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ABSTRACT

Understanding how a premature circuit adapts to environmental stimuli and matures could

greatly improve our understanding of learning rules in a neural system. The development of

synapses in the mammalian visual cortex during the critical period plays a significant role in

the proper functioning of the visual system. Despite extensive studies with electrophysiology

and light microscopy, there has not been a detailed investigation with connectomics.

The rapid development of electron microscopy and computing technology in the last few

years gave rise to ever-increasing data size and made previously costly connectomics recon-

struction feasible. However, tremendous computational challenges remain in the field. Better

computing resource accessibility and a higher level of automation performance are required

for the field to expand into mainstream neuroscience. Also, skepticism in connectomics re-

mains on whether/what biological insights it can offer at the current scale(100 µm cubes).

This thesis discusses three projects on different yet interconnected aspects of connectomics,

addressing these concerns.

The first project describes a software pipeline for end-to-end EM connectomics recon-

struction, integrating multiple advanced automation tools into High-performance comput-

ing(HPC) environment, utilizing the previously untapped power of supercomputers at na-

tional labs for connectomics for the first time.

The second project discusses a novel computational framework for neuronal subcom-

partment morphology classification and how it can perform neurite type classification at

a massive scale with state-of-the-art accuracy. It is also demonstrated to detect and cor-

rect merge errors from segmentation, addressing a significant bottleneck in improving EM

reconstruction accuracy.

A comparative study is conducted in the third project to reconstruct mouse primary

visual cortex layer 4 samples at age P14, the beginning of the critical period, and P105, in

adulthood. Automatic saturated segmentation and synapse prediction are run with HPC,

viii



and focused proofreading of dendritic synapses is conducted. It is found that in the adult

visual cortex, synapses increase substantially in both density and size, challenging a prun-

ing centric hypothesis of circuit development. Also, a sharp increase of perisomatic shaft

synapse density is observed, supporting the significance of modulatory inhibitory inputs,

and the lack thereof, in determining the maturity of neurons in the visual cortex. Also,

a significant increase in mitochondria coverage and its correlation with synapse density is

reported, suggesting a vital role of mitochondria in the maturation of circuits.
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CHAPTER 1

INTRODUCTION

”How does intelligence work?” is a fundamental question that has been pondered by some

of the brightest minds of our civilization throughout human history. Despite a mechanistic

understanding of intelligence, human beings have been exceptionally adept at using it. From

our humble origins as hunter-gatherers threatened by predators to the society today capable

of harnessing nuclear energy and sending probes to Mars, the brain, the substrate upon

which humankind achieved all the marvels and wonders, remains essentially a mystery.

The primary technical limitation has been our ability to observe delicate structures of

neural tissue. Much like how the telescope revolutionized astronomy and physics, the in-

vention of the microscope was perhaps the most monumental technical advancement for our

understanding of the brain. Modern neuroscience started when Ramón y Cajal performed

Golgi staining in neural tissue and, for the first time, delineated individual neuronal morphol-

ogy (Cajal 1888), with the compound optics of a microscope, demonstrating clear evidence

for neuron doctrine, which claims that the brain is made up of separate cells that interact

with each other.

1.1 The emergence of Connectomics with Automated Serial

Electron Microscopy

Since the time of Cajal, neuroscience breakthroughs have been frequently associated with

advancements in new techniques and technologies. Aside from the mechanistic understand-

ing of neural systems through electrophysiology (Neher and Sakmann 1976) like the Hodgkin

Huxley model (Hodgkin and Huxley 1952). There is an insatiable demand for higher reso-

lution neural data that captures more neurons at the same time.

Tremendous progress has been made in light microscopy technology over the last few
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decades. Milestones include confocal microscopy (Minsky 1988), fluorescent labeling (Chal-

fie et al. 1994), calcium imaging (Grynkiewicz, Poenie, and Tsien 1985; Grienberger and

Konnerth 2012), two-photon microscopy (Helmchen and Denk 2005), and super-resolution

imaging (Betzig et al. 2006), which led to a plethora of scientific discoveries and were lauded

with a series of Nobel prizes(Chemistry 2008, Chemistry 2014). However, the resolution

of optical microscopy remains physically limited by the wavelength of visible light at the

theoretical upper limit of 200 nm. Super-resolution microscopy could breach the limit by

using another active laser source like a flashlight for fluorescent molecules (Ke et al. 2016);

another novel technique, expansion microscopy (F. Chen, Tillberg, and Boyden 2015), could

enlarge the sample into optical range without disrupting cellular morphology. However, even

with these advancements, it remains a huge challenge to acquire large-scale neural imagery

at the synapse level with light microscopy. Part of the problem with optical microscopy is

that even with nanoscale resolution, there remains the problem of staining/labeling. Most

optical studies sample less than 1% of all neurons and rarely label organelles, etc.

On the other hand, electron microscopy has the unique advantage of easily reaching a

nanometer-level resolution at the cost of not being able to image in-vivo. Compared to light

microscopy, EM is considerably slower in acquisition speed, as electron beams need to be

focused and sequentially traverse a field of view. Early applications of EM (Palade 1954)

focused on studying intra-cellular organelles within snapshot samples, often in a limited num-

ber of slices. Over time, studies with manually collected series of thin slices were conducted.

A principled advantage of EM-based approaches is that osmium, the heavy metal used as

the principal contrast agent in most EM approaches, stains the membranes and organelles

of every cell in every species so far tested (Palay et al. 1962).

The concept of ”connectomics” originated from the idea that by mapping the entire con-

nectivity matrix of a nervous system, a holistic view of the network topology can be obtained,

from which fundamental principles of neural wiring can be deduced (Sporns, Tononi, and
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Kötter 2005). The connectivity can be on different scales. For example, at macro-scale, the

”human connectome project” (Van Essen et al. 2013) studies the correlation and connec-

tivity between brain regions with fMRI. At mesoscale, multiple sparse labeling techniques

like anterograde or retrograde tracing, the ”Brainbow” (Livet et al. 2007), tissue clearing

(Kim, Chung, and Deisseroth 2013; Shen et al. 2020), offer connectivity between subsets of

neurons or track long-distance projections. However, achieving a micro-scale connectome

requires the ability to find every synapse and separate individual neurons, which can still

only be achieved with electron microscopy. The first widely recognized micro-connectome

was from C.elegans in the 80s. (White et al. 1986), consisting of 302 neurons and all their

connections. This pioneering work took tremendous manual effort over more than a decade

with extremely limited digitization. The computers back then were not powerful enough

for any sophisticated image processing. Therefore the connectome was essentially painted

by humans slice by slice. The daunting technical challenge and prohibitive time cost drove

neuroscientists toward more realistic and efficient techniques. Over the next two decades,

light microscopy soared past EM and became the mainstream in neural imaging.

A major technological breakthrough that brought EM back into the mainstream was the

automation of data collection, which drastically reduced the amount of human labor required

in section slicing and picking, along with continued research over EM technology, the scale

at which EM can be used for scientific inquiry is dramatically increased. (Briggman and

Denk 2006; Briggman and Bock 2012)

Two paradigms were developed around the same time. The first one is ”block-face” EM,

where the sample is ablated with either a diamond knife or a focused ion beam and is inter-

leaved with EM scanning (Denk, Horstmann, and Harris 2004; Heymann et al. 2006). The

other approach is ”serial sectioning” EM, where the sample is first cut and collected with an

automatic device called ”Automatic Tape Collecting Ultra-Microtome” (ATUM) (Hayworth

et al. 2006; Kasthuri et al. 2007) on tape, which is further cut into segments and mounted
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on silicon wafers. The wafers are then scanned with a scanning electron microscope(SEM).

A slightly different approach uses Transmission Electron Microscope (Harris et al. 2006; Yin

et al. 2020), which is incompatible with wafers and tapes since electron beams cannot pen-

etrate them. Instead, sections are manually collected and mounted on copper grids. The

compromise in collection speed is compensated by the superior data collection speed and

much lower cost of TEM over SEM.

Figure 1.1: EM schematics, reprint from (Briggman and Bock 2012, with permission from
publisher) (a). Serial section transmission electron microscopy (ssTEM) (b). Automated
tape-collecting ultramicrotome scanning electron microscopy (ATUM-SEM) (c). Serial
block-face scanning electron microscopy (SBEM) (d). Focused ion beam milling scanning
electron microscopy (FIB-SEM)

The advantage of block-face EM is that it preserves the original coordinates of sections,

making 3D slice alignment significantly easier. Also, it allows higher z resolution (20 nm)
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since it does not require as much cutting precision as the serial sectioning approach.

On the other hand, the serial sectioning paradigm completely throws away the original

spatial coordinate and requires significant effort realigning. Also, the cutting and auto-

matic tape collection machinery can be error-prone over long cutting sessions at 30 - 40 nm

thickness; tiny vibrations from the device, improper cutting speed, and non-uniform sample

density could interrupt the continuity of sectioning. With current technology, at most several

thousand sections can be collected without error. The major advantage over block-face is

that the sections are preserved permanently and can be easily revisited and reacquired in

case of bad acquisition, region selection, or for multi-scale imaging. Also, by separating cut-

ting and scanning, the scanning process can be scaled horizontally, like distributing wafers

to multiple SEMs or using Multibeam to scan up to 91 tiles simultaneously. (Eberle and

Zeidler 2018; Shapson-Coe et al. 2021)

1.2 Advancements in Computational Tools

With automated data acquisition comes inevitably the challenge of data processing. To

start with, a connectomics dataset can typically reach several hundred Gigabytes (Narayanan

Kasthuri, Kenneth Jeffrey Hayworth, et al. 2015) up to a Petabyte (Shapson-Coe et al. 2021)

in recent studies. The computational tools originally designed for light microscopy quickly

fell short (ImageJ, Amira, etc.). The computational infrastructure has not been ready to

deal with large-scale 3D datasets until quite recently.

Alignment The first computational challenge in connectomics is image alignment, which

is the process of registering a series of 2D images into a smooth 3D stack by matching

features between neighboring image pairs and deforming images. The most frequently used

algorithm is the Scale-invariant feature transform (SIFT) algorithm (Lowe 2004), which takes

two similar images and detects local features that best match with each other and deform
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the images linearly so that they can be stitched or registered. For smaller stacks, affine

transform with SIFT alignment was quite effective already (Narayanan Kasthuri, Kenneth

Jeffrey Hayworth, et al. 2015).

However, with increasing sample volumes, alignment quickly turned non-trivial. The

affine alignment(which allows only linear operations like translation, rotation, and shear

mapping) would only work when the original image stack has superb uniformity and acquisi-

tion quality, which is increasingly difficult to guarantee with larger image sizes. The problem

gets trickier when considering the sample defects that frequently occur during cutting(folds,

tears, broken holes) or wafer preparation(carbon dust during coating, air bubbles, tape ir-

regularities). The variety of artifact types often means there is no good way to provide a

clean automated solution to cover all corner cases.

To address the limitation of linear methods, a crucial concept, ”elastic alignment,” was

introduced and discussed in great detail in Saalfeld et al. 2012, in which the authors proposed

to model each image as an elastic grid of nodes that interact with each other within and

across slices. The alignment process then becomes finding an optimal solution to minimize

the overall discrepancy within the elastic mesh. The trade-off is that the computational cost

can be hundreds of times higher than a linear alignment. The idea is powerful and robust

and is still applied broadly in the field a decade later.

The algorithm was first developed and included within TrakEM2 by Cardona et al. 2012,

the first attempt to bundle various tools specifically designed for connectomics into one

framework and provide a unified interface to interact with large image stacks beyond the

RAM limit of typical workstations.

For larger image stacks, AlignTK by Arthur W Wetzel, Hood, and Dittrich 2013 devel-

oped on top of the idea of elastic alignment and offered more powerful nonlinear alignment.

Several improvements upon TrakEM2 include the introduction of masks, allowing patches

with defects to be masked out, finer scale patch registration, allowing better pixel-wise accu-
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racy and native compatibility with high-performance computing facility. It was successfully

applied in the zebrafish reconstruction project (Hildebrand et al. 2017).

A different tool written in Julia language (Macrina and Lh n.d.) follows similar design

principles but uses cloud-based computing infrastructure. It was applied to successfully

reconstruct a 250 × 140 × 90 µm3 volume in mouse V1 described in Turner et al. 2020.

An internal elastic alignment engine by the Google team was developed on the same idea

(Micha l Januszewski, Jörgen Kornfeld, et al. 2018) and was applied in an even larger sample

size (Shapson-Coe et al. 2021) with the help of massively parallel computing infrastructure.

More recently, novel alignment algorithms based on deep learning have been explored. In

E. Mitchell et al. 2019, a dense vector field for the transformation between neighboring pairs

of images is calculated with a trained convolutional network instead of with a predetermined

algorithm like SIFT or elastic alignment. Although to what extent can it substitute previous

tools remains to be seen.

Segmentation The biggest computational challenge in the connectomics pipeline is gener-

ally agreed to be segmentation (Jain, Seung, and Turaga 2010; Abbott et al. 2020). ”Image

segmentation” in its original form is concerned with identifying and separating objects in 2D

images. Some non-machine learning methods include the watershed algorithm, which detects

borders, calculates each pixel’s distance to the nearest border, expands segments from each

local minimum, and eventually groups each pixel to its nearest basin. The limitation of the

watershed algorithm is that it requires the borders between objects to be well defined and

trivially detected, which is rarely the case in natural images.

The groundbreaking work of LeCun et al. 1998 in using a convolutional neural net-

work(CNN) to perform handwritten digit classification laid the foundation of modern deep-

learning-based computer vision. The computers back then, however, were not powerful

enough to perform more complicated real-life image classifications. For the majority of the

2000s, CNN was not the mainstream technique for computer vision.
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Things started to change with the ”ImageNet” project (Deng et al. 2009), which created

a huge database with millions of labeled images and has been a golden standard for image

classification benchmark ever since. Its unprecedented size of training data effectively fu-

eled the meteoric rise of deep learning in computer vision. In 2012, AlexNet(Krizhevsky,

Sutskever, and Hinton 2012) took the field by surprise and showed that deep learning could

outperform traditional computer vision methods by a large margin as training data scales.

Following AlexNet, neural network-based automatic image classification has seen significant

improvements over the next few years. In 2014, VGG19 was proposed as a 19 layer deep

convolutional network that achieved state-of-the-art performance (Simonyan and Zisserman

2014). The introduction of the inception module in (Szegedy et al. 2016) and residual con-

nection in ResNet (He, X. Zhang, et al. 2016) significantly increased the depth of trainable

networks to as deep as 101 convolutional layers(ResNet-101) and vastly improved image clas-

sification performance. The idea was also expanded to semantic segmentation by introducing

a Region of Interest module to find individual objects and their contours. (He, Gkioxari,

et al. 2017; Howard et al. 2017) Automatic systems based on these network architectures

have already been widely applied in autonomous vehicles, industrial robots, smart cameras,

and image-rich social network platforms.

In the context of medical imaging, segmentation also plays a crucial role. For example,

there is significant medical application value in detecting tumors out of healthy tissue, find

regions with abnormality with MRI, or separating different anatomical substructures from

XRay scans. CNN was quickly adopted in the medical imaging field as well. By far, the

most influential neural network architecture in this domain has been UNet (Ronneberger,

Fischer, and Brox 2015), which inherited ideas from the fully convolutional network(FCN)

(Long, Shelhamer, and Darrell 2015) and built a hierarchical encoder-decoder network with

skip connection in between layers at the same downsample level. Its power lies in its ability

to encode images into features at different resolution levels and recombine multi-resolution
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features back into a pixel-level accurate mask prediction. Since its conception, UNet has

effectively become the de-facto standard in medical image segmentation, and numerous mod-

ifications and variants were proposed on top of it (K. Lee et al. 2017; Heinrich et al. 2018).

In connectomics, segmentation of neurites is a necessary step for any automated analy-

sis. The problem is complicated because the dataset is 3D instead of 2D, and neurites are

densely packed with each other. At an early stage of connectomics, convolutional neural

networks had been proposed to predict cell membranes against intracellular space and other

organelles (Jain, Murray, et al. 2007; Ciresan et al. 2012). The predicted membrane will be

the boundary between neurons; from there, a watershed could be used to produce an over-

segmentation, upon which pieces are agglomerated into complete neurites. This paradigm

dominated connectomics segmentation for a while (Narayanan Kasthuri, Kenneth Jeffrey

Hayworth, et al. 2015; K. Lee et al. 2017; Funke et al. 2018). Overall, UNet has been used

to predict cellular membranes with great success, as shown in the leaderboard of CREMI

challenge (Cremi.org n.d.), in which the top-ranking methods uniformly used some variant

of UNet for membrane detection. On top of that, the current state-of-the-art with UNet +

agglomeration paradigm (K. Lee et al. 2017) also uses UNet to predict the affinity between

voxels across z dimension for better agglomeration.

While the prediction of cell membranes is already extremely accurate, minor errors like

a blurred piece of the membrane could lead to merge errors that would be hard to fix in

the downstream process. The agglomeration step is also error-prone with thin neurites like

axons and dendritic spine necks.

In order to address the limitation of boundary prediction + agglomeration paradigm. A

novel paradigm flood-filling network was proposed by Micha l Januszewski, Jörgen Kornfeld,

et al. 2018, in which the authors bypassed the boundary prediction step in the established

segmentation paradigm and used a recurrent convolutional neural network to predict the

object mask one instance at a time. Flood-filling network(FFN) achieved state-of-the-art
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performance and was later used to reconstruct several increasingly larger samples: zebra

finch area x: 96 × 98 × 114 µm3, full Drosophila brain: 995 × 537 × 283 µm3 and more

recently a piece of human cortex tissue reaching roughly 1mm3.

Synapse Prediction Another major computational challenge is to predict synapses au-

tomatically. At the early stage of connectomics, synapses were manually annotated. (Helm-

staedter, Briggman, Turaga, et al. 2013; Narayanan Kasthuri, Kenneth Jeffrey Hayworth,

et al. 2015) However, synapses have distinct morphology under EM. Each synapse has a

”T-bar” shaped dark region at the contact site between axon and dendrite in the drosophila

brain, while in the mammalian cortex, each synapse is associated with a vesicle cloud and a

significantly darker post-synaptic density. The uniformity of these features suggests a trained

approach and is a perfect use case of machine learning.

Convolutional neural networks were quickly adopted and used for this task (Dorkenwald,

Schubert, et al. 2017), in which vesicle clouds, synaptic junctions(post-synaptic densities)

are predicted as separate tissue classes. This idea was later explored in Heinrich et al. 2018,

and a larger variant of UNet was used to detect Drosophila synaptic clefts. In a recent study,

on top of predicting the post-synaptic site mask, UNet was also used to predict a 3D vector

field of most likely synapse direction, demonstrating the versatility of the approach. These

UNet-based methods were subsequently used in biological studies (Turner et al. 2020; Jorgen

Kornfeld et al. 2020; Shapson-Coe et al. 2021).

Neurite Classification Outputs from the segmentation pipeline are often still fragmented

and contain errors. By classifying neurite fragments into axons, dendrites, glia, and other

useful sub-types, cross-class agglomeration errors can be detected and automatically cor-

rected. This approach has been proposed as an alternative strategy to push the segmentation

algorithm’s accuracy even higher (Schubert et al. 2019). Also, having a subcompartment

classification would help automated other downstream analyses like cell type classification
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or synapse error checking.

Chapter 3 discusses our effort in building a state-of-the-art pipeline for this task.

1.3 High-performance computing in neuroscience

High-performance computing(HPC), more commonly called supercomputers, has been a cru-

cial part of scientific advancements in the last few decades. Apart from computer science,

It is intensively used to drive research in physics, chemistry, climate, material science, engi-

neering, and biological sciences.

While the use of HPC had been common for structural molecular biology and bioinfor-

matics, it had not gained much attention in neuroscience until recently (Bouchard et al.

2016). The biggest reason is that experimental neuroscience based on electrophysiology and

light microscopy did not require the level of computing power HPC offers. Even with in-vivo

calcium imaging, which generates live video data that could reach hundreds of Gigabytes and

is orders of magnitude more data-intensive than electrophysiology, the computation required

for the raw video is not that intensive. Typically the video recording is pre-processed into

highly sparsified signal traces for each neuron at the very early stage of the pipeline.

Things started to change with connectomics. In the previous sections, multiple computa-

tional tools developed during 2012-2020 were discussed, and very few of them(perhaps except

AlighTK) were designed to be HPC-native. The key issue is that the core of a connectomics

pipeline, the segmentation engine, relies on an efficient deep learning infrastructure, which is

not something the HPC field had been optimizing for. Traditionally the focus of supercom-

puters had been CPU intensive workloads like the simulation of particles or materials at the

atomic level, but the rise of deep learning along with the growing prominence of General-

Purpose Graphics Processing Units(GPU) in recent years started to disrupt that paradigm

and pushed the HPC community to rethink the design of future supercomputers. Before the

next-gen supercomputer is ready, the void is filled by cloud computing, like Amazon EC2
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and Google Cloud, which are currently driving the largest connectomics projects like (Turner

et al. 2020; Shapson-Coe et al. 2021).

Acknowledging the surging demand for GPU in the scientific and engineering fields, the

next-gen supercomputers Summit(2018, Vazhkudai et al. 2018) and Aurora(2021, R. Stevens

et al. 2019) were designed to be GPU-centric. Summit is equipped with 27648 Nvidia Tesla

V100 GPUs and Aurora will be equipped with custom-designed GPUs with a whopping 1

exaFLOPs of peak performance. With their vastly improved performance in AI, it will be

interesting to see how HPC can accelerate connectomics in this decade.

Chapter 2 discusses our effort in setting up a connectomics pipeline geared for next-gen

supercomputer clusters.

1.4 The critical period and the development of visual cortex

With technological advancements, the growing ability of EM connectomics in revealing ul-

trastructural details has raised interest in applying it to some of the most intriguing open

questions in neuroscience, for example, the development of synapses in the central nervous

system (Schmidt et al. 2017; Gour et al. 2021). The development of the mammalian brain,

particularly the human brain, is notably slower and could have a more profound influence

on adult behavior. The idea is that by collecting high-resolution large-scale reconstructions

across developmental stages, we could gain valuable insights into how neuronal and synaptic

morphologies change and mature, which is a crucial piece of the puzzle of intelligence.

The major difficulty is that collecting a EM dataset is still costly and time consuming, so

the age and brain region need to be carefully chosen if a study involves more than one sample.

Ideally, the different samples should have dramatic structural differences previously estab-

lished, or hypothesized, by electrophysiology or light microscopy. The mouse primary visual

cortex during critical period fits the criteria and is therefore a good target for connectomics.

The critical period is a developmental stage during which the sensory cortex at an imma-
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ture state goes through dramatic change driven largely by sensory stimuli that optimizes the

circuitry permanently (S.-Y. Choi 2018). Beyond the critical period, the same level of envi-

ronmental influence would no longer be able to induce large-scale rewiring in the circuitry

despite a certain level of plasticity. Conversely, lack of proper exposure to environmental

stimuli could severely disrupt cortex development and impair certain behaviors. The criti-

cal period was first hypothesized from observation in human language acquisition, which is

anecdotally known to be significantly easier at an early age compared to later in adulthood.

David Hubel and Torsten Wiesel extensively studied the critical period in a series of

groundbreaking experiments in cat and macaque visual cortices. (David H Hubel and Wiesel

1970) They discovered that ocular dominance, a phenomenon that information from two

eyes relayed from Lateral Geniculate Nucleus(LGN) terminate in alternation columns in the

binocular region in visual cortex layer IVC (David H Hubel and Wiesel 1962), relies on visual

experience during the critical period to develop properly. In their experiments, a monkey

with one eyelid sutured for the first 6 months after birth had a severely disproportional

ocular dominance column pattern, where inputs from the closed eye were greatly weakened

(David Hunter Hubel et al. 1977). A similar phenomenon has also been discovered in mice

(Hensch and Fagiolini 2005; Hensch 2005).

The mechanisms for the critical period have been extensively studied. A crucial player is

believed to be the shift in excitatory-inhibitory balance and the maturation of GABAergic

neurons (Chattopadhyaya et al. 2004). In the mouse primary visual cortex, the functional

maturation of GABAergic inhibition proceeds during a protracted postnatal period from the

time of eye-opening to early adulthood (Z. J. Huang et al. 1999; Morales, S.-Y. Choi, and

Kirkwood 2002; Chattopadhyaya et al. 2004). Apart from inhibitory synapse maturation,

myelination is believed to play a crucial role in consolidating axonal targeting and ending

the critical period.

One hypothesis for synapse development during the critical period is pruning, which as-
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sumes the visual cortex before eye-opening has exuberant weak synapses and, over time gets

trimmed according to visual signals. This hypothesis finds its root from the experiments at

neuromuscular junctions, in which several axon branches coinnervate the same muscle fiber

but competition among them results in the strengthening of one and elimination of others

(Narayanan Kasthuri and Jeff W Lichtman 2003). Also, in the developing human cortex,

synapse density was found to decrease (Huttenlocher 1984). Recent in-vivo imaging stud-

ies have shown monocular deprivation induces dendritic spine elimination in the developing

mouse visual cortex (Zhou, Lai, and Gan 2017). While these findings support synapse prun-

ing as an important aspect of visual cortex rewiring by visual experience during development

at the light microscopic level, the extent of synapse pruning covering the critical period has

not been investigated at the EM level and it will be the focus of my study in Chapter 4.
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CHAPTER 2

A FULL CONNECTOMICS PIPELINE ON

HIGH-PERFORMANCE COMPUTING FACILITY

This chapter is a full reprint of ”Toward an Automated HPC Pipeline for Processing

Large Scale Electron Microscopy Data” (Vescovi, H. Li, et al. 2020), in which I was a

co-first author. The work is included with permission from all authors.

2.1 Abstract

We present a fully modular and scalable software pipeline for processing electron microscope

(EM) images of brain slices into 3D visualization of individual neurons and demonstrate

an end-to-end segmentation of a large EM volume using a supercomputer. Our pipeline

scales multiple packages used by the EM community with minimal changes to the original

source codes. We tested each step of the pipeline individually, on a workstation, a cluster,

and a supercomputer. Furthermore, we can compose workflows from these operations using

a Balsam database that can be triggered during the data acquisition or with the use of

different front ends and control the granularity of the pipeline execution. We describe the

implementation of our pipeline and modifications required to integrate and scale up existing

codes. The modular nature of our environment enables diverse research groups to contribute

to the pipeline without disrupting the workflow, i.e. new individual codes can be easily

integrated for each step on the pipeline.

2.2 Introduction

Microscopy images are a significant source of insight and raw information for neuroscience.

Modern techniques in electron microscopy (EM) allow scientists the ability to image at such

high resolution that every single synaptic connection can be distinguished (Briggman and
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Denk 2006; Helmstaedter, Briggman, and Denk 2008; Narayanan Kasthuri, Kenneth Jeffrey

Hayworth, et al. 2015). Furthermore, acquisition automation has enabled us to acquire large

volumes of microscopy data spanning several resolutions with minimal human involvement

in the acquisition.

The popularization of these automated imaging systems has made acquiring large amounts

of data the standard operation for many laboratories (Rubin 2006) (Sunkin et al. 2012), and

although most of them are able to physically handle the amount of data, there is an increasing

need for streamlining the pipeline. This necessity arises because of the growing acquisition

speed of microscopes, leading to an exponential growth in data throughput(Keller, Zeidler,

and Kemen 2014). While different techniques are emerging to solve each step of the upstream

process, they still have their own independent development communities(O’Toole et al. 2018;

Cardona et al. 2012; Arthur W Wetzel, Hood, and Dittrich 2013) and there are very few

laboratories with the capability of carrying out the entire process by themselves. Individ-

ually these algorithms contribute to the study of neuroscience image data; it is, however,

non-trivial to chain these modules together and deploy them in one coherent environment

for end-to-end connectomics projects.

The continuous use of electron microscopes can produce single datasets that reach mul-

tiple petabytes of data, which cannot be processed on local workstations or small clusters

and therefore require High Performance Computing (HPC) facilities. We propose to deploy

and chain these different processing libraries into a single microscope to HPC workflow and

provide a way for the user to interact with the data and its processing in real time. Our

package is implemented in Python and is called HAPPYNeurons (HPC Automated Pipeline

for Processing Yotta Neurons) (Vescovi and H. Li 2020).

An alternative solution is the use of cloud-based services (e.g. AWS, Google Cloud etc.),

but the data size and computation time make the cost infeasible for most laboratories. On

the other hand, HPC facilities at national labs have vast storage and computing capabilities
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that have not been tapped in the field of connectomics due to accessibility or differences from

established technology stacks. Our pipeline aims to address this limitation by incorporating

state-of-the-art open source connectomics tools into an HPC environment and building an

end-to-end pipeline for EM segmentation, while increasing accessibility to users and labs.

On a technical level, we propose to use MPI (Gropp, Thakur, and Lusk 1999) as a

parallelization layer for each step in order to keep the internal mechanics of the original

software mostly intact, while achieving compatibility with most HPC infrastructure. This

allows for rapid deployment of new tools on the pipeline. It is not the goal of our work

to improve the sample preparation or acquisition, but instead to enable the user to take

advantage of large scale computing facilities in order to process the data. This processing is

currently done in several parts that will be described in greater detail in the next chapter.

Our contributions to the field of neuroscience and HPC are: 1) deployment on HPC of

EM tools necessary to go from raw images to final reconstruction; 2) wrapping the tools

in an operation database that can be used to create custom pipelines, 3) deployment of an

computational environment that permits the user to interact with, annotate, and visualize

the data without the need to transfer outside of the HPC facility.

2.3 Related work

The field of connectomics has been blooming with different communities trying to under-

stand the underlying connectivity map of neural tissue. In the particular case of electron

microscopy there have been parallel contributions into sample preparation, data acquisition

and the diverse steps on the complex data processing involved. The sheer complexity of

the problem means every step of it can still be improved and ongoing efforts on different

aspects of the problem can be seen from various labs and groups in the community (C. M.

Schneider-Mizell et al. 2020; Motta et al. 2019; Jorgen Kornfeld et al. 2020).

For alignment, computer vision methods (O’Toole et al. 2018; Cardona et al. 2012; Arthur
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W Wetzel, Hood, and Dittrich 2013) are still heavily used to assemble the raw data into 3D

volumes, but are slowly being surpassed by machine learning-driven methods (E. Mitchell

et al. 2019). Segmentation has long been the rate-limiting step and still requires a lot of

human annotation. Originally it could take weeks to trace a single neuron through a stack

of images. With the aid of deep learning algorithms, segmentation can be vastly accelerated.

Efforts on neural networks such as U-Net (J. Wu, W. M. Silversmith, and Seung 2019) and

Flood-Filling Network (FFN) (Micha l Januszewski, Jörgen Kornfeld, et al. 2018) have proven

successful for the task of automatic segmentation of neurons.

Human-intensive data annotation is crucial to establish datasets for machine learning

approaches. The web-based package webKnossos (Boergens et al. 2017) enables laborato-

ries to deploy an intuitive interface to annotate datasets, without requiring annotators to

transfer up to petascale datasets between their institution and the hosting site. We leverage

webKnossos in our work to make the increasingly large connectomics datasets available for

annotation by distant annotators.

Upon completion of reconstruction, datasets are meshed for visualization and made avail-

able via Neuroglancer (Maitin-Shepard n.d.), a program developed by Google that visualizes

flat, black-and-white electron images, related labels, and reconstructions as a colourful 3D

forest of neurons.

2.4 Computational Pipeline

Electron microscope image processing follows a certain number of pre-defined steps from raw

data to a final scientific result. Given the data throughput of modern microscopes, executing

all those steps within the same facility as the microscope is a challenge. Figure 2.1 describes

the connection between the electron microscope lab at Argonne National Laboratory and

the Argonne Leadership Computing Facility (ALCF), showing the services involved in our

pipeline environment. After the microscope finishes acquiring an image (or set of images), it
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triggers an action that is stored on an external database server. This database of actions then

controls the transfer and processing of data through the storage and computing resources.

On the front end side the user can either manipulate the data or the actions to make the

pipeline unique to each sample.

Figure 2.1: Model of the flow of data between the electron microscope facility (top side)
and the HPC facility (lower side). The microscope acquisition populates the action database
which controls the storage and computing resources. The user can visualize and manipulate
the data and actions through web-based front ends.

For simplicity we will describe the basic steps involved in processing electron microscope
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images individually. Even though these steps are described in a sequential fashion, in practice

the processing is conducted through an iterative process involving automated computational

steps and human-intensive guidance.

2.4.1 Processing methods for EM data

In order to make the the interaction with the data as easy as possible for the user, we

encoded basic operations that can eventually be described as sequential pipelines. Since

human validation is necessary at multiple steps, the user can choose where and when to

interact with the pipeline. These operations are described below:

Montage is the process of positioning and merging overlapping image tiles into a single

larger image. Given sufficient metadata about the arrangement of the tiles, this step can be

executed largely without user intervention. We implemented a headless macro for TrakEM2

(Cardona et al. 2012) and developed a Python wrapper for MPI parallelization of this proce-

dure. The mutual independence of image sections makes it possible to trigger the montage

operation during acquisition, once the full set of images for a tile have been acquired, and

process it on the fly.

Alignment is the process of ensuring that neighboring images in the stack are aligned

according to their contained features, and is a crucial step for serial electron microscopy. In

our pipeline, we use AlignTK (Arthur W Wetzel, Hood, and Dittrich 2013) to perform elastic

alignment on the montaged image stack. We implemented wrappers for AlignTK’s core

functionality to better adapt to parallel deployment on HPC, along with a set of utility tools

for image preprocessing, including contrast normalization, scaling, and artifact thresholding.

Figure 2.2 shows examples of montage and alignment images.

Segmentation is the process to assign unique IDs to individual neurite objects in a 3D vol-

ume and is one of the key challenges in connectomics analysis. The current state of the art,

FFN, has achieved great success in accuracy and scale (Micha l Januszewski, Jörgen Kornfeld,
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(a) Montage
Example (b) Alignment example

Figure 2.2: Example of the montage process (left) and alignment process (right).

et al. 2018; Zheng, Lauritzen, et al. 2018; Jorgen Kornfeld et al. 2020) over the last few years.

Although it was originally designed for distributed computing platforms and despite prelim-

inary efforts on distributed training(Dong et al. 2019), it has not previously been deployed

on HPC infrastructure for large scale segmentation. In this pipeline, we made modifications

to the open source release of Google’s FFN. First, we added MPI-based parallelization for

execution at large-scale HPC facilities. Second, we added support for reading precomputed

volume(W. Silversmith n.d.[a]) data as input, in addition to HDF5 which reduces repetitive

data usage and seamlessly integrates with the visualization engine Neuroglancer. Third, we

implemented a reconciliation step that merges overlapping subvolume inference results into

a final segmentation in precomputed format.

Mask Prediction: In practice, a prerequisite for FFN is identifying tissue masks that would

disrupt segmentation. These masks are used to omit imaging artifacts or large objects that

can make the final segmentation less accurate, like cell-bodies and blood vessels. For cell-

bodies and blood vessels, we implemented and ran a classic 2D U-Net(Ronneberger, Fischer,

and Brox 2015). We created manual annotations on every 100 images at 4x resolution and

used these to train a U-net model, which was used for patch-wise inference over the full

volume. Manual seeds were placed at the center of each cell-body, and a 3D watershed

algorithm was run to provide initial segmentation of cell bodies and blood vessels. Figure

2.3 shows the process of creating the cell mask from the U-Net probabilities (on the left) to
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the actual cell body masks (on the right).

(a) U-Net cell body probabilities (b) U-Net Watershed Overlay

Figure 2.3: Result of the U-Net segmentation of large body sizes. These can be subsequently
used to mask-out already known objects in the final segmentation.

Mesh Generation produces a mesh-based representation to support 3D visualization of

the segmented objects. Currently this step is achieved using the Python library Igneous(W.

Silversmith n.d.[b]).

Skeletonization creates a point graph for every object and can also be processed by using

the TEASAR (Sato et al. 2000) implementation inside Igneous.

Manual Annotation: We used WebKnossos (Boergens et al. 2017) to provide manual vol-

umetric annotations as a training/validation set for FFN. This step is human-intensive, and

is typically approached iteratively, with the biologist annotating an initial sample partially,

rerunning training and inference with FFN, and making further corrections. To accom-

modate data format requirements of different packages and to streamline this process, we

implemented utilities for easy transformation of data formats between WebKnossos cube,

which is used by WebKnossos, stacks of tiff images, and HDF5 (Folk et al. 2011), which

are traditional data formats, and Precomputed (W. Silversmith n.d.[a]), which is used by
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CloudVolume and Neuroglancer.

User inspection of intermediate results between pipeline stages is currently essential. To

this end, we have developed a number of facilities to enable interaction with the datasets

that reside on ALCF systems. In the case of connectomics datasets, the intermediate results

can be very large, typically involving many images in the range of hundreds of megapixels

each; the ability to view these results quickly, in-place on ALCF systems, is critical. For

each intermediate dataset, we have developed code to produce downsampled versions of

select output data, and a Jupyter notebook template which can be copied into the target

run directory to view the downsampled data. The JupyterHub deployment at ALCF has

direct access to the Theta and Cooley filesystems, creating a highly usable environment for

viewing, which can be customized with additional Python-driven analyses.

While segmentation results can be viewed using Jupyter notebooks as above, these results

are more typically visualized in 3D using the Neuroglancer application. We have deployed

Neuroglancer at ALCF to support viewing segmentation results, which we demonstrate later

in the text. Whereas Jupyter notebooks access Theta-resident data directly, Neuroglancer

retrieves data using web protocols; to support this, we transfer segmentation results to the

3PB Petrel community storage system(Allcock et al. 2019) at ALCF, and expose the data

to Neuroglancer using standard web protocols.

2.4.2 Workflow Management

We have designed a pipeline that encompasses the individual software packages described

above, allowing them to be executed independently or assembled into more automated work-

flows. These software packages are leveraged in an iterative fashion, varying parameters to

achieve desired accuracy on each particular dataset, and software development is ongoing.

To account for this scenario, our pipeline is modular, supports multiple interfaces, and aims

to enable the entire data life cycle from raw images to final results. Figure 2.4 shows the
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electron microscope operations described above with the I/O present on our package.

Figure 2.4: Schematic of the pipeline. The green box represents the data acquisition. Orange
boxes and arrows represent human interactions in the pipeline. The white boxes represent
HPC submitted jobs. Blue boxes represent the data storage and visualization server. Green
arrows represent I/O from the computing resources.

Given the complex nature of the acquired data, we acknowledge that human intervention

is required during the process; our goal is to facilitate this while minimizing the iteration time

and making interaction with the data easier. This is important given that any imperfection

or artifact in the sample and data acquisition can cause the steps of the pipeline to fail and

require human intervention.

The pipeline is implemented as a Python library, with an API that exposes the indi-

vidual applications to be run, together with specifications of input data and configuration,

producing a collection of jobs that will be offloaded to our HPC facilities. This functionality

is generalized such that choice of execution machine can be made at the time of execution

rather than being tightly integrated into the job definitions, which permit users to encap-

sulate the jobs on their own schedulers depending on the computational infrastructure. On

our HPC resources, we achieve further flexibility by relying on the Balsam workflow toolkit
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(Salim et al. 2019). Using Balsam’s Python programming interface, we populate a database

with the desired pipeline actions and, using the specifics of the target computing resource,

define a collection of jobs to be run. Balsam manages the execution of these jobs on the

target computing resource, optimizing for concurrency and throughput, handling errors, and

providing monitoring and reporting details as the pipeline jobs are executed. This level of

control frees the user from laborious management of the compute jobs and enables Balsam to

systematically manage execution and data management ensuring that the compute resources

are used efficiently.

Pipeline users interact with Balsam via two interfaces: a Python API to define steps in the

workflow and a command line interface for allocating resources and launching applications

at the appropriate scale. The mapping of parallel tasks to MPI ranks varies across ap-

plications: rank/section for montage with TraekEM2, rank/section-pair for alignment with

AlignTK, and rank/subvolume for segmentation using FFN. This interface is mirrored in

the Python/Balsam interface. Input data and configuration details are provided via Python

calls, and passed to Balsam, which handles defining jobs in the underlying job database.

Once the job database has been populated , one can use the Balsam command-line

interface to submit jobs to the Theta queues for execution and to monitor the jobs as they

run.

2.5 Results

In our experiments we used two HPC resources: Theta, an 11.69 PFLOPs supercomputer

and Cooley, a GPU cluster with Nvidia K80s, both at the ALCF. Theta is composed of 4392

compute nodes, each with a 64-core, 1.3-GHz Intel Xeon Phi 7230 processor, 192GB DDR4

RAM and 16GB high-bandwidth MCDRAM. When needed, we also used a workstation with

dual Xeon E5 2630v4, 256GB memory and two Titan X Pascal GPUs. Our usage of FFN

relied on TensorFlow 1.14.
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The microscope used on our experiments was the Zeiss SEM Gemini 300 (Carl Zeiss and

Sigma 2011), which can provide images at up to 6nm of spatial resolution. The acquisition

automation is done by the Atlas software from Zeiss.

The sample tissue was dissected from a 14 day old, post-natal mouse brain in primary

visual cortex layer 4, and was prepared according to the protocol described by Hua et al.

(Hua, Laserstein, and Helmstaedter 2015). The tissue was then cut into 40 nm slices on

ATUM(R. Schalek et al. 2011) and scanned with the microscope at 6 nm resolution and 3.5

µs pixel dwell time. For each of the 1312 slices, two 10833 x 14000 pixel tiles were scanned

in sequence with 5% overlap.

2.5.1 Workflow Validation

As an initial validation step, two stages of the pipeline–montage and alignment–were run

on a subset of the data, using the Balsam execution backend. For montage, 128 sections of

data were selected, with a corresponding Balsam job describing the input and configuration

for TrakEM2. These jobs ran on 32 Theta nodes, with Balsam managing the distribution

of work to compute nodes as they became available. We demonstrate this approach in the

current case because this flexible approach to computing will become essential in the context

of larger image stacks in the future. A similar approach was taken to run image alignment

on this 128-image stack. For alignment, the database was populated with jobs to run on 16

nodes of the Cooley visualization cluster, with jobs distributed to compute nodes as they

became available.

To highlight user interactivity with the pipeline, we provide a Jupyter notebook ex-

ample where, given a raw dataset, the pipeline stages described above are submitted to a

Balsam database with standard (or user-provided) configurations for execution on Theta.

This approach permits the user to run collections of jobs multiple times, such as to perform

parameter sweeps. We created Balsam jobs for the TrakEM2 montage step with multiple
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configurations, varying the maximum and minimum octave used in the search for the correct

overlap between two images, which also affects the run time, and calculated the error rate

of those configurations on a given dataset (as shown on Table 2.1). An initial analysis of

the resulting images was conducted to identify montage failures, using the image size as a

proxy. The accumulated error was calculated by the number of images that were corrected

by changing the parameters. The final accumulated error shows the fraction of images that

could not achieve a correct montage with any of the tested parameter sets; these, there-

fore, must be corrected through direct user intervention. We continue to develop metrics for

identifying montage errors, in the interest of further automating this process.

TrakEM2 - Min TrakEM2 - Max RunTime Error Rate Accumulated Error

400 2000 100min 35% 35%
400 3000 260min 15% 10%
400 3500 450min 9% 6%
1000 3500 520min 6% 1%

Table 2.1: Execution times of TrakEM2 headless montage macro on a test dataset (6x2
tiles of 15000x15000 pixels and 1128 slices divided into 8 different folders that represent the
acquisition sessions). Each line shows the results of 8 Balsam jobs with 32 nodes, 4 ranks per
node and the values for the TrakEM2 parameters for the minimum and maximum octaves
used by the montage macro script.

Lastly, we simulated online processing of images from the electron microscope by trigger-

ing a transfer of images on a schedule that approximates typical operation. For the dataset

described in this work, each section was imaged as two separate tiles, each 8-bit tile having

image dimensions 10833x14000 and occupying 151MB. The imaging time for each tile is on

the order of 10 seconds, so a full section is imaged every 20 seconds. In this simulation, we

transferred a full section from the microscope-connected machine to Theta every 20 seconds

and added a montage job to the Balsam database, continuously, over a period of three hours.

In the current paradigm, at this rate, a wafer of 200 sections would be imaged in about one

hour, producing 30GB; this equates to a daily rate of 720GB. It is clear from this experi-
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Figure 2.5: Final visualization using Neuroglancer. On the left, an example of a raw image
(black and white) overlapped with the inference labels(colors). On the right, 3D rendering
of the same cells.

ment that Theta is able to keep pace with the incoming jobs at this rate (each TrakEM2

job was run on a single Theta node, using 64 cores per node, and 2 threads per core, as we

determined this to be the optimal configuration, with runtime averaging 440 seconds). To

achieve this, we began with an initial allocation of Theta nodes, with the Balsam executor

configured to grow and shrink the pool of nodes as needed, corresponding with the flow and

ebb of incoming jobs. This demonstration is, in itself, not a compelling demonstration of

the full extent of the current capability; it does, however, show that we have the technology

in place to trigger image transfer and job injection when a section has been imaged, which

will become a necessity in the future, where we anticipate transfer of images from multiple

microscopes simultaneously to process on ALCF supercomputers. We are currently under-

taking a scaling study to examine bounds on throughput in this scenario, which will be the

focus of a future publication.
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2.5.2 Complete Pipeline

We demonstrate the pipeline being executed from raw tiles to the final reconstruction on

a 90 x 125 x 52 µm volume of neural tissue. Each part of the pipeline was executed as

a standalone call from a bash script using our Python wrappers or, where appropriate, by

calling applications directly.

After montage and alignment, the data size was 15000x20800x1312 voxels at 6x6x40 nm3

resolution, in 8 bit grayscale, with a total size of 324 GB. Segmentation was carried out at

2x lower resolution to reduce merge errors and to increase speed. To perform training, we

acquired an FFN model trained on the Kasthuri11 (Narayanan Kasthuri, Kenneth Jeffrey

Hayworth, et al. 2015) dataset from the authors of (Micha l Januszewski, Jörgen Kornfeld, et

al. 2018) as an initial checkpoint. Using manual annotations of a 256x256x128 voxel volume

from our own dataset, we incrementally trained the base model until accuracy saturated at

0.91; this training was run on a separate workstation with dual Titan X GPUs for 12 hours,

as a transfer learning job that didn’t require Theta-scale computing. Before proceeding to

inference, we first performed cell-body and vessel masking with U-Net/watershed on the

workstation at 4x downsampled resolution, and used that as an initial segmentation. We

then split a total volume of 6700x9900x1312 voxels (at 12x12x40 nm3 resolution) into 3618

512x512x128 cubes with 32x32x16 overlap in each dimension. Inference jobs with the trained

model were run on 32 nodes of the Cooley cluster each with 2 NVIDIA K80 GPUs, with one

MPI rank per GPU, for a total of 72 hours; afterwards the subvolumes were reconciliated

(recombined into a full volume) on a workstation for final visualization and error checking.

Figure 2.5 shows the visualization of the reconstructed data in Neuroglancer. Our pipeline

have been tested on datasets as large as 1Tb and it can be scaled to larger volumes as long as

the resource allocation allows it. The limitations come from data sharing between different

resources and the final user. Another limitation comes from the increase in the error rate of

individual algorithms in larger volumes.
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2.6 Closing Remarks

In summary, HAPPYNeurons provides a software pipeline to integrate electron microscopes

with HPC facilities. We demonstrate an end-to-end connectomics reconstruction pipeline

using HPC resources. This is achieved by wrapping multiple libraries as a coherent set of

operations and providing the ability to chain them together using Balsam to enable more

optimized scheduling on supercomputers. Due to the modular design of the workflow, the

wrapped applications can be combined according to the needs of the current application

and dataset, and new modules can be added with ease. HPC facilities can be used in a

seamless manner, enabling the processing of large scale data without the monetary burdens of

cloud computing. This integration paves the way for using supercomputers for connectomics

reconstruction, in preparation for the deluge of data anticipated from faster next-generation

microscopes, and to enable exascale computers to process it. This modular design also allows

for different processes of the pipeline to target different accelerators on the HPC resources

(i.e. dedicated GPU’s). We are currently studying the execution of our pipeline at larger

scale on Argonne supercomputers; these results will appear in a future publication.
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CHAPTER 3

AUTOMATIC CLASSIFICATION OF CONNECTOMICS

RECONSTRUCTION AND APPLICATION IN ERROR

CORRECTION

This chapter is a full reprint of ”Neuronal Subcompartment Classification and Merge

Error Correction” (H. Li et al. 2020), in which I was the first author. The work is included

with permission from all authors.

3.1 Abstract

Recent advances in 3d electron microscopy are yielding ever larger reconstructions of brain

tissue, encompassing thousands of individual neurons interconnected by millions of synapses.

Interpreting reconstructions at this scale demands advances in the automated analysis of

neuronal morphologies, for example by identifying morphological and functional subcom-

partmentswithin neurons. We present a method that for the first time uses full 3d input

(voxels) to automatically classify reconstructed neuron fragments as axon, dendrite, or somal

subcompartments. Based on 3d convolutional neural networks, this method achieves a mean

f1-score of 0.972, exceeding the previous state of the art of 0.955. The resulting predictions

can support multiple analysis and proofreading applications. In particular, we leverage finely

localized subcompartment predictions for automated detection and correction of merge er-

rors in the volume reconstruction, successfully detecting 90.6 % of inter-class merge errors

with a false positive rate of only 2.7 %.

3.2 Introduction

Recent advances in 3d electron microscopy (EM) have enabled synaptic-resolution volumetric

imaging of brain tissue at unprecedented scale (Zheng, Lauritzen, et al. 2018; Dorkenwald,
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Turner, et al. 2019; Xu et al. 2020). Semi-automated reconstructions of these volumes

yield thousands of neurons and neuronal fragments, interconnected by millions of synapses

(Dorkenwald, Schubert, et al. 2017; Micha l Januszewski, Jörgen Kornfeld, et al. 2018; P. H. Li

et al. 2019; Buhmann et al. 2019). Together, reconstructed neurons and synapses within each

dataset describe a “connectome”: a connectivity graph whose structure is anticipated to un-

derlie the computational function of the tissue (Dasgupta, C. F. Stevens, and Navlakha 2017;

Jorgen Kornfeld et al. 2020). Interpreting neural connectivity at this scale is a significant un-

dertaking. One means to enhance interpretability is to use ultrastructural and morphological

details of neuronal fragments to distinguish their functional subcompartments. For example,

the classical description of “neuronal polarity”, i.e. the flow of information within vertebrate

neurons, from dendritic subcompartments, into the soma, and out through the axon, re-

mains central to understanding connectivity (Swanson and Jeff W Lichtman 2016). Although

trained human reviewers can classify many neuronal fragments with respect to subcompart-

ment, the growing scale of connectomic reconstructions demands automated methods. A

recent approach to this problem was based on training random forest classifiers on manually

defined features extracted from neurite segments and separately detected organelles such as

mitochondria or synapses (Dorkenwald, Schubert, et al. 2017; Motta et al. 2019). A later ex-

tension improved accuracy by classifying 2d projections of neurites and their organelles with

convolutional neural networks (CNNs), a technique called Cellular Morphology Networks

(CMNs) (Schubert et al. 2019) . However, an approach based on a full 3d representation

of neuron fragments, which retains the maximum morphological and ultrastructural infor-

mation, has not been previously demonstrated. Another application for subcompartment

predictions is in proofreading, e.g. to correct errors in automated reconstructions. Prior

works proposed to detect merge errors through identification of morphologically unlikely

cross-shaped fragments (Motta et al. 2019; Meirovitch et al. 2016) or used a 3d CNN trained

specifically to detect merge (Rolnick et al. 2017) or split errors (Haehn et al. 2018). Strong bi-
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ological priors dictate that vertebrate neurons have only one major axonal branch extending

from the soma, and that dendritic and axonal subcompartments do not typically intermingle

within a neurite (Swanson and Jeff W Lichtman 2016). Prior work used these cues to tune

agglomeration via sparse subcompartment predictions in a multicut setting, which optimizes

over an explicit edge-weighted supervoxel graph (Krasowski et al. 2017; Pape et al. 2019).

Alternatively, violation of biological priors in subcompartment predictions can be used to de-

tect post-agglomeration reconstruction errors, which can then be flagged for efficient human

proof-reading workflows (Hubbard et al. 2020), or fully automated error correction. In the

following we (1) present a system for neuronal subcompartment classifica-tion based on 3d

convolutional neural networks, (2) demonstrate finely localized subcompartment predictions

whose accuracy exceeds state-of-the-art, and (3) show how these predictions can be used for

high-fidelity detection and correction of agglomeration errors in an automated segmentation.

3.3 Materials and Methods

3.3.1 Datasets

We used an automated Flood-Filling Network (FFN) segmentation of a 114 × 98 × 96 µm

volume of zebra finch Area X brain tissue acquired with serial blockface EM at a voxel res-

olution of 9 × 9 × 20 nm (Micha l Januszewski, Jörgen Kornfeld, et al. 2018). Base FFN

supervoxels (SVs) were agglomerated (Fig. 1a) via FFN resegmentation, with additional

post-processing applied to the agglomeration graph to reduce merge and split errors (Jorgen

Kornfeld et al. 2020). We also used precomputed organelle probability maps for synaptic

junctions and vesicle clouds (Dorkenwald, Schubert, et al. 2017) in some experiments. The

agglomerated segmentation was skeletonized via TEASAR (Sato et al. 2000), and the re-

sulting skeletons were sparsified to a mean inter-node spacing of 300 nm and eroded so that

terminal nodes were at least 100 nm from the segment boundary. A subset of the objects in
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the volume were manually classified by human experts as axon, dendrite, or soma, of which

27 objects were used for training (32.8k axon, 8.4k dendrite, 7.5k soma nodes), 6 objects for

validation (2.6k, 1.0k, 2.0k), and 28 objects for evaluation (29.3k, 38.2k, 32.7k). Datasets

are available from the CMN authors on request (Schubert et al. 2019).

Figure 3.1: Neural subcompartment classification with 3d CNN. (a) The segmenta-
tion consists of base SVs (top, different colors) that were agglomerated into more complete
neuron segments (bottom, solid) (Micha l Januszewski, Jörgen Kornfeld, et al. 2018). (b)
Input FOVs are centered at node positions from automated skeletonization of the segmenta-
tion mask. (c) The classifier architecture is a 3d extension of a ResNet-18 CNN, and outputs
probabilities for axon, dendrite, and soma subcompartment classes. (d) For some experi-
ments, we provided additional input channels, e.g. the contrast normalized (Zuiderveld 1994)
EM image, or precomputed organelle probability maps (Dorkenwald, Schubert, et al. 2017).
(e) Illustration of the two primary FOV sizes used in our experiments, approximately 5.16
or 6.44 µm on a side. For comparison, we also illustrate the neurite-aligned 4x4x8 µm FOV
employed by the previous CMN approach (Schubert et al. 2019)
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3.3.2 Classification of neural subcompartment with 3d CNNs

Classifier input fields of view (FOVs) were centered at neuron skeleton node locations, with

the segment mask extracted from the neuron’s agglomerated segmentation (Fig. 3.1b).

However, multiple axonal and dendritic processes from the same neuron sometimes pass

close to each other, even if their connection point is far outside the FOV. Therefore, it was

beneficial to remove segment mask components in the FOV that were not connected with the

component at the center. Disconnected component removal was done at full 9 × 9 × 20 nm

resolution, prior to downsampling the block to the network input resolution.

Classifier architectures were derived from the ResNet-18 CNN model (He, X. Zhang, et al.

2016), with convolution and pooling layers extended to 3d (Fig. 3.1c). Neuronal morphology

was provided to classifiers as a 3d binary segment mask. When additional input channels

(EM image, organelle masks; Fig. 3.1d) were provided, the segment mask was applied to

the other channels instead of being provided separately, with areas outside the mask set

to zero. Input data was provided at 36 × 36 × 40 nm resolution in blocks of 129 or 161

voxels on a side, for a total field of view of 4.64 × 4.64 × 5.16 or 5.80 × 5.80 × 6.44 µm

respectively (Fig. 3.1e). Network output comprised probabilities for axon, dendrite, and

soma subcompartment classes.

For training, the input locations were class balanced by resampling skeleton nodes for

underrepresented classes multiple times per epoch. We also applied random 3d rotations to

the input as a training data augmentation. Networks were trained via stochastic gradient

descent, with learning rate 0.003 and batch size 64 for 1.5M steps. For the best performing

network, with two input channels and 6.44 µm field of view, the total number of trainable

parameters was 33.2M.
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Figure 3.2: Subcompartment classification results. (a) Node classification performance
on axon, dendrite, and soma labeled examples. (b) Skeleton node classifications of three
automated neuron reconstructions outside the train, validation, and evaluation sets.
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3.3.3 Automated detection and correction of merge errors

We applied top-performing subcompartment predictions (Fig. 2) to further improve neuron

reconstruction quality by detecting merge errors between different classes. FFN reconstruc-

tion biases base SVs (Fig. 1a) to have very few merge errors via an oversegmentation

consensus procedure (Micha l Januszewski, Jörgen Kornfeld, et al. 2018), so we focused on

errors in SV agglomeration. Once agglomeration errors are identified and localized, they can

be fixed efficiently by simply removing the bad agglomeration graph edges, either under hu-

man review (Hubbard et al. 2020) or automatically. We used subcompartment predictions to

identify all somas and branches, and then to detect and correct two classes of agglomeration

errors: axon/dendrite branch merge errors, and soma/neurite merge errors. As ground truth,

we manually identified 132 agglomerated neurons that contained merge errors and annotated

their bad agglomeration graph edges. This yielded 473 branches, among which there were

83 branch merge errors and 56 soma merge errors. Together these represent a significant

fraction of all merge errors identified through an exhaustive screening of the reconstruction.

3.3.4 Branch merge error correction by graph cut consistency score

Branch merge errors involve a mis-agglomerated axon and dendrite (Fig. 3.3a). Intuitively,

branches that contain a merge error tend to have lower overall node prediction consistency

(defined as weighted mean probability of dominant class type). Removing a bad agglomer-

ation edge should improve the node consistency of the two resulting subgraphs.

The input to our system is the skeleton of the agglomerated neuron with node class predic-

tions, and the neuron’s agglomeration graph, where each skeleton node contains information

about the base SV it belongs to. The workflow is as follows:

Step 1: Identify soma. If the segment has > 200 soma classified nodes, find the SV with

the most soma nodes.

Step 2: Separate branches from soma. After removing the primary soma SV, each
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remaining subgraph of the agglomeration graph is considered a branch if it contains > 100

nodes.

Step 3: Compute node weights (optional). Automated skeletonization sometimes over-

clusters nodes within thicker objects. Densely clustered nodes can optionally be down-

weighted by 1 / (node count in 500 nm radius - 2) to discount the nodes in excess of the

three expected within each 500 nm of clean path length. Furthermore, neurite nodes proximal

to the soma (within 5-10 µm) tend to have inconsistent class predictions. These nodes can

also be optionally down-weighted by 0.01, which effectively ignores them except in cases

where soma proximal nodes are the only nodes on a branch.

Step 4: Group predictions. Node predictions are aggregated by base SV, to compute

weighted mean class probabilities PSV and node count wSV for each SV (Fig. 3.3b).

Step 5: Compute cut scores. Any cycles are first removed, then edges are traversed from

leaf nodes in. At each edge, the branch is conceptually divided into subgraphs Gleave and

Gremain, and the ”cut consistency score”, a measure of how many nodes belong to their

respective majority classes post- versus pre-cut, is computed (Fig. 3.3b):

max
∑Gleave

SV PSV wSV +max
∑Gremain

SV PSV wSV

max
∑Gbranch

SV PSV wSV

(3.1)

Step 6: Detection. The highest predicted cut score is thresholded to determine if the

branch contains a merge error, with constraints that Gleave and Gremain must have different

majority class types and their weighted sizes must be > 50.

Step 7: Correction (optional). The suggested agglomeration edge is removed, and ma-

jority vote pooling is performed within subcomponents. Branch pooled node prediction

accuracy is compared pre- and post-cut (Fig. 3.3e).
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Figure 3.3: Correction of branch merge errors via subcompartment prediction.
(a) Left, view of an agglomerated segment centered on a branch merge error, with the node
predictions for the branch overlaid. Inset shows the EM image and overlaid base SVs for
the merge. Right, zoomed in view of the merge error, with base SVs in different colors. (b)
Node predictions are aggregated to get class probabilities [axon, dendrite, soma] and weight
(node count) per SV. Three SVs are predicted axon, one dendrite, reflecting the merge error.
Candidate neuron cuts are annotated with their consistency improvement scores (Eq. 1).
(c) ROC plot showing detection performance as the cut score threshold is varied. Separate
curves show three variants with different node reweighting (to address node clustering or
nodes close to the soma). (d) The f1 of merge detection versus cut score threshold. (e)
Branch-wise majority vote pooled class accuracy distribution before (top) and after (bottom)
applying suggested cuts.

3.3.5 Soma merge error correction by trajectory of primary neurite

The second error mode involves a neurite fragment that is mis-agglomerated with soma (Fig.

3.4). We observed that these errors can be fixed with a simple heuristic based on branch

trajectory relative to the soma surface. The pipeline is as follows:

Steps 1-2: See branch merge detection pipeline above.

Step 3: Distance to soma. For each axon or dendrite node, compute the distance ds to

the nearest soma node.
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Step 4: Distance to branch root. For each branch, the root is the node with minimum

ds. Compute the distance dr from each branch node to the root (Fig. 3.4b). Step 5: Fit

slope. For each branch, compute a linear fit to ds versus dr (Fig. 3.4c) for nodes within a

tunable distance to soma. The slope of the fit is then thresholded to determine if a branch

is a soma merge error (Fig. 3.4c-e).

3.4 Results

3.4.1 Subcompartment classification performance of 3d CNNs

We compared the performance of our 3d CNN classifiers to previous state-of-the-art results

from CMNs (Schubert et al. 2019), in terms of class-wise precision, recall, and f1 metrics

(Fig. 3.2a). For each trained 3d CNN, we saved parameter checkpoints throughout the

training period and screened them on a small manually labeled validation set. For most

models, performance on the validation set approached or exceeded 0.99 on all metrics (not

shown), but validation performance was useful for tracking convergence, confirming there was

no overfitting to the training set, and for avoiding checkpoints where training temporarily

became unstable. We then applied the ten checkpoints with highest validation accuracy to

the larger evaluation set to compute the mean and standard deviation for each metric.

Compared with CMNs (Fig. 3.2a, blue), a network analyzing voxel representation of 3d

segment shape alone was competitive (green). Adding vesicle cloud and synaptic junction

organelle probability map channels allowed the 3d CNN to exceed state of the art (red).

Interestingly, further adding the full EM image channel had negligible impact (yellow). Ex-

panding the field of view for the masked organelles network from 5.16µm to 6.44µm yielded

the best performing system tested (pink). We also tested expanding the FOV further, increas-

ing the input resolution, increasing the CNN depth, and providing different input channel

configurations; see supplemental Table S1. Of the top ten checkpoints from the best per-
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forming model, the median overall node accuracy on the evaluation set was 97.1%, and mean

f1 across classes was 0.972. We then used this median checkpoint to predict node classes

for reconstructed neurons and fragments throughout the entire volume. Predicted skeletons

demonstrate good class consistency within soma and neurites, with some ambiguity at the

interface between branch and soma (Fig. 2b). Based on the predictions, the volume contains

3.25 m total axon path length, and 0.79 m dendrite path length, a ratio of 4:1 that is similar

to the 5:1 ratio previously reported (Schubert et al. 2019). However, the total path length

here significantly exceeds that previously reported, probably due to differences in skeleton

sparsity, so the absolute lengths here should be considered an upper bound.

3.4.2 Agglomeration merge error detection and correction

We fed subcompartment predictions back to detect and correct two classes of reconstruc-

tion merge errors that occur during SV agglomeration: axon/dendrite branch merges, and

soma/neurite merges.

The branch merge error correction system is based on analyzing the predicted subcom-

partment class consistency of agglomerated segments, with and without candidate cuts ap-

plied (Fig. 3.3a-b). We first considered branch merge error detection performance, and

plotted the receiver operating characteristic (ROC) curve by varying the cut score threshold

(Fig. 3.3c-d). In areas with many small SVs, several nearby cut candidates can have equiv-

alent impact, so predicted cuts that fell within four agglomeration graph edges of ground

truth cuts were considered correctly detected. The best detection performance was at 1.05

cut score threshold, with f1 of 0.850 (see also Table S2).

Merge error detections can be used to flag the location for human review. We also

calculated the node prediction accuracy improvement after directly applying the suggested

cut. For the 96 branches with either a predicted merge or ground truth merge, we manually

determined their nodewise ground truth class as axon or dendrite, then performed majority
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vote predicted class pooling before and after applying predicted cuts. Comparing class

pooled accuracy pre- and post-cut (Fig 3.3e), the mean node prediction accuracy improves

from 0.804 to 0.886.

We addressed the second category of agglomeration merge errors, between somas and

nearby neurites, by analyzing the trajectory of the branch relative to the somal surface (Fig.

3.4a-c). We found the best performance is achieved by sampling skeleton nodes within the

initial 10 µm from the soma, yielding an f1 of 0.923 at a slope of 0.78. (Fig. 3.4d-e; see also

Table S3).

Combined, branch and soma merge analyses detected 90.6% of merge errors, with a false

positive rate of only 2.7%.

3.5 Conclusions & Discussion

To make volume EM datasets of brain tissue easy to analyze at scale, it is crucial to re-

duce the data they contain to more compact and semantically meaningful representations.

Segmentation and synapse detection provide an important first step in this process. Here

we presented a system that can provide further information about the biological identity of

neurites by predicting subcompartment types, and feed back to the preceding reconstruction

stage through automated correction of agglomeration errors.

We expect this approach to be useful for brain circuit analyses, and to be applicable to

diverse datasets. We also anticipate that the approach could be extended to finer grained

subcompartment classification. For example, the subcompartment localization of a postsy-

naptic site on e.g. a dendritic spine, dendritic shaft, soma, or axon initial segment is linked

to both the synapse’s functional impact as well as the identity of its presynaptic partner

((PING et al. 2008; Contreras, D. J. Hines, and R. M. Hines 2019). Another related appli-

cation is in the identification of neuronal subtypes, whose shared structural and functional

properties can enhance connectome interpretability by organizing thousands of individual
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Figure 3.4: Correction of soma merge errors. (a) Example of a soma with multiple
neurite branches, each in a different color. Two of the branches were erroneously agglomer-
ated to the soma. (b) For each node along a branch, the distance to the nearest soma node
is computed. The distance to the branch root (defined as the branch node closest to the
soma) is also computed. (c) The soma distance versus branch root distance for the nodes
comprising branches from (a), with matching color-coding. The dashed line of slope 0.78
separates the trajectories of correct branches that run primarily radially out from the soma,
from the soma merge error branches that run primarily tangential. (d) ROC plot showing
performance of merge error detection as slope threshold is varied. Separate curves show
results with nodes at different distances from the soma included in the analysis. (e) The f1
of merge error detection versus slope threshold.

neurons into a reduced complement of conceptual roles (Jiang et al. 2015; Gouwens et al.

2020; Grünert and Martin 2020).

The primary advantages of our system are its simplicity, and its ability to capture com-

plete local information about a neurite, resulting in a new state of the art. A fundamental

limitation is that processing efficiency drops with increasing field of view as the neurite of

interest fills a progressively smaller fraction of the voxels that need to be processed. This

limitation could be mitigated by using an alternative representation of sparse 3d data (Kipf

and Welling 2016; Qi et al. 2017; Riegler, Osman Ulusoy, and Geiger 2017; Mescheder et al.
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2019; B. Graham, Engelcke, and Van Der Maaten 2018).
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3.7 Supplemental Material

3.7.1 Node classification ablations and extensions

Table S1 presents performance metrics on the evaluation set for 15 node classification ex-

periments, as well as the performance of the previous state-of-the-art CMNs (Schubert et al.

2019). Bold rows indicate data already plotted in the main text (Fig. 2).

Rows 5-7 and 9 focus on changing the input channels. Rows 5 and 6 show the relative

performance of using only synaptic junction or vesicle cloud probability maps alone, rather

than both together (row 3); the vesicle clouds perform better, but neither is sufficient on

its own. Rows 7 and 9 show that adding mitochondria probability maps does not improve

performance, and may cause some degradation.

Row 10 shows that further expanding the field of view (FOV) to 193 voxels on a side

degrades performance relative to the 161 voxel model (row 8). As FOV increases, the neuron

segment mask is increasingly sparse, i.e. the input is increasingly empty. This may cause

the model to train less smoothly, consistent with the larger checkpoint variance.

Rows 11 and 12 show that increasing input resolution to 18x18x20 nm degrades perfor-

mance relative to the 36x36x40 nm models (e.g. row 3). The number of voxels in the input

block for the higher resolution models remained the same, so the resulting reduction in FOV

in terms of microns likely explains the degradation. Interestingly, adding the full EM image
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does improve the performance of these higher resolution models, in contrast to the lower

resolution models where adding the image has little effect (rows 3 and 4). This is consistent

with our observation that as human viewers we find a significant amount of detail is lost in

the EM image when downsampling from 18x18x20 to 36x36x40 nm.

Rows 13-16 repeat several of the experiments using a deeper ResNet-50 network archi-

tecture. Overall, the results are similar to ResNet-18 performance. The best performing

ResNet-18 model performs somewhat better than its ResNet-50 equivalent (rows 8 and 16)

and is significantly less computationally intensive, so we favored ResNet-18 in experiments

and production.

FOV
(vox)

Res
(nm)

Extra
Inputs

Model
Depth

Axon Dendrite Soma

prec recall f1 prec recall f1 prec recall f1
1 CMN 0.951 0.936 0.943 0.952 0.944 0.948 0.967 1 0.983
2 129 40 18 0.894

±
0.004

0.964
±
0.003

0.928
±
0.002

0.975
±
0.003

0.897
±
0.005

0.935
±
0.003

0.977
±
0.002

0.999
±
0.000

0.988
±
0.001

3 129 40 sj, vc 18 0.951
±
0.006

0.951
±
0.008

0.951
±
0.003

0.967
±
0.006

0.941
±
0.005

0.954
±
0.002

0.970
±
0.001

0.999
±
0.000

0.984
±
0.001

4 129 40 im, sj,
vc

18 0.953
±
0.009

0.950
±
0.007

0.951
±
0.003

0.967
±
0.006

0.937
±
0.007

0.952
±
0.002

0.963
±
0.002

0.999
±
0.000

0.981
±
0.001

5 129 40 sj 18 0.892
±
0.006

0.956
±
0.006

0.923
±
0.004

0.970
±
0.005

0.892
±
0.005

0.929
±
0.003

0.972
±
0.001

0.999
±
0.000

0.986
±
0.001

6 129 40 vc 18 0.917
±
0.006

0.953
±
0.008

0.934
±
0.003

0.968
±
0.006

0.912
±
0.006

0.939
±
0.003

0.970
±
0.001

0.999
±
0.000

0.984
±
0.001

7 129 40 sj, vc,
mito

18 0.950
±
0.007

0.959
±
0.011

0.954
±
0.004

0.974
±
0.008

0.940
±
0.006

0.957
±
0.003

0.971
±
0.001

0.999
±
0.000

0.985
±
0.001

8 161 40 sj, vc 18 0.954
±
0.006

0.981
±
0.004

0.967
±
0.002

0.991
±
0.003

0.940
±
0.005

0.965
±
0.002

0.967
±
0.001

0.999
±
0.000

0.983
±
0.000

9 161 40 sj, vc,
mito

18 0.934
±
0.007

0.969
±
0.009

0.951
±
0.003

0.981
±
0.007

0.924
±
0.006

0.952
±
0.002

0.967
±
0.001

0.999
±
0.000

0.983
±
0.000

10 193 40 sj, vc 18 0.940
±
0.014

0.970
±
0.020

0.955
±
0.007

0.983
±
0.016

0.923
±
0.013

0.952
±
0.005

0.962
±
0.001

0.999
±
0.000

0.980
±
0.000

11 129 20 sj, vc 18 0.902
±
0.011

0.937
±
0.009

0.919
±
0.004

0.954
±
0.007

0.919
±
0.011

0.936
±
0.004

0.992
±
0.002

0.999
±
0.000

0.995
±
0.001

12 129 20 im, sj,
vc

18 0.938
±
0.010

0.935
±
0.012

0.936
±
0.003

0.954
±
0.008

0.932
±
0.009

0.943
±
0.003

0.971
±
0.002

0.999
±
0.000

0.985
±
0.001

13 129 40 50 0.898
±
0.006

0.960
±
0.004

0.928
±
0.002

0.973
±
0.003

0.900
±
0.006

0.935
±
0.002

0.976
±
0.001

0.999
±
0.000

0.987
±
0.001

14 129 40 im 50 0.951
±
0.009

0.959
±
0.006

0.955
±
0.002

0.974
±
0.004

0.937
±
0.009

0.955
±
0.003

0.966
±
0.002

0.999
±
0.000

0.982
±
0.001

15 129 40 sj, vc 50 0.950
±
0.005

0.958
±
0.006

0.954
±
0.002

0.972
±
0.005

0.941
±
0.005

0.956
±
0.001

0.971
±
0.001

0.999
±
0.000

0.985
±
0.000

16 161 40 sj, vc 50 0.951
±
0.002

0.975
±
0.003

0.963
±
0.001

0.986
±
0.003

0.938
±
0.002

0.961
±
0.001

0.967
±
0.001

0.999
±
0.000

0.983
±
0.000

Table 3.1: Node classification ablations and extensions vox: voxels on a side; Res: roughly
isotropic resolution; prec: precision; im: EM image; sj: synaptic junctions; vc: vesicle clouds;
mito: mitochondria
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3.7.2 Detailed branch merge detection metrics

Table S2 shows the detailed performance metrics for the best performing (in terms of f1

metric) cut score threshold settings of the branch merge detection pipeline, corresponding

to data plotted in the main text (Fig. ??c-d).

Node reweighting Precision Recall F1 AUC

no reweighting 0.753 0.843 0.795 0.91
clusters 0.807 0.855 0.83 0.912
clusters, near soma 0.845 0.855 0.85 0.918

Table 3.2: Branch merge detection performance (best f1)

3.7.3 Detailed soma merge detection metrics

Table S3 shows the detailed performance metrics for the best performing (in terms of f1

metric) slope threshold settings of the soma merge detection pipeline, corresponding to data

plotted in the main text (Fig. 3.4d-e). After excluding predicted soma merge error branches,

we were able to identify a single correct axonal branch 82.4% of the time.

Sampling range Precision Recall F1 AUC

5µm 0.852 0.821 0.839 0.972
10µm 0.885 0.964 0.923 0.986
15µm 0.839 0.929 0.881 0.986
20µm 0.779 0.946 0.855 0.982

Table 3.3: Soma merge detection performance (best f1)
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CHAPTER 4

COMPARATIVE STUDY OF SYNAPSE DEVELOPMENT

FROM P14 TO P105

This chapter has not been published in a peer-reviewed journal by the submission time of

this thesis. I would be the first author of the manuscript that we plan to submit in the near

future, encompassing the content of this project. Co-authors include Gregg Wildenberg,

Tom Uram, Nicola Ferrier, Narayanan Kasthuri.

4.1 Abstract

The mammalian visual cortex goes through massive rewiring throughout the critical pe-

riod. Understanding how synapses develop from an immature state into fully functioning

neural circuits is of great interest. Despite advancements in connectomics in recent years,

saturated reconstruction of more than one developmental stage in the visual cortex has not

been demonstrated. In this study, we acquired and reconstructed tissue samples from mouse

primary visual cortex layer 4 at age P14 and P105 with serial electron microscopy, then

performed automatic segmentation with Flood-filling network and synapse prediction with

UNet. We found that synapses increase in both size and density from eye-opening to early

adulthood over the critical period, challenging a pruning centric view of circuit develop-

ment. Also, a sharp increase of somatic and perisomatic shaft synapse density is observed,

supporting the significance of modulatory inhibitory inputs in regulating the visual cortex

development. Furthermore, a significant increase in mitochondria coverage and its correla-

tion with synapse density is reported, suggesting the importance of mitochondria in dendrite

and synaptic maturation.
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4.2 Introduction

A fundamental concept of mammalian brain development is that connections between neu-

rons are exuberant in the newborn and, over postnatal life, neurons ”prune” back synapses

on some target neurons while strengthening connections on others (Neniskyte and Gross

2017). Classic examples of pruning are the development of ocular dominance columns in the

cat and primate primary visual cortex, where cortical Layer 4 neurons receive connections

from thalamic neurons both representing left and right eye inputs at birth, but those inputs

gradually segregate such that ‘columns’ of the cortex are responsive primarily to one eye

in the adult (David H Hubel and Wiesel 1962; David H Hubel and Wiesel 1968). It was

observed with sensory deprivation, thalamocortical synapses are pruned and axon arbors

retract (Antonini and Stryker 1993; Antonini, Fagiolini, and Stryker 1999). It was also

reported in primates, approximately 5000 synapses are lost per second between 2.7 and 5

years old (Bourgeois and Rakic 1993). Similar pruning processes have been documented for

retinal ganglion cells inputs onto thalamic neurons in the LGN (Guido 2008) and in the

cerebellum, where multiple climbing fibers innervate an individual Purkinje cell at birth,

but in adulthood, only one climbing fiber remains (Hashimoto and Kano 2013). Finally, in

the peripheral nervous system, motor neurons prune inputs onto individual muscle fibers

(Narayanan Kasthuri and Jeff W Lichtman 2003), and pre-ganglionic axons prune inputs

on ganglion neurons in retina development (D’Orazi, Suzuki, and Wong 2014). Also, in a

more recent work, it was found in mouse V1 layer 2/3, oligodendrocyte precursor cells prune

axons (Buchanan et al. 2021). These experiments suggest that pruning could be a universal

phenomenon.

However, there remain large gaps in the pruning story. Since much of the data was col-

lected using proxies for synapses, e.g., trans-synaptic labeling using radioactive amino acids

(Crowley and Katz 2000), or focused on spines (Narayanan Kasthuri and Jeff W Lichtman

2004; Moyer and Zuo 2018). There has been concern that technical limitations potentially
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may have overemphasized pruning or that pruning varies substantially across animals or

even within animals (Horton and Hocking 1996). A gap relevant to this proposal is that pre-

vious documentation of pruning, particularly in the cortex, has centered almost exclusively

on higher-order mammals, e.g., cats, nonhuman primates, and humans (Huttenlocher 1984).

There is little documentation of synaptic pruning in the mouse cortex, where a better under-

standing of the process would allow investigation with the wide variety of tools, genetic and

otherwise, available in that species. A few examples are fixed time point fluorescence data,

where the limited resolution can not clearly visualize synapses and could lead to misiden-

tification of synapses (Grutzendler, Narayanan Kasthuri, and Gan 2002). A recent study

using in-vivo time-lapse imaging has revealed that monocular deprivation induces dendritic

spine elimination in the developing mouse visual cortex (Zhou, Lai, and Gan 2017), but

the difficulties with time-lapse imaging in pups prevent the investigation of synaptic struc-

tural dynamics over a wider range in the living visual cortex. Thus, there remains a gap in

comprehensively detailing the amount of pruning against synaptogenesis.

Large volume EM connectomics has revealed lots of insights into adult mouse circuits.

Notable examples include (Narayanan Kasthuri, Kenneth Jeffrey Hayworth, et al. 2015;

Motta et al. 2019; C. M. Schneider-Mizell et al. 2020), but ”developmental connectomics”, a

sub-field using connectomics tools to study the development, is rather new. Due to the time

and resource cost in collecting an EM dataset, few studies go into the temporal dimension

and attempt reconstructing multiple samples until recently. While EM reconstruction has

been performed in a study of C.elegans development (Witvliet et al. 2021) and studies of

axonal development in the entorhinal cortex and the somatosensory cortex Schmidt et al.

2017; Gour et al. 2021, it has not been used to investigate synapse changes on dendrites

during visual cortex development.

We report an analysis of dendritic synapse development during the critical period with

a semi-automatic connectomics pipeline on supercomputers.
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4.3 Results

4.3.1 Reconstruction of mouse V1 layer 4 samples at two different ages

We acquired and performed saturated reconstruction over a 120 × 80 × 52 µm block from

Layer 4 visual cortex of a P14 male mouse and a 120×130×36 µm block from the same region

of a P105 male mouse with an automatic tape-collecting ultramicrotome scanning electron

microscopy (ATUM-SEM) pipeline (Fig. 4.1), sampling the beginning of the critical period

and early adulthood. This is the first attempt in studying the development of the visual

cortex beyond the critical period with a connectomics toolbox at such scale as far as we

know.

Connectomics studies in the last few years typically either focus on automatic reconstruc-

tion of one sample as large as technology allows (Hildebrand et al. 2017; P. H. Li et al. 2019;

Motta et al. 2019; Turner et al. 2020; Shapson-Coe et al. 2021) or study several ages of a

region with skeleton tracing based reconstruction and manual synapse annotation (Schmidt

et al. 2017; Gour et al. 2021).

We differ from the standard practices and aim to reconstruct moderately sized samples

at two important time points in the developmental history of a specific cortical region while

also providing saturated automated segmentation and synapse prediction with state-of-the-

art machine learning tools, allowing for a wide variety of probes into the morphological and

topological differences emerging over the course of development.

Previous studies focused on the target preference of axons (Schmidt et al. 2017; Gour

et al. 2021) and relied heavily on manual skeleton annotation. In this study, we focused our

attention on dendrites and study how synapses evolve through the critical period.

In order to perform high throughput connectomics reconstruction. We built an end-

to-end pipeline for EM data processing integrated with high-performance computing(HPC)

facilities, combining several state-of-the-art methods from the field that were previously

50



Figure 4.1: Acquisition of P14 and P105 V1 datasets: (A). Samples are dissected from the
V1 region, referencing Alan Atlas (Brain Science 2007; Lein et al. 2007). (B). ATUM(RMC)
collecting sections. (C). Sections mounted on wafer and field-of-views are selected with
ATLAS(Zeiss) software. (D). A focused view of all layers in a slice of P14 sample, inset
showing the actual region acquired with 6nm resolution. (E). Full dimensions of the two
datasets collected. (left) P14 (right) P105

designed for different platforms. The integration with the HPC aspect is discussed in chapter

2 (Vescovi, H. Li, et al. 2020) in more detail, while the specific methods and steps for this

experiment are discussed in more detail in the materials and methods section.

Briefly, after data collection with ATUM-SEM, the raw image tiles are montaged with

TrakEM2 and aligned with AlignTK. We then used 2D UNet for soma, blood vessel, and

myelin mask prediction, creating an exclusion mask and initial segmentation containing

just soma and blood vessels. We then used one of the state-of-the-art methods, Flood-

filling network, for large-scale segmentation (Fig. 4.2). Finally, we used 3D UNet for various

intracellular organelle classifications and performed synapse and mitochondria detection (Fig.
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4.3), providing a comprehensive reconstruction of the two volumes.

Overall, the automated synapse detection system returned 174207 synapses in P14, and

377445 in P105, albeit with primarily recall errors that require manual proofreading. We

thoroughly proofread 88 dendrites from the P14 dataset originating from 41 cell bodies and

107 dendrites from the P105 dataset from 50 cell bodies, overall proofreading 6809 synapses

from P14, 13509 from P105.

4.3.2 Significant increase in synapse density

Synaptogenesis and synape pruning are important aspects of synaptic circuit development.

The large-scale structural change during the critical period is of particular interest. Most

previous studies relied on time-lapse light microscopy, focused on individual branches, and

had trouble tracking all synapses with limited resolution. With a connectomics pipeline,

we could investigate the shift in synapse distribution and morphology at an unprecedented

scale.

It is known that during the critical period, dendritic spines are highly motile and undergo

tremendous reorganization. Numerous transient spines are formed and eliminated (Majewska

and Sur 2003), but the balance between synaptogenesis and pruning and the shift in synapse

density cannot be easily determined without EM reconstruction.

Previous work in mouse neuromuscular junctions found that ”At birth, each neuromus-

cular junction is co-innervated by approximately ten highly intermingled axons (versus one

in adults)” (Tapia et al. 2012). excessive axonal arbors die out in the first few postnatal

days through an activity-dependent process for motor system to mature. Whether the same

pruning principle holds in the central nervous system is unclear given its complexity.

In a recent study (Buchanan et al. 2021) in P36 mouse primary visual cortex layer 2/3,

oligodendrocyte precursor cells were found to engulf terminal axon branches and included

numerous phagolysosomes, suggesting their substantial contribution to the refinement of
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A

B

Figure 4.2: Demonstration of 3D Segmentation: (A). Electron microscopy images overlaid
with segmentation from flood-filling network at 12×12×40 nm resolution. (B). 3D rendering
of proofread reconstructions(the proofreading process is further discussed in methods). all
images oriented such that apical dendrites extend upward, all scale bars 10 µm

neuronal circuits during the critical period by pruning excess axons.

In another recent connectomics study in the somatosensory cortex by Gour et al. 2021.

The authors examined axons in the primary somatosensory cortex(S1) from age P7 to P28.
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They observed an increase in axonal synapse density and an increase in preference towards

soma or apical dendrite from P9 to P14, suggesting an increase in synapse density but did

not report the pattern on dendrites. Also, the studies focused primarily on inhibitory axons

and did not show the development of spine synapses, which are primarily excitatory.

In this study, we try to address the question of synapse density change during the critical

period with a focus on dendrites instead of axons and ask what the overall synapse distribu-

tion patterns differ and whether pruning is the dominant trend in cortex development.

Figure 4.3: Demonstration of Synapses (left column: P14, right column: P105): (A). Elec-
tron microscopy images overlaid with automatically predicted vesicle cloud and synaptic
junctions. (B). Detected synapses(manually proofread ones are also included).
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In our datasets, we first observed a significant increase in synapse density in the P105

sample vs. the P14 sample, contrary to the hypothesis that synapses are predominantly

pruned in the central nervous system, as implied by studies at neural muscular junctions.

Among the 88 dendrites we thoroughly proofread from P14 data, we observed a mean synapse

density of 0.43 ± 0.11 synapse/µm and for 107 dendrites in P105, 0.69 ± 0.16 synapse/µm,

amounting to 60.4% increase (MU Test pvalue 6.17e − 26 (Fig. 4.4left). Overall, the cable

length fully annotated in P14 data reaches 15.4 mm and in P105 reaches 19.5 mm.

On top of that, we also manually annotated filopodia along these dendrites and found

significantly higher density in P14 data, while in P105, filopodia are extremely rare: 0.075±

0.038 in P14 and 0.005 ± 0.008 in P105 (MU Test pvalue 4.43e − 32) (Fig. 4.3B, Fig. 4.4

middle). We used the distinct morphological criteria of filopodia as long protrusions from

dendrite that do not form a synapse.

We also proofread synapses onto soma and found 18.31± 12.15 in P14 and 42.85± 28.80

in P105, marking a 134% increase. (Mann-Whitney U test pvalue 2.65e − 8), fitting what

was described in (Gour et al. 2021).

Combining the observations, we could establish a picture of the overall trend of synaptic

development. The synapse density increases dramatically through the critical period, and

filopodia are ubiquitous at the beginning of eye-opening but largely disappear in the adult

visual cortex.

The connectomics data provide new evidence suggesting synaptogenesis from filopodia as

the dominant trend in postnatal cortex development in the critical period and significantly

outweighs pruning.

4.3.3 Increase in synapse size

A major advantage of connectomics is its ability to resolve ultra-structural neural morphol-

ogy. With a combination of automatic mask prediction and manual correction, we were able
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Figure 4.4: Synapse Density Statistics: (left). Synapse density along dendrites, data point
number: p14: 88, p105: 107 (middle). Filopodia density along dendrites, data point number:
p14: 88, p105: 107 (right). Soma synapse count, data point number: p14: 39, p105: 41

to quantitatively measure each synapse for its vesicle size, synaptic junction size, and spine

head size(more details on how to detect spine head in the methods section).

We compared the distribution of these metrics at P14 and P105 and observed a significant

increase in all three aspects: 18.1% in spine size, 66.5% in synaptic junction size, 14.8% in

vesicle cloud size (all p ¡ 1e-5). Suggesting an overall maturation of synapses. All three

metrics follow a roughly log-normal distribution, as previously seen in (Jorgen Kornfeld et

al. 2020; Ofer et al. 2021). Overall, the increase in synapse size on these metrics suggest

stronger and more mature synaptic connections, which is expected from the increased neural

activity after eye opening.

4.3.4 Shaft vs. spine synapses

The next question we ask is whether the increase in synapse density is uniform. It has

been discovered from previous studies with light microscopy that maturation of inhibitory

synapses plays a major role in determining the beginning and end of the critical period, and

excitatory/inhibitory ratio shift could play a major role in the stabilization of circuits.

We first classified synapses into spine versus shaft using its distance to dendritic branch as
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Figure 4.5: Synapse Size Statistics: (upper row). Dendritic Spine, Synaptic junctions, vesicle
clouds show log-normal distribution, and in all three categories, P105 has larger synapses.
number of observations: P14: spine: 5204, synaptic junctions, 6732, vesicle cloud: 6780,
P105: spine: 9776, synaptic junction, 13478, vesicle cloud, 13500 (lower row). The same
statistics are shown in box plots. All three categories have p < 0.0001.

heuristics (Fig. 4.17). All soma synapses are considered shaft synapses. For each synapse,

we find its nearest skeleton node and find its path distance to soma. We then plotted

synapse distribution against path distance to the soma (Fig. 4.7A) and show that P105 has

a significantly higher shaft synapse ratio in perisomatic dendrites. (examples in Fig. 4.7B).

Excluding somatic synapses, the shaft-to-spine synapse ratio drop from 2:1 to 1:4 in P105,

about 30µm away from soma, while P14 drops from 1:1 to 1:4. This significant shift provides

evidence for the role of PV(+) inhibitory neurons, this significant shift is consistent with the

role of PV(+) neurons during the critical period of visual cortex development.
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4.3.5 Evidence for critical period synapse development pattern

Figure 4.6: Different Synapse Rearrangement Models:

Several potential mechanisms of post-natal synapse rearrangement have been raised and

discussed (Yuste and Bonhoeffer 2004):

shaft to spine The Miller/Peters model hypothesizes that axons first form shaft synapses

at early postnatal ages and induce spine growth to form spine synapses (Miller and Peters

1981) (Fig. 4.6, first model). This has been challenged by the lack of direct observation

of the process and that dendritic spines could spawn spontaneously without pre-synaptic

contact. If the model is true, we expect a higher rate of shaft (or stubby) synapses in P14

vs. P105. However, we did not find that in our data; on the contrary, the shaft synapse

rate increased from P14 to P105, suggesting this is not the likely model in critical period

development of the visual cortex.
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pruning Pruning has been suggested in Purkinje cell and neuromuscular junctions as the

primary mechanism for circuit maturation. A recent study in the P36 mouse visual cortex

showed that oligodendrocytes were involved in pruning. For the same mechanism to hold

in the central nervous system, we would expect to observe a significantly higher number of

weak synapses in P14 compared to P105, which is not the case.

Synaptogenesis with filopodia The filopodia model is, however, strongly supported by

our data. P14 filopodia density is overwhelmingly higher than P105, consistent with previous

studies with light microscopy (Konur and Yuste 2004). The decrease in filopodia density and

an increase in spine synapse density suggest large-scale filopodia maturation into spines.

The increase in the soma and perisomatic shaft synapses from P14 to P105 is also noted.

To further understand the mechanism of this increase, we demonstrate a manually agglom-

erated axon that spans half the volume and makes synapses preferentially onto somatic and

peri-somatic regions.

4.3.6 Mitochondria size development and correlation with synapse density

The role of mitochondria in the process of development is also of great interest. Previous

studies suggest mitochondria play a crucial role in sustaining long-term plasticity (Divakaruni

et al. 2018; Rangaraju, Lauterbach, and Schuman 2019). Previously in Turner et al. 2020,

it was shown for the first time with connectomics tools that in basal dendrites of mouse

visual cortex layer 2/3 at age P36, there is a positive correlation between synapse density

and mitochondria’s coverage ratio.

With our reconstructions, we could study how mitochondria develop throughout the

critical period and cross-check with the results from layer 2/3 in the previous study (Turner

et al. 2020). Our automatic mitochondria segmentation with UNet + connected component

returned 398278 instances in P14 and 533019 in P105. (only those 1000 < voxel count <
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(A)

(B)

Figure 4.7: Shaft vs Spine Synapses. (A). (left) Histogram of the total number of synapses
at different distances to soma in p14, 4µm per bin, all dendrites grouped; (middle) Same
histogram for P105; (right) Shaft to synapse ratio. P105 shows a significant increase in
perisomatic shaft synapse versus P14, while further away from soma, both ages approach
1/4 shaft to spine synapse ratio. (B). Examples of apical dendrites in P14(left), P105(right)
are demonstrated, where P105 shows significant enrichment in perisomatic shaft synapses.

50000 are considered valid). Although it was not possible to proofread the prediction over

full volume, we expect the mask prediction to be highly accurate while many split errors
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Figure 4.8: Inhibitory Axon Example (main). An inhibitory axon is manually agglomerated.
It peruses the volume and makes 24 synapses at somatic or peri-somatic sites with 14 cells.
The somata of this axon are outside the field of view, and its location is deduced from its
branching pattern. (inset left). The axon makes 3 synapses onto one soma (inset middle).
The axon terminates by making 2 synapses onto soma and one en-passant synapse on den-
drites (inset right). The axon makes peri-somatic synapses with 4 separate cells in sequence
and making 3 consecutive en-passant synapses with one dendrite.

remain within the instance segmentation due to thin necks of longer mitochondria. We

observed a significant 78.4% increase in mitochondria size in P105 than in P14 (p ≈ 0, Fig.

4.10(A) left), primarily in length, suggesting maturation and genesis of mitochondria within

dendrites, which can be seen in a 2048 × 2048 × 512 voxel subvolume in (Fig. 4.9B).

We then compared mitochondria density along dendrites. For each annotated dendrite,
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we define ”mitochondria density” as the total volume of all the mitochondria it contains

divided by its total cable length. We observed a 66.7% higher mitochondria density in

P105, as shown in Fig. 4.10(A) right p ≈ 1e − 20. An example comparison in Fig. A also

demonstrates the overall higher coverage of mitochondria within dendrite (Fig. 4.9A).

We also ask whether the change in mitochondria coverage is correlated with synapse

density. We use ”mitochondria coverage”, similar to the definition in Turner et al. 2020,

as the percentage of skeleton nodes which has mitochondria nearby within a small radius.

We then compared the correlation between mitochondria coverage against synapse density.

We found that in P105, the correlation is considerably stronger, with Pearson’s r = 0.495,

p = 5.8e-8 , while in P14, r = 0.125, p = 0.246 (Fig. 4.10(B) left). We also broke down

into Apical and Basal and observed that the correlation is much stronger in basal in both

cases(Fig. 4.10(B) middle & right). This suggests that the correlation between synapse and

mitochondria is not yet strongly correlated at the beginning of the critical period, while

gradually strengthened during the course of development.

Significant increase in aspinous dendrite mitochondria coverage We also observed

a special case of mitochondria distribution in aspinous dendrites, whose synapses are primar-

ily on shafts. Most notably, in P105 aspinous dendrite, the mitochondria could almost cover

the entire dendritic branch(92%), as shown in (Fig. 4.11lower), while a P14 aspinous den-

drite only covers 64%. In terms of mitochondria density, the P14 aspinous dendrite is 44.5%

higher than average, and the P105 one is 135% higher than average, suggesting that in P105,

the mitochondria density disparity in aspinous neuron is even more significant. Although

aspinous dendrites are too rare within the annotated set to be statistically significant(2 in

P14 and 5 in P105), the few cases we observed uniformly showed a strong pattern.

The dramatic increase in mitochondria density in aspinous neurons could partially be ex-

plained by the higher synapse density, which requires more Ca2+ and has a higher metabolic

load. For the two examples shown, both have higher synapse density than average(2.56 times
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Figure 4.9: Mitochondria Reconstruction: A. Examples of dendrites in P14 and P105 over-
layed with mitochondria, P105 has larger synapses. B. Examples of subvolumes filled with
mitochondria within FOV.

in P14, 1.57 times in P105).
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(A)

(B)

Figure 4.10: Mitochondria Statistics. (A). (left) Histogram of all mitochondria sizes (right)
Histogram of mitochondria density within dendrites (B). (left) Correlation between synapse
density and mitochondria coverage rate in all dendrites. (middle) Same as (left) but with
apical dendrites only. (right). Same as (left) but with basal dendrites only.

4.4 Discussion

Achievements We presented the first juvenile(P14) connectomics sample of mouse V1

at the beginning of the critical period with saturated segmentation and synapse prediction,
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Figure 4.11: Aspinous dendrite mitochondria: Example aspinous dendrites from P14 and
P105, showing higher coverage of mitochondria, especially in P105.

providing rich information about the neural anatomical substrate of a developing circuit. We

believe this would be beneficial for the field in complementing functional studies with light

microscopy. Comparing the juvenile versus adult sample allows developmental models to be

tested at unprecedented scale and precision.

We used a connectomics toolbox to determine various ultrastructural changes of synapses

and mitochondria throughout the critical period. From P14 to P105, we observed a widespread

increase in synapse density, synapse size, perisomatic shaft synapse ratio, and mitochondria

coverage/synapse density correlation. The overwhelming synapse addition and maturation

from P14 to P105 and a sharp drop in filopodia density suggest that filopodia growth-based

synaptogenesis overwhelms pruning as the dominant pattern in critical period synapse de-
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velopment.

The structural change in the critical period is crucial in optimizing the visual circuity to

adapt to the environment. Our connectomics reconstruction would be of great value for the

field in studying the organizational principle and could potentially be used to inspire future

machine learning architectures.

Limitations and future directions In this study, we focused on dendrites proximal to

soma in two age points. We are primarily limited by data acquisition time cost, automated

system accuracy, and manual proofreading resources. In the future, we would like to address

these limitations and have more time points across critical periods, and reconstruct larger

volumes, increasing the temporal and spatial scale of the study.

One obvious direction is to scan larger samples. Apart from investing more scanning time

and use more powerful microscopes like Multibeam SEM, there are several technical options

to improve efficiency in data acquisition. We are exploring potential paths like using alu-

minum tape with better conductance or swapping out carbon with platinum nano-particles

in wafer coating. These technical improvements aim to increase the electron signal to allow

the use of an in-lens detector, which is orders of magnitude faster than the backscatter de-

tector we are currently using. Having a stronger signal also means we could decrease pixel

dwell time or scan at a lower resolution to achieve similar quality.

Aside from increasing scanning size, we could also use APEX staining to include long-

range information that otherwise could not be captured within the volume. For example,

in a recent study, APEX labeling was used to mark thalamocortical axons (Sampathkumar

et al. 2021; Martell et al. 2017), which would be extremely useful for identifying the sensory

cortex that receives input from the thalamus, like V1 layer 4 we are studying. However, it

is still challenging to perform APEX staining in younger animals.

On the computational front, the machine learning systems would naturally benefit from

more training data. From our experience, we will need much higher accuracy in segmentation

66



to drastically reduce proofreading efforts, which is essential for more complex connectomics

analysis. The datasets we present in this paper are already impossible for human annotators

to review thoroughly in a reasonable amount of time. Beyond the scope of this paper,

the state-of-the-art petascale segmentation of the human cortex sample (Shapson-Coe et al.

2021) would require astronomical manual effort to proofread fully. Therefore it is an ongoing

effort to push segmentation accuracy as high as possible, meanwhile adding automatic error

detection mechanisms (H. Li et al. 2020). The amount of manual proofreading scales inversely

with the accuracy of automated systems. With better segmentation, more axons can be

proofread and included to study the topological changes at the network level.
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4.5 Methods

4.5.1 Sample Preparation and Data Acquisition

Animals

Two wild-type male mice (C57BL/6) at age P14 and P105 were used in this study. The

perfusion procedures were followed according to animal regulations at the University of

Chicago’s Animal Resources Center (ARC) and approved IACUC protocol.

Perfusion and Sample Staining

The brains of the two mice were prepared in almost the same manner as previously de-

scribed in (Hua, Laserstein, and Helmstaedter 2015; Wildenberg et al. 2020). Briefly, the

anesthetized animal was first transcardially perfused with 0.1 M Sodium Cacodylate (cacody-

late) buffer, pH 7.4 (Electron microscopy sciences, EMS), followed by a fixative containing

2% paraformaldehyde (EMS), 2.5% glutaraldehyde (EMS) in 0.1 M Sodium Cacodylate (ca-

codylate) buffer, pH 7.4 (EMS). We used 10 ml of cacodylate buffer followed by 20 ml of

fixative. The brains were removed and placed in fixative, for P14, 6 hours at 4ºC, for P105,

at least 24 hours at 4ºC. For each sample, a 300µm vibratome section encompassing V1

was removed and put into a fixative for 24 hours at 4ºC. Mouse V1 was identified using

the Allen Brain Institute reference atlas (atlas.brain-map.org), and a 1 mm × 2 mm piece

of tissue was excised from the coronal section encompassing all cortical layers of V1. V1

brain slices were then rinsed in cacodylate buffer at room temperature and stained sequen-

tially with 2% osmium tetroxide (EMS) in cacodylate buffer, 2.5% potassium ferrocyanide

(Sigma-Aldrich), thiocarbohydrazide, unbuffered 2% osmium tetroxide, 1% uranyl acetate,

and 0.66% Aspartic acid buffered Lead (II) Nitrate with extensive rinses between each step

except potassium ferrocyanide. The tissues were then dehydrated in ethanol and propylene

oxide and infiltrated with 812 Epon resin (EMS, Mixture: 49% Embed 812, 28% DDSA,
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21% NMA, and 2.0% DMP 30). The resin-infiltrated tissue was cured at 60ºC for 3 days.

Slicing and Wafer preparation

Using a commercial ultramicrotome (Powertome, RMC), the cured blocks were further

trimmed to 0.8× 1.5 mm2 rectangles. With the 1.5 mm orientation covering cortical layers.

Equipped with an Ultra 35 diamond knife(Diatome), 1500 and 3000 40nm thick sections were

collected from each block on polyamide tape (Kapton) using an automated tape collecting

device (ATUM, RMC) before the cutting process becomes unstable. The collected tapes

are then cut into strips and assembled on 4-inch silicon wafers as previously described in

(Narayanan Kasthuri, Kenneth Jeffrey Hayworth, et al. 2015). 300 sections are mounted on

each wafer. To enhance the EM signal, the wafers are coated with carbon.

SEM data acquisition

The serial sections were acquired semi-automatically using backscattered electron detection

with a Gemini 300 scanning electron microscope (Carl Zeiss) equipped with ATLAS software

for automated wafer imaging. In the first round, a low-resolution (100 nm), large-coverage

(400 × 400 µm2 patch is scanned for each section focusing on layer 4. In the second round,

a focused region-of-interest(ROI) is manually selected from the low-resolution scan using

a fixed set of cell bodies as fiduciary points. Once all regions on a wafer are determined,

an automatic acquisition session starts and iterates over each ROI at 6 nm resolution at

1-microsecond pixel dwell time. For the P14 sample, two 16000× 14000 pixel tiles over 1312

sections were collected; for p105 samples, four 15000 × 15000 pixel tiles over 913 sections

were collected. In both acquisition sessions, there is a 15% overlap between neighboring

tiles. Each acquisition session took 300 hours of imaging time. After the acquisition, tiles

are manually inspected, and blurry or off-region sections are reacquired as needed.
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4.5.2 Data Analysis

The data analysis pipeline includes various open-source software packages and a set of tools

we developed to perform 3D reconstruction of neural tissue.

Processing connectomics data has been a challenging and actively researched problem

over the last few years for a few reasons:

1. The data size is significantly larger than the RAM size of a typical workstation. Apart

from posing considerable logistic challenges in data storage and management, it also requires

non-trivial software engineering efforts to process in a reasonable time frame.

2. Different tools specialize in different pipeline steps, have different data format require-

ments, and are designed with different infrastructures in mind.

3. The state-of-the-art methods nowadays ubiquitously use computer vision algorithms

based on deep learning as the core engine, requiring a tremendous amount of manual labels as

training data. The automatic predictions and outputs often need to be further inspected by

human annotators to eliminate remaining errors before biological statistics can be performed,

further increasing the amount of human effort needed.

Our data processing pipeline is built on high-performance computing infrastructure and

emphasizes scalability, with Message Passing Interface(MPI) (Gropp, Thakur, and Lusk

1999) as the main parallelization paradigm. More details are explained in Chapter 2, and in

this section, the focus will be on the actual execution of each step for this particular study.

Montage

The raw image collected from EM is in the form of tile grids. Each region-of-interest consists

of 2 or 4 separate scans that need to be montaged into a single image. We use parallel macros

based on the montage tool of Fiji/TrakEM2 (Schindelin et al. 2012; Cardona et al. 2012)

with SIFT algorithm (Lowe 2004).
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Figure 4.12: Data Analysis Pipeline: (A). Detailed workflow of connectomics reconstruction
(B). (From upper-left to lower-right) Raw image, FFN segmentation, Organelle predictions of
vesicle cloud, synaptic junction, and mitochondria, predicted synapses(C). Mask prediction
of Soma, Blood Vessel, and Myeline(in P105 dataset). (D). (From left to right) Segmen-
tation fragments manually agglomerated; Synapse Annotations on this piece of dendrite;
Skeletonization of the main branch; Spine separation with the watershed algorithm.

Alignment

The montaged sections first go through a round of rigid alignment with Fiji/TrakEM2,

forming a coarsely aligned stack. The images are then cut in x/y dimensions to eliminate71



empty backgrounds. Severe artifacts like large chunks of carbon dust, cutting artifacts left

by a diamond knife are marked manually and replaced by 0 value in Fiji.

The elastic alignment is performed with AlignTK on a supercomputer cluster (Arthur W

Wetzel, Hood, and Dittrich 2013; Vescovi, H. Li, et al. 2020). The idea was to model the

image stack as a grid of nodes connected by springs that elastically interact with neigh-

boring nodes within the same section and across the z dimension. Specifically, a warping

map between each pair of adjacent sections is first calculated to determine the non-linear

deformation needed to register the two. Then all the pairwise registration maps are taken

into a global relaxation process to determine the optimal absolute positioning of each node

to match the images into one coherent stack while retaining the original image geometries.

The deformation map is then applied to the original image stack and created an aligned tiff

stack.

Segmentation

The segmentation pipeline is centered around one of the state-of-the-art methods Flood-

Filling Network(FFN) (Micha l Januszewski, Jörgen Kornfeld, et al. 2018). A forked version

of FFN based on the open-source repo (github.com/Hanyu-Li/ffn) is built with additional

functionalities like multi-GPU training with Horovod (Sergeev and Balso 2018), distributed

training based on MPI, and integration with cloud-based data formats used in Neuroglancer

(Maitin-Shepard n.d.) and Cloudvolume (W. Silversmith n.d.[a]). Additionally, we devel-

oped a UNet engine, ”EM mask” (H. Li 2020a), which performs tissue classification for EM

datasets, and an open-source suite of tools to work with EM data packaged in (H. Li 2020b).

Preprocessing The aligned image stack is first converted to ”precomputed” format, a

data format designed and popularized by Google (Micha l Januszewski, Jörgen Kornfeld,

et al. 2018) and further supported by Seung Lab (W. Silversmith n.d.[a]) to address large
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Figure 4.13: Neural Network Architectures: A. Classic 2D UNet (Ronneberger, Fischer,
and Brox 2015), used for soma, blood vessel, and myelin mask prediction B. Distance-
transform UNet (DTU) (Heinrich et al. 2018), used for synaptic junction, vesicle cloud,
and mitochondria mask prediction C. Flood-filling network module (Micha l Januszewski,
Maitin-Shepard, et al. 2016). D. Flood-filling network mechanism (Micha l Januszewski,
Jörgen Kornfeld, et al. 2018)

3D volumetric data challenges. Essentially, the tiff stack is converted to a multi-resolution

3D volume chunked into mini files that can be served through HTTP on-demand, allowing

remote visualization with Neuroglancer within a web browser and efficient access of arbitrary

chunks. A CLAHE(”contrast limited adaptive histogram equalization”, Zuiderveld 1994)

filtered version is also created in order to strengthen the contrast between the cell membrane

and intracellular space and improve the quality of FFN segmentation downstream.

Create Tissue Masks The first step was to produce masks of tissue types that should

be excluded in the FFN segmentation process. In particular, soma and blood vessel tend to
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create merge errors with their vastly larger size than neurites.

For the purpose of soma detection, the original resolution 6 × 6 × 40 nm3 would be too

high. Instead, the 4x downsampled volume at 24 × 24 × 40 nm3 resolution is used. To

generate training data, 10 sections uniformly sampled from within the stack are chosen, and

their soma and blood vessels are thoroughly annotated(each instance of soma is assigned

with a unique id paintbrush) with WebKnossos (Boergens et al. 2017), constituting 1% of

the complete dataset. Borders between neighboring soma are assigned a larger weight (10.0,

versus 1.0 baseline) to penalize the neural network on errors predict borders. The instance

annotations are binarized to be used as labels. The training data are then packed into one

h5 file with ”image”, ”label” and ”weight” datasets with equal dimensions.

The backbone is a 2D UNet with the architecture described in the (Ronneberger, Fischer,

and Brox 2015) paper (Fig. 4.13A), with Adam optimizer(learning rate 0.0001, beta1 0.9,

beta2 0.999, epsilon 1e-08), and random rotation augmentation.

Prior to training, random coordinates are generated with a balanced sampling strategy

described in Micha l Januszewski, Jörgen Kornfeld, et al. 2018 where the fraction of fore-

ground pixel within the field-of-view is uniformly distributed between 0.0 and 1.0.

At training time, 512×512 pixel patches of image and label centered around the random

coordinates are fed into the network and trained for 6-12 hours until saturation.

At inference time, the complete dataset is broken down into overlapping patches of 512×

512 and distributed to multiple GPUs and the output logits are reassembled into a single

”precomputed” volume. The output volume is then Gaussian-blurred across z dimension to

smooth out irregular boundaries predicted by the 2D network. Blood Vessel mask is created

in a similar fashion. Specifically for P105 data, myelination constitutes a significant portion

of the volume, which is also predicted with the same method(myelination in P14 data is

extremely rare).

Remaining imaging artifacts with brightness and contrast that deviate from those of
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neurites are manually detected and painted with Webknossos.

The background mask is generated by thresholding the greyscale(0-255) image with a

near 0 value and is then labeled into connected components, and regions larger than 8000

pixels are considered background.

Eventually, we merge all these masks into one categorically coded volume, in which 0:

valid neurites, 1: soma, 2: blood vessel, 3: artifacts, 4: background, 5: myelin, so that in

the next stage, only valid neurites are considered.

Generate initial segmentation As mentioned above, soma and blood vessels, if not

preprocessed, can be the major contributor to merge error in instance segmentation. It is,

therefore, beneficial to pre-segment those objects at a lower resolution before performing

FFN.

For soma, the center of each soma is manually annotated in Neuroglancer. Moreover, a

seeded watershed is performed on the 16x downsampled soma mask at 96 × 96 × 80 nm3

resolution volume to generate instance segmentation of soma. The watersheded result is

scaled up to 24 × 24 nm3 resolution and cropped by mask volume.

For blood vessels, the instance segmentation is simply generated by connected compo-

nents since different blood vessel branches are separated by large distance.

The instance segmentation of soma and blood vessel are then merged and scaled up to

6 × 6 × 40 nm3 resolution, creating an initial segmentation. (Fig. 4.14)

Instance segmentation Segmentation is performed with Flood Filling Network. For each

dataset, we created 512×512×128 (33.55M) voxel annotation at 12×12×40 nm3 resolution

with Webknossos. The network configuration is the same as used in Micha l Januszewski,

Jörgen Kornfeld, et al. 2018 (Fig. 4.13C, D). Specifically, the FOV size is 33,33,17, with 8

residual modules, 8-pixel step size in-plane, and 4-pixel step size in the z dimension.

For training, we acquired a pre-trained checkpoint that has been extensively trained
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Figure 4.14: Generating Soma Instance Segmentation, (left) UNet predicted logits, (middle)
Instance segmentation overlayed on image, (right). 3D rendering of soma. scale bar 10 µm

on the K11 dataset(adult mouse brain S1 region, Narayanan Kasthuri, Kenneth Jeffrey

Hayworth, et al. 2015) from the authors of Micha l Januszewski, Jörgen Kornfeld, et al. 2018.

We then continued training on our own annotations separately for P14 and P105 datasets

on a GPU cluster with the following configurations: optimizer: SGD, learning rate: 0.001.

The training is sped up with multi-GPU acceleration through Horovod (Sergeev and Balso

2018). We train for ¿20 hours until saturation on training data(¿90% accuracy). In order

to increase the amount of annotation efficiently, we resort to a bootstrapping technique.

We run a round of inference with this network in another subvolume in a different region

and generate a coarse segmentation. This segmentation has noticeably lower quality than

that of training data and is uploaded back into Webknossos for further manual correction.

This set is then used to continue training the checkpoint with the same configuration until

saturation(¿94% accuracy).

For inference, the tissue mask generated in the previous step is provided as an exclusion
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mask, and FFN is only run in regions with mask value = 0(valid neurite). Instance seg-

mentation, including soma and blood vessel, is used to populate the initial canvas of FFN

inference. For P14 data, the overall volume was split into 3618 512 × 512 × 128 voxel sub

boxes with 32 × 32 × 16 voxel overlap and distributed to 64 Nvidia K80 GPU workers and

ran for a total of 72 hours. For P105 data, the volume was split into 2990 512 × 512 × 256

voxel boxes with 64 × 64 × 32 overlap on a more powerful cluster with 64 A100 GPUs and

ran for about 38 hours.

The output of distributed inference is a collection of independently segmented subvol-

umes. The next step is to reconcile segment IDs and assemble the subvolumes into one

”precomputed” volume. Specifically, first, the segment IDs in each subvolume are offset to

be globally unique(each subvolume is incremented by the maximum segment ID from the

previous one). Second, for each pair of neighboring subvolumes, the overlapping region from

both are cut and compared, from which overlapping segment IDs > 250 voxels are added

into a global merge graph as an edge. Finally, each connected component of this graph is

joined into one ID, and the subvolumes are remapped accordingly and written into one large

”precomputed” volume.

Mesh and skeleton generation In order to render 3D objects in Neuroglancer, the

object meshes are generated with marching cube algorithm using ”igneous” (W. Silversmith

n.d.[b]) at 24× 24× 40 nm3 resolution. The skeletonization is performed with the TEASER

algorithm (Sato et al. 2000), implemented in ”Kimimaro” (W. Silversmith and J. Alexander

Bae 2020) and wrapped within ”igneous”.

Semi automatic correction of merge errors Unlike split errors, which can be joined

easily by annotators or an automated algorithm post-segmentation, merge errors are by far

the more problematic error type in EM segmentation. Common causes include 1. Cell

membrane degradation/breakage over the process of tissue preservation and histology (Fig.
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4.15); 2. Mis-alignment of neurites from alignment step; 3. Unaddressed imaging artifacts

throwing off the segmentation algorithm.

Although a merge error hot spot is localized, its effect can propagate far beyond its local

field-of-view and falsely label two or more objects with the same ID throughout the entire

volume that’s hard to disentangle. It is non-trivial to modify segment IDs over the entire

volume, which requires significant data IO.

What further complicates the problem is the fact that merge errors are hard to detect,

a merge error would usually only manifest itself after the segmentation is complete over

the whole volume and a human annotator or an automatic system is able to review the

3D reconstruction (H. Li et al. 2020). Automated systems cannot achieve 100% accuracy

and may have limitations in error type(for example, neurite class-based detection can only

deal with axon-dendrite merge but not axon-axon or dendrite-dendrite merge). Either case,

it is even more difficult to detect merge errors within FFN inference subvolumes, which

typically only cover less than 10 um fragments of neurites, at which scale the morphological

information would not allow meaningful detection based on automated systems (H. Li et al.

2020) and would be impractical for human annotators to scan and eliminate prior to full

volume reconciliation.

We designed a pipeline to minimize manual intervention while allowing automatic error

correction. Instead of relying on exhaustive inspection and paintbrush correction, we uti-

lized the fact that a merge error is typically localized in one subvolume. In contrast, the

merged objects in neighboring subvolumes are often correctly separated and can be detected

retrospectively through inspecting the reconciled volume. Therefore as long as the merged

object is split locally within the subvolume, the reconciled volume would be rid of the merge

error.

We first use the heuristic that if two neighboring objects are segmented by FFN in one

subvolume but ended up joined in the global reconciliation graph, it likely includes a merge
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error. A set of candidates are generated and inspected in Neuroglancer. To aid manual

annotation, a reconciled volume without segment ID remapping is assembled. (Fig. 4.15A,

which creates the grid-looking segmentation).

Each candidate object is then proofread thoroughly in Neuroglancer, and line annota-

tions are placed such that they cross the merge error ”bridge”(Fig. 4.15A(3)). For each

line annotation, a disk-shaped mask is created from its midpoint perpendicular to the line

direction and used to cut the object in question into two parts(mask out the disk region

and perform watershed from two endpoints). We focused our annotation effort on the most

detrimental category of errors where a major neurite branch is merged with another or with

glia. All splits are performed in batch mode after annotations are complete.

The processed subvolumes are reconciled again with the same pipeline, and merge errors

decrease significantly (an example shown in Fig. 4.15C).

Figure 4.15: Merge Correction. A. Detecting merge error by finding paradox pairs in recon-
ciliation graph. B. Workflow for merge error correction: 1. manually inspect and find merge
error sites, place a line annotation marker at each such site. 2. Cut with a disk-shape mask.
3. Separated segments. C. Common cause of merge errors: cellular membrane break. D. A
glia-dendrite merge error corrected.
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Synapse prediction

Vesicle cloud and synaptic junction prediction In EM, each synapse is morphologi-

cally defined by a pre-synaptic vesicle cloud and a post-synaptic density/synaptic junction.

For this task. Similar to tissue mask prediction, manual annotations are first generated with

Webknossos. Two 1024× 1024× 128 voxel subvolumes are traced for each dataset, in which

each instance of vesicle cloud and synaptic junction is assigned a unique ID.

We then convert vesicle clouds(VC) and synaptic junctions(SJ) into two separate masks

to train separate UNets. Architecture-wise, we use a variant of 3D UNet called ”distance-

transform UNet” previously described in (Heinrich et al. 2018) (Fig. 4.13B). The network

is fully convolutional and accepts flexible input size. During training, 128 × 128 × 12 voxel

patches are randomly sampled around synapse sites as input. We use an Adam optimizer

with a learning rate of 0.001, batch size 8. The training was performed on 2 to 4 GPUs over

12 hours until saturation(voxel accuracy over 95%).

The inference is set up in a similar fashion for soma and blood vessel mask prediction.

We use a larger field of view 782 × 782 × 50 since the GPU RAM can hold larger tensors in

inference time without the need to hold gradients. Also, the batch size is lowered to 1. The

inference is distributed to 8 A100 GPUs, and it takes about 1 hour to finish.

Infer synapses After finishing the prediction of vesicle cloud and synaptic junction mask,

we utilize the fact that a synapse is defined by the juxtaposition of the two and use a heuristic

to detect synapse instances.

We perform synapse detection in a chunkwise fashion distributed with MPI. For each

chunk, we first identify all instances of vesicle cloud(VC) and synaptic junction(SJ) by con-

nected components and only keep the VCs with sizes above 100 voxels and SJs with sizes

above 25 voxels. Then for each VC instance, the largest 3 SJs bordering it are selected

as candidate synapses. By overlaying and comparing with segmentation volume, the pre-
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synaptic segment in which the VC resides and the post-synaptic partner it targets can both

be determined.

We can then build a table of synapses, including crucial information like pre/post-synaptic

segment IDs, 3D coordinates, vesicle cloud size, synaptic junction size, etc.

Correction of Proofreading

The accuracy of automatic processing does not yet reach the level where it can be readily used

in statistical analysis. The remaining errors are manually reviewed and proofread with an

annotation engine we developed with Neuroglancer’s Python API, including two variants:

an ”agglomerator” and a ”synapse proofreader”. Since this study is focused on synapse

distribution on dendrites, we direct our annotation resources to the dendrites originating

from soma within the volume.

Fix split errors We manually find the initial segment of each neurite branch originating

from soma and cycle through them in the ”agglomerator”. Its remaining segments are added

in Neuroglancer and saved as a group of segment IDs for each initial segment. In practice,

the majority of the time was spent on adding dendritic spines, which frequently drop off in

the segmentation stage due to their thin spine necks at 12× 12 nm resolution segmentation.

For each dataset, about 200 dendrites were thus proofread, and among them, 88 from

P14 and 107 from P105 are selected as valid dendrites for the next stage. The ones that

extend out of the volume due to bad orientation or contains merge errors are discarded. We

estimate about 100 human working hours for this step.

Merge and sparsify skeletons For each fully agglomerated dendrite, the skeletons pre-

viously generated from its fragments using ”Kimimaro” are merged into one and sparsified

such that each edge is 250 nm long while all leaf nodes and branch nodes(degree not equal

to 2) are preserved.
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Quantify distance to soma For each annotated dendrite, we find its root by picking the

minimum of an NDTree query between all its skeleton nodes and the mean coordinate of

soma nodes. We then find the shortest path distance to root for each skeleton node as the

path distance to soma. (Fig 4.16C)

Proofread synapses For each proofread dendrite, we query the synapse table for entries

with post-synaptic ID contained in the dendrite’s segment ID group and pre-populate the

Neuroglancer-based ”synapse proofreader” with these automatically predicted synapses.

A human annotator will then inspect each such dendrite and add synapses in the form of

line annotations, starting from the pre-synaptic side, often within vesicle cloud, and ending

in the post-synaptic partner. Also, false-positive predictions are removed. (Fig. 4.16A).

In a separate round, apart from synapse annotations, we manually find filopodia based on

morphology and place point markers at the tip of each one. (Fig. 4.16A,B green annotations).

In practice, we found that the predominant error mode was recall error due to 1. missing

synaptic junction, in cases where the post-synaptic density did not have a strong signal or

when the synapse is oriented in the z-axis and got cut in the middle; 2. non or small vesicle

cloud. We observed many cases where a weak synapse has only a tiny vesicle cloud associated

with it. Overall, we estimate about 150 human working hours.

Unify manual and automatic synapses We then use the following heuristic to infer

vesicle cloud and synaptic junction size for manual synapses. For cases where the SJ is

missing, we infer SJ size by dilating the pre and post-synaptic neurite segments and take

the intersection area as SJ. For missing VC, which usually only has a few vesicles and did

not pass the threshold to get predicted as vesicle cloud, we chunk around the pre-synaptic

position with 32 × 32 × 8 voxel cube and mask with pre-synaptic segment, and then we use

the dark voxels within this mask as a proxy of VC size.
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Figure 4.16: Manual Synapse Proofreading. A. Example dendrites from P14(left) and
P105(right) displayed with automatic synapses, manual synapses, and filopodia. B. Example
of spine synapse vs. filopodia, which uses thin protrusions without forming any synapse. C.
Distance to soma is calculated for each skeleton node, and synapses are then mapped to
their nearest skeleton node. (inset). Focused view of a portion of skeletonization.

Separate Spine vs. Shaft Synapse Since the skeletonization only covers the neurite

branch(Fig. 4.12), we could calculate the distance between the post-synaptic position and

the nearest skeleton node. Since we also have the radius at each skeleton node, the difference

between the two is the distance between synapse and surface of neurite, which can determine
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if the synapse is on the spine or shaft. We visually inspected the classification with these

heuristics and found that apart from corner cases where the spine orients back towards the

neurite branch, the heuristic is mostly correct and can be used to determine spine vs shaft

synapses automatically.

Figure 4.17: Spine vs. shaft synapse: (A). Spine synapse and shaft synapse under EM. (B).
Histogram of synapse distance to dendrite surface. 390 nm is used to split spine vs. shaft
synapse (C). A piece of dendrites with spine synapses marked in yellow with the previous
criteria in (B).

Get spine size Spine size is obtained automatically from synapses proofread in the pre-

vious step.
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We first create an NDTree with the spatial coordinates of skeleton nodes for each dendrite.

Then for each synapse classified as spine synapse, we query the skeleton node NDTree with

its post-synaptic coordinates(which is a good approximate of the dendritic spine head tip

location) for its nearest partner.

For each synapse, from its post-synaptic coordinate, we query the nearest skeleton node

on the dendritic branch through an NDTree query. Then, we cut a bounding box of seg-

mentation for each pair of points and select the mask covering the corresponding dendrite

and perform watershed from these two points. The part that started from the post-synaptic

coordinate is used as spine size.

Mitochondria prediction Mitochondria are predicted similarly as synaptic junctions and

vesicle clouds, with a 3D UNet. (Fig. 4.12B). Instance segmentation was performed with

a chunkwise connected component labeling, followed by reconciliation described in the seg-

mentation step.
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CHAPTER 5

CONCLUSIONS AND DISCUSSIONS

5.1 Achievements

In this thesis, we present three separate but inter-connected projects that span the entire

connectomics pipeline from computational infrastructure, novel method development to the

application of connectomics to biological inquiry. Combined, this thesis summarizes a com-

prehensive effort in making connectomics more accessible, powerful, and biologically useful.

The first two projects focused on the computational side of connectomics and these tools

can be useful for the field. The third project takes a critical look at the role of pruning in

the maturity of visual system and raises interesting questions for further studies.

1. On the computational infrastructure: A full connectomics pipeline was established

on a high-performance computing(HPC) platform, enabling large-scale connectomics studies

with supercomputers (Vescovi, H. Li, et al. 2020). The infrastructural effort formed the foun-

dation of the analysis performed in chapter 4 and is driving multiple ongoing connectomics

projects beyond the scope of this thesis (for example Wei et al. 2021). The complexity of

connectomics data processing has been a major bottleneck that is preventing it from being

used by mainstream neuroscience community. We believe the software framework will be a

useful addition to the field, especially in providing smaller labs with less computing expertise

access to computing resources at national labs. By establishing a connectomics pipeline on

supercomputers, we expect to provide a centralized infrastructure for more labs that are

interested in connectomics and accelerate the scientific output.

2. On novel method development: An automatic neural subcompartment classification

system was developed with collaborators at Google (H. Li et al. 2020). The system reached
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state-of-the-art performance in predicting axon, dendrite and soma compartments of neu-

rons, and could be applied in merge error detection and correction. The system addresses two

problems: first, a large-scale automatic segmentation requires automatic downstream anal-

ysis, for example, distinguishing the functional subcompartments help determine neuronal

polarity; second, despite progress in segmentation algorithm performance, there remains sig-

nificant amount of merge errors that are beyond what human annotators could proofread,

by detecting cross-class merges, this dramatically reduce the workload for merge error cor-

rection. In the recent petascale human cortex study (Shapson-Coe et al. 2021), the system

was successfully applied to further increase reconstruction accuracy.

3. On biological inquiry with connectomics toolbox: A comprehensive study of

synapse development throughout the critical period in mouse visual cortex was performed.

We combined state-of-the-art computational methods with serial electron microscopy to

provide the first saturated reconstruction of multiple development stages in the mouse cortex.

We demonstrated with the high-res reconstructions that synapses increase in density and size

in primary visual cortex layer 4 over the course of critical period. This is surprising because

there are clear evidences that support the existence of pruning in central nervous system, and

the idea of a premature circuit eliminating weak connections to become mature makes logical

sense. Our observations suggest that the overwhelming trend in critical period development

is new synapse formation and maturation, contrary to what a pruning hypothesis suggests.

5.2 Outlook

EM Connectomics in recent years saw tremendous progress and is increasingly being recog-

nized by mainstream neuroscience as a potential game-changer. In the early days, connec-

tomics met with significant skepticism behind the hype and excitements. Critics of connec-

tomics often cite the full C.elegans connectome as an example where a full static map of
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connectivity is not enough to help us bridge the structure and behavior of a model system.

With only 302 neurons, what appeared to be an easy network to simulate proved to be much

harder than originally expected. Despite ongoing efforts to simulate the biophysical dynam-

ics on top of the full connectome, there still is not a satisfying digital worm that mirrors

the behavior of a real one (Sarma et al. 2018). Apart from the difficulty in reproducing

environment and sensory signal simulation, the failure is often attributed to the complex

biochemical modulation that could not be captured by the connectivity matrix and the fact

that C.elegans transmits signals with largely analog synapses instead of spikes.

Ever increasing sample size With the advent of Block-face EM and ATUM EM, a

100×100×100 µm level sample could be collected and reconstructed within a reasonable(still

much longer) life cycle of a typical neuroscience project. Connectomics projects at this level

focused on small samples of tissues like mouse retina (Helmstaedter, Briggman, and Denk

2008), mouse S1 (Narayanan Kasthuri, Kenneth Jeffrey Hayworth, et al. 2015; Gour et al.

2021), or zebra finch area x (Jorgen Kornfeld et al. 2020), which is still the mainstream in

connectomics as of the time of this thesis. The project described in Chapter 4 also falls in this

category. At this scale, one sample could contain up to hundreds of neurons, with enough

field of view to classify cell types and contains rich information about synapses. However, it

is often not enough to cover the entirety of a cortical neuron, which could span as much as

150µm away from the soma. The bigger problem is that most neurites within such volume do

not come from cells with soma in view, often case there is no good way to determine where

a neurite comes from and from which cell type. These limitations considerably weaken our

ability to build a complete connectivity graph out of a connectomics sample.

Things started to change when the field approached millimeter level with the ”full adult

fly brain” (FAFB) reconstruction with serial section TEM and FFN, reaching 995 × 537 ×

283 µm in dimensions (P. H. Li et al. 2019). Apart from the sheer increase in size over

previous experiments, the FAFB dataset was the first complete reconstruction of a species’
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central nervous system after completing C.elegans connectome three decades ago. Although

there are still quite some segmentation errors that prevent immediate access to the full

drosophila connectome, the accuracy has reached an extremely high level to be ready for

biological study with the help of some proofreading.

The prominence of drosophila as a model system in neuroscience immediately brought

attention from neuroscientists outside connectomics. Within one year of the release of the

FAFB dataset, a plethora of biological studies based on it ensued (Scheffer et al. 2020; Zheng,

F. Li, et al. 2020; A. S. Bates et al. 2020; N. Otto et al. 2020; Marin et al. 2020), with highly

diverse topics based on different subsets of neurons of interest. The complete map of the

drosophila brain quickly proved to be an effective atlas to benchmark previous studies and

perhaps, more importantly, raise questions previously unthought of.

In the more recent human cortex project (Shapson-Coe et al. 2021), the authors recon-

structed a 3 × 2 × 0.16 mm cube of human cortex tissue with multi-beam SEM, reaching

2.1 PB of raw data. Some previously undocumented objects are revealed within the volume,

like a whorl of loosely coiled myelin or a swollen dendritic spine packed with intramembra-

nous objects. While a thorough comparison between human and other mammalian brains

remains to be seen, it offers a rare glimpse into the human brain at extremely high resolu-

tion that could help identify some key structural differences that made human intelligence

extraordinary.

The most ambitious connectomics project in preparation today is to reconstruct an entire

mouse brain. It is hard to overstate the difficulty of an undertaking at such a scale. The

size difference between fruit fly and mouse brain is illustrated vividly by Abbott et al. 2020

as ”6.5 Boeing 747 airliners vs. distance from Boston to Lisbon”. The unprecedented scale

also brings about seemingly insurmountable technical hurdles from sample preparation all

the way to data analysis.

The full dataset of a mouse brain is roughly a centimeter cube estimated to be 1 Exabyte.
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The storage and analysis of such data would challenge the computational infrastructure of

even the top-tier supercomputers and tech giants and would require continuous development

in technologies throughout the entire pipeline. Several actively researched areas include

image compression (Minnen et al. 2021), which aims to use a CNN to denoise raw images and

increase data compression rate without hurting the segmentation quality. There is also an

ongoing effort to optimize and improve state-of-the-art segmentation algorithms like Flood-

filling networks and UNet with affinity (K. Lee et al. 2017) and other segmentation methods

are being explored. There is also an effort to use a generative adversarial network to adapt

raw image texture in order to reduce training data requirements (Micha l Januszewski and

Jain 2019). It would also be interesting to see how advancements in the broader computer

vision field can be used in the context of EM.

Even with the most optimistic predictions, it will take years to make this happen. A full

mouse brain reconstruction, upon completion, will fundamentally change the landscape of

neuroscience, perhaps in ways we could not foresee today.

Connectomics as an infrastructure for neuroscience Apart from the excitement

around the high-resolution map of an entire nervous system. The resurgence of interest

in connectomics comes from the fact that it can be considered an infrastructure for the en-

tire neuroscience field, very much like how the human genome project served the genetics

field, or more recently, how Alphafold redefined proteomics (Jumper et al. 2021).

Accessibility to connectomics data is a much larger issue than in genetics due to data

size and the 3D nature. When datasets are several hundred Gigabytes, it is still possible to

move data between labs the traditional way. With the ever-increasing data size, especially

Petascale volumes we are starting to see, it is no longer an option. Fortunately, in the last

few years, several key engineering achievements made connectomics data more accessible:

Neuroglancer (Maitin-Shepard n.d.) elegantly solved the engineering challenge of visualizing

large 3D volume over the internet with a design like a ”Google Map for connectomics”, serving
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arbitrarily large 3D data as mini-blocks of files at different zoom level, allowing easy remote

access with just a web browser. CloudVolume (W. Silversmith n.d.[a]) was designed along

with Neuroglancer and provided tools for any lab to convert their 3D data to compatible

formats, meanwhile providing convenient tools to interface with large image volumes and

perform automation and analysis. With these tools, connectomics labs could host their own

data on in-lab servers or clouds. For labs with less access to computing resources, the ”open

connectome project” was also built (Vogelstein et al. 2018) to host datasets generated this

way.

Parallel to these efforts, the ”Webknossos” project provides a similar framework that

serves data remotely in chunks. It has less powerful visualization(in 3D rendering) but is

equipped with a more powerful annotation engine, with the ability to perform paintbrush

annotation, which is not available in Neuroglancer. It allows easy distribution of groundtruth

annotation workload, which in foreseeable future, still constitutes a large portion of a con-

nectomics project.

With open accessibility, neuroscientists in other subfields can easily crosscheck activ-

ity recordings or light microscopy results with the high-resolution structural map, previous

hypotheses can be tested and new circuitry can be discovered at an unprecedented pace.

Rethinking simulation The hope of simulating the brain is one of the driving forces

behind the inception of computers. Alan Turing, the founding father of computer science

and artificial intelligence, openly discussed his desire to build a machine to ”imitate a brain”

(Alan M Turing 1951) and turned his interest toward understanding the biochemical basis

of intelligence in his final years (Alan Mathison Turing 1990). The mathematical foundation

he laid out is still the basis of modern-day computers, but at his time, the nascent computers

were not able to run any simulation even remotely close to what a biological brain can do.

Among his long list of legacies, he postulated there could be a potential link between AI

engineering and human psychology and left the opened-ended question for future computer
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scientists and neuroscientists.

The Hodgkin Huxley model (Hodgkin and Huxley 1952) marked the beginning of com-

putational neuroscience. By capturing the dynamics of spike generation in precise math-

ematical form, it made large-scale simulation of networks of neurons theoretically feasible.

Such simulations often use semi-randomized network topology with a set of constraints like

Erdos-Renyi network (Erdos, Rényi, et al. 1960), and run Hodgkin Huxley model or simpler

Leaky Integrate-and-fire model for each neuron to generate spikes.

While tremendous insights had been gained over the years with this idealized paradigm,

previous attempts at simulating the brain with a large-scale network based on artificially

wired neurons had not achieved much success. The idea of running a massive collection of

neurons based on the Hodgkin-Huxley model culminated in the ill-fated Blue Brain Project

(Markram 2006), which optimistically predicted in 2006 that computing technology would

be ready to fully simulate the human brain in a petaFLOPS level supercomputer within

a decade. 15 years later, although the state-of-the-art supercomputers are approaching ex-

aFLOPS level thanks to the quantum leap in GPU technology, we are still far from simulating

the human brain. Simulation of even drosophila brain is still challenging and require a high

level of abstraction (Givon and Lazar 2016), let alone mouse or human. The significant

technical challenges and huge disappointments at the blue brain project (Frégnac and Lau-

rent 2014; Mainen, Häusser, and Pouget 2016) put a pause on simulation in mainstream

neuroscience.

The problem with the simulation approach lies not only in the difficulty of running

a huge number of parallel neuron simulations with a plausible level of biophysical details

but also in the lack of actual connectivity. However, with advancements in connectomics,

it is no longer unthinkable to acquire a massive connectivity graph of neurons, which could

potentially reignite interest in simulation. As a bonus, the axonal and dendritic morphologies

are captured as well, so a neuron can be modeled with as much detail as desired with a much
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higher level of biological authenticity. Combined with activity recording, the simulation

could be tuned or trained to reflect live circuitry at a larger scale.

Connectomics and Deep Learning Till now, connectomics has primarily reaped ben-

efits from the rapid advancements of deep learning, but many in the field wonder if and to

what degree connectomics can inspire research in deep learning and AI. The link is fairly

straightforward. The biological neural circuits are highly efficient computing machines op-

timized over the course of eons of evolution. By studying how such a computing machine is

organized, we might be able to gain valuable insights into the design principles of artificial

intelligence, and most importantly, the learning rules in a biological neural network.

Also, it would not be the first time when neuroscience played a critical role in the devel-

opment of AI.

1. The whole concept of ”deep learning”, or deep neural network, was inspired by how ac-

tual neurons compute. The ”perceptron”, a model neuron that gathers inputs and produces

an output, was proposed in as early as the 50s (Rosenblatt 1957).

2. The idea of convolutional neural network traces its root to Hubel and Wiesel experi-

ments in cat visual cortex, in which it was found that neurons in LGN have center-surround

dot-shaped receptive fields, and simple cells in V1 combine inputs from LGN into bar-shaped

receptive field selective to various orientations, complex cells are tuned to more involved pat-

terns and neurons more downstream in the visual pathway are selective to particular patterns

like face (Yamins and DiCarlo 2016).

3. Reinforcement learning, a subfield in deep learning which gained massive attention

after AlphaGo historically defeated grandmaster human players, was inspired by how the

dopaminergic reward mechanism works in biological neural circuitry (Mnih et al. 2015).

Striking parallel between reinforcement learning and neuroscience was also demonstrated by

researchers from DeepMind, who trained a recurrent neural network for spatial navigation

and found some units exhibiting grid cell-like receptive field patterns within the network
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Figure 5.1: Biological parallel to CNN. The design of convolutional neural network draws
inspiration from the flow of visual information through cortical regions. reprinted (Yamins
and DiCarlo 2016) with permission from the publisher

spontaneously (Banino et al. 2018).

One of the mysteries in neuroscience is how a biological neural network trains itself.

Artificial neural networks today overwhelmingly adopt a backpropagation algorithm to per-

form weight adjustments for each connection by calculating corresponding partial derivatives

from the difference between the network output and training label. However, this mecha-

nism requires each connection to receive a differentiated error signal from the final output,

potentially numerous layers away. The exact equivalent of this error signal does not exist

explicitly in the cortex, and it is therefore not clear how a synapse could decide if it should

increase or decrease it is weight in a backpropagation fashion.

However, in recent years, it has been postulated that, although there is no exact equivalent

of a backpropagation algorithm in the brain, the highly recurrent wiring and the inhibitory

modulatory signals could form the substrate of error-based learning (T. P. Lillicrap et al.
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2020). For example, the visual cortex has extensive recurrent connections both within and

across sub-areas (Fig. 5.1), unlike a traditional CNN. It is therefore interesting to compare

hypothesized novel learning networks against connectomics reconstructions in coming years.

Figure 5.2: Biological basis of backpropagation a. Traditional model of a neuron(grey cell)
with feedforward signal(blue, from lower-order cortical areas) and feedback signal(red, from
higher-order cortical areas) b. A contemporary model of a cortical pyramidal neuron. In
which inputs to a neuron are segregated into different compartments(apical, basal), and
inhibitory neurons relaying provide a feedback signal that could serve as the training signal.
reprinted (T. P. Lillicrap et al. 2020) with permission from the publisher

Functional and structural Correlation There are large collaborative efforts to bridge

the gap between the function and structure of neural circuits. In the Machine Intelligence
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from Cortical Networks (MICrONS) project (Turner et al. 2020), multiple labs collaborated

on reconstructing a millimeter cube with fluorescent labeling and calcium imaging before

the tissue is prepared for EM histology, providing both functional and structural data simul-

taneously for a subregion of reconstruction. There is still tremendous difficulty in putting

together the resources and reconcile the huge resolution disparity between functional and

structural data, but over time, with lower cost and better automation, this paradigm could

one day become the standard practice in connectomics.

Why developmental connectomics The developmental connectomics paradigm we dis-

cussed in this thesis is another potential direction for future connectomics. EM Connectomics

has a major flaw that frequently draws criticism from the anti-connectomics camp and raises

concerns among even the most ardent advocates, which is its static nature. While light

microscopy could be used to follow the day-to-day growth of a small number of neurites,

connectomics captures a snapshot of a much large group of neurites. With advancing au-

tomation technology in the coming years, it is possible to envision a more efficient pipeline

that could reconstruct many small samples across ages, compensating for the limitations

inherent in connectomics.

In the context of this thesis, we are particularly interested in how an immature neural

network with little, if not none, external stimulus becomes mature over the critical period

by a concerted effect of genetic orchestration and activity-dependent synaptic plasticity. By

providing multiple snapshots of the same region, we expand connectomics beyond a single

time point and reveal a broader trend in development.

In this study, the overwhelming trend is that synapses increase in both quantity and

strength, refuting a pruning centric view where a mature circuit comes from trimming exu-

berant connections. Possible explanations include the significant increase in excitatory input

from LGN and heightened level of long term potentiation, but the exact mechanism behind

the structural shift need to be further studied along with functional data. In future, it re-
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mains to be seen to what extent the result is true for other cortical areas and how it differs

in other model systems.
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sonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason Grout, Sylvain Corlay,

114



et al. (2016). “Jupyter Notebooks-a publishing format for reproducible computational
workflows.” In: ELPUB, pp. 87–90.

Hadash, Guy, Einat Kermany, Boaz Carmeli, Ofer Lavi, George Kour, and Alon Jacovi
(2018). “Estimate and Replace: A Novel Approach to Integrating Deep Neural Networks
with Existing Applications”. In: arXiv preprint arXiv:1804.09028.

Chen, Chia-Chien, Ju Lu, and Yi Zuo (2014). “Spatiotemporal dynamics of dendritic spines
in the living brain”. In: Frontiers in neuroanatomy 8, p. 28.
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