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ABSTRACT 

 

Normalization is a canonical nonlinear computation that underlies multisensory 

integration, attention, and other sensory processing. In this computation, the response of one 

neuron to a set of stimuli is normalized by the weight of all the presented stimuli – not just its 

preferred stimulus. Normalization is ubiquitous and conserved across species, suggesting its 

fundamental role in brain processing. When central brain computations go awry, the consequences 

can be severe – and normalization has been implicated in brain disorders like autism. While 

normalization has been described in multiple modalities and species, its functional circuitry and 

mechanism remain unknown. This project aims to produce an experimental model to address that 

gap. Specifically, here, we investigate divisive normalization in awake mouse visual cortex. This 

mouse model will enable the use of powerful in vivo genetic, electrophysiology, imaging, 

optogenetic, and psychophysics techniques. 

Using transgenic mice, excitatory neurons in mouse V1 were functionally labelled with 

GCaMP6s. Two-photon imaging was used to capture the activity of large V1 excitatory 

populations in awake mice presented with cross-inhibitory stimuli designed to evoke 

normalization. We recorded from hundreds of tuned and untuned neurons in an unbiased manner 

and observed tuned normalization similar to what has been observed in other species. These 

findings were cross-validated using electrophysiological recordings. Additionally, in our 

electrophysiology data, normalization strength was observed to have a depth dependence, 

suggesting the need for further study of laminar differences in this computation. Our data show 

that normalization can be visually evoked and measured in the V1 of awake, head-fixed mice, 

opening the door to further functional and mechanistic study. 



 ix 

Furthermore, we examined how normalization influences population pairwise noise 

correlations. We observed that normalization increased the correlation of similarly orientation-

selective pairs with high normalization strength and decreased the correlation of oppositely 

orientation-selective pairs with high normalization strength. We also observed that in mice, in 

contrast with macaques, normalization decreased the correlation of similarly orientation-selective 

pairs with low normalization strength. Normalization mechanisms underlie the changes in pairwise 

correlations that can explain improved behavioral performance in attention, so further 

understanding of normalization will help better understand processes that modify pairwise 

correlations, like attention. 

We anticipate that this work will provide groundwork for continuing to study normalization 

in the mouse and may ultimately lead to circuit dissection and behavioral assays, contributing to 

an understanding of the role of normalization in normal physiology and behavior, aberrant 

circuitry, and disease. 
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CHAPTER 1 

INTRODUCTION

 

Normalization, a canonical brain computation 

Over an evolutionary timescale, organisms evolve features that add survival value. Brain 

processes and computations are no exception. To interact with the world and meet the requirements 

for survival in a physical and competitive environment, the brain must keep pace with rapid 

stimulus bombardment from the physical world, extracting relevant stimuli to direct behaviors that 

are compatible with life. Failure to do so poses a risk of starving or becoming prey, among other 

problems: in short, managing rapid competing stimuli is a matter of life and death. To meet this 

need, the brain manages massive amounts of external and internal stimulus data every split second, 

processing that data into usable signals in a manner that appropriately prioritizes salience while 

discarding irrelevant information (H. Barlow 2001).  

To better understand the ways that the brain can process such large quantities of 

information, neuroscience has turned to structural, descriptive, and functional examination of the 

brain at different scales (Marr 1982). In their seminal work, Hubel and Wiesel described a linear 

model for neuronal responses in cat V1 (D. H. Hubel and Wiesel 1959; 1962). Not long after, this 

linear model was supplemented with new information about cross-orientation suppression, 

contrast saturation, and other non-linearities in neuronal responses (Bonds 1989). The 

normalization model was proposed to better capture the nonlinearities present in V1 neuron 

responses, originally for when multiple stimuli were shown simultaneously in a cross-oriented 

plaid (Heeger 1992; M. Carandini and Heeger 1994; Matteo Carandini, Heeger, and Movshon 

1997; D. G. Albrecht and Geisler 1991). Since then, normalization has been shown to underlie the 
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non-linearities present in fundamental processing in many brain regions and species (Matteo 

Carandini and Heeger 2011; Kouh and Poggio 2008). In normalization, the response of a neuron 

is normalized by the activity of its neighbors and ultimately weighted according to the relative 

strength of stimuli.  

Fundamentally, normalization is a computation. The normalization model describes a 

transform of a set of inputs to produce an output. By creating models that capture data, falsifiable 

predictions can be further made and tested to inform further understanding of the brain and an 

iterative process can continue to refine the original model.  

In a widely adopted model of normalization, the computation can be modelled as a divisive 

function, in which the neuron response is normalized by the total stimulus intensity (Matteo 

Carandini and Heeger 2011). Thus, for example, the linear sum of a neuron’s responses to cross-

oriented gratings is divided by the aggregate activity pooled across nearby neurons. In this form, 

normalization can be modeled by the following equation, 

𝑅 =
𝑤1𝑐1 + 𝑤2𝑐2
𝑐50 + 𝑐1 + 𝑐2

 

in which the numerator indicates linear summation corresponding to two stimuli with contrasts c1 

and c2, and the denominator indicates the normalizing component according to the strength of the 

stimuli. 

Thus, in the case of a stimulus that generates a strong response masked by one that 

generates no response, both at equal contrasts, the expected result would approximate a simple 

average of the responses to each stimulus. The normalization model also makes a prediction about 

the response to a pair of stimuli that each evoke a response, where one response is weak and the 

other is much stronger. In this case, the normalization model would predict a response heavily 
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weighted to the stronger stimulus, and so the response of the neuron would be expected to closely 

match the response to the stronger stimulus (Busse, Wade, and Carandini 2009; Matteo Carandini 

and Heeger 2011).     

Normalization occurs on a population level, and importantly, the output from normalization 

becomes the input in downstream areas, affecting downstream processing, perception, cognition, 

and behavior (Busse, Wade, and Carandini 2009; Coen-Cagli and Schwartz 2013). Locally, the 

computation can also explain changes in functional network connectivity in the form of pairwise 

correlations and can even account for the changes in pairwise correlations observed in attention 

(Verhoef and Maunsell 2017). Because normalization manifests in many brain areas and 

modalities, the impact of normalization on early stimulus representation is magnified over the 

cortical processing hierarchy, profoundly influencing stimulus representation in the brain. 

While normalization models were first developed to explain the nonlinear summation of 

visual responses, the computation is also observed in a variety of modalities and species ranging 

from olfaction in fruit flies to light adaptation in retina to decision-making in macaques (Laughlin 

1981; Olsen, Bhandawat, and Wilson 2010; Louie, Grattan, and Glimcher 2011). Normalization 

underlies multisensory integration, influencing the relative representation of stimuli in the brain 

by emphasizing some aspects of the stimulus and de-emphasizing others (Ohshiro, Angelaki, and 

DeAngelis 2011). In this way, normalization is one way that the brain handles competing inputs, 

be they visual (i.e. cross-oriented gratings), olfactory (i.e. simultaneous presentation of different 

odors), or cognitive (i.e. simultaneous consideration of different reward options). Normalization 

plays a role in diverse processes, species, and modalities, suggesting it is a canonical brain 

computation (Matteo Carandini and Heeger 2011). 
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Along with its role in sensory processing, normalization also plays an important role in 

attention. Evidence from macaque V4 and MT shows that changes in neuronal firing rates due to 

attention can be explained by normalization. Furthermore, the changes in pairwise correlations 

observed in attention can also be explained by a normalization model (Ni, Ray, and Maunsell 2012; 

Ni and Maunsell 2017; Verhoef and Maunsell 2017). These correlations changes have previously 

been shown to be central to improving behavior in attention (Marlene R. Cohen and Maunsell 

2009). Together, these findings highlight a central role of normalization in population 

representation of sensory information and indicate a need to better understand normalization. 

Although normalization has been described in many species, modalities, and contexts, its 

functional properties and circuit mechanisms remain elusive. Here, we develop a mouse model of 

normalization to pave the way for further examination of this computation. In particular, we 

describe visually-evoked normalization in awake mice using two-photon population imaging and 

electrophysiology. In doing so, we characterize the properties of normalization in mice, comparing 

and contrasting with findings in other species. At the same time, we take advantage of population 

imaging to better understand changes in pairwise correlations and network structures engaged by 

this computation. It is our hope that a mouse model of visually evoked normalization will provide 

fertile ground for continued study of normalization, including its statistical properties, circuit 

underpinnings, and behavioral relevance. 

 

Characterization of normalization in neuronal response properties  

While some aspects of visual processing appear locally linear, this linearity breaks down 

and gives way to nonlinearities in multiple different visual processes. Some examples include 

contrast saturation, surround suppression, and cross-orientation inhibition (Matteo Carandini and 
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Heeger 2011). While different mechanisms may give rise to each of these three phenomena, they 

can all be united with one computation: normalization.  

Contrast modulation of firing rate and many other visual neuronal response properties 

across different brain regions and species can be well-described by the normalization model 

(Heeger 1992; Tolhurst and Heeger 1997; Heuer and Britten 2002; 2007; Keller and Martin 2015; 

Sawada and Petrov 2017; Matteo Carandini, Heeger, and Movshon 1997; Simoncelli and Heeger 

1998; Rust et al. 2006; Zoccolan, Cox, and DiCarlo 2005). The model manages to capture response 

properties of neurons across species and modalities, but normalization has been perhaps most 

extensively studied using a cross-species-validated model of cross-orientation suppression in 

primary visual cortex.  

In addition to modeling contrast saturation and other phenomena with normalization, 

studies of normalization have been conducted using cross-orientated stimuli to elicit normalization 

in cat and macaque (Matteo Carandini, Heeger, and Movshon 1997; Busse, Wade, and Carandini 

2009; Ruff, Alberts, and Cohen 2016). In the early 1990s, Heeger proposed the normalization 

model to explain non-linearities in the response properties of cat V1 neurons (Heeger 1992). 

Subsequently, Carandini and Heeger studied the nonlinear summation by V1 cells of cross-

oriented stimuli presented to anesthetized macaques while recording from visual cortex. They 

found that rather than sum the expected responses to each stimulus, individual neurons weighted 

the stimuli relative to their contrasts, and spiked according to a weighted average of their responses 

to each individual stimulus. While cortical normalization was first characterized in early studies 

in the cat and macaque visual cortex, it has also been described in other species like the tree shrew, 

suggesting that it is a common and conserved computation (MacEvoy, Tucker, and Fitzpatrick 

2009).  
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Further study emphasized that beyond normalization at the single neuron level, the 

computation occurs on a population-wide level (Busse, Wade, and Carandini 2009). In that study, 

Busse and colleagues showed cross-oriented plaid stimuli to anesthetized cat while using a Utah 

array to record from layer 2/3 of anesthetized cats. Because the array covered multiple orientation 

selective columns, the authors recorded from units with a broad range of stimulus preferences. 

When fitting the data from this population of neurons to the normalization model and to other 

models, the normalization model captured population responses best, highlighting that the 

computation occurs on a population level. In addition, in further experiments in the same study, 

recording from V1 and MT, showed that the output from normalizing populations becomes the 

input into downstream brain regions, as measured in MT (Busse, Wade, and Carandini 2009).  

In addition to this work in cat, work in macaque has continued to characterize 

normalization in populations of V1, MT, and V4 neurons. In a study of normalization in passively 

viewing macaques, Ruff and his colleagues presented multiple sets of cross-oriented plaids at 

various orientations while recording from populations of neurons. Neuron normalization strength 

between conditions was correlated, suggesting that the computation does not depend on stimulus 

orientation, but rather on a neuron’s propensity to normalize (Ruff 2016).  

In addition to visually-evoked normalization, recent experiments have explored 

optogenetic activation as a method for evoking increased activity in neurons, meant to evoke 

normalization (Nassi et al. 2015; Histed 2018; Sato et al. 2016a). Nassi and his co-workers used 

optogenetic activation to activate distal neurons in macaques while recording from V1; they 

observed summation at low contrasts and division at high contrast (Nassi et al. 2015). Histed 

similarly optogenetically activated distal neurons in mouse V1 binocular zone while recording 

from the contralateral hemisphere during the presentation of a white noise stimulus, but reported 
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mostly linear summation in mouse V1 (Histed 2018). Most of the neurons identified in this study 

had low firing rates, raising the question of whether the stimuli were effective in generating 

responses from which normalization could be reliably investigated. Nevertheless, these studies 

point to the possibility of modulating normalization with optogenetics, an intriguing possibility for 

future study.  

 

Normalization and attention 

Normalization has been heavily implicated in attention. Spatial attention increases the 

emphasis placed on a particular section of the visual field and can dramatically influence the 

responses of visual cortical neurons (Desimone and Duncan 1995; Reynolds and Chelazzi 2004; 

J. H. R. Maunsell and Treue 2006). Recently, a model of normalization for attention has emerged 

that accounts both for the firing rates and correlation changes observed in attention (Boynton 2009; 

Reynolds and Heeger 2009; Lee and Maunsell 2009; 2010; Verhoef and Maunsell 2017). In both 

single cell and population studies, normalization has emerged as the key mechanism by which 

normalization influences neuronal changes due to attention: and a normalization model of attention 

accounts for many of the changes in firing rate depending on the attended stimulus and population 

changes due to attention (Lee and Maunsell 2009; Ni, Ray, and Maunsell 2012; Ni and Maunsell 

2017; 2019; Verhoef and Maunsell 2017).  

To different extents depending on the individual neuron, attention can increase the firing 

rate of neurons that respond to the receptive field to which attention is directed. Studies in macaque 

show that different neurons exhibit heterogeneous “tuned” levels of divisive normalization – some 

neurons exhibit standard weighted averaging, while others super-normalize or show no effects of 

normalizing (Ni, Ray, and Maunsell 2012). In studies of attention, this tuning held functional 
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relevance (Lee and Maunsell 2009; Ni and Maunsell 2017; Ni, Ray, and Maunsell 2012; Verhoef 

and Maunsell 2017). In addition to its fundamental roles in multisensory integration and 

information processing, modulation of population activity by attention depends on normalization 

mechanisms, and neurons that do not normalize largely do not show attention modulation (Lee and 

Maunsell 2009; 2010; Ni, Ray, and Maunsell 2012).  

In other experiments, attention has been shown to decrease the correlations within areas of 

visual cortex, thought to improve population sensitivity (Marlene R. Cohen and Maunsell 2009). 

These changes in pairwise correlations are influenced by different factors, like choice selectivity, 

and contexts like difficulty: for example, pairwise noise correlations decrease to a greater extent 

in more difficult tasks (Ruff and Cohen 2014b; 2014a). Importantly, improvements in behavior 

due to attention correlate with changes in pairwise correlations. How these changes are related to 

computation and stimulus representation is an area of active investigation. Recent work has shown 

that these changes in correlation arise from normalization mechanisms (Verhoef and Maunsell 

2017).  

In this work, Verhoef et. al. trained macaques to perform a visual spatial attention task, 

then recorded from V4 while the monkeys completed the task. When attention was not directed to 

a pair of orthogonal stimuli in the receptive field, pairwise correlations between neurons with 

similar orientation selectivity were increased and correlations between pairs of neurons with 

opposite orientation selectivity were decreased, consistent with a normalization model of mutually 

suppressive neuron populations. Verhoef and Maunsell found that when the animal directed 

attention to stimuli in the receptive field, correlations between pairs of neurons that shared similar 

orientation selectivity decreased in correlation relative to stimuli the macaque was not attending 

to. Importantly, these findings can be explained by a model for populations of neurons that 
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mutually suppress each other according to a normalization model. In this model, the population 

that responding to an attended, preferred stimulus receives additional excitatory drive, suppressing 

the other subpopulation of neurons and decreasing the resultant suppression from that 

subpopulation, decreasing shared suppression and decorrelating the first population’s pairwise 

correlations (Verhoef and Maunsell 2017). 

Altogether, these studies have shown that the changes in neuronal representation of stimuli 

due to attention are largely influenced by local circuitry and the different extents to which neurons 

normalize. Globally, these findings strongly corroborate the “normalization model” of attention, 

in which the mechanism of attention relies on normalization circuitry (Lee and Maunsell 2009; 

Reynolds and Heeger 2009). This points to a need to better understand normalization, as it 

underlies important cognitive processes, including attention.  

 

Biophysical, circuit, and network mechanisms for normalization  

From a computational perspective, one computation, such as normalization, can be 

produced through multiple different processes (Matteo Carandini and Heeger 2011). Because 

normalization is an abstract computation that takes place in many different modalities and species, 

it can be effected through different biophysical mechanisms.  

In some cases, including fruit fly olfaction, the mechanisms that produce normalization are 

known to be driven by inhibition (Olsen, Bhandawat, and Wilson 2010). However, there remains 

much debate as to the origin of normalization measured in the cortex, with some favoring a 

subcortical contrast saturation-based model (Freeman et al. 2002; Priebe and Ferster 2006), others 

positing cellular conductance-based mechanisms (M. Carandini and Heeger 1994), and still others 

favoring a local, cortical basis for normalization in which balanced excitation and inhibition result 
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in divisive gain modulation of neuronal response (Frances S. Chance, Abbott, and Reyes 2002). 

The field has not settled on a mechanism, and the participation of multiple biophysical mechanisms 

(possibly with distinct functional roles) cannot be excluded. Circuit level studies will be important 

for elucidating this open question.  

Some studies point to a subcortical origin for normalization in the cortex. Data from cat 

shows that at high contrasts, there is contrast saturation in LGN neurons (Priebe and Ferster 2006). 

It has been posited that at overall contrasts past saturation, responses to a cross-inhibitory stimulus 

could result in decreased firing in V1 neurons compared to a linear sum of responses to individual 

stimulus components. This model would also predict that at low contrast, neurons should primarily 

sum activity. Thus, this model on its own cannot explain normalization at low contrast cross-

inhibitory stimulus pairs, at which LGN neurons exhibit linear response properties (Busse, Wade, 

and Carandini 2009). Additionally, since normalization can be observed in populations, this model 

would require that a vast majority of neurons providing input from the dLGN to V1 exhibit contrast 

saturation. However, that is not the case: the dominant inputs to layer 2/3 from dLGN are 

remarkably linear in mice and other species (Seabrook et al. 2017). In the mouse for example, 

LGN neurons in mouse (that form the main input to V1) show linear responses, with an average 

contrast at half-maximal response of approximately 20% (Niell and Stryker 2008). Furthermore, 

evidence of normalization in higher visual cortex areas like V4 and MT and modulation by 

cognitive processes like attention and receptive field properties suggest an important cortical basis 

for cortical normalization (Heuer and Britten 2002; Ni, Ray, and Maunsell 2012; Verhoef and 

Maunsell 2017). While there may be a place for contrast saturation in the responses of some 

neurons, this model seems unlikely to be the primary explanatory mechanism for normalization. 
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One way to further study this question would be to examine normalization across cortical 

layers to observe if normalization emerges or is modified at any particular stage of cortical 

processing. The thalamic contrast saturation model would also predict that robust normalization 

should be observed as early in the cortical layer processing hierarchy as layer 4, which receives 

primary inputs from the dLGN. It is possible to record from different layers to gain a better 

understanding of the stages of cortical processing in which normalization takes place: for example, 

if normalization does not occur in layer 4, normalization cannot be taken to be simply inherited 

from the LGN. Surround suppression has been examined in this way in macaque visual cortex and 

suggests that cortical layers that receive receptive field input directly from thalamus reflect 

surround suppression latest (Bijanzadeh et al. 2018). Thus, there may be a layer-specificity to 

computations involving normalization that can be tested by recording across cortical layers. 

Synaptic depression could also contribute to normalization (Matteo Carandini and Heeger 

2011; Rosenbaum, Rubin, and Doiron 2013). In a representation of this model, as pre-synaptic 

current increases to a neuron, post-synaptic current ultimately plateaus, resulting in a diminished 

neuronal response. Thus, when multiple stimuli are presented simultaneously, neuronal responses 

are decreased relative to when they are presented alone. 

On a more local, cortical level, shunting inhibition was an early theory offered to explain 

the mechanism that normalizes neuron responses. This model depends on the RC model of the cell 

membrane, in which the cell membrane is modelled as a resistor and capacitor in parallel. In this 

case, the neurons in a normalization pool effectively inhibit each other by increasing each other’s 

conductance. Thus, increasing the stimulus energy would mediate shunting inhibition. Indeed, 

shunting inhibition was originally hypothesized to mediate normalization in early studies of 

normalization (M. Carandini and Heeger 1994; Matteo Carandini and Heeger 2011). Here, the 
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cellular processes of neurons would be sufficient to mediate normalization and would depend 

primarily on recurrent excitation (R. J. Douglas et al. 1995; Shushruth et al. 2012). Cortical neurons 

in awake animals are constantly in a high conductance state (Destexhe and Paré 1999), but in 

previous theoretical work this was paradoxically shown to result in increased excitability (Hô and 

Destexhe 2000). Experiments are required to better understand how recurrent excitation and 

conductance changes can influence neuronal activity.  

In addition to classically tuned excitatory populations, the mouse neocortex also includes 

a rich diversity of inhibitory neurons, with different morphologies, connectivity, tuning properties, 

electrical properties, neurotransmission profiles, and gene expression (Isaacson 2010; Fino and 

Yuste 2011; Packer and Yuste 2011; Fino, Packer, and Yuste 2013; Kerlin et al. 2010; Runyan et 

al. 2010; Liu et al. 2009; Ma et al. 2010; Znamenskiy et al. 2018). In the mouse visual cortex, 

approximately 20% of neurons are inhibitory (Niell and Stryker 2008), among which this diversity 

of classes and subclasses can be observed even between layers. Different interneurons classes are 

present in varying proportions and numbers across the neocortex, suggesting distinct roles in signal 

processing (Vogels, Rajan, and Abbott 2005; Isaacson and Scanziani 2011; Adesnik et al. 2012; 

Nienborg et al. 2013). In one study, shared excitatory and inhibitory input was shown to be a 

mechanism for decorrelating neuronal activity, emphasizing the possibilities of inhibition to 

generate complex computations (Renart et al. 2010). While various mechanisms have been 

proposed to account for divisive normalization (Wilson et al. 2012; Keller and Martin 2015; Sato 

et al. 2016a), inhibition is currently the most widely considered theory (Wilson et al. 2012; 

Hauesler and Maass 2017).  

It has been posited that separate inhibitory populations tuned to different orientations could 

provide inhibition to populations of excitatory neurons with orthogonal preferences in cross-
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inhibition; however this would suggest that the normalization of a neuron varies depending upon 

stimulus preferences. This was shown not to be the case (Ruff, Alberts, and Cohen 2016). Thus, 

normalization is thought to be a property of the neuron itself or its embedded position in a 

homogenously pooling normalization network. This was hypothesized in a 1982 paper by Morrone 

and colleagues, in which simple cells in the cat striate cortex were shown to be evenly suppressed 

by cross-inhibitory gratings irrespective of orientation and spatial frequency (Morrone, Burr, and 

Maffei 1982). Nevertheless, there is some functional specificity of synaptic connectivity among 

excitatory neurons based on similarities in receptive field properties. In one study in mouse visual 

cortex, neurons imaged and shown to have similar orientation preferences in a two-photon 

microscopy experiment were twice as likely to form synaptic connections when later patched in 

vitro, in comparison with pairs that had orthogonal preferences. This suggests that there are local 

subnetworks of excitatory neurons that process similar stimulus information and that recurrent 

connectivity is related to shared receptive field properties and visual responses (Ko et al. 2011). 

Consequently, it is possible that these subnetworks can act in concert to suppress other 

subnetworks indirectly through pooled inhibition or other suppressive mechanisms.   

There exists strong feedforward inhibition in thalamocortical circuits, in which fast-spiking 

inhibitory neurons were shown to respond to feedforward excitation faster than their excitatory 

counterparts (Cruikshank, Lewis, and Connors 2007). Among the many different types of 

neocortical interneurons, parvalbumin (PV) expressing neurons tend to be fast-spiking and are 

good candidates for participation in divisive normalization: they synapse directly onto pyramidal 

soma and peri-somatic regions, spike at relatively high rates, have low input resistance synapses, 

and form electrical synapses, all of which allow these neurons to rapidly modulate the activity of 

neighboring neurons (Meyer et al. 2002; Kawaguchi and Kubota 1997). Additionally, PV neurons 
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can be tuned, albeit broadly, to orientation or direction, similar to their excitatory counterparts 

(Cardin, Palmer, and Contreras 2007; Runyan et al. 2010). Because they are tuned and form 

specific, differential synapses with distinctly tuned excitatory neurons but also a dense network of 

electrical synapses with other PV neurons, PV neurons could be positioned to pool activity related 

to a stimulus to normalize the activity of neighboring excitatory neurons.  To evaluate the 

possibility that PV neurons contribute to normalization, excitatory and PV inhibitory population 

activity could be recorded simultaneously during evoked divisive normalization to investigate 

time-locked functional relationships between these populations.  

Recent work has shown that inhibitory neurons in mouse receive input from excitatory 

cells with a wide range of orientation tuning, offering another insight into how inhibition functions 

in cortex (Bock et al. 2011; Hofer et al. 2011). There is minimal orientation and phase selectivity 

of inhibitory neurons in mouse visual cortex and presence of untuned inhibitory neurons in the 

visual cortex of other species (Cardin, Palmer, and Contreras 2007; Niell and Stryker 2008). This 

indicates that inhibitory neurons pooled local activity that could be leveraged for computation 

(Kerlin et al. 2010). Indeed, this feature has been offered as a mechanism for normalization, 

balanced excitation and inhibition (F. S. Chance and Abbott 2000; Frances S. Chance, Abbott, and 

Reyes 2002), coupling metabolism to brain activity (Buzsáki, Kaila, and Raichle 2007), and 

contrast-invariant tuning (Lauritzen and Miller 2003).  

Relatedly, in the inhibitory stabilized network (ISN), blanket inhibition plays a critical role 

in maintaining many of the network’s properties including normalization (Rubin, Van Hooser, and 

Miller 2015). There have been efforts to construct in silico models that produce normalization. 

Using a rate-based recurrent neural network designed with inhibition, Miller and colleagues found 

that an inhibition-stabilized network could produce response properties similar to those observed 
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in normalization when a contrast mask was superimposed onto a visual stimulus (Ahmadian, 

Rubin, and Miller 2013; Rubin, Van Hooser, and Miller 2015; Hennequin et al. 2018). This work 

advances a theory of inhibition-stabilized networks, in which balanced inhibition stabilizes the 

firing activity of a network of neurons. Importantly, the model also makes a prediction about 

paradoxical inhibition, in which both inhibition and excitation decrease when inhibitory units 

receive additional drive. Models like this can be used to make predictions about neural dynamics, 

like paradoxical inhibition, that can be tested experimentally. Cortical dynamics generally include 

a strong set of recurrent and balanced excitation and inhibition (Wolf et al. 2014), which would be 

in line with this model. Finally, this type of balanced excitation and inhibition could contribute to 

decorrelating activity in cortex, which makes it an intriguing candidate for a computation 

implicated in correlation changes in cortex (Renart et al. 2010). 

While inhibition may play a network role in normalization, its direct synaptic effects on 

normalizing neurons has recently challenged by electrophysiologic studies. In recent work using 

patch-clamp electrophysiology, Sato and colleagues optogenetically activated binocular zone 

neurons in mice while recording from the contralateral monocular zone. When they showed a 

visual stimulus in conjunction with the optogenetic activation designed to evoke normalization, 

they found a decrease in excitation in comparison with activating the distal network without visual 

stimulus, in which neurons showed summation (Sato et al. 2016a). They did not find any increase 

in inhibitory post-synaptic potentials in any of the neurons they patched (n=10). This finding is 

consistent with a model of normalization involving strong local inhibitory networks (Rubin, 

Van Hooser, and Miller 2015; Ozeki et al. 2009), in which the excitatory/inhibitory ratio 

suppresses overall network activity during periods of excitation, but does not directly synaptically 

suppress excitatory neurons (Haider et al. 2006; Haider, Häusser, and Carandini 2013).  
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Katnzner and colleagues also found that normalization is immune to blockage of GABAA 

receptors in cat visual cortex, decreasing the likelihood that normalization occurs exclusively 

through inhibition (Katzner, Busse, and Carandini 2011). While it is possible that inhibition does 

not contribute to normalization, this experiment still leaves open the possibility of electrical 

synapses or other inhibitory neurotransmitters playing a role in the computation. It also leaves 

open the possibility that normalization exists endogenously in recurrent networks, but is sharpened 

by inhibitory networks, similar to other brain phenomena like tuning (Seabrook et al. 2017).  

 It is possible that one, some, or all of these potential mechanisms participate in mediating 

normalization. Distinguishing between these multiple mechanisms will be important to further 

understanding the computation, its functional implications, and pathologies in which 

normalization may be compromised. With a mouse model of normalization, it will become easier 

to elucidate the cell types, dynamics, and networks involved in normalization.  

 

Possible computational roles for normalization in neuron responses 

As normalization is so ubiquitous and conserved, it may improve an organism’s processing 

of information. In terms of the representation of stimuli, marginalization and statistical 

independence have been mathematically shown to be effected by a normalization model (O. 

Schwartz and Simoncelli 2001; Simoncelli and Olshausen 2001), consistent with the efficient 

coding hypothesis (Horace Barlow 1961; Attneave 1954; H. Barlow 2001). This theoretical work 

suggests that normalization can improve the encoding of a stimulus by reducing or eliminating the 

statistical dependencies between linear filters, allowing for statistical independence across natural 

signals (O. Schwartz and Simoncelli 2001; Coen-Cagli and Schwartz 2013; Odelia Schwartz and 

Coen-Cagli 2013; Sanchez-Giraldo, Laskar, and Schwartz 2019). Furthermore, normalization has 
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been shown to factorize the probability distribution function of natural images (Malo and Laparra 

2010). Artificial networks also point to lateral inhibition producing adversarial effects that improve 

population coding by increasing the distance between stimuli and sparsifying the code, making it 

less prone to perturbations (Paiton et al. 2020). Additionally, in improving the statistical 

independence of linear inputs to a system, normalization has been shown to decrease mutual 

information between neurons (Valerio and Navarro 2003).  

Additional work shows that normalization could have an influence on individual neuronal 

variability. Fluctuations in variability of individual neurons as well as shared variability directly 

influence the capacity of a system to represent and transmit information (Tripp 2012). This could 

contribute to improved sensory transmission. 

In all cases, these theoretical studies can be used to generate testable hypotheses. At the 

same time, more complete genetically, spatially, and functionally labelled data from experiments 

can be used to further constrain models to continue to advance the field’s understanding of cortical 

computation.  

 

Shared neuronal variability and normalization: pairwise noise correlations 

On average, neurons in a local cortical circuit exhibit small, positive noise correlations, in 

which the activity of pairs of neurons covaries (Smith and Kohn 2008; M.R. Cohen and Kohn 

2011). These noise correlations can be shaped by external stimuli as well as by synaptic and 

cellular properties and network properties like balanced synaptic input, shared excitatory and 

inhibitory inputs, and feedback inhibition (Kohn and Smith 2005; Renart et al. 2010; Litwin-

Kumar et al. 2011; Tetzlaff et al. 2012; Rosenbaum, Rubin, and Doiron 2013; Wolf et al. 2014). 

Information encoding depends on the activity of individual neurons as well as the relationship 
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between neurons, including pairwise correlations  (Shadlen and Newsome 1994; Kohn et al. 2016). 

Theoretically, shared noise can prevent a population from averaging out noise; even weak noise 

correlations can considerably diminish the signaling of a population (Shadlen and Newsome 1994). 

Noise correlations have been theorized and shown to be information-limiting in some cases 

(Moreno-Bote et al. 2014; Kohn et al. 2016; Kafashan et al. 2021). However, noise correlations do 

not always necessarily reduce information, and different readout mechanisms can influence this 

relationship between correlations and information (Abbott and Dayan 1999; Seung and 

Sompolinsky 1993; H. Barlow 2001). In behavioral studies, reductions in noise correlations can 

largely explain performance improvements in attention (Marlene R. Cohen and Maunsell 2009). 

Altogether, considerable work has shown the correlations influence the scope of computation that 

is possible in a way that can be both calculated theoretically and measured experimentally.   

In addition to the changes in sensory stimulus representation in individual neurons that are 

discussed above, there have also been efforts to model the effects that normalization would impose 

on population pairwise correlations. Tripp proposed that on the whole, normalization should 

decorrelate neuronal activity and reduce variability, improving information transfer (Tripp 2012). 

Indeed, in a study of normalization in awake, passively viewing macaques using cross-inhibitory 

stimuli, Ruff and Cohen found that overall, correlations decreased as pairwise normalization 

increased (Ruff, Alberts, and Cohen 2016). Furthermore, experimental studies relating 

normalization to neuronal response variability on a single trial basis found that in trials where 

normalization was inferred to be strong, pairwise correlations decreased in pairs of neurons in units 

with similar tuning preferences (Coen-Cagli and Solomon 2019). In this study, macaques were 

either anesthetized or passively viewing drifting gratings (Coen-Cagli and Solomon 2019). Neither 

of these studies distinguished between pairs of units with similar versus different orientation 
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selectivity as in Verhoef and Maunsell’s work (Verhoef and Maunsell 2017), but they both show 

that normalization may have a powerful effect on shared variability in a population.  

In addition to influencing noise correlations in passively viewing animals, normalization 

has also been implicated in behavioral studies, particularly in the changes of noise correlations 

observed in attention. Indeed, in Verhoef and Maunsell’s 2017 study in macaques trained on an 

attention task, changes in pairwise noise correlations (shared neuronal variability) were shown to 

change in a more structured way according to pairwise relational orientation selectivity model, and 

in agreement with a stochastic normalization model (Verhoef and Maunsell 2017). This was 

discussed here previously, but briefly, it was shown that a normalization model can explain 

changes in pairwise correlation due to attention (Verhoef and Maunsell 2017). 

In recent theoretical work focused on attention and shared variability, attentional 

modulation of neuronal variability was modelled and hypothesized to result from the top-down 

modulation of inhibition (Kanashiro et al. 2017). Indeed, subsequent work from the same group 

showed that low-dimensional shared variability could be recapitulated by a spiking neural network 

matching the temporal and spatial scales of inhibitory coupling found in cortex (Huang et al. 2019). 

In this model, modulating inhibitory neurons via a top-down signal could capture the changes in 

pairwise correlations observed in experimental studies of attention.  

System with modifiable interconnections improves capacity to hold information, shown in 

synaptic studies (Gardner-Medwin 1976; H. Barlow 2001). To extrapolate, this concept can also 

be applied in the case of functional networks and interconnections that are modified in a stimulus- 

and context-dependent manner (Dechery and MacLean 2018; Verhoef and Maunsell 2017; 

Marlene R. Cohen and Maunsell 2009; Ruff, Alberts, and Cohen 2016). Functional networks that 

can be modified may also improve information capacity. In humans, attention can increase the 
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mutual information between V1 and MT, two distinct areas of visual cortex, indicating a potential 

avenue by which attention may influence cognition and a way to quantify the effects of cortical 

processes like attention (Saproo and Serences 2014). In each case, these improvements in 

information encoding can be explained with divisive normalization, a canonical brain computation 

(Matteo Carandini and Heeger 2011). Understanding the effects of normalization on population 

activity and the cell types that contribute to it may elucidate key steps of processing in the brain, 

and may provide insight into how the brain cascades normalization and other computations to 

generate complex behaviors. 

While further work must be done to test the nuances and other hypotheses presented, 

theoretical modelling in combination with careful experimentation can offer guidance into the 

computational role of phenomena like normalization. 

 

Vision as a model for studying cortical computation 

Visual cortical processing has been extensively studied both to better understand vision 

proper and to better understand cortical processing. This dates back to early single-unit studies of 

visual receptive fields in cats (D. H. Hubel and Wiesel 1959; 1962). These early studies provided 

a rich foundation for characterizing the stimuli that evoke visual responses, the architecture that 

processes these responses across the cortex, and the mechanisms that underlie this processing in 

carnivores and primates (D. H. Hubel and Wiesel 1968; J. H. Maunsell and Essen 1983; D. G. 

Albrecht and Geisler 1991; Ferster and Miller 2000, 200; Fitzpatrick 2000; Duane G. Albrecht et 

al. 2002; Ringach, Shapley, and Hawken 2002; Ringach 2004). From this work, different models 

have emerged for visual responses and computation (David H. Hubel, Wiesel, and Stryker 1977; 

Sompolinsky and Shapley 1997; Duane G. Albrecht et al. 2002; Matteo Carandini et al. 2005; 
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Lennie and Movshon 2005; Priebe and Ferster 2008; 2012). Through a rich tradition of 

psychophysics and electrophysiology recording techniques, the careful manipulation of visual 

stimuli and behavioral tasks have related neuronal responses to external stimuli, cognition, and 

behavior (Britten et al. 1992; Marlene R. Cohen and Maunsell 2009; Lennie and Movshon 2005). 

In recent decades, the mouse visual cortex has emerged as an important model for the study 

of vision and cortical computation, as mouse vision shares many important similarities with other 

mammalian visual systems (Dräger 1975; Grubb and Thompson 2003; Mangini and Pearlman 

1980; Niell and Stryker 2008; 2010; Liu et al. 2009; Gao, DeAngelis, and Burkhalter 2010; Kerlin 

et al. 2010; Ma et al. 2010; S. L. Smith and Häusser 2010; Andermann et al. 2011; Bonin et al. 

2011; Piscopo et al. 2013; Glickfeld, Histed, and Maunsell 2013; Glickfeld et al. 2013; Glickfeld, 

Reid, and Andermann 2014; Roth et al. 2016; Van Hooser 2007; Seabrook et al. 2017, 201; 

Huberman and Niell 2011). Vision in mice has a basic organization similar to other mammals 

(Seabrook et al. 2017; Huberman and Niell 2011). Mouse eyes are positioned laterally on a 

mouse’s head, so most representations of the visual field in mouse V1 are monocular; however, 

there is a 40° binocular zone with inputs from both eyes (Seabrook et al. 2017). Photons are first 

detected by the retina; while mice lack a fovea, resulting in an even spatial frequency preference 

at a range of eccentricities (Niell and Stryker 2008) and a uniform cortical magnification (Kalatsky 

and Stryker 2003), the retina does include some ethologically relevant organization similar to 

carnivores and primates (Seabrook et al. 2017). Retinal ganglion cells project to the LGN in a 

retinotopic organization and also project to other visual areas like superior colliculus (SC). While 

the dLGN lacks the layers present in primate dLGN, there is a spatial organization of retinal 

ganglion cell input types in the mouse dLGN. In the dLGN, the visual input is spatially linearly 

filtered by center-surround cells with different spatial frequency preferences, with large center 
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diameters relative to other species (Grubb and Thompson 2003). This is analogous to filters 

observed in other species: mouse dLGN has similar visual receptive field and center-surround 

properties that are qualitatively comparable to other species studied (Tang et al. 2016). 

The dLGN sends inputs to layer 4 of the visual cortex, although in addition to this classical 

pathway, there are direction selective RGCs that bypass layer 4 to innervate superficial layers of 

the cortex, a finding that is also observed in koniocellular neurons in primate LGN (Cruz-Martín 

et al. 2014; Cheong et al. 2013). There are at least eleven distinct visual processing areas indicated 

by distinct retinotopic maps in mouse cortex, suggesting different processing role for each visual 

region of cortex analogous to other species (Wang and Burkhalter 2007; Garrett et al. 2014). In 

the mouse visual cortex, the average contrast at half-maximum response (c50) is approximately 

20%, the average preferred spatial frequency preference is approximately 0.04 cpd, and average 

preferred temporal frequency is approximately 2 Hz (Niell and Stryker 2008).  Layer 4 sends 

projections to layers 2/3 and layer 5, where further processing takes place and units develop 

orientation and direction preferences. Inter-layer connections in addition to lateral and cortico-

cortical processing come together to process stimuli in behavioral and context-dependent manners 

(Niell and Stryker 2010).  

Neurons in mouse V1 share many core characteristics, including receptive field, contrast 

response functions, spatial and temporal frequency preferences, orientation and direction tuning, 

contrast invariant tuning, and pairwise correlations, with other mammalian species. Despite the 

poor visual acuity (Prusky, West, and Douglas 2000), behavioral studies have shown that mice can 

detect contrast changes and use vision in behavioral decisions, such as in hunting (Hoy et al. 2016; 

Busse et al. 2011; Glickfeld, Histed, and Maunsell 2013). Altogether, it is likely that much can be 
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learned about vision and cortical processing from using the mouse as a model organism with many 

properties that are conserved across species. 

In addition to these important similarities, the mouse offers several other advantages and 

differences for studying cortical visual processing. Notably, mice are small and less expensive to 

work with compared to their larger mammalian counterparts. Aside from practical matters of 

accessibility and maintenance, the mouse’s anatomy offers specific advantages that lend 

themselves to better understanding cortical processing. Namely, large populations of neurons can 

be easily accessed through both electrophysiology and optical imaging methods. The lack of 

curvature across mouse V1 and the lissencephalic nature of the mouse cortex enables the imaging 

of a coplanar population of cells in the superficial layers, in fields of view on the order of several 

hundreds of microns. This allows for optical access to large fields of view with hundreds of 

neurons, which in turn can inform the understanding of cortical processing on scales ranging from 

the single cell level to network models of cortical micro-circuitry (Andermann, Kerlin, and Reid 

2010; Dechery and MacLean 2018). Additionally, the salt-and-pepper spatial distribution of tuning 

preferences in mouse V1 permits access to large populations of identifiable, diversely tuned 

neurons in one optically accessible field of view (Niell 2015). Furthermore, the mouse is 

genetically accessible and manipulatable, making extensive dissection of network, circuit, and 

molecular properties possible (Luo, Callaway, and Svoboda 2008; O’Connor, Huber, and Svoboda 

2009; Niell 2015) (Luo et al 2008, O’Connor et al, 2009, Niell 2015). Finally, the visual and 

behavioral repertoire and capabilities of mice are under active development on an international 

scale, further improving the robust toolset available in mice for studying visual cortical processing 

(Cone et al. 2019; 2020; International Brain Laboratory 2017). Activity in mouse V1 is modulated 

by locomotor activity as well as auditory cues, further enriching the field of questions that can be 
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addressed in mouse V1 to cross-modality modulation (Niell and Stryker 2010; Iurilli et al. 2012; 

Ibrahim et al. 2016; Dadarlat and Stryker 2017). 

In addition to offering genetic opportunities, mouse V1 offers a window into the network 

structures and properties of cortical activity. Cortical connectivity, both excitatory and inhibitory, 

directly influences sensory coding (Rodney J. Douglas and Martin 2004, 200; Ozeki et al. 2009; 

Harris and Mrsic-Flogel 2013). This extends beyond highly responsive and tuned neurons that can 

be reliably measured in extracellular preparations. For example, recent work has shown that both 

tuned and untuned neurons are present in networks, and the functional relationships between and 

within these subpopulations are important for predicting neural activity and decoding visual 

stimuli (Chambers and MacLean 2016; Dechery and MacLean 2018; Levy, Sporns, and MacLean 

2020). These so-called functional networks built from pairwise functional dependencies can 

change according to context: for example, in slice preparations, neuromodulation by acetylcholine 

has been shown to reduce pairwise interactions between unreliable cells, pruning functional 

circuitry (Runfeldt, Sadovsky, and MacLean 2014). These studies emphasize the position of 

neurons relative to each other within a network. To glean the information within such complex 

networks, it is important to sample broadly in an unbiased manner from labelled neurons to best 

understand the structure and statistics of neural activity and propagation.  

The mouse makes such sampling and study accessible. Two-photon calcium imaging using 

calcium indicators can be used to record to the activity of large populations of neurons at single-

cell resolution near-simultaneously (Yuste and Katz 1991; Stosiek et al. 2003; MacLean and Yuste 

2009). The advent of genetically-encoded calcium indicators (GECIs) has made transgenic lines 

that express indicator in specific classes of neurons widely accessible (Dana et al. 2014). These 

indicators report on the presence of free calcium in the cell, such as during an action potential. 
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Calcium ions bind to the indicator, allowing the molecule to undergo a conformational change that 

allows the attached fluorophore to fluoresce when stimulated with the appropriate wavelength 

(Yuste and Katz 1991).  

Even with sensitive indicators, one-photon imaging faces the problem of a lack of spatial 

resolution: exciting a field rich in fluorophore could result in extensive fluorescence. While some 

experiments still use one-photon excitation with algorithms constantly developed to improve 

disambiguation and assignment of activity, two-photon imaging largely avoids this problem. With 

two-photon microscopy, first theorized by Maria Goeppert-Mayer in her 1931 doctoral thesis, 

targeted lasing of a focused point in three planes could be accomplished by requiring two photons 

of lower energy to coincide in space and time to excite the fluorophore (Mayer and Jensen 1955; 

Masters and So 2004). This theory has since been realized with the advent of femtosecond laser 

pulsing technology, in which packets of low energy photons are packaged densely into a high 

power pulse of exceedingly short (femtosecond) duration – increasing the probability of two 

photons coinciding in time and space on a sample (Denk, Strickler, and Webb 1990).   

This technological advance enables recording from hundreds of neurons in a single field 

of view in vivo, providing a powerful window into network and population activity (Chen et al. 

2013; Dechery and MacLean 2018; Levy, Sporns, and MacLean 2020). While raster imaging 

offers slow frame rates, recent advances such as path scanning and resonant galvanometers allow 

for faster frame rates. For example, heuristically optimized path scanning (HOPS) allows for frame 

rates of ~20-30 Hz in populations of several hundred neurons (Sadovsky et al. 2011). Additional 

recent work has produced additional approaches to achieve high-speed scanning using two-photon 

imaging (Lu et al. 2020). Altogether, these technological advances provide improved temporal 
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resolution for capturing network structures closer to the order of synaptic integration (Chambers 

and MacLean 2016).  

In addition to excellent optical imaging access via two-photon microscopy, mouse offers 

optogenetic access, opening the door to the manipulation of spatially and genetically selected 

neurons (Boyden et al. 2005; Deisseroth 2015). Thus, hypotheses can be tested and generated via 

the principled perturbation of populations, circuits, and networks (Cone et al. 2019; 2020). 

Combined with two-photon calcium imaging and extensive advances in electrophysiology (Jun et 

al. 2017; Steinmetz et al. 2018), there is now unprecedented access to interrogate cortical 

processing in the mouse.  

With the toolkit available in mouse in combination with the toolkit bequeathed by visual 

neuroscience, it is now possible to investigate the circuit underpinnings, the cell types, and 

functional networks of populations of neurons that enable cortical processing by studying mouse 

visual cortex (Niell and Stryker 2008; Huberman and Niell 2011; Dechery and MacLean 2018; 

Levy, Sporns, and MacLean 2020). In turn, these findings can guide a more complete 

understanding of vision and other cortical processes across species, states, modalities, and 

pathologies. 

 

Evidence pointing to the possibility of normalization in the mouse 

Because normalization is ubiquitous across species and modalities, it can be anticipated 

that the mouse will exhibit normalization in its neuronal responses (Matteo Carandini and Heeger 

2011). While most mammalian studies of normalization in the visual system have involved cat or 

primate as a model system, there remains no visually evoked study of normalization in populations 

in mouse.  However, as the mouse’s visual cortex varies in organization compared to other 
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mammalian species that have been studied, it is important to characterize whether normalization 

in mouse differs in any meaningful way from species whose cortices are organized differently. 

Such work will guide the continued study the cortical circuitry of normalization and cortical 

computation more broadly and is an area of opportunity. 

No purely visually-evoked studies of normalization have been conducted in the mouse to 

the best of our knowledge. Nevertheless, there are some conflicting studies that point to a mixed 

likelihood of normalization in the mouse.  

Recent work has posited that mouse visual responses are largely summation-based (Histed 

2018). Those results are based on a non-specific, non-visual set of stimuli, including broad 

optogenetic activation, that may have influenced local circuit dynamics. Furthermore, the very low 

firing rates of a large proportion of units could have made it difficult to detect normalization, as 

the normalization equation’s numerator is comprised of the driven response, so very low firing 

rates will yield unreliable measures for normalization. Finally, the measurements were taken from 

multiple layers of cortex and were not separated based on layer, raising the question of whether 

the variability in summation and normalization were related to this.  

In another recent study, Sato and colleagues used optogenetic perturbations to activate 

neurons in the binocular zone contralateral to the hemisphere in which they patch-clamped neurons 

responding to a set of visual stimuli in an anesthetized mouse (Sato et al. 2016b). The neurons 

appeared to decrease activity during concurrent optogenetic stimulation, suggesting that 

normalization may play a role in mouse visual processing. However, it is possible that artifacts 

from optogenetic stimulation could have been measured, necessitating a purely visually-evoked 

study of normalization in mouse. While this study supports the possibility of normalization in 

mouse visual cortex, it is necessary to study cortical responses to a visual stimulus. 
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Since the early descriptions of normalization, there has been some effort to identify the 

cellular or circuit-level mechanisms that underlie the computation. In Wilson and Sur’s paper, they 

attempt to activate either parvalbumin or somatostatin neurons to measure their respective effects 

on neighboring neurons during the presentation of a drifting grating in mice. Here, the lab worked 

to suggest that interneurons subtypes are involved in division and subtraction, suggesting that 

parvalbumin interneurons are involved in dividing the activity of a neuron. While this is an 

intriguing possibility, it does not inform the understanding of whether under physiologic 

conditions, mouse visual cortex shows visually-evoked normalization. Nevertheless, such studies 

highlight the promise of exploring normalization circuitry using a visually-evoked paradigm of 

normalization in mouse (Wilson et al. 2012).  

 

Aims of this thesis: Critical gaps in knowledge that will be addressed 

As an ostensibly ubiquitous and conserved computation, normalization can teach us about 

more abstract principles relevant for brain processing, not least of all the mechanisms that drive 

changes in pairwise noise correlations. To better understand attention and associated disorders, it 

is imperative to better understand normalization, including its circuit underpinnings. Yet no mouse 

model of visually-evoked normalization exists to dissect and manipulate these circuits. Although 

divisive normalization may have implications for understanding brain processing and brain 

disease, little is known about its dynamics, cell types, and how the properties of each vary in 

different behavioral states such as locomotion and attention. 

This project studies the awake mouse V1 as a model for divisive normalization. Here, we 

will probe divisive normalization in a mouse model of visually-evoked divisive normalization 

using a synergistic set of genetic, optical, electrophysiology, optogenetic, and computational 
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techniques. We anticipate that this research will open the door to further genetic dissection, 

manipulation, and behavioral experiments to guide a mechanistic understanding of divisive 

normalization and its potential links to disease.  

Normalization is a canonical computation that processes information for further processing 

downstream. When core brain processes go awry, pathologies may ensue. There is some evidence 

suggesting that deficits in normalization are observed in various disease states ranging from 

epilepsy and major depression to schizophrenia (Matteo Carandini and Heeger 2011). Much work 

remains to better understand normalization and its role in normal brain processing as well as brain 

pathologies.  

Better understanding normalization will elucidate the cortical information processing that 

undergirding complex behaviors. The mouse offers a powerful opportunity for studying 

normalization, including better understanding the single-cell, pairwise correlation-level, and 

network structure-level characteristics of normalization. With such a model and the myriad genetic 

tools available in mice, it may also be possible to further dissect the circuitry that produces 

normalization, a ubiquitous and conserved brain computation.   
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CHAPTER 2 

MATERIALS AND METHODS

 

Mice 

C57BL/6J (B6) mice and mice expressing GCaMP6s under the Thy-1 promotor (Dana et 

al. 2014; Chen et al. 2013) were purchased from the Jackson Laboratory, then bred and maintained 

in the Animal Research Center at the University of Chicago. All mice were bred and maintained 

in accordance with the animal care and use regulations of the University of Chicago Institutional 

Animal Care and Use Committee. Male and female mice age P60-P200 were used across 

experiments.  

 

Craniotomy and window implantation  

Anesthetized adult mice were surgically implanted with a head bar and 3mm or 3.5mm 

chronic imaging window centered over V1, as described in elsewhere. Briefly, mice were 

anesthetized using isoflurane (1.5-2.0% in 50% O2) with (electrophysiology experiments) or 

without (two-photon experiments) ketamine (40 mg/kg, i.p.), and xylazine (2 mg/kg i.p.). Mice 

were provided buprenorphine for pain management as well as dexamethasone and meloxicam to 

reduce inflammation in advance of surgery. Upon reaching a state of deep anesthesia as evidenced 

by lack of response to a toe pinch, each mouse’s head was shaved and an incision made to reveal 

the cranium. The fascia was removed and the surface of the skull lightly scored with a scalpel 

blade to improve adhesion of dental cement, then a titanium head post was cemented in place with 

dental cement (C&B Metabond, Parkell). Next, a 3.0-3.5 mm craniotomy was drilled, centered 

over left visual cortex at 4.0 mm lateral from the midline and 0.5 mm anterior of lambda. 
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Throughout the surgery, the surface of the cortex was kept irrigated. After the craniotomy, the dura 

was also removed to minimize the likelihood of bone regrowth. An optical window (0.8 mm thick; 

Tower Optical) and coverslip were coated with silicone grease and placed over the craniotomy, 

then cemented in place with dental cement. Stitches were placed in the surrounding skin to improve 

healing and minimize the risk of infection. The mice were allowed to recover before further 

experimentation. 

 

Intrinsic imaging to identify primary visual cortex   

In all experiments, V1 was identified by intrinsic imaging (Kalatsky and Stryker 2003; 

Andermann, Kerlin, and Reid 2010). At least two weeks after the craniotomy, intrinsic imaging 

was conducted to identify V1. In the two-photon experimental animals, a repeating drifting bar 

was presented to anesthetized mice (1.25% isoflurane, 50% O2) approximately 23 cm from the 

right eye during intrinsic imaging to generate a retinotopic map of responses in V1. In the 

electrophysiology experiments, mice were head-fixed and awake during the presentation of a 

stimulus set shown on a screen anterior to the mouse. Drifting Gabor stimuli were presented in 

each of five locations tiling binocular and monocular zones in the right hemifield.  For both groups 

of experiments, a retinotopic map of visual cortex was produced to guide imaging or electrode 

placement.  

 

Stimulus presentation 

After recovery, mice were head-fixed for stimulus presentation (Dechery and MacLean 

2018). Stimuli were displayed with gamma correction on a monitor positioned approximately 23 

cm from the mouse’s right eye, and covering ~60° x ~70 of the visual field. Two sets of stimuli 
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were shown: full-contrast gratings drifting in eight or twelve directions to measure direction tuning 

and preferences, similar to previous experiments, and a cross-inhibitory stimulus to elicit divisive 

normalization.  

In the two-photon experiments, drifting grating stimuli in eight equally spaced directions 

were shown in a pseudorandom order to determine the responsivity and tuning of each neuron. 

The drifting grating stimuli had a square-wave spatial profile (0.04-0.06 cpd, 2 Hz) and were 

shown for 4 s per direction, interleaved with 3 s of a luminance matched gray screen to allow the 

calcium indicator to decay back to baseline. Each stimulus direction was shown at least 20 times. 

In the electrophysiology experiments, drifting grating stimuli in twelve equally spaced 

directions were shown in a pseudorandom order to determine the responsivity and tuning of each 

neuron. The drifting grating stimuli again had a square-wave spatial profile (0.04 cpd, 2 Hz) and 

were shown for 1 s per direction, interleaved with 1 s of a luminance matched gray screen. Each 

stimulus direction was shown at least 20 times. 

 To assess divisive normalization, a cross-inhibitory stimulus composed of orthogonal 

gratings similar to previous studies in cat and macaque were presented. Cross-orientation 

inhibition was selected for studying normalization because it is the most robust and well-

established stimulus for exploring divisive normalization in V1 and has been validated in multiple 

studies of divisive normalization (M. Carandini and Heeger 1994; Busse, Wade, and Carandini 

2009). Spatially offset stimuli are not appropriate for V1 receptive fields, because they push the 

limits of visual acuity (Niell 2015). In each experiment type, the cross-orientation stimuli consisted 

of orthogonal pairs of square-wave gratings superimposed to create a plaid, presented with varying 

contrasts (each at 0%, 6%, 12%, 25%, or 50% contrast). In six out of the eight calcium imaging 

datasets, stimuli were counter-phased to mitigate the low possibility of eliciting pattern motion 
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direction responses. In two of the eight calcium imaging datasets, the stimuli were drifting. We 

did not detect differences in the results from these two stimulus types so we combined the data 

from both groups.  

Twenty-five contrast combinations of the two orientations were formed and were presented 

in a pseudorandom order that varied by recording day but remained constant during a given 

recording session. The sequence of stimuli was fixed each session to limit the effects of preceding 

stimuli on noise correlations. Three dummy stimuli were presented at the beginning of each 

recording session and later excluded to mitigate the effects of adaptation. In the two-photon 

imaging experiments, each stimulus was shown for 5 s, interleaved with a 3 s luminance-matched 

gray epoch. The onset and offset of stimuli on the video display were tracked by a photodiode and 

a small black (off) or white (on) square in the bottom corner of the monitor. Each stimulus was 

shown 20 times. In the electrophysiology experiments, the stimuli were shown for 1 s, interleaved 

with a 1 s luminance-matched gray epoch. Each stimulus condition was presented 100 times.  

 

Two-photon imaging 

Layer 2/3 of V1 was imaged using a custom-built two-photon microscope. The awake 

mouse was secured in a head-fixed position on a custom-made linear treadmill. Treadmill velocity 

was measured with a rotary encoder (Niell and Stryker 2010; Dechery and MacLean 2018). The 

mouse’s right eye was oriented towards a monitor approximately 23 cm away. A light shield 

between the objective and the imaging window was applied to block any light from the imaging 

field. Then, a field of view (FOV) was identified in layer 2/3 of V1 using raster scanning. After a 

suitable FOV was identified, a 4x4 grid of raster scans was acquired of the FOV to allow for 

automatic neuronal detection. Neurons were identified by an automated algorithm (Dechery and 
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MacLean 2018); a typical FOV consisted of 200-400 identified excitatory neurons. Subsequently, 

an optimal path for scanning was determined for the population in the field of view and the HOPS 

system was used to image neurons via path scan at ~30Hz (Dechery and MacLean 2018; Sadovsky 

et al. 2011). V1 is advantageous for these specific experiments because of its surface accessibility, 

minimal curvature, and well-documented association with reportable visually-evoked activity 

(Niell 2015; Dechery and MacLean 2018). Optical recording is advantageous because it permits 

simultaneous recording from large numbers of individual neurons with known genetic and spatial 

identities and relationships. 

 

Electrophysiology 

Extracellular electrophysiological recordings were conducted to cross-validate findings 

from optical recordings. Silicone multi-channel electrodes (NeuroNexus Technologies; 32-site 

model 4x8-100-200-177) that could span multiple layers of cortex were used. The electrode 

contacts were plated to impedances between 200 and 500 k at 1000 Hz using a mixture of gold 

solution and carbon nanotubes (Cone et al. 2020). At the start of the recording experiments, mice 

were head-fixed and anesthetized (1.25-1.5% isoflurane, 50% O2) and the eyes irrigated with 0.9% 

saline. The optical window was removed and the recording site identified. The electrode was 

inserted to a depth of 800-1000 µm in the V1 representation of the lateral visual field. The 

craniotomy was covered with 2.5% agarose (MilliporeSigma) dissolved in aCSF (Tocris 

Bioscience) and the resultant setup was covered in silicone oil to prevent desiccation 

(MilliporeSigma). After the electrode was placed, the anesthesia was removed and the mouse 

allowed to awaken. After an hour of recovery time in which the electrode settled into the cortex, 

the recording commenced. To minimize movement artifacts, mice were awake but stationary in 
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custom plastic sleds during recording sessions. Signals from the recordings were amplified, 

filtered, and sampled at threshold crossings (BlackRock). Spikes were be sorted offline (Offline 

Sorter, Plexon). 

 

 Normalization metric  

The resultant fluorescence traces were analyzed for characterization of normalization in 

mouse V1. We used a normalization index defined as: 

 

 Here, R[p] is the response to the 50% contrast in the preferred direction, R[n] is the response to 

the 50% contrast in the non-preferred direction, and R[p+n] is the response to the 50%/50% plaid 

composed of both the preferred and non-preferred directions. Behavioral state, as encoded by 

running velocity, was considered in the calculation of this metric (Dipoppa et al. 2018; Niell and 

Stryker 2010; McBride, Lee, and Callaway 2019). In our two-photon imaging data, mice ran for 

~5% of total stimulus presentations. In some experiments, mice did not run at all. While there was 

a slight increase in the normalization index when including running trials versus excluding 

running, there was no difference in the distribution of our measure of normalization between these 

cases (Supplemental Figure 3-1), so all data were pooled in further analyses. Furthermore, because 

running trials only composed ~5% of total trials, these data were not analyzed separately. 

 

𝑁𝐼 =
(𝑅[𝑝] + 𝑅[𝑛]) − 𝑅[𝑝 + 𝑛]

(𝑅[𝑝] + 𝑅[𝑛]) + 𝑅[𝑝 + 𝑛]
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Spike sorting 

Units were identified as clusters of waveforms that were separated from the noise and from 

other clusters throughout the duration of the recording. Additionally, units were inspected for inter-

spike interval histograms consistent with absolute and relative refractory periods and only units 

consistent with single or small multi-unit clusters were included in our analyses. 

 

Pairwise noise correlations 

In the two-photon experiment analysis, for each pair of imaged neurons, we computed 

pairwise noise correlations as the mean partial correlation between the first two seconds of 

neurons’ fluorescence changes across individual stimuli, while accounting for three control 

variables: mean response of each of the two neurons in all other presentations of the stimulus (to 

account for the signal correlation) and within-stimulus mean fluorescence of all other neurons (to 

account for population-wide co-variability like behavioral state and running speed effects). The 

first two second segments of the response a neuron to the same stimulus were concatenated in 

groups of five and smoothed with a running average window of 10 frames in order to remove 

discontinuities due to concatenation. The Matlab (MathWorks) function parcor was used to 

compute the pairwise partial correlation between the response vectors. Correlations were 

calculated separately in this way for each stimulus condition. 

Noise correlations were calculated for the electrophysiology data as previously described 

(Verhoef and Maunsell 2017). Specifically, Pearson’s correlation coefficient was used to compute 

spike-count correlations between spike counts from pairs of units. The spike count window was 

250 ms starting 50 ms after stimulus onset to stimulus conclusion.  
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Analysis 

Data were analyzed using custom-written Matlab (MathWorks) scripts. In the case of the 

two-photon imaging experiments, raw data was preprocessed to calculate changes in fluorescence 

over baseline as previously described (Dechery and MacLean 2018). For both two-photon and 

electrophysiology data, direction and orientation tuning using statistical criteria and tuning fit was 

assessed by identifying visually responsive neurons and fitting an asymmetric Gaussian to visually 

evoked activity as described previously (Mazurek, Kager, and Van Hooser 2014; Dechery and 

MacLean 2018; Levy, Sporns, and MacLean 2020). The non-preferred suppression index was 

calculated from the fitted non-preferred alpha parameter of the tuned normalization model (Ni, 

Ray, and Maunsell 2012; Verhoef and Maunsell 2017). Statistical analyses were completed and 

plots were generated using custom scripts written in Matlab (MathWorks). 
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CHAPTER 3 

 

MOUSE VISUAL CORTEX EXHIBITS VISUALLY-EVOKED NORMALIZATION

 

Introduction 

Normalization can be considered a canonical brain computation; in normalization, the 

activity of a neuron is normalized relative to the activity of its neighbors and to the relative strength 

of its preferred stimuli to other stimuli (Matteo Carandini and Heeger 2011). The computation is 

conserved across species and modalities, suggesting that it plays an fundamental role in signal 

processing (Matteo Carandini and Heeger 2011). Furthermore, normalization underlies multi-

sensory integration, and has also been shown to underlie decision-making in macaques (Ohshiro, 

Angelaki, and DeAngelis 2011; Louie, Grattan, and Glimcher 2011).  

Recent work has shown that different neurons can exhibit different normalization strengths. 

This has been described as tuned normalization, in which different units and neurons show 

different extents of normalization ranging from linear summation to simple averaging of responses 

to super-normalization (Ni, Ray, and Maunsell 2012; Ni and Maunsell 2017). This tuning property 

has been shown to have a close relationship with attention, as neurons that have stronger 

normalization are also more likely to show changes in firing rate due to attention (Ni, Ray, and 

Maunsell 2012). Recent work has shown that indeed, normalization underlies the influences of 

attention on changes in both firing rate and pairwise noise correlations (Lee and Maunsell 2009; 

Ni, Ray, and Maunsell 2012; Ni and Maunsell 2017; Verhoef and Maunsell 2017) that largely 

explain attention’s effects on behavioral improvements (Marlene R. Cohen and Maunsell 2009) 

Specifically, attention influences pairwise noise correlations by biasing normalization mechanisms 
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(Verhoef and Maunsell 2017). It is likely that understanding normalization will lead to improved 

understanding of attention – among other important brain phenomena.  

To better understand normalization, it will be important to understand the circuit 

mechanisms and cell types that are involved in the computation. Mouse offers distinct advantages 

for such a circuit and cell type level of analysis. For example, the mouse visual cortex offers many 

advantages for genetic and optical access (Luo, Callaway, and Svoboda 2018; Niell 2015). Prior 

to this study, it was not known if mouse V1 exhibits visually-evoked normalization, and if so, 

whether it exhibits similar properties, like tuned normalization, that have been observed in other 

species like the macaque (Ni, Ray, and Maunsell 2012). Studying normalization in the mouse 

visual cortex would offer many advantages for dissecting the circuit underpinnings of 

normalization. Additionally, establishing a mouse model of normalization can pave the way to 

mechanistic study of how pairwise correlations are generated in cortex. 

 Here, we study normalization in mouse visual cortex using both two-photon imaging and 

electrophysiology. Specifically, we investigate the visual response properties of awake mice to 

cross-inhibitory stimuli that classically evoke normalization (M. Carandini and Heeger 1994; 

Matteo Carandini, Heeger, and Movshon 1997; Busse, Wade, and Carandini 2009). We 

demonstrate that mouse visual cortex exhibits tuned normalization similar in quality to that 

observed in macaques (Ni, Ray, and Maunsell 2012). However, we also note that there are some 

differences, including the somewhat weaker strength of normalization in mouse. Finally, we report 

on recording-depth differences observed in our electrophysiology studies, highlighting the 

availability of the mouse to uncover new information about normalization.  
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Results 

 

Cross-inhibitory stimuli elicit normalization in mouse visual cortex  

Despite a burgeoning role for the mouse in the study of visual cortical processing (Niell 

2015), no previous studies have examined visually-evoked normalization in the mouse. Here, we 

recorded from awake, head-fixed mice. We recorded in the mouse visual cortex using both two-

photon imaging and electrophysiology and observed normalization in visually responsive units.  

In the two-photon imaging experiments, we recorded from a total of 2,120 excitatory 

neurons from layer 2/3 in eight imaging sites and five mice (Figure 3-1). Drifting grating stimuli 

were presented in eight full-contrast drifting grating stimuli equally spaced around a circle to 

determine visual responsiveness and tuning preferences. Of the neurons that were imaged, 1,689 

were responsive to drifting grating stimuli, and of those, 1,211 were tuned to one of the eight 

drifting grating directions (Figure 3-2). As mouse V1 shows a salt-and-pepper distribution of 

direction and orientation tuning (Niell 2015), our imaging fields of view captured diversely tuned 

neurons. The proportions of responsive and tuned neurons are in agreement with previously 

reported measurements from mouse visual cortex (Niell and Stryker 2008). 
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Figure 3-1. Two-photon imaging in awake mouse V1 

 

a, Intrinsic imaging of cortex identifies visual cortex. Dashed oval represents V1; white square 

represents the approximate field of view for two-photon imaging shown in Figure 3-1c. b, 

Schematic of two-photon imaging. The mouse was head-fixed for duration of recording from the 

left visual cortex while stimuli were presented to the contralateral (right) eye. During recording, 

mice were able to run on a treadmill. A photodiode was used to temporally match stimulus 

presentation and recording. c, An example field of view from mouse V1 (identified in Figure 3-

1a). Red circles label five example neurons, from which example traces are shown in Figure 3-1d. 

d, Example fluorescence traces from neurons identified in Figure 3-1c. Different colors represent 

different direction stimuli; the gray epochs represent interleaved gray screens. The black traces 

represent the responses of example tuned neurons and the gray traces represent the responses of 

example untuned neurons.  
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Figure 3-2. Orientation and direction tuned neurons imaged in two-photon experiments 

 

a, An example tuning curve from a direction-selective neuron in mouse V1. The red line represents 

mean df/f of responses to drifting grating stimuli and the black line represents the tuning curve fit 

(r2=0.99). b, Mean response of the neuron shown in Figure 3-2a to the drifting grating stimulus in 

its null and preferred stimuli. Gray represents the period of stimulus on. c-d, Same as Figure 3-2a 

and Figure 3-2b for an orientation-selective neuron (r2=0.98). 
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Figure 3-2, continued 

 e-f, Same as Figure 3-2a and Figure 3-2b, except averaged across all tuned neurons recorded 

(n=1,211). Error bars and bands represent 1 SEM.  
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Next, we presented a set of counter-phasing cross-inhibitory stimuli while imaging from 

the same field of view. The stimuli were designed to elicit normalization, as previously shown in 

cats and macaques (M. Carandini and Heeger 1994; Matteo Carandini, Heeger, and Movshon 

1997; Busse, Wade, and Carandini 2009). Specifically, the stimulus set consisted of 25 

combinations of cross-oriented gratings with component contrasts ranging from 0% to 50%. In 

classic normalization, a response to a cross-oriented stimulus composed of two component gratings 

of equal stimulus intensity would be an equally weighted average of the response to the two 

individual component gratings. In contrast, in linear summation, the response to the cross-oriented 

stimulus would be a simple linear sum of the responses to the two individual component gratings. 

In tuned normalization, an unevenly weighted average of the responses to the individual 

component gratings would be expected  (Ni, Ray, and Maunsell 2012).  

To quantify normalization strength in our experiments, we used a normalization index (NI), 

defined as the difference between the true response to the cross-oriented (plaid) stimulus and the 

linear sum of responses to the component stimuli (gratings), all over the sum of these two 

quantities. In this quantification, a normalization index of zero represents linear summation and a 

normalization index of 0.33 represents classic normalization. Values between 0 and 0.33 represent 

tuned normalization; values greater than 0.33 represent super-normalization, a differently 

weighted example of tuned normalization. Values less than zero represent supra-linear summation. 

After the normalization stimulus set was presented, responsive neurons were identified. 

Our stimulus set only included two orientations, which were not the preferred stimuli for most 

neurons. Thus, on average, the mean change in fluorescence among these neurons was low. From 

among tuned and visually-responsive neurons identified using the drifting grating stimulus, 1,187 

were deemed responsive to either the vertical, horizontal, or plaid counterphase stimuli at 50% 
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contrast according to a Kruskal-Wallis test with alpha set to 0.1. Furthermore, to manage 

irreducible noise and its systematic effect on the normalization index metric, we set a threshold for 

minimum difference in the df/f compared to the gray. We measured at which level of change in 

fluorescence over baseline we could stably measure normalization, setting the threshold to a 

minimum df/f change of 0.1 over baseline in either the plaid or preferred component response 

(Supplemental Figure 3-2). Using this criterion, we ultimately included 341 neurons for further 

normalization analysis. 

Among the units included, we observed clear responses to the stimuli presented (Figure 3-

3). The responses measured during the presentation of the component stimuli were weaker those 

measured during the presentation of the drifting gratings used for the direction tuning 

measurements, but this was expected because the stimuli presented in the normalization stimulus 

set were composed of components at a maximal contrast of 50%, whereas the stimuli presented in 

the direction tuning measurements were set to 100% contrast. Nevertheless, we observed responses 

that increased with increasing contrast in both the preferred and non-preferred orientation, and a 

normalized response to the plaid stimuli on average. Some neurons showed approximately classic 

normalization (Figure 3-3a), while others showed tuned normalization (Figure 3-3b).  

Overall, we observed a range of normalization strengths. On the whole, we found the 

median normalization index to be 0.15 (IQR=0.03-0.25) among tuned, responsive neurons in 

mouse visual cortex (Figure 3-4). This range represents a departure from classic normalization, in 

which the expected measurement for normalization is 0.33. The range of normalization strengths 

observed indicates tuned normalization, in which neurons exhibit different levels of non-preferred 

stimulus suppression. This phenomenon was first described in the macaque, in which units were 

shown to have normalization strengths ranging from linear summation (normalization index of 
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zero) to classic normalization (normalization index of 0.33) (Ni, Ray, and Maunsell 2012) (Ni 

2012). The data in mouse are qualitatively in agreement with previous studies of tuned 

normalization in macaques, indicating tuned normalization in the mouse. However, the overall 

normalization strength in mouse is somewhat weaker than that reported in macaque area MT, in 

which population normalization medians were closer to ~0.2  (Ni, Ray, and Maunsell 2012). 

 

 

 

 

 



 47 

 
Figure 3-3. Visually-evoked normalization in mouse V1 measured using two-photon imaging  

 

a-b, Responses of example tuned neurons to normalization stimuli (same neurons as in Figure 3-

2). On average, the units show robust responses to the preferred stimulus orientation relative to 

baseline (across horizontal axis) and some response to the non-preferred stimulus orientation 

(vertical axis). When the stimuli are superimposed to create a cross-inhibitory stimulus, the 

driven response to the resulting stimulus is sublinear. Each stimulus was presented 20 times. 

Error bands represent 1 SEM. b, Mean normalization stimulus set responses across neurons. All 

mean response SEMs were less than or equal to 0.01. The SEM bands are not visible at this 

scale.  
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Figure 3-4. Population histogram of normalization strength in mouse V1 measured using 

two-photon imaging  

 

Normalization index distribution across neurons (n = 341) as measured using two-photon imaging 

(median = 0.15, IQR = 0.03 - 0.25). An index of zero represents linear summation of responses; 

the dashed line at 0.33 represents the value for averaging of responses. The median is indicated by 

the pink triangle. 
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Next, electrophysiology experiments were conducted to provide improved temporal 

resolution, cross-validation, and recording at different depths. We used multi-channel silicone 

probes with electrode sites spanning 700 m of V1 (Figure 3-5). We recorded from awake, head-

fixed mice while presenting visual stimuli. First, we presented a set of drifting grating stimuli to 

determine visual responsiveness and tuning preferences, as in the two-photon imaging 

experiments. Overall, units were recorded from 13 sites from seven mice. We recorded stably from 

114 units and small multi-unit clusters that had an evoked firing rate at least 0.3 spikes/s. Of those 

recorded, 72 units were responsive according to a Kruskal-Wallis test with alpha set to 0.1. Of 

those, 63 were tuned, showing a preference to either orientation or direction (Figure 3-6). Those 

63 units were included in further analysis.  
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Figure 3-5. Electrophysiology recordings in awake mouse visual cortex  

 

Schematic of electrode placement in mouse visual cortex (purple). Electrodes with four linear 

probes (NeuroNexus), including eight channels spaced at 100 microns on each probe, were inserted 

in visual cortex to depths of 800-1000 microns using a micromanipulator and according to intrinsic 

imaging results. This image was adapted from the Mouse Brain Atlas (Allen Institute).  

  

1 mm

V1
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Figure 3-6. Orientation and direction tuned units recorded in electrophysiology experiments 

 

a, An example tuning curve from a direction-selective unit in mouse V1. The blue line represents 

mean responses to drifting grating stimuli and the black line represents the tuning curve fit 

(r2=0.95). The dashed line represents mean spontaneous activity. b, Mean response of the neuron 

shown in panel a to the drifting grating stimulus in the orthogonal orientation and preferred 

direction stimuli. Gray represents the stimulus on period.  
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Figure 3-6, continued  

c-d, Same as Figure 3-6a and Figure 3-6b for an orientation-selective neuron (r2=0.85). e-f, 

Same as Figure 3-6a and Figure 3-6b, except across all tuned neurons recorded (n=63). All error 

bars and bands represent 1 SEM. 
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Next, we presented the normalization stimulus set of 25 pseudo-randomly ordered plaids, 

again consisting of combinations of component gratings with contrasts ranging from 0% to 50%, 

as in the two-photon imaging experiments. We observed visually-evoked responses to the 

component stimuli that increased as contrast increased, but which showed normalization when the 

stimulus components were superimposed to form a plaid (Figure 3-7). Again, we observed a range 

of normalization strengths. Some units showed response properties consistent with classic 

normalization (Figure 3-7a), in which the response to the plaid stimulus in the 50%/50% condition 

was an evenly weighted average of the unit’s responses to the component 50% stimuli. Others 

showed tuned normalization (Figure 3-7b).  

Overall, the units we recorded in mouse V1 using electrophysiology showed tuned 

normalization (Figure 3-8). A range of normalization indices was observed, ranging from linear 

summation (NI=0) to simple weighted averaging (NI=0.33), with the bulk of units falling 

somewhere between these two paradigms in the tuned normalization range. We found the median 

NI to be 0.13 (IQR=-0.01-0.26), which was close to the value measured using two-photon imaging. 

Again, the finding of tuned normalization in mouse V1 is qualitatively similar to that observed in 

macaques, but quantitatively, the strength of normalization as measured by the normalization index 

suggests weaker normalization in the mouse compared to macaque (Ni, Ray, and Maunsell 2012) 

The populations we recorded using both two-photon imaging and electrophysiology 

showed a range of visually evoked normalization values, indicating tuned normalization.  
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Figure 3-7. Visually-evoked normalization in mouse V1 measured using electrophysiology 

 

a-b, Responses of example neurons to normalization stimuli (same neurons as in Figure 3-6). On 

average, the units responded well to the preferred stimulus orientation (across horizontal axis) 

and less to the orthogonal stimulus orientation (vertical axis). When the stimuli are superimposed 

to create a cross-inhibitory stimulus, the responses were less than those for the preferred 

component grating, as expected for normalization. Each stimulus was presented 100 times. 
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Figure 3-7, continued  

c, Mean normalization stimulus set responses across neurons. Neurons with a minimum driven 

firing rate > 0.3 spikes/s were included. Overall, 63 tuned, responsive neurons from 13 recording 

sessions from 7 mice were included. The mean PSTHs across units shows clear responses to 

preferred stimulus orientation that increases monotonically with contrast (across top row) and 

less response to the non-preferred stimulus orientation that also increases with contrast (left 

column). When the stimuli are superimposed to create a cross-inhibitory stimulus, the driven 

response to the resulting stimulus is sublinear on average, but on average exceeded the response 

to the preferred stimulus. Labels correspond to mean rate 1 SEM. 
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Figure 3-8. Population histogram of normalization strength in mouse V1 measured using 

electrophysiology 

 

Normalization index distribution across neurons (n = 63) as measured using electrophysiology 

(median = 0.13, IQR = -0.01 – 0.26). An index of zero represents linear summation of responses; 

the dashed line at 0.33 represents the value for simple averaging of responses. The median is 

indicated by the blue triangle. 
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Normalization strength as a function of recording depth 

We examined whether the strength of normalization in the units varied with recording 

depth. Previous studies examining cortical normalization have primarily considered neurons in 

layer 2/3 (Busse, Wade, and Carandini 2009; Verhoef and Maunsell 2017). This can be partly 

attributed to the greater thickness of cortex in larger mammals like cats and macaques. It can also 

be attributed in part to the preference for the use of Utah arrays over linear arrays, as Utah arrays 

enable the recording of many units simultaneously though spanning only the partial thickness of 

the cortex. As mouse V1 is only ~1 mm thick, we took advantage of the opportunity to record at 

multiple depths in mouse and relate recording depth to normalization strength. 

In our electrophysiology recordings, the electrode was inserted at a medial posterior region 

of visual cortex to cover the lateral visual field at approximately zero elevation (Figure 3-5). The 

electrode spanned a 700 µm recording span. Channel contacts were spaced at even 100 µm 

intervals on four shanks for a total of 32 contacts. With knowledge of the electrode insertion depth 

and electrode contact depths, a recording depth was determined for each unit. We compared the 

normalization strength across recording depths and found significant differences across depths 

(Kruskal-Wallis test, p < 0.01) (Figure 3-9). On average, units at a depth of 400-500 m showed 

significantly weaker normalization compared with units at depths of 100-200 m (p < 0.01) and 

500-600 m (p < 0.05). Indeed, units at a recording depth of 400-500 m more closely showed 

linear summation than normalization. Firing rates across depths were not significantly different 

(Kruskal-Wallis test, n.s.). This analysis is limited in that the depth assignments were not corrected 

for any angular offsets from normal. However, it points to differences in normalization across 

recording depths and to a need for further study of this phenomenon. 
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Figure 3-9. Normalization and recording depth indicate depth-specificity  

 

a, Normalization index according to unit depth. The median normalization index of the units 

recorded is indicated by the dashed blue line (median=0.13, IQR= -0.01 - 0.26). The expected 

normalization index for linear summation is indicated by the solid horizontal gray line and the 

expected normalization index for a simple average of responses is indicated by the horizontal 

dashed gray line. Significance was determined with Tukey-Cramer-corrected Kruskal-Wallis test  

(p < 0.01). * indicates p < 0.05. ** indicates p < 0.01. b,  The driven firing rate of the included 

units does not vary significantly by recording depth (Kruskal-Wallis test, n.s.). The bars show the 

number of units included at each depth. Units were binned according to depth (100-199 µm; 200-

299 µm, and so on). We did not consider bins with fewer than 3 units. All error bars represent 1 

SEM. 
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Discussion 

Our cumulative findings reveal visually-evoked normalization in awake mouse V1 as 

measured by both two-photon imaging and electrophysiology. Neurons and units that we recorded 

showed a sublinear response cross-oriented plaid normalization stimuli in comparison to the 

summed responses to individual component stimuli. On a scale in which linear summation was 

represented by a normalization index of zero and classic normalization or a simple weighted 

average was indicated by a normalization index of 0.33, the populations we recorded from had 

median normalization index of 0.13 (electrophysiology, IQR = -0.01 – 0.26) and 0.15 (two-photon 

imaging, IQR = 0.03 – 0.25). This range of normalization strengths represents tuned normalization. 

This is similar to findings in macaques, in which different units and neurons showed different 

extents of normalization (Rust et al. 2006; Ni, Ray, and Maunsell 2012). However, the overall 

strength of normalization in the neurons and units we recorded in mouse V1 was weaker than that 

observed in macaques, which had a median normalization index of ~0.2 (Ni, Ray, and Maunsell 

2012).  

While the medians observed in the two-photon imaging data and the electrophysiology data 

recorded in mouse V1 are in approximate agreement, we did find differences in normalization 

strength between recording depths in our electrophysiology data. This may reflect distinct roles of 

cortical processing at different cortical depths, and warrants further investigation into possible 

laminar dependency of normalization. While some studies have used linear probes to study 

normalization in cortex, most studies on cortical normalization have primarily examined layer 2/3 

due to electrode array depth constraints (Busse, et al. 2009; Verhoef and Maunsell 2017). While 

further work must be done to characterize any potential differences in layer-specific normalization, 

it is important to consider the possibility that normalization does not necessarily have to operate 
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uniformly across layers. If such differences exist, it would be important to characterize whether 

and how this influences population dynamics and visual processing. Differences in the cell types 

and network structures observed at different cortical depths can also constrain models of 

biophysical mechanisms that underlie normalization and by extension, the rich cognitive processes 

(such as attention and multi-sensory integration) that normalization undergirds (Verhoef and 

Maunsell 2017; Ohshiro, Angelaki, and DeAngelis 2011).  

There were some limitations in our study. Our normalization stimulus set consisted of 

cross-oriented plaids composed of only two orientations (vertical and horizontal) due to limits on 

recording time and the need to have a suitable number of stimulus repetitions on which to base 

conclusions. Mouse V1 shows a salt-and-pepper distribution of direction and orientation tuning 

preferences, so in any field of view or electrophysiology recording session, we recorded from a 

diversely tuned set of neurons and units. These neurons and units were strongly driven by the full-

contrast drifting grating stimuli that were used to determine visual responsiveness and direction 

tuning preference, but because many neurons did not prefer the component orientations of the plaid 

stimuli presented, responses were generally weaker in the (lower-contrast) plaid stimulus set 

compared with the tuning stimulus set. This led to a problem of irreducible noise, requiring us to 

set inclusion criteria. Thus, many units and neurons were excluded from analysis. This decreased 

the number of units included for analysis. We were still able to conduct analyses on these neurons 

and units, but our analysis of the units that did meet responsivity and tuning criteria and the 

prevalence of normalization in those units indicate that the presentation of a broader range of 

stimuli would uncover  normalization in the majority of visually responsive neurons in mouse 

visual cortex.  
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On the whole, this work shows that tuned normalization can be visually-evoked in the 

mouse visual cortex, allowing for further study of the circuit, cell-type, and network underpinnings 

of this computation. The mouse offers a ready model for such study and characterization.  
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Supplemental Information  

 

 

 

 
 

 

Supplemental Figure 3-1. Mice ran during a small fraction of trials that influenced the 

median but not the overall distribution of normalization index across neurons 

 

Normalization index measured with and without running trials in cells that passed inclusion criteria 

in both conditions. The red line represents the median of the included cells for the “include 

running” condition (median=0.16, IQR=0.06-0.27), and the blue line represents the median for the 

“exclude running” condition (median=0.15, IQR=0.03-0.26). There was a significant difference in 

the median normalization index between the include versus exclude running conditions (Mann-

Whitney U test, p < 0.001). No difference in the overall distribution of normalization indices was 

statistically detectable (two-sample Kolmogorov-Smirnov test, n.s.). The solid line represents the 

expected normalization index for linear summation and the dashed line represents the expected 

normalization index for classic normalization or simple averaging.  
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Supplemental Figure 3-2. Visually-evoked normalization varies systematically with calcium 

signal strength 

 

The red line shows the normalization index as a function of minimum absolute df/f change of the 

response to the preferred and plaid stimulus over the gray condition. As the df/f change over 

baseline approaches zero, the normalization index also approaches zero, which would be predicted 

due to irreducible noise. The pink line shows the number neurons that are included at each 

threshold level for df/f change over gray. The number of neurons included at each threshold level 

decreases as the minimum df/f change over gray increases. The dashed gray line represents the 

threshold selected, at which the exponential function plateaus and at which the largest number of 

neurons could be included in analysis of normalization. This provides a comparison to early studies 

in which normalization was measured with electrophysiology, in which only active neurons could 

be recorded. Mean ± SEM is indicated.  
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CHAPTER 4 

 

PAIRWISE NOISE CORRELATIONS IN MOUSE V1 COVARY WITH 

NORMALIZATION 

 

Introduction 

Normalization has previously been shown to influence noise correlation patterns in 

macaques (Ruff, Alberts, and Cohen 2016; Verhoef and Maunsell 2017). Importantly, information 

encoding depends on activity of individual neurons as well as the relationship between neurons, 

including pairwise correlations; theoretically, shared noise can prevent a population from 

averaging out noise and even weak noise correlations can considerably diminish the signaling of 

a population (Shadlen and Newsome 1994). While not all correlations necessarily limit 

information (Abbott and Dayan 1999), there are instances of noise correlations - in particular those 

between units with similar preferences - that have been theorized to be information-limiting 

(Moreno-Bote et al. 2014). Recent work corroborates these theories (Kafashan et al. 2021).  

In behavioral studies, reductions in noise correlations can largely explain performance 

improvements in attention (Marlene R. Cohen and Maunsell 2009), and these correlations have 

been shown to occur between pairs of units with similar orientation selectivity and strong 

normalization (Verhoef and Maunsell 2017). Indeed, normalization has been theorized to decrease 

correlations and its circuitry provides an infrastructure for decorrelation, seen in passively viewing 

macaques (Tripp 2012; Ruff, Alberts, and Cohen 2016; Coen-Cagli and Solomon 2019). In 

behavioral studies, correlations changes due to attention can be entirely explained by attention’s 

biasing of normalization mechanisms (Verhoef and Maunsell 2017). These findings point to a 

central role for normalization in modulating the neuronal and population representation of stimuli. 
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One of the main advantages for developing a mouse model of normalization is the 

opportunity to better understand the circuit mechanisms and cell types that give rise to pairwise 

correlation structures in the cortex. Thus it is important to observe how normalization influences 

pairwise correlations in the mouse, and how these patterns compare and contrast with findings in 

primates. Here, we examined population-level effects of normalization by examining pairwise 

noise correlations in both two-photon imaging data and electrophysiology collected from awake 

mice presented with normalization stimuli. 

 

Results 

 

Noise correlations were measured in mouse V1 populations recorded during the presentation 

of normalization stimuli 

Noise correlations were examined in awake mouse V1 using both two-photon imaging and 

electrophysiology data during the presentation of a stimulus set designed to evoke normalization 

(M. Carandini and Heeger 1994; Matteo Carandini, Heeger, and Movshon 1997; Busse, Wade, 

and Carandini 2009). Namely, the set of stimuli included 25 stimuli composed of cross-oriented 

vertical and horizontal component gratings ranging from 0% to 50% contrast each. A different 

order of stimuli was generated for each recording day, but on any given recording day, the order 

of stimuli was maintained from trial to trial in order to limit the effects of preceding stimuli on 

noise correlations. 

In classic normalization, the “plaid” normalization stimulus is expected to produce an 

equally weighted average of a neuron’s responses to the two “grating” component stimuli. This is 

in contrast with linear summation, in which the plaid stimulus would be expected to produce a 
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simple linear sum of a neuron’s responses to the two grating components. In tuned normalization, 

previously described in macaques (Rust et al. 2006; Ni, Ray, and Maunsell 2012) and here in 

mouse (Figure 3-4 and Figure 3-8), normalization strength can vary such that an unequally 

weighted average of the responses to the component stimuli is produced when the plaid stimulus 

is presented. To quantify normalization strength in Chapter 3, we used a normalization index (NI) 

defined as the difference between the true response to the cross-oriented (plaid) stimulus and the 

linear sum of responses to the component stimuli (gratings), all over the sum of these two 

quantities. In this quantification, a normalization index of zero represents linear summation and a 

normalization index of 0.33 represents classic normalization. Values between 0 and 0.33 represent 

tuned normalization; values greater than 0.33 represent super-normalization, a differently 

weighted example of tuned normalization. Values less than zero represent supra-linear summation.  

We examined data collected from excitatory neurons in V1 layer 2/3 using two-photon 

imaging as well as data collected from different cortical depths using electrophysiology 

experiments. The majority of neurons and units that we recorded from had a normalization index 

ranging between zero and 0.33 (two-photon imaging: median = 0.15, IQR = 0.03 - 0.25; 

electrophysiology: median = 0.13, IQR = -0.01 – 0.26) (Figure 3-4 and Figure 3-8). Noise 

correlations were calculated between direction tuned neurons within each dataset using partial 

pairwise correlations (two-photon data; n = 17,273 pairs from 341 neurons) and by taking the spike 

count correlation (electrophysiology; n = 206 pairs from 63 units). The electrophysiology data was 

examined according to depth, but the limited number of pairs available within depths and within 

experiments precluded reliable comparison. Thus, all pairs from the electrophysiology 

experiments were combined for further analyses. 
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Noise correlation distributions are distinct in plaid versus grating stimulus presentation  

 Distributions of noise correlations in the grating and plaid conditions were compared 

(Figure 4-1). Overall, correlations were small and positive as observed in other species, such as 

macaque (Verhoef and Maunsell 2017). The medians of the distributions were not significantly 

different in both the two-photon datasets (grating median = 0.03, IQR = -0.08 – 0.15; plaid median 

= 0.03, IQR = -0.09 – 0.15; Mann-Whitney U test, n.s.) and the electrophysiology data (grating 

median = 0.04, IQR = -0.04 – 0.10; plaid median = 0.03; IQR=-0.04 – 0.10; Mann-Whitney U test, 

n.s.). However, in the two-photon datasets, the distributions of noise correlations were found to be 

significantly different between the grating and plaid conditions (Kolmogorov-Smirnov test, p < 

10-4). In both data types, higher correlations were observed in pairs of neurons with similar 

direction tuning preferences compared with pairs that had opposite or oblique direction tuning 

preferences (Figure 4-1b and Figure 4-1d). Furthermore, correlations were higher in the grating 

(component) condition compared with the plaid (normalization) condition for pairs of neurons that 

had orthogonal or oblique preferences relative to one another in the two-photon imaging data. 
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Figure 4-1. Distributions and pairwise tuning-dependence of noise correlations in mouse V1 

 

a, The distributions of pairwise noise correlations measured using two photon-imaging during 

the presentation of grating (component) versus plaid (normalization) stimuli (n = 17,273). The 

distributions are significantly different (Kolmogorov-Smirnov test, p < 10-4) between the two 

conditions. However, the medians are overlapping and are not significantly different (grating 

median = 0.03, IQR = -0.08-0.15; plaid median = 0.03, IQR = -0.09 – 0.15; Mann-Whitney U 

test, n.s.). b,  Noise correlations are plotted against pairwise tuning direction preference 

difference, showing higher correlations on average for pairs with similar direction tuning 

preferences. Correlations were higher in the grating (component) condition compared with the  

plaid (normalization) condition for pairs of neurons that had orthogonal or oblique preferences 

relative to one another. c, Same as Figure 4-1a, except the pairs examined are from 

electrophysiology experiments (n = 206 pairs). In this data, no statistical difference was detected  
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Figure 4-1, continued 

in the distributions or medians of the noise correlation distributions between the grating 

(component) and plaid (normalization) stimuli (Kolmogorov-Smirnov test, n.s.; Mann-Whitney 

U test, n.s.). The medians were comparable with the two-photon imaging data, but the inter-

quartile range was narrower (grating median = 0.04, IQR = -0.04 – 0.10; plaid median = 0.03; 

IQR=-0.04 – 0.10). d, Same as Figure 4-1b, except the pairs examined are from 

electrophysiology experiments. Pairwise noise correlations are higher for pairs with similar 

direction tuning preferences.  
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Pairwise noise correlations are influenced by normalization strength and orientation 

selectivity 

Next, we examined whether pairwise noise correlations were influenced by pairwise 

orientation preferences and normalization strengths, as previously shown in macaque (Verhoef and 

Maunsell 2017).  

For the measure of orientation selectivity, we defined the orientation selectivity index 

(OSI), which is calculated as the difference in responses to the preferred and null component 

stimuli at 50% contrast divided by the sum of those responses. An OSI of zero indicates no 

orientation selectivity, and an OSI of one represents perfect selectivity to one of the two component 

stimuli. The pairwise OSI was calculated as the geometric mean OSI of the individual neurons or 

units in a pair, signed according to whether the pair preferred the same or opposite orientations.  

For the measure of normalization, we defined the pairwise non-preferred suppression index 

(NSI) similar to previous work (Verhoef and Maunsell 2017). In that work, data from all 25 plaid 

stimuli presented were fitted to identify normalization parameters. The non-preferred suppression 

index for each unit was taken to represent the strength of normalization for each unit (Verhoef and 

Maunsell 2017). As in previous work, the non-preferred suppression index for each neuron or unit 

in a pair was here taken as the fitted alpha parameter of the tuned normalization model (Ni, Ray, 

and Maunsell 2012; Verhoef and Maunsell 2017).  The pairwise NSI was calculated as the mean 

of fitted alpha parameters for each neuron or unit pair. It should be noted that this is a different 

normalization index than that presented in Chapter 3; in that chapter, a normalization index (NI) 

was calculated based on responses to preferred and non-preferred stimuli and the combined plaid 

from those components, again for close comparison with previous studies (Ni, Ray, and Maunsell 

2012). However, it should be noted that here and in previous work in macaques, these two 
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measures (NI and NSI) are correlated, suggesting that these capture normalization strength 

similarly (Ni, Ray, and Maunsell 2012).  

Data were binned along the medians for both pairwise OSI and pairwise NSI, resulting in 

evenly populated bins. Correlation strength was compared between the plaid and component 

stimulus conditions for each quadrant defined by OSI and NSI median-split bins. In the two-photon 

imaging data, noise correlations increased in pairs with similar orientation selectivity and strong 

normalization (Mann-Whitney U test, p < 0.05), decreased in pairs with opposite selectivity and 

strong normalization (Mann-Whitney U test, p < 0.01), and decreased in pairs with similar 

orientation selectivity and strong normalization (Mann-Whitney U test, p < 0.05) when plaid 

(normalization) stimuli were presented compared to when grating (component) stimuli were shown 

(Figure 4-2a). No significant differences in correlations were detected in the electrophysiology 

data, though this may indicate an under-powering of the comparison in the electrophysiology data 

(Mann-Whitney U tests, n.s. for all four quadrants). Nevertheless, the data are reported here for 

completeness (Figure 4-2b). For the electrophysiology data, it was difficult to draw reliable 

conclusions from the small number of pairs. This highlights the utility of simultaneous recordings 

from many neurons, as in the two-photon imaging experiments, and points to an application for 

high-density electrophysiology electrodes that have recently become commercially available 

(Steinmetz et al. 2018). 
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Figure 4-2. Pairwise noise correlations are influenced by normalization strength and 

orientation selectivity  

 

a, Noise correlations measured in two-photon data (n=15,290) were divided according to median 

splits of the “pairwise orientation selectivity” index and “pairwise normalization” non-preferred 

suppression index such that all four quadrants were evenly populated. Noise correlations 

increased in pairs with similar orientation selectivity and strong normalization (Mann-Whitney U 

test, p < 0.05), decreased in pairs with opposite selectivity and strong normalization (Mann-

Whitney U test, p < 0.01), and decreased in pairs with similar orientation selectivity and weak 

normalization (Mann-Whitney U test, p < 0.05) when plaid (normalization) stimuli were 

presented compared to when grating (component) stimuli were shown. b, Same as Figure 4-2a, 

except showing noise correlations measured in the electrophysiology data (n=206). No 

significant differences in correlations were detected (Mann-Whitney U tests, n.s. for all four 

quadrants).  
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Discussion 

Here, we examine noise correlations in awake mouse V1 during the presentation of stimuli 

that elicit normalization using both two-photon imaging and electrophysiology. We observed small 

and positive correlations in the data in both recording modalities. Additionally, we observed a 

change in the distributions of correlations between grating (component) and plaid (normalization) 

stimuli. Furthermore, we report decreased correlations in pairs of neurons with opposite or oblique 

direction preferences during the presentation of plaid normalization stimuli as compared to 

component stimuli, suggesting that normalization systematically influences correlation structures 

in the mouse cortex as observed in macaque. Changes in cortical correlations in the context of 

normalization have been theorized and described previously (Tripp 2012; Ruff, Alberts, and Cohen 

2016; Verhoef and Maunsell 2017), highlighting the role that normalization plays in shared cortical 

variability and emphasizing the opportunity that mouse presents for better understanding the 

fundamental mechanisms underlying pairwise correlation changes in cortex. 

We next studied whether changes in pairwise correlations could be related to normalization 

strength and orientation selectivity in mouse, as previously observed in macaque (Verhoef and 

Maunsell 2017). We noted similarities and differences between the normalization-mediated 

changes in pairwise noise correlations in mouse and macaque. In particular, we found that 

normalization increases noise correlations between similarly orientation selective pairs that 

showed strong normalization. This is consistent with results from macaque, in which pairs of 

neurons with similar orientation selectivity and strong normalization had increased correlations in 

the presence of normalization stimuli compared with just component stimuli (Verhoef and 

Maunsell 2017). Importantly, correlations between similarly and strongly selective neurons are the 

same that are modified (decreased) by increased attention, highlighting the role of normalization 
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circuitry in creating the effects of attention that are important in behavior (Verhoef and Maunsell 

2017; Marlene R. Cohen and Maunsell 2009). We also observed other similarities when comparing 

the mouse data with reports from macaque: namely, in macaques, pairs with opposite orientation 

selectivity and strong normalization show decreased correlations. We also observe this in mouse 

V1.  

Additionally, we observed that pairs with strong normalization and similar orientation 

selectivity showed decreased correlations when normalization stimuli were presented compared 

with when component stimuli were presented. This has not been previously observed in macaque. 

These differences could represent true differences between the mouse and macaques, as we use 

the normalization index of fitted normalization parameters as studied in previous work. 

Differences could be related to differences in the organization of visual cortex in mouse and 

macaque; for example, macaque visual cortex is organized in columns, whereas mouse visual 

cortex exhibits a salt-and-pepper organization (Niell 2015). Further work is needed to better 

understand the differences described here. 

The conclusions drawn here were largely derived from the correlations measured in the 

two-photon data, as the sample size in the electrophysiology was relatively much smaller. This 

was a limitation in this study, but also pointed to an opportunity to use dense sampling electrodes 

in future electrophysiology studies examining correlations in mouse (Steinmetz et al. 2018). 

On a fundamental level, in addition to their important role in attention, noise correlations 

have been theorized and shown to limit information in populations of neurons (Shadlen and 

Newsome 1994; Moreno-Bote et al. 2014; Kafashan et al. 2021). Thus, accessing the study of 

noise correlations in a species like mouse now allows for a deeper understanding of the way that 

noise correlations are produced and modified. On the whole, these findings in mouse open the door 



 75 

to further exploration of the circuit mechanism and network properties underlying normalization, 

pairwise correlations, and by extension, cognitive functions like attention and multi-sensory 

integration (Marlene R. Cohen and Maunsell 2009; Verhoef and Maunsell 2017; Ohshiro, 

Angelaki, and DeAngelis 2011).  
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CHAPTER 5 

GENERAL DISCUSSION 

 

Overview 

 In this work, we report visually-evoked normalization in mouse visual cortex, opening the 

door to further study of the circuit mechanism, cell types, and networks that underlie this canonical 

computation (Matteo Carandini and Heeger 2011). The data presented here was measured using 

both electrophysiology and two-photon imaging in awake, head-fixed mice; both recording 

modalities showed similar distributions of normalization strength, with differences in 

normalization strength noted across layers in the electrophysiology data. Normalization strength 

was shown to be tuned, as seen in primates, but systematically weaker than previous reports in 

macaques, in which normalization strength is closer to classic normalization (Ni, Ray, and 

Maunsell 2012). Finally, we also investigated pairwise noise correlations and observed that 

normalization affects patterns of noise correlations in relation to orientation selectivity and 

normalization strength. These findings highlight the mouse as a model for further elucidating the 

underlying circuit mechanisms and networks that underlie normalization, a canonical computation 

that profoundly influences stimulus representations in the brain.  

 

Visually-evoked and tuned normalization measured in awake mouse V1  

We recorded from the V1 of awake mice during the presentation of normalization stimuli 

using both two-photon imaging and electrophysiology. The majority of responsive and tuned 

neurons in the mouse visual cortex show sublinear responses to plaid stimuli when compared with 

the responses to the component gratings. This is consistent with normalization, and was observed 
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in both imaging and electrophysiology experiments. We show that in both sets of experiments, 

neurons and units exhibit a range of normalization strengths. We quantified this difference using 

a normalization index in which linear summation, in which the response to a plaid stimulus is a 

sum of the response to component stimuli, was set to zero. In our normalization index, a simple 

weighted average consistent with classic normalization, was represented by a normalization index 

of 0.33. We observed a median normalization index among neurons of 0.15 (two-photon imaging; 

IQR = 0.03 – 0.25) and among units of 0.13 (electrophysiology; IQR = -0.01 – 0.26). Among 

neurons and units, we observed a distribution of normalization strengths, with ranges largely 

overlapping between the two-photon and electrophysiology data. This indicates that normalization 

can be studied in mouse using either or a combination of these recording modalities. 

Our finds are consistent with the phenomenon of tuned normalization observed in 

macaques previously in which units normalized to different extents (Rust et al. 2006; Ni, Ray, and 

Maunsell 2012; Ni and Maunsell 2017). However, there are notable quantitative differences in 

normalization observed in the mouse; namely, the data from macaque are closer to classic 

normalization, with an approximate median normalization index ~0.2 in macaques (Ni, Ray, and 

Maunsell 2012). In comparison, the data in mouse are systematically offset towards weaker 

normalization. Normalization tuning is related to attentional modulation of neuronal firing rates; 

neurons that show stronger normalization also show stronger attentional modulation. This 

highlights that the normalization strength of neurons is computationally relevant. Indeed, 

modulations in firing rate due to attention and related to tuned normalization bias normalization 

mechanisms to modulate correlations in attention (Verhoef and Maunsell 2017). Tuned 

normalization can be further studied in the mouse through circuit, cell-type, and network studies, 

opening the door to further insights into this property of neuronal responses. 
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Depth-dependence of normalization 

In addition to measuring distributions of normalization strengths in the neurons and units 

we recorded, we also took advantage of our electrophysiology recordings (spanning the depth of 

V1) to compare normalization across different cortical recording depths. Much of the literature 

regarding normalization reports on samples collected from layers 2/3, reflecting greater cortical 

thickness of larger mammals like cats and primates as well as the accessibility of multi-site 

recording technologies (specifically Utah arrays) that primarily enable access to layer 2/3 (Busse, 

Wade, and Carandini 2009; Verhoef and Maunsell 2017). We observed that normalization was 

significantly stronger at superficial recording depths and decreased as recording depth increased, 

up to a depth of 500 m, at which point normalization abruptly and significantly strengthened. We 

did not control for angular deviations from normal in our recordings. However, this the previously 

unreported and notable differences across recording depths can provide valuable clues as to the 

origin of normalization and the processes like attention and multi-sensory integration that it 

underlies (Ohshiro, Angelaki, and DeAngelis 2011; Verhoef and Maunsell 2017). Along with other 

work in normalization, this direct measurement from across the cortical layers highlights the likely 

cortical origin of normalization and emphasizes the possibility of flexibility gating the computation 

at a cortical level, enabling its manipulation by higher order cognitive functions like attention. Our 

finding warrants further investigation into the laminar organization of normalization mechanisms.  

 

The role of normalization in cortical noise correlations 

Beyond the single-cell level of analysis, we also examined pairwise noise correlations of 

populations of neurons during normalization. In this work, we demonstrate that mouse visual 

cortical pairwise correlations are influenced by normalization and normalization stimuli.  
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The median noise correlations were small and positive in our data across both plaid 

(normalization) and grating (component) stimuli. However, we noted a difference in correlation 

distributions between the plaid and the grating stimuli, as measured using two-photon imaging. 

When examining the data according to orientation selectivity and normalization strength, we 

observed increased correlations in similarly selective pairs that strongly normalize. Furthermore, 

we observed a decrease in correlations among pairs with opposite orientation selectivity that 

exhibited strong normalization. These findings are consistent with previous data from macaque 

(Verhoef and Maunsell 2017). We also observed differences relative to macaque. For example, we 

observed significantly decreased correlations in similarly selective pairs that have weak 

normalization, which was not described in the macaque data. The differences observed here may 

represent differences between macaque and mouse that could be due to differences in the 

organization of visual cortex between monkeys and mice (Verhoef and Maunsell 2017).  

On the whole, these findings can help better understand noise correlations in the cortex. 

Correlations can limit the information carried by a population of neurons (Moreno-Bote et al. 

2014). However, not all correlations are information-limiting (Abbott and Dayan 1999). Recent 

work has hypothesized the existence of “information-limiting correlations,” and showed that 

reducing correlations between pairs of similarly tuned neurons specifically could limit information 

capacity of a network (Moreno-Bote et al. 2014). Experimental work estimating the Fisher 

information in a population of simultaneously imaged mouse V1 neurons showed that indeed, 

reductions in these correlations increased the asymptotic information limit in the neurons’ 

populations (Kafashan et al. 2021).  

Behaviorally, reductions in correlations during attention tasks largely explained 

improvements in macaques’ performance in a visual attention task (Marlene R. Cohen and 
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Maunsell 2009). It is interesting to note that the correlations that are reduced in attention are 

specifically those in pairs that are similarly orientation selective that also have strong 

normalization (Verhoef and Maunsell 2017). Further work in this direction could elucidate how 

normalization, attention, and information processing are related in the brain. 

Although previous studies have demonstrated summation and division can occur in mouse 

visual cortex using non-visual stimuli (including optogenetic stimulation and current injection), 

this is the first work to our knowledge that describes visually-evoked normalization in mouse (Ko 

et al. 2011), opening the door to further elucidating the mechanisms and structures that influence 

pairwise correlations in the cortex.  

 

Opportunities in mouse 

The finding that mouse visual cortex exhibits normalization adds this computation to a 

growing list of similarities in mouse vision and vision studied in other species (Seabrook et al. 

2017). Combined with the advantages inherent to the mouse as a model species and to vision as a 

model cortical modality, this opens doors to better understanding cortical processing as a whole.  

Because mice can be imaged while head-fixed, it is possible to test the influence of various 

behaviors on normalization and the population changes it effects. In these studies, mice were head-

fixed and awake, similar to previous experiments in other species (Ni, Ray, and Maunsell 2012; 

Ruff, Alberts, and Cohen 2016; Verhoef and Maunsell 2017). However, the mice were able to 

locomote freely. While in this study only ~5% of all trials included running, it is possible to design 

experiments in which a constitutively revolving treadmill requires mice to locomote according to 

a specified trial structure. Should changes be observed in normalization, in this case, they could 

be related to mechanisms discovered in running. For example, Ayaz and colleagues found that 
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decreased surround suppression contributes to increased firing in mouse visual cortex during 

locomotion, and this decrease in suppression is related to changes in the activity of somatostatin 

neurons (Ayaz et al. 2013). Somatostatin neurons are disinhibited by VIP neurons in layer 1, and 

are the only currently known inhibitory cell type that do not observe a surround-suppression model, 

which positions them to compute surround suppression (Fino, Packer, and Yuste 2013). Studies 

investigating the relationship between running, surround suppression, and normalization are within 

reach using the mouse as a model for normalization.  

Furthermore, although our work demonstrates a role for normalization in visual cortical 

sensory representations, our work does not directly implicate a biophysical or cellular mechanism. 

Much work remains to further elucidate these mechanisms. However, by leveraging visually-

evoked activity in the mouse visual cortex and the many other experimental tools available in mice, 

many avenues for further study are made available. A powerful combination of visual 

manipulations, genetic tools, optogenetic techniques, and improved recording technologies all 

enable the detailed dissection of the cell types and circuits that are involved in cortical computation 

(Luo, Callaway, and Svoboda 2018; Deisseroth 2015; Steinmetz et al. 2018; Seabrook et al. 2017). 

Finally, further study can investigate the underlying networks that give rise to 

normalization. Specifically, it would be interesting to study functional network structures change 

with normalization. Because of the widespread changes in correlations during normalization, it is 

implied that the functional network itself may change, influencing the information carrying 

capacity of a neural population. Further work using static network analyses and temporal graph 

analysis can be used to further elucidate how decreasing such correlations can influence visual 

perception (Chambers and MacLean 2016; Dechery and MacLean 2017; Levy, Sporns, and 

MacLean 2020). For example, subnetworks of cell types can be studied to better understand how 
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to the network structures of similarly or oppositely tuned neurons change with normalization. 

Indeed, it will be useful to better understand the feedforward and recurrent networks of neurons 

involved in normalization. With the imaging access that mouse provides, such studies involving 

near-simultaneously imaged and spatially identifiable neurons are now possible (Sadovsky et al. 

2011; Dechery and MacLean 2017; Lu et al. 2020). These studies can provide insight into the 

networks involved in normalization, a canonical computation (Matteo Carandini and Heeger 

2011). 

 

Conclusion 

 Prior to this work, visually-evoked normalization in mouse visual cortex had not been 

described. Here, we put forth the mouse as a model for further elucidating the circuitry and 

functional networks that underlie normalization, a ubiquitous and consequential canonical neural 

computation that underlies many sensory and cognitive processes, including multi-sensory 

integration and attention. Additionally, further understanding normalization could improve our 

understanding of pairwise correlations that are linked to important cognitive processes like 

attention. By understanding the circuit and network basis of normalization, we can gain insight 

into the fundamental underpinnings of how the brain processes sensory signals. Indeed, it may one 

day become possible to link basic science and clinical pathologies in which normalization 

processes are interrupted. 
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Future Directions 

1. Are there layer-specific instantiations of normalization?  

2. What are the within- and between-layer circuit mechanisms that give rise to normalization 

in the mouse visual cortex?  

3. How does locomotion interact with normalization?  

4. How does mutual information between pairs of neurons change in conditions of 

normalization and attention?  

5. In which pairs or subnetworks of neurons is information carried most robustly?  

6. What are the network properties of normalization in mouse visual cortex?  

7. How are higher order cortical network relationships, such as triplet motif representation, 

influenced by normalization?   

8. How do normalization networks enable the robust transfer of information and network 

information capacity?  

9. How do different cell types (excitatory and inhibitory, including inhibitory subtypes) 

contribute to normalization?  

10. How are these cortical circuits modulated by attention?  
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