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Abstract 
 

The emergence of controllable quantum systems has led to exciting applications for quantum 

computation, communication, and metrology. Among the many candidate systems, silicon carbide 

has attracted interest as a solid-state quantum platform in a technologically mature semiconductor 

material. When one creates atomic defects in silicon carbide lattice, individual electrons become 

trapped in isolated energy levels in the band gap. These electron spins can then be optically 

initialized and read out while being coherently controlled through microwave frequency fields. 

This interface between spin and photon quantum states provides exciting opportunities for creating 

remote entanglement on a macroscopic length scale. 

     This thesis discusses the foundations of the divacancy in silicon carbide as a spin qubit and then 

presents the photonic enhancement of this system. More specifically, nanoscale photonic crystal 

cavities in silicon carbide are fabricated in order to modify the divacancy's zero-phonon line optical 

emission. This is vital for facilitating spin-photon and spin-spin entanglement protocols which rely 

on the emission of indistinguishable photons without losing coherence to phonons emitted into the 

lattice. A combination of electron-beam lithography and photoelectrochemical etching is 

employed to create suspended nanocavities in the 4H polytype. The combination of this structure 

with a centralized divacancy forms the foundational atom-cavity system studied in cavity quantum 

electrodynamics. As predicted from interactions with the cavity mode, a substantial Purcell 

enhancement of the divacancy zero-phonon line and a reduced excited state lifetime are observed. 

Additionally, we demonstrate spin control and coherence in these devices for the first time. More 

broadly, the cavity-emitter interactions in this system allow us to study transduction between spin 

and photonic degrees of freedom and provide a first step towards next generation hybrid devices. 
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Chapter 1 
 
Introduction To Quantum 
Two Level Systems 
 

 

 

1.1  Introduction – Quantum states 
 

In many fields of physics, it is a common goal to quantify a system's characteristics through 

physically measurable quantities such as mass, charge, or velocity. These quantities then influence 

the system's behavior over time and its interactions with other systems. This idea extends to the 

realm of quantum physics, where the same fundamental properties set the foundations of so-called 

quantum states. A key distinction, however, is that instead of a continuous set of values these states 

can only assume quantized measures. For example, the magnetic flux through a superconducting 

loop can only take on integer multiples of the flux quantum Φ0 = ℎ/2𝑒, where ℎ is Planck's 

constant and 𝑒 is the charge of an electron. Other examples of quantum states or "qubits" include 

the position of a particle, the spin of an electron, and the polarization of a photon. In each of these 

examples the quantity of interest takes discretized values. What can be continuous, however, is the 

linear combination of different quantum states, which we will see shortly. 

     Generally speaking, there has been a great interest in the exploration of quantum systems due 

to their insight into fundamental physics and their recent emergence into quantum technologies. 

The fields of quantum computing, quantum communication, and quantum sensing all leverage the 
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unique properties of quantum mechanical states to gain an advantage over their "classical" 

counterparts. In order to bring these applications to fruition, we must be able to both understand 

how a quantum state behaves and be able to influence the system directly. 

     To begin this discussion, we must establish a convention of how a quantum state is represented. 

This is broadly described by the "wavefunction" of a particle or a group of particles. The quantum 

state, whatever it happens to be, is usually represented using bra-ket notation with the Greek letter 

𝜓: 

quantum state = |𝜓〉 (1.1) 

 

For example, we could have the following quantum states: 

 

photon number, {|𝑛 = 0〉, |𝑛 = 1〉, |𝑛 = 2〉… } (1.2) 

electron spin, {|↑〉, |↓〉} (1.3) 

magntic flux, {|
ℎ

2𝑒
〉 , |
2ℎ

2𝑒
〉 , |
3ℎ

2𝑒
〉… } (1.4) 

 

     To make further headway in a mathematical description, we will limit ourselves to the most 

basic dimensionality of a quantum state: the two-level system (sometimes abbreviated TLS). 

Although this is a simplification, almost all practical quantum applications can be described in the 

language of a two-level system, so it serves as an incredibly powerful tool. 

     The first decision to be made for the two-level system is what basis to choose to describe states. 

This is similar to how several equivalent coordinate systems can be used to describe position in 

three-dimensional space, with the axes such as x/y/z serving as the basis of the description. It is 

worth noting that this basis choice does not need to be a permanent, as the basis can be changed at 

any point to give a mathematically equivalent representation of the state. Although any basis that 
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spans the possibilities of quantum states (termed the Hilbert space) is allowed, often the physics 

of the system itself allows for a natural choice. For the following discussions we will pick the 

abstract basis of {|0〉, |1〉}, which could represent, for example, the two spin states of an electron. 

     With this basis in hand, a quantum state can be generally represented as a complex linear 

combination of the two states: 

 
|𝜓〉 = (𝑎 + 𝑖𝑏)|0〉 + (𝑐 + 𝑖𝑑)|1〉 (1.5) 

 

Or, written as a vector 

|𝜓〉 = (
𝑎 + 𝑖𝑏
𝑐 + 𝑖𝑑

) (1.6) 

 

All states have to be "normalized", which means: 

 

(𝑎 + 𝑖𝑏)2 + (𝑐 + 𝑖𝑑)2 = 1 (1.7) 

 

     Physically, this means that upon measurement the state must either be |0〉 or |1〉, with a total 

probability that adds to 1. Additionally, it is physically insignificant to add or remove a global 

phase from this state. This means we can write: 

 

|𝜓〉 = (
𝑎 + 𝑖𝑏
𝑐 + 𝑖𝑑

) , or, |𝜓〉 = 𝑒𝑖𝜙 (
𝑎 + 𝑖𝑏
𝑐 + 𝑖𝑑

) (1.8) 

 

These are the same state in the sense that any physical measurement will give the exact same result. 

This is in contrast to a relative phase, in which: 

 

|𝜓〉 = (
𝑎 + 𝑖𝑏
𝑐 + 𝑖𝑑

) ≠ (
𝑎 + 𝑖𝑏

(𝑐 + 𝑖𝑑)𝑒𝑖𝜙
) (1.9) 

 

A common convention is to make the first entry completely real. That is to say: 
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|𝜓〉 = (
𝑎 + 𝑖𝑏
𝑐 + 𝑖𝑑

) = (
𝛾

𝛼 + 𝑖𝛽) (1.10) 

Where: 

𝛾 = √𝑎2 + 𝑏2, 𝛼 = (𝑎𝑐 + 𝑏𝑑)√
1

𝑎2 + 𝑏2
, 𝛽 = (𝑎𝑑 − 𝑏𝑐)√

1

𝑎2 + 𝑏2
(1.11) 

So more explicitly: 

|𝜓〉 = (
𝑎 + 𝑖𝑏
𝑐 + 𝑖𝑑

) =

(

 
 

√𝑎2 + 𝑏2

(𝑎𝑐 + 𝑏𝑑)√
1

𝑎2 + 𝑏2
+ 𝑖(𝑎𝑑 − 𝑏𝑐)√

1

𝑎2 + 𝑏2
)

 
 

(1.12) 

 

     Already, the description of a state in a simple two-level system has become quite complicated. 

To help provide some intuition for these expressions, we can interpret a quantum state 

geometrically, as will be discussed in the next section. 

 

 

1.2  Bloch sphere representation of a two-
level state 
 

     Any state of a two-level system can be represented as a point on the surface of a three-

dimensional unit sphere termed the "Bloch sphere". Mathematically, a two-dimensional vector 

with a complex component is mapped to a three-dimensional vector in Cartesian space with real 

components. In this formalism, the z-axis corresponds to the proportion of |0〉 or |1〉, the x-axis 

encodes a real phase between the states, and the y-axis encodes an imaginary phase between the 

states. This formalism proves useful for describing the evolution of two-level system states, as we 

will see later. A schematic of the Bloch sphere is shown in the figure below: 
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Figure 1.1 | The Bloch sphere. The red point represents an arbitrary state |𝜓〉 with a polar angle 

𝜃 and an azimuthal angle 𝜙 on the Bloch sphere. The six axis endpoints correspond to states as 

labeled in the figure. 

 

The Bloch sphere uses the convention to make the first entry completely real: 

 

𝜓 = (
𝛾

𝛼 + 𝑖𝛽) , written as (
|0〉 component
|1〉 component

) (1.13) 

 

Where typically the first entry corresponds to the |0〉 state. In Bloch sphere coordinates, this state 

can be equivalently expressed as: 

𝜓 = (
cos

𝜃

2

𝑒𝑖𝜙 sin
𝜃

2

) (1.14) 
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Where 𝜃 is the polar angle with the z-axis and 𝜙 is the azimuthal angle with the x-axis. Using the 

above variables, the "Bloch sphere coordinates" of the quantum state 𝜓 can be written as: 

 

Bloch sphere coordinates of 𝜓, 𝑎⃗ = (
𝑥
𝑦
𝑧
) = (

sin 𝜃 cos𝜙
sin 𝜃 sin𝜙
cos 𝜃

) = (

2𝛼𝛾
2𝛽𝛾

2𝛾2 − 1
) (1.15) 

 

Or, if the original 2D state vector has two complex components: 

 

if 𝜓 = (
𝑎 + 𝑖𝑏
𝑐 + 𝑖𝑑

) , then, 𝑎⃗ = (

2(𝑎𝑐 + 𝑏𝑑)

2(𝑎𝑑 − 𝑏𝑐)

2(𝑎2 + 𝑏2) − 1

) (1.16) 

 

Alternatively, if given an x, y, z coordinate of a Bloch sphere point, we can write the 𝛼, 𝛽, 𝛾 

variables as: 

𝑥 = 2𝛼𝛾, 𝑦 = 2𝛽𝛾, 𝑧 = 2𝛾2 − 1 (1.17) 

Which means 

𝛼 =
𝑥

2
√

2

𝑧 + 1
, 𝛽 =

𝑦

2
√

2

𝑧 + 1
, 𝛾 = √

𝑧 + 1

2
(1.18) 

 

     With the Bloch sphere, time evolution and projective measurements now have a geometric 

interpretation. This interpretation is repeatedly used for two-level systems or any multi-level 

systems that can be reduced to two-level systems. 

 

1.3  Measuring a quantum state 

For practical applications we ultimately have to measure the quantum state, although there are 

several ways this can be done. Just as we had to pick a basis when representing a state, we also 



7 

 

must pick a basis for measurement. Once the basis is chosen, then each basis state can form its 

own "projection operator". For example for the |0〉 state, 

 

 
|0〉 = 0 state, |0〉〈0| = 0 projection operator (1.19) 

 

Measurements are then mathematically represented by sandwiching this projection operator with 

the wavefunction |𝜓〉: 

 
⟨𝜓|0⟩⟨0|𝜓⟩ = returns value ∈ [0,1] giving probability of measuring 0 state (1.20) 

 

The returned quantity is the probability that measuring the wavefunction will return the projection 

operator state. This act of "sandwiching" an operator by the wavefunction 𝜓 is more formally 

stated as the expectation value of the operator: 

 
⟨𝜓|𝐴|𝜓⟩ = expectation value of operator 𝐴 (1.21) 

 

In this sense, the expectation value of the projection operator for a state |𝑥〉 is the probability of 

finding the wavefunction in the |𝑥〉 state. Probabilities must be normalized within a complete basis, 

so this means: 

⟨𝜓|0⟩⟨0|𝜓⟩ + ⟨𝜓|1⟩⟨1|𝜓⟩ = 1 (1.22) 

 

Sometimes, this is represented as the sum of squares of inner products: 

 

|⟨𝜓|0⟩|2 + |⟨𝜓|1⟩|2 = 1 (1.23) 

 

     After the measurement is made, the state will "collapse" to one of the eigenstates of the 

measurement basis, and that becomes the new state of the particle. Any previous superposition 
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information will disappear. In this sense the measurement of a quantum state entails some 

irreversible loss of information, as there are multiple starting states that can give the same 

measurement result. 

     Alternatively, for a two-level system we can geometrically project a state along a Cartesian axis 

on the Bloch sphere. Mathematically this can be represented as: 

 
〈𝜎𝑧〉 = ⟨𝜓|𝜎𝑧|𝜓⟩ = returns value ∈ [−1,1] giving projection along z axis (1.24) 

 

Where the Pauli matrices are defined as: 

 

𝜎𝑥 = (
0 1
1 0

) , 𝜎𝑦 = (
0 −𝑖
𝑖 0

) , 𝜎𝑧 = (
1 0
0 −1

) (1.25) 

 

In this way the trio of expectation values of 𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧 uniquely defines a point on the Bloch sphere: 

 

⟨𝜓|𝜎𝑥|𝜓⟩ = 𝑥, ⟨𝜓|𝜎𝑦|𝜓⟩ = 𝑦, ⟨𝜓|𝜎𝑧|𝜓⟩ = 𝑧 (1.26) 

 

More generally, the expectation value of a spin operator gives the expected value of the spin when 

it is measured along the axis of the operator. 

 
⟨𝜓|𝑆𝑖|𝜓⟩ = expected value of the spin when measured along axis 𝑖 (1.27) 

 

We will use this definition when dealing with the divacancy spin in chapter 2, which is a spin-1 

system that occupies a three-dimensional Hilbert space. 
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1.4  Quantum dynamics of two-level 

systems 

Now that we have outlined how to describe a stationary quantum state, it's now time to introduce 

the dynamics of quantum states. More specifically, this means the time evolution of a state either 

with or without an external field. This is where we first see the Hamiltonian and Schrodinger's 

equation put to use. It is no overstatement to say that the behavior predicted by these two 

components lay the foundation for nearly all of quantum mechanics. The ideas that are presented 

here for the two-level system will be extended to higher level systems in future chapters. By 

understanding how these systems naturally evolve, we can leverage their response to external 

fields to gain control over their behavior. 

 

1.4.1  Hamiltonian of the two-level system 

Up until now we have focused on characterizing of quantum states in a snapshot in time and 

measurement outcomes at an exact moment in time. We wish to broaden this discussion to time 

evolution of quantum states. To discuss this, we must introduce the Hamiltonian, which governs 

the time dynamics of a state. More specifically, we use the time-dependent Schrodinger equation 

to describe the dynamics of a closed quantum system: 

 

𝑖ℏ
𝜕

𝜕𝑡
|𝜓〉 = 𝐻̂|𝜓〉 (1.28) 

 

In the case of a two-level system, the Hamiltonian 𝐻̂ is typically written as: 
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𝐻̂ =
ℏ𝜔0
2
(|𝑒〉〈𝑒| − |𝑔〉〈𝑔|) (1.29) 

 

where "e" denotes the excited state and "g" denotes the ground state, and ℏ𝜔0 is the energy splitting 

between the two states. If we choose the vector representation: 

 

|𝑒〉 = (
1
0
) , |𝑔〉 = (

0
1
) (1.30) 

 

Then the Hamiltonian takes a 2x2 matrix form: 

 

𝐻̂ =
ℏ𝜔0
2
((
1
0
) (1 0) − (

0
1
) (0 1)) =

ℏ𝜔0
2
(
1 0
0 −1

) (1.31) 

 

Note that this can also be written in terms of the more familiar Pauli z matrix: 

 

𝜎𝑥 = (
0 1
1 0

) , 𝜎𝑦 = (
0 −𝑖
𝑖 0

) , 𝜎𝑧 = (
1 0
0 −1

) (1.32) 

So equivalently: 

𝐻̂ =
ℏ𝜔0
2
𝜎𝑧 (1.33) 

 

We are interested in the eigenvalues and corresponding eigenvectors of this Hamiltonian. Because 

the Hamiltonian matrix is already diagonal, they can be quickly determined as: 

 

𝜆1 = −
ℏ𝜔0
2
, 𝑣⃗1 = (

0
1
) (1.34) 

𝜆2 = +
ℏ𝜔0
2
, 𝑣⃗2 = (

1
0
) (1.35) 
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     Here the eigenvalues represent the energies of the states. What the eigenvectors represent goes 

by many names. We could call these stationary states, energy eigenstates, energy eigenkets, or 

energy eigenfunctions. The point is that these states represent states with definite measurable 

energy. Furthermore (as given by the name "stationary") the energies of these states remain 

constant with time. I will use the term stationary states for this discussion. They are important for 

three main reasons: 

1) The stationary states form an orthonormal basis that spans the Hilbert space. This means 

that any arbitrary state can be expressed as a complex linear combination of these stationary 

states. 

2) They can be used to describe the time-evolution of any state. The general time-evolution 

of any state can be written as the sum of the separate time-evolution of each stationary state 

that composes the general state. 

3) The time evolution of stationary states is simple. All that is needed is a multiplication 

by the time evolution operator 𝑒−
𝑖𝐸𝑡

ℏ  (E is the energy of the state). Note that this only applies 

for stationary states! 

     It is worth expanding on point 3; where does this time-evolution operator come from? The fact 

that the stationary states are time-independent is important, as it allows us to use the time-

independent Schrodinger equation: 

 

𝐻̂|𝜓〉 = 𝐸|𝜓〉 (1.36) 

 

This is a powerful step, as we can now make this substitution into the time-dependent Schrodinger 

equation: 

𝑖ℏ
𝜕

𝜕𝑡
|𝜓〉 = 𝐻̂|𝜓〉 = 𝐸|𝜓〉 (1.37) 
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     Suddenly, with the Hamiltonian removed from the picture, this turns into a relatively simple 

first-order (only first derivatives) ordinary (only derivatives with respect to one variable) 

differential equation. This differential equation is also separable. We can rewrite this as: 

 
𝜕

𝜕𝑡
|𝜓〉 = −

𝑖𝐸

ℏ
|𝜓〉 (1.38) 

 

This matches the form of the exponential differential equation: 

 
𝑑𝑦

𝑑𝑡
= 𝑘𝑦, 𝑦(𝑡) = 𝐶𝑒𝑘𝑡 (1.39) 

 

Applying this here, we have: 

𝜓(𝑡) = 𝐶𝑒−
𝑖𝐸𝑡
ℏ (1.40) 

 

Which gives the time-evolution operator. In this case the constant C is represents the initial state: 

 

𝜓(𝑡) = 𝜓(0)𝑒−
𝑖𝐸𝑡
ℏ (1.41) 

 

What this means is that for a stationary state, we can obtain the state at any later time 𝑡 by simply 

multiplying the state by the time-evolution operator 𝑒−
𝑖𝐸𝑡

ℏ . This is the same statement as point 3 

above. 

     We are now equipped to describe the time-evolution of any state in this two-level system. In 

the most general case, we have the state: 

 

Ψ =∑𝑐𝑛𝜓𝑛

𝑁

𝑛=1

(1.42) 
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     In this case there are only two basis states, so N = 2. Here 𝑐𝑛 is the (potentially complex) 

coefficient for the stationary state 𝜓𝑛. As per the above discussion, the time-evolution of this 

general state readily follows as: 

Ψ(𝑡) = ∑ 𝑐𝑛𝜓𝑛𝑒
−
𝑖𝐸𝑛𝑡
ℏ

𝑁

𝑛=1

(1.43) 

 

With the normalization condition: 

∑|𝑐𝑛|
2

𝑁

𝑛=1

= 1 (1.44) 

 

 

Expanding Ψ(𝑡) for the two-level system, we have: 

 

 

Ψ(𝑡) = 𝑐𝑔𝜓𝑔𝑒
−
𝑖𝐸𝑔𝑡

ℏ + 𝑐𝑒𝜓𝑒𝑒
−
𝑖𝐸𝑒𝑡
ℏ (1.45) 

 

Here the labels "g" and "e" still denote "ground state" and "excited state". Making some 

substitutions of: 

 

𝜓𝑔 = |𝑔〉, 𝜓𝑒 = |𝑒〉, 𝐸𝑔 = −
ℏ𝜔0
2
, 𝐸𝑒 =

ℏ𝜔0
2

(1.46) 

Gives: 

Ψ(𝑡) = 𝑐𝑔|𝑔〉𝑒
𝑖𝜔0𝑡
2 + 𝑐𝑒|𝑒〉𝑒

−
𝑖𝜔0𝑡
2 (1.47) 

 

This describes the time-evolution of any general state Ψ. In vector form, this is: 

 

Ψ(𝑡) = (
𝑐𝑒𝑒

𝑖𝜔0𝑡
2

𝑐𝑔𝑒
−
𝑖𝜔0𝑡
2

) (1.48) 
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Note that we can factor out an exponential factor: 

 

Ψ(𝑡) = 𝑒
𝑖𝜔0𝑡
2 (𝑐𝑔|𝑔〉 + 𝑐𝑒|𝑒〉𝑒

−𝑖𝜔0𝑡) (1.49) 

Or, equivalently: 

Ψ(𝑡) = 𝑒−
𝑖𝜔0𝑡
2 (𝑐𝑔|𝑔〉𝑒

𝑖𝜔0𝑡 + 𝑐𝑒|𝑒〉) (1.50) 

 

     The interpretation of this is phase is that each stationary state accumulates phase at a different 

rate, dependent on the energy difference between the states. In the Bloch sphere representation of 

a state, this is what is responsible for the natural "precession" of any state that is not at one of the 

poles. In this sense, the time-evolution operator itself is responsible for the natural rotation on the 

Bloch sphere. The time-evolution operator itself, in turn, comes from solving the exponential 

differential equation (i.e., the time-independent Schrodinger equation) for a stationary state 𝜓. 

 

 

1.4.2 State evolutions on the Bloch sphere 

The solution obtained in the previous section can be visualized as an evolution on the Bloch sphere. 

If we take the solution: 

Ψ(𝑡) = 𝑒
𝑖𝜔0𝑡
2 (𝑐𝑔|𝑔〉 + 𝑐𝑒|𝑒〉𝑒

−𝑖𝜔0𝑡) (1.51) 

 

And drop a global phase, we obtain: 

 

Ψ(𝑡) = 𝑐𝑔|𝑔〉 + 𝑐𝑒|𝑒〉𝑒
−𝑖𝜔0𝑡 (1.52) 

 

Or, following the Bloch sphere convention of |𝑔〉 = |0〉 and |𝑒〉 = |1〉: 
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Ψ(𝑡) = 𝑐0|0〉 + 𝑐1|1〉𝑒
−𝑖𝜔0𝑡 (1.53) 

 

Keeping in mind the Bloch sphere coordinate of a state is: 

 

|𝜓〉 = (
cos

𝜃

2

𝑒𝑖𝜙 sin
𝜃

2

) (1.54) 

This means that we have: 

 

Ψ(𝑡) = (
𝑐0

𝑐1𝑒
−𝑖𝜔0𝑡) , 𝑐0 = cos

𝜃

2
, 𝑐1 = sin

𝜃

2
, 𝜙 = −𝜔0𝑡 (1.55) 

 

     The geometric interpretation of this is that the polar angle will be fixed depending on the values 

of 𝑐0 and 𝑐1 and the azimuthal angle will rotate in the clockwise direction (when viewed from +z) 

with an angular velocity of 𝜔0. This means that any pure state on the surface on the Bloch sphere 

will trace out a circle parallel to the xy plane as time elapses, regardless of what the fixed z-

coordinate is. We refer to this as the Larmor precession of the state around the Bloch sphere. A 

sketch of this evolution is given in figure 1.2. 
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Figure 1.2 | Time evolution of a pure state on the Bloch sphere due to Larmor precession. 

Without external fields, a state |𝜓〉 (red dot) will precess around the z-axis of the Bloch sphere 

(red circle). The speed of this precession is proportional to the energy different between the |0〉 
and |1〉 states. 

 

     Given that the state is rotating uniformly around the z-axis, it is also possible to instead rotate 

the coordinate system itself such that the Bloch vector appears to be stationary. This is known as 

entering the "rotating frame" of the Bloch sphere, which is useful for visualizing rotations around 

the rotating x and y axes when microwave drives are added to the system. 

 

 

1.5  Rabi oscillations of a two-level system 
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The interaction between a two-level system and a drive field, for our purposes, will be governed 

by the dipole interaction with either a magnetic or electric field. This is given by: 

 

𝐻𝑓𝑖𝑒𝑙𝑑 = −𝑑 ∙ 𝐸⃗⃗ (1.56) 

 

where 𝑑 is the dipole moment operator and 𝐸⃗⃗ is the applied electric field. We will focus on both 

of these elements individually before moving on. 

     We will be focusing on the example where the electric field is aligned along the axis of the 

dipole, so the dot product becomes a regular product. With this in mind, we turn to the form of the 

electric field. We will focus on a sinusoidally varying electric field. This is sometimes expressed 

as: 

𝐸⃗⃗(𝑡) = 𝐸⃗⃗0𝑒
−𝑖𝜔𝐿𝑡 + 𝐸⃗⃗0

∗𝑒𝑖𝜔𝐿𝑡 (1.57) 

 

Where 𝐸⃗⃗0
∗ is the complex conjugate of the amplitude 𝐸⃗⃗0. Assuming that these amplitudes are 

complex numbers of the same magnitude, they can be written in the form 𝐴𝑒𝑖𝜙. In this form, we 

see that we are simply expressing an arbitrary phase 𝜙 on a cosine wave: 

 

𝐸⃗⃗(𝑡) = 𝐴𝑒𝑖𝜙𝑒−𝑖𝜔𝐿𝑡 + 𝐴𝑒−𝑖𝜙𝑒𝑖𝜔𝐿𝑡 (1.58) 

𝐸⃗⃗(𝑡) = 𝐴𝑒−𝑖(𝜔𝐿𝑡−𝜙) + 𝐴𝑒𝑖(𝜔𝐿𝑡−𝜙) (1.59) 

𝐸⃗⃗(𝑡) = 𝐴(𝑒−𝑖(𝜔𝐿𝑡−𝜙) + 𝑒𝑖(𝜔𝐿𝑡−𝜙)) (1.60) 

𝐸⃗⃗(𝑡) = 𝐴(2 cos(𝜔𝐿𝑡 − 𝜙)) (1.61) 

𝐸⃗⃗(𝑡) = 2𝐴 cos(𝜔𝐿𝑡 − 𝜙) (1.62) 

 

For simplicity, we will assume the phase of the electric field is zero, which gives: 
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𝐸⃗⃗(𝑡) = 𝐸⃗⃗0 cos𝜔𝑡 , 𝐸⃗⃗0 = 𝐸⃗⃗0
∗ (𝐸⃗⃗0 ∈ ℝ) (1.63) 

 

Assuming the electric field oscillations are along the axis of the dipole, we can drop the vectors: 

 

𝐸(𝑡) = 𝐸0 cos𝜔𝑡 (1.64) 

 

We will also need to introduce the dipole moment operator 𝑑: 

 

𝑑 = −(𝑑𝑒𝑔|𝑒〉〈𝑔| + 𝑑𝑒𝑔
∗ |𝑔〉〈𝑒|) (1.65) 

 

For the divacancy system, it is a safe assumption to say 𝑑𝑒𝑔 = 𝑑𝑒𝑔
∗ . This will simplify the 

derivations in this section and later in chapter 2. In matrix form, 𝑑 then becomes: 

 

𝑑 = −(
0 𝑑𝑒𝑔

𝑑𝑒𝑔 0
) (1.66) 

So the Hamiltonian becomes: 

𝐻𝑓𝑖𝑒𝑙𝑑 = −(
0 𝑑𝑒𝑔

𝑑𝑒𝑔 0
) ∙ 𝐸⃗⃗0 cos𝜔𝑡 (1.67) 

 

Recalling that the dot product is a regular product here, the vector drops to give: 

 

𝐻𝑓𝑖𝑒𝑙𝑑 = −(
0 𝑑𝑒𝑔𝐸0 cos𝜔𝑡

𝑑𝑒𝑔𝐸0 cos𝜔𝑡 0
) (1.68) 

 

For further analysis, we will convert the cosine back to the complex exponential form: 

 

𝐻𝑓𝑖𝑒𝑙𝑑 = −(
0

𝑑𝑒𝑔𝐸0

2
(𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡)

𝑑𝑒𝑔𝐸0

2
(𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡) 0

) (1.69) 
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We now define: 

ℏΩ ≡
𝑑𝑒𝑔𝐸0

2
(1.70) 

Which gives: 

𝐻𝑓𝑖𝑒𝑙𝑑 = −(
0 ℏΩ(𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡)

ℏΩ(𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡) 0
) (1.71) 

 

Dropping the negative sign: 

 

𝐻𝑓𝑖𝑒𝑙𝑑 = (
0 ℏΩ(𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡)

ℏΩ(𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡) 0
) (1.72) 

 

Keep in mind this can take the form ℏΩ ≈ 𝜇⃗ ∙ 𝐵⃗⃗ for magnetic field driving. This 𝐻𝑓𝑖𝑒𝑙𝑑 will be 

added to the bare two-level Hamiltonian: 

 

𝐻̂𝑎𝑡𝑜𝑚 =
ℏ𝜔0
2
(
1 0
0 −1

) (1.73) 

To give: 

𝐻̂ = ℏ(

𝜔0
2

Ω(𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡)

Ω(𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡) −
𝜔0
2

) (1.74) 

 

     Solving for the time evolution of a state subject to this Hamiltonian is now difficult because we 

have time varying terms in the Hamiltonian itself. Ideally, we would be able to somehow remove 

this dependence and then use the same approach with time-evolution operators that we used for 

the bare two-level system. This is indeed possible for this particular situation, as we will outline 

in the next section. 
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1.5.1  Generalized interaction picture approach 

At its heart, the "interaction picture" is simply the process inserting identities into Schrodinger's 

equation. Starting with the original time-dependent Schrodinger's equation: 

 

𝑖ℏ
𝜕

𝜕𝑡
Ψ = 𝐻Ψ (1.75) 

 

We now insert the product 𝑃𝑃−1 in various places in this equation, where the invertible matrix 𝑃 

is yet to be determined. Given that 𝑃𝑃−1 is the identity matrix, this should have no effect on the 

equation: 

𝑖ℏ
𝜕

𝜕𝑡
(𝑃𝑃−1Ψ) = (𝑃𝑃−1)𝐻(𝑃𝑃−1)Ψ (1.76) 

𝑖ℏ
𝜕

𝜕𝑡
(𝑃𝑃−1Ψ) = 𝑃(𝑃−1𝐻𝑃)𝑃−1Ψ (1.77) 

 

If we now define a new wavefunction Φ given by: 

 

Φ ≡ 𝑃−1Ψ (1.78) 

 

with the important matching initial condition: 

 

Φ(0) = Ψ(0) (1.79) 

 

Then the equation becomes: 

𝑖ℏ
𝜕

𝜕𝑡
(𝑃Φ) = 𝑃(𝑃−1𝐻𝑃)Φ (1.80) 
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Using the chain rule for the time derivative: 

 

𝑖ℏ (
𝜕𝑃

𝜕𝑡
Φ + 𝑃

𝜕Φ

𝜕𝑡
) = 𝑃(𝑃−1𝐻𝑃)Φ (1.81) 

Rearranging: 

𝑖ℏ𝑃
𝜕Φ

𝜕𝑡
= 𝑃(𝑃−1𝐻𝑃)Φ − 𝑖ℏ

𝜕𝑃

𝜕𝑡
Φ (1.82) 

𝑖ℏ
𝜕Φ

𝜕𝑡
= (𝑃−1𝐻𝑃)Φ − 𝑖ℏ𝑃−1

𝜕𝑃

𝜕𝑡
Φ (1.83) 

𝑖ℏ
𝜕Φ

𝜕𝑡
= (𝑃−1𝐻𝑃 − 𝑖ℏ𝑃−1

𝜕𝑃

𝜕𝑡
)Φ (1.84) 

 

This is the key result from the interaction picture. 

     For an appropriate choice of 𝑃, we can exchange our original Hamiltonian H for a new 

Hamiltonian of the form (𝑃−1𝐻𝑃 − 𝑖ℏ𝑃−1
𝜕𝑃

𝜕𝑡
). At the face of it this might just seem like an 

overcomplication, but the right choice of 𝑃 can (eventually) remove the time dependence. 

 

 

1.5.2  Application of interaction approach to 

two-level system 

We start with the two-level system Hamiltonian with a field drive: 

 

𝐻̂ = ℏ(

𝜔0
2

Ω(𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡)

Ω(𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡) −
𝜔0
2

) (1.85) 
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Our first choice for 𝑃 will be given as follows, by convention: 

 

𝑃−1 = exp (
𝑖𝐻0,𝑆𝑡

ℏ
) (1.86) 

 

Here 𝐻0,𝑆 represents the time-independent part of the Hamiltonian, so: 

 

𝐻0,𝑆 = ℏ(

𝜔0
2

0

0 −
𝜔0
2

) (1.87) 

So: 

𝑃−1 = exp

(

 
 𝑖𝑡

ℏ
ℏ(

𝜔0
2

0

0 −
𝜔0
2

)

)

 
 
= exp(

𝑖𝜔0𝑡

2
0

0 −
𝑖𝜔0𝑡

2

) (1.88) 

 

Diagonal matrices can be exponentiated element by element, so: 

 

𝑃−1 = (
exp (

𝑖𝜔0𝑡

2
) 0

0 exp (−
𝑖𝜔0𝑡

2
)

) (1.89) 

 

Which immediately gives 𝑃 as: 

𝑃 = (
exp (−

𝑖𝜔0𝑡

2
) 0

0 exp (
𝑖𝜔0𝑡

2
)

) (1.90) 

 

To get the full modified Hamiltonian, we can start with the product 𝑃−1𝐻𝑃. Incidentally, this is 

sometimes called the "interaction part" of the Hamiltonian 
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𝑃−1𝐻𝑃 =

(
exp (

𝑖𝜔0𝑡

2
) 0

0 exp (−
𝑖𝜔0𝑡

2
)

)ℏ(

𝜔0
2

Ω(𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡)

Ω(𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡) −
𝜔0
2

)

∙ (
exp (−

𝑖𝜔0𝑡

2
) 0

0 exp (
𝑖𝜔0𝑡

2
)

)

(1.91) 

 

𝑃−1𝐻𝑃 = ℏ(

𝜔0
2

Ω(𝑒𝑖(𝜔+𝜔0)𝑡 + 𝑒−𝑖(𝜔−𝜔0)𝑡)

Ω(𝑒𝑖(𝜔−𝜔0)𝑡 + 𝑒−𝑖(𝜔+𝜔0)𝑡) −
𝜔0
2

) (1.92) 

 

Now moving on to the other component, 𝑖ℏ𝑃−1
𝜕𝑃

𝜕𝑡
: 

 

𝑖ℏ𝑃−1
𝜕𝑃

𝜕𝑡
= 𝑖ℏ(

exp (
𝑖𝜔0𝑡

2
) 0

0 exp (−
𝑖𝜔0𝑡

2
)

)
𝜕

𝜕𝑡
(
exp (−

𝑖𝜔0𝑡

2
) 0

0 exp (
𝑖𝜔0𝑡

2
)

) (1.93) 

 

Derivatives are done element by element: 

 

𝑖ℏ𝑃−1
𝜕𝑃

𝜕𝑡
= 𝑖ℏ(

exp (
𝑖𝜔0𝑡

2
) 0

0 exp (−
𝑖𝜔0𝑡

2
)

)(
−
𝑖𝜔0
2
exp (−

𝑖𝜔0𝑡

2
) 0

0
𝑖𝜔0
2
exp (

𝑖𝜔0𝑡

2
)

) (1.94) 

 

This simplifies to: 

𝑖ℏ𝑃−1
𝜕𝑃

𝜕𝑡
= ℏ(

𝜔0
2

0

0 −
𝜔0
2

) (1.95) 

 

Which here, is just the original Hamiltonian for the basic two-level system. So combined, the new 

Hamiltonian is: 
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𝐻𝑛𝑒𝑤 = 𝑃
−1𝐻𝑃 − 𝑖ℏ𝑃−1

𝜕𝑃

𝜕𝑡
= ℏ(

0 Ω(𝑒𝑖(𝜔+𝜔0)𝑡 + 𝑒−𝑖(𝜔−𝜔0)𝑡)

Ω(𝑒𝑖(𝜔−𝜔0)𝑡 + 𝑒−𝑖(𝜔+𝜔0)𝑡) 0
) (1.96) 

 

Applying the rotating wave approximation here gives: 

 

𝐻𝑛𝑒𝑤 = ℏ(
0 Ω(𝑒−𝑖(𝜔−𝜔0)𝑡)

Ω(𝑒𝑖(𝜔−𝜔0)𝑡) 0
) (1.97) 

 

Now is an appropriate time to define a detuning: 

 

Δ ≡ 𝜔 − 𝜔0 (1.98) 

So: 

𝐻𝑛𝑒𝑤 = ℏ(
0 Ω𝑒−𝑖Δ𝑡

Ω𝑒𝑖Δ𝑡 0
) (1.99) 

 

This satisfies the modified Schrodinger equation: 

 

𝑖ℏ
𝜕Φ

𝜕𝑡
= 𝐻𝑛𝑒𝑤Φ (1.100) 

 

Where the modified wave function is: 

 

Φ = 𝑃−1Ψ = (
exp (

𝑖𝜔0𝑡

2
) 0

0 exp (−
𝑖𝜔0𝑡

2
)

)Ψ (1.101) 

 

We will now repeat this procedure, with 

 

𝑖ℏ
𝜕Φ

𝜕𝑡
= 𝐻𝑛𝑒𝑤Φ (1.102) 
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Being converted to: 

𝑖ℏ
𝜕Θ

𝜕𝑡
= (𝑃−1𝐻𝑛𝑒𝑤𝑃 − 𝑖ℏ𝑃

−1
𝜕𝑃

𝜕𝑡
)Θ (1.103) 

Where: 

Θ ≡ 𝑃−1Φ (1.104) 

First let's diagonalize 𝐻𝑛𝑒𝑤: 

 

𝐻𝑛𝑒𝑤 = ℏ( 0 Ω𝑒−𝑖Δ𝑡

Ω𝑒𝑖Δ𝑡 0
) = ℏ(𝑒

−𝑖Δ𝑡
2 0

0 𝑒
𝑖Δ𝑡
2

)(
0 Ω
Ω 0

)(𝑒
𝑖Δ𝑡
2 0

0 𝑒
−𝑖Δ𝑡
2

) (1.105) 

 

Or, rearranged: 

(𝑒
𝑖Δ𝑡
2 0

0 𝑒
−𝑖Δ𝑡
2

)𝐻𝑛𝑒𝑤 (
𝑒
−𝑖Δ𝑡
2 0

0 𝑒
𝑖Δ𝑡
2

) = ℏ(
0 Ω
Ω 0

) (1.106) 

 

This immediately provides us with our 𝑃−1 and 𝑃 for the second round: 

 

𝑃−1 = (𝑒
𝑖Δ𝑡
2 0

0 𝑒
−𝑖Δ𝑡
2

) , 𝑃 = (𝑒
−𝑖Δ𝑡
2 0

0 𝑒
𝑖Δ𝑡
2

) (1.107) 

Which gives: 

𝑃−1𝐻𝑃 = ℏ(𝑒
𝑖Δ𝑡
2 0

0 𝑒
−𝑖Δ𝑡
2

)( 0 Ω𝑒−𝑖Δ𝑡

Ω𝑒𝑖Δ𝑡 0
)(𝑒

−𝑖Δ𝑡
2 0

0 𝑒
𝑖Δ𝑡
2

) = ℏ (
0 Ω
Ω 0

) (1.108) 

And: 

𝑖ℏ𝑃−1
𝜕𝑃

𝜕𝑡
= 𝑖ℏ(𝑒

𝑖Δ𝑡
2 0

0 𝑒
−𝑖Δ𝑡
2

)(
−
𝑖Δ

2
𝑒
−𝑖Δ𝑡
2 0

0
𝑖Δ

2
𝑒
𝑖Δ𝑡
2

) (1.109) 

𝑖ℏ𝑃−1
𝜕𝑃

𝜕𝑡
=
ℏΔ

2
(
1 0
0 −1

) (1.110) 
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So in total, we have: 

𝑃−1𝐻𝑃 − 𝑖ℏ𝑃−1
𝜕𝑃

𝜕𝑡
= ℏ (

0 Ω
Ω 0

) −
ℏΔ

2
(
1 0
0 −1

) (1.111) 

𝑃−1𝐻𝑃 − 𝑖ℏ𝑃−1
𝜕𝑃

𝜕𝑡
= ℏ(

−
Δ

2
Ω

Ω
Δ

2

) (1.112) 

𝐻2𝑛𝑑 = ℏ(
−
Δ

2
Ω

Ω
Δ

2

) (1.113) 

 

Now the time dependence has been completely removed. The second round modified form of 

Schrodinger's equation is now gives: 

𝑖ℏ
𝜕Θ

𝜕𝑡
= 𝐻2𝑛𝑑Θ (1.114) 

𝑖ℏ
𝜕Θ

𝜕𝑡
= ℏ(

−
Δ

2
Ω

Ω
Δ

2

)Θ (1.115) 

Where: 

Θ = 𝑃−1Φ = (𝑒
𝑖Δ𝑡
2 0

0 𝑒
−𝑖Δ𝑡
2

)Φ = (𝑒
𝑖Δ𝑡
2 0

0 𝑒
−𝑖Δ𝑡
2

)(
exp (

𝑖𝜔0𝑡

2
) 0

0 exp (−
𝑖𝜔0𝑡

2
)

)Ψ (1.116) 

Θ = (𝑒
𝑖(Δ+ω0)𝑡

2 0

0 𝑒
−𝑖(Δ+ω0)𝑡

2

)Ψ (1.117) 

Θ = (𝑒
𝑖𝜔𝑡
2 0

0 𝑒
−𝑖𝜔𝑡
2

)Ψ (1.118) 
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     We now have a more familiar situation, as the time-dependence in the Hamiltonian has been 

removed. We can proceed "normally" and get the eigenvalues and eigenvectors of this time-

independent H: 

𝜆1 = −
ℏ

2
√Δ2 + 4Ω2, 𝑣1 = (

Δ − √Δ2 + 4Ω2

2Ω
1

) (1.119) 

𝜆2 =
ℏ

2
√Δ2 + 4Ω2, 𝑣2 = (

Δ + √Δ2 + Ω2

2Ω
1

) (1.120) 

 

     This tells us the stationary basis for the function Θ, which we can then relate to Ψ. The general 

evolution of a state can then be found if it is written in terms of these eigenstates. 

 

Ψ(0) = Φ(0) = Θ(0) = 𝑐1(
Δ − √Δ2 + 4Ω2

2Ω
1

) + 𝑐2 (
Δ + √Δ2 + Ω2

2Ω
1

) (1.121) 

 

We can use the time-evolution operator with definite energies to evolve the Θ state: 

 

Θ(𝑡) = 𝑐1(
Δ − √Δ2 + 4Ω2

2Ω
1

)𝑒−
𝑖𝐸1𝑡
ℏ + 𝑐2(

Δ + √Δ2 + Ω2

2Ω
1

)𝑒−
𝑖𝐸2𝑡
ℏ (1.122) 

 

For 𝐸1 and 𝐸2 we use the eigenvalues we just solved for to give: 

 

Θ(𝑡) = 𝑐1(
Δ − √Δ2 + 4Ω2

2Ω
1

)𝑒
𝑖√
Δ2

4
+Ω2𝑡

+ 𝑐2(
Δ + √Δ2 + Ω2

2Ω
1

)𝑒
−𝑖√

Δ2

4
+Ω2𝑡

(1.123) 

 

Then to convert back to Ψ(𝑡): 
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Ψ(𝑡) = (𝑒
−𝑖𝜔𝑡
2 0

0 𝑒
𝑖𝜔𝑡
2

)Θ(𝑡) (1.124) 

We plug in to get: 

 

Ψ(𝑡) = 𝑐1(
𝑒
−𝑖𝜔𝑡
2
Δ − √Δ2 + 4Ω2

2Ω

𝑒
𝑖𝜔𝑡
2

)𝑒
𝑖√
Δ2

4
+Ω2𝑡

+ 𝑐2(
𝑒
−𝑖𝜔𝑡
2
Δ + √Δ2 + Ω2

2Ω

𝑒
𝑖𝜔𝑡
2

)𝑒
−𝑖√

Δ2

4
+Ω2𝑡

(1.125) 

 

Simplifying and removing the global phase gives: 

 

Ψ(𝑡) = 𝑐1(
Δ

2Ω
−
√Δ

2

4 + Ω
2

Ω
𝑒𝑖𝜔𝑡

)𝑒
𝑖(√

Δ2

4
+Ω2)𝑡

+ 𝑐2(
Δ

2Ω
+
√Δ

2

4 + Ω
2

Ω
𝑒𝑖𝜔𝑡

)𝑒
−𝑖(√

Δ2

4
+Ω2)𝑡

(1.126) 

 

If the phase of the drive is nonzero (i.e., cos(𝜔𝑡 + 𝜙) instead of cos(𝜔𝑡)), the solution gets 

modified slightly to: 

 

Ψ(𝑡) = 𝑐1(
Δ

2Ω
−
√Δ

2

4 + Ω
2

Ω
𝑒𝑖(𝜔𝑡+𝜙)

)𝑒
𝑖(√

Δ2

4
+Ω2)𝑡

+ 𝑐2(
Δ

2Ω
+
√Δ

2

4 + Ω
2

Ω
𝑒𝑖(𝜔𝑡+𝜙)

)𝑒
−𝑖(√

Δ2

4
+Ω2)𝑡

(1.127) 

 

We can simplify slightly by defining the variable: 

 

𝑟 ≡ √
Δ2

4
+ Ω2 (1.128) 

To give the final result: 

Ψ(𝑡) = (
𝑐1
1

Ω
(
Δ

2
− 𝑟) 𝑒𝑖𝑟𝑡 + 𝑐2

1

Ω
(
Δ

2
+ 𝑟) 𝑒−𝑖𝑟𝑡

(𝑐1𝑒
𝑖𝑟𝑡 + 𝑐2𝑒

−𝑖𝑟𝑡)𝑒𝑖(𝜔𝑡+𝜙)
) , 𝑟 ≡ √

Δ2

4
+ Ω2 (1.129) 
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Some solutions of this equation in comparison to QuTiP models are shown below, and there is 

excellent agreement. 

 

 

Figure 1.3 | Rabi oscillations from QuTiP and theoretical results. The theoretical result in 

equation 1.129 shows excellent agreement with QuTiP models for various conditions. For the 

detuned + phase plots, the initial state is |+𝑥〉 instead of |+𝑧〉 in order to avoid repeating the graphs 

from the detuned + no phase plots. 

 

     As one specific example, it is worth looking at the following case to get an intuition for Ω. The 

solution with zero detuning and zero phase is given by: 

 

Ψ(𝑡) = 𝑐1 (
−1
𝑒𝑖𝜔𝑡

) 𝑒𝑖Ω𝑡 + 𝑐2 (
1
𝑒𝑖𝜔𝑡

) 𝑒−𝑖Ω𝑡 (1.130) 

 

Starting in the state Ψ(0) = (
1
0
) then gives: 

 

Ψ(𝑡) = −
1

2
(
−1
𝑒𝑖𝜔𝑡

) 𝑒𝑖Ω𝑡 +
1

2
(
1
𝑒𝑖𝜔𝑡

) 𝑒−𝑖Ω𝑡 (1.131) 

Ψ(𝑡) = (

1

2
(𝑒𝑖Ω𝑡 + 𝑒−𝑖Ω𝑡)

1

2
𝑒𝑖𝜔𝑡(𝑒−𝑖Ω𝑡 − 𝑒𝑖Ω𝑡)

) (1.132) 
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Rewriting: 

Ψ(𝑡) = (
cos(Ω𝑡)

−𝑖𝑒𝑖𝜔𝑡 sin(Ω𝑡)
) (1.133) 

 

In this context, we see that Ω is the Rabi freuqnency: 

 

Ω = 2𝜋𝑓 =
2𝜋

𝑇
= Rabi frequency (1.134) 

 

This is why the term Ω is called the Rabi frequency even though it appears as amplitude in the 

original field Hamiltonian: 

 

𝐻𝑓𝑖𝑒𝑙𝑑 = −(
0 2ℏΩ cos𝜔𝑡

2ℏΩ cos𝜔𝑡 0
) , ℏΩ ≡

𝑑𝑒𝑔𝐸0

2
(1.135) 

 

 

1.5.3 Microwave rotations on the Bloch sphere 

Returning to the Bloch sphere, it turns out that any oscillating field drive on a state in a two-level 

system can be mapped to a rotation on the Bloch sphere around a rotation axis 𝑢⃗⃗. This must be 

framed with the slight caveat that we must be in the rotating frame for this to hold true. But once 

this transformation is made, the axis of rotation is solely determined by the frequency of detuning 

and the phase on the field drive. More specifically, the detuning frequency determines the polar 

angle of the rotation axis (𝜃 = 90𝑜 for no detuning), while the phase on the drive gives the 

azimuthal angle of the rotation axis (𝜙 = 0 for no phase). In the simplest case with no detuning 

and no phase on the drive, the rotation axis is along the x-axis. This is sometimes referred to as an 

"X gate". A schematic of this rotation is shown in the figure below: 
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Figure 1.4 | State rotation on the Bloch sphere. In both pictures, an off-axis oscillating field 

drive causes a rotation from the |0〉 state to the |1〉 state. In the left picture, the Bloch sphere 

coordinate system is stationary, which results in a spherical spiral path. In the right picture, the 

coordinates rotate around the z-axis to match the Larmor precession of the system. In this "rotating 

frame" the field drive is a rotation around the x-axis for the case of no detuning or additional phase 

on the drive. 

 

     Before delving into more general rotations, we must first lay some mathematical groundwork 

on rotation matrices. General three-dimensional rotations can be described by a set of 3x3 rotation 

matrices defined as follows: 

𝑅𝑥(𝜃) = (
1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃

) (1.136) 

𝑅𝑦(𝜃) = (
cos 𝜃 0 sin 𝜃
0 1 0

− sin 𝜃 0 cos 𝜃
) (1.137) 

𝑅𝑧(𝜃) = (
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

) (1.138) 
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Here the axis of rotation is given in the subscript, with the direction of rotation defined by the 

right-hand rule using that axis. A rotation matrix is multiplied by an initial vector to determine a 

new vector after the rotation. Mathematically this looks like: 

 

𝑅𝑛(𝜃)𝑣𝑜𝑙𝑑 = 𝑣𝑛𝑒𝑤, 𝑣 = (
𝑥
𝑦
𝑧
) (1.139) 

 

So for example, an "x" rotation would look like: 

 

𝑅𝑥(𝜃) ∙ 𝑣 = (
1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃

)(
𝑥
𝑦
𝑧
) = (

𝑥
𝑦 cos 𝜃 − 𝑧 sin 𝜃
𝑦 sin 𝜃 + 𝑧 cos 𝜃

) (1.140) 

 

More generally, the rotation does not have to about a Cartesian axis, but can be about any axis 

defined by a vector 𝑢⃗⃗. If we write the most general rotation matrix as: 

 

𝑅 = (
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

) (1.141) 

Then the axis of rotation is given by: 

𝑢⃗⃗ = (
ℎ − 𝑓
𝑐 − 𝑔
𝑑 − 𝑏

) (1.142) 

And the angle of rotation is: 

𝜃 = sin−1 (
|𝑢⃗⃗|

2
) (1.143) 

 

With this in mind, there are two main cases to go through for the two-level system: 
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1) Bloch sphere rotation with nonzero phase and zero detuning on drive 

2) Bloch sphere rotation with nonzero detuning and zero phase on drive 

 

Nonzero phase and zero detuning 

The rotation matrix works out to be: 

 

𝑅𝑛 = (

cos2(Ω𝑡) + cos(2𝜙) sin2(Ω𝑡) sin 2𝜙 sin2(Ω𝑡) sin(𝜙) sin(2Ω𝑡)

sin(2𝜙) sin2(Ω𝑡) cos2(Ω𝑡) − cos(2𝜙) sin2(Ω𝑡) −cos(𝜙) sin(2Ω𝑡)

− sin𝜙 sin(2Ω𝑡) cos𝜙 sin(2Ω𝑡) cos(2Ω𝑡)

) (1.144) 

 

Which gives the axis of rotation as: 

 

𝑢⃗⃗ = (
2 cos𝜙 sin(2Ω𝑡)

2 sin𝜙 sin(2Ω𝑡)
0

) = (
cos𝜙
sin𝜙
0

)2 sin(2Ω𝑡) (1.145) 

 

And the angle of rotation as: 

 

𝜃 = sin−1 (
|𝑢⃗⃗|

2
) = sin−1 (

2 sin(2Ω𝑡)

2
) = sin−1(sin(2Ω𝑡)) = 2Ω𝑡 (1.146) 

 

     Here, we see that the rotation angle is directly proportional to the amplitude and duration of the 

field drive. In the case of no detuning, the axis of rotation is always in the xy plane with an angle 

set by the phase of the drive. 

 

Nonzero detuning and zero phase 
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𝑅𝑛 =

(

 
 
 
 
cos2(𝑟𝑡) −

Δ2 − 4Ω2

Δ2 + 4Ω2
sin2(𝑟𝑡) −

Δ

2𝑟
sin(2𝑟𝑡)

ΩΔ

𝑟2
sin2(𝑟𝑡)

Δ

2𝑟
sin(2𝑟𝑡) cos(2𝑟𝑡) −

Ω

𝑟
sin(2𝑟𝑡)

4ΔΩ

Δ2 + 4Ω2
sin2(𝑟𝑡)

Ω

𝑟
sin(2𝑟𝑡) cos(2𝑟𝑡) +

2Δ2

Δ2 + 4Ω2
sin2(𝑟𝑡)

)

 
 
 
 

(1.147) 

 

Where, as before, 

𝑟 ≡ √
Δ2

4
+ Ω2 (1.148) 

This gives the axis of rotation as: 

𝑢⃗⃗ =

(

 
 

2Ω

𝑟
sin(2𝑟𝑡)

0
Δ

𝑟
sin(2𝑟𝑡)

)

 
 
= (

2Ω
0
Δ
)
sin(2𝑟𝑡)

𝑟
(1.149) 

And the angle of rotation as: 

𝜃 = sin−1 (
|𝑢⃗⃗|

2
) = sin−1(

√4Ω2 + Δ2
sin(2𝑟𝑡)

𝑟
2

) = sin−1 (
2 sin(2𝑟𝑡)

2
) = 2𝑟𝑡 (1.150) 

𝜃 = 2𝑟𝑡, 𝑟 = √
Δ2

4
+ Ω2 (1.151) 

 

     While the rotation angle is still directly proportional to the duration of the field drive, it now 

depends on both the drive detuning and amplitude. As the detuning increases, the rotation angle 

will also increase, effectively increasing the Rabi rate. This is why detuned Rabi is observed to 

oscillate faster. In the case of no detuning, the axis of rotation is always in the xy plane with an 

angle set by the phase of the drive. With detuning, the rotation axis gains a polar angle proportional 

to the detuning, as can be seen in the expression for 𝑢⃗⃗. This also explains why detuned Rabi does 
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not reach full contrast, since a rotation around a non-azimuthal axis will not span the poles of the 

z-axis. 

     Experimentally, we can control the phase of the drive through IQ modulation of our signal 

generator and adjust the detuning by straightforwardly shifting the frequency of the drive, which 

gives full control over the desired rotation of the quantum state. For external fields inherent to the 

system, we can use the above results to help understand their effect on the state. 
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Chapter 2 
 
The Divacancy in Silicon 
Carbide 
 

 

2.1  Introduction 

With the foundational tools built up in chapter 1, we are now ready to approach the main quantum 

system of interest for this thesis: the neutral divacancy in silicon carbide. Notationally we will use 

the word "divacancy" and the shorthand "VV0" interchangeably. Here the "VV0" represents a 

silicon vacancy (V), a carbon vacancy (V), and a neutral charge state (0). The divacancy 

collectively localizes two unpaired electrons in the band gap, which together form an electronic 

spin state as the foundation of the VV0 qubit. [1-6] 

     As a material, silicon carbide serves as an excellent host for electron spin qubits [7]. Most 

importantly, silicon carbide is a wide-band gap semiconductor which means that the relevant 

energy levels are well isolated in the band gap from thermal fluctuations. The nuclear spins of both 

naturally abundant 12C and 28Si are zero, meaning that coherence-limiting nuclear coupling is 

minimized for electronic spins. The relatively high index of refraction of SiC (𝑛 ≈ 2.6) also allows 

for the formation of photonic structures, which will be explored in later chapters. The relative 

technological maturity of SiC also allows for commercial growth of 4-inch single-crystalline 

wafers with capabilities of both P-type and N-type doping. Outside of quantum information, silicon 
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carbide has also already been developed for MEMS and NEMS applications [8-9]. Lastly, the 

divacancy itself is optically active in the near infrared (NIR) regime, which transmits through SiC 

with low losses and is also amenable to long-distance telecom fibers. 

     In this chapter we will focus on the physics of the divacancy, although many other promising 

spin defects have been explored in silicon carbide such as the silicon vacancy, the nitrogen-

vacancy center, vanadium ions, and chromium ions [10-20]. Many of the results presented here 

have parallels with the NV– center in diamond [21-23]. We will see that the spin state of the VV0 

can be optically addressed with near-infrared light and coherently controlled with electromagnetic 

fields. To work towards these results, we will outline the VV0 ground and excited state 

Hamiltonians and map out the effects of external fields on the spin state energies and time 

evolution. 

 

 

2.2  Structure of silicon carbide and the 

divacancy 

The silicon carbide lattice comes in over 250 distinct configurations, which are referred to as 

polytypes. The most common ones are labeled 2H, 3C, 4H, 6H. For the purpose of this thesis we'll 

mainly be focusing on the 4H polytype. In this notation, the number refers to the number of atomic 

bilayers needed for the lattice to repeat itself, and the letter refers to either a hexagonal (H) or cubic 

(C) structure. A silicon carbide bilayer consists of one layer of silicon and carbon atoms that are 

bonded to each other. As bilayers are stacked on top of each other, they can be differentiated into 

three types as "A", "B", or "C" depending on the orientation relative to the [0001] c-axis. An "A" 
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and "B" layer are identical within a translation, whereas a "C" layer is rotated by 60 degrees around 

the c-axis. In this way, a C layer is sometimes referred to as a twist and a B layer as no twist. With 

these definitions, the 4H-SiC polytype then features the stacking pattern of ABCB. This can 

equivalently be represented by either BCBA, CBAB, or BABC. Similarly, 2H-SiC has AB pattern, 

3C-SiC has ABC, and 6H-SiC has ABCACB. A schematic of the 4H silicon carbide lattice and 

the twist/no twist convention is shown in figures 2.1 and 2.2. 

 

 

Figure 2.1 | 4H-SiC lattice and VV0 orientation. In this two-dimensional view of the 4H-SiC 

lattice, the bilayers are labeled on the left using the ABC convention. A single bilayer contains a 

silicon and carbon atom connected by c-axis oriented bond. In the 4H polytype, the "B" bilayer 

alternates between "A" and "C" bilayers. Also featured are the four possible orientations of the 

divacancy, which are distinguished by their lattice sites. Here the h lattice sites are found in A and 

C bilayers and the k lattice sites are found in B bilayers. 
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Figure 2.2 | Twist vs. no twist in the SiC lattice. Here, a twist refers to a rotation around the Si 

– C bond. Under a twist there is a 60o rotation around the z-axis ([0001] c-axis) and the mirror 

symmetry of the local structure is broken. 
 

     Structurally, the divacancy consists of an adjacent silicon and carbon vacancy in the SiC lattice. 

For each SiC polytype, the number of possible divacancy orientations is given by the polytype 

number. For 4H-SiC, for example, there are four possible orientations. To distinguish them, each 

divacancy is typically labeled by two letters which denote to the local crystal structure. Here "h" 

refers to a local hexagonal structure and "k" refers to a local quasicubic structure. The first letter 

is used for the carbon vacancy and the second letter is used for the silicon vacancy. In this manner, 

we have the four possible orientations of (hh), (kk), (hk), and (kh). Early work with VV0 referred 

to these as PL1, PL2, PL3, and PL4, respectively. [4] The defects labeled PL5 and PL6 are also 

featured in past work [4], although instead of divacancies they are believed to be stacking faults in 

the SiC lattice. For the purposes of this thesis we will not go into detail about the PL5/PL6 defects, 

although they are notable for their room temperature operation [24]. The four divacancies can be 

further distinguished as either lying parallel to the c-axis as in (hh) and (kk), or along another lattice 
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direction in the "basal" (hk) and (kh) defects. An outline of the divacancy structures in given in 

figure 2.2 above. 

 

 

2.3  Electron spin-1 ground state of the VV0 

The neutral divacancy traps six electrons which form isolated energy levels (orbitals) in the SiC 

band gap. Two of the electrons remain unpaired in their respective orbitals, leading to a spin-1 

ground state. Thus, when we talk about the "spin" of the VV0 center, we are referring to the 

combined spin of these two electrons in the two excited state orbitals. A schematic of this orbital 

occupation is shown in the figure below: 

 

 

Figure 2.3 | Divacancy electrons and band gap energy levels. The adjacent silicon and carbon 

vacancies trap six electrons in the silicon carbide lattice. These electrons occupy energy levels 

both in the valence band and in the band gap. The presence of unpaired electrons leads to the spin-

1 ground state. 
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The two unpaired electrons form the spin triplet and singlet states, which can be mathematically 

represented by: 

|1,1〉 = ↑↑

|1,0〉 =
↑↓ + ↓↑

√2
|1, −1〉 = ↓↓ }

 

 

, 𝑠𝑡𝑜𝑡𝑎𝑙 = 1, triplet states (2.1) 

|0,0〉 =
↑↓ − ↓↑

√2
} , 𝑠𝑡𝑜𝑡𝑎𝑙 = 0, singlet state (2.2) 

 

Here the notation follows |𝑠𝑡𝑜𝑡𝑎𝑙, 𝑚𝑠〉. For this thesis (and in the literature in general) we use the 

shorthand 𝑚𝑠 = 0,±1 to refer to the spin triplet states. It is these states that are optically addressed 

and controlled in divacancy experiments. In the excited state, one of the excited state orbitals 

becomes occupied with a second electron, but the system as a whole still forms a spin triplet. This 

will be discussed in more detail in section 2.8. 

 

 

2.4  Ground state Hamiltonian 

Both the stationary behavior and the time evolution of the VV0 ground state are governed by its 

ground state Hamiltonian. The two unpaired electrons in the ground state form the spin triplet 

states, which in turn form a 3-dimensional Hilbert space of possible spin states. Practically 

speaking, for qubit applications we usually select two of these states to be our qubit basis, such as 

𝑚𝑠 = {|0〉, |+1〉} or 𝑚𝑠 = {|0〉, |−1〉}. In later chapters we will see that these spin states can be 

initialized, coherently controlled, and optically readout. For the purposes of this chapter, we will 

focus on the form of the Hamiltonian, the influence of external fields, and implications for time 

evolution. 
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2.4.1 Zero-field Hamiltonian 

Without the presence of any external field, strain, or nuclear spin, the VV0 ground state spin 

Hamiltonian is dictated solely by spin-orbit and spin-spin interactions. We can write the 

Hamiltonian as: 

𝐻𝑔𝑠 =
1

ℏ
(𝑆 ∙ 𝐷⃗⃗⃗ ∙ 𝑆) (2.3) 

Where: 

𝑆 = (𝑆𝑥, 𝑆𝑦, 𝑆𝑧) = spin 1 operators (2.4) 

𝐷⃗⃗⃗ = (

𝐷𝑥𝑥 0 0
0 𝐷𝑦𝑦 0

0 0 𝐷𝑧𝑧

) = zero field splitting tensor (2.5) 

And: 

𝑆𝑥 =
ℏ

√2
(
0 1 0
1 0 1
0 1 0

) , 𝑆𝑦 =
ℏ

√2
(
0 −𝑖 0
𝑖 0 −𝑖
0 𝑖 0

) , 𝑆𝑧 = ℏ(
1 0 0
0 0 0
0 0 −1

) (2.6) 

 

It is important to note that many sources do not include the 1/ℏ prefactor for 𝐻𝑔𝑠, but it is necessary 

in order to make the Hamiltonian have the correct units of energy. Expanding the product in 𝐻𝑔𝑠 

gives: 

𝐻𝑔𝑠 =
1

ℏ
(𝑆𝑥 𝑆𝑦 𝑆𝑧)(

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧
𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑧
𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧

)(

𝑆𝑥
𝑆𝑦
𝑆𝑧

) (2.7) 

𝐻𝑔𝑠 =
1

ℏ
(𝑆𝑥𝐷𝑥𝑥 + 𝑆𝑦𝐷𝑦𝑥 + 𝑆𝑧𝐷𝑧𝑥 𝑆𝑥𝐷𝑥𝑦 + 𝑆𝑦𝐷𝑦𝑦 + 𝑆𝑦𝐷𝑧𝑦 𝑆𝑥𝐷𝑥𝑧 + 𝑆𝑦𝐷𝑦𝑧 + 𝑆𝑧𝐷𝑧𝑧)(

𝑆𝑥
𝑆𝑦
𝑆𝑧

) (2.8) 
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𝐻𝑔𝑠 =
1

ℏ
(
(𝑆𝑥𝐷𝑥𝑥 + 𝑆𝑦𝐷𝑦𝑥 + 𝑆𝑧𝐷𝑧𝑥)𝑆𝑥 + (𝑆𝑥𝐷𝑥𝑦 + 𝑆𝑦𝐷𝑦𝑦 + 𝑆𝑦𝐷𝑧𝑦)𝑆𝑦

+(𝑆𝑥𝐷𝑥𝑧 + 𝑆𝑦𝐷𝑦𝑧 + 𝑆𝑧𝐷𝑧𝑧)𝑆𝑧
) (2.9) 

𝐻𝑔𝑠 =
1

ℏ
(
𝑆𝑥𝐷𝑥𝑥𝑆𝑥 + 𝑆𝑥𝐷𝑥𝑦𝑆𝑦 + 𝑆𝑥𝐷𝑥𝑧𝑆𝑧 + 𝑆𝑦𝐷𝑦𝑥𝑆𝑥 + 𝑆𝑦𝐷𝑦𝑦𝑆𝑦 + 𝑆𝑦𝐷𝑦𝑧𝑆𝑧

+𝑆𝑧𝐷𝑧𝑥𝑆𝑥 + 𝑆𝑧𝐷𝑧𝑦𝑆𝑦 + 𝑆𝑧𝐷𝑧𝑧𝑆𝑧
) (2.10) 

 

Alternatively, this can be expressed as: 

𝐻𝑔𝑠 =
1

ℏ
∑𝑆𝑖𝐷𝑖𝑗𝑆𝑗
𝑖𝑗

(2.11) 

 

Since the off-diagonal terms of the zero-field splitting tensor are zero, this simplifies to: 

 

𝐻𝑔𝑠 =
1

ℏ
(𝑆𝑥𝐷𝑥𝑥𝑆𝑥 + 𝑆𝑦𝐷𝑦𝑦𝑆𝑦 + 𝑆𝑧𝐷𝑧𝑧𝑆𝑧) (2.12) 

 

Notationally we define: 

𝐷𝑗 ≡ 𝐷𝑗𝑗 (2.13) 

 

These D terms are constants, not tensors, so we can say: 

 

𝐻𝑔𝑠 =
1

ℏ
(𝐷𝑥𝑆𝑥

2 + 𝐷𝑦𝑆𝑦
2 + 𝐷𝑧𝑆𝑧

2) (2.14) 

 

Which, using the definitions for 𝑆𝑥, 𝑆𝑦, 𝑆𝑧, gives: 

 

𝐻𝑔𝑠 =
1

ℏ
(𝐷𝑥

ℏ2

2
(
1 0 1
0 2 0
1 0 1

) − 𝐷𝑦
ℏ2

2
(
−1 0 1
0 −2 0
1 0 −1

) + 𝐷𝑧ℏ
2 (
1 0 0
0 0 0
0 0 1

)) (2.15) 

𝐻𝑔𝑠 = ℏ

(

 
 
 

(

 
 

𝐷𝑥
2

0
𝐷𝑥
2

0 𝐷𝑥 0
𝐷𝑥
2

0
𝐷𝑥
2 )

 
 
+

(

 
 

𝐷𝑦

2
0 −

𝐷𝑦

2
0 𝐷𝑦 0

−
𝐷𝑦

2
0

𝐷𝑦

2 )

 
 
+ (

𝐷𝑧 0 0
0 0 0
0 0 𝐷𝑧

)

)

 
 
 

(2.16) 
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𝐻𝑔𝑠 = ℏ

(

 
 

𝐷𝑥
2
+
𝐷𝑦

2
+ 𝐷𝑧 0

𝐷𝑥
2
−
𝐷𝑦

2
0 𝐷𝑥 + 𝐷𝑦 0

𝐷𝑥
2
−
𝐷𝑦

2
0

𝐷𝑥
2
+
𝐷𝑦

2
+ 𝐷𝑧)

 
 

(2.17) 

 

At this point we make the following substitutions to obtain the familiar D and E terms: 

 

𝐷 ≡
3

2
𝐷𝑧 , 𝐸 ≡

1

2
(𝐷𝑥 − 𝐷𝑦) (2.18) 

Which gives: 

𝐻𝑔𝑠 = ℏ

(

 
 

𝐷𝑥
2
+
𝐷𝑦

2
−
𝐷𝑧
2
+ 𝐷 0 𝐸

0 𝐷𝑥 + 𝐷𝑦 0

𝐸 0
𝐷𝑥
2
+
𝐷𝑦

2
−
𝐷𝑧
2
+ 𝐷)

 
 

(2.19) 

𝐻𝑔𝑠 = ℏ

(

 
 

1

2
(𝐷𝑥 + 𝐷𝑦 − 𝐷𝑧) + 𝐷 0 𝐸

0 𝐷𝑥 + 𝐷𝑦 + 𝐷𝑧 − 𝐷𝑧 0

𝐸 0
1

2
(𝐷𝑥 + 𝐷𝑦 − 𝐷𝑧) + 𝐷)

 
 

(2.20) 

 

The 𝐷⃗⃗⃗ tensor is traceless, meaning the sum of the diagonal terms is zero: 

 
𝐷𝑥 +𝐷𝑦 + 𝐷𝑧 = 0 (2.21) 

Substituting this result gives: 

𝐻𝑔𝑠 = ℏ(
𝐷 − 𝐷𝑧 0 𝐸
0 −𝐷𝑧 0
𝐸 0 𝐷 − 𝐷𝑧

) = ℏ

(

 
 
 

1

3
𝐷 0 𝐸

0 −
2

3
(
3

2
𝐷𝑧) 0

𝐸 0
1

3
𝐷)

 
 
 

(2.22) 
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𝐻𝑔𝑠 = ℏ

(

 
 
 

1

3
𝐷 0 𝐸

0 −
2

3
𝐷 0

𝐸 0
1

3
𝐷)

 
 
 

(2.23) 

 

     This is the main result for the zero-field VV0 ground state Hamiltonian. At this point, it is 

popular to add a 2/3 D along the main diagonal. However, this addition leads to a non-invertible 

matrix which can cause potential mathematical issues, so here we will use the Hamiltonian form 

above. The eigenvalues and eigenvectors of 𝐻𝑔𝑠 are: 

 

{𝜆1, 𝑣1} = {ℏ (−
2

3
𝐷) ,(

0

1

0

)} , {𝜆2, 𝑣2} = {ℏ (
𝐷

3
− 𝐸) ,(

−1

0

1

)} , {𝜆3, 𝑣3} = {ℏ (
𝐷

3
+ 𝐸) , (

1

0

1

)} (2.24) 

 

The eigenstates presented here are the stable stationary states of the system. The vector 𝑣1 is the 

𝑚𝑠 = 0 state. For the other two states, we frequently use the following definitions for the "plus" 

and "minus" states: 

|+〉 ≡ (
1
0
1
) , |−〉 ≡ (

−1
0
1
) (2.25) 

 

As with the two-level system, we can combine these eigenstates with the time-evolution operator 

to write the general state Ψ(𝑡) at any given time: 

 

Ψ(𝑡) =∑𝑐𝑛𝜓𝑛𝑒
−
𝑖𝐸𝑛𝑡
ℏ

𝑛

(2.26) 

In this case, we have: 

Ψ(𝑡) = 𝑐0𝜓0𝑒
−
𝑖𝐸0𝑡
ℏ + 𝑐−𝜓−𝑒

−
𝑖𝐸−𝑡
ℏ + 𝑐+𝜓𝑛𝑒

−
𝑖𝐸+𝑡
ℏ (2.27) 
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Ψ(𝑡) = 𝑐0 (
0
1
0
)𝑒−𝑖(−

2
3
𝐷)𝑡 + 𝑐− (

−1
0
1
) 𝑒−𝑖(

𝐷

3
−𝐸)𝑡 + 𝑐+ (

1
0
1
)𝑒−𝑖(

𝐷

3
+𝐸)𝑡 (2.28) 

Ψ(𝑡) = (

0

𝑐0𝑒
𝑖(
2
3
𝐷)𝑡

0

) + (
−𝑐−𝑒

−𝑖(
𝐷
3
−𝐸)𝑡

0

𝑐−𝑒
−𝑖(

𝐷
3
−𝐸)𝑡

) + (
𝑐+𝑒

−𝑖(
𝐷
3
+𝐸)𝑡

0

𝑐+𝑒
−𝑖(

𝐷
3
+𝐸)𝑡

) (2.29) 

Ψ(𝑡) =

(

 
 
𝑐+𝑒

−𝑖(
𝐷
3
+𝐸)𝑡 − 𝑐−𝑒

−𝑖(
𝐷
3
−𝐸)𝑡

𝑐0𝑒
𝑖(
2
3
𝐷)𝑡

𝑐+𝑒
−𝑖(

𝐷
3
+𝐸)𝑡 + 𝑐−𝑒

−𝑖(
𝐷
3
−𝐸)𝑡

)

 
 

(2.30) 

 

This can be useful when trying to determine the time evolution of a superposition of eigenstates, 

as given by the coefficients 𝑐0, 𝑐+, 𝑐−. For the (hh) and (kk) c-axis oriented defects, the E term 

vanishes, giving: 

 

𝐻𝑔𝑠 = ℏ

(

 
 
 

1

3
𝐷 0 0

0 −
2

3
𝐷 0

0 0
1

3
𝐷)

 
 
 

, c axis VV0 (2.31) 

 

With differing eigenvalues and eigenvectors of: 

 

{𝜆1, 𝑣1} = {ℏ(
𝐷

3
) , (

1
0
0
)} , {𝜆2, 𝑣2} = {ℏ (−

2

3
𝐷) , (

0
1
0
)} , {𝜆3, 𝑣3} = {ℏ(

𝐷

3
) , (

0
0
1
)} (2.32) 

 

     Note that with no E term, two of the eigenstates are degenerate. These are the 𝑚𝑠 = ±1 states. 

Normally, we apply a small B-field along the z-axis (the c-axis direction) to Zeeman split these 

states and lift the degeneracy. Plugging in 𝐸 = 0 into eq. () gives a general state Ψ(𝑡) of: 
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Ψ(𝑡) =

(

 
 
𝑐1𝑒

−𝑖(
𝐷
3
)𝑡

𝑐2𝑒
−𝑖(−

2
3
𝐷)𝑡

𝑐3𝑒
−𝑖(

𝐷
3
)𝑡
)

 
 

(2.33) 

 

 

2.4.2 Effect of static magnetic field 

The contribution of static magnetic field to the ground state Hamiltonian can be written as: 

 

𝑉𝐵 = 𝜇𝐵𝑔𝑔𝑠
∥ 𝑆̂𝑧𝐵𝑧 + 𝜇𝐵𝑔𝑔𝑠

⊥ (𝑆̂𝑥𝐵𝑥 + 𝑆̂𝑦𝐵𝑦) (2.34) 

 

Where 𝜇𝐵 is the Bohr magneton: 

𝜇𝐵 =
𝑒ℏ

2𝑚𝑒
= 9.274 ∙ 10−24 (2.35) 

 

The variables 𝑔𝑔𝑠
∥ , 𝑔𝑔𝑠

⊥  are the components of the ground state electronic g-factor tensor, and are 

both very close to 2. The matrices 𝑆𝑥, 𝑆𝑦, 𝑆𝑧 take the same form as before. Putting 𝑉𝐵 in matrix 

form gives: 

𝑉𝐵 = 𝜇𝐵

(

 
 
 
 

𝑔𝑔𝑠
∥ 𝐵𝑧

𝑔𝑔𝑠
⊥

√2
(𝐵𝑥 − 𝑖𝐵𝑦) 0

𝑔𝑔𝑠
⊥

√2
(𝐵𝑥 + 𝑖𝐵𝑦) 0

𝑔𝑔𝑠
⊥

√2
(𝐵𝑥 − 𝑖𝐵𝑦)

0
𝑔𝑔𝑠
⊥

√2
(𝐵𝑥 + 𝑖𝐵𝑦) −𝑔𝑔𝑠

∥ 𝐵𝑧 )

 
 
 
 

(2.36) 

 

     It should be noted here that an addition of 𝐵𝑧 magnetic field will Zeeman split the energy levels 

according to the relation 2.8 𝑀𝐻𝑧/𝐺. This is commonly used as a gauge of magnetic field strength 

(or conversely expected splitting under a known B-field) in divacancy experiments. 
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2.4.3 Effect of static electric field and strain 

The effect of both static electric field 𝐸𝑥,𝑦,𝑧 and static strain 𝛿𝑥,𝑦,𝑧 can be expressed by the 

following terms, which are added to the zero-field Hamiltonian. 

 

𝑉𝐸 =
(𝑑𝑔𝑠

∥ 𝐸𝑧 + 𝜖𝑔𝑠
∥ 𝛿𝑧) (𝑆̂𝑧

2 −
𝑆(𝑆 + 1)

3
) + (𝑑𝑔𝑠

⊥ 𝐸𝑥 + 𝜖𝑔𝑠
⊥ 𝛿𝑥)(𝑆̂𝑦

2 − 𝑆̂𝑥
2)

+(𝑑𝑔𝑠
⊥ 𝐸𝑦 + 𝜖𝑔𝑠

⊥ 𝛿𝑦)(𝑆̂𝑥𝑆̂𝑦 + 𝑆̂𝑦𝑆̂𝑥)

(2.37) 

 

Where {𝑑𝑔𝑠
∥ , 𝑑𝑔𝑠

⊥ } are the spin-electric field coupling constants and {𝜖𝑔𝑠
∥ , 𝜖𝑔𝑠

⊥ } are the spin-strain 

coupling constants. For the matrix components, we have: 

 

𝑆̂𝑧
2 −

𝑆(𝑆 + 1)

3
=

(

 
 
 

1

3
0 0

0 −
2

3
0

0 0
1

3)

 
 
 

, 𝑆̂𝑦
2 − 𝑆̂𝑥

2 = (
0 0 −1
0 0 0
−1 0 0

) ,

𝑆̂𝑥𝑆̂𝑦 + 𝑆̂𝑦𝑆̂𝑥 = (
0 0 −𝑖
0 0 0
𝑖 0 0

)

(2.38) 

 

So writing out the components gives: 

 

𝑉𝐸 =

(𝑑𝑔𝑠
∥ 𝐸𝑧 + 𝜖𝑔𝑠

∥ 𝛿𝑧)

(

 
 
 

1

3
0 0

0 −
2

3
0

0 0
1

3)

 
 
 
+ (𝑑𝑔𝑠

⊥ 𝐸𝑥 + 𝜖𝑔𝑠
⊥ 𝛿𝑥) (

0 0 −1
0 0 0
−1 0 0

)

+(𝑑𝑔𝑠
⊥ 𝐸𝑦 + 𝜖𝑔𝑠

⊥ 𝛿𝑦) (
0 0 −𝑖
0 0 0
𝑖 0 0

)

(2.39) 
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And combining gives: 

𝑉𝐸 =

(

 
 
 
 
 

1

3
(𝑑𝑔𝑠

∥ 𝐸𝑧 + 𝜖𝑔𝑠
∥ 𝛿𝑧) 0 (

𝑑𝑔𝑠
⊥ (−𝐸𝑥 − 𝑖𝐸𝑦)

+ 𝜖𝑔𝑠
⊥ (−𝛿𝑥 − 𝑖𝛿𝑦)

)

0 −
2

3
(𝑑𝑔𝑠

∥ 𝐸𝑧 + 𝜖𝑔𝑠
∥ 𝛿𝑧) 0

(
𝑑𝑔𝑠
⊥ (−𝐸𝑥 + 𝑖𝐸𝑦)

+ 𝜖𝑔𝑠
⊥ (−𝛿𝑥 + 𝑖𝛿𝑦)

) 0
1

3
(𝑑𝑔𝑠

∥ 𝐸𝑧 + 𝜖𝑔𝑠
∥ 𝛿𝑧)

)

 
 
 
 
 

(2.40) 

 

     The effect of 𝐸𝑧 , 𝛿𝑧 is to shift the 𝑚𝑠 = 0 energy down and shift the 𝑚𝑠 = ±1 energies up. 

Broadly speaking, the presence of 𝐸𝑥, 𝐸𝑦, 𝛿𝑥, 𝛿𝑦 will introduce off-diagonal coupling between the 

𝑚𝑠 = ±1 states. In the case of 𝐸𝑥, 𝛿𝑥, this is equivalent to modifying the E term that appears in 

the zero-field Hamiltonian. Investigations of the divacancy spin strain and electric field coupling 

are presented in [25-28]. 

 

 

2.4.4 Effect of nuclear spins and local paramagnetic 

spins 

The ground state Hamiltonian can also be affected by the nuclear spin environment. Similar to 

single electrons, the protons and neutrons that compose any nucleus each have a spin of ½ and a 

comparatively small magnetic moment. In an entire nucleus, the atomic number (the number of 

protons) and mass number (number of protons + neutrons) both play an important role in the 

overall spin of the nuclear magnetic moment. If the mass number is even, there will be an integer 

spin, whereas if the mass number is odd, there will be a half-integer spin. More specifically, if both 

the mass number and the atomic number are even (i.e. an even number of both protons and 
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neutrons), then the nuclear spin will be zero. Nuclear spin is commonly represented by the letter 

𝐼. The examples of naturally abundant 12C and 28Si both have 𝐼 = 0 and thus no coupling to the 

neutral divacancy in the SiC lattice. Meanwhile the most common isotopes of 13C and 29Si both 

have 𝐼 = 1/2. When a nonzero nuclear spin couples to the VV0, the Hamiltonian is modified by 

the addition of the following terms: 

 

𝑉𝑛𝑢𝑐𝑙𝑒𝑎𝑟 =

𝐴𝑔𝑠
∥ 𝑆̂𝑧⊗ 𝐼𝑧 + 𝐴𝑔𝑠

⊥ (𝑆̂𝑥⊗ 𝐼𝑥 + 𝑆̂𝑦⊗ 𝐼𝑦)

+ 𝑃𝑔𝑠 (𝑆𝐼⊗ 𝐼𝑧
2 −

𝐼(𝐼 + 1)

3
) + 𝜇𝑁𝑔𝑁𝑆𝐼⊗ (𝐼 ∙ 𝐵⃗⃗)

(2.41) 

 

Where ⊗ denotes a tensor product, 𝑆𝐼 is the 3x3 identity matrix, {𝐴𝑔𝑠
∥ , 𝐴𝑔𝑠

⊥ } are the magnetic 

hyperfine parameters, 𝑃𝑔𝑠 is the nuclear electric quadrupole parameter, 𝜇𝑁 is the nuclear magneton, 

and 𝑔𝑁 is the nuclear g-factor of the relevant nuclear isotope. The scalar 𝐼 is the nuclear spin (e.g. 

𝐼 = 1/2 for 13C). The nuclear spin matrices {𝐼𝑥, 𝐼𝑦, 𝐼𝑧} take the same form as the "regular" spin 

matrices with spin 𝐼. For example, for the case of 13C which has 𝐼 = 1/2, we would use the Pauli 

matrices with {𝐼𝑥, 𝐼𝑦, 𝐼𝑧} = {𝜎𝑥 , 𝜎𝑦, 𝜎𝑧}. Practically speaking we will only see nuclear isotopes with 

either 𝐼 = 1/2 or 𝐼 = 0 in the SiC lattice. If 𝐼 = 0, the nuclear Hamiltonian 𝐻̂𝑛𝑢𝑐𝑙𝑒𝑎𝑟 simply 

becomes zero. So for nuclear spins in SiC, the nuclear Hamiltonian gets modified to: 

 

𝑉𝑛𝑢𝑐𝑙𝑒𝑎𝑟
𝑆𝑖𝐶 =

𝐴𝑔𝑠
∥ 𝑆̂𝑧⊗ 𝜎̂𝑧 + 𝐴𝑔𝑠

⊥ (𝑆̂𝑥⊗ 𝜎̂𝑥 + 𝑆̂𝑦⊗ 𝜎̂𝑦)

+ 𝑃𝑔𝑠 (𝑆𝐼⊗ 𝜎̂𝑧
2 −

1

4
) + 𝜇𝑁𝑔𝑁𝑆𝐼⊗ (𝜎⃗ ∙ 𝐵⃗⃗)

(2.42) 

 

     The presence of the nuclear spin bath in the SiC has important effects on the VV0 decoherence 

and dephasing times, as is explored in [29]. Meanwhile, local paramagnetic spins from lattice 
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defects and impurities can also couple to the divacancy electron spin. Usually this is the result of 

dipolar coupling between electrons. This interaction can be broadly written as: 

 

𝑉𝑑𝑖𝑝𝑜𝑙𝑒 =∑∑𝑺̂𝑖 ∙ 𝑷𝑖,𝑗
𝑒 ∙ 𝑺̂𝑗

𝑗>𝑖𝑖

(2.43) 

 

Where we are summing over all paramagnetic spins. Here 𝑺̂𝑖 represents the electronic spin of 

defect 𝑖 and 𝑷𝑖,𝑗
𝑒  represents the electronic diole-dipole coupling term for each spin. 

 

 

2.4.5 Total combined Hamiltonian 

In total then, the ground state VV0 Hamiltonian can be written as: 

 

𝐻𝑔𝑠
𝑡𝑜𝑡𝑎𝑙 = 𝐻𝑔𝑠 + 𝑉𝐵 + 𝑉𝐸 + 𝑉𝑛𝑢𝑐𝑙𝑒𝑎𝑟

𝑆𝑖𝐶 + 𝑉𝑑𝑖𝑝𝑜𝑙𝑒 (2.44) 

 

The zero-field Hamiltonian and magnetic/electric/strain effects can be combined into one matrix 

to give: 

𝐻𝑔𝑠 + 𝑉𝐵 + 𝑉𝐸 =

(

 
 
 
 
 
 
 
 (

1

3
ℏ𝐷 + 𝜇𝐵𝑔𝑔𝑠

∥ 𝐵𝑧

+
1

3
(𝑑𝑔𝑠

∥ 𝐸𝑧 + 𝜖𝑔𝑠
∥ 𝛿𝑧)

) 𝜇𝐵
𝑔𝑔𝑠
⊥

√2
(𝐵𝑥 − 𝑖𝐵𝑦) (

ℏ𝐸
+𝑑𝑔𝑠

⊥ (−𝐸𝑥 − 𝑖𝐸𝑦)

+ 𝜖𝑔𝑠
⊥ (−𝛿𝑥 − 𝑖𝛿𝑦)

)

𝜇𝐵
𝑔𝑔𝑠
⊥

√2
(𝐵𝑥 + 𝑖𝐵𝑦) −

2

3
ℏ𝐷 −

2

3
(𝑑𝑔𝑠

∥ 𝐸𝑧 + 𝜖𝑔𝑠
∥ 𝛿𝑧) 𝜇𝐵

𝑔𝑔𝑠
⊥

√2
(𝐵𝑥 − 𝑖𝐵𝑦)

(

ℏ𝐸
+𝑑𝑔𝑠

⊥ (−𝐸𝑥 + 𝑖𝐸𝑦)

+ 𝜖𝑔𝑠
⊥ (−𝛿𝑥 + 𝑖𝛿𝑦)

) 𝜇𝐵
𝑔𝑔𝑠
⊥

√2
(𝐵𝑥 + 𝑖𝐵𝑦) (

1

3
ℏ𝐷 − 𝜇𝐵𝑔𝑔𝑠

∥ 𝐵𝑧

+
1

3
(𝑑𝑔𝑠

∥ 𝐸𝑧 + 𝜖𝑔𝑠
∥ 𝛿𝑧)

)

)

 
 
 
 
 
 
 
 

(2.45) 

 

If one just wants to focus on the general field/strain dependence without prefactors, then this can 

be simplified to: 
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𝐻𝑔𝑠 + 𝑉𝐵 + 𝑉𝐸 ≈

(

 
 
 

1

3
𝐷 + 𝐵𝑧 + 𝐸𝑧 + 𝛿𝑧 𝐵𝑥 − 𝑖𝐵𝑦 𝐸 − 𝐸𝑥 − 𝑖𝐸𝑦 − 𝛿𝑥 − 𝑖𝛿𝑦

𝐵𝑥 + 𝑖𝐵𝑦 −
2

3
𝐷 − 𝐸𝑧 − 𝛿𝑧 𝐵𝑥 − 𝑖𝐵𝑦

𝐸 − 𝐸𝑥 + 𝑖𝐸𝑦 − 𝛿𝑥 + 𝑖𝛿𝑦 𝐵𝑥 + 𝑖𝐵𝑦
1

3
𝐷 − 𝐵𝑧 + 𝐸𝑧 + 𝛿𝑧 )

 
 
 

(2.46) 

 

The additional terms 𝑉𝑛𝑢𝑐𝑙𝑒𝑎𝑟
𝑆𝑖𝐶  and 𝑉𝑑𝑖𝑝𝑜𝑙𝑒 cannot be cast into matrix form easily, and they would 

likely be 6x6 dimensional for coupling to spin ½ particles. 

 

 

2.5  The benefits of a diagonal 

Hamiltonian 

When presented with a Hamiltonian in any system, one is generally interested in the stationary 

eigenstates and the effects of external fields on time-evolution of a starting state. In the case of a 

diagonal zero-field Hamiltonian, the basis that the Hamiltonian is expressed in already composes 

the eigenstates of the system. Additionally, the placement of off-diagonal external field entries 

immediately provides information for which transitions will be driven by sinusoidally varying 

magnitudes of these fields. In the case of the c-axis divacancy with a Bz Zeeman splitting, the 

Hamiltonian takes the general form: 

 

𝐻𝑔𝑠 = ℏ

(

 
 
 

1

3
𝐷 + 𝐵𝑧 0 0

0 −
2

3
𝐷 0

0 0
1

3
𝐷 − 𝐵𝑧)

 
 
 

(2.47) 
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As outlined in figure 2.4, the diagonal elements give the energies of the eigenstates and the off-

diagonal elements dictate coupling between the eigenstates. 

 

 

Figure 2.4 | Interpretation of a diagonal Hamiltonian. For a diagonal Hamiltonian, the diagonal 

entries (red boxes) directly give the energies of the eigenstates. The off-diagonal elements (blue 

boxes) provide coupling between the different eigenstates. 

 

     Alternatively, we can look at the row and column indices of an off-diagonal entry to see which 

states it will couple. Entry 𝐻𝑖𝑗 in row 𝑖 and column 𝑗 will couple eigenstates 𝑖 and 𝑗, and likewise 

𝐻𝑗𝑖 will couple the same two eigenstates 𝑗 and 𝑖. For example, a Bx field in the c-axis Hamiltonian 

will couple the |0〉 ↔ |+1〉 states and the |0〉 ↔ |−1〉 states, as shown in figure 2.5. 

 

 

Figure 2.5 | Diagonal Hamiltonian effect of 𝑩𝒙 magnetic field. An off-diagonal Bx element in 

the c-axis VV0 Hamiltonian provides direct coupling between the 𝑚𝑠 = 0 (|0〉) eigenstate and the 

𝑚𝑠 = ±1 eigenstates (|±1〉). 
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     The upshot of this argument is that it is beneficial to have a diagonal zero-field Hamiltonian in 

order to make these statements about eigenenergies and coupling behavior. If the zero-field 

Hamiltonian is not diagonal, then we will have to apply a transformation to diagonalize it. The key 

point is that this same transformation will have to be applied to any external field terms to see what 

their effect is. This will be discussed in more detail in the next two sections. 

 

 

2.5.1 Hamiltonian diagonalization and change of 

basis 

To determine the effects of drive fields on a non-diagonal Hamiltonian, we will follow two steps: 

 

1) Diagonalize the Hamiltonian and get the new basis corresponding to the diagonalization. 

2) Use this new basis to transform the drive fields 

 

     We will do the first step in this section and the second step in the next section and summarize 

the results. It is worth noting that the second step can also be applied more generally, as any 

Hamiltonian can be transformed under any new basis regardless of whether or not the end result 

is diagonal. As an example of a non-diagonal Hamiltonian to work with, we can examine the zero-

field basal VV0, which has a nonzero 𝐸 term: 

 

𝐻𝑏𝑎𝑠𝑎𝑙 = ℏ

(

 
 
 

1

3
𝐷 0 𝐸

0 −
2

3
𝐷 0

𝐸 0
1

3
𝐷)

 
 
 

(2.48) 
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This matrix is diagonalizable, meaning that 

𝐴 = 𝑃𝐷𝑃−1 (2.49) 

 

     For a given matrix A and a diagonal matrix D. The diagonalization can be performed either 

analytically or programmatically (e.g. using the python sympy package). The matrix 𝑃 is 

composed of column vectors that represent the new basis of the diagonalized Hamiltonian. In this 

case, diagonalization on 𝐻𝑏𝑎𝑠𝑎𝑙 gives: 

 

𝑃 =

(

 
 
−
1

√2
0

1

√2
0 1 0
1

√2
0

1

√2)

 
 
, 𝐷 =

(

 
 
 

1

3
𝐷 − 𝐸 0 0

0 −
2

3
𝐷 0

0 0
1

3
𝐷 + 𝐸)

 
 
 
, 𝑃−1 =

(

 
 
−
1

√2
0

1

√2
0 1 0
1

√2
0

1

√2)

 
 
(2.50) 

 

The columns of 𝑃 give the basis that results in a diagonal Hamiltonian. This is the "plus/minus" 

basis, expressed as: 

 

|−〉 =
1

√2
(
−1
0
1
) , |0〉 = (

0
1
0
) , |+〉 =

1

√2
(
1
0
1
) , plus minus basis (2.51) 

 

In this basis, the new Hamiltonian takes the form of 𝐷: 

 

𝐻𝑏𝑎𝑠𝑎𝑙 = 𝐷 =

(

 
 
 

1

3
𝐷 − 𝐸 0 0

0 −
2

3
𝐷 0

0 0
1

3
𝐷 + 𝐸)

 
 
 

plus minus
basis

(2.52) 

 

With energy eigenvalues equal to the diagonal entries 
1

3
𝐷 − 𝐸, −

2

3
𝐷, and 

1

3
𝐷 + 𝐸. 



56 

 

     This completes the first step of our procedure. We have identified a new basis that diagonalizes 

the Hamiltonian and gives the stationary eigenstates and eigenenergies of the system. The next 

step is to use this basis in the matrix 𝑃 to transform drive fields from the old basis (the integer 

basis) to the new basis (the plus-minus basis). With this in mind, we can give 𝑃 the more 

informative name of the change of basis matrix 𝐶𝑂𝐵: 

 

𝑃 = 𝐶𝑂𝐵 = (|−〉 |0〉 |+〉), change of basis matrix (2.53) 

 

So a general transformation of a matrix 𝐴 to a matrix 𝐵 in this new basis will look like: 

 

𝐵 = 𝐶𝑂𝐵−1 ∙ 𝐴 ∙ 𝐶𝑂𝐵 (2.54) 

 

We will see how this works in the next section and use the results to state the transitions rules for 

the VV0 ground state. 

 

 

2.5.2 Transition rules for the VV0 ground state 

We can apply the transformation from the previous section: 

 

𝐵 = 𝐶𝑂𝐵−1 ∙ 𝐴 ∙ 𝐶𝑂𝐵 (2.55) 

 

To individual drive fields to examine their behavior in the new basis. We will start with the 

transformation of Bx field, which gives: 
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𝐻𝐵𝑥 =

(

 
 
−
1

√2
0

1

√2
0 1 0
1

√2
0

1

√2)

 
 
(
0 𝐵𝑥 0
𝐵𝑥 0 𝐵𝑥
0 𝐵𝑥 0

)

(

 
 
−
1

√2
0

1

√2
0 1 0
1

√2
0

1

√2)

 
 
= (

0 0 0

0 0 √2𝐵𝑥

0 √2𝐵𝑥 0

) (2.56) 

 

     This result means that in the case of a basal VV0 with an E term, an alternating Bx drive will 

only cause transitions between the |0〉 and |+〉 states. The states are determined through the 

formalism outlined in the previous section, with the |0〉 and |+〉 eigenenergies appearing in 

row/column 2 and 3, respectively. 

     Carrying this out this same transformation for the other drive fields gives the following: 

𝐻𝐵𝑦 =

(

 
 
−
1

√2
0

1

√2
0 1 0
1

√2
0

1

√2)

 
 
(

0 −𝑖𝐵𝑦 0

𝑖𝐵𝑦 0 −𝑖𝐵𝑦
0 𝑖𝐵𝑦 0

)

(

 
 
−
1

√2
0

1

√2
0 1 0
1

√2
0

1

√2)

 
 
= (

0 √2𝑖𝐵𝑦 0

−√2𝑖𝐵𝑦 0 0

0 0 0

) (2.57) 

𝐻𝐵𝑧 =

(

 
 
−
1

√2
0

1

√2
0 1 0
1

√2
0

1

√2)

 
 
(
𝐵𝑧 0 0
0 0 0
0 0 −𝐵𝑧

)

(

 
 
−
1

√2
0

1

√2
0 1 0
1

√2
0

1

√2)

 
 
= (

0 0 −𝐵𝑧
0 0 0
−𝐵𝑧 0 0

) (2.58) 

𝐻𝐸𝑥 =

(

 
 
−
1

√2
0

1

√2
0 1 0
1

√2
0

1

√2)

 
 
(
0 0 −𝐸𝑥
0 0 0
−𝐸𝑥 0 0

)

(

 
 
−
1

√2
0

1

√2
0 1 0
1

√2
0

1

√2)

 
 
= (

𝐸𝑥 0 0
0 0 0
0 0 −𝐸𝑥

) (2.59) 

𝐻𝐸𝑦 =

(

 
 
−
1

√2
0

1

√2
0 1 0
1

√2
0

1

√2)

 
 
(

0 0 −𝑖𝐸𝑦
0 0 0
𝑖𝐸𝑦 0 0

)

(

 
 
−
1

√2
0

1

√2
0 1 0
1

√2
0

1

√2)

 
 
= (

0 0 𝑖𝐸𝑦
0 0 0

−𝑖𝐸𝑦 0 0
) (2.60) 
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𝐻𝐸𝑧 =

(

 
 
−
1

√2
0

1

√2
0 1 0
1

√2
0

1

√2)

 
 
(
𝐸𝑧 0 0
0 −𝐸𝑧 0
0 0 𝐸𝑧

)

(

 
 
−
1

√2
0

1

√2
0 1 0
1

√2
0

1

√2)

 
 
= (

𝐸𝑧 0 0
0 −𝐸𝑧 0
0 0 𝐸𝑧

) (2.61) 

Following the same convention of the previous section, the effects of these fields are summarized 

table 2.1: 

 

Type of AC drive Transitions 

 c-axis VV0 with static Bz Basal VV0, no static field 

Bx drive |0〉 ↔ |+1〉, |0〉 ↔ |−1〉 |0〉 ↔ |+〉 
By drive |0〉 ↔ |+1〉, |0〉 ↔ |−1〉 |0〉 ↔ |−〉 
Bz drive No transition |+〉 ↔ |−〉 
Ex drive |+1〉 ↔ |−1〉 No transition 

Ey drive |+1〉 ↔ |−1〉 |+〉 ↔ |−〉 
Ez drive No transition No transition 

 

Table 2.1 | Transition rules for c-axis and basal divacancies under sinusoidally varying 

magnetic and electric fields. As an example, Bx and By magnetic fields are commonly used to 

drive spin transitions in the c-axis VV0 (|0〉 ↔ |±1〉), while Bz has no effect ("No transition"). 

 

     This table gives some background why it is sometimes said that ∆𝑚𝑠 = ±2 transitions are 

"magnetically forbidden" for c-axis VV0s, as no combination of magnetic fields will drive a 

|+1〉 ↔ |−1〉 transition. Instead, an alternating electric field must be used for such a transition 

[25]. However, with the E term present in basal VV0s (or an artificially induced E term with a 

static Ex applied to a c-axis VV0s), the transition rules change and a magnetic field can cause 

transitions between the two nonzero spin eigenstates |+〉 and |−〉. [31] Therefore, the rules of what 

is or is not "allowed" for magnetic/electric driving depends entirely on the context of the undriven 

Hamiltonian, which is sometimes directly controllable with the application of static fields or 

strains. [31] 
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2.6  An analytical approach to the 

magnetically driven VV0 system 

In this section we will attempt to obtain full analytical solutions to the wavefunction for the c-axis 

VV0 ground state (i.e. no E term) under an alternating transverse microwave field (Bx). The 

exclusion the E term is not out of laziness, but necessity. We will see that even this "simple" system 

poses immensely complicated solutions. Indeed, we will not be able to write out the final closed 

form solution, mostly because the solution would not reasonably fit on a page! However the 

analysis up until that point follows the same approach as the two-level system, with many parallels 

between the two derivations. 

     The simplest case is a c-axis defect with a Zeeman splitting, in which case we have: 

 

𝐻𝑔𝑠 = ℏ

(

 
 
 
 

1

3
𝐷 +

𝜇𝐵𝑔𝑔𝑠
∥ 𝐵𝑧

ℏ

𝜇𝐵𝑔𝑔𝑠
⊥

ℏ√2
𝐵𝑥 0

𝜇𝐵𝑔𝑔𝑠
⊥

ℏ√2
𝐵𝑥 −

2

3
𝐷

𝜇𝐵𝑔𝑔𝑠
⊥

ℏ√2
𝐵𝑥

0
𝜇𝐵𝑔𝑔𝑠

⊥

ℏ√2
𝐵𝑥

1

3
𝐷 −

𝜇𝐵𝑔𝑔𝑠
∥ 𝐵𝑧

ℏ )

 
 
 
 

(2.62) 

 

For notational simplicity we will define: 

𝐵𝑧 ≡
𝜇𝐵𝑔𝑔𝑠

∥

ℏ
𝐵𝑧 , 𝐵𝑥 ≡

𝜇𝐵𝑔𝑔𝑠
⊥

ℏ√2
𝐵𝑥 (2.63) 

So we simply have: 
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𝐻𝑔𝑠 = ℏ

(

 
 
 

1

3
𝐷 + 𝐵𝑧 𝐵𝑥 0

𝐵𝑥 −
2

3
𝐷 𝐵𝑥

0 𝐵𝑥
1

3
𝐷 − 𝐵𝑧)

 
 
 

(2.64) 

To turn this to a sinusoidal B-field drive, we write: 

𝐻𝑔𝑠 = ℏ

(

 
 
 

1

3
𝐷 + 𝐵𝑧 𝐵𝑥 cos𝜔𝑡 0

𝐵𝑥 cos𝜔𝑡 −
2

3
𝐷 𝐵𝑥 cos𝜔𝑡

0 𝐵𝑥 cos𝜔𝑡
1

3
𝐷 − 𝐵𝑧)

 
 
 

(2.65) 

𝐻𝑔𝑠 = ℏ

(

 
 
 

1

3
𝐷 + 𝐵𝑧

𝐵𝑥
2
(𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡) 0

𝐵𝑥
2
(𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡) −

2

3
𝐷

𝐵𝑥
2
(𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡)

0
𝐵𝑥
2
(𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡)

1

3
𝐷 − 𝐵𝑧 )

 
 
 

(2.66) 

 

To simplify this, we redefine the Bx field as: 

𝐵𝑥 ≡
𝐵𝑥
2

(2.67) 

Which gives: 

𝐻𝑔𝑠 = ℏ

(

 
 
 

1

3
𝐷 + 𝐵𝑧 𝐵𝑥(𝑒

𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡) 0

𝐵𝑥(𝑒
𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡) −

2

3
𝐷 𝐵𝑥(𝑒

𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡)

0 𝐵𝑥(𝑒
𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡)

1

3
𝐷 − 𝐵𝑧 )

 
 
 

(2.68) 

 

Continuing with the interaction picture approach, we have the equation: 

 

𝑖ℏ
𝜕Φ

𝜕𝑡
= (𝑃−1𝐻𝑃 − 𝑖ℏ𝑃−1

𝜕𝑃

𝜕𝑡
)Φ (2.69) 
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Our first choice for 𝑃 will be given as follows, by convention: 

 

𝑃−1 = exp (
𝑖𝐻0,𝑆𝑡

ℏ
) (2.70) 

 

Here 𝐻0,𝑆 represents the time-independent part of the Hamiltonian, so: 

 

𝐻0,𝑆 = ℏ

(

 
 
 

1

3
𝐷 + 𝐵𝑧 0 0

0 −
2

3
𝐷 0

0 0
1

3
𝐷 − 𝐵𝑧)

 
 
 

(2.71) 

This gives: 

𝑃−1 =

(

 
 
 
exp (𝑖 (

1

3
𝐷 + 𝐵𝑧) 𝑡) 0 0

0 exp (𝑖 (−
2

3
𝐷) 𝑡) 0

0 0 exp (𝑖 (
1

3
𝐷 − 𝐵𝑧) 𝑡))

 
 
 

(2.72) 

 

Inverting is straightforward since this is a diagonal matrix: 

 

𝑃 =

(

 
 
 
exp (−𝑖 (

1

3
𝐷 + 𝐵𝑧) 𝑡) 0 0

0 exp (𝑖 (
2

3
𝐷) 𝑡) 0

0 0 exp (−𝑖 (
1

3
𝐷 − 𝐵𝑧) 𝑡))

 
 
 

(2.73) 

 

Now we can write 𝑃−1𝐻𝑃: 
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𝑃−1𝐻𝑃 = ℏ

(

 
 
 

1

3
𝐷 + 𝐵𝑧 𝐵𝑥(𝑒

𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡)𝑒(𝐷+𝐵𝑧)𝑖𝑡 0

𝐵𝑥(𝑒
𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡)𝑒−(𝐷+𝐵𝑧)𝑖𝑡 −

2

3
𝐷 𝐵𝑥(𝑒

𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡)𝑒−(𝐷−𝐵𝑧)𝑖𝑡

0 𝐵𝑥(𝑒
𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡)𝑒(𝐷−𝐵𝑧)𝑖𝑡

1

3
𝐷 − 𝐵𝑧 )

 
 
 

(2.74) 

 

Now time for the derivative portion, 𝑖ℏ𝑃−1
𝜕𝑃

𝜕𝑡
: 

 

𝜕𝑃

𝜕𝑡
=

(

 
 
 
−𝑖 (

1

3
𝐷 + 𝐵𝑧) exp (−𝑖 (

1

3
𝐷 + 𝐵𝑧) 𝑡) 0 0

0 𝑖 (
2

3
𝐷) exp (𝑖 (

2

3
𝐷) 𝑡) 0

0 0 −𝑖 (
1

3
𝐷 − 𝐵𝑧) exp (−𝑖 (

1

3
𝐷 − 𝐵𝑧) 𝑡))

 
 
 

(2.75) 

𝑃−1
𝜕𝑃

𝜕𝑡
=

(

 
 
 
−𝑖 (

1

3
𝐷 + 𝐵𝑧) 0 0

0 𝑖 (
2

3
𝐷) 0

0 0 −𝑖 (
1

3
𝐷 − 𝐵𝑧))

 
 
 

(2.76) 

𝑖ℏ𝑃−1
𝜕𝑃

𝜕𝑡
= ℏ

(

 
 
 
(
1

3
𝐷 + 𝐵𝑧) 0 0

0 −(
2

3
𝐷) 0

0 0 (
1

3
𝐷 − 𝐵𝑧))

 
 
 

(2.77) 

Combining these components gives: 

𝐻𝑛𝑒𝑤 = 𝑃
−1𝐻𝑃 − 𝑖ℏ𝑃−1

𝜕𝑃

𝜕𝑡
(2.78) 

𝐻𝑛𝑒𝑤 = ℏ(

0 𝐵𝑥(𝑒
𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡)𝑒(𝐷+𝐵𝑧)𝑖𝑡 0

𝐵𝑥(𝑒
𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡)𝑒−(𝐷+𝐵𝑧)𝑖𝑡 0 𝐵𝑥(𝑒

𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡)𝑒−(𝐷−𝐵𝑧)𝑖𝑡

0 𝐵𝑥(𝑒
𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡)𝑒(𝐷−𝐵𝑧)𝑖𝑡 0

) (2.79) 

 

Applying the rotating wave approximation here, the quickly varying terms are dropped: 
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𝐻𝑛𝑒𝑤 = ℏ(

0 𝐵𝑥(𝑒
−𝑖𝜔𝑡)𝑒(𝐷+𝐵𝑧)𝑖𝑡 0

𝐵𝑥(𝑒
𝑖𝜔𝑡)𝑒−(𝐷+𝐵𝑧)𝑖𝑡 0 𝐵𝑥(𝑒

𝑖𝜔𝑡)𝑒−(𝐷−𝐵𝑧)𝑖𝑡

0 𝐵𝑥(𝑒
−𝑖𝜔𝑡)𝑒(𝐷−𝐵𝑧)𝑖𝑡 0

) (2.80) 

𝐻𝑛𝑒𝑤 = ℏ(

0 𝐵𝑥𝑒
𝑖(−𝜔+(𝐷+𝐵𝑧))𝑡 0

𝐵𝑥𝑒
𝑖(𝜔−(𝐷+𝐵𝑧))𝑡 0 𝐵𝑥𝑒

𝑖(𝜔−(𝐷−𝐵𝑧))𝑡

0 𝐵𝑥𝑒
𝑖(−𝜔+(𝐷−𝐵𝑧))𝑡 0

) (2.81) 

 

Previously for the two-level system we introduced a single detuning. Now there are two detunings, 

defined as: 

Δ+ ≡ 𝜔 − (𝐷 + 𝐵𝑧), Δ− ≡ 𝜔 − (𝐷 − 𝐵𝑧) (2.82) 

So: 

𝐻𝑛𝑒𝑤 = ℏ(

0 𝐵𝑥𝑒
−𝑖Δ+𝑡 0

𝐵𝑥𝑒
𝑖Δ+𝑡 0 𝐵𝑥𝑒

𝑖Δ−𝑡

0 𝐵𝑥𝑒
−𝑖Δ−𝑡 0

) (2.83) 

 

As before, this satisfies the equation: 

𝑖ℏ
𝜕Φ

𝜕𝑡
= 𝐻𝑛𝑒𝑤Φ (2.84) 

Where the modified wave function is: 

 

Φ = 𝑃−1Ψ =

(

 
 
 
exp (𝑖 (

1

3
𝐷 + 𝐵𝑧) 𝑡) 0 0

0 exp (𝑖 (−
2

3
𝐷) 𝑡) 0

0 0 exp (𝑖 (
1

3
𝐷 − 𝐵𝑧) 𝑡))

 
 
 

Ψ (2.85) 

As before, we will now repeat the interaction picture procedure. We have: 

 

𝑖ℏ
𝜕Θ

𝜕𝑡
= (𝑃−1𝐻𝑛𝑒𝑤𝑃 − 𝑖ℏ𝑃

−1
𝜕𝑃

𝜕𝑡
)Θ (2.86) 

Where: 
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Θ ≡ 𝑃−1Φ (2.87) 

First we have to diagonalize 𝐻𝑛𝑒𝑤: 

𝐻𝑛𝑒𝑤 = ℏ𝐵𝑥 (
0 𝑒−𝑖Δ+𝑡 0

𝑒𝑖Δ+𝑡 0 𝑒𝑖Δ−𝑡

0 𝑒−𝑖Δ−𝑡 0

) (2.88) 

𝐻𝑛𝑒𝑤 = ℏ𝐵𝑥

(

 
 
 
 
 
 
 (
−𝑒𝑖(Δ−−Δ+)𝑡 𝑒𝑖(Δ−−Δ+)𝑡 𝑒𝑖(Δ−−Δ+)𝑡

0 −√2𝑒𝑖Δ−𝑡 √2𝑒𝑖Δ−𝑡

1 1 1

)(

0 0 0

0 −√2 0

0 0 √2

)

∙

(

 
 
 
 
−
1

2
𝑒𝑖(−Δ−+Δ+)𝑡 0

1

2

1

4
𝑒𝑖(−Δ−+Δ+)𝑡 −

√2

4
𝑒−𝑖Δ−𝑡

1

4

1

4
𝑒𝑖(−Δ−+Δ+)𝑡

√2

4
𝑒−𝑖Δ−𝑡

1

4)

 
 
 
 

)

 
 
 
 
 
 
 

(2.89) 

Noting that: 

Δ− − Δ+ = 2𝐵𝑧 (2.90) 

This can be rewritten as: 

𝐻𝑛𝑒𝑤 = ℏ𝐵𝑥 (
−𝑒2𝑖𝐵𝑧𝑡 𝑒2𝑖𝐵𝑧𝑡 𝑒2𝑖𝐵𝑧𝑡

0 −√2𝑒𝑖Δ−𝑡 √2𝑒𝑖Δ−𝑡

1 1 1

)(

0 0 0

0 −√2 0

0 0 √2

)

(

 
 
 
 
−
1

2
𝑒−2𝑖𝐵𝑧𝑡 0

1

2

1

4
𝑒−2𝑖𝐵𝑧𝑡 −

√2

4
𝑒−𝑖Δ−𝑡

1

4

1

4
𝑒−2𝑖𝐵𝑧𝑡

√2

4
𝑒−𝑖Δ−𝑡

1

4)

 
 
 
 

(2.91) 

Rearranging this gives: 

 

(

 
 
 
 
−
1

2
𝑒−2𝑖𝐵𝑧𝑡 0

1

2

1

4
𝑒−2𝑖𝐵𝑧𝑡 −

√2

4
𝑒−𝑖Δ−𝑡

1

4

1

4
𝑒−2𝑖𝐵𝑧𝑡

√2

4
𝑒−𝑖Δ−𝑡

1

4)

 
 
 
 

𝐻𝑛𝑒𝑤 (
−𝑒2𝑖𝐵𝑧𝑡 𝑒2𝑖𝐵𝑧𝑡 𝑒2𝑖𝐵𝑧𝑡

0 −√2𝑒𝑖Δ−𝑡 √2𝑒𝑖Δ−𝑡

1 1 1

) = ℏ𝐵𝑥 (

0 0 0

0 −√2 0

0 0 √2

) (2.92) 

 

This immediately provides us with our 𝑃−1 and 𝑃 for the second round: 
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𝑃−1 =

(

 
 
 
 
−
1

2
𝑒−2𝑖𝐵𝑧𝑡 0

1

2

1

4
𝑒−2𝑖𝐵𝑧𝑡 −

√2

4
𝑒−𝑖Δ−𝑡

1

4

1

4
𝑒−2𝑖𝐵𝑧𝑡

√2

4
𝑒−𝑖Δ−𝑡

1

4)

 
 
 
 

, 𝑃 = (
−𝑒2𝑖𝐵𝑧𝑡 𝑒2𝑖𝐵𝑧𝑡 𝑒2𝑖𝐵𝑧𝑡

0 −√2𝑒𝑖Δ−𝑡 √2𝑒𝑖Δ−𝑡

1 1 1

) (2.93) 

 

Giving: 

𝑃−1𝐻𝑛𝑒𝑤𝑃 = ℏ𝐵𝑥 (

0 0 0

0 −√2 0

0 0 √2

) (2.94) 

 

For the time derivative part, 𝑖ℏ𝑃−1
𝜕𝑃

𝜕𝑡
: 

 

𝜕𝑃

𝜕𝑡
= (

−2𝑖𝐵𝑧𝑒
2𝑖𝐵𝑧𝑡 2𝑖𝐵𝑧𝑒

2𝑖𝐵𝑧𝑡 2𝑖𝐵𝑧𝑒
2𝑖𝐵𝑧𝑡

0 −𝑖Δ−√2𝑒
𝑖Δ−𝑡 𝑖Δ−√2𝑒

𝑖Δ−𝑡

0 0 0

) (2.95) 

𝑃−1
𝜕𝑃

𝜕𝑡
=

(

 
 
 
 
−
1

2
𝑒−2𝑖𝐵𝑧𝑡 0

1

2

1

4
𝑒−2𝑖𝐵𝑧𝑡 −

√2

4
𝑒−𝑖Δ−𝑡

1

4

1

4
𝑒−2𝑖𝐵𝑧𝑡

√2

4
𝑒−𝑖Δ−𝑡

1

4)

 
 
 
 

(
−2𝑖𝐵𝑧𝑒

2𝑖𝐵𝑧𝑡 2𝑖𝐵𝑧𝑒
2𝑖𝐵𝑧𝑡 2𝑖𝐵𝑧𝑒

2𝑖𝐵𝑧𝑡

0 −𝑖Δ−√2𝑒
𝑖Δ−𝑡 𝑖Δ−√2𝑒

𝑖Δ−𝑡

0 0 0

) (2.96) 

𝑃−1
𝜕𝑃

𝜕𝑡
=

(

 
 

𝑖𝐵𝑧 −𝑖𝐵𝑧 −𝑖𝐵𝑧

−
1

2
𝑖𝐵𝑧

1

2
𝑖𝐵𝑧 +

1

2
𝑖Δ−

1

2
𝑖𝐵𝑧 −

1

2
𝑖Δ−

−
1

2
𝑖𝐵𝑧

1

2
𝑖𝐵𝑧 −

1

2
𝑖Δ−

1

2
𝑖𝐵𝑧 +

1

2
𝑖Δ−)

 
 

(2.97) 

Rewriting: 

𝑃−1
𝜕𝑃

𝜕𝑡
=

(

 
 

𝑖𝐵𝑧 −𝑖𝐵𝑧 −𝑖𝐵𝑧

−
1

2
𝑖𝐵𝑧

1

2
𝑖(𝐵𝑧 + Δ−)

1

2
𝑖(𝐵𝑧 − Δ−)

−
1

2
𝑖𝐵𝑧

1

2
𝑖(𝐵𝑧 − Δ−)

1

2
𝑖(𝐵𝑧 + Δ−))

 
 

(2.98) 

So: 
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𝑖ℏ𝑃−1
𝜕𝑃

𝜕𝑡
= ℏ

(

 
 

−𝐵𝑧 𝐵𝑧 𝐵𝑧
1

2
𝐵𝑧 −

1

2
(𝐵𝑧 + Δ−) −

1

2
(𝐵𝑧 − Δ−)

1

2
𝐵𝑧 −

1

2
(𝐵𝑧 − Δ−) −

1

2
(𝐵𝑧 + Δ−))

 
 

(2.99) 

So combining: 

𝐻2𝑛𝑑 = 𝑃
−1𝐻𝑛𝑒𝑤𝑃 − 𝑖ℏ𝑃

−1
𝜕𝑃

𝜕𝑡
(2.100) 

𝐻2𝑛𝑑 = ℏ

(

 
 

𝐵𝑧 −𝐵𝑧 −𝐵𝑧

−
1

2
𝐵𝑧 −√2𝐵𝑥 +

1

2
(𝐵𝑧 + Δ−)

1

2
(𝐵𝑧 − Δ−)

−
1

2
𝐵𝑧

1

2
(𝐵𝑧 − Δ−) √2𝐵𝑥 +

1

2
(𝐵𝑧 + Δ−))

 
 

(2.101) 

 

The second round modified Schrodinger's equation is now: 

 

𝑖ℏ
𝜕Θ

𝜕𝑡
= 𝐻2𝑛𝑑Θ (2.102) 

𝑖ℏ
𝜕Θ

𝜕𝑡
= ℏ

(

 
 

𝐵𝑧 −𝐵𝑧 −𝐵𝑧

−
1

2
𝐵𝑧 −√2𝐵𝑥 +

1

2
(𝐵𝑧 + Δ−)

1

2
(𝐵𝑧 − Δ−)

−
1

2
𝐵𝑧

1

2
(𝐵𝑧 − Δ−) √2𝐵𝑥 +

1

2
(𝐵𝑧 + Δ−))

 
 
Θ (2.103) 

 

As before, as the time-dependence in the Hamiltonian has been entirely removed after two 

interaction picture transformations. 

     The work thus far has been laborious and correct, but at this point it is not reasonable to proceed 

further. If we were to follow our normal procedure, then the next step would be to get the 

eigenvalues and eigenvectors of this time-independent Hamiltonian in order to write the general 

time evolution. However, the diagonalization of 𝐻2𝑛𝑑 gives eigenvalues and eigenvectors that are 

far too lengthy to put into this thesis. Shockingly, the first entry of the first eigenvector contains 

over 40 terms! As a middle ground it is possible to programmatically diagonalize this matrix and 
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output the wavefunction Ψ for particular numerical values of 𝐵𝑧, 𝐵𝑥, and 𝜔 at each time of interest 

𝑡. In this way we can still compare the analytical result from the above equation with the QuTiP 

model of the same initial Hamiltonian. Fortunately there is excellent agreement between these two 

models under both resonant and detuned microwave regimes. 

 

 

Figure 2.6 | Simulated Rabi oscillations between 𝒎𝒔 = 𝟎 ↔ −𝟏 for the 3-level VV0 ground 

state. Here there is a Bz Zeeman splitting and a Bx drive with no detuning or phase. The "theory" 

curves are obtained with the matrix equation in 2.103. The "QuTiP" curves are obtained using the 

python QuTiP package with the Hamiltonian in equation 2.68. The simulation starts in 𝑚𝑠 = 0 in 

both cases. 

 

     In this case, the z-projection of spin follows a simple sinusoid as it is driven between 𝑚𝑠 = 0 

and 𝑚𝑠 = −1. The x and y projections of spin follow more complicated behavior, but feature 

excellent agreement between the two models. This shows that the double interaction picture 

approach is somewhat generalizable for obtaining analytical solutions to Schrodinger's equation 

under sinusoidal drives, but these solutions can quickly become intractable for relatively simple 

3x3 Hamiltonians. QuTiP is still able to easily handle 3x3 systems, but one can imagine how the 
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model could break down for much higher dimensions (i.e., 100 or 1000). Extrapolating this idea 

perhaps gives some insight as to why the physical quantum systems built into quantum processors 

are a promising route to simulate quantum dynamics once the dimensionality passes a certain 

threshold. The inclusion of multiqubit gates and entangled states would only muddy the waters 

further, reinforcing the necessity for quantum processors to accurately model complex quantum 

systems. 

     We have shown the possibility of driving magnetic transitions between integer spin states such 

as 𝑚𝑠 = 0 ↔ +1 and 𝑚𝑠 = 0 ↔ −1. This was possible due to the presence of magnetic field 

terms in the off-diagonal entries of the Hamiltonian linking these states together. If we examine 

the electric field terms in the Hamiltonian, we can see that electric field is driving is also possible. 

The allowed transitions were outlined in table 2.1 in section "Transition rules for the VV0 ground 

state". The same derivation that we just performed could also be carried out for AC electric field 

transitions with the same overall end result. 

     Lastly, we can perform a quick calculation to get an idea of what magnetic field amplitudes are 

necessary to drive spin transitions. The transverse magnetic field term in the ground state 

Hamiltonian is: 

 

𝜇𝐵𝑔𝑔𝑠
⊥

√2
(𝐵𝑥 − 𝑖𝐵𝑦), 𝜇𝐵 = Bohr magneton =

𝑒ℏ

2𝑚𝑒
, 𝑔𝑔𝑠

⊥ ≈ 2 (2.104) 

 

During microwave driving, we have a sinusoidally varying term: 

 

𝜇𝐵𝑔𝑔𝑠
⊥

√2
𝐵𝑥 cos(𝜔𝑡) = 2ℏΩ cos(𝜔𝑡) (2.105) 
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With zero detuning and zero phase, the frequency of the Rabi oscillations will be given by Ω. 

Plugging in 2 for the g-factor and isolating Ω gives: 

 

Ω =
𝜇𝐵

√2ℏ
𝐵𝑥 = (1.575 ∙ 10

9)𝐵𝑥 (2.106) 

 

Relating this to the period T of a Rabi oscillation gives: 

 

2𝜋

𝑇
= (1.575 ∙ 109)𝐵𝑥, 𝑇 =

4 ∙ 10−9

𝐵𝑥
(2.107) 

 

To obtain ~100 ns period Rabi oscillations commonly observed, we need a B-field amplitude of: 

 

𝐵𝑥 =
4 ∙ 10−9

100 ∙ 10−9
=

4

100
= 0.025 𝑇 = 250 𝐺 (2.108) 

 

 

2.7  The two-level subspace assumption 

Even for quantum systems containing many states, it is usually possible to select a pair of states to 

treat as an isolated two-level system. For example, if we were dealing with the c-axis VV0 with a 

Bz field, we could select the 𝑚𝑠 = 0 and 𝑚𝑠 = +1 states as our qubit basis. To do this, we start 

with the ground state Hamiltonian: 

 

𝐻𝑔𝑠 = ℏ

(

 
 
 

1

3
𝐷 + 𝐵𝑧 𝐵𝑥 0

𝐵𝑥 −
2

3
𝐷 𝐵𝑥

0 𝐵𝑥
1

3
𝐷 − 𝐵𝑧)

 
 
 

(2.109) 
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Where again "𝐵𝑧" and "𝐵𝑥" are simplified magnetic field terms that drop other multiplicative 

factors. Now we only focus on the entries corresponding to the 𝑚𝑠 = 0 and 𝑚𝑠 = +1 states. Or 

phrased another way, we seek to drop the 𝑚𝑠 = −1 state from this system. Looking at the diagonal 

entries, the 𝑚𝑠 = −1 state's energy appears in the 3rd row/column. We then drop this entire 3rd 

row/column to give: 

 

𝐻𝑔𝑠 = ℏ

(

 
 
 

1

3
𝐷 + 𝐵𝑧 𝐵𝑥 0

𝐵𝑥 −
2

3
𝐷 𝐵𝑥

0 𝐵𝑥
1

3
𝐷 − 𝐵𝑧)

 
 
 

= ℏ(

1

3
𝐷 + 𝐵𝑧 𝐵𝑥

𝐵𝑥 −
2

3
𝐷

) (2.110) 

 

     This implies that the states of interest (and the ones to be eliminated) must be eigenstates whose 

energies appear along the main diagonal of the zero field Hamiltonian. With this reduced 

Hamiltonian at hand, we can now treat the dynamics of the {𝑚𝑠 = 0,𝑚𝑠 = +1} subspace as a two-

level system with the same dynamics outlined in the first chapter of this thesis. 

     In general, this assumption holds when there is not significant "crosstalk" between the 

eigenstates. In the c-axis VV0 example with Zeeman splitting, the 𝑚𝑠 = ±1 states must be 

sufficiently split such that a transition between 𝑚𝑠 = 0 to either 𝑚𝑠 = ±1 does not inadvertently 

cause transitions to the other integer spin state 𝑚𝑠 = ∓1. Similarly, the eigenstates 𝑚𝑠 = −1,0, +1 

should each be stationary without unwanted mixing caused by, for example, off-diagonal entries 

in the Hamiltonian. 

     As an example of mixing, the 𝐸 term appears naturally in off-diagonal entries of the 

Hamiltonian for basal VV0 defects [31]. This means that the integer states {𝑚𝑠 = 0,𝑚𝑠 = +1} 

would be an inappropriate choice for a two-level system subspace. After diagonalizing this 
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Hamiltonian to remove this mixing behavior, however, we could then select the more natural states 

{|0〉, |+〉} which are stationary in this Hamiltonian. 

     While this selection of a subspace may seem pedantic, it is in fact a cornerstone of engineering 

and understanding quantum systems. In the example of magnetic driving of the VV0, we just saw 

that analytical solutions are intractable if all three levels are included but greatly simplify if only 

two levels are considered. More generally, typical measurements to characterize a quantum system 

(Rabi oscillations, decoherence and dephasing times, etc.) are most easily understood in a two-

level system setting. The building blocks of quantum computing and communication protocols 

also often assume two-level systems and simple one or two-qubit gates. Thus, this subspace 

assumption is often implicitly made across various quantum platforms including the VV0. Two 

suitably isolated and stable states are chosen as the "qubit" and characterization measurements are 

built from this selection. 

     In some cases, the nontrivial interplay between multiple eigenstates may be a desired effect. In 

stimulated Raman adiabatic passage, for example, an excited state |𝑒〉 serves as an intermediary 

level to facilitate population transfer between two ground states |𝑔1〉 and |𝑔2〉 that are not directly 

coupled in a Λ system. [32] In most cases, however, considering the dynamics of all possible levels 

quickly becomes prohibitive. Indeed, the complexity of classically simulating an n-dimensional 

quantum system grows exponentially as n increases. 

 

 

2.8  Excited state Hamiltonian 
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From the previous sections we have seen that the 3x3 ground state Hamiltonian of the divacancy 

can be quite complicated. Unfortunately the situation does not get any simpler in the excited state, 

which now features a 6x6 Hamiltonian. For a 6-dimensional system we must immediately abandon 

any hopes of writing analytical solutions for state evolutions or making geometric parallels to 

Bloch spheres or rotations. The excited state Hamiltonian is also not diagonalizable in the general 

case, meaning the idea of stable stationary states is on tenuous ground. Finally, the presence of 

spontaneous emission means that any pseudo-stable states we are able to discern will quickly decay 

to the ground state. Quantifying this decay rate is also quite complicated and is revisited in chapter 

5 on cavity QED. 

     Given these roadblocks, our description of the excited state will not go into as much detail as 

the previous sections. Nevertheless, an intuition of the excited state can be developed by examining 

its Hamiltonian and the energies it predicts. We will start with a description of the excited state 

orbitals and the possible basis states used to describe the system. We will then use these bases to 

express the zero-field Hamiltonian and outline the energy level structure. Finally, we'll see how 

the addition of electric field, strain, and magnetic field modifies the Hamiltonian in a similar 

fashion to the ground state Hamiltonian in section 2.4. 

 

 

2.8.1 Excited state orbitals 

The electron orbitals outlined in section 2.3 still hold for the excited state, with the difference being 

the occupation of the higher energy orbitals. Since there are two excited state orbitals, there are 

two general configurations of the unpaired electrons, each of which then gives a spin triplet. The 

excited state orbitals are sometimes referred to as the 𝑒𝑥 and 𝑒𝑦 orbitals [33-34]. The decay from 
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the excited state to the ground state results in the emission of an infrared wavelength photon. 

Depending on the vacancy type the zero-phonon emission of this decay is in the range of ~1040-

1140 nm, although emissions at longer wavelengths are possible if phonons are involved. Either 

way, the overall spin state of the system is generally preserving during these decays. The properties 

of the emission spectrum are discussed in more detail in the section in chapter 3 titled "VV0 

emission spectrum". 

 

 

Figure 2.7 | Orbitals in the band gap. The six electrons of the neutral divacancy occupy four 

orbitals, three of which are in the SiC band gap. In the excited state, one of the electrons in the 𝑎1 

orbital gets excited to either the 𝑒𝑥 or 𝑒𝑦 orbital. Both possible configurations of the orbital 

occupations are shown here. The green box highlights the unpaired electrons that form the spin-1 

state of the excited state. 

 

     Figure 2.7 provides two specific examples of excited state configurations. Given that there are 

two excited state orbitals and each contains a spin triplet, this results in six possible excited states. 

[3] However, the direct pairing of the spin triplet states with the Ex/Ey orbital occupation does not 

directly give the eigenstates of the excited state. This leads to the questions of what are the excited 

state eigenstates and what is an appropriate basis for the excited state? This decision was made 
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naturally in the ground state, as the spin triplet states there are exactly the eigenstates of the ground 

state Hamiltonian. However, in the excited state the picture is not as clear, so this warrants some 

additional discussion of basis states. 

 

 

2.8.2 Defining basis states 

Continuing with the idea presented in the previous section, one definition of basis states could be 

to categorize the state by its excited state orbital occupation and the spin state of the unpaired 

electrons. Just as with the ground state, we can represent the ms = -1/0/+1 states as: 

 

|+1〉 = (
1
0
0
) , |0〉 = (

0
1
0
) , |−1〉 = (

0
0
1
) (2.111) 

 

Meanwhile we can label the two excited state orbitals as "X" and "Y" such that: 

 
|𝑋〉 = in 𝑒𝑥 orbital, |𝑌〉 = in 𝑒𝑦 orbital (2.112) 

Or, as vectors: 

|𝑋〉 = (
1
0
) , |𝑌〉 = (

0
1
) (2.113) 

 

Therefore, there are six combinations in the excited state, depending on which orbital you are in 

and what spin state you are in. These form the basis states: 

 

|𝑋〉 ⊗ |+1〉 =

(

  
 

1
0
0
0
0
0)

  
 
, |𝑋〉 ⊗ |0〉 =

(

  
 

0
1
0
0
0
0)

  
 
, |𝑋〉⊗ |−1〉 =

(

  
 

0
0
1
0
0
0)

  
 

(2.114) 
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|𝑌〉 ⊗ |+1〉 =

(

  
 

0
0
0
1
0
0)

  
 
, |𝑌〉 ⊗ |0〉 =

(

  
 

0
0
0
0
1
0)

  
 
, |𝑌〉 ⊗ |−1〉 =

(

  
 

0
0
0
0
0
1)

  
 

(2.115) 

 

     This is the basis used in reference [21] for the NV– center in diamond, which shares an identical 

excited state structure with c-axis divacancies. This basis is complete and spans the Hilbert space 

of all possible excited states, so any state can be represented as a linear combination of these 

vectors. For this thesis, we will refer to this basis as the "Doherty basis" since it is built off of his 

work in reference [21]. 

     Unfortunately, however, these basis states are not the stationary states of the excited state 

Hamiltonian. In an attempt to use basis states that more closely resemble eigenstates, we can 

instead use another basis as in [29,30]. These basis states are denoted as 

{|𝐴1〉, |𝐴2〉, |𝐸𝑥〉, |𝐸𝑦〉, |𝐸1〉, |𝐸2〉} and can be written in terms of the orbtial/spin basis states as: 

 
|𝐴1〉 = |𝐸−〉 ⊗ |+1〉 − |𝐸+〉 ⊗ |−1〉

|𝐴2〉 = |𝐸−〉 ⊗ |+1〉 + |𝐸+〉 ⊗ |−1〉

|𝐸𝑥〉 = |𝑋〉⊗ |0〉

|𝐸𝑦〉 = |𝑌〉 ⊗ |0〉

|𝐸1〉 = |𝐸−〉 ⊗ |−1〉 − |𝐸+〉 ⊗ |+1〉

|𝐸2〉 = |𝐸−〉 ⊗ |−1〉 + |𝐸+〉 ⊗ |+1〉

(2.116) 

 

This basis will be referred to as the "Maze basis" since it is built off of his work in reference [33]. 

Here, the |𝐸±〉 states are defined as: 

 
|𝐸+〉 = −|𝑋〉 − 𝑖|𝑌〉 (2.117) 

|𝐸−〉 = |𝑋〉 − 𝑖|𝑌〉 (2.118) 
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Which are sometimes referred to as the states of definite orbital angular momentum [33,34]. 

Distributing the terms in eq 2.116, we can write the Maze basis states in the Doherty basis 

explicitly as: 

|𝐴1〉 =
1

2

(

  
 

1
0
1
−𝑖
0
𝑖 )

  
 

Doherty

, |𝐴2〉 =
1

2

(

  
 

1
0
−1
−𝑖
0
−𝑖)

  
 

Doherty

(2.119) 

|𝐸1〉 =
1

2

(

  
 

1
0
1
𝑖
0
−𝑖)

  
 

Doherty

, |𝐸2〉 =
1

2

(

  
 

−1
0
1
−𝑖
0
−𝑖)

  
 

Doherty

(2.120) 

|𝐸𝑥〉 = |𝑋〉 ⊗ |0〉 =

(

  
 

0
1
0
0
0
0)

  
 

Doherty or Maze

, |𝐸𝑦〉 = |𝑌〉 ⊗ |0〉 =

(

  
 

0
0
0
0
1
0)

  
 

Doherty or Maze

(2.121) 

 

The "Doherty" subscript is there as a reminder that these vectors are written using the Doherty 

basis vectors. Note that a factor of ½ has been included for |𝐴1〉, |𝐴2〉, |𝐸1〉, |𝐸2〉 for normalization. 

 

 

2.8.3 The zero-field c-axis VV0 excited state 

Hamiltonian 

It would be possible to write the excited state Hamiltonian entirely in terms of a linear combination 

of the 36 possible outer products between the Doherty basis vectors. Since this would be quite 
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verbose, instead the excited state Hamiltonian is represented using tensor products of the 2x2 Pauli 

matrices to represent the X/Y orbitals and the 3x3 spin-1 matrices to represent the spin state. This 

is written as [21]: 

 

𝐻̂𝑒𝑠
𝐿𝑇 =

𝐷𝑒𝑠
∥ [𝑆̂𝑧

2 −
𝑆(𝑆 + 1)

3
] − 𝜆𝑒𝑠

∥ 𝜎̂𝑦⊗ 𝑆̂𝑧 + 𝐷𝑒𝑠
⊥ [𝜎̂𝑧⊗(𝑆̂𝑦

2 − 𝑆̂𝑥
2) − 𝜎̂𝑥⊗ (𝑆̂𝑦𝑆̂𝑥 + 𝑆̂𝑥𝑆̂𝑦)]

+ 𝜆𝑒𝑠
⊥ [𝜎̂𝑧⊗ (𝑆̂𝑥𝑆̂𝑧 + 𝑆̂𝑧𝑆̂𝑥) − 𝜎̂𝑥⊗ (𝑆̂𝑦𝑆̂𝑧 + 𝑆̂𝑧𝑆̂𝑦)]

(2.122) 

 

Where 𝜎̂𝑥, 𝜎̂𝑦, 𝜎̂𝑧 are the Pauli matrices, 𝑆̂𝑥, 𝑆̂𝑦 , 𝑆̂𝑧 are the 𝑆 = 1 spin operators, and 

𝐷𝑒𝑠
∥ , 𝐷𝑒𝑠

⊥ , 𝜆𝑒𝑠
∥ , 𝜆𝑒𝑠

⊥  are scalar fine structure parameters that will be discussed in more detail in the 

next section. As a reminder, we have: 

 

𝜎𝑥 = (
0 1
1 0

) , 𝜎𝑦 = (
0 −𝑖
𝑖 0

) , 𝜎𝑧 = (
1 0
0 −1

) (2.123) 

 

And the spin-1 operators are: 

 

𝑆𝑥 =
ℏ

√2
(
0 1 0
1 0 1
0 1 0

) , 𝑆𝑦 =
ℏ

√2
(
0 −𝑖 0
𝑖 0 −𝑖
0 𝑖 0

) , 𝑆𝑧 = ℏ(
1 0 0
0 0 0
0 0 −1

) (2.124) 

 

As an example of tensor products, we can write the following term in matrix form: 

 

𝜎̂𝑦⊗ 𝑆̂𝑧 = (
0 −𝑖
𝑖 0

)⊗ (
1 0 0
0 0 0
0 0 −1

) (2.125) 

 

In general, for tensor products are computed with the following pattern: 

 

𝐴 = (
𝑎11 𝑎12
𝑎21 𝑎22

) , 𝐵 = (
𝑏11 𝑏12
𝑏21 𝑏22

) (2.126) 
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𝐴⊗ 𝐵 = (
𝑎11 (

𝑏11 𝑏12
𝑏21 𝑏22

) 𝑎12 (
𝑏11 𝑏12
𝑏21 𝑏22

)

𝑎21 (
𝑏11 𝑏12
𝑏21 𝑏22

) 𝑎22 (
𝑏11 𝑏12
𝑏21 𝑏22

)
) = (

𝑎11𝑏11 𝑎11𝑏12 𝑎12𝑏11 𝑎12𝑏12
𝑎11𝑏21 𝑎11𝑏22 𝑎12𝑏21 𝑎12𝑏22
𝑎21𝑏11 𝑎21𝑏12 𝑎22𝑏11 𝑎22𝑏12
𝑎21𝑏21 𝑎21𝑏22 𝑎22𝑏21 𝑎22𝑏22

) (2.127) 

 

With this in mind, the example product becomes: 

 

𝜎̂𝑦⊗ 𝑆̂𝑧 = (
0 −𝑖
𝑖 0

)⊗ (
1 0 0
0 0 0
0 0 −1

) =

(

  
 

0 0 0 −𝑖 0 0
0 0 0 0 0 0
0 0 0 0 0 𝑖
𝑖 0 0 0 0 0
0 0 0 0 0 0
0 0 −𝑖 0 0 0)

  
 

Doherty

(2.128) 

 

     The "Doherty" subscript is there to remind us that this matrix is written assuming the Doherty 

basis vectors. Applying this same methodology with all of the other tensor products and combining 

the results gives: 

 

𝐻𝐸𝑆 =

(

 
 
 
 
 
 
 
 
 
 
 

1

3
𝐷𝑒𝑠
∥

1

√2
𝜆𝑒𝑠
⊥ −𝐷𝑒𝑠

⊥ 𝑖𝜆𝑒𝑠
∥ 𝑖

1

√2
𝜆𝑒𝑠
⊥ 𝑖𝐷𝑒𝑠

⊥

1

√2
𝜆𝑒𝑠
⊥ −

2

3
𝐷𝑒𝑠
∥ −

1

√2
𝜆𝑒𝑠
⊥ −𝑖

1

√2
𝜆𝑒𝑠
⊥ 0 −𝑖

1

√2
𝜆𝑒𝑠
⊥

−𝐷𝑒𝑠
⊥ −

1

√2
𝜆𝑒𝑠
⊥

1

3
𝐷𝑒𝑠
∥ −𝑖𝐷𝑒𝑠

⊥ 𝑖
1

√2
𝜆𝑒𝑠
⊥ −𝑖𝜆𝑒𝑠

∥

−𝑖𝜆𝑒𝑠
∥ 𝑖

1

√2
𝜆𝑒𝑠
⊥ 𝑖𝐷𝑒𝑠

⊥
1

3
𝐷𝑒𝑠
∥ −

1

√2
𝜆𝑒𝑠
⊥ 𝐷𝑒𝑠

⊥

−𝑖
1

√2
𝜆𝑒𝑠
⊥ 0 −𝑖

1

√2
𝜆𝑒𝑠
⊥ −

1

√2
𝜆𝑒𝑠
⊥ −

2

3
𝐷𝑒𝑠
∥

1

√2
𝜆𝑒𝑠
⊥

−𝑖𝐷𝑒𝑠
⊥ 𝑖

1

√2
𝜆𝑒𝑠
⊥ 𝑖𝜆𝑒𝑠

∥ 𝐷𝑒𝑠
⊥

1

√2
𝜆𝑒𝑠
⊥

1

3
𝐷𝑒𝑠
∥

)

 
 
 
 
 
 
 
 
 
 
 

𝐷𝑜ℎ𝑒𝑟𝑡𝑦

(2.129) 

 

     This can be used to model the energies and dynamics within the excited state. The numerous 

off-diagonal entries indicate that these basis states are not stationary and will rapidly mix into each 

other. In this form, it is difficult to gain an intuition for the dynamics at play in the excited state. 
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     In an attempt to gain a more diagonal form, we can instead write the zero-field zero-strain 

Hamiltonian in the "Maze" basis of {|𝐴1〉, |𝐴2〉, |𝐸𝑥〉, |𝐸𝑦〉, |𝐸1〉, |𝐸2〉}, which gives: 

 

𝐻𝐸𝑆 =

(

 
 
 

Δ − Δ′ + 𝜆𝑧 0 0 0 0 0

0 Δ + Δ′ + 𝜆𝑧 0 0 0 0
0 0 −2Δ 0 0 𝑖Δ′′

0 0 0 −2Δ Δ′′ 0
0 0 0 Δ′′ Δ − 𝜆𝑧 0
0 0 −𝑖Δ′′ 0 0 Δ − 𝜆𝑧)

 
 
 

(2.130) 

 

     As can be seen, this matrix is almost diagonal, except for the off-diagonal entries involving Δ′′. 

With this form we can make some observations about the excited state at zero strain. Because the 

first two rows/column are only occupied on the main diagonal, we can say that the states 

corresponding to these rows/columns are truly stationary. In this case, the higher energy |𝐴1〉 and 

|𝐴2〉 states are stationary. Meanwhile, the zero spin |𝐸𝑥〉 and |𝐸𝑦〉 states will mix with the lower 

energy |𝐸1〉 and |𝐸2〉 states and vice versa. This mixing is dictated by the magnitude of Δ′′ and is 

built into the system. Realistically the strain is almost never zero for a divacancy, but before we 

examine those effects we need to consolidate the numerous parameters that appears in these 

Hamiltonians. This is the subject of the next section. 

 

 

2.8.4 Relations between excited state parameters 

Unfortunately, the variables used for the excited state parameters is somewhat inconsistent in the 

literature. As a summary we have the following sets of variables: [3,21,32] 

 

Doherty (NV−) = {𝜆𝑒𝑠
∥ , 𝐷𝑒𝑠

∥ , 𝐷𝑒𝑠
⊥ , 𝜆𝑒𝑠

⊥ } (2.131) 
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Maze (NV−) = {𝜆𝑧 , Δ, Δ
′, Δ′′} (2.132) 

Christle (VV0) = {𝜆𝑧, 𝐷𝑒𝑠, Δ1, Δ2} (2.133) 

 

Where the variables have been listed in corresponding order. For the NV– center in diamond, the 

following values result in matching zero-strain energy eigenvalues for the excited state 

Hamiltonian: 

 

Doherty (NV−),

𝜆𝑒𝑠
∥ = 5.3 𝐺𝐻𝑧, 𝐷𝑒𝑠

∥ = 1.42 𝐺𝐻𝑧,

𝐷𝑒𝑠
⊥ =

1.55

2
 𝐺𝐻𝑧, 𝜆𝑒𝑠

⊥ =
0.2

√2
 𝐺𝐻𝑧

(2.134) 

 

In the Maze basis we have: 

Maze (NV−), 𝜆𝑧 = 5.3 𝐺𝐻𝑧, Δ =
1.42

3
 𝐺𝐻𝑧,

Δ′ = 1.55 𝐺𝐻𝑧, Δ′′ = 0.2 𝐺𝐻𝑧

(2.135) 

 

From these NV– values we can infer the initial relations: 

𝜆𝑒𝑠
∥ = 𝜆𝑧 , 𝐷𝑒𝑠

∥ = 3Δ, 𝐷𝑒𝑠
⊥ =

Δ′

2
, 𝜆𝑒𝑠

⊥ =
Δ′′

√2
(2.136) 

 

As we move to the VV0 in silicon carbide, the following values are obtained from the work in [3]: 

 

(ℎℎ) VV0,    
𝜆𝑧 = 3.538 ± 0.052 𝐺𝐻𝑧, 𝐷𝑒𝑠 = 0.855 ± 0.017 𝐺𝐻𝑧,

Δ1 = 0.577 ± 0.019 𝐺𝐻𝑧, Δ2 = 0.031 ± (+0.050 − 0.031) 𝐺𝐻𝑧
95% intervals

(2.137) 

(𝑘𝑘) VV0,
𝜆𝑧 = 6.090 ± 0.052 𝐺𝐻𝑧, 𝐷𝑒𝑠 = 0.852 ± 0.012 𝐺𝐻𝑧,

  Δ1 = 0.584 ± 0.012 𝐺𝐻𝑧, Δ2 = 0.044 ± (+0.046 − 0.044) 𝐺𝐻𝑧
95% intervals

(2.138) 

 

Although it is a different system, these variables correspond to those presented by Doherty and 

Maze in the following way: 
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𝜆𝑒𝑠
∥ = 𝜆𝑧 = 𝜆𝑧, 𝐷𝑒𝑠

∥ = 3Δ = 𝐷𝑒𝑠, 𝐷𝑒𝑠
⊥ =

Δ′

2
=
Δ1
2
, 𝜆𝑒𝑠

⊥ =
Δ′′

√2
=
Δ2

√2
(2.139) 

 

     The physical interpretation of these variables is tied to spin-spin and spin-orbit interactions 

usually without much further elaboration. The work by Doherty et al., perhaps wisely, avoids 

venturing into explanations and simply calls them "parameters". In the work by Maze et al., 𝜆𝑧 is 

referred to as the axial part of the spin-orbit interaction (with 𝜆𝑥𝑦 the non-axial part), Δ, Δ′ are 

parameters that have to do with the spin-spin interactions and zero-field splittings, Δ′′ is a "mixing" 

term between spin states. Here "mixing" refers to the fact that the Maze basis Hamiltonian is 

diagonal except for the presence of the Δ′′ terms which cause interactions between the 

{|𝐴1〉, |𝐴2〉, |𝐸𝑥〉, |𝐸𝑦〉, |𝐸1〉, |𝐸2〉} basis states. Since we are dealing with the VV0 in SiC, moving 

forward we will use the variables {𝜆𝑧 , 𝐷𝑒𝑠, Δ1, Δ2} featured in [3]. 

 

 

2.8.5 Excited state level structure 

With the Hamiltonian established and excited state parameters chosen, we can now map out the 

energy levels of the excited state as given in the figure below: 
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Figure 2.8 | VV0 excited state level structure. The energy levels are generally split into four 

regimes as labeled at the bottom of the figure. The addition of transverse strain breaks the final 

degeneracy of the Hamiltonian from four energy levels to six, which then separate into two 

branches with additional strain. The excited state parameters {𝜆𝑧 , 𝐷𝑒𝑠, Δ1, Δ2, 𝛿⊥} adapted from [3] 

are used here. 

 

The general effect of transverse strain is apparent in the figure above, but is demonstrated more 

explicitly in the figure below: 
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Figure 2.9 | VV0 Excited state energy levels. On the left is the analytical result from the (hh) VV0 

Hamiltonian showing the energy eigenstates as a function of transverse strain. On the right is a 

photoluminescence excitation (PLE) spectrum of a single (hh) VV0 in SiC adapted from [3]. 

 

Before we more precisely quantify the effects of strain and other external fields, we will first 

establish a conversion between the Doherty and Maze bases in the next section. 

 

 

2.8.6 Transforming between bases 

Similar to the approach in section 2.5, a transition between these two bases can be achieved through 

the change of basis matrix (COB). This matrix can be written as: 

 

𝐶𝑂𝐵 = (𝐴1 𝐴2 −𝐸𝑦 −𝐸𝑥 𝐸2 𝐸1) (2.140) 

𝐶𝑂𝐵 =

(

 
 
 
 
 
 
 

(

 
 
 
 
 
 
 

1

2
0
1

2

−
𝑖

2
0
𝑖

2 )

 
 
 
 
 
 
 

(

 
 
 
 
 
 
 

1

2
0

−
1

2

−
𝑖

2
0

−
𝑖

2)

 
 
 
 
 
 
 

−

(

  
 

0
0
0
0
1
0)

  
 

−

(

  
 

0
1
0
0
0
0)

  
 

(

 
 
 
 
 
 
 
−
1

2
0
1

2

−
𝑖

2
0

−
𝑖

2)

 
 
 
 
 
 
 

(

 
 
 
 
 
 
 

1

2
0
1

2
𝑖

2
0

−
𝑖

2)

 
 
 
 
 
 
 

)

 
 
 
 
 
 
 

(2.141) 

Which gives: 
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𝐶𝑂𝐵 =

(

 
 
 
 
 
 
 

1

2

1

2
0 0 −

1

2

1

2
0 0 0 −1 0 0
1

2
−
1

2
0 0

1

2

1

2

−
𝑖

2
−
𝑖

2
0 0 −

𝑖

2

𝑖

2
0 0 −1 0 0 0
𝑖

2
−
𝑖

2
0 0 −

𝑖

2
−
𝑖

2)

 
 
 
 
 
 
 

, 𝐶𝑂𝐵−1 =

(

 
 
 
 
 
 
 

1

2
0

1

2

𝑖

2
0 −

𝑖

2
1

2
0 −

1

2

𝑖

2
0

𝑖

2
0 0 0 0 −1 0
0 −1 0 0 0 0

−
1

2
0

1

2

𝑖

2
0

𝑖

2
1

2
0

1

2
−
𝑖

2
0

𝑖

2 )

 
 
 
 
 
 
 

(2.142) 

 

With this matrix, we can convert the excited state Hamiltonian (or any field or strain term in the 

Hamiltonian) using the relations 

 

𝐻𝐷𝑜ℎ𝑒𝑟𝑡𝑦 = 𝐶𝑂𝐵 ∙ 𝐻𝑀𝑎𝑧𝑒 ∙ 𝐶𝑂𝐵
−1 (2.143) 

𝐶𝑂𝐵−1 ∙ 𝐻𝐷𝑜ℎ𝑒𝑟𝑡𝑦 ∙ 𝐶𝑂𝐵 = 𝐻𝑀𝑎𝑧𝑒 (2.144) 

 

We will use these conversions in the upcoming sections. 

 

 

2.8.7 Effect of electric field and strain 

The presence of electric field or strain corresponds to adding the following terms to the zero-field 

Hamiltonian [21]: 

 

𝑉𝐸
𝑒𝑠 = 𝑑𝑒𝑠

∥ (𝐸𝑧 + 𝛿𝑧)𝐼2⊗ 𝐼3 + 𝑑𝑒𝑠
⊥ (𝐸𝑥 + 𝛿𝑥)𝜎̂𝑧⊗ 𝐼3 − 𝑑𝑒𝑠

⊥ (𝐸𝑦 + 𝛿𝑦)𝜎̂𝑥⊗ 𝐼3 (2.145) 

 

Where {𝐸𝑥, 𝐸𝑦, 𝐸𝑧} is electric field, {𝛿𝑥, 𝛿𝑦, 𝛿𝑧} is strain, {𝜎𝑥 , 𝜎𝑦, 𝜎𝑧} are the 2D Pauli matrices, 

{𝑆𝑥, 𝑆𝑦, 𝑆𝑧} are the 3D spin-1 matrices, {𝐼2, 𝐼3} are 2x2 or 3x3 identity matrices, and {𝑑𝑒𝑠
∥ , 𝑑𝑒𝑠

⊥ } are 

electric dipole moment components. This equation is written using the Doherty basis. It is 

important to put the Pauli matrices 𝜎𝑖 first in the tensor products and the 3-dimensional spin 
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matrices 𝑆𝑖 second, so we generally have 𝜎𝑖⊗𝑆𝑖 for each term. Carrying out these tensor products 

and combining terms can give the Hamiltonian in matrix form. For simplicity we include the strain 

terms here with no prefactors. Note that the electric field will have the same dependence: 

 

𝑉𝐸
𝑒𝑠 ≈

(

 
 
 
 

𝛿𝑧 + 𝛿𝑥 0 0 −𝛿𝑦 0 0

0 𝛿𝑧 + 𝛿𝑥 0 0 −𝛿𝑦 0

0 0 𝛿𝑧 + 𝛿𝑥 0 0 −𝛿𝑦
−𝛿𝑦 0 0 𝛿𝑧 − 𝛿𝑥 0 0

0 −𝛿𝑦 0 0 𝛿𝑧 − 𝛿𝑥 0

0 0 −𝛿𝑦 0 0 𝛿𝑧 − 𝛿𝑥)

 
 
 
 

𝐷𝑜ℎ𝑒𝑟𝑡𝑦

(2.146) 

 

Using the 𝐶𝑂𝐵 conversion outlined in the previous section, we can write this in the Maze basis as 

[33,34]: 

 

𝑉𝐸
𝑒𝑠 ≈

(

 
 
 
 

𝛿𝑧 0 0 0 𝛿𝑥 −𝑖𝛿𝑦
0 𝛿𝑧 0 0 𝑖𝛿𝑦 −𝛿𝑥
0 0 𝛿𝑧 + 𝛿𝑥 𝛿𝑦 0 0

0 0 𝛿𝑦 𝛿𝑧 − 𝛿𝑥 0 0

𝛿𝑥 −𝑖𝛿𝑦 0 0 𝛿𝑧 0

𝑖𝛿𝑥 −𝛿𝑦 0 0 0 𝛿𝑧 )

 
 
 
 

𝑀𝑎𝑧𝑒

(2.147) 

 

Note that in both cases 𝛿𝑧 gets added along the main diagonal, which has the effect of uniformly 

shifting all the energies. 

 

 

2.8.8 Effect of magnetic field 

The presence of magnetic field corresponds to adding the following terms to the zero-field 

Hamiltonian [21]: 
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𝑉𝐵
𝑒𝑠 = 𝜇𝐵(𝑙𝑒𝑠

∥ 𝜎̂𝑦⊗ 𝑆̂𝐼 + 𝑔𝑒𝑠
∥ 𝜎̂𝐼⊗ 𝑆̂𝑧)𝐵𝑧 + 𝜇𝐵𝑔𝑒𝑠

⊥ 𝜎̂𝐼⊗(𝑆̂𝑥𝐵𝑥 + 𝑆̂𝑦𝐵𝑦) (2.148) 

 

Where {𝐵𝑥, 𝐵𝑦, 𝐵𝑧} is magnetic field, {𝜎𝑥, 𝜎𝑦, 𝜎𝑧} are the 2D Pauli matrices, {𝑆𝑥, 𝑆𝑦, 𝑆𝑧} are the 3D 

spin-1 matrices, {𝜎𝐼 , 𝑆𝐼} are 2x2 or 3x3 identity matrices, 𝜇𝐵 is the Bohr magneton, 𝑙𝑒𝑠
∥  is the orbital 

magnetic moment, and {𝑔𝑒𝑠
∥ , 𝑔𝑒𝑠

⊥ } are electronic g-factors. This equation is written using the 

Doherty basis. Here, again it is important preserve the order 𝜎𝑖 ⊗𝑆𝑖 for each tensor product. 

Carrying out these products and combining into matrix form gives the following dependence, with 

prefactors dropped for simplicity: 

 

𝑉𝐵
𝑒𝑠 ≈

(

 
 
 
 

𝐵𝑧 𝐵𝑥 − 𝑖𝐵𝑦 0 −𝑖𝐵𝑧 0 0

𝐵𝑥 + 𝑖𝐵𝑦 0 𝐵𝑥 − 𝑖𝐵𝑦 0 −𝑖𝐵𝑧 0

0 𝐵𝑥 + 𝑖𝐵𝑦 −𝐵𝑧 0 0 −𝑖𝐵𝑧
𝑖𝐵𝑧 0 0 𝐵𝑧 𝐵𝑥 − 𝑖𝐵𝑦 0

0 𝑖𝐵𝑧 0 𝐵𝑥 + 𝑖𝐵𝑦 0 𝐵𝑥 − 𝑖𝐵𝑦
0 0 𝑖𝐵𝑧 0 𝐵𝑥 + 𝑖𝐵𝑦 −𝐵𝑧 )

 
 
 
 

𝐷𝑜ℎ𝑒𝑟𝑡𝑦

(2.149) 

 

Using the 𝐶𝑂𝐵 conversion, in the Maze basis this becomes: 

 

𝑉𝐵
𝑒𝑠 ≈

(

 
 
 
 

0 𝐵𝑧 𝐵𝑥 𝐵𝑦 0 0

𝐵𝑧 0 −𝑖𝐵𝑦 𝑖𝐵𝑥 0 0

𝐵𝑥 𝑖𝐵𝑦 0 −𝑖𝐵𝑧 𝐵𝑥 −𝑖𝐵𝑦
𝐵𝑦 −𝑖𝐵𝑥 𝑖𝐵𝑧 0 −𝐵𝑦 −𝑖𝐵𝑥
0 0 𝐵𝑥 −𝐵𝑦 0 −𝐵𝑧
0 0 𝑖𝐵𝑦 𝑖𝐵𝑥 −𝐵𝑧 0 )

 
 
 
 

𝑀𝑎𝑧𝑒

(2.150) 

 

 

2.9  Excited state polarization rules 
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The transitions between the ground and excited states of the VV0 follow polarization selectivity 

rules for both absorption and emission of photons. Generally speaking, the polarization state of a 

photon can be denoted as a complex linear combination of horizontal and vertical polarizations, 

which can be expressed as: 

 
|𝐻〉, Horizontally polarized light (2.151) 

|𝑉〉, Vertically polarized light (2.152) 

 

Combining these polarization basis states leads to the other four states of: 

 

|𝐿〉 =
1

√2
(|𝐻〉 + 𝑖|𝑉〉), Left circularly polarized light (2.153) 

|𝑅〉 =
1

√2
(|𝐻〉 − 𝑖|𝑉〉), Right circularly polarized light (2.154) 

|𝐷〉 =
1

√2
(|𝐻〉 + |𝑉〉), Diagonally polarized light (2.155) 

|𝐴〉 =
1

√2
(|𝐻〉 − |𝑉〉), Antidiagonally polarized light (2.156) 

 

With this notation in hand, we can represent the absorption/emission of photons between the 

ground and excited states of the c-axis VV0 in the following table, which follows the same rules 

as the NV– center in diamond [33-35]: 

 

 |𝐴1〉 |𝐴2〉 |𝐸1〉 |𝐸2〉 |𝐸𝑥〉 |𝐸𝑦〉 

|𝑚𝑠 = −1〉 |𝐿〉 |𝐿〉 |𝑅〉 |𝑅〉 - - 

|𝑚𝑠 = 0〉 - - - - |𝑉〉 |𝐻〉 
|𝑚𝑠 = +1〉 |𝑅〉 |𝑅〉 |𝐿〉 |𝐿〉 - - 

Table 2.2 | Polarization selectivity of transitions between ground and excited states of the 

divacancy. As an example, left circularly polarized light (|𝐿〉) will couple the |𝐴1〉 and |𝐴2〉 excited 

states to the |𝑚𝑠 = −1〉 ground state. This coupling applies for both optical absorption and 

emission. 
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     As an example, when the VV0 is in the |𝐴2〉 excited state, it can either decay to the |𝑚𝑠 = +1〉 

ground state and emit a right circularly polarized photon |𝑅〉 or decay to the |𝑚𝑠 = −1〉 ground 

state and emit a left circularly polarized photon |𝐿〉. This is shown schematically in figure 2.10. 

 

 
 

Figure 2.10 | Polarization of emitted light when decaying from the VV0 |𝑨𝟐〉 excited state. A 

c-axis VV0 prepared in the |𝐴2〉 excited state will have an equal probability of emitting a right 

circularly polarized photon (|𝑅〉) and decaying to the |𝑚𝑠 = +1〉 ground state or emitting a left 

circularly polarized photon (|𝐿〉) and decaying to the |𝑚𝑠 = −1〉 ground state. 

 

     The pairs of photon states {|𝐻〉, |𝑉〉}, {|𝐿〉, |𝑅〉}, and {|𝐴〉, |𝐷〉} are completely orthogonal to 

each other, which provides a potential selectivity when collecting or exciting with polarized light. 

For example, pumping with |𝑅〉 light will in principle only excite the |𝑚𝑠 = +1〉 → {|𝐴1〉, |𝐴2〉} 

transitions, even if the energies of these transitions are overlapping with the |𝑚𝑠 = +1〉 →

{|𝐸1〉, |𝐸2〉} transitions. Conversely, excitation with diagonal light |𝐷〉 will not provide any 

selectivity for any transition, as |𝐷〉 is not orthogonal to any of the polarization states 

{|𝐻〉, |𝑉〉, |𝐿〉, |𝑅〉} featured in table 2.2. 
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2.10 The intersystem crossing 

In addition to the ground state and excited state manifolds, the VV0 also contains an intermediary 

singlet state commonly referred to as the intersystem crossing (ISC). This intermediate state 

provides a non-radiative decay pathway from the excited state that competes with the ES → GS 

transition. This state also appears in the NV– center in diamond and is well documented in the NV–

literature [36,37]. An energy level schematic of the ISC is included in the figure below: 
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Figure 2.11 | Energy level schematic of the intersystem crossing. The ISC connects the excited 

state to the ground state through a competing nonradiative decay pathway. The dotted lines indicate 

the comparatively weaker rates to the ISC from 𝑚𝑠 = 0 excited states. 

 

     Each excited state has its own rate to the ISC which can affect the cyclicity of a transition used 

for readout. Generally the 𝑚𝑠 = 0 excited states have the lowest relative rates, which is why they 

are selected as the cycling resonant readout states for both the NV– center and the VV0. Once in 

the state is in ISC, any time spent will not result in detected photons, so this decay pathway results 

in an overall lower count rate. Decay from the ISC to the ground state also randomizes the spin 

state despite a preference towards 𝑚𝑠 = 0 in most cases. On the bright side, this does allow for 

off-resonant initialization and readout through this mechanism. While the quantitative measures 

of ISC rates are not well explored in for the VV0 in SiC, the dynamics at play are quantifiable and 

share many parallels to the NV– center in diamond. 

     Broadly speaking, the ISC is like the training wheels for solid-state color centers. For initial 

experiments an ISC is a quick and easy way to demonstrate optical initialization and readout and 

serves as a great benefit to the system. For high-fidelity single defect experiments, however, the 

ISC ultimately limits the ability to achieve single-shot readout and entanglement. Because there is 

no easy way to "remove" the ISC from the system, it sours into an undesirable feature. 

Nevertheless, we will explore the impact of the ISC level in a Markov chain model in chapter 4 

and consider its relationship with Purcell enhancement in chapter 7. 
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Chapter 3 
 
Figures of Merit 
 

 

3.1  Decoherence of a quantum state 

In nearly all experiments, the ability of a quantum state to remain stable is an important figure of 

merit that determines the eventual fidelity of quantum computing, communication, and metrology 

protocols. This state stability is generally termed the "coherence" of a state, and the loss of this 

stability to referred to as "decoherence". More specifically, the decoherence of a quantum state 

means the loss of information about the amplitude and phase of the basis states that compose the 

quantum state. In the long-time limit, any state will eventually reach an equilibrium where all 

information is lost and no definitive statements can be made about the state. At intermediate time 

scales, there may be uncertainty attached to individual components but the overall state is still 

known. In the example of a two-level system, the most general state at 𝑡 = 0 can be written as: 

 

|𝜓〉(0) = 𝑐0|0〉 + 𝑐1𝑒
𝑖𝜙|1〉 (3.1) 

 

Where here 𝑐0, 𝑐1 are the amplitudes and 𝜙 is the phase between the states. After a certain amount 

of time has elapsed, this state may become: 

 

|𝜓〉(𝑡) = (𝑐0(𝑡) ± ∆𝑐0)|0〉 + (𝑐1(𝑡) ± ∆𝑐1)𝑒
𝑖(𝜙(𝑡)±∆𝜙)|1〉 (3.2) 
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     Where here the uncertainties in the variables are represented by ∆𝑐0, ∆𝑐1, ∆𝜙. How quickly this 

uncertainty grows with time is called the decoherence time of the qubit. Its specific value can set 

restraints on the time scale of experiments and the amount of time a qubit is allowed to be "idle" 

before its quantum information is lost. The time scale of decoherence can also vary dramatically 

between systems, spanning the full gamut from single nanoseconds to multiple hours. An 

important caveat to this time scale is the speed with which operations can be performed on the 

qubit. In some contexts, it is the ratio of the decoherence time over the qubit gate time that truly 

matters for applications. In most cases the two time scales trend in the same direction; exceedingly 

long coherence times usually come at the cost of slower operation speeds (although this is not 

always the case, see ref [38]). 

     The cause of decoherence in solid-state qubits is generally attributed to stochastic fluctuations 

of electric and magnetic fields in the environment. These fluctuations can come from nuclear spins, 

paramagnetic impurities, and other defect species. More directly, thermal fluctuations and phonons 

directly limit the coherence of most systems, which is why cryogenic cooling is nearly ubiquitous 

for quantum information experiments. 

     In this section, we will examine some of the common ways decoherence is measured and 

quantified in the context of the divacancy in silicon carbide. 

 

 

3.2  𝑻𝟐
∗  – The spin dephasing time 

 

The 𝑇2
∗ time refers to the time scale associated with dephasing of a qubit, where we are interested 

in the phase between the eigenstates that compose the state. In a completely dephased state, this 
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phase information is completely lost, even though the qubit may still be in a pure state. For a two-

level system, precession of a superposition state is normally given by: 

 

Ψ(𝑡) = 𝑒
𝑖𝜔0𝑡
2 (𝑐𝑔|𝑔〉 + 𝑐𝑒|𝑒〉𝑒

−𝑖𝜔0𝑡) (3.3) 

 

Dropping global phase gives: 

Ψ(𝑡) = 𝑐𝑔|𝑔〉 + 𝑐𝑒|𝑒〉𝑒
−𝑖𝜔0𝑡 (3.4) 

 

     Here the excited state |𝑒〉 accumulates phase, which we are interested in tracking, relative to 

the ground state |𝑔〉. The phase accumulation rate is given by 𝜔0 in the above equation, such that 

the accumulated phase after a time 𝑡 is simply given by 𝜔0𝑡. This means that a differential phase 

accumulation 𝑑𝜙 is given by 𝑑𝜙 = 𝜔0𝑑𝑡. However, we may not always be able to rely on a 

uniform rate. If it is instead a function of time 𝜔(𝑡), then we must integrate the differential phase 

with respect to time to obtain a total phase accumulation: 

 

𝜙 = ∫𝑑𝜙 = ∫𝜔(𝑡)𝑑𝑡 (3.5) 

 

     The frequency may change with time due to fluctuations in the environment that cause shifted 

energy splittings between the two levels. We can make these fluctuations explicit by defining the 

time-varying frequency as: 

 

𝜔(𝑡) ≡ 𝜔0 + 𝛿(𝑡) (3.6) 

 

In which case the total accumulated phase is: 

 

𝜙𝑡𝑜𝑡𝑎𝑙 = ∫(𝜔0 + 𝛿(𝑡))𝑑𝑡 = 𝜔0𝑡 + ∫𝛿(𝑡)𝑑𝑡 (3.7) 
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Or: 

𝜙𝑡𝑜𝑡𝑎𝑙 = 𝜔0𝑡 + 𝜙𝑛𝑜𝑖𝑠𝑒 , 𝜙𝑛𝑜𝑖𝑠𝑒 = ∫𝛿(𝑡)𝑑𝑡 (3.8) 

 

     The quantity 𝜔0𝑡 is the "normal" accumulated phase, while ∫𝛿(𝑡)𝑑𝑡 represents a deviation 

from this value due to the fluctuating environment. Note that the state is always on the Bloch 

sphere equator even with this noise term but its phase is now variable. Typically, 𝛿(𝑡) is a 

stochastic function that cannot be predicted.  

     To measure the overall loss of phase information due to noise, we perform an ensemble of 

identically prepared Ramsey interferometry experiments and average their results. Since 𝛿(𝑡) 

varies from experiment to experiment, its presence manifests as an averaging out of signal. The 

Ramsey sequence in outlined below in figure 3.1: 

 

 

Figure 3.1 | Ramsey pulse sequence. The wait time 𝜏 between 𝜋/2 pulses is varied between 

experiments to determine when dephasing naturally occurs for a superposition state. 

 

     We can describe each part of this sequence in the context of VV0 experiments. Initialization 

can be done optically with either resonant or off-resonant laser light. Microwave rotations of 𝜋/2 
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are applied with AC signal passing through nearby striplines or wire bonds. The phase 𝜙𝑡𝑜𝑡𝑎𝑙, 

which we are interested in measuring, accumulates during the free evolution time 𝜏 between the 

two microwave pulses. During the readout sequence, we optically excite the defect and read out 

photoluminescence (PL) either in the form of voltage for a photoreceiver or quantized photon 

counts for a superconducting nanowire detector (SNSPD). Throughout this thesis we will use 

"counts" to represent PL, as most experiments were performed on single defects with an SNSPD. 

More details on the initialization, microwave rotation, and readout steps are discussed in sections 

3.7, 3.8 of this chapter and chapter 4. 

     To work towards a mathematical understanding, it is useful to think of photoluminescence as a 

z-projection of the quantum state on the Bloch sphere. A higher z-projection gives more counts 

(on average), and vice versa. In other words, the 𝑚𝑠 = 0 spin state is on average brighter than the 

𝑚𝑠 = ±1 state. The reasons for this are discussed in more detail in section 3.8, but for now we 

take this at face value. In terms of Bloch sphere coordinates, the z-projection is then given by the 

sine of the polar angle: 

 

z projection on Bloch sphere, 𝑧 = sin(𝜃) (3.9) 

 

     Keeping with the Bloch sphere picture, each 𝜋/2 pulse corresponds to a 90-degree rotation 

around either the x-axis or y-axis. In reality, any azimuthal axis of rotation can be chosen as long 

as they are consistent (or exactly opposite) between the two microwave pulses, but here we will 

assume each rotation is around the negative y-axis. With this convention, the second 𝜋/2 pulse 

maps the azimuthal phase 𝜙 directly to the polar angle 𝜃: 

 

polar angle after 
𝜋

2
 MW pulse, 𝜃 = 𝜙 (3.10) 
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     We can now combine these results to get an expression for the photoluminescence PL. The PL 

is proportional to the magnitude of the z projection, but to be precise both the baseline of PL counts 

and the full range of counts between the 𝑚𝑠 = 0,±1 states must be incorporated into the sine as 

an additive and multiplicative factor, respectively. In total this gives: 

 

Photoluminescence (PL), 𝑃𝐿 = 𝑎 sin(𝜙) + 𝑏 (3.11) 

 

     Where 𝜙 has been substituted for 𝜃, "a" is related to the contrast between the bright 𝑚𝑠 = 0 

state and the dark 𝑚𝑠 = ±1 state, and "b" is related to the baseline level of counts when in the 

dark 𝑚𝑠 = ±1 state. For the sake of capturing the effects of dephasing without getting hindered 

by imperfect contrast, however, we will drop these factors and simply say: 

 

𝑃𝐿 ≈ sin(𝜙) (3.12) 

 

Of course this relation cannot be taken too literally since photoluminescence cannot be negative, 

but making this step will simplify our analysis. 

     We are now interested in quantifying the effect of the phase noise term 𝜙𝑛𝑜𝑖𝑠𝑒 = ∫𝛿(𝑡)𝑑𝑡 as 

we average the PL from many experiments. In a perfect world, the energy splitting between the 

eigenstates is fixed for all times and 𝛿(𝑡) = 0. In this case the phase accumulation would be 

identical across all experiments, and the uniform Larmor precession would give an exact sinusoidal 

dependence for the phase. In terms of variables, 𝜙𝑡𝑜𝑡𝑎𝑙 would simply be 𝜔0𝑡, meaning the PL 

would be given by 𝑃𝐿 = sin(𝜃) = sin(𝜔0𝑡) with no decay envelope. This is the case for "infinite 

coherence" as the PL would never decay with time. 
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     Realistically, however, the noise term 𝛿(𝑡) is nonzero and varies both within a single 

experiment and from experiment to experiment. Using the direct mapping of azimuthal phase 𝜙 to 

polar angle 𝜃, we can use eq. 3.12 to write the PL function as 

 

𝑃𝐿 = sin(𝜙𝑡𝑜𝑡𝑎𝑙) = sin (𝜔0𝑡 + ∫𝛿(𝑡)𝑑𝑡) (3.13) 

 

     The integral of the stochastic function ∫𝛿(𝑡)𝑑𝑡 cannot be simplified until we make additional 

assumptions. For simplicity let us assume that 𝛿(𝑡) is a a normally distributed variable with a 

standard deviation of 𝜎: 

𝛿(𝑡) = 𝒩(0, 𝜎) (3.14) 

 

     Where 𝒩(0, 𝜎) denotes a sample from a normal distribution with mean 0 and standard 

deviation 𝜎. How often the environment will "switch" its configuration is subject to several 

variables such as the density/stability of impurities and the presence of external static fields or 

laser radiation. We will assume that the environment switches (i.e. a sample from this normal 

distribution) with a frequency 𝑓, such that the number of switches in a time t is given by: 

 

𝑛 = 𝑓𝑡, number of switches in time 𝑡 (3.15) 

 

     Therefore, an elapsed time of 𝑡 will correspond to sampling 𝑛 times from a normal distribution 

𝒩(0, 𝜎). Each of these samples will contribute to the total accumulated phase. We can represent 

the additional phase (which can be positive or negative) accumulated at each time step due to the 

noise as a list: 

 

𝜙𝑙𝑖𝑠𝑡 = [𝒩(0, 𝜎),   𝒩(0, 𝜎),   𝒩(0, 𝜎),   … 𝑛 times] (3.16) 

 



98 

 

Since this list will have many entries, we can use the central limit theorem to characterize the list 

mean: 

𝑥̅𝜙 = 0 ±
𝜎

√𝑛
(3.17) 

 

The total phase from this noise is obtained by multiplying this average by the 𝑛 entries in the list: 

 

𝜙𝑛𝑜𝑖𝑠𝑒 = 𝑛𝑥̅𝜙 = 0 ±
𝜎

√𝑛
𝑛 = 0 ± 𝜎√𝑛 (3.18) 

 

This is equivalent to the integral of the noise term, meaning: 

 

∫𝛿(𝑡)𝑑𝑡 = 𝒩(0, 𝜎√𝑓𝑡) (3.19) 

 

With this more explicit expression for the phase gained due to noise, the total accumulated phase 

(including the natural Larmor precession) then becomes: 

 

𝜙𝑡𝑜𝑡𝑎𝑙 = 𝜔0𝑡 + 𝜙𝑛𝑜𝑖𝑠𝑒 = 𝜔0𝑡 + (0 ± 𝜎√𝑛) = 𝜔0𝑡 ± 𝜎√𝑛 (3.20) 

 

As before, we take the sine of this total phase to map to a z-projection on the Bloch sphere after 

the 𝜋/2 rotation: 

𝑧 = sin(𝜙𝑡𝑜𝑡𝑎𝑙) = sin(𝜔0𝑡 ± 𝜎√𝑛) (3.21) 

 

As we perform many experiments and average them, the result for any particular time 𝑡 will be 

given by: 

𝑧𝑎𝑣𝑔(𝑡) = 𝜇(𝑧) = 𝜇(sin(𝜔0𝑡 ± 𝜎√𝑛)) (3.22) 
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Where 𝜇( ) denotes the average after many experiments. Substituting our earlier equation 𝑛 =

𝑓𝑡 and equating 𝑃𝐿𝑎𝑣𝑔(𝑡) = 𝑧𝑎𝑣𝑔(𝑡) gives: 

 

𝑃𝐿𝑎𝑣𝑔(𝑡) = 𝜇(sin(𝜔0𝑡 ± 𝜎√𝑓𝑡)) (3.23) 

𝑃𝐿𝑎𝑣𝑔(𝑡) = 𝜇(sin(𝜔0𝑡 ± (𝜎√𝑓)√𝑡)) (3.24) 

 

     So after many accumulated experiments, the averaged PL represents the average of the sine of 

a normally distributed variable. Whereas a regular normally distributed variable is centered on its 

mean regardless of the standard deviation, this symmetry is broken when the variable is fed into a 

sine function. 

     This behavior is demonstrated in figure 3.2. The sine of a random normal variable is plotted for 

multiple standard deviations 𝜎. Whereas the mean 𝜇 of the variable remains the same as the 

standard deviation increases, the mean of the sine of the variable changes and trends towards zero. 

This trend towards zero is what is responsible for the exponential decay to zero signal that we 

observe in an averaged Ramsey sequence. As the acquisition time in the Ramsey sequence 

increases, the noise term is integrated over an increasing time interval, which results in a greater 

standard deviation. This behavior is similar to the increase standard deviation of a random walk as 

the number of steps increases. 

 



100 

 

 

Figure 3.2 | Sine of normal distribution for various standard deviations 𝝈. All graphs are using 

sin (𝒩(0, 𝜎) +
𝜋

2
), where 𝒩(0, 𝜎) is a normally distributed variable with mean 0 and standard 

deviation 𝜎. The phase of 𝜋/2 is included to showcase the asymmetric sine distributions. As the 

standard deviation increases, the mean of the sine distribution approaches zero. This parallels the 

T2
* signal approaching zero for long wait times. 

 

     In experiments, we quantify 𝑇2
∗ by fitting an exponential to a decaying PL envelope. To 

corroborate that this sine behavior gives an exponentially decaying Ramsey signal, we can run 

Mote Carlo simulations of the average PL over time, using the result of equation 3.24. This gives 

the following figure: 

 



101 

 

 

Figure 3.3 | Simulated Ramsey decay. The blue curve (which appears solid due to the high 

frequency of oscillations) is from a Monte Carlo model with repeated random sampling of equation 

3.24, whereas the orange curve is exp(−𝑡/𝑇2
∗), where 𝑇2

∗ = 2/𝜎2𝑓. Here the x-axis is arbitrary 

time units and the y-axis is arbitrary units of photoluminescence (PL) relative to some baseline PL 

level at y = 0. 

 

     As can be seen in the figure, the averaged PL exponentially decreases as the readout time 

increases. This exponential approach is well-modeled by a 𝑇2
∗ time of: 

 

𝑇2
∗ =

2

𝜎2𝑓
, 𝑃𝐿𝑎𝑣𝑔 = exp (−

𝑡

𝑇2
∗) (3.25) 

 

     As either the standard deviation or the frequency of the noise increases, the dephasing time 𝑇2
∗ 

increases. As expected, 𝑇2
∗ becomes infinite when there is no noise (𝜎 = 0) or the external field is 

static (𝑓 = 0). In practice, we use the following function to fit Ramsey decays: 
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exp (−(
𝑡

𝑇2
∗)

𝑛

) (3.26) 

 

     Where 𝑛 is a free parameter that is related to the frequency of the noise sources. For a SiC VV0 

the 𝑇2
∗ is usually on the order of a microsecond, but can be slightly shorter or longer depending on 

the sample [3,38,39]. 

     Physically, a short 𝑇2
∗ or a short dephasing time is correlated with electric and magnetic field 

noise in the vicinity of the defect, both of which appear in the VV0 Hamiltonian. However, the 

dephasing time alone does not determine exactly which noise sources are present. Similar to how 

a weight of an object does not tell you its composition, the 𝑇2
∗ of a qubit alone does not tell you 

details about the local environment. Instead, it tells you the level of uncertainty in the phase 

between the two eigenstates of an arbitrary state Ψ, which in turn will inhibit the operation of 

quantum gates and protocols. 

     As mentioned, dephasing generally occurs from noise sources in the environment which cause 

stochastically varying fields. Typically these noise sources are dominated by the nuclear spins 

from naturally abundant 13C (1.1%) and 29Si (4.7%). However, the ~103-104 higher magnetic 

moment of a single electron compared to a 13C or 29Si isotope means that dipolar coupling to stray 

electrons at concentrations 103-104 more dilute that the ~1-4% nuclear abundance can still have a 

significant effect. This can most notably come from high levels of nearby doping, which is used 

for photonic and electronic SiC devices. Beyond this, other defects in the sample such as other 

vacancies, divacancies, interstitial defects, and dangling bonds at surfaces can also couple and 

cause dephasing. Some of these defects are naturally occurring, and some are induced by the lattice 

damage from electron irradiation or ion implantation used to create divacancies in the first place. 
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3.3  𝑻𝟐 – The spin decoherence time 
 

The 𝑇2 is generally called the spin decoherence time, but it also referred as the transverse relaxation 

time or spin-spin relaxation time. In a way, it also measures the dephasing of a quantum state, but 

with cancelling of quasistatic fields. To gain an intuition for this, we will immediately turn to the 

Hahn echo sequence is used to measure 𝑇2, which is shown in the figure below: 

 

 

Figure 3.4 | Hahn echo pulse sequence used to measure 𝑻𝟐. Here the time 𝜏 between the 

"refocusing" 𝜋 pulse and the adjacent 𝜋/2 pulses is increased until the state loses coherence. 

 

     In principle the 𝑇2 time will always be longer than the 𝑇2
∗ time. This is because the 𝜋 pulse in 

the Hahn echo sequence has the effect of "undoing" unwanted dephasing caused by external fields. 

For this reason the 𝜋 pulse is sometimes referred to as a refocusing pulse. The "echo" terminology 

stems from the fact that state after the second waiting period there should be a resurgence of the 

original starting state due to the mirror symmetry of the sequence. To see how the Hahn echo 
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works, we can break the two waiting periods into one where phase is accumulated and one where 

phase is "unaccumulated". This can be represented by: 

 

Accumulate phase: 

Ψ(𝑡1) = 𝑐𝑔|𝑔〉 + 𝑐𝑒|𝑒〉 exp (−𝑖∫ (𝜔0 + 𝛿(𝑡))𝑑𝑡
𝜏

0

) (3.27) 

Unaccumulate phase: 

Ψ(𝑡2) = 𝑐𝑔|𝑔〉 + 𝑐𝑒|𝑒〉 exp (−𝑖∫ (𝜔0 + 𝛿(𝑡))𝑑𝑡
2𝜏

𝜏

) (3.28) 

 

Combining these expressions then gives the total accumulated phase: 

 

𝜙𝑓𝑖𝑛𝑎𝑙 = ∫ (𝜔0 + 𝛿(𝑡))𝑑𝑡
𝜏

0

−∫ (𝜔0 + 𝛿(𝑡))𝑑𝑡
2𝜏

𝜏

(3.29) 

 

     If the Hahn echo works perfectly, then these two integrals cancel and no phase information is 

lost. This has the immediate implication that the noise term 𝛿(𝑡) was simply never a function of 

time in the first place, or at least on the time scale of the wait period 𝜏. In this context, the noise 

would be referred to as "quasistatic" – stationary on the time scale of a single experiment but 

varying on the time scale of multiple averaged experiments. At some point as 𝜏 lengthens, we 

reach the time scale of 𝛿(𝑡) varying, which then means that the accumulated and unaccumulated 

phases will no longer be equal. This manifests as an imperfect Hahn echo and a nonzero total 

accumulated phase. As we saw in the previous section, this then corresponds to a drop in PL over 

many averaged experiments. 

     In this sense, a 𝑇2 measurement filters out low-frequency noise in the experiment and thus 

extends your dephasing time. Extrapolating this idea, including many refocusing 𝜋 pulses with 
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short waiting times would filter out high-frequency noise. This is indeed the idea behind dynamical 

decoupling [30], which is commonly used to extend the coherence time of various qubit systems. 

There is a limit to dynamical decoupling, of course, as 𝑇2 cannot extend beyond 𝑇1. 𝑇1 is referred 

to as the spin relaxation time and is the subject of the next section. 

     For a Hahn echo decay, we use the same exponential fit as for a Ramsey decay, given by: 

 

exp (−(
𝑡

𝑇2
)
𝑛

) (3.30) 

 

Where 𝑇2 > 𝑇2
∗. For a VV0 in SiC the 𝑇2 is on the order of ~1 ms [3], but can be shorter in the 

presence of extra noise sources. The noise sources responsible for 𝑇2 decay are identical to those 

for 𝑇2
∗ decay: nuclear spins from naturally abundant isotopes, electron spins from other defects, 

and dangling bonds from nearby surfaces. 

 

 

3.4  𝑻𝟏 – The spin relaxation time 
 

The last relevant time scale for generalized decoherence is 𝑇1, the spin relaxation time or spin-

lattice relaxation time. In contrast to the 𝑇2
∗ and 𝑇2 decay mechanisms, spin relaxation is completely 

unrelated to the phase of the quantum state. On the contrary, spin relaxation measures how long a 

completely polarized eigenstate of the system will remain in the same state. A schematic of a 𝑇1 

measurement is given below: 
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Figure 3.5 | Pulse sequence for measuring 𝑻𝟏. In this sequence, the spin is initialized into |0〉 
and no microwaves are applied. The wait time 𝜏 between initialization and readout is increased 

until the initially prepared state loses coherence. 

 

     The only way for an initialized eigenstate to show decay over an ensemble of experiments is if 

for some fraction of experiments, the state completely flips to the other eigenstate. Since this is an 

energy nonconserving processing, this is most commonly achieved through the interaction with 

lattice phonons. By extension then, 𝑇1 times are generally the longest under cryogenic 

temperatures, and usually quickly decay when approaching room temperature. 

     Any other process that results in an energy exchange with the qubit can also lead to 𝑇1 decay. 

In the case of the VV0, this can occur with spin flipping processes such as interacting with a 

fluctuating magnetic field matched with the Larmor frequency of the defect. Any process that leads 

to a 𝑇1 decay will also lead to a 𝑇2 decay, which leads to the inequality: 

 

𝑇2 ≤ 2𝑇1 (3.31) 

 

     For the VV0, the 𝑇1 times at cryogenic temperatures are beyond 1 ms and perhaps even beyond 

one second, but it has not yet been fully characterized. Unfortunately these times can lead to 
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prohibitively long averaging of experiments. When these measurements are collected, however, a 

simple exponential fit of exp(−𝑡/𝑇1) gives the spin relaxation time. 

 

 

3.5  Divacancy optical spectrum and 
Debye-Waller factor 
 

Emission and absorption spectrum 

When the VV0 is optically excited, the radiative decay back to the ground state spans a wide range 

of near-infrared wavelengths. The emission spectrum can generally be categorized into a sharp 

zero-phonon line (ZPL) and a broad phonon side band (PSB). When no phonons are involved (i.e. 

zero-phonon), the emission is narrowly centered around a ZPL wavelength that varies among 

defect types. For divacancies in silicon carbide, the ZPL emission takes values between ~1040 nm 

and ~1132 nm. When phonons are also emitted with the radiative decay, the photon's energy is 

lowered due to conservation of energy. This results in redshifted optical emission in a continuous 

range of ~1100-1400 nm, although most of this emission is focused in the ~150 nm beyond the 

ZPL. Measuring spectra with a spectrometer is an important diagnostic tool to identify defect types 

in a SiC sample and to distinguish from other point emitters. A typical spectrum of a VV0 is shown 

in figure 3.6 which features both the ZPL and PSB [31]. 
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Figure 3.6 | Emission spectrum from a (kh) divacancy in silicon carbide. Spectrum adapted 

from [31]. Roughly ~10% of the (kh) divacancy's optical emission is in the zero-phonon line at 

~1078 nm, while the rest of the emission is in the phonon sideband at longer wavelengths. 

 

     When the emission spectrum is mirrored over the ZPL, one obtains the absorption spectrum, 

which provides possible wavelengths to off-resonantly excite the defect with. In a similar fashion 

to the PSB, wavelengths ~100-150 nm away from the ZPL are most efficient for pumping. 

Therefore, we typically use either 975 nm or 905 nm diode lasers for excitation. It is worth noting 

that phonons are involved in this process as well, as the ground state "overshoots" the excited state 

energy and then decays to the excited state through the emission of phonons. The entire process is 

spin-preserving, meaning that a 𝑚𝑠 = 0 ground state will be pumped to a 𝑚𝑠 = 0 excited state, 

for example. After the mirroring of the spectrum the ZPL still remains in the same place, acting as 

either a resonant absorption or resonant emission wavelength. A schematic of absorption/emission 

in shown in figure 3.7. 
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Figure 3.7 | Photon absorption and emission spectrum. Here, the sharp blue peak represents the 

zero-phonon line (ZPL) transition that can be used for either absorption or emission. The broad 

red hump is the phonon sideband (PSB) that is exclusive for emission. Mirroring this over the ZPL 

gives a broad absorption hump (green) that can be used for off-resonant excitation of the VV0. 

 

     Lastly, the features of the spectrum are highly dependent on temperature. Generally at 

temperatures below 20K the peaks will be reasonably sharp. At higher temperatures, the spectrum 

and most notably the ZPL will significantly broaden. At 200K and above, the spectrum essentially 

becomes featureless. This behavior is shown in figure 3.8, adapted from the seminal SiC divacancy 

work that first identified these defects experimentally [1]. 
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Figure 3.8 | Optical spectrum of divacancy ensembles at various temperatures. Plot adapted 

from [1]. Photoluminescence from a SiC sample containing an ensemble of divacancies. The sharp 

peaks at low temperature correspond to the zero-phonon lines of different divacancies. These peaks 

disappear as the sample approaches room temperature. 

 

     The main upshot of this temperature dependence is that SiC samples must be cryogenically 

cooled in order to resolve individual optical transitions. Although some defects are optically active 

at room temperature (most notably PL5 and PL6) [4], zero-phonon transitions are practically 

infeasible to address. In our experiments we typically cool samples to ~5K with helium cryostats 

(more on this in chapter 4). 

 

The Debye-Waller factor 
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An important figure of merit for this system is the percentage of emission that is emitted into the 

zero-phonon line. This is termed the Debye-Waller factor (DWF), defined as: 

 

𝛼 ≡ % emission into ZPL =
𝜏𝑍𝑃𝐿 + 𝜏𝑃𝑆𝐵

𝜏𝑍𝑃𝐿
(3.32) 

 

Where 𝜏𝑍𝑃𝐿 , 𝜏𝑃𝑆𝐵 are the radiative lifetimes of the ZPL and PSB transitions. The emission of ZPL 

photons is critical for the formation of spin-photon entanglement [35], as the polarization of the 

photon will only correlate with the spin state if there are no emitted phonons. Additionally, long 

distance spin-spin entanglement protocols that rely on the interference of indistinguishable photons 

must also use the ZPL for photon interference [40]. Phonon emission in this context would also be 

detrimental, as it would "leak" spin information to the environment interacting with these phonons. 

     For divacancies in silicon carbide, the Debye-Waller factor is typically ~5-10% depending on 

the defect type [3, 30]. The aspects that determine a Debye-Waller factor are nontrivial and beyond 

the scope of this thesis, but the factor is fairly consistent from defect to defect. It also means that 

PSB emission is 90-95% of all emitted photons, which is partially why we readout 

photoluminescence in the sideband. For the purposes of scaling spin-spin entanglement protocols, 

however, it is crucial to increase this Debye-Waller factor. Luckily, it is possible to modify the 

DWF through nanophotonic structures around the defect, which will be discussed in chapter 7. 

 

 

3.6  Charge instability 
 

In the ideal scenario, the VV0 is electrically neutral and contains six electrons. We have assumed 

this charge neutrality in all of the spin physics of the ground and excited states so far. However, it 



112 

 

is possible for the VV0 to become ionized into either the VV+ or VV– state [41-46]. This is usually 

caused by fluctuations in the local electric field, which destabilizes the neutral form of the 

divacancy. This is generally an undesirable effect, as the defect is no longer optically active and 

any spin information is lost. The electric field fluctuations are in turn caused by photoionization 

of nearby charge traps, which occurs across a wide range of excitation wavelengths [41]. Since 

divacancies in our experiments are optically initialized and read out, this means that every 

experiment will have a chance to ionize the divacancy. By the same token, exposure to off-resonant 

light in the broad range of ~300-1000nm will "recharge" an ionized divacancy to its neutral charge 

state. The exact time scale of ionizing and recharging is not well characterized, but it can happen 

slow enough to be noticeable on the ~ms time scale when reading out photoluminescence. To a 

certain degree, proximity to SiC surfaces also appears to increase the effects of ionization, which 

is an important consideration for nanostructures. A schematic of the "charge scrambling" induced 

by laser light is shown in the figure below. 

 

Figure 3.9 | Randomization of charge traps from photoexcitation. Laser light causes local 

charges in traps (light red "+", light blue "–") around the defect (blue circle with yellow arrow) to 

become "scrambled", before becoming "frozen" in a fixed configuration once the laser light is 

turned off. This can induce either an ionized charge state or a neutral state. Additionally, this laser-

induced charge noise is the main culprit behind spectral diffusion. 
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     In the context of energy levels within the SiC band gap, VV0 ionization can occur either through 

the transfer of charges to or from the valence and conduction bands. Intermediary charge traps can 

capture electrons from the conduction band or photoemit electrons into the conduction band [45]. 

The same mechanisms are in place for capture/photoexcitation of holes to and from the valence 

band. These processes then result in an ionized divacancy state, either VV+ or VV–, although based 

on the results of [41] the negative charge state VV– is more likely. An outline of energy levels in 

the band gap is shown in the figure below, adapted from [41,46]. 

 

 

Figure 3.10 | Theoretical energy levels of difference charge states of the VV0 in silicon 

carbide. Figure adapted from reference [41], which builds on the study in [46]. Different charge 

states of the divacancy occupy different energies within the SiC band gap. Electron/hole capture 

and photoemission processes facilitate transitions between charge states. 

 

     In addition to laser-induced recharging, another way to limit the effects of divacancy ionization 

is to place the divacancy into a built-in PIN diode. This is the subject of the study in [42]. The 

main idea of this geometry is that the built-in electric field from the PIN diode will evacuate and 

stabilize the charge traps even under optical excitation. Lastly, it would be possible to model the 

charge state as a separate nonradiative state in a Markov model to be discussed shortly, although 

such models would require complicated measurements to determine ionization and recharge rates 
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with high precision. More information on the dynamics of the divacancy charge states can be found 

in references [41-46]. 

 

 

3.7  Three-level model for the divacancy 
 

A variety of measurements that we use to characterize the VV0 system can be understood in the 

context of competing rates between the divacancy's isolated energy levels. For example, an excited 

state lifetime measurement is determined by a balance between the radiative decay from the excited 

state and the nonradiative decay to either the intersystem crossing or a charged state. Since these 

measurements place important bounds on the speed and fidelity of quantum protocols, it is fruitful 

to develop a model to capture these dynamics. By understanding the underlying components of 

the model, we can then identify the limiting factors for different protocols and potentially engineer 

the system to improve its performance. 

     A basic model to start with involves three levels: The ground state, the excited state, and an 

intermediate state that allows nonradiative decays. These can be labeled as 𝑛1, 𝑛2, and 𝑛3, 

respectively. For simplicity we will refer to the intermediate level 𝑛3 as the ISC, but more broadly 

it can also encompass other nonradiative states such as an ionized VV– or VV+. Rates of transitions 

between these levels are represented by the variables 𝑟𝑖𝑗, where 𝑖 is the initial level and 𝑗 is the 

final level. An outline of this system is given in figure 3.11. 
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Figure 3.11 | Three-level model of VV0 optical transitions. In this diagram, 𝑛1 represents the 

ground state, 𝑛2 represents the excited state, and 𝑛3 represents an overall nonradiative state, which 

in practice is a combination of the inter-system crossing singlet state and ionized states of the VV0. 

Rates between these levels are denoted by 𝑟12, 𝑟21, 𝑟23, and 𝑟31. 
 

     It is important to note that each transition rate 𝑟𝑖𝑗 corresponds to a physical process and not all 

rates are allowed in this system. For example, the ground state will not excite to ISC (𝑟13 = 0), 

and the ISC will not excite to the excited state (𝑟32 = 0). All other processes are allowed, and their 

physical interpretations are given below: 

 

𝑟12 = laser pumping rate (3.33) 

𝑟21 = radiative decay rate (3.34) 

𝑟23 = decay rate from excited state to ISC (3.35) 

𝑟32 = decay rate from ISC to ground state (3.36) 

 

     The reader may recognize this system as a Markov chain. Indeed, the decision to use rates to 

describe transitions between levels implies that this is a continuous-time Markov chain. The 
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discrete-time analog of this would be to describe transitions as a probability per time step. We will 

cover both versions here, starting with the continuous Markov chain. 

 

 

3.7.1 Continuous-time Markov chain 
 

The centerpiece of all Markov chains (continuous or discrete) is to obtain the transition matrix, 

which allows the system's dynamics to be fully modeled. For a continuous-time Markov chain, 

this matrix is typically represented by 𝑄. Since this system contains three levels, 𝑄 will be a 3x3 

square matrix: 

𝑄 = (

𝑞11 𝑞12 𝑞13
𝑞21 𝑞22 𝑞23
𝑞31 𝑞32 𝑞33

) (3.37) 

 

     Here, the entries 𝑞𝑖𝑗 generally represent transition rates. To fill out the individual entries, we 

can focus on the transitions out of each level. The diagonal entries 𝑞𝑖𝑖 should represent the total 

summed rate out of level 𝑖 (and are negative), whereas off-diagonal entries 𝑞𝑖𝑗 represent the 

transition out of level 𝑖 to level 𝑗. Note that the sums of each row will be zero by design. Each row 

𝑖 of the matrix 𝑄 will then represent the rates leaving the level 𝑖. Using figure [___] as a reference, 

we can focus on each level and fill out each row of the matrix based on the rates provided. This 

gives the matrix: 

𝑄 = (
−𝑟12 𝑟12 0
𝑟21 −𝑟21 − 𝑟23 𝑟23
𝑟31 0 −𝑟31

) (3.38) 
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     Once we have obtained this transition matrix, we can use it to relate the current state of the 

system to the state at future times. Here, the "state of the system" can be represented as a vector 

𝑛⃗⃗(𝑡): 

𝑛⃗⃗(𝑡) = (

𝑛1(𝑡)

𝑛2(𝑡)

𝑛3(𝑡)
) (3.39) 

 

Where 𝑛𝑖(𝑡) represents each level's occupation as a function of time. With this vector, we can 

immediately write the differential equation that governs the system's evolution: 

 

(𝑛′⃗⃗⃗⃗ (𝑡))
𝑇

= (𝑛⃗⃗(𝑡))
𝑇
𝑄 (3.40) 

 

Where 𝑣𝑇 represents the transpose of vector 𝑣. Expanding this equation for the system as hand 

gives: 

(𝑛1
′ (𝑡) 𝑛2

′ (𝑡) 𝑛3
′ (𝑡)) = (𝑛1(𝑡) 𝑛2(𝑡) 𝑛3(𝑡)) (

−𝑟12 𝑟12 0
𝑟21 −𝑟21 − 𝑟23 𝑟23
𝑟31 0 −𝑟31

) (3.41) 

 

Or, multiplying this out: 

𝑛1
′ (𝑡) = −𝑟12𝑛1(𝑡) + 𝑟21𝑛2(𝑡) + 𝑟31𝑛3(𝑡) (3.42) 

𝑛2
′ (𝑡) = 𝑟12𝑛1(𝑡) − 𝑟21𝑛2(𝑡) − 𝑟23𝑛2(𝑡) (3.43) 

𝑛3
′ (𝑡) = 𝑟23𝑛2(𝑡) − 𝑟31𝑛3(𝑡) (3.44) 

 

     This system of coupled differential equations fully describes the occupation of each level as a 

function of time, subject to initial conditions. Despite the fact that we have chosen a relatively 

simple 3-level system as an initial model, the solutions of these equations are generally nontrivial. 
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We will look at examples of how these equations can be applied to actual measurements, but first 

we will examine the discrete-time version of this same Markov chain. 

 

 

3.7.2 Discrete-time Markov chain 
 

Just as in the continuous case, our initial goal for the discrete-time Markov chain is to obtain the 

transition matrix. In the discrete setting it is typically represented by 𝑃 instead of 𝑄. The system 

still contains three levels, so 𝑃 will still be a 3x3 square matrix: 

 

𝑃 = (

𝑝11 𝑝12 𝑝13
𝑝21 𝑝22 𝑝23
𝑝31 𝑝32 𝑝33

) (3.45) 

 

Here, each entry 𝑝𝑖𝑗 now represents a probability instead of a rate. This is given by: 

 

𝑝𝑖𝑗 = transition probability from state 𝑖 to state 𝑗 after time step ∆𝑡 

 

     Meanwhile, the diagonal entries 𝑝𝑖𝑖 represent the probability per time unit that the state will 

remain in the same level. In the VV0 system each level can remain stable for a nonzero amount of 

time, so the diagonal entries will all be nonzero. The 𝑝13 and 𝑝32 entries will be zero by design, 

similar to the continuous case. This gives: 

 

𝑃 = (
𝑝11 𝑝12 0
𝑝21 𝑝22 𝑝23
𝑝31 0 𝑝33

) (3.46) 
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     If we want to use the rates in figure 3.11 to fill out these entries, we have to be careful in 

translating a rate to a probability. If we had a two-level system with only an excited state and a 

ground state, the rate of decay from the excited state would be defined as: 

 

𝑟 ≡
lim
𝑡→0

(𝑃𝑑𝑒𝑐𝑎𝑦(0 → 𝑡))

𝑡
=
𝑃𝑑𝑒𝑐𝑎𝑦(0 → 𝑑𝑡)

𝑑𝑡
(3.47) 

 

     Where 𝑃𝑑𝑒𝑐𝑎𝑦(0 → 𝑡) represents probability of decay in the time window from 0 to 𝑡. This is 

the exact scenario for a Poisson process, which follows an exponential distribution. More 

specifically, the probability density function (PDF) representing the probability of decay is an 

exponential distribution with a single parameter 𝜆: 

 

exponential PDF = 𝜆𝑒−𝜆𝑡 (3.48) 

 

The parameter 𝜆, by definition, is the probability per differential time that the decay will occur. 

Put more simply, 𝜆 is our rate 𝑟. 

𝜆 = 𝑟 (3.49) 

 

     If we want to express 𝑝𝑖𝑗 in terms of 𝑟𝑖𝑗 for a discrete model, we must make the time step 

infinitesimally small (𝑑𝑡). Under these conditions, we can then treat eq. () as a fraction and say: 

 

𝑝𝑖𝑗 = 𝑃𝑑𝑒𝑐𝑎𝑦(0 → 𝑑𝑡) = 𝑟𝑖𝑗 ∙ 𝑑𝑡 (3.50) 

 

This then gives the off-diagonal elements of the discrete transition matrix as: 

 

𝑃 = (

𝑝11 𝑟12𝑑𝑡 0
𝑟21𝑑𝑡 𝑝22 𝑟23𝑑𝑡
𝑟31𝑑𝑡 0 𝑝33

) (3.51) 



120 

 

 

To fill the diagonal entries, we use the convention that the rows of the discrete transition matrix 

must add to one (for a probability of one). This gives: 

 

𝑃 = (

1 − 𝑟12𝑑𝑡 𝑟12𝑑𝑡 0
𝑟21𝑑𝑡 1 − 𝑟21𝑑𝑡 − 𝑟23𝑑𝑡 𝑟23𝑑𝑡
𝑟31𝑑𝑡 0 1 − 𝑟31𝑑𝑡

) (3.52) 

 

Or: 

𝑃 = (
−𝑟12 𝑟12 0
𝑟21 −𝑟21 − 𝑟23 𝑟23
𝑟31 0 −𝑟31

)𝑑𝑡 + 𝐼 (3.53) 

And since 𝑄 is given by: 

𝑄 = (
−𝑟12 𝑟12 0
𝑟21 −𝑟21 − 𝑟23 𝑟23
𝑟31 0 −𝑟31

) (3.54) 

We have the relation: 

𝑃 = 𝑄𝑑𝑡 + 𝐼 (3.55) 

 

     Taking one time step in the discrete Markov chain corresponds to multiplying the state of the 

system by P on the right. This can be represented as: 

 

(𝑛⃗⃗(𝑡 + 𝑑𝑡))
𝑇
= (𝑛⃗⃗(𝑡))

𝑇
𝑃 (3.56) 

 

     In the continuous Markov chain, the next step was to obtain differential equations to describe 

the system's dynamics. For the discrete case, we can instead use python to incrementally evolve 

the state of the system according to the equation above. 
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3.7.3 Monte Carlo model of the divacancy 
 

A third way to approach the modeling of the VV0 system is to use a Monte Carlo model. This 

method relies on random sampling to simulate the dynamics of the VV0 system at each time step. 

At each moment in time, we are interested in the state of the system after a time step ∆𝑡. As an 

example (with arbitrary numbers), when the system is currently in its excited state we could assign 

a 95% chance of staying, a 4.5% chance of radiatively decaying to the ground state, and a 0.5% 

chance of decaying to the ISC. These probabilities can be set up for each state of the system and 

the time evolution from any starting point can be obtained by iteratively applying these rules. The 

use of probabilities of transitions per unit time mirrors the concepts of a discrete Markov chain 

very closely, and indeed the two models are almost identical. The key difference is that since the 

Monte Carlo model uses repeated random sampling, the system's dynamics will not be 

deterministic like they are in the Markov chain. In the limit of infinite averaging, however, the two 

results should converge. This comes with a drawback of needing to perform time-intensive 

averaging of many Monte Carlo results to see the similarity to the Markov chain. We will avoid 

delving too much into which model is "superior" and show the more important result that they 

predict the same behavior for the VV0 in various scenarios. We will apply both the continuous and 

discrete Markov chain and the Monte Carlo model to some example scenarios. 

 

 

3.7.4 Lifetime measurement 
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In a lifetime measurement, the system is initialized into its excited state and then is released, 

resulting in exponentially decaying counts over time. For this experiment we set the initial 

conditions set at the excited state: 

 

𝑛0(0) = 0, 𝑛1(0) = 1, 𝑛2(0) = 0 (3.57) 

 

In this experiment there is no direct pumping rate because the system always starts in its excited 

state. This means that: 

𝑟12 = laser pumping rate = 0 (3.58) 

 

In the continuous Markov chain, the differential equations describing the system then simplify to 

 

𝑛1
′ (𝑡) = 𝑟21𝑛2(𝑡) + 𝑟31𝑛3(𝑡) (3.59) 

𝑛2
′ (𝑡) = −𝑟21𝑛2(𝑡) − 𝑟23𝑛2(𝑡) (3.60) 

𝑛3
′ (𝑡) = 𝑟23𝑛2(𝑡) − 𝑟31𝑛3(𝑡) (3.61) 

 

And we are interested in obtaining the excited state population 𝑛2(𝑡) as a function of time. 

Focusing on the differential equation for 𝑛2(𝑡) directly gives: 

 

𝑛2
′ (𝑡) = −(𝑟21 + 𝑟23)𝑛2(𝑡) (3.62) 

𝑛2(𝑡) = exp(−(𝑟21 + 𝑟23)𝑡) (3.63) 

 

     Interestingly, the rate 𝑟31 from the ISC to the ground state plays no role in this lifetime 

measurement. Instead the decay is dictated by a combination of the radiative and nonradiative rates 

to the ground state and ISC, respectively. This equation is an analytical result for the excited state 

population from the continuous Markov chain, and we will compare it to the results of a discrete 

Markov chain. 
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     In the discrete Markov chain with 𝑟12 = 0, we have the stochastic matrix as: 

 

𝑃 = (
1 0 0

𝑟21𝑑𝑡 1 − 𝑟21𝑑𝑡 − 𝑟23𝑑𝑡 𝑟23𝑑𝑡
𝑟31𝑑𝑡 0 1 − 𝑟31𝑑𝑡

) (3.64) 

 

     Once this matrix is obtained, it is enough to fully describe the time dynamics of the system. As 

an example we can set the rates as the following for both the discrete Markov and Monte Carlo 

models: 

𝑟21 =
0.05

𝑛𝑠
, 𝑟23 =

0.01

𝑛𝑠
, 𝑟31 =

0.01

𝑛𝑠
(3.65) 

 

This gives an excited state population vs. time as outlined in figure 3.12 

 

 

Figure 3.12 | Simulated lifetime measurement according to a 3-level model. When the state of 

the 3-level system is initially prepared in the excited state, competing decays to the other two levels 

cause an exponential decay of the excited state population. 
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     As can be seen, there is excellent agreement between the Monte Carlo result and the discrete 

Markov chain prediction. The slight noise in the Monte Carlo data is a natural result of the random 

sampling that it is built upon; in this case there were 50,000 averaged simulated experiments. To 

see the effect that the excited state to ISC rate 𝑟23 can have on this curve, we can also run a 

simulation with the following parameters: 

 

𝑟21 =
0.05

𝑛𝑠
, 𝑟23 =

0.05

𝑛𝑠
, 𝑟31 =

0.01

𝑛𝑠
(3.66) 

 

     Where again, 𝑟31 has no effect and is arbitrarily set to 0.01. Under these conditions with a 

fivefold increase in the 𝑟23 rate, there is a noticeable effect on the lifetime decay which is shown 

in figure 3.13. 

 

 

Figure 3.13 | Effect of increased 𝒓𝟐𝟑 rate on lifetime decay curve. Increasing the rate to the 

nonradiative state 𝑛3 causes an overall faster decay of the excited state population. This holds true 

even as transitions to and from 𝑛3 are not directly measured through photon emission. 
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     Here there is still excellent agreement between the Monte Carlo and discrete Markov models, 

which both show a significant speedup in the measured decay from the excited state. While this 

result is mathematically predicted from the continuous Markov result in equation 3.63, there is 

also an intuitive understanding of this effect. With a higher 𝑟23 the radiative decay pathway will 

more frequently go to the nonradiative ISC decay pathway instead, which does not result in 

detectable photons. This means that the photons that are detected are more heavily weighted 

towards faster decays, which explains why the decay curve is steeper with a higher 𝑟23 rate. 

     While the models appear to work very well here, there is an ambiguity in how the rates are 

determined. Namely, only the value of (𝑟21 + 𝑟23) is constrained. For example, we can see in 

figure 3.12 that the rates 𝑟21 =
0.05

𝑛𝑠
 and 𝑟23 =

0.01

𝑛𝑠
 provide a good fit to the blue bars which we can 

treat as a data set. However, any combination of 𝑟21 and 𝑟23 that gives the same combined value 

of 𝑟21 + 𝑟23 =
0.06

𝑛𝑠
 would give the exact same fit. This means that the rates of {𝑟21 =

0.04

𝑛𝑠
, 𝑟23 =

0.02

𝑛𝑠
} or {𝑟21 =

0.03

𝑛𝑠
, 𝑟23 =

0.03

𝑛𝑠
} would be equally valid fits to the data with no way of discerning 

how the rates should be distributed. The ambiguity is even more dire for the 𝑟31 rate, which for 

this measurement simply has no effect at all! This means that in practice, we would have to 

combine a lifetime decay with one or multiple other measurements (for example, a count rate with 

a known collection efficiency) in order to discern the individual rates.  

     The upshot of this exercise is that Monte Carlo and Markov chains can both robustly model the 

behavior of an excited state decay according to a three-level model, but the free parameters in the 

model allow for ambiguity to enter the attempted fits to data. Ideally a model should then be built 

with as few free parameters (or in this case levels) as possible, but an oversimplified model may 

miss out on key physics that is at play in the real system. This is ultimately a delicate balance, and 

we will see how this scenario plays out for other example measurements in the upcoming sections. 



126 

 

 

 

3.7.5 g(2) autocorrelation measurement 
 

A g(2) autocorrelation measurement is a common way to confirm to presence of a single defect. 

The measurement is performed by tracking the arrival times of all collected photons and then 

computing the differences of the times ∆𝑡. Then, the frequency of each ∆𝑡 occurring is plotted for 

various values of ∆𝑡. For example, a ∆𝑡 = 5 𝑛𝑠 means that a second photon arrived exactly 5 ns 

after the arrival of a first photon. If the ∆𝑡 = 5 𝑛𝑠 value of the g(2) curve was very high, this would 

mean that photons very frequently arrive 5 ns apart. If only one optical emitter is present, then it 

is impossible to emit two photons at the exact same time at ∆𝑡 = 0 𝑛𝑠. Therefore, the g(2) 

measurement serves as a reliable tool to check for single emitters, provided that the background 

signal is low or averaged enough to be subtracted away. Generally, we say that if the dip of the g(2) 

curve at t = 0 goes below 0.5, then there is only one optical emitter, whereas a dip above 0.5 

indicates multiple emitters. Since each photon count means that the system was just in the excited 

state, the g(2) curve is also equivalent to mapping out the excited state population versus time. This 

value can be readily simulated using the 3-level model, and we will show the continuous and 

discrete Markov chain results here. Although using a Monte Carlo simulation is also entirely 

possible, it does not add to the discussion so we will forgo it here. 

 

Continuous Markov chain 

     When using the differential equations from the continuous Markov chain, this time we cannot 

set 𝑟12 to zero. This means that we use the equations in their original form: 
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𝑛1
′ (𝑡) = −𝑟12𝑛1(𝑡) + 𝑟21𝑛2(𝑡) + 𝑟31𝑛3(𝑡) (3.67) 

𝑛2
′ (𝑡) = 𝑟12𝑛1(𝑡) − 𝑟21𝑛2(𝑡) − 𝑟23𝑛2(𝑡) (3.68) 

𝑛3
′ (𝑡) = 𝑟23𝑛2(𝑡) − 𝑟31𝑛3(𝑡) (3.69) 

 

By setting the initial conditions set at the ground state: 

 

𝑛1(0) = 1, 𝑛2(0) = 0, 𝑛3(0) = 0 (3.70) 

 

We can obtain a solution to the excited state population 𝑛2(𝑡) using Wolfram Mathematica, which 

gives: 

𝑛2(𝑡) =

𝑟12 exp (−
1
2
(𝑎1 + 𝑏)𝑡) (𝑎3(−1 + exp(𝑏𝑡)) + 𝑟31𝑏 (−1 − exp(𝑏𝑡) + 2 exp (

1
2
(𝑎1 + 𝑏)𝑡)))

2𝑎2𝑏
(3.71)

 

 

Where: 

𝑎1 = 𝑟12 + 𝑟21 + 𝑟23 + 𝑟31 (3.72) 

𝑎2 = 𝑟12𝑟23 + 𝑟31(𝑟12 + 𝑟21 + 𝑟23) (3.73) 

𝑎3 = 𝑟31(𝑟21 + 𝑟23 − 𝑟31) + 𝑟12(2𝑟23 + 𝑟31) (3.74) 

𝑏 = √𝑎1
2 − 4𝑎2 (3.75) 

 

Even though we are still only using a 3-level model, we see that the introduction of a pumping rate 

results in much more complicated behavior! 

 

Discrete Markov chain 

     Similarly in the discrete case, we must leave the 𝑟12 rate in, meaning the stochastic matrix is: 
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𝑃 = (

1 − 𝑟12𝑑𝑡 𝑟12𝑑𝑡 0
𝑟21𝑑𝑡 1 − 𝑟21𝑑𝑡 − 𝑟23𝑑𝑡 𝑟23𝑑𝑡
𝑟31𝑑𝑡 0 1 − 𝑟31𝑑𝑡

) (3.76) 

 

     For demonstration purposes, we will use this matrix to show the behavior of the excited state 

population for various pumping powers. We can use the same rates as in the lifetime section: 

 

𝑟21 =
0.05

𝑛𝑠
, 𝑟23 =

0.01

𝑛𝑠
, 𝑟31 =

0.01

𝑛𝑠
(3.77) 

 

For the pumping rate 𝑟12, we can select a large range of rates to show the limiting behavior. In this 

case we will sweep over the following rates: 

 

𝑟12 =
10−7

𝑛𝑠
↔
101

𝑛𝑠
(3.78) 

 

The result of this sweep is shown in figure 3.14. 
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Figure 3.14 | g(2) curve for a variety of pumping powers. Each blue curve represents a different 

pumping rate ranging from 10-7/ns to 10/ns. Each curve is normalized to the y-axis value at t = 100 

ns. Equations 3.76 and 3.77 are used for this model. 

 

     In the high-power limit, the excited state population 𝑛2 becomes populated immediately and 

then decays exponentially. In the low power limit, the excited state population steadily grows until 

it reaches its equilibrium level. In between, it is possible for 𝑛1 to first reach a local maximum and 

then decay from there. When this local maximum is observed experimentally, we refer to it as a 

"bunching" of the g(2) curve. In this model it is induced by the high pumping power, but it can also 

be due to significant rates into the intersystem crossing level 𝑛3. 

     It is worth noting that in experimental measurements negative values of t are also included, 

which corresponds to taking the graph in figure 3.14 and reflecting it over the y-axis. When this 

mirrored graph is obtained, the full-width half maximum of the g(2) curve should approximately 

correspond to the excited state lifetime, although there is no simple relation and the width can be 

varied significantly by the pumping power. In figure 3.14, for example, the low power y = 0.5 

value is at ~11.5 ns, which does not have a clear relation to the radiative excited state lifetime of 

20 ns nor the total lifetime of 16.7 ns. 

     Lastly, the addition of the pumping rate 𝑟12 as a free parameter in this model will significantly 

increase the uncertainty of the four individual rates. This means that while the best fit curve from 

the continuous Markov chain result will likely fit a measured g(2) curve quite well, the rates cannot 

be determined confidently from this measurement alone. This effect was also seen in the lifetime 

model, and in a similar fashion a combination of multiple independent measurements would be 

needed to determine the system's rates uniquely. 
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3.8  Five-level model for the divacancy 
 

Given the complexity of the previous section's results, it seems the last thing we would want to do 

is add more levels to our 3-level model. However, if we want to incorporate spin-dependent 

phenomenon, it is necessary to include spin sublevels in the ground and excited states. At a bare 

minimum this results in two added levels to give a 5-level model. The rate picture for this model 

is shown in figure 3.15. 

 

 

Figure 3.15 | 5-level model of the VV0. In this diagram, 𝑛1 and 𝑛2 represent ground states with 

differing spin character, 𝑛3 and 𝑛4 represent corresponding excited states, and 𝑛5 represents an 

overall nonradiative state as a combination of the inter-system crossing singlet state and ionized 

states of the VV0. Rates between these levels are denoted by 𝑟𝑖𝑗. 
 

 

     Here, 𝑛1 and 𝑛2 are meant to represent spin states in the ground state, with 𝑛1 = {𝑚𝑠 = 0} and 

𝑛2 = {𝑚𝑠 = ±1} as one possible assignment for the VV0 system. The states 𝑛3 and 𝑛4 are then 
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the corresponding spin states in the excited state. The state 𝑛5 is again an intermediate state for 

nonradiative decay, which in most cases refers to the ISC. 

     With a 5-level system, the differential equations from a continuous Markov chain would be 

cumbersome. Likewise the Monte Carlo model takes much longer to simulate dynamics. So for 

the following discussion, we will rely solely on the discrete Markov chain. As before, the 

probabilities in the stochastic matrix of the discrete Markov chain will follow the relation 𝑝𝑖𝑗 =

𝑟𝑖𝑗 ∙ 𝑑𝑡. This then gives the off-diagonal elements of the discrete transition matrix as: 

 

𝑃 =

(

 
 

𝑝11 𝑟12𝑑𝑡 𝑟13𝑑𝑡 𝑟14𝑑𝑡 𝑟15𝑑𝑡
𝑟21𝑑𝑡 𝑝22 𝑟23𝑑𝑡 𝑟24𝑑𝑡 𝑟25𝑑𝑡
𝑟31𝑑𝑡 𝑟32𝑑𝑡 𝑝33 𝑟34𝑑𝑡 𝑟35𝑑𝑡
𝑟41𝑑𝑡 𝑟42𝑑𝑡 𝑟43𝑑𝑡 𝑝44 𝑟45𝑑𝑡
𝑟51𝑑𝑡 𝑟52𝑑𝑡 𝑟53𝑑𝑡 𝑟54𝑑𝑡 𝑝55 )

 
 

(3.79) 

 

According to the picture in figure 3.15, many of these rates can be set to zero: 

 

𝑃 =

(

 
 

𝑝11 0 𝑟13𝑑𝑡 0 0
0 𝑝22 0 𝑟24𝑑𝑡 0

𝑟31𝑑𝑡 0 𝑝33 0 𝑟35𝑑𝑡
0 𝑟42𝑑𝑡 0 𝑝44 𝑟45𝑑𝑡

𝑟51𝑑𝑡 𝑟52𝑑𝑡 0 0 𝑝55 )

 
 

(3.80) 

 

Filling out the diagonal elements by imposing that each row sums to 1 then gives: 

 

𝑃 =

(

 
 

1 − 𝑟13𝑑𝑡 0 𝑟13𝑑𝑡 0 0
0 1 − 𝑟24𝑑𝑡 0 𝑟24𝑑𝑡 0

𝑟31𝑑𝑡 0 1 − (𝑟31 + 𝑟35)𝑑𝑡 0 𝑟35𝑑𝑡

0 𝑟42𝑑𝑡 0 1 − (𝑟42 + 𝑟45)𝑑𝑡 𝑟45𝑑𝑡

𝑟51𝑑𝑡 𝑟52𝑑𝑡 0 0 1 − (𝑟51 + 𝑟52)𝑑𝑡)

 
 

(3.81) 

 

     Lastly, we can make some simplifications to the model by saying that the excitation rate will 

be the same regardless of the spin state. This means that 𝑟13 = 𝑟24. We can also assume that the 
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radiative decay rate will be approximately the same regardless of spin state, so 𝑟31 = 𝑟42. With 

these assumptions we now have 6 rates in a 5-level system. 

 

𝑃 =

(

 
 

1 − 𝑟13𝑑𝑡 0 𝑟13𝑑𝑡 0 0
0 1 − 𝑟13𝑑𝑡 0 𝑟13𝑑𝑡 0

𝑟31𝑑𝑡 0 1 − (𝑟31 + 𝑟35)𝑑𝑡 0 𝑟35𝑑𝑡

0 𝑟31𝑑𝑡 0 1 − (𝑟31 + 𝑟45)𝑑𝑡 𝑟45𝑑𝑡

𝑟51𝑑𝑡 𝑟52𝑑𝑡 0 0 1 − (𝑟51 + 𝑟52)𝑑𝑡)

 
 

(3.82) 

 

     With this model, we further lose the ability to infer each individual rate with low uncertainty, 

but we gain the flexibility to describe more phenomenon. For example, the addition of the rates 

𝑟35, 𝑟45 and 𝑟52, 𝑟51 allows for an asymmetric decay from the excited state to the ground state 

through the ISC. It is this asymmetry that allows for effects like off-resonant spin initialization and 

readout. We will examine these examples in the following sections. 

 

 

3.8.1 Spin initialization 
 

In optical spin initialization, an off-resonant laser pumps the ground state spin levels continuously 

until an equilibrium of spin population is reached. Due to the asymmetric branching of spin states 

both to and from the ISC, this results in a predominantly 𝑚𝑠 = 0 spin population. Typically, spin 

initialization fidelities are in the range of ~95% for the VV0. To see how this could be the case, we 

can use the stochastic matrix above to directly to simulate the "𝑛1" (𝑚𝑠 = 0) and "𝑛2" 𝑚𝑠 = ±1) 

levels over time. The caveat to this is that the equilibrium levels will also have partially occupied 

𝑛3, 𝑛4, 𝑛5 levels. To translate these levels to the ground state once the pumping laser is switched 

off, we can simulate the system for a given time with laser excitation, then remove the pumping 
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rate 𝑟13 and continue to time evolve the system. As example parameters that give a high 

initialization fidelity, we can use: 

 

𝑟13 =
0.01

𝑛𝑠
, 𝑟31 =

0.05

𝑛𝑠
, 𝑟35 =

0.001

𝑛𝑠
,

𝑟45 =
0.005

𝑛𝑠
, 𝑟51 =

0.05

𝑛𝑠
, 𝑟52 =

0.01

𝑛𝑠

(3.83) 

 

The result of this simulation is given in figure 3.16. 

 

 

Figure 3.16 | Simulated spin initialization in 5-level model. The 5-level system is evolved with 

the stochastic matrix in equation 3.82 and rates in equation 3.83. The pumping rate is turned off at 

t = 2000 ns. After this initialization pulse, most of the population is in the 𝑛1 state. 

 

     The majority of the model's time is spent pumping the defect, then the "kink" at t = 2000 ns 

corresponds turning off the pumping rate and letting the system relax. The spin initialization 

fidelity is then given by the final population of the 𝑚𝑠 = 0 state 𝑛1. In this case, we start with a 

𝑚𝑠 = ±1 state and reach a 𝑚𝑠 = 0 initialization of ~96%, which is close to what is observed 

experimentally. This high initialization was possible through the 5x larger branching of the 𝑚𝑠 =
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±1 excited state to the ISC (𝑟45) and the 5x larger preferential decay to 𝑚𝑠 = 0 from the ISC (𝑟51). 

Incidentally, the time scale of the initialization is also the right order of magnitude, as we typically 

pump anywhere from 3 to 10 microseconds for off-resonant spin initialization. While this set of 

parameters gives the correct results, it is by no means a unique solution the rate dynamics. With 6 

free parameters at play, there are many ways to achieve this same end result. As with the lifetime 

and g(2) examples, we would need to combine this result with many other measurements if we 

wanted to truly fit the rate parameters. Nevertheless, this result is a demonstration of how spin 

initialization can arise due to the dynamics of the ISC. 

 

 

3.8.2 Spin readout 
 

The complement to off-resonant spin initialization is off-resonant optical spin readout. The idea of 

spin-dependent readout contrast is that under off-resonant pumping, the 𝑚𝑠 = 0 state will usually 

give more total counts in a given readout window than the 𝑚𝑠 = ±1 state. In reality this difference 

is only ~5% based on optically detected magnetic resonance (ODMR) scans, but is readily 

observed with averaging of experiments. The reasons for this contrast are founded in spin-

dependent ISC dynamics, similar to spin initialization. Another important point is that after a very 

long readout time, the relative differences in total counts will shrink due to spin initialization 

effects with off-resonant excitation. This means that in practice the readout window should be 

truncated to maximize contrast. This is sometimes at odds with collecting as many photons as 

possible to lower averaging time, so a balance must be struck based on the timing of the 

experimental sequence and the time available to run experiments. However, the upshot of this 
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measurement is that it allows for optical readout of spin states, which is used nearly in all 

experiments. 

     To map the photon counts from a defect to the Markov model, we focus on the cumulative total 

excited state populations over time. Here we are using a cumulative sum of populations since a 

constant excited state population implies a constant stream of photon counts and an increasing 

overall count. The key point to this measurement is to see a noticeable difference in counts when 

starting in the 𝑚𝑠 = 0 state as opposed to the 𝑚𝑠 = ±1 state. Here we can observe this effect using 

the same rates as the previous section: 

 

𝑟31 =
0.05

𝑛𝑠
, 𝑟35 =

0.001

𝑛𝑠
, 𝑟45 =

0.005

𝑛𝑠
, 𝑟51 =

0.05

𝑛𝑠
, 𝑟52 =

0.01

𝑛𝑠
(3.84) 

 

     In figure 3.17, we plot the "readout contrast" vs readout time. Here readout contrast is defined 

as the total counts collected with a 𝑚𝑠 = 0 start (here 𝑛1) divided by the total counts collected 

with a 𝑚𝑠 = ±1 start (here 𝑛2), where again counts are mapped to the total excited state population 

𝑛3 + 𝑛4. So a y-value of 1.05, for example, means 5% more counts from 𝑚𝑠 = 0. Lastly, similar 

to the model of the g(2) measurement in section 3.7.5, we can perform this simulation over various 

pumping rates 𝑟13. In this case we use: 

 

𝑟13 =
10−3

𝑛𝑠
↔
10−1

𝑛𝑠
(3.85) 

This gives the following result: 
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Figure 3.17 | Spin readout contrast with off-resonant optical excitation as a function of 

readout time. Readout contrast is determined by the ratio of excited state population when starting 

in 𝑛1 (𝑚𝑠 = 0) compared to 𝑛2 (𝑚𝑠 = ±1). Pumping rates between 10-3/ns and 10-1/ns are shown 

here. The readout contrast is highest for a low optical pumping power, which must be weighed 

against the lower photon counts obtained. 

 

     In this model, we can see that it is actually beneficial to use a lower pumping power in order to 

maximize readout contrast, which here peaks around ~7%. This would come at the cost of 

increased averaging since the counts would not be as high. In the high-power limit, a smaller 

readout contrast of ~1-5% is still observed. At short readout times, the contrast "bunches" at a 

maximum value before decaying. This slight peak in counts is also observed experimentally, see 

for example figure 4 in reference [3]. Thus, in general this model agrees well with experimental 

results. Similar to spin initialization, the mechanism for readout contrast lies in the asymmetric 

branching of spin states to and from the ISC level. 

     If desired, we could add even more levels to this Markov model. In reality the VV0 has 3 ground 

state spin levels, 6 excited states, 2 ISC states, and 2 charge states for a total of 13 levels. However, 

the rates from such a model would be nearly impossible to determine even with many 
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measurements, or at the very least many assumptions would need to be made. Perhaps more 

importantly, including all levels is not even necessary to describe experimental results. We've seen 

that relatively simple 3- and 5-level models are enough to accurately simulate lifetime decays, g(2) 

autocorrelation measurements, and off-resonant spin initialization and readout. Thus, the Markov 

model is a powerful tool that lends itself naturally to the isolated electronic levels of the VV0. 

 

 

3.9  Collection efficiency calculation 
 

It cannot be overemphasized how important photon collection efficiency is for nearly all 

experiments performed in our lab. As single VV0 experiments have developed in the past ~5 years, 

so has the need for higher collection efficiencies. This becomes crucial for both single-shot readout 

experiments and the scalability/feasibility of remote spin-spin entanglement. 

     In this section, we will work through a calculation for the free-space collection efficiency from 

a c-axis divacancy in silicon carbide. This calculation should also be generalizable to objectives 

with other NA’s and to the NV center in diamond. 

 

 

3.9.1 Initial setup 
 

When using a free-space objective for collection, it is important to keep in mind the definition of 

numerical aperture NA for a lens. Using figure 3.18 as a reference, the NA is defined as the sine 

of the angle 𝜃 that is formed with the focal length and radius of the lens. This NA will be left as a 
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free variable in the upcoming calculations, but generally takes values of ~0.6-0.9 depending on the 

objective. 

 

Figure 3.18 | Definition of angle 𝜽𝑵𝑨 for a lens or objective. The angle 𝜃𝑁𝐴 directly determines 

the numerical aperture, NA, of the lens or objective. Here f is the focal length and D is the diameter 

of the lens or objective. 

 

The equation for NA is: 

𝑁𝐴 = 𝑛𝑎𝑖𝑟 sin 𝜃𝑁𝐴 = sin 𝜃𝑁𝐴 (3.86) 

 

Some example NA's for objectives used in active setups are: 

 

100𝑥 objective, 0.85 = sin 𝜃𝑁𝐴 , 𝜃𝑁𝐴 = 58.2
𝑜 (3.87) 

50𝑥 objective, 0.65 = sin 𝜃𝑁𝐴 , 𝜃𝑁𝐴 = 40.5𝑜 (3.88) 

 

For the purposes of this calculation we will refer to this angle as 𝜃𝑁𝐴. With this, the general ray 

optics picture is as follows: 
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Figure 3.19 | General ray optics picture of collection of light from a point source emitter in 

silicon carbide. The angles 𝜃𝑆𝑖𝐶  and 𝜃𝑁𝐴 obey Snell's law. Only light that is emitted into the solid 

angle of the objective will be collected. 

 

Snell's law gives the relation between 𝜃𝑁𝐴 and 𝜃𝑆𝑖𝐶: 

 

𝑛𝑎𝑖𝑟 sin 𝜃𝑁𝐴 = 𝑛𝑆𝑖𝐶 sin 𝜃𝑆𝑖𝐶 (3.89) 

 

Where the indices of refraction are 𝑛𝑆𝑖𝐶 = 2.58 at ~1100 nm and 𝑛𝑎𝑖𝑟 = 1. To get the collection 

efficiency, we want the ratio of two powers: 

1) The power emitted by a dipole emitter in a full sphere around the emitter in the SiC (i.e. 

100% collection efficiency). 

2) The power emitted by a dipole emitter in the collection cone within the objective NA, after 

accounting for reflection/refraction at the SiC/air interface. 

 

We will start with a basic calculation and then add corrections until the full picture is obtained. 
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3.9.2 Collection efficiency for an isotropic emitter in 
free space 
 

Here we are assuming a uniform emitter in free space. Without any refraction, the collection 

efficiency will be given by the ratio of the solid angle subtended by the emission cone to the solid 

angle subtended by full emission (4π for a full sphere): 

 

𝐶𝐸 =
solid angle of cone with 𝜃𝑁𝐴

4𝜋
(3.90) 

 

We can substitute the solid angle from a cone as: 

 

solid angle of cone with 𝜃 = 2𝜋(1 − cos 𝜃) (3.91) 

So: 

𝐶𝐸 =
2𝜋(1 − cos 𝜃𝑁𝐴)

4𝜋
=
1 − cos 𝜃𝑁𝐴

2
= sin2 (

𝜃𝑁𝐴
2
) (3.92) 

𝐶𝐸 = sin2 (
𝜃𝑁𝐴
2
) (3.93) 

 

Note that in the limiting case of 𝜃𝑁𝐴 = 90𝑜 this gives the correct CE = 0.5 since we would be 

collecting from the top half of the defect. 

 

 

3.9.3 Dipole emission in free space 
 

The divacancy is not an isotropic emitter, but rather a combination of two emission dipoles. For a 

c-axis VV0 which this calculation is based upon, the two emission dipoles are oriented along the x 
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and y directions perpendicular to the c-axis (z-axis). We will ultimately find that there is in fact no 

modification to the collection efficiency due to this emission profile, but it is still worth verifying. 

For this situation it is useful to recall the time-averaged Poynting vector for a dipole oriented along 

the z-direction: 

 

〈𝑆〉𝑧 = (
𝜇0𝑝0

2𝜔4

32𝜋2𝑐
)
sin2 𝜃

𝑟2
𝑟̂, [𝑆] =

𝑊

𝑚2
=

energy transfer

unit area ∙ unit time
(3.94) 

 

     To determine a collection efficiency, we will be integrating the appropriately defined Poynting 

vector over the angles defined by the collection cone of the objective. In this case, since we are 

integrating over all azimuthal angles, the two VV0 dipoles can be treated as a single dipole in the 

xy plane due to rotational symmetry. A sketch of dipole orientations is given in figure 3.20. 

 

 

Figure 3.20 | Sketch of dipole orientations. A dipole optical emitter will have a rotationally 

symmetric emission profile. The VV0 emission consists of two orthogonal dipole emission 

profiles. For a c-axis VV0, these dipoles are both parallel to the top SiC surface. Any photons 

emitted outside of the solid angle of the objective will be not collected. 
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     The simplest orientation for a single dipole in the xy plane would be along the y-axis. In this 

case the y-axis Poynting vector gets modified by changing the sin2 𝜃 to a cos2 𝜙: 

 

〈𝑆〉𝑦 = (
𝜇0𝑝0

2𝜔4

32𝜋2𝑐
)
cos2 𝜙

𝑟2
𝑟̂ (3.95) 

 

     To get a power from the Poynting vector, we must integrate it over an area. We will integrate 

over all azimuthal angles (0 to 2π) but only integrate the polar angle from 0 to 𝜃𝑁𝐴 since this is 

what is encapsulated by the objective. This represents the power emitted into the upwards cone 

with angle 𝜃𝑁𝐴 without accounting for refraction: 

 

𝑃𝑑𝑖𝑝𝑜𝑙𝑒 = ∫ ∫ (〈𝑆〉𝑦 ∙ 𝑑𝐴)
𝜃𝑁𝐴

0

2𝜋

0

= ∫ ∫ |〈𝑆〉𝑦|𝑟
2 sin 𝜃 𝑑𝜃𝑑𝜙

𝜃𝑁𝐴

0

2𝜋

0

(3.96) 

 

The prefactors in 〈𝑆〉𝑦 will be dropped since we are ultimately after a relative power compared to 

the collection over all angles, so: 

 

𝑃𝑑𝑖𝑝𝑜𝑙𝑒 ∝ ∫ ∫ (cos2𝜙) sin 𝜃 𝑑𝜃𝑑𝜙
𝜃𝑁𝐴

0

2𝜋

0

= ∫ cos2𝜙𝑑𝜙∫ sin𝜃 𝑑𝜃
𝜃𝑁𝐴

0

2𝜋

0

= 𝜋(1 − cos 𝜃𝑁𝐴) (3.97) 

 

Meanwhile a “full” integral encapsulating all polar angles for dipole emission from 0 to π would 

give: 

𝑃𝑑𝑖𝑝𝑜𝑙𝑒,𝑓𝑢𝑙𝑙 ∝ ∫ ∫ (cos2 𝜙) sin 𝜃 𝑑𝜃𝑑𝜙
𝜋

0

2𝜋

0

= 𝜋(1 − cos 𝜋) = 2𝜋 (3.98) 

 

So the fractional power within the collection cone of the objective is: 
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Fractional power =
𝑃𝑑𝑖𝑝𝑜𝑙𝑒

𝑃𝑑𝑖𝑝𝑜𝑙𝑒,𝑓𝑢𝑙𝑙
=
𝜋(1 − cos 𝜃𝑁𝐴)

2𝜋
=
1 − cos 𝜃𝑁𝐴

2
, xy dipole emission (3.99) 

 

Which is exactly our collection efficiency: 

 

𝐶𝐸 =
1 − cos 𝜃𝑁𝐴

2
= sin2 (

𝜃𝑁𝐴
2
) , xy dipole emission (3.100) 

 

     Note that this result is identical to the collection efficiency for isotropic emission. In the 

isotropic case, the fractional power would be given by the same procedure except without the 

factor of cos2 𝜙 from the dipole Poynting vector: 

 

Fractional power =
𝑃𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐

𝑃𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐,𝑓𝑢𝑙𝑙
=
∫ 𝑑𝜙
2𝜋

0 ∫ sin 𝜃 𝑑𝜃
𝜃𝑁𝐴
0

∫ 𝑑𝜙
2𝜋

0 ∫ sin 𝜃 𝑑𝜃
𝜋

0

=
1 − cos 𝜃𝑁𝐴

2
= sin2 (

𝜃𝑁𝐴
2
) (3.101) 

 

𝐶𝐸 = sin2 (
𝜃𝑁𝐴
2
) , isotropic emission (3.102) 

 

     Which again matches the result from equation (3.93), as expected. Evidently the emission from 

a c-axis VV0 is sufficiently symmetric that the collection efficiency does not change from an 

isotropic emitter. This is almost certainly not the case for a basal VV0 where symmetry is broken, 

but we will continue to focus on the c-axis case for this calculation. 

 

 

3.9.4 Effect of refraction 
 

To incorporate the losses from refraction, we use Snell’s law to rewrite the smaller angle 𝜃𝑆𝑖𝐶  in 

terms of the large angle 𝜃𝑁𝐴: 
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𝜃𝑆𝑖𝐶 = sin−1 (
sin 𝜃𝑁𝐴
𝑛𝑆𝑖𝐶

) (3.103) 

 

When accounting for refraction, this is the angle we want to use instead of the 𝜃𝑁𝐴 used previously. 

Substituting this in for 𝜃𝑁𝐴 in eq. (2) then immediately gives: 

 

𝐶𝐸 = sin2 (
𝜃𝑁𝐴
2
) = sin2(

sin−1 (
sin 𝜃𝑁𝐴
𝑛𝑆𝑖𝐶

)

2
) (3.104) 

𝐶𝐸 =
1

2
(1 − √1 − (

sin 𝜃𝑁𝐴
𝑛𝑆𝑖𝐶

)
2

) (3.105) 

 

 

3.9.5 Effect of Fresnel reflection 
 

For reflection at the SiC/air interface, we need to incorporate the Fresnel equations. Modifying our 

earlier picture to include transmission T and reflection R, we now have: 
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Figure 3.21 | Ray optics picture with Fresnel transmission T and reflection R. The angles 𝜃𝑆𝑖𝐶  

and 𝜃𝑁𝐴 are determined by Snell's law. A fraction of the light at the SiC/air interface will be 

transmitted while the rest will be reflected, denoted here by T and R. 

 

The Fresnel equations then give: 

 

𝑅𝑠 = |
𝑛𝑆𝑖𝐶 cos 𝜃𝑆𝑖𝐶 − √1 − (𝑛𝑆𝑖𝐶 sin 𝜃𝑆𝑖𝐶)

2

𝑛𝑆𝑖𝐶 cos 𝜃𝑆𝑖𝐶 + √1 − (𝑛𝑆𝑖𝐶 sin 𝜃𝑆𝑖𝐶)
2
|

2

, 𝑅𝑝 = |
𝑛𝑆𝑖𝐶√1 − (𝑛𝑆𝑖𝐶 sin 𝜃𝑆𝑖𝐶)

2 − cos 𝜃𝑆𝑖𝐶

𝑛𝑆𝑖𝐶√1 − (𝑛𝑆𝑖𝐶 sin 𝜃𝑆𝑖𝐶)
2 + cos 𝜃𝑆𝑖𝐶

|

2

(3.106) 

 
𝑇𝑠 = 1 − 𝑅𝑠, 𝑇𝑝 = 1 − 𝑅𝑝 (3.107) 

 

     Where 𝑅𝑠, 𝑅𝑝 represent the reflectance for s-polarized or p-polarized light and 𝑇𝑠, 𝑇𝑝 represent 

the transmission for s-polarized or p-polarized light. Here we are interested in the transmission. 

Assuming 50/50 polarization, we have: 

 

𝑇𝑎𝑣𝑔(𝜃) =
𝑇𝑠 + 𝑇𝑝

2
= 1 −

𝑅𝑠 + 𝑅𝑝

2
(3.108) 

 

𝑇𝑎𝑣𝑔(𝜃) = 1 −
1

2
(|
𝑛𝑆𝑖𝐶 cos 𝜃 − √1 − (𝑛𝑆𝑖𝐶 sin𝜃)

2

𝑛𝑆𝑖𝐶 cos 𝜃 + √1 − (𝑛𝑆𝑖𝐶 sin𝜃)
2
|

2

+ |
𝑛𝑆𝑖𝐶√1 − (𝑛𝑆𝑖𝐶 sin𝜃)

2 − cos 𝜃

𝑛𝑆𝑖𝐶√1 − (𝑛𝑆𝑖𝐶 sin𝜃)
2 + cos 𝜃

|

2

) (3.109) 
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     We will repeat the integrals done in section above, except now we will include this angle-

dependent average transmission factor. We will also only integrate up to 𝜃𝑆𝑖𝐶  (instead of 𝜃𝑁𝐴) in 

order to account for refraction. This gives: 

 

𝑃𝑑𝑖𝑝𝑜𝑙𝑒 = ∫ ∫ |〈𝑆〉𝑦|𝑇𝑎𝑣𝑔(𝜃)𝑑𝐴
𝜃𝑆𝑖𝐶

0

2𝜋

0

= ∫ ∫ |〈𝑆〉𝑦|𝑇𝑎𝑣𝑔(𝜃)𝑟
2 sin 𝜃 𝑑𝜃𝑑𝜙

𝜃𝑆𝑖𝐶

0

2𝜋

0

(3.110) 

 

The prefactors in 〈𝑆〉𝑦 will be dropped again: 

 

𝑃𝑑𝑖𝑝𝑜𝑙𝑒 ∝ ∫ ∫ (cos2𝜙)𝑇𝑎𝑣𝑔(𝜃) sin 𝜃 𝑑𝜃𝑑𝜙
𝜃𝑆𝑖𝐶

0

2𝜋

0

= ∫ cos2𝜙𝑑𝜙∫ 𝑇𝑎𝑣𝑔(𝜃) sin𝜃 𝑑𝜃
𝜃𝑆𝑖𝐶

0

2𝜋

0

(3.111) 

𝑃𝑑𝑖𝑝𝑜𝑙𝑒 ∝ 𝜋∫ 𝑇𝑎𝑣𝑔(𝜃) sin 𝜃 𝑑𝜃
𝜃𝑆𝑖𝐶

0

(3.112) 

 

And as before, we will divide this result by 2𝜋 from 𝑃𝑑𝑖𝑝𝑜𝑙𝑒,𝑓𝑢𝑙𝑙 (which does not change) to give 

the collection efficiency: 

 

𝐶𝐸 =
1

2
∫ 𝑇𝑎𝑣𝑔(𝜃) sin 𝜃 𝑑𝜃
𝜃𝑆𝑖𝐶

0

, xy dipole emission (3.113) 

 

In the isotropic emitter case, we now have: 

 

Fractional power =
𝑃𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐

𝑃𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐,𝑓𝑢𝑙𝑙
=
∫ 𝑑𝜙
2𝜋

0 ∫ 𝑇𝑎𝑣𝑔(𝜃) sin 𝜃 𝑑𝜃
𝜃𝑆𝑖𝐶
0

∫ 𝑑𝜙
2𝜋

0 ∫ sin 𝜃 𝑑𝜃
𝜋

0

=
∫ 𝑇𝑎𝑣𝑔(𝜃) sin𝜃 𝑑𝜃
𝜃𝑆𝑖𝐶
0

2
(3.114) 

𝐶𝐸 =
1

2
∫ 𝑇𝑎𝑣𝑔(𝜃) sin 𝜃 𝑑𝜃
𝜃𝑆𝑖𝐶

0

, isotropic emission (3.115) 
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     Here the two collection efficiencies are still identical. Analytically solving this integral with 

𝑇𝑎𝑣𝑔(𝜃) is complicated, so we have to turn to numerical results. Using the more common 100x 

objective, we have: 

 

100𝑥 objective, 0.85 = sin 𝜃𝑁𝐴 , 𝜃𝑁𝐴 = 58.2
𝑜 (3.116) 

And: 

𝜃𝑆𝑖𝐶 = sin
−1 (

sin 𝜃𝑁𝐴
𝑛𝑆𝑖𝐶

) = 19.2𝑜 (3.117) 

 

This gives the result: 

𝐶𝐸 = 1.6%, for 0.85 NA objective (3.118) 

 

 

3.9.6 Addition of a solid immersion lens 
 

A solid immersion lens (SIL) is a popular option to increase collection efficiency by eliminating 

the effects of refraction at the SiC/air interface. The silicon carbide (or any refractive material) is 

molded into a hemisphere with the optical emitter at its center. In this geometry, every emitted ray 

is at exact 90o to the surface. At this normal incidence for a SIL, we have 𝜃𝑆𝑖𝐶 = 0, so the Fresnel 

coefficients become: 

 

𝑅𝑠 = 𝑅𝑝 = |
𝑛𝑆𝑖𝐶 − 1

𝑛𝑆𝑖𝐶 + 1
|
2

, 𝑇𝑠 = 𝑇𝑝 = 1 − 𝑅𝑠 = 1 − 𝑅𝑝 (3.119) 

 

Which evaluates to: 

𝑅𝑠 = 𝑅𝑝 = 0.1948 (3.120) 
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𝑇𝑠 = 𝑇𝑝 = 0.8052 (3.121) 

 

     This is now a constant factor. We also raise the upper bound of the integral from 𝜃𝑆𝑖𝐶  to 𝜃𝑁𝐴 

since there is no refraction due to the normal incidence at the SiC/air interface. This gives the 

improved collection efficiency of: 

 

𝐶𝐸 = 19.1%, enhancement ≈ 12 𝑥, for 0.85 NA objective (3.122) 

 

     Note that this improvement assumes perfect positioning of the emitter at the center of the SIL. 

In real life, the improvement might only be a factor of ~5-8. 

 

 

3.9.7 Summary of results 
 

A summary of these results is presented in the plots below, which plot collection efficiency as a 

function of collection angle. 

 

 

Figure 3.22 | Collection efficiencies as a function of collection angle for different geometries 

and assumptions. Note that for all of these graphs, the result is equivalent regardless of whether 

the emitter is isotropic or a dipole. The graph on the right is the same as on the left, except with a 

rescaled y-axis to get a better sense of scale for the non-SIL geometries. 
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     The main upshot of this calculation is that the relatively low collection efficiency of an optical 

emitter in silicon carbide can be significantly improved through a SIL, the NA of the objective, or 

even anti-reflection coatings at the surface. 

     Further collection efficiency losses in current silicon carbide setups are tabulated below. Note 

that the exact loss of many of these factors is not known and so can only be approximated. 

 

Source of loss % of light transmitted 

Ray optics losses from VV0 to objective 

(0.85 NA) 

1.6% (from above calculation) 

Transmission through objective ~90% 

All optics (mirrors + dichroics + etc.) 

between objective and single mode fiber 

~80% 

Coupling into single mode fiber ~50% 

SNSPD baseline efficiency at PSB (~1200-

1250 nm) 

~70% 

SNSPD loss collecting unpolarized vs. 

polarized light 

~75% (assuming PSB emission is unpolarized) 

Table 3.1 | Sources of optical collection loss. Collection efficiency losses are approximated from 

various sources. 

 

Total transmission = 1.6% ∙ 90% ∙ 80% ∙ 50% ∙ 70% ∙ 75% = 0.30% (3.123) 

 

Also listed below are possible sources of improvement: 

 

Source of improvement Improvement (200% means 2x improvement) 

SIL 1200% (with perfect alignment) 

Adaptive optics system ~150% 

Higher 0.9 NA objective ~120% (if SIL is already included) 

MW mixing of 𝑚𝑠 = −1 into 0 200% 

Anti-reflection (AR) coatings ~125% (from equation 3.121, assuming + SIL) 

Table 3.2 | Sources of optical collection gain. Potential collection efficiency gains are 

approximated from various sources. 

 

Total posisble improvement = 12 ∙ 1.5 ∙ 1.2 ∙ 2 ∙ 1.25 = 54 (3.124) 
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     Thus, with a highly engineered SIL-based system, the collection efficiency could improve from 

~0.3% to ~15%. Further improvements from here would have to employ integrated optics 

components (on-chip waveguides, tapered fibers, grating couplers, etc.). 
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Chapter 4 
 
Equipment and software 
 

 

Now that we have outlined many of the theoretical foundations for the divacancy, it's time to 

discuss the hardware and software that goes into actual experiments. This chapter will be organized 

into hardware, software, and a discussion of pulses sequences which are used to run actual 

experiments. Optical diffusion and curve fitting are discussed at the end of the chapter. 

 

 

4.1  Hardware 
 

In order to provide full control over a divacancy spin, it is necessary to interweave multiple systems 

at once. Microwave application requires GHz frequency electronics with nanosecond timing 

control. Optical addressability necessitates the use of multiple lasers carefully aligned on an optical 

table with specialized wavelength-dependent mirrors, lenses, and filters. Readout of infrared single 

photons employs the use of a superconducting nanowire detector. Low sample temperatures 

require the use of helium-based cryogenics while maintaining optical and microwave access. There 

is a tremendous amount of physical hardware that goes into each of these systems. In this section, 

we will broadly categorize them into electronics, optics, and cryogenics, and cover the salient 

features and connectivity that allows experiments to happen. 
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4.1.1  Electronics 
 

In our lab the main goal of electronics equipment is to create synchronized experiments with 

optical and microwave signals on nanosecond time scales. A typical configuration of equipment 

is shown in figure 4.1. 

 

 

 

Figure 4.1 | Electronic block diagram of a typical VV0 setup. Signals from the AWG gate 

microwave output from the SRS signal generator and the excitation lasers through the AOMs. The 

gating of these components is synchronized through a collective pulse sequence that is uploaded 

from a lab computer and run on the AWG. 

 

     We use an arbitrary wave generator (AWG) for timing control of experiments. Depending on 

the setup we use either a Tektronix 5014c or a Zurich HDAWG, although both are fully capable 
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of running our experiments. In either case the AWG outputs either digital TTL voltages or 

continuous analog voltages. TTL is typical used for on/off gating, whereas analog signal is using 

for control of IQ modulation and resonant AOM control as shown in the figure. The Stanford 

Research Systems (SRS) signal generator is used as our source of MW signal. It has a variable 

output power up to 16.5 dBm (~4.5 mW) in a frequency range of DC to ~6 GHz. The I and Q 

quadratures of the signal are controlled with the AWG and the output power is controlled with 

direct commands from a computer. Microwave switches are gated by TTL pulses and selectively 

turn signals on or off. The amplifiers we use are typically designed for signals in the ~1 GHz to 4 

GHz range, although lower frequency amplifiers in the 1-1000 MHz range are also used for nuclear 

spin experiments. The power gain is up to 37 dBm with a max input of 0 dBm. Amplifiers with 

less gain (which are much less expensive) are available but may result in insufficient powers to 

effectively drive spin rotations. 

     As an aside on power units, the conversion between Watts and dBm is given by: 

 

𝑃(𝑊) = 10
(
𝑃(𝑑𝐵𝑚)−30

10
)

(4.1) 

 

Where dBm can be positive or negative or even zero. The units of dBm are commonly used because 

gains and losses can be calculated quickly as additive or subtractive factors. Some common 

examples of power are: 

 

1 𝑚𝑊 = 0 𝑑𝐵𝑚, 1 𝑊 = 30 𝑑𝐵𝑚 (4.2) 

 

     From any starting power, each ±10 dBm corresponds to a factor of 10x gain or loss in power. 

So, a 30 dB gain from an amplifier would be factor of 10^3 increase in power. Under max power 

for our model, a 0 dBm input signal would go to 37 dBm which is ~5W. Microwave signals travel 
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along either SMA or BNC cables. BNC is typically used for longer distance transmissions, whereas 

SMA is typically used after the amplifier close to the sample. 

     Acousto-optic modulators (AOM) and electro-optic modulators (EOM) are used to gate off-

resonant and resonant lasers, respectively. The EOMs are used for resonant lasers due to their 

generally faster rise and fall times on the nanosecond time scale, which becomes relevant when 

exploring excited state dynamics. The general operating principle of an AOM/EOM is that it uses 

acoustic waves or electric fields to induce a change in index of refraction in the device material, 

which in turn forms a sort of diffraction pattern for outgoing light. In practice this means that the 

incoming beam is deflected to a first order beam with the AOM/EOM on, which is used to address 

the sample. In this manner, gating the AOM/EOM on or off with gate the laser reaching the sample 

as on/off. 

     For readout, photons from the sample are fed to an SNSPD which outputs small voltage spikes 

to eventually be read out by data acquisition device (DAQ). A schematic of the relevant readout 

electronics is given in figure 4.2. 
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Figure 4.2 | Schematic of readout electronics. The photons from the sample travel through a 

single-mode fiber to the SNSPD, which outputs small mV voltage spikes. These pulses are 

converted to TTL and sent to the DAQ, which is queried by a computer to obtain the photon counts. 

 

     Here, a pulse converter turns the SNSPD output to TTL pulses that can be read by the DAQ. 

The intermediary MW switches are used to selectively gate which channels of the DAQ receive 

counts, with the option of receiving none at all (e.g., during spin initialization). 

 

 

4.1.2 Optics 
 

A simplified schematic of how lasers and dichroic mirrors can be configured in a VV0 optical setup 

is shown below. 
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Figure 4.3 | Optical excitation and collection paths for a basic VV0 setup. The left figure 

represents excitation, while the right figure represents collection. Here blue represents the charge 

reset 705 nm laser light, green represents 905 (or 975) nm off-resonant excitation laser light, red 

represents resonant laser light, and yellow represents photoluminescence from the defect. 

 

     For alignment purposes, it is often useful to work with only 90-degree angles that are aligned 

with the holes of the optical table. Generally the beam is constrained to be at a constant height 

throughout the path, which allows for fine tuning to be limited to the x/y directions. The choice of 

mirrors can be important to minimize reflection losses, so should be checked based on the 

wavelengths of interest (especially for collection). In practice there are multiple options that allow 

for 95+% reflection. We typically use 1-inch diameter mirrors mounted on manual two-axis kinetic 

mounts. Two mirrors can direct a beam angle and displacement. A pair of mirrors is sometimes 

called "bow-tie" configuration due to the crossing of the laser in some geometries. Translating a 

beam without changing its angle is referred to as "beam walking" and involves deterring the beam 

angle with the first bow-tie mirror, then compensating for this deflection by adjusting the second 

bow-tie mirror. Generally speaking, greater separation between mirrors allows for finer control of 

the beam, at the cost of occupying more space on the optical table. The collection path is usually 

optimized with photoluminescence with a high density VV0 ensemble control sample. Then finer 

tuning is done with a less dense ensemble, and then again with a single defect control chip. During 
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this process, it is important to properly filter out the excitation laser (often with multiple filters) to 

ensure one is not simply maximizing laser scatter. 

     The choice of dichroic mirrors is very important and determines what wavelengths will reach 

the sample and what wavelengths will reach the collection path. Spectral filters can be used to 

select which wavelengths of light to be detected. Typically, we collect photons in the phonon 

sideband (PSB) of the VV0, which is roughly in the wavelength range of 1200-1500 nm. Thus, a 

1200 nm longpass filter is sufficient. Off-resonant lasers are diode lasers typically either at 905 

nm or 975 nm. The use of a tunable resonant laser requires a wavemeter for precise measurement 

of the laser frequency and a Fabry-Perot cavity to diagnose if the laser is single-mode or 

multimode. 

     To gain automated spatial control of the beam over the sample, we use either a fast-steering 

mirror (FSM) with a pair of lenses or two motorized translational stages for x/y control. In either 

case, a motorized stage is used for focus control in the z-direction. The FSM offers the advantage 

of faster spatial scans, but has the drawbacks of slight collection losses and difficulty of alignment 

and imaging due to the two extra lenses involved. Visual imaging of the sample is done with a 

white light source and two flip mount pellicles that reflect light into a camera. Usually the imaging 

optics are as close to the sample as possible in order to maximize the field of view. Most (if not 

all) of our optical setups employ a periscope configuration of mirrors right before reaching the 

sample. This is to allow for 3-axis translational control with the motorized stages, and also allows 

for an adjustable beam height right before the laser reaches the sample. Our setups currently 

employ a near-infrared (NIR) 100x free space objective for both excitation and collection. Here, 

the important figures of merit are a large numerical aperture (NA) and a large enough working 

distance to image a cryogenically cooled sample through the cryostat window. 
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     The collection path ends with focusing the free space PL into a single-mode fiber to be fed into 

the SNSPD. Fiber coupling can also be used for AOMs and EOMs, either as direct fiber coupled 

units or by branching the excitation laser into an "AOM box" and then fiber coupling back to the 

main excitation path. 

 

 

4.1.3 Cryogenics 
 

To obtain the low-temperatures needed for most experiments, we currently use closed-cycle 

helium cryostats from Montana instruments. These cryostats come in different model types which 

are primarily distinguished by the size of the sample stage. In general, a larger sample stage allows 

for more/larger samples at the cost of a longer cooldown period. Regardless of the model, we are 

able to typically reach steady temperatures of ~4-5 K for weeks or months at a time. The closed-

cycle design offers a significant advantage over flow cryostats, which must be frequently 

replenished (every ~3-4 days) with liquid helium in order to stay operational. 

     In addition to reaching low temperatures, there are multiple crucial aspects of any cryostat in 

our experiments: 

1) Optical access for excitation/collection 

2) DC and Microwave access 

3) Low vibrational noise to mitigate interference with optical focus onto a sample. 

 

     All three of these benchmarks are achieved by the Cryostation standard (S) series, which are 

used frequently in our labs. A figure of the s50 model and sample chamber is shown in the figure 

below: 
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Figure 4.4 | Montana Instruments closed-cycle cryostat. Pictured here is the Montana 

Instruments Cryostation s50 model. The upper left is the unit as a whole, the upper right is the 

exposed sample chamber, and the bottom image shows optical access through windows in the 

sample chamber and microwave access through customizable patch panels. Not shown here are 

custom vacuum attachments that are used to connect to external turbo pumps. 

 

     The basic idea of operation is that a closed-cycle helium condensation/vaporization cycle is 

used to cool a platform stage, which in turn cools "stage 2" and "stage 1" of the sample chamber 

before ultimately cooling the sample itself. Luckily, silicon carbide has a high thermal conductivity 

so direct contact with a copper mount is sufficient to provide cooling. The sample chamber must 

be operated under high vacuum (~1e-5-1e-6 Torr), which is achieved through an external turbo 

pump at the beginning of cooldowns supplemented by natural cryopumping as the system cools. 

The unit comes separate liquid helium hosing and a compressor in order to complete the closed 

cycle. We typically store the compressors in a separate cooling closet, although in principle they 

could also be located in the lab itself. 
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4.2  Software – Nspyre 
 

For divacancy experiments, instrument control and experimental algorithms are largely 

implemented by a custom-made python package termed "Nspyre". This stands for "Networked 

Scientific Python Research Environment". In earlier iterations the package was simply "Spyre", 

but a networked capability was later added to allow for remote control by lab computers that are 

not directly connected to the instruments in use. 

     In a broad view, Nspyre builds upon the Lantz package in python, which offers "driver" 

modules to connect to instruments from many companies (NI, Newport, etc.) through various 

physical connections (USB, ethernet, GPIB, etc.). Beyond simply connecting to individual 

instruments and issuing commands, however, Nspyre facilitates the synchronization between 

multiple instruments needed for real experiments. Individual experiments like ODMR or PLE can 

be run through separate "spyrelets" and collected data can be viewed in real time. Live plotting, 

data viewing, and a basic GUI are achieved through the pyqtgraph and pyQt5 packages. Remote 

control (the "networked" part of Nspyre) is implemented using the pymongo package. 

     The general use of Nspyre will be presented in somewhat chronological order based on the 

steps one takes when running an experiment, with the exception of the "Designing an experiment" 

section. In practice, experiments are coded in python before Nspyre is launched, although it is 

possible to run basic instrument commands in a built-in command line. 
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4.2.1 Launching Nspyre – Widgets.main.py 
 

The module to launch the main menu GUI is currently located under nspyre\nspyre\widgets as the 

module "main.py". Running this file from a command terminal (under the appropriate conda 

environment) will bring up the following menu: 

 

 

Figure 4.5 | The "main menu" of Nspyre as of July 2021. The five options from this main menu 

are used to launch experiments, control instruments, and view data. 

 

     It is from this menu that all experiments and instrument commands are run. The pymongo server 

is launched from a separate command terminal with the command "mongo". We will assume the 

remote server is operating as intended and focus on the five options of the Nspyre main menu and 

the creation of spyrelet experiment files. 
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4.2.2 Connecting to instruments – Instrument 
Server 
 

The first option on the main menu is "Start Instrument Server". Clicking on this button will cause 

a separate command line terminal to open and display text for each loaded instrument. Which 

instruments the program attempts to connect to is determined by the configuration file 

"config.yaml", which contains key information for setting Nspyre parameters. As a basic 

demonstration, the configuration file stores the devices in a list where each entry contains the 

appropriate the Lantz driver class for the instrument and the physical connection mechanism, as 

shown below: 

 

device_list: 

  sg1: 

    - lantz.drivers.stanford.SG396 

    - [tcpip::xxx.xxx.x.xxx] 

  daq: 

    - lantz.drivers.ni.simple_daq.Read_DAQ 

    - [Dev1] 

  solar_mot: 

    - lantz.drivers.toptica.MotDLpro 

    - ['COM5', 1] 
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     Certain instruments will require additional steps to enable connection before running Nspyre. 

For example, we use a USB server that must be launched manually on startup and separate software 

to connect to the Toptica tunable laser and wavemeter. 

 

 

4.2.3 Viewing instruments – Instrument Manager 
 

Provided that the instrument server has successfully connected to all desired instruments, one can 

view these instruments in the Nspyre GUI by clicking the "Start Instrument Manager" button on 

the main menu. This will pull up a menu similar to the one shown below: 
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Figure 4.6 | Instrument Manager menu. Various instruments and parameters are displayed in an 

interactive GUI. Parameters values can be set using the green return arrow and refreshed using the 

blue circular arrows.  

 

     The parameters of a particular instrument can generally be categorized into float values and 

Boolean values, both of which can be set and toggled in the GUI. Setting values on instruments 

directly can be used to explore different conditions when running experiments. For example, one 

may be interested in running the same ODMR experiment under a variety of microwave powers. 
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4.2.4 Designing an experiment – Spyrelets 
 

The structure of each experiment is determined by user-defined classes called "spyrelets" to be run 

in the spyrelet launcher. Each class is inherited from a parent Spyrelet class located in the 

spyrelet.py module. Important elements to be filled in or overwritten are shown below with 

comments: 

 

class Spyrelet(): 

# A dict with the names and associated class of the devices 

# required to run this spyrelet 

    REQUIRED_DEVICES = dict() 

 

# A dict with the name and associated class of the sub-spyrelet 

# required to run this spyrelet 

    REQUIRED_SPYRELETS = dict() 

 

    # A definition of the parameters that are used as arguments 

    # to the main/initialize/finalize functions.   

    # These are used both to generate a launcher GUI and to enforce 

    # units at call time. 

    PARAMS = dict() 
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    # An extra dictionary, which can be defined by the user at 

    # initialization time. This can store anything the users want 

    CONSTS = dict() 

 

    """ 

    A few notes about the spyrelet class: 

        - This is the class you need to subclass for making 

experiments. 

        - All devices used in the spyrelet must be listed in the 

REQURIRED_DEVICES dict 

        - All sub-spyrelet must also be listed in the 

REQUIRED_SPYRELETS dict 

        - Upon instantiation the class will check the __init__ 

arguments devices and spyrelets to make sure they 

satisfy these requirements 

        - For higher performance we will store the data internally 

as a list instead of a dataframe.  Quicker to append to 

a list. 

    """ 

 

    def main(self, *args, **kwargs): 

        """This is the method that will contain the user main 

logic. Should be overwritten""" 

        raise NotImplementedError 
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    def initialize(self, *args, **kwargs): 

        """This is the method that will contain the user initialize 

logic. Should be overwritten""" 

        pass 

 

    def finalize(self, *args, **kwargs): 

        """This is the method that will contain the user finalize 

logic. Should be overwritten 

        This will run even if the initialize or main errors out 

        """ 

        pass 

 

     The functions that must be overwritten are the main, initialize, and finalize functions, although 

other functions can be included. As an example, the TaskVsTime spyrelet is used to measure 

photoluminescence counts vs time and has some of the shortest code among the different spyrelets. 

The relevant code is included below: 

 

class TaskVsTime(Spyrelet): 

    REQUIRED_DEVICES = { 

        'daq': Read_DAQ, 

    } 

 

    PARAMS = { 
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        'channel':          {'type':str, 'default': 'DAQ1/ctr2'}, 

        'time_per_point':   {'type':float, 'units': 's',}, 

        'iterations':       {'type':int, 'positive':True}, 

    } 

 

    def read(self, time_per_point): 

        if self.ttype == 'CI': 

            cnt = self.daq.read(self.tname, 1) 

            time.sleep(time_per_point) 

            val = self.daq.read(self.tname, 1)[0] - cnt[0] 

            return val/time_per_point 

        if self.ttype == 'AI': 

            clock_rate = 8000 

            samples = int(time_per_point*clock_rate) 

            return np.mean(self.daq.read(self.tname,samples)[0]) 

 

    def main(self, channel, time_per_point, iterations=100): 

        start_t = time.time() 

        iterator = count() if iterations == 'inf' else 

        range(iterations) 

        for i in self.progress(iterator): 

            val = self.read(time_per_point.to('s').m) 

            self.acquire({ 

                't': time.time()-start_t, 
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                'val': val, 

            }) 

 

    def initialize(self, channel, time_per_point, 

        iterations=100): 

        self.tname = self.name + '_task' 

        self.daq.new_task(self.tname, [channel]) 

        self.ttype = self.daq.get_task_type(self.tname) 

        self.daq.start(self.tname) 

 

    def finalize(self, channel, time_per_point, iterations=100): 

        self.daq.stop(self.tname) 

        self.daq.clear_task(self.tname) 

 

     Here, the main/initialize/finalize functions are properly overwritten, and there is an additional 

read function defined and used in the main function. Of course, more complicated experiments 

that interface with more equipment will have much longer spyrelet classes, but the basic structure 

remains the same. In this way any experiment can be designed with user-defined logic and loaded 

into the spyrelet launcher menu, which will be discussed in the next section. 

 

 

4.2.5 Running an experiment – Spyrelet Launcher 
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Clicking the "Spyrelet Launcher" button on the main menu will bring up a new GUI window with 

all spyrelets loaded. The dropdown menu at the top of this window can be used to select which 

spyrelet to view. An example for the FSM scan is shown in the figure below: 

 

 

Figure 4.7 | Spyrelet launcher window. Shown here is the fast-steering mirror (FSM) scan 

experiment, which rasters the laser across the sample and collects photoluminescence from each 

point. The top drop-down menu is used to toggle between different spyrelets. Experimental 

parameters are set in the GUI and the experiment is initiated with the run button. For example, 

here the start/stop indicates the size of the raster window and num gives the number of points to 

collect on that axis. 

 

     The different parameters of the particular experiment can be set by the options in the spyrelet 

menu. The run button will start the experiment, after which the button toggles to "stop" to terminate 

the experiment. After an experiment has been run, the save button can be used to save the collected 
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data. Lastly, in the configuration file the elements of the experiment_list collection determine 

which spyrelets to load, as sampled below: 

 

experiment_list: 

  taskvtime: 

    class: nspyre.user.taskvstime.TaskVsTime 

    args: {device_alias: {daq: daq}} 

  taskvline: 

    class: nspyre.user.taskvsline.TaskVsLine 

    args: {device_alias: {'sg':'sg1'}} 

  taskvfreq: 

    class: nspyre.user.taskvsfreq.TaskVsFreq 

    args: {device_alias: {'sg':'sg1'}} 

  fsm_scan: 

    class: nspyre.user.taskvsfsm.TaskVsFSM 

 

 

4.2.6 Viewing data – View Manager and Data 
Explorer 
 

The last two options in the Nspyre main menu are "Start view manager" and "Data explorer". Both 

of these options will bring forth a data viewing window, with the view manager for current live 

data and the data explorer for past saved data. In both instances, an interactive graph is displayed 

as demonstrated in the figure below: 
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Figure 4.8 | Viewing window for the Nspyre view manager. An example spatial scan from a 

fast-steering mirror (FSM) raster is shown here, with defect identifiable bright spots corresponding 

to one or multiple divacancies. 

 

     In the viewing window it is possible to interactively scale the graph and set markers for 

coordinates of interest. After an experiment is initiated by hitting the "run" button in the spyrelet 

launcher, the view manager will show the accumulation and averaging of data in real time. 

 

 

4.3  Pulse sequences 
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The structure of each experiment is determined by the specific "pulse sequence" that is run on the 

AWG. Here, the pulses refer to the periods of on/off behavior for various instruments. For the 

majority of experiments, the variables of interest are optical initialization, spin manipulation, 

resonant excitation, and optical readout. Each of these variables corresponds with a physical 

instrument which is gated according to the pulse sequence. Optical initialization is typically 

performed with off-resonant lasers, spin manipulation with AC microwave fields generated from 

a stripline or wire bond, resonant excitation with a resonant tunable laser, and readout with an 

SNSPD. 

     There are several distinguishing factors that make a pulse sequence unique. As a first step, 

generally sequences can be either "continuous wave" (CW) or pulsed. A CW sequence has all of 

its components in a fixed state of on or off without any switching with time. Additionally, when 

microwaves are involved the sequences can either be "two-trace" to compare signal with/without 

microwaves or "single-trace" if only signal with microwaves is being measured. A single trace 

sequence corresponds to one curve being plotted and a two-trace sequence corresponds to two 

curves being plotted, after which we may be interested in taking a difference for comparison. When 

two traces are involved the sequence can be split into two "halves" for comparison, whereas the 

second half is simply repeated in a single-trace sequence. Finally, the variable that is being swept 

in the sequence is a fundamental factor that determines what type of measurement is being taken. 

     Regardless of the sequence structure, we always have photon counts as the dependent variable 

on the y-axis. The x-axis is the independent variable that is being swept in the pulse sequence. 

Generally speaking, if microwave frequency is being swept then the sequence is some sort of 

ODMR measurement (run with the Taskvsfreq spyrelet). If laser frequency is being swept, the 

sequence is most likely some sort of PLE measurement (run with the Taskvslaserfreq spyrelet). As 
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we will see, some sequences are identically constructed with the only difference being what 

variable is swept. Lastly, the pulse sequences outlined here are by no means a comprehensive 

collection of all possibilities, but hopefully they give an intuition for the key factors in designing 

an experiment. 

 

 

4.3.1 Measuring microwave transitions – ODMR 
 

Optically detected magnetic resonance (ODMR) combines optical initialization and readout with 

microwave rotations into a single measurement that allows us to experimentally characterize the 

microwave transitions of the ground state. It is a tremendously powerful technique for 

characterizing defects and identifying defect type, and is often the first step towards more in-depth 

measurements. The central idea is to measure either an increase or decrease in photoluminescence 

(PL) from a defect or ensemble defects when applied microwaves are on resonance with a ground 

state magnetic transition (e.g., 𝑚𝑠 = 0 ↔ 𝑚𝑠 = ±1). In this way, one can obtain the exact 

microwave frequencies that cause these transitions to occur. 

 

We will review three types of ODMR in this section: 

• Off-res CW ODMR 

• CW resonant ODMR 

• Pulsed resonant ODMR 
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     There are different types of ODMR measurements that can be run, but we'll start with the most 

basic, and in some respects, the most informative measurement: Off-res CW ODMR. An outline 

of the pulse sequence is given below: 

 

Figure 4.9 | Off-res CW ODMR pulse sequence. The highlight on the blue "rotate" portion 

indicates that the microwave frequency is being swept as the independent variable. Note that this 

sequence can be run either as above or as two separate traces with and without microwaves. 

 

     Due to the continuous nature of this sequence, it technically is not necessary to have gating 

components like an AOM or MW switch to run this experiment. In fact, loading a pulse sequence 

onto an AWG is not necessary either, as no actual gating is occurring. The off-resonant excitation 

is constantly on, microwaves are constantly being delivered to the sample, and the detector is 

constantly reading out PL/photons (with a longpass filter to filter out laser scatter). The only 

experimental control that is truly required is to sweep the microwave frequencies that are being 

output from the signal generator. This sweeping is denoted in the figure by the blue highlight 

surrounding the "rotate" pulse. 

     The lower experimental requirements for CW sequences make them appealing options for 

setups that are not fully built. Additionally, the simplicity of this measurement makes debugging 
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issues more straightforward if the results are not as expected. At the cost of this experimental 

simplicity comes conceptual complexity. For instance, if the spin is constantly being initialized, 

why would we ever expect to measure a spin rotation? The answer is that initialization does not 

happen instantaneously, even under constant illumination. In the periods between optical 

excitation and ISC decay that cause initialization, the spin is being uniformly rotated due to the 

presence of microwaves. This competition between spin initialization and spin rotation results in 

a steady state equilibrium spin orientation. The closer the microwaves are to being on resonance, 

the more this equilibrium shifts towards a rotated spin state. For detuned microwaves, the 

equilibrium will be closer to the polarized spin state. 

     How the spin state maps to a photoluminescence contrast depends on the divacancy in question. 

For the (hh) VV0, the 𝑚𝑠 = 0 state serves as the "bright" state, meaning that microwave rotations 

to 𝑚𝑠 = ±1 will manifest as less PL. For the (kk) VV0 the situation is reversed, where the 𝑚𝑠 = 0 

state is in fact the "dark state" and more PL is measured in the 𝑚𝑠 = ±1 states. In the (kh) VV0, a 

mixture of both behavior is seen. The |−〉 state is the brighests, followed by the |0〉 state, and then 

the |+〉 state as the darkest. A figure of off-res ODMR for single VV0's displayed this behavior is 

shown below in figure 4.10 [2]. Note that due the constant signal from the off-resonant laser, the 

contrast is this measurement is typically only ~5-10% and so more averaging is required. 
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Figure 4.10 | Off-res ODMR contrast for single VV0 defects. Adapted from [2]. When off-

resonant excitation is used, the (hh) VV0 displays a negative ODMR contrast, the (kk) VV0 displays 

a positive ODMR contrast, and the (kh) VV0 displays both positive and negative ODMR contrast. 

Contrast levels are typically ~5-10%. 

 

     The next sequence, CW resonant ODMR, is still a continuous sequence but employs the use of 

a resonant laser + a red 705 nm laser in place of the 905/975 nm off-resonant excitation laser. A 

schematic of the pulse sequence is shown below: 

 



178 

 

 

Figure 4.11 | Pulse sequence for CW resonant ODMR. The blue highlight on the "rotate" pulse 

indicates that microwave frequency is being swept as the independent variable. Note that this 

sequence can be run either as above or as two separate traces with and without microwaves. 

 

     The role of the 705 nm red laser is to "recharge" the divacancy to its neutral charge state in the 

event that the resonant laser ionizes the divacancy. This mechanism is also in place for the 905/975 

nm laser, but the added benefit of 705 nm (besides more efficient recharging) is that its contribution 

to optical excitation is negligible. This means that any photon counts collected can be attributed to 

excitation from the resonant laser. This ultimately provides a much higher contrast signal than off-

res ODMR, as there is no longer a constant background signal from the off-resonant laser being 

continuously on. In this way, the many purposes of the single 905/975 nm laser have been 

separated into two lasers. 

     Here, the resonant laser is tuned to the (mostly) cycling transition of |0〉 → |𝐸𝑥〉 or |0〉 → |𝐸𝑦〉. 

Without microwave mixing between the |0〉 and |±1〉 (or |±〉) ground states, this continuous 

excitation will eventually pump the defect into a nonzero spin state and photoluminescence will 

stop. When applied microwaves approach a transition frequency, the spin states become mixed 

and photoluminescence is observed. With this mechanism, the use of a resonant laser ensures that 
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the counts are always higher on microwave resonance. This means that the defect-dependent 

contrast signal seen with off-res ODMR is lost, with the benefit of significantly higher contrast 

levels. 

     The last type of ODMR frequently used in experiments is the pulsed version of resonant 

ODMR. Here it is necessary to have a well-calibrated microwave pi pulse (which will be discussed 

in the next section) in order to run the sequence most efficiently. This can sometimes result in a 

chicken-or-egg scenario. Calibrating a pi pulse requires the correct MW frequency, which can be 

obtained through pulsed ODMR, which in turn needs a calibrated pi pulse, leading to circular 

requirements. This is usually resolved either by using an off-resonant ODMR sequence or simply 

iterating between pi pulse calibration and pulsed ODMR to dial in the parameters. A schematic of 

the pulsed resonant ODMR sequence is shown below: 

 

 

Figure 4.12 | Pulse sequence for pulsed resonant ODMR. The blue highlight on the π pulse 

indicates that microwave frequency is being swept as the independent variable. This sequence can 

alternatively be run as a single trace where only the first half of the sequence is repeated, which 

would provide a 2x speedup for data acquisition at the cost of losing the no-MW comparison 

signal. 
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     Here, the initialization, rotation, and readout portions of the sequence have now been separated. 

This means that the SNSPD can be gated to collect photons only during the resonant excitation 

period, which helps aid with contrast. MW rotation is now no longer competing with a 

simultaneous initialization pulse, meaning that an initialized |0〉 state should fully rotate to either 

|±1〉 for c-axis VV0's or |±〉 for basal VV0's. Pulsed resonant ODMR may take longer to collect 

due to less overall collection time, but it boasts the highest contrast levels of all sequences. When 

off-resonant initialization is used, the contrast is ~95%. When resonant initialization is used (not 

shown here) the contrast is ~99% [39,43]. When the |0〉 → |𝐸𝑥〉 or |0〉 → |𝐸𝑦〉 resonant transition 

is used, the pi pulse will rotate into a non-cycling spin state and thus result in a loss of counts. This 

means the contrast sign will be negative, regardless of defect type. Due to the high contrast levels, 

pulsed ODMR is usually reserved for high-precision measurements or paper-quality data. 

 

 

4.3.2 Measuring optical transitions – PLE 
 

Photoluminescence excitation (PLE) measurements involve sweeping the frequency of a 

narrowline excitation laser on an optically active defect. When the defect photoluminesces, the 

laser is in resonance with an excited state optical transition. Therefore, this measurement can be 

used to map out the transition frequencies between the ground and excited states. PLE, in 

combination with ODMR, provides clear evidence of a color center defect and also helps 

categorize the defect type. In contrast with ODMR, however, PLE is usually only performed with 

single defects. When an ensemble of defects is present, the excited state's high sensitivity to local 

strain and electric field results in the overlap of many PLE lines which combine to give a 

featureless "hump" of signal that does not provide much information [1]. Similar to ODMR, there 
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are CW and pulsed version of PLE. It can also be run with or without the presence of microwaves, 

which are used to reveal the optical transitions of the nonzero spin sublevels. 

 

We will review three types of PLE in this section: 

• Pulsed PLE (no MW) 

• CW PLE 

• Pulsed MW PLE 

 

     The simplest version of PLE involves no microwave application, although it is still a pulsed 

measurement so timing electronics are necessary. An outline of this pulse sequence is given below: 

 

 

Figure 4.13 | Pulse sequence for pulsed PLE with no microwaves. The sweeping of the resonant 

laser frequency is denoted by the red highlight surrounding the "excite" pulse. 

 

     Here, sweeping the resonant laser frequency will result in counts only when it is on resonance 

with an optical transition. Since there are six excited states, one may expect there to be six PLE 

peaks. However, this is not the case for this sequence. Spin initialization polarizes the spin state to 



182 

 

𝑚𝑠 = 0, for which there are only two excited state transitions to |𝐸𝑥〉 (higher energy) or |𝐸𝑦〉 (lower 

energy). Since these spin zero transitions can vary widely with local strain, this sequence is 

frequently used as an initial characterization of the excited state transitions. 

     A continuous version of this sequence is possible, but the off-res 905/975 nm laser must be 

replaced with a charge init laser of 705 nm light to limit background counts in a similar fashion to 

CW resonant ODMR. In fact, the pulse sequences for CW PLE and CW resonant ODMR are 

identical! The key difference is that the laser frequency is being swept for PLE as opposed to 

microwave frequency for ODMR. The CW PLE pulse sequence is shown below: 

 

 

Figure 4.14 | Pulse sequence for CW PLE. The red highlight on the "excite" pulse indicates that 

optical frequency is being swept as the independent variable. Note that this sequence can be run 

either as above or as two separate traces with and without microwaves. 

 

     Similar to CW resonant ODMR, running this sequence technically does not require timing 

components such as the AWG, AOM, or MW switches. In practice, however, these components 

are usually well established before one attempts to do single defect experiments. Since this 
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sequence does not feature any explicit spin initialization and constantly rotates the spin state, it is 

possible to detect all six excited state transitions outlined in chapter 2. 

     Lastly, PLE can be run as a pulsed sequence, as given below: 

 

 

Figure 4.15 | Pulse sequence for microwave-assisted pulsed PLE. The red highlights on the 

"excite" pulses indicate that optical frequency is being swept as the independent variable. This 

sequence can alternatively be run as a single trace where only the first half of the sequence is 

repeated, which would provide a 2x speedup for data acquisition at the cost of losing the no-MW 

comparison signal. 

 

     Here, the spin initialization and subsequent pi pulse combines to initialize the spin into either 

|±1〉 for a c-axis VV0 or |±〉 for a basal VV0. In this way, the first trace directly compares signal 

from nonzero spin states to signal in the second trace from spin zero states [3]. Since the 

{|𝐴1〉, |𝐴2〉, |𝐸1〉, |𝐸2〉} states are not cycling and thus do not emit many photons, their PLE peaks 

will be comparatively very weak. In practice this sequence is sometimes forgone in favor of CW 

PLE due to these low counts, but it is still frequently used when there is not access to a gated 705 

nm laser. 
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4.3.3 Pi pulse calibration 
 

Lastly, pulse sequences can be designed to calibrate certain elements of an experiment to be used 

as parts of other sequences. The most common calibration is that of a pi pulse between spin states, 

which for the VV0 usually means |0〉 ↔ |±1〉 or |0〉 ↔ |±〉. We will review the two main types of 

pi pulse calibration in this section: 

 

• Power pi pulse calibration 

• Time pi pulse calibration 

 

The sequence for power pi pulse calibration is shown below: 

 

 

Figure 4.16 | Pulse sequence used for calibrating a power pi pulse. The variation of power is 

represented by the red highlight on the microwave "rotate" pulse. This sequence can alternatively 

be run as a single trace where only the first half of the sequence is repeated, which would provide 

a 2x speedup for data acquisition at the cost of losing the no-MW comparison signal. 
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     Here, a "power pi pulse" refers to a spin rotation where the duration of the microwave pulse is 

kept constant but the power the microwaves are increased until a full pi rotation is achieved. This 

can be convenient as the total length of the pulse sequence can be kept fixed, which makes the 

AWG sequence simpler to design. The resonant laser is set to a cycling transition at either |0〉 →

|𝐸𝑥〉 or |0〉 → |𝐸𝑦〉. Note that this sequence is nearly identical to pulsed resonant ODMR, with the 

key difference of sweeping microwave power instead of microwave frequency. The calibration of 

the pi pulse is achieved by selecting the power that results in maximum photoluminescence 

contrast, which is negative in sign here. 

     Conversely, the sequence for time pi pulse calibration is shown below: 

 

 

Figure 4.17 | Pulse sequence used for calibrating a time pi pulse. The varying time duration of 

the microwave rotation is represented by the black arrow. This sequence can alternatively be run 

as a single trace where only the first half of the sequence is repeated, which would provide a 2x 

speedup for data acquisition at the cost of losing the no-MW comparison signal. 

 

     In a time-based pi pulse, the microwave pulse is kept at a fixed power and varied in duration. 

This time-based measurement is the more "traditional" form that is used to demonstrate, for 
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example, Rabi oscillations. It is otherwise identical to the power pi pulse calibration, so both forms 

are used interchangeably. 

 

 

4.4  Optical linewidths and spectral 
diffusion 
 

When collecting PLE scans, the full-width half-maximum of each excitation peak is an indication 

of the divacancy's local environment. In an ideal case, these optical linewidths are sufficiently 

narrow to individually address the spin sublevel transitions. In many cases, however, broadened 

linewidths cause the transition frequencies to overlap and excitation selectivity is lost. The other 

consequence is that the generation of indistinguishable ZPL photons for remote spin-spin 

entanglement becomes greatly limited. [40] 

     The main culprit for broadening is a fluctuating charge environment that causes Stark shifting 

of the excited state energies. We refer to this effect as "spectral diffusion". Since the excited state 

is much more strongly affected by electric field than the ground state [25], local charge fluctuations 

result in changes in transition energies. As these stochastic changes are averaged over many 

experiments, the excitation frequency will appear to have a broad range, even if it remains narrow 

for any one particular experiment. The fluctuating charges are in turn caused by optical excitation, 

which allows for charge traps in the silicon carbide to become photoionized and collectively 

"scramble" to a new configuration and this a new electric field at the defect. The time scale of this 

effect is not well characterized, but it becomes faster (and thus broader) under higher laser powers 

and is present under a wide range of off-resonant wavelengths from ~300-1000 nm.  
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     The measured PLE linewidth has a broad range of values depending on the SiC sample and 

divacancy preparation procedure. The narrowest possible linewidth is set by the lifetime of the 

divacancy of 𝜏 ≈ 15 𝑛𝑠, which corresponds to 𝑓𝐹𝑊𝐻𝑀 =
1

2𝜋𝜏
≈ 10 𝑀𝐻𝑧. In practice the linewidth 

is usually in the range of ~100's of MHz for intrinsically doped SiC with divacancies >1 micron 

below the surface. Generally speaking, divacancies created with electron irradiation give narrower 

linewidths than those created with ion implantation, which we attribute to the lessened crystal 

damage (and thus formation of charge traps) from electron irradiation. When ion implantation is 

used, the linewidths are usually broadened by another 200-300 MHz. As long as the linewidth 

remains below ~1 GHz then the optical transitions are usually resolved. 

     Naturally, we wish to limit the effects of spectral diffusion as much as possible. One recent 

approach to this problem is to incorporate doping in the SiC in order to create a built-in electric 

field and stabilize the charge traps. This approach has shown impressive results for PIN doped 

diodes, which are capable of reaching lifetime-limited linewidths [43]. Using the same idea of 

static electric fields, it is also possible to apply voltages directly to pads on top of an intrinsically 

doped SiC chip, which also evacuates charge traps and gives linewidths close to the lifetime limit 

[31]. 

     To gain some context on the effects of doping, the optical linewidths as a function of doping 

configurations is given in figures 4.18 and 4.19. In all configurations listed, it is important to note 

that neutral divacancies only exist in intrinsically doped material. In this way, the doping layers 

confine where divacancies can exist in the z-direction. 
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Figure 4.18 | Optical linewidths for thin doping heterostructures. SiC of different doping 

configurations are either electron irradiated or 12C ion implanted in order to create divacancies. 

For all configurations the N-type doping is achieved with 1e18 cm-3 nitrogen dopants, the P-type 

doping is achieved with 1e18 cm-3 aluminum dopants, and the intrinsic I-type regions have <1e15 

cm-3 residual dopants. The frequencies indicate measured optical PLE linewidths. 
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Figure 4.19 | Optical linewidths for thick doping heterostructures. SiC of different doping 

configurations are either electron irradiated or 12C ion implanted in order to create divacancies. 

For all configurations the N-type doping is achieved with 1e18 cm-3 nitrogen dopants, the P-type 

doping is achieved with 1e18 cm-3 aluminum dopants, and the intrinsic I-type regions have <1e15 

cm-3 residual dopants. The frequencies indicate measured optical PLE linewidths. 

 

     The overall trend is that the near surface divacancies in figure 4.18 have broader linewidths 

than those that are situated deeper in the lattice. Additionally, the proximity to P-doped regions 

may have a detrimental effect, as the PIP heterostructure has a significantly wider linewidth of ~5 

GHz than the equivalent NIN heterostructure. At the same time, the absence of any doping for a 

thin 400 nm intrinsically doped layer has the worst linewidths of all configurations. It is difficult 

to say whether surface proximity or P-type proximity plays a bigger role here, but the addition of 

thin 100 nm layers of N-type doping appears to provide some degree of screening of field 

fluctuations at the defect. Unfortunately, the sub-micron PIN heterostructure has yet to be tested. 

Given the detrimental effect of nearby surfaces, the formation of nanostructures can pose an 

obstacle for maintaining thin linewidths. This issue is discussed more in chapter 7. 

     For thicker doping structures, divacancies that are located >1 micron away from any surface 

have the benefit of generally thinner linewidths. A PIN configuration in conjunction with this 

seclusion provides a built in electric field that further narrows linewidths, as showcased in the 

work in [43]. Interestingly, for the geometry of 5 µm P-type and 1 µm I-type, additional applied 

electric fields do not provide any further narrowing. This is in contrast to the other two 

heterostructures, where external applied fields can bring the optical linewidth close to the lifetime 

limit of ~10 MHz. Evidently, the submicron proximity to doped regions results in a broadening 

effect that cannot be overcome with applied fields alone. 
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4.5  Curve fitting with python 
 

Fitting curves to collected data can almost universally by done using the built in scipy.optimize 

curve fit function. This function uses least squares regression to fit a user defined function to given 

data points, where the parameters of the fit function are varied to minimize the sum of the squared 

residuals. 

     The SciPy curve fit function outputs two main results labeled as "popt" and "pcov". The popt 

output is a 1D list containing the optimal values for the parameters in the fit function. The pcov 

output is a covariance matrix for the fit values in popt. The square root of each diagonal entry in 

pcov gives the one standard deviation error of the corresponding fit value in popt. 

     Additionally, the optional "sigma" parameter is typically a 1D list containing the standard 

deviations of error in each y data point. Then, if the optional "absolute_sigma" Boolean parameter 

is set to true, then these sigma values are taken at face value and will affect the covariance output. 

Otherwise, a false value for this parameter means that only relative values in sigma will be 

considered, with an overall scaling constant applied to all sigma values such that the reduced chi 

square value is equal to one. 

     It is worth briefly discussing where the error bars come from for individual data points in actual 

experiments. If we perform 𝑛 experiments of a measured quantity 𝑥, then the average value and 

variance of this quantity will be given by: 

 

𝑥̅ =
1

𝑛
∑𝑥𝑖

𝑛

𝑖=𝑖

, 𝑠2 =
1

𝑛 − 1
∑(𝑥𝑖 − 𝑥̅)

2

𝑛

𝑖=𝑖

(4.3) 

 

     Where the use of 𝑛 − 1 for the sample variance 𝑠2 instead of 𝑛 is known as Bessel's correction. 

Thus, the error bars in our experiments are entirely determined by the number of experiments that 
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are averaged over. Ideally then, the number of experiments is extremely large to minimize error, 

but this can take prohibitively long for lengthy pulse sequences (e.g., the long waiting times in a 

T1 measurement). 

     Here is a simple application of the SciPy fit function using a linear fit to example points. Here 

the data points don't have any physical meaning, and are just used for demonstration purposes. 

 

from scipy.optimize import curve_fit 

 

def fit_fxn(t, a, b): 

    f = a*t+b 

    return f 

 

p0_guess = [1, 0] # initial guess of parameters 

x_data = np.array([1, 2, 3, 4, 5]) 

y_data = np.array([0.5, 3, 6.5, 7, 9]) 

 

popt, pcov = curve_fit(fit_fxn, x_data, y_data, p0=p0_guess) 

y_fit = fit_fxn(x_data, *popt) 

 

print(popt) # best fit [a, b] values 

print(np.sqrt(np.diag(pcov))) # gives 1 standard deviation errors 

of [a, b] values 
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plt.plot(x_data, y_data, color='blue', linewidth=1.0, 

label='data') 

plt.plot(x_data, y_fit, color='red', linewidth=1.0, label='fit') 

plt.legend() 

plt.show() 

 

This gives the following result: 

 

Figure 4.20 | Example result of SciPy fit function using a linear fit. A simple linear fit (red) to 

pseudo-linear data points (blue) are fit with using the SciPy curve_fit function using least squares 

regression. More complicated fits can be carried out with user-defined fit functions such as 

sinusoids, exponentials, or logarithms. 

 

The choice of which fit function to use for the data depends on the type of experiment being run. 

Some common fit functions are given below with some example applications. 

 

Lorentzian function 

Used for optical spectrum for narrow PLE, narrow ODMR peaks, and quality factor peaks 
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The Lorentzian function is a single peaked function given by: 

 

𝑓(𝑥) = 𝐴(
𝛾2

(𝑥 − 𝑥0)2 + 𝛾2
) + 𝑦0, 2𝛾 = FWHM (4.4) 

 

Where 𝐴 is the height of the peak, 𝛾 is a parameter related to the width of the peak, and 𝑥0, 𝑦0 

gives the center of the peak. The y offset may be due to a noise floor, for example. 

 

Gaussian function 

Used for optical spectrum for broad PLE and broad ODMR peaks 

The Gaussian curve or normal curve is given by: 

 

𝑓(𝑥) = 𝐴 ∙ exp (−
(𝑥 − 𝑥0)

2

2𝛾2
) + 𝑦0, 2√2 ln 2 𝛾 = FWHM (4.5) 

where 

𝐴 = peak height, 𝑥0 = peak center, 𝛾 ∝ width (4.6) 

 

Generally speaking, the Gaussian function can be used for any variable that displays a normally 

distributed noise. In situations where the central limit theorem applies this function can also be 

used as a fit. 

 

Exponential decay 

Used for excited state lifetime, 𝑇1 decay 

𝑓(𝑥) = 𝐴 ∙ exp (−
(𝑥 − 𝑥0)

𝜏
) + 𝑦0 (4.7) 
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A "stretched" exponential adds a power to the exponential argument and takes the form: 

 

𝑓 = 𝐴 ∙ exp (−(
(𝑥 − 𝑥0)

𝛾
)

𝑏

) + 𝑦0 (4.8) 

 

This appears in, for example, a 𝑇2 CPMG decay. 

 

Sine decay 

Used for 𝑇2
∗ decay, decay of Rabi oscillations 

 

𝑓 = −𝐴 ∙ (exp (− (
𝑥

𝜏
)
𝑛

)) ∙ cos(𝜔𝑥 + 𝜙) + 𝑦0 (4.9) 

 

Sine squared decay 

Used for 𝑇2 decay 

𝑓 = −𝐴 ∙ (exp (− (
𝑥

𝜏
)
𝑛

)) ∙ cos2(𝜔𝑥 + 𝜙) + 𝑦0 (4.10) 
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Chapter 5 
 
Cavity Quantum 
Electrodynamics 
 

 

Quantum electrodynamics (QED) is the study of interactions between quantized electromagnetic 

fields and quantized matter such as single atoms. When the atom is placed inside of a resonant 

cavity, the study of the threefold interaction between the atom, field, and cavity is referred to as 

cavity quantum electrodynamics (CQED). The main takeaway is that there can be nontrivial 

interactions between these systems that fundamentally alter the behavior of each system 

individually. [47,48] In some cases, one can no longer think of the systems as being completely 

separate and the quantum states of the atom and cavity field fuse together to form polariton states. 

Such interactions are typically reserved for the "strong" coupling regime, whereas different 

behavior is observed with weaker coupling. Quantifying and analyzing this behavior is the main 

purpose of CQED. 

     In this chapter we will outline some of the fundamental variables and results from CQED, which 

we can then apply to the VV0-cavity system in chapter 7. The discussion in this chapter will 

therefore be general and not focus on any particular real-life implementation. Nevertheless, the 

results can be very powerful in understanding how these systems behave in various coupling 

regimes. 
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5.1  Cavity QED parameters 
 

In the broadest setting, CQED entails a single "atom" or emitter of radiation inside of a cavity with 

a resonant frequency. An electromagnetic field is added to the cavity and becomes confined while 

interacting with the atom. Here, the "atom" can be any optical emitter (such as a color center, a 

quantum dot, or a literal trapped atom) with a two-level system and the electromagnetic field and 

cavity can be at any frequency. The most common frequencies are either optical/near-infrared or 

microwave. This frequency can also dictate the size of the cavity involved, with higher frequencies 

corresponding to smaller structures. However, perhaps the simplest cavity design is the Fabry-

Perot, which uses two inward facing mirrors to confine light. A general schematic of a cavity 

system is shown in figure 5.1, following the structure of a Fabry-Perot. 

 

 

Figure 5.1 | Basic schematic for cavity QED. Here g represents the coupling between the atom 

and the cavity, 𝛾 is the spontaneous emission rate of the atom, and 𝜅 is the leakage rate of photons 

out of the cavity. The atom has a ground state |𝑔〉 and an excited state |𝑒〉, and the cavity has a 

resonant frequency of 𝜔𝑟𝑒𝑠 which may or may not be matched with the atomic transition energy. 
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     Here the important parameters of interest 𝑔. 𝛾, 𝜅 are included in the figure. These are the main 

parameters used in CQED analysis, although there are several others that are arguably just as 

important. Well review these parameters individually in the upcoming sections. 

 

 

5.1.1  Mode volume V 
 

The mode volume of a cavity roughly represents the space that the fundamental optical mode 

occupies. It appears frequently as a variable in other quantities like the atom-cavity coupling 

constant 𝑔 and the Purcell factor 𝐹. The general definition of mode volume is given by: 

 

𝑉𝑚𝑜𝑑𝑒 =
∭𝜖(𝑟)|𝐸⃗⃗(𝑟)|

2
𝑑3𝑟

max(𝜖(𝑟)𝐸(𝑟)2)
(5.1) 

 

Where 𝜖(𝑟) is the permitivity of the material as a function of position (𝑟), 𝐸(𝑟) is electric field as 

a function of position (𝑟), and max(𝜖(𝑟)𝐸(𝑟)2) is the maximum value of 𝜖(𝑟)𝐸(𝑟)2 in the cavity 

mode. 

     As a comparison, it is useful to recall the total energy stored in an electromagnetic field as: 

 

𝑈𝐸𝑀 =
1

2
∫ (𝜖|𝐄|2 +

1

𝜇
|𝐁|2)𝑑𝑉

𝑉

(5.2) 

 

Taking the maximum electric field amplitude, this is equivalent to: 

 

𝑈𝐸𝑀 =
1

2
∫max(𝜖|𝐄|2) 𝑑𝑉
𝑉

(5.3) 

 

With this in mind, we can rephrase the mode volume somewhat more broadly as: 
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𝑉𝑚𝑜𝑑𝑒 =
total energy

maximum energy density
=

𝑈𝐸
max(𝜌𝑈)

(5.4) 

 

So whatever the mode volume is, we should be able to multiply it by the maximum energy density 

to obtain the total energy contained in the cavity mode. 

     For nanophotonic structures, mode volume is typically expressed as a multiplicative factor of a 

cubic wavelength in the cavity material: 

 

𝑉𝑚𝑜𝑑𝑒 = 𝑥𝑣𝑜𝑙 ∙ (
𝜆𝑐𝑎𝑣
𝑛
)
3

(5.5) 

 

where 𝑥𝑣𝑜𝑙 is a unitless multiplicative factor, 𝜆𝑐𝑎𝑣 is the wavelength of the resonant cavity mode, 

and 𝑛 is the index of refraction of the material. For typical nanophotonic crystal cavities in silicon 

carbide and diamond, mode volumes on the order of 𝑉𝑚𝑜𝑑𝑒 ≈ 0.5 (
𝜆𝑐𝑎𝑣

𝑛
)
3

 are achievable [49-60]. 

 

 

5.1.2 Spontaneous emission rate γ 
 

The spontaneous emission rate 𝛾 denotes the rate of optical emission from the excited state to the 

ground state of a two-level system. This system can be an atom, a color center, or any other optical 

emitter. Typically spontaneous emission is only observed in the optical regime, as two-level 

systems in the microwave regime are much more stable in the excited state. The spontaneous 

emission rate can be written as: 

𝛾 =
𝜇2𝜔3

6𝜋𝜖ℏ𝑐3
(5.6) 
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Where 𝜇 is the electric dipole moment of the transition, 𝜔 is the frequency of the transition, and 𝜖 

is the permittivity of the material the emitter is in. This 𝛾 appears in the exponential decay of the 

excited state population: 

𝐶𝑒(𝑡) = 𝑒−𝛾𝑡 (5.7) 

 

Sometimes 𝛾 is referred to as the Einstein A coefficient. Lastly, we can relate the spontaneous 

emission rate to the excited state lifetime by simply taking a reciprocal: 

 

𝜏 =
1

𝛾
= lifetime (5.8) 

 

     Experimentally, a higher emission rate (or shorter lifetime) results in a higher count rate, which 

generally speeds up readout, averaging of experiments, and entanglement protocols. This means 

that usually a higher emission rate is preferred. When taking an excitation/emission spectrum of 

an emitter, a higher emission rate will also correspond to a broader optical linewidth. 

 

 

5.1.3 The electric dipole moment µ 
 

The electric dipole moment 𝜇 dictates transitions between the ground and excited states of a two-

level system. It is closely related to the spontaneous emission rate 𝛾, as it is used in the formula to 

calculate 𝛾. Sometimes 𝜇 is phrased as a "matrix element", or frankly, any other jambalaya of the 

words "transition electric dipole moment matrix element operator". To partially see why this is the 

case, we can examine the driven electric field Hamiltonian from the two-level system Hamiltonian 

from chapter one: 
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𝐻𝑓𝑖𝑒𝑙𝑑 = −(
0 𝑑𝑒𝑔𝐸0 cos𝜔𝑡

𝑑𝑒𝑔𝐸0 cos𝜔𝑡 0
) = −(

0 2ℏΩ cos𝜔𝑡
2ℏΩ cos𝜔𝑡 0

) (5.9) 

 

     Here, the elements 𝑑𝑒𝑔𝐸0 = 2ℏΩ determine the magnitude of the off-diagonal drive and thus 

the rate of Rabi oscillations with Rabi frequency Ω. In this case, the dipole moment 𝑑𝑒𝑔 is exactly 

the same as 𝜇. 

𝜇 = 𝑑𝑒𝑔 (5.10) 

 

     So, due to 𝜇's placement in an off-diagonal matrix element and its direct tie to transitions 

between two states, these words appear frequently in alternative names for 𝜇. Of course, for 

systems that are coupled with magnetic fields, it is possible to have an equivalent magnetic dipole 

matrix element. This appears when dealing with 𝑚𝑠 = 0 ↔ ±1 transitions in the VV0 ground state, 

for example. Additionally, any proper dipole moment is in fact a vector, so a slightly more precise 

statement for 𝜇 would be: 

|𝜇⃗| = (𝑑 ∙ 𝜀𝐤) (5.11) 

 

Where 𝜀𝐤 is a unit vector pointing in the direction of the k-vector of the photon or field mode in 

the cavity. If one measures the Rabi frequency Ω of driven transitions and has the magnitude of 

electric field, 𝐸0, the earlier relation can be used to define 𝜇: 

 

𝜇 =
2ℏΩ

𝐸0
(5.12) 

 

Perhaps more common (and accessible) definition, however, is to instead use the spontaneous 

emission formula 
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𝛾 =
𝜇2𝜔3

6𝜋𝜖ℏ𝑐3
(5.13) 

To define 𝜇 as: 

𝜇 = √
6𝜋𝜖ℏ𝑐3

𝜔3
𝛾 (5.14) 

 

     Since 𝛾 can be measured directly through a lifetime measurement, 𝜇 can be inferred through 

the observed value of 𝛾. Finally, dimensional analysis on this equation reveals that 𝜇 is indeed an 

electric dipole moment, with units of Coulomb meters. 

 

[𝜇] = [√
6𝜋𝜖ℏ𝑐3

𝜔3
𝛾] = [√𝜖ℏ𝜆3𝛾] = √

𝐶

𝑉 ∙ 𝑚
∙ 𝐽 ∙ 𝑠 ∙ 𝑚3 ∙

1

𝑠
= √

𝐶2

𝑚
∙ 𝑚3 = 𝐶 ∙ 𝑚 (5.15) 

 

 

5.1.4 Quality factor Q, leakage rate 𝜿, and finesse 𝓕 
 

The effectiveness of a cavity at confining light can be quantified in several ways. For the purposes 

of this thesis, we will mostly focus on the quality factor (Q) which increases as light becomes 

more effectively confined. In the limit of a perfect cavity where light never escapes, the quality 

factor is infinite. In practice this never occurs, as there will always be scattering or evanescent out-

coupling losses as light cycles inside the cavity mode. For nanocavities in the optical/near-infrared 

regime, a quality factor of ~100-1,000 is usually considered "low", Q~1,000-10,000 is "moderate" 

and Q~10,000+ is "high". Of course this interpretation is highly subjective and depends on the 

context of the experiment. For example, even a Q of 1,000 can significantly modify an emitter if 

other quantities like mode volume and spatial/spectral matching are optimized. Therefore it is 
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important not to become overly fixated on the quality factor alone. Nevertheless, it is worth noting 

that the upper limits of optical/NIR Q are on the order of 106-107 for silicon-based optical 

nanocavities, providing a high ceiling for these devices. There are several quantitative definitions 

of the quality factor, which we will discuss below. 

 

Energy loss interpretation of Q: 

     A common definition for Q is the ratio of the energy stored in the oscillating resonator to the 

energy dissipated per cycle by damping processes: 

 

𝑄 ≡ 2𝜋 ∙
Energy stored

Energy dissipated per field cycle
(5.16) 

 

Where a field cycle refers to one cycle of the electromagnetic field in the cavity, not the cycle of 

a photon completing a round trip in the cavity. If the energy is represented as a function of time, 

such that 𝑈 = 𝑈0 exp (− (
𝜔𝑟𝑒𝑠

𝑄
) 𝑡), then the rate of decay (

𝜔𝑟𝑒𝑠

𝑄
) defines the quality factor as the 

number of field oscillations to reach an energy of 𝑒−2𝜋 ≈ 0.00187 of the initial energy. 

Alternatively, the quantity (
𝑄

𝜔𝑟𝑒𝑠
) is the cavity lifetime, or the time taken for the energy to decay 

to 1/e of its starting value. The drawback to these definitions is that it is difficult to directly measure 

the energy lost in the cavity, prompting us to use another definition. 

 

Bandwidth interpretation of Q: 

     When taking transmission or excitation spectra of a cavity as the excitation frequency is varied, 

the resulting peak (or dip) can be used to define the quality factor as follows: 

 



203 

 

𝑄 =
𝑓𝑟𝑒𝑠
∆𝑓

=
𝜔𝑟𝑒𝑠
∆𝜔

(5.17) 

 

where 𝑓𝑟𝑒𝑠, 𝜔𝑟𝑒𝑠 is the resonant frequency of the cavity and ∆𝑓, ∆𝜔 is the full-width half-maximum 

(FWHM) of the spectrum peak. This relation is also approximately true for wavelength, as shown 

below: 

𝑄 =
𝑓𝑟𝑒𝑠
∆𝑓

=
𝑓𝑟𝑒𝑠
𝑓1 − 𝑓2

=

𝑐
𝜆𝑟𝑒𝑠

(
𝑐
𝜆1
−
𝑐
𝜆2
)
=

1

𝜆𝑟𝑒𝑠
(
𝜆1𝜆2
𝜆2 − 𝜆1

) =
1

𝜆𝑟𝑒𝑠
(
𝜆1𝜆2
∆𝜆

) (5.18) 

 

Where 𝑓1, 𝑓2, represent the two frequencies at the FWHM and 𝜆1, 𝜆2 the two wavelengths at the 

FWHM. In situations where 𝜆𝑟𝑒𝑠 ≫ ∆𝜆 (i.e. 𝑄 ≳ 100), then this simplifies to: 

 

𝑄 ≈
𝜆𝑟𝑒𝑠
∆𝜆

(5.19) 

 

This bandwidth definition of Q is what is usually used in practice to measure quality factors. 

 

Leakage rate 𝜿: 

     The decay rate mentioned earlier is more commonly represented by the letter 𝜅, as featured in 

figure 5.1. 

𝜅 ≡
𝜔𝑟𝑒𝑠
𝑄

(5.20) 

 

So the decay of the cavity can be written as: 

 

𝑈 = 𝑈0 exp(−𝜅𝑡) (5.21) 
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Finesse 𝓕: 

     If we wish to phrase energy loss in terms of photon round trips instead of field cycles, then we 

would use the finesse instead. In this context, the finesse is defined as the number of photon round 

trips (around a microring cavity, for example) for the energy to decay to 1/e of its initial value. 

Alternatively, it is the number of trips before the probability of leakage becomes 1/e. In the case 

of transmission/reflection peaks that are periodically spaced in frequency, then the finesse can also 

be defined in terms of the free spectral range: 

 

ℱ =
∆𝜆𝐹𝑆𝑅
∆𝜆𝑓𝑤ℎ𝑚

=
∆𝜔𝐹𝑆𝑅
∆𝜔𝑓𝑤ℎ𝑚

(5.22) 

 

Where the free spectral range ∆𝜆𝐹𝑆𝑅 , ∆𝜔𝐹𝑆𝑅 is the separation between consecutive peaks, and the 

full-width half-max ∆𝜆𝑓𝑤ℎ𝑚, ∆𝜔𝑓𝑤ℎ𝑚 is the FWHM of an individual peak. This definition is more 

common for Fabry-Perot resonators and perhaps microring resonators, but photonic crystal cavities 

usually feature only one spectrum peak so the free spectral range does not apply. 

 

 

5.1.5 Electric field in cavity mode E 
 

The electric field 𝐸 of a single photon in the mode volume 𝑉 of the resonator. This parameter is 

important as it is involved in the calculation of the atom-cavity coupling constant g. Generally 

speaking, we wish to maximize the electric field of the cavity mode in order to maximize the 

strength of light-matter interactions. 

     Generally, the total energy of an electromagnetic field in a volume V is given by: 
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𝑈𝐸𝑀 =
1

2
𝜖∫ (|𝐸⃗⃗|

2
+
1

2𝜇
|𝐵⃗⃗|

2
) 𝑑𝑉

𝑉

(5.23) 

 

where 𝜖 is the permittivity of the medium in which the field exists and 𝜇 is its magnetic 

permeability. In the simplistic model of a photon in a box, we can say: 

 
1

2
𝜖𝐸𝑚𝑎𝑥

2 𝑉 = ℏ𝜔𝑐𝑎𝑣 (5.24) 

 

Where ℏ𝜔𝑐𝑎𝑣 is the energy of the single photon in the cavity. We're usually interested in 𝜔𝑐𝑎𝑣 =

𝜔𝑟𝑒𝑠, but this does not necessarily have to be the case. This equation can be rearranged to 

potentially give the electric field as: 

 

𝐸 = √
2ℏ𝜔𝑐𝑎𝑣
𝜖𝑉

, classical result (5.25) 

 

However, this classical expression is incorrect by a factor of 2. In the proper quantization of 

electromagnetic field, the correct result is: 

 

𝐸 = √
ℏ𝜔𝑐𝑎𝑣
2𝜖𝑉

, quantized field (5.26) 

 

We will use this second expression going forward. 

 

 

5.1.6 Coupling parameter g 
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The parameter 𝑔 represents the strength of the interaction between the atom and the cavity. It is 

referred to as the atom-cavity coupling constant or simply the coupling constant 𝑔. This constant 

appears in the interaction part of the Jaynes-Cummings Hamiltonian, which will be discussed in 

section 5.2. Ultimately, 𝑔 is a key parameter to describe atom-cavity-photon dynamics, and it also 

represents the vacuum Rabi frequency in the strong coupling regime, which will be shown in 

section 5.3. The coupling constant 𝑔 is given by the equation: 

 

𝑔 =
𝜇𝐸

ℏ
(5.27) 

 

     Where 𝜇 is the electric dipole moment, 𝐸 is the electric field of the cavity mode, and ℏ is 

Planck's constant. Individually, a large 𝐸 means that there is a strong interaction between the 

optical field and the cavity mode and a large 𝜇 means the ground and excited states of the atom 

are strongly coupled by optical fields. It then follows that large values for both of these variables 

would lead to strong interactions between the atom and the cavity, which is what 𝑔 represents. 

 

Note that if we square this equation: 

𝑔2 =
𝜇2𝐸2

ℏ2
(5.28) 

 

We can rewrite this using the earlier expressions: 

 

𝛾 =
𝜇2𝜔3

6𝜋𝜖ℏ𝑐3
, 𝐸 = √

ℏ𝜔𝑐𝑎𝑣
2𝜖𝑉

(5.29) 

Rearranging gives: 

𝜇2 =
6𝜋𝜖ℏ𝑐3

𝜔3
𝛾, 𝐸2 =

ℏ𝜔𝑐𝑎𝑣
2𝜖𝑉

(5.30) 



207 

 

 

Then, if we assume the cavity and transition frequencies are the same (𝜔𝑐𝑎𝑣 = 𝜔), then substituting 

these into the expression for 𝑔2 gives: 

 

𝑔2 =
1

ℏ2
(
6𝜋𝜖ℏ𝑐3

𝜔3
𝛾) (

ℏ𝜔𝑐𝑎𝑣
2𝜖𝑉

) (5.31) 

𝑔2 =
3𝜋𝑐3𝛾

𝜔2𝑉
(5.32) 

 

     This is an alternative way of expressing 𝑔 in terms of the decay rate 𝛾, the mode volume of the 

cavity 𝑉, and the resonant frequency of the cavity 𝜔. Lastly, sometimes only the substitution for 

𝐸 is done in equation 5.28, which gives the relation: 

 

𝑔 = √
𝜔𝑐𝑎𝑣
2ℏ𝜖𝑉

𝜇 = √
𝜔𝐤
2ℏ𝜖𝑉

(𝜇⃗ ∙ 𝜀𝐤) (5.33) 

 

Where 𝐤 represents the wavevector of the photon in the cavity. 

 

 

5.1.7 Purcell factor F and cooperativity C 
 

The Purcell factor 𝐹 (sometimes 𝑃 in literature) represents the increase in the radiative rate of an 

optical emitter when it is placed in a cavity. This can be represented as a ratio of radiative rates: 

 

𝐹 ≡
𝛾𝑐𝑎𝑣𝑖𝑡𝑦

𝛾𝑏𝑢𝑙𝑘
(5.34) 

 

Where 𝛾𝑐𝑎𝑣𝑖𝑡𝑦 is the spontaneous emission rate in the cavity and 𝛾𝑏𝑢𝑙𝑘 is the spontaneous emission 

rate in the bulk material. The Purcell factor can equivalently be represented as a ratio of lifetimes: 
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𝐹 =
𝜏𝑏𝑢𝑙𝑘
𝜏𝑐𝑎𝑣𝑖𝑡𝑦

(5.35) 

 

Where 𝜏𝑏𝑢𝑙𝑘, 𝜏𝑐𝑎𝑣𝑖𝑡𝑦 represents the optical lifetime in the bulk or cavity. A Purcell factor for a 

cavity matched with an emitter will be greater than 1, which means a higher radiative rate and a 

reduced lifetime. However, it is possible to have a mismatched cavity that has the effect of 

suppressing emission and reducing the radiative rate. For the purposes of this thesis we will focus 

on the former case with enhanced emission. In more detail, the Purcell factor can be expressed by 

the following equation: 

𝐹 = (
|𝜇⃗ ∙ 𝐸⃗⃗|

|𝜇⃗||𝐸⃗⃗𝑚𝑎𝑥|
)

2

(

 
 1

1 + 4𝑄2 (
𝜆𝑒𝑚𝑖𝑡𝑡𝑒𝑟
𝜆𝑐𝑎𝑣𝑖𝑡𝑦

)
2

)

 
 3𝑄

4𝜋2𝑉
(
𝜆𝑐𝑎𝑣𝑖𝑡𝑦

𝑛
)

3

+ 1 (5.36) 

 

Where 𝜇 is the electric dipole moment of the emitter, 𝐸⃗⃗ is the electric field from the emitter, 𝐸⃗⃗𝑚𝑎𝑥 

is the maximum electric field from the cavity mode, 𝜆𝑍𝑃𝐿 is the wavelength of the ZPL, 𝜆𝑐𝑎𝑣𝑖𝑡𝑦 is 

the resonant wavelength of the cavity, 𝑄 is the cavity quality factor, 𝑉 is the cavity mode volume, 

and 𝑛 is the index of refraction of the material. The first term (
|𝜇⃗⃗⃗∙𝐸⃗⃗|

|𝜇⃗⃗⃗||𝐸⃗⃗𝑚𝑎𝑥|
)
2

 represents spatial overlap 

between the emitter and cavity mode, where both the position and orientation of the emitter play 

important roles for the overall coupling. The dot product 𝜇⃗ ∙ 𝐸⃗⃗ represents rotational alignment 

between the transition dipole and optical emission dipole, while the ratio |𝐸⃗⃗|/|𝐸⃗⃗𝑚𝑎𝑥| represents 

spatial overlap between the emitter and cavity modes. The second term 
1

(1+4𝑄2(
𝜆𝑒𝑚𝑖𝑡𝑡𝑒𝑟
𝜆𝑐𝑎𝑣𝑖𝑡𝑦

)

2

)

 

represents spectral matching between the emitter and cavity. For higher Q cavities, this factor can 

result in significant losses if the spectral matching is not exact. Therefore most cavity-emitter 
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systems have some mechanism to tune either the two components into resonance. With perfect 

coupling these two terms become unity, so the Purcell factor becomes: 

 

𝐹 =
3

4𝜋2
(
𝜆

𝑛
)
3

(
𝑄

𝑉
) + 1, perfect matching with emitter (5.37) 

 

The simplified expression 𝐹 ∝
𝑄

𝑉
 is sometimes used to highlight the important figures of merit of 

a high quality factor with a small mode volume. 

     Meanwhile, the cooperativity parameter C is usually defined in terms of CQED parameters as: 

 

𝐶 =
𝑔2

2𝜅𝛾
(5.38) 

 

     Loosely speaking. the cooperativity is a measure of the ratio of desired coupling (g) to undesired 

coupling (𝜅, 𝛾). A cooperativity C >> 1 generally means significant interactions between the atom 

and the light field in the cavity, although does not necessarily imply the strong coupling regime. 

To relate cooperativity to Purcell factor, we can substitute the earlier expression for 𝑔2: 

 

𝑔2 =
3𝜋𝑐3𝛾

𝜔2𝑉
(5.39) 

To give: 

𝐶 =
𝑔2

2𝜅𝛾
=

3𝜋𝑐3𝛾

2𝜅𝛾𝜔2𝑉
=

3𝜋𝑐3

2𝜅𝜔2𝑉
=

3𝜋𝑐3

2
𝜔
𝑄 𝜔

2𝑉
(5.40) 

𝐶 =
3𝜋𝑐3

2𝜔3
(
𝑄

𝑉
) =

3𝜋𝑐3

2(2𝜋)3𝑓3
(
𝑄

𝑉
) =

3𝜋𝜆3

2(2𝜋)3
(
𝑄

𝑉
) =

1

4
∙
3

4𝜋2
𝜆3 (

𝑄

𝑉
) (5.41) 

 

When in a material instead of free space, the wavelength 𝜆 becomes (𝜆/𝑛) with index of refraction 

𝑛: 
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𝐶 =
1

4
∙
3

4𝜋2
(
𝜆

𝑛
)
3

(
𝑄

𝑉
) (5.42) 

 

Note that this closely resembles the perfectly matched Purcell factor F in equation 5.37. 

Substituting eq 5.37 equation into eq 5.42 gives: 

𝐶 =
1

4
(𝐹 − 1) (5.43) 

Or: 

𝐹 = 4𝐶 + 1 (5.44) 

 

     Therefore, the Purcell factor F and the cooperativity C are equivalent within a multiplicative 

factor and an additive factor. The additive factor of 1 diminishes at large values of F or C. Since 

we substituted the Purcell factor with perfect coupling, the cooperativity inherently assumes that 

the emitter and cavity are perfectly matched. However, it would be possible to include the coupling 

factors from eq. 5.36 in the cooperativity expression to give: 

 

𝐶 = (
|𝜇⃗ ∙ 𝐸⃗⃗|

|𝜇⃗||𝐸⃗⃗𝑚𝑎𝑥|
)

2

(

 
 1

1 + 4𝑄2 (
𝜆𝑒𝑚𝑖𝑡𝑡𝑒𝑟
𝜆𝑐𝑎𝑣𝑖𝑡𝑦

)
2

)

 
 𝑔2

2𝜅𝛾
, imperfect matching (5.45) 

 

In practice this is almost never done, but it an important factor to consider when comparing Purcell 

factors to cooperativities. 

 

 

5.2  The Jaynes Cummings Hamiltonian 
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The Jaynes Cumming Hamiltonian is used to model the interplay between the atom and an 

electromagnetic field in a cavity. In this section we will focus on obtaining a matrix form of the 

Hamiltonian and describing its energy eigenvalues. The Hamiltonian is typically written as the 

sum of three parts: 

 

𝐻̂𝐽𝐶 = 𝐻̂𝑎𝑡𝑜𝑚 + 𝐻̂𝑓𝑖𝑒𝑙𝑑 + 𝐻̂𝑖𝑛𝑡 (5.46) 

 

Where 𝐻̂𝑎𝑡𝑜𝑚 is the isolated atomic Hamiltonian, 𝐻̂𝑓𝑖𝑒𝑙𝑑 is the electromagnetic field Hamiltonian 

in the cavity, and 𝐻̂𝑖𝑛𝑡 is the interaction Hamiltonian between the atom and the cavity field. These 

parts can be individually written as: 

 

𝐻̂𝑎𝑡𝑜𝑚 =
ℏ𝜔𝑎
2
𝜎̂𝑧 , 𝐻̂𝑓𝑖𝑒𝑙𝑑 = ℏ𝜔𝑐𝑎̂

†𝑎̂, 𝐻̂𝑖𝑛𝑡 = ℏ𝑔(𝑎̂ + 𝑎̂
†)(𝜎̂+ + 𝜎̂−) (5.47) 

Where: 

𝜔𝑎 = frequency of atomic transition
𝜔𝑐 = frequency of resonant cavity mode

𝜎̂𝑧 = |𝑒〉〈𝑒| − |𝑔〉〈𝑔|, Pauli z spin matrix

𝑎̂† = photon number creation operator
𝑎̂ = photon number annihilation operator

g = atom cavity coupling strength

𝜎̂+ = |𝑒〉〈𝑔|, atomic raising operator

𝜎̂− = |𝑔〉〈𝑒|, atomic lowering operator

(5.48) 

 

Immediately, it is worth distributing the interaction Hamiltonian: 

 

𝐻̂𝑖𝑛𝑡 = ℏ𝑔(𝑎̂𝜎̂+ + 𝑎̂𝜎̂− + 𝑎̂
†𝜎̂+ + 𝑎̂

†𝜎̂−) (5.49) 

 

If we transform this Hamiltonian to the interaction picture, we obtain 

 

𝐻𝑖𝑛𝑡 = ℏ𝑔(𝑎̂𝜎̂+𝑒
𝑖(−𝜔𝑐+𝜔𝑎)𝑡 + 𝑎̂𝜎̂−𝑒

𝑖(𝜔𝑐+𝜔𝑎)𝑡 + 𝑎̂†𝜎̂+𝑒
𝑖(𝜔𝑐+𝜔𝑎)𝑡 + 𝑎̂†𝜎̂−𝑒

−𝑖(−𝜔𝑐+𝜔𝑎)𝑡) (5.50) 
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Using the rotating wave approximation, we can eliminate the quickly oscillating terms to give: 

 

𝐻𝑖𝑛𝑡 = ℏ𝑔(𝑎̂𝜎̂+𝑒
𝑖(−𝜔𝑐+𝜔𝑎)𝑡 + 𝑎̂†𝜎̂−𝑒

−𝑖(−𝜔𝑐+𝜔𝑎)𝑡) (5.51) 

 

Then transforming back to the Schrodinger picture drops the complex exponentials to give: 

 

𝐻𝑖𝑛𝑡 = ℏ𝑔(𝑎̂𝜎̂+ + 𝑎̂
†𝜎̂−) (5.52) 

 

This is the interaction Hamiltonian that is commonly used in practice, and we will also proceed 

with this form. This makes the Jaynes Cummings Hamiltonian: 

 

𝐻̂𝐽𝐶 =
ℏ𝜔𝑎
2
𝜎̂𝑧 + ℏ𝜔𝑐𝑎̂

†𝑎̂ + ℏ𝑔(𝑎̂𝜎̂+ + 𝑎̂
†𝜎̂−) (5.53) 

 

Shifting to the atomic portion of 𝐻𝐽𝐶, we should recognize 𝐻̂𝑎𝑡𝑜𝑚 from the two-level system 

outlined in chapter 1: 

𝐻̂𝑎𝑡𝑜𝑚
ℏ𝜔𝑎
2
𝜎̂𝑧 =

ℏ𝜔𝑎
2
(|𝑒〉〈𝑒| − |𝑔〉〈𝑔|) (5.54) 

If we choose the basis: 

|𝑒〉 = |0〉 = (
1
0
) , |𝑔〉 = |1〉 = (

0
1
) (5.55) 

Then in matrix form this becomes: 

𝐻̂𝑎𝑡𝑜𝑚 =
ℏ𝜔𝑎
2
(
1 0
0 −1

) (5.56) 

 

     The eigenstates and general time evolution of 𝐻̂𝑎𝑡𝑜𝑚 is the same as outlined on the two-level 

system section in 1.4. The field part of the Hamiltonian is more complicated. Here the eigenstates 

are represented by the photon number, which in the simplest case of 0/1 photons can be written as: 
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photon number, |𝑛 = 0〉 = (
1
0
) , |𝑛 = 1〉 = (

0
1
) (5.57) 

 

     While this appears to match the form of the atomic basis states, the Hilbert space for photon 

number (called a Fock space) can take on any dimensionality greater than or equal to two. In the 

general n-dimensional case, the photon number creation and annihilation operators 𝑎̂† and 𝑎̂ in 

matrix form are given by: 

 

𝑎† =

(

 
 
 
 

0 0 0 … 0 … …

√1 0 0 … 0 … …

0 √2 0 … 0 … …

0 0 √3 … 0 … …
… … … … … … …
0 0 0 … √𝑛 … …
… … … … … … …)

 
 
 
 

, 𝑎 =

(

 
 
 
 
 

0 √1 0 0 … 0 …

0 0 √2 0 … 0 …

0 0 0 √3 … 0 …
… … … … … … …
0 0 0 0 … √𝑛 …
… … … … … … …
… … … … … … …)

 
 
 
 
 

(5.58) 

 

In the 2D and 3D cases, this would become: 

 

𝑎̂† = (
0 0
1 0

) , 𝑎̂ = (
0 1
0 0

) , 2D Fock space (5.59) 

𝑎̂† = (
0 0 0
1 0 0

0 √2 0

) , 𝑎̂ = (
0 1 0

0 0 √2
0 0 0

) , 3D Fock space (5.60) 

 

This means that the general n-dimensional form of the field part of the Hamiltonian becomes: 

 

𝐻̂𝑓𝑖𝑒𝑙𝑑 = ℏ𝜔𝑐

(

  
 

0 0 0 0 … 0
0 1 0 0 … 0
0 0 2 0 … 0
0 0 0 3 … 0
… … … … … …
0 0 0 0 … 𝑛)

  
 

(5.61) 
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Reconciling different Hilbert spaces 

     The three parts of the Jaynes Cummings Hamiltonian provide us with a bit of a quandary when 

we try to combine them. Namely, we are adding Hamiltonians from different Hilbert spaces. 

What's more, the n-dimensional Fock space will generally not have the same dimensionality as the 

2x2 atomic Hamiltonian. To work around this, we must take appropriate tensor products between 

these Hilbert spaces before adding the components together. Each individual operator would then 

take the form: 

𝑎̂ = 𝑎̂ ⊗ 𝐼2, 𝑎̂† = 𝑎̂†⊗ 𝐼2 (5.62) 

𝜎̂+ = 𝐼𝑛⊗ 𝜎̂+, 𝜎̂− = 𝐼𝑛⊗ 𝜎̂− (5.63) 

 

Where 𝐼2 represents the 2-dimensional identity matrix for the atomic component and 𝐼𝑛 represents 

the n-dimensional identity matrix for the field component. With the definitions for the atomic 

raising and lowering operators as: 

 

𝜎̂− = |𝑔〉〈𝑒| = (
0
1
) (1 0) = (

0 0
1 0

) (5.64) 

𝜎̂+ = |𝑒〉〈𝑔| = (
1
0
) (0 1) = (

0 1
0 0

) (5.65) 

 

For demonstration, we can write out the tensor products for the individual operators for the case 

of a 2-dimensional Fock space: 

𝜎̂𝑧 = 𝐼𝑛⊗ 𝜎̂𝑧 = (
1 0
0 1

)⊗ (
1 0
0 −1

) = (

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

) (5.66) 

𝑎̂ = 𝑎̂ ⊗ 𝐼2 = (
0 1
0 0

) ⊗ (
1 0
0 1

) = (

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

) (5.67) 
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𝜎̂+ = 𝐼𝑛⊗ 𝜎̂+ = (
1 0
0 1

)⊗ (
0 1
0 0

) = (

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

) (5.68) 

𝑎̂† = 𝑎̂†⊗ 𝐼2 = (
0 0
1 0

)⊗ (
1 0
0 1

) = (

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

) (5.69) 

𝜎̂− = 𝐼𝑛⊗ 𝜎̂− = (
1 0
0 1

)⊗ (
0 0
1 0

) = (

0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

) (5.70) 

 

Which gives the following for the product of operators: 

 

𝑎̂†𝑎̂ = (

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

)(

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

) = (

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

) (5.71) 

𝑎̂𝜎̂+ = (

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

)(

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

) = (

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

) (5.72) 

𝑎̂†𝜎̂− = (

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

)(

0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

) = (

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

) (5.73) 

 

So in total, for the 2-dimensional Fock space: 

 

𝐻̂𝐽𝐶 = ℏ

(

 
 
 
 
 

𝜔𝑎
2

0 0 𝑔

0 −
𝜔𝑎
2

0 0

0 0
𝜔𝑎
2
+ 𝜔𝑐 0

𝑔 0 0 −
𝜔𝑎
2
+ 𝜔𝑐)

 
 
 
 
 

, 2D Fock space (5.74) 
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The same approach can be applied to the 3-dimensional Fock space, which gives: 

 

𝐻̂𝐽𝐶 = ℏ

(

 
 
 
 
 
 
 
 
 

𝜔𝑎
2

0 0 𝑔 0 0

0 −
𝜔𝑎
2

0 0 0 0

0 0
𝜔𝑎
2
+ 𝜔𝑐 0 0 √2𝑔

𝑔 0 0 −
𝜔𝑎
2
+ 𝜔𝑐 0 0

0 0 0 0
𝜔𝑎
2
+ 2𝜔𝑐 0

0 0 √2𝑔 0 0 −
𝜔𝑎
2
+ 2𝜔𝑐)

 
 
 
 
 
 
 
 
 

, 3D Fock space (5.75) 

 

Using the latter case as an example, this matrix gives the energy eigenvalues of: 

 

𝜆1 = −
ℏ𝜔𝑎
2
, |𝑔, 0〉 state (5.76) 

𝜆2 =
ℏ𝜔𝑎
2

+ 2ℏ𝜔𝑐, |𝑒, 2〉 state (5.77) 

𝜆3,4 = ℏ𝜔𝑐 (𝑛 +
1

2
) ± ℏ√

Δ2

4
+ 𝑔2(𝑛 + 1), where 𝑛 = 1 (5.78) 

𝜆5,6 = ℏ𝜔𝑐 (𝑛 +
1

2
) ± ℏ√

Δ2

4
+ 𝑔2(𝑛 + 1), where 𝑛 = 0 (5.79) 

Where: 

Δ = 𝜔𝑎 − 𝜔𝑐, detuning between atom and cavity photon energies 

 

     As labeled above, the 𝜆1 energy corresponds to the atomic ground state with no photons in the 

cavity, whereas the 𝜆2 energy corresponds to the atomic excited state with 2 photons in the cavity. 

In this system where the photon number is limited to {0,1,2}, these two energies serve as the 

extremes for the minimum and maximum energy. The intermediate energies 𝜆3,4, 𝜆5,6 do not 
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represent isolated atomic/Fock states such as |𝑒, 1〉 or |𝑔, 2〉, but rather superpositions of these 

states. More specifically, these so-called dressed states come in pairs that take the following form 

under zero detuning (∆= 0): 

 

|+, 𝑛〉 =
1

√2
(|𝑒, 𝑛〉 + |𝑔, 𝑛 + 1〉), higher energy (5.80) 

|−, 𝑛〉 =
1

√2
(|𝑒, 𝑛〉 − |𝑔, 𝑛 + 1〉), lower energy (5.81) 

 

Where 𝑛 is the number of photons. With this definition, we can make the relations: 

 
𝜆3,4 = energies for |±, 𝑛 = 1〉 states (5.82) 

𝜆5,6 = energies for |±, 𝑛 = 0〉 states (5.83) 

 

In the most general case with 𝑛 photons then, the dressed state energies take the form: 

 

𝐸±(𝑛) = ℏ𝜔𝑐 (𝑛 +
1

2
) ± ℏ√

∆2

4
+ 𝑔2(𝑛 + 1), dressed state energies (5.84) 

 

     Focusing on only an individual pair of dressed states, we can write a 2x2 Hamiltonian that only 

considers the two states |𝑛, 𝑒〉 and |𝑛 + 1, 𝑔〉 for general photon number 𝑛. This can be written as: 

 

𝐻𝑛 = ℏ(𝑛 +
1

2
)𝜔𝑐 (

1 0
0 1

) + ℏ(
−
Δ

2
𝑔√𝑛 + 1

𝑔√𝑛 + 1
Δ

2

) (5.85) 

 

Or combining into one matrix: 
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𝐻𝑛 = ℏ(
(𝑛 +

1

2
)𝜔𝑐 −

Δ

2
𝑔√𝑛 + 1

𝑔√𝑛 + 1 (𝑛 +
1

2
)𝜔𝑐 +

Δ

2

) (5.86) 

 

Where the basis of this Hamiltonian is the {|𝑔, 𝑛 + 1〉, |𝑒, 𝑛〉} states, and the energy eigenvalues 

exactly match the dressed state energies. This is the Hamiltonian that is more commonly used in 

analyses involving the Jaynes Cumming model. Plotting the energies as a function of detuning 

gives avoided crossings separated by 𝑔√(𝑛 + 1), as shown in the figure below: 

 

 

Figure 5.2 | Energy eigenvalues of the reduced Jaynes-Cummings Hamiltonian. Detuning 

between the cavity photon and the atomic transition is plotted on the x-axis. Here we set ℏ = 1, 

𝜔𝑐 = 10, and 𝑔 = 1. Four energy eigenstates are plotted according to equation 5.84. The red and 

blue dotted lines indicate the separation between energies at zero detuning. 
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     This shows that even with no photons in the cavity (n = 0) there is still a splitting of 2𝑔 between 

the energy eigenvalues of the system. This is termed the "vacuum Rabi splitting". The splitting 

then increases in value for higher photon number as 𝑔√𝑛 + 1. The eigenstates of this reduced 

Hamiltonian are: 

|𝑛 ±〉 = (
−Δ ± √Δ2 + 4𝑔2(𝑛 + 1)

2𝑔√𝑛 + 1
1

) (5.87) 

 

Meaning that we can write the general state evolution as: 

 

Ψ(𝑡) = 𝑐+(

2𝑔√𝑛 + 1

Δ + √Δ2 + 4𝑔2(𝑛 + 1)

1

) 𝑒−
𝑖𝐸+𝑡
ℏ + 𝑐− (

2𝑔√𝑛 + 1

Δ − √Δ2 + 4𝑔2(𝑛 + 1)

1

) 𝑒−
𝑖𝐸−𝑡
ℏ (5.88) 

 

Where 𝐸± are the dressed state energies. At zero detuning, this becomes: 

 

Ψ(𝑡) = 𝑐+ (
1
1
) 𝑒−

𝑖𝐸+𝑡
ℏ + 𝑐− (

−1
1
) 𝑒−

𝑖𝐸−𝑡
ℏ (5.89) 

 

     This tells us that the (
1
1
) and (

−1
1
) states in the {|𝑔, 𝑛 + 1〉, |𝑒, 𝑛〉} basis are the eigenstates of 

the system at zero detuning. This means that a state prepared in |𝑔, 𝑛 + 1〉 will precess to the |𝑒, 𝑛〉 

state and vice versa. We will explore this behavior and the strong and weak coupling regimes in 

the Jaynes-Cummings model in the next section. 

 

 

5.3  Strong and weak coupling regimes 
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Depending on the relative value of the atom-cavity coupling constant 𝑔, the behavior of the system 

can broadly be separated into the strong coupling and weak coupling regimes. We will discuss 

some of the implications of these regimes. 

 

Strong coupling 

     In the strong coupling regime, the coupling constant is much greater than both the spontaneous 

emission rate and leakage rate of the cavity: 

 

𝑔 > 𝛾, 𝜅, strong coupling (5.90) 

 

     Incidentally, this also means that the Purcell factor and cooperativity are also both much greater 

than 1. In this regime, we can effectively ignore the effects of damping and use the results of the 

Jaynes-Cummings model from the previous section. The precession between the |𝑔, 𝑛 + 1〉 and 

|𝑒, 𝑛〉 states with zero detuning occurs regardless of the photon number n. Rewriting the general 

state evolution with no detuning gives: 

 

Ψ(𝑡) = 𝑐+ (
1
1
) 𝑒−𝑖(𝜔𝑐(𝑛+

1
2
)+𝑔√(𝑛+1))𝑡 + 𝑐− (

−1
1
) 𝑒−𝑖(𝜔𝑐(𝑛+

1
2
)−𝑔√(𝑛+1))𝑡 (5.91) 

 

The component 𝑒
−𝑖(𝜔𝑐(𝑛+

1

2
))𝑡

 is a global phase that can be removed from the system, giving: 

 

Ψ(𝑡) = 𝑐+ (
1
1
) 𝑒−𝑖(𝑔

√(𝑛+1))𝑡 + 𝑐− (
−1
1
) 𝑒𝑖(𝑔

√(𝑛+1))𝑡 (5.92) 

When n = 0, we have: 

Ψ(𝑡) = 𝑐+ (
1
1
) 𝑒−𝑖𝑔𝑡 + 𝑐− (

−1
1
) 𝑒𝑖𝑔𝑡 (5.93) 
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We can start in the |𝑒, 0〉 state by setting 𝑐+ =
1

2
, 𝑐− =

1

2
: 

 

Ψ(𝑡) =
1

2
(
1
1
) 𝑒−𝑖𝑔𝑡

1

2
(
−1
1
) 𝑒𝑖𝑔𝑡 = (

1

2
𝑒−𝑖𝑔𝑡 −

1

2
𝑒𝑖𝑔𝑡

1

2
𝑒−𝑖𝑔𝑡 +

1

2
𝑒𝑖𝑔𝑡

) = (
−𝑖 sin(𝑔𝑡)

cos(𝑔𝑡)
) (5.94) 

 

Therefore, we can say that the squared amplitudes for the |𝑔, 1〉 and |𝑒, 0〉 states are: 

 

|𝑐𝑔,1|
2
= sin2(𝑔𝑡) , |𝑐𝑒,0|

2
= cos2(𝑔𝑡) , 𝑔 = vacuum Rabi frequency (5.95) 

 

     These solutions are referred to as vacuum Rabi oscillations, where 𝑔 is the vacuum Rabi 

frequency. Even in the presence of no photons, the state will naturally rotate between the ground 

and excited states. This is contrast to an atomic two-level system without a cavity, where the 

excited state decay is irreversible. A plot of several conditions for vacuum Rabi oscillations are 

shown in the figure below: 
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Figure 5.3 | Vacuum Rabi oscillations. In all of these theoretical plots, 𝛾 = 𝜅 = 1. The four 

curves have varying values of 𝑔 ≥ 1, resulting in observable vacuum Rabi oscillations. Higher 

coupling constants 𝑔 result in more pronounced vacuum Rabi oscillations. 

 

Weak coupling 

     An atom-cavity system in the weak coupling regime is characterized by 

 

𝑔 < (𝛾, 𝜅), weak coupling regime (5.96) 

 

It is also possible to have the ordering: 

 

𝜅 > 𝑔 > 𝛾, Purcell regime (5.97) 

 

Which is sometimes called the Purcell regime. In either case, the leakage out of the cavity 

outcompetes coupling to the atom, which means that vacuum Rabi is no longer observable. This 
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means that an emitted photon will escape the cavity before it has the chance to be reabsorbed. 

However, the spontaneous emission rate will be increased due to the increase of density of photonic 

states in the cavity. This speedup is given exactly by the Purcell factor as outlined earlier in this 

chapter: 

𝐹 ≡
𝛾𝑐𝑎𝑣𝑖𝑡𝑦

𝛾𝑏𝑢𝑙𝑘
=
2𝑔2

𝜅𝛾
+ 1, Purcell factor (5.98) 

 

     Therefore, even in the situation where 𝜅 > 𝑔, one can obtain a high Purcell factor if 𝑔 ≫ 𝛾. 

This is why the 𝜅 > 𝑔 > 𝛾 condition is called the Purcell regime. 

 

 

5.4  Free space spontaneous emission 
derivation 
 

Our goal in this section is to derive the spontaneous emission rate 𝛾 in free space, which is widely 

used in other CQED calculations and predictions. For this derivation we will consider a simple 

two-level system with a ground |𝑔〉 and an excited state |𝑒〉. Here, spontaneous emission occurs 

when the state |𝑒〉 decays to |𝑔〉 and emits a photon due to the Jaynes Cummings Hamiltonian. 

Therefore, we will set the initial condition as the excited state: 

 

Initial state, |𝜓(0)〉 = |𝑒, 0〉 (5.99) 

 

Here the "0" denotes zero photons in the cavity. In this case there is not a literal cavity since we 

are in free space, but we can imagine free space itself to be a cavity with infinite length. After 

some time, the excited state will decay and emit a photon, giving the final state of: 
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Final state, |𝜓(∞)〉 = |𝑔, 1𝐤〉 (5.100) 

 

Here the "1𝐤" denotes one photon in the cavity with a wavevector of 𝐤. In between the initial and 

final states, we have the state: 

 

Time dependent state, |𝜓(𝑡)〉 = 𝐶0
𝑒(𝑡)𝑒−𝑖𝜔0𝑡|𝑒, {0}〉 +∑𝐶1𝐤

𝑔 (𝑡)𝑒−𝑖𝜔𝑘𝑡|𝑔, 1𝐤〉

𝐤

(5.101) 

 

     Here a summation over all possible wavevectors is included in order to represent any possible 

photon emission. This is because prior to decay, we do not know which direction or polarization 

the photon will emit with, so we must use a general 𝐤. Each particular wavevector will have its 

own amplitude 𝐶1𝐤
𝑔 (𝑡) associated with it. To describe the system's dynamics we will use a modified 

form of the Jaynes Cummings Hamiltonian: 

 

𝐻̂ = ℏ𝜔0|𝑒〉〈𝑒| +∑ℏ𝜔𝑘𝑎𝐤
†𝑎𝐤

𝐤

+∑ℏ𝑔𝐤(|𝑒〉〈𝑔|𝑎𝐤 + |𝑔〉〈𝑒|𝑎𝐤
†)

𝐤

(5.102) 

 

Here, the first term still represents the atomic portion, but is shifted in energy. The second term is 

the field portion, with a summation over all possible wavevectors. The third term is the interaction 

term with the coupling constant defined here as: 

 

𝑔𝐤 = 𝑖√
𝜔𝑘

2ℏ𝜖0𝑉
(𝐝 ∙ 𝜀𝐤) (5.103) 

 

The time evolution of the system is given by the Schrodinger equation: 

 

𝐻|𝜓(𝑡)〉 = 𝑖ℏ
𝜕|𝜓(𝑡)〉

𝜕𝑡
(5.104) 
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Projecting onto 〈𝑒, {0}| and 〈𝑔, 1𝐤| gives, after a lot of algebra: 

 
𝜕

𝜕𝑡
𝐶0
𝑒(𝑡) = −𝑖∑𝑔𝐤𝑒

−𝑖(𝜔𝑘−𝜔0)𝑡𝐶1𝐤
𝑔 (𝑡)

𝐤

(5.105) 

𝜕

𝜕𝑡
𝐶1𝐤
𝑔 (𝑡) = −𝑖𝑔𝐤

∗𝑒𝑖(𝜔𝑘−𝜔0)𝑡𝐶0
𝑒(𝑡) (5.106) 

 

We then change of variables to 𝑡′ for equation (5.106): 

 
𝜕

𝜕𝑡′
𝐶1𝐤
𝑔 (𝑡′) = −𝑖𝑔𝐤𝑒

𝑖(𝜔𝑘−𝜔0)𝑡
′
𝐶0
𝑒(𝑡′) (5.107) 

 

And integrate with respect to 𝑡′: 

 

∫
𝜕

𝜕𝑡′
𝐶1𝐤
𝑔 (𝑡′)𝑑𝑡′

𝑡

0

= ∫ −𝑖𝑔𝐤𝑒
𝑖(𝜔𝑘−𝜔0)𝑡

′
𝐶0
𝑒(𝑡′)𝑑𝑡′

𝑡

0

(5.108) 

𝐶1𝐤
𝑔 (𝑡) − 𝐶1𝐤

𝑔 (0) = −𝑖𝑔𝐤∫ 𝑒𝑖(𝜔𝑘−𝜔0)𝑡
′
𝐶0
𝑒(𝑡′)𝑑𝑡′

𝑡

0

(5.109) 

𝐶1𝐤
𝑔 (𝑡) = 𝐶1𝐤

𝑔 (0) − 𝑖𝑔𝐤∫ 𝑒𝑖(𝜔𝑘−𝜔0)𝑡
′
𝐶0
𝑒(𝑡′)𝑑𝑡′

𝑡

0

(5.110) 

 

At this point we can say 𝐶1𝐤
𝑔 (0) = 0 for all 𝐤 since we are starting in the excited state at t = 0: 

 

𝐶1𝐤
𝑔 (𝑡) = −𝑖𝑔𝐤∫ 𝑒𝑖(𝜔𝑘−𝜔0)𝑡

′
𝐶0
𝑒(𝑡′)𝑑𝑡′

𝑡

0

(5.111) 

 

Substituting this into equation (5.105) then gives: 

 

𝜕

𝜕𝑡
𝐶0
𝑒(𝑡) = −𝑖∑𝑔𝐤𝑒

−𝑖(𝜔𝑘−𝜔0)𝑡 (−𝑖𝑔𝐤∫ 𝑒𝑖(𝜔𝑘−𝜔0)𝑡
′
𝐶0
𝑒(𝑡′)𝑑𝑡′

𝑡

0

)

𝐤

(5.112) 
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𝜕

𝜕𝑡
𝐶0
𝑒(𝑡) = −∑|𝑔𝐤|

2∫ 𝑑𝑡′𝑒𝑖(𝜔𝑘−𝜔0)(𝑡−𝑡
′)𝐶0

𝑒(𝑡′)
𝑡

0𝐤

(5.113) 

 

Our goal now is to deal with this summation and this integral, and try to show that our differential 

equation will overall become: 

 
𝜕

𝜕𝑡
𝐶0
𝑒(𝑡) = −constant ∙ 𝐶0

𝑒(𝑡) (5.114) 

 

Which is the recipe for exponential decay, which is what is observed in real systems. 

     We will start with the summation. Generally we can convert the summation to an integral as 

the discrete states 𝐤 approach a continuum: 

 

∑|𝑔𝐤|
2

𝐤

= 2∫𝐷(𝑘)|𝑔𝐤|
2 ∙ 𝑑3𝑘 , 𝐷(𝑘) =

𝑉

(2𝜋)3
(5.115) 

 

Where 𝑉 → ∞ is the volume of free space and prefactor of 2 represents two polarizations per mode. 

More explicitly, the integral over k-space becomes: 

 

∑|𝑔𝐤|
2

𝐤

=
2𝑉

(2𝜋)3
∫ 𝑑𝜙
2𝜋

0

∫ sin 𝜃 𝑑𝜃
𝜋

0

∫ |𝑔𝐤|
2 ∙ 𝑘2𝑑𝑘

∞

0

(5.116) 

 

From the definition of 𝑔𝐤, we have: 

 

|𝑔𝐤|
2 =

𝜔𝑘
2ℏ𝜖0𝑉

(𝐝 ∙ 𝜀𝐤)
2 (5.117) 

Substituting gives: 

∑ 𝑔𝐤
2

𝐤

=
𝜔𝑘

2ℏ𝜖0𝑉
(𝐝 ∙ 𝜀𝐤̂)

2
2𝑉

(2𝜋)3
∫ 𝑑𝜙
2𝜋

0

∫ sin 𝜃 𝑑𝜃
𝜋

0

∫ 𝑘2𝑑𝑘
∞

0

(5.118) 
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∑|𝑔𝐤|
2

𝐤

= ∫ 𝑑𝑘 𝑘2
𝜔𝑘

(2𝜋)3ℏ𝜖0
(∫ sin 𝜃 𝑑𝜃

𝜋

0

∫ 𝑑𝜙(𝐝 ∙ 𝛜𝐤)
2

2𝜋

0

)
∞

0

(5.119) 

 

The integrals in parentheses can be evaluated assuming that 𝐝 is along the z-axis: 

 

∫ sin 𝜃 𝑑𝜃
𝜋

0

∫ 𝑑𝜙(𝐝 ∙ 𝛜𝐤)
2

2𝜋

0

= ∫ sin 𝜃 𝑑𝜃
𝜋

0

∫ 𝑑𝜙(|𝐝| cos 𝜃)2
2𝜋

0

(5.120) 

= |𝐝|2∫ sin 𝜃 cos2 𝜃 𝑑𝜃
𝜋

0

∫ 𝑑𝜙
2𝜋

0

= |𝐝|2 ∙
2

3
∙ 2𝜋 =

4𝜋

3
|𝐝|2 (5.121) 

 

Substituting this gives: 

 

∑|𝑔𝐤|
2

𝐤

=
4𝜋|𝐝|2

3
∫ 𝑑𝑘 𝑘2

𝜔𝑘
(2𝜋)3ℏ𝜖0

∞

0

=
|𝐝|2

6𝜋2ℏ𝜖0
∫ 𝑑𝑘 𝑘2𝜔𝑘

∞

0

(5.122) 

 

Using 𝜔 = 𝑐𝑘 then gives: 

∑|𝑔𝐤|
2

𝐤

=
|𝐝|2

6𝜋2ℏ𝜖0
∫

𝑑𝜔

𝑐

𝜔2

𝑐2
𝜔𝑘

∞

0

(5.123) 

∑|𝑔𝐤|
2

𝐤

=
|𝐝|2

6𝜋2ℏ𝜖0𝑐3
∫ 𝜔𝑘

3𝑑𝜔𝑘

∞

0

(5.124) 

 

We now turn to the integral in equation (5.113): 

 

∫ 𝑑𝑡′𝑒𝑖(𝜔𝑘−𝜔0)(𝑡−𝑡
′)𝐶0

𝑒(𝑡′)
𝑡

0

(5.125) 

 

Under the Wigner-Weisskopf approximation, we assume that 𝐶0
𝑒(𝑡′) will not vary much over the 

course of the integral, so we set 𝐶0
𝑒(𝑡′) = 𝐶0

𝑒(𝑡) and pull it out of the integral: 
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𝐶0
𝑒(𝑡)∫ 𝑑𝑡′𝑒𝑖(𝜔𝑘−𝜔0)(𝑡−𝑡

′)
𝑡

0

(5.126) 

 

This is equivalent to a "Markov approximation", where the system has no memory of the past. To 

evaluate the integral, we raise the upper bound to 𝑡 → ∞ since the tiime scale is much longer than 

the inverse frequencies 𝜔𝑘 , 𝜔0 of the system. This gives: 

 

∫ 𝑑𝑡′𝑒𝑖(𝜔𝑘−𝜔0)(𝑡−𝑡
′)

∞

0

= 𝜋𝛿(𝜔𝑘 − 𝜔0) − 𝑖𝑃 (
1

𝜔𝑘 − 𝜔0
) (5.127) 

 

Where 𝛿(𝑥) is the Dirac-delta function of x and 𝑃(𝑥) is the Cauchy principal part of x. The Cauchy 

principal part corresponds to the Lamb shift, which we are not interested in for this derivation, so 

it will be dropped. This gives the result: 

 

∫ 𝑑𝑡′𝑒𝑖(𝜔𝑘−𝜔0)(𝑡−𝑡
′)𝐶0

𝑒(𝑡′)
𝑡

0

= 𝜋𝛿(𝜔𝑘 − 𝜔0)𝐶0
𝑒(𝑡) (5.128) 

 

Combining equations (5.124) and (5.128) into equation (5.113) then gives: 

 

𝜕

𝜕𝑡
𝐶0
𝑒(𝑡) = −

|𝐝|2

6𝜋2ℏ𝜖0𝑐3
𝐶0
𝑒(𝑡)∫ 𝜔𝑘

3𝜋𝛿(𝜔𝑘 − 𝜔0)𝑑𝜔𝑘

∞

0

(5.129) 

𝜕

𝜕𝑡
𝐶0
𝑒(𝑡) = −

|𝐝|2

6𝜋2ℏ𝜖0𝑐3
𝐶0
𝑒(𝑡) ∙ 𝜋𝜔0

3 (5.130) 

𝜕

𝜕𝑡
𝐶0
𝑒(𝑡) = −

|𝐝|2𝜔0
3

6𝜋ℏ𝜖0𝑐3
𝐶0
𝑒(𝑡) (5.131) 

 

As alluded to earlier, this is the differential equation for exponential decay. This means that the 

excited state population decays according to: 
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𝐶0
𝑒(𝑡) = 𝑒−𝛾𝑡, 𝛾 =

|𝐝|2𝜔0
3

6𝜋ℏ𝜖0𝑐3
=

𝜇2𝜔0
3

6𝜋𝜖0ℏ𝑐3
(5.132) 

 

The rate 𝛾, sometimes termed the Einstein A coefficient, is exactly the spontaneous emission rate 

outlined earlier in this chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



230 

 

Chapter 6 
 
Fabrication 
 

 

6.1  General principles of lithography 
 

The cornerstone of most fabrication procedures is the use of lithography, which selectively exposes 

and develops special polymers called resist in order to create a user defined pattern on a substrate. 

Lithography can be categorized into two main types based on the exposure source. 

Photolithography uses visible/UV light for exposure and is used for micron scale patterns. E-beam 

lithography uses energetic electrons (usually 30-100 keV) for exposure and is used for nanometer 

scale patterns. In either case, the effect of exposure is to chemically alter the resist in order to 

strengthen or weaken its adhesion to the substrate. In "positive" resists, such as PMMA, the 

exposed regions are chemically weakened and subsequently removed during the development step. 

In this case the exposure pattern exactly matches the developed resist pattern. In "negative" resists, 

such as HSQ, exposure causes a crosslinking or polymerization which causes only these regions 

to stay on the chip during development. In this case the exposure pattern is the inverse of the final 

resist pattern. The process of "development" involves the submergence of the substrate and resist 

into a chemical that removes the exposed or unexposed regions. The exact chemical used varies 

from resist to resist. A general procedure for lithography is given below in figure 6.1. 
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Figure 6.1 | General lithographic procedure. Photoresist or electron beam resist is spun onto a 

sample and baked. Subsequent exposure with either ultraviolet light or 10-100 keV electrons 

chemically alters the resist. A final development step either removes all exposed resist or all 

unexposed resist. 

 

     When performing lithography, one must be mindful to find the correct exposure dosage for the 

particular resist. For optical resist dosage is typically expressed in units of μJ/cm2 whereas e-beam 

resist typically uses μC/cm2. If patterns are overexposed, they will become bloated and small 

features will merge into each other. On the other hand, underexposure will result in incomplete 

development of features. Likewise, the development step after exposure must be timed precisely 

so as not to over or underdevelop the sample and cause similar pattern distortions. It can sometimes 

be difficult to distinguish between exposure and development issues, and to a certain degree these 

errors can compound on each other or cancel each other out. 

     After lithography, many procedures involve the deposition and subsequent liftoff of an 

evaporated or sputtered material. Alternatively, the resist itself can be used as mask to protect the 

material below from a plasma etch ("dry" etch) or chemical etch ("wet" etch). We will discuss both 

of these topics. 
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6.2  Evaporation and liftoff 
 

Whether photolithography or e-beam lithography is used, a common subsequent step in many 

procedures is to evaporate a metal or dielectric layer and then remove the resist using solvents. 

The process of removing the patterned resist while leaving patterned metal behind is referred to as 

liftoff. A basic schematic of this procedure is shown below. 

 

 

Figure 6.2 | Evaporation and liftoff. Directional evaporation of a metal or dielectric coats the top 

surface of the sample. Subsequent removal of the resist in a solvent solution leaves behind material 

that was evaporated directly onto the sample. In some instances, material that is attached to the 

sidewalls of the resist can result in tearing. 

 

     For evaporation onto a sample, it is vital to ensure there is suitable adhesion to the substrate 

surface or else the deposited material will peel off. To achieve this, a thin (~5 nm) "adhesion layer" 

of either Ti or Cr is deposited onto the sample before the target material is evaporated. For 

example, the deposition of gold electrodes on virtually all substrates involves a bilayer deposition 

of either Ti/Au or Cr/Au. The adhesion layer, in turn, will stick to a surface more effectively if it 

is oxygen plasma cleaned before deposition. 
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Figure 6.3 | Poor adhesion between evaporated Ni and SiC substrate. If an adhesion layer such 

as Ti or Cr is not used, then other evaporated metals such as Ni will not stick to the substrate. This 

results in the blistering and peeling shown above. Likewise, if the sample is not plasma cleaned 

before evaporation, then the adhesion will also be poor. 

 

     In many liftoff procedures, attachment of evaporated metal onto the sidewalls of the resist can 

result in unwanted "tearing" of the metal. This phenomenon is shown in the figure below, and can 

be avoided with either a bilayer of resist or a thin layer of resist. 
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Figure 6.4 | Tearing from liftoff. Attachment of evaporated metal to the sidewalls of resist can 

result in unwanted tearing during liftoff, which is visible in these SEM images on the edges of the 

lifted off holes. 

 

     In order to achieve a successful liftoff, the resist thickness must be at least as thick as the 

material that is being patterned. For example, a 100 nm gold layer would require resist that is at 

least 100 nm thick. The thickness of resists can be measured directly with a profilometer, or 

estimated using the spec sheets of the resist. Finally, if the rotation option (which is used for 

uniform coatings) is on during evaporation, the resist will be completely coated with no solvent 

access and liftoff will not be possible, as outlined below: 

 

 

Figure 6.5 | Sample liftoff with rotated evaporation. If the rotation of the sample stage is turned 

on, the uniform coating of the material will make subsequent liftoff impossible, as the solvent has 

no direct access to the resist. 

 

     To avoid tearing during liftoff, occasionally a bilayer of resist is employed to avoid contact 

between the evaporated material and the sidewalls of the resist. For PMMA, different molecular 

weights (e.g. 495K vs. 950K) will develop at different rates, forming a window for evaporated 

material to deposit into. This geometry is outlined in the figure below. 
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Figure 6.6 | Bilayer resist lithography. A combination of resists with different molecular weights 

results in a bilayer structure that avoids liftoff tearing. 

 

A basic procedure for bilayer e-beam lithography is outlined below. 

 

Bilayer PMMA e-beam lithography for gold electrodes 

1) Solvent clean the chip with sonication 

2) Drop cast PMMA 495K A6 onto chip 

3) Spin at 3000 rpm, 45 s, 1000 rpm/s (~350 nm) 

4) Bake at 180 oC for 5 minutes 

5) Drop cast PMMA 950K A4 onto chip 

6) Spin at 3000 rpm, 45 s, 1000 rpm/s (~200 nm) 

7) Bake at 180 oC for 5 minutes 

8) Perform Raith e-beam exposure + development 

9) O2 descum the chip for 5-10 seconds to prep the surface for evaporation 

10) Evaporate 10 nm Ti and 190 nm Au in the evovac evaporator with no rotation 

11) Liftoff in acetone with low power sonication 

12) Check sample under microscope 

 



236 

 

     While the bilayer procedure works well for large features, nanoscale holes used for photonic 

crystals may still display unwanted artifacts from metal deposition, as shown below. 

 

 

Figure 6.7 | Artifacts of evaporated metal in nanoscale features using bilayer resist 

lithography. For submicron features, the difference in lateral thicknesses of the two resists in a 

bilayer geometry can sometimes result in the deposited metal or dielectric displaying unwanted 

layers of coating. These features are visible as inner circles in the SEM images above. 

 

 

6.3  Dry etching processes and hard masks 
 

One of the most common ways to etch into a material is through an inductively coupled plasma 

(ICP) etch. In this process, a combination of chemical etching and physical bombardment of ions 

results in a directional etch into the target material. As a rule of thumb, the more a plasma etch 

relies on chemistry to react with the target, the more isotropic the etch will be. Meanwhile, the 

more that energetic bombardment is used, the more directional the etch will be. For silicon, there 

are a variety of fluorine-based gases such as SF6, CF4, CHF3, XeF2 that will readily react with 

silicon and etch it away from chemical reactions. For silicon carbide, one must rely on the physical 

impact of ions in combination with fluorine gases to achieve etching. 
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     In order to selectively etch only targeted regions of silicon carbide, an etch mask much be used 

to protect regions of the sample. In principle a variety of materials can be used as a mask, such as 

aluminum, silicon oxide, or even resist. However, the relatively poor selectivity of these materials 

(~1:3 for Al, ~1:10 for SiO2, ~1:1 for resist) can result in significantly sloped sidewalls, which has 

an adverse effect on photonic structures. The basic mechanism of this process, which involves 

degradation of the mask during the etch, is outlined in figure 6.8. Additionally, the effect of slopes 

sidewalls on photonic crystal designs is shown in figure 6.9. 

 

 

Figure 6.8 | Development of a sloped sidewall due to degradation of the hard mask. As an 

inductively coupled plasma removes substrate material, it also etches the hard mask, which can 

result in sloped sidewalls if the etch selectivity is not high. 
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Figure 6.9 | Effect of sidewall angle on photonic crystal cavity resonances. Adapted from the 

supplement of [53]. Sloped sidewalls in photonic crystal cavity designs cause significant 

blueshifting of resonances and lowering of quality factors. 

 

     To address this issue, a hard mask with a high selectivity is desired. The most widespread hard 

masks for deep SiC plasma etching are nickel and copper [61]. Nickel offers a selectivity of ~1:40 

with smooth sidewalls, while copper offers a higher selectivity of ~1:100 at the cost of roughened 

sidewalls. SEM profiles of etching using both masks are shown below. 
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Figure 6.10 | Copper and Ni plasma etch masks for SiC. The copper etch mask (top row) has a 

higher selectivity of ~1:100, but results in significantly roughened SiC sidewalls. The nickel etch 

mask (bottom row) has a lower selectivity of ~1:40, but displays much smoother features. The 

sidewall angle for the Ni mask is ~85 degrees. All images are obtained with a scanning electron 

microscope. 

 

     In addition to the mask material, both the thickness of the resist used for liftoff and the 

parameters of the plasma etch can have drastic impacts on the sidewall angle and smoothness of 

the resulting structures. Some different parameters are shown below with a Nickel mask. 
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Figure 6.11 | Effect of plasma etch conditions and PMMA on feature roughness. All holes 

have a diameter of ~200 nm and a Nickel etch mask was used for all holes. A lower power ICP 

etch with thinner PMMA developed with a DI water and IPA mixture resulted in the smoothest 

holes. All images are obtained with a scanning electron microscope. 

 

 

6.4  Photoelectrochemical etching 
 

A prerequisite for nearly all nanophotonic structures is to isolate a submicron membrane of 

material either through a suspended undercut or a material heterostructure (e.g., silicon-on-

insulator). For silicon carbide, thin membranes of the 3C polytype can be grown on a silicon 

substrate, but the same growth is not possible for 4H. Silicon-carbide-on-insulator (SiCOI) 

geometries are also not yet commercially available as they are for the SOI platform. Lastly, silicon 

carbide's near imperviousness to strong acids and bases makes it difficult to etch samples down to 

submicron thicknesses. Doing so usually requires a combination of mechanical polishing and time-

intensive plasma etches. 
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     As an alternative to these methods, it is possible to achieve an undercut in 4H-SiC through the 

use of photoelectrochemical (PEC) etching [62,63]. In this process, the doping of the silicon 

carbide determines whether etching will occur. In this way a selectivity can be achieved through a 

doping heterostructure which can be commercially obtained in SiC wafers. For our experiments, 

we selectively etched p-type SiC while leaving intrinsic and n-type regions unaffected. For all of 

our samples we used 1e18 cm-3 nitrogen doping for n-type, 1e18 cm-3 aluminum doping for p-type, 

and <1e15 cm-3 residual dopants for intrinsic I-type. 

     As the name implies, the PEC reaction involves a combination of photo-, electro-, and chemical 

processes working in tandem. Ultraviolet light is used as a source of electron-hole pairs, an applied 

voltage drives holes to the SiC surface, and a KOH or HF solution in combination with the surface 

holes oxidizes and etches the SiC. Due to the extreme danger of HF solutions, we opted to use 

KOH as the chemical solution. A schematic of the PEC setup can be seen in the figure below. 
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Figure 6.12 | Photoelectrochemical etching setup. A 4H-SiC sample (here with NINPN doped 

layers) is submerged in a 0.2 M KOH solution. electrical contacts are made with an electrical wire 

to Ohmic NiCr on the back of the chip and a platinum wire in solution. The voltage is varied so as 

to give a 5-10 µA photocurrent and is typically within a ±1 V range, although the exact voltage 

could be positive or negative. A 365 nm UV LED is used as a UV source. 
 

     A vital portion of the PEC electrical circuit is an Ohmic contact on the backside of the SiC chip. 

Otherwise, the Schottky barrier between the backside electrical contact and the chip will prevent 

voltage from being applied through the bulk of the SiC. To create an Ohmic contact, we sputtered 

~300 nm of an 80/20 mixture of Ni/Cr on the backside surface and annealed at 950 oC for 5 minutes 

with Argon gas. We used a Solaris 150 RTP rapid thermal annealer for this fast anneal. For a 

typical PEC run, we use this backside contact as the anode, meaning it is the positive lead of the 

circuit. The submerged platinum wire then acts as the cathode, or negative lead. On rare occasions 

we had to flip this polarity to achieve etching, but this was atypical. 

     It is worth emphasizing that the behavior of the PEC etch varies continuously as the voltage is 

increased or decreased, even as it crosses from positive to negative voltage. Indeed, there is nothing 

"special" about zero voltage. The true electrical balance of the system is determined by the 

potential energy differences at the doped SiC interfaces, between the SiC surface and the KOH 

solution, and between the electrical wire and the backside contact. As result, one should not attach 

too much significance to the numerical value of the applied voltage. What is more important is the 

resultant photocurrent of the reaction. Here we define the photocurrent as the change in current 

that occurs when the UV light is turned on. Note that the ionic solution forms a complete circuit, 

so some magnitude of current will always be flowing with applied voltage. However, if this current 

does not change with the addition of UV light, then no etching is happening! 

     To achieve selective etching, we found that a photocurrent of 5-10 µA was ideal balance 

between selectivity and etch rate. Under these conditions PEC etch rates are typically on the order 
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of 100 nm/hour, so a total etch time of 5-6 hours is typical for a sample, usually across multiple 

runs. Depending on the sample, this photocurrent would sometimes result in wildly different 

applied voltages. For the most part, however, the voltage was usually within a ±1 V range. 

Generally, photocurrent can be raised or lowered by varying the applied voltage. More positive 

voltage will result in higher photocurrent magnitudes. If the photocurrent is too high, however, 

you will lose etch selectivity and etch both p- and n-type SiC. More negative voltage will result in 

lower photocurrent magnitudes. This is raises etch selectivity, but lowers the etch rate or stops 

etching altogether. It is worth noting that the appropriate voltage to obtain the desired photocurrent 

can change over the course of a run, so it should be checked approximately every 10 minutes. For 

the ultraviolet source, we use a Thorlabs 1150 mW 365 nm LED focused through a lens and 

operating at approximately two thirds power for most runs. The KOH solution is a 0.2 M 

concentration and is flowed with a peristaltic pump to aid the reaction process. SEM images of the 

PEC etching after several consecutive runs are shown in the figure below. 

 

 

Figure 6.13 | Photoelectrochemical etch of p-doped silicon carbide across several runs. In the 

first four runs, a gradual degradation of the p-type SiC is observed. In runs 5-7, the p-type SiC 

steadily etches while the intrinsically doped (or n-type) SiC remains intact. All images are obtained 

with a scanning electron microscope. The hole lattice spacing is approximately 350 nm. 
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Chemical reaction: 

     The chemical reaction of PEC etching involves the surface oxidation of SiC followed by 

dissolution into the KOH. The total chemical reaction is outlined below. 

 

𝑆𝑖𝐶 + 8𝑂𝐻− + (𝑛)𝑒+ → 𝑆𝑖𝑂2 + 𝐶𝑂2 + 4𝐻2𝑂 + (8 − 𝑛)𝑒
− (6.1) 

𝑆𝑖𝑂2 + 2𝐾𝑂𝐻 → 𝐾2𝑆𝑖𝑂3 + 𝐻2𝑂 (6.2) 

 

 

Figure 6.14 | Photoelectrochemical etch chemical reaction. UV irradiation causes electron-hole 

pairs to form (purple ±). As the holes are gated toward the p-type SiC surface, they combine with 

hydroxide ions in the KOH to form silicon oxide. This is the key part of the PEC reaction, and is 

boxed in the above equations and in the figure. The formed oxide is subsequently etched away 

with the KOH. The applied voltage is set to induce hole diffusion to the p-type SiC surface while 

keeping holes away from the n-type SiC surface. 
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Oxide growth 

     A full PEC run is typically 2-3 hours. It is not recommended to run longer than that, as there is 

a risk of undercut features breaking off from oxide growth. This means that a full undercut usually 

takes multiple PEC runs. 

 

Drying undercut structures 

     Silicon carbide is structurally strong enough for IPA drying without using critical point drying 

that is common for silicon nanostructures. Air drying directly from water may cause collapse, 

however due to the higher surface tension of water. 

 

Anisotropy of PEC etch 

     The PEC etch is anisotropic and predominantly to etch horizontally rather than vertically. This 

means that a photonic structure for a 2-micron p-type SiC layer requires etch holes that go through 

the 2 microns of p-type then PEC etch horizontally to achieve the undercut. If these holes are not 

close to the photonics, a full undercut becomes difficult. 

 

 

6.5  Nanobeam photonic crystal 
fabrication procedure 
 

The total procedure for the nanobeam photonic crystal fabrication in 4H-SiC is outlined below. 

Figure 6.15 gives a general schematic of the steps involved, while the steps discussed below 

elaborate on the procedure. This procedure is divided into 14 parts: 

1) Pattern file creation and conversion 

2) Cleaning the chip and depositing a conduction layer 

3) Spinning PMMA and baking 
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4) Raith pre-measurement and sample loading 

5) Raith writing and unloading 

6) Development 

7) Ni hard mask deposition 

8) Liftoff 

9) Liftoff characterization 

10) ICP etching 

11) Acid cleaning 

12) Etch characterization 

13) PEC etch 

14) Final acid clean 

 

 

Figure 6.15 | Fabrication procedure for nanobeam photonic crystals in silicon carbide. In the 

initial SiC sample, the blue regions represent n-type or intrinsically doped SiC, while the red region 

represents p-type SiC to be etched via PEC. All pictures represent a side view of the sample. 
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1) Pattern file creation and conversion 

     Note that before entering the clean room, the pattern file for writing should be prepared and 

uploaded onto Box or email, where it can be accessed from the clean room computers. It is worth 

stressing that external USB flash drives are not used in the clean room, so file transfers must be 

done online. The full file conversion can also be done at any point outside of the fabrication 

procedure, and it may be a good idea to work through these conversions before processing the 

sample to save time. The general file conversion proceeds as follows: 

 

PY → GDS → GPF → CJOB → JOB (6.3) 

 

     We use the python GDS CAD package to make pattern files. The python file outputs a GDS 

pattern file. This GDS file can be uploaded onto Box, then downloaded onto the clean room 

computer with Beamer software (just outside the Raith control room, opposite of the wet benches). 

Using beamer, the GDS file can be converted to a GPF file with appropriate electron beam 

conditions and resolution. This file can then be uploaded onto Box and downloaded from the Raith 

control computer, where it can be used as part of a CJOB file. The CJOB includes other 

components of the writing job such as placement and repetition of patterns, beam currents, optional 

labels, and optional alignment procedures. Once the CJOB file is complete, it is exported to a JOB 

file, which is what is literally run when an e-beam run is performed. 
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2) Cleaning the chip and depositing a conduction layer 

     Solvent clean the sample with 1-2 minutes of sonication in acetone and IPA. Inspect the sample 

under the microscope to ensure the surface is as clean as possible. Perform an O2 plasma clean as 

both a cleaning step and a surface preparation for metal evaporation. Coat the topside of the sample 

with a conduction layer such as 5 nm of titanium. After the metal has been deposited, this is a 

"stable point" in the procedure. The sample can be left at this step for days or weeks and then 

resumed at a later time. 

 

3) Spinning PMMA and baking 

     Preheat the hot plate for 180 oC. Note that this preheat may take several minutes, so it should 

be completed before doing any spins. Meanwhile, perform another O2 plasma clean on the sample 

with the Ti conduction layer. This will prevent resist from balling up on the surface when it is drop 

cast. Once the hot plate is ready, spin a monolayer of PMMA A4 495K at 3000 rpm for 45 s with 

a 1000 rpm/s ramp. This should result in ~180-190 nm of resist. Slight edge beading will occur on 

the perimeter of the chip, but most of the interior of the chip will be usable for e-beam lithography. 

After the spin, bake the resist at 180 oC for 5 minutes. 

 

4) Raith pre-measurement and sample loading 

     Vent the Raith sample loading chamber, which takes 5-7 minutes. Do not vent the main 

chamber of the instrument! Once the loading chamber is vented, remove the appropriate cassette 

and secure the sample onto the cassette. Load the cassette onto the microscope stage and write 

down the coordinates of the sample relative to the Faraday cup. Make sure the chip is at the right 
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height and level (no z-tilt). Laser height on microscope must read 0 < ℎ < 50 𝜇𝑚. Place the 

cassette back into the loading chamber and pump it down. 

 

5) Raith writing and unloading 

     Run the job writing file, with the pattern and beam conditions specified by the cjob file and gpf 

pattern file. An e-beam dose of ~400 µC/cm2 is typical for PMMA A4 495K, although a dose array 

could be used for calibration. Once writing is finished, vent the Raith loading chamber and unload 

the sample. 

 

6) Development 

     Development should occur immediately after writing. Prepare two dishes for development. One 

dish of 1:3 DI:IPA (e.g., 10 mL DI and 30 mL of IPA for 40 mL total) and another dish of pure 

IPA. Develop in the DI:IPA mixture for 2 minutes with occasional swirling. Place the chip in the 

IPA dish for 1 minute, with occasional swirling. N2 dry the chip and inspect it under the microscope 

to make sure all the features are properly. Since PMMA is an e-beam resist, there is no risk of 

accidental exposure from room lights or microscope light. If the patterns are satisfactory, this is a 

"stable point" in the procedure. The next steps can be continued on the next day or multiple days 

later. 

 

7) Ni hard mask deposition 

     Perform a 5-10 second oxygen plasma descum to prepare the chip’s surface for Ni evaporation. 

A longer time will result in the PMMA starting to degrade. Evaporate 25 nm of Ni in the Nexdep 

evaporator with the tilted stage and no rotation. The tilted stage is so that the source evaporates at 
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a normal incidence to the sample. Nickel should be evaporated on manual mode, as the automatic 

PID is sometimes unable to handle the drastic increase in rate once the Ni reaches a high 

temperature. 

 

8) Liftoff 

     Liftoff of PMMA is performed in acetone. Start by leaving the sample in acetone for 5-10 

minutes, then sonicate at low power for 30 seconds. The liftoff might be incomplete, meaning 

further sonication for longer times at higher powers may be necessary. Even under full power 

sonication for several minutes, the Ni mask should be intact. 

 

9) Liftoff characterization 

     SEM image the device to see what the Ni mask looks like. This is a vital step as it sets the tone 

for the rest of the fabrication run. If the mask looks bad (e.g., with liftoff tearing), the resulting 

etch will not be smooth. The procedure is also restartable at this point as the SiC has not been 

etched. 

 

10) ICP etching 

     ICP fluorine etch for 2-3 minutes. We used a mixture of SF6 and Ar gases at 40 and 10 sccm, 

respectively, with a bias power of 90 W and an ICP run power of 500 W at a process pressure of 

6 mTorr. The SiC etch rate is roughly 350-400 nm/min under these conditions. The Ni mask 

selectivity is 1 : ~40-50. So, 25 nm Ni should give 1000-1250 nm of SiC etch. 
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11) Acid cleaning 

Acid clean the residual Ni away with a piranha solution of 1:3 H2O2:H2SO4 followed by a 1:1 

mixture of HF:HNO3. Sometimes, multiple acid cleans and a O2 descum is necessary to get rid of 

all the Ni residue. 

 

12) Etch characterization 

SEM the sample to examine the etched holes. If they look acceptable, proceed to PEC etching. 

 

13) PEC etch 

Perform the photoelectrochemical etch as outlined earlier in this chapter. Multiple PEC runs are 

usually needed to achieve a full undercut, with intermittent SEM to monitor the progress of the 

etch. 

 

14) Final acid clean 

Once PEC is complete, a final acid clean of HF/nitric and piranha should remove all residue from 

the completed devices. SEM images of completed devices are shown below. 

 

 

Figure 6.16 | Scanning electron microscope images of silicon carbide photonic crystals. 

Completed devices show relatively smooth etched holes with a sidewall angle of ~85 degrees. The 

etching of the p-type layer under the nanobeam provides a full undercut for photonic confinement 

in the z-direction. 



252 

 

 

 

6.6  E-beam lithography alignment on the 
Raith 
 

Alignment is used in e-beam lithography when it is necessary to position separate patterns 

precisely relative to each other. This is most commonly achieved through the use of global 

alignment markers that serve as a reference for all pattern positioning. In order for the Raith 

software to recognize the presence of alignment markers, there needs to be a high material contrast 

under SEM imaging. This is achieved through a difference in atomic number between the marker 

material and the underlying sample. This also means that higher atomic weight metals such as gold 

(Z = 79) work best. If gold is not possible, the next best options are silver (Z = 47) and niobium 

(Z = 41), although thicker layers will need to be deposited to compensate for the lower atomic 

number. In order to utilize alignment markers on the Raith, the following procedure can be used: 

 

Alignment procedure: 

1) After mounting the chip in the microscope setup, make the alignment markers square such 

that there’s less than a 1/300 deviation for x/y. E.g. if two alignment markers are separated 

in y by 300 microns, then the x offset has to be less than 1 micron. This corresponds to the 

rotation angle being less than the 0.2-degree threshold for the instrument. 

2) Write down the center coordinates of each alignment marker 

3) In cjob, put markers under the “exposure” tab. Click the checkbox: “Fixed Global Markers” 

4) Then select the appropriate marker such as p20 (positive 20x20 micron square) or use the 

custom “joy” marker. 
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5) Enter the markers coordinates in a clockwise fashion. E.g., entering the coordinates for the 

upper left marker, then the upper right marker, and so on. 

6) The program will rarely find the markers with -f coordinates, meaning you’ll have to use 

SEM to find the marker absolute coordinates. 

7) Switch to the beam current to be used for writing. 

8) Use the terminal commands given below to go to each -f coordinate. Turn on the SEM, 

center on the marker, use “mvm” to find the marker, and then print out and write down the 

absolute coordinate for each marker. Toggle “SEM on” and “SEM off” to see the sample 

(and hopefully markers), but be careful because this exposes the sample. Here the viewing 

window of exposure is up to ±250 microns. Any other metal in this viewing window will 

interfere with the pattern marker recognition algorithm. 

9) The program needs these absolute coordinates of the markers to run correctly. 

10) As an example, the inputted coordinates could be something like: 

“69909,124633 70809,124633 70809,123733 69909,123733” 

11) If there is a rotation error, try removing the 4th marker from cjob and running with three 

markers instead. 

 

Common terminal commands 

You can run the following commands from the terminal of the Raith computer in Applications → 

System tools → Terminal 

 

>mcur 

move to faraday cup 
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>pg move pos --rel 55043,30667 

Relative movement (relative to faraday cup) 

 

>pg move pos 69864,112869 

Absolute movement 

 

>mvm /rel 0,0 p20 

Look for a “p20” marker relative to the current location by the given coordinates. 

In this case, 0,0 means search at the current location. 

 

>mpg tab 

Print out the current absolute coordinates 

 

-f 55043,30667 

This is a relative coordinate, relative to the faraday cup 

 

69864,112869 

This is an absolute coordinate 
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6.7  Miscellaneous procedures 
 

In addition to the other procedures outlined in this chapter, other miscellaneous processes have 

been compiled below. For designing various processes, the reference [64] is incredibly helpful to 

determine which materials get etched by which chemicals. This information is vital for both etch 

masks and acid cleans of the sample. 

 

PMMA A4 bonding recipe 

This is used to bond small samples to carrier wafers, either for spin purposed or for use in 

instruments that only accept full wafers 

1) Drop cast the PMMA A4 on the carrier wafer and perform the following spin: 

a. 5 seconds at 500 rpm (300 rpm/s ramp) 

b. 10 seconds at 2000 rpm (800 rpm/s ramp) 

2) Place the small sample on the carrier wafer 

3) Bake the wafer at 95 oC for 2 minutes (dehydration bake to prevent bubbling of resist) 

4) Bake the wafer at 185 oC for 10 minutes to solidify the PMMA bond 

 

HSQ (negative e-beam resist) 

Spin: 

4000 rpm for 30 seconds, 800 rpm/s ramp 

Bake at 95 C for 2 minutes 

Expose: 

~775 𝜇𝐶/𝑐𝑚2. 
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Develop: 

Use TMAH in the acid hood for 70 s, then 70 s in DI water. 

After development bake for 10 minutes at 300oC to make the HSQ more uniform 

 

AZ 1512 photolithography procedure 

1) Solvent clean the same with acetone/IPA/DI/N2 dry 

2) O2 plasma clean 

3) 1 minute hot plate bake at 150-200 oC as a dehydration bake 

4) For < 1 cm chips, bond the chip to a carrier Si wafer with resist. 

5) Use AZ 1518 resist, which is a positive resist. Spin at 3000 rpm, 60s, 2000 rpm/s. 

6) Bake at 95 oC for 60 sec 

7) Expose using 405 nm, dose array with 50-150 mJ/cm2 in steps of 10 (most likely dose is 

80-110) 

8) Bake at 115 oC for 60 sec 

9) Wait 3 minutes for rehydration 

10) Develop in AZ300 MIF for 60 sec. Then rinse in DI water and N2 dry 

11) O2 plasma clean 

12) Use profilometry to measure resist thickness 

13) Lift off by sonicating in acetone for 5 min (or longer if necessary) and then IPA for 1-3 

min 

 

HNA acid undercut (silicon wet etch) 
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     An acid mixture termed “HNA” can be used to wet etch silicon. This consists of 5.5 parts acetic 

acid, 3.5 parts nitric acid, and 2 parts tracemetal grade HF (not buffered HF). The plastic pipettes 

provided by the clean room can be used to denote 1 “unit” of liquid. The etch rate is typically ~3-

5 microns/minute. The main mechanism of this reaction is oxidation of the silicon by the nitric 

acid followed by subsequent etching of the silicon oxide with hydrofluoric acid. The role of acetic 

acid is to slow the reaction process. If a pure mixture of 1:1 nitric acid and HF is used, the 

exothermic reaction will occur so rapidly that the solution will fume and violently boil. If the 

sample is silicon carbide, however, this HF/nitric acid will not etch the material and serves as an 

excellent acid clean to remove most residue. 

 

SF6 plasma etch of silicon: 

Time 60 seconds 

Pressure 15 mTorr 

HF power 20 W 

ICP Power 80 W 

O2 5 sccm 

SF6 50 sccm 

Temperature 20 oC 

Helium backside pressure 10 Torr 

 

     This recipe has a fairly uniform etch, with an etch rate of 2-3 nm/s. One minute was not enough 

to get through 200 nm of silicon. I used a relatively low power to try to get a uniform etch, which 

seemed to work well. For the etch mask I used 20 nm of chromium. The recipe itself is one of the 

standard recipes for etching silicon. The other attempted recipes with polymers (CF4, CHF3) are 

intended for much deeper vertical etches of hundreds of microns, but they didn't work well with 

the 200 nm etch. The walls also appear to be relatively smooth, as can be seen in SEM imaging. 
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6.8  Microwave stripline B-field calculation 
 

Here we calculate the magnetic field amplitude from a microwave stripline. The Biot-Savart law 

states: 

𝑑𝐵⃗⃗ =
𝜇0𝐼

4𝜋𝑟2
𝑑𝐿⃗⃗ × 𝑟̂ (6.4) 

Where 

𝑑𝐿⃗⃗ is the infinitesimal length of conductor carrying electric current I. It points along the wire. 

𝑟̂ is a unit vector pointing from the current to the point of interest. 

I is the current running through the wire 

r is the distance between the wire and the point of interest. 

 

We normally have: 

𝐵𝑤𝑖𝑟𝑒 =
𝜇0𝐼

2𝜋𝑟
(6.5) 

 

So for a sheet of current, we have contributions of many small magnetic fields dB from 

infinitesimal line currents dI along the sheet: 

 

𝑑𝐵 =
𝜇0
2𝜋𝑟

𝑑𝐼 (6.6) 

 

Assuming the current is uniformly distributed along a sheet of width w, an infinitesimal current dI 

should be determined by how wide your “mini-sheet” is (𝑑𝑟) compared to the total width w: 

 

𝑑𝐼 =
𝑑𝑟

𝑤
∙ 𝐼 (6.7) 
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So: 

𝐵 = ∫ 𝑑𝐵
𝑟=𝑎+𝑤

𝑟=𝑎

= ∫
𝜇0
2𝜋𝑟

∙
𝑑𝑟

𝑤
∙ 𝐼

𝑟=𝑎+𝑤

𝑟=𝑎

(6.8) 

 

Where “r” is the distance from the point of interest to somewhere on the stripline. The way this is 

set up, the closer edge will be at r = a and the farther edge will be at r = a + w: 

 

𝐵 =
𝜇0𝐼

2𝜋𝑤
∫

𝑑𝑟

𝑟

𝑎+𝑤

𝑎

(6.9) 

𝐵 =
𝜇0𝐼

2𝜋𝑤
|ln(𝑟)𝑎

𝑎+𝑤 (6.10) 

𝐵 =
𝜇0𝐼

2𝜋𝑤
(ln(𝑎 + 𝑤) − ln(𝑎)) (6.11) 

𝐵 =
𝜇0𝐼

2𝜋𝑤
(ln (

𝑎 + 𝑤

𝑎
)) (6.12) 

 

For a distance 𝑎 away from the edge of a MW stripline that is 𝑤 wide. This equation can be used 

when determining the distances and thicknesses needed for microwave striplines as a part of 

pattern files. As a general rule of thumb, the stripline should be within 100 microns of the 

divacancy of interest. 
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Chapter 7 
 
Purcell enhancement of a 
divacancy 
 

 

7.1  Motivation and overview 
 

It is an overarching goal for many optically active qubit systems to extend the range of qubit-qubit 

interactions and scale to networks of many interconnected nodes. This holds true for quantum dots, 

color centers in semiconductors, rare-earth ions, and atomic vapor systems. In what is sometimes 

terms a "quantum network", photons act as the travelling carriers of quantum information, whereas 

electron and nuclear spins typically act as "stationary" qubits with long coherence times and the 

capability for local gate operations and entanglement. In the extreme limit, the communication 

distance between qubits could potentially extend beyond the range of single photons through fiber 

(~100 km). A device capable of such a long-distance interaction is generally called a "quantum 

repeater". Some proof of principle demonstrations of long-distance entanglement have been 

demonstrated with remote entanglement in the NV– center in diamond [40,65,66]. For macroscopic 

length scales >1 m, there are three main ways to facilitate coherent interactions between remote 

stationary qubits through interconnected photons. 
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1) Direct absorption or interaction with a photon emitted from another qubit. 

2) Two qubits simultaneously absorbing/interacting with each photon in an entangled photon 

pair generated from an EPR-like source. 

3) Two qubits simultaneously emitting identical photons that impinge upon a central 

beamsplitter and detector. 

 

These are outlined in figure 7.1 below: 

 

Figure 7.1 | Methods of photon-mediated distant spin-spin interactions. Top: A single photon 

emitted from the first spin coherently interacts with a second spin, either through the optical Stark 

effect/Faraday rotation or direct absorption. Middle: An EPR source of entangled photons is sent 

to equidistant spins, whose subsequent absorption and emission can herald entangled states. 

Bottom: Simultaneous emission from both spins impinges on a central beamsplitter, whose 

measurement can herald an entangled state [40]. 
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     Given the low absorption cross section of the VV0 in SiC and weak interactions with single 

photons, the emission based strategy in #3 is perhaps the most promising idea. Critically, the zero-

phonon line (ZPL) is the only source of indistinguishable photons for this approach that does not 

also leak quantum information to the environment through phonon emission. This means that a 

fundamental limit the effectiveness of this scheme is the probabilistic nature of the ZPL photon 

emission needed for remote interference. For the VV0, only ~5% of emission is naturally in the 

ZPL. This means that in a spin-spin entanglement attempt, for example, there will only be a 

(0.05)2 = 2.5 ∙ 10−3 chance of success. This rate drops exponentially as the number of nodes 

increases. 

     As a potential remedy to this issue, the quantum community has turned to incorporating 

photonic nanocavities to modify the optical emission properties of the atom or defect in question 

[49-56, 67]. For the VV0, a properly designed nanocavity can dramatically increase the percentage 

of light emitted into the ZPL, also known as the Debye-Waller factor. The increase of light into 

the ZPL is related to the Purcell factor, which was discussed in chapter 5. The direct relation, which 

will be derived in the next section, is given by: 

 

𝛽 =
𝐹𝛼

1 − 𝛼 + 𝐹𝛼
= 𝛼 (

𝐹

1 − 𝛼(𝐹 + 1)
) (7.1) 

 

     Where 𝛽 is the Debye-Waller factor in the cavity, 𝛼 is the unmodified Debye-Waller factor, 

and F is the Purcell factor. As discussed in chapter 5, the Purcell factor is maximized with a high 

quality factor in a small mode volume, which motivates the use of nanoscale photonic cavities. In 

previous work with diamond and silicon carbide, photonic cavities have been fabricated with Q's 

on the order of ~103-104 with small mode volumes of ~(𝜆\𝑛)3, where 𝜆 is the cavity wavelength 

and 𝑛 is the index of refraction of the material [49-56]. In silicon carbide, however, previous work 
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had not explored the coupling of photonic cavities with single divacancies, leaving the full 

potential of this system unfulfilled. It is therefore a major goal of this thesis work to explore single-

VV0 cavity interactions, as will be discussed in this chapter. 

     The experimental results presented in this chapter are adapted from the work [68]. The main 

result is the achievement of Purcell enhancement for a single VV0 embedded in a photonic 

nanocavity. We also demonstrate control and coherence of the VV0 ground state spin inside the 

cavity. The photonic cavity was fabricated in silicon carbide with a one-dimensional nanobeam 

photonic crystal design, with measured quality factors of ~5,000. The Purcell factor was measured 

to be F ~ 50 through multiple experiments, which included spectral enhancement and decreased 

excited state lifetime. The Debye-Waller factor is observed to improve from ~5% to ~70-75%, 

which greatly aids in potential spin-spin entanglement protocols that rely on this percentage. 

 

 

7.2  Calculating Purcell enhancement for a 
VV0-cavity system 
 

Before we delve into sample and data specifics, we must establish some theoretical foundations 

on how to measure a Purcell factor for a cavity-VV0 system generally. We will start with the basic 

definition of the Purcell factor presented in chapter 5: 

 

𝐹 ≡
𝛾𝑐𝑎𝑣𝑖𝑡𝑦

𝛾𝑏𝑢𝑙𝑘
=
𝜏𝑏𝑢𝑙𝑘
𝜏𝑐𝑎𝑣𝑖𝑡𝑦

(7.2) 

 

In the case of the VV0, the "cavity" emission is not the entire VV0 spectrum, but rather only its 

zero-phonon line. Therefore we write the Purcell factor as: 
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𝐹 =
Γ𝑍𝑃𝐿,𝑜𝑛
Γ𝑍𝑃𝐿,𝑜𝑓𝑓

=
𝜏𝑍𝑃𝐿,𝑜𝑓𝑓

𝜏𝑍𝑃𝐿,𝑜𝑛
(7.3) 

 

Where {Γ𝑍𝑃𝐿,𝑜𝑛, Γ𝑍𝑃𝐿,𝑜𝑓𝑓} are the ZPL emission rates on/off cavity resonance, and 

{𝜏𝑍𝑃𝐿,𝑜𝑛, 𝜏𝑍𝑃𝐿,𝑜𝑓𝑓} are the ZPL lifetimes on/off cavity resonance. It is worth noting that we can 

immediately interpret the rates as intensities in a spectrum and write the relation: 

 

𝐹 =
𝐼𝑍𝑃𝐿,𝑜𝑛
𝐼𝑍𝑃𝐿,𝑜𝑓𝑓

(7.4) 

 

Where {𝐼𝑍𝑃𝐿,𝑜𝑛, 𝐼𝑍𝑃𝐿,𝑜𝑓𝑓} in the intensity of light (number of counts) emitted into the ZPL when 

the cavity is on/off resonance. When we measure the lifetime of a divacancy, we are convolving 

all possible decays to the ground state. This can be represented by the equation: 

 
1

𝜏𝑜𝑓𝑓
=

1

𝜏𝑍𝑃𝐿
+

1

𝜏𝑃𝑆𝐵
+

1

𝜏𝑑𝑎𝑟𝑘
(7.5) 

 

Where 𝜏𝑜𝑓𝑓 is the measured lifetime from an excited state decay (as outlined in chapter 3) off 

cavity resonance. Here 𝜏𝑍𝑃𝐿 is the ZPL lifetime, 𝜏𝑃𝑆𝐵 is the phonon sideband lifetime, 𝜏𝑑𝑎𝑟𝑘 is the 

dark state lifetime from all nonradiative decays (such as ISC and ionizing/recharging). When on 

cavity resonance, the only quantity that should change is the 𝜏𝑍𝑃𝐿, as given by equation (7.3). This 

gives the on-resonance measured lifetime as: 

 
1

𝜏𝑜𝑛
=

𝐹

𝜏𝑍𝑃𝐿
+

1

𝜏𝑃𝑆𝐵
+

1

𝜏𝑑𝑎𝑟𝑘
(7.6) 

 



265 

 

Where 𝜏𝑜𝑛 is the measured lifetime from an excited state decay on cavity resonance. For upcoming 

derivations we will also need the lifetime definition of the Debye-Waller factor: 

 

𝛼 =
𝜏𝑃𝑆𝐵

𝜏𝑍𝑃𝐿 + 𝜏𝑃𝑆𝐵
, Debye Waller factor (7.7) 

 

     These starting equations can then be used to derive all relevant measures of the Purcell factor 

in terms of experimentally measurable quantities. We will outline three measures here: 

 

1) Purcell factor in terms of lifetimes 

2) Purcell factor in terms of Debye-Waller factor 

3) Purcell factor in terms of count rates 

 

Purcell factor in terms of lifetimes 

We start by rearranging equation (7.6) to isolate 𝐹: 

 

𝐹 = 𝜏𝑍𝑃𝐿 (
1

𝜏𝑜𝑛
−

1

𝜏𝑃𝑆𝐵
−

1

𝜏𝑑𝑎𝑟𝑘
) (7.8) 

 

     Experimentally, it is difficult to directly measure 𝜏𝑃𝑆𝐵 or 𝜏𝑍𝑃𝐿, but 𝜏𝑜𝑛, 𝜏𝑜𝑓𝑓 can be obtained 

from lifetime measurements and 𝜏𝑑𝑎𝑟𝑘 can be inferred from an autocorrelation measurement. 

Keeping this in mind, we can rearrange equations (7.5) and (7.7) to give: 

 

𝜏𝑍𝑃𝐿 =
𝜏𝑜𝑓𝑓𝜏𝑑𝑎𝑟𝑘𝜏𝑃𝑆𝐵

(𝜏𝑑𝑎𝑟𝑘 − 𝜏𝑜𝑓𝑓)𝜏𝑃𝑆𝐵 − 𝜏𝑜𝑓𝑓𝜏𝑑𝑎𝑟𝑘
(7.9) 

𝜏𝑃𝑆𝐵 =
𝜏𝑍𝑃𝐿𝛼

1 − 𝛼
(7.10) 

Substituting (7.9) into (7.10) gives: 
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𝜏𝑍𝑃𝐿 =
𝜏𝑑𝑎𝑟𝑘𝜏𝑜𝑓𝑓

𝛼(𝜏𝑑𝑎𝑟𝑘 − 𝜏𝑜𝑓𝑓)
(7.11) 

𝜏𝑃𝑆𝐵 =
𝜏𝑑𝑎𝑟𝑘𝜏𝑜𝑓𝑓

(1 − 𝛼)(𝜏𝑑𝑎𝑟𝑘 − 𝜏𝑜𝑓𝑓)
(7.12) 

 

Finally, substituting 𝜏𝑃𝑆𝐵 into equation (7.8) gives the Purcell factor as: 

 

𝐹 =
𝜏𝑑𝑎𝑟𝑘(𝜏𝑜𝑓𝑓 − 𝜏𝑜𝑛)

𝛼𝜏𝑜𝑛(𝜏𝑑𝑎𝑟𝑘 − 𝜏𝑜𝑓𝑓)
+ 1 (7.13) 

 

Under no enhancement, 𝜏𝑜𝑓𝑓 = 𝜏𝑜𝑛 and this quantity approaches 𝐹 = 1. 

 

Purcell factor in terms of Debye-Waller factor 

     The Debye-Waller factor in equation (7.7) can be rewritten assuming cavity resonance by 

setting 𝜏𝑍𝑃𝐿 →
𝜏𝑍𝑃𝐿

𝐹
. This gives the equation: 

 

𝛽 =
𝜏𝑃𝑆𝐵

𝜏𝑍𝑃𝐿
𝐹 + 𝜏𝑃𝑆𝐵

(7.14) 

 

Where 𝛽 is the Debye-Waller factor of the VV0 on cavity resonance. Substituting in the 

expressions for 𝜏𝑍𝑃𝐿 , 𝜏𝑃𝑆𝐵 in equations (7.11) and (7.12) then gives: 

 

𝛽 =

𝜏𝑑𝑎𝑟𝑘𝜏𝑜𝑓𝑓
(1 − 𝛼)(𝜏𝑑𝑎𝑟𝑘 − 𝜏𝑜𝑓𝑓)

𝜏𝑑𝑎𝑟𝑘𝜏𝑜𝑓𝑓
𝐹𝛼(𝜏𝑑𝑎𝑟𝑘 − 𝜏𝑜𝑓𝑓)

+
𝜏𝑑𝑎𝑟𝑘𝜏𝑜𝑓𝑓

(1 − 𝛼)(𝜏𝑑𝑎𝑟𝑘 − 𝜏𝑜𝑓𝑓)

=

𝜏𝑑𝑎𝑟𝑘𝜏𝑜𝑓𝑓
(1 − 𝛼)

𝜏𝑑𝑎𝑟𝑘𝜏𝑜𝑓𝑓
𝐹𝛼 +

𝜏𝑑𝑎𝑟𝑘𝜏𝑜𝑓𝑓
(1 − 𝛼)

=

1
(1 − 𝛼)

1
𝐹𝛼 +

1
(1 − 𝛼)

(7.15) 

𝛽 =

1
(1 − 𝛼)

(1 − 𝛼) + 𝐹𝛼
𝐹𝛼(1 − 𝛼)

=
𝐹𝛼

1 − 𝛼 + 𝐹𝛼
(7.16) 
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𝛽 = 𝛼 (
𝐹

1 + 𝛼(𝐹 − 1)
) (7.17) 

 

This equation is an important result in its own right, as it demonstrates how a Purcell enhancement 

can increase the percentage of light emitted into the zero-phonon line. A plot of 𝛽 vs. 𝐹 for some 

example values of 𝛼 are shown in the plot below: 

 

 

Figure 7.2 | Increased Debye-Waller factor from Purcell enhancement. Plotted here is the 

Debye-Waller factor vs. Purcell factor F for example values of the initial Debye-Waller factor 

without any enhancement (F = 1). Higher enhanced Debye-Waller factors (𝛽) require 

correspondingly higher Purcell factors (𝐹) and unenhanced Debye-Waller factors (𝛼). 
 

Isolating F from equation (7.17) then gives: 

 

𝐹 =
𝛽(𝛼 − 1)

𝛼(𝛽 − 1)
(7.18) 
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In this way, the Purcell factor can be expressed in terms of the Debye-Waller factors on and off 

cavity-resonance. 

 

Purcell factor in terms of count rates 

     Taking the literal definition of the Debye-Waller factor, we can express 𝛼, 𝛽 in terms of 

intensities: 

𝛼 =
𝐼𝑍𝑃𝐿,𝑜𝑓𝑓

𝐼𝑜𝑓𝑓
, 𝛽 =

𝐼𝑍𝑃𝐿,𝑜𝑛
𝐼𝑜𝑛

(7.19) 

 

     If we assume the increase of total counts on cavity resonance is solely due to increased counts 

into the ZPL, this gives another equation: 

 
𝐼𝑜𝑛 − 𝐼𝑜𝑓𝑓 = 𝐼𝑍𝑃𝐿,𝑜𝑛 − 𝐼𝑍𝑃𝐿,𝑜𝑓𝑓 (7.20) 

 

When measuring total count rates, this means we have: 

 

{𝛼,   𝐼𝑜𝑓𝑓 ,   𝐼𝑜𝑛}, known (7.21) 

{𝛽,   𝐼𝑍𝑃𝐿,𝑜𝑓𝑓,   𝐼𝑍𝑃𝐿,𝑜𝑛}, unknown (7.22) 

 

Luckily this is a situation with three equations and three variables, so each quantity is algebraically 

solvable. The equations in (7.19) can be combined to give: 

 
𝐼𝑍𝑃𝐿,𝑜𝑛 − 𝐼𝑍𝑃𝐿,𝑜𝑓𝑓 = 𝛽𝐼𝑜𝑛 − 𝛼𝐼𝑜𝑓𝑓 (7.23) 

 

Substituting this into equation (7.20) gives: 

 
𝐼𝑜𝑛 − 𝐼𝑜𝑓𝑓 = 𝛽𝐼𝑜𝑛 − 𝛼𝐼𝑜𝑓𝑓 (7.24) 



269 

 

Rearranging then gives 𝛽: 

𝛽 =
𝐼𝑜𝑛 − 𝐼𝑜𝑓𝑓 + 𝛼 ∙ 𝐼𝑜𝑓𝑓

𝐼𝑜𝑛
(7.25) 

 

This equation can be used to estimate an improved Debye-Waller factor from total count rates. 

Meanwhile, 𝐼𝑍𝑃𝐿,𝑜𝑓𝑓 and 𝐼𝑍𝑃𝐿,𝑜𝑛 can be isolated using equations (7.19) and (7.20) to give: 

 
𝐼𝑍𝑃𝐿,𝑜𝑓𝑓 = 𝛼 ∙ 𝐼𝑜𝑓𝑓 (7.26) 

𝐼𝑍𝑃𝐿,𝑜𝑛 = 𝐼𝑜𝑛 − 𝐼𝑜𝑓𝑓 + 𝛼 ∙ 𝐼𝑜𝑓𝑓 (7.27) 

 

Which, taking a ratio, then immediately gives F as: 

 

𝐹 =
𝐼𝑜𝑛 − 𝐼𝑜𝑓𝑓 + 𝛼𝐼𝑜𝑓𝑓

𝛼𝐼𝑜𝑓𝑓
(7.28) 

 

Thus, if we assume all count increases on cavity resonance are due Purcell enhancements, we can 

use the total count rates to obtain the Purcell factor. 

 

 

7.3  Photonic crystal design 
 

Given that the centerpiece of this chapter's work is photonic enhancement, it is worth discussing 

the concept of photonic cavities and some of the designs that were explored. In the broadest sense, 

a photonic cavity is any structure that spatially confines light. Since there is no way to make 

photons or light rays "hold still", confinement is achieved through the repeated reflection off of 

cavity boundaries. The simplest photonic cavity is the Fabry-Perot cavity, which involves two 
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parallel mirrors facing towards each other. While physical mirrors can of course be made from 

reflective surfaces, there are other methods for reflecting light. For example, any interface with 

differing indices of refraction on both sides will have a component of reflection (see Fresnel 

reflections in chapter 3). For a suitably sharp angle of incidence, light will be completely reflected 

through total internal reflection. This confinement of light is the key operating principle behind 

fiber optics and microring and microdisk resonators. 

     In addition to the total internal reflection mechanism, three-dimensional confinement can also 

be achieved through the use of Bragg mirrors for reflection. A Bragg mirror consists of a periodic 

array of dielectric materials with varying refractive indices that combine to give an overall 

reflection. The simplest example is the one-dimensional Bragg stack, which uses alternating layers 

of material to achieve reflection. On the nanoscale, Bragg mirrors can be formed out of a one-

dimensional or two-dimensional patterning of finite sized holes in a dielectric material instead of 

the pseudo-infinite planes in a Bragg stack. These then form the basis of one- or two-dimensional 

photonic crystal designs. 
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Figure 7.3 | Common photonic cavity designs. Fabry-Perot and distributed Bragg reflector 

cavities rely on continual back and forth reflection of light for confinement. In microring and 

microdisk resonators, the light is confined to the edges of the structure in a whispering gallery 

mode. The structure must be thin enough (usually sub-micron) for total internal reflection to 

confine the light in the z-direction. Microring resonator SEM adapted from [69]. Microdisk 

resonator is made in 4H-SiC with a PEC undercut. 

 

     In the most general sense, a photonic crystal is any periodic patterning of dielectric material. 

For optical cavities, photonic crystals are designed on the length scale of the wavelength of visible 

or infrared light. Creating a defect in the periodic dielectric structure can then from an optical 

cavity that traps photons, in a similar way to how a defect in an atomic crystal can form a trap for 

electrons (e.g., the divacancy). Creating an idealized photonic crystal cavity is an entire field of 

study that we will avoid getting into too much detail about in this thesis. However, some common 

photonic crystal cavity designs are shown in the figure below, with quality factors of up to 11 

million [70-72]. 

 

 

Figure 7.4 | Common photonic crystal cavity designs. Both 2D and 1D photonic crystal designs 

rely on Bragg mirrors (holes) to confine light laterally and total internal reflection (TIR) for 

confinement in the z-direction. The 1D nanobeam design uses TIR for two axes, so the beam must 

have a suitably thin height and width (usually submicron). H0 cavity adapted from [70]. L17 cavity 

adapted from [72]. Tapered nanobeam cavity adapted from [55]. 

 



272 

 

     For this work, we selected a nanobeam photonic crystal design due to its small mode volume 

and smaller footprint compared to the two-dimensional photonic crystal designs [55,56,73]. This 

is important for iterating over design parameters and for proximity to microwave lines for spin 

control. The design consists of a linear tapering of both the lattice spacing and the minor axis radii 

of the central 8 holes (4 on each side of the center) to 84% of an original value. Here the minor 

axis is along the long axis of the beam. The design of the pattern in shown below: 

 

 

Figure 7.5 | Nanobeam photonic crystal cavity design. The lattice spacing and hole width are 

linearly tapered over 4 holes to 84% of their bulk values. The cavity mode is located between the 

two centermost elliptical holes. 

 

We used Lumerical FDTD Solutions to model various nanobeam designs in silicon carbide. We 

obtained high simulated quality factors of ~300,000 at ~1130 nm with the following design 

parameters: 

 

Hole radius = 83 nm 

Lattice spacing (hole-to-hole) = 337 nm 

Beam thickness = 322 nm 

Beam width = 415 nm 
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     The ratio of these dimensions (approximately 1:4:4:5 for radius, lattice spacing, thickness, and 

width) can be maintained while scaling the entire structure up or down while maintaining a high 

simulated quality factor above 100,000. Larger scale structures will have longer resonant 

wavelengths and vice versa. The Lumerical model of the resonant mode of the above cavity design 

is shown in the figure below: 

 

 

Figure 7.6 | Lumerical simulation of nanobeam photonic crystal mode. The cavity mode is 

concentrated between the centermost two holes, with a simulated quality factor of ~300,000 at 𝜆 =
1130 𝑛𝑚 and a mode volume on the order of (𝜆/𝑛𝑆𝑖𝐶)

3, where 𝑛𝑆𝑖𝐶 ≈ 2.6. 

 

With this cavity design selected, we fabricated this structure in suspended silicon carbide and 

measured the resulting quality factors, as discussed in the next section. 

 

 

7.4  Photonic crystal fabrication and 
characterization 
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The photonic cavities were fabrication in the Pritzker Nanofabrication Facility (PNF) using a 

combination of e-beam lithography, inductively coupled plasma etching, and 

photoelectrochemical etching. The full procedure is described in more detail in chapter 6, but an 

abbreviated procedure is given below: 

 

 

Figure 7.7 | Fabrication procedure for SiC nanobeam photonic crystals. (1) A NINPN doped 

SiC chip is used as the starting material, where N denotes n-type, I denotes intrinsically doped 

with residual dopants, and P denotes p-type. (2) Electron beam lithography defines a 25 nm thick 

nickel mask. (3) A SF6-based ICP etch transfers the mask pattern to the SiC substrate. (4) A PEC 

selectively etches p-type SiC and creates an undercut structure. 

 

     After a large amount of troubleshooting, this procedure eventually succeeded on selectively 

doped silicon carbide chips with a 400 nm thick NIN photonic layer. Scanning electron microscope 

(SEM) images of some completed devices are shown below: 
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Figure 7.8 | Scanning electron microscope images of nanobeam photonic crystals. The 

photonic crystals display a full undercut with relatively straight and smooth sidewalls, which are 

critical for achieving a high quality factor. 

 

     Although the samples were uniformly populated with divacancies, only a small fraction of the 

nanobeams contained a divacancy in the mode volume at the exact center of the beam. For those 

that did have an embedded divacancy, we took a room temperature excitation spectrum to 

characterize the cavity quality. An example of such a scan is shown below. 

 

 

Figure 7.9 | Quality factor measurement on nanobeam photonic crystal. Based on a Lorentzian 

fit of the full-width half-maximum, this cavity has a quality factor of roughly 5,100. 
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     For the particular nanobeam that will be used for cavity-VV0 interactions in this chapter, 

scanning electron microscope (SEM) images give the following approximate dimensions: 

 

Beam width = 450 nm 

Beam thickness = 400 nm 

Hole radius = 125 nm 

Lattice spacing (hole-to-hole) = 342 nm 

Sidewall angle  = 86 degrees 

 

     Simulating these dimensions in Lumerical gives two resonances at 1077 nm and 1103 nm with 

quality factors of 18,000 and 22,000, respectively at 1103 nm. This approximately matches with 

the measured quality factor of ~5,000 at 1078 nm, with the loss in in quality coming from 

fabrication imperfections such as surface roughness and sidewall slope. 

 

 

7.5  Sample preparation 
 

The work carried out in this thesis was for 4H silicon carbide custom ordered from Norstel with 

doping configurations described below. An initial 4-inch wafer was diced into small ~5x5 mm 

pieces, providing approximately 300 samples to work with. Many of these samples were used for 

fabrication tests, fine tuning photonic crystal designs, and photoelectrochemical etch tests. A 

smaller subset was used for divacancy creation, also discussed below. 

 

Divacancy creation 
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     Divacancies were created in the silicon carbide with a combination of electron irradiation and 

high temperature annealing. We sent samples to the National Institutes for Quantum and 

Radiological Science and Technology in Takasaki, Japan for irradiation with relativistic 2 MeV 

electrons that damage the SiC lattice and create individual silicon and carbon vacancies. We then 

perform a high temperature anneal at 850 oC for 30 minutes with argon gas at atmospheric pressure. 

This causes the vacancies in the SiC lattice to diffuse and form more stable divacancies when they 

coincide. For the samples in this thesis, we used an electron irradiation dose of 1015 electrons per 

square centimeter in order to create a high enough divacancy density to populate most nanobeams 

with a defect. We also performed the irradiation and annealing before fabrication to verify its 

success. A schematic of the process is shown below. 

 

 

Figure 7.10 | Divacancy creation procedure for SiC. The sample is irradiated with relativistic 2 

MeV energy electrons to create uniform damage in the lattice, which creates individual atomic 

vacancies. Under a high temperature (850 oC) anneal, these vacancies diffuse in the lattice until 

they pair together and form a thermodynamically stable divacancy. 

 

Silicon carbide doping 
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     In order to create suspended silicon carbide structures for photonics, we used a custom doping 

heterostructure in wafers ordered from Norstel. For our samples, the bulk substrate for growth was 

N-type 4H silicon carbide with 12-30 mΩ·cm resistivity and a 4 degree off-axis growth. We used 

a NINPN doping configuration with the following parameters, from the top down: 

 

1) 100 nm N-type (1018 cm-3 Nitrogen) 

2) 200 nm of I-type (<1015 cm-3 residual dopants) 

3) 100 nm N-type (1018 cm-3 Nitrogen) 

4) 3 µm of P-type (1018 Aluminum) 

5) 500 µm of standard N-type buffer (1018 cm-3 Nitrogen) 

 

This is shown schematically below: 

 

 

Figure 7.11 | Doping configuration of 4H-SiC wafer. The 3-micron P-type layer is etched away 

during photoelectrochemical etching, leaving a 400 nm thick suspended NIN layer to form 

photonic structures. 

 

 

7.6  Single VV0 characterization 
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Before exploring any cavity-defect interactions, it is important to verify the presence of a single 

VV0 and characterize its baseline behavior in the nanobeam cavity. Since the divacancy is in a 

dramatically different environment than in "normal" circumstances in the bulk of electrically 

neutral SiC, we may expect some of the usual benchmarks to be different. Indeed, we observe 

significantly modified values for nearly all measurements. In this section we will discuss the 

following topics: 

 

• Nanobeam selection and PL counts 

• Photoluminescence excitation (PLE) 

• Optically detected magnetic resonance (ODMR) 

• g(2) autocorrelation 

 

Note that all measurements from here on out are performed at cryogenic temperatures of 5 K. 

 

Nanobeam selection and PL counts 

     We iterated over many nanobeams and focused only on those with a bright spot at its center 

that matched with one of the divacancy wavelengths. Of these nanobeams, we further narrowed to 

only those that also had a nearby cavity resonance at this wavelength. Out of the hundreds of 

cavities in the sample, only one matched both conditions. Below is a spatial photoluminescence 

scan with off-resonant excitation collected on this particular cavity. 
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Figure 7.12 | Spatial photoluminescence scan of the nanobeam photonic crystal of interest. 

Collected at 5K. 905 nm light was used for excitation and all light above 1000 nm was collected. 

The bright spot in the center corresponds to a VV0 in the center of the photonic cavity, which is 

off resonance with the defect in this scan. A fast steering mirror was used to raster the laser spot 

over the sample. 

 

PLE 

     Photoluminescence excitation (PLE) measurements of this cavity VV0 reveal two broad peaks 

at frequencies of 277.984 THz and 278.027 THz, or approximately 1079 nm. The scan is shown 

below: 

 

 

Figure 7.13 | Photoluminescence excitation (PLE) of cavity VV0. Detuning is from 278.000 

THz. The left peak is at 277.984 THz and the right peak is at 278.027 THz. The full-width half-

maximum of the left and right peaks, obtained with Gaussian fits, are 5.02 ± 0.08 and 3.98 ± 0.06 

GHz, respectively. The errors represent 95% confidence intervals. 
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     The moderate splitting between these peaks of ~40-50 GHz indicates that there is either a built-

in strain or electric field within the plane of the sample (that is, in the x or y direction). There is 

nothing in the doping configuration to break symmetry in the x or y direction, so we suspect this 

is due to strain. Other silicon carbide samples typically display a strain splitting of ~5-20 GHz, so 

the strain is slightly higher here. This may be due to the nanobeam structure, or due to the high 

doping levels. We will discuss strain more in an upcoming section. 

     The other figure of merit from the PLE scan is the linewidth of each peak. Here we have 

linewidths of 4-5 GHz for both peaks, which is above the typical 0.3-1 GHz value for divacancies 

in unpatterned SiC samples and well above the lifetime limit of ~10 MHz. The 4-5 GHz linewidth 

also means that the individual spin sublevels are not well-resolved, which makes resonantly 

addressing selective transitions difficult. The usual culprit for broadened optical linewidths is 

spectral diffusion in the sample, which was discussed in chapter 4. We believe this is also the case 

here with extra broadening from the nearby surfaces of the nanobeam. This will be discussed in 

more detail in the next section. 

 

Optically detected magnetic resonance (ODMR) 

     Optically detected magnetic resonance reveals the microwave frequencies of transitions 

between the ground state levels. For this defect, we perform ODMR with a nearby wire bond and 

observe a Zeeman splitting with the application of a c-axis magnetic field, which indicates that it 

is a c-axis oriented defect. This is somewhat at odds with the 1079 nm emission of the zero-phonon 

line, which matches more closely with a (kh) basal VV0. To investigate more closely, we take 

several scans at different magnetic fields and observe a frequency shift given by ~2.76 MHz/G, 
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which closely matches the 2.8 MHz/G value seen for c-axis defects [4]. Furthermore the zero-field 

ODMR scan shows only one peak, which is only possible if there is no 𝐸 term in the Hamiltonian, 

as is the case for c-axis divacancies. The central ODMR frequency is at 1.328 GHz, which most 

closely matches to the (hh) transition at 1.336 GHz. Lastly, we also performed ODMR with off-

resonant excitation, which produces a negative contrast on both peaks. As we saw in chapter 4, 

this only occurs for the (hh) divacancy. Based on all of this evidence we assign the defect to be a 

(hh) divacancy despite it's shifted optical emission, which we will address in an upcoming section 

on strain. The ODMR scans discussed here are shown below. 

 

 

Figure 7.14 | Optically detected magnetic resonance (ODMR) of the cavity VV0. The left 

shows several resonant ODMR scans at varying c-axis magnetic fields, showing a clear Zeeman 

splitting. The center frequency at zero-field is 1.328 GHz. The right figure shows off-resonant 

ODMR with a c-axis magnetic field. It has a negative contrast consistent with the (hh) VV0 and is 

also centered at 1.328 GHz. 

 

g(2) autocorrelation 

     As discussed in chapter 3, a g(2) autocorrelation measurement can be used to verify the presence 

of a single emitter. We perform a g(2) measurement with both resonant and off-resonant optical 

excitation. Even without background subtraction, both g(2) dips drop below the threshold of 0.5, 
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confirming the presence of a single emitter. Notably, the resonant g(2) curve displays significantly 

more bunching than the off-resonant curve. Following the discussion in chapter 3, this is most 

likely due to a higher rate to a nonradiative state, which in this case would be the ionized divacancy 

state (likely VV–). It is known that resonant optical excitation more quickly causes ionization, 

which is consistent with this idea. The ISC is also present for all divacancies, although its rate 

should not depend on the type of laser excitation. Explicitly using the rate equation model from 

chapter 3 for the resonant g2 gives an effective dark state lifetime of ~60 ns. Both g(2) curves are 

shown below: 

 

 

Figure 7.15 | g(2) autocorrelation measurements of the cavity VV0. The left curve was collected 

with resonant optical excitation and the right curve was collected with off-resonant 905 nm optical 

excitation. Both curves confirm the presence of a single emitter with a 𝑡 = 0 dip below 0.5. There 

is significantly more bunching in the resonant scan, indicating ionization with a dark state lifetime 

of 𝜏𝑑𝑎𝑟𝑘 ≈ 60 𝑛𝑠. In the off-resonant scan there are more background counts, resulting in a higher 

minimum value of 0.374. 

 

 

7.7  Effect of nanostructures on optical 
linewidths 
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As we saw in the previous section the PLE linewidths of 4-5 GHz in the cavity VV0 are broader 

than usual for divacancies in control samples. It is known that spectral diffusion causes broadened 

linewidths, but the charge fluctuations could come from any number of sources including nearby 

dopants, defects impurities, or surface charge traps. To investigate this issue, also collected PLE 

on "bulk" defect from the same NINPN sample without any photonic nanostructures. The linewidth 

from a single peak is shown below: 

 

 

Figure 7.16 | PLE of a bulk NIN VV0. Detuning is 278.0015 THZ. The full-width half-maximum 

is 825 ± 66 MHz with a 95% confidence interval, obtained with a Lorentzian fit. 

 

     Given this narrower linewidth of ~1 GHz for a defect in the same material in the same sample, 

it seems that the broadened ~4-5 GHz linewidths are due to nearby fabricated surfaces. The 

fluorine-based SF6 plasma etch used to create holes and nanobeams could possibly create dangling 

surface bonds that could serve as electric field noise sources. To corroborate this comparison 
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between bulk and nanostructure divacancies, we collected optical linewidths and center 

frequencies of several more defects. The results are outlined below: 

 

Optical linewidths: 

Bulk (𝑛 = 16), 𝜇 = 1.37 𝐺𝐻𝑧, 𝜎𝑠𝑎𝑚𝑝𝑙𝑒 = 0.86 𝐺𝐻𝑧, range = 0.5 → 3.5 𝐺𝐻𝑧 (7.29) 

Nanobeam (𝑛 = 10), 𝜇 = 5.20 𝐺𝐻𝑧, 𝜎𝑠𝑎𝑚𝑝𝑙𝑒 = 2.50 𝐺𝐻𝑧, range = 2 → 10 𝐺𝐻𝑧 (7.30) 

 

Center frequencies: 

Bulk (𝑛 = 16), 𝜇 = 277.957 𝑇𝐻𝑧, 𝜎𝑠𝑎𝑚𝑝𝑙𝑒 = 39.52 𝐺𝐻𝑧, range = 106 𝐺𝐻𝑧 (7.31) 

Beam (𝑛 = 10), 𝜇 = 278.016 𝑇𝐻𝑧, 𝜎𝑠𝑎𝑚𝑝𝑙𝑒 = 34.03 𝐺𝐻𝑧, range = 126 𝐺𝐻𝑧 (7.32) 

 

     Evidently the broader linewidths of the nanobeam divacancies is a fairly consistent result, 

although some of the best nanobeam defects were in fact narrower than some of the worst bulk 

defects. Nevertheless, it appears that some aspect of the fabrication process causes unwanted 

additional spectral diffusion. The exact mechanism for this is not currently known and could be 

the subject of a future study. 

 

 

7.8  Effect of strain 
 

As highlighted in the single VV0 characterization section, the zero field ODMR frequency and 

ZPL emission of the cavity defect do not match the expected values from a more typical (hh) 

divacancy. We attribute these differences to a large strain present throughout the sample caused 

by the high doping levels used during growth [74-77], which we will discuss in this section. 
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     To get an idea of what is considered "normal" for a divacancy, we can use the following table 

that has been compiled from past work in our group [78]: 

 

Name ZPL (nm) ODMR 1 

(GHz) 

ODMR 2 

(GHz) 

D (GHz) DES (GHz) E (MHz) 

PL1 (hh) 1132 1.336 - 1.336 0.84 0 

PL2 (kk) 1131 1.305 - 1.305 0.78 0 

PL3 (hk) 1108 1.140 1.304 1.222 - 82.0 

PL4 (kh) 1078 1.316 1.353 1.334 - 18.7 

PL5 1042 1.356 1.389 1.373 - 16.5 

PL6 1038 1.365 - 1.365 0.94 0 

PL7  1.333 - - - - 

Table 7.1 | Optical emission and ground state parameters for different 4H-SiC divacancies. 

The (hh) and (kk) divacancies are c-axis, while (hk) and (kh) are basal. The PL5/6/7 defects have 

an unconfirmed structure suspected to be stacking faults. Values are adapted from [78]. 

 

     Assuming the cavity defect is a (hh) VV0, we thus see a –8 MHz shift in the central ODMR 

frequency and a –50 nm shift in the ZPL emission. A high strain can result in both of these shifts. 

In the ground state, strain will modify the zero-field splitting (ZFS) tensor 𝐷⃗⃡, which in turn 

determines the 𝐷 and 𝐸 parameters according to: 

 

𝐷 =
3

2
𝐷𝑧𝑧 , 𝐸 =

1

2
(𝐷𝑥𝑥 − 𝐷𝑦𝑦) (7.33) 

 

Where {𝐷𝑥𝑥, 𝐷𝑦𝑦, 𝐷𝑧𝑧} are the diagonal entries of 𝐷⃗⃡. To quantify the change in of 𝐷⃗⃡, we must 

invoke the spin-strain coupling tensor 𝐺. Together, these tensors follow the relation14: 

 

(

 
 
 
 

∆𝐷𝑥𝑥
∆𝐷𝑦𝑦
∆𝐷𝑧𝑧
∆𝐷𝑦𝑧
∆𝐷𝑥𝑧
∆𝐷𝑥𝑦)

 
 
 
 

= 𝑮⃗⃗⃡

(

 
 
 

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑧𝑧
2𝜀𝑦𝑧
2𝜀𝑥𝑧
2𝜀𝑥𝑦)

 
 
 

(7.34) 
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Where ∆𝐷𝑖𝑗 is the change in the element 𝐷𝑖𝑗 from the strain terms 𝜀𝑖𝑗. More explicitly, we have: 

 

(

 
 
 
 

∆𝐷𝑥𝑥
∆𝐷𝑦𝑦
∆𝐷𝑧𝑧
∆𝐷𝑦𝑧
∆𝐷𝑥𝑧
∆𝐷𝑥𝑦)

 
 
 
 

=

(

 
 
 
 

𝐺11 𝐺12 𝐺13 𝐺14 0 0
𝐺12 𝐺11 𝐺13 −𝐺14 0 0

−𝐺11 − 𝐺12 −𝐺11 − 𝐺12 −2𝐺13 0 0 0
𝐺41 −𝐺41 0 𝐺44 0 0
0 0 0 0 𝐺44 𝐺41

0 0 0 0 𝐺14
𝐺11 − 𝐺12

2 )

 
 
 
 

(

 
 
 

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑧𝑧
2𝜀𝑦𝑧
2𝜀𝑥𝑧
2𝜀𝑥𝑦)

 
 
 

(7.35) 

 

The 𝐺 terms have not been measured for the divacancy, but have been predicted using DFT 

calculations [27] as follows for the (hh) and (kk) divacancies: 

 
{𝐺11, 𝐺12, 𝐺13, 𝐺14, 𝐺41, 𝐺44}ℎℎ = {−3.99,−0.42, 1.74, 0.34, 0.30, 0.46}ℎℎ 𝐺𝐻𝑧 (7.36) 

{𝐺11, 𝐺12, 𝐺13, 𝐺14, 𝐺41, 𝐺44}𝑘𝑘 = {−3.35,−0.93, 1.26, 1.93, −0.10, 0.47}𝑘𝑘 𝐺𝐻𝑧 (7.37) 

 

     Using the (hh) parameters we can map a strain profile to the change in the ZFS tensor entries, 

or vice versa. The –8 MHz shift in D corresponds to ∆𝐷𝑧𝑧 = −5.33 MHz, and E is observed to be 

zero. We also impose that 𝐷⃗⃡ traceless and assume that there is no shear in the sample (∆𝐷𝑦𝑧 =

∆𝐷𝑥𝑧 = ∆𝐷𝑥𝑦 = 0). This gives the unique strain values of: 

 

𝜀𝑥𝑥 = 𝜀𝑦𝑦 = −4.61 ∙ 10−4, 𝜀𝑧𝑧 = 3.64 ∙ 10−4 (7.38) 

 

     This is consistent with the strain magnitudes found in SiC nanoparticles [79], meaning that 

strain is a plausible source for the shift in the ODMR central frequency. A similar analysis can be 

done for the NV– center in diamond [80]. For the ZPL shift, the excited state analysis in chapter 2 

reveals that z-strain can uniformly shift the optical emission of the VV0, dependent on the excited 

state spin-strain coupling parameter, which unfortunately has not been measured. However, work 

done by Falk et al. reported a ~2,900 THz/strain splitting for the SiC c-axis VV0 |𝐸𝑥〉 and |𝐸𝑦〉 
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states [25]. If the strain shifting also shows a high sensitivity, then it is possible to have significant 

changes in the ZPL emission. 

     For comparison, we also collected ODMR from a defect in the bulk of the NIN epilayer without 

any fabricated nanostructures (see below). We observed a similarly shifted central frequency of 

~1.328 GHz, indicating that the attributed strain is present throughout the sample and not due to 

fabrication. It is known that the use of high doping during growth can generate a significant amount 

of strain [74-77], which we suspect is likely happening with the high concentrations used in the 

NINPN epilayers. 

 

 

Figure 7.17 | Optically detected magnetic resonance of a bulk NIN VV0. Collected with 

resonant optical excitation and a low magnetic field of ~1.2 G parallel to the c-axis. The central 

frequency is ~1.328 GHz. 
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7.9  Measurements of Purcell 
enhancement 
 

With the cavity divacancy fully characterized, it is time to move on to measurements of cavity-

emitter interactions. As a prerequisite for these experiments, the cavity resonance must be precisely 

tuned to match the frequency of the VV0 ZPL emission in order to facilitate defect-cavity coupling. 

This is achieved through deliberate heating of different stages of the Montana cryostat. This has 

the effect of releasing the gases adsorbed onto to surfaces during cryo pumping, which then 

redeposit on the sample and the nanobeam. This condensation of gases slightly increases the 

overall index of refraction of the beam, causing a redshift of the cavity wavelength. Conversely, 

the sample itself can be heated to ~30-40 K while keeping all other stages cooled, which causes 

gases to evaporate from the nanobeam and onto surrounding surfaces. This causes a blueshift of 

the cavity resonance. We can reach a tuning range of ~5 nm with this method, which is close 

enough for this sample to achieve resonance matching. 

     With cavity-VV0 resonance, we will use the equations outlined earlier in this chapter to measure 

the Purcell factor. This will be based on the following measurements: 

 

1) Optical spectrum 

2) Excited state lifetime measurements 

3) Overall count rate 

 

We will also comment on the Purcell enhancement's effect on the Debye-Waller factor. 

 

Optical spectrum 
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     For these measurements, we optically excite the defect with off-resonant 905 nm laser light and 

direct all emission through a 1000 nm longpass filter and into a spectrometer with a InGaAs camera 

cooled to ~100 K. This gives the total emission spectrum across all relevant wavelengths. Spectra 

are obtained with the cavity both off and on resonance with the VV0. Because the PLE spectrum 

of the VV0 features two main peaks ~40-50 GHz apart, there are two candidate emission 

wavelengths to match the cavity to. The resulting spectra from matching to both of these peaks is 

shown below. 

 

 

Figure 7.18 | VV0 emission spectrum on and off cavity resonance. On the left is the VV0 

emission spectrum with cavity matching to the higher energy |𝐸𝑥〉 branch. On the right is the VV0 

emission spectrum with cavity matching to the lower energy |𝐸𝑦〉 branch. A ratio of emission 

intensities gives Purcell factors of ~53 for the |𝐸𝑥〉 transition and ~16 for the |𝐸𝑦〉 transition. Insets 

provide non-overlapped spectrum off and on cavity resonance. The on-resonance traces for the 

combined plots are offset vertically for clarity. Off-resonant 905 nm laser light was used for 

excitation in all measurements. 

 

     There is a clear enhancement of the ZPL counts when the cavity is matched to either the |𝐸𝑥〉 

or |𝐸𝑦〉 transition. To extract a Purcell factor we can use equation (2) from earlier in this chapter: 

 

𝐹 =
𝐼𝑍𝑃𝐿,𝑜𝑛
𝐼𝑍𝑃𝐿,𝑜𝑓𝑓

(7.39) 
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     To obtain the intensity of light emitted into the ZPL, we integrate the Gaussian fits to the 

spectral peaks to obtain the total number of counts. This gives a Purcell factor of ~53 for the higher 

energy |𝐸𝑥〉 transition and ~16 for the lower energy |𝐸𝑦〉 transition. The discrepancy of these 

factors is due to the orthogonal dipole orientations of the |𝐸𝑥〉, |𝐸𝑦〉 transitions. Evidently, the 

|𝜇⃗⃗⃗∙𝐸⃗⃗|

|𝜇⃗⃗⃗||𝐸⃗⃗𝑚𝑎𝑥|
 factor that appears in the explicit expression for the Purcell factor (see chapter 5) is better 

aligned to the cavity mode for the |𝐸𝑥〉 dipole moment. 

     Since we have taken a direct spectrum, we may also be tempted to use equation (14) to calculate 

a Purcell factor using the change in Debye-Waller factor. Unfortunately, however, a spatially 

varying background signal from n-type dopants makes estimating the Debye-Waller factor quite 

difficult using the spectrometer. However, we will be able to estimate a Debye-Waller using total 

counts, as will be shown later in this section. 

 

Lifetime measurements 

     The next method to verify a Purcell enhancement is to directly measure excited state lifetimes 

on and off cavity resonances. In this measurement, the VV0 is excited with a short pulse of resonant 

excitation light gated with an EOM, then photoluminescence is collected as it decays to the ground 

state. Averaging over many experiments gives an exponential fit, from which the lifetime is 

obtained. The dynamics of this measurement were discussed more in chapter 3, but for here we'll 

focus on the results. The lifetime plots are given below: 
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Figure 7.19 | Excited state lifetime measurements on and off cavity resonance. Here the VV0 

is resonantly excited a photoluminescence is collected as a function of time. Exponential fits of 

exp(−𝑡/𝜏) give lifetime values of 𝜏𝑜𝑓𝑓 = 15.7 ± 0.3 𝑛𝑠 and 𝜏𝑜𝑛 = 5.3 ± 0.1 𝑛𝑠 for off and on 

cavity resonance, respectively. Error bars are given with 95% confidence intervals. These lifetimes 

give a Purcell factor of ∼51. All measurements were taken at 5 K. 

 

     As can be seen, there is a clear increase in the spontaneous emission rate on cavity resonance, 

as predicted by the Purcell/weak coupling regime in cavity QED (see chapter 5). To extract a 

Purcell factor, we use equation (7.13) from this chapter 

 

𝐹 =
𝜏𝑑𝑎𝑟𝑘(𝜏𝑜𝑓𝑓 − 𝜏𝑜𝑛)

𝛼𝜏𝑜𝑛(𝜏𝑑𝑎𝑟𝑘 − 𝜏𝑜𝑓𝑓)
+ 1 (7.40) 

 

     Using a 𝜏𝑑𝑎𝑟𝑘 value of 60 ns extracted from the g(2) fit and an off-resonance Debye-Waller 

factor of 𝛼 = 0.053 for the (hh) VV0 [3], this gives a Purcell factor of F ~ 51. This factor matches 

closely with the F ~ 53 obtained from optical spectra. 

     It is worth commenting further on the exact value of 𝜏𝑑𝑎𝑟𝑘 and its effect on the Purcell factor. 

The g(2) model uses five free parameters in fitting the experimental data, which means that the 
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uncertainty in fitting any particular parameter is quite high, even if the overall fit matches well. 

Further independent measurements would be needed to lower the uncertainty on 𝜏𝑑𝑎𝑟𝑘. To get a 

sense of how different 𝜏𝑑𝑎𝑟𝑘 values would affect the Purcell factor, we have plotted the dependence 

below using the values of 𝜏𝑜𝑓𝑓 = 15.7 𝑛𝑠, 𝜏𝑜𝑛 = 5.3 𝑛𝑠, and 𝛼 = 0.053. 

 

 

Figure 7.20 | Effect of 𝝉𝒅𝒂𝒓𝒌 on Purcell factor. Using 𝜏𝑜𝑓𝑓 = 15.7 𝑛𝑠, 𝜏𝑜𝑛 = 5.3 𝑛𝑠, and 𝛼 =

0.053. Over a wide range of 𝜏𝑑𝑎𝑟𝑘 values, the Purcell factor is generally in the range of 42-55. 

Shorter 𝜏𝑑𝑎𝑟𝑘 values result in a higher Purcell factor, with a divergence as 𝜏𝑑𝑎𝑟𝑘 approaches 𝜏𝑜𝑓𝑓. 

 

Overall count rate 

     If we assume that all increases in photoluminescence on cavity resonance are from a Purcell 

enhancement, then we can use equation (7.28) from this chapter to obtain the Purcell factor: 

 

𝐹 =
𝐼𝑜𝑛 − 𝐼𝑜𝑓𝑓 + 𝛼𝐼𝑜𝑓𝑓

𝛼𝐼𝑜𝑓𝑓
(7.41) 

 

     These intensities can be obtained by examining the spatial luminescence scans on and off cavity 

resonance, which are shown below: 
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Figure 7.21 | Spatial photoluminescence scan off and on cavity resonance. 905 nm laser 

rastering was performed with a fast-steering mirror. The top scan shows the nanobeam of interest 

off cavity resonance, with the normal VV0 emission in the center of the beam. The bottom shows 

the same device with the cavity tuned into resonance with the VV0. The count rates are half their 

actual values, due to a fiber splitting into two detection ports that was present during this 

measurement. 

 

     These measurements were collected while the collection fiber was split into two ports for g(2) 

measurements so the observed counts must be doubled. Subsequently subtracting the constant 

background for each measurement gives peak count values of 120 and 460 kCts/s for the VV0 off 

and on cavity resonance, respectively. These can be used directly for the values of 𝐼𝑜𝑛 and 𝐼𝑜𝑓𝑓. 

Using the same unenhanced Debye-Waller factor of 𝛼 = 0.053 then gives F ~ 54, which matches 

closely to the previously measured values of F ~ 51 and F ~ 53. 

     We can also use these same values to determine the increase in the Debye-Waller factor, using 

equation (7.25) from this chapter: 

 

𝛽 =
𝐼𝑜𝑛 − 𝐼𝑜𝑓𝑓 + 𝛼 ∙ 𝐼𝑜𝑓𝑓

𝐼𝑜𝑛
(7.42) 
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     Plugging in gives 𝛽 ≈ 75%, which is a substantial improvement over the unenhanced value of 

𝛼 = 5.3%. Given the agreement between the independent measures of the Purcell factor, we can 

be reasonably confident that the factor is at least 50. If we plug this value into equation (7.17), we 

can obtain another measure of 𝛽: 

 

𝛽 = 𝛼 (
𝐹

1 + 𝛼(𝐹 − 1)
) (7.43) 

 

     Using F = 50 here gives 𝛽 ≈ 74%. Therefore, we can also be reasonably confident that the 

Debye-Waller factor has increased to ~70-75% due to the cavity Purcell enhancement. 

 

 

7.10 Coherent spin control 
 

In addition to Purcell enhancement of the excited state optical transitions, we demonstrate control 

and coherence of the ground state. As outlined in chapter 2, this is achieved with external 

alternating magnetic fields, which we employ through the use of a nearby wire bond. Depending 

on the measurement, we also apply a c-axis magnetic with an external neodymium magnet in order 

to Zeeman split the |±1〉 states of the (hh) VV0. These measurements, which are all collected at 5 

K, are categorized as follows: 

 

• Rabi oscillations 

• Ramsey measurement (𝑇2
∗) 

• Hahn echo measurement (𝑇2) 
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• Dynamical decoupling 

• 𝑇1 measurement 

 

Rabi oscillations 

     Rabi oscillations were performed by performing an off-resonant optical initialization, a variable 

MW rotation, and then a resonant optical excitation to readout the defect. For this measurement, 

the microwave pulse was kept at a constant duration of 400 ns with a linearly increasing power. 

This is similar to the "power pi calibration" outlined in chapter 4. The microwave frequency was 

matched to the |0〉 ↔ |+1〉 transition under Zeeman splitting. The result is shown below: 

 

 

Figure 7.22 | Rabi oscillations of the cavity VV0. A 400 ns microwave pulse of varying power 

(x-axis) is used to drive transitions between the |0〉 and |+1〉 states of the cavity VV0, achieving a 

contrast of ~40%. 905 nm light was used for initialization and resonant light was used for readout. 

 

The Rabi contrast of 40% is between the typical off-resonant readout levels of ~10-15% [2] and 

resonant readout levels of 94-99% [39,43]. Due to the broadened PLE optical transitions, some of 
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the spin excitation selectivity is lost with resonant excitation. However, a significant amount of 

contrast remains, indicating that the different regions of the PLE peak correspond to different spin 

character. 

 

Ramsey measurement (𝑻𝟐
∗ ) 

     To measure spin dephasing time 𝑇2
∗, Ramsey interferometry is performed using the |0〉 ↔ |+1〉 

transition addressed with Rabi oscillations. The pulse sequence follows the canonical Ramsey 

sequence outlined in chapter 3. We perform these measurements under a c-axis magnetic field of 

~6 G and ~218 G. A detuning of 3 MHz is introduced into the microwave drive frequency in order 

to induce oscillations and obtain a better fit. A Ramsey that is collected exactly on resonance can 

display an artificially shortened 𝑇2
∗. The results of these measurements are shown below: 

 

 

Figure 7.23 | Ramsey interferometry for cavity VV0. Scans are collected at a low magnetic field 

of 6 G (left) and a high magnetic field of 218 G with a 3 MHz drive detuning in both cases. Fits to 

the function exp(−(𝑡/𝑇2
∗)𝑛) give 𝑇2

∗ = 605 ± 33 𝑛𝑠 and 𝑇2
∗ = 592 ± 18 𝑛𝑠 with 𝑛 ≈ 2 in both 

cases. Errors denote a 95% confidence interval. 

 

     Compared to typical bulk VV0 values of 𝑇2
∗ ≈ 1 𝜇𝑠, the dephasing times of 𝑇2

∗ = 605 𝑛𝑠,

592 𝑛𝑠 are reasonable. The loss of coherence is likely due to dipolar coupling to unpaired electrons 
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in the highly doped nearby n-type regions with nitrogen donors. Dangling bonds from nearby 

fabricated surfaces could also contribute to spin dephasing. 

     As a comparison, we also performed Ramsey interferometry on a defect in the unfabricated 

NIN material of the same sample, with the result shown below: 

 

 

Figure 7.24 | Ramsey interferometry for bulk NIN VV0. Collected with 218 G magnetic field 

and 3 MHz detuning. An exponential sinusoidal fit gives 𝑇2
∗ = 4.01 ± 0.38 𝜇𝑠 with a 95% 

confidence interval. 

 

     Curiously, the NIN 𝑇2
∗ appears to be slightly longer than the typical values measured for 

divacancies. The reasons for this are not well understood, but the surrounding n-type layers could 

provide a degree of shielding from the environment. We see this effect for optical linewidths, 

where there is a dramatic improvement from ~10+ GHz to ~1 GHz going from a 400 nm I-type 

layer to a 100-200-100 nm heterostructure of NIN. 

 

Hahn echo measurement (𝑻𝟐) 
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     To measure the spin decoherence time 𝑇2, we use the Hahn echo sequence outlined in chapter 

4. We use the same |0〉 ↔ |+1〉 transition utilized in previous measurements. We also perform this 

measurement under relatively high and low c-axis magnetic fields. The results of these 

measurements are shown below: 

 

 

Figure 7.25 | Hahn echo measurement of cavity VV0. Scans are collected at a low magnetic field 

of 6 G (left) and a high magnetic field of 218 G. Fits to the function exp(−(𝑡/𝑇2)
𝑛) give 𝑇2 =

7.6 ± 0.4 𝜇𝑠 and 𝑇2 = 9.3 ± 2.0 𝜇𝑠 with 𝑛 ≈ 1 in both cases. Errors denote a 95% confidence 

interval. 

 

     In contrast with the 𝑇2
∗ measurements, the 𝑇2 measurements here of 𝑇2 ≈ 7, 9 𝜇𝑠 are 

dramatically shorter than typical values of 𝑇2 ≈ 1 𝑚𝑠 [2]. This is due to dipolar interactions with 

nearby n-type dopants and nearby surface defects. In a bulk VV0, there is a significant 

improvement to 𝑇2 from applying a strong external magnetic field. In this case, however, we only 

see a marginal improvement. This indicates that the nuclear spin bath does not play a dominant 

role in decoherence for this sample, as the strong magnetic field is meant to polarize the nuclear 

spins. For comparison we also collected a decoherence time for a divacancy in the bulk NIN, as 

shown below: 
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Figure 7.26 | Hahn echo measurement for bulk NIN VV0. Collected with 218 G magnetic field. 

An exponential fit gives 𝑇2 = 197.4 ± 52.1 𝜇𝑠 with a 95% confidence interval. 

 

     In this case we obtain a much more reasonable value of 𝑇2 ≈ 200 𝜇𝑠. This ~5x discrepancy to 

bulk values is likely due to the doped layers and nearby top surface. The dramatic ~20x 

improvement from the nanobeam VV0 𝑇2 indicates that the fabricated structures have a significant 

detrimental effect on coherence. Near-surface proximity alone is not enough to explain the 

difference, as both defects are ~200 nm away from the top surface. The sidewall surfaces 

introduced by SF6 plasma etching could introduce Fluorine based surface terminations, which may 

couple strongly to the divacancy. This effect has not been explored in the literature, but could be 

the subject of a future study. 

     For the purposes of remote spin-spin entanglement protocols, the 𝑇2 needs to be long enough 

for the spin to remain coherent during the long-distance photon interference. In this case a 𝑇2 ≈

10 𝜇𝑠 would only correspond to ~ 2 km of travel through fiber. Therefore we are interested in 

extending this coherence time, which can be achieved through dynamical decoupling. 
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Dynamical decoupling 

     While a single Hahn echo pulse has the effect of increasing coherence, this idea can be extended 

to include multiple "echo" pulses. This is the idea of the Carr-Purcell-Meiboom-Gill (CPMG) 

sequence [30]. Theoretically this should provide an improvement in 𝑇2 up to the 𝑇1 limit. We 

performed this sequence with 1, 2 and 4 pulses with the results shown below: 

 

 

Figure 7.27 | 𝑻𝟐 extension through dynamical decoupling for cavity VV0. Carr-Purcell-

Meiboom-Gill (CPMG) sequences with 1, 2 and 4 pulses are tested under a ~6 G external c-axis 

magnetic field. Plots are vertically offset for clarity. Fits to exp(−(𝑡/𝑇2)
𝑛) give 𝑇2 = 6.8 ±

0.7 𝜇𝑠, 𝑛 = 1.6 ± 0.2 for CPMG-1, 𝑇2 = 11.0 ± 1.9 𝜇𝑠, 𝑛 = 2.0 ± 0.4 for CPMG-2, and 𝑇2 =
19.5 ± 6.1 𝜇𝑠, 𝑛 = 2.1 ± 0.6 for CPMG-4. Error bars indicate 68% confidence intervals. 

 

The steadily increasing coherence times indicates the viability of this technique, at the cost of 

receiving less averaged signal as more pulses are included. 

 

𝑻𝟏 measurement 
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     Lastly, a spin-relaxation 𝑇1 measurement provides an upper bound on the coherence times 

capable for the divacancy. This measurement follows the description in chapter 3, where the spin 

is simply initialized and then measured after a waiting period. The results of this measurement are 

shown below: 

 

 

Figure 7.28 | Spin relaxation times of cavity VV0. Measurements are collected at a ~6 G c-axis 

magnetic field and T = 5 K. (a) 100 μs time window with an exponential decay fit giving 𝑇1 =
1.02 ± 0.47 ms. (b) 1 ms time window with an exponential decay fit giving 𝑇1 = 2.43 ± 1.58 ms. 
Errors indicate 95% confidence intervals. 
 

     Here the spin relaxation times of ~1 ms are reasonably long, although other measurements of 

divacancies indicate that they could be much longer at cryogenic temperatures. This could be an 

indication that rather than phonon processes limiting the 𝑇1, nearby fluctuations near the Larmor 

frequency could be causing spin flips. Nevertheless, the ~1 ms value, if mapped to a 𝑇2 time 

extended with dynamical decoupling, would correspond to over 200 km of optical transmission 

through fiber before decoherence. Given that the fiber attenuation limit is ~100 km, this would be 

a long enough coherence time to carry out the limits of long-distance spin-spin entanglement. 
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7.11 Discussion and next steps 
 

The Purcell enhancement of the divacancy's zero-phonon emission has important implications for 

entanglement protocols and spin readout. Most directly, the increase in the Debye-Waller factor 

from ~5% to ~70-75% means that significantly more photons will be emitted into the ZPL. These 

photons are directly used in spin-photon entanglement, and also employed in remote spin-spin 

entanglement that relies on the interference of indistinguishable photons. For the entanglement 

between two spins, the probability of success increases from 0.05^2 = 0.0025 to 0.75^2 = 0.5625, 

which is approximately a 200-fold increase. This speedup becomes more dramatic when the 

entanglement is scaled up to more than two nodes. For three nodes, for example, entanglement 

rates increase by approximately 50,000 since four ZPL photons are now necessary. This scaling 

continues as 2(𝑛−1) ZPL photons are necessary for an n-node network. 
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Figure 7.29 | Speedup for spin-spin entanglement. The Purcell enhancement presented in this 

thesis results in a projected 200x speedup for two node spin-spin entanglement. This speedup 

increases exponentially as more nodes are added, reaching ~50,000x for a 3-node network. 

 

     In addition to increasing zero-phonon emission, Purcell enhancement also results in a relative 

suppression of other decay pathways from the excited state. This is important for single-shot 

readout experiments that rely on the cyclicity of a radiative spin transition between the ground and 

excited states [81,82]. With the threefold reduction in overall lifetime, we would expect a threefold 

increase in the number of photons emitted in a cycling transition before a spin flip occurs through 

the ISC. The various decay pathways are outlined in figure 7/30. 

 

 

Figure 7.30 | Decay pathways for the cavity-VV0 system. The radiative decays (blue arrows) 

can be categorized as zero-phonon line (ZPL) emission or phonon sideband (PSB) emission. The 

highlighted ZPL decay is enhanced through the cavity. Nonradiative decays (gray arrows) through 

the ISC or an ionized VV–/VV+ charge state compete with the radiative decays and lengthen the 

overall optical lifetime. The ISC pathway is the primary source of spin flipping, which becomes 

mitigated when the ZPL transition is Purcell enhanced. 

 

     Single-shot readout is a key component of spin-spin entanglement experiments, as it is used to 

verify the correlation between entangled spin states [81,82]. In addition to allowing for more 
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photons to be emitted to raise single-shot readout fidelity, the presence of a cavity can also raise 

the overall collection efficiency into the top-down objective used for bulk divacancies. In our 

experiments, the increase of off-cavity-resonance PL (~120 kCts/s) compared to bulk VV0 

emission of ~40-50 kCts/s indicates at least a factor of two improvement in collection efficiency. 

Combined with the lifetime reduction, the increased photon counts may bring single-shot readout 

into the realm of possibility for divacancies interfaced with nanophotonics. The incorporation of 

directed optical components such as grating couplers and tapered fibers would serve to further 

increase the collection efficiency, which is on the order of 1% for most experiments. 

     As part of the Barret-Kok spin-spin entanglement protocol, it is necessary to address each spin 

with a resonant excitation pulse that is spin selective, as outlined in figure 7.31 [40]. In the cavity-

enhanced divacancy featured here, the PLE excitations are merged together for each excited state 

branch as can be seen in figure 7.13. Thus, to carry out the entanglement procedure it is necessary 

to either narrow these lines or achieve spin selectivity through another method. As outlined in 

chapter 2, each excited state transition is coupled through a specific photon polarization. In this 

way, if the |𝑚𝑠 = +1〉 and |𝑚𝑠 = −1〉 states are selected as the qubit basis, then the photon 

polarizations that excite the VV0 will be completely orthogonal. This means that spin selectivity 

can be achieved despite the spectral overlap of transitions. As given in the entanglement procedure, 

the spin would be prepared in a superposition of |±1〉 and given an excitation pulse that is either 

left or right circularly polarized. 
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Figure 7.31 | Remote spin-spin entanglement procedure. Adapted from [40]. In steps 2 and 4, 

an optical excitation for the |↑〉 to |𝑒〉 transition is used to excite a superposition state, which 

implies the spectral distinguishability for the spin sublevel optical transitions. 

 

     Alternatively, it may be possible to actively narrow the optical linewidth of the VV0 through 

the application of a static electric field, as demonstrated in work in reference [31,43]. In this 

approach, the electric field polarizes fluctuating charges that are responsible for spectral diffusion. 

Electric field could be applied through nearby gated electrodes, as shown in figure 7.32, or present 

naturally in a PIN doped heterostructure. The cavity presented here contained an NIN structure for 

the nanobeam, so the topmost N-doped layer would be swapped with a P-doped layer. 
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Figure 7.32 | Photonic device geometry for microwave and electric field control. Nanobeam 

photonic crystals are tiled in an array with intermittent electric field pads (E) for both Stark tuning 

and potential linewidth narrowing. A microwave stripline (B) provides alternating magnetic fields 

to drive spin transitions. 

 

     Another approach for narrowing linewidths would be to simply make a larger cavity, such that 

the nearby etched surfaces of the photonic crystal are further away. The linewidths of divacancies 

in the intrinsic layer of the sample 100-300 nm from the top surface display PLE linewidths of 1 

GHz or less, which is narrow enough to distinguish spin sublevels. This means that a cavity design 

with at least 100-300 nm spacing between the divacancy at the etched holes should be sufficient 

to main suitably narrow linewidths. 

     Beyond the scope of entanglement and single-shot readout, the cavity interactions of this system 

provide an ideal platform for facilitating single-spin/single-photon interactions. Each pass of a 

photon that is near resonance with the divacancy transition results in a slight rotation of the spin 

state (the optical Stark effect) and a corresponding rotation of the photon polarization (Faraday 

rotation). Because the coupling strength between a bare divacancy and a photon is relatively weak, 
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this rotation is only on the order of microradians and is only measurable through extensive 

averaging, as has been demonstrated in reference [83] for the NV– center in diamond. In a photonic 

cavity, a single photon will undergo multiple passes of the embedded spin defect and accumulate 

this rotation before leaking to the environment. In order to achieve a substantial rotation from a 

single photon, the quality factor of the cavity would have to be in the strong coupling regime such 

that 𝑔 > 𝜅. In this regime, it would be possible to establish significant single spin-photon 

interactions [84] and long distance quantum logic gates between spatially separated spins mediated 

by single photons [85]. 

 

 

Figure 7.33 | Optical Stark effect and Faraday rotation. As a photon near resonance passes by 

an electron spin, the spin-photon interaction results in an equivalent rotation of the spin state and 

the polarization state. As many of these passes are accumulated in a photonic cavity, the effect 

becomes more pronounced. On the right is a demonstration of the optical Stark effect (top, black) 

and Faraday rotation (top, red) for an NV center in diamond after averaging many experiments. 

The right figure is adapted from [83]. 

 

     To gauge how far the presented VV0-cavity system is from strong coupling, we must obtain 

values for the key CQED parameters 𝑔, 𝜅, 𝛾. The leakage rate 𝜅 and spontaneous emission rate 𝛾 

can be quickly obtained from the cavity quality factor and the optical lifetime: 
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𝜅 =
𝜔𝑐𝑎𝑣
𝑄

= 3.5 ∙ 1011 𝐻𝑧 (7.44) 

𝛾 =
1

15.7 𝑛𝑠
= 6.37 ∙ 107 𝐻𝑧 (7.45) 

 

An expression for 𝑔 can be obtained based on its relation to the cooperativity and Purcell factor: 

 

𝐶 =
𝑔2

2𝜅𝛾
(7.46) 

𝐹 − 1

4
=
𝑔2

2𝜅𝛾
(7.47) 

𝑔 = √
(𝐹 − 1)𝜅𝛾

2
(7.48) 

 

If we use the 𝐹 ≈ 50 for the cavity presented in this work, then: 

 

𝑔 ≈ 2.4 ∙ 1010 (7.49) 

 

     This is roughly a factor of 15 smaller than the cavity leakage rate, implying that a quality factor 

of 15*5,000 = 75,000 would be necessary to achieve strong coupling for this system. Alternatively, 

the Purcell factor can be substantially increased with improved spatial matching between the 

divacancy and the cavity mode. If we take the expression for the maximum Purcell factor with 

perfect atom/emitter matching: 

 

𝐹𝑚𝑎𝑥 =
3

4𝜋2
(
𝜆

𝑛
)
3

(
𝑄

𝑉
) + 1, perfect matching with emitter (7.50) 

 

And substitute Q = 5,000 and 𝑉 ≈ 0.5 (
𝜆

𝑛
)
3

 for the nanobeam design, then: 
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𝐹𝑚𝑎𝑥 =
3

2𝜋2
(5000) + 1 = 761 (7.51) 

 

     Which, coincidentally, is also a factor of ~15 greater than the observed Purcell factor of ~50. 

This implies that even with the current quality factor of 5,000, strong coupling could potentially 

be achieved if the emitter was perfectly spatially and spectrally matched to the cavity mode. Since 

this is extremely difficult to achieve in practice, a combination of higher Q and better coupling 

will be necessary to push this system into the strong coupling regime. 

     In conclusion, we have presented the fabrication and operation of an atom-cavity platform for 

the divacancy in silicon carbide that results in substantial enhancement of zero-phonon emission. 

Through multiple independent measurements, we have observed a Purcell factor of ~50, which 

results in an increase in the Debye-Waller factor from ~5% to ~70-75%. Additionally, we have 

demonstrated coherent spin control of the VV0 ground state and coherence times that can be 

extended through the use of dynamical decoupling. Looking ahead, this system provides exciting 

opportunities to facilitate long-distance entanglement protocols and single spin/photon 

interactions. Scaling up to multi-node quantum networks, the photonically enhanced VV0 system 

provides an attractive platform that is compatible with long-distance optical transmission through 

telecom fibers. 
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