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Abstract

The emergence of controllable quantum systems has led to exciting applications for quantum
computation, communication, and metrology. Among the many candidate systems, silicon carbide
has attracted interest as a solid-state quantum platform in a technologically mature semiconductor
material. When one creates atomic defects in silicon carbide lattice, individual electrons become
trapped in isolated energy levels in the band gap. These electron spins can then be optically
initialized and read out while being coherently controlled through microwave frequency fields.
This interface between spin and photon quantum states provides exciting opportunities for creating
remote entanglement on a macroscopic length scale.

This thesis discusses the foundations of the divacancy in silicon carbide as a spin qubit and then
presents the photonic enhancement of this system. More specifically, nanoscale photonic crystal
cavities in silicon carbide are fabricated in order to modify the divacancy's zero-phonon line optical
emission. This is vital for facilitating spin-photon and spin-spin entanglement protocols which rely
on the emission of indistinguishable photons without losing coherence to phonons emitted into the
lattice. A combination of electron-beam lithography and photoelectrochemical etching is
employed to create suspended nanocavities in the 4H polytype. The combination of this structure
with a centralized divacancy forms the foundational atom-cavity system studied in cavity quantum
electrodynamics. As predicted from interactions with the cavity mode, a substantial Purcell
enhancement of the divacancy zero-phonon line and a reduced excited state lifetime are observed.
Additionally, we demonstrate spin control and coherence in these devices for the first time. More
broadly, the cavity-emitter interactions in this system allow us to study transduction between spin

and photonic degrees of freedom and provide a first step towards next generation hybrid devices.
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Chapter 1

Introduction To Quantum
Two Level Systems

1.1 Introduction — Quantum states

In many fields of physics, it is a common goal to quantify a system's characteristics through
physically measurable quantities such as mass, charge, or velocity. These quantities then influence
the system's behavior over time and its interactions with other systems. This idea extends to the
realm of quantum physics, where the same fundamental properties set the foundations of so-called
quantum states. A key distinction, however, is that instead of a continuous set of values these states
can only assume quantized measures. For example, the magnetic flux through a superconducting
loop can only take on integer multiples of the flux quantum &, = h/2e, where h is Planck's
constant and e is the charge of an electron. Other examples of quantum states or "qubits" include
the position of a particle, the spin of an electron, and the polarization of a photon. In each of these
examples the quantity of interest takes discretized values. What can be continuous, however, is the
linear combination of different quantum states, which we will see shortly.

Generally speaking, there has been a great interest in the exploration of quantum systems due
to their insight into fundamental physics and their recent emergence into quantum technologies.

The fields of quantum computing, quantum communication, and quantum sensing all leverage the



unique properties of quantum mechanical states to gain an advantage over their “classical”
counterparts. In order to bring these applications to fruition, we must be able to both understand
how a quantum state behaves and be able to influence the system directly.

To begin this discussion, we must establish a convention of how a quantum state is represented.
This is broadly described by the "wavefunction™ of a particle or a group of particles. The quantum
state, whatever it happens to be, is usually represented using bra-ket notation with the Greek letter
Y.

quantum state = |y) (1.1)

For example, we could have the following quantum states:

photon number, {ln=0)n=1),In=2)..} (1.2)
electron spin, {1m, 1)} (1.3)
tic fl {| h) |2h> |3h> } 1.4)

magntic flux, 2o 250" |26’ (1.

To make further headway in a mathematical description, we will limit ourselves to the most
basic dimensionality of a quantum state: the two-level system (sometimes abbreviated TLS).
Although this is a simplification, almost all practical quantum applications can be described in the
language of a two-level system, so it serves as an incredibly powerful tool.

The first decision to be made for the two-level system is what basis to choose to describe states.
This is similar to how several equivalent coordinate systems can be used to describe position in
three-dimensional space, with the axes such as x/y/z serving as the basis of the description. It is
worth noting that this basis choice does not need to be a permanent, as the basis can be changed at

any point to give a mathematically equivalent representation of the state. Although any basis that



spans the possibilities of quantum states (termed the Hilbert space) is allowed, often the physics
of the system itself allows for a natural choice. For the following discussions we will pick the
abstract basis of {|0), 1)}, which could represent, for example, the two spin states of an electron.

With this basis in hand, a quantum state can be generally represented as a complex linear

combination of the two states:

|Y) = (a +ib)|0) + (c + id)|1) (1.5)
Or, written as a vector
_(a+ib
lp) = (C+ l.d) (1.6)

All states have to be "normalized", which means:
(a+ib)?+ (c+id)* =1 (1.7)

Physically, this means that upon measurement the state must either be |0) or |1), with a total
probability that adds to 1. Additionally, it is physically insignificant to add or remove a global

phase from this state. This means we can write:

W= o m=e 0o

These are the same state in the sense that any physical measurement will give the exact same result.

This is in contrast to a relative phase, in which:

0= Lia)* (e o) 19

A common convention is to make the first entry completely real. That is to say:

3



=)= (L) o

Where:

/ 1 / 1
Y = a’?+ bz, a = (ac + bd) m, ,3 = (ad - bC) m (111)

So more explicitly:

Jaz +b?
) = ?:2 ( \ (1.12)
\(ac + bd) ——— +i(ad — bc) PRy b2

Already, the description of a state in a simple two-level system has become quite complicated.
To help provide some intuition for these expressions, we can interpret a quantum state

geometrically, as will be discussed in the next section.

1.2 Bloch sphere representation of a two-
level state

Any state of a two-level system can be represented as a point on the surface of a three-
dimensional unit sphere termed the "Bloch sphere™. Mathematically, a two-dimensional vector
with a complex component is mapped to a three-dimensional vector in Cartesian space with real
components. In this formalism, the z-axis corresponds to the proportion of |0) or |1), the x-axis
encodes a real phase between the states, and the y-axis encodes an imaginary phase between the
states. This formalism proves useful for describing the evolution of two-level system states, as we

will see later. A schematic of the Bloch sphere is shown in the figure below:



i) =71§(|0>— i11))

|i+)=%(|0>+i|1>)

1
=—=(0)+11))
V2 1)
Figure 1.1 | The Bloch sphere. The red point represents an arbitrary state [y) with a polar angle
6 and an azimuthal angle ¢ on the Bloch sphere. The six axis endpoints correspond to states as
labeled in the figure.

[+)

The Bloch sphere uses the convention to make the first entry completely real:

[0) component)

Y |
Y= (a + iﬁ)’ written as (Il) component (1.13)

Where typically the first entry corresponds to the |0) state. In Bloch sphere coordinates, this state

can be equivalently expressed as:

COS —

Y= (1.14)
N
e'® sin—



Where 6 is the polar angle with the z-axis and ¢ is the azimuthal angle with the x-axis. Using the

above variables, the "Bloch sphere coordinates™ of the quantum state i can be written as:

x sin 6 cos ¢ 2ay
Bloch sphere coordinates of i, a= (y) = (sin 6 sin qb) =| 2By (1.15)
z cos 6 2y% —1
Or, if the original 2D state vector has two complex components:
" 2(ac + bd)
ify=(“T"),  then, d=[ 2(ad-bo) (1.16)
c+id 2 1 1.2
2(a“ +b°) -1

Alternatively, if given an X, y, z coordinate of a Bloch sphere point, we can write the a, 8,y

variables as:
x=2ay, y=2By, z=2y*-1 (1.17)
Which means
x 2 y 2 z+1
= — e = 1.1
“=3 31 PTZlzar Y 2 (1.18)

With the Bloch sphere, time evolution and projective measurements now have a geometric
interpretation. This interpretation is repeatedly used for two-level systems or any multi-level

systems that can be reduced to two-level systems.

1.3 Measuring a quantum state

For practical applications we ultimately have to measure the quantum state, although there are

several ways this can be done. Just as we had to pick a basis when representing a state, we also
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must pick a basis for measurement. Once the basis is chosen, then each basis state can form its

own “projection operator”. For example for the |0) state,

|0) = O state, |0){0] = 0 projection operator (1.19)

Measurements are then mathematically represented by sandwiching this projection operator with

the wavefunction |y):

(¥|0){0[yp) = returns value € [0,1] giving probability of measuring 0 state (1.20)

The returned quantity is the probability that measuring the wavefunction will return the projection
operator state. This act of "sandwiching" an operator by the wavefunction y is more formally

stated as the expectation value of the operator:

(Y|A|p) = expectation value of operator A (1.21)

In this sense, the expectation value of the projection operator for a state |x) is the probability of
finding the wavefunction in the |x) state. Probabilities must be normalized within a complete basis,

so this means:

(WI0X0lp) + (W[1)X(1]y) =1 (1.22)

Sometimes, this is represented as the sum of squares of inner products:

[(WI0)? + [(I1)]? =1 (1.23)

After the measurement is made, the state will "collapse” to one of the eigenstates of the

measurement basis, and that becomes the new state of the particle. Any previous superposition



information will disappear. In this sense the measurement of a quantum state entails some
irreversible loss of information, as there are multiple starting states that can give the same
measurement result.

Alternatively, for a two-level system we can geometrically project a state along a Cartesian axis

on the Bloch sphere. Mathematically this can be represented as:
(a,) = (Y|o,|Y) = returns value € [—1,1] giving projection along z axis (1.24)

Where the Pauli matrices are defined as:

O, = ((1) é), oy = (? Bi), 0, = ((1) _01) (1.25)

In this way the trio of expectation values of a,, g, g, uniquely defines a point on the Bloch sphere:

Wlodpy=x,  Wloylp)=y, @lolp)=2 (1.26)

More generally, the expectation value of a spin operator gives the expected value of the spin when

it is measured along the axis of the operator.
(Y|S;|) = expected value of the spin when measured along axis i (1.27)

We will use this definition when dealing with the divacancy spin in chapter 2, which is a spin-1

system that occupies a three-dimensional Hilbert space.



1.4 Quantum dynamics of two-level

systems

Now that we have outlined how to describe a stationary quantum state, it's now time to introduce
the dynamics of quantum states. More specifically, this means the time evolution of a state either
with or without an external field. This is where we first see the Hamiltonian and Schrodinger's
equation put to use. It is no overstatement to say that the behavior predicted by these two
components lay the foundation for nearly all of quantum mechanics. The ideas that are presented
here for the two-level system will be extended to higher level systems in future chapters. By
understanding how these systems naturally evolve, we can leverage their response to external

fields to gain control over their behavior.

1.4.1 Hamiltonian of the two-level system

Up until now we have focused on characterizing of quantum states in a snapshot in time and
measurement outcomes at an exact moment in time. We wish to broaden this discussion to time
evolution of quantum states. To discuss this, we must introduce the Hamiltonian, which governs
the time dynamics of a state. More specifically, we use the time-dependent Schrodinger equation

to describe the dynamics of a closed quantum system:

Lo
ih= ) = Hlp) (1.28)

In the case of a two-level system, the Hamiltonian H is typically written as:



. h
A ==2(e)el — l9XgD) (1.29)

where "e" denotes the excited state and "g" denotes the ground state, and Aw,, is the energy splitting

between the two states. If we choose the vector representation:

=), 19=0) (1.30)

Then the Hamiltonian takes a 2x2 matrix form:

A= %((é) 1 0)- ((1)) (0 1)) = %(é _01) (1.31)

Note that this can also be written in terms of the more familiar Pauli z matrix:

I ) WA ) B

So equivalently:

H=—2o, (1.33)

We are interested in the eigenvalues and corresponding eigenvectors of this Hamiltonian. Because

the Hamiltonian matrix is already diagonal, they can be quickly determined as:

A = — h;)", 7 = ((1)) (1.34)
Ay = +%; Uy = (é) (1.35)
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Here the eigenvalues represent the energies of the states. What the eigenvectors represent goes
by many names. We could call these stationary states, energy eigenstates, energy eigenkets, or
energy eigenfunctions. The point is that these states represent states with definite measurable
energy. Furthermore (as given by the name "stationary") the energies of these states remain
constant with time. | will use the term stationary states for this discussion. They are important for
three main reasons:

1) The stationary states form an orthonormal basis that spans the Hilbert space. This means
that any arbitrary state can be expressed as a complex linear combination of these stationary
states.

2) They can be used to describe the time-evolution of any state. The general time-evolution
of any state can be written as the sum of the separate time-evolution of each stationary state
that composes the general state.

3) The time evolution of stationary states is simple. All that is needed is a multiplication

iEt

by the time evolution operator e # (E is the energy of the state). Note that this only applies

for stationary states!
It is worth expanding on point 3; where does this time-evolution operator come from? The fact
that the stationary states are time-independent is important, as it allows us to use the time-

independent Schrodinger equation:

Hly) = Ely) (1.36)

This is a powerful step, as we can now make this substitution into the time-dependent Schrodinger

equation:

0 _
ih—= 1) = Hlp) = E[Y) (1.37)
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Suddenly, with the Hamiltonian removed from the picture, this turns into a relatively simple
first-order (only first derivatives) ordinary (only derivatives with respect to one variable)

differential equation. This differential equation is also separable. We can rewrite this as:

21w =Ly (138)
V= '
This matches the form of the exponential differential equation:

d
d_}t; =ky, y(t)=Ce* (1.39)

Applying this here, we have:

iEt

Y(t)=Ce (1.40)

Which gives the time-evolution operator. In this case the constant C is represents the initial state:

IEt

Y(t) =y(0)e = (1.41)

What this means is that for a stationary state, we can obtain the state at any later time t by simply

iEt

multiplying the state by the time-evolution operator e = . This is the same statement as point 3
above.
We are now equipped to describe the time-evolution of any state in this two-level system. In

the most general case, we have the state:

N
y = ; cihy (1.42)
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In this case there are only two basis states, so N = 2. Here c,, is the (potentially complex)

coefficient for the stationary state ,,. As per the above discussion, the time-evolution of this

general state readily follows as:

N

YW= epue” F

n=1

With the normalization condition:
N
ZICnlz =1
n=1

Expanding W(t) for the two-level system, we have:

_iEgt _iEgt
W(t) =cgpge h +ceipee

(1.43)

(1.44)

(1.45)

Here the labels "g" and "e" still denote "ground state" and "excited state”. Making some

substitutions of:

lpg=|g). l/)ezle), Eg:—_' Ee:_
Gives:

lwot lwot

V() = cylgle 2 +colele” 2

This describes the time-evolution of any general state W. In vector form, this is:

(1.46)

(1.47)

(1.48)



Note that we can factor out an exponential factor:

iwgt .
Y(t) = eTO(cglg) + Cele)eiwot) (1.49)
Or, equivalently:
_Lwot :
Y(t)=e 2 (cglg)e“"ﬂt + cele)) (1.50)
The interpretation of this is phase is that each stationary state accumulates phase at a different
rate, dependent on the energy difference between the states. In the Bloch sphere representation of
a state, this is what is responsible for the natural "precession” of any state that is not at one of the
poles. In this sense, the time-evolution operator itself is responsible for the natural rotation on the

Bloch sphere. The time-evolution operator itself, in turn, comes from solving the exponential

differential equation (i.e., the time-independent Schrodinger equation) for a stationary state 1.

1.4.2 State evolutions on the Bloch sphere

The solution obtained in the previous section can be visualized as an evolution on the Bloch sphere.

If we take the solution:

ot .
Y(t) = eleo(cglg) + cole)eiwot) (1.51)

And drop a global phase, we obtain:
W(t) = cg4lg) + cleye w0t (1.52)

Or, following the Bloch sphere convention of |g) = |0) and |e) = |1):
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W(t) = cy|0) + c1|1)eiwot (1.53)

Keeping in mind the Bloch sphere coordinate of a state is:

6
COSE
lp) = P (1.54)
i cin —
e Sin >
This means that we have:
Co 0 6
Y() = (Cle_iwot), Co=cosy, ¢ =sing, ¢ =-wp (1.55)

The geometric interpretation of this is that the polar angle will be fixed depending on the values
of ¢, and c; and the azimuthal angle will rotate in the clockwise direction (when viewed from +z)
with an angular velocity of w,. This means that any pure state on the surface on the Bloch sphere
will trace out a circle parallel to the xy plane as time elapses, regardless of what the fixed z-
coordinate is. We refer to this as the Larmor precession of the state around the Bloch sphere. A

sketch of this evolution is given in figure 1.2.
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1)

Figure 1.2 | Time evolution of a pure state on the Bloch sphere due to Larmor precession.
Without external fields, a state |y) (red dot) will precess around the z-axis of the Bloch sphere
(red circle). The speed of this precession is proportional to the energy different between the |0)
and |1) states.

Given that the state is rotating uniformly around the z-axis, it is also possible to instead rotate
the coordinate system itself such that the Bloch vector appears to be stationary. This is known as

entering the "rotating frame" of the Bloch sphere, which is useful for visualizing rotations around

the rotating x and y axes when microwave drives are added to the system.

1.5 Rabi oscillations of a two-level system
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The interaction between a two-level system and a drive field, for our purposes, will be governed

by the dipole interaction with either a magnetic or electric field. This is given by:
Hioa = —d - E (1.56)

where d is the dipole moment operator and E is the applied electric field. We will focus on both
of these elements individually before moving on.

We will be focusing on the example where the electric field is aligned along the axis of the
dipole, so the dot product becomes a regular product. With this in mind, we turn to the form of the
electric field. We will focus on a sinusoidally varying electric field. This is sometimes expressed

as:

E(t) = Eje~ioLt 4 EjetoLt (1.57)

Where E(’; is the complex conjugate of the amplitude Eo. Assuming that these amplitudes are
complex numbers of the same magnitude, they can be written in the form Ae'®. In this form, we

see that we are simply expressing an arbitrary phase ¢ on a cosine wave:

E(t) = Ae'Pemiott 4 fe~ideiort (1.58)
E(t) = Ae i @Lt=9) 4 geilwrt=¢) (1.59)
E(t) = A(e™i(@rt=0) 4 pi(wrt=9)) (1.60)
E(t) = A2 cos(w,t — ¢)) (1.61)
E@) =24 cos(w,t — @) (1.62)

For simplicity, we will assume the phase of the electric field is zero, which gives:
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E@® = EO cos wt, EO = ES (EO € R) (1.63)
Assuming the electric field oscillations are along the axis of the dipole, we can drop the vectors:
E(t) = E, cos wt (1.64)
We will also need to introduce the dipole moment operator d:
d = —(degleXgl + diglg)el) (1.65)

For the divacancy system, it is a safe assumption to say Jeg = c?;g. This will simplify the

derivations in this section and later in chapter 2. In matrix form, d then becomes:

q 0 d
d=-|, cd (1.66)
deg O
So the Hamiltonian becomes:
0 deg) =
Hfield =—\ 5 . EO cos wt (167)
deg O

Recalling that the dot product is a regular product here, the vector drops to give:

H B 0 degEq cos wt 168
field = =\ d, 4 E, cos wt 0 (1.68)
For further analysis, we will convert the cosine back to the complex exponential form:
0 degEo (eiwt + e—iwt)
2
Hfiea == 4 § (1.69)
eg™o (eiwt + e—iwt) 0

2
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We now define:

deoE
hQ = %" (1.70)
Which gives:
0 hQ (et 4 e7ier)
Hfiela = = <hﬂ(eiwt f emiot) 0 (1.71)
Dropping the negative sign:
0 hQ (et + emiwt)
Hfierq = <hﬂ(ei‘*’t 4 eiat) 0 ) (1.72)

Keep in mind this can take the form AQ ~ i - B for magnetic field driving. This Hg;eq Will be

added to the bare two-level Hamiltonian:

—~ hwy /1 0
Hatom = (0 _1) (1.73)
To give:
~ % Q(eiwt + e—Lwt)
H=n . ' W (1.74)
Q(elwt + e—Lwt) _7

Solving for the time evolution of a state subject to this Hamiltonian is now difficult because we
have time varying terms in the Hamiltonian itself. Ideally, we would be able to somehow remove
this dependence and then use the same approach with time-evolution operators that we used for
the bare two-level system. This is indeed possible for this particular situation, as we will outline

in the next section.
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1.5.1 Generalized interaction picture approach

At its heart, the "interaction picture™ is simply the process inserting identities into Schrodinger's

equation. Starting with the original time-dependent Schrodinger's equation:

9
iho-W = HY (1.75)

We now insert the product PP~ in various places in this equation, where the invertible matrix P
is yet to be determined. Given that PP~1 is the identity matrix, this should have no effect on the

equation:

d
iha(PP‘llP) = (PP"YH(PP V)Y (1.76)
d
iha(PP‘“}’) = P(P"'HP)P™1¥Y (1.77)
If we now define a new wavefunction & given by:
d=ply (1.78)
with the important matching initial condition:
®(0) = ¥(0) (1.79)
Then the equation becomes:

ih% (Pd) = P(P"LHP)® (1.80)
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Using the chain rule for the time derivative:

h (ap O+ P aq)) — P(P-1HP)D (1.81)
"\ ot ot/) '

Rearranging:

ihP 0 _ P(P~IHP)® —ih op ) (1.82)
S T Sy '

n 2% _ (P~1HP)® — ihP! P (1.83)
e T ' ot '

n 2% (P—lHP jhP~1 ap) ® (1.84)
o T ! ot '

This is the key result from the interaction picture.

For an appropriate choice of P, we can exchange our original Hamiltonian H for a new

19P

Hamiltonian of the form (P‘lHP — ihP~ -

). At the face of it this might just seem like an

overcomplication, but the right choice of P can (eventually) remove the time dependence.

1.5.2 Application of interaction approach to

two-level system

We start with the two-level system Hamiltonian with a field drive:

ﬂ Q(eiwt + e—Lwt)
A=nh 2 W, (1.85)
lwt —lwt —_—
Q(e +e ) >




Our first choice for P will be given as follows, by convention:

iHy st
pl= exp( ;[S ) (1.86)
Here H, s represents the time-independent part of the Hamiltonian, so:
% 0
HO,S = h _ﬂ (187)
2
So:
W lwot
1 /it 70 0 \ 2O 0
P~ =exp %h . wo = exp iw,t (1.88)
2 0 - 2
Diagonal matrices can be exponentiated element by element, so:
lwot
()
-1 _
p1= . ( iwg t) (1.89)
exp >
Which immediately gives P as:
lwot
exp (— 0 ) 0
P= oot (1.90)
0 exp( > )

To get the full modified Hamiltonian, we can start with the product P~1HP. Incidentally, this is

sometimes called the "interaction part" of the Hamiltonian
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lwot w . )
exp( 20 ) 0 70 ,Q(e“"t-}-e_““t)

lwot h ; ; Wo
0 exp (_ 0 ) Q(ela)t + e—lwt) _ 7
p-1yp — 2 /) (1.91)
(_ la)ot) 0
exp >
0 (iw0t>
exp >
Wo i —ilw—
-9 Q(el(a)+a)0)t+e i(w (uo)t)
P-1HP = h s Z s " (1.92)
Q i(w—wp)t —i(w+wp)t -
(e +e ) >
Now moving on to the other component, iAP~1 Z—I;:
lwot lwot
oP eXp( 2 ) 0 9 eXp(_ 2 ) 0
ihP~1— = ih . — . (1.93)
ot 0 ex (_ lwot) ot 0 ex (lwot>
P\T2 P\2
Derivatives are done element by element:
lwot lwg lwot
o (e0(57) 0 e (-5) 0
ihP~l— = ih . . . (1.94)
o 0 e (<) 0 Lol
P\T2 2 P\
This simplifies to:
Wo
APt P _ h 2 ’ 1.95
l E = wWo ( . )
0 -3

Which here, is just the original Hamiltonian for the basic two-level system. So combined, the new

Hamiltonian is:
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P
Hyew = PTXHP — ihP™' — = h

0 Q(ei(w+w0)t + e—i(w—wo)t)
=

Q(ei(w—wo)t+e—i(w+w0)t) 0 ) (1.96)

Applying the rotating wave approximation here gives:

0 Q(e—i((u—(uo)t)
Hyew = 1 <Q(ei(w—wo)t) 0 ) (197)

Now is an appropriate time to define a detuning:

So:
_ 0 Qe—iAt
Hpew = h(nem 0 ) (1.99)

This satisfies the modified Schrodinger equation:

00
‘hﬁ = H,,,® (1.100)
Where the modified wave function is:
lwot
exp( > ) 0
¢ =Py = . Wy (1.101)
0 exp (_ la)ot)
2
We will now repeat this procedure, with
00
lhﬁ = Hnewq) (1102)
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Being converted to:

12 - (P—lH P — kP~ ap>®
or T new!” 1 ot

Where:
0=prlo

First let's diagonalize H,,,,,:

0 Q iAt —ia 0 0 QO lA_t
_ e _ e 2 e 2
Hnew - h<ﬂeiAt 0 ) - h( LA_t) (_Q 0)(

2

Or, rearranged:

iat —iat 0 Q
ez 0 e 2 0 |_
< —iAt) Hnew ( iAt) =h (Q 0)

0 e 2 0 ez

This immediately provides us with our P~1 and P for the second round:

Which gives:

7T 0 0 aeit\(ez 0
- _ ez e e 2 _
PT'HP = h( —iAt) (QeiAt 0 )( iA_t) = h(
2

0 e 2 0 e
And:
A 1A —iAt
At ——e 2 0
inp1 90 _ ez 0 2°
= —iAt iA At
ot tAt

(1.103)

(1.104)

(1.105)

(1.106)

(1.107)

(1.108)

(1.109)

(1.110)



So in total, we have:

oP 0 Q hA 11 0
-1 . _1_: _ -
PTUHP — ihP™' h(ﬂ 0) 2(0 _1) (1.111)
4
opP -5
PTUHP — ihP™ = = h SN (1.112)
43
A
")
Hypg = | 2 A (1.113)
€43

Now the time dependence has been completely removed. The second round modified form of

Schrodinger's equation is now gives:

00
ih—— = Hynq® (1.114)
'hag—h 2 0 0 (1.115)
l ot = 0 é .
2
Where:
. lwot
» ez 0 ez 0 eXp< 2 ) 0
O=P'd= S | = A iwty | ¥ (1116)
0 ez 0 e2 0 exp(—T>
_|e
0= ( _immo)t)w (1.117)
0 e 2
iwt
0= <e 2 _(l?wt>tp (1.118)
0 e 2



We now have a more familiar situation, as the time-dependence in the Hamiltonian has been
removed. We can proceed "normally™ and get the eigenvalues and eigenvectors of this time-

independent H:

h A — VAT ¥ 42
Al = _E\/ A? + 4‘92, V1 = 20) (1119)
1
, A+ VEET O
Jo =3B 420%, vy =g (1.120)
1

This tells us the stationary basis for the function ©, which we can then relate to W. The general
evolution of a state can then be found if it is written in terms of these eigenstates.
A —VAZ +4Q2 A+ VA% + Q2

w(0) = (0) = 0(0) = ¢ >0 + ¢ 0 (1.121)
1 1

We can use the time-evolution operator with definite energies to evolve the © state:

A—VA2+4Q0%\ g A+VAZ+ 0%\ g

@(t) = 20 e o+ Cy 20 e h (1122)
1 1

For E; and E, we use the eigenvalues we just solved for to give:

— 2 2 2 2
A-VAT A7\ [ A+VAZTQ i P

0(t) =¢ 20, eN4 T 2Q
1 1

(1.123)

Then to convert back to W(t):
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W(t) = (e_z &t> o(t) (1.124)

0 ez2

We plug in to get:

—iwt A — /A2 2 —iwt NI 2
ot AT VAT AT ot ATVATH T\
Y(t)=c 20 eN4 +c, 20 4

iwt iwt

o7 o7

(1.125)

Simplifying and removing the global phase gives:

AZ 5 AZ 5
- + Q2 < /A—+Qz>t - 1+ Q2 —'< A—+Qz>t
W(t) = ¢ %_4T e V7 + e, % 4T e V7 (1.126)

ela)t ela)t

If the phase of the drive is nonzero (i.e., cos(wt + ¢) instead of cos(wt)), the solution gets

modified slightly to:

AZ 2 A2 AZ 2 AZ
v e | A NTHEN ) (8 TE0) ()
"\ 20 Q 2\ 20 Q
gilwt+e) el(wt+e)

We can simplify slightly by defining the variable:

2
r= |—+02 (1.128)

To give the final result:

QL E e e k() -
yi)=|( tal\2 20\2 ., r= [—+02 (1.129)
(cre™™ + cye~irt)eilwt+9) 4
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Some solutions of this equation in comparison to QuTiP models are shown below, and there is

excellent agreement.

Rabi

1.00 A1

0.75 A

0.50 A

0.25 A

0.00 +

—0.25 A1

Spin z projection

—0.50 A

—0.751

—1.00 4

0 200 400 600 800 1000

Time (ns)

® Theory on resonance
—— QuTiP on resonance
® Theory detuned
QuTiP detuned
® Theory detuned + phase
QuTiP detuned + phase

Figure 1.3 | Rabi oscillations from QuTiP and theoretical results. The theoretical result in
equation 1.129 shows excellent agreement with QuTiP models for various conditions. For the
detuned + phase plots, the initial state is [+x) instead of |+z) in order to avoid repeating the graphs

from the detuned + no phase plots.

As one specific example, it is worth looking at the following case to get an intuition for Q. The

solution with zero detuning and zero phase is given by:

Yt =c (e_ijt) el 4 ¢ (eilwt) oot

1

Starting in the state ¥(0) = ( 0

) then gives:

#0 = =5(gi) ™ + 5 ()

1, . )
qj(t) B E(eth + e—lﬂt)
_eiwt(e—iﬂt _ eiﬂt)
2
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Rewriting:

cos(Qt)
Y(t) = ( . ) 1.133
© —ie'tsin(Qt) ( )
In this context, we see that () is the Rabi freugnency:
21
O =2nf = = Rabi frequency (1.134)

This is why the term Q is called the Rabi frequency even though it appears as amplitude in the

original field Hamiltonian:

0 2h0 cos wt degE
Hrier = = (Zhﬂ cos wt ((J)OSCU ) h = eg : (1.135)
1.5.3  Microwave rotations on the Bloch sphere

Returning to the Bloch sphere, it turns out that any oscillating field drive on a state in a two-level
system can be mapped to a rotation on the Bloch sphere around a rotation axis u. This must be
framed with the slight caveat that we must be in the rotating frame for this to hold true. But once
this transformation is made, the axis of rotation is solely determined by the frequency of detuning
and the phase on the field drive. More specifically, the detuning frequency determines the polar
angle of the rotation axis (6 = 90° for no detuning), while the phase on the drive gives the
azimuthal angle of the rotation axis (¢ = 0 for no phase). In the simplest case with no detuning
and no phase on the drive, the rotation axis is along the x-axis. This is sometimes referred to as an

"X gate". A schematic of this rotation is shown in the figure below:
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l¥)] 10)

> Y > Y

1) 11)

Stationary frame Rotating frame

Figure 1.4 | State rotation on the Bloch sphere. In both pictures, an off-axis oscillating field
drive causes a rotation from the |0) state to the |1) state. In the left picture, the Bloch sphere
coordinate system is stationary, which results in a spherical spiral path. In the right picture, the
coordinates rotate around the z-axis to match the Larmor precession of the system. In this "rotating
frame" the field drive is a rotation around the x-axis for the case of no detuning or additional phase
on the drive.

Before delving into more general rotations, we must first lay some mathematical groundwork
on rotation matrices. General three-dimensional rotations can be described by a set of 3x3 rotation

matrices defined as follows:

1 0 0
R,(8)=|0 cosf —sind (1.136)
0 sinf cos@
cosf 0 siné
R,(6) = 0 1 0 (1.137)
—sind 0 cos@
cosf —sinf 0
R,(0) ={sin@ cosf® 0O (1.138)
0 0 1
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Here the axis of rotation is given in the subscript, with the direction of rotation defined by the
right-hand rule using that axis. A rotation matrix is multiplied by an initial vector to determine a

new vector after the rotation. Mathematically this looks like:

X
Rn(e)vold = Vnew v = <y> (1-139)
VA

So for example, an "x" rotation would look like:

1 0 0 X X .
Rx(H)-v=<O cosf —sinf <y>= ycos@—zsm9> (1.140)

0 sin cosé@ z ysin@ + zcos 6

More generally, the rotation does not have to about a Cartesian axis, but can be about any axis

defined by a vector u. If we write the most general rotation matrix as:

a b c
R = (d e f> (1.141)
g h i
Then the axis of rotation is given by:
h—f
U= (c - g) (1.142)
d—b
And the angle of rotation is:
6 = sin™! <%> (1.143)

With this in mind, there are two main cases to go through for the two-level system:
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1) Bloch sphere rotation with nonzero phase and zero detuning on drive

2) Bloch sphere rotation with nonzero detuning and zero phase on drive

Nonzero phase and zero detuning

The rotation matrix works out to be:

cos?(Qt) + cos(2¢) sin?(Qt) sin 2¢ sin?(Qt) sin(¢) sin(2Qt)
R, = sin(2¢) sin?(Qt) cos2(Qt) — cos(2¢) sin?(Qt) —cos(¢)sin(2Qt) | (1.144)
— sin ¢ sin(2Qt) cos ¢ sin(2Qt) cos(2Qt)

Which gives the axis of rotation as:

2 cos ¢ sin(2Qt) cos ¢
U= (2 sin ¢ sin(zm)> = (sin ¢) 2sin(2Qt) (1.145)
0 0

And the angle of rotation as:

(1l __, (2sin(2Qt) i
= Sin — ] = SIn — | = SIn Sin = .
0 (5 - > ~1(sin(2Qt)) = 2Qt (1.146)

Here, we see that the rotation angle is directly proportional to the amplitude and duration of the
field drive. In the case of no detuning, the axis of rotation is always in the xy plane with an angle

set by the phase of the drive.

Nonzero detuning and zero phase
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2t - 5 M 20t — 2 sincery) 92 sin2(rt)
COoS~\r A2+4-.Q2 SIn=(r ZT'Sln T ’)"2 SIn=(r
A Q
R, = zsin(Zrt) cos(2rt) —?sin(Zrt) (1.147)
MY in2ere) @) cos@rt) + —o—sin2(re)
AZ +4_QZ SInN=(\r Tsm T cosl 4r A2+4QZ SIn=(r
Where, as before,
AZ
r= [0 (1.148)

Q
—sm(Zrt)\
. /7‘ 20 sin(2rt)
u= 0 =10 (1.149)
2 sin(zrt) st
—sin(2r
And the angle of rotation as:
sin(2rt
o |£| o \/4QZ+A2—(7, ) . (2sin2rt)\
6 = sin = sin > = sin — )= 2rt (1.150)
AZ
6 = 2rt, r= T+ 0?2 (1.151)

While the rotation angle is still directly proportional to the duration of the field drive, it now
depends on both the drive detuning and amplitude. As the detuning increases, the rotation angle
will also increase, effectively increasing the Rabi rate. This is why detuned Rabi is observed to
oscillate faster. In the case of no detuning, the axis of rotation is always in the xy plane with an
angle set by the phase of the drive. With detuning, the rotation axis gains a polar angle proportional

to the detuning, as can be seen in the expression for . This also explains why detuned Rabi does
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not reach full contrast, since a rotation around a non-azimuthal axis will not span the poles of the
z-axis.

Experimentally, we can control the phase of the drive through 1Q modulation of our signal
generator and adjust the detuning by straightforwardly shifting the frequency of the drive, which
gives full control over the desired rotation of the quantum state. For external fields inherent to the

system, we can use the above results to help understand their effect on the state.
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Chapter 2

The Divacancy in Silicon
Carbide

2.1 Introduction

With the foundational tools built up in chapter 1, we are now ready to approach the main quantum
system of interest for this thesis: the neutral divacancy in silicon carbide. Notationally we will use
the word "divacancy” and the shorthand "VV°" interchangeably. Here the "VV°' represents a
silicon vacancy (V), a carbon vacancy (V), and a neutral charge state (0). The divacancy
collectively localizes two unpaired electrons in the band gap, which together form an electronic
spin state as the foundation of the VV\° qubit. [1-6]

As a material, silicon carbide serves as an excellent host for electron spin qubits [7]. Most
importantly, silicon carbide is a wide-band gap semiconductor which means that the relevant
energy levels are well isolated in the band gap from thermal fluctuations. The nuclear spins of both
naturally abundant *2C and 8Si are zero, meaning that coherence-limiting nuclear coupling is
minimized for electronic spins. The relatively high index of refraction of SiC (n = 2.6) also allows
for the formation of photonic structures, which will be explored in later chapters. The relative
technological maturity of SiC also allows for commercial growth of 4-inch single-crystalline

wafers with capabilities of both P-type and N-type doping. Outside of quantum information, silicon
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carbide has also already been developed for MEMS and NEMS applications [8-9]. Lastly, the
divacancy itself is optically active in the near infrared (NIR) regime, which transmits through SiC
with low losses and is also amenable to long-distance telecom fibers.

In this chapter we will focus on the physics of the divacancy, although many other promising
spin defects have been explored in silicon carbide such as the silicon vacancy, the nitrogen-
vacancy center, vanadium ions, and chromium ions [10-20]. Many of the results presented here
have parallels with the NV~ center in diamond [21-23]. We will see that the spin state of the V\/°
can be optically addressed with near-infrared light and coherently controlled with electromagnetic
fields. To work towards these results, we will outline the VV° ground and excited state

Hamiltonians and map out the effects of external fields on the spin state energies and time

evolution.
2.2 Structure of silicon carbide and the
divacancy

The silicon carbide lattice comes in over 250 distinct configurations, which are referred to as
polytypes. The most common ones are labeled 2H, 3C, 4H, 6H. For the purpose of this thesis we'll
mainly be focusing on the 4H polytype. In this notation, the number refers to the number of atomic
bilayers needed for the lattice to repeat itself, and the letter refers to either a hexagonal (H) or cubic
(C) structure. A silicon carbide bilayer consists of one layer of silicon and carbon atoms that are
bonded to each other. As bilayers are stacked on top of each other, they can be differentiated into

three types as "A", "B", or "C" depending on the orientation relative to the [0001] c-axis. An "A"
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and "B" layer are identical within a translation, whereas a "C" layer is rotated by 60 degrees around
the c-axis. In this way, a C layer is sometimes referred to as a twist and a B layer as no twist. With
these definitions, the 4H-SIC polytype then features the stacking pattern of ABCB. This can
equivalently be represented by either BCBA, CBAB, or BABC. Similarly, 2H-SiC has AB pattern,
3C-SiC has ABC, and 6H-SiC has ABCACB. A schematic of the 4H silicon carbide lattice and

the twist/no twist convention is shown in figures 2.1 and 2.2.

\
. 1
(kk) | | i k lattice sites
1
v 1
‘/!f'

\
1
I
| ! h lattice sites

! k lattice sites
iy
......... L
(hh) (' =Carbon
. | .J = Silicon

Figure 2.1 | 4H-SiC lattice and VV?° orientation. In this two-dimensional view of the 4H-SiC
lattice, the bilayers are labeled on the left using the ABC convention. A single bilayer contains a
silicon and carbon atom connected by c-axis oriented bond. In the 4H polytype, the "B" bilayer
alternates between "A" and "C" bilayers. Also featured are the four possible orientations of the
divacancy, which are distinguished by their lattice sites. Here the h lattice sites are found in A and
C bilayers and the k lattice sites are found in B bilayers.
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Twist

No twist

Figure 2.2 | Twist vs. no twist in the SiC lattice. Here, a twist refers to a rotation around the Si
— C bond. Under a twist there is a 60° rotation around the z-axis ([0001] c-axis) and the mirror
symmetry of the local structure is broken.

Structurally, the divacancy consists of an adjacent silicon and carbon vacancy in the SiC lattice.
For each SiC polytype, the number of possible divacancy orientations is given by the polytype
number. For 4H-SiC, for example, there are four possible orientations. To distinguish them, each
divacancy is typically labeled by two letters which denote to the local crystal structure. Here "h"
refers to a local hexagonal structure and "k" refers to a local quasicubic structure. The first letter
is used for the carbon vacancy and the second letter is used for the silicon vacancy. In this manner,
we have the four possible orientations of (hh), (kk), (hk), and (kh). Early work with \VV/\° referred
to these as PL1, PL2, PL3, and PL4, respectively. [4] The defects labeled PL5 and PL6 are also
featured in past work [4], although instead of divacancies they are believed to be stacking faults in
the SiC lattice. For the purposes of this thesis we will not go into detail about the PL5/PL6 defects,
although they are notable for their room temperature operation [24]. The four divacancies can be

further distinguished as either lying parallel to the c-axis as in (hh) and (kk), or along another lattice
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direction in the "basal” (hk) and (kh) defects. An outline of the divacancy structures in given in

figure 2.2 above.

2.3  Electron spin-1 ground state of the VV?

The neutral divacancy traps six electrons which form isolated energy levels (orbitals) in the SiC
band gap. Two of the electrons remain unpaired in their respective orbitals, leading to a spin-1
ground state. Thus, when we talk about the "spin" of the V'V center, we are referring to the
combined spin of these two electrons in the two excited state orbitals. A schematic of this orbital

occupation is shown in the figure below:

Conduction band

Q ’ VWO=6e
o0 O|e

° ¢ <i>

Valence band

VV? ground state
Ex Ey

Figure 2.3 | Divacancy electrons and band gap energy levels. The adjacent silicon and carbon
vacancies trap six electrons in the silicon carbide lattice. These electrons occupy energy levels
both in the valence band and in the band gap. The presence of unpaired electrons leads to the spin-
1 ground state.
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The two unpaired electrons form the spin triplet and singlet states, which can be mathematically

represented by:

|1,1) =17
|1,0) i 1 triplet stat (2.1)
,0) = , Stotal = 1, riplet states .
V2
|1, -1) =11
10,0) N_”} 0 inglet stat (2.2)
) == , S 1=y, smge state .
\/E tota

Here the notation follows |s;,:q1, ms). FOr this thesis (and in the literature in general) we use the
shorthand m, = 0, +1 to refer to the spin triplet states. It is these states that are optically addressed
and controlled in divacancy experiments. In the excited state, one of the excited state orbitals
becomes occupied with a second electron, but the system as a whole still forms a spin triplet. This

will be discussed in more detail in section 2.8.

2.4 Ground state Hamiltonian

Both the stationary behavior and the time evolution of the VV° ground state are governed by its
ground state Hamiltonian. The two unpaired electrons in the ground state form the spin triplet
states, which in turn form a 3-dimensional Hilbert space of possible spin states. Practically
speaking, for qubit applications we usually select two of these states to be our qubit basis, such as
mg = {|0), |+1)} or m; = {|0),|—1)}. In later chapters we will see that these spin states can be
initialized, coherently controlled, and optically readout. For the purposes of this chapter, we will
focus on the form of the Hamiltonian, the influence of external fields, and implications for time

evolution.
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241 Z.ero-field Hamiltonian

Without the presence of any external field, strain, or nuclear spin, the VV° ground state spin
Hamiltonian is dictated solely by spin-orbit and spin-spin interactions. We can write the

Hamiltonian as:

1 e =
Hys = g(s -D-S) (2.3)
Where:
S = (Sx,Sy,SZ) = spin 1 operators (2.4)
Dy, O 0
D=( 0 Dy, 0 |=zerofield splitting tensor (2.5)
0 0 D,
And:

h(010> h(O—i o> 10 0
Se=—(1 0 1), S=—=(i 0 -i], S,=h(0 0 0 (2.6)
V2o 1 0 V2o i o 00 -1

It is important to note that many sources do not include the 1/# prefactor for H, but it is necessary
in order to make the Hamiltonian have the correct units of energy. Expanding the product in H
gives:

Dixx Dxy Dxz\ [S,

1
Hgs=ﬁ(5‘x Sy Sz)| Dyx  Dyy Dyz || Sy (2.7)
Dy Dzy D, S,

S
1 X
Hys =+ (SxDax + SyDys + 5,Dzsc SeDay + SyDyy + SyDay  SyDsz + SyDyz + 5;Dzz) (sy) (2.8)
Sz
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Hys =

Hgs_h

h

+S8,D;xSx + 5,D4ySy + 5,D,,S,

Alternatively, this can be expressed as:

1
Hgs = EZ SLDUS]
ij

Since the off-diagonal terms of the zero-field splitting tensor are zero, this simplifies to:

Notationally we define:

1
Hys = = (SxDxxSx + SyDyy Sy + S,D,,S,)

1l
)

Ji

These D terms are constants, not tensors, so we can say:

1
Hys = - (DySZ + D,S2 + D,S2)

Which, using the definitions for S, S,,, S, gives:

_ o R

leb Oleb

onN O

o

1 72 -1 0
0 —Dy7 0o -2
1 1 0
D D

-x -y 0

2 2

0 |+ 0 D,
Def\ Dy

2 2

1 (SxDxxSx + S, DyySy + SxDyy Sy + SyDy Sy + SyD, Sy, + SyD,,, S,

1 <(SxDxx + SyDyx + S;D;5x)Sx + (SxDyy + SyDyy + syDZy)sy>
+(SyDyz + SyDy, + S;D;,)S,

)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)



Yy Yy
—+—=—4+D A
2 + 2 T 0z 0 2 2
Hgs =h 0 Dx + Dy 0 (217)
D, D, D, D,
272 0 oty th
At this point we make the following substitutions to obtain the familiar D and E terms:
3 1
D= EDZ, E= E(Dx -D,) (2.18)
Which gives:
D, D, D,
( — T -5 *D 0 E \‘
Hys = h 0 D, + D, 0 (2.19)
D, D, D,
E —+—=—-=4+D
\ 0 2 * 2 2 +
1
/E(Dx+Dy—DZ)+D 0 E
Hys = 0 D,+D,+D,—D, 0 (2.20)
1
E 0 E(Dx+Dy—DZ)+D
The D tensor is traceless, meaning the sum of the diagonal terms is zero:
Dy+Dy,+D,=0 (2.21)
Substituting this result gives:
=D 0 E
D-D, 0 E 2 13
Hyo = h( 0 -D, 0 ) —n| o —5(502) 0 (2.22)
E 0 D-D,
E 0 =D
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2
s =Nh| 0 -3D 0 (2.23)

This is the main result for the zero-field VV° ground state Hamiltonian. At this point, it is
popular to add a 2/3 D along the main diagonal. However, this addition leads to a non-invertible
matrix which can cause potential mathematical issues, so here we will use the Hamiltonian form

above. The eigenvalues and eigenvectors of H are:

{Al,v1}={h(—§D),<(1)>}, {Az,v2}={h(§—E),<_01>}, {/13,v3}={h<§+E),<(1))} (2.24)

0 1 1

The eigenstates presented here are the stable stationary states of the system. The vector v, is the

mg = 0 state. For the other two states, we frequently use the following definitions for the "plus”

1 -1
|[+) = (0), |—) = ( 0 ) (2.25)
1 1

As with the two-level system, we can combine these eigenstates with the time-evolution operator

and "minus" states:

to write the general state W(¢t) at any given time:

_LEnt
W(t) = Z copp e (2.26)
n
In this case, we have:
_LEgt _IE_t _lE4t
Y(t) =coppe * +c_Y_e h +c e h (2.27)
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0 1 1
0 —C_e_l(3 E)t c.e 1(3+E)t
W(t) = [ i) | + 0 + 0 (2.29)
O c e—i(g—E)t C+e—i(§+E)t
C+e—i(§+5)t _ C_e_i(g E)t
w(t) = coe'GP)E (2.30)

C+e—i(§+5)t 4 C_e—i(g—E)t

This can be useful when trying to determine the time evolution of a superposition of eigenstates,
as given by the coefficients c,, c,,c_. For the (hh) and (kk) c-axis oriented defects, the E term

vanishes, giving:

Hg5=h|k0 —=D 0)', c axis VV° (2.31)

With differing eigenvalues and eigenvectors of:

SR CIE S NERT PN Y I

Note that with no E term, two of the eigenstates are degenerate. These are the m; = +1 states.
Normally, we apply a small B-field along the z-axis (the c-axis direction) to Zeeman split these

states and lift the degeneracy. Plugging in E = 0 into eq. () gives a general state W(t) of:
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( e e @)
W(e) =| (e i(-52) (2.33)

C3e_i(%)t

2.4.2 Effect of static magnetic field

The contribution of static magnetic field to the ground state Hamiltonian can be written as:

Vg = ﬂngsngz + .uBg;s(SAxBx + §yBy) (2.34)

Where puj is the Bohr magneton:

eh
2m,

g = =9.274 - 102 (2.35)

The variables ggs, gy are the components of the ground state electronic g-factor tensor, and are

both very close to 2. The matrices S,, S,, S, take the same form as before. Putting V5 in matrix

form gives:
gJ_
ghsB, \/‘%S (B, — iB,) 0
g5 g5
Vg = g | 2£ (B +iB,) 0 %(Bx —iB,) (2.36)
0 95 (B +iB,) —glsB,

It should be noted here that an addition of B, magnetic field will Zeeman split the energy levels
according to the relation 2.8 MHz/G. This is commonly used as a gauge of magnetic field strength

(or conversely expected splitting under a known B-field) in divacancy experiments.

47



2.4.3 Effect of static electric field and strain

The effect of both static electric field E,, , and static strain §,, , can be expressed by the

following terms, which are added to the zero-field Hamiltonian.

. SS+1 A A
ol ehis) (szz _ %) + (dhE, + 48,)(52 - 82)

E

(2.37)
+(dgEy + €4:6,)(SxSy + 5,5%)

Where {d}}s, d3} are the spin-electric field coupling constants and {els, €75} are the spin-strain

coupling constants. For the matrix components, we have:

1
3 0 O
. S(S+1) 2 . 00 -1
SZZ_T: 0 —3 0 S;—S,%:(o 0 0|,
0 o L -1.0 0 (2.38)
3
L o 0 0 =i
Sy +8,5.=(0 0 0
i 0 0
So writing out the components gives:
! 0 O
3 2 0 0 -1
(dbsE, +€dss,)| o -3 0 + (dgEx + €56 ) 0 0 0
Vg = o o L -1.00 (2.39)
3

0 0 —i
+(d3sEy + €56,)|0 0 0
i 0 0

48



And combining gives:

1 dis(—Ey — iE})
_ dll Ez Il 52 0 gs x y )
3 (dosEz + €4s0) <+ et (=5, — id,)

2
VE = 0 —§ (ngEZ + 6}}552) 0 (24‘0)

( dgs(—Ey + iE)) )

0 l(a'!"E +€hs8;)
+efs(=6, +i6,) grgsTE e

The effect of E,, §, is to shift the m; = 0 energy down and shift the m, = +1 energies up.
Broadly speaking, the presence of E,, E,,, 6y, §, will introduce off-diagonal coupling between the
mg = +1 states. In the case of E,, §,, this is equivalent to modifying the E term that appears in
the zero-field Hamiltonian. Investigations of the divacancy spin strain and electric field coupling

are presented in [25-28].

2.4.4  Effect of nuclear spins and local paramagnetic
spins

The ground state Hamiltonian can also be affected by the nuclear spin environment. Similar to
single electrons, the protons and neutrons that compose any nucleus each have a spin of %2 and a
comparatively small magnetic moment. In an entire nucleus, the atomic number (the number of
protons) and mass number (number of protons + neutrons) both play an important role in the
overall spin of the nuclear magnetic moment. If the mass number is even, there will be an integer
spin, whereas if the mass number is odd, there will be a half-integer spin. More specifically, if both

the mass number and the atomic number are even (i.e. an even number of both protons and
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neutrons), then the nuclear spin will be zero. Nuclear spin is commonly represented by the letter
1. The examples of naturally abundant >C and 2Si both have I = 0 and thus no coupling to the
neutral divacancy in the SiC lattice. Meanwhile the most common isotopes of 3C and 2°Si both
have I = 1/2. When a nonzero nuclear spin couples to the VV?©, the Hamiltonian is modified by

the addition of the following terms:

A5, @0+ A5G ® L +5,®1)

. I +1 5 o 2.41
+RQS<SI®IZZ_ ( )>+ll1v91v51®(1'3) ( )

Vhuctear =

Where @ denotes a tensor product, S, is the 3x3 identity matrix, {AJ(';S.A&#S} are the magnetic
hyperfine parameters, Py is the nuclear electric quadrupole parameter, uy is the nuclear magneton,
and gy is the nuclear g-factor of the relevant nuclear isotope. The scalar I is the nuclear spin (e.g.
I = 1/2 for 3C). The nuclear spin matrices {ix,fy,fz} take the same form as the "regular" spin
matrices with spin I. For example, for the case of 13C which has I = 1/2, we would use the Pauli
matrices with {I,,, I,,, I,} = {0y, g, 0, }. Practically speaking we will only see nuclear isotopes with
either I = 1/2 or I = 0 in the SiC lattice. If I = 0, the nuclear Hamiltonian H,,ceqr SIMply

becomes zero. So for nuclear spins in SiC, the nuclear Hamiltonian gets modified to:

AVS, ®6,+AL(Sx ® 6, + S, ®6,)

VSiC _ 1
A2 > 5
+ Fys (51 K a6y — Z) + UngnS1 & (0 ' B)

nuclear —

(2.42)

The presence of the nuclear spin bath in the SiC has important effects on the VVV° decoherence

and dephasing times, as is explored in [29]. Meanwhile, local paramagnetic spins from lattice
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defects and impurities can also couple to the divacancy electron spin. Usually this is the result of

dipolar coupling between electrons. This interaction can be broadly written as:

Viipote = Z z S P;;-S; (2.43)

i j>i

Where we are summing over all paramagnetic spins. Here S; represents the electronic spin of

defect i and P; ; represents the electronic diole-dipole coupling term for each spin.

2.4.5 Total combined Hamiltonian

In total then, the ground state VVV° Hamiltonian can be written as:
Hégtal = Hgs + VB + VE + giglear + Vdipole (2-44)

The zero-field Hamiltonian and magnetic/electric/strain effects can be combined into one matrix

to give:
%hD + UpghsB, p L RE
.uBﬁ(Bx —iB ) +dgs(—Ex — lEy)
1 I I V2 Y 1 .
+§(dgsEZ +€e)s6,) +eg5(—6, — i6,)
gés . 2 2 I 1 gjfs .
Hys + Vg + Vg = Uz E(Bx +1iB)) —3hD -3 (d)sE, + €)s6,) g E(Bx —iB)) (2.45)
1
. 4 s hD — HngsBz
<+dgls(—Ex + lEy)> Up % (B, +iB)) 31
+ eg5(—6, + i5,) +3 (dgsE; + €556,)

If one just wants to focus on the general field/strain dependence without prefactors, then this can

be simplified to:
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1 . . .
3D+ B +E +6, B, —iB, E — Ex — iEy — 6, — i§,,

2
Hgs +Vp + Vg = By +iB, —3D—E,=§, B, —iB, (2.46)
. . . 1
E — Ey +iE, — 8, + 6, By +iB, 3D =B +E, +6,

The additional terms Visc;oqr @nd Vyip0; Cannot be cast into matrix form easily, and they would

likely be 6x6 dimensional for coupling to spin % particles.

2.5  The benefits of a diagonal

Hamiltonian

When presented with a Hamiltonian in any system, one is generally interested in the stationary
eigenstates and the effects of external fields on time-evolution of a starting state. In the case of a
diagonal zero-field Hamiltonian, the basis that the Hamiltonian is expressed in already composes
the eigenstates of the system. Additionally, the placement of off-diagonal external field entries
immediately provides information for which transitions will be driven by sinusoidally varying
magnitudes of these fields. In the case of the c-axis divacancy with a Bz Zeeman splitting, the

Hamiltonian takes the general form:

1
3D+B, 0 0
2
Hys = h 0 -3D 0 (2.47)
1
0 0 3D-B
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As outlined in figure 2.4, the diagonal elements give the energies of the eigenstates and the off-

diagonal elements dictate coupling between the eigenstates.

Energy of |+1)
eigenstate Energy of |0) Couples |[+1) and Couples |+1) and
/ eigenstate |0} states |—1) states

1 Energy of | —1)
~D+B, 0 0 eigenstate
3 /
2 Couples |0) and
Hys=h 0 ~3 0 |—1) states
1
. 0 0 §D - B,

Figure 2.4 | Interpretation of a diagonal Hamiltonian. For a diagonal Hamiltonian, the diagonal
entries (red boxes) directly give the energies of the eigenstates. The off-diagonal elements (blue
boxes) provide coupling between the different eigenstates.

Alternatively, we can look at the row and column indices of an off-diagonal entry to see which

states it will couple. Entry H;; in row i and column j will couple eigenstates i and j, and likewise
Hj; will couple the same two eigenstates j and i. For example, a Bx field in the c-axis Hamiltonian

will couple the |0) « |+1) states and the |0) < |—1) states, as shown in figure 2.5.

Couples |+1) and
|0) states

Couples |0) and
| —1) states

Figure 2.5 | Diagonal Hamiltonian effect of B, magnetic field. An off-diagonal Bx element in
the c-axis VV° Hamiltonian provides direct coupling between the m, = 0 (|0)) eigenstate and the
mg = +1 eigenstates (|+1)).
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The upshot of this argument is that it is beneficial to have a diagonal zero-field Hamiltonian in
order to make these statements about eigenenergies and coupling behavior. If the zero-field
Hamiltonian is not diagonal, then we will have to apply a transformation to diagonalize it. The key
point is that this same transformation will have to be applied to any external field terms to see what

their effect is. This will be discussed in more detail in the next two sections.

2.5.1  Hamiltonian diagonalization and change of

basis

To determine the effects of drive fields on a non-diagonal Hamiltonian, we will follow two steps:

1) Diagonalize the Hamiltonian and get the new basis corresponding to the diagonalization.

2) Use this new basis to transform the drive fields

We will do the first step in this section and the second step in the next section and summarize
the results. It is worth noting that the second step can also be applied more generally, as any
Hamiltonian can be transformed under any new basis regardless of whether or not the end result
is diagonal. As an example of a non-diagonal Hamiltonian to work with, we can examine the zero-

field basal VV\V°, which has a nonzero E term:

1 D 0 E
3
2
Hpgsar = h| 0 —§D 0 (2.48)
E 0 =D
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This matrix is diagonalizable, meaning that

A= PDp1! (2.49)

For a given matrix A and a diagonal matrix D. The diagonalization can be performed either
analytically or programmatically (e.g. using the python sympy package). The matrix P is
composed of column vectors that represent the new basis of the diagonalized Hamiltonian. In this

case, diagonalization on Hj,,,; QiVes:

_io i D —E 0 0 —LO i
(7 ° %) : (7 ° %)

P= 0o 1 o| D= 0 —=D o |, P*'=[ 0 1 0| (250
A ;) A
V2 V2 0 0 ZD+E V2 V2

The columns of P give the basis that results in a diagonal Hamiltonian. This is the "plus/minus”

basis, expressed as:

L /-1 0 L /1
- == 0 =(1), =—(0],  plusminusbasi 5
|—) ﬁ( (1) ) |0) ((1)) |+) \/§<(1)> plus minus basis (2.51)

In this basis, the new Hamiltonian takes the form of D:

1D E 0 0
3
2
Hpasa1 = D = 0 _§D 0 (2.52)
0 0 §D tE plus minus

basis

With energy eigenvalues equal to the diagonal entries %D —E, —%D, and %D +E.
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This completes the first step of our procedure. We have identified a new basis that diagonalizes
the Hamiltonian and gives the stationary eigenstates and eigenenergies of the system. The next
step is to use this basis in the matrix P to transform drive fields from the old basis (the integer
basis) to the new basis (the plus-minus basis). With this in mind, we can give P the more

informative name of the change of basis matrix COB:
P=COB=(-) |0) [+)), change of basis matrix (2.53)
So a general transformation of a matrix A to a matrix B in this new basis will look like:
B=COB™'-A-COB (2.54)

We will see how this works in the next section and use the results to state the transitions rules for

the VV ground state.

2.5.2  Transition rules for the VV° ground state

We can apply the transformation from the previous section:
B=COB™1-A-COB (2.55)

To individual drive fields to examine their behavior in the new basis. We will start with the

transformation of Bx field, which gives:
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sl -
5l -

I
=%l
o
5l -
o O O
o O
(e}

( B 0 0 Bx
Hg, = 1 0 ( ) 1 0 |=
\% ° 7 \% ° 7
V2
This result means that in the case of a basal VV° with an E term, an alternating Bx drive will
only cause transitions between the |0) and |+) states. The states are determined through the
formalism outlined in the previous section, with the |0) and |+) eigenenergies appearing in

row/column 2 and 3, respectively.

Carrying this out this same transformation for the other drive fields gives the following:

1 1 1
/Trz : Trz\ 0 -is, /‘T : ﬁ\ 0 Vam, 0
0 1 0 [|iB 0 —lB 0 1 (2.57)
\1 o L/\o o\ L 1 R
V2 V2 V2 V2
1 1 1 1
("% ° F\moo o /ﬁ AR
Hg,=| 0 1 o0 <0 0 0 1 0 =<0 0 0) (2.58)
ki . i) 0 0 ki . i) —B, 0 0
V2 V2 V2 V2
1, L 1, 1
Ne) 2\, 0 o -E 2 2 E. 0 0
Hepe=| 0 1 0 (0 0 0) 0 1 0 =<0 0 0) (2.59)
i 0 i _Ex 0 0 i 0 i 0 0 _Ex
V2 V2 V2 V2
21,1 21, 1
V2 V2 0 0 -—iE, V2 V2 0 0 iE,
Hgy=| 0 1 o0 [[ 0 0 0 o 1 0=l 0 0 0] (260
1 o, AJ\E o o JU 1 1] \-iE, 0 o0
V2 V2 V2 V2
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1, 1 1,1
{ V2 2Z|/E. 0 0 ( V2 2 E, 0 0
Hg, = 0 1 0 0 —-E, O 0 1 0|=10 —-E, O (2.61)
\ 1, L]\o o E \ 1,1 0 0 E
V2 V2 V2 V2

Following the same convention of the previous section, the effects of these fields are summarized

table 2.1:
Type of AC drive Transitions
c-axis VV° with static Bz Basal VVV°, no static field
Bx drive [0) & |+1), |0) & |—1) |0) & |+)
By drive [0) & |+1), |0) & |—1) |0) & |—)
Bz drive No transition |+) & |-)
Ex drive |+1) & |-1) No transition
Ey drive |[+1) & |—1) |+) & |-)
Ez drive No transition No transition

Table 2.1 | Transition rules for c-axis and basal divacancies under sinusoidally varying
magnetic and electric fields. As an example, Bx and By magnetic fields are commonly used to
drive spin transitions in the c-axis VV° (]0) & |£1)), while B; has no effect ("No transition™).
This table gives some background why it is sometimes said that Am; = +2 transitions are
"magnetically forbidden" for c-axis VV’, as no combination of magnetic fields will drive a
|+1) & |—1) transition. Instead, an alternating electric field must be used for such a transition
[25]. However, with the E term present in basal VV% (or an artificially induced E term with a
static Ex applied to a c-axis VV'), the transition rules change and a magnetic field can cause
transitions between the two nonzero spin eigenstates |+) and |—). [31] Therefore, the rules of what
is or is not "allowed" for magnetic/electric driving depends entirely on the context of the undriven
Hamiltonian, which is sometimes directly controllable with the application of static fields or

strains. [31]
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2.6 An analytical approach to the

magnetically driven VV’ system

In this section we will attempt to obtain full analytical solutions to the wavefunction for the c-axis
VV? ground state (i.e. no E term) under an alternating transverse microwave field (Bx). The
exclusion the E term is not out of laziness, but necessity. We will see that even this "simple™ system
poses immensely complicated solutions. Indeed, we will not be able to write out the final closed
form solution, mostly because the solution would not reasonably fit on a page! However the
analysis up until that point follows the same approach as the two-level system, with many parallels
between the two derivations.

The simplest case is a c-axis defect with a Zeeman splitting, in which case we have:

L, H895sB: Ksdgs B, 0
3 h a2
1 1
.ungs 2 /’Lngs
H,.=h B —=D B (2.62)
gs h\/i X 3 h\/i X
0 #s9gs . 1 HsgysB;
VR h
For notational simplicity we will define:
HBggs HBYgs
B, = B, B, = B 2.63
z h z X h\/? X ( )

So we simply have:
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1
§D +B, B, 0
Hys =h B, —=D B,
1
0 B, §D - B,
To turn this to a sinusoidal B-field drive, we write:
1
§D + B, B,coswt 0
2
Hys = h| B, coswt —§D B, cos wt
1
0 B, cos wt §D—BZ
1 B, . . .
§D + Bz Tx(elwt + e—lwt) 0
B ) ) 2 B ) )
Hgs =h _x(ela)t + e—lwt) -ZD _x(elwt + e—lwt)
2 3 2
B, . . .
0 Tx(elwt + e—lwt) D - B,
To simplify this, we redefine the By field as:
B
B, = 7’(

Which gives:

1 . .

§D + BZ Bx(elwt 4+ e—lwt) 0

Hgs =h Bx(eiwt + e—iwt)

0

2D
3

Bx (eiwt 4+ e—iwt)

Bx(eiwt + e—iwt)

1
3D~ B;

Continuing with the interaction picture approach, we have the equation:

0P _
or T

(

apP
P lHP —ihP? —) o)
ot
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(2.66)

(2.67)

(2.68)
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Our first choice for P will be given as follows, by convention:

iHy st
pl= exp( ,‘31'5 ) (2.70)
Here H, s represents the time-independent part of the Hamiltonian, so:
1
§D + B, 0 0
2
Hos=h 0 —§D 0 (2.71)
0 0 -D—-B,
This gives:
/exp (l (—D +BZ) t) 0 0 \
3
2
p~t= | 0 exp (i (— §D) t) 0 | (2.72)
1
\ o en(itr-8)0))
Inverting is straightforward since this is a diagonal matrix:
1
exp <—'(§D +BZ) t) 0 0
2
P= 0 exp (i <§D) t) 0 (2.73)
1
0 0 exp (—i (§D - BZ> t>

Now we can write P~ 1HP:
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lD + BZ Bx(eia)t + e—iwt)e(D+Bz)it 0

3
, . . 2 . . .
P-lHP = h B, (et + e—zwt)e—(D+Bz)zt —§D B, (et + e—Lwt)e—(D—Bz)Lt (2.74)
. . . 1
\ 0 Bx(ezwt + e—zwt)e(D—Bz)Lt §D _ BZ /

. . . . . _1 0P

Now time for the derivative portion, iAP~1 Fre
. (1

—L(—D +BZ) exp <—L<§D +BZ) t) 0 0
oP (2 (2 2.75)
ETi 0 L(§D>exp(1 (§D) t) 0 .

/—l (%D + BZ) 0 0 \
P-lz—i = | 0 i(%D) 0 | (2.76)
\ o o -i(to-s))

ihP~t ok _ h 0 — (31)) 0 J (2.77)
)

Combining these components gives:

apP

Hyew = P~ HP — ihP™! —

(2.78)

0 Bx(eiwt + e—iwt)e(D+Bz)it 0
Hyep = 1| B (ei@t 4 e~i0t)o=(D+Byit 0 B, (ei®t 4 e~iwt)e—(D-B)it (2.79)
0 Bx(eiwt + e—iwt)e(D—Bz)it 0

Applying the rotating wave approximation here, the quickly varying terms are dropped:
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0 Bx(e—l'a)t)e(D+Bz)it 0

Hpew = h Bx(eiwt)e_(D+Bz)it 0 Bx(eiwt)e_(D_Bz)it (2.80)
0 Bx(e—iwt)e(D—Bz)it 0
0 Bxei(—(u+(D+Bz))t 0

Hpew = 1| B eilo-0+B))t 0 B, el(o=(0-B)t (2.81)
0 Bxei(—a)+(D—BZ))t 0

Previously for the two-level system we introduced a single detuning. Now there are two detunings,
defined as:

A,=w—-(D+B,), A_=w-(D-B) (2.82)
So:

0 B,e A+t 0
Hpew = | B,e!t+t 0 B,e'A-t (2.83)
0 B,eiA-t 0

As before, this satisfies the equation:

0D
ih—== = Hyey® (2.84)
Where the modified wave function is:
1
exp (i <§D + BZ) t) 0 0
2
¢ =ply= 0 exp (i <—§D> t) 0 ¥ (2.85)
1
0 0 exp (i (§D - BZ) t)

As before, we will now repeat the interaction picture procedure. We have:

. 00 1 ., 0P
lhE = (P HneWP — ihP E) Q] (286)

Where:
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e=rlo (2.87)
First we have to diagonalize H,,,,:
0 e ™t 0
Hpew = hB, | eiA+t 0 etd-t (2.88)
0 et 0
_el(A—_A+)t el(A—_A+)t el(A—_A+)t 0 0 0
( 0 _\Zelb-t  \[Zeib-t ) 0 =2 0
1 1 1 0 0 V2
_ L jicatan 0 1
Hpew = By 2 2 (2.89)
. | lei(—A_+A+)t _Ee—m_t l |
| 4 4 4 |
\ lei(—A_+A+)t Ee—m_t l/
4 4 4
Noting that:
A_—A, =2B, (2.90)
This can be rewritten as:
_le_Zith 0 1
—p2iBst @2iBzt @2iBzt 0 0 0 1 \/f i
Hnew =th< 0 —\/Zem_t \/fem-t> 0 \/E 0 _e_Zith —_e_iA_t - (2-91)
1 1 1 o o vz2/|* 4 4
le—Zith Ee—m_t 1
4 4
Rearranging this gives:
_le—Zith 0 1
1 NG i — 2Bzt 2iB,t @2iBzt 0 0 0
Z p—2iBgt _Te—iA_t Z Hnew( 0 —\[2eib-t \/ieiA_t> = hB, (0 -2 0 ) (2.92)
1 —2iB,t \/E —iA_t 1 ! ! ! 0 0 \/E
_e V4 _e - —
4 4

This immediately provides us with our P~1 and P for the second round:



1 .
_ _ p,—2iBzt 0
> e
p~l= le—Zith _Ee—m_t
4 4
le—Zith Ee—m_t
4 4
Giving:

P 'H,,,P = hB,

For the time derivative part, ihP~1 Z—I::

e el B B

ap _ZiBZeZiBZt
Frn 0
1 . 1
_ — —2iB,t -
2°¢ 0 2
—16_P= le—zith —Ee‘m—t 1
ot 4 4 4
le—ZiBZt Ee—m_t 1
4 4 4
iB,
1
9P _ —EiBZ
ot 1.
—ElBZ
Rewriting:
iB,
1
9P _ —5iB,
ot
— 5B,

So:

—g2iBst @2iBzt @2iBzt
, P:( 0 _\/EeiA_t \/EeiA_t> (2.93)
1 1 1
0 0 0
0 —V2 o0 (2.94)
0 0 V2
ZiBZBZith ZiBZBZith
(2.95)

—iA_\2eB-t  jA_\2ei-t
0 0

—2iB,e*Bzt  2iB,e*Bzt  2iB,e?Pst
0
0

—iA_\2eib-t iA_\/EeiAt> (2.96)
0 0

—iB, —iB,
1 1 1 1
E lBZ + E iA_ E lBZ — E iA_ (297)
1 1 1 1
ElBZ—ElA_ ELBZ-FELA_
—iB, —iB,
1 1
EL(BZ + A_) El(BZ - A_) (298)
1 1
EL(BZ - A_) El(BZ + A_)
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_BZ BZ BZ
1 1 1
op (—BZ —5 (B +4) -2 (B,-4)

ihP~l—=nh|2 (2.99)
ot 1 1 1
EBZ _E(BZ_A—) _E(BZ-*_A—)
So combining:
_ oP
Hypg = P~ Hpp, P — ihP ™1 = (2.100)
Bz _Bz _BZ
{ 1 N 1 1 \‘

Hyng =n| ~28 ~V2Bc+5(B.+4) 7Bz —4) (2.101)

1 1 1

——B, ~(B,—A) V2B, +=(B,+ A_)
2 2 2
The second round modified Schrodinger's equation is now:
.00
ih—— = Hznqa® (2.102)
BZ _BZ _Bz
00 L, V2B, +~(B, +A LB, -

ih=-=h| "2 xt3B+A) (B —A) g (2.103)

t 1 1 1

~5B, (B, —A) V2B, + 5 (B +A)

As before, as the time-dependence in the Hamiltonian has been entirely removed after two
interaction picture transformations.

The work thus far has been laborious and correct, but at this point it is not reasonable to proceed
further. If we were to follow our normal procedure, then the next step would be to get the
eigenvalues and eigenvectors of this time-independent Hamiltonian in order to write the general
time evolution. However, the diagonalization of H,,,; gives eigenvalues and eigenvectors that are
far too lengthy to put into this thesis. Shockingly, the first entry of the first eigenvector contains

over 40 terms! As a middle ground it is possible to programmatically diagonalize this matrix and
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output the wavefunction W for particular numerical values of B,, B,, and w at each time of interest
t. In this way we can still compare the analytical result from the above equation with the QuTiP
model of the same initial Hamiltonian. Fortunately there is excellent agreement between these two

models under both resonant and detuned microwave regimes.

Rabi
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Figure 2.6 | Simulated Rabi oscillations between mg; = 0 & —1 for the 3-level VV° ground
state. Here there is a B, Zeeman splitting and a Bx drive with no detuning or phase. The "theory"
curves are obtained with the matrix equation in 2.103. The "QuTiP" curves are obtained using the
python QuTiP package with the Hamiltonian in equation 2.68. The simulation starts in mg; = 0 in
both cases.

In this case, the z-projection of spin follows a simple sinusoid as it is driven between my; = 0
and mg = —1. The x and y projections of spin follow more complicated behavior, but feature
excellent agreement between the two models. This shows that the double interaction picture
approach is somewhat generalizable for obtaining analytical solutions to Schrodinger's equation

under sinusoidal drives, but these solutions can quickly become intractable for relatively simple

3x3 Hamiltonians. QuTIP is still able to easily handle 3x3 systems, but one can imagine how the
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model could break down for much higher dimensions (i.e., 100 or 1000). Extrapolating this idea
perhaps gives some insight as to why the physical quantum systems built into quantum processors
are a promising route to simulate quantum dynamics once the dimensionality passes a certain
threshold. The inclusion of multiqubit gates and entangled states would only muddy the waters
further, reinforcing the necessity for quantum processors to accurately model complex quantum
systems.

We have shown the possibility of driving magnetic transitions between integer spin states such
as mg =0« +1 and mg = 0 & —1. This was possible due to the presence of magnetic field
terms in the off-diagonal entries of the Hamiltonian linking these states together. If we examine
the electric field terms in the Hamiltonian, we can see that electric field is driving is also possible.
The allowed transitions were outlined in table 2.1 in section "Transition rules for the VV° ground
state”. The same derivation that we just performed could also be carried out for AC electric field
transitions with the same overall end result.

Lastly, we can perform a quick calculation to get an idea of what magnetic field amplitudes are
necessary to drive spin transitions. The transverse magnetic field term in the ground state

Hamiltonian is:

HBYjs . eh N
7 (B, —iB,),  pup = Bohr magneton = o, 9 2 (2.104)
During microwave driving, we have a sinusoidally varying term:
19y
\/igs B, cos(wt) = 2hQ cos(wt) (2.105)
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With zero detuning and zero phase, the frequency of the Rabi oscillations will be given by Q.

Plugging in 2 for the g-factor and isolating € gives:

Up
QO =—B,=(1.575-10°)B 2.106
\/Eh X ( ) X ( )

Relating this to the period T of a Rabi oscillation gives:

4-107°
By

2T
T = (1.575-10°)B,, T = (2.107)

To obtain ~100 ns period Rabi oscillations commonly observed, we need a B-field amplitude of:

g = 2107 _ 4 asT =250 2.108
*7100-10-° 100 B (2.108)
2.7 The two-level subspace assumption

Even for quantum systems containing many states, it is usually possible to select a pair of states to
treat as an isolated two-level system. For example, if we were dealing with the c-axis VV° with a
Bz field, we could select the mg = 0 and my = +1 states as our qubit basis. To do this, we start

with the ground state Hamiltonian:

1
3D+B; By 0
2
Hys =h B, —§D B, (2.109)
1
0 B, 3D-B

69



Where again "B," and "B," are simplified magnetic field terms that drop other multiplicative
factors. Now we only focus on the entries corresponding to the my; = 0 and my = +1 states. Or
phrased another way, we seek to drop the m, = —1 state from this system. Looking at the diagonal
entries, the m; = —1 state's energy appears in the 3™ row/column. We then drop this entire 3™

row/column to give:

1
§D+BZ B, 0
2 §D+BZ B,
Hys = h B, —§D By =h 2 (2.110)
4: BX _§D
0 Bx ?D-——Bg

This implies that the states of interest (and the ones to be eliminated) must be eigenstates whose
energies appear along the main diagonal of the zero field Hamiltonian. With this reduced
Hamiltonian at hand, we can now treat the dynamics of the {m¢; = 0, m; = +1} subspace as a two-
level system with the same dynamics outlined in the first chapter of this thesis.

In general, this assumption holds when there is not significant "crosstalk" between the
eigenstates. In the c-axis VV° example with Zeeman splitting, the m, = +1 states must be
sufficiently split such that a transition between m, = 0 to either m; = +1 does not inadvertently
cause transitions to the other integer spin state my, = +1. Similarly, the eigenstates my = —1,0, +1
should each be stationary without unwanted mixing caused by, for example, off-diagonal entries
in the Hamiltonian.

As an example of mixing, the E term appears naturally in off-diagonal entries of the
Hamiltonian for basal VV° defects [31]. This means that the integer states {m, = 0,m; = +1}

would be an inappropriate choice for a two-level system subspace. After diagonalizing this
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Hamiltonian to remove this mixing behavior, however, we could then select the more natural states
{10), [+)} which are stationary in this Hamiltonian.

While this selection of a subspace may seem pedantic, it is in fact a cornerstone of engineering
and understanding quantum systems. In the example of magnetic driving of the VVV°, we just saw
that analytical solutions are intractable if all three levels are included but greatly simplify if only
two levels are considered. More generally, typical measurements to characterize a quantum system
(Rabi oscillations, decoherence and dephasing times, etc.) are most easily understood in a two-
level system setting. The building blocks of quantum computing and communication protocols
also often assume two-level systems and simple one or two-qubit gates. Thus, this subspace
assumption is often implicitly made across various quantum platforms including the VV°. Two
suitably isolated and stable states are chosen as the "qubit” and characterization measurements are
built from this selection.

In some cases, the nontrivial interplay between multiple eigenstates may be a desired effect. In
stimulated Raman adiabatic passage, for example, an excited state |e) serves as an intermediary
level to facilitate population transfer between two ground states |g,) and |g,) that are not directly
coupled in a A system. [32] In most cases, however, considering the dynamics of all possible levels
quickly becomes prohibitive. Indeed, the complexity of classically simulating an n-dimensional

guantum system grows exponentially as n increases.

2.8 Excited state Hamiltonian
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From the previous sections we have seen that the 3x3 ground state Hamiltonian of the divacancy
can be quite complicated. Unfortunately the situation does not get any simpler in the excited state,
which now features a 6x6 Hamiltonian. For a 6-dimensional system we must immediately abandon
any hopes of writing analytical solutions for state evolutions or making geometric parallels to
Bloch spheres or rotations. The excited state Hamiltonian is also not diagonalizable in the general
case, meaning the idea of stable stationary states is on tenuous ground. Finally, the presence of
spontaneous emission means that any pseudo-stable states we are able to discern will quickly decay
to the ground state. Quantifying this decay rate is also quite complicated and is revisited in chapter
5 on cavity QED.

Given these roadblocks, our description of the excited state will not go into as much detail as
the previous sections. Nevertheless, an intuition of the excited state can be developed by examining
its Hamiltonian and the energies it predicts. We will start with a description of the excited state
orbitals and the possible basis states used to describe the system. We will then use these bases to
express the zero-field Hamiltonian and outline the energy level structure. Finally, we'll see how
the addition of electric field, strain, and magnetic field modifies the Hamiltonian in a similar

fashion to the ground state Hamiltonian in section 2.4.

2.8.1 Excited state orbitals

The electron orbitals outlined in section 2.3 still hold for the excited state, with the difference being
the occupation of the higher energy orbitals. Since there are two excited state orbitals, there are
two general configurations of the unpaired electrons, each of which then gives a spin triplet. The

excited state orbitals are sometimes referred to as the e, and e,, orbitals [33-34]. The decay from
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the excited state to the ground state results in the emission of an infrared wavelength photon.
Depending on the vacancy type the zero-phonon emission of this decay is in the range of ~1040-
1140 nm, although emissions at longer wavelengths are possible if phonons are involved. Either
way, the overall spin state of the system is generally preserving during these decays. The properties
of the emission spectrum are discussed in more detail in the section in chapter 3 titled "VV°

emission spectrum™.

Conduction band Conduction band

iV ik

ey €x
~1100 nm energy

VVO e, orbital
excited state

separation VV? ey, orbital
excited state

Valence band Valence band

o

Figure 2.7 | Orbitals in the band gap. The six electrons of the neutral divacancy occupy four
orbitals, three of which are in the SiC band gap. In the excited state, one of the electrons in the a,
orbital gets excited to either the e, or e, orbital. Both possible configurations of the orbital
occupations are shown here. The green box highlights the unpaired electrons that form the spin-1
state of the excited state.

Figure 2.7 provides two specific examples of excited state configurations. Given that there are
two excited state orbitals and each contains a spin triplet, this results in six possible excited states.
[3] However, the direct pairing of the spin triplet states with the Ex/Ey orbital occupation does not

directly give the eigenstates of the excited state. This leads to the questions of what are the excited

state eigenstates and what is an appropriate basis for the excited state? This decision was made
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naturally in the ground state, as the spin triplet states there are exactly the eigenstates of the ground
state Hamiltonian. However, in the excited state the picture is not as clear, so this warrants some

additional discussion of basis states.

2.8.2  Defining basis states

Continuing with the idea presented in the previous section, one definition of basis states could be
to categorize the state by its excited state orbital occupation and the spin state of the unpaired

electrons. Just as with the ground state, we can represent the ms = -1/0/+1 states as:

1 0 0
|+1) = <0>, |0) = (1) |—1) = (0) (2.111)
0 0 1

Meanwhile we can label the two excited state orbitals as " X" and "Y" such that:

|X) = in e, orbital, |Y) = in e, orbital (2.112)
Or, as vectors:
_r1 _ (0
0=(,) m=() (2.113)

Therefore, there are six combinations in the excited state, depending on which orbital you are in

and what spin state you are in. These form the basis states:

1X) ® [+1) = , X ®10) = , XD I1-1) = (2.114)

S oo OO
S o oo Rr o
[N ool =)
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V) ® |+1) = , IN®I0)=

\ \!

This is the basis used in reference [21] for the NV center in diamond, which shares an identical

, IN®I-1)= (2.115)

= o oo
o O OO
== =N )

excited state structure with c-axis divacancies. This basis is complete and spans the Hilbert space
of all possible excited states, so any state can be represented as a linear combination of these
vectors. For this thesis, we will refer to this basis as the "Doherty basis" since it is built off of his
work in reference [21].

Unfortunately, however, these basis states are not the stationary states of the excited state
Hamiltonian. In an attempt to use basis states that more closely resemble eigenstates, we can

instead use another basis as in [29,30]. These basis states are denoted as

{141),142), |Ey),

Ey), |Ey), |E2)} and can be written in terms of the orbtial/spin basis states as:

|4;) = |E-) ® |[+1) — |Ey) @ |—1)
|4,) = |E_) @ |[+1) + |Ey) @ |-1)
|E,) = 1X) ® |0)
|Ey) = 1Y) ® |0)
|Ey) = |EZ) @ |-1) — |E}) ® |+1)
|E;) = |E.) ® |-1) + |E,) ® [+1)

(2.116)

This basis will be referred to as the "Maze basis" since it is built off of his work in reference [33].

Here, the |E. ) states are defined as:

|E}) = —1X) = i]Y) (2.117)

IE_) = |X) — i|Y) (2.118)
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Which are sometimes referred to as the states of definite orbital angular momentum [33,34].

Distributing the terms in eq 2.116, we can write the Maze basis states in the Doherty basis

explicitly as:

|Ex) = 1X) ® |0) =

[ eNelNell ]

o

Doherty or Maze

)

|E)) = 1Y) ®10) =

1
0
_*1 -1
) =5| 7
0
—i Doherty
-1
[0}
111
E,) ==
IEy) = =

Doherty or Maze

(2.119)

(2.120)

(2.121)

The "Doherty"” subscript is there as a reminder that these vectors are written using the Doherty

basis vectors. Note that a factor of %2 has been included for |A,), |4,), |E;), |E,) for normalization.

2.8.3

Hamiltonian

The zero-field c-axis VV? excited state

It would be possible to write the excited state Hamiltonian entirely in terms of a linear combination

of the 36 possible outer products between the Doherty basis vectors. Since this would be quite



verbose, instead the excited state Hamiltonian is represented using tensor products of the 2x2 Pauli
matrices to represent the X/Y orbitals and the 3x3 spin-1 matrices to represent the spin state. This

is written as [21]:

es Z

A | [52 S5+ 1)]
Hes = 3

+ 2356, ® (8,5, +5.5,) — 6, ® (5,5, + 5.5,)]

Where 8,,8,,6, are the Pauli matrices, $,,5,,S, are the S =1 spin operators, and

D), DL, A, A%, are scalar fine structure parameters that will be discussed in more detail in the

next section. As a reminder, we have:

g, = ((1) 3) o, = (? Bi), g, = ((1) _01) (2.123)

And the spin-1 operators are:

h(010) h(O—i 0) 1.0 0
Se=—[1 0 1), S,=—=(i 0 -i], S,=hl0 0 0 (2.124)
2\o0 1 0 V2\o i o 0 0 —1

As an example of tensor products, we can write the following term in matrix form:

<|

. 10 0
ay®§z=(? _Ol)®<o 0 o) (2.125)
00 -1

In general, for tensor products are computed with the following pattern:
a;1 Qg b1 b1z

A= (a21 azz)' B = <b21 bzz) (2.126)

77



b12)
by,

b12> a (b11
b, 22 \byy

ay1b11
ay1byq
az1b11
az1bz1

(=2 e R e Rt e B« B o)

a12b12
ay2b5;
az;b1;
az2b2;

ay2b11
a12b71
az2b11
az2b;1

ay1b12
ay1by;
az1by2
az1b;;

(2.127)

(2.128)

SO O OO
S O O oo
(=2 e R e Bt e B« B o)
S OO~ OO
\—

Doherty

The "Doherty" subscript is there to remind us that this matrix is written assuming the Doherty

basis vectors. Applying this same methodology with all of the other tensor products and combining

the results gives:

1
_Des

1
_ﬁlé_s
1 II
§Des

iDgy
1
—i— Agg

V2

il

il
1
—l ﬁ Aé_s
—iDL

1 II
§ Des
1
- ﬁ Aé_s

1
Des

iﬁ/ljs iDA
1
0 —i—A%
\/E es
1
i— 2, —iAl
\/5 es es
(2.129)
—-—l-ﬂég l)ég
V2
2 1
__Dll _AJ_
3 es \/5 es
1 1
_Aé_s _Dgs
\/E 3 Doherty

This can be used to model the energies and dynamics within the excited state. The numerous

off-diagonal entries indicate that these basis states are not stationary and will rapidly mix into each

other. In this form, it is difficult to gain an intuition for the dynamics at play in the excited state.
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In an attempt to gain a more diagonal form, we can instead write the zero-field zero-strain

Hamiltonian in the "Maze" basis of {|A;), |42), |Ex), |Ey), |E1), |E,;)}, which gives:

A=A+ 2, 0 0 0 0 0
0 A+AN+2, O 0 0 0
0 0 —2A 0 0 iA"
Hgs = 0 0 0 —2A A" 0 (2.130)
0 0 0 AT A—2, 0
0 0 —iA" 0 0 A—2,

As can be seen, this matrix is almost diagonal, except for the off-diagonal entries involving A"
With this form we can make some observations about the excited state at zero strain. Because the
first two rows/column are only occupied on the main diagonal, we can say that the states
corresponding to these rows/columns are truly stationary. In this case, the higher energy |A,) and
|A,) states are stationary. Meanwhile, the zero spin |E,) and |Ey) states will mix with the lower
energy |E;) and |E,) states and vice versa. This mixing is dictated by the magnitude of A” and is
built into the system. Realistically the strain is almost never zero for a divacancy, but before we
examine those effects we need to consolidate the numerous parameters that appears in these

Hamiltonians. This is the subject of the next section.

2.8.4  Relations between excited state parameters

Unfortunately, the variables used for the excited state parameters is somewhat inconsistent in the

literature. As a summary we have the following sets of variables: [3,21,32]

Doherty (NV™) = {Al, D), DX, AL, (2.131)
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Maze (NV™) = {1,,A, A", A"} (2.132)

Christle (VV°) = {4,, Dos, Ay, Ay} (2.133)

Where the variables have been listed in corresponding order. For the NV~ center in diamond, the
following values result in matching zero-strain energy eigenvalues for the excited state

Hamiltonian:

M. =53GHz, D)=1.42GHz,

oherty (NV7), DL =— GHz, Ay =— GHz (2.134)

V2

In the Maze basis we have:

1.42

A, =53GHz,  A=——GHz, (2.135)

A" = 1.55 GHz, A" =0.2GHz

Maze (NV7),

From these NV~ values we can infer the initial relations:

4

A
Ags =1 Dgs = 34, DeJ:s =5 Aé-s =

> (2.136)

A”
V2

As we move to the VVV° in silicon carbide, the following values are obtained from the work in [3]:

A, = 3.538 + 0.052 GHz, D,s = 0.855+ 0.017 GHz,
(hR) VV°, A, =0.577 +0.019 GHz, A, = 0.031 + (+0.050 — 0.031) GHz (2.137)
95% intervals

A, = 6.090 + 0.052 GHz, D.; = 0.852 + 0.012 GHz,
(kk) VVO, A, =0.584 1+ 0.012 GHz, A, = 0.044 + (+0.046 — 0.044) GHz (2.138)
959% intervals

Although it is a different system, these variables correspond to those presented by Doherty and

Maze in the following way:
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I I 1 A Ay 1 A" A,
Aes = Az = A5, Des = 3A = Des, Des = o = K Aes = ﬁ = ﬁ (2.139)

The physical interpretation of these variables is tied to spin-spin and spin-orbit interactions
usually without much further elaboration. The work by Doherty et al., perhaps wisely, avoids
venturing into explanations and simply calls them "parameters™. In the work by Maze et al., 4, is
referred to as the axial part of the spin-orbit interaction (with A,,, the non-axial part), A, A" are
parameters that have to do with the spin-spin interactions and zero-field splittings, A" is a "mixing"
term between spin states. Here "mixing" refers to the fact that the Maze basis Hamiltonian is

diagonal except for the presence of the A" terms which cause interactions between the

{141),14,), |E,), |Ey), |Ey), |E2)} basis states. Since we are dealing with the VV? in SiC, moving

forward we will use the variables {4,, D,,, A, A,} featured in [3].

2.8.5 Excited state level structure

With the Hamiltonian established and excited state parameters chosen, we can how map out the

energy levels of the excited state as given in the figure below:
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Figure 2.8 | VVO excited state level structure. The energy levels are generally split into four
regimes as labeled at the bottom of the figure. The addition of transverse strain breaks the final
degeneracy of the Hamiltonian from four energy levels to six, which then separate into two
branches with additional strain. The excited state parameters {1,, D,., A;, A,, 6, } adapted from [3]
are used here.

The general effect of transverse strain is apparent in the figure above, but is demonstrated more

explicitly in the figure below:
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Excited state Hamiltonian eigenstate energy levels vs. transverse strain
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Figure 2.9 | VV° Excited state energy levels. On the left is the analytical result from the (hh) V\V°
Hamiltonian showing the energy eigenstates as a function of transverse strain. On the right is a
photoluminescence excitation (PLE) spectrum of a single (hh) VV? in SiC adapted from [3].

Before we more precisely quantify the effects of strain and other external fields, we will first

establish a conversion between the Doherty and Maze bases in the next section.

2.8.6  Transforming between bases

Similar to the approach in section 2.5, a transition between these two bases can be achieved through

the change of basis matrix (COB). This matrix can be written as:

COB= (A, A, —-E, —E, E, E) (2.140)
1 1 1 1
2 2 2 2
0 0 0 0 0 0
1 1 0 1 1 1
|l 2 2 o] _|o 2 2
COB = ; l. 0 0 ; ; (2.141)
2 2 1 0 2 2
0 0 0 0 0 0
i [ i i
2 2 2 2
Which gives:
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11 1 1 1 i

Z Z S — 0 — — 0 ——

2 2z 0 73 3 2 2 2 2

0 0 0 -1 0 0 1 1 i
Lo, 1o > 0 -5 7 0 =5

_| 2 2 2 2 a_| o 0o o o -1 o0

cop=| * % ;o COB'=| 0 "1 o o o o (2.142)

-5 —5; 0 0 -5 1 1 i i

2 2 2 2 2 X b 4 L

0 0 -1 0 0 0 2 2 2 2

i i i i 1 1 i i

- —— 0 0 —— —— Z - -2 —

2 2 2 2 2 0 2 7% 3

With this matrix, we can convert the excited state Hamiltonian (or any field or strain term in the

Hamiltonian) using the relations

HDoherty = COB " Hyqze COB™" (2.143)

COB™' - Hpoherty - COB = Hygze (2.144)

We will use these conversions in the upcoming sections.

2.8.7 Effect of electric field and strain

The presence of electric field or strain corresponds to adding the following terms to the zero-field

Hamiltonian [21]:
VES = dls(E; + 6,z @ Iy + dis(Ex + 8,06, @ Is — dis(Ey +6,)6: @ I;  (2.145)

Where {E,, E,, E,} is electric field, {5,,6,,8,} is strain, {oy, 0,,0,} are the 2D Pauli matrices,
{Sx,Sy,SZ} are the 3D spin-1 matrices, {I,, I3} are 2x2 or 3x3 identity matrices, and {d!, d%} are
electric dipole moment components. This equation is written using the Doherty basis. It is

important to put the Pauli matrices o; first in the tensor products and the 3-dimensional spin
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matrices S; second, so we generally have g; ® S; for each term. Carrying out these tensor products
and combining terms can give the Hamiltonian in matrix form. For simplicity we include the strain

terms here with no prefactors. Note that the electric field will have the same dependence:

8, + 6, 0 0 -6, 0 0
0 8, + 6, 0 0 -6, 0
0 0 8, + 6, 0 0 -6,
Ves ~ 2146
E -5, 0 0 5, — &, 0 0 ( )
0 -5, 0 0 5, — b, 0
0 0 -5, 0 0 82 =85/ ponerty

Using the COB conversion outlined in the previous section, we can write this in the Maze basis as

[33,34];
5, 0 0 0 5 -is,
/ 0o 4, 0 0 s, —ax\
0 0 6,45, 6 0 0
es . z y
Ve “’! 0 0 5, &-6 0 0 ! (2.147)
\ax —is, 0 0o 5, 0 /
i5, -8, 0 o o &/,

Note that in both cases §, gets added along the main diagonal, which has the effect of uniformly

shifting all the energies.

2.8.8  Effect of magnetic field

The presence of magnetic field corresponds to adding the following terms to the zero-field

Hamiltonian [21]:
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V;S = ,uB(lﬂs&y ® g] + 92551 ® §Z)BZ + .uBgé-sé—\I ® (SAXBX + SYBY) (2148)

Where {B,, B, B, } is magnetic field, {s,, 5,, 5, } are the 2D Pauli matrices, {S,, S,, S} are the 3D
spin-1 matrices, {o;, S;} are 2x2 or 3x3 identity matrices, up is the Bohr magneton, I\ is the orbital
magnetic moment, and {g!, g} are electronic g-factors. This equation is written using the
Doherty basis. Here, again it is important preserve the order o; ® S; for each tensor product.
Carrying out these products and combining into matrix form gives the following dependence, with

prefactors dropped for simplicity:

B, B, —iB, 0 —iB, 0 0
B, +iB, 0 B, —iB, 0 —iB, 0
0 B, +iB —B 0 0 —iB
es . x y z z
V'~ g 0 0 B, B,—iB, 0 (2.149)
0 iB, 0 B, +iB, 0 B, —iB,
0 0 iB, 0 By+iBy =By /..
Using the COB conversion, in the Maze basis this becomes:
o B B B, 0 0
B, 0 —iB, iB, O 0
ves ~ B, iB, 0 —iB, By —iB, (2.150)
B B, —iB, iB, 0 —B, —iB, '
0 0 B, -B, 0 -B,
0 0 iB, iB, -B, Maze
2.9 Excited state polarization rules
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The transitions between the ground and excited states of the VV° follow polarization selectivity

rules for both absorption and emission of photons. Generally speaking, the polarization state of a

photon can be denoted as a complex linear combination of horizontal and vertical polarizations,

which can be expressed as:

|H), Horizontally polarized light

V), Vertically polarized light

Combining these polarization basis states leads to the other four states of:

1
LY = —=(|H) + i|V}), Left circularly polarized light

V2
1
|R) = ﬁ (|H)Y —i|Vv)), Right circularly polarized light
1
|D) = —(|H) + |V)), Diagonally polarized light
V2
1
|A) = ﬁ (|H) — |V)), Antidiagonally polarized light

(2.151)

(2.152)

(2.153)

(2.154)

(2.155)

(2.156)

With this notation in hand, we can represent the absorption/emission of photons between the

ground and excited states of the c-axis VV? in the following table, which follows the same rules

as the NV~ center in diamond [33-35]:

A7) 14;) |E) IE,) IE,) IE,)
me=-1 | L) L) IR) IR) : :
jm, = 0) : : : : V) |H)
me=+1 | R IR) L) L) : :

Table 2.2 | Polarization selectivity of transitions between ground and excited states of the
divacancy. As an example, left circularly polarized light (| L)) will couple the |A,) and |A,) excited
states to the |mg; = —1) ground state. This coupling applies for both optical absorption and

emission.
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As an example, when the VV? is in the |4,) excited state, it can either decay to the |mg = +1)
ground state and emit a right circularly polarized photon |R) or decay to the |m, = —1) ground

state and emit a left circularly polarized photon |L). This is shown schematically in figure 2.10.

|42)
L)
BVAVE -
IR)
OVAVE -
Ims — +1) |ms — _1)

Figure 2.10 | Polarization of emitted light when decaying from the VV° |4,) excited state. A
c-axis VO prepared in the |4,) excited state will have an equal probability of emitting a right
circularly polarized photon (|R)) and decaying to the |mg = +1) ground state or emitting a left
circularly polarized photon (]L)) and decaying to the |m, = —1) ground state.

The pairs of photon states {|H), |V)}, {IL), |R)}, and {|A),|D)} are completely orthogonal to
each other, which provides a potential selectivity when collecting or exciting with polarized light.
For example, pumping with |R) light will in principle only excite the |mg = +1) - {|A4;), |4,)}
transitions, even if the energies of these transitions are overlapping with the |mg = +1) -
{|E;), |E;)} transitions. Conversely, excitation with diagonal light |D) will not provide any

selectivity for any transition, as |D) is not orthogonal to any of the polarization states

{|H),|V), |L), |R)} featured in table 2.2.
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2.10  The intersystem crossing

In addition to the ground state and excited state manifolds, the VV° also contains an intermediary
singlet state commonly referred to as the intersystem crossing (ISC). This intermediate state
provides a non-radiative decay pathway from the excited state that competes with the ES - GS
transition. This state also appears in the NV~ center in diamond and is well documented in the NV~

literature [36,37]. An energy level schematic of the ISC is included in the figure below:

3E
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Figure 2.11 | Energy level schematic of the intersystem crossing. The ISC connects the excited
state to the ground state through a competing nonradiative decay pathway. The dotted lines indicate
the comparatively weaker rates to the ISC from mg = 0 excited states.

Each excited state has its own rate to the ISC which can affect the cyclicity of a transition used
for readout. Generally the mg = 0 excited states have the lowest relative rates, which is why they
are selected as the cycling resonant readout states for both the NV~ center and the VV°. Once in
the state is in ISC, any time spent will not result in detected photons, so this decay pathway results
in an overall lower count rate. Decay from the ISC to the ground state also randomizes the spin
state despite a preference towards m, = 0 in most cases. On the bright side, this does allow for
off-resonant initialization and readout through this mechanism. While the quantitative measures
of ISC rates are not well explored in for the VVV° in SiC, the dynamics at play are quantifiable and
share many parallels to the NV~ center in diamond.

Broadly speaking, the ISC is like the training wheels for solid-state color centers. For initial
experiments an ISC is a quick and easy way to demonstrate optical initialization and readout and
serves as a great benefit to the system. For high-fidelity single defect experiments, however, the
ISC ultimately limits the ability to achieve single-shot readout and entanglement. Because there is
no easy way to "remove" the ISC from the system, it sours into an undesirable feature.
Nevertheless, we will explore the impact of the ISC level in a Markov chain model in chapter 4

and consider its relationship with Purcell enhancement in chapter 7.
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Chapter 3

Figures of Merit

3.1 Decoherence of a quantum state

In nearly all experiments, the ability of a quantum state to remain stable is an important figure of
merit that determines the eventual fidelity of quantum computing, communication, and metrology
protocols. This state stability is generally termed the "coherence™ of a state, and the loss of this
stability to referred to as "decoherence”. More specifically, the decoherence of a quantum state
means the loss of information about the amplitude and phase of the basis states that compose the
guantum state. In the long-time limit, any state will eventually reach an equilibrium where all
information is lost and no definitive statements can be made about the state. At intermediate time
scales, there may be uncertainty attached to individual components but the overall state is still

known. In the example of a two-level system, the most general state at t = 0 can be written as:

[¥)(0) = col0) + 1™ [1) (3.1

Where here c,, ¢, are the amplitudes and ¢ is the phase between the states. After a certain amount

of time has elapsed, this state may become:

[W)() = (co(t) £ Ace)|0) + (c1(t) £ Acy) e @O*AD)|1) (3.2)
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Where here the uncertainties in the variables are represented by Ac,, Ac;, A¢p. How quickly this
uncertainty grows with time is called the decoherence time of the qubit. Its specific value can set
restraints on the time scale of experiments and the amount of time a qubit is allowed to be "idle"
before its quantum information is lost. The time scale of decoherence can also vary dramatically
between systems, spanning the full gamut from single nanoseconds to multiple hours. An
important caveat to this time scale is the speed with which operations can be performed on the
qubit. In some contexts, it is the ratio of the decoherence time over the qubit gate time that truly
matters for applications. In most cases the two time scales trend in the same direction; exceedingly
long coherence times usually come at the cost of slower operation speeds (although this is not
always the case, see ref [38]).

The cause of decoherence in solid-state qubits is generally attributed to stochastic fluctuations
of electric and magnetic fields in the environment. These fluctuations can come from nuclear spins,
paramagnetic impurities, and other defect species. More directly, thermal fluctuations and phonons
directly limit the coherence of most systems, which is why cryogenic cooling is nearly ubiquitous
for quantum information experiments.

In this section, we will examine some of the common ways decoherence is measured and

quantified in the context of the divacancy in silicon carbide.

3.2 T3 —The spin dephasing time

The T, time refers to the time scale associated with dephasing of a qubit, where we are interested

in the phase between the eigenstates that compose the state. In a completely dephased state, this
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phase information is completely lost, even though the qubit may still be in a pure state. For a two-

level system, precession of a superposition state is normally given by:

Y(t) = ein—Ot(cglg) + cole)eiwot) (3.3)

Dropping global phase gives:

W(t) = cy4lg) + coleyeiwot (3.4)

Here the excited state |e) accumulates phase, which we are interested in tracking, relative to
the ground state |g). The phase accumulation rate is given by w, in the above equation, such that
the accumulated phase after a time t is simply given by w,t. This means that a differential phase
accumulation d¢ is given by d¢ = wydt. However, we may not always be able to rely on a
uniform rate. If it is instead a function of time w(t), then we must integrate the differential phase

with respect to time to obtain a total phase accumulation:

¢ = jdq) = jw(t)dt (3.5)

The frequency may change with time due to fluctuations in the environment that cause shifted
energy splittings between the two levels. We can make these fluctuations explicit by defining the

time-varying frequency as:
w(t) = wy+ 6(t) (3.6)

In which case the total accumulated phase is:

Drotal = f(a)o +8(8))dt = wot + f 5(t)dt (3.7)
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Or:

Protar = Wot + Proises Proise = .l-6(t)dt (3.8)

The quantity w,t is the "normal" accumulated phase, while [ §(t)dt represents a deviation
from this value due to the fluctuating environment. Note that the state is always on the Bloch
sphere equator even with this noise term but its phase is now variable. Typically, §(t) is a
stochastic function that cannot be predicted.

To measure the overall loss of phase information due to noise, we perform an ensemble of
identically prepared Ramsey interferometry experiments and average their results. Since 6(t)
varies from experiment to experiment, its presence manifests as an averaging out of signal. The

Ramsey sequence in outlined below in figure 3.1:

Ramsey
Off-res 905 .
Init

nm laser

. /2 . /2
Microwaves e Wait — s

~—— -
R —"\(/’_
esonant .
T Excite
laser
Detector
(SNSPD) Readout

Figure 3.1 | Ramsey pulse sequence. The wait time 7 between /2 pulses is varied between
experiments to determine when dephasing naturally occurs for a superposition state.

We can describe each part of this sequence in the context of VV° experiments. Initialization

can be done optically with either resonant or off-resonant laser light. Microwave rotations of /2

94



are applied with AC signal passing through nearby striplines or wire bonds. The phase ¢:otai»
which we are interested in measuring, accumulates during the free evolution time 7 between the
two microwave pulses. During the readout sequence, we optically excite the defect and read out
photoluminescence (PL) either in the form of voltage for a photoreceiver or quantized photon
counts for a superconducting nanowire detector (SNSPD). Throughout this thesis we will use
"counts" to represent PL, as most experiments were performed on single defects with an SNSPD.
More details on the initialization, microwave rotation, and readout steps are discussed in sections
3.7, 3.8 of this chapter and chapter 4.

To work towards a mathematical understanding, it is useful to think of photoluminescence as a
z-projection of the quantum state on the Bloch sphere. A higher z-projection gives more counts
(on average), and vice versa. In other words, the mg = 0 spin state is on average brighter than the
mg = +1 state. The reasons for this are discussed in more detail in section 3.8, but for now we
take this at face value. In terms of Bloch sphere coordinates, the z-projection is then given by the

sine of the polar angle:
z projection on Bloch sphere, z = sin(6) (3.9

Keeping with the Bloch sphere picture, each /2 pulse corresponds to a 90-degree rotation
around either the x-axis or y-axis. In reality, any azimuthal axis of rotation can be chosen as long
as they are consistent (or exactly opposite) between the two microwave pulses, but here we will
assume each rotation is around the negative y-axis. With this convention, the second 7 /2 pulse

maps the azimuthal phase ¢ directly to the polar angle 6:

s
polar angle after 0 MW pulse, 0=¢ (3.10)
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We can now combine these results to get an expression for the photoluminescence PL. The PL
is proportional to the magnitude of the z projection, but to be precise both the baseline of PL counts
and the full range of counts between the m; = 0, +1 states must be incorporated into the sine as

an additive and multiplicative factor, respectively. In total this gives:

Photoluminescence (PL), PL = asin(¢) + b (3.11)

Where ¢ has been substituted for 8, "a" is related to the contrast between the bright m; = 0
state and the dark mg = +1 state, and "b" is related to the baseline level of counts when in the
dark my = +1 state. For the sake of capturing the effects of dephasing without getting hindered

by imperfect contrast, however, we will drop these factors and simply say:

PL ~ sin(¢) (3.12)

Of course this relation cannot be taken too literally since photoluminescence cannot be negative,
but making this step will simplify our analysis.

We are now interested in quantifying the effect of the phase noise term ¢,,pise = [ 5(t)dt as
we average the PL from many experiments. In a perfect world, the energy splitting between the
eigenstates is fixed for all times and §(t) = 0. In this case the phase accumulation would be
identical across all experiments, and the uniform Larmor precession would give an exact sinusoidal
dependence for the phase. In terms of variables, ¢;,:,; Would simply be w,t, meaning the PL
would be given by PL = sin(8) = sin(w,t) with no decay envelope. This is the case for "infinite

coherence™ as the PL would never decay with time.
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Realistically, however, the noise term &(t) is nonzero and varies both within a single
experiment and from experiment to experiment. Using the direct mapping of azimuthal phase ¢ to

polar angle 6, we can use eg. 3.12 to write the PL function as
PL = sin(¢;prqr) = sin (a)ot + f 6(t)dt> (3.13)

The integral of the stochastic function [ §(t)dt cannot be simplified until we make additional
assumptions. For simplicity let us assume that §(t) is a a normally distributed variable with a
standard deviation of o

6(t) =N(0,0) (3.14)

Where NV (0,0) denotes a sample from a normal distribution with mean 0 and standard
deviation o. How often the environment will "switch™ its configuration is subject to several
variables such as the density/stability of impurities and the presence of external static fields or
laser radiation. We will assume that the environment switches (i.e. a sample from this normal

distribution) with a frequency f, such that the number of switches in a time t is given by:
n = ft, number of switches in time t (3.15)

Therefore, an elapsed time of ¢ will correspond to sampling n times from a normal distribution
N (0, o). Each of these samples will contribute to the total accumulated phase. We can represent
the additional phase (which can be positive or negative) accumulated at each time step due to the

noise as a list:

bust = [V (0,0), N(0,0), N(0,0), ..ntimes] (3.16)
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Since this list will have many entries, we can use the central limit theorem to characterize the list

mean:

g

Vn

Xp =0 (3.17)

The total phase from this noise is obtained by multiplying this average by the n entries in the list:
_ o
Proise = N¥p =0 £ N 0+ovn (3.18)
This is equivalent to the integral of the noise term, meaning:

f s()dt = N (0, 0/ft) (3.19)

With this more explicit expression for the phase gained due to noise, the total accumulated phase

(including the natural Larmor precession) then becomes:
Protar = Wot + Pppise = Wot + (0 t+ U\/H) = wot £ 0-\/H (3.20)

As before, we take the sine of this total phase to map to a z-projection on the Bloch sphere after

the 7 /2 rotation:

z = sin(@rorar) = sin(wet + av/n) (3.21)

As we perform many experiments and average them, the result for any particular time t will be
given by:

Zang(t) = u(z) = pu(sin(wot + ovn)) (3.22)
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Where u( ) denotes the average after many experiments. Substituting our earlier equation n =

ft and equating PLgy,q(t) = Zgyq(t) gives:

PLgyy(®) = p(sin(wot + o\/ft)) (3.23)
PLaypg (8) = u(sin(wot £ (a/f)VE)) (3.24)

So after many accumulated experiments, the averaged PL represents the average of the sine of
a normally distributed variable. Whereas a regular normally distributed variable is centered on its
mean regardless of the standard deviation, this symmetry is broken when the variable is fed into a
sine function.

This behavior is demonstrated in figure 3.2. The sine of a random normal variable is plotted for
multiple standard deviations o. Whereas the mean u of the variable remains the same as the
standard deviation increases, the mean of the sine of the variable changes and trends towards zero.
This trend towards zero is what is responsible for the exponential decay to zero signal that we
observe in an averaged Ramsey sequence. As the acquisition time in the Ramsey sequence
increases, the noise term is integrated over an increasing time interval, which results in a greater
standard deviation. This behavior is similar to the increase standard deviation of a random walk as

the number of steps increases.
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Figure 3.2 | Sine of normal distribution for various standard deviations a. All graphs are using
sin (N(O, o)+ g) where V' (0, o) is a normally distributed variable with mean 0 and standard
deviation a. The phase of /2 is included to showcase the asymmetric sine distributions. As the

standard deviation increases, the mean of the sine distribution approaches zero. This parallels the
T," signal approaching zero for long wait times.

In experiments, we quantify T, by fitting an exponential to a decaying PL envelope. To
corroborate that this sine behavior gives an exponentially decaying Ramsey signal, we can run

Mote Carlo simulations of the average PL over time, using the result of equation 3.24. This gives

the following figure:
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Figure 3.3 | Simulated Ramsey decay. The blue curve (which appears solid due to the high
frequency of oscillations) is from a Monte Carlo model with repeated random sampling of equation
3.24, whereas the orange curve is exp(—t/T,), where T, = 2/a2f. Here the x-axis is arbitrary
time units and the y-axis is arbitrary units of photoluminescence (PL) relative to some baseline PL
level aty = 0.

As can be seen in the figure, the averaged PL exponentially decreases as the readout time

increases. This exponential approach is well-modeled by a T, time of:

t
T, = —— PLgyg = €xp (— —) (3.25)

As either the standard deviation or the frequency of the noise increases, the dephasing time T
increases. As expected, T, becomes infinite when there is no noise (¢ = 0) or the external field is

static (f = 0). In practice, we use the following function to fit Ramsey decays:
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exp <— <Ti2*> > (3.26)

Where n is a free parameter that is related to the frequency of the noise sources. For a SiC VV°
the T is usually on the order of a microsecond, but can be slightly shorter or longer depending on
the sample [3,38,39].

Physically, a short T, or a short dephasing time is correlated with electric and magnetic field
noise in the vicinity of the defect, both of which appear in the VV° Hamiltonian. However, the
dephasing time alone does not determine exactly which noise sources are present. Similar to how
a weight of an object does not tell you its composition, the T, of a qubit alone does not tell you
details about the local environment. Instead, it tells you the level of uncertainty in the phase
between the two eigenstates of an arbitrary state ¥, which in turn will inhibit the operation of
guantum gates and protocols.

As mentioned, dephasing generally occurs from noise sources in the environment which cause
stochastically varying fields. Typically these noise sources are dominated by the nuclear spins
from naturally abundant *C (1.1%) and 2°Si (4.7%). However, the ~10%-10* higher magnetic
moment of a single electron compared to a *3C or 2Si isotope means that dipolar coupling to stray
electrons at concentrations 103-10* more dilute that the ~1-4% nuclear abundance can still have a
significant effect. This can most notably come from high levels of nearby doping, which is used
for photonic and electronic SiC devices. Beyond this, other defects in the sample such as other
vacancies, divacancies, interstitial defects, and dangling bonds at surfaces can also couple and
cause dephasing. Some of these defects are naturally occurring, and some are induced by the lattice

damage from electron irradiation or ion implantation used to create divacancies in the first place.
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3.3 T, — The spin decoherence time

The T, is generally called the spin decoherence time, but it also referred as the transverse relaxation
time or spin-spin relaxation time. In a way, it also measures the dephasing of a quantum state, but
with cancelling of quasistatic fields. To gain an intuition for this, we will immediately turn to the

Hahn echo sequence is used to measure T,, which is shown in the figure below:

Hahn echo

Off-res 905

Init
nm laser

/2
pulse

/2 | wait w—tp|| T Wait sl

Microwaves
pulse pulse

Resonant

laser T T Excite

Detector

(SNSPD) Readout

Figure 3.4 | Hahn echo pulse sequence used to measure T,. Here the time t between the
"refocusing” m pulse and the adjacent /2 pulses is increased until the state loses coherence.

In principle the T, time will always be longer than the T, time. This is because the m pulse in
the Hahn echo sequence has the effect of "undoing” unwanted dephasing caused by external fields.
For this reason the m pulse is sometimes referred to as a refocusing pulse. The "echo" terminology
stems from the fact that state after the second waiting period there should be a resurgence of the

original starting state due to the mirror symmetry of the sequence. To see how the Hahn echo
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works, we can break the two waiting periods into one where phase is accumulated and one where

phase is "unaccumulated”. This can be represented by:

Accumulate phase:

W(ty) = c4lg) + cele) exp <—i fr(wo + 6(t))dt> (3.27)
0

Unaccumulate phase:

2T
W(tz) = c4lg) + cole)exp (—if (a)o + 6(t))dt> (3.28)

T

Combining these expressions then gives the total accumulated phase:

T 2T
brinar = fo (wo +8(8))dt —fT (wo +8(t))dt (3.29)

If the Hahn echo works perfectly, then these two integrals cancel and no phase information is
lost. This has the immediate implication that the noise term &(t) was simply never a function of
time in the first place, or at least on the time scale of the wait period 7. In this context, the noise
would be referred to as "quasistatic” — stationary on the time scale of a single experiment but
varying on the time scale of multiple averaged experiments. At some point as t lengthens, we
reach the time scale of §(t) varying, which then means that the accumulated and unaccumulated
phases will no longer be equal. This manifests as an imperfect Hahn echo and a nonzero total
accumulated phase. As we saw in the previous section, this then corresponds to a drop in PL over
many averaged experiments.

In this sense, a T, measurement filters out low-frequency noise in the experiment and thus

extends your dephasing time. Extrapolating this idea, including many refocusing m pulses with
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short waiting times would filter out high-frequency noise. This is indeed the idea behind dynamical
decoupling [30], which is commonly used to extend the coherence time of various qubit systems.
There is a limit to dynamical decoupling, of course, as T, cannot extend beyond T;. T; is referred
to as the spin relaxation time and is the subject of the next section.

For a Hahn echo decay, we use the same exponential fit as for a Ramsey decay, given by:

exp (— (Tiz)n> (3.30)

Where T, > T,. For a VV? in SiC the T, is on the order of ~1 ms [3], but can be shorter in the
presence of extra noise sources. The noise sources responsible for T, decay are identical to those
for T, decay: nuclear spins from naturally abundant isotopes, electron spins from other defects,

and dangling bonds from nearby surfaces.

3.4 T{ — The spin relaxation time

The last relevant time scale for generalized decoherence is T;, the spin relaxation time or spin-
lattice relaxation time. In contrast to the T, and T, decay mechanisms, spin relaxation is completely
unrelated to the phase of the quantum state. On the contrary, spin relaxation measures how long a
completely polarized eigenstate of the system will remain in the same state. A schematic of a T,

measurement is given below:
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Figure 3.5 | Pulse sequence for measuring T;. In this sequence, the spin is initialized into |0)
and no microwaves are applied. The wait time 7 between initialization and readout is increased
until the initially prepared state loses coherence.

The only way for an initialized eigenstate to show decay over an ensemble of experiments is if
for some fraction of experiments, the state completely flips to the other eigenstate. Since this is an
energy nonconserving processing, this is most commonly achieved through the interaction with
lattice phonons. By extension then, T, times are generally the longest under cryogenic
temperatures, and usually quickly decay when approaching room temperature.

Any other process that results in an energy exchange with the qubit can also lead to T; decay.
In the case of the VV?, this can occur with spin flipping processes such as interacting with a

fluctuating magnetic field matched with the Larmor frequency of the defect. Any process that leads

to a T; decay will also lead to a T, decay, which leads to the inequality:

T, < 2T, (3.31)

For the VV?, the T, times at cryogenic temperatures are beyond 1 ms and perhaps even beyond

one second, but it has not yet been fully characterized. Unfortunately these times can lead to
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prohibitively long averaging of experiments. When these measurements are collected, however, a

simple exponential fit of exp(—t/T,) gives the spin relaxation time.

3.5 Divacancy optical spectrum and
Debye-Waller factor

Emission and absorption spectrum

When the VV? is optically excited, the radiative decay back to the ground state spans a wide range
of near-infrared wavelengths. The emission spectrum can generally be categorized into a sharp
zero-phonon line (ZPL) and a broad phonon side band (PSB). When no phonons are involved (i.e.
zero-phonon), the emission is narrowly centered around a ZPL wavelength that varies among
defect types. For divacancies in silicon carbide, the ZPL emission takes values between ~1040 nm
and ~1132 nm. When phonons are also emitted with the radiative decay, the photon's energy is
lowered due to conservation of energy. This results in redshifted optical emission in a continuous
range of ~1100-1400 nm, although most of this emission is focused in the ~150 nm beyond the
ZPL. Measuring spectra with a spectrometer is an important diagnostic tool to identify defect types
in a SiC sample and to distinguish from other point emitters. A typical spectrum of a VV? is shown

in figure 3.6 which features both the ZPL and PSB [31].
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Figure 3.6 | Emission spectrum from a (kh) divacancy in silicon carbide. Spectrum adapted
from [31]. Roughly ~10% of the (kh) divacancy's optical emission is in the zero-phonon line at
~1078 nm, while the rest of the emission is in the phonon sideband at longer wavelengths.

When the emission spectrum is mirrored over the ZPL, one obtains the absorption spectrum,
which provides possible wavelengths to off-resonantly excite the defect with. In a similar fashion
to the PSB, wavelengths ~100-150 nm away from the ZPL are most efficient for pumping.
Therefore, we typically use either 975 nm or 905 nm diode lasers for excitation. It is worth noting
that phonons are involved in this process as well, as the ground state "overshoots" the excited state
energy and then decays to the excited state through the emission of phonons. The entire process is
spin-preserving, meaning that a mg; = 0 ground state will be pumped to a mg = 0 excited state,
for example. After the mirroring of the spectrum the ZPL still remains in the same place, acting as
either a resonant absorption or resonant emission wavelength. A schematic of absorption/emission

in shown in figure 3.7.
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Figure 3.7 | Photon absorption and emission spectrum. Here, the sharp blue peak represents the
zero-phonon line (ZPL) transition that can be used for either absorption or emission. The broad
red hump is the phonon sideband (PSB) that is exclusive for emission. Mirroring this over the ZPL
gives a broad absorption hump (green) that can be used for off-resonant excitation of the V\V°.
Lastly, the features of the spectrum are highly dependent on temperature. Generally at
temperatures below 20K the peaks will be reasonably sharp. At higher temperatures, the spectrum
and most notably the ZPL will significantly broaden. At 200K and above, the spectrum essentially

becomes featureless. This behavior is shown in figure 3.8, adapted from the seminal SiC divacancy

work that first identified these defects experimentally [1].
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Figure 3.8 | Optical spectrum of divacancy ensembles at various temperatures. Plot adapted
from [1]. Photoluminescence from a SiC sample containing an ensemble of divacancies. The sharp
peaks at low temperature correspond to the zero-phonon lines of different divacancies. These peaks
disappear as the sample approaches room temperature.

The main upshot of this temperature dependence is that SiC samples must be cryogenically
cooled in order to resolve individual optical transitions. Although some defects are optically active
at room temperature (most notably PL5 and PL6) [4], zero-phonon transitions are practically

infeasible to address. In our experiments we typically cool samples to ~5K with helium cryostats

(more on this in chapter 4).

The Debye-Waller factor
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An important figure of merit for this system is the percentage of emission that is emitted into the

zero-phonon line. This is termed the Debye-Waller factor (DWF), defined as:

T +7
a = % emission into ZPL = 22— 258 (3.32)

TzpL

Where t,p,, Tpsp are the radiative lifetimes of the ZPL and PSB transitions. The emission of ZPL
photons is critical for the formation of spin-photon entanglement [35], as the polarization of the
photon will only correlate with the spin state if there are no emitted phonons. Additionally, long
distance spin-spin entanglement protocols that rely on the interference of indistinguishable photons
must also use the ZPL for photon interference [40]. Phonon emission in this context would also be
detrimental, as it would "leak" spin information to the environment interacting with these phonons.

For divacancies in silicon carbide, the Debye-Waller factor is typically ~5-10% depending on
the defect type [3, 30]. The aspects that determine a Debye-Waller factor are nontrivial and beyond
the scope of this thesis, but the factor is fairly consistent from defect to defect. It also means that
PSB emission is 90-95% of all emitted photons, which is partially why we readout
photoluminescence in the sideband. For the purposes of scaling spin-spin entanglement protocols,
however, it is crucial to increase this Debye-Waller factor. Luckily, it is possible to modify the

DWF through nanophotonic structures around the defect, which will be discussed in chapter 7.

3.6 Charge instability

In the ideal scenario, the VV? is electrically neutral and contains six electrons. We have assumed

this charge neutrality in all of the spin physics of the ground and excited states so far. However, it
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is possible for the VVV° to become ionized into either the VV* or V- state [41-46]. This is usually
caused by fluctuations in the local electric field, which destabilizes the neutral form of the
divacancy. This is generally an undesirable effect, as the defect is no longer optically active and
any spin information is lost. The electric field fluctuations are in turn caused by photoionization
of nearby charge traps, which occurs across a wide range of excitation wavelengths [41]. Since
divacancies in our experiments are optically initialized and read out, this means that every
experiment will have a chance to ionize the divacancy. By the same token, exposure to off-resonant
light in the broad range of ~300-1000nm will "recharge" an ionized divacancy to its neutral charge
state. The exact time scale of ionizing and recharging is not well characterized, but it can happen
slow enough to be noticeable on the ~ms time scale when reading out photoluminescence. To a
certain degree, proximity to SiC surfaces also appears to increase the effects of ionization, which
is an important consideration for nanostructures. A schematic of the "charge scrambling" induced

by laser light is shown in the figure below.

® % %o |25 P0| |904° ¢
© e |
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Initial charge New charge

configuration configuration
“Scrambling” of charges

from optical excitation

Figure 3.9 | Randomization of charge traps from photoexcitation. Laser light causes local
charges in traps (light red "+", light blue "—") around the defect (blue circle with yellow arrow) to
become "scrambled", before becoming "frozen" in a fixed configuration once the laser light is
turned off. This can induce either an ionized charge state or a neutral state. Additionally, this laser-
induced charge noise is the main culprit behind spectral diffusion.
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In the context of energy levels within the SiC band gap, V'V° ionization can occur either through
the transfer of charges to or from the valence and conduction bands. Intermediary charge traps can
capture electrons from the conduction band or photoemit electrons into the conduction band [45].
The same mechanisms are in place for capture/photoexcitation of holes to and from the valence
band. These processes then result in an ionized divacancy state, either VV* or VV-, although based
on the results of [41] the negative charge state VV~ is more likely. An outline of energy levels in

the band gap is shown in the figure below, adapted from [41,46].
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Figure 3.10 | Theoretical energy levels of difference charge states of the VVO in silicon
carbide. Figure adapted from reference [41], which builds on the study in [46]. Different charge
states of the divacancy occupy different energies within the SiC band gap. Electron/hole capture
and photoemission processes facilitate transitions between charge states.

In addition to laser-induced recharging, another way to limit the effects of divacancy ionization
is to place the divacancy into a built-in PIN diode. This is the subject of the study in [42]. The
main idea of this geometry is that the built-in electric field from the PIN diode will evacuate and
stabilize the charge traps even under optical excitation. Lastly, it would be possible to model the
charge state as a separate nonradiative state in a Markov model to be discussed shortly, although

such models would require complicated measurements to determine ionization and recharge rates
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with high precision. More information on the dynamics of the divacancy charge states can be found

in references [41-46].

3.7 Three-level model for the divacancy

A variety of measurements that we use to characterize the VV° system can be understood in the
context of competing rates between the divacancy's isolated energy levels. For example, an excited
state lifetime measurement is determined by a balance between the radiative decay from the excited
state and the nonradiative decay to either the intersystem crossing or a charged state. Since these
measurements place important bounds on the speed and fidelity of quantum protocols, it is fruitful
to develop a model to capture these dynamics. By understanding the underlying components of
the model, we can then identify the limiting factors for different protocols and potentially engineer
the system to improve its performance.

A basic model to start with involves three levels: The ground state, the excited state, and an
intermediate state that allows nonradiative decays. These can be labeled as n,, n,, and ns,
respectively. For simplicity we will refer to the intermediate level n; as the ISC, but more broadly
it can also encompass other nonradiative states such as an ionized VV- or VV*. Rates of transitions

between these levels are represented by the variables ;;, where i is the initial level and j is the

final level. An outline of this system is given in figure 3.11.
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Figure 3.11 | Three-level model of VV° optical transitions. In this diagram, n, represents the
ground state, n, represents the excited state, and n5 represents an overall nonradiative state, which
in practice is a combination of the inter-system crossing singlet state and ionized states of the VV°.
Rates between these levels are denoted by ry,, 754, 753, and r3;.

ny

It is important to note that each transition rate r;; corresponds to a physical process and not all
rates are allowed in this system. For example, the ground state will not excite to ISC (r;5 = 0),
and the ISC will not excite to the excited state (r5, = 0). All other processes are allowed, and their

physical interpretations are given below:

1, = laser pumping rate (3.33)
r,; = radiative decay rate (3.34)
r,3 = decay rate from excited state to ISC (3.35)
r3, = decay rate from ISC to ground state (3.36)

The reader may recognize this system as a Markov chain. Indeed, the decision to use rates to

describe transitions between levels implies that this is a continuous-time Markov chain. The
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discrete-time analog of this would be to describe transitions as a probability per time step. We will

cover both versions here, starting with the continuous Markov chain.

3.71 Continuous-time Markov chain

The centerpiece of all Markov chains (continuous or discrete) is to obtain the transition matrix,
which allows the system's dynamics to be fully modeled. For a continuous-time Markov chain,
this matrix is typically represented by Q. Since this system contains three levels, Q will be a 3x3
square matrix:
di11 412 413
Q= (CI21 q22 CI23> (3.37)
d31 432 433
Here, the entries q;; generally represent transition rates. To fill out the individual entries, we
can focus on the transitions out of each level. The diagonal entries q;; should represent the total
summed rate out of level i (and are negative), whereas off-diagonal entries q;; represent the
transition out of level i to level j. Note that the sums of each row will be zero by design. Each row
i of the matrix @ will then represent the rates leaving the level i. Using figure [ ] as a reference,
we can focus on each level and fill out each row of the matrix based on the rates provided. This
gives the matrix:

—T12 T12 0
Q=| 121 ~T21—Taz T3 (3.38)

31 0 —T31
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Once we have obtained this transition matrix, we can use it to relate the current state of the
system to the state at future times. Here, the "state of the system" can be represented as a vector
n(t):

nq ()

n(t) = | ny(t) (3.39)
n3(t)

Where n;(t) represents each level's occupation as a function of time. With this vector, we can

immediately write the differential equation that governs the system's evolution:

(®®) =) e (3.40)

Where vT represents the transpose of vector v. Expanding this equation for the system as hand

gives:

—T12 T2 0
mi(®) ny(®) n3(@) = (1) ny(d) Tl3(t))< T21 11— T3  To3 ) (3.41)

31 0 —T31

Or, multiplying this out:

ny(t) = =101 () + 121n2(¢) + 13113(8) (3.42)
ny(t) = rian () — 121n5(t) — 1231,(0) (3.43)
n3(t) = rp3ny(t) — r3n3(t) (3.44)

This system of coupled differential equations fully describes the occupation of each level as a
function of time, subject to initial conditions. Despite the fact that we have chosen a relatively

simple 3-level system as an initial model, the solutions of these equations are generally nontrivial.
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We will look at examples of how these equations can be applied to actual measurements, but first

we will examine the discrete-time version of this same Markov chain.

3.7.2 Discrete-time Markov chain

Just as in the continuous case, our initial goal for the discrete-time Markov chain is to obtain the
transition matrix. In the discrete setting it is typically represented by P instead of Q. The system

still contains three levels, so P will still be a 3x3 square matrix:

P11 P12 P13
P =|(DP21 D22 D23 (3.45)

P31 P32 P33

Here, each entry p;; now represents a probability instead of a rate. This is given by:
pij = transition probability from state i to state j after time step At

Meanwhile, the diagonal entries p;; represent the probability per time unit that the state will
remain in the same level. In the VV° system each level can remain stable for a nonzero amount of
time, so the diagonal entries will all be nonzero. The p,3 and ps, entries will be zero by design,

similar to the continuous case. This gives:

P11 P12 0
P=|D21 D22 D23 (3.46)

P31 0 P33
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If we want to use the rates in figure 3.11 to fill out these entries, we have to be careful in
translating a rate to a probability. If we had a two-level system with only an excited state and a

ground state, the rate of decay from the excited state would be defined as:

}:I_I)I(} (Pdecay (O ~ t)) — Pdecay (0 - dt)
t dt

- (3.47)

Where Pgecqy, (0 — t) represents probability of decay in the time window from 0 to t. This is

the exact scenario for a Poisson process, which follows an exponential distribution. More
specifically, the probability density function (PDF) representing the probability of decay is an

exponential distribution with a single parameter A:

exponential PDF = Ae~* (3.48)

The parameter A, by definition, is the probability per differential time that the decay will occur.
Put more simply, A is our rate r.

A=r (3.49)

If we want to express p;; in terms of r;; for a discrete model, we must make the time step

infinitesimally small (dt). Under these conditions, we can then treat eq. () as a fraction and say:

pij = Pdecay(o - dt) = rij -dt (350)

This then gives the off-diagonal elements of the discrete transition matrix as:

P11 Ti2dt 0
P = erdt pzz T23dt (351)

r3;dt 0 P33
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To fill the diagonal entries, we use the convention that the rows of the discrete transition matrix

must add to one (for a probability of one). This gives:

1 —r,dt T1dt 0
P = ( erdt 1 - erdt - 7‘23dt ngdt ) (3.52)
T‘31dt O 1 - T31dt
Or:
—T12 12 0
P = 21 —Ty1 — T3 T3 dt + 1 (353)
731 0 —T31

And since Q is given by:

—T12 T2 0
Q=| T ~Ta—T T3 (3.54)
31 0 —T31
We have the relation:
P=Qdt+1 (3.55)

Taking one time step in the discrete Markov chain corresponds to multiplying the state of the

system by P on the right. This can be represented as:

(At +dD) = (7)) P (3.56)

In the continuous Markov chain, the next step was to obtain differential equations to describe
the system's dynamics. For the discrete case, we can instead use python to incrementally evolve

the state of the system according to the equation above.
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3.7.3 Monte Carlo model of the divacancy

A third way to approach the modeling of the VV° system is to use a Monte Carlo model. This
method relies on random sampling to simulate the dynamics of the VV\V° system at each time step.
At each moment in time, we are interested in the state of the system after a time step At. As an
example (with arbitrary numbers), when the system is currently in its excited state we could assign
a 95% chance of staying, a 4.5% chance of radiatively decaying to the ground state, and a 0.5%
chance of decaying to the ISC. These probabilities can be set up for each state of the system and
the time evolution from any starting point can be obtained by iteratively applying these rules. The
use of probabilities of transitions per unit time mirrors the concepts of a discrete Markov chain
very closely, and indeed the two models are almost identical. The key difference is that since the
Monte Carlo model uses repeated random sampling, the system's dynamics will not be
deterministic like they are in the Markov chain. In the limit of infinite averaging, however, the two
results should converge. This comes with a drawback of needing to perform time-intensive
averaging of many Monte Carlo results to see the similarity to the Markov chain. We will avoid
delving too much into which model is "superior" and show the more important result that they
predict the same behavior for the VV? in various scenarios. We will apply both the continuous and

discrete Markov chain and the Monte Carlo model to some example scenarios.

3.74 Lifetime measurement
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In a lifetime measurement, the system is initialized into its excited state and then is released,
resulting in exponentially decaying counts over time. For this experiment we set the initial

conditions set at the excited state:

ny(0) =0, n,(0) =1, n,(0) =0 (3.57)

In this experiment there is no direct pumping rate because the system always starts in its excited
state. This means that:

71, = laser pumping rate = 0 (3.58)

In the continuous Markov chain, the differential equations describing the system then simplify to

ny (t) = 1y ny(t) + r31n3(t) (3.59)
ny(t) = =131, (t) — 131, (1) (3.60)
n3(t) = ry3n,(t) — 131n3(0) (3.61)

And we are interested in obtaining the excited state population n,(t) as a function of time.

Focusing on the differential equation for n, (t) directly gives:

ny(t) = —(rp1 + 123)N5(¢) (3.62)

n,(t) = exp(— (121 + 123)0) (3.63)

Interestingly, the rate r3; from the ISC to the ground state plays no role in this lifetime
measurement. Instead the decay is dictated by a combination of the radiative and nonradiative rates
to the ground state and ISC, respectively. This equation is an analytical result for the excited state
population from the continuous Markov chain, and we will compare it to the results of a discrete

Markov chain.
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In the discrete Markov chain with r;, = 0, we have the stochastic matrix as:

1 0 0

P = (erdt 1 - erdt - T‘23dt T23dt ) (3.64‘)
r3,dt 0 1—r3,dt

Once this matrix is obtained, it is enough to fully describe the time dynamics of the system. As

an example we can set the rates as the following for both the discrete Markov and Monte Carlo

models:

0.05 0.01 0.01
1 = F, T3 = F' 31 = W (3.65)

This gives an excited state population vs. time as outlined in figure 3.12
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Figure 3.12 | Simulated lifetime measurement according to a 3-level model. When the state of
the 3-level system is initially prepared in the excited state, competing decays to the other two levels
cause an exponential decay of the excited state population.
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As can be seen, there is excellent agreement between the Monte Carlo result and the discrete
Markov chain prediction. The slight noise in the Monte Carlo data is a natural result of the random
sampling that it is built upon; in this case there were 50,000 averaged simulated experiments. To
see the effect that the excited state to ISC rate r,5 can have on this curve, we can also run a

simulation with the following parameters:

0.05 0.05 0.01
1 = n_s' T3 = F: 31 = K (3.66)

Where again, r3; has no effect and is arbitrarily set to 0.01. Under these conditions with a

fivefold increase in the r,5 rate, there is a noticeable effect on the lifetime decay which is shown

in figure 3.13.
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Figure 3.13 | Effect of increased r,3 rate on lifetime decay curve. Increasing the rate to the

nonradiative state n; causes an overall faster decay of the excited state population. This holds true
even as transitions to and from ns are not directly measured through photon emission.
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Here there is still excellent agreement between the Monte Carlo and discrete Markov models,
which both show a significant speedup in the measured decay from the excited state. While this
result is mathematically predicted from the continuous Markov result in equation 3.63, there is
also an intuitive understanding of this effect. With a higher r,5 the radiative decay pathway will
more frequently go to the nonradiative ISC decay pathway instead, which does not result in
detectable photons. This means that the photons that are detected are more heavily weighted
towards faster decays, which explains why the decay curve is steeper with a higher r, rate.

While the models appear to work very well here, there is an ambiguity in how the rates are

determined. Namely, only the value of (r,; + r,3) is constrained. For example, we can see in

0

figure 3.12 that the rates r,; = % and ry3 = % provide a good fit to the blue bars which we can

treat as a data set. However, any combination of r,; and r,5 that gives the same combined value

of ryy + 193 = % would give the exact same fit. This means that the rates of {r21 = %,53 =

%} or {r21 = %,rzg = %} would be equally valid fits to the data with no way of discerning

how the rates should be distributed. The ambiguity is even more dire for the r3, rate, which for
this measurement simply has no effect at all! This means that in practice, we would have to
combine a lifetime decay with one or multiple other measurements (for example, a count rate with
a known collection efficiency) in order to discern the individual rates.

The upshot of this exercise is that Monte Carlo and Markov chains can both robustly model the
behavior of an excited state decay according to a three-level model, but the free parameters in the
model allow for ambiguity to enter the attempted fits to data. Ideally a model should then be built
with as few free parameters (or in this case levels) as possible, but an oversimplified model may
miss out on key physics that is at play in the real system. This is ultimately a delicate balance, and

we will see how this scenario plays out for other example measurements in the upcoming sections.
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3.7.5  g® autocorrelation measurement

A g autocorrelation measurement is a common way to confirm to presence of a single defect.
The measurement is performed by tracking the arrival times of all collected photons and then
computing the differences of the times At. Then, the frequency of each At occurring is plotted for
various values of At. For example, a At = 5 ns means that a second photon arrived exactly 5 ns
after the arrival of a first photon. If the At = 5 ns value of the g® curve was very high, this would
mean that photons very frequently arrive 5 ns apart. If only one optical emitter is present, then it
is impossible to emit two photons at the exact same time at At = 0 ns. Therefore, the g®
measurement serves as a reliable tool to check for single emitters, provided that the background
signal is low or averaged enough to be subtracted away. Generally, we say that if the dip of the g
curve at t = 0 goes below 0.5, then there is only one optical emitter, whereas a dip above 0.5
indicates multiple emitters. Since each photon count means that the system was just in the excited
state, the g® curve is also equivalent to mapping out the excited state population versus time. This
value can be readily simulated using the 3-level model, and we will show the continuous and
discrete Markov chain results here. Although using a Monte Carlo simulation is also entirely

possible, it does not add to the discussion so we will forgo it here.

Continuous Markov chain
When using the differential equations from the continuous Markov chain, this time we cannot

set 11, to zero. This means that we use the equations in their original form:
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ny(t) = —7112n1(£) + 115 (8) + 13113(8) (3.67)
ny(t) = 11211 () — 1215 (t) — 1231,(8) (3.68)

n3(t) = 12305 () — r31n3(8) (3.69)

By setting the initial conditions set at the ground state:

n,.(0) =1, n,(0) =0, nz(0) =0 (3.70)

We can obtain a solution to the excited state population n, (t) using Wolfram Mathematica, which

gives:
rip exp (— 3 (a + bt) <a3(—1 +exp(bt)) +731b (1 — exp(bt) + 2 exp (5 (ay + b)t)))
ny(t) = 2a.b (3.71)
Where:
Ay =Ty + 11 + 13 + 1731 (3.72)
Ay = T1Ta3 + T31(T12 + o1 + 723) (3.73)
az = 131(121 + T3 — T31) + 1122133 + 734) (3.74)

b= ’a% — 4a, (3.75)

Even though we are still only using a 3-level model, we see that the introduction of a pumping rate

results in much more complicated behavior!

Discrete Markov chain

Similarly in the discrete case, we must leave the r;, rate in, meaning the stochastic matrix is:
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1 —r,dt r1dt 0

P = < erdt 1 - erdt - rzgdt rzgdt ) (376)
T‘31dt O 1 - T31dt

For demonstration purposes, we will use this matrix to show the behavior of the excited state

population for various pumping powers. We can use the same rates as in the lifetime section:

0.05 0.01 0.01
1 = F’ T3 = F: 31 = K (3.77)

For the pumping rate r;,, we can select a large range of rates to show the limiting behavior. In this

case we will sweep over the following rates:

10~7 10!
ns . ns (3.78)

T2 =

The result of this sweep is shown in figure 3.14.
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Figure 3.14 | g curve for a variety of pumping powers. Each blue curve represents a different
pumping rate ranging from 107/ns to 10/ns. Each curve is normalized to the y-axis value at t = 100
ns. Equations 3.76 and 3.77 are used for this model.

In the high-power limit, the excited state population n, becomes populated immediately and
then decays exponentially. In the low power limit, the excited state population steadily grows until
it reaches its equilibrium level. In between, it is possible for n, to first reach a local maximum and
then decay from there. When this local maximum is observed experimentally, we refer to it as a
"bunching" of the g curve. In this model it is induced by the high pumping power, but it can also
be due to significant rates into the intersystem crossing level n;.

It is worth noting that in experimental measurements negative values of t are also included,
which corresponds to taking the graph in figure 3.14 and reflecting it over the y-axis. When this
mirrored graph is obtained, the full-width half maximum of the g curve should approximately
correspond to the excited state lifetime, although there is no simple relation and the width can be
varied significantly by the pumping power. In figure 3.14, for example, the low power y = 0.5
value is at ~11.5 ns, which does not have a clear relation to the radiative excited state lifetime of
20 ns nor the total lifetime of 16.7 ns.

Lastly, the addition of the pumping rate r;, as a free parameter in this model will significantly
increase the uncertainty of the four individual rates. This means that while the best fit curve from
the continuous Markov chain result will likely fit a measured g? curve quite well, the rates cannot
be determined confidently from this measurement alone. This effect was also seen in the lifetime
model, and in a similar fashion a combination of multiple independent measurements would be

needed to determine the system's rates uniquely.
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3.8 Five-level model for the divacancy

Given the complexity of the previous section's results, it seems the last thing we would want to do
is add more levels to our 3-level model. However, if we want to incorporate spin-dependent
phenomenon, it is necessary to include spin sublevels in the ground and excited states. At a bare
minimum this results in two added levels to give a 5-level model. The rate picture for this model

is shown in figure 3.15.

Figure 3.15 | 5-level model of the VV°. In this diagram, n, and n, represent ground states with
differing spin character, n; and n, represent corresponding excited states, and ns represents an
overall nonradiative state as a combination of the inter-system crossing singlet state and ionized
states of the VV°. Rates between these levels are denoted by 7; T

Here, n, and n, are meant to represent spin states in the ground state, with n, = {m, = 0} and
n, = {my = +1} as one possible assignment for the VV° system. The states n; and n, are then
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the corresponding spin states in the excited state. The state ng is again an intermediate state for
nonradiative decay, which in most cases refers to the ISC.

With a 5-level system, the differential equations from a continuous Markov chain would be
cumbersome. Likewise the Monte Carlo model takes much longer to simulate dynamics. So for
the following discussion, we will rely solely on the discrete Markov chain. As before, the

probabilities in the stochastic matrix of the discrete Markov chain will follow the relation p;; =

r;; - dt. This then gives the off-diagonal elements of the discrete transition matrix as:

P11
Ty, dt

P = T31dt
141 dt

T'51dt

r1dt
P22
r3,dt
Ty dt
rgdt

r13dt
Ty3dt
D33
Ty3dt
rg3dt

r1adt
Ty4dt
T34dt

P44
T54dt

ri5dt
rzsdt\
r3sdt (3.79)
r45dt)

Pss

According to the picture in figure 3.15, many of these rates can be set to zero:

P11
0

T31dt
0
T51dt

pP=

0
D22
0
Tyodt
rgodt

r13dt
0
P33
0
0

0
Ty4dt
0

Psa
0

0
0
r35dt
Tysdt
Pss

(3.80)

Filling out the diagonal elements by imposing that each row sums to 1 then gives:

1 —r3dt 0 r13dt 0 0
( 0 1 —ry,dt 0 Ty.dt 0 \’
P = r31dt 0 1— (131 +1r35)dt 0 r3sdt (3.81)
0 Ty dt 0 1 — (1, + 1y5)dt Tysdt
r5,dt Tgodt 0 0 1— (rg, +150)dt

Lastly, we can make some simplifications to the model by saying that the excitation rate will

be the same regardless of the spin state. This means that ;3 = r,,. We can also assume that the
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radiative decay rate will be approximately the same regardless of spin state, so r3; = 14,. With

these assumptions we now have 6 rates in a 5-level system.

1 —ry3dt 0 r13dt 0 0
( 0 1—ry,dt 0 r13dt 0 w
P = r31dt 0 1— (131 + 1r35)dt 0 r3sdt (3.82)
0 r3,dt 0 1— (131 + 1y5)dt Tysdt
Tg,dt r5pdt 0 0 1— (151 + 152)dt

With this model, we further lose the ability to infer each individual rate with low uncertainty,
but we gain the flexibility to describe more phenomenon. For example, the addition of the rates
T35, 145 and 7g,, 751 allows for an asymmetric decay from the excited state to the ground state
through the ISC. It is this asymmetry that allows for effects like off-resonant spin initialization and

readout. We will examine these examples in the following sections.

3.8.1 Spin initialization

In optical spin initialization, an off-resonant laser pumps the ground state spin levels continuously
until an equilibrium of spin population is reached. Due to the asymmetric branching of spin states
both to and from the ISC, this results in a predominantly m; = 0 spin population. Typically, spin
initialization fidelities are in the range of ~95% for the VVV°. To see how this could be the case, we
can use the stochastic matrix above to directly to simulate the "n;" (mg = 0) and "n," mg; = +1)
levels over time. The caveat to this is that the equilibrium levels will also have partially occupied
ng, Ny, ng levels. To translate these levels to the ground state once the pumping laser is switched

off, we can simulate the system for a given time with laser excitation, then remove the pumping
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rate r;3 and continue to time evolve the system. As example parameters that give a high

initialization fidelity, we can use:

0.01 0.05 0.001
3 =—", 31 =" T35 = )
ns ns ns
~ 0.005 0,05 001 (3:83)
Tys = s Ts1 = s’ Ts2 = s

The result of this simulation is given in figure 3.16.
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Figure 3.16 | Simulated spin initialization in 5-level model. The 5-level system is evolved with
the stochastic matrix in equation 3.82 and rates in equation 3.83. The pumping rate is turned off at
t = 2000 ns. After this initialization pulse, most of the population is in the n, state.

The majority of the model's time is spent pumping the defect, then the "kink™ at t = 2000 ns
corresponds turning off the pumping rate and letting the system relax. The spin initialization
fidelity is then given by the final population of the mg = 0 state n,. In this case, we start with a

m, = +1 state and reach a mg = 0 initialization of ~96%, which is close to what is observed

experimentally. This high initialization was possible through the 5x larger branching of the mg =
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+1 excited state to the ISC (r,5) and the 5x larger preferential decay to m¢ = 0 from the ISC (r5,).
Incidentally, the time scale of the initialization is also the right order of magnitude, as we typically
pump anywhere from 3 to 10 microseconds for off-resonant spin initialization. While this set of
parameters gives the correct results, it is by no means a unique solution the rate dynamics. With 6
free parameters at play, there are many ways to achieve this same end result. As with the lifetime
and g examples, we would need to combine this result with many other measurements if we
wanted to truly fit the rate parameters. Nevertheless, this result is a demonstration of how spin

initialization can arise due to the dynamics of the ISC.

3.8.2  Spin readout

The complement to off-resonant spin initialization is off-resonant optical spin readout. The idea of
spin-dependent readout contrast is that under off-resonant pumping, the m, = 0 state will usually
give more total counts in a given readout window than the m; = +1 state. In reality this difference
is only ~5% based on optically detected magnetic resonance (ODMR) scans, but is readily
observed with averaging of experiments. The reasons for this contrast are founded in spin-
dependent ISC dynamics, similar to spin initialization. Another important point is that after a very
long readout time, the relative differences in total counts will shrink due to spin initialization
effects with off-resonant excitation. This means that in practice the readout window should be
truncated to maximize contrast. This is sometimes at odds with collecting as many photons as
possible to lower averaging time, so a balance must be struck based on the timing of the

experimental sequence and the time available to run experiments. However, the upshot of this
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measurement is that it allows for optical readout of spin states, which is used nearly in all
experiments.

To map the photon counts from a defect to the Markov model, we focus on the cumulative total
excited state populations over time. Here we are using a cumulative sum of populations since a
constant excited state population implies a constant stream of photon counts and an increasing
overall count. The key point to this measurement is to see a noticeable difference in counts when
starting in the m, = 0 state as opposed to the mg = +1 state. Here we can observe this effect using

the same rates as the previous section:

005 0,001 0005 005 001 e
£ A 85 = s = T 1T s 52 = 7 '

In figure 3.17, we plot the "readout contrast™ vs readout time. Here readout contrast is defined
as the total counts collected with a m; = 0 start (here n,) divided by the total counts collected
withamg = +1 start (here n,), where again counts are mapped to the total excited state population
ns + n,. So a y-value of 1.05, for example, means 5% more counts from mg = 0. Lastly, similar
to the model of the g® measurement in section 3.7.5, we can perform this simulation over various

pumping rates ;3. In this case we use:
107* 107!

g
ns ns

(3.85)

3 =

This gives the following result:
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Figure 3.17 | Spin readout contrast with off-resonant optical excitation as a function of
readout time. Readout contrast is determined by the ratio of excited state population when starting
inn, (mg = 0) compared to n, (mg; = +1). Pumping rates between 10-%/ns and 10"Y/ns are shown
here. The readout contrast is highest for a low optical pumping power, which must be weighed
against the lower photon counts obtained.

In this model, we can see that it is actually beneficial to use a lower pumping power in order to
maximize readout contrast, which here peaks around ~7%. This would come at the cost of
increased averaging since the counts would not be as high. In the high-power limit, a smaller
readout contrast of ~1-5% is still observed. At short readout times, the contrast "bunches" at a
maximum value before decaying. This slight peak in counts is also observed experimentally, see
for example figure 4 in reference [3]. Thus, in general this model agrees well with experimental
results. Similar to spin initialization, the mechanism for readout contrast lies in the asymmetric
branching of spin states to and from the ISC level.

If desired, we could add even more levels to this Markov model. In reality the VV° has 3 ground

state spin levels, 6 excited states, 2 ISC states, and 2 charge states for a total of 13 levels. However,

the rates from such a model would be nearly impossible to determine even with many
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measurements, or at the very least many assumptions would need to be made. Perhaps more
importantly, including all levels is not even necessary to describe experimental results. We've seen
that relatively simple 3- and 5-level models are enough to accurately simulate lifetime decays, g
autocorrelation measurements, and off-resonant spin initialization and readout. Thus, the Markov

model is a powerful tool that lends itself naturally to the isolated electronic levels of the V.

3.9 Collection efficiency calculation

It cannot be overemphasized how important photon collection efficiency is for nearly all
experiments performed in our lab. As single VV° experiments have developed in the past ~5 years,
so has the need for higher collection efficiencies. This becomes crucial for both single-shot readout
experiments and the scalability/feasibility of remote spin-spin entanglement.

In this section, we will work through a calculation for the free-space collection efficiency from
a c-axis divacancy in silicon carbide. This calculation should also be generalizable to objectives

with other NA’s and to the NV center in diamond.

3.9.1 Initial setup

When using a free-space objective for collection, it is important to keep in mind the definition of
numerical aperture NA for a lens. Using figure 3.18 as a reference, the NA is defined as the sine

of the angle 6 that is formed with the focal length and radius of the lens. This NA will be left as a
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free variable in the upcoming calculations, but generally takes values of ~0.6-0.9 depending on the

objective.

Figure 3.18 | Definition of angle @y, for a lens or objective. The angle 6y, directly determines
the numerical aperture, NA, of the lens or objective. Here f is the focal length and D is the diameter
of the lens or objective.

The equation for NA is:

NA = ngy;,-sin Oy, = sin Gy, (3.86)

Some example NA's for objectives used in active setups are:

100x objective, 0.85 = sinfyy,, Oya = 58.2° (3.87)

50x objective, 0.65 = sinfy,, Oy = 40.5° (3.88)

For the purposes of this calculation we will refer to this angle as 8y 4. With this, the general ray

optics picture is as follows:
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Figure 3.19 | General ray optics picture of collection of light from a point source emitter in
silicon carbide. The angles 6s;- and 6,4 obey Snell's law. Only light that is emitted into the solid
angle of the objective will be collected.

Snell's law gives the relation between 8y, and ;. :

nair Sin HNA = nsic Sin esic (389)

Where the indices of refraction are ng; = 2.58 at ~1100 nm and n,;- = 1. To get the collection
efficiency, we want the ratio of two powers:
1) The power emitted by a dipole emitter in a full sphere around the emitter in the SiC (i.e.
100% collection efficiency).
2) The power emitted by a dipole emitter in the collection cone within the objective NA, after

accounting for reflection/refraction at the SiC/air interface.

We will start with a basic calculation and then add corrections until the full picture is obtained.
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3.9.2  Collection efficiency for an isotropic emitter in
free space

Here we are assuming a uniform emitter in free space. Without any refraction, the collection
efficiency will be given by the ratio of the solid angle subtended by the emission cone to the solid

angle subtended by full emission (4= for a full sphere):

__ solid angle of cone with Oy,

E = .
= (3.90)
We can substitute the solid angle from a cone as:
solid angle of cone with 8 = 2m(1 — cos 0) (3.91)
So:
2m(1 —cos @ 1——cos@ 0
g = 2 na) _ *2 = sin? (ﬂ) (3.92)
4r 2 2
.2 HNA
CE = sin T (393)

Note that in the limiting case of 8y, = 90° this gives the correct CE = 0.5 since we would be

collecting from the top half of the defect.

3.9.3  Dipole emission in free space

The divacancy is not an isotropic emitter, but rather a combination of two emission dipoles. For a

c-axis VVV® which this calculation is based upon, the two emission dipoles are oriented along the x

140



and y directions perpendicular to the c-axis (z-axis). We will ultimately find that there is in fact no
modification to the collection efficiency due to this emission profile, but it is still worth verifying.
For this situation it is useful to recall the time-averaged Poynting vector for a dipole oriented along

the z-direction:

2,4\ cin?
o Uopow™\ sin“ 6 w energy transfer

& — OS] == = — — 3.94
(S)z <32nzc> 2 " L] m?2  unit area - unit time ( )

To determine a collection efficiency, we will be integrating the appropriately defined Poynting
vector over the angles defined by the collection cone of the objective. In this case, since we are
integrating over all azimuthal angles, the two VV? dipoles can be treated as a single dipole in the

Xy plane due to rotational symmetry. A sketch of dipole orientations is given in figure 3.20.

A divacancyis composed of c-axis VV? emission profile
two orthogonal emission
dipolesthat are each
orthogonalto the divacancy
axis. E.g., x/y for a c-axis VVC.

= O - oA

Dipole radiation isstrongest
and circularly symmetric in
the plane normal to the
dipoledirection

Free-space objective Collectioncone

y-axis dipole emission
into objective

Figure 3.20 | Sketch of dipole orientations. A dipole optical emitter will have a rotationally
symmetric emission profile. The VV° emission consists of two orthogonal dipole emission
profiles. For a c-axis VV?, these dipoles are both parallel to the top SiC surface. Any photons
emitted outside of the solid angle of the objective will be not collected.
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The simplest orientation for a single dipole in the xy plane would be along the y-axis. In this

case the y-axis Poynting vector gets modified by changing the sin? 6 to a cos? ¢:

2,4 2
2 [Hopogw™\cos“ @
(S)y = (3271%) el (3.95)

To get a power from the Poynting vector, we must integrate it over an area. We will integrate
over all azimuthal angles (0 to 2xn) but only integrate the polar angle from 0 to 8,4 since this is
what is encapsulated by the objective. This represents the power emitted into the upwards cone

with angle 8,4 without accounting for refraction:
21w ~Opna . . 2w Ona .
Piipote = f f ((S), - dA) = f f (S)y|r? sin 6 dodé¢ (3.96)
0 0 0 0

The prefactors in (§)y will be dropped since we are ultimately after a relative power compared to

the collection over all angles, so:

2w rOna 21 Ona
Pyipote f f (cos? ¢)sin 6 dOd¢p = f cos? ¢ dqbf sin@df = m(1 —cosBy,) (3.97)
0 0 0 0

Meanwhile a “full” integral encapsulating all polar angles for dipole emission from 0 to = would

give:

2T T
Paipote,fui < f f (cos? @) sin@dOd¢p = (1 — cosm) = 2m (3.98)
o Jo

So the fractional power within the collection cone of the objective is:
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Pdipole _ (1 — cosOyy) _ 1 —cosByy

Fractional power = xy dipole emission  (3.99)

)
dipole,full 21 2

Which is exactly our collection efficiency:

CE=——""4-
n >

1—cos@ 0
5 N4 — sin? ( NA), xy dipole emission (3.100)

Note that this result is identical to the collection efficiency for isotropic emission. In the
isotropic case, the fractional power would be given by the same procedure except without the

factor of cos? ¢ from the dipole Poynting vector:

2 0 .
Pisotropic _ fo i d¢ fo ¥ sin6 do _ 1 —cosfOyy,
Pisotropicfut [ d¢p [ sin6 d6 2

0
= sin? (%) (3.101)

Fractional power =

6
CE = sin? (%), isotropic emission (3.102)

Which again matches the result from equation (3.93), as expected. Evidently the emission from
a c-axis VV? is sufficiently symmetric that the collection efficiency does not change from an
isotropic emitter. This is almost certainly not the case for a basal V'V’ where symmetry is broken,

but we will continue to focus on the c-axis case for this calculation.

3.94 Effect of refraction

To incorporate the losses from refraction, we use Snell’s law to rewrite the smaller angle 6g;. In

terms of the large angle 6y 4:
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sin HNA) (3.103)

HSiC = sin_l (
Nsic

When accounting for refraction, this is the angle we want to use instead of the 6, 4 used previously.

Substituting this in for 8y, in eq. (2) then immediately gives:

. _1(SInByy
sin (—nSiC )
(3.104)

0
CE = sin? (%) = sin?

1 in Gy 4\
cE=5(1- J1 - (Sm ”A) (3.105)

3.9.5 Effect of Fresnel reflection

For reflection at the SiC/air interface, we need to incorporate the Fresnel equations. Modifying our

earlier picture to include transmission T and reflection R, we now have:
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Figure 3.21 | Ray optics picture with Fresnel transmission T and reflection R. The angles ;.
and 6y, are determined by Snell's law. A fraction of the light at the SiC/air interface will be
transmitted while the rest will be reflected, denoted here by T and R.

The Fresnel equations then give:

2

2
R = Ngic €OS Ogic — \/1 — (ngic sin Og;c)? R — nSiC\/l — (¢ sin O;c)? — cos Og;c (3.106)
s - 1] p — - .
Nsic €08 Osic + 4/ 1 — (ngic sin Og;c)? Nsicy/ 1 — (nsic sin B5;¢)? + cos Og;c
T, =1—R,, T,=1-R, (3.107)

Where Rq, R, represent the reflectance for s-polarized or p-polarized light and Ty, T;, represent
the transmission for s-polarized or p-polarized light. Here we are interested in the transmission.

Assuming 50/50 polarization, we have:

T, +T

— p_
Tang(6) = > = 1 > (3.108)
1 6 —1—( '9)22 J1-( ing)2 o|"
Ngic cos 6 — /1 — (ng;c sin ng; — (ngic sin6)? — cos
Tavg (9) —1-= SiC SiC SiC SiC (3.109)
Ngic €0s B + /1 — (ng;c sin )2 nsicy/ 1 — (Ngic sin0)2 + cos 6
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We will repeat the integrals done in section above, except now we will include this angle-
dependent average transmission factor. We will also only integrate up to 6g;. (instead of 8y,) in

order to account for refraction. This gives:
2 rOsic 2 (Osic
Paipore = f f [(S)y | Tang (6)dA = f f [(S)y |Tavg (@)% sin6 dOd¢  (3.110)
0 0 0 0

The prefactors in (§)y will be dropped again:

Osic

2w Ogic 2
Paipote X f j (cos? P)Tayg(0)sinf dod¢p = f cos? ¢ d¢ f Tawg(8)sin0do  (3.111)
o Jo 0 0

Osic
Paipote * nf Tavg(6) sin 6 do (3.112)
0

And as before, we will divide this result by 2 from Pyjpoe, s (Which does not change) to give

the collection efficiency:

1 (Ysic
CE = Ejo Tavg(6) sinf do, xy dipole emission (3.113)

In the isotropic emitter case, we now have:

2 Osi . Osi .
Pisotropic _ _ Jo T de [ Tayg(8) sin 0 d6 _ S, ¥ Tag (8) sin 6 d@

Pisotropic,full fOZTr d¢ fon sin6 dé 2

Fractional power = (3.114)

1 (Ysic
CE = EL Tavg(6) sinf do, isotropic emission (3.115)
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Here the two collection efficiencies are still identical. Analytically solving this integral with

Tavg(6) is complicated, so we have to turn to numerical results. Using the more common 100x

objective, we have:

100x objective, 0.85 = sin By , Oya = 58.2° (3.116)
And:
N sin BNA
Osic = sin ( ) = 19.2° (3.117)
Nsic

This gives the result:

CE = 1.6%, for 0.85 NA objective (3.118)

3.9.6 Addition of a solid immersion lens

A solid immersion lens (SIL) is a popular option to increase collection efficiency by eliminating
the effects of refraction at the SiC/air interface. The silicon carbide (or any refractive material) is
molded into a hemisphere with the optical emitter at its center. In this geometry, every emitted ray
is at exact 90° to the surface. At this normal incidence for a SIL, we have 85;- = 0, so the Fresnel

coefficients become:

Ngic — 1 2
R. =R, = , T.=T,=1—R.=1—R 3.119
s 14 Nic +1 s P s p ( )
Which evaluates to:
Ry =R, = 0.1948 (3.120)
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T, = T, = 0.8052 (3.121)

This is now a constant factor. We also raise the upper bound of the integral from ;. t0 Oy 4
since there is no refraction due to the normal incidence at the SiC/air interface. This gives the

improved collection efficiency of:

CE = 19.1%, enhancement =~ 12 x, for 0.85 NA objective (3.122)

Note that this improvement assumes perfect positioning of the emitter at the center of the SIL.

In real life, the improvement might only be a factor of ~5-8.

3.9.7  Summary of results

A summary of these results is presented in the plots below, which plot collection efficiency as a

function of collection angle.
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—— free space —— SiC + no SIL + no Fresnel
SiC + SIL + Fresnel 0.035| —— SiC + no SIL + Fresnel
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Figure 3.22 | Collection efficiencies as a function of collection angle for different geometries
and assumptions. Note that for all of these graphs, the result is equivalent regardless of whether
the emitter is isotropic or a dipole. The graph on the right is the same as on the left, except with a
rescaled y-axis to get a better sense of scale for the non-SIL geometries.
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The main upshot of this calculation is that the relatively low collection efficiency of an optical
emitter in silicon carbide can be significantly improved through a SIL, the NA of the objective, or
even anti-reflection coatings at the surface.

Further collection efficiency losses in current silicon carbide setups are tabulated below. Note

that the exact loss of many of these factors is not known and so can only be approximated.

Source of loss % of light transmitted
Ray optics losses from VV? to objective 1.6% (from above calculation)
(0.85 NA)
Transmission through objective ~90%
All optics (mirrors + dichroics + etc.) ~80%
between objective and single mode fiber
Coupling into single mode fiber ~50%
SNSPD baseline efficiency at PSB (~1200- | ~70%
1250 nm)
SNSPD loss collecting unpolarized vs. ~75% (assuming PSB emission is unpolarized)
polarized light

Table 3.1 | Sources of optical collection loss. Collection efficiency losses are approximated from
various sources.

Total transmission = 1.6% - 90% - 80% - 50% - 70% - 75% = 0.30% (3.123)

Also listed below are possible sources of improvement:

Source of improvement Improvement (200% means 2x improvement)
SIL 1200% (with perfect alignment)
Adaptive optics system ~150%
Higher 0.9 NA objective ~120% (if SIL is already included)
MW mixing of mg = —1into 0 200%
Anti-reflection (AR) coatings ~125% (from equation 3.121, assuming + SIL)

Table 3.2 | Sources of optical collection gain. Potential collection efficiency gains are
approximated from various sources.

Total posisble improvement = 12-1.5-1.2-2-1.25 = 54 (3.124)
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Thus, with a highly engineered SIL-based system, the collection efficiency could improve from
~0.3% to ~15%. Further improvements from here would have to employ integrated optics

components (on-chip waveguides, tapered fibers, grating couplers, etc.).

150



Chapter 4

Equipment and software

Now that we have outlined many of the theoretical foundations for the divacancy, it's time to
discuss the hardware and software that goes into actual experiments. This chapter will be organized
into hardware, software, and a discussion of pulses sequences which are used to run actual

experiments. Optical diffusion and curve fitting are discussed at the end of the chapter.

4.1 Hardware

In order to provide full control over a divacancy spin, it is necessary to interweave multiple systems
at once. Microwave application requires GHz frequency electronics with nanosecond timing
control. Optical addressability necessitates the use of multiple lasers carefully aligned on an optical
table with specialized wavelength-dependent mirrors, lenses, and filters. Readout of infrared single
photons employs the use of a superconducting nanowire detector. Low sample temperatures
require the use of helium-based cryogenics while maintaining optical and microwave access. There
is a tremendous amount of physical hardware that goes into each of these systems. In this section,
we will broadly categorize them into electronics, optics, and cryogenics, and cover the salient

features and connectivity that allows experiments to happen.
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411 Electronics

In our lab the main goal of electronics equipment is to create synchronized experiments with
optical and microwave signals on nanosecond time scales. A typical configuration of equipment

is shown in figure 4.1.

Output
laser

Resonant AOM
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Figure 4.1 | Electronic block diagram of a typical VV° setup. Signals from the AWG gate
microwave output from the SRS signal generator and the excitation lasers through the AOMs. The
gating of these components is synchronized through a collective pulse sequence that is uploaded
from a lab computer and run on the AWG.

We use an arbitrary wave generator (AWG) for timing control of experiments. Depending on

the setup we use either a Tektronix 5014c or a Zurich HDAWG, although both are fully capable
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of running our experiments. In either case the AWG outputs either digital TTL voltages or
continuous analog voltages. TTL is typical used for on/off gating, whereas analog signal is using
for control of 1Q modulation and resonant AOM control as shown in the figure. The Stanford
Research Systems (SRS) signal generator is used as our source of MW signal. It has a variable
output power up to 16.5 dBm (~4.5 mW) in a frequency range of DC to ~6 GHz. The | and Q
quadratures of the signal are controlled with the AWG and the output power is controlled with
direct commands from a computer. Microwave switches are gated by TTL pulses and selectively
turn signals on or off. The amplifiers we use are typically designed for signals in the ~1 GHz to 4
GHz range, although lower frequency amplifiers in the 1-1000 MHz range are also used for nuclear
spin experiments. The power gain is up to 37 dBm with a max input of 0 dBm. Amplifiers with
less gain (which are much less expensive) are available but may result in insufficient powers to
effectively drive spin rotations.

As an aside on power units, the conversion between Watts and dBm is given by:

P(dBm)_30)

Pay) = 10075 (4.1)

Where dBm can be positive or negative or even zero. The units of dBm are commonly used because
gains and losses can be calculated quickly as additive or subtractive factors. Some common

examples of power are:
1mW = 0dBm, 1W =30dBm (4.2)

From any starting power, each +10 dBm corresponds to a factor of 10x gain or loss in power.
So, a 30 dB gain from an amplifier would be factor of 10”3 increase in power. Under max power

for our model, a 0 dBm input signal would go to 37 dBm which is ~5W. Microwave signals travel

153



along either SMA or BNC cables. BNC is typically used for longer distance transmissions, whereas
SMA is typically used after the amplifier close to the sample.

Acousto-optic modulators (AOM) and electro-optic modulators (EOM) are used to gate off-
resonant and resonant lasers, respectively. The EOMs are used for resonant lasers due to their
generally faster rise and fall times on the nanosecond time scale, which becomes relevant when
exploring excited state dynamics. The general operating principle of an AOM/EOM is that it uses
acoustic waves or electric fields to induce a change in index of refraction in the device material,
which in turn forms a sort of diffraction pattern for outgoing light. In practice this means that the
incoming beam is deflected to a first order beam with the AOM/EOM on, which is used to address
the sample. In this manner, gating the AOM/EOM on or off with gate the laser reaching the sample
as on/off.

For readout, photons from the sample are fed to an SNSPD which outputs small voltage spikes
to eventually be read out by data acquisition device (DAQ). A schematic of the relevant readout

electronics is given in figure 4.2.
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Figure 4.2 | Schematic of readout electronics. The photons from the sample travel through a
single-mode fiber to the SNSPD, which outputs small mV voltage spikes. These pulses are
converted to TTL and sent to the DAQ, which is queried by a computer to obtain the photon counts.

Here, a pulse converter turns the SNSPD output to TTL pulses that can be read by the DAQ.
The intermediary MW switches are used to selectively gate which channels of the DAQ receive

counts, with the option of receiving none at all (e.g., during spin initialization).

4.1.2  Optics

A simplified schematic of how lasers and dichroic mirrors can be configured in a \VV\° optical setup

is shown below.
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Figure 4.3 | Optical excitation and collection paths for a basic VV° setup. The left figure
represents excitation, while the right figure represents collection. Here blue represents the charge
reset 705 nm laser light, green represents 905 (or 975) nm off-resonant excitation laser light, red
represents resonant laser light, and yellow represents photoluminescence from the defect.
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For alignment purposes, it is often useful to work with only 90-degree angles that are aligned
with the holes of the optical table. Generally the beam is constrained to be at a constant height
throughout the path, which allows for fine tuning to be limited to the x/y directions. The choice of
mirrors can be important to minimize reflection losses, so should be checked based on the
wavelengths of interest (especially for collection). In practice there are multiple options that allow
for 95+% reflection. We typically use 1-inch diameter mirrors mounted on manual two-axis kinetic
mounts. Two mirrors can direct a beam angle and displacement. A pair of mirrors is sometimes
called "bow-tie" configuration due to the crossing of the laser in some geometries. Translating a
beam without changing its angle is referred to as "beam walking" and involves deterring the beam
angle with the first bow-tie mirror, then compensating for this deflection by adjusting the second
bow-tie mirror. Generally speaking, greater separation between mirrors allows for finer control of
the beam, at the cost of occupying more space on the optical table. The collection path is usually
optimized with photoluminescence with a high density VV° ensemble control sample. Then finer

tuning is done with a less dense ensemble, and then again with a single defect control chip. During
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this process, it is important to properly filter out the excitation laser (often with multiple filters) to
ensure one is not simply maximizing laser scatter.

The choice of dichroic mirrors is very important and determines what wavelengths will reach
the sample and what wavelengths will reach the collection path. Spectral filters can be used to
select which wavelengths of light to be detected. Typically, we collect photons in the phonon
sideband (PSB) of the VV°, which is roughly in the wavelength range of 1200-1500 nm. Thus, a
1200 nm longpass filter is sufficient. Off-resonant lasers are diode lasers typically either at 905
nm or 975 nm. The use of a tunable resonant laser requires a wavemeter for precise measurement
of the laser frequency and a Fabry-Perot cavity to diagnose if the laser is single-mode or
multimode.

To gain automated spatial control of the beam over the sample, we use either a fast-steering
mirror (FSM) with a pair of lenses or two motorized translational stages for x/y control. In either
case, a motorized stage is used for focus control in the z-direction. The FSM offers the advantage
of faster spatial scans, but has the drawbacks of slight collection losses and difficulty of alignment
and imaging due to the two extra lenses involved. Visual imaging of the sample is done with a
white light source and two flip mount pellicles that reflect light into a camera. Usually the imaging
optics are as close to the sample as possible in order to maximize the field of view. Most (if not
all) of our optical setups employ a periscope configuration of mirrors right before reaching the
sample. This is to allow for 3-axis translational control with the motorized stages, and also allows
for an adjustable beam height right before the laser reaches the sample. Our setups currently
employ a near-infrared (NIR) 100x free space objective for both excitation and collection. Here,
the important figures of merit are a large numerical aperture (NA) and a large enough working

distance to image a cryogenically cooled sample through the cryostat window.
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The collection path ends with focusing the free space PL into a single-mode fiber to be fed into
the SNSPD. Fiber coupling can also be used for AOMs and EOMs, either as direct fiber coupled
units or by branching the excitation laser into an "AOM box™ and then fiber coupling back to the

main excitation path.

4.1.3  Cryogenics

To obtain the low-temperatures needed for most experiments, we currently use closed-cycle
helium cryostats from Montana instruments. These cryostats come in different model types which
are primarily distinguished by the size of the sample stage. In general, a larger sample stage allows
for more/larger samples at the cost of a longer cooldown period. Regardless of the model, we are
able to typically reach steady temperatures of ~4-5 K for weeks or months at a time. The closed-
cycle design offers a significant advantage over flow cryostats, which must be frequently
replenished (every ~3-4 days) with liquid helium in order to stay operational.

In addition to reaching low temperatures, there are multiple crucial aspects of any cryostat in
our experiments:

1) Optical access for excitation/collection

2) DC and Microwave access

3) Low vibrational noise to mitigate interference with optical focus onto a sample.

All three of these benchmarks are achieved by the Cryostation standard (S) series, which are
used frequently in our labs. A figure of the s50 model and sample chamber is shown in the figure

below:
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Optical access

Microwave access

Figure 4.4 | Montana Instruments closed-cycle cryostat. Pictured here is the Montana
Instruments Cryostation s50 model. The upper left is the unit as a whole, the upper right is the
exposed sample chamber, and the bottom image shows optical access through windows in the
sample chamber and microwave access through customizable patch panels. Not shown here are
custom vacuum attachments that are used to connect to external turbo pumps.

The basic idea of operation is that a closed-cycle helium condensation/vaporization cycle is
used to cool a platform stage, which in turn cools "stage 2" and "stage 1" of the sample chamber
before ultimately cooling the sample itself. Luckily, silicon carbide has a high thermal conductivity
so direct contact with a copper mount is sufficient to provide cooling. The sample chamber must
be operated under high vacuum (~1e-5-1e-6 Torr), which is achieved through an external turbo
pump at the beginning of cooldowns supplemented by natural cryopumping as the system cools.
The unit comes separate liquid helium hosing and a compressor in order to complete the closed

cycle. We typically store the compressors in a separate cooling closet, although in principle they

could also be located in the lab itself.

159



4.2 Software — Nspyre

For divacancy experiments, instrument control and experimental algorithms are largely
implemented by a custom-made python package termed "Nspyre". This stands for "Networked
Scientific Python Research Environment". In earlier iterations the package was simply "Spyre",
but a networked capability was later added to allow for remote control by lab computers that are
not directly connected to the instruments in use.

In a broad view, Nspyre builds upon the Lantz package in python, which offers "driver"
modules to connect to instruments from many companies (NI, Newport, etc.) through various
physical connections (USB, ethernet, GPIB, etc.). Beyond simply connecting to individual
instruments and issuing commands, however, Nspyre facilitates the synchronization between
multiple instruments needed for real experiments. Individual experiments like ODMR or PLE can
be run through separate "spyrelets” and collected data can be viewed in real time. Live plotting,
data viewing, and a basic GUI are achieved through the pyqtgraph and pyQt5 packages. Remote
control (the "networked" part of Nspyre) is implemented using the pymongo package.

The general use of Nspyre will be presented in somewhat chronological order based on the
steps one takes when running an experiment, with the exception of the "Designing an experiment"
section. In practice, experiments are coded in python before Nspyre is launched, although it is

possible to run basic instrument commands in a built-in command line.
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4.2.1  Launching Nspyre — Widgets.main.py

The module to launch the main menu GUI is currently located under nspyre\nspyre\widgets as the
module "main.py"”. Running this file from a command terminal (under the appropriate conda

environment) will bring up the following menu:

B python O ] x

Start Instrument Server

Start Instrument Manager

Start View Manager
Start Spyrelet Launcher

Data Explorer

Figure 4.5 | The ""main menu' of Nspyre as of July 2021. The five options from this main menu
are used to launch experiments, control instruments, and view data.

Itis from this menu that all experiments and instrument commands are run. The pymongo server
is launched from a separate command terminal with the command "mongo”. We will assume the
remote server is operating as intended and focus on the five options of the Nspyre main menu and

the creation of spyrelet experiment files.
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4.2.2  Connecting to insttuments — Instrument
Server

The first option on the main menu is "Start Instrument Server". Clicking on this button will cause
a separate command line terminal to open and display text for each loaded instrument. Which
instruments the program attempts to connect to is determined by the configuration file
"config.yaml", which contains key information for setting Nspyre parameters. As a basic
demonstration, the configuration file stores the devices in a list where each entry contains the
appropriate the Lantz driver class for the instrument and the physical connection mechanism, as

shown below:

device list:

sgl:
- lantz.drivers.stanford.SG396
- [tcpip: XXX .XXX.X.XXX]

daqg:
- lantz.drivers.ni.simple dag.Read DAQ
- [Devl]

solar mot:
- lantz.drivers.toptica.MotDLpro

- ['COM5', 1]
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Certain instruments will require additional steps to enable connection before running Nspyre.
For example, we use a USB server that must be launched manually on startup and separate software

to connect to the Toptica tunable laser and wavemeter.

4.2.3  Viewing instruments — Instrument Manager

Provided that the instrument server has successfully connected to all desired instruments, one can
view these instruments in the Nspyre GUI by clicking the "Start Instrument Manager" button on

the main menu. This will pull up a menu similar to the one shown below:
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Figure 4.6 | Instrument Manager menu. Various instruments and parameters are displayed in an
interactive GUI. Parameters values can be set using the green return arrow and refreshed using the
blue circular arrows.

The parameters of a particular instrument can generally be categorized into float values and
Boolean values, both of which can be set and toggled in the GUI. Setting values on instruments

directly can be used to explore different conditions when running experiments. For example, one

may be interested in running the same ODMR experiment under a variety of microwave powers.
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4.2.4  Designing an experiment — Spyrelets

The structure of each experiment is determined by user-defined classes called "spyrelets"” to be run
in the spyrelet launcher. Each class is inherited from a parent Spyrelet class located in the
spyrelet.py module. Important elements to be filled in or overwritten are shown below with

comments:

class Spyrelet():
# A dict with the names and associated class of the devices
# required to run this spyrelet

REQUIRED DEVICES = dict()

# A dict with the name and associated class of the sub-spyrelet
# required to run this spyrelet

REQUIRED SPYRELETS = dict()

# A definition of the parameters that are used as arguments

# to the main/initialize/finalize functions.

# These are used both to generate a launcher GUI and to enforce
# units at call time.

PARAMS = dict ()
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# An extra dictionary, which can be defined by the user at

# initialization time. This can store anything the users want

CONSTS

mwiren

A few

= dict ()

notes about the spyrelet class:

This is the class you need to subclass for making
experiments.

All devices used in the spyrelet must be listed in the
REQURIRED DEVICES dict

All sub-spyrelet must also be listed in the

REQUIRED SPYRELETS dict

Upon instantiation the class will check the  init
arguments devices and spyrelets to make sure they
satisfy these requirements

For higher performance we will store the data internally
as a list instead of a dataframe. Quicker to append to

a list.

def main(self, *args, **kwargs):

"""This i1s the method that will contain the user main

logic. Should be overwritten"""

raise NotImplementedError
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def initialize(self, *args, **kwargs):
"""This is the method that will contain the user initialize
logic. Should be overwritten"""

pass

def finalize(self, *args, **kwargs):
"""This is the method that will contain the user finalize
logic. Should be overwritten
This will run even if the initialize or main errors out

pass

The functions that must be overwritten are the main, initialize, and finalize functions, although
other functions can be included. As an example, the TaskVsTime spyrelet is used to measure
photoluminescence counts vs time and has some of the shortest code among the different spyrelets.

The relevant code is included below:

class TaskVsTime (Spyrelet) :
REQUIRED DEVICES = ({

'dag': Read DAQ,

PARAMS = {
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'channel': {'type':str, 'default': 'DAQl/ctr2'},

'time per point': {'"type':float, 'units': 's',},
'iterations': {'"type':int, 'positive':True},
}
def read(self, time per point):
if self.ttype == 'CI':
cnt = self.dag.read(self.tname, 1)
time.sleep (time per point)
val = self.daqg.read(self.tname, 1)[0] - cnt[O0]
return val/time per point
if self.ttype == 'Al':
clock rate = 8000
samples = int (time per point*clock rate)

return np.mean(self.dag.read(self.tname, samples) [0])

def main(self, channel, time per point,
start t = time.time ()
iterator = count() if iterations ==
range (iterations)

for i in self.progress(iterator):

iterations=100) :

'inf' else

val = self.read(time per point.to('s') .m)

self.acquire ({

't': time.time()-start t,
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'val': wval,

def initialize(self, channel, time per point,
iterations=100) :
self.tname = self.name + ' task'
self.dag.new task(self.tname, [channel])
self.ttype = self.dag.get task type(self.tname)

self.dag.start (self.tname)

def finalize(self, channel, time per point, iterations=100):
self.dag.stop(self.tname)

self.dag.clear task(self.tname)

Here, the main/initialize/finalize functions are properly overwritten, and there is an additional
read function defined and used in the main function. Of course, more complicated experiments
that interface with more equipment will have much longer spyrelet classes, but the basic structure
remains the same. In this way any experiment can be designed with user-defined logic and loaded

into the spyrelet launcher menu, which will be discussed in the next section.

4.2.5  Running an experiment — Spyrelet Launcher
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Clicking the "Spyrelet Launcher" button on the main menu will bring up a new GUI window with
all spyrelets loaded. The dropdown menu at the top of this window can be used to select which

spyrelet to view. An example for the FSM scan is shown in the figure below:

57 python - m} X

Function linspace

start =30 pm
stop 30 ym
num 300

endpoint v

Function linspace

start -30 ym
stop 30 uym
num 300

endpoint Vv

dag_ch Devijctr2

Sweeps 10
acq_rate 5kHz

pts_per_pixel 10

Figure 4.7 | Spyrelet launcher window. Shown here is the fast-steering mirror (FSM) scan
experiment, which rasters the laser across the sample and collects photoluminescence from each
point. The top drop-down menu is used to toggle between different spyrelets. Experimental
parameters are set in the GUI and the experiment is initiated with the run button. For example,
here the start/stop indicates the size of the raster window and num gives the number of points to
collect on that axis.

The different parameters of the particular experiment can be set by the options in the spyrelet
menu. The run button will start the experiment, after which the button toggles to "stop™ to terminate

the experiment. After an experiment has been run, the save button can be used to save the collected
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data. Lastly, in the configuration file the elements of the experiment_list collection determine

which spyrelets to load, as sampled below:

experiment list:
taskvtime:
class: nspyre.user.taskvstime.TaskVsTime
args: {device alias: {daqg: dag}}
taskvline:
class: nspyre.user.taskvsline.TaskVsLine
args: {device alias: {'sg':'sgl'}}
taskvfireq:
class: nspyre.user.taskvsfreq.TaskVsFreqg
args: {device alias: {'sg':'sgl'}}
fsm scan:

class: nspyre.user.taskvsism.TaskVsFSM

4.2.6  Viewing data — View Manager and Data
Explorer

The last two options in the Nspyre main menu are "Start view manager" and "Data explorer”. Both
of these options will bring forth a data viewing window, with the view manager for current live
data and the data explorer for past saved data. In both instances, an interactive graph is displayed

as demonstrated in the figure below:
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Figure 4.8 | Viewing window for the Nspyre view manager. An example spatial scan from a
fast-steering mirror (FSM) raster is shown here, with defect identifiable bright spots corresponding
to one or multiple divacancies.

In the viewing window it is possible to interactively scale the graph and set markers for
coordinates of interest. After an experiment is initiated by hitting the "run” button in the spyrelet

launcher, the view manager will show the accumulation and averaging of data in real time.

4.3 Pulse sequences
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The structure of each experiment is determined by the specific "pulse sequence™ that is run on the
AWG. Here, the pulses refer to the periods of on/off behavior for various instruments. For the
majority of experiments, the variables of interest are optical initialization, spin manipulation,
resonant excitation, and optical readout. Each of these variables corresponds with a physical
instrument which is gated according to the pulse sequence. Optical initialization is typically
performed with off-resonant lasers, spin manipulation with AC microwave fields generated from
a stripline or wire bond, resonant excitation with a resonant tunable laser, and readout with an
SNSPD.

There are several distinguishing factors that make a pulse sequence unique. As a first step,
generally sequences can be either "continuous wave" (CW) or pulsed. A CW sequence has all of
its components in a fixed state of on or off without any switching with time. Additionally, when
microwaves are involved the sequences can either be "two-trace" to compare signal with/without
microwaves or "single-trace™ if only signal with microwaves is being measured. A single trace
sequence corresponds to one curve being plotted and a two-trace sequence corresponds to two
curves being plotted, after which we may be interested in taking a difference for comparison. When
two traces are involved the sequence can be split into two "halves"” for comparison, whereas the
second half is simply repeated in a single-trace sequence. Finally, the variable that is being swept
in the sequence is a fundamental factor that determines what type of measurement is being taken.

Regardless of the sequence structure, we always have photon counts as the dependent variable
on the y-axis. The x-axis is the independent variable that is being swept in the pulse sequence.
Generally speaking, if microwave frequency is being swept then the sequence is some sort of
ODMR measurement (run with the Taskvsfreq spyrelet). If laser frequency is being swept, the

sequence is most likely some sort of PLE measurement (run with the Taskvslaserfreq spyrelet). As
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we will see, some sequences are identically constructed with the only difference being what
variable is swept. Lastly, the pulse sequences outlined here are by no means a comprehensive
collection of all possibilities, but hopefully they give an intuition for the key factors in designing

an experiment.

4.3.1 Measuring microwave transitions — ODMR

Optically detected magnetic resonance (ODMR) combines optical initialization and readout with
microwave rotations into a single measurement that allows us to experimentally characterize the
microwave transitions of the ground state. It is a tremendously powerful technique for
characterizing defects and identifying defect type, and is often the first step towards more in-depth
measurements. The central idea is to measure either an increase or decrease in photoluminescence
(PL) from a defect or ensemble defects when applied microwaves are on resonance with a ground
state magnetic transition (e.g., mg = 0 & mg = +1). In this way, one can obtain the exact

microwave frequencies that cause these transitions to occur.

We will review three types of ODMR in this section:
e Off-res CW ODMR
e CW resonant ODMR

e Pulsed resonant ODMR
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There are different types of ODMR measurements that can be run, but we'll start with the most
basic, and in some respects, the most informative measurement: Off-res CW ODMR. An outline

of the pulse sequence is given below:

Off-res CW ODMR

Off-res 905 ) No second sequence

nm laser il (repeat the first)
Microwaves Rotate

Resonant

laser
Detector
Readout
(SNSPD) eacou

Figure 4.9 | Off-res CW ODMR pulse sequence. The highlight on the blue "rotate” portion
indicates that the microwave frequency is being swept as the independent variable. Note that this
sequence can be run either as above or as two separate traces with and without microwaves.

Due to the continuous nature of this sequence, it technically is not necessary to have gating
components like an AOM or MW switch to run this experiment. In fact, loading a pulse sequence
onto an AWG is not necessary either, as no actual gating is occurring. The off-resonant excitation
is constantly on, microwaves are constantly being delivered to the sample, and the detector is
constantly reading out PL/photons (with a longpass filter to filter out laser scatter). The only
experimental control that is truly required is to sweep the microwave frequencies that are being
output from the signal generator. This sweeping is denoted in the figure by the blue highlight
surrounding the "rotate” pulse.

The lower experimental requirements for CW sequences make them appealing options for

setups that are not fully built. Additionally, the simplicity of this measurement makes debugging
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issues more straightforward if the results are not as expected. At the cost of this experimental
simplicity comes conceptual complexity. For instance, if the spin is constantly being initialized,
why would we ever expect to measure a spin rotation? The answer is that initialization does not
happen instantaneously, even under constant illumination. In the periods between optical
excitation and ISC decay that cause initialization, the spin is being uniformly rotated due to the
presence of microwaves. This competition between spin initialization and spin rotation results in
a steady state equilibrium spin orientation. The closer the microwaves are to being on resonance,
the more this equilibrium shifts towards a rotated spin state. For detuned microwaves, the
equilibrium will be closer to the polarized spin state.

How the spin state maps to a photoluminescence contrast depends on the divacancy in question.
For the (hh) VV?, the m, = 0 state serves as the "bright" state, meaning that microwave rotations
to m; = +1 will manifest as less PL. For the (kk) VV° the situation is reversed, where the m; = 0
state is in fact the "dark state” and more PL is measured in the m; = +1 states. In the (kh) VV?, a
mixture of both behavior is seen. The |—) state is the brighests, followed by the |0) state, and then
the |+) state as the darkest. A figure of off-res ODMR for single VV%'s displayed this behavior is
shown below in figure 4.10 [2]. Note that due the constant signal from the off-resonant laser, the

contrast is this measurement is typically only ~5-10% and so more averaging is required.

176



1.00

0.96

0.92

T

1.04

(kk)

1.00

1.05

Relative photoluminescence

kh
1.00 hy

0.95
1.20 1.25 1.30 1.35 1.40 1.45
f(GHz)

Figure 4.10 | Off-res ODMR contrast for single VV° defects. Adapted from [2]. When off-
resonant excitation is used, the (hh) V'V displays a negative ODMR contrast, the (kk) VV° displays
a positive ODMR contrast, and the (kh) V'V displays both positive and negative ODMR contrast.
Contrast levels are typically ~5-10%.

The next sequence, CW resonant ODMR, is still a continuous sequence but employs the use of

a resonant laser + a red 705 nm laser in place of the 905/975 nm off-resonant excitation laser. A

schematic of the pulse sequence is shown below:
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CW resonant ODMR

Recharge . No second sequence
705 nm laser Llme L (repeat the first)
Microwaves Rotate

Resonant

Excite
laser

Detector

(SNSPD) Readout

Figure 4.11 | Pulse sequence for CW resonant ODMR. The blue highlight on the "rotate” pulse
indicates that microwave frequency is being swept as the independent variable. Note that this
sequence can be run either as above or as two separate traces with and without microwaves.

The role of the 705 nm red laser is to "recharge" the divacancy to its neutral charge state in the
event that the resonant laser ionizes the divacancy. This mechanism is also in place for the 905/975
nm laser, but the added benefit of 705 nm (besides more efficient recharging) is that its contribution
to optical excitation is negligible. This means that any photon counts collected can be attributed to
excitation from the resonant laser. This ultimately provides a much higher contrast signal than off-
res ODMR, as there is no longer a constant background signal from the off-resonant laser being
continuously on. In this way, the many purposes of the single 905/975 nm laser have been
separated into two lasers.

Here, the resonant laser is tuned to the (mostly) cycling transition of |0) — |E,) or |0) — |Ey).
Without microwave mixing between the |0) and |+1) (or |+)) ground states, this continuous
excitation will eventually pump the defect into a nonzero spin state and photoluminescence will
stop. When applied microwaves approach a transition frequency, the spin states become mixed

and photoluminescence is observed. With this mechanism, the use of a resonant laser ensures that
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the counts are always higher on microwave resonance. This means that the defect-dependent
contrast signal seen with off-res ODMR is lost, with the benefit of significantly higher contrast
levels.

The last type of ODMR frequently used in experiments is the pulsed version of resonant
ODMR. Here it is necessary to have a well-calibrated microwave pi pulse (which will be discussed
in the next section) in order to run the sequence most efficiently. This can sometimes result in a
chicken-or-egg scenario. Calibrating a pi pulse requires the correct MW frequency, which can be
obtained through pulsed ODMR, which in turn needs a calibrated pi pulse, leading to circular
requirements. This is usually resolved either by using an off-resonant ODMR sequence or simply
iterating between pi pulse calibration and pulsed ODMR to dial in the parameters. A schematic of

the pulsed resonant ODMR sequence is shown below:

Pulsed resonant ODMR

Off-res 905 3 5
Init Init
nm laser
Microwaves T Wait
pulse
R t
esonan Excite Excite
laser
Detect
(:NES;S; Readout Readout

Figure 4.12 | Pulse sequence for pulsed resonant ODMR. The blue highlight on the & pulse
indicates that microwave frequency is being swept as the independent variable. This sequence can
alternatively be run as a single trace where only the first half of the sequence is repeated, which
would provide a 2x speedup for data acquisition at the cost of losing the no-MW comparison
signal.
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Here, the initialization, rotation, and readout portions of the sequence have now been separated.
This means that the SNSPD can be gated to collect photons only during the resonant excitation
period, which helps aid with contrast. MW rotation is now no longer competing with a
simultaneous initialization pulse, meaning that an initialized |0) state should fully rotate to either
|+1) for c-axis VV%s or |+) for basal VV's. Pulsed resonant ODMR may take longer to collect
due to less overall collection time, but it boasts the highest contrast levels of all sequences. When
off-resonant initialization is used, the contrast is ~95%. When resonant initialization is used (not
shown here) the contrast is ~99% [39,43]. When the |0) — |E,) or |0) — |Ey) resonant transition
is used, the pi pulse will rotate into a non-cycling spin state and thus result in a loss of counts. This
means the contrast sign will be negative, regardless of defect type. Due to the high contrast levels,

pulsed ODMR is usually reserved for high-precision measurements or paper-quality data.

4.3.2  Measuring optical transitions — PLE

Photoluminescence excitation (PLE) measurements involve sweeping the frequency of a
narrowline excitation laser on an optically active defect. When the defect photoluminesces, the
laser is in resonance with an excited state optical transition. Therefore, this measurement can be
used to map out the transition frequencies between the ground and excited states. PLE, in
combination with ODMR, provides clear evidence of a color center defect and also helps
categorize the defect type. In contrast with ODMR, however, PLE is usually only performed with
single defects. When an ensemble of defects is present, the excited state's high sensitivity to local
strain and electric field results in the overlap of many PLE lines which combine to give a

featureless "hump" of signal that does not provide much information [1]. Similar to ODMR, there
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are CW and pulsed version of PLE. It can also be run with or without the presence of microwaves,

which are used to reveal the optical transitions of the nonzero spin sublevels.

We will review three types of PLE in this section:
e Pulsed PLE (ho MW)
e CWPLE

e Pulsed MW PLE

The simplest version of PLE involves no microwave application, although it is still a pulsed

measurement so timing electronics are necessary. An outline of this pulse sequence is given below:

Pulsed PLE (ho MW)

Off-res 905 . No second sequence
Init (repeat the first)

nm laser

Microwaves

Resonant

Excite
laser

Detector

(SNSPD) Readout

Figure 4.13 | Pulse sequence for pulsed PLE with no microwaves. The sweeping of the resonant
laser frequency is denoted by the red highlight surrounding the "excite" pulse.

Here, sweeping the resonant laser frequency will result in counts only when it is on resonance
with an optical transition. Since there are six excited states, one may expect there to be six PLE
peaks. However, this is not the case for this sequence. Spin initialization polarizes the spin state to
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mg = 0, for which there are only two excited state transitions to |E,.) (higher energy) or |Ey) (lower
energy). Since these spin zero transitions can vary widely with local strain, this sequence is
frequently used as an initial characterization of the excited state transitions.

A continuous version of this sequence is possible, but the off-res 905/975 nm laser must be
replaced with a charge init laser of 705 nm light to limit background counts in a similar fashion to
CW resonant ODMR. In fact, the pulse sequences for CW PLE and CW resonant ODMR are
identical! The key difference is that the laser frequency is being swept for PLE as opposed to

microwave frequency for ODMR. The CW PLE pulse sequence is shown below:

Recharge . No second sequence
705 nm laser Slpe L (repeat the first)
Microwaves Rotate

Resonant )

Excite
laser

Detector

(SNSPD) Readout

Figure 4.14 | Pulse sequence for CW PLE. The red highlight on the "excite" pulse indicates that
optical frequency is being swept as the independent variable. Note that this sequence can be run
either as above or as two separate traces with and without microwaves.

Similar to CW resonant ODMR, running this sequence technically does not require timing

components such as the AWG, AOM, or MW switches. In practice, however, these components

are usually well established before one attempts to do single defect experiments. Since this
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sequence does not feature any explicit spin initialization and constantly rotates the spin state, it is
possible to detect all six excited state transitions outlined in chapter 2.

Lastly, PLE can be run as a pulsed sequence, as given below:

Pulsed MW PLE

Off-res 905 . .
Init Init
nm laser
. T .
Microwaves Wait
pulse
R t
esonan Excite Excite
laser
Detect
(:NES(I;[(;; Readout Readout

Figure 4.15 | Pulse sequence for microwave-assisted pulsed PLE. The red highlights on the
"excite" pulses indicate that optical frequency is being swept as the independent variable. This
sequence can alternatively be run as a single trace where only the first half of the sequence is
repeated, which would provide a 2x speedup for data acquisition at the cost of losing the no-MW
comparison signal.

Here, the spin initialization and subsequent pi pulse combines to initialize the spin into either
|+1) for a c-axis VV° or |+) for a basal VV°. In this way, the first trace directly compares signal
from nonzero spin states to signal in the second trace from spin zero states [3]. Since the
{lA1),145), |E,), | E5)} states are not cycling and thus do not emit many photons, their PLE peaks
will be comparatively very weak. In practice this sequence is sometimes forgone in favor of CW

PLE due to these low counts, but it is still frequently used when there is not access to a gated 705

nm laser.
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4.3.3  Pipulse calibration

Lastly, pulse sequences can be designed to calibrate certain elements of an experiment to be used
as parts of other sequences. The most common calibration is that of a pi pulse between spin states,
which for the VVV° usually means |0) < |+1) or |0) & |+). We will review the two main types of

pi pulse calibration in this section:

e Power pi pulse calibration

e Time pi pulse calibration

The sequence for power pi pulse calibration is shown below:

Power pi pulse calibration

Off-res 905 . ;
Init Init
nm laser
Microwaves Rotate Wait
R
esonant Excite Excite
laser
Detector
(SNSPD) Readout Readout

Figure 4.16 | Pulse sequence used for calibrating a power pi pulse. The variation of power is
represented by the red highlight on the microwave "rotate” pulse. This sequence can alternatively
be run as a single trace where only the first half of the sequence is repeated, which would provide
a 2x speedup for data acquisition at the cost of losing the no-MW comparison signal.
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Here, a "power pi pulse” refers to a spin rotation where the duration of the microwave pulse is
kept constant but the power the microwaves are increased until a full pi rotation is achieved. This
can be convenient as the total length of the pulse sequence can be kept fixed, which makes the
AWG sequence simpler to design. The resonant laser is set to a cycling transition at either |0) —
|E,) or |0) — |Ey). Note that this sequence is nearly identical to pulsed resonant ODMR, with the
key difference of sweeping microwave power instead of microwave frequency. The calibration of
the pi pulse is achieved by selecting the power that results in maximum photoluminescence
contrast, which is negative in sign here.

Conversely, the sequence for time pi pulse calibration is shown below:

Time pi pulse calibration

Off-res 905 . .
Init Init
nm laser
Microwaves Rotate iy Wait
R t
esonan Excite Excite
laser
Detect
(:NES(I:JI;; Readout Readout

Figure 4.17 | Pulse sequence used for calibrating a time pi pulse. The varying time duration of
the microwave rotation is represented by the black arrow. This sequence can alternatively be run
as a single trace where only the first half of the sequence is repeated, which would provide a 2x
speedup for data acquisition at the cost of losing the no-MW comparison signal.

In a time-based pi pulse, the microwave pulse is kept at a fixed power and varied in duration.

This time-based measurement is the more "traditional” form that is used to demonstrate, for
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example, Rabi oscillations. It is otherwise identical to the power pi pulse calibration, so both forms

are used interchangeably.

4.4 Optical linewidths and spectral
diffusion

When collecting PLE scans, the full-width half-maximum of each excitation peak is an indication
of the divacancy's local environment. In an ideal case, these optical linewidths are sufficiently
narrow to individually address the spin sublevel transitions. In many cases, however, broadened
linewidths cause the transition frequencies to overlap and excitation selectivity is lost. The other
consequence is that the generation of indistinguishable ZPL photons for remote spin-spin
entanglement becomes greatly limited. [40]

The main culprit for broadening is a fluctuating charge environment that causes Stark shifting
of the excited state energies. We refer to this effect as "spectral diffusion”. Since the excited state
is much more strongly affected by electric field than the ground state [25], local charge fluctuations
result in changes in transition energies. As these stochastic changes are averaged over many
experiments, the excitation frequency will appear to have a broad range, even if it remains narrow
for any one particular experiment. The fluctuating charges are in turn caused by optical excitation,
which allows for charge traps in the silicon carbide to become photoionized and collectively
"scramble™ to a new configuration and this a new electric field at the defect. The time scale of this
effect is not well characterized, but it becomes faster (and thus broader) under higher laser powers

and is present under a wide range of off-resonant wavelengths from ~300-1000 nm.
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The measured PLE linewidth has a broad range of values depending on the SiC sample and

divacancy preparation procedure. The narrowest possible linewidth is set by the lifetime of the
divacancy of T = 15 ns, which corresponds to fryum = 2—11” ~ 10 MHz. In practice the linewidth

is usually in the range of ~100's of MHz for intrinsically doped SiC with divacancies >1 micron
below the surface. Generally speaking, divacancies created with electron irradiation give narrower
linewidths than those created with ion implantation, which we attribute to the lessened crystal
damage (and thus formation of charge traps) from electron irradiation. When ion implantation is
used, the linewidths are usually broadened by another 200-300 MHz. As long as the linewidth
remains below ~1 GHz then the optical transitions are usually resolved.

Naturally, we wish to limit the effects of spectral diffusion as much as possible. One recent
approach to this problem is to incorporate doping in the SiC in order to create a built-in electric
field and stabilize the charge traps. This approach has shown impressive results for PIN doped
diodes, which are capable of reaching lifetime-limited linewidths [43]. Using the same idea of
static electric fields, it is also possible to apply voltages directly to pads on top of an intrinsically
doped SiC chip, which also evacuates charge traps and gives linewidths close to the lifetime limit
[31].

To gain some context on the effects of doping, the optical linewidths as a function of doping
configurations is given in figures 4.18 and 4.19. In all configurations listed, it is important to note
that neutral divacancies only exist in intrinsically doped material. In this way, the doping layers

confine where divacancies can exist in the z-direction.
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Figure 4.18 | Optical linewidths for thin doping heterostructures. SiC of different doping
configurations are either electron irradiated or *2C ion implanted in order to create divacancies.
For all configurations the N-type doping is achieved with 1e18 cm™ nitrogen dopants, the P-type
doping is achieved with 1e18 cm3 aluminum dopants, and the intrinsic I-type regions have <1e15
cm residual dopants. The frequencies indicate measured optical PLE linewidths.

~100-200 MHz (hh), (kk)
~1 GHz ~100-300 MHz ~300-400 MHz (kk)
~10-20 MHz with appliedV AppliedV does not help ~20 MHz with appliedV
o (o] o

4 4 J

400 nm P-type
5 um P-type
° 20 um
_ 10 pm ‘. : I-type ‘ '
4 m
Electron irradiation I-type H ‘ '
I-type
Bulk N-type
Bulk N-type Bulk HPSI

188



Figure 4.19 | Optical linewidths for thick doping heterostructures. SiC of different doping
configurations are either electron irradiated or *2C ion implanted in order to create divacancies.
For all configurations the N-type doping is achieved with 1e18 cm nitrogen dopants, the P-type
doping is achieved with 1e18 cm aluminum dopants, and the intrinsic I-type regions have <1e15
cm residual dopants. The frequencies indicate measured optical PLE linewidths.

The overall trend is that the near surface divacancies in figure 4.18 have broader linewidths
than those that are situated deeper in the lattice. Additionally, the proximity to P-doped regions
may have a detrimental effect, as the PIP heterostructure has a significantly wider linewidth of ~5
GHz than the equivalent NIN heterostructure. At the same time, the absence of any doping for a
thin 400 nm intrinsically doped layer has the worst linewidths of all configurations. It is difficult
to say whether surface proximity or P-type proximity plays a bigger role here, but the addition of
thin 100 nm layers of N-type doping appears to provide some degree of screening of field
fluctuations at the defect. Unfortunately, the sub-micron PIN heterostructure has yet to be tested.
Given the detrimental effect of nearby surfaces, the formation of nanostructures can pose an
obstacle for maintaining thin linewidths. This issue is discussed more in chapter 7.

For thicker doping structures, divacancies that are located >1 micron away from any surface
have the benefit of generally thinner linewidths. A PIN configuration in conjunction with this
seclusion provides a built in electric field that further narrows linewidths, as showcased in the
work in [43]. Interestingly, for the geometry of 5 um P-type and 1 um I-type, additional applied
electric fields do not provide any further narrowing. This is in contrast to the other two
heterostructures, where external applied fields can bring the optical linewidth close to the lifetime

limit of ~10 MHz. Evidently, the submicron proximity to doped regions results in a broadening

effect that cannot be overcome with applied fields alone.
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4.5 Curve fitting with python

Fitting curves to collected data can almost universally by done using the built in scipy.optimize
curve fit function. This function uses least squares regression to fit a user defined function to given
data points, where the parameters of the fit function are varied to minimize the sum of the squared
residuals.

The SciPy curve fit function outputs two main results labeled as "popt" and "pcov". The popt
output is a 1D list containing the optimal values for the parameters in the fit function. The pcov
output is a covariance matrix for the fit values in popt. The square root of each diagonal entry in
pcov gives the one standard deviation error of the corresponding fit value in popt.

Additionally, the optional "sigma™ parameter is typically a 1D list containing the standard
deviations of error in each y data point. Then, if the optional "absolute_sigma" Boolean parameter
IS set to true, then these sigma values are taken at face value and will affect the covariance output.
Otherwise, a false value for this parameter means that only relative values in sigma will be
considered, with an overall scaling constant applied to all sigma values such that the reduced chi
square value is equal to one.

It is worth briefly discussing where the error bars come from for individual data points in actual
experiments. If we perform n experiments of a measured quantity x, then the average value and

variance of this quantity will be given by:

x|
Il

1 n 1 n
Dn, st=— Y (=B (4.3)
n . 12

=1 =1

Where the use of n — 1 for the sample variance s2 instead of n is known as Bessel's correction.

Thus, the error bars in our experiments are entirely determined by the number of experiments that
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are averaged over. Ideally then, the number of experiments is extremely large to minimize error,
but this can take prohibitively long for lengthy pulse sequences (e.g., the long waiting times in a
T1 measurement).

Here is a simple application of the SciPy fit function using a linear fit to example points. Here

the data points don't have any physical meaning, and are just used for demonstration purposes.

from scipy.optimize import curve fit

def fit fxn(t, a, b):

f = a*t+b

return £

PO guess = [1, 0] # initial guess of parameters

x data = np.array([1l, 2, 3, 4, 5])

y data = np.array([0.5, 3, 6.5, 7, 9])

popt, pcov = curve fit(fit fxn, x data, y data, pO0=p0 guess)

y fit = fit fxn(x data, *popt)

print (popt) # best fit [a, b] values

print (np.sqgrt(np.diag(pcov))) # gives 1 standard deviation errors

of [a, b] wvalues
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plt.plot (x data, y data, color="blue', linewidth=1.0,
label="data')

plt.plot (x data, y fit, color='red', linewidth=1.0, label='fit')
plt.legend()

plt.show ()

This gives the following result:

—— data

1.0 1.5 2.0 25 3.0 3.5 4.0 4.5 5.0

Figure 4.20 | Example result of SciPy fit function using a linear fit. A simple linear fit (red) to
pseudo-linear data points (blue) are fit with using the SciPy curve_fit function using least squares
regression. More complicated fits can be carried out with user-defined fit functions such as
sinusoids, exponentials, or logarithms.

The choice of which fit function to use for the data depends on the type of experiment being run.

Some common fit functions are given below with some example applications.

Lorentzian function

Used for optical spectrum for narrow PLE, narrow ODMR peaks, and quality factor peaks
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The Lorentzian function is a single peaked function given by:

y2

(x —x0)? +y?

f(x) = A( > +v, 2y =FWHM (4.4)

Where A is the height of the peak, y is a parameter related to the width of the peak, and x,, y,

gives the center of the peak. The y offset may be due to a noise floor, for example.

Gaussian function
Used for optical spectrum for broad PLE and broad ODMR peaks

The Gaussian curve or normal curve is given by:

X — xg)?
f(x) =A-exp (— (ZTO)> + Yo, 2v2In2y = FWHM (4.5)
where
A = peak height, X, = peak center, y < width (4.6)

Generally speaking, the Gaussian function can be used for any variable that displays a normally
distributed noise. In situations where the central limit theorem applies this function can also be

used as a fit.

Exponential decay

Used for excited state lifetime, T; decay

f(x) =A-exp <— x—x) _TxO)> + Yo (4.7)
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A "stretched" exponential adds a power to the exponential argument and takes the form:

b
f =A-exp<— <(x;x0)> >+y0

This appears in, for example, a T, CPMG decay.

Sine decay

Used for T, decay, decay of Rabi oscillations

f=—4- (exp (— (;)n)) - cos(wx + @) + yo

Sine squared decay

Used for T, decay

Ry
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Chapter 5

Cavity Quantum
Electrodynamics

Quantum electrodynamics (QED) is the study of interactions between quantized electromagnetic
fields and quantized matter such as single atoms. When the atom is placed inside of a resonant
cavity, the study of the threefold interaction between the atom, field, and cavity is referred to as
cavity quantum electrodynamics (CQED). The main takeaway is that there can be nontrivial
interactions between these systems that fundamentally alter the behavior of each system
individually. [47,48] In some cases, one can no longer think of the systems as being completely
separate and the quantum states of the atom and cavity field fuse together to form polariton states.
Such interactions are typically reserved for the "strong" coupling regime, whereas different
behavior is observed with weaker coupling. Quantifying and analyzing this behavior is the main
purpose of CQED.

In this chapter we will outline some of the fundamental variables and results from CQED, which
we can then apply to the VV°-cavity system in chapter 7. The discussion in this chapter will
therefore be general and not focus on any particular real-life implementation. Nevertheless, the
results can be very powerful in understanding how these systems behave in various coupling

regimes.
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5.1 Cavity QED parameters

In the broadest setting, CQED entails a single "atom" or emitter of radiation inside of a cavity with
a resonant frequency. An electromagnetic field is added to the cavity and becomes confined while
interacting with the atom. Here, the "atom™ can be any optical emitter (such as a color center, a
quantum dot, or a literal trapped atom) with a two-level system and the electromagnetic field and
cavity can be at any frequency. The most common frequencies are either optical/near-infrared or
microwave. This frequency can also dictate the size of the cavity involved, with higher frequencies
corresponding to smaller structures. However, perhaps the simplest cavity design is the Fabry-
Perot, which uses two inward facing mirrors to confine light. A general schematic of a cavity

system is shown in figure 5.1, following the structure of a Fabry-Perot.

Atom Cavity
le)

K |photon)

BN Lo

Figure 5.1 | Basic schematic for cavity QED. Here g represents the coupling between the atom
and the cavity, y is the spontaneous emission rate of the atom, and « is the leakage rate of photons
out of the cavity. The atom has a ground state |g) and an excited state |e), and the cavity has a
resonant frequency of w,..; which may or may not be matched with the atomic transition energy.
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Here the important parameters of interest g.y, k are included in the figure. These are the main
parameters used in CQED analysis, although there are several others that are arguably just as

important. Well review these parameters individually in the upcoming sections.

5.1.1 Mode volume V

The mode volume of a cavity roughly represents the space that the fundamental optical mode
occupies. It appears frequently as a variable in other quantities like the atom-cavity coupling

constant g and the Purcell factor F. The general definition of mode volume is given by:

T e®|E®|

Vmoae = 2 CEDD (5.1)

Where e(7) is the permitivity of the material as a function of position (7), E (#) is electric field as
a function of position (#), and max(e(#) E (¥)?) is the maximum value of e(#)E (7)? in the cavity
mode.

As a comparison, it is useful to recall the total energy stored in an electromagnetic field as:

1 1
Upyy = —f (6|E|2 + —|B|2) v (5.2)

2 )y u

Taking the maximum electric field amplitude, this is equivalent to:
1
Ugy = Efmax(eIEIZ) av (5.3)
14

With this in mind, we can rephrase the mode volume somewhat more broadly as:
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total energy Ug

Vinode = (5.4)

maximum energy density - max(py)

So whatever the mode volume is, we should be able to multiply it by the maximum energy density
to obtain the total energy contained in the cavity mode.
For nanophotonic structures, mode volume is typically expressed as a multiplicative factor of a

cubic wavelength in the cavity material:

3

A
Vinode = Xvor * ( c:v) (5.5)

where x,,,; is a unitless multiplicative factor, 1.4, is the wavelength of the resonant cavity mode,

and n is the index of refraction of the material. For typical nanophotonic crystal cavities in silicon

3
carbide and diamond, mode volumes on the order of V,,,,4. = 0.5 (%) are achievable [49-60].

5.12  Spontaneous emission rate y

The spontaneous emission rate y denotes the rate of optical emission from the excited state to the
ground state of a two-level system. This system can be an atom, a color center, or any other optical
emitter. Typically spontaneous emission is only observed in the optical regime, as two-level
systems in the microwave regime are much more stable in the excited state. The spontaneous

emission rate can be written as:

U w

~ brehc? (5.6)
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Where p is the electric dipole moment of the transition, w is the frequency of the transition, and e
is the permittivity of the material the emitter is in. This y appears in the exponential decay of the
excited state population:

Co(t)=et (5.7)

Sometimes y is referred to as the Einstein A coefficient. Lastly, we can relate the spontaneous

emission rate to the excited state lifetime by simply taking a reciprocal:
1
T = ]—/ = lifetime (5.8)

Experimentally, a higher emission rate (or shorter lifetime) results in a higher count rate, which
generally speeds up readout, averaging of experiments, and entanglement protocols. This means
that usually a higher emission rate is preferred. When taking an excitation/emission spectrum of

an emitter, a higher emission rate will also correspond to a broader optical linewidth.

5.1.3  The electric dipole moment p

The electric dipole moment u dictates transitions between the ground and excited states of a two-
level system. It is closely related to the spontaneous emission rate y, as it is used in the formula to
calculate y. Sometimes u is phrased as a "matrix element”, or frankly, any other jambalaya of the
words "transition electric dipole moment matrix element operator™. To partially see why this is the
case, we can examine the driven electric field Hamiltonian from the two-level system Hamiltonian

from chapter one:

199



0 degEo cos wt) __ ( 0 2hQ cos a)t) (5.9)

Hrieta = = <degEo cos wt 0 2hQ cos wt 0
Here, the elements d.,E, = 22Q determine the magnitude of the off-diagonal drive and thus
the rate of Rabi oscillations with Rabi frequency Q. In this case, the dipole moment d., is exactly

the same as u.

p=deg (5.10)

So, due to u's placement in an off-diagonal matrix element and its direct tie to transitions
between two states, these words appear frequently in alternative names for u. Of course, for
systems that are coupled with magnetic fields, it is possible to have an equivalent magnetic dipole
matrix element. This appears when dealing with m, = 0 « +1 transitions in the VVV° ground state,
for example. Additionally, any proper dipole moment is in fact a vector, so a slightly more precise

statement for u would be:

il = (d- &) (5.11)

Where & is a unit vector pointing in the direction of the k-vector of the photon or field mode in
the cavity. If one measures the Rabi frequency Q of driven transitions and has the magnitude of
electric field, E, the earlier relation can be used to define u:

2hQ

I (5.12)

u=

Perhaps more common (and accessible) definition, however, is to instead use the spontaneous

emission formula
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V= 6nencs (513)
To define u as:
6mehc3
p= =357 (5.14)

Since y can be measured directly through a lifetime measurement, u can be inferred through
the observed value of y. Finally, dimensional analysis on this equation reveals that u is indeed an

electric dipole moment, with units of Coulomb meters.

[u] = /6nehc3 —[\/eh)ﬁ ] j— +J s -m3- i—\/%z-m3=C-m (5.15)

5.1.4 Quality factor Q, leakage rate K, and finesse F

The effectiveness of a cavity at confining light can be quantified in several ways. For the purposes
of this thesis, we will mostly focus on the quality factor (Q) which increases as light becomes
more effectively confined. In the limit of a perfect cavity where light never escapes, the quality
factor is infinite. In practice this never occurs, as there will always be scattering or evanescent out-
coupling losses as light cycles inside the cavity mode. For nanocavities in the optical/near-infrared
regime, a quality factor of ~100-1,000 is usually considered "low", Q~1,000-10,000 is "moderate"
and Q~10,000+ is "high". Of course this interpretation is highly subjective and depends on the
context of the experiment. For example, even a Q of 1,000 can significantly modify an emitter if
other quantities like mode volume and spatial/spectral matching are optimized. Therefore it is
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important not to become overly fixated on the quality factor alone. Nevertheless, it is worth noting
that the upper limits of optical/NIR Q are on the order of 108-107 for silicon-based optical
nanocavities, providing a high ceiling for these devices. There are several quantitative definitions

of the quality factor, which we will discuss below.

Energy loss interpretation of Q:
A common definition for Q is the ratio of the energy stored in the oscillating resonator to the

energy dissipated per cycle by damping processes:

Energy stored

(5.16)

)
Il

T Energy dissipated per field cycle

Where a field cycle refers to one cycle of the electromagnetic field in the cavity, not the cycle of

a photon completing a round trip in the cavity. If the energy is represented as a function of time,

such that U = U, exp (— (%) t), then the rate of decay (%) defines the quality factor as the

number of field oscillations to reach an energy of e~2 ~ 0.00187 of the initial energy.

Alternatively, the quantity ( ¢

Wres

) is the cavity lifetime, or the time taken for the energy to decay

to 1/e of its starting value. The drawback to these definitions is that it is difficult to directly measure

the energy lost in the cavity, prompting us to use another definition.
Bandwidth interpretation of Q:

When taking transmission or excitation spectra of a cavity as the excitation frequency is varied,

the resulting peak (or dip) can be used to define the quality factor as follows:
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— fﬁ — (‘)res
Af  Aw

Q (5.17)

where f,..s, Wres 1S the resonant frequency of the cavity and Af, Aw is the full-width half-maximum
(FWHM) of the spectrum peak. This relation is also approximately true for wavelength, as shown

below:

_ﬁ‘es_ f;’es _ Ares 1 (/11).2 >: 1 <)'1/12>
A Ares

A fith (£-L) ek ¥ (5.18)

Q

Where f;, f,, represent the two frequencies at the FWHM and A,, 4, the two wavelengths at the

FWHM. In situations where 4,..; > AA (i.e. Q = 100), then this simplifies to:

(5.19)

This bandwidth definition of Q is what is usually used in practice to measure quality factors.

Leakage rate k:
The decay rate mentioned earlier is more commonly represented by the letter k., as featured in

figure 5.1.

o = Lres (5.20)

So the decay of the cavity can be written as:

U = U, exp(—«t) (5.21)
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Finesse F:

If we wish to phrase energy loss in terms of photon round trips instead of field cycles, then we
would use the finesse instead. In this context, the finesse is defined as the number of photon round
trips (around a microring cavity, for example) for the energy to decay to 1/e of its initial value.
Alternatively, it is the number of trips before the probability of leakage becomes 1/e. In the case
of transmission/reflection peaks that are periodically spaced in frequency, then the finesse can also

be defined in terms of the free spectral range:

Alpsr _ Awpgp

= = (5.22)
A/}wahm A(‘)fwhm

Where the free spectral range AAgsg, Awrgy 1S the separation between consecutive peaks, and the
full-width half-max AAsy pm, Awgypm is the FWHM of an individual peak. This definition is more
common for Fabry-Perot resonators and perhaps microring resonators, but photonic crystal cavities

usually feature only one spectrum peak so the free spectral range does not apply.

5.1.5  Electric field in cavity mode E

The electric field E of a single photon in the mode volume V' of the resonator. This parameter is
important as it is involved in the calculation of the atom-cavity coupling constant g. Generally
speaking, we wish to maximize the electric field of the cavity mode in order to maximize the
strength of light-matter interactions.

Generally, the total energy of an electromagnetic field in a volume V is given by:
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1 -2 1 502
UEMzie.I;/(|E| +Z|B| )dV (5.23)

where e is the permittivity of the medium in which the field exists and pu is its magnetic
permeability. In the simplistic model of a photon in a box, we can say:

1
5 €EhaxV = hwcay (5.24)

Where hw,4,, 1S the energy of the single photon in the cavity. We're usually interested in w4, =
wyres, but this does not necessarily have to be the case. This equation can be rearranged to

potentially give the electric field as:

2hwcqy

E = v classical result (5.25)

However, this classical expression is incorrect by a factor of 2. In the proper gquantization of

electromagnetic field, the correct result is:

hw
E = =z quantized field (5.26)

We will use this second expression going forward.

5.1.6  Coupling parameter g
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The parameter g represents the strength of the interaction between the atom and the cavity. It is
referred to as the atom-cavity coupling constant or simply the coupling constant g. This constant
appears in the interaction part of the Jaynes-Cummings Hamiltonian, which will be discussed in
section 5.2. Ultimately, g is a key parameter to describe atom-cavity-photon dynamics, and it also
represents the vacuum Rabi frequency in the strong coupling regime, which will be shown in

section 5.3. The coupling constant g is given by the equation:

Where u is the electric dipole moment, E is the electric field of the cavity mode, and & is
Planck’s constant. Individually, a large E means that there is a strong interaction between the
optical field and the cavity mode and a large 4 means the ground and excited states of the atom
are strongly coupled by optical fields. It then follows that large values for both of these variables

would lead to strong interactions between the atom and the cavity, which is what g represents.

Note that if we square this equation:

g* = (5.28)

2,.3

H-w hwcay
= , E = 5.29
14 6mehc3 2¢V ( )

Rearranging gives:
6mehc’ hw

2 = ., Er=*Z 5.30
2 ER eV (5.30)
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Then, if we assume the cavity and transition frequencies are the same (w4, = w), then substituting

these into the expression for g2 gives:

1 [6mehc? hw
2 cav
= — 5.31
g h2< w3 y)( 2eV ) (5:31)
3ncdy
2 = .32

This is an alternative way of expressing g in terms of the decay rate y, the mode volume of the
cavity I/, and the resonant frequency of the cavity w. Lastly, sometimes only the substitution for

E is done in equation 5.28, which gives the relation:

_ | Yeav | Wk oo,
g= /ZheV’u_ Shey K &) (5.33)

Where k represents the wavevector of the photon in the cavity.

5.1.7  Purcell factor F and cooperativity C

The Purcell factor F (sometimes P in literature) represents the increase in the radiative rate of an

optical emitter when it is placed in a cavity. This can be represented as a ratio of radiative rates:

_ Vcavity

F=— (5.34)
Ybuik

Where yqypity IS the spontaneous emission rate in the cavity and y,,,x is the spontaneous emission

rate in the bulk material. The Purcell factor can equivalently be represented as a ratio of lifetimes:
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Tpulk
F =

(5.35)

Tcavity

Where T,yk, Teaviey represents the optical lifetime in the bulk or cavity. A Purcell factor for a
cavity matched with an emitter will be greater than 1, which means a higher radiative rate and a
reduced lifetime. However, it is possible to have a mismatched cavity that has the effect of
suppressing emission and reducing the radiative rate. For the purposes of this thesis we will focus
on the former case with enhanced emission. In more detail, the Purcell factor can be expressed by

the following equation:

T

F= < |l_1) ' El > (ﬂcavity>3 +1 (5 36)
|ﬁ||Emax| kl + 4‘Q2 (%{mitter)z) 47T2V n

cavity

Where ji is the electric dipole moment of the emitter, E is the electric field from the emitter, E,,,q
is the maximum electric field from the cavity mode, A;p,, is the wavelength of the ZPL, Acqyi¢y IS

the resonant wavelength of the cavity, Q is the cavity quality factor, V is the cavity mode volume,

-

|2-E|

[ |Emax

2
and n is the index of refraction of the material. The first term ( ) represents spatial overlap

between the emitter and cavity mode, where both the position and orientation of the emitter play
important roles for the overall coupling. The dot product f - E represents rotational alignment

between the transition dipole and optical emission dipole, while the ratio |E|/|Epasx| represents

1
2
<1+4Q2 (lfmitter) >
cavity

represents spectral matching between the emitter and cavity. For higher Q cavities, this factor can

spatial overlap between the emitter and cavity modes. The second term

result in significant losses if the spectral matching is not exact. Therefore most cavity-emitter
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systems have some mechanism to tune either the two components into resonance. With perfect

coupling these two terms become unity, so the Purcell factor becomes:

3 /1’ (Q N .
F=— (—) (V) +1, perfect matching with emitter (5.37)

The simplified expression F « % is sometimes used to highlight the important figures of merit of

a high quality factor with a small mode volume.

Meanwhile, the cooperativity parameter C is usually defined in terms of CQED parameters as:
C=— (5.38)

Loosely speaking. the cooperativity is a measure of the ratio of desired coupling (g) to undesired
coupling (x, y). A cooperativity C >> 1 generally means significant interactions between the atom
and the light field in the cavity, although does not necessarily imply the strong coupling regime.

To relate cooperativity to Purcell factor, we can substitute the earlier expression for g2:

3ncdy
2 — 5.39
g i (5.39)
To give:
2 3mc3 3mc3 3mc3
_g* _ 3ty _ — (5.40)
2ky  2kyw?V  2kw?V zawzl/
3mc? 3mc? 3mA3 1 3
2w3 \V 2(2m)3f3\V 22m)3 \v 4 42 vV

When in a material instead of free space, the wavelength A becomes (4/n) with index of refraction
n:
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o~ G

Note that this closely resembles the perfectly matched Purcell factor F in equation 5.37.

Substituting eq 5.37 equation into eq 5.42 gives:
1
C = 7 (F-1) (5.43)

Or:

F=4C+1 (5.44)

Therefore, the Purcell factor F and the cooperativity C are equivalent within a multiplicative
factor and an additive factor. The additive factor of 1 diminishes at large values of F or C. Since
we substituted the Purcell factor with perfect coupling, the cooperativity inherently assumes that
the emitter and cavity are perfectly matched. However, it would be possible to include the coupling

factors from eq. 5.36 in the cooperativity expression to give:

o2

|i-E| 1 g2 | _

C=|—0= > , imperfect matching (5.45)
|l |Emax| 1+ 4Q7? (%mitter) 2ky

cavity

In practice this is almost never done, but it an important factor to consider when comparing Purcell

factors to cooperativities.

5.2  The Jaynes Cummings Hamiltonian
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The Jaynes Cumming Hamiltonian is used to model the interplay between the atom and an
electromagnetic field in a cavity. In this section we will focus on obtaining a matrix form of the
Hamiltonian and describing its energy eigenvalues. The Hamiltonian is typically written as the

sum of three parts:
Hic = Hatom + Hpiera + Hing (5.46)

Where H,;,n, is the isolated atomic Hamiltonian, ﬁﬂeld is the electromagnetic field Hamiltonian

in the cavity, and H,,, is the interaction Hamiltonian between the atom and the cavity field. These

parts can be individually written as:

Hatom = —5— 0y Hfierqa = hwca-rar Hint =hg(a+ a-I-)(é\'+ +6-) (5.47)

Where:

w, = frequency of atomic transition

w. = frequency of resonant cavity mode
6, = leXel — 1g)gl, Pauli z spin matrix

a' = photon number creation operator
a = photon number annihilation operator

g = atom cavity coupling strength

G, = le)ygl, atomic raising operator

a_ =|g)el, atomic lowering operator

(5.48)

Immediately, it is worth distributing the interaction Hamiltonian:
A, = hg(aé, + aé_ +até, +até.) (5.49)
If we transform this Hamiltonian to the interaction picture, we obtain
Hipe = hg(@6,e-0ct@adt 4 gg_el@ctwadt 4 gt ell@ctwdt 4 gtg e~il-wctwadt) (5 50)
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Using the rotating wave approximation, we can eliminate the quickly oscillating terms to give:
Hine = hg(@6,e-@0ct@adt 4 gt gi-wctwall) (5.51)
Then transforming back to the Schrodinger picture drops the complex exponentials to give:
Hine = hg(aé, + até.) (5.52)

This is the interaction Hamiltonian that is commonly used in practice, and we will also proceed

with this form. This makes the Jaynes Cummings Hamiltonian:

~ _ hwg

Hye = 5 6, + hw.ata + hg(aé, + até.) (5.53)

Shifting to the atomic portion of H;., we should recognize H,1om from the two-level system

outlined in chapter 1:

. hw, = hw,

Aatom =58, ==~ (le)el ~19)(g]) (554)
If we choose the basis:
=10=) lo=1=() (5.55)
Then in matrix form this becomes:
Hatom = %(3 _01) (5.56)

The eigenstates and general time evolution of H,,,,, is the same as outlined on the two-level
system section in 1.4. The field part of the Hamiltonian is more complicated. Here the eigenstates

are represented by the photon number, which in the simplest case of 0/1 photons can be written as:
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photon number, In =0) = (1), In=1) = (O) (5.57)

While this appears to match the form of the atomic basis states, the Hilbert space for photon
number (called a Fock space) can take on any dimensionality greater than or equal to two. In the
general n-dimensional case, the photon number creation and annihilation operators at and & in

matrix form are given by:

0 0 0 0 0 v1 0 0 0
vi 0 0 0 0 0 VvZ 0 0
0 V2 0 0 0 0 0 V3 .. 0 ..
at=| 9 o V3 0 N (5.58)
T, 0O 0 0 0 N
\0 0 0 .. Vn .. / \ /
In the 2D and 3D cases, this would become:
0 0 A 0 1
A-I-: =
a (1 0) , a (O 0) , 2D Fock space (5.59)
0O 0 O 0 1 O
a+=<1 0 0), a:(o 0 ﬁ), 3D Fock space (5.60)
0 V2 0 00 0

This means that the general n-dimensional form of the field part of the Hamiltonian becomes:

0 0 0 O 0
0 1 0 O 0
73 0 0 2 O 0
0 0 0 O n
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Reconciling different Hilbert spaces

The three parts of the Jaynes Cummings Hamiltonian provide us with a bit of a quandary when
we try to combine them. Namely, we are adding Hamiltonians from different Hilbert spaces.
What's more, the n-dimensional Fock space will generally not have the same dimensionality as the
2x2 atomic Hamiltonian. To work around this, we must take appropriate tensor products between
these Hilbert spaces before adding the components together. Each individual operator would then

take the form:

aQ® I, at=a"® 1, (5.62)
n® 0y

6.=1,Q 6 (5.63)

6, =1

Where I, represents the 2-dimensional identity matrix for the atomic component and I,, represents
the n-dimensional identity matrix for the field component. With the definitions for the atomic

raising and lowering operators as:

6 =lgel=()a 0=(] ) (5.64)
6. =ledgl= ()0 D= ;) (5.65)

For demonstration, we can write out the tensor products for the individual operators for the case

of a 2-dimensional Fock space:

1 0 0 0
. . /10 1 0y [0 =1 0 0
az—1n®az—(0 1)®(0 _1)— 0 0 1 0 (5.66)
0 0 0 —1
00 10
L 0 1 100 (0 0 0 1
a‘“®12_(0 0)®(0 1)_ 00 0 O (5.67)
00 0 O
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(5.68)
(5.69)
(5.70)

Which gives the following for the product of operators:

(5.71)

O O O
O O - O

o O OO

- O OO
S O OO

S O OO

o O O O
S O OO
S O O -

O O - O

Il
<
<

(5.72)
(5.73)
(5.74)

2D Fock space
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So in total, for the 2-dimensional Fock space:



The same approach can be applied to the 3-dimensional Fock space, which gives:

@ 0 0 0 0
2 g
wa
0o —= 0 0 0 0
2
wa
~ 0 0 0 0 V2g
H]C=h wa )
g 0 0 —7+O)c 0 0
Wq
0 0 0 0 — + 20, 0
w
0 0 V2g 0 0 —7“+2wc

Using the latter case as an example, this matrix gives the energy eigenvalues of:

hw
A =— Za' |g, 0) state
)
Ay, = Za + 2hw,, le, 2) state

1 A2
/13,4=hwc<n+§)ih\/j+g2(n+1), wheren =1

1 A2
/15,6=hwc<n+§>ih\/j+g2(n+1), wheren =0

Where:

A=w, — wg, detuning between atom and cavity photon energies

3D Fock space (5.75)

(5.76)

(5.77)

(5.78)

(5.79)

As labeled above, the A, energy corresponds to the atomic ground state with no photons in the

cavity, whereas the 1, energy corresponds to the atomic excited state with 2 photons in the cavity.

In this system where the photon number is limited to {0,1,2}, these two energies serve as the

extremes for the minimum and maximum energy. The intermediate energies A3 4, A5 d0 not
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represent isolated atomic/Fock states such as |e, 1) or |g, 2), but rather superpositions of these

states. More specifically, these so-called dressed states come in pairs that take the following form

under zero detuning (A= 0):

1
|+,n) = ﬁ (le,n) +1g,n + 1)), higher energy (5.80)
) = —(le,n) = lg,n +1)), 1 (5.81)
—,n)=—(en)— ,n , ower ener .
NG g &Y

Where n is the number of photons. With this definition, we can make the relations:

A3 4 = energies for |[+,n = 1) states

(5.82)
As ¢ = energies for |[+,n = 0) states (5.83)
In the most general case with n photons then, the dressed state energies take the form:
1 A?
Ei(n) = ho, <n + E) +h 7 + g%?(n+ 1), dressed state energies (5.84)

Focusing on only an individual pair of dressed states, we can write a 2x2 Hamiltonian that only

considers the two states |n, e) and |n + 1, g) for general photon number n. This can be written as:

A
1 1 0 —E gVTl+1
H, = h(n+§) W, (o 1) +h A (5.85)
g n+1 E

Or combining into one matrix:
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1 A
(n+z)wc—5 gvn+1

1 A
gyn+1 (n+§)wc+5

H,=h (5.86)

Where the basis of this Hamiltonian is the {|g,n + 1), |e, n)} states, and the energy eigenvalues
exactly match the dressed state energies. This is the Hamiltonian that is more commonly used in

analyses involving the Jaynes Cumming model. Plotting the energies as a function of detuning

gives avoided crossings separated by g/ (n + 1), as shown in the figure below:

20.0
175
15.0 e
125 E_.n
E.,n
E_.n

10.0 -.N=

Energy

B T~ ] e 2
5.0
25

0.0

-10.0 -75 -50 -25 00 2.5 5.0 7.5 10.0
Frequency detuning A

Figure 5.2 | Energy eigenvalues of the reduced Jaynes-Cummings Hamiltonian. Detuning
between the cavity photon and the atomic transition is plotted on the x-axis. Here we set i = 1,
w. = 10, and g = 1. Four energy eigenstates are plotted according to equation 5.84. The red and
blue dotted lines indicate the separation between energies at zero detuning.
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This shows that even with no photons in the cavity (n = 0) there is still a splitting of 2g between
the energy eigenvalues of the system. This is termed the "vacuum Rabi splitting". The splitting

then increases in value for higher photon number as gvn + 1. The eigenstates of this reduced

Hamiltonian are:

—A+ \/AZ +4g°2(n+1)
In+) = 20vn + 1 (5.87)
1

Meaning that we can write the general state evolution as:

2gvn+1 iE,t 2gvn +1 .
YO =cila+ A2 ragzm+D )¢ " *-|a- a2+ a2+ D |¢ T (588)
1 1
Where E. are the dressed state energies. At zero detuning, this becomes:
W(t) = c, (1)6 h +c_( 1 )e h (5.89)

This tells us that the G) and (_11> states in the {|g,n + 1), |e, n)} basis are the eigenstates of

the system at zero detuning. This means that a state prepared in |g, n + 1) will precess to the |e, n)
state and vice versa. We will explore this behavior and the strong and weak coupling regimes in

the Jaynes-Cummings model in the next section.

5.3 Strong and weak coupling regimes

219



Depending on the relative value of the atom-cavity coupling constant g, the behavior of the system
can broadly be separated into the strong coupling and weak coupling regimes. We will discuss

some of the implications of these regimes.

Strong coupling
In the strong coupling regime, the coupling constant is much greater than both the spontaneous

emission rate and leakage rate of the cavity:
g>vK strong coupling (5.90)

Incidentally, this also means that the Purcell factor and cooperativity are also both much greater
than 1. In this regime, we can effectively ignore the effects of damping and use the results of the
Jaynes-Cummings model from the previous section. The precession between the |g,n + 1) and
|e, n) states with zero detuning occurs regardless of the photon number n. Rewriting the general
state evolution with no detuning gives:

W) = c, G) e—i(wc(n+%)+g\/(n+1))t Y (—11) e—i(wc(n%)—g (n+D)t (5.91)

The component e_i(wc(n+5))t is a global phase that can be removed from the system, giving:

(o) = c, (1) e 0T 4 ¢ (T1)tlo/): (5.92)
When n = 0, we have:
Y(t) =c, (i) e”i9t + ¢_ (_11) eldt (5.93)
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We can start in the |e, 0) state by setting ¢, =

N |-

1-
,C_ = E

1 . 1 .
_e—lgt__elgt

11y e l/—1Y 2 2 (—isin(gt))
= gt — igt — _
w(®) 2 (1) € 2 ( 1 )e le—igt N leiyt cos(gt) (5.94)
2 2

Therefore, we can say that the squared amplitudes for the |g, 1) and |e, 0) states are:

|cg,1|2 = sin?(gt), |ce,0|2 = cos?(gt), g = vacuum Rabi frequency (5.95)

These solutions are referred to as vacuum Rabi oscillations, where g is the vacuum Rabi
frequency. Even in the presence of no photons, the state will naturally rotate between the ground
and excited states. This is contrast to an atomic two-level system without a cavity, where the
excited state decay is irreversible. A plot of several conditions for vacuum Rabi oscillations are

shown in the figure below:
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Figure 5.3 | Vacuum Rabi oscillations. In all of these theoretical plots, y = k = 1. The four
curves have varying values of g > 1, resulting in observable vacuum Rabi oscillations. Higher
coupling constants g result in more pronounced vacuum Rabi oscillations.

Weak coupling

An atom-cavity system in the weak coupling regime is characterized by

g <, x), weak coupling regime (5.96)

It is also possible to have the ordering:

K>g>vy, Purcell regime (5.97)

Which is sometimes called the Purcell regime. In either case, the leakage out of the cavity

outcompetes coupling to the atom, which means that vacuum Rabi is no longer observable. This
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means that an emitted photon will escape the cavity before it has the chance to be reabsorbed.
However, the spontaneous emission rate will be increased due to the increase of density of photonic
states in the cavity. This speedup is given exactly by the Purcell factor as outlined earlier in this

chapter:

, 2q?
F = Yeaviey _ 29 +1, Purcell factor (5.98)
Vbuik Ky

Therefore, even in the situation where x > g, one can obtain a high Purcell factor if g > y.

This is why the k > g > y condition is called the Purcell regime.

5.4 Free space spontaneous emission
derivation

Our goal in this section is to derive the spontaneous emission rate y in free space, which is widely
used in other CQED calculations and predictions. For this derivation we will consider a simple
two-level system with a ground |g) and an excited state |e). Here, spontaneous emission occurs
when the state |e) decays to |g) and emits a photon due to the Jaynes Cummings Hamiltonian.

Therefore, we will set the initial condition as the excited state:
Initial state, |Y(0)) = |e, 0) (5.99)

Here the "0" denotes zero photons in the cavity. In this case there is not a literal cavity since we
are in free space, but we can imagine free space itself to be a cavity with infinite length. After

some time, the excited state will decay and emit a photon, giving the final state of:
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Final state, |Y(e0)) = |g, 1) (5.100)

Here the "1, " denotes one photon in the cavity with a wavevector of k. In between the initial and

final states, we have the state:

Time dependent state, lY(t)) = CE(t)e 1 @ot|e, {0}) + Z ci (De @kt g, 1,) (5.101)
K

Here a summation over all possible wavevectors is included in order to represent any possible
photon emission. This is because prior to decay, we do not know which direction or polarization
the photon will emit with, so we must use a general k. Each particular wavevector will have its
own amplitude C; (¢) associated with it. To describe the system's dynamics we will use a modified

form of the Jaynes Cummings Hamiltonian:
H = hwle)e| + z hogayay + z hgi(leXglay + [g)Xelay) (5.102)
K K

Here, the first term still represents the atomic portion, but is shifted in energy. The second term is
the field portion, with a summation over all possible wavevectors. The third term is the interaction

term with the coupling constant defined here as:

=i 2k (-2 (5.103)
Ge =1 2he,V K '

The time evolution of the system is given by the Schrodinger equation:

Hyp(t)) = mw (5.104)
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Projecting onto (e, {0}| and (g, 1x| gives, after a lot of algebra:

9] .
S-C5(0) = =1 ) gie @ onich (0
k

9 .
o Cik(£) = —igie @m0 CE (1)

We then change of variables to t’ for equation (5.106):

d . ,
%Cigk(tl) = _igkel(wk—wo)t Cg(t')

And integrate with respect to t':

t o t . ,
j ﬁka(t’)dt’ =f —igie @@l ce(tdt’
0 0

t

Cia(t) = C3(0) = —ig f el (kw0 CE (¢")dt!
0

t
CH(®) = CE(0) — igy f e @0t e (") dt
0

(5.105)

(5.106)

(5.107)

(5.108)

(5.109)

(5.110)

At this point we can say €}, (0) = 0 for all k since we are starting in the excited state at t = 0:

t
CE0 = =g [ e oo G5
0

Substituting this into equation (5.105) then gives:

d e . —i(wr—wo)t . ‘ i(wr—wt' rersr ’
&CO (t) = —Lnge k=@t —jg | et @@t Ce(t)dt
. 0
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d t . ,
5, C5 () = —Zlgklz f dt’ el @@ (t=t) ce (¢ (5.113)
K 0

Our goal now is to deal with this summation and this integral, and try to show that our differential
equation will overall become:

0
5% —C§(t) = —constant - C§(t) (5.114)

Which is the recipe for exponential decay, which is what is observed in real systems.
We will start with the summation. Generally we can convert the summation to an integral as

the discrete states k approach a continuum:

|4
(2m)3

Dlawl? =2 [ Dlgl?- ¢k, DGO = (5.115)
k

Where V — oo is the volume of free space and prefactor of 2 represents two polarizations per mode.

More explicitly, the integral over k-space becomes:

21 T co
Zlgkl2 2n )3f d¢f sin@dé’f lgx|? - k?dk (5.116)
0 0

From the definition of gy, we have:

lgi|* = (d- &2 (5.117)

2h 0V

Substituting gives:

2V 21 s 00
(d-§ 2—f d f ' Bdgf k2dk 5.118
Z Zh 0V &) Gme ), 4¢) sinbdf | (5.118)

k
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Z| 2 foodkkz D <f" Hdefzndqb(d )2> (5.119)
= = Sin "€ .
- Ik 0 (2m)3hey \ J, 0 k
The integrals in parentheses can be evaluated assuming that d is along the z-axis:
T 21
f sdeHf do(d - €)? —f sm@d@] do(|d| cos 6)? (5.120)
0 0 0
T 21 2
= |d|2f sin @ cos? 9d9f de = |d|? -§ = —|d|2 (5.121)
0 0
Substituting this gives:
Ar|d)? (@ Wy |2 [*
2= 2 = 2 122
Zlgkl 3 fo dk k e 6n2h60]0 dk k?w), (5.122)
Using w = ck then gives:
ZI |2 = Ll J dow” (5.123)
. Gel” = 612he, c cz “k '
Z| |? = dr* me3dw (5.124)
Ik 6m2heyc3 ek '
We now turn to the integral in equation (5.113):
t ] ,
J dt' el @i—wo(t=t') ce (¢ (5.125)
0

Under the Wigner-Weisskopf approximation, we assume that Cg (t") will not vary much over the

course of the integral, so we set C5 (t") = Cg (t) and pull it out of the integral:
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t
10 f dt’ eil@i—wo)(t-t") (5.126)
0

This is equivalent to a "Markov approximation", where the system has no memory of the past. To
evaluate the integral, we raise the upper bound to t — oo since the tiime scale is much longer than
the inverse frequencies wy, w, of the system. This gives:

(o] ) , 1
J. dt'el@e=wo)(t-t") = 1§(w, — wy) — iP (—) (5.127)
0 Wy — Wo

Where § (x) is the Dirac-delta function of x and P (x) is the Cauchy principal part of x. The Cauchy
principal part corresponds to the Lamb shift, which we are not interested in for this derivation, so

it will be dropped. This gives the result:

t
f dt’ei(wk—wo)(t_t')Cg(t’) =18 (wy — wg)C§ (L) (5.128)
0

Combining equations (5.124) and (5.128) into equation (5.113) then gives:

9 |dJ2 °°
—re =-——— " e 3 — A2
500 = gz GO | wind(r - wo)do (5.129)
9 ey = —— W ey nwz (5.130)
at ° 6m2he,c3 O 0 '
9 o) = s ce(t) (5.131)
at °~7 " 6mheycd ° '

As alluded to earlier, this is the differential equation for exponential decay. This means that the

excited state population decays according to:
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2,.3 2,.3
_ |d|“wg _ K wy
6mhe,c®  6meghcd

CE(t) =e™t, y (5.132)

The rate y, sometimes termed the Einstein A coefficient, is exactly the spontaneous emission rate

outlined earlier in this chapter.

229




Chapter 6

Fabrication

6.1 General principles of lithography

The cornerstone of most fabrication procedures is the use of lithography, which selectively exposes
and develops special polymers called resist in order to create a user defined pattern on a substrate.
Lithography can be categorized into two main types based on the exposure source.
Photolithography uses visible/UV light for exposure and is used for micron scale patterns. E-beam
lithography uses energetic electrons (usually 30-100 keV) for exposure and is used for nanometer
scale patterns. In either case, the effect of exposure is to chemically alter the resist in order to
strengthen or weaken its adhesion to the substrate. In "positive” resists, such as PMMA, the
exposed regions are chemically weakened and subsequently removed during the development step.
In this case the exposure pattern exactly matches the developed resist pattern. In "negative" resists,
such as HSQ, exposure causes a crosslinking or polymerization which causes only these regions
to stay on the chip during development. In this case the exposure pattern is the inverse of the final
resist pattern. The process of "development” involves the submergence of the substrate and resist
into a chemical that removes the exposed or unexposed regions. The exact chemical used varies

from resist to resist. A general procedure for lithography is given below in figure 6.1.
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*  Electrons for e-beam resist Development
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Chemical structure is

strengthened or weakened. | |

Spin— Positive resist—
Resistis spun on in uniform 1 Exposed regions are

layer ~0.1- 2 um thick, removed in developer

depending on resist /

Negative resist—
Unexposed regions are
removed in developer

Figure 6.1 | General lithographic procedure. Photoresist or electron beam resist is spun onto a
sample and baked. Subsequent exposure with either ultraviolet light or 10-100 keV electrons
chemically alters the resist. A final development step either removes all exposed resist or all
unexposed resist.

When performing lithography, one must be mindful to find the correct exposure dosage for the
particular resist. For optical resist dosage is typically expressed in units of pJ/cm? whereas e-beam
resist typically uses uC/cm?. If patterns are overexposed, they will become bloated and small
features will merge into each other. On the other hand, underexposure will result in incomplete
development of features. Likewise, the development step after exposure must be timed precisely
S0 as not to over or underdevelop the sample and cause similar pattern distortions. It can sometimes
be difficult to distinguish between exposure and development issues, and to a certain degree these
errors can compound on each other or cancel each other out.

After lithography, many procedures involve the deposition and subsequent liftoff of an
evaporated or sputtered material. Alternatively, the resist itself can be used as mask to protect the

material below from a plasma etch ("dry" etch) or chemical etch ("wet" etch). We will discuss both

of these topics.
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6.2 Evaporation and liftoff

Whether photolithography or e-beam lithography is used, a common subsequent step in many
procedures is to evaporate a metal or dielectric layer and then remove the resist using solvents.
The process of removing the patterned resist while leaving patterned metal behind is referred to as

liftoff. A basic schematic of this procedure is shown below.

4
3k
v

Evaporation is from

“top-down”, but always Solvent access to

with a nonzero angle resist for liftoff
After liftoff, resist patternis transferred
to evaporated material on the substrate
Some “tearing” may accur

Resist liftoff &~ ©on attached side of metal

Figure 6.2 | Evaporation and liftoff. Directional evaporation of a metal or dielectric coats the top
surface of the sample. Subsequent removal of the resist in a solvent solution leaves behind material
that was evaporated directly onto the sample. In some instances, material that is attached to the
sidewalls of the resist can result in tearing.

For evaporation onto a sample, it is vital to ensure there is suitable adhesion to the substrate
surface or else the deposited material will peel off. To achieve this, a thin (~5 nm) "adhesion layer"
of either Ti or Cr is deposited onto the sample before the target material is evaporated. For
example, the deposition of gold electrodes on virtually all substrates involves a bilayer deposition

of either Ti/Au or Cr/Au. The adhesion layer, in turn, will stick to a surface more effectively if it

is oxygen plasma cleaned before deposition.
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Figure 6.3 | Poor adhesion between evaporated Ni and SiC substrate. If an adhesion layer such
as Ti or Cr is not used, then other evaporated metals such as Ni will not stick to the substrate. This
results in the blistering and peeling shown above. Likewise, if the sample is not plasma cleaned
before evaporation, then the adhesion will also be poor.

In many liftoff procedures, attachment of evaporated metal onto the sidewalls of the resist can

result in unwanted "tearing™ of the metal. This phenomenon is shown in the figure below, and can

be avoided with either a bilayer of resist or a thin layer of resist.
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Figure 6.4 | Tearing from liftoff. Attachment of evaporated metal to the sidewalls of resist can
result in unwanted tearing during liftoff, which is visible in these SEM images on the edges of the
lifted off holes.

In order to achieve a successful liftoff, the resist thickness must be at least as thick as the
material that is being patterned. For example, a 100 nm gold layer would require resist that is at
least 100 nm thick. The thickness of resists can be measured directly with a profilometer, or
estimated using the spec sheets of the resist. Finally, if the rotation option (which is used for

uniform coatings) is on during evaporation, the resist will be completely coated with no solvent

access and liftoff will not be possible, as outlined below:

Rotated evaporation

fully coats all surfaces
Y No solvent access

wh
"@% )
/ )for liftoff

Figure 6.5 | Sample liftoff with rotated evaporation. If the rotation of the sample stage is turned
on, the uniform coating of the material will make subsequent liftoff impossible, as the solvent has
no direct access to the resist.

To avoid tearing during liftoff, occasionally a bilayer of resist is employed to avoid contact
between the evaporated material and the sidewalls of the resist. For PMMA, different molecular

weights (e.g. 495K vs. 950K) will develop at different rates, forming a window for evaporated

material to deposit into. This geometry is outlined in the figure below.
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Higher molecular weight resist Lower molecular weight resist . ) ) .
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. . material sticking to sidewalls any tearing
molecular weight resist overhang structure

Figure 6.6 | Bilayer resist lithography. A combination of resists with different molecular weights
results in a bilayer structure that avoids liftoff tearing.

A basic procedure for bilayer e-beam lithography is outlined below.

Bilayer PMMA e-beam lithography for gold electrodes
1) Solvent clean the chip with sonication
2) Drop cast PMMA 495K A6 onto chip
3) Spin at 3000 rpm, 45's, 1000 rpm/s (~350 nm)
4) Bake at 180 °C for 5 minutes
5) Drop cast PMMA 950K A4 onto chip
6) Spin at 3000 rpm, 45 s, 1000 rpm/s (~200 nm)
7) Bake at 180 °C for 5 minutes
8) Perform Raith e-beam exposure + development
9) 02 descum the chip for 5-10 seconds to prep the surface for evaporation
10) Evaporate 10 nm Ti and 190 nm Au in the evovac evaporator with no rotation
11) Liftoff in acetone with low power sonication

12) Check sample under microscope
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While the bilayer procedure works well for large features, nanoscale holes used for photonic

crystals may still display unwanted artifacts from metal deposition, as shown below.

L
® o o

e 11| —

Figure 6.7 | Artifacts of evaporated metal in nanoscale features using bilayer resist
lithography. For submicron features, the difference in lateral thicknesses of the two resists in a
bilayer geometry can sometimes result in the deposited metal or dielectric displaying unwanted
layers of coating. These features are visible as inner circles in the SEM images above.

6.3 Dry etching processes and hard masks

One of the most common ways to etch into a material is through an inductively coupled plasma
(ICP) etch. In this process, a combination of chemical etching and physical bombardment of ions
results in a directional etch into the target material. As a rule of thumb, the more a plasma etch
relies on chemistry to react with the target, the more isotropic the etch will be. Meanwhile, the
more that energetic bombardment is used, the more directional the etch will be. For silicon, there
are a variety of fluorine-based gases such as SFs, CF4, CHF3, XeF: that will readily react with
silicon and etch it away from chemical reactions. For silicon carbide, one must rely on the physical

impact of ions in combination with fluorine gases to achieve etching.
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In order to selectively etch only targeted regions of silicon carbide, an etch mask much be used
to protect regions of the sample. In principle a variety of materials can be used as a mask, such as
aluminum, silicon oxide, or even resist. However, the relatively poor selectivity of these materials
(~1:3 for Al, ~1:10 for SiO», ~1:1 for resist) can result in significantly sloped sidewalls, which has
an adverse effect on photonic structures. The basic mechanism of this process, which involves
degradation of the mask during the etch, is outlined in figure 6.8. Additionally, the effect of slopes

sidewalls on photonic crystal designs is shown in figure 6.9.

1) 2)
Initial ICP etch removes SiC Initial ICP etch also degrades
the hard mask

Holes in SiC created with Al Mask

3) 4)
Continued ICP etching Continued ICP etching also
removes more SiC, as well as continues to degrade the
newly exposed area hard mask
5) 6)
Continued ICP etching Continued ICP etching
removes more SiC, similar to degrades hard mask, similar
step #3 to step #4

_H]_HJ_

Figure 6.8 | Development of a sloped sidewall due to degradation of the hard mask. As an
inductively coupled plasma removes substrate material, it also etches the hard mask, which can
result in sloped sidewalls if the etch selectivity is not high.
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Figure 6.9 | Effect of sidewall angle on photonic crystal cavity resonances. Adapted from the
supplement of [53]. Sloped sidewalls in photonic crystal cavity designs cause significant
blueshifting of resonances and lowering of quality factors.

To address this issue, a hard mask with a high selectivity is desired. The most widespread hard
masks for deep SiC plasma etching are nickel and copper [61]. Nickel offers a selectivity of ~1:40

with smooth sidewalls, while copper offers a higher selectivity of ~1:100 at the cost of roughened

sidewalls. SEM profiles of etching using both masks are shown below.
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Figure 6.10 | Copper and Ni plasma etch masks for SiC. The copper etch mask (top row) has a
higher selectivity of ~1:100, but results in significantly roughened SiC sidewalls. The nickel etch
mask (bottom row) has a lower selectivity of ~1:40, but displays much smoother features. The
sidewall angle for the Ni mask is ~85 degrees. All images are obtained with a scanning electron
microscope.

In addition to the mask material, both the thickness of the resist used for liftoff and the

parameters of the plasma etch can have drastic impacts on the sidewall angle and smoothness of

the resulting structures. Some different parameters are shown below with a Nickel mask.
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Thicker PMMA Thinner PMMA Thinner PMMA Thinner PMMA
MIBK/IPA development MIBK/IPA development DI/IPA development DI/IPA development
900W/200W ICP etch 900W/200W ICP etch 900W/200W ICP etch 500W/100W ICP etch

Figure 6.11 | Effect of plasma etch conditions and PMMA on feature roughness. All holes
have a diameter of ~200 nm and a Nickel etch mask was used for all holes. A lower power ICP
etch with thinner PMMA developed with a DI water and IPA mixture resulted in the smoothest
holes. All images are obtained with a scanning electron microscope.

64 Photoelectrochemical etching

A prerequisite for nearly all nanophotonic structures is to isolate a submicron membrane of
material either through a suspended undercut or a material heterostructure (e.g., silicon-on-
insulator). For silicon carbide, thin membranes of the 3C polytype can be grown on a silicon
substrate, but the same growth is not possible for 4H. Silicon-carbide-on-insulator (SiCOIl)
geometries are also not yet commercially available as they are for the SOI platform. Lastly, silicon
carbide's near imperviousness to strong acids and bases makes it difficult to etch samples down to
submicron thicknesses. Doing so usually requires a combination of mechanical polishing and time-

intensive plasma etches.
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As an alternative to these methods, it is possible to achieve an undercut in 4H-SiC through the
use of photoelectrochemical (PEC) etching [62,63]. In this process, the doping of the silicon
carbide determines whether etching will occur. In this way a selectivity can be achieved through a
doping heterostructure which can be commercially obtained in SiC wafers. For our experiments,
we selectively etched p-type SiC while leaving intrinsic and n-type regions unaffected. For all of
our samples we used 1e18 cm nitrogen doping for n-type, 1e18 cm™ aluminum doping for p-type,
and <1e15 cm residual dopants for intrinsic I-type.

As the name implies, the PEC reaction involves a combination of photo-, electro-, and chemical
processes working in tandem. Ultraviolet light is used as a source of electron-hole pairs, an applied
voltage drives holes to the SiC surface, and a KOH or HF solution in combination with the surface
holes oxidizes and etches the SiC. Due to the extreme danger of HF solutions, we opted to use

KOH as the chemical solution. A schematic of the PEC setup can be seen in the figure below.
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Figure 6.12 | Photoelectrochemical etching setup. A 4H-SiC sample (here with NINPN doped
layers) is submerged in a 0.2 M KOH solution. electrical contacts are made with an electrical wire
to Ohmic NiCr on the back of the chip and a platinum wire in solution. The voltage is varied so as
to give a 5-10 pA photocurrent and is typically within a £1 V range, although the exact voltage
could be positive or negative. A 365 nm UV LED is used as a UV source.

A vital portion of the PEC electrical circuit is an Ohmic contact on the backside of the SiC chip.
Otherwise, the Schottky barrier between the backside electrical contact and the chip will prevent
voltage from being applied through the bulk of the SiC. To create an Ohmic contact, we sputtered
~300 nm of an 80/20 mixture of Ni/Cr on the backside surface and annealed at 950 °C for 5 minutes
with Argon gas. We used a Solaris 150 RTP rapid thermal annealer for this fast anneal. For a
typical PEC run, we use this backside contact as the anode, meaning it is the positive lead of the
circuit. The submerged platinum wire then acts as the cathode, or negative lead. On rare occasions
we had to flip this polarity to achieve etching, but this was atypical.

It is worth emphasizing that the behavior of the PEC etch varies continuously as the voltage is
increased or decreased, even as it crosses from positive to negative voltage. Indeed, there is nothing
"special™ about zero voltage. The true electrical balance of the system is determined by the
potential energy differences at the doped SiC interfaces, between the SiC surface and the KOH
solution, and between the electrical wire and the backside contact. As result, one should not attach
too much significance to the numerical value of the applied voltage. What is more important is the
resultant photocurrent of the reaction. Here we define the photocurrent as the change in current
that occurs when the UV light is turned on. Note that the ionic solution forms a complete circuit,
so some magnitude of current will always be flowing with applied voltage. However, if this current
does not change with the addition of UV light, then no etching is happening!

To achieve selective etching, we found that a photocurrent of 5-10 pA was ideal balance

between selectivity and etch rate. Under these conditions PEC etch rates are typically on the order
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of 100 nm/hour, so a total etch time of 5-6 hours is typical for a sample, usually across multiple
runs. Depending on the sample, this photocurrent would sometimes result in wildly different
applied voltages. For the most part, however, the voltage was usually within a £1 V range.
Generally, photocurrent can be raised or lowered by varying the applied voltage. More positive
voltage will result in higher photocurrent magnitudes. If the photocurrent is too high, however,
you will lose etch selectivity and etch both p- and n-type SiC. More negative voltage will result in
lower photocurrent magnitudes. This is raises etch selectivity, but lowers the etch rate or stops
etching altogether. It is worth noting that the appropriate voltage to obtain the desired photocurrent
can change over the course of a run, so it should be checked approximately every 10 minutes. For
the ultraviolet source, we use a Thorlabs 1150 mW 365 nm LED focused through a lens and
operating at approximately two thirds power for most runs. The KOH solution is a 0.2 M
concentration and is flowed with a peristaltic pump to aid the reaction process. SEM images of the

PEC etching after several consecutive runs are shown in the figure below.
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Figure 6.13 | Photoelectrochemical etch of p-doped silicon carbide across several runs. In the
first four runs, a gradual degradation of the p-type SiC is observed. In runs 5-7, the p-type SiC
steadily etches while the intrinsically doped (or n-type) SiC remains intact. All images are obtained
with a scanning electron microscope. The hole lattice spacing is approximately 350 nm.
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Chemical reaction:
The chemical reaction of PEC etching involves the surface oxidation of SiC followed by

dissolution into the KOH. The total chemical reaction is outlined below.

SiC +80H™ + (n)et - Si0, + CO, + 4H,0 + (8 — n)e~ (6.1)

Si0, + 2KOH — K,SiO5 + H,0 (6.2)

SiC+80H™ + (n)e*| —  Si0,+ CO, + 4H,0 + (8 — n)e™
Si0, + 2KOH -  K,SiO5 + H,0

uv

Charge
K+ | — diffusion
-— v N-type SiC
K+ | —
+ =
KOH solution
OH-
Surface + (.:harfge i .
oxidation ou-l + diffusion i i P-type SIiC

— SiO2
Dissolution \\,
of oxide

Figure 6.14 | Photoelectrochemical etch chemical reaction. UV irradiation causes electron-hole
pairs to form (purple £). As the holes are gated toward the p-type SiC surface, they combine with
hydroxide ions in the KOH to form silicon oxide. This is the key part of the PEC reaction, and is
boxed in the above equations and in the figure. The formed oxide is subsequently etched away
with the KOH. The applied voltage is set to induce hole diffusion to the p-type SiC surface while
keeping holes away from the n-type SiC surface.
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Oxide growth
A full PEC run is typically 2-3 hours. It is not recommended to run longer than that, as there is
a risk of undercut features breaking off from oxide growth. This means that a full undercut usually

takes multiple PEC runs.

Drying undercut structures
Silicon carbide is structurally strong enough for IPA drying without using critical point drying
that is common for silicon nanostructures. Air drying directly from water may cause collapse,

however due to the higher surface tension of water.

Anisotropy of PEC etch

The PEC etch is anisotropic and predominantly to etch horizontally rather than vertically. This
means that a photonic structure for a 2-micron p-type SiC layer requires etch holes that go through
the 2 microns of p-type then PEC etch horizontally to achieve the undercut. If these holes are not

close to the photonics, a full undercut becomes difficult.

6.5 Nanobeam photonic crystal
fabrication procedure

The total procedure for the nanobeam photonic crystal fabrication in 4H-SiC is outlined below.
Figure 6.15 gives a general schematic of the steps involved, while the steps discussed below
elaborate on the procedure. This procedure is divided into 14 parts:

1) Pattern file creation and conversion

2) Cleaning the chip and depositing a conduction layer
3) Spinning PMMA and baking
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4) Raith pre-measurement and sample loading
5) Raith writing and unloading
6) Development

7) Ni hard mask deposition

8) Liftoff

9) Liftoff characterization

10) ICP etching

11) Acid cleaning

12) Etch characterization

13) PEC etch

14) Final acid clean

1) Initialsample 2) Solvent clean
5) O, descum 6) PMMA A4 495K spin
9) DI/IPA development 10) O, descum
o I o
13) SF, ICP etch 14) Acid clean

B | e

3) O, descum

7) 180 °C bake

11) Ni evaporation

15) PEC etch

oOooo

4) Ti deposition

8) e-beam exposure

12) Acetone liftoff

16) Finished sample

oooo

Figure 6.15 | Fabrication procedure for nanobeam photonic crystals in silicon carbide. In the
initial SiC sample, the blue regions represent n-type or intrinsically doped SiC, while the red region
represents p-type SiC to be etched via PEC. All pictures represent a side view of the sample.
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1) Pattern file creation and conversion

Note that before entering the clean room, the pattern file for writing should be prepared and
uploaded onto Box or email, where it can be accessed from the clean room computers. It is worth
stressing that external USB flash drives are not used in the clean room, so file transfers must be
done online. The full file conversion can also be done at any point outside of the fabrication
procedure, and it may be a good idea to work through these conversions before processing the

sample to save time. The general file conversion proceeds as follows:

PY - GDS — GPF — CJOB — JOB (6.3)

We use the python GDS CAD package to make pattern files. The python file outputs a GDS
pattern file. This GDS file can be uploaded onto Box, then downloaded onto the clean room
computer with Beamer software (just outside the Raith control room, opposite of the wet benches).
Using beamer, the GDS file can be converted to a GPF file with appropriate electron beam
conditions and resolution. This file can then be uploaded onto Box and downloaded from the Raith
control computer, where it can be used as part of a CJOB file. The CJOB includes other
components of the writing job such as placement and repetition of patterns, beam currents, optional
labels, and optional alignment procedures. Once the CJOB file is complete, it is exported to a JOB

file, which is what is literally run when an e-beam run is performed.
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2) Cleaning the chip and depositing a conduction layer

Solvent clean the sample with 1-2 minutes of sonication in acetone and IPA. Inspect the sample
under the microscope to ensure the surface is as clean as possible. Perform an O plasma clean as
both a cleaning step and a surface preparation for metal evaporation. Coat the topside of the sample
with a conduction layer such as 5 nm of titanium. After the metal has been deposited, this is a
"stable point" in the procedure. The sample can be left at this step for days or weeks and then

resumed at a later time.

3) Spinning PMMA and baking

Preheat the hot plate for 180 °C. Note that this preheat may take several minutes, so it should
be completed before doing any spins. Meanwhile, perform another O, plasma clean on the sample
with the Ti conduction layer. This will prevent resist from balling up on the surface when it is drop
cast. Once the hot plate is ready, spin a monolayer of PMMA A4 495K at 3000 rpm for 45 s with
a 1000 rpm/s ramp. This should result in ~180-190 nm of resist. Slight edge beading will occur on
the perimeter of the chip, but most of the interior of the chip will be usable for e-beam lithography.

After the spin, bake the resist at 180 °C for 5 minutes.

4) Raith pre-measurement and sample loading

Vent the Raith sample loading chamber, which takes 5-7 minutes. Do not vent the main
chamber of the instrument! Once the loading chamber is vented, remove the appropriate cassette
and secure the sample onto the cassette. Load the cassette onto the microscope stage and write

down the coordinates of the sample relative to the Faraday cup. Make sure the chip is at the right

248



height and level (no z-tilt). Laser height on microscope must read 0 < h < 50 um. Place the

cassette back into the loading chamber and pump it down.

5) Raith writing and unloading

Run the job writing file, with the pattern and beam conditions specified by the cjob file and gpf
pattern file. An e-beam dose of ~400 pC/cm? is typical for PMMA A4 495K, although a dose array
could be used for calibration. Once writing is finished, vent the Raith loading chamber and unload

the sample.

6) Development

Development should occur immediately after writing. Prepare two dishes for development. One
dish of 1:3 DI:IPA (e.g., 10 mL DI and 30 mL of IPA for 40 mL total) and another dish of pure
IPA. Develop in the DI:IPA mixture for 2 minutes with occasional swirling. Place the chip in the
IPA dish for 1 minute, with occasional swirling. N2 dry the chip and inspect it under the microscope
to make sure all the features are properly. Since PMMA is an e-beam resist, there is no risk of
accidental exposure from room lights or microscope light. If the patterns are satisfactory, this is a
"stable point" in the procedure. The next steps can be continued on the next day or multiple days

later.

7) Ni hard mask deposition
Perform a 5-10 second oxygen plasma descum to prepare the chip’s surface for Ni evaporation.
A longer time will result in the PMMA starting to degrade. Evaporate 25 nm of Ni in the Nexdep

evaporator with the tilted stage and no rotation. The tilted stage is so that the source evaporates at
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a normal incidence to the sample. Nickel should be evaporated on manual mode, as the automatic
PID is sometimes unable to handle the drastic increase in rate once the Ni reaches a high

temperature.

8) Liftoff

Liftoff of PMMA is performed in acetone. Start by leaving the sample in acetone for 5-10
minutes, then sonicate at low power for 30 seconds. The liftoff might be incomplete, meaning
further sonication for longer times at higher powers may be necessary. Even under full power

sonication for several minutes, the Ni mask should be intact.

9) Liftoff characterization

SEM image the device to see what the Ni mask looks like. This is a vital step as it sets the tone
for the rest of the fabrication run. If the mask looks bad (e.g., with liftoff tearing), the resulting
etch will not be smooth. The procedure is also restartable at this point as the SiC has not been

etched.

10) ICP etching

ICP fluorine etch for 2-3 minutes. We used a mixture of SFs and Ar gases at 40 and 10 sccm,
respectively, with a bias power of 90 W and an ICP run power of 500 W at a process pressure of
6 mTorr. The SiC etch rate is roughly 350-400 nm/min under these conditions. The Ni mask

selectivity is 1 : ~40-50. So, 25 nm Ni should give 1000-1250 nm of SiC etch.
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11) Acid cleaning
Acid clean the residual Ni away with a piranha solution of 1:3 H202:H2SO4 followed by a 1:1
mixture of HF:HNOz. Sometimes, multiple acid cleans and a O> descum is necessary to get rid of

all the Ni residue.

12) Etch characterization

SEM the sample to examine the etched holes. If they look acceptable, proceed to PEC etching.

13) PEC etch
Perform the photoelectrochemical etch as outlined earlier in this chapter. Multiple PEC runs are
usually needed to achieve a full undercut, with intermittent SEM to monitor the progress of the

etch.

14) Final acid clean
Once PEC is complete, a final acid clean of HF/nitric and piranha should remove all residue from

the completed devices. SEM images of completed devices are shown below.
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Figure 6.16 | Scanning electron microscope images of silicon carbide photonic crystals.
Completed devices show relatively smooth etched holes with a sidewall angle of ~85 degrees. The
etching of the p-type layer under the nanobeam provides a full undercut for photonic confinement
in the z-direction.
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6.6 E-beam lithography alighment on the
Raith

Alignment is used in e-beam lithography when it is necessary to position separate patterns
precisely relative to each other. This is most commonly achieved through the use of global
alignment markers that serve as a reference for all pattern positioning. In order for the Raith
software to recognize the presence of alignment markers, there needs to be a high material contrast
under SEM imaging. This is achieved through a difference in atomic number between the marker
material and the underlying sample. This also means that higher atomic weight metals such as gold
(Z = 79) work best. If gold is not possible, the next best options are silver (Z = 47) and niobium
(Z = 41), although thicker layers will need to be deposited to compensate for the lower atomic

number. In order to utilize alignment markers on the Raith, the following procedure can be used:

Alignment procedure:

1) After mounting the chip in the microscope setup, make the alignment markers square such
that there’s less than a 1/300 deviation for x/y. E.g. if two alignment markers are separated
in'y by 300 microns, then the x offset has to be less than 1 micron. This corresponds to the
rotation angle being less than the 0.2-degree threshold for the instrument.

2) Write down the center coordinates of each alignment marker

3) Incjob, put markers under the “exposure” tab. Click the checkbox: “Fixed Global Markers”

4) Then select the appropriate marker such as p20 (positive 20x20 micron square) or use the

custom “joy”” marker.
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5)

6)

7)

8)

9)

Enter the markers coordinates in a clockwise fashion. E.g., entering the coordinates for the
upper left marker, then the upper right marker, and so on.

The program will rarely find the markers with -f coordinates, meaning you’ll have to use
SEM to find the marker absolute coordinates.

Switch to the beam current to be used for writing.

Use the terminal commands given below to go to each -f coordinate. Turn on the SEM,
center on the marker, use “mvm” to find the marker, and then print out and write down the
absolute coordinate for each marker. Toggle “SEM on” and “SEM off” to see the sample
(and hopefully markers), but be careful because this exposes the sample. Here the viewing
window of exposure is up to £250 microns. Any other metal in this viewing window will
interfere with the pattern marker recognition algorithm.

The program needs these absolute coordinates of the markers to run correctly.

10) As an example, the inputted coordinates could be something like:

“69909,124633 70809,124633 70809,123733 69909,123733”

11) If there is a rotation error, try removing the 4™ marker from cjob and running with three

markers instead.

Common terminal commands
You can run the following commands from the terminal of the Raith computer in Applications >

System tools - Terminal

>mcur

move to faraday cup
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>pg move pos --rel 55043,30667

Relative movement (relative to faraday cup)

>pg move pos 69864,112869

Absolute movement

>mvm /rel 0,0 p20
Look for a “p20” marker relative to the current location by the given coordinates.

In this case, 0,0 means search at the current location.

>mpg tab

Print out the current absolute coordinates

-f 55043,30667

This is a relative coordinate, relative to the faraday cup

©69864,112869

This is an absolute coordinate
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6.7 Miscellaneous procedures

In addition to the other procedures outlined in this chapter, other miscellaneous processes have
been compiled below. For designing various processes, the reference [64] is incredibly helpful to
determine which materials get etched by which chemicals. This information is vital for both etch

masks and acid cleans of the sample.

PMMA A4 bonding recipe
This is used to bond small samples to carrier wafers, either for spin purposed or for use in
instruments that only accept full wafers
1) Drop cast the PMMA A4 on the carrier wafer and perform the following spin:
a. 5 seconds at 500 rpm (300 rpm/s ramp)
b. 10 seconds at 2000 rpm (800 rpm/s ramp)
2) Place the small sample on the carrier wafer
3) Bake the wafer at 95 °C for 2 minutes (dehydration bake to prevent bubbling of resist)

4) Bake the wafer at 185 °C for 10 minutes to solidify the PMMA bond

HSQ (negative e-beam resist)

Spin:
4000 rpm for 30 seconds, 800 rpm/s ramp
Bake at 95 C for 2 minutes

Expose:

~775 uC/cm?.
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Develop:
Use TMAH in the acid hood for 70 s, then 70 s in DI water.

After development bake for 10 minutes at 300°C to make the HSQ more uniform

AZ 1512 photolithography procedure
1) Solvent clean the same with acetone/IPA/DI/N2 dry
2) O2 plasma clean
3) 1 minute hot plate bake at 150-200 °C as a dehydration bake
4) For <1 cm chips, bond the chip to a carrier Si wafer with resist.
5) Use AZ 1518 resist, which is a positive resist. Spin at 3000 rpm, 60s, 2000 rpm/s.
6) Bake at 95 °C for 60 sec
7) Expose using 405 nm, dose array with 50-150 mJ/cm? in steps of 10 (most likely dose is
80-110)
8) Bake at 115 °C for 60 sec
9) Wait 3 minutes for rehydration
10) Develop in AZ300 MIF for 60 sec. Then rinse in DI water and N2 dry
11) O2 plasma clean
12) Use profilometry to measure resist thickness
13) Lift off by sonicating in acetone for 5 min (or longer if necessary) and then IPA for 1-3

min

HNA acid undercut (silicon wet etch)
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An acid mixture termed “HNA” can be used to wet etch silicon. This consists of 5.5 parts acetic
acid, 3.5 parts nitric acid, and 2 parts tracemetal grade HF (not buffered HF). The plastic pipettes
provided by the clean room can be used to denote 1 “unit” of liquid. The etch rate is typically ~3-
5 microns/minute. The main mechanism of this reaction is oxidation of the silicon by the nitric
acid followed by subsequent etching of the silicon oxide with hydrofluoric acid. The role of acetic
acid is to slow the reaction process. If a pure mixture of 1:1 nitric acid and HF is used, the
exothermic reaction will occur so rapidly that the solution will fume and violently boil. If the
sample is silicon carbide, however, this HF/nitric acid will not etch the material and serves as an

excellent acid clean to remove most residue.

SFs plasma etch of silicon:

Time 60 seconds
Pressure 15 mTorr
HF power 20 W

ICP Power 80 W

02 5sccm
SFe 50 sccm
Temperature 20°C
Helium backside pressure 10 Torr

This recipe has a fairly uniform etch, with an etch rate of 2-3 nm/s. One minute was not enough
to get through 200 nm of silicon. | used a relatively low power to try to get a uniform etch, which
seemed to work well. For the etch mask | used 20 nm of chromium. The recipe itself is one of the
standard recipes for etching silicon. The other attempted recipes with polymers (CF4, CHF3) are
intended for much deeper vertical etches of hundreds of microns, but they didn't work well with

the 200 nm etch. The walls also appear to be relatively smooth, as can be seen in SEM imaging.
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6.8 Microwave stripline B-field calculation

Here we calculate the magnetic field amplitude from a microwave stripline. The Biot-Savart law
states:

ol

Tz AL x 7 (6.4)

Where

dL is the infinitesimal length of conductor carrying electric current I. It points along the wire.
7 1S a unit vector pointing from the current to the point of interest.

| is the current running through the wire

r is the distance between the wire and the point of interest.

We normally have:

Mol
Byire = 2mr (6.5)

So for a sheet of current, we have contributions of many small magnetic fields dB from

infinitesimal line currents dl along the sheet:

dB = 2% a1 (6.6)
27mr

Assuming the current is uniformly distributed along a sheet of width w, an infinitesimal current dI

should be determined by how wide your “mini-sheet” is (dr) compared to the total width w:

dr
dl =—-1 (6.7)
w
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So:

r=a+w r=a+w MO d,r
B=f dB:f Mo 4T, (6.8)
Tr

Where “r” is the distance from the point of interest to somewhere on the stripline. The way this is

set up, the closer edge will be at r = a and the farther edge will be atr = a + w:

3 ”01 at+w dT'

2w, 7 (69)
I
— Z’;LW a+w|1n(7) (6.10)
Mol

=5 (In(a + w) — In(a)) (6.11)

I a+w
B= 2’u7;)w (ln( a >) (6.12)

For a distance a away from the edge of a MW stripline that is w wide. This equation can be used
when determining the distances and thicknesses needed for microwave striplines as a part of
pattern files. As a general rule of thumb, the stripline should be within 100 microns of the

divacancy of interest.
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Chapter 7

Purcell enhancement of a
divacancy

7.1 Motivation and overview

It is an overarching goal for many optically active qubit systems to extend the range of qubit-qubit
interactions and scale to networks of many interconnected nodes. This holds true for quantum dots,
color centers in semiconductors, rare-earth ions, and atomic vapor systems. In what is sometimes
terms a "quantum network™, photons act as the travelling carriers of quantum information, whereas
electron and nuclear spins typically act as "stationary" qubits with long coherence times and the
capability for local gate operations and entanglement. In the extreme limit, the communication
distance between qubits could potentially extend beyond the range of single photons through fiber
(~100 km). A device capable of such a long-distance interaction is generally called a "quantum
repeater”. Some proof of principle demonstrations of long-distance entanglement have been
demonstrated with remote entanglement in the NV~ center in diamond [40,65,66]. For macroscopic
length scales >1 m, there are three main ways to facilitate coherent interactions between remote

stationary qubits through interconnected photons.
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1) Direct absorption or interaction with a photon emitted from another qubit.

2) Two qubits simultaneously absorbing/interacting with each photon in an entangled photon
pair generated from an EPR-like source.

3) Two qubits simultaneously emitting identical photons that impinge upon a central

beamsplitter and detector.

These are outlined in figure 7.1 below:

Optical Stark effect
. ,\A/\’ Faraday
rotation
@ photon absorption

Figure 7.1 | Methods of photon-mediated distant spin-spin interactions. Top: A single photon
emitted from the first spin coherently interacts with a second spin, either through the optical Stark
effect/Faraday rotation or direct absorption. Middle: An EPR source of entangled photons is sent
to equidistant spins, whose subsequent absorption and emission can herald entangled states.
Bottom: Simultaneous emission from both spins impinges on a central beamsplitter, whose
measurement can herald an entangled state [40].
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Given the low absorption cross section of the VV° in SiC and weak interactions with single
photons, the emission based strategy in #3 is perhaps the most promising idea. Critically, the zero-
phonon line (ZPL) is the only source of indistinguishable photons for this approach that does not
also leak quantum information to the environment through phonon emission. This means that a
fundamental limit the effectiveness of this scheme is the probabilistic nature of the ZPL photon
emission needed for remote interference. For the VV°, only ~5% of emission is naturally in the
ZPL. This means that in a spin-spin entanglement attempt, for example, there will only be a
(0.05)2 = 2.5- 1073 chance of success. This rate drops exponentially as the number of nodes
increases.

As a potential remedy to this issue, the quantum community has turned to incorporating
photonic nanocavities to modify the optical emission properties of the atom or defect in question
[49-56, 67]. For the VV?, a properly designed nanocavity can dramatically increase the percentage
of light emitted into the ZPL, also known as the Debye-Waller factor. The increase of light into
the ZPL is related to the Purcell factor, which was discussed in chapter 5. The direct relation, which
will be derived in the next section, is given by:

ﬁ:F—a:a(L> (7.1)
1—a+Fa 1—a(F+1) '

Where g is the Debye-Waller factor in the cavity, a is the unmodified Debye-Waller factor,
and F is the Purcell factor. As discussed in chapter 5, the Purcell factor is maximized with a high
quality factor in a small mode volume, which motivates the use of nanoscale photonic cavities. In
previous work with diamond and silicon carbide, photonic cavities have been fabricated with Q's
on the order of ~103-10* with small mode volumes of ~(A\n)3, where A is the cavity wavelength

and n is the index of refraction of the material [49-56]. In silicon carbide, however, previous work
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had not explored the coupling of photonic cavities with single divacancies, leaving the full
potential of this system unfulfilled. It is therefore a major goal of this thesis work to explore single-
V'V cavity interactions, as will be discussed in this chapter.

The experimental results presented in this chapter are adapted from the work [68]. The main
result is the achievement of Purcell enhancement for a single VV° embedded in a photonic
nanocavity. We also demonstrate control and coherence of the VVV° ground state spin inside the
cavity. The photonic cavity was fabricated in silicon carbide with a one-dimensional nanobeam
photonic crystal design, with measured quality factors of ~5,000. The Purcell factor was measured
to be F ~ 50 through multiple experiments, which included spectral enhancement and decreased
excited state lifetime. The Debye-Waller factor is observed to improve from ~5% to ~70-75%,

which greatly aids in potential spin-spin entanglement protocols that rely on this percentage.

7.2 Calculating Purcell enhancement for a
VV'-cavity system

Before we delve into sample and data specifics, we must establish some theoretical foundations
on how to measure a Purcell factor for a cavity-VV° system generally. We will start with the basic

definition of the Purcell factor presented in chapter 5:

Vcavity _ Thuik

F= (7.2)

Ybuik Tcavity

In the case of the VVV°, the "cavity" emission is not the entire VVV° spectrum, but rather only its

zero-phonon line. Therefore we write the Purcell factor as:
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I T
F = ZPL,on — ZPL,of f (7'3)

UzpLorf  TzpLon

Where {Tzp,on [zpLorr} are the ZPL emission rates on/off cavity resonance, and
{TzpLon TzpLoss} are the ZPL lifetimes on/off cavity resonance. It is worth noting that we can

immediately interpret the rates as intensities in a spectrum and write the relation:

I
F — ZPL,on
IzpLofr

(7.4)

Where {IZPL’on, IZPL,off} in the intensity of light (number of counts) emitted into the ZPL when

the cavity is on/off resonance. When we measure the lifetime of a divacancy, we are convolving

all possible decays to the ground state. This can be represented by the equation:

1 1 1 1
= +—+ (7.5)

Torf Tzpr 7TpsB  Tdark

Where 7, is the measured lifetime from an excited state decay (as outlined in chapter 3) off

cavity resonance. Here 7,5, is the ZPL lifetime, 55 IS the phonon sideband lifetime, 7,4, is the
dark state lifetime from all nonradiative decays (such as ISC and ionizing/recharging). When on
cavity resonance, the only quantity that should change is the t,p;, as given by equation (7.3). This

gives the on-resonance measured lifetime as:

1 F 1 1
= + + (7.6)

Ton Tzp TpsB  Tdark
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Where 1, is the measured lifetime from an excited state decay on cavity resonance. For upcoming

derivations we will also need the lifetime definition of the Debye-Waller factor:

T
=P8 Debye Waller factor (7.7)

- ]
TzpL t Tpsp

These starting equations can then be used to derive all relevant measures of the Purcell factor

in terms of experimentally measurable quantities. We will outline three measures here:

1) Purcell factor in terms of lifetimes
2) Purcell factor in terms of Debye-Waller factor

3) Purcell factor in terms of count rates

Purcell factor in terms of lifetimes

We start by rearranging equation (7.6) to isolate F:

1 1 1
) (7.8)
Ton TpsB Tdark

Experimentally, it is difficult to directly measure tpsp O 74p,, bUt Ty, To5f Can be obtained
from lifetime measurements and 7,4, Can be inferred from an autocorrelation measurement.

Keeping this in mind, we can rearrange equations (7.5) and (7.7) to give:

ToffldarktprsB (7.9)

(Tdark - Toff)TPSB — TorfTldark

TzpL =

TzpLx
Tpsg = T (7.10)

Substituting (7.9) into (7.10) gives:
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TdarkToff

TypL = (7.11)
a (Tdark - Toff)
TdarkToff
Tpsp = (7.12)
(1 — @) (Taark — Tosf)
Finally, substituting tpsg into equation (7.8) gives the Purcell factor as:
T T — T
F = dark( of f on) +1 (7'13)

ATon (Tdark - Toff)

Under no enhancement, 7, s = T,, and this quantity approaches F = 1.

Purcell factor in terms of Debye-Waller factor

The Debye-Waller factor in equation (7.7) can be rewritten assuming cavity resonance by
setting 7,p, — TZ% This gives the equation:

Tpsp
ﬁ —

T TzpL
1ZEL 4 ¢
F PSB

(7.14)

Where f is the Debye-Waller factor of the VV° on cavity resonance. Substituting in the

expressions for t,p;, Tpgp IN equations (7.11) and (7.12) then gives:

TaarkToff TaarkToff 1
ﬁ _ (1 - a)(Tdark - Toff) _ (1 — Cl) _ (1 — a) (7 15)
a TdarkToff 4 TdarkToff " TdarkToff , TdarkToff i+ 1 :
Fa(Tdark - Toff) (1 - a)(Tdark - Toff) Fa (1 - a) Fa (1 - 0()
_1
_ 1-a) _ Fa
ﬁ_(l—a)+Fa_1—a+Fa (7.16)
Fa(l—a)
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B=a (ﬁ) (7.17)

This equation is an important result in its own right, as it demonstrates how a Purcell enhancement
can increase the percentage of light emitted into the zero-phonon line. A plot of S vs. F for some

example values of a are shown in the plot below:
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Figure 7.2 | Increased Debye-Waller factor from Purcell enhancement. Plotted here is the
Debye-Waller factor vs. Purcell factor F for example values of the initial Debye-Waller factor
without any enhancement (F = 1). Higher enhanced Debye-Waller factors (8) require
correspondingly higher Purcell factors (F) and unenhanced Debye-Waller factors («).

Isolating F from equation (7.17) then gives:

F_ﬁ(a—l)

= m (7.18)
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In this way, the Purcell factor can be expressed in terms of the Debye-Waller factors on and off

cavity-resonance.

Purcell factor in terms of count rates
Taking the literal definition of the Debye-Waller factor, we can express «,f in terms of

intensities:

I I
o = ZPL,Off’ B — ZPL,on (719)
Logy

If we assume the increase of total counts on cavity resonance is solely due to increased counts

into the ZPL, this gives another equation:
lon — Ioff = IZPL,on - IZPL,off (7.20)
When measuring total count rates, this means we have:

{a, Ioss, Ion},  known (7.21)

{ﬁ' IzpLofs IZPL,on}: unknown (7.22)

Luckily this is a situation with three equations and three variables, so each quantity is algebraically

solvable. The equations in (7.19) can be combined to give:
IZPL,on - IZPL,off = Blon — aloff (7.23)
Substituting this into equation (7.20) gives:

Ion — Ioff = ﬁ]on - a]off (724)
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Rearranging then gives £:

Ion — Ioff +a- Ioff

g = (7.25)

IOTL

This equation can be used to estimate an improved Debye-Waller factor from total count rates.

Meanwhile, Izp;, orf and Izp;, o Can be isolated using equations (7.19) and (7.20) to give:

IzpLofr = @~ logy (7.26)

Izpron = lon = logr + @ logyf (7.27)

Which, taking a ratio, then immediately gives F as:

F= Ion - Ioff + aloff

(7.28)
aloff

Thus, if we assume all count increases on cavity resonance are due Purcell enhancements, we can

use the total count rates to obtain the Purcell factor.

7.3 Photonic crystal design

Given that the centerpiece of this chapter's work is photonic enhancement, it is worth discussing
the concept of photonic cavities and some of the designs that were explored. In the broadest sense,
a photonic cavity is any structure that spatially confines light. Since there is no way to make
photons or light rays "hold still", confinement is achieved through the repeated reflection off of

cavity boundaries. The simplest photonic cavity is the Fabry-Perot cavity, which involves two
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parallel mirrors facing towards each other. While physical mirrors can of course be made from
reflective surfaces, there are other methods for reflecting light. For example, any interface with
differing indices of refraction on both sides will have a component of reflection (see Fresnel
reflections in chapter 3). For a suitably sharp angle of incidence, light will be completely reflected
through total internal reflection. This confinement of light is the key operating principle behind
fiber optics and microring and microdisk resonators.

In addition to the total internal reflection mechanism, three-dimensional confinement can also
be achieved through the use of Bragg mirrors for reflection. A Bragg mirror consists of a periodic
array of dielectric materials with varying refractive indices that combine to give an overall
reflection. The simplest example is the one-dimensional Bragg stack, which uses alternating layers
of material to achieve reflection. On the nanoscale, Bragg mirrors can be formed out of a one-
dimensional or two-dimensional patterning of finite sized holes in a dielectric material instead of
the pseudo-infinite planes in a Bragg stack. These then form the basis of one- or two-dimensional

photonic crystal designs.

Fabry-Perot cavity

Microring and microdisk resonators

Distributed Bragg reflector

U
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Figure 7.3 | Common photonic cavity designs. Fabry-Perot and distributed Bragg reflector
cavities rely on continual back and forth reflection of light for confinement. In microring and
microdisk resonators, the light is confined to the edges of the structure in a whispering gallery
mode. The structure must be thin enough (usually sub-micron) for total internal reflection to
confine the light in the z-direction. Microring resonator SEM adapted from [69]. Microdisk
resonator is made in 4H-SiC with a PEC undercut.

In the most general sense, a photonic crystal is any periodic patterning of dielectric material.
For optical cavities, photonic crystals are designed on the length scale of the wavelength of visible
or infrared light. Creating a defect in the periodic dielectric structure can then from an optical
cavity that traps photons, in a similar way to how a defect in an atomic crystal can form a trap for
electrons (e.g., the divacancy). Creating an idealized photonic crystal cavity is an entire field of
study that we will avoid getting into too much detail about in this thesis. However, some common

photonic crystal cavity designs are shown in the figure below, with quality factors of up to 11

million [70-72].

L17 cavity

1D Photonic crystal cavities
(nanobeams)

Figure 7.4 | Common photonic crystal cavity designs. Both 2D and 1D photonic crystal designs
rely on Bragg mirrors (holes) to confine light laterally and total internal reflection (TIR) for
confinement in the z-direction. The 1D nanobeam design uses TIR for two axes, so the beam must
have a suitably thin height and width (usually submicron). HO cavity adapted from [70]. L17 cavity
adapted from [72]. Tapered nanobeam cavity adapted from [55].
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For this work, we selected a nanobeam photonic crystal design due to its small mode volume
and smaller footprint compared to the two-dimensional photonic crystal designs [55,56,73]. This
is important for iterating over design parameters and for proximity to microwave lines for spin
control. The design consists of a linear tapering of both the lattice spacing and the minor axis radii
of the central 8 holes (4 on each side of the center) to 84% of an original value. Here the minor

axis is along the long axis of the beam. The design of the pattern in shown below:

4 \ L/ \\ AT AR AW AT ¢ \* 7 \'
.d h 1] 1 ’ 1 I 1 I i I 1 ! 1 ') 1 1 1
widt l i { i | T\ L ! 1 H \ i \ ]
\\ I’ AN r AY ’ \ 4 \ 7’ Ay rd \ s A ’

L AL AL N\ A

a 0.96a | 0.92a | 0.88a|0.84a 0.88a 0.92a 0.96a a

r 0.96r 0.92r 0.88r 0.84r
Figure 7.5 | Nanobeam photonic crystal cavity design. The lattice spacing and hole width are
linearly tapered over 4 holes to 84% of their bulk values. The cavity mode is located between the
two centermost elliptical holes.
We used Lumerical FDTD Solutions to model various nanobeam designs in silicon carbide. We

obtained high simulated quality factors of ~300,000 at ~1130 nm with the following design

parameters:

Hole radius = 83 nm
Lattice spacing (hole-to-hole) = 337 nm
Beam thickness = 322 nm

Beam width = 415 nm
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The ratio of these dimensions (approximately 1:4:4:5 for radius, lattice spacing, thickness, and
width) can be maintained while scaling the entire structure up or down while maintaining a high
simulated quality factor above 100,000. Larger scale structures will have longer resonant
wavelengths and vice versa. The Lumerical model of the resonant mode of the above cavity design

is shown in the figure below:

y position (um)

-1.5 -1 0.5 0 05 1 15
X position (um)

Figure 7.6 | Lumerical simulation of nanobeam photonic crystal mode. The cavity mode is
concentrated between the centermost two holes, with a simulated quality factor of ~300,000 at A =
1130 nm and a mode volume on the order of (1/ng;-)3, where ng;c = 2.6.

With this cavity design selected, we fabricated this structure in suspended silicon carbide and

measured the resulting quality factors, as discussed in the next section.

7.4 Photonic crystal fabrication and
characterization
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The photonic cavities were fabrication in the Pritzker Nanofabrication Facility (PNF) using a
combination of e-beam lithography, inductively coupled plasma etching, and
photoelectrochemical etching. The full procedure is described in more detail in chapter 6, but an

abbreviated procedure is given below:

® ®

-
NIN -

Figure 7.7 | Fabrication procedure for SiC nanobeam photonic crystals. (1) A NINPN doped
SiC chip is used as the starting material, where N denotes n-type, | denotes intrinsically doped
with residual dopants, and P denotes p-type. (2) Electron beam lithography defines a 25 nm thick
nickel mask. (3) A SFe-based ICP etch transfers the mask pattern to the SiC substrate. (4) A PEC
selectively etches p-type SiC and creates an undercut structure.

After a large amount of troubleshooting, this procedure eventually succeeded on selectively

doped silicon carbide chips with a 400 nm thick NIN photonic layer. Scanning electron microscope

(SEM) images of some completed devices are shown below:
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Figure 7.8 | Scanning electron microscope images of nanobeam photonic crystals. The
photonic crystals display a full undercut with relatively straight and smooth sidewalls, which are
critical for achieving a high quality factor.

Although the samples were uniformly populated with divacancies, only a small fraction of the
nanobeams contained a divacancy in the mode volume at the exact center of the beam. For those

that did have an embedded divacancy, we took a room temperature excitation spectrum to

characterize the cavity quality. An example of such a scan is shown below.

1078 1079 1080
Wavelength (nm)

Figure 7.9 | Quality factor measurement on nanobeam photonic crystal. Based on a Lorentzian
fit of the full-width half-maximum, this cavity has a quality factor of roughly 5,100.
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For the particular nanobeam that will be used for cavity-VV° interactions in this chapter,

scanning electron microscope (SEM) images give the following approximate dimensions:

Beam width = 450 nm

Beam thickness = 400 nm

Hole radius = 125 nm

Lattice spacing (hole-to-hole) = 342 nm

Sidewall angle = 86 degrees

Simulating these dimensions in Lumerical gives two resonances at 1077 nm and 1103 nm with
quality factors of 18,000 and 22,000, respectively at 1103 nm. This approximately matches with
the measured quality factor of ~5,000 at 1078 nm, with the loss in in quality coming from

fabrication imperfections such as surface roughness and sidewall slope.

7.5 Sample preparation

The work carried out in this thesis was for 4H silicon carbide custom ordered from Norstel with
doping configurations described below. An initial 4-inch wafer was diced into small ~5x5 mm
pieces, providing approximately 300 samples to work with. Many of these samples were used for
fabrication tests, fine tuning photonic crystal designs, and photoelectrochemical etch tests. A

smaller subset was used for divacancy creation, also discussed below.

Divacancy creation
276



Divacancies were created in the silicon carbide with a combination of electron irradiation and
high temperature annealing. We sent samples to the National Institutes for Quantum and
Radiological Science and Technology in Takasaki, Japan for irradiation with relativistic 2 MeV
electrons that damage the SiC lattice and create individual silicon and carbon vacancies. We then
perform a high temperature anneal at 850 °C for 30 minutes with argon gas at atmospheric pressure.
This causes the vacancies in the SiC lattice to diffuse and form more stable divacancies when they
coincide. For the samples in this thesis, we used an electron irradiation dose of 10 electrons per
square centimeter in order to create a high enough divacancy density to populate most nanobeams
with a defect. We also performed the irradiation and annealing before fabrication to verify its

success. A schematic of the process is shown below.

2 MeV relativisticelectron irradiation

o

850 °C anneal with 1 atm
argon gas for 30 minutes

Divacancies are formed in
the silicon carbide lattice

O

@)

Carbon and silicon vacancies
in the SiC lattice

Figure 7.10 | Divacancy creation procedure for SiC. The sample is irradiated with relativistic 2
MeV energy electrons to create uniform damage in the lattice, which creates individual atomic
vacancies. Under a high temperature (850 °C) anneal, these vacancies diffuse in the lattice until
they pair together and form a thermodynamically stable divacancy.

Silicon carbide doping
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In order to create suspended silicon carbide structures for photonics, we used a custom doping
heterostructure in wafers ordered from Norstel. For our samples, the bulk substrate for growth was
N-type 4H silicon carbide with 12-30 mQ-cm resistivity and a 4 degree off-axis growth. We used

a NINPN doping configuration with the following parameters, from the top down:

1) 100 nm N-type (10* cm Nitrogen)

2) 200 nm of I-type (<10* cm residual dopants)
3) 100 nm N-type (10'® cm™ Nitrogen)

4) 3 um of P-type (10 Aluminum)

5) 500 um of standard N-type buffer (10*® cm Nitrogen)

This is shown schematically below:

100 nm N-type 1e18 cm™ Nitrogen 100 nm N-type 1e18 cm™ Nitrogen
400 nm
200 nm I-type <1e15 cm™ residual dopants 200 nm |-type <1e15 cm™ residual dopants suspended
photonic layer
100 nm N-type 1e18 cm™ Nitrogen 100 nm N-type 1e18 cm™ Nitrogen

=

3 pm P-type 1e18 cm™ Aluminum

500 pm N-type 1e18 cm™ Nitrogen 500 um N-type 1e18 cm™ Nitrogen

Figure 7.11 | Doping configuration of 4H-SiC wafer. The 3-micron P-type layer is etched away
during photoelectrochemical etching, leaving a 400 nm thick suspended NIN layer to form
photonic structures.

7.6 Single VV’ characterization
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Before exploring any cavity-defect interactions, it is important to verify the presence of a single
VV? and characterize its baseline behavior in the nanobeam cavity. Since the divacancy is in a
dramatically different environment than in "normal” circumstances in the bulk of electrically
neutral SiC, we may expect some of the usual benchmarks to be different. Indeed, we observe
significantly modified values for nearly all measurements. In this section we will discuss the

following topics:

e Nanobeam selection and PL counts
e Photoluminescence excitation (PLE)
e Optically detected magnetic resonance (ODMR)

e g autocorrelation

Note that all measurements from here on out are performed at cryogenic temperatures of 5 K.

Nanobeam selection and PL counts

We iterated over many nanobeams and focused only on those with a bright spot at its center
that matched with one of the divacancy wavelengths. Of these nanobeams, we further narrowed to
only those that also had a nearby cavity resonance at this wavelength. Out of the hundreds of
cavities in the sample, only one matched both conditions. Below is a spatial photoluminescence

scan with off-resonant excitation collected on this particular cavity.
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Figure 7.12 | Spatial photoluminescence scan of the nanobeam photonic crystal of interest.
Collected at 5K. 905 nm light was used for excitation and all light above 1000 nm was collected.
The bright spot in the center corresponds to a V\V° in the center of the photonic cavity, which is
off resonance with the defect in this scan. A fast steering mirror was used to raster the laser spot
over the sample.
PLE

Photoluminescence excitation (PLE) measurements of this cavity VV° reveal two broad peaks

at frequencies of 277.984 THz and 278.027 THz, or approximately 1079 nm. The scan is shown

below:

—2|0 —’II 0 0 1 b
Frequency detuning (GHz) +2.78e5

Figure 7.13 | Photoluminescence excitation (PLE) of cavity VV°. Detuning is from 278.000
THz. The left peak is at 277.984 THz and the right peak is at 278.027 THz. The full-width half-
maximum of the left and right peaks, obtained with Gaussian fits, are 5.02 + 0.08 and 3.98 + 0.06
GHz, respectively. The errors represent 95% confidence intervals.
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The moderate splitting between these peaks of ~40-50 GHz indicates that there is either a built-
in strain or electric field within the plane of the sample (that is, in the x or y direction). There is
nothing in the doping configuration to break symmetry in the x or y direction, so we suspect this
is due to strain. Other silicon carbide samples typically display a strain splitting of ~5-20 GHz, so
the strain is slightly higher here. This may be due to the nanobeam structure, or due to the high
doping levels. We will discuss strain more in an upcoming section.

The other figure of merit from the PLE scan is the linewidth of each peak. Here we have
linewidths of 4-5 GHz for both peaks, which is above the typical 0.3-1 GHz value for divacancies
in unpatterned SiC samples and well above the lifetime limit of ~10 MHz. The 4-5 GHz linewidth
also means that the individual spin sublevels are not well-resolved, which makes resonantly
addressing selective transitions difficult. The usual culprit for broadened optical linewidths is
spectral diffusion in the sample, which was discussed in chapter 4. We believe this is also the case
here with extra broadening from the nearby surfaces of the nanobeam. This will be discussed in

more detail in the next section.

Optically detected magnetic resonance (ODMR)

Optically detected magnetic resonance reveals the microwave frequencies of transitions
between the ground state levels. For this defect, we perform ODMR with a nearby wire bond and
observe a Zeeman splitting with the application of a c-axis magnetic field, which indicates that it
is a c-axis oriented defect. This is somewhat at odds with the 1079 nm emission of the zero-phonon
line, which matches more closely with a (kh) basal VV°. To investigate more closely, we take

several scans at different magnetic fields and observe a frequency shift given by ~2.76 MHz/G,
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which closely matches the 2.8 MHz/G value seen for c-axis defects [4]. Furthermore the zero-field
ODMR scan shows only one peak, which is only possible if there is no E term in the Hamiltonian,
as is the case for c-axis divacancies. The central ODMR frequency is at 1.328 GHz, which most
closely matches to the (hh) transition at 1.336 GHz. Lastly, we also performed ODMR with off-
resonant excitation, which produces a negative contrast on both peaks. As we saw in chapter 4,
this only occurs for the (hh) divacancy. Based on all of this evidence we assign the defect to be a
(hh) divacancy despite it's shifted optical emission, which we will address in an upcoming section

on strain. The ODMR scans discussed here are shown below.
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Figure 7.14 | Optically detected magnetic resonance (ODMR) of the cavity VV°. The left
shows several resonant ODMR scans at varying c-axis magnetic fields, showing a clear Zeeman
splitting. The center frequency at zero-field is 1.328 GHz. The right figure shows off-resonant
ODMR with a c-axis magnetic field. It has a negative contrast consistent with the (hh) V\VV° and is
also centered at 1.328 GHz.
9@ autocorrelation

As discussed in chapter 3, a g® autocorrelation measurement can be used to verify the presence

of a single emitter. We perform a g® measurement with both resonant and off-resonant optical

excitation. Even without background subtraction, both g dips drop below the threshold of 0.5,
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confirming the presence of a single emitter. Notably, the resonant g? curve displays significantly
more bunching than the off-resonant curve. Following the discussion in chapter 3, this is most
likely due to a higher rate to a nonradiative state, which in this case would be the ionized divacancy
state (likely VV"). It is known that resonant optical excitation more quickly causes ionization,
which is consistent with this idea. The ISC is also present for all divacancies, although its rate
should not depend on the type of laser excitation. Explicitly using the rate equation model from
chapter 3 for the resonant g2 gives an effective dark state lifetime of ~60 ns. Both g®® curves are

shown below:

9(2)

400 —200 0 200 400 0.0——p =20 0 20 20
t (ns) t(ns)

0.0

Figure 7.15 | g autocorrelation measurements of the cavity VV°. The left curve was collected
with resonant optical excitation and the right curve was collected with off-resonant 905 nm optical
excitation. Both curves confirm the presence of a single emitter with a t = 0 dip below 0.5. There
is significantly more bunching in the resonant scan, indicating ionization with a dark state lifetime
of T44rk = 60 ns. In the off-resonant scan there are more background counts, resulting in a higher
minimum value of 0.374.

7.7 Effect of nanostructures on optical
linewidths
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As we saw in the previous section the PLE linewidths of 4-5 GHz in the cavity VV° are broader
than usual for divacancies in control samples. It is known that spectral diffusion causes broadened
linewidths, but the charge fluctuations could come from any number of sources including nearby
dopants, defects impurities, or surface charge traps. To investigate this issue, also collected PLE

on "bulk" defect from the same NINPN sample without any photonic nanostructures. The linewidth

from a single peak is shown below:

PL (norm.)
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Figure 7.16 | PLE of a bulk NIN VV?°, Detuning is 278.0015 THZ. The full-width half-maximum
is 825 + 66 MHz with a 95% confidence interval, obtained with a Lorentzian fit.

Given this narrower linewidth of ~1 GHz for a defect in the same material in the same sample,
it seems that the broadened ~4-5 GHz linewidths are due to nearby fabricated surfaces. The
fluorine-based SFe plasma etch used to create holes and nanobeams could possibly create dangling

surface bonds that could serve as electric field noise sources. To corroborate this comparison
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between bulk and nanostructure divacancies, we collected optical linewidths and center

frequencies of several more defects. The results are outlined below:

Optical linewidths:
Bulk (n =16), u=137GHz,  Ogmpe = 0.86 GHz,  range =0.5->35GHz (7.29)

Nanobeam (n = 10), u=520GHz, Osample = 2.50 GHz, range = 2 = 10 GHz (7.30)

Center frequencies:
Bulk (n = 16), U= 277957 THz, Osample = 39.52 GHz, range = 106 GHz  (7.31)

Beam (n = 10), u=278016THZ  Gsumpie = 34.03 GHz,  range = 126 GHz  (7.32)

Evidently the broader linewidths of the nanobeam divacancies is a fairly consistent result,
although some of the best nanobeam defects were in fact narrower than some of the worst bulk
defects. Nevertheless, it appears that some aspect of the fabrication process causes unwanted
additional spectral diffusion. The exact mechanism for this is not currently known and could be

the subject of a future study.

7.8 Effect of strain

As highlighted in the single VV° characterization section, the zero field ODMR frequency and
ZPL emission of the cavity defect do not match the expected values from a more typical (hh)
divacancy. We attribute these differences to a large strain present throughout the sample caused

by the high doping levels used during growth [74-77], which we will discuss in this section.
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To get an idea of what is considered "normal™ for a divacancy, we can use the following table

that has been compiled from past work in our group [78]:

Name ZPL (hm) |ODMR 1 |ODMR 2 |D (GHz) Des (GHz) | E (MHz)
(GH2) (GH2)

PL1 (hh) 1132 1.336 - 1.336 0.84 0

PL2 (kk) 1131 1.305 - 1.305 0.78 0

PL3 (hk) 1108 1.140 1.304 1.222 - 82.0
PL4 (kh) 1078 1.316 1.353 1.334 - 18.7
PL5 1042 1.356 1.389 1.373 - 16.5
PL6 1038 1.365 - 1.365 0.94 0

PL7 1.333 - - - -

Table 7.1 | Optical emission and ground state parameters for different 4H-SiC divacancies.
The (hh) and (kk) divacancies are c-axis, while (hk) and (kh) are basal. The PL5/6/7 defects have
an unconfirmed structure suspected to be stacking faults. Values are adapted from [78].

Assuming the cavity defect is a (hh) VV°, we thus see a -8 MHz shift in the central ODMR

frequency and a —50 nm shift in the ZPL emission. A high strain can result in both of these shifts.

In the ground state, strain will modify the zero-field splitting (ZFS) tensor D, which in turn

determines the D and E parameters according to:

1

Y (Dxx

3
D=5D, E=s

- Dy,) (7.33)

Where {D,,, D, D,,} are the diagonal entries of D. To quantify the change in of D, we must

yy’

invoke the spin-strain coupling tensor G. Together, these tensors follow the relation®*:

ADXX Exx
ADy,, Eyy
ADZZ «— SZZ
ADy, | = 2¢e,, (7.34)
AD,, 28y,
AD,,, 2&yy
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Where AD;; is the change in the element D;; from the strain terms &;;. More explicitly, we have:

AD,, G11 Gyz Gy3 Gig 0 0 Exx
(o) [ 6o 6 Gy G 00 \/[™
| ADZZ | _Gll - GlZ Gll - GlZ _2013 0 0 0 Erz
\ D / 0 0 0 0 Gy G 2e

Xz G1g — G1p \ xz

AD,, 0 0 0 0 G —H— 2&xy

The G terms have not been measured for the divacancy, but have been predicted using DFT

calculations [27] as follows for the (hh) and (kk) divacancies:

{Gy1, Gz, G13, Gua) Gay, Gaadnn = {—3.99,—0.42, 1.74,0.34,0.30,0.46},, GHz  (7.36)

{GllJ 612' 613, 614, G4_1, G44}kk = {_335, _093, 126, 193, —010, 047}kk GHZ (737)

Using the (hh) parameters we can map a strain profile to the change in the ZFS tensor entries,
or vice versa. The —8 MHz shift in D corresponds to AD,, = —5.33 MHz, and E is observed to be
zero. We also impose that D traceless and assume that there is no shear in the sample (AD,, =

AD,, = AD,, = 0). This gives the unique strain values of:
Exx = &y = —461:107% ¢, =3.64-107* (7.38)

This is consistent with the strain magnitudes found in SiC nanoparticles [79], meaning that
strain is a plausible source for the shift in the ODMR central frequency. A similar analysis can be
done for the NV~ center in diamond [80]. For the ZPL shift, the excited state analysis in chapter 2
reveals that z-strain can uniformly shift the optical emission of the VV°, dependent on the excited
state spin-strain coupling parameter, which unfortunately has not been measured. However, work

done by Falk et al. reported a ~2,900 THz/strain splitting for the SiC c-axis VV° |E,) and |Ey)
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states [25]. If the strain shifting also shows a high sensitivity, then it is possible to have significant
changes in the ZPL emission.

For comparison, we also collected ODMR from a defect in the bulk of the NIN epilayer without
any fabricated nanostructures (see below). We observed a similarly shifted central frequency of
~1.328 GHz, indicating that the attributed strain is present throughout the sample and not due to
fabrication. It is known that the use of high doping during growth can generate a significant amount
of strain [74-77], which we suspect is likely happening with the high concentrations used in the

NINPN epilayers.
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Figure 7.17 | Optically detected magnetic resonance of a bulk NIN VVO. Collected with
resonant optical excitation and a low magnetic field of ~1.2 G parallel to the c-axis. The central
frequency is ~1.328 GHz.
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7.9 Measurements of Purcell
enhancement

With the cavity divacancy fully characterized, it is time to move on to measurements of cavity-
emitter interactions. As a prerequisite for these experiments, the cavity resonance must be precisely
tuned to match the frequency of the VVV° ZPL emission in order to facilitate defect-cavity coupling.
This is achieved through deliberate heating of different stages of the Montana cryostat. This has
the effect of releasing the gases adsorbed onto to surfaces during cryo pumping, which then
redeposit on the sample and the nanobeam. This condensation of gases slightly increases the
overall index of refraction of the beam, causing a redshift of the cavity wavelength. Conversely,
the sample itself can be heated to ~30-40 K while keeping all other stages cooled, which causes
gases to evaporate from the nanobeam and onto surrounding surfaces. This causes a blueshift of
the cavity resonance. We can reach a tuning range of ~5 nm with this method, which is close
enough for this sample to achieve resonance matching.

With cavity-VV° resonance, we will use the equations outlined earlier in this chapter to measure

the Purcell factor. This will be based on the following measurements:
1) Optical spectrum
2) Excited state lifetime measurements
3) Overall count rate

We will also comment on the Purcell enhancement'’s effect on the Debye-Waller factor.

Optical spectrum
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For these measurements, we optically excite the defect with off-resonant 905 nm laser light and
direct all emission through a 1000 nm longpass filter and into a spectrometer with a InGaAs camera
cooled to ~100 K. This gives the total emission spectrum across all relevant wavelengths. Spectra
are obtained with the cavity both off and on resonance with the VV°. Because the PLE spectrum
of the VVO features two main peaks ~40-50 GHz apart, there are two candidate emission

wavelengths to match the cavity to. The resulting spectra from matching to both of these peaks is

shown below.
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Figure 7.18 | VV° emission spectrum on and off cavity resonance. On the left is the VV°
emission spectrum with cavity matching to the higher energy |E,) branch. On the right is the VV°
emission spectrum with cavity matching to the lower energy |Ey) branch. A ratio of emission
intensities gives Purcell factors of ~53 for the |E,.) transition and ~16 for the |Ey) transition. Insets

provide non-overlapped spectrum off and on cavity resonance. The on-resonance traces for the
combined plots are offset vertically for clarity. Off-resonant 905 nm laser light was used for

excitation in all measurements.

There is a clear enhancement of the ZPL counts when the cavity is matched to either the |E,.)

or |Ey) transition. To extract a Purcell factor we can use equation (2) from earlier in this chapter:

I
F = Zen (7.39)
IzpLoff
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To obtain the intensity of light emitted into the ZPL, we integrate the Gaussian fits to the

spectral peaks to obtain the total number of counts. This gives a Purcell factor of ~53 for the higher

energy |E,) transition and ~16 for the lower energy |Ey) transition. The discrepancy of these

factors is due to the orthogonal dipole orientations of the |E,), |Ey) transitions. Evidently, the

|2-E|
|ﬁ||§max|

factor that appears in the explicit expression for the Purcell factor (see chapter 5) is better
aligned to the cavity mode for the |E,) dipole moment.

Since we have taken a direct spectrum, we may also be tempted to use equation (14) to calculate
a Purcell factor using the change in Debye-Waller factor. Unfortunately, however, a spatially
varying background signal from n-type dopants makes estimating the Debye-Waller factor quite

difficult using the spectrometer. However, we will be able to estimate a Debye-Waller using total

counts, as will be shown later in this section.

Lifetime measurements

The next method to verify a Purcell enhancement is to directly measure excited state lifetimes
on and off cavity resonances. In this measurement, the VV? is excited with a short pulse of resonant
excitation light gated with an EOM, then photoluminescence is collected as it decays to the ground
state. Averaging over many experiments gives an exponential fit, from which the lifetime is
obtained. The dynamics of this measurement were discussed more in chapter 3, but for here we'll

focus on the results. The lifetime plots are given below:
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Figure 7.19 | Excited state lifetime measurements on and off cavity resonance. Here the V\/°
is resonantly excited a photoluminescence is collected as a function of time. Exponential fits of
exp(—t/7) give lifetime values of 7, = 15.7 £ 0.3 ns and 7,,, = 5.3 + 0.1 ns for off and on
cavity resonance, respectively. Error bars are given with 95% confidence intervals. These lifetimes
give a Purcell factor of ~51. All measurements were taken at 5 K.
As can be seen, there is a clear increase in the spontaneous emission rate on cavity resonance,

as predicted by the Purcell/weak coupling regime in cavity QED (see chapter 5). To extract a

Purcell factor, we use equation (7.13) from this chapter

Tdark (Toff - Ton)

ATon (Tdark - Toff)

F= +1 (7.40)

Using a T44. Value of 60 ns extracted from the g® fit and an off-resonance Debye-Waller
factor of @ = 0.053 for the (hh) VVV° [3], this gives a Purcell factor of F ~ 51. This factor matches
closely with the F ~ 53 obtained from optical spectra.

It is worth commenting further on the exact value of 7., and its effect on the Purcell factor.

The g® model uses five free parameters in fitting the experimental data, which means that the
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uncertainty in fitting any particular parameter is quite high, even if the overall fit matches well.
Further independent measurements would be needed to lower the uncertainty on t;,4,,. TO get a
sense of how different 7 4,,+ values would affect the Purcell factor, we have plotted the dependence

below using the values of 7, = 15.7 ns, 7,, = 5.3 ns, and a = 0.053.
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Figure 7.20 | Effect of 7444 on Purcell factor. Using 7,7 = 15.7 ns, 7o, = 5.3 ns, and a =
0.053. Over a wide range of 7,4, Vvalues, the Purcell factor is generally in the range of 42-55.
Shorter 7,44« Values result in a higher Purcell factor, with a divergence as 7,4, approaches 7, .

Overall count rate

If we assume that all increases in photoluminescence on cavity resonance are from a Purcell

enhancement, then we can use equation (7.28) from this chapter to obtain the Purcell factor:

Ion - [Off + aloff (7 41)

F =
a[off

These intensities can be obtained by examining the spatial luminescence scans on and off cavity

resonance, which are shown below:
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Figure 7.21 | Spatial photoluminescence scan off and on cavity resonance. 905 nm laser
rastering was performed with a fast-steering mirror. The top scan shows the nanobeam of interest
off cavity resonance, with the normal VVV° emission in the center of the beam. The bottom shows
the same device with the cavity tuned into resonance with the VV°. The count rates are half their
actual values, due to a fiber splitting into two detection ports that was present during this

measurement.

These measurements were collected while the collection fiber was split into two ports for g
measurements so the observed counts must be doubled. Subsequently subtracting the constant
background for each measurement gives peak count values of 120 and 460 kCts/s for the VV° off
and on cavity resonance, respectively. These can be used directly for the values of 1,,, and I,y
Using the same unenhanced Debye-Waller factor of @ = 0.053 then gives F ~ 54, which matches
closely to the previously measured values of F ~ 51 and F ~ 53.

We can also use these same values to determine the increase in the Debye-Waller factor, using

equation (7.25) from this chapter:

p = (7.42)



Plugging in gives 8 = 75%, which is a substantial improvement over the unenhanced value of
a = 5.3%. Given the agreement between the independent measures of the Purcell factor, we can
be reasonably confident that the factor is at least 50. If we plug this value into equation (7.17), we
can obtain another measure of S:

B=a (ﬁ) (7.43)

Using F = 50 here gives = 74%. Therefore, we can also be reasonably confident that the

Debye-Waller factor has increased to ~70-75% due to the cavity Purcell enhancement.

7.10  Coherent spin control

In addition to Purcell enhancement of the excited state optical transitions, we demonstrate control
and coherence of the ground state. As outlined in chapter 2, this is achieved with external
alternating magnetic fields, which we employ through the use of a nearby wire bond. Depending
on the measurement, we also apply a c-axis magnetic with an external neodymium magnet in order
to Zeeman split the |+1) states of the (hh) VV°. These measurements, which are all collected at 5

K, are categorized as follows:

e Rabi oscillations
e Ramsey measurement (T5)

e Hahn echo measurement (T,)
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e Dynamical decoupling

e T; measurement

Rabi oscillations

Rabi oscillations were performed by performing an off-resonant optical initialization, a variable
MW rotation, and then a resonant optical excitation to readout the defect. For this measurement,
the microwave pulse was kept at a constant duration of 400 ns with a linearly increasing power.
This is similar to the "power pi calibration” outlined in chapter 4. The microwave frequency was

matched to the |0) « |+1) transition under Zeeman splitting. The result is shown below:
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Figure 7.22 | Rabi oscillations of the cavity VV°. A 400 ns microwave pulse of varying power
(x-axis) is used to drive transitions between the |0) and |+1) states of the cavity VV°, achieving a
contrast of ~40%. 905 nm light was used for initialization and resonant light was used for readout.
The Rabi contrast of 40% is between the typical off-resonant readout levels of ~10-15% [2] and

resonant readout levels of 94-99% [39,43]. Due to the broadened PLE optical transitions, some of
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the spin excitation selectivity is lost with resonant excitation. However, a significant amount of
contrast remains, indicating that the different regions of the PLE peak correspond to different spin

character.

Ramsey measurement (T5)

To measure spin dephasing time T, Ramsey interferometry is performed using the |0) < |+1)
transition addressed with Rabi oscillations. The pulse sequence follows the canonical Ramsey
sequence outlined in chapter 3. We perform these measurements under a c-axis magnetic field of
~6 G and ~218 G. A detuning of 3 MHz is introduced into the microwave drive frequency in order
to induce oscillations and obtain a better fit. A Ramsey that is collected exactly on resonance can

display an artificially shortened T. The results of these measurements are shown below:
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Figure 7.23 | Ramsey interferometry for cavity VVV°. Scans are collected at a low magnetic field
of 6 G (left) and a high magnetic field of 218 G with a 3 MHz drive detuning in both cases. Fits to
the function exp(—(t/T,)™) give T, = 605 + 33 ns and T, = 592 + 18 ns with n = 2 in both
cases. Errors denote a 95% confidence interval.

Compared to typical bulk VV° values of T; ~ 1 us, the dephasing times of T; = 605 ns,

592 ns are reasonable. The loss of coherence is likely due to dipolar coupling to unpaired electrons
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in the highly doped nearby n-type regions with nitrogen donors. Dangling bonds from nearby
fabricated surfaces could also contribute to spin dephasing.
As a comparison, we also performed Ramsey interferometry on a defect in the unfabricated

NIN material of the same sample, with the result shown below:
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Figure 7.24 | Ramsey interferometry for bulk NIN VV°. Collected with 218 G magnetic field
and 3 MHz detuning. An exponential sinusoidal fit gives T, = 4.01 + 0.38 us with a 95%
confidence interval.

Curiously, the NIN T, appears to be slightly longer than the typical values measured for
divacancies. The reasons for this are not well understood, but the surrounding n-type layers could
provide a degree of shielding from the environment. We see this effect for optical linewidths,

where there is a dramatic improvement from ~10+ GHz to ~1 GHz going from a 400 nm I-type

layer to a 100-200-100 nm heterostructure of NIN.

Hahn echo measurement (T,)
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To measure the spin decoherence time T, we use the Hahn echo sequence outlined in chapter
4. We use the same |0) < |+1) transition utilized in previous measurements. We also perform this
measurement under relatively high and low c-axis magnetic fields. The results of these

measurements are shown below:
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Figure 7.25 | Hahn echo measurement of cavity VV°. Scans are collected at a low magnetic field
of 6 G (left) and a high magnetic field of 218 G. Fits to the function exp(—(t/T,)™") give T, =
7.6 + 0.4 us and T, = 9.3 + 2.0 us with n = 1 in both cases. Errors denote a 95% confidence
interval.

In contrast with the T, measurements, the T, measurements here of T, = 7,9 us are
dramatically shorter than typical values of T, ~ 1 ms [2]. This is due to dipolar interactions with
nearby n-type dopants and nearby surface defects. In a bulk VV°, there is a significant
improvement to T, from applying a strong external magnetic field. In this case, however, we only
see a marginal improvement. This indicates that the nuclear spin bath does not play a dominant
role in decoherence for this sample, as the strong magnetic field is meant to polarize the nuclear

spins. For comparison we also collected a decoherence time for a divacancy in the bulk NIN, as

shown below:
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Figure 7.26 | Hahn echo measurement for bulk NIN VV?°, Collected with 218 G magnetic field.
An exponential fit gives T, = 197.4 + 52.1 us with a 95% confidence interval.

In this case we obtain a much more reasonable value of T, ~ 200 us. This ~5x discrepancy to
bulk values is likely due to the doped layers and nearby top surface. The dramatic ~20x
improvement from the nanobeam VV° T, indicates that the fabricated structures have a significant
detrimental effect on coherence. Near-surface proximity alone is not enough to explain the
difference, as both defects are ~200 nm away from the top surface. The sidewall surfaces
introduced by SFs plasma etching could introduce Fluorine based surface terminations, which may
couple strongly to the divacancy. This effect has not been explored in the literature, but could be
the subject of a future study.

For the purposes of remote spin-spin entanglement protocols, the T, needs to be long enough
for the spin to remain coherent during the long-distance photon interference. In this case a T, =
10 us would only correspond to ~ 2 km of travel through fiber. Therefore we are interested in

extending this coherence time, which can be achieved through dynamical decoupling.
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Dynamical decoupling

While a single Hahn echo pulse has the effect of increasing coherence, this idea can be extended
to include multiple "echo" pulses. This is the idea of the Carr-Purcell-Meiboom-Gill (CPMG)
sequence [30]. Theoretically this should provide an improvement in T, up to the T; limit. We

performed this sequence with 1, 2 and 4 pulses with the results shown below:
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Figure 7.27 | T, extension through dynamical decoupling for cavity VV°. Carr-Purcell-
Meiboom-Gill (CPMG) sequences with 1, 2 and 4 pulses are tested under a ~6 G external c-axis
magnetic field. Plots are vertically offset for clarity. Fits to exp(—(t/T,)") give T, = 6.8 +
0.7 us, n = 1.6 £ 0.2 for CPMG-1, T, = 11.0 + 1.9 us, n = 2.0 + 0.4 for CPMG-2, and T, =
19.5 + 6.1 us, n = 2.1 + 0.6 for CPMG-4. Error bars indicate 68% confidence intervals.

The steadily increasing coherence times indicates the viability of this technique, at the cost of

receiving less averaged signal as more pulses are included.

T1 measurement
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Lastly, a spin-relaxation T; measurement provides an upper bound on the coherence times

capable for the divacancy. This measurement follows the description in chapter 3, where the spin

is simply initialized and then measured after a waiting period. The results of this measurement are

shown below:
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Figure 7.28 | Spin relaxation times of cavity VV°. Measurements are collected at a ~6 G c-axis
magnetic field and T =5 K. (a) 100 us time window with an exponential decay fit giving T; =
1.02 £+ 0.47 ms. (b) 1 ms time window with an exponential decay fit giving T; = 2.43 + 1.58 ms.

Errors indicate 95% confidence intervals.

Here the spin relaxation times of ~1 ms are reasonably long, although other measurements of

divacancies indicate that they could be much longer at cryogenic temperatures. This could be an

indication that rather than phonon processes limiting the T;, nearby fluctuations near the Larmor

frequency could be causing spin flips. Nevertheless, the ~1 ms value, if mapped to a T, time

extended with dynamical decoupling, would correspond to over 200 km of optical transmission

through fiber before decoherence. Given that the fiber attenuation limit is ~100 km, this would be

a long enough coherence time to carry out the limits of long-distance spin-spin entanglement.
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7.11  Discussion and next steps

The Purcell enhancement of the divacancy's zero-phonon emission has important implications for
entanglement protocols and spin readout. Most directly, the increase in the Debye-Waller factor
from ~5% to ~70-75% means that significantly more photons will be emitted into the ZPL. These
photons are directly used in spin-photon entanglement, and also employed in remote spin-spin
entanglement that relies on the interference of indistinguishable photons. For the entanglement
between two spins, the probability of success increases from 0.05"2 = 0.0025 to 0.75"2 = 0.5625,
which is approximately a 200-fold increase. This speedup becomes more dramatic when the
entanglement is scaled up to more than two nodes. For three nodes, for example, entanglement
rates increase by approximately 50,000 since four ZPL photons are now necessary. This scaling

continues as 2~ ZPL photons are necessary for an n-node network.

2-node spin-spin entanglement

Purcell enhancement
5% = 75% ZPL 5% = 75% ZPL

é ‘A} ~AAow SR el gi‘ 200K speedup rom

3-node spin-spin entanglement

~50,000x speedup from
Purcell enhancement

II 5% = 75% 5% = 75% 5% = 75% 5% = 75%
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Figure 7.29 | Speedup for spin-spin entanglement. The Purcell enhancement presented in this
thesis results in a projected 200x speedup for two node spin-spin entanglement. This speedup
increases exponentially as more nodes are added, reaching ~50,000x for a 3-node network.

In addition to increasing zero-phonon emission, Purcell enhancement also results in a relative
suppression of other decay pathways from the excited state. This is important for single-shot
readout experiments that rely on the cyclicity of a radiative spin transition between the ground and
excited states [81,82]. With the threefold reduction in overall lifetime, we would expect a threefold

increase in the number of photons emitted in a cycling transition before a spin flip occurs through

the ISC. The various decay pathways are outlined in figure 7/30.

Spin flipping occurs
primarily through
nonradiative ISC decay

t
ES

A

Enhanced ZPL decay
gives more photons Pump ZPL PSB | = (SC  —
before a spin flip

Figure 7.30 | Decay pathways for the cavity-VV? system. The radiative decays (blue arrows)
can be categorized as zero-phonon line (ZPL) emission or phonon sideband (PSB) emission. The
highlighted ZPL decay is enhanced through the cavity. Nonradiative decays (gray arrows) through
the ISC or an ionized VV /VV* charge state compete with the radiative decays and lengthen the
overall optical lifetime. The ISC pathway is the primary source of spin flipping, which becomes
mitigated when the ZPL transition is Purcell enhanced.

Single-shot readout is a key component of spin-spin entanglement experiments, as it is used to

verify the correlation between entangled spin states [81,82]. In addition to allowing for more
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photons to be emitted to raise single-shot readout fidelity, the presence of a cavity can also raise
the overall collection efficiency into the top-down objective used for bulk divacancies. In our
experiments, the increase of off-cavity-resonance PL (~120 kCts/s) compared to bulk VV°
emission of ~40-50 kCts/s indicates at least a factor of two improvement in collection efficiency.
Combined with the lifetime reduction, the increased photon counts may bring single-shot readout
into the realm of possibility for divacancies interfaced with nanophotonics. The incorporation of
directed optical components such as grating couplers and tapered fibers would serve to further
increase the collection efficiency, which is on the order of 1% for most experiments.

As part of the Barret-Kok spin-spin entanglement protocol, it is necessary to address each spin
with a resonant excitation pulse that is spin selective, as outlined in figure 7.31 [40]. In the cavity-
enhanced divacancy featured here, the PLE excitations are merged together for each excited state
branch as can be seen in figure 7.13. Thus, to carry out the entanglement procedure it is necessary
to either narrow these lines or achieve spin selectivity through another method. As outlined in
chapter 2, each excited state transition is coupled through a specific photon polarization. In this
way, if the |mg = +1) and |mg; = —1) states are selected as the qubit basis, then the photon
polarizations that excite the VV° will be completely orthogonal. This means that spin selectivity
can be achieved despite the spectral overlap of transitions. As given in the entanglement procedure,
the spin would be prepared in a superposition of |+1) and given an excitation pulse that is either

left or right circularly polarized.
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Figure 7.31 | Remote spin-spin entanglement procedure. Adapted from [40]. In steps 2 and 4,
an optical excitation for the |T) to |e) transition is used to excite a superposition state, which
implies the spectral distinguishability for the spin sublevel optical transitions.

Alternatively, it may be possible to actively narrow the optical linewidth of the VV° through
the application of a static electric field, as demonstrated in work in reference [31,43]. In this
approach, the electric field polarizes fluctuating charges that are responsible for spectral diffusion.
Electric field could be applied through nearby gated electrodes, as shown in figure 7.32, or present

naturally in a PIN doped heterostructure. The cavity presented here contained an NIN structure for

the nanobeam, so the topmost N-doped layer would be swapped with a P-doped layer.
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Figure 7.32 | Photonic device geometry for microwave and electric field control. Nanobeam
photonic crystals are tiled in an array with intermittent electric field pads (E) for both Stark tuning
and potential linewidth narrowing. A microwave stripline (B) provides alternating magnetic fields
to drive spin transitions.

Another approach for narrowing linewidths would be to simply make a larger cavity, such that
the nearby etched surfaces of the photonic crystal are further away. The linewidths of divacancies
in the intrinsic layer of the sample 100-300 nm from the top surface display PLE linewidths of 1
GHz or less, which is narrow enough to distinguish spin sublevels. This means that a cavity design
with at least 100-300 nm spacing between the divacancy at the etched holes should be sufficient
to main suitably narrow linewidths.

Beyond the scope of entanglement and single-shot readout, the cavity interactions of this system
provide an ideal platform for facilitating single-spin/single-photon interactions. Each pass of a
photon that is near resonance with the divacancy transition results in a slight rotation of the spin
state (the optical Stark effect) and a corresponding rotation of the photon polarization (Faraday

rotation). Because the coupling strength between a bare divacancy and a photon is relatively weak,
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this rotation is only on the order of microradians and is only measurable through extensive
averaging, as has been demonstrated in reference [83] for the NV~ center in diamond. In a photonic
cavity, a single photon will undergo multiple passes of the embedded spin defect and accumulate
this rotation before leaking to the environment. In order to achieve a substantial rotation from a
single photon, the quality factor of the cavity would have to be in the strong coupling regime such
that g > k. In this regime, it would be possible to establish significant single spin-photon
interactions [84] and long distance quantum logic gates between spatially separated spins mediated

by single photons [85].

0.66 pw
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Before ,\% 0 i e
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effect Buckley et al., Science 330, (2010)

Figure 7.33 | Optical Stark effect and Faraday rotation. As a photon near resonance passes by
an electron spin, the spin-photon interaction results in an equivalent rotation of the spin state and
the polarization state. As many of these passes are accumulated in a photonic cavity, the effect
becomes more pronounced. On the right is a demonstration of the optical Stark effect (top, black)
and Faraday rotation (top, red) for an NV center in diamond after averaging many experiments.
The right figure is adapted from [83].

To gauge how far the presented VVO-cavity system is from strong coupling, we must obtain
values for the key CQED parameters g, x, y. The leakage rate x and spontaneous emission rate y

can be quickly obtained from the cavity quality factor and the optical lifetime:

308



w,
K = g“’ =3.5-10'' Hz (7.44)

= 6.37-107 Hz (7.45)

V= 15.7 ns

An expression for g can be obtained based on its relation to the cooperativity and Purcell factor:

C=— (7.46)
2Ky
F-1 g2

g= /@ (7.48)

If we use the F = 50 for the cavity presented in this work, then:
g =~ 2.4-101° (7.49)

This is roughly a factor of 15 smaller than the cavity leakage rate, implying that a quality factor
of 15*5,000 = 75,000 would be necessary to achieve strong coupling for this system. Alternatively,
the Purcell factor can be substantially increased with improved spatial matching between the
divacancy and the cavity mode. If we take the expression for the maximum Purcell factor with

perfect atom/emitter matching:

3

3 /A\ /Q : : .
Frgx = P (E) (V) +1, perfect matching with emitter (7.50)

3
And substitute Q =5,000 and V = 0.5 (%) for the nanobeam design, then:
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3
Fnax = 5 (5000) +1 = 761 (7.51)

Which, coincidentally, is also a factor of ~15 greater than the observed Purcell factor of ~50.
This implies that even with the current quality factor of 5,000, strong coupling could potentially
be achieved if the emitter was perfectly spatially and spectrally matched to the cavity mode. Since
this is extremely difficult to achieve in practice, a combination of higher Q and better coupling
will be necessary to push this system into the strong coupling regime.

In conclusion, we have presented the fabrication and operation of an atom-cavity platform for
the divacancy in silicon carbide that results in substantial enhancement of zero-phonon emission.
Through multiple independent measurements, we have observed a Purcell factor of ~50, which
results in an increase in the Debye-Waller factor from ~5% to ~70-75%. Additionally, we have
demonstrated coherent spin control of the VV° ground state and coherence times that can be
extended through the use of dynamical decoupling. Looking ahead, this system provides exciting
opportunities to facilitate long-distance entanglement protocols and single spin/photon
interactions. Scaling up to multi-node quantum networks, the photonically enhanced VV° system
provides an attractive platform that is compatible with long-distance optical transmission through

telecom fibers.
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