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“It is natural selection that gives direction to changes, orients chance, and slowly,

progressively produces more complex structures, new organs, and new species. Novelties

come from previously unseen association of old material. To create is to recombine.”

— Francois Jacob, 1977
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ABSTRACT

During the process of adaptation, phenotypic variation present within a population provides

the substrate on which selection may act. However, in light of epigenetic processes, the

manner in which such variation is produced and the consequences of such variation is of

central importance in understanding adaptive processes. In this dissertation, I consider two

models of how this variation may arise, either through random, plastic means, or via a rapid

recombination of pre-existing regulatory and protein-coding elements within the genome.

While previous models of phenotypic plasticity have generally fallen into two classes

of models, either considering adaptive or non-adaptive plasticity, I present a new unified

model of phenotypic plasticity using stochastic differential equations and in silico selection.

Though prior models have suggested that plasticity is deleterious during static conditions,

I demonstrate how the relative evolvability of genic or epigenetic control of phenotype can

determine whether plasticity will become maintained during stasis.

Additionally, I analyze a model of new gene evolution via enhancer capture, where a new

gene may adopt the expression patterns dictated by the regulatory environment into which

the gene duplicates, evaluating and comparing it to other major models duplication-based

evolution. By comparing the expression patterns of newly evolved essential and non-essential

genes, I demonstrate that enhancer capture is likely a significant driver of the evolution of

distally duplicated genes via enhancer capture. I then utilize genomic techniques, integrating

RNA-seq, ChIP-seq, and Hi-C data, to show that a new essential gene, HP6/Umbrea, is one

example of a gene that has evolved in this manner.

Altogether, this dissertation encapsulates the breadth of methods used in evolutionary

genetics, providing both a theoretical analysis of a novel model of phenotypic plasticity as

well as an experimental validation of an old model of new gene neo-functionalization made

possible only through nascent technological development, expanding our understanding of

the methods and mechanisms by which phenotypic variation arises.
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CHAPTER 1

INTRODUCTION

For millennia, humans have pondered and marveled at the great diversity of life found in

nature, seeking to understand our own role within this diversity. Given mankind’s com-

pulsive quest for reason and purpose, explanations for this diversity have driven much of

man’s technological development. Coined in 1937 by Theodosius Dobzhansky [1], the field

of evolutionary genetics is mankind’s greatest tool in understanding this profound diversity.

While it is difficult to truly understand the distant past, evolutionary genetics allows us to

take what is to understand what was, using observations of the present to provide a window

into the deep, unobservable past. More than being simple comparisons of phenotypes across

phyla, the marriage of molecular genetics techniques with the simple-but-powerful mathe-

matical models of population genetics has yielded tremendous insight into the methods and

mechanisms by which this diversity arises. As Dobzhansky wrote, “nothing in biology makes

sense except in the light of evolution.” [2]

The central engine to the advancement of any scientific field is the development of new

technology. As science is an inherently predictive process, the advent of new methods allows

for the testing and refinement of old models. And while much of the biological sciences

is rooted in descriptive science, unlike any other biological discipline, evolutionary genetics

remains singular in its predictive power. Indeed, Mendel could never have predicted the

direct observation of chromosomes, and the likes of Fisher, Haldane, or Wright could never

have predicted the advent of DNA technology. Yet without even a remote hope of the kinds

of validation their theories would later receive, their ideas persisted and remained influential

not on the merits of overwhelming, definitive proof, but on the explanatory power of their

inductive reasoning.
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1.1 Plasticity and Evolution

While the Evolutionary Synthesis produced a new paradigm where mutational variation

produces selectable phenotypic variation [1, 3, 4], there is little room in this framework

for understanding the evolutionary role of epigenetic control of phenotype and phenotypic

plasticity. From J. Mark Baldwin’s landmark 1896 manuscript describing how the acquisition

and learning of new behaviors could lead to the possibility of phenotype-first evolution [5]

to C. H. Waddington’s 1952 experiments demonstrating the genetic accommodation of an

environmentally induced cross-veinless phenotype in a population of flies [6], study of the

potential role of non-genetic variation in evolution has been both long and controversial [7,

8], with some contending that such effects are non-existent or inconsequential to adaptation

[9, 10].

1.2 Plasticity and Survival

In models of natural selection, an individual’s degree of fitness depends upon how well it has

adapted to particular external factors, such as the environment in which it lives. Changes in

its situation can cause such individuals to become less fit, as phenotypes that are beneficial

in one scenario might be ill-suited to another. Nevertheless, unpredictable changes and

fluctuations are inevitable, and organisms therefore develop strategies that allow them to

cope with such stresses [7, 8]. One mechanism that could help organisms to resist stress and

increase fitness in changing surroundings is phenotypic plasticity, the phenomenon by which a

single genotype can manifest as a range of phenotypes. In the case of non-adaptive plasticity,

this variation among phenotypes is apparent even in the absence of any external stresses,

while in the case of adaptive plasticity, variation among phenotypes occurs subsequent to an

environmental shift in a manner that increases individual fitness.

2



1.3 A Need for More

According to the Evolutionary Synthesis, all evolutionarily relevant phenotypic variation is

the result of genetic variation. As such, quantitative genetic models of natural selection do

not incorporate the existence of non-genetic phenotypic variability [11], instead, portray-

ing one-to-one genotype-phenotype relationships, where a particular genotype (or additive

combination of many genetic loci) corresponds to a single phenotype. With the excep-

tion of theoretical work directly concerning phenotypic plasticity, most evolutionary models

continue to maintain a one-to-one genotype-phenotype relationship. However, recent ob-

servations indicate the existence of variable relationships between genotype and phenotype,

in which a given genotype may in fact produce a range of phenotypes that can fluctuate

dynamically prior to an environmental shift (non-adaptive plasticity), and/or subsequently

in response to said shift (adaptive plasticity) [7, 8]. Even within clonal progeny, individuals

have been shown to display quantitative differences that may distinguish them from geneti-

cally identical individuals. Such differences are important for survival, as in the context of

changing environmental conditions, possessing variable phenotypes within even genetically

similar populations generates the potential for individuals to be randomly suited to uncertain

fluctuations. While prior models have incorporated such effects [11–20], these models remain

divided, capturing aspects of either non-adaptive or adaptive plasticity, but not both.

As environmental change plays a key role in understanding the evolution of phenotypic

plasticity, currently, the dominating view of plasticity contends that it may only evolve

under conditions of environmental fluctuations [21, 22], and that the degree of plasticity in

a population should decrease during periods of stasis [11, 13, 23, 24]. However, in light of

the abundance of plasticity found in nature, it seems unlikely that plasticity may not evolve

under static environmental conditions. In Chapter II I challenge these findings via a unified

model of plasticity incorporating both non-adaptive and adaptive plasticity effects, leading
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to the following questions: What is the relationship between plasticity (adaptive and non-

adaptive) and genic control of phenotype? What are the effects of plasticity on adaptation?

Under what conditions may plasticity be favorable and thus evolve in a population?

1.4 An Old Theory of New Gene Evolution

One of the earliest models of new gene evolution was first proposed by Hermann Muller in

1936 [25]. Though he lacked our current molecular understanding of gene regulation, by

observation of the double-bar/ultrabar phenotype, he suggested that positional effects on

duplicate gene copies may be a source of evolutionary novelty. Indeed, in more recent times,

the development of sequencing technology and the assembly of a panel of reference genomes

has allowed for a more systematic analysis of new gene origination, while positional effects

caused by random integration into the genome has become known as a driving force behind

the co-expression of genes with the same chromatin domain.

Using high-quality reference genomes, genes arising from the class of duplication-based

mechanisms can now categorically be inferred through synteny- and homology-based searches.

Though new genes are systemically understudied in comparison to their older counterparts,

new genes originating from duplication-based mechanisms have been relatively well-described

and studied, both experimentally and theoretically. However, in studying the evolutionary

dynamics of duplication-based origination, a paradox arises: how do functionally redundant

copies of the same gene rise to fixation? This paradox has been resolved using various models

of duplication-based evolution, including the neofunctionalization model [26], the duplica-

tion, divergence, complementation (DDC)/sub-functionalization model [27], the escape from

adaptive conflict (EAC) model [28], and the innovation, amplification, and divergence (IAD)

model [29, 30].
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1.5 Solving a Paradox

Outside of the neofunctionalization model, where a novel function arises in one of the two

duplicate copies, the aforementioned models variously invoke alterations of regulatory and/or

protein function in resolving this paradox. The DDC/sub-functionalization model allows for

complementary degeneration of the functions shared between the paralogous copies. Here,

the ability of one gene copy to compensate for loss of function in another allows for the

preservation of both gene copies, eventually resulting in the segregation and partitioning

of multiple sub-functions to each duplicated copy. Alternatively, while the DDC model

merely distributes and sub-functionalizes all gene functions across paralogs, the EAC model

allows for increased functionality of multiple original functions in an ancestral gene where

simultaneous optimization of all functions is not possible. As such, under the DDC or EAC

models, duplication can allow for the relaxation of constraint on the evolution of the ancestral

gene, allowing for a selective advantage for both parental and new genes.

Finally, the IAD model begins with an ecological shift allowing for a selective advantage

for high copy number. Here, the parental gene has multiple functions, and while its primary

function is still maintained, an ecological shift allows for a selective advantage to exist for

higher copy number based on selection for an auxiliary function. Importantly, as changes in

copy number are more common than point mutations, increased dosage may more rapidly fix

than regulatory changes. Following this amplification, subsequent changes are accumulated

on the various copies. However, these models do not incorporate the 3-dimensional nature

of the eukaryotic genome as well as its role in gene regulation. Crucially, while it is possible

to identify both parental and new gene copies within the D. melanogaster genome, both

parental and new gene copies are indistinguishable in previous models of duplication-based

evolution. As such, prior models would predict that essential functionality should partition

equally between parent gene and new gene and would not predict an enrichment for non-
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essential genes that co-express highly with their neighboring genes. This symmetry and its

consequences are considered in detail in Chapter III.

1.6 Co-regulation, Positional Effects, and Genome Organization

The idea that the genome is organized locally into co-regulated chromosomal units, or do-

mains, and that these domains are a fundamental unit of selection has previously been

referred to as the domain hypothesis [31]. However, a comprehensive integration of these

effects into a single model of new gene evolution has been lacking.

In assessing the degree of co-regulation and positional effects occurring in the melanogaster

genome, the first comprehensive studies of co-expression and gene order became possible

with the advent of micro-array technology. To identify large-scale co-regulation within the

melanogaster genome, Boutanaev and colleagues systematically assessed the clustering be-

havior of testes-specific genes on Drosophila chromosomes [32], using publicly available ex-

pression data. Here, a cluster is defined as a set of neighboring genes that have testes-specific

expression. When compared to a distribution of permuted gene order, an enrichment for

testes-specific genes in large clusters (3+ genes per cluster) becomes apparent. Addition-

ally, the number of genes that appear in large clusters is also enriched when compared to

a permuted distribution. Overall, the proportion of tissue-specific genes that are clustered

is significantly enriched not only for testes-specific genes, but also for head-specific and

embryo-specific genes.

One potential bias that has been ignored in the analysis of Boutanaev et al. is the

effect of tandem duplications. The presence of multiple tandem duplications that result in

a local co-regulation of all duplicate copies could inflate the clustering behavior observed by

Boutanaev et al., thereby limiting the potential significance of co-regulated gene clusters.

To test whether non-homologous co-expressed genes still appear to cluster, Spellman and

Rubin utilized a dataset of gene expression across 88 experimental conditions [33]. While
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the methodology employed by Spellman and Rubin differs greatly than that of Boutanaev,

et al., when compared to random distributions, widespread clustering of co-expression was

detected, with 553 genes co-expressing in 46 unique groups (p < 10−4). To test whether

homologs alone explain the presence of widespread co-expression, the co-expression analysis

was repeating after removal of genes with nearby homologs. In this subsequent analysis, 200

genes still remained within 18 co-expressing groups, demonstrating that tandem duplications

are not the sole factor explaining co-expression and gene order. Additionally, to test whether

genetic order is preserved as a function of biological process, i.e. that genes cluster by

pathway, enrichment for Gene Ontology (GO) terms was assessed within each identified co-

expression group. 43 GO terms were found to be significantly associated with co-expression

groups. However, after neighboring homologs were removed, only 11 GO terms remained

significantly enriched with a given group.

1.7 A Model Co-expression Cluster

The combined results of Spellman and Rubin as well as those by Boutanaev et al. suggest

that large-scale co-regulation may influence gene order within the genome, even after cor-

rection for homologous sequences. An in depth look at a model gene cluster by Kalmykova,

et al. [31] additionally reveals that co-regulation may explain the relative proximity of

non-homologous genes that possess similar functions. The model cluster consists of five

testes-specific, non-homologous genes (Crtp, Yu, CK2βtes, Pros28.1B, CG13581). Notably,

CK2βtes and Pros28.1B were ecotopically duplicated from constituitively expressed genes

CK2β and Pros28.1, demonstrating that tissue specificity can potentially arise from dupli-

cation alone. The onset of transcription for these genes is highly coordinated and specific, as

transcripts can only be found during early spermatogenesis - transcripts are neither present

in stem cells, spermatogonia, nor in post-meiotic spermatogenesis. As additional evidence

that these genes are co-regulated, the entire 5-gene cluster is inactivated in bag-of-marbles
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mutants, while 4 of 5 genes are inactive in always-early mutants. Further DNase sensitiv-

ity assays demonstrated that the chromatin profile of this cluster is coordinately regulated

across differing tissues, in this case, larval testes, larval brains, and embryos.

The results of Boutanaev, et al. and Spellman and Rubin suggest that gene order within

the melanogaster genome is structured according to function while, the results of Kalmykova,

et al. provide evidence for such co-regulation. A synthesis of these findings with Muller’s

ideas regarding the double-bar/ultrabar phenotype leads to a model where positional ef-

fects play a central role in the origination of new genes, a hypothesis further developed by

Kalmykova, et al. [31]. However, crucial evidence guiding this synthesis is lacking and is

addressed in Chapter III, leading to the following questions: What forces drive gene dupli-

cation? How do we differentiate between evolutionary models of new gene evolution? How

can neo-functionalization occur in a new gene copy? What is the role of the 3-D genome in

new gene evolution?

1.8 Chapter Overview

In this dissertation, I present both a new theoretical treatment of phenotypic plasticity as

well as an empirical validation of an old theory of positional effects and the origination of

new genes.

In Chapter II, I articulate a new computational model of phenotypic plasticity using

stochastic differential equations. The primary advantage of this method is that it allows for

the unification of both non-adaptive and adaptive plasticity effects. In this model, phenotype

no longer is directly dictated by genotype, but is the result of both genic and epigenetic effects

throughout an individual’s life history. As such, any given phenotype may be produced by

a large set of genotypes, a key feature in models of non-adaptive plasticity but not adaptive

plasticity. Alternatively, the incorporation of an auto-correlation parameter allows for the

production of responses well-suited to new environmental conditions, a feature which by
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definition is present in models of adaptive plasticity but absent in models of non-adaptive

plasticity.

By allowing for the production of any given phenotype through genic and epigenetic

means, I demonstrate how when genic means are disallowed during an environmental shift,

epigenetic compensation may occur, allowing for the production of individuals that have

fully accommodated new environmental conditions without undergoing genetic change. Fur-

thermore, larger degrees of non-adaptive and adaptive plasticity are favorable under these

static conditions if control of these effects is allowed to mutate.

When genic parameters controlling phenotype become mutable, the combined effects of

plasticity and genic change work hand-in-hand to form a consistent pattern of genetic ac-

commodation that is robust to changes in selective conditions. Alternatively, when plasticity

is absent in a population, the rate of accommodation may vary greatly under different selec-

tive conditions. When combined together, these results demonstrate how, in agreement with

prior models, plasticity may variously accelerate or retard the genetic accommodation of new

environmental conditions and how it can be transiently advantageous during adaptation.

Going further, however, the model presented in Chapter II additionally demonstrates how

plasticity allows the level of genetic turnover to also be robust to changes in selective condi-

tions at mutation-selection-drift balance. Over long periods of time at mutation-selection-

drift balance, the level of plasticity may remain constant or decrease over time, depending on

selective conditions. So long as the distribution of phenotypes generated by plasticity falls

sufficiently close to new optimal conditions, plasticity may be maintained in a population,

contradicting prior predictions of the long-term loss of plasticity under static conditions.

Finally, I demonstrate how the relative mutation rate between genic and epigenetic control

of phenotype determines the long-term fate of plasticity under stasis, a result that is not

possible under prior models of plasticity.

In Chapter III, I use a variety of genomic techniques and novel statistical analyses to

9



demonstrate how positional effects and enhancer capture may be a driving force for the evo-

lution of new genes originating through ectopic duplication. Prior models of gene duplication-

based evolution are symmetric between both new gene and parental gene functions, while

being agnostic to the relationship between both new gene and neighboring gene. As such,

all functions, including essential functions, are expected to be randomly distributed be-

tween both new gene and parental gene copies while expression patterns between new genes

and neighboring genes are expected to be random as well. Alternatively, new genes that

have evolved via enhancer capture are expected to have essential function remain with the

parental gene copy while showing high co-expression with neighboring genes. This difference

in expectation was tested using data from new genes evolved in Drosophila melanogaster,

demonstrating that enhancer capture is a common mechanism for the origination of new

genes.

By comparing the co-expression between new gene/parental gene pairs and new gene/

neighboring gene pairs, I identified HP6/Umbrea as a model gene for the enhancer capture

model. Prior work on its protein evolution found that its essentiality evolved subsequent to

is origination while also showing that protein neo-functionalization was likely not a primary

driver of HP6/Umbrea’s fixation. Analysis of HP6/Umbrea’s expression pattern shows that

it is expressed primarily in the imaginal discs and male reproductive tissue. An examination

of active enhancer marks revealed the presence of a putative larval enhancer nearby whose

activation correlates with the onset of HP6/Umbrea expression. Given that HP6/Umbrea

duplicated into a gene-poor region of the genome, HP6/Umbrea remains the likeliest target of

this enhancer. Further analysis of the tissue expression pattern of neighboring genes reveals

a cluster of 6 putatively co-regulated genes that express in the same tissues as HP6/Umbrea.

To test for co-regulation between these different elements, examination of chromosomal con-

formation capture data in the HP6/Umbrea locus revealed the presence of 3 primary in-

teractions: enhancer-HP6/Umbrea interaction, HP6/Umbrea-6-gene cluster interaction, and

10



interaction across the entirety of the 6-gene cluster. Higher resolution data for this locus was

also generated using 4C-Seq, identifying the locations of 3 putative enhancer candidates.

Central to the enhancer capture model is the ancestral state of the new gene locus prior

to duplication. Under the enhancer capture model, the regulatory environment producing

co-regulation must pre-date the insertion of the new gene. In the case of HP6/Umbrea,

this was tested by comparing the chromosomal conformations of the HP6/Umbrea locus

in two in-groups and two out-group species, in this case D. melanogaster -D. yakuba and

D. pseudoobscura-D. miranda respectively. While the tissue sources of these libraries dif-

fered greatly, a comparison of these data sets demonstrated that the 3 primary interactions

remained conserved prior to HP6/Umbrea’s insertion.
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CHAPTER 2

EVOLUTION AND MAINTENANCE OF PHENOTYPIC

PLASTICITY

2.1 Abstract

We introduce a novel framework for exploring the evolutionary consequences of phenotypic

plasticity (adaptive and non-adaptive) integrating both genic and epigenetic effects on phe-

notype via stochastic differential equations and in silico selection. In accordance with the

most significant results derived from prior models, we demonstrate how plasticity is dif-

ferentially favored when subjected to small vs large environmental shifts, how plasticity is

transiently favorable while accommodating a new environment, and how plasticity decreases

during epochs where the environment remains stable (canalization). In contrast to these

models, however, by allowing the same phenotypic value to be produced via two different

paths, i.e. deterministic, genic vs stochastic, epigenetic mechanisms, we demonstrate how

when genic contributions alone cannot produce an optimal phenotype, plastic, epigenetic

contributions will instead fully accommodate new environments, allowing for both adaptive

and non-adaptive plasticity to evolve. Furthermore, we show that while rates of phenotypic

accommodation are relatively constant under a wide range of selective conditions, selection

will favor the most efficient route to adaptation: deterministic genic response, or stochas-

tic plastic response. As a result, plasticity may evolve or canalization may occur within a

given epoch depending on the relative mutation rate of genic and epigenetic contributions

to phenotype.
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2.2 Introduction

2.2.1 Phenotypic Variability

The modern synthesis requires that all populations of organisms have some appreciable

degree of phenotypic variation in order for natural selection to occur. Within this framework,

phenotypic variation is a result of genetic variation, whereby selection on phenotypes acts as

a feedback mechanism to control how genetic variants flow through a population. However,

the extent to which variation in quantitative traits is explained by genetic variation is not

fully understood. Under standard models, phenotypic variability, often referred to as VP , is

generally explained by a combination of genetic and non-genetic (environmental) variability,

VG and VE respectively, such that VP = VG + VE [7, 23]. Note that in the absence of

explicit parameterization, gene-by-environment interactions are often also contained within

the environmental variability term [34].

Historically, such quantitative genetic models do not systematically incorporate the ex-

istence of non-genetic phenotypic variability [7, 11, 34]. Instead, such models frequently

portray a one-to-one genotype-phenotype relationship, in which a particular genotype corre-

sponds exclusively to a single phenotype, or else is expressed as a summation of the effects

contributed across many loci. Any discrepancies between the additive effect of indepen-

dent loci and phenotypes is often simply modeled as a linear error term, while in practice

such discrepancies are dismissed by invoking the relatively poorly understood phenomenon

of penetrance. However, as our collective understanding of molecular biology grows, effects

previously discarded as environmental error must include an increasingly large number of

effects beyond variation in life history, including more complex adaptive and non-adaptive

plasticity mechanisms like behavior, epigenetic regulation, diversification, and non-genetic

modes of inheritance.

Recent observations indicate the existence of variable relationships between genotype and
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phenotype, in which a given genotype may in fact produce a range of phenotypes that can

fluctuate dynamically [35–39]. Even within clonal populations, individuals have been shown

to display quantitative differences that may distinguish them from genetically identical indi-

viduals. Phenotypic plasticity describes the phenomenon by which such individuals within

a population may differentiate from genetically similar members by non-genetic means. In

the context of rapidly fluctuating environmental conditions, possessing variable phenotypes

within even genetically similar populations generates the potential for individuals to be ran-

domly suited to uncertain conditions (i.e. non-adaptive plasticity) [14–20]. Alternatively, in

the context of a single environmental shift, survival may increase depending on the ability to

produce a phenotype well-suited to new conditions in response to such changes (i.e. adaptive

plasticity) [11–13]. While hypotheses concerning the adaptive value of plasticity have been

previously described, such variability largely appears to inescapably exist at the very least

on a molecular level, regardless of whether or not it may provide an adaptive advantage. In

fact, it has been shown that the minimization of such molecular noise requires the evolution

of very specific topological constraints [40].

Understanding the potential evolutionary consequences of such variability has often been

contentious, with studies suggesting that there is no evidence to show that plasticity in-

fluences adaptation [10]. However, various models and observations have delved into the

possible mechanisms by which plasticity may have evolved and the role that it may play

in shaping biological pathways[11–13, 16, 41–48]. In classical population genetics, standing

genetic variation alone produces a wide variety of phenotypes upon which natural selection

may act. As such, in the process of adaptation, genotype precedes phenotype under natural

selection. In contrast, models of phenotypic plasticity generally assume that, within a single

given genotype, an organism’s interactions with the environment paired with mechanisms

for adaptive and non-adaptive phenotypic plasticity can produce a wide variety of pheno-

types. In these models, it is these phenotypes, produced by both plasticity and underlying
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genetic variation, that are under selection. As such, phenotypic change may pave the way

for genotypic change in the process of adaptive evolution. Such a process has variously been

referred to as either genetic assimilation [49] or genetic accommodation [50].

2.2.2 West-Eberhard Model

According to Mary Jane West-Eberhard, the adaptive evolution of plastic traits may follow

a four-step process. First, an adapting population must have a degree of phenotypic plas-

ticity. Plastic traits will have the ability to display a range of phenotypes in response to

various inputs. These inputs may be simple external variation in the environment, but they

could also be novel genetic inputs as a result of mutation. West-Eberhard emphasizes that

these plastic phenotypes must have a degree of responsiveness to such inputs; otherwise,

environmental or even genetic changes would have no effect on phenotype. This scenario

stands in contrast to fully canalized traits with such robust buffering to varying input that

no alteration in phenotype would even be possible, resulting in cryptic variation [15]. Sec-

ond, when presented with a new input, either external or internal, the plastic traits produce

novel phenotypes in response. Here, a phenotype may have a wide range of adaptive and

non-adaptive responses to an altered input, resulting in phenotypic accommodation. While

phenotypes overall may have a broader distribution than in prior conditions, phenotypic

accommodation will allow for the production of at least some individuals with an optimal

phenotype. Regardless, this novel set of phenotypes now constitutes an altered substrate

on which natural selection may act. Third, if some phenotypic response to the new input

provide a selective advantage, these phenotypes may increase in frequency in the population

given a recurring input. Fourth, If this phenotypic response has a genetic component, genetic

accommodation may occur, fixing this new phenotype within a population. Notably, this

model departs only slightly from the classic mutation-selection view of adaptation, in that

the West-Eberhard model allows for the additional possibility of novelty being generated via
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plasticity and not only through mutational processes alone [50].

Computational and theoretical models testing various aspects of plasticity have been been

previously published, but few models exist that can directly test the West-Eberhard model

(see Discussion). Tests of the West-Eberhard model must possess two primary properties.

Firstly, individuals in a population should be able to produce a variable, non-genetic response

to the environment; and secondly, an optimal genotype should exist. The production of non-

genetic responses to the environment is a pre-requisite for both steps 2 and 3 of the West-

Eberhard model, while an optimal genotype must exist in order for a phenotype to be capable

of becoming genetically assimilated. While unable to fulfill these criteria, models of plasticity

and switching are still concerned with understanding the role of plasticity mechanisms in

adaptive processes, often addressing specific questions regarding the role of plasticity in

surviving uncertain conditions, understanding how plasticity is maintained, and determining

whether plasticity accelerates adaptation.

2.2.3 Prior Models

Intuitively, populations with greater phenotypic variation will survive a larger number of

stressful conditions than those with less variation, which would impart an advantage to hav-

ing greater VE . One interesting class of models that specifically examines this phenomenon

are phenotypic switching models [21]. Here, a genotype produces binary phenotypes, which

are subject to fluctuating binary environmental conditions. Such models constitute a depar-

ture from the notion that one genotype can produce a singular phenotype, particularly given

that, under fluctuating environmental conditions, no single phenotype would be able to sur-

vive both conditions. One key parameter of genotypes under these models is the phenotypic

switching rate. The rate at which phenotypic diversification occurs can differ drastically

among populations depending upon how beneficial variability is for survival. When change

occurs more quickly than organisms are able to genetically adapt to it—as in the case of
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seasonal changes, sudden environmental catastrophe, etc.-other strategies, either those ran-

domly produced prior to or in response to external changes, must then be employed in order

to avoid extinction. These models demonstrate how phenotypic switching allow populations

to survive disastrous extinction events [18, 41], with the central result of these studies being

that the optimal switching rate is equal to the environmental switching rate [16, 21]. Some

of these models have been extended to include a spatial dimension with added migration,

resulting in an increased risk of disasters over space and therefore favoring an increased

switching rate [18]. Certain extensions of these models have considered scenarios in which

the phenotypic or environmental switching rates may be auto-correlated. When selective en-

vironments are increasingly auto-correlated, slower switching phenotypes are favored, as the

likelihood of encountering successive environments to which a phenotype is suited increases

[18]. Alternatively, when selective environments are increasingly unpredictable-specifically,

when environments fluctuate on random timescales-the phenotypic switching rate will be

increasingly auto-correlated [22].

When considering models of phenotypic switching under the broader category of models of

phenotypic plasticity, it is important to clarify two key facets. First, the distinction between

heritable and non-heritable contributions to phenotype is significant, as under these models,

the switching rate is the genetic trait under control while the phenotype is random. Secondly,

an understanding of the temporal dynamics of the external environment is required, as the

environment is assumed to fluctuate, potentially on differing time scales and possibly with

or without a finite auto-correlation time. Such aspects have conceptual consequences in

understanding the concept of “genetic adaptation”. Regardless, the results of these studies

produce key insight into the evolution of non-adaptive plasticity. [16, 18, 19, 22, 41, 51]

Alternate models, including ours, focus on how differences in parameters controlling non-

heritable contributions to phenotype affect the fixation times of beneficial alleles [11, 23, 44].

As such, models of binary phenotypes may be insufficient for encapsulating certain aspects of
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the dynamics of adaptation. Although many models of phenotypic switching provide insight

into why fluctuations are central to the evolution of variability, insight into phenotypes

existing on a continuum remains limited. However, these models still can capture some

limited aspects of phenotypic plasticity. One such model is the Ancel model, which defines

phenotype as a continuous variable [11, 23]. Here, rather than having genetic parameters

control a single-valued phenotype alone, these parameters define instead a lower and upper

limit for a norm of reaction. During selection, the environmental conditions select for a

single optimal phenotypic value. In this model, selection is designed to reward having a

norm of reaction that contains the optimal phenotype, but punishes large norms of reaction.

Ancel-Meyers finds that in the process of adaptation to an environmental shift, the norms

of reaction will undergo two distinct epochs. First, the norm of reaction will expand to

accommodate the new environment, greatly increasing the fitness of individuals whose norms

contain the new optimal phenotype. Subsequently, the norm of reaction will shrink around

the new optimum, increasing fitness even further in comparison to those individuals with

a wider norm of reaction, suggesting that in static environmental conditions, plasticity will

be deleterious. This model was also used to show that phenotypic plasticity may accelerate

adaptation if the difference in optimal and initial phenotypes is sufficiently large. However,

if this condition is not met, phenotypic plasticity appears to retard adaption.

A second class of models examines the behavior of a continuous phenotype in the context

of binary states of a continuous environmental variable. While the norm of reaction in the

Ancel model is defined by two bounds, in this class of models, the norm of reaction is defined

as a linear function where a phenotype is strictly a genetic response to environment [13, 24].

In this model, as the environmental value increases, the phenotype variable will also increase,

with the degree of increase determined by the slope of the linear environment-phenotype

function: the norm of reaction, the only genetically controlled variable in these models. With

a high degree of plasticity, individuals may produce ideal phenotypes at both environmental
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conditions, with a large slope or gradient in the linear function, while less plastic individuals

will be unable to produce significantly different phenotypes when environment is varied,

resulting in a small slope or gradient. An intuitive analysis of this model shows that under

static conditions, plasticity is deleterious. If the environment fluctuates locally around only

one of both environmental conditions, for small perturbations in environment, a smaller

norm of reaction produces phenotypes much closer to the ideal phenotype than if individuals

had a larger norm of reaction. Specifically, under static conditions, it is highly favorable

to be under-responsive to small perturbations. However, this lack of response produces a

trade-off when large environmental shifts occur, as individuals should produce a similarly

large change in phenotype (thus larger reaction norm) to accommodate such a shift [13].

While the two models of plasticity discussed here differ significantly in interpretation,

they both model adaptive phenotypic plasticity and they both reach similar conclusions.

They agree that during adaptation, phenotypic response undergoes two epochs where the

norm of reaction first increases, then decreases around the new optimal phenotype. Under

static conditions, strong responses to small fluctuations are deleterious. However, as the

environment shifts, a higher degree of plasticity is favorable, allowing alleles allowing for

greater plasticity to increase within the population. As populations continue to adjust to

the new environmental regime, such sensitivity to environmental changes is then no longer

favorable, instead returning to the original state where plasticity is deleterious. Because of

this multi-step process, previous models have demonstrated that plasticity may accelerate

natural selection but only in very limited conditions where the distance between initial

conditions and optimal conditions is very large.

Though plasticity is deleterious under static conditions, as previously mentioned, an in-

crease in phenotypic variation will allow for potential adaptation to a wider range of selective

conditions, potentially allowing populations to cross otherwise uncrossable fitness bound-

aries. Classically, such variation is often thought to be maintained by genetic variation via
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mutation, selection, and epistasis [52]. Graphical models comparing intrinsic trade-offs of

fitness between various environmental conditions suggest that the nature of the trade-off

may favor various strategies for generating non-genetic variability. Populations that have

adapted to certain environmental conditions deal with an intrinsic trade-off between consis-

tent development under the broad range of frequently encountered environmental conditions

(in these models, adaptation) and the ability to respond to alterations and new conditions

(in these models, switching). The degree of variation among extant phenotypes in a given

population depends largely upon the benefit verses the cost of evolutionary trade-offs inher-

ent to phenotypic diversification. Here, weaker fitness trade-offs tend to favor a generalist

strategy, while strong trade-offs favor specialist strategies [43]. Additionally, such models

have shown that the fitness trade-off inherent to adaptive solutions may predict whether

adaptation or switching will be favored [42].

Rather than being a result of fluctuating environments, some have also postulated that

such plasticity may accelerate the process of genetic adaptation, and as such may provide a

mechanism for maintaining environmental variability [53, 54]. Others have suggested that,

overall, plasticity will tend to produce slower genetic adaptation than in the case of no

plasticity [46], or that it will only accelerate adaptation when plasticity allows for a quicker

encounter with an advantageous phenotype [11]. Regardless, results suggest that potential

acceleration of adaptation is insufficient to explain the maintenance of plasticity over long

periods [11]. Another model [34] additionally proposes that certain “engineering” costs to

precise expression of phenotypes may allow for the maintenance of non-genetic phenotypic

variability within a population. A model proposed by Wagner, Booth, and Bagheri-Chaichian

additionally shows how pleiotropy or associations between decreases in plasticity and changes

in mean phenotype may also allow plasticity to be maintained under static conditions [55].

The models reviewed here all incorporate different aspects of plasticity, such as a separa-

tion of phenotype and genotype or random fluctuations in environment or environmental re-
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sponse. However, none of these models can fully recapitulate the steps of the West-Eberhard

model. Only in models of phenotypic switching are genotype and phenotype fully segregated,

allowing phenotypic accommodation to precede the establishment of genetic accommodation

of new conditions. However, as the occurrence of a swapped phenotype occurs independently

of environmental conditions, such models may only capture certain aspects of non-adaptive

plasticity.

Unlike in models of phenotypic switching, previous models of phenotypic plasticity allow

for a broad range of phenotypes to exist, rather than simple binary phenotypes. In these

models, phenotype is the result of genotypic state (norm of reaction) interacting with the

current environmental state. However, as phenotype is a direct result of genotype, and all

individuals in a population are subject to the same environmental conditions, phenotype

thus has a one-to-one correlation to genotype during the process of adaptation. Due to this,

these models of phenotypic plasticity are not able to recapitulate the West-Eberhard model.

However, given that new phenotypes are produced as a direct result of an environmental

shift, such models may capture certain aspects of adaptive plasticity.

In the following section, we present a single, minimal model that allows for the study

of adaptive and non-adaptive plasticity while satisfying the conditions for testing the West-

Eberhard model.

2.3 Methods and Materials

2.3.1 Model

The aim of this section is to describe our minimal model of phenotypic plasticity. We compare

the results of in silico selection between populations that have either plastic or non-plastic

phenotypes. In order to model phenotypes with long-term stability and convergence, we

model these self-regulating phenotypes as a continuous value that is either the result of two
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feedback loops (one positive, one negative) for non-plastic traits, or three feedback loops (one

positive, one negative, one negative but noisy) for plastic traits (Figure 2.1). The simplest

such model is a logistic growth model.

Figure 2.1: Self-regulating traits. Phenotypes are modeled as the result of a minimal
self-regulating system. (A) Non-plastic phenotypes have two feedback loops, one positive
and one negative, while (B) plastic phenotypes have three feedback loops, one positive and
two negative, one deterministic, and one stochastic.

We first model non-plastic phenotypes, where an individual i in a population of size N

has a phenotype Pi,

dPi
dt

= γiPi − εiP 2
i . (2.1)

which is controlled by a set of genotype parameters {εi, γi}, representing the total genic

(non-epigenetic) contribution to phenotype. Phenotype is represented by an ordinary differ-

ential equation, modeled off of a trait that has two feedback loops, and that therefore has

the minimum requirements necessary to dynamically maintain a static trait value. There is

one positive feedback loop promoting an increase of said trait according to parameter γi and

a second, negative feedback loop repressing said trait according to parameter εi, working

in concert to maintain the phenotype at a specific value Pi = γi/εi over sufficiently long

periods of time. We may assume that this phenotypic value is produced as the result of

a population having previously adapted to static environmental conditions, such that the

long-term phenotypic value is the optimal phenotype. Notably, this model does not yet have
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any plasticity, so that phenotype Pi = γi/εi, and, all variability in phenotype (VP ) should

be a direct result of population differences in parameters γi or εi. In a population of clones,

there should be zero phenotypic variability, as there is no genotypic variability.

As individuals are subjected to a wide variety of non-genetic changes and complex genetic

interactions during development, we use a stochastic differential equation with multiplicative

noise to model the genotype-phenotype relationship, resulting in log-normal-like distributions

of phenotypes [56, 57]. We may change the ordinary differential equation of non-plastic

phenotypes represented in Eqn. 2.1 into a stochastic differential equation

dPi
dt

= γiPi − (εi + ξi)P
2
i , (2.2)

with additional epigenetic parameter ξi, representing the total non-genic (epigenetic)

contribution to phenotype. ξi represents the accumulation of non-genetic fluctuations an

individual in a population encounters throughout its lifetime, including environmental, de-

velopmental, and behavioral variation, resulting in a plastic, epigenetic response ξi. This

epigenetic response results in a decoherent feedback response via the second term of the SDE.

Importantly, in contrast to the non-plastic model represented in Eqn. 2.1, the accumulation

of random epigenetic variation results in a distribution of phenotypes within any given geno-

type. Similar heavy-tailed distributions have been observed for widely varied phenotypes,

such as intracellular protein levels, cell size, or even clutch size [35, 58, 59].

The consequences of this non-genetic variability on population phenotypes are modeled

by ξi and its genetic control parameters, Di and τi. ξi is a random variable with mean 0

resulting from a Wiener process. ξi is also auto-correlated with magnitude Di and time τi

such that

〈ξ(t0), ξ(t)〉 = Die
−|t−t0|/τi . (2.3)
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Notably, the genetic parameters Di and τi control the epigenetic value ξi but cannot

directly dictate its value, which is still a random variable. As Di controls simply the mag-

nitude of plasticity, this represents genic control of the non-adaptive plastic response to

environment. Similarly, τi controls the auto-correlation or memory of plasticity, allowing

subsequent generations to have similar, favorable epigenetic responses produced in prior

generations. This represents genic control of the adaptive plastic response to environment.

Therefore, in contrast to the 2 parameters of the the non-plastic model, individuals con-

trolled by Eqn. 2.2 should have 4 total genetic parameters {γi, εi, Di, τi} (Table 2.1). As an

individual’s genotype does not have a one-to-one correlation to a given phenotype, pheno-

typic space is degenerate, where any given phenotype may have been produced by a number

of different combinations of genotypes.

Symbol Variable
N Population size
i Individual i ∈ {1, 2, ..., N}
Pi Phenotype of individual i
ξi Epigenetic value of individual i
γi Deterministic growth parameter/genotype of individual i
εi Deterministic repression parameter/genotype of individual i
Di Magnitude of plasticity (non-adaptive) parameter/genotype of individual i
τi Auto-correlation of plasticity (adaptive) parameter/genotype of individual i

Table 2.1: Summary of variables.

If the effects of ξi are increased (increased Di), there is greater randomness that is

not buffered and is therefore integrated into an individual’s phenotype (higher phenotypic

variation). Once selective pressures are applied to populations, the auto-correlation term τi

allows for a more or less consistent response to selection. With a longer auto-correlation time

(larger τi), offspring will produce similar responses to successive selective events (more auto-

correlated), whereas with a shorter auto-correlation time (smaller τi), offspring are likely

to have a more varied and heterogeneous response (less auto-correlated). As ξi has unique

auto-correlated properties, ξi is generated by using a colored-noise Runge-Kutta method
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[60].

This SDE has two key properties: the mean phenotypic value remains γi/εi, and the

phenotypic distribution results in a steady-state distribution over sufficiently long periods

of time [56, 57]. Under a quantitative genetics framework [23, 52], VP = VG + VE , so that

individuals within a clonal population may have a non-zero variation of phenotype. Note

that the addition of a stochastic term to a simple logistic growth model satisfies the first

step of the West-Eberhard model, specifically that a trait will have differential responses to

input.

2.3.2 In-silico Selection

Given both plastic and non-plastic models, we then apply in silico selection for haploids with

Gaussian fitness, resulting in a new selective environment (Figs. 2.2, 2.3). Since selection is

applied only to phenotype, and fitness is related simply to the phenotypic distance between

the individual’s phenotype and the optimal phenotype, there is no direct penalty for plasticity

in this model. We note that in these simulations, individuals initially inherit the epigenetic

value ξi in reproduction, followed by the accumulation of noise, resulting in a new epigenetic

value that fits the relationship Eqn. 2.3. As such, this epigenetic inheritance is transient, as

the values of ξi randomly drift during development and throughout the individual’s lifetime,

resulting in an inheritance of ξi over multiple generations that decreases according to the

auto-correlation parameter τi [47]. Similar effects have been seen in natural populations

[39]. We also note that the random value ξi is specific to each individual/lineage, and is not

shared across all individuals in the shared environment. We stress, therefore, that ξi should

not be seen as environmental fluctuations, but instead each individual’s unique response to

the common, shared environmental conditions defined by the fitness function. The optimal

phenotype for the given environment, Popt, does not vary between individuals - it is the same

for the entire population.
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Figure 2.2: Differential equation illustration. (A) Non-plastic phenotypes. For
non-plastic phenotypes, phenotype is strictly defined by genic control parameters, γ and ε,
where the trait value is the equilibrium between the “forces” of growth (ε) and repression (γ).
(B) Plastic phenotypes. For plastic phenotypes, phenotype is defined by genic control
parameters, γ and ε, as well as the random epigenetic parameter ξ, which is controlled by
D (magnitude of plasticity) and τ (auto-correlation). With plasticity, trait value is random,
but converges on a steady-state distribution around γ/ε. (C) Adaptation. Populations
are challenged with a new environmental condition, favoring an optimal phenotype far from
the initial conditions. (D) Phenotypic accommodation. By disallowing mutation of
genic control parameters, when challenged with a new environmental condition, populations
adapt to the new environmental conditions through epigenetic means alone. As a whole, the
genic control parameters pull populations towards a distribution around γ/ε. To maintain
populations around the optimum, epigenetic parameter ξ compensates by favoring larger,
non-zero values of ξ, while increasing the degree of plasticity and auto-correlation (c.f. Figure
2.4).

Genetic algorithms (in silico selection) generally consist of the following steps: muta-

tion, selection, and repopulation. These steps are iteratively processed over a population

of candidate solutions, with each generation yielding a new population that has been ge-

netically influenced by the previous generation. Beginning with an initial seed population,

each candidate solution within the population is scored based upon a pre-determined objec-

tive function. Forward simulation steps, if necessary, were solved for a set generation time

T . Subsequent generations were repopulated using Wright-Fisher/multinomial sampling for

monoploids using fitness w.

Objective functions are often a representation of a difference between the phenotypic value
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of each candidate solution and the optimal phenotype provided. The objective function here

is defined by fitness w, which is defined by a Gaussian function with mean phenotype µ

and standard deviation σ, where wi = 1
σ
√
2π
e−

1
2

(
(Pi−µ)/σ

)2
. Here, stringent and relaxed

directional selection was applied using µ = 1/90, σstringent = 10−4 and µ = 1/90, σrelaxed =

10−3 respectively. After scoring, a new population is generated based upon a multinomial

sampling of the previous generation’s population, with the relative probability of generating

progeny being proportional to the objective function’s score. Individuals with higher fitness

values will have higher relative probability of generating progeny, while less fit individuals

should have a lower probability. Here, the new generation is populated until a pre-determined

population limit has been reached (i.e. fixed population size).

After repopulation, mutations are applied using a move-generation algorithm, sampling

neighboring states using a fixed mutation rate. Mutations were applied as changes in pa-

rameters {γi, εi, Di, τi
}

with a mutation rate u of 0.05 mutations per individual per gen-

eration. Unless otherwise noted, only the parameter εi was varied with fixed parameters{
γi, Di, τi

}
=

{
1, 100, 0.01

}
, with initial conditions ε0 = 67. Note that genetic parameters

are integer valued, except in the case of taui, which is valued at integer multiples of 0.0005).

The magnitude of each mutation was drawn from a geometric distribution with probability

p = 0.5 (e.g. for γ, Pr(|∆γ| = k) = (1 − p)k(p) = (0.5)k(0.5) for k = 0, 1, 2, ...) unless

otherwise noted. The direction of the mutation was also drawn randomly, with an increase

or decrease chosen with probability 0.5. If a forward-simulation step is required, such as in

the case of solving a differential equation, the related steps are applied after mutation and

before selection. Selection then is again applied over the entire population, yielding the next

generation.

Two main population sizes were used in this study, N = 100 and N = 1, 000. Population

simulations were performed in replicates of 100 simulations. These were chosen to allow for

comparisons between replicate populations, while reducing computational costs. Addition-
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Figure 2.3: Differential equation illustration. (A) Plastic phenotypes. A sample
population with four individuals is drawn, with vertical axes representing phenotypic value
and horizontal axes representing time. Individual phenotypes undergo fluctuations over a
pre-determined period of time until selection is applied, using multinomial sampling for
monoploids with selection coefficients assigned by a Gaussian fitness function. (B) Non-
plastic phenotypes. A similar sample population to (A), but phenotypes do not have any
plasticity and phenotypic values are determined directly by the genotypic values. Selection
is still applied using multinomial sampling for monoploids and Gaussian fitness.

ally, small population sizes allowed for a greater influence of stochastic effects, as well as

exaggerating the influence of beneficial phenotypes resulting in multiple bottlenecks.

2.4 Results

2.4.1 Phenotypic Accommodation

Given that the stochastic differential model fulfils the first step of the West-Eberhard model,

the second step of the model is the development of phenotypic accommodation. Specifically,
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in a shifting environment, certain individuals will be able to produce an adaptive phenotype

in response to altered conditions. To determine whether our simulations would be able to

produce phenotypic accommodation, we set the mutation rate for genic parameters (i.e. γi

and εi) to 0, while allowing epigenetic parameters (i.e. Di and τi) to evolve in populations

of size N = 1000 and performed 100 replicate simulations. We challenged a population of

individuals with stringent or relaxed environmental conditions then allowed individuals to

adapt. Given these conditions, epigenetic parameter ξi alone could produce fully phenotyp-

ically adapted individuals (Figure 2.4), even when the mutation rate for genic parameters

(γi, εi) is zero. This accommodation is rapid, with the population fully adapting within

approximately fifty generations. As the genic parameters were not allowed to mutate, full

adaptation was compensated for by a response in epigenetic variable ξi alone (Figure 2.4).

Note that, in the initial steps of adaptation, ξi produces a strong response out of equilibrium

before eventually settling on an equilibrium value far from 0. As ξi is the result of a Wiener

process, ξi should have a mean of 0, but the system is pushed far from that equilibrium value.

By allowing the magnitude of plasticity Di and the auto-correlation/memory parameter τi

to mutate, these simulations produce a response where increased plasticity and increased

memory are favorable. In this scenario, we can consider the shift in selective environment as

a recurrent selection input, and due to this recurrence and the inability of the genic param-

eters to mutate, greater plasticity and memory is advantageous. While we have disallowed

genic parameters to mutate at all in this case, a similar response of increased plasticity and

memory may also be favorable in conditions where genetic mutation is significantly slower

than mutation in epigenetic parameters as well (c.f. Establishment and Maintenance of

Plasticity). To understand the detailed dynamic of phenotypic accommodation and epige-

netic compensation under these developmental conditions, we may consider the equilibrium

phenotypic value produced by this population’s genotype. In this case, the genic values

γi and εi act in concert to pull phenotypic values of the population back to the predicted
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steady-state distribution around γi/εi. However, due to selection for a phenotypic optimum

that is departed from γi/εi, phenotype must be compensated for by the epigenetic parameter

ξi (Figure 2.2).

Though ξi should accumulate randomness, thereby returning to mean 0 with variability

Di, there are two demands on ξi preventing this. The first is the demand that epigenetic

parameter ξi is sufficiently large so that at least some phenotypes that may be near the new

optimum. Overall, plasticity magnitude alone, which is Di, increases the overall variability

in Pi in an unbiased, non-adaptive fashion. To increase the random chance of producing

offspring with a sufficiently large epigenetic parameter ξi, Di increases. The second demand

is that epigenetic parameter ξi continues to remain sufficiently large over time, thus avoiding

being distributed around 0. That is to say that, given a parent with an epigenetic parameter

ξi producing fit parents, the offspring will now be likelier to have a similarly adapted ξi as

its parents. This results in an increase in the auto-correlation parameter τi. Together, these

steps represent the second step of the West-Eberhard model, phenotypic accommodation.

2.4.2 Genetic Accommodation

Given that our model can produce phenotypic accommodation, we then allowed only the

genic parameter εi to mutate in our model, excluding mutations in epigenetic parameters

Di and τi. To test for genetic accommodation, we performed 100 replicate simulations

of populations of 100 individuals under stringent and relaxed directional selection. This

population size was chosen to exaggerate certain features of genetic adaptation in plastic

regimes (i.e. transient fixation events due to successive bottlenecks, see below & Figure 2.5).

Allowing only genetic parameter εi to mutate, simulations were performed for populations

with both plastic (Eqn. 2.2) and non-plastic (Eqn. 2.1) phenotypes.

Figure 2.5 provides a representation of mean genotypic (i.e. εi) changes for replicate pop-

ulations with plastic and non-plastic phenotypes under two selection regimes: stringent and
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Figure 2.4: Phenotypic accommodation favors increased plasticity and auto-
correlation 100 replicate populations of 1000 plastic individuals (T = 2τ) were subjected to
stringent (µ = 1/90, σ = 10−4) selection, with mean parameter values for each replicate pop-
ulation shown above for (A) Di and (B) τi, one line per replicate population. Though genic
parameters were not allowed to mutate, (C) population phenotypes fully adapted to new
environmental conditions through (D) epigenetic compensation. The epigenetic parameter
(ξi) compensates for a non-optimal genic configuration (γi/εi far from Popt), consistently
remaining far the expected value of 0. Under such conditions, increased Di (non-adaptive
plasticity) and τi (adaptive plasticity) are favored.
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Figure 2.5: Plastic populations are robust to changes in selective forces. 100 repli-
cate populations of 100 individuals were subjected to stringent (µ = 1/90, σ = 10−4) and
relaxed (µ = 1/90, σ = 10−3) selection regimes for non-plastic or plastic traits. The mean
genotypic values for εi are shown, one line per replicate population, demonstrating how
plasticity allows populations to have more robust responses to changes in selection pres-
sures. When relaxed selection is applied, non-plastic populations converge more rapidly
and smoothly to the optimal genotype than plastic populations (top row). However, when
stringent selection is applied, non-plastic populations undergo drift until an advantageous
genotype is found, followed by rapid fixation, while plastic populations converge smoothly
and rapidly on the optimal genotype (bottom row). The cumulative fraction of genetically
adapted replicate populations (±5% of εopt) within non-plastic simulations are significantly
more sensitive to differences in selection than plastic simulations. In conditions of relaxed se-
lection, non-plastic populations (black) adapt faster than plastic populations (red), however
in conditions of stringent selection, plastic adapt first.
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relaxed. By allowing only for mutations in εi alone, we can see that changes in genic param-

eters allow for the eventual genetic accommodation of new environmental conditions - the

last steps of the West-Eberhard model. In early generations, ξi helps to produce selectively

advantageous phenotypes (c.f. Phenotypic Accommodation). However, as mutations

in genic parameters allow for the production of optimal phenotypes through genetic means

alone, the epigenetic response is no longer needed to produce fit individuals. Due to this, the

epigenetic parameter ξi returns back to 0, in contrast to in the case of phenotypic accommo-

dation (Figure 2.4). Overall, in the process of adapting to altered environmental conditions,

plasticity helps to ameliorate the negative consequences of an unexpected environmental

shift.

For the non-plastic model, the genotypic responses under relaxed selection form a rel-

atively smooth curve with minimal noise on the upward trajectory, revealing a consistent

progression of all populations towards the optimal genotype. Because relaxed selection al-

lows for a wider range of advantageous genotypes, adapting populations successively gain

increasingly beneficial mutations and follow a selective gradient until reaching an optimum.

The genotypes of these adapting populations rapidly converge near the genetic optimum of

90, with small deviations resulting from genetic drift. Additionally, these non-plastic popu-

lations rapidly reach an optimal state within approximately fifty generations. By contrast,

plastic populations under relaxed selection show a slower pattern of convergence on the op-

timal genotype within approximately 200 generations. Rather than progressing steadily and

consistently towards an optimum, the plastic populations show a very large degree of varia-

tion in genotype, sometimes severely over- or undershooting the ideal. Such an effect occurs

due to selection acting on phenotype, rather than genotype. However, phenotypic conver-

gence on the optimum remains smooth (Figure 2.6). As the range of possible phenotypes

becomes larger due to plasticity, adaptation/accommodation in plastic populations is less

smooth and directed than in the case of populations with less plastic genotype-phenotype
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relationships under conditions of broad selection. When combined with relatively relaxed

selection, this phenomenon causes the genotypes of plastic populations to converge slowly

on the optimum phenotype. In contrast to the non-plastic populations, they do not steadily

progress as directly towards the ideal and therefore do not adapt as efficiently.

Figure 2.6: Populations with plastic phenotypes converge smoothly on optimum
Mean phenotypic values for populations shown in Figure 2.5 are plotted, one line per repli-
cate population. The behavior of non-plastic phenotypes match the behavior of population
genotypes due to the one-to-one relationship between genotype and phenotype. However,
while these phenotypic trajectories for non-plastic populations vary greatly (left), phenotypic
trajectories for plastic populations converge smoothly on the pre-defined optimum (right).
This effect is more pronounced in conditions of stringent selection (bottom).

Results differ significantly when one compares the effects on genotype under stringent

selection for plastic and non-plastic populations. In the latter case, genotypes vary widely

among replicate populations as a result of drift. As opposed to conditions of relaxed selec-
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tion, non-plastic populations under stringent selection do not progress continuously along a

selective gradient towards the optimum, since only phenotypes at or near the ideal confer a

survival advantage. Here, phenotypes instead appear to be, in a sense, binary, as they are

either largely beneficial to selection or effectively neutral. The populations develop various

neutral mutations until hitting upon one at random that provides a large selective advan-

tage. This effect results in a series of rapid fixation events, as each population reaches an

optimum and then deviates very little from it.

A measurement of the fraction of genetically adapted/accommodated populations (Figure

2.5b) supports the observation that plastic populations converge on the pre-determined opti-

mum more efficiently under stringent selection, while those that are non-plastic adapt more

quickly in response to relaxed selective pressures. Within 150 generations, all non-plastic

populations under relaxed selection and all plastic populations under stringent selection have

genetically adapted fully to the new selection conditions. In both cases, accommodation oc-

curred along a clearly defined selective gradient. Meanwhile, a number of populations under

plastic/relaxed conditions and under non-plastic/stringent conditions have failed to adapt

to their respective optima within 200 generations. In particular, non-plastic populations on

average adapt far more slowly under stringent selective pressures, as they are limited by the

appearance of beneficial alleles through mutations alone.

While our models do not incorporate disasters and total-population extinction due to

our fixed-population-size simulations, it should be noted that under conditions of stringent

selection, all non-plastic replicate populations would have experienced total extinction in the

first few generations of applied stress. Rather than allowing for such scenarios, the model

instead allowed populations to undergo genetic drift. Such results indicate that there is a

certain degree of plasticity that is required for survival under extreme selective conditions

[18, 19]. Regardless, our findings agree as, in general, plasticity does not necessarily ex-

pedite adaptation. In the scenario of broad selection, a non-plastic population may more
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rapidly adapt to an altered environment when compared to plastic populations. However, in

the scenario of stringent selection, plastic populations adapt more rapidly than non-plastic

populations.

2.4.3 Genetic Turnover and Mutation-Selection-Drift Balance

To examine how phenotypic plasticity affects mutation-selection-drift (MSD) balance, we

determined the degree of genetic turnover for all populations shown in Figure 2.5. We

performed an auto-correlation analysis to determine the degree of turnover in mean geno-

type values (εi) for plastic and non-plastic populations (Figure 2.7). Specifically, we took

replicate populations at this MSD equilibrium, and calculated the auto-correlation (Pearson

correlation coefficient) of the mean population genotype values.

Figure 2.7: Genetic turnover in plastic populations is robust to varying selection
conditions. At mutation-selection-drift (MSD) balance, turnover of alleles still occurs. Us-
ing 100 replicate populations of 1000 individuals at MSD balance, the degree of genetic
turnover is represented here by the auto-correlation of the mean genic parameter εi for the
set of 100 replicate populations. (A) Under relaxed selection conditions, non-plastic pop-
ulations turn over more frequently than plastic populations. (B) Under stringent selection
conditions, plastic populations turn over less frequently than non-plastic populations. Plas-
tic populations appeared to be less responsive to various selection conditions ((A) relaxed,
(B) stringent) than non-plastic populations.

The results of the auto-correlation analyses reveal a more robust degree of genetic turnover
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for plastic populations in comparison to non-plastic populations. Regardless of the degree

of selection, each generation of plastic individuals gradually diverges from its previous state

under plastic conditions. Meanwhile, non-plastic populations do not display this same, ro-

bust turnover. Under relaxed selection, the degree of auto-correlation rapidly diminishes

for non-plastic populations, while those under stringent selection show an extremely low

rate of genetic turnover, with the auto-correlation value varying very little in the examined

time frame. Overall, populations display a buffering of the degree of turnover from various

selective conditions.

2.4.4 Loss of Variability

The previous sections have demonstrated how plasticity is beneficial under conditions of dra-

matic selective changes. Additionally, we have shown that plasticity buffers genetic turnover

from variations in selection. We now consider whether plasticity is deleterious during static

selective conditions. To test whether phenotypic plasticity presents a selective disadvantage

at MSD balance, we performed in silico selection on plastic and non-plastic populations,

making the only mutable parameter the degree of variability (Di).

In accordance with expectations, populations under stringent selective pressures show a

strong downward trend in phenotypic plasticity over many generations (Figure 2.8). Most of

these populations show a significant decrease in their degree of variability, with some having

their average plasticity decreased by nearly half. Therefore, while plastic populations under

stringent selection can reach MSD balance more quickly than non-plastic populations, once

the system has come to an equilibrium by reaching an ideal phenotype, the potential benefit

for phenotypic variety decreases.

By contrast, populations under relaxed selection do not show a decrease in plasticity after

1000 generations. Unlike in the case of stringent selection, small populations under relaxed

selection have a broader range of phenotypes which could be considered beneficial. So long
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Figure 2.8: Phenotypic plasticity under static conditions is weakly deleterious. At
mutation-selection-drift balance, plasticity does not to contribute any meaningful selective
advantage. Shown are mean Di values for 100 replicate populations of 1000 individuals
at mutation-selection-drift balance, one line per replicate population. So long as the phe-
notypic variability is sufficiently within the bounds of applied selection, as in the case of
relaxed selection, plasticity is near neutral and thus may be maintained in a population for
extended periods (left). However, if the stringency of selection is increased, plasticity is
weakly deleterious (right).

as the result of phenotypic variability, which includes both VE and VG, is sufficiently smaller

than the width of the Gaussian fitness function, the degree of plasticity within a population

should not be highly detrimental. Under these conditions, the variability originating from

plasticity is not as deleterious as it may be for populations under stringent selection.

2.4.5 Establishment and Maintenance of Plasticity

While prior studies have shown how plasticity is often deleterious under constant environ-

mental conditions (c.f. Prior Models), at best serving to avoid extinction during dramatic

environmental shifts, we have demonstrated that under similar static conditions, plasticity

can both be advantageous (Figure 2.4) or deleterious (Figure 2.8). In our model, phenotype

is a single-valued variable, produced by a combination of both genic and non-genic/epigenetic
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contributions. As multiple mechanisms can produce the same phenotype, any given pheno-

typic value in our model is highly degenerate, with a broad set of genotypic parameters (genic

and non-genic) being able to produce the same outcome. However, while phenotype may be

degenerate, thus allowing individuals to survive a single selection event, the degree to which

a phenotype is produced through genic pathways vs epigenetic pathway produces trade-offs

in subsequent generations. The more a phenotype is dependent on epigenetic compensation,

the less likely that subsequent generations will produce a similar response in comparison to

producing the same phenotype through mostly genic means. Intrinsically, this effect forces

a strong trade-off during the evolution of plasticity - progeny may be better optimized for

current conditions but will be less likely to survive further environmental changes.

Consideration of this trade-off leads to the natural conclusion that under constant con-

ditions, quantitative traits should begin to canalize and lose plasticity. However, under

changed environmental conditions, natural selection will also favor the fastest route to ac-

commodation of a new environment, whether it be by genic or non-genic means. Indeed,

this effect manifests itself as the so-called ”Baldwin Expediting Effect” [11], where plasticity

appears to be transiently beneficial during adaptation, first increasing, then subsequently

being selected against [13]. Similarly, optimization of adaptation rate also explains why the

switching rate in models of phenotypic switching [16, 18, 19, 22, 41, 51] will match the rate

of environmental fluctuations. In general, such transient increase in variance is a result of

minimizing adaptation time [57].

While previous studies suggest phenotypes would begin to canalize under static con-

ditions, we have demonstrated that plasticity may in fact be advantageous under certain

extreme conditions, such as when genic solutions are completely inaccessible (Figure 2.4).

To further explore this transition, we constrain the relative mutation rates of genic and non-

genic control parameters. We define a new variable r ≡ µgenic/µepigenetic, where µgenic and

µepigenetic are the mutation rates for genic and epigenetic control parameters respectively.
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We can see now that in the case of full epigenetic compensation, plasticity increases when

r = 0 (Figure 2.4), and when genic control is mutable, decreases when r = 1 (Figure 2.9).

Figure 2.9: Relative mutation rate determines evolution of plasticity Populations
(100 replicates) consisting of plastic individuals (N = 1000) were presented with a new en-
vironment while the relative rate of mutation of genic and non-genic parameters (r) was
varied. Shown here is the mean population behavior at each r value, averaged over 100
replicate populations, one line per r value. While in all cases, (A) phenotypic accommo-
dation of the new environment occurred rapidly, (B) the ability of individuals to provide
a genic solution (εi) to new conditions was hindered. (C) Where genic solutions were not
easily produced, epigenetic compensation occurred, (D-E) allowing both non-adaptive and
adaptive plasticity to be advantageous within the given epoch.

We applied in silico selection (stringent selection) to 100 replicate populations of 1000

individuals while varying the relative mutation rate r (Figure 2.9). As r is varied, the rela-

tive rate of phenotypic accommodation remains roughly the same in all cases (Figure 2.9A),

though, slightly more rapid accommodation is seen at higher r values. While the mean

phenotype in these populations remains similar, the genic contribution to phenotype (Figure

2.9B) varies dramatically as the relative mutation rate for genic parameters is decreased. In
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the case of low r, as the new environment is phenotypically accommodated, the epigenetic

value ξi instead compensates for the inability to produce an optimal phenotype using genic

means alone (Figure 2.9C). As seen in previous sections, ξi compensates for sub-optimal

genotypes initially under all conditions, then within the given epoch, ξi is no longer needed

for large r, returning to a mean of zero, reflecting the canalization of this phenotype by genic

means. However, for small r, ξi continues to be important for the production of optimal phe-

notypes, subsequently increasing again. The genetic control of ξi (i.e. Di and τi) similarly

stratifies depending on r (Figure 2.9D-E). As r decreases, genic solutions to new environmen-

tal conditions become less evolvable and epigenetic compensation becomes an increasingly

important mechanism for survival, causing both non-adaptive and adaptive plasticity to be

more advantageous within the given epoch. Should a further shift in environment occur after

the current epoch, the net result would be that both adaptive and non-adaptive plasticity

are overall increased within a population, rather than canalizing. However, as the limit of

r approaches zero and genic solutions become completely inaccessible, the amount of time

until canalization will approach infinity.

2.5 Discussion

2.5.1 West-Eberhard Model

Mary Jane West-Eberhard has proposed that plasticity plays a central role in the process

of adaptation. Under this model, phenotypes that produce differential responses to input

encounter a newly recurring input that is both phenotypically and genotypically accommo-

dated. However, previous genetic models have been limited in their capacity to recapitulate

this idea. In particular, quantitative genetic models involving explicit and parameterized

phenotypes, while able to provide insight into forces acting on overall non-genetic pheno-

typic variability, typically cannot produce differential responses to a new input and do not
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allow for the possibility of phenotypic accommodation [13, 24, 34, 48, 55]. Even models of

phenotypic switching–which allow for the possibility of variable responses to a new input, de-

generate genotype-phenotype relationships, and phenotypic accommodation [16, 21]–cannot

model genetic accommodation beyond adjusting the switching rate to maximize survival to

fluctuating environmental conditions.

The model used in this study provides a way of examining the behavior of populations

that are phenotypically responsive to novel environmental inputs. As demonstrated by repli-

cate simulations of populations in which only phenotypic parameters were allowed to mutate

in response to stringent selection, full adaptation to new environmental conditions occurred

within fifty generations (Figure 2.4). All populations reached a new optimum phenotype

that was then maintained solely through epigenetic rather than genotypic change, as shown

by the fact that the epigenetic parameter ξi remained at a quantity above 0. As such, our

model not only shows the progression of plastic populations’ phenotypic change in response

to novel inputs, but our model also has the capacity to distinguish between genic and epi-

genetic methods of accommodation. It therefore stands in contrast to otherwise similar

models, including neural network models of gene regulation [46, 61]. Such models, which

can provide differential responses to input, may demonstrate complex behaviors given rel-

atively few assumptions and have even been shown to depict canalization when applied to

real data [62, 63]. Such models are able to produce networks that are robust to fluctuating

environmental conditions; however, such networks must be evolved genetically/trained to be

able to produce such responses [61]. As such, segregation of phenotypic accommodation and

genotypic accommodation is difficult in such models.

2.5.2 Changing Environments

Our model shares conceptual similarities to other models of phenotypic plasticity, as well as

to learning behaviors [11, 13, 23, 24, 54]. In prior models [11, 13, 23, 24], the survival of
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an individual depends upon whether or not the selected phenotype is within an individual’s

norm of reaction when selection is applied. Similarly, in our model, a genotype is more

likely to survive depending on whether or not the optimal phenotype is contained within the

phenotypic distribution produced by a given genotype. However, this result is contingent

upon the individual with said genotype being in a favorable phenotypic state at the time

of selection, a key difference between these prior models and our model. Specifically, the

former are unable to distinguish between genetic and epigenetic effects. To wit, in prior

models, genotype strictly defines the norm of reaction, where individuals possess elevated

fitness only if a new optimal phenotype is contained within that norm of reaction. Such a

model is not only unable to recapitulate the West-Eberhard model, but also assumes that

plasticity may only be adaptive in response to an environmental shift. This stands in contrast

to our model, where an optimal phenotype may be well outside the associated phenotype

distribution determined by the genotype but can still be produced regardless via epigenetic

means.

Nevertheless, prior models, like the Ancel model, provide insight into how plasticity may

ameliorate the effects of an environmental shift [11, 13, 23, 24]. The Ancel model is pri-

marily concerned with understanding whether plasticity/learning may accelerate adaptation

by examining the ideas behind the Baldwin expediting effect [54]. Using her model, the

author is able to demonstrate that plasticity may only “expedite the search from an initial

population distribution to the first encounter with the optimum phenotype” and that this

effect is observed for “initial genotype distributions sufficiently distant from the target.” [11].

Our model produces similar results in that plasticity does indeed expedite a population’s

first encounter with a more fit phenotype in the case of both relaxed and stringent selection.

However, whether or not plasticity ultimately increases a population’s rate of adaptation de-

pends upon the conditions under which selection occurs; in our model, the optimal phenotype

remained the same in both stringent and relaxed selection.
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Further effects not previously described are also seen with our model. In the case of

populations under stringent selection, once both genic and epigenetic parameters are al-

lowed to mutate, plastic populations show a much more consistent and directed progression

towards the optimum genotype as opposed to non-plastic simulations (Figure 2.5). Unlike

in the case of the non-plastic simulations, where many of the individual plastic populations

transiently display several extremely sharp spikes followed by plateaus, plastic populations

adopt genotypes progressively nearer to the optimum. The genotypic progression of the

plastic populations under stringent selection forms a well-defined curve before reaching a

plateau around 90, with deviations caused by genetic drift. Plasticity thus allows these pop-

ulations to adapt more quickly as they progress along a selective gradient that has become

sufficiently smoothed in comparison to the non-plastic populations. This same trend is not

seen in plastic populations under relaxed selection, however, which fail to converge on an op-

timum phenotype in the number of generations that non-plastic populations do in following

a selective gradient.

We find that the rate of adaptation, as reflected by the cumulative fraction of genetically

adapted populations (Figure 2.5), is dependent on both the manner of selection and the

degree of plasticity in a population. This result is in agreement with the Ancel model, which

states that plasticity does retard adaptation when both plastic and non-plastic populations

readily adapt to a new optimum, as opposed to needing to undergo a large number of

changes to adapt. However, in contrast to the Ancel model, genotype in this case may be

segregated from phenotype due to epigenetics, and as such, initial genotypic distributions

for all simulations in this section were identical with ε0 = 67 in both plastic and non-

plastic conditions. Simply taking the difference between initial and optimal phenotypic and

genotypic values is not sufficient: the overlap of phenotypic and genotypic distributions

with selection gradients must be considered. Our results also suggest that while non-plastic

populations are highly sensitive to the conditions of selection that are applied, plasticity
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allows populations to be more robust to such variation, a feature that is absent from the

Ancel model. Such results may have broader implications for interpreting substitution rates

based on sequencing data, as plasticity “smoothens” out the degree of genetic turnover

(Figure 2.7).

2.5.3 Maintenance of Plasticity Under Static Conditions

For plasticity to be maintained in a population, the results of previous studies suggest that

a constantly and randomly fluctuating environment may be the only method by which plas-

ticity could be maintained (c.f. Prior Models). The maintenance of plasticity under static

conditions remains an open problem.

Our model has shown how plasticity may variously increase, decrease, or be maintained

under different selective conditions. Specifically, we have shown that when mutation of

genic parameters is disallowed, increased plasticity is selected for under static conditions

(c.f. Phenotypic Accommodation). We also have shown that, so long as the range of

phenotypes produced both by genotypic and environmental variability is sufficiently within

the bounds of directional selection, plasticity may be maintained in a population under static

conditions. Alternatively, if the range of phenotypes produced exceeds the bounds set by

directional selection, decreased plasticity is selected for (c.f. Loss of Variability).

When undergoing change to adapt to unfavorable environments, populations that express

a variety of phenotypes are more likely to be able to adapt quickly, since beneficial phenotypes

are more likely to be present and selected for. However, this same trait may act as a detriment

under steady-state conditions, as the potential for variation causes the phenotypes to deviate

from the ideal. Therefore, in agreement with prior results, plasticity within populations may

reduce over time, especially if genic solutions are easily evolvable, resulting a loss of variability

and canalization (Figure 2.8).

However, our results also demonstrate how plasticity may be favored and subsequently
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increase within a population within static environmental conditions (Figure 2.9). We find

that in altered conditions, so long as epigenetic solutions are more evolvable than genic

solutions, plasticity will be beneficial. Central to this result is variation in the relative

mutation rate for genic and non-genic control of phenotype. A number of factors could

contribute to r, as pleiotropy, linkage, epistasis, essentiality, or other genetic conflict can

prevent the occurrence of certain types of changes. Similarly, the underlying architecture

of the genetic networks providing both genic and non-genic control of phenotype may also

provide for an overall larger or smaller substrate for mutations by simply having a larger

number of mutable positions within the genome.

We also note that the trajectory of genetic control of plasticity is not only dependent on

r, but also the epoch of time considered. If conditions remained static for sufficiently large

times, all traits would eventually undergo canalization. Similarly, as r approaches 0, the time

until canalization increases without bound. The simplest way to define the end of an epoch

would be a subsequent shift to a new environment. In this case, plasticity could continue

to increase in a population so long as the time before a subsequent environmental shift is

shorter than the time required to undergo genetic accommodation of a new environment.

Alternatively, the considered epoch may also end when the relative mutation rate r is altered.
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CHAPTER 3

THE ROLE OF THE 3-DIMENSIONAL GENOME IN NEW

GENE EVOLUTION

3.1 Abstract

In efforts to explain how duplicate gene copies may rise to fixation in a population, previous

models of new gene origination have underappreciated the importance of the 3D genome

in this process. We show that positional effects on distally duplicated genes, i.e. enhancer

capture, is an efficient mechanism for accommodation of new selective conditions. By per-

forming a co-expression analysis on D. melanogaster tissue data and comparing essential

to non-essential genes that have newly evolved, we show that enhancer capture is a sig-

nificant driver of new gene evolution in distally duplicated genes. The new essential gene,

HP6/Umbrea, is used as a model for understanding enhancer capture, as it evolved via a full

duplication of the parental gene, its subsequent protein evolution is known, and it duplicated

into a gene-poor region of the genome. HP6/Umbrea’s expression pattern divergence from

its parental gene, HP1b, as well as its high co-expression with neighboring genes suggest that

it evolved via enhancer capture. ChIP-Seq data shows the presence of active enhancer marks

appearing near HP6/Umbrea coinciding with onset of its expression which likely regulates

HP6/Umbrea, it’s neighboring gene, as well as a distally located 6-gene cluster also found

co-express with HP6/Umbrea. To test for co-expression, we find that these three loci, the

putative enhancer, HP6/Umbrea, and the 6-gene cluster are in close physical proximity in

the 3-D genome of D. melanogaster. Finally, we compare Hi-C data from two species with

HP6/Umbrea, D. melanogaster and D. yakuba, to two species pre-dating HP6/Umbrea’s in-

sertion, D. pseudoobscura and D. miranda, showing that co-regulation of these same elements

is the ancestral state and thus that HP6/Umbrea evolved via enhancer capture.
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3.2 Introduction

Genes arising from the class of duplication-based mechanisms are commonly inferred using

synteny- and homology-based searches (Figure 3.1). While new genes are systemically under-

studied in comparison to their older counterparts, the most well-studied class of new genes

are those originating from duplication-based mechanisms. However, in studying the evo-

lutionary dynamics of duplication-based origination, a paradox arises: how do functionally

redundant copies of the same gene rise to fixation?

Figure 3.1: Identification of new genes. The insertion of a new gene may be inferred by
using syntenic alignments of closely related species. Gaps within these alignments may be
used to determine the location of a new gene insertion, while reciprocal-best searches may
determine whether a gene arose via duplication as well as the identity of the parental gene.

The first models describing new gene evolution proposed that all new genes likely evolve

via duplication-based mechanisms [64]. Under such a model, a duplicate copy of a gene is

shielded from selective pressures, acquiring new mutations until a neo-functionalized copy of

the gene provides sufficient selective force to carry this new gene to fixation. However, until

such advantageous function acquired, the new gene copy is subject to genetic drift and is thus

unlikely to rise to sufficient prevalence in a population to allow for rare, neo-functionalizing

mutations to occur. This problem has been referred to as “Ohno’s dilemma.” [29].
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Various models have been proposed to resolve this problem - the duplication, divergence,

complementation (DDC)/sub-functionalization model [27], the escape from adaptive conflict

(EAC) model [28], and the innovation, amplification, and divergence (IAD) model [29, 30]

as well as its functional equivalent, the Adaptive Radiation model (AR) [65]. However, these

models fail to appreciate how the 3-dimensional genome and its corresponding regulatory

landscape can drive neo-functionalization of a new gene from the moment of duplication

(Figure 3.2).

To address how a duplicate, redundant gene copy may rise to fixation, these models

all assume multiple functions for any studied gene. For pleiotropic genes, the DDC/sub-

functionalization model allows for complementary non-functionalization of multiple functions

that are originally shared between the duplicated copies (Figure 3.2a, b). Given a loss of

function in one copy of the gene, the ability of the duplicate copy to compensate for this

original loss of function confers a selective advantage to the duplicate copy. Eventually, under

the DDC model, increasing divergence allows for the partitioning of multiple sub-functions

between gene copies. Alternatively, while the DDC model allows each duplicate copy to

posses only a subset of the original functions of the parental gene, the EAC model allows

for increased optimization of multiple functions within the ancestral gene as each function

partitions to each paralogous copy. Under this model, it may not be possible for a parental

gene to simultaneously optimize each of its multiple functions. As such, duplication can

allow for the relaxation of constraint on the evolution of the ancestral gene, thus resolving

conflict and allowing for a selective advantage in both parental and new genes. While the

DDC and EAC models can explain how prior gene functions can be partitioned amongst

duplicate copies, these models fail to provide a mechanism for true neo-functionalization.
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Figure 3.2: Comparison of extant models. Continued on next page...

One common thread amongst the DDC and EAC models is their conformance to one

of Kimura and Ohno’s five governing principles of molecular evolution: “Gene duplication

must always precede the emergence of a gene having a new function” [66]. While comple-

mentary/optimizing mutations may stabilize the appearance of a duplicate gene copy, these

mutations may only occur after the duplication of a new gene. The IAD model provides an al-

ternative to this process by allowing for duplication itself to provide neo-functionalization via

increased dosage for an auxiliary function of the original gene (Figure 3.2c). Here, the IAD

model begins with an ecological shift that favors an auxiliary function of a gene, thus provid-

ing a selective advantage for high copy number. Importantly, as events of unequal crossing

over are more common than point mutations, gene duplication occurs more frequently than

substitutions and can thus fix in a population before regulatory changes evolve. Following

this amplification, subsequent changes are accumulated on the various copies, allowing for

divergence [29].
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Figure 3.2, continued. Various evolutionary models have been proposed to explain how
redundant gene copies become fixed in populations (“Ohno’s Dilemma”). Presented are
illustrations for the (a) Duplication-Divergence-Complimentation (DDC), (b) Escape-from-
Adaptive-Conflict (EAC), (c) Innovation-Amplification-Divergence (IAD), and (d) enhancer
capture models, where the gene regulation of three tissue types are considered and optimal
conditions are shown in dotted boxes. Under the DDC model (a), redundancy allows for
compensation of any single loss-of-function event, eventually causing the expression pattern
of the original gene to be segregated between both parent and new genes. Given that the
original protein is produced by both the parent and new genes, the total output is identical
to the original gene, and is thus a neutrally evolving process. Under the EAC model (b), two
functions cannot be optimized within a single gene copy, and this conflict is resolved via the
act of duplication, allowing for simultaneous optimization of both copies. The total output
of these two gene copies now has higher fitness than the output of the original gene, rising
to fixation. Under the IAD model (c), an environmental shift causes increased selection
for an auxiliary function of the original gene. As duplication events (unequal crossing-over)
occur more frequently than point mutations, duplication of the original gene provides a
more rapid accommodation of the new environmental conditions than regulatory mutations
by increasing dosage. However, while this model allows for increased fitness due to increased
auxiliary function, one issue in this model is that this increase in fitness must also overcome
the penalty imposed by over-activity of all other functions. Over-activity is generally not an
issue when environments change sequentially, as is the case of single-celled organisms, but
incorrect regulation can be a significant barrier in multi-cellular organisms, e.g. in the case
of key transcription factors. Under the enhancer capture model (d), increased expression
of a single function provides a selective advantage. A region of the genome contains an
enhancer/pre-enhancer that increases fitness once a gene copy duplicates into a region under
its control (thus activating it in the case of a pre-enhancer). As the original protein is
produced by both parent and new gene, the total output of both parent and new gene
increases overall fitness, thus driving both copies to fixation.
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While the IAD model provides a reasonable explanation for gene family expansions,

particularly in the case of tandem duplications, some serious problems remain with the

model, particularly when applied to multi-cellular organisms. While it is assumed that an

ecological shift selects for higher copy number, it is not only the auxiliary function that is

thus highly expressed, but the original function as well. The selective advantage conferred

by increased dosage not only needs to be sufficiently greater than the metabolic costs of

excess protein production, but it also needs to exceed potential deleterious effects caused

by amplification of the original function. Depending on the spatio-temporal expression

of the original gene, duplicate copies of the original gene will likely need to occur in a

tissue-specific manner so as not to disrupt processes downstream of the original gene. Such

precisely controlled expression is generally not of concern in single-celled organisms, where

gene family expansions occur quite frequently. However indiscriminate expression of, for

example, transcription factors within multi-cellular organisms will present a large selective

barrier that copy number expansion must overcome, particularly if aberrations occur within

key developmental processes.

One key factor missing in these models is the effect of chromosomal context on a new

gene’s regulatory function. A common thread amongst these various models is a separation of

the initial establishment of a duplication followed by subsequent changes accumulated by var-

ious duplicate copies. Additionally, these models require that genes posses multiple functions.

As an alternative to these models, we demonstrate that regulatory innovation via enhancer

capture can also be a source of evolutionary novelty, allowing for rapid rewiring of gene

regulatory networks in a single neo-functionalization step. During enhancer capture, neo-

functionalization arises from the act of duplication itself by recombining pre-existing protein

sequences with regulatory sequences, highlighting the importance of the three-dimensional

eukaryotic genome in new gene evolution (Figure 3.2d).
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3.3 Results

3.3.1 Analysis of Tissue Co-Expression Shows New Genes Evolve by

Enhancer Capture

Central to the IAD model is the observation that gene duplication via unequal crossing over

is more likely to occur than a point mutation [29, 30]. As previously described, one issue

with this model is that there is an implicit assumption that during the environmental shift,

the increase in fitness gained by over-activity of the auxiliary function must be greater than

the decrease in fitness imparted by over-activity of the gene’s original function(s). In the case

of single-celled organisms where environments are encountered sequentially, it is reasonable

to assume that selection might tolerate over-activity of the gene’s original function during

the transient environment in which the auxiliary function is favored. However, the decrease

in fitness for improper expression or activity is larger in multi-cellular organisms than in

single-celled organisms, where a multi-cellular organism’s overall phenotype is the cumulative

(development) and simultaneous (organ systems) product of many different gene functions.

In the case of multi-cellular organisms, selection may increase for the expression of a gene

within a single tissue type (Figure 3.2d). Under the IAD model, a full duplication will drive

duplicate gene copies to fixation as it provides the most evolvable solution to new conditions.

In contrast, under the enhancer capture model, a copy of the original gene duplicates into

a region of the genome containing an active enhancer that increases expression in a tissue-

specific manner. Alternatively, the new gene may migrate into a region of the genome

containing unbound transcription factor binding sites, thus activating a pre-enhancer region

into a new enhancer. Since the total output of the enhancer capture model does not produce

over-expression in other tissues like in the case of the IAD model, given sufficiently high

population size, enhancer capture will be the more dominant mechanism for gene duplication,

particularly with regards to distal/non-tandem duplications. This increase in fitness caused
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by the combined output of the new and parental genes thus drives both copies to fixation,

providing an alternate resolution to Ohno’s Dilemma. While enhancer capture remains

the most rapid path to increasing fitness, compensatory mutations in the regulation of the

parental gene may also provide a tissue-specific solution to increased selection. Once a

compensatory mutation occurs, or even more simply, once the tissue-specific selection is

relaxed, the new gene may then begin to diverge, accumulating substitutions.

Each model of gene duplication produces unique relationships between the expression

patterns of a new gene vs its parent gene and/or a new gene vs its neighboring genes. As

such, we may test whether enhancer capture drives the evolution of new genes evolving via

distal/non-tandem duplication by utilizing tissue co-expression data. Specifically, we may

predict to what degree a new gene will show tissue co-expression with its parental gene as

well as with its neighboring gene depending on if the mechanism driving its evolution falls

under the DDC, EAC, or enhancer capture models.

Under the DDC or EAC models, the tissue expression patterns of parental and new

genes are complimentary, resulting in low co-expression between parental and new gene

copies (“parental co-expression”), while the tissue expression patterns of the new gene and

its neighboring genes should have no relationship, resulting in random co-expression between

the new gene and its neighboring gene co-expression (“neighboring co-expression”). Under

enhancer capture, a broadly expressed parental gene acquires increased expression in select

tissues by duplicating into a distant region of the genome under the control of an enhancer.

Here, parental genes are expected to have broad tissue expression patterns, while new genes

have expression patterns with high tissue specificity, resulting in low parental co-expression.

On the other hand, since the new gene becomes regulated by the captured enhancer that is

already influencing other genes, neighboring co-expression is high.

A tissue expression data set was obtained from FlyBase [67, 68] (c.f. Methods and

Materials) and co-expression between new/parental and new/neighboring gene pairs was
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calculated (Spearman correlation coefficient) for a set of new genes (N=87) which underwent

a distal/non-tandem duplication of > 500kb whose essentiality has been validated experi-

mentally [69]. This data contained tissue types extracted from both L3 larvae, pre-pupae,

and adult flies, including gut, salivary glands, and imaginal discs from wandering L3 larvae,

as well as the head, ovaries, gut, and reproductive organs from adults (c.f. Methods and

Materials). For tissues that were represented with multiple experimental runs, data from

those tissue types were averaged prior to further analyses to avoid representation bias.

The resulting parent/neighbor co-expression plots (“PNC plot”) for new essential genes

(Figure 3.3a), new non-essential genes (Figure 3.3b), and both essential and non-essential

genes (Figure 3.3c) can be used to test whether a significant number of distal/non-tandem

duplications evolve via enhancer capture. We may define “low” and “high” co-expression as

being below or above the median co-expression value across all distally duplicated new genes

respectively. Genes that have evolved via enhancer capture should appear in the lower right

quadrant in the PNC plots, as the expression patterns of the new gene diverges from the

parental gene while the new gene and neighboring gene share the same expression pattern.

Similarly, genes with that have evolved via the DDC or EAC models should appear in the

bottom half of the PNC plots, with low parental co-expression resulting from divergent and

complimentary expression patterns, and random neighboring co-expression as there is no

expected relationship with the new gene and its neighboring genes.

Whiles genes in the lower right quadrant of the PNC plot may have evolved via the

DDC/EAC models or enhancer capture, one key distinguishing feature of both models is

how essential function is expected to partition between new gene and parental gene. Under

the DDC/EAC models, all segregable functions of the original gene are expected to partition

randomly between both parent and duplicate gene copies. As such, these models predict that

essential gene function should also equally partition between both parent and new genes. The

DDC/EAC models thus predict that the ratio of essential:non-essential genes in the entire
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Figure 3.3: New genes evolve via enhancer capture. Shown are parent/neighbor tissue
co-expression patterns for new genes in D. melanogaster which have migrated either more
than 500kb away or between chromosomes (new essential genes (a), new non-essential genes
(b), and combined essential & non-essential genes (c)). Tissue co-expression (Spearman
correlation coefficient) between new gene/parental gene pairs is plotted on the vertical axis
while maximal tissue co-expression between new gene/neighboring genes pairs is plotted on
the horizontal axis. Note, the co-expression between the new gene and four of its neighbors
was calculated, two on each side, and the maximal co-expression is reported here. Vertical
and horizontal lines indicate median co-expression value of all distally duplicated new genes
as in (c). Genes which evolved via enhancer capture are expected to have low parental
co-expression and high neighboring co-expression and should thus be present in the lower
right quadrant. Genes evolving under the DDC or EAC models should have low parental co-
expression due to complimentary expression patterns and random neighboring co-expression.
While a new gene’s essential function is equally likely to be partitioned between either parent
or new gene under the DDC or EAC models, new genes evolving via enhancer capture are
unlikely to have essential function, as the expression of the new gene will only augment exist-
ing expression of the parental gene, leaving the original essential function intact. Comparing
the overall ratio of new essential to new non-essential genes (35:52) to the ratio of new essen-
tial to new non-essential genes showing high neighboring/low parental co-expression (6:16)
shows that new genes evolve via regulatory capture (Fisher’s Exact, p=0.0256). (* denotes
HP6/Umbrea.)
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lower half of the PNC plot, including the lower right quadrant, should match the overall

ratio of essential:non-essential genes.

Alternatively, the enhancer capture model predicts that most function, including essential

gene function, will remain with the parental gene copy, while the tissue-specific expression

pattern of the duplicate gene copy serves only to augment the function of the parental gene.

Specifically, selection for increased expression in a single tissue will result in elevated tissue-

specific expression via the new gene copy, while all other function is retained in the parental

copy, including its essential function; the new gene evolving via enhancer capture is expected

to be non-essential while the parental gene is expected to be essential. As such, the enhancer

capture model predicts that the ratio of new essential:new non-essential genes in the lower

right quadrant of the PNC plot should be significantly lower than the overall ratio of new

essential:new non-essential genes. Using the parent/neighbor co-expression plots, the ratio

of new essential:new non-essential genes in the lower right quadrant (6:16) was found to

be significantly lower than the overall ratio of new essential:new non-essential genes (35:52)

using Fisher’s Exact test (p=0.0256), suggesting that distally duplicated genes in Drosophila

melanogaster primarily evolved via enhancer capture (Figure 3.3).

3.3.2 HP6/Umbrea as a Model for Enhancer Capture

While new genes categorically remain understudied, the evolution of HP6/Umbrea is a well-

suited model system for understanding the enhancer capture model as it is one of the few

new genes whose protein evolution has been previously described in the literature (Figure

3.3(*)) [70]. HP1b, a gene located on the X chromosome, duplicated approximately 12-15

mya into an gene-poor intronic region of dumpy, located on chromosome 2L (Figure 3.4). The

new gene, HP6/Umbrea, was the result of a full duplication which included HP6/Umbrea’s

promoter region as well as its three known domains: the chromo domain, the chromo-shadow

domain, and the hinge domain connecting the two.
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Though HP6/Umbrea was lost ancestrally to multiple speciation events [70], suggesting

that the gene was not originally essential for life function, HP6/Umbrea continued to evolve

in a step-wise manner. HP6/Umbrea subsequently lost its chromo domain approximately

10-12 mya; this was followed by an accumulation of key substitutions 0-7 mya, resulting

in HP6/Umbrea’s known essential protein function in D. melanogaster [69, 71, 72]. Using

these results, protein neo-functionalization may be eliminated as the driving force behind the

fixation of HP6/Umbrea given it’s step-wise protein evolution. Sub-functionalization and/or

subsequent optimization of protein function may also be eliminated for similar reasons.

A simple comparison of HP6/Umbrea’s expression pattern to the parental gene HP1b’s

very broad expression pattern suggests that HP1b is likely under the control of a simple

constituitive-on promoter. Alternatively, while HP1b is found in all tissues, HP6/Umbrea

is found only in a subset of tissues in which HP1b is found, suggesting that the duplication

of HP1b’s constituitive-on promoter into a region under control of an enhancer resulted

in HP6/Umbrea’s tissue expression pattern. This expression pattern is similar not to its

neighboring gene, dumpy, but its second neighboring gene, CR44609 (Figure 3.4), expressing

primarily in the imaginal discs and male reproductive organs, demonstrating that these genes

are likely co-regulated. Given that the tissue expression patterns of HP1b and HP6/Umbrea

are not complimentary, sub-functionalization and/or subsequent optimization of regulatory

function may also be eliminated as the driving force behind HP6/Umbrea’s fixation.

In addition to results excluding other models, publicly available modENCODE ChIP-

Seq/ChIP-Chip data [73] provides positive evidence that enhancer capture likely drove the

early evolution of HP6/Umbrea. Using the embryonic S2 cell line as a negative control

where there is little/no HP6/Umbrea expression, poised (H3K4me1) and primed (H3K27ac)

enhancer marks in whole L3 larvae show strong enhancer activity in an intronic, gene-poor

region of dumpy (Figure 3.4). Given the absence of other genes in the region (Figure 3.5a),

HP6/Umbrea remains the likeliest target of the enhancer based on proximity and expression.
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Figure 3.4: HP6/Umbrea evolved via enhancer capture. Continued on next page...
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Figure 3.4, continued. (a) HP6/Umbrea is a new essential gene in D. melanogaster which
arose from a full duplication of HP1b into an intronic region of dumpy, migrating from chro-
mosome X to 2L. HP6/Umbrea’s well characterized, step-wise protein evolution suggests
that amino-acid substitutions were unlikely to have driven the duplicate gene copy to fix-
ation. (b) Unlike the broad expression pattern of HP1b, the tissue expression pattern of
HP6/Umbrea is stereotypical of new gene expression patterns, with high tissue specificity,
restricted in this case to primarily the imaginal discs and male reproductive organs. This
expression pattern is shared with HP6/Umbrea’s neighboring gene CR44609. (c) A compar-
ison of ChIP-Seq markers for primed (H3K4me1) and active (H3K27ac) enhancers between
embryonic S2 (no/low HP6/Umbrea expression) and whole L3 larvae (high HP6/Umbrea
expression) tracks shows strong activation of a larval enhancer in a 1̃00kb intronic region of
dumpy that is, aside from HP6/Umbrea, devoid of protein coding genes.

Given that it appears that HP6/Umbrea duplicated into a region that appears to be

under the control of a pre-existing enhancer, we tested for further co-regulation in the region

by using tissue expression data (c.f. Analysis of Tissue Co-Expression Shows New

Genes Evolve by enhancer capture). We then applied a correlational analysis on this

tissue expression data set to determine whether HP6/Umbrea is co-regulated with other

neighboring genes. We took a 500kb region of the genome centered on the insertion site of

HP6/Umbrea and calculated the tissue co-expression of each gene within this region. As en-

hancers function in a proximity-based manner, we would expect a distance-dependent effect

on the co-expression of neighboring genes across the genome. To generate a baseline esti-

mate of this distance-dependent co-expression distribution, we sampled 1000 random genic

loci within the D. melanogaster genome, calculating the degree of co-regulation expected on

proximity alone. Notably, we find that using this distribution, the region of influence of any

given regulatory region of the genome appears to be on the order of 25kb, suggesting that

this is a characteristic distance for enhancer interaction in D. melanogaster. Outside of this

region of influence, the likelihood of co-expression relaxes to the genomic average. Therefore,

genes found within this region of influence with high tissue co-expression with neighboring

genes are likely the result of co-regulation with the focal gene.
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Figure 3.5: HP6/Umbrea co-expression is associated with conserved chromosomal
looping that pre-dates its insertion. Continued on next page...
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Figure 3.5, continued. (b) Tissue co-expression analysis between HP6/Umbrea and neigh-
boring genes reveals the presence of a co-regulated cluster of 6 neighboring genes. Note
absence of other genes within dumpy’s intronic regions. (b) Two in-group species, D.
melanogaster and D. yakuba (div. ∼ 6mya), contain HP6/Umbrea, while two out-group
species, D. pseudoobscura and D. miranda (pse-mir div. ∼ 4mya, pse-mel div. ∼ 25mya),
pre-date HP6/Umbrea’s insertion (∼ 12-15mya).(c) Cartoon legend illustrating features in
(d)-(o). Not drawn to scale. (d)-(o) Hi-C data tracks for in-group (D. mel (d)-(f), D. yak
(g)-(i)) and out-group (D. pse (j)-(l), D. mir (m)-(o)) species are shown for the parental
gene HP1b (left column) HP6/Umbrea’s insertion site (middle column) and the co-regulated
6-gene cluster (right column), with a 95% confidence interval generated from genomic sam-
pling plotted in dotted lines. On the vertical axis is contact in arbitrary units, and on the
horizontal axis is genomic coordinates centered on the viewpoint location. Conserved feature
(*) shows that HP6/Umbrea’s insertion site loops with the active larval enhancers contained
in dumpy’s intronic gene-desert. Conserved features (†) & (‡) show that HP6/Umbrea’s
insertion site reciprocally loops with the co-regulated 6-gene cluster. Conserved feature (◦)
shows that the co-regulated gene cluster loops across the entire 6-gene cluster.

By comparing co-expression against this baseline distribution, we may find genes that

share the same tissue-specific expression patterns as HP6/Umbrea and are thus likely co-

regulated. As expected, we find that the neighboring gene, CR44609, possess the same

expression pattern that HP6/Umbrea has. Similarly, we find that a locus of 6 neighbor-

ing genes (CG11929, Elba3, CG3251, Taf12L, CG15631, CG42523) located approximately

100kb away from HP6/Umbrea also expresses in the same tissues that HP6/Umbrea does,

expressing primarily in the larval imaginal discs and male reproductive organs (Figure 3.5a).

While the co-expression of HP6/Umbrea’s neighboring gene may be explained simply

due to its proximity to HP6/Umbrea, the co-expression of the 6-gene cluster is not immedi-

ately evident as being a result of co-regulation. However, while this gene cluster is distally

located along the chromosome beyond HP6/Umbrea’s 25kb region of influence, due to the 3-

dimensional nature of the eukaryotic genome, these genes may, in fact, be proximally located

near HP6/Umbrea in 3D space and thus be co-regulated. Similarly, while active enhancer

marks correlating to the onset of expression appears ∼50-100kb away from HP6/Umbrea,

it is not immediately clear that these active enhancers are driving HP6/Umbrea expression,
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as its distance to HP6/Umbrea exceeds the 25kb region of influence. As the 3-dimensional

conformations of the genome may still allow these distal genic elements to interact, we

tested whether the putative larval enhancer, HP6/Umbrea, its neighboring gene, and the

6-gene cluster are co-regulated by examining high-resolution Hi-C data for D. melanogaster

[74] (Figure 3.5e, f). This data was aligned to the D. melanogaster genome dm6, and

genome-to-genome contact frequencies were estimated using 5kb non-overlapping windows

(c.f. Methods and Material).

Like co-expression, the frequency at which two genic elements make physical contact

is expected to have a baseline, distance-dependent distribution. We may therefore test

for co-regulation by predicting significant physical contact between HP6/Umbrea, its larval

enhancer, and the cluster of co-expressed neighboring genes. Such an interaction could be de-

tected if contact between these two loci (i.e. HP6/Umbrea with enhancer and HP6/Umbrea

with co-expressing genes) exceeds the baseline distance-dependent distribution of contact

frequency. We generated an estimate of this baseline contact frequency distribution using

1000 independent loci that were sampled randomly from the genome, where contact data for

the flanking regions were used to generate the baseline distance-dependent contact frequency

distribution. We then extracted the contact frequency data for the HP6/Umbrea locus alone

and compared this to the baseline genome-wide contact frequency distribution (Figure 3.5e,

f).

We first note that after self-self interactions are removed, we find that physical inter-

actions in the genome generally remain highly localized, with most interactions lying near

the focal locus as expected. Despite this, we find that HP6/Umbrea’s complex contact dis-

tribution shows significant contact both with the putative larval enhancer as well as the

neighboring 6-gene co-expression cluster (Figure 3.5e). Additionally, when the this analysis

is repeated for the 6-gene co-expression cluster, we find that this contact is reciprocated, as

the 6-gene cluster shows significant contact across the cluster as well as with HP6/Umbrea
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(Figure 3.5g). Finally, HP6/Umbrea has enriched contact with the enhancer region that

differentially activates at the onset of HP6/Umbrea expression. Combined with the tissue

co-expression analysis, these results demonstrate that HP6/Umbrea and these 6 genes are

likely co-regulated.

3.3.3 3D Genome Organization Pre-dates HP6/Umbrea Insertion

While we find evidence that HP6/Umbrea, the larval enhancer, and the 6-gene co-expression

cluster are co-regulated, it is possible that these interactions evolved subsequent to HP6/

Umbrea’s insertion. To determine whether these interactions pre-date HP6/Umbrea’s in-

sertion, we examined Hi-C data using a second in-group species, D. yakuba (shared by P.

Reilly and P. Andolfatto), as well as two out-group species, D. pseudoobscura and D. mi-

randa (shared by M. Ali and Q. Zhou) (Figure 3.5). While HP6/Umbrea inserted 12-15mya,

the divergence between D. melanogaster and both outgroup species is 25mya [75]. Within

these clades, D. melanogaster and D. yakuba diverged 6mya, while D. pseudoobscura and D.

miranda diverged 4mya. While D. melanogaster Hi-C data was aligned to the standard ref-

erence genome (dm6), D. yakuba, D. pseudoobscura and D. miranda were aligned to newer,

high-quality reference genomes (D. yakuba shared by P. Reilly and P. Andolfatto, D. miranda

from [76], and D. pseudoobscura by M. Ali and Q. Zhou). In comparing the Hi-C contact

patterns for both HP6/Umbrea and its neighboring co-expression cluster, we find that key

features of the local chromosomal conformation are conserved: contact with larval enhancer,

reciprocal contact between HP6/Umbrea and its co-expression cluster, and contact across the

entire co-expression cluster (Figure 3.5d-e). The conservation of this chromosomal structure,

even despite the subsequent evolution of protein function of HP6/Umbrea, suggests that the

neo-functionalization event driving the fixation of the original duplication was likely driven

by enhancer capture. Specifically, the 3D structure driving enhancer contacts existed prior to

HP6/Umbrea’s origination, and by duplicating into this region, HP6/Umbrea immediately
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captured this regulatory interaction.

3.3.4 Identification of Enhancer Location

While the resolution of the previous Hi-C data is very high, due to the genome-by-genome

nature of Hi-C, this data set’s ability to precisely resolve the location of the enhancer elements

driving HP6/Umbrea’s expression is limited. Furthermore, while HP6/Umbrea’s expression

is driven primarily in the imaginal discs and testes, the D. melanogaster Hi-C data set is

derived from embryonic tissue [74]. To identify the enhancer elements driving HP6/Umbrea’s

expression, we generated a 4C-Seq library using imaginal discs dissected from L3 and pre-

pupal larvae, using a DpnII/Csp6I digest. After alignment to the D. melanogaster genome,

we find that near the single peak identified by Hi-C, the peak has split into three regions,

Four-C Located Enhancer Elements 1, 2, and 3 (FLEE1, FLEE2, & FLEE 3) located at

Chr2L:4447389-4447781, 4516584-4517321 and 4531137-4532034 respectively (Figure 3.6).

Additionally, we see broad agreement with further Hi-C results, such as the large degree

of contact between HP6/Umbrea and the neighboring gene and the co-expressing 6-gene

cluster.

3.4 Discussion

3.4.1 Enhancer Capture Model

While various evolutionary mechanisms for the origination of new genes have been proposed,

these models do not incorporate the 3-dimensional organization of the genome. In the DDC

and EAC models, functions are sub-partitioned amongst paralogous copies, resulting in a

neutral or adaptive process leading to the fixation of duplicate gene copies. However, in

these models, subsequent substitutions in either gene copy are required to explain new gene

origination, separating duplication from neo-functionalization. Alternatively, in the IAD
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Figure 3.6: HP6/Umbrea is controlled by 3 putative enhancers 4C-Seq experiments
were performed on larval imaginal disc tissue in D. melanogaster as shown above, revealing
that the single enhancer peak is associated with 3 different peaks, named Four-C Located
Enhancer Elements 1, 2, and 3 (FLEE1, FLEE2, & FLEE3). The vertical axis is sequencing
coverage, while the horizontal axis is genomic coordinate. Self-self interactions have been
removed.

model, duplication itself provides neo-functionalization by increasing dosage for an auxiliary

function. In contrast to these models, we demonstrate how duplication itself may provide

neo-functionalization in a tissue-specific manner, a result not predicted by these models.

Such neo-functionalization provides a selective advantage in a direct, single-step mechanism

without requiring subsequent substitutions as in the case of the DDC, EAC, and IAD models.

In addition to producing gene fusions [77] as well as favorable frame-shifts [78], our model

highlights the under-appreciated evolutionary value of both the act of duplication itself, and

perhaps more importantly, the genomic context in which these duplications occur. While

the role of positional effects in gene regulation and evolution has long been appreciated [25,

79], the advent of new chromosomal conformation capture technologies allows us to directly

connect the conservation of chromosomal domains [80, 81] and the origination of new genes

under a strong conceptual framework.

Under the enhancer capture model, a gene copy duplicates into a pre-existing regulatory

context (Figure 3.7a), gaining a new regulatory interaction. Alternatively, the duplication

may occur in a region of the genome possessing transcription factor binding sites (pre-
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enhancer) but isn’t yet acting as an active enhancer due to a paucity of nearby genes to

regulate. Regardless of exact mechanism, due to the 3-dimensional looping nature of the

eukaryotic genome, duplication recombines genes and enhancers into new combinations, thus

resulting in regulatory novelty (Figure 3.7b, c). As such, this model provides an explanation

and mechanism for the well-described but poorly-understood phenomenon where new genes

often posses highly tissue-specific expression patterns [82–85]. Here, selection for increased

expression in a single tissue is most rapidly achieved by acquiring a new tissue-specific

expression pattern via distal duplication.

Figure 3.7: The 3D organization of the genome allows for rapid rearrangement
of genetic networks. Panel (a) depicts a cartoon illustration of the action of the larval
enhancer on the neighboring cluster of co-regulated genes as well as the future insertion site
of HP6/Umbrea. (b) Preceding insertion of HP6/Umbrea, the larval enhancer was in contact
with both HP6/Umbrea’s neighboring gene as well as with the co-regulated 6-gene cluster.
(c) This looping structure remains conserved following HP6/Umbrea’s insertion, allowing for
a rapid recombination of elements upstream of HP6/Umbrea’s neighboring gene (i.e. larval
enhancer) with elements downstream of HP6/Umbrea’s parental gene (i.e. HP1b’s protein
function). A sample gene interaction network, both (d) pre- & (e) post- duplication, is
depicted above. Note that parental gene and neighboring gene’s original interactions remain
intact, preserving previous function.

The enhancer capture model also provides a mechanistic explanation by which gene in-
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teraction networks may rapidly evolve [86]. Under this model, we have two separate gene

interaction sub-networks for both parental and neighboring genes (Figure 3.7d). As a new

gene duplicates into a region near the neighboring gene, the new gene acquires the up-

stream regulatory function of the neighboring gene as well as the downstream function of

the original parental gene’s protein function (Figure 3.7e) while simultaneously preserving

the pre-existing interactions from both parental and neighboring genes’ sub-networks. As

the act of duplication is more likely to occur than a point mutation [29, 30], enhancer capture

will therefore be a faster route to generating increased tissue-specific expression of a parental

gene (Figure 3.1) than any set of mutations in the parental gene’s regulatory sequence. As

a consequence, these new genes can fix, allowing for the subsequent accumulation of sub-

stitutions. While duplications occur more frequently than substitutions, point mutations

altering the regulation of the parental gene will continue to occur. If eventually a compen-

satory mutation in the parent gene allows for increased tissue-specific expression, this will

then allow the new gene to be free from the pressures of natural selection and thus evolve

further, resulting either in pseudogenization, e.g. as in the case of HP6/Umbrea’s loss in D.

eugracilis, or the acquisition of further function, e.g. as in the case of HP6/Umbrea’s gain

of essential function in D. melanogaster [70].

One key aspect of the enhancer capture model is the selective advantage imparted by

increased tissue-specific expression. While the EAC model describes a very narrow enhancer-

based explanation for gene duplication and fixation [28], the resolution of evolutionary con-

flict, such as sexual antagonism, is a well-known driver of the evolution new genes [87, 88].

While most new genes have highly tissue-specific expression patterns, these often favor either

the female or male reproductive organs/germlines in D. melanogaster [85]. A close exami-

nation of the expression pattern of HP6/Umbrea demonstrates the same - HP6/Umbrea is

expressed primarily in the imaginal discs and the male reproductive organs. Similarly, the

parental gene HP1b appears to have expression highly skewed towards the female reproduc-
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tive organs. As such, it is possible that the selective advantage imparted by HP6/Umbrea’s

original duplication may have been a result of regulatory sexual antagonism and, given that

most new genes show expression specific to reproductive organs, enhancer capture may be

a wide-spread mechanism for the resolution of such sexual antagonism, providing a rapid,

one-step mechanism for acquiring differential expression between sexes.

Central to both the enhancer capture and IAD models is the rapidity at which nov-

elty is produced. Such rapid evolvability arguments may provide an explanation for the

origination of the eukaryotic genome, organized into multiple chromosomal domains that

result in a segregation of regulatory enhancer sequences and protein-coding genic sequences.

While our model is illustrated with different tissue types, we may easily substitute various

environmental conditions for tissue type. Under the context of sequential environmental con-

ditions, the amplification of auxiliary function during transient environments is sensible as

described by IAD model [29], as precise spatio-temporal regulation of the original gene is no

longer needed, assuming that environmental conditions return back to “normal.” Crucially,

paralogs become fixed in the IAD model as duplication is the most evolvable solution to

altered selective demands. As plasticity arises when permanent genic solutions are not easily

evolvable (c.f. Chapter II) or when future environmental conditions are completely unpre-

dictable [89], duplications into genomic regions where enhancers already exist may produce

precise epigenetic control of a given protein much more rapidly than divergence via accumu-

lated substitutions. Furthermore, while epigenetic mechanisms exist in prokaryotic genomes,

these remain simple binary switches as in the case of the lac operon [90]. As the number

of environmental conditions increase, the requisite gene-network complexity for such regula-

tion becomes a large barrier for further evolution. Co-regulation of multiple genic units is

already an efficient and useful method for dealing with multiple environmental conditions as

demonstrated by the lac operon. By developing enhancers that operate in a proximity-based

manner, eukaryotic genomes thus provide for the expansion of co-regulation into modular
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structures [91] capable of handling greater than two distinct conditions without the need for

developing three-way (or larger) switches. Given that enhancer capture can accelerate evolu-

tion both through faster-than-substitution alterations as well as modularity, the eukaryotic

genome’s inherently higher evolvability may suggest that enhancer capture may be one clue

in understanding the evolutionary origins of the nucleus.

3.4.2 Revisiting an Old Theory of New Genes

Current models of eukaryotic gene regulation roughly defines two broad classes of genomic

sequences: protein-coding sequences and regulatory sequences [92]. Under these models,

the precise spatio-temporal control of a protein-coding sequence is provided by genomic

enhancer elements where the concerted binding of transcription factors acts to either increase

or decrease the activation energy of transcription. Importantly, such control occurs in a

three-dimensional, distance-dependent manner - enhancer elements may only control genomic

elements that are physically close to these enhancers within the eukaryotic nucleus [92]. Due

to this proximity-based effect, the exact conformation of the genome is significantly more

important in understanding gene regulation than simple gene order, particularly in gene-

dense genomes. Using this proximity-based effect, we show that the chromosomal context

into which a gene duplicates, particularly non-tandem/distal duplications, may generate

novel enhancer-gene interactions that immediately neo-functionalizes duplicate gene copies.

These positional effects have been well-described since the origins of the field of genetics.

The first known positional effect was described in the study of the bar gene in Drosophila

melanogaster in 1925 by Alfred Sturtevant a mere 12 years after he developed the first

genetic map [93]. In his original allelomorphic series, Sturtevant surmised that a duplication

must have occurred with the bar gene, where two copies of the gene were inherited along a

single chromosome. Crucially, in comparing the homozygous B/B phenotype to the BB/B−

phenotype, Sturtevant found that the double-bar or ultrabar allelomorph produced a more
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extreme phenotype than expected by dosage alone. This double-bar or ultrabar allelomorph

of the classic bar gene was found to be the result of a gene duplication event through

the examination of polytene chromosomes by Calvin Bridges in 1936 [79]. Dobzhansky

recognized this as what he called a positional effect and that it was a result of some kind

of chromosomal interaction with neighboring genes [79]. Soon afterwards, Hermann Muller

recognized the importance of this observation for the origination of new genes:

“We consider the point of chief interest in the Bar case to be its illustration of

the manner of origination of extra genes in evolution. Bar had for a long time

offered the best case yet known for the idea that genes could arise de novo*. Its

interpretation as some sort of duplication met with difficulty, in our ignorance of

the real existence of a ’position effect’...”

-Hermann Muller (Science, 1936)

*note ”de novo” is not used indicate a particular new gene origination mechanism as in [26].

3.5 Methods and Materials

3.5.1 Tissue expression data and analysis

Tissue expression data was retrieved from FlyBase. Pre-computed RPKM data files were

downloaded, with RPKM values for each FlyBase transcript being reported for 29 tissues

[68]. As many of the tissues types were repetitive, data from head, ovary, carcass, and diges-

tive system were averaged to reduce over-representation bias in further correlational analyses.

Gene map data was also obtained from FlyBase to properly identify neighboring genes [67].

Parental/new gene pair information was retrieved from [72]. Spearman correlation coeffi-

cients were calculated using the tissue expression data between parental and new gene pairs.

Due to intronic structures and variation in gene length, two neighboring genes for each new
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gene on each side were assessed using Spearman correlation coefficients and the maximum

value of the four neighbors was recorded. Additionally, correlation coefficients for all genes

within 500kb of HP6/Umbrea were reported. To generate a baseline distance-dependent

genomic estimate of co-expression, 1000 random genic loci were chosen and co-expression

values (Spearman) between the randomly selected gene and all neighbors within a 500kb

range were calculated. This 500kb region was then divided into 100 non-overlapping win-

dows where mean and variance in correlation coefficients was calculated across all randomly

selected loci.

3.5.2 ChIP-Seq data

ChIP-Seq or ChIP-Chip data were obtained for H3K4me1 and H3K27ac for S2 cells as well

as whole L3 larvae from modENCODE [73]. H3K4me1 ChIP-Chip data for S2-DRSC cells

was obtained using data ID 304 and 3760. H3K27ac ChIP-Chip data for S2-DRSC cells

was obtained using data ID 296 and 3757. H3K4me1 ChIP-Seq data for whole Oregon-R L3

larvae was obtained using data ID 4986. H3K27ac ChIP-Seq data for whole Oregon-R L3

larvae was obtained using data ID 5084. For all data sets, data was obtained in .gff3 format

and visualized using the UCSC Genome Browser.

3.5.3 Hi-C data

Publicly available Hi-C libraries were obtained from NCBI: D. melanogaster, PRJNA393992.

D. yakuba Hi-C data was shared by Patrick Reilly and Peter Andolfatto, and D. pseudoob-

scura and D. miranda data was shared by Mujahid Ali and Qi Zhou. D. melanogaster source

tissue was S2 cells, D. yakuba from adult females, and D. pseudoobscura and D. miranda

were L3 larvae. Hi-C libraries were preprocessed, mapped, and filtered using HiCUP ver-

sion 0.8.0 [94]. Specifically, reads from fastq files were trimmed at ligation junctions, and

subsequently each mate of paired-end sequences were independently mapped to the respec-
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tive genomes using bowtie2 version 2.2.9 [95]. Reads were mapped to genomes consisting

of canonical chromosomes only (i.e. excluding scaffolds and other unplaced sequences). D.

melanogaster reference genome was dm6 and obtained from FlyBase [67]. The D. yakuba

reference genome was shared by Patrick Reilley and can be obtained from NCBI (PR-

JNA310215). The D. pseudoobscura reference genome was obtained directly from Ryan

Bracewell (https://www.ryanbracewell.com/data.html) [96] and the D. miranda reference

genome was obtained from NCBI (PRJNA474939), [76]. HiCUP was used further to re-

move experimental artifacts based on an in silico genome digest as previously described

[94]. HiCUP mapped and filtered .sam files were then converted to formats compatible with

HOMER version 4.11 [97] and juicer tools version 1.22.01 [98]. To create matrices, HOMER

was used to tile the genome into matrices of fixed-size bins, and assign reads to their correct

intersecting bins. HOMER was also used to normalize contact counts in these matrices based

on known Hi-C biases, as previously described [97]. Juicer tools was used to produce .hic

files at resolutions of 5kb for D. melanogaster and D. yakuba and 7.5kb for D. pseudoobscura

and D. miranda, and to create normalized matrices.

Using Hi-C contact matrices, data rows for HP6/Umbrea and its neighboring cluster were

pulled for a 400kb region centered on HP6/Umbrea and self-self interactions were removed.

To generate a genome-wide distance-dependent distribution of contact, 1000 random loci

were sampled. Contact data for each locus was then normalized with total contact (arb.

units) being equal for all loci. The mean and variance for each non-overlapping window was

calculated and reported and compared to HP6/Umbrea and the co-expression clusters’ data.

To generate genomic coordinates for HP6/Umbrea before duplication, D. melanogaster se-

quence flanking HP6/Umbrea’s insertion site was aligned to the D. yakuba, D. pseudoobscura

and D. miranda reference genomes using blast. Similarly, the promoter region of CG11929

was aligned to D. yakuba, D. pseudoobscura and D. miranda reference genomes to represent

the co-expression cluster.
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3.5.4 4C-Seq

Tissue from L3 larval imaginal discs was dissected and placed on ice for no longer than 10

minutes. Following dissection, 4C-Seq protocol was followed as per [99] using a DpnII/Csp6I

digestion. Sequence data was aligned to reference genome dm6. A virtual digestion of the

D. melanogaster genome as performed, and reported enhancers are the distance between

neighboring virtual fragments.
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APPENDIX A

ADDITIONAL PUBLICATIONS

This appendix contains publications that I co-authored and my personal contributions to

these works is highlighted below.

A.0.1 Kim, et al. (2016) Physical Review E

This manuscript arose through a collaboration with Prof. Eun-Jin Kim. With her experience

in theoretical physics, we began to collaborate on a model of clonal phenotypic heterogeneity.

We then extended this model to examine how a forcing function affects adaptation. We

found that minimization of information length produced a geodesic solution that additionally

minimized adaptation time. Most importantly, we found that this geodesic solution produces

cyclical variation in the variance of the probability distribution functions, explaining how a

large degree of plasticity is only transiently beneficial during adaptation.

Kim, E., Lee, U., Heseltine, J., Hollerbach, R. Geometric structure and geodesic in a solv-

able model of nonequilibrium process. Phys. Rev. E 93, 06127 (2016) doi: 10.1103/Phys-

RevE.93.062127

A.0.2 Leypunskiy at al. (2017) eLife

This manuscript concerns the relationship of the minimal KaiABC circadian clock and sea-

sonal variations in daytime duration. While circadian rhythms follow 24-hour cycles, the

division of day-/night-time fluctuates greatly between terrestrial seasons, ranging from a

ratio of 8:18 hours to 18:8 hours of illumination:non-illumination. To understand what

mechanisms underlie this robustness, I began with a luciferase reporter assay under the con-

trol of the native promoter for the KaiABC system and subjected replicate populations to

various day/night ratios and recorded the transcriptional output of the reporter. Though I
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did not choose to personally pursue the project, we found that the resulting phase-shifting

behavior of the system is linear and well-tuned to respond within physiological limits, off-

setting any unexpected shifts in day/night ratios thereby allowing the clock to anticipate

future recurrences of daylight onset.

Leypunskiy, E., Lin, J., Yoo, H. Lee, U., Dinner, A., Rust, M. The cyanobacterial circa-

dian clock follows midday in vivo and in vitro. eLife 6:e23539, (2017). doi: 10.7554/eLife.23539

A.0.3 Zu, et al. (2019) Science China

This manuscript is concerned with the network dynamics of new gene evolution. When new

essential genes evolve, they must somehow integrate themselves into pre-existing genetic

interaction networks. To understand this process, I proposed that we utilize publicly available

human tissue expression data to generate a systems-biology level view of the genome. Using

this map, we then analyzed the aging process of new genes via topological properties of these

interaction networks, finding that new genes are generally highly specialized and become less

specialized as they age. These new genes also expand in function and interactions according

to a power-law distribution through a “rich-get-richer” mechanism.

Zu, J., Gu, Y., Li, Y., Li, C., Zhang, W., Zhang, Y., Lee, U., Zhang, L., Long, M. Topo-

logical evolution of coexpression networks by new gene integration maintains the heirarchi-

cal and modular structures in human ancestors. Science China 62, 4 594-608 (2019) doi:

10.1007/s11427-019-9483-6

A.0.4 Xia, et al. (2021) PLoS Genetics

This manuscript is a examination of technical concerns regarding genetic knock-down/knock-

out techniques and its implications regarding new gene essentiality. While a prior study

claimed to have failed to replicate our prior analysis of new gene essentiality, further exam-

ination found that technical issues with RNAi and CRISPR/Cas9 techniques and analyses
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were present in the replication study. In this study, we examined replicability issues with

their RNAi constructs by using multiple targeting constructs per gene, finding that our orig-

inal conclusions remained correct. In this work, I contributed statistical analyses as well as

a conceptual analysis of incorrectly applied inferences.

Xia, S., VanKuren, N., Chen, C., Zhang, L., Kemkemer, C., Shao, Y., Jia, H., Lee,

U., Advani, A., Gschwend, A., Vibranovski, M., Chen, S., Zhang, Y., Long, M. Genomic

analyses of new genes and their phenotypic effects reveal rapid evolution of essential func-

tions in Drosophila development. PLoS Genetics 17, 7:e1009654 (2021) doi: 10.1371/jour-

nal.pgen.1009654
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