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Abstract 

Coaches in the National Basketball Association (NBA) typically bench players who are 

perceived to be in danger of fouling out. I examine the efficacy of this strategy. At a baseline 

level, it seems dubious to guarantee that a player misses playing time for fear that he might miss 

time later in the game. However, there are broadly two categories of reasons that coaching 

conventional wisdom might be optimal. First, it is possible that players who are in foul trouble 

tend to play poorly, and thereby hinder their team’s performance. And second, the end of the 

game might be meaningfully different from the rest of the game, such that having the team’s best 

players available for the final minutes is more valuable. Section 1 demonstrates that benching 

players in foul trouble does not merely shift the minutes that players would typically rest, but 

instead decreases their overall playing time. Section 2 reveals that having a player on the court in 

foul trouble actually improves team performance. And Section 3 provides evidence showing that 

the play at the end of games does not justify the decrease in playing time that accompanies 

benching foul-troubled players. Taken together, this analysis demonstrates that in general, 

coaches should not bench their players because of foul trouble. 
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Introduction 

“Durant’s Foul Trouble Proves Costly to Thunder” (Thompson, 2012). That was the 

headline that the New York Times ran after Game 3 of the 2012 National Basketball Association 

(NBA) Finals matchup between the Oklahoma City Thunder and the Miami Heat. With 5:41 left 

in the third quarter, All-Star Kevin Durant was whistled for his fourth foul, at which point he was 

benched for the rest of the quarter. When he left the game, the Thunder led 60–54. By the time 

he re-entered, they trailed 71–67—a 17–7 run for the Heat in Durant’s absence. The Thunder 

ended up losing the game, and ultimately the series.  

 But was Durant’s foul trouble in itself really the culprit, as the New York Times headline 

suggested? Or was it instead the way in which Thunder coach Scott Brooks handled Durant’s 

foul trouble? NBA rules state that a player is not disqualified from playing until he commits six 

personal fouls. Yet Scott Brooks is not alone in pre-emptively benching players who appear to be 

in danger of reaching that threshold. Coaches typically bench players who have two fouls in the 

first quarter, three fouls in the second quarter, four fouls in the third quarter, or five fouls at any 

point; henceforth the “Q+1” strategy (Maymin, Maymin, & Shen, 2012).  

In the present thesis, I investigate whether or not the Q+1 strategy is optimal. On its face, 

it seems that it is not. Let us assume for the sake of argument that coaches bench a player in foul 

trouble in order to reduce the chances of that player fouling out. That is, coaches are averse to the 

possibility that a player might be forced to miss playing time later in the game. I argue that it is 

counter productive to guarantee that a player misses some amount of time now for fear that he 

may possibly miss time later. That is akin to starving to death to ensure that you do not run out of 

food.  
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Why benching players in foul trouble might be optimal 

Of course, this is oversimplifying the problem. The goal in basketball is not to maximize 

playing time for your best players, but rather to win the game. With this in mind, there are 

broadly two categories of reasons that benching players in foul trouble might be the optimal 

strategy. First, it is possible that players tend to play worse when they are in foul trouble than 

when they are not in foul trouble. Players are not robots; a player who knows that he is in danger 

of fouling out is likely to play less aggressively, which may be detrimental to his team. 

Relatedly, opponents might intentionally attack players in foul trouble, forcing them to either 

risk getting another foul or allow an easy basket. If there is in fact a drop in performance, and if 

that drop is sufficiently large, it may make sense to substitute the foul-troubled player out of the 

game.  

Second, it is possible that not all minutes are the same, and that having a starter available 

at the end of a game is more important. This jibes with fans’ intuitions regarding the decision, as 

I will discuss in more depth later. Stern’s (1994) model of win probability shows that a point 

towards the end of a close game has a larger effect on a team’s probability of winning than does 

a point towards the beginning of that game. Furthermore, Maymin, Maymin, and Shen (2012) 

use this concept of win probability in their analysis of foul trouble substitution decisions. They 

argue that the Q+1 rule is essentially optimal. However, because their model is based on win 

probability, which, as I described, naturally weighs events at the end of the game more than 

those at the beginning of the game, I believe they overestimate the effectiveness of benching 

players in foul trouble. Benching players early does generally ensure that they will be available 

later, and so if a model inappropriately overweighs later minutes (as I contend theirs does), then 

benching players in foul trouble will appear to be more beneficial than it really is. 
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While I do not doubt the statistical truth that a point scored at the end of the game has a 

larger effect on win probability than one scored at the beginning of the game, I do question the 

logic. Qualitatively, the reason that a point scored in the first quarter has a small effect on win 

probability is because it is unknown whether or not that point will end up being meaningful. That 

is, if the game ends up being close, that point will have been very important, whereas if the game 

ends up being a blowout, that point will not have mattered at all. But obviously at the time it is 

scored, the outcome of the rest of the game is unknowable. Conversely, at the end of a game, it is 

known whether a point is important or not. Therefore, a point scored at the end of a close game is 

certainly meaningful, and therefore has a large effect on win probability, while a point scored at 

the end of a blowout has no impact at all. Looking at the totality of the game in retrospect, 

though, the timing of the points is irrelevant. A layup in the first quarter counts for two points, 

just as many as a layup in the fourth quarter. And an extra two points in the first quarter 

necessarily means that the team will have two more points in the fourth quarter than they 

otherwise would have had. The following stylized example illustrates this point. 

Imagine that Team A’s best player is Player X. For the purposes of this example, assume 

that a game consists of exactly 200 possessions (50 possessions per quarter), and that Player X 

will end up playing exactly 150 of those possessions (i.e three quarters). When Player X is in the 

game, Team A outscores its opponent by precisely 20 points per 100 possessions, and when he is 

not in the game, Team A gets outscored by precisely 40 points per 100 possessions. The coach of 

Team A is deciding whether to have Player X sit for the third quarter or sit for the fourth quarter. 

If Player X plays the first two quarters, sits for the third quarter, and plays the fourth, the score 

differential at the end of each quarter will be +10 after the first quarter, +20 after the second 

quarter, tied after the third quarter, and +10 to end the game. If instead, he plays the first three 
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quarters and sits for the fourth, the score differential at the end of each quarter will be +10 after 

the first quarter, +20 after the second quarter, +30 after the third quarter, and +10 to end the 

game.  

In the first version, Player X is in the game for some very high leverage minutes. His 

team is tied to start the fourth quarter, and he helps lead them to a hard-fought 10-point victory. 

The points he contributes in these final minutes will have a substantial effect on his team’s win 

probability. In the second version, there are no high leverage minutes. Team A had a 30-point 

lead to start the fourth quarter, and that lead never drops below 10. Player X does not even play 

in the fourth quarter, and so based on win probability, it will appear that he contributed 

significantly less than in the first version. But in both cases, the end result is the same: the team 

wins by 10 points. 

Clearly real basketball is not as simple as the stylized example described above. 

Nonetheless, I believe that case serves as a useful baseline, and demonstrates why a model that 

uses win probability is not ideal. That said, it is still possible that the end of the game is different 

from the rest of the game in more substantive ways. For example, it is possible that the game is 

faster at the end, and so minutes played at the end of the game have more possessions, or that 

certain kinds of players are more valuable at the end of the game.  

Relevant psychological factors  

There are several other examples of suboptimal decision-making in the world of sports. 

And in fact, many of the contexts in which decision makers consistently err involve overly 

conservative decisions. Consider, for example, a situation in which an NBA team is trailing by 

two points with possession and only time enough for one final shot. While teams would 

statistically be better off attempting a three-point shot—either winning or losing immediately—
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they choose to attempt a two-point shot much more often (Walker, Risen, Gilovich, & Thaler, 

2018). In baseball, managers often choose to sacrifice bunt, moving a runner from first to second 

base, in part to avoid a potential double play. Extensive analyses have demonstrated that this is a 

flawed strategy (e.g. Tango, Lichtman, & Dolphin, 2006). And in the National Football League 

(NFL), coaches facing a short fourth down situation must decide whether to punt the ball, 

thereby giving up possession but improving their field position, or attempt to go for a first down. 

Coaches ultimately decide to punt the ball far more often than they should (Romer, 2006).  

Given the high stakes associated with these decisions, the incentives for coaches to win, 

and the amount of information coaches have at their disposal, these kinds of errors might come 

as a surprise to traditional economists. Decades of research in behavioral science, though, help 

shed light on two distinct but related questions: (1) what factors contribute to producing these 

errant decisions in the first place? And (2) given that these situations arise frequently, what 

factors prevent decision-makers from correcting their mistakes? 

Psychological factors that produce the errant decision 

Walker et al. (2018) describe these kinds of decisions as evidence of “sudden-setback 

aversion”. When faced with a decision between a “fast” strategy that is more likely to result in 

ultimate success but also carries immediate downside risk, and a “slow” strategy that is 

suboptimal in the long-term but is less likely to fail immediately, people overwhelmingly choose 

the slow option. This pretty clearly maps onto the context of foul trouble. Keeping a foul-ridden 

player in the game carries the immediate risk of that player accumulating additional fouls. 

Benching the player, a slow strategy in that it removes the immediate risk, feels much safer. I 

suggest that, despite feeling safer, it may be worse in the long run. 
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The authors establish two mechanisms for this effect. First, they demonstrate the role of 

myopic loss aversion (Benartzi & Thaler, 1995). Combining ideas from loss aversion (Kahneman 

& Tversky, 1979; Tversky & Kahneman, 1992) and mental accounting (Kahneman & Tversky, 

1984; Thaler, 1985), myopic loss aversion describes situations in which a person demonstrates a 

gain-loss asymmetry for a timeframe that is narrowly defined. In the context of basketball, the 

“correct” frame is the entirety of a game. Nonetheless, in these kinds of situations, coaches 

appear to be loss averse to the immediate outcome—having their foul-ridden player get called for 

additional fouls. The second mechanism for sudden-setback aversion is that people believe that 

choosing a fast strategy tempts fate, particularly when that strategy seems like an unnecessary 

risk (Risen & Gilovich, 2008). A coach may feel that he is tempting fate by keeping a player in 

foul trouble in the game, which would lead him to believe that the player is more likely than 

usual to be called for additional fouls.   

The availability heuristic might also lead coaches to overestimate the probability of a 

player fouling out (Tverksy & Kahneman, 1973). The availability heuristic describes situations 

in which people make probability or frequency judgments by relying on the ease with which 

examples come to mind. For example, in one study, participants were asked to estimate the ratio 

of English words that start with the letter K to words that contain the letter K as the third letter. 

Because it is easier to think of words that start with the letter K than to think of words that have 

K as the third letter, the majority of participants estimated that there are more words that start 

with K. Bringing this discussion back to basketball, it is presumably very easy for coaches to 

imagine or remember a scenario in which a player fouled out, and this likely inflates their 

perceived probability of that outcome occurring.  
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Similarly, the availability heuristic could also cause coaches to overestimate the relative 

effect of a player fouling out (i.e. missing playing time at the end of the game) as compared to a 

player being benched when in foul trouble (i.e. missing playing time earlier in the game). It is 

easier to imagine losing a heartbreaking game in the final seconds because a star player has 

fouled out than it is to imagine losing a game in which a star player’s absence in the second 

quarter led to an insurmountable deficit. Furthermore, organizational research shows that when 

making risky decisions, managers tend to overweight worst-case-scenarios (March & Shapira, 

1987). Regardless of the actual probability of a player fouling out, the possibility of losing a 

player for the rest of the game looms large and can have an undue influence on decisions.  

Psychological factors that prevent correction 

Basketball games, and sports more generally, are unique decision-making domains 

because nearly identical situations arise fairly often. Not only do coaches have the opportunity to 

learn from their own experiences, but the structured nature of the sport allows them to learn from 

the experiences of others as well. It is therefore particularly surprising that coaches appear to 

have difficulty learning from their mistakes, and the mistakes of their peers, in this domain.  

One factor that makes learning difficult in this context is the ambiguity of the feedback 

that coaches receive (Jennings, Amabile, & Ross, 1982). This one type of decision—whether or 

not to bench a player who is in foul trouble—is not made in isolation. Coaches make numerous 

other decisions over the course of a game, and the effect of each decision is further obscured by 

the noise in the environment. Benching a player in foul trouble does not guarantee a loss, and 

keeping him in the game does not guarantee a win. Without a structured statistical analysis, it 

would be virtually impossible to parse out the effects of any single decision. 
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A second reason that coaches might not correct this mistake is that they may rarely even 

entertain the possibility of keeping a foul-ridden player in the game. In order to learn that 

benching players in foul trouble is sub-optimal, a coach must first contemplate keeping that 

player in the game. Research shows that people typically do not consider a making a different 

decision unless the counterfactual is obvious, and that following conventional wisdom is unlikely 

to elicit counterfactual thinking (Kahneman & Miller, 1986). A coach who keeps a player in foul 

trouble in the game only to see him foul out minutes later is very likely to consider the 

counterfactual scenario in which he had benched that player. However, a coach who benches a 

player in foul trouble and has him available for the end of the game is much less likely to 

consider the alternative scenario. Relatedly, the anticipation of regret could play a powerful role 

here. Even if coaches think they might have a better chance of winning by keeping a player in 

the game, they might anticipate feeling especially regretful if they go against conventional 

wisdom and fail (Miller & Taylor, 1995). 

Of course, this logic extends to the perceptions of fans as well. An economist would 

likely point out that coaches are not merely incentivized to win. If a decision that bucks 

conventional wisdom fails, it is more likely to draw the ire of spectators, and a coach’s job 

security is certainly affected by public opinion. However, even if this were the sole cause of 

coaches’ poor decision making (which I contend it is not), this still begs the question of why the 

general populace holds these beliefs. Fans certainly have less information than do coaches, but 

research shows that lacking information does not necessarily account for their faulty beliefs 

(Walco & Risen, 2017). In one study, football fans were asked whether they thought a coach 

should go for it or punt in a particular fourth-and-short situation. Participants were provided with 

calculated win probabilities indicating that the objectively superior strategy was to go for the first 
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down. Nonetheless, a sizable proportion of people who identified going for it as the rational 

strategy still said they would punt. Given that the information gap cannot completely account for 

fans’ judgments, it seems reasonable to assume that the same psychological factors that I 

proposed affect coaches’ decisions—myopic loss aversion, tempting fate, the availability 

heuristic, ambiguous feedback, and a failure to consider counterfactuals—influence fans as well.  

Overview of analysis 

I am not the first person to suggest that NBA coaches take an irrational approach to foul 

trouble. Weinstein (2010a and 2010b) succinctly lays out a similar theoretical argument, as do 

Moskowitz and Wertheim (2011), who also provide some initial empirical evidence. The present 

thesis builds on these arguments, providing new approaches and a more thorough and 

comprehensive analysis. I use a multi-faceted strategy to address this problem. In Section 1, I 

provide descriptive statistics regarding the effects of foul trouble on playing time. Then in 

Section 2, I investigate the extent to which performance is affected by foul trouble, both on a 

team level and an individual level. And finally in Section 3, I analyze if and how the end of the 

game is different from the rest of the game. Ultimately, these various arms of my analysis all 

point to the same conclusion: coaches behave much too conservatively in the way they handle 

players in foul trouble.  

 

Description of Data 

 The raw data for this analysis comes almost entirely from bigdataball.com. The data set 

includes play-by-play information for every NBA game played by every team in the 2015-2016 
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regular season1. The following plays are included in the data set: shots, rebounds, fouls, free 

throws, turnovers, substitutions, timeouts, violations, jump balls, and starts and ends of periods. 

For any given play, the data includes the game in which the play occurred, the five players on the 

court for each team, the period of the game, the time left in the period, the score of the game, the 

player responsible for the play, and a verbal description of the event. For all turnovers, the data 

set indicates which player, if any, caused the turnover (e.g. a steal) and which player, if any, 

surrendered the turnover. For all shots, X and Y coordinates are given to indicate the precise 

location on the floor where the shot was taken. For made shots, there is information regarding 

who assisted the shot (or if there was no assist). And for missed shots, the data indicates whether 

the shot was blocked, and if so, by whom. With 30 teams playing an 82-game schedule, that 

yields 1,230 total games played by 476 unique players. I exclude all overtime minutes from the 

analysis, as those minutes are unique from the rest of the game and foul trouble is less 

meaningful in overtime. The resulting data set includes 233,958 possessions and 250,745 points 

scored. In each section, I will explain how I reshaped the play-by-play data in order to address 

each relevant question.  

 

Section 1: How does foul trouble affect playing time? 

The first set of relevant questions relate to the extent to which foul trouble affects playing 

time. This is equivalent to asking whether coaches really do bench players in foul trouble, a 

check of a key premise on which I base my argument that coaches bench players in foul trouble 

																																																								
1 Throughout the paper, I limit my analysis to a single season, because in parts of the analysis, I 
use end-of-season statistics for individual players (e.g. value over replacement player). I do not  
believe this season is unique, and would expect all results to generalize to other seasons. I will 
discuss this further in the general discussion. 
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more than they should. Some might contend that when coaches bench their players in foul 

trouble, they are merely shifting the minutes that the players play, and are not decreasing the 

players’ overall playing time. All players need some rest during a game, so perhaps coaches are 

giving the players their rest when they are in foul trouble, and compensating later in the game.  

Data 

For this section, the play-by-play data was reshaped such that it includes minute-by-

minute foul data for every starter in every NBA game in the 2015-2016 season2. For each player 

in each minute in each game, this data set indicates whether or not the player played for any part 

of that minute, and how many fouls the player committed (if any). In total, that yields 590,400 

observations, with each observation representing one minute in one game for one player (1,230 

games * 10 starters per game * 48 minutes per game). Using the number of fouls a player is 

awarded in each minute, I calculate his cumulative fouls for any given moment of a game. I also 

indicate whether or not a player is in foul trouble using the Q+1 rule of thumb that coaches 

typically use. Note that foul trouble is a binary distinction—a player is either in foul trouble or 

not in foul trouble. 

 When examining the precise effect of foul trouble on playing time, I use the raw play-by-

play data to calculate playing time and time in foul trouble for each starter in each game. I also 

include each player’s end-of-season value over replacement player (VORP), which is a metric 

designed to summarize overall player quality. VORP uses box score statistics to estimate the 

number of points a player is worth above or below a replacement level player per 100 

possessions for each team, and it is weighted by the number of minutes a player plays. In the 

present sample, players’ VORP has a mean of 0.63 and standard deviation of 1.35. The 

																																																								
2 This minute-by-minute data set was compiled by the Chicago Bulls.  
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distribution is heavily skewed, as only 13 players have a VORP over 4.0. Stephen Curry has the 

highest VORP of 9.8. 

Analysis 

First, for any given player-minute of a game, is a player less likely to be in the game if he 

is in foul trouble than if he is not? Figure 1 depicts the probability of a starter being on the court, 

separated by number of fouls, for each minute of the game.  

Figure 1: Probability of playing in each minute, by number of fouls 

	

The Q+1 rule is unmistakable. In the first quarter, starters with fewer than two fouls are treated 

identically, while starters with two or three fouls are much less likely to be in the game. For most 

of the second quarter, however, only starters with three or more fouls are treated differently. The 

minutes surrounding halftime present the starkest evidence of Q+1 behavior. In minute 24, the 

last minute of the first half, starters with three fouls are only in the game 8.56% of the time. Just 

one game-minute later, in the first minute of the second half, starters are in the game 98.72% of 

the time. The Q+1 rule is also apparent in the third and fourth quarters, until the final few 

minutes of the game when foul trouble is no longer relevant. At that point, it appears that players 
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with more fouls are actually more likely to be in the game. But does that make up for the time 

missed earlier in the game? 

 In order to address that question, we can examine whether the number of minutes a player 

is in foul trouble negatively predicts his total playing time for the game. I find that it does. For 

each additional minute a player is in foul trouble, he plays approximately 0.27 fewer minutes 

(~16 fewer seconds) in the game, b = -.272, t(11,925) = -21.515, p < .0013. One may wonder if 

this is driven by players who foul out of the game. That is, perhaps players in foul trouble who 

end up fouling out account for the observed difference in playing time. If we exclude from the 

analysis all players who fouled out of the game (n = 144), we find that the result holds with a 

similar effect size, b = -.282, t(11,781) = -21.321, p < .001.4 Furthermore, this is not just due to 

substitutions made in games that end up being blowout. Looking at only those games that end 

with a final score differential less than 6 points, if anything, the relationship between foul trouble 

minutes and minutes played is even stronger, b = -.303, t(3,341) = -12.711, p < .001. 

 I similarly investigate whether being in foul trouble at any point in a game negatively 

predicts playing time. Based on the analyses described above, one might accurately assume that 

the answer once again, is yes. A player in foul trouble at any point in a game is predicted to play 

1.54 fewer minutes in a given game, b = -1.538, t(11,925) = -11.773, p < .001. Again, limiting 

the analysis to players who did not foul out, I find the same result, b = -1.638, t(11,781) = -

12.219, p < .001. 

																																																								
3 With 10 starters per game and 1,230 total games, there are 12,300 observations. Degrees of 
freedom are reduced by including fixed effects for players.  
4	Of course, more players would foul out if they were not benched. I will address this in the 
General Discussion and in Appendix 6.	
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 Thus far, my analyses indicate that on the whole, foul trouble has a negative effect on 

playing time. But is this effect the same for all players? For instance, players who tend not to 

play as many minutes in any given game are much less likely to foul out. They simply have less 

time to accumulate additional fouls. Nonetheless, coaches still bench these players when they are 

in foul trouble (see Figure 2).  

Figure 2: Probability of playing in each minute, by number of fouls                                      
(fewer than 30 minutes per game)5 

 

If these substitutions are made with an eye towards saving players for the end of the game, this 

pattern is difficult to reconcile. To better illustrate this point, consider two players who each have 

three fouls in the first half. One of these players (Player A) averages 26 minutes per game, and is 

therefore expected to play approximately 13 minutes in the second half. The other (Player B) 

averages 34 minutes per game, and is therefore expected to play approximately 17 minutes in the 

second half. Assuming these players have the same average foul rate, the probability of Player A 

																																																								
5 The median minutes played per game for starters is approximately 30 minutes. Figure 2 
includes just those players whose average minutes per game is below 30 minutes.  
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fouling out is obviously considerably lower than the probability of Player B fouling out, simply 

because he will be on the court for less time.   

 I also investigate whether better players are benched more or less often when they are in 

foul trouble. I use end-of-season VORP as a proxy for player quality and regress minutes played 

in each game on the number of minutes a player is in foul trouble, his VORP, and the interaction 

between the two (Table 1).  

Table 1: Regression of minutes played on minutes in foul trouble and VORP 

Constant 28.162*** 
(0.087) 

Minutes in foul trouble -0.324*** 
(0.019) 

VORP 1.216*** 
(0.035) 

VORP * Minutes in foul trouble -0.017 
(0.010) 

R-squared 0.134 
No. observations 12,300 

Standard errors are reported in parentheses. *, **, *** indicates significance at the 90%, 95%, and 99% level, 
respectively. 
 

First, the results of this regression again show that the more minutes a player is in foul 

trouble, the fewer minutes he plays in the game. In addition, the positive coefficient for VORP 

indicates that better players tend to play more minutes. However, the interaction term is not 

statistically significant. That is, the effect of foul trouble on playing time does not seem to be 

affected by the quality of the player.  

While player quality overall does not significantly affect coaches’ decisions, it is possible 

that star players are treated differently from non-star players. I identify a star player as any player 

who was named an all-star in the current season, or any of the two previous seasons (see 

Appendix 1 for full list). I regress minutes played in each game on the number of minutes a 
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player is in foul trouble, the dummy variable for whether or not the player is a star, and the 

interaction between the two. I also include VORP, in order to detect whether the effect of being a 

star player exists above and beyond just being a good player (Table 2).  

Table 2: Regression of minutes played on minutes in foul trouble, star, and VORP 

Constant 28.184*** 
(0.085) 

Minutes in foul trouble -0.354*** 
(0.016) 

Star 0.829*** 
(0.182) 

Star * Minutes in foul trouble 0.091** 
(0.043) 

VORP 1.083 *** 
(0.040) 

R-squared 0.136 
No. observations 12,300 

Standard errors are reported in parentheses. *, **, *** indicates significance at the 90%, 95%, and 99% level, 
respectively. 
 

Indeed, there is a significant positive effect of being a star player, even controlling for players’ 

VORP. Furthermore, star players are treated differently when in foul trouble. The positive 

coefficient on the interaction term in the model indicates that the time a player is in foul trouble 

has a smaller negative effect on playing time for star players as compared to non-star players.  

 The interaction term for VORP and minutes in foul trouble (-0.017) is non-significant, 

but if anything, it appears to exacerbate the effect of foul trouble (Table 1). The interaction term 

for star and minutes in foul trouble (0.091) diminishes the effect of foul trouble (Table 2). Given 

this apparent contradiction, it seems that the effect of foul trouble must vary non-linearly based 

on player quality. In order to investigate this further, I regressed minutes played on minutes in 

foul trouble for players who fall into five different buckets of VORP (see Table 3). 



   

	 17 

Table 3: Regression of minutes played on minutes in foul trouble, bucked by VORP 

VORP 
Bucket 

No. Observations Coefficient 

-2 to -.49 882 -0.224 
-.5 to 0.99 4,082 -0.297 
1 to 2.49 5,068 -0.418 

2.5 to 3.99 1,250 -0.437 
4 to 10 1,018 -0.206 

 

 These bucketed regressions indicate that foul trouble does indeed have the smallest 

negative effect on playing time for the best players, as one might expect based on the regression 

in Table 2. Interestingly, it appears that foul trouble has the biggest effect on playing time for 

players in the next tier—those who are above average but not elite.   

One plausible reason coaches might bench their players who are in foul trouble is that 

they may believe those players are more likely to accumulate additional fouls. One can imagine 

why that might be the case. The fact that a player has already accumulated fouls might indicate 

that the way he is playing is making him more foul prone in that particular game. Or perhaps the 

offense might try to attack a player who is in foul trouble, making him more likely to get called 

for another foul. On the other hand, it seems equally likely that a player in foul trouble is less 

likely to be called for additional fouls. A player in foul trouble may intentionally play less 

aggressively. In addition, referees are less likely to call a foul on a player who is in foul trouble 

(Moskowitz & Wertheim, 2011). According to former referee Tim Donaghy6, this is not an 

accident: 

“If Kobe Bryant had two fouls in the first or second quarter and went to the bench, one referee 
would tell the other two, ‘Kobe's got two fouls. Let's make sure that if we call a foul on him, it's an 

																																																								
6 Tim Donaghy gained notoriety for betting on games that he officiated, and intentionally making 
calls to win those bets. Despite this obvious lack of integrity, there is no reason to think that his 
account of referees’ treatment of players in foul trouble is fabricated. 



   

	 18 

obvious foul, because otherwise he's gonna go back to the bench. If he is involved in a play where 
a foul is called, give the foul to another player’” (Donaghy, 2010). 
 
In order to address this question empirically, I first look at the foul rate for players who 

are not in foul trouble and the foul rate for players who are in foul trouble7. Overall, the average 

foul rate is 0.088 fouls per minute (4.23 fouls per 48 minutes). When not in foul trouble, players’ 

average foul rate is 0.089 fouls per minute (4.26 fouls per 48 minutes). This is very similar to the 

overall foul rate, because players are generally not in foul trouble. When players are in foul 

trouble, however, the average foul rate is 0.055 fouls per minute (2.65 fouls per 48 minutes). Of 

the 112 players who logged at least ten minutes in foul trouble, 83 (74.11%) had a lower foul rate 

when in foul trouble than when not in foul trouble, Χ2 (1, N=112) = 25.08, p < .001. 

Because coaches treat star players differently when they are in foul trouble, one might 

wonder whether this might be related to how star players are refereed when they are in foul 

trouble. After all, when Tim Donaghy provided an example of a foul-ridden player on whom he 

did not want to call additional fouls, he used megastar Kobe Bryant. Unsurprisingly, star players 

are called for fewer fouls per minute (Mstar foul rate = 0.074 fouls per minute) than are non-stars 

overall (Mnon-star foul rate = 0.091 fouls per minute), t(110) = 3.264, p = .001. However, the effect of 

foul trouble does not seem to be different for stars and non-stars, as 75.00% of star players have 

a lower foul rate when in foul trouble and 73.91% of non-stars have a lower foul rate when in 

foul trouble, Χ2 (1, N=112) = 0.010, p = .920. Taken together, this suggests that coaches are 

justified in allowing star players to play more often when in foul trouble, as they are generally 

less likely to be called for additional fouls. However, coaches would also benefit from 

																																																								
7	In this analysis, I only include the 112 players with more than 10 minutes played in foul 
trouble. The average foul rate is calculated as the average of players’ individual rates, not as the 
total fouls for all players divided by the total minutes for all players.	
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recognizing that all players, not just stars, are less likely to be called for additional fouls when in 

foul trouble.  

Discussion 

 Coaches consistently bench players who are in foul trouble, and appear to do so 

dogmatically using the Q+1 rule. These substitutions do not merely shift the minutes that players 

rest, but rather end up costing overall playing time. This seems to be true for all players, though 

to a lesser extent for star players. Furthermore, this behavior appears to be unnecessary, as 

players who are currently in foul trouble are significantly less likely to be called for additional 

fouls. In fact, in the 1,230 games played in the 2015-2016 regular season, only 144 starters 

fouled out (1.17%). Even if we look at just those players who were in foul trouble at any point in 

a game, just 6.13% of those players ended up fouling out.  

 

Section 2: Does foul trouble affect performance? 

 Section 1 established that coaches are in fact sacrificing overall playing time by 

following the Q+1 rule. This might be a sensible strategy if having a player in the game in foul 

trouble is detrimental to the team’s performance. In other words, it is possible that players in foul 

trouble do not play as well, and that this hurts the team. By benching the player when he is in 

foul trouble and bringing him back in the game later, a coach might be able to avoid this negative 

effect. Ultimately, the individual performance of the individual player in foul trouble is not 

necessarily what matters. I therefore begin by investigating this question on a team level, by 

examining how having a player on the court in foul trouble affects team performance. I then 

examine individual offensive and defensive performance for the players who are in foul trouble. 
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Data 

For the primary analysis in this section, I use the raw play-by-play data to create a new 

data set such that each observation represents a “stint” in a particular game, similar to the 

structure of an adjusted plus-minus analysis (Rosenbaum, 2004; Jacobs, 2017). In this context, I 

define a stint as a stretch of time within a specific quarter in a game in which the same ten 

players are on the court with the same fouls status (i.e. in foul trouble vs. not in foul trouble). A 

stint therefore ends when a period ends, when there is a substitution, or when a player enters foul 

trouble. The resulting data set has 37,007 stints, with an average of 30.09 stints per game8. For 

each stint, I calculate the point differential per 100 possessions for each team.9 This “margin” is 

an estimate of what the expected point differential would be for an entire game if the single stint 

were extrapolated. So, for example, if a stint has eight total possessions (four for each team), and 

the home team wins the stint 5-4, the margin would be (5/4 – 4/4)*100 = 25. In this data set, the 

average margin is comprised of 5.44 possessions. 

In each stint, I also include the total difference in VORP between the players on the home 

team and players on the away team. This difference is meant to be a proxy for the difference in 

quality of the players on the court for the two teams. Alternatively, I could have included the 

total VORP of each team as separate variables. However because the dependent variable is point 

differential per possession, the difference in VORP is a more sensible variable. In other words, 

																																																								
8 Again, overtime periods are removed from this analysis. 
9	The precise formula is (home points/home possessions – away points/away possessions)*100. 
In stints where one team does not have any possessions, I use its end-of-season adjusted 
offensive rating, which is defined as “an estimate of points scored per 100 possessions adjusted 
for strength of opponent defense” (www.basketball-reference.com). Also note that if a free throw 
occurs after a substitution, the points and possession are attributed to the stint in which the foul 
occurred. 	
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the VORP of one team is not particularly meaningful in isolation; it gains meaning only in its 

value relative to the other team’s VORP. 

Of course, the stints that are played with a player in foul trouble are not randomly 

assigned. Coaches presumably play their players in foul trouble when they believe it will be most 

efficacious. In what follows, I describe how the stints played with a player in foul trouble 

compare to the stints in which no foul-troubled players are in the game.  

First, Table 4 provides the number of stints in the data set for each segment of the game, 

separated by whether or not a player on either team was in the game while in foul trouble during 

those stints. I define game segments as halves of quarters. So, for example, “1.1” represents the 

first half of the first quarter, and “3.2” represents the second half of the third quarter.  

Table 4: Number of stints for each game segment, by foul trouble 

 1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 Total 
Home only 34 307 20 101 61 311 58 541 1,433 
Away only 28 365 25 155 69 425 72 733 1,872 

Both 4 17 0 3 5 25 3 103 160 
Neither 916 6,072 3,981 6,209 1,514 5,859 3,847 5,144 33,542 
Total 982 6,761 4,026 6,468 1,649 6,620 3,980 6,521 37,007 

 
There are two notable trends in this data. First, it is much more common for a player in foul 

trouble to be in the game in the latter half of each quarter. This is simply mechanical; the more 

time that has elapsed in a quarter, the more likely it is that a player will have been called for a 

threshold foul (i.e. a foul that moves a player who was not in foul trouble into foul trouble). 

Second, players are most likely to be in the game in foul trouble at the end of the fourth quarter. 

This is also predictable, as I suggest that coaches tend to bench players who are in foul trouble 

specifically so that they will be available for the final minutes of the game.  

 Next, I compare the distributions of score differentials (home score – away score) when 

players from each team are in the game in foul trouble versus not in foul trouble (Figure 3a-d).  
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Figure 3a-d: Distributions of score differential in each stint, by foul trouble 

  

  

First, Figures 3a and 3b show that the score differentials when players in foul trouble are in the 

game are distributed fairly normally. However, these distributions are shifted compared to 

Figures 3c and 3d, such that teams are more likely to have a player in the game in foul trouble 

when they are losing than when they are winning. The average score differential when the home 

team has a player in the game in foul trouble (M = -0.604, SD = 11.444) is significantly lower 

than the average score differential when the home team does not have a player in foul trouble in 

the game (M = 1.606, SD = 10.437), t(37,005) = 8.232, p < .001. Similarly, the average score 

differential when the away team has a player in the game in foul trouble (M = 4.101, SD = 

10.619) is significantly higher than the average score differential when the away team does not 
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have a player in foul trouble in the game (M = 1.361, SD = 10.465), t(37,005) = 11.466, p < 

.00110.   

 Finally, Figure 4 depicts the number of stints in the data set in which each NBA team had 

a player in the game in foul trouble.  

Figure 4: Stints with a player in foul trouble, by team 

 

There is considerable variation in how often each team’s coach allows players in foul trouble to 

play. Of course, there are innumerable explanations for these differences. For example, this 

pattern might be attributable to coaches’ philosophical differences. Or perhaps teams with fewer 

foul trouble stints tend to have better substitutes, allowing their coaches to feel more comfortable 

benching starters. It is also possible that this simply reflects the effects of score differential; 

perhaps some teams tend to be losing more often, and that is why they are more likely to play 

their players in foul trouble. In any case, this significant variation is notable.  

 There are presumably several other selection effects that I cannot account for in the 

present investigation. For instance, it is possible that some of these decisions are driven by 

specific player match-ups. As I detail below, in my analyses, I control for as many relevant 

																																																								
10 Score differential is calculated as home score – away score. Therefore, a higher point 
differential indicates that the away team is losing by more points. 	
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factors as possible. Nonetheless, I acknowledge the possibility that other uncontrolled factors 

could be playing a role. 

While I use the stint-by-stint data to evaluate the effect of foul trouble on team 

performance, I use players’ individual offensive and defensive ratings (Oliver, 2004) in order to 

investigate the effect of foul trouble on individual performance. Offensive (and defensive) 

ratings are designed to estimate the points a player contributes (allows) per possession that he is 

responsible for. One can think of the construction of these statistics as a kind of accounting 

exercise, where each team point and possession is distributed to the players who are responsible 

for them. For example, if a player commits a turnover, this would negatively affect his offensive 

rating, as he is fully responsible for that possession but did not contribute any points. Similarly, 

if a player gets a steal, this positively affects his defensive rating, as he is fully responsible for 

that possession and did not allow any points. Traditional offensive and defensive ratings are 

calculated using end-of-game box score statistics, and so they necessarily rely on several 

estimations. For example, when looking at an end-of-game box score, there is no way to identify 

which defensive players were on the court when specific baskets were scored. As a result, a 

traditional defensive rating calculation weights the team’s points allowed by the percent of time a 

given player was on the court.  

 In this analysis, however, I need to know precisely when specific possessions occur, in 

order to determine how players’ foul status affects their performance. I therefore created a 

version of individual offensive and defensive ratings using play-by-play data, rather than end-of-

game box scores (see Appendices 2 and 3 for further details). This technique also minimizes the 

need for estimators, and increases the accuracy of the ratings, particularly on offense (for details, 

see: Parker, 2009a and Parker 2009b). In order to compare these new ratings to their box-score 
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counterparts, I examined the correlations between each of these ratings and another commonly 

used metric – real plus-minus. Compared to the box-score offensive ratings, the new play-by-

play offensive ratings are more highly correlated with offensive real plus-minus (rnew off. rating = 

.652 vs. rbox off. rating = .555). Relatedly, compared to the box-score defensive ratings, the new 

defensive ratings are slightly more highly correlated with defensive real plus-minus (rnew def. rating 

= -.765 vs. rbox def. rating = -.761)11.  

Nonetheless, offensive and defensive ratings are not perfect statistics. For example, some 

contend that offensive ratings overweight offensive rebounds, or that defensive ratings are too 

reliant on the defensive ability of a player’s teammates (e.g. Johns, 2011; Larsen, 2013). In my 

analysis, though, I am comparing players’ ratings to themselves at different times (i.e. in foul 

trouble vs. not in foul trouble). This makes these concerns much less problematic. 

Analysis 

Effect of foul trouble on team performance 

 In order to determine whether a player’s foul trouble affects his team’s performance, I 

created a model using the stint-by-stint data set. The primary model is given by the equation12: 

𝑀𝑎𝑟𝑔𝑖𝑛 =  𝛼 +  𝛽!ℎ𝑜𝑚𝑒. 𝑓𝑡 + 𝛽!𝑎𝑤𝑎𝑦. 𝑓𝑡 + 𝛽!𝑉𝑂𝑅𝑃.𝑑𝑖𝑓 + 𝛽!𝑉𝑂𝑅𝑃.𝑑𝑖𝑓. 𝑓𝑡 + 𝛽!𝑠𝑐𝑜𝑟𝑒.𝑑𝑖𝑓

+  𝛽!𝑚𝑖𝑛. 𝑐𝑎𝑡1.2+  𝛽!𝑚𝑖𝑛. 𝑐𝑎𝑡2.1…𝛽!"𝑚𝑖𝑛. 𝑐𝑎𝑡4.2 

where: 

Ø Margin is calculated as (home points/home possessions – away points/away 

possession)*100, 

																																																								
11 These correlations are negative, because better defense is associated with a lower defensive 
rating, but a higher defensive real plus-minus.  
12 In all regressions using the stint-by-stint data, I cluster standard errors by game. 
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Ø home.ft is a dummy variable indicating whether the home team has at least one player on 

the court in foul trouble,  

Ø away.ft is a dummy variable indicating whether the away team has at least one player on 

the court in foul trouble, 

Ø VORP.dif is the difference in VORP between the players on the home team and the 

players on the away team,  

Ø VORP.dif.ft is the difference in VORP between the players in foul trouble in the game 

for the home team and the players in foul trouble in the game for the away team, 

Ø score.dif is the current score differential in the game at the end of the stint, 

Ø and min.cat1.2, min.cat2.1…min.cat4.2 are fixed effects for the segment of the game in 

which the stint ended (e.g. min.cat1.2 is the second half of the first quarter and min.cat3.1 

is the first half of the third quarter).  

Remember that an increase in the margin indicates that the home team is playing better 

relative to the away team. Similarly, a decrease in the margin indicates that the away team is 

playing better relative to the home team. In order to further elucidate the structure of the model, I 

will walk through the logic of the coefficient for VORP.dif. One should anticipate that the 

coefficient for VORP.dif is positive. If the home team has better players on the court than the 

away team, VORP.dif will be positive, and on average, the margin should also be positive. 

Conversely, if the away team has better players on the court than the home team, VORP.dif will 

be negative, and on average, the margin should also be negative. 

Therefore, if foul trouble hinders a team’s performance, the coefficient on home.ft should 

be negative, while the coefficient on away.ft should be positive. That is, having a player on the 

court in foul trouble for the home team should decrease the margin, while having a player on the 
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court in foul trouble for the away team should increase the margin. In reality, I find the opposite 

result. It appears that having a player in the game in foul trouble is associated with an 

improvement in team performance (Table 5).  

Table 5: Regression of scoring margin on each team's foul trouble, with controls 

Constant 3.659 
(2.039) 

home.ft 6.194* 
(3.677) 

away.ft -8.257*** 
(3.307) 

VORP.dif 0.681*** 
 (0.088) 

VORP.dif.ft -1.382 
(1.660) 

score.dif 2.064*** 
(.053) 

minute category (1.1 - 4.2)  

R-squared 0.068 
No. observations 23,699 

Standard errors are reported in parentheses. *, **, *** indicates significance at the 90%, 95%, and 99% level, 
respectively. Note: this model excludes any stint with fewer than four possessions (i.e. two possessions per team) 
 

Robustness Checks 

 Of course, when building the primary model above, I made several decisions regarding 

which variables and observations to include or exclude. I therefore conducted a series of 

robustness checks. Below, I describe the various factors that I tested in these robustness checks, 

and the conclusions that I draw from them. The detailed results of each model are presented in 

Tables 10 and 11 in Appendix 4.   

One relevant decision was whether or not to include control variables. Because my goal 

was to try to isolate the effect of foul trouble as much as possible, and thereby minimize possible 
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selection effects, I decided to include the control variables described above. I included VORP.dif 

to account for the possibility that the effect of foul trouble might be related to the quality of 

players on the court for each team. This also indirectly addresses potential team differences, 

though I include team fixed effects as a robustness check (Appendix 4, Table 10, Column 10). I 

included VORP.dif.ft because I wanted to understand the effect of any player being in foul 

trouble, independent from the quality of that player. Score.dif was included in the model because 

as I described previously, coaches are more likely to allow foul-troubled players to play when the 

team is losing. Similarly, I included the minute category to address the fact that players are more 

likely to be in the game in foul trouble in some game segments than in others. Indeed, when I run 

the model without these control variables, the effect of foul trouble does not emerge (Appendix 

4, Table 10, Column 1).  

Next, I decided to include only those stints with at least four possessions. The more 

possessions there are in a stint, the less noise there is in that stint’s data. In particular, stints in 

which one team does not have any possessions are especially noisy, because that team’s points-

per-possession is estimated based on its end-of-season adjusted offensive rating. Nonetheless, it 

is possible that this restriction might have had unintended effects. I therefore tested various 

models with and without this restriction. Overall, including all observations slightly reduces the 

observed effects of foul trouble, but does not change the pattern of results nor the ultimate 

conclusion that foul trouble is associated with better team performance (Appendix 4, Table 10, 

Columns 2, 4, and 6).  

There were several different ways in which I could have operationalized foul trouble. I 

ultimately decided to include a single dummy variable for each team indicating whether or not at 

least one player on that team was in the game in foul trouble. However, in my robustness checks, 
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I include two other operationalizations. First, I include a dummy variable for each team 

indicating whether one and only one player on that team is in the game in foul trouble. In this 

version, I exclude from the analysis any stint in which more than one player on a team is in the 

game in foul trouble (Appendix 4, Table 10, Columns 4 and 5). Second, I include two dummy 

variables for each team indicating (1) whether one and only one player is in the game in foul 

trouble, and (2) whether two or more players are in the game in foul trouble (Appendix 4, Table 

10, Columns 6 and 7). Regardless of how I classify foul trouble, the pattern of results 

consistently indicate that, if anything, foul trouble is associated with better team performance. 

Next, some stints obviously have an odd number of total possessions, which means that 

one team has more possessions in that stint than does the other team. I attempt to address this 

with my dependent variable, by calculating the margin as the difference in home team points per 

home team possession and away team points per away team possession. Nonetheless, it is 

possible that stints with an odd number of possessions might affect the model’s results. For 

instance, it is possible that in stints in which a player is in the game in foul trouble, that player’s 

team is more likely to start on offense, and so that team might be more likely to have an 

additional possession. While I believe the structure of the dependent variable minimizes this 

concern, I ran a robustness check that includes just those stints with an even number of 

possessions. The data is noisier due to the reduced sample size, but the pattern of results is the 

same (Appendix 4, Table 10, Column 8). 

In Section 1, I found that coaches treat star players differently from non-star players 

when they are in foul trouble, as their overall playing time is less affected by the time they are in 

foul trouble. I therefore ran a model that includes dummy variables indicating whether a star 

player was in the game while in foul trouble for each team. While the coefficients are not 
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significant predictors of the scoring margin, directionally, they indicate that stars in foul trouble 

might improve team performance even more than non-stars (Appendix 4, Table 10, Column 9).  

Next, as previously mentioned, coaches are most likely to play their players in foul 

trouble at the end of the game. While I control for game segment in my primary model, I also ran 

the model independently on different segments of the game (i.e. first three quarters only versus 

fourth quarter only). The precise coefficient estimates vary, and interestingly, the away team’s 

foul trouble seems to have a larger effect earlier in the game, while the home team’s foul trouble 

seems to have a larger effect later in the game. Nonetheless, the pattern of results consistently 

indicates that if anything, foul trouble is associated with improved performance (Appendix 4, 

Table 11).  

And finally, the distribution of the margin is non-normal, and includes several outliers. In 

order to address this concern, I ran a quantile regression using median values. Again, the pattern 

of results is unchanged (Appendix 4, Table 10, Column 11). 

What contributes to the improvement? 

 The positive effect of foul trouble on performance is somewhat counterintuitive, and 

therefore necessitates further investigation. It appears that there are two primary factors 

contributing to this difference, namely the rate at which teams are called for additional fouls and 

teams’ field goal percentages13. First, using the same model structure as my primary model 

above, I replace the scoring margin with the away team’s foul rate (i.e. fouls per possession), in 

order to evaluate the association between each team’s foul trouble and the rate at which the away 

team is called for additional fouls. I run similar models on the home team’s foul rate, the away 

																																																								
13 Field goal percentage is calculated as (two-point shots made + three-point shots made)/(two-
point shots attempted + three-point shots attempted). 
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team’s field goal percentage, and the home team’s field goal percentage. The results of these four 

models are presented in Table 6. 

Table 6: Regressions of team foul rates and team field goal percentages 

 Home foul 
rate 

Away foul 
rate 

Home field 
goal % 

Away field 
goal % 

Constant 0.173*** 0.199*** 0.527*** 0.529*** 
(0.006) (0.007) (0.008) (0.008) 

home.ft -0.004 0.047*** -0.003 -0.027** 
(0.010) (0.011) (0.013) (0.014) 

away.ft 0.031*** -0.032*** -0.016 0.017 
(0.008) (0.008) (0.012) (0.012) 

VORP.dif -0.002*** 0.016*** 0.001*** -0.001*** 
 (0.000) (0.000) (0.000) (0.000) 

VORP.dif.ft 0.003 
(0.004) 

-0.007 
(0.005) 

-0.005 
(0.006) 

0.007 
(0.006) 

score.dif 0.000 
(.000) 

0.000 
(.000) 

0.005*** 
(0.000) 

-0.005*** 
(0.000) 

minute category     

No. observations 23,699 23,699 23,191a 23,167b 
Standard errors are reported in parentheses. *, **, *** indicates significance at the 90%, 95%, and 99% level, 
respectively. Note: these models exclude any stint with fewer than four possessions (i.e. two possessions per team) 
a: This only includes stints in which the home team attempted at least one field goal. 
b: This only includes stints in which the away team attempted at least one field goal.  
 

Table 6 indicates that when the home team has a player in the game in foul trouble, the away 

team is significantly more likely to be called for additional fouls, and the away team’s field goal 

percentage is significantly worse. When the away team has a player in the game in foul trouble, 

the away team is significantly less likely to be called for additional fouls, and the home team is 

significantly more likely to be called for additional fouls.  

 Next, I include these four variables (home team foul rate, away team foul rate, home team 

field goal percentage, and away team field goal percentage) as covariates in the model predicting 

scoring margin. If the positive association between foul trouble and team performance is driven 
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by changes in foul rates and field goal percentages, then including these variables in the model 

should eliminate the observed effects of foul trouble. The results of Table 7 demonstrate that this 

is precisely the case. 

Table 7: Regression of scoring margin controlling for foul rates and field goal percentages 

Constant 4.530*** 
(1.498) 

home.ft 0.682 
(2.076) 

away.ft 1.500 
(1.921) 

VORP.dif 0.149*** 
 (0.057) 

VORP.dif.ft 0.647 
(0.841) 

score.dif 0.542*** 
(.033) 

h.foul.rate -45.645*** 
(1.791) 

a.foul.rate 40.336*** 
(1.737) 

h.fgp 154.969*** 
(1.151) 

a.fgp -156.293*** 
(1.194) 

minute category (1.1 - 4.2)  

R-squared 0.727 
No. observations 22,688a 

Standard errors are reported in parentheses. *, **, *** indicates significance at the 90%, 95%, and 99% level, 
respectively. Note: this model excludes any stint with fewer than four possessions (i.e. two possessions per team) 
a: This only includes stints in which both the home team and away team attempted at least one field goal. 
 
 There is a somewhat intuitive explanation for the observed relationship between foul 

trouble and foul rates. Referees are less likely to call fouls on teams with foul-troubled players in 

the game. And on plays when there is noticeable contact between two players and a foul needs to 
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be called on someone, it makes sense that the opposing team is more likely to be called for those 

fouls. One might wonder, though, whether this is really a result of foul trouble, or if instead, 

referees are merely trying to be as balanced as possible and teams with a player in foul trouble 

are more likely to have been called for more fouls overall. It turns out that the total number of 

fouls on each team does predict each team’s foul rate, just as foul trouble does (Home foul rate: 

bhome total fouls = -0.001, t(23,686) = -1.208, p = .227; baway total fouls = 0.004, t(23,686) = 6.901, p < 

.001. Away foul rate: bhome total fouls = 0.004, t(23,686) = 6.939, p < .001; baway total fouls = -0.002, 

t(23,686) = -2.490, p = .013). However, even controlling for total fouls on each team, having a 

player in the game in foul trouble still significantly predicts foul rates (see Table 8). 

Table 8: Regressions of foul rates, controlling for total fouls 

 Home foul rate Away foul rate 

Constant 0.173*** 0.199*** 
(0.006) (0.007) 

home.ft -0.005 0.035*** 
(0.010) (0.011) 

away.ft 0.020** -0.033*** 
(0.009) (0.008) 

home.total.fouls -0.001 
(0.001) 

0.004*** 
(0.001) 

away.total.fouls 0.004*** 
(0.001) 

0.001* 
(0.001) 

VORP.dif -0.002*** 
(0.000) 

0.002*** 
(0.000) 

VORP.dif.ft 0.003 
(0.004) 

-0.007 
(0.005) 

score.dif -0.000 
(0.000) 

0.000 
(.0000) 

minute category (1.1 - 4.2)   

R-squared  0.233 
No. observations  23,699 
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Standard errors are reported in parentheses. *, **, *** indicates significance at the 90%, 95%, and 99% level, 
respectively. Note: this model excludes any stint with fewer than four possessions (i.e. two possessions per team) 

 

Based on these analyses, it appears that referees may be sensitive to multiple signals in 

their efforts to maintain balance in their foul calls. One of these signals seems to be whether a 

player on the floor is in foul trouble. In addition to the way referees are calling fouls, players in 

foul trouble also may be playing more tentatively. The relationship between foul trouble and 

field goal percentage, though, is more difficult to explain. Perhaps future research might help 

shed light on this counter-intuitive result.  

Effect of foul trouble on individual performance 

The primary model (see Table 5) indicates that teams tend to play better when they have 

a player on the court in foul trouble. But how does foul trouble affect the player’s individual 

performance? To address this question, I first compare players’ offensive ratings when they are 

not in foul trouble to their offensive ratings when they are in foul trouble. Because many players 

do not have extensive minutes played in foul trouble, their offensive ratings are fairly noisy. I 

will therefore analyze the proportion of players whose ratings improve vs. worsen when in foul 

trouble. I find that out of 358 players who logged at least one offensive possession while in foul 

trouble, 231 (64.53%) have a lower offensive rating when they are in foul trouble than when they 

are not, Χ2 (1, N = 358) = 29.634, p < .001.  

Players’ defensive ratings do not seem to be affected by foul trouble. Of the 375 players 

who log at least one defensive possession in foul trouble, 194 (51.73%) have a lower defensive 

rating when in foul trouble, Χ2(1, N = 375) = 0.384, p = .536. It is important to note, however, 

that individual defensive ratings, even when calculated using play-by-play data, are quite noisy. 

For instance, the raw data does not provide information regarding which player was guarding the 
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shooter on any given shot, and so much of a player’s individual defensive rating depends on his 

team’s performance.  

Discussion 

 The starting premise of this part of the analysis was that if a team does not play 

significantly worse when a player with foul trouble remains in the game, then that player should 

probably not be benched. Based on these findings, it appears that players in foul trouble do not 

play as well individually, but their presence on the court significantly improves their team’s 

performance. Given that the differences in team performance seem to be driven by foul rates, it is 

perhaps easier to reconcile this apparent contradiction. While it is certainly counter-intuitive that 

having a foul-troubled player in the game improves team performance, Moskowitz and 

Wertheim (2011) and Maymin, Maymin, and Shen (2012) allude to similar findings. To be clear, 

I am certainly not suggesting that players should intentionally get themselves into foul trouble. 

Nonetheless, these findings demonstrate that it is quite costly for coaches not to play players who 

are in foul trouble. In so doing, a coach is not only substituting the value of a lesser player for the 

value of a better player, but he is also missing out on the additional boost that a team seems to 

get by having a player in foul trouble in the game. 

 

Section 3: Is the end of the game meaningfully different from the rest of the game? 

 Thus far, I have established that coaches sacrifice overall playing time by benching 

players who are in foul trouble, and that team performance is actually improved by having a 

player in foul trouble in the game. The only way this strategy might be optimal, then, is if the end 

of the game is somehow different from the rest of the game. I will address three potential ways in 

which the end of the game might be unique. First, it is possible that the pace accelerates towards 
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the end of the game, such that there are more possessions per minute at the end of a game than 

there are earlier in the game. If this were true, coaches might be justified in saving their best 

players for late in the game, as having them in the game for more possessions is probably more 

meaningful than having them in the game for more minutes.  

 Second, some might contend that players try harder at the end of the game, so having the 

team’s best players available then is most important. This implies that there should be a stronger 

relationship between skill level and outcome at the end of the game. In other words, point 

differential should be more strongly predicted by the difference in skill between the players on 

the court for each team at the end of the game than at any other time. 

 And finally, it is possible that some kinds of players are more valuable at the end of the 

game than they are the rest of the game. For example, qualitatively, it seems that there is more 

one-on-one play and more free throws at the ends of close games. Maybe that makes certain 

kinds of players more or less valuable. As a proxy, I address this question by comparing the 

difference in star players’ performance from the beginning of the game to the end of the game, to 

the difference in non-star players’ performance from the beginning of the game to the end of the 

game. 

Data 

 First, in order to determine the pace for different segments of the game, I used the raw 

play-by-play data to calculate the number of possessions per 48 minutes for the segment of 

interest. The rest of the data sets used in this section are very similar to those used in Section 2. I 

use a similar stint-by-stint dataset, except that for this analysis, a new stint does not begin when a 

player enters foul trouble. This section also uses offensive and defensive ratings, which were 

described in Section 2.  
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Analysis 

Pace is typically measured as possessions per team per 48 minutes. A paired t-test reveals 

that the pace in the first three quarters of games (M = 95.57, SD = 5.26) is faster than in the 

fourth quarter of games (M = 93.71, SD = 8.04), t(1229) = 7.924, p < .001. However, perhaps 

close games are different. Is the pace faster in the fourth quarter than in the first three quarters if 

we look only at games that are close to start the fourth quarter? I first look at games in which the 

score differential is in single digits (i.e. less than a 10-point difference). Again, a paired t-test 

reveals that the pace is slower in the fourth quarter of these games (M = 93.40, SD = 8.24) than 

in the first three quarters (M = 95.13, SD = 5.18), t(674) = 5.186, p < .001.  Looking at even 

closer games (games within five points going into the fourth quarter), a paired t-test reveals that 

the pace is still slower in the fourth quarter (M = 93.40, SD = 8.24) than in the first three quarters 

(M = 94.91, SD = 4.87), t(406) = 4.439, p < .001. 

Next I examine whether the skill level of the players on the court for each team is more 

predictive of outcomes towards the end of the game. Each point in Figure 5 represents a 

regression of scoring margin on the difference in VORP for a unique segment of the game (full 

regression output available in Appendix 5). Looking at the regressions separated by segment, it 

appears that skill difference is no more predictive at the end of the fourth quarter than at other 

times in the game. And in fact, difference in VORP is considerably less predictive of outcomes 

in the final minutes of close games (defined as a score differential within five points). I find a 

similar of results using other individual player metrics (see Appendix 5).  
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Figure 5: Coefficient for VORP.dif on scoring margin, by game segment 

 

 Nonetheless, it is possible that certain kinds of players are more valuable at the ends of 

games. In this analysis, I examine how star players’ and non-star players’ offensive and 

defensive ratings change over the course of the game. Star players are significantly more likely 

to have a higher offensive rating in the fourth quarter than the first three quarters (74.36%) than 

are non-star players (55.63%), Χ2 (1, N = 465) = 5.117, p = .024. Star players are also 

significantly more likely to have a better defensive rating in the fourth quarter than in the first 

three quarters (64.10%) than are non-star players (47.58%), Χ2 (1, N = 472) = 3.911, p = .048. 

This indicates that stars indeed appear to be more valuable at the ends of games.  

Discussion 

 Overall, the difference in skill level of a team’s players is less predictive of outcomes at 

the ends of close games as compared to the rest of the game. However, star players seem to be 

more effective at the ends of games, as compared to non-star players. This latter point might 

make it seem sensible to bench star players when in foul trouble in order to ensure that they are 
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available for the end of the game, which based on my analysis in Section 1, coaches indeed do. 

However, first, the drop-off in performance between a star player and his substitute tends to be 

fairly large. If that difference is bigger than the difference between a star player early in the game 

and a star player later in the game, then a coach should never sacrifice playing time to ensure a 

star’s availability in the fourth quarter. Second, part of a star player’s improved performance in 

the fourth quarter is likely due to opportunity. For example, stars may be more likely to take 

additional free throws towards the end of the game. If a star has fouled out and is no longer 

available, those opportunities do not disappear, but rather are distributed to the other players on 

the court. 

  

General Discussion 

 At a baseline level, a coach gives his team the best chance of winning by playing his best 

players as many minutes as possible (while obviously giving them adequate time to rest). My 

analysis shows that players who are in foul trouble end up playing significantly fewer minutes, 

despite the fact that players in foul trouble are even less likely to be called for additional fouls. 

This strategy might make sense if the team’s performance were hindered by a player’s foul 

trouble. But in fact, teams perform even better when a player who is in foul trouble is in the 

game. And finally, a coach’s decision to save a player in foul trouble for the end of the game 

might be justifiable if the end of the game were substantively different from the rest of the game. 

Not only is skill level not more predictive of outcomes at the ends of close games, but it is 

actually less predictive. Taken together, this analysis demonstrates that in general, coaches 

should not bench their players because of foul trouble. 
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Theoretical implications 

As previously mentioned, this adds to a growing list of sports situations in which both 

coaches and fans make a systematic error in judgment. In order to better understand if and why 

people believe that players in foul trouble should be benched, I conducted a study with 400 NBA 

fans using Amazon Mechanical Turk. All participants read the following scenario: 

Two teams, Team A and Team B, are locked in an evenly matched game. There are now 5 minutes 
left in the first half. One of Team A's best players, Bill Johnson, is called for his 3rd foul. The 
coach of Team A, recognizing that Johnson is in foul trouble, is deciding whether or not to take 
Johnson out of the game. 
 
Approximately half of the participants were then told that the coach’s only goal was to 

win the game, were required to confirm that they understood the coach’s only goal was to win 

the game, and were then asked whether they thought the coach should bench Johnson or keep 

him in the game. Those who said that he should be benched were then asked why they held that 

belief. Specifically, they were asked to choose between the following options:  

- The coach should save Johnson for later in the game 
- Johnson will not play as well when he is in foul trouble 
- If Johnson were to foul out, that would be bad for team morale 
- Other 

 
Of the 102 fans who said Johnson should be benched, 78 (76.47%) selected “the coach should 

save Johnson for later in the game” as their explanation.  

 The other half of participants, rather than being told that the coach’s only goal was to win 

the game, were told that the coach’s only goal was to maximize Johnson’s playing time. They, 

too, were required to confirm that they understood that that was the coach’s only goal and were 

then asked whether the coach should bench Johnson or keep him in the game. Of course, in 

reality the logically correct answer is that the coach should keep Johnson in the game. 

Nonetheless, 92 out of 202 people (45.54%) said that the coach should bench the player.  
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These results not only suggest a critical misunderstanding, but also underscore the 

overwhelming intuition that a player who is in foul trouble will end up fouling out. Fans who say 

that the coach should bench Johnson to save him for later in the game, and fans who believe that 

if Johnson stays in the game in foul trouble he will end up playing fewer minutes than if he is 

benched, presumably hold those beliefs because they are assuming that Johnson will foul out if 

he continues playing. Based on my analyses of average foul rates, the decreased foul rates of 

players who are in foul trouble, and the very low rate of foul-outs in the NBA, this intuitive 

belief is clearly unfounded.  

This work also challenges the efficacy of using models of win probability for certain 

kinds of decisions. Win probability is a great tool for decisions that involve a single point in 

time. For example, consider a baseball game in which the game is tied in the bottom of the ninth 

inning, and the batting team has a runner on first base with no outs. A savvy manager might be 

interested in knowing the probability of winning the game with a runner on first base and zero 

outs (the current situation) versus the probability of winning the game with a runner on second 

base and one out (the likely resulting situation if he chooses to sacrifice bunt). However, win 

probability becomes problematic when they are used to make decisions over time. Win 

probabilities are more volatile towards the ends of games, as a single possession in the closing 

seconds can shift a team’s chances of winning from a coin flip to a nearly certain victory. For 

this reason, models of win probability tend to underweight early events that end up being critical.  

The same reasons that make a win probability model problematic for decisions over time 

can also help shed light on people’s intuition that the end of the game is more important than the 

rest of the game. Win probabilities can shift more at the ends of close games, and simultaneously 

feel more important, because in the closing minutes of close games, it is known that every point 
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is critical. Conversely, the impact of points scored at the beginning of the game are unknowable 

at the time they are scored, and their impact is only appreciable in retrospect. However, when 

making a decision at the beginning of the game that will affect the end of the game (i.e. benching 

a player now to save him for later), the importance of future points are just as uncertain as the 

importance of early points. That is, if the game ends up being a blowout, then the end of the 

game will not matter at all, while if it ends up being close, the end of the game will obviously be 

very important. Ultimately, the scoreboard is indifferent to the timing of made baskets.  

The cost of following the Q+1 strategy 

 In this section, I provide an estimated cost, both in terms of points and wins, that each 

team incurred by benching players who were in foul trouble. The estimates of each step of the 

process described below can be found in Table 9. First, for each team, I estimated the expected 

decrease in playing time associated with every minute a player is in foul trouble. Using player-

games as observations (82 games * 5 starters per game = 410 observations per team), I regressed 

minutes played on total minutes in foul trouble, with fixed effects for players. This is similar to 

the regression model used in Section 1. For the Washington Wizards, for example, every minute 

a player was in foul trouble was associated with 0.478 fewer minutes played in the game (Table 

9, “Coef. on ft. min.”). I then estimated the total time missed by starters due to foul trouble by 

multiplying that coefficient by the total number of minutes each team’s starters were in foul 

trouble over the course of the season. The Wizards’ starters were in foul trouble for a total of 

564.950 minutes, and so I estimate that their starters missed a total of 270.083 minutes due to 

foul trouble (0.478*564.950) (Table 9, “Est. min. missed”). 

That, however, does not account for foul outs. I therefore simulated what would happen if 

coaches left players in the game when they were in foul trouble, using the average foul rates for 
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players not in foul trouble and the average foul rates for players who are in foul trouble. The full 

details of this simulation can be found in Appendix 6. This simulation allowed me to calculate 

the expected minutes missed due to foul outs for every minute players are in foul trouble. On 

average, players would miss 0.085 minutes for every minute they were in foul trouble. I 

estimated the total time over the course of the season that players would have missed due to foul 

outs by multiplying 0.085 by the total number of minutes players were in foul trouble over the 

course of the season. Note that this assumes the same average foul rates apply to all players and 

all teams. So, for the Wizards, their starters would have missed approximately 47.809 minutes 

(0.085*564.950) if they were never benched because of foul trouble (Table 9, “Sim. min. 

missed”). 

 The cost of coaches’ actual substitution patterns then, in terms of minutes, can be 

calculated by subtracting the simulated time players would have missed due to foul outs from the 

actual time players missed due to foul trouble. The Wizards actually missed an estimated 

270.083 minutes due to foul trouble. They would have missed an estimated 47.809 minutes due 

to foul outs if they were not benched when in foul trouble. Therefore, the cost of benching for the 

Wizards, in terms of minutes, is 270.083 – 47.809 = 222.274 minutes (Table 9, “Min. missed 

Q+1”). In order to translate minutes into possessions, I simply multiplied the number of minutes 

missed for each team by that team’s average pace divided by 48 (pace is defined as possessions 

per team per 48 minutes). The Wizards’ average pace was 100.63, so their starters missed an 

estimated 465.988 possessions (222.274*100.63 /48) (Table 9, “Pos. missed Q+1”). 

The next step was to estimate the number of points each team cost themselves by 

benching their starters. I calculated the average VORP of each team’s five most common starters, 

weighted by their average number of minutes played per game (Table 9, “Start. VORP”). I 
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similarly calculated the average VORP of each team’s backups (any player who is not one of the 

five most common starters) weighted by their average number of minutes played per game 

(Table 9, “Back. VORP”). The difference between these two values estimates the average cost, 

per 100 possessions per team, of having a backup in the game instead of a starter. The weighted 

averages of the Wizards’ starters’ VORP and backups’ VORP were 2.085 and 0.355, 

respectively (difference of 1.730) (Table 9, “VORP dif.”). In addition, in Section 2 I 

demonstrated that teams tend to play even better with a foul-troubled player in the game. I 

therefore added 7.226 points per 100 possessions (the average of the effect for home team and 

away team) to the difference between starters and backups. By multiplying that value by the 

number of possessions that starters missed due to foul trouble substitutions for each team (and 

dividing by 100), I calculated an estimate of the points each team lost by benching players in foul 

trouble. For every 100 possessions that the Wizards’ starters missed due to foul trouble, they cost 

themselves approximately 8.956 points (1.730 + 7.226). Their starters missed an estimated total 

of 465.988 possessions due to the use of the Q+1 strategy. Therefore, as a team, they missed out 

on a possible 41.736 points (8.956 * 465.988/100) (Table 9, “Est. points missed”). 

Finally, I estimated the number of wins those lost points might be worth, using the 

“Modified Pythagorean Theorem” (Morey, 1993). Originally developed by Bill James for use in 

baseball (James, 1983), the Pythagorean formula estimates the number of games a team “should” 

have won based on the points that team scored and the points they allowed over the course of a 

season. In basketball, the formula is: 

𝑊𝑖𝑛𝑠 =  
𝑝𝑜𝑖𝑛𝑡𝑠!".!"

𝑝𝑜𝑖𝑛𝑡𝑠!".!" + 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡 𝑝𝑜𝑖𝑛𝑡𝑠!".!" 
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I assume that the points a team missed out on by following the Q+1 strategy would be evenly 

distributed between points scored and points allowed. The Wizards actually scored 8,534 points 

over the course of the season (Table 9, “Team pts.”). I estimate that if they did not bench players 

in foul trouble, they would have scored 8,554.868 points (8,534 + 41.736/2) (Table 9, “Adj. team 

pts.”). Based on these estimates, the Washington Wizards incurred the largest cost by benching 

players in foul trouble. Based on their actual points scored and points allowed, they were 

expected to win 39.634 games ( !,!"!!".!"

!,!"#!".!"!!,!"!!".!"
= 39.634) (Table 9, “Exp. wins”). Based on 

their adjusted points scored and points allowed, they could have won 41.025 games 

( !,!!".!"!!".!"

!,!!".!"!!".!"!!,!!".!"#!".!"
= 41.025) (Table 9, “Adj. exp. wins”). Therefore, they could have 

won an estimated additional 1.359 games by not benching their players in foul trouble (41.025 – 

39.634 = 1.359) (Table 9, “Wins missed”). On average, teams could have won an additional 

0.634 games.  
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Practical implications 

While I hope that this investigation will help improve coaches’ substitution decisions, I 

am keenly aware of the typical delay between these kinds of analyses and their eventual adoption 

in professional sports. For example, in 2006, David Romer provided strong evidence that NFL 

coaches, when faced with a short fourth down, should go for it (i.e. not punt) almost every time 

(Romer, 2006). A decade later in the 2015-2016 seasons, in situations in which punting is most 

costly14, coaches still opted to punt almost 60% of the time. Nonetheless, that number has 

steadily decreased since the publication of Romer’s analysis (Stuart, 2017).  

That said, if the NBA as a whole is slow to adopt this strategic adjustment, the door is 

open for one or two teams to gain a considerable competitive advantage. In the NFL, the 2017 

Philadelphia Eagles analogously used fourth down attempts to gain an edge, and ultimately won 

the Super Bowl. They attempted 26 fourth down conversions, which ranked second in the league, 

and converted two very memorable fourth down attempts in the Super Bowl en route to defeating 

the heavily favored New England Patriots (Shpigel, 2018; Bonesteel, 2018). Challenging the 

status quo may be jarring, but the first mover has the most to gain. 

Limitations and future directions 

One aspect that my analysis does not address is the emotional impact of a player’s 

disqualification. It is possible that if a player, particularly a star player, fouls out of a game, it 

might be deflating for the rest of the team. Answering this kind of question is always difficult, 

but it is especially tricky in the present investigation. The only way to measure the emotional 

impact of a player fouling out would be to compare to similar situations in which that player did 

																																																								
14 These are plays that occur in the first three quarters, between the opponent’s and one’s own 
40-yard line, and when the score is within 10 points. 
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not foul out—that is, minutes at the end of a game when a star player is not in the game, but has 

not fouled out. This situation does not happen frequently enough to provide sufficient data. 

Furthermore, a positive emotional bump from a star player’s disqualification seems just as 

plausible. Anecdotally, teams often rally around each other when they are missing a star player. 

It is therefore unclear what effect, if any, the inclusion of the emotional effect of a foul-out might 

have on the analysis. 

Another potential limitation is that these analyses use data from just the 2015-2016 

season. This is primarily because several of the analyses rely on end-of-season statistics. For 

example, in both Section 2 and Section 3, I use players’ end-of-season VORP in parts of the 

analyses. That said, a single season provides ample data for my investigation, and there is no 

reason to think that that particular season is unique.  

And finally, my analysis is primarily focused on aggregate effects, and so there is 

certainly room for individual differences. I cannot point to any single decision and determine 

whether or not it is the right one. It is possible that any one specific player might hurt his team 

when he is in foul trouble or might be substantially more valuable at the ends of games. Future 

work might delve more deeply into these individual differences and provide specific advice for 

certain situations. Nonetheless, the present analysis demonstrates that overall, coaches would be 

well served by allowing players to risk fouling out themselves, rather than artificially doing it for 

them.   
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Appendix 1: List of star players  

Star players are defined as any player who made an all-star team between the 2013-2014 season 

and the 2015-2016 season: 

 

LaMarcus Aldridge Tim Duncan Dwight Howard Joakim Noah 

Carmelo Anthony Kevin Durant Kyrie Irving Dirk Nowitzki 

Chrish Bosh Marc Gasol LeBron James Tony Parker 

Kobe Bryant Pau Gasol Joe Johnson Chris Paul 

Jimmy Butler Paul George Kyle Korver Jeff Teague 

DeMarcus Cousins Draymond Green Kawhi Leonard Isaiah Thomas 

Stephen Curry Blake Griffin Damian Lillard Klay Thompson 

Anthony Davis James Harden Kevin Love Dwyane Wade 

DeMar DeRozan Roy Hibbert Kyle Lowry John Wall 

Andre Drummond Al Horford Paul Millsap Russell Westbrook 
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Appendix 2: Offensive rating details 

- If there is an offensive rebound in a possession that results in points scored, the offensive 

rebounder receives a portion of the credit for the points and possession proportional to: 

(1− 𝑇𝑒𝑎𝑚𝑂𝑅%)(𝑇𝑒𝑎𝑚𝑃𝑙𝑎𝑦%)
1− 𝑇𝑒𝑎𝑚𝑂𝑅% 𝑇𝑒𝑎𝑚𝑃𝑙𝑎𝑦% + (𝑇𝑒𝑎𝑚𝑂𝑅%)(1− 𝑇𝑒𝑎𝑚𝑃𝑙𝑎𝑦%) 

where TeamOR% is the team’s overall offensive rebound rate (offensive rebounds/(offensive 

rebounds + defensive rebounds), and TeamPlay% is the percent of offensive possessions that 

result in at least one point being scored (scoring possessions/total possessions).  

- If a shot is made without an assist, the shooter receives full credit for the points and the 

possession.  

- If there was an assist, the assister receives a portion of the credit based on where on the court 

the shot was taken from. The logic is essentially that the closer to the basket a made shot is, 

the more credit the assister deserves and the less credit the shooter deserves. More 

specifically, the assister receives credit proportional to half of the effective field goal 

percentage (eFG%) of the shot. I divide shots into five common categories: restricted area (< 

4 feet from the basket), paint (inside the painted area), other two-point shots (any non-three 

that is outside the paint), corner three (a three point shot taken from the corner, which is 

closer than other threes), non-corner three (a three-point shot not taken from the corner). The 

eFG% is calculated as the field goal percentage for a shot from each of these zones, 

multiplied by the points a shot is worth from that zone (i.e. either two or three).  

- On a free throw, the shooter receives full credit for the points and possession. If the free 

throw is part of an and-1 and the basket was assisted, the assister receives a portion of the 
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credit for the possession and the points on the made shot, but not for the point on the free 

throw.  

- On a missed shot that is rebounded by the defense, the shooter receives full credit for the 

possession.  

- On a turnover that is assigned to a specific player, he receives full credit for the possession. If 

it is a team turnover, all players on offense receive 20% of the possession.   
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Appendix 3: Defensive rating details 

- On a made shot that is not part of an “and-1”, it is not clear which player on defense was 

guarding the shooter. Therefore, all players on the court for the defense are credited with 

20% of the points scored and 20% of the possession. If the made shot is part of an and-1, the 

fouler is credited with the points.   

- On a missed shot that was blocked and was rebounded by the defense, the credit for the 

possession is split between the blocker and the defensive rebounder. The credit is weighted 

by the relative difficulty between forcing the missed shot and obtaining the defensive 

rebound. If the shot was not blocked, each player on the defense receives 20% of that portion 

of the credit. If the rebound was not credited to a single player (i.e. a team rebound), each 

player on the defense receive 20% of the credit for the rebound. 

- On a made free throw, the player who committed the foul is credited with the point. If it’s the 

last free throw and it goes in, the fouler is also credited with the possession. If the foul was 

not called on a specific player (e.g. technical foul on the bench), all players on the court for 

the defense receive 20% of the credit. 

- If the last free throw is missed, the possession is split between the defensive rebounder and 

the fouler. 

- On a steal or offensive foul, the player who stole the ball or drew the offensive foul is 

credited with the possession. On any other turnover, each player on the defense receives 20% 

of the credit for the possession.  
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Appendix 4: Section 2 robustness checks 
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Table 11: Additional robustness checks for regression model in Section 2 (by game segment) 

 (1) (2) 
home.ft 0.650 

(4.576) 
12.082** 
(5.830) 

away.ft -13.750** 
(4.241) 

-3.957 
(5.436) 

VORP.dif 0.386*** 
(0.098) 

1.199*** 
(0.237) 

VORP.dif.ft 0.880 
(2.409) 

-5.233** 
(2.192) 

score.dif 2.724*** 
(0.071) 

1.099*** 
(0.083) 

Minute category 
fixed effects 

Yes Yes 

Minimum 
possessions 

4 4 

Minute categories 1.1-3.2 4.1-4.2 
DF 17,482 24,103 

Standard errors are reported in parentheses. *, **, *** indicates significance at the 90%, 95%, and 99% level, 
respectively. 
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Appendix 5: Effect of players’ skill difference on outcome, by game segment 
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Appendix 6: Foul out simulation details 

In order to estimate the expected minutes missed due to foul outs if coaches did not bench their 

players in foul trouble, I ran 10,000 simulations of a single starter’s game. In each simulation, I 

used the following process: 

1. I randomly sampled total minutes played for a single game from the distribution of all 

games played by starters in the 2015-2016 season. I excluded games in which starters 

played fewer than 10 minutes, as those missed minutes were likely due to injuries. 

2. I assumed that players’ playing time would be approximately equally divided between the 

four quarters. Specifically, for quarters one through three, I rounded the expected minutes 

played divided by 4, to the nearest whole minute. Then I assumed that the player played 

the remaining expected minutes in the fourth quarter. I assumed that the player played his 

minutes at the beginning of the first and third quarters, and at the end of the second and 

fourth quarters. This follows a typical pattern for how starters’ minutes are distributed. 

3. I simulated each minute of the player’s game, such that his average foul rate when not in 

foul was 0.089, and his average foul rate when in foul trouble was 0.055.  

4. If a player fouled out in the simulation (i.e. recorded 6 fouls), his final playing time was 

calculated as the total number of minutes he had played up to that point. 

5. I recorded the player’s expected minutes played (from Step 1), the number of minutes he 

was in foul trouble, and the number of minutes he ended up playing (the same as 

expected minutes unless he fouled out). 

 


