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Abstract

Here we present a new model framework for an adjoint trajectory model of the

carbon cycle, which can be used to constrain carbon dioxide emission rates over a

specific time interval given only a path constraint on the fraction of carbon dioxide

that remains airborne over that interval. Earth’s ocean and terrestrial biosphere

act to quickly remove a large and variable portion of carbon dioxide emissions from

the atmosphere, and thus measuring the atmospheric carbon dioxide concentra-

tion at any given time provides limited insight into the global emission flux that

is responsible for driving the time-dependent behavior of the atmospheric con-

centration. Using the adjoint trajectory model presented here, we can, without

having any information about the emission schedule, invoke the use of mathe-

matical inverse methods to computationally search for an emission scenario that

best reproduces a time series constraint of observed (or desired) atmospheric CO2

concentrations. This adjoint trajectory model utilizes a simple yet powerful 3-box

transfer model to partition CO2 emissions between the atmosphere and ocean over

time. The transfer functions that govern this 3-box model are also utilized to pro-

vide a physical constraint on the acceptable set of emission scenario solutions. This

thesis describes the governing mathematical framework of the adjoint trajectory

model and provides a general algorithm for determining the unknown emission

scenario that optimally reproduces the observed (or desired) atmospheric carbon

dioxide trend. We show an example of the model performance in its current stage

of development, and discuss its limitations and key areas for future development.
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Symbols

SYMBOL SIGNIFICANCE UNIT

Introduced in: Chapter 1

[CO2] total atmospheric carbon dioxide concentration Gton C

φji transfer coefficient from reservoir i to reservoir j unitless

α size/chemistry scaling factor between unitless

reservoirs 1 and 2

β size/chemistry scaling factor between unitless

reservoirs 2 and 3

kα inverse of exchange timescale between yr−1

reservoirs 1 and 2

kβ inverse of exchange timescale between yr−1

reservoirs 2 and 3

Mi mass of carbon in reservoir i Gton C

Mat mass of carbon in the atmosphere Gton C

Mup mass of carbon in the upper ocean Gton C

Mlo mass of carbon in the lower ocean Gton C
dMi

dt
time rate of change of the mass of carbon in Gton C/yr

reservoir i

ti time at the discrete time step i yr

∆t size of the discrete time step yr

N number of discrete time steps in a time series unitless

E(t) carbon emission rate to atmosphere Gton C/yr

C (t1, t2) cumulative mass of carbon emissions between Gton C

time 1 and time 2

Mi 3×1 mass vector at time ti Gton C

iii



Symbol Directory iv

Ki 3×3 transfer matrix at time ti yr−1

Fi 3×1 external forcing vector (i.e. emissions) Gton C/yr

at time ti
dMi

dt
time rate of change of all 3 reservoirs of mass Gton C/yr

vector M at time ti

Introduced in: Chapter 2

Di 3×1 matrix data constraint on Mi at the ith Gton C

discrete time step

J model-data cost function, i.e. sum of square (Gton C)2

“error” at each time step i

XT transpose of matrix X unitless

H 3×3 deficient identity matrix (reservoir 1 only) unitless

F̃ guessed forcing term for the adjoint model Gton C/yr

F∗
i final (converged) forcing term calculated by Gton C/yr

the adjoint model at time ti

P1 3×1 matrix of Lagrange multipliers constraining unitless

the initial condition

Li 3×1 matrix of Lagrange multipliers constraining unitless

the model physics at time ti

Introduced in: Appendix A

kH Henry’s law constant unitless

k1 first dissociation constant of carbonic acid mol/kg

k2 second dissociation constant of carbonic acid mol/kg

[X] concentration of chemical species “X” mol/kg

k0 empirical function used to calculate kH mol/kg

pK1 empirical function used to calculate k1 unitless

pK2 empirical function used to calculate k2 unitless

T temperature of the surface ocean, following Kelvin

atmospheric temperature anomaly

δ atmosphere-to-upper ocean reservoir size ratio unitless

DIC dissolved inorganic carbon concentration mol/kg

Alk carbonate alkalinity mol/kg



Chapter 1

A Forward-Stepping Model of the

Perturbed Carbon Cycle:

Estimating atmospheric [CO2] given a
carbon emission schedule

As the anthropogenic carbon flux from the deep, slow pool of the carbon cycle

to the atmosphere via fossil fuel burning remains active, it becomes increasingly

important for researchers to monitor and predict how much of those emissions

remain in the atmosphere. Knowing the fraction of anthropogenic CO2 emissions

that remain airborne over the next few centuries is a goal that is rapidly gaining

attention from both scientists and public policy makers. Excess airborne CO2

emissions directly suppress Earth’s outgoing longwave radiation, inducing climate

change and endangering life throughout the planet, and thus it is important that

tools to monitor airborne CO2 be developed continually.

Efforts to model the response of the carbon cycle to human-induced perturbations

have resorted to increasingly complex models in order to accurately represent the

dozens of processes that govern the carbon cycle. Doing so requires a tradeoff

between either having a full representation of the processes that control the sys-

tem, or having computational efficiency coupled with a lower-order qualitative

understanding of the system.

In this thesis, we will turn our attention to a mathematically simple representation

of Earth’s carbon cycle in order to demonstrate that a simple three-box model

1



Chapter 1 2

performs qualitatively similarly to higher complexity models, but at a fraction

of the computational cost. Because of the high computational efficiency of the

three-box model, we will show for the first time a demonstration of an adjoint

trajectory model that is driven by a three-box model. Our development of the

adjoint trajectory model presented in Chapter 2 provides the framework of a useful

technique for solving the inverse problem in which we have an empirical constraint

on the atmospheric CO2 concentration, but no knowledge of the emission scenario

that is responsible for driving the observed behavior.

The type of carbon cycle model presented here has potential applications in a

variety of Earth system research subfields, including paleoclimate research and

future projections of anthropogenic carbon forcing, and thus we will keep our

formulation of the mathematical framework as general as possible.

1.1 The DICE/BEAM carbon cycle model

One of the simplest models of the carbon cycle to date is the Bolin and Eriksson

Adjusted Model (BEAM) [9]. In this chapter we will describe a generalized version

of BEAM, and in greater detail than is presented in the original publication for the

sake of building a framework to study how conserved quantities are transferred

between adjacent reservoirs given a transfer function. Following the Nordhaus

DICE (Dynamic Integrated Climate-Economy) model [12], BEAM is formulated as

three reservoirs of carbon, with exchange fluxes between adjacent reservoirs. The

reservoirs are constructed to represent the atmosphere, the upper ocean, and the

lower ocean, which yields some constraints on the physics of the model. The total

mass of carbon in the system is conserved, except for mass that is added or removed

through a perturbation term to the atmosphere reservoir (i.e. “emissions”). This

external forcing can be thought of as being any flux of CO2 into or out of the

atmosphere that is not a direct exchange with dissolved inorganic carbon in the

upper ocean. BEAM does not consider processes which remove carbon from the

deep ocean (e.g. seafloor weathering), since they operate on time scales longer

than which BEAM is intended to be used for (> 10, 000 years).

The mass conservation constraint is satisfied by requiring that any flux out of a

reservoir must be simultaneously counteracted by an equal flux into an adjacent

reservoir. We will additionally require that the only net flux out of the atmosphere
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reservoir and the deep ocean reservoir both go directly into the upper ocean reser-

voir; there is no terrestrial carbon sink from the atmosphere, and no geologic sink

from the deep ocean. Thus, in a steadily positive carbon emission scenario, car-

bon will appear to accumulate in the deep ocean. Since BEAM was designed to

emulate atmospheric concentrations of CO2, we will focus our attention solely on

its ability to accurately model just the atmosphere reservoir, and only use the

behavior of the two ocean reservoirs as diagnostics of the model behavior.

It is important to note that size of the “upper ocean” and the “lower ocean”

are defined somewhat arbitrarily. The two reservoirs are qualitatively designed

to emulate Earth’s modern ocean, such that the exchange timescale between the

atmosphere and the upper ocean is faster than the exchange timescale between the

upper ocean and the lower ocean. They are not intended to be representative of a

physically significant depth. This construction allows BEAM to reproduce the long

tail that is typically observed in model experiments of anthropogenic CO2 ocean

uptake. It is assumed that the exchange timescale between the atmosphere and

upper ocean and between the upper and lower ocean does not change as carbon

mass is added to or removed from any of the reservoirs; this timescale requirement

is the only explicit assumption that will be made about atmosphere and ocean

dynamics.

1.2 A 3-box transfer model of a conserved quan-

tity

We now will define the rate of change of mass in each reservoir by considering

all pathways through which mass could enter or leave a reservoir. We will assign

each of these pathways a transfer coefficient φji , which denotes the fraction of

mass Mi moving from reservoir i to reservoir j per year. Considering only transfer

between adjacent reservoirs, we can scale the transfer coefficients by the mass of

the reservoir from which the mass is leaving. Adding each pathway by which mass

enters a reservoir and subtracting each pathway by which mass leaves a reservoir

yields the net flux of the reservoir:

dMi

dt
=
(
φii−1 ·Mi−1

)
+
(
φii+1 ·Mi+1

)
−
(
1− φii

)
·Mi (1.1)
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where (1− φii)Mi is the mass per year in reservoir i that gets transferred out

of reservoir i; (φii is the fraction per year that stays in reservoir i). Due to our

requirement that mass is conserved during reservoir exchanges, the transfer coef-

ficients must not add together to transfer more or less than the total mass of the

reservoir. Since the transfer coefficients each control a fraction of the mass of a

given reservoir, the sum of the three fractions that the coefficients control must

be equal to one. For example, if φ1
i = 0.2, φ2

i = 0.5, and φ3
i = 0.3, then 20% of

the mass in reservoir i is transferred to reservoir 1, 50% is transferred to reservoir

2, and 30% is transferred to reservoir 3. In this case, if i = 2, for example, then

it means that 50% of the mass in reservoir 2 does not move. We can write this

constraint on our transfer coefficients (for reservoirs i = 1, 2, 3) more succinctly

as:

φ1
i + φ2

i + φ3
i = 1 (1.2)

Since carbon is only exchanged between adjacent reservoirs:

φ3
1 = φ1

3 = 0 (1.3)

We can thus write our transfer coefficient constraints explicitly:

φ1
1 + φ2

1 = 1 (1.4)

φ1
2 + φ2

2 + φ3
2 = 1 (1.5)

φ2
3 + φ3

3 = 1 (1.6)

Taking these constraints into account, we can then rewrite Equation 1.1 explicitly

for each of the three reservoirs, giving us a full set of differential equations for the

net flux (in the absence of an external mass forcing):

dM1

dt
= −

(
1− φ1

1

)
M1 + φ1

2M2 (1.7)

dM2

dt
= φ2

1M1 −
(
1− φ2

2

)
M2 + φ2

3M3 (1.8)

dM3

dt
= φ3

2M2 −
(
1− φ3

3

)
M3 (1.9)
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We can then eliminate the self-exchange coefficients φii using the equivalences in

Equations 1.4, 1.5, and 1.6:

dM1

dt
= −φ2

1M1 + φ1
2M2 (1.10)

dM2

dt
= φ2

1M1 −
(
φ1
2 + φ3

2

)
M2 + φ2

3M3 (1.11)

dM3

dt
= φ3

2M2 − φ2
3M3 (1.12)

We must note that this formulation of the transfer coefficients is only valid if the

three reservoirs are identical in size and, in the context of the carbon cycle, contain

carbon in the exact same chemical form. If our reservoirs represent the atmosphere

and ocean, this is certainly not the case, and so we will modify Equations 1.10,

1.11, and 1.12 using two parameters, α and β, such that the mass of carbon in each

reservoir is normalized by reservoir size and chemical activity. More generally, we

can define the unitless α and β parameters as the ratio of the reverse exchange

coefficient to the forward transfer coefficient, for the upper two reservoirs and lower

two reservoirs, respectively.

α =
φ1
2

φ2
1

(1.13)

and

β =
φ2
3

φ3
2

(1.14)

We can then rewrite our exchange coefficients φji using our reservoir size and chem-

istry normalizing parameters (α and β) to be physically meaningful exchange rate

constants kα and kβ, where kα denotes exchange between the top two reservoirs,

and kβ denotes exchange between the bottom two reservoirs, both with units of

years−1.

kα = φ2
1 =

φ1
2

α
(1.15)

kβ = φ3
2 =

φ2
3

β
(1.16)
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We can now rewrite Equations 1.10, 1.11, and 1.12 as an effective concentration

gradient that decays with a characteristic timescale τ = 1/k:

dM1

dt
= −kα · (M1 − α ·M2) (1.17)

dM2

dt
= kα · (M1 − α ·M2)− kβ · (M2 − β ·M3) (1.18)

dM3

dt
= kβ · (M2 − β ·M3) (1.19)

Our constraints on the transfer coefficients are thus:

φ1
1 = 1− kα (1.20)

φ2
1 = kα (1.21)

φ1
2 = α · kα (1.22)

φ2
2 = 1− α · kα − kβ (1.23)

φ3
2 = kβ (1.24)

φ2
3 = β · kβ (1.25)

φ3
3 = 1− β · kβ (1.26)

Note that each of the three reservoirs satisfy the mass conservation requirement

in Equations 1.4, 1.5, and 1.6.

1.3 Application of the 3-box model to the carbon

cycle

In the context of the atmosphere, upper ocean, and lower ocean, we can add an

emissions rate term E(t) to the atmosphere reservoir (in units of mass per time)

and write Equations 1.17, 1.18, and 1.19 using explicit subscripts:

dMat

dt
= −kα · (Mat − α ·Mup) + E(t) (1.27)

dMup

dt
= kα · (Mat − α ·Mup)− kβ · (Mup − β ·Mlo) (1.28)

dMlo

dt
= kβ · (Mup − β ·Mlo) (1.29)

In this case, the parameter β is simply the unitless size ratio of the upper ocean

to the lower ocean, and is a fixed parameter; (on a spherical planet, this is simply
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the depth ratio of the two layers). Thus, the term β ·Mlo is simply the mass of

carbon that would be in the lower ocean reservoir if the lower ocean reservoir was

the same size as the upper ocean reservoir.

The physical significance of the parameter α is a bit more complicated, and re-

quires a careful treatment of equilibrium carbonate chemistry. This is done in

Appendix A, but for now we will simply state that α is the unitless ratio of the

mass of atmospheric carbon to the mass of upper ocean carbon that would be in

equilibrium with one another at a given pH. It is calculated using empirically

derived equations of chemical thermodynamic equilibrium.

The role of the α parameter in BEAM is to account for the diminishing ability

of the ocean to take up excess CO2 from the atmosphere over time. As more

and more carbon dissolves in the ocean, the ocean carbonate system responds by

reducing ocean pH and inhibiting further uptake of CO2. Using a three-box model

like the one described here, but without an active carbonate chemistry feedback

will tend to underestimate the mass of carbon remaining in the atmosphere, since

the ocean would continue to draw down atmospheric CO2 at the same rate even

after its buffering capacity has diminished.

In Chapter 2, we will treat α as a constant, but it is worth noting that it is

computationally straightforward to update each αi for i ∈ {1, ..., N} using the

carbon content and the pH of the upper ocean at the i− 1 time step. All figures

made in Chapter 1 use a forward model with a time-dependent α. The use of a

time-dependent α in the adjoint trajectory model in Chapter 2 will require some

further development, but would be an important area of improvement in future

versions of the model. This modification has not been thoroughly considered yet,

but we will mention here that it may not be as trivial as simply running the

carbonate chemistry-including model backwards in time.

It is important to note that the sum of all three instantaneous rates of change at

any given time t is simply equal to the external mass forcing rate E(t) at time t,

in units of mass per time.

dMtotal

dt
=
d (M1 +M2 +M3)

dt
=

3∑
i=1

dMi

dt
= E(t) (1.30)

In other words, the only source or sink of carbon mass in the system (i.e. the

sum of the three reservoirs) is through the emission term E(t) in the atmosphere
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reservoir. If E(t) > 0 there is a net gain of carbon mass in the system at time t,

and if E(t) < 0 there is a net loss of carbon mass from the system at time t. One

could simply integrate E(t) between any two times to calculate the cumulative

mass of carbon C(t1, t2) (in units of Gton C) entering/exiting the system over the

time interval [t1, t2].

C(t1, t2) =

∫ t2

t1

E(t)dt (1.31)

The sources and sinks of carbon in this model can be interpreted to represent any

process that releases carbon into the atmosphere as CO2 or removes CO2 molecules

from the atmosphere, except the processes of dissolution into the ocean and out-

gassing from the ocean (i.e. except processes that are explicitly parameterized by

the kα coefficient). The emission term E(t) can be thought of as the sum of:

• anthropogenic fossil fuel emissions

• anthropogenic land use emissions

• human-led carbon capture

• land biosphere carbon fluxes

• ocean biosphere carbon fluxes

• volcanic CO2 outgassing

The model is not designed to be used on geologic timescales (>10,000 years),

as there is no mechanism for the long-term removal or addition of carbon from

geologic reservoirs, nor is there a weathering feedback in the 3-box model.

1.4 Discretization of the forward 3-box model

As we begin to think about solving our model numerically, it will be useful to

reformulate our governing Equations 1.17, 1.18, and 1.19 in one succinct matrix

form equation. Using bold font to denote that a variable is a matrix, we can write

a mass vector M:

M =


M1

M2

M3

 (1.32)
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a transfer matrix K:

K =


−kα kα · α 0

kα − (kα · α)− kβ kβ · β
0 kβ −kβ · β

 (1.33)

and an external forcing vector F, which includes only an atmospheric component:

F =


E(t)

0

0

 (1.34)

We can then write the governing differential equations in matrix form:

dM

dt
= KM + F (1.35)

For completeness, we can write Equation 1.35 using the explicit matrices from

above:

d

dt


M1

M2

M3

 =


−kα kα · α 0

kα − (kα · α)− kβ kβ · β
0 kβ −kβ · β



M1

M2

M3

+


E(t)

0

0

 (1.36)

which we can algebraically expand to confirm:

dM1

dt
dM2

dt
dM3

dt

 =


−kα ·M1 + kα · α ·M2 + E(t)

kα ·M1 − (kα · α− kβ) ·M2 + kβ · β ·M3

kβ ·M2 − kβ · β ·M3

 (1.37)

In order to numerically solve the model forward in time, we must map the contin-

uous functions and variables in Equation 1.35 onto a discrete space. We will do

so by mapping the continuous time interval [t0, tf ] onto the discrete time interval

with N timesteps: ti ∈ [t1, ..., tN ], using i to denote the discrete time step, and

where each ti is evenly separated by the discrete time step size ∆t. We can then

use the forward Euler method to write Equation 1.35 as a forward time-stepping

finite difference model:
Mi+1 −Mi

∆t
= KiMi + Fi (1.38)
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Mi+1 = Mi + ∆tKiMi + ∆tFi (1.39)

It is worth a statement drawing attention to the elegant simplicity of the three-box

model described in Equation 1.39. Note that other computational methods could

be used to numerically solve our differential equation (e.g. a leapfrog scheme), but

we have chosen the forward Euler method because it simplifies the mathematics of

the equations governing the adjoint trajectory model in Chapter 2. We find that

this method is accurate as long as a sufficiently small time step ∆t < 1 year is

used.

The transfer matrix Ki can simply be written as K if α is treated as a constant,

since α is the only time-dependent parameter in the transfer matrix. With a

constant, known α, we also have a fully known K as long as we know kα and

kβ, both of which were “experimentally” determined via parameter optimization

search constrained by higher-complexity model output. Glotter et. al. determined

that parameter values of kα = 0.2 yr−1 and kβ = 0.05 yr−1 can be used in Equation

1.36 to accurately emulate higher complexity models forced by the same emission

scenario [9]. These values correspond to a 5 year atmosphere-upper ocean con-

centration gradient erosion and a 20 year upper ocean-lower ocean concentration

gradient erosion. The constraint that the former time scale be shorter than the lat-

ter is a constraint explicitly given to the parameter optimization search algorithm.

We will use these parameter values in all calculations throughout this thesis.

1.5 Forward model driven by historical anthro-

pogenic emissions

Before the model can be solved forward in time, we must first establish initial

conditions for the differential Equations 1.27, 1.28, and 1.29. If we want to use the

model to project forward from today, we need to initialize, or “spin up” the model

from pre-industrial conditions until modern conditions, in order to account for the

modern day disequilibrium of the system relative to pre-industrial conditions. We

will begin by assuming that a 280 ppm CO2 atmosphere is in equilibrium with the

BEAM constructed upper ocean, and that the upper ocean is in equilibrium with
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the lower ocean. This is calculated by requiring that:(
dMat

dt

)
t=0

= 0 (1.40)(
dMup

dt

)
t=0

= 0 (1.41)(
dMlo

dt

)
t=0

= 0 (1.42)

Using Equations 1.27, 1.28, and 1.29, we find that these conditions are met when:

Mat = α ·Mup (1.43)

Mup = β ·Mlo (1.44)

Taking Mat = 595.2 Gton C (equivalent to ∼280 ppm), and α = 0.8369 (see

Appendix A for equations used to obtain this value of α), we calculate Mup = 732.7

Gton C. Taking β = 1/50 to be the ratio of the upper ocean to lower ocean depth,

we can then calculate Mlo = 36633.4 Gton C.

We now have an initial M vector at t = 0, and so we just need the historical

emission scenario Fi for i ∈ {1, ..., N} before we can run the model forward. We

will take the emission history from fossil fuel combustion in Figure 1.1 and use it

to force the model out of equilibrium until the model reaches the modern value

of CO2 (∼400 ppm). The mass vector M at the time at which this occurs will

be saved and used as the initial condition for the model when it is run forward

in time to predict future atmospheric CO2 concentrations using a hypothetical

future emission schedule. The results of the fossil fuel forcing from a preindustrial

equilibrium are shown in Figure 1.2.

Figure 1.2 demonstrates the remarkable ability of a simple three-box model to

replicate historical observations of atmospheric CO2 within a quite small time

window (< 20 years). Further optimization of the exchange constants kα and kβ,

and the aspect ratio of the ocean reservoirs β could potentially yield an even closer

replication of historical observations, but doing so will not be the focus of this the-

sis. It is not necessarily the case that the parameter values of kα, kβ, and β used in

this study are the optimal values for emulating atmospheric CO2 concentrations

with the three-box model described above, and one could potentially yield more
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Figure 1.1: Carbon emissions from fossil fuel combustion; these data do not
include the influence of terrestrial carbon uptake. Data from Boden et. al. [5]

Figure 1.2: Model spin-up from an equilibrated pre-industrial atmosphere
with 280 ppm CO2. Calculated using kα = 0.2 yr−1, kβ = 0.05 yr−1, β = 1/50,

a time-dependent αi, and pre-industrial pH = 8.29.
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accurate results with a more optimized triplet set {kα, kβ, β}, subject to the phys-

ical constraints that kα > kβ and β < 1. It is also worth noting that the emission

data used to drive the forward model out of pre-industrial equilibrium do not take

into account the influence of a terrestrial land carbon sink, which would generally

act to slow the growth of atmospheric CO2 (though this effect would diminish with

time) [3].

1.6 Forward model driven by a future emission

scenario

Knowing that the model can be used to reasonably reproduce historical observa-

tions of atmospheric CO2, it is also worth testing how BEAM performs relative to

higher complexity carbon cycle models when forced with the same future carbon

emission scenario. Here, we will give a demonstration of BEAM’s ability to repli-

cate the model output of two Earth System Models of Intermediate Complexity

(EMICs), each driven by the same emission scenario given in Figure 1.3.

Figure 1.3: A plausible CO2 emission scenario that could generate an 8.5
W/m2 radiative forcing by 2100.

Given the atmospheric forcing term Fi in Figure 1.3, BEAM produces the follow-

ing projection, plotted in Figure 1.4. The three-box model performs well within
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the envelope of uncertainty surrounding the two EMIC projections, which is quite

remarkable given the computational simplicity of the three-box model. Using a

personal computer manufactured in 2016, the three-box model can be run 5000

years into the future on the timescale of a couple seconds, which makes the model

quite a powerful tool for qualitative CO2 emission research among physical scien-

tists, economists, public policy researchers, etc.

Figure 1.4: BEAM output given the emission scenario in Figure 1.3. Calcu-
lated using kα = 0.2 yr−1, kβ = 0.05 yr−1, β = 1/50, a time-dependent αi, and

non-equilibrium initial conditions from the red-starred year in Figure 1.2.



Chapter 2

An Adjoint Trajectory Model of

the Perturbed Carbon Cycle:

Estimating a carbon emission scenario given
atmospheric [CO2] data

Chapter 1 provides a description of how a simple three-reservoir carbon cycle model

can be ran forward in time to both reasonably replicate historical observations of

atmospheric CO2 given an empirically constrained emission history, and predict

future atmospheric CO2 concentrations given a projected emission scenario for

the future. Both of these applications of the forward model require an a priori

knowledge of the emission schedule E(t).

However, one could imagine several scenarios in which time series data of atmo-

spheric CO2 concentrations are available, but the emission schedule that forces

that time series is not known. Throughout the paleoclimate record, for exam-

ple, we have data constraints on the atmospheric CO2 concentration over several

time intervals, but we have limited knowledge of the fluxes of CO2 that drive the

observed swings in the atmospheric concentration.

Similarly, one could imagine having a computationally projected constraint on the

maximum concentration of CO2 throughout a time series that would be allowable

before damages from the resulting climate change become too costly. With this

information, we would be interested to know what the optimum schedule of emis-

sions within this time series would be, such that we could release as much CO2

15
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as possible (thereby maximizing economic growth) without exceeding our desired

atmospheric concentration. 1

It may also prove to be a useful tool for environmental regulation enforcement.

After significant future development of the model, it would allow an enforcement

official to determine the emission rate of CO2 over some time interval without

being given any information except a timeseries measurement of the airborne frac-

tion remaining after ocean uptake. Enforcement officials would thus be able to

determine whether an emission cap was violated without having to monitor each

flux that contributes to the total emission. With the variety of potential appli-

cations of an adjoint trajectory model in mind, we will keep our formulation of

the mathematical framework as general as possible (using 1’s, 2’s, and 3’s to label

the reservoirs) so that one could use this thesis as a framework for developing a

similar model with different applications.

2.1 Formulation of the cost function J

With this type of problem in mind, we will invoke the use of mathematical inverse

methods in order to perform an optimization of the forcing term F that will

drive the model output Mi from Equation 1.39 to be as close as possible to an

observational data constraint Di. This data constraint matrix Di could be an

empirical time series measurement, or it could be model output from a higher

complexity model; either way, we will treat it as data that we trust to be more

accurate than the simple model output Mi.

We will start by defining a cost function J , which we will use as a metric of how

closely our forward model Mi replicates the observational data Di at each time

step i ∈ {1, ..., N}.

J =
N∑
i=1

(Mi −Di)
T (Mi −Di) (2.1)

where Mi =
[
Mat

i ,M
up
i ,M lo

i

]T
is the model output for the discrete time series

from i = {1, ..., N} and Di is a data constraint on the same variable over the same

discrete time series. However, due to our upper ocean and lower ocean reservoirs

1It is important to note that we are not advocating the use of this method in the allocation
of carbon emissions, and it should not be used as a public policy tool or a marketing tool in
carbon cap-and-trade decisions until much further development is made on the model.
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being designed to not necessarily represent the real ocean, we generally do not

have data constraints on the two ocean reservoirs. For example, with β = 1/50, a

data constraint on the “upper ocean” would require a measurement of the carbon

content of the globally-averaged upper 1/51st of the ocean; data such as these are

unlikely to be available.

Given the general unavailability of Dup and Dlo, we must ensure that only the

atmospheric components of the mass vector M contribute to the cost function J .

To do this, we will define a deficient identity matrix H such that only the purely

atmospheric reservoir components remain, and the rest get multiplied by zero.

H =


1 0 0

0 0 0

0 0 0

 (2.2)

We can then rewrite the cost function using H so that the (Mup
i −D

up
i )2 and(

M lo
i −Dlo

i

)2
components are eliminated from the summation:

J =
N∑
i=1

(Mi −Di)
T HTH (Mi −Di) (2.3)

which we can rewrite more simply as:

J =
N∑
i=1

(
Mat

i −Dat
i

)2
(2.4)

Our objective at this point is to minimize J by finding E(t) such that the forward

model Mi+1 = Mi + ∆tKMi + ∆tFi reproduces Di as closely as possible at

each i ∈ {1, ..., N}. Our optimization of the vector Fi will be performed on the

N -dimensional vector space {1, ..., N}.

Before we begin to minimize J , we must first ensure that our cost function J

satisfies two particular constraints. First, we will require that the initial conditions

of our forward model are set by the observational data at the first discrete timestep

i = 1. That is,

M1 = D1 (2.5)

Second, we will require that the forward model satisfies the transfer function con-

straints set by K (i.e. the time-independent model physics), and also require that
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emissions directly enter the atmospheric reservoir alone (via H).

Mi+1 = Mi + ∆tKMi + ∆tHF̃i (2.6)

Here we write F̃i using a tilde to indicate that our forcing vector is only a guess,

and is not known a priori, as was the case in the forward model in Chapter 1.

As this adjoint model is run forward, we will iteratively update F̃i using a math-

ematical method known as Lagrange multipliers in combination with a steepest

descent down-gradient search method until our model error (Mat
i −Dat

i ) at each

i ∈ {1, ..., N} is as small as possible. When our model error (i.e. J) is minimized

at each i, the guessed forcing F̃i at that point can be saved and considered the

optimized carbon forcing vector F∗
i .

We can minimize the cost function J while only considering solutions which also

satisfy Equations 2.5 and 2.6 by using the mathematical method of Lagrange

multipliers. We will augment our cost function J using a Lagrange multiplier P1

to enforce the constraint from Equation 2.5 at the initial time step i = 1, and

a vector-valued Lagrange multiplier Li to enforce the constraint from Equation

2.6 on the interval i ∈ {1, ..., N − 1}. When we differentiate J with respect to

each of its variables (as we will do soon during our minimization algorithm), the

Lagrange multipliers, by construction, can be used to search downgradient of J to

find a more accurate Mi, but only by considering solution curves that also meet

the conditions of Equations 2.5 and 2.6. These Lagrange multipliers will yield a

set of constraint equations that also must be satisfied (at each i) in order for the

model output Mi to be considered optimized.

J =
N∑
i=1

(
Mat

i −Dat
i

)2
+ PT

1 · (M1 −D1)

+
N−1∑
i=1

LT
i ·
(
−Mi+1 + Mi + ∆tKMi + ∆tHF̃i

) (2.7)

It is convenient to think of the Lagrange multipliers P1 and Li as dummy variables

that bookkeep the model error (Mat
i −Dat

i ), and use it to drive the guessed forcing

term F̃i towards an optimized value F∗
i . As we will see in the next section, when

our conditions of optimization are reached, neither of the Lagrange multiplier

terms in Equation 2.7 will contribute to J ; they will either be identically zero,
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or multiplied by zero. Thus, once we have found F∗
i , our cost function J can be

effectively described by our original cost function in Equation 2.4.

2.2 The Euler-Lagrange equations of optimiza-

tion

With the fully formulated cost function J in Equation 2.7, we then seek to minimize

J with respect to F̃i. We can achieve this via standard calculus procedures, i.e.

taking the partial derivative of J with respect to each variable that it is a function

of, setting those derivatives equal to zero, and then taking the resulting expressions

as the conditions for optimization (also known as the Euler-Lagrange equations of

optimization).

We can differentiate J with respect to our Lagrange multipliers P1 and Li, the

model output Mi, and the guessed forcing term F̃i:

∂J

∂Pi

= H (M1 −D1) (2.8)

∂J

∂Li

= −Mi+1 + Mi + ∆tKMi + ∆tHF̃i (2.9)

∂J

∂Mi

=


2H (M1 −D1) + P1 + L1 + L1∆tK, i = 1 (2.10)

2H (Mi −Di)− Li−1 + Li + Li∆tK, i = 2, ... , N-1 (2.11)

2H (MN −DN)− LN−1, i = N (2.12)

∂J

∂F̃i

= Li∆tH (2.13)

It is worth noting that these equations are rewritten using the matrix identity

LT
i K = KTLi. Since Li is used to drive the inverse model, the adjoint matrix KT

provides the name “adjoint trajectory model.”

Equating Equations 2.8, 2.9, 2.10, 2.11, 2.12 and 2.13 to zero yields the Euler-

Lagrange equations of optimization:

M1 = D1 (2.14)

Mi+1 = Mi + ∆tKMi + ∆tHF̃i (2.15)
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
LN−1 = 2H (MN −DN) , i = N (2.16)

Li−1 = Li + ∆tKTLi + 2H (Mi −Di) , i = 2, ... , N-1 (2.17)

P1 = −L1 −∆tKTLi − 2H (M1 −D1) , i = 1 (2.18)

HTLi = 0 (2.19)

Equation 2.19 is the condition under which
∂J

∂F̃i

= 0, which is our ultimate goal.

In other words, when HTLi = Lati = 0, the forcing term F̃i is optimized such that

it produces Mi as close to Di as possible for each i ∈ {1, ..., N}. Thus, our goal is

to search down-gradient of
∂J

∂F̃i

to find a better F̃i to drive the model output Mi

that yields Li = 0, as calculated by Equation 2.17. The model error H (Mi −Di)

is used to drive the adjoint model backwards in time via Equation 2.17.

We now have the full set of equations that are required to solve the adjoint model,

and now we just need an algorithm for using them.

2.3 Algorithm for minimizing the cost function

J to find the forcing F̃i

Here we will use the subscript k to specify which iteration of the guess F̃i we

are considering. The general algorithm for performing an iterative steepest de-

scent down-gradient search method using Lagrange multipliers can be described

as follows:

1. Guess an initial forcing
(
F̃i

)
k=1

for each i ∈ {1, ..., N}.

2. Use Equation 2.15 and
(
F̃i

)
k=1

to run the model forward in time, starting

with the initial condition M1 = D1 (from Equation 2.14) in order to compute

(Mi)k=1

3. Calculate the total error Jk using the data constraint Di and the model

output (Mi)k, via Equation 2.4

4. Use Equation 2.17 to solve backwards in time for the Lagrange multipliers

(Li)k over i ∈ {N − 1, ..., 2}, using Equation 2.16 as the initial condition.
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(a) If Li = 0, then
∂J

∂F̃i

= 0 and thus we have found F∗
i , and so we are

done.

5. Use Equation 2.13 and the (Li)k calculated in Step 4 to compute the new

gradient of J . Use the sign of
∂J

∂F̃i

to determine whether to increase or

decrease F̃i at each i. The magnitude of the adjustment will be computed

in the next step.

6. Use an open-source optimization script to search for the magnitude by which

F̃i should be adjusted in order to minimize H (Mi −Di). For example, the

MATLAB function fminunc is used in this edition of the model code to

iteratively find the magnitude by which F̃i should be adjusted, using the

adjustment magnitude from the previous iteration as a starting point in the

search for a minimum.

7. At each i, increase or decrease
(
F̃i

)
k−1

by the amount determined in Step 6

to calculate the new guess
(
F̃i

)
k
, then run the model forward using

(
F̃i

)
k

and Equation 2.15 to compute (Mi)k

8. Return to Step 3, and continue to follow this algorithm until Step 4a is

reached.

2.4 An application of the adjoint trajectory model

Via the algorithm described above, Figure 2.1 shows an example of how this adjoint

trajectory model performs, using empirically measured atmospheric CO2 data from

the Mauna Loa Observatory as the data constraint Di [10]. The adjoint trajectory

model does a remarkable job of fitting the small-scale structure in the empirical

data, but notably fails at one of the near-endpoints of the time series (around the

year 1958). This near-endpoint failure drives the entire solution curve of F∗
i in

Figure 2.2 away from what we know to be the correct carbon emission history, as

seen in the steadily rising curve in Figure 1.1.

Zooming in on the solution in Figure 2.2, we see in Figure 2.3 that the adjoint

trajectory model does a notable job of reproducing the observed seasonal cycle

in fossil fuel burning [15], with distinguished maxima occurring in the northern
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Figure 2.1: Atmospheric CO2 data from Mauna Loa Observatory in Hawaii
fitted using the adjoint trajectory model. Note that the sharp model-misfit near
1958 occurs a few data points after the initial condition of the time series, and

does not violate the initial condition in Equation 2.14.

Figure 2.2: Guessed emission history F∗
i calculated by the adjoint trajectory

model, and used to calculate the forward model fit in Figure 2.1

hemisphere winter. The model-calculated emission curve in Figure 2.3 successfully

replicates the annual oscillatory pattern that is expected from energy consumption

data [4], though it notably misses the local minimum that would be expected each

year when terrestrial carbon uptake peaks [14].

The ability to extract small-scale structure in the guessed forcing term can be con-

sidered to be one of the larger successes of the model at this stage of development.

The large-scale time series trend, however, is not yet able to be reliably computed
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Figure 2.3: Zoom in on finer structure in Figure 2.2

using this model. Further development of the model should focus on the behav-

ior of the model near the endpoints of the time series; the endpoint “tethering”

behavior is something that was consistently observed using a variety of CO2 time

series data constraints.

Figure 2.4 demonstrates the iterative minimization of the total error over the time

series, demonstrating the success of the model in its ability to continually search

down-gradient for the optimized forcing term.

Figure 2.4: Iterative minimization of cost function J
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2.5 Future development of the adjoint trajectory

model

This thesis reports the first edition of a 3-box adjoint trajectory model of the

carbon cycle, and we want to be careful to note that it does not represent the fully

developed version of the model. There are several developments which could be

made to improve the model such that it could be used to answer scientific research

questions of greater complexity than the proof-of-concept questions addressed in

this thesis. A few of those improvement areas will be addressed in this section.

Looking at Figure 2.1, there is an area of improvement which stands out immedi-

ately. The model output Mi in blue fails to fit anywhere near the data constraint

Di in magenta for a few data points near the beginning of the time series. The

explanation for this is most likely that a self-inconsistent initial condition is used

in the forward model. Since the example adjoint model run in Chapter 2 begins

in the year 1958, the initial condition of the forward model (M1) should be taken

to be the mass of each reservoir in the year of Figure 1.2 where Mat is equal to

the 1958 value of atmospheric carbon dioxide concentration. At this time step,

one would then need to determine how much the pH of the ocean had decreased

since the pre-industrial pH = 8.29 and then use that to determine an initial value

of the pH-dependent parameter α.

It is most likely our lack of self-consistent initial conditions in the adjoint model

that cause the model-data misfit to spike near the beginning of the time series in

Figure 2.1. The forward BEAM in Chapter 1 has quite sensitive numerical stability

criterion, such that an incorrect value of α, Mat
1 or Mup

1 cause a large effective

concentration gradient to be calculated at the first time step (via Equations 1.27

and 1.28), thus causing a large transfer of mass between the two reservoirs to occur

over the next few time steps. There is evidence of this instability manifesting in

Figure 2.1.

In order to have a fully self-consistent set of initial conditions, we would need to

spin-up the model from pre-industrial equilibrium to determine the initial con-

dition for the model M1 and for the reservoir normalization parameter α. The

adjoint trajectory model in Chapter 2 uses a constant value of α = 1, which is

unlikely to be the value of α that would be calculated in the model spin-up. Thus,
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the effective concentration gradient between the atmosphere and upper ocean is

miscalculated, causing mass to rapidly flow.

If the adjoint trajectory model is unable to fit the model output Mi to the data

constraint Di, it is virtually impossible for the cost function minimization algo-

rithm to accurately compute a forcing F̃ at each i that it was unable to fit precisely.

Thus, there is likely much to be said about the ability of the adjoint trajectory

model to replicate an emission scenario in a physically reasonable manner, but

since the error in Figure 2.2 relative to the known emission scenario appears to

be almost entirely driven by the model misfit near time zero in Figure 2.1, there

is little that we can conclude about how to enhance the physical reasonability of

the calculated forcing term.

Another area of future exploration would be to methodically inquire whether the

initial guess for the forcing matters. Does the model equilibrate to a different

solution F∗
i if given a different initial guess F̃i (i.e. a different constant value

guess, or a different shape curve), or does the optimization algorithm in Section

2.3 always converge to an absolute maximum solution F∗
i ? Answering this question

should be relatively straightforward to implement by simply trying multiple initial

guesses for different data constraints and analyzing how the initial guess affects

the optimized forcing term.

The novelty of BEAM is its ability to explicitly account for the diminishing rate

of ocean carbon uptake in a steadily positive carbon dioxide emission scenario [9].

With this chemical constraint in mind, it is important that future development of

the adjoint trajectory model also addresses the carbon cycle constraints imposed

by carbonate chemistry by making the α parameter time-dependent in the inverse

model. It is possible that the variation in emission rates between guess iterations

is small enough such that a time-dependent Ki can be calculated via the forward

BEAM model and used as a constant in the inverse model for every kth iteration

of the optimization sequence. If they are not small enough, one would have to

develop a different method for calculating the pH dependence of α in the inverse

part of the model.

Considering the potential paleoclimate applications of the model, one might not be

interested in obtaining a single, absolutely optimized guessed forcing, but rather a

set of possible forcings that could drive the observed behavior in a set of empirical

measurements (e.g. the Vostok ice core record). If a paleoclimate researcher could
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be presented with a set of possible emission scenarios, they could combine that

set with other empirical geochemical evidence to eliminate certain scenarios, and,

with a careful understanding of the assumptions made by the adjoint trajectory

model, try to constrain the range of plausible emission scenarios over periods in

Earth’s history. If this could be done successfully, it would allow one to then

explore the plausible mechanisms that controlled Earth’s climate in the distant

past. An advanced version of this adjoint trajectory model would thus include the

ability to explore local minimums of the optimization space of F̃i, rather than the

absolute minimum in the present state of the model.

The adjoint trajectory model presented here is still quite far from that idealized

paleoclimate application, but the process of adding additional constraints to the

model cost function J and then minimizing the cost function using inverse methods

is a broadly applicable technique that could be continuously augmented. There is

no technical limit to the number of constraints we can place on our system; our

only practical limitation would be that the assumptions we make to arrive at our

constraints may be contradictory such that the simultaneous minimization along

each optimization constraint yields no solution. A solution to an overdetermined

system of this type could be found by simply relaxing the constraints that require

the most unrealistic assumptions about the physical system.



Appendix A

Equilibrium carbonate chemistry

and the α parameter

Much of what is presented here can be found in the original BEAM paper [9] and

references therein, but we present the following exposition for completeness and

clarification of the original paper, plus some corrections. Note that Glotter et. al.

[9] separate our parameter α into two parameters, A and B, such that α = A ·B.

The parameter α was introduced in Equation 1.13 in order to account for the pos-

sibility that reservoirs 1 and 2 are different sizes and/or contain different chemical

forms of carbon. In the context of the atmosphere and the upper ocean, both are

the case. Glotter et. al. [9] first introduced a parameterization of α in order to

account for the fact that the ocean’s ability to uptake atmospheric CO2 decreases

as the concentration of dissolved inorganic carbon increases.

27
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A.1 Carbonate chemistry reactions and equilib-

rium constants

We will start by defining the chemical equilibrium reactions that describe the

process of atmospheric CO2 dissolution in the ocean.

CO2(g)
kH−−⇀↽−− CO2(aq) (A.1)

CO2(aq) + H2O
fast

H2CO3(aq) (A.2)

H2 CO3(aq)
k1−−⇀↽−− H+ + HCO−

3 (A.3)

HCO−
3

k2−−⇀↽−− H+ + CO−2
3 (A.4)

The aqueous subscript (aq) is omitted from any charged chemical species, as it is

assumed that charged species are only stable in the aqueous phase.

The fast reaction in Equation A.2 means we can assume that the concentrations:

[
CO2(aq)

]
=
[
H2CO3(aq)

]
(A.5)

We can then write the equilibrium constants kH , k1, and k2 as:

kH =

[
CO2(g)

][
CO2(aq)

] (A.6)

k1 =
[H+]

[
HCO−

3

][
H2CO3(aq)

] (A.7)

k2 =
[H+]

[
CO−2

3

][
HCO−

3

] (A.8)

Here, kH is the Henry’s Law constant and is unitless, and k1 and k2 are the first

and second dissociation constants of carbonic acid, and have units mol/kg. All

three equilibrium constants are slightly temperature dependent. One could choose

to omit their temperature dependence without significantly changing the model

output of atmospheric CO2, but their explicit dependence will be presented here

for completeness. If one were looking to use a constant value of kH , k1, and k2,

they could be calculated using T = 285 K.

kH(T ) =
1

k0
· 1 L

1.027 kg
· 55.57 mol

1 L
(A.9)
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where k0 is an explicit, empirically derived function of temperature T :

k0(T ) = exp

[
9345.17

T
− 60.2409 + 23.3585 · ln

(
T

100

)
+

S ·

(
0.023517− 0.00023656 · T + 0.0047036 ·

(
T

100

)2
)] (A.10)

k1(T ) = 10−pK1 (A.11)

k2(T ) = 10−pK2 (A.12)

where pK1 and pK2 are unitless, empirically derived functions of temperature T :

pK1(T ) = −13.721 + 0.031334 · T +
3235.76

T

+1.3 · 10−5 · S · T − 0.1031 ·
√
S

(A.13)

pK2(T ) = 5371.96 + 1.761221 · T + 0.22913 · S + 18.3802 · log10(S)

−128375.28

T
− 2194.30 · log10(T )− 8.0944 · 10−4 · S · T

−5617.11 · log10(S)

T
+ 2.136 · S

T

(A.14)

Here, S is the salinity:

S ∼ 35
g

kg
seawater

A.2 The DICE temperature model for comput-

ing T dependence of equilibrium constants

For each of the temperature-dependent equations in section A.1, the water tem-

perature T is in units of Kelvin, and is assumed to follow the global atmospheric

temperature anomaly [2]. Assuming a globally averaged pre-industrial ocean tem-

perature of 283 K, we can write T as it appears in Equations A.9 – A.14 as:

Ti = 283 K +
(
T ati − T at1

)
(A.15)

The global atmospheric temperature anomaly (T ati − T at1 ) (over the time interval

between the discrete time step i and the initial condition) associated with a change

in the atmospheric carbon content can be reasonably well described by the 2007

DICE temperature model [13]. This particular temperature model is used because
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of its computational simplicity, but other temperature models could be substituted

to calculate the temperature dependence of kH , k1, and k2. The DICE temperature

model is written:

T ati = T ati−1 + µat ·
[
Λ ·
(
T eqi − T ati−1

)
− γ ·

(
T ati−1 − T loi−1

)]
(A.16)

T loi = T loi−1 + µlo ·
[
γ ·
(
T ati−1 − T loi−1

)]
(A.17)

where T eqi is the equilibrium atmospheric temperature that the Earth would reach

if the radiative forcing at time step i was allowed to relax to zero via heating

the atmosphere to increase Earth’s outgoing longwave radiation, with no further

radiative forcing after time step i:

T eqi =
Fi
Λ

(A.18)

where Fi is the radiative forcing away from equilibrium due to CO2 (in W/m2):

Fi = η · log2

(
Mat

i

Mat
PI

)
(A.19)

where Mat
PI is the preindustrial mass of atmospheric CO2, 596.4 Gton C (∼280

ppm) and η is the radiative forcing that results from a doubling in the CO2 con-

centration (assumed to be constant). Glotter et. al. [9] use α to denote this

parameter, but we instead use η here since α is already taken.

η = 3.8
W

m2 · 2xCO2

and where Λ is Earth’s climate sensitivity:

Λ = 1.3
W

m2 ·K

The parameter γ sets the rate of heat anomaly transfer between the atmosphere

and lower ocean:

γ = 0.3
W

m2 ·K



Chapter 2 31

µat and µlo are defined as the inverse characteristic timescales of the temperature

anomaly erosion:

µat = 0.059
m2

W

µlo = 0.018
m2

W

Note that T lo in only used to drive the temperature evolution of the atmosphere,

and is not meant to parameterize the true temperature of the “lower” ocean.

A.3 Parameterization of α

Now that we are able to explicitly calculate our equilibrium constants kH , k1,

and k2 even as the temperature changes due to atmospheric CO2 fluctuations, we

now want to turn our attention back to Equations A.6, A.7, and A.8 in order to

produce the final parameterization of α.

The goal of the parameter α is to scale the mass of the atmosphere reservoir

Mat to the mass of the upper ocean reservoir Mup by size and by chemical activity.

Thus, we are looking for the ratio of total atmospheric carbon to the total dissolved

inorganic carbon (DIC), scaled by the difference in size between the two reservoirs.

We will call this size scaling factor δ, and assign it a value soon. We can now write

our first edition of the parameter α:

α =

[
CO2(g)

]
[DIC]

· δ (A.20)

Following Zeebe and Wolf-Gladrow [19], the total DIC concentration can be writ-

ten:

[DIC] =
∑
aq

CO2 =
[
H2CO3(aq)

]
+
[
HCO−

3

]
+
[
CO−2

3

]
(A.21)

which we can rewrite using the equilibrium constant expressions A.7 and A.8:

[DIC] =
[
H2CO3(aq)

]
·
(

1 +
k1

[H+]
+

k1k2

[H+]2

)
(A.22)
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We can then substitute our expression for [DIC] into our first edition of the

parameter α:

α =

[
CO2(g)

]
[
H2CO3(aq)

]
·
(

1 +
k1

[H+]
+

k1k2

[H+]2

) · δ (A.23)

Using the Henry’s Law constant expression A.6 and the equivalence due to fast

equilibration in Equation A.5, we can finally write our final parameterization of α

(as a function of temperature and pH), as:

α =
kH · δ(

1 +
k1

[H+]
+

k1k2

[H+]2

) (A.24)

In this expression, the unitless size ratio parameter δ can be defined:

δ =
Nat

Noc

·
(

1

β
+ 1

)
(A.25)

where Nat = 1.77× 1020 mol is the total number of moles of air in the atmosphere

and Noc = 7.8× 1022 mol is the total number of moles of water in the ocean (ref-

erences within [9]), and β is the size ratio of the upper and lower ocean reservoirs,

as defined in Chapter 1. Multiplication by
(

1
β

+ 1
)

is equivalent to dividing the

number of moles of water Noc between the two ocean reservoirs, and taking just

the fraction that exist in the upper ocean reservoir. For example, if β = 1/50,

then Noc/(50+1) is the number of moles of water in the upper 1/51st of the ocean.

Note that we now have all the information we need to compute α except for the

H+ concentration at each time step, which we will discuss in the next section.

A.4 Calculating ocean pH

We lastly need a method for calculating [H+]. To do so, we will introduce the con-

cept of carbonate alkalinity, the definition of which can be simplified to represent

the charge-neutralizing capability of carbonate species in an aqueous solution. In

this application, we can ignore the aqueous charged species that generally con-

tribute to the total alkalinity, and consider only the single-charge neutralizing
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bicarbonate ion and the two-charge neutralizing carbonate ion to approximate:

Alk ∼
[
HCO−

3

]
+ 2

[
CO−2

3

]
(A.26)

Using Equations A.7 and A.8 we can rewrite the expression for alkalinity as:

Alk =

(
k1

[H+]
+

2k1k2

[H+]2

)
·
[
H2CO3(aq)

]
(A.27)

Following Archer et. al. [3], and Zeebe and Wolf-Gladrow [19], we can reasonably

assume constant alkalinity on the timescale of < 10, 000 years. See Archer et. al.

[1] for more detail on the counteracting chemical feedbacks that would make this

assumption break down.

We can define a new ratio:

Alk

[DIC]
=

[
HCO−

3

]
+ 2

[
CO−2

3

][
H2CO3(aq)

]
+
[
HCO−

3

]
+
[
CO−2

3

] (A.28)

which, considering the equilibrium relationships in Equations A.7 and A.8, gives

us:

Alk

[DIC]
=

(
k1

[H+]
+

2k1k2

[H+]2

)
·
[
H2CO3(aq)

]
[
H2CO3(aq)

]
·
(

1 +
k1

[H+]
+

k1k2

[H+]2

)

=

(
k1

[H+]
+

2k1k2

[H+]2

)
(

1 +
k1

[H+]
+

k1k2

[H+]2

) (A.29)

Since [DIC] and Alk are both given by the same set of variables, we have now

arrived at an expression that is a function of [DIC] and [H+] only (given k1 and

k2 at the same fixed temperature).

A.5 Calculation of upper ocean alkalinity

We lastly need a value for Alk, which can be derived in units of Gton C in the

upper ocean reservoir by taking [DIC] = Mup (and converting to standardized

units). In order to calculate Mup, we need an Mat and a corresponding α, and

then we can use Equation 1.43 to determine the Mup that would be in equilibrium
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with the atmosphere Mat. Since we have assumed that our alkalinity is constant on

the timescale that this model is designed for, we can use pre-industrial conditions

to calculate the alkalinity. Assuming a pre-industrial ocean pH value of 8.29, we

can calculate [H+] in units of mol/kg:

[
H+
]

= − log10 (pH) ·
(

1 L

1.027 kg

)
(A.30)

which we can then use to calculate α using Equation A.24. Knowing MPI
at ∼ 596.4

Gton C (∼ 280 ppm CO2) and α, we then calculate Mup = 732.7 Gton C using

Equation 1.43. The alkalinity, which will be taken as a constant in the model, can

then be calculated using Equation A.29:

Alk = Mup

k1
[H+]

+
2k1k2

[H+]2(
1 +

k1
[H+]

+
k1k2

[H+]2

) = 790.3 Gton C

This calculation serves as a correction to a mistake made in the assumed alkalinity

of Glotter et. al. [9]. At zero temperature anomaly, the equilibrium coefficients

used in this calculation are k1 = 7.98×10−7 mol/kg and k2 = 4.63×10−10 mol/kg,

and the acidity [H+] = 4.99 × 10−9 mol/kg (equivalent to pH= 8.29, assuming a

seawater density of 1.027 kg/L).

Finally, with all of our constants known and temperature-dependent terms param-

eterized, we can calculate the [H+]i at each time step by solving the quadratic:

Alk

(Mup)i−1

=

k1
[H+]i

+
2k1k2

[H+]2i(
1 +

k1
[H+]i

+
k1k2

[H+]2i

) (A.31)

and then use that [H+]i to determine αi via Equation A.24, which allows us to

fully know the transfer matrix Ki in Equation 1.33 that is used to drive the model

forward.
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