
THE UNIVERSITY OF CHICAGO

EFFICIENT LOSSLESS COMPRESSION IN AND BEYOND COLUMNAR DATABASES

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

HAO JIANG

CHICAGO, ILLINOIS

DECEMBER, 2021

Copyright © 2021 by Hao Jiang

All Rights Reserved

TABLE OF CONTENTS

LIST OF FIGURES . vi

LIST OF TABLES . viii

ACKNOWLEDGMENTS . ix

ABSTRACT . x

1 INTRODUCTION . 1

2 BACKGROUND . 6
2.1 Column-oriented DBMS . 6
2.2 Lightweight Encoding . 7
2.3 SIMD Instructions . 8
2.4 LSM-Tree . 9

3 PIDS: ATTRIBUTE EXTRACTION FOR STRING COMPRESSION 12
3.1 Overview . 15
3.2 Pattern Inference . 16

3.2.1 PIDS IR . 16
3.2.2 Pattern Inference Algorithm . 17

3.3 Sub-Attribute Extraction and Compression 22
3.3.1 Sub-Attribute Extraction . 22
3.3.2 Handling Outliers . 23
3.3.3 Storage and Compression . 25

3.4 Operator Execution . 26
3.4.1 Efficient Data Skipping . 26
3.4.2 Predicate Filtering . 27
3.4.3 Materialization . 30
3.4.4 Sub-Attribute of Variable Length . 31
3.4.5 Handling Outliers . 32

3.5 Experiments . 33
3.5.1 Compression Efficiency . 34
3.5.2 Operator Execution . 37
3.5.3 Pattern Inference and Data Extraction 43

3.6 Conclusion . 46

4 SBOOST: SPEED UP QUERY PROCESSING ON ENCODED DATA 47
4.1 System Design . 50

4.1.1 Operator for Predicate Execution . 52
4.2 Algorithm . 52

4.2.1 Data Scan for Bit-Packed Encoded Integer 53
4.2.2 Fast Decoding and Table Scan for Delta Encoded Data 58

iii

4.2.3 Data Scan for Run-Length encoded Integer 62
4.2.4 Data Scan for Dictionary Encoded Data 63

4.3 Experiment . 65
4.3.1 Microbenchmark . 65
4.3.2 TPC-H Performance . 70
4.3.3 Scalability . 71

4.4 Conclusion . 74
4.A Implementing 512 bit add/sub operations . 75

5 CODECDB: AN ENCODING-AWARE DATABASE 79
5.1 System Overview . 84
5.2 Learning to Select Encodings . 85

5.2.1 Learning a Ranking Model . 85
5.2.2 Feature Extraction . 86
5.2.3 Dataset Collection . 90

5.3 Encoding-Aware Query Engine . 91
5.3.1 In-Memory Data Structures . 91
5.3.2 Operator Evaluation . 92
5.3.3 Filter Operator . 95
5.3.4 Aggregation Operator . 97
5.3.5 Other Operators . 98

5.4 Experiments . 98
5.4.1 Environment Setup . 99
5.4.2 Data-Driven Encoding Selection for Compression 100
5.4.3 Encoding-Aware Query Execution . 104

5.5 Conclusion . 109

6 COLOM: COLUMNAR LAYOUT IN KEY-VALUE STORE 111
6.1 VEST: Sorted Runs with a Columnar Layout 116
6.2 Cost Analysis and Optimization . 119

6.2.1 Cost Analysis of Operations . 119
6.2.2 Optimization . 121

6.3 Evaluation . 123
6.3.1 Implementation and Setup . 123
6.3.2 Operation Microbenchmarks . 124
6.3.3 Running YCSB with LevelDB and CoLoM 129
6.3.4 Cost Model Estimation . 129

6.4 Conclusion . 133

7 RELATED WORK . 134
7.1 Compression and Encoding . 134
7.2 Encoding in Databases . 135
7.3 Query Execution on Encoded Data . 136
7.4 Cost Estimation and Encoding Selection . 136
7.5 Pattern Inference and Data Extraction . 137

iv

7.6 SIMD in Compression and Database Acceleration 139
7.7 Performance Tuning of LSM-trees . 140

8 CONCLUSION . 143

REFERENCES . 144

v

LIST OF FIGURES

2.1 How hadd works . 9

3.1 Sample attributes with identifiable patterns. 13
3.2 PIDS System Architecture. 15
3.3 PIDS IR Grammar. 18
3.4 Splitting a union with common symbols. 19
3.5 Sub-attributes are ordered as the original records and outliers are stored sepa-

rately with an explicit row ID. 24
3.6 Comparing PIDS compression performance in both size and end-to-end compres-

sion throughput. 36
3.7 Compression time breakdown. PIDS spends more time on attributes with more

sub-attributes, higher cardinality, and more string sub-attributes. 36
3.8 Predicate Execution. PIDS is 2-30x faster than all baselines on all four attributes

for Equality, Less, Prefix and Suffix, and most Fast Wildcard Predicates. PIDS
is also 20% faster than Timestamp stored as 64-bit int. 37

3.9 Equality cost breakdown (Gzip and BRPFC are excluded for clarity due to too
high of time cost). 38

3.10 Time consumption of compressing an attribute and performing multiple equality
queries. 38

3.11 PIDS uses an optimized integer-to-string algorithm, and achieves a throughput
at least as good as Snappy when doing string materialization. 41

3.12 Phone string materialization with increasing the percentage of outliers. 41
3.13 Pattern inference latency. 42
3.14 Sub-attributes extraction performance. 42
3.15 Comparison of PIDS and Datamaran on time efficiency. PIDS is 2-15x faster

than Datamaran on inference and 20-40x on data extraction. 45

4.1 Variations of Bit-packed Encoding . 48
4.2 Parquet Columnar Store Format . 51
4.3 Query Execution in SBoost . 52
4.4 Load Bit-Packed Entry into 64-bit Lanes . 54
4.5 Load Entries crossing SIMD Word Boundary . 57
4.6 Unpack Data as 32 bit Integer . 58
4.7 Use hadd to compute 32-bit Cumulative Sum 60
4.8 Operation Tree for equal operator . 63
4.9 Operation Tree for less operator . 64
4.10 SBoost Performance on Bit-Packed Data . 66
4.11 SBoost Performance on Delta Encoded Data . 68
4.12 SBoost Performance on Run-Length Encoded Data 70
4.13 SBoost Speed up TPC-H Queries . 72
4.14 Scalability of Bit-packed dataScan . 73
4.15 Scalability of Delta decode . 73
4.16 Compute blend instruction from carry bits . 77

vi

5.1 Comparison of encoding schemes against an encoding selector that exhaustively
evaluates encodings. The exhaustive encoding selection compresses as good as
GZip and dictionary encoding is much faster than GZip and Snappy for encoding
and decoding data. 80

5.2 CodecDB System Architecture . 83
5.3 Lazy Evaluation groups operators to pipeline stages 93
5.4 SBoost in-situ Scan for Bit-packed Data . 95
5.5 Accuracy and Encoded File Size of CodecDB’s Encoding Selection 101
5.6 CodecDB operators outperform encoding-oblivious operators 105
5.7 CodecDB outperforms encoding-oblivious columnar databases in TPC-H Bench-

marks (Scale 20) . 105
5.8 Time Breakdown of TPC-H Queries . 108
5.9 Memory Footprint of TPC-H Queries . 108
5.10 CodecDB is faster than MorphStore on SSB, and consumes less memory on In-

termediate Results . 109

6.1 SSTable stores keys and values in a row-oriented layout 112
6.2 VEST Storage Format Layout . 116
6.3 Point Lookup Performance of VEST and SSTable. VEST is 2x-3x faster than

SSTable, and more stable with larger value sizes. 125
6.4 Range Lookup Performance of VEST and SSTable. VEST is 1.5-2x faster than

SSTable, and more stable with larger value sizes. 126
6.5 Merge Performance of VEST and SSTable. VEST is 5%-20% faster than SSTable

when perform merging. 127
6.6 Merge Performance of VEST and SSTable, only considering user CPU time. . . 127
6.7 Comparison of the disk file size of VEST and SSTable, with and without Snappy.

VEST is slightly larger than SSTable, and the compression approaches has little
impact on both formats. 128

6.8 Running YCSB with CoLoM and LevelDB. 130
6.9 Use Linear Regression for the Model Parameters 130
6.10 Use Cost Model to simulate CoLoM behavior with different performance charac-

teristics of VEST . 132

vii

LIST OF TABLES

3.1 Representative attributes used in our evaluation. 34
3.2 PIDS achieves the best compression ratio on both the entire dataset of 9124 String

Attributes (All), and the set of attributes filtered by the classifier (Cls). 35
3.3 Examples of wildcard queries. 40
3.4 Comparison of PIDS and Datamaran on inference accuracy. PIDS finds more

patterns than Datamaran on the entire dataset of 9124 string attributes. 44

5.1 Datasets Statistics By Category . 99

6.1 Symbols Conventions used in Cost Analysis . 119
6.2 Parameter Values used in Cost Model Estimation 124
6.3 Parameter Values from Linear Regression . 129

7.1 Assumptions made by Extraction Algorithms. 139

viii

ACKNOWLEDGMENTS

First, I would like to thank my family for their heartful support during my Ph.D. study.

My wife, Hong, is the captain of our family ship. She supports me both emotionally and

physically. She suggests I start pursuing a Ph.D. She took care of all the family logistics

so I can focus on my study and research. She is always confident in me, even when I lost

confidence in myself. Without her, I will not be able to make it this far. My kids, Claire and

Michael, bring joy and happiness to our family. The smiles on their face always give me the

strength to struggle further. My parents and parents-in-law also support us to their best. I

will endeavor to provide my family a better future.

I would like to thank my advisor Professor Aaron J. Elmore, for his excellent guidance

and help during my Ph.D. study. He leads me into the battlefield of academia and shows

me the way of survival here. He does not only give me a fish but also teaches me to fish. He

gives suggestions but always respects the students’ opinions. He is always willing to provide

his best support during my study, research, internship and job hunting. Professor Elmore

serves as my academic role model. When I become a professor, I want to be a professor like

him.

I would like to thank my dissertation committee members, Professor Sanjay Krishnan

and Professor Raul Castro Fernandez, for their insightful suggestions and comments on the

dissertation.

I would like to thank my collaborators Chunwei Liu and John Paparrizos for their irre-

placeable efforts in my research work. They work together with me during all my research

projects. Their hard work and valuable suggestions are the key components to my achieve-

ment. It is a pleasure to work together with them.

My work is supported by a Google DAPA Research Award, the CERES Center for Unstop-

pable Computing, and gifts from FutureWei, NetApp, Cisco Systems, and Exelon Utilities.

Results presented in this dissertation were obtained using the Chameleon testbed supported

by the National Science Foundation. I would like to thank these institutes and companies.

ix

ABSTRACT

Columnar databases have dominated the data analysis market for their superior performance

in query processing with Big data. However, the extensive data size also brings challenges

to data storage and transfer. While people often rely on lossless compression techniques to

reduce storage size, database researchers overlook compression in row-wise databases. There

are two primary reasons. First, available compression algorithms in row-wise databases are

limited. Row-wise databases blend data fields of all types together. Byte-oriented compres-

sion algorithms such as Gzip and Snappy are the only choices. Second, Gzip-like algorithms

process data in blocks and decompress an entire block before accessing a data row. The

decompression is CPU intensive and has a significant impact to query performance. Lack

of alternatives and implications to performance impede the applications of compression in

row-wise databases. The prosperity of columnar databases changes this situation. Stor-

ing data in separated columns enable the application of compression algorithms designed

for a single data type. There are also algorithms performing record-level compression, al-

lowing the queries to skip irrelevant records and executes more efficiently. Compression in

columnar databases thus reduces data storage and brings the opportunities of improving

query efficiency. Besides relational databases, we also explore the benefit of compression

in key-value stores. Key-value stores have wide applications, including game, IoT, Social

Media, Mobile Devices, and Enterprise Applications. They could provide far better perfor-

mance than the relational database in specific scenarios. This thesis proposes innovative

compression algorithms and system designs to improve the storage and query efficiency in

columnar databases and key-value stores. We address three challenges of lossless compres-

sion in columnar databases: better encoding algorithms, faster query on encoded data, and

selecting proper encoding algorithms for data columns. We present PIDS, a novel compres-

sion approach for string columns; SBoost, a C++ library for fast queries on encoded data;

and CodecDB, an encoding-aware database with a data-driven encoding selection. We ex-

plore the possibility of using compression to accelerate LSM-tree and present CoLoM. This

x

key-value store utilizes a columnar layout and lightweight encoding to improve LSM-tree

efficiency. We show that these innovations allow columnar databases and key-value stores to

excel the competitors in storage efficiency and query speed.

xi

CHAPTER 1

INTRODUCTION

Over the past decade, columnar databases dominated the data analysis market due to their

ability to minimize data reading, maximize cache-line efficiency, and perform effective data

compression. These advantages lead to orders of magnitude improvement for scan-intensive

queries compared to row stores [60, 134]. As a result, academic research [114, 2, 63, 1], open-

source communities [13, 12], and large commercial database vendors, such as Microsoft, IBM,

and Oracle are embracing columnar architectures.

Besides columnar databases, the key-value store is another widely used data storage

paradigm for big data processing. A key-value store is logically a dictionary that maintains

a collection of key-value pairs. The key-value store does not keep a schema for its records.

This is different from a relational database, where records are governed under table schemas.

Instead, the key-value store allows each record to have various fields. The simple data

structure allows key-value stores to have more flexibility in its applications compared to

relational databases. Furthermore, key-value stores only support simple operations, such

as get, put, and delete, allowing them to respond to operations faster and achieve higher

throughput. These features propel their wide applications in game, IoT, social media, mobile

devices, and enterprise systems [38].

The prosperity of columnar databases and key-value stores is primarily boosted by the

drastically increased cyber-footprint of Internet users and IoT devices. Forbes reports [89] in

2018 that over 2.5 quintillion bytes of data are created every day, and this number is rapidly

increasing. Such a huge data size poses significant pressure on data storage. As a result,

many companies now delegate their data storage to cloud storage providers, which charge

the client for data storage and data access. Reducing data size benefits both and can bring

significant savings.

Lossless data compression has been widely used to reduced data size. However, studies

on compression techniques in data storage before the era of columnar databases draw little
1

attention in both research and industry. The reasons is twofold. First, many data stores,

including row-wise database and key-value stores persist data as a list of tuples, in which

data fields of different types are stored consecutively. Therefore, systems tend to rely on

byte-oriented data compression approaches, such as Gzip and Snappy, to compress data

fields of mixed types. Many compression algorithms that are designed for a single data type,

such as dictionary encoding and bit-packed encoding, do not apply to data with mixed types

and cannot be efficiently used. Gzip/Snappy becomes the de facto standard for compression

in row-wise databases.

Second, Gzip-like compression approaches are block-based algorithms. These algorithms

split input data into fixed size blocks, look for repetitive substrings within the blocks and

replace them with shorter alternatives. As a result, decompression operations are also per-

formed in blocks. When accessing a record, we need to decompress an entire block into

memory then fetch the record from the intermediate result. This process is CPU intensive

and time-consuming. Every query, even if it only access a small amount of data, needs to per-

form at least one block decompression before it can access the tuples. Applying compression

in data stores thus significantly impacts query efficiency.

These two problems no longer exist with the introduction of columnar databases. Colum-

nar databases persist each data column separately, with data fields of the same type stored

together. Such a layout reduces the data entropy and enables more efficient compression. It

also greatly expands the selection space of available compression algorithms by enabling com-

pression/encoding algorithms designed for a single data type, such as run-length encoding,

bit-packed encoding, and dictionary encoding. These encoding algorithms have preferences

on datasets with particular characteristics. For example, run-length encoding works best

on sorted datasets, and dictionary encoding prefers datasets with low cardinality. On these

datasets, encoding algorithms are more efficient than general-purpose byte-oriented algo-

rithms.

Many encoding algorithms for a single data type compress data entries individually. Each

2

data entry (an integer, a line of text, etc.) in the input is transformed to an independent

shorter representation in the output, and outputs from different entries do not overlap. These

algorithms, usually referred to as lightweight encodings, have very low CPU consumption

as the operations are usually simple and can often be performed in parallel [67]. Popu-

lar lightweight encoding schemes include dictionary encoding, bit-packed encoding, delta

encoding, run-length encoding, and their hybrids [114, 22, 132, 78]. Lightweight encod-

ing maintains entry boundaries during compression, allowing a query to access independent

compressed entries without decoding irrelevant data. It also enables direct predicate execu-

tion on compressed data, skipping the decompression step [67]. These features make query

execution on compressed data even faster than querying data without compression.

The same changes also happen in key-value stores. Many popular key-value stores, in-

cluding Apache Cassandra [48], LevelDB [53], RocksDB [45], and HBase [8], are backed by

a Log-Structured-Merge Tree (LSM-tree, [96]). The LSM-tree is a multi-layer associative

array known for its support to write-intensive applications. It stores the keys and values on

the disk in an interleaved manner, which is very similar to how a row-wise database stores

data tables. Just as columnar databases enable better data compression and query efficiency

in relational databases, introducing columnar data layout and compression techniques into

the disk storage of an LSM-tree improve its query efficiency.

In this thesis, we proposes innovative compression algorithms and system designs to

improve the storage and query efficiency in columnar databases and key-value stores. My

thesis addresses the following questions:

• Design New Encoding for Better Performance Can we design new encoding

algorithms for datasets with particular characteristics?

• Speed Up Query on Encoded Data How do we utilize the advantage of record-wise

compression to make querying on encoded data faster?

• Encoding Selection for a Data Column There are many encoding algorithms

3

available. Most of them also have a preference for data columns. How does the user

choose among the algorithms in practice?

• Columnar Layout in the LSM-Tree How do we improve the LSM-tree performance

using columnar layout and encodings?

We design Pattern Inference Decomposed Storage (PIDS), an innovative encoding method

for string attributes in columnar stores. Using an unsupervised approach, PIDS identifies

common patterns in string attributes from relational databases and uses the discovered pat-

tern to split each attribute into sub-attributes. First, PIDS can achieve a compression ratio

comparable to Snappy and Gzip by storing and encoding each sub-attribute individually.

Second, PIDS can push down many query operators to sub-attributes by decomposing the

attribute. This method minimizes I/O and potentially expensive comparison operations,

resulting in the faster execution of query operators.

We develop SBoost, a C++ library utilizing SIMD instructions to speed up queries on

encoded data. In most columnar data stores, performing queries on encoded data requires the

data to be first decoded to memory, which is time-consuming. SBoost provides several novel

SIMD-based algorithms to vectorize the execution and skip unnecessary decoding processes

for higher efficiency. It achieves a throughput of over 10 billion numbers per second with

a single thread and over 40 billion numbers per second with multi-threads for widely used

bit-packed encoding and dictionary encoding. SBoost demonstrates excellent potential in

speeding up query efficiency in analytic databases and in-memory stores by reducing TPC-H

query time by over 60%.

We design CodecDB, a columnar database consisting of a data-driven encoding selector

and an encoding-aware query engine. We notice that many existing columnar databases are

encoding-oblivious. When storing the data, these systems rely on a global understanding of

the dataset or the data types to derive simple rules for encoding selection. Such rule-based

selection leads to unsatisfactory performance. Furthermore, when performing queries, the

systems always decode data into memory, ignoring the possibility of optimizing access to
4

encoded data. CodecDB demonstrates the benefit of tightly coupling the database design

with the data encoding schemes. It chooses the most efficient encoding for a given data

column. It relies on encoding-aware query operators to optimize access to encoded data.

Storage-wise, CodecDB achieves on average 90% accuracy for selecting the best encoding

and improves the compression ratio by up to 40% compared to the state-of-the-art encoding

selection solution. Query-wise, CodecDB is on average one order of magnitude faster than

the latest open-source and commercial columnar databases on the TPC-H benchmark and

3x faster than a recent research project on the Star-Schema Benchmark (SSB).

We propose CoLoM, an LSM-tree-based key-value store that utilizes the columnar layout

in its disk storage. CoLoM supports using disk storage formats with different data layouts

and encoding algorithms at each level of an LSM-tree, and uses a cost-based adaptive storage

selection method to determine the optimal storage assignment at each level based on a given

workload.

The rest of the thesis is organized as follows

• We describe the related background knowledge in Chapter 2

• We introduce PIDS in Chapter 3.

• We describe SBoost in Chapter 4.

• We discuss CodecDB in Chapter 5.

• We explore the design of CoLSM in Chapter 6.

• We describe the related works in Chapter 7 and conclude the thesis in Chapter 8.

5

CHAPTER 2

BACKGROUND

This chapter briefly reviews the related topics in this thesis. It includes columnar databases,

lightweight encoding techniques, SIMD instructions and LSM-trees.

2.1 Column-oriented DBMS

A column-oriented DBMS is a database management system that stores relational data in

columns instead of rows. A relational DBMS organizes data as logical two-dimensional data

tables. Row-oriented and column-oriented storage differ in how they persist the table to

disk. Data are persisted to disk row by row in a row-oriented system, with fields from the

same row stored consecutively in order. In a column-oriented system, fields from the same

column are stored in adjacency.

A column-oriented DBMS facilitates efficient column scans. In a row-oriented DBMS, a

column scan needs to access the entire data table. A column-oriented system stores each

column separately, and a column scan only accesses the target column. This reduces the

disk IO and improves cache efficiency. In addition, this layout brings significant performance

improvement to database operators such as filter and aggregation. In practice, we see or-

ders of magnitudes performance improvement of columnar DBMS over traditional row-based

DBMS on OLAP workloads [1].

A column-oriented DBMS also enables effective data compression. Storing data of the

same type and similar content in the same place allows compression algorithms to find more

repeating patterns in the data and achieve better compression results. A columnar layout

also enables a wide choice of compression algorithms designed for single data type. These

algorithms usually do not apply to row-oriented data layout as the data stream contains

mixed types.

6

2.2 Lightweight Encoding

Lightweight encoding is a family of encoding algorithms featuring fast encoding and decoding

speed, and reasonable well compression ratio. We briefly review several popular lightweight

encoding algorithms here.

• Bit-packed Encoding Bit-packed encoding applies to data of integer type. It removes

leading zeros from the binary representation of integers, uses n bits to loselessly represent

each record ai, where n = min(x|ai < 2x), and concatenates the bits as the encoding

output.

• Run-length Encoding Run-length encoding applies to data of any type. It encodes a

consecutive run of repeating numbers as a pair (number, run-length). As an example, a

list [a0, a0, a1, a2, a2, a2, a3, a3, a3, a3] becomes [a0, 2, a1,

1, a2, 3, a3, 4]

• Delta Encoding Delta encoding applies to data of integer type. It stores delta value be-

tween consecutive numbers. For example, a list [a1, a2, a3] is stored as [a1, a2−a1, a3−a2].

Delta encoding is often used together with bit-packed encoding. As the delta between num-

bers are usually smaller than the original numbers, bit-packing them can bring significant

size reduction.

• Dictionary Encoding Dictionary encoding applies to data of any type. It maintains a

bijection between data entries and integer keys (the dictionary), and stores the integer

keys instead of original content. Bit-packed encoding can be applied to the integer keys

to further achieve better compression.

Lightweight encoding algorithms usually target records of the same data type, and have

many advantages compared to byte-oriented general purpose compression algorithms, such

as Gzip and Snappy. Lightweight encoding algorithm employ simple record level transfor-

mations, which feature low CPU consumption and faster execution. This advantage makes
7

lightweight encoding a perfect match to many database applications, as they need to de-

compress data for each query. Record-level transformation also allow lightweight encoding

to preserve record boundaries in the encoded result. For example, in a bit-packed encoded

stream of bit width w, the i-th record resides in the w ∗ i/8-th byte. This feature allows

in-situ queries on encoded data without decoding process.

2.3 SIMD Instructions

SIMD(Single-Instruction-Multiple-Data) instructions are widely supported by all modern

CPUs. In particular, our algorithm focus on AVX-512/AVX2 instruction set available on

recent Intel processors. AVX-512 instructions operate on 512-bit SIMD words, allowing them

to manipulate 8 64-bit integers or 16 32-bit integers simultaneously. AVX2 instructions work

on 256-bit SIMD words.

Our algorithms primarily utilize the following instructions. More details of the instruc-

tions can be found in Intel Intrinsics Guide [62].

• horizontal add(hadd) hadd instruction allows multiple adjacent integers (16 bit or

32 bit) in a SIMD word to be added simultaneously. Figure 2.1 shows how hadd of

32 bit numbers on 256-bit SIMD words. It can perform at most 8 32-bit add and 16

16-bit add with a single instruction.

• permute permute instruction allows the reordering of numbers in SIMD words. Our

algorithms use permutex2var, which takes two SIMD words as input and a third SIMD

word as permute instruction. c = permutex2var(a, b, i) satisifies

∀i ∈ [0, 8], ci =

 an[i]&0x7 n[i] & 0x8 = 0

bn[i]&0x7 n[i] & 0x8 = 1

permute can work on 8/16/32/64 bit granularities.

8

A B

hadd(A,B)

𝑎1 𝑏1𝑎2 𝑏2𝑎3 𝑏3𝑎4 𝑏4𝑎5 𝑏5𝑎6 𝑏6𝑎7 𝑏7𝑎8 𝑏8

𝑎1 + 𝑎2 𝑎3 + 𝑎4 𝑏1 + 𝑏2 𝑏3 + 𝑏4 𝑎5 + 𝑎6 𝑎7 + 𝑎8 𝑏5 + 𝑏6 𝑏7 + 𝑏8

Figure 2.1: How hadd works

• arithmetic operations includes add, sub operations. These operations perform

pairwise integer arithmetic operations of integers stored in two SIMD words. They

work on 16/32/64 bit granularities.

• logical operations include bitwise and, or, xor operations and bit-shift opera-

tions.

2.4 LSM-Tree

An LSM-Tree is a data structure designed for write-intensive applications. It stores key-value

pairs and allows retrieving, updating, and deleting a value by a key. An LSM-tree provides

good write performance utilizing an out-of-place write policy, where all insertions, updates,

and deletions append new entries to a memory component. When the memory component

is full, the LSM-tree sort-merges all entries by key and dumps the sorted run to disk. The

LSM-tree also sort-merges shorter data runs into longer one under certain conditions, which

is determined by the compaction policy it uses. During the merge, the LSM-tree discards all

but the latest entry with the same key to reclaim the space. We conventionally use “level"

to indicate the number of merges a run had experienced. For example, a run at level i had

participated in i merges and have a size exponentially larger than runs at previous levels.

As entries with the same key scatter in the memory buffer and disk runs, a lookup on

LSM-tree often needs to search more than one component and merge the results to obtain

the final output. A point lookup searches runs from lower levels to higher levels and from

younger ones to older ones within a level. It terminates as soon as the first entry with the

9

target key is found. A range lookup searches every run for entries within the range and

sort-merge the results. To make sure the sort-merge yields the latest version of the value for

a key, the LSM-tree maintains the order of the generated runs. Thus, an entry from younger

runs preempts entries from older runs with the same key. The older entries are also referred

to as obsolete entries.

Upon deletions, an LSM-tree inserts an entry with a tombstone. If a point lookup en-

counters an entry with such a mask, it returns "not found." During a merge, an entry with

a tombstone discards all older entries and itself.

Modern LSM-trees use fence pointers and Bloom Filters [20] to speed up lookups in a

sorted run. Fence pointers are pointers to the first key of every block in a run. Thus, they

comprise a single-layer skip list. Each run also has an in-memory bloom filter recording the

keys in the corresponding run. A bloom filter is a probabilistic hash-based data structure

with a zero false-negative rate but a non-negative false positive rate. A point lookup first

probes the bloom filter and only access the on-disk run if the bloom filter returns positive.

The merge policy of an LSM-tree determines when and how to merge runs. Different

merge policies seek balances between lookup and update operations. Frequent merges reduce

the number of runs in favor of lookup operations at the cost of slower updates. Less merges

work the other way. Two popular policies are leveling [96] and tiering [65]. With the leveling

merging policy, there is only one run at each level. When a new run arrives at the level, the

LSM-tree merges it immediately with the existing run. When the size of the run at a level

exceeds a threshold, we move the run to the next level. With the tiering merge policy, there

are multiple runs of the same size in one level. When the number of runs at a level reaches

a threshold, the LSM-tree merges them into a larger run and moves the merged run to the

upper level.

The space amplification of an LSM-tree refers to the factor of space occupied by obsolete

entries. It is determined by both the workload and the merge policy. A large space ampli-

fication wastes more storage space and slows down lookups and updates as there are more

10

entries to be searched and merged.

Popular LSM-tree implementations such as LevelDB [53] and RocksDB [45] maintain

in-memory entries in a skip-list-based memory table for its speed improvement and space

efficiency. LevelDB stores data in a Sorted-String Table (SSTable) when dumping a memory

table to disk. SSTable stores binary key and value pairs interleaved and builds a sparse index

on the keys to facilitate fast lookup operations.

11

CHAPTER 3

PIDS: ATTRIBUTE EXTRACTION FOR STRING

COMPRESSION

Due to effective compression for minimizing storage and query latency, columnar systems are

critical for modern data-intensive applications that rely on vast amounts of data generated by

servers, applications, smartphones, cars, and billions of Internet of Things (IoT) devices. By

persisting the same attribute from different records consecutively, columnar systems enable

fast scan operations by minimizing I/O and efficient compression by keeping similar data

physically close. Since compressed data must be decoded each time a query is executed, many

columnar stores [13, 10, 12] allow for lightweight encoding schemes over traditional byte-

oriented compression algorithms, such as Gzip and Snappy [2]. They provide significant size

reduction at the cost of high overhead for decoding before reading data. Lightweight encoding

is a family of compression algorithms applicable to data streams of the same type, and has

less compression/decompression overhead [2] and in situ data filtering without decoding [67],

potentially at the cost of reduced compression.

In evaluating popular lightweight encoding algorithms and Gzip on a large corpus of

string attributes, we observe that even with the best lightweight encoding applied, Gzip

can still further compress the encoded data on a large number of attributes. By examining

these attributes, we observe that many of these attributes contain repetitive substrings across

values. An example is shown in Figure 3.1a, where all rows contain “MIR”; “33F71” and “4096”

also occur multiple times. These substrings are captured by Gzip, but not by lightweight

encoding as compression is applied to the entire attribute value. This difference leads to the

performance gap in the compression ratio between the two approaches.

We see that in many such attributes, these substring repetitions can be captured by a

simple pattern. In Figure 3.1, we show excerpts from three attributes. It is obvious that

Machine Partition follows a pattern MIR-{hex(5)}-{hex(5)}-{int}, where hex(x) repre-

12

MIR−00880−33BB1−512
MIR−00C80−33FB1−512
MIR−00000−337F1−4096
MIR−040C0−373F1−512
MIR−00000−337F1−4096
MIR−00C00−33F71−4096

(a) Machine partition

138A211 162
180B161 1126
120B181 771
228B149 550
177B153 362
183B109 507

(b) Ref ID

0101000020E61000000CFD083315C852C0F070116B33054440
0101000020E6100000AC88531328C352C028556E1E1E094440
0101000020E610000010A23DDD87C752COE0159AEE6C034440
0101000020E6100000CC490E29FDCE52C0289F52833B094440
0101000020E61000006495B3267FC752C048F580C01D004440
0101000020E61000004896C0D141C752C008D6E7CO6BFF4340

(c) Log ID

Figure 3.1: Sample attributes with identifiable patterns.

sents any hexadecimal number of x digits, and Ref ID follows pattern {hex(7)} {int}. The

pattern for column Log ID is less obvious, but a closer look shows that all records have

the same length, a common header consisting of a 17-digit hexadecimal number, “52C0” in

the middle, and a common tail “40”. We can use these patterns to split string attributes

into smaller components that we call sub-attributes. By extracting the sub-attributes and

encoding them, we can potentially close the gap between lightweight encoding and Gzip.

We propose an innovative storage method, Pattern Inference Decomposed Storage (PIDS)

to exploit patterns in string attributes to improve compression and query performance. PIDS

employs an unsupervised algorithm to infer a pattern automatically from an input attribute,

if applicable, stores rows that do not match the pattern as outliers, extracts sub-attributes

from the matched rows using the pattern, and compresses them independently. PIDS is

transparent to the user. While the sub-attributes are physically stored separately, PIDS

provides a logical view that is identical to the original string attributes. PIDS rewrites query

operations on the logical view to operate on sub-attributes to speed up execution.

The pattern inference algorithm in PIDS works by collecting a set of samples from the

input attribute and uses a Programming-By-Example approach to extract patterns. Besides

lexical similarities, such as common symbols, it also captures the semantic similarity within

string attributes, allowing observing more hidden patterns. The inference algorithm provides

a classifier recognizing whether or not a string attribute contains a valid pattern, which

helps preclude them from the potential costly inference. PIDS also provides an intermediate

language to describe the pattern, allowing it to quickly adapt to other inference algorithms

or use patterns provided by the end-user.

PIDS enables more efficient compression in two ways. Exploring patterns from string

13

attributes allows common sub-strings to be eliminated, such as removing MIR- from every

instance in Figure 3.1a. Additionally, the extracted sub-attributes and outliers are stored

as physically separated columns, on which different encoding schemes can be applied to im-

prove compression efficiency. PIDS thus can provide a compression ratio that is comparable

to Gzip, while supporting efficient encoding and decoding operations that are comparable to

lightweight encoding. We empirically evaluate PIDS on a extensive collection of string at-

tributes, showing that a large portion of them contain a valid pattern and get a compression

benefit from PIDS.

PIDS uses patterns to gain insights on the attribute and facilitates efficient execution

of common query operators (including equality, less and wildcard search predicates), and

materialization. Given a predicate "Machine Partition"= "ABC", we know immediately

that it does not match any data that follows the pattern MIR-{hex(5)}-{hex(5)}-{int}.

PIDS also enables a query framework to “push down" the predicates to the sub-attribute

level, and potentially skip data not matching the criteria to save disk I/O and decoding

effort. This is especially beneficial for wildcard queries. For example, knowing that the first

sub-attribute of machine partition is a 5-digit hexadecimal, we can push down the predicate

"Machine Partition" = "MIR-00880%" to its sub-attributes, and get an equivalent query

sub_attr_1 = 00880. Compared to the original query, which performs a wildcard match on

the entire string, the new query only needs to execute an equality check on one numeric

sub-attribute, saving both I/O and computation effort. This brings up to 30x performance

boost for operator execution.

The contribution of PIDS includes:

• An algorithm for discovering common patterns in string type columnar datasets.

• An intermediate language, PIDS IR, for pattern description and compiling efficient ad-hoc

code for sub-attribute extraction and predicate execution.

• A PIDS prototype based on the Apache Parquet format supporting the automatic inference

14

Section 4

Columnar
Data

Pattern
Inference

PIDS IR

Section 5

Sub-Attribute
Extraction

State Machine

PIDS
Compiler

Sub-
Attributes

Outlier

Section 6

Operator
Execution

Data Model

Data Loading

Query Execution

Figure 3.2: PIDS System Architecture.

of column pattern, sub-attribute extraction, and query operators on the sub-attributes.

3.1 Overview

In this section, we describe PIDS by using an example to walk through its components.

Figure 3.2 shows the major components and execution steps in PIDS and their corresponding

sections in the paper. The system takes a columnar string dataset as input, sampling data

from each column to determine if there exists a common pattern in it, and generates a

pattern expressed in PIDS IR, the intermediate representation used by PIDS to describe a

pattern. The generated pattern, together with the input attribute, is sent to Sub-Attribute

Extraction, which splits the data record into sub-attributes. To improve system efficiency, it

employs the PIDS compiler to create a state machine for the pattern matching and substring

extraction tasks. If PIDS cannot extract a pattern from the input columnar dataset, PIDS

treats the data column as a single sub-attribute and uses existing lightweight encoding

compression techniques, such as Dictionary Encoding, to compress it.

15

The extracted sub-attributes are then exported to external storage as separate columns,

which are stored and compressed independently. As the pattern is inferred from samples,

there will be a chance that some rows are not included in the sample and thus not described by

the pattern. PIDS addresses this problem by maintaining an outlier store, which is separate

from the sub-attribute columns. Rows that do not match the pattern are considered outliers

and are stored in the outlier store in its original string form.

When executing a query operator, PIDS sends the request to Operator Execution,

which is responsible for pushing down the operator to the sub-attribute columns, including

the outlier column. The Operator Execution also uses the PIDS compiler to compile PIDS

IR into data models and code for data loading.

3.2 Pattern Inference

In this section, we describe the pattern inference used in PIDS, which is a PBE problem

with input-only examples. PIDS uses a heuristic-based search algorithm to infer patterns

from examples. It treats each pattern as a state and defines a series of transformation rules

between patterns. The algorithm starts from the pattern that is the enumeration of all

input examples, and searches for patterns that are reachable from the starting state via the

transitions. When the search ends, the pattern with the highest heuristic score is the final

output.

First, we introduce PIDS IR, the intermediate language used to described a pattern in

Section 3.2.1, then we describe the transition rules in detail in Section 3.2.2.

3.2.1 PIDS IR

PIDS IR is a concise language optimized for describing common patterns in string datasets.

The grammar of PIDS IR is shown in Figure 3.3. The basic building blocks of a pattern are

tokens, unions, and seqs. The token family includes basic types, such as const, int, hex,

16

str, and sym. Instead of hard-coding a list of symbols [50], PIDS marks all characters that

are not Unicode letters or digits as symbols, to be adaptive to multilingual applications. It

also provides two collection types, union and seq. A union represents a set of patterns, of

which at least one appears. A seq represents a list of patterns that all appear in order. As

an example, the pattern shown in Figure 3.1a can be written in PIDS IR as

seq(const(‘MIR’) sym(‘-’) flhex(5) sym(‘-’)

flhex(5) sym(‘-’) int)

Similar IRs used in a previous work [47] often target data-sets with more complex struc-

tures, such as a text corpus and log data, and provide support for nested data structures

(i.e., dictionaries and arrays) and common data types (i.e., dates and timestamps). PIDS

chooses not to support nested data structures. As many systems [13, 91] already provide

native support for nested data structures, users who need these structures are more likely

to directly leverage the native format, instead of packing the structure into a string column.

It also does not include these common complex types. If these structures were to appear in

the target dataset, they can easily be captured by the inference algorithm and represented

in PIDS IR. This minimizes the number of built-in terms in the language, making it more

concise. In Section 3.5 we show this also facilitate efficient queries.

Patterns written in PIDS IR can be easily transformed into other descriptive formats

or machine code for pattern processing. For our prototype evaluation, we develop a library

to generate regular expressions from PIDS IR and a compiler to directly generate Java

bytecode from PIDS IR for query operator evaluation and sub-attribute extraction. The

same approach can also be generalized to other languages and platforms, such as translated

into LLVM [81].

3.2.2 Pattern Inference Algorithm

As described above, the inference algorithm works as a heuristic-based search, starting with

generating an initial pattern, which is simply a union of all input examples, each as a const

17

pattern := token | union | seq

token := const(val) // constant typed literal

| int // int of arbitrary length

| hex // hexadecimal number

| rangeint(min, max) // int with min, max

| flint(len) // fixed-length integer

| flhex(len) // fixed-length hex integers

| str // string of Unicode letters

| flstr(len) // fixed-length string

| sym(char) // non-letter/digit characters

| empty // no character

union := union pattern

| pattern

seq := seq pattern

| pattern

Figure 3.3: PIDS IR Grammar.

18

[INFO]Server starting @ LV1

[WARN]No config info provided @ LV2

[DEBUG]Checking connections @LV3

[ERROR]Network disconnected

[

INFO

WARN

DEBUG

ERROR

]

Server starting

No config info provided

Checking connections

Network disconnected

@

LV1
LV2
LV3
<empty>

Figure 3.4: Splitting a union with common symbols.

token, and iteratively applying transition rules to it until no further optimization can be

done. We categorize the transition rules into two phases: Splitting and Pruning.

Splitting: In the splitting phase, PIDS performs a depth-first-scan on the pattern tree and

looks into each union it encounters, searching for common tokens in union members. PIDS

splits the union members into “columns” using these common tokens, and represents each

column as a shorter union. This converts the original union into a seq of smaller unions

and common tokens. We show an example in Figure 3.4, where the algorithm discovers “[",

“]", and “@” as common tokens, and converts the original union into a seq containing three

symbols and three shorter unions. In the splitting phase, PIDS applies three rules iteratively

on the union to discover common patterns from its members.

The first rule, CommonSymbol, looks for symbols that are non-alphanumeric characters,

such as hyphen, brackets, commas, and colons. These symbols commonly serve as separators

between different parts of the input [47, 50]. For this reason, PIDS prioritizes the Common-

Symbol rule by a “majority-take-all" approach. PIDS recognizes a symbol as a common one

as long as it appears in a majority of the members (e.g., 80%). As shown in Figure 3.4,

where the symbol “@" is extracted even if the last line does not contain it. An empty is left

for the member without the symbol.

19

The second rule, SameLength, targets unions that have members with the same number

of characters. In practice, it is fairly common that values from the same column have the

same length, as in Figure 3.1c, which can serve as an indicator that some pattern exists for

the data. This rule assumes that characters at the same position of each union member are

the same type, and learns a character’s type from all members. For example, given a union

containing three const “ABDEAABD", “PA305402", and “UP25CE38", we can determine

that the first two characters are letters and the remaining six characters are hex digits. This

union can thus be split by the SameLength rule into two smaller unions.

Finally, if none of the above rules apply, PIDS uses the CommonSeq rule to look for common

sequences of tokens among union members. This rule employs a dynamic programming

algorithm to look for the longest common sub-sequence from two sequences. By applying

this algorithm to the first two union members, we obtain a list of common subsequences.

These subsequences are then compared against the next union member, leaving us with the

common subsequences among the first three members. Repeating this process gives us the

common subsequences among all union members, which can then be used to split the union.

CommonSeq also uses word2vec to recognize similar words in text and uses them as sep-

arators to extract patterns. Due to a lack of training corpus, PIDS does not train the

word2vec model itself. Instead, it utilizes Glove [99], a pre-trained word2vec model, to con-

vert the words in an input attribute into vectors. PIDS then goes through each record in

the attribute, looking for a set of words whose pairwise cosine similarity is greater than a

user-defined threshold. For example, when dealing with a string attribute of U.S. postal

addresses, PIDS recognizes that the set of words “Road", “Street",and “Avenue" has a large

pairwise cosine similarity. PIDS uses these words as separators to split input records.

Pruning: In the pruning step, PIDS cleans up the pattern generated in the splitting phase

by removing redundant structures and merging adjacent tree nodes. This step creates a

concise tree and allows the next iteration to be executed more efficiently.

PIDS executes three rules to prune the pattern tree. The Squeeze rule removes all

20

unnecessary or duplicated structures, such as seqs and unions containing only one member.

We list part of the transforming rule below:

seq(a) => a

seq(a, empty, b) => seq(a, b)

union(a) => a

where “a",“b" represent arbitrary patterns.

MergeAdjacent searches for adjacent tokens of the same type in a seq, and merges them

together if possible.

The Generalize rule replaces a union of consts with generalized tokens such as str or

int. For example, union(213, 42, 442) can be rewritten as either int or rangeint(42,

442). Since flint, rangeint, and flstr contain more information about the underlying

data, PIDS priorities them and only falls back to more general int and str upon failure.

By repeatedly executing these two phases, PIDS gradually constructs a concise pattern

from the given samples. We use Figure 3.1a as an example to show how this works. In the

splitting phase, PIDS utilizes the CommonSymbol rule to discover hyphens in the records as

separators and obtains the following pattern.

seq(const(‘MIR’) sym(‘-’) union(00880, 04C80, ...)

sym(‘-’) union(33BB1,33FB1,...) sym(‘-’)

union(512,1024,...))

In the pruning phase, PIDS executes the Generalize rule on the unions, converting them

into generalized tokens, and obtains the final result.

seq(const(‘MIR’) sym(‘-’) flhex(5) sym(‘-’)

flhex(5) sym(‘-’) int)

21

3.3 Sub-Attribute Extraction and Compression

In this section, we present how PIDS extracts and stores sub-attributes. Section 3.3.1 de-

scribes the data extraction algorithm, Section 3.3.2 introduces how PIDS handles outliers,

and Section 3.3.3 discusses how PIDS stores and compresses data and how it can improve

compression efficiency.

3.3.1 Sub-Attribute Extraction

PIDS uses a state-machine based algorithm to extract sub-attributes from a target attribute.

It randomly samples n rows for the target attribute and applies the pattern inference al-

gorithm described in the previous section to generate a pattern from the samples. Let

s = seq(p1, p2, . . . , pn) be the pattern generated from the samples. Each pi that is not

a const or sym represents an extractable sub-attribute. We construct a directed acyclic

deterministic finite state machine (DA-DFS) that describes s as follows.

1. Every token can be represented by a DA-DFS. const and sym correspond to DA-DFSs

that accepting the string literals they hold. int, hex, str and their fixed length version

correspond to DA-DFSs that takes the required number (can be infinite) of digits or

letters.

2. If s1, s2 can be represented by DA-DFS d(s1), and d(s2), a DA-DFS for seq(s1, s2) can

be constructed by merging the last state of d(s1) with the first state of d(s2).

3. If s1, s2 can each be represented by DA-DFS d(s1), and d(s2), a DA-DFS for union(s1, s2)

can be constructed by merging the starting states of d(s1) and d(s2), and merging all states

reachable from the starting state via the same transition sequence.

PIDS generates a DA-DFS from the pattern and marks the states representing the

start/stop of each sub-attribute. When the state machine processes an input string, it

will extract the sub-strings corresponding to each sub-attribute when the execution reaches

these marked states.
22

State machines are usually implemented using a 2D array as a lookup table to store the

transitions. As a result, each state transition involves several memory access operations.

Since the size of the lookup table is the product of the number of states and alphabet size,

for large alphabets, the size of the lookup table easily exceeds the L1 cache size as the number

of states increases, making state transitions less efficient.

As the transition table is immutable during state machine execution, and the number of

transitions from a single state is usually small, most entries in the 2D array table are empty.

PIDS implements the state machine efficiently by hard-coding state transitions. It only

uses switch and if statements to implement state transitions and sub-attribute extraction,

eliminating memory access to improve efficiency.

We use the PIDS compiler to generate ad-hoc code given a pattern instance. In our

prototype developed in Java, the compiler builds the DA-DFS from PIDS IR in memory, then

uses the ASM library [24] to generate bytecode equivalent to the state machine. Finally, it

loads the generated bytecode into JVM and applies it to the target attribute for sub-attribute

extraction.

3.3.2 Handling Outliers

From Section 3.2 we know that the pattern generated by the inference algorithm is guaranteed

to match all samples. However, some records may exhibit a different pattern that are not

included in the samples. These records fail to be matched by the state machine and are

called outliers. An example is shown in Figure 3.5, where the dataset contains two types of

records, valid phone numbers and a constant value “undefined". PIDS matches the phone

numbers, and treats the “undefined" records as outliers.

As outliers cannot be split into sub-attributes, we store them independently from where

the sub-attributes are stored. To retain the offset information for each record, which is

often used as a join key when columnar stores materialize multiple attributes, we put the

records in the sub-attribute table at the same offset as they are in the original table, inserting

23

(312)120-2234

(241)101-3021

undefined

(230)232-8421

Original

312

241

null

230

120

101

null

232

Sub-Attributes

2234

3021

null

8421

Row ID

2

Value

undefined

Outlier

Figure 3.5: Sub-attributes are ordered as the original records and outliers are stored sepa-
rately with an explicit row ID.

null at locations corresponding to outliers. Note that a null value in the original attribute

will be treated as an outlier, and can be easily distinguished from null values that serve as

placeholders for outliers. In the outlier store, we note the offset and the value explicitly as

two columns.

We make this design decision based on two observed facts:

• The number of outliers should be small compared to the total number of records. PIDS

targets datasets that can be described by a single pattern. If the number of outliers exceeds

a certain level, then the dataset is not a good fit for PIDS.

• Most operators need to access either the sub-attribute table, or the outlier table, but

not both. When an operator matches the pattern, we know it either targets the sub-

attribute table or the outlier table. Only a limited number of operators, such as sorting

and materialization need to access both tables.

As the number of outliers tends to be small, storing a row ID explicitly for them will

save space, while still allowing us to restore outliers to their correct position during mate-

rialization. We execute operators that need to access both tables on each table separately,

and merge the result. More details on operator execution can be found in Section 3.4.

24

3.3.3 Storage and Compression

Our PIDS prototype utilizes the Apache Parquet [13] storage format for its popularity and

flexibility. A Parquet file consists of multiple row groups, which serve as a horizontal split of

the columns. A row group contains several column chunks, each containing the data of one

column in that row group. Data in a column chunk are stored continuously on disk and can

be loaded efficiently with a sequential read. The data in column chunks are organized into

pages, with each page as the unit for encoding and compression.

PIDS stores and compresses each sub-attribute independently as a column, using a dic-

tionary and bit-pack-run-length hybrid encoding. It maintains an independent dictionary for

each column chunk that translates distinct entries in the target sub-attribute to an integer

code, then use run-length and bit-packing to compress the integer codes.

In practice, we notice that there are two types of attributes on which PIDS does not

work well. The first type is attributes with no patterns, such as attributes with single word

or natural language text. The second type is attributes with low cardinality. If an attribute

already has a low cardinality, the extracted sub-attributes will likely to have similar cardinal-

ity. For such attributes, directly compressing the original attribute using a single dictionary

is more efficient than compressing each sub-attribute using separated dictionaries. PIDS

uses a classifier to recognize these attributes and compresses them as a single sub-attribute.

To efficiently recognize and exclude these attributes, PIDS employs a k-nn classifier with

Euclidean distance that weights nearest neighbors using their inverse squared distance. We

use our public dataset as the training set and label attributes as positive if PIDS encodes

smaller than the best encoding, and negative otherwise. We evaluate the accuracy of the

model using 5-fold cross-validation (fitcknn with kfoldPredict in Matlab) with the following

features from a string attribute:

• Ratio of Distinct Values cardinality
num of records

• Mean and variance of record length

25

• Mean of Shannon Entropy of each record

3.4 Operator Execution

To support efficient query execution directly on sub-attributes, we describe how PIDS sup-

ports common query operators, including predicate filtering and materialization. Many oper-

ators can be “pushed down” to sub-attributes, such that the operator can be decomposed into

several independent operators on each sub-attribute, and the results from each sub-attribute

can be combined to obtain the final output. Pushing down operators to sub-attributes also

enables incremental execution, where we execute operators on the sub-attributes one at a

time, skipping records on sub-attributes for which previous executions have determined that

an attribute cannot satisfy the operator. For example, when executing equality predicate on

a phone number, if the first sub-attribute (area code) does not match the predicate constant

on some rows, we know that these rows do not match without examining the other sub-

attributes. When scanning the remaining sub-attributes, we can skip these rows, saving I/O

and decoding effort, thus speeding up the execution. Query rewriting from string operations

(e.g. like, =, 6=, or <) to sub-attribute operations is done by PIDS and is transparent to

the user. For operators that cannot be pushed down to sub-attributes, PIDS materializes

sub-attributes into an in-memory data structure before applying the operator. For exposi-

tion we start with an assumption that all sub-attributes are of fixed length. In Section 3.4.4,

we introduce how PIDS handles comparisons on sub-attributes of variable length.

3.4.1 Efficient Data Skipping

PIDS implements data skipping by using a bitmap to mark the positions of rows that need

to be evaluated on the next sub-attribute, and update the bitmap after each sub-attribute

evaluation. For our Parquet-based prototype, data skipping occurs at three levels.

• Column Chunk Level. PIDS first consults the bitmap to see if a column chunk contains

26

rows to be accessed, then uses zone map information to determine if a column chunk can

be skipped for a given operator. Skipping a column chunk saves disk I/O.

• Page Level. Similar to column chunk level, PIDS uses both bitmap and zone map to

perform page-level skipping. Skipping pages saves decompression effort.

• Row Level. When scanning data on a sub-attribute, PIDS uses a bitmap to locate the next

row to be read, skipping all rows in between. If the rows are encoded using lightweight

encoding, PIDS skips the bytes without decoding them. Skipping rows thus saves decoding

effort.

3.4.2 Predicate Filtering

We define a predicate as a tuple (OP, a), where OP is the operation and a is the constant.

For example, (less, 5) on column x evaluates to true for all values where x < 5. PIDS

implements three relational predicates equal, less, and like. Other predicates, such as

greater-equal, can be obtained through logical combinations of the existing ones.

All three predicates support pushing down the operators to sub-attributes. When ex-

ecuting a predicate, PIDS first matches the constant against the pattern. If they do not

match, execution terminates with no disk access involved. Otherwise, we use the match

result to push down the predicate to the sub-attributes. We use x to represent the target

column, which consists of sub-attributes x1, x2, . . . , xm, and assume that the constant a of

the predicate has a match (a1, a2, . . . , am) to the pattern.

Equality Predicate

The equality predicate (equal, a) can be decomposed as x = a ⇐⇒ ∧mi=1(xi = ai), that is,

x = a if and only if the equality xi = ai holds for all sub-attributes xi.

To skip as many rows as possible, PIDS uses a histogram to estimate the selectivity of

xi = ai, and scans xi in increasing order of selectivity. For example, if x1 = a1 is expected to

27

match 10% of rows and x2 = a2 is expected to matches 5% of rows, we first execute x2 = a2,

then x1 = a1 to allow more rows to be skipped. PIDS uses a bitmap to mark the positions

where all sub-attributes xi scanned so far satisfy xi = ai and the equality check on the next

sub-attribute is performed only on the marked positions.

Algorithm 1 Pseudocode for Equality Predicate
Bitmap posToScan= <full>
k = sort_by_selectivity(x, a)
for i = 1 to m do

Bitmap colEqual = equal(x[k[i]], a[k[i]], posToScan)
posToScan = and(posToScan, colEqual)

end for
return posToScan

When performing an equality check on sub-attributes, PIDS utilizes the encoding dictio-

nary to translate the predicate constant into an integer code and performs the equality check

on encoded data directly [67] to save decoding effort. If the constant is not in the dictionary,

the entire sub-attribute can be skipped.

Less Predicate

When the sub-attributes are all fixed length, a less predicate (less, a) can be pushed down

to sub-attributes as a combination of xi < ai and xi = ai. If x1 < a1, we have x < a.

Otherwise if x1 = a1, we proceed to check x2. Again, if x2 < a2, we have x < a. Otherwise

if x2 = a2, we proceed to x3. This process is repeated until all xi have been processed.

Formally, this can be written as

x < a ⇐⇒ ∨mi=1[∧i−1j=1(xj = aj) ∧ (xi < ai)]

PIDS maintains two bitmaps, result for the positions satisfying x < a so far, and posToScan

for the positions to scan on next sub-attribute. They are updated as follows in the i-th

28

iteration.

posToScani = posToScani−1 ∧ (xi = ai)

resulti = resulti−1 ∨ (posToScani−1 ∧ (xi < ai))

(3.1)

PIDS iterates through all sub-attributes, computes xi = ai and xi < ai on rows marked by

posToScan, and updates the bitmaps using Equation (3.1). When the iteration ends, result

stores all records satisfying x < a.

Algorithm 2 Pseudocode for Less Predicate
Bitmap result = <empty>
Bitmap posToScan= <full>
for i = 1 to m do

Bitmap colEqual = equal(xi, ai, posToScan)
Bitmap colLess = less(xi, ai, posToScan)
colResult = and(posToScan, colLess)
result = or(result,colResult)
validPos = and(posToScan, colEqual)

end for
return result

Like Predicate

Some like predicates, such as prefix or suffix search, may only need to access a limited set

of sub-attributes, which is identifiable by matching the predicate to the pattern. For exam-

ple, assume we have a pattern for phone numbers as seq(sym(‘(’) flint(3) sym(‘)’)

flint(3) sym(‘-’)

flint(4)). A prefix search (like, ‘(345)44%’) has a unique match on the phone number pat-

tern as (345, 44%, %), and can be pushed down to sub-attributes as x1 = 345 ∧ x2 ∼ 44%,

where we use ∼ to denote the like predicate. Similarly, a suffix search (like ‘%442’) has a

match (%, %, %442) and can be pushed down as x3 ∼ %442. These predicates are then

evaluated using a similar approach as in the equality case. We first sort sub-attributes based

on their selectivity and iterate through each xi, executing the predicates. This allows PIDS

29

to greatly simplify the execution of many prefix and suffix queries as it can directly skip

sub-attributes that are not included in the predicates. This approach also applies to some

wildcard queries. For example, (like, %4242%) can be pushed down as x3 = 4242 when we

discover that only sub-attribute x3 contains four-digit numbers.

A challenge to this approach is that in some cases the constant containing ‘%’ can have

multiple matches on the pattern. For example, “(123)%432%” has two matches against the

phone number pattern, (123, 432, %), and (123, %, %432%). They lead to different execution

results, and both need to be included in the final result.

PIDS solves this by collecting all possible matches, pushing each of them down to the

sub-attributes, and merging and simplifying the generated expression. The example above

can be written as follows when pushing down to sub-attributes: (x1 = 123∧x2 = 432∧x3 ∼

%)∨(x1 = 123∧x2 ∼ %∧x3 ∼ %432%). This is simplified to x1 = 123∧((x2 = 432)∨(x3 ∼

%432%)). PIDS first executes x1 = 123, getting a bitmap, and uses that bitmap to skip

rows when scanning x2 and x3.

3.4.3 Materialization

PIDS implements two types of materialization operations, string materialization and fast

materialization. String materialization reads fields from all sub-attributes, and composes

them back to the original string format according to the pattern. This is applied to a

column when a projection is performed. However, sometimes we materialize a column not

for output, but only to execute operators that cannot be pushed down to sub-attributes, such

as joins or hashing for group-by aggregations. In these cases, we only read fields from each

sub-attribute and keep the values in an in-memory structure and not do convert the values

into strings. It also excludes the content of the pattern. We call this fast materialization.

PIDS executes both types of materialization by reading out each sub-attribute in order

and storing the values in an in-memory structure. When performing string materialization,

PIDS further converts each field in the structure to strings and injects them into the proper

30

position in the pattern. Although the algorithm is straightforward, it can become a perfor-

mance bottleneck since each sub-attribute brings overhead for decoding and formatting, and

this overhead accumulates as the number of sub-attributes increases.

PIDS applies many optimization techniques to mitigate overhead, including a fast al-

gorithm to convert an integer to string, and a cache-friendly implementation to read the

sub-attributes in blocks. In the prototype we developed using Java, we create a sizeable

native memory as a buffer to avoid the instantiation of too many string objects and relieve

the overhead brought to JVM garbage collection.

3.4.4 Sub-Attribute of Variable Length

In operators involving comparisons, such as less predicate and sorting, we push down the op-

erators to sub-attributes based on the assumption that the ordering of the original attribute

is uniquely determined by the ordering of its sub-attributes. For example, on an attribute

x with two sub-attributes x1, x2, x1 < a1 ∨ (x1 = a1 ∧ x2 < a2) =⇒ x < a. This is true

when the sub-attributes only contain rows of the same length, but the situation becomes

more complicated when some sub-attributes contain rows of variable length. An example is

shown below on the left, where x2 has variable size of 2 to 4.

x1 x2 Padding x2 Add Length

e1:313 -3195 -T → 3195 → 31954

e2:313-42-T → 4200 → 42002

e3:313 -420-T → 4200 → 42003

By simply extracting the sub-attributes and comparing them, we have e2.x2 = 42 <

3195 = e1.x2 =⇒ e2 < e1, while the right order should be e1 < e2 under string comparison.

To correct this, we pad the data to restore their correct order. This padding is applied to

data on the fly when performing comparisons and has no impact on data stored on disk.

In the example above, we see that the symbol following x2 is a dash, which has a smaller

ASCII code than the digits. Thus, we right-pad x2 with 0 (marked in red, underlined) to

31

length 4, which restores the correct order of e1 and e2. This padding now makes e2 and e3

indistinguishable, for the correct order of e2 < e3. As shorter entries in x2 are smaller, we

append the entries with their original length (marked in blue, underlined) to break the tie.

After the padding, the entries in x2 satisfy ei.x2 < ej .x2 =⇒ ei < ej . When the following

separator is greater than a digit, the algorithm right-pads the entry with 9 instead of 0. And

as shorter entries are larger when the separator’s ASCII code is larger than a digit, e.g.,

‘42:’>‘429:’, the algorithm appends maxLen-len(value) in this case, where maxLen is the

maximal length of the target sub-attribute.

If a sub-attribute of variable length is a string type, we pad the first symbol following

that sub-attribute to the value, and perform natural string comparison. For example, to

compare addresses with two sub-attributes “Chicago, IL" and “Milwaukee, WI", we compare

“Chicago,” and “Milwaukee,” by including the comma.

3.4.5 Handling Outliers

As described in Figure 3.5, PIDS stores outliers in a separate location in the original string

format, along with its row ID. When we choose a valid pattern, the number of outliers

should be relatively small, and we reasonably assume that the entire outlier table can be

materialized in memory.

As outliers are stored in their original string format, all operators can be applied directly.

When executing operators, we merge the outlier result with the result from the main table.

Depending on the type of operator, different merging strategies are adopted.

For predicate execution, we generate a bitmap sized to the original data, marking the

row ID of outlier records that satisfy the predicate, then perform a logical OR operation

between the main data bitmap and the outlier bitmap to get the final result. For equality

predicate, we notice that if the predicate matches the pattern, the result must be either be

in the main table or the outlier table, but not both, so we only need to query one table,

saving the logical OR operation.

32

For materialization, we need to merge the result from the main table with the outliers.

We first materialize the outlier table as a memory buffer. When materializing data from the

main table, we check null values that indicate the occurrence of outliers, and use the null

value’s position as the row ID to look up the memory buffer for the corresponding value.

The value is inserted into the results from the main table.

3.5 Experiments

In this section, we present the experiment results showing that PIDS improves both compres-

sion and query efficiency in a columnar store. We develop a prototype of PIDS in Java and

Scala, using the Apache Parquet columnar storage format [13]. Our experimental platform

is equipped with 2x Xeon Silver 4116 CPU, 192G Memory, and a NVMe SSD. It runs Ubuntu

18.04 LTS, OpenJDK 1.8.0_191, and Scala 2.12.4. For all throughput results, we report the

average throughput of ten runs of a fixed duration after warm-up. We run the experiments

on target attributes with uniformly randomly generated predicates for each execution.

Datasets: We use two datasets in the experiments. To justify that PIDS is widely applica-

ble, we use a dataset consisting of 9124 string attributes, collected from various real-world

data sources, such as open government sites, machine learning, social networks, and machine

logs. The data sources details can be found at https://github.com/UCHI-DB/comp-datasets.

To evaluate operator execution efficiency, we choose four representative string attributes:

Phone Number, Timestamp, IPv6, and Address. We generate IPv6 and Phone Number data

uniformly, Timestamp data uniformly in a 10-year span, and Address data using a TPC-DS

data generator [95]. For each attribute, we target a number of records that require 128 MB

of space in PIDS. Table 3.1 shows examples of these attributes and the number of records.

Baselines: In our experiments, we compare PIDS against popular string encoding/com-

pression algorithms, including Parquet with no encoding, Parquet with lightweight encoding,

Snappy, Gzip, and a Block Re-Pair Front-Coding

(BRPFC) dictionary [79]. BRPFC encodes an attribute using a dictionary, sorts the dic-

33

Table 3.1: Representative attributes used in our evaluation.

Attribute Sub
Attrs

Rows
(million) Example

Phone 3 35 (312)414-4125
Timestamp 8 20 2019-07-25 12:30:01 3424.24232

IPv6 8 10 3D4F:1342:4524:3319:8532:0062
:4224:53BF

Address 8 13 121 Elm St., Suite 5, Chicago,
Cook County, IL 60025

tionary entries, then applies Front Coding and Re-Pair [78] on the entries. We implement

BRPFC in the Apache Parquet framework and verify that our implementation has compa-

rable performances to the original version. Due to a lack of support for SIMD in Java, we

implement a scalar version of BRPFC, and use the SIMD improvement factors reported in

the original paper to estimate the performance of a SIMD version [79].

In these baseline algorithms, the attributes are stored as string types in Parquet. For

lightweight encoding, we empirically choose the encoding schemes in Parquet with the small-

est compressed file size on the target attribute, referred to as Best Encoding in the rest of

the paper.

Many DBMS have specific data types for timestamp data, usually backed by 64-bit

integers. Storing timestamps as integers helps achieve better compression, but requires

extra effort if users want to query partial fields, such as month or date. We include this

approach in the baseline, referred to as 64-bit Int in the experiments, to show that PIDS

facilitates more efficient query operators and comparable storage benefits.

3.5.1 Compression Efficiency

In this section, we evaluate the compression efficiency of PIDS. In Table 3.2 we show the

compressed size and compression ratio of PIDS against the baseline methods on the dataset

of 9124 string attributes, and on the attributes recognized by the classifier. We see that in

both cases PIDS has achieved the best compression ratio, and is 20% smaller than Gzip,

34

Table 3.2: PIDS achieves the best compression ratio on both the entire dataset of 9124 String
Attributes (All), and the set of attributes filtered by the classifier (Cls).

Best
Raw PIDS Enc. Snappy Gzip BRPFC

All 106G 14.6G 18.8G 33.1G 18.2G 26.6G
Cls 45G 4.2G 8.4G 9.8G 5.1G 7.8G

which is the second best. The classifier recognizes 2868 attributes as compressable and

achieves an accuracy of 91.2%. PIDS infers valid patterns from 4,596 (50.73%) attributes.

Of these attributes, 3,214 fully match the pattern (no outliers), and the overall average

outlier percentage is 0.6%. The average length of attributes with a pattern is 19, and the

average number of sub-attributes is 7. We extracted 32,105 sub-attributes, with 50% integer

and 50% string.

In the top sub-figure of Figure 3.6, we evaluate PIDS and the baseline methods on the

four attributes used in operator evaluation. For compression, PIDS outperforms all other

approaches on the 4 attributes and achieves a 2-3 times size reduction compared to Snappy,

a popular compression method used in many columnar stores. Figure 3.6 also shows that

Timestamp compressed with PIDS has similar size as that stored in 64-bit Integers. In PIDS,

all sub-attributes are bit-packed, and the total number of bits they occupy is no larger than

a 64-bit integer.

The bottom sub-figure of Figure 3.6 shows the throughput of end-to-end compression for

all approaches, which measures the time consumption including pattern inference, extraction,

encoding, and persistence. BRPFC has a throughput that is 10x slower than others largely

due to the recursive pairing step, making it almost invisible in the figure. PIDS’s throughput

varies by attribute. On the phone attribute, PIDS is slightly faster than Snappy, while on

address and IPv6, PIDS is about half as fast as Snappy. To understand the factors impacting

PIDS’s encoding performance, we study how much time each step consumes. As pattern

inference takes a constant amount of time, and disk IO is 10-20x faster compared to the

overall throughput, we focus on the data extraction and encoding steps. In Figure 3.7a,

35

Phone IPv6 Timestamp Address0

50

100

Th
ro

ug
hp

ut
(M

B/
se

c)

Figure 3.6: Comparing PIDS compression performance in both size and end-to-end compres-
sion throughput.

(a) PIDS spends most time on encoding sub-
attributes.

Phone IPv6 Timestamp Address

0

50

100

150

Ti
m

e
Co

ns
um

pt
io

n
(m

s)

pe
r 1

 m
illi

on
 re

co
rd

s
pe

r s
ub

-a
ttr

ib
ut

e

Data to Byte
Dictionary Encoding
Bit Packing

(b) Average Time Consumption Per Sub-
Attribute

Figure 3.7: Compression time breakdown. PIDS spends more time on attributes with more
sub-attributes, higher cardinality, and more string sub-attributes.

36

we see that PIDS spends about 80% on the encoding step, which is also the source of the

variance in the throughput.

Figure 3.8: Predicate Execution. PIDS is 2-30x faster than all baselines on all four attributes
for Equality, Less, Prefix and Suffix, and most Fast Wildcard Predicates. PIDS is also 20%
faster than Timestamp stored as 64-bit int.

As encoding is done on each sub-attribute independently, in Figure 3.7b we study the

decomposition of time consumption to process one sub-attribute on the four attributes. IPv6

and Address spend significant time on dictionary encoding because their sub-attributes have

a larger cardinality and need to maintain a larger dictionary. The average cardinality for

the sub-attributes in IPv6 is 65,536, and for Address it is 100,000. Whereas Phone is 4,000,

and Timestamp is 3,784. Moreover, Figure 3.7b shows that Address spends much time on

converting data to bytes, which the other three attributes do not. Table 3.1 shows that while

Timestamp, IPv6 and Address all have 8 sub-attributes, all sub-attributes in Timestamp and

IPv6 are integers, while 6 of 8 sub-attributes in Address are strings. Encoding strings to

bytes takes much more time than encoding integers. The analysis above suggests that PIDS

performs better on sub-attributes with low cardinality and few string types.

3.5.2 Operator Execution

In this section, we show that PIDS accelerates common query operators. Comparing the

same operators on the same dataset stored in string format, PIDS brings at least 2 times

performance improvement to all predicate execution tasks. In some tasks, such as prefix

search, the improvement can be over 30 times.

37

Figure 3.9: Equality cost breakdown (Gzip and BRPFC are excluded for clarity due to too
high of time cost).

Figure 3.10: Time consumption of compressing an attribute and performing multiple equality
queries.

Predicate Filtering

We compare the performance of PIDS on various predicates against the baselines. In addition

to the straightforward equality and less predicates, we also test prefix, suffix, and wildcard

predicates. Examples of these queries are given in Table 3.3. We experiment with two

types of wildcard predicates. “Fast Wildcard” is a wildcard predicate that has a single

match against the pattern. When executing a fast wildcard predicate, PIDS can push down

the predicates to only the involved sub-attributes, ignoring other sub-attributes, and speed

up the execution. For example, “%33:27%” is a fast wildcard predicate for the timestamp

attribute, as it only matches the minute and second sub-attributes. A “Slow Wildcard”

is a wildcard predicate that has more than one match against the pattern. In the worst

38

case, PIDS needs to scan all sub-attributes when executing these predicates. “%12%” is a

slow wildcard for the timestamp attribute as it can potentially match any sub-attribute for

timestamp. To execute this predicate, all eight sub-attributes and the whole data file need

to be accessed.

The experimental results are shown in Figure 3.8. We do not test the less predicate on

the address attribute since it makes no practical sense. On the equality and less predicates,

PIDS beats all string-based competitors by 2-10 times. This improvement primarily comes

from data skipping by progressively filtering sub-attributes. For example, when executing

an equality predicate on the IPv6 attribute, PIDS scans on average only 2.006 sub-attributes

per execution, and accesses 24.35% of the whole data file.

On prefix, suffix, and most fast wildcard predicates, PIDS beats all string-based com-

petitors by 10-30 times. As we have seen in Section 3.4.2, we can convert these predicates to

equality or like predicates on one or two sub-attributes, making it even more efficient than

equality predicates. The only case where fast wildcard does not have obvious performance

improvement is on the IPv6 attribute, where all sub-attributes have the same length. A

wildcard predicate such as x ∼%1A2B% can match any sub-attribute, requiring executing

equality predicates on all eight sub-attributes. However, as an equality comparison is faster

than a wildcard search, PIDS manages to obtain 2 times throughput compared to its fastest

competitor. The only case where PIDS does not work well is the slow wildcard, where it

needs to execute like predicates on all sub-attributes. Nevertheless, PIDS still yields similar

performance to Snappy.

For Timestamp stored as 64-bit integers, we implement prefix query with range predicate,

and suffix query with modular operation to compare against PIDS. We see that on equality,

less, prefix and suffix queries, PIDS is consistently 20% faster than 64-bit integer, due to

data skipping. In addition, 64-bit int performs poorly on wildcard predicates, which require

converting 64-bit Int to date string. The numbers are too small to be visible in the figure.

In Figure 3.9, we show a cost breakdown of equality predicates on the timestamp and

39

Table 3.3: Examples of wildcard queries.

Prefix Suffix Fast
Wildcard

Slow
Wildcard

Phone (377)62% %524 %42-47% %24%
IPv6 24BD:52% %1B2D %243B% %1D%

Timestamp 2017-09% %24389 %33:27% %16%
Address 121 Elm St.% %IL,32036 %Chicago,IL% %Cook%

address attributes, to help us understand how PIDS achieves its performance boost. We do

not include Gzip and BRPFC in the figure as they consume much more time compared to

others. Including them makes the details of other results hard to interpret. Not surprisingly,

both Gzip and BRPFC spends the majority of the time in decompression. We see that

the string-based competitors spend a considerable amount of time on I/O and incur large

overhead in computation (primarily string comparison). Best (Lightweight) Encoding and

Snappy both spend a significant amount of time on decoding/decompression. PIDS has a

smaller file size, which saves I/O and it uses a dictionary to translate all predicates into

integer comparisons, saving computation effort. By pushing down the predicates to sub-

attributes, and performing data skipping, PIDS further reduces I/O and decoding overhead.

PIDS executes the pattern inference and data extraction task only once when it persists an

attribute as a collection of sub-attributes. These steps in PIDS are similar to the compression

step in Snappy and Gzip. When PIDS executes a query, it accesses each sub-attribute directly

by pushing down the predicate. The query operation thus involves no pattern inference or

data extraction operation and is transparent to the user. In Figure 3.10, we compare the end-

to-end time consumption to read 500MB textual records from disk file, perform compression

and persist to disk, then conduct multiple equality queries operations against the compressed

file with Snappy, Gzip, and PIDS. Each query performs data decompression before execution.

While PIDS takes slightly longer time when compressing data on some attributes, the overall

time consumption is compensated by the fast query execution. Only after 8 queries, PIDS

has a shorter total time on all four attributes. This is more promising, considering that PIDS

also has a better compression ratio.

40

Figure 3.11: PIDS uses an optimized integer-to-string algorithm, and achieves a throughput
at least as good as Snappy when doing string materialization.

Figure 3.12: Phone string materialization with increasing the percentage of outliers.

Materialization and Outliers

Figure 3.11 shows an experiment with the two types of materialization operators: fast ma-

terialization, which loads sub-attributes into an in-memory data structure that can be used

by other operators, and string materialization, which generates string results for output. We

denote them by PIDS-Fast and PIDS-String respectively. For the 64-bit Int representation of

timestamp data, we also show 64-bit Int-Fast, which reads 64-bit integers into memory, and

64-bit Int-String, which uses Apache Commons’ FastDateFormat to format 64-bit integers

into timestamp strings.

Since materialization requires access to the whole dataset and no data can be skipped,

it is not surprising that PIDS no longer beats competitors by a large margin. Nevertheless,

we see that it still outperforms all other competitors on the phone attribute. On the IPv6

and timestamp attributes, PIDS outperforms Gzip, and has a similar throughput to Snappy.
41

Figure 3.13: Pattern inference latency.
Figure 3.14: Sub-attributes extraction perfor-
mance.

Only on the address attribute, does PIDS have a slightly worse throughput than Gzip. A

cost breakdown shows that when the number of sub-attributes increases, more time is spent

on decoding each sub-attribute, and decoding string sub-attributes is slower than decoding

integer sub-attributes, primarily due to decoding bytes to UTF-8.

We notice that for the timestamp attribute, although 64-bit Int-Fast is 4 times faster

than other approaches, 64-bit Int-String is so slow that it is almost invisible in the figure.

We saw similar results when executing wildcard predicates on 64-bit integers. The profiling

result shows that over 40% of the time is spent on formatting integers to strings. In PIDS, we

introduce an optimized integer to string algorithm inspired by the integer constant division

algorithm [119], which formats an integer to string 37 times faster than String.format in

Java. With this algorithm, PIDS-String is only 10% slower than PIDS-Fast and remains

competitive against other approaches.

In Figure 3.12, we test the impact of outliers on the string materialization of phone

numbers by controlling the percentage of outliers. We show the throughput normalized

against having no outliers. We observe a minimal impact on the throughput when the

percentage of outliers is less than 1% (shown in the small box). Additional increases to

the percentage of outliers create a proportional impact on throughput. Considering that

most attributes we observe have less than 1% outliers, this result shows that outliers have a

negligible impact.

42

3.5.3 Pattern Inference and Data Extraction

Applying PIDS on an attribute requires executing the pattern inference algorithm on the

attribute, and using the inferred pattern to extract sub-attributes. In this section, we show

that PIDS accomplishes these tasks efficiently.

In Figure 3.13, we show the time used to infer a pattern from the attributes while varying

the sampling size. We see with sample size of 2000, the inference latency is around 1 second.

This latency is negligible for large data loading tasks as it is an one-off operation.

We also study how the sample size affects accuracy in random sampling, measured by the

coverage of a pattern on an attribute. Assuming the data in an attributes can be covered by

non-overlapping patterns p1, p2, . . . , pn, each with coverage ci. The pattern PIDS generates

will cover pi when the sample includes at least one record from pi. With uniform sampling,

a sample size E(S) = max(1
1−ci) is sufficient to cover all pi. We experimentally verify that

a sample size 500 is sufficient to achieve coverage of 99%, and sample size 2000 can reach

coverage of 99.95%, on the 4596 string attributes that PIDS extracts a valid pattern. To

further improve coverage, other sampling methods such as adaptive and biased sampling [76]

can also be employed to guarantee instances with small numbers also appear in the sample,

at the cost of higher inference latency.

It is crucial to have an efficient data extraction algorithm for attribute decomposition.

In Figure 3.14, we show a micro-benchmark comparing PIDS’s sub-attribute extraction al-

gorithm with the widely used regular expression-based algorithm and a state machine-based

algorithm based on recent work on extracting structures from relational attributes [61]. We

varied the number of sub-attributes, with each sub-attribute containing five numerical digits

and split by a comma. When the number of sub-attributes is smaller than 10, PIDS achieves

over 2 times throughput compared to regular expression, and 50% improvement compared

to a state machine. The throughput of PIDS diminishes gradually when the attribute length

increases, but still outperforms the two competitors by 30-50%.

Next, we compare PIDS’s pattern inference and data extraction algorithm against Data-

43

Table 3.4: Comparison of PIDS and Datamaran on inference accuracy. PIDS finds more
patterns than Datamaran on the entire dataset of 9124 string attributes.

Category Entire Dataset After Classifier
Both find a pattern 1758(19.04%) 566 (19.73%)
Both find no pattern 4597(49.89%) 17 (0.59%)
Only PIDS finds
a pattern 2841(30.83%) 2285 (79.67%)

Only Datamaran
finds a pattern 18(0.22%) 0(0%)

maran [50], a state-of-the-art solution for extracting structural information from log-like

datasets. We conduct the comparison from the perspective of both correctness: being able

to generate accurate patterns from given attributes, and time efficiency: better through-

put on pattern inference and data extraction. We evaluate an open-source implementation

from the authors.

To compare the accuracy of pattern inference, we apply both PIDS and Datamaran to

1) the entire dataset of 9124 string attributes, 2) the dataset of attributes marked as sound

by the classifier we introduced in Section 3.3.3. We mark an extracted pattern as valid

if it (1) contains more than one sub-attribute and (2) has more than 50% coverage. In

Table 3.4, we show that PIDS manages to find a pattern on 2841 attributes(30% of total)

that Datamaran does not, while Datamaran only find 18 patterns that PIDS does not. After

applying the classifier, PIDS works even better to recognize 2285 patterns that Datamaran

does not. Besides, this result also cross-validates the effectiveness of the classifier: it manages

to filter out most attributes that neither PIDS nor Datamaran extract patterns. We note

that Datamaran was designed to target log-like data files, which may contribute to some of

its inferior performance.

We are also interested in the attributes on which PIDS and Datamaran do not agree. We

categorize the 31% data columns on which PIDS finds patterns, but Datamaran does not,

into three types, and explain how PIDS handles them.

• Type 1: Attributes contains symbols not recognized by Datamaran. Datamaran relies on

44

Figure 3.15: Comparison of PIDS and Datamaran on time efficiency. PIDS is 2-15x faster
than Datamaran on inference and 20-40x on data extraction.

a hard-coded symbol table to split the records. PIDS overcomes this by inferring common

separators from context and works in a truly unsupervised manner.

• Type 2: Attributes contain English words or phrases. Some attributes, such as addresses,

contain English words or phrases. Datamaran recognizes all spaces in these attributes as

separators and generates erroneous patterns. PIDS can recognize words and phrases, and

treats them as integral components.

• Type 3: Attributes with optional sub-attributes. For example, if an attribute consists of

50% date string, and 50% timestamp string, PIDS recognizes the date sub-attributes as

mandatory and the time ones as optional.

There are 18 attributes on which PIDS infers no pattern, but Datamaran does. We

manually inspect these attributes and see that these attributes contain only one distinct

value. PIDS infers a pattern consisting of only constant from these attributes, and consider

such pattern as invalid. We believe this also shows PIDS is more effective in the sense of

recognizing meaningful pattern.

We then compare the time efficiency of pattern inference and data extraction between

PIDS and Datamaran, using 5 representative string attributes, each containing 1 million

45

records. Datamaran samples 2000 records from the target attribute for inference, and we

configure PIDS to follow the same setting. In Figure 3.15, we see that PIDS is 2-15x faster

than Datamaran in pattern inference. In the data extraction task, PIDS achieves 20-40x

throughput comparing to Datamaran. Considering that PIDS is implemented in Java and

Datamaran in C++, this performance boost is significant.

3.6 Conclusion

In this chapter, we introduce PIDS, a technique to extract sub-attributes from relational

string attributes in columnar stores, and execute query operators on them. We build a

prototype of PIDS based on the Apache Parquet storage format to show that PIDS can

improve both compression ratio and query operator execution efficiency. When executing

query operators, PIDS is 2-30 times faster than execution on the original string attributes.

46

CHAPTER 4

SBOOST: SPEED UP QUERY PROCESSING ON ENCODED

DATA

Columnar databases such as C-Store[114] and MonetDB[60] have never been playing more

important role in this big data era. Different from traditional RDBMS, which stores data in

a row-by-row fashion, columnar databases adapt a column-oriented fashion to organize its

data. In a columnar database, values from different columns are physically separated, and

data in the same column is store consecutively. Such a physical layout allows a faster scan on

data columns benefiting from sequential access, and irrelevant columns to be skipped during

query to avoid I/O overhead. These features make columnar databases the perfect choice

for query and analysis on gigantic datasets.

Columnar store persist similar data from the same column consecutively, allowing efficient

encoding techniques to be adopted. Abadi et. al.[2] show that in addition to space saving,

executing query on encoded data also exhibits great potential in improving query efficiency.

In practice, lightweight encoding algorithms, which trade compression ratio for much faster

decompression operations, are more preferred as they allow decoding to be performed on the

fly without obvious impact to query performance. Widely used encoding schemes includes

bit-packed encoding, dictionary encoding, delta encoding and run-length encoding.

Many previous researches focus on improving the query performance on encoded data.

Using new hardware features such as single-instruction-multiple-data (SIMD) instructions is

among the most promising techniques. Willhalm et. al. [122] demonstrates a new algorithm

using 128 bit SIMD instructions to decode 4 bit-packed integers in parallel. Polychroniou et.

al.[101] propose using SIMD to speed up selection scan. Variations of encoding schemes are

also developed to further explore the potential of SIMD processors. BitWeaving encoding[87]

and BP-128[83] are variations of bit-packed encoding. SIMD-PFOR[83] is a variation of

patched encoding. These variations all exhibit significant better performance comparing to

47

0010 1011 1001 1100

0010 1011 1001 1100

0 1 1 1

0 0 0 1

1 1 0 0

0 1 1 0

Classical(Tight)
Bit-Packed

BitWeaving-
Horizontal

Vertical Bit-
Packing

Word Boundary

Unused Space

Figure 4.1: Variations of Bit-packed Encoding

corresponding scalar version and demonstrate that the method of using SIMD to speed up

encoding/decoding operations in database systems has great potentials.

However, most of these latest algorithms work only on customized variations of encoding

schemes that either need extra space in storage format, or requires data to be re-organized

in special format, making them space-inefficient and incompatible with standard encoding

specifications. We take BitWeaving as an example. In standard “tightly packed” bit-packed

encoding, number are packed close to each other. There’s no separator between entries, and

entry may cross word boundaries. One of the variation format BitWeaving proposes, named

BWH, requires a separator bit between entries, and all entries resides in 64-bit words. This

can lead to a space waste of at most 30%. Another variation, BWV pack data tightly, yet

requires data to be stored vertically instead of horizontally, e.g, adjacent bits in same entry

are separate into adjacent words. These differences are visualized in Figure 4.1. In addition to

space wasting, converting existing data that are already encoded with standard encodings to

the new storage format is time-consuming and impractical considering the enormous amount

of existing datasets.

To fill the gap, we propose several novel SIMD-based algorithms for fast scanning /

48

decoding data stored in standard encoding format including bit-packed encoding, run-length

encoding, delta encoding and dictionary encoding. Our scan algorithms work directly on

encoded data, efficiently skipping decoding process, saving both CPU effort and memory

space. To the best of our knowledge, we are the first to propose SIMD algorithms for

standard delta encoding, run-length encoding and dictionary encoding.

We implement these algorithms in SBoost, a columnar datastore based on Apache Par-

quet. SBoost works on standard encoding schemes widely used in real-world, thus is readily

available for existing industrial datastore, yet it outperforms existing solutions by at least a

order of magnitude. SBoost is able to achieve a throughput of over 10 billion numbers per

second with a single thread, and 40 billion numbers with multi-thread in our experiment

environment. Moreover, we have shown that SBoost has great potentials of improve TPC-H

query efficiency for both on-disk and in-memory queries.

The contributions of this paper include the follows.

• Fast Table Scan on Bit-packed encoded data. During a table scan, predicates

such as equality and range search will be applied on data to obtain a comparison

result. Previous method requires data to be either fully or partially decoded before the

comparison can be performed. We propose a fast SIMD-based table scan algorithm on

bit-packed data. The new vectorized algorithm allows executing predicates directly on

encoded data, effectively skipping entire decoding process and thus achieve ultra-fast

scanning speed.

• Parallel Decoding and Table Scan for Delta encoded data. Decoding delta

encoded data involves an iterative add operation through all data entries. We introduce

a new vectorized algorithm for decoding delta encoded value, and further support

efficient predicate execution on the decoded data.

• Fast Table Scan for Run-length and Dictionary encoded data. Run-length

Encoding replace consecutive identical values with one copy of the value followed by

49

the number of repetitions. Dictionary encoding replace long, variable length data with

short fixed-length integer code. The output result of these encodings are often bit-

packed to further reduce data size[58]. Using query rewriter to convert query on the

encoded data to predicates on underly bit-packed data, and utilizing our fast bit-packed

scan algorithm, we propose fast SIMD-based table scan algorithms for both run-length

and dictionary encoded data.

In Section 4.1, we describe the design and implementation of SBoost framework for table

scan and decoding. In Section 4.2, we describe in detail the algorithms proposed for each

encoding scheme. Section 4.3 demonstrates the experiments conducted on various dataset

and analysis of results. Section 4.4 conclude our contribution and describe future research

possibilities.

4.1 System Design

We build SBoost, a columnar data store supporting SIMD-based fast table scan based on

Apache Parquet[13], the prevailing open source columnar store.

Figure 4.2 briefly depicts Parquet’s storage data structure. Every Parquet file is com-

prised of multiple column chunks, each consists of consecutive binary data buffers storing

encoded column data. Column chunks also contains a zone map, providing for each column

contained in the chunk the max/min value. SBoost utilizes Parquet code to load file from

disk into memory and locates data buffers for indicated columns, which are stored off java

heap memory. It then invoke SIMD algorithms, which are implemented in C++, through

JNI.

SBoost defines two APIs dataScan, and decode for each encoding scheme. dataScan

executes a predicate on encoded column, and output a bitmap indicating values satisfying

the predicate. decode decodes data to ready-for-output format.

For columns appears only in select but not in project, SBoost applies dataScan directly

50

Row Group 1

Col 1 Col 2 . . . Col n

Zone Map

Row Group 2

...

Row Group m

File Footer (contains metadata)

Parquet File

Column

Page 1

Page 2

...

Page K

Figure 4.2: Parquet Columnar Store Format

on encoded data buffer to generate the bitmap, which can be further used to filter other

columns. Most previous methods decode data before they can be feed to predicate, which

incurrs both CPU overhead and unnecessary Java object creation. SBoost provides highly

parallelized algorithms involving minimal decoding operations greatly reducing both CPU

and memory consumption.

For columns appears only in project but not in select, SBoost executes decode on them.

SBoost designs some novel algorithms utilizing SIMD parallelization to speed up decoding

process.

For columns involved in both select and projection, SBoost first use dataScan to gener-

ates bitmap on the column, and use the bitmap result to efficiently perform data skipping,

saving time for decoding operations on unmatched data.

Figure 4.3 describes how queries are executed by SBoost.

51

Query Output

dataScan decode

Column 𝑠1

Column 𝑠2

. . .

Column 𝑠𝑛

bitmap

Column 𝑝1

Column 𝑝2

. . .

Column 𝑝𝑛

Figure 4.3: Query Execution in SBoost

4.1.1 Operator for Predicate Execution

SBoost supports common predicates including equal / not equal / greater than / less than

and their logical combinations. We implement these predicates using two operators: equal,

which tests whether the target is equal to a given value a, and less, which tests whether the

target is less than a given upperbound a. These operators take as input the encoded data,

and output bitmap.

It is easy to see that together with zone map, all predicates and their combinations can

be implemented using these two operators with simple logical operations. For example,

less-equal(x, a) = x ≤ a can be obtained by less(x, a) | equal(x, a), and range(x, a, b) = a ≤

x < b can be obtained by less(x, a)⊕ less(x, b). When introducing dataScan algorithms, we

will focus on describing how we implement equal and less operators.

4.2 Algorithm

In this section, we detail the SIMD algorithms we design for each encoding scheme to speed

up predicate execution and decoding on encoded data.

In subsequent sections, we use uppercase letters to denote SIMD words and lowercase

52

letters for scalars. We use subscripts to indicate elements in SIMD words. E.g., for a SIMD

word A, we use A0, A1, . . . , An to denote the data entries in it, in small-endian fashion.

Entry size varies and will be clarified upon mentioning.

4.2.1 Data Scan for Bit-Packed Encoded Integer

In this section, we introduce our algorithm using AVX-512 for dataScan on bit-packed

encoded integer. It also serves as the foundation of some subsequent algorithms.

Preprocessing

The first step of our algorithm is loading encoded data in 512-bit SIMD word, and align

them to 64-bit lanes. This is demonstrated in Figure 4.4. We use _mm512_permutex2var_epi8

to reorder bytes in 512-bit lane, sending bytes belonging to each entry into corresponding

64-bit lanes, then use _mm512_srlv_epi64 to shift data to be aligned to lane boundary. For

efficiency, the permute and shift instruction used are pre-computed to save run-time effort.

The purpose of this operation is to get data ready for the arithmetic operation we are

going to perform in the next step. Intel only provide arithmetic instruction within 64-bit

lane. This forces us to align data into 64-bit lanes, greatly limit the number of entries we

can process.

As an alternative solution to the problem, we propose an software implementation of 512-

bit arithmetic operations using AVX-512. The detail is described in Section 4.A. Currently,

the algorithm’s performance suffers from lacking of direct hardware support. However, our

simulation result show that if this instruction is provided in the future, the pre-processing

step can be skipped and we can further improve the efficiency of SBoost’s bit-packed scanning

algorithm. We present simulation results of this variation and more discussion in Section 4.3.

Equal Operator

Given a SIMD word X containing n entries, each consisting of e bits, and a scalar a,

the equal operator checks how many entries in X are equal to a. Let M be the most

53

𝑒0 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 𝑒7 𝑒8 𝑒9 𝑒10 𝑒11 𝑒12

Permute

𝑒0 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 𝑒7 𝑒8 𝑒9 𝑒10 𝑒11 𝑒12

64-bit Lane

Shift

𝑒0 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 𝑒7 𝑒8 𝑒9 𝑒10 𝑒11 𝑒12

Figure 4.4: Load Bit-Packed Entry into 64-bit Lanes

significant bit (MSB) mask that has 1 at the MSB of every entry, and 0 everywhere else,

e.g., ∀i,Mi = 1 � (e − 1), A a SIMD word having every entry equals a, e.g. Ai = a. The

algorithm computes

D = X ⊕ A

R = D | ((D & ∼M) +∼M)

and return R as a sparse bitmap containing equality test result in the MSB of each entry.

Xi = a ⇐⇒ (Ri)msb = 0 (4.1)

We demonstrate how this algorithm works with an example. Let X be a SIMD word

containing two 3-bit entries {X1 = 3, X2 = 5}, and a be 3, we have X = 0b101011, A =

0b011011. The MSB mask M = 0b100100. Applying the computations above, we obtain

R = 0b101000. The 6th bit (e.g., MSB of X2) of R is 1, meaning that X2 fails the equality

test. The 3rd bits (e.g., MSB of X1) of R is 0, meaning that X1 passes the equality test.

The algorithm checks whether x = a by examining if d = x ⊕ a = 0. Let drb be the

remaining bits in d excluding MSB, drb = d & ∼m, d 6= 0 if and only if one of the following

is true

54

• dmsb = 1

• drb 6= 0 =⇒ drb +∼m generates a carry

=⇒ ((d & ∼m) +∼m)msb = 1

Let r = d | ((d & ∼m) +∼m), we see

x = a ⇐⇒ d = 0 ⇐⇒ rmsb = 0

The pseudo-code is shown in Algorithm 3.

Algorithm 3 Equal Operator on bit-packed Integer with AVX-512
function equal(X, a)

A = build(a);
. build will fill each entry with given value
NM = build((1 � e -1)-1);
D = _mm512_xor_si512(X, A);
DAM = _mm512_and_si512(D, NM);
DAM = mm512_add_epi64(DAM, NM);
return _mm512_or_si512(D, DAM);

end function

Less Operator

The less operator takes a SIMD word X and a scalar a, determining whether for each

entry Xi ∈ X,Xi < a. We construct M and A in the same way as described above, and

compute

U = (X |M)− (A & ∼M)

R = (∼ A & (X | U)) | (X & U)

then return R as a sparse bitmap satisfying

Xi < a ⇐⇒ (Ri)msb = 0 (4.2)

55

The algorithm checks whether x < a by examining if one of the following cases happens

• xmsb = 0 and amsb = 1

• xmsb = amsb and xrb − arb causes a carry

In the first case,

xmsb = 0 and amsb = 1 ⇐⇒ (a & ∼x)msb = 1 (4.3)

In the second case, let u = (x | m)− (a & ∼m)

xmsb = amsb ⇐⇒ [∼(x⊕ a)]msb = 1 (4.4)

xrb − arb generates a carry

⇐⇒ (x & ∼m)− (a & ∼m) generate a carry

⇐⇒ [(m+ x & ∼m)− (a & ∼m)]msb = 0

⇐⇒ [(x | m)− (a & ∼m)]msb = 0

⇐⇒ umsb = 0

(4.5)

Combining the equations above we have

x < a ⇐⇒ ((a & ∼x)︸ ︷︷ ︸
Equation (4.3)

| (∼(a⊕ x)︸ ︷︷ ︸
Equation (4.4)

& ∼ u︸︷︷︸
Equation (4.5)

))msb = 1

Using boolean algebra to simplify the formula, we have

(a & ∼x) | (∼(a⊕ x) & ∼u)) = ∼(∼a & (x | c)) | (x & c) = ∼r

56

𝑒0 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6

Load SIMD Word 1

Load SIMD Word 2

offset

Figure 4.5: Load Entries crossing SIMD Word Boundary

This shows

x < a ⇐⇒ rmsb = 0

. The pseudo-code is provided in Algorithm 4.

Algorithm 4 Less Operator on bit-packed Integer with AVX-512
function less(X, a, b)

M = build(1�e-1);
NM = build((1�e-1)-1);
A = build(a);
AORNM = _mm512_and_si512(A, NM);
NA = _mm512_xor_si512(A, ONE);
XORM = _mm512_or_si512(X, M);
U = _mm512_sub_epi64(XORM, AORNM);
XAU = _mm512_and_si512(X, U);
XOU = _mm512_or_si512(X, U);
return _mm512_or_si512(_mm512_and_si512(NA, XOU),
XAU);

end function

Dealing with cross-boundary entries

For entries crossing SIMD word boundary, we use unaligned load instruction to load

next SIMD word including that entry. This is demonstrated in Figure 4.5. Entry e3 crosses

SIMD word boundary, so the next SIMD word will start its loading position just before e3.

It should also be noticed that loading address must be byte boundary aligned, so entry e3

may have a non-zero offset in the second SIMD word, which can be safely handled by our

algorithm.

Previous research[122] suggests that unaligned load/store leads to negligible performance
57

𝑒0 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6

Load SIMD Word 1

Load SIMD Word 2

offset

Figure 4.6: Unpack Data as 32 bit Integer

penalties on recent Intel CPUs, and our experiment on latest hardware platform also justify

this conclusion.

On platforms where unaligned load/store may lead to unacceptable performance penal-

ties, we propose an alternative solution that simply extract the involved bytes from SIMD

register, and use scalar comparison to execute predicates on them. The result is then written

back to the corresponding location in the result data stream. Note that we only need to

write MSB for the given entry, which can be done with a bitwise operation involving one

single byte in memory.

4.2.2 Fast Decoding and Table Scan for Delta Encoded Data

In this section, we introduce our algorithm utilizing Intel’s hadd instruction to implement a

vectorized algorithm to decode delta encoded data. As hadd instruction is not yet available

on AVX-512, we use AVX2 to implement this algorithm.

Delta encoding store delta between consecutive numbers in tightly bit-packed format. We

first use an algorithm similar to what is used in pre-processing step of bit-packed dataScan

to unpack these numbers as 16-bit or 32-bit integers. This algorithm is also described in

Willhalm et. al.’s work[122]. Figure 4.6 illustrates how the unpacking process works. We

load bit-packed entries are loaded into SIMD registers, and use byte-level shuffle instruction

to move each entry to a separate 16-bit or 32-bit lane. As some entries are not aligned with

byte boundaries, we next use shift instruction to align them to the lane boundary.

With data unpacked as either 16-bit or 32-bit integers in SIMD words, the next step is to

compute their cumulative sum in order to obtain original data. We first introduce a cumsum

58

function that computes the cumulative sum of each integers in the SIMD register. That

is, given SIMD word B = [B0, B1, . . . , Bn], cumsum compute A where Ai =
∑i
k=0Bk. The

cumsum function for 256 bit SIMD word and 16/32 bit integer is demonstrated in Algorithm 5.

Algorithm 5 Vectorized Cumulative Sum with 256 bit SIMD and 16/32 bit Integer
const ZERO = _mm256_set1_epi64(0);
const SHIFT16 = _mm256_set1_epi64x(16);
const MASK16 = _mm256_set1_epi32(0xffff);
const IDX = _mm256_setr_epi32(8,0,1,2,3,4,5,6);
const IDX2 = _mm256_setr_epi32(0,8,2,8,1,4,3,6);
const IDX3 = _mm256_setr_epi32(8,8,8,8,0,1,2,3);
function cumsum16(b)

bp = _mm256_bslli_epi128(current, 2);
s1 = _mm256_hadd_epi16(current, aligned);
s2 = _mm256_sllv_epi64(s1, SHIFT16);
s3 = _mm256_hadd_epi16(s1, s2);
s4 = _mm256_and_si256(s3, MASK16);
return _mm256_hadd_epi16(s3, s4);

end function
function cumsum32(b)

bp = _mm256_permutex2var_epi32(b, IDX, ZERO);
s1 = _mm256_hadd_epi32(b, bp);
s2 = _mm256_permutex2var_epi32(s1, IDX2, ZERO);
s3 = _mm256_hadd_epi32(s1, s2);
s4 = _mm256_permute2x128_si256(s3, IDX3, ZERO);
return _mm256_add_epi32(s3, s4);

end function

We illustrate how the 32-bit algorithm works in Figure 4.7, where we use bij to denote∑j
k=i bk. We first shift the input to left by 32 bits, shifting in 0. As Intel does not provide

256 bit lane shift instruction, we utilize permute instruction to achieve this. The following

code shift entire 256 lane in input to the left by 32 bits.

ZERO = _mm256_set1_epi64(0);

IDX = _mm256_setr_epi32(8,0,1,2,3,4,5,6);

_mm256_permutex2var_epi32(input, ZERO, IDX);

We then use hadd on the original input b and the shifted input bp to obtain sum of

adjacent number pairs. Reordering the result using permute instruction, and use hadd one
59

𝑒0 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 𝑒7

Shuffle

𝑒0 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 𝑒7

32-bit Lane

Shift

𝑒0 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 𝑒7

Figure 4.7: Use hadd to compute 32-bit Cumulative Sum

more time gives us partial sum of at most 4 consecutive numbers.

Finally, we reorder the hadd result and perform a 32-bit add, obtaining cumulative sum

for each index. It can be seen that the result is stored in a inverse sequence. We will leave the

result as is when performing dataScan, and only restore the correct order in decode. This

saves one permute instruction and increase throughput. 16-bit cumsum works in a similar

fashion and we skip the description here for succinctness.

With unpack and cumsum function, it is now straight-forward to implement decode and

dataScan function for delta encoded data, which is shown in Algorithm 6 and Algorithm 7.

We describe the 32 bit version here, and 16 bit version can be implemented in a similar

manner.

When performing decode, we first load data into SIMD registers, and unpack them as

32-bit integers, then use cumsum to compute the cumulative sum in current register. The

variable sum tracks the cumulative sum of all numbers that have been scanned so far. Adding

sum to cumsum result then gives us the decoded value, as well as the new value of sum. Finally,

the decoded number is reordered to correct sequence using permute instruction and output

to storage.

dataScan just use the decode process we described above, and SIMD comparison instruc-

tion to execute predicate. The result is a dense bitmap and can efficiently be used in future

operations.

60

Algorithm 6 decode for Delta Encoded 32 bit Integer
const INV = _mm256_setr_epi32(3, 2, 1, 0, 7, 6, 5, 4);
function Decode(stream)

sum = 0;
while stream.hasNext do

words = unpack(stream.next);
for word in words do

cumsum = cumsum(word);
decoded = _mm256_add_epi32(cumsum, sum);
sum = _mm256_extract_epi32(decoded, 4);
inverted = _mm256_permutexvar_epi32(decoded, INV);
output(inverted);

end for
end while

end function

Algorithm 7 dataScan for Delta Encoded 32 bit Integer
function dataScan(stream, predicate)

sum = 0;
while stream.hasNext do

decoded = decode(stream.next);
if predicate == EQUAL then

scanRes = _mm256_cmp_epi32_mask(decoded,
predicate.val, _MM_CMPINT_EQ);

else if predicate == LESS then
scanRes = _mm256_cmp_epi32_mask(decoded,
predicate.val, _MM_CMPINT_LT);

end if
output(scanRes)

end while
end function

61

4.2.3 Data Scan for Run-Length encoded Integer

Run-length encoded data comprises of consecutive number pairs (num, run-length). These

pairs are then tightly bit packed. num and run-length can use different bit width, but

without loss of generality, we assume that within a storage unit (a page or a block), bit

widths for num and run-length are fixed.

When scanning run-length encoded data, we generate a run-length encoded bitmap. For

example, when scanning a run-length encoded data sequence {105, 2, 339, 4, 242, 1, 132, 8} to

look for numbers less than 200, the output is {1, 2, 0, 4, 0, 1, 1, 8}. This kind of bitmap had

been widely adopted in previous works [49, 57, 125, 84].

We utilize the bit-packed dataScan algorithm described in Section 4.2.1 to generate this

run-length bitmap. The basic idea is to execute predicates on num fields, while leaving

run-length fields unchanged. We show that by setting bits corresponding to run-length

fields to 0 in all parameters used in Equation (4.1) and Equation (4.2), the run-length fields

from input will be preserved during the computation of bit-packed dataScan algorithm.

In Figure 4.8, we draw the operation tree for equal operator in bit-packed dataScan.

The numbers above each nodes shows how the bits from input change after each operation.

It is clear from the figure that if all parameters (the gray blocks in figure) have their run-

length fields set to 0, the run-length values from input will be preserved. In addition, in

previous sections we have shown that the add/sub operations used in the algorithm does not

generate carry bits crossing entry boundary. We conduct the same check for less operator.

The operation tree is shown in Figure 4.9. Similarly, we notice that the bits in input will

be preserved when all parameters have their bits set to 0. This shows that by leaving the

run-length fields as 0 in all parameters used in Algorithm 3 and Algorithm 4, we are able to

get a run-length bitmap generated by applying the bit-packed dataScan algorithm.

Some complex operators may be affected, though. For example, range operator can be

obtained by range(x, a, b) = less(x, a) ⊕ less(x, b). Per our analysis above, less(x, i) will

preserve the run-length fields in input. Thus both operands of xor will have the same value

62

𝑥

01
𝑎

00

xor
01

∼𝑚
00

and
00

add
00

∼𝑚
00

𝑥

01
𝑎

00

xor
01

or
01

((𝑥 ⊕ 𝑎) & ∼𝑚 + ∼𝑚) | (𝑥 ⊕ 𝑎)
Figure 4.8: Operation Tree for equal operator

in their run-length fields, and leads to 0 after the operation. To solve such problem, we

simply rewrite range(x, a, b) = less(x, a) ⊕ (less(x, b) & 11 . . . 1︸ ︷︷ ︸
value fields

00 . . . 0︸ ︷︷ ︸
run-length fields

). That is, add

a mask that erase run-length fields from the right operand. It can be easily seen that this

allows run-length fields data to be preserved during range opeartor, while comparison result

is unaffected. Similar technique can be applied on other operators.

4.2.4 Data Scan for Dictionary Encoded Data

In this section, we describe fast dataScan algorithm for dictionary encoded data, again using

dataScan of bit-packed integers. The basic idea is that by rewriting predicates on dictio-

nary encoded data to predicates on bit-packed data, we covert an predicate on dictionary

encoded data into a predicate on bit-packed data, which can be efficiently processed using

the algorithm described before.

Formally, if we use dictionary d :(key)->code to encode list [ai] to [d(ai)], then for any

predicate p on ai, we show that it is always possible to build a predicate p′ on d(ai), satisfying

63

𝑥

01
𝑚

00

or
01

𝑎 & ∼𝑚
00

sub
01

𝑥

01

or
01

∼𝑎
00

and
00

or
01

𝑥

01
𝑚

00

or
01

𝑎 & ∼𝑚
00

sub
01

𝑥

01
and
01

(∼𝑎 & (𝑥 | (𝑥 | 𝑚 − 𝑎 & ∼𝑚))) | (𝑥 & (𝑥 | 𝑚 − 𝑎 & ∼𝑚))

Figure 4.9: Operation Tree for less operator

∀i, p(ai) = p′(d(ai)).

For equal operator

p(ai) = I[ai = α]

, we define

p′(bi) = I[d(ai) = d(α)]

It is easy to verify p′ satisfies the condition above as d is bijective. Non-equality cases can

be processed in the same way.

For less operator, we use order-preserving dictionary [19]. An order-preserving dic-

tionary do makes sure the codes follow the same order as their corresponding keys, e.g.,

ai > aj ⇐⇒ do(ai) > do(aj). Thus assume do is order-preserving, less predicate

p(ai) = I[ai < floor]

can be rewritten as

p′(d(ai)) = I[d(ai) < d(floor)]

64

.

In addition, for string types, order-preserving dictionary support a prefix lookup opera-

tion lookup(prefix)-> (mincode, maxcode), which allows us to effectively support prefix

scan by rewriting it as a range scan.

Now we have shown that all predicates on a dictionary encoded data can be rewritten as

predicates on bit-packed data, it is then straight-forward to execute them using bit-packed

dataScan algorithm.

4.3 Experiment

We use an experiment platform equipped with 2 Intel(R) Xeon(R) Silver 4116 CPU@2.10GHz,

and 190G memory. SIMD codes are compiled using GCC 5.4.0, with -O3 flag. We implement

SBoost with Java / Scala, and access the SIMD-based procedures written in C++ using JNI.

Software platforms used in the experiment include JDK Version 1.8.0_152, Scala Version

2.12.4, Apache Parquet version 1.9.0.

4.3.1 Microbenchmark

In this section, we evaluate SBoost’s dataScan/decode algorithm performance on in-memory

data, with single thread.

DataScan of Bit-Packed Integer

Figure 4.10 shows the experiment result on dataScan of bit-packed encoded integers. In

fig. 4.10a, we compare SBoost with Willhalm’s SIMDScan algorithm [122, 83], rewritten

in AVX-512, and Parquet’s implementation. We can see that both algorithms outperforms

Parquet’s highly optimized scalar algorithm by over one order of magnitude. Moreover,

SBoost outperforms SIMDScan by another one order of magnitude on smaller entry size.

SBoost achieves higher efficiency on smaller entry size primarily due to better paral-

lelization. While SIMDScan uses one 32-bit lane for each bit-packed entry, SBoost can fit

65

0 5 10 15 20 25 30
0

5

10

15

20

Entry Size

T
hr
ou

gh
pu

t
(b
ill
io
n
en
tr
y/

se
c)

SBoost SIMDScan Parquet-C

(a) dataScan Perfor-
mance

0 5 10 15 20 25 30
0

5

10

15

20

Entry Size

T
hr
ou

gh
pu

t
(b
ill
io
n
en
tr
y/

se
c)

SBoost BitWeaving-H

(b) Throughput vs.
BitWeaving-H

5 10 15 20 25 30

1

2

3

4

Entry Size

Si
ze

fo
r
1
bi
lli
on

nu
m
be

rs
(G

B
)

SBoost BitWeaving-H

(c) Space Saving vs.
BitWeaving

0 5 10 15 20 25 30
0

5

10

15

20

Entry Size

T
hr
ou

gh
pu

t(
bi
lli
on

en
tr
y/

se
c)

SBoost Simulated 512 Add
512-bit Add

(d) Using 512-bit
Arithmetic Operation

Figure 4.10: SBoost Performance on Bit-Packed Data

more than one entry in each 32-bit lane and compare them in parallel, thus achieves higher

throughput for smaller entry size. For entry size of 3, SBoost is able to achieve over 9x

performance compared to SIMDScan (over 12 billion numbers per second). When entry size

increases to over 22 bits, one 64-bit lane can only accommodate at most 2 entries, which is

the same as SIMDScan. Consequently, the throughput drops to the same level as SIMDScan.

We also compare SBoost to BitWeaving-H[87], rewritten in AVX-512. BitWeaving does

not use tightly bit-packed encoding. Instead, it uses an encoding scheme that trades storage

space for efficient processing. Data in BitWeaving-H is stored in 64-bit lane, with one bit left

empty between each entry. In Figure 4.10b, we show that SBoost outperforms BitWeaving-

H by 10∼25% for small entry size, again due to higher parallelization. In Figure 4.10c, we

demonstrate the space usage to storing 1 billion numbers in tightly bit-packed format and in

BitWeaving-H format. For smaller entries, SBoost is faster than BitWeaving-H. For larger

entries, SBoost achieves similar performance as BitWeaving-H but use much less space (at

most 30% space saving).

As a conclusion, we see that SBoost does not only outperforms previous algorithms on

tightly bit-packed integers, it also achieves better performance than variation of bit-packed

encodings. This shows using SBoost with tightly binary-packed integer is the best choice for

both data scan speed and storage efficiency.

Next, we propose a study result that is able to further improve the efficiency of this

66

algorithm, and may inspire future research. As is described in Section 4.2.1, our algorithm

need some extra pre-processing step to align data to 64-bit lanes, due to the limitation in

arithmetic operation of Intel CPU. This step does not only costs extra CPU cycles, but also

limits the number of entry we can process in parallel. For example, with entry size equals

13, we can fit 39 entries into 512-bit lanes, but only 32 entries in eight 64-bit lanes.

To study the impact of this problem, we implements a software AVX-512 add/sub in-

struction as is described in Section 4.A and test its performance. We also use a hardware

simulator to evaluate the throughput if Intel has this 512-bit arithmetic instruction supported

and it takes the same cycles as 64-bit arithmetic operation. The result is demonstrated in

Figure 4.10d.

We notice that when using our software implementation of 512-bit arithmetic operations,

throughput decreases to around 50∼70% of SBoost due to the extra effort we employ to

manually handle cross-lane carry bits. However, if this instruction is supported by hardware,

we can gain another 15∼20% performance improvement compared to SBoost, which is 20x

to SIMDScan, and nearly 2x to BitWeaving-H. This shows that our algorithm still have

great potential to further improve throughput and we will explore the possibility of using

dedicated hardware for a hardware implementation of this instruction to verify this in the

future.

Finally, we conduct performance evaluation on dataScan for dictionary encoded data. In

previous section, we mention that for dataScan on dictionary-bitpacked encoded data, we

use a order preserving dictionary and rewrite query to convert the operation into a dataScan

on bit-packed encoded integers. We omit the result here for succinctness as it is identical to

what is shown in Figure 4.10a. As a summary, SBoost is able to achieve nearly two orders of

magnitude throughput comparing to Parquet, and can process at most 10 billion bit-packed

entries per second.

Decode of Delta Encoded Integer

We report our experiment on SBoost’s decode algorithm for Delta encoding. We compare

67

5 10 15 20 25 30
0

0.5

1

1.5

Entry Size

T
hr
ou

gh
pu

t(
bi
lli
on

en
tr
y/

se
c)

SBoost Lemire Scalar

Figure 4.11: SBoost Performance on Delta Encoded Data

our algorithm with the following methods.

• Scalar Decoding algorithm, which extract entries and compute the cumulative sum

item by item.

• Lemire’s vectorized delta algorithm[83], rewritten using AVX2. Parquet uses a similar

encoding format as is used in this algorithm.

Lemire’s algorithm chooses not to use standard delta encoding in consideration of de-

coding efficiency. Instead of computing delta between consecutive numbers, they compute

delta between numbers with index difference of i, where i is the number of integers in SIMD

word. For example, with Lemire’s original implementation using SSE(128-bit SIMD), they

compute delta between numbers whose index differ by 4. E.g., a sequence {x0, x1, . . . , x7}

will be stored as {x0, x1, x2, x3, δ0 = x4 − x0, δ1 = x5 − x1, . . .}. This allows them to use

_mm_add_epi32 to add all four numbers with one instruction when performing decoding.

The improvement of decoding speed comes at a cost of storage space. Lemire reports that

when using a vectorized delta of their vectorized delta is on average four times larger than

standard delta, and result in the storage cost up by 2 bits. When migrating to AVX-512,

one can compute 16 integers with a single instruction, however, this extra cost also increase

to 4 bits.

In Figure 4.11 we compare the throughput of these algorithms. Not surprisingly, Lemire’s

68

algorithm performs best as it only execute a single add instruction for each 8 numbers, and

reachs a throughput of around 1.5 billion numbers per second. However, SBoost also manages

to maintain a performance of 1 billion numbers per second, while they both outperforms the

scalar method by one order of magnitude. This shows that if storage size is not a concern,

one can choose Lemire’s algorithm. If we need to process standard delta encoding or save

storage space, SBoost is still the choice to go.

DataScan on Run-Length Encoded Integer

Next, we report our experiment result of SBoost’s dataScan performance on run-length

encoded integer. We vary both number field size and run-length field size, and have the

experiment result reported in Figure 4.12. Based on analysis on a real-world dataset col-

lection containing over 15000 columns we have seen that over 99% dataset have an average

run-length of less than 210, and thus focus our study on small entry sizes. It can be seen

that while changing field size makes no difference to Parquet, SBoost again benefits much

when dealing with small entries.

With run-length field size of 5, SBoost achieves in average 20x and at most 40x throughput

compared to Parquet, and can process in average 2 billion entries per second. When a larger

run-length field size(15) is used, SBoost performance degrades due to less entries can be

processed in parallel. Even though, it still achieves an average throughput of 1 billion

entries per second.

Even with extremely large run-length field size(26), which means only 8 to 16 entry can

fit in a AVX-512 word, SBoost still manages to process 0.5 billion entries per second, which

provides a lower bound of the algorithm’s throughput.

Overall, we have shown that SBoost’s algorithms has obvious advantages comparing to

both industrial and academic state-of-art competitors, and exhibit great potential in speeding

up database queries.

69

5 10 15 20 25 30
0

1

2

3

4

Number Field Size

T
hr
ou

gh
pu

t(
bi
lli
on

en
tr
y/

se
c)

(a) Run-length Field size 5

5 10 15 20 25 30
0

1

2

3

4

Number Field Size

T
hr
ou

gh
pu

t(
bi
lli
on

nu
m
be

r/
se
c)

SBoost Parquet

(b) Run-length Field size 7

5 10 15 20 25 30
0

0.5

1

1.5

2

Number Field Size

T
hr
ou

gh
pu

t(
bi
lli
on

en
tr
y/

se
c)

(c) Run-length Field size 15

5 10 15 20 25 30
0

0.5

1

1.5

2

Number Field Size

T
hr
ou

gh
pu

t(
bi
lli
on

en
tr
y/

se
c)

(d) Run-length Field size 26

Figure 4.12: SBoost Performance on Run-Length Encoded Data

4.3.2 TPC-H Performance

In this section, we demonstrate our experiment of using SBoost to speed up TPC-H queries,

and compare the performance result with Parquet. As SBoost aims at improving table

scanning/decoding speed, we choose Q1 and Q6 from TPC-H queries that only involves

select/project operators. We use TPC-H data generator to generate test dataset with scale

varied from 1 to 30, and read files from both disk and memory (ramdisk).

The relational algebra of Q1 is (ignoring aggregate function for succinctness)

πextend_price
discount
line_status
quantity
tax

(σshipdate<α(lineitem))

70

The relational algebra of Q6 is

πextend_price,discount(σquantity<α∧
shipdate∈(β1,β2)∧
discount∈(γ1,γ2)∧
extend_price∈(η1,η2)

(lineitem))

We encode string columns shipdate, line_status, and double columns extend_price,

discount, tax with dictionary-bitpacked encoding using a order-preserving dictionary, and

integer column quantity with bit-packed encoding. We use SBoost dataScan to execute

predicate on shipdate, and quantity, and use decode to extract line_status. SBoost

does not provide algorithms for scanning/decoding double data, so we use Parquet’s default

implementation for double columns.

The experiment results are shown in Figure 4.13. For Q1, the only predicate is on

shipdate column, which can be executed efficiently with SBoost. In addition, quantity can

benefit from SBoost’s decode function. Not surprisingly, SBoost achieves over 50% percent

performance gain. For Q6, there are four columns involved in predicate execution, of which

only two (quantity and shipdate) can be speed up using SBoost. In addition, the projected

columns are all of double type thus do not benefit from SBoost. Even with these limitations,

SBoost uses only 55% of Parquet’s execution time.

Furthermore, when executing against files stored in ram disk (simulating in-memory

database), SBoost has demonstrate even better performance. In the best case, SBoost uses

only around 15% time of Parquet to execute a query. We believe this clearly demonstrate

SBoost’s potential application in both OLAP and in-memory databases.

4.3.3 Scalability

In this section, we study the scalability of SBoost algorithms. It is straight forward to par-

allelize algorithms we introduced in this paper for bit-packed encoding, run-length encoding

and dictionary encoding. We simply split the input/output into multiple slices and process

71

1 5 10 20 30
0

20

40

60

80

100

TPC-H Scale

T
im

e
C
on

su
m
pt
io
n(
se
c)

SBoost Parquet

(a) TPC-H Q1 Disk

1 5 10 20 30
0

20

40

60

80

100

TPC-H Scale

T
im

e
C
on

su
m
pt
io
n(
se
c)

SBoost Parquet

(b) TPC-H Q1 RAM

1 5 10 20 30
0

20

40

60

80

100

TPC-H Scale

T
im

e
C
on

su
m
pt
io
n(
se
c)

SBoost Parquet

(c) TPC-H Q6 Disk

1 5 10 20 30
0

20

40

60

80

100

TPC-H Scale

T
im

e
C
on

su
m
pt
io
n(
se
c)

SBoost Parquet

(d) TPC-H Q6 RAM

Figure 4.13: SBoost Speed up TPC-H Queries

each slice with one thread.

For delta encoding, we use a two-pass method. In the first pass, we split input and

output into slices as described above, and compute cumulative sum in each slice using the

delta-decoding algorithm described before. In the second pass, for each slice, we add to

it the sum of last elements from all slices before it. As in this phase, data in each slice

has been decoded to 16-bit or 32-bit lanes, the add operation can be done efficiently using

_mm512_add_epi16 and _mm512_add_epi32.

Figure 4.14 shows the performance of bit-packed dataScan algorithm using multi-threads.

Run-length dataScan and dictionary dataScan, which are based on the same algorithm,

exhibit similar patterns.

It can be noticed that multi-threading does benefit the algorithm. Using 16 threads

generally brings 4x∼5x throughput comparing to single thread in all cases. However, we

also notice that using more than 16 threads does not bring further benefit. For entry size

3, adding more threads causes throughput to drop around 10%. For all other entry sizes,

72

124 8 16 32 64
0

10

20

30

40

Num of Thread
T
hr
ou

gh
pu

t(
bi
lli
on

en
tr
y/

se
c)

Entry Size=3 Entry Size=7
Entry Size=15 Entry Size=21
Entry Size=26 Entry Size=31

Figure 4.14: Scalability of Bit-packed dataScan

124 8 16 32 64
0

1

2

3

Num of Thread

T
hr
ou

gh
pu

t(
bi
lli
on

en
tr
y/

se
c)

Entry Size=3 Entry Size=7
Entry Size=15 Entry Size=21
Entry Size=26 Entry Size=31

Figure 4.15: Scalability of Delta decode

throughput stalls at some plateaus.

The multi-threaded Delta decode algorithm, as is demonstrated in Figure 4.15, exhibits a

similar pattern. Using more threads helps in the beginning, but no longer has obvious effect

after using more than 16 threads. In addition, similar to what we have seen in Section 4.3.1,

entry size no longer have obvious impact to throughput.

We have a hypothesis that the performance degrading and plateaus when using more

threads is caused by hardware limitation, e.g., available 512-bit registers. AVX-512 defines

32 AVX-512 registers for each CPU, and many instructions involved in our algorithm using

3 registers. With 2 CPU available, we have in total 64 AVX-512 registers. When the number

of threads exceeds 21, we cannot guarantee 3 registers for each thread, and some thread need

73

to hang. This hanging caused by resource starvation can also explain the observation that

in some cases, performance degrades when using more threads. Due to resource limitation,

we leave the proof of this hypothesis to future work.

Nevertheless, this demonstrates that our algorithms scale reasonably well within hardware

limit and can make full utilization of latest hardwares.

4.4 Conclusion

Hardware acceleration has always been playing an important role in database research.

Among all possible methods, SIMD has exhibited great potential with many advantages

such as direct memory access and fused control flow. In this paper, we introduce novel SIMD

algorithms for prevalent encoding schemes that supporting predicate execution directly on

encoded data. Our algorithms work on standard encodings, requiring no additional storage

space or special file format, yet provide lightening processing speed. Our algorithm for bit-

packed encoded integer and dictionary-bitpacked encoded integer / string can process over

10 billions numbers per second. Our algorithm for delta encoded integer and run-length

encoded integer also achieves a throughput of over 1 billion numbers per second.

We implement these algorithms and build columnar data store SBoost based on Apache

Parquet. Our experiment results demonstrate that the new algorithms outperform their

counterparts by at least one order of magnitude. It reduces TPC-H query time by over 60%

for on-disk queries and over 80% for in-memory queries.

In the future, we have plans to extend this work in several directions. First, we have shown

through a simulation result that the performance of our algorithm can further be improved

with support from hardware. In addition, we also see that general purpose hardware solutions

such as GPU and SIMD can easily be outperformed by dedicated hardware on specific

problems. We are interested in building a hardware implementation of our algorithms to

further improve efficiency.

Furthermore, our current solution only applies to table scan, leaving joining for future.

74

While the general case of joining two columns from different tables requires decoding data

into memory and making comparison, if the columns to be joined are encoded using same en-

coding schema, there is possibility that direct comparison between columns can be conducted

without decoding.

4.A Implementing 512 bit add/sub operations

Our algorithm use 512 bit arithmetic operations such as add and subtract. However, Intel

only provides 64-bit arithmetic instructions. We implement 512-bit arithmetic operations

using AVX-512 and describe the detail here. To make the introduction concise, we take add

as an example, subtract can be done in a similar fashion.

For a 512 bit number x, we represent the 8 64-bit numbers using x[i], i ∈ [0, 7]. Given

two 512 bit number a,b and r = a+ b, we have the following equations

r[0] = a[0] + b[0]

r[1] = a[1] + b[1] + rc[0]

r[2] = a[2] + b[2] + rc[1]

...

r[7] = a[7] + b[7] + rc[6]

where rc[i] ∈ {0, 1} represents whether a[i] + b[i] generate a carry, and can be computed by

performing unsigned integer comparison between the sum result with either addend.

rc[i] = I[a[i] + b[i] < a[i]]

Noticing that r[i] is either a[i] + b[i] or a[i] + b[i] + 1, we can precompute both numbers, then

selecting from them based on the values of rc[i]. We use blend instruction introduced before

75

to optimize the process.

The 512 bit add algorithm is demonstrated in Algorithm 8. In line 1-3 we precompute

nc[i] = a[i] + b[i] and wc[i] = a[i] + b[i] + 1, where nc mean “no carry” , and wc means “with

carry”. in line 4-6 we compare nc and wc to a to determine whether a carry bit is generated

for each 64 bit add operation. The reason we need to compute carry bits on both nc and wc is

as following. If a[i]+b[i] generates a carry, when look at i+1 lane, we need to check whether

a[i+ 1] + b[i+ 1] + 1 generates a carry, instead of a[i+ 1] + b[i+ 1]. In line 7, we combine the

carry bits as one integer, and use a pre-computed BLEND_TABLE to lookup blend instruction.

Those magic numbers and details of BLEND_TABLE will be described below. Finally, we use

blend instruction to select 64 bit integers from nc and wc to construct the result.

Algorithm 8 Optimized 512 bit add
1: function add_512(a,b)
2: nc = _mm512_add_epi64(a,b);
3: one = _mm512_set1_epi64(1);
4: wc = _mm512_add_epi64(nc, one);
5: ncval = _mm512_mask_cmp_epu64_mask (0xff, nc,

a, _MM_CMPINT_LT);
6: wcval = _mm512_mask_cmp_epu64_mask (0xff, wc,

a, _MM_CMPINT_LT);
7: blendIdx = ((wcval & 0x7e) � 6) | (ncval & 0x7f);
8: blend = BLEND_TABLE[blendIdx];
9: return _mm512_blend_epi64(nc, wc, blend);
10: end function

The blend table stores the correspondance between carry bits and appropriate blend

instructions. We use an example to show how this table is computed. Assume there are

carries generated at location 0, 2, 3, and 6. We illustrate the situation in Figure 4.16, where

“-” means the bit is ignored, and “?” means the bit can be either 0 or 1.

We first notice that the MSB of both ncval and wcval, corresponding to the highest 64

bit lane can be ignored, as even if there is a carry generated from the lane, no lane will take

the carry. Similarly, the LSB of wcval can also be ignored as no lower lane can contribute a

carry to it. Thus only the lower 7 bit of ncval and the middle 6 bit of wcval is meaningful.

76

𝑎0 + 𝑏0𝑎1 + 𝑏1 + 1𝑎2 + 𝑏2𝑎3 + 𝑏3 + 1𝑎4 + 𝑏4 + 1𝑎5 + 𝑏5𝑎6 + 𝑏6𝑎7 + 𝑏7 + 1

carrycarrycarrycarry

1?1??0?-

ncval

-0?10?1-

wcval

Figure 4.16: Compute blend instruction from carry bits

This gives us the magic number seen in line 7 of Algorithm 8.

It can also be noticed from Figure 4.16 that if a bit is set in wcval, the corresponding bit

in ncval can be ignored and vice versa. So there are in total only 7 effective bits. Instead of

go through the bits and determine which one are valid, we concatenate all bits from the two

variables as a 13-bit integer 1?01?0︸ ︷︷ ︸
from wcval

?0??1?1︸ ︷︷ ︸
from ncval

. All indices conforming to this pattern will

lead to the same value in the blend table.

Finally we need to compute the blend instruction value for this index pattern. From

Figure 4.16 it is easy to notice r[0] = nc[0], r[1] = wc[1], r[2] = nc[2], r[3] = wc[3]

r[4] = wc[4], r[5] = nc[5], r[6] = nc[6], r[7] = wc[7]. The blend instruction corresponding to

this index pattern is thus 10011010, where 1 means the value is chosen from wc, and 0 means

the value is chosen from nc.

By iterating all possible 27 patterns in a similar way, we can compute all 213 entries for

the blend table. The code for computing the blend table can be found in Algorithm 9.

77

Algorithm 9 Compute 512-bit add Blend Table
for i = 0 to 8191 do

wc = (i � 6);
nc = i & 0x7f;
usenc = true
result = 0
for j = 0 to 7 do

current = usenc? nc:wc;
if !usenc then

result |= (1 � j)
end if
usenc = (current & (1 � j)) == 0

end for
BLEND_TABLE[i] = result;

end for

78

CHAPTER 5

CODECDB: AN ENCODING-AWARE DATABASE

Over the past decade, columnar databases dominate the data analytics market due to their

ability to minimize data reading, maximize cache-line efficiency, and perform effective data

compression. These advantages lead to orders of magnitude improvement for scan-intensive

queries compared to row stores [60, 134]. As a result, academic research [114, 2, 63, 1], open-

source communities [13, 12], and large commercial database vendors, such as Microsoft, IBM,

and Oracle are embracing columnar architectures.

Columnar databases employ compression and encoding algorithms to reduce the data

size and improve bandwidth utilization. Both are important for organizations storing data

in public clouds. For example, one S&P 500 employee we spoke with disclosed that their

monthly cloud costs for storing Parquet files are in the six-figure range. Therefore, encoding

data to reduce the storage size makes significant practical sense. Popular encoding schemes

include dictionary encoding, run-length encoding, delta encoding, bit-packed encoding, and

hybrids. These methods feature a reasonable compression ratio with fast encoding and

decoding steps.

Many database systems support the LZ77-based byte-oriented compression algorithms [131],

such as Snappy [54] and GZip [51]. Although the decompression step in these algorithms

is slow and hinders query performance, people often believe they feature a better compres-

sion ratio over encoding schemes. However, this is not always the case. GZip and Snappy

are one-size-fits-all compression algorithms, having no preference for the dataset. Encoding

schemes are designed for datasets with particular characteristics. For example, dictionary

encoding works best on datasets with low cardinalities, and delta encoding works best on

sorted datasets. The nature of encoding schemes requires us to choose the encoding scheme

correctly for a given dataset, which is not trivial.

To illustrate this point, in Figure 5.1a, we compress a large corpus of real-world datasets

using GZip, Snappy, two popular open-source columnar datastores Apache Parquet [13] and
79

Integer String
0.0

0.1

0.2

0.3

0.4

C
om

pr
es

si
on

R
at

io
Parquet

ORC

Abadi

Snappy

GZip

Exhaustive

(a) Compression Ratio.

Encoding Decoding

1x

2x

3x

4x

R
el

at
iv

e
T

hr
ou

gh
pu

t

Dictionary Encoding

Snappy

GZip

(b) Throughput.

Figure 5.1: Comparison of encoding schemes against an encoding selector that exhaustively
evaluates encodings. The exhaustive encoding selection compresses as good as GZip and
dictionary encoding is much faster than GZip and Snappy for encoding and decoding data.

Apache ORC [12], and one encoding selection algorithm from previous work [2] implemented

on Parquet. We then compress the dataset with all available encoding schemes and choose

the one with smallest size (Exhaustive). We see that although GZip yields a better result

than Parquet and ORC, the exhaustive encoding selection achieves a similar compression

ratio as GZip. In Figure 5.1b, we compare the throughput of dictionary encoding, Snappy,

and GZip on a synthetic IPv6 dataset, and observe that this encoding scheme is 3x-4x faster

than GZip in both encoding and decoding. This result implies that a good encoding selector

allows us to benefit from both good compression ratios1 and high query performance.

Despite the prevalence of columnar databases and the importance of appropriate encod-

ing selection, limited work exists on selecting encodings for a given dataset. Seminal work by

Abadi et al. [2] proposes a rule-based encoding selection approach that relies on the global

knowledge of the dataset (e.g., is the dataset sorted) to derive a decision tree for the selec-

1. We define the compression ratio as compressed size
uncompressedsize [131].

80

tion process. Open-source columnar stores such as Parquet, ORC and Carbondata [10], and

commercial columnar solutions such as Vertica [92] choose to hard-code encoding selection

based on the column data type. Unfortunately, these approaches all have significant limita-

tions. Abadi’s rule-based algorithm achieves a sub-optimal compression ratio and requires

multiple passes on the original dataset, which becomes prohibitively expensive when dataset

size increases. Hard-coded encoding selection, as we already showed in Figure 5.1a, leads to

sub-optimal results in practice.

Besides compression, the encoding schemes also facilitate efficient query processing. Most

encoding schemes compress each data record individually. This feature allows a carefully

designed database iterator to locate the raw bytes corresponding to the records to access

and decode only these records, skipping the records in between [2, 1]. A more advanced

algorithm makes comparisons on the bit-pack encoded records directly without decoding

any byte [67], making the query even faster. A dictionary-encoded column contains a list

of distinct values. Operators, such as aggregation, can use this information to speed up

execution.

Nevertheless, many open-source columnar databases [44, 9] have encoding-oblivious query

engines. These systems separate the query engine and the encoded data file with a decoding

layer. When the query engine reads an encoded column, the decoding layer first decodes the

column into in-memory data structures, then passes the decoded data to the query engine.

The query engine is blind to the encoding scheme used and has no direct access to the

encoded data. This design prohibits the query engine from performing optimization towards

encoded columns.

Based on these observations, we design CodecDB, a holistic encoding-aware columnar

database. CodecDB demonstrates that by tightly coupling the data encoding selection in

the database design, we can significantly improve the end-to-end system performance. The

contribution of CodecDB is twofold. First, CodecDB provides a data-driven encoding selector

to choose encoding with the best compression ratio for a given dataset. CodecDB identifies

81

features that impact datasets’ encoding performance and utilizes machine learning techniques

to train a series of models to predict compression and query performance. This approach

is beneficial because it requires no prior knowledge from end-users of candidate encodings,

domain knowledge, or understanding details of the encoding implementation – all of which

are inferred from the dataset. Our experiments show that CodecDB only needs to access

a small portion of the dataset when making encoding decisions, without requiring global

knowledge of the whole dataset.

Second, the query engine in CodecDB leverages advanced open-source SIMD libraries,

parallel hash structures, and encoding-aware query operators to optimize access to encoded

data. CodecDB achieves a significant improvement in the end-to-end performance evalua-

tion of queries over encoded data in comparison to open-source, research, and commercial

competitors. Specifically, CodecDB evaluation includes query operator micro-benchmarks,

TPC-H and SSB benchmarks, and a cost breakdown analysis for a better understanding of

the improved performance. This result justifies the design of a tight coupling between the

query engine and the data encoding schemes. It also quantifies the benefit such a design

could bring to the query performance, which is otherwise lost. We believe that this result can

have significant implications considering that several recent large-scale analytic frameworks

(e.g., Presto [44]) avoid this coupling to provide a simple execution engine.

We build our prototype of CodecDB on top of Apache Parquet columnar format [13], due

to its popularity, extensibility for encodings, and open-source nature. Experiments demon-

strate that CodecDB’s data-driven encoding selection is accurate in selecting the columnar

encoding with the best compression ratio and is fast in performing the selection. Specifically,

we achieve over 96% accuracy in choosing the best encoding for string types and 87% for

integer types in terms of compression ratio. The time overhead of encoding selection is sub-

second regardless of dataset size. We evaluate the query performance of CodecDB against

the open-source database Presto [44] and a commercial columnar solution, DBMS-X, using

the TPC-H benchmark. We also compare against a recent research project MorphStore [32],

82

Figure 5.2: CodecDB System Architecture

Presto and DBMS-X using the SSB benchmark. CodecDB is on average an order of magni-

tude faster than the competitors on TPC-H, and on average 3x faster than the competitors

on SSB. CodecDB also has a lower memory footprint in all cases.

We present our main contributions as follows:

• We present CodecDB, an encoding-aware columnar database that achieves both storage

and query efficiency (Section 5.1).

• We propose a data-driven method for encoding selection on a given dataset to minimize

storage space with high accuracy and efficiency (Section 5.2).

• We implement an encoding-aware query engine to greatly improve query efficiency on

encoded columns (Section 5.3).

• We extensively evaluate our ideas (Section 5.4).

Finally, we conclude with a discussion of implications of our work (Section 5.5).

83

5.1 System Overview

CodecDB consists of a storage engine and a query engine. We demonstrate the system

architecture in Figure 5.2.

The storage engine trains a machine learning model for the encoding selection task.

When CodecDB runs for the first time, the pre-processing module executes the following

tasks. First, a data collection task reads the training dataset prepared by the end-user

or a default provided dataset, splits each table into columns, determines the column data

type, and encodes each column using all available encoding schemes. The feature extraction

task then extracts features from both the raw data columns and the corresponding encoded

files. The extracted features are then used to learn how to rank encodings based on the

compression ratio. We describe our encoding selection process in more detail in Section 5.2.

When the pre-processing tasks complete, CodecDB gets the runtime module of the storage

engine online and is ready to encode input datasets. When the user loads a new data table,

the runtime module samples each data column, calculates features for each column, runs

the encoding selection model to determine the appropriate encoding scheme for each column

and encodes the column. It also records encoding related metadata such as the column’s

dictionary and bit-width of the encoded record. CodecDB persists the metadata on disk as

a plain text file and maintains it in memory as a hashmap. The query engine uses these

metadata to optimize access to encoded data. We note that in the pre-processing steps, we

scan the entire data column when extracting features for better accuracy. However, in the

runtime phase, we only sample from the file for performance consideration. We describe

more details on sampling in Section 5.4.2.

The query engine consists of two major components: an execution engine and a thread

pool manager. The execution engine is the core component responsible for executing queries.

The execution engine reads a query plan and builds an optimized acyclic directed graph of

query operators. The query engine associates one worker task with each operator and sends

the task group to the thread pool manager for execution. The execution engine returns

84

the results to the end-user when the task group finishes execution. In Section 5.3, we

demonstrate more features of the query engine, including lazy evaluation, data skipping,

and batch execution.

CodecDB provides support to common operators, including filter (selection), join, aggre-

gation, and sort. We optimize these operators to access encoded data, which is the main

reason for CodecDB’s performance improvement. We demonstrate the design of these oper-

ators in Sections 5.3.3, 5.3.4, and 5.3.5. The current prototype of CodecDB focuses on the

execution optimization to encoded data. It does not include a query optimizer and relies on

an external component to provide a feasible query plan.

5.2 Learning to Select Encodings

Lightweight encodings are each designed to accompany datasets with specific characteristics.

Encoding selection is thus crucial to system performance, and hard-coded encoding selection

often fails to achieve a desirable result. In this section, we introduce our data-driven encod-

ing selection solution for optimizing compression ratios in CodecDB. We model the encoding

selection as a learning-to-rank problem, identify a series of features affecting the compression

ratio of encoding schemes, collect a large amount of data columns from real-world applica-

tions, and train a model to estimate the compression ratio of a given encoding scheme on a

dataset.

5.2.1 Learning a Ranking Model

To train a ranking model, we consider a set of data columns C = {c1, c2, ..., cm}, and a

set of encoding schemes E = {e1, . . . , en}. Each data column ci is associated with a list of

compression scores Si = {si1, si2, ..., sin}, where sij corresponds to the relevance of encoding

scheme ej to column ci. In CodecDB, we let sij be the compression ratio of ej on ci. We

then create a feature vector fij = F (ci, ej) for each encoding-column pair (ci, ej). The pair

85

of feature vector and score (fij , sij) then form an instance in the training set.

The objective is to learn a scoring function score : (C,E)→ R, which takes an input of

data column and encoding, and output a score, that minimizes the total loss with respect to

the training set:

m∑
i=1

n∑
j=1

loss(score(ci, ej), sij) (5.1)

Algorithms based on neural networks have shown great promise in learning such functions

for various applications [25, 26, 70, 120]. We exploit a simple neural network that takes the

column-encoding pair (ci, ej) as input and learns score s indicating the compression ratio

ej can achieve on ci. We describe our network configuration in Section 5.4.2. An intuitive

explanation to this model is that if a new column-encoding instance presents a similar feature

set to some known instances, it should also yield a similar compression ratio.

5.2.2 Feature Extraction

The features should reflect the characteristics of a given dataset that affects its compression

ratio under the encoding schemes we study. We expect our method to be able to make

encoding selection by only accessing the first several blocks of the file, rather than the high

overhead of scanning and parsing the entire file. Therefore, these features must be computed

on a subset of the records in the dataset. In this section, we describe the features we develop

in CodecDB to assist encoding selection, where we use N to denote the number of values in

a target column, and [a1, a2, . . . , an] to represent the values in the column.

Value Length: We compute the length of each value in the target column as the number of

characters in its plain string representation, and compute statistical information including

mean, variance, max, and min. The compression ratio of bit-packed encoding is closely

related to the length distribution of data records. The shorter the records are, the better it

can be compressed.

86

Cardinality Ratio: Cardinality ratio is the ratio of number of distinct values vs. the

number of values in the dataset:

fcr =
CN
|N |

Where CN is the cardinality of N . To process datasets with large cardinalities, we adopt

a linear probabilistic counting algorithm proposed by Whang et al. in [121]. We maintain

a bitmap B, compute a hash value for each record and insert a bit into the corresponding

location of the bitmap. Let o be the number of occupied bits in the bitmap, the cardinality

then can be estimated as follows:

CN ≈ −|B| log

(
1− o

|B|

)

Cardinality ratio has a direct relationship with dictionary encoding. A dataset with high

cardinality ratio is unlikely to be compressed well by dictionary encoding as there are too

many distinct entries.

Sparsity Ratio: Sparsity ratio is the number of non-empty records vs. total number of

records:

fne =
|{i|aiis not empty}|

|N |

A high sparsity ratio means there are many empty entries in the dataset, and implies a better

compression ratio with schemes that looks for repetitions in the dataset, such as dictionary

encoding and byte-compression.

Entropy We treat the dataset as a byte stream, and compute its Shannon’s entropy:

fe =
∑
cj∈C

−p(cj) log p(cj)

where C = {ck|∃i, ck ∈ ai} is the collection of characters in the string, and p(cj) =∑
i,k I(ai[k]=cj)∑

i |ai|
is the frequence of character cj . We also compute Shannon’s entropy sepa-

87

rately for each value in the column, then collect the statistical information, including mean,

variance, max, and min of the entropy values. Shannon’s Entropy provides a lower bound for

the theoretical best compression ratio that can be achieved by any encoding / compression

schemes. In general, a lower entropy value means less information is included in the dataset,

which implies a better compression ratio for dictionary encoding, bit-packed encoding, and

byte-compression.

Repetitive Words: Most popular byte-compression algorithms that belong to the LZ77

family work by encoding repetitive occurrences of strings as tuple (prev_location,msg_length,

next_char), which basically refer to the nearest previous occurrence of the string. The com-

pression ratio of the LZ77 family can be computed as ratio = Lc
Ls

∑M
m=1Km where Ls is the

input data length, Lc is the tuple length, M is the maximal message length, and Km is the

number of messages of length m. As Lc, Ls, and M are all constants, we can explore the

efficiency of the compression algorithms by making an approximation on Km, the number

of distinct repetitive words in the dataset.

We use a block-based analysis algorithm similar to what is used in LZ77. We treat the

input dataset as a byte stream and read a block of size S from it. Starting from the beginning

of the block, we scan the content and record the substring s(i, j) we met so far, where i is the

start point of current scan, and j is the current read position. If ∃ k < i, s(k, k+j−i) = s(i, j)

(i.e., s(i, j) occurred before) we restart the scan starting from j + 1. When reaching the end

of the block, we record the total number of new messages discovered, as well as their length

distribution. For efficiency, we represent a string with its Karp-Rabin fingerprint [71]. Given

a string a = a0a1a2 . . . an, a large prime number p and a random r < p, the Karp-Rabin

fingerprint krf(a) is defined to be

krf(a) = (
n∑
i=0

air
i) mod p

This representation also allows easy substring concatenations as krf(concat(a, b)) = krf(a)+

88

r|a|krf(b). Converting a string to its fingerprint allows our algorithm to make faster string

comparisons and requires less space for intermediate result. The probability that two different

substrings have the same fingerprint is very low [71] and we ignore such cases.

Sortedness: The sortedness of a dataset evaluates how “in order” a dataset is. Many

encodings schemes can achieve better a compression ratio from a well-sorted dataset. For

example, run-length encoding can generate longer runs on a sorted dataset than the same

dataset with records randomly organized. Delta-bitpacked hybrid encoding can also benefit

from the sorted dataset as the delta values between sorted entries tend to be smaller and

thus can yield to shorter bit-packed entries. Previous methods (e.g., [2]) use a boolean value

to represent whether a dataset is sorted or not. However, we observed that a continuous

variable more robustly captures the sortedness property of a dataset, as in practice, many

datasets can be “partially” sorted and these partially sorted datasets still benefit from certain

encodings. For example, a dataset is 90% sorted will have longer runs than a non-sorted

dataset.

We adopt three methods of evaluating the sortedness of a column, fs, and include all of

them in feature sets. Kendall’s τ [72] and Spearman’s ρ [33] are two classical measures of

rank correlation. For our purpose of evaluating the sortedness of a given dataset, Kendall’s

τ is computed as

τ = 1−
2
∣∣{(ai, aj)|i < j, ai > aj}

∣∣
n(n− 1)/2

and Spearman’s ρ is computed as

ρ = 1− 6
∑n
i=1 (si − i)2

n(n2 − 1)

Both methods generate a real number in [−1, 1]. 1 means the dataset is fully sorted, and -1

means the dataset is fully inverted sorted. However, most lightweight encodings will work

just as well on a fully inverted sorted dataset if it works well on a fully sorted one. Observing

89

this, we define a variant, called absolute Kendall’s τ .

τabs = 1− |1− 2τ |

and τabs has a value range of [0, 1], and approaches 0 when the dataset is close to either fully

sorted or fully reverse sorted.

Computing the sortness features on the entire column have a time complexity of O(n2),

which is prohibitively time-consuming. Therefore, we adopt a sliding window method. We

slide a window of size W over the dataset and with probability p perform computation on

pairs within that window. There are in total n−W + 1 such windows, and for each window,

the time complexity is O(W 2). The time complexity will be p · (n −W + 1) · O(W 2). By

setting p to Θ(1
W 2), we can perform the computation in O(n).

5.2.3 Dataset Collection

We derive our training set from various structured data collections (e.g., open city data

portals, scientific computation cluster logs, machine learning datasets, traffic routes, and

data challenge competitions). We describe the dataset in more detail in Section 5.4.1. We

develop a dataset collection framework for data preparation. The framework consists of a

file reader, a feature extractor, and a data store. The file reader uses file extensions to

determine file format and invokes a corresponding parser. We currently support common

tabular file formats, including CSV, TSV, JSON, XLS, and XLSX. The file reader splits

a file into columns and infers each column type, then extracts features on the generated

columns. The framework stores the generated columns as separate files in the file system

and metadata and extracted features in a DBMS.

We use the encoding algorithms shipped with Apache Parquet. To determine the best

encoding (encoding that compresses a given column with minimal size) for each data column,

we apply all viable encodings to every column and compute the corresponding compression

90

ratios. The encoding scheme having the best compression ratio is chosen as the “ground-

truth” in the training phase.

We collect data and train the model on a variety of input data, and expect that the

trained model can be applied to many users and datasets. However, including new encoding

types would require re-training of the model.

5.3 Encoding-Aware Query Engine

We build an encoding-aware columnar query engine in CodecDB. With it, we demonstrate

that a holistic system design with a tight coupling between encoded columns and database

operators significantly improves the end-to-end query performance. The query engine main-

tains the encoding information of data columns and applies operators optimized for the

corresponding encodings. These operators rely on recent algorithms that provide higher

throughput, consume less CPU time, and less memory footprint than previous similar so-

lutions. The query engine also provides features targeting big data analysis, such as lazy

evaluation and batch execution. Next, we introduce the operators and these features of the

query engine.

5.3.1 In-Memory Data Structures

CodecDB keeps the execution results of operators in in-memory data structures, also known

as mem tables. When the operator performs a selection on one input table, we store the

result in a bitmap, with each bit marks each row’s validity. Our bitmap provides SIMD-based

logical operations of bitmaps and a fast iterator allowing users to access all marked positions.

As the input tables can be arbitrarily large, CodecDB provides a sectional bitmap consisting

of multiple small bitmaps, with each section corresponding to a data block. Individual

sections can be cached to an external storage, or be compressed individually to reduce

memory footprint. CodecDB supports compressing the bitmap using run-length encoding.

91

CodecDB provides row-based and columnar mem tables, which can be used to store

results from aggregation, join and sort operators. The mem tables support common primitive

types, including int32, int64, float and double, and variable-length binary type. CodecDB

uses a ‘zero-copy’ strategy for binary data. Each binary field in mem table is a struct

binary {uint8_t* ptr, uint64_t len}, where ptr is a pointer to the start of the binary

record, and len the length of the record. When loading a binary column from external data

files, CodecDB decodes the binary records into the internal buffer and returns a reference

to that record. Subsequent operations that move binary records between mem tables only

involve copying the pointer, not moving the data.

5.3.2 Operator Evaluation

CodecDB evaluates all operators in an operator graph in parallel to utilize multi-core plat-

forms. The parallelism happens on two levels, operator level and data block level. When

executing a query, CodecDB treats each operator as a task and submits the task group to

an operator thread pool. Each task is blocked until all its ancestors finish. Operators not

related (e.g., two filters on different columns) can thus run in parallel. Operators also access

their input data in parallel by splitting the input as multiple data blocks and use a data

processing thread pool to process the blocks. All operators share the same data processing

thread pool, and we configure the thread pool size to limit the memory footprint used by

each query.

CodecDB utilizes pipelined evaluation of operators and late materialization to reduce

the memory footprint used by temporary relations. To group query operators from an

operator graph into pipelines, we implement lazy evaluation of operators. Lazy evaluation

does not execute an operator immediately when it is invoked. Instead, it maintains a record

of operators that have been called, and executes them all together with a pipeline when

encountering a blocking operator, such as sort and aggregation. With lazy execution, we

convert the operator graph into a directed acyclic graph of pipeline stages. Each of these

92

Figure 5.3: Lazy Evaluation groups operators to pipeline stages

stages contains multiple non-blocking operators and one blocking operator. Evaluating a

blocking operator will execute the corresponding pipeline stage. We show this process in

Figure 5.3. When executing all operators in parallel, the blocking operators separate the

operators into four pipeline stages. The first two pipeline stages have no dependencies

and execute in parallel. Other pipeline stages start execution when their ancestors finish

execution.

CodecDB categorizes an operator as non-blocking if it can execute locally on a single data

block, without global information from the entire data file. Filtering and probing a hash table

are examples of non-blocking operators. An operator is blocking if it reads multiple data

blocks. Building a hash table, aggregation, and sorting are examples of blocking operators.

To execute pipeline stages, CodecDB designs a data stream framework and implements

a demand-driven pipeline based on it. A stream of type T, represented by Stream<T>,

provides two functions: map(function<S(T)>) and foreach(function <void(T)>). Users

create a pipeline by obtaining a data stream, calling map to add operations to the pipeline,

and calling foreach to execute the pipeline. For example, we show how to build a pipeline

to count the positive values in an integer column. We first get a stream of data blocks

Stream<Block> from the column, and call map with a function<Bitmap(Block)>). This

function scans a block and returns a bitmap marking positions of all positive numbers. We

then call foreach with a function<int(Bitmap)>, which counts the size of each bitmap and

93

sum them up to get the result. The call to foreach triggers the pipeline execution and returns

the results.

CodecDB supports batch executions of operators accessing the same data column to

reduce disk read and improve cache locality. It searches in the execution graph for operators

reading the same data column and groups them. When the first operator in the batch group

executes, the engine reads disk files, feed it to all operators in the group, and caches the

result. When subsequent operators run, the engine directly fetches results from the cache.

After filtering a data table on some columns and obtaining a bitmap, CodecDB uses

the bitmap to retrieve data from other columns, known as late materialization [114]. We

optimize data retrieval by implementing data skipping in all column readers. Data skipping

allows readers to jump to the next valid record marked by the bitmap, skipping all records in

the middle without reading them. Data skipping save both disk IO and CPU cost. Without

data skipping, column readers need to read all records, decode them, and discard those not

required. In CodecDB, we implement data skipping on three levels:

• Data Block Level. When the corresponding bitmap section is empty, CodecDB skips the

entire data block. Skipping a data block saves disk I/O.

• Data Page Level. Parquet splits each data block into multiple data pages and compresses

each page independently. CodecDB will skip the whole page without decompressing it if

the next row to read surpass the boundary of an unread page. Skipping data pages saves

decompression effort.

• Row Level. CodecDB computes the number of bytes corresponding to the number of rows

to skip, reads those bytes from the input, and discards them. Skipping rows saves decoding

effort.

94

Figure 5.4: SBoost in-situ Scan for Bit-packed Data

5.3.3 Filter Operator

CodecDB provides two families of filter operators optimized for dictionary encoding and delta

encoding, based on SBoost [67]. SBoost is an open-source library containing fast decoding

and in-place search algorithms for lightweight encodings utilizing SIMD instructions. We

briefly review how it works here.

One core algorithm in SBoost is in-place scanning of a bit-packed data stream, as is shown

in Figure 5.4. The algorithm loads multiple bit-packed data entries into a SIMD register

and compares all entries in parallel. It then fetches the most significant bits from each entry

as a bitmap, representing the comparison result. SBoost supports all relational operators,

including equal, less, greater, and their combinations. The advantage of this algorithm is

two-fold: first, the algorithm performs comparison directly on the encoded data and does

not decode the data. Skipping the decoding saves a huge computation effort. Second,

the algorithm uses SIMD to perform comparisons on multiple data entries in parallel. For

example, when scanning a bit-packed stream of size 10 (each entry takes 10 bits), SBoost uses

only 8 instructions on average to process 50 entries, achieving over 20x throughput compared

to the scalar algorithm that first decodes each entry then performs the comparison.

Dictionary encoding maps data entries to integer keys, and bit-pack the keys. CodecDB

95

provides a single column filter operator on dictionary encoding. The operator uses the data

column’s dictionary to translate the query value to an integer key, then invokes SBoost to

perform an in-place search on the bit-packed keys to find the target. This filter operator also

supports greater, less, and range comparisons, if the dictionary is order-preserving. In an

order-preserving dictionary, for any two entries key1 = value1, and key2 = value2, we have

value1 > value2 ⇐⇒ key1 > key2. With an order-preserving dictionary, we can rewrite

any comparison on the encoded values to comparisons on the keys and invoke SBoost to

execute the query.

This single column filter operator does not only support comparison predicate but also

LIKE and wildcard operations. Examples are p_type like ‘%BRASS’ in TPC-H query 2

and l_shipmode in (‘MAIL’, ‘SHIP’) in query 12. The operator translates these queries

as a logical disjunction of multiple equality operators. For example, to execute p_type

like ‘%BRASS’, the operator scans the dictionary entries and finds all entries ending with

‘%BRASS’, performs equality predicate for each entry as we described in the previous para-

graph, and makes a logical OR on the result bitmaps to obtain the final result.

We use a similar idea to build a filter operator to compare multiple data columns us-

ing the same order-preserving dictionary. One example is comparing two DATE columns,e.g.,

o_commitdate < o_receivedate. Giving the two columns sharing the same order-preserving

dictionary, the value of o_commitdate is less than o_receivedate if and only if the corre-

sponding key of commit date is smaller than that of receive date. We extend the SBoost

algorithm to support the comparison between two bit-packed data streams and use the result

bitmap as the filter output.

Lastly, CodecDB provides a filter operator optimized for delta encoding. Due to the

nature of delta encoding, we need to decode the entire data column before making a com-

parison. SBoost provides a SIMD algorithm to compute the cumulative sum of 8 integers

fast, which we use to speed up the decoding process. CodecDB’s delta filter loads a list of

delta values into memory, invokes SBoost to compute their cumulative sum, and uses SIMD

96

comparison instruction to compare them against the target value.

5.3.4 Aggregation Operator

CodecDB provides an aggregation operator optimized for data columns with dictionary en-

coding for the aggregation key. The operator starts by creating an array of aggregation

results with the same size as the dictionary. It then reads each row to be aggregated, fetches

the integer key from the group by column, and uses it as an index into the array to update

the aggregation result. This approach works because the integer key is always a value be-

tween 0 and dictionary size. We call this operator array aggregation, for it uses an array to

keep the aggregation results.

Compared to the widely used hash aggregation, array aggregation has several advantages.

First, hash aggregation needs to compute a hash value from the key. Array aggregation

directly uses the stored integer key and does not require additional computation. Second,

hash keys can collide, and hash aggregation needs to employ a collision resolution such

as open addressing, at a performance cost. Array aggregation has no collisions. Finally,

when performing aggregation using multi threads, we first aggregate multiple data blocks in

parallel and merge the result. Merging two hash tables is far less efficient than merging two

arrays.

Array aggregation executes efficiently for small key spaces, and is only applicable to

dictionary encoding. When the key space is large or the column is not dictionary encoded,

CodecDB provides a stripe hash aggregation operator, a variation of hash-based aggregation.

The operator first splits each data block into stripes by aggregation key. This step guarantees

that the same key will always go to stripes with the same index, and tries to spread keys

evenly to each stripe. In the current implementation, we compute the stripe index as the

key modulo the number of stripes. Next, it performs hash aggregation independently on

each stripe in parallel. Finally, it merges stripes with the same index from different blocks

together. The major advantage of stripe hash aggregation versus the vanilla version is that

97

it splits a big key space into multiple small ones, and uses several small hashtables instead of

a single big one in aggregation. Smaller hashtables facilitate better cache locality, and using

several small hash tables allows updates and merges in parallel. These advantages enable

stripe hash aggregation to provide better performance than vanilla hash aggregation.

5.3.5 Other Operators

In this section, we briefly introduce other operators CodecDB provides, not optimized for

encoded data.

CodecDB provides nested loop join, block nested loop join, and hash join. For hash

join, we adopt phase concurrent hashmap(PCH) proposed by Shun et al. [112]. PCH uses a

lock-free algorithm allowing operations of the same type to run in parallel. Multiple threads

can perform insertion only, search only, or deletion only at the same time with no data races.

In CodecDB hash join has two phases. The first one is building the hash table from one

table, involving only insertion operations. The second one is searching the hash table (in a

typical hash join) or removing entries from it (in hash-based exist join). The two phases do

not overlap as the second phase can only start after the hash table is ready. This allows us

to use PCH in all hash-based join operators. CodecDB provides an in-memory sort operator

and an external merge sort operator. For top-n queries, it offers an in-memory heap-based

top-n operator.

5.4 Experiments

In this section, we show the experimental results demonstrating that CodecDBshows sig-

nificant improvement in both storage and query efficiency. Storage-wise, we show that

CodecDB’s data-driven encoding selection can accurately identify the encoding with a good

compression ratio for various datasets. We also provide an in-depth analysis of the reason

our approach excels competitors. Query-wise, we demonstrate CodecDB’s query operators

98

Table 5.1: Datasets Statistics By Category

Category Table Count Column Count Data Size(GB)
Server Logs 166 3836 20.4
Government 256 5126 26.8
Mach. Learning 111 3113 12.5
Social Network 98 1593 23.9
Financial 91 1954 16.8
Traffic 50 2826 22.8
GIS 16 382 5.2
Other 8 428 1.6

outperform their encoding-oblivious competitors. We also show the query engine outper-

forms open-source query framework, commercial columnar database, and a recent research

project in two established benchmarks, in both query time and memory footprint. We further

elaborate on how CodecDB achieve such improvement.

5.4.1 Environment Setup

The experiment platform has two Intel(R) Xeon(R) Gold 6126@ 2.60GHz, 192G memory,

and 250G SATA SSD. It runs Ubuntu 18.10 with kernel version 4.15.0-101. We build our

CodecDB prototype in Java (encoding selection) and C++ (storage engine and query engine).

The Java part runs with OpenJDK 1.8.0-252 and Scala 2.12.4. The C++ part is compiled

using GCC 7.5.0 with -O3.

The datasets we use for data-driven encoding selection come from multiple public data

sources, covering a wide variety of domains and application scenarios. Table 5.1 shows the

statistical overview of datasets by their categories. These domains generate and store massive

amounts of data, facilitating many vital applications.

Columns of string and integer types dominate the dataset (over 76%). Columns of double

type also occupy a considerable portion (17%) in the datasets, most of which belong to

GIS, machine learning, and financial datasets. However, Parquet only supports Dictionary

encoding for double attributes, and double attributes usually have high cardinality, making

99

it unfit for Dictionary encoding. We choose to focus on string and integer types in our

experiment.

In query evaluation, we compare against Presto version 0.226 and a commercial columnar

solution DBMS-X with the latest version, on the TPC-H benchmark. We also compare

against MorphStore [32], Presto and DBMS-X on SSB. All systems run on the same hardware

platform mentioned above.

5.4.2 Data-Driven Encoding Selection for Compression

In this section, we evaluate the accuracy of our neural network based data-driven encoding

selection method for improving compression ratios. We use a standard MLP neural network

for both the classification and the regression task. We construct a two-layer neural network

with 1000 neurons in the hidden layer, using tanh as the activation function. We use sigmoid

for output, and cross-entropy as the loss function when performing ranking. We train the

network with Adam [75] for stochastic gradient descent using default hyper-parameters(α =

0.9, β = 0.999). The step size is 0.01, and decay is 0.99. We use 70% of data columns for

training, 15% for dev, and 15% for testing. No noticeable impact is observed when we change

the way of partitioning the dataset (e.g., 80/20 for training/testing). Feature Sortness has

a hyperparameter W for sliding window size. We choose window size to be 50, 100, and 200,

and include all results in the feature set.

We also compare the accuracy of our method to other candidate approaches. Abadi et

al. [2] propose an encoding selection method based on a hand-crafted decision tree. They

use features that are similar to what we employ in this paper, including cardinality and

sortedness (although binary), and empirically setup selection rules. We refer to this decision

tree approach as Abadi in experiments.

Apache Parquet has a built-in encoding selection mechanism which simply tries Dictio-

nary encoding for all data types. When the attempt fails, it falls back to a default encoding

for each supported data type. In practice, we notice that such a failure is primarily caused

100

Abadi

Parquet

CodecDB
0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

(a) Selection Accuracy

Abadi

Parquet

CodecDB

Exhaustiv
e

0

10

20

30

40

50

60

C
om

pr
es

si
on

R
at

io

Integers

Strings

(b) Encoded Size

Figure 5.5: Accuracy and Encoded File Size of CodecDB’s Encoding Selection

by the dictionary size exceeding a preset threshold, which means the dataset to be encoded

has high cardinality. So this can also be viewed as a simplified version of a decision tree. We

refer to this rule-based approach as Parquet in experiments.

In Figure 5.5a, we show selection accuracy of different approaches, which is the percent-

age of samples the algorithm successfully choose the encoding with minimal storage size after

encoding. For string columns, CodecDB achieves 96% accuracy, a significant improvement

from Abadi’s decision tree with only 32% accuracy, and Parquet’s encoding selection of 80%.

For integer columns, CodecDB achieve 87% accuracy, also a substantial gain from Abadi’s

40% and Parquet’s 72%. Note that we evaluated alternative machine learning models and

settled on a neural network as it provides the highest accuracy. Several other models had

high accuracy, which also justifies that our features engineering represents critical character-

istics of the dataset for encoding. In Figure 5.5b, we show how much storage reduction each

algorithm can bring to the entire dataset, where “exhaustive" is the observed best encoding

scheme after exhausively testing all valid encoding schemes for an attribute. CodecDB’s

encoding selection can bring ∼30% size reduction compared to Parquet, and delivers a com-

pression ratio close to the exhaustive result. The compression ratio is also competitive

against commercial columnar stores. On TPC-H dataset of scale 20, CodecDB compresses

101

data tables to 9.8G, 10% smaller than DBMS-X, which compresses tables to 11G. Presto

uses the same data tables as CodecDB.

Next, we evaluate whether some features play more important roles than others. To

verify this, we iteratively remove each feature from the set, retrain the network with the

same parameters. The result shows that removing any feature brings a drop in prediction

accuracy of 18∼25%, with cardinality and length leading the drop. This result is expected as

most features are designed to map to some specific encoding schemes. For example, sortness

is important to delta and RLE encoding, cardinality is crucial to dictionary encoding and

also has an effect on bit-packed encodings. As a result, removing any of the features will

lead to a misprediction on a subset of encoding schemes.

Case Study: Where previous methods fail

We have chosen three typical cases to show where Abadi and Parquet’s methods under-

perform compared to our approach.

Case 1: Abadi Tree for High Cardinality Abadi’s approach has the following selection

path: if the number of distinct values is greater than 50000, use either LZ compression or

no compression based on whether the data exhibits good locality. However, we observe that

when the number of distinct values is greater than 50000, there are still over 12% of attributes

for which bit-packed encoding achieves better compression than LZ. For these cases, merely

removing leading zeros result in better space savings than removing repeating values.

Case 2: Abadi Tree for Run-Length Another selection path in Abadi’s approach is

that when average run-length is greater than 4, it uses run-length encoding. However, we

found that there are over 23% of columns having an average run-length greater than 4,

where dictionary encoding performs best. This difference can be a factor of encoded key

size compared with the value size, local dictionaries that leverage partially sorted datasets

to provide small keys, and bit-packing or run-length dictionary hybrids.

Case 3: Parquet for Bit-Packed Parquet by default always tries to use dictionary en-
102

coding. But our data shows that for integer columns, there are only 72% of attributes have

dictionary encoding as the ideal encoding. A considerable amount of the remaining integer

columns can be compressed well by bit-packed encoding, which Parquet fails to choose.

We find that these methods typically suffer from the following problems that CodecDB’s

approach addresses:

• Unable to extend to new encoding schemes or encoding scheme variations

• A single property (e.g., run-length, cardinality) cannot distinguish different groups

• Expert knowledge-based parameters can be inaccurate (and expensive to obtain)

CodecDB does not hard-code the decision but relying on the data characteristics to make

the decision, allowing it to make a better choice than previous methods.

Encoding Selection on a Partial Dataset

We have demonstrated that a neural network-based data-driven encoding selection method

outperforms current state-of-art from academic research and open-source implementations.

However, most features we employ require scanning the entire column, which is time-consuming.

To mitigate this problem, we read only the first N bytes from the dataset and compute fea-

tures based on those values. We then use the computed features to make decisions as in

the original method, eliminating the correlation between dataset size and time needed for

encoding selection, making it possible to make selection decisions in constant time.

To empirically estimate how much accuracy we can achieve with only partial knowledge of

the dataset, we vary N to be 10K, 100K, and 1M bytes. This experiment is conducted only

on data columns whose size are larger than 10MB to avoid oversampling. Not surprisingly,

the prediction accuracy decreases when a smaller M is used. However, we still manage to

achieve reasonable accuracy. Our result shows that when N = 1M , we have 85% accuracy

on integer and 94% accuracy on string. With N = 10K, we can get 83% accuracy on integer

dataset and 92% accuracy on string dataset. which is still better than state-of-art.

Random sampling [59, 94] is another widely adopted sampling method in previous works.

103

We also compare the result of random sampling with our approach of head sampling. When

applying random sampling, the accuracy of encoding selection drops drastically to 65%, and

we noticed that the misprediction primarily occurred on data columns suitable for delta en-

coding and run-length encoding requirements to data locality. Delta encoding measures the

difference between adjacent values, and run-length encoding counts the consecutive repeti-

tion of values. As the sampled data from random sampling failed to preserve this locality,

prediction using randomly sampled data does not yield a satisfactory result.

Performance Overhead

In this section, we study the performance overhead of the data-driven method, with time

consumption only involving feature extraction and model execution. The model training

process is conducted off-line and is not included. We test selection time when choosing

the first 1M bytes to generate features. The average time for calculating the features on

a single data column is 57ms, and that for executing the model is 3ms. We also compare

the data-driven method running time against exhaustive encoding selection, which encodes

a data column with all encoding candidates and choose the one with the smallest size. Our

experiment includes four encoding types for integer data and three encoding types for string

data. As the encoding time is proportional to input file size, we execute CodecDB’s feature

extraction on the entire data column to make a fair comparison. Result shows CodecDB is

2.5x faster compared to exhaustive encoding when scanning then entire column. With our

default setting of sampling the first 1M bytes, CodecDB can be three orders of magnitude

faster than the exhaustive approach on a 1GB data column. When the selection involves

more encoding types, CodecDB will benefit more compared to the exhaustive approach.

5.4.3 Encoding-Aware Query Execution

In this section, we explore CodecDB’s query engine performance. We start by showing

micro-benchmark results of CodecDB’s operators. We then show that CodecDB outperforms

104

0

100

200

Single Column Compare

0

200

400

Two Columns Compare

0

50

100

Single Column Like

CodecDB Encoding-Oblivious Competitor

5 10 15 20
0

200

400

Array Aggregation

5 10 15 20

TPC-H Scale

0

2500

5000

7500

Stripe Aggregation

5 10 15 20
0

50

100

150

Join

E
xe

cu
ti

on
T

im
e

(m
s)

Figure 5.6: CodecDB operators outperform encoding-oblivious operators

13 14 22 15 19 17 15 >
3600

31 >
3600

14 13 11 19 99

CodecDB Presto DBMS-X

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22
0.0

2.5

5.0

7.5

10.0

E
xe

cu
ti

on
T

im
e

(s
ec

)

Figure 5.7: CodecDB outperforms encoding-oblivious columnar databases in TPC-H Bench-
marks (Scale 20)

competitors on TPC-H and SSB. We also provide breakdown analysis that helps explain how

CodecDB achieves such improvement.

In Figure 5.6, we test CodecDB operators on various TPC-H scales and show that

CodecDB operators always outperform their encoding-oblivious competitors. We also de-

scribe these competitors after describing each operator. We first test filter operators on

the dictionary encoded column. The “Single Column Compare” in Figure 5.6 corresponds

to the predicate l_shipdate <= ‘1998-09-01’, “Two Columns Compare” corresponds to

l_commitdate < l_receiptdate, and “Single Column Like” corresponds to p_container

105

LIKE ‘LG%’. The competitors in these cases are encoding-oblivious, who decode records from

columns and make comparisons. We see that CodecDB’s operators bring 5-20x performance

boost compared to encoding-oblivious solutions, and has more advantage when dealing with

large datasets. While encoding-oblivious solutions’ time consumption almost doubles when

moving from the TPC-H scale 5 to 20, CodecDB’s time consumption only increases by 30%.

Next, we test the aggregation operators. In “Array Aggregation”, we count lineitem group

by l_receiptdate. CodecDB uses an array of size 2560 to perform aggregation, and the

competitor uses the Google sparsehash [55] hash table. In “Stripe Aggregation”, we count

orders group by o_custkey. CodecDB splits the input into 32 stripes, and the competitor

uses a sparsehash hash table that does not split the input. In both cases, we see a 2-3x perfor-

mance improvement. The last experiment in the micro-benchmark is our hash join operator

based on phase-concurrent hashtable. The competitor uses a sparsehash hash table. We

join orders with customer on the foreign key, with condition c_mktsegment=‘HOUSEHOLD’.

The results show 10-15% improvement, primarily because we can build a hash table using

multiple threads.

Next, we compare CodecDB query engine against popular columnar database solutions

on TPC-H benchmarks of scale 20. We choose two candidates, Presto [44] and DBMS-X.

Presto is an open-source distributed SQL query engine designed to query large data sets.

Presto supports the Parquet storage format and executes queries in an encoding-oblivious

way, making it a good candidate to show the advantage of encoding-aware query execution.

DBMS-X is a commercial big data analytic system leveraging columnar storage. We encode

the tables in Parquet format with column chunk size of 128M, and page size 1K. For all

systems, we limit the number of concurrent threads per query to 20.

We setup Presto to use a single node, with the maximal memory per query set to 20G.

Presto reads the same Parquet tables as CodecDB does. DBMS-X lacks support for many

Parquet encodings, prohibiting it from reading our Parquet tables. Instead, we use its native

table format with auto compression. For query efficiency, we load data into DBMS-X’s Read-

106

Only Storage, a highly optimized read-oriented disk storage structure. As CodecDB is not

equipped with a query optimizer, we use Presto to generate a query plan for each query,

replace the operators with CodecDB’s corresponding version, and manually code the query

plan into CodecDB. We measure the time Presto and DBMS-X spend on generating query

plans, and deduct it from the execution time to ensure a fair comparison.

We run all TPC-H queries with CodecDB, Presto and DBMS-X and show the result in

Figure 5.7. We limit the bar graph’s height and show the time consumption on the top of

the bar. DBMS-X on Query 5 and Presto on Query 21 do not finish after 1 hour, we record

these two outliers as “>3600” seconds, and ignore them in subsequent analysis. In general,

we see a substantial performance improvement of CodecDB versus competitors. For all 22

queries, CodecDB is, in average 11.43x faster than Presto and 9.81x faster than DBMS-X,

excluding the outliers mentioned above. The best result versus Presto is on Query 17, where

CodecDB is 46x faster. The one for DBMS-X is Query 20, where CodecDB is 44x faster.

On queries with at least one predicate on the dictionary encoded column, CodecDB

performs extremely well. We see that most queries satisfy this situation in practice. 17 out

of 22 TPC-H queries (exceptions are Q9, Q11, Q13, Q18, and Q22) contains at least one

such predicate. In these queries, we see at least 10x performance improvement compared to

competitors.

In Figure 5.8, we make a time consumption breakdown of the first four TPC-H queries

to understand better how CodecDB improves query performance. We see that all four

queries are CPU-bound. CodecDB’s encoding-aware query execution significantly reduces

the CPU execution time. Besides, data skipping helps CodecDB to reduces the IO cost. Both

contribute to efficient query execution. In Figure 5.9, we compare the memory footprint of

the four queries, collected using /proc/<pid>/stat. We see that CodecDB saves up to 80%

memory footprint compared to DBMS-X. CodecDB can execute directly on encoded data

without decoding them into memory, and skip data records not accessed by the query. Both

contribute to the improvement. The two experiments demonstrate the benefit that a query

107

q1 q2 q3 q4
0

50

100

150

T
im

e
C

on
su

m
pt

io
n(

se
c)

CodecDB

DBMS-X

Presto

CPU

IO

Figure 5.8: Time Breakdown of TPC-H
Queries

q1 q2 q3 q4
0

10

20

M
em

or
y

F
oo

tp
ri

nt
(G

B
)

CodecDB

DBMS-X

Presto

Figure 5.9: Memory Footprint of TPC-H
Queries

engine tightly coupled with encoded columns brings.

Finally, we compare CodecDB query engine with MorphStore [32] on the Star-Schema

Benchmark(SSB) with scale 10. MorphStore is a columnar database that compresses inter-

mediate results with lightweight encodings to reduce memory footprint and uses SIMD to

speed up query on compressed data. It shares many similar design concepts with CodecDB.

We use SSB as MorphStore does not support TPC-H benchmark. We compare the two

systems on query execution speed and memory footprint of intermediate results. We also ex-

ecute SSB with DBMS-X and Presto, and include their results for reference. For MorphStore,

we obtain the query execution time from its running artifacts and compute the intermediate

result memory footprint using the minimal compressed size. For Presto and DBMS-X, we

only include the query time, as the systems are not instrumented to measure the size of

intermediate results.

We show the result in Figure 5.10. CodecDB is again faster on most queries than all

competitors. It runs SSB queries up to 5x and in average 3x faster than MorphStore and

consumes less memory on intermediate results. The reason is three-fold. First, CodecDB

uses a late materialization execution strategy and generates fewer intermediate results than

108

0

2000

4000

6000

E
xe

cu
ti

on
T

im
e(

m
s)

CodecDB MorphStore DBMS-X Presto

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1 4.2 4.3
0

200

400

600

In
te

rm
ed

ia
te

R
es

ul
t

M
em

or
y

F
oo

tp
ri

nt
(M

B
)

Figure 5.10: CodecDB is faster than MorphStore on SSB, and consumes less memory on
Intermediate Results

MorphStore. Second, CodecDB relies heavily on bitmaps as intermediate results. Bitmaps

are smaller in size and facilitate faster intersection/union operations. Finally, late material-

ization allows CodecDB to push down most filtering operations to SBoost, further speeds up

the query execution. For example, in Q1.1, to perform a predicate+interesction operation,

CodecDB uses 55ms and only generates a single bitmap of 7MB as an intermediate result.

MorphStore takes 500ms on the same operation and generates 12 intermediate results sum

up to 94MB. These experiments demonstrate that CodecDB is efficient in execution time

and provides an alternative solution to reducing query memory footprint.

5.5 Conclusion

We propose CodecDB, an encoding-aware columnar database that exploits a design tightly

coupled with encoding schemes. CodecDB combines autonomous data-driven encoding se-

lection and encoding-aware query execution to improve both storage and query efficiency

on encoded columnar data. CodecDB’s storage engine analyzes data column characteristics

109

to choose the encoding scheme that best fits a given data column, achieving a compression

ratio comparable to GZip. CodecDB’s query engine utilizes the encoding knowledge of data

columns to improve query efficiency on encoded data.

Extensive experimental results show that on both encoding selection and query exe-

cution, CodecDB brings substantial improvement compared to prior research, widely-used

open-source implementations, and commercial products. Overall, as a system, CodecDB

demonstrates the great potential of the system design philosophy of encoding-awareness.

In the future, we plan on expanding CodecDB to support query-aware encoding selection,

include new encoding schemes, lossy compression, and further explore more encoding-aware

algorithms for other database operators, such as joins.

110

CHAPTER 6

COLOM: COLUMNAR LAYOUT IN KEY-VALUE STORE

A Log Structured Merge Tree (LSM-tree) is an efficient data structure for key-value data

persistence and query. The LSM-tree is designed to support write-intensive applications

using an out-of-place update policy. Modern LSM-trees implements this by appending up-

dates to an in-memory structure as log entries. When the memory buffer is full, LSM-tree

merges the entries and flushes them as a sorted run to the disk. When the number of runs

of a similar size exceeds a threshold, multiple runs are merged into a longer run, which is

often referred to as a multi-level structure. The level of a run indicates how many merges it

has participated in. Such an update policy enables high write throughput with a trade-off

of lookup performance and storage space. Modern key-value stores, such as Bigtable [27],

HBase [8], LevelDB [53], RocksDB [45], and Apache Cassandra [48] all adopt LSM-tree as

their storage layer solution for its superior write performance. Additionally, Facebook built

MyRocks [43], an LSM-tree based storage engine for MySQL. LSM-trees are also used to

build auxiliary database structures such as inverted indices and spatial indices [123, 73, 104].

The multi-level nature of the LSM-tree brings extra effort to key lookup operations.

When inserting or updating a key, an LSM-tree does not check the existence of the key.

Instead, it simply writes the key and the new value to the memory buffer. Only during the

merge step will an LSM-tree consolidates two entries with the same key. Multiple entries

with the same key can exist in multiple levels or in multiple runs of the same level. If an

application only needs the latest value of a key, it starts with the lowest level, scans all runs

in that layer, and stops as soon as it finds the target key. On the other hand, if an application

needs all entries belonging to the same key, it needs to scan all runs in an LSM-tree. In

either case, a lookup operation usually needs to scan more than one run for the target key

and consolidate the results as the final output. The efficiency of key lookup in runs is thus

crucial to LSM-tree lookup performance.

Many LSM-tree implementations [45, 53] store the runs on disk as a data structure
111

key …...valuekeyvalue

key …...valuekeyvalue

key …...valuekeyvalue

key offset key offset key offset

Sections

Index

user_key seq_number type

Figure 6.1: SSTable stores keys and values in a row-oriented layout

called sorted-strings table (SSTable). We demonstrates its structure in Figure 6.1. SSTable

stores the sorted key-value pairs in an interleaved manner, with each value following its

corresponding key. Each key in SSTable consists of three pieces: the user key, a sequence

number that monotonically increases with each operation, and a type marking if the entry is

an insert or a delete. To facilitate efficient lookup, SSTable splits the data into sections and

provides a sparse index referring to the header of each section. When performing a point

look up with a specific key, the SSTable first uses the sparse index to locate the section

containing the target entry, then executes a sequential search in that section to find the key

and the corresponding value.

SSTable stores data in a way similar to the row-wise layout in relational databases, in

which fields belong to the same row are stored consecutively. In an SSTable, each row consists

of four fields: user key, sequence number, type and value. We notice that while a lookup

operation on an SSTable only need to access the user key column, it has to read out the

entire row then discard other fields. As an alternative to row-wise storage layout, columnar

layout handles this scenario more efficiently. A columnar layout stores fields of the same

column consecutively, allowing the query to access each column independently and reduce

unnecessary cost.

112

Storing a column together also allows the system to compress data with various lightweight

encoding schemes, reducing the storage size and improving query efficiency [1]. Lightweight

encoding is a family of compression algorithms featuring fast compression and decompres-

sion speed and low CPU utilization. Typical lightweight compression includes bit-packed

encoding, run-length encoding, and delta encoding. Many popular compression algorithms,

such as Gzip and Snappy, are blocked-based. These algorithms compress and decompress

data in blocks. To access a single compressed record, we need first to decompress a large

block in which the record resides, then fetch the record from the decompressed data. Many

lightweight encodings are record-based and maintain a one-on-one mapping between a record

and its corresponding bits in the compressed result. This mapping allows readers to locate

and decompress a target record in a compressed data block, saving the effort of processing

adjacent records irrelevant to the query. With advanced algorithms [67], the system can also

query the encoded data without decoding them. Thus, queries on lightweight encoded data

are efficient with data skipping and direct queries on encoded data.

As we have seen, lookup operations in an SSTable only access the user key fields. There-

fore, storing the key in a separated column and applying lightweight encoding on it should

help improve the lookup performance of an LSM-tree. However, we notice that although

LSM-tree and columnar databases share some similarities, there is still a big difference in

their application scenarios. In columnar databases, queries are mostly read-only, and data

rarely changes after the initial import. As the encoding operations on data columns is a one-

off process, we have a high tolerance to the latency it brings. While in an LSM-tree, data

runs are frequently merged during the update step. If we encode the run, each merge will

involve decoding and re-encoding operations to the data. Thus, the extra encoding/decoding

step can impact the overall performance of an LSM-tree.

Previous research [34, 35, 36] points out that in an LSM-tree, data access pattern is asym-

metric among different levels. Most merges happen in lower levels. In data runs at higher

levels, lookups dominates the operations. With this finding, we propose a hybrid structure

113

in the runs of an LSM-tree. For runs at lower levels, where merge happens frequently, we

use a merge-friendly data structure. For runs at a higher level, we use a lookup optimized

columnar structure. This hybrid structure addresses the efficiency of both the lookup and

merge operations and leads us to the design of CoLoM (Columnar Log Structure Merge

Tree). It explores using columnar layout and encoding to expand LSM-tree design space and

improve query efficiency. CoLoM consists of three parts from the bottom up.

VEST:Columnar Key-Value Storage Format We propose VErtical Sorted Table

(VEST), a key-value storage format that persists sorted entries on disk in columnar layout.

VEST stores the keys, control data, and values in separated columns ordered by the keys,

then encodes each column with lightweight encoding algorithms to reduce storage size and

improve lookup efficiency. A lookup operation first performs a binary search on the key

column to find its index, then locates the control data and value in the corresponding columns

with the index. A merge operation of two VESTs first materializes key-value pairs from the

old VESTs, performs a merge sort, then stores the pairs in a new VEST. When searching

on integer keys, VEST can be up to 3x more efficient in key lookups compared to the widely

used SSTable, while maintaining a similar performance in the merge operations. VEST also

supports encoding algorithms on the columns.

LSM-tree Implementation that Supports Varying Storage Format at Each

Level We design an LSM-tree that allows users to choose different storage formats at each

level. With fewer merge operations and frequent lookup operations at higher levels, one

can use a storage format that optimizes for lookup. At lower levels where merge happens

frequently, one can choose a storage format that excels in scan and materialization operations.

CoLoM: Adaptively Storage Selection at Each Level We propose CoLoM, a fast

and self-tunable LSM-tree-based key-value store. CoLoM uses a cost-based optimizer to

decide the storage format to use for each LSM-tree level and makes sure the entire system

runs with high efficiency. It models the cost of read/write operation, computes the expected

cost regarding a given workload, describes the cost as an optimization problem concerning

114

model choice for each level, and solves the problem to find the optimal assignment.

Our contributions include the following:

• We show that columnar layout and encoding could greatly improve lookup efficiency

in disk-based key-value storage.

• We introduce a columnar LSM-tree that supports a hybrid design of various data

layouts and encoding on each level.

• We design CoLoM, a key-value store that analytically finds the optimal design of a

columnar LSM-tree regarding the application workload.

• We implement the system on LevelDB and provide an extensive experimental evalua-

tion.

In the rest of the chapter, we present the design of VEST in Section 6.1. We introduce

the cost model in Section 6.2, and the evaluation results in Section 6.3. We conclude the

chapter in Section 6.4.

115

Magic (4 bytes): 0x56455354(“VEST”)

Section n

Section 2

VEST

META

num_sections

section 1
start value
section 2
start value
...
section n
start value

section 1 offset

section 2 offset

...

section n offset

Encoded

Section 1
num of entry

Key Column Encoded Data

key column metadata
- offset
- encoding

sequence num column metadata

entry type column metadata

value column metadata

Seq Num Column Encoded Data

Entry Type Column Encoded Data

Value Column Encoded Data

Figure 6.2: VEST Storage Format Layout

6.1 VEST: Sorted Runs with a Columnar Layout

We design VEST, a columnar storage format for LSM-tree. As a prototype, we provide a

VEST implementation in LevelDB [53], a popular open-source LSM-tree implementation. It

is also straightforward to migrate VEST to other LSM-tree implementations.

We demonstrate the structure of a VEST file in Figure 6.2. A VEST file consists of

multiple sections storing key-value pairs, a footer of metadata, and a magic number for

applications to recognize the format. Metadata stores the number of sections in this file, as

well as the offsets of each section. It also keeps the first key of each section as a sparse index

to facilitate faster lookup.

Each section starts with the number of entries it contains, followed by the columns’

metadata. VEST includes two columns for keys and values, as well as some additional

columns for the control data specific to each LSM-tree system. We develop the prototype

of VEST based on LevelDB, in which the control data includes a monotonically increasing

sequence number and a entry type flag marking deletion operations. Thus, each section of

a VEST file for LevelDB contains four columns: the user key, sequence number, entry type,

and value. The metadata of a column records the encoding type this column uses and the

116

data offset relative to the beginning of a section.

VEST chooses a proper encoding for each data column to facilitate better space utilization

and efficient data access. As an example, if the dataset only contains keys of integer type,

VEST computes the delta between the keys and the smallest value of the section and bit-

packs the deltas. The entry type is a binary value, and relatively few records have values of

1 (which marks a deletion operation), VEST uses run-length encoding on it. Users can also

manually indicate the encoding type for each column.

A point lookup in VEST first executes a binary search on the start value of sections in

the metadata to finds the section containing the key. It then locates the offset of the target

section and performs a second binary search on the key column to locate the index of the

target key in the section. Finally, it uses the index to read data from all other columns, then

materializes the final output. A range lookup follows similar steps to search for the first key

in the range and maintains an iterator to read the following entries.

The merge of two VEST files is implemented as a two-level merge sort. The first level of

merge happens on sections. We read the sections in sequence from both files and see if they

overlap. If there is no overlap between the two sections to be merged, we copy the smaller

section into the output, read the next section from the corresponding VEST, and repeat

the steps. If the two sections overlap, we go two the second level of merge that happens

on entries. In this level, we sequentially materialize all entries from the two overlapping

sections, perform a merge sort on them, and write the merged result to the output.

We add the support to VEST into existing LSM-tree solutions to build CoLoM. CoLoM

supports using different storage formats at each level of an LSM-tree. It introduces an

abstract storage layer, which implements all the storage APIs of the original LSM-tree and

uses this layer to replace the original storage layer in the LSM-tree seamlessly. The abstract

layer contains readers and writers corresponding to VEST and the original storage format

used by the LSM-tree implementation, which we refer to as “base format”.

When the LSM-tree reads a data file, the abstract layer recognizes VEST files and base

117

files by looking for the magic number at the end of the file and relays the requests to the VEST

reader or the base reader. When CoLoM writes a table at a level, it consults an assignment

table to determine what storage format to use at this level and invoke corresponding writers.

To build such an assignment table, CoLoM employs a cost model to estimate the average

cost of the system and optimize the cost concerning a given workload.

118

L The number of levels
Ti The capacity ratio between level i and i+ 1

M The boundary of leveling and tiering. For i >= M we use leveling and
tiering otherwise

Bi The number of entries in a block at level i
fi The false positive rate of Bloom Filters at level i
p(x) The point lookup time in a block with size x
r The average sequential scan time of a block
u(x) The merge time of a block with size x

Table 6.1: Symbols Conventions used in Cost Analysis

6.2 Cost Analysis and Optimization

This section describes the cost model used by CoLoM to generate the assignment table. We

begin by modeling the cost of each operation in an LSM-tree and estimating the average

cost with regards to a given workload as a weighted sum of the operation costs. We then

describe the file format assignment at each level as an optimization problem. By solving it,

we obtain the assignment table.

6.2.1 Cost Analysis of Operations

We analyze the worst-case write cost, point lookup, and range lookup in an LSM-tree, and

derive the average cost of a given workload. We list the symbols used in this section in

Table 6.1. In this analysis, we make the following assumptions: bloom filters for all runs

reside in memory and have negligible access cost.

Point Lookup The worst case of a lookup occurs when it searches every run of an

LSM-tree. This situation happens when the target key is not in the LSM-tree or exists only

at the top level. The bloom filter at level i has a probability of fi to give a false positive,

which leads to a wasted lookup in the run, taking time p(Bi). The total cost for processing

all runs at a level with tiering policy is then Tifip(Bi), and for one with leveling policy is

119

fip(Bi). The expected cost of a worst-case point lookup operation is

P =
M−1∑
i=0

Tifip(Bi) +
L∑

i=M

fip(Bi) (6.1)

Range Lookup The worst case of a range lookup accesses every run of a LSM-tree,

when each run contains at least one key within the range. It involves a point lookup of the

start key, and a sequential scan until reaching the end key. Here we assume all range lookups

are short range lookups, in which all the keys being read fall in the same storage block. The

sequential scan on a run thus takes a constant time r. The cost of a range lookup can be

represented as follows

R =
M−1∑
i=0

Ti(p(Bi) + r) +
L−1∑
i=M

(p(Bi) + r) (6.2)

Update A single update operation to a LSM-tree not only has immediate effect to the

memory layer, but also participates in subsequent merge operation. We thus compute the

cost of an update as amortized cost among all levels. In the analysis we assume that an

update always targets at a key in the top level and participates in merges L times. This is

the worst case and serves as an upper bound of the cost of an update operation. At level

i with tiering policy, the entry participates in merge only once, and takes time u(Bi), with

each entry contributing u(Bi)
Bi

. At a level with leveling merge policy, the entry participates in

merge Ti times and contributes to the cost Tiu(Bi)
Bi

. The total amortized cost of one update

operation is

U =
M−1∑
i=0

u(Bi)

Bi
+

L∑
i=M

Tiu(Bi)

Bi
(6.3)

Approximation of Lookup/Merge Time

The point lookup time p(x) and merge time u(x) used in cost estimations are functions of

block sizes, and we now discuss how to approximate their output. A point lookup on a

120

sorted data block of size n performs a binary search, with time consumption O(log n). We

approximate it with a log function p(x) = ε ln(x) + η. A merge results in a data block

of size n has a time consumption of O(n), and we approximate it with a linear function

u(x) = µ · x + ξ. The ε, η, µ and ξ here are coefficients that vary between different block

implementations, and we determine their values using linear regression.

6.2.2 Optimization

We consider a workload W consisting of α point lookup, β range lookup, and γ updates.

From the discussion in previous section, we want to choose appropriate data structures for

each level to minimize the expect cost C(W) of the workload

C(W) = αP + βR + γU (6.4)

where P,R and U are described in Equations (6.1) to (6.3).

To minimize C(W), we define L binary variables ki ∈ [0, 1]. ki = 1 means using lookup

optimized mode in level i, otherwise using balanced mode. We denote the time of performing

a point lookup, range scan, and merging a block in lookup optimized mode as pl(x), rl and

ul(x). In balanced mode, they are pb(x), rb and ub(x). For each level i, we have

p(x) = kipl(x) + (1− ki)pb(x)

Similarly, we represent Ri and Ui with ki. We can now rewrite Equation (6.4) as an integer

linear programming(ILP) with regarding of ki.

min
ki

C(W)

s.t. ki ∈ {0, 1}

121

and solve it with an ILP solver to obtain the values of ki.

122

6.3 Evaluation

6.3.1 Implementation and Setup

Implementation We implement a prototype of CoLoM based on LevelDB [53], a popular

open-source key-value store. LevelDB is a tiered LSM-tree implementation. When merging

two data runs, it uses a table builder to write new data runs to disk. We modify the

table builder to take an additional parameter indicating whether the new table should use

VEST instead of SSTable. When a merge happens, CoLoM consults an assignment table to

determine what data format to use based on the level where the merge operation occurs.

CoLoM stores the assignment table as a disk file and provides an executable to generate

the assignment table based on system parameters and workloads described in Section 6.2.

CoLoM reads the model file to determine what storage format to use at each level. By

default, the cost model uses a capacity ratio of 10 and a Bloom Filter false positive rate of

1%. Both are default values in LevelDB. We show the values of these parameters in Table 6.2.

Experimental Platform The experiment platform has two Intel(R) Xeon(R) Gold

6126@2.60GHz, 192G memory, and 250G SATA SSD. It runs Ubuntu 20.10 with kernel ver-

sion 5.4.0-77. We implement the CoLoM prototype based on LevelDB version 1.23 compiled

using GCC 9.3.0 with -O3. The cost model is optimized using IBM ILOG CPLEX [31]

version 12.10.0.

We compare CoLoM against competitors using Yahoo! Cloud Serving Benchmark(YCSB, [30])

version 0.17.0. We develop YCSB clients for both CoLoM and LevelDB that access the C++

libraries using JNI. YCSB runs on the same hardware platform with OpenJDK 11.0.11. We

use a dataset of 10M records of size 11.2G before compression. We first load the full dataset

into the target systems, then run the workloads on them. We use the default workloads

setting from YCSB, including mixtures of lookup, insert, update, and delete operations.

123

L 7 Maximal 7 levels
Ti 10 Capacity Ratio
M 8 Not using Leveling
B0 15000 Based on File size of 2M and value size of 128 Bytes
fi 1% Bloom Filters use 10 bits for each entry

Table 6.2: Parameter Values used in Cost Model Estimation

6.3.2 Operation Microbenchmarks

In this section, we compare the performance of VEST and SSTable with a series of micro-

benchmark experiments. All experiments in this section read and write data against a

memory buffer and do not involve disk I/O.

Point Lookup We start with the point lookup performance and demonstrate the result

in Figure 6.3. We generate sequential integer keys and uniformly pick the lookup target. In

the left subfigure, we fix the number of entries to one million and vary the value field length

from 16 bytes to 4096 bytes. We see that 1) VEST supports 2-3x faster point lookup than

SSTable and 2) VEST has a stable lookup performance with larger values, while SSTable’s

lookup performance deteriorates with larger value lengths. In the right subfigure, we keep

the value field size to 128 bytes and vary the number of entries from one million to four

million. We see that both VEST and SSTable become slower with more entries, but the

lookup time consumption of VEST increases much slower than SSTable.

The advantage of VEST over SSTable on point lookups primarily comes from the colum-

nar layout and encoding VEST employs to store data. A Lookup operation in the LSM-tree

only involves key comparisons. SSTable interleaves the keys and values into the same memory

region, forcing a lookup to load both key and values into CPU caches, but needs to elimi-

nate the value fields when performing key comparisons. In contrast, VEST uses a columnar

layout that separates keys and values into different memory regions and applied encoding to

reduce their size. The lookup on VEST only needs to access the key column and achieves

better cache efficiency as it loads more entries into caches for comparison. For example,

124

16 32 64 12
8
25
6
51
2
10
24
20
48
40
96

Value Field Length (Bytes)

0

250

500

750

1000

Po
in
t L
oo
ku
p
Ti
m
e
(n
s)

1M Entries
VEST SSTable

1M 2M 3M 4M
Num Entries

Value Size 128 Byte

Figure 6.3: Point Lookup Performance of VEST and SSTable. VEST is 2x-3x faster than
SSTable, and more stable with larger value sizes.

on a dataset with integer keys and a value size of 400 bytes, VEST can load an order of

magnitude more entries into cache compared to SSTable.

When the lookup obtains the target index from the key column, it uses the index to

perform data skipping on the value columns to fetch the value. The time consumption on

data skipping is relatively independent of the value field size. VEST thus maintains a more

stable performance compared to SSTable when dealing with large value fields.

Range Lookup We next compare the range lookup performance on VEST and SSTable.

We adopt a similar scenario in the point lookup experiment: load the data table with

sequential integer keys and uniformly choose the lookup target. We then scan a range

of at most 100 keys starting from the target key. We show the result in Figure 6.4. In the

left subfigure, we fix the number of entries to one million and vary the value field length. In

the right subfigure, we fix the value size to 128 bytes and vary the number of entries. As the

range lookup contains a point lookup and a range scan, we subtract the result of Figure 6.3

from the result of Figure 6.4, and see that the average time consumption of scanning a single

entry in VEST is 11.5 ns, while that for SSTable is 14.5 ns. These numbers are relatively

stable across different parameter settings and comply with previous studies on the benefit of

125

16 32 64 12
8

25
6

51
2

10
24

Value Field Length (Bytes)

0

1000

2000

3000

Ra
ng

e
Lo
ok
up

 T
im

e
(n
s)

1M Entries
VEST SSTable

1M 2M 3M 4M
Num Entries

Value Size 128 Bytes

Figure 6.4: Range Lookup Performance of VEST and SSTable. VEST is 1.5-2x faster than
SSTable, and more stable with larger value sizes.

the columnar layout [114]. As a result, we see an overall performance improvement of 1.5 2x

of VEST over SSTable on range lookups.

Merge We then compare the merge performance between VEST and SSTable. We

prepare two data runs of the same number of entries, with their key ranges not overlapping.

We perform a sort merge on the two input data runs and write the result to a new data

run in the same storage format. We present the result in Figure 6.5. In the first subfigure,

we have each input data run containing 35K entries and vary the data run size by varying

the value field length. We see that VEST consumes about 50% time comparing to SSTable

when performing a merge operation. In the second subfigure, we fix the value field size to

128 bytes and vary the number of entries in each input data run. In the third subfigure, we

fix each input data run to 2MB and vary the value field size. In all scenarios, we see that

VEST has a 5%-20% performance improvement comparing to SSTable.

We notice that in the second subfigure, while VEST’s merge performance is linear to the

number of entries as expected, SSTable’s merge performance is close to 2x of that of VEST

when the number of entries <= 30K, and is ∼1.1x when the number of entries is larger

than 30K. A further evaluation demonstrates that with a value size of 128 bytes, when the

126

16 32 64 128
Value Field Size(Bytes)

0

5

10

15
M
er
ge

 T
im

e
(m

s)

35K Entries

15K 30K 45K 60K
Num of Entries

Value Size 128 Bytes

32 64 128
Value Field Size

Data Run Size 2M

VEST SSTable

Figure 6.5: Merge Performance of VEST and SSTable. VEST is 5%-20% faster than SSTable
when perform merging.

16 32 64 128
Value Field Size(Bytes)

0

5

10

15

M
er
ge

 T
im

e
(m

s)

35K Entries

15K 30K 45K 60K
Num of Entries

Value Size 128 Bytes

32 64 128
Value Field Size

Data Run Size 2M

VEST SSTable

Figure 6.6: Merge Performance of VEST and SSTable, only considering user CPU time.

number of entries is no larger than 32410, SSTable takes 2x time of VEST, and otherwise

only slightly slower than VEST. We profile the program under the two inputs, and notice

that with the number of entries 32,410, there are ∼270,000 page faults, and about half of

the CPU time is spent in kernel space. With the number of entries 32,411, the number of

page faults drops to ∼25,000, and the kernel CPU time drops to close to zero. In Figure 6.6,

we redraw the figures of merge time consumption, including only user space CPU time. We

can see that the merge time of both SSTable and VEST is linear to number of entries. We

are still investigating the root cause of this observation.

Table Size and Compression SSTable supports applying Snappy [54] compression al-

127

2M 4M 6M
Data Run Size

0

2

4

6

Co
m
pr
es
se
d
Si
ze
 (M

B)

VEST
SSTable
VEST-Snappy

SSTable-Snappy
VEST-Zlib
SSTable-Zlib

Figure 6.7: Comparison of the disk file size of VEST and SSTable, with and without Snappy.
VEST is slightly larger than SSTable, and the compression approaches has little impact on
both formats.

gorithm on the data block. We also implement Snappy support in VEST. As an extension,

we further implement Zlib compression in both formats and study how compression impacts

both formats’ merge performance. The dataset contains values of a fixed size of 128 bytes,

filled with random characters. We vary the number of entries and show the result in Fig-

ure 6.7. We see that VEST has a slightly larger file size compared to SSTable as we do not

apply any encoding on the sequence number column. Applying bit-packed encoding on se-

quence numbers could reduce the file size of VEST to be slightly smaller than SSTable, while

the difference is still insignificant. Nevertheless, Snappy and Zlib have negligible impact on

the file size on both table formats, primarily due to the incompressible random strings in

the value fields. Considering the non-negligible compression and decompression operation

overhead, we avoid using compression in all our experiments.

128

VEST SSTable
ε 34.98 179.46
η -251.67 -1740.2
µ 409.41 429.87
ξ −7.99× 106 −5.01× 106

Table 6.3: Parameter Values from Linear Regression

6.3.3 Running YCSB with LevelDB and CoLoM

YCSB is a popular benchmark for key-value databases, and we use it to compare the perfor-

mance of LevelDB and CoLoM under different workload scenarios. YCSB supports running

against different DBMS using YCSB clients. A typical client connects to the DBMS server

through the network and relays the operation commands from YCSB to the DBMS. However,

LevelDB and CoLoM do not have a client-server infrastructure. As a result, we implement

YCSB clients for LevelDB and CoLoM using JNI. First, we build shared libraries from Lev-

elDB and CoLoM, then load the libraries into the clients upon initialization and create a

DB instance. During the benchmark execution, each YCSB operation is passed to this DB

instance through JNI for execution.

YCSB assumes the target DBMS supports multiple value fields for a key, while LevelDB

and CoLoM only supports a single value field for each key. To bridge the gap, we concatenate

the field_name:value pairs into a single string and prefix the field names and values with

their lengths, allowing us to extract the entries from the encoded string.

We run the core workloads in YCSB with 10M records and 1M requests and report the

results in Figure 6.8. CoLoM outperforms LevelDB on all workloads.

6.3.4 Cost Model Estimation

We use linear regression to estimate the parameters and obtain the value shown in Table 6.3

of both SSTable and VEST using 4-byte integer key, 128-byte value as an example.

We use these numbers to update the cost model and predict the system throughput

129

wl1 wl2 wl3 wl4 wl5 wl6
0

50

100

Av
er
ag

e
La
te
nc

y
(n
s)

CoLoM LevelDB

Figure 6.8: Running YCSB with CoLoM and LevelDB.

log(1M) log(2M) log(3M) log(4M)
Num Entries (log scale)

200

400

600

800

1000

Po
in
t L

oo
ku
p
Ti
m
e
(n
s)

Point Lookup Time on
Different Num of Entries

10 20 30
Num Entries

0

25

50

75

100
M
er
ge

 T
im

e
(m

s)

Merge Time on
Different Number of Entries

SSTable VEST

Figure 6.9: Use Linear Regression for the Model Parameters

130

when assigning different storage models to each LSM-tree level. VEST excels SSTable in all

operations. Not surprisingly, the cost model chooses VEST for all levels.

We further study the boundary conditions that make the CoLoM cost model favor one

storage format over the other. In other words, how much should we slow down VEST before

the cost model favors SSTable? For example, we use a workload with 50% point lookups

and half updates and assume all the values have 128 bytes. All the other parameters are the

same as shown in Table 6.2.

We simulate two situations. In the first one, we keep stable the point lookup perfor-

mance of VEST, and alter VEST’s merge performance by introducing a coefficient f , and

setting µV EST = f · µSSTable, ξV EST = f · ξSSTable. By varying the value of f , we can

simulate the situations that VEST performs merge operations faster or slower compared to

SSTable. This experiment can simulate the case when VEST uses more advanced string

compression techniques such as RePAIR-Front Coding [80] on the value column to trade

materialization/encoding time with space efficiency. Next, we keep the merge performance

of VEST stable and vary its point lookup performance by setting εV EST = f · εSSTable,

ηV EST = f · ηSSTable. This situation simulates a storage format that supports efficient

compression and decompression, but need to decompress the whole data block every time it

performs a key lookup.

131

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2
VEST Lookup / SSTable Lookup

1
2
3
4
5
6
7

Le
ve

l

VEST SSTable

0.8
0
0.8
5
0.9
0
0.9
5
1.0
0
1.0
5
1.1
0
1.1
5
1.2
0
1.2
5
1.3
0
1.3
5
1.4
0

VEST Merge / SSTable Merge

Figure 6.10: Use Cost Model to simulate CoLoM behavior with different performance char-
acteristics of VEST

132

6.4 Conclusion

LSM-tree is a storage solution widely used to back many key-value data stores. Popular LSM-

tree implementations use SSTable, a row-wise storage to persist the key-value entries on disk.

In this paper, we propose VEST, a columnar storage solution that outperforms SSTable in

both lookup and merge operations. We build CoLoM, an LSM-tree implementation based on

LevelDB. CoLoM supports both storage formats of VEST and SSTable. It uses an adaptive

storage selection to choose appropriate storage formats for each storage level. Experiments

show that CoLoM achieves better efficiency compared to LevelDB.

133

CHAPTER 7

RELATED WORK

7.1 Compression and Encoding

Lightweight encoding, such as dictionary encoding, and LZ77 [131] are two popular families

of compression algorithms adopted in columnar stores. Lightweight encoding features high

throughput and in situ data filtering. LZ77 features higher compression ratios but requires

decompression before evaluation. By extracting sub-attributes and applying a lightweight

encoding, we achi-eve a compression ratio comparable to LZ77 compression, while preserving

all the benefits of lightweight encoding.

Popular byte-level compression techniques, such as Gzip and Snappy, both belong to the

LZ77 family, which utilizes a sliding window on an input data stream, looking for strings that

contain a recurring prefix, and encodes each string as a reference to the previous occurrence.

Gzip applies Huffman encoding to the reference stream for a better compression ratio [39]

and Snappy skips that step for higher throughput. LZ77 [131] has a theoretical guarantee

for a good compression ratio. However, it is a sequential algorithm and needs to decompress

an entire data block before the original data can be accessed. This brings a high latency for

accessing the compressed data.

Lightweight encoding is a family of entry-level compression techniques. It transforms each

data entry (an integer, a line of text, etc.) in the input to a shorter representation. Popular

lightweight encoding schemes include dictionary encoding, bit-packed encoding, delta encod-

ing, run-length encoding, and their hybrids [114, 22, 132, 78]. Lightweight encoding has very

low CPU consumption as the operations are usually simple and can often be performed in

parallel [67]. Lightweight encoding maintains entry boundaries during compression, allowing

access of compressed entries without decoding the entire data block, and direct predicate

execution on compressed data, skipping decompression [67].

Another related research area is string dictionary compression [94, 79]. Research here ap-

134

plies dictionary encoding to the data, then compresses the dictionary entries using methods

such as prefix-coding and delta encoding. Such approaches also address repetitions of sub-

strings in a string attribute, but they help little for improving query execution. Additionally,

these methods rely on sorting the string dictionary for prefix-coding.

7.2 Encoding in Databases

Application of encoding techniques has been studied for various components in databases, in-

cluding data table [64, 28, 106, 77], data column [114, 98], index [18, 74], data dictionary [94],

database duplication [124], and search trees [126].

Selecting the proper encoding scheme for a database system is a trade-off between size

reduction and CPU overhead in the encoding/decoding process. Classical byte-oriented en-

coding techniques such as GZip and Snappy have been widely supported in various DBMS

systems [64, 28, 114, 13, 27]. However, studies [132, 1] suggest that these schemes come

with notable CPU overhead from decompression and may significantly impact system per-

formance. Lightweight, attribute-level compression, such as run-length and bit-packed en-

coding, can be beneficial to query intensive systems.

Columnar databases, such as C-Store [114] and MonetDB [60], physically consecutively

persist attributes, and allow a higher performance of lightweight encoding. Previous works [83,

21] also show that for specific data sets, lightweight encoding achieves a comparable com-

pression ratio with far lower CPU time than GZip.

Reasonable size reduction, significant low CPU overhead, and in-situ query execution

make lightweight encoding algorithms more favorable than byte-oriented compression in

columnar data stores [2].

135

7.3 Query Execution on Encoded Data

Compression-aware database design is necessary for query execution on compressed data.

Chen et al. [28] design a cost-based optimizer for compressed database tables, and Kimura

et al. [74] propose an algorithm for selecting compressed indices for a set of queries under a

limited space budget.

Hardware acceleration also demonstrates high potential in speeding up the decoding

operation. Willhalm et al. [122] uses SIMD instruction to speed up the decoding process

for bit-packed data. Jiang et al. [67] proposes a SIMD-based algorithm for decoding delta-

encoded data. Rozenberg et al.[109] develops Giddy, a library for executing fast decoding

algorithms using GPUs. Fang et al. introduce UDP [46], a co-processor for data extraction

and transformation tasks in columnar encoding and compression. Variations of encoding

formats that are optimized for hardware execution, such as VarInt [37, 113], Horizontal

Bit-Interleaving [87, 103], and SIMD-Delta [83] are also proposed.

Lightweight encoding has an advantage over byte-oriented compression algorithms that

they preserve attribute boundary during encoding [2, 1], and allow algorithms [3, 67] to

query on encoded data without decoding, significantly reduce the CPU overhead and enable

more efficient query execution. Damme et al. utilize these features of lightweight encoding

to design MorphStore [32]. This in-memory query engine compresses intermediate results

with lightweight encoding, reducing memory footprint and improving query efficiency.

7.4 Cost Estimation and Encoding Selection

We can estimate an encoding scheme’s efficiency from both space and time aspects, e.g.,

the compression ratio and encoding/decoding overhead. Popular approaches for estimating

compression ratio include mathematical modeling [28, 94], regression on statistical features

[18], and random sampling [59, 74]. Kimura et al. [74] propose using a bipartite graph

between column and index to deduce compressed index size. For en/decoding overhead,

136

most previous work [28, 74] model it as a weight in addition to normal access cost.

Encoding selection tackles a relevant problem of choosing an efficient encoding scheme

for a given a data table or column. Abadi et al. [2] introduce a hand-crafted decision tree

for encoding selection on a given dataset based on experience and global knowledge of a

dataset (i.e., cardinality and if a column is sorted). Lemire et al. [83] focus on integer data

and propose rules to choose between PFOR and bit-packed encoding.

In practice, many implementations solve the problem by hard-coding a “not too bad”

default encoding per data type. Apache Parquet [13] and CarbonData [10] uses dictionary

encoding for all data types and will fall back to some default encoding if the dictionary size

exceeds a preconfigured limit. Apache ORC [12] uses RLE for integer and Dictionary-RLE

for string types. Apache Kudu [11] uses a dictionary for string type and bit shuffle for all

other data types.

VEST proposes using a neural network-based learning approach to rank and select from

various encoding schemes. Learning to Rank is a widely adopted approach in data mining

and information retrieval, in which learning algorithms are applied to datasets of labeled

documents [25], document lists [26], and labeled features [40], to learn a utility function

evaluating the importance of each target document. Neural network-based learning to rank

approach [25, 129] has demonstrate great potential in various domain applications such as e-

commerce search [70], image annotation [120], and behavior analysis [100]. VEST’s approach

can be analogous to the learning to rank problem.

7.5 Pattern Inference and Data Extraction

In general, inferring patterns from samples is a program synthesis technique known as

Programming-by-Example (PBE). A PBE algorithm automatically analyzes existing exam-

ples and generates programs that can be applied to new examples. PBE has many applica-

tions in data processing tasks that involve large amounts of input data with indeterminate

formats, such as in structured data extraction [14, 85, 47, 82, 107, 50], table transforma-

137

tion [56, 17, 68], and entity augmentation [118, 127].

In PBE tasks, users often provide both input and output example pairs [82, 17, 68].

By treating input and output examples as states in a search space and by defining data

transformation operations as transitions between the states, such a problem can efficiently

be converted to a search problem. As the number of available states is usually exponentially

large, pruning techniques [82] and heuristics [68] are usually employed to facilitate the search

process.

For a large input dataset, as is in our case, it is often impractical for a user to provide

output examples corresponding to each input. The algorithms introduced by PADS [47]

and Datamaran [50] both follow a search-rank-prune pattern process to automate pattern

inference. Similarly to the input-output example case, input examples are mapped to a search

space as the source state and transitions are defined between states. However, instead of

searching for a given target, the algorithm computes all reachable states from the source,

ranks them with a custom scoring function, and prunes the states with the lowest scores.

This process is repeated until a reasonably good target state is discovered.

Unfortunately, such search-rank-prune processes are often time-consuming due to a large

number of potential states. Instead of searching all possible states, in PIDS, we use a greedy

search approach where, with the use of a heuristic function, we evaluate all possible transi-

tions from the current state, choose the transition with the maximum gain, and ignore the

rest. By carefully designing the transition rules and heuristic function, our approach becomes

very efficient while achieving good accuracy performance. While previous algorithms extract

structures from ad-hoc unstructured log data, they have to make many assumptions on the

input data. Instead, PIDS targets data from the same attribute in a relational database.

Besides, PIDS employs a classifier to filter out input data that is unlikely to contain a struc-

ture. This allows PIDS to make fewer assumptions on the input data and extract structures

that are omitted by the previous methods.

Table 7.1 compares the assumptions made by PADS, Datamaran, and PIDS. We briefly

138

Table 7.1: Assumptions made by Extraction Algorithms.

Assumption PADS Datamaran PIDS
Coverage Threshold 8 4 8

Non-overlapping 4 4 8

Structural Form 4 4 4

Boundary 4 8 4

Tokenization 4 8 8

introduce the assumptions here; the detailed definitions can be found in Datamaran [50].

Coverage threshold assumes that the generated pattern mat-ches at least a certain percentage

of samples. PIDS does not force a coverage threshold as it will generate a pattern that always

covers the entire sample set. Non-overlapping assumes that the alphabets used in the pattern

and field values are not overlapping. In other words, a character c is either part of a pattern or

part of the extracted data, but not both. In PIDS, any word can be either part of the pattern

or the extracted data. Structural Form assumes that the pattern is a tree-like structure with

each node as a sub-pattern. This assumption is shared by all approaches. Boundary assumes

that the boundary of records can be easily identified beforehand. As PIDS processes input

data from an attribute, the input is well-bounded. Tokenization assumes that each character

can be tokenized as a part of the pattern or the extracted data beforehand. PIDS does not

make this assumption and determines the role of each character during inference.

7.6 SIMD in Compression and Database Acceleration

Database systems involves extremely intensive IO operations. Compression techniques greatly

reduce the amount of data to be transferred at the cost of CPU occupancy upon decompres-

sion. Various studies [64, 28, 106] have been done on the impact of compression to database

performance.

Columnar data stores save data from the same column in consecutive manner, allowing

efficient application of encoding techniques mentioned in this paper. Encodings achieves

high compression ratios with relative low CPU consumption. They also allows in-situ query

139

execution without decoding the entire data block [2]. These advantages make them more

favorable than generic compression algorithm such as GZip and Snappy in database systems.

As decoding process generally involves independent simple operations on multiple data

entries, SIMD seems like a perfect solution to the problem. Willhalm et. al. [122] describe

a SIMD-based algorithm for decoding and scan bit-packed data, which deals with similar

problem as we do in this work. More work has been focus on designing encoding variation that

work well with SIMD. Stepanov et. al. [113] introduce a SIMD version of varint-G8IU [37].

Limire et. al. propose SIMD-PFOR [83], a SIMD variation for PFOR [133] and Li et. al.

demonstrate BitWeaving [87], a bit-packed encoding variation.

SIMD has many advantages comparing to other hardware acceleration alternatives. Most

importantly, SIMD is built in CPU and has direct access to CPU databus and cache, avoiding

data movement between different device memories. SIMD also has instruction level inter-

operability with control flow codes, allowing fine-grain transition between parallel and scalar

mode.

SIMD based algorithms have been proposed for almost every aspects of database exe-

cution. Zhou et. al.[130] describes the general idea of using SIMD for various database

operators including scan, aggregation, index scan and join. Chhugan et. al.[29] use SIMD

to implement a bitonic merge network for merge sort. Ross et. al.[108] proposes to speed

up hash join by optimizing Cuckoo hashtable[42] with SIMD. Jha et. al.[66] experimentally

explores the hardware oblivious and hardware conscious joins on Xeon Phi platform with

SIMD optimization. Other applications including vectorized bloom filter[102] and bitmap

counting[93].

7.7 Performance Tuning of LSM-trees

LSM-trees have been widely used to support key-value stores [53, 45, 48, 5], secondary-

indices [123, 73, 104], filters [6], and materialized views [41]. Due to its popularity, researchers

invest significant effort in improving the performance of LSM-trees.

140

Tiering merge policy [65] is often more prevalent than leveling [96] in systems with high

write pressure as tiering triggers fewer merges. However, tiering generates more disk runs

than leveling, bringing slower lookups and merges. As one way to compensate for the prob-

lem, researchers propose partitioning the disk runs by key ranges. Partitioning allows lookups

and merges to access only a subset of runs and improve efficiency. WriteBuffer [7] uses a

vertical partitioning that groups partitions with the same key range but from different levels

together. It uses a hash function to distribute keys to partitions and manage the parti-

tions with a B+-tree. PebbleDB [105] selects the partition key range probabilistic based on

the inserted keys. SifrDB [90] performs a horizontal partitioning that split each data run

independently.

Some other works focus on improving merge efficiency. VT-tree [111] presents a stitching

operation that detects and skips SSTables that have no key overlapping with other SSTables

during merges. Zhang et al. [128] proposed a pipelined merge implementation. This approach

splits a merge into three phases: read, merge-sort, and write, then builds them as a pipeline.

The merge-sort phase is CPU heavy while the other two are IO heavy, allowing the pipelined

merge to achieve better IO and CPU utilization. bLSM-tree [110] improves the leveling

merge policy by adding a dedicated component at each level, allowing merges on different

levels to execute in parallel. It also designs a merge scheduler that eliminates write stalls

by limiting the memory component write throughput. dCompaction [97] introduces virtual

partitions and virtual merges to defer the merge operations and executes multiple merges in

batches.

After a merge occurs, the LSM-tree may suffer significant cache miss for subsequent

lookups as the new merged run is not cached. Ahmad et al. [4] propose to address the issue

by offloading the merge operation to remote servers and re-route the lookup to the newly

merged runs chunk-by-chunk gradually to enable a cache warmup. LSbM-Tree [115, 116]

keeps the post-merge old data-runs in a buffer, temporarily uses them for lookups, and

gradually deletes them based on access frequency.

141

People also explore the opportunities of integrating LSM-trees with the recent hardware

platform. FloDB [16] present a two-layer memory component to accommodate large mem-

ory. The top layer is a hash table for fast writing, and the bottom layer is a skip-list for

lookup. Accordion [23] extends the idea of having layers in memory and moves the lower level

disk-runs in LSM-trees into memory. cLSM [52] proposes novel concurrent algorithms for

LSM-trees operations in multi-core environments. FD-Tree[86] and FD+-Tree [117] explores

reducing the random writes of LSM-trees on SSD. MaSM [15] uses SSD as an internal buffer

to store disk runs before moving them to slower disks. NoveLSM [69] add a layer designed

for NVME storage between the memory component and disk-runs.

The performance of LSM-trees is affected by many parameters, including merging policy,

bloom Filter false positive rate, and capacity ratios. The optimal values of these parameters

can be different for each level and different under the various workload. Researchers propose

systems that unsupervised fine-tune these parameters for each level based on given workloads.

For example, monkey [34] sets different false-positive rates for bloom filters at each level.

Dostoevsky [35] uses leveling merge policy at the top level and tiering merge policy for all

the other levels. LSM-Bush [36] uses a different capacity ratio for each level. ElasticBF [88]

dynamic adjusts the bloom filter size for each data-run based on the data access frequency.

142

CHAPTER 8

CONCLUSION

In this thesis, we have addressed challenges in applying lossless compression in columnar

databases and key-value stores. We demonstrate that lossless compression can significantly

reduce compressed file size and improve the query efficiency of data stores. First, we present

PIDS, a new compression algorithm that decomposes sub-attributes from string columns to

achieve a smaller compressed size and support faster queries. Next, we describe SBoost, a

C++ library using SIMD instructions to filter encoded data without performing decoding.

We then introduce CodecDB, a columnar database with a data-driven encoding selection

algorithm and an encoding-aware query engine. Finally, we propose CoLoM, a key-value

store that extends columnar layout and compression to improve LSM-trees efficiency. This

work addresses storage space and access speed, the two most important factors for all data

stores. With the rapid increase in data size, these two factors continue to significantly impact

the data store design and development. Thus, our work will continue to play an essential

role in data systems.

143

REFERENCES

[1] Daniel Abadi, Peter Boncz, Stavros Harizopoulos, Stratos Idreos, and Samuel Mad-
den. The Design and Implementation of Modern Column-Oriented Database Systems.
Foundations and Trends in Databases, 5(3):197–280, 2013.

[2] Daniel Abadi, Samuel Madden, and Miguel Ferreira. Integrating Compression and
Execution in Column-oriented Database Systems. In Proceedings of the 2006 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’06, pages 671–
682, New York, NY, USA, 2006. ACM.

[3] Rachit Agarwal, Anurag Khandelwal, and Ion Stoica. Succinct: Enabling queries on
compressed data. In 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15), pages 337–350, Oakland, CA, may 2015. USENIX Associ-
ation.

[4] Muhammad Yousuf Ahmad and Bettina Kemme. Compaction management in dis-
tributed key-value datastores. Proc. VLDB Endow., 8(8):850–861, April 2015.

[5] Sattam Alsubaiee, Yasser Altowim, Hotham Altwaijry, Alexander Behm, Vinayak
Borkar, Yingyi Bu, Michael Carey, Inci Cetindil, Madhusudan Cheelangi, Khurram
Faraaz, Eugenia Gabrielova, Raman Grover, Zachary Heilbron, Young-Seok Kim, Chen
Li, Guangqiang Li, Ji Mahn Ok, Nicola Onose, Pouria Pirzadeh, Vassilis Tsotras, Rares
Vernica, JianWen, and Till Westmann. Asterixdb: A scalable, open source bdms. Proc.
VLDB Endow., 7(14):1905–1916, October 2014.

[6] Sattam Alsubaiee, Michael J. Carey, and Chen Li. Lsm-based storage and indexing:
An old idea with timely benefits. In Second International ACM Workshop on Managing
and Mining Enriched Geo-Spatial Data, GeoRich’15, page 1–6, New York, NY, USA,
2015. Association for Computing Machinery.

[7] Hrishikesh Amur, D. Andersen, M. Kaminsky, and K. Schwan. Design of a write-
optimized data store. In CERCS Technical Reports, 2013.

[8] Apache. HBase. https://hbase.apache.org/.

[9] Apache Foundation. Apache Arrow. https://arrow.apache.org/.

[10] Apache Foundation. Apache CarbonData. https://carbondata.apache.org/.

[11] Apache Foundation. Apache Kudu. https://kudu.apache.org.

[12] Apache Foundation. Apache ORC. https://orc.apache.org.

[13] Apache Foundation. Apache Parquet. https://parquet.apache.org/.

[14] Arvind Arasu and Hector Garcia-Molina. Extracting Structured Data fromWeb Pages.
In Proceedings of the 2003 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’03, pages 337–348, New York, NY, USA, 2003. ACM.

144

[15] Manos Athanassoulis, Shimin Chen, Anastasia Ailamaki, Phillip B. Gibbons, and Radu
Stoica. Masm: Efficient online updates in data warehouses. In Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data, SIGMOD ’11, page
865–876, New York, NY, USA, 2011. Association for Computing Machinery.

[16] Oana Balmau, Rachid Guerraoui, Vasileios Trigonakis, and Igor Zablotchi. Flodb: Un-
locking memory in persistent key-value stores. In Proceedings of the Twelfth European
Conference on Computer Systems, EuroSys ’17, page 80–94, New York, NY, USA,
2017. Association for Computing Machinery.

[17] Daniel W. Barowy, Sumit Gulwani, Ted Hart, and Benjamin Zorn. FlashRelate: Ex-
tracting Relational Data from Semi-structured Spreadsheets Using Examples. In Pro-
ceedings of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’15, pages 218–228, New York, NY, USA, 2015. ACM.

[18] Bishwaranjan Bhattacharjee, Lipyeow Lim, Timothy Malkemus, George Mihaila, Ken-
neth Ross, Sherman Lau, Cathy McArthur, Zoltan Toth, and Reza Sherkat. Efficient
Index Compression in DB2 LUW. Proc. VLDB Endow., 2(2):1462–1473, aug 2009.

[19] Carsten Binnig, Stefan Hildenbrand, and Franz Färber. Dictionary-based Order-
preserving String Compression for Main Memory Column Stores. In Proceedings of
the 2009 ACM SIGMOD International Conference on Management of Data, SIGMOD
’09, pages 283–296, New York, NY, USA, 2009. ACM.

[20] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
mun. ACM, 13(7):422–426, July 1970.

[21] Peter Boncz, Thomas Neumann, and Viktor Leis. Fsst: Fast random access string
compression. Proc. VLDB Endow., 13(12):2649–2661, jul 2020.

[22] Peter Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100: Hyper-Pipelining
Query Execution. In Conference on Innovative Data Systems Research (CIDR 2005),
2005.

[23] Edward Bortnikov, Anastasia Braginsky, Eshcar Hillel, Idit Keidar, and Gali Sheffi.
Accordion: Better memory organization for lsm key-value stores. Proc. VLDB Endow.,
11(12):1863–1875, August 2018.

[24] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. ASM: A code manipulation tool
to implement adaptable systems. In In Adaptable and extensible component systems,
2002.

[25] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,
and Greg Hullender. Learning to Rank Using Gradient Descent. In Proceedings of the
22Nd International Conference on Machine Learning, ICML ’05, pages 89–96, New
York, NY, USA, 2005. ACM.

145

[26] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to Rank: From
Pairwise Approach to Listwise Approach. In Proceedings of the 24th International
Conference on Machine Learning, ICML ’07, pages 129–136, New York, NY, USA,
2007. ACM.

[27] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable:
A Distributed Storage System for Structured Data. ACM Trans. Comput. Syst.,
26(2):4:1–4:26, jun 2008.

[28] Zhiyuan Chen, Johannes Gehrke, and Flip Korn. Query Optimization in Compressed
Database Systems. In Proceedings of the 2001 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’01, pages 271–282, New York, NY, USA, 2001.
ACM.

[29] Jatin Chhugani, Anthony D. Nguyen, Victor W. Lee, William Macy, Mostafa Hagog,
Yen-Kuang Chen, Akram Baransi, Sanjeev Kumar, and Pradeep Dubey. Efficient Im-
plementation of Sorting on Multi-core SIMD CPU Architecture. Proc. VLDB Endow.,
1(2):1313–1324, aug 2008.

[30] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st ACM
Symposium on Cloud Computing, SoCC ’10, page 143–154, New York, NY, USA, 2010.
Association for Computing Machinery.

[31] IBM ILOG CPLEX. V12.10.0: User’s Manual for CPLEX. International Business
Machines Corporation, 2021.

[32] Patrick Damme, Annett Ungethüm, Johannes Pietrzyk, Alexander Krause, Dirk
Habich, and Wolfgang Lehner. MorphStore: Analytical Query Engine with a Holistic
Compression-Enabled Processing Model. Proc. VLDB Endow., 13(11):2396–2410, jul
2020.

[33] Wayne W. Daniel. Spearman rank correlation coefficient. In Applied Nonparametric
Statistics. Boston: PWS-Kent, 2 edition, 1990.

[34] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. Monkey: Optimal navigable
key-value store. In Proceedings of the 2017 ACM International Conference on Man-
agement of Data, SIGMOD ’17, pages 79–94, New York, NY, USA, 2017. Association
for Computing Machinery.

[35] Niv Dayan and Stratos Idreos. Dostoevsky: Better space-time trade-offs for lsm-tree
based key-value stores via adaptive removal of superfluous merging. In Proceedings
of the 2018 International Conference on Management of Data, SIGMOD ’18, pages
505–520, New York, NY, USA, 2018. Association for Computing Machinery.

[36] Niv Dayan and Stratos Idreos. The Log-Structured Merge-Bush & the Wacky Contin-
uum. In ACM SIGMOD International Conference on Management of Data, 2019.

146

[37] Jeffrey Dean. Challenges in Building Large-scale Information Retrieval Systems: In-
vited Talk. In Proceedings of the Second ACM International Conference on Web Search
and Data Mining, WSDM ’09, pages 1–1, New York, NY, USA, 2009. ACM.

[38] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and
Werner Vogels. Dynamo: Amazon’s highly available key-value store. In Proceedings of
Twenty-First ACM SIGOPS Symposium on Operating Systems Principles, SOSP ’07,
page 205–220, New York, NY, USA, 2007. Association for Computing Machinery.

[39] L. Peter Deutsch. DEFLATE Compressed Data Format Specification version 1.3. RFC
1951, RFC Editor, May 1996.

[40] Fernando Diaz. Learning to Rank with Labeled Features. In Proceedings of the 2016
ACM International Conference on the Theory of Information Retrieval, ICTIR ’16,
pages 41–44, New York, NY, USA, 2016. ACM.

[41] Huichao Duan, Huiqi Hu, Weining Qian, Haixin Ma, Xiaoling Wang, and Aoying
Zhou. Incremental Materialized View Maintenance on Distributed Log-Structured
Merge-Tree. In Database Systems for Advanced Applications, pages 682–700. Springer
International Publishing, 2018.

[42] Erlingsson, Ulfar and Manasse, Mark and McSherry, Frank. A cool and practical alter-
native to traditional hash tables. In 7th Workshop on Distributed Data and Structures
(WDAS’06), Santa Clara, CA, January 2006.

[43] Facebook. MyRocks. http://myrocks.io.

[44] Facebook. Presto. http://prestodb.github.io/.

[45] Facebook. Rocksdb. https://rocksdb.org/.

[46] Yuanwei Fang, Chen Zou, Aaron J. Elmore, and Andrew A. Chien. UDP: A Pro-
grammable Accelerator for Extract-transform-load Workloads and More. In Proceed-
ings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-50 ’17, pages 55–68, New York, NY, USA, 2017. ACM.

[47] Kathleen Fisher, David Walker, Kenny Q. Zhu, and Peter White. From Dirt to Shovels:
Fully Automatic Tool Generation from Ad Hoc Data. SIGPLAN Not., 43(1):421–434,
jan 2008.

[48] Apache Foundation. Cassandra. http://cassandra.apache.org.

[49] Francesco Fusco, Marc Ph. Stoecklin, and Michail Vlachos. Net-fli: On-the-fly com-
pression, archiving and indexing of streaming network traffic. Proc. VLDB Endow.,
3(1-2):1382–1393, sep 2010.

[50] Yihan Gao, Silu Huang, and Aditya Parameswaran. Navigating the Data Lake with
Datamaran: Automatically Extracting Structure from Log Datasets. arXiv preprint
arXiv:1708.08905, 2017.

147

[51] GNU project. GNU GZip. https://www.gnu.org/software/gzip/.

[52] Guy Golan-Gueta, Edward Bortnikov, Eshcar Hillel, and Idit Keidar. Scaling concur-
rent log-structured data stores. In Proceedings of the Tenth European Conference on
Computer Systems, EuroSys ’15, New York, NY, USA, 2015. Association for Comput-
ing Machinery.

[53] Google. Leveldb. https://github.com/google/leveldb.

[54] Google. Snappy. http://google.github.io/snappy/.

[55] Google. sparsehash. https://github.com/sparsehash/sparsehash/.

[56] Sumit Gulwani. Automating String Processing in Spreadsheets Using Input-output
Examples. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’11, pages 317–330, New York, NY,
USA, 2011. ACM.

[57] G. Guzun, G. Canahuate, D. Chiu, and J. Sawin. A tunable compression framework
for bitmap indices. In 2014 IEEE 30th International Conference on Data Engineering,
pages 484–495, March 2014.

[58] Stavros Harizopoulos, Velen Liang, Daniel J. Abadi, and Samuel Madden. Perfor-
mance tradeoffs in read-optimized databases. In Proceedings of the 32Nd International
Conference on Very Large Data Bases, VLDB ’06, pages 487–498. VLDB Endowment,
2006.

[59] S. Idreos, R. Kaushik, V. Narasayya, and R. Ramamurthy. Estimating the compression
fraction of an index using sampling. In 2010 IEEE 26th International Conference on
Data Engineering (ICDE 2010), pages 441–444, March 2010.

[60] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, K. Sjoerd Mullender, and
Martin L. Kersten. MonetDB: Two Decades of Research in Column-oriented Database
Architectures. IEEE Data Engineering Bulletin, 35(1):40–45, 2012.

[61] A. Ilyas, J. M. F. da Trindade, R. Castro Fernandez, and S. Madden. Extracting
syntactical patterns from databases. In 2018 IEEE 34th International Conference on
Data Engineering (ICDE), pages 41–52, April 2018.

[62] Intel. Intel Intrinsics Guide. https://software.intel.com/sites/landingpage/IntrinsicsGuide/,
2017.

[63] Milena G. Ivanova, Martin L. Kersten, Niels J. Nes, and Romulo A.P. Gonçalves.
An Architecture for Recycling Intermediates in a Column-store. In Proceedings of the
2009 ACM SIGMOD International Conference on Management of Data, SIGMOD ’09,
pages 309–320, New York, NY, USA, 2009. ACM.

[64] Balakrishna R. Iyer and David Wilhite. Data Compression Support in Databases. In
Proceedings of the 20th International Conference on Very Large Data Bases, VLDB
’94, pages 695–704, San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.

148

[65] H. V. Jagadish, P. Narayan, S. Seshadri, S. Sudarshan, and Rama Kanneganti. Incre-
mental organization for data recording and warehousing. In VLDB, 1997.

[66] Saurabh Jha, Bingsheng He, Mian Lu, Xuntao Cheng, and Huynh Phung Huynh.
Improving main memory hash joins on intel xeon phi processors: An experimental
approach. Proc. VLDB Endow., 8(6):642–653, feb 2015.

[67] Hao Jiang and Aaron J. Elmore. Boosting Data Filtering on Columnar Encoding with
SIMD. In Proceedings of the 14th International Workshop on Data Management on
New Hardware, DAMON ’18, pages 6:1–6:10, New York, NY, USA, 2018. ACM.

[68] Zhongjun Jin, Michael R. Anderson, Michael Cafarella, and H. V. Jagadish. Foofah:
Transforming Data By Example. In Proceedings of the 2017 ACM International Con-
ference on Management of Data, SIGMOD ’17, pages 683–698, New York, NY, USA,
2017. ACM.

[69] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, Andrea Arpaci-Dusseau, and Remzi
Arpaci-Dusseau. Redesigning lsms for nonvolatile memory with novelsm. In Proceedings
of the 2018 USENIX Conference on Usenix Annual Technical Conference, USENIX
ATC ’18, page 993–1005, USA, 2018. USENIX Association.

[70] Shubhra Kanti Karmaker Santu, Parikshit Sondhi, and ChengXiang Zhai. On Ap-
plication of Learning to Rank for E-Commerce Search. In Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’17, pages 475–484, New York, NY, USA, 2017. ACM.

[71] R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algorithms. IBM
Journal of Research and Development, 31(2):249–260, March 1987.

[72] M. G. Kendall. A New Measure Of Rank Correlation. Biometrika, 30(1-2):81, 1938.

[73] Y. Kim, T. Kim, M. J. Carey, and C. Li. A comparative study of log-structured merge-
tree-based spatial indexes for big data. In 2017 IEEE 33rd International Conference
on Data Engineering (ICDE), pages 147–150, 2017.

[74] Hideaki Kimura, Vivek Narasayya, and Manoj Syamala. Compression Aware Physical
Database Design. Proc. VLDB Endow., 4(10):657–668, jul 2011.

[75] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
CoRR, abs/1412.6980, 2014.

[76] G. Kollios, D. Gunopulos, N. Koudas, and S. Berchtold. Efficient biased sampling for
approximate clustering and outlier detection in large data sets. IEEE Transactions on
Knowledge and Data Engineering, 15(5):1170–1187, Sep. 2003.

[77] Harald Lang, Tobias Mühlbauer, Florian Funke, Peter A. Boncz, Thomas Neumann,
and Alfons Kemper. Data Blocks: Hybrid OLTP and OLAP on Compressed Storage
Using Both Vectorization and Compilation. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD ’16, pages 311–326, New York, NY,
USA, 2016. ACM.

149

[78] N. Jesper Larsson and Alistair Moffat. Offline Dictionary-Based Compression. In Pro-
ceedings of the Conference on Data Compression, DCC ’99, pages 296–, Washington,
DC, USA, 1999. IEEE Computer Society.

[79] Robert Lasch, Ismail Oukid, Roman Dementiev, Norman May, Suleyman S. Demirsoy,
and Kai-Uwe Sattler. Fast & strong: The case of compressed string dictionaries on
modern cpus. In Proceedings of the 15th International Workshop on Data Management
on New Hardware, DaMoN’19, pages 4:1–4:10, New York, NY, USA, 2019. ACM.

[80] Robert Lasch, Ismail Oukid, Roman Dementiev, Norman May, Suleyman S. Demirsoy,
and Kai-Uwe Sattler. Fast i& strong: The case of compressed string dictionaries on
modern cpus. In Proceedings of the 15th International Workshop on Data Management
on New Hardware, DaMoN’19, New York, NY, USA, 2019. Association for Computing
Machinery.

[81] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the international symposium on Code gen-
eration and optimization: feedback-directed and runtime optimization, page 75. IEEE
Computer Society, 2004.

[82] Vu Le and Sumit Gulwani. FlashExtract: A Framework for Data Extraction by Ex-
amples. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’14, pages 542–553, New York, NY, USA,
2014. ACM.

[83] D. Lemire and L. Boytsov. Decoding Billions of Integers Per Second Through Vector-
ization. Softw. Pract. Exper., 45(1):1–29, jan 2015.

[84] Daniel Lemire, Gregory Ssi-Yan-Kai, and Owen Kaser. Consistently faster and smaller
compressed bitmaps with roaring. Softw. Pract. Exper., 46(11):1547–1569, nov 2016.

[85] Kristina Lerman, Lise Getoor, Steven Minton, and Craig Knoblock. Using the Struc-
ture of Web Sites for Automatic Segmentation of Tables. In Proceedings of the 2004
ACM SIGMOD International Conference on Management of Data, SIGMOD ’04, pages
119–130, New York, NY, USA, 2004. ACM.

[86] Yinan Li, Bingsheng He, Robin Jun Yang, Qiong Luo, and Ke Yi. Tree indexing on
solid state drives. Proc. VLDB Endow., 3(1–2):1195–1206, September 2010.

[87] Yinan Li and Jignesh M. Patel. BitWeaving: Fast Scans for Main Memory Data
Processing. In Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’13, pages 289–300, New York, NY, USA, 2013. ACM.

[88] Yongkun Li, Chengjin Tian, Fan Guo, Cheng Li, and Yinlong Xu. Elasticbf: Elastic
bloom filter with hotness awareness for boosting read performance in large key-value
stores. In Proceedings of the 2019 USENIX Conference on Usenix Annual Technical
Conference, USENIX ATC ’19, page 739–752, USA, 2019. USENIX Association.

150

[89] Bernard Marr. How Much Data Do We Create Every Day? The Mind-Blowing Stats
Everyone Should Read. Forbes, May 2018.

[90] Fei Mei, Qiang Cao, Hong Jiang, and Jingjun Li. Sifrdb: A unified solution for write-
optimized key-value stores in large datacenter. In Proceedings of the ACM Symposium
on Cloud Computing, SoCC ’18, page 477–489, New York, NY, USA, 2018. Association
for Computing Machinery.

[91] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar,
Matt Tolton, and Theo Vassilakis. Dremel: Interactive Analysis of Web-scale Datasets.
PVLDB, 3(1-2):330–339, 2010.

[92] Micro Focus International plc. Vertica Encoding Types.
https://www.vertica.com/docs/9.2.x/HTML/Content/Authoring/
SQLReferenceManual/Statements/encoding-type.htm.

[93] Wojciech Mula, Nathan Kurz, and Daniel Lemire. Faster Population Counts using
AVX2 Instructions. CoRR, abs/1611.07612, 2016.

[94] Ingo Müller, Cornelius Ratsch, and Franz Färber. Adaptive String Dictionary Com-
pression in In-Memory Column-Store Database Systems. In EDBT, 2014.

[95] Raghunath Othayoth Nambiar and Meikel Poess. The Making of TPC-DS. In VLDB,
pages 1049–1058, 2006.

[96] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. The Log-
structured Merge-tree (LSM-tree). Acta Inf., 33(4):351–385, jun 1996.

[97] Feng-Feng Pan, Yin-Liang Yue, and Jin Xiong. dCompaction: Speeding up Com-
paction of the LSM-Tree via Delayed Compaction. Journal of Computer Science and
Technology, 32(1):41–54, Jan 2017.

[98] Marcus Paradies, Christian Lemke, Hasso Plattner, Wolfgang Lehner, Kai-Uwe Sattler,
Alexander Zeier, and Jens Krueger. How to Juggle Columns: An Entropy-based Ap-
proach for Table Compression. In Proceedings of the Fourteenth International Database
Engineering; Applications Symposium, IDEAS ’10, pages 205–215, New York, NY,
USA, 2010. ACM.

[99] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. GloVe: Global Vec-
tors for Word Representation. In Empirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543, 2014.

[100] Diego Perna and Andrea Tagarelli. An Evaluation of Learning-to-Rank Methods for
Lurking Behavior Analysis. In Proceedings of the 25th Conference on User Modeling,
Adaptation and Personalization, UMAP ’17, pages 381–382, New York, NY, USA,
2017. ACM.

151

[101] Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross. Rethinking SIMD Vec-
torization for In-Memory Databases. In Proceedings of the 2015 ACM SIGMOD In-
ternational Conference on Management of Data, SIGMOD ’15, pages 1493–1508, New
York, NY, USA, 2015. ACM.

[102] Orestis Polychroniou and Kenneth A. Ross. Vectorized Bloom Filters for Advanced
SIMD Processors. In Proceedings of the Tenth International Workshop on Data Man-
agement on New Hardware, DaMoN ’14, pages 6:1–6:6, New York, NY, USA, 2014.
ACM.

[103] Orestis Polychroniou and Kenneth A. Ross. Efficient Lightweight Compression Along-
side Fast Scans. In Proceedings of the 11th International Workshop on Data Man-
agement on New Hardware, DaMoN’15, pages 9:1–9:6, New York, NY, USA, 2015.
ACM.

[104] Mohiuddin Abdul Qader, Shiwen Cheng, and Vagelis Hristidis. A comparative study
of secondary indexing techniques in lsm-based nosql databases. In Proceedings of the
2018 International Conference on Management of Data, SIGMOD ’18, page 551–566,
New York, NY, USA, 2018. Association for Computing Machinery.

[105] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abraham. Pebblesdb:
Building key-value stores using fragmented log-structured merge trees. In Proceedings
of the 26th Symposium on Operating Systems Principles, SOSP ’17, page 497–514, New
York, NY, USA, 2017. Association for Computing Machinery.

[106] Gautam Ray, Jayant R. Haritsa, and S Seshadri. Database Compression: A Perfor-
mance Enhancement Tool. 09 2004.

[107] Mohammad Raza and Sumit Gulwani. Automated data extraction using predictive
program synthesis. In Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, AAAI’17, page 882–890. AAAI Press, 2017.

[108] K. A. Ross. Efficient hash probes on modern processors. In 2007 IEEE 23rd Interna-
tional Conference on Data Engineering, pages 1297–1301, April 2007.

[109] Eyal Rozenberg and Peter Boncz. Faster Across the PCIe Bus: A GPU Library for
Lightweight Decompression: Including Support for Patched Compression Schemes. In
Proceedings of the 13th International Workshop on Data Management on New Hard-
ware, DAMON ’17, pages 8:1–8:5, New York, NY, USA, 2017. ACM.

[110] Russell Sears and Raghu Ramakrishnan. Blsm: A general purpose log structured merge
tree. In Proceedings of the 2012 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’12, page 217–228, New York, NY, USA, 2012. Association
for Computing Machinery.

[111] Pradeep Shetty, Richard Spillane, Ravikant Malpani, Binesh Andrews, Justin Seyster,
and Erez Zadok. Building workload-independent storage with vt-trees. In Proceedings
of the 11th USENIX Conference on File and Storage Technologies, FAST’13, page
17–30, USA, 2013. USENIX Association.

152

[112] Julian Shun and Guy E. Blelloch. Phase-Concurrent Hash Tables for Determinism. In
Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architec-
tures, SPAA ’14, pages 96–107, New York, NY, USA, 2014. Association for Computing
Machinery.

[113] Alexander A. Stepanov, Anil R. Gangolli, Daniel E. Rose, Ryan J. Ernst, and
Paramjit S. Oberoi. SIMD-based Decoding of Posting Lists. In Proceedings of the 20th
ACM International Conference on Information and Knowledge Management, CIKM
’11, pages 317–326, New York, NY, USA, 2011. ACM.

[114] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cherniack,
Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, Pat
O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. C-store: A Column-oriented DBMS.
In Proceedings of the 31st International Conference on Very Large Data Bases, VLDB
’05, pages 553–564. VLDB Endowment, 2005.

[115] D. Teng, L. Guo, R. Lee, F. Chen, S. Ma, Y. Zhang, and X. Zhang. Lsbm-tree: Re-
enabling buffer caching in data management for mixed reads and writes. In 2017 IEEE
37th International Conference on Distributed Computing Systems (ICDCS), pages 68–
79, 2017.

[116] Dejun Teng, Lei Guo, Rubao Lee, Feng Chen, Yanfeng Zhang, Siyuan Ma, and Xi-
aodong Zhang. A low-cost disk solution enabling lsm-tree to achieve high performance
for mixed read/write workloads. ACM Trans. Storage, 14(2), April 2018.

[117] Risi Thonangi, Shivnath Babu, and Jun Yang. A practical concurrent index for solid-
state drives. In Proceedings of the 21st ACM International Conference on Information
and Knowledge Management, CIKM ’12, page 1332–1341, New York, NY, USA, 2012.
Association for Computing Machinery.

[118] Petros Venetis, Alon Halevy, Jayant Madhavan, Marius Paşca, Warren Shen, Fei Wu,
Gengxin Miao, and Chung Wu. Recovering Semantics of Tables on the Web. PVLDB,
4(9):528–538, 2011.

[119] Henry S. Warren. Integer division by constants. In Hackers delight, chapter 10, pages
190–192. Addison-Wesley, 2 edition, 2013.

[120] "Zhang Weifeng, Hua Hu, and Haiyang" Hu. Neural ranking for automatic image
annotation. "Multimedia Tools and Applications", "77"("17"):"22385–22406", "Sep"
"2018".

[121] Kyu-Young Whang, Brad T. Vander-Zanden, and Howard M. Taylor. A Linear-time
Probabilistic Counting Algorithm for Database Applications. ACM Trans. Database
Syst., 15(2):208–229, jun 1990.

[122] Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner, Alexander Zeier,
and Jan Schaffner. SIMD-scan: Ultra Fast In-memory Table Scan Using On-chip Vector
Processing Units. Proc. VLDB Endow., 2(1):385–394, aug 2009.

153

[123] Xiaokui Xiao, Yabo Xu, Lingkun Wu, and Wenqing Lin. Lsii: An indexing structure
for exact real-time search on microblogs. In Proceedings of the 2013 IEEE International
Conference on Data Engineering (ICDE 2013), ICDE ’13, page 482–493, USA, 2013.
IEEE Computer Society.

[124] Lianghong Xu, Andrew Pavlo, Sudipta Sengupta, and Gregory R. Ganger. Online
Deduplication for Databases. In Proceedings of the 2017 ACM International Conference
on Management of Data, SIGMOD ’17, pages 1355–1368, New York, NY, USA, 2017.
ACM.

[125] Fangjin Yang, Eric Tschetter, Xavier Léauté, Nelson Ray, Gian Merlino, and Deep
Ganguli. Druid: A real-time analytical data store. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’14, pages 157–
168, New York, NY, USA, 2014. ACM.

[126] Huanchen Zhang, Xiaoxuan Liu, David G. Andersen, Michael Kaminsky, Kimberly
Keeton, and Andrew Pavlo. Order-preserving key compression for in-memory search
trees. In Proceedings of the 2020 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’20, pages 1601–1615, New York, NY, USA, 2020. Association
for Computing Machinery.

[127] Meihui Zhang and Kaushik Chakrabarti. InfoGather+: Semantic Matching and An-
notation of Numeric and Time-varying Attributes in Web Tables. In Proceedings of
the 2013 ACM SIGMOD International Conference on Management of Data, SIGMOD
’13, pages 145–156, New York, NY, USA, 2013. ACM.

[128] Z. Zhang, Y. Yue, B. He, J. Xiong, M. Chen, L. Zhang, and N. Sun. Pipelined
compaction for the lsm-tree. In 2014 IEEE 28th International Parallel and Distributed
Processing Symposium, pages 777–786, 2014.

[129] P. Zhao, O. Wu, L. Guo, W. Hu, and J. Yang. Deep learning-based learning to rank
with ties for image re-ranking. In 2016 IEEE International Conference on Digital
Signal Processing (DSP), pages 452–456, Oct 2016.

[130] Jingren Zhou and Kenneth A. Ross. Implementing Database Operations Using SIMD
Instructions. In Proceedings of the 2002 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’02, pages 145–156, New York, NY, USA, 2002. ACM.

[131] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory, 23(3):337–343, May 1977.

[132] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. Super-Scalar RAM-
CPU Cache Compression. In Proceedings of the 22Nd International Conference on
Data Engineering, ICDE ’06, pages 59–, Washington, DC, USA, 2006. IEEE Computer
Society.

[133] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. Super-Scalar RAM-
CPU Cache Compression. In Proceedings of the 22Nd International Conference on

154

Data Engineering, ICDE ’06, pages 59–, Washington, DC, USA, 2006. IEEE Computer
Society.

[134] Marcin Zukowski, Mark van de Wiel, and Peter Boncz. Vectorwise: A Vectorized
Analytical DBMS. In Proceedings of the 2012 IEEE 28th International Conference on
Data Engineering, ICDE ’12, pages 1349–1350, Washington, DC, USA, 2012. IEEE
Computer Society.

155

