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ABSTRACT

This thesis investigates the theoretical definition, econometric estimation, and empirical

realities of labor-market power. Its main chapter focuses on US manufacturing, finding that

manufacturing workers received $1.10 cents of each marginal unit of production in 1973 but

only 48 cents in 2014. I find that labor-market power is strongly correlated with adoption of

ICT and automation technology. My estimates imply that labor-market power is significantly

more important than markup power in US manufacturing. In the second chapter, I show that

when current production-based ”ratio estimators” of market power return values different

from 1, they imply either model misspecification or input frictions (such as labor market

power or labor adjustment costs). I argue that the latter interpretation is more plausible

in practice, and that researchers and policymakers should largely reinterpret existing work

using these estimators as measuring input frictions. Finally, in the third chapter I propose

an estimation method that produces unbiased and consistent estimates of labor-market and

markup power by flexibly modeling markups as a specified function of observables and fixed

effects. My modified two-step estimator is simple in concept and implementation, requiring

less onerous assumptions than popular proxy production estimators.

In sum, this thesis argues that labor-market power is an important feature of the US labor

market, and provides theoretical support and estimation techniques to study it further.
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Chapter 1

RISING LABOR MARKET POWER AND CHANGING

TECHNOLOGY IN US MANUFACTURING

1.1 Introduction

Understanding the size and origins of market power is among the most critical tasks of

economics. As Adam Smith put it, “people of the same trade seldom meet together, even

for merriment and diversion, but the conversation ends in a conspiracy against the public, or

in some contrivance to raise prices.” In modern terms, market power leads to inefficiencies

and misallocation. The specific nature of these distortions depends on the source of market

power. In the output market, markup power increases prices and reduces output. In the

labor market, labor-market power (or markdown power1) reduces wages and employment. In

the past 20 years, real wages in the US have stagnated as productivity has grown. Inflation

has remained low despite steady growth and low unemployment rates. At the same time,

the labor share of income in the US fell from 64 percent in the mid-1980s to 58 percent

today (Karabarbounis and Neiman (2013)). In manufacturing, the labor share declined

from 62 percent in 1967 to 41 percent in 2012 (Kehrig and Vincent (2021)). These trends

suggest that monopsony power may be significant in US labor markets: if the structure of

labor markets has changed so that firms do not pass productivity gains onto workers in the

form of higher wages, the link between unemployment, output growth, and inflation may be

weakened.

How important is this mechanism? How much has labor-market power increased from 1972-

2014? What are the sources and implications of this increase? These are the questions we

seek to answer in this paper. We focus on US manufacturing sector for two reasons: first,

1. Also called monopsony power after Robinson (1933).
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outputs and inputs are more readily measurable in manufacturing, and we have access to

a near-universal dataset of US manufacturing plants. Second, increasing automation and

changing technology has particularly affected the manufacturing sector (as evidenced by

the larger decline in the manufacturing labor share). To estimate labor-market wedges, we

extend methods in production-function estimation to overcome identification challenges that

made studying market power in input markets difficult. Our method allows us to identify

market power wedges - ratios of marginal benefit to marginal cost - for both output and

labor inputs. We apply our method to manufacturing microdata from the US Census to

recover labor-market wedges at the establishment-year level.

We find that labor-market power in manufacturing is high and has risen since the mid-

1970s: the average manufacturing production worker was paid 110% of their marginal revenue

product in 1973 but only 48% in 2014. By contrast, white-collar managers have always been

paid their marginal revenue products2. To make our definition of labor-market power more

precise, we define a ‘labor-market wedge’ as the ratio of the marginal revenue product of

labor to the wage
(
MRPL
W

)
- analagous to the markup wedge

(
P
MC

)
. We find that the

aggregate manufacturing labor-market wedge was approximately unity (implying no labor-

market power) from 1973 to 1990. Then the wedge rose rapidly, with inflection points in

1992 and 2000. Overall, our estimated labor-market wedge rose from 0.9 in 1973 to 2.1 in

2014.

Moreover, we find that changing technology is an important source of labor-market power.

In particular, automation and information-technology (ICT) adoption increases the labor-

market wedge at the plant level. Higher labor-market wedges are also associated with more

managerial employees and a deeper capital stock. By contrast, deunionization is uncorrelated

with levels of or changes in labor-market wedges. At the plant level, we find that labor-

market power reduces employment more than wages. Labor-market wedges are also strongly

2. Here ‘managers’ are those defined by the Census Bureau as ‘nonproduction workers.’
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negatively correlated with establishment-level labor shares: rising labor-market power can

account for about two-thirds of the decline in the manufacturing labor share in the US.

This paper links literature on automation and technological change with the macroeconomic

market-power literature. Autor and Dorn (2013) find that technological change polarizes

labor markets by reducing the demand for intermediate-skilled, routine jobs. Acemoglu and

Restrepo (2020) show that robot penetration reduces wages and employment in local labor

markets, while Acemoglu and Restrepo (2021) find that automation technology displaces

routine workers. Meanwhile, a body of literature at the intersection of industrial organiza-

tion and macroeconomics focuses on the evolution of markups in the US economy. Broadly

speaking, this literature argues markups are rising and driving down labor’s share of income

as firms with monopolistic power decrease output, increase prices, and reduce wages (Barkai

(2020), De Loecker et al. (2020), and Hall (2018)). Other work calibrates macroeconomic

models to these estimates to explore their welfare implications (Edmond et al. (2021), Eg-

gertsson et al. (2018), and Aghion et al. (2020)). Autor et al. (2020) emphasizes the role

of right-productivity-tail ‘superstar’ firms in driving technological change, suggesting that

higher markups are a reward for innovation. This paper instead emphasizes that automation

and technological change alter the structure of labor markets, reducing workers’ bargaining

power even if they are not employed in routine tasks. We connect the automation and

market-power literatures by focusing on the impact of technology on monopsony wedges,

and by finding direct evidence of the connection between markdowns and technology-driven

automation.

We find that the markdown wedge is significantly larger than the markup wedge, and has

grown much faster. Inspired by the decline of the labor share (Elsby et al. (2013) and

Karabarbounis and Neiman (2013); Kehrig and Vincent (2021) documents the underlying

establishment-level evolution) and by rising concentration3 (Barkai (2020) and Autor et

3. Concentration within industries has also risen in recent decades: the sales share of the largest four firms
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al. (2020)), and falling firm and labor dynamism (Decker et al. (2016)), the market-power

literature has focused on the markup (output-market) wedge (De Loecker et al. (2020) and

Hall (2018)). But as Syverson (2019) argues, markups are prices over costs (µ = P
MC ), so

growth in markups is approximately inflation less cost growth. Inflation has been unusu-

ally low and cost growth has been steady, suggesting low markup growth4. By contrast,

labor-market power is labor productivity over wages
(
MRPL
W

)
, so growth in labor-market

power is approximately labor productivity growth less wage growth. Labor productivity

growth has been steady while wage growth has been stagnant. These back-of-the-envelope

approximations imply that rising labor-market power may be a better candidate to explain

the decline of the labor share. Rather than raising profits by increasing output prices, per-

haps firms pay workers less than their marginal value due to inelastic residual labor-supply

curves5. Indeed, we find that in labor-market wedges are more important than markups in

an aggregate ‘composite wedge’ (markups × labor-market wedges).

We also contribute to the literature on monopsony power (Lamadon et al. (2020), Berger

et al. (2019), Azar et al. (2020), and Benmelech et al. (2018); see Card et al. (2018) for

an overview). We identify and structural estimate labor-market wedges using production

microdata, providing an alternative method to the concentration proxies and natural ex-

periments in the monopsony literature. Concentration is positively correlated with market

power in Cournot oligopoly, but is negatively correlated or uncorrelated with market power

in other conduct models; indeed, we offer evidence that concentration is uncorrelated with

monopsony power on average. Our novel estimation methodology takes into account the

identification challenges of mainstream prior approaches, thereby improving on Morlacco

in an average industry increased from 26 percent in 1997 to 33 percent in 2012. Rossi-Hansberg et al. (2021)
and Rinz (2018) show that concentration actually falls in local markets, suggesting that the rise in aggregate
concentration is driven by the increasing expansion of national firms.

4. See Traina (2018), Edmond et al. (2021), and Karabarbounis and Neiman (2019), and Flynn et al. (2019)
for evidence against rising markups.

5. Arising from local labor-market imperfections, search frictions, or other labor-market rigidities.
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(2020) and Hershbein et al. (n.d.). We estimate static market-power wedges, putting our

paper in the ‘new classical’ tradition of Manning (2021).

Finally, our paper contributes to the econometric methods literature on measuring market

power. Dobbelaere and Mairesse (2013) and De Loecker et al. (2020) use insights from

Hall (1988) to show how researchers can use cost minimization conditions with estimated

input elasticities to recover market power wedges. However, Gandhi et al. (2020) shows

that the production estimators of Olley and Pakes (1996), Levinsohn and Petrin (2003), and

Wooldridge (2009), and Ackerberg et al. (2015) do not identify the flexible input elasticities

that are necessary to estimate market power. In the context of imperfect competition,

Flynn et al. (2019) shows that ignoring the identification problem typically results in higher

market power estimates in both level and dispersion. Moreover, Bond et al. (2020) show

that using revenue data to estimate output elasticities results in inconsistent estimates of

market-power wedges: in particular, it implies that markups should be unity in the absence

of specification error. We overcome the revenue-estimation concerns of Bond et al. (2020)

and the nonidentification challenges of Gandhi et al. (2020) by proposing a new estimation

technique which combines a parametric materials demand function with a proxy production

structure. Our method is consistent in the presence of revenue data. It allows for estimation

of an arbitrary number of flexible input elasticities, and consequently an arbitrary number

of market power wedges. By separating production and nonproduction workers, we address

the critique in Bond et al. (2020) that some employees may impact demand.

The paper proceeds as follows. Section 1.2 outlines our theoretical framework for identifying

labor-market power in production data. Section 1.3 explains our estimation methodology.

Section 1.4 outlines our Census manufacturing microdata. We present our empirical results

in Section 1.5. Section 1.6 concludes.
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1.2 A Model of Labor Market Power

To analyze labor market wedges, we first outline a micro-founded model of firm behavior

and an estimation strategy to recover the key parameters of this model. Firms in our model

choose their labor inputs based on their residual labor supply curves: they are local monop-

sonists. These firms internalize the effect of increasing labor inputs on their inframarginal

labor expenditures, and therefore reduce hiring and wages relative to a competitive bench-

mark. On the other hand, firms buy intermediate inputs in a competitive market. If the

output market were also competitive, firms would equate average and marginal products

of intermediates. If a firm uses fewer intermediates than the competitive benchmark, we

infer a markup wedge. Such a wedge reduces utilization of all inputs symmetrically. Labor

market wedges, however, reduce labor utilization only. Comparing the ratio of average to

marginal products of labor and intermediates allows us to recover these monopsony wedges.

This double-ratio estimator is in the tradition of Hall (2018), De Loecker et al. (2020), and

Dobbelaere and Mairesse (2013).

To implement our ratio estimator, we must specify and estimate a production function. We

develop a new approach to estimating production functions in the context of revenue data

(the details are in our companion paper Kirov and Traina (2021a)). Our approach combines

a two-stage regression in the spirit of Gandhi et al. (2020) with a proxy variable approach

to control for unobserved markups. In this latter sense the model is similar to Olley and

Pakes (1996), Levinsohn and Petrin (2003), Wooldridge (2009), and Ackerberg et al. (2015),

but proxies for markups directly rather than for productivity. We use a translog production

function to allow for significant flexibility in the mapping between input use and productivity

and in the nature of technological progress. Through an informational assumption on revenue

productivity, our model corrects for unobserved prices. Thus it ameliorates the revenue issue

described in Bond et al. (2020) and Klette and Griliches (1996): we recover physical output

elasticities even in the presence of revenue data.
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Our approach imposes minimal structure on supply and is agnostic about demand. It can

therefore recover labor and product market power in many settings.

1.2.1 Conceptual Framework: Market Power Wedges from Cost

Minimization

The supply side of the economy consists of a mass of firms which use labor L, intermediates

M , capital K, and nonproduction labor N to produce output Q. Labor is supplied by house-

holds according to firm-specific residual labor supply curves. Firms must pay a single wage

W for undifferentiated labor input L. Intermediates are inelastically supplied in perfectly

competitive markets at price C. Capital takes one period to build, so firms decide their

capital stocks at time t − 1. Nonproduction labor stands in for management, and is also

decided on at t− 16. Markets in both K and N are competitive, with respective equilibrium

prices R and S. Each firm’s production function is given by F (Mt, Lt, Nt, Kt)
7. Firms sell

output by choosing price and quantity {P,Q} on their residual demand curves.

Consider the cost-minimization problem of an individual firm. Imperfect competition in the

labor market implies that wages are a function of labor input choice:

min
Mt,Lt,Kt

CtMt +Wt(Lt)Lt + StNt−1 +RtKt−1 (1.1)

s.t. F (Mt, Lt, Nt, Kt) = Qt

The Envelope Theorem implies that the Lagrange multiplier of (1.1) is λt = ∂L
∂Qt

= MCt.

6. We make this abstraction because we view managers as a form of capital stock: they take time to train
and deploy.

7. Kt and Nt are chosen in t − 1 due to the time-to-build assumption. In estimation, we allow F (·) to
vary across estimation groups.
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The firm’s first-order conditions for cost minimization in (1.1) are:

[Mt] Ct − λt
∂F (·)
∂Mt

= 0⇒ ∂F (·)
∂Mt

=
1

λtCt
(1.2)

[Lt] Wt +
∂Wt

∂Lt
Lt − λt

∂F (·)
∂Lt

= 0 (1.3)

Using the definition of λt as marginal cost and multiplying the intermediates FOC by Pt
Mt
Qt

yields:

θMPt = µt
CtMt

Qt
⇒ µt = θM

(
PtQt
CtMt

)
(1.4)

Where θM ≡ ∂F (·)
∂Mt

M
Q is the output elasticity of materials; and we define the markup as the

ratio of price to marignal cost: µt ≡ P
MC . (1.4) is the ratio estimator popularized by Hall

(1988) and De Loecker and Warzynski (2012). It expresses the markup as a wedge between

a firm’s marginal value of intermediates θM and its average spending on intermediates as a

proportion of revenue CtMt
PtQt

.

Now turn to the labor FOC. Substituting µt into (1.3), dividing by Wt, and simplifying

yields:

µt

(
1 +

∂Wt

∂Lt

Lt
Wt

)
=

Pt
Wt

Qt
Lt

Lt
Qt

∂F (·)
∂Lt

⇒ µt(1 + νt) =

(
PtQt
WtLt

)
θL (1.5)

Where νt ≡ ∂Wt
∂Lt

Lt
Wt

=
(
εLS
)−1

is the elasticity of the firm’s wage with respect to labor

input (equivalently, the inverse of the firm’s residual labor supply elasticity) and θL is the

output elasticity of labor. It is important to emphasize that
(
εLS
)−1

is the inverse elas-

ticity of the firm’s conduct-adjusted residual labor supply, in the sense that the firm-level

residual labor supply curve also incorporates competitors’ conduct. This is distinct from

the macroeconomic inverse labor-supply elasticity, which is a household object and does not

consider firm conduct. We define the labor market wedge as δt ≡ (1 + νt). From (1.5), this
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wedge can be written as:

δt ≡ (νt + 1) =

(
PtQt
WtLt

)
θL

µt
=

(
PtQt
WtLt

)
CtMt

PtQt
· θ

L

θM

=

(
CtMt

WtLt

)
θL

θM
(1.6)

We infer a larger labor market wedge when a firm spends more on intermediates than labor

relative to their respective values in production. Equations (1.5) and (1.6) give some intuition

on the nature of labor market power. In the absence of any market power, µt = 1 and νt = 0

(that is, the firm’s labor supply curve is infinitely elastic), which implies that δt = 1. Then

(1.5) implies that the firm hires until its labor expenditure share equals labor’s value in

production θL. Market power in the output market adds a wedge µt between these objects.

If the firm also has labor market power (νt > 0), it faces a tradeoff in its wage decision:

paying higher wages attracts more workers but requires paying inframarginal workers more.

This tradeoff adds an additional wedge (1+νt) between labor expenditure and θL. Hence the

firm uses less labor than a firm hiring in a competitive labor market. Note that the markup

term µt is endogenous8, in that a firm with more or less output market power will choose a

different {P,Q} combination, and therefore a different {W,L} combination. In other words,

higher markups do not mechanically imply lower markdowns.

Equation (1.6) makes this point explicitly, defining labor market wedges as the ratio of

markups from labor
(
θL ·

PtQt
WtLt

)
to markups from intermediates

(
θM ·

PtQt
CtMt

)
. Intuitively,

output market power induces the firm to reduce all of its inputs proportionally, while labor

market power induces the firm to reduce only its labor input. Equation (1.6) backs out the

labor market wedge from ratio of these two objects.

8. This firm chooses its price Pt to maximize profits subject to its output demand curve, because it has
output market power. The markup term µt reflects the firm’s optimal price choice.
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Revenue and Quantity Elasticities

Our formulas for µ and δ require the θj to be physical output elasticities rather than revenue

elasticities: that is, they must describe marginal increases in physical production Q rather

than marginal increases in revenues P ·Q. Revenue elasticities conflate changes in demand

(and therefore price) with changes in physical productivity. Bond et al. (2020) describe two

problems with this approach: first, market power allows firms to change Q specifically in

order to change P . Second, some inputs may determine demand (workers in advertising, for

instance). We address the second point by only using production workers as our measure of

L, and incorporating nonproduction workers as a separate productive input.

The first point implies that using revenue elasticities in the formulae for µ and δ generates

inconsistent estimates of market power wedges (a point also emphasized im Klette and

Griliches (1996)). In particular, the FOC (1.4) implies that µ ≡ 1 with revenue elasticities.

Our companion paper Kirov and Traina (2021b) shows that, if one can only estimate the

revenue elasticity of labor inputs θLR, then the appropriate expression for the labor-market

wedge δ is θLR
PQ
WL - the expression for markups computed using the labor input L. However,

we do not estimate revenue elasticities in this paper. Instead, in what follows we develop a

method to estimate quantity elasticities from revenue data. The full details of this method

are available in our companion paper Kirov and Traina (2021a).

1.2.2 Interpreting Market Power Wedges

If the labor market is perfectly competitive, firms face perfectly elastic labor supply and the

inverse labor-supply elasticity νt = 0, which implies δ = 1. If marginal revenue products of

labor are greater than wages, then δ > 1. A higher δ implies a higher wedge between wages

and marginal revenue products, and therefore greater labor market frictions9 If the output

market is perfectly competitive, firms sell at marginal cost and µt = 1. Impefect competition

9. Such frictions could also be due to adjustment costs or other structural characteristics of labor markets.
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raises prices above marginal costs and implies µt > 1. Models with increasing returns to

scale or dynamic monopsony may find µt < 1 or δt < 1. A wide number of monopsonistic or

oligopsonistic environments would induce a labor market wedge in this model: for instance,

labor search frictions or implicit contracting. In particular, static labor search frictions would

be isomorphic to our labor-market wedges, though their magnitude would differ in dynamic

models. Implicit contracting would skew labor-market wedges lower - perhaps even to less

than unity - at the start of a contract, and higher near the end of a contract.

Labor-market wedges δ and markups µ also relate closely to the labor share and profit share.

Using the definition of markdowns (1.6) in (1.5) and rearranging yields:

WL

PQ
=
θL

µδ

So that markups and markdowns both decrease the labor share. If the production function

is Cobb-Douglas with labor exponent α, θL = α and the labor share equals labor’s marginal

product in the absence of market power wedges. Similarly, an accounting identity for each

firm implies that all revenues go to profits π or payments to factors. Inserting the definition

of µ and δ yields:

WL+ CM +RK + SN + π = PQ

WL

PQ
+
CM

PQ
+
RK

PQ
+
SN

PQ
+

π

PQ
= 1

θL

µδ
+
θM

µ
+
θN

µ
+
θK

µ
+

π

PQ
= 1

An increase in markups decreases the share of revenues paid to all factors, while an increase

in labor-market wedges decreases only the share paid to labor. In either case, the share of

profits in revenues rises, since the RHS is unchanged.
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1.3 Estimating Labor Market Power

In this section, we discuss estimation of our labor-market power parameter δ and our market-

power wedge µ. We propose a new method for estimating production functions with revenue

data, and then describe our estimation procedure.

1.3.1 Estimating Output Elasticities

To estimate markdown and markup wedges, we require output elasticites and so must es-

timate firms’ production functions. This is made more difficult by the fact that we only

have data on firm revenues PQ rather than output quantities Q. This section outlines our

estimation strategy. We propose a new method of estimating production functions with

revenue data which combines a two-step strategy akin to Gandhi et al. (2020) with a proxy

assumption on markups in the spirit of Olley and Pakes (1996). This section outlines the

model; the full details are in our companion paper Kirov and Traina (2021a).

As in the model in the previous section, firms produce output using intermediates M , pro-

duction labor L, nonproduction labor N , and capital K. Intermediates can be thought of

as inputs which the firm transforms into output: steel, partially finished goods, and other

such inputs (e.g., inputs into value added). Production labor actively works to create output,

while nonproduction labor can be thought of as management or administrative staff. Capital

consists of machines and buildings used in production.

Inputs create output through a production function with Hicks-neutral productivity eωt .

Productivity is a log-additive combination of forseeable10 and idiosyncratic terms, so that

ωt ≡ at + εt with E[εt|It] = 0. In other words, firms cannot forsee the productivity shock

ε, but expect it to be zero. The log production function of a firm is (denoting logs in

10. The term at is observable to the firm (but not to the econometrician) before choosing inputs, while εt
is unknown to the firm at t.
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lower-case):

qt = f(mt, `t, nt, kt) + at + εt (1.7)

As in the previous section, each firm decides on capital and managerial stocks prior to

production. By contrast, intermediate materials and labor are flexible (static) inputs: last

periods’ choice of these inputs does not affect this period’s choice. This rules out, for instance,

adjustment costs on labor. The timing of production is: (1) the firm chooses Kt and Nt

to be used in production in t; (2) at is realized; (3) the firm chooses Mt and Lt; (4) εt is

realized. The realization of ε, along with the firm’s choice of inputs, determines markups

and labor-market wedges. Since expectations about productivity partially determine inputs,

market power wedges depend on both productivity and firm conduct.

Estimating (3.1) by OLS is subject to simultaneity bias: firms with higher productivity

draws at will want to produce more and therefore use more inputs, so regressing output on

inputs confounds output elasticities with realizations of the productivity process (Marschak

and Andrews (1944)). Moreover, we do not observe qt but only revenues pt · qt. To estimate

output elasticities, we need to both (i) separate productivity from input use; and (ii) separate

demand-driven price variations from markup-driven price variations.

To do so, we combine the markup first-order condition (1.4) from the previous section with

the production function (3.1). The first-order condition (1.4) gives us a parametric re-

lationship between intermediates demand Mt, materials productivity, and market power.

Conditional on market power, this pins down intermediates use in terms of parameters. This

is important because intermediates suffer from simultaneity bias with productivity: M is

flexible, and so an econometrician cannot easily separate movements in M from movements

in A. But if we were able to control for markups, (1.4) allows us to control for intermediates.

This, along with our Markovian timing assumptions on the productivity process, will allow

us to separate TFP from input elasticties and prices from quantities.
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Define revenues R ≡ P · Q and rewrite the FOC (1.4) in logs as (again using lower-case

letters to denote logs) 11:

log(µ) = log(θM ) + r − cm+ b− ε

cm− r = log(θM )− log(µ) + b− ε (1.8)

Where the constant b ≡ E[exp(ε)]
exp(ε)

. We call (1.8) the share regression: it defines elasticities

and markups in terms of the observable share of intermediates expenditures to revenues. The

share regression uses firm optimization to address the revenue problem: the LHS of (1.8) is

in revenue terms, while the RHS is in quantity terms. The markup term µ connects the two.

The output elasticity θM depends only on (quantity) inputs12, so estimating (1.8) requires

us to specify sources of variation in µ. We discuss this at greater length below. Our share

regression is akin to that in Gandhi et al. (2020) but explicitly in terms of the markup. In

this sense, our estimator proxies directly for markups rather than for productivity.

To address the simultaneity problem and separate input elasticities from TFP, we substitute

our share regression into the revenue production function. We make an assumption on the

evolution of productivity:

Assumption 1: Prices p and productivity ω jointly follow a Markov process with mean-zero

shocks η. Defining p+ ω ≡ ν, this implies νt = g(νt−1) + η with E[η] = 0.

Assumption 1 says that prices and physical productivity together follow a first-order Markov

11. The first line follows from inserting TFP A into the derivation of (1.4): µ = E[A]
A · θM

(
R
cM

)
, and the

second from noting that E[A]
A = exp(ω)E[exp ε]

expω exp ε = E[exp(ε)]
exp(ε) .

12. In particular, θM does not depend on TFP A from our assumption of Hicks neutrality.
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process: it is an assumption on the evolution of TFPR. Write logged firm revenues as:

rt = pt + qt

= ft + pt + ωt + εt

= ft + νt + εt

= ft + g(νt−1) + ηt + εt (1.9)

Note that the share equation (1.8) implies that νt = cmt − ft − log(θM ) + log(µt) − b13.

Inserting this into (1.9) yields:

rt = ft + g(cmt−1 − ft−1 − log(θM ) + log(µt−1)− b) + ηt + εt (1.10)

Equation (3.6) identifies the output elasticities in f(·) so long as we can control (proxy) for

markups µ. We can obtain an unbiased estimate of the productivity error ε̂t from regressing

the intermediates cost share of revenues on inputs and determinants of markups µ (that is,

(1.8)). In our empirical specification, we use plant-year fixed effects as controls for markups,

though other researchers applying our methodology may be flexible (for details, see our

companion paper Kirov and Traina (2021a)).

Intuitively, our empirical model works as follows: residual TFPR p·ε is a state variable which

follows a stochastic process. This is a composite technological and demand process. Firms

observe the evolution of this process and adjust output decisions to maximize revenues given

its state. But this observation is imperfect: firms make guesses about as-yet-unobserved

productivity states. We infer the TFPR state from firm intermediates decisions and an

optimization assumption. Then we identify output elasticities from variation in inputs which

is orthogonal to variation in innovations to the productivity process η. Identification of

13. To see this, write log(µt) = log(θM ) + rt − cmt + b− εt = log(θM ) + (ft + νt + εt)− cmt + b− εt and
simplify.

15



physical output elasticities thus comes from information and timing assumptions on the

production process. Finally, we construct markups and labor-market wedges (markdowns)

from these output elasticities and observed input choices using the ratio formulas in the

previous section.

Comparison to Proxy Estimation

Our estimator is related to the proxy production-function estimation model commonly used

in the literature (for example, Olley and Pakes (1996), Levinsohn and Petrin (2003), Acker-

berg et al. (2015), Gandhi et al. (2020)). We modify the proxy structure to account for the

fact that we only have revenue data, and relax a key assumption in these models. In par-

ticular, we impose a Markov timing assumption on TFPR rather than physical productivity

a. Proxy models add an assumption that intermediate demand is a monotonic function

of other inputs and productivity. Such a monotonicity assumption allows these models to

invert productivity a as a function of observed inputs. We do not require a monotonicity

assumption since we directly control for markups µ. This allows us to relax the necessary

implication that productivity has no other determinants besides observed inputs. This scalar

unobservable assumption is a requirement in such models because TFP must be inverted as

a function of inputs. It is one of the more stylized assumptions in the proxy-model literature,

and relaxing it is therefore valuable.

In the production-function estimation literature, the monotonicity assumption is written as

mt = M(nt, kt, `t, at). Substituting this proxy function and the evolution of at into the

quantity production function (3.1) yields:

qt = f(mt, `t, nt, kt) + g(at−1) + ηt + εt

= f(mt, `t, nt, kt) + g(M−1(nt−1, kt−1, `t−1,mt−1)) + ηt + εt
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In principle, identification of the output elasticities could come from the moment conditions

E[(nt−1, kt−1, `t−1,mt−1)T · ηt] = 0. The idea is that lagged inputs affect current input

choice through the productivity process, but are plausibly exogenous since they were chosen

before at.

But this model cannot identify the output elasticity of any flexible inputs (Gandhi et

al. (2020)). Because both flexible inputs and productivity at evolve period-by-period, and

g(·) and M(·) are nonparametric, flexible inputs are collinear with productivity. For exam-

ple, observing high mt could mean that at is high or that intermediates are more productive.

More formally, inserting the process for productivity into the intermediate demand function

and substituting out at−1 yields:

mt = M(nt, kt, `t, at) = M(nt, kt, `t, g(at−1) + ηt)

= M(nt, kt, `t, g(M−1(nt−1, kt−1, `t−1,mt−1)) + ηt)

=M(nt, nt−1, kt, kt−1, `t, `t−1,mt−1, ηt)

SinceM(·) is deterministic, lagged inputs determine mt and so cannot instrument for it. Put

another way, there is a tradeoff between the relevance and exogeneity of potential instruments

for flexible inputs. A relevant instrument must covary with mt and so enter M(·). But if it

does, then variation in that instrument is soaked up in pinning down the arbitrary functional

form of M(·). Since our expressions for µ and δ require intermediates and labor to be

flexible14, we need another source of exogenous variation to identify output elasticities.

The source of the collinearity is the full flexibility of g(·) and M(·). If some candidate instru-

ment z covaries with m, then it should enter M(·) and any variation in z would be absorbed

in estimating M(·). But in our setting, the input demand functions are the parametric FOCs

14. Ackerberg et al. (2015) acknowledge this issue and assume that labor is not flexible. This solves the
econometric issue, but we cannot use the results to estimate markups or markdowns since labor is no longer
flexible.
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(1.4) and (1.6). Since they are parametric, we do not need to use variation in instruments

to pin down the functional form of the productivity-input demand relationship. If we had

instruments zµ and zδ that generated variation in µt and δt and were uncorrelated with

mt, `t,mt−1, `t−1, we could identify θM and θL15. We use plant-year fixed effects as instru-

ments for µ, and wages as instruments for δ (by instrumenting `). Other instruments may be

appropriate in different contexts (see our companion paper Kirov and Traina (2021a)).

Moreover, the typical proxy structure in the literature does not account for the fact that

we require physical output elasticities but only have revenue data. Our method incorpo-

rates this limitation and addresses it by: (1) using the share regression (1.8) to separate

prices into a portion accounted for by demand and a portion accounted for by markups; (2)

imposing a limitation on the joint evolution of innovations to the processes for prices and

productivity.

1.3.2 Empirical Implementation

We use a translog specification for the production function f(·). This allows us to be flexible

in describing technology and technological change since output elasticities depend partially

on input quantities. We instrument production labor ` with wages, following Doraszelski

and Jaumandreu (2013). The idea is that wages are partially independently determined

from physical labor inputs. Although wages are subject to labor-market wedges δ, they also

reflect labor quality and other institutional features of the labor market. We assume that

the TFPR process g(·) is AR-116. We assume constant returns to scale in physical output

to reduce the number of parameters to be estimated (Flynn et al. (2019) uses the CRS

assumption to identify µ). We implement our estimation technique within 6-digit NAICS

estimation groups. Denote the vector of inputs as J, and denote logs of variables in lowercase.

15. The FOCs (1.2) and (1.3) are also linear in intermediates and labor prices Ct, Wt. One might suggest
using independent variation in wages Wt to identify θL. But variation in prices must be unrelated to variation
in input quality, a condition which is usually unlikely to be met.

16. Alternative specifications of g(·) are possible; our method does not require AR-1 TFPR.
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Within each estimation group, we do the following:

1. Regress the intermediates expenditure share of revenues on inputs and plant-year fixed

effects. Obtain the predicted share of expenditures ŝt = log(θM )− log(µt) + b and the

predicted residual ε̂t. The plant-year fixed effects proxy for determinants of markups

µt.

2. Regress revenues rt on inputs mt, `t, nt, kt, lagged inputs mt−1, `t−1, nt−1, kt−1, and a

polynomial in lagged ŝt−1 and ε̂t−1. That is, rt = f(θj ·Jt) + g(ŝt−1− f(θJ ·Jt−1)) +

ε̂t + ηt. Obtain the predicted residual η̂t. Our model implies that this structural error

should be 0 in expectation, so we use it to form moment conditions.

3. Use the moment condition

η̂t ·



1

wt−1

nt−1

kt−1

w2
t−1

n2
t−1

k2
t−1

wt−1 · nt−1

wt−1 · kt−1

nt−1 · kt−1

(cm− ŝ)t−1



= 0

to recover the structural error η as a function of the vector of elasticities θj.

4. Minimize the distance η̂(θj)′ · W−1 · η̂(θj) by GMM with weight W to recover the

structural parameters θj.

19



The precise form of the moment conditions comes from our translog specification: n and

k instrument for themselves since they are quasi-fixed, and we use wages to instrument for

labor. The other moment conditions come from the squared and cross terms. The final

instrument (cm− ŝ)t−1 instruments for the constant in the TFPR evolution g(·).

We use the identity matrix for our GMM weight. We initialize this nonlinear system at

fM = 0.5, fL = 0.1, fN = 0.1, fK = 0.3, and all of the cross terms at 017. We initialize

the AR-1 parameter for productivity at 0.9. Our results are robust to alternative starting

values for ρ and the f j . We constrain our estimated elasticities θj to be greater than

the average cross-sectional cost shares in the NBER-CES manufacturing database for all

inputs j (see Appendix B for details). We use the scipy.optimize package in Python

to run our estimation. We form numerical derivatives using the quasi-Newton method of

Broyden, Fletcher, Goldfarb, and Shanno (BFGS). Again, we assume constant returns to

scale throughout, so that the capital elasticity is pinned down by the intermediates, labor,

and nonproduction-labor elasticities18. This reduces the size of the parameter space and

improves the power of our instruments19.

The output from our GMM estimation are markdowns, markups, output elasticities, and

TFPR. Additional details on our estimation technique can be found in Appendix B.

1.3.3 Limitations of our Framework

Our estimate of the labor market wedge δ is (1) estimable at the establishment level; (2)

comparable across years; (3) does not require structural estimates of demand or labor supply;

and (4) compatible with market power in both input and output markets. It avoids the need

17. f j here is the coefficient on j in the translog specification, while θj is j’s output elasticity.

18. CRS is a good approximation to technology in US manufacturing.

19. Following Wooldridge (2009), one could implement the entire procedure in one GMM step, forming the
endogenous residual η̂t with each guess of the structural parameters. This implies an additional moment
setting ε̂t = 0 in Step (3)
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to find natural experiments to identify labor market power.

However, our labor-market wedge δ could pick up structural characteristics of the labor

market. Labor adjustment costs would be picked up in δ, since we assumed labor was

fully flexible in our baseline specification. Long-term contracts also create a wedge between

(current) MRPL and (contractually fixed) wages as workers demand a higher wage now and

accept a lower wage in the future to smooth consumption. Adjustment costs and contracts

create wage stickiness which the δ estimator interprets as monopsony power. We are also

pooling different types of labor together (e.g. skilled and unskilled). This is problematic

if labor market power differs between worker types. However, Monte Carlo evidence from

Gandhi et al. (2020) suggests such bias is not large. If adjustment costs differ across inputs,

we might expect expenditures on intermediates and labor to adjust at different speeds. (1.6)

mechanically interprets these movements as shifts in monopsony power.

In terms of production function estimation, a simple alternative to our approach is to assume

a Cobb-Douglas production function with constant returns to scale (Syverson (2011)), which

implies that output elasticities equal cost shares. But (1.6) suggests that estimating output

elasticities at the firm-year level would imply labor wedges equal to unity, since:

δt =

(
CtMt

WtLt

)
θL
θM

=

(
CtMt

WtLt

) PtQt
CtMt

PtQt
WtLt

= 1

Thus, we cannot use a Cobb-Douglas CRS simplification to our structural production-

function estimation.

In summary, we embed an intermediate share regression into a modified proxy structure to

identify quantity output elasticities with revenue data in the presence of market power. We

use wages as instruments for labor and lagged quasi-fixed inputs as their own instruments.

Our approach scales linearly with inputs, so can be used to estimate input market power for

arbitrary numbers of imperfectly competitive inputs (so long as one input is competitive).
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Our estimator is consistent with any functional form for the production function. The esti-

mator we outline is identified, unbiased, consistent, flexible, and accounts for the limitations

of using revenue data.

1.4 Data

We use the Annual Survey of Manufactures (ASM) and Census of Manufactures (CM) from

the Census Bureau. These data contain production information for manufacturing plants

(establishments) in the manufacturing sector in the United States. In particular, we use the

US Census Total Factor Productivity Beta Version 2 dataset (TFPB2), which includes the

raw ASM/CM data and some constructed variables. In Census years (years which end in -2

or -7), the data come from the CM and constitute the universe of manufacturing plants. In

all other years, the data come from the ASM and are sampled with probability20. We limit

the sample to plants which are observed in ASM years. We use data from 1972-201421.

The data include output, intermediates, labor, capital, and other characteristics at the plant

level. We merge in price indices for intermediates, investment, and output at the 2-digit

DJA industry level from KLEMS, and also aggregate prices from the BEA. We also merge

in input and output price indices from the NBER-CES Manufacturing Database. We use

these deflators to scale output and input prices and quantities to aggregate industry aver-

ages (see Appendix A for details). The idea is to account for unmeasured or mismeasured

productive inputs in the ASM/CM data. For instance, the Census data may not account for

all managerial labor (particularly labor at headquarters establishments). This problem may

have grown over time as economies of scale increased.

We measure output as the total value of shipments less sales from inventories: that is, output

20. Large plants enter the ASM with certainty, while small plants are subject to a sampling probability.

21. These are the years for which the ASM is easily crosswalked to a set of longitudinally consistent Fort-
Klimek NAICS codes.
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produced rather than output sold. If a plant has sales from inventories which are greater

than total value of shipments, we set output equal to total value of shipments. We scale

output revenues to 2-digit DJA industries by year using the KLEMS database.

We define intermediates as materials plus energy plus fuels. The idea is to capture a broad

range of intermediate inputs, so that the bundle is approximately competitive even if each

component of it is not. For quantity measures, we deflate each of materials, energy, and

fuels with an appropriate 3-digit deflator from the NBER-CES Manufacturing Database

(materials and fuels with PIMAT , energy with PIEN).

We measure production labor as total production-worker hours at a plant, and nonproduc-

tion labor as the total number of nonproduction workers (there is no data on nonproduction

worker hours in our sample). The average wage (total pay divided by total hours worked) for

nonproduction workers in our sample is over $40/hour, about four times that of production

workers. We therefore interpret N as managerial and professional workers. We scale pro-

duction and nonproduction labor to 2-digit industry aggregates by year using the KLEMS

database and the method of Foster et al. (2008). This method apportions a plant’s hours to

production and nonproduction labor in proportion to its expenditures on each type.

To construct implied wages, we divide each plant’s total production-labor expenditures by

its total production-worker hours. We do this after scaling both worker hours and payments

to labor using the KLEMS database.

We construct capital using the perpetual inventory method (PIM). We initialize each plant’s

capital stock in the first Census year in which it appears, then iterate forwards and backwards

using PIM and investment data. The CM includes measures of plant capital stocks at the

beginning and end of each year, split into equipment and structures capital. But these are

book values and do not correspond to the economic concept of capital in production. We

convert these stocks into market values by multiplying by the ratio of current to historical
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cost of capital from the BEA capital tables (Kehrig (2015)). We then define total capital as

the sum of equipment capital and structures. We adjust capital stocks by 3-digit industry

capital utilization rates from the Fed’s Plant Capacity Utilization survey. We also scale

capital inputs at the 2-digit DJA industry level using the KLEMS database.

The definition of industry codes changes every 5 years in our sample. There are particularly

large changes in 1987 (when SIC codes change from the 1972 to 1987 vintage) and in 1997

(when SIC codes change to NAICS codes for all establishments). There are also significant

changes in manufacturing NAICS codes in 2012. To get a consistent set of industry codes, we

crosswalk establishment-year observations to their corresponding Fort-Klimek 2007 NAICS

code (Fort and Klimek (2016)). This crosswalk is available within the Census and assigns a

consistent 2007 NAICS code to each establishment.

We drop establishments with missing, zero, or negative inputs or revenues. We also drop

establishments with missing values for current or lagged intermediates expenditure share s,

as well as those with missing values of lagged inputs (lagged inputs are required for estimation

since they instrument for themselves or TFPR). Finally, we drop establishments which have

particularly large or small output-to-intermediates ratios or materials-to-labor ratios in each

year: plants with such ratios above the 99th or below the 1st percentile by year22. This

last condition trims µ and δ outliers preemptively. Most establishments trimmed at this

stage have extremely large (small) output relative to their inputs or extremely large (small)

materials expenditures. They are therefore likely to have different technology from other

plants. We use ASM sampling weights in constructing all aggregates from establishment-

level data. We limit our sample to complete-case observations: those with an unbroken panel

of observations.

We merge in external ACS and CPS data to investigate the aggregate causes and conse-

22. We trim rather than winsorize these observations.
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quences of the evolution of labor-market power. We download union participation data

from the CPS monthly surveys and demographic data from the ACS, including occupation,

family size, location, sex, age, employment status, weeks and hours worked, industry, and

income measures. We merge in task-intensity data from Autor and Dorn (2013) by occupa-

tion code. Finally, we merge this external data to our ASM/CM data by commutfing zone,

industry code, and year23. We also merge in data on tasks by occupation and geography

from Autor and Dorn (2013). We construct measures of high routine-task intensity and high

task-offshorability intensity as in Autor and Dorn (2013). Appendix A has more details on

the construction of our dataset.

1.5 Labor-Market Wedges and Technological Change in US

Manufacturing

We present and discuss our results in this section. First, we show that the aggregate labor-

market wedge has risen in the manufacturing sector, particularly after 2000. Second, we

show that rises in plant-level δ decrease labor input and the labor share of value added.

These wedges are mainly driven by labor demand (firm and industry fixed-effects), but are

not correlated with concentration. Third, we show that increases in plant-level labor-market

wedges are strongly correlated with increases in direct measures of plant-level technology.

Fourth, we show that at the macro level, changes in industry-level labor-market wedges

are correlated with falls in unionization and increases in noncognitive task intensities. This

evidence suggests that labor-market power has risen over time, and that this rise is driven

by changes in technology which has decreased workers’ bargaining power relative to that of

firms.
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Figure 1.1: Aggregate Labor-Market Wedge

Notes: Labor market power over time: Figure shows static aggregate labor-market wedge

δ ≡ θL
θM
·
(
CtMt
WtLt

)
over time for US manufacturing. Aggregation is done using production

labor cost weights and ASM sampling weights for each year (see Appendix C).

1.5.1 Trends in Labor-Market Wedges

Figure 2.4 shows the aggregate labor-market wedge in the US manufacturing sector from

1973 to 2014. We obtain this series by aggregating plant-level δ by year, using production-

labor expenditure weights (Edmond et al. (2021); see Appendix C for details on our choice of

aggregation weights and a comparison to Baqaee and Farhi (2019)). Three points are notable

from the figure. First, the aggregate wedge is very close to unity before 1990, suggesting

23. The ACS/CPS data is necessarily aggregated; e.g., it is not available at the plant level.
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little aggregate labor-market power. Second, aggregate D begins to rise in the 1990s to

approximately 1.25 in 2000. Third, there was an inflection point around 2002 after which

aggregate D increased rapidly to just above 2. This is a large increase: manufacturing

production workers produced marginal output valued approximately at their wages in 1973,

but worth twice as much by 2014. The inflection point of this increase coincides both with

the beginning of the China shock of the information technology (ICT)-driven boom.

We are cautious in interpreting the level of aggregate manufacturing labor-market power

in Figure 2.4 entirely literally. These static estimates ignore adjustment costs, long-term

contracts, training programs, search costs, or any other characteristic which makes a firm’s

labor choice a dynamic problem. That said, our finding that the labor market seems to have

become increasingly distorted relative to the intermediates market is likely to be more robust

to these criticisms. In unreported results, we show that revenue-weighted and unweighted

versions of the aggregate markdown wedge D rise as well. We also estimated an aggregate

labor-market wedge using OLS and a Cobb-Douglas production function, and found a similar

time-series pattern. This is because our aggregate wedge is composed of individual wedges

θL
θM
·
(
CtMt
WtLt

)
. Holding technology constant, our model interprets a rise in the ratio of

intermediates to labor expenditure as an increase in the labor-market wedge. In Appendix

E, we show the time series of the aggregate cost and elasticity ratios. Both rise, but the

cost ratio rises by approximately 75% against a 14% increase in the elasticity ratio. That is,

the cost ratio has risen significantly in the data. We estimate changes in elasticities which

reinforce this trend, but this changing cost structure drives the aggregate results.

In Appendix E, we show that our model implies an aggregate markup wedge and an aggregate

nonproduction wedge which are both approximately unity (the aggregate markup wedge falls

slightly since 1987). This suggests that large increases in aggregate wedges in De Loecker

et al. (2020) and others may be driven by labor-market wedges rather than markup wedges

(see our companion paper Kirov and Traina (2021b) for more details). The low level and
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stable time series of the output and nonproduction wedges also suggest that our estimation

strategy is picking up real increases in labor-market power, rather than merely reflecting

misspecification24.

Figure E.4 and Figure E.5 in Appendix E show that the skewness of the aggregateD has fallen

while its standard deviation has risen. This is in contrast to the markup wedge: Figure E.6

and Figure E.7 in Appendix E show that markup skewness has risen significantly, as in De

Loecker et al. (2020) and Kehrig and Vincent (2021). The contrast in these distributions

indicate that our aggregate labor-market wedge is not simply picking up a markup wedge.

Table 1.1 has pooled cross-sectional summary statistics for inputs, output, labor-market

wedges, and markup wedges. δ has a higher mean but also much higher variability than

mu. The output elasticities are approximately what one would expect from a gross output

production function.

In sum, we find a high aggregate labor-market wedge in 2014 and a particularly large increase

in this wedge post-2000. These findings are robust to a number of alternative specifications

and are distinct from our findings about markups.

In what sense has the aggregate markdown risen? Figure 1.2 shows a time series of the

economy-wide average marginal revenue product of labor and average wage from 1973-2014.

Starting in the early 1990s, the average MRPL (red) starts rising faster than the average wage

(black) (the series are normalized to 1 in 1987 due to our KLEMS scaling procedure). This

process accelerates significantly in the 2000s. The labor-market wedge therefore increases

because productivity rises, and not because wages fall. This suggests that technological

change plays a large role in the rise of this wedge: δ rises because wage increases did not

keep up with productivity after 2000. Which plants does this rise in labor-market wedges

come from? Figure 1.3 decomposes the cumulative change in aggregate δ into within-plant,

24. If our results were due to misspecification, there is no reason that this would apply more to production
labor than to intermediates or nonproduction labor.
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Table 1.1: Input and Output Wedges:
Summary Statistics (1972-2014)

Mean SD
δ 1.61 (4.43)
µ 1.15 (0.55)

θM 0.68 0.17

θL 0.15 0.13

θN 0.07 0.06

θK 0.11 0.09
q 0.22 1.41
m 0.23 1.45
` 0.18 1.26
n 0.18 1.26
k 0.24 1.56

Source: ASM/CMF. All estimates unweighted. δ is our mea-
sure of monopsony power, while µ is our measure of output
market power. θi are output elasticities ∀ inputs i. q is log
revenues, m is log intermediates, ` is log production labor
hours, n is log nonproduction workers, and k is log capital
inputs. All inputs are scaled to KLEMS aggregates by 2-digit
DJA industry and year.

between-surviving-plant, entry, and exit components. The decomposition a Divisia version

of the Neil et al. (1992) decomposition:

∆Dt =
∑
i

[
∆δit

si,t + si,t−1

2

]
+
∑
i,surv

[
∆sit

δi,t + δi,t−1

2

]
+
∑
i,x

[
∆sit

δi,t + δi,t−1

2

]
(1.11)

+
∑
i,e

[
∆sit

δi,t + δi,t−1

2

]

The first term represents changes in labor-market wedges holding establishment labor-expenditure

shares25 constant (within). The second represents changes in shares holding labor-market

wedges constant for surviving establishments (between survivors), the third does the same

for exiters, and the fourth for entrants. In each case, we take an arithmetic average of the

object we hold constant as a discrete-time approximation to a continuous process.

25. We use the labor-expenditure share as our establishment-level δ weight since we use this share to
aggregate up wedges in our main analysis, consistent with Edmond et al. (2021).
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Figure 1.2: Decomposition of Labor-Market Wedge into MRPL and W

Notes: MRPL and W over time: Figure shows average marginal revenue product of labor
and wage in each year. MRPL = δ ·W from our estimation. MRPL and W are aggregated
across establishments by year using labor-expenditure weights. Both measures are scaled

using KLEMS weights, which sets the mean wage to 1 in 1987.

Figure 1.3 plots the decomposition described in (1.11). Churn accounts for much of the

variation in D: the red entry and dashed-green exit lines are large in magnitude. Moreover,

the cumulative entry component rises more than the cumulative exit component falls, so that

net entry contributes significantly to the rise in the overall wedge. Thus new establishments

enter with larger labor-market wedges, while establishments with low wedges systematically

exit. After 2002, the dashed teal within component also begins to rise. These results are

consistent with technological changes which decrease the share of output paid to production
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workers; for instance automation or telecommunications technologies. New plants adopt such

technologies, but it takes time for them to grow and increase the aggregate wedge. Plants

which are unable to adopt exit. Eventually, these technologies become more widespread

among existing plants and increase their wedges as well. We find direct evidence for such a

story below. We further investigate the evolution of labor-market power over plant life-cycles

Figure 1.3: Within-Between Decomposition of Labor-Market Wedge

Notes: Decomposition of establishment-level changes in δ: Labor-market wedge is set to 0
in 1973, then cumulative changes are computed from ∆Dt =∑

i

[
∆δit

si,t+si,t−1
2

]
+
∑
i,surv

[
∆sit

δi,t+δi,t−1
2

]∑
i,x

[
∆sit

δi,t+δi,t−1
2

]∑
i,e

[
∆sit

δi,t+δi,t−1
2

]
.

The first term is within-establishment changes (dashed teal), the second
between-surviving-establishment changes (dashed blue), the third is changes due to
entrants (dash red), and the fourth changes due to exiters (dotted green). Figure is

weighted by ASM sampling weight and labor expenditures.
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by running the regression:

log δijt = α + γt + γj + β11[entrant ijt] + β21[exiter ijt]

+ β3[young ijt] + β4[mediumijt] + β5[old ijt] + εijt

Where entrant is an indicator variable for entry of plant i in industry j in year t (1 if a plant

first appears in the ASM/CMF, 0 otherwise), exiter is an indicator variable for exit (1 if a

plant last appears in the ASM/CMF, 0 otherwise), young is an indicator for plant age ≤

5 years, medium is an indicator for 5 < plant age ≤ 10, and old is an indicator for plant

age > 10. The regression includes year (t) and NAICS6 industry (j) fixed-effects, so that

variation comes within industries and years. It is weighted by labor expenditure and ASM

sampling weight. We exlcude years ending in -3 and -8: the Census rebalances its ASM

panel in these years, creating excess churn due to sample rotation.

This model, analagous to that in Foster et al. (2008), tests the impact of the average plant’s

age on its labor-market wedge. Table 1.2 shows the results, both with and without NAICS6

fixed-effects26 (old plants are the omitted category, so all coefficients are relative to old

plants’ labor-market wedges). We draw two main conclusions from Table 1.2. First, both

entrants and exiters have lower labor-market wedges than survivors27. Second, conditional

on survival, δ has an inverse-U relationship with tenure: young plants have relatively low

labor-market wedges, medium-aged plants have higher wedges, and old plants lower wedges

again. This pattern suggests a technology-adoption curve: survivors and medium-aged plants

adopt technologies which allow them to increase δ, but it takes time to adopt. Plants which

do not adopt have lower δ (exiters and old plants). This interpretation is speculative, but

we find direct evidence for a link between technology adoption and δ in Section 1.5.3.

26. We always include year FEs to account for technological change.

27. The implied coefficient for entrants is β1 + β3 ≈ −0.1245 (for Column 2), approximately the same as
that for exiters.
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Table 1.2: Labor-Market Wedges over Plant Lifecycles

Year FEs Year, NAICS6 FEs

(1) (2)

log(δ) log(δ)

Entry -0.0853*** -0.0608***

(0.0103) (0.00459)

Exit -0.0907*** -0.130***

(0.0109) (0.00487)

Young -0.0683*** -0.0817***

(0.00662) (0.00318)

Medium 0.0627*** 0.0317***

(0.00739) (0.00339)

Old . .

. .

(Constant) -1.019*** -1.009***

(0.00325) (0.00153)

N 494,000 494,000

R2 0.011 0.804

AIC 1,862,000 1,062,000

* p < 0.05, ** p < 0.01, *** p < 0.001
Labor-expenditure- and sampling-weight-weighted regression of log labor-
market wedge δ on indicators for entry (first appear in ASM/CMF), exit
(last appear in ASM/CMF), and indicators for young (age ≤ 5), medium
(5 < age ≤ 10, and old (age > 10). Excludes years ending in -3 and -8 due
to ASM sample rotation. Includes year (Column 1) and year and NAICS6
(Column 2) fixed-effects. Old is the omitted category - all coefficients should
be interpreted relative to that of old plants.
Source: ASM/CMF.

We turn next to some suggestive evidence on the sources of labor-market power. Is labor-

market power driven more by labor demand (firms) or labor supply (workers)? To get at

this question, Table 1.3 regresses log(δ)28 on different sets of fixed-effects at the plant level.

Each regression includes year fixed-effects, so the models we run are of the form:

log(δcjt) = α + γc + γj + γt + εcjt

28. We use the log of the labor-market wedge here to correct for skewness in plant-level δ.
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Where c is commuting-zone (CZ), j is industry, and t is year. Each regression is weighted

by labor expenditures and the ASM sampling weight. Column 1 of Table 1.3 includes only

time fixed effects, and has low adjusted R2 and high AIC: it is not a particularly predictive

model. Column 2 adds industry fixed effects by including a full set of NAICS6 dummies.

The R2 of the regression increases eightyfold from 0.01 to 0.81, and the AIC falls by almost

half. Thus, industry adds significant explanatory power to a simple time trend.

Columns 3 and 4 of Table 1.3 compare a specification with commuting-zone and time fixed-

effects (column 3) to one with CZ, time, and NAICS6 industry (column 4). Adding NAICS6

increases the R2 eightfold and reduces the AIC by nearly half. Again, more of the variation

in δ comes from industry than from geography. Table E.1 in Appendix E compares similar

regressions with plant i and firm f fixed-effects: these additional explanatory variables do

not add much explanatory power beyond including NAICS6 industry. Table 1.3 shows that

Table 1.3: Fixed-Effect Regression Results

Year FEs Year, NAICS6 FEs Year, CZ FEs Year, CZ, NAICS6 FEs
(1) (2) (3) (4)

log(δ) log(δ) log(δ) log(δ)

R2 0.01 0.81 0.111 0.815

R2
adj. 0.01 0.81 0.110 0.814

AIC 2,343,000 1,334,000 2,277,000 1,302,000

(1) Year fixed effects; (2) Year, NAICS6 fixed effects; (3) Year, CZ fixed effects; (4) Year, CZ, NAICS6
fixed effects. Labor-expenditure- and ASM-sampling-weight- weighted regression of log(δ) on different
fixed effects. Source: ASM/CMF.

labor demand is an important contributor to the labor-market wedge δ, while labor supply

is much less so. In other words, the rise in labor-market power is explained more by a

plant’s industry than by its commuting zone. In both levels and changes, industry-level

variation is more closely correlated with variation in a plant’s labor-market wedge than

CZ-level variation. This suggests that changes in technology are an important contributor

to increased economy-wide labor-market power: technological change at the industry level

explains increased δ more strongly than institutional change at the geographic level. We
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provide direct evidence of this in Section 1.5.3.

In sum, then, labor-market wedges have risen steadily since 1990, and particularly since

2002. Since the late 1990s, labor-market wedges have increased greatly while markups have

remained flat. Thus, labor-market power accounts for all of the increase in aggregate market

power in US manufacturing in this period. The rise of labor-market power is driven both

by entry of new plants and increases within existing plants, and is largely a within-industry

phenomenon. This suggests that higher labor-market power is driven by changes in labor

demand, and in particular by the emergence of new technologies. As plants innovate, they

grow output but also reduce the share of output which goes to production workers. We

investigate this directly in Section 1.5.3 below. First, we investigate the consequences of

labor-market power.

1.5.2 Consequences of the Rise in Labor-Market Power

We now investigate the consequences of labor-market power. How has δ impacted wages and

employment? Which plant characteristics is it correlated with? To begin with, we regress

logs of wages, labor inputs, and labor expenditures on the log labor-market wedge δ at the

plant level. The model for this regression is:

log(Lijt) = β0γt + γj + β1 log(δijt) + εijt

Where Lijt on the LHS is either labor inputs (production worker hours), wages, or total labor

compensation. The form of the regression implies that the coefficients should be interpreted

as elasticities.

Table 1.4 shows the results with various sets of fixed-effects. Columns 1-3 include only year

FEs while columns 4-6 include year and NAICS6 industry FEs. In each case, a larger δ

reduces labor inputs four to six times as much as it reduces wages. For instance, when
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including year and industry fixed effects, a 1% increase in δ decreases wages by 0.027%

but decreases (production) labor inputs by 0.17%. Table 1.4 therefore shows that our labor-

market wedge measures quantity restrictions on the part of firms, rather than wage reductions

(of course, the two are tightly linked by the firm’s residual labor supply curve). Table E.2

in Appendix E shows the same result holds when adding firm or plant fixed-effects. This

is equivalent to doing the regression in changes, and so suggests that firms and plants with

large increases in δ reduce hiring 2-6 times more than they reduce pay. This is consistent

with a narrative of technological change in the labor market: more productive, capital-

augmented insiders capture high pay while outsiders are not hired. What proportion of the

Table 1.4: Regression of Wages, Labor Inputs, and Labor Expenditures on
Labor-Market Wedge

Year FEs Year, NAICS6 FEs
(1) (2) (3) (4) (5) (6)
w ` wl w ` wl

log(δ) -0.0168*** -0.049*** -0.134*** -0.0272*** -0.173*** -0.193***
(0.000358) (0.000962) (0.00119) (0.000639) (0.00188) (0.00201)

Constant 0.191*** 0.145*** 7.861*** 0.183*** 0.0475*** 7.814***
(0.00064) (0.00172) (0.00212) (0.000727) (0.00214) (0.00229)

N 646000 646000 646000 646000 646000 646000

R2 0.054 0.031 0.105 0.221 0.044 0.336
AIC 832,700 2,111,000 2,382,000 706,800 2,102,000 2,189,000

* p < 0.05, ** p < 0.01, *** p < 0.001
(1)-(3) Year fixed effects; (4)-(6) Year, NAICS6 fixed effects.
Labor-expenditure- and ASM-sampling-weight- weighted regression of log wages, labor inputs, and labor
expenditures on log labor-market wedge δ.
Source: ASM/CMF.

large decrease in the manufacturing labor share can be plausibly explained by the rise in

the labor-market wedge? Section 1.2.2 showed that the aggregate labor share is inversely

proportional to both markup and labor-market wedges: WL
PQ = θL

µδ . Figure 1.4 shows that

labor shares are indeed strongly negatively correlated with labor-market wedges. Regressing

the establishment-level labor share on log(δ) with year and NAICS6 fixed-effects29 yields

29. The results in the previous section, in particular Table 1.3, suggest that this is a reasonably complete
set of fixed-effects.

36



a coefficient of approximately -0.09: a 1% increase in δ yields a reduction in the labor

share of 0.09 percentage points30 This is a within-year cross-sectional relationship because

of the year fixed-effects. But applying this estimate to the time series in a back-of-the-

envelope calculation suggests that the 144% increase in δ between 1973 and 2014 reduced

the manufacturing labor share by 13%. The labor share in manufacturing fell from 62%

in 1967 to 41% in 2012, so this calculation implies that two-thirds (62%) of the decline

in the manufacturing labor share can be attributed to rising labor-market power. This

regression ignores the reallocation of labor and markdowns across establishments over time,

but it suggests that changes in labor-market power are important contributors to declines

in the aggregate labor share in manufacturing. Figure 1.4 compares the cross-sectional

relationship between the labor share of value added and the labor-market wedge at different

levels of aggregation. The figures plot regressions of the form LSifjt = α + γt + γj + γy +

βchange

[
log(δifjt)

]
+ εifjt, where y ∈ {i, f}. The left figure includes firm, NAICS6, and

year fixed-effects (fjt), while the right figure includes plant, NAICS6, and year FEs (ijt).

Including firm (plant) FEs gives these regressions the interpretation of changes : they ask,

how do labor-shares change when δ changes at the firm (plant) level?

In each case, the cross-sectional relationship between labor-market wedges and labor shares

continues to hold in changes: greater increases in δ lead to smaller increases (greater de-

creases) in the labor share. The relationship is twice as large (βchange is twice as large)

when including firm fixed-effects (that is, controlling for firm-level characteristics). This

implies that plant-level variables, such as specific technology and managerial nous, are more

important in mediating the impact of labor-market wedges δ than firm-level variables such

as overall technological or managerial choices. This contrasts with the industrial organi-

zation literature emphasizing firm-level optimization of multi-plant organizations (Atalay

et al. (2014)). It is also another piece of supporting evidence for the importance of techno-

30. The regression model is LSijt = α+γt+γj +β log(δijt) + εijt, where the γx represent fixed-effects with
respect to x.

37



Figure 1.4: Binscatter of Labor-Market Wedge against Labor Share

Notes: Binscatter of log(δ) against the labor share of value added WL
PQ−CM at the plant

level with year & NAICS6 (jt) fixed effects. The figure residualizes log(δ) and the labor
share against year and NAICS6 fixed-effects, then bins it into 100 equally-sized bins and

plots the mean of the labor share within each bin along with a (red) line-of-best-fit. Figure
is weighted by ASM sampling weight and labor expenditures.

logical change in driving δ and its economic impacts. Figure 1.6 examines the relationship

between the labor-market wedge δ and the number of workers at a plant. We plot means of

log(δ) and total employees (log(tpw+oe)) against each other with year and industry fixed-

effects (left) and year, industry, and firm fixed-effects (right). In the cross-section (left

figure), plants with larger labor-market wedges do not have significantly more or fewer to-

tal workers. Combined with the evidence in Table 1.4, this suggests that plants with high

labor-market wedges reduce production employment and increase nonproduction (manage-
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Figure 1.5: Binscatter of Labor-Market Wedge against Labor Share, Plant and
Firm Fixed Effects

(a) Firm, NAICS6, Year FEs (b) Plant, NAICS6, Year FEs

Notes: Binscatters of log(δ) against the labor share of value added WL
PQ−CM at the plant

level with year, NAICS6, firm (fjt, left) and year, NAICS6, plant (ijt, right) fixed effects.
Each figure residualizes log(δ) and the labor share against fjt or ijt fixed-effects, then bins
it into 100 equally-sized bins and plots the mean of the labor share within each bin along

with a (red) line-of-best-fit. Figure is weighted by ASM sampling weight and labor
expenditures.
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Figure 1.6: Binscatter of Labor-Market Wedge Against Plant Workers

(a) Year, NAICS6 FEs (b) Plant, NAICS6, Year FEs

Notes: Binscatters of log(δ) against the log total number of workers at the plant level with
year, NAICS6 (jt, left) and year, NAICS6, firm (fjt, right) fixed effects. The total number

of workers is defined as (production workers + nonproduction workers). Each figure
residualizes log(δ) and the total number of workers against jt or fjt fixed-effects, then bins
log(delta) into 100 equally-sized bins and plots the mean of the number of workers within
each bin along with a (red) line-of-best-fit. Figure is weighted by ASM sampling weight

and labor expenditures.

rial) employment. This is another piece of evidence for a relationship between technological

change and the labor-market wedge: large δ are associated with more intensive use of man-

agerial technologies. Moreover, plants with large labor-market wedges subsequently reduce

hiring (Figure 1.6, right panel: including firm fixed-effects makes this figure analagous to

a regression in changes). Thus large and more complex31 plants have higher labor-market

wedges. These plants have a lower labor-share, more of which is explained by plant-level

variation. They have more managerial employees and fewer production workers, and subse-

quently shrink employment. In Figure E.8 in Appendix E, we show that plants with higher

revenues have larger labor-market wedges, and that rising revenues are associated with rising

wedges. Figure E.10 in Appendix E shows that there is essentially no relationship between

the labor-market wedge and productivity (TFPR).

31. In the sense of greater managerial intensity.
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In sum, plants with higher labor-market wedges reduce hiring more than they reduce pay,

while substituting managers for production workers. They also have significantly lower la-

bor shares of value added: indeed, a rough calculation suggests that fully two-thirds of the

aggregate decline in the aggregate manufacturing labor share can be attributed to increased

labor-market power. Plants with higher revenues tend to have higher δ, though there is no

strong relationship with productivity. Thus our labor-market wedge has significant conse-

quences at the plant level. But what drives increases in labor market power? We turn to

this question next.

1.5.3 Micro Sources of Labor-Market Power

Labor-market wedges have increased significantly in the past 40 years, and are robustly

associated with a range of outcomes at the plant level. But what caused the rise in labor-

market power? In this section, we find that direct measures of plant technology strongly

correlate with increases in labor-market power. Concentration, by contrast, does not.

Technology

Figure 2.4 shows that the aggregate labor-market wedge had inflection points upward in

the early 1990s and the early 2000s. These coincide with the ICT revolution as well as

the China shock. We found that much of the rise in the wedge is driven by entrants (and

incumbents post-2002), and that industry is an important determinant of plants’ markdown

power. This suggested a technological explanation for the labor-market wedge. In this

section, we directly examine how changes in plants’ technology correlate with changes in

their labor-market wedges.

The ASM/CMF includes several plant-level measures of ICT-related technological change in

recent years. In 2000 and 2001, plants were asked to report their new computer expenditures.

In 1997, they were asked about their software expenditures. And in 1997, 2002, and each year
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after 2006, they were asked about their cost of purchased communications. We normalize

each of these measures by dividing by total plant employment, then regress plant-level labor-

market wedges on these technological ratios with fixed effects. For plants i in NAICS6

industries j in years t, we run:

log(δijt) = α + γj + γt + βTijt + εijt (1.12)

Where the measure of technology Tijt ∈ {log
(

nmc
workers

)
, log

(
cs

workers

)
, log

(
cpc

workers

)
} for

ASM technological measures nmc ≡ (new computer expenditures), cs ≡ (software expendi-

tures), cpc ≡ (cost of purchased communications). Since the ASM variables are in nominal

terms, we first deflate our measures of technological expenditures using the NBER-CES ship-

ments price deflator at the 6-digit NAICS level. We normalize by the number of workers

(production workers plus nonproduction workers) to obtain a measure of technological in-

tensity, rather than pick up effects from plant size. The idea is to test whether plants which

spend more on technology relative to their workforce differ systematically in δ. Our results

are robust to normalizing these measures by revenues instead of number of workers, as well as

to directly controlling for plant size. Table 1.5 shows the results. All three technological in-

tensity measures are economically and statistically significant determinants of labor-market

wedges32. The elasticity of the plant-level δ with respect to new computer expenditures per

worker is 0.08, so that a 1% rise in computer expenditures implies a 0.08% rise in δ. The

elasticity of the labor-market wedge with respect to software is 0.02, and with respect to com-

munications expenditure 0.1. These are large effects, since the overall cross-sectional mean of

δ is approximately 1.6. Moreover, variation in these measures of technological expenditures

explain a significant portion of the variation in plant-level δ.

Nor are these results driven by outliers: Figure 1.7, Figure 1.8, and Figure 1.9 show cross-

sectional binscatters of the regressions in Table 1.5. In each case, plants which spend more on

32. We cannot run a joint regression since these measures are available in the ASM/CMF in different years.
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Table 1.5: Regression of Labor-Market Wedge on Direct Measures of
Technology

Year, NAICS6 FEs Year FEs
(1) (2) (3)

log(δ) log(δ) log(δ)
New Computer Expenditures/Worker (00-01) 0.0752***

(0.00419)
Purchased Communications/Worker (97, 02, 06-14) 0.109***

(0.00168)
Software Expenditures/Worker (97) 0.0209***

(0.00551)

N 12,000 6,200 16,000

R2 0.837 0.856 0.804
AIC 24,330 11,080 356,000

* p < 0.05, ** p < 0.01, *** p < 0.001
Labor-expenditure- and ASM-sampling-weight- weighted regression of log labor-market wedge δ on log
new computer expenditures per worker (row 1), log cost of purchased communications per worker (row
2), and log software expenditures per worker (row 3). New computer expenditures are available 2000-
2001, software expenditures 1997, cost of purchased communications 1997, 2002, 2006-2014.
Technological variables are deflated and normalized by (workers) ≡ (production workers + other em-
ployees).
Source: ASM/CMF.

ICT technology have larger labor-market wedges. This pattern is consistent across the range

of technology spending and labor-market wedges: it is not driven by a cohort of exceptional

‘superstar’ firms. Appendix E shows that including firm or plant fixed-effects does not change

this positive association. Thus plants which buy more computers, more software, and more

communications have higher labor-market wedges, and plants with larger increases in these

measures have larger increases in δ (including plant or year fixed effects is equivalent to a

regression in differences). Along with the suggestive findings in the previous section, this is

strong evidence that the increase in the labor-market wedge is driven by technological change,

and in partcular by the automation and computerization of the ICT revolution.

In Figures 1.10 - 1.12, we illustrate the effect of technological investment during the inflec-

tion years of the late 1990s. Each of these figures divides one of real per-worker computer

purchases, software purchases, and communications purchases into three terciles in a base
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Figure 1.7: Binscatter of Labor-Market Wedge against New Computer
Expenditures Per Worker

Notes: Binscatter of log(δ) against log new computer expenditures per worker

log
(

nmc
workers

)
at the plant level with year & NAICS6 (jt) fixed effects. The figure

residualizes log(δ) and per-worker computer expenditures against year and NAICS6
fixed-effects, then bins each into 100 equally-sized bins and plots the mean of log(δ) within
each bin along with a (red) line-of-best-fit. Workers are defined as production workers plus

nonproduction workers. New computer expenditures are deflated using a NAICS6
NBER-CES shipments price index. Figure is weighted by ASM sampling weight and labor

expenditures. For years 2000-2001 due to data availability.

year, then plots the evolution of the average labor-market wedge within these (fxied) terciles

in subsequent years. The idea is to see to what extent higher ICT investment in the late

1990s impacts later changes in labor-market wedges (the base year is 2000 for computer ex-

penditures and 1997 for software and communications purchases because of data availability
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Figure 1.8: Binscatter of Labor-Market Wedge against Software Expenditures
Per Worker

Notes: Binscatter of log(δ) against log software expenditures per worker log
(

cs
workers

)
at

the plant level with NAICS6 (j) fixed effects. The figure residualizes log(δ) and per-worker
software expenditures against NAICS6 fixed-effects, then bins each into 100 equally-sized

bins and plots the mean of log(δ) within each bin along with a (red) line-of-best-fit.
Workers are defined as production workers plus nonproduction workers. Software

expenditures are deflated using a NAICS6 NBER-CES shipments price index. Figure is
weighted by ASM sampling weight and labor expenditures. For year 1997 due to data

availability.

limitations). If technology had no impact on δ, we would expect the three lines in each graph

to be roughly equivalent after the base year.

Instead, we see that ICT investment has a significant impact on plants’ subsequent labor-

market wedges. Figure 1.10 shows that the top two terciles (blue, red) of per-worker computer
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Figure 1.9: Binscatter of Labor-Market Wedge against Communications
Expenditures Per Worker

Notes: Binscatter of log(δ) against log cost of purchased communications per worker

log
(

cpc
workers

)
at the plant level with year & NAICS6 (jt) fixed effects. The figure

residualizes log(δ) and per-worker communications purchases against year and NAICS6
fixed-effects, then bins each into 100 equally-sized bins and plots the mean of log(δ) within
each bin along with a (red) line-of-best-fit. Workers are defined as production workers plus

nonproduction workers. Communications purchases are deflated using a NAICS6
NBER-CES shipments price index. Figure is weighted by ASM sampling weight and labor

expenditures. For years 1997, 2002, and 2006-2014 due to data availability.

investment saw their average post-2000 labor market wedges increase by almost 50% by 2014,

while the average wedge of the lowest tercile (black dashed) increased by 20%. Moreover,

the level of the aggregate wedge is higher for these terciles (1.8 in 2014) than for the lowest

tercile (1.25 by 2014). Figure 1.11 shows a similar story for 1997 per-worker software expen-
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ditures: the highest tercile of plants by software expenditures (blue) increased their wedges

by almost 30% to 1.8 by 2008, while the middle (red) and lower (black dashed) terciles saw

smaller increases. The three terciles converge after 2008, which suggests that 1997 software

expenditure probably depreciated by the late 2000s. Finally, Figure 1.12 shows that the

highest two terciles of 1997 per-worker communications expenditures have higher levels of

average δ until 2007, again suggesting faster depreciation of communications investment. In

each of Figures 1.10 - 1.12, plants which on average invest more in technology have higher

levels of and larger increases in their average labor-market wedges.

We see the results in this section as strong evidence for a technology-centered explanation of

the increase in the manufacturing-wide labor-market wedge in Section 1.5.1. Direct measures

of plant-level technological intensity are strongly positively correlated with plants’ labor-

market wedges both in the cross-section and in changes. This correlation is not driven by

outliers, and holds with a range of fixed-effects. It is also robust to different measures of

plant size in computing intensity, as well as to running the analysis in levels of technology

spending. Finally, plants’ levels of technological spending predict their positions in the

distribution of labor-market wedges in subsequent years. In short, technological investment

correlates strongly with labor-market wedges.

Indirect Technology: Input Intensity

In addition to the direct measures of technological intensity in the previous section, plants’

labor-market wedges are positively correlated with measures of technology-correlated input

intensity. In particular, we examine whether plants which more intensively use capital or

nonproduction labor have higher labor-market wedges. More technologically advanced plants

are likely to have more managerial inputs (Atalay et al. (2014)) and more capital.

We regress plants’ labor-market wedge on their nonproduction intensity and capital intensity,
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Figure 1.10: Evolution of Labor-Market Wedge by 2000 Tercile of New
Computer Expenditures Per Worker

Notes: 2000-2014 evolution of labor-market wedge δ after 2000 by tercile of (real new
computer expenditures) / (worker). Plants are sorted into three terciles by per-worker

computer expenditures, then subsequent evolution of average δ is plotted within each 2000
tercile. Workers are defined as production workers plus nonproduction workers. New

computer expenditures are deflated using a NAICS6 NBER-CES shipments price index.
Terciles are weighted by ASM sampling weight and labor expenditures. Beginning year is

2000 due to data availability

both individually and jointly:

log(δijt) = α + γj + γt + βIntijt + εijt

Where Int ∈ {log
(

K
N+L

)
, log

(
N

N+L

)
is alternately the capital or nonproduction intensity.
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Figure 1.11: Evolution of Labor-Market Wedge by 1997 Tercile of Software
Expenditures Per Worker

Notes: 1997-2014 evolution of labor-market wedge δ after 1997 by tercile of (real cost of
software) / (worker). Plants are sorted into three terciles by per-worker software

expenditures, then subsequent evolution of average δ is plotted within each 1997 tercile.
Workers are defined as production workers plus nonproduction workers. Software

expenditures are deflated using a NAICS6 NBER-CES shipments price index.Terciles are
weighted by ASM sampling weight and labor expenditures. Beginning year is 1997 due to

data availability.

K is a plants’ capital stock, and N is its number of managers (nonproduction workers). We

include year and NAICS6 fixed-effects as in the previous section 1.5.3. Also as in our previous

analysis, we normalize capital stocks and nonproduction workers by total plant employment

N + L.
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Figure 1.12: Evolution of Labor-Market Wedge by 1997 Tercile of
Communications Expenditures Per Worker

Notes: 1997-2014 evolution of labor-market wedge δ after 1997 by tercile of (real cost of
purchased communications) / (worker). Plants are sorted into three terciles by per-worker

communications expenditures, then subsequent evolution of average δ is plotted within
each 1997 tercile. Workers are defined as production workers plus nonproduction workers.

Communications purchases are deflated using a NAICS6 NBER-CES shipments price
index. Figure is weighted by ASM sampling weight and labor expenditures. Beginning year

is 1997 due to data availability.

Table 1.6 shows that higher nonproduction or capital intensity correlates strongly with a

higher labor-market wedge at the plant level. The elasticity of δ with respect to either

intensity is approximately 0.2. When considered jointly (column 3 of Table 1.6), the elasticity

of δ with respect to either measure is approximately 0.17. These are significant effects both

statistically and economically. Figure 1.13 and Figure 1.14 show that these correlations are
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not driven by outliers, but hold across the range of δ and each intensity. The results in

Table 1.6 are robust to using revenues as a measure of firm size, and to exlcluding the L+N

normalization. Appendix E shows that they are also robust to including different sets of

fixed effects.

Table 1.6: Regression of Labor-Market Wedge on Input Intensity Measures

Year, NAICS6 FEs
(1) (2) (3)

log(δ) log(δ) log(δ)

log
(

K
N+L

)
0.204*** 0.168***

(0.00112) (0.00114)

log
(

N
N+L

)
0.213*** 0.168***

(0.00127) (0.00129)

N 646,000 646,000 646,000

R2 0.813 0.812 0.818
AIC 1,360,800 1,365,000 1,344,000

* p < 0.05, ** p < 0.01, *** p < 0.001
Labor-expenditure- and ASM-sampling-weight- weighted regression of log labor-market wedge δ on log
capital intensity (column 1), log nonproduction intensity (column 2), and both intensities jointly (column
3). Input intensity in each case is defined as X

N+L , with X the input in question and N + L total plant
employment.
Source: ASM/CMF.

Thus plants with greater managerial or capital intensity likely also have higher labor-market

wedges. These intensities in turn are outcomes of technological change: plants which invest

in new technologies tend to have more capital and more managers. Technological progress

is associated with increased intangibles and organizational complexity at the plant level.

Therefore we see this section as providing robust supporting evidence to the technology

story in the previous section 1.5.3. Higher technological investment leads directly to more

spending on computers, software, and communications, which are associated with greater

δ. Such investment also leads to capital deepening and greater managerial capital, which

are also positively correlated with δ. Technological change, in other words, is positively

correlated with plants’ labor market wedges both directly and indirectly.
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Figure 1.13: Binscatter of Labor-Market Wedge against Capital Intensity

Notes: Binscatter of log(δ) against log capital per worker log
(

K
N+L

)
at the plant level

with year & NAICS6 (jt) fixed effects. The figure residualizes log(δ) and per-worker capital
intensity against year and NAICS6 fixed-effects, then bins each into 100 equally-sized bins
and plots the mean of log(δ) within each bin along with a (red) line-of-best-fit. Workers are

defined as production workers plus nonproduction workers. Figure is weighted by ASM
sampling weight and labor expenditures.

Concentration

We now investigate the relationship between labor-market wedges and concentration. Do

more concentrated labor markets imply greater δ? A simple nested CES model of labor

supply implies that firms which are large in their local labor markets have greater markdowns

(see Appendix D). Under static Cournot competition in the labor market (Benmelech et

al. (2018), Azar et al. (2020), Berger et al. (2019)), the labor HHI is proportional to the
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Figure 1.14: Binscatter of Labor-Market Wedge against Nonproduction
Intensity

Notes: Binscatter of log(δ) against log nonproduction workers per worker log
(

N
N+L

)
at

the plant level with year & NAICS6 (jt) fixed effects. The figure residualizes log(δ) and
per-worker nonproduction intensity against NAICS6 fixed-effects, then bins each into 100

equally-sized bins and plots the mean of the log(δ) within each bin along with a (red)
line-of-best-fit. Workers are defined as production workers plus nonproduction workers.

Figure is weighted by ASM sampling weight and labor expenditures.

wage-MRPL margin.

In our sample of US manufacturing plants from 1973 to 2014, we find that labor market con-

centration and wage markdowns are only weakly related. As a measure of concentration, we

compute a labor quantity HHI as the sum of the squared share of production workers within
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Figure 1.15: Binscatters of Labor-Market Wedge against Labor HHI

Year FEs Year, CZ FEs

Notes: Binscatters of log(δ) against labor quantity HHI at the commuting-zone level with
year (t, left) and year, CZ (ct, right) fixed effects. Labor quantity HHI takes the sum of the
squared shares of production employees within each commuting zone and year. Each figure
then residualizes log(δ) and the labor HHI against t or ct fixed-effects, then bins the labor
HHI into 100 equally-sized bins and plots the mean of log(delta) within each bin along with
a (red) line-of-best-fit. Figure is weighted by ASM sampling weight and labor quantities.

each commuting zone-year:
∑
i∈ct

(
`ict
Lct

)2
33. We use a commuting zone as an approximate

measure of a local labor market. In Figure 1.15, we plot each CZ-year HHI against its aver-

age labor-market wedge34 with year (left) and year, CZ (right) fixed effects. We find a weak

but positive cross-sectional relationship between labor HHIs and δ. Past an HHI of approxi-

mately 0.2, there is no meaningful relationship between concentration and the labor-market

wege. Within the entire sample, the relationship is weak. Meanwhile, the right panel of Fig-

ure 1.15 shows that changes in a commuting zone’s HHI are approximately uncorrelated with

changes in its average labor-market wedge (including CZ fixed effects implies that the regres-

sion is in changes). Thus, labor markets which become more concentrated do not increase

their labor-market wedges, on average. This suggests that the workhorse assumptions behind

33. Here Lct is the total production labor within a CZ-year.

34. We use labor quantity weights for this average, since the HHI uses quantity shares. The results below
are robust to using labor expenditure weights.
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some of the labor-market power literature might need reevaluation. Concentration may not

be an appropriate measure of labor market power: the relationship between the two is not

monotonic and increases in concentration do not correlate with increases in labor-market

power.

1.5.4 Macro Sources of Labor-Market Power

We now turn to macroeconomic determinants of labor-market wedges. The rise in the aggre-

gate wedge coincides with a fall in manufacturing unionization, the trade opening to China,

and significant changes in manufacturing technology. How important are these factors in

driving δ? In this section, we investigate this question using aggregate data from the Amer-

ican Community Survey (ACS) and Current Population Survey (CPS), as well as data on

job tasks from Autor and Dorn (2013). We aggregate our data up to the industry level,

then merge in our demographic and task data (for details, see Section 1.4). We consider

several explanatory variables of interest. First, we consider the fraction of prime-aged work-

ers in the labor force which are unionized as a potential driver of labor-market wedges35.

Second, the fraction of prime-aged workers in the labor force who work in computer occu-

pations36 as a proxy for technological change. Third, we consider an indicator for being

in the top third of routine-task intensity as defined by Autor and Dorn (2013): this takes

the value 1 if an industry is particularly intensive in routine tasks, and 0 if not37. Rou-

tine tasks are moderately-skilled, repeatable tasks which are easily automated (for instance

bank tellers; Autor and Dorn (2013)). Routine-task intensity therefore measures suscep-

tibility to technological change. Finally, we include an indicator variable for top-third of

task offshorability. We see these explanatory variables are broadly reflecting institutional

35. As in Section 1.4, we do not limit our analysis to the manufacturing sector only, because workers may
substitute between sectors. Our results are robust to limiting our macro variables to the manufacturing
sector.

36. Computer occupations are defined as occupation codes 64 and 299. See Appendix A for details.

37. See Appendix A for details about the construction of this variable.
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and technological changes in labor-market conditions. Increases in the labor-market wedge

coincide temporally with both the early China shock and the ICT/automation revolution.

The secular nature of the rise in δ also suggests a role for changing unionization trends. Our

macro analysis runs these explanatory factors against each other.

We exploit sub-national variation in labor-market wedges to regress δ on our macro measures

at the industry (here defined with ind1990 Census industry codes) level, including year fixed-

effects to control for overall changes:

log δjt = α + γt + β1(computer occ.jt) + β2(union member jt)

+ β3RTH jt + β4OSH jt + εjt (1.13)

Where γt is a year fixed-effect, RTH is the fraction of highly-routine tasks (top third) within

an industry, and OSH is the fraction of highly-offshorable tasks within an industry (top

third)38. We run (1.13) for years 1980, 1990, 2000, and 2010, pooling the two years before

and after each decadal year together. We do this to reduce measurement error and due to

data availability with the ACS sample. The regressions are weighted by labor expenditure

weight (for the δ aggregation) and the individual observation weight perwt in the ACS/CPS

(for the macro variable aggregation; see Appendix A for details).

Table 1.7 shows the results. Column 1 includes all explanatory variables, while Columns 2-5

include each variable separately. There are two main points to take from these results. First,

industries with greater union membership do not have lower labor-market wedges; indeed,

more-unionized industries have larger δ. Higher unionization rates may be a response to ris-

ing δ, or automation may have proceeded faster in these industries. Therefore deunionization

is not likely to be a significant cause of the rise in the aggregate wedge. Second, industries

with higher routine-task intensity have lower labor-market wedges. A one percentage-point

38. RTH and OSH are indicators aggregated with observation weights, so represent fractions.
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decrease in an industry’s routine-intensive occupations leads to a 2.3% fall in its average

labor-market wedge. This is consistent with a ‘hollowing-out’ narrative (Autor and Dorn

(2013)) in which automation and ICT reduces demand for routine (intermediate-skilled) jobs

while increasing demand for manual (low-skilled) and abstract (high-skilled) jobs. Industries

with fewer routine jobs are therefore likely to have adopted more ICT technology and have

higher labor-market wedges.

Table 1.7: Regression of Labor-Market Wedge on Industry Aggregates

Year FEs

(1) (2) (3) (4) (5)

log(δ) log(δ) log(δ) log(δ) log(δ)

Frac. Computer Occs. 2.719 -2.296

(2.668) 2.673)

Frac. Union Member 0.965* 1.20**

(0.437) (0.405)

RTH -2.257*** -2.492***

(0.496) (0.402)

OSH 0.000375 0.0348

(0.429) (0.361)

(Constant) 0.501 -0.159* -0.445*** 0.841*** -0.199*

(0.293) (0.066) (0.118) (0.174) (0.0982)

N 200 280 200 280 280

R2 0.151 0.026 0.06 0.143 0.024

R2
adj. 0.125 0.012 0.046 0.131 0.009

AIC 510 746 525 710 747

* p < 0.05, ** p < 0.01, *** p < 0.001
Industry-level labor-expenditure- and perwt-weighted regression of log labor-market wedge δ on the
fraction of workers in computer-based occupations, the fraction of prime-aged workers in the labor force
which are unionized, and indicators for high routine-task intensity (RTH) and offshorability (OTH) by
task content. RTH and OTH are 1 if in top third of routine-task intensity or offshorability, and 0
otherwise. Computer occupations are defined as occ1990 occupation codes 64 and 229. Task measures
are from Autor and Dorn (2013). Sample is limited to prime-aged (25-64) workers in the manufacturing
labor force. Includes years 1980, 1990, 2000, and 2010, pooling each decadal year and the two years
before and after together. All variables aggregated to industry (ind1990) and year level.
Union data not available for 1980.
Source: ASM/CMF, IPUMS (ACS/CPS), Autor and Dorn (2013).
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Table 1.8 shows the same regression in long-differences; it aggregates the data to the in-

dustry and year level, take differences between 1990 and 2010, and run the first-differences

regression:

∆ log δjt = α + β1(∆computer occ.jt) + β2(∆union member jt)

+ β3∆RTH jt + β4∆OSH jt + εjt

Where the difference operator is between 1990 and 2010 (we choose these decadal years for

ease of comparison with the cross-sectional analysis above). Industries which were more

likely to move out of the top-third of routine-task intensity saw their labor-market wedges

decrease (Columns 1 and 4). The semi-elasticity of changes in δ with respect to high-routine-

task status is approximately -3.8: a 1 percentage point reduction in routine occupations in

an industry decreases its labor-market wedge by 3.8%. In changes, higher union membership

is weakly associated with a lower labor-market wedge. These results are robust to alternative

weighting39.

Thus our aggregated analysis provides further suggestive evidence of the technological origins

of the rise in the manufacturing labor-market wedge. ICT innovations eliminate manual-

intensive jobs while creating routine- and abstract-intensitve jobs, and we find that this pat-

tern is correlated positively with the labor-market wedge. Moreover, unionization rates are

not cross-sectionally negatively correlated with δ, which suggests that institutional and legal

factors are less important than technological change in creating labor-market wedges.

1.5.5 Discussion & Mechanism

The manufacturing labor-market wedge increased from approximately 1 in 1973 to 2.1 in

2014, with upward inflection points around 1990 and 2002. This wedge reflects marginal

39. In unreported results, we tried weighting δ by number of production workers with similar results.
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Table 1.8: Long-Differences Regression of Labor-Market Wedge on Industry
Aggregates

(1) (2) (3) (4) (5)

∆ log(δ) ∆ log(δ) ∆ log(δ) ∆ log(δ) ∆ log(δ)

∆ Frac. Computer Occs. -7.542 -6.697

(3.667) (3.82)

∆ Frac. Union Member -1.664** -1.651**

(0.535) (0.56)

∆ RTH -3.772*** -2.47

(1.363) (1.391)

∆ OSH -0.756 -1.036

(0.824) (0.885)

(Constant) 0.0141 -0.451*** 0.0786 0.249*** 0.367***

(0.138) (0.0818) (0.115) (0.0887) (0.0642)

N 65 70 65 70 70

R2 0.253 0.043 0.12 0.044 0.02

R2
adj. 0.204 0.029 0.106 0.03 0.005

AIC 97 111 102 111 113

* p < 0.05, ** p < 0.01, *** p < 0.001
1990-2010 long-differenced industry-level labor-expenditure- and perwt-weighted regression of log labor-
market wedge δ on the fraction of workers in computer-based occupations, the fraction of prime-aged
workers in the labor force which are unionized, and indicators for high routine-task intensity (RTH) and
offshorability (OTH) by task content. RTH and OTH are 1 if in top third of routine-task intensity or
offshorability, and 0 otherwise. Computer occupations are defined as occ1990 occupation codes 64 and
229. Task measures are from Autor and Dorn (2013). Sample is limited to prime-aged (25-64) workers
in the manufacturing labor force. All variables aggregated to industry (ind1990) and year level for years
1990 and 2010, then differenced.
Union data not available for 1980.
Source: ASM/CMF, IPUMS (ACS/CPS), Autor and Dorn (2013).

revenue products rising faster than wages. It is driven by new plants and, after 2002, by

rises in the individual wedges of incumbent plants. And it is largely a within-industry (rather

than within-geography) phenomenon. These facts suggest a technological explanation for the

rise in the labor-market wedge: the rise in the wedge coincides with the timing of the ICT

shock.

Indeed, we find that plants which spent more on technology in the late 1990s had higher

59



levels and greater increases in their labor-market wedges. Plants with more physical and

managerial capital relative to their workforce have higher wedges. At the aggregate level, we

find that higher wedges are associated with greater intensity of manual and abstract jobs,

consistent with the idea that computer-oriented technological changes hollows out routine

jobs but boosts the lower and upper ends of the skill distribution. We find no evidence

that unionization plays a significant role in rising labor-market wedges, and we find that

geography-specific variables do not explain much of the variation in these wedges.

Therefore, we find that changing technology in the manufacturing sector lead to rising labor

market power. As firms invest in technologies, they improve labor productivity, which creates

a surplus. However, workers’ wages are not determined solely by this surplus but are also

mediated through local labor markets. Thus, workers do not capture much of the value

created from technological change. In a Nash bargaining framework, we can view this as an

increase in the employer’s outside option or a decrease in worker bargaining power. In either

case, technological change creates additional surplus but also creates the conditions for firms

to capture most of it.

What is the specific mechanism by which technology enables firms to capture most of the

additional surplus? We have seen (Figure 1.15) that changes in concentration alone do not

predict changes in the labor-market wedge. But perhaps technological change polarizes local

labor markets. This, combined with reductions in worker mobility, reduce workers’ outside

options or bargaining power and enable firms to capture most of the value created by recent

technological progress. That is, perhaps the threat of replacement by another worker (or

a robot) forces manufacturing workers to accept lower wages at high-tech manufacturing

plants. To link firm outside options explicitly to worker choices requires a model of search,

which is outside the scope of this paper. Nonetheless, we find - with both timing, direct,

and indirect evidence - that the late-1990s technological revolution greatly increased labor

market power in manufacturing.
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1.5.6 Comparison to Existing Literature

We now benchmark our results against recent literature. Broadly, we find that our labor-

market wedges are similar to those implied in several recent papers despite their not directly

analyzing labor market power. One line of literature has focused on the impact of automation

on labor markets. Acemoglu and Restrepo (2020) find that commuting zones with greater

robot penetration saw lower wages and reduced employment. Automation (as proxied by

robot penetration) is a close cousin of the technological change we study. Similarly, Ace-

moglu and Restrepo (2021) find that automation technologies displace workers with routine

skills - and that neither deunionization nor markup power significantly increased worker dis-

placement. This aligns closely with our findings, although Acemoglu and Restrepo (2021) do

not directly study markdowns and use a different measure of markups. Similarly, Autor and

Dorn (2013) find that automation reduces routine jobs and polarizes local labor markets.

We expand this analysis by showing that automation technologies also increase labor-market

power: even workers who remained employed after the large technological change captured

less of job surplus.

Another line of literature focuses on labor-market rents and rent-sharing as a proxy for

imperfect competition. These studies typically fit employment and wage data to models of

preferences, worker mobility, and wage determination to quantify the extent to which firms’

labor supply curves are imperfectly elastic. Lamadon et al. (2020) use matched worker-firm

tax data to show that there is significant imperfect competition in the US labor market.

In particular, they find inverse labor-supply elasticities of between 0.17 and 0.23. Our

estimate of δ implies an inverse labor supply elasticity ν = δ − 1, so our estimates are

somewhat larger than those in Lamadon et al. (2020). However, they study all sectors;

labor-market wedges are plausibly higher in manufacturing40. Our estimates of δ are not

directly comparable to rent-sharing elasticities, but Card et al. (2018) survey recent research

40. For instance, the labor share of value added is lower in the manufacturing sector.
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and find that rent-sharing elasticities on the order of 0.1-0.2. These imply imperfect labor-

market competition, though likely slightly lower labor-market wedges than we find. The

precise relationship between rent-sharing elasticities and labor-market wedges depends upon

the nature of production and the structure of labor markets41.

A third strand of empirical literature focuses on running regressions of industry level Herfindahl-

Hirschman indices on wages or wage growth. HHI most directly measures market power in

a symmetric Cournot model. In such a model, it can be shown that:42

MRPL− w
w

= HHI · (ν) (1.14)

Where ν is the inverse of the labor-supply elasticity. Solving for w and taking logs yields:

logw = logMRPL− log(1 +HHI · ν) (1.15)

Differentiating this with respect to HHI yields:

∂ logw

∂HHI
=

ν

ν · (HHI) + 1
≈ ν

Benmelech et al. (2018) (BBK) find that ∂ logw
∂HHI ≈ −0.025 in the US manufacturing industry

from 1977-2009. This implies that ν ≈ 0.975 ⇒ δ ≈ 2. We estimate a monopsony wedge

between 1.1 and 1.6 over this period. This is a slightly smaller wedge to that implied by

BBK (though this comparison is imprecise since they do not specify a model; we heuristically

back out the markdown implied by their HHI-wage relationship).

BBK also find that the relationship between HHI and wages has become more negative over

time. They estimate that this ‘concentration effect’ grows 1.6-fold from 1977 to 2009 and

41. For example, with a Cobb-Douglas production function, an increase in TFP would be shared between
L and K depending on their relative contribution to output even absent any labor-market power.

42. This is the input market analogy to the typical Cournot output market analysis.
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twofold from 1991 to 2009 within 3-digit SIC industries in manufacturing. Our measure

of δ grows by 59 percent from 1972 to 2011, which is roughly in line with the increase in

monopsony power implied by BBK.

Azar et al. (2020) (AMS) find that ∂ logw
∂ logHHI ≈ −0.141 in the US services industry from

2010-2013. Differentiating (1.15) with respect to logHHI yields:

∂ logw

∂ logHHI
=

ν ·HHI
ν ·HHI + 1

Inserting the AMS estimate yields:

ν ≈ −0.14

1.14
· 1

HHI

Inserting their appropriately-weighted mean HHI yields ν ≈ 0.39, and therefore δ ≈ 1.4,

which is close to our estimates. Note that we focus on the manufacturing sector rather than

the services sector.

Finally, Berger et al. (2019) show that local labor-market HHIs in US manufacturing have

fallen since 1977. They use a nested CES model of labor-market competition to translate

falling HHIs into falling labor-market wedges (see Appendix D). Our estimated labor-market

wedge δ is not correlated with local HHI in changes (Figure 1.15). We obtain our wedges

from a production model, rather than inferring them from concentration measures.

In sum, we find labor input wedges close to those implied by the HHI-focused BBK and

AMS despite the fact that neither paper directly analyzes markdowns or labor wedges. We

find signfiicant evidence of imperfect competition in labor markets, similar to Lamadon et

al. (2020) and the literature surveyed in Card et al. (2018). We find strong evidence that

changing technology increases labor-market wedges, in line with Acemoglu and Restrepo

(2020) and Acemoglu and Restrepo (2021).
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1.6 Conclusion

How important is market power in US manufacturing? We found that labor market power

in US manufacturing is large and has risen substantially: on average, manufacturing firms

pay production workers around 48% of their marginal revenue products in 2014. The rise

in the labor-market wedge was especially sharp in the late 1990s and early 2000s, and came

almost exclusively from new manufacturing plants. Oligopsonistic power decreases plant

employment and, to a lesser extent, wages. It accounts for as much as two-thirds of the

decrease in the manufacturing labor share.

We found that plants’ labor-market wedges are strongly correlated with technology-related

expenditures on computers, software, and communications in both levels and changes. At

the commuting-zone and industry level, higher labor-market power is positively correlated

with higher manual and abstract tasks, but not correlated with union membership. We

conclude that technological change was a significant contributing factor to the increase in

manufacturing labor-market wedges.

Finally, we developed a flexible technique for estimating labor-market wedges. This method,

which uses a modified proxy-variable framework, enables researchers to estimate arbitrary

numbers of input- and output-market wedges so long as one input is competitive.

Our results suggest two main conclusions. First, labor-market power is a very important

(indeed, the dominant) component of an aggregate market-power wedge. Rather than ris-

ing markups enabling monopolistic firms to raise prices and underutilize labor inputs, we

explored an alternative possibility: that market power is a composite of output and input

wedges; of markup and markdown power. Of the two, markdowns are much the more im-

portnat. We found that manufacturing labor-market wedges have doubled since 1973, while

markup wedges were approximately flat. Labor-market power is widespread in the manu-

facturing sector. This explains the sharp fall in the manufacturing labor share and rise in
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the profit share. Second, labor-market power arises in large part due to the adoption of

automation technology. Changing technology enables firms to capture most of the surplus

from increased labor productivity and TFP. This suggests that there may be scope for policy

action to counteract technology-driven rises in monopsony power.

Many questions remain about the nature of labor-market power. How does it interact with

skill-biased technological change? How has it evolved in other sectors? Can its rise be

corroborated in other quasi-experimental settings? What are its welfare implications? We

leave these questions to future research.
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Chapter 2

WHAT DO PRODUCTION-BASED MARKUP ESTIMATORS

ACTUALLY MEASURE?

2.1 Introduction

Markets efficiently allocate goods and services only when there is sufficient competition. For

researchers and policymakers alike, the nature of frictions to competitive markets matters.

If market power is mainly in the output market, then consumers experience welfare losses.

On the other hand, if the main source of competitive frictions is in the labor market, then

the welfare of workers is reduced. Finally, if adjustment costs are the main source of friction,

then the structure of search markets may matter more for welfare. These three cases have

distinct implications for welfare, economic modeling, and competitive regulation and policy.

In this paper, we argue that researchers and policymakers should broadly reinterpret existing

production-based markup estimates as input-market frictions.

While output market power represents a wedge between prices and marginal costs, input mar-

ket power1 is a wedge between input costs and marginal input revenues. Current production-

based ratio estimators estimate from the ratio of marginal cost to average cost: M = θL
WL
R

.

Following Bond et al. (2020), we call the empirical implementation of this approach the ratio

estimator. Average cost is generally observable, but marginal cost is not. Empirical papers

rely on different assumptions and approximations to recover marginal cost, most commonly

by estimating a production function. However, empirical application of the ratio estimator

is often limited by observable data. Researchers typically do not observe physical output

and must rely on revenues as a proxy. In this paper, we show that using revenues to proxy

1. Often called ’monopsony power,’ though the term is somewhat of a misnomer as it implies a single
buyer. Input market power can exist just as well with few or many buyers, just as output market power can
exist with oligopoly or monopolistic competition.
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for physical output means that the ratio estimator measures distortions in input markets

rather than output markets.

We first show the result in theory by working through a firm’s optimization problem. We infer

a composite output-market and input-market wedge from the difference between average and

marginal cost. With revenue data the output wedge exactly cancels, leaving only the input

wedge. In particular, our results suggest that the non-markup portion of the composite

wedge is better interpreted as input market power rather than a nuisance parameter implied

by misspecification. We then apply our result in practice to show that past research suggests

that trade shocks likely induce rises in labor market power or adjustment costs. Our method

suggests that several results in the literature can be reinterpreted as implications on input-

market wedges.

The difficulty in estimating market power with revenue data has a rich history in the in-

dustrial organization and international trade literature. Klette and Griliches (1996) first

emphasized the problem: absent data on prices, one cannot disentangle whether an increase

in revenue is due to an increase in market power or an increase in physical productivity2. In

other words, because markups distort both prices and input use, the ratio of prices to inputs

provide no information about output market power when only revenue data is available3.

Recent work has revisited the Klette and Griliches (1996) critique in the context of the ratio

estimators and shown that these estimators do not recover markups (Jaumandreu (2018)

and Bond et al. (2020)).

We build on this result by showing that ratio estimators applied to revenue data instead

recover input market wedges. We show that, since the distortions discussed in Klette and

Griliches (1996) apply symmetrically to all flexible inputs, the ratio estimator recovers the

extent to which a firm under-utilizes a monopsonistic input relative to a competitively-

2. Competitive settings rule out the first possibility.

3. That is, R = P (Q)Q in imperfectly competitive settings.
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supplied one. If this under-utilized input is subject to static monopsonistic distortions in

its input market, then the revenue ratio estimator recovers an input wedge (rather than a

markup wedge). Alternatively, these input wedges may be interpreted as adjustment costs

or factor-augmenting technology depending on the empirical setting. This result has two

important implications. First, existing work using ratio estimators to measure markups

should be reinterpreted as measuring input market power. For instance, De Loecker et

al. (2020) discuss rising markups across the U.S. and global economies. Our results suggest

that, to the extent that they use revenue elasticities, their paper can be interpreted as

measuring input market power. Raval (2020) compares markups from different inputs to test

the consistency of the ratio estimator; but our paper implies that this compares input market

distortions. The second implication of our findings is that there is much scope for measuring

important market frictions. For example, several recent papers (Dobbelaere and Mairesse

(2013), Lamadon et al. (2020), and Card et al. (2018)) have focused on the importance and

implications of labor market power. This paper shows the consistency of these estimates

even absent data on output prices. It also suggests potentially fruitful avenues for future

research on labor-market imperfections.

Much other recent research examines whether rising market power can explain changes in

economic dynamism and the fall in the labor share of income (Card et al. (2018), Berger

et al. (2019), Dobbelaere and Mairesse (2013), and Morlacco (2020)). For example, Karabar-

bounis and Neiman (2013) and Elsby et al. (2013) connect rising industry concentration to

falling labor shares since the early 2000s. De Loecker et al. (2020) suggest a similar con-

nection. Evaluating these competition hypotheses requires proper measurement of market

power. In this paper, we show that researchers and policymakers can reinterpret a common

estimator of pricing power as measuring input market power when using revenue data.
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2.2 Ratio Estimators with Revenue Data

In this section, we discuss the interpretation of ratio estimators of market power in the

context of revenue data. We show that, when firms face imperfect competition in input

markets, the ratio estimator is the correct expression for input market power. By contrast,

as emphasized in Bond et al. (2020), the ratio estimator says nothing about output market

power.

2.2.1 Statement of Problem

Firms produce output Q using an intermediate input L4. They face imperfectly elastic

supply schedules for L, with an input-price elasticity εL. They pay a single unit price W

per unit of L. Thus L is subject to static monopsonistic input distortions: firms optimally

choose to underhire L to keep their inframarginal input costs lower. Firms sell output in

imperfectly competitive markets. In particular, the elasticity of output price with respect to

quantity is εP 5.

Firms’ production function is given by Q = F (L). Firm revenue is given by R ≡ Q · P (Q),

where price depends on quantity because of imperfectly elastic demand.

Define the elasticity of output quantity with respect to L as θL ≡ ∂F (·)
∂L

L
Q . Similarly, the

elasticity of output revenue with respect to L is θLR ≡
∂R(·)
∂L

L
R . Since a single parameter

determines the relationship between price and quantity demanded, the two elasticities are

related by6 (see Appendix F for details):

θLR = (1 + εP )θL (2.1)

4. This analysis may be expanded to arbitrarily many intermediate inputs.

5. This is the inverse of the demand elasticity.

6. To obtain this result, totally differentiate the definition of revenue with respect to L.
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Revenue elasticities depend on both physical (production) elasticities and the elasticity of

demand. Since demand slopes downward, εP < 0 and revenue elasticities are always lower

then revenue elasticities. In other words, more production implies lower prices, which in turn

reduces revenues. Equivalently, define the markup M ≡ P
MC . Cost-minimization implies a

markup pricing ruleM = 1
1+εP

(see Appendix F for details). Applying this markup pricing

rule to (2.1) implies:

θLR =
θL

M
(2.2)

So that the markup completely determines the relationship between revenue and quantity

output elasticities.

2.2.2 Computing and Interpreting the Ratio Estimator

We assume that firms minimize costs. The cost-minimization problem is:

min
L
C(L) = W (L)L (2.3)

s.t. F (L) = Q

The input priceW (L) depends on L because of imperfectly elastic input supply. The envelope

theorem implies that the Lagrange multiplier of (2.3) is λ ≡ C ′(Q); that is, the firm’s

marginal cost is the shadow value of relaxing the cost-minimization constraint. Then the

markup M ≡ P
MC = P

λ . Now consider the first-order condition of (2.3) with respect to
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L:

[L] W +
∂W

∂L
L− λ∂F (L)

∂L
= 0

w +
∂W

∂L
L− C ′(Q)

∂F (L)

∂L
= 0

1 +
∂W

∂L

L

W
= C ′(Q)

∂F (L)

∂L

1

W

1 + (εL)−1 = P (1 + εP )
∂F (L)

∂L

1

W

1 + (εL)−1 = (1 + εP )
∂F (L)

∂L

L

Q

PQ

WL

1 + (εL)−1 = θL
PQ

WL
(1 + εP )

1 + (εL)−1 = θLR

(
WL

PQ

)−1

δ = θLR
PQ

WL
(2.4)

δM = θL
PQ

WL
(2.5)

Where the next-to-last line uses identity (2.1) and the last line uses identity (2.2). The RHS

of (2.5) is the commonly-used ratio estimator of markups: the product of a flexible input’s

quantity output elasticity and its inverse cost ratio. The LHS of (2.4) 1 + (εL)−1 is (one

plus) the inverse elasticity of input supply. This object is the monopsonistic analogue to the

markup rule (1 + εP ) ≡ M: it is a monopsonistic pricing rule. In other words, 1 + (εL)−1

represents an input-market wedge δ.

Typically, researchers assume that input markets are competitive and so δ ≡ 1. Then (2.5)

recovers markups M, but only if one can estimate the quantity elasticity θL7. But this

typically requires knowledge of output quantities, which are unavailable in most production

datasets. For example, the US Census of Manufactures only reports establishment sales R

(similarly, Compustat, the Chilean ENIA, and the Colombian and Slovenian manufacturing

7. Typically, this is done with either a proxy-style estimator as in Ackerberg et al. (2015) or a dynamic
panel estimator as in Blundell and Bond (1998).

71



surveys only have revenue data). Ignoring this and using the revenue elasticity θLR leads to

misspecification: the markup should then be identically unity (Bond et al. (2020)), which

defeats the purpose of estimating market power.

If the supply of L is perfectly elastic, so that δ is identically unity, then (2.5) recoversM. If

L is not competitively supplied, then δ > 1 and (2.5) implies that the ratio estimator recovers

a composite input- and output-market wedge δ · M. In this case markup wedges (perhaps

the result of market structure, barriers to entry, or innovation disparities) are isomorphic

to static input-market wedges (perhaps the result of input-market institutions or upstream

market structure).

On the other hand, if one can estimate revenue elasticities θLR, then (2.4) implies that the ratio

estimator recovers input-market wedges δ rather than markups (the ratio literature assumes

instead that this estimator recovers M). With revenue data and an appropriate estimation

strategy, a researcher can estimate oligopsonistic power in input markets. Thus using a ratio

estimator with a revenue output elasticity gives researchers important information about the

extent of monopsonistic power in input markets.

2.2.3 Interpretation of Input Market Power Estimator

Markups cause firms to reduce output and hence expenditures on inputs. They do this

because they face downward-sloping demand curves, so that decreases in price must be

applied to more-profitable inframarginal sales. Input expenditures are reduced proportionally

to input elasticities for each input. Because the input-market wedge in (2.4) is a ratio, this

output-limiting effect of markup power exactly cancels. What remains is a wedge from input

use alone.

To see this more precisely, suppose a firm produces output using both a monopsonistic

input L and a competitively-supplied input M . Since the supply of M is perfectly elastic,
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(εM )−1 = 0, which is to say δM = 1. Let the price of M be C. Consider the equivalent of

(2.4) for the competitive input M , and substitute into it the expression for (1 + εP ) using

the monopsonistic input L to yield:

1 = θM
(
CM

PQ

)−1

(1 + εP )

1 = θM
(
CM

PQ

)−1

(1 + (εL)−1)(θL)−1WL

PQ

1 + (εL)−1 =

(
θL

WL

)(
θM

CM

)−1

=

(
θLR
WL

)(
θMR
CM

)−1

(2.6)

So that the input-market wedge δ ≡ 1+(εL)−1 reflects the extent to which the firm uses less

of imperfectly-competitive input L relative to L’s output elasticity, as compared competitive

to input M relative to input M ’s output elasticity. This ‘double ratio’ formula holds for both

revenue and quantity elasticities, since the additional elasticity terms from (2.1) cancel.

Put another way, markup wedges and monopsonistic wedges both cause firms to reduce input

use. Markup power induces a reduction in input use across all inputs proportional to their

output elasticities. Markdown power induces an additional reduction in input use, but only

for a monopsonistic input. The ratio estimator ‘nets out’ the symmetric quantity reduction

and allows the researcher to separately identify input-market power as the extent to which a

monopsonistic input is used less than a competitive input, relative to their respective values

in production. Markup power alone, however, cannot be identified.

The appropriate formula for input market wedges depends upon the output elasticities avail-

able. If the researcher can only esimate revenue elasticities, then (2.4) should be used. If

quantity elasticities are available, then (2.6) gives input-market wedges and (2.5) applied

to competitively-supplied input M with quantity elasticities gives markup wedges (this is

73



simply the ratio estimator for M).

2.2.4 Extending the Framework

Our analysis extends to an arbitrary number of inputs, so researchers can readily add capital

or other productive inputs to the production function. In this case, the cost-minimization

problem becomes:

min
{Xi}Ni=1

C({Xi}Ni=1) =
N∑
i=1

WiXi

s.t. F ({Xi}Ni=1) = Q

The FOCs and ratio formulas (2.4) are unchanged. To maintain the interpretation of the

ratio estimator (2.4), the firm must have at least one monopsonistically supplied input and

at least one competitively supplied input. These inputs must also be flexible, in the sense

that they may be freely adjusted before the firm engages in production in each period. If

the inputs are not flexible, then the firm cannot adjust input use in response to changes in

demand or input elastiticies and we cannot infer markup or markdown power from input

use.

Input adjustment costs complicate the interpretation of the monopsony parameter. To the

extent that these inputs are subject to static and proportional adjustment costs, the ra-

tio estimator reflects both these adjustment costs and monopsonistic input market power8.

The estimated monopsony parameter is then ω
(

1 + (εL)−1
)

, where ω is an adjustment

cost parameter proportional to the quantity of input L. More complicated adjustment cost

specifications may also be considered, but are outside the scope of this paper9.

8. In particular, such adjustment costs must be unpredictable to the firm when planning production.

9. For instance, dynamic adjustment costs require the researcher to specify a firm’s dynamic problem,
since input choice this period depends on the future sequence of anticipated adjustment costs.
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2.3 Reinterpreting Results in the Literature

Our reinterpretation of the ratio estimator has implications for several findings in the liter-

ature. We highlight two in this section.

2.3.1 De Loecker & Warzynski: Markups and Trade

De Loecker and Warzynski (2012) pioneered the use of the ratio estimator in the markups

literature10. They used data on Slovenian manufacturing firms to estimate production func-

tions and markups using the ratio estimator. They then regressed markups on export status

to investigate whether firms connected to global supply chains had greater pricing power.

The idea was that exporting firms learn from exporting, get a productivity advantage over

competitors, and incorporate this into their pricing decisions. Figure 2.1 reprints the main

table in De Loecker and Warzynski (2012): they find that export status predicts about

12-18% higher markups.

The data in De Loecker and Warzynski (2012) are revenue data. Supposing that their esti-

mated output elasticities are revenue elasticities, we use (2.4) to conclude that the premia in

Figure 2.1 represent input-market wedges. For instance, in their Cobb-Douglas specification,

we infer that the labor-market wedge increased by about 16% for exporting establishments.

This interpretation implies that new exporters use the competitive global market to de-

crease wages (relative to MRPL). Firms may use the threat of closure or increased foreign

competition to justify lower wages in negotiations with their unions or employees.

Thus, rather than implying that trade increases productivity and markup power, De Loecker

and Warzynski (2012) implies that trade increases competitive pressures and therefore mark-

down power. Markups may still rise, but to evaluate this effect we would need to esti-

mate quantity elasticities. Nonetheless, the broad conclusion of the paper is significantly

10. Adapting Hall (1988).
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Figure 2.1: Reprinted from De Loecker and Warzynski (2012)

altered.

2.3.2 Brandt et al.: Materials Markups and Tariff Reductions

Brandt et al. (2017) investigate the effects of tariff reductions following China’s entry into

the WTO on the markups, prices, and productivity dynamics of Chinese industrial firms.

They compute markups as in De Loecker and Warzynski (2012), then regress markups on

prior-year input and output tariffs (as well a set of firm, year, and sector fixed effects).

Both input and output tariffs fell after China entered the WTO. Figure 2.2 reproduces the

main result on firm-level markups in Brandt et al. (2017). They interpret these findings

as suggesting that: (1) lower input tariffs increases markups because marginal costs fall;

(2) lower output tariffs reduce markups because the pro-competitive effect of trade opening

outweighs markup-increasing efficiency gains (efficiency gains increase markups because they

reduce marginal costs).
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Figure 2.2: Reprinted from Brandt et al. (2017)

Brandt et al. (2017) use revenue data and the ratio estimator to estimate markups. They use

materials expenditures and implied materials elasticities in their ratio formula. Our paper

(in particular (2.4)) implies that - to the extent that their elasticities are revenue elasticities

- these results should be interpreted as measuring materials-market wedges. Thus, lowering

input tariffs increases materials wedges, perhaps because state planners pressure Chinese

firms to use domestically-sourced inputs to avoid currency outflows. Lowering output tariffs

decreases materials wedges, possibly as a result of firms pressuring suppliers once they face

tougher foreign competition. Interestingly, this latter result holds for both labor markets

(De Loecker and Warzynski (2012)) and materials markets (Brandt et al. (2017)). This

suggests scope for future research investigating the impact of WTO accession on Chinese

labor markets.

2.3.3 Raval: Comparing Ratio Results

Raval (2020) tests the ratio estimator by comparing implied markups from different inputs. If

all inputs are competitive (δi = 1∀i) and quantity elasticities are available, then (2.5) implies

that the markup M should be identical across all inputs. Therefore comparing estimated

Mi between inputs is a test of the ratio estimator: if Mi 6= Mj , the ratio estimator may
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be biased or inconsistent. Raval (2020) applies this test using manufacturing data for Chile

and Colombia. We reproduce the time series of implied markups in Figure 2.3. The red lines

represent markups computed from labor ML and the blue lines markups computed from

materials MM .

Figure 2.3: Reprinted from Raval (2020)

Raval (2020) concludes that the ratio estimator is inconsistent across inputs and therefore

misspecified. However, his data for both Chile and Colombia are also revenue data. If we

assume that his estimated elasticities are revenue elasticities, (2.4) implies that his estimates

should be reinterpreted as input-market wedges. Figure 2.3 therefore implies that labor-

market wedges fell from 1980-1995 in both Chile and Colombia, while materials wedges rose.

This suggests that the labor market in both countries became more competitive, but fuel and

electricity markets less so. Perhaps institutional changes, upstream concentration, increased

capital adjustment costs, or limits to entry in materials markets increased in this period.

Rather than implying misspecification, the estimates in Raval (2020) compare input-market

wedges across different inputs.
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2.4 Conclusion

The ratio estimator recovers input market power rather than output market power when

computed using revenue output elasticities. If one input is competitive and quantity elastic-

ities are available, that input may be used to compute markups. If firms use (at least) one

competitive input and additional imperfectly-competitive inputs, one can separately identify

static input-market frictions and markups. These input-market frictions can be interpreted

as static adjustment costs, or incorporated into dynamic models of adjustment costs.

Hence researchers do not need to entirely abandon attempts to estimate market power when

only revenue data is available. Rather, the interpretation of the ratio estimator changes.

Thus existing literature should be reinterpreted, and researchers have a valuable tool for

studying imperfections in labor and other input markets. We believe this tool clarifies the

tools and expands the scope of the market-power literature.
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Chapter 3

MEASURING MARKUPS WITH REVENUE DATA

3.1 Introduction

Measuring market power is a vital task of economics. Firms that do not face sufficient

threats of competition will price above marginal cost, resulting in inefficiencies and wel-

fare losses. Understanding market power is therefore important to evaluate competition,

efficiency, welfare, firm dynamics, and antitrust policies. Researchers and policymakers

typically use the gap between price and marginal cost - the markup - to measure output

market power. A growing body of research applies structural estimators to production data

to measure markups 1. Relative to the traditional demand-based approach in industrial

organization, this production-based approach imposes few assumptions on the competitive

process, and scales easily to increasingly-available production data that cover large segments

of the economy.

However, existing production-based approaches to measuring markups require data on out-

put quantity rather than only output revenue. The most widely-used such approaches, the

structural estimators of Ackerberg et al. (2015) and Blundell and Bond (1998), were designed

to study firm productivity in competitive settings. In imperfectly competitive settings, they

require information on output quantity, but the standard data setting only has revenues

(the product of quantity and price)2 Without additional structure, we cannot disentangle

whether firms have higher revenues because they are more productive (and increase quantity

produced) or because they have higher market power (and raise prices). Put another way,

using revenue data creates an omitted-variable problem since we cannot observe firm prices.

1. See De Loecker and Warzynski (2012), or more recently De Loecker et al. (2020) or Traina (2018)

2. For instance, the US Census of Manufactures, Compustat, and the Colombian, Chilean, and Slovenian
manufacturing surveys all only have revenue data.
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Because of this problem, applying existing estimators using revenue data produces biased and

inconsistent estimates of markups (Klette and Griliches (1996) and Bond et al. (2020))3. In

this paper, we outline a method to consistently estimate markups and production functions

with revenue data.

We solve the omitted price bias from revenue data by pairing an intermediate ‘share re-

gression’ of input spending on determinants of markups with a timing assumption on the

evolution of productivity. The share regression separates the unobserved effect of produc-

tivity on output. The second stage then uses informational assumptions to isolate the effect

of prices and inputs on output. Combined, our method identifies physical output elasticities

that may be used to estimate markups. Our approach applies to a wide range of settings

and market conditions. In particular, even if we had information on physical output quan-

tities, we would need to adjust for quality to ensure that outputs are comparable; quality

data is very rare in practice. Moreover, many firms produce more than one product, which

complicates the interpretation of quantity data4. After presenting our model, we give several

examples of settings in which it may be used.

The literature on production-function estimation has long noted this omitted-price problem.

Klette and Griliches (1996) emphasize that using revenue data produces biased estimates of

markups. Bond et al. (2020) apply this insight to contemporary ratio estimators. Our paper

generalizes the solution in Klette and Griliches (1996), which relies on monopolistic competi-

tion and a parametric demand system. More recently, De Loecker et al. (2016) use observed

output price to control for unobserved input price biases, but they operate in a setting in

which output price may be computed from available data. Foster et al. (2008) suggest that

omitted price bias is so important that it changes the observed correlation between physical

productivity and revenue productivity. Meanwhile, Mairesse and Jaumandreu (2005) suggest

3. Dividing by price indices does not solve this problem, since the indices aggregate to a higher level.
They cannot give us quantity estimates at the level of estimation.

4. Thus, our method is attractive even in the presence of quantity data.
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that the bias may not be large. In sum, the literature has not yet converged on a method

for estimating physical production functions from revenue data. We outline a method to

consistently do so in this paper.

Our paper also relates to the literature that addresses simultaneity bias: the collinearity

that comes from unobserved productivity determining both inputs and outputs (Marschak

and Andrews (1944)). The literature uses timing and information assumptions on a firm’s

production process to use past inputs to control for present productivity (since past inputs

were chosen before an innovation to a productivity process, they should be independent

of such innovations). Broadly, dynamic panel estimators (Blundell and Bond (1998)) use

linearity assumptions on the productivity process for identification, while proxy variable

estimators (Olley and Pakes (1996), Levinsohn and Petrin (2003), Ackerberg et al. (2015),

and Gandhi et al. (2020)) impose weaker timing assumptions but stronger informational

assumptions. Our method is related to proxy variable estimators, and so does not require

that the productivity process is linear. But it allows researchers to relax some of the more

onerous assumptions of the proxy model. Consequently, our estimator may be applied to

study production technology using the strengths of both approaches.

Our estimator builds on this line of work by simultaneously addressing the omitted price

bias. It can be thought of as a version of the control-function ”proxy” estimator (Olley

and Pakes (1996), Levinsohn and Petrin (2003), Ackerberg et al. (2015), and Gandhi et

al. (2020)), but with markups themselves as the object to be proxied. It generalizes the

use of the share regression in Gandhi et al. (2020). Unlike Gandhi et al. (2020), we do not

identify output elasticities directly from the share regression. Rather, we use it to partially

identify a combination of technology and conduct by proxying directly for markups. We

then use this composite to control for unobserved revenue productivity (profitability) in a

second stage. This allows us to identify physical output elasticities even in the presence of

revenue data. We view the main contribution of our model as providing estimates of market
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power in settings with revenue data.

The rest of the paper proceeds as follows. In Section 2, we briefly summarize a standard

competitive production model. In Section 3, we describe our modified production model for

imperfectly competitive settings, and describe how to use our proposed share regression as

a control function to estimate markups. In Section 4, we compare our estimator to existing

production-function estimation methods. We provide specific examples of markup controls

in Section 5. Section 6 concludes.

3.2 A Standard Production Model

In this section, we outline the typical structural model and data that researchers use to

estimate production functions and markups. We suppose throughout that the researcher

wants to estimate firm-level markups, and only has data on firm revenues (that is, not quan-

tities). Throughout the rest of the paper, we use uppercase to refer to levels of variables and

lowercase to refer to logs of variables. One approach is to ignore the distinction between rev-

enues and quantities, estimate a production function, and apply optimization assumptions

to recover markups (for instance, the commonly-used ratio estimator). This empirical strat-

egy confounds demand with productivity (Foster et al. (2008)) and results in inconsistent

estimates of markups (Klette and Griliches (1996) and Bond et al. (2020)).

3.2.1 Definitions

We observe data for a panel of firms over periods t = 1, 2, ..., T . We omit panel subscripts

and assume the data take a short panel form, so that the number of firms grows large for

a fixed T . For each firm, we observe output Q, expenditures on a competitively-supplied

flexible input X with cost C, and a vector of nonflexible inputs K. X is flexible in the

sense that it is variable and static: firms may adjust it in each period after observing the

relevant state variables discussed later, and its choice has no dynamic implications. K does
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not satisfy one of these properties.

Firms have some market power in the output market, so that each firm’s residual demand

curve is not perfectly elastic. Markups can come from a mix of cost, demand, conduct, or

other sources. They may, for instance, be due to inelastic demand for a product due to

advertising, a technological advantage over competitors, or a concentrated market. We are

agnostic about the source of markups, and we do not require markups to be orthogonal to

productivity. Cost-minimizing firms internalize inframarginal price reductions and choose

a price and output {P,Q} along their residual demand curves. We define firm revenue as

R ≡ Q · P (Q) and the elasticity of R with respect to input X as fRx ≡ (1 + εD)fx
5. Firms

optimally choose to price above marginal cost and we define the markup M≡ P
MC .

3.2.2 Information and Timing

The timing of the problem is as follows: first, a firm uses its expectation about a shock to

its productivity, along with latent information on its residual demand curve, to choose an

optimal markup. Second, the firm chooses inputsX,K to realize its optimally-chosen markup

given its residual demand curve and its expectation about current productivity. Third, a

productivity shock ε occurs. Productivity is realized, production occurs, and markups are

realized.

Markups are not orthogonal to productivity, since the firm uses its expectation about pro-

ductivity to select an optimal markup. We are otherwise agnostic about the source of output

market power.

3.2.3 Technology & Productivity

Each firm’s production function is given by Q = F (X,K). Define the elasticity of F (·) with

respect to input X as fx ≡ ∂F (·)
∂X

X
Q . Inputs generate output according to a constant returns

5. To obtain this result, totally differentiate the definition of revenues and apply Hicks’ formula.
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to scale production function with Hicks-neutral productivity: Q = AF (X,K)6. A represents

physical productivity (TFPQ in the parlance of Foster et al. (2008)). However, firms make

decisions on the basis of revenues, and so must also consider the evolution of prices. We

discuss this in a following subsection.

We assume that the productivity term A is additively separable in logs into a part known

to the firm when making input decisions ω, and an i.i.d. error term ε7. The physical

productivity process then evolves as:

a = ω + ε

Firms’ technology in logs is (again denoting logs in lowercase letters):

q = f(x, k) + ω + ε (3.1)

3.2.4 Optimization

We assume that firms minimize costs. Each firm uses expected output in its minimization

problem because it knows that it must account for an as-yet-unknown portion of productivity

ε. The firm’s cost-minimization problem for input X is8:

min
X

CX

s.t. Q = E[AF (X,K)]

6. Any returns-to-scale parameter may be substituted for CRS, but some assumption is needed because
markups are not separately identified from the scale parameter (Basu (2019)). Hicks-neutrality of produc-
tivity ensures that the production function is additive in logs.

7. More specifically, we may assume that ε ∼ N(0, σ2
ε), though this is not necessary for what follows.

8. We omit K from the optimization problem since K is quasi-fixed.
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Denoting optimal output by Q∗, the Lagrangian is:

CX + λ(Q∗ − E[AF (X,K)]

With first-order condition for X:

[X] C = λE[A]
∂F (X,K)

∂X

Denote P as the firm’s (endogenous) output price and note that the markupM≡ P
mc ≡

P
λ

9.

Our definition of the production function implies that A
Q = F (X,K). Manipulating the FOC

using these definitions yields:

C = λE[A]
∂F (X,K)

∂X
P

λ
= E[A]

∂F (X,K)

∂X
· P
C

M = E[A]
X

Q
· ∂F (X,K)

∂X
· P
C
· Q
X

M =
E[A]

A
· AXQ · ∂F (X,K)

∂X
· PQ
CX

M =
E[A]

A
·XF (X,K) · ∂F (X,K)

∂X
· PQ
CX

M =
E[exp(ε)]

exp(ε)
fx

R

CX

Where the last line comes from the definition R ≡ PQ and from the fact that
E[A]
A =

exp(ω)E[exp ε]
expω exp ε =

E[exp(ε)]
exp(ε

. Writing this result in logs, we obtain:

µ = log(fx) + r − cx+ b− ε (3.2)

9. The Envelope Theorem implies that the Lagrange multiplier λ is the marginal cost of production.
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Where b ≡ log(E[exp(ε)]). Recovering markups from (3.2) requires an estimate of fx. We

cannot simply regress R on X to obtain this estimate, for two main reasons. First, there

is simultaneity bias through productivity: higher A induces the firm to increase X, which

increases Q and thus R. This ‘transmission bias’ was first noted by Marschak and Andrews

(1944). The second reason OLS of revenue on inputs generates biased estimates of fx is that

determinants of price are omitted from the right-hand-side regressors (emphasized by Klette

and Griliches (1996)). We discuss our solutions to these issues in the next section.

3.3 The Share Regression with Imperfect Competition

In this section, we discuss the assumptions needed to estimate markups and production func-

tion parameters with revenue data. We first interpret the first-order condition as a markup

function, and use it to identify revenue elasticities. We then combine it with timing and

informational assumptions on productivity to identify physical output elasticities. Finally,

we discuss examples of markup identification.

3.3.1 Assumption 1: The Markup Control Function

Return to the first-order condition (3.2) and rewrite it as:

cx− r = log(fx)− µ+ b− ε (3.3)

The left-hand side is the log intermediates share of revenues. The term (log(fx)− µ) on the

right-hand side is the elasticity of revenues with respect to input X, or fRx . The elasticity

term fx in (3.3) is a function only of inputs10: fx = fx(x, k). Let markups be a function of in-

puts, firm i and time t fixed effects, and a vector of other observables S: M =M(x, k, i, t,S).

10. fx is not a function of TFP A by virtue of (assumed) Hicks-neutrality. Since increases in A increase
output and input expenditures symmetrically, they cancel out of the elasticity formula.
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Then, making the timing explicit, (3.3) can be written as:

cxt − rt = s(xt, kt, i, t,St) + b− εt (3.4)

So that a researcher may nonparametrically regress the intermediates share on inputs, fixed

effects, and a vector of markup determinants S to obtain an estimate of the revenue elas-

ticity11. This share regression (3.4) can be seen as a markup function: it describes the

determinants of output wedges12. Importantly, it also recovers an estimate of the productiv-

ity error ε̂t. Estimating ε̂ is the main function of the first stage of proxy estimators (Olley

and Pakes (1996), Levinsohn and Petrin (2003), and Ackerberg et al. (2015)). Estimating it

here allows us to drop some of the assumptions of these models (see below for more details).

However, the share regression cannot separate the impact of markups from output elastici-

ties, since it still contains the unknown fx. We now turn to identifying the physical elasticity

fx by adding timing and informational assumptions on the productivity process.

3.3.2 Assumption 2: Markovian TFPR

To separately identify markups and physical elasticities, we combine the share regression

with a timing assumption on profitability. With this assumption, the model can separate

(physical) productivity from input use.

Assumption: Prices p and productivity innovations ν jointly follow a Markov process with

mean-zero shocks η: defining p+ ω ≡ ν, this implies that νt = g(νt−1) + η.

11. The constant represents a Jensen nuisance term in planned output.

12. Our share regression is similar to that in Gandhi et al. (2020), but adapted for use in the revenue
context.
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Now write firm revenues as:

rt = pt + qt

= ft + pt + ωt + εt

= ft + νt + εt

= ft + g(νt−1) + ηt + εt (3.5)

Where the second line comes from the definition of f(·), the third line uses the definition of

νt, and the fourth line comes from Assumption 1. Now rewrite the markup function (3.3)

as:

log(Mt) = log(fx) + rt − cxt + b− εt

= log(fx) + (ft + νt + εt)− cxt + b− εt

= log(fx) + (ft + νt)− cxt + b

νt = cxt − ft − log(fx) + log(Mt)− b

Insert this definition into the solution for revenues (3.5) to yield:

rt = ft + g(cxt−1 − ft−1 − log(fx) + log(Mt−1)− b) + ηt + εt (3.6)

Which implies that the model identifies the elasticity fx so long as markups can be con-

trolled for. This is because rt and cxt−1 are observed in revenue production data, ft(·) is

a parametric function of observable inputs, g(·) is a nonparametric function which is inde-

pendent of current inputs, and fx is a function of observed inputs. We control for Mt−1

in (3.6), there must be some observed independent variation in M(·) which does not enter

f(·). This is the S vector in (3.4), which affects only M(·). S could include firm or time

fixed effects, or any other observable (we discuss specific examples below). With this varia-
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tion, the model identifies quantity elasticities and markups. The markup function solves the

omitted-variables problem, while the TFPR timing assumption solves the transmission bias.

Since returns-to-scale are isomorphic to markups (Klette and Griliches (1996) and Flynn

et al. (2019)), we require a returns-to-scale assumption.

In sum, our method uses the first-order condition

3.3.3 Estimation

To implement our estimation technique:

1. Regress the log intermediates share of revenues (cx− r) on log inputs and fixed effects,

along with markup determinants S. Obtain the predicted share of expenditures ŝ =

log(fx)− µ+ b and the predicted residual ε̂

2. Regress revenues on inputs, a nonparametric function of lagged ŝ, and ε̂; that is,

r = f(Xt, Kt;θf ) + g(cxt−1 − ŝt − f(Xt−1, Kt−1;θf );θg) + ε̂t + ηt, where g(·) is

a polynomial of arbitrary degree and f(·) is a prespecified production function (e.g.

translog)

3. Use the moment condition

η̂t ·



1

Xt−1

Kt

St−1


= 0

to recover η as a function of the vector of elasticities θf and g(·) parameters θg

4. Minimize the distance η̂(θf ,θg)′ × W × η̂(θf ,θg) by GMM to recover the quantity

elasticities θf and production process parameters θg using any weight matrix W

90



The specific moments in Step 3 depend upon the models one chooses for f(·) and g(·).

For instance, additional moments for a translog production function f(·) can be added by

including squares and interactions of the inputs X and K. Additional lags and interactions of

the markup determinant vector S may be added to control for more complicated specifications

of the productivity process g(·). For instance, one can add S2 to control for a second-order

g(·) process. By construction, these additional moments are orthogonal to productivity

innovations. In economic terms, costs, demand, and conduct are determinants of markups,

which co-evolve with the TFPR process. Innovations to this process are therefore orthogonal

to any functions of the costs, demand, or conduct embedded in the S vector.

This two-step approach can also be implemented as a single GMM problem by minimizing the

residuals in the share regression together with the moment conditions from the second step

(Wooldridge (2009)). This adds one moment condition (E[ε̂|s] = 0) to the GMM problem

in Step 3.

3.4 Comparison to Existing Methods

In this section, we compare our estimator to two commonly-used methods to estimate produc-

tion functions. We first discuss the proxy class of model, then the dynamic panel class.

3.4.1 Proxy Variable Estimators

The proxy model of production (Olley and Pakes (1996), Levinsohn and Petrin (2003),

Ackerberg et al. (2015), Gandhi et al. (2020)) uses timing assumptions on productivity

to instrument for current productivity with past input use. Proxy models assume that

productivity is Markovian and that intermediates use is strictly monotonic with respect to

productivity. These two assumptions allow one to use lagged inputs to proxy for productivity,

solving the transmission bias. More formally, the assumptions of the proxy model are:
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Proxy Assumption 1: Productivity innovations follow a Markov process with mean-zero

shocks: ωt = g(ωt−1) + ξ.

Proxy Assumption 2: Intermediates X are strictly monotonic in productivity A condi-

tional on other inputs K.

Proxy Assumption 2 ensures that the mapping from productivity ω to inputs X is invertible:

ωt = X(Xt, Kt). Then past inputs can proxy for current productivity through the productiv-

ity process and the fact that the firm cannot perfectly forsee ω innovations. Then estimation

can proceed from yt = f(Xt, Kt;θX) + X(Xt, Kt) + εt.

The proxy approach requires that there be no other unobservable affecting intermediates

demand: intermediates must be deterministic conditional on other inputs and productivity.

Our approach relaxes this scalar unobservable assumption: we replace it with the assumption

that no other inputs enter the markup determinant vector S. In other words, we impose

scalar unobservability on M. Markups and productivity are both fundamentally unobserv-

able, but researchers typically impose some markup-setting process or rule in modeling (e.g.,

monopolistic competition with a given elasticity of substitution). Therefore, a scalar unob-

servability assumption on M is possibly less limiting. We do not require the monotonicity

assumption (Proxy Assumption 1) at all.

More generally, our model can be thought of as a version of the proxy estimator, in which

we proxy for markups directly instead of proxying for productivity. It is built to estimate

markups, and also allows us to relax some of the proxy assumptions.

3.4.2 Dynamic Panel Estimators

The dynamic panel approach (Blundell and Bond (1998) and Arellano and Bond (1991)) is a

commonly-used alternative to proxy approaches. Dynamic panel models maintain the same

basic structure of production. They assume that productivity innovations ωt follow an AR-1
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process with innovations ξt: ωt = ρωt−1 + ξt. The unobserved term ξt is uncorrelated with

all past and future input choices. Then ρ-differencing the production function yields:

rt − ρrt−1 = ft − ρft−1 + pt − ρpt−1 + ωt − ρωt−1 + εt − ρεt−1 (3.7)

rt = ρrt−1 + (ft − ρft−1) + νt − ρνt−1 + (εt − ρεt−1)

We cannot proceed further without price data. However, note that (3.3) gives us an expres-

sion for νt. Then (3.8) becomes:

rt = ρrt−1 + (ft − ρft−1) + (cxt − ft − log(fx) log(Mt)− b)− ρ(cxt−1 − ft−1 − log(fx)+

+ log(Mt−1)− b) + (εt − ρεt−1)

rt = ρrt−1 + (cxt − ρcxt−1) + log(fx)(ρ− 1) + b(ρ− 1) + (log(Mt)− ρ log(Mt−1))

+ (εt − ρεt−1)

(εt − ρεt−1) = (rt − ρrt−1 + log(fx)(ρ− 1) + b(ρ− 1) + (log(Mt)− ρ log(Mt−1)) (3.8)

Estimation can proceed by using twice-lagged (or more) values of inputs as instruments

for (εt − ρεt−1). On the other hand, if TFPR is AR-1 with νt = ρνt−1 + ξt, then (3.8)

becomes:

rt = ρrt−1 + (ft − ρft−1) + ξt + (εt − ρεt−1)

And again estimation can proceed using twice- or more lagged inputs. In other words,

our share regression allows researchers to use dynamic panel models to identify quantity

elasticities with revenue data even assuming that only TFPQ (and not TFPR) is AR-1. If

a researcher is comfortable assuming that TFPR is AR-1, then dynamic panel models may

be used directly.
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3.5 Examples

In Section 3.3.1, we showed that our markup function identifies market power M so long

as M is determined (partially) independently of inputs. In this section, we offer several

commonly-used parametric examples of markup functions.

3.5.1 Monopolistic Competition with CES Demand

Suppose that firms are monopolistic competitors facing a constant price elasticity of demand

σ. Suppose further that these firms compete in a number of industries j. In this Dixit-

Stiglitz environment, a firm in industry j faces an implicit demand curve given by pij =

Pj

(
qij
Qj

)− 1
σj

. Firm optimization implies that markups are constant within industries and

given by Mj =
σj
σj−1 .

In the context of our markup function, assuming CES demand and monopolistic competition

implies that S = cj : markups are determined by a constant within industry. One may

recover markups and elasticities by adding a constant in the share regression (3.4) and the

productivity control function in (3.6).

This is the setting in Klette and Griliches (1996). They show that in this case, one can

estimate (industry-level) production functions by including controls for the industry indices

Pj and Qj . Klette and Griliches (1996) use the estimating equation

rit = β0 +
η + 1

η
(β1xit + β2kit)−

1

η
qIt + νit (3.9)

Where qIt is an industry-level price index which comes from the Dixit-Stiglitz monopolistically-

competitive environment. Estimation can then proceed using (observed) industry-level out-

put. In this model, M = η
η−1 , so equation (3.9) is similar to our (3.6) but without the

time-series structure of productivity. The level of markups can be recovered from the coef-

ficient on industry output qIIt.
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3.5.2 Market Characteristics

If the researcher has data on market characteristics which determine M, then our model

identifies market power and production elasticities by putting these into S. For instance,

advertising expenditure or export status have been used in the literature (Hall (2014) and

De Loecker and Warzynski (2012)) as controls for markups13. In our context, we would

then have S = S(ads, export). Any other observable market characteristics - geography,

demographics, market structure, product type, number of competitors - may be added into

S, depending on the researcher’s model. Then (3.4) and (3.6) identify the output elasticities

and markups.

3.5.3 Market Shares

If markups are determined by market shares, as for example in a Cournot model, then in

the context of our model we have S = qi/Qj , where Qj is industry output14. Then (3.4)

and (3.6) may again be used to identify markups and output elasticities by adding market

shares to each. In contrast to models such as nested CES, this approach does not impose

a parametric relationship between market shares and markups. Rather, the data deter-

mine the relationship. Of course, we still make assumptions about the productivity process

and the timing of firm information (but not about the parametric form of the production

function).

3.5.4 Conduct Instruments

One readily constructed choice of M instrument is competitors’ input choices within indus-

tries j. Markups depend upon industry conduct, and therefore upon competitors’ choices.

13. Broadly speaking, the idea is that advertising can reduce the price elasticity of demand, while exporting
forces firms to adopt better production techniques, which then can drive markups in a less-competitive
domestic market.

14. Researchers may define industries j in whatever way appropriate. They may be classified industries,
or broadly- or narrowly-defined product markets.
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We sketch here a straightforward application of this approach. Suppose that that each firm

operates under Markovian “market conditions” dijt:

dijt = D(dij,t−1) + uijt

Which evolve over time with error terms uijt orthogonal to the productivity innovation ηijt.

Firms attempt to forecast the evolution of market conditions and use other firms’ input

choices as proxies. Then we have E[ηijt × dijt−1] = 0. Firms use competitor choices to

form predictions about market conditions, but these choices do not directly affect produc-

tivity.

These conduct instruments are valid in many models of imperfect competition. For instance,

in a Cournot setting each firm is small relative to its industry and takes into account other

firms’ pricing decisions when setting its output. More generally, any model in which demand

and supply conditions are persistent is consistent with using lagged d as instruments. For

instance, a model of habit formation is consistent with our timing assumptions, as is a model

with serially correlated input and output shocks. These instruments do not rule out perfect

competition in intermediates markets or strategic interactions between firms (indeed, they

rely on such interactions). They do, however, rule out dynamic strategic interactions.

These conduct instruments are closely related to Bartik instruments, and are readily con-

structed in production datasets: all that is required is input choices by industry.

3.6 Conclusion

This paper shows how to estimate markups with revenue data. We combine firm cost-

minimization and an assumptions on the timing of firm decision-making to recover quantity

elasticities and estimates of market power. We show that, so long as a researcher has some

variable which affects markups independently of inputs, they can identify both physical pro-
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duction elasticities and markups. This is less restrictive than it seems, for this independent

variation could come from an industry-level constant (as in the CES-monopolistic compe-

tition case), fixed effects, market shares, or other inputs recoverable from production data.

What is required is for the researcher to spell out the determinants of markups in their model

and relate them to observables in the data.

Our method is a variant of proxy-style production-function estimators, but proxies explicitly

for markups rather than for productivity. We believe it is a tool which can be applied to a

wide variety of settings. We hope that it can be used to clarify and expand the scope of the

competition literature.
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Appendix A

DATA APPENDIX

A.1 ASM/CM data

Our data consist of inputs, outputs, and plant characteristics from the Annual Survey of

Manufactures and Census of Manufactures. The CM is a required survey sent to all man-

ufacturing plants conducted in years ending in -2 and -7. The ASM is sent to a subset of

establishments, with larger establishments having a higher probability of selection into the

ASM (the precise cutoff for inclusion with certainty has changed over time). ASM obser-

vations include a sampling weight which is the inverse of an establishment’s probability of

selection into the ASM sample. All results in this paper include ASM sampling weights.

We subset our data to establishments which are observed in the ASM. This ensures that we

have panel data throughout (indeed, we would have to drop establishments which are not

observed in the ASM in estimation, since we have no lagged inputs for them). We use the

Total Factor Productivity Beta version 2 database of the ASM within the Census database.

Our main geographical identifier for plants is the commuting zone (CZ).

For price indices and depreciation rates, we merge in the NBER-CES manufacturing database

by NAICS6 and year. For capacity utilization, we merge in the Fed’s Capacity Utilization

Survey by NAICS3 and year. For scaling, we merge in the KLEMS database by DJA

industry and year. To do the latter merge, we first construct a NAICS6-DJA bridge using

the appropriate weights from KLEMS.

We measure output as revenues from produced goods (e.g., sales less resales and goods

kept in inventory: Q = (TVS - CR) + (FIE - FIB) + (WIE - WIB), with each component

deflated by an appropriate price deflator: PISHIP from NBER-CES for the first, and inter-

mediate price indices for the second two).
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We measure intermediates as materials plus energy plus fuels. The idea is to capture a broad

range of intermediate inputs, so that the bundle is approximately competitive even if each

component of it is not. For quantity measures, we deflate each of materials, energy, and fuels

with an appropriate deflator from the NBER-CES Manufacturing Database (materials and

fuels with PIMAT , energy with PIEN).

We measure production labor as total production-worker hours at a plant, and nonproduction

labor as the total number of nonproduction workers (we have no data on nonproduction

hours).

We construct capital using the perpetual inventory method (PIM) backwards and forwards

from an establishment’s first CM observation (the idea here is that capital may be measured

more accurately in CM years). Following Kehrig (2015), we multiply ASM/CM capital

stocks by the ratio of current to historical cost of capital from the BEA capital tables (these

costs are reported at the 3-digit industry level). Using investment data in the ASM/CM

and industry-specific depreciation rates from the NBER-CES manufacturing database, we

iterate backwards and fowards using

Ki
t+1 = (1− δi)Ki

t + Iit

for i ∈ {E, S} = {Equiment, Structures}. Capital and investment data is available separately

for structures and equipment in the ASM/CM. We run PIM for each type of capital sepa-

rately, then add them to get an establishment’s total capital stock. Finally, we adjust capital

stocks by 3-digit industry capital utilization rates from the Fed’s Plant Capacity Utilization

survey and scale capital at the DJA industry level using the KLEMS database. Our final

measure of capital is then effective (utilized) capital scaled to an industry aggregate.
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A.1.1 Industry Codes

The definition of industry codes changes every 5 years in our sample. There are particularly

large changes in 1987 (when SIC codes change from the 1972 to 1987 vintage) and in 1997

(when SIC codes change to NAICS codes for all establishments). There are then significant

changes in manufacturing NAICS codes in 2012. To get a consistent set of industry codes, we

crosswalk establishment-year observations to their corresponding Fort-Klimek 2007 NAICS

code (Fort and Klimek (2016)). This crosswalk is available within the Census. The Fort-

Klimek crosswalk assigns a consistent 2007 NAICS code to each establishment.

A.1.2 Scaling to KLEMS

To account for mismeasured inputs, we scale each of M,L,N,K to their industry-level equiv-

alents in KLEMS. The idea is that the CM/ASM may not measure total input expenditure

because some expenditure is done at the firm level (rather than the establishment level).

This may be a particular concern for management inputs N or capital K. KLEMS hosts

aggregate data on productive inputs and outputs for a number of countries.

To implement our scaling, we first generate KLEMS aggregates. We aggregate output,

intermediates, labor, and capital indices in both gross and quantity terms (using a base year

of 1997). Then in the ASM/CM data we generate industry aggregates ASMj =
∑
kt Jkt

for J ∈ {M,L,N,K} and KLEMS industries k (KLEMS industries are named DJA codes,

and are approximately equivalent to the NAICS-3 level of aggregation). We account for

sampling weights when doing this ASMj aggregation. We then compute scalej =
KLEMSj
ASMj

and multiply inputs by scalej . We scale ASM revenues to KLEMS output values, ASM

intermediates expenditures to KLEMS intermediates values, labor and nonproduction labor

inputs to KLEMS labor quantities, and all other inputs to KLEMS quantities.

To scale labor inputs, we first generate total hours using the Foster et al. (2008) adjustment
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as:

th = L · WL+ SN

WL

We then scale th to labor quantities in KLEMS by year, and total labor expenditure (WL+

SN) to KLEMS labor expenditure by year. We use the same scaling factor for both L and

N , as well as for both WL and SN . This assumes that aggregate trends in mismeasured

production and nonproduction inputs track each other. We do this in practice because we

have no data on nonproduction workers N in KLEMS.

To generate implied wages, we first scale labor hours (L) and labor expenditure (WL) to

KLEMS aggregates. We then take the ratio of scaled labor expenditures to scaled labor

quantities as our approximate wage.

A.1.3 Trims

Before running our share regression, we trim establishment-year observations with zero,

missing, or negative revenue, production worker hours, capital, intermediates, nonproduction

workers, and total production workers. We also trim all observations with inverse materials

ratio PQ
CM greater than the 99th percentile or lower than the 1st percentile of this ratio

among all plants within each year. We also trim the 1st and 99th percentiles of CM
WL by

year. We do this to eliminate outliers in our estimation of µ and δ. These ratios are the

data portion of the relevant ratio formulas for our market-power wedges. These (p1, p99) ex

ante trims remove establishments which have extremely high or low automation (e.g., high

or low materials to labor expenditures) as well as those who report extremely high or low

output relative to inputs (e.g. high or low revenue to materials expenditure). Such firms are

unlikely to have sufficiently similar technologies, so should be excluded from our estimation

groups.
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A.2 CPS, ACS and Task Data

We import demographic data from the CPS and ACS into our ASM/CM sample. The CPS

and ACS data were obtained from IPUMS. We pull the 1% metropolitan ACS sample in 1970,

1980 and 1990, as well as the 1% sample in 2000 and 2005-2016. We also pull the 5% state

ACS sample in 1980, 1990, and 2000. From the ACS, we obtain occupation, education, and

labor-force participation status. We limit our sample to individuals not in group quarters,

not self-employed, prime-aged (18-64), and in the 50 continental states.

From the CPS, we pull CPS ASEC and monthly surveys for every year from 1988-2012.

We again limit the CPS to individuals not in group quarters, not self-employed, prime-aged

(18-64), and in the 50 continental states. We obtain union membership and coverage data

from the CPS. Since the CPS sample is small relative to the ACS sample, we pool years into

decadal years to correct for sampling or mismeasurement. We pool five years around each

decadal year into the decadal year. Thus 1988-1992 are pooled into 1990, 1998-2002 into

2000, and 2008-2012 into 2010.

We merge the CPS union data with the ACS demographic data by state, occupation code

(using the occ1990 codes in the IPUMS data), year, industry (using the ind1990 codes

in the IPUMS data), and education category (segmenting education into no college, some

college, and college graduate).

To get commuting-zone identifiers for our ACS and CPS data, we merge David Dorn’s Public

Use Microdata Area (PUMA) to commuting zone crosswalks for 1990, 2000, and 2010. For

ACS/CPS observations with county codes, we use a county-to-commuting-zone crosswalk

from the Census to identify CZs. For observations with no county code, we use county group

(for 1980) or PUMA (1990, 2000, and 2010) crosswalks from David Dorn. We then reweight

ACS person weights (perwt) using the adjustment factors provided in these crosswalks.

We merge data on task intensity from Autor and Dorn (2013) using occ1990dd occupational
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codes. This requires first merging in an occ1990 - occ1990dd crosswalk. Both the crosswalk

and the task data are available on David Dorn’s website. This task data contains manual,

abstract, and routine task intensities by occ1990dd occupation. It also contains data on task

offshorability.

We construct our measure of high routine-task intensity RTH as follows: first, we aggregate

up manual, routine, and abstract task indicators to the industry (commuting-zone) level.

Then, we winsorize abstract and manual tasks below the 66th percentile of each: we re-

place task abstract by 0.4638442 if task abstract ¡ 0.4638442 and we replace task manual

by 0.0340417 if task manual ¡ 0.0340417. Next we construct the measure of routine-task

intensity RTI as in Autor and Dorn (2013):

RTI = log(task routine)− log(task manual)− log(task abstract)

Finally, we generateRTH as an indicator for (RTI > 1.826) (the 66th percentile ofRTI).

Similarly, we construct OSH as an indicator for task offshorability > 0.63, the 66th per-

centile of the Autor and Dorn (2013) offshorability metric.

Our final ACS/CPS data contains demographic information, labor-force participation rates,

union membership, and task/offshorability intensity data by commuting zone and ind1990

industry.

When merging our ACS/CPS data into our ASM/CM data, we aggregate the ASM/CM

data at the geographical (CZ) or industry (ind1990) level first. To do the latter, we first

create a NAICS6-ind1990 crosswalk using the files provided by the Census. With these two

datasets, we can investigate the causes and consequences of labor-market power dynamics

on the labor-supply side (geography) or on the labor-demand side (industry).
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Appendix B

EMPIRICAL ESTIMATION APPENDIX

After constructing our data, we log and demean output, inputs, revenue, the share of rev-

enue accounted for by intermediates expenditures, intermediates expenditures, and wages

{Q,M,L,K,N,R, S, CM,W}. We demean each of these variables within industries to elim-

inate the need to include a constant in our estimation (after deameaning, each of these objects

is now mean-zero within industry). Within each 6-digit Fort-Klimek NAICS industry j, we

then run the regression:

sj = αj + βm,jmj + βl,j lj + βn,jnj + betak,jkj + ξI + ξT + εj (B.1)

Thus our estimation groups are the 473 NAICS-6 in the ASM/CM data: each NAICS-6

industry has its own (time-invariant) output elasticities. We experimented with alternative

estimation groups with similar results. ξI and ξT are plant-year fixed effects. We use these

constants to control (proxy) for markups, as explained in the main text.

We run our GMM procedure in Python, using the numba package to precompile all our func-

tional definitions. We implement our CRS assumption by estimating output elasticities for

{L,K,N} and defining θM = 1−θL−θK−θN . Any other returns-to-scale assumption may

be used1, but one is required to eliminate a moment from the identification problem (Klette

and Griliches (1996) and Flynn et al. (2019)). In practice, we implement our RTS assump-

tion by defining a modified log production function and functional form for the evolution of

1. We use CRS because it is a good approximation to RTS in the US manufacturing industry.
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TFPR:

f = mt + Jt · θj

g =
(
mt−1 − ŝt−1 −mt−1 − Jt−1 · θj + Sg

)T
· φg

Where θj is the vector of output elastictiies and φg is the vector of coefficients in g(·). Sg

are the state variables which determine the evolution of productivity through g(·). Recall

that g(·) can take an arbitrary functional form, so the number of parameters in Sg is unde-

termined. Anything that researchers believe affects the evolution of the productivity process

should in principle be included in the g(·) function. We experimented with including a con-

stant, plant age, the number of plants in a firm, and a measure of the aggregate price index

in Sg. Our results are robust to these, but for simplicity the results in the main text only

include a constant in the Sg vector.

We construct shocks ηt as from the residual:

ηt = r − f(θj · Jt)− g(ŝt−1 − f(θj · Jt−1)− ε̂t (B.2)

Where ε̂t comes from the share regression (B.1). This structural error should have E[ηt = 0]

112



under our model, so we can form the moment conditions in the main text:

η̂t ·



1

wt−1

nt−1

kt−1

w2
t−1

n2
t−1

k2
t−1

wt−1 · nt−1

wt−1 · kt−1

nt−1 · kt−1

(cm− ŝ)t−1



= 0

to recover the η as a function of the vector of elasticities θj. We then minimize η̂(θj)′ ·W−1 ·

η̂(θj) by GMM. We use the identity matrix W ≡ I in our GMM estimation.

As in the main text, the form of these moment conditions comes from our translog production

function specification. The quasi-fixed inputs n and k instrument for themselves since the

model implies that they must be chosen before the start of each period. Wages instrument

for labor.

We initialize the parameters at: {fM , fL, fN , fK , ρ} = {0.5, 0.1, 0.1, 0.3, 0.9}2. ρ is the

AR-1 parameter in the evolution of productivity g(·), which we set at 0.9 after testing

different starting values. We set each of the output elasticities at the aggregate cross-sectional

average cost shares in the NBER-CES manufacturing database (that is, aggregated across

all industries and years). We set the initial values of all cross- and squared-term coefficients

in our translog specification to 0. Our results are robust to different starting values of these

2. f j is the coefficient on j in the translog specification, while θj is j’s output elasticity.
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parameters.

We also constrain each output elasticity θj to be greater than the first percentile of in-

put j’s aggregate cross-sectional cost share in the NBER-CES manufacturing database

(again aggregated across all years and industries). In particular, we set {θM , θL, θN , θK} ≥

{0.25, 0.02, 0.01, 0.05}. This monotonicity restriction reduces outliers in our estimation (that

is, extremely low estimated elasticities) and is quite conservative3.

In addition, we impose a concavity restriction on the production function in the GMM prob-

lem by restricting the eigenvalues of the Hessian of our production function to be negative.

The Hessian matrix of our problem is:

H =



fml + fmn + fmk −fml −fmn −fmk

−fml fml + fln + flk −fln −flk

−fmn −fln fmn + fln + fnk −fnk

−fmk −flk −fnk fmk + flk + fnk


We restrict the eigenvalues of this matrix to be negative. To improve numerical stability, we

add -0.00005 to all diagonal terms of H (not doing so can produce errors if the eigenvalues

are sufficiently close to 0).

To implement our GMM minimization problem, we use the scipy.optimize package. This

package estimates numerical derivatives using the quasi-Newton method of Broyden, Fletcher,

Goldfarb, and Shanno (BFGS). We include both the monotonicity and concavity restrictions

in the minimization command.

With numba pre-compilation, our estimation routine takes approximately 5-7 minutes.

3. In our gross-output production function θM is typically quite large, so 0.25 is not a binding restriction.
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Appendix C

AGGREGATION APPENDIX

Our estimates of labor-market wedges and markups are at the firm level, but we would also

like estimates of the aggregate labor-market wedge and markup. We define these aggregate

objects in the same way as their firm-level counterparts, but computed with an aggregate

production function. That is, M ≡ ΘM
PQ
cM and D ≡ ΘL

ΘM

cM
wL , where the output elasticities

are defined as ΘL = ∂Y
∂L

L
Y and θ` = ∂y

∂`
`
y and D represents the aggregate labor-market wedge.

If the aggregate production function has the same elasticities as each individual production

function, then we have:

µi =θim
piqi
cimi

µicimi =θimpiqi∫
i
µicimidi =

∫
i
θimpiqidi∫

i
µicimidi =ΘM

∫
i
piqidi∫

i
µicimidi =ΘMPQ∫

i
µi
cimi

CM
di =ΘM

PQ

CM

M =

∫
i
µi
cimi

CM
di
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So that aggregate markups are a cost-weighted average of firm-level markups. Similarly, for

labor-market wedges:

δi =
θi`
θim

cimi

wi`i

δiθ
i
mwi`i =θi`cimi∫

i
δiθ

i
mwi`idi =

∫
i
θi`cimidi

ΘM

∫
i
δiwi`idi =ΘL

∫
i
cimidi∫

i
δiwi`idi =

ΘL

ΘM
CM∫

i
δi
wi`i
WL

di =
ΘL

ΘM

CM

WL

D =

∫
i
δi
wi`i
WL

di

In other words, aggregate labor-market wedges are a labor-cost-weighted average of firm-level

labor-market wedges. If firms use heterogeneous technologies, then the aggregate markup

becomes:

piqi
PQ

=
cimiµi
θim

· ΘM

CMM

1 =

∫
i

(
mi

M

)(
θim
ΘM

)−1
µi
M

di

M =

∫
i

(
mi

M

)(
θim
ΘM

)−1

µidi

Where the second line uses the fact that
∫
i piqidi ≡ PQ. The expression for the aggregate

labor-market wedge is similar. Thus firm-level market-power wedges are weighted by both

cost and the inverse of their relative contributions to the aggregate output elasticity. Firms

with larger output elasticities get lower weights, because they increase inputs more when

their output rises.
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More generally, to aggregate either markups or labor-market wedges, we need a measure of

aggregate output elasticities. This is a difficult problem. We have:

θi =
∂yi
∂`i

`i
yi

θi∂`iyi =∂yi`i∑
θi∂`iyi =

∑
i

∂yi`i = ∂Y L+
∑
i

cov(∂yi,`i)

∂Y

∂L

L

Y
=
∑
i

[
θi
∂`i
∂L

yi
Y
−
cov(∂yi,`i)

∂L · Y

]

In other words, aggregate elasticities depend not only on individual elasticities, but also

on size, marginal labor intensities, and covariances between labor intensities and marginal

revenues. Without data on both the input-output matrix and on the degree to which in-

creases in output are accomodated by each input1, we cannot compute this object in general.

Instead, we aggregate materials and labor output elasticities using input shares:

ΘM =

∫
i
θim

mi

M
di

ΘL =

∫
i
θi`
`i
L
di

The thought experiment behind this is as follows: consider adding a small increment of

intermediates (labor) into the economy at random. How does output change? In other words,

we fix the distribution of labor and intermediates usage and consider the inputs needed to

produce additional unit of input. This may be biased upward or downward depending on

microeconomic (establishment-level) elasticities of substitution between m and ` and on the

macro covariances between input usage and output expansion. We then define aggregate

1. These counterfactual elasticities are not even knowable, let alone obtainable from data.
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labor-market wedges as above (and markups similarly):

D =
ΘM

ΘL

CM

WL

=

∫
i θ
i
m
mi
M di∫

i θ
i
`
`i
Ldi

(
CM

WL

)

M =

∫
i
θim

mi

M
di

(
PQ

CM

)

Each time we compute labor-market wedges or markups at some aggregated level, we aggre-

gate up labor and intermediates elasticities and sum expenditures and revenues at that level.

These weights ignore the input-output structure and covariances between output growth and

input use emphasized in Baqaee and Farhi (2019).
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Appendix D

A NESTED CES APPROACH TO LABOR-MARKET POWER:

APPENDIX

Here we lay out a workhorse general-equilibrium model which generates heterogeneous

markups and markdowns at the firm level. The model has a nested constant elasticity

of substitution structure in both output and labor markets.

D.1 Environment

The economy consists of a continuum of (representative) households and a continuum of

firms. Households work, save, and consume, while firms produce output. Households get

utility from consumption and leisure. Consumption is aggregated across s sectors, each of

which has Ms subsectors. The household consists of many individual household members (it

is a ‘large family’). Each member supplies labor to firms.

There are a finite number of firms in each subsector1. Firms hire labor to work in labor

markets in which the firm operates. Firms hire workers from households and sell output to

households.

D.2 Households

Households like to consume and dislike work. Different types of households differ in their

labor supply preferences. Denote each type by i. Preferences are given by:

U(C,L) = E0

∞∑
t=0

βtu(Ct) + v(Lt)

1. Which implies a continuum of firms, since there are continuum of subsectors.
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Household consumption Ct is an aggregate bundle of consumption from each one of s sectors.

There is a continuum of such sectors and households have a common elasticity of substitution

θ between sectors, so that total consumption Ct is:

Ct =

(∫ 1

0
C
θ−1
θ

st ds

) θ
θ−1

Within each sector s, the consumption bundle Cs is another CES aggregate. Consumers have

a (common) elasticity of substitution γ between goods within each sector. Each sector has

a mass Ms of firms operating, and each firm produces one good within the sector. Sectoral

consumption is then given by:

Cst =

Ms∑
n=1

cst(wns)
γ−1
γ


γ
γ−1

Where wns is an index of firm n in sector s (which will be the firm’s wage rate). House-

holds’ aggregate disutility of labor supply is given by (again dropping the i subscripts for

convenience):

Lt =

(∫ 1

0
L
φ+1
φ

jt

) φ
φ+1

Households supply labor in different markets j, with elasticity of labor supply φ between

markets. Each firm employs workers in all of the labor markets Mjt in which it operates at

time t. Household preferences over work in these labor markets can be decomposed as:

Ljt =

Mj∑
i=1

`
η+1
η

jt


η
η+1

So that households have elasticity of labor supply η within labor markets. As with product

markets, we assume that φ < η, so that households are more willing substitute within a

labor market than across labor markets. This nested CES labor supply structure mirrors
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that in Berger et al. (2019). The across-market elasticity of substitution can be thought of as

standing in for mobility costs, and the within-market elasticity stands in for job search costs

within a market. This structure can also be micro-founded as workers in a large household

acting on different idiosyncratic amenity values. These amenity values are distributed as

nested Type-1 Extreme Value variables, giving the problem of labor market selection a

nested logit form.

D.3 Elasticities and Market Power

The nested CES structure implies that firms can exercise some market power in both the

output and labor markets. The inverse demand function for a firm j which chooses price pj

and output qj in period t is:

pjt
Pt

=

(
qjt
Qst

)−1/γ (Qst
Qt

)−1/θ

(D.1)

Where Pt is the aggregate price index, Qst is the quantity produced in sector s in period t, Qt

is aggregate output, and qjt is firm level output. Since the demand curve slopes downward,

firms can exercise some market power. We assume that products within a sector are more

substitutable than products across sectors, so that θ < γ. This means that firms which

are large in their sector (but small relative to the overall economy) face a smaller demand

elasticity. These sector-dominating firms can exercise more market power. Put another

way, the source of market power in the output market is the nature of preferences (e.g.

differentiated goods). Markups only differ across firms due to their size.

Similarly, the labor supply curve can be written as:

`ijt ∝

(
wijt
Wjt

)η (
Wjt

Wt

)θ

Where ijt indexes firm i in labor market j at time t. The source of labor market power is
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again preferences: workers do not view labor markets (or jobs within a market) as perfect

substitutes, and firms can exploit this fact to pay workers less than their marginal products.

Firms which are larger in local labor markets have higher monopsony power.

The nested CES product and labor markets imply elasticities of demand and inverse elastic-

ities of labor supply2 which are linear in market shares:

εDist =
[
θsist + γ(1− sist)

]
εLijt =

[
1

φ
sijt +

1

η
(1− sijt)

]−1

Where sist is the share of firm i in product sector s, and sijt is the labor share of firm

i in labor market j. Firms which are larger relative to their peers face the smaller across-

sector (-market) elasticity, while firms which are smaller relative to their peers face the larger

within-sector (-market) elasticity. Thus larger firms exert more market power: larger firms

in product sectors s have higher markups, and larger firms in labor markets j have higher

markdowns. To be precise, markups and markdowns are given by:

µist =
εDist

εDist − 1

δijt =
εLijt + 1

εLijt

D.4 Firms

Firms produce output by combining intermediates, labor and capital in a constant-returns-

to-scale production function:

qi = ωik
1−β`−βm
i `

β`
i m

βm
i

2. The inverse elasticity of labor supply is ∂w
∂`

`
w and is a more computationally straightforward object to

work with than the elasticity of labor with respect to the wage.
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Intermediates and capital are inelastically supplied. Firm i in labor market j faces an

upward-sloping inverse labor supply curve:

wijt = `
εLijt
ijt (D.2)

Where εLijt is the inverse elasticity of labor supply as above.

D.5 Equilibrium

In equilibrium, each firm maximizes profits:

π(w, εL) = max
k,`,m

pq − w`(w)− cm− rk

Subject to its demand curve (D.1) and labor supply curve (D.2) (We have suppressed the

i, s, and j subscripts for readability). This is precisely identical to the cost minimization

problem in Section 1.2 and yields identical first-order conditions.

We can then solve for firm level k, `,m choices and aggregate them using market-clearing

conditions. Aggregate variables will depend upon the demand elasticities θ, γ and the supply

elasticity εL, as well as the distribution of εLijt and cov(δijt,muist)
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Appendix E

ADDITIONAL EMPIRICAL FIGURES APPENDIX

Figure E.1: Decomposition of Aggregate Labor-Market Wedge into Costs and
Elasticities

Notes: Decomposition of labor-market wedge into cost ratio CtMt
WtLt

and elasticity ratio θL
θM

for each year. The cost and elasticity ratios are individually aggregated using labor
expenditure weights and ASM sampling weights. Because of Jensen’s inequality and the

fact that there is some covariance between these objects, the product of the cost and
elasticity ratios differ from the aggregate labor-market wedge D.
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Figure E.2: Aggregate Markup Wedge

Notes: Markup power over time: Figure shows static aggregate markuip wedge

µ ≡ θM ·
(
PtQt
CtMt

)
from 1973-2014 for US manufacturing. Aggregation is done using

intermediate cost weights and ASM sample weight for each year (see Appendix C).

Table E.1: Additional Fixed-Effect Regression Results

Year, NAICS6, Year, NAICS6, Year, CZ, Year, CZ,
Firm FEs Plant FEs NAICS6, Firm FEs NAICS6, Plant FEs

(1) (2) (3) (4)
log(δ) log(δ) log(δ) log(δ)

R2 0.894 0.948 0.900 0.948

R2
adj. 0.882 0.939 0.888 0.939

AIC 954,200 499,400 919,000 498,000

Labor-expenditure- and ASM-sampling-weight- weighted regression of log(δ) on different fixed effects.
Including Firm f or plant i fixed-effects implies that regressions are in changes.
Source: ASM/CMF.
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Figure E.3: Aggregate Nonproduction Wedge

Notes: Nonproduction market power over time: Figure shows static aggregate

nonproduction input wedge δN ≡
θN
θM
·
(
CtMt
StNt

)
over time for US manufacturing.

Aggregation is done using nonproduction cost weights and ASM sample weight for each
year for each year (see Appendix C).
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Figure E.4: Skewness of Aggregate Labor-Market Wedge (Time Series)

Notes: Time series of the skewness of labor-market wedges over time (1973-2014).
Skewness is computed in each year across the distribution of labor-market wedges δt using

labor expenditure weights and ASM sampling weights.
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Figure E.5: Standard Deviation of Aggregate Labor-Market Wedge (Time
Series)

Notes: Time series of the standard deviation of labor-market wedges over time (1973-2014).
Standard deviation is computed in each year across the distribution of labor-market wedges

δt using labor expenditure weights and ASM sampling weights.
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Figure E.6: Skewness of Aggregate Markup Wedge (Time Series)

Notes: Time series of the skewness of markups over time (1973-2014). Skewness is
computed in each year across the distribution of markups µt using intermediates

expenditure weights and ASM sampling weights.
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Figure E.7: Standard Deviation of Aggregate Markup Wedge (Time Series)

Notes: Time series of the standard deviation of markups over time (1973-2014). Standard
deviation is computed in each year across the distribution of markups µt using

intermediates expenditure weights and ASM sampling weights.
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Table E.2: Additional Fixed-Effect Regressions of Wages, Labor Inputs, and
Labor Expenditures on Labor-Market Wedge

Year, NAICS6, Firm FEs Year, NAICS6, Plant FEs
(1) (2) (3) (4) (5) (6)
w ` wl w ` wl

log(δ) -0.0640*** -0.313*** -0.372*** -0.107*** -0.247*** -0.346***
(0.000673) (0.000175) (0.00181) (0.000814) (0.00133) (0.00128)

Constant 0.160*** -0.019*** 7.74*** 0.128*** 0.0483*** 7.783***
(0.00065) (0.00168) (0.00174) (0.00071) (0.00116) (0.00111)

N 621000 621000 621000 621000 621000 621000

R2 0.644 0.655 0.776 0.783 0.916 0.953
AIC 184,100 1,369,000 1,411,000 -124,600 479,900 431,100

* p < 0.05, ** p < 0.01, *** p < 0.001
(1)-(3) Year, NAICS6, firm fixed effects; (4)-(6) Year, NAICS6, plant fixed effects.
Labor-expenditure- and ASM-sampling-weight- weighted regression of log wages, labor inputs, and labor
expenditures on log labor-market wedge δ. Regressions including firm (plant) FEs are implicitly in
changes.
Source: ASM/CMF.

Table E.3: Additional Fixed Effects for Regression of Labor-Market Wedge on
Direct Measures of Technology

Year, NAICS6, Firm FEs NAICS6, Firm FEs
(1) (2) (3)

log(δ) log(δ) log(δ)
New Computer Expenditures/Worker 0.0188***
(00-01) (0.00438)
Purchased Communications/Worker 0.0782***
(97, 02, 06-14) (0.00162)
Software Expenditures/Worker (97) 0.0366***

(0.00971)

N 9,600 147,000 2,700

R2 0.950 0.912 0.935
AIC 7,700 210,800 2,831

* p < 0.05, ** p < 0.01, *** p < 0.001
Labor-expenditure- and ASM-sampling-weight- weighted regression of log labor-market wedge δ on log
new computer expenditures per worker (row 1), log cost of purchased communications per worker (row
2), and log software expenditures per worker (row 3). New computer expenditures are available 2000-
2001, software expenditures 1997, cost of purchased communications 1997, 2002, 2006-2014.
Technological variables are deflated and normalized by (workers) ≡ (production workers + other em-
ployees).
Source: ASM/CMF.
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Figure E.8: Binscatter of Labor-Market Wedge against Plant Revenues

Notes: Binscatter of log(δ) against log revenues at the plant level with year, NAICS6 (ft,
right) fixed effects. Revenues are scaled to KLEMS aggregates by year and dja industry.

Figure residualizes log(δ) and revenues against jt fixed-effects, then bins log(delta) into 100
equally-sized bins and plots the mean of revenues within each bin along with a (red)
line-of-best-fit. Figure is weighted by ASM sampling weight and labor expenditures.
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Figure E.9: Binscatter of Labor-Market Wedge against Plant Revenues
(Additional Fixed Effects)

(a) Year, NAICS6, Firm FEs (b) Year, NAICS6, Plant FEs

Notes: Binscatters of log(δ) against log revenues at the plant level with year, NAICS6, firm
(fjt, left) and year, NAICS6, plant (ijt, right) fixed effects. Revenues are scaled to

KLEMS aggregates by year and dja industry. Each figure residualizes log(δ) and revenues
against t or jt fixed-effects, then bins log(delta) into 100 equally-sized bins and plots the
mean of revenues within each bin along with a (red) line-of-best-fit. Figure is weighted by

ASM sampling weight and labor expenditures. Including firm (plant) FEs makes this
implicitly a regression in changes.

Table E.4: More Additional Fixed Effects for Regression of Labor-Market
Wedge on Direct Measures of Technology

Year, NAICS6, Plant FEs
(1) (2)

log(δ) log(δ)
New Computer Expenditures/Worker (00-01) 0.0114***

(0.00352)
Purchased Communications/Worker (97, 02, 06-14) 0.0191***

(0.00138)

N 8,200 144,000

R2 0.989 0.96
AIC 5,515 90,320

* p < 0.05, ** p < 0.01, *** p < 0.001
Labor-expenditure- and ASM-sampling-weight- weighted regression of log labor-market wedge δ on log
new computer expenditures per worker (row 1) and log cost of purchased communications per worker
(row 2). New computer expenditures are available 2000-2001, cost of purchased communications 1997,
2002, 2006-2014.
Technological variables are deflated and normalized by (workers) ≡ (production workers + other em-
ployees).
Source: ASM/CMF.
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Figure E.10: Binscatter of Labor-Market Wedge against Plant TFPR

Notes: Binscatter of log(δ) against log revenue total factor productivity (TFPR) at the
plant level with year, NAICS6 (ft, right) fixed effects. TFPR is an output of our

estimation routine. Figure residualizes log(δ) and TFPR against or jt fixed-effects, then
bins log(delta) into 100 equally-sized bins and plots the mean of TFPR within each bin

along with a (red) line-of-best-fit. Figure is weighted by ASM sampling weight and labor
expenditures.
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Figure E.11: Binscatter of Labor-Market Wedge against Plant TFPR
(Additional Fixed Effects)

(a) Year, NAICS6, Firm FEs (b) Year, NAICS6, Plant FEs

Notes: Binscatters of log(δ) against log revenue total factor productivity (TFPR) at the
plant level with year, NAICS6, firm (fjt, left) and year, NAICS6, plant (ijt, right) fixed
effects. TFPR is an output of our estimation routine. Each figure residualizes log(δ) and
TFPR against t or jt fixed-effects, then bins log(delta) into 100 equally-sized bins and
plots the mean of TFPR within each bin along with a (red) line-of-best-fit. Figure is

weighted by ASM sampling weight and labor expenditures. Including firm (plant) FEs
makes this implicitly a regression in changes.

Table E.5: Additional Fixed Effects for Regression of Labor-Market Wedge on
Input Intensity Measures

Year, NAICS6, Firm FEs
(1) (2) (3)

log(δ) log(δ) log(δ)

log
(

K
N+L

)
0.169*** 0.122***

(0.00135) (0.00138)

log
(

N
N+L

)
0.211*** 0.178***

(0.00136) (0.00140)

N 621,000 621,000 621,000

R2 0.897 0.899 0.900
AIC 936,900 927,900 919,200

* p < 0.05, ** p < 0.01, *** p < 0.001
Labor-expenditure- and ASM-sampling-weight- weighted regression of log labor-market wedge δ on log
capital intensity (column 1), log nonproduction intensity (column 2), and both intensities jointly (column
3). Input intensity in each case is defined as X

N+L , with X the input in question and N + L total plant
employment.
Source: ASM/CMF.
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Figure E.12: Binscatter of Labor-Market Wedge against New Computer
Expenditures Per Worker (Additional Fixed Effects)

(a) Year, NAICS6, Firm FEs (b) Year, NAICS6, Plant FEs

Notes: Binscatter of log(δ) against log new computer expenditures per worker

log
(

nmc
workers

)
at the plant level with year, NAICS6, & firm (fjt) fixed effects (left) and

year, NAICS6, & plant fixed effects (right). The figure residualizes log(δ) and per-worker
computer expenditures against each set of fixed effects, then bins each into 100

equally-sized bins and plots the mean of log(δ) within each bin along with a (red)
line-of-best-fit. Workers are defined as production workers plus nonproduction workers.
New computer expenditures are deflated using a NAICS6 NBER-CES shipments price
index. Figure is weighted by ASM sampling weight and labor expenditures. For years

2000-2001 due to data availability.
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Figure E.13: Binscatter of Labor-Market Wedge against Software Expenditures
Per Worker (Additional Fixed Effects)

Notes: Binscatter of log(δ) against log software expenditures per worker log log
(

cs
workers

)
at the plant level with NAICS6 (fj) & firm fixed effects. The figure residualizes log(δ) and

per-worker software expenditures against NAICS6 and firm fixed-effects, then bins each
into 100 equally-sized bins and plots the mean of log(δ) within each bin along with a (red)

line-of-best-fit. Workers are defined as production workers plus nonproduction workers.
Software expenditures are deflated using a NAICS6 NBER-CES shipments price index.

Figure is weighted by ASM sampling weight and labor expenditures. For year 1997 due to
data availability.
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Figure E.14: Binscatter of Labor-Market Wedge against Communications
Expenditures Per Worker (Additional Fixed Effects)

(a) Year, NAICS6, Firm FEs (b) Year, NAICS6, Plant FEs

Notes: Binscatter of log(δ) against log cost of purchased communications per worker

log
(

cpc
workers

)
at the plant level with year, NAICS6, & firm (fjt) fixed effects (left) and

year, NAICS6, & plant fixed effects (right). The figure residualizes log(δ) and per-worker
communications expenditures against each set of fixed effects, then bins each into 100

equally-sized bins and plots the mean of log(δ) within each bin along with a (red)
line-of-best-fit. Workers are defined as production workers plus nonproduction workers.
Communications purchases are deflated using a NAICS6 NBER-CES shipments price

index. Figure is weighted by ASM sampling weight and labor expenditures. For years 1997,
2002, and 2006-2014 due to data availability.
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Table E.6: More Additional Fixed Effects for Regression of Labor-Market
Wedge on Input Intensity Measures

Year, NAICS6, Plant FEs
(1) (2) (3)

log(δ) log(δ) log(δ)

log
(

K
N+L

)
0.119*** 0.0772***

(0.00141) (0.00145)

log
(

N
N+L

)
0.169*** 0.150***

(0.00130) (0.00135)

N 614,000 614,000 614,000

R2 0.949 0.950 0.950
AIC 495,300 484,100 480,800

* p < 0.05, ** p < 0.01, *** p < 0.001
Labor-expenditure- and ASM-sampling-weight- weighted regression of log labor-market wedge δ on log
capital intensity (column 1), log nonproduction intensity (column 2), and both intensities jointly (column
3). Input intensity in each case is defined as X

N+L , with X the input in question and N + L total plant
employment.
Source: ASM/CMF.

Figure E.15: Binscatter of Labor-Market Wedge against Plant Capital
Intensity (Additional Fixed Effects)

(a) Year, NAICS6, Firm FEs (b) Year, NAICS6, Plant FEs

Notes: Binscatter of log(δ) against log capital per worker log
(

K
N+L

)
at the plant level

with year, NAICS6, & firm (fjt) fixed effects (left) and year, NAICS6, & plant fixed effects
(right). The figure residualizes log(δ) and per-worker capital intensity against each set of

fixed effects, then bins each into 100 equally-sized bins and plots the mean of log(δ) within
each bin along with a (red) line-of-best-fit. Workers are defined as production workers plus

nonproduction workers. Figure is weighted by ASM sampling weight and labor
expenditures.
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Figure E.16: Binscatter of Labor-Market Wedge against Plant Nonproduction
Intensity (Additional Fixed Effects)

(a) Year, NAICS6, Firm FEs (b) Year, NAICS6, Plant FEs

Notes: Binscatter of log(δ) against log nonproduciton workers per worker log
(

N
N+L

)
at

the plant level with year, NAICS6, & firm (fjt) fixed effects (left) and year, NAICS6, &
plant fixed effects (right). The figure residualizes log(δ) and per-worker nonproduction
intensity against each set of fixed effects, then bins each into 100 equally-sized bins and
plots the mean of log(δ) within each bin along with a (red) line-of-best-fit. Workers are
defined as production workers plus nonproduction workers. Figure is weighted by ASM

sampling weight and labor expenditures.
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Appendix F

ELASTICITY ALGEBRA APPENDIX

F.1 Output and Revenue Elasticities

This appendix provides the algebra for the relationships between elasticities, and the rela-

tionship between elasticities and markups. First, we derive the relationship between revenue

and quantity elasticities in (2.1). Consider an input to production L. Define the elasticity of

quantity produced respect to L as fl ≡
∂F (·)
∂L

L
Q and the elasticity of revenue as rl ≡

∂R(·)
∂L

L
R .

Finally, define the elasticity of output price with respect to quantity εP ≡ dP
dQ

Q
P By definition,

revenue R = P ·Q. Totally differentiating this expression with respect to L yields:

R = P ·Q

dR

dL
= Q

dP

dL
+ P

dQ

dL

dR

dL

L

R
= Q

dP

dL

L

R
+ P

dQ

dL

L

R

dR

dL

L

R
=
dP

dL

LQ

PQ
+
dQ

dL

LP

QP

dR

dL

L

R
=
dP

dL

L

P
+
dQ

dL

L

Q

dR

dL

L

R
=
Q

P

P

Q

dQ

dL

dL

dQ

dP

dL

L

P
+
dQ

dL

L

Q

dR

dL

L

R
=
dP

dQ

Q

P

dQ

dL

L

Q
+
dQ

dL

L

Q

dR

dL

L

R
=
Q

P

dQ

dL

dP

dQ

L

Q
+
dQ

dL

L

Q

rl = (1 + εP )fl
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Which is (2.1) in the main text.

F.2 Price Elasticity and the Markup

Next, we show the relationship between the inverse elasticity of demand εP and the markup

M. Assume firms maximize profits and minimize costs. The profit-maximization problem

is:

max
Q

P (Q) ·Q− C(Q)

Where P = P (Q) because of imperfectly elastic demand, and C(Q) is the firm’s cost function.

The FOC of the profit-maximization problem is:

dP

dQ
Q+ P = C ′(Q)

dP

dQ

Q

P
+ 1 =

C ′(Q)

P

1 + εP =
1

M

Where the last line uses the definition M ≡ MC
P =

C ′(Q)
P . Rearranging this result yields

M = (1 + εP )−1, which is the result in the main text.
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