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Embedding GitHub Repositories: A Comparative Study of the 

Python and Java Communities  

Abstract 

GitHub, the largest platform for open-source software, which allows code contributors to 

collaboratively develop software in a variety of programming languages, has motivated 

extensive research on social coding. However, the heterogeneity of GitHub communities in 

different programming languages has not been explored in previous studies. Inspired by the 

linguistic relativity hypothesis, I deduce that different programming languages might result in 

distinct patterns in social coding. This research identifies such discrepancies between the 

Python and Java communities based on repository representations (embeddings) from a unique, 

newly constructed dataset. By describing the representation learning process as a pipeline, this 

thesis first demonstrates how to generate high-quality repository embeddings from content and 

contextual data, including source code (import), readme text, and co-contributor networks. The 

evaluation results suggest that models derived from Word2Vec, including Doc2Vec, 

Import2Vec, and Node2Vec, are the most competitive for representing the GitHub data. 

I then used the best performing embeddings to explore language-specific patterns via questions 

regarding GitHub activities and success. By investigating the consistency between different 

embedding spaces, I identified how social (contributor) and functional (import, readme) 

embedding spaces diverge in the Python community but align in the Java community, implying 

the difference in their socio-functional mapping. Furthermore, the results indicate that 

functionally similar Python repositories experience more competition and that Python 

programmers contribute more to functionally diverse repositories when compared with their 

Java counterparts. Afterward, by analyzing the correlations between the functional diversity 

and the average popularity among contributed repositories, I found evidence that Python 



programmers who commit to dissimilar repositories are more likely to be the contributors of 

popular repositories, while Java programmers do not exhibit this pattern. Finally, by comparing 

embeddings with baseline features, I verified their potency to predict repository popularity and 

discovered that functional embeddings are beneficial for predicting Python repositories, while 

social embeddings contribute more to Java repositories.  

These language-related heterogeneities can be attributed to the inherent difference in 

philosophy between Python and Java: As a language highlighting flexibility and reusability, 

Python treasures contributors’ ability to produce code for other coders with various functional 

needs, whereas Java focuses on the independence and thoroughness in programming, 

prioritizing specialized coding for passive end-users who value only the performance of final 

products. 

  



1 Introduction  

“I think open source is an evolutionary idea for humanity, this idea of transparency. It played 

out for us in the technology world, but it also played out with the idea of a truth and 

reconciliation commission and Wikipedia.” 

–Megan Smith, chief technology officer of the United States (2014-2017)     

Since the birth of the first electronic numerical integrator and computer (ENIAC) in 1935, 

human society has become increasingly inseparable from computing machines, owing to the 

advancement in computer and information science. Programming languages serve as the 

translators between humans and machines. Software, functional units developed in different 

programming languages, now comprise the building blocks of both industrial development and 

personal life. Therefore, how people design and create software has a profound impact on this 

era. Unlike manufacturing industries where workers generate products in a closed form (i.e., 

the process is not shared with others), software engineers embrace a different mode: 

collaborating in open-source software (OSS) communities (Hippel & Krogh, 2003).  

An open-source software community is an Internet-based community that brings people with 

shared interests together to develop software toolkits, which are shared with anyone inside and 

outside the community (Ducheneaut, 2005; Lakhani & von Hippel, 2004). GitHub1, the largest 

global open-source community, has millions of public open-source projects across different 

programming languages. Contributors work on their projects in repositories, where source code 

is stored and can be propagated by forking. The growth of a repository can be achieved by new 

commits from the owner or by merging pull requests from other developers. This mechanism 

allows new contributors to join the development, promoting collaborations between previously 

unconnected programmers. Apart from the openness in code and collaboration, it is 

 
1 https://github.com/  

https://github.com/


recommended for each repository to upload a readme file to introduce it to new visitors. 

Moreover, GitHub also collects summary information for repositories, enabling users to locate 

reliable repositories of their interests. For instance, topic tags (see Fig.1) usually entail the 

keywords related to the functionality of a repository, while the number of watchers, stars, and 

forks reveal how many users attend to, appreciate, and reuse the code from a repository. 

The designs mentioned above make GitHub a unique resource for examining the patterns in 

social coding, i.e., how programmers practice software development through online 

collaboration. It serves as a window from which scholars can directly observe how human 

collaboration leads to technical evolution: whether a few lines of code develop into a software 

empire or fade into a corner of the Internet. With the support of API (Application Programming 

Interface) wrappers like pygit22 and PyGithub3, the data and activities on GitHub can be 

tracked for facilitating the academic analysis of social coding (Dabbish et al., 2012; Lima et 

al., 2014; Thung et al., 2013; Zöller et al., 2020). For instance,  Zöller et al. (2020) explored 

the collaborative topologies among contributors by constructing networks from their pull-

request interactions. Borges et al. (2016) probed how the size of the contributor group impacts 

the popularity growth of a repository. However, most previous studies did not consider 

language-specific heterogeneity in social coding, i.e., the differences between the repositories 

or contributors of different programming languages. Theoretically, the hypothesis of linguistic 

relativity indicates (Kay & Kempton, 1984) that the characteristics of a language influence its 

users’ cognition and behaviors. Programming languages are languages used in a coding 

environment, so it is reasonable to deduce that their traits affect programmers’ coding activities. 

Practically, such heterogeneity has significant implications regarding the generality of 

analytical results and may lead to more comprehensive interpretations of the findings.  

 
2 https://www.pygit2.org/ 
3 https://github.com/PyGithub/PyGithub  

https://github.com/PyGithub/PyGithub


Therefore, I conducted a comparative analysis between repositories mainly written in Python 

and those mainly written in Java (at least 50 percentage of the files written in Python or Java) 

from a newly constructed dataset. Python and Java were chosen for two reasons. First, they are 

both popular languages on GitHub, thus providing enough samples. Second, Python and Java 

are inherently dissimilar in aspects such as design philosophy and extensibility (Arnold & 

Gosling, 2000; Kuhlman, 2011), ensuring that the comparison would be well-founded and 

explainable.  

In particular, this thesis uncovers the discrepancy between the Python and Java communities 

with vectorized representations (embeddings) of repositories. The specially organized dataset 

contains the information on repositories from multiple perspectives, including metadata (such 

as the number of commits and files), functionality content (such as readme text and source 

code), and the social context composed by their contributors. Despite the variety in data sources, 

the primary challenge involved how to use them for representation learning. While the 

repositories can be simply represented with the metadata, this is unlikely to be ideal as metadata 

usually fails to reflect the functional and social details of repositories. Hence, content and 

contextual data, including source code, readme text, and project contributors, were utilized to 

generate the representations in this research. The repositories were converted to data points in 

a high dimensional space, where their similarity-based relationships were preserved according 

to the extracted information from a certain data source. Researchers in representation learning 

have proposed various models for fulfilling this task (Bengio et al., 2013; Hamilton et al., 2017), 

but whether they fit into the data from GitHub has not yet been confirmed; this leads to the first 

research question of this project: how can we effectively represent GitHub repositories with 

content and contextual data, and what models are desirable? This research fills the existing 

knowledge gap by elucidating the representation learning process as a pipeline from data 

processing to embedding evaluation. The results suggest that pre-trained transformer models 



such as SciBERT (Beltagy et al., 2019) and topic models (Blei et al., 2003) do not yield the 

most informative representations for either language, as compared to their prevalence in the 

textual analysis of other online communities (Mozafari et al., 2020; Pennacchiotti & 

Gurumurthy, 2011; Wang et al., 2020). Instead, models akin to the Word2Vec model (Mikolov, 

Chen, et al., 2013; Mikolov, Sutskever, et al., 2013), such as Doc2Vec (Le & Mikolov, 2014), 

perform the best in evaluation tasks, indicating their merits in embedding documents with 

domain-specific semantics. 

With high-quality embeddings, I investigated the language-specific heterogeneity concerning 

GitHub activities and success. My second research question relates to the socio-functional 

mapping between the contributors and repository functions: do repositories more alike in 

functionality share more similarities in contributor composition, and vice versa? This 

question was answered by measuring the consistency between functional embedding spaces 

(import, readme) and social (contributor) embedding spaces. The findings suggest that while 

social and functional spaces align in the Java community, they diverge considerably in the 

Python community. Furthermore, the results imply more competition between functionally 

similar Python repositories and more diversity in the functions of repositories Python 

programmers contribute to. In addition, these discoveries can also help improve repository 

recommendation systems by indicating the pitfalls in system evaluation and generality. 

Inspired by the results from the second question, I aimed to explain Python programmers’ 

preference for functional diversity among contributed repositories. One hypothesis is that 

programmers contributing to functionally diversified repositories are more likely to be 

the contributors of popular repositories. The third question focuses on testing this. The result 

shows a significant positive correlation between the functional diversity and the average stars 

of the contributed repositories for Python coders, but not for Java programmers, supporting the 

hypothesis and indicating that such diversity is more valued in the Python community.   



My final question involves the success of repositories: how can repository embeddings help 

predict the popularity of repositories? Different combinations of embeddings were 

compared to a baseline model with only metadata features; the results suggest that embedding-

based features contribute to the accuracy of popularity prediction to a non-trivial extent. More 

importantly, the prediction performance also indicates the difference between the two language 

communities: while functional embeddings are more helpful to predict the Python repositories, 

social embeddings are more efficacious for Java.  

The remaining parts of the paper are structured as follows: Section 2 reviews the literature on 

social coding studies in GitHub and embedding-based research on online communities; Section 

3 introduces the GitHub data used for this research; Section 4 illustrates the details about the 

representation pipeline; Section 5–7 demonstrates the analyses of the second, third, and fourth 

research questions, where the difference between the Python and Java communities are 

scrutinized; Section 8 discusses the indications of the findings, explains language-specific 

heterogeneity, and proposes directions for future work; and Section 9 presents the conclusion. 

 

Figure 1. Topic tags and popularity metrics 

2 Literature Review 

2.1 Social Coding in GitHub 

Treated as a prominent digital camp for social coding, GitHub has inspired researchers to look 



into the collaborative process and outcomes with various questions and methodologies. For this 

review, I mainly focused on studies related to four areas in GitHub: collaboration patterns, 

repository popularity and productivity, coder expertise, and coder influence. 

Most research on collaborative patterns relies on the social networks of contributors, such as 

pull-request networks (El Mezouar et al., 2019; Fu et al., 2021; Zöller et al., 2020) and 

contributor-collaboration networks (Alves et al., 2016; Batista et al., 2017, 2018; Moradi-Jamei 

et al., 2021; Thung et al., 2013). A pull-request network is built by linking the coders who made 

pull requests to the reviewers of the requests and is suitable for probing micro-level 

collaborations within a GitHub repository. For example, Zöller et al. (2020) characterized five 

particular structures from repositories’ pull-request networks and identified that the 

repositories of a centralized topology obtain more popularity on average. A contributor-

collaboration network is formed by connecting coders who have contributed to the same 

repositories, thus describing the macro-level collaborations of programmers across multiple 

repositories. Batista et al. (2018) used such networks to develop new metrics to measure the 

collaboration strength between two developers. Moradi-Jamei et al. (2021) treated this network 

as a testbed for their community detection method.  

Despite the extensive use of networks, most prior studies portrayed collaborations from a 

contributor-to-contributor perspective. Collaborations can also be reflected with a repository-

based network, in which the edges represent the co-contributors between two repositories. This 

network is valuable in shaping the social relationships between repositories (Thung et al., 2013). 

Moreover, it helps in embedding social context for repositories. Therefore, I adopted co-

contributor networks for the embedding process. 

Papers exploring repository popularity and productivity contained more diverse methods, 

and the questions could be either explanatory (i.e., what factors affect them) or predictive (i.e., 



how to predict them). For example, Borges & Tulio Valente (2018) and Zhou et al. (2019) 

launched surveys to learn the reasons users fork or star a repository and what factors impact 

their decisions. Han et al. (2019) strived to construct feature sets to predict the popularity of 

repositories, with the number of stars being the metric for popularity measurement. Motivated 

by these studies, I also incorporated the popularity prediction task in this paper to elucidate the 

predictive power of embedding-based features and to examine the differences in predictive 

performance between Python and Java. Regarding repository productivity, researchers have 

primarily defined productivity as the volume of work (such as commits, merging pull requests, 

or solving issues) finished within a certain period (Choudhary et al., 2020; Saadat et al., 2020; 

Sheoran et al., 2014). For instance, Saadat et al. (2020) assessed how group size affects the 

efficiency of contributors in dealing with tasks such as merging pull requests and commenting 

on issues. Furthermore, a few scholars (Fang et al., 2020; Vasilescu et al., 2013) analyzed this 

issue by crosslinking contributors’ activities on multiple platforms (StackOverflow, Twitter). 

Papers on coder expertise utilized contributors’ committing history as the most common data 

source (Bhattacharya et al., 2014; Constantinou & Kapitsaki, 2016; Dey et al., 2021; 

Montandon et al., 2019). For instance, Constantinou & Kapitsaki (2016) measured contributors’ 

language-specific expertise by extracting language-related statistics from their committing 

history. One related research by Dey et al. (2021) represented contributors’ coding skills by 

training Doc2Vec models with the APIs from their modified code files. Moreover, the authors 

validated the embeddings by examining the consistency between the embedding space and the 

self-reported expertise from their profiles. The aptness of this research inspired me to deploy 

an embedding-based approach in this paper. 

Studies on coder influence frequently analyzed follower networks (Ma et al., 2017; Yu et al., 

2014). A follower network is a directed graph with edges from the following users to the 

followed users. Following a developer on GitHub is similar to following a friend on social 



media platforms, such as Facebook and Instagram. Thus, researchers have explored structural 

similarities and differences between follower networks on different sites (Ma et al., 2017). 

While some studies used single networks, others adopted a combination of multiple networks 

(Hu et al., 2018; Lima et al., 2014). For instance, Lima et al. (2014) compared the follower 

network with the collaboration network, revealing their similarity in the power-law distribution 

of node degrees. 

Although some of these studies cover repositories or contributors associated with different 

programming languages (Borges & Tulio Valente, 2018; El Mezouar et al., 2019; Lima et al., 

2014; Yu et al., 2014), the heterogeneity of programming languages has not been explored in 

their analyses or findings. Therefore, to the best of my knowledge, this is the first research 

emphasizing the ways in which the GitHub communities of different programming languages 

diverge. 

2.2 Representation Learning Applications in Online Community     

Representation learning, also known as embedding learning, is a concept that depicts the 

process of extracting useful information from data as features for predictors (Bengio et al., 

2013). This notion is widespread in natural language processing, computer vision, and network 

science (Bengio et al., 2013; Hamilton et al., 2017), where researchers invent methods for 

representing unstructured data. Along with the speedy evolution of artificial intelligence, 

representation learning methods have become increasingly prevalent in fields outside computer 

science. Online communities, replete with both structured data (such as user profile, metadata) 

and unstructured data (such as textual comments, image posts, video posts), provide a natural 

environment for embedding-based studies.  

For example, researchers have successfully applied textual embedding models such as BERT 

(Bidirectional Encoder Representations from Transformers) (Devlin et al., 2018) and topic 



models (Blei et al., 2003) to the sentiment analysis of user comments in social media during 

the COVID-19 pandemic (Wang et al., 2020); the identification of hate speech and racial bias 

in Twitter (Mozafari et al., 2020); and the mining of user interests for content recommendation 

(Pennacchiotti & Gurumurthy, 2011). Moreover, network embeddings are also widespread in 

studies of online communities. For instance, Li et al. (2019) proposed the possibility of 

generating customized answers in online question-answering communities using network 

embedding. Zhang et al. (2019) used multi-view network embeddings to detect key players in 

underground forums. 

In contrast to the pervasive adoption of embedding-based approaches in the analyses of other 

online communities, such as Twitter and Weibo, their applications in OSS communities remain 

limited. Except for sporadic cases like those mentioned in 2.1, recommendation systems form 

the domain in OSS where this methodology is most practiced. Previous studies have used 

metadata (Liu et al., 2018), APIs (McMillan, Grechanik, & Poshyvanyk, 2012), readme text 

(Zhang et al., 2017), or user behaviors (Jiang et al., 2017) as the source of representation 

learning, then made recommendations based on the similarities of embeddings. Additionally, 

a few studies (Alon et al., 2019; Theeten et al., 2019) benefited from the code available on 

GitHub, creating representation learning methods for code or code elements. Nevertheless, 

these studies did not delve deeper into the activities or patterns in social coding, leaving the 

application of embeddings at a purely technical level. Therefore, this research is novel as it 

unveils how embeddings conduce to pattern identification and interpretation regarding 

activities on GitHub.   

3 Data Description  

The GitHub data used in this research has two sources. GitHub content data, such as the source 

code, readme files, and contributors, were fetched from pre-downloaded repositories, whereas 



other data, including topic tags and popularity metrics, were obtained via web-scraping and 

API searching: 

• Pre-downloaded repositories are collected by the Knowledge Lab at the University of 

Chicago from all public GitHub repositories that were active until 2019 with the library 

pygit2. They are stored as zip files at the university’s research computing system (RCC), 

and each file contains the commit history of a GitHub repository or a collection of 

repositories. The content data and metadata for this study were extracted from the latest 

version of the repositories. The metadata 4  includes the number of unique import 

packages, the number of programming languages, the number of files, the number of 

contributors, the number of commits, the average number of commits per contributor, 

and the length of the cleaned readme text.  

• Topic tags serve as naturally annotated labels indicating the functionality of a repository. 

They are scraped as the labels for the prediction task assessing the performance of 

readme embeddings because they can be viewed as keywords of the readme text. 

However, since GitHub allows developers to use self-defined labels, some of the topic 

tags are too customized for a classification task (for instance, a label that only occurs 

once would not have a valid train-test split). Thus, we only reserved the tags appearing 

over 50 times and removed non-informative ones, such as python, python3, java, and 

java8.  

• Popularity metrics include the number of stars, watches, and forks available on the 

repository pages and were obtained with PyGithub, a python interface of the GitHub 

API. In addition, I queried whether a repository was forked from others or not. Forked 

repositories would have the same number of forks and identical content as the original 

 
4 The degrees of repositories in the co-contributor network are added to metadata after preprocessing. 



repositories but would not have any stars or watches when being forked. Thus, they 

would cause discrepancies in the data generation process and should be excluded from 

popularity-related analyses.  

4 Representation Learning Pipeline 

This section describes how repository embeddings are generated from different data sources 

and evaluated using different prediction tasks. The entire process is summarized in a 

representation learning pipeline (see Fig. 2) of three phases: data preprocessing, embedding 

generation, and embedding evaluation. Each step in the pipeline and its corresponding 

outcomes are detailed in the subsections. 

4.1 Data Preprocessing  

Contributor List  

The contributor list contains all the contributors in a repository. The embedding method first 

generates a co-contributor network from the lists; then, it yields repository representations by 

embedding that network. In this network, the nodes are the repositories that are not isolated 

(i.e., having at least one co-contributor with others), and the edges represent the existence of 

co-contributors between two repositories weighted by the number of co-contributors. The 

summary statistics of the networks for Python and Java are displayed in Table 1. Though the 

number of nodes (repositories) in the Python network is fewer than the Java network, the 

number of edges and the average node degree in the Python network is larger than the Java 

network. This suggests that Python repositories are socially more connected.  

Table 1. Contributor network degree summary 

Language node edge mean std min 25% 50% 75% max 

Python 410869 116838952 569 2074 1 2 10 141 40089 



Java 632675 23684474 75 363 1 1 3 9 9467 

 

 

Figure 2. Representation learning pipeline 

Readme File  

The raw readme files are usually structured in Markdown or RST files. They contain characters 

used for formatting, example codes, and links, all of which need to be removed to retain only 

the informative text. To clean the raw text, I used the pypandoc5 to convert it to HTML and 

then parsed the HTML with beautifulSoup to preserve useful tags (see Fig. 3). The contents 

under the paragraph tags (<p>) are usually the most informative, and the list tags (<li>) 

sometimes contain valuable information. Therefore, I conducted a pre-test on two versions of 

cleaned readme text (with and without text from lists). The pre-test was performed on the 

readme files of the top 1000 starred Python repositories with Doc2vec, and the result (see Fig. 

4) implies that the inclusion of list contents helps increase the distinction between two clusters: 

TensorFlow-based repositories (AI) and Django-based repositories (Web). Therefore, I 

incorporated the content under list tags into the corpora for readme embedding generation. 

Furthermore, I also removed special characters such as “#” and “&”, digits, and email addresses 

 
5 https://pypi.org/project/pypandoc/ 

https://pypi.org/project/pypandoc/


from the cleaned text. Finally, since some of the readme files were not written in English, I 

filtered them based on the language detection results using langdetect6. 

The statistics of the repositories with cleaned readme files are displayed in Table 2, in which 

we can see that most readme files have relatively fewer words compared to a regular article. 

Unlike node degrees in co-contributor networks, the distribution of readme length for Python 

and Java repositories is similar. 

Table 2. Readme length summary 

Language Repo-count mean std min 25% 50% 75% max 

Python 370,198 195 478 1 17 66 203 65,271 

Java 331,815 170 631 1 13 50 173 173,866 

 

 

Figure 3. Readme text conversion 

 
6 https://pypi.org/project/langdetect/  

https://pypi.org/project/langdetect/


 

Figure 4. Readme pre-test result 

Source Code  

Regarding the techniques for implementing repository functions, the import packages are the 

most informative part. Hence, the representations from the source code were built by 

embedding the imports. I parsed the code through abstract syntax trees and fetched the import 

objects from the corresponding syntax (see Fig. 5). Coders can import packages at multiple 

levels, such as “scipy” and “scipy.stats.” To narrow down the number of imports, I only 

included the top-level libraries (“scipy.stats” to “scipy”). I also filtered the imports based on 

whether they were “good” imports; a good import is a package or module that has been 

imported over ten times and imported in repositories with at least five stars. Moreover, only 

statically declared imports were included, and dynamic imports were not considered. It was 

found that, on average, Python repositories have 15.73 unique imports after filtering, which is 

considerably more than that of Java. In addition, the number of imports varies more for Python 

repositories (see Table 3).  

Table 3. Unique imports summary  

Language Repo-count mean std min 25% 50% 75% max 

Python 604,047 15.73 38 0 4 7 14 1724 



Java 939,957 3.33 2 0 2 3 4 107 

 

 

Figure 5. Imports extraction using abstract syntax tree 

After collecting the imports, I performed a pre-test to decide how to structure the import data 

for embedding. I structured the extracted imports in two formats with different granularity: (1) 

file-level, in which each document in the import corpus is the sequence of libraries used in a 

code file, and (2) repo-level, in which each document in the import corpus is the sequence of 

libraries used in a repository. The pre-test was also conducted on the top 1000 starred Python 

repositories with Doc2vec. To visualize the result, I randomly chose repositories whose URL 

included TensorFlow, Django, or SQL as samples (ten for each). The result (Fig. 6) suggests 

that the file-level corpora can catch the heterogeneity between the repository clusters, while 

the repo-level one cannot. This is because within-cluster similarities are higher than between-

cluster similarities in the file-level space. Hence, the file-level corpus was employed for import 

embedding generation.  



 

Figure 6. Imports’ pre-test results  

4.2 Embedding Generation  

Co-contributor Network  

GGVec: This method is provided by the graph embedding generation package nodevectors7, 

designed to visualize large networks. For GGVec and all other network-based embeddings, I 

set the dimension size of the vectors to 508. 

ProNE: This method acts as a fast and scalable approach for embedding large-scale networks 

(Zhang et al., 2019). It involves two steps: (1) sparse matrix factorization for fast embedding 

initialization and (2) spectral propagation in the modulated networks for embedding 

enhancement.  

Node2Vec: This approach (Grover & Leskovec, 2016) deploys random walks through a 

network to generate “corpora” composed of the nodes (repositories) in the network. Then it 

uses the corpora as the input for a Word2Vec model. The trained word vectors are the 

 
7 https://github.com/VHRanger/nodevectors  
8 Dimension sizes of 10,30,50, and 100 were tested, with the results indicating a dimension size of 50 leads to an interpretable 
embedding space with the least computational cost. 

https://github.com/VHRanger/nodevectors


embeddings of the nodes in the network.  

Readme Text  

Doc2Vec: This model (Le & Mikolov, 2014) extends the Word2Vec model by adding a 

paragraph (document) vector. In particular, the training algorithm is the same as the Word2Vec 

model; the difference lies in the concatenation of a vector representing a document before word 

vectors, i.e., the document vectors are trained jointly with the word vectors. Researchers have 

proved that this method outperforms the simple method of averaging word vectors as the 

document vectors in downstream tasks (Le & Mikolov, 2014). Similar to Word2Vec, there are 

two training algorithms for Doc2Vec: (1) PV-DM, which corresponds to the continuous bag of 

word (CBOW) approach in Word2Vec, predicts the center word from the contextual words, 

and (2) PV-DBOW, which corresponds to the skip-gram method in Word2Vec, reverses the 

task in PV-DM. I utilized the PV-DBOW model because it can be trained fast and well for 

short documents.   

Topic Attention: This embedding generation method builds on the LDA topic model (Blei et 

al., 2003). The documents are viewed as a mixture of topics, and each topic is a Dirichlet 

distribution over words. An important hyperparameter is the number of topics, k. Following 

(Newman et al., 2010), I referred to the average topic coherence score to choose the optimal 

number of k. The coherence score for a given topic measures the degree of semantic similarity 

between the high-scoring words under this topic. (Newman et al., 2010) showed that this 

measure could select topics closer to human intuition than likelihood-based (perplexity) ones. 

The test result implied an optimal topic number of 20. Therefore, it was determined that each 

repository would have a 20-dimensional representation of topic loadings.  

TF-IDF: This method makes a sparse vector for each document, highlighting unique words 

within. The TF-IDF (Ramos & Others, 2003) score for a particular word in a document is 



calculated as the product of its term frequency (TF) and the inverse document frequency (IDF) 

of the word. The TF is defined as the frequency with which a word occurs in a document. The 

IDF measures how common a word is across the entire corpus. The TF-IDF vectors for Python 

and Java readme texts have over 100,000 sparse dimensions. To make the evaluation more 

feasible, I further reduced the TF-IDF vectors to 50 dimensions by capturing the first 50 

principal components (Jolliffe, 2013) from the raw vectors. 

SciBERT: This method leverages the power of the deep bidirectional transformer model, 

BERT (Devlin et al., 2018), to generate text representations. BERT generates contextual 

embeddings for tokens (usually words) based on multiple attention mechanisms, allowing the 

model to selectively focus on the most informative segments from the input. The model will 

first generate token embeddings in the last hidden layer given a tokenized document. Then, the 

token embeddings would be pooled to aggregate the information into document embeddings. 

The pooling method I performed involved taking the vector of the special token (CLS), which 

the BERT author recommended as an aggregated sequence (document) representation. These 

pooled embeddings formed the final representation for the readme files, which were vectors of 

768 dimensions. SciBERT is a specialized BERT, trained on scientific papers from different 

disciplines, where computer science accounts for 12% (Beltagy et al., 2019). It is reported to 

have better performance in tasks on computer science corpora than the general BERT.  

Import Sequence  

Import2Vec: This model (Theeten et al., 2019) derives from the Doc2Vec model (PV-DBOW). 

Unlike the Doc2vec model for readme data, the Import2Vec model needs to capture the co-

occurrence of all import libraries in a given source file. In this model, the input tokens within 

a pre-defined window are converted into token pairs before training (see Fig. 7). To make all 

imports in the same file form combinations, I set the window size as the longest sequence 

length in the corpora minus one. The model’s output was also specified to be a 50-dimensional 



vector for each imported library (word embedding) and each repository (document embedding). 

CodeBERT: This BERT-based model published by Microsoft for code representation (Feng et 

al., 2020) was trained on pairs of social language and code elements in six programming 

languages, including Python and Java. In contrast to the file-level data used for Import2Vec, I 

used the repo-level import sequences for this model to take advantage of the automatic pooling 

by the token CLS. Otherwise, I would have had to average the file embeddings as repository 

embeddings, which might have been less effective. The learned vectors also contained 768 

dimensions, like those from other transformer models.  

 

Figure 7. Word pairs generation in skip-gram model 

4.3 Embedding Evaluation  

Examining the quality of embeddings before making further inferences guarantees the 

reliability of findings. In this research, I assessed embedding qualities by comparing their 

performances in downstream tasks, which is viewed as extrinsic evaluation (Shi et al., 2018). 

In particular, I designed separate tasks for embeddings from different data sources instead of 

using one task to test all the embeddings. This was intended to ensure the prediction targets 

directly related to the data source of the embeddings. Otherwise, the mismatch between the 



task targets and the training data might have invalidated the evaluation results. For example, if 

the co-contributor embeddings were used to predict the topic tags as an evaluation, the result 

might not be instructive because the repository relationship reflected from the topic tags and 

the co-contributor network could be inherently different. Thus, this task may not signify how 

much the model learned from the training data. Therefore, I highlighted the correspondence 

between the prediction targets and embedding sources. The tasks and results are presented as 

follows: 

Social Link Prediction 

This task evaluates the quality of co-contributor network embeddings. For each repository, I 

randomly chose one of its neighbors from the network and other k repositories that were not 

neighbors (negative samples) to form a candidate pool. Then I computed and ranked the cosine 

distances between the repository and each candidate from the pool. This process was replicated 

ten times9 for each repository. The links of repositories with more neighbors were usually more 

challenging to predict because their embeddings were impacted by more neighbor embeddings 

during steps such as the random walks (Node2Vec, GGVec) or spectral propagation (ProNE). 

Therefore, I only selected the top 1000 repositories (sorted by the number of neighbors) to 

predict10, which made this task more efficient. A high-quality embedding space is expected to 

rank actual neighbors higher than negative samples. For this task, the following measures, 

which are standard metrics for link prediction (Costabello et al., 2019; Goyal et al., 2019), were 

used to measure embedding performance: 

• Mean rank (MR): The average rank of the actual neighbors, where a smaller value 

indicates better performance.  

 
9 The results were robust for other replication times, including 5, 20 and 50. 
10 The negative samples were picked from all the repositories, not just the top 1000 repositories. 
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Where N is the number of repositories, and S is the number of replications. 

• Mean reciprocal rank (MRR): The average reciprocal rank of the actual neighbors, 

where a larger value indicates better performance. 
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• Hit(N): The ratio when the ranks of the true neighbors are higher than N. I assigned 

values of 3 and 10 to N, where a larger value means better performance. 

The results when k equals 1000 are presented in Table 4. The Node2Vec model performs much 

better than the other two models on all the metrics for both languages. I also tested the impact 

of the negative sampling ratio k on prediction performance and found that Node2Vec shows a 

robust advantage as k increases, while GGVec has the worst performance (see Fig. 8). 

Therefore, I utilized the Node2Vec embeddings to build a social space for the repositories. 

Furthermore, the overall performance of the models is better in Java repositories than in Python 

repositories. This may be pertinent as Python repositories tend to have more co-contributor 

connections on average. Even non-neighboring repositories can be indirectly connected 

through their common neighbors, thereby shortening their distances in the embedding space 

and increasing the difficulty of identifying actual neighbors.  

Table 4. Social link prediction results (𝑘 =  1000) 

Language Model MR MRR Hit-3 Hit-10 

Java GGVec 373.9802 0.0070 0.0010 0.0050 

ProNE 49.4195 0.2335 0.2780 0.3540 

Node2Vec 4.7498 0.4816 0.5470 0.8780 

Python GGVec 300.9023 0.0050 0.0 0.0 



ProNE 171.2221 0.0082 0.0 0.0010 

Node2Vec 14.9610 0.1505 0.1140 0.4840 

 

 

Figure 8. Mean Rank and Hit10 for different negative sampling ratios (k)    

Topic Tag Prediction  

This task evaluates the quality of embeddings from readme text. Each repository may be 

labeled with multiple topic tags, among which many are interchangeable—for instance, “deep 

learning” and “neural network.” To make the task more feasible, I reduced the size of the label 

space by detecting the communities in the co-occurrence network of the topic tags. The 

Louvain algorithm, a community detection method based on modularity optimization (Blondel 

et al., 2008), was applied to this step. I fine-tuned the detection results to obtain eight reasonable 

clusters for the Python and Java communities. The topic tag communities are visualized in Fig. 

9 and Fig. 10, and the repositories are then labeled with one or more cluster labels below. 

• Python: AI, DS, Web, Platform, Bot, Game, GUI, Finance 

• Java: Full-stack, Android, Minecraft, DS, Web-Page, Testing, Intellij, GUI 



Following this, the prediction task was formed as a multi-label classification. The classifier’s 

output for each sample was an N-dimensional vector of 0 and 1, with N being the total number 

of topic tag communities. The classification was performed by a multi-layer neural network 

(MLP) and optimized with Keras tuner (O’Malley et al., 2019), a toolkit for seeking the optimal 

neural network structure for a given task in terms of the number of layers, neuron numbers in 

each layer, dropout rates, and learning rates.  

To evaluate the models, I created a test set containing 20% of the repositories. In addition, I 

considered the following metrics to quantify the model performance: 

• Hamming loss (H-Loss):  

∑ (𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)𝑖 +𝑖∈𝐶 ∑ (𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)𝑖𝑖∈𝐶

∑ (𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)𝑖𝑖∈𝐶 + ∑ (𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)𝑖𝑖∈𝐶
, 𝐶 is the set of labels 

1. Micro-precision:  

∑ (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)𝑖𝑖∈𝐶

∑ (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)𝑖𝑖∈𝐶 + ∑ (𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)𝑖𝑖∈𝐶
, 𝐶 is the set of labels  

2. Micro-recall: 

∑ (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)𝑖𝑖∈𝐶

∑ (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)𝑖𝑖∈𝐶 + ∑ (𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)𝑖𝑖∈𝐶
, 𝐶 is the set of labels 

3. Micro F1-Score:   

2 ∗ (𝑀𝑖𝑐𝑟𝑜 𝑅𝑒𝑐𝑎𝑙𝑙) ∗ (𝑀𝑖𝑐𝑟𝑜 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑀𝑖𝑐𝑟𝑜 𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑀𝑖𝑐𝑟𝑜 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 



 

Figure 9. Python topic tag communities     

 

Figure 10. Java topic tag communities 

The results are displayed in Table 5; it can be seen that the Doc2vec model outperforms other 

models in most of the metrics for both languages, while the SciBERT model has the worst 

performance. The Micro F1-scores for the best models are between 0.7 and 0.8, which can be 

thought of as a remarkable performance for a multi-label classification task.  

Table 5. Topic tag prediction results 



Language Model H-loss Micro-f1 Micro-precision Micro-recall 

Java 

 

Doc2vec 0.0580 0.7875 0.8233 0.7547 

Topic 0.0764 0.7177 0.7612 0.6789 

TF-IDF 0.0618 0.7701 0.8235 0.7232 

SciBERT 0.0875 0.6744 0.7186 0.6354 

Python Doc2vec 0.0808 0.7188 0.7462 0.6933 

Topic 0.1038 0.6365 0.6702 0.6060 

TF-IDF 0.0844 0.7041 0.7433 0.6688 

SciBERT 0.1158 0.6031 0.6167 0.5901 

 

To examine the embedding space more intuitively, I picked out seven topic tags for the Python 

repositories (algorithm, bot, django, git, opencv, scraper, tensorflow) and six topic tags for the 

Java repositories (android-application, javascript, json, kotlin, minecraft, mysql). Repositories 

with these topic tags were selected as samples for visualization. Ideally, repositories with the 

same topic tags should be closer in the embedding space and shape visible clusters. The 

visualization process was performed via t-SNE (Van der Maaten & Hinton, 2008), a nonlinear 

method for reducing high-dimensional data to two or three dimensions, which is effective for 

visualizing relative proximities in data. Fig. 11 presents the embedding spaces of the selected 

repositories. The visualization outcomes support the extrinsic evaluation results above. The 

embedding space generated by SciBERT appears entirely random, which is in line with its 

worst prediction performance. This can be explained based on the following: (1) some words 

used frequently in GitHub readme files, such as library names and framework names, might 

not appear in general academic works, preventing SciBERT from capturing their semantics in 

embeddings and (2) previous research has suggested that automatic pooling may not always be 

effective (Reimers & Gurevych, 2019); thus, it may result in non-informative embeddings for 

some readme text.  



Meanwhile, the superiority of the Doc2vec models may arise from the fewer assumptions they 

make about the distribution of the corpus compared to topic models and from their lack of 

reliance on pre-knowledge compared to transformer models. These differences indicate the 

importance of domain-specific information in representation learning. Choosing models with 

presumptions or pre-knowledge that the target data does not comply with can result in low-

quality embeddings. Researchers who use textual embeddings in their analysis should provide 

sufficient evidence to show the match between the model and the target text; otherwise, 

evaluating the embeddings are necessary to verify their methodologies. 

Library Prediction 

This task evaluates the quality of embeddings from import sequences. One repository can 

import multiple libraries, but not all libraries are informative in reflecting the functional focus 

of the repository; therefore, I used the import embeddings to predict only the meaningful 

libraries instead of all libraries. The importance of the libraries is ranked by their TF-IDF scores; 

thus, libraries that occur uniquely and frequently in the code of one repository tend to be ranked 

higher than libraries shared by many repositories. The task is processed with three sub-tests as 

follows: 

• Predict the most important library for the top 10000 repositories that have the largest 

number of unique imports; 

• Predict the most important n libraries for the top 10000 repositories, where the libraries 

are restricted to the top 1000 libraries (ranked by the number of repositories importing). 

This filtration limits the label space as n increases and ensures that each library label 

has positive samples in training and test sets. 

• Predict the most important library for the top 10000 repositories conditioned by 

different limits on the number of unique imported libraries. The filtration in Test 2 is 

also applied here for the same reason. 



 

Figure 11. Readme embedding space for the selected topic tags 

 



I performed the sub-tests using a k-nearest neighbor (k-NN) estimator (Altman, 1992), which 

assigns the label(s) to a sample with the most common label(s) among its nearest neighbors 

from the training set. Tests 1 and 3 were multi-class prediction tasks, while Test 2 was a multi-

label task. The metrics for the topic tag (multi-label) prediction are also applicable for multi-

class predictions, so they were applied to the sub-tests above. 20% of the selected repositories 

served as the test set for each sub-test, and the final results were cross-validated with 5-folds. 

The results11 of Test 1 are described in Table 6, and it can be seen that Import2Vec outperforms 

CodeBERT for both languages and all metrics. Fig. 12 and Fig. 13 display the results of Tests 

2 and 3, where the Micro F1-scores were plotted. The performance of both models improves 

as n increases because a relatively larger n gives the estimator more chances to predict the most 

important libraries regardless of their relative rankings. The performance of CodeBERT is still 

inferior to that of Import2Vec in both languages for different values of n. Similarly, Fig. 13 

indicates that Import2Vec performs better for most repositories regardless of their number of 

unique imports. The only exceptional case occurs when repositories only have one or two 

unique libraries; then, CodeBERT exhibits a slight advantage over Import2Vec. In this case, 

the embeddings of these repositories are similar to the embeddings of imported libraries, 

suggesting that the token embeddings generated by CodeBERT may be useful in representing 

libraries. However, automatic pooling may not aggregate the token-level information as 

accurately as Import2Vec to represent the repositories. Specifically, CodeBERT considers the 

order of the input tokens (bidirectional), which does not suit the case of import sequences and 

may result in worse performance for repositories that import more libraries. 

In addition, I also examined the import embedding space by visualizing the cosine distance 

matrices of the repositories importing specific libraries. For Java, 20 repositories importing 

 
11 The results are robust for number of neighbors 5, 10, and 20. 



library android (an essential library for app development) or weka (a library for machine 

learning) were randomly chosen. For Python, 20 repositories with library tensorflow (a library 

for deep learning) or django (a library for web development) were randomly selected. These 

repositories were double-checked to avoid overlaps (such as importing both tensorflow and 

django). The results (see Fig. 14) reveal that the spaces generated by Import2Vec discriminate 

between the repository groups, whereas the spaces produced by CodeBERT do not. As all 

available evidence indicates the advantages of Import2Vec embeddings, I employed them to 

build the import space for the repositories.  

Table 6. Library prediction subtest-1 results (k-neighbors = 10) 

Language Model H-loss Micro-f1 Micro-precision Micro-recall 

Java 

 

Import2Vec 0.0009 0.5557 0.7787 0.4321 

CodeBERT 0.0011 0.3254 0.7160 0.2106 

Python Import2Vec 0.0006 0.7993 0.8789 0.7330 

CodeBERT 0.0010 0.6499 0.8089 0.5432 

 

 

Figure 12. Library prediction subtest-2: Micro-F1 Score 



 

Figure 13. Library prediction subtest-3: Micro-F1 Score 

After the evaluations, I obtained the best embedding for each data source, and the results are 

consistent for both Python and Java repositories:  

• Co-contributor network: Node2Vec;  

• Readme text: Doc2Vec;  

• Import sequence: Import2Vec.  

All the best models are derivatives of Word2Vec, which suggests that their embedding 

strategies are suitable for GitHub Data. When large-scale data are available, these models are 

competitive in generating paragraph-level or document-level embeddings for domain-specific 

corpora. Pretrained transformers such as BERT and its derivatives, although powerful, might 

not always be ideal for domain-specific data and for representation learning of documents or 

paragraphs. Therefore, scholars need to carefully consider the source, volume, and granularity 

of the data to be represented in their model selection process.         



 

Figure 14. Cosine distance matrices for selected import embeddings 

5 Socio-functional Mapping 

This section examines the mapping between contributor groups and repository functions and 

pinpoints the difference in the socio-functional structures between the Python and Java 

communities. Besides, it also provides insights into practical areas such as recommendation 

systems in OSS. Specifically, the mappings are quantified according to the consistency 

between the best embedding spaces through canonical correlation analysis (CCA) (Wegelin, 

2000) and neighbor distance comparison. The analysis here also indicates the potential of 

embedding-based approaches in uncovering behavior patterns in social coding. 



5.1 Method 

The consistency between the different embeddings of the same entities (repositories) can be 

measured globally or locally. If examined globally, measuring the consistency can be 

transformed into a correlation analysis between two matrices in which each row refers to the 

embedding vector of a repository. Beyer et al. (2020) proposed the application of CCA to 

measure domain similarities and verified its effectiveness by comparing the detected 

correlations with human intuition. In canonical correlation analysis, the compared embedding 

spaces are projected into a shared space (usually with a lower dimensionality) in which their 

correlations are maximally extracted via linear combination. Each dimension in the projected 

space could be considered a latent variable responsible for data generation in the original spaces. 

Mathematically, the projection process can be expressed as finding the transformation matrices 

V and W for the original embedding spaces X and Y such that the transformed matrices 𝑋′ =

𝑋𝑉 and 𝑌′ = 𝑌𝑊 have maximal dimension-wise correlations. The first dimension (component) 

in the projected space accounts for the highest covariance between the two original spaces, and 

the lower the dimension ranks, the less the covariance it covers. In previous applications (Beyer 

et al., 2020), researchers have used the maximal or the mean dimension-wise correlation 

between the transformed spaces to measure the correlation or similarity between the original 

domains. In my exploration, I projected the embedding spaces into a ten-dimension space and 

then visualized the distribution of dimension-wise correlations to examine the space 

consistency. Moreover, concerning the scenario of recommendation systems in which the 

popularity of repositories is considered, I also explored how the space consistency changes 

with repositories of different popularity levels. The repositories are sorted by the number of 

stars in a descending order and then equally divided into ten folds (i.e., the first fold contains 

repositories with the highest number of stars). The space consistency in each fold is captured 

with the maximal canonical correlation (first-dimension correlation).      



When examined locally, the consistency between the embedding spaces can be represented 

through the consistency of the repository neighborhood. Previous studies have used the ratio 

of shared neighbors in two embedding spaces or the Jaccard index to quantify local similarity 

(Boggust et al., 2019). In my study, I used an ideologically similar but distance-based 

measurement to check the neighborhood consistency: 

1. Given two embedding spaces A and B and a neighbor threshold d, select a repository r 

and find its neighbors in space A whose cosine distance to r is less than d. 

2. Compute the average cosine distance between the neighbors and r in space B. 

3. Replicate steps 1 and 2 for all the repositories and obtain the mean average cosine 

distance. 

4. Replicate step 3 for a sequence of d, and record the change of mean average cosine 

distance.        

If the two spaces are consistent, the mean average cosine distance in space B is expected to 

increase steadily as the threshold d for neighbor identification expands. 

Another merit of this is strategy is that it deconstructs socio-functional mapping patterns into 

the social dispersion of functionally similar repositories and the functional diversity of socially 

connected repositories. This further helps illustrate the potential discrepancy between Python 

and Java. For instance, suppose the neighbors of the import/readme embedding space have a 

larger average distance in the social space for Python repositories. This implies that the 

dispersion among Python repositories with similar libraries/functions is more intensive than in 

Java repositories. On the other hand, if neighbors in the social space are more distant in the 

import and readme space for Java repositories, it suggests that the Java repositories with similar 

contributor compositions are more diverse in functionality. 

Since the consistency investigation requires different embeddings of the same repositories, I 



have only included Python and Java repositories having all three embeddings for this analysis. 

Approximately 190k Python repositories and 176k Java repositories were included in the 

dataset.         

5.2 Results 

CCA  

The results of the canonical correlation analysis on all selected repositories are shown in Fig. 

15. Before discussing the socio-functional mapping, I will briefly comment on the functional 

embeddings. We see that the import and readme spaces have the highest consistency compared 

with the other space pairs for both languages. The consistency between import and readme 

spaces also provides an alternative data source for recommending repositories based on 

functional similarities. Previous research has reported that API calls (imports) in code snippets 

can serve as an excellent source to recommend functionally resemblant repositories (McMillan, 

Grechanik, & Poshyvanyk, 2012; McMillan, Grechanik, Poshyvanyk, et al., 2012). However, 

as the number of repositories and the code volume accumulate, this design becomes 

increasingly expensive since it requires the iteration of code files to update the system. 

Compared to the API calls, readme seems to be a more economical yet reliable source because 

each repository only has one readme file and is less frequently modified; therefore, the system’s 

renewal cycle could be longer. Recent research has attempted to incorporate readme 

embeddings to recommend relevant repositories from one thousand most popular Java 

repositories; this has achieved comparable performance as the code-based approach (Yun 

Zhang et al., 2017). My results agree with this idea and verify its feasibility for application to 

more Python and Java repositories.  

In contrast, the mapping between social and functional spaces is quite different for the two 

communities. While Java repositories still pertain to a certain level of consistency between the 



social space and the functional spaces, Python repositories do not imply such correlations. This 

highlights two pitfalls behind the current research on OSS recommendation systems. First, 

researchers might overlook the multifacetedness of the definition of relevance and continue to 

use a single and over-general criterion to evaluate these systems. In previous studies, a widely 

used method to compare different systems involves human annotators to score the relevance of 

the recommendation results (McMillan, Grechanik, & Poshyvanyk, 2012; McMillan, 

Grechanik, Poshyvanyk, et al., 2012; Yun Zhang et al., 2017). For instance, Zhang et al. (2017) 

asked college students with programming experience to rank how each recommendation result 

related to a given repository from “Highly Irrelevant” to “Highly Relevant”. However, an 

arbitrary or omniscient relevance between the repositories is hard to measure and may not exist, 

as my result indicates. In the actual evaluation, annotators tend to possess bias such as weighing 

functional relevance more than social relevance, which benefits an import-based or readme-

based system but belittles a contributor-based one. Accordingly, the authors may conclude that 

an import-based system is better than a contributor-based system, thereby neglecting the 

potential merit of the contributor-based system in making social recommendations. This 

situation is similar to using a single but biased task for embedding the evaluation described in 

Section 4.3. To better illustrate this, I plotted the Import2Vec and the Node2Vec spaces for the 

Python repositories selected for visualizing topic tag clusters (see Fig. 16). Based on the graph, 

we admit that the Node2Vec embedding performs worse in representing topic tag clusters. 

However, we cannot make a general conclusion that it is a poor representation of the 

repositories. The topic tag prediction reflects the models’ ability to capture the repository 

functionality, but the Node2Vec embedding is trained on co-contributor links. Thus, using topic 

tag prediction to evaluate Node2Vec overlooks its capacity in mimicking social relationships. 

The “bias” in topic tag prediction is designed solely for readme embedding evaluation. 

However, in a recommendation system evaluation, the bias is usually obscure. To reduce such 



bias in human annotation, researchers need to notify the annotators about the specific relevance 

they expect from the recommendations (e.g., whether the recommended repositories should be 

relevant in functions or contributors). In this manner, we may present the results by saying that 

the import-based system is better for recommending functionally related repositories than 

saying that it is better or worse in general. 

The other pitfall relates to the generality of recommendation methods. The difference between 

Python and Java repositories implies that a contributor-based system might predict functionally 

similar repositories in Java with a certain accuracy but is unlikely to achieve the same for 

Python repositories. Such language-specific efficacy tends to occur when the data source of the 

recommendation system does not directly match the recommendation task. Matched situations 

would entail making a functionality-based recommendation with an import-based system or 

making a social recommendation with a contributor-based system. For unmatched cases, 

designers should be more careful when stating the generality of their methods, especially when 

the methods are only being tested for projects in a single programming language.  

The consistency change results shown in Fig. 17 suggest that the consistency between spaces 

is higher for repositories with higher popularity, providing additional advice for 

recommendation systems. Previous research has often tested recommendation systems on the 

most popular repositories (Matek & Zebec, 2016; Yun Zhang et al., 2017). Though this 

filtration is beneficial regarding computational feasibility and data completeness (mediocre 

repositories may lack the data that some recommendation systems need, e.g., readme text), it 

also makes the generality of the system to developing repositories, which are temporarily less 

popular, unknown. According to my results, using social embedding to recommend 

functionally similar repositories might work for top Java repositories (batch index 1, correlation 

close to 0.6) but is unlikely to operate well for the less popular ones (e.g., batch index 3 and 

bigger, correlation around 0.3). However, developing repositories usually demand more 



recommendations than well-established ones for seeking collaboration opportunities and 

learning better implementations. Therefore, future studies should pay attention to whether their 

methods function well on start-up repositories or projects.                           

 

Figure 15. CCA result: dimension-wise correlations (component index means dimension index)      

 

 Figure 16. Import and network embedding space for selected topic tags 

 

Figure 17. Consistency change for repositories conditioned by stars (lower index means more stars) 



Neighbor Distance 

The results of neighbor distance comparison provide insights into the observed language-

specific heterogeneity in socio-functional mapping. Fig. 18 presents the comparison of 

dispersion in functionally similar repositories between the two languages. The trend is 

consistent with both import or readme to anchor the neighbors but is more evident for readme 

neighbors. As the threshold for neighbors loosens (more remote repositories are included), the 

mean distance between the neighbors and the central repository in the social space also 

increases for Java but remains stable for Python; this supports the CCA results. More 

importantly, the mean network distance for neighboring repositories in Python is substantially 

larger than in Java, especially when the neighbor threshold is small. This divergence suggests 

that the social dispersion for functionally similar repositories is more intensive in the Python 

community. Fig. 19 compares functional diversity in socially close repositories between Java 

and Python. Python neighbors have larger mean distances in functional spaces compared with 

Java neighbors. This indicates that socially connected Python repositories have more dissimilar 

functions than their Java counterparts.  

When the two perspectives are viewed as modes in socio-functional mapping, more social 

dispersion in functionally similar repositories reflects a many-to-one mode, and higher 

diversity in socially connected repositories corresponds to a one-to-many mode. When a 

community is intensive in both directions, as the Python community reveals, it can be depicted 

as a many-to-many state (see Fig. 20). On the other hand, the Java community would be closer 

to a one-to-one mode where the consistency between functional and social spaces is more 

explicit. Apart from characterizing the mapping mode between contributors and repository 

functionality, the two perspectives also lead to valuable social interpretations. First, the 

dispersion perspective relates to the competition between functionally similar repositories, 

especially for the non-trivial repositories. A higher social dispersion for Python indicates more 



competition among the repositories because they are more likely to be developed by sparsely 

connected contributor groups, the members between which have little or no collaboration. 

Second, the diversity perspective can hint at contributors’ committing preference in terms of 

exploitation or exploration (March, 1991). Compared to Java contributors, Python contributors 

tend to commit to repositories less similar in functionality, which corresponds to the favor of 

exploration. In social sciences, exploration is associated with knowledge creation and 

innovation diffusion (Y. Li et al., 2008; Uzzi et al., 2013). In this regard, the favor of 

exploration implies that the Python community is more active in these activities, and summary 

statistics, including the average number of unique imports (see Section 4.1) and the total 

number of “good” imports (Python: 36485, Java: 3681), also advocate this inference.  

 

Figure 18. Comparison of dispersion in functionally similar repositories   

 

Figure 19. Comparison of diversity in socially close repositories 



 

Figure 20. Ecosystem mapping mode 

6 Contributing Diversity Analysis 

Motivated by the results in Section 5, I took a step further to identify the possible reasons for 

the exploration preference of Python contributors. I propose that programmers who can 

contribute to functionally diversified repositories are more likely to be the contributors of 

popular repositories in Python, which drives them to explore functionally different repositories 

more than Java contributors. This hypothesis is tested and discussed in this section. 

6.1 Method 

The hypothesis is examined by calculating the correlation between coders’ contributing 

diversity and the average popularity of the contributed repositories. I defined the contributing 

diversity of a contributor c as the mean value of the cosine distances between the functional 

embeddings of the repositories contributed by c. This can be denoted as follows (𝑅𝑐 is the set 

of embeddings for repositories contributed by c) :  

 



𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑐) =
2

|𝑅𝑐|(|𝑅𝑐| − 1)
∑ (1 −

𝑖 ∙ 𝑗

‖𝑖‖‖𝑗‖
)

{𝑖,𝑗|𝑖,𝑗∈𝑅𝑐,𝑖≠𝑗}

 

To get rid of the repositories built only for demo testing or code storage and to capture the 

repositories that the contributors actively contributed to, I only included repositories with at 

least five12 stars and committed at least five13 times by a given contributor. Contributors with 

only one valid repository were treated as zero-diversity contributors, and contributors with no 

valid repositories were removed from the dataset. Table 7 contains the number of contributors 

in the final dataset.   

Table 7. Contributor count summary 

Language/Embedding Import Readme 

Python 80836 74678 

Java 59775 53325 

   

The popularity is quantified by the average14 number of stars of the repositories, and the final 

correlation is measured with the Pearson correlation coefficient.                    

6.2 Results 

Fig. 21 presents the mean contributing diversity of the programmers conditioned by the number 

of contributed repositories. The average diversity level of Python coders is higher than that of 

Java coders in both functional spaces regardless of the thresholds of repository counts; this 

supports the findings from the previous section.     

 
12 Star thresholds between 2 and 5 are tried, where the correlation trends are consistent. 
13 Commit thresholds between 2 and 5 are tried, where the correlation trends are consistent. 
14 Total and median number of stars are also tried, where the correlation trends are consistent.   



 

Figure 21. Comparison of mean contributor diversity 

The results of the correlation test are presented in Fig. 22. The correlation between their 

contributing diversity and the average repository popularity for Python contributors is positive 

and more potent than that for Java programmers in terms of significance and magnitude. 

Furthermore, the discrepancy between the two communities is more evident for contributors 

who committed to a larger number of repositories where the correlation coefficient increases 

for Python but becomes non-significant for Java. Such tendencies are consistent for both import 

and readme spaces, which validates my hypothesis regarding contributors in Python and Java 

communities. Additionally, to preclude the possibility that the correlations are simply rooted 

in the number of contributed repositories instead of the diversity, I also examined the 

correlation between the number of contributed repositories and their average popularity. The 

result revealed no significant correlations (𝑝 > 0.1).  

The validity of my hypothesis indicates that exploring functionally different projects is more 

valued in Python than in Java. In other words, competitive Python contributors usually 

participate in the developments of repositories from multiple areas. To achieve this, coders 

might choose to increase the variety of their coding skills (e.g., becoming proficient in both 

data mining and web design) or increase the expertise in one coding area demanded by different 

fields (e.g., database management is needed for both data analysis and web development). 

These choices could lead to new research questions regarding the “exploration vs. exploitation” 



tradeoff in coding skills, discussed as future work in Section 8. Irrespective of the choice, the 

compatibility between expertise and various functional needs is the premise for exploring 

diversified repositories.  

 

Figure 22. Correlation between contributor diversity and popularity; only significant coefficients (𝑝 <

0.01) are plotted 

7 Repository Popularity Prediction 

In this section, I investigate whether the embeddings contribute to predicting the popularity of 

repositories and which parts in the embeddings are the most helpful. These questions illustrate 

whether an embedding-based approach can benefit practical tasks such as popularity prediction. 

For non-forked repositories, popularity metrics are usually highly correlated (see Fig. 23). 

Borges & Tulio Valente (2018) suggest that GitHub users think of stars as the most reliable 

metric for popularity measurement. This encouraged me to use stars as the raw popularity 

indicator. Different combinations of embeddings are tested to obtain the best performance, and 

the employed dataset is the same as the one in Section 5.  



 

Figure 23. Correlations between popularity metrics 

7.1 Method 

In GitHub, the repository stars are found to obey a power-law distribution (Lima et al., 2014), 

which also suits my dataset (see Fig. 24). This distribution suggests that only a few repositories 

have a non-trivial number of stars. Based on this property, I designed two sub-tests for 

popularity prediction: 

• Predict whether a repository has valid stars (classification) and valid stars implies that 

the number of stars is larger than one (the owner may star the repository). The 

prediction targets are binary, and 1 means the repository has valid stars. In this sub-

test, the predictor would suffer from label imbalance because of the power-law 

distribution. To ensure that the samples in the minority class (label 1) are not less than 

half of the majority class, I deployed the SMOTE algorithm (Chawla et al., 2002) to 

implement over-sampling on repositories with label 1. This technique synthesizes new 

samples by creating data points between the nearest neighbors in the minority class. 

This process was performed after train-test splitting, and only the train set was over-

sampled. Model performance is evaluated by accuracy, precision, recall, and ROC-

AUC score (Bradley, 1997), where a higher value indicates better performance for all 

the metrics. 



• Predict the popularity level of a repository (regression), and the popularity level here 

equals the logarithmic value of the number of stars. Only repositories with valid stars, 

covering about 56k Python repositories and 36k Java repositories, are included for this 

sub-test. Model performance is evaluated by explained variance score (EV) and mean 

squared error (MSE). A higher EV or a lower MSE implies better performance. 

For both sub-tests, a random forest estimator with 500 trees was trained on 80% of the dataset 

and tested on the remaining data. For each model, the prediction task was replicated ten times 

with different train-test splits, and the final performance was determined by the average values 

of the results. The random forest estimator in scikit-learn has built-in feature importance scores 

after fitting, which are defined as the normalized total reductions on loss brought by each 

feature. I generated the scores by fitting the best model of the regression task with the entire 

dataset and utilized these scores to identify the most informative dimensions.  

Previous research in Github popularity prediction indicates that metadata such as the number 

of commits, number of contributors, and length of readmes effectively predicted the popularity 

of repositories (Han et al., 2019; Weber & Luo, 2014). Therefore, I built a baseline model with 

only the metadata described in Section 3 (see Table 8). The embeddings can be compared to 

the baseline features both independently and jointly. Independent models used embeddings 

from one data source, and joint models concatenated multiple embeddings or added 

embeddings to baseline features.  



 

Figure 23. Repository star distribution 

Table 8. Baseline features 

Source Metadata 

Source Code 

 

the number of unique import packages 

the number of programming languages 

the number of files 

Contributor List the number of contributors 

the number of commits 

the average number of commits per contributor 

the degree in the co-contributor network 

Readme File the length of cleaned readme text 

 

7.2 Results 

Tables 9 and 10 present the prediction results. For both languages, the addition of certain 

embeddings promotes model performance for the two sub-tests. For Python repositories, the 

combination of import embedding, readme embedding, and baseline features outperforms other 

models in most metrics for both sub-tests. For Java repositories, the introduction of network 

embedding benefits the classification task the most, and the combination of network embedding, 

readme embedding, and baseline features stands out in the regression task. Especially, the 



precision (classification) and EV (regression) of the best model increased over 10% compared 

to the baseline model for both languages. Moreover, even within models with a single feature 

source (baseline, import, readme, or network), the baseline model is overshadowed by purely 

embedding-based models except for the regression task in Python. 

Despite the improvement in prediction performance, the results suggest two points to consider 

when using embedding-based features. First, simply concatenating all the embeddings and 

baseline features (import+readme+network+baseline) might not yield the best results. The idea 

of “the more, the better” does not apply to the prediction task here, and the same may apply in 

other downstream tasks as well. Adding non-informative embeddings might worsen model 

performance, so examining different embeddings and embedding combinations is necessary to 

find the optimal model. Second, the efficacy of embeddings from the same source can be 

significantly different in different language communities. For example, network embedding, 

which offers minimal boons in Python tasks, contributes the most to Java sub-tests. On the 

contrary, import embedding, while useful in Python tasks, is the least valuable embedding for 

Java sub-tests. The aforementioned facts indicate the issue of language heterogeneity in 

popularity prediction, which has not been emphasized in previous studies. One of the reasons 

for such heterogeneity being overlooked is associated with data. The data in these studies 

mostly comprised metadata and summary statistics (Borges et al., 2016; Han et al., 2019; 

Weber & Luo, 2014), some of which tend to contribute consistently to popularity prediction 

tasks regardless of programming languages. For instance, a larger number of contributors 

signals more popularity. This is also confirmed in my dataset since the correlation between the 

numbers of contributors and popularity level is significantly (𝑝 < 0.001) positive for both 

languages (Python coefficient 0.28 and Java coefficient 0.22). However, my results suggest 

that to make the most of embeddings, researchers need to consider language heterogeneity in 

feature engineering and may change their goals to searching for the best models in each 



language instead of a general one. Besides, from the perspective of model generality, the best 

model for some repositories of mixed languages might not be ideal for the repositories of a 

specific language. Likewise, the best model for one language community may be terrible for 

another. Therefore, running experiments on both general and language-specific datasets can be 

necessary if high generality is the goal. 

Fig. 24 displays the importance scores for the top 10 features in the regression task. For baseline 

features, only the number of contributors and the length of the cleaned readme ranks high for 

both languages. The Java regressor also weights the number of commits and the degree in the 

co-contributor network higher than 90% of features. Embedding-based features occupy more 

than half of the positions in the top ten for both languages, which confirms their capacity in 

these prediction tasks. In Python, the most important embedding-based features are dominated 

by dimensions in readme embedding, where the 50th dimension ranks the highest among all 

embedding-based features. In Java, network-based dimensions are more valued, and the fourth 

dimension is the most important among all features. Additionally, although understanding the 

dimensions in these embeddings can be relatively complex because the embedded information 

is highly abstract and aggregated, I obtained clues to capture the meaning of several dimensions 

by querying the repositories with the highest or lowest values for these dimensions. For 

instance, the repositories receiving the highest values in the 42nd dimension of the Python 

readme embedding are related to deep learning models such as convolutional neural networks 

(CNN). Furthermore, repositories with the lowest values in the fourth dimension of the Java 

network are related to the embedding center on the Netflix15 developer group (see Table 11).  

From the results, it is evident that functionality plays a more decisive role in a Python 

repository’s popularity, while social relationships are more valued for the popularity of Java 

 
15 Polyglot and Gradle are important tools for Netflix development, see information at 

https://www.infoq.com/news/2018/08/better-devex-at-netflix/,  https://gradle.com/next-developer-productivity-engineering-
meetup/      

https://www.infoq.com/news/2018/08/better-devex-at-netflix/


repositories. Such divergence might be caused by the different application scenarios or markets 

of the two programming languages, which are argued in the next section.  

Table 9. Python popularity prediction results 

Features Classification Regression 

Accuracy Precision Recall ROC-AUC EV MSE 

baseline  0.7405 0.5862 0.4104 0.7329 0.2842 1.8001 

import  0.7358 0.6428 0.2357 0.7115 0.1461 2.1495 

readme  0.7455 0.6369 0.3202 0.7523 0.1798 2.0628 

network  0.6835 0.2967 0.0530 0.5006 -0.0357 2.6093 

import+readme  0.7544 0.6718 0.3276 0.7668 0.2274 1.9423 

import+network  0.7309 0.6475 0.1939 0.7005 0.1274 2.1960 

import+baseline  0.7682 0.6796 0.4061 0.7779 0.3508 1.6334 

readme+network  0.7377 0.6406 0.2529 0.7411 0.1590 2.1149 

readme+baseline  0.7724 0.6837 0.4257 0.7879 0.3780 1.5635 

network+baseline  0.7434 0.6117 0.3576 0.7389 0.2795 1.8128 

import+readme+network  0.7494 0.6737 0.2924 0.7595 0.2145 1.9745 

import+readme+baseline  0.7747 0.6971 0.4185 0.7908 0.3822 1.5530 

import+network+baseline  0.7636 0.6780 0.3791 0.7690 0.3331 1.6775 

readme+network+baseline  0.7670 0.6782 0.4005 0.7779 0.3592 1.6107 

import+readme+network+

baseline  

0.7704 0.6948 0.3958 0.7841 0.3692 1.5854 

 

Table 10. Java popularity prediction results 

Features Classification Regression 

Accuracy Precision Recall ROC-AUC EV MSE 

baseline  0.8101 0.5610 0.3713 0.7600 0.2677 2.0408 

import  0.7950 0.5143 0.1372 0.6832 0.1045 2.4996 



readme  0.8088 0.5727 0.2945 0.7815 0.1989 2.2321 

network  0.8136 0.5681 0.4078 0.7719 0.3295 1.8685 

import+readme  0.8120 0.6034 0.2630 0.7867 0.2310 2.1419 

import+network  0.8132 0.5826 0.3380 0.7685 0.3280 1.8719 

import+baseline  0.8169 0.5967 0.3513 0.7800 0.3252 1.8815 

readme+network  0.8222 0.6128 0.3783 0.8019 0.3679 1.7589 

readme+baseline  0.8303 0.6426 0.4021 0.8193 0.3833 1.7174 

network+baseline  0.8331 0.6501 0.4161 0.8130 0.3755 1.7396 

import+readme+network  0.8208 0.6091 0.3701 0.7994 0.3719 1.7478 

import+readme+baseline  0.8290 0.6434 0.3871 0.8145 0.3795 1.7279 

import+network+baseline  0.8271 0.6316 0.3919 0.8053 0.3723 1.7481 

readme+network+baseline  0.8318 0.6455 0.4122 0.8245 0.4072 1.6495 

import+readme+network+

baseline  

0.8292 0.6375 0.4021 0.8197 0.4037 1.6592 

 

 

Figure 24. Feature importance for top 10 features in regression sub-test 

Table 11. Head/Tail repositories by dimension values 

Python readme dimension-42 Java network dimension-4 

Value URL path Value URL path 

1.8156 zuowang/deep-fashion -12.2640 eclipse/vert.x 



1.6457 tscohen/gconv_experiments -12.2992 michaelklishin/quartz-

mongodb 

1.6025 conansherry/mx-rcnn -12.3346 Netflix/EVCache 

1.5948 gplhegde/theano-xnor-net -12.7266 Netflix/exhibitor 

1.5403 zy97140/omp-benchmark-

for-pytorch 

-12.9214 gradle/gradle 

1.5258 wk910930/py-faster-rcnn -12.9942 asciidoctor/asciidoctorj 

1.5218 ucloud/uai-sdk -13.0219 Netflix/feign 

1.5175 lzx1413/PytorchSSD -13.1804 detro/ghostdriver 

1.4958 BIGBALLON/cifar-10-cnn -13.5822 Netflix/Hystrix 

1.4946 SnippyHolloW/timit_tools -13.7194 takari/polyglot-maven 

 

8 Discussions and Future Work 

This section discusses the technical and social implications of the present thesis. Especially, 

the language-specific heterogeneity between Python and Java from the findings is explained. 

It also proposes future research directions based on questions raised in previous sections. 

Technically, this study differs from other social coding research by characterizing repositories 

with embeddings from content and contextual data. This approach allows us to represent 

repositories from functional and social perspectives and combine the information from both 

sides quantitatively. Future studies on the analysis of repository competitions may benefit from 

this. For example, in Section 5, I considered repositories similar in functionality but distant in 

social space as potential competitors. This idea can be further specified by selecting a distance 

threshold to better identify the competitors. Based on the identified competitors, we can capture 

their current competing results with popularity metrics (e.g., if a repository has more stars than 

the average value of repositories in the same competition group, then it is considered a winner) 



and explore whether embedding-based features are efficacious in predicting the results. Apart 

from competition analysis, high-quality embeddings may also improve the accuracy for other 

downstream tasks such as predicting the ratio of solved issues, where repositories’ functional 

or social individuality is valued. 

Despite the benefits of embeddings, I also acknowledge the obstacles in using this method. 

Generating high-quality embeddings requires more computational efforts in data collection, 

preprocessing, and model fitting than simply using metadata. Therefore, the dataset generated 

from this research is a valuable resource for future research. Moreover, the details provided in 

the representation learning pipeline (see Section 4) can be referred to as instructions for 

embedding generation in future work. 

Socially, this research makes an in-depth investigation into community differences between 

two mainstream programming languages on GitHub: Python and Java. To comprehend the 

causes for such divergence, we may trace the origin of the two languages. Python was initially 

released in the 1990s with a philosophy that stressed code readability. The famous work Zen 

of Python16 by Tim Peters unveils the essence of Python’s philosophy:  

“Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex. 

Complex is better than complicated. Flat is better than nested. Sparse is better than dense. 

Readability counts.” 

In contrast, the philosophy of Java highlights the independence of code, stating “Write Once, 

Run Anywhere” (Arnold & Gosling, 2000), suggesting that Java programs are designed to be 

executed with as few dependencies as possible. 

The discrepancy in philosophy renders a substantial difference in program extensibility. For 

 
16 https://www.python.org/dev/peps/pep-0020/ 



Java projects, including external libraries requires coders to manually download source files 

and add their paths to the compiler. While in Python, this can be achieved with much less effort 

by entering the “pip install” command. The philosophical difference also results in different 

grammar rules. For instance, Python allows coders to declare variables without specifying their 

types (e.g., integer, float, boolean, or customized data type), but Java requires explicitly stating 

data types for variables. Furthermore, Python enables coders to write for loops quickly with 

the keyword “in” or with a list comprehension, but Java requires writing it as a function (see 

Table 12). Besides, Python also omits semicolons at the end of commands and curly braces in 

the definition of new functions. These differences accentuate the flexibility and conciseness of 

Python coding and the completeness and concreteness of Java coding; this determines the 

divergence in their application scenarios. 

Python’s extensible and succinct style makes the diffusion of code much more effortless, 

meeting the demand for areas like data science in which researchers highlight the replicability 

of code. Moreover, the introduction of IPython and Jupyter notebook17 has empowered Python 

to become an ideal tool for data analysis and visualization because users can interact with the 

code instantly and integrate code, annotations, and graphs in one file that can be shared 

effortlessly. In comparison, the ideology behind Java coding makes it more suitable for 

programming at the engineering level. Mobile applications and software products are the 

primary battlefields of Java developers, and relevant code is only shared within developing 

teams. From the perspective of product markets, the targets of Python contributors are mainly 

composed of peers who also write Python code. In contrast, Java contributors focus more on 

end-users who ask for handy software without the need to know the underlying Java 

programming (see Figure 25).  

 
17 https://ipython.org/ 



This difference helps demonstrate why network embedding is essential in the popularity 

prediction of Java repositories, and functional embeddings are informative for reflecting the 

popularity of Python repositories. Competitive Java repositories are probably monopolized by 

large companies or platforms such as Netflix and Gradle, which serve as hubs of proficient 

Java developers and paradigmatic Java frameworks and libraries. Meanwhile, Python 

repositories have gained popularity more because they realize functions valuable for other 

Python users. One way to achieve this is to improve or extend existing functionality, which 

fosters more competition among functionally similar repositories in Python, as Section 5 

implies. Besides, Python’s accentuation of functionality also corresponds to its contributors’ 

appreciation of the functional diversity among contributed repositories. Such diversity 

demonstrates their ability to fulfill different functional needs from others, while Java 

contributors tend to specialize in one or few fields, as Section 6 indicates.  

The difference between Python and Java communities also suggests that future research needs 

to attribute more importance to language-specific heterogeneity regardless of predictive or 

explanatory issues. The strategy of using language-specific datasets is fundamental to describe 

GitHub communities of other programming languages that have typical application scenarios 

(e.g., JavaScript) and to learn how the philosophy behind a programming language affects its 

socio-functional structure.  

Table 12. Comparison between Python and Java syntax 

Syntax Python Java 

Variable Declaration x = 1 int x = 1; 

Loop Expression for i in range(5): 

      function(i) 

OR 

[function(i) for i in range(5)] 

for (int i = 0; i < 5; i++) { 

  function(i); 

}      



 

 

Figure 25. Typical Python and Java market structure on GitHub 

Though profited from repository embeddings, this research is also limited to the view of 

GitHub repositories. However, the answers to some questions require directly organizing data 

in the unit of contributors, such as exploitation and exploration in contributors’ coding skills 

(see Section 6). This question could be answered by probing the content of contributors’ 

commits to see whether they make similar contributions (e.g., using similar libraries) to the 

repositories or not. Another contributor-driven question relates to the homophily in the 

contributor network, i.e., whether contributors tend to collaborate with people sharing similar 

contribution history or people with different backgrounds. This question may be explored by 

characterizing contributors with embeddings built from the contributor collaboration network 

(see Section 2.1) and computing the distance between the embeddings of adjacent contributors. 

9 Conclusions 

This research discloses the heterogeneity between the Python and Java communities in social 

coding with repository embeddings from a newly constructed dataset. By building up a 

representation learning pipeline, the paper first illustrates how to generate high-quality 



repository embeddings with content and contextual data, including import libraries, readme 

text, and co-contributor networks. The quality of embeddings is verified by comparing model 

performance on specialized prediction tasks, and the results suggest that models derived from 

Word2Vec perform the best in representing the repositories for both languages. This refutes 

the prevalence of transformer and topic models in prior textual analyses.  

With the best embeddings, my research then demonstrates the language-specific heterogeneity 

through the analysis of socio-functional mapping, programmers’ contributing diversity, and 

prediction of repository popularity. For socio-functional mapping, methods such as CCA and 

neighbor distance comparison are used, leading to the discovery that the Python community 

presents a “many-to-many” mode, indicating more competition among functionally similar 

repositories and more diversity among the functions of socially linked repositories. In contrast, 

the Java community is closer to a “one-to-one” model in which the contributor groups are more 

specialized in fewer functional areas. The insights from such discrepancy for repository 

recommendations are also argued. Regarding programmers’ contributing diversity, results 

from the correlation tests illustrate that a higher contributing diversity signifies a larger 

probability to contribute to more popular repositories in Python, but not in Java. This implies 

that such diversity is more valued by the Python community. Finally, regarding repository 

popularity prediction, we see that embedding-based features significantly improve the model 

performance, and functional embedding is more important for predicting Python repositories’ 

popularity, while social embedding assists more in predicting Java repositories.  

The reasons for the language-related divergence are discussed by reviewing the difference in 

design philosophy, extensibility, grammar, and application scenarios (markets) between the 

two languages. Python’s flexibility and concentration in the market within coders leads to its 

highlight on functionality, while Java’s thoroughness and focus on the end-user market makes 

it dominated by authoritative organizations. The findings provide evidence for the existence of 



linguistic relativity in programming languages, uncovering the latent connections between 

language properties and user behaviors in the GitHub ecosystem.    
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