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ABSTRACT

The codewords of the homomorphism code aHom(G,H) are the a�ne homomorphisms be-

tween two �nite groups, G and H, generalizing Hadamard codes. Following the work of

Goldreich�Levin (1989), Grigorescu et al. (2006), Dinur et al. (2008), and Guo and Sudan

(2014), who demonstrated local list-decodability up to minimum distance of homomorphism

codes for expanding classes of groups (Boolean, abelian, nilpotent). We further expand the

range of groups with this property. In particular, for the �rst time, we do not require either

G or H to be solvable. Speci�cally, we demonstrate a poly(1/ε) bound on the list size, i.e.,

the number of codewords within distance (mindist-eps) from any received word, when G is

an alternating group, and H is an arbitrary (�nite or in�nite) group. We conjecture

that a similar bound holds for all �nite simple groups as domains; the alternating groups

serve as the �rst test case.

We also have an analogous result for abelian domain, not included in the dissertation.

Our main result is e�cient local list-decoding for the permutation representations of

alternating groups (i. e., when the codomain is a symmetric group Sm) under the restriction

that the domain G = An is paired with codomain H = Sm satisfying m < 2n−1/
√
n.

The limitations on the codomain in the latter case re�ect a gap between uniquely identi-

fying a homomorphism in aHom(An, H) and determining the homomorphism on generators

of the whole group. This phenomenon is new and is sure to appear again for other more

general classes of domains. Bridging this gap requires solving the Homomorphism Ex-

tension Problem (HomExt): given a partial map γ : G⇀H (the domain of γ is a subset

of G) decide whether or not there exists a homomorphism ϕ : G→ H extending γ.

For this reason, we introduce an intermediate algorithmic model we callCerti�cate List-

Decoding that avoids the HomExt bottleneck and works in the alternating vs. arbitrary

setting.

Our new combinatorial tools allow us to play on the relatively well-understood top layers
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of the subgroup lattice of the domain, avoiding the dependence on the codomain, a bottle-

neck in previous work. We also introduce �mean-list-decoding,� a relaxation principle for

constraints on the domain, that automatrically upgrades results such as {abelian→abelian}

to {arbitrary→abelian}.

While motivated by bridging the mentioned gap in list-decoding, HomExt is also of

independent interest, both as a problem in computational group theory and as a new and

natural problem in NP of unsettled complexity status.

We consider the case H = Sm (the symmetric group of degree m), i.e., γ : G⇀H gives a

group action by the subgroup generated by the domamin of γ. We assume G ≤ Sn is given

as a permutation group by a list of generators. We characterize the equivalence classes of

extensions in terms of a multidimensional oracle subset-sum problem. From this we infer

that for bounded G the HomExt problem can be solved in polynomial time.

We are most concerned with the case G = An (the alternating group of degree n) for

variable n under the assumption that the index of M in G is bounded by poly(n). We solve

this case in polynomial time for all m < 2n−1/
√
n. This is the case required for the main

list-decoding result.

The Homomorphism Extension results are solo work; the rest are joint with László Babai

and Timothy Black.
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CHAPTER 1

INTRODUCTION

1.1 Brief history

Let G and H be �nite groups, to be referred to as the domain and the codomain, respectively.

A map ϕ : G→ H is an a�ne homomorphism if it satis�es ϕ(ab−1c) = ϕ(a)ϕ(b)−1ϕ(c) for

all a, b, c ∈ G. A�ne homomorphisms are the translations of homomorphisms. We write

Hom(G,H) and aHom(G,H) to denote the set of homomorphisms and a�ne homomor-

phisms, respectively. Let HG denote the set of all functions f : G→ H.

We view aHom(G,H) as a (nonlinear) code within the code space HG (the space of

possible �received words�) and refer to this class of codes as homomorphism codes.

Homomorphism codes are candidates for e�cient local list-decoding up to mimimum dis-

tance (mindist) and in many cases it is known that their minimum distance is (asymptotically)

equal to the list-decoding bound (LDB).

This line of work goes back to the celebrated paper by Goldreich and Levin (1989)

[GL89] who found local list-decoders for Hadamard codes, i. e., for homomorphism codes with

domain G = Zn and codomain H = Z2. This result was extended to homomorphism codes

of abelian groups (both the domain and the codomain abelian) by Grigorescu, Kopparty,

and Sudan (2006) [GKS06] and Dinur, Grigorescu, Kopparty, and Sudan (2008) [DGKS08]

and to the case of supersolvable domain and nilpotent codomain by Guo and Sudan (2014)

[GS14], cf. [BGSW18].

While homomorphism codes have low (logarithmic) rates, they tend to have remarkable

list-decoding properties that are not expected to hold for denser codes. In particular, in all

cases of homomorphism codes studied so far (including the present work), for an arbitrary

received word f ∈ HG, and any ε > 0, the number of codewords within radius (mindist−ε) is

bounded by poly(1/ε) (as opposed to some faster-growing function of ε, as permitted in the
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theory of list-decoding). This is an essential feature for the complexity-theoretic application

(hard-core predicates) by Goldreich and Levin.

We call the poly(1/ε) bound economical, and a homomorphism code permitting such a

bound combinatorially economically list-decodable (CombEcon).

By local decoding we mean an algorithm that uses only poly(log |G|, 1/ε) queries to

the received word. By e�cient local decoding we mean a local algorithm that uses only

poly(log |G|, log |H|, 1/ε) additional work. We call a CombEcon code AlgEcon (algorith-

mically economically list-decodable) if it permits e�cient decoding in this sense. So the

cited results show that homomorphism codes with abelian domain and codomain, and more

generally with supersolvable domain and nilpotent codomain, are CombEcon and AlgEcon.

In all work on the subject, the stated e�ciency depends on the computational represen-

tation of the groups studied, such as special types of presentations in terms of generators

and relators, black-box access, or explicit representation as permutation groups. We shall

make the required representation (the access model) explicit in all results.

1.2 Contributions

1.2.1 Combinatorial bounds

We further expand the range of groups for which e�cient local list-decoding is possible up

to the minimum distance. In particular, for the �rst time, we do not require either G or

H to be solvable. In fact, in our combinatorial and semi-algorithmic results (see below),

the codomain is an arbitrary (�nite of in�nite) group. We say that a class G of

�nite groups is universally CombEcon if for all G ∈ G and arbitrary (�nite or in�nite)

H, the code aHom(G,H) is CombEcon. The work in this thesis is the �rst to demonstrate

the existence of signi�cant universally CombEcon classes.

Convention 1.2.1. When speaking of a homomorphism code aHom(G,H), the domain G

2



will always be a �nite group, but the codomain H will, in general, not be restricted to being

�nite.

Theorem 1.2.2 (Main combinatorial result). Alternating groups are universally CombEcon.

We have an analogous result for abelian groups [BBW18], not included in this dissertation.

See Section 1.4.

We explain the main combinatorial result in detail. By �distance� in a code we mean

normalized Hamming distance.

(Restatement of Theorem 1.2.2.) Let the domain G be a �nite alternating group and

H an arbitrary (�nite or in�nite) group. Let mindist denote the minimum distance of the

homomorphism code aHom(G,H) and let ε > 0. Let f ∈ HG be an arbitrary received word.

Then the number of codewords within (mindist− ε) of f is at most poly(1/ε).

We prove that the degree of the poly(1/ε) bound at most 9; with additional work, this

can be improved to 7.

Our choice of the alternating groups as the domain is our test case of what we believe is

a general phenomenon valid for all �nite simple groups.

Conjecture 1.2.3. The class of �nite simple groups is universally CombEcon.

Theorem 1.2.2 also holds for a hierarchy of wider classes of �nite groups we call shallow

random generation groups or �SRG groups.� This class includes the alternating groups. The

de�ning feature of these groups is that a bounded number of random elements generate, with

extremely high probability, a �shallow� subgroup, i. e., a subgroup at bounded distance from

the top of the subgroup lattice.

Our new combinatorial tools allow us to play on the relatively well-understood top layers

of the subgroup lattice of the domain, avoiding the dependence on the codomain, a bottleneck

in previous work.

3



1.2.2 Algorithms

We say that a class G of �nite groups is universally AlgEcon if for all G ∈ G and arbitrary

�nite H, the code aHom(G,H) is AlgEcon. The validity of such a statement depends also

on the algorithmic representation of the domain and codomain.

A permutation representation of degree m of a group G is a homomorphism G → Sm,

where the codomain is the symmetric group of degree m. We also obtain e�cient local list-

decoding for the permutation representations of alternating groups under a rather generous

restriction on the size of the permutation domain.

Theorem 1.2.4 (Main algorithmic result). Let G = An be the alternating group and H = Sm

the symmetric group of degree m. If m < 2n−1/
√
n, then aHom(G,H) is AlgEcon.

The limitations on the codomain arise from severe technical di�culties encountered.

In contrast to all previous work, in the alternating case the minimum distance does not

necessarily correspond to a subgroup of smallest index (modulo the �irrelevant kernel,� see

Chapter 4, more speci�cally Section 4.1.2). This necessitates the introduction of the Ho-

momorphism Extension (HomExt) Problem, which remains the principal bottleneck

in algorithmic progress. This problem is the focus of the next section, where we state the

corresponding HomExt result needed for Theorem 1.2.4.

To bypass the HomExt bottleneck, we introduce a new model we call Certi�cate List-

Decoding. This model mirrors that of algorithmic list-decoding, except that it returns an

output list of partial maps. The list must include, for every a�ne homomorphism ϕ within

(mindist− ε) of the received word, a partial map γ that uniquely extends to ϕ, i.e., ϕ is the

unique a�ne homomorphism that satis�es ϕ|dom γ = γ. We say that a homomorphism code

is economically certi�cate-list-decodable (CertEcon) if such a list of partial maps can

be e�ciently generated.

Note that, by de�nition, AlgEcon =⇒ CertEcon =⇒ CombEcon.

4



We say that a class G of �nite groups is universally CertEcon if for all G ∈ G and

arbitrary (�nite or in�nite) H, the code aHom(G,H) is CertEcon.

Theorem 1.2.5 (Main semi-algorithmic result). Alternating groups are universally CertE-

con.

In fact, we show that SRG groups are universally CertEcon.

Finally, we show that certi�cate list-decoding, combined with a HomExt oracle for the

top layers of the subgroup lattice of G, su�ces for list-decoding aHom(G,H). This is the

route we take to proving Theorem 1.2.4.

We give more formal statements of these results in Section 3.2.

1.2.3 Homomorphism extension

We de�ne the Homomorphism Extension Problem and state the main result. This problem

will be the focus of Chapter 7. Stronger versions of the results stated here are given in

Section 7.1.5.

De�nition 1.2.6. Homomorphism Extension

Instance: Groups G and H and a partial map γ : G⇀H.

Solution: A homomorphism ϕ ∈ Hom(G,H) that extends γ, i.e., ϕ|dom γ = γ.

TheHomomorphism Extension Decision Problem (HomExt) asks whether a solution

exists. The Homomorphism Extension Search Problem asks whether a solution exists

and, if so, to �nd one.

The complexity of these problem depends on the representation of the groups involved.

We shall assume that G and H are given as permutation groups. In particular, we address

the subcase of group actions, i.e., H = Sm is the symmetric group on m elements. We call

this problem HomExtSym.

5



Theorem 1.2.7. HomExtSym can be solved in poly(n,m) time in any of the following

cases. To �x notation, the instance consists of G ≤ Sn, H = Sm and a partial map γ :

G⇀H.

(1) G has bounded order.

(2) G = An, m < 2n−1/
√
n, and the subgruop generated by dom γ has poly(n) index in G.

(3) m > 21.7n
2

.

Case (2) is used in the list-decoding result above. Case (1) is a special case of Case (3).

This result is proved by looking at the orbits in [m] of the group generated by the

domain of the partial function, then deciding how they may combine to form orbits of G.

We reformulate HomExtSym as an exponentially large instance of a generalized Subset

Sum Problem to which we have oracle access. The technical assumption m < 2n−1/
√
n

guarantees that the arising generalized Subset Sum instance is tractable. Answering oracle

queries amounts to solving certain problems of computational group theory.

The more generalHomomorphism Extension Threshold-k Enumeration Problem asks

to list all solutions unless there are more than k, in which case list k of them. This problem

holds signi�cance in the list-decoding context (see Section 6.3.5). Chapter 7 in fact proves a

version of Theorem 1.2.7 for this problem with poly(n,m, k) time.

1.2.4 Relaxation principles and mean-list-decoding

For two groups G and H, the (G,H)-irrelevant kernel is found by intersecting the ker-

nels of all G → H homomorphisms. If N is the (G,H)-irrelevant kernel, we will see that

list-decoding aHom(G,H) is essentially the same as list-decoding aHom(G/N,H) (Theo-

rem 4.3.2). From this we infer a domain-relaxation principle (Theorem 4.3.13). For instance,

an �{abelian→abelian} is CombEcon� result automatically extends to an �{arbitrary→abelian}
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is CombEcon� result, since in this case the commutator subgroup G′ is contained in the ir-

relevant kernel. This type of relaxation applies in the context of CertEcon and AlgEcon as

well.

The principle described above is achieved through the introduction and analysis of mean-

list-decoding (Section 4.2). Instead of list-decoding one received word f , we list-decode

a family F of received words to �nd the codewords within a given radius on average (over

received words in F ).

Theorem 1.2.8 (Equivalence of mean-list-decoding). A code is CombEcon mean-list-decodable

if and only if it is CombEcon list-decodable. The corresponding statement is true for CertE-

con and AlgEcon as well.

We remark that there is a similar equivalence between list-decoding codes aHom(G,H)

of a�ne homomorphisms and list-decoding codes Hom(G,H) of homomorphisms, in the con-

texts of CombEcon, CertEcon and AlgEcon (Section 4.3.3). This result and Theorem 1.2.8

are derived using the same combinatorial lemma (Lemma 4.1.1).

1.3 Structure of the thesis

Chapter 2 contains necessary background on group theory, computational representations of

groups, and coding theory. We remark in particular that Section 2.4 contains background

on permutation group algorithms used only for the Homomorphism Extension algorithms in

Chapter 7.

Chapter 3 contains terminology and presentation of results. Section 3.1 establishes ter-

minology for general codes, while Section 3.2 establishes terminology and makes formal

statements for homomorphism codes.

Chapter 4 introduces mean-list-decoding and shows that list-decoding and mean-list-

decoding are equivalent in the contexts of CombEcon, CertEcon, and AlgEcon. The same

7



argument, a bipartite covering lemma, shows that list-decoding Hom(G,H) and list-decoding

aHom(G,H) are equivalent in these contexts.

Chapter 5 addresses our universally CombEcon results. We present our combinatorial

tools in Section 5.2 followed by the results for alternating groups in Section 5.3.

Chapter 6 addresses our AlgEcon results. We introduce SRG groups and prove the

universal CombEcon and universal CertEcon results in Section 6.2. We discuss currently

available methods to generate algorithmic list-decodability results in Section 6.3, focusing

particularly on the role of mindist and how to bridge the gap from certi�cate-list-decoder to

list-decoder.

Chapter 7 introduces the Homomorphism Extension Problem and provides e�cient so-

lutions in certain cases.

1.4 Sources; representation of joint work

Most of the material in this thesis is based on the two papers, [BBW18] and [Wuu18].

The thesis includes the solo paper [Wuu18] in full.

Regarding the joint paper [BBW18], it is expected that the material in this dissertation

will somewhat overlap with the forthcoming dissertation of my coauthor Tim Black. Some

of this is inevitable. In order to minimize the overlap, we omit all details of the results with

abelian domain, which are expected to be covered in full in his dissertation.
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CHAPTER 2

BACKGROUND

We write N for N = {0, 1, 2, . . .}.

Let G be a set. For any subset S ⊆ G, de�ne the density of S in G by µG(S) =
|S|
|G| .

We call G the �ambient set� and write µ(S) = µG(S) when G is understood. The ambient

set will generally be a group G.

2.1 Groups

We will denote the class of all groups (�nite or in�nite) by Groups. We write Abel to denote

the class of �nite abelian groups and Alt for the class of (�nite) alternating groups.

Our group theory reference is [Rob95]. We review some de�nitions and facts.

Let G be a group. We write H ≤ G to express that H is a subgroup; we write H E G

if H is a normal subgroup. We refer to cosets of subgroups of G as subcosets. For the

subcoset aH of G (where H ≤ G), let |G : aH| := |G : H| denote the index of H in G.

For a subset S of a group G, the subgroup 〈S〉 generated by S is the smallest subgroup

of G containing S. If 〈S〉 = G, then S generates G. A subset K ⊆ G is a�ne-closed

if (∀a, b, c ∈ K)(ab−1c ∈ K). An a�ne-closed subset is either empty or it is a subcoset.

The intersection of a�ne-closed subsets is a�ne-closed. The a�ne closure 〈S〉aff , a�nely

generated by S, is the the smallest a�ne-closed subset containing S. Note that the a�ne

closure of the empty set is empty. For any q ∈ S, we have that 〈S〉aff = q · 〈q−1r | r ∈ S〉.

2.1.1 Series and solvable groups

A subnormal series for G is a sequence of subgroups

1 = G0 EG1 E · · ·EGk = G,
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where Gi−1 EGi for all 1 ≤ i ≤ k (but Gi EG is not guaranteed). The terms of the series

are the groups Gi for 0 ≤ i ≤ k, and the factors of the series are the groups Gi/Gi−1

for 1 ≤ i ≤ k. A subnormal cyclic series is a subnormal series whose factors are cyclic

groups. A group is solvable if it has a subnormal cyclic series.

A normal series is a subnormal series whose terms are all normal in G. A normal

cyclic series is a normal series whose factors are cyclic groups. A group is supersolvable

if it has a normal cyclic series.

If a subnormal series is a subsequence of another, the latter is said to be a re�nement

of the former. If both series have the same set of factors, the re�nement is trivial. A

subnormal series with no nontrivial re�nement is a composition series. A normal series

with no nontrivial (normal series) re�nement is a principal series or chief series.

The commutator [h, k] of two group elements h and k is de�ned as [h, k] := h−1k−1hk.

The commutator [H,K] of two groups H and K is the group generated by their commu-

tators [H,K] := 〈[h, k] | h ∈ H, k ∈ K〉. The commutator subgroup of G is de�ned as

G′ := [G,G]. The center of a group G is de�ned as Z(G) := {z ∈ G | (∀g ∈ G)([z, g] = 1)}.

The lower central series G0 B G1 B G2 B · · · of a group G is de�ned recursively by

G0 = G and Gi = [Gi−1, G]. A group G is nilpotent if its lower central series terminates

in the identity after a �nite number of steps. The class of a nilpotent group is the number

of such steps required to reach the identity. In particular, a nilpotent group is of class 2 if

G′ ≤ Z(G).

2.1.2 Presentations of groups

Let X be a set. Let FX denote the free group generated by X, the set of words over X∪X−1

as well as the element {e}, with the group operation given by concatenation.

De�nition 2.1.1. A pair 〈X | R〉 is a presentation for a group G if

1. the generators X = {g1, . . . , gk} is a subset of G,
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2. the relations R is a set of words in FX , and

3. G is isomorphic to the quotient FX by the normal subgroup generated by R.

We will also write gm1
i1
· · · gm`

i`
= gn1j1

· · · gn`′j`′ to refer to the relation g
−m`
i`
· · · g−m1

i1
gn1j1
· · · gn`′j`′ .

Fact 2.1.2. Let G be a group with presentation 〈X | R〉, and let H be a group. Let θ : X →

H. Then θ extends to a homomorphism in Hom(G,H) if and only if for all hn11 · · ·h
n`
` ∈ R

we have θ(h1)n1 · · · θ(h`)n` = 1. When θ extends to a homomorphism, it extends uniquely.

Let Fab
X denote the free abelian group group generated by X, the set of linear combina-

tions
∑
axx, where ax ∈ Z for all x ∈ X.

Let ab : FX → Fab
X given by r 7→ rab denote the natural abelianization map, where the

coe�cient ax of x in rab =
∑
axx is found by summing the exponents of all occurrences of

x in the word r. For R ⊂ F , denote by Rab := {rab : r ∈ R} the image of R under ab.

De�nition 2.1.3. A pair 〈X|Rab〉ab is an abelian presentation for an abelian group G if

1. the generators X = {g1, . . . , gk} form a subset of G,

2. the relations Rab form a set of words in Fab
X , and

3. G is isomorphic to the quotient Fab
X by the subgroup generated by Rab.

Fact 2.1.4. Let G be a group given by the presentation 〈X|R〉. Then, the abelianization

G/G′ of G has presentation 〈X|Rab〉ab.

2.1.3 Smith normal form

In this section we brie�y review Smith normal form of matrices. For more details see [Nor12].

Smith normal form will be used in the algorithm FindLambda of Section 6.3.6.

Denote by Diagm×n(a1, . . . , ak) the m×n matrix with entries a1, . . . , ak on the diagonal

and zeros everywhere else, where k = min{m,n}.
11



De�nition 2.1.5. Let A be an m × n integer matrix. The matrix A is in Smith normal

form if A = Diagm×n(a1, . . . , a`, 0, . . . , 0), where ai > 0 for i = 1, . . . , ` and ai divides ai+1

for i = 1, . . . , `− 1.

A square integer matrix is unimodular if its determinant is ±1.

Theorem 2.1.6. For every m×n integer matrix A, there exists a unimodular m×m integer

matrix S and a unimodular n×n integer matrix T such that SAT is in Smith normal form.

This matrix SAT is the Smith normal form of A. The nonzero diagonal entries

a1, . . . , a` of the Smith normal form of A are the elementary divisors of A. The Smith

normal form of every integer matrix is unique.

De�nition 2.1.7 (Converting between integer matrices and abelian presentations). Let Rab

be a set of abelian relations on the generators {g1, . . . , gn}. We denote by A(Rab) = {ar,i}

the |Rab| × n integer matrix that encodes the relations r ∈ Rab, using the expressions

r = ar,1g1 + . . .+ ar,ngn, where ar,i ∈ Z for i = 1, . . . , n.

Let A be an m× n integer matrix. Let Rab(A) = {ar,1g1 + . . . + ar,ngn | r = 1, . . . ,m}

be the set of relations on {g1, . . . , gn} with coe�cients corresponding to the rows of A.

Observation 2.1.8. Multiplication by unimodular matrices does not change the abelian

group represented. In other words, if A is an m×n integer matrix, if S is an m×m unimodu-

lar matrix, and if T is an n×n unimodular matrix, then 〈X|Rab(A)〉ab ∼= 〈X|Rab(SAT )〉ab.

Suppose the m × n matrix A = A(Rab) encodes the relations Rab = {r1, . . . , rm} over

g = {g1, . . . , gn}. Then, SAT encodes the set of relations SR (where R = (r1, . . . , rm)>)

over h = T−1g.

Observation 2.1.9. Consider an abelian group G given by the presentation G = 〈X|Rab〉ab

where X = {g1, . . . , gn} and Rab = {bigi|i = 1, . . . , `}, where n ≥ ` and bi ∈ Z+ for

i = 1, . . . , `. Then,

G ∼= (Z/b1Z× · · · × Z/b`Z)× Zn−`.
12



Recall that all groups are �nite, so n = `.

De�nition 2.1.10. Let G be an abelian group. A canonical decomposition of G is a

presentation as given in Observation 2.1.9, such that bi divides bi+1, for i = 1, . . . , `− 1.

De�nition 2.1.11. Let G be an abelian group. A prime-power decomposition of G is

a presentation as given in Observation 2.1.9, such that each bi is a prime-power or 1.

The following corollary follows from Theorem 2.1.6 on Smith normal form.

Corollary 2.1.12 (Converting any presentation of an abelian group into canonical form).

Let G be an abelian group with abelian presentation G = 〈X|Rab〉ab. If G is given in the

canonical decomposition as

G ∼= (Z/a1Z× · · · × Z/a`Z)× Zk−`,

then a1, . . . , a` correspond exactly to the elementary divisors of B(Rab).

In [KB79], Kannan and Bachem proved that the conversion to Smith normal form can

be computed in polynomial time.

Theorem 2.1.13 (Kannan and Bachem). There exists a deterministic algorithm that, given

an integer matrix A, will compute the unimodular matrices S and T such that SAT is in

Smith normal form, in polynomial time (polynomial in the bit-length of the input).

Combining the discussion of this section with Theorem 2.1.13, we �nd that the canoni-

cal decomposition of any abelian group can be found from any presentation in polynomial

time. We remark that converting from the canonical decomposition to the prime-power

decomposition requires prime factorization.
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2.1.4 Supersolvable presentations

A polycyclic series is a subnormal series 1 = G0 E G1 E G2 E · · · E Gk such that each

factor Gi/Gi−1 is cyclic. A group G is a polycyclic group if there exists a polycyclic series

such that Gk = G. A �nite group is polycyclic if and only if it is solvable.

Let G be a polycyclic group. A sequence of elements g1, . . . , gk is a polycyclic sequence

for G if there is a polycyclic series 1 = G0 E G1 E G2 E · · · E Gk = G satisfying

〈gi, Gi−1〉 = Gi.

The relative order of g ∈ G with respect to N E G is the index |〈g,N〉 : N |. Let

g1, . . . , gk be a polycyclic sequence for G. The relative order of gi is the index ri := |Gi :

Gi−1|, the relative order of gi with respect to Gi−1 EGi.

For every g ∈ G, there exists a unique sequence (ek, . . . , e1), with 0 ≤ ei ≤ ri − 1 for

1 ≤ i ≤ n, such that g = g
ek
k · · · g

e1
1 . This expression g = g

ek
k · · · g

e1
1 is the normal form of

g with respect to the polycyclic sequence g1, . . . , gk.

A polycyclic presentation for G is a presentation consisting of an ordered list of

generators g1, . . . , gk and relations of the form

gmi
i = g

ai;i−1
i−1 · · · gai;11 for 1 ≤ i ≤ k, (2.1)

g−1
i gjgi = g

bi,j;i−1
i−1 · · · gbi,j;11 for 1 ≤ j < i ≤ k, and (2.2)

gigjg
−1
i = g

ci,j;i−1
i−1 · · · gci,j;11 for 1 ≤ j < i ≤ k, (2.3)

with mi > 0 and ai;`, bi,j;`, ci,j;` ≥ 0 for each i, j, `. The numbers m1, . . . ,mk are the power

exponents of the polycyclic presentation. Notice that ri | mi for each 1 ≤ i ≤ k, or, the

relative orders divide the power exponents.

A group has a polycyclic presentation if and only if it is a polycyclic group. A polycyclic

presentation is reduced if, for all i, j, `, we have ai;`, bi,j;`, ci,j;` < m`.

If G is given by a polycyclic presentation with generators g1, . . . , gk, then the chain of
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groups 1 = G0 E G1 E G2 E · · · E Gk = G, given by Gi = 〈gi, Gi−1〉 = 〈g1, . . . , gi〉, forms a

polycyclic series. So, the generators for a polycyclic presentation form a polycyclic sequence.

A polycyclic presentation is con�uent if mi = ri for 1 ≤ i ≤ k, or, the power exponents

m1, . . . ,mk of the presentation are identical to the relative orders r1, . . . , rk of the polycyclic

sequence g1, . . . , gk, or, .

A polycyclic presentation 〈g1, . . . , gk | R〉 is a supersolvable presentation if the last

two types of relations have the form:

g−1
i gjgi = g

bi,j;j
j · · · gbi,j;11 for 1 ≤ j < i ≤ k (2.4)

gigjg
−1
i = g

ci,j;j
j · · · gci,j;11 for 1 ≤ j < i ≤ k (2.5)

De�nition 2.1.14. We call a supersolvable presentation earnest if it is con�uent and

reduced, and the associated power exponents m1, . . . ,mk are prime numbers with m1 ≥

m2 ≥ · · · ≥ mk.

Every supersolvable presentation de�nes a supersolvable group. By Zappa, every super-

solvable group has an earnest supersolvable presentation.For reference, see [Rob95].

Proposition 2.1.15 (Zappa). If G is a (�nite) supersolvable group and |G| = p1 · · · pk,

where p1 ≥ · · · ≥ pk are primes, then G has a principal series

1 = G0 CG1 C · · ·CGk = G

where each Gi/Gi−1
∼= Zpi.

Other than the usage of �earnest,� the terminology de�ned above is standard in computa-

tional group theory. For further reference, see [HEO05, Chapter 8]. We have de�ned earnest

supersolvable presentations for convenience.
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2.2 Homomorphism codes

2.2.1 A�ne homomorphisms as codewords

Let G be a �nite group and H a group. Denote the set of homomorphisms from G to H by

Hom(G,H).

Let G1 and H1 be a�ne-closed subsets of G and H, respectively.

De�nition 2.2.1 (A�ne homomorphisms). A function ϕ : G1 → H1 is an a�ne homo-

morphism if

(∀a, b, c ∈ G1)(ϕ(a)ϕ(b)−1ϕ(c) = ϕ(ab−1c)) .

De�nition 2.2.2 (aHom). We write aHom(G1, H1) to denote the set of a�ne homomor-

phisms from G1 to H1.

Fact 2.2.3. Let G1 ≤ G and H1 ≤ H. Let a ∈ G and b ∈ H. A function ϕ : aG1 → bH1 is

an a�ne homomorphism if and only if there exists h ∈ H and ϕ0 ∈ Hom(G1, H1) such that

ϕ(g) = h · ϕ0(g) (2.6)

for every g ∈ G1. The element h and the homomorphism ϕ0 are unique.

The analogous statement also holds with h on the right of ϕ0.

De�nition 2.2.4. For sets G,H and functions f, g : G→ H, the equalizer Eq(f, g) is the

subset of G on which f and g agree, i. e.,

Eq(f, g) := {x ∈ G | f(x) = g(x)}.

More generally, if Φ is a collection of functions from G to H, then the equalizer Eq(Φ) is

the set

Eq(Φ) := {x ∈ G | (∀f, g ∈ Φ)(f(x) = g(x))}.
16



Fact 2.2.5. (a) If ϕ, ψ ∈ Hom(G,H) then Eq(ϕ, ψ) ≤ G.

(b) If ϕ, ψ ∈ aHom(G,H) then Eq(ϕ, ψ) is a�ne-closed. Moreover, if ϕ0, ψ0 ∈ Hom(G,H)

are the corresponding homomorphisms (see (2.6)) then either Eq(ϕ, ψ) is empty or

Eq(ϕ, ψ) = g · Eq(ϕ0, ψ0) for any g ∈ Eq(ϕ, ψ).

Remark 2.2.6 (Why a�ne?). The reader may ask, why we (and all prior work) consider

a�ne homomorphisms rather than homomorphisms. The reason is that a�ne homomor-

phisms are simply the more natural objects in this context. To begin with, this object is

more homogeneous. For instance, for �nite H, under random a�ne homomorphisms, the

images of any element g ∈ G are uniformly distributed over H. This uniformity also serves as

an inductive tool: when extending the domain from a subgroup G0 to a group G, the action

of any homomorphism ϕ ∈ Hom(G,H) can be split into actions on the cosets of G0 in G.

Those actions are a�ne homomorphisms. On the other hand we also note that list-decoding

of Hom(G,H) and aHom(G,H) are essentially equivalent tasks, see Section 4.3.3.

2.2.2 Agreement parameter Λ

Recall that the (normalized) agreement agr(f, g) between two functions f, g : G → H is

given by

agr(f, g) :=
|Eq(f, g)|
|G|

.

De�nition 2.2.7 (ΛG,H). We write

ΛG,H := ΛaHom(G,H)

for the maximum agreement of aHom(G,H). In other words,

ΛG,H := max
ϕ,ψ∈aHom(G,H)

ϕ6=ψ

agr(ϕ, ψ)
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If the groups G and H are understood, we often write Λ in place of ΛG,H . Using this ter-

minology, the minimum distance (De�nition 3.1.1) of the homomorphism code aHom(G,H)

is (1− ΛG,H).

We present results regarding the value of Λ. We remark that Λ is in general nontrivial

to determine.

The following appears in [Guo15, Proposition 3.5].

Proposition 2.2.8 (Guo). Let G,H be groups. The maximum agreement ΛG,H can equiv-

alently be de�ned with aHom replaced by Hom, i. e.,

ΛHom(G,H) = ΛaHom(G,H).

Here we use the convention that the maximum of the empty set (of nonnegative numbers)

is zero. Otherwise we would need to make the additional assumption |Hom(G,H)| > 1.

As a corollary we get an upper bound on Λ.

Corollary 2.2.9. Let G be a �nite group and H a group. Then, Λ ≤ max{µ(K) | K � G},

the largest density of a proper subgroup of G.

Next, we state the main theorem of [Guo15], which characterizes ΛG,H when G is solvable

or H is nilpotent. The algorithm FindLambda of Section 6.3.6 checks (a stronger version

of) this characterization to calculate ΛG,H .

Theorem 2.2.10 (Guo). Let G and H be groups. Suppose that G is solvable or H is

nilpotent. Then

ΛG,H =
1

p

where p is the smallest prime divisor of gcd(|G|, |H|) such that G has a normal subgroup of

index p. If no such p exists, then |Hom(G,H)| = 1; in particular, ΛG,H = 0.
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The proof of Theorem 2.2.10 uses the next two observations, Proposition 2.2.11 and

2.2.12, which also provide information on Λ.

Proposition 2.2.11. Suppose G1, G2 and H are �nite groups. Then,

ΛG1×G2,H = max{ΛG1,H ,ΛG2,H}.

Proposition 2.2.12. If G has a normal subgroup of prime index p and p divides |H|, then

ΛG,H ≥
1

p
.

Below is another tool on determining Λ.

Lemma 2.2.13. Let G and H be groups and let Φ ⊆ aHom(G,H). Then every prime factor

of |G : Eq(Φ)| divides |H|.

Proof. Let Φ = {ϕ1, . . . , ϕ`}. De�ne the �diagonal� D ≤ H` by D = {(h, . . . , h) ∈ H` | h ∈

H}. Then |H` : D| divides |H|`, so |(ϕ1(g), . . . , ϕ`(g))−1(H`) : (ϕ1(g), . . . , ϕ`(g))−1(D)| =

|G : Eq(Φ)| divides |H|`.

We observe that, by de�nition of Λ, determining a codeword (a�ne homomorphism) on

a subcoset of density > Λ will determine the codeword uniquely. This observation is used to

�certi�cate list-decode� (see Section 6.2.5).

Fact 2.2.14. Let G and H be groups and S ⊆ G a subset. If ϕ, ψ ∈ aHom(G,H) and

ϕ(x) = ψ(x) for all x ∈ S, then 〈S〉aff ⊆ Eq(ϕ, ψ).

Corollary 2.2.15. Let G be a �nite group, H a group, and S ⊆ G, such that µ(〈S〉aff) >

ΛG,H . If ϕ, ψ ∈ aHom(G,H) are such that ϕ(x) = ψ(x) for all x ∈ S, then ϕ = ψ.
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2.2.3 Notation for lists

We collect notation for lists and list size bounds for homomorphism codes. This will be

presented again in generality throughout Chapter 3.

Let G and H be groups. Let f : G→ H be a function. We view f as a received word in

the list-decoding context. Let 0 ≤ λ ≤ 1.

De�nition 2.2.16 (The list L). We denote by L(aHom(G,H), f, λ) the list of codewords

in aHom(G,H) with agreement ≥ λ with f , i.e.,

L(aHom(G,H), f, λ) = {ϕ ∈ aHom(G,H) | agr(f, ϕ) ≥ λ}.

Let 0 ≤ ρ ≤ 1. For the list de�ned in terms of the complementary notion of distance, we

denote by Lr(aHom(G,H), f, ρ) the list of codewords in aHom(G,H) within distance ρ of

f , i.e.,

Lr(aHom(G,H), f, λ) = {ϕ ∈ aHom(G,H) | dist(f, ϕ) ≤ ρ}.

While usage of distance is standard in error correcting codes, agreement is a more natural

quantity to consider for a�ne homomorphisms.

De�nition 2.2.17 (List-size bound). We denote

`(aHom(G,H), λ) = max
f
|L(aHom(G,H), f, λ)|.

Similarly, we denote `r(aHom(G,H), ρ) = maxf |Lr(aHom(G,H), f, ρ)|.

2.3 Computational representations of groups

In this section we discuss the models of access to groups required by our algorithms. The

choice of the model signi�cantly impacts the running time and even the feasibility of an
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algorithm.

The models include oracle models (black-box access, black-box groups), generator-relator

presentations, and various explicit models such as permutation groups, matrix groups, direct

product of cyclic groups of known orders.

Our domain groups are always �nite but the codomain may be in�nite.

2.3.1 Black-box models

If the codomain is in�nite, and even if it is �nite but very large, the black-box-group model

with its �xed-length encoding [BS84] is not appropriate (see �encoded groups� below). We

start with an extension of that model.

De�nition 2.3.1 (Black-box access). An unencoded black-box representation of a

(�nite or in�nite) group K is an ordered 5-tuple

(U, r,mult, inv, id)

where

• U is a (possibly in�nite) set;

• r : U → K ∪ {∗} with r(U) ⊇ K;

• mult : r−1(K)×r−1(K)→ r−1(K) with r(mult(x, y)) = r(x)r(y) for all x, y ∈ r−1(K);

• inv : r−1(K)→ r−1(K) with r(inv(x)) = r(x)−1 for x ∈ r−1(K); and

• id : r−1(K)→ {yes, no} with id(x) = yes if and only if r(x) is the identity in K.

We say that an algorithm has black-box access to the group K if the algorithm can store

elements of U and query the functions (oracles) mult, inv, id. We say that K is given as an

(unencoded) black-box group if in addition a list of generators of K is given.
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Remark 2.3.2. We emphasize that the di�erence between black-box access to a group G

and the group G being given as a black-box group is that in the latter model, a list of

generators of H is given, whereas no elements of G may be a priori known in the former.

If U = {0, 1}n then we talk about an encoded group, of encoding length n. This of

course implies that K is �nite, namely, |K| ≤ 2n. (This is the model introduced in [BS84].)

In an abuse of notation, when black-box access to a group K is given, we may refer to

elements of r−1(K) by their images under r, we may write gh in place of mult(g, h), we may

write g−1 in place of inv(g), and we may write g = 1 in place of id(g) = yes.

Access to domain and codomain. In general we shall not need generators of the

codomain, H, just black-box access. On the other hand, we do need generators of the

domain, G; homomorphisms will be de�ned by their values on a set of generators. So our

access to the domain will be assumed to be at least as strong as an (encoded) black-box

group.

The black-box unit cost model. The (unencoded) black-box access model is particularly

well suited to the unit-cost model where we assume that we can copy and store an element

of U and query an oracle at unit cost. We shall analyze our algorithms in the unit-cost model

for the codomain H. This essentially counts the operations performed in H, so its bit-cost

will incur an additional factor of O(log |H|) (if H is �nite and nearly optimally encoded).

Remark 2.3.3. Black-box groups are studied in a substantial body of literature, both in the

theory of computing and in computational group theory (see the references in [BBS09]). It

is common to make additional access assumptions to a black-box group (assume additional

oracles) such as an oracle for the order of the elements.

Given a black-box group H, we cannot determine the order |H| or the order of a given

element h ∈ H. In fact, even with an oracle for the order of elements, Zp and Zp×Zp cannot

be distinguished in fewer than p+ 1 black-box queries (see [BS84]). To avoid such obstacles,
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it is common to assume additional information beyond black-box access. In �nding ΛG,H

for abelian domain G one needs to decide if a given prime divides |H|. To accomplish this,

we assume additional information about the group H such as the order |H| or the list of

primes dividing |H|.

2.3.2 Generator-relator presentation, homomorphism checking

By a �presentation� of a group we mean a generator-relator presentation.

For a group given by a presentation, basic questions such as whether the group has order

1 are undecidable. However, special types of presentations, such as polycyclic presentations

of �nite solvable groups, are often helpful. However, that it is not known how to e�ciently

perform group operations in a �nite solvable group given by a polycyclic presentation, so

such presentations cannot answer basic black-box queries.

Any presentation, however, can be used for homomorphism checking, a critical operation

in decoding homomorphism codes. See Section 2.4.3 for more details.

2.3.3 Permutation groups

We write Sn for the symmetric group on n elements, [n] = {1, . . . , n}.

A group G is a permutation group if it is a subgroup of Sn. A group G is given as a

permutation group if a set of generators of G is provided and elements of G are encoded as

permutations in Sn of length n.

Permutation groups are discussed more extensively in the next section.

2.4 Permutation group algorithms

We discuss permutation groups. Section 2.4.1 de�nes permutation groups and sets relevant

notation. The remainder of this section addresses material in this section will be referenced
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only in Chapter 6 on Homomorphism Extension.

2.4.1 Permutation groups: de�nitions

For a set Ω, Sym(Ω) denotes the symmetric group on Ω and Alt(Ω) denotes the alternating

group on Ω. Often, we write Sn (or An) for the symmetric (or alternating) group on [n] =

{1, . . . , n}.

De�nition 2.4.1 (Group actions). A (permutation) action of a group G on a set Ω is

given by a homomorphism ϕ : G→ Sym(Ω), often denoted by G
ϕ
yΩ or GyΩ.

Recall that G is a permutation group if it is a subgroup of a symmetric group, G ≤

Sym(Ω). Permutation groups naturally de�ne permutation actions.

Let G ≤ Sym(Ω), g ∈ G, ω ∈ Ω, and ∆ ⊂ Ω.

The image of ω under g is denoted by ωg. This notation extends to sets. So, ∆g := {ωg :

ω ∈ ∆} and ∆G := {ωg : ω ∈ ∆, g ∈ G}. The subset ∆ ⊂ Ω is G-invariant if ∆G = ∆.

The orbit ωG of ω under action by G is given by ωG := {ωg : g ∈ G}. The orbits of G

are G-invariant and they partition Ω. All G-invariant sets are formed by unions of orbits.

The point stabilizer Gω of ω is the subgroup of G �xing ω, given by Gω = {g ∈ G |

ωg = ω}. The pointwise stabilizer G(∆) of ∆ is the subgroup �xing every point in ∆,

given by G(∆) =
⋂
ω∈∆Gω. The setwise stabilizer G∆ of ∆ is given by G∆ = {g ∈ G |

∆g = ∆}.

Let ∆ ⊆ Ω be G-invariant. For g ∈ G, denote by g∆ the restriction of the action of g to

∆. The group G∆ = {g∆ : g ∈ G} ≤ Sym(∆) is the image of the permutation representation

of G in its action on ∆. We see that G∆ ∼= G/G(∆).

We state a result that goes back to Jordan. Its modern formulation by Liebeck (see

[DM96, Theorem 5.2A]) describes the small index subgroups of An. This theorem is used

extensively in economical list-decoding results for {alternating→arbitrary} homomorphism

codes. It is used also to categorize group actions by An in Theorem 7.1.9.

24



Theorem 2.4.2 (Jordan�Liebeck). Let n ≥ 10 and let r be an integer with 1 ≤ r < n/2.

Suppose that K ≤ An has index |An : K| <
(n
r

)
. Then, for some ∆ ⊆ [n] with |∆| < r, we

have (An)(∆) ≤ K ≤ (An)∆.

2.4.2 Basic results

We present results we use from the literature on permutation group algorithms. Our main

reference is the monograph [Ser03].

Recall that a group G is given or known when a set of generators for G is given/known.

A coset Ga is given or known if the group G and a coset representative a′ ∈ Ga are

given/known. A group (or a coset) is recognizable if we have an oracle for membership

and recognizable in time t if the membership oracle can be implemented in time t.

Proposition 2.4.3. Membership in a given group G ≤ Sn (or coset Ga) can be tested in

poly(n) time. In other words, a known group (or coset) is polynomial-time recognizable.

Proof. This is accomplished by the Schreier-Sims algorithm, see [Ser03, Section 3.1 item

(b)].

Corollary 2.4.4. If G1, . . . , Gk ≤ Sn and a1, . . . , ak ∈ Sn are given, then the intersection⋂
iGiai is polynomial-time recognizable.

Proposition 2.4.5. Given G ≤ Sn, the following can be computed in poly(n)-time.

(a) A set of ≤ 2n generators of G.

(b) The order of G.

(c) The index |G : M |, for a given subgroup M ≤ G.

(d) The orbits of G.

(e) The point stabilizers of G.
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Proof. Most items below are addressed in [Ser03, Section 3.1].

(a) Denote by T the set of given generators of G. Use membership testing to prune T

down to a non-redundant set of generators. By [Bab86], the length of subgroup chains

in Sn is bounded by 2n, so |T | ≤ 2n after pruning.

(b) See [Ser03, Section 3.1 item (c)].

(c) Compute |M | and |G|.

(d) See [Ser03, Section 3.1 item (a)].

(e) See [Ser03, Section 3.1 item (e)].

Proposition 2.4.6. Let M ≤ G be a recognizable subgroup of G of index |G : M | = s. A set

of generators for M and a set of coset representatives for M\G can be found in poly(n, s)

time (including calls to the membership oracle).

Proof. Consider the subgroup chain G ≥ M ≥ M1 ≥ M(12) ≥ M(123) ≥ M(12···n) = 1 (M

is followed by its stabilizer chain). Apply Schreier-Sims to this chain. (This is the �tower of

groups� method introduced in [Bab79] and derandomized in [FHL80]. Note that this method

only requires the subgroups in this chain to be recognizable.)

Proposition 2.4.7. Let G ≤ Sn be a given permutation group. Let M,L ≤ G be given

subgroups. Denote their indices by s = |G : M | and t = |G : L|.

(a) The normalizer NG(M) can be found in poly(n, s)-time.

(b) The number of conjugates of M in G can be computed in poly(n, s)-time.

(c) The conjugacy of L and M in G can be decided and a conjugating element g ∈ G such

that g−1Lg = M can be found if it exists, in poly(n, s) time.
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Proof. (a) Let S be the given set of generators of M . Take a set of coset representatives

for M\G, found by Proposition 2.4.6. Remove the coset representatives g that do not

satisfy g−1Sg ⊆M . This is accomplished through membership testing. The remaining

coset representatives, along with S, generate NG(M).

(b) The number of conjugates of M in G is the index |G : NG(M)|.

(c) Check if |L| = |M | by Proposition 2.4.5 (b). If not, they are not conjugate. Otherwise,

let S be the set of given generators of M . Now, L and M are conjugate if and only if

there exists a coset representative g for NG(M)\G that satis�es g−1Sg ⊆ L.

Proposition 2.4.8. Let G ≤ Sn be a given permutation group. Let M,L ≤ G be given

subgroups. Denote their indices by s = |G : M | and t = |G : L|.

(a) Given two elements g, h ∈ G, membership of h in the double coset LgM can be decided

in poly(n,min{s, t})-time.

(b) A set of double coset representatives for L\G/M can be found in poly(n,min{s, t})-

time.

Proof. (a) Without loss of generality assume that s ≤ t. Notice that

h ∈ LgM ⇐⇒ Lh ∩ gM 6= ∅ ⇐⇒ g−1Lh ∩M 6= ∅ ⇐⇒ (g−1Lg) ∩Mh−1g 6= ∅.

So, deciding whether h ∈ LgM is equivalent to deciding whether the subgroup L∗ =

g−1Lg and coset Mg∗ have non-empty intersection, where g∗ = h−1g. This intersec-

tion, L∗ ∩Mg∗, is either empty or a right coset of L∗ ∩M in L∗. In what remains we

check whether a coset of L∗ ∩M is contained in L∗ ∩Mg∗.

Notice that |L∗ : L∗∩M | ≤ |G : M | = s. Find a set R of coset representatives of L∗∩M
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in L∗ using Proposition 2.4.6, noting that L∗ ∩M is recognizable (Corollary 2.4.4).

For each representative r ∈ R, check whether r ∈ L∗ ∩Mg∗ (Corollary 2.4.4).

(b) A list of t coset representatives of M in G is a redundant set of double coset represen-

tatives for L\G/M . This can be pared down to a set of non-redundant double coset

representatives by
(t
2

)
comparisons using part (a).

2.4.3 Generators, relations, and homomorphism checking

For a permutation group G, checking whether a G⇀H partial map that is de�ned on a set

of generators S ⊆ G extends to a homomorphism can be veri�ed e�ciently.

De�nition 2.4.9 (Straight-line program). Let G be a group and S = {s1, . . . , s`} a list

of elements of G. A straight-line program in G from S to g ∈ G is a sequence P =

(x1, . . . , xm) of elements of G such that each xk is either a member of S or a product of the

form xixj for some i, j < k or x−1
i for some i < k. We say that the element xm is given in

terms of S by the straight-line program P .

The following is well known.

Proposition 2.4.10. Let G ≤ Sn be a permutation group and S a set of generators of G.

Given S, a presentation of G in terms of S can be computed in poly(n) time, where the

relators returned are represented as straight-line programs.

Proposition 2.4.11 (Homomorphism checking). Let S ⊆ G be a list of generators of G.

Assume a presentation of G is given in terms of S. Let ϕ : S → H be a function. Then ϕ

extends to a homomorphism ϕ̃ : G → H if and only if the list (ϕ(s) | s ∈ S) satis�es the

relations of the presentation.
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Remark 2.4.12. Note that Proposition 2.4.11 gives an e�cient way to check whether ϕ

extends to a homomorphism assuming the relators are short or are given as short straight-

line programs.

Corollary 2.4.13. Let G ≤ Sn and H ≤ Sm be permutation groups. Let S = {a1, . . . , as}

be a set of generators of G and f : S → H a function. Whether f extends to a G → H

homomorphism is testable in poly(n,m) time.

2.4.4 Centralizers in Sn

Proposition 2.4.14. Given G ≤ Sn, its centralizer CSn(G) in the full symmetric group can

be found in polynomial time.

Proof. Let T = {ti}i denote the given set of generators for G. Without loss of generality,

we may assume |T | ≤ 2n by Proposition 2.4.5 (a).

Construct the permutation graph X = (V,E) of G, a colored graph on vertex set V = [n]

and edge set E =
⋃
t∈T Et, where Et = {(i, it) : i ∈ [n]} for each color t ∈ T . The edge set

colored by t ∈ T describes the permutation action of t on [n]. We see that CSn(G) = Aut(X),

where automorphisms preserve color by de�nition.

If G is transitive (X is connected), then CSn(G) is semiregular (all point stabilizers are

the identity). For i, j ∈ [n], it is possible in poly(n) time to decide whether there exists a

permutation σ ∈ Aut(G) = CSn(G) satisfying iσ = j (takes i to j), then �nd the unique

σ if it exists. To see this, build the permutation σ by setting iσ = j, then following all

colored edges from i and j in pairs to assign σ. If this is a well-de�ned assignment, then the

permutation σ ∈ Aut(X) satisfying iσ = j exists.

In fact, if X1 = (V1, E1) and X2 = (V2, E2) are connected, whether then a graph isomor-

phism taking i ∈ V1 to j ∈ V2 can be found in poly(|V1|) time if one exists.

If X is disconnected, collect the connected components of X by isomorphism type, so

that there are mi copies of the connected graph Xi in X, where i = 1 . . . ` numbers the
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isomorphism types. The components and multiplicities can be found in poly(n) time by

�nding the components of X (or, orbits of G, by Proposition 2.4.5 (d)) and pairwise checking

for isomorphism. The automorphism group of X is

Aut(X) = Aut(X1) o Sm1 × · · · × Aut(X`) o Sm` .

Each Xi is connected, so Aut(Xi) can be found as above.

2.4.5 Blaha-Luks: enumerating coset representatives

We sketch the proof of the unpublished result by Blaha and Luks (Theorem 7.6.5), restated

here for convenience. Below, by �coset� we mean �right coset.�

Theorem 2.4.15 (Blaha�Luks). Given subgroups K ≤ L ≤ Sn, one can e�ciently enumer-

ate (at poly(n) cost per item) a representative of each coset of K in L.

Let MoveCoset(Mσ, i, j) be a routine that decides whether there exists a permutation

π ∈Mσ satisfying iπ = j, and if so, �nds one.

Proposition 2.4.16. MoveCoset can be implemented in polynomial time.

Proof. Answering MoveCoset is equivalent to �nding π ∈ M satisfying iπ = jσ
−1

if one

exists. This is the same as �nding the orbits of M (Proposition 2.4.5 (d)).

De�nition 2.4.17 (Lexicographic ordering of Sn). Let us encode the permutation π ∈

Sn by the string π(1)π(2) · · · π(n) of length n over the alphabet [n]. Order permutations

lexicographically by this code.

Note that the identity is the lex-�rst permutation in Sn.

Lemma 2.4.18. Let σ ∈ Sn and K ≤ Sn. The algorithm LexFirst(below) �nds the

lex-�rst element of the subcoset Kσ ⊆ Sn in polynomial time.
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Algorithm 1 LexFirst within Subcoset
1: procedure LexFirst(subcoset Kσ)

2: for i ∈ [n] do iπ ← Null I Initialize π : [n]→ [n] ∪ {Null}

3: for s ∈ [n] do I Find smallest image of 1 under action by Kσ, then iterate.

4: for t ∈ [n] do I Find smallest sπ possible by checking [n] in order

5: if MoveCoset(Kσ, s, t) = True break

6: end for

7: sπ ← t

8: τ ←MoveCoset(Kσ, s, t) I Restrict subcoset to elements moving s to t

9: end for

10: return π

11: end procedure

It is straightforward to verify the correctness and e�ciency of LexFirst.

Proof of Theorem 2.4.15. Let K ≤ L ≤ Sn. Let S be a set of generators of L. The Schreier

graph Γ = Γ(K\L, S) is the permutation graph of the L-action on the coset space K\L,

with respect to the set S of generators. Γ is a directed graph with vertex set V = K\L and

edge set E = {(i, iπ) : i ∈ [n], π ∈ S}.

To prove Theorem 2.4.15, we may assume |S| ≤ 2n, by Proposition 2.4.5(a). Use

breadth-�rst search on Γ, constructing Γ along the way. Represent each vertex (a coset)

by its lexicographic leader. Then, store the discovered vertices, ordered lexicographically,

in a balanced dynamic search tree such as a red-black tree. Note that the tree will have

O(log(n!)) = O(n log n) depth and every vertex of Γ has at most 2n out-neighbors. Hence,

the incremental cost is poly(n).
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CHAPTER 3

LIST-DECODING, GENERAL CONCEPTS

3.1 Terminology for general codes

3.1.1 List-decoding

We introduce some terminology that applies to codes in general and not just homomorphism

codes. There will be some overlap with Section 2.2.3.

Let Σ be an alphabet and Ω a set we think of as the set of positions. We view ΣΩ, the set

of Ω→ Σ functions, as our code space; we call its elements �words.� We write dist(u,w) for

the normalized Hamming distance between two words u,w ∈ ΣΩ (so 0 ≤ dist(u,w) ≤ 1)

and refer to it simply as �distance.� Let C ⊂ ΣΩ be a code; we call its elements �codewords.�

De�nition 3.1.1 (Minimum distance). We write mindist(C) (or simply mindist) for the

minimum distance between distinct codewords in C.

Words we wish to decode are referred to in the literature as �received words.�

De�nition 3.1.2 (The list Lr(C, f, ρ)). We refer to the set of codewords within a speci�ed

distance ρ of a received word f ∈ ΣΩ as �the list� and denote it by Lr = Lr(C, f, ρ).

De�nition 3.1.3 (List-size bound). We write `r(C, ρ) := maxf |Lr(C, f, ρ)|.

We will later de�ne lists L and list-size bounds ` in terms of agreement instead of distance.

3.1.2 Combinatorial list-decoding

The list-decoding problem splits into a combinatorial and an algorithmic part.

The combinatorial problem, to which we refer as combinatorial list-decoding, asks to

bound the size of the list. Typically, we take ρ = (mindist − ε) and we wish to obtain a

bound `(C, ρ) ≤ c(ε), that depends only on ε and the code C.
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We say that C is a CombEcon (�combinatorially economically list-decodable�) code if

c(ε) = poly(1/ε). (Naturally, this concept applies to classes of codes, not a single code.)

3.1.3 Algorithmic list-decoding

A list-decoder is an algorithm that, given the received word f ∈ ΣΩ and the distance ρ,

lists a superset L̃ of the list L = Lr(C, f, ρ). Typically, we take ρ = (mindist − ε) and we

wish to produce a list of size |L̃| ≤ c̃(ε).

A local algorithm is a probabilistic algorithm that has only oracle access to the received

word f .

We say that C is anAlgEcon (�algorithmically economically list-decodable�) code if there

exists a local list-decoder that shows the following features.

Input: mindist, ε > 0, oracle access to f ∈ ΣΩ.

Notation: L = Lr(C, f,mindist− ε).

Output: A list L̃ of codewords in C of length |L̃| = poly(1/ε).

Guarantee: With probability ≥ 3/4, we have L̃ ⊇ L.

Cost:

(i) poly(log|Ω|, 1/ε) queries to the received word f .

(ii) poly(log|Ω|, log|Σ|, 1/ε) amount of work.

Access: The meaning of this de�nition depends also on the access model to Σ and Ω. We

shall clarify this in each application.

Strong AlgEcon

In the unit cost model for Σ, we charge unit cost to name an element of Σ.

We say that C is a strong AlgEcon code if there exists a list-decoder satisfying the

conditions of AlgEcon, except with (ii) replaced by the following.
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(ii') poly(log|Ω|, 1/ε) amount of work in the unit cost model for Σ.

Typically, elements of Σ are encoded by strings of length log|Σ| and therefore (ii') implies

(ii) with linear dependence on log|Σ|. The AlgEcon results proved in prior work [DGKS08,

GS14, BGSW18] are actually strong AlgEcon results for those classes of pairs of groups. Our

AlgEcon result for alternating domain does not meet the �strong� requirement.

3.1.4 Certi�cate list-decoding

In the light of technical di�culties arising from algorithmic list-decoding, we introduce a new

type of list-decoding that is intermediate between the combinatorial and algorithmic. We

call it �certi�cate list-decoding.� We shall refer to results of this type as �semi-algorithmic.�

A partial map γ from Ω to Σ, denoted γ : Ω⇀Σ, is a map of a subset of Ω to Σ. In

particular, dom γ ⊆ Ω.

De�nition 3.1.4 (Certi�cate). We say that a partial map γ : Ω⇀Σ is a certi�cate for

the codeword ϕ ∈ C if γ = ϕ|dom γ and ϕ is the unique codeword that extends γ. A

certi�cate for the code C is a certi�cate for some codeword in C.

De�nition 3.1.5 (Certi�cate-list). We say that a list Γ of Ω⇀Σ partial maps is a certi�cate-

list for the set K ⊂ C of codewords if Γ contains a certi�cate for each codeword in K. A

certi�cate-list for C up to distance ρ of the received word f : Ω→ Σ is a certi�cate-list

for the list L = Lr(C, f, ρ).

Remark 3.1.6. Note that we permit the certi�cate-list Γ to contain redundancies (more

than one certi�cate for the same codeword) and irrelevant items (partial functions that are

not certi�cates of any codeword in K, or not even certi�cates of any codeword at all).

De�nition 3.1.7. A certi�cate-list-decoder is an algorithm that, given the received word

f ∈ ΣΩ and the distance ρ, constructs a certi�cate-list of C up to distance ρ of f .
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De�nition 3.1.8. We say that C is aCertEcon (�certi�cate-econonomically list-decodable�)

code if there exists a local certi�cate-list-decoder that shows the following features.

Input: ε > 0, oracle access to f ∈ ΣΩ.

Notation: Again, let L = Lr(C, f,mindist− ε).

Output: A list Γ of Ω⇀Σ partial maps of length |Γ| = poly(1/ε).

Guarantee: With probability ≥ 3/4, we have that Γ is a certi�cate-list for L.

Cost:

(i) poly(log|Ω|, 1/ε) queries to the received word f .

(ii) poly(log|Ω|, log|Σ|, 1/ε) amount of work.

Access: The meaning of this de�nition depends also on the access model to Σ and Ω. We

shall clarify this in each application.

Remark 3.1.9. Note that mindist is not part of the input. We are likely to �nd a certi�cate

of C up to distance (mindist − ε) of the received word f , regardless of the actual value of

mindist.

Remark 3.1.10. CertEcon is intermediate between AlgEcon and CombEcon. Indeed,

CertEcon implies CombEcon, by the length bound of the Output and the Guarantee. More-

over, AlgEcon implies CertEcon, as the AlgEcon Output L̃ satis�es the de�nition of a cer-

ti�cate, under the same Guarantee and Cost bound.

Strong CertEcon

De�nition 3.1.11. We say that C is a strong CertEcon code if there exists a certi�cate-

list-decoder satisfying the conditions of CertEcon, except with (ii) replaced by the following.

(ii') poly(log|Ω|, 1/ε) amount of work in the unit cost model for Σ.
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All CertEcon results in this thesis are actually strong CertEcon results.

Remark 3.1.12. Strong CertEcon does not follow from AlgEcon, though it does follow from

strong AlgEcon.

Remark 3.1.13. As in the AlgEcon context, the unit cost model can also be used in the

case of in�nite Σ. In fact, all our CertEcon results hold for in�nite codomain in the unit

cost model, i.e., they satisfy (ii�).

3.1.5 Subword extension

In this section we formalize our strategy to advance from certi�cate-list-decoding to algo-

rithmic list-decoding (Observation 3.1.15 below).

De�nition 3.1.14 (Subword extension problem). Let C be a code. The subword extension

problem asks, given a partial map γ : Ω⇀Σ, whether γ extends to a codeword in C.

A subword extender is an algorithm that answers this question and returns a codeword

in C extending γ, if one exists.

Observation 3.1.15. A certi�cate-list-decoder and a subword extender combine to a list-

decoder.

Remark 3.1.16. This observation describes our two-phase plan to prove algorithmic list-

decodability results for homomorphism codes with alternating domains. In the case of homo-

morphism codes, the subword extension problem corresponds to the homomorphism exten-

sion problem (see Section 3.2.5). The algorithmic di�culty of the homomorphism extension

problem is a major bottleneck to further progress.

In fact, the plan suggested by this observation is too ambitious. We have no hope in

solving the subword extension problem in cases of interest for all subwords. Therefore, we

relax the subword extender concept; correspondingly, we strengthen the notion of certi�cates

required.
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De�nition 3.1.17 (W-subword extender). The W-subword extension problem asks to

solve the subword extension problem on inputs from W . A W-subword extender is an

algorithm A that takes as input any partial map γ : Ω⇀Σ and returns a yes/no answer;

and in the case of a �yes� answer, it also returns a codeword A (γ) ∈ C, such that

• if γ ∈ W then the answer is �yes� if and only if γ extends to a codeword, and in this

case, A (γ) is a codeword that extends γ.

Remark 3.1.18. Note that A is not required to decide whether γ ∈ W . A must correctly

decide extendability of γ for all γ ∈ W ; in case γ /∈ W , the algorithm may return an arbitrary

answer.

Let W be a set of Ω⇀Σ partial maps.

De�nition 3.1.19 (W-certi�cate). A W-certi�cate is a certi�cate that belongs to W .

De�nition 3.1.20 (W-certi�cate-list). We say that a list Γ of Ω⇀Σ partial maps is a

W�certi�cate-list for the set K ⊂ C of codewords if Γ contains a W-certi�cate for each

codeword in K. AW-certi�cate-list for C up to distance ρ of the received word f : Ω→ Σ

is a W-certi�cate-list for the list L = L(C, f, ρ).

Remark 3.1.21. Note that, as mentioned in Remark 3.1.6, we permit theW-certi�cate-list

Γ to contain redundancies and irrelevant items, including partial functions γ that do not

belong to W .

De�nition 3.1.22. A W-certi�cate-list-decoder is an algorithm that, given the received

word f ∈ ΣΩ and the distance ρ, constructs a W-certi�cate-list of C up to distance ρ of f .

Our overall strategy for the case when G is �far from abelian� is summarized in the

following observation.

Observation 3.1.23. For any set W of Ω⇀Σ partial maps, a W-certi�cate-list-decoder

and a W-subword extender combine to a list-decoder.

37



De�nition 3.1.24. We say that C is a W-CertEcon (�W-certi�cate-econonomically list-

decodable�) code if there exists a local W-certi�cate-list-decoder that shows the features

listed in De�nition 3.1.8.

De�nition 3.1.25. We say that C is a strong W-CertEcon code if there exists a strong

W-certi�cate-list-decoder, i. e., a W-certi�cate-list-decoder that is a strong certi�cate-list-

decoder (see De�nition 3.1.11).

3.1.6 Minimum distance versus maximum agreement

Recall that our code space is ΣΩ, the set of Ω→ Σ functions. In the theory of error-correcting

codes, the usual measure of distance between two functions (strings) is the (relative) Ham-

ming distance, the fraction of symbols on which they di�er. Following [GKS06], we �nd it

convenient to consider the measure complementary to normalized Hamming distance, the

(relative) agreement,

agr(ϕ, ψ) :=
1

|Ω|
|{ω ∈ Ω | ϕ(ω) = ψ(ω)}|, (3.1)

the fraction of positions on which the two functions ϕ, ψ : Ω→ Σ agree.

De�nition 3.1.26. The maximum agreement of the code C is given by

ΛC := max
ϕ,ψ∈C
ϕ6=ψ

agr(ϕ, ψ).

Fact 3.1.27. The minimum distance is the complement of the maximum agreement, i.e.,

mindist = 1− ΛC .

So, the codewords within distance (mindist − ε) of a received word f are the same as

the codewords with agreement at least ΛC + ε with f . For large classes of homomorphism
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codes, we will provide evidence for the infeasibility of list-decoding outside this range (see

Section 5.3.3), i. e., the list-decoding radius is mindist for those classes.

For the remainder of this thesis, we will use the notation L for lists and ` for list-size

bounds, de�ned in terms of agreement instead of distance.

De�nition 3.1.28 (The list L(C, f, λ)). The set of codewords that have speci�ed agreement

λ with the received word f ∈ ΣΩ is denoted by L = L(C, f, λ).

De�nition 3.1.29 (List-size bound). We write `(C, λ) := maxf |L(C, f, λ)|.

We observe that L(C, f, λ) = Lr(C, f, 1− λ) and `(C, λ) = `r(C, 1− λ).

3.2 Formal statements for homomorphism codes

3.2.1 List-decoding homomorphism codes

In the previous section we de�ned concepts for (local) list-decoding codes in general. Our

main objects of study for list-decoding are homomorphism codes C = aHom(G,H). In this

context, the domain Ω is a �nite group G and the codomain Σ is a group H. The code space

ΣΩ is HG. The maximum agreement will be denoted by ΛG,H = ΛaHom(G,H), i.e.,

ΛG,H := max
ϕ,ψ∈aHom(G,H)

ϕ 6=ψ

agr(ϕ, ψ). (3.2)

We note that ΛG,H = ΛHom(G,H) whenever |Hom(G,H)| > 1 [Guo15] (see Proposi-

tion 2.2.8). In other words, the maximum agreement between a�ne homomorphisms is the

same as the maximum agreement between homomorphisms.

Let D be a class of pairs (G,H) of groups. We say that D is CombEcon if the class

{aHom(G,H) | (G,H) ∈ D} of codes is CombEcon. We de�ne CertEcon and AlgEcon

classes of homomorphism codes analogously.
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Denote by Groups the class of all groups, �nite or in�nite. We say that a class G of

�nite groups is universally CombEcon if G×Groups is CombEcon. We de�ne universally

CertEcon and universally AlgEcon analogously, under access models to be speci�ed.

A common feature of prior work [GL89, GKS06, DGKS08, GS14] (reviewed in Section 1.1)

is the CombEcon and AlgEcon list-decodability of the homomorphism codes considered.

All previously existing results put structural restrictions both on the domain and codomain.

In particular, they were restricted to subclasses of the solvable groups. In this thesis we ex-

tend the economical list-decodability (both combinatorial and algorithmic) in the following

three directions.

1. We give a general principle for removing certain types of constraints on the domain

(see Section 4.1.2). It will follow that the previously known results extend to arbitrary

domains.

2. We �nd universally economically list-decodable classes of groups (i.e., arbitrary codomain).

Speci�cally, alternating groups are universally CombEcon. Moreover, alternating groups

are universally CertEcon, under modest assumptions.

3. We exhibit the �rst (nontrivial) examples where the domain is not solvable.

We note that no CombEcon bounds appear to be known for the much-studied classical

linear codes (Reed�Solomon, Reed�Muller, BCH) (cf., e.g., [BL15]). The poly(1/ε) CombE-

con bound for Hadamard codes is quadratic [GL89]. For abelian and nilpotent groups, it

currently has degree 105 [DGKS08, GS14].

3.2.2 Shallow random generation and list-decodability

We shall consider groups with the property that a bounded number of random elements tend

to generate a subgroup of bounded depth (see De�nitions 3.2.4 and 3.2.5 below). This class
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includes the alternating groups. We show that groups in this class are CombEcon, and under

minimal assumptions on access they are also CertEcon.

It will be useful to consider an H-independent lower bound on the quantity ΛG,H .

De�nition 3.2.1. We de�ne Λ∗G = min{ΛG,H : ΛG,H 6= 0, H ∈ Groups}.

Observation 3.2.2. For simple groups the following three quantities are equal: (a) Λ∗G , (b)

ΛG,G , and (c) the largest fraction of elements of G �xed by an automorphism.

Observation 3.2.3. For G = An, n ≥ 5, we have Λ∗G = 1/
(n

2

)
.

The depth of a subgroup M in a group G is the length d of the longest subgroup chain

M = M0 < M1 < · · · < Md = G. We say that a subgroup is �shallow� if its depth is

bounded. It follows from a result of [Bab89] that already a pair of elements in An generates

a subgroup of depth at most 6. This is the property that we generalize.

De�nition 3.2.4 (Shallow random generation). Let k, d ∈ N. We say that a �nite group G

is (k, d)-shallow generating if

Pr
g1,...,gk∈G

[depth(〈g1, . . . , gk〉) > d] < (Λ∗G)k. (3.3)

De�nition 3.2.5 (SRG groups). We say that a classG of �nite groups has shallow random

generation (G is SRG) if there exist k, d ∈ N such that all G ∈ G are (k, d)-shallow

generating.

Lemma 3.2.6. The alternating groups are SRG groups. In particular, for su�ciently large

n, the alternating group An is (2, 6)-shallow generating.

We prove this lemma in Section 6.2.1. We note that certain classes of Lie type simple

groups are also SRG. We shall elaborate on this in a separate paper.

Now we can state one of our main results.
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Theorem 3.2.7. If G is an SRG group, then G is universally CombEcon list-decodable.

For the case of alternating groups, we show that the degree of the poly(1/ε) list-size

bound is at most 9; with further work this can be reduced to 7.

Theorem 3.2.8. If G is an SRG group, then G is universally strong CertEcon list-decodable.

In fact, SRG groups are universally strong WΛG,H -CertEcon list-decodable (see Sec-

tion 3.1.5 for the de�nition of W-certi�cates). This restriction on the type of certi�cates we

obtain is necessary for extensions to AlgEcon results (cf. comment before De�nition 3.1.17).

Section 3.2.3 discusses W-certi�cates in the context of homomorphism codes. A formal

statement of the WΛG,H -CertEcon result is given in Section 3.2.4.

Access model. For the CertEcon results, we assume access to (nearly) uniform random

elements of the domain. We do not multiply elements of the domain, so we do not need

black-box access to the domain. However, representing the domain as a black-box group

su�ces for random generation [Bab91].

We need no access to the codomain.

Pointers. We prove the CombEcon result in Section 6.2.4 and the CertEcon result in

Section 6.2.5. For alternating groups we also give another, non-algorithmic, proof of the

CombEcon result in Section 5.3. That proof relies on a generic sphere packing argument to

split the sphere into more tractable bins (see Lemma 5.2.5 and Section 5.2.4).

3.2.3 Certi�cate list-decoding for homomorphism codes

First we translate the concepts associated with certi�cate list-decoding (Section 3.1.4) to

the context of homomorphism codes. A certi�cate γ is a G⇀H partial map that extends

uniquely to an a�ne homomorphism ϕ ∈ aHom(G,H).
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A subword extender is an algorithm that extends a G⇀H partial map to a full

homomorphism if possible.

For a subset S ⊆ G, we denote by µG(S) := |S|/|G| the density of S in G. We often

write µ(S) if G is understood. For notational simplicity, we write Λ for ΛG,H .

Notation 3.2.9. Let Wλ be the set of G⇀H partial maps γ such that µ(〈dom γ〉) > λ,

i.e., the subgroup generated by the domain of γ has density greater than λ.

Recall that we have introduced certi�cate list-decoding as an intermediate step towards al-

gorithmic list-decoding, to address technical di�culties that arise in algorithmic list-decoding

in the alternating case. Our plan is to apply the subword extension strategy of Section 3.1.5

(speci�cally, Observation 3.1.23 with W =WΛ).

Observation 3.2.10. If a partial map γ : G⇀H belongs to WΛ, then γ extends to at most

one a�ne homomorphism in aHom(G,H).

We will �nd WΛ-certi�cate-list-decoders for a large class of homomorphism codes, and

we wish to �nd corresponding WΛ-subword-extenders.

Let γ be a G⇀H partial map. We present three conditions on γ, then discuss their

relationships with each other as well as to list-decoding.

(1) If γ extends to an a�ne homomorphism in aHom(G,H), then the extension is unique,

i.e., γ is a certi�cate for some a�ne homomorphism.

(2) µ (〈dom γ〉) > Λ.

(3) The domain dom γ generates G.

Clearly, Condition (3) implies Condition (2), which implies Condition (1). Implications in

the other direction do not hold in general. In particular, neither reverse implication holds

for the alternating groups.
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Algorithmic list-decoding requires a list of full homomorphisms, typically represented as

partial maps satisfying Condition (3).

Certi�cate list-decoding requires the list of partial maps to satisfy Condition (1). Our

CertEcon algorithms actually return certi�cates satisfying Condition (2), i.e., they are W-

certi�cate-list-decoders where W contains certi�cates satisfying Condition (2).

In the case of abelian G, Condition (3) is equivalent to Condition (1) if the irrevelant

kernel is trivial (see De�nition 4.3.1). So, in this case W-certi�cate list-decoding and al-

gorithmic list-decoding are equivalent. We introduced the mean-list-decoding machinery to

address the case of nontrivial irrelevant kernel (see Theorems 4.2.2 and 4.3.9).

3.2.4 Certi�cate list-decoding: SRG → arbitrary

Recall that, in the context of list-decoding aHom(G,H),WΛ denotes the set of G⇀H partial

maps γ such that µ(〈dom γ〉) > Λ, where Λ = ΛG,H . We state the promised strengthening

of Theorem 3.2.8.

Theorem 3.2.11 (SRG certi�cate, abridged). If G is an SRG group, then G is universally

strong WΛ-CertEcon list-decodable.

Access model. We assume access to (nearly) uniform random elements of the domain.

We do not multiply elements of the domain. We remark that representing the domain as a

black-box group would su�ce for random generation [Bab91].

We need no access to the codomain. We get ahold of elements of the codomain by

querying the received word. We shall not perform any group operations in the codomain.

Actually our result is much stronger than what would be implied by our de�nition of

CertEcon.

Theorem 3.2.12 (SRG certi�cate, unabridged). Let G be a (k, d)-shallow generating group

and H an arbitrary group. We have a local algorithm that shows the following features.
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Input: Access to G. Values ε, η > 0.

Output: A set Π ⊂ Gk+d+1 of (k + d+ 1)-tuples in G, where

|Π| =
⌈

1

εk+d+1
ln

(
1

ηεk+d+1

)⌉
.

Cost: poly(1/ε, ln(1/η)) amount of work.

Performance guarantee: For every received word f ∈ HG, with probability at least (1 −

η), the set Γ := {f |R : R ∈ Π} is WΛG,H -certi�cate-list for aHom(G,H) up to distance

(mindist− ε) of f .

Access model. Same as in Theorem 3.2.11.

Pointer. The proof of Theorems 3.2.11 and 3.2.12 can be found in Sections 6.2.5.

Remark 3.2.13. Given that An is (2, 6)-shallow generating (Lemma 3.2.6), Theorems 3.2.11

and 3.2.12 applies to An with k + d + 1 = 9. We think of An as being given in its natural

permutation representation. We note that a representation of An as a black-box group

would su�ce, because the natural permutation representation of an alternating group can

be e�ciently extracted from a black-box group representation [BLGN+05].

3.2.5 Algorithmic list-decoding: alternating → symmetric, restricted cases

We follow the strategy of Section 3.1.5 to combine a subword extension result with the

universally CertEcon result (Theorem 3.2.11) to achieve a universally AlgEcon result.

We will de�ne the Homomorphism Extension Problem, which is exactly the subword

extension problem for homomorphisms Hom(G,H). (It can also be used to solve subword

extension for aHom(G,H), see Section 6.3.3.) Cases of Homomorphism Extension will be

solved in Chapter 7. The most pertinent result is as follows (see Chapter 7 for more details).
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Theorem 3.2.14. Let G = An and H = Sm, both represented as permutation groups. If (1)

m < 2n−1/
√
n and (2) γ : G⇀H satis�es |G : 〈dom γ〉| = poly(n), then Homomorphism

Extension Search can be solved in poly(n,m) time.

We need one more ingredient before we can prove our main algorithmic result.

Lemma 3.2.15. Let n ≥ 10. Let G = An and let H be a group. If |Hom(G,H)| > 1, then

ΛG,H ≥ 1/
(n

2

)
. In particular, either ΛG,H = 1/

(n
2

)
or ΛG,H = 1/n.

Proof. Since Hom(G,H) is nontrivial and An is simple, H contains an isomorphic copy of

An. An automorphism of An �xes a subgroup of index at least
(n

2

)
, so Λ ≥ ΛG,G = 1/

(n
2

)
.

By Fact 2.2.5, 1/Λ must be the index of a proper subgroup. By the Jordan-Liebeck Theorem

(Theorem 2.4.2), the only candidates are n and
(n

2

)
, so Λ = 1/

(n
2

)
or 1/n.

We have now stated all the ingredients needed for the AlgEcon result for alternating

domains.

Theorem 3.2.16 (Alternating algorithmic result). If G is an alternating group An and H

is a symmetric group Sm, then aHom(G,H) is AlgEcon, assuming m < 2n−1/
√
n.

Access model. We assume both An and Sm are given in their natural permutation rep-

resentations.

Proof. The proof follows the �CertEcon with HomExt implies AlgEcon� approach discussed

in Section 3.1.5.

Lemma 3.2.6 shows that alternating groups are SRG groups, which are universally WΛ-

CertEcon by Theorem 3.2.11. Theorem 6.3.10 shows thatHomExt1/(n2)
(G,H) can be solved

in poly(n,m) time, under the assumed restrictions on the codomain H. But, 1/
(n

2

)
≤ ΛG,H

by Lemma 3.2.15. Corollary 6.3.9 turns this into a poly(n,m)-time subword extender, which

combines with the WΛ-CertEcon claim (Observation 3.1.23) to give the AlgEcon claim.

For more details, see Section 6.3.2.
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CHAPTER 4

RELAXATION PRINCIPLES AND MEAN-LIST-DECODING

4.1 Introduction

We introduce a new �add-on� method to list-decoding, which extends the classes of codes for

which we conclude economical list-decodability. The extension allows for repeated codes, or,

translated homomorphism codes.

To be more precise, this method will show the equivalence of the �economical� concepts

for a general class of codes C and the corresponding class of repeated codes C ∗ r for

every r ∈ N (see Notation 4.2.6 and Theorem 4.2.2). We will identify repeated codes with

mean-lists (see De�nition 4.2.1), lists required to possess certain agreement with a family of

received words, instead of one received word. Additionally, this method will show, speci�cally

for homomorphism codes Hom(G,H), the equivalence of �economical� for translated codes

aHom(G,H).

The most notable consequence of this method is a relaxation principle on the domain.

Towards proving this relaxation principle, we will de�ne for groups G and H the (G,H)-

irrelevant normal kernel N as the intersection of all kernels of G → H homomor-

phisms. We will see that list-decoding aHom(G,H) is equivalent to mean-list-decoding

aHom(G/N,H).

4.1.1 Structure of chapter

In Section 4.3.1 we contextualize the domain relaxation principle. In Section 4.1.3, we state

and prove the Bipartite Covering Lemma, a combinatorial tool central to the results in this

chapter.

Section 4.2 presents mean-list-decoding principles on general codes. Section 4.2.1 de�nes

mean-list-decoding and relevant economical concepts. Section 4.2.2 proves that economical
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mean-list-decoding is not much harder than economical list-decoding.

Section 4.3 discusses the implications of mean-list-decoding and the Bipartite Covering

Lemma speci�cally in the context of homomorphism codes. Section 4.3.1 de�nes the irrele-

vant kernel and explains how the irrelevant kernel is irrelevant in the context of economical

list-decoding. Section 4.3.2 proves this by identifying lists in aHom(G,H) with mean-lists in

aHom(G/N,H), where N is the (G,H)-irrelevant kernel. Section 4.3.3 applies the Bipartite

Covering Lemma to show that economically list-decoding aHom is not much harder than

Hom.

4.1.2 Domain relaxation principle

We discuss context and motivation for the domain relaxation principle.

In all prior work [DGKS08, GS14], both the domain and the codomain were abelian or

close to abelian (nilpotent or supersolvable). It is natural to ask how to further relax the

structural constraints on the groups involved.

We point out that structural constraints such as nilpotence or solvability (or any other

hereditary property) play a very di�erent role if imposed on the domain versus the codomain.

For instance, a combinatorial list-decoding bound on {abelian → abelian} homomorphism

codes implies the same bound for {arbitrary→ abelian} homomorphism codes. This is shown

by reducing the question on aHom(G,H) for arbitrary G and abelian H to aHom(G/G′, H),

where G′ is the commutator subgroup of G, so G/G′ is the largest abelian quotient of G.

A similar argument extends the bounds for {nilpotent → nilpotent} homomorphism codes

to {arbitrary → nilpotent}, working through the largest nilpotent quotient of G. Similar

results hold for certi�cate and algorithmic list-decoding.

In general, we can replace G by its relevant quotient G/N , where N is the (G,H)-

irrelevant kernel (see De�nition 4.3.1).

While this observation extends the reach of the results of Dinur et al. [DGKS08] and
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Guo and Sudan [GS14], it also shows that, in a sense, the gains by extending the class of

groups serving as the domains, without relaxing the structural constraints on the codomains,

is virtual, and the main impediment to extending these results to wider classes of pairs of

groups is the structural constraints on the codomain.

4.1.3 Bipartite covering lemma

We describe a simple combinatorial lemma (Lemma 4.1.1) that will be used in two contexts

in this chapter (mean-list-decoding with application to the domain relaxation principle;

equivalence of e�ciency of list-decoding Hom and aHom). It describes how we cover the

list in the extension code by few lists in the original code. Moreover, it describes how to �nd

a list-decoder for an extension class, using few calls to the list-decoder for the original class.

To prove the mean-list result (Theorem 4.2.2), the extension code remains the same, but

the extension lists are mean-lists (see De�nition 4.2.1) taking input a family of received words

instead of only one received word. For aHom versus Hom lists (Corollary 4.3.19), the exten-

sion code is aHom(G,H), the original code is Hom(G,H), and the received word is the same.

We write X = (V,W ;E) to denote a bipartite graph with given vertex partition (V,W )

(all edges go between V and W ). We denote the set of neighbors of a vertex u by N(u).

Lemma 4.1.1 (Bipartite covering lemma). Let η, δ > 0. Let X = (V,W ;E) be a bipartite

graph. Suppose that deg(v) ≤ L for all v ∈ V and deg(w) ≥ δ|V | for all w ∈ W . Then the

following hold.

(1) |W | ≤ L/δ.

(2) Set s =
⌈

4
3δ (ln(L/(ηδ))

⌉
. Choose a sequence (u1, . . . , us) ∈ V s uniformly at random.

Create a set U ⊆ V by independently including each ui with probability 3/4. Then with

probability ≥ (1− η), we have W =
⋃
u∈U N(u).
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Conclusion (1) will be used to prove CombEcon results, whereas (2) will be used to prove

CertEcon and AlgEcon results.

Proof. (1) Count edges two ways.

L · |V | ≥
∑
v∈V

deg(v) =
∑
w∈W

deg(w) ≥ δ|W ||V |.

So, W ≤ L/δ.

(2) Let s = d 4
3δ (ln(L) + ln(1/ηδ)e. Choose u1, . . . , us ∈ V independently and uniformly

at random. Choose û1, . . . , ûs ∈ V ∪ {?} independently as follows. For each i = 1, . . . , s,

let ûi be ui with probability 3/4 and ? otherwise. For notational consistency, de�ne the

neighbor set N(?) of ? by N(?) = ∅.

Fix w ∈ W . We have Prv∈V (w ∈ N(v)) ≥ δ by assumption. So, for each i, Prûi(w ∈

N(ûi)) = 3
4 · Prui(w ∈ N(ûi)) ≥ 3

4δ. Since the ûi were chosen independently,

Pr

(
w /∈

s⋃
i=1

N(ûi)

)
≤
(

1− 3

4
δ

)s
.

Taking the union bound over w ∈ W , we �nd that

Pr

(
W *

s⋃
i=1

N(ûi)

)
≤ |W |

(
1− 3

4
δ

)s
≤ L

δ

(
1− 3

4
δ

)s
≤ η.

4.2 Mean-list-decoding and principles for general codes

The results of this section apply to all codes, not just homomorphism codes.
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4.2.1 Mean-list-decoding, de�nitions and results for general codes

Let F = {fi : i ∈ I} be a family of received words fi ∈ ΣΩ. By the size |F | of F we

mean the size |I| of the index set I. The average distance dist(w,F ) of a word w ∈ ΣΩ

to F is the average distance of w to elements of F , given by dist(w,F ) = Ei∈I [dist(w, fi)].

Similarly, the average agreement agr(w,F ) of a word w with F is the average agreement

of w with elements of F , given by agr(w,F ) = Ei∈I [agr(w, fi)] = 1 − dist(w,F ). (The

expectation E is taken with respect to the uniform distribution over I.)

De�nition 4.2.1 (Mean-lists). We de�ne the mean-list L as the set of codewords that

have agreement at least λ with the received words F , i.e.,

L = L(C,F , λ) := {w ∈ C : dist(w,F ) ≤ λ}. (4.1)

We will write m`(C, λ) := maxF L(C,F , λ) for the maximum mean-list size for a given

agreement λ. See De�nition 4.2.5.

As we shall see, the mean-list-decoding concept helps expand the scope of our results,

without making them more di�cult to prove. We adapt the terminology of Section 3.1 to

the context of mean-list-decoding.

Combinatorial. We wish to bound mean-list size by |L(C,F , ρ)| ≤ c′(ε). We say that

C is a CombEconM (�combinatorially economically mean-list-decodable�) code if c′(ε) =

poly(1/ε).

Algorithmic. We say that C is an AlgEconM (�algorithmically economically mean-list-

decodable�) code if it satis�es the de�nition of AlgEcon codes, with the following modi�ca-

tions.

The received word f is replaced by a family F of received words and the list L becomes

L = L(C,F , ρ). Oracle access to F means that, given i ∈ I and ω ∈ Ω, the oracle returns
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fi(ω). Condition (ii) is replaced by the following.

(ii-M) poly(log|Ω|, log|Σ|, log|F |, 1/ε) amount of work.

Note that the number of queries to the family F remains poly(log|Ω|, 1/ε).

Certi�cate. We say that C is aCertEconM (�certi�cate economically mean-list-decodable�)

code if it satis�es the de�nition of CertEcon codes, with the same modi�cations as AlgEconM.

The next result shows that economical mean-list-decoding is no harder than economical

list-decoding.

Theorem 4.2.2 (Mean-list-decoding, main). For a class C of codes, we have the following.

(i) C is CombEconM if and only if it is CombEcon.

(ii) C is AlgEconM if and only if it is AlgEcon.

(iii) C is CertEconM if and only if it is CertEcon.

This is proved in the next section as Corollary 4.2.11 and Theorem 4.2.13.

Remark 4.2.3 (Signi�cance of mean-list-decoding). Dinur et al. show the CombEcon and

AlgEcon list-decodability of {abelian→abelian} homomorphism codes [DGKS08]. We shall

see that Theorem 4.2.2 quickly leads to the conclusion of CombEcon list-decodability of

{arbitrary→abelian} homomorphism codes. The same inference can be made about AlgEcon

list-decodability, assuming natural conditions about representation of the domain group.

This is the subject of Section 4.3.2.

Strong mean-list-decoding

We say that C is a strong AlgEconM code if it satis�es the de�nition of AlgEconM,
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except with (ii-M) replaced by (ii'-M) below. Similarly, we say that C is a strong CertE-

conM code if it satis�es the de�nition of CertEconM, except with (ii-M) replaced by (ii'-M)

below.

(ii'-M) poly(log|Ω|, 1/ε) amount of work in the unit cost model for Σ and unit sampling cost

model for F .

In the unit sampling cost model for F = {fi : i ∈ I}, we charge unit cost for naming

any i ∈ I and for generating a uniform random i ∈ I.

Remark 4.2.4. Theorem 4.2.2 still holds if all mentions of economical list-decoding are

replaced by strong economical list-decoding.

4.2.2 List size versus mean-list size

The goal of this section is to prove Theorem 4.2.2, using the Bipartite Covering Lemma

(Lemma 4.1.1).

Lemma 4.2.8, shows that mean-lists are contained in a small number of random lists,

with a slight degradation of the parameters. That mean-list size is bounded by list-size is

shown by item (i) of Lemma 4.2.8). It follows immediately that the concepts of CombEconM

and CombEcon are equivalent (Corollary 4.2.11). Lemma 4.2.8 item (ii) shows the equiva-

lence of AlgEconM with AlgEcon and CertEconM with CertEcon, completing the proof of

Theorem 4.2.2.

Further consequences of Lemma 4.2.8 will follow in Section 4.3.2, leading to the generic

constraint relaxation principle in the domain.

Recall that `(C, λ) denotes the maximum list size for C with agreement λ. Now we de�ne

the analogous quantities for mean-lists. We denote by C a code, r and s natural numbers,

and λ, δ > 0.
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De�nition 4.2.5 (Mean-list-size). The maximum r-mean-list size for C with agreement

λ, denoted mr`(C, λ), is the maximum size of the mean-lists L(C,F , λ) over all families F

of r received words, i.e.,

mr`(C, λ) = max{|L(C,F , λ)| : |F | = r}.

The maximum mean-list size for C with agreement λ is the maximum over the r-

mean-list sizes for C with agreement λ, i.e.,

m`(C, λ) = max
r
mr`(C, λ).

Note that m1`(C, λ) = `(C, λ).

From the de�nitions it follows that aHom(G,H) is CombEconM if and only if

m`(aHom(G,H),ΛG,H + ε) = poly(1/ε) .

Notation 4.2.6. For a word w, we denote by w ∗ r = (

r︷ ︸︸ ︷
w . . . w) the word found by concate-

nating r copies of w. For a set S of words, we write S ∗ r := {w ∗ r : w ∈ S}.

Remark 4.2.7 (Mean-list-decoding versus repeated codes). Let F = {fi : i ∈ [r]} be a

family of r received words. Notice that L(C ∗ r, (f1, . . . , fr), λ) is the r-fold repetition of

L(C,F , λ), i.e.,

L(C,F , λ) ∗ r = L(C ∗ r, (f1, . . . , fr), λ).

It follows that mr`(C, λ) = `(C ∗ r, λ). In this way, mean-list-decoding can be viewed as

list-decoding repeated codes.

Next we state the central result of this section, that every mean-list is covered by a small

number of lists.
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Lemma 4.2.8 (Concentration of mean-lists). Let C be a code and λ, δ > 0. Let F = {fi :

i ∈ I} be a family of received words. Let L = L(C,F , λ+ δ). We conclude the following.

(i) |L| ≤ `(C, λ)/δ.

(ii) Set s =
⌈

4
3δ (ln `(C, λ) + ln(1/ηδ)

⌉
. Choose a sequence (j1, . . . , js) ∈ Is uniformly at

random. For each i (1 ≤ i ≤ s) independently apply the list-decoder to the received word

fji with agreement threshold λ. Let Li denote the output list. Then, with probability

≥ 1− η, we have L ⊆
⋃
i∈S Li.

Not only does this give combinatorial bounds for mean-lists in terms of lists, it will be

used to provide a (certi�cate-)mean-list-decoder from a (certi�cate-)list-decoder. Below we

will let Li be the output list on input function fi, and the success probabilities of Li are set

up exactly to account for the 1/4 failure probability.

The proof will follow from the Bipartite Covering Lemma (Lemma 4.1.1) together with

the following observation.

Lemma 4.2.9 (Markov degredation). Fix a codeword ϕ. Let F = {fi : i ∈ I} be a family

of received words in the codespace. Assume Ei(agr(ϕ, fi)) ≥ λ + δ. Then Pri(agr(ϕ, fi) >

λ) > δ.

Proof. Let xi = dist(ϕ, fi) = 1−agr(ϕ, fi). Then Ei(xi) ≤ 1−λ−δ. Therefore, by Markov's

inequality, Pr(agr(ϕ, fi) ≤ λ) = Pr(dist(ϕ, fi) ≥ 1− λ) ≤ 1−λ−δ
1−λ = 1− δ

1−λ < 1− δ.

Proof of Lemma 4.2.8. We apply Lemma 4.1.1 to the bipartite graph X = (V,W ;E), where

the edge set E consists of the pairs (i, ϕ) ∈ I ×L satisfying agr(fi, ϕ) > λ. Then, deg(f) ≤

`(C, λ) by de�nition of max list size ` and deg(ϕ) ≥ δ|F | by Lemma 4.2.9.

The decoder succceeds with probability ≥ 3/4, so Li ⊇ L(C, fi, λ) happens with proba-

bility ≥ 3/4 independently over i = 1, . . . , s. The lemma follows from Lemma 4.1.1.
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Corollary 4.2.10. For C a code, r a natural number, and λ, δ > 0, we have

m`(C, λ+ δ) ≤ 1

δ
mr`(C, λ). (4.2)

Proof. Let s be a natural number. By de�nition of m`, it su�ces to show that ms`(C, λ+δ) ≤
1
δmr`(C, λ).

But, we �nd that ms`(C, λ + δ) ≤ msr`(C, λ + δ) by [GS14, Lemma 3.3] (though their

lemma is stated in terms of repeated codes). By Lemma 4.2.8, we �nd that msr`(C, λ+ ε) ≤
1
δmr`(C, λ).

The following is now immediate.

Corollary 4.2.11. For C a code and ε > 0, we have

m`(C, 1−mindist + ε) ≤ 2

ε
`(C, 1−mindist + ε/2).

In other words, if a class of codes is CombEcon with degree c, then it is CombEcon with

degree c+ 1.

Next, we derive the algorithmic versions of this result. We shall make the following

assumption on access to our family F = {fi : i ∈ I} of received words.

Access 4.2.12. An oracle provides uniform random elements of the index set I of F .

Theorem 4.2.13. Under Access 4.2.12, if a class C of codes is AlgEcon then it is AlgEconM.

Under the same assumptions, if C is CertEcon then it is CertEconM.

Remark 4.2.14. The bounds on cost in the result above deteriorate as follows.

• A 2
ε multiplicative factor in list size.

• An O(1
ε ln(1/ε)) multiplicative factor in queries to the received word f .
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• An O(1
ε ln(1/ε)) multiplicative factor in amount of work.

We show that, to (certi�cate-)mean-list-decode a family F of functions, (certi�cate-)list-

decoding a small random subset of the functions in F su�ces. Lemma 4.1.1 already contains

the machinery to guarantee the necessary probability of success.

Proof. We �rst prove the claim for AlgEcon. Let Decode be a list-decoder for the class C

satisfying AlgEcon assumptions. We denote by Decode(C, f, 1−mindist + ε) the output of

Decode on the input f and ε > 0, where f is a received word in the code space of a code

C ∈ C .

We describe here a mean-list-decoder that satis�es AlgEconM. It takes as input F and

ε > 0, where F is the family of received words in the code space of the code C ∈ C .

Denote by I the index set of F . Via the provided oracle, generate a subset S ⊂ I by

picking s elements of I independently and uniformly. The value of s will be determined later.

Return the list given by

⋃
i∈S

Decode(C, fi, 1−mindist + ε/2). (4.3)

We show that this is a list-decoder satisfying the conditions of AlgEconM through direct

application of Lemma 4.2.8.

The output Decode(C, f, 1 − mindist + ε/2) contains L(C, f, 1 − mindist + ε/2) with

probability 3/4 by the de�nition of list-decoder. If s is set as in Lemma 4.2.8 (ii) with

η = 1/4 and δ = ε/2, we �nd that the the desired mean-list is returned with probability at

least 3/4.

Notice that the list-decoder Decode is called s =
⌈

8
3ε (ln(`(C, λ) + ln(8/ε))

⌉
times as a

subroutine, where λ = 1−mindist+ ε/2. Very little processing is done outside of these calls.

Moreover, since C is AlgEcon, it is CombEcon, so `(C, 1 − mindist + ε/2) = poly(ε/2) and

Decode is called O(1
ε ln(1/ε)) times.
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The proof for CertEcon is similar, found mainly by replacing the occurrences of �list-

decoder� with �certi�cate-list-decoder.� The mean-certi�cate-list-decoder returns the union

of s output lists by Decode, which would denote the assumed certi�cate-list-decoder.

The same conclusions follow for the strong versions of these concepts.

Remark 4.2.15. Knowledge of mindist is not needed in the conversion from CertEcon to

CertEconM. Even in the AlgEcon case, mindist is only needed if required by the list-decoder

Decode. The crucial knowledge for this conversion is ε, so that the deterioration factor

(denoted δ above) can be controlled. This deterioration factor is set to δ = ε/2 in our proofs.

4.3 Applications of Bipartite Covering Lemma and

mean-list-decoding in homomorphism codes

4.3.1 Extending the domain: the irrelevant kernel and consequences

We de�ne the irrelevant kernel, state relevant results, then illustrate how it allows a relaxation

on the class of groups allowed in the domain.

De�nition 4.3.1 (Irrelevant kernel). Let G and H be groups. The (G,H)-irrelevant

kernel (or �irrelevant kernel� if G and H are clear) is the intersection of the kernels of all

G→ H homomorphisms, i.e., ⋂
ϕ∈Hom(G,H)

ker(ϕ). (4.4)

We call elements and subgroups of the irrelevant kernel irrelevant.

For instance, if H is abelian, then the commutator subgroup G′ is irrelevant.

We shall �nd that extending G/N to G retains economical list-decodability, as long as

N is (G,H)-irrelevant.
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Theorem 4.3.2. Let N be an irrelevant normal subgroup of G. Then, ΛG/N,H = ΛG,H .

Moreover,

(i) if aHom(G/N,H) is CombEcon then aHom(G,H) is CombEcon;

(ii) if aHom(G/N,H) is CertEcon then aHom(G,H) is CertEcon;

(iii) if aHom(G/N,H) is AlgEcon then aHom(G,H) is AlgEcon.

For items (ii) and (iii) we need to make suitable assumptions on access to the domain.

This is proved in the next section, relying on results from mean-list-decoding (Theo-

rem 4.2.2).

Corollary 4.3.3. The code aHom(G,H) is AlgEcon for any �nite group G and any �nite

nilpotent group H.

Proof. Combine Theorem 4.3.2 and the main result of [GS14], i.e., {nilpotent→nilpotent}

homomorphism codes are AlgEcon. For abelian H, use instead the main result of [DGKS08],

i.e., {abelian→abelian} homomorphism codes are AlgEcon.

4.3.2 Repeated codes: irrelevant normal subgroups and mean-lists

We state formally state and prove our claims regarding relaxing the domain. Its implications

were discussed in Section 4.3.1.

We �rst identify the code aHom(G,H) with a repeated code found from aHom(G/N,H).

This hinges on N being an irrelevant normal subgroup. Recall that N is (G,H)-irrelevant if

N is contained in the kernel of every G→ H homomorphism (see De�nition 4.3.1).

For groups K and H, an enumeration K = {k1, . . . , k|K|} induces a bijection between

the set of functions HK and the set of words H |K| by f 7→ (f(k1), . . . , f(k|K|)).

Observation 4.3.4 (Identi�cation of aHom(G,H) lists with aHom(G/N,H) mean-lists).

Let G,H and N be groups such that N is a (G,H)-irrelevant normal subgroup. Let f : G→
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H. There are enumerations of G and G/N , and a family F of functions G/N → H such

that

L(aHom(G,H), f, λ) = L(aHom(G/N,H),F , λ) ∗ |N |.

Proof. The enumeration can be found by �lling elements of G in a matrix where each row

corresponds to a coset of N in G. Elements of G are then ordered by column. We make this

more precise.

We identify aHom(G,H) with aHom(G/N,H) ∗ |N |, then represent f : G→ H as a set

F of |N | functions that map G/N → H.

Let τ : G/N → G be a transversal, i.e., an injection mapping each coset to one coset

representative. Denote by S = τ(G/N) the image of τ , which forms a set of of left coset

representatives for G/N . Notice that G = SN . Let π : G → G/N be the projection onto

cosets. (We have that π ◦ τ : G/N → G/N is the identity.) Enumerate the elements of N as

g1, . . . , g|N |.

First, note aHom(G,H) = {ϕ ◦ π : ϕ ∈ aHom(G/N,H)}, since N is a (G,H)-irrelevant

subgroup. So, aHom(G,H) can be viewed as aHom(G/N,H) ∗ |N |. In other words, the

codeword ϕ ◦ π is a concatenation (ϕ, . . . , ϕ) of |N | copies of the word ϕ (under the correct

ordering of G).

We will make this precise for a function in general. Consider a function f : G→ H. For

i = 1, . . . , |N |, de�ne the function fi : G/N → H by fi(sN)) = f(τ(sN)gi) for every coset

sN .

De�ne F = {f1, . . . , f|N |}. If we view f : G → H as a word of length |G|, it is

the concatenation f = (f1, . . . , f|N |) of the functions in F (under the correct ordering of

G). Notice that fi(sN) = ϕ(sN) exactly if f(sgi) = ϕ(sN) = (ϕ ◦ π)(sgi). So, for any
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ϕ ∈ aHom(G/N,H), we have

agr(f, ϕ ◦ π) =
1

|G|
|{g : f(g) = (ϕ ◦ π)(g)}|

=
1

|N |
1

|G/N |

|N |∑
i=1

|{s ∈ G/N : f(sgi) = (ϕ ◦ π)(sgi)}|

=
1

|N |

|N |∑
i=1

agr(fi, ϕ)

= E
i
[agr(fi, ϕ)].

This shows that ϕ ∈ L(aHom(G/N,H),F , λ) exactly if ϕ ◦ π ∈ L(aHom(G,H), f, λ).

We have illustrated the claim that

L(aHom(G,H), f, λ) = {ϕ ◦ π : ϕ ∈ L(aHom(G/N,H),F , λ)}

= L(aHom(G/N,H),F , λ) ∗ |N |.

Remark 4.3.5. The proof of Observation 4.3.4 shows more: There is a bijection between

functions f ∈ HG and families F of |N | functions so that the equations holds.

Corollary 4.3.6. If G,H and N are groups such that N is a (G,H)-irrelevant normal

subgroup of G, then

`(aHom(G,H), λ) = m|N |`(aHom(G/N,H), λ).

We �rst illustrate the relaxation principle combinatorially, through bounds on list-size.

The goal would be to conclude that, if G×G is CombEconM for a class G of groups, then

Groups×G is CombEcon. This principle will generalize to CertEcon and AlgEcon as well.

Remark 4.3.7. If N is a (G,H)-irrelevant normal subgroup, then ΛG/N,H = ΛG,H .
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Lemma 4.3.8 (Irrelevant normal subgroup lemma). Let G,H and N be groups such that N

is a (G,H)-irrelevant normal subgroup. Then,

`(aHom(G,H),ΛG,H + ε) ≤ 2

ε
· `(aHom(G/N,H),ΛG,H + ε/2).

Proof. Calculate

`(aHom(G,H),Λ + ε) = m|N |`(aHom(G/N,H),Λ + ε) Corollary 4.3.6

≤ m`(aHom(G/N,H), λ) de�nition of m`

≤ 2

ε
· m1`(aHom(G/N,H) Corollary 4.2.10 with r = 1

=
2

ε
· `(aHom(G/N,H),Λ + ε/2).

This implies that, if aHom(G/N,H) is CombEconM, then aHom(G,H) is CombEcon.

This principle holds for CertEcon and AlgEcon as well.

Theorem 4.3.9. Let G,H and N be groups such that N is a (G,H)-irrelevant normal

subgroup of G.

(i) If aHom(G/N,H) is CombEcon, then aHom(G,H) is CombEcon.

(ii) Under suitable access assumptions (Access 4.3.10 (ii)), if aHom(G/N,H) is CertEcon,

then aHom(G,H) is CertEcon.

(iii) Under suitable access assumptions (Access 4.3.10 (iii)), if aHom(G/N,H) is AlgEcon,

then aHom(G,H) is AlgEcon.

The deterioration in cost is as described in Remark 4.2.14.

Access 4.3.10. (ii) (a) Elements of N can be generated uniformly. (b) A transversal,

i.e., an injection G/N → G that assigns a representative element to each coset, is
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given. (c) G/N is known well enough to satisfy the CertEcon access assumptions on

aHom(G/N,H).

(iii) (a') Elements of N can be generated uniformly and generators for N are given. (b')

Same as (b). (c') Same as (c), for AlgEcon.

Remark 4.3.11. If the access assumptions onN are at least as strong as havingN as a black-

box group, then generating (nearly) uniform elements and being given a set of generators

are equivalent. If N is a black-box group, generators are given by de�nition. Nearly uniform

random elements in black-box groups can be generated in polynomial time (polynomial in

the encoding length of groups elements).

Remark 4.3.12. For the proof of this theorem, we will actually need the �EconM versions

of the assumptions, which we may assume as a consequence of Theorem 4.2.2.

Proof of Theorem 4.3.9. Set Λ = ΛG,H = ΛG/N,H . Let π : G → G/N be the projection

onto cosets.

(i) aHom(G/N,H) is CombEconM, so aHom(G,H) is CombEcon by Corollary 4.3.6.

(ii) By assumption, a certi�cate-list-decoder satisfying the conditions of CertEconM exists

for aHom(G/N,H). Its output list Γ is a certi�cate list for L(aHom(G/N,H),F ,Λ + ε),

where ε > 0 and F = {f1, . . . , f|N |} is constructed from f as in Observation 4.3.4. We

construct a certi�cate list Γ̃ for L(aHom(G,H), f,Λ+ε), by replacing each G/N ⇀H partial

map γ ∈ Γ with a G⇀H partial map γ̃ de�ned as follows.

Denote by τ : G/N → G the injection guaranteed by the assumption. Let γ̃ have domain

dom(γ̃) = τ(dom(γ)), and de�ne γ̃(g) = γ(π(g)) for each g ∈ dom(γ̃). If γ is a certi�cate

for ϕ ∈ aHom(G/N,H), then γ̃ is a certi�cate for ϕ ◦ π ∈ aHom(G,H).

(iii) A list-decoder satisfying the conditions of AlgEconM exists for aHom(G/N,H). By

Observation 4.3.4, it su�ces to, given the list L = L(aHom(G/N,H),F ,Λ + ε), return the

list L̃ = {ϕ ◦ π : ϕ ∈ L}. We address algorithmic issues of de�ning ϕ ◦ π from ϕ.
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Denote by X the given set of generators of N and by τ : G/N → G the given injective

map. Each homomorphism ϕ is represented by its values on a set Y of generators of G/N .

The set X ∪ τ(Y ) is a set of generators for G. De�ne ϕ̃ on this set by the following.

ϕ̃(g) =


1 g ∈ X

(ϕ ◦ π)(g) g ∈ τ(Y )

.

A class G of �nite groups is a quasivariety if it is closed under subgroups and direct

products. The classes of abelian, nilpotent, and solvable groups are examples of quasivari-

eties.

Theorem 4.3.13. Let G be a quasivariety of �nite groups.

(i) Suppose aHom(G,H) is CombEcon for every G,H ∈ G. Then, aHom(G,H) is CombE-

con for H ∈ G and arbitrary G.

(ii) Under suitable access assumptions (Access 4.3.15 (ii)), if aHom(G,H) is CertEcon for

every G,H ∈ G, then aHom(G,H) is CertEcon for H ∈ G and arbitrary G.

(iii) Under suitable access assumptions (Access 4.3.15 (ii)), if aHom(G,H) is AlgEcon for

every G,H ∈ G, then aHom(G,H) is AlgEcon for H ∈ G and arbitrary G.

The deterioration in cost is as described in Remark 4.2.14.

Remark 4.3.14. In fact, the class G need only be closed under subdirect products.

The access assumptions mirror those of Access 4.3.10 of Theorem 4.3.9.

Access 4.3.15. For every G ∈ Groups and H ∈ G, denote by N the (G,H)-irrelevant kernel

and assume we have access to N and G/N as follows.
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(ii) (a) Random elements of N can be generated uniformly. (b) A transversal of G/N in

G can be found. (c) G/N can be found well enough to satisfy the access model of the

assumed CertEcon list-decodability of pairs in G×G.

(iii) (a') Random elements of N can be generated uniformly and a set of generators for N

can be found. (b') Same as (b). (c') Same as (c) but for AlgEcon list-decodability.

Proof. Fix H ∈ G and G ∈ Groups. Let N be the (G,H)-irrelevant kernel. By Theo-

rem 4.3.9, all desired conclusions will follow if we show that G/N ∈ G.

Let

H̃ =
∏

ϕ∈aHom(G,H)

H.

De�ne the map τ : G→ H̃ given by τ(g) = (ϕ(g))ϕ. Notice that τ(G) is subgroup of H̃ and

is thus a subdirect product of copies of the group H ∈ G. Since G is closed under subdirect

products, it follows that τ(G) ∈ G.

Since ker(τ) = N , we have τ(G) ∼= G/N , so G/N ∈ G.

The AlgEcon list-decodability of {abelian→abelian} and {nilpotent→nilpotent} homo-

morphism codes is shown in [DGKS08] and [GS14], respectively. As the class of abelian

groups and the class of nilpotent groups both form quasivarieties, we conclude the following

using the mentioned results and Theorem 4.3.13.

Corollary 4.3.16. If G is a group and H an abelian group (or, more generally, nilpotent),

then we have AlgEcon (and therefore CombEcon) list-decoding of aHom(G,H).

4.3.3 Translated codes: Hom versus aHom

We show that the code Hom(G,H) is CombEcon if and only if aHom(G,H) is CombEcon,

and similarly for CertEcon. This is true also for AlgEcon under modest assumptions of the

65



representations of the group. This re�ects a similar phenomenon to our results on mean-list-

decoding.

From here on, we make no distinction between proving results for the two classes of codes.

We �x terminology for this section. For an a�ne homomorphism ϕ ∈ Hom(G,H), we

denote its base homomorphism by ϕ0 ∈ Hom(G,H) (the unique homomorphism satisfying

ϕ = hϕ0 for h ∈ H). For an element a ∈ G and function f : G → H, we denote by

fa : G→ H the function fa(g) = f(a)−1f(ag).

We state the central result of this section, that every aHom list is contained within a

small number of translated Hom lists. It is similar in spirit to Lemma 4.2.8, and it is similarly

proved by the Bipartite Covering Lemma (Lemma 4.1.1). The deterioration in list size and

cost will be addressed in Remark 4.3.20 below.

Lemma 4.3.17 (Concentration of aHom lists). Let G and H be groups, f : G → H a

received word, and 0 < λ ≤ 1. Let L = L(aHom(G,H), f, λ). We conclude the following.

(i) |L| ≤ 1
λ`(Hom(G,H), λ).

(ii) Let S be a subset of G formed by choosing
⌈

4
3λ(ln|L|+ ln(1/ηλ)

⌉
elements in G in-

dependently and uniformly. Suppose that, independently for each a ∈ G, the sub-

set Da of L contains L(Hom(G,H), fa, λ) with probability ≥ 3/4. We denote D̃a =

{f(a)ψ(a−1)ψ ∈ aHom(G,H) : ψ ∈ Da}. Then, with probability ≥ 1− η, we have

L ⊆
⋃
a∈S

D̃a.

We remark that D̃a ⊂ aHom(G,H) is found by translating elements of Da ⊂ Hom(G,H),

but not all by the same element.

We defer the proof to state the main result of this section, which is an immediate conse-

quence.
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Access 4.3.18. An oracle provides uniform random elements of G.

Corollary 4.3.19 (Hom versus aHom). Let G and H be groups. If Hom(G,H) is CombEcon,

then aHom(G,H) is CombEcon. Under Access 4.3.18, if Hom(G,H) is CertEcon, then

aHom(G,H) is CertEcon. Under Access 4.3.18, if Hom(G,H) is AlgEcon, then aHom(G,H)

is AlgEcon.

Remark 4.3.20 (Deterioration). The bounds on cost in the result above deteriorate as

follows.

• A 1
λ multiplicative factor in list size.

• An O( 1
λ ln(1/λ)) multiplicative factor in queries to the received word f .

• An O( 1
λ ln(1/λ)) multiplicative factor in amount of work.

Towards proving Lemma 4.3.17, we state a few facts relating a�ne homomorphisms to

their base homomorphisms.

Observation 4.3.21. Let G and H be groups and ϕ ∈ aHom(G,H). Then,

ϕ(a)−1ϕ(ag) = ϕ0(g) ∀a, g ∈ G.

Corollary 4.3.22. Let G and H be groups, f : G → H, and ϕ ∈ aHom(G,H). If f(a) =

ϕ(a), then

f(ag) = ϕ(ag) ⇐⇒ f(a)−1f(ag) = ϕ0(g) ⇐⇒ fa(g) = ϕ0(g).

It follows that agr(f, ϕ) = agr(fa, ϕ0).

We can now prove our concentration lemma.
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Proof of Lemma 4.3.17. Fix the function f : G → H. Consider the bipartite graph with

vertices V = G and W = L(aHom(G,H), f, λ), where the edge set contains (a, ϕ) ∈ G ×

aHom(G,H) if f(a) = ϕ(a). We will apply Lemma 4.1.1, so �rst check the conditions are

satis�ed.

For every ϕ ∈ W , we have agr(ϕ, f) > λ by de�nition, so deg(ϕ) > λ.

We show that deg(a) ≤ `(Hom(G,H), λ), by showing that the map ϕ 7→ ϕ0 is an injection

from N(a) = {ϕ ∈ W : f(a) = ϕ(a)} to L(Hom(G,H), fa, λ). This map is well-de�ned

since f(a) = ϕ(a) implies agr(f, ϕ) = agr(fa, ϕ0), by Corollary 4.3.22. We show this map

is injective. If ϕ1, ϕ2 ∈ aHom(G,H) satisfy ϕ1(a) = f(a) = ϕ2(a) and ϕ0
1 = ϕ0

2, then

ϕ1(g) = ϕ1(a)ϕ0(a−1g) = ϕ2(a)ϕ0(a−1g) = ϕ2(g) for all g ∈ G, by Observation 4.3.21.

Apply the two parts of Lemma 4.1.1 to �nd the following.

(i) We conclude that |L(aHom(G,H), f, λ)| ≤ 1
λ`(Hom(G,H), λ).

(ii) The subset U is the chosen subset S of G. The subset Û contains the element a ∈ U ⊆

G if list-decoding for L(Hom(G,H), fa, λ) succeeds, which happens with probability

≥ 3/4 independently over a.

It remains to show that if Da = L(Hom(G,H), fa, λ), then D̃a ⊇ N(a). But, if

ϕ ∈ N(a), we have already established that ϕ0 ∈ L(Hom(G,H), fa, λ). Moreover,

since f(a) = ϕ(a), we have ϕ(g) = f(a)ϕ0(a−1g) for all g ∈ G, by Observation 4.3.21.

So, D̃a ⊇ N(a) by the de�nition of D̃a.
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CHAPTER 5

COMBINATORIAL LIST-DECODABILITY

5.1 Introduction

This chapter is concerned with the combinatorial economical list-decodability of homomor-

phism codes with alternating domain. To prove this, we present a set of combinatorial tools

that may apply to more general classes of homomorphism codes.

5.1.1 Structure of chapter

In the rest of this introduction section, we contrast our new combinatorial tools with those

in the literature.

Section 5.2.4 formally presents our combinatorial strategy. Section 5.2.1 states the useful

�strong negative correlation� bound. While it is a consequence of the Johnson bound, we

provide a simple proof. Section 5.2.2 shows that we may assume ε is small in terms of Λ,

a consequence of strong negative correlation. Sections 5.2.3� 5.2.5 describe our three-step

strategy to bound list size: split the list into buckets (spheres centered instead around a

homomorphism), split into sub-buckets (the agreement with the homomorphism is localized

to a large subgroup), then bound sub-buckets in terms of subgroup depth.

Section 5.3 uses the presented strategy to prove that {alternating→arbitrary} homo-

morphism codes are CombEcon. Section 5.3.1 presents background results for alternating

groups. Section 5.3.2 gives the proof. Section 5.3.3 gives an example of list-size blowup at

agreement Λ, providing evidence that (1− Λ) is the list-decoding radius.

5.1.2 Previous strategies

Previous approaches [GKS06, DGKS08, GS14] to proving CombEcon list-decodability relied

on generalizing an interpretation of the Johnson bound, which bounds the size of q-ary error
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correcting codes in terms of the code length, distance, and q. This bound is shown to hold for

agreement sets of homomorphisms in the list, by an inductive argument through a subgroup

chain in the codomain. With this approach, structural constraints on the codomain are

unavoidable.

A �base case� weighted p-ary Johnson bound is stated below.

Lemma 5.1.1 (p-ary Johnson bound). Let f, ϕ1, . . . , ϕ` : [n]→ [q] be functions satisfying

(1) agr(f, ϕi) = 1/q + αi for αi ≥ 0, and

(2) agr(ϕi, ϕj) ≤ 1/q for every i 6= j.

Then, ∑̀
i=1

α2
i ≤ 1. (5.1)

The breakthrough in [DGKS08] showed that special intersecting families of sets satisfy

the inequality of Equation (5.1), with some constant C instead of 2. This bounds the size of

the family. An inductive argument showed that agreement sets between the received word

and homomorphisms in the list formed special intersecting families.

Special intersecting families are sets with small intersection, much like Conditions (1)

and (2) of Lemma 5.1.1. In addition, they must already satisfy a base inequality such as

Equation (5.1) and a �Helly�-like condition. We state the de�nition and the central lemma

of special intersecting families from [DGKS08] below.

De�nition 5.1.2 (Special intersecting family). A collection S1, . . . , S` ⊆ X of subsets is a

(ρ, τ, c)-special intersecting family if the following hold:

1. µ(Si) ≥ ρ for each i;

2. µ(Si ∩ Sj) ≤ ρ whenever i 6= j;

3.
∑`
i=1 (µ(Si)− ρ)c ≤ 1;
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4. If J ⊆ I ⊆ [`], |J | ≥ 2, and µ(SI) > τ , then SI = SJ , where SK = ∩i∈KSi for any

K ⊆ [`];

Theorem 5.1.3 (Special intersecting theorem). For every c <∞, there exists C = C(c) <

∞, the special intersecting number for c, such that the following holds: if S1, . . . , S`

form a (ρ, ρ2, c)-special intersecting family, with µ(Si) = ρ+ αi and µ(
⋃
i Si) = ρ+ α, then

αC ≥
∑̀
i=1

αCi . (5.2)

In fact, one can take C = 2c · (c+ 1)(4 + (c+ 1) log2 3).

Theorem 5.1.3 is key to an inductive argument that the inequality of Equation 5.1, with

2 replaced by C, holds for agreement sets.

For the case of abelian (and nilpotent) codomain, the codomain has a normal series with

prime cyclic factors. By quotienting out successively smaller subgroups of the codomain, the

strategy of [DGKS08] shows that the agreement sets of homomorphisms with the received

word form special intersecting families.

5.1.3 Our strategies

Our new tools initialize via a Johnson-like argument on agreement sets, to break the desired

list into �buckets.� Further bucket splitting and arguments through the subgroup lattice of

the domain give us our combinatorial bounds.

We remark that these arguments work only in the domain. This allows us to drop all

structural constraints on the codomain.

We give a brief overview of the proof that alternating groups are universally CombEcon.

First, we introduce a tool called �strong negative correlation,� which similarly bounds

the number of sets with certain intersection properties. While this tool does follow from
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the Johnson bound, a simple proof with a slightly improved constant will be presented in

Section 5.2.1.

Strong negative correlation will, similarly to prior approaches, be applied to agreement

sets between the received word and homomorphisms in the list. The assumptions are ful�lled

by all lists up to minimum distance. So, this tool is more widely applicable than special

intersecting families but lacks the same inductive power.

Strong negative correlation is used to split the list of homomorphisms into �buckets�

(Section 5.2.1), where each bucket consists of a ball around a representative homomor-

phism (homomorphisms in the have high agreement with a representative homomorphism).

The buckets, centered around a homomorphism, are split further into �sub-buckets� (Sec-

tion 5.2.4), where the agreement with the representative homomorphism is localized to a

large subgroup. This splitting is described in Remark 5.2.11.

A �lattice-climbing� argument (Section 5.2.5) bounds the size any set of homomorphisms

that agree on a subgroup, by a polynomial with degree the depth of the subgroup. In

particular, sub-buckets have polynomially bounded size.

5.2 Tools

5.2.1 Strong negative correlation

We de�ne strongly negatively correlated families of subsets and give a simple proof for a

bound on their sizes. We apply this bound via a sphere-packing argument to divide lists into

�few� buckets. Another consequence is that we may without loss of generality assume that

ε <
√

2Λ.

De�nition 5.2.1 (Strong negative correlation). Let 0 < ρ ≤ 1 and τ > 0. Let X be a

�nite set and let S1, . . . , Sr ⊆ X. We say that S1, . . . , Sr are (ρ, τ)-strongly negatively

correlated if
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(1) µ(Si) ≥ ρ for all i, and

(2) µ(Si ∩ Sj) ≤ ρ2 − τ for all i 6= j.

We will apply this with Si as the agreement set agr(ϕi, f) between a homomorphism

ϕi in the list and the received word f . Notice the similarity between the de�nition of

strong negative correlation and the conditions of Lemma 5.1.1 (p-ary Johnson bound) and

De�nition 5.1.2 (special intersecting families). We give a simple proof of a Johnson-type

bound on the number of strongly negatively correlated subsets.

Lemma 5.2.2 (Strong negative correlation bound). Let 0 < ρ < 1 and τ > 0. Let X be

a �nite set and let S1, . . . , Sr ⊆ X be (ρ, τ)-strongly negatively correlated subsets. Then,

r ≤ 1
4τ + 1.

Proof. Choose x uniformly from X. For 1 ≤ i ≤ r, let Zi(x) = χ[x ∈ Si] be the indicator

random variable for the event that x ∈ Si. Notice that Var(Zi) = µ(Si)(1− µ(Si)) ≤ 1
4 .

For i 6= j,

Cov(Zi, Zj) = E[ZiZj ]− E[Zi]E[Zj ] ≤ (ρ2 − τ)− ρ2 = −τ.

So,

0 ≤ Var

(∑
i

Zi

)
=
∑
i

Var(Zi) +
∑
i 6=j

Cov(Zi, Zj) ≤
r

4
+ r(r − 1)(−τ).

Solving for r gives the bound as claimed.

5.2.2 Small ε assumption

The �rst consequence of strong negative correlation (Lemma 5.2.2) is that we may assume

ε is �small,� i.e., ε <
√

2Λ. So, to show CombEcon it su�ces to show a list-size bound of

poly(1/ε, 1/Λ), instead of poly(1/ε).
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Lemma 5.2.3 (Small ε lemma). Let G be a �nite group and H a group. Suppose that Λ ≤
1
2ε

2. Then, `(aHom(G,H),Λ + ε) ≤ 1
2ε2

+ 1. In particular, aHom(G,H) is combinatorially

(Λ + ε, poly(1/ε))-list-decodable.

Proof. Let L = L(aHom(G,H),Λ + ε). We show that the sets {Eq(f, ϕ)}ϕ∈L are (Λ +

ε, ε2/2)-strongly negatively correlated. But, µ(Eq(f, ϕ)) ≥ Λ + ε for all ϕ ∈ L by de�nition

of L. Also, Eq(f, ϕ1) ∩ Eq(f, ϕ2) ⊆ Eq(ϕ1, ϕ2) so µ(Eq(f, ϕ1) ∩ Eq(f, ϕ2)) ≤ Λ for all

distinct ϕ1, ϕ2 ∈ L. By Lemma 5.2.2, we �nd that |Φ| ≤ 1
2ε2

+ 1.

Corollary 5.2.4. Let D be a class of pairs of groups. If `(aHom(G,H), f,ΛG,H + ε) =

poly(1/Λ, 1/ε) for all (G,H) ∈ D, f : G→ H, and ε > 0, then D is CombEcon.

The result also holds with Hom in place of aHom.

5.2.3 Bucket splitting: sphere packing argument

We apply strong negative correlation (Lemma 5.2.2) to agreement sets, in order to bound the

size of a set of homomorphisms, each with high agreement with the received word but also

with low pairwise agreement. This will serve as our base tool to split L(aHom(G,H), f,Λ+ε)

into �buckets.�

Lemma 5.2.5 (Sphere packing bound). Let G be a �nite group, H a group, and ε > 0.

Let f : G → H be the received word. Let Ψ ⊆ L(aHom(G,H), f,Λ + ε) be a subset of the

list. Suppose that Ψ is maximal under the condition that its members have low pairwise

agreement, i.e., agr(ψ1, ψ2) ≤ Λ2 for all distinct ψ1, ψ2 ∈ Ψ. Then, the size of Ψ can be

bound by

|Ψ| ≤ 1

4(Λ + ε)ε
+ 1. (5.3)

Notice that the result also holds with Hom in place of aHom, as Hom ⊂ aHom.

Proof. The sets Eq(f, ψ) for ψ ∈ Ψ are (Λ + ε, (Λ + ε)ε)-strongly negatively correlated, so

the result follows by Lemma 5.2.2.
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Remark 5.2.6. While Lemma 5.2.5 applies to all groups, it is an existential result. We

cannot �nd the homomorphisms chosen in Ψ, so this is the segment of the CombEcon proof

that cannot be translated into an algorithmic method. Imposing �shallow random generation�

assumptions on the domain (see the next chapter) will allow us to bypass this issue and arrive

at amenable buckets.

The set Ψ will label the buckets that we split L(aHom(G,H), f,Λ+ε) into. Each bucket,

denoted Φψ,λ, will contain the sphere centered at the homomorphism ψ ∈ Ψ with radius

(1− λ). We introduce notation then formally state the bucket splitting.

Notation 5.2.7 (Φψ,λ). Let G be a �nite group, H a group, ψ ∈ aHom(G,H), f : G→ H,

and ε > 0. Let 0 ≤ λ ≤ 1. Denote the subset of L = L(aHom(G,H), f,Λ + ε) that has

λ-agreement with ψ by

Φψ,λ := {ϕ ∈ L : agr(ϕ, ψ) > λ}.

Lemma 5.2.8 (Bucket-splitting lemma). Let G be a �nite group, H a group, f : G → H,

ψ ∈ aHom(G,H), and ε > 0. Then, there exists a subset Ψ ⊂ L(aHom(G,H), f,Λ+ε), with

size |Ψ| ≤ 1
4(Λ+ε)ε

+ 1, that satis�es

L(aHom(G,H), f,Λ + ε) ⊆
⋃
ψ∈Ψ

Φψ,Λ2 .

Proof. Let f : G→ H. Let Ψ ⊆ L(aHom(G,H), f,Λ+ε) be a maximal subset satisfying the

conditions of Lemma 5.2.5, i.e., maximal under the conditions that distinct ψ1, ψ2 ∈ Ψ have

small agreement agr(ψ1, ψ2) ≤ Λ2. Lemma 5.2.5 concludes the desired bound on |Ψ|. By

the maximality of Ψ, any ϕ ∈ L(aHom(G,H), f,Λ + ε) > Λ2 has high agreement agr(ϕ, ψ)

with some homomorphism ψ ∈ Ψ. Lemma follows.

75



5.2.4 Further bucket splitting: localizing to subgroups

We present a method to further split the buckets Φψ,Λ2 (found in Lemma 5.2.8 of Sec-

tion 5.2.1) based on the location of agreement with ψ. These �sub-buckets� consist of homo-

morphisms that all agree on a low-depth subgroup. The size of the sub-buckets can then be

bounded using the depth of the label subgroup. This approach depends very little on the

codomain H and will be used to prove that alternating groups are universally CombEcon.

The bucket Φψ will be split according to the location of agreement with ψ, with sub-

buckets labeled by subgroups K. We introduce notation for the sub-buckets.

Notation 5.2.9 (Φψ,K). Let G be a �nite group, H a group, ψ ∈ aHom(G,H), f : G→ H,

and ε > 0. Let K ≤ G be a subgroup. Denote the subset of L = L(aHom(G,H), f,Λ + ε)

that agrees with ψ on K by

Φψ,K = {ϕ ∈ L : K ≤ Eq(ϕ, ψ)}. (5.4)

Next we de�ne starting sets, sets of subgroups, which we use to label the sub-buckets we

would like to split one bucket Φψ,λ into. Intuitively, a set S of subgroups is a starting set if

the upper range of the subgroup lattice of G contains only supergroups of elements in S.

De�nition 5.2.10 ((G, λ)-starting-set). Let S be a set of subgroups of G. Let λ ∈ (0, 1).

We say that S is a (G, λ)-starting-set if

(∀K ≤ G)(µG(K) > λ⇒ (∃S ∈ S)(S ≤ K)).

Remark 5.2.11. let G be a �nite group, H a group, ψ ∈ aHom(G,H), f : G → H, and

ε > 0. Let 0 ≤ λ ≤ 1. If S is a (G, λ)-starting set, then

Φψ,λ =
⋃
K∈S

Φψ,K .
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Combining a (G, λ)-starting set S with a subset Ψ ⊂ L(aHom(G,H), f,Λ + ε) found by

Lemma 5.2.8, we �nd that

L(aHom(G,H), f,Λ + ε) ⊂
⋃
ψ∈Ψ

⋃
K∈S

Φψ,K . (5.5)

We will use Equation (5.5) to bound list size. Lemma 5.2.8 bounds |Ψ|. The next section

provides tools to bound |Ψψ,K | using the depth of K. Then, a bound on the size of a

(G,Λ2
G,H)-starting set would su�ce to provide list-size bounds for aHom(G,H).

5.2.5 Bounding list size via subgroup depth

In this section, we will bound |Φψ,K |. We do this by choosing a few random elements from

G then by considering the probability that they along with K generate a large subgroup of

G (Lemma 5.2.12). The number of random elements is bounded by the subgroup depth of K.

First, we show how the probability that random elements generate a large subgroup can

be used to bound |Φψ,K |.

Lemma 5.2.12. Let G be a �nite group, H a group, K ≤ G a subgroup, f : G → H,

ψ ∈ aHom(G,H), d ∈ N and ε, η > 0. Suppose that for every subset S ⊆ G satisfying

µG(S) > Λ + ε we have

Pr
g1,...,gd∈G

[g1, . . . , gd ∈ S and µ(〈K, g1, . . . , gd〉) > Λ] > η. (5.6)

Then, |Φψ,K | ≤ 1/η, where Φψ,K is as de�ned in Notation 5.2.9.

We intuitively argue as follows. The assumption guarantees that the k-wise products

Eq(f, ϕ)k (for ϕ in the list) occupies a �large� portion of the the k-tuples (g1, . . . , gk) that

generate large subgroups, i.e., µ(〈g1, . . . , gk〉) > Λ. Large is measured with respect to density
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in Gk. Since Λ is de�ned using equalizers between distinct homomorphisms, Eq(f, ϕ)k must

be disjoint within these k-tuples. This bounds the size of the list.

Proof. Pick g1, . . . , gd be independently and uniformly from G. For ϕ ∈ Φψ,K , let Eϕ be

the event that both g1, . . . , gd ∈ Eq(f, ϕ) and µ(〈K, g1, . . . , gd〉) > Λ. Since the subset

Eq(f, ϕ) ⊆ G satis�es µ(Eq(f, ϕ)) > Λ + ε, we have by assumption that Pr[Eϕ] > η for all

ϕ ∈ Φψ,K .

We show that the events Eϕ are mutually exclusive. For ϕ1, ϕ2 ∈ Φ, suppose that Eϕ1

and Eϕ2 overlap, i.e., there exist g1, . . . , gd ∈ Eϕ1 ∩ Eϕ2 . Then, gi ⊂ Eq(f, ϕ1) ∩ Eq(f, ϕ2)

so ϕ1(gi) = ϕ2(gi) for all 1 ≤ i ≤ d. Recall that K ⊂ Eq(ϕ1, ϕ2) by de�nition of Φψ,K . So,

〈K, g1, . . . , gd〉 ⊆ Eq(ϕ1, ϕ2) and µ(Eq(ϕ1, ϕ2)) > Λ, so ϕ1 = ϕ2.

We have found that
∑

ϕ∈Φψ,K

Pr(Eϕ) ≤ 1 and Pr[Eϕ] > η for all ϕ ∈ Φψ,K . Conclusion

follows.

Now, we give a bound on the probability assumed in Lemma 5.2.12 in terms of the depth

of the subgroup K.

Lemma 5.2.13. Let 0 ≤ λ < 1. Let G be a �nite group, K ≤ G a subgroup, and S ⊆ G a

subset. Suppose that µG(S) > λ. We denote ε = µ(S)− λ and d = depthG(K). Then,

Pr
s1,...,sd∈S

[µ(〈K, s1, . . . , sd〉) > λ] ≥
(

ε

λ+ ε

)d
.

It follows that

Pr
g1,...,gd∈G

[g1, . . . , gd ∈ S and µ(〈K, g1, . . . , gd〉) > Λ] ≥ εd.

This is proved by repeated application of Bayes' rule.

Proof. Pick s1, s2, s3, . . . independently and uniformly from S. We proceed by induction on

|G : K|.
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Suppose µ(K) > λ. Then, Pr[µ(〈K, s1, . . . , sd〉) > λ] = 1.

Suppose µ(K) ≤ λ. Then, with probability
µ(S rK)

µ(S)
≥ ε

λ+ ε
, we have that s1 /∈ K, so

〈K, s1〉 > K, and depthG〈K, s1〉 = d− 1. By in the induction hypothesis,

Pr[µ(〈K, s1, . . . , sd〉) > λ] ≥ Pr[µ(〈K, s1, . . . , sd〉) > λ | s1 /∈ K] · Pr[s1 /∈ K] (5.7)

≥
(

ε

λ+ ε

)d−1

·
(

ε

λ+ ε

)
. (5.8)

As a corollary to Lemmas 5.2.12 and 5.2.13, we bound |Φψ,K | using the depth of K.

Corollary 5.2.14 (Bucket bound). Let G be a �nite group, H a group, K ≤ G a subgroup,

f : G→ H, and ε > 0. Then,

|Φψ,K | ≤ 1/εdepthG(K).

5.3 Alternating domain

In this section, we will �nd that homomorphism codes with alternating domain are CombE-

con. The exact constant is stated in Theorem 5.3.3. We remark that the constant in the

poly(1/ε)-bound on list size can be improved using the SRG methods of Section 6.2. The

proof here uses the strategy outlined in Remark 5.2.11 and in particular Equation (5.5).

A small starting set is found using Jordan-Liebeck (Theorem 2.4.2), then a bound on the

depth of its subgroups follows a previous result on length of subgroup chains in symmetric

groups [Bab86].

Section 5.3.1 presents background on the structure of alternating groups. Section 5.3.2

proves the claim that Alt×Groups is CombEcon. Section 5.3.3 addresses the list-decoding
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radius of homomorphism codes with alternating domain, by exhibiting a �blowup� in list size

when the agreement is exactly Λ, or when the radius is (1− Λ).

5.3.1 Background on structure of alternating groups

For a set Ω, let Alt(Ω) denote the alternating group on Ω. Similarly, let Sym(Ω) denote the

symmetric group on Ω. We denote An = Alt([n]) and Sn = Sym([n]).

Let G ≤ Sn. For π ∈ G , we denote xπ := ϕ(π)(x). For x ∈ [n], denote by Gx = {π ∈

G | xπ = x} the point stabilizer of x. Let ∆ ⊆ [n]. Denote by G(∆) = {π ∈ G | (∀x ∈

∆)(xπ = x)} the pointwise stabilizer of ∆. Denote by G{∆} = {π ∈ G | ∆π = ∆} the

setwise stabilizer of ∆, where ∆π := {xπ : x ∈ ∆}.

Below is a reult of [Bab86] that describes the length of subgroup chains. This will be

used to bound the depth of large subgroups, in order to apply Lemma 5.2.13.

Theorem 5.3.1 (Babai). The length of any subgroup chain in Sn is at most 2n− 3.

Corollary 5.3.2. The length of every subgroup chain between An−k and Sn is at most 2k−1.

5.3.2 Alterating groups are universally CombEcon

We state the universal CombEcon result for alternating groups with a speci�c constant.

Theorem 5.3.3. For every group H, n ≥ 10 and ε > 0, we �nd that

`(Hom(An, H),ΛAn,H + ε) ≤ 1/ε16.

We follow the strategy of Remark 5.2.11. What remains is to �nd a small (An,Λ
2
An,H

)-

starting set that contains subgroups of small index, for all groupsH. Recall from Lemma 3.2.15

that ΛAn,H ≥ 1/
(n

2

)
. Since any (An, λ1)-starting set is also an (An, λ2)-starting set if

λ1 < λ2, �nding an (An, 1/
(n

2

)2
)-starting set su�ces.

We will use as our starting set the subgroups An−5 of An found by �xing �ve points.
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Notation 5.3.4 (S(n)). For every n ∈ N, de�ne the set S(n) of subgroups of An by

S(n) := {(An)(∆) : ∆ ⊂ [n], |∆| = 5}.

That S(n) is a su�cient starting set follows immediately from Jordan-Liebeck and the

order of alternating groups.

Corollary 5.3.5. If n ≥ 10, the set S(n) of subgroups of An is an (An, 1/
(n

2

)2
)-starting set.

The depth of subgroups in S(n) is bound by Corollary 5.3.2.

Corollary 5.3.6. If K ∈ S(n), then depthAn(K) ≤ 8.

Now, we have all the tools to conclude the list-size bound of Theorem 5.3.3. We combine

arguments presented above.

Proof of Theorem 5.3.3. Fix f : G → H. Let Ψ ⊆ aHom be as found by Lemma 5.2.8. Let

S(n) be as de�ned in Notation 5.3.4. By Remark 5.2.11, we have that

|L(aHom(G,H), f,Λ + ε)| ≤ |Ψ| · |S(n)| · max
ψ∈Ψ

K∈S(n)

|Φψ,K |.

We bound each term. By Lemma 5.2.8, we have |Ψ| ≤
(

1
4(Λ+ε)ε

+ 1
)
. Subgroups in S(n) can

be labeled by 5-tuples in [n], so |S(n)| =
(n

5

)
. We may assume that ε2 < 2Λ by Lemma 5.2.3,

so that |S| =
(n

5

)
< (
(n

2

)
/2)3 = (Λ/2)3 < 1/ε6. Corollary 5.3.6 showed that depthAn(K) ≤ 8

for all K ∈ S(n), so by Corollary 5.2.14, we �nd that |Φψ,K | ≤ 1/ε8. Combining, this gives

the exponent of 16 as claimed.

5.3.3 Upper bound on list-decoding radius

We showed in Section 5.3.2 that Alt×Groups, and all of its subclasses, have list-decoding

radius greater than 1− (Λ + ε) for all ε > 0.
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In contrast, Alt×Groups and many of its subclasses have list-decoding radius at most

1 − Λ. In this section, we demonstrate such a subclass. The number of homomorphisms

within a closed ball of radius 1 − Λ of a received word will be exponential in log|G| and

log|H|. We note that |H| ≥ |G| unless Λ = 0.

Proposition 5.3.7. For any n, and either λ ∈ {1/n, 1/
(n

2

)
}, there exists a group Hn such

that ΛAn,Hn = λ and

`(Hom(An, Hn),Λ) = 2Ω(n) ≥ 2
Ω
(

3
√

log|H|
)
. (5.9)

Proof. Suppose λ = 1/n. Let Hn = Akn+1, the direct product of k copies of An+1. Then

ΛAn,Hn = 1/n. Let f : An → Hn by f(g) = (g, . . . , g), the diagonal identity map, whereAn is

embedded in An+1. For nonempty S ⊆ [n] and j ∈ [n], let h = h(S, j) = (h1, . . . , hk) ∈ Hn,

where hi is the transposition (j, n + 1) if i ∈ S and 1 otherwise. For each such h, let ϕh ∈

Hom(An, Hn) be given by ϕh(g) = h−1f(g)h. Each ϕh has agreement agr(ϕh, f) = 1/n = Λ

with f . There are n(2k − 1) such h, so `(Hom(An, Hn),Λ) ≥ n(2k − 1).

Suppose λ = 1/
(n

2

)
. Let Hn = Akn. Then, ΛAn,Hn = 1/

(n
2

)
. Let f : An → Hn by f(g) =

(g, . . . , g), the diagonal identity map. For nonempty S ⊆ [n] and τ ∈ Sn is a transposition,

let h = hS,τ = (h1, . . . , hk) ∈ Akn, where hi = τ if i ∈ S and 1 otherwise. For each such

h, let ϕh ∈ Hom(An, Hn) be given by ϕh(g) = h−1f(g)h. Each such ϕh has agreement

agr(ϕh, f) = 1/
(n

2

)
. There are

(n
2

)
(2k − 1) such h, so `(Hom(An, Hn),Λ) ≥

(n
2

)
(2k − 1).

We remark in particular that `(Hom(An, H),ΛAn,H) is not bounded as a function of n

for a wide variety of classes of H.
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CHAPTER 6

ALGORITHMIC LIST-DECODABILITY

6.1 Introduction

This chapter addresses our algorithmic approaches to list-decoding.

Section 6.2 introduces shallow random generating (SRG) groups, then proves that they

are universally CombEcon and CertEcon. This gives a separate proof that alternating groups

are universally CombEcon. More notably, however, is that the existence of a W-certi�cate-

list-decoder for all homomorphism codes with SRG domain (see Section 6.2.5), where W

consists of certi�cates γ with µ(〈dom(γ)〉) > ΛG,H (Condition (2) discussed in Section 3.2.3).

See Section 3.1.5 for W-certi�cate terminology.

Section 6.3 gives an overview of currently existing tools that prove homomorphism codes

are AlgEcon: those in prior works, the extension principles in Chapter 4, and the approach

that bridges the gap between CertEcon and AlgEcon (as outlined in Section 3.1.5, �nding an

e�cientW-subword extender would show AlgEcon of homomorphism codes with alternating

domain).

6.1.1 Structure of chapter

In Section 6.2, we prove results about SRG groups (de�ned in Section 3.2.2), group where

few random elements tend to generate a shallow (low depth) subgroup. We will show that

alternating groups are SRG (Section 6.2.1). SRG groups are universally CombEcon and

CertEcon, as proved in Sections 6.2.4 and 6.2.5. This is accomplished by de�ning a techni-

cal �subset-generated� condition (Section 6.2.2) then proving that SRG groups satisfy this

condition.

Section 6.3 discuss the algorithmic methods available to list decode homomorphism codes.

Section 6.3.1 gives an overview of the three main methods at our disposal, including a
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discussion of their access assumptions. Sections 6.3.2 and 6.3.3 discuss the gap between

certi�cate-list-decoders and list-decoders; HomExt is exactly subword extension for Hom

(Section 6.3.2), whereas HomExt can solve subword extension for aHom (Section 6.3.3).

Section 6.3.4 discusses the necessity and perks of knowing or lower bounding Λ. It turns

out that a stronger version (HomExt012) of Homomorphism Extension helps improve lower

bounds (Section 6.3.5). Section 6.3.6 discusses how to establish the value of Λ in the algo-

rithm of prior works.

Homomorphism Extension is the subject of Chapter 7.

6.2 Shallow random generation

Let k, d ∈ N. Recall De�nition 3.2.4: a �nite group G is (k, d)-shallow generating if

Pr
g1,...,gk∈G

[depth(〈g1, . . . , gk〉) > d] < (Λ∗G)k. (6.1)

6.2.1 Alternating groups are SRG

In this subsection, we prove that Alt is SRG.

Theorem 6.2.1. The class of alternating groups is SRG. In fact, for all su�ciently large

n, the alternating group An is (2, 6)-shallow generating.

Consequences. Before proving Theorem 6.2.1, we �rst discuss its consequences.

From Theorem 6.2.10, we �nd that `(aHom(An, H),Λ + ε) < 1/ε9 for all H ∈ Groups.

We remark that the constant 9 can be improved to 7. This can be accomplished by going

through the proof with a �depthΛ� notion instead of depthG as written. (This improves the

resulting (8,Λ, 7)-generated claim from Section 6.2.3 to (6,Λ, 5)-generated.) This depthΛ(K)

refers to maximal length of a subgroup chain from K to a subgroup of density greater than

Λ.
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By Theorem 6.2.11 and using the certi�cate-list-decoder CertLD, Alt×Groups is strong

certi�cate-list-decodable using O(ln(1/ε)/ε9) queries.

If H = Sm and m < 2n/
√

1.6n, then calls of HomExt in CertToAlg can be executed

in poly(n,m)-time, as shown in the Appendix. So, CertToAlg has a running time of

poly(n,m). This gives a list decoder for this case, but running in poly(1/ε, n,m)-time while

using poly(1/ε)-queries.

Proof. Towards proving Theorem 6.2.1, we �rst present Theorem 6.2.2 from [Bab89, The-

orem 1.5]. It says that two elements of the alternating group have extremely high probability

of generating a shallow subgroup.

First, we see that two elements have extremely high probability of generating a large

subgroup. This event is denoted E(n, k) in the statement.

Theorem 6.2.2 (Babai). Let π, σ be a pair of independent uniform random elements from

Sn. For 0 ≤ k ≤ n/3, let E(n, k) denote the following event: The subgroup H = 〈π, σ〉 acts

as Sr or Ar on r elements of the permutation domain for some r ≥ n− k. Then,

Pr(E(n, k)) = 1−
(

n

k + 1

)−1

+O

((
n

k + 2

)−1
)
. (6.2)

The constant implied by the big-O notation is absolute.

Remark 6.2.3. Suppose that we choose π and σ from An (instead of Sn) in Theorem 6.2.2.

The same conclusion is still true. However, using only Theorem 6.2.2 as justi�cation, the

conclusion is slightly weaker � there will be a coe�cient of 4 in front of
( n
k+1

)−1. In our

application, this coe�cient makes no di�erence to our argument.

Theorem 5.3.1 [Bab86] (stated in Section 5.3.1) bounds the depth of large subgroups. We

immediately �nd that two elements generate a shallow subgroup with high probability.

85



Claim 6.2.4. Let E, k, π, σ be de�ned as in Theorem 6.2.2. If E(n, k) occurs, then

depthAn(〈π, σ〉) ≤ 2k − 2.

Proof. Let K = 〈π, σ〉. If E(n, k) occurs, then K acts as Sr or Ar on some a subset of

r elements of [n], for r ≥ n − k > n/2. So, Ar ≤ K. By Corollary 5.3.2, we �nd that

depthAn(K) ≤ depthAn (Ar) ≤ 2k − 2.

Now we can prove Theorem 6.2.1. By the above discussion which relies on the main

results of [Bab86, Bab89], two elements generate a depth-5 subgroup.

Proof of Theorem 6.2.1. By Theorem 6.2.2 and Claim 6.2.4, we �nd for large n that

Pr
π,σ∈An

[depthAn(〈π, σ〉) > 6] ≤ Pr
π,σ∈An

[¬E(n, 4)] ≤ 4(n
5

) ≤ 1(n
2

)2 .
It follows that An is (2, 6)-shallow generating.

6.2.2 Subset-generation

In this section we de�ne a useful technical property of groups, which SRG groups have (shown

in the next section). Our SRG implies CombEcon and SRG implies CertEcon results will be

proven by assuming this property.

De�nition 6.2.5 ((k, λ, c)-subset-generated). Let G be a �nite group, k a nonnegative

integer, 0 ≤ λ < 1, and c ≥ 0. We say that G is (k, λ, c)-subset-generated if, for all

subsets S ⊆ G with µ(S) > λ, we have that

Pr
s1,...,sk∈S

[µ(〈s1, . . . , sk〉) > λ] ≥
(

1− λ

µ(S)

)c
, (6.3)

where s1, . . . , sk are chosen independently and uniformly from S.
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Note that, if we de�ne ε = µ(S) − λ, then 1 − λ
µ(S)

= ε
λ+ε , matching the expression of

Lemma 5.2.13.

We say that G is (k, λ, c)-a�ne-generated if it satis�es De�nition 6.2.5 but with

〈s1, . . . , sk〉 replaced by 〈s1, . . . , sk〉aff .

We will make a few remarks on these de�nitions below, but �rst we de�ne KLC classes

of groups.

De�nition 6.2.6 (KLC). Let G be a class of �nite groups. We say that G is KLC if there

exists a positive integer k and a constant c > 0 such that, for all G ∈ G and for all groups

H, we have that G is (k,ΛG,H , c)-subset-generated.

The notion of �KLC-coset� can be de�ned analogously. But, according to Remark 6.2.7 (c)

and Lemma 6.2.8 below, the two conditions are equivalent conditions on a class of groups.

If a class of groups is KLC then it is universally CombEcon and CertEcon (Sections 6.2.4

and 6.2.5 These implications follow also with εc in De�nition 6.2.5 instead of
(

ε
λ+ε

)c
, but

with a worse constant.

We make a few remarks on the de�nitions of (k, λ, c)-subset-generated groups.

Remark 6.2.7. (a) For every k ≥ 1 and c ≥ 0, the class Groups of all �nite groups is

(k, 0, c)-subset-generated.

(b) Classes of (k, λ, c)-subset-generated groups are monotone in both k and c. More specif-

ically, for k′ > k and c′ > c, if G is (k, λ, c)-subset-generated, then G is also (k′, λ, c)-

subset-generated and (k, λ, c′)-subset-generated.

(c) If G is (k, λ, c)-a�ne-generated, then it is (k, λ, c)-subset-generated. The other direc-

tion is described in the next lemma.

Lemma 6.2.8. Let G be a group, k a nonnegative integer, 0 < λ < 1, and c ≥ 0 such that

G is (k, λ, c)-subset-generated. Then, G is (k + 1, λ, c)-a�ne-generated.
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Proof. This lemma follows from the next inequality, which holds for all 0 < λ < 1, 0 < τ < 1,

and k ∈ N:

min
S⊂G,µ(S)=λ

Pr
s1,...,sk∈S

[µ (〈s1, . . . , sk〉) > τ ] ≤ min
S⊂G,µ(S)=λ

Pr
s1,...,sk+1∈S

[µ (〈s1, . . . , sk+1〉aff) > τ ] .

We check this equation below. Denote the quantity of the left hand side by M . Let S ⊂ G

satisfy µ(S) = λ. Then,

Pr
s1,...,sk+1∈S

[µ (〈s1, . . . , sk+1〉aff) > τ ] = Pr
sk+1∈S

[
Pr

s1,...,sk∈S
[µ (〈s1, . . . , sk+1〉aff) > τ ]

]
= Pr
sk+1∈S

[
Pr

s1,...,sk∈S

[
µ
(
〈s1s

−1
k+1, . . . , sks

−1
k+1〉

)
> τ
]]

= Pr
sk+1∈S

 Pr
s1,...,sk∈S·s−1k+1

[µ (〈s1, . . . , sk〉) > τ ]


≥ Pr
sk+1∈S

[M ] = M

6.2.3 SRG implies subset-generation

We prove that SRG implies KLC.

Theorem 6.2.9 (SRG implies KLC). If a class G of groups is SRG, then G is KLC.

In particular, let G be a �nite group, k, d ∈ N, and λ > 0. If G is (k, d)-shallow

generating, then G is (k + d, λ, 1 + d)-subset generated for all λ ≥ Λ∗G.

Proof. All groups are trivially (1, 0, 1)-subset-generated, which covers the case where λ = 0.

Let λ > 0. By the assumptions, we know that

Pr
g1,...,gk∈G

[depth(〈g1, . . . , gk〉) > d] < λk. (6.4)
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We check the de�nition of (k + d, λ, 1 + d)-subset-generated.

Let S ⊂ G be such that µ(S) > λ and let ε = µ(S) − λ. We will pick a k-tuple

g = (g1, . . . , gk) and a d-tuple s = (s1, . . . , sd) from S. We write 〈g〉 to mean 〈g1, . . . , gk〉

and 〈s〉 similarly.

Observe that

Pr
g∈Sk,s∈Sd

[µ (〈g, s〉) > λ] ≥ Pr
s∈Sd

[µ (〈g, s〉) > λ | depth(〈g〉) ≥ d] · Pr
g∈Sk

[depth(〈g〉) ≥ d].

We bound the two components of the right hand side separately. When we drop the

subscript on Pr, that means the elements are chosen uniformly from G. First, we consider

the second component.

Pr
g∈Sk

[depth(〈g〉) ≥ d] = Pr
g∈Gk

[depth(〈g〉) ≥ d] | g ∈ Sk]

=
Pr[g ∈ Sk and depth(〈g〉) ≥ d]

Pr[g ∈ Sk]

≥ Pr[g ∈ Sk] + Pr[depth(〈g〉) ≥ d]− 1

Pr[g ∈ Sk]

>
µ(S)k − (λ)k

µ(S)k
= 1−

(
λ

µ(S)

)k
≥ 1− λ

λ+ ε
=

ε

λ+ ε
.

Now, it su�ces to show that the �rst component has probability bounded by
(

ε
λ+ε

)d
.

But, if depth(〈g〉) ≥ d, then it follows from Lemma 5.2.13, with K = 〈g〉 and λ = λ, that

Pr
s∈Sd

[µ (〈g, s〉) > λ | depth(〈g〉) ≥ d] >

(
ε

λ+ ε

)d
.
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We conclude that G is (k + d, λ, 1 + d)-subset-generated, or,

Pr
s1,...,sk+d∈S

[µ (〈s1, . . . , sk+d〉) > λ] = Pr
g∈Sk,s∈Sd

[µ (〈g, s〉) > λ] >

(
ε

λ+ ε

)d+1

.

6.2.4 SRG implies CombEcon

KLC quickly implies universally CombEcon. The proof is presented here for conceptual clar-

ity; of course, it follows from the �KLC implies universally CertEcon� result (Theorem 6.2.11)

in the next section.

Theorem 6.2.10. If a class G is SRG, then G is universally CombEcon. More precisely, let

k be a non-negative integer and c > 0. If G is (k,ΛG,H , c)-subset-generated and H a group,

then `(aHom(G,H),ΛG,H + ε) ≤ 1/εmax{c,k}+1 for all ε ∈ (0, 1− Λ).1

The proof uses Lemma 5.2.12 but is conceptually very simple. A t-tuple of elements

s1, . . . , st ∈ G that generate a subgroup of density > Λ cannot lie in the equalizer of distinct

a�ne homomorphisms in aHom(G,H). The KLC condition gives a density lower bound for

the number of such t-tuples for each a�ne homomorphism in the list. This gives an upper

bound for the length of the list.

Proof. Apply Lemma 5.2.12, with K = 1 to Φ = L(Hom(G,H), f,Λ + ε). The de�nition

of (k,Λ, c)-generating satis�es the assumptions of Equation (5.6) with η =
(

ε
Λ+ε

)c
. This

shows that

`(Hom(G,H),ΛG,H + ε) ≤ (Λ + ε)c

εc(Λ + ε)k
≤ 1/εmax{c,k}.

1. The constant in Theorem 6.2.10 can be shown to be max{c, k + 1} instead of max{c, k}+ 1, by using
a coset version of Lemma 5.2.12 or by Theorem 6.2.11 below.
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6.2.5 SRG implies CertEcon

A KLC class of groups is also universally CertEcon. The argument is conceptually similar

to that of CombEcon, but we formalize algorithmic issues.

Again, let WΛ denote the set of G⇀H partial maps γ satisfying µ(〈dom γ〉) > ΛG,H .

Theorem 6.2.11. If G be an SRG class of groups, then G is universally strong WΛ-

CertEcon. We assume that all groups in G are encoded groups, that (nearly) uniform el-

ements of G are provided, and that we have oracle access to the entries of the received word.

If a partial map γ may extend to some homomorphism and satis�es µ(〈dom(γ)〉) > Λ,

then γ is a W-certi�cate. However, dom(γ) may fail to generate the entire group, i.e.,

〈dom(γ)〉 � G. Section 6.3.2 will follow the strategy of Section 3.1.5 to �nd a full local list-

decoder, given CertLD (a W-certi�cate-list-decoder) and a Homomorphism Extension

oracle (a W-subword extender).

Domain certi�cates versus certi�cates.

We develop some terminology for Theorem 3.2.12, based on the natural idea of generating

certi�cates by querying the received word f . �Domain certi�cates� are subsets of the domain

that de�ne a certi�cate by restricting f to that set.

Let G and H be groups and f ∈ HG be a received word in the codespace of aHom(G,H).

Let S ⊆ G be a subset. Denote by fS the restriction of f to S, i.e., the H⇀G partial map

de�ned on domain S with values fS(s) = f(s) agreeing with f .

De�nition 6.2.12 (Domain certi�cate). When the code aHom(G,H) and the received word

f are understood, we say that a subset S ⊆ G is a domain certi�cate for the code

aHom(G,H) if the G⇀H partial map fS is a certi�cate for aHom(G,H).

For a set W of G⇀H partial maps, we say that S is a domain W-certi�cate if fS is

a W-certi�cate for aHom(G,H).
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Note that a domain certi�cate S is a domain WΛ-certi�cate if and only if µ(S) > ΛG,H .

De�nition 6.2.13 (Domain-certi�cate-list). We say that a list Υ of subsets of G is a

domain-certi�cate-list for a subset K ⊆ aHom(G,H) of a�ne homomorphisms if Υ con-

tains a domain certi�cate for each codeword in Υ. We de�ne domain-W-certi�cate-lists

similarly.

Domain certi�cate result.

Now, we can restate the unabridged SRG result (Theorem 3.2.12) in terms of domain

certi�cates.

Theorem 6.2.14 (SRG implies CertEcon, via domain cert�cates). Let k ∈ N and c > 0.

Let G be a (k,ΛG,H , c)-subset-generated group and H a group. Let f : G → H, ε > 0

and η > 0. Let Υ be a list of
⌈

1
εb

ln
(

1
ηεb

)⌉
independently chosen subsets of G, each of

size max{c, k}. Then, with probability at least (1− η), Υ is a domain-WΛ-certi�cate-list of

L(aHom(G,H), f,Λ + ε).

The proof is delayed to �rst discuss its implications and access model.

Remark 6.2.15 (Access model). To generate the domain-W-certi�cate-list, we need access

only the domain, only in the ability to generate random elements. No knowledge of H is

required. The dependence on H appears only in the ΛG,H of the assumption that G is

(k,ΛG,H , c)-subset generated, but the KLC assumption means that G is (k,ΛG,H , c)-subset

generated for every H. Knowledge of ΛG,H is also not required.

Theorem 6.2.14 produces domain W-certi�cates. No work is involved other generating

these poly(1/ε) uniform random elements of G. To then produce actual W-certi�cates,

simply query f on the domainW-certi�cates (subsets of G), an additional poly(1/ε) queries

to f . Theorem 6.2.11 follows.
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Remark 6.2.16 (Amount of work). Theorem 6.2.11 implies a stronger result than strong

CertEcon, as only a poly(1/ε) amount of work is required in the unit cost model (no depen-

dency on |G|).2

Analysis.

To prove Theorem 6.2.11 we check the de�nition of domain W-certi�cate-list. In other

words, with probability (1 − η), for every ϕ ∈ L(aHom(G,H), f,Λ + ε) the list Υ contains

a domain W-certi�cate Sϕ ⊂ G for ϕ.

Observation 6.2.17. If the conditions µ(〈S〉aff) > Λ and S ⊂ Eq(ϕ, f) are satis�ed, then

S is a domain W-certi�cate for ϕ.

We prove Theorem 6.2.11 by checking the conditions of Observation 6.2.17.

Proof of Theorem 6.2.11. Let L = L(aHom(G,H), f,Λ + ε). Recall that G is (k,ΛG,H , c)-

subset generated and we denote b = max{c, k + 1}. Let Υ = {S1, . . . , St} be the list of

subsets of G as assumed. Then, t =
⌈

1
εb

ln
(

1
ηεb

)⌉
and |Si| = b.

Fix ϕ ∈ L. Fix S ∈ Υ. We calculate the following.

Pr[S is a domain W-certi�cate for ϕ] ≥ Pr [S ⊆ Eq(ψ, f) ∩ µ (〈S〉aff) > Λ]

= Pr

[
µ (〈S〉aff) > Λ

∣∣∣∣S ⊆ Eq(ψ, f)

]
· Pr[S ⊆ Eq(ψ, f)]

>

(
ε

Λ + ε

)c
· (Λ + ε)k+1

> εb.

The �rst inequality follows from Observation 6.2.17, and the third inequality follows from

the de�nition of (k,Λ, c)-subset generated.

2. Two incomparable su�cient conditions for the access model to G are black-box access and polycyclic
presentations. In a black-box group, ε-uniform elements can be generated in polynomial time [Bab91]. Given
a polycyclic presentation, exactly uniform elements can be generated.
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The probability that Υ is not a domain W-certi�cate-list for L, i.e., there is ϕ ∈ L such

that Υ contains no domain-W-certi�cate for ϕ, is bounded by

|L| ·
(

1− εb
)t
≤ 1

εb
exp

(
−εb · t

)
< η.

6.3 Algorithms and access: HomExt and role of Λ

6.3.1 Overview of algorithms and access issues

We give an overview of the algorithmic tools available to list decode homomorphism codes,

with the goal of proving that they are AlgEcon. These are: (1) the list-decoders of prior works

(Theorem 6.3.1 below), (2) the extension principles of Chapter 4, and (3) the �certi�cate-

list-decoder along with a subword extender gives a list-decoder� principle of Remark 6.3.13.

Discussing method (3) and issues with �nding Λ will constitute the meat of this section.

Prior work

Prior literature [DGKS08, GS14] provided an AlgEcon list-decoder that inductively ex-

tends homomomorphisms through a subgroup chain in the domain with prime cyclic factors.

Homomorphism codes satisfying the assumptions must have supersolvable domain.

To list-decode, a set of homomorphisms is maintained at each step of the subgroup chain.

An extension of a homomorphism in the current set to the next subgroup in the chain can be

determined by its value on one element. The value on that element is strategically sampled,

to �nd a set of candidate extensions. The set of extensions is pruned to a reasonable size by

sampling agreement with f on cosets. This extends the set of homomorphisms to the next

subgroup in the chain.

The result is stated more formally below. For this algorithm, it is crucial that a list of
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a�ne homomorphisms are maintained, in order to sample from all cosets.

Theorem 6.3.1. Let D be the class of pairs (G,H), where G is a supersolvable group given

by polycyclic presentation with the subgroup chain 1 = G0 CG1 C · · ·CGk = G of subgroups

with prime cyclic factors, with the primes in decreasing order, and H is a group with black-

box access. Suppose that for all pairs (G,H) ∈ D and for all subgroups Gi in the chain

(Gi, H) is CombEcon. Then, D is AlgEcon.

The access assumptions are quite strict. The domain G must be given in polycyclic

presentation, with the primes ordered. Only black-box access is needed to H. The value of

Λ must be known (for pruning) in order to bound the run time and list size.

Bipartite covering method.

Chapter 4 uses the Bipartite Covering Lemma to prove two extension principles for eco-

nomical list-decoding. First, economical list-decoding and economical mean-list-decoding

are equivalent. This equivalence allows us to extend economical list-decoding conclusions

to repeated codes. Second, economical list-decoding for homomorphism codes is equivalent

whether considering homomorphisms Hom(G,H) or a�ne homomorphisms aHom(G,H).

We discuss the algorithmic issues of this method. The principle assumes a (certi�cate-

)list-decoder for the original class is readily available and returns a (certi�cate-)list-decoder

for the extension class. We know that the extension list is contained in few lists in the

original code.

The algorithm simply samples few functions (centers of the list), list decodes those func-

tions using the assumed list-decoders, then outputs the union of these lists (perhaps after

translation) as the list for the extension code. This corresponds to running the known list-

decoder a manageable number of times. The multiplicative cost is described more precisely

in Remark 4.2.14 (nearly linear in the deterioration factor of agreement for mean-lists) and

Remark 4.3.20 (nearly linear in the agreement Λ + ε for aHom lists).
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The add-on algorithm is so simple that, once the original list-decoder is given, access

assumptions are relatively minimal.

• aHom versus Hom: We need only the ability to generate uniform random elements of

G. The input radius/agreement of the desired list-decoder for C0 is used as input to

the known list-decoders for C. The work is done by translation of homomorphisms and

functions, but this is easy given oracle access to the received word f .

• Mean-lists versus lists: We need (i) knowledge of ε, and (ii) the ability to generate

uniform random elements of F , the family of received words.

A deterioration factor must be added to the (known) input radius (mindist − ε) of

the desired mean-list-decoder, before calling the known list-decoder. This requires

knowledge of either ε or mindist, so that the deterioration can be set to be smaller then

ε. The received word of the known list-decoder is a sampled uniformly from the family

F of received words for the mean-list-decoder.

Via CertEcon.

This method will be discussed extensively in the rest of this section. Theorem 6.2.11

gives a certi�cate-list-decoder, whose output we hope to turn into a list, to obtain a true

list-decoder. The main observation (Remark 6.3.13) is that a certi�cate-list can be made

into a list by extending every subword (partial map) in the certi�cate-list, if possible, and

deleting the subword if not.

6.3.2 Homomorphism Extension and AlgEcon

In this section we de�ne the Homomorphism Extension Problem (the topic of the next

chapter), which bridges from certi�cate-list-decoding to list-decoding for homomorphism

codes.
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Following the CertEcon result stated above, we would like to �nd e�cient subword exten-

ders for the case of homomorphism codes, in order to �nd AlgEcon results. By the results of

Section 4.3.3, we will without loss of generality consider homomorphisms in Hom(G,H) in-

stead of a�ne homomorphisms in aHom(G,H). For Hom(G,H), �nding subword extenders

exactly amounts to solving the Homomorphism Extension Search Problem, de�ned below.

(This is almost true for aHom(G,H) as well, addressed in the next section.)

The Homomorphism Extension Problem asks whether a partial map extends to a homo-

morphism on the whole group. Below, let G and H be groups. As before, let Λ = ΛG,H .

De�nition 6.3.2. (Homomorphism Extension, HomExt(G,H))

Instance: A partial map γ : G⇀H.

Solution: A homomorphism ϕ ∈ Hom(G,H) that extends γ, i.e., ϕ|dom γ = γ.

The Homomorphism Extension Decision Problem asks whether a solution exists.

The Homomorphism Extension Search Problem asks whether a solution exists and, if

so, to �nd one.

Remark 6.3.3 (HomExt is subword extender for Hom). A subword extender for the code

Hom(G,H) is an algorithm that solves HomExt(G,H).

Remark 6.3.4 (Subword Extender for Hom versus aHom). A subword extender for the code

aHom(G,H) can also be found using an algorithm that solves HomExt(G,H). Implement-

ing this is addressed in then next section. However, since economical list-decoding for Hom

and aHom are equivalent (Section 4.3.3), a subword extender only for Hom su�ces for our

list-decoding purposes.

We elaborate on Observation 3.1.15, that a certi�cate-list-decoder and a subword extender

combine to a list-decoder. Suppose that Γ is the output list of a certi�cate-list-decoder. Then,

calling a subword extender on each partial map in Γ will give the output of a list-decoder.

(If the subword extender fails to extend, then that partial map can be deleted from the list.)
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Observation 6.3.5. Let G and H be groups. Given a certi�cate-list Γ for the code Hom(G,H),

|Γ| calls to HomExt(G,H) su�ces to return a list.

Since we have found stronger certi�cate-list-decoders (WΛ-certi�cate-list-decoders, in

Theorem 6.2.11), we de�ne weaker subword extenders (WΛ-subword extenders) for the case

of homomorphism codes. Below, let λ > 0.

De�nition 6.3.6. (Homomorphism Extension with Threshold, HomExtλ(G,H))

Instance: A partial map γ : G⇀H satisfying µ(〈dom γ〉) > λ.

Solution: A homomorphism ϕ ∈ Hom(G,H) that extends γ, i.e., ϕ|dom γ = γ.

The HomExtλ Decision and Search Problems are de�ned as for HomExt. HomExtλ

is allowed to answer incorrectly on inputs γ that do not satisfy the promise µ(〈dom γ〉) > λ.

Remark 6.3.7. AWΛ subword extender for the code Hom(G,H) is an algorithm that solves

HomExtλ(G,H).

Note that, if λ1 ≤ λ2, then an oracle forHomExtλ1(G,H) can answerHomExtλ2(G,H)

queries as well.

Similarly to Observation 6.3.5, we can combine the output of aWΛ-certi�cate-list-decoder

with calls to HomExtΛ(G,H) to �nd a list-decoder.

Observation 6.3.8. Let G and H be groups. Let λ1 ≤ λ2. Given a Wλ2-certi�cate-list Γ

for the code Hom(G,H), |Γ| calls to HomExtλ1(G,H) su�ces to return a list.

Theorem 6.2.11 gives a WΛ-certi�cate-list-decoder for Hom(G,H) when G is SRG. In

practice we may not be able to determine the value of Λ but instead have a large lower

bound λ ≤ Λ. In this case, we may apply Observation 6.3.8.

Corollary 6.3.9. Let G be an SRG group and H be an arbitrary group. If an oracle is given

for HomExtλ for some λ ≤ Λ, then Hom(G,H) is AlgEcon.

We have seen the bene�ts of a better Λ lower bound (weaker HomExtλ oracle required).

Other bene�ts are discussed in Section 6.3.4.
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Homomorphism extension from alternating groups.

Further elaborating on the comment after Remark 3.1.16, we note that this relaxation is

critical in our application to the alternating group. While we can solve HomExt(An, Sm)

for partial maps whose domain generate subgroups of polynomial index, we have no hope

of solving it for all partial maps on An. We follow the procedure of Observation 6.3.8 for

alternating domain.

The following theorem addresses the HomExt Search Problem for the permutation rep-

resentations of the alternating groups. Proving this theorem (and extensions of it) is the

focus of the next chapter.

Theorem 6.3.10. Let G = An, H = Sm and λ = 1/ poly(n). If m < 2n−1/
√
n, then

HomExtλ(G,H) Search can be solved in poly(n,m) time.

Remark 6.3.11. In fact, under the assumptions of Theorem 6.3.10, the number of extensions

can be counted in poly(n,m) time.

Corollary 6.3.12 (Theorem 3.2.16 restatement). If G = An, H = Sm and m < 2n−1/
√
n,

then Hom(G,H) is AlgEcon.

6.3.3 Subword extension for aHom(G,H) using HomExt(G,H)

In this section we show how HomExt can be used to �nd a subword extender for aHom (as

opposed to Hom). While this is not necessary to achieve our economical list-decoding goals

given the equivalence of economically list-decoding Hom versus aHom (Corollary 4.3.19),

this shows that HomExt is the natural question for subword extension in homomorphism

codes.

Remark 6.3.13. Let G and H be groups to which we are given black-box access. Then, a

subword extender for aHom(G,H) can be implemented in poly(enc(G))-time in the unit-cost

model for H, assuming we are given an oracle for HomExt(G,H).
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Since Theorem 3.2.8 guaranteesWΛ-certi�cate-lists, we need only provide aWΛ-subword

extender (see Remark 6.3.14). In this case, the HomExt oracle may be relaxed to account

for this restriction on certi�cates.

The next result is the WΛ-certi�cate version of Remark 6.3.13.

Remark 6.3.14. Let G and H be groups to which we are given black-box access. Suppose

that we are given two oracles, one for HomExtΛ(G,H) and one which returns the order of

a subgroup in G. Then, a WΛ-subword extender for aHom(G,H) can be implemented in

poly(enc(G)) time in the unit-cost model for H.

In this section, we show that solving HomExt is su�cient for �nding an aHom subword

extender. This gives a strategy of combining a subword extender and certi�cate-list-decoder

directly for aHom, to achieve a list-decoder. In particular, we prove Remark 6.3.13 (Re-

mark 6.3.14 forW-certi�cates), which states that subword extenders (W-subword-extenders)

can be implemented e�ciently given a HomExt (HomExtΛ) oracle.

Subword extender from HomExt oracle, generic version.

We address Remark 6.3.13.

We would like to implement an e�cient subword extender (extending partial maps to

a�ne homomorphisms) using the HomExt(G,H)-oracle (extending partial maps to homo-

morphisms). For every G⇀H partial map γ that we would like to extend, we construct a

G⇀H partial map τ , feed it into HomExt(G,H), then take an a�ne translation of the

extension homomorphism (if it exists) as follows.

Construction 6.3.15 (Mapping of partial maps). The algorithm Subword (pseudocode

below) returns the output of a subword extender on input γ, a G⇀H partial map, for the

code aHom(G,H).

1: procedure Subword(γ : G⇀H)

2: Set S ← dom(γ) and pick a ∈ S
100



3: De�ne T = a−1S = {a−1s : s ∈ S}

4: De�ne τ : G⇀H with domain T and τ(a−1s) = γ(a)−1γ(s)

5: if HomExt(G,H)(τ) = `no solution' then

6: return `no solution'

7: else

8: ψ ← HomExt(G,H)(τ) I ψ ∈ Hom(G,H) is the extension of τ found

9: ϕ← (γ(a)ψ(a)−1)ψ I ϕ is an affine translate of ψ by γ(a)ψ(a)−1 ∈ H

10: return ϕ

11: end if

12: end procedure

The next result shows that the construction above is a subword extender for the code

aHom(G,H).

Lemma 6.3.16. Let γ, τ : G⇀H be the partial maps de�ned as in Construction 6.3.15

above.

(a) Suppose τ extends to ψ ∈ Hom(G,H). De�ne ϕ ∈ aHom(G,H) (as in Construc-

tion 6.3.15) by ϕ = (γ(a)ψ(a)−1)ψ, for any a ∈ S. Then, γ extends to ϕ.

(b) The partial map τ extends to a homomorphism in Hom(G,H) if and only if the partial

map γ extends to an a�ne homomorphism in aHom(G,H).

It is clear that if ϕ is de�ned, it is an a�ne homomorphism. Item (a) of Lemma 6.3.16

follows from the next statement.

Claim 6.3.17. Using the notation of Construction 6.3.15, if ϕ is de�ned, then ϕ extends γ,

i.e., ϕ|S = γ.

Proof. Let s ∈ S. Fix a as above. Then, ϕ(s) = (γ(a)−1ψ(a)−1)ψ(s) by de�nition. But,

since ψ is a homomorphism and by the de�nition of ψ, we �nd that ψ(a)−1ψ(s) = ψ(a−1s) =

τ(a−1s) = γ(a)−1γ(s). So, ϕ(s) = γ(s).
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Item (b) of Lemma 6.3.16 follows from showing that if an extension ϕ of γ exists then

HomExt(G,H) will return a homomorphism solution.

Lemma 6.3.18. Let γ, τ : G⇀H be partial maps as in Lemma 6.3.16. Suppose that ϕ ∈

aHom(G,H) extends γ. Write ϕ = hψ for h ∈ H and ψ ∈ Hom(G,H). Then, ψ extends τ .

Proof. Let a ∈ dom(γ) and T = a−1 · dom(γ) be as de�ned above. It su�ces to show that

ψ|T = τ . Let s ∈ dom(γ). Then, by de�nition, ψ(a−1s) = ψ(a)−1ψ(s) = (hϕ(a))−1(hϕ(s)) =

ϕ(a)−1ϕ(s) = τ(a−1s).

Subword extender from HomExt oracle, W-certi�cate version.

Remark 6.3.14 is shown similarly. A WΛ-subword extender can be implemented by re-

placing, in the algorithm Subword above, the oracle for HomExt(G,H) by an oracle for

HomExtλ(G,H), for any λ ≤ Λ. The order oracle is called before the HomExtλ oracle to

ensure a valid input.

Recall that the oracle for HomExtλ(G,H) is only guaranteed to answer correctly on an

input τ : G⇀H when the domain of γ generates a density λ subgroup, i.e., µ(〈dom τ〉) > λ.

However theW-subword extender need only extend a partial map γ : G⇀H when the a�ne

closure of its domain has density ΛG,H , i.e., µ(〈dom γ〉aff) > ΛG,H . Remark 6.3.14 follows

from the next statements.

Observation 6.3.19. Let S ⊂ G. Pick a ∈ S and de�ne T = a−1S. Then, the subcoset

〈S〉aff is a coset of the subgroup 〈T 〉.

Corollary 6.3.20. Let γ, τ : G⇀H and S, T ⊂ G be de�ned as in Lemma 6.3.16. Let

λ ≤ ΛG,H . If µ(dom γ) > ΛG,H , then µ(dom τ) > ΛG,H ≥ λ, so HomExtλ(G,H) will give

a correct answer on input τ .
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6.3.4 The role of pruning and Λ

We discuss the importance of knowing Λ and in particular the bene�ts of Λ lower bounds.

Our de�nition of AlgEcon does not require that Λ be part of the input.

Pruning using exact knowledge of Λ.

Knowing Λ lets us prune the output list of a list-decoder. In particular, for a CombEcon

code, this guarantees a poly(1/ε) bound on the size of the output list.

Remark 6.3.21 (Pruning the output list). The de�nition of list-decoder requires only that

the output list L̃ be a superlist of the desired list, i.e., L̃ ⊇ L(aHom(G,H), f,Λ + ε).

If Λ is known then it is possible to �prune� L̃. In other words, we can guarantee that

with high probability L̃ contains only homomorphisms in L(aHom(G,H), f,Λ + ε/2), i.e.,

L̃ ⊆ L(aHom(G,H), f,Λ + ε/2). This can be accomplished by estimating agr(f, ϕ) through

sampling3 for every ϕ ∈ L̃.

The de�nition of AlgEcon requires that the output list for the code aHom(G,H) be of

length poly(1/ε), but allows poly(1/ε, log|G|) queries and poly(1/ε, log|G|, log|H|) computa-

tion time.4 A CombEcon code aHom(G,H) has a list-size bound of `(aHom(G,H),Λ + ε) =

poly(1/ε). The output of a list-decoder satisfying the AlgEcon query and time complexities

may not necessary satisfy the list-size requirement. But, through pruning of the output list,

knowing Λ allows us to guarantee the desired poly(1/ε) bound on the output list size, since

|L̃| ≤ |L(aHom(G,H), f,Λ + ε/2)| = poly(2/ε).

In fact, in the algorithm of [DGKS08, GS14], knowing Λ is necessary. The time complexity

analysis of the AlgEcon claim depends on the list-size bound at every iteration after pruning.

3. In poly(δ, log|G|) time, we can estimate agr(f, ϕ) for ϕ in the output list to within δ with high con�-
dence. With this, we can prune (remove) all homomorphisms with small agreement agr(f, ϕ) ≤ Λ + ε/2.

4. This is assuming an e�cient encoding of G and H, otherwise this is a function of the encoding length.
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Pruning using lower bounds on Λ.

Even without exact knowledge of Λ, lower bounds still have pruning bene�ts. We discuss

the bene�ts in the approach of the previous section.

• Final output list: Again, the output list L̃ can be pruned using any lower bound

λ ≤ Λ. This guarantees that the output list contains only a�ne homomorphisms with

agreement greater than (λ+ε/2), i.e., L̃ ⊆ L(aHom(G,H), f, λ+ε/2). However, there

is no polynomial output-list-size guarantee. AlgEcon list-size bounds must be found

through other means.

• Faster processing of certi�cate-lists (output of certi�cate-list-decoder) into output lists

(output of list-decoder): Regardless of the value of Λ and whether it is known, the

certi�cate-list-decoder of Theorem 6.2.11 is guaranteed to return certi�cates inWΛG,H .

A known lower bound λ for ΛG,H allows pruning of partial maps γ that do not satisfy

µ(〈dom γ〉aff) > λ. The subword extender need not be called on these maps.

Additionally, a better lower bound λ ≤ Λ allows us to call a weaker HomExtλ oracle,

as discussed in the previous section.

We remark on a phenomenon in our new approach. The certi�cate-list-decoder presented

in Section 6.2.5 is valid regardless of the value of Λ. Even without any bounds on Λ, if we are

handed a HomExt oracle then we immediately have a list-decoder. However, this ability

relies on an extremely strong HomExtλ oracle that corresponds to λ = 0, which seems an

unreasonable assumption.

6.3.5 Homomorphism Extension 012 and Λ lower bounds

We have seen that stronger Λ lower bounds improve the e�ciency of list-decoders through

pruning and allow use of weaker HomExt oracles. In this section, we will see that a stronger

HomExt oracle may, conversely, help improve Λ lower bounds.
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We de�ne the HomExt012 Problem. It asks to distinguish between the cases of no

extension, unique extension, and multiple extensions. In the case of unique extension, it

asks for the extension.

De�nition 6.3.22. (HomExt012(G,H))

Instance: A partial map γ : G⇀H.

Solutions: The set de�ned by

HExt(γ) := {ϕ ∈ Hom(G,H) : ϕ|dom γ = γ}.

Output:


`none' if |HExt(γ)| = 0

ϕ ∈ HExt(γ) if |HExt(γ)| = 1

`multiple' if |HExt(γ)| ≥ 2

.

The HomExt012λ(G,H) problem is de�ned similarly, but requiring only correct answers

on the G⇀H partial maps γ that satisfy µ(dom γ) > λ.

Of course, the HomExt Search Problem is weaker than HomExt012.

Proposition 6.3.23. Let G and H be groups to which we are given black-box access. Suppose

that we are given two oracles, one for HomExt012(G,H) and one which returns the order of

a subgroup of G. Then, for any G⇀H partial map τ on which HomExt012(G,H) returns

`multiple,' the value of µ(〈τ〉) is a lower bound for Λ.

Proof. If the G⇀H partial map τ extends to two homomorphisms ϕ, ψ ∈ Hom(G,H), then

agr(ϕ, ψ) ≥ µ(〈dom τ〉aff). So, µ(〈dom τ〉aff) is a lower bound for ΛG,H , and the order oracle

can be used to calculate its value.

The next chapter solves a case of HomExt012λ, a stronger version of HomExt012.

The case corresponds to the conditions of Corollary 6.3.12: HomExt012λ(An, Sm) with

λ = 1/
(n

2

)
and m < 2n−1/

√
n.
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6.3.6 Finding Λ for prior algorithms

In this section we present an algorithm to determine the value of ΛG,H under certain access

assumptions.

Theorem 6.3.24. Let G be a solvable group represented by a polycyclic presentation. Let

H be a nilpotent black-box group along with one of the following types of information,

(a) an oracle that returns the order of any element of H, or

(b) a multiple of the order |H|, or

(c) a superset of the prime divisors of the order |H|, or

(d) the exact set of prime divisors of the order |H|.

Then, there exists a polynomial-time deterministic algorithm that �nds the value of ΛG,H .

We remark that the additional assumptions on access to |H| are ordered in increasing

strength.

That the black-box group H is nilpotent does not need to be taken as a promise. Deter-

mining nilpotence and solvability of a black-box group is known to be decidable in randomized

polynomial time. For more details, see [BS84].

Description of algorithm.

The procedure FindLambda (Algorithm 2 presented below) satis�es Theorem 6.3.24.

For convenience, we restate Proposition 2.2.8, which characterizes ΛG,H for solvable G

or nilpotent H.

Theorem 6.3.25. Let G and H be groups. If G is solvable or if H is nilpotent, then

ΛG,H = 1/p, where p is the smallest prime p dividing |G| that satis�es the following.

(1) G contains a normal subgroup of index p, and
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(2) p divides the order of H.

If no p dividing |G| satis�es both conditions above, then Hom(G,H) contains only the iden-

tity, and ΛG,H = 0.

Intuitively, FindLambda checks Theorem 6.3.25, by searching through the primes pi

from the polycyclic presentation of G in increasing order, to �nd the smallest pi satisfying

both Condition (1) and (2).

First, FindLambda undergoes a preprocessing stage. It considers the abelian presenta-

tion 〈X|Rab〉ab of G/G′ found by abelianizing the relations of the polycyclic presentation

for G. The algorithm AKB from Kannan and Bachem in Theorem 2.1.13 is used to �nd the

Smith normal form of A(Rab). From this, M is assigned to be the largest elementary divisor

of A(Rab), or, the order of the largest cyclic subgroup of G/G′.

Then, FindLambda searches the primes pi in increasing order. The prime pi satis�es

Condition (1) exactly when pi divides M (see �Testing G� below). The prime pi satis�es

Condition (2) exactly when pi divides |h| for some generator h of H (see �Testing H� below).

Recall that a set of generators is available from the black-box representation of H.

Denote by AKB the deterministic algorithm provided by Kannan and Bachem in The-

orem 2.1.13 that takes as input an integer matrix B and outputs the elementary divisors

a1, . . . , a` of B.
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Algorithm 2 FindLambda
1: procedure FindLambda(G, H)

2: Initialize X = {g1, . . . , gk}, R, and p1 ≥ · · · ≥ pk from G

3: B ← B(Rab), the |R| × k matrix from Theorem 2.1.12

4: a1, . . . , a` ← AKB(B) I Find elementary divisors of B

5: M ← a` I M is the largest elementary divisor

6: Sort {pi} so that p1 ≤ · · · ≤ pk

7: for i = 1 . . . k do

8: if pi divides M and TestH(pi) = true then

9: return ΛG,H = 1/pi I Found smallest pi satisfying Cond. (1) and (2).

10: end if

11: end for

12: return ΛG,H = 0 I No such pi exists

13: end procedure

Testing G.

Lemma 6.3.26. The prime pi divides M in Line 8 of FindLambda if and only if G

contains a normal subgroup of index pi.

Proof. Consider the preprocessing steps for G, carried out in Lines 2�5.

The number M computed in Line 5 is the largest elementary divisor of B. By Corol-

lary 2.1.12 and Fact 2.1.4, we �nd that G/G′ is the direct product of cyclic groups with

orders given by the elementary divisors of B. Since every elementary divisor of B divides

M , every prime divisor of |G/G′| divides M .

We found that a prime p divides |G/G′| exactly when p dividesM . Lemma 6.3.26 follows

from Lemma 6.3.27 below.
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Lemma 6.3.27. We claim that a group G contains contains a normal subgroup of prime

index p if and only if p divides the order of G/G′, the abelianization of G.

Proof. Let N CG have prime index p = |G/N |. Then, G/N ∼= Z/pZ is abelian, so G′ ≤ N .

If p divides |G/G′|, then there exists K CG/G′ such that |G/G′ : K| = p. Let π : G→

G/G′ be the natural projection map. Then, π−1(K) is a normal subgroup of G of index

p.

Testing H.

Lemma 6.3.28. Let p be a prime. Let H be a nilpotent black-box group of one of the types

described in Theorem 6.3.24. The algorithm TestH (Algorithm 3 de�ned below) decides

whether p divides |H| in polynomial time.

If H is provided access type (d), then TestH(p, H) simply checks whether p is in the

provided list of primes.

If H is provided access type (a), (b) or (c), then TestH satis�es Lemma 6.3.28. We will

prove the correctness of TestH below.

Algorithm 3 TestH
1: procedure TestH(p, H)

2: Initialize S, the set of generators from black-box representation of H

3: for h ∈ S do

4: if p divides |h| then

5: return true

6: Exit TestH

7: end if

8: end for

9: return false

10: end procedure
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Proof of Lemma 6.3.28, TestH works. We show that TestH returns true exactly when

p divides |H|. If TestH(p,H) = true, then p divides the |h| for some h ∈ S ⊂ H, so p

divides |H|. The other direction follows from Lemma 6.3.29 below.

Line 4 is possible in polynomial time. This is obvious for access type (a). For access type

(b), denote by m the given multiple of the order of |H|. Divide m by p until it is no longer

divisible by p, which may be accomplished in poly(logm)-time. Call this resulting number

m̃. Calculate hm̃, which may be accomplished in O(log m̃) queries to the mult oracle of H. If

hm̃ = 1 then p does not divide the order of h. Otherwise, p does divide the order of h. Thus,

Line 4 can be carried out in polynomial time for access type (a). For access type (c), we

show that a multiple of the order |H| (access type (b)) can be calculated in polynomial time,

provided a superset P of the prime divisors of |H|. Let k = dlog2(|H|)e. Then,
∏
p∈P p

k is

a multiple of |H|.

The number of iterations of the for loop is bounded by |S|, the size of the generating set

of the black-box representation. The algorithm TestH runs in time bounded by |S| poly(m).

Lemma 6.3.29. Let p be a prime. Let H be a nilpotent group. If p divides |H|, then any

set of generators of H will contain an element with order divisible by p.

Proof. Let S ⊂ H be a set of generators for H.

Let p1, . . . , p` be the prime divisors of |H|. Since H is nilpotent, we can write H =

K1 × · · · ×K` so that Ki is a nontrivial pi-group for i = 1 . . . `. Each h ∈ H can be written

as (k1, . . . , k`), for ki ∈ Ki and |h| = |k1| · . . . · |k`|.

Since p divides |H|, p = pi for some i. There must exist an element s = (k1, . . . , k`) ∈ S

such that ki 6= 1. (Otherwise S cannot generate all of H.) It follows that p divides |s|.

Comparison of access models with [DGKS08].

In [DGKS08], list-decoding bounds are proved for pairs of abelian groups, assuming the
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prime-power decomposition of both groups. Converting from a general presentation to a

prime-power decomposition requires prime factorization. However, their local list-decoder

for abelian groups G and H requires only knowledge of ΛG,H and black-box access to H.

As we have shown in Theorem 6.3.24, black-box access to H along with additional in-

formation, such as a multiple of |H|, is su�cient for �nding ΛG,H . We don't need prime

factorization of |H|. So, the result of [DGKS08] can be converted to the less restricted model,

by composing with our algorithm for �nding ΛG,H .
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CHAPTER 7

HOMOMORPHISM EXTENSION

7.1 Introduction

Homomorphism Extension asks whether a group homomorphism from a subgroup can be

extended to a homomorphism from the entire group. We consider the case that the groups

are represented as permutation groups. The complexity of this natural problem within NP

is unresolved.

7.1.1 Structure of chapter

This chapter de�nes and proves our results for Homomorphism Extension. The remainder of

this section presents de�nitions, results, and methods. Our results pertain to HomExtSym,

the version of Homomorphism Extension that considers group actions (symmetric codomain).

Section 7.2 sets notation local to this chapter.

Section 7.3 de�nes Multi-Dimensional Subset Sum with Repetition (MultiSSR) and

other versions, then states relevant results for these problems.

Section 7.4 reduces HomExtSym to an oracle version of MultiSSR e�ciently. This

section contains the meat of this chapter.

Section 7.5 reduces the case of HomExtSym considered in our main theorem to a train-

gular version of MultiSSR, which can be solved e�ciently.

Section 7.6 addresses how to generate extensions within one equivalence class (for our

enumeration results).

Section 7.7 calls upon results by Lenstra and Kannan [LJ83, Kan87] for Integer Linear

Programming, which solves HomExtSym for large permutation domain.
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7.1.2 De�nition and results

We de�ne the Homomorphism Extension problem. Denote by Hom(G,H) the set of

homomorphisms from group G to group H.

De�nition 7.1.1. Homomorphism Extension

Instance: Groups G and H and a partial map γ : G⇀H.

Solution: A homomorphism ϕ ∈ Hom(G,H) that extends γ, i.e., ϕ|M = γ.

The Homomorphism Extension Decision Problem (HomExt) asks whether a solution

exists.

Remark 7.1.2. Our algorithmic results for HomExt solve the Homomorphism Exten-

sion Search Problem as well, which asks whether a solution exists and, if so, to �nd one.

The problems as stated above are not fully speci�ed. Representation choices of the

groups G and H a�ect the complexity of the problem. For example, G may be given as a

permutation group, a black-box group, or a group given by a generator-relator presentation.

For the rest of this chapter we restrict the problem to permutation groups.

De�nition 7.1.3. HomExtPerm is the version of HomExt where the groups are permu-

tation groups given by a list of generators. HomExtSym is the subcase of HomExtPerm

where the codomain H is a symmetric group.

Membership in permutation groups is polynomial-time testable. Our standard reference

for permutation group algorithms is [Ser03]. Section 2.4 summarizes the results we need,

including material not easily found in the literature. Our standard reference for permutation

group theory is [DM96].

Partial maps are represented by listing their domain and values on the domain. Homo-

morphisms in Hom(G,H) are represented by their values on a set of generators of G.

For a partial map γ : G⇀H, we denote by Mγ := 〈dom γ〉 the subgroup of G generated

by the domaim dom γ of γ.
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Remark 7.1.4. Whether the input map γ : G⇀H extends to a homomorphism from the

subgroup generated by its domain (∃ψ ∈ Hom(Mγ , H) s.t. ψ|dom γ = γ) is a polynomial-time

testable condition in permutation groups.

Since extending to Mγ ≤ G is easy, we are primarily concerned with extending a homo-

morphism from a subgroup to a homomorphism from the whole group.

Assumption 7.1.5 (Given partial map de�nes a homomorphism on subgroup). Unless

otherwise stated, in our analysis we assume without loss of generality that the input partial

map γ : G⇀H extends to a homomorphism in Hom(Mγ , H). This is possible due to

Remark 7.1.4. In this case, the homomorphism ψ is represented by γ, as a partial map on

generators of Mγ . We will think of ψ as the input to HomExt. We often drop the subscript

on Mγ .

Since a minimal set of generators of a permutation group of degree n has no more than

2n elements [Bab86] and any set of generators can be reduced to a minimal set in polynomial

time, we shall assume our permutation groups are always given by at most 2n generators.

We note that the decision problem HomExtPerm is in NP.

Open Problem 7.1.6. Is HomExtPerm NP-complete?

We consider the important subcase of the problem when H = Sm, the symmetric group

of degree m. A homomorphism G → Sm is called a group action (more speci�cally, a

G-action) on the set [m] = {1, . . . ,m}.

The HomExtSym problem seems nontrivial even for bounded G (and variable m).

Theorem 7.1.7 (Bounded domain). If G has bounded order, then HomExtSym can be

solved in polynomial time.

The degree of the polynomial in the polynomial running time is exponential in log2|G|.
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Open Problem 7.1.8. Can HomExtSym be replaced by HomExtPerm in Theorem 7.1.7,

i.e., can H = Sm be replaced by H ≤ Sm?

Our main result, the one used in our work on homomorphism codes, concerns variable n

and is stated next.

In the results below, �polynomial time� refers to poly(n,m) time.

Theorem 7.1.9 (Main). If G = An (alternating group of degree n), HomExtSym can be

solved in polynomial time under the following assumptions.

(i) The index of M in An is bounded by poly(n), and

(ii) m < 2n−1/
√
n, where H = Sm.

Under the assumptions above, counting the number of extensions is also polynomial-time.

Theorem 7.1.10 (Main, counting). Under the assumption of Theorem 7.1.9, the number of

solutions to the instance of HomExtSym can be found in polynomial time.

Note the rather generous upper bound on m in item (ii). Whether an instance of

HomExtSym satis�es the conditions of Theorem 7.1.9 can be veri�ed in poly(n) time (see

Section 2.4.3).

We state a polynomial-time result for very large m (Theorem 7.1.11, of which Theo-

rem 7.1.7 is a special case).

Theorem 7.1.11 (Large range). If G ≤ Sn and m > 21.7n
2

, then HomExtSym can be

solved in polynomial time.

7.1.3 Methods

We prove the results stated above by reducing HomExtSym to a polynomial-time solvable

case of a multi-dimensional oracle version of Subset Sum with Repetition (SSR). SSR asks
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to represent a target number as a non-negative integral linear combination of given numbers,

whereas the classical Subset Sum problem asks for a 0-1 combination. SSR is NP-complete

by easy reduction from Subset Sum.

We call the multi-dimensional version of the SSR problem MultiSSR. The reduction

from homomorphism extension to MultiSSR is the main technical contribution of this

chapter (Theorem 7.1.12 below).

The reduction is polynomial time; the complexity of our solutions to HomExtSym will

depend on the complexity of special cases of MultiSSR that arise. The principal case of

MultiSSR is one we call �triangular� ; this case can be solved in polynomial time. The

di�culty is aggravated by exponentially large input to MultiSSR, to which we assume

oracle access (OrMultiSSR Problem). Implementing oracles calls will amount to solving

certain problems in computational group theory, addressed in Section 8 of the Appendix.

The MultiSSR problem takes as input a multiset K in universe U (viewed as a non-

negative integral function K : U → Z≥0 ) and a set F of multisets in U . MultiSSR asks

if K is a nonnegative integral linear combination of multisets in F (see Section 7.4.2). The

set F will be too large to be explicitly given (it will contain one member per conjugacy class

of subgroups of G). Instead, we contend with oracle access to the set F. For a more formal

presentation of MultiSSR and OrMultiSSR, see Section 7.3.

From every instance ψ of HomExtSym describing a group action, we will construct an

OrMultiSSR instance OMSψ (see Section 7.4.2). In the next result, we describe the merits

of this translation.

Two permutation actions ϕ1, ϕ2 : G→ Sm are permutation equivalent if there exists

h ∈ Sm such that ϕ1(g) = h−1ϕ2(g)h for all g ∈ G.

Theorem 7.1.12 (Translation). For every instance ψ ∈ Hom(M,Sm), the instance OMSψ

of OrMultiSSR satis�es the following.

(a) OMSψ can be e�ciently computed from ψ. For what this means, see Section 7.4.2.
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(b) There exists a bijection between the set of non-empty classes of equivalent (under per-

mutation equivalence) extensions ϕ̃ : G→ Sm and the set of solutions to OMSψ.

(c) Given a solution to OMSψ, a representative ϕ̃ of the equivalence class of extensions

can be computed e�ciently.

Here, �e�ciently� means in poly(n,m)-time. The universe U of OMSψ will be the con-

jugacy classes of subgroups of M . The set F will be indexed by the conjugacy classes of

subgroups of G. These sets can be exponentially large. For G = Sn, |F| = exp(Θ̃(n2)) by

[Pyb93].

Now, it su�ces to e�ciently �nd solutions to instances OMSψ of OrMultiSSR arising

under this reduction.

Theorem 7.1.11 (large m) follows from Theorem 7.1.12 and a result of Lenstra [LJ83]

(cf. Kannan [Kan87]), that shows Integer Linear Programming is �xed-parameter

tractable. AsMultiSSR can naturally be formulated as an |U|× |F| integer linear program,

we conclude polynomial-time solvability due to the assumed magnitude of m (see Appendix,

Section 7).

To prove Theorem 7.1.9, we show that OMSψ instances satisfy the conditions of the

problem TriOrMultiSSR, a �triangular� version of OrMultiSSR (see Section 7.5).

Theorem 7.1.13 (Reduction to TriOrMultiSSR). If an instance ψ of HomExtSym

satis�es the conditions of Theorem 7.1.9, the instance OMSψ of OrMultiSSR is also an

instance of TriOrMultiSSR. The oracle queries can be answered in polynomial time.

Despite only being given oracle access, TriOrMultiSSR turns out to be polynomial-

time solvable (see Section 7.3.2, or the Appendix, Section 5).

Proposition 7.1.14. TriOrMultiSSR can be solved in polynomial time.

Proposition 7.1.15. If a solution to TriOrMultiSSR exists, then it is unique.
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Polynomial time for an OrMultiSSR problem means polynomial in the length of K and

the length of the representation of elements of F. For details on representating multisets, see

Section 7.2.1.

7.1.4 E�cient enumeration

The methods discussed give a more general result than claimed. Instead of solving the

Search Problem, we can in fact e�ciently solve the Threshold-k Enumeration Problem for

HomExtSym. This problem asks to �nd the set of extensions, unless there are more than

k, in which case output k of them.

This question is also motivated by the list-decoding problem; speci�cally, Threshold-2

Enumeration can be used to prune the output list. See Sections 6.3.4 and 6.3.5 for details. We

remark that solving Threshold-2 Enumeration already requires all relevant ideas in solving

Threshold-k Enumeration.

De�nition 7.1.16 (Threshold-k). For a set S and an integer k ≥ 0, the Threshold-k

Enumeration Problem asks to return the following pair (val, out) of outputs.

If |S| ≤ k , return val = |S| and out = S

Else, return val = �more� and out = a list of k distinct elements of S.

Note that the threshold-0 enumeration problem is simply the decision problem �is S

non-empty?� while the threshold-1 enumeration problem includes the search problem (if

not empty, �nd an element of S).

We say that an algorithm e�ciently solves the threshold-k Enumeration Problem if the

cost divided by k is considered �modest� (in our case, polynomial in the input length).

Our work on list-decoding homomorphism codes uses solutions to the threshold-2 enu-

meration problem for the set of extensions of a given homomorphism. With potential future

applications in mind, we discuss the threshold-k enumeration problem for variable k.
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De�nition 7.1.17. Homomorphism Extension Threshold-k Enumeration

(HomExtThreshold) is the Threshold-k Enumeration Problem for the set of solutions to

Homomorphism Extension (HExtG de�ned below).

Notation 7.1.18 (HExtG(ϕ)). We will denote by HExtG(ϕ) the set of solutions to an

instance ϕ of HomExt.

HExtG(ϕ) := {ϕ̃ ∈ Hom(G,H) : ϕ̃|M = ϕ}.

The following condition strengthens the notion of e�cient solutions to threshold enumer-

ation.

De�nition 7.1.19 (E�cient enumeration). We say that a set S can be e�ciently enu-

merated if an algorithm lists the elements of S at modest marginal cost.

The marginal cost of the i-th element is the time spent between producing the (i− 1)-st

and the i-th elements. In this chapter, �modest marginal cost� will mean poly(n,m) marginal

cost, where n and m denote the degrees of the permutation groups G and H, respectively.

Observation 7.1.20. If a set S can be e�ciently enumerated then the threshold enumeration

problem can be solved e�ciently.

In particular, the decision and search problems can be solved e�ciently. The following

theorems are the strengthened versions of the ones stated above.

Theorem 7.1.21 (Bounded domain, enumeration). If G has bounded order, then the set

HExtG(ϕ) can be e�ciently enumerated.

Theorem 7.1.22 (Main, enumeration). If G = An (alternating group of degree n), then the

set HExtG(ϕ) can be e�ciently enumerated under the following assumptions:

(i) the index of M in An is bounded by poly(n), and
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(ii) m < 2n−1/
√
n, where H = Sm.

Theorem 7.1.23 (Large range, enumeration). If G ≤ Sn and m > 21.7n
2

, then the

HomExtSym Threshold-k Enumeration Problem can be solved in poly(n,m, k)) time.

7.1.5 Enumeration methods

Theorem 7.1.12 gives a bijection between classes of equivalent extensions and solutions to

the OrMultiSSR instance. It remains to solve the Threshold-k Enumeration Problem for

OrMultiSSR, then to e�ciently enumerate extensions within one equivalence class, given

a representative of that class.

Solutions of Threshold-k for OrMultiSSR

For Theorem 7.1.9, we stated that the OMSϕ are instances of TriOrMultiSSR. Since

solutions are unique if they exist (Proposition 7.1.15), solving the Search Problem also solves

the Threshold-k Enumeration Problem for TriOrMultiSSR. But, the Search Problem can

be solved in polynomial time by Proposition 7.1.14.

In the case of Theorem 7.1.7, OMSϕ is an integer linear program with a bounded number

of variables and constraints (corresponding to classes of subgroups of G) and the solutions

can therefore be e�ciently enumerated.

For Theorem 7.1.23 (thus also implying Theorem 7.1.21), the Threshold-k Enumeration

Problem for the Integer Linear Program version of OMSϕ can be answered in polyno-

mial time by viewing it as an integer linear program. See Section 7.7.

E�cient enumeration within one equivalence class

We now wish to e�ciently enumerate extensions within each class of equivalent extensions,

given a representative.

Two permutation actions ϕ1, ϕ2 : G → Sm are equivalent (permutation) actions

if there exists λ ∈ Sm such that ϕ1(g) = λ−1ϕ2(g)λ for all g ∈ G. We say that two
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homomorphisms ϕ̃1, ϕ̃2 : G → Sm are equivalent extensions of the homomorphism ϕ :

M → Sm if they (1) both extend ϕ and (2) are equivalent permutation actions.

Enumerating extensions within one equivalence class reduces to the following: Given

subgroups K ≤ L ≤ Sm, e�ciently enumerate coset representatives for K in L.

This problem was solved by Blaha and Luks in the 1980s (unpublished, cf. [BL94]).

For completeness we include the solution based on communication by Gene Luks [Luk] (see

Section 2.4.5).

We explain the connection between �nding coset representatives and the classes of equiv-

alent extensions of ϕ. Consider an extension ϕ̃0 ∈ Hom(G,Sm) of ϕ ∈ Hom(M,Sm). For

any λ ∈ Sm, the homomorphism ϕ̃λ, de�ned as ϕ̃λ(g) = λ−1ϕ̃(g)0λ for all g ∈ G, is an

equivalent permutation action. First, ϕ̃λ = ϕ̃ if and only if λ ∈ CSm(ϕ(G)) (the centralizer

in Sm of the ϕ-image of G, i.e., the set of elemenets of Sm that commute with all elements

in ϕ(G)). The centralizer of a group in the symmetric group can be found in polynomial

time (see Section 2.4.4). Also, ϕ̃|λ extends ϕ (thus is an equivalent extension to ϕ̃) if and

only if λ ∈ CSm(ϕ(M)).

So, �nding coset representatives of K = CSm(ϕ(G)) in L = CSm(ϕ(M)) su�ces for �nd-

ing all equivalent extensions. Applying the Blaha�Luks result yields the following corollary

(see Section 7.6).

Corollary 7.1.24. Let M ≤ G ≤ Sn and ϕ : M → Sm. Suppose that ϕ̃0 : G→ Sm extends

ϕ. Then, the class of extensions equivalent to ϕ̃0 can be e�ciently enumerated.

7.2 Notation

We �x notation local to this chapter.
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7.2.1 Multisets

In this Homomorphism Extension chapter, we will consider both sets and multisets. All sets

and multisets are �nite.

We typographically distinguish multisets using �mathsf� font, e.g., F, K and L denote

multisets. A multiset within a universe U is formally a function L : U → N. For a member

u ∈ U of the universe, the multiplicity of u in L is L(u). We say that u is an element of

L (u ∈ L) if L(u) > 0, i.e., if u has non-zero multiplicity in L. The set of elements of L is

called the support of L, supp(L) ⊆ U . We algorithmically represent a multiset L : U → N

by listing its support supp(L) ⊆ U and the values on the support, so the description is of

length |supp(L)| · log(‖L‖∞) · `, where ` is the description length for elements of L. The size

of L is ‖L‖1, the 1-norm of the function L : U → N.

Let L1, L2 : U → N be two multisets in the same universe. Their sum L1 + L2 is the

multiset obtained by adding the multiplicities. We say that L1 is a submultiset of L2 if

L1(u) ≤ L2(u) for all u.

Sets will continue to be denoted by standard font and de�ned via one set of braces { }.

Often it is convenient to list the elements of a multiset L as {{L1, . . . , Lr}} = {{Li : i =

1 . . . r}} using double braces, where Li ∈ U and each u ∈ U occurs L(u) times in this list. The

length r of this list is the size of L. In our notation, {A,A} = {A} but {{A,A}} 6= {{A}}.

A disjoint union of two sets is denoted by Ω = Ω1 ∪̇Ω2.

7.2.2 Group theory

Let G be a group. We write M ≤ G to express that M is a subgroup; we write N E G to

denote that N is a normal subgroup.

For M ≤ G and a ∈ G, we call the coset Ma of M a subcoset of G. We de�ne the

index of a subcoset Ma in G by |G : Ma| := |G : M |. For a subset S of a group G, we

denote by 〈S〉 the subgroup generated by S.
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Notation 7.2.1 (Sub(G)). We denote the set of subgroups of G by Sub(G) := {L : L ≤ G}.

Notation 7.2.2 (Cosets L\G). For L ≤ G, denote by L\G := {Lg : g ∈ G} the (right)

coset space (set of right cosets). For L,M ≤ G, denote by L\G/M := {LgM : g ∈ G} the

set of double cosets. Double cosets form an uneven partition of G. They are important in

de�ning the MultiSSR instance from an instance of HomExtSym (see Section 7.4).

Two subgroups L1, L2 ≤ G are conjugate in G if there exists g ∈ G such that L1 =

g−1L2g. The equivalence relation of conjugacy in G is denoted by L1 ∼G L2, or L1 ∼ L2 if

G is understood.

Notation 7.2.3. For a subgroup L ≤ G, the conjugacy class of L in G is denoted by

[L]G (or [L] if G is understood), so [L]G := {L1 ≤ G : L1 ∼G L}.

Notation 7.2.4 (Conj(G)). We denote the set of conjugacy classes of G by Conj(G) :=

{[L] : L ≤ G}.

Using the introduced notation, if L ≤ G, then L ∈ Sub(G), L ∈ [L] ∈ Conj(G) and

[L] ⊂ Sub(G).

7.3 Multi-dimensional subset sum with repetition

We consider the Subset Sum Problem with Repetitions (SSR). An instance is given

by a set of positive integers and a �target� positive integer s. The question is �can s be

represented as a non-negative linear combination1 of the other integers?� This problem is

NP-complete by an easy reduction from the standard Subset Sum problem, which asks

instead for a 0-1 linear combination.

We de�ne a multidimensional version (MultiSSR) below. It is associated to its own

threshold-k enumeration problem.

1. Notice that a non-negative linear combination of a set of integers is exactly the sum of a multiset in
that set of integers. This question is asking for the existence of a multiset.
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De�nition 7.3.1. Multi-dimensional Subset Sum with Repetition (MultiSSR)

Instance: Multiset K : U → N and set F of multisets in U .2

Solution: A multiset of F summing to K, i.e., a multiset L : F→ N satisfying
∑

F∈F
L(F) ·

F = K.

Notation 7.3.2 (SubSum(K,F)). We write SubSum for the set of solutions to an instance

of MultiSSR, i.e.,

SubSum(K,F) :=

L : F→ N
∣∣∣∣ ∑

F∈F
L(F) · F = K

 .

TheMultiSSR Decision Problem asks whether a solution exists (SubSum is nonempty).

The MultiSSR Search Problem asks whether a solution exists and, if so, �nd one.

TheMultiSSR Threshold-k Enumeration Problem asks for the solution to the Threshold-

k Enumeration Problem for the set SubSum.

Remark 7.3.3 (MultiSSR as Integer Program). Every instance of MultiSSR can

naturally be viewed as an instance of Integer Linear Programming, with |U| constraints

and |F| variables. The variables L(F) are the number of copies of each F ∈ F in the subset sum.

The constraints correspond to checking that every element in U has the same multiplicities

in K and
∑

L(F) · F.

7.3.1 Oracle MultiSSR

In our application, the set F and universe U will be prohibitively large to input explicitly.

To address this, we de�ne an oracle version of the MultiSSR problem called Oracle

Multi-dimensional Subset Sum with Repetitions (OrMultiSSR). We will reduce

2. U is the underlying universe. Its entirety is not required in the input, but its size is the dimensionality
of this problem. An element F ∈ F is a multiset F : U → N in U .
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a HomExtSym instance ϕ to an OrMultiSSR instance OMSϕ, then show that the oracles

can be answered e�ciently.

We will �nd it convenient to introduce a bijection between F and another set V of simpler

objects, used to index F.3 Access to F is given by the oracle �F-oracle,� which on input v ∈ V

returns the element Fv of F indexed by v. Elements of the universes U and V are encoded by

strings in Σn21 and Σn22 , respectively, and the alphabets Σi and encoding lengths ni constitute

the input.

We allow non-unique4 encodings of U and V , but provide �equality� oracles.5 To handle

non-unique encodings of V in Σn22 , we assume that F-oracle returns the same multiset on

U (though possibly via di�erent encodings) when handed di�erent encodings of the same

v ∈ V . Writing K : U → N implies that K is represented as a multiset on Σn11 but with the

promise that all strings in its support are encodings of elements of U .

De�nition 7.3.4. Oracle Multi-dimensional Subset Sum with Repetition

(OrMultiSSR)

Instance:

Explicit input

Alphabets Σ1 and Σ2;

Numbers n1, n2 ∈ N, in unary; and

Multiset K : U → N, by listing the elements in its support and their multiplicities.

Oracles

≡ oracle for equality in U or V , and

F-oracle oracle for the set F = {Fv : U → N}v∈V , indexed by V .

3. The index set V will be the conjugacy classes of subgroups of G, whereas F will be a set of multisets
of conjugacy classes of subgroups of M .

4. In our application, Σ1 = Sn and Σ2 = Sm. The universes U and V will be conjugacy classes of large
subgroups of Sn and Sm, respectively. Each conjugacy class is non-uniquely encoded by generators of a
subgroup in the class.

5. We will not need to test membership of a string from Σn in the universe.
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Solution: A sub-multiset of V that de�nes a sub-multiset of F summing to K, i.e.,

a multiset L : V → N satisfying
∑
v∈V

L(v) · Fv = K.

Notation 7.3.5 (SubSum(K,F)). Again, we write SubSum for the set of solutions to an

instance of OrMultiSSR, though the indexing is slightly di�erent.

SubSum(K,F) :=

L : U → N
∣∣∣∣ ∑
v∈V

L(v) · Fv = K

 .

The length of the input is log|Σ1|+ log|Σ2|+ n1 + n2 + ‖K‖0 · log‖K∞‖ · n1 log|Σ1|.

Due to non-unique encodings, checking whether a multiset L satis�es
∑
v∈V L(v) ·Fv = K

will actually require calling the ≡ oracle, as the multisets on the left and right sides of the

equation may be encoded di�erently.

7.3.2 Triangular MultiSSR

The Search Problem for OrMultiSSR with an additional �Triangular Condition� (and ora-

cles corresponding to this condition) can be solved in polynomial time. We call this problem

TriOrMultiSSR. This section de�nes TriOrMultiSSR. The next section will provide

an algorithm that solves the TriOrMultiSSR Search Problem in polynomial time, proving

Proposition 7.1.14.

Under the conditions of Theorem 7.1.9 (when G = An,M ≤ G has polynomial index, and

the codomain Sm has exponentially bounded permutation domain size m < 2n−1/
√
n), a

HomExtSym instance ϕ reduces to an instance OMSϕ that satis�es the additional assump-

tions of TriOrMultiSSR. The additional oracles of TriOrMultiSSR can be e�ciently

answered (see Section 7.5).

De�nition of TriOrMultiSSR

The triangular condition roughly says that the matrix for the corresponding (prohibitively

126



large) integer linear program is upper triangular.

Below we say that 4 is a total preorder if it is a re�exive and transitive relation with

no incomparable elements.6

De�nition 7.3.6. Triangular Oracle Multi-dimensional Subset Sum with Rep-

etition (TriOrMultiSSR)

Input, Set, Oracles, Output: Same as OrMultiSSR.

Triangular Condition: U has a total preordering 4.

For every v ∈ V , the multiset Fv contains a unique 4-minimal element τ(v) ∈ U .

The map τ : V → U is injective.

Additional Oracles:

4: compares two elements of U , and

4 : U → V ∪ {Error} inverts τ , i.e., on input u ∈ U it returns

4(u) =


the unique v ∈ V such that τ(v) = u if v exists

Error if no such v exists.

(7.1)

Integer program and uniqueness of solutions

Uniqueness of solutions for TriOrMultiSSR can be seen by looking at the integer linear

program formulation, where variables correspond to V and constraints correspond to U . The

Triangular Condition implies that, for every variable (v ∈ V), there exists a unique minimal

constraint (τ(v) ∈ U) containing this variable. The ordering 4 on U gives an ordering 4V

on V by setting v1 4V v2 when τ(v1) 4 τ(v2). Order the variables and constraints by 4V

and 4, respectively (break ties in 4 arbitrarily and have 4V respect the tie-breaking of 4).

The matrix for the corresponding linear program is upper triangular.

Hence, if the integer program has a solution, it is unique. It trivially follows that solving

6. A total order also imposes antisymmetry, i.e., if x 4 y and y 4 x then x = y. That is the assumption
we omit.
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the TriOrMultiSSR Search Problem also solves the corresponding Threshold-k Enumer-

ation Problem.

7.3.3 TriOrMultiSSR Search Problem

Algorithm 4 (TriOrMultiSSR) below solves the TriOrMultiSSR Search Problem in

polynomial time (Proposition 7.1.14). If viewing the problem as a linear program, the

algorithm essentially solves the upper triangular system of equations by row reduction, except

that the dimensions are too big and only oracle access is provided.

In each iteration, TriOrMultiSSR �nds one minimal element u in supp(K). It removes

the correct number m of copies of F4(u) from K, in order to remove all copies of u from K.

If this operation fails, the algorithm returns `no solution.' Meanwhile, L(4(u)) is updated

in each iteration to record the number of copies of F4(u) removed.

There are three reasons the operation may fail. (1) Removing all copies of u from K may

not be possible through removal of F4(u) (the number m = K(u)/F4(u) of copies is not an

integer). (2) K may not contain m copies of F4(u) (the operation K −m · F4(u) results in

negative values). (3) 4(u) returns Error (u is not in the range of τ).

Subroutines

min(S): min takes as input a subset S ⊂ Σn11 and outputs one minimal element under 4.

Using the 4 oracle, a min call can be executed in poly(|S|)-time.

Remove(K,F,m): Remove takes as input multisets F,K : Σn11 → N and a nonnegative

integer m. It returns K after removing m copies of the multiset if possible, while accounting

for non-unique encodings. Otherwise, it returns `no solution.' Pseudocode for Remove is

provided below.

Consolidate(K1, . . . ,Kn): Consolidate adjusts for non-unique encodings of U → N

multisets as Σn11 → N multisets. On the input encoded multisets K1, . . . ,Kn : Σn11 → N,
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Consolidate outputs multisets K̃1, . . . , K̃n : Σn11 → N that encode the same multisets of U ,

but uniquely. In other words, K̃i satisfy K̃i = Ki, with their combined support
⋃̇
i supp(K̃i) ⊂

Σn11 containing at most one encoding per element of U .

Algorithm

Recall that we denote the empty multiset by {{}}. We give pseudocode for the Remove

subroutine, followed by the main algorithm.

procedure Remove(K,F,m)

Consolidate(K,F) I Remove duplicate encodings within supp(K) ∪ supp(F).

K← K−m·F I Execute as K,F : Σn1
1 → Z, assuming integer range

if K has negative values then

return `no solution'

else return K

end if

end procedure
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Algorithm 4 Triangular Oracle MultiSS
1: procedure TriOrMultiSS(Σ1, n1, Σ2, n2, K, ≡, 4, F-oracle, 4)

2: Initialize L = {{}} I L is the empty multiset of Σn2
2

3: Consolidate(K). I Remove duplicate encodings within supp(K)

4: while K 6= {{}} do

5: u← min(supp(K)) I u is a minimal element of K

6: if 4(u) = Error then

7: return `no solution'

8: else

9: F← F-oracle4(u) I F is Fv, where τ(v) = u by Triangular Condition

10: m← K(u)
F(u)

I m is number of copies of F to remove from K.

11: if (m /∈ N) or (Remove(K,F,m) = `no solution') then

12: return `no solution'

13: else

14: L(4(u))← L(4(u)) +m

15: K← Remove(K,F,m)

16: end if

17: end if

18: end while

19: return L

20: end procedure

Analysis

The pre-processing step of Line 3 can be computed in time |supp(K)|2, by pairwise com-

parisons. The while loop of Line 4 is executed exactly |supp(K)| number of times, for each

u ∈ supp(K).

The Consolidate call in TriOrMultiSSR returns K̃ : Σn11 → N, a di�erent encoding
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of the multiset K of U , such that all elements of supp(K̃) are uniquely encoded. This requires(|supp(K)|
2

)
pairwise comparisons, or, < |supp(K)|2 calls to the ≡ oracle. Similarly, the

Consolidate call in Remove can be achieved in < |supp(K) ∪ supp(F)|2 calls to the ≡

oracle.

7.4 Reduction of HomExtSym to OrMultiSSR

We de�ne the reduction from HomExtSym to OrMultiSSR then prove the three parts of

Theorem 7.1.12. Theorem 7.1.12 states the polynomial-time e�ciency of the reduction, the

bijection between classes of equivalent extensions in HExt(ϕ) and the set SubSum(OMSϕ)

of solutions to OMSϕ, and issues of de�ning an extension homomorphism ϕ̃ ∈ HExt(ϕ) from

a solution L ∈ SubSum(OMSϕ).

Section 7.4.1 de�nes for notational convenience �(G, L)-actions,� which describe permu-

tation actions up to equivalence.

Section 7.4.2 presents the reduction from aHomExtSym instance ϕ to theOrMultiSSR

instance OMSϕ. The input toOrMultiSSR can be found and the oracles forOrMultiSSR

can be answered in poly(n,m) time, proving Theorem 7.1.12 (a).

Section 7.4.3 proves the bijection described in Theorem 7.1.12 (b), assuming the transitive

case. The transitive case is proved in Sections 7.4.4 and 7.4.5.

Section 7.4.6 Theorem 7.1.12 (c), regarding the algorithmic details of de�ning ϕ̃ ∈

HExt(ϕ) given a solution in SubSum(OMSϕ).

7.4.1 Equivalent extensions and de�nition of (G, L)-actions

In this section we characterize equivalence of two group actions and, in particular, �x notation

to describe equivalence.
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De�nition 7.4.1 (Equivalent permutation actions). Two permutation actions G y Ω and

G y Γ are equivalent if there exists a bijection ζ : Ω → Γ such that ζ(ωg) = (ζ(ω))g for

all g ∈ G and ω ∈ Ω.

Note that two permutation actions ϕ1, ϕ2 : G → Sm of G on the same domain are

equivalent if there exists ζ ∈ Sm such that ϕ1(g) = ζ−1ϕ2(g)ζ for all g ∈ G.

The Introduction de�ned two homomorphisms ϕ̃1, ϕ̃2 : G → Sm as �equivalent exten-

sions� of ϕ : M → Sm if they both extend ϕ and if they are equivalent as actions. The

following de�nition is equivalent to that de�nition provided in the Introduction.

For groups M ≤ G, the centralizer of M in G is given by CG(M) = {g ∈ G : (∀x ∈

M)(gx = xg)}.

De�nition 7.4.2 (Equivalent extensions). Let M ≤ G and ϕ : M → Sm. We say that

ϕ̃1 and ϕ̃2 are equivalent extensions of ϕ if there exists ζ ∈ CSm(ϕ(M)) such that

ζ−1ϕ̃2(g)ζ = ϕ̃1(g) for all g ∈ G.

Next we consider the equivalence of transitive group actions, through their point stabi-

lizers. A G-action on Ω is transitive if ωG = Ω for all ω ∈ Ω, i.e., for every pair ω1, ω2 ∈ Ω,

there is a group element g ∈ G satisfying ωg1 = ω2. Lemma 7.4.3 is Lemma 1.6A in [DM96].

Lemma 7.4.3. Suppose G acts transitively on the sets Ω and Γ. Let L be the stabilizer of

a point in the �rst action. Then, the actions are equivalent if and only if L is the stabilizer

of some point in the second action.

Recall that we denote the conjugacy class of a subgroup L ≤ G by [L], so L is conjugate

to L1 if and only if [L] = [L1]. We �nd all point stabilizers are conjugate, and all conjugate

subgroups are point stabilizers.

Fact 7.4.4. Let L be a point stabilizer of a transitive G-action on Ω. A subgroup L1 is

conjugate to L ([L1] = [L]) if and only if L1 is also the stabilizer of a point in Ω.
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All transitive G-actions are equivalent to one of its natural actions on cosets, ρL de�ned

below.

Example 7.4.5 (Natural actions on cosets). For L ≤ G, we denote by ρL the natural

action of G on L\G. More speci�cally, an element g ∈ G acts on a coset Lh ∈ L\G as

(Lh)g := L(hg).

We see that the equivalence class of a transitive action is determined by the conjugacy

class of its point stabilizers.

Corollary 7.4.6. Consider a transitive G-action ϕ : G → Sym(Ω). Let L ≤ G. The

following are equivalent.

(1) ϕ is equivalent to ρL.

(2) L is a point stabilizer of the G-action.

(3) Some L1 ≤ G satisfying L1 ∼ L is a point stabilizer of the G-action.

(4) ϕ is equivalent to ρL1
for L1 ∼ L.

Motivated by Corollary 7.4.6, we will de�ne the notion of �(G,L)-actions,� which describe

transitive G-actions up to equivalence. This de�nition will be generalized to intransitive

actions as �(G, L)-actions.� The L : Sub(G)→ N is a multiset of subgroups of G, describing

point stabilizers of the action. We make this more precise.

Recall that we write [L]G to denote the conjugacy class of the subgroup L in G.

De�nition 7.4.7 ((G,L)-action). Let ϕ : G → Sym(Ω) be a transitive action. Let L ≤ G.

We say that ϕ is a (G,L)-action if ϕ is equivalent to ρL. We say that ϕ is a (G, [L])-action

if ϕ is a (G,L)-action.

By Corollary 7.4.6, we see that G-action is a (G,L)-action if and only if L is a point

stabilizer of the action. Moreoever, a (G,L)-action is a (G,L1)-action if and only if [L] = [L1]
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So, we can speak of (G, [L])-actions and make no distinction between (G, [L])-action and

(G,L)-actions.

In what follows we introduce notation to describe equivalence between intransitive ac-

tions.

De�nition 7.4.8 ((G, L)-action). Let ϕ : G → Sym(Ω) be a group action. Denote by

Ωi the orbits of G, so Ω = Ω1 ∪̇ · · · ∪̇Ωd. Let L : Sub(G) → N be a multiset listed as

L = {{Li ≤ G}}di=1. We say the action of G on Ω is a (G, L)-action if G acts on Ωi as a

(G,Li)-action for all 1 ≤ i ≤ d.7

Again, the multiset of conjugacy classes of the elements of L determines the G-action up

to equivalence.

Notation 7.4.9. Let L = {{L1, . . . , Lk}} be a multiset of subgroups of G. We denote by

[L]G = {{[L1]G, . . . , [Lk]G}} the multiset of conjugacy classes of the subgroups of L.

In other words, for a multiset L : Sub(G)→ N, denote by [L]G : Conj(G)→ N the multiset

found by replacing every element L ∈ L by [L]G. Multiplicities of subgroup conjugacy classes

[L] in the multiset [L] satisfy [L]([L]) =
∑
L∈[L] L(L). We may write [L] for [L]G if G is

understood.

De�nition 7.4.10 (Conjugate multisets). We say that two multisets L, L : Sub(G) → N

are conjugate if [L] = [L1]. In other words, there exists a bijection π : L → L1 such that

π(L) ∼G L for all L ∈ L.8

Conjugate multisets describes group actions up to equivalence, as we see in the following

corollary to our de�nitions and Corollary 7.4.6.

7. The multiset L : Sub(G) → N contains one point stabilizer per orbit of the G-action. Viewing L as
a multiset is essential. For example, L = {{G}} describes the trivial action of G on one point, whereas
L = {{G,G}} describes the trivial action of G on two points.

8. This de�nition does not require conjugacy of all pairs simultaneously via the one element of G.
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Corollary 7.4.11. Let L1, L2 : Sub(G)→ N. The following are equivalent.

• L1 and L2 are conjugate, or [L1] = [L2].

• A (G, L1)-action is equivalent to a (G, L2)-action.

• A (G, L1)-action is also a (G, L2)-action.

So, we can speak of (G, [L])-actions and make no distinction between (G, [L])-action and

(G, L)-actions.

7.4.2 Reduction

This section addresses the poly(n,m)-time reduction fromHomExtPerm toOrMultiSSR.

Remark 7.4.12 (Meaning of �reduction�). As usual, we will �nd the explicit inputs to

OrMultiSSR from a HomExtSym instance in poly(n,m) time. To account for the oracles

in OrMultiSSR, we provide answers to its oracles in poly(n,m)-time as well.

Recall that Sub(G) denotes the set of subgroups of G and Conj(G) denotes the set of

conjugacy classes of subgroups of G. Denote by Sub≤m(G) the set of subgroups of G with

index bounded by m. Denote by Conj≤m(G) the set of conjugacy classes of subgroups of G

with index bounded by m.

Construction of OMSϕ We de�ne U ,V , [K] and encodings Σn11 ,Σn12 of the OrMultiSSR

instance OMSϕ.

U : Conj≤m(M).

V : Conj≤m(G).

Encoding of U : Σ1 = M and n1 = 2n. Conjugacy classes in U of subgroups are encoded

by subgroups in Sub≤m(M), which are themselves encoded by a list of at most 2n generators
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Encoding of V : Likewise, with Σ2 = G and n2 = 2n.

[K]: Let K : Sub≤m(M) → N be a multiset containing one point stabilizer per orbit of

the action ϕ : M → Sm. So, [K] : Conj≤m(M) → N is the multiset of conjugacy classes, as

in Notation 7.4.9.

Notational issues. Using [K] versus K re�ects the non-unique encoding of U = Conj≤m(M)

by Sub≤m(G) (and V = Conj≤m(G) by Sub≤m(G)), adhering to Notation 7.2.3 and 7.4.9.

A conjugacy class [K] ∈ U will be encoded by K ∈ Sub≤m(M). A multiset [K] : U → N will

be encoded by K : Sub≤m(M)→ N.

Calculating [K]

Calculating [K] : U → N from ϕ : M → Sm: Consider the decomposition [m] =

Σ1 ∪̇ . . . ∪̇Σs of [m] into its M -orbits under the action described by ϕ. Choose one ele-

ment xi ∈ Σi per orbit.9 Then, calculate the multiset K by �nding the point stabilizers

K := {{Mxi : i = 1 . . . s}}. So, calculating K can be accomplished in poly(n)-time by

Proposition 2.4.5.

Answering ≡ oracle

The ≡ oracle is given by checking conjugacy of two subgroups in Sub≤m(M), which can

be accomplished in poly(n,m)-time by Proposition 2.4.7.

Answering F-oracle oracle.

The set F is indexed by V = Conj≤m(G). F-oracle takes as input [L] ∈ Conj≤m(G)

(represented by a L ∈ Sub≤m(G)) and returns [FL] : Conj≤m(M) → N (represented by

FL : Sub≤m(M) → N), de�ned below. The multiset FL : Sub≤m(M) → N labels the

M -actions that extend to (G,L)-actions.

9. The choice of xi will not a�ect the correctness of the reduction.
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De�nition 7.4.13 (FL(σ)). Let σ = (σ1, . . . , σd) be a list of double coset representatives

for L\G/M . We de�ne the multiset FML (σ) : Sub(M)→ N by

FML (σ) = FL := {{σ−1
i Lσi ∩M : i = 1 . . . d}}.

In the context of extending an M -action ϕ : M → Sm to a G-action, M is understood,

so we drop the superscript and write FL.

The F-oracle oracle is well-de�ned. The choice σ of double coset representatives will not

matter (see Remark 7.4.23). Moreover, if [L]G = [L1]G then [FL]M = [FL1
]M , so the F-oracle

respects non-unique encodings (see Lemma 7.4.24). Section 7.4.4 gives further discussion on

the properties of FL.

The F oracle can be answered in poly(n,m)-time by Proposition 2.4.8.

7.4.3 Combinatorial condition for extensions

We are now equipped to state the central technical result. It relates M -actions to extension

G-actions by describing how M -orbits may be grouped to form G-orbits.

First, we address the case of transitive extensions.

As in De�nition 7.4.13, FL : Sub(M) → N denotes the multiset returned by the oracle

F-oracle on input L ∈ Sub(G). The multiset FL describes exactly how M -orbits must be

collected to form one (G,L)-orbit.

Lemma 7.4.14 (Characterization of transitive extensions). Let M ≤ G and m ∈ N. Let

ϕ : M → Sm be an M-action. Under these circumstances, ϕ extends to a (G,L)-action if

and only if ϕ is a (M,FL)-action.

This follows from Corollary 7.4.22 and Proposition 7.4.27 below.

Remark 7.4.15. To rephrase Lemma 7.4.14, an (M,K)-action extends to a transitive (G,L)-

action if and only if [K] = [FL] (see Corollary 7.4.11).
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The following result on intransitive actions is a corollary to Lemma 7.4.14.

Theorem 7.4.16 (Key technical lemma: characterization of HomExtSym with codomain

Sm). Let M ≤ G and m ∈ N. Let ϕ : M → Sm be an (M, [K])-action, where [K] :

Conj(M) → N. Under these circumstances, ϕ extends to a (G, [L])-action, where L :

Conj(G)→ N, if and only if [K] is an [L]-linear combination of elements in F, i.e.,

[K] =
∑
L∈L

[FL] =
∑

[L]∈Conj≤m(G)

L([L])[FL]. (7.2)

We have found that an (M,K)-action extends exactly if K is a Subset Sum with Repetition

of {KL}. Compare Equation (7.2) to the de�nition of SubSum(OMSϕ) (see Notation 7.3.2

and the reduction of Section 7.4.2). We have found the following.

Corollary 7.4.17. Let M ≤ G and m ∈ N. Let ϕ : M → Sm be an (M, [K])-action, where

[K] : Conj(M) → N. Under these circumstances, ϕ extends to a G-action if and only if

SubSum(OMSϕ) is nonempty.

So, HExt(ϕ) is nonempty if and only if SubSum(OMSϕ) is nonempty.

Remark 7.4.18. In fact, we have found something even stronger. The multisets [L] satisfy-

ing Equation (7.2) are exactly the elements in SubSum(OMSϕ). A multiset [L] : Conj(G)→

N satis�es Equation (7.2) if and only if HExt(ϕ) contains a (G, L)-action extending ϕ. This

notation identi�es all equivalent extensions, so we have found a bijection between the solu-

tions in SubSum(OMSϕ) and classes of equivalent extensions in HExt(ϕ), as promised by

Theorem 7.1.12 (b).

7.4.4 (G,L)-actions induce (M,FL)-actions

LetM ≤ G. This section describes theM -action found by restricting a (transitive) G-action.

If ϕ : G→ Sym(Ω) describes a G-action on Ω, we will call the M -action on Ω described by

ϕ|M : M → Sym(Ω) the M-action induced by ϕ.
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We identify the permutation domain of a (G,L)-action by the right cosets L\G. This is

possible due to equivalence with ρL, the action on cosets of L. We now describe the behavior

of the induced M -action on L\G.

Remark 7.4.19. Let M,L ≤ G. Consider the natural M -action on L\G (the M -action

induced by ρL). We have that (Lg1) and (Lg2) belong to the same M -orbit if and only if

Lg1M = Lg2M , i.e., if g1 and g2 belong to the same double coset of L\G/M .

Lemma 7.4.20. Let g0 ∈ G. Let M,L ≤ G. The action of M on the orbit (Lg0)M of Lg0

in L\G is equivalent to the action of M on K\M , where K := g−1
0 Lg0 ∩M . The bijection

is given by La↔ Kg−1
0 a.

Proof. Both actions are transitive. Let ζ : (Lg0)M → K\M be de�ned by ζ(Lg) = Kg−1
0 g

for all g ∈ Lg0M . For all a ∈M ,

ζ((Lg)a) = ζ(L(ga)) = Kg−1
0 (ga) = (Kg−1

0 g)a = ζ(Lg)a.

From Remark 7.4.19 and Lemma 7.4.20, we have found the (possibly non-transitive)

natural action of M on L\G satis�es the following.

(1) The number of orbits is |L\G/M |.

(2) The point stabilizer of Lg ∈ L\G under the M -action is MLg = g−1Lg ∩M .

We restate the de�nition of FL, which we now see describes the M -action on L\G.

De�nition 7.4.21 (FL(σ)). Let σ = (σ1, . . . , σd) be a list of double coset representatives

for L\G/M . We de�ne the multiset FML (σ) : Sub(M)→ N by

FML (σ) = FL := {{σ−1
i Lσi ∩M : i = 1 . . . d}}.
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If the subgroup M is understood, we drop the superscript M .

From Remark 7.4.19 and Lemma 7.4.20, we �nd that (G,L)-actions restrict to (M,FL)-

actions.

Corollary 7.4.22. Let M,L ≤ G. Let σ = (σ1, . . . , σd) be a set of double coset representa-

tives of L\G/M . If G acts on Ω as a (G,L)-action, then the induced action of M on Ω is an

(M,FL(σ))-action. In fact, theM-action induced by a (G, [L])-action is an (M, [FL])-action.

The last sentence of Corollary 7.4.22 follow from Corollary 7.4.11 and Lemma 7.4.24

below, which say that the choice σ of double coset representatives and the choice L of

conjugacy class representative make no di�erence to the conjugacy class [FL(σ)].

We now see the F-oracle is well-de�ned.

Remark 7.4.23. For any two choices σ or σ′ of double cosets representatives of L\G/M , we

have that [FL(σ)]M = [FL(σ′)]M . So, we may reference (M,FL)-actions without specifying

σ.

In fact, only the conjugacy class of L matters in determining the conjugacy class of FL.

In particular, the F-oracle oracle is well-de�ned.

Lemma 7.4.24. Let M,L,L1 ≤ G. If [L]G = [L1]G, then [FML ]M = [FML1
]M . In other

words, if L and L1 are conjugate in G, then FML and FML1
are conjugate in M .

Proof. The natural G-actions on L\G and L1\G are equivalent by Corollary 7.4.6. Thus,

the induced M -action on L\G and the induced M -action on L1\G are equivalent, using the

same bijection on the domain. But, the M -action on L\G is an (M,FL)-action and the

M -action on L1\G is an (M,FL1
)-action. By Corollary 7.4.11, we �nd [FL]M = [FL1

]M .

7.4.5 Gluing M -orbits to �nd extensions to G-actions

In this section we will see that any (M,FL)-action will extend to a (G,L)-action. It is intu-

itively straightforward that the (G,L)-action restricts to a (M,FL)-action, which is equiva-
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lent to the original (M,FL)-action by Corollary 7.4.11. We make the equivalence explicit by

specifying the bijection between permutation domains.

Let M,L ≤ G and σ ∈ G. Lemma 7.4.20 gave an equivalence between the M -action on

the orbit (Lσ)M of (Lσ) in L\G and the naturalM -action on Fi\M , where Fi = σ−1Lσ∩M .

We extend this equivalence here.

Construction 7.4.25 (Equivalence ζ). Fix a choice σ = (σ1, . . . , σd) of double coset

representatives for L\G/M . Recall the de�nition FL(σ) = {{Fi : i = 1 . . . d}}, where

Fi = σ−1
i Lσi ∩M . De�ne the map ζ by

ζ :

(⋃̇
i
Fi\M

)
→ L\G, ζ : Fiτ 7→ Lσiτ.

That ζ is a permutation equivalence of theM -actions on the two sets follows immediately

from Lemma 7.4.20.

Corollary 7.4.26. The map ζ given in Construction 7.4.25 is a permutation equivalence of

the M-action.

The next result is almost immediate from our discussion above.

Proposition 7.4.27 (Gluing). Let L,M ≤ G. Suppose that ϕ : M → Sym(Ω) describes

an (M,FL)-action. Then, there exists an extension ϕ̃ : G → Sym(Ω) of ϕ that is a (G,L)-

action.

Proof. We label the M -orbits of Ω by the cosets Fi\M , use ζ to label Ω by L\G, then let G

act on Ω in its natural action on L\G. The output is the evaluation of ϕ̃ on the generators

of G as given by ϕ̃(gj) : La 7→ Lagj .

7.4.6 De�ning one extension from SubSum solution

We address Theorem 7.1.12 (c), de�ning an extension ϕ̃ ∈ HExt(ϕ) given a solution [L] ∈

SubSum(OMSϕ).
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First, Construction 7.4.25 gives an explicit bijection ζ that, given an (M,FL)-action,

de�nes an extension (G,L)-action. This bijection ζ can be computed in poly(n,m) time.

The issue remains of �nding the FL �grouping� of the M -orbits that respect the orbits of

the (G, L)-action.

Fix a HomExtSym instance ϕ. Fix L : Sub(G) → N in SubSum(OMSϕ), so L satis�es

Equation (7.2). Recall that L is represented by listing the subgroups in its support and their

multiplicities. Since |supp(L)| ≤ ‖L‖1, the number of orbits of the G-action, we �nd that

|supp(L)| ≤ m.

It takes poly(n,m) time to compute the multiset K of point stabilizers (one point stabilizer

per orbit), and label [m] by
⋃̇
K∈KK\M , the right cosets in M of the subgroups in K.

Compute the multiset
∑
L∈L[FL] in poly(n,m, ‖K‖1)-time, by calling the F oracle.

By Theorem 7.4.16, [K] =
∑
L∈L[FL]. Via at most m2 poly(n,m)-time conjugacy checks

between subgroups in M , compute the map π : K ↔
∑
L∈L FL that identi�es conjugate

subgroups. Compute the conjugating element for each pair.

For each L ∈ L, use the map ζ of Construction 7.4.25 to label Ω by right cosets of elements

in L. De�ne ϕ̃ by its natural action on cosets.

7.5 Reducing to TriOrMultiSSR

In this section we address the additional assumptions and oracles for TriOrMultiSSR, in

the case that ϕ is an instance of HomExtSym satisfying the conditions of Theorem 7.1.9

(M ≤ G = An, |G : M | = poly(n), and codomain Sm with m < 2n−1/
√
n).

Ordering, the 4 oracle

The ordering 4 on conjugacy classes in U = Conj≤m(M) is the ordering given by the

index of subgroups contained in each class, i.e., [K1] 4 [K2] whenever |M : K1| ≤ |M : K2|.
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This relation is clearly a total preorder.

4 oracle: The index of a subgroup K ≤M can be computed in poly(n)-time by Proposi-

tion 2.4.5. The 4 compares two conjugacy classes in Conj≤m(M) by comparing the indices

of two representatives.

Triangular condition, the 4 oracle

Here we de�ne the4 oracle on U = Conj≤m(M) (Construction 7.5.1), analyze its e�ciency

(Remark 7.5.2), then prove its correctness (Lemma 7.5.4). The assumptions of Theorem 7.1.9

are essential.

First we set up some notation. By the assumptions of Theorem 7.1.9, G = An and

M ≤ G satis�es |G : M | = poly(n). Assume more speci�cally that |G : M | <
(n
r

)
, for

constant r. By Jordan-Liebeck (Theorem 2.4.2) we �nd that (An)(Σ) ≤ M ≤ (An)Σ for

some Σ ⊆ [n] with |Σ| < r. Fix this subset Σ ⊂ [n].

Recall that, for a subset Σ ⊆ [n] that is invariant under action by the permutation group

M ≤ Sn, we denote byMΣ ≤ Sym(Σ) the induced permutation group of theM -action on Σ.

Construction 7.5.1 (4 oracle). We de�ne a map 4 : Sub≤m(M) → Sub≤m(G).10 Let

K ∈ Sub≤m(M). By Jordan-Liebeck, we �nd that (An)(Γ) ≤ K ≤ (An)Γ for Γ ⊆ [n] with

|Γ| < n/2. There are two cases. If there is a subset Σ0 ⊆ Γ such that KΣ0 = MΣ, then let

Γ̄ = Γ \ Σ0 and

4(K) =


Alt([n] \ Γ̄)×KΓ̄ if KΓ̄ is even

the subgroup of index 2 in Sym([n] \ Γ̄)×KΓ̄ otherwise

. (7.3)

If such a Σ0 does not exist, then let 4(K) = Error.

10. Though the 4 oracle returns an element of Conj≤m(G) on an input from Conj≤m(M), these conjugacy
classes are represented by subgroups. So, the 4 oracle should return an element of Sub≤m(G) on an input
from Sub≤m(M), while respecting conjugacy.
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Remark 7.5.2 (E�ciency of 4 oracle). Answering the 4 oracle of Construction 7.5.1 re-

quires �nding orbits, �nding the induced action on orbits, and checking permutation equiv-

alence. These can be accomplished in poly(n,m) time.

Remark 7.5.3. The 4 oracle is well-de�ned as a Conj≤m(M)→ Conj≤m(G) map.

Now, we prove that4 as de�ned in De�nition 7.5.1 satis�es the conditions ofTriOrMultiSSR.

In other words, the equivalence class of the M -action on its longest orbit uniquely deter-

mines the equivalence class of the transitive G-action and this correspondence is injective.

Lemma 7.5.4 makes this more precise.

Lemma 7.5.4. Let M ≤ G = An have index |G : M | ≤
(n
u

)
. Let G act on Ω transitively,

with degree |Ω| <
(n
v

)
. Assume u + v < n/2. If K0 is a point stabilizer of the induced M

action on its longest orbit, then 4(K0) is a point stabilizer of the G-action on Ω.11

In other words, the conclusion is that, ifM acts on its longest orbit as an (M,K0)-action,

then G acts as a (G,4(K0))-action.

We defer the proof of Lemma 7.5.4 to present a few useful claims.

Claim 7.5.5. If (An)(Σ) ≤ L ≤ (An)Σ, then the pair (Σ, LΣ) determines L.

Proof. We have two cases. Either L = (An)(Σ) × LΣ = An−|Σ| × LΣ, or L is an index 2

subgroup of (Sn)(Σ) × LΣ = Sn−|Σ| × LΣ. In the �rst case, all permutations in LΣ must be

even. In the second case, LΣ must contain an odd permutation.

Claim 7.5.6. Suppose that (An)(Σ) ≤ L ≤ (An)Σ and (An)(Γ) ≤M ≤ (An)Γ for Γ∩Σ = ∅.

Then, LΣ = (L ∩M)Σ. (Equivalently, MΓ = (L ∩M)Γ.)

Proof. The inclusion ⊇ is obvious. We show ⊆.

Let σ ∈ LΣ. View σ as a permutation in Sn. Let Σ ⊆ [n] be such that [n] = Γ ∪̇Σ ∪̇Σ.

Consider the set T = {τ ∈ Sn : supp(τ) ⊆ Σ and sgn τ = sgnσ}.

We see that for all τ ∈ T , στ ∈M ∩ L. Thus, σ ∈ (M ∩ L)Γ.

11. If M and K0 are known, then 4(K0) is uniquely determined.
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Proof of Lemma 7.5.4. Let L be a point stabilizer of G acting on Ω. Since |Ω| <
(n
v

)
, by

Jordan-Liebeck Theorem 2.4.2, there exists a subset Γ̄ ⊂ [n] such that (An)(Γ̄) ≤ L ≤ (An)Γ̄

and |Γ̄| < v. Similarly, there exists Σ ⊂ [n] such that (An)(Σ) ≤ M ≤ (An)Σ and |Σ| < u.

Fix Γ̄ and Σ.

By Theorem 7.4.16, we �nd that the point stabilizers of the M -action on Ω are described

by FL. By De�nition 7.4.13 and Corollary 7.4.11, we �nd that

K0 = argmax{|M : K| : K ∈ FL} ∼M argmin{|K| : K = g−1Lg ∩M for g ∈ G}.

But, |g−1Lg ∩M | is minimized when g ∈ G = An satis�es Γg ∩ Σ = ∅. Fix this g. By

Claims 7.5.5 and 7.5.6 applied to g−1Lg and M , we �nd that

g−1Lg =


Alt([n] \ Γ̄)×KΓ̄ if KΓ̄ is even

the subgroup of index 2 in Sym([n] \ Γ̄)×KΓ̄ if KΓ̄ contains an odd permutation

.

(7.4)

In other words, we have found that g−1Lg = 4(K0), i.e., L ∼G 4(K0). It follows that the

G-action on Ω is a (G,4(K0))-action.

7.6 Generating extensions within one equivalence class

We now consider how to, given one extension ϕ̃ ∈ Hom(G,Sm) of ϕ ∈ Hom(M,Sm), generate

all extensions of ϕ equivalent to ϕ̃.

Theorem 7.6.1. Let M ≤ G and ϕ : M → Sm. Suppose that ϕ̃ : G→ Sm extends ϕ. Then

the class of extensions equivalent to ϕ̃ can be e�ciently enumerated.

We will see that proving this result reduces to �nding coset representatives for subgroups

of permutation groups. First, some notation for describing group actions equivalent to ϕ̃.

145



Notation 7.6.2. Let λ ∈ Sm. Let ϕ̃ : G→ Sm. De�ne ϕ̃λ : G→ Sm by ϕ̃λ(g) = λ−1ϕ̃(g)λ

for all g ∈ G.

While ϕ̃λ will be equivalent to ϕ̃, regardless of the choice of λ ∈ Sm, we remark on the

distinction between ϕ̃λ being the same group action, an equivalent extension of ϕ, and an

equivalent action.

Remark 7.6.3. Let λ ∈ Sm. Let ψ ∈ Hom(G,H).

• ψ and ϕ̃ are equivalent (as a permutation actions) ⇐⇒ ψ = ϕ̃λ for some λ ∈ Sm.

• ψ and ϕ̃ are equivalent extensions of ϕ ⇐⇒ ψ = ϕ̃λ and ψ|M = ϕ̃ ⇐⇒ ψ = ϕ̃λ for

some λ ∈ CSm(ϕ̃(M)) = CSm(ϕ(M)).

• ψ and ϕ̃ are equal ⇐⇒ ψ = ϕ̃λ for some λ ∈ CSm(ϕ̃(G)).

We conclude that the sets of coset representatives of CSm(ϕ̃(G)) in CSm(ϕ(M)) generate

the non-equal equivalent extensions of ϕ̃.

Remark 7.6.4. Let R be a set of coset representatives of CSm(ϕ̃(G)) in CSm(ϕ(M)). The

set of equivalent extensions to ϕ̃ can be described (completely and without repetitions) by

{ϕ̃λ : λ ∈ R}.

These centralizers can be found in poly(n,m)-time. The centralizer of a set of T permu-

tations in Sm can be found in poly(|T |,m) time (see Section 2.4.4), and we use this with the

set of generators of M and G. We can now apply the cited unpublished result by Blaha and

Luks, stated below and proved in Section 2.4.5.

Theorem 7.6.5 (Blaha�Luks). Given subgroups K ≤ L ≤ Sm, one can e�ciently enumerate

a representative of each coset of K in L.
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Since coset representatives of K = CSm(ϕ(M)) in L = CSm(ϕ̃(G)) can be e�ciently

enumerated, so can all equivalent extensions to ϕ̃, by Remark 7.6.4.

As a corollary, we �nd that the number of equivalent extensions can be computed in

poly(n,m) time.

Corollary 7.6.6. Suppose ϕ̃ ∈ Hom(G,Sm) extends ϕ ∈ Hom(M,Sm). The number of

equivalent extensions to ϕ̃ is |CSm(ϕ̃(G)) : CSm(ϕ(M)|. This can be computed in poly(n,m)-

time.

7.7 Integer linear programming for large m

There is an interesting phenomenon for very largem, whenm > 21.7n
2

. The instances OMSϕ

of OrMultiSSR can be solved in polynomial time.

MultiSSR can naturally be formulated as an Integer Linear Program, with di-

mensions |U| × |V|, the size of the universe U and length of the list F (indexed by V). The

variables correspond to multiplicities of the elements of F. The constraints correspond to

elements of U , by checking whether their multiplicities in the multiset and subset sum are

equal.

In OMSϕ, these are Conj(M) and Conj(G). A result of Pyber [Pyb93] says that for

G ≤ Sn, the number of of subgroups is bounded by |Sub(Sn)| ≤ 1.69n
2
. This bound is tight,

so we cannot hope for the number of variables (Conj(M)) to be smaller than exponential in

n2.

The �low-dimensional� algorithms of Lenstra and Kannan solve Integer Linear Pro-

gramming in �polynomial� time [LJ83, Kan87], which are su�cient for this purpose. We

state their results more precisely below.

Theorem 7.7.1. The Integer Linear Programming�Search and Decision Problems

can be solved in time NO(N) · s, where N refers to the number of variables and s refers to
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the length of the input.12

Lemma 7.7.2. Suppose that the Integer Linear Programming Search Problem can

be solved in time f(N,M, a). Then, the Integer Linear Programming Threshold-k

Enumeration Problem can be solved in time f(N,M, a) ·O(k2).

We have found that, for instances ϕ of HomExtSym with m > 21.7n
2

, the Threshold-k

Enumeration Problem for OMSϕ can be solved in poly(n,m, k)-time. For these instances of

ϕ, the Threshold-k Enumeration Problem can be solved in poly(n,m, k)-time.

12. This result shows that ILP is �xed-parameter tractable, but we will not use that terminology here.
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