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ABSTRACT

We introduce several new datasets namely ImageNet-A/O and ImageNet-R as well as a synthetic

environment and testing suite we called CAOS. ImageNet-A/O allow researchers to focus in on

the blind spots remaining in ImageNet. ImageNet-R was speci�cally created with the intention of

tracking robust representation as the representations are no longer simply natural but include

artistic, and other renditions. The CAOS suite is built o� of CARLA simulator which allows for the

inclusion of anomalous objects and can create reproducible synthetic environment and scenes for

testing robustness. All of the datasets were created for testing robustness and measuring progress

in robustness. The datasets have been used in various other works to measure their own progress

in robustness and allowing for tangential progress that does not focus exclusively on natural

accuracy.

Given these datasets, we created several novel methods that aim to advance robustness research.

We build o� of simple baselines in the form of Maximum Logit, and Typicality Score as well as

create a novel data augmentation method in the form of DeepAugment that improves on the

aforementioned benchmarks. Maximum Logit considers the logit values instead of the values after

the softmax operation, while a small change produces noticeable improvements. The Typicality

Score compares the output distribution to a posterior distribution over classes. We show that this

improves performance over the baseline in all but the segmentation task. Speculating that perhaps

at the pixel level the semantic information of a pixel is less meaningful than that of class level

information. Finally the new augmentation technique of DeepAugment utilizes neural networks

to create augmentations on images that are radically di�erent than the traditional geometric and

camera based transformations used previously. DeepAugment improves SOTA by a signi�cant

margin while being able to be used with other augmentation schemes and demonstrates that

neural augmentations are not only possible but provide a bene�t with respect to robustness.

x



CHAPTER 1

INTRODUCTION

Machine Learning (ML) models are becoming more widespread in their use and adoption. As

their use becomes more prevalent in safety-critical applications or trust necessary situations, the

models must exhibit reliability to ensure their continued adoption. Some of the current domains

that exhibit these properties include self-driving vehicles and in medical diagnoses; where in

self-driving, both trust and safety are paramount. In the second domain of medical diagnoses trust

is the primary factor such that a model will need to be able to provide explanations or a con�dence

such that other professionals can best decide how to proceed with the outputted information.

Robustness is of especial importance in machine learning where many of the commonly used

models are uncalibrated out of the box. All of the works thus far that aimed at addressing this

short-coming also come at the cost of model accuracy. While calibration is of importance for

building con�dence in model predictions, it only represents one facet of robustness. In this thesis

we will cover several aspects of robustness and begin to show that robustness covers several

related areas. While we explore the related areas, we also aim to highlight the delineations

between them. These delineations help researchers better focus on speci�c problem domains,

which then allows the community to make improvements. Beyond covering the delineations, we

also demonstrate that there are still unknown areas of robustness that might not have proper

categories or delineations at the moment.

We de�ne robustness as the preservation of functionality under changing conditions. Within

the ML community robustness has grown to encompass several di�erent concepts which include

the following domains: generalization, sensitivity, distribution shift, adversarial examples, out-

of-distribution (OOD) detection, calibration, and even interpretability. We shall attempt to make

those distinctions clear. We give a detailed explanations of the domains in Section 2.1 and a brief

description of the OOD detection task in Section 2.4. This task �ts into robustness by trying to

preserve con�dence on in-distribution (ID) examples in the presence of OOD examples. Therefore,

the OOD detection task is useful for building safe ML systems. For example in robotics systems it
1



can serve as an indicator for the robot to hand o� to an operator and in medicine, it can signal

that the input is malformed and should be redone or handled by a doctor.

We organize the thesis loosely based around machine learning tasks covering multi-class

classi�cation �rst, then segmentation, then multi-label, and �nally meta-learning. Segmentation

can be viewed as a multi-class classi�cation problem applied to every individual pixel. Multi-label

classi�cation can be thought of as an extension of multi-class classi�cation so we cover multi-label

after multi-class and segmentation. This extension is not perfect and we show some limitations

that comes from trying to generalize successes from multi-class to multi-label. We then discuss

meta-learning with respect to robustness which is distinct enough from multi-class and multi-label

to be covered last.
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1.1 Contributions

Our contributions to robustness research are as follows:

• Datasets: In this thesis we contribute three distinct datasets to help push the research area

of robustness further. The �rst dataset explores the current errors that models make and are

termed hard-negative examples or natural adversarial examples in Chapter 3. The second

dataset involves the creation of a controllable anomalous segmentation dataset created

by modifying the CARLA simulator in Chapter 4. Finally, the third dataset aims to better

explore distribution shift from ImageNet-1K to other representations such as cartoons,

sculptures, or tattoos among others in Chapter 5.

• New Robustness Techniques: We utilize the Kullback–Leibler divergence (KL-Divergence) to

improve OOD detection in the multi-class setting. We further show that using the maximum

logit serves as a better indicator of OOD detection than the previous baseline. Both of

those results are presented in Chapter 4. We also develop a novel non-linear augmentation

technique in Chapter 5. The novel technique is able to greatly improve robustness in the

multi-class setting and highlights a new unexplored area that can also help generalization.

• Novel Field Criticisms: By examining di�erent variations of robustness, we are able to

observe where current techniques are still lacking in Chapters 5 and 6. Most notably is the

recognition that almost all of the previous robustness techniques failed to generalize to the

multi-label setting.

• Few shot robustness: We explore the relationship of robustness and few shot learning in

Chapter 7. By converting the metric learning task into a set-membership task we �nd that

while the models are able to learn set-membership for in-distribution classes, the models

are unable to generalize to novel unseen classes.
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CHAPTER 2

BACKGROUND

2.1 Robustness

We shall cover a few seemingly disparate robustness topics and show how they relate together.

In this thesis, we focus on natural out-of-distribution (OOD) detection. Since ML systems are

deployed in natural settings, natural OOD detection is of utmost importance and should be

solved immediately. In addition to natural OOD detection, in Chapter 4, we explore anomaly

segmentation in simulated and adversarial examples. We explore these areas to study whether any

of the techniques in simulations or improvements in adversarial robustness generalize to natural

settings. In Section 2.2 we cover adversarial examples in greater detail.

(a) Points are drawn from a 2D Gaussian, and
the isolation forest model is labeling the point X
as an outlier.

(b) Given di�erently sampled points leads to di�erent
lines which causes some number of points to be la-
beled as outliers. After sampling su�cient number of
points then the best line is determined. Image credit:
Watanabe 2013.

Figure 2.1: Examples of two novelty detection methods.

OOD detection has its roots in outlier and novelty detection. The main distinction between

the more recent OOD detection and outlier detection are the assumptions on what is considered

an outlier. In OOD detection, the task is set up similarly to a classi�cation problem by having an

in-distribution set, and an unknown and much larger out-of-distribution set. Whereas in outlier

detection the assumption would be that there exists a small subset of data which are considered

outliers, and hence the data provided is considered “poisoned.” The commonly used approach in
4



statistics is to �rst de�ne the model and identify the outliers as points with low probability mass.

More advanced methods exist such as using local outlier factor (M. Breunig et al. 2000) or using

RANSAC (Fischler and Bolles 1981) to determine the inliers versus outliers. See �gure 2.1 for a

visual demonstration of the techniques. The former method works by comparing the distances of

points to their neighbors and �nding a threshold for the computed distance. However many of

these methods still rely on determining the model �rst to �t the data.

In a setting closely related to outlier detection, there is the problem of training with known

label corruptions. Both domains deal with the case of data poisoning, while this sub-problem

exclusively concerns itself with poison occurring in the labels. Furthermore the problem of label

corruption can be approached from the assumption whether there exists a subset of trusted labels.

Charikar, Steinhardt, and Valiant 2017 analyze both conditions to give theoretical guarantees

and an algorithm to use under each setting. Patrini et al. 2017 address the problem in multi-class

classi�cation with no trusted data where they �rst estimate the level of corruption, then given the

confusion matrix apply it after the network’s outputs to correct for the uncertainty. Ren et al. 2018

also approach the problem under the same assumptions, but they use meta-learning (see Section

2.3) to assign and reweight the examples used for training. Follow up work has shown that MixUp

is also an e�ective way to increase the training given label corruption (Arazo et al. 2019). While the

problem remains unsolved, some works highlight that for some models, namely neural networks,

label noise might not be as much of a problem compared to other ML methods as the models tend

to be robust to out of the box (Rolnick et al. 2017).

On the other hand, novelty detection, unlike in outlier detection, operates under the assumption

that the dataset is not polluted with outliers, and instead tries to detect if a new example is an

outlier. Some classical techniques in novelty detection are that of isolation forest (Liu, Ting, and

Zhou 2008) and one-class SVM (Schölkopf et al. 1999a). These methods employ a training and

testing phase. Some of the methods can not give estimations of outliers for the training set by

construction. This set-up more closely re�ects the problems in OOD detection. However, many

of the novelty detection methods such as those listed exhibit poor performance (A. F. Emmott
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et al. 2013).

In contrast to outlier and novelty detection, OOD detection frames the problem of detecting

anomalies as a learning problem. Novelty detection can be considered to be within unsupervised

classi�cation, while OOD detection expands on novelty detection by considering supervised

and semi-supervised along with unsupervised classi�cation. Hendrycks and Gimpel 2017 uses a

trained neural network’s output as a con�dence score for detecting anomalies in the setting of

multi-class classi�cation. As a followup work, ODIN (Liang, Li, and Srikant 2018) and Mahalanobis

detector (Lee et al. 2018b) apply small gradient perturbations derived from label corruptions

and then run the corrupted image through the network again to get the �nal output score. The

work by Lee et al. 2018b modi�es this approach by training a per-class dependent model on the

perturbations. The main issue with the previous two approaches in particular is that they �ne-tune

their corruptions on the di�erent perturbation types which leads to a form of training on the

test set. Other methods such as the con�dence estimator trains a separate con�dence branch to

directly predict both the class label and the con�dence of the prediction (DeVries and Taylor 2018).

In Chapter 5 we further explore the relationship between data augmentation and robustness by

demonstrating how random corruptions by a neural network improve OOD detection.

2.2 Adversarial Examples

Adversarial examples are modi�cations to inputs, such as images, that causes the label of a

function (typically a deep neural network) to change, while a human would still classify the input

as belonging to the same class. It was �rst discovered that neural networks are susceptible to these

small perturbations in Szegedy et al. 2014. Figure 2.2 shows how small adversarial noise can a�ect

the outputs of a deep neural network (DNN). This work spawned several works in interpretability

such as Olah, Mordvintsev, and Schubert 2017 and Selvaraju, Cogswell, et al. 2019 whereby the

gradient perturbations were used to visualize what the network was attending to. Later on after

(Carlini and Wagner 2017)’s research �ndings, the research community began to focus on the

problem treating it as an actual security threat threat instead of as an anomaly.
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Figure 2.2: An adversarial example showing how a small perturbation can change the label of
an image. The adversarial noise added to image is magni�ed by 1000x to be visible to a human.
Image credit: OpenAI

Let us formally de�ne adversarial examples. Note for the purposes of these de�nitions we

will restrict the domain of examples or inputs to be that of images but it can extended to other

domains such as speech or language. An input image is x and a trained model is f (typically

a neural network). f(·) is the output probability distribution for a set of classes the model was

trained on. We will perturb x by a small amount ε which will result in our adversarial example

x′ := x + ε. We say x′ is an adversarial example if argmax
x

f(x) 6= argmax
x′

f(x′), it is also

described as a successful attack. ε is of the same dimensionality as x but is bounded by some

distance metric. We use several Lp distance measures to bound ε as a proxy for the measure we

actually care for, which is human perceptual distance. More recently, there is work trying to

move beyond `p distances such as (Bhattad et al. 2020) because bounding ‖ε‖∞ ≤ δ distance is a

somewhat arbitrary limitation on the attacker.

It is common practice in the security research community to detail what the assumptions are

concerning the threat model, which includes what the attacker has access to, capabilities, and

limitations. Most of what has so far been discussed relates to the scenario where the attacker has

full access to the machine and the model such that they can inject signal noise ε into the system

to be able to change the resulting classi�cation output of f . While this setting has received much

attention, it is largely unrealistic as an actual security threat. More recently, there have been

e�orts to change the threat model to consider more real world attacks such as (Eykholt et al. 2018;
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Ian J. Goodfellow, Shlens, and Szegedy 2015; Yakura and Sakuma 2019) where the attacker has a

more limited access to the model via its external sensors.

As an implicit goal in desiring to make the models more similar to humans, we treat adversarial

examples as inherent �aws in the model. There are some discussions concerning whether or not

adversarial examples are unavoidable (Engstrom et al. 2019), although this view is currently held

by a minority in the research community. We shall detail a few of the current hypotheses being

investigated for why adversarial examples might arise. One of the hypotheses by Ian J. Goodfellow,

Shlens, and Szegedy 2015 purports that the brittleness is a result of excessive linearity. The

high-dimensionality of the inputs allows an adversary easy access to cross a decision boundary

of a class. The simple example is for a two class problem given a powerful enough adversary,

the inputs can be moved along any direction and with high probability half of the directions

will cross the decision boundary. This hypothesis has been indirectly challenged by subsequent

work (Wong and Kolter 2018). Another hypothesis is that of robust and non-robust features (Ilyas

et al. 2019). The argument is that the networks are picking up on highly predictive features that do

well on the training set, but are too brittle and incomprehensible for humans which then allows

for adversarial examples. Some qualitative examples supporting this claim are that adversarially

trained models have features that are more recognizable to humans. The features themselves are

trained on limited datasets which creates an arti�cial selection bias and lacks more theoretical

underpinnings. There is no de�nitive consensus for explanations or solutions to the problem of

adversarial examples at the current time.

While there does not exist a solution to the problem, there are several defenses that can mitigate

the power of adversarial attacks. When a defense is “broken” it refers to the attacker reducing

the accuracy of the model to zero (or nearly zero). The most prominent defenses for adversarial

examples are some form of training with adversarial examples. The original formulation from

A. Madry et al. 2018 adds an adversarial example during training as extra training data for the

model to learn from. Followup work from Hongyang Zhang et al. 2019 explicitly considers the

tradeo� between natural and adversarial accuracy by incorporating an additional loss term for
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the adversarial examples used during training. There are other works that provide certi�cations

for limited threat models such as L2 distance (Cohen, Rosenfeld, and Kolter 2019) and other forms

of certi�cations are being explored. Methods which provide some amount of robustness include

the following: Compression of either inputs, models, or both (Liu et al. 2019; Dziedzic et al. 2019);

injecting noise into either the input examples, models, or both (You et al. 2019; Cohen, Rosenfeld,

and Kolter 2019); data augmentation, or pre-training (Hendrycks, Lee, and Mazeika 2019); and

ensembling which use multiple models to give one output using a voting, or some other scheme

(Tramèr et al. 2018).

Part of the di�culty with comparing defenses is the lack of standardization to compare the

di�erent threat models and environments. Recently, projected gradient descent attacks with `∞

perturbation of size 8/255 has become the standard because greater perturbations allowed for

changing the label to a human annotator (Tramèr, Behrmann, et al. 2020). Given this limited

adversary/scenario allows for direct comparison between methods. The other issue is that the

threat model or environment is being an unfair or being an unreasonable limitation to the adversary.

Due to this limitation researchers use adative attacks (Tramèr, Carlini, et al. 2020) which allow

the attacker to know the defense and modify the attack given this knowledge. Given the relative

infancy of the joint domains of ML and computer security, the �eld will eventually settle on

realistic threat models and the issue of defense comparison will become moot.

Although the focus is mostly on neural networks, other classical machine learning (ML) models

are also susceptible to adversarial noise such as k Nearest Neighbors (k-NN), SVMs, and linear

regression. These other machine learning models have di�erent failure modes for adversarial

examples but have all been susceptible to the attacks. Gilmer et al. 2019 suggests that the previous

methods fail due to the high dimensionality of the inputs. Currently neural networks provide the

best defenses against adversarial examples (Goodfellow 2016). However, the other ML models

have been less explored both to attack and defend against this threat model.

It is worth noting the di�culty of transitioning to real-world attacks via adversarial examples.

Bhattad et al. 2020 demonstrates that arti�cial constraints had to be placed on the model for the
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adversary to succeed. This is not to suggest that the signal based attacks are unimportant, but it

should be studied to determine how well adversarial attacks can survive the transition to complex

environments, to 3D, and against multiple modalities. Dosovitskiy et al. 2017 have shown how

di�cult it is to construct adversarial examples in 3D environments.

2.3 Meta-Learning

Meta-learning is most commonly understood as the task of “learning to learn”, which refers to the

process of improving a learning algorithm over distributions. This contrasts with the conventional

machine learning, which is the process of learning a model for a single distribution or over many

data instances. Meta-learning is comprised of a two stage process. The �rst stage involves a base

learner and the second stage (also confusingly called meta-learning) involves an outer algorithm

that optimizes an outer objective. An example of meta-learning the inner (or lower, base) learning

algorithm solves a task such as image classi�cation (Franceschi et al. 2018), de�ned by a dataset

and objective. Then during meta-learning, an outer (or upper, meta) algorithm updates the inner

one, so that the learned model can perform well in few-shot learning (Hospedales et al. 2020).

Recent work has tried to minimize the distinctions between meta-learning and supervised

classi�cation (Chao et al. 2020). Maurer 2005 extended the generalization error bounds from

supervised learning to meta-learning. Formulating the problem of meta-learning more closely

with supervised learning better �ts the theme of this thesis trying to improve OOD detection.

We most prominently explore two techniques in meta-learning. The �rst technique is from

Finn, Abbeel, and Levine 2017 which uses the optimization algorithm to perform the meta-learning.

The inner learner does standard supervised learning for the task, e.g. image classi�cation, and the

outer optimization algorithm does an averaged gradient step for several tasks (di�erent image

classi�cation tasks). The second technique imbues the space of learned features with a metric to be

later used for a nearest neighbor classi�cation. We ignore the other type of meta-learning which

uses memory augmented networks to perform the meta-learning. Those models are currently

more akin to a novelty as opposed to o�ering a more utilized method such as the others described
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before it.

We explore meta-learning in Chapter 7 to explore how the techniques from meta-learning

namely the scenario of learning in the few shot setting can better assist in generalizing to unseen

OOD examples. In both scenarios the amount of OOD data far exceeds the amount of training

data that the model is expected to generalize from.

2.4 Tasks

In this section, we will cover three computer vision tasks that will be addressed in this paper

namely multi-class classi�cation, multi-label classi�cation, and segmentation,.

2.4.1 Multi-class Classi�cation

Multi-class classi�cation is a rich sub-�eld in machine learning with its origins in binary classi-

�cation (Cox 1958). From binary classi�cation there are three approaches that have been taken

to handle the multi-class setting. The �rst approach is by reduction of the multi-class problem

to binary classi�cation, typically One-vs-Rest where one would use a classi�er to distinguish

one class from all of the others. The size of these approaches scale linearly with the number of

classes due to requiring a di�erent model per class. The second approach handles the problem by

extending the binary classi�cation to multi-class classi�cation directly. Finally, the last approach

handles the problems by creating hierarchies for classi�cation (Silla and Freitas 2010).

We will be covering the second approach for multi-class classi�cation, the extension from

binary, which include methods such as k-nearest-neighbors (Altman 1992), logistic regression

(Menard 2002), neural networks (Hop�eld 1988), and random forests (Breiman 2004). We will

brie�y cover neural networks as they are utilized throughout the paper and are used in the

other tasks as well. For neural networks we mostly utilize convolutional neural networks (CNN).

CNNs is composed of the following operations: learned �lters which perform cross-correlation,

convolution, non-linearity, and pooling which reduces the dimensionality of the inputs and
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features. These operations are repeated in succession to form what are considered layers before

�nally applying a di�erentiable loss function so that the network can learn via stochastic gradient

descent. The speci�c implementation details of each neural network architecture is left to the

respective chapter.

The problem in multi-class classi�cation is to associate each instance with a unique label from

a set of labels. More formally given a set of training data D = {(xi,yi)},∀i ∈ {1, ..., N} where

x ∈ Rd, the goal is to learn (or induce) a model f(x) = ŷ such that ŷ minimizes a loss function

L : R×R → R. During classi�cation, the assumption is training and test data points are drawn

i.i.d. (independent and identically distributed) from a full joint distribution. Although in most

cases, the full joint distribution is unknown, a �nite number of examples can be used to measure

generalization by splitting the data into training and test sets. Generative and discriminative

techniques are useful for learning model f . Generative techniques learn the full joint probability

distribution while the latter techniques model the class or decision boundaries. In this thesis, we

focus on discriminative methods for classi�cation.

Some in�uential datasets in the area of multi-class classi�cation have been MNIST (Lecun

et al. 1998), SVHN (I. J. Goodfellow et al. 2013), CIFAR (Krizhevsky and Hinton 2009), and ImageNet

(Russakovsky et al. 2014). MNIST and SVHN are both datasets consisting of the digits 0-9. MNIST

are black and white digits, and SVHN are numbers occurring on houses which are colored images

and have a variety of backgrounds. On the other hand, CIFAR and ImageNet are natural images

consisting of animals, automotive vehicles, and many other categories. The former are small

images with ten categories and the latter are large images with one thousand categories. These

datasets, among others, have allowed for great advances in the task of multi-class classi�cation

(Ranzato et al. 2006; Beygelzimer, Kakade, and Langford 2006; Cho and Saul 2009; Alex Krizhevsky,

Sutskever, and Geo�rey E Hinton 2012; Carlini and Wagner 2017).
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Figure 2.3: An example of an image with both a cat and a bird which shows multiple labels
occurring together.

2.4.2 Multi-label Classi�cation

Building from multi-class classi�cation, there is multi-label classi�cation whereby instead of the

traditional setting where an instance may be of only one label, in this setting each instance is

associated with a set of labels. As an example consider the �gure 2.3 where it can be classi�ed

as a bird, bald eagle, cat, porch and forest. This task being a natural extension of multi-class is

therefore a harder task because of determining the presence or absence of for all classes as opposed

to the problem of selecting the most likely candidate. Multi-label classi�cation technique is useful

for (1) text classi�cation involving lots of documents about several topics, (2) audio classi�cation,

where some songs are a mixture of styles or genres and (3) image search where di�erent images

or videos can capture multiple genres or styles at the same time (Brhanie 2016).

We will similarly de�ne the task of multi-label classi�cation. The problem in multi-label

(or sometimes referred to as multi-category or multi-topic) classi�cation is to associate each
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instance with a set of labels. This again follows the same conventions and notations as multi-class

classi�cation whereby training data D = {(xi,yi)},∀i ∈ {1, ..., N} contain examples x that are

a d-dimensional vector. However, unlike in multi-class setting y is no longer a one-hot vector and

are instead binary strings without the limitation of only one “1” in the string.

Multi-label classi�cation is arguably better for studying robustness. The main reasons for this

is because in multi-class classi�cation the models are either forced to pick one out of the set of

labels or add in a catch-all “other” class. In the �rst scenario the model “should” output a uniform

probability distribution over all classes, however, this also seems unrealistic as there will exist OOD

examples which will appear to be similar to in-distribution classes and so a uniform output appears

to be an unfeasible goal. The second option seems more promising but still has a similar issue.

Classifying images or parts of image as background will lead to the model “correctly” classifying

OOD examples as being background. This scenario again presents issues that there is no longer

any distinction between in and out-of-distribution examples, which can be a safety hazard in some

scenarios. Multi-label classi�cation does not have these two issues because having a uniform

output of no class is a feasible solution that is also realistic. The secondary issue is still present

unless modi�cations are made, that of being able to discern between in- and out-of-distribution

examples.

Unfortunately, multi-label classi�cation has not received as much attention within computer

vision as that of multi-class classi�cation. This can be observed by the historical lag in multi-label

datasets from Corel-5k (Duygulu et al. 2002), then PASCAL VOC (Everingham et al. 2009) and

more recently we have MSCOCO (Lin et al. 2014) and Tencent ML-image Wu et al. 2019. Similarly

multi-label OOD is also a wholly underexplored area. We hope to change this by releasing some

baselines for this task in Chapter 6.

2.4.3 Segmentation

Segmentation refers to the task of partitioning the pixels of an image into regions or segments,

where the pixels in each region share similar attributes. The goal of segmentation is to simplify
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Figure 2.4: Highlighting the distinction between semantic segmentation on the left and instance
segmentation on the right. Image source: Arnab et al. 2018

and/or change the representation of an image into something meaningful and easier to analyze

(Shapiro and Stockman 2001). We categorize segmentation methods into two main categories

that of semantic and class agnostic segmentation. Class agnostic segmentation is the task of

segmenting an image into the region boundaries such as foreground and background. Semantic

segmentation on the other hand, deals with the task of assigning each pixel to an element of a set

of classes. As a related task to semantic segmentation there is instance segmentation where the

goal is to identify all distinct occurrences of the segmented objects in an image.

Class agonostic segmentation involves partitioning an image into coherent regions. Martin

et al. 2001 show in Berkeley Segmentation Dataset (BSDS) that human annotations of edges and

boundaries are nonrandom and useful for supervised class agnostic segmentation. However, the

BSDS dataset has been most useful in unsupervised segmentation (Arbelaez et al. 2010; Martin,

Fowlkes, and Malik 2004; Achanta et al. 2010; Carreira and Sminchisescu 2010), in such tasks as

foreground/background segmentation (Wu and Wang 2008). Unsupervised segmentation typically

involve clustering (Martin, Fowlkes, and Malik 2004) and are trained by learning a distance

between pixels within segments. Their outputs have been used in other downstream tasks due

to the reduction in the input space (Mostajabi, Yadollahpour, and Shakhnarovich 2015). Due to

the hardware and algorithmic improvements, reliance on “super pixels” (Achanta et al. 2010) has

waned and the current approaches label each pixel directly in a given image.

Unlike class agnostic segmentation, semantic segmentation is a supervised task where the goal
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is to assign every pixel in an image a label from a given set of classes. In semantic segmentation

multiple instances of the same object class are not di�erentiated. While in instance segmentation

the goal is to assign a unique label to every object instance in an image. A limitation of instance

segmentation is with dealing with uncountable classes such as pixels belonging to the sky or

sand. The union of both semantic and instance segmentation is known as panoptic segmentation

(Kirillov, He, et al. 2019). The goal of panoptic segmentation is to assign both a category label to

every pixel and if the category is an instance based category, such as people, then also assign it a

unique id.

Prominent segmentation datasets include BSDS (Martin et al. 2001), PASCAL-VOC (Everingham

et al. 2009) and MS COCO (Lin et al. 2014). These datasets have allowed for signi�cant progress in

unsupervised and supervised segmentation (Arbelaez et al. 2010; Agrawal, Girshick, and Malik

2014; Wu and Wang 2008; Arnab et al. 2018; Kirillov, Wu, et al. 2019).
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CHAPTER 3

NATURAL ADVERSARIAL EXAMPLES

3.1 Overview

Research on the ImageNet (Russakovsky et al. 2014) benchmark has led to numerous advances

in classi�cation (A. Krizhevsky, Sutskever, and Geo�rey E. Hinton 2017), object detection (Huang,

Rathod, et al. 2017), and segmentation (He et al. 2017). ImageNet classi�cation improvements are

broadly applicable and highly predictive of improvements on many tasks (Kornblith, Shlens, and

Le 2018). Improvements on ImageNet classi�cation have been so great that some call ImageNet

classi�ers "superhuman" (He, Zhang, and Ren 2015). However, performance is decidedly subhuman

when the test distribution does not match the training distribution (Hendrycks and Dietterich

2019). The distribution seen at test-time can include inclement weather conditions and obscured

objects, and it can also include objects that are anomalous.

Recht et al. 2019 remind us that ImageNet test examples tend to be simple, clear, close-up

images, resulting in the current test set being perhaps too easy and not representative of harder

images encountered in the real world. Geirhos et al. 2020a and Arjovsky et al. 2019 argue that

image classi�cation datasets contain “spurious cues” or “shortcuts.” For instance, models may use

an image’s background to predict the foreground object’s class; a cow tends to co-occur with a

green pasture, and even though the background is inessential to the object’s identity, models may

predict “cow” primarily using the green pasture background cue. When datasets contain spurious

cues, they can lead to performance estimates that are optimistic.

To counteract this, we curate two hard ImageNet test sets of adversarially �ltered examples.

By using adversarial �ltration, we can test how well models perform when simple-to-classify

examples are removed, including examples that are solved with simple spurious cues. Some

adversarially �ltered examples are depicted in �gure 3.1, which are simple for humans but hard

for models. Previously it has been shown that misclassi�ed images can transfer between models;

however, these demonstrations relied on synthetic distributions (Geirhos et al. 2018; Hendrycks
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Figure 3.1: Examples from ImageNet-A and ImageNet-O. The black text is the actual class, and the
red text is a ResNet-50 prediction and its con�dence. ImageNet-A contains images that classi�ers
should be able to classify. ImageNet-O contains out-of-distribution anomalies of unforeseen
classes which should result in low-con�dence predictions. ImageNet-1K models do not train on
examples from "Photosphere" nor "Verdigris" classes, so these images are out-of-distribution.

and Dietterich 2019) and adversarial distortions (Szegedy et al. 2013). Our examples demonstrate

that is is possible to reliably fool many models with clean natural images highlighting a practical

problem that needs to be addressed as opposed to a more theoretical or abstract problem.

We demonstrate that clean examples that we collected can reliably degrade and transfer to

other unseen classi�ers with our �rst dataset. Transfer in this setting means that the average

performance of an unseen model is comparable (meaning not signi�cantly better) to the model

we used for �ltering. This phenomenon of transferring is hard to classify. We call this dataset

ImageNet-A, which contains images from a distribution unlike the ImageNet training distribution.

ImageNet-A examples belong to ImageNet classes, but the examples are harder and transfer to

other models. They cause consistent classi�cation mistakes due to scene complications encountered

in the long tail of scene con�gurations and by exploiting classi�er blind spots (see Section 3.3.3).

Since examples transfer reliably, this dataset shows models have previously unappreciated shared

weaknesses.
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Figure 3.2: Various ImageNet classi�ers of di�erent architectures fail to generalize well to
ImageNet-A and ImageNet-O. Higher Accuracy and higher AUPR is better. See 3.4 for a de-
scription of the AUPR out-of-distribution detection measure. These speci�c model parameters are
unseen during adversarial �ltration, so our adversarially �ltered examples transfer across models.

The second dataset allows us to test model uncertainty estimates when semantic factors of

the data distribution shift. Our second dataset is ImageNet-O, which contains image concepts

from outside ImageNet-1K. These out-of-distribution images reliably cause models to mistake

the examples as high-con�dence in-distribution examples. To our knowledge this is the �rst

dataset of anomalies or out-of-distribution examples developed to test ImageNet models. While

ImageNet-A enables us to test image classi�cation performance when the input data distribution

shifts, ImageNet-O enables us to test out-of-distribution detection performance when the label

distribution shifts.

We examine methods to improve performance on adversarially �ltered examples. However,

this is di�cult because �gure 3.2 shows that examples successfully transfer to unseen or black-

box models. To improve robustness, numerous techniques have been proposed. We �nd data

augmentation techniques such as adversarial training decrease performance, while others can help

by a few percent. We also �nd that a 10× increase in training data corresponds to a less than a 10%

increase in accuracy. Finally, we show that improving model architectures is a promising avenue
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toward increasing robustness. Even so, current models have substantial room for improvement.

3.2 Related Work

Adversarial Examples. Real-world images may be chosen adversarially to cause performance

decline. I. Goodfellow et al. 2017 de�ne adversarial examples (Szegedy et al. 2014) as "inputs

to machine learning models that an attacker has intentionally designed to cause the model to

make a mistake". Most adversarial examples research centers around arti�cial `p adversarial

examples, which are examples perturbed by nearly worst-case distortions that are small in an `p

sense. Attackers can reliably and easily create black-box attacks by exploiting these consistent

naturally occurring model errors, and thus carefully applying gradient perturbations to create

an arti�cial attack is unnecessary. This less restricted threat model has been discussed but not

explored thoroughly before.

Several other forms of adversarial attacks have been considered in the literature, including

elastic deformations (C. Xiao et al. 2018), adversarial coloring (Bhattad et al. 2019; Hosseini and

Poovendran 2018), synthesis via generative models (Baluja and Fischer 2017; Song et al. 2018) and

evolutionary search (Nguyen, Yosinski, and Clune 2015), among others. Other work has shown

how to print 2D (Kurakin, I. J. Goodfellow, and Bengio 2017; Tom B Brown et al. 2017) or 3D

(Sharif et al. 2016; Athalye et al. 2017) objects that fool classi�ers. These existing adversarial

attacks are all based on synthesized images or objects, and some have questioned whether they

provide a reliable window into real-world robustness (Gilmer et al. 2018). Our examples are closer

in spirit to the hypothetical adversarial photographer discussed in (Tom B. Brown et al. 2018), and

by de�nition these adversarial photos occur in the real world.

Adversarial Examples. Some types of adversarial attacks eschew `p norm ball constraints

completely. For instance, (Baluja and Fischer 2017) synthesize adversarial examples with generative

adversarial networks, and (Song et al. 2018) use variational autoencoders as well. Unfortunately,

these examples are often classi�er-speci�c and do not transfer to new models. Meanwhile,

ImageNet-A adversarially �ltered examples transfer and successfully attack current architectures.
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Figure 3.3: Previous work on out-of-distribution (OOD) detection uses synthetic anomalies and
anomalies from wholly di�erent data generating processes. For instance, previous work uses
Bernoulli noise, blobs, the Describable Textures Dataset (Mircea Cimpoi et al. 2014), and Places365
scenes (B. Zhou et al. 2017) to test ImageNet out-of-distribution detectors. To our knowledge, we
propose the �rst dataset of out-of-distribution examples collected for ImageNet models.

These adversarially �ltered examples bear semblance to a theorized attack, the attack of the

adversarial photographer (Tom B. Brown et al. 2018). This attacker is free to take a photograph of

an image with choice over the camera viewpoint, so that the attack is free of the con�nes of the `p

norm ball constraints. This attack has not been thoroughly studied empirically, but these could be

thought of as a type of natural adversarial example. Bhattad et al. 2019; Hosseini and Poovendran

2018 attempt to color examples adversarially, and C. Xiao et al. 2018 create an adversarial elastic

deformation. In both cases the modi�cations required to fool the network can become quite

conspicuous (Kang et al. 2019) and arti�cial. Kurakin, I. J. Goodfellow, and Bengio 2017 show that

`p adversarial examples can fool machine learning systems if they are carefully printed and if the

perturbation is conspicuous. Meanwhile, adversarially �ltered examples arise in nature and are

not necessarily detectable by human vision alone. Nguyen, Yosinski, and Clune 2015 also violate

norm ball constraints and create adversarial examples through evolutionary algorithms, but these

adversarial examples are far out-of-distribution and are not naturally manifested in the real world.
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Out-of-Distribution Detection. Generally, models learn a distribution, such as the ImageNet-

1K distribution, and are tasked with producing quality anomaly scores that distinguish between

usual test set examples and examples from held-out anomalous distributions. For instance,

Hendrycks and Gimpel 2017 treat CIFAR-10 as the in-distribution and treat Gaussian noise and

the SUN scene dataset (J. Xiao et al. 2010) as out-of-distribution data. That paper also shows that

the negative of the maximum softmax probability, or the the negative of the classi�er prediction

probability, is a high-performing anomaly score that can separate in- and out-of-distribution

examples, so much so that it remains competitive to this day. Since that time, other works on

out-of-distribution detection continue to use datasets from other research benchmarks as stand-ins

for out-of-distribution datasets. For example, some use the datasets shown in �gure 3.3 as out-of-

distribution datasets (Hendrycks, Mazeika, and Dietterich 2019). However, many of these anomaly

sources are unnatural and deviate in numerous ways from the distribution of usual examples

(Ahmed and Courville 2019). In fact, some of the distributions can be deemed anomalous from local

image statistics alone. Meinke and Hein 2019 propose studying adversarial out-of-distribution

detection by detecting adversarially optimized uniform noise. In contrast, we propose a dataset for

more realistic adversarial anomaly detection; our dataset contains hard anomalies generated by

shifting the distribution’s labels and keeping non-semantic factors similar to the in-distribution.

Spurious Cues and Unintended Shortcuts. Models may learn spurious cues and obtain high

accuracy but for the wrong reasons (Lapuschkin et al. 2019). Spurious cues are a studied problem

in natural language processing (Cai, Tu, and Gimpel 2017; Gururangan et al. 2018). Many recently

introduced datasets in NLP use adversarial �ltration to create "adversarial datasets" by sieving

examples solved with simple spurious cues (Sakaguchi et al. 2019; Bhagavatula et al. 2019; Zellers

et al. 2019; Dua et al. 2019). Like this recent concurrent research, we also use adversarial �ltration

(Sung 1995), but the technique of adversarial �ltration has not been applied to collecting image

datasets before. Additionally, adversarial �ltration in NLP uses �ltration to remove only the easiest

examples, while we use �ltration to select only the hardest examples. Moreover, our examples trans-

fer to weaker models, while in NLP the most used adversarial �ltration technique AFLite (Sakaguchi
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et al. 2019) does not produce examples that transfer to less performant models (Bisk et al. 2019).

We show that adversarial �ltration algorithms can �nd examples that automatically and reliably

transfer to both simpler and stronger models. Since adversarial �ltration can remove examples

that are solved by simple spurious cues, models must learn more robust features for our datasets.

Robustness to Shifted Input Distributions. Recht et al. 2019 create a new ImageNet test

set resembling the original test set as closely as possible. They found evidence that matching

the di�culty of the original test set required selecting images deemed the easiest and most

obvious by Mechanical Turkers. ImageNet-A helps measure generalization to harder scenarios.

Brendel and Bethge 2018 show that classi�ers that do not know the spatial ordering of image

regions can be competitive on the ImageNet test set, possibly due to the dataset’s lack of di�culty.

Judging classi�ers by their performance on easier examples has potentially masked many of

their shortcomings. For example, Geirhos et al. 2019 arti�cially overwrite each ImageNet image’s

textures and conclude that classi�ers learn to rely on textural cues and under-utilize information

about object shape. Recent work shows that classi�ers are highly susceptible to non-adversarial

stochastic corruptions (Hendrycks and Dietterich 2019). While they distort images with 75

di�erent algorithmically generated corruptions, our sources of distribution shift tend to be more

heterogeneous and varied, and our examples are naturally occurring.

3.3 The Design and Construction of ImageNet-A and ImageNet-O

3.3.1 Design

ImageNet-A is a dataset of adversarially �ltered examples for ImageNet classi�ers, or real-world

examples that fool current classi�ers. To �nd adversarially �ltered examples, we �rst download

numerous images related to an ImageNet class. Thereafter we delete the images that �xed ResNet-

50 (He et al. 2015) classi�ers correctly predict. We chose ResNet-50 due to its widespread use.

Later we show that examples which fool ResNet-50 transfer reliably to other unseen models. With

the remaining incorrectly classi�ed images, we manually select a subset of high-quality images.
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Figure 3.4: Additional adversarially �ltered examples from the ImageNet-A dataset. Examples are
adversarially selected to cause classi�er accuracy to degrade. The black text is the actual class,
and the red text is a ResNet-50 prediction.

Figure 3.5: Additional adversarially �ltered examples from the ImageNet-O dataset. Examples are
adversarially selected to cause out-of-distribution detection performance to degrade. Examples
do not belong to ImageNet classes, and they are wrongly assigned highly con�dent predictions.
The black text is the actual class, and the red text is a ResNet-50 prediction and the prediction
con�dence.

Next, ImageNet-O is a dataset of adversarially �ltered examples for ImageNet out-of-distribution

detectors. To create this dataset, we download ImageNet-22K and delete examples from ImageNet-

1K. With the remaining ImageNet-22K examples that do not belong to ImageNet-1K classes, we

keep examples that are classi�ed by a ResNet-50 as an ImageNet-1K class with high con�dence.

Then we manually select a subset of high-quality images.

Both datasets were manually labelled by graduate students over several months. This is

because a large share of images in the ImageNet test set contain multiple classes per image (Stock

and Cissé 2018). Therefore, producing a high-quality dataset without multilabel images can be

challenging with usual annotation techniques. By high-quality we refer to both being a singleton

and recognizable instance of the target class. To ensure images do not fall into more than one of
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the several hundred classes, we had graduate students memorize the classes to build a high-quality

test set.

ImageNet-A Class Restrictions. We select a 200-class subset of ImageNet-1K’s 1,000 classes

so that errors among these 200 classes would be considered egregious (Russakovsky et al. 2014).

For instance, wrongly classifying Norwich terriers as Norfolk terriers does less to demonstrate

faults in current classi�ers than mistaking a Persian cat for a candle. We additionally avoid

rare classes such as "snow leopard," classes that have changed much since 2012 such as "iPod,"

coarse classes such as "spiral," classes that are often image backdrops such as "valley," and �nally

classes that tend to overlap such as "honeycomb," "bee,’" "bee house," and "bee eater"; "eraser,"

"pencil sharpener" and "pencil case"; "sink," "medicine cabinet," "pill bottle" and "band-aid"; and so

on. The 200 ImageNet-A classes cover most broad categories spanned by ImageNet-1K; see the

Supplementary Materials A.1 for the full class list.

ImageNet-O Class Restrictions. We again select a 200-class subset of ImageNet-1K’s 1,000

classes. These 200 classes determine the in-distribution or the distribution that is considered usual.

The remaining 800 classes could be used as data for Outlier Exposure Hendrycks, Mazeika, and

Dietterich 2019. As before, the 200 classes cover most broad categories spanned by ImageNet-1K;

see the Supplementary Materials A.2 for the full class list.

3.3.2 Collection

ImageNet-A Data Aggregation. Curating a large set of adversarially �ltered examples re-

quires combing through an even larger set of images. Fortunately, the website iNaturalist has

millions of user-labeled images of animals, and Flickr has even more user-tagged images of objects.

We download images related to each of the 200 ImageNet classes by leveraging user-provided

labels and tags. After exporting or scraping data from sites including iNaturalist, Flickr, and

DuckDuckGo, we adversarially select images by removing examples that fail to fool our ResNet-50

models. Of the remaining images, we select low-con�dence images and then ensure each image is

valid through human review. For this procedure to work, many images are necessary; if we only
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used the original ImageNet test set as a source rather than iNaturalist, Flickr, and DuckDuckGo,

some classes would have zero images after the �rst round of �ltration.

For concreteness, we describe the selection process for the dragon�y class. We download

81,413 dragon�y images from iNaturalist, and after performing a basic �lter with ResNet-50, we

have 8,925 dragon�y images. In the algorithmically suggested shortlist, 1,452 images remain. From

this shortlist, 80 dragon�y images are manually selected, but hundreds more could be chosen.

Hence for just one class we may review over 1,000 images.

We now describe this process in more detail. We use a small ensemble of ResNet-50s for �ltering,

one pre-trained on ImageNet-1K then �ne-tuned on the 200 class subset, and one pre-trained on

ImageNet-1K where 200 of its 1,000 logits are used in classi�cation. Both classi�ers have similar

accuracy on the 200 clean test set classes from ImageNet-1K. The ResNet-50s perform 10-crop

classi�cation of each image, and should any crop be classi�ed correctly by the ResNet-50s, the

image is removed. If either ResNet-50 assigns greater than 15% con�dence to the correct class, the

image is also removed; this is done so that adversarially �ltered examples yield misclassi�cations

with low con�dence in the correct class, like in untargeted adversarial attacks. Now, some

classi�cation confusions are greatly over-represented, such as Persian cat and lynx. We would

like ImageNet-A to have great variability in its types of errors and cause classi�ers to have a

dense confusion matrix. Consequently, we perform a second round of �ltering to create a shortlist

where each confusion only appears at most 15 times. Finally, we manually select images from

this shortlist in order to ensure ImageNet-A images are simultaneously valid, single-class, and

high-quality. In all, the ImageNet-A dataset has 7,500 adversarially �ltered examples.

ImageNet-O Data Aggregation. Our dataset for adversarial out-of-distribution detection

is created by fooling ResNet-50 out-of-distribution detectors. The negative of the prediction

con�dence of a ResNet-50 ImageNet classi�er serves as our anomaly score (Hendrycks and

Gimpel 2017). Usually in-distribution examples produce higher con�dence predictions than

OOD examples, but we curate OOD examples that have high con�dence predictions. To gather

candidate adversarially �ltered examples, we use the ImageNet-22K dataset with ImageNet-1K
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classes deleted. We choose the ImageNet-22K dataset since it was collected in the same way as

ImageNet-1K. ImageNet-22K allows us to have coverage of numerous visual concepts and vary the

distribution’s semantics without unnatural or unwanted non-semantic data shift. After excluding

ImageNet-1K images, we process the remaining ImageNet-22K images and keep the images which

cause the ResNet-50 to have high con�dence, or a low anomaly score. We then manually select

a high-quality subset of the remaining images to create ImageNet-O. We suggest only training

models with data from the 1,000 ImageNet-1K classes, since the dataset becomes trivial if models

train on ImageNet-22K. To our knowledge, this dataset is the �rst anomalous dataset curated for

ImageNet models and enables researchers to study adversarial out-of-distribution detection. The

ImageNet-O dataset has 2,000 adversarially �ltered examples since anomalies are rarer; this has

the same number of examples per class as ImageNetV2 (Recht et al. 2019). Thus we use adversarial

�ltration to select examples that are di�cult for a �xed ResNet-50, and we will show these examples

straightforwardly transfer to unseen models. Additional example ImageNet-O images are in 3.5.

For the collection of ImageNet-O we refrain from testing with classi�cation models with a

background class. While there are many classi�cation tasks which incorporate a “background”

class into the �nal predictions such as many segmentation datasets (Lin et al. 2014; Everingham

et al. 2009), most of the common multi-class classi�cation datasets do not include such a category.

Most importantly the ImageNet dataset does not include a background class which is what our

dataset aims to test models from. There still remains the potential issue that if a model had

been trained with a background class then the images from ImageNet-O would be classi�ed as

such. It has been shown that depending on the score utilized such as from generative models

out-of-distribution examples can actually achieve greater in-distribution (or lower anomaly) score

in Hendrycks and Gimpel 2017. We also show in a di�erent chapter how poorly background

classes perform in distinguishing out from in-distribution see 4.3.
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Grasshopper Sundial Ladybug Harvestman Dragonfly Sea Lion

Dragonfly Banana Alligator Hummingbird Alligator Obelisk

Figure 3.6: Examples from ImageNet-A demonstrating classi�er failure modes. Adjacent to each
natural image is its heatmap generated by “gradCAM” (Selvaraju, Das, et al. 2019). The heatmap
is generated by taking the classi�cation prediction and computing the gradients from the given
output prediction back to the image. The gradients are scaled to -1 to 1 range before adding back
to the original image. The -1 implies negative in�uence to the prediction and is depicted as blue,
while 1 implies positive in�uence for the prediction and is the depicted as red. The resulting image
is rescaled after adding the image gradient. Classi�ers may use erroneous background cues for
prediction and the technique gradCAM can be used. Further description of these failure modes is
in Section 3.3.3.

3.3.3 Illustrative Failure Modes

Examples in ImageNet-A uncover numerous failure modes of modern convolutional neural net-

works. We describe our �ndings after having viewed tens of thousands of candidate adversarially

�ltered examples. Some of these failure modes may also explain poor ImageNet-O performance,

but for simplicity we describe our observations with ImageNet-A examples.

Observe �gure 3.6. The �rst two images suggest models may overgeneralize visual concepts. It

may confuse metal with sundials, or thin radiating lines with harvestman bugs. We also observed

that networks overgeneralize tricycles to bicycles and circles, digital clocks to keyboards and

calculators, and more. We also observe that models may rely too heavily on color and texture, as

shown with the dragon�y images. Since classi�ers are taught to associate entire images with an

object class, frequently appearing background elements may also become associated with a class,

such as wood being associated with nails. Other examples include classi�ers heavily associating

hummingbird feeders with hummingbirds, leaf-covered tree branches being associated with the
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white-headed capuchin monkey class, snow being associated with shovels, and dumpsters with

garbage trucks. Additionally �gure 3.6 shows an American alligator swimming. With di�erent

frames, the classi�er prediction varies erratically between classes that are semantically loose and

separate. For other images of the swimming alligator, classi�ers predict that the alligator is a cli�,

lynx, and a fox squirrel. Current convolutional networks have pervasive and diverse failure modes

that are tested with ImageNet-A.

3.4 Experiments

We show that adversarially �ltered examples collected to fool �xed ResNet-50 models reliably

transfer to other models, indicating that current convolutional neural networks have shared

weaknesses and failure modes. In the following sections, we analyze whether robustness can

be improved by using data augmentation, using more real labeled data, and using di�erent

architectures. For the �rst two sections, we analyze performance with a �xed architecture for

comparability, and in the �nal section we observe performance with di�erent architectures. As a

preliminary, we de�ne our metrics.

Metrics. Our metric for assessing robustness to adversarially �ltered examples for classi�ers is the

top-1 accuracy on ImageNet-A. For reference, the top-1 accuracy on the 200 ImageNet-A classes

using usual ImageNet images is usually greater than or equal to 90% for ordinary classi�ers.

Our metric for assessing out-of-distribution detection performance of ImageNet-O examples

is the area under the precision-recall curve (AUPR). This metric requires anomaly scores. Our

anomaly score is the negative of the maximum softmax probabilities (Hendrycks and Gimpel 2017)

from a model that can classify the 200 ImageNet-O classes speci�ed in Section 3.3. We collect

anomaly scores with the ImageNet validation examples for the said 200 classes. Then, we collect

anomaly scores for the ImageNet-O examples. Higher performing OOD detectors would assign

ImageNet-O examples lower con�dences, or higher anomaly scores. With these anomaly scores,

we can compute the area under the precision-recall curve (Saito and Rehmsmeier 2015). Random

chance levels for the AUPR is approximately 16.67% with ImageNet-O, and the maximum AUPR
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is 100%.

Data Augmentation. We examine popular data augmentation techniques and note their e�ect

on robustness. In this section we exclude ImageNet-O results, as the data augmentation techniques

hardly help with out-of-distribution detection as well. As a baseline, we train a new ResNet-50

from scratch and obtain 2.17% accuracy on ImageNet-A. Now, one purported way to increase

robustness is through adversarial training, which makes models less sensitive to `p perturbations.

We use the adversarially trained model from (Wong, Rice, and Kolter 2020), but accuracy decreases

to 1.68%. Next, Geirhos et al. 2019 propose making networks rely less on texture by training

classi�ers on images where textures are transferred from art pieces. They accomplish this by

applying style transfer to ImageNet training images to create a stylized dataset, and models train on

these images. While this technique is able to greatly increase robustness on synthetic corruptions

(Hendrycks and Dietterich 2019), Style Transfer increases ImageNet-A accuracy by 0.13% over

the ResNet-50 baseline. A recent data augmentation technique, AugMix (Hendrycks, Mu, et

al. 2020), which takes linear combinations of di�erent data augmentations increases accuracy

to 3.8%. Cutout augmentation (Devries and Taylor 2017) randomly occludes image regions and

corresponds to 4.4% accuracy. Moment Exchange (MoEx) (Li et al. 2020) exchanges feature map

moments between images, and this increases accuracy to 5.5%. Mixup (Hongyi Zhang et al. 2017)

trains networks on elementwise convex combinations of images and their interpolated labels;

this technique increases accuracy to 6.6%. CutMix (Yun et al. 2019) superimposes images regions

within other images and yields 7.3% accuracy. At best these data augmentations techniques

improve accuracy by approximately 5% over the baseline. Results are summarized in �gure 3.7.

More Labeled Data. One possible explanation for consistently low ImageNet-A accuracy is

that all models are trained only with ImageNet-1K, and using additional data may resolve the

problem. To test this hypothesis we pre-train a ResNet-50 on Places365 (B. Zhou et al. 2017), a

large-scale scene recognition dataset. After �ne-tuning the Places365 model on ImageNet-1K, we

�nd that accuracy is 1.56%. Consequently, even though scene recognition models are purported to
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Figure 3.7: Some data augmentation methods can slightly improve performance.

have qualitatively distinct features (B. Zhou et al. 2019), this is not enough to improve ImageNet-A

performance. Likewise, Places365 pre-training does not improve ImageNet-O detection, as its

AUPR is 14.88%. Next, we see whether labeled data from ImageNet-A itself can help. We take

baseline ResNet-50 with 2.17% ImageNet-A accuracy and �ne-tune it on 80% of ImageNet-A.

This leads to no clear improvement on the remaining 20% of ImageNet-A since the top1 and

top5 accuracies are below 2% and 5% respectively. Last, we pre-train using an order of magnitude

more training data with ImageNet-21K. This dataset contains approximately 21,000 classes and

approximately 14 million images. To our knowledge this is the largest publicly available database

of labeled natural images. Using a ResNet-50 pretrained on ImageNet-21K, we �ne-tune the

model on ImageNet-1K and attain 11.41%accuracy on ImageNet-A, a 9.24% increase. Likewise,

the AUPR for ImageNet-O improves from 16.20% to 21.86%, although this improvement is less

signi�cant since ImageNet-O images overlap with ImageNet-21K images. Overall, an order of

magnitude increase in labeled training data can provide some improvements in accuracy.

Architectural Changes. We �nd that model architecture can play a large role in ImageNet-A

accuracy and ImageNet-O detection performance. Simply increasing the width and number

of layers of a network is su�cient to automatically impart more ImageNet-A accuracy and

ImageNet-O OOD detection performance. Increasing network capacity has been shown to

improve performance on `p adversarial examples (Kurakin, I. Goodfellow, and Bengio 2017),

common corruptions (Hendrycks and Dietterich 2019), and now also improves performance for

adversarially �ltered images. For example, a ResNet-50’s top-1 accuracy and AUPR is 2.17% and
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Figure 3.8: Increasing model size and other architecture changes can greatly improve performance.
Note Res2Net and ResNet+SE have a ResNet backbone. Normal model sizes are ResNet-50 and
ResNeXt-50 (32× 4d), Large model size are ResNet-101 and ResNeXt-101 (32× 4d), and XLarge
Model sizes are ResNet-152 and (32× 8d).

16.2%, respectively, while a ResNet-152 obtains 6.1% top-1 accuracy and 18.0% AUPR. Another

architecture change that reliably helps is using the grouped convolutions found in ResNeXts

(Xie et al. 2016). A ResNeXt-50 (32 × 4d) obtains a 4.81% top1 ImageNet-A accuracy and a

17.60% ImageNet-O AUPR. Another architectural change is self attention. Convolutional neural

networks with self-attention (Hu et al. 2018) are designed to better capture long-range dependencies

and interactions across an image. We consider the self-attention technique called Squeeze-and-

Excitation (SE) (Hu, Shen, and Sun 2018), which won the �nal ImageNet competition in 2017.

A ResNet-50 with Squeeze-and-Excitation attains 6.17% accuracy. However, for larger ResNets,

self-attention does little to improve ImageNet-O detection. Finally, we consider the ResNet-50

architecture with its residual blocks exchanged with recently introduced Res2Net v1b blocks (Gao

et al. 2019). This change increases accuracy to 14.59% and the AUPR to 19.5%. A ResNet-152 with

Res2Net v1b blocks attains 22.4% accuracy and 23.9% AUPR. Compared to data augmentation

or an order of magnitude more labeled training data, some architectural changes can provide far

more robustness gains. Consequently future improvements to model architectures is a promising

path towards greater robustness.
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3.5 Conclusion

In this chapter, we introduced adversarially �ltered examples for image classi�ers and out-of-

distribution detectors. Our ImageNet-A dataset degrades classi�cation accuracy across known

classi�ers, and it measures robustness to input data distribution shifts. Likewise, ImageNet-O ad-

versarially �ltered examples reliably degrade ImageNet out-of-distribution detection performance,

and it measures robustness to label distribution shifts. ImageNet-O enables the measurement of ad-

versarial out-of-distribution detection performance, and is the �rst ImageNet out-of-distribution de-

tection dataset. Our adversarial �ltration process removes examples solved by simple spurious cues,

so our datasets enable researchers to observe performance when simple spurious cues are removed.

Our naturally occurring images expose common blindspots of current convolutional networks,

and solving these tasks will require addressing long-standing but under-explored failure modes

of current models such as over-reliance on texture, over-generalization, and spurious cues. We

found that these failures are slightly less pronounced with di�erent data augmentation strategies.

However, we identi�ed that architectural improvements can provide large gains in model robust-

ness, and there is much room for future research. In this work, we introduce two new and di�cult

ImageNet test sets to measure model performance under distribution shift—an important research

aim as computer vision systems are deployed in increasingly precarious real-world environments.
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CHAPTER 4

SCALING ANOMALY DETECTION TO LARGE SCALE IMAGES

4.1 Overview

Detecting out-of-distribution inputs is important in real-world applications of deep learning.

When faced with anomalous inputs �agged as such, systems may initiate a conservative fallback

policy or defer to human judgment. This is especially important in safety-critical applications of

deep learning, such as self-driving cars or medical applications. Accordingly, research on out-of-

distribution detection has a rich history spanning several decades (Schölkopf et al. 1999b; M. M.

Breunig et al. 2000; A. Emmott et al. 2015). Recent work leverages deep neural representations for

out-of-distribution detection in complex domains, such as image data (Hendrycks and Gimpel

2017; Lee et al. 2018a; Hendrycks, Mazeika, and Dietterich 2019). However, these works still

primarily use small-scale datasets with low-resolution images and few classes. As the community

moves towards more realistic, large-scale settings, strong baselines and high-quality benchmarks

are imperative for future progress.

In addition to focusing on small-scale datasets, previous formulations of anomaly detection

treat entire images as anomalies. In practice, an image could be anomalous in localized regions

while being in-distribution elsewhere. Knowing which regions of an image are anomalous could

allow for safer handling of unfamiliar objects in the case of self-driving cars. Creating a benchmark

for this task is di�cult, though, as simply cutting and pasting anomalous objects into images

introduces various unnatural giveaway cues such as edge e�ects, mismatched orientation, and

lighting, all of which trivialize the task of anomaly segmentation (Blum et al. 2019).

To overcome these issues, we utilize a simulated driving environment to create the novel Street-

Hazards dataset for anomaly segmentation. Using the Unreal Engine and the open-source CARLA

simulation environment (Dosovitskiy et al. 2017), we insert a diverse array of foreign objects into

driving scenes and re-render the scenes with these novel objects. This enables integration of the

foreign objects into their surrounding context with correct lighting and orientation.
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Multiclass Multi-label Segmentation

In-Distribution

Anomaly Verdict:

Classes:

Bat, Mit, Person

Out-of-Distribution

Anomaly Verdict:

Classification:

None

Figure 4.1: We scale up out-of-distribution detection to large-scale multi-class datasets with
hundreds of classes, multi-label datasets with complex scenes, and anomaly segmentation in
driving environments. In all three settings, we �nd that an OOD detector based on the maximum
logit outperforms previous methods, establishing a strong and versatile baseline for future work
on large-scale OOD detection.

To complement the StreetHazards dataset, we convert the BDD100K semantic segmentation

dataset (Yu et al. 2018) into an anomaly segmentation dataset, which we call BDD-Anomaly. By

leveraging the large scale of BDD100K, we reserve infrequent object classes to be anomalies. We

combine this dataset with StreetHazards to form the Combined Anomalous Object Segmentation

(CAOS) benchmark. The CAOS benchmark improves over previous evaluations for anomaly

segmentation in driving scenes by evaluating detectors on realistic and diverse anomalies. We

evaluate several baselines on the CAOS benchmark and discuss problems with porting existing

approaches from earlier formulations of out-of-distribution detection.

In more traditional whole-image anomaly detection, large-scale datasets such as ImageNet

(Deng et al. 2009) and Places365 (B. Zhou et al. 2017) present unique challenges not seen in

small-scale settings, such as a plethora of �ne-grained object classes. We demonstrate that the

MSP detector, a state-of-the-art method for small-scale problems, does not scale well to these

challenging conditions. Moreover, in the common real-world case of multi-label data, the MSP

detector cannot naturally be applied in the �rst place, as it requires softmax probabilities.

Through extensive experiments, we identify a detector based on the maximum logit (MaxLogit)

that greatly outperforms strong baselines in large-scale multi-class, and anomaly segmentation set-
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tings. In each of these three settings, we discuss why MaxLogit provides superior performance, and

we show that these gains are hidden if one looks at small-scale problems alone. The code for our ex-

periments and the CAOS benchmark datasets are available at github.com/hendrycks/anomaly-seg.

4.2 Related Work

Anomaly Segmentation. Several prior works explore segmenting anomalous image regions.

One line of work uses the WildDash dataset (Zendel et al. 2018), which contains numerous

annotated driving scenes in conditions such as snow, fog, and rain. The WildDash test set contains

�fteen "negative image" from di�erent domains for which the goal is to mark the entire image as

out-of-distribution. Thus, while the task is segmentation, the anomalies do not exist as objects

within an otherwise in-distribution scene. This setting is similar to that explored by (Hendrycks

and Gimpel 2017), in which whole images from other datasets serve as out-of-distribution examples.

To approach anomaly segmentation on WildDash, (Krešo et al. 2018) train on multiple semantic

segmentation domains and treat regions of images from the WildDash driving dataset as out-of-

distribution if they are segmented as regions from di�erent domains, i.e. indoor classes. (Bevandić

et al. 2018) use ILSVRC 2012 images and train their network to segment the entirety of these

images as out-of-distribution.

In medical anomaly segmentation and product fault detection, anomalies are regions of other-

wise in-distribution images. (Baur et al. 2019) segment anomalous regions in brain MRIs using

pixel-wise reconstruction loss. Similarly, (Haselmann, Gruber, and Tabatabai 2018) perform

product fault detection using pixel-wise reconstruction loss and introduce an expansive dataset

for segmentation of product faults. In these relatively simple domains, reconstruction-based

approaches work well. In contrast to medical anomaly segmentation and fault detection, we

consider complex images from street scenes. These images have high variability in scene layout

and lighting, and hence are less amenable to reconstruction-based techniques.

The two works closest to our own are the Lost and Found (Pinggera et al. 2016) and Fishyscapes

(Blum et al. 2019) datasets. In table 4.1, we quantitatively compare the CAOS benchmark to these
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Fishyscapes Lost and Found BDD-Anomaly
(Ours)

StreetHazards
(Ours)

Train Images 0 1036 6280 5125
Test Images 1000 1068 810 1500
Anomaly Types 12 9 3 250

Table 4.1: Quantitative comparison of the CAOS benchmark with related datasets. The BDD-
Anomaly dataset treats three categories as anomalous and has many unique object instances
within those categories. By contrast, Lost and Found has the same objects in multiple images and
has only nine unseen objects at test time. StreetHazards leverages a simulated environment to
naturally insert hundreds of varied anomalies.

datasets. The Lost and Found dataset consists of real images in a driving environment with small

road hazards. The images were collected to mirror the Cityscapes dataset (Cordts et al. 2016)

but are only collected from one city and so have less diversity. The dataset contains 35 unique

anomalous objects, and methods are allowed to train on many of these. For Lost and Found, only

nine unique objects are truly unseen at test time. Crucially, this is a di�erent evaluation setting

from our own, where anomalous objects are not revealed at training time, so their dataset is

not directly comparable. Nevertheless, the BDD-Anomaly dataset �lls several gaps in Lost and

Found. First, the images are more diverse, because they are sourced from a more recent and

comprehensive semantic segmentation dataset. Second, the anomalies are not restricted to small,

sparse road hazards. Concretely, anomalous regions in Lost and Found take up 0.11% of the image

on average, whereas anomalous regions in the BDD-Anomaly dataset are larger and �ll 0.83%

of the image on average. Finally, although the BDD-Anomaly dataset treats three categories as

anomalous, compared to Lost and Found it has far more unique anomalous objects.

The Fishyscapes benchmark for anomaly segmentation consists of cut-and-paste anomalies

from out-of-distribution domains. This is problematic, because the anomalies stand out as clearly

unnatural in context. For instance, the orientation of anomalous objects is unnatural, and the

lighting of the cut-and-paste patch di�ers from the lighting in the original image, providing

an unnatural cue to anomaly detectors that would not exist for real anomalies. Techniques for

detecting image manipulation (P. Zhou et al. 2018) are competent at detecting arti�cial image

elements of this kind. Our StreetHazards dataset overcomes these issues by leveraging a simulated
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Figure 4.2: Small-scale datasets such as CIFAR-10 have relatively disjoint classes, but larger-scale
datasets including ImageNet have several classes with high visual similarity to other classes. The
implication is that large-scale classi�ers disperse probability mass among several classes. If the
prediction con�dence is used for out-of-distribution detection, then images which have similarities
to other classes will often wrongly be deemed out-of-distribution due to dispersed con�dence.
The dog is lower resolution for the CIFAR-10 classi�er.

driving environment to naturally insert anomalous 3D models into a scene rather than overlaying

2D images. These anomalies are integrated into the scene with proper lighting and orientation,

mimicking real-world anomalies and making them signi�cantly more di�cult to detect.

Multi-Class Out-of-Distribution Detection. A recent line of work leverages deep neural

representations from multi-class classi�ers to perform out-of-distribution (OOD) detection on

high-dimensional data, including images, text, and speech data. Hendrycks and Gimpel 2017

formulate the task and propose the simple baseline of using the maximum softmax probability

of the classi�er on an input to gauge whether the input is out-of-distribution. In particular, they

formulate the task as distinguishing between examples from an in-distribution dataset and various

out-of-distribution datasets. Importantly, entire images are treated as out-of-distribution.

Continuing this line of work, Lee et al. 2018a propose to improve the neural representation

of the classi�er to better separate in- and out-of-distribution examples. They use generative

adversarial networks to produce near-distribution examples. In training, they encourage the

classi�er to output a uniform posterior on these synthetic out-of-distribution examples. Hendrycks,

Mazeika, and Dietterich 2019 observe that outliers are often easy to obtain in large quantity from

diverse, realistic datasets and demonstrate that training out-of-distribution detectors to detect

these outliers generalizes to completely new, unseen classes of anomalies. Other work investigates
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improving the anomaly detectors themselves given a �xed classi�er (DeVries and Taylor 2018;

Liang, Li, and Srikant 2018). However, as observed in Hendrycks, Mazeika, and Dietterich 2019,

most of these works tune hyperparameters on a particular type of anomaly that is also seen at

test time, so their evaluation setting is more lenient. We ensure that all anomalies seen at test

time come from entirely unseen categories and are not tuned on in any way, hence we do not

compare to techniques such as Liang, Li, and Srikant 2018. Additionally, in a point of departure

from prior work, we focus primarily on large-scale images and datasets with many classes.

4.3 Multi-Class Prediction for OOD Detection

Problemwith existing baselines. In large-scale image classi�cation, a network is often tasked

with predicting an object’s identity from one of hundreds or thousands of classes, where class

distinctions tend to be more �ne and subtle. An increase in similarity and overlap between

classes spells a problem for the multi-class out-of-distribution baseline (Hendrycks and Gimpel

2017). This baseline uses the negative maximum softmax probability as the anomaly score, or

−maxk p(y = k | x). Classi�ers tend to have higher con�dence on in-distribution examples than

out-of-distribution examples, enabling OOD detection. Assuming single-model evaluation and

no access to other anomalies or test-time adaptation, the maximum softmax probability (MSP)

is the state-of-the-art multi-class out-of-distribution detection method. However, we show that

the MSP is problematic for large-scale datasets with many classes including ImageNet-1K and

Places365 (B. Zhou et al. 2017). Probability mass can be dispersed among visually similar classes,

as shown in �gure 4.2. Consequently, a classi�er may produce a low con�dence prediction for an

in-distribution image, not because the image is unfamiliar or out-of-distribution, but because the

object’s exact class is di�cult to determine. To circumvent this problem, we propose using the

negative of the maximum unnormalized logit for an anomaly score, which we call MaxLogit.

The MaxLogit has several bene�ts over the previous baseline of MSP. Empirically we �nd that

MaxLogit outperforms the MSP, although the di�erence is marginal in small scale image datasets

such as CIFAR-10 but show a larger improvement on CAOS benchmark and ImageNet see 4.2. The
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two main reasons other than emperical performance to switch from MSP to MaxLogit are that

the MaxLogit can work even if it is not a distributions and MaxLogit is una�ected by the number

of classes. To expand upon each point, for several image tasks the output comes in the form of

multi-label categories which the results are not from a softmax and not a distribution as the results

do not sum to one, and MaxLogit does not require such a condition to in order to operate. The

other point is a bit more subtle but none-the-less important. While the softmax operation does not

change the maximum score, and does not change the ordering of classes per item, it does a�ect

the relative ordering across items. This is because the softmax operation will convert the absolute

di�erences per item in relative di�erences which loses information when comparing across items.

Datasets. To evaluate the MSP baseline out-of-distribution detector and the MaxLogit detector,

we use ImageNet-1K object recognition dataset and Places365 scene recognition dataset as in-

distribution datasets Din. We use several out-of-distribution test datasets Dout, all of which

are unseen during training. The �rst out-of-distribution dataset is Gaussian noise, where each

pixel of these out-of-distribution examples are i.i.d. sampled from N (0, 0.5) and clipped to be

contained within [−1, 1]. Another type of test-time noise is Rademacher noise, in which each

pixel is i.i.d. sampled from 2 · Bernoulli(0.5)− 1, i.e. each pixel is 1 or −1 with equal probability.

Blob examples are more structured than noise; they are algorithmically generated blob images.

Meanwhile, Textures is a dataset consisting in images of describable textures (M. Cimpoi et al. 2014).

When evaluating the ImageNet-1K detector, we use LSUN images, which is a dataset for scene

recognition (Yu et al. 2015). Our �nal Dout is Places69, a scene classi�cation dataset that does not

share classes with Places365. In all, we evaluate against out-of-distribution examples spanning

synthetic and realistic images.

Results. Results are shown in table 4.2. Observe that the proposed MaxLogit method outper-

forms the maximum softmax probability baseline for all three metrics on both ImageNet and

Places365. These results were computed using a ResNet-50 trained on either ImageNet-1K or

Places365. In the case of Places365, the AUROC improvement is over 10%. We note that the utility

of the maximum logit could not as easily be appreciated in previous work’s small-scale settings.
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FPR95 ↓ AUROC ↑ AUPR ↑
Din MSP MaxLogit KL MSP MaxLogit KL MSP MaxLogit KL
ImageNet 42.42 35.77 36.22 84.60 87.20 87.29 48.26 45.68 37.32
Places365 52.68 36.6 49.14 75.67 85.9 80.01 8.13 19.2 24.61

Table 4.2: Multi-class out-of-distribution detection results using the maximum softmax probability,
maximum logit basline and KL Divergence between predicted and posterior. Results are on
ImageNet and Places365. Values are rounded so that 99.995% rounds to 100%. Full results on
individual Dout datasets and additional baselines are in the supplementary material.

For example, using the small-scale CIFAR-10 setup of (Hendrycks, Mazeika, and Dietterich 2019),

the MSP attains an average AUROC of 90.08% while the maximum logit attains 90.22%, a 0.14%

di�erence. However, in a large-scale setting, the di�erence can be over 10% on individual Dout

datasets. We are not claiming that utilizing the maximum logit is a mathematically innovative

formulation, only that it serves as a consistently powerful baseline for large-scale settings that

went unappreciated in small-scale settings. In consequence, we suggest using the maximum logit

as a new baseline for large-scale multi-class out-of-distribution detection.

4.4 The CAOS Benchmark

The Combined Anomalous Object Segmentation (CAOS) benchmark is comprised of two comple-

mentary datasets for evaluating anomaly segmentation systems on diverse, realistic anomalies.

First is the StreetHazards dataset, which leverages simulation to provide a large variety of anoma-

lous objects realistically inserted into driving scenes. Second is the BDD-Anomaly dataset, which

consists of real images taken from the BDD100K dataset (Yu et al. 2018). StreetHazards contains

a highly diverse array of anomalies; BDD-Anomaly contains anomalies in real-world images.

Together, these datasets allow researchers to judge techniques on their ability to segment diverse

anomalies as well as anomalies in real images. All images have 720× 1280 resolution, and we

recommend evaluating with the AUROC, AUPR, and FPRK metrics, which we describe in Section

4.4.1.

The StreetHazards Dataset. StreetHazards is an anomaly segmentation dataset that leverages

simulation to provide diverse, realistically-inserted anomalous objects. To create the StreetHazards
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Figure 4.3: A sample of anomalous scenes, model predictions, and anomaly scores. The anomaly
scores are thresholded to the top 10% of values for visualization. GT is ground truth, the autoen-
coder model is based on the spatial autoencoder used in (Baur et al. 2019), MSP is the maximum
softmax probability baseline (Hendrycks and Gimpel 2017), and MaxLogit is the method we
propose as a new baseline for large-scale settings.

dataset, we use the Unreal Engine along with the CARLA simulation environment (Dosovitskiy

et al. 2017). From several months of development and testing including customization of the Unreal

Engine and CARLA, we can insert foreign entities into a scene while having them be properly

integrated. Unlike previous work, this avoids the issues of inconsistent chromatic aberration, edge

e�ects, di�erences in environmental lighting, and other simple cues that an object is anomalous.

Additionally, using a simulated environment allows us to dynamically insert diverse anomalous

objects in any location and have them render properly with changes to lighting and weather

including time of day, cloudy skies, and rain.

We use 3 towns from CARLA for training, from which we collect RGB images and their
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respective semantic segmentation maps to serve as our training data for our semantic segmentation

model. We generate a validation set from the fourth town. Finally, we reserve the �fth and sixth

town as our test set. We insert anomalies taken from the Digimation Model Bank Library and

semantic ShapeNet (ShapeNetSem) (Savva, Chang, and Hanrahan 2015) into the test set in order

to evaluate methods for out-of-distribution detection. In total, we use 250 unique anomaly models

of diverse types. There are 12 classes used for training: background, road, street lines, tra�c signs,

sidewalk, pedestrian, vehicle, building, wall, pole, fence, and vegetation. The thirteenth class is the

anomaly class that is only used at test time. We collect 5,125 image and semantic segmentation

ground truth pairs for training, 1,031 pairs without anomalies for validation, and 1,500 test pairs

with anomalies.

The BDD-Anomaly Dataset. BDD-Anomaly is an anomaly segmentation dataset with real

images in diverse conditions. We source BDD-Anomaly from BDD100K (Yu et al. 2018), a large-

scale semantic segmentation dataset with diverse driving conditions. The original data consists

in 7000 images for training and 1000 for validation. There are 18 original classes. We choose

motorcycle, train, and bicycle as the anomalous object classes and remove all images with these

objects from the training and validation sets. This yields 6,280 training pairs, 910 validation pairs

without anomalies, and 810 testing pairs with anomalous objects.

4.4.1 Experiments

Metrics. To evaluate out-of-distribution detectors in large-scale settings, we use three standard

metrics of detection performance: area under the ROC curve (AUROC), false positive rate at

95% recall (FPR95), and area under the precision-recall curve (AUPR). The AUROC and AUPR

are important metrics, because they give a holistic measure of performance when the cuto� for

detecting anomalies is not a priori obvious or when we want to represent the performance of a

detection method across several di�erent cuto�s.

The AUROC can be thought of as the probability that an anomalous example is given a higher

score than an ordinary example. Thus, a higher score is better, and an uninformative detector has
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a AUROC of 50%. AUPR provides a metric more attuned to class imbalances, which is relevant

in anomaly and failure detection, when the number of anomalies or failures may be relatively

small. Last, the FPR95 metric consists of measuring the false positive rate at 95%. This is important

because it tells us how many false positives (i.e. false alarms) are necessary for a given method to

achieve a desired recall. This desired recall may be thought of as a safety threshold. Moreover,

anomalies and system failures may require human intervention, so a detector requiring little

human intervention while still detecting most anomalies is of pecuniary importance.

In anomaly segmentation experiments, each pixel is treated as a prediction, resulting in many

predictions to evaluate. To �t these in memory, we compute the metrics on each image and average

over the images to obtain �nal values.

Methods. Our �rst baseline is pixel-wise Maximum Softmax Probability (MSP). Introduced

in Hendrycks and Gimpel 2017 for multi-class out-of-distribution detection, we directly port

this baseline to anomaly segmentation. Alternatively, the background class might serve as an

anomaly detector, because it contains everything not in the other classes. To test this hypothesis,

"Background" uses the posterior probability of the background class as the anomaly score. The

Dropout method leverages MC Dropout (Gal and Ghahramani 2016) to obtain an epistemic

uncertainty estimate. We follow the implementation by Kendall, Badrinarayanan, and Cipolla

2015.MC Dropout is computed by leaving dropout on during inference and then one runs several

forward passes of the image through the network. This creates a set of predictions for the given

object that we use to compute the variance over the set of predictions. The variance over the set

of predictions serves as the anomaly score. A higher variance implies higher uncertainty about

which class the object belongs to. We also experiment with an autoencoder baseline similar to

Baur et al. 2019; Haselmann, Gruber, and Tabatabai 2018 where pixel-wise reconstruction loss is

used as the anomaly score. By this we mean that we run the image through the autoencoder and

subtract the resulting image from the input. The absolute di�erence in magnitude serves as the

anomaly score. This method is called AE. The "Branch" method is a direct port of the con�dence

branch detector from DeVries and Taylor 2018 to pixel-wise prediction. This method trains a
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separate �nal output score along with a classi�cation output. The output score is multiplied to

the predictions so that the predictions are scaled based on the model’s con�dence. The training

involves the slight modi�cation to cross entropy L = −ylog(p · c) where y is the label, p is the

probability, and c is the con�dence score. The con�dence score is always between 0-1 by applying

the sigmoid function ensuring that the cross entropy function is still valid. The con�dence is

trained via backpropagation similarly to the classi�cation prediction. Finally, we use the MaxLogit

method described in earlier sections.

For all of the baselines except the autoencoder, we train a PSPNet (Zhao et al. 2017) decoder

with a ResNet-101 encoder (He et al. 2015) for 20 epochs. The PSPNet follows a similar pattern

to Zoomout (Mostajabi, Yadollahpour, and Shakhnarovich 2015) or Hypercolumns (Hariharan

et al. 2014) whereby the activations of the convolutional layers are concatenated together before

�nally undergoing a fully connected layer to arrive at the appropriate dimensionality. We train

both the encoder and decoder using SGD with momentum of 0.9, a learning rate of 2× 10−2, and

learning rate decay of 10−4. For the autoencoder, we use a 4-layer U-Net (Ronneberger, Fischer,

and Brox 2015) with a spatial latent code as in (Baur et al. 2019). The U-Net also uses batch norm

and is trained for 10 epochs.

To evaluate the methods, we take all of the scores per pixel that belong to anomalies and all of

the scores for the remaining pixels. Then we sort the scores, thereby allowing us to compute the

false positive rate and true positive rate at every threshold. We use the thresholds to compute the

AUROC giving us the probability that we correctly select an in-distribution pixel with the method

we’re evaluating. We also prede�ne a set threshold at 5% and compute the false positive rate for

that threshold. Due to the large number of scores to be evaluated and sorted, we take the mean

over all the images of each evaluation as a �nal report.

Results and Analysis. MaxLogit outperforms all other methods across the board by a sub-

stantial margin. The intuitive baseline of using the posterior for the background class to detect

anomalies performs poorly, which suggests that the background class may not align with rare

visual features. Even though reconstruction-based scores succeed in product fault segmentation,
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MSP Branch Background Dropout AE MaxLogit

StreetHazards
FPR95 ↓ 33.7 68.4 69.0 79.4 91.7 26.5

AUROC ↑ 87.7 65.7 58.6 69.9 66.1 89.3

AUPR ↑ 6.6 1.5 4.5 7.5 2.2 10.6

BDD-Anomaly
FPR95 ↓ 24.5 25.6 40.1 16.6 74.1 14.0

AUROC ↑ 87.7 85.6 69.7 90.8 64.0 92.6

AUPR ↑ 3.7 3.9 1.1 4.3 0.7 5.4

Table 4.3: Results on the Combined Anomalous Object Segmentation benchmark. AUPR is low
across the board due to the large class imbalance, but all methods perform substantially better
than chance. MaxLogit obtains the best performance. All results are percentages.

we �nd that the AE method performs poorly on the CAOS benchmark, which may be due to the

more complex domain. AUPR for all methods is low, indicating that the large class imbalance

presents a serious challenge. However, the substantial improvements with the MaxLogit method

suggest that progress on this task is possible and there is much room for improvement.

In �gure 4.3, we can qualitatively see that both MaxLogit and MSP have a high number of false

positives, as they assign high anomaly scores to semantic boundaries, a problem also observed

in the recent works of Blum et al. 2019; Angus 2019. However, the problem is less severe in

MaxLogit. A potential explanation for this could be due to two e�ects. The �rst we mentioned

earlier in the bene�ts of MaxLogit over MSP (see section 4.3) in that the inter-class variance is

better preserved in MaxLogit over MSP. The second e�ect builds o� of the �rst, by having a greater

range in MaxLogit as compared to MSP bilinear upsampling from the models �nal output to the

�nal output image creates much sharper boundaries. This is because the interpolation of points

that are already close (with MSP) will blur the boundaries much more and cause more pixels to

become classi�ed as in-distribution by exceeding the threshold.

Autoencoder-based methods are qualitatively di�erent from approaches using the softmax

probabilities, because they model the input itself and can avoid boundary e�ects seen in the

MaxLogit and MSP rows of �gure 4.3. While autoencoder methods are successful in medical

anomaly segmentation and product fault detection, we �nd the AE baseline to be ine�ective in the

more complex domain of street scenes. The last row of �gure 4.3 shows pixel-wise reconstruction

loss on example images from StreetHazards. Anomalies are not distinguished well from in-
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distribution elements of the scene. New methods must be developed to mitigate the boundary

e�ects faced by softmax-based methods while also attaining good detection performance.

4.5 Conclusion

We scaled out-of-distribution detection to more realistic, large-scale settings by developing a novel

benchmark for OOD segmentation. The CAOS benchmark for anomaly segmentation consists of

diverse, naturally-integrated anomalous objects in driving scenes. Baseline methods on the CAOS

benchmark substantially improve on random guessing but are still lacking, indicating potential for

future work. We also investigated using multi-label classi�ers for out-of-distribution detection and

established an experimental setup for this previously unexplored setting. On large-scale multi-class

image datasets, we identi�ed an issue faced by existing baselines and proposed the maximum logit

detector as a natural solution. Interestingly, this detector also provides consistent and signi�cant

gains in the multi-label and anomaly segmentation settings, thereby establishing it as a new

baseline in place of the maximum softmax probability baseline on large-scale OOD detection

problems. In all, we hope that our simple baseline and our new OOD segmentation benchmark will

enable further research on out-of-distribution detection for real-world safety-critical environments.
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CHAPTER 5

NEURAL AUGMENTATIONS

5.1 Overview

While the research community must create robust models that generalize to new scenarios, the

robustness literature (Dodge and Karam 2017; Geirhos et al. 2020b) lacks consensus on evaluation

benchmarks and contains many dissonant hypotheses. While Hendrycks, Liu, et al. 2020 �nd

that many recent language models are already robust to many forms of distribution shift, Yin

et al. 2019, and Geirhos et al. 2019 �nd that vision models are largely fragile and argue that data

augmentation o�ers a solution. In contrast, Taori et al. 2020b provide results suggesting that using

pretraining and improving in-distribution test set accuracy improve natural robustness, whereas

other methods do not.

In this chapter we articulate and systematically study seven robustness hypotheses. The

�rst four hypotheses concern methods for improving robustness, while the last three hypotheses

concern abstract properties about robustness. These hypotheses are as follows.

• Larger Models: increasing model size improves robustness (Xie and Yuille 2020).

• Self-Attention: adding self-attention layers to models improves robustness (Hendrycks et

al. 2019).

• Diverse Data Augmentation: robustness can increase through data augmentation (Yin et al. 2019).

• Pretraining: pretraining on larger and more diverse datasets improves robustness (Orhan 2019;

Hendrycks, Lee, and Mazeika 2019).

• Texture Bias: convolutional networks are biased towards texture, which harms robustness

(Geirhos et al. 2019).

• Only IID Accuracy Matters: accuracy on independent and identically distributed test data

entirely determines natural robustness (Taori et al. 2020a).

• Synthetic 6=⇒ Natural: synthetic robustness interventions including diverse data augmenta-

tions do not help with robustness on naturally occurring distribution shifts (Taori et al. 2020b).
48



Figure 5.1: Images from our three new datasets ImageNet-Renditions (ImageNet-R), DeepFashion
Remixed (DFR), and StreetView StoreFronts (SVSF). The SVSF images are recreated from the
public Google StreetView, copyright Google 2020. Our datasets test robustness to various naturally
occurring distribution shifts including rendition style, camera viewpoint, and geography.

It has been di�cult to arbitrate these hypotheses because existing robustness datasets preclude

the possibility of controlled experiments by varying multiple aspects simultaneously. For instance,

Texture Bias was initially investigated with synthetic distortions (Geirhos et al. 2018), which

con�icts with the Synthetic 6=⇒ Natural hypothesis. On the other hand, natural distribution

shifts often a�ect many factors (e.g., time, camera, location, etc.) simultaneously in unknown

ways (Recht et al. 2019; Hendrycks et al. 2019). Existing datasets also lack diversity such that it is

hard to extrapolate which methods will improve robustness more broadly. To address these issues

and test the seven hypotheses outlined above, we introduce three new robustness benchmarks

and a new data augmentation method.

First we introduce ImageNet-Renditions (ImageNet-R), a 30,000 image test set containing

various renditions (e.g., paintings, embroidery, etc.) of ImageNet object classes. These renditions

are naturally occurring, with textures and local image statistics unlike those of ImageNet images,

allowing us to more cleanly separate the Texture Bias and Synthetic 6=⇒ Natural hypotheses.

Next, we investigate natural shifts in the image capture process with StreetView StoreFronts

(SVSF) and DeepFashion Remixed (DFR). SVSF contains business storefront images taken from

Google Streetview, along with metadata allowing us to vary location, year, and even the camera
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type. DFR leverages the metadata from DeepFashion2 (Ge et al. 2019) to systematically shift object

occlusion, orientation, zoom, and scale at test time. Both SVSF and DFR provide distribution shift

controls and do not alter texture, which remove possible confounding variables a�ecting prior

benchmarks. DFR is discussed in greater detail in 6.4.

Finally, we contribute DeepAugment to increase robustness to some new types of distribution

shift. This augmentation technique uses image-to-image neural networks for data augmentation,

not data-independent Euclidean augmentations like image shearing or rotating as in previous

work. DeepAugment achieves state-of-the-art robustness on our newly introduced ImageNet-R

benchmark and a corruption robustness benchmark. DeepAugment can also be combined with

other augmentation methods to outperform a model pretrained on 1000× more labeled data.

After examining our results on these three datasets and others, we can rule out several of the

above hypotheses while strengthening support for others. As one example, we �nd that synthetic

data augmentation robustness interventions improve accuracy on ImageNet-R and real-world

image blur distribution shifts, providing clear counterexamples to Synthetic 6=⇒ Natural while

lending support to the Diverse Data Augmentation and Texture Bias hypotheses. In the conclusion,

we summarize the various strands of evidence for and against each hypothesis. Across our many

experiments, we do not �nd a general method that consistently improves robustness, and some

hypotheses require additional quali�cations. While robustness is often spoken of and measured as

a single scalar property like accuracy, our investigations suggest that robustness is not so simple.

In light of our results, we hypothesize in the conclusion that robustness is multivariate.

5.2 Related Work

Robustness Benchmarks. Recent works (Hendrycks and Dietterich 2019; Recht et al. 2019;

Hendrycks, Liu, et al. 2020) have begun to characterize model performance on out-of-distribution

(OOD) data with various new test sets, with dissonant �ndings. For instance, Hendrycks, Liu, et

al. 2020 demonstrate that modern language processing models are moderately robust to numerous

naturally occurring distribution shifts, and that Only IID Accuracy Matters is inaccurate for natural
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language tasks. For image recognition, Hendrycks and Dietterich 2019 analyze image models and

show that they are sensitive to various simulated image corruptions (e.g., noise, blur, weather,

JPEG compression, etc.) from their “ImageNet-C” benchmark.

Recht et al. 2019 reproduce the ImageNet (Russakovsky et al. 2014) validation set for use as a

benchmark of naturally occurring distribution shift in computer vision. Their evaluations show a

11-14% drop in accuracy from ImageNet to the new validation set, named ImageNetV2, across a

wide range of architectures. Taori et al. 2020b use ImageNetV2 to measure natural robustness and

dismiss Diverse Data Augmentation. Engstrom et al. 2020 identify statistical biases in ImageNetV2’s

construction, and they estimate that reweighting ImageNetV2 to correct for these biases results in

a less substantial 3.6% drop.

In contrast to adversarial robustness (Szegedy et al. 2013; Ian J Goodfellow, Shlens, and Szegedy

2014), we focus instead on robustness to unconstrained out-of-distribution data measured on non-

interactive benchmarks. (Carlini et al. 2019) detail the inherent practical di�culty in evaluating

adversarial robustness, and (Gilmer et al. 2018) argue for the inclusion of unconstrained input

modi�cations in the threat model of attacks against machine learning systems.

Data Augmentation. Geirhos et al. 2019; Yin et al. 2019; Hendrycks, Mu, et al. 2020 demonstrate

that data augmentation can improve robustness on ImageNet-C. The space of augmentations

that help robustness includes various types of noise (Aleksander Madry et al. 2018; Rusak et

al. 2020; Lopes et al. 2019), highly unnatural image transformations (Geirhos et al. 2019; Yun

et al. 2019; Hongyi Zhang et al. 2017), or compositions of simple image transformations such as

Python Imaging Library operations (Cubuk et al. 2018; Hendrycks, Mu, et al. 2020). Some of these

augmentations can improve accuracy on in-distribution examples as well as on out-of-distribution

(OOD) examples.

Transfer learning Pretraining models on larger datasets has been been demonstrated to im-

prove robustness on ImageNet-C. Orhan 2019 report that models trained on the JFT-300m dataset

(Sun et al. 2017) and the weakly-supervised Instagram dataset (Mahajan et al. 2018) improve
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Painting Sculpture Embroidery

Origami Cartoon Toy

Figure 5.2: ImageNet-Renditions (ImageNet-R) contains 30,000 images of ImageNet objects with
di�erent textures and styles. This �gure shows only a portion of ImageNet-R’s numerous rendition
styles. The rendition styles (e.g., “Toy”) are for clarity and are not ImageNet-R’s classes; ImageNet-
R’s classes are a subset of 200 ImageNet classes. ImageNet-R emphasizes shape over texture.

robustness on the ImageNet-C by signi�cant margins.

5.3 New Benchmarks

In order to evaluate the seven robustness hypotheses, we introduce three new benchmarks that

capture new types of naturally occurring distribution shifts. ImageNet-Renditions (ImageNet-R)

is a newly collected test set intended for ImageNet classi�ers, whereas StreetView StoreFronts

(SVSF) and DeepFashion Remixed (DFR) each contain their own training sets and multiple test

sets. SVSF and DFR split data into a training and test sets based on various image attributes stored

in the metadata. For example, we can select a test set with images produced by a camera di�erent

from the training set camera. We now describe the structure and collection of each dataset.

5.3.1 ImageNet-Renditions (ImageNet-R)

While current classi�ers can learn some aspects of an object’s shape (Mordvintsev, Olah, and Tyka

2015), they nonetheless rely heavily on natural textural cues (Geirhos et al. 2019). In contrast,

human vision can process abstract visual renditions. For example, humans can recognize visual
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scenes from line drawings as quickly and accurately as they can from photographs (Biederman and

Ju 1988). Even some primates species have demonstrated the ability to recognize shape through

line drawings (Itakura 1994; Tanaka 2006).

To measure generalization to various abstract visual renditions, we create the ImageNet-

Rendition (ImageNet-R) dataset. ImageNet-R contains various artistic renditions of object classes

from the original ImageNet dataset. Note the original ImageNet dataset discouraged such images

since annotators were instructed to collect "photos only, no painting, no drawings, etc." (Deng

2012). We do the opposite.

Data Collection. ImageNet-R contains 30,000 image renditions for 200 ImageNet classes. We

collect images primarily from Flickr and use queries such as "art," "cartoons," "gra�ti," "embroidery,"

"graphics," "origami," "paintings," "patterns," "plastic objects," "plush objects," "sculptures," "line

drawings," "tattoos," "toys," "video game," and so on. Examples are depicted in �gure 5.2. Images are

�ltered by Amazon MTurk workers using a modi�ed collection interface from ImageNetV2 (Recht

et al. 2019). The resulting images are then manually �ltered by graduate students. ImageNet-R also

includes the line drawings from (H. Wang et al. 2019), excluding horizontally mirrored duplicate

images, pitch black images, and images from the incorrectly collected "pirate ship" class.

5.3.2 StreetView StoreFronts (SVSF)

Computer vision applications often rely on data from complex pipelines that span di�erent

hardware, times, and geographies. Ambient variations in this pipeline may result in unexpected

performance degradation, such as degradations experienced by health care providers in Thailand

deploying laboratory-tuned diabetic retinopathy classi�ers in the �eld (Beede et al. 2020). In order

to study the e�ects of shifts in the image capture process we collect the StreetView StoreFronts

(SVSF) dataset, a new image classi�cation dataset sampled from Google StreetView imagery

(Anguelov et al. 2010) focusing on three distribution shift sources: country, year, and camera.
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Data Collection. SVSF consists of cropped images of business store fronts extracted from

StreetView images by an object detection model. Each store front image is assigned the class label

of the associated Google Maps business listing through a combination of machine learning models

and human annotators. We combine several visually similar business types (e.g. drugstores and

pharmacies) for a total of 20 classes, listed Appendix A.6. We are currently unable to release the

SVSF data publicly.

Splitting the data along the three metadata attributes of country, year, and camera, we create

one training set and �ve test sets. We sample a training set and an in-distribution test set (200K

and 10K images, respectively) from images taken in US/Mexico/Canada during 2019 using a "new"

camera system. We then sample four OOD test sets (10K images each) which alter one attribute at

a time while keeping the other two attributes consistent with the training distribution. Our test

sets are year: 2017, 2018; country: France; and camera: “old.”

5.4 DeepAugment

In order to further explore the Diverse Data Augmentation hypothesis, we introduce a new data

augmentation technique we call DeepAugment. DeepAugment works by passing an image through

an image-to-image network (such as an image autoencoder or a superresolution network), but

rather than processing the image normally, we distort the internal weights and activations. We

distort the image-to-image network’s weights by applying randomly sampled operations such

as zeroing, negating, convolving, transposing, applying activation functions, and so on. This

creates diverse but semantically consistent images as illustrated in �gure 5.3. We provide the

pseudocode in Appendix A.7. Whereas most previous data augmentations techniques use simple

augmentation primitives applied to the raw image itself, we stochastically distort the internal

representations of image-to-image networks to augment images. We did not experiment with any

geometric image-to-image networks such as NeRF (Mildenhall et al. 2020). We have results in table

5.1 that shows how DeepAugment works well with Augmix which does incorporate geometric

transformations.
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Figure 5.3: DeepAugment examples preserve semantics, are data-dependent, and are far more
visually diverse than augmentations such as rotations.

5.5 Experiments

5.5.1 Setup

In this section we brie�y describe the evaluated models, pretraining techniques, self-attention

mechanisms, data augmentation methods, and note various implementation details.

Model Architectures and Sizes. Most experiments are evaluated on a standard ResNet-50

model (He et al. 2015). Model size evaluations use ResNets or ResNeXts (Xie et al. 2016) of varying

sizes.

Pretraining. For pretraining we use ImageNet-21K which contains approximately 21,000 classes

and approximately 14 million labeled training images, or around 10× more labeled training data

than ImageNet-1K. We tune Kolesnikov et al. 2019’s ImageNet-21K model. We also use a large pre-

trained ResNeXt-101 model from Mahajan et al. 2018. This was pre-trained on on approximately
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1 billion Instagram images with hashtag labels and �ne-tuned on ImageNet-1K. This Weakly

Supervised Learning (WSL) pretraining strategy uses approximately 1000× more labeled data.

Self-Attention. When studying self-attention, we employ CBAM (Woo et al. 2018) and SE (Hu,

Shen, and Sun 2018) modules, two forms of self-attention that help models learn spatially distant

dependencies.

Data Augmentation. We use Style Transfer, AugMix, and DeepAugment to analyze the Diverse

Data Augmentation hypothesis, and we contrast their performance with simpler noise augmen-

tations such as Speckle Noise and adversarial noise. Style transfer (Geirhos et al. 2019) uses

a style transfer network to apply artwork styles to training images. AugMix (Hendrycks, Mu,

et al. 2020) randomly composes simple augmentation operations (e.g., translate, posterize, solarize).

DeepAugment, introduced above, distorts the weights and feedforward passes of image-to-image

models to generate image augmentations. Speckle Noise data augmentation muliplies each pixel

by (1+x) with x sampled from a normal distribution (Rusak et al. 2020; Hendrycks and Dietterich

2019). We also consider adversarial training as a form of adaptive data augmentation and use the

model from (Wong, Rice, and Kolter 2020) trained against `∞ perturbations of size ε = 4/255.

5.5.2 Results

We now perform experiments on ImageNet-R, and StreetView StoreFronts leaving results on

DeepFashion Remixed to Chapter 6 on multilabel OOD. We also evaluate on ImageNet-C and

compare and contrast it with real distribution shifts.

ImageNet-R. Table 5.1 shows performance on ImageNet-R as well as on ImageNet-200 (the orig-

inal ImageNet data restricted to ImageNet-R’s 200 classes). This has several implications regarding

the four method-speci�c hypotheses. Pretraining with ImageNet-21K (approximately 10× labeled

data) hardly helps. Appendix A.5 shows WSL pretraining can help, but Instagram has renditions,

while ImageNet excludes them; hence we conclude comparable pretraining was ine�ective. Notice

Self-Attention increases the IID/OOD gap. Compared to simpler data augmentation techniques
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Error Rates ImageNet-200 (%) ImageNet-R (%) Gap
ResNet-50 7.9 63.9 56.0
+ ImageNet-21K Pretraining (10× labeled data) 7.0 62.8 55.8
+ CBAM (Self-Attention) 7.0 63.2 56.2
+ `∞ Adversarial Training 25.1 68.6 43.5
+ Speckle Noise 8.1 62.1 54.0
+ Style Transfer Augmentation 8.9 58.5 49.6
+ AugMix 7.1 58.9 51.8
+ DeepAugment 7.5 57.8 50.3
+ DeepAugment + AugMix 8.0 53.2 45.2
ResNet-152 (Larger Models) 6.8 58.7 51.9

Table 5.1: ImageNet-200 and ImageNet-R top-1 error rates. ImageNet-200 uses the same 200 classes
as ImageNet-R. DeepAugment+AugMix improves over the baseline by over 10 percentage points.
ImageNet-21K Pretraining tests Pretraining and CBAM tests Self-Attention. Style Transfer, AugMix,
and DeepAugment test Diverse Data Augmentation in contrast to simpler noise augmentations such
as `∞ Adversarial Noise and Speckle Noise. While there remains much room for improvement,
results indicate that progress on ImageNet-R is tractable.

such as Speckle Noise, the Diverse Data Augmentation techniques of Style Transfer, AugMix, and

DeepAugment improve generalization. Note AugMix and DeepAugment improve in-distribution

performance whereas Style transfer hurts it. Also, our new DeepAugment technique is the best

standalone method with an error rate of 57.8%. Last, Larger Models reduce the IID/OOD gap. Full

results for all evaluated models can be found in the Appendix in table A.4.

Regarding the three more abstract hypotheses, biasing networks away from natural textures

through diverse data augmentation improved performance, so we �nd support for the Texture

Bias hypothesis. The IID/OOD generalization gap varies greatly which condtradicts Only IID

Accuracy Matters. Finally, since ImageNet-R contains real-world examples, and since synthetic

data augmentation helps on ImageNet-R, we now have clear evidence against the Synthetic 6=⇒

Natural hypothesis.

StreetView StoreFronts. In table 5.2, we evaluate data augmentation methods on SVSF and

�nd that all of the tested methods have mostly similar performance and that no method helps

much on country shift, where error rates roughly double across the board. Images captured in

France contain noticeably di�erent architectural styles and storefront designs than those captured
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Figure 5.4: Accuracy as a function of corruption severity. Severity “0” denotes clean data. Data
augmentation methods such as DeepAugment with AugMix shift the entire Pareto frontier outward.

in US/Mexico/Canada; meanwhile, we are unable to �nd conspicuous and consistent indicators

of the camera and year. This may explain the relative insensitivity of evaluated methods to the

camera and year shifts. Overall Diverse Data Augmentation shows limited bene�t, suggesting

either that data augmentation primarily helps combat texture bias as with ImageNet-R, or that

existing augmentations are not diverse enough to capture high-level semantic shifts such as

building architecture.

Hardware Year Location
Network IID Old 2017 2018 France
ResNet-50 27.2 28.6 27.7 28.3 56.7
+ Speckle Noise 28.5 29.5 29.2 29.5 57.4
+ Style Transfer 29.9 31.3 30.2 31.2 59.3
+ DeepAugment 30.5 31.2 30.2 31.3 59.1
+ AugMix 26.6 28.0 26.5 27.7 55.4

Table 5.2: SVSF classi�cation error rates. Networks are robust to some natural distribution shifts
but are substantially more sensitive the geographic shift. Here Diverse Data Augmentation hardly
helps.

ImageNet-C. We now consider a previous robustness benchmark to reassess all seven hypothe-
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Figure 5.5: ImageNet accuracy and ImageNet-C accuracy. Previous architectural advances slowly
translate to ImageNet-C performance improvements, but DeepAugment+AugMix on a ResNet-50
yields a ≈ 19% accuracy increase.

ses. We use the ImageNet-C dataset (Hendrycks and Dietterich 2019) which applies 15 common

image corruptions (e.g., Gaussian noise, defocus blur, simulated fog, JPEG compression, etc.) across

5 severities to ImageNet-1K validation images. We �nd that DeepAugment improves robustness

on ImageNet-C. Figure 5.5 shows that when models are trained with AugMix and DeepAugment,

they attain the state-of-the-art, break the trendline, and exceed the corruption robustness provided

by training on 1000× more labeled training data. Note the augmentations from AugMix and

DeepAugment are disjoint from ImageNet-C’s corruptions. Full results are shown in Appendix

A.5’s A.5. This is evidence against the Only IID Accuracy Matters hypothesis and is evidence

for the Larger Models, Self-Attention, Diverse Data Augmentation, Pretraining, and Texture Bias

hypotheses.

Taori et al. 2020b remind us that ImageNet-C uses various synthetic corruptions and suggest

that they are divorced from real-world robustness. Real-world robustness requires generalizing to

naturally occurring corruptions such as snow, fog, blur, low-lighting noise, and so on, but it is an

open question whether ImageNet-C’s simulated corruptions meaningfully approximate real-world

corruptions.
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Hypothesis ImageNet-C Real Blurry Images ImageNet-R DFR SVSF
Larger Models + + + −
Self-Attention + + − −
Diverse Data Augmentation + + + − −
Pretraining + + − −

Table 5.3: A highly simpli�ed account of each hypothesis when tested against di�erent datasets.
Evidence for is denoted "+", and "−" denotes an absence of evidence or evidence against.

We collect a small dataset of 1,000 real-world blurry images and �nd that ImageNet-C can track

robustness to real-world corruptions. We collect the "Real Blurry Image" dataset with Flickr and

query ImageNet object class names concatenated with the word "blurry." We then evaluate various

models on real-world blurry images and �nd that all the robustness interventions that help with

ImageNet-C also help with real-world blurry images. Hence ImageNet-C can track performance

on real-world corruptions. Moreover, DeepAugment+AugMix has the lowest error rate on Real

Blurry Images, which again contradicts the Synthetic 6=⇒ Natural hypothesis. Appendix A.4 has

full results. The upshot is that ImageNet-C is a controlled and systematic proxy for real-world

robustness.

5.6 Conclusion

We introduced two new multi-class benchmarks, ImageNet-Renditions, and StreetView StoreFronts.

With these benchmarks, we thoroughly tested seven robustness hypotheses–four about methods

for robustness, and three about the nature of robustness.

Let us consider the �rst four hypotheses, using the new information from ImageNet-C and

our three new benchmarks. The Larger Models hypothesis was supported with ImageNet-C and

ImageNet-R, but not with DFR. While Self-Attention noticeably helped ImageNet-C, it did not

help with ImageNet-R and DFR. Diverse Data Augmentation was ine�ective for SVSF and DFR,

but it greatly improved ImageNet-C and ImageNet-R accuracy. Pretraining greatly helped with

ImageNet-C but hardly helped with ImageNet-R. This is summarized in table 5.3. It was not

obvious a priori that synthetic Diverse Data Augmentation could improve ImageNet-R accuracy,
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nor did previous research suggest that Pretraining would sometimes be ine�ective. While no

single method consistently helped across all distribution shifts, some helped more than others.

Our analysis of these four hypotheses have implications for the remaining three hypotheses.

Regarding Texture Bias, ImageNet-R shows that networks do not generalize well to renditions

(which have di�erent textures), but that diverse data augmentation (which often distorts textures)

can recover accuracy. More generally, larger models and diverse data augmentation consistently

helped on ImageNet-R, ImageNet-C, and Blurry Images, suggesting that these two interventions

reduce texture bias. However, these methods helped little for geographic shifts, showing that

there is more to robustness than texture bias alone. Regarding Only IID Accuracy Matters, while

IID accuracy is a strong predictor of OOD accuracy, it is not decisive—Table 5.3 shows that many

methods improve robustness across multiple distribution shifts, and recent experiments in NLP

provide further counterexamples (Hendrycks, Liu, et al. 2020). Finally, Synthetic 6=⇒ Natural has

clear counterexamples given that DeepAugment greatly increases accuracy on ImageNet-R and

Real Blurry Images. In summary, some previous hypotheses are implausible, and the Texture Bias

hypothesis has the most support.

Our seven hypotheses presented several con�icting accounts of robustness. What led to this

con�ict? We suspect it is because robustness is not one scalar like accuracy. The research commu-

nity is reasonable in judging IID accuracy with a univariate metric like ImageNet classi�cation

accuracy, as models with higher ImageNet accuracy reliably have better �ne-tuned classi�cation

accuracy on other tasks (Kornblith, Shlens, and Le 2018). In contrast, we argue it is too simplistic

to judge OOD accuracy with a univariate metric like, say, ImageNetV2 or ImageNet-C accuracy.

Instead we hypothesize that robustness is multivariate. This Multivariate hypothesis means that

there is not a single scalar model property that wholly governs natural model robustness.

If robustness has many faces, future work should evaluate robustness using many distribution

shifts; for example, ImageNet models should at least be tested against ImageNet-C and ImageNet-R.

Future work could further characterize the space of distribution shifts. However there are now

more out-of-distribution robustness datasets than there are published robustness methods. Hence
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the research community should prioritize creating new robustness methods. If our Multivariate

hypothesis is true, multiple tests are necessary to develop models that are both robust and safe.
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CHAPTER 6

MULTI-LABEL OUT-OF-DISTRIBUTION DETECTION

6.1 Overview

Research in multi-label classi�cation has been in the shadow of multi-class classi�cation for the

greater part of a decade (Tidake and Sane 2018). This lack of focus is not entirely unjusti�ed though,

as many of the improvements in algorithm and model design have carried over to multi-label

classi�cation (He et al. 2015; Chen et al. 2019; Ben-Baruch et al. 2020). While improvements have

been made there still remains a considerable gap between multi-class performance and multi-label

performance.

This gap is even more pronounced when considering the di�erence in robustness di�erence

from multi-class to multi-label. Previous work in robustness focused on small whole-image

anomaly detection with surprisingly no research studying the multi-label setting. In the previous

two chapters, we have focused on scaling up to large-scale datasets which presents unique

challenges such as a plethora of �ne-grained object classes, see Chatper 4 and Chapter 5. In this

chapter, we demonstrate that the maximum softmax probability (MSP) detector, a state-of-the-art

method for small-scale problems, does not scale well to these challenging conditions. Moreover,

in the multi-label setting the MSP detector cannot naturally be applied in the �rst place, as it

requires softmax probabilities.

Due to the limitations of the MSP, we modi�ed it for use in the multi-label setting to the

maximum logit which we covered in greater detail in Chapter 4. We also introduce a new technique

that takes into account the correlations among the labels which is able to achieve comparable

performance.
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6.2 Related Work

Natural images often contain many objects of interest with complex relationships of co-occurrence.

Multi-label image classi�cation acknowledges this more realistic setting by allowing each image to

have multiple overlapping labels. This problem has long been of interest (Everingham et al. 2009),

and recent web-scale multi-label datasets demonstrate its growing importance, including Tencent

ML-Images (Wu et al. 2019) and Open Images (Kuznetsova et al. 2018).

There are a few distinct techniques that have made progress in the multi-label task beyond

architectural improvements. One of the earlier techniques is combining recurrent neural networks

with convolutional neural networks (CNNs) (Nam et al. 2017). The output of the CNN is fed into

the RNN as a sequence to sequence task akin to language translation. Most recently graph neural

networks (GNNs) have been used after the output of a CNN to learn the label dependencies (Chen

et al. 2019). Others have expanded on utilizing GNNs by combining them with word embeddings

(Ya Wang et al. 2019).

Prior work addresses multi-label classi�cation in various ways, such as by leveraging label

dependencies (J. Wang et al. 2016). While current work on out-of-distribution detection solely

considers multi-class or unsupervised settings. Yet as classi�ers learn to classify more objects

and process larger images, the multi-label formulation becomes increasingly natural. To our

knowledge, this problem setting has yet to be explored. We provide a baselines and evaluation

setup.

6.3 Methods

Datasets. For multi-label classi�cation we use the datasets PASCAL VOC (Everingham et

al. 2009), MS-COCO (Lin et al. 2014), and DeepFashion Remixed (DFR) (Ge et al. 2019). Speci�cally

for MS-COCO and PASCAL VOC, we evaluate the models trained on these datasets, by using 20

out-of-distribution classes from ImageNet-22K. These classes have no overlap with ImageNet-1K,

PASCAL VOC, or MS-COCO. The 20 classes are chosen not to overlap with ImageNet-1K since
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the multi-label classi�ers models are pre-trained on ImageNet-1K. We list the class WordNet IDs

in the Supplementary Materials A.6.

In PASCAL VOC and MS-COCO both datasets are subject to changes in day-to-day camera

operation which can cause shifts in attributes such as object size, object occlusion, camera view-

point, and camera zoom. To measure this e�ect, we repurpose DeepFashion2 (Ge et al. 2019) to

create the DeepFashion Remixed (DFR) dataset. We designate a training set with 48K images

and create eight out-of-distribution test sets to measure performance under shifts in object size,

object occlusion, camera viewpoint, and camera zoom-in. DeepFashion Remixed is a multi-label

classi�cation task since images may contain more than one clothing item per image. In this way

we can control for changes in those attributes.

Architecture. For our experiments we use a ResNet-101 backbone architecture pre-trained

on ImageNet-1K. We replace the �nal layer with a fully connected layers and apply the logistic

sigmoid function for multi-label prediction.

L =
∑
i

(yi − ln(sigmoid((logits)i)) + (1− yi) · ln(1− sigmoid((logits)i))

Where yi is a d-dimensional vector of 0,1 where 1 corresponds to the presence of that class.

Note that it is not a one-hot vector so the entire vector can be all ones potentially. We train

each model for 50 epochs using the Adam optimizer (Kingma and Ba 2014) with hyperparameter

values 10−4 and 10−5 for β1 and β2 respectively. For data augmentation we use standard resizing,

random crops, and random �ips to obtain images of size 256× 256× 3. As a result of this training

procedure, the mAP of the ResNet-101 on PASCAL VOC is 89.11% and 72.0% for MS-COCO.

For experiments on DFR data augmentation includes: a crop of random size in the (0.5 to 2.0)

of the original size and a random aspect ratio of 3/4 to 4/3 of the original aspect ratio, which is

�nally resized to create a 256× 256 image. For data augmentation we randomly horizontally �ip

the image with probability 0.5.

Detection Methods. We evaluate the trained MS-COCO and PASCAL VOC models using four

di�erent detectors described below. Even though the models are multi-label detectors because we
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are feeding in single class images from Imagenet-22K we should expect all of the logits from the

network to be low or zero. For the descriptions of the dectectors below the “logits” refers to the

aggregate vector composed of the prediction for each class. Results are in 6.1.

• MaxLogit denotes taking the negative of the maximum value of a logits vector as the anomaly

score. The logits are formed by combining all the scores from each class taken from the last

layer of a neural network.

• LogitAvg is the negative of the average of the logits values taken from the last layer of the

neural network.

• Isolation Forest (Liu, Ting, and Zhou 2008), denoted by IForest, works by randomly parti-

tioning the input space into half spaces to form a decision tree. IForest needs a “training

step” or setup phase before it can be used. More speci�cally the algorithm is as follows:

Step 1) select a feature to split on.

Step 2) choose a random split between min and max range for feature.

Step 3) repeat steps 1 and 2 until all elements are singletons.

Step 4) Repeat steps 1-3 to construct a new tree.

The isolation score is evaluated based on the average distance to reach a terminal leaf from

the trees in the ensemble. We train our isolation forest using in-distribution validation data.

Note that to train the isolation forest ground truth labels of the images are not required only

the knowledge that they are in-distribution. The Isolation forest can thus be considered

an unsupervised learning algorithm as it does not use the image labels. Finally, we tried

two approaches to construct our space used for the isolation forest. The �rst approach

consisted of the aggregated logits vectors and the second approach consisted of using the

maximum logit value. So in the �rst approach the space is a d-dimensional space where d

equals the number of classes. The second approach consists of a 1-dimensional line based

on the maximum logit possible from each image. See the MaxLogit de�nition 6.3. We found
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that the second approach worked better and thus used that as our reported IForest values.

We use the default number of trees from (Pedregosa et al. 2011) which is that of 100 trees

for the ensemble.

Mathematically this works out to

S(xi) = −0.5−
∑
j

2(−depthj/(#trees · average_path_lengthj))

Anomaly Score(xi) =


True, if S(xi) ≥ 0

False, otherwise

where S(xi) is the score of the i’th element. The 0.5 is the default o�set as presented by the

authors who created Isolation Forest (Liu, Ting, and Zhou 2008). The variable j indexes the

tree where depthij is the number of ancestors of xi in tree j. #trees is the total number

of trees, and average_path_length is the avererge path length to get to the leaf for the j’th

tree. Finally the anomaly score of an element is determined by if the score is greater than or

equal to 0.

• Local outlier factor (LOF) (M. M. Breunig et al. 2000), computes a ratio of the local density

between every element and the local density of its neighbors. The algorithm works as

follows. We shall consider a point A in the set and the points B are elements of the k-

Nearest Neighbors of A. We �rst compute local reachability density of a point A by taking

the sum of the max of (distance of A to B and the distance of B to its kth nearest neighbor)

and �nally dividing the resulting sum by k. Given the the local reachability density (lrd) of

A we compute the lrd of A′s k neighbors B and take the ratio of lrd(B)/(lrd(A) * k) to give

us the LOF. k is a hyper-parameter that needs to be set for up to which nearest neighbor

to consider. Here we set the number of neighbors considered to be 20 as the default from

Pedregosa et al. 2011.

Similar to IForest we computed this method for both logits and maximum logit and reported
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the best result of the two, which turned out to be maximum logit. Finally a value of ≤ 1 is

considered and inlier while a value of > 1 is considered an outlier.

• Typicality Score, computes how similar the set of output probabilities over all classes are

to the average posterior distribution for a given set of classes. To construct the typicality

matrix we set a threshold t and whenever a class probability exceeds twe add the probability

distribution to the typicality matrix corresponding to that class ‘c’. In other words, if

the posterior probability for label ‘c’ is greater than 50%, we add the entire probability

distribution to entry ‘c’. We repeat this process for every image in a validation set and �nally

normalize each row of the typicality matrix. To test the typicality or get an anomaly score

we apply a similar approach for each test image. If class ‘c’ of a test image exceeds threshold

t we compute the distance of the current output to the typical output of class ‘c’. We repeat

this process for each class in the output that exceeds the threshold and take the sum of the

outputs to get our anomalous score. We experimented with the thresholds as the t used for

construction can be di�erent from t used for evaluation but found it to only vary the results

slightly giving extra added complexity but little bene�t. Note that this method does not

require labels only the knowledge that a set of examples are in-distribution.

We interpret the typicality matrix as a course measure of what is the probability to see other

classes given the presence (or belief) of class ‘c’. It is possible to construct the matrix from

actual data labels as opposed to the model’s output, however we found that produce inferior

results compared to using the output class probabilities. The �nal resulting matrix is of

dimensions c by c. A row corresponds to the normalized sum of the output probabilities of

all images of class ‘c’ that the model outputted a belief that class is present.

rowi =


∑
p/

∑
j
pj , ∀pi ≥ 0.5

1
n , if ∀pi < 0.5

Mathematically the matrix is constructed as follows. p corresponds to a concentation of
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all of the probabilities per class. The i’th row is the sum of all concatenated probabilities

where the i’th class has greater than 50% probability. After the summation the resulting row

is normalized. If there are no such instances where that is true then the row defaults to a

uniform probability distribution over all classes.

• Non-typicality Score computes an addionational matrix for dissimilarity. This score builds

of o� the previous Typicality Score, with an added non-typicality matrix that de�nes what

the distribution of what objects looks like given the absence of label ‘c’. This can be used in

conjunction with the typicality matrix to add or subtract to the previous values. However,

the addition of this matrix yielded slightly worse results, so we removed it for the �nal

version.

Data Collection. Similar to SVSF in section 5.3.2, we �x one value for each of the four metadata

attributes in the training distribution. Speci�cally, the DFR training set contains images with

medium scale, medium occlusion, side/back viewpoint, and no zoom-in. After sampling an IID test

set, we construct eight OOD test distributions by altering one attribute at a time, obtaining test

sets with minimal and heavy occlusion; small and large scale; frontal and not-worn viewpoints;

and medium and large zoom-in. Including the in-distribution test set, this gives us a total of nine

test sets. See Appendix A.6 for details on test set sizes. Since DeepFashion Remixed is a multi-label

classi�cation task, we use sigmoid outputs. To measure performance, we calculate mAP (mean

Average Precision) as a frequency-weighted average over all 13 class AP scores.

6.4 Results

Results are shown in table 6.1. We observe that the MaxLogit method outperforms the average

logit and LOF by a signi�cant margin. The MaxLogit method bears similarity to the MSP baseline

(Hendrycks and Gimpel 2017), but is naturally applicable to multi-label problems. Indeed, forcing

a softmax output on the multi-label logits in order to use MSP detector results in a 19.6% drop in

AUROC on MS-COCO. These results establish the MaxLogit as an e�ective and natural baseline
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FPR95 ↓
Din IForest LogitAvg LOF MaxLogit Typical
VOC 98.6 98.2 84.0 35.6 28.1

COCO 95.6 94.5 78.4 40.4 39.7

AUROC ↑
Din IForest LogitAvg LOF MaxLogit Typical
VOC 46.3 47.9 68.4 90.9 88.1
COCO 41.4 55.5 70.2 90.3 88.7

Table 6.1: Multi-label out-of-distribution detection comparison of the maximum logit, typicality
matrix, logit average, Local Outlier Factor, and Isolation Forest anomaly detectors on PASCAL
VOC and MS-COCO. The same network architecture is used for all three detectors. All results
shown are percentages.

for large-scale multi-label problems. Further, the evaluation setup enables future work in out-of-

distribution detection with multi-label datasets.
Size Occlusion Viewpoint Zoom

Network IID OOD Small Large Slight/None Heavy No Wear Side/Back Medium Large
ResNet-50 77.6 55.1 39.4 73.0 51.5 41.2 50.5 63.2 48.7 73.3
+ ImageNet-21K Pretraining 80.8 58.3 40.0 73.6 55.2 43.0 63.0 67.3 50.5 73.9
+ SE (Self-Attention) 77.4 55.3 38.9 72.7 52.1 40.9 52.9 64.2 47.8 72.8
+ Random Erasure 78.9 56.4 39.9 75.0 52.5 42.6 53.4 66.0 48.8 73.4
+ Speckle Noise 78.9 55.8 38.4 74.0 52.6 40.8 55.7 63.8 47.8 73.6
+ Style Transfer 80.2 57.1 37.6 76.5 54.6 43.2 58.4 65.1 49.2 72.5
+ DeepAugment 79.7 56.3 38.3 74.5 52.6 42.8 54.6 65.5 49.5 72.7
+ AugMix 80.4 57.3 39.4 74.8 55.3 42.8 57.3 66.6 49.0 73.1

ResNet-152 (Larger Models) 80.0 57.1 40.0 75.6 52.3 42.0 57.7 65.6 48.9 74.4

Table 6.2: DeepFashion Remixed results. Unlike the previous tables, higher is better since all
values are mAP scores for this multi-label classi�cation benchmark. The “OOD” column is the
average of the row’s rightmost eight OOD values. All techniques do little to close the IID/OOD
generalization gap.

DeepFashion Remixed. Table 6.2 shows our experimental �ndings on DFR, in which all eval-

uated methods have an average OOD mAP that is close to the baseline. In fact, most OOD mAP

increases track IID mAP increases. In general, DFR’s size and occlusion shifts hurt performance

the most. We also evaluate with Random Erasure augmentation, which deletes rectangles within

the image, to simulate occlusion (Zhong et al. 2017). Random Erasure improved occlusion perfor-

mance, but Style Transfer helped even more. Nothing substantially improved OOD performance
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Scale Occlusion Viewpoint Zoom
Network IID Small Large Slight/None Heavy No Wear Side/Back Medium Large
ResNet-101 78.7 38.0 75.2 53.7 42.9 60.7 65.4 49.8 74.0
+ ImageNet-21K Pretraining 80.7 38.3 74.2 51.5 43.3 59.2 68.5 50.6 73.0
+ CBAM (Self-Attention) 80.9 41.0 75.8 53.0 43.9 67.3 66.3 50.7 74.9
+ Random Erasure 80.1 37.4 77.6 54.8 43.7 64.9 67.5 50.4 75.4
+ Speckle Noise 79.8 38.0 73.5 51.1 43.0 63.2 65.0 49.9 73.9
+ Style Transfer 81.7 39.2 75.4 54.9 43.5 64.5 66.4 51.5 73.8
+ DeepAugment 81.3 38.4 74.7 53.3 43.3 63.2 65.9 51.0 75.3
+ AugMix 81.8 40.2 74.5 52.5 42.4 65.0 65.9 51.1 74.3

ResNet-152 (Larger Models) 81.0 39.7 73.5 51.2 44.2 65.1 66.1 50.3 74.1

Table 6.3: For these results we took a di�erent partitioning of the DeepFashion Remixed dataset
namely using all of the training data (excluding the same combinations we test against), and then
only splitting up the validation data. All values are mAP scores. ResNet-152 tests the Larger
Models hypothesis, ImageNet-21K Pretraining tests Pretraining, CBAM tests Self-Attention, and
the other techniques test Diverse Data Augmentation. All techniques have limited e�ects.

beyond what is explained by IID performance, so here it would appear that Only IID Accuracy

Matters. Our results do not provide clear evidence for the Larger Models, Self-Attention, Diverse

Data Augmentation, and Pretraining hypotheses as discussed in chpater 5.

6.5 Conclusion

We have evaluated several classic techniques and introduced two new techniques for measuring

the out-of-distribution robustness in the multi-label setting. We show that both are able achieve

comparable results and extend the previous baseline of maximum softmax probability to better

handle diverse and complex images.
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CHAPTER 7

ROBUSTNESS IN FEW-SHOT LEARNING

7.1 Overview

Few-shot learning has gained recent popularity with the advent of novel meta-learning techniques

(Finn, Abbeel, and Levine 2017). Few-shot learning is the problem of training a classi�cation

model on a task given a small number of training examples (the so-called “shots”). Due to the

di�culty in generalizing from only a few instances, and to be robust to over�tting, a successful

few-shot learning model must e�ciently re-use what it has learned.

Given the goal of e�cient reusability of learned material, we can see a clear connection

between few-shot learning, and the aims of robustness. One of the aims in robustness research is

to detect out-of-distribution (OOD) examples which in many cases the number of OOD examples

greatly outnumbers that of in-distribution examples. In this way, the problem of few-shot learning

is simply a scaling down of the original problem of OOD detection.

Previous formulations of robustness focused exclusively within the data-rich setting (Krešo et

al. 2018; Tsipras et al. 2018; Orhan 2019). However, in practice there are many naturally occurring

scenarios which only have a few instances. There many only exist a few instances present in either

the training set, the anomalies, or even both. An example of such a phenomenon is for detecting

rare species of animals (Weinstein 2018) or rare cosmic events (Ackermann et al. 2018), whereby

both events are rare and collecting more data may be cost prohibitive or physically impossible.

We attempt to overcome these issues by reformulating the problem with meta-learning. Specif-

ically we look at previous meta-learning approaches such as Simple-Shot and ProtoNet, to compare

to our own approach of set-membership. We hypothesize that reformulating the problem as a

set-membership task would perform better than enforcing arbitrary classi�cation during updates

to the base learner.

Meta-learning still presents challenges as the interactions between the meta-algorithm and

base-learners are opaque. The extra hyperparameters and in some cases two optimizations create
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an extra hurdle to determine the optimal set of parameters.

Through our experimentation, we fail to show how the reformulation of the task to set-

membership bene�ts the problem. We hypothesize that the task may be ill-suited to learning from

few examples. We experiment with di�erent architectures, and optimization methods to arrive at

our conclusion.

7.2 Set-Membership

Set-membership has a rich history (Kosut, Lau, and Boyd 1992; Gollamudi et al. 1998; Werner

and Diniz 2001) and has broad applications in network protocol analysis, routing-table lookup,

online tra�c measurement, peer-to-peer systems, cooperative caching, �rewall design, intrusion

detection, bioinformatics, database QUERY processing, stream computing, and distributed storage

systems (Broder and Mitzenmacher 2003).

Set-membership is the task of determining if a query element is a member of some set. Given

the simple de�nition there are surprisingly few methods for the task. Given su�cient memory

(and time) then the problem is solvable with hash-table complete dictionaries. Once memory is

a constraint then approximations to the full solution need to be considered. The methods for

approximation are hash compacted hash-table dictionaries, Bloom �lters, and derivatives of Bloom

�lters.

7.3 Methods

Datasets. The miniImageNet dataset (Vinyals et al. 2016) is a subset of the popularly used

ImageNet (Russakovsky et al. 2014) dataset. The dataset contains 100 classes and has a total of 600

examples per class. We follow (Ravi and Larochelle 2017) and the subsequent work to split the

dataset into 64 base classes, 16 validation classes, and 20 novel classes. We pre-process the dataset

as the original authors (Vinyals et al. 2016) and subsequent studies do, by resizing the images to

84 × 84 pixels via rescaling and center cropping.
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Figure 7.1: Set membership model overview. We concatenate the shot images with the single
query images to feed into the network. We use di�erent architectures as our embedding network
to learn whether the query image belongs in the set of images. This is an example of a 5 shot (k=5)
set membership task in which we ask if the hot dog belongs to the set of images of animals.
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Evaluation protocol. To evaluate our model and the others we compared to, we conduct

10,000 classi�cation runs of K-shot C-way tasks from the novel classes. Each task consists of

selecting C of the novel classes, uses K labeled images, and 15 test images per class. For our

experiments we set K = {1, 5} for one-shot and �ve-shot experiments as per Vinyals et al. 2016;

Yan Wang et al. 2019. For the �nal accuracies we average over all of the tasks and test images to

report the resulting average accuracy and 95% con�dence interval.

Model and Implementation details. We evaluate the following models for the set-membership

problem. After we describe the neural network architectures we will describe the modi�cations

we made to each to accomodate the new task. We study the following �ve network architectures

following (Yan Wang et al. 2019):

Conv-4: A four-layer convolutional neural network. We follow Vinyals et al. 2016 in their

implementation. The implementation consists of 4 convolution blocks of 3 x 3 �lter, followed by

batch normalization, recti�ed linear unit, and max pooling. The �nal layer is a linear projection to

our prediction used for set-membership.

MobileNet (Howard et al. 2017): We use the same architecture as published, but we remove the

�rst two down-sampling layers from the network.

ResNet-10/18 (He et al. 2015): We use the standard 18-layer architecture but we remove the

�rst two down-sampling layers and we change the �rst convolutional layer to use a kernel of size

3 × 3 (rather than 7 × 7) pixels. Our ResNet-10 contains 4 residual blocks; the ResNet-18 contains

8 blocks.

WRN-28-10 Wide residual networks (Zagoruyko and Komodakis 2016): We use the architecture

with 28 convolutional layers and a widening factor of 10.

DenseNet-121 (Huang, Liu, et al. 2017): We use the standard 121-layer architecture but similarly

to MobileNet we remove the �rst two down-sampling layers.

Vision Transformer (Dosovitskiy et al. 2021): We use the recent Vision Transformer with the

following parameters: embedding dimensions of size 1024, 6 layers deep, 8 attention heads, and a

logit layer dimensions of 2048 before the �nal linear layer to predict the binary class. The model
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Figure 7.2: Vision Transformer model. The model takes as input non-overlapping patches of the
original image whereby each are linearly embedded and position embeddings are added onto each.
Finally the embeddings are fed into the Transformer along with a “classi�cation token” to use for
classi�cation. The above re�ects the original ViT. We modi�ed the architecture from instead of
accepting only 1 image it accepts a batch of images as a single query. The change corresponds to
roughly increasing the model size by 6 to account for the extra 4 input images and the 1 query
image. The MLP head changes to output a single number instead of n class probabilities. Image
source: Dosovitskiy et al. 2021.
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is depicted in �gure 7.2.

Model training details. We trained all of the networks for 90 epochs from scratch using

stochastic gradient descent (SGD). For all of the above networks we modi�ed their �nal output

layer to be a single logit which we treated as the set-membership score. We use SGD to minimize

binary cross entropy of the set-membership score with the labels {0, 1} representing negative and

positive membership respectively. For SGD, we set the initial learning rate to 0.1 and decrease the

learning rate by 10 at epochs 45 and 66 respectively. We use a batch size of 200 images for all of

our experiments. We follow the data augmentation from He et al. 2015, which is resize, scale, shift,

and horizontal �ip. Another modi�cation we made to all of the above networks is modifying the

input size by concatenating the shot and query images. This would create a channel dimension of

6 and 18 for 1-shot and 5-shot respectively. Finally we employed early stopping to select the best

model.

Experimental Setup. For these experiments we utilize miniImageNet. The training procedure

is as follows: we sample a set of k training examples these will serve as our key set (we use k = 1, 5

for our experiments). Given this set of k examples from one class, sample a random image from the

training set, this will serve as our query example. The label is determined by whether the example

belongs to the same class or di�erent class. During training any potential set of k examples from

a given class can serve as key set.

Once the key and query sets are selected from the training data, the resulting images are

concatenated together along the channel dimension. We modify the �rst layer of each network to

accept a (k+1) · 3 channel image while maintaining the rest of the architecture constant. The last

layer of the networks are also modi�ed to output a single probability of inclusion or exclusion.

We train for 600 iterations before retrieving a new set of keys and repeat the training procedures.

At test time we are only allowed k labeled examples per class as is commonly known as k-shot

classi�cation. There are no common classes between the test time classes and those from training.

The k samples are randomly chosen per class and all of the remaining examples serve as our query

examples. Finally we test all of the query examples to determine if they belong to key set. We
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repeat the above procedure 10 times of choosing k labeled examples and running every other

query image against our network and use the average of the results as our reported result. We set

k = 5 for 5-shot and k = 1 for 1-shot classi�cation.

We studied what e�ects does pretraining a model have in this setting. Speci�cally we used

MobileNet and ResNet-18 pretrained on Places365. The reasoning for choosing this dataset to

pretrain on is that it does not have any of the same classes as ImageNet so there are no con�icts

with respect to the classes.

7.4 Results

Accuracy Mini ImageNet (%) (both k=1 & k=5)
Conv-4 50
MobileNet 50
ResNet-10 50
ResNet-18 50
WRN-28-10 50
DenseNet-121 50
Vision Transformer 50
Random Baseline 50

Table 7.1: Accuracy of di�erent architectures on miniImageNet (Vinyals et al. 2016). These results
highlight that no architecture can achieve results than a random baseline.

The results suggest that the approach implemented here utilizing neural networks for the task

of set-membership needs improvement as it fails to generalize to new tasks. Even with varying

network architecture and optimization hyper-parameters such as SGD, Adam, weight decay and

going from 1 to 5 shot seems to make no di�erence in generalizing from the training examples to

test examples. Furthermore even utilizing a di�erent architecture, the transformer, results in a

similar poor performance which leads to conclusion that the current approach is insensitive to

architecture.

The results in table 7.2 highlight how pretraining the models can improve the performance
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Accuracy Mini ImageNet (%) k=1 k=5
MobileNet 51 53
ResNet-18 53 57
Random Baseline 50 50

Table 7.2: Accuracy of di�erent architectures on miniImageNet (Vinyals et al. 2016). These results
that pretraining has some small e�ects on performance.

in this regime. However the results are far below that of what the previous benchmarks and

performance can achieve with prototypical networks (Snell, Swersky, and Zemel 2017) for example.

This highlights how pretraining helps but this has also been demonstrated by prior work.

7.5 Conclusion

We introduced a reformulation of a recent task of meta-learning into an older problem of set-

membership. However, it seems that this naive reinterpretation is unsuccessful in improving in

the task. We highlight some approaches and leave it as an open problem or as a warning to avoid

the same pitfalls. Our analysis shows that the reinterpretation of the task as a set-membership

task is insensitive to model size, and optimization scheme.
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CHAPTER 8

CONCLUSIONS

We have tested and presented several novel robustness techniques throughout the paper. We

began an exploration of few-shot robustness and demonstrated a how the task of set-membership

as posed is ill-suited for robustness. We also have demonstrated a fragility in the loose de�nition

of what robustness is. How in natural settings robustness is a multivariate concept that is not

captured by a single metric even though the di�erent concepts can be captured by a single word.

With the introduction of several techniques that scale better to larger images such as Maximum

Logit, and Typicality Scores, we have helped the research �eld. Deep Augment also presents a

novel augmentation technique that creates an entirely new under explored area of neural based

augmentations. It remains di�cult to still classify the types of augmentations learned and applied

as they are data dependent augmentations.

Finally we presented several new datasets to test out our methods and techniques. Naturally

Filtered Examples highlight the fragility of current models including that of transformers which

is a completely di�erent architecture type. CAOS provides a synthetic test bed for reproducible

anomaly detection. Last but not least is Imagenet-R which is a representation version of a subset of

ImageNet classes. Together these contributions of datasets, and techniques will hopefully advance

the area of robustness research in machine learning.
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APPENDIX A

A.1 ImageNet-A Classes

The 200 ImageNet classes that we selected for ImageNet-A are as follows. gold�sh, great white

shark, hammerhead, stingray, hen, ostrich, gold�nch, junco, bald eagle, vulture,

newt, axolotl, tree frog, iguana, African chameleon, cobra, scorpion, tarantula,

centipede, peacock, lorikeet, hummingbird, toucan, duck, goose, black swan,

koala, jelly�sh, snail, lobster, hermit crab, �amingo, american egret, pelican,

king penguin, grey whale, killer whale, sea lion, chihuahua, shih tzu, afghan

hound, basset hound, beagle, bloodhound, italian greyhound, whippet, weimaraner,

yorkshire terrier, boston terrier, scottish terrier, west highland white terrier, golden

retriever, labrador retriever, cocker spaniels, collie, border collie, rottweiler, ger-

man shepherd dog, boxer, french bulldog, saint bernard, husky, dalmatian, pug,

pomeranian, chow chow, pembroke welsh corgi, toy poodle, standard poodle, timber

wolf, hyena, red fox, tabby cat, leopard, snow leopard, lion, tiger, cheetah,

polar bear, meerkat, ladybug, �y, bee, ant, grasshopper, cockroach, man-

tis, dragon�y, monarch butter�y, star�sh, wood rabbit, porcupine, fox squirrel,

beaver, guinea pig, zebra, pig, hippopotamus, bison, gazelle, llama, skunk,

badger, orangutan, gorilla, chimpanzee, gibbon, baboon, panda, eel, clown

�sh, pu�er �sh, accordion, ambulance, assault ri�e, backpack, barn, wheel-

barrow, basketball, bathtub, lighthouse, beer glass, binoculars, birdhouse, bow

tie, broom, bucket, cauldron, candle, cannon, canoe, carousel, castle, mo-

bile phone, cowboy hat, electric guitar, �re engine, �ute, gasmask, grand piano,

guillotine, hammer, harmonica, harp, hatchet, jeep, joystick, lab coat, lawn

mower, lipstick, mailbox, missile, mitten, parachute, pickup truck, pirate ship,

revolver, rugby ball, sandal, saxophone, school bus, schooner, shield, soccer ball,

space shuttle, spider web, steam locomotive, scarf, submarine, tank, tennis ball,
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tractor, trombone, vase, violin, military aircraft, wine bottle, ice cream, bagel,

pretzel, cheeseburger, hotdog, cabbage, broccoli, cucumber, bell pepper, mush-

room, Granny Smith, strawberry, lemon, pineapple, banana, pomegranate, pizza,

burrito, espresso, volcano, baseball player, scuba diver, acorn,

n01443537, n01484850, n01494475, n01498041, n01514859, n01518878, n01531178,

n01534433, n01614925, n01616318, n01630670, n01632777, n01644373, n01677366,

n01694178, n01748264, n01770393, n01774750, n01784675, n01806143, n01820546,

n01833805, n01843383, n01847000, n01855672, n01860187, n01882714, n01910747,

n01944390, n01983481, n01986214, n02007558, n02009912, n02051845, n02056570,

n02066245, n02071294, n02077923, n02085620, n02086240, n02088094, n02088238,

n02088364, n02088466, n02091032, n02091134, n02092339, n02094433, n02096585,

n02097298, n02098286, n02099601, n02099712, n02102318, n02106030, n02106166,

n02106550, n02106662, n02108089, n02108915, n02109525, n02110185, n02110341,

n02110958, n02112018, n02112137, n02113023, n02113624, n02113799, n02114367,

n02117135, n02119022, n02123045, n02128385, n02128757, n02129165, n02129604,

n02130308, n02134084, n02138441, n02165456, n02190166, n02206856, n02219486,

n02226429, n02233338, n02236044, n02268443, n02279972, n02317335, n02325366,

n02346627, n02356798, n02363005, n02364673, n02391049, n02395406, n02398521,

n02410509, n02423022, n02437616, n02445715, n02447366, n02480495, n02480855,

n02481823, n02483362, n02486410, n02510455, n02526121, n02607072, n02655020,

n02672831, n02701002, n02749479, n02769748, n02793495, n02797295, n02802426,

n02808440, n02814860, n02823750, n02841315, n02843684, n02883205, n02906734,

n02909870, n02939185, n02948072, n02950826, n02951358, n02966193, n02980441,

n02992529, n03124170, n03272010, n03345487, n03372029, n03424325, n03452741,

n03467068, n03481172, n03494278, n03495258, n03498962, n03594945, n03602883,

n03630383, n03649909, n03676483, n03710193, n03773504, n03775071, n03888257,

n03930630, n03947888, n04086273, n04118538, n04133789, n04141076, n04146614,
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n04147183, n04192698, n04254680, n04266014, n04275548, n04310018, n04325704,

n04347754, n04389033, n04409515, n04465501, n04487394, n04522168, n04536866,

n04552348, n04591713, n07614500, n07693725, n07695742, n07697313, n07697537,

n07714571, n07714990, n07718472, n07720875, n07734744, n07742313, n07745940,

n07749582, n07753275, n07753592, n07768694, n07873807, n07880968, n07920052,

n09472597, n09835506, n10565667, n12267677,

‘Stingray;’ ‘gold�nch, Carduelis carduelis;’ ‘junco, snowbird;’ ‘robin, American robin, Turdus

migratorius;’ ‘jay;’ ‘bald eagle, American eagle, Haliaeetus leucocephalus;’ ‘vulture;’ ‘eft;’ ‘bullfrog,

Rana catesbeiana;’ ‘box turtle, box tortoise;’ ‘common iguana, iguana, Iguana iguana;’ ‘agama;’

‘African chameleon, Chamaeleo chamaeleon;’ ‘American alligator, Alligator mississipiensis;’ ‘garter

snake, grass snake;’ ‘harvestman, daddy longlegs, Phalangium opilio;’ ‘scorpion;’ ‘tarantula;’ ‘cen-

tipede;’ ‘sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita;’ ‘lorikeet;’ ‘hummingbird;’

‘toucan;’ ‘drake;’ ‘goose;’ ‘koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus;’

‘jelly�sh;’ ‘sea anemone, anemone;’ ‘�atworm, platyhelminth;’ ‘snail;’ ‘cray�sh, craw�sh, crawdad,

crawdaddy;’ ‘hermit crab;’ ‘�amingo;’ ‘American egret, great white heron, Egretta albus;’ ‘oyster-

catcher, oyster catcher;’ ‘pelican;’ ‘sea lion;’ ‘Chihuahua;’ ‘golden retriever;’ ‘Rottweiler;’ ‘German

shepherd, German shepherd dog, German police dog, alsatian;’ ‘pug, pug-dog;’ ‘red fox, Vulpes

vulpes;’ ‘Persian cat;’ ‘lynx, catamount;’ ‘lion, king of beasts, Panthera leo;’ ‘American black

bear, black bear, Ursus americanus, Euarctos americanus;’ ‘mongoose;’ ‘ladybug, ladybeetle, lady

beetle, ladybird, ladybird beetle;’ ‘rhinoceros beetle;’ ‘weevil;’ ‘�y;’ ‘bee;’ ‘ant, emmet, pismire;’

‘grasshopper, hopper;’ ‘walking stick, walkingstick, stick insect;’ ‘cockroach, roach;’ ‘mantis,

mantid;’ ‘leafhopper;’ ‘dragon�y, darning needle, devil’s darning needle, sewing needle, snake

feeder, snake doctor, mosquito hawk, skeeter hawk;’ ‘monarch, monarch butter�y, milkweed

butter�y, Danaus plexippus;’ ‘cabbage butter�y;’ ‘lycaenid, lycaenid butter�y;’ ‘star�sh, sea star;’

‘wood rabbit, cottontail, cottontail rabbit;’ ‘porcupine, hedgehog;’ ‘fox squirrel, eastern fox squirrel,

Sciurus niger;’ ‘marmot;’ ‘bison;’ ‘skunk, polecat, wood pussy;’ ‘armadillo;’ ‘baboon;’ ‘capuchin,

ringtail, Cebus capucinus;’ ‘African elephant, Loxodonta africana;’ ‘pu�er, pu�er�sh, blow�sh,
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globe�sh;’ ‘academic gown, academic robe, judge’s robe;’ ‘accordion, piano accordion, squeeze

box;’ ‘acoustic guitar;’ ‘airliner;’ ‘ambulance;’ ‘apron;’ ‘balance beam, beam;’ ‘balloon;’ ‘banjo;’

‘barn;’ ‘barrow, garden cart, lawn cart, wheelbarrow;’ ‘basketball;’ ‘beacon, lighthouse, beacon

light, pharos;’ ‘beaker;’ ‘bikini, two-piece;’ ‘bow;’ ‘bow tie, bow-tie, bowtie;’ ‘breastplate, aegis,

egis;’ ‘broom;’ ‘candle, taper, wax light;’ ‘canoe;’ ‘castle;’ ‘cello, violoncello;’ ‘chain;’ ‘chest;’

‘Christmas stocking;’ ‘cowboy boot;’ ‘cradle;’ ‘dial telephone, dial phone;’ ‘digital clock;’ ‘door-

mat, welcome mat;’ ‘drumstick;’ ‘dumbbell;’ ‘envelope;’ ‘feather boa, boa;’ ‘�agpole, �agsta�;’

‘forklift;’ ‘fountain;’ ‘garbage truck, dustcart;’ ‘goblet;’ ‘go-kart;’ ‘golfcart, golf cart;’ ‘grand piano,

grand;’ ‘hand blower, blow dryer, blow drier, hair dryer, hair drier;’ ‘iron, smoothing iron;’ ‘jack-

o’-lantern;’ ‘jeep, landrover;’ ‘kimono;’ ‘lighter, light, igniter, ignitor;’ ‘limousine, limo;’ ‘manhole

cover;’ ‘maraca;’ ‘marimba, xylophone;’ ‘mask;’ ‘mitten;’ ‘mosque;’ ‘nail;’ ‘obelisk;’ ‘ocarina,

sweet potato;’ ‘organ, pipe organ;’ ‘parachute, chute;’ ‘parking meter;’ ‘piggy bank, penny bank;’

‘pool table, billiard table, snooker table;’ ‘puck, hockey puck;’ ‘quill, quill pen;’ ‘racket, racquet;’

‘reel;’ ‘revolver, six-gun, six-shooter;’ ‘rocking chair, rocker;’ ‘rugby ball;’ ‘saltshaker, salt shaker;’

‘sandal;’ ‘sax, saxophone;’ ‘school bus;’ ‘schooner;’ ‘sewing machine;’ ‘shovel;’ ‘sleeping bag;’

‘snowmobile;’ ‘snowplow, snowplough;’ ‘soap dispenser;’ ‘spatula;’ ‘spider web, spider’s web;’

‘steam locomotive;’ ‘stethoscope;’ ‘studio couch, day bed;’ ‘submarine, pigboat, sub, U-boat;’ ‘sun-

dial;’ ‘suspension bridge;’ ‘syringe;’ ‘tank, army tank, armored combat vehicle, armoured combat

vehicle;’ ‘teddy, teddy bear;’ ‘toaster;’ ‘torch;’ ‘tricycle, trike, velocipede;’ ‘umbrella;’ ‘unicycle,

monocycle;’ ‘viaduct;’ ‘volleyball;’ ‘washer, automatic washer, washing machine;’ ‘water tower;’

‘wine bottle;’ ‘wreck;’ ‘guacamole;’ ‘pretzel;’ ‘cheeseburger;’ ‘hotdog, hot dog, red hot;’ ‘broccoli;’

‘cucumber, cuke;’ ‘bell pepper;’ ‘mushroom;’ ‘lemon;’ ‘banana;’ ‘custard apple;’ ‘pomegranate;’

‘carbonara;’ ‘bubble;’ ‘cli�, drop, drop-o�;’ ‘volcano;’ ‘ballplayer, baseball player;’ ‘rapeseed;’

‘yellow lady’s slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parvi�orum;’

‘corn;’ ‘acorn.’

Their WordNet IDs are as follows.

n01498041, n01531178, n01534433, n01558993, n01580077, n01614925, n01616318,

84



n01631663, n01641577, n01669191, n01677366, n01687978, n01694178, n01698640,

n01735189, n01770081, n01770393, n01774750, n01784675, n01819313, n01820546,

n01833805, n01843383, n01847000, n01855672, n01882714, n01910747, n01914609,

n01924916, n01944390, n01985128, n01986214, n02007558, n02009912, n02037110,

n02051845, n02077923, n02085620, n02099601, n02106550, n02106662, n02110958,

n02119022, n02123394, n02127052, n02129165, n02133161, n02137549, n02165456,

n02174001, n02177972, n02190166, n02206856, n02219486, n02226429, n02231487,

n02233338, n02236044, n02259212, n02268443, n02279972, n02280649, n02281787,

n02317335, n02325366, n02346627, n02356798, n02361337, n02410509, n02445715,

n02454379, n02486410, n02492035, n02504458, n02655020, n02669723, n02672831,

n02676566, n02690373, n02701002, n02730930, n02777292, n02782093, n02787622,

n02793495, n02797295, n02802426, n02814860, n02815834, n02837789, n02879718,

n02883205, n02895154, n02906734, n02948072, n02951358, n02980441, n02992211,

n02999410, n03014705, n03026506, n03124043, n03125729, n03187595, n03196217,

n03223299, n03250847, n03255030, n03291819, n03325584, n03355925, n03384352,

n03388043, n03417042, n03443371, n03444034, n03445924, n03452741, n03483316,

n03584829, n03590841, n03594945, n03617480, n03666591, n03670208, n03717622,

n03720891, n03721384, n03724870, n03775071, n03788195, n03804744, n03837869,

n03840681, n03854065, n03888257, n03891332, n03935335, n03982430, n04019541,

n04033901, n04039381, n04067472, n04086273, n04099969, n04118538, n04131690,

n04133789, n04141076, n04146614, n04147183, n04179913, n04208210, n04235860,

n04252077, n04252225, n04254120, n04270147, n04275548, n04310018, n04317175,

n04344873, n04347754, n04355338, n04366367, n04376876, n04389033, n04399382,

n04442312, n04456115, n04482393, n04507155, n04509417, n04532670, n04540053,

n04554684, n04562935, n04591713, n04606251, n07583066, n07695742, n07697313,

n07697537, n07714990, n07718472, n07720875, n07734744, n07749582, n07753592,

n07760859, n07768694, n07831146, n09229709, n09246464, n09472597, n09835506,
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n11879895, n12057211, n12144580, n12267677.

A.2 ImageNet-O Classes

The 200 ImageNet classes that we selected for ImageNet-O are as follows.

‘gold�sh, Carassius auratus;’ ‘triceratops;’ ‘harvestman, daddy longlegs, Phalangium opilio;’

‘centipede;’ ‘sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita;’ ‘lorikeet;’ ‘jelly�sh;’

‘brain coral;’ ‘chambered nautilus, pearly nautilus, nautilus;’ ‘dugong, Dugong dugon;’ ‘star�sh, sea

star;’ ‘sea urchin;’ ‘hog, pig, grunter, squealer, Sus scrofa;’ ‘armadillo;’ ‘rock beauty, Holocanthus

tricolor;’ ‘pu�er, pu�er�sh, blow�sh, globe�sh;’ ‘abacus;’ ‘accordion, piano accordion, squeeze

box;’ ‘apron;’ ‘balance beam, beam;’ ‘ballpoint, ballpoint pen, ballpen, Biro;’ ‘Band Aid;’ ‘banjo;’

‘barbershop;’ ‘bath towel;’ ‘bearskin, busby, shako;’ ‘binoculars, �eld glasses, opera glasses;’

‘bolo tie, bolo, bola tie, bola;’ ‘bottlecap;’ ‘brassiere, bra, bandeau;’ ‘broom;’ ‘buckle;’ ‘bulletproof

vest;’ ‘candle, taper, wax light;’ ‘car mirror;’ ‘chainlink fence;’ ‘chain saw, chainsaw;’ ‘chime, bell,

gong;’ ‘Christmas stocking;’ ‘cinema, movie theater, movie theatre, movie house, picture palace;’

‘combination lock;’ ‘corkscrew, bottle screw;’ ‘crane;’ ‘croquet ball;’ ‘dam, dike, dyke;’ ‘digital clock;’

‘dishrag, dishcloth;’ ‘dogsled, dog sled, dog sleigh;’ ‘doormat, welcome mat;’ ‘drilling platform,

o�shore rig;’ ‘electric fan, blower;’ ‘envelope;’ ‘espresso maker;’ ‘face powder;’ ‘feather boa, boa;’

‘�reboat;’ ‘�re screen, �reguard;’ ‘�ute, transverse �ute;’ ‘folding chair;’ ‘fountain;’ ‘fountain pen;’

‘frying pan, frypan, skillet;’ ‘golf ball;’ ‘greenhouse, nursery, glasshouse;’ ‘guillotine;’ ‘hamper;’

‘hand blower, blow dryer, blow drier, hair dryer, hair drier;’ ‘harmonica, mouth organ, harp,

mouth harp;’ ‘honeycomb;’ ‘hourglass;’ ‘iron, smoothing iron;’ ‘jack-o’-lantern;’ ‘jigsaw puzzle;’

‘joystick;’ ‘lawn mower, mower;’ ‘library;’ ‘lighter, light, igniter, ignitor;’ ‘lipstick, lip rouge;’ ‘loupe,

jeweler’s loupe;’ ‘magnetic compass;’ ‘manhole cover;’ ‘maraca;’ ‘marimba, xylophone;’ ‘mask;’

‘matchstick;’ ‘maypole;’ ‘maze, labyrinth;’ ‘medicine chest, medicine cabinet;’ ‘mortar;’ ‘mosquito

net;’ ‘mousetrap;’ ‘nail;’ ‘neck brace;’ ‘necklace;’ ‘nipple;’ ‘ocarina, sweet potato;’ ‘oil �lter;’ ‘organ,

pipe organ;’ ‘oscilloscope, scope, cathode-ray oscilloscope, CRO;’ ‘oxygen mask;’ ‘paddlewheel,

paddle wheel;’ ‘panpipe, pandean pipe, syrinx;’ ‘park bench;’ ‘pencil sharpener;’ ‘Petri dish;’ ‘pick,
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plectrum, plectron;’ ‘picket fence, paling;’ ‘pill bottle;’ ‘ping-pong ball;’ ‘pinwheel;’ ‘plate rack;’

‘plunger, plumber’s helper;’ ‘pool table, billiard table, snooker table;’ ‘pot, �owerpot;’ ‘power

drill;’ ‘prayer rug, prayer mat;’ ‘prison, prison house;’ ‘punching bag, punch bag, punching ball,

punchball;’ ‘quill, quill pen;’ ‘radiator;’ ‘reel;’ ‘remote control, remote;’ ‘rubber eraser, rubber, pencil

eraser;’ ‘rule, ruler;’ ‘safe;’ ‘safety pin;’ ‘saltshaker, salt shaker;’ ‘scale, weighing machine;’ ‘screw;’

‘screwdriver;’ ‘shoji;’ ‘shopping cart;’ ‘shower cap;’ ‘shower curtain;’ ‘ski;’ ‘sleeping bag;’ ‘slot,

one-armed bandit;’ ‘snowmobile;’ ‘soap dispenser;’ ‘solar dish, solar collector, solar furnace;’ ‘space

heater;’ ‘spatula;’ ‘spider web, spider’s web;’ ‘stove;’ ‘strainer;’ ‘stretcher;’ ‘submarine, pigboat, sub,

U-boat;’ ‘swimming trunks, bathing trunks;’ ‘swing;’ ‘switch, electric switch, electrical switch;’

‘syringe;’ ‘tennis ball;’ ‘thatch, thatched roof;’ ‘theater curtain, theatre curtain;’ ‘thimble;’ ‘throne;’

‘tile roof;’ ‘toaster;’ ‘tricycle, trike, velocipede;’ ‘turnstile;’ ‘umbrella;’ ‘vending machine;’ ‘wa�e

iron;’ ‘washer, automatic washer, washing machine;’ ‘water bottle;’ ‘water tower;’ ‘whistle;’

‘Windsor tie;’ ‘wooden spoon;’ ‘wool, woolen, woollen;’ ‘crossword puzzle, crossword;’ ‘tra�c

light, tra�c signal, stoplight;’ ‘ice lolly, lolly, lollipop, popsicle;’ ‘bagel, beigel;’ ‘pretzel;’ ‘hotdog,

hot dog, red hot;’ ‘mashed potato;’ ‘broccoli;’ ‘cauli�ower;’ ‘zucchini, courgette;’ ‘acorn squash;’

‘cucumber, cuke;’ ‘bell pepper;’ ‘Granny Smith;’ ‘strawberry;’ ‘orange;’ ‘lemon;’ ‘pineapple,

ananas;’ ‘banana;’ ‘jackfruit, jak, jack;’ ‘pomegranate;’ ‘chocolate sauce, chocolate syrup;’ ‘meat

loaf, meatloaf;’ ‘pizza, pizza pie;’ ‘burrito;’ ‘bubble;’ ‘volcano;’ ‘corn;’ ‘acorn;’ ‘hen-of-the-woods,

hen of the woods, Polyporus frondosus, Grifola frondosa.’

Their WordNet IDs are as follows.

n01443537, n01704323, n01770081, n01784675, n01819313, n01820546, n01910747,

n01917289, n01968897, n02074367, n02317335, n02319095, n02395406, n02454379,

n02606052, n02655020, n02666196, n02672831, n02730930, n02777292, n02783161,

n02786058, n02787622, n02791270, n02808304, n02817516, n02841315, n02865351,

n02877765, n02892767, n02906734, n02910353, n02916936, n02948072, n02965783,

n03000134, n03000684, n03017168, n03026506, n03032252, n03075370, n03109150,

n03126707, n03134739, n03160309, n03196217, n03207743, n03218198, n03223299,
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n03240683, n03271574, n03291819, n03297495, n03314780, n03325584, n03344393,

n03347037, n03372029, n03376595, n03388043, n03388183, n03400231, n03445777,

n03457902, n03467068, n03482405, n03483316, n03494278, n03530642, n03544143,

n03584829, n03590841, n03598930, n03602883, n03649909, n03661043, n03666591,

n03676483, n03692522, n03706229, n03717622, n03720891, n03721384, n03724870,

n03729826, n03733131, n03733281, n03742115, n03786901, n03788365, n03794056,

n03804744, n03814639, n03814906, n03825788, n03840681, n03843555, n03854065,

n03857828, n03868863, n03874293, n03884397, n03891251, n03908714, n03920288,

n03929660, n03930313, n03937543, n03942813, n03944341, n03961711, n03970156,

n03982430, n03991062, n03995372, n03998194, n04005630, n04023962, n04033901,

n04040759, n04067472, n04074963, n04116512, n04118776, n04125021, n04127249,

n04131690, n04141975, n04153751, n04154565, n04201297, n04204347, n04209133,

n04209239, n04228054, n04235860, n04243546, n04252077, n04254120, n04258138,

n04265275, n04270147, n04275548, n04330267, n04332243, n04336792, n04347754,

n04371430, n04371774, n04372370, n04376876, n04409515, n04417672, n04418357,

n04423845, n04429376, n04435653, n04442312, n04482393, n04501370, n04507155,

n04525305, n04542943, n04554684, n04557648, n04562935, n04579432, n04591157,

n04597913, n04599235, n06785654, n06874185, n07615774, n07693725, n07695742,

n07697537, n07711569, n07714990, n07715103, n07716358, n07717410, n07718472,

n07720875, n07742313, n07745940, n07747607, n07749582, n07753275, n07753592,

n07754684, n07768694, n07836838, n07871810, n07873807, n07880968, n09229709,

n09472597, n12144580, n12267677, n13052670.
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ImageNet-A (Acc %) ImageNet-O (AUPR %)
AlexNet 1.77 15.44
SqueezeNet1.1 1.12 15.31
VGG16 2.63 16.58
VGG19 2.11 16.80
VGG19+BN 2.95 16.57
DenseNet121 2.16 16.11
ResNet-18 1.15 15.23
ResNet-34 1.87 16.00
ResNet-50 2.17 16.20
ResNet-101 4.72 17.20
ResNet-152 6.05 18.00
ResNet-50+Squeeze-and-Excite 6.17 17.52
ResNet-101+Squeeze-and-Excite 8.55 17.91
ResNet-152+Squeeze-and-Excite 9.35 18.65
Res2Net-50 (v1b) 14.59 19.50
Res2Net-101 (v1b) 21.84 22.69
Res2Net-152 (v1b) 22.4 23.90
ResNeXt-50 (32× 4d) 4.81 17.60
ResNeXt-101 (32× 4d) 5.85 19.60
ResNeXt-101 (32× 8d) 10.2 20.51
DPN 68 3.53 17.78
DPN 98 9.15 21.10

Table A.1: Expanded ImageNet-A and ImageNet-O architecture results.

A.3 Expanded Results

A.3.1 Full Architecture Results

Full results with various architectures are in A.1.

A.3.2 Calibration

In this section we show ImageNet-A calibration results.

Uncertainty Metrics. The `2 Calibration Error is how we measure miscalibration. We would

like classi�ers that can reliably forecast their accuracy. Concretely, we want classi�ers which give

examples 60% con�dence to be correct 60% of the time. We judge a classi�er’s miscalibration with
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Figure A.1: A demonstration of color sensitivity. While the leftmost image is classi�ed as “banana”
with high con�dence, the images with modi�ed color are correctly classi�ed. Not only would we
like models to be more accurate, we would like them to be calibrated if they wrong.
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Figure A.2: The Response Rate Accuracy curve for a ResNeXt-101 (32×4d) with and without
Squeeze-and-Excitation (SE). The Response Rate is the percent classi�ed. The accuracy at a n%
response rate is the accuracy on the n% of examples where the classi�er is most con�dent.

the `2 Calibration Error Kumar, Liang, and Ma 2019.

Our second uncertainty estimation metric is the Area Under the Response Rate Accuracy Curve

(AURRA). Responding only when con�dent is often preferable to predicting falsely. In these

experiments, we allow classi�ers to respond to a subset of the test set and abstain from predicting

the rest. Classi�ers with quality uncertainty estimates should be capable identifying examples it

is likely to predict falsely and abstain. If a classi�er is required to abstain from predicting on 90%

of the test set, or equivalently respond to the remaining 10% of the test set, then we should like

the classi�er’s uncertainty estimates to separate correctly and falsely classi�ed examples and have

high accuracy on the selected 10%. At a �xed response rate, we should like the accuracy to be

as high as possible. At a 100% response rate, the classi�er accuracy is the usual test set accuracy.
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Figure A.3: Self-attention’s in�uence on ImageNet-A `2 calibration and error detection.
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Figure A.4: Model size’s in�uence on ImageNet-A `2 calibration and error detection.

We vary the response rates and compute the corresponding accuracies to obtain the Response

Rate Accuracy (RRA) curve. The area under the Response Rate Accuracy curve is the AURRA. To

compute the AURRA in this paper, we use the maximum softmax probability. For response rate p,

we take the p fraction of examples with highest maximum softmax probability. If the response rate

is 10%, we select the top 10% of examples with the highest con�dence and compute the accuracy

on these examples. An example RRA curve is in A.2 .
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Figure A.5: Examples of real-world blurry images from our collected dataset.

A.4 Real Blurry Images and ImageNet-C

We collect 1,000 blurry images to see whether improvements on ImageNet-C’s simulated blurs

correspond to improvements on real-world blurry images. Each image belongs to an ImageNet

class. Examples are in A.5. Results from A.2 show that Larger Models, Self-Attention, Diverse Data

Augmentation, Pretraining all help, just like ImageNet-C. Here DeepAugment+AugMix attains

state-of-the-art. These results suggest ImageNet-C’s simulated corruptions track real-world

corruptions. In hindsight, this is expected since various computer vision problems have used

synthetic corruptions as proxies for real-world corruptions, for decades. In short, ImageNet-C is a

diverse and systematic benchmark that is correlated with improvements on real-world corruptions.

A.5 Additional Results

ImageNet-R. Expanded ImageNet-R results are in A.4.

WSL pretraining on Instagram images appears to yield dramatic improvements on ImageNet-

R, but the authors note the prevalence of artistic renditions of object classes on the Instagram

platform. While ImageNet’s data collection process actively excluded renditions, we do not have

reason to believe the Instagram dataset excluded renditions. On a ResNeXt-101 32×8d model,

WSL pretraining improves ImageNet-R performance by a massive 37.5% from 57.5% top-1 error to

24.2%. Ultimately, without examining the training images we are unable to determine whether

ImageNet-R represents an actual distribution shift to the Instagram WSL models. However, we
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Network Defocus
Blur

Glass
Blur

Motion
Blur

Zoom
Blur

ImageNet-C
Blur Mean

Real Blurry
Images

ResNet-50 61 73 61 64 65 58.7
+ ImageNet-21K Pretraining 56 69 53 59 59 54.8
+ CBAM (Self-Attention) 60 69 56 61 62 56.5
+ `∞ Adversarial Training 80 71 72 71 74 71.6
+ Speckle Noise 57 68 60 64 62 56.9
+ Style Transfer 57 68 55 64 61 56.7
+ AugMix 52 65 46 51 54 54.4
+ DeepAugment 48 60 51 61 55 54.2
+ DeepAugment+AugMix 41 53 39 48 45 51.7
ResNet-152 (Larger Models) 67 81 66 74 58 54.3

Table A.2: ImageNet-C vs Real Blurry Images. All values are error rates and percentages. The rank
orderings of the models on Real Blurry Images are similar to the rank orderings for “ImageNet-C
Blur Mean,” so ImageNet-C’s simulated blurs track real-world blur performance. Hence synthetic
image corruptions and real-world image corruptions are not loose and separate.

also observe that with greater controls, that is with ImageNet-21K pre-training, pretraining hardly

helped ImageNet-R performance, so it is not clear that more pretraining data improves ImageNet-R

performance.

Increasing model size appears to automatically improve ImageNet-R performance, as shown in

A.6a. A ResNet-50 (25.5M parameters) has 63.9% error, while a ResNet-152 (60M) has 58.7% error.

ResNeXt-50 32×4d (25.0M) attains 62.3% error and ResNeXt-101 32×8d (88M) attains 57.5% error.

ImageNet-C. Expanded ImageNet-C results are A.5. We also tested whether model size improves

performance on ImageNet-C for even larger models. With a di�erent codebase, we trained ResNet-

50, ResNet-152, and ResNet-500 models which achieved 80.6, 74.0, and 68.5 mCE respectively.

ImageNet-A. ImageNet-A Hendrycks et al. 2019 is an adversarially �ltered test set. This dataset

contains examples that are di�cult for a ResNet-50 to classify, so examples solvable by simple

spurious cues are are especially infrequent in this dataset. Results are in A.6. Notice Res2Net

architectures Gao et al. 2019 can greatly improve accuracy. Results also show that Larger Models,

Self-Attention, and Pretraining help, while Diverse Data Augmentation usually does not help

substantially.

Implications for the Four Method Hypotheses.
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Hypothesis ImageNet-C ImageNet-A ImageNet-R DFR SVSF
Larger Models + + + −
Self-Attention + + − −
Diverse Data Augmentation + − + − −
Pretraining + + − −

Table A.3: A highly simpli�ed account of each hypothesis when tested against di�erent datasets.
This table includes ImageNet-A results.
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(a) Larger models improve robustness on ImageNet-
R. The baseline models are ResNet-50, DPN-68, and
ResNeXt-50 (32×4d). The larger models are ResNet-
152, DPN-98, and ResNeXt-101 (32× 8d). The base-
line ResNeXt has a 7.1% ImageNet error rate, while
the large has a 6.2% error rate.
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(b) Accuracy as a function of corruption severity.
Severity “0” denotes clean data. DeepAugment
with AugMix shifts the entire Pareto frontier
outward.

The Larger Models hypothesis has support with ImageNet-C (+), ImageNet-A (+), ImageNet-R

(+), yet does not markedly improve DFR (−) performance.

The Self-Attention hypothesis has support with ImageNet-C (+), ImageNet-A (+), yet does not

help ImageNet-R (−) and DFR (−) performance.

The Diverse Data Augmentation hypothesis has support with ImageNet-C (+), ImageNet-R (+),

yet does not markedly improve ImageNet-A (−), DFR(−), nor SVSF (−) performance.

The Pretraining hypothesis has support with ImageNet-C (+), ImageNet-A (+), yet does not

markedly improve DFR (−) nor ImageNet-R (−) performance.
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ImageNet-200 (%) ImageNet-R (%) Gap
ResNet-50 He et al. 2015 7.9 63.9 56.0
+ ImageNet-21K Pretraining (10× data) 7.0 62.8 55.8
+ CBAM (Self-Attention) 7.0 63.2 56.2
+ `∞ Adversarial Training 25.1 68.6 43.5
+ Speckle Noise 8.1 62.1 54.0
+ Style Transfer 8.9 58.5 49.6
+ AugMix 7.1 58.9 51.8
+ DeepAugment 7.5 57.8 50.3
+ DeepAugment + AugMix 8.0 53.2 45.2
ResNet-101 (Larger Models) 7.1 60.7 53.6
+ SE (Self-Attention) 6.7 61.0 54.3
ResNet-152 (Larger Models) 6.8 58.7 51.9
+ SE (Self-Attention) 6.6 60.0 53.4
ResNeXt-101 32×4d (Larger Models) 6.8 58.0 51.2
+ SE (Self-Attention) 5.9 59.6 53.7
ResNeXt-101 32×8d (Larger Models) 6.2 57.5 51.3
+ WSL Pretraining (1000× data) 4.1 24.2 20.1
+ DeepAugment + AugMix 6.1 47.9 41.8

Table A.4: ImageNet-200 and ImageNet-Renditions error rates. ImageNet-21K and WSL Pretraining
test the Pretraining hypothesis, and here pretraining gives mixed bene�ts. CBAM and SE test the
Self-Attention hypothesis, and these hurt robustness. ResNet-152 and ResNeXt-101 32×8d test
the Larger Models hypothesis, and these help. Other methods augment data, and Style Transfer,
AugMix, and DeepAugment provide support for the Diverse Data Augmentation hypothesis.

A.6 Further Dataset Descriptions

ImageNet-R Classes. The 200 ImageNet classes and their WordNet IDs in ImageNet-R are as

follows.

Gold�sh, great white shark, hammerhead, stingray, hen, ostrich, gold�nch,

junco, bald eagle, vulture, newt, axolotl, tree frog, iguana, African chameleon,

cobra, scorpion, tarantula, centipede, peacock, lorikeet, hummingbird, toucan,

duck, goose, black swan, koala, jelly�sh, snail, lobster, hermit crab, �amingo,

american egret, pelican, king penguin, grey whale, killer whale, sea lion, chihuahua,

shih tzu, afghan hound, basset hound, beagle, bloodhound, italian greyhound, whip-
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Noise Blur Weather Digital
Clean mCE Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

ResNet-50 23.9 76.7 80 82 83 75 89 78 80 78 75 66 57 71 85 77 77
+ ImageNet-21K Pretraining 22.4 65.8 61 64 63 69 84 68 74 69 71 61 53 53 81 54 63
+ SE (Self-Attention) 22.4 68.2 63 66 66 71 82 67 74 74 72 64 55 71 73 60 67
+ CBAM (Self-Attention) 22.4 70.0 67 68 68 74 83 71 76 73 72 65 54 70 79 62 67
+ `∞ Adversarial Training 46.2 94.0 91 92 95 97 86 92 88 93 99 118 104 111 90 72 81
+ Speckle Noise 24.2 68.3 51 47 55 70 83 77 80 76 71 66 57 70 82 72 69
+ Style Transfer 25.4 69.3 66 67 68 70 82 69 80 68 71 65 58 66 78 62 70
+ AugMix 22.5 65.3 67 66 68 64 79 59 64 69 68 65 54 57 74 60 66
+ DeepAugment 23.3 60.4 49 50 47 59 73 65 76 64 60 58 51 61 76 48 67
+ DeepAugment + AugMix 24.2 53.6 46 45 44 50 64 50 61 58 57 54 52 48 71 43 61

ResNet-152 (Larger Models) 21.7 69.3 73 73 76 67 81 66 74 71 68 62 51 67 76 69 65

ResNeXt-101 32×8d (Larger Models) 20.7 66.7 68 69 71 65 79 66 71 69 66 60 50 66 74 61 64
+ WSL Pretraining (1000× data) 17.8 51.7 49 50 51 53 72 55 63 53 51 42 37 41 67 40 51
+ DeepAugment + AugMix 20.1 44.5 36 35 34 43 55 42 55 48 48 47 43 39 59 34 50

Table A.5: Clean Error, Corruption Error (CE), and mean CE (mCE) values for various models
and training methods on ImageNet-C. The mCE value is computed by averaging across all 15
CE values. A CE value greater than 100 (e.g. adversarial training on contrast) denotes worse
performance than AlexNet. DeepAugment+AugMix improves robustness by over 23 mCE.

ImageNet-A (%)
ResNet-50 2.2
+ ImageNet-21K Pretraining (10× data) 11.4
+ Squeeze-and-Excitation (Self-Attention) 6.2
+ CBAM (Self-Attention) 6.9
+ `∞ Adversarial Training 1.7
+ Style Transfer 2.0
+ AugMix 3.8
+ DeepAugment 3.5
+ DeepAugment + AugMix 3.9
ResNet-152 (Larger Models) 6.1
ResNet-152+Squeeze-and-Excitation (Self-Attention) 9.4
Res2Net-50 v1b 14.6
Res2Net-152 v1b (Larger Models) 22.4
ResNeXt-101 (32× 8d) (Larger Models) 10.2
+ WSL Pretraining (1000× data) 45.4
+ DeepAugment + AugMix 11.5

Table A.6: ImageNet-A top-1 accuracy.
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pet, weimaraner, yorkshire terrier, boston terrier, scottish terrier, west highland

white terrier, golden retriever, labrador retriever, cocker spaniels, collie, border col-

lie, rottweiler, german shepherd dog, boxer, french bulldog, saint bernard, husky,

dalmatian, pug, pomeranian, chow chow, pembroke welsh corgi, toy poodle, stan-

dard poodle, timber wolf, hyena, red fox, tabby cat, leopard, snow leopard, lion,

tiger, cheetah, polar bear, meerkat, ladybug, �y, bee, ant, grasshopper, cock-

roach, mantis, dragon�y, monarch butter�y, star�sh, wood rabbit, porcupine, fox

squirrel, beaver, guinea pig, zebra, pig, hippopotamus, bison, gazelle, llama,

skunk, badger, orangutan, gorilla, chimpanzee, gibbon, baboon, panda, eel,

clown �sh, pu�er �sh, accordion, ambulance, assault ri�e, backpack, barn, wheel-

barrow, basketball, bathtub, lighthouse, beer glass, binoculars, birdhouse, bow

tie, broom, bucket, cauldron, candle, cannon, canoe, carousel, castle, mo-

bile phone, cowboy hat, electric guitar, �re engine, �ute, gasmask, grand piano,

guillotine, hammer, harmonica, harp, hatchet, jeep, joystick, lab coat, lawn

mower, lipstick, mailbox, missile, mitten, parachute, pickup truck, pirate ship,

revolver, rugby ball, sandal, saxophone, school bus, schooner, shield, soccer ball,

space shuttle, spider web, steam locomotive, scarf, submarine, tank, tennis ball,

tractor, trombone, vase, violin, military aircraft, wine bottle, ice cream, bagel,

pretzel, cheeseburger, hotdog, cabbage, broccoli, cucumber, bell pepper, mush-

room, Granny Smith, strawberry, lemon, pineapple, banana, pomegranate, pizza,

burrito, espresso, volcano, baseball player, scuba diver, acorn.

n01443537, n01484850, n01494475, n01498041, n01514859, n01518878, n01531178,

n01534433, n01614925, n01616318, n01630670, n01632777, n01644373, n01677366,

n01694178, n01748264, n01770393, n01774750, n01784675, n01806143, n01820546,

n01833805, n01843383, n01847000, n01855672, n01860187, n01882714, n01910747,

n01944390, n01983481, n01986214, n02007558, n02009912, n02051845, n02056570,

n02066245, n02071294, n02077923, n02085620, n02086240, n02088094, n02088238,
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n02088364, n02088466, n02091032, n02091134, n02092339, n02094433, n02096585,

n02097298, n02098286, n02099601, n02099712, n02102318, n02106030, n02106166,

n02106550, n02106662, n02108089, n02108915, n02109525, n02110185, n02110341,

n02110958, n02112018, n02112137, n02113023, n02113624, n02113799, n02114367,

n02117135, n02119022, n02123045, n02128385, n02128757, n02129165, n02129604,

n02130308, n02134084, n02138441, n02165456, n02190166, n02206856, n02219486,

n02226429, n02233338, n02236044, n02268443, n02279972, n02317335, n02325366,

n02346627, n02356798, n02363005, n02364673, n02391049, n02395406, n02398521,

n02410509, n02423022, n02437616, n02445715, n02447366, n02480495, n02480855,

n02481823, n02483362, n02486410, n02510455, n02526121, n02607072, n02655020,

n02672831, n02701002, n02749479, n02769748, n02793495, n02797295, n02802426,

n02808440, n02814860, n02823750, n02841315, n02843684, n02883205, n02906734,

n02909870, n02939185, n02948072, n02950826, n02951358, n02966193, n02980441,

n02992529, n03124170, n03272010, n03345487, n03372029, n03424325, n03452741,

n03467068, n03481172, n03494278, n03495258, n03498962, n03594945, n03602883,

n03630383, n03649909, n03676483, n03710193, n03773504, n03775071, n03888257,

n03930630, n03947888, n04086273, n04118538, n04133789, n04141076, n04146614,

n04147183, n04192698, n04254680, n04266014, n04275548, n04310018, n04325704,

n04347754, n04389033, n04409515, n04465501, n04487394, n04522168, n04536866,

n04552348, n04591713, n07614500, n07693725, n07695742, n07697313, n07697537,

n07714571, n07714990, n07718472, n07720875, n07734744, n07742313, n07745940,

n07749582, n07753275, n07753592, n07768694, n07873807, n07880968, n07920052,

n09472597, n09835506, n10565667, n12267677.

SVSF. The classes are

• auto shop

• bakery

• bank

• beauty salon

• car dealer

• car wash
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• cell phone store

• dentist

• discount store

• dry cleaner

• furniture store

• gas station

• gym

• hardware store

• hotel

• liquor store

• pharmacy

• religious institution

• storage facility

• veterinary care.

DeepFashion Remixed. The classes are

• short sleeve top

• long sleeve top

• short sleeve outerwear

• long sleeve outerwear

• vest

• sling

• shorts

• trousers

• skirt

• short sleeve dress

• long sleep dress

• vest dress

• sling dress.

Size (small, moderate, or large) de�nes how much of the image the article of clothing takes

up. Occlusion (slight, medium, or heavy) de�nes the degree to which the object is occluded from

the camera. Viewpoint (front, side/back, or not worn) de�nes the camera position relative to the

article of clothing. Zoom (no zoom, medium, or large) de�nes how much camera zoom was used

to take the picture.
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Represented Distribution Shifts
ImageNet-Renditions artistic renditions (cartoons, gra�ti, embroidery, graphics, origami,

paintings, sculptures, sketches, tattoos, toys, ...)
DeepFashion Remixed occlusion, size, viewpoint, zoom
StreetView StoreFronts camera, capture year, country

Table A.7: Various distribution shifts represented in our three new benchmarks. ImageNet-
Renditions is a new test set for ImageNet trained models measuring robustness to various object
renditions. DeepFashion Remixed and StreetView StoreFronts each contain a training set and
multiple test sets capturing a variety of distribution shifts.

Training set Testing images
ImageNet-R 1281167 30000
DFR 48000 42640, 7440, 28160, 10360, 480, 11040, 10520, 10640
SVSF 200000 10000, 10000, 10000, 8195, 9788

Table A.8: Number of images in each training and test set. ImageNet-R training set refers to
the ILSVRC 2012 training set Russakovsky et al. 2014. DeepFashion Remixed test sets are: in-
distribution, occlusion - none/slight, occlusion - heavy, size - small, size - large, viewpoint - frontal,
viewpoint - not-worn, zoom-in - medium, zoom-in - large. StreetView StoreFronts test sets are:
in-distribution, capture year - 2018, capture year - 2017, camera system - new, country - France.
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A.7 DeepAugment Details

1 def main():

2 net.apply_weights(deepAugment_getNetwork()) # EDSR, CAE, ...

3 for image in dataset: # May be the ImageNet training set

4 if np.random.uniform() < 0.05: # Arbitrary refresh prob

5 net.apply_weights(deepAugment_getNetwork())

6 new_image = net.deepAugment_forwardPass(image)

7

8 def deepAugment_getNetwork():

9 weights = load_clean_weights()

10 weight_distortions = sample_weight_distortions()

11 for d in weight_distortions:

12 weights = apply_distortion(d, weights)

13 return weights

14

15 def sample_weight_distortions():

16 distortions = [

17 negate_weights,

18 zero_weights,

19 flip_transpose_weights,

20 ...

21 ]

22

23 return random_subset(distortions)

24

25 def sample_signal_distortions():

26 distortions = [

27 dropout,

28 gelu,

29 negate_signal_random_mask,

30 flip_signal,
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31 ...

32 ]

33

34 return random_subset(distortions)

35

36

37 class Network():

38 def apply_weights(weights):

39 # Apply given weight tensors to network

40 ...

41

42 # Clean forward pass. Compare to deepAugment_forwardPass()

43 def clean_forwardPass(X):

44 X = network.block1(X)

45 X = network.block2(X)

46 ...

47 X = network.blockN(X)

48 return X

49

50 # Our forward pass. Compare to clean_forwardPass()

51 def deepAugment_forwardPass(X):

52 # Returns a list of distortions, each of which

53 # will be applied at a different layer.

54 signal_distortions = sample_signal_distortions()

55

56 X = network.block1(X)

57 apply_layer_1_distortions(X, signal_distortions)

58 X = network.block2(X)

59 apply_layer_2_distortions(X, signal_distortions)

60 ...

61 apply_layer_N-1_distortions(X, signal_distortions)

62 X = network.blockN(X)

63 apply_layer_N_distortions(X, signal_distortions)
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64

65 return X

Pseudocode. Above is Pythonic pseudocode for DeepAugment. The basic structure of DeepAug-

ment is agnostic to the backbone network used, but speci�cs such as which layers are chosen for

various transforms may vary as the backbone architecture varies. We do not need to train many

di�erent image-to-image models to get diverse distortions R. Zhang et al. 2018; Lee et al. 2020.

We only use two existing models, the EDSR super-resolution model Lim et al. 2017 and the CAE

image compression model Theis et al. 2017. See full code for such details.

At a high level, we process each image with an image-to-image network. The image-to-image’s

weights and feedforward signal pass are distorted with each pass. The distortion is made possible

by, for example, negating the network’s weights and applying dropout to the feedforward signal.

The resulting image is distorted and saved. This process generates an augmented dataset.
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