

2. Methods 
 

We specifically tested U-Net applicability on T cell markers from the HMP dataset. The 

data and ground truth was acquired as previously described in Chapter 5.  The ground 

truth was converted to binary masks for use with the U-Net architecture. Image stacks 

were 512 pixels x 512 pixels x 3 channels, with those channels corresponding to CD3, T 

cell marker, and DAPI (Figure 7.1A). For examinations of the efficacy of fine-tuning, the 

later network layers were frozen, and the early layers were trained on two additional 
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datasets: 1) CD3/CD8/DAPI images of LuN biopsies, and 2) CD3/CD4/DAPI images of 

TNBC biopsies (Figure 7.1B).  

 

 

Networks were trained with 5-fold cross validation on a single GPU compute node. 

Object-level network performance was evaluated by predicting on 10-image test sets, 

performing region proposals on the binary masks (Figure 7.2), and then evaluating the 

object-level precision and recall. The values reported here are the average of the 5-fold 

networks.  

Figure 7.1. Schematic of U-Net training scheme. A) diagram of U-Net with examples 
of the training inputs and binary outputs; B) schematic of fine-tuning procedure in which 
contracting layers are re-trained while expansive layers are frozen 
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3. Generalizing across multiple T cell markers – proto-T cell network 
 
The first question we wanted to answer was how best to segment all of the T cell 

subsets that we were interested in. Specifically, would varying the content of the training 

sets make the network more generalizable to other markers, or would biasing towards 

very clear markers (such as CD4) lead to better overall performance? 

To evaluate this, we tested three 90-image training sets (Table 7.1)—one that was 

completely made up of CD3/CD4/DAPI stacks, one that was split evenly between CD4 

and CD8, and one that was split between CD4, CD8, and ICOS. Though all of these 

markers are surface markers for T cells, they do not have exactly the same staining 

pattern, with ICOS being a little more ambiguous than the other two.     

Network Training set classes # images per class 
1 CD4 90 
2 CD4/CD8 45 
3 CD4/CD8/ICOS 30 

 

Figure 7.2. Representative region proposals on U-Net output. The 
skimage.measure function “find_contours” was applied to the binary output of 
the U-Net to define discrete objects. 

Table 7.1 Description of the three 90-image training sets used to evaluate the 
effect of training set diversity 
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Network (1) was trained only on CD3+CD4+ T cells. After several rounds of 

hyperparameter tuning, the best object-level performance metrics on a test set of 10 

CD4 images were a precision of 0.855 and recall of 0.607, when averaged across the 

five folds of the network. Figure 7.3 shows an example of the network output on 

CD3+CD4+ T cells in LuN  

 

 

The precision and recall of this network on CD8 and ICOS stacks were substantially 

worse. In contrast, precision was improved for CD8 and ICOS by increasing the 

diversity of images in the dataset; precision for CD4 went down as the training set 

diversified, but by less than the improvement in the other classes (Table 7.2). This 

suggests that training on more general datasets might produce more generalizable 

networks that might be worth the tradeoff for performance on individual classes. This 

idea was ultimately carried forward in what became the Mask-RCNN T cell network.  

 

 

Figure 7.3. Representative CD3CD4 LuN segmentation. Input: 3-channel RGB 
from test set where R=CD3, G=CD4, B=DAPI; Manual: ground truth binary mask; Auto: 
binarized predictions with a threshold of 0.3; Comparison: white=true positives, 
green=false positives, red=false negatives, cyan= false positive near true positive 
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Training set  CD4 CD8 ICOS 
Precision 

CD4 0.855 0.689 0.539 
CD4/CD8 0.83 0.715 0.587 
CD4/CD8/ICOS 0.817 0.755 0.659 
  Recall 
CD4 0.607 0.413 0.347 
CD4/CD8 0.6 0.515 0.367 
CD4/CD8/ICOS 0.573 0.468 0.363 

 
 
 

4.  Fine-tuning for generalizability  

While diverse training sets is one way to improve network generalizability, fine-tuning 

is another approach one might take to make the most of the availability training data. 

Rather than one round of training that contains all of the classes that you are interested 

in, fine-tuning is a procedure by which a network is first trained on one task, and then re-

trained to perform a similar task. The reason to use this approach is if the new task is 

sufficiently different from the original that a training set that contains both types of images 

would be too ambiguous for the network to be adequately trained.    

For this work, I used the network trained only on CD4 (Network 1) as the “base model”.  

In order to test how well this base model generalized, it was used to segment test sets of 

CD3+CD8+ T cells from lupus nephritis, and CD3+CD4+ T cells from TNBC. In the case 

of CD4+ T cells in TNBC (CD3CD4 TNBC), the question was how well the network could 

generalize to a different tissue context, and a different set of fluorophores, but the same 

surface markers. The average performance on these test sets is described in Table 7.3. 

Table 7.2 Network performance from the three training sets on test sets of 
CD4, CD8 and ICOS images  
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Test Set Precision Recall 
CD3/CD4 LN 0.855 0.607 
CD3/CD8 LN 0.689 0.413 

CD3/CD4 TNBC 0.704 0.250 
 

 
As expected, there was a decrease in performance on tasks that were different from 

the training set. In particular, the sensitivity suffered from a change in disease/tissue 

context. There are several factors that might account for differences in performance 

between disease states. One is differential tissue autofluorescence. Figure 7.4 

demonstrates how the same primary antibodies can produce very different signal to noise 

ratio, depending on the fluorophore used in the secondary antibody, and on the non-

specific uptake of the antibody by the tissue.   

 

   

 
With this as a baseline, I investigated the effect of fine-tuning on network performance. 

Network (1) was used as a base model, such that the expansive path was frozen, and the 

earlier contracting layers were re-trained with a set of 50 additional images from each 

Figure 7.4. Tissue Autofluorescence in LuN vs. TNBC. Representative tissue 
autofluorescence at the utilized laser lines in the tissue types; the 488 laser line typically 
produces higher levels of autofluorescence, such that markers imaged on that laser line 
will have a lower signal-to-noise ratio. 

Table 7.3 Network (1) performance on CD4 LuN, CD8 LuN and CD4 TNBC test 
sets  



 129 

dataset (Table 7.4). This approach was chosen based on the findings of Amiri et al155, 

which suggested that this was the ideal way to fine-tune the U-Net architecture. This 

moderately improved object level recall, while having negligible impact on precision 

(Table 7.5). The number of false positives decreased overall, and the networks were able 

to better separate adjacent cells. Figures 7.5 and 7.6 demonstrate the difference in 

performance before and after fine-tuning.  

Network Trained on 
1 CD3+CD4+ LuN, n=90 
4 CD3+CD4+ LuN, n=90 

Fine-tuned with CD3+CD8+ LuN, n=50 
5 CD3+CD4+ LuN, n=90 

Fine-tuned with CD3+CD4+ TNBC, n=50 
 

 

Network Test set Precision Recall 
(4) Fine-tuned on CD8 CD3/CD8 LuN 0.7 0.545 
(5) Fine-tuned on 
TNBC 

CD3/CD4 
TNBC 0.721 0.335 

 
 

              
      
 
 
 
 

Figure 7.5. Representative CD3CD8 LN segmentation. Input: 3-channel RGB 
from test set where R=CD3, G=CD8, B=DAPI; Before fine-tuning: performance of 
Network 1 on CD8 test set image; After fine-tuning: performance of fine-tuned 
network on the same image; white=true positives, green=false positives, red=false 
negatives, cyan= false positive near true positive 

Table 7.4 Training scheme for U-Net finetuning 

Table 7.5 Network (4) and (5) performance metrics 
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5. Discussion 

The first conclusion that we came to from these studies was that though U-Nets can 

be applied for similar tasks, segmenting specific cell classes on the basis of 3 different 

fluorescent markers is not an ideal use-case for them. In particular, this approach suffers 

from poor sensitivity, which is a problem for segmenting and accurately quantifying 

relatively rare cellular subsets. In examining the way in which the U-Net architecture fails 

at this task, there seem to be two major issues. First, cells that are touching are identified 

as a single object, which diminishes recall. Second, there are abundant false positives, 

which diminishes precision. The takeaway from this was the useful insight that the level 

of performance that the Mask R-CNN produces justifies how resource intensive it is, as 

the simpler, less expensive method was genuinely inferior.  

However, the time spent investigating U-Nets for this purpose was not wasted. We 

were able to validate the approach of training a general 3-channel “T cell” classifier, which 

we ultimately used. Furthermore, we were able to observe that fine-tuning has the 

Figure 7.6. Representative CD3CD4 TNBC segmentation. Input: 3-channel RGB 
from test set where R=CD3, G=CD4, B=DAPI; Before fine-tuning: performance of 
Network 1 on TNBC test set image; After fine-tuning: performance of fine-tuned 
network on the same image; white=true positives, green=false positives, red=false 
negatives, cyan= false positive near true positive 
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potential to allow us to generalize across pathologies, which would be a powerful tool for 

future studies. It took a substantial amount of time and effort to develop the methods for 

segmenting the highly multiplexed lupus nephritis dataset, and we have barely started on 

the analogous TNBC dataset that was collected. Being able to use the tools developed in 

lupus as a starting point for the TNBC data opens up the possibility that we will be able 

to analyze that second dataset with much less additional effort. Developing tools and 

techniques to robustly and efficiently analyze new datasets, rather than starting from 

scratch with each experiment, dramatically increases the tractability of quantitative image 

analysis. 
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Chapter 8: Quantifying the effects of biopsy fixation and staining panel design on 
automatic instance segmentation of immune cells in human lupus nephritis 
 
The work described in this chapter was done in collaboration with several people -- 

Dr. Junting Ai acquired the data and Dr. Madeleine Durkee led the development of the 

automated cellular segmentation method. 

1. Introduction 

Method generalizability is an important consideration when developing machine 

learning methods for image analysis. As the preceding chapters highlight, several aspects 

of data acquisition can impact how easy it is to apply machine learning to a particular 

task. Because clinical samples are precious and data collection is resource intensive, it 

is vital to optimize data collection for the chosen analytical method. Specifically, it is 

important to understand how technical choices regarding sample preparation might 

influence the quality of data used in automated cell detection algorithms. Here I will 

describe work that addresses these types of questions, adapted from our paper 

“Quantifying the effects of biopsy fixation and staining panel design on automatic instance 

segmentation of immune cells in human lupus nephritis”, which was published in the 

Journal of Biomedical Optics in January 2021.123  

     There are two major considerations that we chose to address. First, does the method 

of sample preparation influence the detection of cellular morphology? Previous work from 

our group72 was performed on fresh-frozen samples. These are relatively expensive to 

store, and far less widely available than formalin-fixed, paraffin embedded (FFPE) tissue. 

Extending this technique to FFPE samples would greatly increase the dataset of samples 

that are available. However, it is well-established that formalin fixation can lead to gross 

tissue shrinkage156–158, which could lead to distortions in any findings around cell shape, 
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size, and distance to other cell types. In this work, we sought to understand whether these 

deformations cause differences in cell shape and intercellular distances. Given no 

statistical difference between these two groups, it would be appropriate to group fresh 

frozen biopsies and FFPE biopsies for analysis of cellular features, which would increase 

the availability of datasets. For this reason, we evaluated performance of independently-

trained Mask R-CNN networks in the task of multi-class instance segmentation of cells in 

FFPE tissue samples relative to fresh frozen.  

     Second, we wanted to address the number of stains that are required to identify a cell 

type. Our previous work utilized two markers to identify each type of dendritic cell. To a 

human observer, using multiple markers to identify a cellular class results in better 

discrimination of cell classes. In manual analysis of cells, this approach helps to identify 

true positives because tissue autofluorescence, stain quality, spectral bleed-through, and 

non-specific antibody binding can result in ambiguous signal. However, due to the 

limitation in the number of fluorophores that can be resolved in one imaging session, the 

choice to use multiple markers per cell type necessarily means that fewer cell types can 

be investigated in a given panel. This is essentially a tradeoff between robustness and 

breadth, which has been discussed at length in earlier chapters. Here we investigate 

whether single markers can be used in a computer vision task to identify and segment 

cell types with high fidelity, which would allow us expand the set of cell types we examine 

with a single imaging session.   

     For these two purposes, we collected 3 datasets from kidney biopsies of lupus 

nephritis patients: 1) fresh frozen, stained with two markers per antigen presenting cell 

(APC), 2) FFPE, stained with two markers per APC, and 3) FFPE, stained with one marker 
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per APC. It should be noted that this third dataset is the HR dataset that was analyzed in 

depth in Chapters 2-3. These findings will allow us to optimize future data collection 

efforts for the application of computer vision, which will enable rigorous quantification of 

immune cell subsets in tissue. 

2. Methods 
 

Data acquisition 

 For staining of fresh frozen sections, the sections were removed from -80°C, 

washed with PBS, blocked with serum and followed by antibody staining. Two distinct 

antibody panels were utilized to stain the tissue sections; for pDC analysis – CD3 (Alexa 

Flour 546), CD4 (Alexa Flour 594), BDCA2 (Alexa Flour 488), and CD123 (Alexa Flour 

647); mDC analysis – CD3 (Alexa Flour488), BDCA1 (Alexa Flour546), CD4 (Alexa 

Flour594), and CD11c (Alexa Flour647). DAPI was used with the above to visualize 

tissue nuclei. Fresh frozen tonsil sections served as controls.  

For staining of FFPE sections, the sections were de-paraffinized, treated with citric 

acid buffer (pH6.0) for antigen retrieval, then blocked and stained with the same process 

of fresh frozen samples. Double staining on FFPE was done with the same fluorophores 

as fresh frozen. Single staining was done with CD20 (Alexa Flour 488), CD3 (Alexa 

Flour546), BDCA2 (Alexa Flour594), CD4 (Alexa Flour647), and CD11c (Alexa Flour700). 

FFPE tonsil sections served as controls.  

Lupus nephritis datasets 

Three separate LuN datasets were used in this study to compare two tissue fixation 

methods (fresh frozen and FFPE) and two staining panels (Table 8.1). The first dataset 

(fresh frozen-DS) was composed of images of fresh frozen LuN biopsies, imaged on a 
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Leica SP5 laser scanning confocal microscope at 63x magnification. Resulting images 

were 1024 x 1024 pixels with a 0.1413 µm pixel size (Table 8.1). The samples in this 

dataset were stained with staining panel 1 (Table 8.2), using two markers per APC. As a 

result, a given sample was only stained for two T cell populations and one APC 

population, either myeloid dendritic cells (mDCs) or plasmacytoid dendritic cells (pDCs), 

and each image consisted of 3 cell classes: CD3+CD4+ T cells, CD3+CD4- T cells, and 

one type of dendritic cell (Fig 8.1).  

 

 

 

 

 T cell 
markers 

mDC 
markers pDC markers B cell 

markers 
Nuclear 
marker Other 

Panel 1 
(DS) 

CD3, 
CD4 

CD11c, 
BDCA1 

BDCA2, 
CD123 -- DAPI DIC 

Panel 2 
(SS) 

CD3, 
CD4 CD11c BDCA2 CD20 DAPI -- 

 Fixation 
method 

Staining 
panel Microscope Pixel size 

(µm) 

Fresh Frozen-
DS Fresh Frozen Panel 1 Leica SP5 0.1337-

0.1413 

FFPE-DS FFPE Panel 1 Leica SP8 0.1058 

FFPE-SS FFPE Panel 2 Leica SP8 0.1058 

Table 8.1 Defining descriptors of the three datasets used to assess 
DCNN performance on fixation methods and staining panels. 

Table 8.2 Two staining panels were used to compare DCNN 
performance on single marker to dual-marker identification of APCs. 
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FFPE-DS and FFPE-SS datasets were composed of images of formalin-fixed paraffin-

embedded (FFPE) samples, imaged on a Leica SP8 laser scanning confocal microscope 

Figure 8.1. Example image from the fresh frozen-DS dataset. A single APC 
population (mDCs) is probed with two markers. This example shows a mDC 
image, but pDC images are also in this dataset, with the markers listed in Table 
2. T cells are stained for CD3 and CD4, and DAPI is used to identify cell nuclei. 
All channels are merged in the rightmost panel, with colors corresponding to the 
above label. 
 

Figure 8.2. Example image from the FFPE-DS dataset. A single APC 
population (pDCs) is probed with two markers. This example shows a pDC 
image, but mDC images are also in this dataset, with the markers listed in Table 
2. T cells are stained for CD3 and CD4, and DAPI is used to identify cell nuclei. 
All channels are merged in the rightmost panel, with colors corresponding to the 
above label. 
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at 63x magnification. The images remained 1024 x 1024 pixels; however, given the 

different imaging system, the resulting pixel size for these two datasets is 0.1058 µm. The 

FFPE-DS dataset was also stained with panel 1, with 3 cell classes per image (Fig 8.2). 

The FFPE-SS dataset was stained with a single marker per APC class. In addition to 

staining for both pDCs and mDCs in one panel, B cells were also probed in this dataset, 

resulting in 5 cell classes: 2 T cell populations and 3 APC populations (Fig 8.3). The 

FFPE-SS dataset lacks a differential interference contrast (DIC) channel in order to 

accommodate an additional cell surface marker while maintaining a constant channel 

depth. Conservation of channel depth was desirable for this study because keeping this 

variable consistent preserves the number of trainable parameters in the network. In the 

DS datasets, the DIC channel was intended to aid in the segmentation of cells, as it mainly 

contributes cell edge information. Preliminary analysis of the FFPE-SS dataset 

determined that the pixel-level segmentation was not adversely affected by eliminating 

this channel. Resulting image stacks were 1024 pixels x 1024 pixels x 6 channels, with 

each channel associated with a single marker. Table 8.2 summarizes the key differences 

in the three datasets. 

 Figure 8.3 Figure caption continued on next page. 
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Manual segmentation of images for ground truth  

For all datasets, a subset of images from each biopsy was selected on which to 

generate manual truth. All manual segmentations and cell classifications were done in 

Fiji/ImageJ, as described in Chapter 3.  

Generation of training sets 

Manually segmented images were split into training, validation, and test sets at a 

90/5/5 ratio (Table 8.3). Validation and test sets were small at the image level, but still 

contained over 300 cells each, and network performance is measured at the cell level. 

The FFPE-DS dataset had a smaller ground truth set due to the large number of cells per 

image in that dataset. The FFPE-SS manual dataset contained more images with a 

relatively high density of cells. The large number of manually segmented cells in the 

FFPE-SS manual truth set caused a 90% training set to exceed our GPU memory 

capabilities (4 nVidia K80 GPUs with 12 GB memory each). The ground truth for this 

dataset was therefore split into training/validation/testing sets at an 85/7.5/7.5 ratio. 

Images from a given biopsy were randomly divided up between the training/validation/test 

sets. This means that, while there were unique sets of images in the 

training/validation/test sets, images from the same biopsy could be in more than one of 

these subsets. This was done intentionally for this study to ensure that differences in 

performance between the separately trained instances of Mask R-CNN were due to the 

staining panel or fixation method, and not differences between patients in the training and 

testing sets. 

Figure 8.3, continued. Example image from the FFPE-SS dataset. Three 
APC populations (mDCs, pDCs, and B cells) are probed with a single marker 
each. T cells are stained for CD3 and CD4, and DAPI is used to identify cell 
nuclei. All channels are merged in the rightmost panel, with colors 
corresponding to the above label. 
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 Total cells in 
manual set 

Total 
images in 

manual set 
Images in 

training set 
Images in 
validation 

set 
Images in 
test set 

Fresh 
Frozen-DS 5166 240 168 [90%] 12 [5%] 12 [5%] 

FFPE-DS 7145 160 143 [90%] 8[5%] 8 [5%] 

FFPE-SS 10611 342 293 [85%] 26 [7.5%] 26 [7.5%] 
 
 
Network architecture and training 

Three separate instances of a Mask R-CNN architecture104 were trained to conduct 

instance segmentation on each of the three datasets, as described in Chapter 3. 

Hyperparameters were tuned to optimize accuracy on multiple class sets. The networks 

were trained with a learning rate of 0.01 using stochastic gradient descent with 

momentum. Cells in dense regions were detected with higher accuracy by reducing 

hyperparameter of the RPN section of the network, anchor stride length. Training was 

stopped once the mean average recall for all cell classes stopped increasing. Cells that 

were predicted with at least 0.3 probability were kept for analysis. All of this work was 

done using the Midway2 compute nodes at the University of Chicago Research 

Computing Center.  

Evaluation of network performance 

For this study Mask R-CNN performance was measured by calculating sensitivity, 

specificity, and Jaccard index, also known as intersection over union (IOU), for a test set. 

The manual segmentations provided ground truth at the cell level. A cell prediction was 

Table 8.3 Training, validation, and test set splits for the manual segmentations 
in all datasets. 
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considered a true positive if it had an IOU of at least 0.25 with a manual segmentation of 

a cell of the same class. Sensitivity and specificity for cell detection and classification 

were calculated at the cell class level. In addition, IOUs were calculated on a per cell 

basis and averaged across all cells within a given cell class. Sensitivity, specificity, and 

IOU were averaged across all cells to provide overall performance metrics for the 

networks. 

Cell shape and distance metrics 

After analyzing the detection and segmentation performance of each network on the 

corresponding test sets, each network was used to predict cell types in larger sets of 

unlabeled images. Population ratios of each cell type were calculated for each unlabeled 

dataset and compared to the corresponding ratios in the ground truth dataset. After 

analyzing the performance of the three trained networks, each network was used to 

predict cell types in unlabeled images. Cell size, shape and distance features, specifically 

cell area, cell perimeter, and T cell minimum distance to an DC were calculated for each 

cell detected by the networks. These shape features were compared across datasets to 

determine whether the tissue preparation method, stain specificity, or network 

performance affected cellular features.  

3. Network performance on test sets 

Mask R-CNN architectures were trained for each of the three separate datasets. Both 

instances of Mask R-CNN trained on the fresh frozen-DS and FFPE-DS datasets met the 

stopping criteria at 16k epochs. Performance metrics on test sets for these two datasets 

are detailed in Table 8.4. It is important to note that while DC sensitivity is high, we do 

not necessarily expect to detect every DC in an unlabeled dataset. These test sets are 
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relatively small at the image level, and DCs are the least prevalent populations, but there 

are still over 50 DCs in each test set. Each network trained on a double-stain dataset 

detected all DCs in the corresponding test set, regardless of sample fixation method. 

 

   The instance of Mask R-CNN trained on the FFPE-SS dataset required longer training 

time (18k epochs), and network sensitivity was poor for mDCs and marginal for pDCs 

(Table 8.5). The poor performance on DCs may be due to the fact that they are more 

amorphous than lymphocytes like T cells and B cells, which have relatively little cytoplasm 

and therefore have surface stains that coincide with their nuclei.  In contrast, dendritic 

 CD3+CD4+ 
T cells 

CD3+CD4- 
T cells 

DCs All (avg) 

Sensitivity         

Fresh Frozen-
DS 0.77 0.85 1.0 0.87 

FFPE-DS 0.89 0.84 1.0 0.91 

Specificity         

Fresh Frozen-
DS 0.82 0.84 0.80 0.82 

FFPE-DS 0.84 0.83 0.96 0.88 

IOU         

Fresh Frozen-
DS 0.79 ± 0.21 0.75 ± 0.24 0.83 ± 0.19 0.80 ± 0.21 

FFPE-DS 0.77 ± 0.22 0.80 ± 0.19 0.86 ± 0.15 0.79 ± 0.20 

Table 8.4 A network was trained and tested on each dataset as described in 
Tables 1-3. Sensitivity, specificity, and Jaccard index (IOU) are shown for the test 
sets corresponding to the two networks trained on the double-stain datasets.  
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cells have long extensions from their cell bodies called dendrites159, which can reach in 

and out of the image plane, producing positive signal where there may not be a nucleus 

to assign it to. Therefore, assigning ground truth to these cells is inherently harder. In the 

fresh frozen-DS and FFPE-DS datasets, DCs are identified with two markers, while in the 

FFPE-SS dataset, each DC population is identified with a single marker. With this dataset 

we tested the hypothesis that using multiple stains to identify DCs bolsters performance, 

and that using only one marker would impose a cost. The decline of network performance 

on these cells is likely due to a combination of low signal to noise ratio, variable cell shape, 

and ambiguous ground truth. 

 

 CD3+CD4+ 
T cells 

CD3+CD4- 
T cells 

mDCs pDCs B cells All cells 
(avg) 

Sensitivity       

FFPE-SS 0.90 0.85 0.38 0.69 0.75 0.72 

Specificity       

FFPE-SS 0.86 0.89 0.97 0.95 0.91 0.92 

IOU       

FFPE-SS 0.81 ± 0.17 0.82 ± 0.18 0.63 ± 0.21 0.74 ± 0.20 0.75 ± 0.21 0.78 ± 0.19 

     The three trained networks described above were used to generate cell predictions on 

larger unlabeled datasets. Table 8.6 describes the manual and automatic segmentations 

for each of the three datasets. Each trained instance of Mask R-CNN was used to 

generate cell predictions on all images in its corresponding dataset, which included 

unlabeled versions of all images that had been manually segmented and images that 

Table 8.5 A network was trained on the FFPE-SS dataset. Sensitivity, 
specificity, and Jaccard index (IOU) are shown for the FFPE-SS test set. 
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were never manually segmented by an expert. The average number of cells per image is 

similar between the manual segmentations and automatic predictions for each dataset. 

Assuming patients in these larger datasets have similar prevalence of each cell type, the 

manual and automatic segmentation sets should maintain similar ratios of cell types 

across cell types. Cell types with lower sensitivity values in tables 4-5 are expected to 

have lower prevalence in the automatic sets compared to the manual counterparts, while 

cell types with lower specificity are expected to have an increased prevalence in the 

automatic sets. Absolute numbers and relative amounts of each cell type are listed in 

Table 8.6 for both manual segmentations and automatic predictions for all three datasets. 

 

Manual 
Total 
cells 

[images] 
Average 

cells/ image 
CD3+CD4
+ T cells 

[%] 

CD3+CD
4-  T 

cells [%] 
mDCs 

[%] 
pDCs 
[%] 

B 
cells  
[%] 

Fresh 
Frozen-
DS 

5166  
[240] 21.5 2688    

[52.03] 
1161 

[22.48] 
292 

[5.65] 
1025 

[19.84] N/A 

FFPE-
DS 

7145  
[160] 44.7 4104     

[57.44] 
2041 

[28.57] 
483 

[6.76] 
517 

[7.23] N/A 

FFPE-
SS 

10611 
[342] 31.0 3714     

[35.00] 
2846 

[26.82] 
768 

[7.24] 
847 

[7.98] 
2436 

[22.96] 

Automatic  
     

Fresh 
Frozen-
DS 

16666 
[673] 24.8 8216    

[49.30] 
4047 

[24.28] 
2160 

[12.96] 
2243 

[13.46] N/A 

FFPE-
DS 

16396 
[380] 43.1 8351    

[50.93] 
5340 

[32.57] 
1186 
[7.23] 

1519 
[9.27] N/A 

 

Table 8.6 Cell counts for manual segmentations and automatic predictions in 
all datasets. 
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4. Fixation method affects cell shape and network performance  

It is widely documented that the processes of fresh freezing and formalin fixation 

cause different deformations to tissue. Formalin fixation will dehydrate the tissue, causing 

a contraction156–158. Fig 8.4A-C shows that this phenomenon is consistent across all cell 

types. T cells and mDCs show a markedly reduced area in FFPE samples compared to 

their fresh frozen counterparts (Fig 8.4A-B). However, while pDCs are also much smaller 

in FFPE than fresh frozen samples, the change in area is less than that of T cells and 

mDCs (Fig 8.4C). In FFPE samples, pDCs showed a 31.4% reduction in mean area 

compared to 54.8% and 55.5% reductions in the mean area of mDCs and T cells, 

respectively. Similarly, a contraction of cellular perimeter was observed for all classes 

(Fig 8.4D-F). This shrinkage is not only found at the cellular scale but remains consistent 

at the tissue level. Fig 8.4G shows the distribution of minimum distances of T cells to the 

nearest DC. T cells in FFPE samples show shorter distances to DCs than in fresh frozen 

samples (p <<< 0.0001). The fixation method therefore influences not only measurements 

of cell size and shape, but of spatial relationships between cells.   Both networks 

exhibited high confidence in the classifications, as measured by the distribution of 

probabilities assigned by the network, with the FFPE-DS network showing increased 

FFPE-
SS 

38594 
[1332] 29.0 11126  

[28.82] 
14962 
[38.76] 

2573 
[6.66] 

2436 
[6.31] 

7506 
[19.45] 

Table 8.6 Cell counts for manual segmentations and automatic predictions in 
all datasets, continued 
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prediction probabilities relative to the fresh frozen-DS network (Fig 8.4H).     

 

 

Figure 8.4. Various distributions of area, perimeter, minimum distance to DC, 
and automatic prediction for the fresh frozen and FFPE fixations. Shape and 
distance differences exist between cells of the same population when different fixation 
methods are used. A-C) Areas of T cells (A), mDCs (B), and pDCs (C) are significantly 
smaller in FFPE samples than fresh frozen samples. D-F) Likewise, perimeters of T 
cells (D), mDCs (E), and pDCs (F) are significantly smaller in FFPE samples than 
fresh frozen samples. G) Minimum distances between T cells and the nearest DC are 
significantly smaller in FFPE than fresh frozen samples. H) Both networks show high 
confidence in the automatic predictions, although the FFPE probabilities are 
significantly higher. For all plots, a Kolmogorov-Smirnov test shows a statistical 
difference between the fresh frozen and FFPE distributions (p <<< 0.0001). 
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5. Effect of staining panel on cellular quantification 
 

Separate staining panels were used on the two FFPE datasets to test the feasibility of 

using a single marker to identify APC populations. This would allow us to analyze a more 

diverse set of cells in a given biopsy, overcoming the technical limitations of antibody 

species and available microscope laser lines. For example, the FFPE-DS dataset can 

probe a single APC population—either mDCs or pDCs—in a given image, while the 

FFPE-SS dataset probes three APC populations—B cells, mDCs, and pDCs—in single 

image. The use of the single-stain system compared to the double-stain system 

diminished the accuracy of the network for DC populations (Fig 8.5). Compared to the 

network trained on a panel with double-stained DCs, the network trained on the panel 

with single-stained DCs yielded worse confidence overall in cell detection and 

classification, as shown by the distribution of probability scores for the DC classes (Fig 

8.5A-C). This is consistent across all cell types, but particularly noticeable in mDCs (Fig 

8.5C), which corresponds with the poor sensitivity to mDCs with the network trained on 

the FFPE-SS dataset (Table 8.5). Furthermore, neither mDC nor pDC area remains 

consistent (Fig 8.5E-F), suggesting that the decrease in sensitivity to these cells skews 

the distribution of cell features. 
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6. Discussion 
 
The purpose of this work was to investigate how various aspects of data acquisition 

could influence downstream computer vision applications. In particular, we were 

interested in how sample preparation and staining panel design influence instance 

segmentation of cells in tissue.  

Figure 8.5. Number of stains used to probe a DC population affects the network 
performance. A) Network confidence in cell classification for all cells is compared 
between a network trained on a single stain DC panel and a network trained on a 
double stain DC panel. The network trained on the double stain panel was statistically 
more confident in its predictions (p <<< 0.0001). B) Probabilities of cells classified as 
pDCs by networks trained on single and double stain DC panels. C) Probabilities of 
cells classified as mDCs by networks trained on single and double stain DC panels. 
D) Probabilities of cells classified as either T cell population by networks trained on 
single and double stain DC panels. A-D have a lower bound of 0.3 because cells 
below this threshold are automatically rejected by the network. E) Cell area of pDCs 
detected by networks trained on single stain and double stain panels. F) Cell area of 
mDCs detected by networks trained on single stain and double stain panels. For all 
plots in this figure, a Kolmogorov-Smirnov test shows a statistically significant 
difference between the two distributions (p <<< 0.0001). 
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First we demonstrated that tissue fixation impacts the metrics of cell shape and 

intracellular distances that can be derived from the network predictions. Tissue expansion 

and shrinkage in fresh frozen and FFPE tissue, respectively, is well-documented156–158. 

The data presented here quantify these deformations, showing a ~30% decrease in all 

linear metrics of T cell shape (e.g. equivalent diameter and perimeter), a 52.7% decrease 

in mean T cell area, and a 24.7% decrease in the minimum distance of a T cell to the 

nearest DC. These discrepancies in cellular features can have implications for 

conclusions drawn from data mining images to investigate biological phenomena. 

Previous from our group has used cellular shape and distance between cell types in fresh 

frozen LuN biopsies to identify intercellular interactions72. Metrics including minimum 

distance of T cells to a DC and T cell shape features were used to identify which cell 

populations were more frequently interacting. For findings from fresh frozen data to 

translate effectively to FFPE LuN biopsies, these differences in cell size, cell shape, and 

intercellular distances must be taken into consideration.  

The second major technical consideration we investigated is the utility of using 

multiple markers for classifying cells, particularly for difficult classes like dendritic cells. 

Because a given immunofluorescence experiment is limited to 5-6 markers, there is a real 

cost associated with using multiple markers per cell type. In panel design there is a 

tradeoff between robustly identifying a single cell type and interrogating multiple cell types 

in a single experiment. We evaluated the extent to which using a single stain to identify 

DC subsets diminished network performance. We observed that the network sensitivity 

was relatively poor for the single stain dataset, particularly for mDCs and pDCs. DC 

subsets were particularly impacted by ambiguous staining from single markers, 
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compounded by relatively low prevalence of these cell types in the dataset. This loss of 

sensitivity had consequences for calculating cell features downstream, as evidenced by 

the shift in the observed area distribution for pDCs and mDCs (Fig 8.5E-F).  

Thus we concluded that using a single marker for detecting difficult or infrequent cell 

types is not a worthwhile compromise, because the benefit of interrogating multiple cell 

types is negated by the decrease of algorithm robustness in detecting these infrequent 

cell types. Using multiple markers bolsters the performance of computer detection of cells, 

particularly for cell classes of lower prevalence. Though this is the last set of results that 

I will discuss, this work was done prior to the work described in Chapters 3-6. Ultimately, 

we adopted the approach of training two separate networks for lymphocytes and dendritic 

cells in order to resolve the poor performance observed in the 5-class instance of Mask 

R-CNN.  

These findings highlight the importance of optimizing image acquisition for computer 

vision. As using machine learning to quantify multiplexed immunofluorescence imaging 

becomes increasingly mainstream, it is important to have the analytical method in mind 

when making choices about tissue preparation, staining panel design and acquisition 

parameters.  
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Chapter 9: Discussion 
 

1. Introduction 

In many respects, this work has two parallel “stories” associated with it. The first is a 

set of findings around lupus nephritis that challenge the standard model of pathogenesis 

and identify a novel correlate of patient outcomes. The second is a set of technical 

developments in the rapidly expanding field of quantitative image analysis, which has the 

potential to overcome previous barriers to understanding human immunity. Here I will 

discuss the broader implications of both of these stories, including the future directions 

that arise from them.   

2. Insights about lupus nephritis  

Organized inflammatory states in lupus nephritis are predictive of outcome 

The fundamental question that we were trying to address was whether or not 

inflammatory states in lupus nephritis are organized. The “null hypothesis” of inflammation 

is that it is random, and that cells are non-specifically drawn into damaged tissue. 

However, our observations suggest that this is not the case. The manner in which the 

components of adaptive immunity (T cells, B cells, antigen presenting cells) were 

arranged in the kidneys are correlated with patient outcomes, generating the hypothesis 

that some inflammatory states drive renal failure and some do not. Throughout the course 

of this work and across two distinct datasets we have interrogated inflammation on 

multiple scales.  

We first performed a relatively simple analysis in which we examined the density of 

CD4+ T cells, CD4- T cells, B cells, mDCs and pDCs in the tissue. This led to the striking 

observation that B cells are more densely packed in patients who do not progress to 
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kidney failure, and that CD4- T cells are present in higher densities in patients who do 

progress.  

We then looked at the next level of complexity and evaluated the nearest neighbors 

and close cellular niches of each cell. It is true that we cannot make definitive statements 

about whether these cells are interacting with each other. However, many intercellular 

interactions require proximity, making a cell’s nearest neighbors their most likely contacts. 

Indeed, when we examined the nearest neighbor relationships in both datasets, several 

interesting findings emerged.  

First, we identified different patterns of cellular organization in ESRD+ and ESRD- 

patients. Cells were more likely to have a CD4- T cell as their nearest neighbor or in their 

immediate 10 um niche in the context of ESRD, while they were more likely to have B 

cells in close proximity in the context of failure to progress to ESRD. Second, we observed 

in both datasets that there was a strong propensity for cells of the same type to cluster 

together in tissue. In the highly multiplexed LuN dataset T cells with a shared phenotype 

were often each other’s nearest neighbors, suggesting that there was regional enrichment 

for T cells of a particular type. This is consistent with a model in which local environment 

(i.e., cytokine milieu and APC presence) might drive the T cells in a region towards a 

particular phenotype.  

Taking one step up in organizational structure, we then defined neighborhoods of 

cells. Doing this in the HR dataset had limitations, as we were only able to define groups 

of cells that were captured in the same 1024x1024 ROI. This prevented us from analyzing 

larger scales of neighborhoods. Nonetheless, we observed an enrichment for CD4- T cell-

dominated neighborhoods in patients who progressed to kidney failure, relative to the 
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patients who did not. Identifying neighborhoods over the whole biopsy in the HMP dataset 

enabled us to capture even larger neighborhoods with a higher degree of phenotypic 

detail.  

Finally, in the HMP dataset we were able to evaluate higher levels of organization 

across the whole biopsy section and observe that cellular neighborhoods (in particular 

large neighborhoods) tended to group with other cellular neighborhoods, in structures that 

that one might think of as “cities”. In contrast, some small neighborhoods were found to 

be isolated from other immune cells, suggesting that there is a tendency for both dense 

and sparse regions of inflammation rather than an even distribution of cells throughout 

the tissue.  

These findings demonstrate that analyzing the spatial features of inflammation can 

lead to rich insights about disease and help generate new hypotheses about the 

determinants of patient outcomes. In particular, we now have reason to re-think some of 

our assumptions about what aspects of adaptive immunity drive renal failure in lupus 

nephritis.  

Reevaluating the role of B cells in lupus nephritis 

When we relate the spatial density of CD20+ B cell rich zones with the renal outcome 

of patients we find that a higher density of B cells is associated with the patients who did 

not progress to ESRD during the follow-up period. This is a striking result as our current 

model of lupus nephritis pathogenesis as an antibody-mediated disease leads to the 

prediction that dense regions of B cells would be associated with increased antibody 

production, and therefore worse disease outcomes. There are a couple of possible 

models that could account for this apparent paradox.  
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The first model is that currently existing therapies adequately target B cells, such that 

patients whose pathology is clearly B cell mediated respond well to therapy. This is the 

simplest explanation, as it does not require us to entirely re-think the role of B cells in 

driving lupus nephritis. It has been observed that mycophenolate mofetil and 

cyclophosphamide have the effect of depleting circulating plasma cells in lupus patients.33 

Therapies like rituximab and belimumab also deplete B cells, and successfully treat 

disease in a subset of lupus nephritis patients.2,27–29 BAFF expression has been found to 

be higher in patients who respond to induction therapy, which lends weight to the 

hypothesis that the patients whose disease is characterized by abundant B cell 

proliferation are being successfully treated.35   

However, lupus nephritis is heterogeneous in both its clinical presentation, and in how 

inflammation occurs in tissue.6,10 In particular, it has been observed that, though 

glomerular inflammation often correlates with circulating auto-antibodies, tubulointerstitial 

inflammation does not.10 Therefore, though B cells are observed in the tubulointerstitium, 

it is likely that tubulointerstitial inflammation is driven by mechanisms that are distinct from 

glomerular inflammation.9  

Therefore, it is reasonable to postulate that there is a subset of patients who have 

disease that is driven by additional mediators (such as T cells) in a manner that is at least 

partially B cell independent. Indeed, our findings around “CD4-“ T cells suggest that there 

might be some T cell-driven pathology that we are not currently targeting. It is possible 

that we are simply stratifying between the patients for whom the standard of care is an 

effective therapeutic approach, and the patients for whom B cell depletion is not sufficient 

to stop chronic kidney damage. 
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The best way to evaluate this hypothesis would be to examine repeat kidney biopsies 

after patients have received treatment. If the patients who respond well to therapy start 

with abundant B cell-rich regions that dissipate after induction therapy, this would be an 

argument in favor of the model in which primarily B cell-driven disease is adequately 

addressed through the standard of care. Currently, repeat kidney biopsies are 

infrequently used in a clinical setting, though some have argued that this should change, 

as they are a rich potential data source.1    

An alternative model is that enrichment for CD20+ B cells indicates a failure to 

differentiate into plasma cells. It should be noted that CD20+ B cells are not likely to be 

the subset that would be actively producing antibodies, as B cells express this marker 

before they develop into plasma cells.160 It is possible that dense regions of CD20+ B 

cells accumulate if there is some factor preventing them from maturing into plasma cells, 

corresponding with a decrease in local antibody production. This bottleneck could be due 

to a lack of adequate T cell help, or an immunosuppressive environment.161  

In the highly multiplexed dataset we observed that the density of CD20+ B cells and 

plasma cells are highly correlated with each other, which makes this model less 

appealing. However, this was a small cohort of patients for whom we did not have 

outcomes data. A more focused study evaluating the relationship between plasma cell: 

CD20+ B cell ratio in a group of patients for whom we have outcomes data would clarify 

whether an enrichment for CD20+ B cells in patients who have preserved renal function 

is a reflection of lack of local plasma cell differentiation.    

In summary, it is necessary to re-examine the fundamental assumption that B cells 

are the primary driver of disease in all lupus nephritis patients. The observation that dense 
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aggregates of B cells are not necessarily associated with kidney failure needs to be 

confirmed in a validation cohort of patients.  Ideally, this would be done in a prospective 

manner, such that we could biopsy patients at the time of diagnosis, and then track the 

abundance and distribution of B cells in the kidneys over the follow-up period and relate 

this to renal function.    

“CD4- T cells” are a diverse array of cells that might play a role in driving kidney failure 

The second surprising finding from the high resolution data was that CD4- T cells 

appear to be present at a higher density in patients who do progress to kidney failure, as 

lupus nephritis is not typically thought of us a T cell-driven disease. However, this premise 

has been recently called into question by the success of voclosporin, a calcineurin 

inhibitor that inhibits T cell effector function, in a lupus nephritis trial.68 Thus, there is some 

evidence that the role of T cells in driving this disease needs to be scrutinized further.  

It was particularly interesting to observe the increased density of this population in the 

patients who were imminently in kidney failure (ESRD current) at the time of biopsy 

relative even to other patients who proceeded to failure later on, as it more tightly links 

the timing of this inflammatory profile with renal failure. Interestingly, one of these five 

patients presented with acute kidney failure without having received prior therapy, and 

their kidney biopsy was scored with a tubulointerstitial chronicity index of 2. For this 

patient the increase in CD4- T cells was not associated with pre-existing fibrosis, nor was 

fibrosis a pre-requisite for renal failure. Though this cohort was small, they provided 

compelling impetus to further investigate the link between this cell subset and acute 

kidney failure in lupus nephritis patients. It would be very interesting to specifically look at 

the biopsies of a larger cohort of patients who present to clinic in already in kidney failure, 
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and profile the CD4- T cell compartment in order to more definitively characterize the 

subset associated with a loss of renal function.  

We have already begun the work of characterizing the “CD4-“ T cells in lupus nephritis, 

starting with the simple question of whether or not they are CD8+ T cells. Indeed, when 

we investigated this in the highly multiplexed data, we found that there was a distinctive 

population of CD3+CD4-CD8- (double negative, DN) T cells that made up roughly half of 

the CD4- T cell compartment. This is coherent with previous observations of DN T cells 

in the context of lupus nephritis, which have been proposed to be the result of CD8 

downregulation on canonical T cells.60,61 However, this classification is problematic as 

defining these cells by a negative depends on detecting CD4 and CD8 with high 

sensitivity, and leaves open the possibility that the population is very heterogeneous. 

When investigating the possible identities of the CD3+CD4-CD8- T cells, there are two 

additional possibilities to evaluate—Natural Killer T (NKT) cells, and gamma delta T cells. 

There is a lack of evidence that NKT cells have a presence in the kidneys of LuN patients 

or play a significant role in pathogenesis.14 On the other hand, gamma delta T cells have 

been observed by both us and other groups in the context of lupus nephritis, though their 

function is not obvious.64,65 Given our observations that the CD4- T cell compartment 

appears to be quite diverse, additional imaging experiments need to be done to determine 

which of these cellular subsets is associated with renal failure.   

The other question that was of interest was the degree to which CD8+ T cells observed 

in lupus nephritis are exhausted. There is conflicting data on this point, with several 

studies identifying exhausted CD8+ T cells in the circulation of LuN patients, but with the 

single cell RNA sequencing data that suggests that very few CD8+ T cells found in the 
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kidneys of lupus nephritis patients are exhausted.14,57,58,162 In contrast, our observations 

in the highly multiplexed data suggest that a high percentage (~30%) of CD8+ T cells 

express PD1, which suggests that there is a substantial population of exhausted CD8+ T 

cells. This difference is possibly attributable to differences in the dynamics of transcripts 

vs proteins. Notably, we also found that these exhausted CD8+ T cells tended to be found 

near other exhausted CD8 T cells, suggesting that there may be a regional enrichment 

for an exhaustion phenotype.  

CD4+ T cells play several roles in lupus nephritis  

CD4+ T cells are amongst the most common lymphocytes found in the biopsies of 

lupus nephritis patients. When we evaluated whether or not they were differentially 

distributed between patients who progressed to kidney failure and those that did not, we 

did not note any significant differences. However, it would not be appropriate to conclude 

that CD4+ T cells are unimportant in this disease. Rather, this apparent lack of 

differentiation could be driven by the lack of phenotypic resolution in the CD4+ T cell 

compartment. CD4+ T cells can be playing a multitude of roles in inflamed tissue, from 

driving B cells responses, to suppressing inflammation, to creating an “anti-viral”-like Th1 

response.163 Therefore, looking at all CD4+ T cells together is of limited utility.  

For this reason we used the HMP data to more finely characterize the CD4+ T cell 

compartment in inflamed kidney biopsies in terms of PD1, ICOS, and FoxP3 expression. 

While these markers still do not capture the full range of phenotypic variability within CD4+ 

T cells, they allowed us to specifically interrogate regulatory T cells and T follicular helper 

cells.  
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We found that regulatory CD4+ T cells made up a very small fraction of the CD4+ T 

cells and were infrequent in all patients. This coheres with other observations that the 

Treg compartment is deficient in SLE patients.45–47 This leads to the question of whether 

Tregs are important for inhibiting progression to renal failure, or if there are other 

regulatory mechanisms in place.  

We also validated the finding that there are dense B-T aggregates that are enriched 

for Tfh-like CD4+ T cells.  However, these B-T aggregates did not typically resemble 

germinal centers in terms of the frequency with which putative Tfh cells were proximal 

with B cells. In fact, Tfh cells were frequently found near other Tfh, and other CD4+ T 

cells that we were not able to characterize fully. Understanding the significance of 

interactions between CD4+ T cells in lupus nephritis pathogenesis is therefore of great 

interest for future work.  

DC subsets have variable contributions to renal outcome  

To our surprise, pDC abundance and distribution turned out to be the same between 

patients who progressed to renal failure and those who did not. This implies that, though 

they are present at aberrantly high levels in lupus nephritis kidneys, they are not the 

primary drivers of tissue damage. They are primarily appreciated for their roles as 

interferon-producing cells75–77, but they have also been postulated to present antigen to 

and activate Tregs164. Therefore, they could have complex and contradictory roles in 

inflamed tissue.  

Intriguingly, it was observed that mDCs were particularly diminished in patients who 

were imminently in renal failure. This is a counter-intuitive result, and contrary to previous 

observations that mDC abundance in the kidney is correlated with disease activity. 49,70–
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72 This phenomenon needs to be validated in a larger cohort of patients, but the 

observation leads to the hypothesis that the loss of mDCs might lead to a further 

degradation of immunological tolerance in the kidney.  

Both of these cell subsets still need to be evaluated in the HMP dataset. We will then 

be able to re-do the spatial analyses and take into consideration their contributions to 

biopsy-wide organizational structures. In particular, we will be able to evaluate whether 

they co-localize with T cells of a particular phenotype, and possibly play a role in driving 

this phenotype.  

There is regional variation to the interferon response within kidney tissue   

The distribution of MX1, an interferon response gene, had a variety of distributions 

within the tissue. This suggests that though the interferon response is systemic15, there 

is local variation in interferon signaling within inflamed kidney tissue. This naturally led to 

the question of whether the MX1-rich regions coincided with lymphocyte-rich regions. 

However, when we examined the relationship between local lymphocyte abundance and 

interferon signaling we found that not all dense lymphocytic regions were enriched for 

interferon signaling as expected.  

This is one more argument in favor of the notion that not all densely inflamed regions 

are created equal. The cellular correlates of local interferon signaling therefore still need 

to be identified. One crucial potential source of type I interferon that is missing from this 

analysis is plasmacytoid dendritic cells. The relevant markers are in fact included in this 

dataset, and future work will be done to segment these cells and situate them in the 

context of the interferon response.  
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Closing comments on lupus nephritis 

 Overall, our findings call into question the standard model of lupus pathogenesis 

wherein dendritic cells take up auto-antigens, present them to CD4+ T cells, which in turn 

provide help to B cells that then differentiate into plasma cells and start producing large 

quantities of auto-antibodies.1 While this is likely the mechanism that occurs in many 

patients (particularly those who respond to therapy), our findings indicate that there might 

be other pathways of kidney damage, such as through the activity of CD4- T cells.    

These two lupus nephritis datasets emphasize the idea that inflammation in lupus 

nephritis is diverse in terms of how cells are distributed in the tissue, and that this diversity 

can be predictive of a patient’s trajectory. Understanding the correlates of renal failure is 

an important tool for identifying new therapeutic targets, as the existing targets have 

largely failed to live up to their promise. It will also enable us to better interpret and 

contextualize the data derived from mechanistic studies in animal models.   

Another concept that these studies highlight is the importance of the anatomical 

compartment that is being interrogated. There is sometimes a discordance between 

observations from the blood and kidneys of lupus nephritis patients, potentially reflecting 

differences between systemic autoimmunity and in situ inflammatory processes. Our 

argument is that examining inflammation in the kidney is worth the effort, as it more 

directly probes mechanisms that lead to renal failure.  

An important next step that flows from this work would be to further characterize the 

distribution of B cells and all of the possible CD4- T cells (CD8 T cells, DN T cells) in a 

sufficiently large cohort of patients with long-term follow-up that can capture the 

heterogeneity within this patient population. Ideally, tracking these cellular populations 
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over time through repeat biopsies would be extremely valuable, as it would show the 

dynamics of tissue inflammation as it relates to disease progression.  

This work demonstrates how automatic cellular segmentation opens the door for 

spatial analyses that can illuminate intercellular relationships in inflamed tissue and place 

them in a broader context. As spatial analysis in highly multiplexed immunofluorescence 

imaging data is a relatively nascent field, many of the metrics and techniques used in this 

analysis had to be developed for our purposes, and can be carried forward into future 

datasets and questions. The ability to relate the cellular status of inflammation to clinical 

outcome has the potential to unlock mechanistic insight into why some patients 

experience kidney failure and why some do not. 

3. Insights about the use of computer vision to analyze tissue inflammation  

Considerations of data acquisition --- whole tissue vs selective imaging 

We have described two datasets that took different approaches to profiling the 

inflammatory state of biopsy tissue, giving us insight into the benefits and limitations of 

both.  The high resolution data was collected by scanning the tissue for “lymphocyte-rich 

regions” on the basis of CD3 signal, and selectively imaging those regions. This approach 

was taken because imaging the whole biopsy on the SP8 microscope would have been 

prohibitively time-intensive and would have captured a great deal of negative data. 

However, this approach, as well as the non-standardized size of biopsy samples, meant 

that the number of images from a given patient was highly variable, ranging from 1-82.  

Because the ESRD+ patients were generally more inflamed, this meant that there 

were many more images per patient in this cohort than in the ESRD- cohort. The selective 

imaging also meant that this dataset was biased towards the densely inflamed, T-cell rich 
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regions, at the expense of more sparse regions of inflammation that did not have 

abundant T cells. It therefore created substantial class imbalance, and we needed to use 

a variety of statistical methods to overcome these issues.  

Despite these limitations, the dataset allowed us to relate cellular features in patient 

biopsies with the clinical picture of these patients and gain novel insights into the 

heterogeneous inflammatory states found in lupus nephritis patients. Analyzing the data 

on the scale of individual cells, neighborhoods, and ROIs allowed us to generate 

statistically robust results, even from a small group of patients.    

On the other end of the spectrum is the highly multiplexed dataset. One key lesson to 

take away from this study is the value of studying the entire biopsy area and situating 

local inflammation in the context of the whole sample. The ability to capture large areas 

of tissue enables the study of larger organizational structures that span multiple image 

tiles. This was an advantage that our highly multiplexed dataset had over our high 

resolution data, which specifically interrogated T-cell rich regions, and only at the scale 

of a 1024x1024 pixel tile. The lack of whole-section data in the high resolution data 

prevents us from making patient-level observations, as we cannot be confident that the 

entire range of inflammation for a patient has been captured. While this does not diminish 

the value of the ROI-level findings, this feature of the dataset limits the hypotheses that 

can be tested with these images and prevents direct associations with the spatial analysis 

performed on the highly multiplexed dataset. Capturing whole-section data allows for 

interrogation of cellular distributions at these multiple scales.  

The drawback to this comprehensive approach is that it is resource intensive. The 

amount of data that is captured with whole-tissue imaging is massive, and very little of it 
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contains cells of interest. In addition, this approach increases the imaging time, and the 

computational challenge of extracting useful segmentations from these datasets.  

Therefore, for a given experimental question, the acceptable balance of tradeoffs in 

terms of resource use and data quality should determine which approach is taken.  

Considerations of data acquisition—panel design and imaging methods 

Another key element of experimental design for imaging experiments is the choice of 

markers, particularly as it pertains to downstream image analysis applications. In 

traditional immunofluorescence imaging, one often has to make tradeoffs between 

capturing several cell types with little phenotypic depth, or characterizing a single cell type 

with multiple markers. When we investigated the effect of using a single marker to identify 

cells vs multiple markers, we found that using multiple markers to identify a cell produced 

higher quality segmentations.   

For this reason, stripping and re-probing in order to capture a large number of markers 

is an appealing approach, because of the phenotypic complexity that it has the potential 

to unlock while still enabling robust segmentation. However, this methodology introduced 

additional analytical steps, and the potential for error. Having a procedure in which the 

slide was removed from the microscope between stains introduced artifacts that proved 

difficult and sometimes impossible to mitigate computationally. In contrast, several 

imaging techniques (eg, CODEX)87 are done in such a way that the slide is fixed on the 

microscope stage, removing that source of potential error. Another way to address this 

issue might be through the use of fiducial markers, such as a grid on which the tissue 

could be placed in order to orient the microscope lens relative to the sample more 

precisely.  
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The number of fluorescence channels that can be imaged at once is an important 

parameter to consider when designing this type of experiment. The microscope we used 

for the highly multiplexed data acquisition could only reliably image 4 channels, including 

the DAPI channel. This is on the low end of multiplexed fluorescence microscopy, which 

can often do on the scale of 6-7 fluorescence channels at a time. This limitation 

necessitated more rounds of imaging in order to capture the desired number of markers, 

which increased the amount of alignment that needed to happen, increased the potential 

for tissue damage between rounds of imaging, and increased the potential for antigen 

degradation due to repeated stripping. These were all deemed to be appropriate tradeoffs 

for the ability to image the whole biopsy at high speed, but likely degraded the quality of 

the data that was produced. Evaluating other microscopes for their potential to image 

more markers at a time while preserving the quick-scanning functionality would be a 

useful next step for future experiments.  

Considerations of analytical approach --- Roads not taken   

What has been described as the “highly multiplexed pipeline” represents a small 

fraction of what was attempted. Here I will briefly discuss techniques that were tried at 

various points in the pipeline and eventually discarded.  

a. Fully-automated stitching and alignment  

Image stitching and alignment (or registration) is a common task in image analysis, 

and there are consequently many automatic methods that exist for this purpose. In fact, 

many microscopes come with software that do this automatically, such that many imaging 

experiments don’t involve a purpose-built program for this task. However, our dataset had 

the following challenges—large imaging regions and differences in information content 
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between days. The size of the images was a problem because small regional 

misalignments that are minor on the scale of a 1024x1024 pixel image become severe 

when propagated out to the size of the whole image. In addition, because there was often 

minor tissue damage and shifts in focal plane between days, the DAPI images that were 

being aligned across days were similar, but at times divergent enough that cross 

correlation failed when aligning between days. There was substantial variance in the 

severity of these problems, both between samples and within a single sample across 

days.   

We attempted to perfect a fully automated version of the stitching and alignment code, 

trying various window sizes for cross correlation, including processing steps like a Sobel 

filter for edge detection, and even other alignment algorithms like Scale Invariant Feature 

Transform (SIFT). In all cases the alignment code worked extremely well for some portion 

of the dataset, and completely failed on other parts of the dataset.  

In the end it was concluded that manually adjusting the alignments on a case-by-case 

basis was more efficient than attempting to find a perfect automatic alignment method 

that worked for every sample.   

b. Generative Adversarial Network for micro-alignment 

Because we could only afford misalignment on the scale of the size of a fraction of a 

cell body (less than 10 pixels), this part of the pipeline needed to be as good as possible, 

or accurate cellular segmentation would not be possible. Though the semi-automatic 

method worked quite well, there were still minor stitching artifacts and misalignments that 

could affect the quality of the segmentation. Therefore, we attempted to use a Generative 

Adversarial Network (GAN) to correct these small errors. Briefly, this is a type of neural 
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network that is used to “translate” images from one format to another (eg, black and white 

to color). In this case, we were using a pix2pix165 GAN to “translate” the mis-aligned or 

poorly stitched images into versions that had these artifacts corrected. Visually, the 

images were much clearer and free of these defects.  

However, when we input these images into the segmentation algorithms, the network 

performance was not very good, producing many false positives. The key issue with the 

GAN is that it is “generative”, such that it is not constrained to transforming the raw data 

in a predictable way. In this situation, that lack of constraint meant that it was boosting 

the signal for some markers spuriously. In the end, this impacted segmentation quality 

enough to discontinue usage.  

c. U-Net architecture 

Before adopting the Mask R-CNN architecture for segmentation of this dataset, other 

network architectures were explored. At the outset of the project, because we were 

anticipating training several networks, it was appealing to utilize a network that was less 

computationally expensive. The U-Net neural network architecture is a semantic (pixel-

level) segmentation method that has been applied in many biological contexts to segment 

nuclei. There are many methods of detecting individual objects in semantic 

segmentations, from watershed algorithms to region proposal networks (RPN). In fact, 

the U-Net/RPN was used elsewhere in the pipeline to help automate ground truth 

generation. Both U-Nets with traditional region proposal, and combined U-Net/RPNs were 

explored as possible methods for cellular segmentation in this dataset.  

However, we were not ultimately able to use a U-Net or U-Net/RPN to produce high-

quality cellular segmentations in our dataset. Overall, this approach suffers from poor 
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sensitivity, which is particularly a problem for segmenting and accurately quantifying 

relatively rare cellular subsets. Mask R-CNN was ultimately used because it allowed us 

to leverage both knowledge and training data that we already had.  

All of these discarded approaches highlight the fact that there is no single obvious way 

to obtain high-quality segmentations from a dataset. Often, several strategies must be 

attempted, evaluated, and then discarded before an optimal analytical procedure is 

developed.  

Finetuning for translation of techniques across imaging systems and pathologies 

A useful insight that we derived from these studies was how valuable fine-tuning could 

be for minimizing the time spent developing segmentation algorithms for a given dataset. 

It is not tractable to spend years developing optimal segmentation algorithms for every 

single dataset that is collected, especially in situations where a particular cell type is rare 

or the dataset is small. In segmenting the HMP data, we demonstrated that finetuning can 

be used to turn a network that has been trained for high resolution into a network that can 

be applied on lower resolution data. This allowed us to make maximal use of the ground 

truth we had at our disposal. Similarly, we have observed from our studies with U-Nets 

that networks trained on one disease state (LuN) can be fine-tuned to segment the same 

types of cells in a completely different tissue context (TNBC). This is extremely 

encouraging as it suggests that analyzing the TNBC data will not require that we start 

from scratch, but rather, that we will be able to leverage the networks and insight that we 

have already developed to generate high quality segmentations in a shorter timeframe.   
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Closing thoughts on computer vision 

In sum, using computer vision to generate high-quality cellular segmentations in tissue 

is a complex task, and the difficulty of the task can be heavily influenced by choices made 

at the stage of experimental design. As highly multiplexed imaging becomes increasingly 

mainstream, it is important to consider which aspects of experimental design impact 

downstream analysis.    

When designing an experiment that results in several terabytes of data, it is critically 

important to put forethought into how to extract meaningful information from it. This 

includes thinking through database management, what kind of pre-processing is required, 

what kind of neural network architecture would be appropriate for the task, how to design 

and efficiently generate training sets for this task, and what the standard for “good 

enough” is. Further, it is vital to be very specific in the questions that are being asked, in 

order to avoid collecting the wrong data, or collecting it in a suboptimal way.  

A reasonable question to ask about this approach is that plenty of people do this task 

in a less painstaking way86,87—is it worthwhile to do it this way? There are various 

pipelines that have been developed for similar task that seem to accomplish the goal of 

identifying cells in tissue without the extensive processing. There are two points I would 

make about this—first is that those pipelines often lack substantial quantification of how 

their approach is performing.86,88,125 It is therefore difficult to evaluate whether these 

methods are “good enough” to extract cellular information. This raises the second point: 

proper segmentation is not the end goal of this work, though it took the bulk of the time 

and effort. The end goal is spatial analysis of how cells are arranged in tissue, which will 

only be as accurate as the cellular segmentations. Taking the time to segment cells 
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robustly improves the chances of the spatial analysis producing useful insight. Ultimately, 

developing high-quality methods for quantitative image analysis has the potential to 

deepen our understanding of human inflammation.  
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