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ABSTRACT 

In Bangladesh, chronic arsenic exposure through drinking water has affected millions of 

individuals and remains a public health issue. Due to the carcinogenic effects after long-term or 

high-dose arsenic exposure to multiple organs and systems in the human body, affected 

individuals are subject to an increased risk for non-melanoma skin cancer and other cancers. 

While the effort to eradicate this contamination is inconclusive due to unsustainability, 

complexity, potentially greater secondary pollution, and other drawbacks, oxidative stress and 

DNA damage have been suggested and hypothesized to underlie arsenic carcinogenesis.  

To develop well-rounded prevention strategies, we divided the goal into two parts: first, 

through lowering the impact from the exposure to lower the disease risk; and second, through 

early detection to minimize morbidity and mortality.  

The primary prevention strategy for nonmelanoma skin cancer (NMSC) was carried out 

through intervening in the disease. In cancer prevention, the blood levels of antioxidants, namely 

vitamin E and selenium, have demonstrated protective effects by combating free radicals in our 

body. This mechanistic evidence set up a foundation for us to explore therapeutic options for the 

affected populations and their subgroups. In the first study of this dissertation (Chapter 1 and 

Chapter 2), I evaluated the overall and differential treatment effects of selenium and vitamin E, 

alone or in combination on the risk of NMSC and mortality outcomes. There were no statistically 

significant overall and treatment effects observed on both endpoints of the trial. Additionally, we 

did not observe differential treatment effects by ten baseline population characteristics, including 

gender, BMI, smoking status, sun exposure, occupation, skin lesion severity, urinary arsenic 

level, blood selenium, plasma α-tocopherol, and plasma γ-tocopherol. 
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The second approach to reduce morbidity and mortality due to NMSC was through early 

and accurate recognition of skin cancer. In the second part of this dissertation (Chapter 3), I 

applied an attention-based deep neural network to analyze histopathological images collected 

from the participants who were suspected of NMSC. Our model showed promising diagnostic 

accuracy for non-cancer and basal cell carcinoma subtypes. Moreover, we also generated the 

heatmaps from the model and visualized the key areas within each image that drive the cancer 

diagnosis. These machine-generated heatmaps were proven accurate in pinpointing the lesions by 

the expert dermatopathologist.  

In summary, we conducted a thorough evaluation to alleviate the impact of NMSC for the 

susceptible population in Bangladesh through both treating the disease as well as making efforts 

for early and more accessible cancer detection procedures. These prevention strategies would 

serve as a model for the similar frameworks of other cancers and complex diseases in a similar 

setting.
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INTRODUCTION 

 

In medicine, physicians use many tools to measure patient’s conditions in their wellness 

and illness. An all-encompassing assessment usually includes patients’ demographic 

characteristics, family history, social history, medical history, as well as their physical 

examination, laboratory tests and imaging evaluations. The enormous contribution from clinical 

medicine to human’s abilities to treat and cure the sick is beyond contention. However, this form 

of medical practice is still based on treating symptoms, which may work for most patients by 

delivering symptom relief, reducing the risk of complications, and improving survival chances. 

Nevertheless, this solution is not for all 1.  

Precision medicine is rapidly evolved in recent five years, serving as a vanguard for 

leading researchers to transform healthcare, and showing great promise in disease treatments 2. 

However, proponents argued that these treatments might benefit only a few individuals for a 

narrow set of conditions that are primarily genetically determined 1, whereas preventions may 

apply to all 3–5. This situation calls for a need to reframe and broaden precision medicine beyond 

“omics” by integrating clinical, imaging, social, environmental, and demographic profiles 

altogether 3.  

Precision in the context of public health is described as “improving the ability to prevent 

disease, promote health, and reduce health disparities in populations by applying emerging 

methods and technologies for measuring disease, pathogens, exposures, behaviors, and 

susceptibility in populations” 6. Moreover, population stratification based on social determinants 

could provide valuable insights on the relationship between disease and treatment 6,7. This shift 
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implicitly demands a platform that is capable of bridging multiple fields in a secured 

environment for diverse population and mixed data formats for analysis and visualization and 

ultimately inform healthcare decisions 4,6,8.  

Over the years, biomedical informatics has evolved immensely. Computers are becoming 

faster in speed; data is accumulating robustly in both volume and diversity. These advancements 

are propelling machine learning to solve existing complex problems in medicine. Machine 

learning as a branch of computer science potentiates a machine to imitate and even enhance 

human behavior. While on the individual level, the complexities of diseases do not inform 

clinical decision-making, some existing limitations might be minimized by technology 

improvements. Researchers have demonstrated the potentials of machine learning models to 

reduce medical errors by analyzing definitive histopathological images 9,10. Machine learning 

model was also applied to sift through unstructured electronic health records and identify 

medical conditions and diagnoses 11. In another study, machine learning platform enabled a 

secure framework for data sharing to identify gene variations and similarities among diverse 

cohorts 12.  

Various machine learning applications have already been used to improve healthcare 

services in high income countries 13–15. One analysis showed machine learning applications in 

clinical health could save approximately $150 billion for US healthcare costs by 2026. These 

demonstrated positive prospects for its implementation in resource-poor countries, where such 

applications are most needed. In 2017, the United Nations had held a meeting to discuss the 

development and deployment of AI applications to reduce poverty and deliver a broad range of 

critical public services on a globally scale. Later, in another meeting held by the United Nations, 
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different stakeholders were brought together to evaluate how AI could help in achieving the 

Sustainable Development Goals.  

Little has been documented in the academic literature regarding AI applications for 

population health in resource-poor settings. However, this should not be taken as a sign of the 

current activities, nor the trend in this area. Based on the current development of AI in high-

income countries, one lesson from experience is that “AI should build intelligence into existing 

systems and institutions rather than starting from scratch or hoping to replace existing systems, 

however, broken” 16. In addition, the pervasive use of computer, mobile phones, and digital 

cameras in daily life and medical practice in these countries implies that the necessary tools have 

already been in place to initiate this application. In return, the large volume of data being 

generated could be used to improve individual and population health in these countries.  

In this dissertation project, all the aims were fulfilled with data from the Bangladesh 

Vitamin E and Selenium Trial (BEST). BEST is a triple blind (participants, care provider, and 

investigators) two-by-two factorial assignment randomized controlled trial, evaluating vitamin E 

(100 IU daily) and selenium (200 µg daily) for primary prevention of NMSC and chronic 

disease-related mortality. The high-risk cohort contains 7,000 participants, recruited between 

April 2006 and August 2009 from the Narayanganj, Comilla, Noakhali, and Chandpur districts in 

two regions (Araihazar and Matlab) of Bangladesh. The eligibility criteria to participate in BEST 

included: 1) adult participants with visible arsenical skin lesions; 2) aged 25 to 65 years; and 3) 

signed informed consent. Exclusion criteria included: 1) pregnant 2) not a permanent resident of 

the study areas; 3) not willing to discontinue current vitamin use; 4) history of cancer (including 

NMSC); 5) too ill to participate; or 6) unwilling to provide biological samples (blood or urine).  
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All the participants from BEST had long-term exposure to arsenic through the 

contaminated drinking water. The participants, with skin lesion manifestations, without NMSC at 

the time of recruitment, were also characterized by their unique demographic, lifestyle, medical, 

molecular, and genomic factors, and their disease indication and diagnosis were captured through 

images.  

In the hope to develop all-encompassing prevention strategies, we divided the goal in two 

parts: primarily, through lowering the impact from the exposure to lower the disease risk; and 

secondarily, through early detection to minimize morbidity and mortality. The primary 

prevention for NMSC was embodied through intervening the disease. Elaboration on the 

efficient prevention strategies requires good knowledge of the intervention mechanisms and risk 

factors. In cancer prevention, blood level of antioxidants, namely vitamin E and selenium, have 

demonstrated protective effects. The mechanistic evidence set up a foundation for further 

exploring therapeutic options for the affected populations and their subgroups.  

The secondary prevention to reduce morbidity and mortality due to NMSC was mainly 

through early and accurate recognition of skin cancer. Early initiatives have already been 

implemented for melanoma towards comparable diagnosis capability by machine learning 

approaches 17–19, a similar platform for NMSC, especially in the resource-poor setting for the 

high-risk population would fill the gap in precision population health. Furthermore, the platform 

of these prevention strategies on NMSC would serve as a model for similar framework of other 

cancers and complex diseases.  

Taking into account the epidemiologic trend of NMSC on a global scale as well as 

zooming in on the high-risk regions, it becomes obvious that there is a rigorous need to control 
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the increase of incidence of NMSC and the subsequent socioeconomic burden. Efforts towards 

this goal were demonstrated in this dissertation project.  
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1. SELENIUM AND VITAMIN E SUPPLEMENTATION AND 

PREVENTION OF NON-MELANOMA SKIN CANCER AND 

CHRONIC DISEASE MORTALITIES: RESULTS FROM A 

RANDOMIZIED CONTROLLED TRIAL  

 
 

BACKGROUND 

In Bangladesh, chronic arsenic exposure through drinking water has affected 35-77 

million people and remains a public health issue 20, resulting in an increased risk for non-

melanoma skin cancer and other cancers 21,22. Due to the carcinogenic effects after long-term or 

high-dose arsenic exposure to multiple organs and systems in human body, World Health 

Organization (WHO) has established the value of 10 μg/L as the maximum contaminant level for 

total arsenic in potable water. In order to meet this requirement, a number of remedial techniques 

for arsenic removal had been developed and attempted worldwide. However, due to 

unsustainability, complexity, potentially greater secondary pollution and other drawbacks, these 

efforts mostly ended inconclusive 23,24.  

Although the mechanism remains largely unknown, mounting evidence on arsenical 

carcinogenesis suggested that long-term arsenic consumption may give rise to various types of 

cancer 22. Amongst these mechanisms, arsenic exposure promoted oxidative stress is recognized 

as an underpinning component, and this activity is proven to be inversely correlated with 

antioxidant capacity in blood 25,26. 

The ability of antioxidants to prohibit cancer cell growth has been revealed in a large 

body of laboratory studies, attributing to its effect on DNA stability, cell proliferation, necrotic 
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and apoptotic cell death in both healthy and malignant cells, potentially contributing to regulate 

oxidative stress and maintain immune system homeostasis 27–30. Observational epidemiologic 

studies have also established the evidence of inverse association between selenium and vitamin E 

exposures with cancer outcomes 31–36, this further strengthened the role of cancer prevention 

from these antioxidants. Furthermore, an increased blood and urinary selenium and vitamin E 

were also found associated with higher arsenic metabolism in arsenic-exposed populations 37 , 

while intake of selenium and vitamin E were associated with lower skin lesion incidence 38–40.  

These notable findings have led to a few randomized controlled trials (RCTs) for 

researchers to seek stronger evidence on the effects of antioxidants for cancer. The Nutritional 

Prevention of Cancer (NPC) Trial evaluated the effect of selenium on NMSC and other types of 

cancers in high-risk population and discovered a significant protective effect only on prostate 

cancer 41 . The Alpha-Tocopherol, Beta-Carotene Cancer prevention trial (ATBC) examined the 

effect of low-dose vitamin E (50 mg daily) and observed no beneficial effects on the risk of lung 

cancer 42. A study conducted in Linxian, China reported two RCTs to study the effects of 

multiple-vitamin and multiple-mineral supplements on cancer outcomes 43. However, these trials 

included interventions with multiple nutrients, individual effect from each supplement wasn’t 

explored. Later, in multiple reports 44,45, the Selenium and Vitamin E Chemoprevention Trial 

(SELECT) in part evaluated selenium (200 µg/day) and vitamin E (400 IU daily) on prostate and 

other cancers and suggested no treatment effect. A pilot trial in Bangladesh investigated the 

impact of a six-month supplementation with vitamin E (400 mg daily) or selenium (200 µg daily) 

in an arsenic-exposed population and reported slightly improved arsenical skin lesion status; 

however, the results were not statistically significant 46.  
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Interestingly, except for the inconsistent findings for overall cancer risk, these studies 

further implied differential cancer risk by various population characteristics, such as 

demographics, lifestyle characteristics, clinical manifestations, and biomarker levels. One 

explanation suggested by observational epidemiologic studies is that antioxidant levels found in 

human specimen globally vary due to variations in other factors, such as sex, individual 

metabolism, BMI, and smoking status, especially in at-risk populations 47–52. Hence, the 

characteristic-specific nutritional status and antioxidant metabolism may contribute to the 

observed discrepancies in cancer risk.  

To evaluate the impact of selenium and vitamin E as chemopreventive agents in a 

population with manifest arsenic-toxicity, we conducted the Bangladesh Vitamin E and Selenium 

Trial (BEST); a 2 × 2 factorial RCT of vitamin E (100 IU daily) and selenium (200 µg daily) for 

the primary prevention of NMSC and chronic disease-related mortality 53 .   

 

METHODS 

Data Source 

Trial participants were recruited between April 2006 and August 2009 from the 

Narayanganj, Comilla, Noakhali and Chandpur districts in two main regions (Araihazar and 

Matlab) in Bangladesh. Field staff from two centralized offices managed the field work, 

data/sample collection and processing. The eligibility criteria included: 1) adult participants with 

existing arsenic-related skin lesions; 2) aged 25 to 65 years at the time of recruitment; and 3) 

signed informed consent. Exclusion criteria included: 1) pregnancy at the time of enrollment; 2) 

not a permanent resident of the trial areas; 3) not willing to discontinue current vitamin use; 4) 
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history of cancer; 5) too ill to participate; or 6) unwilling to provide biological samples (blood or 

urine). A flowchart in Figure 1 demonstrated the detailed follow-up information for BEST.  

 

The trial stratified randomization by two trial sites aforementioned, and participant’s 

gender. Participants were then randomly assigned vitamin E (α-tocopherol, 100 IU/day), 

selenium (L-selenomethionine 200 µg/day), both vitamin E and selenium, or placebo. 

Randomization was implemented using random sequence numbers from a computer generator, 

and the sequence of treatment allocations was concealed and kept in the data center. All trial 

personnel and participants were blinded to the treatment assignment. 

 

Power Calculation 

Based on our pilot trial and a baseline descriptive study of BEST 46,53, we do not expect 

interaction between vitamin E and selenium, i.e., the treatment effect of vitamin E does not vary 

with or without the presence of selenium on NMSC or mortality outcomes. Hence, the full 

sample size was used to evaluate the treatment effects of vitamin E and selenium. 

The power and sample size calculations were reported in the baseline descriptive paper 53. 

Statistical power for NMSC was presented at a range of assumptions shown in the table below. 

The power was calculated for time-to-event, taking into account staggered enrollment of the first 

three years and numbers of death or loss of follow-up 54.  
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Table 1. Statistical power for detecting the treatment effects on NMSC with 7,000 
participants for 2x2 factorial design 
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Figure 1. Flowchart of participants during follow-up visits 
 
 

 

 

Measures 

Incidence of NMSC 

The primary endpoint was the incidence of NMSC. NMSC was screened at each biennial 

in-person follow-up exam. Specifically, we adopted a three-level evaluation to select participants 

for a skin biopsy. First, the designated study physician preliminarily triaged potential cases of 
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invasive NMSC or squamous cell carcinoma (SCC) in situ (Bowen's disease) at the scheduled 

follow‐up visit. Participants identified as having erythema or altered pigmentation of a skin 

lesion and at least one of the following lesion characteristics—rough, elevated, or interrupted 

surface or border—were referred for second-level evaluation. The second-level assessment was 

conducted by senior study physicians specially trained by dermatologists and pathologists to 

evaluate the lesions for induration, scaly surface, ulceration, blood vessel prominence, and 

crusting/oozing. When one of these characteristics was present, the participant was referred for a 

third-level assessment performed by a specialist dermatologist (R.K.) who made the final 

recommendation for skin biopsy, based upon overall clinical manifestation of invasive skin 

cancer or SCC in-situ. Lesions < 5 mm in diameter were punch-biopsied, and those ≥ 5 mm in 

diameter were excised. Among individuals with multiple biopsy‐eligible lesions, the most likely 

malignant lesion was biopsied. If the severity of all lesions was similar, a lesion on or closer to 

the trunk was preferentially selected over the extremities. Cryosurgery was also provided for the 

lesions that were not selected for biopsy, but still suspicious for malignancy. Before the biopsy, 

tetanus immune globulin was administered to those who did not have active immunization to 

prevent tetanus infection. After the biopsy, the participants were followed up for possible 

unusual pain, infection, or slowed healing of the biopsy site. 

Formalin-fixed biopsy tissues were processed at a specialized surgical pathology 

laboratory in Dhaka, Bangladesh, and hematoxylin and eosin‐stained slides were reviewed by a 

single pathologist (M.K.) at Bangabandhu Sheikh Mujib Medical University. The slides were 

transported to The University of Chicago and reviewed blindly and validated by a second 

pathologist (C.S.). A structured protocol on the scoring system was developed by the two 

pathologists, based on the histopathological criteria for basal cell carcinoma (BCC) and SCC 
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(invasive and in-situ forms). All the criteria to define each subtype were based on structured, 

coded criteria followed to diagnose each condition.  

As secondary endpoints, all-cause mortality, as well as deaths attributed to cancer and 

cardiovascular disease, were evaluated. Vital status was ascertained from semi-weekly village 

health worker visits. At the report of a participant's death, a trained physician who was blinded to 

the treatment assignment of the participant conducted a verbal autopsy to ascertain the cause of 

death. A verbal autopsy questionnaire validated by the icddr,b in a Bangladeshi population was 

used 55. A group of expert physicians assigned and coded the cause of death using the WHO’s 

tenth revision of the International Classification of Disease (ICD-10).  

Adverse events potentially due to the study treatment were collected, assessed, and 

treated through a semi-annual assessment conducted by the study physicians, if clinically 

warranted. Self-report of skin burning, and itching, gastrointestinal symptoms, headache, 

irritability, and weakness were ascertained. 

 

Statistical Analyses 

Baseline characteristics balance for RCT 

Data on baseline participant characteristics, including age, sex, smoking status, skin 

lesion subtypes, education level, baseline urinary arsenic level, weight and height, systolic blood 

pressure, diastolic blood pressure, baseline blood selenium level, baseline serum vitamin E (α-

tocopherol and γ-tocopherol) level, and trial site will be compared across different treatment 

assignments, for continuous variables with Analysis of Variance (ANOVA) and categorical 

variables with χ2 test.  
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Discrete time hazard model for NMSC 

To quantify the conditional probability for NMSC incidence and the 95% confidence 

interval, I used discrete time hazard models. This model was based on the probabilities of skin 

lesion incidence at each biennial follow-up visit if the individual was free of outcome in the 

previous visit. The conditional probability was estimated by a log-linear model, with a different 

intercept for each study interval, and with common regression coefficients across all intervals. 

The model was comparable to logistic regression model in that the probability of NMSC at each 

biennial visit will be estimated. Like the hazard ratio from traditional proportional hazard 

function with continuous time, the discrete time hazard ratios were estimated.  

 

The formal representation of the conditional probability is defined as:  

h!" = Pr	[T! = j|T! ≥ j	and	X#!" =	x#!", X$!" =	x$!", … , X%!" =	x%!") 

 

Where T!" is a discrete random variable indicating the time of the event j for a person i, and the 

discrete time hazard, h!", is the probability of that event occurring at time j, conditional on no 

prior event occurrence.  

 

The discrete time hazard for an individual is modeled as: 

h!" =
1

1 + e&(()
 

 

Logit transformation yields the logit hazard of individual i at time	j as: 

logit	h;t!"< = 	logit =
h!"

1 − h!"
? 
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The population discrete-time hazard model with time indicators (the	D′s) and predictors 

(the	X′s):  

logit	h;t!"< = Cα#D#!" +⋯+ α*D*!"F + Cβ#X#!" ++⋯+ β+X+!"F 

 

Where, α#, … , α* is each intercept parameter, represents the value of logit hazard (the log odds of 

event occurrence) in that particular time period for individuals in the “baseline” group; 

β#, … , β+	is each slope parameter, represents the effect of a one-unit difference in that predictor 

on event occurrence, statistically controlling for the effects of all other predictors in the model.  

 

In the model above, the logit hazard of having NMSC of the individual at time j is a function of 

each baseline hazard (α#D#"…α*D*"), the difference in hazard for each treatment arm relative to 

the placebo arm (β#). Therefore, the treatment effects from each arm are estimated as: 

 

when	treatment = placebo: logit	h;t"< = [α#D# + α$D$ + α-D-] 

when	treatment = selenium:	logit	h;t"< = [α#D# + α$D$ + α-D-] + β# 

when	treatment = vitamin	E: logit	h;t"< = [α#D# + α$D$ + α-D-] + 2 ∗ 	β# 

when	treatment = combination: logit	h;t"< = [α#D# + α$D$ + α-D-] + 3 ∗ 	β# 

 

Cox proportional hazard models for deaths 

As all-cause, cancer, and CVD deaths were captured continuously throughout the trial, I 

used Cox proportional hazard models to assess the hazards of the mortality outcomes.  

The proportional hazard is: 
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h!(t) = exp(β#x#! + β$x$! +…+ β.x.!)h/(t) 

 

Where, β#, … , β.	is each slope parameter, represents the log hazard ratio for one-unit increase in 

x", statistically controlling for the effects of all other predictors in the model.  

 

Hence, the relative hazard (hazard ratio) for all-cause deaths, comparing an individual i (in 

selenium group) to an individual j (in placebo group), no covariates included:  

h!(t)
h"(t)

=
exp	(β#treatment = selenium)h/(t)
exp	(β#treatment = placebo)h/(t)

= 	exp	(β#) 

 

Generalized linear model for adverse events 

Each adverse event will be evaluated using relative risk (RR) between treatment arm and 

placebo, respectively. The general model form is: 

RR =
	P(Y = 1	|	treatment = 	selenium)

P(Y = 1	|	treatment = 	placebo)
 

 

RESULTS 

A total of 7,000 participants with arsenical skin lesions were randomized into BEST: 

1747 (25%) were assigned to selenium, 1748 to vitamin E (25%), 1752 to both selenium and 

vitamin E (25%), and 1753 to placebo (25%). Participants were followed for an average of 5.22 

years (SD = 1.45). Among the 7,000 participants, 6,963 (99.5%) had complete baseline 

information. 
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The mean age of participants was 41.5 years (SD = 10.4) (Table 1). The majority of 

participants were female (59%). All participants had visible skin lesions whose skin lesion 

subtypes were classified as pre-cancer (1.4%), keratosis (53.5%), and leucomelanosis & 

melanosis (45.1%). Among male participants, 66% self-reported ever smoking, while 1% of 

female participants reported ever smoking. Approximately 40% of study participants reported no 

formal education. The average body mass index was 19.6 (SD = 3.1), average systolic blood 

pressure was 116.1 (SD = 16.7), and average diastolic blood pressure was 75.1 (SD = 10.5). 

Baseline characteristics were balanced across the four treatment groups.  

There were 918 (13%) participants with at least one missed biennial follow-up visit, and 

5,569 (80%) had complete follow-up (Figure 2-4). As shown in Table 2, the percentage of 

participants who reported good adherence (taking at least 80% of their assigned tablets) 

participants was similar across all treatment groups throughout the study (Table 2). On average, 

more than 92% of participants had good adherence through the first biennial follow-up (year 2), 

approximately 94% through the second biennial visit (year 4), and about 90% at the third 

biennial visit (year 6). Self-reported compliance largely concurred with pill counts. Significant 

increase of blood and plasma concentrations of α-tocopherol and selenium suggest excellent 

adherence (Table 2).  
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Figure 2. Kaplan-Meier Survival Curves for All-cause Mortality, Censoring at Six Years 
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Figure 3. Kaplan-Meier Survival Curves for Cancer Mortality, Censoring at Six Years 
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Figure 4. Kaplan-Meier Survival Curves for Cardiovascular Disease Mortality, Censoring 
at Six Years 
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Table 2: Baseline Characteristics of The Participants in The BEST Study
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Table 3: Physician-report and Self-report Pill Counts of Participant Adherence (in 
Percentage) Over Six Years and Bioadherence Over Two Years 
 

Pill counts (%)1 Placebo Selenium Vitamin E Combination 
Year 1  93 93 92 93 
Year 2  94 94 94 93 
Year 3  95 95 94 95 
Year 4  95 95 95 94 
Year 5  95 95 95 96 
Year 6  90 90 92 92 

          
Self-report (%) Placebo Selenium Vitamin E Combination 

Year 1 94 95 95 95 
Year 2 93 93 93 93 
Year 3 93 95 94 94 
Year 4 95 95 95 94 
Year 5 95 96 97 95 
Year 6 97 97 97 97 

Bioadherence2 
(median (IQR)) Placebo Selenium Vitamin E Combination 

Blood selenium, µg/L        
Baseline  129 (115-147) 131 (116-147) 130 (115-147) 130 (115-147) 

Two-year visit 123 (109-139) 537 (400-671) 125 (111-141) 500 (354-633) 
Plasma α-tocopherol, mg/L       

Baseline 10.5 (8.6-13.1) 9.9 (7.9-12.6) 10.3 (8.2-13.2) 10.4 (8.1-13.2) 
Two-year visit 11.3 (9.0-14.5) 10.7 (8.6-13.6) 17.5 (13.0-22.6) 17.2 (13.4-21.9) 

Plasma γ-tocopherol, mg/L       
Baseline  0.8 (0.4-1.2) 0.7 (0.4-1.1) 0.7 (0.4-1.2) 0.4 (0.8-1.2) 

Two-year visit 0.6 (0.3-1.1) 0.6 (0.3-1.1) 0.4 (0.2-0.7) 0.3 (0.2-0.7) 
  

 

A total of 425 participants were diagnosed with NMSC and 513 (7%) died. Per the trial 

design, we conducted comparisons by treatment factor (selenium and vitamin E). For selenium, 

(alone or in combination with vitamin E) versus no selenium (vitamin E alone or dual placebo 

groups), there was no difference in the NSMC rate (HR = 1.08, 95% CI [0.89 - 1.30]). Similarly, 

for vitamin E (alone or in combination with selenium) versus no Vitamin E, there was no 

reduction in NSMC (HR = 1.09, 95% CI [0.90 - 1.32]). There was no evidence of an interaction 

between factors; nonetheless, the contrasts of each active treatment arm to placebo-control are 

 
 
1 Percentage of participants adherent, defined as taking at least 80% of study supplements. 
2 Bioadherence table: plasma level of the agents for the first 2000 participants were analyzed at two-year visit. 
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shown (Table 3), again showing no evidence of a reduction in NSMC for any of the treatment 

groups. Adjustment for the randomization factors (sex and site) had no appreciable effect on the 

effect estimates. In sensitivity analyses, loss-to-follow-up was not associated with any baseline 

participant characteristics. 

Table 4: Effect of Study Treatments on NMSC Incidence, for Factorial and Non-factorial 
Analyses 
 

  # of participants # of cases HR (95% Cl) 
 Two treatments by factorial design3 

Vitamin E 3500 219 1.08 (0.89 - 1.30) 
Selenium 3499 220 1.09 (0.90 - 1.32) 
 Four treatments 
Placebo 1753 100 Ref. 

Selenium 1747 106 1.08 (0.82 - 1.43) 
Vitamin E 1748 105 1.07 (0.81 - 1.41) 

Combination 1752 114 1.17 (0.90 - 1.54) 
 

We also evaluated treatment effects on NMSC subtypes: i) Bowen’s disease (SCC in-

situ), ii) basal cell carcinoma (BCC), and iii) squamous cell carcinoma (SCC). There were 291 

participants with Bowen’s disease, 135 with BCC, and 33 with SCC lesions identified. Two 

participants were identified as having all three types of skin cancers; seven were identified as 

having Bowen’s disease and SCC, five were diagnosed as having both BCC and SCC, and 18 

were diagnosed with both Bowen’s disease and BCC. As shown in Table 4, no significant 

treatment effects for selenium or vitamin E were observed with any subtype.  

  
 

 
33 Estimates from factorial analyses indicate Vitamin E + Combination vs. Selenium + Placebo for vitamin E vs. no 
vitamin E; Selenium + Combination vs. Vitamin E + Placebo for selenium vs. no selenium. 
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Table 5: Effect of Study Treatments on Incidence of BCC, Bowen’s Disease and SCC, for 
Factorial and Non-factorial Analyses 
 

    Bowen's disease BCC SCC 

  
# of 

participants 
# of 

cases HR (95% Cl) # of 
cases HR (95% Cl) # of 

cases HR (95% Cl) 

  Two treatments by factorial design4 
Vitamin E 3500 150 1.08 (0.86 - 1.36) 63 0.88 (0.63 - 1.24) 17 1.07 (0.54 - 2.13) 
Selenium 3499 151 1.10 (0.87 - 1.38) 63 0.89 (0.63 - 1.25) 21 1.78 (0.87 - 3.61) 

 
 Four treatments 

Placebo 1753 67 Ref. 37 Ref. 8 Ref. 
Selenium 1747 74 1.13 (0.81 - 1.58) 35 0.97 (0.61 - 1.54) 8 1.02 (0.38 - 2.72) 

Vitamin E 1748 73 1.11 (0.80 - 1.55) 35 0.96 (0.61 - 1.53) 4 0.51 (0.15 - 1.69) 
Combination 1752 77 1.18 (0.85 - 1.64) 28 0.78 (0.48 - 1.27) 13 1.67 (0.69 - 4.02) 

 
 
4 Estimates from factorial analyses indicate Vitamin E + Combination vs. Selenium + Placebo for vitamin E vs. no vitamin E; 
Selenium + Combination vs. Vitamin E + Placebo for selenium vs. no selenium. 
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Overall, for the prespecified secondary endpoint (overall mortality, cancer mortality, and 

CVD mortality) censoring at six years, there were no statistically significant effects by treatment 

assignment (Figure 2). Similar results were observed by two treatment factors as well as four 

treatment factors (Table 5).  

Reported adverse events were not associated with treatment assignment (Table 7). No 

life-threatening adverse events related to the study treatment were reported. No subjects stopped 

participating in the study due to adverse side effects. 
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Table 6: Effect of Study Treatments on Incidence of All-cause, Cancer, CVD Mortality and 
Other Cause of Mortality Outcomes, Censoring at Six Years, for Factorial and Non-
factorial Analyses 
 

    All-cause death Cancer death CVD death 

  
# of 

participants 
# of 

cases HR (95% CI) 
# of 

cases HR (95% CI) 
# of 

cases HR (95% CI) 
  Two treatments by factorial design5 

Vitamin E 3500 240 1.07 (0.89 - 1.29) 84 1.11 (0.81 - 1.51) 84 1.08 (0.80 - 1.47) 
Selenium 3499 232 1.00 (0.83 - 1.20) 81 1.03 (0.76 - 1.40) 74 0.85 (0.62 - 1.15) 

  Four treatments 
Placebo 1753 115 Ref. 40 Ref. 39 Ref. 

Selenium 1747 110 0.96 (0.74 - 1.25) 36 0.90 (0.58 - 1.42) 39 1.00 (0.64 - 1.57) 
Vitamin E 1748 118 1.03 (0.80 - 1.33) 39 0.98 (0.63 - 1.52) 49 1.26 (0.83 - 1.92) 

Combination 1752 122 1.07 (0.83 - 1.38) 45 1.13 (0.74 - 1.74) 35 0.91 (0.58 - 1.43) 
  

 
 
5 Estimates from factorial analyses indicate Vitamin E + Combination vs. Selenium + Placebo for vitamin E vs. no vitamin E; 
Selenium + Combination vs. Vitamin E + Placebo for selenium vs. no selenium. 
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Table 7: Adverse Events Known to Be Associated with The Study Supplements 
 

  Placebo Selenium Vitamin E Combination 
  (n = 1753) (n = 1747) (n = 1748) (n = 1752) 

Events N RR N RR (95% CI)6 N RR (95% CI)  N RR (95% CI) 
Burning and 

itching 2 Ref. 2 1.00 (0.14, 7.12) 3 1.50 (0.25, 8.99) 0 NA 
Diarrhea 11 Ref. 13 1.19 (0.53, 2.64) 11 1.00 (0.44, 2.31) 10 0.91 (0.39, 2.14) 
Gastritis 1 Ref. 0 NA 1 1.00 (0.06, 16.02) 1 1.00 (0.06, 15.98) 

Gastroenteritis 1 Ref. 1 1.00 (0.06, 16.03) 1 1.00 (0.06, 16.02) 3 3.00 (0.31, 28.83) 
Headache 1 Ref. 2 2.01 (0.18, 22.11) 2 2.01 (0.18, 22.10) 3 3.00 (0.31, 28.83) 
Intestinal 

obstruction 0 Ref. 2 NA 1 NA 1 NA 
Irritability 1 Ref. 0 NA 0 NA 0 NA 
Vomiting 8 Ref. 7 0.88 (0.32, 2.42) 4 0.50 (0.15, 1.66) 6 0.75 (0.26, 2.16) 
Weakness 8 Ref. 6 0.75 (0.26, 2.16) 4 0.50 (0.15, 1.66) 9 1.13 (0.44, 2.91) 

  
 

 
6 RR: Relative Risk compared to placebo group. 
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DISCUSSION 

Results from BEST show that neither selenium nor vitamin E, alone or in combination, 

reduced risks of NMSC in a population with manifest arsenic toxicity during a median treatment 

period of 5.8 years. Analyses of NMSC subtypes revealed no treatment effects for selenium or 

vitamin E with incident BCC, SCC, or Bowen’s disease.  

There are differences in the form and dose of the supplements used in BEST compared 

with other published trials. In SELECT, investigators reported no beneficial effect of selenium or 

vitamin E on overall cancer risks 44. SELECT participants received 400 IU/day (all rac-α-

tocopheryl acetate) of vitamin E, which is a higher dose and different form of vitamin E than 

utilized in the current trial, and the same dose and form of selenium (200 µg daily L-

selenomethionine). Of note, the administration of X-tocopherol may cause a 50% decrease in 

median plasma γ-tocopherol, while the latter has been proposed as a promising alternative cancer 

prevention supplement than X-tocopherol 56,57. The ATBC Cancer Prevention Study reported that 

daily supplementation of 50 IU of synthetic dl-α-tocopheryl acetate for 5 to 8 years did not show 

protective effects on incident lung cancer 42. The NPC trial 41 evaluated the treatment effects of 

selenium 200 µg/day as selenized yeast compared to placebo for BCC and SCC and reported no 

protective effect. However, the achieved levels of selenomethionine, the natural form of 

selenium, is unknown. In addition, the authors of the NPC trial also acknowledged substantial 

batch-to-batch variations in the levels of organoselenium compound samples 44. Furthermore, 

two interventional trials conducted in Linxian, China 43,58,59 also utilized different forms of 

selenium from BEST. One trial used inorganic selenium (sodium selenite, 50 µg daily) and 

observed protective effects on mortality endpoints, while the other adopted selenized yeast (50 



 
 

 29 

µg daily) and found no treatment effect. The differences in dose, form, and duration of vitamin E 

and selenium supplementation across trials makes it difficult to summarize the existing literature.     

Approaches for endpoint ascertainment may explain the difference in findings between 

BEST and other published trials. The NPC trial suggested a higher risk of incident NMSC in the 

selenium arm compared to placebo 41. Investigators from the NPC trial indicated a higher rate of 

prostate biopsy in the placebo arm compared to the selenium arm (35% vs. 14%) 60, particularly 

for the lowest baseline selenium concentration stratum, which happened to show the strongest 

inverse association between selenium and prostate cancer incidence. This potential detection bias 

may have affected the assessment of the primary endpoint of NMSC in the stratified analysis by 

baseline selenium concentration and puts the NMSC findings in that study into question. Two 

small trials of selenium reported NMSC as an adverse event. In one trial of patients at high risk 

of prostate cancer 61, the authors reported a 1% incidence of NMSC in the placebo group 

compared to 3% and 1% incidence in the 200 Yg/L and 400 Yg/L selenium groups, respectively. 

In the ECOG trial conducted among patients with lung cancer 62, 3.6% of placebo-treated 

patients developed SCC or BCC, and 2.4% of selenium-treated patients developed SCC or BCC.    

The BEST was the first trial using selenium and vitamin E in an arsenic-exposed 

population. The population characteristics of BEST participants are considerably different from 

other trial target populations. For example, SELECT 44 enrolled 32,400 multi-ethnic men 

aged >50 years with a low Prostate-Specific Antigen (PSA) level. The ATBC trial 42 enrolled 

29,133 male smokers aged 50 to 69 years from southwestern Finland. The NPC trial 41 enrolled 

patients aged 18 to 80 years (mean = 63) with a history of BCC and SCC. Two interventional 

trials conducted in Linxian, China 43,59 evaluated patients with esophageal cancer and the general 

population, respectively. While in BEST, the participants are residents of rural Bangladesh and 
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have been chronically exposed to arsenic through drinking water and developed cutaneous 

manifestation of arsenicosis.  

The BEST study had several strengths. It is the largest RCT evaluating oral 

supplementation of selenium and vitamin E with NMSC incidence, making the conclusions 

drawn from BEST especially robust. As the study population was ascertained on the population 

scale, BEST is a population-based chemoprevention trial conducted in two regions in 

Bangladesh, where the health system relies heavily on the government or the public sector. In 

this resource-limited setting, implementing a long-term chemoprevention trial faced several 

unique challenges. Limited public facilities, compromised access to medical care, lack of 

essential commodities, and lack of public health and management expertise at the district and 

upazila (regional administration in Bangladesh) levels altogether made it difficult for researchers 

to collect detailed health information of the participants. BEST addressed these issues early in 

the study design stage and serves as a model for the conduct of future RCTs in similar resource-

limited countries. Furthermore, no prior RCT of selenium or vitamin E was conducted among a 

South Asian population, nor in a community at high risk of developing NMSC and other cancers 

due to chronic environmental exposure.  

We also acknowledge the limitations of BEST. First, due to financial constraints, we only 

measured X-tocopherol and Z-tocopherol levels for the first 2,000 randomized participants at 

baseline and the first biennial follow-up visit. However, based on self-reported adherence and 

pill counts, we believe that adherence was high for the duration of the trial. The lack of vitamin E 

or selenium treatment effect on the incidence of NMSC may be explained by an insufficient 

length of treatment, dose, or form of supplements utilized.  
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CONCLUSION 

 Health outcomes from arsenic exposure in drinking water may persist for decades after 

the exposure is eliminated 63. While initiatives to reduce exposure have been ongoing and 

making considerable progress, investigations concerning biological approaches to reducing 

disease risk are still desirable for affected populations. We conducted a thorough evaluation of 

long-term supplementation of vitamin E and selenium with NMSC incidence and mortality 

endpoints and found no beneficial effects on these endpoints. Potential benefits of these agents 

on other health outcomes need to be investigated. 
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2. SELENIUM AND VITAMIN E SUPPLEMENTATION AND 

PREVENTION OF NON-MELANOMA SKIN CANCER AND 

CHRONIC DISEASE MORTALITIES: CONFOUNDING AND 

EFFECT MODIFICATION FROM A RANDOMIZED 

CONTROLLED TRIAL 

 

BACKGROUND 

Every year, more than one million nonmelanoma skin cancer (NMSC) cases are 

diagnosed in the United States, surpassing the annual combined incidence of lung, prostate, 

colon, bladder, and kidney cancers (PMID: 28515985, 21034989). The American Cancer Society 

estimates that in 2012, 5.4 million cases of NMSC were diagnosed in 3.3 million people. The 

increase in NMSC incidence has resulted in both a direct and an indirect cost to our society. In 

2004, the total direct cost associated with the treatment for NMSCs was more than $1 billion 

(PMID: 16908356). In 2013, the cost soared to over $4.5 billion, not including prescription/OTC 

medications, screening, vaccination, and other related medical services (PMID: 28259441). In 

the most serious circumstances, some aggressive and neglected NMSC can even lead to deaths. 

In the same report (PMID: 28259441), NMSC accounts for 19.07% of the total deaths related to 

skin disease in 2013. Among established mechanisms, these deaths are largely due to preventable 

factors (PMID: 25651787) However, in cases where the factors yet to be addressed, prophylactic 

trials are most desired to impede epidemic. In Bangladesh, arsenic exposure through drinking 

water has affected about 35-77 million people and remains a public health issue (PMID: 

11019458, 23226896).  
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The mechanism of arsenic toxicity has yet to reach consensus. One dominant hypothesis 

is that oxidative stress induced by arsenic is the key underlying the carcinogenesis (PMID: 

26861378, 16430879), which subsequently were extensively investigated in both in vitro studies 

(PMID: 8902524, 9653147, 12771042) and epidemiologic studies (PMID: 11940449, 15276408, 

11675266, 10417614). This proposed mechanism underlies the inter-individual variability in 

arsenic metabolism capacity (PMID: 19168087, 28796632). Building upon this, there has been 

significant number of studies examining the effects of antioxidants in arsenic-exposed population 

(PMID: 21652291, 12505432, 16337848, 21227482, 23590571, 18709164), especially in the 

Bangladesh population (PMID: 16160703). However, stronger evidence generated through 

randomized controlled trials (RCT) have been inconsistent with laboratory and observational 

epidemiology studies. The Nutritional Prevention of Cancer (NPC) study (PMID: 8971064, 

12699469) further evaluated the effect of selenium on various types of cancers and discovered 

significant protective effect only on prostate cancer. The Alpha-Tocopherol, Beta-Carotene 

Cancer prevention study (ATBC) (PMID: 8127329) examined the effect of vitamin E 

administered 50mg daily and observed early beneficial effects. Later, in multiple reports (PMID: 

15657339, 19066370, 21990298), the Selenium and Vitamin E Cancer Prevention Trial 

(SELECT) in part evaluated selenium (200 µg/day) and vitamin (400 IU daily) on prostate 

cancer and the higher dose vitamin E showed no efficacy. Another investigation revealed that 

higher doses of vitamin E may increase the risk of hemorrhagic stroke in the subjects (PMID: 

21051774), which had raised significant safety concerns. 

Treatments towards NMSC has always been “one cure for all”, however, this may dilute 

effects within subgroups. Therefore, in this aim, we further evaluated treatment effects 

accounting for different population characteristics.  
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METHODS 

Study population 

BEST participants who were recruited between April 2006 and August 2009 from two 

main regions (Araihazar and Matlab) in Bangladesh were included for analyses. Participant 

eligibility criteria included: 1) adult participants with existing arsenic-related skin lesions; 2) 

aged 25 to 65 years at the time of recruitment; and 3) signed informed consent. Exclusion criteria 

included: 1) pregnancy at the time of enrollment; 2) not a permanent resident of the trial areas; 3) 

not willing to discontinue current vitamin use; 4) history of cancer; 5) too ill to participate; or 6) 

unwilling to provide biological samples (blood or urine).  

 

Covariates 

Study participants provided comprehensive demographic, medical history, clinical 

testing, and risk factors to the trained trial staff at baseline. Factors include age, gender, BMI, 

smoking status, occupation, sun exposure, baseline urinary arsenic level, baseline blood level of 

selenium, baseline plasma levels of cholesterol-adjusted α-tocopherol and γ-tocopherol. We 

calculated BMI as weight (kg) divided by the square of height (cm), then categorized using both 

WHO standard. Smoking status was assessed as ever and never smokers. Continuous variables 

such as urinary level of arsenic, blood selenium level, plasma levels of cholesterol-adjusted α-

tocopherol and γ-tocopherol were categorized into quartiles and evaluated with both continuous 

and categorical forms.  

 

Statistical analyses 

Confounding effect 
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To assess the confounding effect from baseline characteristics, we adjugated all the 

covariates aforementioned to evaluate the treatment effects on the endpoint of NMSC as well as 

all-cause mortality. Age was included as a continuous variable. Other continuous variables such 

as urinary level of arsenic, blood selenium level, plasma levels of cholesterol-adjusted α-

tocopherol and γ-tocopherol were adjusted as categorial variables.  

 

Effect modification  

To quantify the conditional probability for NMSC incidence and the treatments in each 

subgroup according to gender, BMI, smoking status, occupation, sun exposure, baseline urinary 

arsenic level, baseline blood level of selenium, baseline plasma levels of cholesterol-adjusted α-

tocopherol and γ-tocopherol, discrete time hazard models were implemented. Variables in 

continuous format and without a standardized categorization, such as baseline urinary arsenic 

level, baseline blood level of selenium, baseline plasma levels of cholesterol-adjusted α-

tocopherol and γ-tocopherol, were evaluated in both continuous fashion and categorial fashion. 

These factors have first assessed the skewness; when skewed, log transformation was applied. 

Then, these factors were categorized into four levels, with the lowest level set as the reference 

group. The conditional probability of NMSC with effect modification was estimated by a log-

linear model, with a different intercept for each study interval, and with common regression 

coefficients across all intervals. The model was comparable to logistic regression model in that 

the probability of NMSC at each biennial visit will be estimated.  

Similarly, effect modification was also evaluated for mortality outcomes. Cox 

proportional hazards models were used to quantify the association between all-cause mortality 

with study treatments. Mortalities due to cardiovascular disease, cancer, and other causes were 
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not assessed due to limited event numbers. We first modeled factors such as baseline urinary 

arsenic level, baseline blood level of selenium, baseline plasma levels of cholesterol-adjusted α-

tocopherol and γ-tocopherol as continuous variables in log-transformation, as appropriate. Then, 

evaluated these factors as categorial effect modifiers.  

To evaluate interaction, models with and without product terms between treatment and 

hypothesized effect modifiers were tested. Overall interaction was tested based on a likelihood 

ratio test comparing the models with and without the product terms. A p-value <0.05 (2-tailed) 

was considered statistically significant. Statistical analysis was performed using Stata 16 

(StatCorp LP, College Station, TX). 

 

Multiplicative interaction model form: 

H_0: Relative Risk(A_+ B_+) = Relative Risk(A_+) * Relative Risk(B_+) 

H_A: Relative Risk(A_+ B_+) ≠ Relative Risk(A_+) * Relative Risk(B_+) 

 

RESULTS 

In our study cohort, mean age for participants identified with NMSC was 44.5 years old 

(SD = 0.45), marginally older than participants without NMSC (mean = 41.3 years old, SD = 

0.13) during the study duration (p < 0.001). More male than female was identified with NMSC 

(57.18% vs. 42.82%, p < 0.001) and majority of NMSC cases have never smoke (62.12% vs. 

37.88%, p < 0.001). Among all NMSC cases, majority were unemployed, home maker, or retired 

and does not work under the sun. Baseline urinary arsenic level, blood selenium level, and 

plasma α-tocopherol and γ-tocopherol were relatively evenly distributed in NMSC cases (all p-

values > 0.05) (Table 8). 
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Table 8: Baseline Characteristics by The Status of NMSC 
 

Covariates Categories non-NMSC NMSC p-value 
Age, mean (SD)  41.3 (0.13) 44.5 (0.45) < 0.001 
Sex, n (%) Male 2597 (39.50) 243 (57.18) < 0.001 

 Female 3978 (60.50) 182 (42.82) 
Site Araihazar 3289 (50.02) 240 (56.47) 0.010 

 Matlab 3286 (49.98) 185 (43.53) 
BMI, n (%) < 18.5 2711 (41.23) 183 (43.06) 

0.732  18.5 - 24.9 3459 (52.61) 218 (51.29) 
 25+ 405 (6.16) 24 (5.65) 

Ever smoker, n (%) No 4822 (73.34) 264 (62.12) < 0.001 
 Yes 1753 (26.66) 161 (37.88) 

Occupation, n (%) daily laborer 1411 (17.35) 93 (21.88) 

< 0.001 
 farmer 631 (9.60) 63 (14.82) 
 other 796 (12.11) 85 (20.00) 

 
unemployed, home 
maker, retired 4007 (60.94) 184 (43.29) 

Sun exposure Mild 1393 (53.66) 147 (60.49) 0.041 
 Heavy 1203 (46.34) 96 (39.51) 

Arsenic level in urine, mean 
(SD) 1st quartile 1644 (25.14) 101 (23.88) 

0.551  2nd quartile 1620 (24.77) 117 (27.66) 
 3rd quartile 1649 (25.21) 99 (23.40) 
 4th quartile 1627 (24.88) 106 (25.06) 

Blood selenium, mean (SD) 1st quartile 1643 (25.12) 101 (23.88) 

0.293  2nd quartile 1667 (25.49) 95 (22.46) 
 3rd quartile 1646 (25.17) 110 (26.00) 
 4th quartile 1584 (24.22) 117 (27.66) 

α-tocopherol, mean (SD) 1st quartile 440 (25.48) 34 (31.48) 

0.247  2nd quartile 432 (25.01) 23 (21.30) 
 3rd quartile 442 (25.59) 21 (19.44) 
 4th quartile 413 (23.91) 30 (27.78) 

γ-tocopherol, mean (SD) 1st quartile 486 (28.14) 30 (27.78) 

0.944  2nd quartile 499 (28.89) 34 (31.48) 
 3rd quartile 345 (19.98) 21 (19.44) 

  4th quartile 397 (22.99) 23 (21.30) 
 
 

Table 9 shows the results from multivariate discrete time hazard regression for the 

association between treatments and NMSC endpoint. In general, none of the confounding factors 

turned out statistically significant.  
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Table 9: Confounding Effects on The Association between Effects of Four Treatment 
Groups on Non-melanoma Skin Cancer 
 

Characteristics Categories HR p-value 95% Confidence Interval 
Age  1.02 0.084 1 1.05 
Sex Male Ref. - - - 

 Female omitted - - - 
Site Araihazar Ref. - - - 

 Matlab 1.07 0.836 0.58 1.94 
BMI < 18.5 Ref. - - - 

 18.5 - 24.9 0.91 0.731 0.53 1.56 
 25+ 0.54 0.417 0.12 2.42 

Ever smoker Yes 0.86 0.602 0.48 1.53 
Occupation daily laborer Ref. - - - 

 farmer 1.36 0.412 0.65 2.82 
 other 1.61 0.169 0.82 3.15 

 
unemployed, home 
maker, retired 0.97 0.960 0.32 2.98 

Sun exposure Mild Ref. - - - 
 Heavy 0.89 0.721 0.46 1.71 

Arsenic level in urine 1st quartile Ref. - - - 
 2nd quartile 0.80 0.499 0.42 1.52 
 3rd quartile 0.64 0.236 0.30 1.34 
 4th quartile 0.91 0.835 0.36 2.26 

Blood selenium 1st quartile Ref. - - - 
 2nd quartile 0.93 0.808 0.51 1.70 
 3rd quartile 0.62 0.219 0.29 1.33 
 4th quartile 0.69 0.401 0.29 1.65 

α-tocopherol  1st quartile Ref. - - - 
 2nd quartile 0.70 0.335 0.34 1.44 
 3rd quartile 0.61 0.202 0.29 1.30 
 4th quartile 0.97 0.935 0.46 2.04 

γ-tocopherol 1st quartile Ref. - - - 
 2nd quartile 1.02 0.941 0.53 1.97 
 3rd quartile 1.09 0.824 0.50 2.36 

  4th quartile 0.92 0.845 0.38 2.22 
 
 
 

When evaluating all-cause mortality, however, with one year older in age, there is an 

increased risk of NMSC for 5% (HR = 1.05, 95% CI [1.03, 1.08]). The hazard of NMSC is also 

2.5 times higher in smokers compared to non-smoker (HR = 2.50, 95% CI [1.29, 4.85]). Baseline 

arsenic levels in the middle ranges presented protective effect relative to the lowest quartile with 

45% decreased risk if in the 2nd quartile (urinary arsenic level (4.9 - 15.6), HR = 0.55, 95% CI 

[0.32, 0.97]), and 3rd quartile (urinary arsenic level (15.7 - 32.5), HR = 0.53, 95% CI [0.29, 

0.98]) (Table 10).  
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Table 10: Confounding Effects on The Association between Effects of Four Treatment 
Groups on Deaths of All Causes 
 

Characteristics Categories HR p-value 95% Confidence Interval 
Age  1.05 < 0.001 1.03 1.08 
Sex Male Ref. - - - 

 Female omitted - - - 
Site Araihazar Ref. - - - 

 Matlab 1.87 0.021 1.10 3.18 
BMI < 18.5 Ref. - - - 

 18.5 - 24.9 0.99 0.955 0.62 1.58 
 25+ 0.17 0.086 0.02 1.28 

Ever smoker Yes 2.50 0.007 1.29 4.85 
Occupation daily laborer Ref. - - - 

 farmer 0.9 0.736 0.49 1.65 
 other 1.24 0.491 0.67 2.28 

 
unemployed, home 
maker, retired 1.04 0.927 0.47 2.31 

Sun exposure Mild Ref. - - - 
 Heavy 0.96 0.891 0.57 1.64 

Arsenic level in urine 1st quartile Ref. - - - 
 2nd quartile 0.55 0.038 0.32 0.97 
 3rd quartile 0.53 0.044 0.29 0.98 
 4th quartile 0.61 0.224 0.27 1.36 

Blood selenium 1st quartile Ref. - - - 
 2nd quartile 1.05 0.846 0.63 1.75 
 3rd quartile 0.93 0.807 0.51 1.68 
 4th quartile 0.45 0.104 0.17 1.18 

α-tocopherol  1st quartile Ref. - - - 
 2nd quartile 0.98 0.957 0.54 1.80 
 3rd quartile 0.65 0.184 0.34 1.23 
 4th quartile 1.12 0.746 0.58 2.16 

γ-tocopherol 1st quartile Ref. - - - 
 2nd quartile 0.99 0.980 0.58 1.69 
 3rd quartile 0.93 0.829 0.47 1.85 

  4th quartile 0.81 0.585 0.38 1.74 
 

For effect modification by the pre-specified characteristics, we performed our analyses 

for four treatment groups first, when statistically significant, we then repeat the analysis with 

factorial design two groups. Among all the potential effect modifiers, likelihood only indicated 
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that there is differential treatment effect on NMSC by plasma α-tocopherol, and the highest 

quartile seemed the driver of the significant association. Therefore, we combined the first three 

quartile as the reference group and discovered that in the lower quartiles, there were largely non-

significant protective effect from selenium, vitamin E, and the combination groups relative to the 

placebo. Yet, in the highest quartile of α-tocopherol group, participants in vitamin E group 

revealed 3.24-time higher risk of getting NMSC compared to placebo (HR(VE) = 3.24, 95% CI 

[0.65, 2.82]) (Table 11). In further analysis for factorial design (Table 12), the significant 

association disappeared (HR(VE) = 1.35, 95% CI [1.07, 9.84]). Since the study population is 

rather homogenous in their age range, we did not assessment age as an effect modifier.  

Table 11: Effect Modification of Baseline α-tocopherol for The Association Between Effects 
of Four Treatment Groups on Non-melanoma Skin Cancer 
 

  Alphatoc_4 (1st-3rd quartile) Alphatoc_4 (4th quartile) 
Placebo 1 1 

 - - 
SE HR (p) 0.67 (p = 0.211) 2.27 (p = 0.181) 

95% CI  [0.35, 1.26] [0.68, 7.54] 
VE HR (p) 0.78 (p = 0.434) 3.24 (p = 0.038) 

95% CI  [0.43, 1.44] [1.07, 9.84] 
Combo HR (p) 0.92 (p = 798) 0.98 (p = 0.973) 

95% CI  [0.51, 1.68] [0.24, 3.91] 
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Table 12: Effect Modification of Baseline α-tocopherol for The Association Between 
Treatment Effects by Factorial Design on Non-melanoma Skin Cancer 
 

  Alphatoc_4 (1st-3rd quartile) Alphatoc_4 (4th quartile) 
No SE 1 1 

 - - 
SE HR (p) 0.89 (p = 0.595) 0.73 (p = 0.399) 

95% CI  [0.57, 1.38] [0.35, 1.52] 
No VE 1 1 

 - - 
VE HR (p) 1.02 (p = 0.918) 1.35 (p = 0.420) 

95% CI  [0.66, 1.60] [0.65, 2.82] 
 

 

DISCUSSION 

  

In this study, we explored confounding effects and effect modification from participant 

characteristics in demographic, medical, and lifestyle collected at the baseline of this RCT.  

In the assessment for confounding effects, all the factors were well-balanced attributable 

to randomization. However, factors such as age, sex, smoking status, occupation, level of sun 

exposure was unevenly distributed among NMSC cases and non-cases (Table 8). In the 

multivariate discrete time hazard model for four treatments and NMSC endpoint, we did not 

observe statistically significant confounding effects from any of these factors (Table 9).  

When evaluating the confounding effects for the association between treatments and all-

cause mortality, several factors stood out. Being older and smoking increased the risk of all-

cause death compared to the counterparts. However, if participants’ urinary arsenic level is in the 

range of 4.9 and 32.5, there is a protective effect against all-cause death (Table 10).  
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RCT is widely accepted as the “gold standard” for comparing treatment effects, and when 

randomization is conducted properly, it usually takes out the potential biases introduced by 

confounding factors in the allocation phase, thereby, produce unbiased effect estimates. 

Therefore, in the context of an RCT, adjustments of confounding factor for baseline covariates in 

the analysis is less common than in observational epidemiologic studies. BEST was designed as 

an RCT with the stratification factors of female and enrollment site. And based upon baseline 

characteristics distribution (Table 2), the randomization was conducted properly, and all the 

characteristics were well balanced. However, in current chapter, we still adjusted potential 

confounding factors aside from the stratification factors for three main reasons. First, we can 

effectively correct imbalance in baseline prognostic covariates despite randomization. Second, 

we can increase the power by modelling the variability in endpoint explained by the relationship 

with highly prognostic covariates. Third, by adjusting baseline characteristics, the effect 

estimates obtained would be more closely relevant to treatment effect on individual patients as 

opposed to average population 64–67.  

In the multivariate Cox regression, being older and using cigarettes are two deleterious 

factors for death, whereas having arsenic level in urine in between 15.7- 32.5 is protective from 

death. This is largely consistent with published findings for the known risk factors of death. 

The second part of this study was to examine the effect modification of baseline factors 

in both four treatment groups and factorial two groups design. When evaluating four treatment 

groups, participants in VE assignment with the highest quartile of alpha-tocopherol group 

presented 3.24-time higher risk of getting NMSC compared to placebo. In further analysis for 

factorial design, the significant association disappeared. We did not observe any differential 

treatment effects in terms of mortality endpoint.  
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The main controversy of having uniform treatment regimen without accounting for 

demographic, medical, lifestyle and molecular traits revolves around the relationship between 

antioxidants and NMSC. In this context, our findings that the contribution of high plasma alpha-

tocopherol to increase risk of NMSC is clinically important. Although no significant association 

observed in our study, this in-depth evaluation within this high-risk population warranted future 

research for individualized treatment accounting for patient characteristics.   

 

CONCLUSION 

 We conducted thorough evaluations of confounding effects and effect modification for 

the association between long-term supplementation of vitamin E and selenium with NMSC 

incidence and all-cause death. Our study revealed no confounding effects from all the factors, 

and differential treatment effects was observed in VE group for people with elevated level of 

baseline plasma α-tocopherol. However, this finding disappeared when in the evaluation of 

factorial analysis. Potential effects generated by these factors on NMSC and mortality outcomes 

warrant further evaluation. 
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3. ATTENTION-BASED DEEP NEURAL NETWORKS FOR 

DETECTION OF CANCEROUS AND PRECANCEROUS TISSUE 

FOR NON-MELANOMA SKIN CANCER ON 

HISTOPATHOLOGICAL IMAGES  

BACKGROUND 

Arsenic contamination of ground water in Bangladesh is considered to be the largest 

mass poisoning of a population in history by the World Health Organization (WHO), with 

estimated 35-77 million Bangladeshi people who have been chronically exposed to arsenic 

through drinking water 20,68,69. Arsenic toxicity is closely dependent on the amount of ingestion, 

and once consumed, 40-60% arsenic is retained in human body and passes slowly through skin, 

resulting in skin malignancies, named nonmelanoma skin cancer (NMSC) 68,70. Over 95% of 

NMSC cases consists of basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma 

(SCC), the former is a slow growing locally invasive epidermal tumor, and the latter arises from 

dysplastic epidermal keratinocytes. SCC can be either in-situ (Bowen’s disease) or invasive. 

Bowen’s disease is generally considered a low-grade form of SCC with the reported risk of 

progression to invasive SCC at 3-5% 71,72, however, 20% of the tumor developed into invasive 

SCC eventually become metastatic 71. Current evidence supports that the delay in detection as 

the main underlying cause for aggressive tumor behavior and subsequent morbidity in NMSC 

patients 71–73. Hence, early detection is critical for controlling disease progression and could lead 

to substantially higher success rate in treatment. Usually, both types are readily identified by a 

pathologist in a timely manner, and in this situation, patients would benefit from timely 

treatment. In resource limited setting, however, such accurate and timely detection becomes 
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unaccountable, poses affected individuals to poor prognosis. In Bangladesh, as major attributable 

risk factor yet to be eradicated, people who are chronically exposed to arsenic through 

consuming arsenic-contaminated water are deemed at high risk of NMSC. Meanwhile, the cancer 

detection and diagnostic facility infrastructure is still underway, resulting in delayed treatment 

and poor disease prognosis for the affected population 74.  

Over the past two decades, dramatic advancement in computational power and 

improvement in machine learning algorithms have led to the development of powerful computer-

assisted approaches for image analysis. Among applications in various medical fields, Computer-

Aided Diagnosis (CADx) in analyzing skin lesions is fast growing owing to the disease nature 

and common cutaneous manifestation 75. The most common approach for analyzing 

histopathology whole-slide images involves first performing tissue or tumor detection, and then 

generating tiles of a certain size and magnification from the whole-slide image, which are 

dictated by computational requirements.  For classification models, predictions are usually 

performed on the tiles, which is followed by an aggregation step where tile-level predictions are 

combined to produce an inference for the whole-slide image 76. Thus, for this approach, a 

pathologist must develop a heuristic to aggregate tile predictions into a whole-slide diagnosis. 

This approach has several limitations. First, each tile must be assigned a diagnosis by the 

pathologist, which is expensive in time and resources. Second, during classification, each tile is 

analyzed independently of their neighbors without considering relationship in between 

neighboring tiles. Together with the large volume of NMSC cases, the high demand in manual 

work by the pathologist, and potential inaccurate diagnosis caused by intra- and inter- observer 

variations, this application becomes suboptimal in resource limited setting 77–79.  
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We propose an efficient deep learning framework for achieving accurate diagnosis and 

interpretable detection of NMSC from hematoxylin and eosin-stained (H&E) images.  Our 

approach is inspired by Ilse et al. 80, which utilizes an attention-based multiple instance learning 

(MIL) method to integrate contextual information across multiple tiles in whole-slide images.  

Moreover, the attention mechanism can be interrogated to produce visually interpretable 

predictions. Generally speaking, our model reads each NMSC image as a bag of instances that 

can be interpreted from small tiles and learns to predict an individual status of NMSC (e.g., 

BCC, Bowen’s disease, SCC, or non-cancer) assigned to the entire H&E image. Further, we 

obtain crucial instances that can reveal the location of cancer cells, which improves the 

interpretability and visualization. Our model applies the attention-based MIL pooling strategy 

that gives insight into every instance’s contribution on the bag label. As such, it could better 

facilitate early and more accessible cancer detection in resource limited settings. 

 

METHODS 

Data Source 
This study utilized histopathological images collected from the parent study, Bangladesh 

Vitamin E and Selenium Trial (BEST), which included 7000 participants from two regions 

(Araihazar and Matlab) in Bangladesh for six years on the status of NMSC. Incidence of NMSC 

was identified at each biennial in-person follow-up exam. Participants who had undergone all 

three levels of evaluation were eligible for skin biopsies of their suspicious lesions. Smaller 

lesions (diameter < 5 mm) were punch-biopsied, and large lesions (diameter ≥ 5 mm in diameter) 

were excised. Among individuals with multiple biopsy-eligible lesions, the most likely malignant 

lesion was biopsied. When an individual developed lesions at two different timepoints, two 
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biopsies were collected. Formalin-fixed biopsy tissues were processed at a specialized surgical 

pathology laboratory in Dhaka, Bangladesh, and made into H&E slides. Subsequently, these 

slides were transported to the University of Chicago Medical Center (UCMC), scanned by a 

Leica Aperio ScanScope XT at 20X magnification scanner and saved as the SVS format for 

analysis. In total, 2828 whole-slide images were collected. In total, we scanned 2084 

histopathological slides from 455 participants as some participants were referred to biopsy 

procedure multiple times during the entire six-year follow up, and each biopsy generated on 

average of four slides. We randomly partitioned about three fourths of these images (n = 2084) 

for initial model training and testing, set aside the remaining one fourth (n = 744) as an 

independent set for independent model testing.  

 

Data pre-processing: 

To apply a deep learning classifier, the images were divided into several thousand non-

overlapping tiles; the tile size was set as 1000 x 1000 pixels under 20x magnification, then 

resized to 224 x 224 pixels prior to feeding into ResNet18. In processing the selection of tiles, 

tiles too light (intensity > 0.85) or too dark (intensity < 0.15) were excluded (i.e., the tile color is 

too light when the tile region does not contain any tissue or contains fat tissues; the tile color is 

too dark when the selected tile region contains too much ink, folded tissues, or other image 

artifacts).  

Owing to the rarity of cancer cells in each slide, we applied several procedures for data 

augmentation, like other related digital pathology works 81. First, since there are no canonical 

orientations for histopathological slides, we rotated the images in eight orientations. Next, we 
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applied stain perturbation, a technique that is specifically tailored for H&E image augmentation 

82. Finally, we added color jittering on the brightness, contrast, saturation, and hue of each image.  

 

Ascertainment of NMSC 

All whole-slide images were given a diagnosis by a dermatopathologist (Dr. C.S.) from 

the Department of Dermatology at UCMC. The diagnosis included whether there is the 

indication for NMSC, if there is, what is the histology subtype of NMSC (Figure 2).  

 

Analyses Framework 

There were two steps to achieve the proposed attention-based model (Figure 1). First, we 

used a convolutional neural network (CNN) to extract image-based features. In this step, tiles 

generated from the whole slide were analyzed to generate a feature vector. Second, we applied 

the attention mechanism on the extracted feature vectors across a set of tiles and generated a 

single whole-slide classification. The CNN, serving as the feature extractor, was jointly 

optimized with the attention module in an end-to-end manner, using a cross-entropy loss function 

to model the pathologist labeled diagnoses and guide the optimization of all parameters in the 

network, including both CNN and the attention module.  
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Figure 5. Overview of The Proposal Attention-based Model 
 

 

 

Feature extraction through ResNet18 

In our study, we leveraged deep residual network ResNet18 83, a type of CNN that uses 

residual blocks to achieve promising performance on image recognition benchmarks. For each 

biopsy during training or testing, we randomly sampled tiles without replacement from all slides 

of each biopsy and fed them to the model. Subsequently, train-validation-test split for the entire 

sample and 5-fold cross-validation was conducted. In this process, slides from multiple biopsies 

of the same person were put into the same fold. This process guaranteed the model, either in 

training, validating, or testing, only “sees” data from one person once so that the model does not 

memorize latent information of this person. Finally, the CNN model extracted image features 

from each tile, and outputs a one-dimensional feature vector representation on the tile level, 

which is a high-level feature expression from the original image.  
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Attention-based classification 

In deep learning, embedding attention mechanisms is analogous to mimicking human 

brain actions by focusing on the important details among heterogeneous information. After 

feature extraction, we applied the attention module to the feature map with their weights 

determining the importance of each tile for diagnosis. The importance of each tile was estimated 

based on features extracted from the tiles. Next, this information was aggregated in the attention 

module and an attention vector was created for whole-slide classification through a fully 

connected layer. The confusion matrix and area under the curve (AUC) were computed to 

evaluate model discrimination for the presence/absence of NMSC subtypes. In addition, the 

attention map illustrating each tile’s importance in biopsy-level prediction, indicating high and 

low likelihood of containing cancer cells. The model was implemented in PyTorch 84.  

 

Validation 

5-fold cross-validation 

We tested our model in 5-fold cross-validation manner (Figure 6). We chose three folds 

for training, one fold for validation, and one fold for testing. Under each assignment, we trained 

the models four times with Adam optimization method with learning rate=1e-4, β1=0.9, 

β2=0.999 and ϵ=1e-8.  
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Figure 6: Training Set 5-fold Cross-Validation 
 
 

 

Independent set validation 

We set aside a dataset of 774 images from an independent group of patients for secondary 

model validation after model building (Figure 7). We followed the same pipeline to pre-process 

the dataset into tiles, augmented and balanced the data before testing. For all the 20 checkpoints 

of each model, we combined all the models using ensemble method, and tested the performance 

on the test dataset. Average AUCs with 95% confidence intervals (CIs) for each classification 

were computed, receiver operating curves (ROCs) were generated to illustrate the performance. 

Confusion matrices were also created to show the correctly and incorrectly classified cases under 

4-class and 3-class classifications.  
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Figure 7: Independent Set Model Validation 
 

 
 

Physician validation and model interpretation 

A subset of 64 images were annotated by the dermatopathologist (Dr. C.S.) with 

contouring of each ROI in the image, who was masked from the results generated by the model. 

We then compared the model-generated ROIs against annotators by the physician.  

 

Batch effect assessment 

To evaluate whether there was batch effect between the training set and the independent 

testing set during random data partition, we output 100 features for each dataset, then applied t-

distributed stochastic neighbor embedding (t-SNE) 85 for non-linear dimensionality reduction and 

visualize the distribution on two dimensions. In the visualization, every sample of the high-

dimensional feature map was given a location in a two-dimensional map. The perplexity of the t-

SNE algorithm was set to 30 and the maximum number of iterations was set to 1000 before 

reducing the dimensions of features into two dimensions. 

 

RESULTS 

The main data set contained a total of 2,084 H&E images generated from 553 patients, of 

which 229 specimens (41.4%) were in the non-cancer class, 171 (30.9%) were in the Bowen’s 
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disease class, 37 (6.7%) were in the SCC class, and 116 (21.0%) were in the BCC class. 

Separately, 744 images from 248 patients were placed in an independent testing set, 95 (38.3%) 

non-cancer, 110 (44.4%) Bowen’s disease, 3 (1.2%) SCC, and 40 (16.1%) BCC to validate the 

trained model and evaluate performance (Table 10).  

Table 13. Class Distribution of Images by Non-melanoma Skin Cancer Subtypes on 
Specimen Level 
 

  Training set Independent set 
Non-cancer, n (%) 229 (41.4%) 95 (38.3%) 
Bowen's, n (%) 171 (30.9%) 110 (44.4%) 
SCC, n (%) 37 (6.7%) 3 (1.2%) 
BCC, n (%) 116 (21.0%) 40 (16.1%) 
Total specimen 553 248 
Total images 2084 744 
Total individuals 455 243 

 

The 5-fold cross validation model performance on classification of each cancer type was 

demonstrated in Table 11 and Table 12. For this classification, our model achieved 89% (95% CI 

[0.84, 0.93]) overall macro AUC, with SCC performing the best (AUC = 0.98, 95% CI [0.94, 

1.00]), followed by BCC (AUC = 0.93, 95% CI [0.88, 0.98]), non-cancer (AUC = 0.84, 95% CI 

[0.72, 0.95]) and Bowen’s disease (AUC = 0.80, 95% CI [0.71, 0.88]) (Table 11). In general, 

SCC and BCC are histopathologically well defined, whereas Bowen’s disease is thought to be an 

intermediate transition between to SCC, and non-cancer also contains pre-cancer stages, such as 

arsenical and actinic keratoses. These equivocal stages challenged the performance on our 

classification of non-cancer and Bowen’s disease.  
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Table 14: Area Under the Curve for Model Prediction with 5-fold Cross-Validation for 
Four Classes Using Training Dataset 
 

  AUC 95% CI 
Non-cancer 0.84 [0.72, 0.95] 

Bowen's 0.80 [0.71, 0.88] 
SCC 0.98 [0.94, 1.00] 
BCC 0.93 [0.88, 0.98] 

macro AUC 0.89 [0.84, 0.93] 
 

Clinically, since the treatment for Bowen’s has a clear distinction to treatment for SCC, 

we combined Bowen’s disease into the non-cancer class to perform 3-class classification. AUCs 

were improved to 93% (95% CI [0.88, 0.98]) all the entire 3-class classification, and to 90% 

(95% CI [0.83, 0.97]) for non-cancer & Bowen’s disease (Table 12).  

Table 15: Area Under the Curve for Model Prediction with 5-fold Cross-Validation for 
Three Classes Using Training Dataset 
 

  AUC 95% CI 
Non-cancer & Bowen's 0.90 [0.83, 0.97] 

SCC 0.98 [0.95, 1.00] 
BCC 0.91 [0.84, 0.98] 

macro AUC 0.93 [0.88, 0.98] 
 

The attention heatmaps were generated for all the testing images to visualize the key 

instances. Characteristic examples for Bowen’s disease, invasive SCC and BCC are presented in 

Figure 8-10. Different shades of color indicate the distributions of the attention weights – light 

tiles represent the presence of the cancer features identified by the attention module, in contrast, 

dark color shows the absence of key information in the tile.  
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Figure 8: Typical Example of Squamous Cell Carcinoma in Study Sample 
 

 

 

 

 

 

 

 

This example shows invasive squamous cell carcinoma (SCC) from an excisional biopsy. These lesions demonstrate 
early keratinocyte invasion of the dermis. Well-differentiated lesions show prominent keratinization and may form 
“pearl-like” structures where dermal nests of keratinocytes attempt to mature in a layered fashion (5X). 
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Figure 9: Typical Example of Bowen’s Disease/Squamous Cell Carcinoma in-situ in Study 
Sample 
 

 

 

 

 

 

 

There is prominent dyskeratosis and aberrant mitoses at all levels of the epidermis, along with marked parakeratosis. 
The basement membrane remains intact (10X). 
 
 
Figure 10: Typical Example of Basal Cell Carcinoma in Study Sample 
 
 

 

 

 
 
The lesions arise from the epidermis with nests of basaloid cells with scant cytoplasm and elongated hyperchromatic 
nuclei, basal palisade, and peritumoral retraction clefts (5X).  
 

 

We then evaluated our model with an independent dataset of 774 images. The distribution 

on correctly and incorrectly classified cases were shown in Table 13 and Table 14. Each row 

shows the cases diagnosed by the dermatopathologist, and each column indicates the predicted 

results by our model. Our results showed that significant amount of Bowen’s disease cases was 

misclassified into non-cancer category, but the classification improved greatly when we 
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combined Bowen’s disease into the non-cancer class. Receiver operating curves (ROCs) were 

generated, and average AUCs were computed for each class and suggested 70.3% for non-

cancer, 69.8% for Bowen’s disease, and 96.4% for BCC (Table 13). After combining non-cancer 

and Bowen’s disease, the AUC improved to 94.4%. SCC results were omitted due to the small 

number of samples (Table 14).  

Table 16: Area Under the Curve for Model Prediction of Four Classes Using Independent 
Dataset 
 

Ground truth 
Prediction 

Non-cancer Bowen's SCC BCC 
Non-cancer 87 2 2 5 

Bowen's  99 6 0 5 
SCC 2 0 1 0 
BCC 9 0 0 31 

 

Table 17: Area Under the Curve for Model Prediction of Three Classes Using Independent 
Dataset 
 

Ground truth 
Prediction 

Non-cancer & Bowen's  SCC BCC 
Non-cancer & Bowen's  182 2 20 

SCC 1 2 0 
BCC 4 0 36 

 

To validate the results on the heatmaps, we compared the key instances on the attention 

against the ROI contoured by the dermatopathologist (Figure 11-13). Lighter tiles suggest higher 

chances of having cancerous features, whereas darker tiles indicate lower chance of having 

cancerous features. Expert evaluation of the examples demonstrates broadly coherent and 

interpretable results. In the SCC example (Figure 11), the predicted visualization picked up the 

presence of infiltrative cells passing through the basement membrane into the dermis. Under 

20X, we could also observe the involvement of full thickness epidermal atypia and hair follicles. 
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In the BCC example (Figure 13), the predicted visualization illustrates the involvement starts 

from the epidermis with palisade and clefts forming from the adjacent tumor stroma. The nuclei 

in the center become crowded with scattered mitotic figures. Presence of mucinous stroma can 

also be seen in many locations. Last, in the Bowen’s disease example, the predicted visualization 

successfully identified hyperkeratosis and parakeratosis. The atypia was observed spread out the 

full thickness of the epidermis, the keratinocytes showing intense mitotic activity, enlarged 

nuclei, and pleomorphism.   
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Figure 11: Examples of Visualized Heatmaps for Squamous Cell Carcinoma 
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Figure 12: Examples of Visualized Heatmaps for Bowen’s Disease  
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Figure 13: Examples of Visualized Heatmaps for Basal Cell Carcinoma 
 

 

 

Our results also indicated a non-negligible misclassification rate between non-cancer and 

Bowen’s (Table 11-12). In an effort to investigate the misclassified Bowen’s disease cases, 11 

images were selected for the dermatopathologist to scrutinize. This investigation yielded insights 

that Bowen’s cases which were mostly identified as non-cancer contain atypical keratinocytes 

from the basal cell layer extending into granular and cornified layers. In some cases, the dying 

granular layer as well as the involvement of the full thickness of epidermis were not identified in 

the heatmap as signs for cancer.  
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Table 18: Area Under the Curve for Model Prediction with 5-fold Cross-Validation for 
Four Classes Using Training Dataset 
 

Ground truth 
Prediction 

Non-cancer Bowen's SCC BCC 

Non-cancer 87 2 2 5 

Bowen's  99 6 0 5 

SCC 2 0 1 0 

BCC 9 0 0 31 

 

Table 19: Area Under the Curve for Model Prediction with 5-fold Cross-Validation for 
Three Classes Using Training Dataset 
 

Ground truth 
Prediction 

Non-cancer & Bowen's  SCC BCC 

Non-cancer & Bowen's  182 2 20 

SCC 1 2 0 
BCC 4 0 36 

 

Last, to evaluate the potential of batch effects for training and independent datasets was 

evaluated (Figure 14). One hundred features extracted from CNN for both datasets were 

outputted and visualized by t-SNE with four color-coded labels. In the 2D embedding figure, 

every point represents a sample image, and the axis represents the t-SNE dimension 85, the 

overlapping phenomena for each label between training and independent sets indicates similar 

image features extracted, therefore, confirmed that the random partition of the dataset did not 

exhibit unexpected batch effects.  
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Figure 14: t-SNE to Visualize Batch Effect 
 

 

DISCUSSION 

Our study successfully demonstrated comparable accuracy in differentiating NMSC 

subtypes from non-cancer tissue with an attention-based CNN. In the 4-class classification, our 

model achieved over 80% AUC for all classes, with SCC and BCC over 90%; when we 

combined non-cancer and Bowen’s disease into one class, our model achieved over 90% for all 

classes. The testing results on the independent dataset showed consistent AUC for non-cancer, 

Bowen’s disease and BCC (Figure 15-16). The comparison of heatmap with key areas that drive 

the cancer diagnosis and physician annotators also indicate promising consistency.  
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Figure 15: Area Under the Curve for The Independent Set Using Ensemble Method for 
Four Classes   
 

 

Figure 16: Area Under the Curve for The Independent Set Using Ensemble Method for 
Three Classes 
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In the validation with the independent set, we observed pronounced misclassification 

between non-cancer and Bowen’s disease. Among 110 Bowen’s disease cases, only six were 

correctly classified, while 99 were misclassified as non-cancer (Table 3). Histopathologically, 

Bowen’s disease often presents hyperkeratosis and parakeratosis. These are usually accompanied 

by marked acanthosis with elongation and thickening of the rete ridges. The keratinocytic cells 

might be saturated and often highly atypical. Unlike arsenical keratosis and actinic keratosis that 

we lumped into non-cancer category, the atypia spread the full thickness of the epidermis, and 

the keratinocytes demonstrating intense mitotic activity, pleomorphism, and greatly enlarged 

nuclei. We may also observe a loss of maturity and polarity, giving the epidermis a disordered or 

“windblown” appearance. Occasionally, cells of the upper epidermis will undergo vacuolization, 

demonstrating an abundant and strongly eosinophilic cytoplasm 86. 

In a typical case, the whole epidermis is involved and sometimes epithelium of the 

pilosebaceous glands is affected. The non-cancer cells are usually replaced by modified 

keratinocytes with loss of orientation and hyper-chromatic bigger nuclei with disorderly aspect 

of the epidermis 87. In arsenic-induced Bowen’s disease, modified cells with large number of 

vacuoles are also present 88. However, these features are not unique to Bowen’s disease only, 

which potentially explained the misclassification in our study. Also, the patterns that occur in 

small amounts made it more challenging to differentiate even for the skilled pathologist. Hence, 

these patterns can be interpreted differently or easily overlooked, leading to higher chances of 

misclassification.  

Our attention-based model can effectively localize the ROIs that contain key information 

in the image, which means the model can potentially pick out the tiles that contain cancerous 

cells and assign more weights to those tiles. Further, this information can be utilized to visualize 
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the location of lesion in the image. Thus, analogous to how pathologists scrutinize slides under 

the microscope, the model uses weighted features from the entire slide to classify images.  Last, 

the prediction from our model can be tested for potential relationship with patient outcomes. 

When only small number of microscopic patterns are present, they can be easily concealed on the 

whole-slide image, resulting in the overlook of the associative poor prognosis of the patient. 

Further evaluation of our model’s prediction for those who had unexpected worse prognosis on 

NMSC could shed light on elusive histopathological patterns that are easily missed by the 

pathologists.  

Although our model is rooted in strong deep learning methodology and achieved 

pathologist level performance on testing sets, there are limitations to be acknowledged and 

addressed. First, all the slides were collected from a single medical setting in Bangladesh, so our 

data may not be representative of all NMSC histopathological patterns. Second, all the images 

were scanned with the same equipment at UCMC, therefore, our results may be subject to errors 

in samples generated with different scanners. Third, in our data collection, when a patient came 

to the doctor with multiple suspicious lesions, only the most likely malignant lesion was 

biopsied. Given that it is not uncommon for a patient to have multiple NMSC lesions in a single 

visit, the case estimates in our study might be under-reported. Third, images used in this study 

was from the parent interventional trial, suggesting that the histopathological changes might have 

been more severe had it been from a non-interventional setting. However, based on the in-depth 

evaluation of the parent trial, there is no statistically significant treatment effect in all treatment 

arms. Hence, it’s reasonable to generalize current finding to affected individuals in Bangladesh. 

Last, although our whole-slide images are of high resolution, and image augmentation procedure 

was applied to generate and balance training samples, our dataset is still relatively small in size 
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compared to classical deep learning datasets with more than ten thousand samples for each class. 

To evaluate the robustness and generalizability of current work, further validation and large 

datasets are needed. 

An automated system for detection and visualizing histopathological patterns of NMSC 

has a wide variety of applications in clinical settings. Given the quick turnaround of our model, it 

could potentially be integrated into existing clinical management systems to automatically pre-

populate diagnosis for histopathological patterns on slides and provide complementary opinion 

on challenging cases for the pathologists. Also, visualization of the entire slide after being 

examined by our model at tile-level could highlight elusive areas of suspected patterns and the 

identified cancer cells. In addition, our model could significantly expedite the cancer diagnosis 

process for the pathologist, free up time for them to focus on more cases and make cancer 

detection more accessible when medical resources are in shortage.  

In Bangladesh, the problem of arsenic exposure in drinking water has started since the 

1970s and a considerable amount of time has gone by before an effective remedial solution to be 

developed, as a result, many people have become affected and suffer the debilitating symptoms. 

Yet, without a timely diagnosis, these affected individuals mostly are unaware of the need to 

seek medical attention, needless to say proper treatments 89. The participants included in our 

study only represent a small portion of the total affected population, the rest who developed 

cancerous indication may have never presented themselves to medical professionals. The 

potential big number of cases is very alarming and could be the tip of the iceberg of the real 

problem. Future studies should be targeted at developing nation-wide cancer detection protocol 

in different tertiary medical facilities. 
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CONCLUSION 

In this diagnostic study, we developed an attention-based model for high-resolution 

histopathological image analysis. Our results showed promising diagnostic accuracy for two 

clinically meaningful classes (i.e., non-cancer and BCC) for nonmelanoma skin cancer. This fast, 

scalable method can be incorporated into the hospital clinical management systems and holds the 

potential for substantial clinical impact, including expediting healthcare delivery, broadening the 

scope of primary care practice, and augmenting clinical decision-making for dermato-oncology 

specialists particularly in areas with limited resources.  Further research is necessary to evaluate 

performance in a real-world clinical setting, in order to validate this approach across the full 

spectrum of NMSC lesions encountered in typical practice. While we acknowledge that a 

physician’s clinical diagnosis is also based on contextual factors beyond microscopic inspection 

of a lesion, the ability to classify histopathological images with the physician comparable 

accuracy has the potential to profoundly expand access to medical care.   
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SUMMARY AND FUTURE DIRECTIONS 

Machine learning for population health and healthcare delivery 
 

As machine learning tools continue to demonstrate better performance in handling large 

volume and mixed data, they enabled us to pursue answers in the population health problems 

previously deemed impossible. Being part of the effort for Precision Public Health (PPH), first 

introduced by Khoury in academic literature, this modernization of surveillance, epidemiology, 

information systems, targeted interventions would potentially benefit population health in a 

broader extent 4.  

One powerful dimension under this effort is to pool various formats of the data together. 

This integration of datasets is merely trivial. When implemented well, the linkage of previously 

siloed datasets embraces new possibilities for discovering genetic, biological, and clinical 

associations that might explain disease pathogenesis and progression. It also enables the 

evaluation of the treatment effects on disease outcomes through stratified patient characteristics. 

These implementations are now possible owing to the unique features in machine 

learning. For instance, the flexibility of the neural network made it possible to combine 

demographic, lifestyle, medical, molecular, and imaging data together, resulting in complex and 

powerful models to reveal early indication in the medical image and the disease incidence. This 

machine learning infrastructure is also renowned for its efficiency - enabling the same algorithm 

to be applied with minimal modifications to address other clinical problems using different 

datasets 90,91. 

Public health researchers collect data from various sources, perform analysis to estimate 

the incidence and prevalence of different health conditions, and the associations with related risk 

factors. To present a concerted effort of population health, machine learning methods extract 
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data in a whole different level of granularity, integrate them together, and harmonize the 

evidence of populations, communities, and environment into the promise of population health 

advancements.  

For future direction, a platform may be developed through two paralleled pathways 

(Figure 17). First, baseline skin lesion digital photos will be processed through a CNN for feature 

extraction and then through an attention module for weights calculation. The ability that CNN 

models to learn predictive features from raw images is a paradigm shift that presents 

opportunities for medical imaging. Through this process, the images and patient 

diagnosis/outcome are presented to a network that contains interconnected layers aiming to 

highlight important patterns from the images. Second, all other patient information will go 

through another deep network, through which important information will be extracted and 

aggregated to represent non-image aspects of patient characteristics. Both pathways will then 

join together to represent a complete profile of each participant for endpoint prediction.  

 

Figure 17. Platform development workflow 
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Predicting the patients’ outcome is a critical step in treatment. Advancement in tabular 

data analytics and imaging technologies provide physicians with new possibilities, yet patient 

prognosis remains largely subjective, leading to suboptimal clinical management. In this aim, we 

plan to develop a computational platform based on deep learning models to predict the incidence 

of NMSC and the mortalities from digitized images of participants’ cutaneous manifestation, 

demographic, lifestyle, molecular, and genomic features. This method simultaneously learns the 

image patterns and participants’ characteristics in a tabular format that are associated with the 

outcome.  

Machine learning models and neural networks allow the input of structured data (in the 

form of numeric and categorical) and achieved decent performance. CNNs handle the input of 

unstructured data, for example, image data or sentences, and is renowned for its superior 

performance. Mechanistically, we will bridge the advantages of these two approaches and 

integrate both structured and unstructured data together for the prediction of NMSC types and 

mortality outcomes. 

In spite of the excitement for the use of machine learning models, the promise of this 

self-learning, continuously advancing tools needs to be tempered against the challenges when 

implementing them in the routine clinical practice. Broadly speaking, there are three aspects we 

need to consider – the relationship between healthcare data and machine learning, the 

relationship between machine learning and healthcare provider, and the governance platform to 

enable equitable use of data in clinical practice 15.  

First, machine learning is essentially the interplay between datasets and one or a group of 

algorithms, the most popular and perhaps the current state-of-the-art is deep learning algorithms. 
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The advent of deep learning can be traced back in decades, but they gained significant popularity 

in 2012, when highly accurate training was brought the hub of attention 92. Healthcare dataset, on 

the other hand, is notoriously in large volume, messy and complex forms. To make the training 

of a model accurate, data must be pre-processed and curated. For example, if one medication 

abbreviation was misread by the model and mis-interpreted as another one, and the data is used 

to train the model to suggest treatment for future patients, the model might erroneously give out 

recommendations leading to disastrous outcome. Hence, machine learning is like any tool, to 

make it effective, the problems exist in the entire clinical workflow, involving patient journey, 

healthcare delivery, payer systems and any possibilities in each step of the intricate flow, should 

be both the driver and the reference point for the implementation of machine learning 93,94.  

Another important consideration is the relationship between machine learning 

implementation and healthcare practitioners. In agreement with current mainstream publications, 

we believe that the role of machine learning is to augment the capability and capacity of human 

doctors rather than to replace them 95,96. In healthcare delivery, the emotional virtues serve as one 

core element, through this process, patients receive attention, compassion, empathy, and care. 

Machines are capable of taking over tasks that are more routine and standardized, therefore, 

freeing up the time for the human doctors to focus on tasks demand intuition, judgement, and 

emotions 97–99. In this process, other issues may also emerge, such as ethical issues, and data 

privacy and security. 

The demand for the concerted efforts calls out the governance platform. This platform 

provides central control over functions such as data curation, pre-processing, regulation, and the 

interaction with current healthcare delivery system. Guideline developments has been underway 

across the globe, such as Singapore’s Model Artificial Intelligence Governance Framework, 
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guiding private sectors to use artificial intelligence ethically. Others developed proprietary 

platforms that integrated electronic health records together with data governance structures that 

take advantage of cloud-based machine learning platforms. 

 

Machine learning for Oncology 

Medicine and biology have rapidly become data-intensive 100. When the format of the 

data is no longer limited to numeric format, algorithms which are capable of sifting through 

massive amount of data and extracting meaningful patterns can provide a way in which the 

prevention and treatment developed.  

Among all disease types, cancer is considered the most common cause of death in 

developed countries, and the number of cases is only worsening along with the aging populations 

101,102. In 2021, data shows that 1.9 million people are estimated being diagnosed with cancer, 

and over 608 thousand deaths would occur in the US. Thus, application of artificial intelligence 

in the context of cancer continues to be the top priority to prevent cancer and save lives.  

With the rapidly declined cost in genomic sequencing as well as the evident associations 

between cancer occurrence and human genomics, a deeper understanding in the implicit 

relationships may reveal new insights. However, such studies usually involve the identification 

between one thousand and one hundred thousand mutations for each tumor sample 103. And the 

clinical interpretation is heavily depending on published literature to link the mutation and the 

disease states and prognosis. In 2019 alone, there were over 200 thousand new cancer related 

papers published, making manual curation impossible. Hence, the implementation of machine 

learning becomes a reasonable solution. Relative to the conventional way of transforming 

genomic data into a binary table, machine performs same task within minutes or even seconds. In 
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the meantime, by sharing parts of the model, machine performs multiple tasks at the same time 

and search for implicit patterns, which were not feasible in the past. Moreover, machine allows 

multi-model learning, meaning that now we can integrate different types of data. Given that 

cancer is a group of complex diseases, integrating various types of data together could better 

inform clinical decision.  

Another application makes machine learning implementation very attractive is the image 

analysis. Majority of the cancer types progresses rapidly or have an insidious early stage. By the 

time that physicians have enough information to diagnose, patients have already compromised 

their health to a great extent. Therefore, early detection is crucial to saving lives of the affected 

individuals. Deep learning is one branch of machine learning which revolutionized image 

analysis in recent years 10,92. One example demonstrated great impact was the classification of 

skin cancer based on dermoscopy images where AI showed the capability to achieve accuracy 

comparable to certified doctors and annotated skin lesions on the image precisely as were expert 

dermatologists. In another example, AI also achieved promising accuracy when interpreting 

mammograms during breast cancer screening 104.  

By far, there has been countless published studies reporting reliable accuracy on 

application of machine learning in cancer detection and diagnosis. Collectively, these 

achievements demonstrated that this technique is matured enough to perform versatile tasks at a 

level of accuracy to provide trustworthy insights to healthcare providers and healthcare system 

105.  

 
Machine learning for NMSC 
 
 Nonmelanoma Skin Cancer (NMSC) is considered the most common malignancy, with 

estimated over 3 million annual cases in the United States alone 106. Among all NMSC cases, 
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basal cell carcinoma (BCC) and squamous cell carcinoma represent 95% of the NMSC cases 107, 

which are readily identified through visual inspection by expert dermatologist. Yet, as NMSC 

progresses continuously, several benign lesions may mimic the appearance of these subtypes, 

leading to further evaluation by biopsy. It is not uncommon that the affected individual needs to 

go through multiple invasive biopsy procedure in order to get one definitive diagnosis 108. 

 The application of machine learning as a diagnostic assistance has been rapidly growing 

in dermatology. The implementation involves training the model with images curated by the 

doctor, then feed the new images for diagnostic insights. This is particularly helpful when the 

suspected case volumes are large while medical resources are scarce. With the aid from machine 

learning model, regions of interests are automated for physicians to reference, saving significant 

amount of time for them to focus on tricky cases.    

 Numerous studies 10,75,109–116 have piloted on using machine learning approach to aid 

diagnosis in clinic. While almost all these studies reported superior diagnostic accuracy, many of 

them are subject to methodological limitations, such as including same images for both training 

data and testing data 109,110, or including consecutive samples in test sets 111,112,115,116. 

Nevertheless, these studies did provide high level insights for machine learning classifiers 

capable of accurately discriminating NMSC from benign lesions. Further research is warranted 

to evaluate the viability of these results before incorporating them in a clinical setting.  

 

Data source 

In addition to the data used in previous aims, genotyping, gene expression, DNA 

methylation and blood metal data from a subset of 210 participants will be incorporated. Details 

are provided in Figure 6.  
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Figure 18. Data integration for a total of 210 participants 
 

 

 

Genotyping 

DNA were extracted from the whole blood using the QIAamp 96 DNA Blood Kit from 

Qiagen (Valencia, USA). DNA sample with a concentration <40 ng/µL, and/or 260/280 ratio 

outside the range of <1.6 to ≥2.1 (measured by Nanodrop 1000), and/or fragmented DNA <2 Kb 

(assessed by smearing in Agilent BioAnalyzer) was excluded. Genotyping was performed using 

the Illumina HumanCytoSNP-12 BeadChip utilizing 250 ng DNA according to the 

manufacturer’s protocol. Samples with very poor call rates (<97%) were excluded, individuals 

with gender mismatches, duplicated samples were also excluded.  

Quality control (QC) exclusion criteria was applied among 299,140 genotyped SNPs 

using PLINK 117: (i) SNPs without rs numbers; (ii) SNP call rate <95%; (iii) monomorphic 

SNPs; (iv) Hardy-Weinberg P<1 × 10−10. This procedure yielded 257,768 SNPs. Then, 

imputation was performed using MaCH on the basis of the HapMap 3 Gujarati Indians in 
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Houston (GIH) population (Build 36). Subsequently, additional QC exclusion criteria were 

applied for SNPs post-imputation: (i) MAF <0.01 and (ii) SNP imputation score <0.3. All QC 

procedures resulted in 1,211,988 million SNPs for both genotyped and imputed SNPs, which will 

be included in the analysis. Genotyping data was available in 1,964 individuals (female: 902, 

male: 1062).  

 

Gene expression data 

RNA was extracted from mononuclear cells preserved in RLT buffer, stored at −80°C, 

using RNeasy Micro Kit from Qiagen (Valencia, USA). The concentration and quality of RNA 

was checked on Nanodrop 1000. cRNA synthesis was done from 250 ng of RNA using Illumina 

TotalPrep 96 RNA Amplification kit. Gene expression was measured using the Illumina 

HumanHT-12-v4 BeadChip utilizing 750 ng of cRNA according to the manufacturer’s protocol. 

The chip contains a total of 47,231 probes covering 31,335 genes. We restricted our analyses to 

specific probes for expression quantitative trait loci (eQTL) analyses, which yielded 31,583 

probes. Quantile normalized expression values were log2 transformed and adjusted for batch 

variability using ComBat software 118. Gene expression data was available for 1,774 individuals 

(female: 795, male: 979) included in these analyses. 

DNA methylation 

DNA were extracted from whole blood using DNeasy Blood kits (Qiagen). Bisulfite 

conversion was performed using the EZ DNA Methylation Kit (Zymo Research, Irvine, CA, 

USA). For each sample, 500 ng of bisulfite-converted DNA was applied to the Illumina 

HumanMethylation 450K BeadChip kit (Illumina, San Diego, CA, USA) according to the 

manufacturer’s protocol, enabling interrogation of 482 421 CpG sites and 3091 non-CpG sites 
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per sample. This array contains an average of 17 CpG sites per gene, distributed across the 

promoter, 5’ untranslated region (UTR), first exon, gene body and 3’ UTR, covering 99% of 

RefSeq genes.  

Methylation status at each CpG is expressed as a β value that can range from 0 to 1 

(unmethylated to completely methylated). Data were quantile normalized. Among the 409 

participants, six samples reported sex of the participant did not match the predicted sex based on 

methylation patterns of the X and Y chromosomes, and seven samples with more than 5% of 

CpGs either containing missing values or having p over 0.05 for detection. This procedure 

resulted in 396 samples (female: 188, male: 208) with quality methylation data. In addition, we 

also removed probes mapping to multiple locations (41937), probes with SNPs (20 869). 

Individual β values with a p for detection > 0.05 were set to missing, and >10% missing of β 

values were excluded. Probes on the X (11 232) and Y (416) chromosomes, probes with missing 

chromosome data (mostly control probes, 65), and probes with >10% missing data across 

samples (1932) were excluded. In the end, this yielded a total of 423 604 probes available. β 

values were logit-transformed and adjusted for batch variability, the average inter-assay 

Spearman correlation coefficient was 0.987 (range, 0.974-0.993) 119,120.  

 

Blood metal data 

 The blood level of manganese (Mn), lead (Pb), arsenic (As), Selenium (Se), α-tocopherol, 

γ-tocopherol, and retinol (Rho) were measured at baseline and 2-yeawr visit. Among these 

measurements, baseline arsenic and selenium levels were measured with all the participants, 

other measurements were conducted in subsets of participants (Table 13).  
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Table 20. Blood level of minerals measured at baseline and first major visit 
 

 

 

Measures 

The clinical diagnosis made by the pathologist based on clinical manifestations and 

histopathological evaluations will be used as the “ground truth” in current analysis. The 

description is detailed in previous aims.  

 

Analyses 

Data and image curation 

Baseline skin lesion digital photos will be reviewed and curated. This process will 

identify digital photos with poor quality arising from blurred images, heaving inky marks on the 

images where the regions of interest are likely to be targeted. Tabular data, including 

demographic, lifestyle, medical, molecular and genomics will also be cleaned – genomics data 

will go through quality control processes, described in the above data source section, before 

putting into the model for analysis. Other data sources will also be cleaned with missing data and 

outliers handled, dependent on the proportion with the issue.   

 

Network architecture for each analysis branch 
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 Digital photos will apply the same data preprocessing technique detailed in aim 2 and 

convert into image patches. Image feature extraction from these patches will be achieved through 

an attention-based CNN. ResNet 18 again will be adopted to extract features for digital photos, 

as skin lesions on the participant’s feet, hands and other parts of the skins are localized. A feature 

vector will be the output from ResNet 18 and input into the attention-module to calculate the 

importance of each patch. The output data from the attention module will be a same-length 

vector representing feature information for each photo. To handle the tabular dataset, multi-layer 

network will be applied to extract features on the participant level, integrating all the non-image 

data into this model and output a feature map.  

 

Integrative modeling  

Two-branch neural network will be built to process and integrate all the data together for 

analyses. First, a multi-layer perceptron (MLP) will be built to handle the categorical/numerical 

and without doing any prediction, save the output dataset. Then, an attention-based CNN will be 

used to handle image data and save the output as same-length vector without doing the 

prediction. Subsequently, these two output datasets will be concatenated together as the input 

dataset for a fully connected neural network. In this step, we will perform the train-validate-test 

split and do the outcome predictions. The analysis workflow is demonstrated below in Figure 7.  

 

Future Directions 
 

Through the implementation of current aim, we will be among the first to build the 

machine learning prediction model for NMSC vs. non-NMSC and survival outcome using mixed 

data. As part of the effort to realize the goal for precision population health, this model will 
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bridge the gap between unstructured and structured data and provide a comprehensive view for 

patient characteristics and disease outcomes.  

There are a few foreseeable challenges and limitations. First, machine learning platforms 

are not widely applied in health care practice, even in the high-income countries. Therefore, the 

implementation will likely meet resistance, due to its complexity. Second, data sparsity will also 

hurdle this initiative. Although promising to combine mixed data together for a comprehensive 

evaluation, the availability of all the data elements for each individual is concerning. In this aim, 

the subtypes of NMSC as well as cause-specific mortalities are exploratory due to this reason. 

Alternatively, these outcomes will be explored without incorporating all other co-variates. Third, 

as more data will be needed to build integrative models, legal and ethical concerns related to 

machine learning driven platform demands better regulations to be in place.  

Decreasing the impact from disease etiology plays a central role in disease prevention 

and health promotion. The mechanistic evidence of disease causes sets up a foundation for 

further exploring therapeutic options for any affected populations. However, when exposure to 

an agent is homogeneous within a population, the case-control or cohort studies will fail to detect 

the cause of the disease. The corresponding strategy is to identify and therefore, protect the 

“high-risk” individuals. The “high-risk” strategy evaluates interventions from RCTs that are 

appropriate to the susceptible individuals 121. 

However, there are growing concerns that the results of RCTs might not directly apply to 

individual patients, even for those within the same trial and the same treatment arm. Although in 

theory, randomization ensures the comparability of treatment groups, the differences between 

individuals in each treatment arm can still dramatically affect the likelihood of benefiting from or 

being harmed by a therapy. The average treatment effects across different patients can present 
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misleading results to physicians who care for the individual patient, not the average patients. 

Subgroup analysis allows exploring differences in treatment effects based on patient 

characteristics, which put a step forward towards personalized population health 122.  

Integration of disparate data sources plays a crucial role in the implementation of 

personalized and population health. The all-encompassing information made it possible to 

generate a more thorough profile of individual patient, which spurs pattern discovery in patient 

characteristics and disease progression. As in the high-income countries, the emerging 

technologies and abundant choices of analytical tools demonstrated transformational power in 

the provision of healthcare services, this implementation shows even greater potential in 

resource-limiting countries. However, moving from pilot to large scale-will still require 

addressing several challenges and concerns.  

First, determine which algorithmic approach to use for which research question is a 

challenge. As numerous machine learning models are widely available, researchers should be 

cautious as inappropriate algorithm would generate misleading insights. One solution is to select 

approaches based on available predictor variables.  

Second, constructing and training an effective model from scratch would require a good 

amount of data and time, especially for deep learning neural networks. This might not be feasible 

in the initial implementation in resource-poor settings. One way to overcome this hurdle is to 

adopt highly refined features from existing pre-trained models as a starting point in training a 

new model for a different task. The features selected from the pre-trained models work as basic 

building blocks, such as lines, edges, and curves for image analysis, and have been shown to be 

applicable to many different image-recognition tasks 123. This technique not only reduces 
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enormous number of computations needed for training but delivers substantial performance 

benefits 124. 

Third, this implementation in clinical practice also raises concerns because this platform 

does not provide a straightforward explanation to healthcare providers as to how machine 

learning tools work. Although they might not need to know the nitty-gritty mathematical 

calculations in an algorithm, knowing the types of data used in making the predictions and the 

relative weights assigned to each predictor would be beneficial. However, analogous to other 

clinical tests, metrics such as sensitivity and specificity could also be used as a starting point to 

inform the performance of the tool in predicting a particular clinical outcome. 

Fourth, in spite of the comparable accuracy achieved by machine learning approaches, 

very few implementations had successfully penetrated the clinical practice. One main reason is 

that these early applications are lack of external validation. The sparsity of the data affects not 

only the model training but also the external validation, which is indispensable before we can 

adopt such platforms. 

With proper implementation, machine learning application could lead to a great leap in 

healthcare in the resource-poor settings. Further effort is needed to accelerate its deployment in 

such settings. 
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