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1.1 Schematic flowchart of a computerized tumor phenotyping system for breast can-
cers on DCE-MRI. The CAD radiomics pipeline includes computer segmenta-
tion of the tumor from the local parenchyma and computer-extraction of human-
engineered radiomic features covering six phenotypic categories: (1) size (mea-
suring tumor dimensions), (2) shape (quantifying the 3-D geometry), (3) mor-
phology (characterizing tumor margin), (4) enhancement texture (describing the
heterogeneity within the texture of the contrast uptake in the tumor on the first
postcontrast MRIs), (5) kinetic curve assessment (describing the shape of the
kinetic curve and assessing the physiologic process of the uptake and washout
of the contrast agent in the tumor during the dynamic imaging series), and (6)
enhancement-variance kinetics (characterizing the time course of the spatial vari-
ance of the enhancement within the tumor). CAD = computer-aided diagnosis;
DCE-MRI = dynamic contrast-enhanced MRI. Reprinted from [1]. . . . . . . . . 4

1.2 Screening breast MRI detects malignancies occult on other imaging modalities.
(A) craniocaudal and (B) mediolateral oblique full-field digital mammography im-
ages of the left breast demonstrate no suspicious findings. (C) Early postcontrast
T1-weighted fat subtracted axial and (D) maximum intensity projection images
from screening breast MRI demonstrate a 7 mm enhancing mass with spiculated
margins in the left breast at 12 o’clock 10 cm from the nipple. Pathology from an
MRI–guided percutaneous breast biopsy yielded invasive ductal carcinoma (grade
1). Reprinted from [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Components of the basic multiparametric breast MRI protocol. In general, the
protocol is begun with the non–contrast-enhanced acquisitions (T2-weighted and
diffusion-weighted imaging [DWI]). This is followed by a native T1-weighted ac-
quisition and subsequently the contrast-enhanced series (ultrafast [UF] imaging
and regular T1-weighted imaging). For screening purposes, this protocol may be
abbreviated to contain only the T1-weighted acquisitions before and directly af-
ter contrast material administration, with or without the acquisition of ultrafast
images (or only ultrafast images if they are of sufficiently high resolution). For
lesion discrimination, adding T2-weighted imaging and DWI is beneficial. The
information from ultrafast images is in essence similar to (although somewhat
more discriminative than) the delayed phase dynamics, and these can therefore
both be used. After neoadjuvant chemotherapy, the delayed phase is essential to
document the presence of residual ductal carcinoma in situ. Reprinted from [3]. 12
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1.4 Semiquantitative breast DCE kinetics analysis approach, as defined in the ACR
BI-RADS atlas [4]. The initial phase is classified based on the percent increase in
signal intensity from precontrast levels, with increases of less than 50%, 50% to
100%, and greater than 100% classified as slow, medium, and fast, respectively.
The delayed phase is classified by the curve type after initial peak enhancement
as persistent (defined as a continuous increase in the enhancement of > 10%
initial enhancement), plateau (constant signal intensity once the peak is reached
±10% initial enhancement), or washout (decreasing signal intensity after peak
enhancement > 10% initial enhancement). Reprinted from [5]. . . . . . . . . . . 13

1.5 Example images obtained with DWI scan. Shown are corresponding slices from
(A) S0 with b = 0 s/mm2, (B) SD with b = 800 s/mm2, (C) Apparent diffusion
coefficient (ADC) map. An invasive tumor (arrow) exhibits reduced diffusiv-
ity on DWI, appearing hyperintense on SD and hypointense on the ADC map.
Reprinted from [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 (a) Standard unsubtracted image obtained in a 54-year-old woman with a history
of smoking. (b) Soft-tissue-selective image more clearly demonstrates increased
opacity (arrow) in the right infrahilar region. (c) Bone-selective image shows a
malpositioned left central venous catheter. Arrow indicates the tip of the catheter,
located in the neck. Note the artifacts along the aortic arch (white streak), the
border of the left side of the heart (black streak), and the left hemidiaphragm and
stomach bubble (parallel white and black streaks) due to misregistration during
the subtraction process. (d) Axial CT scan shows a right infrahilar mass that
proved to be lung cancer. Reprinted from [7]. . . . . . . . . . . . . . . . . . . . 19

1.7 Example hyperplanes for discriminating the two classes (black and white circles).
H1 does not separate the classes. H2 does, but only with a small margin. H3
separates them with the maximal margin. . . . . . . . . . . . . . . . . . . . . . 23

1.8 Dropout neural net model. Left: A standard neural net with two hidden layers.
Right: An example of a thinned net produced by applying dropout to the network
on the left. Crossed units have been dropped. Reprinted from [8]. . . . . . . . . 25

1.9 Illustration of the network architecture of VGG-19 model, in the case of a 1000-
class classification, as in the ImageNet challenge. . . . . . . . . . . . . . . . . . 26

1.10 Illustration of a two-layer residual block, a building block of ResNet. . . . . . . 27
1.11 ResNet architectures for ImageNet classification. Building blocks are shown in

brackets, with the numbers of blocks stacked. Downsampling is performed by
conv3_1, conv4_1, and conv5_1 with a stride of 2. FLOPs = floating point
operations per second. Reprinted from [9]. . . . . . . . . . . . . . . . . . . . . . 28

1.12 (a) Illustration of a five-layer dense block. (b) Illustration of a deep DenseNet
with three dense blocks. The layers between two adjacent blocks are referred to
as transition layers and change feature-map sizes via convolution and pooling.
Each layer takes all preceding feature maps as input. Adapted from [10]. . . . . 29
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1.13 U-net architecture (example for 32 × 32 pixels in the lowest resolution). Each
blue box corresponds to a multi-channel feature map. The number of channels is
denoted on top of the box. The x-y-size is provided at the lower-left edge of the
box. White boxes represent copied feature maps. The arrows denote the different
operations. Reprinted from [11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.14 Illustration of the inception block used to augment the U-Net. An inception block
is also the building block of an inception network architecture. . . . . . . . . . . 32

1.15 Deep MIL approaches: (a) the instance-based approach, (b) the embedding-based
approach, (c) the proposed approach with the attention mechanism as the MIL
pooling. Red color corresponds to instance scores; blue color depicts a bag vector
representation. Reprinted from [12]. . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1 Distribution of (a) slice thickness and (b) in-plane resolution of the dynamic
contrast-enhanced (DCE) sequences and T2-weighted (T2w) sequences in the
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2.3 Lesion classification pipeline based on diagnostic images [14]. Radiomic features
were extracted from dynamic contrast-enhanced (DCE), T2-weighted (T2w), and
diffusion-weighted MRI (DWI) sequences. The mpMRI information was incor-
porated in two different ways: feature fusion, i.e., merging radiomic features
extracted from all sequences to train a support vector machine (SVM) classifier,
and classifier fusion, i.e., aggregating the probability of malignancy output from
all single-sequence classifiers via soft voting. Parentheses contain the numbers
of features extracted from each sequence. The dashed lines for DWI indicate
that the DWI sequence was only included in the classification process when it
was available, while the DCE and T2w sequences were available for all lesions
and thus were always included. ADC = apparent diffusion coefficient, ROC =
receiver operating characteristic. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4 Lesion classification pipeline based on diagnostic images [13]. Information from
dynamic contrast-enhanced (DCE) and T2-weighted (T2w) MRI sequences are
incorporated in three ways: image fusion, i.e., fusing DCE and T2w images to
create RGB composite image, feature fusion, i.e., merging convolutional neural
network features extracted from DCE and T2w as the support vector machine
(SVM) classifier input, and classifier fusion, i.e., aggregating the probability of
malignancy output from the DCE and T2w classifiers via soft voting. MIP =
maximum intensity projection. ROI = region of interest. ROC = receiver oper-
ating characteristic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
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2.5 An example of the image fusion process [13]. A dynamic contrast-enhanced
(DCE)-MRI transverse second post-contrast subtraction maximum intensity pro-
jection (MIP) and a T2-weighted (T2w)-MRI transverse center slice are shown
with their corresponding regions of interest (ROIs) extracted. The RGB fusion
ROI is created by inputting the DCE ROI into the red channel and the T2w ROI
into the green channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.6 Feature pooling from various levels of ResNet-50. . . . . . . . . . . . . . . . . . 56
2.7 Diagonal classifier agreement plot between the T2-weighted (T2w) and dynamic

contrast-enhanced (DCE) single-sequence classifiers trained on human-engineered
radiomic features [14]. The x-axis and y-axis denote the probability of malignancy
(PM) scores predicted by the classifiers using DCE and T2w features, respectively.
Each point represents a lesion for which predictions were made. Points along or
near the diagonal from bottom left to top right correspond to high classifier
agreement; points far from the diagonal correspond to low agreement. Examples
of lesions on which the two classifiers were in extreme agreement/disagreement
are also included. Disagreement: lower right benign: papilloma; lower right
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left malignant: IDC/DCIS, luminal A. Agreement (both incorrect): upper right
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Agreement (both correct): upper right malignant: IDC/DCIS, triple negative,
very large; lower left benign: fibroadenoma. . . . . . . . . . . . . . . . . . . . . 58

2.8 Bland-Altman plot illustrating classifier agreement between the single-sequence
classifiers trained on human-engineered dynamic contrast-enhanced (DCE) fea-
tures and T2-weighted (T2w) features [14]. The y-axis shows the difference be-
tween the support vector machine output scores of the two classifiers; the x-axis
shows the mean of two classifiers’ outputs. . . . . . . . . . . . . . . . . . . . . . 59

2.9 Fitted binormal receiver operating characteristic (ROC) curves for single-sequence
(dashed line) and multiparametric MRI (mpMRI) classifiers (solid line) based on
human-engineered radiomic features, trained on the full set [14]. The three single-
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ABSTRACT

This dissertation studies AI-assisted medical image analysis in two applications: 1) breast

cancer diagnosis on multiparametric magnetic resonance imaging (mpMRI) and 2) COVID-

19 diagnosis and prognosis on chest radiography (CXR). Breast cancer is the most commonly

diagnosed cancer and the leading cause of cancer death among women worldwide. MRI has

become indispensable for breast imaging clinical practice and has evolved to mpMRI that

includes multiple sequences, including a T1-weighted dynamic contrast-enhanced (DCE) se-

quence, a T2-weighted (T2w) sequence, and a diffusion-weighted imaging (DWI) sequence,

to improve the specificity of breast MRI while preserving its sensitivity. Computer-aided di-

agnosis (CADx) systems based on human-engineered radiomics and deep learning have been

developed to help improve diagnostic performance and reduce reading time. While previous

CADx research has been primarily focused on the DCE sequence, the first aim of this disser-

tation investigates CADx methods, based on both human-engineered radiomic features and

deep learning, that integrate complementary information provided by the various sequences

in mpMRI in the task of distinguishing benign and malignant breast lesions, with the goal of

leveraging the advancements in MRI technology to improve the performance of differential

breast lesion classification compared with using DCE sequence alone. Three mpMRI fusion

approaches are investigated: image fusion, i.e., fusing images from multiple MRI sequences

into an RGB image as the input; feature fusion, i.e., concatenating features extracted from

mpMRI sequences prior to classification; and classifier fusion, i.e., aggregating the probability

of malignancy output scores from single-sequence classifiers via soft voting.

Although deep learning methods have demonstrated success in computer-aided medical

imaging analysis, high dimensionality and data scarcity are unique challenges in medical

imaging applications of deep learning. Transfer learning techniques with pretraining on

two-dimensional images are often employed to circumvent the need for massive datasets,

which have led to an underutilization of the high-dimensional, clinically valuable information
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in MRI. In order to utilize the rich clinical information in breast MRI without sacrificing

computational efficiency or classification performance, the second aim of this dissertation

proposes and evaluates two-dimensional CNN transfer learning methods that incorporate

the high-dimensional breast MRI in distinguishing benign and malignant breast lesions. In

particular, these methods utilize the three-dimensional volumes in all MRI sequences, the

temporal dimension in DCE-MRI, and the diffusion weighting information in DWI, which

are then applied along with the multiparametric fusion methods to improve the classification

performance of breast lesion differential diagnosis.

As COVID-19 emerged as a novel disease and developed into a pandemic, AI-assisted

medical image analysis also holds promise to help optimize patient management and alleviate

strains put on the healthcare system. The third aim of this dissertation is dedicated to

investigating computer-aided methods that can potentially assist in the early diagnosis and

accurate prognosis of COVID-19 using CXR images. Using a large CXR database curated

during the COVID-19 pandemic for this study, a sequential transfer learning strategy follows

a learning curriculum designed to pretrain and fine-tune a model on increasingly specific and

complex tasks, and finally 1) distinguishes COVID-19 positive and negative patients using

their initial CXR exam within two days of their initial RT-PCR test for COVID-19 and 2)

predicts if a COVID-19 positive patient will potentially need intensive care in the next one to

four days. Automatic lung segmentation and cropping are incorporated in the classification

pipeline to reduce the influence of irrelevant regions of the images on model predictions.

The role of soft tissue CXR images is studied in addition to the standard CXR images.

A weakly supervised learning technique, attention-based deep multiple instance learning, is

also investigated for classifying and localizing COVID-19 involvement on CXR images.

This dissertation presents the following results. First, when human-engineered features

are used, feature fusion and classifier fusion methods achieve significantly higher classifica-

tion performance using any MRI sequence alone. When CNN features are used, the feature
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fusion method significantly outperforms using the DCE sequence alone, and all fusion meth-

ods significantly outperform using the T2w sequence alone. Overall, the findings suggest that

leveraging the complementary information provided by various mpMRI sequences in CADx

can improve the diagnostic performance in the task of distinguishing between benign and

malignant breast lesions. Furthermore, the feature maximum intensity projection method,

which globally max pools the features extracted from a lesion volume along the lesion’s axial

dimension within a CNN, demonstrates the ability to effectively utilize volumetric informa-

tion in MRI exams when using two-dimensional CNNs with transfer learning to differentiate

benign and malignant breast lesions. The RGB channels of CNNs pretrained on natural

images effectively incorporate the dynamic time points in DCE and the diffusion weighting

strengths in DWI. High classification performance is achieved when high-dimensional images

in three mpMRI sequences are utilized. In addition, promising performance is achieved us-

ing both standard and soft tissue CXR images combined via feature fusion for diagnosing

COVID-19 on the initial CXR at patient presentation. Multiple instance learning fails to

improve the detection of COVID-19 on CXR in this specific task but shows promise for po-

tential use in related tasks. The method is also able to predict if COVID-19-positive patients

would require intensive care within 24, 48, 72, and 96 hours after CXR acquisition.

The medical significance of this work is that it can potentially improve the current breast

cancer CADx systems and enhance the diagnostic workup by providing accurate image as-

sessment for the patients and alleviating the workload of interpreting mpMRI for the clini-

cians. This work is also clinically significant in light of the ongoing COVID-19 pandemic, as

the findings can potentially assist in computer-aided COVID-19 early diagnosis and progno-

sis, contributing to optimizing patient care and reducing the burden on healthcare systems.

Methods developed in this work can be potentially applied to other clinical tasks that can

benefit from AI-assisted medical image analysis.

Keywords: breast cancer, multiparametric MRI, COVID-19, chest radiography, artificial
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intelligence, computer-aided diagnosis, radiomics, deep learning, convolutional neural net-

work.
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CHAPTER 1

INTRODUCTION

Due to continuing technological advances in medical image acquisition, novel imaging modali-

ties are being introduced in medical practices, such as volumetric and multi-energy computed

tomography (CT), multi-parametric and dynamic magnetic resonance imaging (MRI), multi-

dimensional ultrasound, multi-planar interventional imaging, and multi-modal positron emis-

sion tomography (PET)/CT and PET/MRI hybrid imaging technologies [20]. While these

imaging technologies provide radiologists with more information than ever before for their

clinical assessment, the analysis of large amounts of imaging data has led to new challenges.

There is an increasing need for image interpretation expertise, and interpretation remains

time-consuming, prone to human error, and sometimes unavailable. The desire to improve

the efficacy and efficiency of clinical care continues to drive innovations, including artificial

intelligence (AI) and its applications in medical imaging. AI offers the opportunity to op-

timize and streamline the clinical workflow and aid in many of the clinical decision-making

tasks that involve image interpretations. AI’s capacity to recognize complex patterns in im-

ages, even those that are not noticeable or detectable by human experts, transforms image

interpretation into a more quantitative and objective process. AI also excels at processing

the sheer amount of information in multimodal data, giving it the potential to integrate not

only multiple radiographic imaging modalities, but also other forms of data such as genomics,

pathology, and electronic health records to perform comprehensive analyses and predictions.

Fortunately, the adoption of digital picture archiving and communication systems (PACS)

in radiology and their integration within the overall hospital information system have allowed

large databases of medical images and associated relevant medical information (e.g., demo-

graphics, clinical findings, blood tests, pathology, genomics, proteomics) to be built up. Such

databases have become increasingly accessible for research purposes, which, along with the

recent advancements in machine learning and computing power, provides the driving force
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for the ongoing digital transformation that continues to significantly impact radiology and

medicine in general, offering new opportunities for data-driven medical research and develop-

ment, such as detection and characterization of anomalies, the discovery of early biomarkers

of disease onset and progression, optimal therapy selection and prediction of therapy out-

come, and correlation of genotype and phenotype related findings.

The introduction of this dissertation starts with an overview of AI methods that assist

in medical image analysis and then introduces two specific application domains explored in

this work, namely, breast cancer diagnosis on multiparametric MRI (mpMRI) and COVID-

19 diagnosis and prognosis on chest radiography (CXR). For each application, the clinical

imaging modalities for the disease, along with the computerized methods that have been

developed and deployed, are reviewed. The introduction further presents and technical

background of the machine learning algorithms used in this research. Finally, it concludes

with a statement of the scope of this work and the outline for this dissertation.

1.1 Artificial Intelligence in Medical Image Analysis

AI-assisted medical image analysis, also termed radiomics, extracts a large number of features

from radiographic medical images using data-characterization algorithms. Computer-aided

detection (CADe), diagnosis (CADx), and triaging (CADt) systems have been under devel-

opment and deployment for clinical use since the mid-1980s to aid radiologists in making

better clinical decisions [21]. The first CAD methods were developed for the analysis of

chest radiographs and mammograms. Since then, successful automated image analysis was

performed on various imaging modalities for various diseases, such as breast, lung, colon,

and prostate cancers, osteoporosis, cerebrovascular disease, diabetic retinopathy, intersti-

tial disease, and many more [1, 22–24]. CAD systems extract and analyze large volumes

of quantitative information from image data, assisting radiologists in image interpretation

as a concurrent, secondary, or autonomous reader at various steps of the clinical workflow.
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They aim to effectively exploit the available imaging data and other relevant information,

reduce human errors, intra- and inter-observer variability, and evaluation times, as well as

democratize high-quality medical image assessment in resource-limited settings and enable

personalized medicine.

1.1.1 Human-Engineered Radiomics

CAD systems can be categorized into two types, which we refer to as human-engineered and

deep-learning-based radiomics. The former has existed since the start of CAD development.

Human-engineered features, also known as hand-crafted features, are defined by mathemati-

cal expressions that quantify visually discernible characteristics, such as size, shape, texture,

and morphology, collectively describing the phenotypes of the imaged lesion or tissue. These

features can be automatically extracted from images using computer algorithms with an-

alytical expressions encoded. Then, machine learning models, such as linear discriminant

analysis, support vector machines, or multilayer perceptron, can then be trained on the ex-

tracted features for various clinical questions. The extraction of human-engineered features

often involves a prior segmentation of the lesion from the parenchyma background. Note

that the extraction and interpretation of features depend on the imaging modality and the

clinical task required. For example, Fig. 1.1 presents a CADx pipeline that automatically

segments breast lesions and extracts six categories of human-engineered radiomic features

from dynamic contrast-enhanced (DCE)-MRI on a workstation [1, 25–30].

1.1.2 Deep-Learning-Based Radiomics

The machine learning field has been going through a period of explosive development in

recent years, in which the innovation and application of more powerful solutions are driven

by the increased accessibility of computing power and large datasets. A crucial part of this

development is deep learning, a type of machine learning that enables end-to-end learning
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Figure 1.1: Schematic flowchart of a computerized tumor phenotyping system for breast
cancers on DCE-MRI. The CAD radiomics pipeline includes computer segmentation of the
tumor from the local parenchyma and computer-extraction of human-engineered radiomic
features covering six phenotypic categories: (1) size (measuring tumor dimensions), (2) shape
(quantifying the 3-D geometry), (3) morphology (characterizing tumor margin), (4) enhance-
ment texture (describing the heterogeneity within the texture of the contrast uptake in the
tumor on the first postcontrast MRIs), (5) kinetic curve assessment (describing the shape of
the kinetic curve and assessing the physiologic process of the uptake and washout of the con-
trast agent in the tumor during the dynamic imaging series), and (6) enhancement-variance
kinetics (characterizing the time course of the spatial variance of the enhancement within the
tumor). CAD = computer-aided diagnosis; DCE-MRI = dynamic contrast-enhanced MRI.
Reprinted from [1].

of very complex functions from raw data. Some of the greatest successes of deep learning

have been in the field of computer vision, which considerably accelerated AI applications of

medical imaging. Numerous types of deep learning algorithms, including convolutional neural

networks (CNNs), recurrent neural networks (RNNs), autoencoders, generative adversarial

networks (GANs), and reinforcement learning, have been developed for medical imaging

applications [23, 24, 31–33].

Deep learning methods have several advantages over the conventional CADx. Since

they automatically learn useful features from the data for a given task during the training

process, they eliminate the need for manual feature design and may be able to learn abstract

representations that would not be described by human-engineered features. Medical images,

4



nevertheless, pose a set of unique challenges to deep-learning-based computer vision methods.

For one, training of high-performing and robust deep learning models requires large amounts

of well-annotated data, whereas medical imaging datasets are usually relatively small in size

and can have incomplete or noisy labels. Further, the high-dimensionality and large size

of medical images allow them to contain a wealth of clinically useful information, but the

information cannot be optimally exploited by naive applications of the deep learning models

developed for computer vision tasks for natural images. The lack of interpretability is another

hurdle in building trustworthy deep-learning-based AI systems for healthcare purposes and

adopting them for clinical use.

Due to data scarcity in the medical imaging domain, transfer learning is a commonly

used technique when deep learning algorithms are employed, where the deep learning model

is initialized with weights pretrained on millions of natural images (e.g., ImageNet, which

contains over a million natural images in 1000 categories) or another related task [34–36]. The

model initialized with pretrained weights can then either be used as a fixed feature extractor

or be fine-tuned. For the former, the model’s weights are frozen and applied directly to

extract representations from medical images, and the extracted features can then be used to

train a simpler machine learning model depending on the task. For fine-tuning, the weights

for all or part of the model are updated during training based on the new data and the task

of interest. Since earlier layers of a model are usually responsible for low-level features that

are common to many types of images, such as shapes, gradients, and edges, earlier layers

are sometimes frozen during fine-tuning. The choice and implementation of transfer learning

techniques often have an impact on the model performance and run-time, and the decision

needs to be made based on the specific scenario and/or through experimentation.

Human-engineered radiomics and deep learning methods for breast imaging analysis have

both advantages and disadvantages regarding computation efficiency, amount of data re-

quired, preprocessing, interpretability, and prediction accuracy [37, 38]. They should be
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chosen based on the specific tasks and scenarios, and they can be potentially combined to

complement each other.

1.2 MRI for Breast Cancer Imaging

Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death

among women worldwide [39]. In the United States, breast cancer is the most commonly

diagnosed cancer and the second leading cause of cancer death among women, with over

281,000 estimated new cases and 43,000 estimated deaths in 2021 [40]. Due to its high

prevalence, the advancement of clinical practice and basic research to predict the risk, detect

and diagnose the disease, and implement the optimal therapy has a high potential impact.

The progress against breast cancer so far is reflected in a substantial decrease in mortality.

As of 2018, the female breast cancer death rate had dropped from its peak by 41% [40].

1.2.1 Breast MRI in Clinical Practice

Over the course of many decades, medical imaging modalities have been developed and used

in routine clinical practice for these efforts in several capacities. First, screening techniques,

including mammography and physical examination, are employed to detect abnormalities.

Second, the abnormality is diagnosed through biopsy and further imaging such as ultrasound

and MRI. Third, if found to be malignant, the lesion will be characterized by subtype and

staged based on tumor size and extent of invasion. Finally, imaging such as MRI is used

throughout treatment planning and monitoring.

Breast Cancer Screening

Mammography is the recommended method for breast cancer screening of women in the

general population [41]. Screening with mammography is associated with a 20% – 40%
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reduction in breast cancer deaths [2]. However, screening with mammography alone may

be insufficient for women at high risk of breast cancer since its effectiveness is limited by

its two-dimensional (2D) projection nature [41]. This concern is particularly important for

women with dense breasts, as cancers can be missed at mammography in these women due

to the camouflaging effect [42]. The need for more effective assessment strategies has led

to the emergence of newer imaging techniques for supplemental screening, including digital

breast tomosynthesis (DBT), MRI, and automated breast ultrasound [2, 43]. Breast MRI has

been shown to detect additional cancers in women with negative screening mammography

examinations regardless of their risk level for breast cancer [44]. Nevertheless, since the cost-

effectiveness of screening MRI rises with increasing breast cancer risk, the American Cancer

Society recommends screening breast MRI in women at high risk and some of the women

at intermediate risk for breast cancer based on family history or genetic predisposition to

supplement mammography or DBT, which has shown to identify earlier stage disease and

is associated with improved survival rates [41, 43, 45]. Figure 1.2 shows an example where

MRI detects a malignant lesion occult on mammography [2]. Ultrasound is an option for

those high-risk women who cannot undergo MRI [41, 43]. There is insufficient evidence to

support the use of other imaging modalities, such as thermography, breast-specific gamma

imaging, PET, and optical imaging, for breast cancer screening [41].

High costs and limited availability of MRI units are the main factors that preclude the

widespread use of screening MRI. The abbreviated MRI protocol, consisting of one pre- and

one postcontrast T1-weighted acquisition, has shorter image acquisition and interpretation

times [46]. Research has found similar diagnostic accuracy between abbreviated breast MRI

and the full MRI protocol [47]. Also, ultrafast sequences may be used to obtain dynamic

information without lengthening the protocol, maintaining a high diagnostic accuracy [48].

These emerging imaging technologies may reduce the costs of screening breast MRI and

increase its availability.
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Figure 1.2: Screening breast MRI detects malignancies occult on other imaging modalities.
(A) craniocaudal and (B) mediolateral oblique full-field digital mammography images of
the left breast demonstrate no suspicious findings. (C) Early postcontrast T1-weighted fat
subtracted axial and (D) maximum intensity projection images from screening breast MRI
demonstrate a 7 mm enhancing mass with spiculated margins in the left breast at 12 o’clock
10 cm from the nipple. Pathology from an MRI–guided percutaneous breast biopsy yielded
invasive ductal carcinoma (grade 1). Reprinted from [2].

Staging in Women with Known Breast Cancer

Although guidelines differ widely in their recommendations for the performance of preoper-

ative breast MRI in women with a new diagnosis of breast cancer, in general, MRI is useful

for determining the extent of the tumor, evaluation of the tumor’s relation to the deep fascia,

and screening of the contralateral breast. First, breast MRI provides high-quality preoper-

ative staging. Most studies conclude that size estimations with MRI are more reliable than

those with clinical examination, mammography, or ultrasound, and the benefit is particu-

larly strong for invasive lobular carcinomas and DCIS components [49–53]. Moreover, breast

MRI helps improve the management of detected lesions. With preoperative MRI, the detec-
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tion of mammographic occult lesions in the affected breast is common, and the detection of

additional disease that impacts treatment occurs in 20% of patients [54]. Besides incidental

lesions, the use of a multiparametric MRI protocol is also valuable because it may allow the

classification of lesions as certainly benign and obviate biopsy. Indeterminate lesions should

be sampled with MRI-directed US-guided biopsy or MRI-guided biopsy [3]. In addition,

although the benefit of using breast MRI findings in surgery is still under investigation, evi-

dence clearly points to a reduction in the rate of re-excisions without increasing the rate of

mastectomies for lobular cancers [55, 56]. Breast MRI also helps detect occult contralateral

disease in 5.5%–9.3% of women with known unilateral breast cancer, with 37%–48% of these

findings being malignant [54].

Evaluation of Women Treated with Neoadjuvant Chemotherapy

Monitoring the change in tumors during neoadjuvant chemotherapy (NAC) is important

for the evaluation of treatment and preparation of downstream procedures. To evaluate

residual tumor size, physical examination, mammography, ultrasound, and MRI have been

used, among which MRI is the most accurate method, as it is difficult for other modalities

to distinguish post-treatment fibrosis or post-biopsy change from residual tumor following

NAC [57, 58]. Findings of breast cancers following NAC vary depending on tumor subtype,

histologic type, and time points of MRI acquisitions, and thus a refined strategy for accurate

interpretation is crucial. The purpose of the MRI examination should also be taken into

account in the choice of MRI acquisition and interpretation strategies. From an oncologist’s

perspective, assessing response to a specific regimen and measuring changes in invasive tumor

size is important, whereas residual DCIS might not be the primary concern. For a surgeon,

to achieve a negative margin during BCS, tumor extent, including DCIS, should be measured

[3].
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1.2.2 MRI Physics

MRI is one of the wonders of modern science and medicine. MRI uses superconducting

magnets with strong magnetic fields, typically 1.5 Tesla (T) or 3T, radiofrequency (RF)

pulses, and magnetic gradients to generate images of internal structures, organs, and tissues

of the patient. Hydrogen atoms are used to produce MR images because it is the most

abundant nucleus in a human body, in water molecules and many other molecules, and

thus it is able to produce the strongest signal. When placed in a strong magnetic field, the

proton spins, i.e., their intrinsic magnetization that are randomly oriented in the absence of

external magnetic fields, all align parallel to it. The RF pulse is applied perpendicular to

the magnetic field, and when tuned to the Larmor frequency, i.e., the proton’s precessional

frequency, creates a phase coherence in the precession of the proton spins and tilts the

magnetization away from the equilibrium alignment with the longitudinal magnetic field,

so that a component of the magnetization lies in the transverse plane. The time-varying

magnetic field from the rotating transverse magnetization will induce a tiny signal in the

receiver coils, which are connected to sensitive amplifiers.

Spatial encoding of the MRI signal is accomplished through the use of magnetic field

gradients, which are spatially variant small magnetic fields in addition to the main field,

so that spins from protons in different locations precess at slightly different frequencies.

The range of precessional frequencies in the signal detected by the receiver coil encode the

locations in the body from which the signal originated.

The MRI signal is attenuated due to two simultaneous relaxation processes. The loss of

coherence of the spin system attenuates the signal with a time constant called the transverse

relaxation time, T2. Concurrently, the magnetization vector slowly relaxes towards its equi-

librium orientation that is parallel to the external magnetic field, which occurs with a time

constant called the spin-lattice relaxation time, T1. The contrast in MR images originates

from the fact that different tissues usually have different T1 and T2 relaxation times, since
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they are influenced by magnetic interactions of the nuclei with their local environment in the

body. This is especially true for soft tissues, which explains the excellent soft-tissue contrast

of MRI. The contrast in MR images can be changed by varying the weighting of the T1

and T2 relaxation times by changing the pulse repetition time (TR) and echo time (TE),

respectively, in the image acquisition sequence.

1.2.3 The Multiparametric Breast MRI Protocol

While the basis for breast MRI is a T1-weighted dynamic contrast-enhanced (DCE) sequence,

breast MRI has evolved from a primarily contrast-enhanced technique to a multiparametric

technique, in which T2-weighted and diffusion-weighted imaging (DWI) are routinely per-

formed. The various components of the multiparametric protocol are shown in Fig. 1.3 [3].

The T2-weighted and DWI sequences are acquired before contrast material administration

since they do not rely on the contrast agent. Despite its high sensitivity for breast cancer

detection and characterization, DCE-MRI has relatively moderate and variable specificity,

which may lead to unnecessary secondary patient management and anxiety. T2-weighted

and DWI sequences provide additional morphological and functional information that com-

plement the DCE sequence, and the use of multiparametric MRI has shown to improve the

specificity while preserving its sensitivity for the differentiation of benign and malignant

lesions [59].

The T1-weighted DCE sequence involves intravenous injection of a gadolinium-based

contrast agent. A native T1-weighted acquisition is obtained prior to contrast material

administration, and multiple T1-weighted images are acquired afterward with appropriate

time intervals in between. Contrast material is administered at a maximum dose of 0.1 mmol

per kilogram of body weight, preferentially at a flow rate of 2 ml/sec, and flushed with saline

[60]. Gadolinium administered in small doses affects the microenvironment by reducing the

T1 relaxation time, therefore, increasing its signal in a T1-weighted MRI acquisition [61].
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Figure 1.3: Components of the basic multiparametric breast MRI protocol. In general, the
protocol is begun with the non–contrast-enhanced acquisitions (T2-weighted and diffusion-
weighted imaging [DWI]). This is followed by a native T1-weighted acquisition and sub-
sequently the contrast-enhanced series (ultrafast [UF] imaging and regular T1-weighted
imaging). For screening purposes, this protocol may be abbreviated to contain only the
T1-weighted acquisitions before and directly after contrast material administration, with or
without the acquisition of ultrafast images (or only ultrafast images if they are of sufficiently
high resolution). For lesion discrimination, adding T2-weighted imaging and DWI is ben-
eficial. The information from ultrafast images is in essence similar to (although somewhat
more discriminative than) the delayed phase dynamics, and these can therefore both be used.
After neoadjuvant chemotherapy, the delayed phase is essential to document the presence of
residual ductal carcinoma in situ. Reprinted from [3].

DCE-MRI allows for visualization of spatial and temporal variations of abnormalities,

providing morphological details and functional information. By using modern MRI units and

breast coils, high spatial resolution, 1 mm isotropic or lower, is obtainable without length-

ening the acquisition time. The contrast enhancement of the lesions and the surrounding

parenchyma are different due to the difference in the vascular and capillary permeability of

these tissues, which enables easier visual and computerized discrimination of the lesion and

surrounding tissue. Furthermore, the time-signal intensity curve, or kinetic curve, obtained

at the multiple time points, carries highly useful information for clinical evaluation. As shown

in Fig. 1.4, the kinetic curves allow for assessment of the initial phase, within approximately

2 minutes of contrast injection, and the late (or delayed) phase, after 2 minutes or after peak
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enhancement [5]. In the initial phase, enhancement classifications of slow, medium, and fast

are determined by signal intensity increase. In the delayed phase, enhancement curves can

be classified by three basic curve types: persistent, plateau, and washout. According to a

classification scheme based on the shape of the contrast-time intensity curves, breast masses

with persistent contrast enhancement (Type I) are likely to be benign, whereas plateau

delayed enhancement (Type II) is of intermediate suspicion for malignancy, and washout

delayed enhancement (Type III) is the most indicative of malignancy. Although the most

classic curve type for malignant breast lesions demonstrates rapid uptake followed by early

washout, there is a significant overlap of kinetic curve types among benign and malignant

lesions [5].

Figure 1.4: Semiquantitative breast DCE kinetics analysis approach, as defined in the ACR
BI-RADS atlas [4]. The initial phase is classified based on the percent increase in signal
intensity from precontrast levels, with increases of less than 50%, 50% to 100%, and greater
than 100% classified as slow, medium, and fast, respectively. The delayed phase is classified
by the curve type after initial peak enhancement as persistent (defined as a continuous in-
crease in the enhancement of > 10% initial enhancement), plateau (constant signal intensity
once the peak is reached ±10% initial enhancement), or washout (decreasing signal intensity
after peak enhancement > 10% initial enhancement). Reprinted from [5].

Subtracting the precontrast image from postcontract images, thus forming subtraction

images, is helpful for acquisitions with fat suppression because they help differentiate truly
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enhancing structures from lesions with native high signal intensity at T1 [62]. Moreover,

generating the maximum intensity projection (MIP) from these subtracted images aids in

rapid lesion detection, but motion artifacts, chemical shift artifacts, and poor fat suppression

may obscure lesions on MIP images.

T2-weighted imaging is included in the multiparametric MRI protocol to depict edema,

hemorrhage, mucus, or cystic fluid, providing additional information that complements the

T1-weighted DCE sequence [63, 64]. T2-weighted imaging with fat suppression enables easy

visualization of cysts. T2-weighted imaging without fat suppression allows better depiction

of lesion morphology. Most masses with high signal intensity at T2-weighted imaging are

benign, such as apocrine metaplasia, cyst, myxoid fibroadenoma, fat necrosis, and lymph

nodes [64]. Most cancers do not show high signal intensity relative to parenchyma at T2-

weighted imaging because of their high cellularity and low water content. However, several

rare types of breast cancer, including mucinous, medullary, papillary, and metaplastic car-

cinomas, can have high signal intensity on T2-weighted images [64]. Several studies have

reported that T2-weighted imaging increases the specificity for differentiation of benign and

malignant lesions [65]. For example, fibroadenomas, a type of benign lesion that can exhibit

similar contrast agent enhancement to that of malignant lesions on T1-weighted DCE-MRI,

are usually hyperintense on T2-weighted images, while malignant lesions are usually iso- or

hypointense [63].

DWI quantifies the random movement of water molecules in tissue, which is influenced

by tissue microstructure and cell density. This is achieved by applying motion-sensitizing

gradients (b factors) to a primarily T2-weighted echo-planar imaging sequence [6, 66]. The

DWI signal intensity decreases proportionally to the water diffusivity as follows:

SD(b) = S0 e
−b×ADC , (1.1)

where SD(b) is the signal intensity with diffusion weighting b, S0 is the signal intensity with-
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out diffusion weighting. The apparent diffusion coefficient (ADC) is a quantitative measure

of diffusivity derived from DWI, defined as the average area a water molecule occupies per

unit time. Breast cancer has significantly lower ADCs than benign breast lesions or normal

tissue (0.8–1.3 × 10−3 mm2/sec versus 1.2–2.0 × 10−3 mm2/sec), which is due to the rela-

tively increased tumor cellularity that restricts diffusion, manifested by the bright signal on

DWI and dark signal on a corresponding ADC map [6, 67]. An example is shown in Fig. 1.5

[6].

Figure 1.5: Example images obtained with DWI scan. Shown are corresponding slices from
(A) S0 with b = 0 s/mm2, (B) SD with b = 800 s/mm2, (C) Apparent diffusion coefficient
(ADC) map. An invasive tumor (arrow) exhibits reduced diffusivity on DWI, appearing
hyperintense on SD and hypointense on the ADC map. Reprinted from [6].
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1.3 Chest Radiography for COVID-19 Imaging

The coronavirus disease 2019 (COVID-19) pandemic has emerged as an unprecedented health

care crisis and has profoundly impacted global public health and the economy. The pathogen

responsible for COVID-19 is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2), which is structurally related to the virus that causes severe acute respiratory syndrome

(SARS). Since the outbreak in late 2019, scientific and clinical evidence is evolving on both

acute and long-term effects of COVID-19, which can affect multiple organ systems. The

principal mode of transmission of SARS-CoV-2 is through exposure to respiratory fluids

carrying the infectious virus. Infected patients release respiratory fluids during exhalation

(e.g., quiet breathing, speaking, singing, exercise, coughing, sneezing) in the form of droplets

that carry the virus and transmit infection. Exposure occurs mainly in three ways: (1)

inhalation of very fine respiratory droplets and aerosol particles, (2) deposition of respiratory

droplets and particles on exposed mucous membranes in the mouth, nose, or eye by direct

splashes and sprays, and (3) touching mucous membranes with hands that have been soiled

either directly by virus-containing respiratory fluids or indirectly by touching surfaces with

the virus on them [68].

The SARS-CoV-2 virus is highly contagious, and infection can cause severe and some-

times fatal diseases. Therefore, early detection and appropriate patient management are

crucial when navigating the pandemic, both for the patient’s well-being and for public health

purposes. Early detection not only allows for prompt treatment at the earlier, more man-

ageable stage of the disease, but also informs patient isolation based on disease mitigation

and containment strategies. Accurate prognosis enables planning and optimization of med-

ical resource allocation, as well as choosing the appropriate intervention and implementing

necessary adjustments.

Laboratory confirmation of SARS-CoV-2 is performed with a virus-specific reverse tran-

scription polymerase chain reaction (RT-PCR) test. Early on in the pandemic, early detec-
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tion and containment of infection was hindered by the need to develop, mass produce, and

widely disseminate the RT-PCR assay. While there have been successful efforts to increase

the RT-PCR testing capacity, shortages of test kits and long processing times remain a prob-

lem in resource-limited settings during surges. Moreover, the RT-PCR test has moderate

and variable sensitivity in clinical practice [69]. The value of an imaging test relates to

the generation of results that are clinically actionable either for establishing a diagnosis or

for guiding management, triage, or treatment. The value is diminished by associated costs,

including the risk of radiation exposure to the patient, risk of COVID-19 transmission to

uninfected healthcare workers and other patients, consumption of personal protective equip-

ment (PPE), and need for cleaning and downtime of radiology rooms in resource-constrained

environments. The appropriate use of imaging in each of these scenarios needs to be consid-

ered on the basis of the cost-benefit trade-off.

1.3.1 Chest Radiography and Computed Tomography

CXR and CT of the thorax are the primary imaging modalities that have been recommended

as potential triage and diagnostic tools for COVID-19. CXR is the oldest and most commonly

performed medical imaging examination. It involves exposing a part of the body to a low

dose of ionizing radiation (average is around 0.02 mSv for a front view and 0.08 mSv for a

lateral view) to produce 2D projection images of the heart, lungs, airways, blood vessels,

and the bones of the spine and chest [70]. A standard CXR examination consists of an erect

posteroanterior (PA) radiograph and a left lateral projection acquired during full inspiration

with the patient facing the detector. A CXR exam can also be performed using a portable

x-ray machine, acquiring a radiograph anteroposteriorly (AP) with the patient facing the

x-ray beam. Portable radiography is recommended for patients too unstable or unable to

travel to a radiology department; however, if a standard chest radiography exam is possible,

it is preferred due to the superior diagnostic quality and acquisition of multiple projections
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[71]. The type of image acquisition affects the image quality as well as the appearance of

pathologic findings and thoracic structures due to photon beam divergence [72].

Dual-energy subtraction (DES) CXR is a robust and powerful tool used in many modern

CXR exams to improve the ability to detect and accurately diagnose a wide variety of

thoracic abnormalities on PA-lateral chest images [7, 73]. DES CXR takes advantage of

the higher differential attenuation of bones as a function of photon energy compared to soft

tissue, allowing for the ability to decompose two images taken at different x-ray energies into

tissue-selective representations of the anatomy, namely soft-tissue and bone images. This

helps in cases where the bony structure of the ribs and clavicle obscures the subtle soft-tissue

abnormalities in the lung because of anatomical overlap caused by the projection process.

An example is shown in Fig. 1.6 [7]. In portable CXR exams, postprocessing techniques

can be applied to generate a synthetic soft tissue image, such as in ClearRead Xray Bone

Suppress (Riverain Technologies) series. The algorithm can increase the visibility of soft

tissue in the standard CXR image by suppressing the bone on the digital image without

the need for two exposures and has also demonstrated its usefulness in helping radiologists

identify missed nodules [74].

CT is also an x-ray-based imaging modality. CT scanners use a rotating x-ray tube and

a row of detectors placed in the gantry to measure x-ray attenuation by different tissues

inside the body. Cross-sectional images of the body are reconstructed from measurements

of attenuation coefficients of x-ray beams in the volume of the object studied.

1.3.2 Use of Imaging in COVID-19

CXR is recommended for triaging at patient presentation and disease monitoring due to its

fast speed, relatively low cost, wide availability, and portability [75, 76]. Characteristics such

as bilateral lower lobe consolidations, ground glass densities, peripheral air space opacities,

and diffuse air space disease on CXR have been related to COVID-19 [77, 78]. CXR is
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Figure 1.6: (a) Standard unsubtracted image obtained in a 54-year-old woman with a history
of smoking. (b) Soft-tissue-selective image more clearly demonstrates increased opacity
(arrow) in the right infrahilar region. (c) Bone-selective image shows a malpositioned left
central venous catheter. Arrow indicates the tip of the catheter, located in the neck. Note
the artifacts along the aortic arch (white streak), the border of the left side of the heart
(black streak), and the left hemidiaphragm and stomach bubble (parallel white and black
streaks) due to misregistration during the subtraction process. (d) Axial CT scan shows a
right infrahilar mass that proved to be lung cancer. Reprinted from [7].
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insensitive in mild or early COVID-19 infection [79]. However, the relative value of CXR or

CT for detecting the presence of viral pneumonia depends on community norms and pub-

lic health directives. When patients are encouraged to present early in the course of their

disease, as was the case during the outbreak in Wuhan, China, CXR has little value. The

greater sensitivity of CT for early pneumonic changes is more relevant in the setting of a

public health approach that required isolation of all infected patients within an environment

where the reliability of COVID-19 testing was limited and turnaround times were long [80].

Alternatively, during the surge in New York City, where patients were instructed to stay at

home until they experienced advanced symptoms, CXR exams were often abnormal at the

time of presentation. Furthermore, equipment portability with imaging performed within an

infected patient’s isolation room is another factor that may favor CXR in selected popula-

tions, effectively eliminating the risk of COVID-19 transmission along the transport route

to a CT scanner and within the room housing a CT scanner, particularly in environments

lacking PPE. In addition, CXR can be useful in hospitalized patients for assessing disease

progression and alternative diagnoses [75].

CT is more sensitive for early parenchymal lung disease, disease progression, and alter-

native diagnoses, including acute heart failure from COVID-19 myocardial injury and, when

performed with intravenous contrast material, pulmonary thromboembolism [81]. Leveraging

these superior capabilities depends on the availability of CT capacity, particularly consid-

ering the potential reduction in CT scanner availability due to the additional time required

to clean and disinfect equipment after imaging of patients suspected of having COVID-19.

Although local practice patterns and resource availability do not articulate the relative merit

of chest radiography versus CT, the choice of imaging modality is ultimately left to the judg-

ment of clinical teams at the point of care, accounting for the differing attributes of CXR

and CT, local resources, and expertise.
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1.4 Machine Learning Algorithms Employed

As mentioned at the beginning of this section, the machine learning field has been advancing

for decades and has seen explosive growth in recent years. The wave of development in

machine learning algorithms has spun advancements in numerous application areas, including

medical imaging. This subsection will provide an overview of the machine learning algorithms

employed in this dissertation.

There are several types of machine learning algorithms in terms of the level of supervision.

For example, supervised learning requires all training data to be labeled with truth, and

the algorithm learns from the labeled training data to find a mapping that transforms the

input data into a predefined output and predicts the correct label for the test data. In

unsupervised learning, the algorithm is given unlabeled input data and tries to understand

the internal structures of the data on its own. The most common example for unsupervised

learning is clustering, where samples are automatically divided into groups based on their

most distinct features. In recent developments of deep learning, the line between supervised

and unsupervised has started to blur, yielding a few other types of algorithms.

Semi-supervised learning is an approach that uses partially labeled data sets. For exam-

ple, the algorithm can first use labeled data to train itself, resulting in a partially trained

model, which then predicts labels of the unlabeled data [82]. The combined labeled and

“pseudo-labeled” data then train the algorithm in a supervised manner. This technique is

useful when fully labeled training sets are infeasible, whereas the acquisition of unlabeled

data is relatively inexpensive. Weakly supervised learning trains the algorithm on training

data with limited, noisy, or imprecise supervision signals in a supervised learning setting,

and the algorithm predicts additional information from the labels it was trained on [83]. This

approach allows for the use of inexpensive weak labels to alleviate the burden of obtaining

hand-labeled data sets, which can be impractical. Self-supervised learning obtains supervi-

sory signals from the data itself, often leveraging the underlying structure in the data. The

21



general technique of self-supervised learning is to predict any unobserved part of the input

from any observed part of the input [84]. For example, it can be used to predict past or

future frames in a video from current ones. Self-supervised learning opens up a huge oppor-

tunity for better utilizing unlabelled data while learning in a supervised learning manner,

which can potentially break the bottleneck for building more intelligent generalist models.

Due to the nature of the datasets and the tasks, the methods studied in this work are

primarily under the supervised learning category, with the exception of one weakly supervised

learning method.

1.4.1 Support Vector Machine

Support-vector machine (SVM) is a supervised learning algorithm used for classification and

regression analysis. SVM constructs a hyperplane or set of hyperplanes in a high- or infinite-

dimensional space, such that the functional margin, i.e., the distance to the nearest training

data point of any class, is maximized (Fig. 1.7) [85]. When the classes to discriminate are

not linearly separable in the original finite-dimensional space, the space can be transformed

into a much higher-dimensional feature space, making the separation by hyperplanes easier

in that space. The mappings are defined in terms of a kernel function selected to suit the

problem, which keeps the computational load reasonable [86]. The kernel trick efficiently

allows much more complex, non-linear discrimination between sets that are not convex in

the original space. Some common kernels include polynomial, Gaussian radial basis function,

and hyperbolic tangent.

1.4.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of deep learning algorithm. CNNs assume

a geometric relationship in the inputs, such as the rows and columns of the image [87]. They

have been state-of-the-art methods for image and video classification, image segmentation,
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Figure 1.7: Example hyperplanes for discriminating the two classes (black and white circles).
H1 does not separate the classes. H2 does, but only with a small margin. H3 separates them
with the maximal margin.

and image generation tasks [88]. One property of CNNs that makes them useful for many

computer vision tasks is that the patterns they learn are translation invariant, meaning that

once the network learns a pattern, it can detect the same pattern no matter where it is in

the input image [89]. Each convolutional layer has filter elements (also called kernels). The

filters are moved across the image to perform convolution operations. The step size for the

movement of the filter element is called the stride. The receptive field is the region of the

input space visible to a filter element. The output of a convolution layer is a tensor of feature

maps, whose depth (or channel) dimension corresponds to the number of filters in the layer.

Following each convolution operation, CNNs apply an activation function to each of the

output units in the feature maps. The most commonly used activation is the rectified linear

unit (ReLU), which has an output of zero for any negative value and keeps the value for any

positive value. Pooling layers (e.g., max-pooling, average-pooling) are also commonly used in

CNNs to downsample the feature maps and compensate for long computing times. A max-

pooling layer, for example, takes the maximum value in the feature map within the filter size,

rewarding the convolution function that extracts the most important features from the image.
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Fully connected layers are usually used at the top of the model to complete the classification

task. Fully connected layers have every unit in the previous layer connected to every unit

in the next layer, and the final fully connected layer in the model is usually followed by a

sigmoid (for binary classification or independent classes) or softmax (for mutually exclusive

classes) activation operation to produce an output score for the probability of the input data

belonging to each class.

Another critical component for training a CNN is regularization, which helps prevent

overfitting on the training data, thus achieving balance in the bias-variance trade-off. One

regularization approach is adding parameter norm penalties to the cost function. L1 and

L2 regularizations are the most common in this category [90]. When the L1 norm (i.e., the

sum of the absolute values of the vector) of the weights is used, the cost function penalizes

the absolute value of the weights. When the L2 norm (i.e., the square root of the sum of

the squared vector values) of the weights is added to the cost function, it is also known

as weight decay. The difference in their effects is that L1 regularization shrinks the less

important feature’s coefficient to zero, thus removing some feature altogether, whereas L2

regularization forces the weights to decay towards but not exactly to zero. Another powerful

regularization technique in deep learning is dropout [8]. At every iteration during training,

some neurons are randomly selected to be removed along with all of their incoming and

outgoing connections, as shown in Fig. 1.8 [8]. This means a different sub-model is trained

in each iteration, resulting in multiple independent internal representations being learned by

the model. As a result, the network becomes less sensitive to the specific weights of neurons,

which, in turn, results in a network that is capable of better generalization and is less likely

to overfit the training data. In addition, batch normalization is a layer often used in very

deep neural networks to standardize the output of the previous layers on each mini-batch,

which has the effect of stabilizing and accelerating the learning process and is also used as

regularization to avoid overfitting [91].
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Figure 1.8: Dropout neural net model. Left: A standard neural net with two hidden layers.
Right: An example of a thinned net produced by applying dropout to the network on the
left. Crossed units have been dropped. Reprinted from [8].

All weights in a CNN are learned from the training data via the backpropagation algo-

rithm [92]. While machine learning scientists and practitioners have a general understanding

of the benefits and drawbacks of design choices when building a CNN model, there is not a

formula to precisely determine all the design parameters such as the number and types of

layers needed for a given problem; the process usually involves trial-and-error that requires

experimentation of various model architectures to determine the optimal configuration for a

given problem [89].

The CNN models employed in this work are mainly variations based on established state-

of-the-art CNN architectures for image recognition tasks. The remainder of this section

provides a brief overview of these architectures.

VGG

The VGG architecture was the winner of the localization portion and received second place

in the classification portion of the 2014 ImageNet challenge [88, 93]. The primary innovation

was the use of 3×3 convolutional filters in each layer, as well as increasing the depth compared
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to prior architectures, such as AlexNet, the architecture that started the renaissance of deep

learning [94]. The small size of the convolution filters allows VGG to have a large number of

weight layers, which enables the model to learn more complex feature and hence improves

performance.

There are two variants of the VGG architecture, namely VGG-16 and VGG-19, named

for the number of layers in the models. Taking VGG-19 as an example, as illustrated in

Fig. 1.9, the architecture consists of five convolutional blocks for a total of 16 convolutional

layers, with a max-pooling layer between consecutive convolutional blocks, followed by three

fully connected layers. All convolutional blocks consist of 3× 3 filters, which is the smallest

receptive field to capture the concepts of left/right, center, and up/down. The stride is 1

pixel. The max-pooling operation is performed over 2× 2 pixel windows with a stride of 2.

The first two fully connected layers both have 4096 channels, and the last fully connected

layer’s channel number depends on the number of output classes. The total number of

weights is approximately 144 million [93].

Figure 1.9: Illustration of the network architecture of VGG-19 model, in the case of a 1000-
class classification, as in the ImageNet challenge.

VGG-19 has been successfully applied to medical imaging tasks [1], likely because the

architecture has the capacity to learn complex features but is not too large relative to the
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limited size of medical imaging datasets, achieving a balance in the bias-variance trade-off.

ResNet

ResNet won the 2015 ImageNet challenge with an accuracy of 95.5%, outperforming human

classification performance (95%) on the ImageNet dataset [9, 88]. The innovation in ResNet

was the addition of residual mapping, forming residual blocks as shown in Fig. 1.10. As

CNN models grow deeper, they also become more difficult to optimize due to the problem

of vanishing/exploding gradients, and model performances also saturate and then degrade

beyond a certain depth, even on the training set [9]. Formally, if the desired underlying

mapping is denoted as H(x), the stacked nonlinear layers in a residual block fit mapping

F(x) := H(x) − x. The original mapping is recast into F(x) + x. The authors of ResNet

hypothesized that it would be easier to optimize the residual mapping than to optimize the

original, unreferenced mapping. In the extreme case, if an identity mapping were optimal,

the residual block would push the residual to zero rather than to fit an identity mapping by

a stack of nonlinear layers, and the former is easier.

Figure 1.10: Illustration of a two-layer residual block, a building block of ResNet.

To update the weights during training of a CNN, the loss function is backpropagated

through the network. When backpropagating through a network with many hidden layers,

each layer has a small derivative, causing the gradient to decrease such that when it gets to

the earlier layers, it is too small to update the weights in a meaningful way. This is referred
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to as the vanishing gradient problem. Although this problem can be avoided by normalized

initialization and intermediate normalization layers [91, 95, 96], residual connections are also

a way to do so, because the short paths help preserve the gradient throughout the extent of

very deep networks.

The authors of ResNet experimented with several ResNet models, whose detailed archi-

tectures are shown in Fig. 1.11 [9]. Thanks to residual connections, even the deepest vari-

ant, ResNet-152, presented has lower complexity than VGG-19 (11.3 billion FLOPs versus

19.6 billion FLOPs), despite being eight times deeper. Through experiments, they did ob-

serve improved convergence in very deep ResNet models compared with similarly structured

plain networks that did not contain residual connections. Among the ResNet architectures,

ResNet-50 has been chosen most frequently in medical imaging applications. Its complexity

is usually appropriate for training with relatively small datasets in this domain.

Figure 1.11: ResNet architectures for ImageNet classification. Building blocks are shown
in brackets, with the numbers of blocks stacked. Downsampling is performed by conv3_1,
conv4_1, and conv5_1 with a stride of 2. FLOPs = floating point operations per second.
Reprinted from [9].
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DenseNet

DenseNet is one of the state-of-the-art CNN architectures and has shown success in image

classification tasks on ImageNet as well as medical images [10]. As illustrated in Fig. 1.12a,

in a unit building block in DenseNet, named dense block, each layer has a direct connection

with every other layer within the block, thus obtaining additional inputs from all preceding

layers. Consequently, each layer is receiving collective knowledge from all preceding layers.

The feature maps from previous layers and the current layer are concatenated in the channel

dimension and passed on to all subsequent layers. A DenseNet model is constructed by

stacking multiple dense blocks with transition layers in between, as shown in Fig. 1.12b.

(a)

(b)

Figure 1.12: (a) Illustration of a five-layer dense block. (b) Illustration of a deep DenseNet
with three dense blocks. The layers between two adjacent blocks are referred to as transi-
tion layers and change feature-map sizes via convolution and pooling. Each layer takes all
preceding feature maps as input. Adapted from [10].

DenseNet has several advantages. As mentioned for ResNet, DenseNet also allows the

error signal to be easily propagated to earlier layers more directly because of the skip connec-
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tions. Moreover, DenseNet utilizes parameters more efficiently than alternative architectures

such as ResNet. Since each layer receives feature maps from all preceding layers, the network

can be thinner and compact, i.e., fewer channels can achieve the same classification perfor-

mance. In addition, because features from various layers are concatenated, the features are

more diversified and tend to have richer patterns than in ResNet, in which the element-

wise addition is used. Using features of all complexity levels, including features with lower

complexity levels from earlier layers, also tends to give more smooth decision boundaries.

Thanks to these advantages, experimental results showed that, for example, DenseNet-201

with 20 million parameters yielded a similar validation error as the ResNet-101 with over 40

million parameters on ImageNet [10].

One drawback of DenseNet is that it is very demanding on the memory compared with

ResNet, as the tensors from different layers are concatenated together. Among the DenseNet

variants that have been investigated, DenseNet-121 has been used the most in medical imag-

ing applications due to its relatively moderate complexity and memory requirement.

U-Net

U-Net is a segmentation network developed for image segmentation of biomedical images

[11]. The network is based on the fully convolutional network and was modified to require

fewer training images and to yield more precise segmentations [97]. The network consists

of a contracting path and an expanding path, which gives it the symmetric u-shaped ar-

chitecture, as illustrated in Fig. 1.13 [11]. The contracting path is a typical convolutional

network that consists of repeated application of convolutions, each followed by a ReLU and

a max-pooling operation. During the contraction, the spatial information is reduced while

feature information is increased. The expanding path combines the feature and spatial in-

formation through a sequence of up-convolutions and concatenations with high-resolution

features from the contracting path, allowing the network to propagate context information
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to higher resolution layers. The output of U-Net gives per-pixel class predictions, hence

serves as a segmentation algorithm.

Figure 1.13: U-net architecture (example for 32 × 32 pixels in the lowest resolution). Each
blue box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower-left edge of the box. White boxes
represent copied feature maps. The arrows denote the different operations. Reprinted from
[11].

There have been many variations of U-Net adapted for specific segmentation tasks. One

variation proposed by Clark et al. augments the U-Net with inception blocks and residual

blocks [98]. The regular convolutional blocks in the architecture are replaced with inception

blocks, shown in Fig. 1.14 [99]. Each inception block applies four convolution and pooling

operations in parallel then concatenates the feature tensors at the end of the block. Merg-

ing of signals after parallel operations has been shown theoretically and experimentally to

increase segmentation and classification accuracy [99]. Residual blocks (illustrated in Fig.

1.10) are added to the connections of the up- and down-sampling paths to enhance feature

complexity, which is especially important in the first layer skip connection that has only

undergone one convolution operation. This has been shown to help reduce areas of false
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positive [98].

Figure 1.14: Illustration of the inception block used to augment the U-Net. An inception
block is also the building block of an inception network architecture.

1.4.3 Multiple Instance Learning

Multiple instance learning (MIL) is a form of weakly supervised learning where training

instances are arranged in sets, called bags, and a label is provided for the entire bag, but

the individual instances are unlabeled. A bag is positively labeled if at least one instance

in it is positive and is negatively labeled if all instances in it are negative. The goal of

the MIL is to predict the labels of new, unseen bags. Several types of problems can be

naturally formulated as MIL problems to leverage weakly labeled data. For example, in the

drug activity prediction problem, the objective is to predict if a molecule can bind to the

surface receptors of the target molecule [100]. A drug molecule can adopt a wide range of

conformations, and it is labeled “active” if at least one of its conformations can bind to a

binding site. Observing the effect of individual conformations is infeasible. By modeling a

molecule as a bag and conformations that it takes as the instances in the bag, one can use
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MIL to predict the drug activity for unseen molecules.

MIL has been increasingly used in many other application fields, such as image and video

classification, document classification, and sound classification. Consequently, it has been

used in diverse application fields such as computer vision and document classification [101].

In medical imaging, CADx algorithms can be trained with medical images for which only

case-level diagnoses are available instead of costly local annotations provided by an expert.

For example, digital pathology has seen rapid growth in recent years with the advent of

digital microscopy, which makes it possible to convert glass slides into digital slides. The

resulting large-scale whole-slide images (WSI) of tissue specimens contain billions of pixels

and tens of thousands of cells. The size of 100 typical WSI studies is similar to the size of the

entire ImageNet, a well-known visual database for computer vision research that contains

over 14 million images [34]. Thoroughly reading a WSI is a laborious task that takes a highly

trained pathologist several hours per slide. Deep learning, with its capabilities of processing

huge amounts of data, holds a great promise to support pathologists in their daily routines;

however, producing pixel-level annotations is labor-intensive and infeasible for large-scale

datasets. MIL has shown great performance in addressing this issue by modeling WSIs as

bags and smaller patches that contain cells as instances, and only using the slide-level labels

that can be obtained much more easily.

Before the renascence of deep neural networks, the majority of machine learning systems

consisted of two separated entities: a feature extractor and a classifier. Deep MIL, on the

other hand, provides the possibility of training from end-to-end only using weakly labeled

data. Figure 1.15 illustrates three types of deep MIL approaches: instance-based approach,

embedding-based approach, attention-based approach [12]. In the instance-based approach,

an instance score is obtained from the model for each instance in a bag, and then an MIL

pooling layer is used to infer the bag label. In the embedded-based approach, MIL pooling

occurs at the embedding (or feature) level to combine the instance embeddings to a single
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bag embedding, which is then used to infer the bag label. The embedded-based approach

generally yields better bag classification performance than the instance-based approach, but

it is not desirable when interpretability is important as it cannot infer instance contribution

[102]. The recently proposed attention-based approach combines the advantages of the pre-

vious two approaches. The instance embeddings are combined into a bag embedding by an

attention mechanism consisting of two fully connected layers that are used to compute an

attention weight for each instance. Let H = {h1, ...,hK} be a bag of K embeddings, and

then the attention-based MIL pooling is defined as follows:

z =
K∑
k=1

akhk, (1.2)

where

ak =
exp

{
w> tanh

(
Vh>k

)}
K∑
j=1

exp
{
w> tanh

(
Vh>j

)} , (1.3)

where w ∈ RL×1 and V ∈ RL×M are parameters [12]. Consequently, instances with a

higher attention weight are contributing more to the bag embedding, and the attention

scores provide interpretability. While the MIL pooling operators in previous approaches

are predefined and nontrainable, the attention-based approach supports fully flexible and

trainable MIL pooling alongside other components of a model.

1.4.4 Evaluation of Machine Learning Performance

There are two primary methods to evaluate the performance of a trained deep neural network:

cross-validation and the use of an independent test set [89]. One round of cross-validation

involves partitioning data into complementary subsets, using one subset for training and the

other subset for testing. Multiple rounds of cross-validation are performed using different

partitions, and the testing results are aggregated over the rounds to give an estimate of the
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(a)

(b)

(c)

Figure 1.15: Deep MIL approaches: (a) the instance-based approach, (b) the embedding-
based approach, (c) the proposed approach with the attention mechanism as the MIL pooling.
Red color corresponds to instance scores; blue color depicts a bag vector representation.
Reprinted from [12].
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model’s predictive performance. There are many types of cross-validation, such as leave-

one-out and k-fold, that can be chosen depending on the specific scenario. When cross-

validation is used simultaneously to select the best set of hyperparameters and to evaluate

the generalization capacity, nested cross-validation is necessary. A k× l-fold cross-validation,

for example, contains an outer loop of k sets and an inner loop of l sets. The data set is

split into k sets, and iteratively, each set is selected as the outer test set while the k − 1

other sets are combined into the corresponding outer training set. Each outer training set is

further divided into l sets, and iteratively, each set is selected as the inner test set, which we

will refer to as validation set, and the l − 1 other sets are combined into the corresponding

inner training set. The inner loop is used to fit multiple models and/or using different

hyperparameters and determine the best model type and/or hyperparameter set, while the

outer loop is for providing an unbiased evaluation of the model. Alternatively, a single

test set that is held out from the model development process can be used for independent

testing of the trained model. Cross-validation can still be used during model development

for hyperparameter tuning and/or model selection, but the test set needs to be sequestered

until the evaluation step. It is also important to note that regardless of which evaluation

method is used, the results are only meaningful if the human biases are controlled in the

process of splitting the data into different subsets.

There are many metrics used to quantify the performance. For classification tasks, com-

monly used metrics include accuracy, the area under the receiver operating characteristic

(ROC) curve (AUC), sensitivity, specificity, precision-recall curve, and more. AUC will be

used as the primary metric in this work due to its robustness for unbalanced datasets and

the conventions in the medical research community. Other metrics will also be calculated if

they are appropriate and provide additional insights. Specific performance evaluation and

statistical analysis for each method will be provided in each of the following chapters.
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1.4.5 Explainability and Interpretability

In addition to the network performance evaluation, the ability of the algorithm to explain

the result or provide interpretable output is of interest. Deep learning is often considered

a “black box” due to its ability to learn features that are not explicitly programmed rules

and the high complexity of learned features. “Black boxes” that yield high performances

may be adequate for some applications; however, there is strong interest in explainable

and interpretable AI algorithms in medical applications to benefit both the development of

trustworthy algorithms and the clinical adoption of these technologies [103]. Explainability

of the output can help developers identify abnormal behaviors or biases in the algorithm and

allow them to make improvements by addressing those issues. Furthermore, interpretability

of AI algorithms can not only help gain trust and confidence from the users in the medical

community, but can also provide more valuable information to clinical practice than the

prediction result alone.

1.5 Research Objectives and Scope

This dissertation studies AI-assisted medical image analysis in two applications: 1) breast

cancer diagnosis on multiparametric MRI (mpMRI), and 2) COVID-19 diagnosis and prog-

nosis on CXR. As mentioned in Section 1.2.1, mpMRI has assumed an important role in

the routine clinical assessment of breast lesions, and therefore the ability to distinguish

benign from malignant lesions on breast mpMRI is crucial. CADx methods, either using

human-engineered features or deep learning, can potentially assist radiologists in image in-

terpretation to reduce reading time and improve diagnostic performance. While mpMRI

has shown benefits over DCE sequence alone in clinical studies, current CADx systems for

breast lesion assessment on MRI are mainly focused on the DCE sequence. Thus, the first

part of the work presented in this dissertation investigates CADx methods that leverage

multiparametric information and high-dimensional information in mpMRI, with the goal of
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improving the performance of breast lesion classification.

As COVID-19 emerged as a novel disease and has developed over the past 1.5 years,

AI also holds promise to assist in the COVID-19 pandemic. While numerous studies have

investigated the potential of using imaging data to help address critical questions and achieve

optimal patient management, much is left to be explored due to the novelty and severe impact

of the disease. The second part of this dissertation is dedicated to investigating computer-

aided methods that can potentially assist in the early diagnosis and accurate prognosis of

COVID-19 using CXR.

The outline for the remainder of the dissertation is as follows. Chapter 2 will propose

and evaluate CADx methods for breast cancer diagnosis on mpMRI. Both human-engineered

radiomics and deep-learning-based methods will be investigated, and classification perfor-

mances will be compared to those based on single MRI sequences. Chapter 3 will discuss

deep-learning-based methods that efficiently incorporate the high-dimensional information

in MRI for breast cancer diagnosis. While high-dimensional medical images contain clinically

valuable information, it is often underutilized in deep-learning-based image analysis due to

computational constraints and data scarcity. The work presented in this chapter aims to

address this bottleneck and further improve upon the performance reported in Chapter 2.

Chapter 4 will focus on deep learning approaches to identify COVID-19 at patient presenta-

tion and predict future needs of intensive care using CXR. The role of various types of CXR

images in the task will also be examined. Finally, Chapter 5 will summarize the findings

and implications of this dissertation research and propose future research directions.
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CHAPTER 2

MULTIPARAMETRIC MRI FOR BREAST CANCER

DIAGNOSIS USING HUMAN-ENGINEERED RADIOMICS

AND DEEP LEARNING

2.1 Introduction

As MRI is increasingly used for breast cancer screening and throughout the patient man-

agement process, computer-aided diagnosis (CADx)/radiomics systems continue to be de-

veloped to enable artificial intelligence (AI)-assisted image interpretation for radiologists

and potentially enhance diagnostic performance [21, 30]. Section 1.2.1 discusses that clin-

ical breast MRI has evolved from DCE-MRI to multiparametric MRI (mpMRI) to assess

additional information and improve diagnostic performance and that T2-weighted (T2w)

and diffusion-weighted MRI (DWI) are two commonly used sequences in mpMRI alongside

the DCE sequence. Previous radiomics studies were primarily focused on using DCE-MRI

[38, 104–106]. As MRI technology advances, radiomics methods for mpMRI have also started

to be explored [37, 107, 108]. This chapter proposes and evaluates the performance of multi-

parametric radiomics methods that utilize multiple sequences in mpMRI and show that the

complementary information provided in them can improve the diagnostic performance in the

task of distinguishing between benign and malignant breast lesions. This work demonstrates

strong potential in CADx systems to leverage multiparametric information from mpMRI

to predict the probability of breast lesion malignancy. Both human-engineered radiomic

features and deep-learning-based methods will be investigated.

In the human-engineered radiomics methodology, radiomic features are designed for and

extracted from each MRI sequence, and classification is performed using support vector ma-

chines (SVMs). Information from different mpMRI sequences is integrated at two different

levels of the classification framework, namely (i) at the feature level by concatenating ra-
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diomic features extracted from multiple sequences (feature fusion), and (ii) at the classifier

output level by aggregating the outputs from the single-sequence SVMs (classifier fusion).

The study also shows the effect of dataset size and demonstrates the value of handling vari-

ability in mpMRI protocols in CADx systems as in clinical settings. In the deep-learning-

based methodology, deep transfer learning is used to extract and pool multi-level features

using a pretrained CNN and perform classification using SVM. Multiparametric information

integration is performed at three different levels of the classification framework, namely via

(i) at the image level by inputting merged mpMRI images to the CNN (image fusion), (ii)

feature fusion, and (iii) classifier fusion. As a supplementary investigation, a more novel

convolutional neural network (CNN) architecture will be used to validated the findings. In

addition, since the DWI sequence has not been sufficiently examined in prior CADx stud-

ies, CNN features will be compared with human-engineered radiomic features for the DWI

sequence.

2.2 Dataset

The database was retrospectively collected from University of Chicago Medical Center un-

der Health Insurance Portability and Accountability Act (HIPAA)-compliant Institutional

Review Board (IRB) protocols. All clinical information and images in this study were de-

identified before they were made available to the investigators, and hence consent from the

participants was waived. The MRI exams in the database were consecutively acquired from

2007 to 2013 and imaged at a single institution. MRI studies that did not exhibit a visible

lesion, lesions that did not have validation of the final diagnosis, or lesions that could not

be clearly allocated to either the benign or malignant category were excluded. In total, the

database used in the deep learning study consisted of 927 unique breast lesions from 616

women.

Images in the database were acquired using either 1.5 T (66%) or 3 T (34%) Philips
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Achieva scanners. Each MR study contained a DCE-MRI sequence and a T2w MRI sequence

acquired during the same exam, and exams for a subset of 397 lesions from 302 patients also

contained a DWI sequence. The scanning sequences for DCE, T2w, and DWI were a T1-

weighted spoiled gradient sequence with fat saturation, a T2-weighted fast spin echo sequence

with flow compensation, and a diffusion-weighted fast spin echo sequence with fat saturation,

respectively. In-plane resolution and slice thickness varied within each sequence across the

dataset. The slice thickness was consistent across the DCE and T2w sequences in 96% of

the exams, while the in-plane resolution was consistent across the two sequences in 46% of

the exams (Fig. 2.1). The DWI sequence had coarser spatial resolutions than the other

sequences. The DWI sequence was also obtained with various degrees (ranging from two to

five) of diffusion weighting as measured by the b-value.

(a) (b)

Figure 2.1: Distribution of (a) slice thickness and (b) in-plane resolution of the dynamic
contrast-enhanced (DCE) sequences and T2-weighted (T2w) sequences in the multiparamet-
ric MRI database [13].

The clinical characteristics of the dataset are detailed in Table 2.1. The ground truth for

malignancy was obtained from pathology and radiology reports. For all lesions categorized

at MRI as Breast Imaging Reporting and Data System (BI-RADS) category 4, 5, or 6,

diagnosis validation was achieved by histopathologic analysis. For all lesions categorized at
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MRI as BI-RADS category 2 or 3, benign diagnoses were validated by MRI follow-up of at

least 24 months. There is no severe imbalance between the benign and malignant classes in

terms of acquisition parameters and lesion characteristics, eliminating concerns for additional

confounding variables.

Table 2.1: Clinical characteristics of the dataset [13]. The number of lesions is shown, along
with the percentage of the total. Patient age is summarized on a patient basis, and lesion
information (malignancy status and subtypes) is summarized on a lesion basis.

Benign/malignant prevalence
Benign: 199 (21.5)

Malignant: 728 (78.5)

Age (years)a: mean ± sdb
55.0± 12.8

Unknown: 97

Benign lesion characteristics

Lesion size (mm)c

Mean: 8.86

Median: 7.33

Range: 3.38–42.8

Lesion subtype

Fibroadenoma: 60 (30.2)

Columnar change: 15 (7.5)

Papilloma: 13 (6.5)

Parenchyma tissue: 12 (6.0)

Fibrotic tissue: 10 (5.0)

Hyperplasia: 8 (4.0)

Cystic change: 6 (3.0)

Fat necrosis: 5 (2.5)

Other: 27 (13.6)

Unknown: 43 (21.6)
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Table 2.1: Clinical characteristics of the dataset (continued)

Malignant lesion characteristics

Lesion size (mm)c

Mean: 17.9

Median: 14.9

Range: 3.37–73.7

Lesion subtype

IDCd: 147 (20.2)

DCISe: 120 (16.5)

IDC+DCIS: 359 (49.3)

ILCf: 31 (4.3)

ILC mixed: 26 (3.6)

Other: 33 (4.5)

Unknown: 12 (1.6)

Estrogen receptor status

Positive: 410 (56.3)

Negative: 128 (17.6)

Unknown: 190 (26.1)

Progesterone receptor status

Positive: 352 (48.4)

Negative: 184 (25.3)

Unknown: 192 (26.4)

HER-2g status

Positive: 87 (12.0)

Negative: 404 (55.5)

Equivocal: 5 (0.7)

Unknown: 232 (31.9)
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Table 2.1: Clinical characteristics of the dataset (continued)

a Numbers in parentheses are percentages. For some subjects, only
the decade of age was available (e.g., “60s”) as part of the patient
information de-identification process. In these situations, the middle
of the decade was used for the calculation of the mean subject age.

b sd = standard deviation
c Lesion size is measured by the effective diameter, i.e., the greatest
dimension of a sphere with the same volume as the lesion.

d IDC = invasive ductal carcinoma
e DCIS = Ductal carcinoma in situ
f ILC = Invasive lobular carcinoma
g HER-2 = human epidermal growth factor receptor 2

For human-engineered radiomics, lesions whose DCE time intervals were unknown were

also excluded, as it was a necessary parameter for calculating some of the features. Thus, a

subset of 852 unique breast lesions from 612 women was included in this part of the study.

Exams for a subset of 389 lesions from 299 patients contained a DWI sequence. For the full

set of cases and the subset that contained DWI, the distributions of the acquisition date,

magnetic strength, and lesion volume are shown in Fig. 2.2. The similar distributions in the

full set and the subset with DWI eliminate concerns about additional confounding variables.

The clinical characteristics of the dataset are detailed in Table 2.2.

(a) (b) (c)

Figure 2.2: Distribution of (a) MRI acquisition date, (b) magnet strength, and (c) lesion
volume of the full dataset and the subset that contains diffusion-weighted imaging (DWI)
sequence in the multiparametric MRI database.
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Table 2.2: Clinical characteristics of the dataset [14]. Patient age is summarized on a patient
basis, and lesion information (malignancy status and subtypes) is summarized on a lesion
basis. The full set is a mixture of cases imaged using either two or three sequences, and
the diffusion-weighted imaging sequence (DWI) subset contains cases imaged using three
sequences.

Full set (N = 852) DWI subset (N = 389)

Benign/malignant prevalence
Benign: 195 (22.9) Benign: 66 (17.0)

Malignant: 657 (77.1) Malignant: 323 (83.0)

Age (years)a: mean ± sdb
55.1± 12.8 56.4± 12.9

Unknown: 96 Unknown: 12

Benign lesion characteristics

Lesion subtype

Fibroadenoma: 60 (30.8) Fibroadenoma: 18 (27.3)

Columnar change: 15 (7.7) Columnar change: 5 (7.6)

Papilloma: 13 (6.7) Papilloma: 6 (9.1)

Parenchyma tissue: 11 (5.6) Parenchyma tissue: 8 (12.1)

Fibrotic tissue: 10 (5.1) Fibrotic tissue: 5 (7.6)

Hyperplasia: 8 (4.1) Hyperplasia: 5 (7.6)

Cystic change: 6 (3.1) Cystic change: 3 (4.5)

Fat necrosis: 4 (2.1) Fat necrosis: 3 (4.5)

Other: 26 (13.3) Other: 12 (18.2)

Unknown: 42 (21.5) Unknown: 1 (1.5)

Malignant lesion characteristics

Lesion subtype

IDCd: 133 (20.2) IDC: 71 (22.0)

DCISe: 118 (18.0) DCIS: 20 (6.2)

IDC+DCIS: 316 (48.1) IDC+DCIS: 197 (61.0)
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Table 2.2: Clinical characteristics of the dataset (continued)

ILCf: 27 (4.1) ILC: 15 (4.6)

ILC mixed: 24 (3.7) 5 (1.5)

Other: 28 (4.3) Other: 15 (4.6)

Unknown: 12 (1.6)

Estrogen receptor status

Positive: 408 (62.1) Positive: 235 (72.8)

Negative: 127 (19.3) Negative: 83 (25.7)

Unknown: 122 (18.6) Unknown: 5 (1.5)

Progesterone receptor status

Positive: 350 (53.3) Positive: 209 (64.7)

Negative: 183 (27.9) Negative: 108 (33.4)

Unknown: 124 (18.9) Unknown: 6 (1.9)

HER-2g status

Positive: 87 (13.2) Positive: 54 (16.7)

Negative: 401 (61.0) Negative: 240 (74.3)

Equivocal: 5 (0.8) Equivocal: 2 (0.6)

Unknown: 164 (25.0) Unknown: 27 (8.4)

a Numbers in parentheses are percentages. For some subjects, only the decade of age was available (e.g.,
“60s”) as part of the patient information de-identification process. In these situations, the middle of the
decade was used for the calculation of the mean subject age.

b sd = standard deviation
c Lesion size is measured by the effective diameter, i.e., the greatest dimension of a sphere with the same
volume as the lesion.

d IDC = invasive ductal carcinoma
e DCIS = Ductal carcinoma in situ
f ILC = Invasive lobular carcinoma
g HER-2 = human epidermal growth factor receptor 2
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2.3 Methods

2.3.1 Human-Engineered CADx

Single-Sequence Methods

Figure 2.3 illustrates the human-engineered radiomic features extraction, machine learning

classification, and evaluation process for both single-sequence and mpMRI approaches. Le-

sions were segmented separately from each sequence using a fuzzy C-means method requiring

only the manual indication of a seed point [109]. Radiomic features were designed based on

the biological phenotypes of lesions. Fifty radiomic features that characterize lesions in terms

of their size, shape, morphology, enhancement texture, kinetics, and kinetics variance were

extracted from DCE images [25–29, 110]. Likewise, three morphological features and 14

texture features, as well as the mean and the variance of the signal intensity, were extracted

from T2w images [107]. In addition, six first-order radiomic features were extracted from the

ADC maps of DWI images [16]. Morphological or texture features were not calculated from

DWI due to its coarse resolution. Radiomic features related to contrast enhancement on the

DCE sequence were calculated in 4D, and all other features were calculated in 3D across

the entire lesion. A complete list of radiomic features and their descriptions is included in

Appendix A.

SVM classifiers with Gaussian radial basis function kernel were trained on the extracted

radiomic features to differentiate between benign and malignant lesions (Python Version 3.7,

Python Software Foundation) [111]. SVM was chosen over other classification methods due

to its relative robustness to correlated data, which is an attribute of the radiomic features.

Each SVM classifier was trained and evaluated using nested five-fold cross-validation, where

the inner cross-validation was used for model development, and the outer cross-validation

was used for testing. Within each training fold in the outer cross-validation loop, two SVM

hyperparameters, namely the scaling parameter γ and the regularization parameter C, were
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Figure 2.3: Lesion classification pipeline based on diagnostic images [14]. Radiomic features
were extracted from dynamic contrast-enhanced (DCE), T2-weighted (T2w), and diffusion-
weighted MRI (DWI) sequences. The mpMRI information was incorporated in two different
ways: feature fusion, i.e., merging radiomic features extracted from all sequences to train a
support vector machine (SVM) classifier, and classifier fusion, i.e., aggregating the proba-
bility of malignancy output from all single-sequence classifiers via soft voting. Parentheses
contain the numbers of features extracted from each sequence. The dashed lines for DWI
indicate that the DWI sequence was only included in the classification process when it was
available, while the DCE and T2w sequences were available for all lesions and thus were
always included. ADC = apparent diffusion coefficient, ROC = receiver operating charac-
teristic.
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optimized on a grid search with an internal five-fold cross-validation [112]. Predictions

on the five test folds in the outer cross-validation loop were aggregated for classification

performance evaluation. Splitting was performed by patient, keeping all lesions from a

patient in the same fold to eliminate the bias due to using correlated lesions for training

and testing. Class prevalence was held constant across all cross-validation folds. Each

training set was standardized to zero mean and unit variance, and the corresponding test

set was standardized using the statistics of the training set. To address the problem of class

imbalance, a misclassification penalty for cases in each class was assigned to be inversely

proportional to its prevalence in the training data.

Multiparametric Methods

We investigated integrating information from the three MRI sequences at two different levels

of the classification framework, as illustrated in Fig. 2.3. The two mpMRI approaches are

referred to as feature fusion and classifier fusion. For the feature fusion approach, radiomic

features extracted from each sequence separately were concatenated to form an ensemble

of features, which was then inputted to an SVM classifier. The classifier training process

then followed the single-sequence methods. For the classifier fusion approach, probability of

malignancy (PM) outputs from the single-sequence SVM classifiers were aggregated via soft

voting. That is, the PM outputs were averaged across all single-sequence classifiers to yield

prediction scores.

Protocol Variability

Missing data is a common challenge in multi-modality imaging studies. Conventional meth-

ods typically discard modality-incomplete subjects, which reduces the subjects that can be

used to train a diagnosis model and hence may degrade the diagnostic performance. To

mimic potential clinical situations where radiologists perform assessments based on MRI ex-
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ams acquired using different imaging protocols that contain a variable number of sequences,

the analyses were first performed on the entire dataset of 852 lesions, in which exams con-

tained either two or three sequences. For the feature fusion approach, an SVM classifier

was trained on features extracted from three sequences for the subset of lesions for which

all three sequences were acquired during their MRI exams, and another SVM classifier was

trained on features extracted only from DCE and T2w sequences for the remaining lesions

for which DWI was not acquired. For the classifier fusion approach, output PMs from all

applicable single-sequence SVM classifiers were aggregated via soft voting and subsequently

inputted to ROC analysis and sensitivity/specificity calculations.

The same analyses were then performed on the subset of 389 lesions whose mpMRI proto-

col contained three sequences, discarding the modality-incomplete subset. The performances

of mpMRI classifiers trained on this subset were compared with those trained on the full

dataset to demonstrate the effect of the dataset size and the benefit of using all available

data even when a subset contains missing sequences.

2.3.2 Deep-Learning-Based CADx

Single-Sequence Methods

Figure 2.4 schematically shows the machine learning classification and evaluation process for

both single-sequence and mpMRI schemes. Lesions were segmented using a fuzzy C-means

method requiring only the manual indication of a seed-point [109]. Lesion segmentations

were not directly used as input to the CNN but enabled automatic region of interest (ROI)

construction described below. To capture the 4D (volumetric and temporal) characteristics of

the lesions from DCE sequences, maximum intensity projection (MIP) images of the second

postcontrast subtraction DCE-MRI series were used as the input to a deep learning network

[105]. The second post-contrast time point was chosen because the BI-RADS atlas defines

the initial phase of enhancement as the first two minutes after contrast administration, which
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has diagnostic utility for distinguishing benign and malignant breast lesions [4]. From the

T2w sequence of each lesion, the slice that contained the largest lesion area according to the

automatic lesion segmentation was selected as the representative center slice, which was used

as the input to a deep learning network. The T2w center slice was rescaled using bicubic

interpolation to match the in-plane resolution of its corresponding DCE sequence. To avoid

confounding contributions from distant voxels, an ROI around each lesion was cropped from

the image to use in the subsequent classification process. The ROI size was chosen based on

the maximum dimension of each lesion and was held constant across sequences. A small part

of the parenchyma, 3 pixels wide around the lesion, was included in each ROI. Appropriate

shifts in the coordinates were applied to ensure that the DCE and T2w ROIs were cropped

from the same location relative to the lesion. This study does not consider the DWI sequence

due to its limited availability in the database, but a CNN-based method will be applied to

DWI later in this chapter, and further investigations will be discussed in Chapter 3.

Through transfer learning, CNN features were extracted separately from the ROIs of the

DCE subtraction MIPs and the ROIs of the T2w center slices using the publicly available

VGG-19 model [93], pretrained on ImageNet [34]. Pretrained VGG-19 networks, which

consist of three channels (red, green, and blue, or RGB), have previously been shown to be

useful in transfer learning for breast lesion analyses [104, 105, 113]. The ROIs were grayscale

for the single-sequence DCE and T2w image datasets and were duplicated across the three

channels. Feature vectors were extracted at various network depths from the five max-pooling

layers of the VGG-19. These features were then average-pooled along the spatial dimensions

and normalized with Euclidian distance. The pooled features were then concatenated to

form a CNN feature vector of 1472 features for a given lesion [104, 113].

SVM classifiers with Gaussian radial basis function kernel were trained on the CNN

features to differentiate between benign and malignant lesions (Python Version 3.4.2, Python

Software Foundation) [111]. SVM was chosen over other classification methods due to its
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Figure 2.4: Lesion classification pipeline based on diagnostic images [13]. Information from
dynamic contrast-enhanced (DCE) and T2-weighted (T2w) MRI sequences are incorporated
in three ways: image fusion, i.e., fusing DCE and T2w images to create RGB composite
image, feature fusion, i.e., merging convolutional neural network features extracted from
DCE and T2w as the support vector machine (SVM) classifier input, and classifier fusion,
i.e., aggregating the probability of malignancy output from the DCE and T2w classifiers
via soft voting. MIP = maximum intensity projection. ROI = region of interest. ROC =
receiver operating characteristic.
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ability to handle sparse high-dimensional data, which is an attribute of the CNN features.

Principal component analysis fit on the training set was applied to both training and test

sets to reduce feature dimensionality [114]. The rest of the classifier training and evaluation

process follows Section 2.3.1.

Multiparametric Methods

We explored integrating information from both the DCE and T2w MRI sequences at three

different levels of the classification framework, as illustrated in Fig. 2.4. The three mpMRI

schemes are referred to as image fusion, feature fusion, and classifier fusion.

For the input image fusion scheme, a three-channel RGB fusion image was constructed

for each lesion by inputting the DCE MIP into the red channel, the T2w center slice into

the green channel, and leaving the blue channel of the network blank. A composite ROI

was cropped from the fusion image, which was then inputted into the pretrained VGG-19

network for feature extraction. Figure 2.5 includes an example to illustrate the process of

ROI extraction from MRI images and creating RGB fusion ROIs. The classifier training

process then followed the single-sequence methods to predict PMs. The feature fusion and

classifier fusion approaches follow the descriptions in Section 2.3.1.

Inter-Sequence Image Registration

A preliminary study was performed to investigate whether image registration between DCE

and T2w sequences would improve the performance of the proposed mpMRI classification

schemes, especially the image fusion method. The T2w center slices were rescaled to match

the in-plane resolution and then registered to the corresponding slice of the second post-

contrast DCE image using a multi-modality rigid registration method that consists of trans-

lation and rotation [115, 116]. The same five classification mechanisms were evaluated after

image registration.
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Figure 2.5: An example of the image fusion process [13]. A dynamic contrast-enhanced
(DCE)-MRI transverse second post-contrast subtraction maximum intensity projection
(MIP) and a T2-weighted (T2w)-MRI transverse center slice are shown with their corre-
sponding regions of interest (ROIs) extracted. The RGB fusion ROI is created by inputting
the DCE ROI into the red channel and the T2w ROI into the green channel.

2.3.3 Evaluation and Statistical Analysis

Classifier performances were evaluated using receiver operating characteristic (ROC) curve

analysis, with the area under the ROC curve (AUC) serving as the figure of merit [117, 118].

The 95% confidence intervals (CIs) of the AUCs were calculated by bootstrapping the poste-

rior PMs (2000 bootstrap samples) [119]. Other metrics, including sensitivity and specificity,

positive predictive value (PPV), and negative predictive value (NPV), were calculated at the

optimal operating point on the ROC curve that minimizes m = (1 − sensitivity)2 + (1 −

specificity)2 and reported for each classifier [37].

The AUC values of the mpMRI approaches were compared with those of the single-

sequence classifiers using the DeLong test [120, 121]. Bonferroni-Holm corrections were

used to account for multiple comparisons [122], and a corrected P < 0.05 was considered

to indicate a statistically significant difference in performance. Equivalence testing was

performed to assess if image registration had any effect on the classification performances
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of the CNN-based methods [123]. An equivalence margin of difference in AUC = 0.05 was

chosen prima facie. To assess the performance reproducibility of the CNN-based methods,

the highest performing classifier of the three mpMRI methods was trained and evaluated 100

times using different random seeds for the cross-validation split, and the mean and standard

error of AUC was calculated from all the runs.

2.4 Further Investigations

2.4.1 ResNet Feature Extraction for mpMRI

A more novel CNN architecture, ResNet-50, was used to validated the findings using VGG-

19 regarding the integration of multiparametric approaches as well as the effect of feature

pooling across various levels within the network. The benefit of pooling features extracted

from various depths of the network was examined on the set of DCE MIP images. Last-layer

features (2048 features) were extracted from the last average pooling layer in the ResNet-50

architecture immediately before the final classification layer. In comparison, features were

extracted from the 16 bottleneck layers of ResNet-50, i.e., the ReLU activations of the merg-

ing layer after each residual block (see Fig. 1.11 for detailed architecture). Similar to the

feature pooling method previously applied to VGG-19, these features were then average-

pooled along the spatial dimensions and normalized with Euclidian distance [104, 113]. The

pooled features were then concatenated to form a feature vector for a given lesion, as illus-

trated in Fig. 2.6. The classification methods and the evaluation process follow Section 2.3.2

and Section 2.3.3.

2.4.2 Human-Engineered Radiomics versus Deep Learning for DWI

Since DWI is a relatively novel sequence in clinical practice and has not been sufficiently

studied in CADx, we investigated the utility of human-engineered features and the CNN-
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Figure 2.6: Feature pooling from various levels of ResNet-50.

based features extracted from DWI images. As described in Section 2.2, 397 unique breast

lesions from 302 women in the database were imaged using protocols that included the DWI

sequence. Among them, 69 lesions were benign and 328 were malignant. Following the

method described in Section 2.3.1, six human-engineered radiomic features were extracted

from the ADC map. For CNN feature extraction, a lesion ROI was constructed with DWI

ROIs at two b-values, either 0 and 800 mm2/s or 0 and 1000 mm2/s, depending on availabil-

ity. These two ROIs and a blank channel composed an RGB ROI for each lesion as input to

the CNN. The two types of b-value pairs had similar prevalence across benign and malignant

lesions (33%/67% for benign lesions and 31%/69% for malignant lesions). CNN features were

extracted from the central slice ROIs using a VGG-19 model, following the method detailed

in Section 2.3.2. The classification methods and the evaluation process follow Section 2.3.

Furthermore, a fusion classifier was created by averaging the outputs from the ADC-based

and CNN-based classifiers for each lesion and evaluated.
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2.5 Results

2.5.1 Multiparametric MRI CADx

Human-Engineered CADx

Figures 2.7 and 2.8 show the comparison between the PMs predicted by the single-sequence

classifiers using DCE and T2w features. Although the majority of benign and malignant

classes are separated from each other, there exists notable disagreement between the two

single-sequence classifiers, suggesting that a fusion technique for features extracted from

various mpMRI sequences may improve the predictive performance. Figure 2.7 also shows

example lesions upon which these two classifiers agree or disagree, with their lesion types

noted in the caption. For example, the benign papilloma lesion on the lower right was

inaccurately predicted to have a high PM score using DCE features, but more accurately as-

signed with a low PM score when using T2w features, providing an example where combining

features from mpMRI sequences would be beneficial.

Figure 2.9 and Table 2.3 present the classification performances of the five classification

models trained on the full dataset of 852 lesions imaged using either two- or three-sequence

mpMRI protocols. Table 2.4 summarizes the p-values and the 95% CIs for the comparisons

between the multiparametric and single-sequence classifiers’ AUCs. Both mpMRI classifica-

tion approaches significantly outperformed all single-sequence classifiers.

When only including the subset imaged using the three-sequence protocol and discard-

ing the subset in which DWI was missing, the feature fusion and classifier fusion mpMRI

approaches yielded AUCs [95% CIs] of 0.80 [0.73, 0.85] and 0.80 [0.74, 0.86], respectively,

both significantly lower than their corresponding classifiers’ performances when the full set

was used (95% CI of ∆AUC = [0.01, 0.14] for both approaches). The results demonstrated

that with the proposed method for handling exams acquired using different imaging proto-

cols that contained inconsistent sequences, it would be beneficial to utilize the full dataset
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Figure 2.7: Diagonal classifier agreement plot between the T2-weighted (T2w) and dynamic
contrast-enhanced (DCE) single-sequence classifiers trained on human-engineered radiomic
features [14]. The x-axis and y-axis denote the probability of malignancy (PM) scores pre-
dicted by the classifiers using DCE and T2w features, respectively. Each point represents
a lesion for which predictions were made. Points along or near the diagonal from bottom
left to top right correspond to high classifier agreement; points far from the diagonal corre-
spond to low agreement. Examples of lesions on which the two classifiers were in extreme
agreement/disagreement are also included. Disagreement: lower right benign: papilloma;
lower right malignant: IDC/DCIS, HER-2 enriched; upper left benign: fibroadenoma; up-
per left malignant: IDC/DCIS, luminal A. Agreement (both incorrect): upper right benign:
hyalinized stromal fibrosis; lower left malignant: ductal carcinoma in situ. Agreement (both
correct): upper right malignant: IDC/DCIS, triple negative, very large; lower left benign:
fibroadenoma.
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Figure 2.8: Bland-Altman plot illustrating classifier agreement between the single-sequence
classifiers trained on human-engineered dynamic contrast-enhanced (DCE) features and T2-
weighted (T2w) features [14]. The y-axis shows the difference between the support vector
machine output scores of the two classifiers; the x-axis shows the mean of two classifiers’
outputs.

Table 2.3: Sensitivity, specificity, and area under the receiver operating characteristic curve
(AUC) along with the 95% confidence interval (CI) of AUC for each classifier based on
human-engineered radiomic features, trained on the full set [14]. Sensitivity and specificity
presented are for the optimal operating point determined using a metric for cut-off value
that minimizes m = (1− sensitivity)2 + (1− specificity)2. Because all lesions were referred
for biopsy, the sensitivity and specificity of the data set were not calculated for clinical
assessment.

Classifier DCE T2w DWI Feature fusion Classifier fusion

AUC 0.84 0.83 0.69 0.87 0.87
[95%CI] [0.82, 0.87] [0.80, 0.86] [0.62, 0.75] [0.84, 0.89] [0.84, 0.89]
Sensitivity (%) 75.7 76.3 61.4 79.1 79.0
Specificity (%) 76.3 74.5 62.9 77.2 78.4
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Figure 2.9: Fitted binormal receiver operating characteristic (ROC) curves for single-
sequence (dashed line) and multiparametric MRI (mpMRI) classifiers (solid line) based on
human-engineered radiomic features, trained on the full set [14]. The three single-sequence
classifiers were trained separately on (i) dynamic contrast-enhanced (DCE), (ii) T2-weighted
(T2w), and (iii) diffusion-weighted imaging (DWI) features. The mpMRI models (iv) were
trained on the ensemble of features extracted from all available sequences, and (v) aggre-
gated the probabilities of malignancy from the single-sequence classifiers via soft voting. The
legend gives the area under the ROC curve (AUC) with the 95% confidence interval (CI) for
each classifier.
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Table 2.4: Performance comparison for the five classification methods based on human-
engineered radiomic features, when classifiers were trained on the full set [14]. The classifier
names are shown in the first column (single-sequence) and first row (multiparametric). P -
value and 95% confidence interval (CI) of the difference in the area under the receiver operat-
ing characteristic curves (AUCs) are presented for each multiparametric classifier compared
with each single-sequence classifier using the DeLong test. Asterisks denote significance after
accounting for multiple comparisons using Bonferroni-Holm corrections.

Classifier Compared with feature fusion Compared with classifier fusion

DCE P = .001∗ P < .001∗

95% CI ∆AUC = [0.01, 0.03] 95% CI ∆AUC = [0.01, 0.04]

T2w P = .004∗ P < .001∗

95% CI ∆AUC = [0.01, 0.06] 95% CI ∆AUC = [0.02, 0.05]

DWI P < .001∗ P < .001∗

95% CI ∆AUC = [0.11, 0.25] 95% CI ∆AUC = [0.11, 0.26]

despite its incompleteness.

Deep-Learning-Based CADx

Figures 2.10 and 2.11 illustrate the comparison between the PMs predicted by the single-

sequence classifiers using DCE and T2w. Figure 2.10 also shows example lesions on which

these two classifiers agree or disagree. While the majority of benign and malignant lesions

are separated from the other class, there appears to be moderate disagreement between

the two classifiers, suggesting that a fusion technique could likely improve the predictive

performance.

Figure 2.12 presents the ROC curves for the five classification schemes without image

registration, and Table 2.5 summarizes the classification performances as measured by AUC,

sensitivity, specificity, PPV, and NPV. Note that the mpMRI classifiers achieved improve-

ments in terms of all these metrics for classification performance. Table 2.6 shows the p-values

and the 95% CIs for the comparisons of AUCs between the mpMRI and single-sequence clas-

sifiers. Among the three mpMRI classification schemes, while all of them yielded statistically

significantly higher AUCs than using T2w alone, only the feature fusion method significantly
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Figure 2.10: A diagonal classifier agreement plot between the T2-weighted (T2w) and dy-
namic contrast-enhanced (DCE) single-sequence classifiers trained on features extracted us-
ing VGG-19 [13]. The x-axis and y-axis denote the probability of malignancy (PM) scores
predicted by the DCE classifier and the T2w classifier, respectively. Each point repre-
sents a lesion for which predictions were made. Points along or near the diagonal from
bottom left to top right indicate high classifier agreement; points far from the diagonal
indicate low agreement. Examples of lesions on which the two classifiers were in extreme
agreement/disagreement are also included. Disagreement: lower right benign: fibroade-
noma; lower right malignant: IDC/DCIS; upper left benign: unknown; upper left malig-
nant: IDC/DCIS. Agreement (both incorrect): upper right benign: fat necrosis; lower left
malignant: IDC.
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Figure 2.11: Bland-Altman plot illustrating classifier agreement between the dynamic
contrast-enhanced (DCE) maximum intensity projection and T2-weighted (T2w)-based
single-sequence classifiers trained on features extracted using VGG-19 [13]. The y-axis shows
the difference between the support vector machine output scores (predicted posterior prob-
abilities of malignancy) of the two classifiers; the x-axis shows the mean of two classifiers’
outputs, which is also the probability of malignancy scores calculated in the classifier fusion
method.
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outperformed using DCE alone in terms of AUC, and the other two methods, image fusion

and classifier fusion, failed to demonstrate a statistically significant difference in AUCs com-

pared with using DCE alone.

Figure 2.12: Fitted binormal receiver operating characteristic (ROC) curves for two single-
sequence and three mpMRI classifiers trained on features extracted using VGG-19 [13]. The
classifiers used (i) convolutional neural network (CNN) features extracted from dynamic
contrast-enhanced (DCE) subtraction maximum intensity projections (MIPs), (ii) CNN fea-
tures extracted from T2-weighted (T2w) center slices, (iii) CNN features extracted from DCE
and T2w fusion images, (iv) ensemble of features extracted from DCE and T2w images, and
(v) probability of malignancy outputs from the DCE MIP and T2w classifiers aggregated via
soft voting. The legend gives the area under the ROC curve (AUC) with the 95% confidence
interval (CI) for each classifier scheme. T2w images were rescaled to match the in-plane
resolution of their corresponding DCE sequences, but image registration was not performed.

In assessing performance reproducibility, the mean and standard error of AUC for the

feature fusion classifier was 0.864± 0.003, indicating that the classification performance was

very stable regardless of the random seed chosen.

Performing inter-sequence rigid image registration did not have a significant effect on

64



Table 2.5: Sensitivity, specificity, positive predictive value (PPV), negative predictive value
(NPV), and area under the receiver operating characteristic curve (AUC) along with the
95% confidence interval (CI) of AUC for each classifier trained on features extracted using
VGG-19 [13]. Sensitivity, specificity, PPV, and NPV presented are for the optimal operating
point determined using a metric for a cut-off value that minimizes m = (1− sensitivity)2 +
(1− specificity)2. Because all lesions were referred for biopsy, the sensitivity and specificity
of the data set were not calculated for clinical assessment.

Classifier DCE T2w Image fusion Feature fusion Classifier fusion

AUC 0.85 0.78 0.85 0.87 0.86
[95%CI] [0.82, 0.88] [0.75, 0.81] [0.82, 0.88] [0.84, 0.89] [0.83, 0.88]
Sensitivity (%) 75.9 69.8 76.5 77.9 77.6
Specificity (%) 76.5 72.7 77.1 78.5 77.1
PPV (%) 89.7 87.3 90.0 90.7 90.1
NPV (%) 54.2 47.3 55.0 56.9 56.2

Table 2.6: Performance comparison for the five classification methods based on features ex-
tracted using VGG-19 [13]. The classifier names are shown in the first row (single-sequence)
and first column (multiparametric). P -value and 95% confidence interval (CI) of the dif-
ference in area under the receiver operating characteristic curves (AUCs) are presented for
each multiparametric classifier compared with each single-sequence classifier using the De-
Long test. Asterisks denote significance after accounting for multiple comparisons using
Bonferroni-Holm corrections.

Classifier Compared with DCE MIP Compared with T2w center slice

Image fusion P = .73 P < .001∗

95% CI ∆AUC = [−0.01, 0.02] 95% CI ∆AUC = [0.05, 0.09]

Feature fusion P < .001∗ P < .001∗

95% CI ∆AUC = [0.01, 0.03] 95% CI ∆AUC = [0.06, 0.11]

Classifier fusion P = .14 P < .001∗

95% CI ∆AUC = [−0.00, 0.02] 95% CI ∆AUC = [0.06, 0.09]
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the classification performances of any classification scheme. Namely, the four classifiers

affected by the registration (i.e., use information from T2w images) yielded AUC values of

AUCT2w = 0.79± 0.02 (95% CI: [0.76, 0.82]), AUCImageFusion = 0.84± 0.01 (95% CI: [0.81,

0.87]), AUCFeatureFusion = 0.87 ± 0.01 (95% CI: [0.84, 0.89]), and AUCClassifierFusion =

0.86 ± 0.01 (95% CI: [0.83, 0.88]). Just as when T2w was not registered to DCE, while

all three mpMRI classification schemes significantly outperformed using T2w alone, only

feature fusion significantly outperformed using DCE alone. According to the 95% CIs of the

difference in AUCs (∆AUCs) between performing inter-sequence image registration or not,

image registration between T2w and DCE failed to show a statistically significant effect on

the performance of any classifiers examined. In addition, equivalence testing demonstrated

that whether image registration was performed or not yielded equivalent performance with an

equivalence margin of ∆AUC = 0.05, chosen prima facie. Thus, all findings held regardless

of whether image registration was employed or not, indicating that registration did not lead

to a change in the performance of the mpMRI schemes.

2.5.2 ResNet Feature Extraction for mpMRI

The classifier using last-layer features and pooled features extracted from DCE MIPs yielded

AUC values [95% CI] of 0.84 [0.82, 0.87] and 0.86 [0.83, 0.89], respectively. Pooling features

extracted from multiple layers of ResNet statistically significantly improved the classification

performance compared with using only the last-layer features (P = .002, 95% CI of ∆AUC:

[0.01, 0.03]). This finding showed the advantage of utilizing mid- and low-level features

learned by the network during training, even with the presence of skip connections in ResNet.

Figure 2.13 and Table 2.7 present the classification performances of the five classifiers

when using pooled features. Table 2.8 summarizes the p-values and the 95% CIs for the

comparisons of performances of the multiparametric and single-sequence classifiers. Among

the multiparametric methods, the feature fusion method statistically significantly outper-
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formed the classifier that used DCE alone, and all three methods statistically significantly

outperformed using T2w alone.

Figure 2.13: Fitted binormal receiver operating characteristic (ROC) curves for two single-
sequence and three mpMRI classifiers trained on features extracted using ResNet-50 [15].
The classifiers used (i) convolutional neural network (CNN) features extracted from dy-
namic contrast-enhanced (DCE) subtraction maximum intensity projections (MIPs), (ii)
CNN features extracted from T2-weighted (T2w) center slices, (iii) CNN features extracted
from DCE and T2w fusion images, (iv) ensemble of features extracted from DCE and T2w
images, and (v) probability of malignancy outputs from the DCE MIP and T2w classifiers
aggregated via soft voting. The legend gives the area under the ROC curve (AUC) with the
95% confidence interval (CI) for each classifier scheme. T2w images were rescaled to match
the in-plane resolution of their corresponding DCE sequences, but image registration was
not performed.

2.5.3 Human-Engineered Radiomics versus Deep Learning for DWI

Figure 2.14 demonstrates the performances of the ADC-based and the CNN-based classifiers

individually and the fusion classifier. They achieved AUC values [95% CI] of 0.68 [0.61, 0.75],

67



Table 2.7: Sensitivity, specificity, and area under the receiver operating characteristic curve
(AUC) along with the 95% confidence interval (CI) of AUC for each classifier trained on
features extracted using ResNet-50 [15]. Sensitivity and specificity presented are for the
optimal operating point determined using a metric for a cut-off value that minimizes m =
(1 − sensitivity)2 + (1 − specificity)2. Because all lesions were referred for biopsy, the
sensitivity and specificity of the data set were not calculated for clinical assessment.

Classifier DCE T2w Image fusion Feature fusion Classifier fusion

AUC 0.86 0.79 0.85 0.87 0.86
[95%CI] [0.83, 0.89] [0.76, 0.82] [0.82, 0.87] [0.85, 0.90] [0.83, 0.89]
Sensitivity (%) 76.6 69.4 75.2 77.8 77.1
Specificity (%) 78.4 73.4 76.9 79.8 77.7

Table 2.8: Performance comparison for the five classification methods based on features ex-
tracted using ResNet-50 [15]. The classifier names are shown in the first row (single-sequence)
and first column (multiparametric). P -value and 95% confidence interval (CI) of the differ-
ence in the area under the receiver operating characteristic curves (AUCs) are presented
for each multiparametric classifier compared with each single-sequence classifier using the
DeLong test. Asterisks denote significance after accounting for multiple comparisons using
Bonferroni-Holm corrections.

Classifier Compared with DCE MIP Compared with T2w center slice

Image fusion P = .05 P < .001∗

95% CI ∆AUC = [−0.03, 0.00] 95% CI ∆AUC = [0.03, 0.08]

Feature fusion P = .004∗ P < .001∗

95% CI ∆AUC = [0.01, 0.02] 95% CI ∆AUC = [0.06, 0.10]

Classifier fusion P = .96 P < .001∗

95% CI ∆AUC = [−0.01, 0.01] 95% CI ∆AUC = [0.05, 0.09]
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0.74 [0.68, 0.80], and 0.76 [0.69, 0.82], respectively. The fusion classifier performed signifi-

cantly better than the ADC-based classifier (P = 0.01), whereas the CNN-based classifier

failed to show a statistically significant difference from the other two.

Figure 2.14: Fitted binormal receiver operating characteristic (ROC) curves for the ADC-
based classifier, the CNN-based classifier, and the fusion classifier for DWI [16].

2.6 Discussion and Conclusions

The work presented in this chapter investigated radiomics methods that leverage the com-

plementary information provided by the DCE, T2w, and DWI sequences in mpMRI and

demonstrated the potential to improve performance over single-sequence radiomics methods

in the task of distinguishing between benign and malignant breast lesions [13–16]. The study

was performed on both human-engineered radiomic features and features extracted by pre-

trained CNN models. Three mpMRI fusion approaches were proposed and evaluated: image

fusion, i.e., fusing images from multiple MRI sequences into an RGB image to form the
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input to the CNN (for CNN-based methods only); feature fusion, i.e., concatenating features

extracted from mpMRI sequences to form the classifier input; and classifier fusion, i.e., ag-

gregating the probability of malignancy output scores from single-sequence classifiers via soft

voting. When human-engineered features were used, both feature fusion and classifier fusion

methods achieved significantly higher classification performance using any sequence alone.

When CNN features were used, the feature fusion method significantly outperformed using

the DCE sequence alone, and all fusion methods significantly outperformed using the T2w

sequence alone. The findings in this work can potentially improve the currently available

breast cancer CADx systems based on DCE-MRI.

Using nested cross-validation as the evaluation technique allowed for more efficient use of

the limited data by reporting an overall score across five test sets; however, methods should

ideally be evaluated on an independent held-out test set to demonstrate the algorithm’s

generalizability and robustness. We will perform such evaluation in later chapters when

larger datasets are available.

Moreover, only six first-order human-engineered radiomic features were extracted from

ADC maps. Other radiomic features were not calculated because the coarse resolution of

DWI limited the utility of high-order features, such as texture features. Also, feature se-

lection was not included in the human-engineered radiomics study, because our preliminary

investigation of several feature selection and dimension reduction methods, including stepwise

feature selection, recursive feature selection, principal component analysis, and t-distributed

stochastic neighbor embedding, showed that none of these methods resulted in improved

classification performance. It is worth noting that our approach was to extract radiomic fea-

tures that are clinically or physiologically relevant to the diagnosis of breast cancer, rather

than extracting as many features as possible and then selecting a subset based on statisti-

cal importance. A total of 75 features were extracted from three modalities, which was a

reasonable size for SVM classifiers without feature selection, especially given the fairly large
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size of the database.

In addition, MRI exams used in this study were collected over the span of six years,

during which imaging technology advanced and some acquisition parameters did not remain

constant. We ensured that no severe imbalance that would potentially bias the results

was present. For example, the field strengths distribution was similar between the benign

and malignant class: among the 195 benign lesions, 141 (72%) of them were imaged with

1.5 T scanners and 54 were imaged with 3T (28%) scanners; among the 657 malignant

lesions, 422 (64%) were imaged with 1.5 T scanners and 235 were imaged with 3T (36%)

scanners. The spatial resolution and the temporal resolution in the DCE sequence were

also variable within the dataset. The use of such a retrospectively collected, heterogeneous

dataset positively contributed to the algorithm robustness and generalizability. Future work

will continue investigating the harmonization of differences in acquisition parameters to

improve performance.

Common alternative approaches for handling missing modalities in multiparametric imag-

ing studies include image imputation and feature imputation. Image imputation methods

are task-specific, and while developing a satisfactory image imputation method for diagnos-

ing breast cancer on mpMRI is an interesting topic for future investigation, it is beyond the

scope of this study. As for feature imputation, a comparative experiment was performed in

which the missing DWI radiomic features were imputed using a regression-based multivariate

iterative feature imputation method, and the classification results were compared with those

from our original approach. The performance for all classifiers that utilized DWI features,

namely the DWI single-parametric classifier, the feature fusion mpMRI classifier, and the

classifier fusion mpMRI classifier, slightly decreased. Their AUC values [95% CIs] were 0.66

[0.62, 0.70], 0.85 [0.82, 0.88], and 0.86 [0.84, 0.89], indicating that the imputed DWI fea-

tures did not benefit the classification performance. Besides classification performance, the

advantages of our original approach also include its computational efficiency as it eliminates
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the imputation step, and its close analogy to the clinical diagnostic process, i.e., radiologists

basing their assessment on either two or three sequences available in the mpMRI exam for a

particular case.

In this study, the CNN models were used as feature extracted with fixed pretrained

weights. Preliminary investigation suggested that given the task in question and the charac-

teristics of the dataset, feature extraction was the most appropriate use of the CNN models

in this particular study. In a different scenario, such as in later chapters in this dissertation,

fine-tuning a part or all of the CNN model may be beneficial. Moreover, the pretrained CNN

network requires 2D input, which limited the inclusion of the high-dimensional information

contained in breast MRI exams. The 4D information in DCE-MRI was captured by using

second post-contrast MIP images in this study, and Chapter 3 will investigate approaches

to more effectively leverage high-dimensional information in medical images in deep transfer

learning frameworks.

When performing inter-sequence image registration, multi-modality rigid registration

that consists of translation and rotation was performed. Scaling and shifting were performed

based on acquisition parameters provided in the exams’ DICOM information. Shearing or

deformable registration was not employed because it was not desirable for the quantitative

image analysis in this study to alter the geometry of and the texture within the lesions. More

in-depth registration optimizations can be explored in future studies. Image registration can

be computationally expensive and time-consuming. Given that all classifier performances

were equivalent with or without image registration, image registration might not be a nec-

essary step in this proposed method of distinguishing between benign and malignant breast

lesions using mpMRI.

The margin in equivalence testing is ideally a predetermined clinically meaningful limit.

However, due to complexities and impracticalities in applying the statistical principles of

equivalence testing to diagnostic performance studies, there is currently no widely used
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standard procedure to establish this margin [123]. Nonetheless, a rather conservative margin

of 5% for ∆AUC was used in this study to demonstrate equivalence between classifier pairs.
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CHAPTER 3

HIGH-DIMENSIONAL DEEP LEARNING IMAGE ANALYSIS

FOR BREAST CANCER DIAGNOSIS ON MULTIPARAMETRIC

MRI

3.1 Introduction

Deep learning methods have demonstrated success in computer-aided medical imaging anal-

ysis, as mentioned in Chapter 1, where transfer learning techniques are usually employed

to circumvent the need for massive datasets [31, 36]. Standard transfer learning techniques

for convolutional neural networks (CNNs) have achieved promising results for breast MRI

analysis [13, 15, 38, 104, 113]. However, CNNs pretrained on two-dimensional (2D), natural

images in ImageNet require 2D inputs, which has resulted in an underutilization of the high-

dimensional information in MRI that critically contributes to lesion classification in clinical

practice.

High dimensionality and data scarcity are unique challenges in deep learning applications

for medical imaging. In order to exploit the rich, clinically valuable information inherent

in medical images without sacrificing computational efficiency or model performance, it is

important to devise methods to use transfer learning in creative ways so that volumetric,

temporal, and other aspects of high-dimensional images can be incorporated even when

networks pretrained on 2D images are used. To take advantage of the four-dimensional

(4D) (volumetric and temporal) information inherent in DCE-MRI without sacrificing the

efficiency provided by transfer learning, a previously proposed method, which was shown

to outperform methods using only 2D or 3D information, used the second post-contrast

subtraction maximum intensity projection (MIP) images to classify breast lesions as benign

or malignant [105]. This chapter proposes a new transfer learning method that makes use of

both volumetric and temporal information in DCE-MRI more effectively than MIP images.
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Instead of collapsing the volumetric information at the image level to form MIP images, the

dimension reduction occurs at the feature level by taking the maximum of CNN features

along the axial dimension for a given lesion within the CNN, which will be referred to as

“feature MIP.” Additionally, the use of subtraction images was replaced by inputting images

acquired at three of the dynamic time points to the three channels of the CNN. The feature

MIP method was then validated on an external dataset with the temporal information from

four dynamic time points incorporated in the form of three post-contrast subtraction images

inputted to the three channels of the CNN.

Furthermore, the study further extended to multiparametric MRI (mpMRI). First, two

CNN transfer learning approaches to utilizing the diffusion weighting information in the

diffusion-weighted image (DWI) sequence were investigated. Then, the feature MIP method

was applied to three sequences in mpMRI, namely, DCE, T2-weighted (T2w), and DWI

sequences, and the feature fusion method discussed in Chapter 2 was applied to integrate

the multiparametric information.

3.2 Datasets

3.2.1 UChicago Medicine DCE-MRI Dataset

The first dataset involved in this study, specifically for investigation on leveraging 4D infor-

mation in DCE-MRI, was derived from the same retrospective database detailed in Section

2.2. Due to the addition of recent cases and not requiring all MRI exams to be multipara-

metric, the DCE-MRI dataset used in this study included more cases than that in Section

2.2. In total, the dataset consisted of 1161 unique breast lesions from 855 women who had

undergone breast MR exams. Of all lesions, 270 were benign (23%) and 891 were malignant

(77%). Patient age ranged from 23 to 89 years old, with a mean and standard deviation

of 55 ± 13 years. Images in the database were acquired over the span of 12 years, from
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2005 to 2017, using either 1.5 T or 3 T Philips Achieva scanners with a T1-weighted spoiled

gradient sequence. Image in-plane resolution ranged from 0.55 mm to 1.37 mm, and image

slice thickness varied 1.6 mm to 2.5 mm. The other aspects of the dataset, including Insti-

tutional Review Board protocol, image acquisition, and ground truth validation, follow the

description in Section 2.2.

3.2.2 Tianjin Medical University MRI Dataset

Another breast MRI dataset was collected from the Tianjin Medical University Cancer In-

stitute and Hospital, which allowed for independent, external validation of the methods

developed on the UChicago Medicine database. The dataset used in this study was ret-

rospectively collected and de-identified prior to analysis, and thus the study was deemed

exempt by the institutional review board-approved protocol. Initially, the 4704 patients pre-

senting for breast MRI examinations between 2015 and 2017 were consecutively collected.

Exclusion criteria included patients with previous surgical excision, systemic hormone ther-

apy or chemotherapy, exams that did not exhibit a visible lesion, and lesions without final

pathology results. A total of 1990 unique lesions from 1979 patients imaged by DCE-MRI

were ultimately included in this study. There were 1494 (75%) malignant lesions from 1483

patients with cancer, including eight bilateral and three bifocal cancers, and 496 (25%) be-

nign lesions from 496 benign patients. A subset of 1827 unique lesions from 1825 women

was imaged with mpMRI protocols that contained DCE, T2w, and DWI sequences, among

which 1372 (75%) were malignant lesions from 1370 patients, including one bilateral and

one bifocal cancer patient, and 455 (25%) were benign from 455 patients. Ground truth for

each lesion was based on histopathology from surgical specimens. The flowchart in Fig. 3.1

illustrates patient enrollment and inclusion.

MR images were acquired with 3 T GE scanners using a dedicated eight-channel phased-

array breast coil (Discovery 750, GE Medical Systems, Milwaukee, WI). The MRI protocol
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Figure 3.1: Flowchart of study participants enrollment [17].

consisted of a sagittal T1-weighted DCE gradient echo sequence using the volume imaging

for breast assessment (VIBRANT) bilateral breast imaging technique, a sagittal T2w fast

spin echo sequence with flow compression and fat saturation, and an axial diffusion-weighted

echo planar imaging sequence. The average spatial resolution is 0.5 mm × 0.5 mm × 1.8 mm

for DCE, 0.5 mm × 0.5 mm × 4.0 mm for T2w, and 1.2 mm × 1.2 mm × 4.5 mm for DWI.

The temporal resolution for dynamic acquisition ranged from 51 s to 129 s. The contrast

agent, gadolinium-diethylenetriamine pentaacetic acid (0.1 mmol/kg body weight, flow rate

2.0 ml/s), was injected after the serial mask images were obtained, followed by flushing with

the same total dose of saline solution. All DWI sequences were acquired using at least three

common b-values (0, 500, and 1000 s/mm2), with up to nine additional b-values in some

exams.

To minimize the bias in case selection for the computerized image analysis and to mimic

a development-then-clinical-use scenario, the dataset was divided into a development set
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(training and validation) and an independent test set based solely on the date of the MRI

examinations. The development dataset included 1455 lesions (1323 imaged with mpMRI)

from years 2015 and 2016, and the test set included 535 lesions (504 imaged with mpMRI)

from the year 2017. No patients were in both the development set and the test set, and there

was one lesion per patient in the test set. The clinical characteristics of the study population

are listed in Table 3.1. Lesion characteristics were similar in the training and validation data

compared with the test data for lesion size for benign (P = .29) and malignant (P = .09)

lesions. Similar distributions were noted in other subcategories as well.

Table 3.1: Clinicopathological characteristics of the lesions from patients in the Tianjin
breast MRI dataset [17].

Training and Validation Test

Malignant Benign Malignant Benign

Total 1073 382 421 114

Agea,h , years 47.6 (19-77) 42.2 (16-76) 49.3 (25-75) 41.9 (19-65)

Sizeb, mm 19.1± 8.6 14.7± 10.7 18.5± 7.6 12.9± 6.8

Lesion type

Mass 716 (75.7%) 230 (24.3%) 293 (80.7%) 70 (19.3%)

Non-mass 357 (70.%) 152 (29.9%) 128 (74.4%) 44 (25.6%)

MRI BI-RADS categoryc,h

0 0 (0%) 2 (0.5%) 0 (0%) 0 (0%)

1 0 (0%) 1 (0.3%) 0 (0%) 2 (1.8%)

2 0 (0%) 4 (1.0%) 0 (0%) 0 (0%)

3 4 (0.3%) 202 (52.9%) 0 (0%) 50 (43.8%)

4 351 (33.1%) 170 (44.5%) 113 (26.8%) 60 (52.6%)

5 529 (49.8%) 3 (0.8%) 221 (52.5%) 2 (1.8%)
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Table 3.1: Clinical characteristics of the dataset (continued)

6 178 (16.8%) 0 (0%) 87 (20.7%) 0 (0%)

Histology

IDCd 914 (85.2%) 366 (86.9%)

ILCe 22 (2.1%) 4 (1.0%)

DCISf 76 (7.1%) 18 (4.3%)

Other malignant 61 (5.6%) 33 (7.8%)

Fibroadenoma 165 (43.2%) 46 (40.4%)

Papilloma 66 (17.3%) 28 (24.6%)

Inflammation 19 (5.0%) 10 (8.8%)

Other benign 132 (34.5%) 30 (26.3%)

Estrogen receptori

< 1% 192 (18.0%) 77 (18.3%)

>= 1% 876 (82.0%) 344 (81.7%)

Progesterone receptori

< 1% 222 (20.8%) 104 (24.7%)

>= 1% 846 (79.2%) 317 (75.3%)

HER-2g,i

0 or 1+ 632 (59.2%) 243 (57.7%)

2+ or 3+ 436 (40.8%) 178 (42.3%)

Ki-67i

< 14% 180 (16.9%) 60 (14.3%)

>= 14% 887 (83.1%) 361 (85.7%)
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Table 3.1: Clinical characteristics of the dataset (continued)

a Patient age is shown as mean (range).
b Lesion size is measured by the effective diameter, i.e., the greatest dimension of a sphere with
the same volume as the lesion, and shown as mean ± standard deviation.

c BI-RADS = Breast Imaging Reporting and Data System
d IDC = invasive ductal carcinoma
e ILC = Invasive lobular carcinoma
f DCIS = Ductal carcinoma in situ
g HER-2 = human epidermal growth factor receptor 2
h Age and BI-RADS are reported by patient, and the other information is reported by lesion.
i There were five lesions with unknown estrogen receptor, progesterone receptor, and HER-2
status, and six lesions with unknown Ki-67 status.

3.3 Methods

3.3.1 Volumetric and Temporal Information in DCE-MRI

Input Construction

As illustrated in Fig. 3.2, the subtraction images were created by subtracting the pre-contrast

(t0) images from their corresponding second post-contrast (t2) images in order to emphasize

the contrast enhancement pattern within the lesion and suppress constant background. To

generate MIP images, the 3D volume of subtracted images for each lesion was then collapsed

into a 2D image by selecting the voxel with the maximum intensity along the axial dimension,

i.e., perpendicular to the transverse slices.

Figure 3.2: Illustration of the processes to construct the second post-contrast subtraction
images, the subtraction maximum intensity projection (MIP) images, and region of interest
(ROI) [18].
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To avoid confounding contributions from distant voxels, a region of interest (ROI) around

each lesion was automatically cropped from the image to use in the subsequent classification

process. The ROI size was chosen based on the maximum dimension of each lesion, and

a small part of the parenchyma around the lesion was included. The minimum ROI size

was set to 32 × 32 pixels as required by the model architecture. The cropping process is

illustrated in Figs. 3.2 and 3.3. ROIs were not rescaled.

Additionally, an ROI that contained red, green, and blue (RGB) channels was created for

each slice of each lesion. As illustrated in Fig. 3.3, the pre-contrast (t0), first post-contrast

(t1), and second post-contrast (t2) DCE time points were input to the red, green, and blue

channels, respectively.

Figure 3.3: Illustration of the RGB region of interest (ROI) construction process.

Classification and Evaluation

Figure 3.4 schematically shows the transfer learning classification and evaluation process

for the three methods following the ROI construction. For each lesion, CNN features were
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extracted separately from the subtraction MIP ROI, the subtraction ROIs of all slices, and

the RGB ROIs of all slices using a VGG-19 model pretrained on ImageNet [34, 93]. The

RGB ROI volumes comply with the desired three-channel input format of VGG-19, while the

subtraction ROI volumes and MIP ROIs were grayscale and were duplicated across the three

channels. Feature vectors were extracted at various network depths from the five max pooling

layers of the VGG-19. These features were then average-pooled along the spatial dimensions

and normalized with Euclidian distance. The pooled features were then concatenated to

form a CNN feature vector for a given lesion [104, 113].

For the method using subtraction or RGB ROIs of all slices of a lesion, the 2D feature

vectors extracted by VGGNet from each slice were further concatenated to form a 3D feature

vector, which was subsequently collapsed into a 2D feature vector by selecting the maximum

feature value along the axial dimension (i.e., taking the MIP of the feature vector along

the direction in which slices were stacked). This method will be referred to as “feature

MIP.” Max pooling was chosen over average pooling along the axial dimension because it

was desirable to select the most prominent occurrence of each feature among all transverse

slices of a lesion. Average pooling would have smoothed out the feature map and obscured

the predictive features.

Three linear support vector machine (SVM) classifiers were trained on the CNN features

extracted from subtraction MIPs, subtraction volumes, and RGB volumes separately to

differentiate between benign and malignant lesions (Python Version 3.7.3, Python Software

Foundation), following the method described in Section 2.3.2. Training and evaluation were

performed using nested five-fold cross-validation, with the area under the receiver operating

characteristic (ROC) curve (AUC) serving as the figure of merit, as detailed in 2.3.3 [117,

118].
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Figure 3.4: Lesion classification pipelines based on diagnostic images. Three-dimensional
volumetric lesion information from dynamic contrast-enhanced (DCE)-MRI is collapsed into
2D by maximum intensity projection (MIP) at the image level (left) or at the feature level
(middle and right) along the axial dimension. Temporal information is incorporated via
either subtraction images (left and middle) or inputting different time points in a DCE
sequence into the RGB channels of the CNN input (right).
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3.3.2 Independent Validation of Feature MIP on DCE-MRI

The procedure for creating the input for the CNN architecture from the 4D DCE-MRI

sequence is illustrated in Fig. 3.5. Subtraction images were created by subtracting the pre-

contrast (t0) images from their corresponding first, second, and third post-contrast images

(t1, t2, and t3, respectively) to emphasize the contrast enhancement pattern within the lesion

and suppress constant background.

To avoid confounding contributions from distant voxels, an ROI around each lesion was

automatically cropped from all of its subtraction images with a seed-point manually indicated

by a breast radiologist (Dr. Yu Ji) with five years of experience in breast DCE-MRIs. The

ROI cropping process follows the description in Section 3.3.1. For the feature MIP method,

the 3D ROIs from the three subtraction image volumes (i.e., the first, second, and third

post-contrast subtraction 3D ROIs) were input into the network through the RGB channels,

respectively, forming a 3D RGB ROI for each lesion. The pixel intensity in each ROI was

normalized over the 3D ROI volume. For the image MIP method, the 3D RGB ROI volume

for each lesion was subsequently collapsed into a 2D MIP ROI by selecting the voxel with the

maximum intensity along the axial dimension (i.e., perpendicular to the transverse slices).

Figure 3.5 also shows a schematic of the transfer learning classification and evaluation

process for the two methods. For each lesion, CNN features were extracted from the inputted

MIP RGB ROIs and the 3D RGB ROIs separately using a VGG-19 model pretrained on

ImageNet [34, 93]. Cases from years 2015-2016 (1455 lesions) were split into 80% for training

and 20% for validation, holding the class prevalence constant across the two sets and under

the constraint that lesions from the same patient were kept together in the same set to

eliminate the impact of bias from data leakage. Cases from the year 2017 (535 lesions)

were held out for testing. The feature extraction, classification, and evaluation process for

both image MIP and feature MIP methods followed the descriptions in Section 3.3.1, but on

independent training, validation, and test sets instead of nested cross-validation.
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Figure 3.5: Lesion classification pipelines for image maximum intensity projection (MIP) and
feature MIP [17]. The top portion illustrates the construction of the region of interest (ROI)
that incorporates volumetric and temporal information from the four-dimensional dynamic
contrast-enhanced MRI sequence. The same ROI was cropped from the first, second, and
third post-contrast subtraction images and combined in the red, green, and blue (RGB)
channels to form a three-dimensional (3D) RGB ROI. For image MIP (left branch of the
bottom portion), the MIP RGB ROI was generated from the 3D RGB ROI, collapsing
volumetric lesion information at the image level. For feature MIP (right branch of the
bottom portion), volumetric lesion information was integrated at the feature level by max
pooling feature extracted from all slices. SVM = support vector machine.
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The optimal operating point reported for each classifier was determined, using the ROC

curve of the training data, by finding the sensitivity and specificity pair that maximizes the

function sensitivity − m(1 − specificity), where m is the slope of the ROC curve at the

optimal operating point given by

m =
ProbNorm

ProbDis
× CFP − CTN

CFN − CTP
, (3.1)

with ProbNorm and ProbDis being the probability that a case from the population studied

is negative and positive, respectively, and CFP , CTN , CFN , CTP being the cost of a false-

positive, true-negative, false-negative, and true-positive result, respectively [124, 125]. An

equal cost was assumed for false positive and false negative predictions and no cost for the

correct predictions. The predicted posterior probabilities of malignancy (PMs) of the test set

were converted to match the cancer prevalence in the training set [126], and the sensitivity

and specificity of the test set were reported using the optimal thresholds pre-determined on

the training data. The two classifiers’ sensitivities and specificities were each compared at

the optimal point using the McNemar test [127, 128]. P < 0.05 was considered to indicate

a statistically significant difference in each performance metric. Statistical analyses were

performed in MATLAB (MATLAB R2019b, The MathWorks Inc., Natick, Massachusetts).

3.3.3 Deep Learning for DWI

The role of deep learning in the diagnosis of breast cancer on DWI was investigated on the

mpMRI subset in the database from Tianjing, which is detailed in Section 3.2.2. A DWI

sequence acquired using at least three b-values (0, 500, and 1000 s/mm2) was included in each

exam. Lesions were automatically segmented from the DWI images using a fuzzy C-means

method with a manually indicated seed-point. The slice with the largest segmented area was

chosen to represent each lesion, and a square ROI was cropped around the lesion in the same
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manner as described in Section 3.3.1. Two types of CNN input were investigated: a) the

apparent diffusion coefficient (ADC) image derived pixel by pixel from the three b-values;

b) an RGB image in which the red, green, and blue channels of the CNN contained DWI

images at the three b-values, respectively. The CNN, a VGG-19 pretrained on ImageNet, was

fine-tuned on 1323 lesions images in years 2015 and 2016 to distinguish between benign and

malignant lesions and then independently tested on 504 lesions images in the year 2017 on

the task of distinguishing between benign and malignant lesions. Classification performance

was evaluated using ROC analysis, and the AUC served as the figure of merit. Statistical

tests on superiority and noninferiority were performed to compare the two methods.

3.3.4 Feature MIP on Multiparametric MRI

As illustrated in Fig. 3.6, the feature MIP method detailed in Section 3.3.1 was applied to

three sequences in mpMRI, and the feature fusion method investigated in Chapter 2 were

employed to integrate multiparametric information. The input images for the DCE sequence

and the DWI sequence were RGB images of the lesion ROI, following the construction

processes described in Section 3.3.2 and 3.3.3, respectively. The input image for the T2w

sequence was a grayscale volume of the lesion ROI. The modified VGG-19 model, as described

in 2.3.2, was connected with a multilayer perceptron (MLP), as shown in Fig. 3.7, which

was fine-tuned on each MRI sequence to differentiate benign and malignant breast lesions.

Feature MIP was applied to the lesion volume in each of the three MRI sequences, and the

features vectors from these sequences were subsequently concatenated and input into an MLP

to produce a probability of malignancy output score. The evaluation for the single-sequence

and mpMRI classifiers followed Section 3.3.2. Gradient-weighted class activation mapping

(Grad-CAM) was generated to provide a visual explanation of the model’s classification

[129].
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Figure 3.6: Lesion classification pipelines for multiparametric MRI. Feature MIP was ap-
plied to the lesion volume in three MRI sequences, and features from these sequences were
concatenated and input to a multilayer perceptron (MLP).

3.4 Results

3.4.1 Volumetric and Temporal Information in DCE-MRI

Figure 3.8 presents the ROC curves of the three classification schemes in the task of dis-

tinguishing benign and malignant breast lesions. Table 3.2 summarizes the classification

performances and compares the two newly proposed approaches with the method using MIP

images. The 95% CIs of the difference in AUCs (∆AUC) and the p-values demonstrate that

both classifiers that collapsed 3D volumetric information by feature MIP significantly out-

performed the previously proposed method of using image MIP. Meanwhile, the two feature

MIP classifiers, which leverage temporal information differently, failed to show a significant

difference in performance from each other. In addition, equivalence testing demonstrated

that these two feature MIP classifiers yielded equivalent performance with an equivalence

margin of ∆AUC = 0.05, chosen prima facie.

The results suggest that in the task of distinguishing benign and malignant breast lesions
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Figure 3.7: Architecture of the modified VGG-19 and the multilayer perceptron (MLP) of
which the overall model was composed.

using deep transfer learning, 3D volumetric information in DCE-MRI may have superior

predictive power when collapsed along the axial dimension by maximum intensity projection

at the feature level rather than at the image level. The temporal information in DCE-MRI,

on the other hand, contributes equivalently to the classification task when incorporated in

subtraction images or in the three channels of RGB images.

Table 3.2: Classification performances and comparisons between the three classification
schemes using the DeLong test. The p-value and 95% confidence interval (CI) of the differ-
ence in the areas under the receiver operating characteristic curves (AUCs) were computed
with respect to the classifier using maximum intensity projection (MIP) images. Asterisks
denote significance after accounting for multiple comparisons using Bonferroni-Holm correc-
tions.

AUC ± SE P-value 95% CI of ∆AUC

Subtraction image MIP 0.86± 0.01 — —
Subtraction volume CNN feature MIP 0.89± 0.01 < .001∗ [0.01, 0.04]
RGB volume CNN feature MIP 0.89± 0.01 < .001∗ [0.02, 0.04]
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Figure 3.8: Fitted binormal receiver operating characteristic (ROC) curves for two classi-
fiers that utilize the volumetric and temporal information from dynamic contrast-enhanced
(DCE)-MRI. The legend gives the area under the ROC curve (AUC) with standard error
(SE) for each classifier scheme.
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Table 3.3: Performance metrics comparison between image maximum intensity projection
(MIP) and feature MIP models [17]. The area under the receiver operating characteristic
curve (AUC), along with the standard error and the 95% CI, as well as the sensitivity and
specificity (in percentage and ratio of cases) for each method. The 95% CI and p-value for
the difference (∆) between the two methods are also presented for each metric. The AUCs
were compared using the DeLong test, and the sensitivities and specificities were compared
using the McNemar test.

Classifier Image MIP Feature MIP 95% CI of ∆ P -value

AUC 0.91± 0.02 [0.87, 0.94] 0.93± 0.01 [0.91, 0.96] [0.003, 0.051] .03
Sensitivity 90% (379/421) 94% (395/421) [0.014, 0.062] .002
Specificity 73% (83/114) 72% (82/114) [-.094, 0.076] > .99

3.4.2 Independent Validation of Feature MIP on DCE-MRI

Figure 3.9 presents the ROC curves of the image MIP (AUC: 0.91, 95% CI: [0.87, 0.94])

and the feature MIP (AUC: 0.93, 95% CI: [0.91, 0.96]) approaches, and Table 3.3 summa-

rizes the classifiers’ performance metrics in the task of distinguishing benign and malignant

breast lesions. A DeLong test comparing the feature MIP method with the image MIP

method demonstrated that the feature MIP method achieved a higher classification perfor-

mance (∆AUC 95% CI: [0.003, 0.051], P = .03). These results suggest that collapsing 3D

volumetric information by taking the maximum intensity projection at the feature level re-

tained higher predictive power than collapsing at the image level. McNemar tests showed

that, at the operating point determined using the training set, the sensitivity of the feature

MIP method on the test set was significantly higher than that of the image MIP method,

and the specificities failed to demonstrate a significant difference.

Figures 3.10 and 3.11 illustrate the comparison between the PMs predicted using the

image MIP method and feature MIP methods. Although the majority of benign and malig-

nant lesions were separated from the other class by both image MIP and feature MIP, these

two methods exhibit moderate disagreement between these figures. Overall, the feature MIP

method assigned malignant cases with higher PMs and benign cases with lower PMs as com-

pared with image MIP, indicating that the feature MIP classifier has higher discriminatory
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Figure 3.9: Fitted binormal receiver operating characteristic (ROC) curves for two classifiers
that use the four-dimensional volumetric and temporal information from dynamic contrast-
enhanced MRI [17]. The legend gives the area under the ROC curve (AUC) with the 95%
CI for each classifier.
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power than image MIP in distinguishing between benign and malignant lesions. Figure 3.10

also shows several example lesions on which one method generated more accurate predic-

tions than the other or on which the two methods agreed. For lesions on which feature MIP

predicted more accurately than image MIP, the MIP images either failed to retain important

features of the lesions or captured misleading features that do not accurately represent the

lesions volumes in the projection process.

3.4.3 Deep Learning for DWI

As shown in Fig. 3.12, classification of benign and malignant lesions using the ADC map

input and the RGB input yielded AUC values [95% CI] of 0.81 [0.76, 0.85] and 0.83 [0.79,

0.87], respectively. The AUCs failed to demonstrate a statistically significant difference

(P = .27, 95% CI of ∆AUC = [−0.07, 0.02]). The RGB input was noninferior to the ADC

map input within a margin of ∆AUC = 0.05. Figure 3.12 also shows examples of ADC input

ROIs and RGB input ROIs of both malignant and benign lesions. Given the classification

performances, the RGB input will be used in the mpMRI part of this study, because it does

not require the computationally intensive calculation of the ADC map and is not subject to

variations in the image post-processing algorithm.

3.4.4 Feature MIP on Multiparametric MRI

Figure 3.13 and Table 3.4 present the classification performance of each classifier that utilized

the high-dimensional information in their corresponding MRI sequence and of the fusion

mpMRI classifier. Table 3.4 also summarizes the comparison results between the single-

sequence classifiers and mpMRI classifier. The mpMRI classifier yielded a high AUC [95%

CI] of 0.94 [0.92, 0.96] and significantly outperformed all single-parametric classifiers. Figure

3.14 shows examples of the input ROI and Grad-CAM visualization for a benign lesion and

a malignant lesion. One slice is shown for each lesion volume. In both cases, the deep
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Figure 3.10: A diagonal classifier agreement plot between the image maximum intensity
projection (MIP) and feature MIP methods [17]. The x-axis and y-axis denote the probability
of malignancy (PM) scores predicted by the image MIP classifier and feature MIP classifier,
respectively. Each point represents a lesion for which predictions were made. Points along or
near the diagonal from bottom left to top right indicate high classifier agreement; points far
from the diagonal indicate low agreement. The insets are the MIP regions of interest (ROIs)
and three-dimensional (3D) ROIs, which served as convolutional neural network (CNN)
inputs for the image MIP and feature MIP methods, respectively, of extreme examples
on which using feature MIP resulted in more accurate predictions than using image MIP
(lesion 1-2), on which using image MIP resulted in more accurate predictions than using
feature MIP (lesion 3), and on which the two methods both predicted accurately (lesion
4-5). Lesion 1: invasive micropapillary carcinoma; lesion 2: fibromatosis; lesion 3: invasive
ductal carcinoma, grade II; lesion 4: invasive ductal carcinoma, grade II; lesion 5: non-mass
enhancement, fibroadenoma.
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Figure 3.11: Bland-Altman plot for the image maximum intensity projection (MIP) and
feature MIP classifiers [17]. The x-axis and y-axis show the mean and difference between the
support vector machine output scores (i.e., predicted posterior probabilities of malignancy
[PMs]) of the two classifiers, respectively.
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Figure 3.12: Fitted binormal receiver operating characteristic (ROC) curves for two diffusion-
weighted imaging classifiers. Examples of the two classifiers’ inputs are shown on the right.
The legend gives the area under the ROC curve (AUC) with the 95% CI for each classifier.

learning algorithm identified complementary information on the three sequences in mpMRI,

and consequently, the classification performance of the mpMRI fusion classifier was improved

compared with using any single sequence alone.

Table 3.4: Area under the receiver operating characteristic curve (AUC) for single-sequence
classifiers of three MRI sequences and a fusion mpMRI classifier. P -value and 95% confidence
interval (CI) of the difference in AUCs are presented for the comparison between each single-
sequence classifier and the multiparametric classifier using the DeLong test. Asterisks denote
significance after accounting for multiple comparisons using Bonferroni-Holm corrections.

Classifier DCE T2w DWI mpMRI

AUC [95% CI] 0.92 [0.90, 0.95] 0.84 [0.80, 0.88] 0.86 [0.82, 0.90] 0.94 [0.92, 0.96]
95% CI of ∆AUC [0.001, 0.036] [0.065, 0.137] [0.050, 0.116] —
P -value P = .04∗ P < .001∗ P < .001∗ —
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Figure 3.13: Fitted binormal receiver operating characteristic (ROC) curves for single-
sequence classifiers of three MRI sequences and a fusion mpMRI classifier, all of which
utilize the high-dimensional information in the images. The legend gives the area under the
ROC curve (AUC) with the 95% CI for each classifier.

3.5 Discussion and Conclusions

The work presented in this chapter proposed an approach, referred to as feature MIP, to

effectively incorporate the high-dimensional information inherent in MRI exams when using

deep transfer learning in the task of distinguishing between benign and malignant breast

lesions [17, 18]. The feature MIP method globally max pools the features extracted from a

lesion volume along the lesion’s axial dimension within a CNN. For 4D sequences, namely

DCE and DWI, the RGB channels of CNNs pretrained on natural images are utilized to

incorporate the images acquired at different time points in DCE and different diffusion

weighting strengths in DWI. Compared with a previous method of using image MIP on

DCE-MRI, the feature MIP method demonstrated significantly higher performance in the
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(a) (b)

Figure 3.14: Example input ROI (top row) and their Grad-CAM heatmap overlays (bottom
row) of (a) a benign breast lesion and (b) a malignant breast lesion. The probability of ma-
lignancy (PM) predicted by each single-sequence classifiers is shown above its corresponding
heatmap overlay, and the PM predicted by the mpMRI classifier is shown on the left.

breast lesion classification task. When applying the feature MIP method along with the

feature fusion method from Chapter 2, the high-dimensional mpMRI classifier achieved high

classification performance (AUC = 0.94, 95% CI: [0.92, 0.96]) and significantly outperformed

using any single sequence alone. Methods examined for incorporating the temporal aspect

of DCE-MRI and the diffusion weightings of DWI did not yield significant differences in

classification performance.

It is worth noting that the advantage of feature MIP relative to image MIP for utilizing

volumetric information in deep learning is relatable to the perception of human readers.

Given the anatomical complexity in breast parenchyma, the anatomical clutter caused by

projecting a 3D volume onto a 2D image is a limiting factor for human readers’ assessment

[130–132]. Therefore, although conventional clinical MIP images are a convenient way of

reducing the dimensionality of DCE-MRI for image interpretation by either radiologists or

AI algorithms, they do not yield optimal results due to the loss of information and the

enhanced anatomical noise in projection images.

A prior study from our group was based on the same dataset and training, validation,
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and test split as our study, but used a single representative slice for each lesion and input

the pre-contrast, first post-contrast, and second post-contrast image ROIs into the RGB

channels [38]. The study reported an AUC of 0.85 using the same modified VGG-19 feature

extraction and support vector machine classification approach. The newly proposed feature

MIP method in this study outperformed the above-mentioned method by 10% (∆AUC 95%

CI: [0.035, 0.120], P < .001).

Training 3D CNNs from scratch is another common approach for taking advantage of

high-dimensional information provided by medical images. However, it is computationally

expensive and is usually not suited for moderately sized medical datasets. A recent study by

Dalmis et al. trained a 3D CNN from scratch on 4D ultrafast DCE-MRI data after reducing

the dimensionality using MIPs and achieved an AUC [95% CI] of 0.81 [ 0.77, 0.85] [108].

Another study by Li et al. trained a 3D CNN on the volume of DCE-MRI and incorpo-

rated the temporal information in the classification by calculating the enhancement ratio;

they reported an AUC of 0.84 [133]. Compared with training 3D CNNs from scratch, our

methodology of using transfer learning on 4D medical imaging data involves training of much

fewer free parameters and therefore is computationally more efficient and has demonstrated

high performance on the moderately sized dataset used in this study.

Moreover, there exist several variations of transfer learning strategies as mentioned in

Section 1.1.2, including using the CNN as a feature extractor with fixed weights, or optionally

adding fully connected layers on top of the pretrained network and fine-tuning the network

end-to-end. In this work, the specific transfer learning strategy employed in each section was

chosen through preliminary experiments and comparisons to optimize for the performance

in the task of distinguishing benign and malignant breast lesions on our dataset.

A limitation in the evaluation is that without sufficient knowledge about the specific

clinical use case, the operating points at which sensitivity and specificity are reported may

not be clinically optimal. A different threshold may be chosen if the relative cost of false-

99



positive and false-negative diagnoses is known. Another limitation, similar to Chapter 2,

is the choice of equivalence margin, which can be revised in the future when guidelines for

selecting clinically meaningful margins are available. In addition, as in Chapter 2, MRI exams

used in this study were collected over several years and image acquisition parameters such as

spatial resolution and DCE temporal resolution were also variable within the dataset. The

use of such a retrospectively collected, heterogeneous dataset contributed to the algorithm

robustness and generalizability. Future work will continue investigating the harmonization

of differences in acquisition parameters to improve performance.
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CHAPTER 4

ARTIFICIAL INTELLIGENCE FOR COVID-19 DIAGNOSIS

AND PROGNOSIS ON CHEST RADIOGRAPHY

4.1 Introduction

The prolonged COVID-19 pandemic has profoundly impacted global public health and the

economy. As mentioned in Section 1.3, since the SARS-CoV-2 virus is highly contagious

and infection can cause severe and sometimes fatal disease, early diagnosis and appropriate

patient management are crucial when navigating the pandemic, both for the patient’s well-

being and for public health purposes. Early diagnosis not only allows for prompt treatment

at the earlier, more manageable stage of the disease but also informs patient isolation based

on disease mitigation and containment strategies. Accurate prognosis enables planning and

optimization of medical resource allocation as well as choosing the appropriate intervention

and implementing necessary adjustments.

Early on in the pandemic, the containment of infection was hindered by a shortage of the

reverse transcription polymerase chain reaction (RT-PCR) assay. While there have been suc-

cessful efforts to increase the production capacity, shortages of test kits and long processing

times remain a problem in resource-limited settings during surges. Moreover, the RT-PCR

test has moderate and variable sensitivity in clinical practice [69]. Chest radiography (CXR)

is recommended for triaging at patient presentation and disease monitoring due to its fast

speed, relatively low cost, wide availability, and portability [75, 76]. Characteristics such as

bilateral lower lobe consolidations, ground glass densities, peripheral air space opacities, and

diffuse air space disease on CXR have been related to COVID-19 [77, 78]. Unfortunately,

the non-specificity of these features and the shortage of radiological expertise due to the

stress on healthcare resources during the pandemic make precise interpretation of such im-

ages challenging. Under such circumstances, deep learning can potentially assist in this task.
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The work presented in this chapter investigates deep learning image analysis methods for

automated COVID-19 diagnosis at patient presentation and for predicting COVID-19 pa-

tients’ future needs of intensive care using CXR. The role of standard and soft-tissue CXR

is also examined.

There have been numerous studies on AI applications for COVID-19 using CXR. However,

due to difficulties in collecting sizeable datasets, many of these studies utilized publicly

available datasets that consist of images extracted from publications [134–136], which by

nature are not a representative selection of the patient population and may lead to biased

results that cannot be recommended for clinical use [137, 138]. We therefore curated a large

CXR database consecutively collected from our institution for this research. Moreover, large

public CXR datasets established prior to the pandemic were usually utilized to enrich the

training set [139–141]. These images, all COVID-19 negative, differed from the COVID-

19 positive cases in newly acquired datasets in image acquisition protocol, scanners, and

patient population. Consequently, pooling them together would have introduced confounding

variables into the classification task and potentially yielded over-optimistic results, because

the models might learn to use these irrelevant factors to distinguish COVID-19 positive

and negative, rather than identify disease presentations. In order to leverage pre-pandemic

CXR datasets without adding confounding variables in this study, we designed a three-phase

learning curriculum to sequentially fine-tune the model during training instead of pooling

the datasets. Furthermore, while most current diagnostic imaging AI research was developed

on all COVID-19 cases available, including images acquired when the disease has progressed,

our study tackled the challenge of COVID-19 early diagnosis at initial patient presentation,

which is important for implementing isolation and treatment promptly. Finally, while most

prior studies only considered standard CXR images, our work also investigated the role of

soft-tissue images in automated COVID-19 diagnosis using deep learning as they exhibit

diagnostic utility in radiologists’ clinical assessment.
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4.2 Datasets

A database has been retrospectively and consecutively curated under a HIPAA-compliant,

IRB-approved protocol during the COVID-19 outbreak. From adult patients who underwent

the RT-PCR test for SARS-CoV-2 virus at the University of Chicago Medical Center, their

CXR exams after and up to a year prior to their initial RT-PCR tests were collected. Table

4.1 summarizes the database as of February 12, 2021.

Table 4.1: Dataset statistics by patient and total images.

Adult Pediatric

COVID-19+ 3046 170
COVID-19- 16190 1334
Total 19236 2127
Total images 65288 9290

For the early diagnosis study, the first CXR exam after (with a limit of two days) each

patient’s initial RT-PCR test was selected for this study. Dual-energy subtraction (DES)

exams and portable exams with a ClearRead bone suppression series (Riverain Technologies)

were included; the former generate a soft-tissue image per exam using images obtained at

two different beam energies, while the latter generate a synthetic soft-tissue image using

post-processing algorithms. Exams with a missing standard image or soft-tissue image were

excluded. Ultimately, the dataset for this study consisted of 9860 adult patients who had

CXR exams within two days after their initial RT-PCR tests acquired between January

30, 2020 and February 3, 2021, 1523 (15.5%) of whom tested positive and 8337 (84.5%) of

whom tested negative for COVID-19. The dataset was split at the patient level into 64%

for training, 16% for validation, and 20% for testing using stratified sampling, keeping the

class prevalence constant across the three subsets. Detailed statistics on the dataset are

summarized in Table 4.2. Figure 4.1 shows the distribution of the patient visit status, i.e.,

settings in which the CXR exams were acquired among COVID-19 positive patients in the
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dataset. Note that the COVID-19 positive patients who were hospitalized or in the intensive

care unit (ICU) at the time of the CXR could have been receiving treatment for diseases

other than COVID-19, and COVID-19 might not have been the primary reason for their

hospital stay. Thus, we did not assume COVID-19 severity based on patient visit status.

Table 4.2: Dataset statistics and the prevalence of cases for initial CXR exams.

COVID-19+ COVID-19- Total

Training 974 5336 6310 (64%)
Validation 244 1334 1578 (16%)
Test 305 1667 1972 (20%)
Total 1523 (15%) 8337 (85%) 9860

Figure 4.1: Distribution of the patient visit status in which chest radiography exams were
acquired among COVID-19 positive patients in the dataset. ICU = intensive care unit, ED
= emergency department.

For the prognostic study, images acquired after a positive RT-PCR were included, and

images obtained after ICU admission or intubation were excluded. Ultimately, the dataset for
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this study consisted of 1670 CXR exams of 1178 COVID-19 positive adult patients, acquired

between March 20, 2020 and September 13, 2020. Intensive care was defined as intubation

(invasive mechanical ventilation) and/or ICU admission. Since the medical resources at our

institution were not overwhelmed by any measure throughout the pandemic, we assumed that

all patients who needed intensive care received it without delay. The dataset was split at the

patient level into 64% for training, 16% for validation, and 20% for testing using stratified

sampling, holding the class prevalence for the least frequent outcome, i.e., intubation or ICU

admission within 24 hours, constant across all subsets. Detailed statistics on the dataset are

summarized in Table 4.3.

Table 4.3: Dataset statistics for patients who required intensive care within 24, 48, 72, and 96
hours after chest radiography exams. The numbers of patients and images (in parentheses)
in each subset are listed.

24 hours 48 hours 72 hours 96 hours

+ - + - + - + -

Training 135 601 144 592 147 589 148 588
(152) (916) (174) (894) (193) (875) (210) (858)

Validation 34 162 40 156 41 155 42 154
(38) (230) (48) (220) (51) (217) (53) (215)

Test 43 203 47 199 48 198 49 197
(47) (287) (56) (278) (57) (277) (58) (276)

Total 212 966 231 947 236 942 239 939
(237) (1433) (278) (1392) (301) (1369) (321) (1349)

4.3 Methods

4.3.1 Early Diagnosis

Inspired by curriculum learning proposed by Bengio et al. [142], a sequential transfer learn-

ing strategy was employed to train the model in three phases on gradually more specific and

complex tasks, mimicking the human learning process. As illustrated in Fig. 4.2, instead
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of presenting the model with a random mixture of CXR examples and directly training it

to diagnose COVID-19, the curriculum was designed to fine-tune the model in a cascade

approach in three phases: 1) First, the model was pretrained on natural images in ImageNet

and fine-tuned on the National Institutes of Health (NIH) ChestX-ray14 dataset to diagnose

a broad spectrum of 14 pathologies [34, 139]. 2) Then, the model was refined on the Radi-

ological Society of North America (RSNA) Pneumonia Detection Challenge dataset, which

has a high pneumonia prevalence, to detect opacities caused by pneumonia [140]. 3) Finally,

the model was fine-tuned further on the training set of the COVID-19 dataset. The final

model was then evaluated on the held-out independent test set to distinguish between CXRs

of COVID-19 positive and COVID-19 negative patients. The DenseNet-121 architecture was

chosen for the task because of its advantages mentioned in Section 1.4.2 and its success in

diagnosing various diseases on CXR in previous publications [143, 144].

Figure 4.2: The sequential transfer learning curriculum for the diagnosis of COVID-19, and
information on the dataset for each phase of training [19].

The phase 1 test set was specified by the original database curators of NIH ChestX-ray14,

and the rest of the dataset was randomly divided at the patient level into approximately

80% for training and 20% for validation. The DenseNet-121 model was initialized with

weights optimized for ImageNet (Phase 0), and the final classification layer was replaced

with a 14-node fully connected layer with sigmoid activation. Images were downsampled
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by a factor of four to 256× 256 pixels, gray-scale normalized, and randomly augmented by

horizontal flipping, shifting by up to 10% of the image size, and rotation of up to 8 degrees.

The model was trained with a batch size of 64, weighted cross-entropy loss function, and

Adam optimizer with an initial learning rate of 0.001. Step decay on learning rate and early

stopping were employed. The misclassification penalty for cases in a class was assigned to

be inversely proportional to its class prevalence to address the problem of class imbalance.

The phase 2 test set containing 1000 images was specified by the database curators of

the RSNA Pneumonia Detection Challenge dataset, and the rest was split randomly at

the patient level into 80% for training and 20% for validation, holding the class prevalence

constant in the subsets. The DenseNet-121 model was initialized with the weights from

phase 1, and the final classification layer was replaced with a one-node fully connected layer

with sigmoid activation to differentiate whether CXR images contain evidence of pneumonia.

Methods for image preprocessing and model training followed that in phase 1, except the

initial learning rate was reduced to 0.0001.

In phase 3, as illustrated in Fig. 4.3, a U-Net-based model was used to segment the lung

region on all images in our dataset in this phase in order to reduce the influence on the

classification model from irrelevant regions in the images. Compared to the original U-Net

proposed by Ronneberger et al., the architecture used in this study was augmented with

inception blocks and residual blocks, as detailed in Clark et al. [11, 98]. We used the weights

that had been pretrained on a pre-pandemic public CXR dataset for lung segmentation and

fine-tuned on an external CXR dataset that included COVID-19 patients [135, 145, 146].

Open and close operations were performed in the post-processing steps to fill holes and

reduce noise in the predicted masks. Then the smallest rectangular region that was able to

enclose the predicted lung mask was cropped from each image. The masks were predicted

using standard CXR images, and their corresponding soft-tissue CXR images were cropped

using the same masks. The cropped images were resized to 256× 256 pixels.
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Figure 4.3: Illustration of Phase 3 in the sequential training process, fine-tuning the model
on the pandemic-era CXR dataset to distinguish between COVID-19 positive and negative
patients. The model architectures shown are for illustration purposes and are not the precise
or complete architectures of the modified U-Net and the DenseNet models.

Image preprocessing other than the cropping step and model training followed the meth-

ods in phase 2, and the model was initialized with the weights from phase 2. The fine-tuning

and evaluation in this phase were performed on the full standard CXR images, the cropped

standard CXR images, and the cropped soft-tissue images in the dataset. The combined

use of cropped standard and soft-tissue images was then investigated in a feature fusion

manner as described in Section 2.3.1, which had demonstrated superior ability for leveraging

multiparametric images [13, 15]. Specifically, the standard and soft-tissue images were input

to two DenseNet-121 models trained with shared weights, whose activation maps prior to

the final fully connected layer were concatenated, forming the ensemble of features extracted

from the two types of input for classification. Training of the parallel models was split across

four GPUs memory allocation.
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4.3.2 Prognosis

The image processing and classifier training process for the prognosis task also followed the

learning curriculum described in Section 4.3.1. The last phase of fine-tuning was adjusted

for the task, making four independent predictions for the probabilities that a patient will

need intensive care within the next 24, 48, 72, and 96 hours from the time of the CXR exam.

The last layer in the model was changed to a four-node fully connected layer with sigmoid

activation. Since the soft-tissue images in this database did not show significant additional

benefit in previous studies, only standard CXR images were used.

4.3.3 Evaluation and Statistical Analysis

In each phase, the classification performance for each task and each label was evaluated

using receiver operating characteristic (ROC) curve analysis with the area under the ROC

curve (AUC) as the figure of merit. The 95% confidence intervals (CIs) of the nonpara-

metric Wilcoxon–Mann–Whitney AUCs were calculated by bootstrapping (2000 bootstrap

samples) [119]. The proper binormal model was used to plot the ROC curves [118]. All

reported classification performance metrics pertain to the held-out independent test set in

each phase (N = 25596 for phase 1, N = 1000 for phase 2, N = 1972 patients for phase 3

for diagnosis, and N = 1178 for prognosis). Multiple methods for diagnosis on the in-house

COVID-19 dataset in phase 3 were compared in terms of AUC using the DeLong test and

equivalence test [120, 123]. Bonferroni-Holm corrections were used to account for multiple

comparisons [122]. A corrected P < 0.05 was considered to indicate a statistically significant

difference in performance, and an equivalence margin of ∆AUC = 0.05 was chosen prima fa-

cie. Additional evaluation metrics, including sensitivity, specificity, positive predictive value

(PPV), negative predictive value (NPV), and F1 score, were calculated and reported at four

sensitivity levels for the different methods in phase 3. Bland-Altman analysis was used as an

adjunct method to compare the estimated COVID-19 probabilities for individual patients for
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the different classification approaches. Gradient-weighted class activation mapping (Grad-

CAM) was generated to provide a visual explanation of the model’s classification [129]. The

test set evaluation was also performed on the DES exam subset and the portable exam subset

separately for the early diagnosis task.

4.4 Further Investigations: Classification and Visualization using

Multiple Instance Learning

Using attention-based deep multiple instance learning (MIL) for classification and visualiza-

tion in the task of COVID-19 diagnosis on CXR was investigated. Each CXR image, after

U-Net segmentation and cropping described in Section 4.3.1, was divided into 32× 32 over-

lapping patches, with a step size of 16 pixels. The theory of the attention-based deep MIL

is introduced in Section 1.4.3. In this application, each patch is considered an instance, and

each CXR image is considered a bag. Bag-level labels, i.e., COVID-19 status of the patient at

the time of CXR acquisition, were available, while instance-level labels, i.e., whether a patch

of CXR image contained abnormalities related to COVID-19, were not available. The MIL

model produced bag-level predictions, and the attention scores were extracted to generate

heatmaps that visualized how much each patch contributed to the classification prediction.

Experiments were performed on model architectures, loading pretrained weights, and the

portion of the architecture to freeze or retrain on the patches. The attention heatmap was

shown in three formats, first with the attention scores multiplied with patches, second with

the attention scores converted to smooth heatmaps displayed in color, and third with bound-

ing boxes drawn of patches with highest attention scores overlaid on the CXR images. The

evaluation of the classification performance followed Section 4.3.3.
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4.5 Results

4.5.1 Early Diagnosis

The ROC curves for the classification tasks in the first two phases are shown in Fig. 4.4.

Phase 1 and phase 2 yielded AUC values similar to recent publications on the same tasks

using these datasets [143, 144, 147].

(a) (b)

Figure 4.4: Fitted proper binormal ROC curves for classification tasks in the first two phases
of training [19]. The legend gives the AUC with 95% CI for each classification task.

In phase 3, when full standard CXR images were used as input, the model achieved an

AUC of 0.74 (95% CI: 0.70, 0.77), which was significantly lower than an AUC of 0.76 (95%

CI: 0.73, 0.79) obtained when cropped standard CXR images were used, as shown in Table

4.4. Figure 4.5 shows examples of Grad-CAM heatmaps demonstrating that when full images

were used as input, areas outside the patient body (e.g., the text label on the image in Fig.

4.5a) and areas outside the lungs (e.g., abdominal region and chest walls in Fig. 4.5a and

shoulder and neck region in both Fig. 4.5a and Fig. 4.5b) contributed to the classification

model’s prediction. In contrast, influence from these irrelevant regions was eliminated or
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reduced by using cropped images. Due to the superior classification performance and the

reduced influence from areas outside the lungs, cropped images were used in our subsequent

analysis.

Table 4.4: AUC values for using full and cropped standard CXR, and the p-value and 95%
CI of the difference in AUC values. Asterisks denote statistical significance.

Full standard CXR Cropped standard CXR

AUC [95% CI] 0.74 [0.70, 0.77] 0.76 [0.73, 0.79]
p-value 0.04∗

95% CI for ∆AUC [0.001, 0.049]

(a)

(b)

Figure 4.5: Example standard chest radiographs (CXR) and their Grad-CAM heatmaps
overlays of (a) a COVID-19 positive case and (b) a COVID-19 negative case. The model
prediction scores (PCOVID-19) are noted. Both examples show influence on model predictions
from irrelevant areas outside the lungs when the full images were used, which was reduced
when the cropped images derived from automatic lung segmentation were used.

For the three classification schemes, using cropped images for standard CXR, soft-tissue

CXR, and the fusion of both, yielded AUC values on the held-out test set of 0.76 (95% CI:

0.73, 0.79), 0.73 (95% CI: 0.70, 0.76), and 0.78 (95% CI: 0.74, 0.81), respectively. The ROC
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curves and comparison results are presented in Fig. 4.6 and Table 4.5. Using soft-tissue CXR

yielded a significantly lower AUC value than using standard CXR and using the fusion of

both types of CXR. Using the fusion of both types of CXR appeared to achieve a higher AUC

value than when using standard CXR alone, but this improvement failed to reach statistical

significance, and the performance was statistically equivalent to using standard CXR alone

with an equivalence margin of ∆AUC = 0.05.

Figure 4.6: Fitted proper binormal ROC curves for the COVID-19 classification task for
the held-out test set in the third phase when using cropped standard CXR and/or cropped
soft-tissue CXR images.

The desired operating range is in the high sensitivity regime for diagnosing COVID-19 on

CXR exams, not only due to the harm of having a false-negative diagnosis for COVID-19, but

also because the RT-PCR test has moderate sensitivity and CXR exams are recommended

for identifying COVID-19 positive patients who had a false-negative RT-PCR test. Table

4.6 presents the additional evaluation metrics on the held-out test set, including sensitivity,

specificity, PPV, NPV, and F1 score at two sensitivity levels, 0.90 and 0.95, for the three
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Table 4.5: Comparisons of classification performances using the DeLong test when stan-
dard CXR images, soft-tissue images, or fusion of both were used. The p-value and CIs of
the difference in AUCs are presented for each comparison. The significance levels (α) and
the widths of the confidence intervals are adjusted based on Bonferroni-Holm corrections.
Asterisks denote statistical significance after correcting for multiple comparisons.

Comparison p-value for ∆AUC α CI of ∆AUC

Standard vs soft-tissue 0.01∗ 0.017 98.3% CI: [-0.061, -0.001]
Standard vs Fusion 0.18 0.050 95% CI: [-0.008, 0.041]
soft-tissue vs Fusion 0.02∗ 0.025 97.5% CI: [0.001, 0.058]

methods in phase 3.

Table 4.6: Additional evaluation metrics for the COVID-19 classification task for the held-
out test set in the third phase when using cropped standard CXR and/or cropped soft-tissue
CXR images. The metrics are calculated at two sensitivity levels. The 95% CIs are shown
in brackets.

Sensitivity Input Specificity PPV NPV F1 score

0.95
Standard 0.15 [0.10, 0.26] 0.17 [0.16, 0.19] 0.95 [0.92, 0.97] 0.29 [0.28, 0.32]
soft-tissue 0.11 [0.07, 0.20] 0.16 [0.16, 0.18] 0.92 [0.89, 0.96] 0.28 [0.27, 0.30]
Fusion 0.18 [0.14, 0.29] 0.17 [0.17, 0.20] 0.95 [0.94, 0.97] 0.30 [0.29, 0.32]

0.90
Standard 0.30 [0.22, 0.39] 0.19 [0.17, 0.21] 0.94 [0.92, 0.95] 0.31 [0.29, 0.34]
soft-tissue 0.23 [0.16, 0.33] 0.18 [0.16, 0.20] 0.93 [0.90, 0.95] 0.30 [0.28, 0.32]
Fusion 0.34 [0.25, 0.43] 0.20 [0.18, 0.22] 0.95 [0.93, 0.96] 0.33 [0.30, 0.36]

Figure 4.7 shows the standard and soft-tissue CXR images in four example cases and their

Grad-CAM heatmaps from the penultimate layer of their respective models. These examples

were selected to illustrate the differences in model prediction and/or heatmaps that arose

when the two types of CXR images were used. In both the positive case (Fig. 4.7a) and the

negative case (Fig. 4.7b), using standard CXR images resulted in more accurate predictions,

possibly due to undesirable alterations to the anatomy presentation when the soft-tissue

images were generated by post-processing algorithms and/or the fact that the datasets used

for pretraining do not contain soft-tissue images. On the other hand, the examples in Fig.

4.7c and Fig. 4.7d both show activations in the shoulder region when standard CXR images
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were used, whereas in the soft-tissue images the bones were removed and hence did not

contribute to the model prediction. In both cases, the soft-tissue model yielded accurate

predictions with reasonable activation areas shown in the heatmaps. The influence from

the shoulder bones led to a false-positive prediction in the negative case in Fig. 4.7d when

standard CXR was used but did not greatly affect the prediction score in the positive case

in Fig. 4.7c.

The Bland-Altman plot in Fig. 4.8a has a notable amount of points scattered outside of

the ±1.96SD lines, showing discrepancies between the model predictions based on standard

and soft-tissue CXR images. It also shows that predictions, especially for COVID-19 positive

cases, spanned a wide range. The patient visit status of COVID-19 positive patients is

indicated by different colors. While COVID-19 early diagnosis on CXR scans is challenging

in all categories, outpatient cases appear to be more challenging than other categories in

our data. This observation is confirmed by Fig. 4.8b, the ROC curves for COVID-19

classification using both standard and soft-tissue CXR combined by feature fusion, presented

by patient visit status. The outpatient category yielded the lowest AUC value, and the

inpatient category yielded the highest AUC value.

Since both portable exams and DES exams, which generated the soft-tissue images in

fundamentally different ways, were included in this study, separate test set evaluation on

the portable exam subset and the DES exam subset was performed and is presented in

Table 4.7. AUC values were higher for the DES subset than the portable subset when using

standard images or the fusion of standard and soft-tissue images, potentially attributed to

the higher image quality in DES exams than portable or differences in the patient groups

that received these two types of exams. However, AUC values were slightly lower for the

DES subset than the portable subset when using just soft-tissue images, potentially because

the model was trained mostly on synthetic soft-tissue images as the majority of the dataset

was portable exams and thus performed better on this type of images. To study the utility
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(a) (b)

(c) (d)

Figure 4.7: Standard and soft-tissue chest radiographs (CXR) of four example cases (post
cropping) and their Grad-CAM heatmap overlays. The model prediction scores (PCOVID-19)
are noted. In all four cases, model predictions and/or heatmaps show differences when the
two types of CXR images are used.
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(a) (b)

Figure 4.8: (a) Bland-Altman plot for the model predictions based on standard and soft-
tissue CXR images. The patient visit status of COVID-19 positive patients are indicated by
different colors. (b) ROC curves for COVID-19 classification using both standard and soft-
tissue CXR combined by feature fusion, presented by patient visit status. ICU = intensive
care unit, ED = emergency department.

and the contribution of soft-tissue images in these two types of CXR exams in COVID-

19-related image interpretation, separate analyses and controlled experiments are needed in

future work.

Table 4.7: COVID-19 classification performance by CXR exam type (portable or dual-energy
subtraction [DES] exam). The 95% CIs are shown in brackets.

Portable (80%) DES (20%) Overall

COVID-19 prevalence 16% 12% 15%

AUC
Standard 0.74 [0.70, 0.78] 0.86 [0.80, 0.91] 0.76 [0.73, 0.79]
soft-tissue 0.73 [0.62, 0.80] 0.71 [0.70, 0.77] 0.73 [0.70, 0.76]
Fusion 0.77 [0.73, 0.80] 0.83 [0.77, 0.89] 0.78 [0.74, 0.81]

4.5.2 Prognosis

The ROC curves for predicting COVID-19 patients’ potential need for intensive care in 24,

48, 72, and 96 hours are shown in Fig. 4.9. The highest AUC [95% CI] of 0.77 [0.70, 0.84] was
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achieved when predicting 24 hours in advance. Promising performances were also achieved

when using earlier CXR for predictions: 0.73 [0.66, 0.80], 0.74 [0.67, 0.80], and 0.74 [0.67,

0.80] when predicting 48, 72, and 96 hours in advance, respectively.

Figure 4.9: Fitted binormal ROC curves for classification tasks requiring intensive care or
not within 24–96 hours from image acquisition. The legend gives the AUC with 95% CI for
each task.

Figure 4.10 shows two examples, each with the original CXR image and the Grad-CAM

heatmaps from the last batch normalization layer of the model overlaid on the CXR image.

The patient shown in Fig. 4.10a was COVID-19 positive and was admitted to the ICU within

24 hours following the image shown here. The patient shown in Fig. 4.10b was COVID-19

negative and did not receive intensive care after the image shown here. The predictions

for the four labels in both of these cases were accurate, and abnormalities in the lungs are

highlighted by the Grad-CAM heatmaps.
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(a)

(b)

Figure 4.10: Two examples of portable chest radiography images overlaid with their Grad-
CAM heatmaps for intensive care need prediction within 24, 48, 72, and 96 hours, respec-
tively. The patient in the top example was admitted into ICU 4 hours after the image was
acquired. The patient in the bottom example has not been hospitalized since the image was
obtained.

4.5.3 Classification and Visualization using Multiple Instance Learning

The attention-based deep MIL was not able to yield high classification performance in the

task of COVID-19 classification on initial CXR exams. The best performance was achieved

when the DenseNet-121 model was used as the backbone CNN and the trained weights on

cropped CXR images (as opposed to patches) from Section 4.5.1 were loaded and frozen;

that is, only the MIL attention pooling mechanism and the final classification layers were

updated during training. Training or fine-tuning a larger portion of the model did not

improve the classification performance. A moderate AUC [95% CI] of 0.65 [0.62, 0.68] was

achieved under this training scheme. A representative example of visualization heatmaps

in three formats generated from the extracted attention scores is shown in Fig. 4.11. The

classification prediction in this example was not accurate, and the highlighted locations,
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while mostly within the lung region, only partially corresponded to abnormalities. Among

all heatmaps generated on the test set, false-positive activations, i.e., highlighted areas that

are not abnormalities related to COVID-19, included air space, clavicles, ribs, and medical

devices.

(a) (b) (c)

Figure 4.11: Example heatmaps created by attention-based deep multiple instance learning
algorithm in the task of COVID-19 classification on initial CXR exam.

4.6 Discussion and Conclusions

In summary, a large CXR database has been curated during the COVID-19 pandemic, and

a sequential transfer learning curriculum was designed to pretrain and fine-tune a model

on increasingly specific and complex tasks with the final goal of distinguishing COVID-19

positive and negative patients using their initial CXR exam within two days of their ini-

tial RT-PCR test for COVID-19 and predicting whether a COVID-19 positive patient will

potentially need intensive care in the next one to four days [19]. Automatic lung segmen-

tation and cropping were incorporated in the classification pipeline to reduce the influence

of irrelevant regions of the images on model predictions. The role of soft-tissue images in

CXR exams was investigated in addition to the standard CXR images. An AUC [95% CI] of

0.78 [0.74, 0.81] was achieved using both types of CXR images combined via feature fusion
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for diagnosing COVID-19 on CXR at patient presentation, which was equivalent to the per-

formance obtained when using the standard CXR alone. In the task of predicting whether

COVID-19-positive patients would require intensive care based on CXR images, an AUC

[95% CI] of 0.77 [0.70, 0.84] was achieved when predicting 24 hours in advance, and at least

0.73 [0.66, 0.80] when using earlier CXR for predictions.

Besides using feature fusion with shared weights for the combined use of the two types of

CXR images (described in Section 4.3.1), two alternative fusion methods were explored, and

they achieved similar results as the feature fusion method. Averaging the prediction scores

given by the standard CXR model and the soft-tissue CXR model for each case yielded an

AUC of 0.76 (95% CI: 0.73, 0.79). Feature fusion without weight sharing between the two

parallel models achieved an AUC of 0.77 (95% CI: 0.73, 0.80) and was more computationally

expensive with twice as many parameters in the models as when weight sharing was employed.

It is worth noting that all patients in our dataset had medical indications for receiving

a CXR exam, such as being symptomatic for possible COVID-19, receiving medical care

related to pneumonia of unknown or known origin, or undergoing diagnosis or treatment for

other diseases. As such, our dataset does not represent the entire population that under-

goes RT-PCR testing for COVID-19. Also, some COVID-19 positive patients might have

received intensive care due to other diseases they had, which was not always indicated in the

clinical information available. These limitations increased the difficulty of our task. Many

patients in our dataset indeed presented with non-COVID lung abnormalities, which made

the distinction between COVID and non-COVID patients more challenging and added con-

founding factors to the intensive care prediction for COVID-19 patients than if most of the

non-COVID patients had been healthy and had presented with no abnormal lung findings.

Another important note is that the pre-pandemic public databases used for pretraining

in this study only contain standard CXR images, which might partly contribute to the

inferior performance of soft-tissue images in the COVID-19 classification stage. When the
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first and second pretraining phases are removed, standard images, soft-tissue images, and

the fusion of both yielded similar AUC values in COVID-19 classification (0.73 [0.69, 0.67],

0.72 [0.69, 0.75], and 0.72 [0.68, 0.75]). The results show that pretraining stages led to

larger improvements in AUC for standard images than soft-tissue images and significantly

improved the fusion model’s performance (P < .001).

While MIL did not demonstrate improvement in the classification of COVID-19 status

or visualization of COVID-19 abnormalities on early CXR images, the technique may be

useful in future studies for CXR image analysis on a different task. The task of recognizing

evidence of COVID-19 on patients’ initial CXR was very challenging, as some COVID-19

positive patients could have had no abnormalities presented in the lungs at the time of their

initial CXR exams. The local patch-level analysis performed by MIL can also be combined

with the global analysis of full CXR images in a multi-scale algorithm that can potentially

enrich the features learned and improve the classification performance. The observations

in this study showed MIL’s potential utility for improved localization without pixel-level

annotations by experts, as well as higher explainability and interpretability of deep-learning-

based CAD methods.

There are several other limitations of this study. Firstly, the database was collected

from a single institution. Medical centers including ours have been contributing to a multi-

institutional databases, and independent evaluations should be perform when such datasets

become available in the future to assess the robustness of the approach developed in this

research. Such high-quality publicly available databases will also allow the research com-

munity to establish reference standards and compare performances. Secondly, training was

performed on a combination of both DES CXR exams and portable CXR exams in our

database. The soft-tissue image in a DES exam is obtained from two physically acquired im-

ages, while the synthetic soft-tissue image in a portable exam is generated from the standard

image using post-processing algorithms. Previous work has shown reduced clinical utility of
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synthetic soft-tissue images relative to DES soft-tissue images [148]. Preliminary findings

reported in Section 4.5.1 did show notable differences in the model performance on these

two subsets. Future work will evaluate the difference in utility and contribution of each type

of soft-tissue image when using deep-learning-based methods in tasks such as COVID-19

detection, classification, and prognosis. Thirdly, a single CXR exam at patient presentation

was used to diagnose evidence of COVID-19 for each patient. Performing temporal anal-

ysis to utilize previous CXR exams of suspected patients, instead of only using images at

a single time point, may improve the model performance. Finally, while the Grad-CAM

technique, which we used to visualize and explain model predictions, is one of the commonly

used explainability techniques for convolutional neural networks, the created heatmaps are

not intended for precise localization tasks, especially in the medical imaging domain. Future

studies will investigate methods to more precisely localize COVID-19 presentations on CXR

images.
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CHAPTER 5

SUMMARY AND FUTURE DIRECTIONS

This dissertation contributes to the advancement of AI-assisted medical image analysis in

the context of breast cancer computer-aided diagnosis (CADx) based on multiparametric

MRI (mpMRI) and COVID-19 early diagnosis and prognosis based on chest radiography

(CXR). Methods to utilize and integrate information from multiple sequences in mpMRI

were investigated for both human-engineered radiomic features and deep learning methods

to improve the classification performance in the task of distinguishing benign and malignant

breast lesions. Furthermore, deep learning methods that could efficiently and effectively

leverage high-dimensional information in mpMRI were investigated, further advancing the

capability of differential diagnosis for breast lesions on mpMRI. With the onset and devel-

opment of the COVID-19 pandemic, this research also developed deep learning methods for

automated COVID-19 diagnosis at patient presentation and for predicting patients’ need for

intensive care using CXR exams.

Chapter 2 proposed and evaluated radiomics methods that could leverage the complemen-

tary information provided by the DCE, T2w, and DWI sequences in mpMRI and integrate

the multiple sequences to collectively improve performance over single-sequence radiomics

methods in the task of distinguishing between benign and malignant breast lesions. The

study was performed on both human-engineered radiomic features and features extracted

by pretrained CNN models. Three mpMRI fusion approaches were proposed and evaluated:

image fusion, i.e., fusing images from multiple MRI sequences into an RGB image to form

the input to the CNN (for CNN-based methods only); feature fusion, i.e., concatenating fea-

tures extracted from mpMRI sequences to form the classifier input; and classifier fusion, i.e.,

aggregating the probability of malignancy output scores from single-sequence classifiers via

soft voting. These fusion methods integrated information derived from mpMRI sequences at

three different levels in the image analysis process. When human-engineered features were
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used, the feature fusion and classifier fusion methods were equivalent, and both achieved

significantly higher classification performance than using any single sequence alone. When

CNN features were used, the feature fusion method significantly outperformed using the

DCE sequence alone, demonstrating superiority to the other fusion methods. These findings

can potentially improve the current breast cancer CADx systems based on DCE-MRI.

Chapter 3 investigated methods to effectively utilize the high-dimensional information

inherent in MRI exams when using deep transfer learning in the task of distinguishing be-

tween benign and malignant breast lesions. The feature MIP method, which globally max

pools the features extracted from a lesion volume along the lesion’s axial dimension within

a CNN, was proposed for incorporating volumetric information in MRI and demonstrated

superiority to the previously proposed image MIP method. For 4D sequences, namely DCE

and DWI, the RGB channels of CNNs pretrained on natural images were utilized to incorpo-

rate the images acquired at different time points in DCE and at different diffusion weighting

strengths in DWI. Applying the feature MIP method to three sequences in mpMRI and

the feature fusion method from Chapter 2 to combine information extracted from the se-

quences, the high-dimensional mpMRI classifier achieved high classification performance

that significantly outperformed using any single sequence alone. The method presented in

this chapter can potentially enhance the performance of current deep-learning-based CADx

systems for breast cancer differential diagnosis by addressing the problem of underutilizing

high-dimensional information in medical images while maintaining reasonable computing

intensity by using transfer learning.

Chapter 4 developed a deep learning model on a large CXR database curated during

the COVID-19 pandemic to diagnose COVID-19 at patient presentation and predict pa-

tients’ needs for intensive care. The model was sequentially pretrained and fine-tuned on

increasingly specific and complex tasks, following a learning curriculum, with the final goal

of COVID-19 diagnosis and prognosis. Automatic lung segmentation and cropping were in-
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corporated in the classification pipeline and were shown to reduce the influence of irrelevant

regions of the images on model predictions. The role of soft tissue images in CXR exams

was investigated in addition to the standard CXR images. The utility of multiple instance

learning was also examined for the classification of COVID-19 status and visualization.

Future research can expand upon this work and address the current limitations. The

limitations and suggested future work are summarized as follows. All studies in this work

were developed and evaluated on datasets from single institutions. Future work can expand

the database to include images from multiple medical centers and diverse populations and

evaluate the robustness and generalizability of the proposed methods across manufacturers,

image acquisition protocols, and patient populations. Besides independent validation and

generalizability evaluation, such multi-institutional datasets can also be used to investigate

harmonization methods for different acquisition parameters.

Limitations to the newly curated COVID-19 datasets and truth labels were identified

as we gained more understanding of this novel disease. The ground truth for COVID-19

positive or negative status was provided by single RT-PCR tests. It is known now that the

RT-PCR test has moderate sensitivity, and repeated testing is recommended. Therefore, the

ground truth can be revised in future work based on results from repeated RT-PCR tests

when they are available. Moreover, the prognosis study was not able to be performed on a

larger, more recently updated dataset because of ambiguity in the ground truth. To generate

high-quality ground truth, it was necessary to extract information from clinical files in order

to accurately estimate the time of intubation and ICU admission and to exclude patients

who tested positive for COVID-19 but were intubated or admitted into the ICU for reasons

not related to COVID-19. This process, however, was performed manually for each patient,

which was not feasible to scale to much larger datasets. In future work, an automated process

can be developed to extract relevant clinical information that helps generate ground truth

labels. In addition, the soft tissue images in the dataset were from either dual-energy CXR
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exams or portable CXR exams. The conclusion on the utility of soft tissue images may differ

between these two subsets, but this study was not able to draw such conclusions due to

confounding variables. Future work can continue to expand the dataset and investigate the

contribution of each type of soft tissue image separately in COVID-19 patient management.

Finally, while patients’ previous CXR exams up to a year prior to their first RT-PCR tests

were also curated in this database, predictions were based on single CXR exams in this work.

Performing temporal analysis to utilize patients’ previous CXR exams, instead of only using

images at a single time point, may improve the diagnostic and prognostic performance and

can be explored in the future.

There are a few limitations in the evaluation that can be addressed in future studies. First,

the operating points at which sensitivity and specificity are reported were based on certain

assumptions that may not align with the potential clinical scenario to which the algorithms

may be applied. Without sufficient knowledge about the specific clinical use case, the selected

optimal operating point may not be clinically optimal. A different threshold might be chosen,

for example, if the relative cost of false-positive and false-negative diagnoses were known.

Future studies can be conducted to evaluate the computational methods developed in this

dissertation in specific clinical use cases. Similarly, the choice of equivalence margin was

not a predetermined, clinically meaningful value either, since there are currently no widely

used standards for establishing the equivalence margin in diagnostic performance studies.

The methods can be evaluated with revised equivalence margins in the future when relevant

guidelines are available. Moreover, while this dissertation is focused on the computational

aspect of improving the standalone performance of diagnosis algorithms, reader studies can

be performed in the future to assess the clinical significance of the algorithms when used as

a secondary or concurrent reader for clinicians.

While this dissertation is focused on image analysis, many clinical tasks this research

aims to achieve also benefit from other forms of data, such as demographic information,
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vital signs, laboratory tests, symptoms, and electronic medical records. These data were

intentionally excluded from the development of image analysis algorithms in this research,

because they would have overshadowed the features that could be learned from images. For

example, if patient age was provided as an additional variable to the classifier, then age

may become the dominant feature that overwhelms the classifier’s decision boundary, and

little can be learned about the utility of various imaging features. Nonetheless, once image

analysis algorithms have been developed, they can be combined with other forms of data by

a multimodal algorithm to make comprehensive clinical assessments, a strategy that can be

pursued in future work.

This dissertation demonstrates the strong potential of AI-assisted medical image analysis,

which may enhance the accuracy and efficiency of radiologists’ image interpretation in the

future. Human-engineered and deep-learning-based radiomics can contribute to “virtual

digital biopsy,” allowing for the assessment of breast lesion malignancy when biopsies are

not practical or necessary. Deep learning methods also have the potential to assist in image

interpretation for COVID-19 diagnosis and preempt patient deterioration, helping healthcare

professionals understand this novel disease and navigate the pandemic. Overall, this work

demonstrates the capacity of AI applications in medical image analysis, which may ultimately

contribute to higher quality healthcare and universal access to radiology expertise.
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APPENDIX A

HUMAN-ENGINEERED RADIOMIC FEATURES FOR

MULTIPARAMETRIC MRI

Table A.1: Radiomic features extracted from dynamic contrast-enhanced (DCE) sequence
and their descriptions.

Category Full name (unit) Feature description

Geometry [25]

Volume (mm3) Volume of lesion

Effective diameter (mm) Greatest dimension of a sphere

with the same volume as the

lesion

Surface area (mm2) Lesion surface area

Maximum diameter (mm) Maximum distance between any

two voxels in the lesion

Sphericity Similarity of the lesion shape to

a sphere

Irregularity Deviation of the lesion surface

from the surface of a sphere

Surface area/volume (1/mm) Ratio of surface area to volume

Morphology [25]

Margin sharpness Mean of the image gradient at

the lesion margin

Variance of margin sharpness Variance of the image gradient

at the lesion margin
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Table A.1: DCE radiomic features (continued)

Variance of radial gradient his-

togram

Degree to which the enhance-

ment structure extends in a ra-

dial pattern originating from the

center of the lesion

Texture [28]

Contrast Location image variations

Correlation Image linearity

Difference entropy Randomness of the difference of

neighboring voxels’ gray-levels

Difference variance Variations of difference of gray-

level between voxel-pairs

Angular second moment (en-

ergy)

Image homogeneity

Entropy Randomness of the gray-levels

Inverse difference moment (ho-

mogeneity)

Image homogeneity

Information measure of correla-

tion 1

Nonlinear gray-level dependence

Information measure of correla-

tion 2

Nonlinear gray-level dependence

Maximum correlation coefficient Nonlinear gray-level dependence

Sum average Overall brightness

Sum entropy Randomness of the sum of gray-

level dependence

Sum variance Spread in the sum of the gray-

levels of neighboring voxels
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Table A.1: DCE radiomic features (continued)

Sum of squares (variance) Spread in the gray-level distribu-

tion

Kinetics [27]

Maximum enhancement Maximum contrast enhancement

Time to peak (s) Time at which the maximum

enhancement occurs

Uptake rate (1/s) Uptake speed of the contrast

enhancement

Washout rate (1/s) Washout speed of the contrast

enhancement

Curve shape index Difference between late and

early enhancement

Enhancement at first post-

contrast time point

Enhancement at first post-

contrast time point

Signal enhancement ratio Ratio of initial enhancement to

overall enhancement

Volume of most enhancing vox-

els (mm3)

Volume of the most enhancing

voxels

Total rate variation (1/s2) How rapidly the contrast will

enter and exit from the lesion

Normalized total rate variation

(1/s2)

How rapidly the contrast will

enter and exit from the lesion

Enhancement-

variance kinetics

[26]

Maximum enhancement-variance Maximum spatial variance of

contrast enhancement over time
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Table A.1: DCE radiomic features (continued)

Enhancement-variance time to

peak (s)

Time at which the maximum

variance occurs

Enhancement-variance increasing

rate (1/s)

Rate of increase of the

enhancement-variance during

uptake

Enhancement-variance decreas-

ing rate (1/s)

Rate of decrease of the

enhancement-variance during

washout

Gray-level

statistics [110]

Mean voxel value pre-contrast Average gray-level intensity

within the lesion prior to con-

trast injection

Mean voxel value post-contrast

injection

Average gray-level intensity

within the lesion at first post-

contrast injection time point

Standard deviation of voxel

value distribution pre-contrast

Variation in gray-level intensity

within the lesion prior to con-

trast injection

Standard deviation of voxel

value distribution post-contrast

Variation in gray-level intensity

within the lesion at first post-

contrast injection time point

Maximum voxel value pre-

contrast

Maximum gray-level intensity

within the lesion prior to con-

trast injection
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Table A.1: DCE radiomic features (continued)

Maximum voxel value post-

contrast

Maximum gray-level intensity

within the lesion at first post-

contrast injection time point

Minimum voxel value pre-

contrast

Minimum gray-level intensity

within the lesion prior to con-

trast injection

Minimum voxel value post-

contrast

Minimum gray-level intensity

within the lesion at first post-

contrast injection time point

Kurtosis of voxel value distribu-

tion pre-contrast

Tailedness of gray-level intensity

distribution within the lesion

prior to contrast injection

Kurtosis of voxel value distribu-

tion post-contrast

Tailedness of gray-level intensity

distribution within the lesion at

first post-contrast injection time

point

Skewness of voxel value distribu-

tion pre-contrast

Asymmetry of gray-level inten-

sity distribution about the mean

within the lesion prior to con-

trast injection

Skewness of voxel value distribu-

tion post-contrast

Asymmetry of gray-level inten-

sity distribution about the mean

within the lesion at first post-

contrast injection time point
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Table A.2: Radiomic features extracted from T2-weighted sequence and their descriptions.

Category Full name (unit) Feature description

Morphology

[25, 107]

Margin sharpness Mean of the image gradient at

the lesion margin

Variance of margin sharpness Variance of the image gradient

at the lesion margin

Variance of radial gradient his-

togram

Degree to which the enhance-

ment structure extends in a ra-

dial pattern originating from the

center of the lesion

Texture

[28, 107]

Contrast Location image variations

Correlation Image linearity

Difference entropy Randomness of the difference of

neighboring voxels’ gray-levels

Difference variance Variations of difference of gray-

level between voxel-pairs

Angular second moment (en-

ergy)

Image homogeneity

Entropy Randomness of the gray-levels

Inverse difference moment (ho-

mogeneity)

Image homogeneity

Information measure of correla-

tion 1

Nonlinear gray-level dependence

Information measure of correla-

tion 2

Nonlinear gray-level dependence
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Table A.2: T2-weighted radiomic features (continued)

Maximum correlation coefficient Nonlinear gray-level dependence

Sum average Overall brightness

Sum entropy Randomness of the sum of gray-

level dependence

Sum variance Spread in the sum of the gray-

levels of neighboring voxels

Sum of squares (variance) Spread in the gray-level distribu-

tion

Gray-level

statistics [107]

Mean voxel value Average gray-level intensity

within the lesion

Variance of voxel value Variation in gray-level intensity

within the lesion
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Table A.3: Radiomic features extracted from the apparent diffusion coefficient (ADC) map
derived from diffusion-weighted imaging (DWI) sequence and their descriptions.

Category Full name (unit) Feature description

ADC map

statistics [16]

Mean ADC Average ADC within the lesion

Standard deviation of ADC dis-

tribution

Variation in ADC within the

lesion

Maximum ADC Maximum ADC within the le-

sion

Minimum ADC Minimum ADC within the lesion

Range of ADC distribution Range of ADC distribution

within the lesion

Skewness of ADC distribution Asymmetry of ADC distribu-

tion about the mean within the

lesion
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APPENDIX B

COMPARATIVE RADIOMICS EVALUATION OF PAIRED

CONVENTIONAL DCE-MRI AND ABBREVIATED MRI FOR

BREAST CANCER DIAGNOSIS

B.1 Introduction

Breast MRI offers the highest cancer detection rate of all breast imaging modalities, and

screening with MRI has shown evidence to benefit women at high risk and average risk, as

introduced in Chapter 1.2.1. However, the use of conventional, full-protocol breast MRI to

screen the large number of average-risk women with dense breasts will be neither practical

nor cost-effective. Abbreviated breast MRI has been introduced to reduce the complexity

and cost of MRI by reducing image acquisition and interpretation time and hence improve

access to breast MRI [46]. Multiple studies have confirmed equivalent diagnostic accuracy of

abbreviated breast MRI with full MRI protocols [150]. The work presented in this chapter

compared the diagnostic performance of radiomics analysis on dynamic contrast-enhanced

(DCE)-MRI and abbreviated MRI in the task of distinguishing between benign and malig-

nant breast lesions.

B.2 Methods

A dataset consisting of 1188 unique breast lesions (271 benign and 917 malignant) from 877

women (age range 23-89) who had undergone conventional breast DCE-MR exams was retro-

spectively collected under HIPAA-compliant Institutional Review Board-approved protocols.

This dataset was from the same database as described in Section 2.2 but is larger since exams

were not required to contain T2-weighted or diffusion-weighted imaging sequences.

The methods for this comparative analysis are illustrated in Fig. B.1. Lesions were
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automatically segmented on the conventional DCE-MRI using a fuzzy C-means method,

and 50 radiomic features were extracted as described in Section 2.3.1 and A. To mimic

an abbreviated MRI sequence and provide paired comparisons, a “mock abbreviated MRI

database” was simulated by only considering the pre-contrast and first post-contrast time

points of the DCE-MRI. The lesion segmentation method initially developed for DCE-MRI

was applied on the mock abbreviated MRI, and 42 radiomics features were extracted from

the mock abbreviated MRI. Eight of the DCE-MRI kinetics-related features involve wash-out

and thus are not relevant for abbreviated MRI. A hybrid analysis of the DCE and abbreviated

MRI was performed by segmenting lesions from DCE-MRI and extracting the 42 abbreviated

radiomic features. The hybrid analysis was only for the purpose of comparative analysis

and did not correspond to a realistic scenario. The dataset was randomly split by patient

into 80%/20% training/test sets that had the same class prevalence. Three support vector

machine (SVM) classifiers were trained on the 50 features extracted from DCE-MRI, the 42

features extracted from mock abbreviated MRI, and the hybrid features, respectively.

Dice similarity coefficient was used to evaluate the agreement between segmentations

from DCE-MRI and abbreviated MRI [151]. Diagnostic performance in the task of classifying

lesions as malignant or benign was evaluated using receiver operating characteristic (ROC)

analysis, and the area under the ROC curve (AUC) served as the figure of merit [118].

Bonferroni-Holm corrections were used to account for multiple comparisons [122]. P < .05

was considered to indicate a statistically significant difference.

B.3 Results and Discussion

The Dice coefficient comparing the segmentation between DCE-MRI and abbreviated MRI

had a median and 95% CI of 0.86 [0.52, 0.96], with the distribution shown in Fig. B.2.

Figure B.3 include examples comparing segmentation results based on full DCE-MRI and

abbreviated MRI.
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Figure B.1: Flowchart for the comparative radiomic analysis of paired DCE-MRI and ab-
breviated MRI.
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Figure B.2: Distribution of Dice coefficient comparing segmentation on DCE-MRI and ab-
breviated MRI.

Classification of benign and malignant lesions using radiomic features extracted from

DCE-MRI, abbreviated MRI, and hybrid analysis yielded AUC values [95% CI] of 0.87

[0.85, 0.90], 0.84 [0.81, 0.86], and 0.86 [0.85, 0.89], respectively, as shown in Fig. B.4. The

statistical analysis comparing the abbreviated MRI classifier and the hybrid classifier is

presented in Table B.1. The abbreviated MRI classifier yielded a statistically significantly

lower AUC than the DCE-MRI classifier, but the hybrid classifier failed to demonstrate a

significant difference from the DCE classifier and yielded equivalent performance within a

margin of ∆AUC = 0.05.

Moderate disagreement between predictions based on radiomic features extracted from

DCE and abbreviated MRI is observed in the Bland-Altman plot in Fig. B.5. More benign

cases are in the lower half of the figure, and more benign cases are in the upper half of the

figure, showing that the classifier using features from DCE-MRI more accurately assigned

malignant cases with higher probabilities of malignancy (PMs) and benign cases with lower

PMs than the classifier using featured from abbreviated MRI.
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(a) (b) (c) (d)

Figure B.3: Examples of segmentation results based on DCE-MRI (yellow) and abbreviated
MRI (magenta).

Table B.1: AUC values for classifiers using radiomic features from DCE-MRI, abbreviated
MRI, and hybrid analysis, as well as the p-value and 95% CI of the difference in AUC values.
Asterisks denote statistical significance after multiple comparison corrections.

AUC [95% CI] Compared with DCE

DCE 0.87 [0.85, 0.90] —

Abbreviated 0.84 [0.81, 0.86] P < .001∗

95% CI ∆AUC = [0.021, 0.049]

Hybrid 0.86 [0.85, 0.89] P = .11
95% CI ∆AUC = [-0.002, 0.015]

Figure B.6 shows the difference in the two classifiers’ PMs in various Dice coefficient

ranges. In the low Dice coefficient range, the predictions based on radiomic features extracted

from DCE-MRI tended to be more accurate than those based on abbreviated MRI, i.e., lower

PMs for benign lesions and higher PMs for malignant lesions, and there tended to be larger

variations in the difference in PMs. This observation and the fact that the hybrid classifier

yielded equivalent classification performance as the DCE classifier suggest that the difference

in lesion segmentation quality likely contributed to the difference in downstream classification

performance between classifiers based on DCE-MRI and abbreviated MRI.

Future work will develop new segmentation methods for abbreviated MRI, aiming to im-

prove the segmentation quality. Then abbreviated MRI radiomics classification performance

will be evaluated using improved lesion segmentation. Validation on independent datasets
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Figure B.4: Fitted binormal receiver operating characteristic (ROC) curves for the classifi-
cation task breast lesions using DCE-MRI, abbreviated MRI, and the hybrid analysis. The
legend gives the area under the ROC curve (AUC) with the 95% confidence interval (CI) for
each classifier.

acquired using actual abbreviated MRI protocol can be performed as well.
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Figure B.5: Bland-Altman plot illustrating classifier agreement between the classifiers trained
on dynamic contrast-enhanced (DCE) features and abbreviated MRI features. PM = Prob-
ability of malignancy.
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Figure B.6: Difference in the two classifiers’ PMs in various Dice coefficient ranges.
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