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LIST OF FIGURES

2.1 Schematic of temporal feature extraction. The three time-varying patterns
of a molecular concentration c(t) differ in the number of pulses n, the time period
T (i.e., time between onset of pulses), and duty fraction δ (i.e., pulse width relative
to time period) but have the same total integrated exposure nTδ (there are n
pulses of width Tδ). (a) Circuits that respond to the total integrated exposure
are unable to distinguish the three signals (i.e. the three patterns shown result
in the same readout). (b) We seek designed molecular systems that can extract
independent temporal features n, T, δ and report each of them independently. For
example, such feature decoders must report pulse count without regard to pulse
width and report duty fraction without regard to the time period. As suggested
in the panel above, such a system could distinguish the three signals despite their
equal total exposure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 A pulse count decoder implemented by an Incoherent Feed-Forward
Loop that responds only to step ups in input (but not step downs). (a)
Reaction network to decode pulse number. (b) DNA Strand Displacement im-
plementation of mechanism in (a) with waste products suppressed. Species Ī is
the negation of input I as in dual-rail logic, i.e., Ī is high when I is low and
vice-versa. (c) The flux G (defined in SI Figures 1 and 3)leading to production
of P shows a stereotyped response to pulses of I that is independent of the width
and separation of such pulses in I. The stereotyped response is due to the ‘inco-
herent’ regulation of G by I; I exerts a direct fast positive effect on G, causing a
rapid rise, but also exerts an indirect delayed negative effect on G by suppress-
ing A (green). (d) Output P integrates and reports the number of stereotyped
responses of G. Consequently, changing the (e) duty fraction or (g) time period
of pulses in I has no impact on the output P which does change with (f) pulse
count. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 A duty fraction decoder implemented by a timed decay mechanism that
computes a moving average. (a) Reaction network to decode duty fraction.
(b) DNA Strand Displacement implementation of mechanism in (a). See SI for
kinetic parameters and circuit that includes waste products. (c) Sample time
traces for a typical input signal I from simulations of the DNA network. (d)
Changing the duty fraction of input I changes steady state value of output P .
(e,f) Changing time period T or pulse count n do not affect the readout P . . . . 9
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2.4 Time period decoder implemented by a combining an Incoherent Feed-
Forward Loop with a timed decay. (a) Reaction network to decode time
period. (b) DNA Strand Displacement implementation of mechanism in (a) with
waste products suppressed. Species Ī is the negation of input I as in dual-rail
logic. (c) As with the pulse count decoder, G shows a stereotyped response of fixed
width τa to pulses of I. However, the output P , due to its decay, now computes
the duty fraction τa/T of the train of stereotyped pulses in G. Consequently,
changing the (d) duty fraction or (e) number of pulses in I has no impact on the
output P which does change with (f) time period T . . . . . . . . . . . . . . . . 10

2.5 Output of DNA-based decoders with realistic kinetic parameters on a
library of temporal patterns that systematically vary in pulse number,
duty fraction and time period. Each decoder circuit’s output changes sig-
nificantly in response to changes in only one of the three features. For example,
the duty fraction decoder changes by a factor of 4× as duty fraction changes
from 0.2 to 0.8 but barely changes as time period changes from 5000 seconds to
15000 seconds. Limits of operation are consistent with formulas derived in the
respective Results section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Molecules with multiple stable assemblies can naturally recognize high-
dimensional concentration patterns through nucleation kinetics. Promis-
cuous interactions allow the same molecules to spatially co-localize in distinct
combinations to form distinct structures. Then, nucleation (traversal of the bar-
rier from monomers to the wells corresponding to finished structures) can select
between structures by discriminating patterns in the concentrations of different
molecules; e.g., high concentrations for species 1, 2, and 3 (pattern 1) selectively
nucleates the red assembly wherein they are co-localized, but high concentrations
for 1, 2, and 7 (pattern 2) kinetically selects for the orange assembly (thicker
arrows indicate stronger nucleation). As in an associative neural network, this
system can be naturally extended to recognize more classes of concentration pat-
terns by adding promiscuous molecular interactions—e.g., through evolution or
engineering—that co-localize the same species in new spatial combinations. . . 19

3.2 A multifarious mixture of 917 molecular species can assemble three
distinct structures from one set of molecules. (a) 42-nucleotide DNA
strands self-assemble into 2-d structures by forming bonds with four comple-
mentary strands in solution. The strands can be abstracted as square tiles with
four different 10 or 11 nucleotide glues determined by strand sequence. (b) One
pool of 917 tile types assembles into three distinct structures, H, A and M. While
each tile occurs only once in each structure, the shared purple species re-occur in
multiple shapes, in distinct spatial arrangements. (c) Annealing an equal mix of
all tiles results in a mixture of fully and partially assembled H, A and M, imaged
by atomic force microscope (AFM). . . . . . . . . . . . . . . . . . . . . . . . . 20
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3.3 Simulations and theory show that enhanced concentration of shared
tiles selectively enhances nucleation rate of structures in which high
concentration tiles are co-localized. (a) A pattern enhancing the concen-
tration of shared tiles co-localized in H but relatively dispersed in A and M.
Nucleation pathways for H climb a lower nucleation barrier, with smaller critical
nucleation seeds, as seen from a stochastic nucleation simulation. (b) Regions
predicted to participate in nucleation by the simulation for three concentration
patterns (lighter colors correspond to higher participation) (c) Varying tempera-
ture trades off selectivity and the scale of pattern recognition for speed of recog-
nition, even with constant tile monomer concentrations. (d) With tile monomer
depletion, if assembly occurs at temperatures T < THnuc and T < THgrow allowing

nucleation and growth of on-target structures (here, H) but too high T > TAnuc for
off-target nucleation (A, shown, or M), a winner-take-all (WTA) effect enhances
selectivity compared to systems with no shared components (right) illustrated
using simulations of a toy model, see Extended Figure B.7. . . . . . . . . . . . 23

3.4 Enhanced concentrations of shared tiles can selectively nucleate struc-
tures in which those tiles are co-localized. (a) We incorporated four different
fluorophore/quencher pairs on adjacent tiles in four locations on each structure,
allowing the choice of any four locations as labels: quenching of a label indicates
growth of that local region on that structure. (b) Samples were annealed with
the temperature protocol shown here, spending a majority of the experiment be-
tween 48 and 46 ◦C. (c) We prepared 37 different patterns of concentration (three
shown here) that had 12 or 13 shared tiles of increased concentration (16.6x) in
checkerboard pattern in a particular 5 × 5 location in H, A, or M. Fluorophore
quenching in multiple samples, and AFM imaging, showed that many patterns
resulted in selective nucleation of the shape with the checkerboard pattern; results
for each location are summarized in (d) and (e). (f) Patterns enhance nucleation
on the shape with localized high concentrations while simultaneously decreas-
ing nucleation of the other two shapes for most experiments. Here, values are
given relative to the fractional quenching observed for an equimolar SHAM Mix,
described in Extended Figure B.6. . . . . . . . . . . . . . . . . . . . . . . . . . 25
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3.5 The distinct co-localization patterns in the three structures are expres-
sive enough to classify up to 18 images, even after distortion, where
each pixel value is mapped to a tile concentration. (a)-(e) Training: Select-
ing 18 images (30× 30 pixels), we computationally searched for one pixel-to-tile
assignment that would map each image to a concentration pattern with high
concentrations localized in the shape associated with the image and distributed
in other shapes; (f) For testing, we also considered 18 distorted variations of
these images, using the same assignment. (g) In all trained images, and most
distorted images, both fluorescence and AFM results showed that the associated
concentration pattern for each image resulted in selective nucleation of the correct
corresponding shape. The results across all 36 pattern recognition experiments
for both AFM imaging and fluorescence monitoring are summarized, averaged
over different samples with different fluorophore configurations. Arrows indicate
relative fraction of quenching time or number of shapes counted in AFM images.
Line color indicates desired shape for the pattern (purple: uniform SHAM Mix
at 60 nM) in each sample. Dashed lines - no significant quenching or shapes
seen under AFM. (h) Sample fluorescence traces and AFM images for the ’Horse’
concentration pattern. (i) Same data as (g); here, proximity to triangle corners
indicate relative fractions for different shapes. . . . . . . . . . . . . . . . . . . . 27

4.1 Nucleation pathways and rate-limiting steps in multi-component self-
assembly can change dramatically with small changes in the pattern of
unequal concentrations of components.. The rate-limiting nucleation step
of self-assembly is set by a balance of bulk and boundary effects, and is the lowest
of the highest free energy state along each possible assembly pathway (a min-max
problem). With uneven concentrations, the energy landscape is rugged and crit-
ical seeds can take on unusual shapes due to the favorable kinetic attachments
of high concentration components that are co-localized on the structure. While
the min-max problem on a rugged landscape is a computationally difficult prob-
lem, we can determine dominant nucleation pathways and thus rate by rare-event
trajectory sampling methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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4.2 Subtle changes in concentration patterns lead to significantly altered
kinetic pathways and overall nucleation rates (a) Here we compare four
patterns with the same number of high (20x) concentration components (shown
in orange) on a 16 × 32 grid at a fixed Gse = 5.2: the cut outs below show the
same 9× 9 red-outlined region. Each pattern differs from adjacent patterns only
in the location of 4 high concentration species which have only been shifted by
one tile on the lattice. Yet each small change causes nucleation rates to differ
by a factor of ∼ 10, as shown in the bar graph on the right. (b) Energy along
sampled trajectories for checkerboard pattern (orange) and cross pattern (blue).
(inset: configurations along representative trajectories (bold).) (c) The forward
probability pf describes the probability assemblies of a particular size will evolve
to a structure of the next size (usually one tile larger) without dissociating back
to monomers. Heat maps shown along the top (checkerboard) and bottom (cross)
indicate the probability a particular tile is included in an assembly of a given size.
Up until size 5, the cross pattern has a significantly enhanced pf because of the 5
contiguous high concentration tiles located at the center of the cross. This initial
advantage more than compensates for lower pf for the cross at later assembly
stages. (d) Critical seeds along sampled trajectories for the cross pattern (top)
and the checkerboard pattern (bottom). (left) Composite critical seed heat maps
show the probability a particular tile is included in the sampled critical seeds.
(middle) 6 example critical seed assemblies are shown for each pattern. (right)
Histogram of energy and size of critical seeds. Critical seeds for cross are larger,on
average, than those for the checkerboard but have lower energy because seeds for
the cross can readily accommodate a contiguous region of high concentration tiles. 36

4.3 Temperature sets a trade-off between speed and length-scale resolu-
tion. (a) Random patterns with a fixed number of high (20x) concentration
components (shown in orange) were generated such that the high concentration
species fit inside a k × k square. The cut outs below show 2 such examples for
k = 8. (b) (top) Average nucleation rates increase for higher Gse and for smaller
k localization. (bottom) Violin plots for k = 5 show the distributions of these
rates reaches a maximal functional range at intermediate Gse (log10 of ratio to
mean rate for each Gse). (c) Discrimination (the ratio of nucleation rates from
Pattern 1 to Pattern 2 from panel (a)) decreases as nucleation rates increases.
(d) Energy trajectories of assembly at the Gse values shown with dashed lines in
(c) (Gse = 5.1 on top, Gse = 6.1 on bottom)(Pattern 1 in green and Pattern 2
in purple). Example growth states for a particular trajectory (bold) are shown
along the top for Pattern 2 and the bottom for Pattern 1 (e) (left) For 4000
sampled critical seeds, a scatter plot of size against energy for both patterns at
Gse = 5.1 is shown (Pattern 1 in green, Pattern 2 in purple). Example critical
seeds are shown for the different patterns at this Gse (Pattern 1 on the right
column). The purple and green heat maps at the bottom of each column indicate
the probability each tile is included in a critical seed. (right) Same as the left but
for Gse = 6.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
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4.4 Interplay between temperature and nucleation scale can lead to sig-
nificant inversions of relative nucleation rates. (a) Two patterns with an
equal number of high concentration (20×) species are shown. (b) (top) Nucleation
rates for both patterns are shown as a function of Gse. Two Gse values of interest
are denoted with vertical lines, and the corresponding critical seeds are shown in
panel (c). (bottom) Forward probabilities as a function of λ show that at low Gse
the Solid w/ Scatter pattern faces a significant barrier after growing out the high
concentration region in comparison with the Outline pattern. However, at larger
Gse, the high concentration region in the Solid w/ Scatter pattern is sufficient to
allow favorable growth to larger structures, and it reaches this favorable growth
more quickly than for the Outline pattern. . . . . . . . . . . . . . . . . . . . . 40

A.1 Full version of DNA strand displacement reaction network for pulse
counting decoder including waste products. The two species in red had
their dynamics directly modulated to the parameters of the input series, with
sp 1 (referred to as Ī in the main text) pulsing exactly out of phase with sp 0
(I in the main text). Graphs and labels are generated automatically within the
Visual DSD software [9]. See Table A.1 for a list of initial concentrations. Note
that the flux G plotted in Figure 2 is defined G ≡ √sp2 ∗ sp5. . . . . . . . . . . 45

A.2 Full version of DNA strand displacement reaction network for duty
cycle decoding, including waste products. This circuit effectively takes the
moving average of the dynamics of sp 0 and reports it in sp10. See main text
Figure 3 for analysis and Figure 5 for performance. Initial concentrations of
bolded species are listed in Table A.2. . . . . . . . . . . . . . . . . . . . . . . . 48

A.3 Full version of DNA strand displacement reaction network for time
period decoding, including waste products. By taking the moving average
of the incoming flux G ≡ √sp2 ∗ sp5, this circuit decodes the period of sp 0.
Initial concentrations of bolded species are reported in Table A.3. . . . . . . . . 50
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B.1 Proofreading tile set design and tile assignment map. (a) Our systems are designed to

grow in a regime where a tile attaching by at least two bonds is favorable, but a tile attaching

by one bond is not (“threshold 2”). Motivated by self-healing tile systems [101], we seek a tile

set where no correct partial assembly should ever allow an undesired tile to attach by two or

more bonds, though undesired attachments by one bond are allowed, such that any favorable

attachment to a partial assembly will be correct. (b) In addition to tiles attaching favorably

by 2 bonds to growing facets, new facets in the system will only be created by tiles attaching

unfavorably by one bond, and then being stabilized by further, favorable growth. At a site

where tile T would correctly attach by one bond, a tile U might be able to attach incorrectly

by the same bond. T would correctly be stabilized by the subsequent attachment of V by two

bonds, but U might be able to be stabilized as well if there is a tile W that can attach to it

and shares the same glue as V . Thus, if for every pair of tiles that can bind to each other (eg,

T + V ), there is no other pair of binding tiles (eg, U + W ) that share two glues on the same

edges of the tiles, then any tile that attaches by one bond to an assembly will either be the

correct tile, or will not allow a subsequent attachment, and will likely detach. This is equivalent

to “second-order sensitivity” with all directions treated as inputs, functioning as a as a form

of “proofreading” [77, 76]. We created a multifarious tile system by first starting with three

shapes constructed entirely of unique tiles, then repeatedly attempting (c) to “merge” tiles in

different shapes by constraining the sequences of their domains to be identical, and checking

whether each merge of two tiles results in a tile system that does not have any tile pairs violating

criteria in (a) and (b). From multiple trials of the merging process, we selected the smallest

result, (d), containing 917 tiles. Tiles in the system were designed with the single-stranded tile

(SST) motif in [69], with two alternating tiles motifs of 11 nt and 12 nt domains. . . . . . . 62

xi



B.2 Suppression of chimeric growth through tile set design. We contrast assembly errors

in three distinct tile sets: (a, top) the proofreading tile set with an inert boundary used

in experiments (described in Figure 3.2); (a, middle) a simple checkerboard tile set with a

strictly alternating shared and unique tile pattern for each shape, where unique tiles can be

seen as mediating different interactions between shared tiles; and (a, bottom) an edge-guarded

checkerboard in which we additionally enforce inert bonds around each shape’s perimeter. (b)

Schematic shows the two distinct kinds of chimeric structures (e.g., part-H, part-A) seen in

simulation due to promiscuous interactions; chimeric structures can grow either before full

assembly of the target structure or emerge spontaneously from the edge of a properly formed

structure. Chimeras like those illustrated along the lower path are held together by just a

few bonds and will quickly break apart (species with unintended bonds shown in red): this

corresponds to the observed sharp drops in the mass trajectories of (c)-(e). (c)-(e) For each

tile set, we performed kinetic growth simulations, starting from a pre-formed 5× 5 seed, for a

single seed localized on H, were performed using XGrow (with chunk fission) [94] with uniform

tile concentrations corresponding to Gmc = 9.5, and varying bond energies relative to kBT , Gse.

The size of the assembly (in units of the size of the fully formed H) is shown as a function of

time. (c) For small Gse = 5.3 (i.e., high temperature, slow growth), no chimeras are observed

on the simulated timescales for any tile set. (d) For intermediate Gse = 5.9 ( all 6 checkerboard

trajectories still result in chimeras, while no errors are observed on the timescale probed for

the guarded checkerboard or proofreading-satisfying tile set. (e): Large Gse = 6.6, (i.e., low

temperatures, fast growth) leads to chimeras with all 3 tile sets; chimeras are seen in all runs for

checkerboard structures (red traces), 4 of the 6 runs for guarded checkerboard structures (green

traces) and 1 of the 6 runs for proofreading-satisfying structures form chimeras). Simulations

were carried out with model detailed in Extended Figure B.4 [102] with α = 0. . . . . . . . 63
B.3 Fluorophore quenching as a measure of nucleation and growth. (a) shows positions

and types of all fluorophore/quencher pairs available for use; only one of each type of fluo-

rophore can be used in a single sample; four selections of fluorophores were used in different

samples. (b) shows expected behavior of fluorophore labels on shapes as one shape nucleates

and grows. (c) shows fluorescence data for non-quenching (fluorophore tile only, orange) and

quenching (5×5 lattice around fluorophore and quencher tiles, blue) controls for the ATTO647N

fluorophore/quencher pair on A. Here, the temperature ramps linearly from 49◦C to 35◦C at

a rate of 0.1
◦C
min , with all tiles at 50 nM, and each sample has its fluorescence normalized to

its maximum value independently. (d) shows an example of fluorescence growth time measure-

ments. Each fluorophore signal, in each sample, is independently normalized to its maximum

value during the experiment, and the time between the point where the signal goes below 0.9

(“10% quenching”) and the end of the experiment is measured (“growth time”). These times

are then summed for all fluorophores, in all four samples, on each shape, resulting in a growth

time for each shape, and, when normalized to the sum of all growth times, a relative growth

time for each shape. See Methods above for fluorophore details. . . . . . . . . . . . . . . 64
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B.4 Stochastic Greedy Nucleation Model, based on repeated stochastic simulations.

The (a) frequently-used kinetic Tile Assembly Model (kTAM) [68, 102] has rates for tile at-

tachment and detachment events based on tile and assembly diffusion and total binding strength

of correct attachments a tile can make at a lattice site. These rates can be used (b) to derive a

free energy for any tile assembly in a system, and, assuming fixed monomer concentrations, an

equilibrium concentration for any assembly. [104] showed that the equilibrium concentration

of the highest-energy assembly along a nucleation trajectory under this assumption provides

an upper bound for nucleation rate through that trajectory, with or without fixed monomer

concentrations. However, in a large system, considering all possible intermediate assemblies

and all pathways, including many that are extremely unlikely, would be infeasible. Thus, we

developed the Stochastic Greedy Nucleation Model to generate stochastically-chosen paths of

tile attachments. Starting from a single tile (chosen with probability proportional to relative

concentration), (c) whenever the assembly is in a state Astable where there is no tile attachment

that would be favorable (have ∆G < 0), one of the possible unfavorable (with ∆G ≥ 0) at-

tachments is stochastically chosen, resulting in a higher-G state Aunstable. Then, all subsequent

possible ∆G < 0 attachments are made, resulting in the next A′stable state; for our system of

unique tiles for each site in the lattice, this sequence of favorable steps has a unique resulting

assembly. The process repeats until all tiles in a shape are attached, which results (d) in a tra-

jectory with a maximum-G assembly that can be used to bound the rate of nucleation through

that particular trajectory. By using this process to collect many trajectories, and then repeating

the entire process for each of the three shapes in the system, we can estimate nucleation rates

dependent upon temperature (e), with the assumption that tile monomer concentrations do not

deplete, and that the trajectories found are a reasonable representation of likely trajectories.

For temperature ramps, we determined a reference temperature for each shape at which the

model predicted a nucleation rate fast enough to exceed some threshold (orange line), and used

this to compare to fluorescence results in Extended Figure B.5(d) and B.8(b). . . . . . . . 65
B.5 Nucleation and growth with ‘flag’ patterns of enhanced concentration. 36 different

concentration patterns with enhanced concentrations of shared tiles in 5× 5 regions were pre-

pared, each with four different standard sets of fluorophores in four samples, and grown using

two temperature protocols (a): a ramp focusing on 48◦C to 46◦C over 100 hours, and a hold

at 47◦C. Using growth times as described in Extended Figure B.3, fluorescence data for many

samples in both experiments showed preference for the desired shapes (b, c), but with consider-

able variation in selectivity and total amount of growth. No statistically significant correlation

was found between the nucleation model prediction for temperature of on-target nucleation and

the time of on-target shape quenching in the temperature ramp experiment (d). (e-g) show

details of three patterns, with concentration patterns (1), weighted critical nucleus free energy

starting from particular tiles (2), nucleation-model-estimated nucleation rates (3), temperature

hold (4) and temperature ramp (5) experiment fluorescence results, and (6) AFM images from

the temperature hold experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xiii



B.6 Evidence of winner-take-all in flag experiments (a) Normalized fluorescence for ROX

fluorophore in the H sample and the FAM fluorophore in the A sample for a uniform concen-

tration pattern (i.e. no flag). We define the quenching Q for each fluorophore as the difference

between the maximum value (always 1 due to normalization) and the value of the fluorescence

when the ramp protocol reaches 46 °C. (b) Same as in (a) but for the Afs12 concentration

pattern . (c) Same data as 3.4 (f) with the data points labeled by their corresponding concen-

tration patterns. The horizontal axis values are calculated by averaging the fold changes of the

5 on-target fluorophores (4 in the sample with the fluorophores on the flagged structure and 1

fluorophore from the ’3’ sample) while the vertical axis is calculated by averaging over the 10

off-target fluorophores (8 from the samples with fluorophores on the non-flagged shape and the

2 non-corresponding fluorophores from the ’3’ sample). . . . . . . . . . . . . . . . . . . 67
B.7 Simple model illustrates winner-take-all dynamics. (a) A 2N + 1 state (N = 50)

master equation models the evolution from monomers along two one-dimensional chains of

states corresponding to the growth of two distinct structures (kTAM rates are used for attach-

ment/detachment, see Extended Figure B.4) after a non-reversible nucleation step (Arrhenius’

barrier crossing formula assumed). (b) There are high ch and low cl concentrations initially

present in the system, with H assumed to have a region of localized high concentration species.

Nucleation of H is assumed in a single location, and thus it’s states correspond to growth of

specific locations in H. In A, states correspond to fragments of a particular size with random

composition, leading to distinct depletion dynamics. Species can be totally shared between the

two structures (S) or totally unique in each structure (NS). (c)-(e) Extended schematics from

main text Fig. 3d showing nucleation rates as a function of temperature (assuming fixed con-

centrations). Here, nucleation and growth temperatures are defined when rate curves become

equal to inverse experimental timescale, 1/τ (where the nucleation rates have been scaled by

the low concentration in the system to match units). When H structures are able to nucleate

and grow at temperatures before A nucleation becomes significant, winner-take-all dynamics

are possible with many H’s forming and depleting shared tiles, effectively decreasing TA
nuc. (f)

Selectivity, quantified as the fraction of structure mass in the H branch relative to the total

mass in the H and A branches at the final time point, is plotted for the three temperature

protocols shown in (g) for systems with shared species (S, dots) and systems with no shared

species (NS, x’s). (h), top Nucleation rates for the slow ramp temperature protocol are shown

over the duration of the simulation. Note that when the components are shared between H and

A, depletion keeps the nucleation rate of the A structure small even at low temperatures. (h),

bottom The concentrations in state HN and AN (solid lines) and the average values of cl in

A and H (dashed lines) are shown for the slow ramp protocol. . . . . . . . . . . . . . . . 68
B.8 Classification of images viewed as concentration patterns 36 different concentration

patterns, derived from a mapping of 36 grayscale images, were run using a ramp between

48◦C to 45◦C over approximately 150 hours. (a) Three pattern examples, with source image,

concentration pattern, nucleation model nucleation rate starting from particular tiles, nucleation

model nucleation rates, fluorescence results, and AFM images. (b) Across all patterns there

was some correlation between the on-target nucleation temperature predicted by the nucleation

model and on-target shape quenching time. (c)Total AFM shape counts for each sample. . . 69
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B.9 Pattern recognition capacity To analyze the pattern-recognition capabilities of the designed

tile set, a map-training algorithm was run for increasingly larger sets of random images. (a)

Random images are generated by permuting a list of 900 pixel values (with matching his-

tograms). As in experiments, patterns correspond to 30x30 images with the same number

of tiles at each of 10 possible grayscale values. (b) Before training, bright pixels (i.e., high

concentrations) are randomly assigned to tiles across the three shapes. (c) The map training

algorithm attempts to create regions of localized high concentrations on a length scale k on the

targeted shape (here, H) while dispersing any high concentration tiles on the off-target shapes

to prevent spurious nucleation. Note this nucleation center could occur at many different spatial

locations on the H (d) When the number of images becomes large (18 images per shape shown

here), the training algorithm is still able to create a scale k nucleation site on the target shape

(H in this example), but the concentration of high concentration tiles on the desired shape is

less apparent visually. (e) As the number of images in the set increases, the performance of the

training algorithm decreases. For larger k, the pixel-tile map can exploit higher-order correla-

tions and can thus accommodate more images. Accuracy is calculated by taking the ratio of the

nucleation rate of the target shape over the nucleation rates of all three shapes (calculated using

the nucleation model shown in Extended Figure B.4 at Gse = 5.4 which roughly corresponds to

a temperature of 48.6 ◦C). Here, the shaded areas around each line correspond to the standard

deviation of the accuracy contribution over the images in each set. . . . . . . . . . . . . . 70
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ABSTRACT

Understanding the computational capacity of molecular systems is important both for

basic insights into information processing in biological systems and the design of synthetic

nano/micro-scale technologies. Here, we design systems that, instead of mimicking conven-

tional engineered computational systems, exploit intrinsic physical dynamics to carry out

pattern recognition autonomously. Using chemical reaction networks and self-assembly of

many heterogeneous species, we demonstrate pattern recognition capabilities on pulsatile

temporal inputs and high-dimensional concentration patterns. Throughout, we emphasize

the ways in which our physical mechanisms are naturally suited to the particular computa-

tional challenges. This work not only provides molecular computational solutions for concrete

problems, but also helps broaden the paradigm about how, when, and where computation

can occur in molecular systems.
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CHAPTER 1

INTRODUCTION

Pattern recognition is an important form of computation where a system is able to

parse some lower dimensional interpretation from a complex input. In modern machine

learning, pattern recognition algorithm uses include both classification and regression, and

these algorithms have been employed for tasks ranging from classifying images of handwritten

digits [1] to earthquake prediction from time-series data [2]. The human brain is constantly

recognizing complex patterns. From recognizing the faces of our family and friends to parsing

speech, pattern recognition underlies many of the capabilities of human intelligence [3].

Interestingly, many non-neural biological systems can recognize patterns autonomously.

The bacteria E. Coli are famously capable of chemotaxis [4] where these organisms are able

sense and accordingly move up gradients of nutrient concentrations. In some cases, cells use

temporal patterns to encode identity and intensity of external stimuli. For example, p53

pulse duration and number of pulses changes whether the cell has been damaged by γ or UV

radiation [5]. While the full mechanistic details of how cells precisely decode these patterns

into meaningful, differentiated gene expression responses are still not known, it has been

demonstrated that modulating the temporal dynamics of the Msn2 transcription factor in

yeast can selectively express one of four different downstream genes [6].

This thesis explores basic molecular systems that are explicitly capable of pattern recogni-

tion and discrimination intrinsically due to their designed physical interactions and chemical

reactions. It builds upon the wealth of molecular computational applications, dating back to

Adleman’s DNA-based solution to the famous Hamiltonian path problem [7]. In the systems

described here, DNA also plays critical role; the designability and availability of arbitrary

DNA sequences enables experimental realizations for each abstract computational mecha-

nism. Such implementations were either explicitly achieved or discussed at length to show

that the mechanisms described here function even under real (bio)physical constraints on,
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for example, reaction rates.

Neural networks and machine learning algorithms show a remarkable ability to learn pat-

tern recognition from training examples. The hardware-based systems here can be similarly

trained using mechanisms ranging from training on a computer (e.g., gradient descent) to

systems that can physically learn in situ through adaptive weights. New molecules can be

synthesized dynamically to effect new behavior in response to these example inputs, typically

through help of enzymes (see, e.g.[8]). Learning interactions autonomously holds exciting

future directions for the kinds of systems and problems presented here.

Chapter 2 provides examples of chemical reaction networks that are capable of extracting

specific features from a temporal concentration pattern. The mechanisms provided are in-

spired by known reaction network motifs from systems biology but are analyzed in new light

for their ability to effectively process a chosen family of temporal patterns. A minimal reac-

tion network and corresponding set of ordinary differential equations are presented for each

mechanism and analyzed in a manner quite similar to the transient analysis that is typically

seen in standard textbooks on electrical circuits. For each reaction network, a corresponding

implementation is provided using DNA strand displacement reactions, and the functionality

of these implementations is confirmed in simulation using Visual DSD software [9].

Chapter 3 demonstrates the inherent computational power in self-assembly systems for

classification of high-dimensional concentration patterns. We study a kinetic model of multi-

farious self-assembly where a single set of monomer components is able to stably form three

distinct spatially arranged lattices. Then, concentration patterns imposed on these unique

components are shown to be able to control which of those three lattices will preferentially

form during a temperature anneal. Analogous to an artificial neural network classifying im-

ages with continuous pixel intensities as input, this system takes in a list of concentrations

and produces a weighted output of three discrete classifications, i.e. the relative abundance

of the three distinct stable lattice structures. We experimentally explored different regimes
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of this theory using a system of nearly 1000 distinct species of single-stranded DNA oligonu-

cleotides. Experimental methods for monitoring of nucleation and growth of these structures

in real time are introduced, and simple, heuristic computational models are introduced and

discussed to provide intuition about the computation taking place during the competitive

nucleation of these different assemblies.

Chapter 4 takes this idea of computation in nucleation further and demonstrates the

ability for heterogeneous self-assembly to distinguish subtle spatial differences in concen-

tration patterns. Instead of a multifarious system, a system with a single designed stable

lattice is considered. By utilizing rare-event sampling techniques along with a kinetic model

of self-assembly, nucleation rates for different concentration patterns are estimated compu-

tationally. It is shown that even seemingly small changes to a concentration pattern can

cause nucleation to take place orders of magnitude faster. The relationship between tem-

perature, assembly speed, nucleation length scale, and pattern discrimination is explored for

this system through a few illustrative examples.
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CHAPTER 2

TEMPORAL PATTERN RECOGNITION THROUGH

ANALOG MOLECULAR COMPUTATION

This chapter is reproduced with permission from ACS Synthetic Biology 1

Abstract: Living cells communicate information about physiological conditions by pro-

ducing signaling molecules in a specific timed manner. Different conditions can result in the

same total amount of a signaling molecule, differing only in the pattern of the molecular

concentration over time. Such temporally coded information can be completely invisible to

even state-of-the-art molecular sensors with high chemical specificity that respond only to

the total amount of the signaling molecule. Here, we demonstrate design principles for cir-

cuits with temporal specificity, that is, molecular circuits that respond to specific temporal

patterns in a molecular concentration. We consider pulsatile patterns in a molecular concen-

tration characterized by three fundamental temporal features - time period, duty fraction

and number of pulses. We develop circuits that respond to each one of these features while

being insensitive to the others. We demonstrate our design principles using general chemi-

cal reaction networks and with explicit simulations of DNA strand displacement reactions.

In this way, our work develops building blocks for temporal pattern recognition through

molecular computation. Recent breakthroughs in synthetic biology have led to molecular

sensors that report on the local environment in cells by detecting signaling molecules with

high chemical specificity [10, 11, 12, 13].

However, by themselves, such sensors can be completely blind to temporally coded in-

formation in cells and tissues. In fact, living cells often communicate information about

physiological conditions by producing a signaling molecule in a specific timed manner [5, 14,

15]. For example, many rapid pulses of nuclear p53 in mammalian cells indicates γ radia-

1. O’Brien, J. and Murugan, A. ACS Synth. Biol. 2019, 8, 4, 826–832, Published 3/5/2019
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Figure 2.1: Schematic of temporal feature extraction. The three time-varying patterns
of a molecular concentration c(t) differ in the number of pulses n, the time period T (i.e., time
between onset of pulses), and duty fraction δ (i.e., pulse width relative to time period) but
have the same total integrated exposure nTδ (there are n pulses of width Tδ). (a) Circuits
that respond to the total integrated exposure are unable to distinguish the three signals
(i.e. the three patterns shown result in the same readout). (b) We seek designed molecular
systems that can extract independent temporal features n, T, δ and report each of them
independently. For example, such feature decoders must report pulse count without regard
to pulse width and report duty fraction without regard to the time period. As suggested in
the panel above, such a system could distinguish the three signals despite their equal total
exposure.

tion damage and leads to cell cycle arrest, while a longer sustained single pulse of nuclear

p53 indicates UV damage and leads to programmed cell death [5]. Thus different biological

conditions can result in the same total amount of a signaling molecule, differing only in

the pattern of the molecule’s concentration over time [6]. Such biological conditions cannot

be distinguished by a sensor that responds to the total amount (or exposure) to a target

molecule, even if the sensor has high chemical specificity.

In this article, we demonstrate design principles for molecular circuits with temporal

specificity, i.e., molecular circuits that respond to specific temporal features in the concen-

tration of an input molecule, instead of the total exposure to that input molecule. We show

chemical reaction networks satisfying these principles and derive constraints on their rate

constants. We then find explicit implementations of these abstract reaction networks using

DNA strand displacement reactions and verify the performance of such DNA circuits using
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simulation software explicitly designed for this purpose [9]. We anticipate that this work will

also be of use for other synthetic biology constructs based on enzymes and transcriptional

gates [16, 17] and for analyzing naturally occurring temporal decoding mechanisms in cells

[5].Several recent works have studied how temporally varying signals can be processed by

biochemical systems [18, 19, 20, 21, 22]. Here we provide a single framework to independently

decode all the features of a three-parameter family of pulsatile inputs.

Recognizing temporal patterns can be interpreted as an analog operation that is natu-

rally suited for molecular computation. Molecular circuits of digital gates are robust and

have solved remarkable problems[23, 24, 25] and even mimicked neural networks[26]. How-

ever, analog operations represent information directly in continuous physical variables like

concentration or time intervals[27, 28], making analog devices simpler and naturally suited

to temporal pattern recognition problems[29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 8, 35,

41].

Further, analog circuits can naturally exploit molecular transients for computation as

shown in several works [42, 43, 44]. Transients are particularly useful for temporal pat-

tern recognition since they can serve as natural ‘rulers’ to measure and process information

encoded as time intervals. Even on a digital computer, temporal pattern recognition prob-

lems are best solved using recurrent networks with internal transients[45]. In this way, our

approach here exploits a feature inherent to molecular devices – namely, finite timescale

transients – to perform temporal pattern recognition.

Results

Time-varying signals are high dimensional and can vary in endless ways. Here, we restrict

our study here to pulsatile patterns c(t) in the concentration of an input molecule I (see

Figure 2.1) characterized by three independent temporal features - time period T (i.e., time

between onset of pulses), duty fraction δ (i.e., pulse width relative to duration between pulses)
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and the number of pulses n (i.e. length of the pulse train). It is possible to parameterize

this family of inputs using pulse width instead of duty fraction. However, doing so would

restrict the values of pulse width possible for a given value of period to prevent pulses from

overlapping. As shown in Fig.2.1, different temporal patterns can have distinct n, T, δ but

have the same total area = nTδ. Hence a naive sensor that is only sensitive to the total

amount of I would respond in the same way to all patterns shown.

Here, we demonstrate decoders that can report on each of these temporal features n, T, δ

independently - e.g., the duty fraction readout should be independent of the time period and

the number of pulses while the number of pulses readout should not depend on the width or

separation of the pulses.

We will assume that the amplitude of the input signal is fixed and will not consider

amplitude fluctuations. A novel mechanism to buffer amplitude fluctuations was proposed

recently[35]; such a stereotyping mechanism can be used upstream of the temporal decoders

proposed here. The three independent numbers n, T, δ form a complete independent ‘basis’

for the family of patterns considered here. Other combinations of these features might be

relevant for specific applications (e.g., pulse width Tδ instead of duty fraction δ) but the

principles behind the basis set of decoders should allow development of sensors for such

features as well.

Pulse count decoder

We begin with a molecular circuit that can count the number of pulses n seen, without

regard to the width of each pulse or the separation between pulses.

To count pulses n in this manner, we first seek a circuit that produces a stereotyped

response to each pulse that is independent of pulse width and separation. To do so, we

take inspiration from ‘biochemical adaptation’ mechanisms used e.g., in bacterial chemotaxis
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Figure 2.2: A pulse count decoder implemented by an Incoherent Feed-Forward
Loop that responds only to step ups in input (but not step downs). (a) Reaction net-
work to decode pulse number. (b) DNA Strand Displacement implementation of mechanism
in (a) with waste products suppressed. Species Ī is the negation of input I as in dual-rail
logic, i.e., Ī is high when I is low and vice-versa. (c) The flux G (defined in SI Figures 1 and
3)leading to production of P shows a stereotyped response to pulses of I that is independent
of the width and separation of such pulses in I. The stereotyped response is due to the
‘incoherent’ regulation of G by I; I exerts a direct fast positive effect on G, causing a rapid
rise, but also exerts an indirect delayed negative effect on G by suppressing A (green). (d)
Output P integrates and reports the number of stereotyped responses of G. Consequently,
changing the (e) duty fraction or (g) time period of pulses in I has no impact on the output
P which does change with (f) pulse count.
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[46]. Such molecular circuits show a transient response to step changes in an input signal but

return to their prior state and are insensitive to the steady state value of the input. Incoherent

Feed-Forward Loops (IFFL) and Negative Feedback loops are two common molecular circuits

that carry out adaptation in biology [47]. We focus on IFFLs which have been recently

implemented with DNA strand displacement reactions [48].

However, adaptive circuits in the biological literature often respond in an equal and opposite

manner to both the rising and falling edges of each input pulse[46, 49]. To count pulses,

we desire an asymmetric response to step ups and step downs in the input. For example, a

circuit that responds only to step ups but ignores step downs and steady values of the input

would naturally count pulses. Such asymmetric adaptation[50, 51, 52, 53] can be naturally

achieved in a reaction network if the adaptive variable has a resting concentration at zero;
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Figure 2.4: Time period decoder implemented by a combining an Incoherent Feed-
Forward Loop with a timed decay. (a) Reaction network to decode time period. (b)
DNA Strand Displacement implementation of mechanism in (a) with waste products sup-
pressed. Species Ī is the negation of input I as in dual-rail logic. (c) As with the pulse count
decoder, G shows a stereotyped response of fixed width τa to pulses of I. However, the
output P , due to its decay, now computes the duty fraction τa/T of the train of stereotyped
pulses in G. Consequently, changing the (d) duty fraction or (e) number of pulses in I has
no impact on the output P which does change with (f) time period T .
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then step downs can have little effect since concentrations cannot fall below zero.

Here, we present an Incoherent Feed-Forward Loop circuit with an asymmetric adaptive

response to step ups and downs:

I + A
k1−−→ P (2.1)

A
λ1−−→ φ (2.2)

Ī
k2−−→ A (2.3)

Here Ī refers to a species that is the negation of the input I as in dual-rail logic[54, 24]; i.e.,

we assume a second input species Ī that is high when the input I is low and vice-versa. In

principle, such dual rail (Ī , I) input can be created from a single input I by a fast reusable

NOT-gate [54]. Note also that although the reactions involving I and Ī are not designed

to be catalytic, these species have concentrations set directly (i.e. their dynamics are not

coupled to any other species in the system).

To understand the mechanism, consider the response to a single step up in I shown in

Fig.2.2c. Production of P requires both I and A to be present. While A is high in its resting

state, P is produced only when input I steps up. However, turning on I also effectively

suppresses A on a timescale,τa = 1
k1[I]+λ1

, thus ceasing production of P . The production

of P will thus show a stereotyped profile for every step up in I provided the pulse width is

considerably longer than τa. To emphasize this, we label this stereotyped flux leading to the

production of P as G (depending on A and another species promoted by the input) and plot

its dynamics in 2.2c. As shown in the figure, a subsequent step down in I that occurs more

than a time τa after the step up has minimal impact on G because A is near zero. After the

step down of I, A is restored back to its resting value on a timescale 1/λ1. Provided A has

sufficient time to recover its initial value, each pulse of G will be identical and thus the total

amount of P accumulated will report the number of pulses n without regard to time period
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T or duty fraction δ.

Limits of operation: There are two critical requirements for the mechanism above to

work. First, the pulse width Tδ must be larger than the length of the stereotyped adaptive

response τa, so that the stereotyped response is not interrupted by the step down in I. Thus,

we require that

Tδ � 1

k1[I] + λ1
.

Second, the pulse off time T (1− δ) needs to be long enough so that A can be restored to its

resting state before the next pulse in I comes, hence requiring

T (1− δ)� 1/λ1.

Taken together, we require T � Tmin = sup({1/λ1, τa}).

To verify that real chemical networks can operate in this kinetic regime, we designed a

DNA strand displacement implementation of this scheme. As with all the DNA circuits we

present here, our design process leaned on the reaction designs laid out earlier [55]; e.g., we

introduce intermediate species to ensure that strands in different parts of the circuit have

completely distinct sequences. A representation of the reaction network with waste products

suppressed is shown in Fig 2.2b. Simulating this DNA strand displacement network using

Visual DSD [9] software with realistic kinetic parameters, we find that the output is indeed

sensitive to pulse number n but insensitive to duty fraction δ and time period T over a

significant range.
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Duty fraction decoder

We now develop a circuit needed to decode duty fraction, δ. The reaction network capable

of decoding δ is deceptively simple in topology,

I
k−−→ I + P (2.4)

P
λ−−→ φ. (2.5)

Species P is created by every pulse of I but P also decays with a time constant 1/λ.

Limits of operation: Intuitively, such an output P effectively reports the exponential

moving average of input species I over a time window 1/λ. As shown in the supplementary

information, this moving average, in principle, depends on all three features n, T, δ. However,

the n dependence is exponentially suppressed if λnT � 1. The T dependence is also weak

if λT � 1. Under these two limiting operations,

T � Tmax = 1/λ, n� nmin = 1/(λT )

we find P̄ ≈ k
λδ depends only on the duty fraction δ.

Finally, note that the mean level of P is a good readout only if the size of the oscillations

about P̄ seen in Fig.2.3c are small. The size of such oscillations relative to the mean is given

by ∆P̄
P̄

= λT (1−δ) which is naturally small in the limits of operation defined above (λT � 1

and δ ∈ [0, 1]). The operational regime can be expanded by introducing intermediate species

or shortening toeholds, effectively decreasing the value for λ (though this comes with the

cost of increasing the value of nmin).

To check whether real chemical systems can operate in the kinetic regime defined above,

we implemented this scheme using DNA strand displacement reactions. We generated the

network and equations using Visual DSD software [9] with realistic kinetic parameters and

then simulated this system in MATLAB. The impact of varying n, T, δ on the output is
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derived in the respective Results section.

shown in Fig. 2.3c-f. As desired, output P is only sensitive to changes in duty fraction δ

and insensitive to changes in n, T .

Time period decoder

We can build a time period T decoder by modifying the adaptive circuit motif introduced

above; we simply add a decay process for species P so that P reflects the moving average of

G (as defined above) over a fixed timescale 1/λ2,

P
λ2−−→ φ. (2.6)

All other reactions are as shown in Eqn.A.1 - A.3. The analysis for this network is
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nearly identical to that done for duty fraction. Note that the flux G(t) possesses the same

periodicity T as the input pulse train I(t) but G has pulse width set by the width of the

stereotyped adaptive response τa and independent of the pulse width of I. Thus, G(t) has

an effective duty fraction δeff = τa/T . If we tune kinetic parameters to the same regime from

our duty fraction sensor, the output species P will then report δeff and is thus proportional

to 1/T but independent of the δ and n of the input species I. Note that this sensor output

technically measures 1/T (the frequency of the input) and could just as well be referred to

as a frequency decoder.

Limits of operation: This network inherits kinetic constraints from both the pulse count

decoder applied to the adaptive part of the network and the duty fraction decoder applied

to P . The former restricts T (1 − δ) � 1/λ1 as discussed for the pulse count decoder. The

latter requires

T � 1/λ2, n� 1/(λ2T ).

In this kinetic regime, output P depends strongly on T and only weakly on n, δ.

The DNA implementation is shown in Fig 2.4b. Simulations show that the output is

insensitive to changes in δ, n but sensitive to changes in T .

Finally, we systematically tested all three decoders proposed here against a library of

temporal patterns that vary in all three features (n, δ, T ). Each decoder was implemented

with DNA strand displacement with fixed kinetic rates. We see in Fig.2.5 that each decoder

shows a much larger response to changes in its relevant feature than to the other features over

a substantial dynamic range. Also, because these relationships are linear over the designed

parameter range, a few simple control experiments would allow the extraction of single

parameter fits for explicit quantitative relationships between the temporal features and the

concentration of P . Thus, collectively, the three circuits can discriminate each member of the

temporal pattern library. In Figure 5, we’ve used the following fixed parameters to generate

each curve: pulse counting- δ = .5, T = 8000 s, n = 65, duty fraction - n = 50, T = 8000
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s, δ = .5 and time period- δ = .5, n = 60, T = 8000 s.

Discussion

The circuits introduced here exploit a weakness in the context of digital computation

- internal transients - to naturally perform analog computation on temporally coded infor-

mation. The performance of such analog ‘computation using transients’ is limited by the

dynamic range over which timescales of transients can be tuned. Hence DNA strand dis-

placement reactions are particularly suitable for such computation since their kinetics can

be tuned over a large dynamic range through toehold sequence design [56, 57, 58, 59]. In

addition to synthetic applications, our design principles (e.g., asymmetric rectified adapta-

tion) are relevant to understanding how natural systems decode temporal patterns as well

[51, 50, 52, 60]. While we have successfully decoded temporal features into the concentra-

tions of DNA species, it is important to emphasize that the experimental measurement of

the different temporal features would require different methods. Duty fraction and period

should be measured while the input is presented so that the steady-state value can be read

off. However, pulse count should be measured after the input has been presented (although

it could be observed concurrently with the input to identify the arrival of each pulse).

The methods developed here can be combined with other developments in the pro-

grammable molecular technology field [61]. For example, a drug payload carried by a DNA

origami pill [62] can be released only in those cells with a pulsatile pattern of the transcrip-

tion factor NFkB that precedes a inflammatory response but not in cells with NFkB patterns

that precede an adaptive immune response [5]. Similar in situ temporal computation using

molecules can also help surveil complex ecosystems, such as the gut, where a future ecological

collapse is often indicated by temporal precursors [63].

We have produced circuits that decode broadly relevant but predetermined temporal

features. Going forward, it would be interesting to develop molecular circuits that can learn

16



relevant temporal features dynamically [64, 65, 66] as in machine learning approaches. In

the learning paradigm, for example, a molecular circuit could be exposed to two classes

of time-varying patterns during a ‘training phase’ (the temporal equivalent of cat and dog

images in static pattern recognition). The circuit would determine which temporal features

can best distinguish those two classes.

Supplemental Information

The supplemental information (see Appendix A), provides expanded DNA reaction net-

works along with explicit values for initial conditions and reaction rates used in simulation.

Some expanded calculations are also presented to supplement the analysis of each circuit.
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CHAPTER 3

PATTERN RECOGNITION IN THE NUCLEATION KINETICS

OF NONEQUILIBRIUM SELF-ASSEMBLY

This chapter is reproduced from a collaborative manuscript draft. 1

Abstract: Molecular processes can conceal complex information processing abilities

while appearing to build structures, transform molecules and dissipate energy. Such infor-

mation processing has been revealed in processes ranging from protein interactions and gene

regulation to the growth of self-assembled structures. However, current examples are often

limited to a sequence of digital operations on relatively low dimensional inputs. To under-

stand the full scope of computational abilities that can be hidden in complex biomolecular

environments, we must understand the potential for the collective dynamics of many promis-

cuously interacting molecules to carry out computation on high-dimensional inputs. Here

we show that nucleation of multi-component structures can recognize high dimensional pat-

terns in the concentrations of molecules in a manner reminiscent of Hopfield neural networks.

We find that competitive nucleation in a soup of promiscuously interacting molecules can

assemble distinct structures in response to subtle patterns in the relative concentrations of

nearly a thousand molecular species. Using DNA hybridization-based self-assembly as a val-

idation platform, we experimentally demonstrate such kinetically controlled self-assembly.

This work reveals new computational abilities inherent to large promiscuous networks of

molecular interactions.

In biology, a primary use of cellular information processing is to know how to make the

1. Author List: Constantine G. Evans, Jackson O’Brien (co-first author), Erik Winfree, Arvind Murugan.
CGE, EW, and AM conceived the study. CGE and EW designed the molecules. CGE, JOB, EW, and AM
designed the experiments and CGE, JOB, and AM performed the experiments. CGE wrote the code for
stochastic, greedy nucleation rate estimation (Figure B.4) and the optimization of the pixel-to-tile map used
in Figure 3.5. JOB performed the simulations demonstrating winner-take-all (Figure 3.4 d and B.7), the sim-
ulations showing chimeric growth for various tile set designs (Figure B.2), and the simulations demonstrating
the capacity of the pixel-to-tile map (Figure B.9). All analyzed the data and wrote the manuscript.
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Figure 3.1: Molecules with multiple stable assemblies can naturally recognize
high-dimensional concentration patterns through nucleation kinetics. Promiscu-
ous interactions allow the same molecules to spatially co-localize in distinct combinations to
form distinct structures. Then, nucleation (traversal of the barrier from monomers to the
wells corresponding to finished structures) can select between structures by discriminating
patterns in the concentrations of different molecules; e.g., high concentrations for species 1,
2, and 3 (pattern 1) selectively nucleates the red assembly wherein they are co-localized, but
high concentrations for 1, 2, and 7 (pattern 2) kinetically selects for the orange assembly
(thicker arrows indicate stronger nucleation). As in an associative neural network, this sys-
tem can be naturally extended to recognize more classes of concentration patterns by adding
promiscuous molecular interactions—e.g., through evolution or engineering—that co-localize
the same species in new spatial combinations.

right molecular assemblies at the right time and in the right place. Signal transduction

and gene regulatory networks [67] are often seen as providing the necessary information

processing, while a distinct molecular assembly process builds the right structures in response

to such a decision. Thus, information processing and structural assembly are often seen as

distinct processes.

While the deterministic growth of geometrically-ordered structures has been previously

shown to be capable of computation (algorithmic self-assembly [68]), our approach demon-

strates a new class of neural network-like algorithms that exploit the inherently stochastic
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Figure 3.2: A multifarious mixture of 917 molecular species can assemble three
distinct structures from one set of molecules. (a) 42-nucleotide DNA strands self-
assemble into 2-d structures by forming bonds with four complementary strands in solution.
The strands can be abstracted as square tiles with four different 10 or 11 nucleotide glues
determined by strand sequence. (b) One pool of 917 tile types assembles into three distinct
structures, H, A and M. While each tile occurs only once in each structure, the shared purple
species re-occur in multiple shapes, in distinct spatial arrangements. (c) Annealing an equal
mix of all tiles results in a mixture of fully and partially assembled H, A and M, imaged by
atomic force microscope (AFM).

nature of nucleation. Theory has hinted that this was possible in abstract by analogies with

neural network. Here, we experimentally demonstrate that a structural process, nucleation,

hides within it a neural network-like capacity to decide what structure to build based on

high-dimensional inputs, without any need for a separate regulatory module. We find that

competitive nucleation between different potential assemblies of one set of molecules can

recognize high-dimensional patterns in the concentrations of nearly a thousand assembly

components (Figure 3.1).

To study the computational ability inherent to nucleation, we attempted to design a

self-assembling system with DNA nanotechnology (Figure 3.2[a]). Prior works have demon-
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strated self-assembly of structures with uniquely addressed or algorithmically chosen com-

ponents that interact through Watson-Crick pairing [69, 70, 71, 72, 73]. We build on these

ideas to create a molecular system capable of assembling multiple target structures from

a shared set of promiscuously interacting components, i.e., a multifarious system [74]. We

then study the pattern recognition capability inherent to the competitive nucleation between

these structural polymorphs. Our multifarious soup of DNA tiles can assemble three differ-

ent structures, H, A and M (Figure 3.2[b]). These structures co-localize the same shared set

‘S’ of 371 distinct tiles (purple tiles in Figure 3.2) in different arrangements.

To create such a multifarious soup, we design S tiles that do not directly bind each other.

By then introducing three sets of interaction mediating-tiles, H, A and M for each of the

desired structures H, A and M respectively, we can avoid constraints from Watson-Crick

complementarity, allowing almost arbitrary interactions to be engineered between S tiles.

For example, each interaction tile in H will bind four specific S tiles together in a way that

reflects neighborhood constraints between shared S tiles in structure H. These H tiles are

unique to structure H and do not occur in the assembled A or M structures. Tiles in a 1:1

stoichiometric mix of S+H, S+A or S+M will have no promiscuous interactions and will

assemble H, A or M respectively, as with prior work on uniquely addressable structures [70].

But a 1:1:1:1 mix of S+H+A+M, henceforth called our SHAM mix, is capable of assembling

three distinct structures. This additive construction is analogous to Hebbian learning of

multiple memories in Hopfield neural networks [75, 74].

Extensive promiscuous interactions present in the SHAM mix could in principle lead

to unplanned chimeric structures and aggregates, but these can be largely prevented by

cooperative effects such as proofreading[76, 77]. Much like with neural networks, random

arrangement of tiles ensures a degree of statistical proofreading inherent to multifarious

structures[74]. We further modified tile placement to ensure proofreading while also maxi-

mizing the number of shared species (see Methods in Appendix B). The resulting design, in

21



Figure 3.2[b], has 168 tiles shared across all three structures and 203 additional tiles shared

across a pair. We performed sequence design using tools from [72] to reduce unintended

interactions and secondary structure.

To test whether proofreading was sufficient to combat promiscuity and to test the un-

biased yield of different structures, we annealed all tiles at equal concentration in solution

over 150 hours from 48◦C to 46◦C. Atomic force microscopy (AFM) revealed a roughly

equal yield of all three structures (Figure 3.2[c]), despite the inequivalent thermodynamic

energies of H, A, and M. These results indicate that yield is kinetically controlled and no

one structure has intrinsically favorable kinetic pathways on the timescales probed here.

Additionally, we did not observe significant chimeric structures or uncontrolled aggregation,

indicating that proofreading was functioning as desired. A fraction of structures formed,

however, were missing fragments at two specific corners, which could arise from asymmetric

growth kinetics or lattice curvature [69].

In our system, kinetic pathways can be controlled by concentration patterns because the

target structures differ in co-localization of tiles. We can model such selectivity by adapting

classical nucleation theory [78]. The free energy of a structure of size Ntiles with Bbonds

total bonds is G(A) =
∑

bondsGbond−
∑

tilesGtiles where Gbond is the energy of each bond

in units of RT and Gtiles = log ci/c0 is the chemical potential (equivalently, translational

entropy) of each tile i at concentration ci. This free energy has competing contributions that

scale with the area and perimeter and hence is maximized for structures of a critical size

K. The formation of such critical nucleation seeds is often rate-limiting; once structures of

this critical nucleus size are created, subsequent growth is faster and mostly ‘downhill’ in

free energy. The nucleation rate can be computed using an Arrhenius-like approximation

η ∼ e−G(As), where G(As) is the free energy of a critical nucleation seed s, and summing

over all potential critical seeds s.
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Figure 3.3: Simulations and theory show that enhanced concentration of shared
tiles selectively enhances nucleation rate of structures in which high concentra-
tion tiles are co-localized. (a) A pattern enhancing the concentration of shared tiles
co-localized in H but relatively dispersed in A and M. Nucleation pathways for H climb a
lower nucleation barrier, with smaller critical nucleation seeds, as seen from a stochastic nu-
cleation simulation. (b) Regions predicted to participate in nucleation by the simulation for
three concentration patterns (lighter colors correspond to higher participation) (c) Varying
temperature trades off selectivity and the scale of pattern recognition for speed of recogni-
tion, even with constant tile monomer concentrations. (d) With tile monomer depletion, if
assembly occurs at temperatures T < THnuc and T < THgrow allowing nucleation and growth

of on-target structures (here, H) but too high T > TAnuc for off-target nucleation (A, shown,
or M), a winner-take-all (WTA) effect enhances selectivity compared to systems with no
shared components (right) illustrated using simulations of a toy model, see Extended Figure
B.7.

While such analyses are often applied to homogeneous crystals with uniform concen-

tration ci = c of components through the structure, heterogeneous concentration patterns

require a new kind of analysis. Identifying critical seeds is now more involved since they

can be arbitrarily shaped, e.g. paying in perimeter to gain high concentration tiles. We

implemented a stochastic sampling algorithm to estimate the nucleation rate of a structure

with an uneven concentration patterns ci, with results in Figure 3.3.

We can gain insight into how nucleation performs pattern recognition using the example
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shown in Figure 3.3[a], where the concentrations of some shared tiles in the SHAM Mix have

been enhanced. If the high concentration tiles are co-localized in structure H, such a pattern

will lower kinetic barriers for the nucleation of H while maintaining high barriers for A and

M since those same high concentration tiles are scattered across the structure in A and M.

The area K over which co-localization promotes nucleation depends on the temperature and

the typical concentration of high tiles and e.g., can be estimated from the size of critical

seeds predicted by classical nucleation theory. The nucleation rate of a structure is high

if it contains contiguous regions of area K with high average (log) concentration and is

low otherwise. Since the area of critical seeds, and hence K, is generally larger at high

temperatures, we expect a trade-off between speed and complexity of pattern recognition

(Figure 3.3), with more subtle discrimination at higher temperatures (large K)—at the

expense of slower experiments—and lower discriminatory power at lower temperatures (small

K). See Figure 3.3[c].

To experimentally assess the kinetics of nucleation, we designed distinct fluorophore/quencher

pairs on adjacent tiles in four locations on each shape, using tiles not shared between shapes

(Figure 3.4). Each pair quenches when the local region of that specific structure assem-

bles, providing a real-time indicator of nucleation or growth in different parts of a structure

(Extended Figure B.3).

To experimentally characterize the basis of selectivity, we systematically varied the lo-

cation of a 5 × 5 checkerboard pattern of high concentration tiles—a ‘flag’—in each of the

three shapes, through 37 total locations. We enhanced concentrations of only shared tiles

in the SHAM Mix, and thus did not create additional thermodynamic bias towards any

one structure. We ramped the temperature down slowly, from 48◦C to 46◦C, the expected

range of melting temperatures for structures, to provide robustness to potential sequence or

regional variations in precise nucleation temperatures.
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Figure 3.4: Enhanced concentrations of shared tiles can selectively nucleate struc-
tures in which those tiles are co-localized. (a) We incorporated four different fluo-
rophore/quencher pairs on adjacent tiles in four locations on each structure, allowing the
choice of any four locations as labels: quenching of a label indicates growth of that local
region on that structure. (b) Samples were annealed with the temperature protocol shown
here, spending a majority of the experiment between 48 and 46 ◦C. (c) We prepared 37
different patterns of concentration (three shown here) that had 12 or 13 shared tiles of in-
creased concentration (16.6x) in checkerboard pattern in a particular 5 × 5 location in H,
A, or M. Fluorophore quenching in multiple samples, and AFM imaging, showed that many
patterns resulted in selective nucleation of the shape with the checkerboard pattern; results
for each location are summarized in (d) and (e). (f) Patterns enhance nucleation on the
shape with localized high concentrations while simultaneously decreasing nucleation of the
other two shapes for most experiments. Here, values are given relative to the fractional
quenching observed for an equimolar SHAM Mix, described in Extended Figure B.6.

As shown in Figure 3.4[c], when the pattern localizes high concentration species in H,

the fluorophore in the expected nucleation region of H quenched first and rapidly; we then

observed a delayed drop in the fluorophore signals from other parts of the same structure,

indicating growth. Fluorophores on other structures do not show a corresponding quench,

indicating selective nucleation and growth of one structure out of three, based on concentra-

tion patterns. The summary in Figure 3.4[d] shows that nucleation does usually occur earlier

in structures where the high concentration tiles are localized than in competing structures

where those tiles are scattered. We then imaged resulting samples using an AFM to confirm

that fluorophore quenching corresponded to selective self-assembly.

In multifarious systems, we expect enhanced selectivity because of a competitive suppres-
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sion of nucleation. Let THnuc, T
H
grow be temperatures above which nucleation and growth of H

are insignificant on experimental timescales (and similarly for A,M). If TAnuc < THgrow, T
H
nuc,

we can use an annealing protocol that spends sufficient time in a temperature range TAnuc <

T < THgrow, T
H
nuc where the on-target H can nucleate and grow out before the off-target A

can nucleate at all (gray region in Figure 3.3[d](ii),(iii)). We then expect a winner-take-all

(WTA) effect in which the assembly of H depletes shared tiles S and thus actively suppress

nucleation of A. As shown in Figure 3.4[f], we see evidence for such a WTA effect in most

experiments (see also Extended Figure B.6). Such a winner-take-all effect can enhance the

effect of nominal differences in nucleation kinetics at a fixed temperature and deserves further

investigation.

Our work thus far shows the space of all concentration patterns C = Rn is composed

of regions that result in the selective assembly of each of H, A and M respectively. These

regions may be separated by decision boundaries or by regions where selectivity is low. In

this way, selective nucleation can be seen as solving a particular pattern recognition problem

based on which tiles are co-localized in the designed structures.

We then asked if our system could solve an arbitrary image classification problem like

that in Figure 3.5[a]. Here, each image corresponds to a specific concentration pattern if the

grayscale value at each pixel position (i, j) is interpreted as the concentration of a specific tile

f(i, j). Note that images in one class share no more resemblance than images across classes,

e.g., class H is Hodgkin, Hopfield, a Horse etc. In this way, the number of distinct images per

class (6 in the experiments presented below) tests the flexibility of decision surfaces inherent

to this self-assembling molecular system as a classifier.

We found that such arbitrary pattern recognition problems can be potentially solved by

our tile system by optimizing the pixel-to-tile map f(i, j). We used an optimization algorithm

(see Methods in Appendix B) on f(i, j) that sought to map high concentration pixels in each
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Figure 3.5: The distinct co-localization patterns in the three structures are ex-
pressive enough to classify up to 18 images, even after distortion, where each
pixel value is mapped to a tile concentration. (a)-(e) Training: Selecting 18 images
(30 × 30 pixels), we computationally searched for one pixel-to-tile assignment that would
map each image to a concentration pattern with high concentrations localized in the shape
associated with the image and distributed in other shapes; (f) For testing, we also considered
18 distorted variations of these images, using the same assignment. (g) In all trained images,
and most distorted images, both fluorescence and AFM results showed that the associated
concentration pattern for each image resulted in selective nucleation of the correct corre-
sponding shape. The results across all 36 pattern recognition experiments for both AFM
imaging and fluorescence monitoring are summarized, averaged over different samples with
different fluorophore configurations. Arrows indicate relative fraction of quenching time or
number of shapes counted in AFM images. Line color indicates desired shape for the pat-
tern (purple: uniform SHAM Mix at 60 nM) in each sample. Dashed lines - no significant
quenching or shapes seen under AFM. (h) Sample fluorescence traces and AFM images for
the ’Horse’ concentration pattern. (i) Same data as (g); here, proximity to triangle corners
indicate relative fractions for different shapes.

image (e.g., Moser) to co-localized tiles in the corresponding on-target structure (here, M) to

enhance nucleation while mapping those same pixels to scattered tiles in undesired structures

(here, A and H). Note that this map f(i, j) is simultaneously optimized for all images and

not independently for each image. Hence no map f(i, j) might be able to perfectly satisfy

all the above requirements simultaneously for all images in all classes; we explore the limits

of this classifier through simulations in Extended Figure B.9.
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In experiments, we then enhanced concentrations of tiles in the SHAM Mix in accordance

to each of the 18 training images (using the optimized f(i, j)) and annealed each of the 18

mixes with the same ramp protocol as earlier. We found that the 18 training images yielded

highly selective correct nucleation, as verified by AFM imaging and real-time fluorescence

quenching (Figure 3.5 and Extended Figure B.8).

We also tested 12 degraded images and 6 alternate handwriting images (Figure 3.5[b]).

We find successful pattern recognition for random speckle distortions, and all but one partly

obscured image. The ability to recognize distorted images, not present in a training set,

is a critical aspect of learning in neural networks since it tests the ability to generalize. A

given neural network architecture can be naturally robust to certain families of distortions

(e.g., convolution networks can handle translation) but not others (e.g., dilation). By nature,

our self-assembling system does not allow for robustness to, say, translations but random

uncorrelated pixel flips are easily corrected by the cooperative nature of nucleation.

Discussion

We have demonstrated high dimensional pattern recognition by exploiting competitive

nucleation in a system of molecules with multiple crystal structures i.e., crystal polymor-

phism, first described by Mitscherlich [79]. Indeed, many scientific and industrial applications

rely on biasing nucleation towards one of the crystal polymorphs by tuning annealing pro-

tocols. Our work updates these classic ideas for heterogeneous crystals where the number of

distinct components is of the size of the crystal itself[80, 81]. This new heterogeneous context

introduces novel elements such as pattern recognition and winner-take-all nucleation.

More broadly, our work demonstrates kinetic control of non-equilibrium multi-component

self-assembly that can be exploited even in single target self-assembly. Such kinetic control

can enhance yields by avoiding kinetic traps [80] and ensuring that nucleation occurs at a

user-specified location. Similar kinetic control has been seen in polymer folding, e.g., in
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synthetic DNA origami [82] and natural co-transcriptional folding of RNA [83].

Unlike many prior relationships between physics and computation, the computational

ability of our system relies on the inherently stochastic nature of nucleation; monomers

must make many unsuccessful attempts at forming a critical seed in both on- and off-target

structures, with repeated backtracking in order to realize complex pattern recognition. If

instead nucleation were greedy and deterministic, always taking steps to locally minimize

free energy without backtracking, the system would not necessarily discover the minimal

nucleation barrier for complex patterns, limiting the computational capacity. In this way,

the system presented here, in mechanism, resembles stochastic local search algorithms used,

e.g., for boolean satisfiability problems. In fact, trade-offs inherent to stochastic algorithms

emerge from physical constraints in our work; e.g., at higher temperatures, nucleation is

slower but critical nucleation seeds are expected to be larger. Consequently, the pattern

recognition problems solved are more complex than in faster experiments carried out at

lower temperatures[84]; see Extended Figure B.9. Finally, the nucleation-driven pattern

recognition here can potentially be combined with growth-driven abilities, e.g., the nucleation

of 2-d facets in 3-d structures.

The pattern recognition functionality here is much like that of an associative neural

network [75], recognizing subtle, high-dimensional patterns even in the presence of particular

forms of noise. Further, much like Hopfield’s model of associative memory, the molecular

neural network presented here is naturally expandable with potentially learnable interactions.

Our system can be expanded to assemble a fourth structure without modifying any existing

tiles by simply adding a fourth set of unique tiles that mediate new interactions between

shared tiles. This additive procedure resembles the procedure for adding stable states in

Hopfield associative memory via superposition of the corresponding interactions for each

desired state , especially in continuous attractor networks with spatial structure [85, 86,

87]. If the interaction mediating unique tiles in our system can be enzymatically created in
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response to environmental inputs or conditions our molecular neural network can potentially

learn new pattern recognition behaviors from presented examples [88, 89, 90].

Finally, though our experimental system exploits DNA in non-biological setting, the prin-

ciples behind our work hold lessons for biology. Molecular biology is often presented as a

story of intentional specific interactions between numerous molecular agents. As a conse-

quence, promiscuity is seen a deleterious perturbation that degrades performance. However,

in other contexts, including neural networks, many promiscuous interactions are known to

collectively provide a function if the interactions are cooperative [67]. Our work adds to

a small but growing list of examples [91, 92, 93] of functionality that exploits molecular

promiscuity and cannot be understood as perturbations of conventional picture with specific

interactions.
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CHAPTER 4

CONTROL OF NUCLEATION THROUGH CONCENTRATION

PATTERNS IN HETEROGENEOUS SELF-ASSEMBLY

Adapted from work being prepared for publication 1

Abstract Heterogeneous self-assembly, where many diverse components spontaneously

aggregate into a large complex, is an important process in many systems. The complex de-

pendence on assembly component concentrations and binding energies allows for interesting

modulation of nucleation rates from a broad array of control parameters, but the calculation

of this rate is a difficult problem. Here, we use rare-event sampling to estimate nucleation

rates in such systems to elucidate the pattern-discriminatory capabilities of such systems.

We show that even small changes in the spatial arrangement of a concentration pattern can

lead to large changes in nucleation rates for heterogeneous systems, and explore the com-

plex interplay between length-scales, time-scales, and discrimination in these systems. Our

approach provides mechanistic insights into the sculpting of kinetic pathways and control in

out-of-equilibrium self-assembly systems using spatial concentration patterns.

While heterogeneous self-assembly is a general phenomenon not limited to any one par-

ticular system, we use a lattice of single-stranded DNA tiles (SSTs) [69] as our model system

because of the feasibility of experiments. In simulation, we assume mono-energetic bonds for

designed interactions and assume off-target bonds have no energy contribution. Kinetic sim-

ulations are carried out in XGrow [94]. As in Chapter 3, we model the energy of assemblies

as simply dependent upon the concentrations of the incorporated species and the number of

bonds formed, and we refer to the dimensionless bond strength throughout this chapter as

Gse.

1. Author List: Constantine G. Evans, Jackson O’Brien (co-first author) and Arvind Murugan. CGE and
JOB performed simulations. JOB wrote the text.
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In order to effectively analyze the pattern discrimination intrinsic in these heteroge-

neous self-assembly systems, we require a method to efficiently calculate nucleation rates.

In general, this is a difficult problem because the system is out-of-equilibrium, the tran-

sition from monomers to completed assemblies can take large numbers of individual at-

tachment/detachment reactions, and rate calculations must be repeated for every change in

temperature or tile concentration.

For systems with a large mismatch in time-scale between individual reaction steps and

reactions of interest, estimating event frequency directly from dynamics is extremely ineffi-

cient. So called ”rare events” where stochastic fluctuations allow traversal of a free energy

barrier are an important phenomenon in a large variety of systems. As a result, many rare

event sampling algorithms have been developed to efficiently sample such processes. Here,

we employ Forward Flux Sampling [95, 96, 97, 98] In short, this method estimates tran-

sition rates between two states of interest by ratcheting and cacheing trajectories between

these two states according to a user-defined, strictly-increasing order parameter, λ. Here,

our states of interest are un-assembled monomers (A) and a fully grown out lattice (B),

and the number of components in an assembly is our order parameter of choice. States are

initialized as monomers, and simulations are allowed to run until a chosen value of the order

parameter, λ0 is achieved. When this occurs, those states are cached. By repeating this

process many times, a dimensionful flux, Φmons,0 out of the initial basin can be computed.

Analogous to a ratchet, we begin simulations where the previous progressive simulations left

off (i.e. trajectories that reached from A to λ0), using a random cached state with order

parameter λ0 with uniform sampling . Now, instead of a flux, it is only necessary to keep

track of a forward probability, p0,1 of reaching the next chosen value λ1 > λ0 before melting

back to monomers and cacheing these states similar to before. If we keep track of the lineage

relationships between our sampled states, this method naturally provides trajectory sam-

pling for successful excursions from A to B, allowing mechanistic probing of the transition.

33



By computing this probability for a series of increasing λ values, the transition rate can be

estimated using the product of those conditional probabilities and the initial flux, see 4.1c.

kAB = ΦA,0

n−1∏
i=0

pi,i+1

with λn ≡ B. Importantly, nowhere in this procedure do we rely on assumptions about

equilibrium or bias the microscopic dynamics.

By running many trajectories initialized in a particular assembly, we can estimate the

probability of reaching state A or state B first; we call the probability of reaching state B

first the committor probability, pcommit. States without a tendency toward state A or state

B are of particular interest as they capture - we refer to such states with pcommit ∼ .5 as

critical seeds (also often referred to collectively as the ”transition state ensemble” [98]).

There are several hyperparameters that must be assigned in the process - e.g. the number

of λ-surfaces used and the number of trajectories to sample at each surface. Here, we use

λ-surfaces separated by a single monomer addition, and we launch a minimum of 1000

trajectories from each λ-surface and increase this number to achieve a constant variance for

our pf estimate.

Results

To demonstrate the subtle dependence of nucleation rates on concentration patterns, we

began with four patterns that are all within precisely 4 concentration swaps (i.e. swapping

the concentration between two different monomers), shown in order of increasing nucleation

rate in 4.2a. While it is quite intuitive that a tighter grouping of the high concentration

(here, 20× from a base 50 nM concentration) species will lead to more favorable initial

growth, it is impressive that these relatively small changes to the patterns can lead to

more than 4 orders of magnitude of change in nucleation rate at the selected temperature.
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high concentration

low concentration

Figure 4.1: Nucleation pathways and rate-limiting steps in multi-component self-
assembly can change dramatically with small changes in the pattern of unequal
concentrations of components.. The rate-limiting nucleation step of self-assembly is set
by a balance of bulk and boundary effects, and is the lowest of the highest free energy state
along each possible assembly pathway (a min-max problem). With uneven concentrations,
the energy landscape is rugged and critical seeds can take on unusual shapes due to the
favorable kinetic attachments of high concentration components that are co-localized on
the structure. While the min-max problem on a rugged landscape is a computationally
difficult problem, we can determine dominant nucleation pathways and thus rate by rare-
event trajectory sampling methods.

Further, a priori it is difficult to guess whether the ”checker” or ”cross” pattern might be

more effective, and yet these patterns differ by more than an order of magnitude in their

nucleation rate. Panels 4.2b-d help build up a mechanistic explanation for the large difference

observed for the ”checker” and ”cross” patterns. Energy trajectories in 4.2b display that at

early assembly sizes, the ”cross” trajectories are typically at lower energies. However, for

larger assemblies, eventually the purple ”checker” trajectories typically reach lower energies

earlier than the green ”cross” trajectories. This trend is emphasized by the two bold example

trajectories, and the selected assemblies suggest this comes from the early incorporation of

almost exclusively high concentration species for the ”cross” pattern leads to an irregular

geometric structure with a large perimeter-to-area ratio which results in relatively high

energy assemblies even after many monomers have been incorporated. On the other hand,

the checkerboard isn’t able to include as many high concentration species initially, but the

regular grid of high concentration species effects a roughly square structure.

This trend is made a bit more precise in the forward probability plots shown in 4.2c.

As expected, the enhanced attachment rates of the contiguous high concentration species

in the ”cross” relatively enhance that pattern’s forward probability until size 5. For larger
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Figure 4.2: Subtle changes in concentration patterns lead to significantly altered
kinetic pathways and overall nucleation rates (a) Here we compare four patterns with
the same number of high (20x) concentration components (shown in orange) on a 16 × 32
grid at a fixed Gse = 5.2: the cut outs below show the same 9 × 9 red-outlined region.
Each pattern differs from adjacent patterns only in the location of 4 high concentration
species which have only been shifted by one tile on the lattice. Yet each small change
causes nucleation rates to differ by a factor of ∼ 10, as shown in the bar graph on the
right. (b) Energy along sampled trajectories for checkerboard pattern (orange) and cross
pattern (blue). (inset: configurations along representative trajectories (bold).) (c) The
forward probability pf describes the probability assemblies of a particular size will evolve to
a structure of the next size (usually one tile larger) without dissociating back to monomers.
Heat maps shown along the top (checkerboard) and bottom (cross) indicate the probability
a particular tile is included in an assembly of a given size. Up until size 5, the cross pattern
has a significantly enhanced pf because of the 5 contiguous high concentration tiles located
at the center of the cross. This initial advantage more than compensates for lower pf for
the cross at later assembly stages. (d) Critical seeds along sampled trajectories for the cross
pattern (top) and the checkerboard pattern (bottom). (left) Composite critical seed heat
maps show the probability a particular tile is included in the sampled critical seeds. (middle)
6 example critical seed assemblies are shown for each pattern. (right) Histogram of energy
and size of critical seeds. Critical seeds for cross are larger,on average, than those for the
checkerboard but have lower energy because seeds for the cross can readily accommodate a
contiguous region of high concentration tiles.
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structures, the ”checker” pattern has a small but visible advantage. The heatmaps along

the bottom show that the central contiguous region of 5 high concentration species at the

center of the cross has a very high probability of inclusion, but the ”checker” heatmaps along

the top demonstrate a higher probability of a square structure. The critical seeds shown in

4.2d show that despite the delayed barrier for the ”cross” pattern (its critical seeds are on

average larger than for the ”checker” pattern), the average height of this barrier is smaller

and ultimately results in more favorable nucleation kinetics for the ”cross”.

From intuitive simple models such as classical nucleation theory, we know that at higher

temperatures our system will have correspondingly larger critical seeds (i.e. assemblies will

require more correctly attached monomers before further additions become favorable). To ex-

plore the consequences of this changing scale on concentration pattern dependent nucleation

rates, we constructed a library of 100 random patterns with exactly 9 high concentration

species randomly distributed within a k × k square for five different k values (i.e. 500 to-

tal patterns). See Figure 4.3a for two examples for k = 8. For this library of patterns,

increasing Gse (corresponding to decreasing temperature) in general increasing nucleation

rates as shown in Figure 4.3b,top. Additionally, patterns with a smaller length scale tend to

nucleate fastest at all temperatures as expected. Interestingly, the relative spread of these

average values is largest at intermediate Gse values. At high Gse (low temperature), we

see all 5 curves coalesce within an order of magnitude (in fact, k = 7 and k = 8 become

indistinguishable in mean for Gse > 5.5) whereas near Gse = 5.2 the average nucleation

rates spanned roughly 4 orders of magnitude. Even for a given k, the distribution about

the mean for the 100 nucleation rates varies dramatically over Gse as shown in Figure 4.3b,

bottom for k = 5, reaching a maximum range of nucleation rates around Gse = 5.2

To better understand the discriminatory power of nucleation, we selected two patterns

for k = 8 (the same patterns shown in Figure 4.3b). Figure 4.3c shows the ratio of these

two nucleation rates over several different Gse (ranging from 5.0 to 6.1) - however, we use
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(a)
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Figure 4.3: Temperature sets a trade-off between speed and length-scale resolu-
tion. (a) Random patterns with a fixed number of high (20x) concentration components
(shown in orange) were generated such that the high concentration species fit inside a k× k
square. The cut outs below show 2 such examples for k = 8. (b) (top) Average nucleation
rates increase for higher Gse and for smaller k localization. (bottom) Violin plots for k = 5
show the distributions of these rates reaches a maximal functional range at intermediate Gse
(log10 of ratio to mean rate for each Gse). (c) Discrimination (the ratio of nucleation rates
from Pattern 1 to Pattern 2 from panel (a)) decreases as nucleation rates increases. (d)
Energy trajectories of assembly at the Gse values shown with dashed lines in (c) (Gse = 5.1
on top, Gse = 6.1 on bottom)(Pattern 1 in green and Pattern 2 in purple). Example growth
states for a particular trajectory (bold) are shown along the top for Pattern 2 and the bottom
for Pattern 1 (e) (left) For 4000 sampled critical seeds, a scatter plot of size against energy
for both patterns at Gse = 5.1 is shown (Pattern 1 in green, Pattern 2 in purple). Example
critical seeds are shown for the different patterns at this Gse (Pattern 1 on the right column).
The purple and green heat maps at the bottom of each column indicate the probability each
tile is included in a critical seed. (right) Same as the left but for Gse = 6.1.

38



the nucleation rate of pattern 1 as the x-axis to emphasize the changing discrimination can

be thought of as a consequence of the speed of the computation. At low Gse = 5.1 and slow

nucleation, these two patterns differ by a factor of ∼ 5,000 but are within a factor of ∼ 2 by

Gse = 6.1.

There are several perspectives to understand this change in discrimination, but it is

perhaps most intuitive to look at the length scale and associated energy barrier for these

different Gse values. Figure 4.3d and e show sample trajectories and sample critical seeds

for both patterns at the two Gse values of interest. Almost all critical seeds and maximal

energy states along the trajectories occur for assembly sizes larger than ∼ 6×6 for Gse = 5.1.

For the critical seeds, the source pattern is visually obvious, and the energy histograms are

clearly separated by several dimensionless energy units showing the kinetic barriers are well

differentiated for the two patterns. In contrast, at large Gse the energy barrier generally

occurs for assembly sizes less than 10, and the critical seeds and critical seed energy his-

tograms are difficult to distinguish. From this example, it is clear that the system’s ability

to distinguish different concentration patterns is strongly dependent upon the temperature

(and correspondingly the speed) at which the self-assembly is occurring. As a final note,

there is another trade-off at high temperatures where the critical seed size becomes much

larger than the k×k pattern and the discrimination between such patterns decreases (though

for the parameter choices here the timescale becomes infeasible for experiments).

As a final demonstrative example, we built upon this intuition about changing nucleation

scale leading to very different relative nucleation rates to design a pair of patterns whose

nucleation rates invert as Gse is increased. Figure 4.4a shows the patterns - both contain

exactly 16 high concentrations species. In one case, the high concentration species form the

perimeter of a 5 × 5 square (Outline) and in the other there is a 3x3 solid region of high

concentration species with 7 other high concentration species dispersed toward the edges of

the structure (Solid). At low Gse and large critical seeds, the Outline is more favorable by
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Figure 4.4: Interplay between temperature and nucleation scale can lead to signif-
icant inversions of relative nucleation rates. (a) Two patterns with an equal number
of high concentration (20×) species are shown. (b) (top) Nucleation rates for both patterns
are shown as a function of Gse. Two Gse values of interest are denoted with vertical lines,
and the corresponding critical seeds are shown in panel (c). (bottom) Forward probabilities
as a function of λ show that at low Gse the Solid w/ Scatter pattern faces a significant bar-
rier after growing out the high concentration region in comparison with the Outline pattern.
However, at larger Gse, the high concentration region in the Solid w/ Scatter pattern is
sufficient to allow favorable growth to larger structures, and it reaches this favorable growth
more quickly than for the Outline pattern.

several orders of magnitude as shown in 4.4b. Even though the initial 3x3 structure forms

more favorably for the Solid than the initial attachments for the Outline, the structure size

is still insufficient for favorable attachment of low concentration species for low Gse and pf

decreases from λ ∼ 9 until λ ∼ 25. However, at high Gse the initial favorable attachments

are sufficient to cross the energy barrier and pf strictly increases, leading to Solid nucleating

orders of magnitude faster.

Discussion

This work establishes the analog control of heterogeneous self-assembly through concen-

tration patterns in the assembly components. By changing the concentration of just a few
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components, the nucleation rate can be modulated over several orders of magnitude.

Similar to the classification problem presented in Chapter 3, a high-dimensional input is

processed into a simple output (here, a single number) autonomously by the physical interac-

tions between the assembly components. In fact, this computational method largely extends

immediately to multifarious systems - however, at current this method ignores depletion

effects which were clearly experimentally relevant for the system from Chapter 3 and can

also play an important role even in uniquely addressed structures as unproductive kinetic

trap states could use up monomer components without ever generating complete assemblies.

This generalization of is left to future work.
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CHAPTER 5

DISCUSSION AND OUTLOOK

This thesis builds upon our understanding of natural computing systems, expanding

on the applications for these systems and elucidating a new computational paradigm sur-

rounding the ubiquitous physical process of nucleation. In terms of immediate practical

applications, these proof-of-principal systems could pave the way for context dependent

therapeutics triggered either by a temporal signature or correlations between concentrations

of a several unique components. Perhaps more importantly, this body of work broadens the

current understanding of the tools at the disposal of molecular systems to recognize patterns,

and my hope is that this will ultimately lead to the discovery and understanding of novel,

biologically-relevant computational phenomena.
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APPENDIX A

SUPPLEMENTARY INFORMATION: TEMPORAL PATTERN

RECOGNITION THROUGH ANALOG MOLECULAR

COMPUTATION

Methods

We first formulated abstract chemical networks with the desired feature detecting prop-

erties. Then, largely following the design principles laid out in [55], we implemented these

chemical reaction networks as DNA strand displacement reactions. All strand displacement

circuits are designed within Microsoft’s Visual DSD software described in [9] using default

kinetic parameters and concentrations ∈ [.05 nM, 10 µM]. Then, by adapting the MATLAB

code generated within this program, we exposed these circuits to the pulsatile inputs defined

in the main text, defined by their duty fraction δ, number of pulses n, and period T . All

results shown are from deterministic simulations without leak reactions.
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Detailed Chemical Networks

All reactions shown utilize the default kinetic parameters within the Visual DSD software

(3 × 10−4 1
nM s bind, .1226 1

s unbind corresponding to toe-holds with 4-6 nucleotides [99]).

Different reaction rates were achieved by selecting appropriate initial concentrations. The

dynamic range we require (∼ 5 orders of magnitude) is also achievable through toehold

design [99]. Species with specified initial concentrations are outlined in bold and their values

are given in accompanying tables. All species whose initial concentrations are specified

and do not have explicit time dependence displayed in the main text are held at their

initial concentrations throughout all simulations. In the tables of concentrations below,

parenthetical values indicate high and low oscillatory values in the time-varying input.

Pulse Counting
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Figure A.1: Full version of DNA strand displacement reaction network for pulse
counting decoder including waste products. The two species in red had their dynamics
directly modulated to the parameters of the input series, with sp 1 (referred to as Ī in the
main text) pulsing exactly out of phase with sp 0 (I in the main text). Graphs and labels
are generated automatically within the Visual DSD software [9]. See Table A.1 for a list of
initial concentrations. Note that the flux G plotted in Figure 2 is defined G ≡ √sp2 ∗ sp5.
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Table A.1: Pulse Counter Initial Conditions
Species Initial Conc. (nM)

sp 0 1 (0)
sp 1 100 (0)
sp 2 50
sp 3 10000
sp 4 10000
sp 5 10
sp 6 10000
sp 8 10000
sp 10 10000
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Duty Fraction
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Figure A.2: Full version of DNA strand displacement reaction network for duty
cycle decoding, including waste products. This circuit effectively takes the moving
average of the dynamics of sp 0 and reports it in sp10. See main text Figure 3 for analysis
and Figure 5 for performance. Initial concentrations of bolded species are listed in Table
A.2.
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Table A.2: Duty Fraction Decoder Initial Conditions

Species Initial Conc. (nM)

sp 0 1(0)
sp 1 100
sp 2 100
sp 3 10

Period Detecting

Table A.3: Period Decoder Initial Conditions
Species Initial Conc. (nM)

sp 0 1 (0)
sp 1 100 (0)
sp 2 50
sp 3 10000
sp 4 10000
sp 5 10
sp 6 10000
sp 8 10000
sp 10 10000
sp 11 .1375
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Figure A.3: Full version of DNA strand displacement reaction network for time
period decoding, including waste products. By taking the moving average of the
incoming flux G ≡ √sp2 ∗ sp5, this circuit decodes the period of sp 0. Initial concentrations
of bolded species are reported in Table A.3.

Supplemental Calculations

Pulse Counter

I + A
k1−−→ P (A.1)

A
λ1−−→ φ (A.2)

Ī
k2−−→ A (A.3)

(A.4)50



To supplement the analysis presented in the main text, we present the system of correspond-

ing ordinary differential equations governing the evolution of A and P , presented in Equation

A.6.

Ȧ(t) = k2Ī(t)− k1A(t)I(t)− λ1A(t) (A.5)

Ṗ (t) = k1A(t)I(t) (A.6)

The discussion of timescales relies on exponential decays and exponential approaches to

steady state exhibited by these differential equation in transitioning between the two states

I = C, Ī = 0 and I = 0, Ī = C where C corresponds to the finite value presented in Table

A.1 for sp 0 and sp10.

When I is turned on, P starts being produced since P requires both I and A to be

present (Note that A has a resting state at a high concentration k2C
λ1

when the input I is

off). However, turning on I also causes exponential decay of A from k2C
λ1

to 0 on a timescale

1
k1C+λ1

.Consequently, the term promoting P decays after a short transient. Thanks to the

simple form of these equations, we can compute P (t) analytically

P (t) =
C2k1k2

λ1

(1− e−(λ1+k1C)t)

k1C + λ1
(A.7)

which exhibits the dependence of P on the degradation timescale of A, τa = 1
λ1+k1C

.

Note that any pulse of width,

Tδ � τa

will produce a stereotyped exponential decay profile (i.e. independent of T and δ) for P .

This restriction provides one limit on the window of operation for pulse counters.

Finally, once I switches off, A returns to its steady state k2C
λ1

at a timescale 1
λ1

. The
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pulse needs to be off for long enough

T (1− δ)� 1

λ1
,

so that A can be restored to its original state between every pulse. This condition ensures

each step up of P will have the same value (the ODE for P only depends on the values of I

and A) and can serve as a proxy for pulse number n.

Within the regime defined by the two inequalities, we find that the circuit presented is

able to count pulses independent of duty fraction or time period.

Duty Fraction Decoder

The duty fraction decoder is given by the simple network,

I
k−−→ I + P (A.8)

P
λ−−→ φ (A.9)

and consequently, P (t) is governed by,

Ṗ (t) = kc(t)− λP (t) (A.10)

where the input concentration I = c(t) is taken to vary as c(t). The solution to the above

equation can be written in terms of a exponentially decaying kernel,

P (t) = k

∫ t

−∞
c(t′)e−λ(t−t′)dt′. (A.11)

P(t) will be at its smallest value at the front edge of a pulse; this value, after n−1 pulses
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can be computed from the above,

P (t = (n− 1)T ) =
k

λ

(eTλδ − 1)(1− e−(n−1)Tλ)

eTλ − 1
(A.12)

P(t) will be largest right at the end of the pulse; this value, after n pulses can be computed

to be,

P (t = (n− 1 + δ)T ) =
k

λ

(eTλδ − 1)(e(1−δ)λT − e−(n−1+δ)Tλ)

eTλ − 1
. (A.13)

We consider the average of these two quantities as representing the readout value of P.

Adding and simplifying yields

P̄ =
(
eλTδ−1

2(eλT−1)

)
(1 + eλT (1−δ) − e−λT (n−1) − e−λT (δ+(n−1))). (A.14)

In the limit of

n� 1/(λT ), T � 1/λ,

P̄ ≈ kδ
λ is proportional to the duty fraction δ but independent of n and T .

Finally, we can consider the difference between the maximal and minimum values of P (t)

as a measure of the variation away from this readout. Taking the difference of Equations

A.13 and A.12 yields

∆P =
(
eλTδ−1
(eλT−1)

)
(−1 + eλT (1−δ) + e−λT (n−1) − e−λT (δ+(n−1))). (A.15)

For large n and small λT , this approximates to ∆P ≈ kδ
λ λT (1 − δ) ≈ P̄ λT (1 − δ). Thus,

in the limit defined above, T � 1
λ , the fractional variation about P̄ defined as ∆P

P̄
is small,

and P̄ is a reliable readout for the duty fraction δ.
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APPENDIX B

SUPPLEMENTARY INFORMATION: PATTERN

RECOGNITION IN THE NUCLEATION KINETICS OF

NON-EQUILIBRIUM SELF-ASSEMBLY

Methods

Multifarious DNA tile system design

Prior theoretical proposals[74, 100] for multifarious mixtures require each component

to accept multiple strongly binding partners at each binding site. However, in DNA tile

assembly, each binding site can usually only bind its Watson-Crick complement, and not an

arbitrary set of other domains. Hence, we used an alternate approach: we assumed three

structures made of entirely unique tiles and ran a merging algorithm that attempted to reuse

tiles in a roughly checkerboard pattern across structures. The algorithm accepted merges if

consequences for unintentional binding between other tiles were minimal. After determining

the abstracted shared and tile layout in this way, we designed DNA sequences reflecting this

layout.

The three target shapes were drawn on a 24 × 24 single-stranded tile (SST) molecular

canvas[70], at an abstract level without sequences, with each tile in each shape initially

a unique tile with glues assigned to bind only to that tile’s neighbors within its shape.

Edges of the shapes were an exception, instead using a special null glue throughout. In

total, this initial design had 2,706 binding domains, and 1,456 tiles. The three shapes were

then processed through a ‘merging’ algorithm that attempted to reuse the same tiles in

different shapes. Randomly choosing two tiles in two different shapes (with null glues on the

sames sides of each tile, if any), each step of the algorithm attempted to make the two tiles

identical by reusing the same four glues in both, and propagating the changed glues to the
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complementary glues on the neighbors of each tile (e.g., Extended Figure B.1[a]). To avoid

having these changes create undesired growth pathways, for example, allowing chimera of

multiple shapes, the modified set was checked after each trial merging step for two criteria

from algorithmic self-assembly (Extended Figure B.1[b]). The self-healing criterion requires

that, for any correct subassembly of any shape, while attachments of the wrong tile for a

particular location may take place by one bond, only the correct tile can attach by two

or more bonds[101]. The second-order sensitivity criterion requires that, for any correct

subassembly of any shape, if an incorrect attachment by one bond takes place, the incorrectly

attached tile will not create a neighborhood where an additional incorrect tile can attach by

two bonds, and thus the initial error will be likely to fall off[77]. These two criteria, which are

trivially satisfied when every tile and bond is unique to a particular location, continue to be

satisfied after each merging step. Thus, we ensure that there is at least a minimum barrier

to continued incorrect growth in a regime where tile attachment by two or more bonds is

favorable, and attachment by one bond is unfavorable, which is the case close to the melting

temperature of most DNA tile assembly systems[102].

The algorithm repeatedly merged tiles that satisfied the two criteria until no further ac-

ceptable merges were possible. As each merge could affect the acceptability of later merges

by changing the glues around each tile, in order to guide the algorithm toward series merges

more likely to be compatible, the algorithm was initially restricted to considering an alter-

nating ‘checkerboard’ subset of tiles, which, apart from edges, were likely to be merge-able.

After exhausting possible merges of these subsets, the algorithm then attempted merges us-

ing all tiles in the system. After repeating this algorithm multiple times, and selecting the

system with the smallest number of tiles, the final resulting system had 698 binding domains

and 917 tiles, with 371 of tiles shared between at least two shapes (Extended Figure B.1[c]).

After the assignment of abstract binding domains to each tile by the merging algorithm,

the sequences for the binding domains, and thus tiles themselves, were generated using the
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sequence design software of Woods and Doty et al[72]. Tiles used a standard SST design,

with alternating 10 and 11 nt binding domains, designed to have similar binding strengths.

Null binding domains on the edges of shapes, not intended to bind to any other tiles, were

assigned poly-T sequences.

Models of nucleation

To model the dependence of the nucleation rates of the three shapes on patterns of

unequal concentration, we developed a simple nucleation model based on the stochastic

generation of possible nucleation pathways and critical nuclei. The model estimates nucle-

ation rates by analyzing stochastic paths generated in a greedy manner by making single-tile

additions starting from a particular monomer in the system. At each step, all favorable

attachments are added and then an unfavorable attachment is performed with probability

weighted by the relative free-energy differences of the available tile attachment positions.

When multiple favorable attachments are available, the most favorable attachment is made

deterministically. This procedure is repeated for many paths over all possible initial positions

within the shape considered, and the barrier (highest free energy state visited in ”growing”

a full structure) is recorded for each path. A nucleation rate is estimated by assuming an

equilibrium occupation of this barrier state (Arrenhius’ approximation [78]) and summing

over the kinetics of the available attachments from this state. See Extended Figure B.4 for a

detailed discussion. The approximations here could be improved by running fully reversible

simulations, e.g., using Forward Flux Sampling [95], discussed further in Chapter 4.

Fluorophore labels, DNA synthesis, and growth

Sites for fluorophore and quencher modifications were chosen to avoid edges, modify

only unshared tiles, and provide a reasonable distribution of locations on each shape. Flu-

orophores were chosen for spectral compatibility and temperature stability[103]. ROX,
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ATTO550, and ATTO647N were paired with Iowa Black RQ, and FAM was paired with

Iowa Black FQ. Both fluorophore and quencher modifications were made on the 5’ ends of

tiles; to sufficiently co-localize fluorophores and quenchers, one tile in the label pair used a

reversed orientation (Figure 3.4[a]).

Tiles without fluorophore or quencher modifications were ordered unpurified (desalted)

and prenormalized to 400 µM in TE buffer (Integrated DNA Technologies). Strands with

fluorophore or quencher modifications were ordered HPLC-purified and normalized to 100

µM. Individual tiles were mixed, in the concentration patterns used for experiments, using

an Echo 525 acoustic liquid handler (Beckman Coulter). Samples used TEMg buffer (TE

buffer with 12.5 mM MgCl2). Flag experiments used a 50 nM base concentration of unen-

hanced tiles, and an 880 nM concentration of enhanced concentration tiles, while pattern

recognition experiments had tiles with concentrations between 16.6 nM to 450 nM in pattern

recognition experiments, quantized into ten discrete values to simplify mixing and conserve

material. Fluorophore and quencher-modified tile locations always had tiles mixed at the

lowest concentration used in the experiment.

For flag experiments, and pattern recognition of trained images, four samples were pre-

pared per concentration pattern: one sample for each shape with all four fluorophore labels

on only that shape, to monitor growth of multiple regions on each shape, and an additional

sample with one fluorophore on each shape: ROX, ATTO550 (‘five’), and ATTO647N (’six’)

on H, A, and M respectively. For pattern recognition of test images, for experiment size

reasons, only the lattermost sample was prepared.

Samples were grown in an mx3005p quantitative PCR (qPCR) machine (Agilent), in order

to provide a program of controlled temperature over time while monitoring fluorescence.

Growth protocols began with a ramp from 71◦C to 53◦C over 40 minutes to ensure all

potentially preexisting complexes were melted, and then a slower ramp from 53◦C to an

initial growth temperature at 1◦C per hour. At this point, three different protocols were used.
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For constant temperature flag growth experiments, the growth temperature was 47◦C, and

this was held for 51 hours. For temperature ramp flag growth, the initial growth temperature

was 48◦C, which was reduced over 100 hours to 46◦C. For pattern recognition, a ramp from

48◦C to 45◦C over 150 hours was used. For constant temperature experiments, fluorescence

readings were taken every 12 minutes, and for other experiments, every 30 minutes. After

the growth period, temperature was lowered to 39◦C at 1◦C per 26 minutes. See Extended

Figure B.5 and B.8 for temperature protocols plotted as a function of time. Once protocols

were finished, samples were stored at room temperature until ready for AFM imaging.

AFM imaging was performed using a FastScan AFM (Bruker) in fluid tapping mode. To

achieve better images, two techniques were combined: sample warming to prevent nonspe-

cific clumping of structures, and washing with Na-added buffer to prevent smaller material,

such as unbound, single DNA tile strands, from adhering to the mica surface. Each sample

was diluted 50x into TEMg buffer with an added 100 mM NaCl, then warmed to approxi-

mately 40◦C for 15 minutes. 50µL of the sample mix was deposited on mica, then left for

two minutes. As much liquid as possible was pipetted off of the mica and discarded, then

immediately replaced with added-Na buffer again, and mixed by pipetting up and down.

This washing process of buffer removal and addition was repeated twice with added-Na

buffer, then once with TEMg buffer to remove remaining Na, before imaging was performed

in TEMg buffer. As adhesion of DNA to mica is dependent upon the ratio of monovalent

and divalent cations in the imaging buffer, this process was meant to ensure that unbound

tiles were washed away during the washing process where Na and Mg were present, while

imaging itself took place with only Mg, so that the lattice structures would be more strongly

adhered to the surface, resulting in better image quality.
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Fluorescence and AFM data analysis

Fluorophore signals are known to be affected by partial assemblies and extraneous fac-

tors such as the total amount of single stranded DNA in solution and sequence [103], which

prevents quantitative interpretation of absolute fluorescence levels.For this reason, the fluo-

rescence of each fluorophore was normalized to the maximum raw fluorescence value of that

fluorophore in that particular sample. The time at which the fluorescence signal was lowered

by 10% was then used as a measure of fluorophore label quenching. The duration between

the point of 10% quenching and the end of the growth segment of the experiment was de-

fined as the “growth time” for that fluorophore label, which was defined as 0 in the event of

quenching never reaching 10%. For concentration patterns with four samples with different

fluorophore arrangements, the total growth time of a shape was defined as the average of the

growth time of the five total fluorophore labels on the shape across the four samples (four

in the shape-specific sample, and one in the each-shape sample), while for concentration

patterns with only one sample, the growth time of the corresponding fluorophore label was

used.

For flag experiments, AFM imaging was done only for qualitative confirmation of the

selective nucleation and growth indicated by fluorescence results. For pattern recognition and

equal-concentration experiments, however, shapes in AFM images were uniformly quantified.

At least one sample of each of the patterns had three 5×5 µm images taken under comparable

conditions. The sample corresponding with each image was blinded, and structures were

counted independently by each of the four authors, classifying structures as either “nearly

complete” or “clearly identifiable” examples of each of the three shapes. For the purposes of

analysing pattern-dependent nucleation and growth, no clear distinction between the number

of nearly complete and clearly identifiable shapes was found, and so the two categories were

summed. Counts were averaged across the three images, then averaged across the counts of

the four authors, to obtain a count per shape per 25 µm2 region for each pattern.
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To measure the selectivity of patterns, the fraction of on-target shape growth time, and

AFM counts, compared to the sum of shape growth times and AFM counts, was used. The

total growth times, and total AFM counts, of the on-target shapes were used to measure

overall shape growth.

Pattern recognition training

Images for pattern recognition were selected from several sources, rescaled to 30 × 30,

discretized to 10 grayscale values, and adjusted so that the number of pixels with each

value was consistent across all images (see SI for details). Pixel values were converted

to concentrations using an exponential formula, c = (1 nM)e3p log 3, where p is a pixel

value between 0 and 1. The intention of the numbers used was to make the average tile

concentration 60 nM for each image. As each image had 900 pixels and there are 917

tiles in the system, 17 tiles did not have their concentrations set by any pixel; these tile

concentrations were uniformly set to the lowest concentration, and the assignment of these

tiles was used to ensure that fluorophore label locations did not vary in concentration.

The tile-pixel assignment was optimized through a simple hill-climbing algorithm, start-

ing from a random assignment, where random modifications to the assignment map are

attempted at each step and accepted if the move increases the efficacy of the map. This effi-

cacy was quantified through a heuristic function that accounts for relative nucleation rates,

location of nucleation sites (with emphasis given to locations that succeeded in the flag ex-

periments, see Figure 3.4, and satisfaction of constraints related to the fluorescent reporters.

Because the nucleation algorithm described above is costly, a simplistic model of nucleation

based upon the Boltzmann-weighted sum of concentrations over a k × k window swept over

each structure (similar to the model employed in [84]) was used to evaluate relative nucle-

ation rates for a majority of the optimization steps. The more detailed but computationally

costly model described above was then employed for an additional several hours in hopes
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of improving the mapping. The window-based nucleation (along with all constraints about

nucleation location and fluorescent reporters) is employed to explore the capacity of this

map training procedure in Extended Figure B.9.
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Figure B.1: Proofreading tile set design and tile assignment map. (a) Our systems are designed to
grow in a regime where a tile attaching by at least two bonds is favorable, but a tile attaching by one bond is
not (“threshold 2”). Motivated by self-healing tile systems [101], we seek a tile set where no correct partial
assembly should ever allow an undesired tile to attach by two or more bonds, though undesired attachments
by one bond are allowed, such that any favorable attachment to a partial assembly will be correct. (b) In
addition to tiles attaching favorably by 2 bonds to growing facets, new facets in the system will only be
created by tiles attaching unfavorably by one bond, and then being stabilized by further, favorable growth.
At a site where tile T would correctly attach by one bond, a tile U might be able to attach incorrectly by
the same bond. T would correctly be stabilized by the subsequent attachment of V by two bonds, but U
might be able to be stabilized as well if there is a tile W that can attach to it and shares the same glue as V .
Thus, if for every pair of tiles that can bind to each other (eg, T + V ), there is no other pair of binding tiles
(eg, U +W ) that share two glues on the same edges of the tiles, then any tile that attaches by one bond to
an assembly will either be the correct tile, or will not allow a subsequent attachment, and will likely detach.
This is equivalent to “second-order sensitivity” with all directions treated as inputs, functioning as a as a
form of “proofreading” [77, 76]. We created a multifarious tile system by first starting with three shapes
constructed entirely of unique tiles, then repeatedly attempting (c) to “merge” tiles in different shapes by
constraining the sequences of their domains to be identical, and checking whether each merge of two tiles
results in a tile system that does not have any tile pairs violating criteria in (a) and (b). From multiple trials
of the merging process, we selected the smallest result, (d), containing 917 tiles. Tiles in the system were
designed with the single-stranded tile (SST) motif in [69], with two alternating tiles motifs of 11 nt and 12
nt domains.
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Figure B.2: Suppression of chimeric growth through tile set design. We contrast assembly errors
in three distinct tile sets: (a, top) the proofreading tile set with an inert boundary used in experiments
(described in Figure 3.2); (a, middle) a simple checkerboard tile set with a strictly alternating shared and
unique tile pattern for each shape, where unique tiles can be seen as mediating different interactions between
shared tiles; and (a, bottom) an edge-guarded checkerboard in which we additionally enforce inert bonds
around each shape’s perimeter. (b) Schematic shows the two distinct kinds of chimeric structures (e.g., part-
H, part-A) seen in simulation due to promiscuous interactions; chimeric structures can grow either before
full assembly of the target structure or emerge spontaneously from the edge of a properly formed structure.
Chimeras like those illustrated along the lower path are held together by just a few bonds and will quickly
break apart (species with unintended bonds shown in red): this corresponds to the observed sharp drops in
the mass trajectories of (c)-(e). (c)-(e) For each tile set, we performed kinetic growth simulations, starting
from a pre-formed 5 × 5 seed, for a single seed localized on H, were performed using XGrow (with chunk
fission) [94] with uniform tile concentrations corresponding to Gmc = 9.5, and varying bond energies relative
to kBT , Gse. The size of the assembly (in units of the size of the fully formed H) is shown as a function
of time. (c) For small Gse = 5.3 (i.e., high temperature, slow growth), no chimeras are observed on the
simulated timescales for any tile set. (d) For intermediate Gse = 5.9 ( all 6 checkerboard trajectories still
result in chimeras, while no errors are observed on the timescale probed for the guarded checkerboard or
proofreading-satisfying tile set. (e): Large Gse = 6.6, (i.e., low temperatures, fast growth) leads to chimeras
with all 3 tile sets; chimeras are seen in all runs for checkerboard structures (red traces), 4 of the 6 runs
for guarded checkerboard structures (green traces) and 1 of the 6 runs for proofreading-satisfying structures
form chimeras). Simulations were carried out with model detailed in Extended Figure B.4 [102] with α = 0.
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Figure B.3: Fluorophore quenching as a measure of nucleation and growth. (a) shows positions
and types of all fluorophore/quencher pairs available for use; only one of each type of fluorophore can be
used in a single sample; four selections of fluorophores were used in different samples. (b) shows expected
behavior of fluorophore labels on shapes as one shape nucleates and grows. (c) shows fluorescence data for
non-quenching (fluorophore tile only, orange) and quenching (5× 5 lattice around fluorophore and quencher
tiles, blue) controls for the ATTO647N fluorophore/quencher pair on A. Here, the temperature ramps linearly
from 49◦C to 35◦C at a rate of 0.1

◦C
min , with all tiles at 50 nM, and each sample has its fluorescence normalized

to its maximum value independently. (d) shows an example of fluorescence growth time measurements. Each
fluorophore signal, in each sample, is independently normalized to its maximum value during the experiment,
and the time between the point where the signal goes below 0.9 (“10% quenching”) and the end of the
experiment is measured (“growth time”). These times are then summed for all fluorophores, in all four
samples, on each shape, resulting in a growth time for each shape, and, when normalized to the sum of all
growth times, a relative growth time for each shape. See Methods above for fluorophore details.
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Figure B.4: Stochastic Greedy Nucleation Model, based on repeated stochastic simulations.
The (a) frequently-used kinetic Tile Assembly Model (kTAM) [68, 102] has rates for tile attachment and
detachment events based on tile and assembly diffusion and total binding strength of correct attachments
a tile can make at a lattice site. These rates can be used (b) to derive a free energy for any tile assembly
in a system, and, assuming fixed monomer concentrations, an equilibrium concentration for any assembly.
[104] showed that the equilibrium concentration of the highest-energy assembly along a nucleation trajectory
under this assumption provides an upper bound for nucleation rate through that trajectory, with or without
fixed monomer concentrations. However, in a large system, considering all possible intermediate assemblies
and all pathways, including many that are extremely unlikely, would be infeasible. Thus, we developed the
Stochastic Greedy Nucleation Model to generate stochastically-chosen paths of tile attachments. Starting
from a single tile (chosen with probability proportional to relative concentration), (c) whenever the assembly
is in a state Astable where there is no tile attachment that would be favorable (have ∆G < 0), one of the
possible unfavorable (with ∆G ≥ 0) attachments is stochastically chosen, resulting in a higher-G state
Aunstable. Then, all subsequent possible ∆G < 0 attachments are made, resulting in the next A′stable state;
for our system of unique tiles for each site in the lattice, this sequence of favorable steps has a unique resulting
assembly. The process repeats until all tiles in a shape are attached, which results (d) in a trajectory with a
maximum-G assembly that can be used to bound the rate of nucleation through that particular trajectory.
By using this process to collect many trajectories, and then repeating the entire process for each of the
three shapes in the system, we can estimate nucleation rates dependent upon temperature (e), with the
assumption that tile monomer concentrations do not deplete, and that the trajectories found are a reasonable
representation of likely trajectories. For temperature ramps, we determined a reference temperature for each
shape at which the model predicted a nucleation rate fast enough to exceed some threshold (orange line),
and used this to compare to fluorescence results in Extended Figure B.5(d) and B.8(b).
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Figure B.5: Nucleation and growth with ‘flag’ patterns of enhanced concentration. 36 different
concentration patterns with enhanced concentrations of shared tiles in 5 × 5 regions were prepared, each
with four different standard sets of fluorophores in four samples, and grown using two temperature protocols
(a): a ramp focusing on 48◦C to 46◦C over 100 hours, and a hold at 47◦C. Using growth times as described
in Extended Figure B.3, fluorescence data for many samples in both experiments showed preference for
the desired shapes (b, c), but with considerable variation in selectivity and total amount of growth. No
statistically significant correlation was found between the nucleation model prediction for temperature of
on-target nucleation and the time of on-target shape quenching in the temperature ramp experiment (d).
(e-g) show details of three patterns, with concentration patterns (1), weighted critical nucleus free energy
starting from particular tiles (2), nucleation-model-estimated nucleation rates (3), temperature hold (4) and
temperature ramp (5) experiment fluorescence results, and (6) AFM images from the temperature hold
experiments.
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Figure B.6: Evidence of winner-take-all in flag experiments (a) Normalized fluorescence for ROX
fluorophore in the H sample and the FAM fluorophore in the A sample for a uniform concentration pattern
(i.e. no flag). We define the quenching Q for each fluorophore as the difference between the maximum value
(always 1 due to normalization) and the value of the fluorescence when the ramp protocol reaches 46 °C. (b)
Same as in (a) but for the Afs12 concentration pattern . (c) Same data as 3.4 (f) with the data points labeled
by their corresponding concentration patterns. The horizontal axis values are calculated by averaging the
fold changes of the 5 on-target fluorophores (4 in the sample with the fluorophores on the flagged structure
and 1 fluorophore from the ’3’ sample) while the vertical axis is calculated by averaging over the 10 off-target
fluorophores (8 from the samples with fluorophores on the non-flagged shape and the 2 non-corresponding
fluorophores from the ’3’ sample).
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Figure B.7: Simple model illustrates winner-take-all dynamics. (a) A 2N+1 state (N = 50) master
equation models the evolution from monomers along two one-dimensional chains of states corresponding to
the growth of two distinct structures (kTAM rates are used for attachment/detachment, see Extended Figure
B.4) after a non-reversible nucleation step (Arrhenius’ barrier crossing formula assumed). (b) There are high
ch and low cl concentrations initially present in the system, with H assumed to have a region of localized
high concentration species. Nucleation of H is assumed in a single location, and thus it’s states correspond
to growth of specific locations in H. In A, states correspond to fragments of a particular size with random
composition, leading to distinct depletion dynamics. Species can be totally shared between the two structures
(S) or totally unique in each structure (NS). (c)-(e) Extended schematics from main text Fig. 3d showing
nucleation rates as a function of temperature (assuming fixed concentrations). Here, nucleation and growth
temperatures are defined when rate curves become equal to inverse experimental timescale, 1/τ (where
the nucleation rates have been scaled by the low concentration in the system to match units). When H
structures are able to nucleate and grow at temperatures before A nucleation becomes significant, winner-
take-all dynamics are possible with many H’s forming and depleting shared tiles, effectively decreasing TA

nuc.
(f) Selectivity, quantified as the fraction of structure mass in the H branch relative to the total mass in the
H and A branches at the final time point, is plotted for the three temperature protocols shown in (g) for
systems with shared species (S, dots) and systems with no shared species (NS, x’s). (h), top Nucleation
rates for the slow ramp temperature protocol are shown over the duration of the simulation. Note that
when the components are shared between H and A, depletion keeps the nucleation rate of the A structure
small even at low temperatures. (h), bottom The concentrations in state HN and AN (solid lines) and the
average values of cl in A and H (dashed lines) are shown for the slow ramp protocol.
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Figure B.8: Classification of images viewed as concentration patterns 36 different concentration
patterns, derived from a mapping of 36 grayscale images, were run using a ramp between 48◦C to 45◦C over
approximately 150 hours. (a) Three pattern examples, with source image, concentration pattern, nucleation
model nucleation rate starting from particular tiles, nucleation model nucleation rates, fluorescence results,
and AFM images. (b) Across all patterns there was some correlation between the on-target nucleation
temperature predicted by the nucleation model and on-target shape quenching time. (c)Total AFM shape
counts for each sample.
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Figure B.9: Pattern recognition capacity To analyze the pattern-recognition capabilities of the designed
tile set, a map-training algorithm was run for increasingly larger sets of random images. (a) Random images
are generated by permuting a list of 900 pixel values (with matching histograms). As in experiments, patterns
correspond to 30x30 images with the same number of tiles at each of 10 possible grayscale values. (b) Before
training, bright pixels (i.e., high concentrations) are randomly assigned to tiles across the three shapes. (c)
The map training algorithm attempts to create regions of localized high concentrations on a length scale k on
the targeted shape (here, H) while dispersing any high concentration tiles on the off-target shapes to prevent
spurious nucleation. Note this nucleation center could occur at many different spatial locations on the H
(d) When the number of images becomes large (18 images per shape shown here), the training algorithm is
still able to create a scale k nucleation site on the target shape (H in this example), but the concentration
of high concentration tiles on the desired shape is less apparent visually. (e) As the number of images in
the set increases, the performance of the training algorithm decreases. For larger k, the pixel-tile map can
exploit higher-order correlations and can thus accommodate more images. Accuracy is calculated by taking
the ratio of the nucleation rate of the target shape over the nucleation rates of all three shapes (calculated
using the nucleation model shown in Extended Figure B.4 at Gse = 5.4 which roughly corresponds to a
temperature of 48.6 ◦C). Here, the shaded areas around each line correspond to the standard deviation of
the accuracy contribution over the images in each set.
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