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ABSTRACT 

To meet the demands of survival, the central nervous system has to simultaneously encode the 

external world and internal states in the spiking activity of neurons. Populations of neurons are 

connected by non-random synaptic wiring, shaped by previous experience, and in turn give rise to 

variable yet correlated spiking activity. This works attempts to relate the structure of spiking 

activity to its underlying, interconnected substrate on the one hand, and to the external variables 

they presumably encode on the other. To do so, statistical dependencies in the activity of neurons 

are summarized as functional networks (FNs), where neurons are nodes and the statistical 

regularities between them are edges. In this dissertation, FNs are utilized in encoding, decoding 

and both generative and discriminative models to gain insights into the circuit level representation 

of visual stimuli. 

As networks, FNs can be readily compared to anatomical and synaptic connectivity in 

neural network model. This comparison reveals that the structure of statistical dependencies 

depends on the timescale at which they are computed, and that neural activity has a more clustered 

structure than the synaptic wiring used in the model. In mouse primary visual cortex, this increased 

clustering is found to be characteristic of neurons that do not have a clear stimulus preference (i.e. 

untuned neurons). Moreover, regardless of single cell selectivity, the correlations between neurons 

are stimulus-specific and hence informative of the visual stimulus. Subsequently, a sparse subset 

of stimulus-specific pairwise interactions is identified. These correlations reliably manifest as pairs 

of coordinated spikes on a time-point by time-point basis, building up spatio-temporal sequences. 

When only these spikes are considered, single neurons still display high trial-to-trial variability. 

Nonetheless, these spikes have enhanced readability by hypothetical downstream elements. 	
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INTRODUCTION 

The subject of study of this dissertation is one of colossal complexity; the human brain contains 

approximately the same number of neurons as stars in our galaxy (not to mention glia). At the 

single cell level, each of these neurons is comprised of multiple elements, or compartments, for 

example dendritic spines. Each of these neurons acts as an integrator of signals, with the manner 

of integration still a subject of vigorous study. At the population level, neurons are diverse in their 

cell type with differing cellular properties, and are interwoven into a network. Network 

architecture, in turn, is determined by numerous factors including, but not limited to, cell type, 

anatomical location such as area and layer or nucleus, function, and past experience. Indeed, the 

complexity of the nervous system is further compounded by the ability to respond to changes, 

known as plasticity, induced by experience. This still elusive, blackbox-like system gives rise to 

well-conserved, almost universal behaviors like sleep, as well as to gordian thoughts, including 

self-referential ontological musings and research. The goal of understanding the brain thus seems 

(perhaps a tad) lofty for a mere Doctor of Philosophy Dissertation. Although research at the single 

cell resolution has provided us with techniques, experimental protocols and multiple insights into 

the nervous system, this work’s focus is on the population level. Specifically, statistical 

dependencies between neurons are organized into a network, which is then examined for network 

structure and network behavior. This work thus promotes a complex systems framework to study 

a complex system. 
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Questions of implementational and algorithmic nature 

One can invoke Marr’s three levels of analysis1 to discern and formulate the questions a network 

perspective of the brain should address. Starting from the bottom, at the implementational level, 

how does network architecture spawn dynamics and what features of the architecture underlie the 

spiking statistics seen in the brain? Rephrasing these questions with correlations in mind, this work 

asks to what extent synaptic and functional (summarizing spiking dependencies) networks (FNs) 

are congruent (chapter I) and to what extent neurons that are functionally different, that is, tuned 

and untuned neurons in mouse primary visual cortex (V1) have specific positions in a functional 

network (chapter II).  

The first level of analysis then poses structure-function questions, yet ‘structure’ has 

several meanings. Structure might refer to anatomy, where one neuron projects to another. 

Structure might refer to synaptic connectivity, which is not static as synaptic efficacies as well as 

the internal environment of the neurons change with time. Finally, a correlational structure, or the 

structure of activity is often studied in relation to how well it predicts other spiking statistics. 

Chapters I and II follow the first and third definitions presented here, respectively.  

 Experimentally, obtaining appropriate data to study structure-function hypotheses where 

the structure in question is anatomical/synaptic is difficult due to the need to simultaneously 

measure anatomy and activity. Such simultaneous data is lacking even for Caenorhabditis elegans, 

where the connectome is fully mapped. Hence, ample literature have employed network 

 
1 Marr and Poggio, “From Understanding Computation to Understanding Neural Circuitry.” 
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simulations where the connectivity and simulation parameters are predetermined and the resulting 

dynamics are being studied2,3,4,5,6, and chapter I follows their footsteps. 

The second (algorithmic) level of analysis pertains to how network activity encodes, 

manipulates and decodes information about external and internal variables. To answer this, one 

must specify which neuron and/or population spikes are correlated with anything and everything 

meaningful, be it sensory stimuli, executed choices and behaviors, and operationalized internal 

states. In the case of decoding, the ‘code’ can be further dissected to the identity of neurons or 

populations participating in the code, to the scheme of spikes that the readout element considers 

(e.g. rate vs. temporal pattern) and to the readout function (e.g. linear vs. nonlinear) and readout 

identity. This neural code question is probed in chapter II, investigating whether pairwise 

correlations banded together into functional networks are stimulus-specific, i.e. correlate with the 

direction of drifting gratings and can be decoded from. It is further the main focus of chapter III, 

which asks whether a subset of spikes that are correlated on average carry more information about 

a stimulus on a time-point by time-point basis, and sharpening the definition of a neural ensemble 

as a coding unit.  

The neural code is the holy grail of Neuroscience, and several coding scheme have been 

proposed. The gold standard in coding has been the firing rate of a single unit, or more recently, 

of a small population of neurons. Increased firing rates have been observed in neurons early in the 

 
2 Doiron et al., “The Mechanics of State-Dependent Neural Correlations.” 
3 Brunel, “Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons.” 
4 Ostojic, Brunel, and Hakim, “How Connectivity, Background Activity, and Synaptic Properties Shape the Cross-
Correlation between Spike Trains.” 
5 Roxin, Hakim, and Brunel, “The Statistics of Repeating Patterns of Cortical Activity Can Be Reproduced by a 
Model Network of Stochastic Binary Neurons.” 
6 Chambers, “Emergent Cooperation Supports Synaptic Integration, Selecting Routes for Activity in Cortical 
Networks.” 
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sensory pathway such as retinal ganglion cells presented with light in their receptive field7,8 or 

spiral ganglion cells in the inner ear in response to their preferred frequency9. In cortex, selectivity 

(tuning) to visual features10 and sound frequency11, is based on elevated firing rate in response to 

specific stimuli. Although still widely applied, the rate code suffers from several caveats and is 

inherently limited in its representational capacity; Firing rates show sizable variability across 

repetitions of the same stimulus despite perceptual stability of a stimulus12,13,14,15. Most neurons 

are biophysically unable to modulate firing rate over a large dynamic range, hence requiring 

unrealistically long integration times to detect an increase in firing rate16. Indeed, decoding 

attempts from firing rates in cortex have resulted in limited accuracy17,18, and even in retina firing 

rates of single units do not capture information present in the stimulus19 at a level explains 

perception. Coding schemes pooling over firing rates of several tens of neurons were shown to do 

slightly better20,21, assuming independence between units, and optimally when correlations 

between neurons are taken into account22.  

An alternative single unit code, the temporal code, considers the pattern of spikes and 

silences and has been demonstrated to have larger information capacity and carry information 

 
7 Kuffler, “Discharge Patterns and Functional Organization of Mammalian Retina.” 
8 Barlow, “Summation and Inhibition in the Frog’s Retina.” 
9 Evans, “The Frequency Response and Other Properties of Single Fibres in the Guinea-Pig Cochlear Nerve.” 
10 Hubel and Wiesel, “Receptive Fields and Functional Architecture of Monkey Striate Cortex.” 
11 Phillips and Irvine, “Responses of Single Neurons in Physiologically Defined Primary Auditory Cortex (AI) of the 
Cat.” 
12 Ventura, “Trial-to-Trial Variability and Its Effect on Time-Varying Dependency Between Two Neurons.” 
13 Tolhurst, Movshon, and Dean, “The Statistical Reliability of Signals in Single Neurons in Cat and Monkey Visual 
Cortex.” 
14 Gur, Beylin, and Snodderly, “Response Variability of Neurons in Primary Visual Cortex (V1) of Alert Monkeys.” 
15 Deweese and Zador, “Shared and Private Variability in the Auditory Cortex.” 
16 Shadlen and Newsome, “The Variable Discharge of Cortical Neurons.” 
17 Gawne, “The Simultaneous Coding of Orientation and Contrast in the Responses of V1 Complex Cells.” 
18 Bradley et al., “Visual Orientation and Spatial Frequency Discrimination.” 
19 Rullen and Thorpe, “Rate Coding Versus Temporal Order Coding.” 
20 Graf, “Decoding the Activity of Neuronal Populations in Macaque Primary Visual Cortex.” 
21 Berens et al., “A Fast and Simple Population Code for Orientation in Primate V1.” 
22 Chen, Geisler, and Seidemann, “Optimal Decoding of Correlated Neural Population Responses in the Primate 
Visual Cortex.” 
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about orientations in V123 as well as the temporal structure of bird song24. However, temporal 

coding schemes still suffer from pitfalls of trial-to-trial variability and the long integration times 

required to read out a specific pattern of spikes in downstream elements.  

At the circuit and population level, another approach over rate, is the combinatorial code. 

Combinatorial codes postulate that many neurons within the same time-bin create binary words, 

circumventing the long integration times required to estimate firing rates or temporal patterns in 

single neurons. Combinatorial codes have been shown to carry visual information about position25 

and stimulus identity26 in retina, and about movement direction in area MT27. An extension of a 

combinatorial coding scheme from spatial to spatio-temporal, which considers several time bins 

or frames, yields what has been referred to as a Hebbian assembly28,29 and Packet coding30. Results 

presented in chapter III agree with this coding scheme, and provide further details about which 

spatio-temporal sequences, or ‘packets’ carry information about the stimulus. As these coding 

schemes depend on the timing of spikes relative to other spikes, investigating the statistical 

dependencies between neurons may shed light on their organization, capacity and limitations.  

 

Varieties of pairwise statistical dependencies 

Neurons in the brain are not statistically independent. A large body of research has attempted to 

measure pairwise correlations, elucidate their substrate or origin31, explore their contribution to 

 
23 Victor and Purpura, “Nature and Precision of Temporal Coding in Visual Cortex.” 
24 Chi and Margoliash, “Temporal Precision and Temporal Drift in Brain and Behavior of Zebra Finch Song.” 
25 Palmer et al., “Predictive Information in a Sensory Population.” 
26 Ganmor, Segev, and Schneidman, “A Thesaurus for a Neural Population Code.” 
27 Osborne et al., “The Neural Basis for Combinatorial Coding in a Cortical Population Response.” 
28 Harris, “Neural Signatures of Cell Assembly Organization.” 
29 Hebb, The Organization of Behavior. 
30 Luczak, McNaughton, and Harris, “Packet-Based Communication in the Cortex.” 
31 Trong and Rieke, “Origin of Correlated Activity between Parasol Retinal Ganglion Cells.” 
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single cell and population spiking statistics32 and calculate the extent to which their presence 

increases or limits the coding capacity of the network33. While a comprehensive discussion of 

correlations is beyond the scope of this work, it is important to point out that the controversy 

surrounding pairwise dependencies is perhaps partly due to the range of time-scales and trials 

chosen for their calculation. In other words, what aspect of which spikes is being correlated needs 

to be clearly stated.  

Briefly, signal correlations quantify the extent to which neurons in a pair respond in a 

similar way to different stimuli34. Another way to think about signal correlations in cortical areas 

where some neurons are selective to a stimulus feature is how similar are the tuning curves for the 

neurons in the pair. Signal correlations are typically computed from firing rates over the course of 

a trial and averaged across trials of the same stimulus feature, and are thus a rather crude measure 

for statistical dependencies in spike trains.   

 Noise correlations quantify how much neurons in the pair co-vary across trials of repeated 

stimuli or the same behaviors35,36. What can be learned from noise correlations depends heavily 

on the time-scale and bin resolution at which they are computed, which is commonly quite large 

to accommodate estimation of the firing rate. Some studies have deemed this term the overall 

correlation, and factor out signal correlations to obtain a metric independent of the stimulus. 

 Curiously, from a structure perspective, both types of correlations depend on distance 

between the pair37. From a functional perspective, both are larger for neurons with similar response 

 
32 Pillow et al., “Spatio-Temporal Correlations and Visual Signalling in a Complete Neuronal Population.” 
33 Averbeck, Latham, and Pouget, “Neural Correlations, Population Coding and Computation.” 
34 Cohen and Kohn, “Measuring and Interpreting Neuronal Correlations.” 
35 Cohen and Maunsell, “Attention Improves Performance Primarily by Reducing Interneuronal Correlations.” 
36 Cohen and Kohn, “Measuring and Interpreting Neuronal Correlations.” 
37 Ecker et al., “The Effect of Noise Correlations in Populations of Diversely Tuned Neurons.” 
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profiles, i.e. selectivity38, and from a coding perspective, both types were argued to enhance or 

limit information about the stimulus39,40,41, albeit for different reasons. Shared variability (noise) 

cannot be averaged out by downstream elements yet provides a better estimation of the noise 

entropy of the population42. Increased firing rate in several units (signal) is advantageous from a 

pooling perspective and a winner-take-all scheme, but is highly redundant and thus considered 

inefficient43. The lesson here, again, is that dynamics and structure within those dynamics cannot 

be easily disentangled from the coding scheme. Whether any correlations are a meaningful 

measurement or have any effect on coding depends on the assumptions one makes about the code. 

Along those lines, both signal and noise correlations, being rate-based, are only relevant if 

downstream elements are sensitive to rate.  

 A third type of correlations is statistical dependencies in spike timing, i.e. correlations of 

the spike trains, where bin widths are short and typically do not exceed 30ms. Calculation then 

takes place across time and not trials. These can be further broken down into synchronous 

correlations (called synchrony in many studies and coherent oscillations in others44), and lagged 

correlations in which one neuron depends on the activity of the other in the previous time bin. Here 

a pair of neurons with correlated spike trains is termed functionally correlated / connected, and a 

collection of these functional connections across all pairs in the population is called a functional 

network (FN).  

 
38 Dechery and MacLean, “Functional Triplet Motifs Underlie Accurate Predictions of Single-Trial Responses in 
Populations of Tuned and Untuned V1 Neurons.” 
39 Dehaqani et al., “Selective Changes in Noise Correlations Contribute to an Enhanced Representation of Saccadic 
Targets in Prefrontal Neuronal Ensembles.” 
40 Mendels and Shamir, “Relating the Structure of Noise Correlations in Macaque Primary Visual Cortex to Decoder 
Performance.” 
41 Averbeck and Lee, “Effects of Noise Correlations on Information Encoding and Decoding.” 
42 Zylberberg, “Untuned but Not Irrelevant: The Role of Untuned Neurons in Sensory Information Coding.” 
43 Reich, Mechler, and Victor, “Independent and Redundant Information in Nearby Cortical Neurons.” 
44 Averbeck and Lee, “Coding and Transmission of Information by Neural Ensembles.” 
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The author would like to emphasize that it is not the case that functional connections can 

be studied in an assumption-free manner - far from it. However, an extensive body of research has 

put forward compelling theoretical arguments and empirical evidence to support the relevance of 

coordinated spiking activity on short timescales to the activity in a downstream neuron45,46, 

reviewed below. For these reasons the author feels more comfortable with the assumptions made 

in the functional correlation case. Measurement of FNs, their network structure and their 

correspondence to synaptic networks are discussed in chapter I. 

 

Cortical activity is correlated 

Direct measurement of pairwise spiking regularities in cortex only became available in the late 

1960’s. In a groundbreaking paper, Gerstein and Perkel47 recorded pairs of neurons in cat auditory 

cortex in response to sounds and during spontaneous activity and introduced a method to visually 

inspect the dependency between the two spike trains. They show that functional correlations do 

not depend on the presence of a stimulus and are not explained by the firing rates of the neurons 

alone. Numerous subsequent studies in sensory and motor cortices across species and conditions 

have found that spikes are temporally coordinated across the population48,49,50,51,52,to name a few. 

Intuitively, as Gerstein and Perkel argued, a statistical dependency implies the neurons in the pair 

might be synaptically connected. However, since neurons do not fire in response to a single input, 

 
45 Chambers and MacLean, “Higher-Order Synaptic Interactions Coordinate Dynamics in Recurrent Networks.” 
46 deCharms and Merzenich, “Primary Cortical Representation of Sounds by the Coordination of Action-Potential 
Timing.” 
47 Gerstein and Perkel, “Simultaneously Recorded Trains of Action Potentials.” 
48 Dan et al., “Coding of Visual Information by Precisely Correlated Spikes in the Lateral Geniculate Nucleus.” 
49 Farooq et al., “Strengthened Temporal Coordination within Pre-Existing Sequential Cell Assemblies Supports 
Trajectory Replay.” 
50 Lankarany et al., “Differentially Synchronized Spiking Enables Multiplexed Neural Coding.” 
51 Womelsdorf et al., “Modulation of Neuronal Interactions through Neuronal Synchronization.” 
52 Gutkin et al., “Turning On and Off with Excitation.” 
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but rather receive multiple excitatory and inhibitory inputs that interact in a non-linear manner, 

this proved to be more complex and a full mechanistic explanation of which synapses bring about 

coincident spiking is still lacking.  

 By definition, a statistical dependency between two neurons means that knowledge of the 

activity of one neuron would enable better prediction of the activity the other. The validity and 

extent of such a prediction was still debated, especially since correlation can be caused by a third 

contributing factor, such as global population fluctuations53,54, common input55, or spatial structure 

in the stimulus56. Nevertheless, pairwise functional correlations were used to accurately model the 

moment-to-moment single-neuron and single-trial activity of retinal ganglion cells57,58 (for a 

review in retina see59), pyramidal cells in layer 2/3 of primary visual cortex60,61 (V1) and place and 

non-place cells in the hippocampus62. Furthermore, several studies have demonstrated that 

pairwise functional interactions can predict the statistics of the whole population; network 

simulations of coupled Poisson neurons captures the number of active neurons and their temporal 

sequences in cat and mouse primary visual cortex63, and a network of leaky-integrate-and-fire 

neurons with wiring parameters inferred from data reproduces the number of active neurons and 

the avalanche duration seen in spontaneous activity in mouse somatosensory and auditory 

 
53 Ecker et al., “State Dependence of Noise Correlations in Macaque Primary Visual Cortex.” 
54 Goris, Movshon, and Simoncelli, “Partitioning Neuronal Variability.” 
55 Trong and Rieke, “Origin of Correlated Activity between Parasol Retinal Ganglion Cells.” 
56 Rikhye and Sur, “Spatial Correlations in Natural Scenes Modulate Response Reliability in Mouse Visual Cortex.” 
57 Granot-Atedgi et al., “Stimulus-Dependent Maximum Entropy Models of Neural Population Codes.” 
58 Pillow et al., “Spatio-Temporal Correlations and Visual Signalling in a Complete Neuronal Population.” 
59 Shlens, Rieke, and Chichilnisky, “Synchronized Firing in the Retina.” 
60 Kotekal and MacLean, “Recurrent Interactions Can Explain the Variance in Single Trial Responses.” 
61 Dechery and MacLean, “Functional Triplet Motifs Underlie Accurate Predictions of Single-Trial Responses in 
Populations of Tuned and Untuned V1 Neurons.” 
62 Meshulam et al., “Collective Behavior of Place and Non-Place Neurons in the Hippocampal Network.” 
63 Roxin, Hakim, and Brunel, “The Statistics of Repeating Patterns of Cortical Activity Can Be Reproduced by a 
Model Network of Stochastic Binary Neurons.” 
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cortices64 (note that Chapter II takes a similar approach but preserves connectivity on the local 

scale and employs simpler model neurons).  

A different approach that does not require using functional correlations to generate 

surrogate activity but rather estimates the strength of pairwise interactions that best fit the data is 

maximum entropy models (MaxEnt). MaxEnt models learn a probability distribution of activity 

patterns under assumption of (in)dependence between neurons. Models of ganglion cells in 

salamander retina are able to predict the number of active neurons at any time point in response to 

a natural movie65 accounting for pairwise correlations, but performed less well for spatio-temporal 

patterns composed of multiple neurons across 10 time points. To capture the occurrences of these 

patterns, higher-order interactions spanning more than a pair needed to be included in the model. 

A model of smaller populations in cat primary visual cortex66 have reported similar results, where 

pairwise correlations accounted for synchrony but failed to model patterns spreading over longer 

timescales. A third study in macaque V1 found that including pairwise interactions in the model 

improves prediction of multineuronal firing patterns over a model without such interactions, but 

the gains for spatially adjacent neurons and for natural stimuli were modest and the authors 

concluded that beyond-pairwise interactions are needed to fully explain population statistics67. 

Higher-order interactions are revisited in the general discussion section.  

Why should one care about prediction of dynamics? Firstly, individual neurons show large 

trial-to-trial variability despite identical repetition of the stimulus68,69. This indicates that the 

 
64 Sadovsky and MacLean, “Scaling of Topologically Similar Functional Modules Defines Mouse Primary Auditory 
and Somatosensory Microcircuitry.” 
65 Ganmor, Segev, and Schneidman, “Sparse Low-Order Interaction Network Underlies a Highly Correlated and 
Learnable Neural Population Code.” 
66 Köster et al., “Modeling Higher-Order Correlations within Cortical Microcolumns.” 
67 Ohiorhenuan et al., “Sparse Coding and High-Order Correlations in Fine-Scale Cortical Networks.” 
68 Gur, Beylin, and Snodderly, “Response Variability of Neurons in Primary Visual Cortex (V1) of Alert Monkeys.” 
69 Deweese and Zador, “Shared and Private Variability in the Auditory Cortex.” 
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stimulus or even the internal state is not the sole contributor (and in fact has very little effect70) to 

the firing statistics of neurons and populations. Elucidating all the factors that contribute to 

neuronal activity, including anatomical and functional network position, is hence of the utmost 

importance for our understanding of how spikes carry information or to what extent they are noise. 

Secondly, assuming one models activity in a biologically plausible manner, such as using an 

integrate-and-fire neuron model with realistic membrane constant, prediction suggests that the 

neurons themselves have access to and use short-timescale correlations of neighboring neurons 

(for a review, see71). Intuitively, the neuron is more likely to reach threshold if multiple inputs are 

adjacent in time, especially given the low firing rates observed in cortex. Direct evidence of this 

was provided by Chambers and MacLean72, working with simulations and in mouse 

somatosensory cortex, where the synaptic structure was unknown: a downstream neurons was 

tightly locked to the spike times of its two inputs when those two inputs were correlated and 

neurons which received more clustered inputs had larger depolarizations. Prediction in this sense 

then provides a mechanistic explanation of how neurons might use regularities in spike timing. 

Taken together, pairwise correlations are accessible to and orchestrate activity in downstream 

elements, and are thus in an optimal position to take part in sensory coding. 

 

Pairwise correlations and coding 

Several studies across levels of the visual pathway have demonstrated that more information (as 

Shannon information in bits) can be extracted about the stimulus when taking pairwise correlations 

into account: in macaque retina, including pairwise correlations in an encoding model and then 

 
70 Kotekal and MacLean, “Recurrent Interactions Can Explain the Variance in Single Trial Responses.” 
71 Salinas and Sejnowski, “Correlated Neuronal Activity and the Flow of Neural Information.” 
72 Chambers and MacLean, “Higher-Order Synaptic Interactions Coordinate Dynamics in Recurrent Networks.” 
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decoding from generated spikes results in increased information about the luminance of pixels in 

a white-noise stimulus73. In salamander retina, where a specific wiring supports selectivity for 

motion direction in ganglion cells, additional information beyond independent cells (i.e. synergy), 

depends on the time-scale of correlations and the selectivity of the cells in the pair, with short time-

scales and pairs with different preference resulting in synergy74. Similar results were reported in 

macaque V1, where spatial proximity can serve as a proxy for similarity in response properties: 

Ohiorhenuan et al75 reported no gains in information for adjacent pairs but additional information 

carried by correlations for pairs separated by larger distances. Decomposing the information into 

contributions of stimulus-independent vs. stimulus-dependent spike-train correlations on short-

time scales, it was demonstrated that it is specifically stimulus-dependent synchrony or near-

synchronous spikes that carry more information about the direction of drifting gratings76. The 

authors stress that they attempted to choose pairs where both neurons were driven by more than 

one stimulus, crucial to the quantification of stimulus-dependent correlations. Notably, this finding 

suggests that pairwise correlations are stimulus specific (see also77).  

The stimulus-specificity of pairwise interactions was subsequently shown in macaque area 

MT, accompanied by gains in information about the direction of motion. In other words, pairwise 

correlations themselves are tuned, and their tuning is more stable than single neurons’78. Indeed, 

learning probability distributions across spiking patterns that are conditioned on the stimulus 

results in different probability distributions explained by a different set of pairwise 

 
73 Pillow et al., “Spatio-Temporal Correlations and Visual Signalling in a Complete Neuronal Population.” 
74 Kühn and Gollisch, “Activity Correlations between Direction-Selective Retinal Ganglion Cells Synergistically 
Enhance Motion Decoding from Complex Visual Scenes.” 
75 Ohiorhenuan et al., “Sparse Coding and High-Order Correlations in Fine-Scale Cortical Networks.” 
76 Montani and Schultz, “Information-Theoretic Analysis of the Role of Correlations in Neural Spike Trains.” 
77 Josić et al., “Stimulus-Dependent Correlations and Population Codes.” 
78 Ponce-Alvarez et al., “Stimulus-Dependent Variability and Noise Correlations in Cortical MT Neurons.” 
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correlations79,80. These studies provide another line of evidence for the stimulus-specificity of 

correlations. It remains unclear what is the relationship between single cell tuning – a classic 

concept thought to underlie stimulus encoding (and decoding) since Hubel and Wiesel81 and 

stimulus-specific correlations. This question is explored in Chapter II.  

 Subsequently, and in line with the increased information carried by correlations, numerous 

studies have shown that taking into account the correlation structure of the population leads 

accurate decoding of stimulus identity: in theoretical studies and simulations82,83, retina84,85, 

primate primary visual cortex and area MT86,87,88, mouse somatosensory89 and primary visual 

cortex90, and in hippocampus91. However, many of the studies, especially those in cortex, have 

used noise correlations, i.e. correlations in rate across trials. As with information estimation, faster 

correlations (i.e. spike train correlations) are more accessible to downstream elements in real time. 

Chapter III takes this idea a step further, and examines how correlations that are computed across 

time are instantiated on a time frame by time frame basis. Some studies have shown that 

information-theoretic measures and decoders that explicitly incorporate higher-order correlations, 

 
79 Granot-Atedgi et al., “Stimulus-Dependent Maximum Entropy Models of Neural Population Codes.” 
80 Ganmor, Segev, and Schneidman, “A Thesaurus for a Neural Population Code.” 
81 Hubel and Wiesel, “Receptive Fields of Single Neurones in the Cat’s Striate Cortex.” 
82 Schaub and Schultz, “The Ising Decoder.” 
83 Shamir and Sompolinsky, “Implications of Neuronal Diversity on Population Coding.” 
84 Franke et al., “Structures of Neural Correlation and How They Favor Coding.” 
85 Ruda, Zylberberg, and Field, “Ignoring Correlated Activity Causes a Failure of Retinal Population Codes.” 
86 Zavitz et al., “Correlated Variability in the Neurons With the Strongest Tuning Improves Direction Coding.” 
87 Chen, Geisler, and Seidemann, “Optimal Decoding of Correlated Neural Population Responses in the Primate 
Visual Cortex.” 
88 Graf, “Decoding the Activity of Neuronal Populations in Macaque Primary Visual Cortex.” 
89 Sederberg, Palmer, and MacLean, “Decoding Thalamic Afferent Input Using Microcircuit Spiking Activity.” 
90 Montijn, Vinck, and Pennartz, “Population Coding in Mouse Visual Cortex.” 
91 Meshulam et al., “Collective Behavior of Place and Non-Place Neurons in the Hippocampal Network.” 
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beyond pairwise92,93, have enhanced explanatory power, motivating transition into functional 

networks. 

 

A network science approach to the brain 

A complex system such as the brain calls for an analytic framework that is equipped to deal with 

multiple interacting elements. An added intricacy in networks of neurons over other complex 

system is that for the former, the structure-function and coding questions posed above are closely 

tied and difficult to disentangle. In other words, the ‘code’ is inseparable from the synaptic 

mechanisms that generate spiking. 

Complex systems with multiple interconnected elements interacting over time have been 

long studied in physics94 and genetics95, and more recently in social sciences96. Indeed, the 

frameworks of complex network analysis and graph theory date back to Euler97. In neuroscience, 

a graph theory inspired paradigm conceptualizes synaptic networks as a weighted and directed 

graph with neurons constituting vertices and synaptic connections serving as edges. Practically, 

the graph (also referred to as topology, interchangeably) can be represented as an adjacency matrix. 

To summarize correlated activity in a functional network (FN), edge weights stand for the strength 

of the statistical dependency, and the direction is often set by the lag. Consequently, circuit 

dynamics, represented as a graph, become mathematically tractable.  

 
92 Köster et al., “Modeling Higher-Order Correlations within Cortical Microcolumns.” 
93 Ganmor, Segev, and Schneidman, “Sparse Low-Order Interaction Network Underlies a Highly Correlated and 
Learnable Neural Population Code.” 
94 Dorogovtsev, Goltsev, and Mendes, “Ising Model on Networks with an Arbitrary Distribution of Connections.” 
95 Akutsu, Miyano, and Kuhara, “Inferring Qualitative Relations in Genetic Networks and Metabolic Pathways.” 
96 Sekara, Stopczynski, and Lehmann, “Fundamental Structures of Dynamic Social Networks.” 
97 Euler, “Solutio Problematis Ad Geometriam Situs Pertinentis.” 
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Graph theory methods have been employed to describe the structure of cortical circuits98,99 

exposing network properties supporting balanced dynamics100, information transmission101 and 

optimal storage capacity102. However, to date very few studies have attempted to directly tie 

together dynamics and coding with this paradigm. Shi et al103 have included an adjacency matrix 

in a generalized-linear-model decoder of V1 activity, exhibiting only moderate success. Yet, their 

study was limited to 16 neurons in anesthetized rats, and model selection and fitting could be 

improved. 

An FN approach has several advantages: First, it preserves the full dimensionality of 

dynamics and cell identities, enhancing interpretability, as opposed to transforming the dynamics 

to another space. It also allows for examination of the single-cell within the context of a network, 

which is especially useful for building upon decades of research measuring single-cell responses 

towards a description of population activity, as done in chapter II. As the field ventures into the 

anatomical and functional connectivity within and between different cell types, and all-optical 

simultaneous and targeted single-cell manipulation and imaging becomes more widely used, 

preserving cell labels will prove helpful for both experiments and analysis. Second, FNs allow for 

relatively easy analysis of higher-order functional interactions104,105 and the rich graph-theory 

literature aids the construction of appropriate null models (unfortunately still underutilized). The 

 
98 Song et al., “Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits.” 
99 Reimann et al., “Cliques of Neurons Bound into Cavities Provide a Missing Link between Structure and 
Function.” 
100 Landau et al., “The Impact of Structural Heterogeneity on Excitation-Inhibition Balance in Cortical Networks.” 
101 Timme et al., “High-Degree Neurons Feed Cortical Computations.” 
102 Brunel, “Is Cortical Connectivity Optimized for Storing Information?” 
103 Shi, Niu, and Wan, “Effect of the Small-World Structure on Encoding Performance in the Primary Visual 
Cortex.” 
104 Dechery and MacLean, “Functional Triplet Motifs Underlie Accurate Predictions of Single-Trial Responses in 
Populations of Tuned and Untuned V1 Neurons.” 
105 Chambers and MacLean, “Higher-Order Synaptic Interactions Coordinate Dynamics in Recurrent Networks.” 
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FN approach complements probabilistic methods for detecting higher-order interactions106 due to 

faster runtimes and the ability to combine motifs into clusters.  

Finally, FNs require relatively small amounts of data to compute. This enables the 

computation of stimulus-specific FNs, as well as recent advancements in the temporal domain, 

where FNs can be used to track changes in dynamics over time such as the course of a trial. Sliding 

window approaches in which  an FN is generated for every time epoch have shown that: one, 

changes to the core-periphery network structure as a function of time are largely independent of 

global brain states and anatomical location107. And two, that reaches to different directions in 

monkey M1 are characterized by stereotyped and direction-specific temporal evolution of FNs, in 

line with Hebbian phase sequences (Sundiang, unpublished personal communication). Chapter III 

employed an intersection step, similar to Dan et al108 to obtain instantaneous FNs, but the evolution 

of these FNs, i.e. how the statistics of one time point are related to the next, are left for future 

research. 

  

 
106 Ganmor, Segev, and Schneidman, “Sparse Low-Order Interaction Network Underlies a Highly Correlated and 
Learnable Neural Population Code.” 
107 Pedreschi et al., “Dynamic Core-Periphery Structure of Information Sharing Networks in Entorhinal Cortex and 
Hippocampus.” 
108 Dan et al., “Coding of Visual Information by Precisely Correlated Spikes in the Lateral Geniculate Nucleus.” 
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CHAPTER I 

Ensemble stacking mitigates biases in inference of synaptic connectivity 

This work was previously published: Chambers, B.*, Levy, M.*, Dechery, J. B., & MacLean, J. 
N. (2018). Ensemble stacking mitigates biases in inference of synaptic connectivity. Network 
Neuroscience, 2(1), 60-85. (*co-first authors / equal contribution) 
 
 
ABSTRACT 

A promising alternative to directly measuring the anatomical connections in a neuronal population 

is inferring the connections from the activity. We employ simulated spiking neuronal networks to 

compare and contrast commonly used inference methods that identify likely excitatory synaptic 

connections using statistical regularities in spike-timing. We find that simple adjustments to 

standard algorithms improve inference accuracy: a signing procedure improves the power of 

unsigned mutual-information based approaches and a correction which accounts for differences in 

mean and variance of background timing relationships, such as those expected to be induced by 

heterogeneous firing rates, increases the sensitivity of frequency-based methods. We also find that 

different inference methods reveal distinct subsets of the synaptic network and each method 

exhibits different biases in the accurate detection of reciprocity and local clustering. To correct for 

errors and biases specific to single inference algorithms we combine methods into an Ensemble. 

Ensemble predictions, generated as a linear combination of multiple inference algorithms, are 

more sensitive than the best individual measures alone, and are more faithful to ground-truth 

statistics of connectivity, mitigating biases specific to single inference methods. These weightings 

generalize across simulated datasets, emphasizing the potential for the broad utility of Ensemble 

based approaches.  
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INTRODUCTION 

Propagation of activity within neuronal networks is largely determined by underlying synaptic 

connectivity1,2,3. This link has been demonstrated using recordings from pairs and small groups of 

neurons and has provided insights into plasticity processes4,5, circuit structure6,7,8 and noise 

correlations9. While methods such as paired patch clamp recordings or electron microscopy 

provide unambiguous indication of a synaptic connection they are technically limited to the 

examination of a small number of connections with unknown functional relationships.  

Consequently the statistics of circuit connectivity at the mesoscopic scale are difficult to conclude 

due to finite size effect errors10. In contrast, measures of dynamics, such as those generated by 

two-photon imaging of calcium fluorescence indicators11, allow up to a 1000 neurons to be 

recorded but require that synaptic connections be inferred using statistical dependencies in spike 

timing. Because neuronal spiking in neocortical networks requires synaptic input, the causal 

relationship between connectivity and activity can be exploited to infer network topology in direct 

relation to synaptic recruitment12. In this framework, statistical dependencies in the spiking activity 

between pairs of neurons within a population are summarized as a weighted directed graph, and 

 
1 Gerstein and Perkel, “Simultaneously Recorded Trains of Action Potentials.” 
2 Lindsey et al., “Repeated Patterns of Distributed Synchrony in Neuronal Assemblies.” 
3 Kumar, Rotter, and Aertsen, “Spiking Activity Propagation in Neuronal Networks.” 
4 Kruskal, Li, and MacLean, “Circuit Reactivation Dynamically Regulates Synaptic Plasticity in Neocortex.” 
5 Lalanne, Abrahamsson, and Sjöström, “Using Multiple Whole-Cell Recordings to Study Spike-Timing-Dependent 
Plasticity in Acute Neocortical Slices.” 
6 Song et al., “Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits.” 
7 Perin, Berger, and Markram, “A Synaptic Organizing Principle for Cortical Neuronal Groups.” 
8 Ko et al., “Functional Specificity of Local Synaptic Connections in Neocortical Networks.” 
9 Hofer et al., “Differential Connectivity and Response Dynamics of Excitatory and Inhibitory Neurons in Visual 
Cortex.” 
10 Vegue, Perin, and Roxin, “On the Structure of Cortical Micro-Circuits Inferred from Small Sample Sizes.” 
11 Sadovsky et al., “Heuristically Optimal Path Scanning for High-Speed Multiphoton Circuit Imaging.” 
12 Chambers and MacLean, “Multineuronal Activity Patterns Identify Selective Synaptic Connections under 
Realistic Experimental Constraints.” 
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this weight matrix is informative about likelihood of synaptic connections as well as their 

functional relationship. Only those synapses directly contributing to spike-time dependencies can 

be captured and summarized by these weight matrices (Chambers and MacLean 2015). While this 

lessens the number of synaptic connections that can be inferred, this subset of connections (which 

we have referred to as the ‘recruitment’ network) have particular importance for the propagation 

of spiking and are desirable targets for inference (Chambers & MacLean 2016). Study of the link 

between structural and functional connectivity has the promise to reveal mechanistic insights as to 

how information flow is directed across networks and the number of studies employing inference 

algorithms has grown rapidly. In this paper we compare and contrast the performance of a number 

of common inference methods, identify biases specific to individual inference methods and then 

combine them in an ensemble to mitigate these biases and consequently improve inference of 

synaptic connectivity within large networks of neurons.   

The importance of bridging function and structure is highlighted by the increasing diversity 

of methods for predicting synaptic connectivity from spiking activity. These efforts encompass 

methods based on counting lagged firing events13, lagged correlation14, mutual information15, and 

transfer entropy16,17 sometimes also referred to as conditional mutual information18, as well as 

other approaches. Crucial to the performance of these methods is the time resolution of the spike 

trains, or the bin size in the binning procedure19 over relevant time scales relating spiking to 

 
13 Pajevic and Plenz, “The Organization of Strong Links in Complex Networks.” 
14 Sadovsky and MacLean, “Scaling of Topologically Similar Functional Modules Defines Mouse Primary Auditory 
and Somatosensory Microcircuitry,” August 28, 2013. 
15 Endo et al., “Delayed Mutual Information Infers Patterns of Synaptic Connectivity in a Proprioceptive Neural 
Network.” 
16 Ito et al., “Extending Transfer Entropy Improves Identification of Effective Connectivity in a Spiking Cortical 
Network Model.” 
17 Stetter et al., “Model-Free Reconstruction of Excitatory Neuronal Connectivity from Calcium Imaging Signals.” 
18 Zhang et al., “Conditional Mutual Inclusive Information Enables Accurate Quantification of Associations in Gene 
Regulatory Networks.” 
19 Chambers and MacLean, “Multineuronal Activity Patterns Identify Selective Synaptic Connections under 
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synaptic connectivity and integration. Consequently we consider a range of bin widths in this work. 

The majority of these metrics are formulated in terms of correlations between consecutive time 

bins, which implies causality. However, as the number of neurons densely recorded with imaging 

increases, acquisition time generally increases as well, and the relevant correlations may shift from 

consecutive time bins towards simultaneous time bins. We thus propose variations of information 

theoretic measures that account for simultaneous and joint time bin correlations to reflect common 

experimental constraints.   

Because each of the inference algorithms differentially quantify statistical features of 

population dynamics, it is possible that they identify non-identical sets of connections. Therefore, 

it is opportune to turn to progress in machine learning and bioinformatics, which have shown that 

combining approaches has the potential to pool over strengths and neutralize weaknesses of their 

constituent algorithms20. Collectively, these strategies are known as Ensemble methods. An early 

formal description of an Ensemble method was introduced to address the difficulty of optimization 

under conditions of multiple local minima in neural networks21. Ensemble learning has been shown 

to occur in both the frequentist and Bayesian frameworks of machine learning exemplified 

respectively by boosting22 and Bayesian optimal classifiers. In diverse settings, combinations of 

algorithms can be stacked together to yield an aggregate that outperforms its components23. 

However, it is unclear whether an Ensemble approach can be applied to the problem of synaptic 

inference. We investigate this issue using simulated naturalistic spiking networks, where true 

underlying connectivity is known in full. Computational models are well-suited to investigating 

 
Realistic Experimental Constraints.” 
20 Marbach et al., “Wisdom of Crowds for Robust Gene Network Inference.” 
21 Hansen and Salamon, “Neural Network Ensembles.” 
22 Freund and Schapire, “A Desicion-Theoretic Generalization of on-Line Learning and an Application to Boosting”; 
Schapire, “The Strength of Weak Learnability.” 
23 Fast and Jensen, “Why Stacked Models Perform Effective Collective Classification.” 
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synaptic topology, because they present transparent access to synaptic connectivity and spike-

timing. Prior work has demonstrated that random synaptic networks present the greatest challenges 

for inferring synaptic connections from activity24. Therefore, although synaptic networks in the 

neocortex are known to be non-random, random models are useful for benchmarking success-rates 

in synaptic inference applications. It is also important to consider naturalistic regimes of 

population activity, because network state can determine the success or failure when inferring 

synaptic connections25. To compare diverse inference methods and judge whether they may 

complement one another, we designed network simulations to reflect naturalistic dynamics and 

reflect experimental constraints. We show that an Ensemble approach reveals a more extensive 

subset of the synaptic network, and one that is more faithful to the true statistics of the synaptic 

recruitment network measured in our simulations. A host of weighted combinations improve over 

the best individual measures, and these weighting schemes are transferrable from one simulated 

data set to another. 

 
METHODS 

Network simulations 

In order to obtain a ground-truth for network connectivity, we constructed six networks of 

conductance-based leaky-integrate-and-fire (LIF) neurons, similar to previous work2627. Each 

simulated dataset was defined as a synaptic connectivity matrix (Fig 1C) with 1000 excitatory 

units and 200 inhibitory units, constructed probabilistically according to a stochastic blocked 

 
24 Kobayashi and Kitano, “Impact of Network Topology on Inference of Synaptic Connectivity from Multi-Neuronal 
Spike Data Simulated by a Large-Scale Cortical Network Model.” 
25 Stetter et al., “Model-Free Reconstruction of Excitatory Neuronal Connectivity from Calcium Imaging Signals.” 
26 Chambers and MacLean, “Higher-Order Synaptic Interactions Coordinate Dynamics in Recurrent Networks.” 
27 Chambers and MacLean, “Multineuronal Activity Patterns Identify Selective Synaptic Connections under 
Realistic Experimental Constraints.” 
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model with naturalistic connection probabilities. The excitatory subnetwork taken in isolation 

formed an Erdos-Renyi graph (p=0.2). Specifically, we set , ,  and 

, with e denoting excitatory units, i denoting inhibitory neurons, and the first and second 

letters in the subscript standing for the pre- and post- synaptic neuron, respectively. 

  

Each neuron’s membrane potential was governed by:    

(1)   

(2)   

(3)   

A spike occurred every time the membrane potential crossed a threshold, set at -48 mV. Post spike, 

membrane potential was then reset to -70 mv, and a 1 ms refractory period imposed. Conductances 

and equilibrium potentials were defined for leak (l), excitatory synapses (e), inhibitory synapses 

(i) and a tonic input serving to stabilize spiking (tonic) (Table 1).  

 
Table 1.1 – Parameters of the spiking network model. 

Parameter Value Parameter Value 
Ei -90 mV gl 0.2 mS 
Ee 0 mV gtonic 0.2 mS 
El -65 mV tm 20 ms 
Etonic 0 mV te 10 ms 
  ti 5 ms 

 
 Synaptic weights were randomly sampled from a lognormal distribution with location and 

scale parameters µ = -0.64 and σ = 0.51. The resulting weights distribution had a mean of 0.6 and 

variance of 0.11, relative to the scale of the leak conductance. Since an important subset of 

0.2eeP = 0.35eiP = 0.25ieP =

0.3iiP =

( ) ( ) ( ) ( )m e e i i l l tonic tonic
dV g E V g E V g E V g E V
dt

t = - + - + - + -

e
e e
dg g
dt

t = -

i
i i
dg g
dt

t = -
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inhibitory projections onto excitatory cells tend to synapse on the soma and proximal dendrites28 

and are thus more potent, we enhanced I	to E weights by 50%. We started each simulation by 

initializing membrane potentials to values drawn randomly from a normal distribution with a mean 

of -65 mv and a standard deviation of 5 mv. A pool of 50 Poisson neurons was used as input to the 

network. Poisson neurons spiked at 15Hz and were independently connected to excitatory units 

with P = 0.1 and 0.6 synaptic weight in the units of the leak conductance. The network was driven 

with the input pool for 50 ms and activity was allowed to continue for 100 ms, after which the 

simulation was terminated. This procedure was repeated over 100 trials with 10 different inputs. 

All simulations were carried out using the Brian Brain Simulator29, with Euler’s method for 

integration and time-steps of 1 ms. 

 

Inference measures 

Spikes were binned in five time resolutions (1, 5, 10, 20, 40 and 80 ms) into time-frames containing 

binary values, resulting in 150000, 30000, 15000, 7500, 3750 and 1875 bins respectively. We 

employed seven pair-wise measures of connectivity between neurons: lag count - abbreviated as 

count, lag correlation - abbreviated correlation, consecutive mutual information (MI), 

simultaneous MI, confluent MI, first-order transfer entropy (TE (k=1)) and second-order transfer 

entropy (TE (k=1)). We thus consider a wide array of inference algorithms ranging in 

sophistication. 

For each pair of neurons i,j we defined a binary variable , which evaluates to 1 if 

 and . For example: 

 
28 Markram et al., “Interneurons of the Neocortical Inhibitory System.” 
29 Goodman and Brette, “The Brian Simulator.” 
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(4)   

Lag count was then calculated as: 

(5)     

where T is the number of time-bins. 

 

Lag correlation between two spike-trains was calculated using the Phi coefficient:  

(6)   

We use three versions of mutual information; consecutive mutual information (cMI) between a 

pair of neurons i,j was calculated as: 

(7)   

However, we note that binning spikes into longer time bins may result in the pre- and post- synaptic 

spikes being binned into the same bin. Thus, we also consider simultaneous mutual information 

(sMI): 

 

(8)     

 

and confluent mutual information (conMI): 

(9)   
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where    

 

As a non-symmetric information theoretical measures we calculated transfer entropies under first- 

and second- order Markov models (TE1 and TE2, respectively) between every pair i,j of neurons: 

(10) 

    

TE2 is similarly defined, with the information i(t) is providing about j(t+1) conditioned not only 

on j(t) but also on j(t-1).  

 

Measure evaluation 

In order to evaluate performance of individual measures and the combined ensemble we calculated 

the recruitment network for each model. The recruitment network (Fig. 1D-F) is the intersection 

between the connectivity matrix and those synapses that directly contribute to post-synaptic firing 

since these are the only synapses that can be inferred using spikes (see schematic; Chambers and 

MacLean 2016). We first defined the active network in a similar way to countij (Equation 5), but 

modified  so that both consecutive and simultaneous time bins are considered:  

   

(11)   
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(12)   

   
Figure 1.1 - Inferring synaptic connectivity from pairwise spike timing 
A)  Population spike raster for 50 random excitatory model neurons during 40 s simulated recording. Three 

representative pairs matched for firing rates are shown in color: strongly connected (orange), weakly connected 

(green), and unconnected (blue). Spikes were binarized at 20 ms time-bins. B)  The same example pairs as in panel A 

during another 20 s of simulated recording. C)  Ground truth synaptic connectivity for excitatory neurons shown in 

panel A. Edge width indicates weight. Arrows mark the strongly connected pair (orange) and weakly connected pair 

(green). Width was enhanced for visibility purposes. D)  Schematic of a synaptic network among four active neurons. 

E) Synaptic recruitment is defined as lagged firing between pre- and postsynaptic pairs. Under the conditions of a 

given input, network state, and recording duration, not every synaptic connection recruits its postsynaptic partner to 

generate an action potential. F)  Inferred synaptic connectivity (solid lines) mirrors the recruitment network, mapping 

propagating activity. Errors occur when inference algorithms fail to detect sites of synaptic recruitment (e.g. missing 

edge from neuron 2 to neuron 1), or assign putative connectivity (dashed lines) where there is none in truth.  

 
The recruitment network was then computed as a binary matrix: 
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(13)   

where   is the adjacency matrix used to run the simulation.   

The percent of connections retained in the recruitment network out of the static synaptic 

connectivity is described in Table 2. Previously we have reported that it is only possible to infer 

connections that are active and temporally proximal to an action potential in the post-synaptic 

neuron30. To reflect this fact we used the recruitment network as ground truth, and defined 

performance of an algorithm as the number of inferred connections at 80% true positive rate. This 

true positive rate was chosen based on survival curve analysis on three representative measures at 

all time resolutions (Fig 5). This definition provides a realistic test of performance as only those 

active connections that contribute to spiking in the post-synaptic neuron can be captured by an 

inference algorithm of any kind. A lower threshold and increased coverage under the same true 

positive rate means that as the refinement process progresses, inferred adjacency matrices become 

sparser because false alarms are being removed from those matrices. 

 
Table 1.2 – Percent of connections retained in the recruitment network. 
Data are shown for six simulated datasets binned at five time resolutions. 

 5 ms 10 ms 20 ms 40 ms 80 ms 
Simulated dataset 1 34.95% 40.82% 47.97% 53.49% 60.89% 

Simulated dataset 2 41.41% 46.42% 53.18% 57.75% 65.22% 

Simulated dataset 3 39.81% 45.63% 52.17% 56.70% 63.56% 

Simulated dataset 4 45.72% 50.85% 58.57% 64.58% 72.32% 

Simulated dataset 5 43.29% 49.38% 56.08% 61.04% 68.09% 

Simulated dataset 6 42.32% 47.58% 54.36% 59.56% 67.14% 

 
 
 

 
30 Chambers and MacLean, “Multineuronal Activity Patterns Identify Selective Synaptic Connections under 
Realistic Experimental Constraints.” 
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Ensemble weights and scores 

We employed a simulated annealing strategy with cyclical dynamics to search over weighted linear 

combinations of individual measures. Before pooling, individual measures were normalized by 

their maximum value to provide a uniform scale. The final inputs into the simulated annealing 

algorithm were then computed as:  

(14)   

 

Where norm_residualij is the final transformation of every measure, and defined in the results 

(Equation 20). sgn denotes the sign. m stands for the measure used, so each measure had its own 

Sij. 

The random search algorithm was used to train weights independently on each of six 

simulated networks using coverage at 80% accuracy as our objective function (Fig. 7A). This 

objective function proved to be pockmarked with many local maxima, motivating the use of 

repeated increment and cooling in the annealing process to avoid local maximum traps31. As step-

size decreased, if no further gains were achieved, the search algorithm would occasionally jump 

to the last step-size that did yield improvements. If these larger jumps still failed to improve the 

performance, the jump size was further increased. Weights were learned across five repeats of 

training for each model and time-scale (Fig. 7A, 10 ms).  

 

An ensemble score was then calculated for each pair of neurons as a linear weighted sum of S(m)ij 

(Equation 14): 

 
31 Kirkpatrick, Gelatt, and Vecchi, “Optimization by Simulated Annealing.” 

_ ( )
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ij
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(15)   

Where  are the weights of the measures found by the annealing algorithm, and M is the number 

of measures. 

 

Comparison between inference measures 

All comparisons were conducted after completing the regularization steps described in Results, i.e. 

on the normalized-residual adjacencies. Since summary statistics for adjacency matrices are 

impacted by edge-density, inferred adjacency matrices were thresholded to match sparseness 

before conducting any comparisons, isolating just the strongest relationships for each measure. To 

match sparseness, thresholding was performed at the 98th-percentile, leaving the top 2% of entries 

for each measure. Weights exceeding the inclusion threshold were mapped to 1 and those failing 

to reach inclusion threshold were mapped to 0. This pruning procedure allowed us to more clearly 

identify biases inherent to individual algorithms, and was not used to evaluate performance. 

Similarity between measures was assessed by vectorizing adjacency matrices and comparing the 

Euclidean distances separating each pair of measures. This comparison was performed 

independently for each simulated dataset. Reciprocity was quantified as the probability a randomly 

selected non-zero edge from neuron i to neuron j was accompanied by a non-zero edge from j to i. 

Local clustering for neuron k was quantified as the counted number of connected triangles 

including k divided by the number of possible triangles including k. In this formulation, a triangle 

must be composed of neuron k plus two immediate neighbors of k, without constraints on 

directionality. Thus, local clustering quantifies neighbor-of-neighbor relationships in the 

immediate neighborhood around k. Reciprocity and local clustering were aggregated by taking the 

mean over all edges and neurons, respectively, in the simulated dataset. 

1
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M

ij m ij
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RESULTS 

Simulated neuronal networks 

Randomly connected recurrent networks (Fig. 1C) comprised of 1000 excitatory and 200 

inhibitory LIF neurons showed persistent naturalistic activity after being driven by a sparse set of 

Poisson inputs for 50ms. Across six randomly connected networks, 99 ± 0.05% (mean ± SD) of 

neurons within the excitatory pool spiked at least once, and displayed sparse asynchronous-

irregular firing (Fig. 1A and 1B). Firing rates were 1.66 ± 3.30 Hz (mean ± SD) and followed a 

log-normal distribution and single units showed irregular spiking consistent with experimental 

measures in cortical neurons32,33, with inter-spike interval coefficient of variation 1.04 ± 0.20 

(mean ± SD). The numbers of spikes used for inference in the six simulated datasets varied and 

depended on the size of the time bin used (Table 3). Using these simulated networks, which 

produced naturalistic spiking activity, we examined whether spiking activity within the network 

can be used to reveal underlying synaptic connectivity across the population. We employed sparse 

recurrent networks with random connectivity, constructed probabilistically according to 

naturalistic parameters (see Methods). Under some circumstances, non-random connectivity (e.g. 

local clustering) can facilitate inference of connections (Kobayashi & Kitano, 2013), so random 

synaptic connectivity may provide a more appropriate benchmark for comparing inference 

methods, particularly in assessing their propensity towards false positive errors. Because 

connectivity in neocortex is not random34 the results presented here can be interpreted as a proof 

of concept of what is achievable when applying these inference approaches to experimental data. 

While it remains unclear how broadly results generated using randomly connected networks 

 
32 Softky and Koch, “The Highly Irregular Firing of Cortical Cells Is Inconsistent with Temporal Integration of 
Random EPSPs.” 
33 Destexhe, Rudolph, and Paré, “The High-Conductance State of Neocortical Neurons in Vivo.” 
34 Song et al., “Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits.” 



 

 39 

generalize, we have found that specific ‘motifs’ of higher order correlation found in random 

networks are also found in spiking data collected from neocortex (Chambers and MacLean 2016). 

There have been a number of studies that have examined whether correlation can be informative 

of causal connections, and it remains unclear how to best utilize the information provided by 

different inference approaches to uncover synaptic connectivity. As can be seen in Fig. 1B, 

synchronous or lagged events occur for both strongly and weakly connected neuron pairs, as well 

as by chance for unconnected neurons, rendering the task of interaction inference difficult. Here 

we introduce a series of refinements to traditional connectivity measures and demonstrate 

improvement in our ability to correctly identify monosynaptic excitatory connections using spiking 

across a recorded population of neurons.  

 
Table 1.3 – Number of spikes used for inference. 
Data represent mean ± SD for six simulated networks binned at 5 time resolutions. 

 5 ms 10 ms 20 ms 40 ms 80 ms 
Simulated dataset 1 135.13 ± 239.70 134.89 ± 238.94 130.12 ± 224.07 118.02 ± 189.30 102.41 ± 148.06 

Simulated dataset 2 233.75 ± 513.30 233.34 ± 510.44 225.82 ± 471.20 205.27 ± 384.84 178.00 ± 286.54 

Simulated dataset 3 264.25 ± 602.24 263.35 ± 595.56 251.24 ± 536.08 222.39 ± 425.01 187.51 ± 311.65 

Simulated dataset 4 212.17 ± 340.30 212.02 ± 339.90 208.32 ± 339.47 196.14 ± 295.79 177.62 ± 245.71 

Simulated dataset 5 282.00 ± 557.41 281.34 ± 554.79 269.80 ± 514.41 241.43 ± 424.08 205.72 ± 320.39 

Simulated dataset 6 221.79 ± 424.11 221.58 ± 423.26 216.26 ± 404.11 200.09 ± 348.86 176.78 ± 274.40 

 
 
Signed information theoretic measures - removing negative correlations 

There are a number of approaches to inference. Some address the frequency of lagged or 

simultaneous spiking directly, such as the count method and the correlation method. For these 

measures, edge e = (i,j) is positive only if there is the possibility that neuron i recruited neuron j to 

fire—that is, only if j becomes active after i at least once (Fig. 2A). In contrast, mutual information 

is related to lagged-firing in a more abstract sense. As a practical consequence, the entries of MIij 

can be large given any type of interaction between the pre- and post- synaptic neurons. Indeed, we 
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find that many pairs that were ranked highly under mutual information and transfer entropy had 

negative correlationij scores (Fig. 2B and 2C). Unsurprisingly given the negative scores, the 

majority of those pairs were not monosynaptically connected, despite their high information 

theoretic scores. In order to account for interaction directionality consistent with causal synaptic 

interactions, we signed our mutual information and transfer entropy metrics on the basis of 

correlationij: 

(16)   

where X stands for the information theoretic measure considered (e.g.  is the 

signed confluent mutual information between neurons i and j).  

Figure 1.2 - Leveraging anti-correlations to isolate excitatory connections 
Data in this figure are from a randomly chosen representative simulated network binned at 20 ms, and sub-sampled 

according to density for display purposes. A)  Unconnected pairs often attained high lagged-count scores, but tended 

to exhibit negative-shifted lag-correlations compared to connected pairs. Signing lag-count scores on the basis of lag-

correlation thus improved performance, although signed lag-count still fails to achieve sensitivity at the 80%-accuracy 

threshold. B) A subset of unconnected pairs exhibited high consecutive mutual information scores and strong negative 

lag-correlations. Signing consecutive mutual information entries on the basis of lagged correlations dramatically 

improved sensitivity at the 80%-accuracy threshold, increasing from 297 putative connections to 1987 putative 

connections in the representative model dataset. C)  Transfer entropy is prone to the same errors, so that signing 

transfer entropy scores based on lag-correlation extends coverage of putative connections from 176 to 1611 directed 

pairs. 

 

( ) sgn( )ij ij ijsigned X X correlation= ×

( )ijsigned conMI
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The signing procedure yielded gains in accuracy. These improvements are apparent when 

comparing the thresholds achieving 80% prediction accuracy for the raw versus signed metrics 

(Fig. 2B and 2C). We confirmed the intuition that negative interactions can confound the detection 

of excitatory connections using information theoretic methods but can be accounted for. It remains 

an open question whether negative information theoretic scores are indicative of inhibitory 

connections. Inference of inhibitory connectivity is especially challenging, because of the 

ambiguity in distinguishing inhibition per se from the absence of excitatory drive. In this work, 

we consider only the positive entries of  , and denote those  .	 

 

Removing additional spurious correlations  

Removing negative correlations allowed us to identify and correct for one source of false positives. 

Nevertheless, it remained clear that a significant overlap between our true positive signal and false-

positive background is still present. We observed that false positives sometimes appeared to span 

source and target nodes with high weighted out- and in-degrees. Indeed, functional interactions are 

known to be heterogeneous with a heavy tail35,36,37, revealing indiscriminate patterns of spike time 

coordination. Since experimental evidence indicated that synaptic connectivity is sparse, we 

reasoned that neurons with extremely high weighted degrees reflected coordination in activity not 

arising from monosynaptic connections alone, but rather coordinated population dynamics. For the 

purpose of identifying likely synaptic pairs, these are ‘background’ spurious correlations. We 

estimated the magnitude of these background correlations, which depended on pre- and post-

 
35 Shimono and Beggs, “Functional Clusters, Hubs, and Communities in the Cortical Microconnectome.” 
36 Sadovsky and MacLean, “Scaling of Topologically Similar Functional Modules Defines Mouse Primary Auditory 
and Somatosensory Microcircuitry,” August 28, 2013. 
37 Nigam et al., “Rich-Club Organization in Effective Connectivity among Cortical Neurons.” 

( )ijsigned X ( )ijpos X
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synaptic identity, and removed them from inferred weights. 

 Previous work employing mutual information to infer protein interactions had shown that 

removing spurious correlations by linear regression refined inference and preferentially identified 

residues known to interact physically 38. Inspired by this work, we asked whether a similar 

correlation existed in the neuronal interactions of our networks. Noting that positive values of 

information theoretic scores have highly skewed distributions, we re-expressed the measures with 

the exception of count due to the discrete nature of the metric. Re-expression was performed by 

Tukey’s ladder of power 39 which finds the exponent that minimizes a distribution skewness: 

(17)   

  

Each measure was re-expressed accordingly: 

(18)   

 

Having re-expressed the scores, we next calculated the background signal for each pair of 

neurons. This was achieved by averaging the scores of the pre- and post- synaptic neurons when 

partnered with every other potential post- and pre-synaptic neuron in the network, respectively. 

This is equivalent to taking the mean across columns for the pre-synaptic neuron, and across rows 

for the post-synaptic neuron, excluding the partner neuron currently examined. We multiplied 

those mean scores for the pre- and post- synaptic neuron, denoted backgroundij: 

(19)   

 
38 Little and Chen, “Identification of Coevolving Residues and Coevolution Potentials Emphasizing Structure, Bond 
Formation and Catalytic Coordination in Protein Evolution.” 
39 Tukey, “Exploratory Data Analysis.” 

argmin
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where 〈… 〉 is the mean.  

 

A high average score, while potentially indicative of wide-reaching polysynaptic influence across 

the network, is unlikely to reveal monosynaptic connections. Indeed, backgroundij was found to 

be highly correlated with countij (Fig. 3A), and only to a lesser extent with information theoretic 

measures, although correlations were still significant (Fig. 3B and 3C).  

In order to remove the influence of this background signal we calculated the residual of 

each measure, residual(X)ij, over background(X)ij by linear regression. We found improved 

coverage with the residual scores over the re-expressed scores, with up to 8-fold increase (93% 

increase on average) in connections uncovered with information theoretic measures corrected in 

this manner (Fig. 3D-F). 

 

Scaling residuals to account for heteroskedasticity 

Although accounting for the tendency of the neurons to participate in many interactions improved 

detection, pairs with high background signal were more dispersed around the regression line, 

especially for countij. In other words, the variance of residual(X)ij was dependent on 

background(X)ij, hence displaying heteroskedasticity. This is evident from examining the residuals 

plotted against ranked background(X)ij (Fig. 4A-C). These differences in variance confound 

detection since pairs with high background signal are more likely to exceed selection thresholds. 

We found that heteroskedasticity affected connected as well as unconnected pairs, thus ruling out 

simple thresholding. 
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Figure 1.3 - Removal of mean background timing relationships improves detection of 
synaptic pairs 
Data in this figure are from a randomly chosen representative simulated network binned at 20 ms, and sub-sampled 

according to density for display purposes. A)  Linear regression revealed a strong background component in the Count 

measure, reflecting a tendency for strong timing relationships to appear in tandem at select model neurons, 

encompassing both connected and unconnected pairs. B)  After re-expressing global weights for each measure to 

approximate normality, a weaker but significant background signal was revealed for the consecutive Mutual 

Information measure. C)  Background signal manifested somewhat more strongly for the Transfer Entropy (k=1) 

measure. D)  Removal of mean neuron-wise background signal improved performance for the Count measure, but 

unconnected pairs with high residual scores remained a serious obstacle to high performance. E)  For the consecutive 

Mutual Information measure, removal of background signal improved coverage at the 80% accuracy threshold from 

1987 (two right quadrants) to 3311 (two top quadrants) putative pairs. F) For the Transfer Entropy (k=1) measure, 

removal of background improved coverage at the 80% accuracy threshold from 1611 to 2986 putative pairs. 

 

To adjust for heteroskedasticity, we Z-normalized residual(X)ij by the geometric mean of 

the pre- and post- synaptic neurons standard deviations. To avoid inflating low variances by 
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dividing by small values, normalization was limited to a minimum divisor. We denote the Z-

normalized scores by norm_residual(X)ij 

(20)   

where: 

(21)   

and σ denotes the standard deviation. 

   

Figure 1.4 - Rescaling neuron-wise residual score variance 
Data in this figure are from a randomly chosen representative simulated network binned at 20 ms, and sub-sampled 

according to density for display purposes. A)  The Count measure exhibited strong scaling of residual variance with 

mean background signal, negatively impacting performance after thresholding. B) Consecutive Mutual Information  

( )
_ ( )

max( , )
ij

ij
ij cutoff

residual X
norm residual X

j j
=
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Figure 1.4 – continued 
exhibited modest heteroskedasticity. C) Residual variance for Transfer Entropy (k=1) proved to be non-monotonically 

associated with mean background signal, with elevated variance among both the lowest and highest regularized scores. 

D) Z-normalization dramatically improved Count performance at the 80% accuracy threshold, increasing coverage of 

putative connected pairs from 164 to 3117. E)  Z-normalization improved consecutive Mutual Information coverage 

from 3261 to 3527 putative connected pairs. F) Transfer Entropy (k=1) was not notably impacted by Z-normalization, 

increasing coverage from 2986 to 3048 putative pairs. 

 

Accounting for scaled variance in background timing relationships, this refinement further 

improved the coverage of measures (Fig. 4D-F). The result was particularly dramatic for the count 

measure. Its success is particularly surprising since countij was initially a poor indicator of 

underlying connection. We suggest that z-scored count estimates provided a simple and powerful 

first-pass approach to synaptic inference. The performance of this final stage of refinement across 

time-scales and accuracy thresholds is shown in Fig. 5A-F). As we previously reported (Chambers 

& MacLean, 2015), 1 ms lagged relationship between neurons is less informative compared with 

inference based on longer time-bins due to the time constant of synaptic integration. Owing to this 

finding we used time resolutions varying between 5 and 80 ms for all subsequent analyses.  
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Figure 1.5 - Survival curves for norm_residual(count)ij, norm_residual(cMI)ij and 
norm_residual(TE1)ij for multiple time resolutions and accuracy rates 
A) Count perform best at 5 and 10 ms, revealing almost 50% of connections in the recruitment network. B) consecutive 

MI does similarly to count, with 5 and 10 ms time resolution achieving the best performance. C) Same as in A and B 

for Transfer Entropy (k=1). D-F) Zoom-in of A-C, respectively, showing true positive rates from 0.6 to 1. Note that 

inference algorithms calculated with 1 ms time-bins display performance in par with 20 ms time-bins. Mean and 

standard deviation across six simulated datasets are illustrated throughout. 

 
Average performance gains at 80% accuracy at each stage of refinement collapsed across 

models for countij, cMIij and TE1ij are shown in Fig. 6. The largest improvement to information 

theoretic measures resulted from accounting for the interaction sign, whereas coverage for countij 

increased mainly due to Z-normalization of the residuals, bringing norm_residual(count)ij 

detection in par with norm_residual(cMI)ij and norm_residual(TE1)ij. We next investigated 

whether statistical differences in the collections of predicted synaptic pairs persisted after signing, 

adjusting for background timing relationships, and selection by thresholding. 
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Figure 1.6 - Comparing gains in the regularization pipeline 
A)  Inference based on raw Count initially achieved zero coverage at the 80%-accuracy threshold. Removal of 

background signal improved coverage substantially, and the greatest gains resulted from z-normalization to 

compensate for heteroskedasticity. After regularization, Count performed as well as the best other individual inference 

algorithms. B)  Regularization was also beneficial for the consecutive Mutual Information measure, with the greatest 

gains achieved by signing raw scores to distinguish positive timing relationships from negative ones. C)  Transfer 

Entropy (k=1) exhibited similar improvements during regularization, benefiting from signing and removal of 

background signal. 

 
Comparing similarity and temporal preferences across measures 

We compared the collection of strongest pairwise relationships for each regularized inference 

measure. Thresholding was performed independently for each measure to yield sparseness-

matched binary subgraphs. We first compared the similarity of detected synaptic connections 

between each pair of measures. Different measures of pairwise timing statistics highlighted non-

identical, overlapping collections of putative synaptic pairs (Fig. 7). Qualitatively, L2 distances 

between measures were stable across simulated datasets (Fig. 7A and 7B). Interestingly, count and 

simultaneous mutual information (sMI) were most dissimilar, reflecting sensitivity to different 
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temporal structure. Consistent with this interpretation, the most similar measures were correlation, 

consecutive MI, and TE1. 

To investigate further, we compared the performance of each inference metric across 

timescales. The mean and standard error of coverage and relative coverage are shown in Fig. 7C 

and 7D. An interesting trend was revealed: At high temporal resolution, the measures focusing on 

consecutive time-bins, namely count and consecutive MI performed best. But as time-resolution 

decreased, optimal performance shifted increasingly towards measures that combine consecutive 

and simultaneous time-bins, such as confluent MI and TE2. For small bins, synaptic integration 

and recruitment often straddle time-bin borders; whereas for large bins, a given synaptic 

interaction is more likely to occur entirely within single time-bins. In addition to choice of 

statistical measure, performance depends on the correspondence between relevant timescales of 

synaptic integration versus the timescale of spike binning40. 

Of all the measures, simultaneous MI was unique in that it contains only information on 

the spikes that occur in the same time-bin (with no consecutive time-bin information). One might 

hypothesize that, with large time-bins, sMI would therefore best detect synaptic interactions. 

However, its inherent symmetry gave rise to frequent errors in directionality. These errors in 

assuming bidirectional connectivity prevented it from significantly crossing the 80% accuracy 

threshold, and it thus achieved zero coverage at this cutoff. While sMI is fully symmetric in its raw 

form, the normalization process removed this symmetry, which explains how the refined score 

achieved non-zero coverage at the largest time scale. 

 

Comparing topological preferences across measures  

 
40 Chambers and MacLean, “Multineuronal Activity Patterns Identify Selective Synaptic Connections under 
Realistic Experimental Constraints.” 
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We hypothesized that the inferred subgraphs of synaptic connections might differ in systematic 

ways depending on the algorithm employed and that these differences would be detectable by 

comparing the topological organization of the sub-graphs. If inferred networks differed in the 

lagged relationships that they were sensitive to it was possible they contained complementary 

information about the location of true connections. In previous work we had found that specific 

topological motifs found in simulated model activity were also found in experimental data 

collected from somatosensory cortex, demonstrating that higher order dynamical organization has 

the potential to generalize across network construction (Chambers and MacLean 2016). We 

compared estimates of reciprocal connection probability and local clustering to understand if 

different measures made similar estimates of these quantities (Methods). Inferred topologies were 

characterized by a diversity of reciprocity and local clustering (Fig. 7E-H). Unsurprisingly, the 

simultaneous MI measure exceeded all other measures in the level of reciprocity represented 

among its strong entries, since through symmetry it tends to predict bidirectional connectivity. 

Note that ground-truth reciprocity is 0.2. In contrast, measures sensitive to time lagged statistical 

relationships tended to be characterized by lower levels of reciprocity (Fig. 7E and 7G). Since 

pairwise reciprocity sets a lower bound expectation for local clustering, it is not surprising that 

measures followed a similar rank ordering for both estimates, although fractional differences were 

smaller for estimates of local clustering. Emphasizing that the two metrics are related but distinct, 

we note that count estimates of local clustering were relatively high in relation to its estimate of 

reciprocity. Overall, inferred topologies exhibited non-identical statistical features depending on 

the algorithm employed. 

We next tested whether these differences were dominated by detection errors, while 

encompassing statistically similar subsets of true synaptic connections. To investigate, we repeated 
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the analysis above for true positives only. After this step, inferred topologies were matched in 

sparseness by thresholding and binarized to prevent any uncontrolled differences in edge density. 

These two steps, thresholding and binarization were conducted solely for these comparisons 

(Methods). After pruning false positives from inferred topologies, estimates of reciprocity obeyed 

a qualitatively similar rank ordering (Fig. 7G). sMI continued to be dominated by reciprocal edges 

even after pruning false positives, exhibiting a strong selective preference for bidirectional 

synaptic pairs. Although it does not faithfully represent the groundtruth statistics of synaptic 

recruitment (investigated below), this feature could be useful in applied experimental settings: e.g. 

for targeting multi-cellular patch clamp recordings to find reciprocal pairs, potentially generating 

higher experimental yields. In contrast, after pruning false positives sMI exhibited far lower local 

clustering (Fig. 7H), revealing that false inference of reciprocal connectivity made a misleading 

impact in quantifying local clustering. The count subnetwork identified connections related by 

high local clustering. Correlation and TE1 measures identified synaptic pairs less likely to be 

bidirectionally connected or clustered tightly together. Since different inference measures 

appeared to prefer distinct subsets of the synaptic network, we next tested whether their 

heterogeneous strengths could potentially be pooled to yield higher sensitivity than was achievable 

with any measure alone.  

 

Ensemble approach for combining measures 

We found that each inference algorithm revealed overlapping but distinct sets of causal 

connections with different biases. This diversity suggested that an ensemble approach, leveraging 

complementary sources of information across measures, could potentially improve upon 

inferences based on any single measure. We employed a stochastic search strategy (Methods) to 

find a weighting scheme for combining measures. The weights we obtained largely paralleled the 
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independent performance of the component measures (Table 4), with consecutive binning being 

favored at high temporal resolution and confluent or simultaneous binning being favored at low 

temporal resolutions. Surprisingly, significant weight was assigned to sMI at larger exposures 

despite sMI not being able to achieve any real coverage on its own (see Fig. 7C and 7D). This 

result emphasized the utility of Ensemble approaches in cases in which low performing algorithms 

can still improve the ensemble performance. 

 
Table 1.4 – Ensemble weights. 
Data reported here as mean ± SD across six simulated datasets, each ran 5 times through simulated annealing. 

 5 ms 10 ms 20 ms 40 ms 80 ms 
Count 0.1411 ± 0.084 0.1990 ± 0.125 -0.0029 ± 0.116 0.0025 ± 0.051 0.0199 ± 0.037 

consecutive 
MI 

0.2782 ± 0.094 0.2396 ± 0.116 0.2098 ± 0.071 0.1335 ± 0.129 0.1260 ± 0.121 

simultaneous 
MI 

0.0035 ± 0.016 0.0080 ± 0.015 0.0591 ± 0.048 0.2496 ± 0.125 0.2607 ± 0.112 

confluent MI 0.2058 ± 0.064 0.2260 ± 0.080 0.2487 ± 0.111 0.1841 ± 0.120 0.2696 ± 0.117 

TE (k=1) 0.1084 ± 0.118 0.1116 ± 0.124 0.1484 ± 0.063 0.0884 ± 0.062 0.0323 ± 0.057 

TE (k=2) -0.1086 ± 0.036 0.0359 ± 0.066 0.0984 ± 0.082 0.1446 ± 0.081 0.1191 ± 0.092 

Correlation -0.1302 ± 0.046 -0.1052 ± 0.092 -0.1329 ± 0.083 -0.0555 ± 0.128 -0.0527 ± 0.108 

 
 
 Weights were pooled over all models for principal components analysis, to identify model-

independent features of the score landscape. Weight covariance for 10 ms simulated temporal 

resolution is shown in Fig. 8B, with entries in the main diagonal masked out for visualization 

purposes. The measures Count, confluent MI, and TE1 exhibited particularly high covariance, 

suggesting that they provide complementary information about synaptic connections. This 

observation is consistent with their different statistical preferences. TE2 tended to covary 

negatively with these measures, suggesting it was being leveraged to disambiguate pairs without 

a true connection. The complementary information yielded by TE1 versus TE2 reiterated the power 
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of studying functional coupling at multiple time-lags41. The search over weight space is illustrated 

for the first two PCA dimensions with performance indicated by color (Fig. 8C). Although score 

was not factored explicitly into the dimensionality reduction, effective weightings clustered 

together as a function of the first principle dimension, suggesting a large basin of feasible weights. 

Diverse combinations of weights had the potential to pool measures productively.  

 
41 Ito et al., “Extending Transfer Entropy Improves Identification of Effective Connectivity in a Spiking Cortical 
Network Model.” 
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Figure 1.7 - Inference algorithms differ 

in their statistical preferences 
A) Comparing the strongest putative connections 

inferred by each regularized inference algorithm, 

after sparseness-matching and binarization, on the 

basis of their pairwise Euclidean distances. B) 

Stable similarity and dissimilarity relationships 

manifested across simulated datasets. C)  Inference 

algorithms exhibited diverse levels of coverage at 

the 80%-accuracy threshold, with all algorithms 

except simultaneous Mutual Information 

performing better at high temporal resolutions. 

Regularized Count, consecutive Mutual 

Information, and Transfer Entropy (k=1) were the 

best performing measures given high temporal 

resolution, while confluent Mutual Information was 

the best performing measure in conditions of coarser 

temporal resolution. Lines and shading represent 

means and standard errors across six simulated 

datasets. D)  The relative contribution of each 

inference algorithm to the coverage pooled across 

all algorithms revealed that measures considering 

more than one time-bin such as confluent Mutual 

information and Transfer entropy (k=2) were able 

to infer more connections at coarser time 

resolutions. Lines and shading represent means and 

standard errors across six models. E) Different 

levels of reciprocity were observed across 

collections of putative connections inferred from 

different regularized algorithms. Implausibly high 

reciprocity characterized simultaneous Mutual 

Information, due to its emphasis on bidirectional 

relationships. F) Levels of mean local clustering differed across regularized algorithms to a lesser degree, with 

simultaneous Mutual Information exhibiting highest levels of clustering. G) Comparison of reciprocity was repeated 

after excluding false positives and re-matching for sparseness. High levels of reciprocity continued to characterize 

simultaneous Mutual Information, revealing its strong bias for true reciprocally connected pairs. H)  Comparison of 

local clustering was repeated after excluding false positives and re-matching for sparseness. Elevated local clustering  
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Figure 1.7 - continued 
among simultaneous Mutual Information was revealed to be partially an artifact of its insensitivity to directionality. 

Collections of true inferred connections were most clustered for the lagged Count measure, and least clustered for the 

lagged Correlation measure. 

 
Improved sensitivity with, and generalization of Ensemble inference 

As we have previously reported, the recruitment network is characterized by elevated clustering 

in the local synaptic neighborhood42. The ensemble method recapitulates these features better than 

the best individual measures (Fig. 8D-F). The ensemble also exhibited improved sensitivity at the 

80%-precision cutoff, with larger relative-improvements as sampling rates decreased. To examine 

the improvements offered by the Ensemble method, we plotted the coverage for the Ensemble 

score compared to its best performing component score (Fig. 9D). Across all simulated networks, 

all trials, and all exposures, the Ensemble method increased coverage, with absolute gains being 

around 1000 neuronal pairs over the best measure. Given the low component performance at large 

exposures, this represented a larger relative gain at these time-scales which is relevant for inferring 

connections using common experimental imaging techniques. 

  

 
42 Chambers and MacLean, “Higher-Order Synaptic Interactions Coordinate Dynamics in Recurrent Networks.” 
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 Figure 1.8 - Pooling individual measures to generate Ensemble predictions 
A) Optimal weightings were obtained using random-walk search with simulated annealing on step sizes. Independent 

searches converged on similar best-scores for each simulated dataset, grouped by color. Appropriate weights were 

discovered early, but modest gains persisted throughout the search procedure. B) Covariance matrix quantifying 

common structure in weights throughout the search procedure, after concatenating all simulated networks and trials. 

Entries along the main diagonal were masked out for visualization purposes. C) Among pooled weights, good scores 

tended to cluster along one extreme of the first principle dimension, while robust to differences along the second 

principle dimension. Good solutions also appeared in isolated peaks throughout the solution space. Diverse weighted 

combinations yielded good performance in inferring synaptic connectivity. D) Ensemble-generated topologies closely 

reflected the ground-truth reciprocity statistics of synaptic recruitment in the simulated network. Synaptic recruitment 

preferentially occurred within a non-representative subset of the underlying random structural network. E) Like the 

ground-truth network of synaptic recruitment, Ensemble-generated topologies were characterized by elevated local 

clustering. However, like the best individual measures, Ensemble scores somewhat underestimated its true extent. F) 

With respect to reciprocity and local clustering, the two best characterizations of synaptic recruitment statistics were 

achieved by Count and Ensemble inference. 

 
To test whether weights learned for one simulated dataset could transfer to other simulated 

networks, we computed the ensemble scores for each using weights learned for different datasets 

(transferred weights) and compared the performance to the datasets’ performance with their own 
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weights (original weights). Simulated temporal resolution was matched for the transferred and 

original sets of weights. We found weights trained on one simulated network approached coverage 

after transfer to another network, with 97.32 ±0.54 % (mean ± s.d) of pairs inferred with original 

weights also inferred with transferred weights, at 5 ms time resolution (Fig. 9A and 9B). 

Generalization of weights across datasets depended on time scales in a similar manner to overall 

performance. Nonetheless, retained coverage was still impressive at 40 ms, with over 85% of 

inferred connections preserved (Fig. 8B), suggesting that simulations of realistic networks may be 

exploited to train ensemble weights for experimental data, even in cases in which temporal 

resolution is limited.   

 We also explored whether weights can be transferred across both simulated network and 

time-scales by examining retained performance after transfer from non-matching time resolution. 

Once again, the ensemble method was robust to weights generalization, with transferred 

performance remaining above 80% for time-scales that are similar yet not identical to the time 

scale the measures were originally computed with (Fig. 9C). For example, models binned at 10 ms 

with weights transferred from 5 and 20 ms models performed at 87.002 ±3.578 % and 86.744 ± 

1.890 % of their original performance, respectively. Ensemble weights generalized across 

simulated datasets, and matching temporal resolution at least coarsely, was advantageous for 

transfer performance.  
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Figure 1.9 - Ensemble weightings generalize across simulated datasets and out-perform 
individual measures 
A) Ensemble weightings were optimized for number of connections inferred using stochastic search (original 

performance, blue). Weights found for a random dataset  with 5 ms time-resolution were used to construct Ensemble-

generated adjacencies for each other dataset also binned at 5 ms (transfer performance, red). Transfer performance 

approached the original performance based on optimized weighting schemes. B) Given matched temporal resolution, 

transfer performance was nearly as good as original performance for fast temporal resolution. At slower time bins, 

transfer performance was somewhat less effective. C) Transfer performance was best when temporal resolution was 

matched between original and transferred recordings, and mismatch degradation was worst for weights originally 

learned from recordings with slow temporal resolution. Line and shading represent means and standard errors across 

six simulated datasets. D) Ensemble-generated topologies outperformed their best component measures across all bin 

sizes and model repetitions. Component measures with the best individual performance varied, but regularized Count,  
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Figure 1.9 - continued 
consecutive Mutual Information, and confluent Mutual Information were often the best performing individual 

measures. Algorithms incorporating information at multiple timescales fared well, including confluent Mutual 

Information and Transfer Entropy (k=2). 

 

DISCUSSION 

Within local cortical circuits, spiking activity propagates through synaptic networks in order to 

implement computation and shape behavior. Yet individual connections are weak in isolation, and 

patterns of coordination are complex and variable. Activity, or functional, mapping approaches, 

such as those presented here, infer probable synaptic recruitment patterns from statistical 

regularities in spike-timing. In this framework, statistical relationships are leveraged to predict 

synaptic connections, typically by thresholding to isolate the most reliably coupled pairs. 

Importantly, functional graphs, which succinctly summarize circuit dynamics, identify the 

synapses that are actively involved in the recruitment of post-synaptic neurons - i.e. those synapses 

which drive the post-synaptic neuron to threshold. Explicitly, only those connections revealed by 

(1) the timing of presynaptic action potentials, (2) the integrative properties of the post-synaptic 

neuron, and (3) the membrane potential of the post-synaptic neuron can ever be recovered by an 

inference approach. These are a limiting set of criteria that dramatically lessen the connections that 

can be recovered using these methods. Consequently, these approaches are not a realistic means 

to fully reconstruct a synaptic wiring diagram. Rather this is an approach that identifies synapses 

involved in implementing computation, and transmitting information during the specific epoch of 

dynamics that the graph summarizes – i.e. the recruiting network. As a result these connections 

are particularly interesting from a functional perspective. In this work, we compared methods for 

inferring excitatory synaptic connections, in order to understand the strengths and weaknesses of 

each. For mapping activity propagation through networks, we present two approaches to improve 
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the inference of excitatory connections: a regularization pipeline to improve the performance of 

individual inference algorithms, and an Ensemble stacking procedure that combines the best 

features of diverse measures.  

 

Refinements of inference measures 

To improve inference of excitatory connections we applied a sign to the information theoretic 

measures which disambiguates positive interactions from negative interactions. We note that 

negatively signed interactions could potentially provide insight into inhibition within the network, 

a long standing challenge in connectivity research, but also point out that disambiguating active 

inhibition from lack of excitation is a non-trivial endeavor. In this work we focus on the more 

tractable goal of mapping excitatory connections alone. Assigning valence to inferred relationships 

enhanced our recovery of excitatory connections.  

Inference algorithms were further strengthened by removing a source of noise, reflecting 

background timing coincidences not reflecting monosynaptic interactions. After re-expressing 

measures to conform better to normality, we regressed out the mean component of this background 

signal by averaging over pre- and postsynaptic weighted degree. Since connectivity is sparse even 

among near neighbors, this averaging procedure was dominated by background influences specific 

to each neuron’s firing rate and response profile. This tendency was not linear in magnitude across 

degrees, however, resulting in heteroskedasticity of residual scores. We corrected for the 

variability in standard deviation over the residuals with z-normalization, which further increased 

the accuracy of inferred interactions. This step was particularly effective for count, transformed 

by regularization into one of the single most effective indicators of connectivity. This approach is 
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similar in spirit to the normalized count procedure described in prior work43. These steps can be 

thought of in terms of informing inference algorithms not only by regularities within specific 

connections, but also by the statistics of the entire network. In this regard the current study differs 

from previous inference attempts in neuronal networks and, particularly, improves on previous 

procedures for thresholding. We suggest similarly inspired next steps would be to incorporate 

priors about higher-order structures such as motifs and clusters as well as accounting for log-

normal distribution of weights44 to further facilitate detection.  

 

Ensemble Method 

Different inference algorithms capture and summarize subtly different attributes of collective 

activity, and it is important to be mindful about these features when interpreting functional 

connectivity. Temporal resolution appears to be a particularly key design variable, and bin sizes 

of 25 – 50 ms are preferable for identifying synaptic connections, likely reflecting synaptic 

integration times (Chambers & MacLean 2015). Of course, even at much slower temporal 

resolution, the same algorithms can be useful for quantifying average timing relationships among 

active neurons. For mapping population dynamics, our results suggest that a host of productive 

statistical measures exist, which can be leveraged to infer likely patterns of synaptic recruitment. 

These measures are useful in isolation, and they become even more incisive in combination. 

We found that each inference method isolated collections of putative underlying synaptic 

connections which are non-identical. This is an ideal situation for the application of Ensemble 

methods. Here we used linear combinations of multiple measures in order to improve predictions 

 
43 Pajevic and Plenz, “Efficient Network Reconstruction from Dynamical Cascades Identifies Small-World 
Topology of Neuronal Avalanches.” 
44 Song et al., “Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits.” 
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of putative synaptic connections beyond the best single inference method. Non-linear 

combinations of measures have the potential to synergize further, leading to further gains in 

performance, but will face increasingly severe difficulties in generalization - a problem typical of 

classification in high-dimensional spaces given limited training data45. Ensemble approaches 

employ a diversity of methods for pooling and one common method is majority vote on individual 

classifiers46. However, Ensemble approaches are also frequently applied to real-valued outputs 

rather than binary classifier decisions47. One of the most common ways to leverage multiple 

classifiers in combination is known as bagging where the Ensemble score is the mean over all real-

valued scores of individual measures. We demonstrate that better performance can be obtained in 

a weighted combination of the inference approaches. This latter framework for ensemble learning 

is known as stacking. In general, stacking algorithms are characterized by a pooling step, known 

as a combiner algorithm. As an example, high performers in the Netflix Prize employed linear 

regression and, later, backpropagation in a feedforward neural network for their combiner 

algorithm48. In order to optimize stacking weights, we employed an annealing random walk search 

strategy, a common approach in the field of Ensemble learning, including evolutionary approaches 

such as genetic algorithms and stochastic hill-climbing49. The question of how best to pool diverse 

connectivity inference algorithms remains an area necessitating further study. In practice, since 

recording conditions vary from one lab to another, experimenters with different experimental 

protocols than the ones studied here in silica, should re-train a combiner algorithm based on their 

own internal experimental design and selection of available inference algorithms with the 

 
45 Vapnik, The Nature of Statistical Learning Theory. 
46 Liaw and Wiener, “Classification and Regression by RandomForest.” 
47 Mendes-Moreira et al., “Ensemble Approaches for Regression.” 
48 Töscher and Jahrer, “The BigChaos Solution to the Netflix Grand Prize.” 
49 Ruta and Gabrys, “Classifier Selection for Majority Voting.” 
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understanding that each algorithm has different biases and the appropriate ensemble will depend 

on the expected underlying connectivity and time constant of synaptic integration.  

The measures we studied in this work framed inference of synaptic connectivity as a binary 

classification algorithm. However, inference has the potential to also be cast as a regression 

problem using some continuous-valued measure of presynaptic influence (e.g. induced EPSP) 

which may lead to further gains, particularly in coverage. However, scarcity of ground-truth data 

and population-level coordination (obstacles facing any connection-inference approach) will make 

it challenging to move beyond binary classification to infer true synaptic connections. In addition 

to the algorithms we compared in this work, a host of other effective approaches have been 

described in the literature including particle methods50 , GLMs51,52 and Bayesian methods53,54,55. 

It may be that Ensemble predictions about underlying connectivity could be improved further by 

including these approaches in the pooling step. 

 

Inference for circuit reconstruction/insights into information processing 

Understanding how connection structure gives rise to synaptic recruitment remains a central goal 

for the study of neocortical circuits. Computation and behavior are enacted by propagating activity, 

so understanding synaptic recruitment mechanistically within active cortical networks is 

fundamental to the study of behaving animals. The importance of this issue was recognized 

 
50 Gerstein and Aertsen, “Representation of Cooperative Firing Activity among Simultaneously Recorded Neurons.” 
51 Gerhard et al., “Successful Reconstruction of a Physiological Circuit with Known Connectivity from Spiking 
Activity Alone.” 
52 Zaytsev, Morrison, and Deger, “Reconstruction of Recurrent Synaptic Connectivity of Thousands of Neurons 
from Simulated Spiking Activity.” 
53 Chambers and MacLean, “Multineuronal Activity Patterns Identify Selective Synaptic Connections under 
Realistic Experimental Constraints.” 
54 Pajevic and Plenz, “Efficient Network Reconstruction from Dynamical Cascades Identifies Small-World 
Topology of Neuronal Avalanches.” 
55 Mishchencko, Vogelstein, and Paninski, “A Bayesian Approach for Inferring Neuronal Connectivity from 
Calcium Fluorescent Imaging Data.” 
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early56,57, but technical obstacles limited its active study. In the last five years, progress is being 

made in this area through the study of functional relationships in active populations.  In other 

words it is not only whether or not a connection is present, but it is also key to consider which 

connections are coactive or otherwise functionally related, and causal to spike propagation in a 

given context.  

A confluence of evidence argues that the function of an individual connection depends on 

its arrangement within the local synaptic neighborhood. For example, a given connection will 

make a different impact if it is isolated versus arranged within a local cluster58. In neural cultures, 

frequent ignition sites were associated with elevated local clustering, for which a model of 

convergent amplification was proposed59. Culture activity maps were characterized by elevated 

clustering and short mean path lengths60. Intriguingly, clustering motifs, reciprocity, and heavy-

tailed weight distributions may emerge through self-organizing plasticity processes61. These non-

random features have received high-levels of interest, and may be consistent with several global 

topological organization schemas62. In neocortical tissue from mouse sensory cortices, 

spontaneous lagged firing relationships were found to be characterized by elevated modularity and 

hierarchical features63,64. Similarly, multi-electrode array recordings were marked by rich club 

 
56 Gerstein and Perkel, “Simultaneously Recorded Trains of Action Potentials.” 
57 Palm, “From Neural Dynamics to Cell Assemblies.” 
58 Pajevic and Plenz, “The Organization of Strong Links in Complex Networks.” 
59 Orlandi et al., “Noise Focusing and the Emergence of Coherent Activity in Neuronal Cultures.” 
60 Pajevic and Plenz, “Efficient Network Reconstruction from Dynamical Cascades Identifies Small-World 
Topology of Neuronal Avalanches.” 
61 Miner and Triesch, “Plasticity-Driven Self-Organization under Topological Constraints Accounts for Non-
Random Features of Cortical Synaptic Wiring.” 
62 Vegue, Perin, and Roxin, “On the Structure of Cortical Micro-Circuits Inferred from Small Sample Sizes.” 
63 Sadovsky and MacLean, “Scaling of Topologically Similar Functional Modules Defines Mouse Primary Auditory 
and Somatosensory Microcircuitry,” August 28, 2013. 
64 Gururangan, Sadovsky, and MacLean, “Analysis of Graph Invariants in Functional Neocortical Circuitry Reveals 
Generalized Features Common to Three Areas of Sensory Cortex.” 
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structure65 and broad degree distributions66. In the latter work, functional hub neurons played a 

crucial role in supplying inputs to computationally important neurons downstream. Related 

theoretical work suggests functional hubs may take on distinct roles shaped by their assortativity 

or disassortativity relationships67. Converging sources of evidence have identified generalizable 

non-random features within connected neural systems consistent with the idea that these are key 

features to consider when describing the flow of activity through the circuit. Beyond these higher 

order functional relationships we have previously shown that inference is biased toward stronger 

connections68. As a result inference methods sometimes pose difficulties in interpretation69, and 

they are limited in accuracy as well as sensitivity to weak synaptic connections, which are crucial 

for realistic spiking dynamics70,71. Continued development of tools to understand the large-scale 

organization of synaptic networks is an important area for further investigation. 

The function of individual connections also depends on recent dynamics of the local circuit. 

On short timescales, unexpectedly effective recruitment can arise when inputs to a neuron are 

temporally coordinated72, e.g. through the channel-dynamics of action-potential generation73 or 

through interactions with the dendritic arbor74.  Higher-order connectivity, particularly fan-in 

clustering, may favor coordinated inputs in this way, supporting effective synaptic integration75. 

 
65 Nigam et al., “Rich-Club Organization in Effective Connectivity among Cortical Neurons.” 
66 Timme et al., “High-Degree Neurons Feed Cortical Computations.” 
67 Piraveenan, Prokopenko, and Zomaya, “Assortative Mixing in Directed Biological Networks.” 
68 Chambers and MacLean, “Multineuronal Activity Patterns Identify Selective Synaptic Connections under 
Realistic Experimental Constraints.” 
69 James, Barnett, and Crutchfield, “Information Flows?” 
70 Sadovsky and MacLean, “Scaling of Topologically Similar Functional Modules Defines Mouse Primary Auditory 
and Somatosensory Microcircuitry,” August 28, 2013. 
71 Teramae, Tsubo, and Fukai, “Optimal Spike-Based Communication in Excitable Networks with Strong-Sparse 
and Weak-Dense Links.” 
72 Rossant et al., “Sensitivity of Noisy Neurons to Coincident Inputs.” 
73 Fontaine, Peña, and Brette, “Spike-Threshold Adaptation Predicted by Membrane Potential Dynamics In Vivo.” 
74 Major, Larkum, and Schiller, “Active Properties of Neocortical Pyramidal Neuron Dendrites.” 
75 Chambers and MacLean, “Higher-Order Synaptic Interactions Coordinate Dynamics in Recurrent Networks.” 
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On moderate timescales, short-term plasticity imposes additional complexity in predicting the 

function of individual connections, where synaptic efficacy depends in part on a hidden state76. In 

addition, diverse sources of neuromodulation can reorganize synaptic efficacy in real-time, in ways 

which are difficult to understand a priori. For example, circuit-level reorganization can occur in 

response to acetylcholine, impacting the salience of extrinsic inputs versus local recurrent drive77. 

The complexity of structure-function relationships in neocortex is daunting. Isolated 

structural features can take on unexpected functional roles in the context of the local active 

network. Yet out of the extreme diversity of mechanisms shaping cellular communication, stable 

statistical relationships in spike-timing emerge. Maps of synaptic recruitment are a promising 

avenue to summarize the complex effects imparted by these many interlocking subcellular 

processes. For progress to continue in understanding large active neural circuits, it is important 

that statistics of spike timing among large populations continue to be investigated actively by the 

neuroscience community.  

  

 
76 Buonomano and Maass, “State-Dependent Computations.” 
77 Runfeldt, Sadovsky, and MacLean, “Acetylcholine Functionally Reorganizes Neocortical Microcircuits.” 
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CHAPTER II 

Network analysis of murine cortical dynamics implicates untuned neurons in visual 

stimulus coding 

This work was previously published: Levy, M., Sporns, O., & MacLean, J. N. (2020). Network 
analysis of murine cortical dynamics implicates untuned neurons in visual stimulus coding. Cell 
reports, 31(2), 107483. 
 

ABSTRACT 

Unbiased and dense sampling of large populations of layer 2/3 pyramidal neurons in mouse 

primary visual cortex (V1) reveals two functional sub-populations: neurons tuned and untuned to 

drifting gratings. Whether functional interactions between these two groups contribute to the 

representation of visual stimuli is unclear. To examine these interactions, we summarize the 

population partial pairwise correlation structure as a directed and weighted graph. We find that 

tuned and untuned neurons have distinct topological properties, with untuned neurons occupying 

central positions in functional networks. Implementation of a decoder that utilizes the topology of 

these functional networks yields accurate decoding of visual stimuli. We further show that 

decoding performance degrades comparably following manipulations of either tuned or untuned 

neurons. Our results demonstrate that untuned neurons are an integral component of V1 functional 

networks and suggest that network interactions contain information about the stimulus that is 

accessible to downstream elements. 
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INTRODUCTION 

Neurons in sensory cortices collectively encode information about the external world. In primary 

visual cortex (V1) neurons are thought of as selective, or tuned, to an orientation or direction of a 

moving bar or drifting gratings if the neuron exhibits consistently increased firing rate in response 

to a direction or orientation1. Not all neurons are tuned to a particular statistical feature of a visual 

stimulus shown in an experiment, with untuned neurons comprising roughly 20-50% of pyramidal 

neurons in mouse V1 varying by lamina2,3,4,5, and their role in visual coding remains understudied.  

Imaging techniques allow us to densely sample large numbers of neurons in an unbiased 

manner, facilitating simultaneous examination of the full circuit response including both tuned and 

untuned neurons6. This is helpful because one way by which untuned neurons are hypothesized to 

contribute to coding is through their correlation structure with both tuned and untuned neurons7. 

Indeed, studies that include pairwise correlations have demonstrated superior decoding 

performance compared with decoders assuming independent units8,9,10. Theoretical studies have 

suggested that the correlation structure of a network of neurons can itself hold information about 

the stimulus, especially when the spatial decay of correlations is considered Josić et al 11 . 

Experimental evidence corroborates this postulation: noise correlations between direction 

 
1 Hubel and Wiesel, “Receptive Fields of Single Neurones in the Cat’s Striate Cortex.” 
2 Zariwala et al., “Visual Tuning Properties of Genetically Identified Layer 2/3 Neuronal Types in the Primary 
Visual Cortex of Cre-Transgenic Mice.” 
3 Sun et al., “Thalamus Provides Layer 4 of Primary Visual Cortex with Orientation- and Direction-Tuned Inputs.” 
4 Ringach et al., “Spatial Clustering of Tuning in Mouse Primary Visual Cortex.” 
5 Niell and Stryker, “Highly Selective Receptive Fields in Mouse Visual Cortex.” 
6 Olshausen and Field, “How Close Are We to Understanding V1?” 
7 Zylberberg, “Untuned but Not Irrelevant: The Role of Untuned Neurons in Sensory Information Coding.” 
8 Shi, Niu, and Wan, “Effect of the Small-World Structure on Encoding Performance in the Primary Visual Cortex.” 
9 Graf et al., “Decoding the Activity of Neuronal Populations in Macaque Primary Visual Cortex.” 
10 Chen, Geisler, and Seidemann, “Optimal Decoding of Correlated Neural Population Responses in the Primate 
Visual Cortex.” 
11 Josić et al., “Stimulus-Dependent Correlations and Population Codes.” 
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selective neurons in macaque MT were found to depend on the direction shown, indicating that 

those correlations themselves can be tuned12. Finally, correlational couplings between neurons, 

including coupling between tuned and untuned neurons, can be used to predict neuronal single trial 

responses regardless of whether couplings represented tuned or untuned inputs13. Yet the extent to 

which pairwise correlations across a large and functionally diverse neuronal population may 

contribute to decoding remains unknown.  

We generated functional networks (FNs) as a summary of network activity since FNs 

maintain neuron-specific labels while simultaneously capturing all pairwise correlations. 

Specifically, in this framework neurons are nodes and statistical dependencies in the activity 

between neurons are edges resulting in a weighted and directed matrix which can be structurally 

evaluated using graph theoretic tools14,15 (for a review see 16). Here we find that functional network 

topology is specific to a given visual stimulus. Untuned neurons inhabit central positions within 

the topology acting as functional hubs because of their propensity to form a rich-club of strong 

connections and their increased ranking in random walks. Using a two-stage model comprised of 

a generative and a decoding component we demonstrate that information about the stimulus is 

represented in the pattern of functional connections between tuned and untuned neurons. Hence, 

the analysis of functional networks, which naturally encompass circuit-wide interactions across 

multiple neuronal classes, provides an approach that unifies the neuron-centric and population-

centric frameworks in visual system neuroscience.  

 
12 Ponce-Alvarez et al., “Stimulus-Dependent Variability and Noise Correlations in Cortical MT Neurons.” 
13 Dechery and MacLean, “Functional Triplet Motifs Underlie Accurate Predictions of Single-Trial Responses in 
Populations of Tuned and Untuned V1 Neurons.” 
14 Kotekal and MacLean, “Recurrent Interactions Can Explain the Variance in Single Trial Responses.” 
15 Dechery and MacLean, “Functional Triplet Motifs Underlie Accurate Predictions of Single-Trial Responses in 
Populations of Tuned and Untuned V1 Neurons.” 
16 Bassett and Sporns, “Network Neuroscience.” 
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MATERIALS AND METHODS 

Animals 

Data collection was performed in accordance to the guidelines of, and approved by the Institutional 

Animal Care and Use Committee at the University of Chicago. Experimental animals were 8 mice 

(4 males, 4 females) between ages P84-P191, expressing GCaMP6s under the Thy-1 promotor17. 

Animals had ad libitum access to food and water. Information about the animals was previously 

described in Dechery and MacLean, 2018. 

 

Cranial window surgeries and two-photon calcium imaging 

Fully described in Dechery and MacLean, 2018. Briefly, a 3 mm diameter craniotomy over left 

V1, in which the anatomical location was verified using intrinsic signal imaging18. During imaging 

sessions, animals were head-fixed, awake and allowed to run voluntarily on a linear treadmill. A 

field of view (FOV) in V1 was found and compared against fiduciary markers from the images 

obtained by intrinsic signal imaging, and neurons were automatically detected by software written 

in house. To facilitate cell detection we divided the FOV into a 4X4 grid, zooming on each grid 

section individually. Neurons were then identified in each grid zoom, and their coordinates in pixel 

space were transformed back into the FOV coordinate system, enabling us to perform an accurate 

line-scan on the entire population. Two photon calcium imaging was performed with 910 nm 

excitation wavelength with a scanning rate of 25-33Hz, depending on the number of neurons 

imaged (72-347). Each frame is thus ~30 ms long. 

 
17 Dana et al., “Thy1-GCaMP6 Transgenic Mice for Neuronal Population Imaging in Vivo.” 
18 Kalatsky and Stryker, “New Paradigm for Optical Imaging.” 
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Visual stimuli 

We presented the mice with 8-10 repetition of the same movie, comprised of pseudo-random 

presentations (trials) of drifting gratings in 12 directions (0.04 deg/cycle, 2Hz), spaced 30 degrees 

apart. Drifting gratings (Stimulus) lasted 5 seconds and were interleaved with 3 seconds of uniform 

mean luminance screen (Gray). This provided 24-30 trials of each drifting grating direction. 

 

Functional networks 

Separate functional networks (FN) were inferred from data of stimulus and gray epochs (Fig. 2D). 

We trimmed fluorescence traces from stimulus epochs to use the first 2 seconds of grating 

presentation, and traces from gray epochs to use the last 2 seconds of mean luminance screen. This 

was done to focus on the initial response to the drifting grating and to lessen the likelihood that 

fluorescence values had not returned to baseline from the preceding stimulus epoch, respectively. 

The trimmed individual traces from each epoch type were then concatenated in the order they were 

presented, separately for stimulus and gray and in each movie, and then smoothed with a running 

average window of 10 frames to discard discontinuities inserted by the concatenation procedure. 

This resulted in grand stimulus traces and grand gray traces for each movie. We then computed 

partial correlation between every pair of neurons, partialling out the mean response of the neurons 

in the pair in all other movies and the mean response of the population within the same movie (Fig. 

2D). Directionality was assigned to the partial correlation score by examining the peak (maximum 

value) in the cross-correlogram (see 19).  

 
19 Dechery and MacLean, “Functional Triplet Motifs Underlie Accurate Predictions of Single-Trial Responses in 
Populations of Tuned and Untuned V1 Neurons.” 
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Separate functional networks for each direction of drifting gratings were constructed by 

parsing out the traces of activity in response to trials of each of the 12 directions (Fig. 2C, E). Only 

the first 2 seconds of each trial were kept, and concatenated with other trails of the same direction. 

In most datasets we had 30 trials for each direction, and we concatenated every 5 consecutive trials 

together. Those grand traces were then smoothed as described above and partial correlation was 

computed, regarding every grand trace as a movie. As the majority of our analysis tools such as 

graph alignment, rich club analysis and random walks are designed for positive edges only, we 

discarded negative edges from all FNs for all analyses.   

 

Graph alignment 

We defined the graph alignment score 𝐴 of each pair of networks 𝑀 and 𝑁with k neurons as: 

𝐴 =
∑ ∑ 𝑚𝑖𝑛	*𝑀!" , 𝑁!",#

"$%
#
!$%

∑ ∑ 𝑀!" + 𝑁!"#
"$%

#
!$%

 

We then normalized the alignment score using a distribution of alignment scores from 100 degree-

sequence-preserving (randmio_dir.mat from 20)  permuted FN as follows: 

𝑛𝑜𝑟𝑚(𝐴) = 	
𝐴 − 〈𝐴4〉
1 − 〈𝐴4〉

 

Where 〈𝐴4〉 is the mean of the distribution from permuted FNs, so that alignment scores quantify 

similarity beyond what is expected by chance21. 

 

Rich club analysis 

 
20 Rubinov and Sporns, “Complex Network Measures of Brain Connectivity.” 
21 Gemmetto et al., “Multiplexity and Multireciprocity in Directed Multiplexes.” 
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We sorted neurons in descending order by their combined in and out degree, and then we 

sequentially considered degrees starting from the largest. For each degree threshold, d, we 

calculated the rich club coefficient as: 

𝑅& =
∑ ∑ 𝑤!"'

#(")*&
'
#(!)*&

𝐷+ − 𝐷  

Where k is the total degree of the neuron, 𝑤!" is the FN, and D is the count of neurons with 𝑘 ≥ 𝑑. 

We then performed 1000 degree-sequence-preserving (randomio_dir.mat from 22) randomizations 

of the network, and calculated the rich club coefficient in each of them. Significance was computed 

as the probability of the rich-club coefficient of real data being larger than the coefficient obtained 

from the population of randomized FNs.  

 

Random walks 

The ranking P of each neuron 𝑖 ∈ 𝑁  was initialized randomly in (0,1] and then calculated 

iteratively as:  

𝑃! = (1 − 𝑞)@
𝑃"
𝑠",-.

'

"$%

𝑤"! + 𝑞𝑧! + (1 − 𝑞)𝑧!@𝑃"𝛿*𝑠",-.,
'

"$%

 

where 𝑠",-. = ∑ 𝑤"#'
#$% , and 𝑤"! are the edges from neuron j to neuron i and q is the damping 

factor23. We picked q=0.1 for all analysis except when we tested the robustness to this factor. This 

algorithm differs from PageRank because it allows assignment of fixed authority to each node in 

the network, denoted by 𝑧! , which we set to 1 for all neurons and all analysis unless stated 

otherwise. The last term on the r.h.s corrects for neurons that do not have outgoing edges with 

 
22 Rubinov and Sporns, “Complex Network Measures of Brain Connectivity.” 
23 Radicchi et al., “Diffusion of Scientific Credits and the Ranking of Scientists.” 
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𝛿(𝑥) = E1												𝑥 = 0
0			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  and thus disappears if there are no such neurons in the network, which 

was the case for all but one FNs. The procedure repeats iteratively until the L2 norm between the 

ranking vector at iteration k and k-1 is smaller than a threshold set to 1𝑥10/0. 

 

Two-phase decoder model 

The decoder model was built in two phases: generation of artificial spike trains using a simple 

recurrent neural network model, and decoding direction using a feed-forward pattern recognition 

network. In the first phase, each of the 12 direction-specific FNs was used as a recurrent neural 

network. The probability of firing for each neuron was governed by: 

𝑝!(𝑡) = L1 + 𝑒𝑥𝑝 M−@*𝑠"(𝑡 − 1) ∙ 𝑤"!, −@(𝑠#(𝑡 − 1) ∙ 𝑎#!)
1

#$%

'

"2!

PQ

/%

 

once the probability of spiking 𝑝!(𝑡)  was calculated, 𝑥 ∈ [0,1]  was drawn at random from a 

uniform distribution. Then spiking at time t, 𝑠!(𝑡) was set as: 

𝑠!(𝑡) = T1𝑥 ≤ 𝑝!(𝑡)
0𝑥 > 𝑝!(𝑡)

 

Each neuron i received excitatory and inhibitory inputs, described in the first and second terms of 

the exponent, respectively. The connectivity structure of N excitatory neurons 𝑤!"	was governed 

by the FNs inferred from data and frozen. In contrast, M inhibitory neurons were added artificially, 

since we did not image inhibitory neurons, to balance the activity in the network.  Inputs from 

excitatory to inhibitory neurons were set according to fixed connection probability 𝑃45 and the 

weight values were drawn from a lognormal distribution with parameters estimated from the FN. 

Weights from inhibitory to excitatory and inhibitory neurons (𝑎#! ) followed a random wiring 

procedure with probabilities 𝑃54  and 𝑃55 , respectively. The weights were again drawn from a 



 

 
 

81 

lognormal distribution estimated from the edge weights in the functional network, and then 

multiplied by a scaling factor, g.  

The parameters 𝑀,𝑃45 , 𝑃54 , 𝑃55 and g were chosen by a grid search approach in which we 

set biologically plausible ranges for all the parameters24, and then ran the model with all possible 

combinations of values within these ranges. We then examined the resulting dynamics in 

excitatory neurons for three properties present in real cortical dynamics: persistent activity25, 

realistic firing rates26,27,28 and asynchrony29,30,31. Persistent, untruncated simulated activity was 

evaluated by only examining parameters that produced spiking up to 140 time-frames, which are 

equivalent to 5 seconds of stimulus presentation considering our average scanning rate. Realistic 

firing rates were achieved by only considering parameters that produced excitatory firing rate 

within two standard deviations of the data firing rate as estimated from the fluorescence traces by 

the OASIS inference algorithm32 . Finally, asynchrony was guaranteed by examining the simulated 

rasters by eye and discarding parameters that resulted in simultaneous, locked spikes in more than 

20% of the population. This procedure to pick that parameters that satisfied those criteria was done 

separately for each FN, and on average across networks and datasets 𝑀 = 0.28𝑁, 𝑃45 = 0.39, 

𝑃54 = 0.49 , 𝑃55 = 0.11 , and 𝑔 = −1.81 . We failed to find parameters values that produced 

 
24 Chambers and MacLean, “Higher-Order Synaptic Interactions Coordinate Dynamics in Recurrent Networks”; 
Song et al., “Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits.” 
25 Gutkin et al., “Turning On and Off with Excitation.” 
26 Roxin et al., “On the Distribution of Firing Rates in Networks of Cortical Neurons.” 
27 Koch and Fuster, “Unit Activity in Monkey Parietal Cortex Related to Haptic Perception and Temporary 
Memory.” 
28 Griffith and Horn, “An Analysis of Spontaneous Impulse Activity of Units in the Striate Cortex of Unrestrained 
Cats.” 
29 Zerlaut et al., “The Spectrum of Asynchronous Dynamics in Spiking Networks as a Model for the Diversity of 
Non-Rhythmic Waking States in the Neocortex.” 
30 Renart et al., “The Asynchronous State in Cortical Circuits.” 
31 Ecker et al., “Decorrelated Neuronal Firing in Cortical Microcircuits.” 
32 Friedrich, Zhou, and Paninski, “Fast Online Deconvolution of Calcium Imaging Data.” 
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realistic activity for 1/20 dataset, and it was excluded from this analysis. Even though the 

parameters were fixed for each network, the matrix a was build anew, and thus different, in each 

trial.  

We initiated trials by setting 𝑠!(1) = 1 for ∀𝑖 ∈ 𝑁  that spiked in the first 5 frames in 

imaged data. We thus had 30 trials for each direction, with differing starting conditions that were 

directly informed by data. Typically, 12.41±8.91% of neurons received an initial spike. We let 

activity propagate for 140 frames, at which point the simulation was terminated. For the 

performance per frame analysis (Fig. 7B), we used the spikes from a single time frame, i.e. a binary 

vector as inputs. We did not consider the first five frames to allow the dynamics to develop. To 

examine the effect of bin size (Fig. 7C), we binned frames into a rate vector to be used as input, 

again discarding the first 5 frames for all bin sizes. The decoder degradation analysis (Fig. 7D-F) 

was performed with rates binned over 100 time frames, from time frame 20 to 120. This analysis 

is described in more detail after the second phase of the decoder. 

In the second phase of the decoder we used the binary vector or binned activity as input to 

a feed-forward neural network, in which N excitatory neurons in the input layer were connected 

in an all-to-all manner to 12 output units. The weights from the input to the output units were 

initialized randomly between (0,1), and then trained in a supervised learning paradigm with 90% 

of the inputs for each direction used for training, and 10% held out as a test-set. Training was 

performed using the MATLAB Network toolbox, with an objective function of minimizing the 

cross-entropy of the output and the correct targets, and computing that by adjusting the weights in 

the direction of the conjugate gradient. Once the network was trained, we took the decoded 

direction to be the identity of the output unit with the largest probability. 
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We tested the contribution of tuned and untuned neurons to the performance of the model in two 

ways: 1) we permuted the trained weights from tuned or untuned neurons to the output layer,  and 

2) we trained the feed-forward network with a subset of tuned or untuned neurons. In both cases, 

we took steps to manipulate the same number of weights or units. Most datasets contained more 

tuned neurons, so we performed 100 manipulations, each time picking U tuned neurons to 

manipulate, with U being the count of untuned neurons. 

 

Control decoders 

The cell identity decoder (Fig. 1C) was built by constructing a binary vector for each trial in each 

direction to be used as input to the second phase of our decoder, that is, the feed-forward pattern 

recognition network. For each trial we averaged the fluorescence traces of each neuron across the 

first 1.5 seconds of grating presentation. We then identified the most active neurons and set the 

binary input vector to 1 for neurons in this group, and 0 otherwise. We performed this procedure 

with the most active neurons defined at the top 5% to 30%, in steps of 5. Partitioning the inputs to 

training and test sets and decoding performance were implemented as described for the two-phase 

decoder. 

The maximum-likelihood (ML) decoder was constructed as described in Avitan et al., 

2016; Ponce-Alvarez et al., 2018. 90% of trials, picked at random were used as a training set and 

the remaining 10% of trials were used for testing. We trimmed the trials for each direction to the 

initial 2 seconds, and estimated conditional probability distributions for the fluorescence of each 

neuron given the grating direction using MATLAB’s ksdensity function. To decode, we averaged 

the activity of each neuron over the 2 seconds in each test trial. We then collected the probabilities 
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to obtain this activity from the estimated distributions for the 12 directions, and multiplied these 

probabilities for the neurons, assuming they are independent. The decoded direction was taken as: 

𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =
𝑎𝑟𝑔𝑚𝑎𝑥

𝑑𝑖𝑟 ∈ [1,12] _`𝑝(𝑓!|𝑑𝑖𝑟)
'

!$%

c 

where N is the number of neurons, and f is the time-average df/f.  

The Poisson control decoder was constructed by inferring spikes from fluorescent activity 

(OASIS 33 ), and then permuting the spikes for each neuron, thus preserving firing rates of 

individual units. For the frame analysis (Fig. 7B), we used the spiking in a single frame as a binary 

vector input to the decoder as described for phase II. For the bin size analysis (Fig. 7C), we binned 

the spikes and plugged in the rates as the input to the decoder. Partitioning the inputs to training 

and test sets and decoding performance were implemented as described for the two-phase decoder. 

 

Tuning properties 

We sorted neurons into tuned and untuned according to the following process: for each neuron we 

trimmed the fluorescence traces to the first 2 seconds of each stimulus epoch (out of 5 seconds) 

and the last 2 seconds of gray epochs (out of 3 seconds). We than averaged each trace and tested 

each stimulus condition against the  preceding gray epoch in a paired-sample t-test. p values were 

Bonferroni corrected for 12 directions (p<0.05/12). Across datasets, 17.85+/-15.64% (M±SD) of 

neurons did not pass this test. We manually examined the cell bodies of those neurons in their 

respective fields of view, and their fluorescence traces, and subsequently 4 neurons across all 20 

datasets were deemed as artifacts and excluded. We included all other neurons as untuned neurons 

in all our analyses. Cells which passed this procedure were then tested by repeated-measures 

 
33 Friedrich, Zhou, and Paninski. 
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analysis of variance for direction or orientation tuning significance (p<0.01) to further split this 

population into tuned and untuned neurons. Responses of significantly tuned cells were then 

iteratively fit with a circular Gaussian34, with 𝑅+ = 0.72 ± 0.19	 (M±SD). We took 𝜃 ∈ [0,330] 

in steps of 30 closest to the peak of the Gaussian to be the categorical tuning of the cell. 

 

RESULTS 

Visual cortical responses to a range of visual stimuli overlap in neuron identities 

To evaluate the circuit encoding of visual stimuli we imaged populations of 73-347 layer 2/3 

excitatory pyramidal neurons expressing GCaMP6s in murine primary visual cortex (see Methods; 

data previously described in 35). Mice were awake and free to ambulate while they viewed drifting 

gratings in twelve directions (Stimulus) interleaved with a gray mean luminance screen (Gray). To 

evaluate the viability of a coding scheme based on the identities of neurons, we examined the 

overlap of the most active population between directions. The most active neurons were defined 

as cells with time-averaged fluorescence values in the top nth percentile. We varied n between 5 

and 30 percent. We found that overlap depends on stimulus similarity (Fig. 1A and 1B), with the 

largest counts of shared neurons found between directions 180 degrees apart (which have the same 

orientation; 70.51±8.44%) and neighboring directions (63.96±10.01%). In contrast, 53.24±12.28% 

of the most active neurons were found to be shared between orthogonal directions. The extent of 

overlap would suggest that the changing sets of neurons active from trial to trial across multiple 

stimuli would represent an inefficient coding scheme. Indeed, a feed-forward neural net decoder 

(methods) that used the identities of the neurons active in response to each grating direction as 

 
34 Mazurek, Kager, and Van Hooser, “Robust Quantification of Orientation Selectivity and Direction Selectivity.” 
35 Dechery and MacLean, “Functional Triplet Motifs Underlie Accurate Predictions of Single-Trial Responses in 
Populations of Tuned and Untuned V1 Neurons.” 
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inputs failed to reach realistic levels of performance. This continued to be the case when we varied 

the threshold of what constitutes the active population (Fig. 1C). We confirmed this result with a 

more stringent maximum-likelihood (ML) decoder (methods, and 36,37), decoding from the mean 

activity of all neurons rather than binarizing and setting the most active neurons to 1 and all the 

other neurons to 0 as we did with the decoder in Fig. 1C. The ML decoder had a mean performance 

of 28.12±11.61% across datasets (Fig. 1D), indicating, together with the feed-forward decoder that 

neither the identities of the most active neurons nor their level of activity was sufficient to decode 

from a population. 

 
36 Ponce-Alvarez et al., “Whole-Brain Neuronal Activity Displays Crackling Noise Dynamics.” 
37 Avitan et al., “Limitations of Neural Map Topography for Decoding Spatial Information.” 
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Figure 2.1 – Overlap between the most active cells in different stimuli 
A. An example field of view (FOV) from dataset #3, with 347 neurons. Scale bars stand for 100µm. FOV visualization 

was done by stitching together images we acquired for cell detection in a 4X4 grid, as described in the methods. The 

top 20% of the most active neurons on average across trials are marked for drifting gratings at 30,60,120 and 210 

degrees. Blue neurons are unique to the direction represented, whereas orange, green, red and yellow neurons are 

shared between stimuli, i.e. they are in the most active group in at least two directions. Note that 60 degrees is a 

neighboring direction to 30 degrees, 120 degrees is the orthogonal direction, and 210 degrees has the same orientation 

as 30 degrees. 

B. Heatmaps quantifying the overlap in identities of the most active cells between each pair of directions of drifting 

grating, where the most active population was defined at the top 10% (left), 20% (middle) and 30% (right). Directions 

are on both axes of the heatmaps, with 1 being 30 degrees. 

C. Performance of a decoder trained with the identities of the most active cells. The input to the decoder was a binary 

vector where the most active cells in each trial received 1 and all other cells received 0. The most active cell pool was  
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Figure 2.1 – continued 
defined as the top 5%-30% cells with the largest fluorescence values averaged over the first 1.5 seconds of stimulus 

epochs. Line represents mean across datasets (N=20) and shading stands for the standard error of the mean. 

D. Performance of a maximum-likelihood decoder. In this decoding approach we built conditional probability 

distributions for the activity of each neuron in response to each direction from a training set. Decoding was performed 

by taking the direction that produced the maximum-likelihood of a mean response in test set trials. Green dots 

represents datasets (N=20) and the larger gray dot stands for the mean across datatsets. Dashed line marks chance 

level. 

E. Tuned neurons (blue) did not differ in their latency to activate in stimulus (solid, 33.95±34.66 frames) and gray 

(dashed, 33.03±27.05 frames) trials, whereas untuned neurons (orange) activated significantly earlier in gray epochs 

(27.33±24.92 frames) compared to drifting gratings (38.69±38.64 frames, F=9245.39, p<0.001) . 

 

Functional networks summarize circuit pairwise correlations 

We next explored a second coding scheme based on the co-activity between neurons. We sorted 

the population into significantly tuned (59.79±19.95%) and untuned (40.21±19.95%) neurons 

(Fig. 2A-C, see Methods). When comparing the two sub-populations we found that untuned 

neurons were consistently activated with a shorter latency during presentation of gray epochs 

(27.33±24.92 frames) but with a longer latency during presentation of drifting gratings 

(38.69±38.64 frames) as compared to tuned neurons (gray: 33.03±27.05, stimulus: 33.95±34.66 

frame; F=9245.39, p<0.001, Fig. 1E). This longer latency of response to drifting gratings 

suggested that untuned neurons play a distinct functional role from tuned neurons in visual 

processing. To evaluate the potential roles of these two functional classes while also considering 

their interrelationships, we constructed FNs for each direction of drifting grating. We also 

separately considered FNs constructed from all stimulus epochs together (Stimulus) and FNs 

constructed from gray epochs (Gray; Fig. 2E). Briefly, we parsed the relevant epochs from 

fluorescence traces, and calculated the partial correlation coefficient between each pair of neurons, 

factoring out the average responses of the neurons in the pair (analogous to signal correlation) as 
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well as the overall level of population activity (corresponding to global state changes such as those 

that accompany locomotion, Fig. 2D). Thus, the FN summarized the partial pairwise correlation 

that is independent of stimulus and internal state and is analogous to noise correlations. We 

assigned directionality to connections based on the lag that resulted in a peak in the neuronal 

pairwise cross-correlation (Methods), with lag 0 taken to indicate a bi-directional connection. 

 

Figure 2.2 – Constructing a network comprising two functional classes 
A. An example field of view (FOV) from dataset #3, with 347 neurons. Scale bar denotes 100µm. FOV visualization 

was done by stitching together images we acquired for cell detection in a 4X4 grid, as described in the methods. 

Neurons tuned to different directions are marked in different colors, and untuned neurons are marked in white. A tuned 

and untuned neuron are circled in blue and orange, respectively, for further illustration. 

B. Trial-averaged fluorescence traces for 12 directions of drifting gratings and a luminance-matched gray screen for 

a tuned neuron (top, blue) and untuned neuron (bottom, orange). Those neurons are marked in panel A. 

C. The resulting tuning curves for the neurons shown in A and B. 
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Figure 2.2 – continued  
D. An illustration of edge weight and direction computation for the pair of neurons shown in A,B and C. Top: the 

activity of the tuned neuron (blue) and untuned neuron (orange) in a single movie. Middle: the averaged activity of 

those two neurons in all other movies (N=9 for most datasets). Bottom, gray: average activity of all other neurons in 

the population in the same single movie plotted on the top. For each neuron, we regress out the average activity of the 

neuron in other movies and the population average in the same movie. We then correlate the residual activity of the 

neurons in the pair, and this value is used as the edge weight. To assign directionality, we examine the peak in the 

cross-correlogram (bottom right). In this example, the peak is at zero and results in a bi-directional edge. 

E. An illustration of the different functional networks we construct from fluorescent activity. Stimulus FN (left) is 

inferred from all visually evoked activity regardless of stimulus identity, gray FN (middle) is inferred from all gray 

epochs, and stimulus-specific or direction FNs are inferred only from trials of specific direction of drifting gratings.  
 

First order topological features reflect single neuron response properties 

Examining Stimulus FNs, we observed that edge weights between tuned neurons were 

quantitatively related to the similarity between preferred directions (Fig. 3A) in agreement with 

previous studies38,39. This remained the case when FNs were constructed from spikes inferred from 

the calcium fluorescence traces (see methods and Fig. S1). The strongest edge weights were 

present between neurons tuned to the same direction while neurons tuned to orthogonal directions 

were connected by weaker edge weights (see also 40). Notably, gray FNs exhibited less structure 

in the arrangement of weights related to tuning properties likely reflecting the fact that similarly 

tuned neurons are more likely to be synaptically connected41. 

We next evaluated whether tuned and untuned neurons possessed unique topological 

signatures in and across FNs. We found that both tuned and untuned neurons had similar in-degrees 

in both stimulus FNs and gray FNs. However, tuned and untuned neurons differed in their out-

 
38 Nauhaus et al., “Stimulus Contrast Modulates Functional Connectivity in Visual Cortex.” 
39 Cossell et al., “Functional Organization of Excitatory Synaptic Strength in Primary Visual Cortex.” 
40 Dechery and MacLean, “Functional Triplet Motifs Underlie Accurate Predictions of Single-Trial Responses in 
Populations of Tuned and Untuned V1 Neurons.” 
41 Ko et al., “The Emergence of Functional Microcircuits in Visual Cortex.” 
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degrees, with untuned neurons displaying significantly larger out-degrees in gray FNs as compared 

to stimulus FNs (Fig. S2). To clarify the source of this difference we examined the composition of 

incoming and outgoing edges in both functional classes of neurons. Specifically, we looked at two 

neuron-centric metrics: 1) realized edges, defined as edge count out of the potential pool (e.g. the 

count of incoming edges from untuned neurons over the number of untuned neurons) and 2) 

relative degree, which is the proportion of edges from a certain class out of the total edges of the 

neuron (e.g. the count of outgoing edges to tuned neurons over the number of outgoing edges of 

the neuron in question. For more details see methods).  

We found that the average tuned neuron realizes more of the available potential outgoing 

edges to untuned neurons in Stimulus (0.32±0.14) compared to Gray (0.27±0.15, Fig. 3B) FNs, 

and untuned neurons constitute a larger portion of a tuned neurons outgoing pool in Stimulus 

(0.35±0.19) than in Gray (0.29±0.20, Fig. 3E) FNs. Conversely, untuned neurons showed 

increased realized out edges in Gray FNs regardless of whether the target was tuned: to untuned 

neurons (0.34±0.17 vs. 0.32±0.15 in Stimulus); to tuned neurons (0.33±0.17 vs. 0.26±0.17 in 

Stimulus, Fig. 3B). This latter trend also manifested as bigger relative out-degree of untuned to 

tuned neurons in Gray (0.47±0.20) as compared to stimulus (0.40±0.21, Fig. 3E) FNs. Edge 

weights reflected the same trends (Fig. 3C). Hence, neurons of the two functional classes show 

distinct correlation structure depending on the condition considered.  

We next evaluated whether tuned neurons have a topological signature beyond partial 

pairwise correlation values. Tuned neurons displayed elevated realized in degrees in Stimulus FN 

dependent on the tuning of other tuned neurons. Elevated realized in degree were greatest from 

neurons preferring the same direction (0.50±0.25), followed by incoming edges from neurons 

preferring the direction 180 degrees away e.g. 30° and 210°  (0.44±0.29), and then neurons tuned 
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to neighboring directions (30 degrees apart, e.g. 30° and 60°. 0.39±0.22). Tuned neurons showed 

low realization rate of incoming edges from neurons selective to orthogonal directions (0.23±0.23, 

Fig. 3D), mirroring the dependency of edge weight on the difference in tuning (Fig. 3A). In Gray 

FNs, however, realized in degree for tuned neurons depended less on the difference in tuning 

preference (same: 0.42±0.25, neighboring: 0.37±0.23, same orientation: 0.36±0.28), and notably 

higher realization was found for incoming edges from neurons preferring orthogonal directions 

(0.30±0.24, Fig. 3D). The composition of incoming connections for tuned neurons also depended 

on tuning similarity with large relative degrees for neurons tuned to the same (0.18±0.15) and 

neighboring (0.17±0.12) directions. Surprisingly, only a small portion of the average tuned neuron 

in-degree in Stimulus FNs was due to edges arising from neurons selective to directions 180 

degrees away, i.e. sharing the same orientation (0.07±0.08, Fig. 3F). Again, in Gray FNs this effect 

was attenuated (same: 0.15±0.16, neighboring: 0.15±0.12, same orientation: 0.06±0.08), and 

relative in-degrees from neurons tuned to orthogonal direction was larger (0.07±0.08 vs. 0.05±0.07 

in Stimulus, Fig. 3F). Realized and relative out-degrees were similar to in-degrees and are depicted 

in Fig. S3.  

These results demonstrate that functional topology is non-random and specific to epochs 

of visual stimulation. Furthermore, neurons of different functional roles, tuned and untuned, differ 

in their correlations profile, in a manner that may enhance coding. Specifically, untuned neurons 

may contribute to visual stimulus encoding by modulating their interactions with tuned neurons, 

since these interactions are stimulus-specific. It follows that tuning, or a lack thereof, is therefore 

a manifestation of network interactions as much as it is a single neuron property.  
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Figure 2.3 – Functional networks inferred from fluorescence contain stimulus features 
A. Mean edge weight between pairs of tuned neurons is a function of similarity in their preferred direction in functional 

networks inferred from stimulus epochs, but not in gray epochs. Lines represent means across datasets (N=20), and 

shading represents the standard error of the mean. Note that pairs of neurons 180 degrees apart are composed of 

neurons that prefer the same orientation.  

B. Untuned neurons have larger realized out-degrees in gray FNs (gray), both to tuned and untuned targets. The 

opposite is true for tuned neurons, with bigger realized out-degrees to untuned neurons in Stimulus (green) FNs. Slices 

in the polar plot present averages across neurons, shading stands for standard deviation. Asterisks denote significance 

in Kolmogorov-Smirnov test. 

C. Same as in B for edge weights between pairs of neurons. 

D. Realized in-degrees for tuned neurons depend on the neuronal source and the input (Stimulus vs. Gray). Slices 

show the means across neurons, and shading represents the standard deviation. Orange asterisks mark the mean as 

significantly different from all other conditions within the same FN (same color) according to Tukey-Kramer test. 

Two-way analysis of variance (FN type and incoming edge type) was also significant (F=89.98, p<0.001). In gray 

FNs, realized in-degrees from neurons tuned to neighboring directions and neurons tuned to the same orientation did 

not significantly differ from each other, but were different from the other two incoming edge types.  

E. Relative degrees in Stimulus (green) and Gray (gray) FNs for tuned and untuned neurons. Slices and shading 

represent the means and standard deviations across neurons, respectively. t and ut denote tuned and untuned neurons, 

respectively. Asterisks stand for significant difference between Stimulus and Gray FNs according to Kolmogrov-

Smirnov test, Bonferroni corrected.  
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Figure 2.3 - continued 
F. Same as in D. for relative in-degrees. F=24.19, p<0.01. In both Stimulus and Gray FNs relative in-degree was 

similar from neurons tuned to the same and neighboring directions, and those two categories were significantly 

different (p<0.01 Tukey-Kramer corrected) than the relative in-degree from orthogonal and same orientation selective 

neurons. In turn, orthogonal and same orientation inputs also did not differ in their relative portion.  

See also Fig. S1-S3. 

 

Functional Networks are stimulus-specific 

To further investigate the stimulus specificity of FNs we compared the functional networks that 

had been generated from each separate direction of drifting grating. Comparing the edge weights 

between pairs of neurons tuned to the same direction, we found the largest edge weights in FNs 

constructed from the direction the pair was tuned to (0.067±0.11). Edge weights in FNs constructed 

from neighboring directions were found to be increased (0.058±0.10) compared with FNs inferred 

from orthogonal directions (0.051±0.09, Fig. 4A). Noise correlations between pairs of neurons 

which are similarly tuned are thus stimulus dependent.  

We next asked whether the topology of FNs as a whole is stimulus dependent as well, and 

sought to quantify this separately for tuned and untuned neurons. Graph alignment allows for a 

principled comparison of FNs identifying common edges between graphs42 (Methods). This metric 

preserves node identities, ranges between 0 and 1 and is normalized to control graphs to evaluate 

whether alignment is larger than expected by chance. We measured alignment between each pair 

of FN constructed from trials of different drifting gratings directions. Alignment scores were 

calculated for FNs containing all neurons, and in sub-networks with only the tuned or untuned 

neurons, where edges between untuned or tuned neurons were set to zero, respectively. To explore 

the relevance of FN topology to stimulus coding, we were especially interested in alignment 

 
42 Gemmetto et al., “Multiplexity and Multireciprocity in Directed Multiplexes.” 
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between FN for neighboring, opposite (180 degrees apart) and orthogonal directions. We found 

that edges were highly preserved across networks inferred from neighboring directions 

(0.225±0.053 alignment score), were less similar (0.200±0.053) for orthogonal directions and 

finally were highly similar for opposite directions (0.237±0.0056), which have the same 

orientation (F=22.87, p<0.01, Fig. 4B). Alignment scores were driven by edges amongst tuned 

neurons, as the tuned sub-FNs showed the same stimulus specificity (F=47.57, p<0.01, Fig. 4C). 

In contrast, the functional connectivity structure of untuned neurons was highly preserved 

regardless of stimulus similarity (F=3.16, NS. Fig. 4D) suggesting unique roles of the two 

functional classes in stimulus coding. 

 

Figure 2.4 – Functional networks are stimulus-specific 
A. Pairs of neurons preferring the same direction have larger edge weights in FNs constructed from the same (blue) 

direction they are tuned for, followed by FNs inferred from the neighboring directions (green). Pairs have the smallest  
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Figure 2.4 - continued 
edges weights in FNs of orthogonal directions (p<0.01, all three groups different according to Kolmogrov-Smirnov 

test, Bonferroni corrected). Inset: zoom of large edge weights. Vertical lines and shading are means and standard 

deviations, respectively.  

B-D. Probability density distributions of normalized alignment scores for pairs of FNs that are built from trials of 

neighboring directions (green), trials of directions 180 degrees apart (same orientation, orange) and trials of orthogonal 

directions (gray), in full FNs (D, F=22.87, p<0.01), sub-FNs including only tuned neurons (E, F=47.57, p<0.01) and 

sub-FNs with only untuned neurons (F, F=3.16, NS). Vertical lines and shading are means and standard deviations, 

respectively. 

 

Untuned neurons form a rich club of large edge weights 

Recent studies of neuronal networks constructed from whole human brain imaging data43 ,44 , 

cortical slices45, cortical cultures46 and fronto-parietal cortex in monkeys47 have found a rich club 

topology, in which the nodes with the largest degrees are also densely connected amongst 

themselves. Here we examined whether FNs in L2/3 in V1 in vivo also exhibit a rich club 

organization (Methods). We found that all datasets displayed significant rich club topology 

spanning the majority of neurons in the sample, in both the stimulus and gray FNs (Fig. 5A-C). To 

probe the position of untuned neurons within the rich club, we iteratively thresholded the networks 

according to edge weight. Consequently, at each iterative stage we included smaller and smaller 

weights and networks became increasingly dense. We then sorted the neurons by their degrees in 

the resultant networks and examined the composition of the neurons with the kth percentile of top 

degrees (Fig. 5D). Untuned neurons were found to be more prevalent in the group of neurons with 

 
43 Heuvel et al., “High-Cost, High-Capacity Backbone for Global Brain Communication.” 
44 Heuvel and Sporns, “Rich-Club Organization of the Human Connectome.” 
45 Nigam et al., “Rich-Club Organization in Effective Connectivity among Cortical Neurons.” 
46 Faber et al., “Computation Is Concentrated in Rich Clubs of Local Cortical Networks.” 
47 Dann et al., “Uniting Functional Network Topology and Oscillations in the Fronto-Parietal Single Unit Network 
of Behaving Primates.” 
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the strongest weights and largest degrees, as evident in the weight-thresholded networks. As more 

small weights were included in the networks, untuned neurons no longer possessed the largest 

degrees in the network (Fig. 5E-F). When pruning the networks in reverse order, keeping the 

smallest weights at each iteration48, untuned neurons were less likely to be amongst the most 

connected neurons in both Stimulus and Gray FNs when only small edge weights were included 

(Fig. S4). This indicates that untuned neurons take part in a rich club of strong weights, putting 

them in a prime position for integration and computation49,50 

 

Figure 2.5 – Rich club 

structure in functional 

networks 
A. Examples from three datasets of rich 

club coefficients in stimulus (green) 

and gray (gray) FNs across percentiles 

of neurons, sorted in descending order 

by their degrees. Lines represent rich 

club coefficients and shading represent 

significance with p<0.01, tested against 

a distribution of rich club coefficients 

from 1000 networks permuted to 

preserve degree-sequence distributions. 

B. Count of datasets (out of 20) which 

display significant rich club coefficient 

in stimulus networks. Significance was 

determined as described in A. 

C. Same as B., for gray functional networks. 

D. A cartoon of the rich club sparsification procedure: left, we start with all the edges in the network. Edge weight is 

specified next to the arrow and the degree of the neurons is written on each node. Tuned neurons are in blue and  

 
48 Pajevic and Plenz, “The Organization of Strong Links in Complex Networks.” 
49 Faber et al., “Computation Is Concentrated in Rich Clubs of Local Cortical Networks.” 
50 Dann et al., “Uniting Functional Network Topology and Oscillations in the Fronto-Parietal Single Unit Network 
of Behaving Primates.” 
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Figure 2.5 - continued 
untuned neurons are in orange. At each step we discard the smallest edges and re-count the degrees of the neurons. 

We then ask what is the prevalence of tuned and untuned neurons within the group of neurons with the largest degrees, 

and normalize this prevalence by their frequency in the population. 

E. Results of the analysis described in D. Untuned neurons form a rich club of strong weights. Warmer colors represent 

prevalence that is over the expected prevalence (value greater than 1). As functional networks move from bottom to 

top on the heatmaps they become more sparse, with only the strongest edges remaining on the top. As FNs move from 

left to right more neurons are examined, with the fewest, largest degree neurons on the left side. See also Fig. S4. 

F. Four cross-sections of E, showing that as networks are sparsified to hold only the strongest weights (top), untuned 

neurons (orange) are more prevalent amongst high-degree neurons than expected by their prevalence in the population. 

All FNs in this analysis are stimulus FNs, lines represent means across datasets (N=20) and shading stands for the 

standard error. 

 

Untuned neurons are hubs 

In order to better quantify the network contribution of untuned neurons we measured the centrality 

of tuned and untuned neurons within the FN topology. Centrality can be evaluated by a number of 

different metrics that focus on local or global network patterns. Of particular relevance in the 

present context is the family of PageRank (eigenvector-based) algorithms, which take into account 

the network embedding of any given node. PageRank has been shown to capture the importance 

of nodes in a variety of biological systems. For example, in protein networks, PageRank identifies 

proteins underlying traits and predictive of prognosis51 and in ecological networks it identifies 

species that are crucial for biodiversity52. In neuroscience, NeuronRank, a measure inspired by the 

PageRank algorithm, was found to be correlated with firing rates of single neurons53, and more 

importantly, of the population 54   in networks of integrate-and-fire neurons. Here we used a 

 
51 Wang and Marcotte, “It’s the Machine That Matters.” 
52 Domínguez-García and Muñoz, “Ranking Species in Mutualistic Networks.” 
53 Fletcher and Wennekers, “From Structure to Activity.” 
54 Gürel, De Raedt, and Rotter, “Ranking Neurons for Mining Structure-Activity Relations in Biological Neural 
Networks.” 
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variation of PageRank55, that allowed us to assign an individual authority value to nodes a priori. 

This proved useful for testing a model in which tuned neurons are hypothesized to be a more 

reliable source of information. However, for the majority of the analyses we kept the authority 

scores (z; see Methods) equal across all neurons unless stated otherwise. We converted the raw 

ranking scores into relative rankings, which quantifies the percentage of neurons that possess a 

smaller ranking than the neuron in question.  

We found that untuned neurons had larger rankings in FNs inferred from stimulus epochs 

(0.542±0.292) as compared to tuned neurons (0.465±0.281, t=8.599, p<0.001; Fig. 6A). In 

contrast, tuned neurons displayed comparable rankings in gray FNs (0.518±0.287) to untuned 

neurons (0.468±0.288; Fig. S5). This effect was robust across model parameters such as the 

damping value, which reflects time spent in the system (q; See Methods. Fig. 6B). The effect 

suggests that activity converges mostly onto untuned neurons across multiple timescales during 

stimulus presentation. This result was also robust to permuting incoming edges of untuned neurons 

(Fig. 6C), consistent with the rich club structure of this sub-population. Interestingly, permuting 

incoming edges of tuned neurons resulted in a mild increase in the ranking of tuned neurons and a 

substantial decrease in the ranking of untuned neurons (Fig. S6). Taken together with the 

robustness of ranking to configurations of incoming edges in untuned neurons, these results 

suggested that network topology is organized to form a backbone of untuned hubs. Finally, to asses 

a model of V1 in which one functional sub-population is a more trusted source of information, we 

varied the ratio between the authority values (z; see Methods) of tuned and untuned neurons. The 

two sub-populations showed opposite trends: when the ratio favored tuned neurons, they showed 

increased rankings in gray functional networks, whereas untuned neurons showed smaller 

 
55 Radicchi et al., “Diffusion of Scientific Credits and the Ranking of Scientists.” 
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rankings. In contrast when untuned neurons were assigned larger authority values, they had even 

larger rankings in networks built from stimulus epochs, while tuned neurons had decreased ranking 

scores in random walks on these networks (Fig. 6D). Importantly, even when tuned neurons were 

set to be 4 times more influential than untuned neurons, untuned neurons remained highly ranked 

in networks built from stimulus epochs. 

 

Figure 2.6 – Random walks on stimulus networks tend to converge onto untuned neurons 
A. Probability density functions of the relative ranking for tuned (blue) and untuned (orange) neurons in networks 

constructed stimulus epochs. Untuned neurons show increased relative ranking, which is a metric for pooling activity, 

t=8.599, p<0.001. No such effect is present in gray FNs (Fig. S5). 

B. Larger ranking among untuned neurons in stimulus epochs is robust to the damping factor, and can thus be thought 

of as occurring at multiple timescales. Lines represent the means of tuned (blue) and untuned cells (orange), and 

shading stands for the standard error. The right-side axis (green) shows the number of steps it took for the random 

walk to converge. 

C. Untuned neurons in stimulus networks are ranked highly regardless of their incoming edges. We gradually 

increased the portion of untuned neurons whose incoming edges we randomly permuted, in steps of 5%. For each step 

we ran 30 trials, in which we chose neurons at random and permuted their incoming edges at random. Lines represent 

means over datasets, with shading for the standard error. 
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Figure 2.6 - continued 
D. Differences in the ranking of tuned and untuned neurons persist under a model in which one of the sub-population 

is more influential. For each value of x∈[0.25, 4] we set z(tuned)=x and z(untuned)=1. We then ran the algorithm and 

computed the relative ranking of each of the sub-populations. Untuned neurons tended to have larger rankings in 

stimulus FNs, especially when they had larger z values compared with tuned neurons, but also when tuned neurons 

were assigned authority values as 4 times larger. 

See also Fig. S5-S6. 

 

A decoder model of V1 functional networks relies on both tuned and untuned neurons 

In order to directly test the idea that the specific topology of a FN comprised of tuned and untuned 

neurons contains information about the stimulus we constructed a two-stage model: the first stage 

was a simple generative model, in which we simulated spiking activity within each of the 12 

direction-specific FNs. Specifically, we used the edge weights from the networks as synaptic 

weights in a sparse recurrent neural network (RNN) and initiated activity by activating the small 

subset of neurons that had the shortest latency response in the experimental data in each stimulus 

condition (12.41±8.91% of neurons). In addition to using the edges from the FNs, inferred from 

data, as the weights in the RNN we ensured that all other parameters in the RNN were biologically 

realistic (see Methods). To do so we performed a grid search and matched the activity produced 

by the RNN to the first-order statistics of spiking activity recorded from mouse V1. In the second 

phase we used the spikes produced by each FN as inputs in a decoding framework, which was 

designed as a feed-forward (FF) neural network with 12 output units, for the 12 directions. The 

connectivity between N input units and the output layer was all-to-all, and was trained on simulated 

spiking data produced using conjugate gradient (Methods, Fig. 7A). Since we employed FNs 

inferred from data and froze the connections within them, the topological properties as well as 

neuron identities were preserved from the in vivo experimental data in the model. 
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This decoding approach proved to be efficacious. Decoding from a single time-step in our 

model, which was a binary vector, resulted in performance that was 310.53±72.68% over chance 

level, and also significantly exceeded the performance of a Poisson decoder in which the neurons 

were considered independent (Fig. 7B). Binning time-steps and decoding from firing rates of units 

in each network saturated the performance in most datasets when bin sizes exceed 11.94±3.53 

frames (Methods, Fig. 7C), and greatly exceeded the performance of the decoder based on the most 

active neurons (Fig. 1C). 

We next examined the level at which the sub-populations of tuned and untuned neurons 

contributed to decoder performance. To assess their importance, we trained the weights to the 

output layer with all neurons, but then permuted the weights from tuned or untuned neurons and 

tested the decoder on held-out test set data. Performance degradation was equivalent regardless of 

the sub-population of neurons we permuted (Fig. 7D). In fact, degradation in performance was a 

linear function of the fraction of cells whose weights we permuted, with no difference between 

tuned or untuned neurons (Fig. 7E-F). Similar results were found when we trained the network 

with a subset of neurons, with tuned-only and untuned-only networks performing comparably (Fig. 

S7).  
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Figure 2.7 – Two-phase model of V1 decodes accurately from both tuned and untuned 

neurons 
A. Illustration of the two-phase decoder model. In Phase I we instantiate each of the direction specific FNs as a 

recurrent neural network (Methods). Edges between tuned (blue) and untuned neurons (orange) as well as edges within 

the same functional class are inferred from data, whereas inhibitory neurons and inhibitory edges (light gray) are added 

in a pseudo-random fashion according to parameters to balance the activity. Inputs (yellow) consist of inserting a spike 

in neurons that spiked in real data in the first 5 imaging frames. Each one of the 12 direction FNs produced spiking 

activity that was used as inputs to Phase II. In the second phase we either used spikes from one frame (i.e. binary 

vector, B), or binned over frames to produce a rate vector (C). Each one of the neurons was connected in an all-to-all 

manner to 12 output units, and those connection weights were trained with conjugate gradient. 

B. Performance of 19 datasets when decoding from a single frame across the population of N neurons (green), 

compared with a poisson decoder in which we permuted the spikes from the real data (gray). Practically, in this 

analysis we trained the decoder on binary vectors of size 1XN, taken from time step t. We then decoded the direction  
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Figure 2.7 - continued 
of drifting gratings from a held-out set of binary vectors from the same t. Lines represent the mean across datasets, 

and shading is for the standard deviation. Note that chance level is 1/12 = 8.3% (dashed). 

C. Performance of the decoder is initially a function of bin size, but quickly saturates (green). Performance of the 

poisson decoder is plotted in gray. We trained the decoder on summed activity from n timed steps, and decoded from 

a held-out set of summed activity from the same n, starting and ending at the same frames. Lines represent the mean 

across datasets, and shading is for the standard deviation. Note that chance level is 1/12 = 8.3% (dashed). 

D. Decrease in performance is equivalent when the learned weights of tuned (blue) or untuned (orange) neurons to the 

output layer are permuted on a single neuron base. For each neuron, we randomly shuffled the twelve weights to the 

twelve output units. Probability density distributions are across 100 permutations in each dataset. At each permutation 

we also picked neurons at random from the more prevalent sub-population such that the count of permuted neurons in 

comparable to the smaller sub-population. This means that in 16/19 cases we did not permute all tuned neurons. 

Vertical lines and shading are for the means and standard deviations, respectively. 

E. Example dataset showing performance degradation is linear with the percent of permuted neurons (and therefore 

permuted weights). For each percentage of neurons from 5% to 100%, we did 30 permutations: we first pseudo-

randomly picked the neurons whose weights will be permuted by randomly sampling only tuned (blue) or untuned 

(orange) neurons, until there were no more neurons left in this sub-population, and then we randomly sampled from 

the other sub-population until the desired percentage was reached. Finally, we randomly shuffled the weights of picked 

neurons to the output layer. Lines represent means across 30 permutations for each percentage, and shading stands for 

the standard deviation. Arrows point at the percentage at which all tuned (blue) neurons are being permuted and we 

start permuting untuned neurons, and orange is the same for untuned neurons. 

F. The same analysis as in E., pooled across datasets. Lines and shading are the means and standard errors, 

respectively. 

See also Fig. S7. 

 

DISCUSSION 

Here we tested the hypothesis that functional networks, comprised of both untuned and tuned 

neurons, are stimulus-specific, and that functional network topology itself contains visual stimulus 

information that is accessible to and thus decodable by downstream neurons. Our findings indicate 

that the two sub-populations occupy specific topological positions in FNs, suggesting a collective 

role for all neurons, regardless of tuning, in the network representation of visual stimuli. This 

finding emphasizes the need for sufficiently broad and unbiased population sampling when 
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studying cortical population coding. We note that although we sorted cells into two discrete 

categories in this study, in reality tuning is a continuous, graded property. Multiple quantification 

methods and parameter choices will engender varying proportions of tuned neurons, as well as 

tuning strength, rendering the dichotomy of tuned versus untuned somewhat arbitrary. However, 

the unique FN topological positions occupied by untuned neurons suggest that this functional 

designation is as much a manifestation of network interactions56,57,58 as it is a manifestation of 

single neuron properties regardless of the specific parameter choices. In that regard, layer 2/3 may 

be different from layer 4, in which tuning properties are thought to be inherited from the dorsal 

lateral geniculate nucleus59. Finally, it is likely that distinct classes of stimuli such as gratings, 

dots, or natural movies, will result in distinct functional networks, consistent with the results 

presented here, and we hypothesize that the assignment of individual neurons to tuned and untuned 

categories will also change in a stimulus-dependent manner again indicative of the fact that tuning 

is at least in part a consequence of network interactions. We suggest that our network-based 

approach can generalize across stimulus class. 

This study highlights the crucial role of functional network topology in stimulus coding. 

Previous studies have included statistical dependencies between neurons and found gains in 

decoding accuracy60 ,61. We build on these results by generating and instantiating a complete 

functional topology from data, including tuned and untuned neurons, which preserves higher-order 

 
56 Cossell et al., “Functional Organization of Excitatory Synaptic Strength in Primary Visual Cortex.” 
57 Arakaki, Barello, and Ahmadian, “Capturing the Diversity of Biological Tuning Curves Using Generative 
Adversarial Networks.” 
58 Amsalem et al., “From Neuron Biophysics to Orientation Selectivity in Electrically Coupled Networks of 
Neocortical L2/3 Large Basket Cells.” 
59 Ringach, Shapley, and Hawken, “Orientation Selectivity in Macaque V1.” 
60 Shi, Niu, and Wan, “Effect of the Small-World Structure on Encoding Performance in the Primary Visual 
Cortex.” 
61 Graf et al., “Decoding the Activity of Neuronal Populations in Macaque Primary Visual Cortex.” 
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structure and also renders the read-out layer of our decoder naïve to all but the realistic spiking 

activity the network produces. Consequently, we show that every sensory neuron matters in the 

context of the active network and in the circuit-level representation of visual stimuli. 

We find that untuned cells are strongly connected amongst themselves. This places untuned 

neurons at the core of the circuit, as evidenced in their propensity to form a rich-club of strong 

weights. This demonstration of a rich-club property in V1 FNs in vivo implicates rich-clubs in 

processing on multiple spatial scales. Rich-club topologies have been linked to increased 

integration of information62, synchronization63, and fast decision making64. Member nodes, or 

neurons, of the rich-club were shown to perform disproportionate amounts of computation in 

cortical cultures65. Furthermore, a spin glass model has demonstrated that a rich-club organization 

supports a network’s capability to converge to a larger set of attractor states66 (see also 67) and 

hints at the potential role of rich-club neurons in sensory discrimination. Our data agree with this 

hypothesis. The central position occupied by untuned neurons in visually evoked FNs is reinforced 

by their larger ranking in dynamic network models based on random walks, which suggests an 

important role as integrators, or poolers, of information. Taken together with their rich-club 

structure of strong weights, untuned neurons may be especially crucial when the stimulus is 

ambiguous or low contrast68. Untuned neurons may hence aid the visual coding of more complex, 

naturalistic stimuli.  

 
62 Heuvel and Sporns, “Rich-Club Organization of the Human Connectome.” 
63 Watanabe, “Rich-Club Network Topology to Minimize Synchronization Cost Due to Phase Difference among 
Frequency-Synchronized Oscillators.” 
64 Daniels and Romanczuk, “Quantifying the Impact of Network Structure on Speed and Accuracy in Collective 
Decision-Making.” 
65 Faber et al., “Computation Is Concentrated in Rich Clubs of Local Cortical Networks.” 
66 Senden et al., “Rich Club Organization Supports a Diverse Set of Functional Network Configurations.” 
67 Ponce-Alvarez et al., “Stimulus-Dependent Variability and Noise Correlations in Cortical MT Neurons.” 
68 Nauhaus et al., “Stimulus Contrast Modulates Functional Connectivity in Visual Cortex.” 
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We propose that a model of V1 circuits based on functional networks supports important 

functional roles in stimulus coding for both tuned and untuned neuronal populations. Moreover, 

our work suggests that the functional designation of a neuron as being tuned or untuned is a 

consequence of network topological interactions. Our work represents an example of how the 

application of network models and graph theory can provide insights and test hypotheses for future 

investigation of how neuronal populations encode and compute sensory signals. 
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SUPPLEMENTARY FIGURES 

 
Figure 2.S1 – Tuned and untuned neurons activate with different latencies 
For each neuron we inferred spikes (Friedrich et al., 2017) from fluorescence traces. We then identified the first 

imaging frame in which the neuron spiked in each stimulus or gray trial, and averaged those frames indices in stimulus 

and gray trials separately. Tuned neurons (solid lines) did not differ in their latency to activate in stimulus (blue, 

33.95±34.66 frames) and gray (gray, 33.03±27.05 frames) trials, whereas untuned neurons activated significantly 

earlier in gray epochs (27.33±24.92 frames) compared to drifting gratings (38.69±38.64 frames, F=9245.39, p<0.001) . 
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Figure 2.S2 – In- and out- degrees of neurons in sub-FNs are similar for stimulus and gray 

epochs 
We kept only tuned-tuned edges in the tuned sub-FNs (blue) and untuned-untuned edges in the untuned sub-FNs 

(orange). Stimulus epochs are represented by blue/orange and gray epochs in gray. Boxplots show interquartile 

range and medians. 

Figure 2.S3 – Tuned neurons show slightly larger relative rankings in gray FNs 
We computed the relative ranking of tuned and untuned neurons in FN created from gray epochs (see Methods). 
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Figure 2.S4 – Permuting in-edges of tuned neurons causes a decrease in untuned neurons 

rankings 
We gradually increased the portion of tuned neurons whose incoming edges we randomly permuted, in steps of 5%. 

For each step we ran 30 trials, in which we chose neurons at random and permuted their incoming edges at random. 

Lines represent means over datasets, with shading for the standard error. Green lines represent the time for 

convergence, with solid for stimulus and dotted for gray. 
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Figure 2.S5 – Training the decoder only with one functional sub-class results in similar 

degradation in performance 
We trained the feed-forward network (second phase of the decoder) only with spikes from tuned (blue) or untuned 

(orange) neurons. The number of neurons we trained with was kept the same by randomly choosing neurons from the 

more frequent sub-class. We did 100 such manipulations. Boxplots show interquartile range and medians. 
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CHAPTER III 

Temporal pairwise correlations reveal sparse subsets of highly variable spikes that code for 

the visual stimulus 

This work will be published as a preprint on Summer 2021: Levy, M.*, Guo, J.K.* & MacLean, 

J.N. (2021). Temporal pairwise correlations reveal sparse subsets of highly variable spikes that 

code for the stimulus. BioRxiv (*co-first authors / equal contribution) 

 

ABSTRACT 

The spiking activity of large groups of neurons underlies the representation of both internal and 

external variables. However, it remains unclear whether specific subsets of spikes can be ascribed 

to one class of variable or the other. To complicate matters, the activity of individual neurons is 

highly variable belying a straightforward assignment of spikes to variables. Despite this variance 

statistical regularities can be found in multineuronal activity  and contain stimulus related 

information. What remains unclear is whether these regularities  are meaningful over the time 

course of a single trial. Here we  intersect pairwise statistical regularities and pairs of action 

potentials recorded during single trials in murine primary visual cortex (V1) and identify a sparse 

set of spikes. These spikes correspond to particularly strong pairwise statistical regularities 

between neurons, but still exhibit trial-to-trial variability relative to stimulus. We find that these 

subsets carry more information about drifting grating direction as compared to the entirety of 

spikes or any other subset, and can be decoded from with high accuracy. Our findings suggest that 

consistent spatio-temporal patterns, delineated by pairs of neurons, might be an organizational 

principle of the coding scheme of neocortex. The proposed scheme elaborates on the Hebbian 
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assembly hypothesis and proposes a biologically plausible and highly efficient way for the same 

spike to represent multiple variables. 

 

INTRODUCTION 

The neocortical response to ostensibly identical sensory input is highly variable, including  spike 

rate and timing at both the levels of individual and populations of neurons1,2,3. Under the 

assumption that action potentials evoke changes in the activity of downstream neurons, this trial-

to-trial variability poses a challenge to assigning meaning to spikes, i.e. both the representation 

and subsequent downstream decoding of a sensory stimulus. However, neural activity within 

subsets of neurons, or circuits, is not statistically independent (for reviews see 4,5,6). Intuitively, 

knowledge about the activity of functionally connected neighbors (often referred to as peer 

prediction7) should provide better prediction of a target neuron activity. Indeed, successful 

prediction of population statistics and circuit dynamics from pairwise correlations has been 

demonstrated in retina8,9, motor cortex10 and visual cortex11,12. Moreover, covariability is relevant 

from the perspective of a downstream neuron since it is more likely to spike given multiple 

 
1 Ventura, “Trial-to-Trial Variability and Its Effect on Time-Varying Dependency Between Two Neurons.” 
2 Tolhurst, Movshon, and Dean, “The Statistical Reliability of Signals in Single Neurons in Cat and Monkey Visual 
Cortex.” 
3 Deweese and Zador, “Shared and Private Variability in the Auditory Cortex.” 
4 Averbeck, Latham, and Pouget, “Neural Correlations, Population Coding and Computation.” 
5 Cohen and Kohn, “Measuring and Interpreting Neuronal Correlations.” 
6 Salinas and Sejnowski, “Correlated Neuronal Activity and the Flow of Neural Information.” 
7 Harris, “Neural Signatures of Cell Assembly Organization.” 
8 Ganmor, Segev, and Schneidman, “Sparse Low-Order Interaction Network Underlies a Highly Correlated and 
Learnable Neural Population Code.” 
9 Pillow et al., “Spatio-Temporal Correlations and Visual Signalling in a Complete Neuronal Population.” 
10 Stevenson et al., “Functional Connectivity and Tuning Curves in Populations of Simultaneously Recorded 
Neurons.” 
11 Kotekal and MacLean, “Recurrent Interactions Can Explain the Variance in Single Trial Responses.” 
12 Dechery and MacLean, “Functional Triplet Motifs Underlie Accurate Predictions of Single-Trial Responses in 
Populations of Tuned and Untuned V1 Neurons.” 
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temporally coordinated inputs13,14,15. Hence, correlated activity can lead to more stable 

representation downstream despite single neuron variability. 

However, there is an ongoing debate whether correlations between neurons enhance or 

impair the encoding of internal and external variables16,17,18. The controversy might be in part due 

to the nature of correlations considered; some studies have reported global correlations, arising 

from an internal state and population-wide fluctuations19 or modulation of correlations across all 

pairs20. Others have found that correlations can be stimulus-specific21,22,23. To clarify, stimulus-

specific correlations are not akin to signal correlations, which measure the similarity of neurons 

across stimuli24. Rather, stimulus-specific correlation are conceptually similar to noise 

correlations, that quantify covariability across trials of the same stimulus. A straightforward way 

to understand this is to imagine an experiment in which an animal is presented with left or right 

moving dots. If two neurons covary in left trials but not (or less reliably so) in right trials, the pair 

displays a stimulus-specific correlation. It is likely that global and stimulus-specific correlations 

coexist and methods have been proposed to tease them apart25,26. It was also shown that stimulus-

 
13 Chambers and MacLean, “Higher-Order Synaptic Interactions Coordinate Dynamics in Recurrent Networks.” 
14 Salinas and Sejnowski, “Impact of Correlated Synaptic Input on Output Firing Rate and Variability in Simple 
Neuronal Models.” 
15 Usrey, Reppas, and Reid, “Paired-Spike Interactions and Synaptic Efficacy of Retinal Inputs to the Thalamus.” 
16 Ohiorhenuan et al., “Sparse Coding and High-Order Correlations in Fine-Scale Cortical Networks.” 
17 Averbeck and Lee, “Effects of Noise Correlations on Information Encoding and Decoding.” 
18 Kanitscheider, Coen-Cagli, and Pouget, “Origin of Information-Limiting Noise Correlations.” 
19 Ecker et al., “State Dependence of Noise Correlations in Macaque Primary Visual Cortex.” 
20 Cohen and Maunsell, “Attention Improves Performance Primarily by Reducing Interneuronal Correlations.” 
21 Franke et al., “Inhibition Decorrelates Visual Feature Representations in the Inner Retina.” 
22 Levy, Sporns, and MacLean, “Network Analysis of Murine Cortical Dynamics Implicates Untuned Neurons in 
Visual Stimulus Coding.” 
23 Ponce-Alvarez et al., “Stimulus-Dependent Variability and Noise Correlations in Cortical MT Neurons.” 
24 Cohen and Kohn, “Measuring and Interpreting Neuronal Correlations.” 
25 Granot-Atedgi et al., “Stimulus-Dependent Maximum Entropy Models of Neural Population Codes.” 
26 Goris, Simoncelli, and Movshon, “Origin and Function of Tuning Diversity in Macaque Visual Cortex.” 



 120 

specific correlations have information about the stimulus27,28 Yet the interplay of these two types 

of correlations at beyond pairwise level, their structure as well as their relevance to coding remains 

unclear. To be relevant from a coding perspective, a partition of correlations is required to identify 

spikes that participate in stimulus or non-stimulus specific correlations with other spikes in a 

biotically plausible way that can implemented downstream. 

Here we utilize a functional network (FN) framework in which spiking dependencies 

between neurons are summarized as graph where neurons are nodes and correlations are directed 

and weighted edges29,30,31,32. We extend this approach to isolate and select subsets of edges that 

are stimulus-specific and non-stimulus-specific. In previous work we examined which synapses 

are activated in a way that contributes to dynamics over entire simulation33,34,35. Here we use a 

similar technique, with several modifications: we work with functional networks on temporally 

fine-scale, to identify spikes that are an instantaneous manifestation of lagged pairwise 

correlations. We identify pairs of spikes that correspond to reliable statistical dependencies that 

are stimulus-specific and these spikes are very sparse and highly variable across trials. 

Nonetheless, they are more informative of the visual stimulus regardless of the decoding algorithm 

used. Our findings that trial-to-trial variability in single neurons and population, relative to 

stimulus, does not constitute an obstacle for the sensory code. 

 
27 Franke et al., “Structures of Neural Correlation and How They Favor Coding.” 
28 Montani and Schultz, “Information-Theoretic Analysis of the Role of Correlations in Neural Spike Trains.” 
29 Dechery and MacLean, “Functional Triplet Motifs Underlie Accurate Predictions of Single-Trial Responses in 
Populations of Tuned and Untuned V1 Neurons.” 
30 Chambers and MacLean, “Higher-Order Synaptic Interactions Coordinate Dynamics in Recurrent Networks.” 
31 Dann et al., “Uniting Functional Network Topology and Oscillations in the Fronto-Parietal Single Unit Network 
of Behaving Primates.” 
32 Downes et al., “Emergence of a Small-World Functional Network in Cultured Neurons.” 
33 Bojanek, Zhu, and MacLean, “Cyclic Transitions between Higher Order Motifs Underlie Sustained Asynchronous 
Spiking in Sparse Recurrent Networks.” 
34 Chambers et al., “Ensemble Stacking Mitigates Biases in Inference of Synaptic Connectivity.” 
35 Chambers and MacLean, “Higher-Order Synaptic Interactions Coordinate Dynamics in Recurrent Networks.” 
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METHODS 

Data collection and curation 

Animals and protocols are described in full in 36. Briefly, we performed a craniotomy over the left 

primary visual cortex (V1) in 8 Tg(Thy1-GCaMP6s)GP4.12Dkim (Jackson Laboratory) mice (4 

male, 4 female). These mice continuously express GCaMP6s in excitatory pyramidal neurons of 

layer 2/3. Upon recovery and verification of V1 location, mice were head-fixed but free to run on 

a linear treadmill while passively viewing drifting gratings in 12 evenly-spaced directions (80% 

contrast, 0.04 cyc/deg spatial frequency and 2Hz temporal frequency). Stimulus presentation (ON 

epochs) were 5s in duration and interleaved with 3s of gray screen (OFF epochs). Imaging of the 

neuronal population was performed with a line-scan37 at a wavelength of 910nm (Coherent 

Chameleon). We inferred spikes from df/f by employing a deconvolution algorithm38. All data 

presented are from 19 datasets unless stated otherwise.  

 

Functional networks 

We summarized the pairwise relationship between neurons in a static functional network (FN), 

computed as the confluent mutual information of the spikes of every pair of neurons i,j. Confluent 

mutual information (conMI39, Fig. 1A) is defined as: 

(1)     

 
36 Dechery and MacLean, “Functional Triplet Motifs Underlie Accurate Predictions of Single-Trial Responses in 
Populations of Tuned and Untuned V1 Neurons.” 
37 Sadovsky et al., “Heuristically Optimal Path Scanning for High-Speed Multiphoton Circuit Imaging.” 
38 Friedrich, Zhou, and Paninski, “Fast Online Deconvolution of Calcium Imaging Data.” 
39 Chambers et al., “Ensemble Stacking Mitigates Biases in Inference of Synaptic Connectivity.” 
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where:   𝑗(𝑡̂) = 	 (1									𝑗(𝑡 − 1) = 1		𝑂𝑅		𝑗(𝑡) = 1
0																	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																					

 

And is therefore none-symmetric. This results in an NxN adjacency matrix, with neurons being 

nodes and conMI values as directed and weighted edges between them. Edges between neuronal 

pairs with negative correlation between their spike trains were then set to zero, and the adjacency 

was further pruned to contain only the top 50% of edge weights, resulting in a final density of 

0.38±0.04. Functional network construction was performed separately for trials of each direction 

of drifting grating, for a total of 12 FNs per dataset. 

 

Edge classification into four sub-FNs 

For each direction θ of drifting gratings, 3 fellow directions were defined: the two neighboring 

directions that are 30 degrees apart from θ, and the opposite direction of θ, 180 degrees apart, 

which corresponds to the same orientation as θ.  For example, for θ=60  the fellow directions are 

30, 90 and 240 degrees. We then compared each edge  to the values in the three according to the 

following rules: 

(2)  5
𝐹𝑁!"# ≠ 0	

∀𝑓 ∈ 𝑓𝑒𝑙𝑙𝑜𝑤, 𝐹𝑁!"
$ = 0

	⇒ hard unique (hard u) 

 

(3)  	

⎩
⎨

⎧ 𝐹𝑁!"# ≠ 0	

∃𝑓 ∈ 𝑓𝑒𝑙𝑙𝑜𝑤, 𝐹𝑁!"
$ ≠ 0

∀𝑓 ∈ 𝑓𝑒𝑙𝑙𝑜𝑤, 𝐹𝑁!"
$ < %

&
𝐹𝑁!"#

	⇒ soft unique (soft u) 

 

(4)  

⎩
⎨

⎧ 𝐹𝑁!"# ≠ 0

∃𝑓 ∈ 𝑓𝑒𝑙𝑙𝑜𝑤, 𝐹𝑁!"
$ = 0

∃𝑓 ∈ 𝑓𝑒𝑙𝑙𝑜𝑤, 𝐹𝑁!"
$ ≥ %

&
𝐹𝑁!"#

⇒ partially shared (p shared) 
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(5)  

⎩
⎨

⎧ 𝐹𝑁!"# ≠ 0

∀𝑓 ∈ 𝑓𝑒𝑙𝑙𝑜𝑤, 𝐹𝑁!"
$ ≠ 0

∀𝑓 ∈ 𝑓𝑒𝑙𝑙𝑜𝑤, 𝐹𝑁!"
$ ≥ %

&
𝐹𝑁!"#

⇒ fully shared (f shared) 

 

In words, hard u contains edges that are present only in θ. Soft u is composed of edges that 

may be present in one or more of the fellow directions FNs, but are at most half the weight of the 

edge in θ. Edges that are sorted into p shared are present in some of the fellow directions, and are 

roughly the same magnitude as in θ. Finally, f shared edges are present in the FN of all fellow 

directions, and are of similar weight to the weight in the FN for θ. This procedure was carried out 

for every direction of drifting gratings, resulting in 4 exclusive sub-functional networks (sub-FNs) 

for each of the 12 directions. 

 

Edge expression and spike sparsification 

A temporal graph (TG) is a single-trial moment-to-moment representation of which pairwise 

relationships are instantiated. To construct a temporal graph, we first built a binary tensor of 

potential edges (POT) of size NxNxT-1 with T being the time points in the rasters (R). Each time 

slice 𝑡̂, summarized the spiking activity at t-1 and t. For each neuron pair i,j at each time point 

sliding along the duration of the spiking activity: 

(6)    𝑃𝑂𝑇!,",()  =1 if  𝑅!,(*% = 1	𝑎𝑛𝑑	𝑅",( = 1 

else 

𝑃𝑂𝑇!,",()  =0 

POT is called a tensor of potential edges since it may be the case that i spiking at t-1 has contributed 

to the spiking activity of j at t. POT is thus a combinatorial representation of the rasters and its 

density depends on the firing rate in the population. 
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Each time slice 𝑡̂ was then intersected with an FN, or sub-FN, as indicated in the results: 

(7)     𝑇𝐺() = 𝑃𝑂𝑇()⨀𝐹𝑁# 

 

TG is thus the same size as the potential edges tensor, but is way sparser and contains weighted 

edges. Expressed edges are the edges that remain in the TG after intersection out of the total 

number of edges in the FN.  

We extracted spikes that are consistent with a temporal graph (TG) by using a process that is the 

reverse of the potential edges construction. First, we binarized the TG, setting all non-zero 

elements to 1. Then, for every neuron pair i,j and every time slice , we defined the sparsified rasters 

(SR) to be: 

(8)    𝑆𝑅!,(*% = 1	𝑎𝑛𝑑	𝑆𝑅",( = 1 if 𝑇𝐺!,",() = 1 

 

In practice, instead of iterating over every pair of neurons, the same can be achieved summing the 

over rows and columns of each time slice 𝑇𝐺() . A spike at t-1 is then assigned to every neuron with 

a non-zero column sum, and spike at t is assigned to every neuron with a non-zero row sum. 

Note that no new spikes are inserted, rather, spikes in SR are a subset of the spikes in the original 

raster R. SR contains only the spikes in R that can be explained as a manifestation of the FN or the 

sub-FN that was used in the calculation of the TG. 

 

Trial-to-trial variability measures 

For single cell rate variability (Fig. 3D), for each neuron we counted the spikes over the course of 

the trial. We computed the coefficient of variation, CV as 𝜎/𝜇 with 𝜎 and 𝜇 being the standard 

deviation and mean, respectively, of the neuron spike-count across trials with the same drifting 

gratings direction. 
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For temporal precision of single cells, for each neuron we calculated the Victor-Purpura (VP) 

distance40 between pairs of trials of the same direction. Since VP is sensitive to the number of 

spikes (i.e. sparsity) we divided by the mean spike count for the trials in the pair. We chose q=1 

for the cost. 

Population-level variability was measured by the L2 (Euclidean) norm between each pair of 

population vectors for trials of the same drifting grating direction. We formed population vectors 

by counting the spikes for each neuron across the duration of the trial. The L2 metric was 

normalized by the mean of the total spikes in the trials in the pair to adjust for sparsity differences. 

 

Information quantification 

The mutual information (in bits) between the neural response r and the stimulus feature s was 

calculated as41,42:  

(9)   𝐼(𝑟; 𝑠) = ∑ 𝑃(𝑠)+ ∑ 𝑃(𝑟|𝑠) log& X
,(.|+)
,!(.)

Y.  
 
 
Neural responses analyzed were binarized vectors of spikes for 5 neurons binned across 10 

imaging frames (Fig. 4A), and vectors of spikes for 5 neurons across 3 imaging frames 

concatenated into 15-by-1 vectors (Fig. 4B). The identities of the 5 neurons were selected by taking 

those with the highest firing rate across the first 100 imaging frames of all trials in the original 

spikes and used to compute the mutual information for all four sub-FN consistent spikes. Across 

all trials, the value of P(s) is uniform and equal to 1/12, and we scaled raw information value by 

the average number of spikes in a vector to obtain bits per spike. 

 
40 Victor and Purpura, “Nature and Precision of Temporal Coding in Visual Cortex.” 
41 Brenner et al., “Synergy in a Neural Code.” 
42 Palmer et al., “Predictive Information in a Sensory Population.” 
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Feedforward pattern recognition neural network decoder 

We used the decoder described in 43. This is a multiclass decoder with N input units for N neurons, 

and 12 output units, one for each direction of drifting gratings. The input and output layer are 

connected by all-to-all feedforward connectivity with random initial weights. As inputs, we binned 

spikes in 10 consecutive imaging frames to a population vector of size N. 90%-10% of the trials 

were used as training and test sets, respectively. The weights were trained by conjugate gradient 

with Matlab’s machine learning toolbox. We trained the weights for the original spikes and the 

sub-FN consistent spikes separately.  

 

Support vector machine (SVM) decoder 

To confirm the results of the feedforward neural network decoder, we used the same inputs, i.e. 

population vectors of spikes binned at 10 frames from 90% of the trials, to train a Support Vector 

Machine (SVM) decoder with a linear kernel. Training was performed with Matlab’s fitcecoc.m 

function. We tested on the remaining 10% of trials.   

 

Naive Bayes decoder 

For each imaging frame in the data, the number of spikes for each neuron were binned across 10 

frames and concatenated together for all trials in a dataset. The concatenated spike counts and their 

corresponding stimulus direction were randomly split into training and testing data in a 90-10 

ratio.  

 
43 Levy, Sporns, and MacLean, “Network Analysis of Murine Cortical Dynamics Implicates Untuned Neurons in 
Visual Stimulus Coding.” 
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This Naive Bayes Decoder44,45 used a Gaussian likelihood function. Using the concatenated 

spike counts in the training data, for each neuron, the mean and standard deviation for the number 

of spikes binned across 10 frames was calculated for each stimulus direction, giving the mean and 

standard deviation for the likelihood function for each stimulus direction for each neuron. Values 

of 0 for the sample variance were replaced with the average variance across all trials for subsequent 

normal pdf calculations. Then, using the testing data, the posterior probability of each stimulus 

direction given the observed spike counts were calculated by finding the product of the likelihood 

functions for all neurons evaluated at the observed spike counts and the stimulus direction giving 

the maximum posterior probability was the decoded direction. This procedure was repeated 30 

times for each starting frame and conducted for the first 100 starting frames for the original spikes 

and the sub-FN consistent spikes. 

In the shuffled control for the Bayesian decoding, prior to binning spike counts, the spikes 

were shuffled within each trial to preserve trial spike density. For each imaging frame, the shuffled 

spikes were then concatenated as above and the direction was decoded using the same procedure. 

The decoder performance of the unshuffled spikes was divided by that of the shuffled spikes on a 

frame-by-frame basis to obtain the fold change of the decoding accuracy relative to the density-

matched control.  

 

Controls 

To test for the possibility that any spiking activity that is organized in pairs of consecutive spikes 

accounts for the decoding performance, we designed a stringent control that preserves the density 

of the sub-FNs as well as the resulting pairwise structure of spikes. We randomly permuted the 

 
44 Zhang et al., “Interpreting Neuronal Population Activity by Reconstruction.” 
45 Glaser et al., “Machine Learning for Neural Decoding.” 
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edges in each sub-FN before intersecting with each trial. We then binned the spikes in each 10 

frames as with the real spikes, and passed them through the SVM decoder as described above. 

 

Statistical analysis and code 

Means and standard deviations across datasets or neurons are reported throughout the paper as 

M±SD unless stated otherwise. p values were bonferroni corrected in cases of multiple 

comparisons. All analysis was done in Matlab 2018 or later (Mathworks) and Python 3.7.  

 

RESULTS 

Functional networks divided according to stimulus specificity have distinct topological 

hallmarks 

We imaged hundreds of excitatory neurons in layer 2/3 of mouse primary visual cortex (V1) in 

response to 12 directions of drifting gratings46. Here we summarize the spiking dynamics of these 

populations of neurons as functional networks (FNs), with neurons and the statistical dependencies 

between them as nodes and edges, respectively. We generated a functional network for each of the 

12 directions of drifting gratings by computing the confluent mutual information (conMI47; Fig 

1A) between each pair of neurons in all trails of each grating direction separately. conMI is the 

mutual information between neuron i at time t and neuron j at time t and t+1, with time dictated 

by imaging frame.  

When comparing each of the twelve FNs we observed that some edges in the FNs are 

overlapping across stimuli, whereas other edges are present only in a subset or a single FN 

 
46 Dechery and MacLean, “Functional Triplet Motifs Underlie Accurate Predictions of Single-Trial Responses in 
Populations of Tuned and Untuned V1 Neurons.” 
47 Chambers et al., “Ensemble Stacking Mitigates Biases in Inference of Synaptic Connectivity.” 
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corresponding to a single direction of drifting gratings (Fig. 1B)(11.53±1.62% unique edges, 

12.96±2.66% edges shared between two directions, 75.51±3.98% edges that are present in more 

than 2 FNs). Furthermore, the similarity of FNs correlates with stimulus similarity48 (Fig. 1C), 

with increased similarity for directions that are adjacent (e.g. 30 and 90 are adjacent to 60) and 

directions that have the same bar orientation (e.g. 60 and 240). These data would suggest that these 

three (fellow) directions are presumably more difficult for downstream circuits to disambiguate. 

With this in mind we allocated edges in each FN into four sub-FNs depending on the extent to 

which an edge was shared or unique to one FN corresponding to one direction of drifting grating. 

Specifically edges were sorted into: hard u(nique) sub-FN which contains edges that only exist in 

an FN for a single direction, soft u(nique) edges may exist in FNs for fellow directions, but they 

are stronger, reflecting more reliable statistical dependency,  in an FN for one direction. P(artial) 

shared which consists of edges that are common to a direction and to some, but not all fellow 

directions, and f(ully) shared edges that are found in all of the FN regardless of direction.  This 

sorting procedure was done for each direction of drifting grating and results in 4 non-overlapping 

sub-FNs (Fig. 1D). Across datasets and directions, 17.41±5.06% edges were classified at hard u, 

6.89±2.49% edges as soft u, and 53.46±4.31%, 22.22±9.02% edges as p shared and f shared, 

respectively, making soft u the sparsest sub-FN and p shared the densest sub-FN (Fig. 1E). As 

expected given our segmentation procedure we found that soft u contains a significant subset of 

the strongest edge weights (AVONA, p<0.001, Fig. 1F), meaning more of the edges of this 

particular sub-FN reflected more reliable statistical dependencies as compared to the other three 

sub-FNs. Almost all neurons had at least one edge and thus participated in each sub-FN, meaning, 

 
48 Levy, Sporns, and MacLean, “Network Analysis of Murine Cortical Dynamics Implicates Untuned Neurons in 
Visual Stimulus Coding.” 
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sub-FNs included the vast majority of neurons (hard u: 99.39±0.99%, soft u: 95.15±6.06%, p 

shared: 99.15±1.14% and f shared: 91.80±4.17%).  

 
Figure 3.1 - Functional networks (FNs) can be divided to 4 sub-FNs based on edge statistics 
A Illustration of edge inference by confluent mutual information (conMI). The edge from neuron i to neuron j is a 

statistical dependency between i spiking at time t-1 or t, and j spiking at time t. Hence conMI is not necessarily 

symmetric.  

B FNs for 4 directions: the direction of interest (DOI; 60 degrees) and its three fellow directions (30,90 and 240 

degrees). 10 neurons are illustrated here for visualization purposes. Colors represent edge weight. Note that some 

edges are similar across directions whereas others appear only in one FN. 

C FN similarity reflects stimulus similarity: alignment score varies in [0,1] with larger numbers indicating increased 

similarity between two networks. Δ𝜃 stands for stimulus similarity in degrees, with 30 degrees being an adjacent 

direction and 180 degrees being the direction with the same orientation. Line and shading represent mean and the 

standard error, respectively. 
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Figure 3.1 - continued 
D Illustration of edges allocation into 4 sub-FNs: the FN for 60 degrees from B was split into 4 non-overlapping sub-

FNs, according to which edges are unique and strong in the DOI (60 degrees) as compared to the FNs for fellow 

directions. Colors for sub-FNs are consistent throughout this manuscript.  

E Density of the four sub-FNs as the portions of edges from the overall allocated to each of them. Boxplots represent 

interquartile ranges and midlines mark the median.  

F Probability distributions for the edge weights included in each of the four sub-FNs 

 

We found that the number of reciprocal connections varied between the four FN sub-types 

and depended on the extent to which edges were unique to a direction specific FN.  Shared sub-

types displayed more bi-directional edges, adjusted for the FN density, and the portion of 

reciprocal edges was a function of the initial reciprocity before splitting up the FN in sub-FN. In 

contrast, unique sub-types had exhibited less reciprocal connections that were relatively fixed, 

regardless of the prevalence of bi-directional connections in the original FN (Fig. S1).  

            We then evaluated the extent to which each sub-FN may be an indication of the tuning of 

individual neurons. We counted how many edges in each sub-FN are amongst pairs of tuned (t-t), 

untuned (ut-ut), and mixed-functionality (t-ut, ut-t) neurons. The prevalence of each edge type was 

proportional to the density of two of the sub-FNs: soft u and f shared include the same portions of 

the three edge-types as the overall FN. Hard u exhibits a lower prevalence of tuned-tuned 

connections, whereas p shared shows an over representation of those pairs (Fig. S2).  

              

Real-time correspondence of pairs of spikes to each of the four sub-FNs is organized in 

higher-order patterns 

We next examined how statistical dependencies are dynamically realized by corresponding pairs 

of action potentials. To do so we created an instantaneous, potential functional network for every 

two consecutive frames (methods). In this potential FN, a pair of consecutive spikes where neuron 
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i spikes at time t and neuron j spikes at time t+1 is represented as 1 in the ij-th location, and 0 

otherwise. Intersecting this potential FN with any of the sub-FN retains only the edges that are 

active at that time, termed expressed edges, and can be thought of as a temporal network (Fig. 2A). 

Overall we found elevated expression during the first third of the trial and this 

correspondence declined thereafter. We then evaluated the extent to which the correspondence 

between spikes and edges depended on the sub-FN. Since sub-FNs vary in their density, we took 

the portion of expressed edges out of the total density. We found that soft u (0.20±0.53%) and f 

shared (0.19±0.53%) had larger levels of expression as compared with the overall FN and the other 

two sub-FNs (0.16±0.36% and 0.16±0.42% for hard u and p shared respectively, Fig. 2B). Notably, 

correspondence between the sub-FNs and pairs of action potentials during gray (OFF) visual 

stimulus epochs was significantly lower (ON epochs=0.18±0.48%, OFF epochs=0.07±0.23%, 

across subtypes and time, p<0.001).  

We observed that some edges, that corresponded to pairs of action potentials, are also 

organized into higher-order patterns. A feedforward pattern (FF) is composed of two edges from i 

to j at t and t+1, whereas a recurrent pattern (RR) has an edge from i to j at time t, followed by an 

edge from j to i at time t+1 (Fig. 2A). On average a neuron participated in 0.63±1.37 patterns in a 

trial (across all subtypes, Fig. 2C). Adjusted for density, more of the edges that corresponded to 

pairs of spikes in the p shared and f shared FNs also were components of higher-order patterns as 

compared to the unique subtypes (Fig. 2D). We found that hard u, p shared and f shared exhibited 

elevated counts of recurrent patterns (7.81±3.34, 11.25±5.02 and 11.95±7.54, respectively), as 

compared to feedforward patterns (2.87±1.92, 3.22±2.28 and 2.97±2.25, respectively). In contrast, 

soft u exhibited balanced counts of FF (2.44±1.85) and RR (4.73±3.20) patterns (Fig. 2E and Fig. 

S3).  
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Figure 3.2 - Sub-FNs have different 

hallmarks of real-time edge expression 
A Illustration of a temporal graph (TG) approach: a 

static FN which is inferred from many trials is 

intersected with spikes on a single-trial time-point by 

time-point basis. An edge from neuron 1 to neuron 2 

is expressed in the first two time-frames with neuron 

1 spiking followed by a spike in neuron j. Any static 

FN can be used in this procedure, and we have used 

both the overall FN and the sub-FNs. Spikes that are 

not an expression of any edges are marked with a red 

X and later discarded in the spike sparsification 

process. Example feedforward and recurrent patterns 

are marked in yellow and dark blue, respectively.  

B Percent of expressed edges out of the overall FN 

(blue) and the four sub-FNs throughout the course of 

an ON epoch. Lines represent means across trials and 

datasets. Orange bars on the bottom indicate the time-

points at which soft u had significantly larger 

expression (ANOVA, p<0.05). 

C Neurons participate in more patterns in shared 

types. <> denote the mean over trials, and boxes 

indicate the interquartile range with the median 

marked as a horizontal line. 

D Percent of the expressed edges that are taking part 

in patterns, out of all expressed edges. Boxes and 

horizontal lines represent the interquartile range and 

median, respectively.  

E Recurrent pattern counts minus feedforward pattern 

counts for each time point in the trial. 0 would be a 

perfect balance between these two patterns. Lines and 

shading are means and standard errors across datasets. 
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Spikes that correspond to sub-FNs are sparse and variable 

Feedforward connectivity has been implicated in the transmission of information and we 

postulated that this subset of correlations may be indicative of pairs of action potentials that would 

be more decodable by downstream elements. In order to test this hypothesis we focused on the 

action potentials rather than edges and segmented  spikes according to correspondence to an edge 

in  a sub-FN. In other words, if neuron i spiked at time t and neuron j spiked at time t+1, we kept 

those spikes if there was a non-zero edge in the ij-th index in the FN, and discarded spikes that did 

not correspond to an edge (Fig. 2A). This procedure yielded 4 sets of spikes that corresponded to 

edges in each sub-FN for each trial. Sub-FN consistent spikes are sparser than the original spikes, 

with soft u corresponding to the fewest action potentials (Fig. 3A). In this framework a spike can 

correspond to an edge in more than one sub-FN ; for example, an ij edge may exist in hard u, while 

an ik edge is nonzero in p shared. In this case, a spike at time t will be retained for both of these 

subtypes if j and k spiked at time t+1, respectively. Therefore, while edges are exclusive to one of 

the four sub-FNs, the corresponding  spikes are not. We found varying degrees of overlap between 

sub-FN consistent spikes for different sub-FNs (Fig. 3B-C) and the magnitude of overlap was 

stationary. 

  Sparsifying the spikes by keeping only sub-FN consistent spikes did not reduce the trial-

to-trial variability of spikes in single neurons as measured by rate or temporal precision (Fig. 3D 

and 3F, respectively). This was surprising since these spikes were selected according to 

correspondence to edges in sub-FNs and edges are indicative of pairwise statistical dependencies. 

Similarly we found that network wide sub-FN consistent spikes were not more reliable than the 

original spikes as a population vector as measured with the L2 norm (Fig. 3E).  
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Figure 3.3 - Sub-FN consistent spikes are ultra-sparse and highly variable 
A Population spikes over time in the trial for the original spikes and the four sets of sub-FN consistent spikes. Lines 

and shading are the means and standard deviations across all trials.  

B Illustration of how spike overlap is calculated: in each trial, we intersected each of the four sets of sub-FN consistent 

spikes with the three sets of sub-FN consistent spikes. In this example, we are intersecting hard u (in red) with soft u 

(in orange). Some of the spikes appear only in hard u (arrow from within the circle) and these are the unique spikes.  

C Spikes overlap between sets of four sub-FN consistent spikes. Colors in the grid represent the percent of unique 

spikes out of all the spikes for the sub-FN in a given row. Numbers are means±standard deviations across trials and 

datasets. 

D Coefficient of variation probability distributions for the firing rate of single neurons in the original spikes and in 

each of the sets of sub-FN consistent spikes. Dots on the top indicate the means. 
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Figure 3.3 - continued 
E L2 (Euclidean) norm (see Methods) probability distributions for population vectors in the original spikes and in 

each of the sets of sub-FN consistent spikes. Dots on the top indicate the means. 

F Temporal precision as measured by the VP distance. We normalized the metric by the number of spikes 

(Methods). <> denotes the mean over pairs of trials of the same grating direction. Boxes span the interquartile range 

and horizontal lines indicate the medians.  

 

Soft-u consistent spikes are more informative of drifting grading direction 

Despite variable responses it is clear that information relevant to visual stimulus is present in the 

response of the visual cortex. In order to directly quantify the information we calculated the mutual 

information between spikes and stimulus49 (Methods). We did so for all spikes as well as for the 

subset of spikes that corresponded to edges in each of the sub-FN. We normalized the raw 

information by the average number of spikes in the time frames used for analysis to obtain a metric 

of bits per spike regardless of sparsity. We examined the information in a small group of neurons: 

we picked 5 neurons that had the largest average firing rates across stimuli and trials in the original 

spikes, and we kept the identities and order of these 5 neurons fixed. Examining the activity in 

bins of 10 frames, we found that soft u consistent spikes were more informative about the direction 

of drifting gratings, as compared to all of the  spikes and the other subsets of spikes (Fig. 4A). To 

quantify the information on faster timescales, we concatenated every 3 subsequent imaging frames 

preserving the spatio-temporal pattern of spikes. A similar trend emerged, where the information 

quantity in these spatio-temporal patterns of soft u consistent spikes was increased as compared to 

all of the action potentials and to other subset of sub-FNs consistent spikes (Fig. 4B). We replicated 

these results with a separate set of 5 neurons for the original spikes and each of the four subsets of 

spikes. 

 
 

49 Brenner et al., “Synergy in a Neural Code.” 
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Figure 3.4 - Information quantity in 

subsets of sub-FN consistent spikes 
A Bits per spike in sub-FN consistent spikes (different 

sub-FNs in their respective colors) and original spikes 

across time. Here we quantified the information in 

“binary words” of size 5, using the 5 neurons with the 

largest firing rate and binning over 10 frames. Line 

and shading represent the mean and standard error, 

respectively.  

B Bits per spike in sub-FN consistent spikes (different 

sub-FNs in their respective colors) and original spikes 

across time. Here we quantified the information in 

spatio-temporal patterns where every 3 consecutive 

frames were vectorized, which preserves the structure 

of spiking in the 5 neurons we analyzed.  

 
 

 

  

 

Soft u  consistent spikes are decodable at high accuracy 

The elevated information quantity in soft u spikes suggests that soft u spikes might be more 

decodable. Indeed, a feedforward network multiclass decoder trained with conjugate gradient on 

90% of the data yielded significantly higher performance for soft u consistent spikes 

(52.13±14.60%) as compared to all action potentials and all of the other subsets of spikes 

(34.12±11.8% for the original spikes. 44.37±12.80%, 40.64±11.20% and 42.95±13.06% for hard 

u, p shared and f shared, respectively, Fig. 5A). We note that decoding performance followed a 

similar temporal profile to the proportion of edges which corresponded to pairs of action potentials 

(Fig. 2B).  
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Figure 3.5 - Decoding the direction of drifting gratings from sub-FN consistent spikes 
A Performance as percent correct from the test set trials of the original spikes and the sparsified sub-FN consistent 

spikes in the Feedforward neural network decoder (Methods). Dashed line on the bottom denotes chance level 

decoding (1/12). The original spikes are in blue. Orange bars on top indicate the time points at which soft u is 

significantly better (ANOVA, p<0.05). Lines and shading are for the means and standard errors across datasets.  

B Performance of a second supervised decoder, namely a Support vector machine (SVM). Colors and markings are 

the same as in A. 

C Performance of a Naive Bayes decoder (unsupervised) over sparsity-matched controls (Methods) over time in the 

trial. Colors and markings are the same as in A. 

D Real decoding performance (abscissa) of the four sets of sub-FN consistent spikes against the decoding performance 

of control spikes (ordinate) in the SVM framework. Control spikes were generated by permuting the sub-FN before 

intersection with the original spikes and thus preserve the sparsity and the same count of pairs of consecutive spikes 

but not their specificity (see Methods). Dashed line is unity. Each data point is one decoder, binned at 10 frames. 

Black dots represent cloud means. 

 
 

We next confirmed these findings with two additional decoding approaches: We employed 

a support vector machine (SVM) with a linear kernel which is another supervised decoder (Fig. 
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5B), and also a naïve Bayes decoder which is an unsupervised method (Fig. 5C). In all three cases 

the decoders have demonstrated that soft u consistent spikes are more readable downstream. 

Importantly, in order to verify that this result is due to the existence of specific pairwise statistical 

dependencies between neurons, we used a control that disentangles the sub-FNs and the spikes. 

Specifically, we permuted the edges of each sub-FN before selecting the subset of action 

potentials. This allowed us to  preserve density and allowed for other, random pairwise 

dependencies to be expressed. In all cases decoding performance of this control was less accurate 

and was most pronounced for the unique types: control performance was 0.57±0.31 and 0.50±0.23 

of the real decoding performance of hard u and soft u, respectively (0.76±0.33 and 0.66±0.37 for 

p shared and f shared, respectively).  

 

DISCUSSION 

Here we extended the standard graph-theory approach, in which the activity that occurs over a 

number of trials is summarized as a functional network, by examining the dynamical 

correspondence between edges in the FN and action potentials over the time course of single trials. 

Furthermore, we considered the similarities between functional networks that corresponded to 

activity evoked by the different directions of drifting gratings and allocated edges into four classes 

based on their exclusivity to one direction or another. We found that an ultra-sparse set of action 

potentials that corresponds to edges that are strong FNs of one direction and weak in FNs of 

adjacent directions (soft u) contained information about the direction of drifting gratings. These 

subsets of spikes are more readily decoded, than any other set or all of the action potentials evoked 

by the visual stimulus. 

Our findings suggest that some spatio-temporal patterns are only found in one direction. 

Identification of these patterns directly from the raw spike trains is difficult since they are 



 140 

interwoven with patterns that are stimulus-nonspecific with a neuron and a spike being in more 

than one pattern simultaneously. Even a detection method based on the similarity of correlation 

matrices50, though conceptually similar to our method, will fall short due to this mingled nature of 

the spiking activity. Rather, we leverage the stimulus-specificity of some pairwise functional 

connections51,52,53 to find these patterns. It follows that, to the extent that neuron pairs with 

stimulus-specific correlation project to the one downstream target whereas neuron pairs with non-

stimulus-specific correlation project to another, these patterns can be disentangled even with 

overlapping neuron identities and spikes. We have previously found that higher-order relationships 

are hallmarks of synaptic cooperativity and coordinated integration in a post-synaptic neuron54, 

making the proposed readout realistic. 

This coding scheme is broadly consistent with the Hebbian assembly hypothesis55,56,57. 

However, in most studies the assembly is assumed to be composed of groups of neurons without 

considerable overlap in cell identities. We revise the Hebbian assembly hypothesis by 

demonstrating that pairwise correlations within the group of neurons defines the assembly; soft u 

sub-FNs encompass the vast majority of neurons recorded indicating that assemblies coding for 

different directions gratings highly overlap, but differ in their correlation structure. Intuitively, the 

inclusion of correlations in the implementation of the code increases the coding capacity of a 

population due to an increased number of possible combinations. Consequently, specific sets of 

 
50 Grossberger, Battaglia, and Vinck, “Unsupervised Clustering of Temporal Patterns in High-Dimensional Neuronal 
Ensembles Using a Novel Dissimilarity Measure.” 
51 Ponce-Alvarez et al., “Stimulus-Dependent Variability and Noise Correlations in Cortical MT Neurons.” 
52 Franke et al., “Structures of Neural Correlation and How They Favor Coding.” 
53 Levy, Sporns, and MacLean, “Network Analysis of Murine Cortical Dynamics Implicates Untuned Neurons in 
Visual Stimulus Coding.” 
54 Chambers and MacLean, “Higher-Order Synaptic Interactions Coordinate Dynamics in Recurrent Networks.” 
55 Miller et al., “Visual Stimuli Recruit Intrinsically Generated Cortical Ensembles.” 
56 Harris, “Neural Signatures of Cell Assembly Organization.” 
57 Hebb, The Organization of Behavior. 



 141 

spikes code for a variable, not specific neurons. This coding framework is reminiscent of packet 

coding58 in which no limitation on neuronal specificity for a variable is set.  

Interestingly, soft u consistent spikes (and other sub-FN consistent spikes) did not exhibit 

high fidelity spatio-temporal sequences, but nonetheless contained more information about the 

stimulus. This suggests that several spatio-temporal patterns, different in their structure and 

identity of spiking neurons, can code for the same stimulus. This is in agreement with studies in 

retina that have found semantic, rather than structural similarity between spikes that code for the 

same stimulus59,60. One implication of this observation is that neuronal and population variability 

per stimulus does not capture the variance meaningful to the neural code61. The reliability that 

matters to this code is variance of pairwise spikes between neurons62,63, supporting robustness. 

In addition to sparseness, the coding scheme proposed here is particularly efficient since 

one spike can participate in coding multiple, independent variables. In that sense the code is 

multiplexed. The high complexity of the natural world and the fact that sensory and motor related 

brain activity is broadly distributed64,65 demonstrate the value of a multiplexed code. Multiplexing 

can be considered for the format of the coding scheme66,67, the content of the code (i.e. the feature), 

 
58 Luczak, McNaughton, and Harris, “Packet-Based Communication in the Cortex.” 
59 Berry and Tkačik, “Clustering of Neural Activity.” 
60 Ganmor, Segev, and Schneidman, “A Thesaurus for a Neural Population Code.” 
61 Montijn et al., “Population-Level Neural Codes Are Robust to Single-Neuron Variability from a Multidimensional 
Coding Perspective.” 
62 Sadovsky and MacLean, “Mouse Visual Neocortex Supports Multiple Stereotyped Patterns of Microcircuit 
Activity.” 
63 Desbordes et al., “Timing Precision in Population Coding of Natural Scenes in the Early Visual System.” 
64 Steinmetz et al., “Distributed Coding of Choice, Action and Engagement across the Mouse Brain.” 
65 Musall et al., “Single-Trial Neural Dynamics Are Dominated by Richly Varied Movements.” 
66 Kayser et al., “Spike-Phase Coding Boosts and Stabilizes Information Carried by Spatial and Temporal Spike 
Patterns.” 
67 Ainsworth et al., “Rates and Rhythms.” 
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or both68,69. While in our work no variables other than the direction of drifting gratings were 

systematically examined, we postulate that stimulus-nonspecific (shared) correlations might code 

for other variables, such as internal state. Other researchers have suggested that demultiplexing 

can be carried out through connectivity to downstream targets70. Such specific connectivity 

patterns still need to be demonstrated, but it is worth noting that cortical pyramidal project to 

multiple targets71.  

In summary, here we use functional networks to isolate pairs of spikes that occur during a 

single trial in a stimulus dependent manner. We find that only a small subset of these pairwise 

statistical dependencies and the corresponding pairs of spikes occur at any given single point in 

time, resulting in very sparse and variable dynamics. Nonetheless, these sparse sets of spikes carry 

more information about the stimulus than all of the spikes recorded during the same single trial. 

Our coding scheme elaborates upon and unifies several theories of neural coding including 

Hebbian assemblies, semantic coding and packet coding while simultaneously being consistent 

with the necessity of synaptic integration for a code to be mechanistically viable.  

  

 
68 Lankarany et al., “Differentially Synchronized Spiking Enables Multiplexed Neural Coding.” 
69 Insanally et al., “Spike-Timing-Dependent Ensemble Encoding by Non-Classically Responsive Cortical 
Neurons.” 
70 Naud and Sprekeler, “Sparse Bursts Optimize Information Transmission in a Multiplexed Neural Code.” 
71 Kasthuri et al., “Saturated Reconstruction of a Volume of Neocortex.” 
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SUPPLEMENTARY FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.S1 – Unique sub-types display less reciprocal edges 

Reciprocity is estimated as the number of bidirectional edges in an FN over the total number of non-zero edge. Line 

show he best linear fit. 
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Figure 3.S2 – Unique sub-FNs do not include more tuned-tuned edges 

Boxplots shows the portion of tuned-tuned (t-t), untuned-untuned (ut-ut) and mixed (t-ut, ut-t) edges sorted to each 

of the subtypes. Boxes represent the interquartile range and horizonal lines stand for the median. 

 

 

 

 
 

Fig 3.S3 – Recurrent and feedforward pattern counts over time 
Pattern counts in example dataset. Patterns were divided by the number of expressed edges at each time point and 

then summed across all trials and all directions.  
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DISCUSSION 

On the structure-function question 

In chapter I the congruence between synaptic and functional networks was examined using 

multiple timescales and inference methods, each with its own statistical sensitivity (e.g. linear vs. 

non-linear). It is found that a regularization pipeline designed to account for negative as well as 

spurious interactions and a stacking algorithm optimized to weigh the different algorithm improve 

detection of synaptic connectivity. Nevertheless, Chapter I emphasizes the complex integration of 

activity into correlated dynamics. This complexity is evident in the percent of connections that are 

present in the recruitment network; neurons require many more than one input at a time to reach 

threshold, which was known since the early days of Neuroscience1. Moreover, neurons with many 

inputs in simulations do not necessarily have high firing rate2,3. That is, ground-truth degree is not 

correlated with activity. Approximately 50% recruitment across simulation time is consistent with 

the low instantaneous expression rates found in chapter III for FNs in vivo, considering that FN is 

not an anatomical network and is denser4.  

 All inference methods point to statistical regularities in dynamics, i.e. functional 

connections, as being more reciprocal and clustered than the anatomical substrate that generates 

them. This is especially true for synchrony metrics, popular for functional interaction 

estimations5,6, but is observed with lagged metrics as well. In this sense the structure of dynamics 

 
1 McCulloch and Pitts, “A Logical Calculus of the Ideas Immanent in Nervous Activity.” 
2 Vegué and Roxin, “Firing Rate Distributions in Spiking Networks with Heterogeneous Connectivity.” 
3 Kuhn, Aertsen, and Rotter, “Higher-Order Statistics of Input Ensembles and the Response of Simple Model 
Neurons.” 
4 Bojanek, Zhu, and MacLean, “Cyclic Transitions between Higher Order Motifs Underlie Sustained Asynchronous 
Spiking in Sparse Recurrent Networks.” 
5 Lindsey et al., “Repeated Patterns of Distributed Synchrony in Neuronal Assemblies.” 
6 Montani et al., “The Impact of High-Order Interactions on the Rate of Synchronous Discharge and Information 
Transmission in Somatosensory Cortex.” 
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is an emergent phenomenon, possibly driven by non-linear integration7,8. Thus, to the extent that 

they display (dis)similar statistics, FNs are poor approximators of synaptic connectivity and one 

should exercise caution in interpreting them as such. A limitation of chapter I is that the synaptic 

connectivity structure used was an Erdos-Renyi graph, which is random with fixed probability. 

Yet it has been known since the days of Cajal that connectivity in the brain is not random. On the 

contrary, it is biased towards the prevalence of reciprocal connections and triplet motifs9 and has 

a small-world architecture10. It thus may be that FNs inferred from real data more closely reflect 

the statistics of their underlying connectivity structure.  

 One way to approach this question is to design simulations with connectivity inspired by 

anatomy, and with biologically plausible integration mechanism and membrane time constants. It 

proved to be challenging to take into account all these factors and emulate the firing rates and 

irregularity seen in data. A study using similar simulations but with clustered neurons and the same 

inference method still found more reciprocal connections in the FNs compared to the synaptic 

networks11, and another study has shown that the presence of hubs increases pairwise correlations 

in dynamics12. Hence, tracking the subthreshold activity may be required to address the structure-

function question of how anatomical topology gives rise to considerably more correlated dynamics 

than expected. It was shown that correlation of subthreshold activity better reflects the synaptic 

 
7 Memmesheimer and Timme, “Non-Additive Coupling Enables Propagation of Synchronous Spiking Activity in 
Purely Random Networks.” 
8 Rhodes, “Recoding Patterns of Sensory Input.” 
9 Song et al., “Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits.” 
10 Perin, Berger, and Markram, “A Synaptic Organizing Principle for Cortical Neuronal Groups.” 
11 Bojanek, Zhu, and MacLean, “Cyclic Transitions between Higher Order Motifs Underlie Sustained Asynchronous 
Spiking in Sparse Recurrent Networks.” 
12 Pernice et al., “How Structure Determines Correlations in Neuronal Networks.” 
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topology13. Indeed, access to subthreshold activity in simulation14 and experiment15 elucidated that 

synchrony between pairs of cells is due to common input and not a direct synaptic connection. 

Unfortunately, subthreshold activity is typically unavailable in population recordings. 

The structure of functional networks themselves as a summary of dynamics and not as a 

reflection of underlying anatomy is highly relevant to coding. Chapter II found that the preference 

of a neuron to a stimulus feature on average, known as tuning, is corresponds to its location in the 

FN. In other words, activity across the population is organized such that cells which correlate with 

many other neurons in a clustered manner respond fairly evenly to multiple stimulus features. 

Chapter II thus expands on the results of Stevenson et al16, where functional correlations were 

demonstrated to explain the spiking and tuning preferences of neurons in several brain regions in 

the monkey. In both studies, single cell properties can be viewed as a manifestation of network 

interactions. However, chapter II samples a complete and unbiased neuronal population, and for 

the first time characterizes pairwise correlations between neurons that are classically untuned.  

 

On the neural code question 

In a groundbreaking study, Dan et al17 examined pairs of neurons in the cat lateral geniculate 

nucleus (LGN). They sorted spikes according to whether they were synchronous, that is, whether 

the two neurons spiked at the same time, or independent, where only one neuron spiked and the 

other one was silent. They showed that synchronous spikes carry more information about the 

brightness of pixels presented in comparison to the same number of independent spikes. By 

 
13 Kriener et al., “Correlations in Spiking Neuronal Networks with Distance Dependent Connections.” 
14 Ostojic, Brunel, and Hakim, “How Connectivity, Background Activity, and Synaptic Properties Shape the Cross-
Correlation between Spike Trains.” 
15 Trong and Rieke, “Origin of Correlated Activity between Parasol Retinal Ganglion Cells.” 
16 Stevenson et al., “Functional Connectivity and Tuning Curves in Populations of Simultaneously Recorded 
Neurons.” 
17 Dan et al., “Coding of Visual Information by Precisely Correlated Spikes in the Lateral Geniculate Nucleus.” 
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filtering spikes Dan el al examined how correlations are instantiated, and were amongst the first 

to consider the perspective of a downstream element (see also 18). A similar approach was 

employed in chapter III with several extensions: First, chapter III examined activity in mouse V1, 

which is less anatomically organized according to single-cell functional properties than cat LGN19 

and displays stronger pairwise correlations20. Nonetheless, the results echo Dan’s classic paper. 

Second, pairs of spikes were inspected for their correspondence with a subset of correlations that 

are stimulus-specific. The stimulus specificity of correlations occurs regardless of the selectivity 

of neurons composing the pair, as reported in chapter II, and this was further confirmed in chapter 

III. Third, in this work dynamics were intersected with functional networks that are beyond 

pairwise.  

 Hence, while Dan et al study could offer conclusions on pairs alone, chapter III provides 

insights into the potential organization of the code across the population. In particular, stimulus-

specific spatio-temporal patterns of activity are identified across the population. These patterns are 

decodable despite their variability at the single cell and population levels, implying that the code 

might rely on semantic similarity21,22. As Hebbian assemblies have received multiple 

interpretations in the past, this work refers to Harris’23 four signatures of Hebbian assemblies to 

evaluate whether the proposed coding scheme fits the definition. The first signature is sequences 

of activity on temporal scales that are not included in the stimulus. Drifting gratings presented to 

the animals had a temporal frequency of 2Hz, which is faster than the mean firing rates observed 

in the population but slower than the timescale of pairs of spikes corresponding to edges. 

 
18 deCharms and Merzenich, “Primary Cortical Representation of Sounds by the Coordination of Action-Potential 
Timing.” 
19 Kaschube, “Neural Maps versus Salt-and-Pepper Organization in Visual Cortex.” 
20 Goris, Movshon, and Simoncelli, “Partitioning Neuronal Variability.” 
21 Berry and Tkačik, “Clustering of Neural Activity.” 
22 Ganmor, Segev, and Schneidman, “A Thesaurus for a Neural Population Code.” 
23 Harris, “Neural Signatures of Cell Assembly Organization.” 
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Furthermore, all stimuli shared this feature, while non-overlapping subsets of correlations were 

found for different stimuli. Second, Harris argues that trial-to-trial variability and irregular firing 

arise due to correlation in inputs24,25. The population of layer 2/3 cells analyzed in chapter III 

presumably receives correlated inputs from layer 4 and the LGN. Increased variability in sub-FN 

consistent spikes is thus not unexpected. As an input, identified correlated spikes are hypothesized 

to induce irregular firing in their target population. The third signature is organization on the 

population level and successful prediction of the activity of one neuron from its neighbors’ activity. 

Previous analysis of the same datasets have shown non-random functional topology26,27 and 

successful prediction of single-neuron, single-trial dynamics using couplings with other 

neurons28,29. Furthermore, in chapter III spikes are filtered according to four exclusive sub-FNs; 

these are four population-level collections of pairwise correlations. One sub-FN (soft u), in turn, 

summarizes spikes that are particularly informative, thus showing that organization of the neural 

population occurs in both the static and temporal domains. Finally, while chapter III does not 

demonstrate that some sub-FNs, specifically shared sub-types, are correlated with internal 

variables as required by the fourth signature, it lays the groundwork for future research on this 

question, as discussed later.  

To summarize the picture of the code painted by chapter III, the author would like to offer 

an analogy. Musical metaphors have been used in Neuroscience to describe various 

 
24 Softky and Koch, “The Highly Irregular Firing of Cortical Cells Is Inconsistent with Temporal Integration of 
Random EPSPs.” 
25 Stevens and Zador, “Input Synchrony and the Irregular Firing of Cortical Neurons.” 
26 Levy, Sporns, and MacLean, “Network Analysis of Murine Cortical Dynamics Implicates Untuned Neurons in 
Visual Stimulus Coding.” 
27 Dechery and MacLean, “Functional Triplet Motifs Underlie Accurate Predictions of Single-Trial Responses in 
Populations of Tuned and Untuned V1 Neurons.” 
28 Dechery and MacLean. 
29 Kotekal and MacLean, “Recurrent Interactions Can Explain the Variance in Single Trial Responses.” 
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observations30,31,32. At the risk of sounding cliché, one can conceptualize population activity as a 

musical piece; what makes the piece, e.g. Beethoven’s Moonlight Sonata, identifiable, are a subset 

of statistical dependencies between notes building up sequences, such as G followed by A followed 

by E. These core statistical dependencies that make up the melody are surrounded by other notes 

that make up the tempo and embellishments. For example, the Moonlight Sonata can still easily 

be identified even in a different musical style, such as metal or punk cover, and each of these styles 

has its own set of typical statistical dependencies between notes, played at the same time as the 

core notes for the Sonata melody.  

Similarly, chapter III suggests that a subset of functional connections characterizes the 

stimulus, whereas others might code for other external variables such as modalities other than the 

one controlled by the experimenter or internal variables such as attention. In that regard, the neural 

code is not made up of the rate of single neurons, akin to the prevalence of specific notes in a piece, 

nor of the rate of many neurons as a population vector, analogous to the counts of many notes over 

the time course of the piece. Both of these schemes will potentially produce similar rates for 

multiple stimuli or music pieces, and will be variable across repetitions depending on uncontrolled 

variables (or the style in the musical analogy). The neural code is also not made up of precise 

timing of independent units. While some information about the melody can be extracted from the 

timing of single notes, they are only meaningful in the context of the notes they precede or follow. 

Even in a single dataset, which is a spatial sneak-peak into the brain, there are one to three orders 

of magnitude more neurons than musical notes, let alone in a whole region or the entire cortex, (9 

to 11 orders of magnitudes more, depending on the organism). Revisiting this complexity that was 

 
30 Grinvald et al., “Neuronal Assemblies.” 
31 Ikegaya et al., “Synfire Chains and Cortical Songs.” 
32 Okun et al., “Diverse Coupling of Neurons to Populations in Sensory Cortex.” 
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also discussed at the opening of this work, it stands to reason that a scalable coding scheme is 

highly desirable. Can the Moonlight Sonata scheme be scaled up? 

 

Back to the philosophy of the code – a homunculus-inspired thought experiment  

Most studies discussing the neural code assume an observer, decoder or interpreter, all of which 

refer to a readout entity. The work presented in chapter III is no exception. The extent to which 

the observer is ideal, optimal, has knowledge of internal states, and is (non)linear or probabilistic 

can be examined to determine how self-consistent and biologically feasible is the proposed coding 

scheme, as well as the efficiency and learnability of it, which are crucial for management of 

resources in the brain. These small thought-experiments set bounds on the code, and sometimes 

question its very existence.  

Here the author would like to focus on the identity of the readout: Chapter III puts forward 

a coding scheme where almost all cells in the population are part of the assembly and spikes code 

for more than one variable, the value of which depends on the spike being part of a spiking pattern 

with at least one other spike from one other neuron. For ease of reference later, this scheme will 

be uncreatively named the Hebbian assembly plus scheme. What form of readout is required for 

such a coding scheme? Let i,j,k be neurons, and x1 and x2 two values of a feature (for example, 

motion at 30 and 60 degrees, but note that a similar argument applies for two variables in a 

multiplexed code, such as direction and contrast). Intuitively, a pair of neurons i,j that shows 

coincident spiking that codes for x1 should project to target m, whereas a pair of neurons i,k that 

spike coincidently to code for x2 should project to target n. Hence, this coding scheme depends on 

specific wiring patterns and the identity of the readouts.  
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What are m and n and what would their activity look like? It’s unlikely that they are single 

neurons, as that goes against the observation that many neurons respond to the same feature value, 

as well as against the assumption of this work (and others) that neurons code in groups. m and n 

then must be populations, active only when the specific combinations of spikes are presented to 

them. This coding scheme then decorrelates these two downstream populations, which is ideal but 

might not be realistic. Additionally, if one speculates that just one coding scheme exists, namely 

the Hebbian assembly plus scheme, the code in the downstream population has the same format – 

that is, all neurons are part of the assembly, which necessitates that populations n and m overlap. 

Now the statistics of the readout layer resemble those of the original population, and a readout is 

required for the readout, ad infinitum. The homunculus strikes again. 

One possible solution, the so-called anti-representationalist view, is that no readout is 

needed since there is no code. Activity propagates through all neurons, integrates new information 

and computes until it reaches neurons that project directly to the spinal cord and behavior is 

executed. Nevertheless, evidence points to different activity patterns for different stimuli, and 

spinal cord projections have to be somewhat specific otherwise all muscles will be recruited. 

Referring to these activity patterns and motor neurons as code and readouts, respectively, is thus 

purely a semantic debate (but see 33 for a thorough discussion of the coding metaphor).  

A second way to resolve the fallacy is to deem the Hebbian assembly plus scheme incorrect. 

While it is possible, the proposed coding scheme is far from the only scheme to grapple with this 

difficulty. The Hebbian assembly plus scheme has some merit as discussed above and in chapter 

III, and can be amended. In particular, the assumption that the coding scheme found in excitatory 

layer 2/3 neurons of mouse V1 generalizes to other layers, regions and organisms is probably 

 
33 Brette, “Neural Coding: The Bureaucratic view of the brain” 
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wrong. Different layers and regions have diverse cellular makeups and wiring diagrams, 

supposedly to support distinct functions. The hypothesized readout need not then obey the same 

coding principles found in chapter III. This is not to say that the Hebbian assembly plus scheme is 

not scalable in the number of neurons within a population. The Hebbian assemble plus coding 

scheme is a puzzle piece. It is a viable coding scheme, rather than the neural code. The author 

hopes to remember this lesson for the rest of her career.  

 

FUTURE DIRECTIONS 

Higher-order interactions in spontaneous vs. stimulus-evoked activity 

The brain is never silent. Neuronal activity is even initiated and propagated in slice and cell 

cultures, in the absence of any external stimulus. Numerous studies have asked whether 

intrinsically generated activity is similar to stimulus evoked dynamics. Broadly, comparable 

statistics, including spatio-temporal patterns, have been demonstrated in spontaneous and evoked 

dynamics34,35,36,37. It has further been suggested that dynamics that arise in spontaneous activity 

define the space that evoked activity can potentially visit38. Despite these similarities, Stringer et 

al39 have showed that spontaneous (called ‘ongoing’ in their paper) and evoked activity are only 

similar along one dimension, or mode, of variability. Conversely, Jermakowicz et al40, reported 

similar spike-train correlations magnitudes in V1 under stimuli and in the dark, but anesthesia as 

 
34 Afrashteh et al., “Spatiotemporal Structure of Sensory-Evoked and Spontaneous Activity Revealed by Mesoscale 
Imaging in Anesthetized and Awake Mice.” 
35 Sarracino et al., “Predicting Brain Evoked Response to External Stimuli from Temporal Correlations of 
Spontaneous Activity.” 
36 Miller et al., “Visual Stimuli Recruit Intrinsically Generated Cortical Ensembles.” 
37 MacLean et al., “Internal Dynamics Determine the Cortical Response to Thalamic Stimulation.” 
38 Luczak, Barthó, and Harris, “Spontaneous Events Outline the Realm of Possible Sensory Responses in 
Neocortical Populations.” 
39 Stringer et al., “Spontaneous Behaviors Drive Multidimensional, Brainwide Activity.” 
40 Jermakowicz et al., “Relationship Between Spontaneous and Evoked Spike-Time Correlations in Primate Visual 
Cortex.” 
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well as strict neuron selection criteria might have impacted their results. The structure of pairwise 

correlations as a functional network summarizing dynamics have not been examined. 

 Several pieces of evidence that intrinsic activity might be characterized by more recurrent 

and higher-order interactions as compared to stimulus-evoked activity have accumulated while 

working on chapters II and III. First, functional networks inferred from OFF (gray) epochs have 

qualitatively different structure: while they are as sparse as stimulus FNs, they display more 

reciprocal connections than their stimulus-inferred counterparts, regardless of the inference 

algorithm used (note that reciprocal edges correspond to synchrony in the partial pairwise 

algorithm but not with confluent mutual information). They also have higher prevalence of three-

nodes motifs (for motif descriptions see 41,42), in particular increased isomorphic middle-man 

clustering as compared to stimulus FNs.  

Second, shared sub-types in chapter III, which do not correspond to stimulus-specific 

correlations, also contain more reciprocal connections. The spikes corresponding to edges of these 

sub-types show more recurrent spatio-temporal patterns. Finally, f shared, the least specific sub-

type of correlations, is enriched in both cycle and isomorphic motifs (Fig. 1), while unique sub-

types show pretty low counts compared to density matched and degree preserving controls. 

Notably, functional higher-order interactions were described in alert monkey and evoked visual 

responses in anesthetized cat43. These findings are difficult to interpret since a state of alertness 

can still be thought of as an internal rather than external variable, and the statistics were not directly 

compared to true spontaneous activity. 

 

 
41 Chambers and MacLean, “Higher-Order Synaptic Interactions Coordinate Dynamics in Recurrent Networks.” 
42 Dechery and MacLean, “Functional Triplet Motifs Underlie Accurate Predictions of Single-Trial Responses in 
Populations of Tuned and Untuned V1 Neurons.” 
43 Yu et al., “Higher-Order Interactions Characterized in Cortical Activity.” 
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Figure 4.1 – F shared sub-FNs are enriched in triplet motifs 

A. cycle motif counts over density and degree-sequence matched controls in the four sub-FNs from chapter III. 

Boxes and horizonal lines represent the interquartile range and median, respectively. 

B. isomorphic motif counts over density and degree-sequence matched controls in the four sub-FNs. Boxes and lines 

the same as in A. 

 

Similarly and unfortunately, there is no way to tell if activity during gray epochs or f shared 

consistent spiking is internally generated, and plenty of factors in the mouse environment can still 

drive these dynamics. Modelling spontaneous activity is challenging since the simulation needs to 

receive inputs to start it, and hence assumptions need to be made about how spontaneous activity 

is initiated. For example, an encoding model combined with a spiking neural network can be 

designed, with two initiation mechanisms: units activate according to a stimulus in their receptive 

field but in the absence of it and after a period of network quiescence, a subset of units will fire 

A B 
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with some probability. Imaging neuronal populations across lamina44 in the dark and while 

engaging with a stimulus is thus warranted to evaluate this hypothesis. 

 

Investigating multiplexing 

In chapter III pairwise correlations in a functional network were allocated to four sub-FNs 

according to their stimulus specificity. Two of these sub-types (p shared and f shared) are 

composed of statistical regularities that occur regardless of the stimulus identity. For a long time, 

any shared variability that cannot be readily explained by factors within experimental control was 

deemed noise. However, neurons are biophysically capable of producing temporally precise 

spikes45. Additionally, shared sub-types showed increased edge expression, i.e. more spikes 

corresponded to these correlations, during presentation of a mean gray luminance screen, as 

compared with the unique sub-types. Subsequently, by examining the real-time expression of these 

sub-types alone one could tell when a drifting grating stimulus or a gray screen was presented to 

the mouse. Taken together, it appears that spikes that co-vary independently of the stimulus might 

code for something else, multiplexing representations. While chapter III strongly hints at this 

direction, it does not explicitly investigate it. 

 Multiplexing has been studied surprisingly little, and mostly within the same modality or 

task, where the experimenter varies a combination of features such as direction and contrast. This 

paradigm typically exposes multiplexing of both representation and format, for example, feature 

X is coded by rate while feature Y is coded by temporal sequences46,47,48. Chapter III proposes a 

 
44 Sakata and Harris, “Laminar Structure of Spontaneous and Sensory-Evoked Population Activity in Auditory 
Cortex.” 
45 Mainen and Sejnowski, “Reliability of Spike Timing in Neocortical Neurons.” 
46 Ainsworth et al., “Rates and Rhythms.” 
47 Lankarany et al., “Differentially Synchronized Spiking Enables Multiplexed Neural Coding.” 
48 Kayser et al., “Spike-Phase Coding Boosts and Stabilizes Information Carried by Spatial and Temporal Spike 
Patterns.” 
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different scheme, which is very biologically plausible, that multiple stimulus features and internal 

variables can be coded as spatio-temporal patterns, and interwoven patterns are separable as a 

function of the projection targets of correlated cells (Note: for reasons discussed in the subsection 

about intrinsic vs. evoked activity it is likely that shared sub-types in chapter III do not code for 

another stimulus feature, but rather for internal variable(s) such as attention or surprise. The 

argument presented here for multiplexing is more general). 

 This hypothesis can be directly tested experimentally by: 1) imaging populations of 

neurons in response to a controlled stimulus with several features. Then summarizing the activity 

as a functional network, and segmenting it separately to each feature according to the guidelines 

in chapter III. If one feature’s trash (noise) is another feature’s treasure (signal), an overlap and 

increased graph similarity should be observed between one feature soft u and another feature 

shared sub-types. Identification of sets of sub-FN consistent spikes should still be partially 

overlapping. The author believes some research groups led by readers of this document already 

have data appropriate for such analysis. And 2) since the FN paradigm preserves neuron labels, 

tracers could be injected to pairs of neurons with correlations that were sorted into specific sub-

types for different stimulus features, to elucidate (some of) the readouts. A potential difficulty of 

this approach is that every neuron projects to multiple targets49, rendering execution and 

interpretation challenging. Network simulations, where the connectivity is fully accessible, can 

supplement experiments. Simulations can be modelled after FNs from real data, and optimal 

readout topology and weights can be learned.  

 

 

 
49 Kasthuri et al., “Saturated Reconstruction of a Volume of Neocortex.” 
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Inhibitory neurons 

All three chapters of this work investigated only excitatory neurons; in chapter I, inhibitory 

neurons with realistic wiring probabilities were used to generate dynamics without runaway 

excitation, but were not analyzed for their functional connections. In chapters II and III only 

pyramidal neurons of layer 2/3 expressed the calcium indicator and therefore no inhibitory neurons 

were imaged and negative correlations were set to 0.  

Despite early work by Hartline50 characterizing an inhibitory circuit, inhibition was 

considered for a long time to act as a global mechanism, balancing neural networks to prevent 

over-excitation and induce (a)synchronization51,52,53. Exciting advances in recent years have 

changed that perception; on the anatomical level, an unprecedented number of inhibitory (and 

excitatory) cell types have been observed in the brain54. The wiring of these cell types have been 

shown to be organized into anatomical motifs in multiple cortical areas, and together with their 

morphology and cellular properties these motifs underlie well-defined computations and cortical 

functions55,56,57 as demonstrated by optogenetic stimulation and suppression58,59. On the modeling 

side, plasticity of inhibitory synapses with realistic and local learning rules (like homeostatic and 

spike-timing-dependent-plasticity) have been demonstrated to give rise to neurons’ receptive field 

properties, such as tuning60. Finally, employing similar methods to those described in this work, it 

 
50 Hartline, Wagner, and Ratliff, “Inhibition in the Eye of Limulus.” 
51 Barral and D Reyes, “Synaptic Scaling Rule Preserves Excitatory–Inhibitory Balance and Salient Neuronal 
Network Dynamics.” 
52 Landau et al., “The Impact of Structural Heterogeneity on Excitation-Inhibition Balance in Cortical Networks.” 
53 Brunel, “Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons.” 
54 Markram et al., “Reconstruction and Simulation of Neocortical Microcircuitry.” 
55 Wei and Feller, “Organization and Development of Direction-Selective Circuits in the Retina.” 
56 Oviedo, “Connectivity Motifs of Inhibitory Neurons in the Mouse Auditory Cortex.” 
57 Feldmeyer et al., “Inhibitory Interneurons and Their Circuit Motifs in the Many Layers of the Barrel Cortex.” 
58 Cone et al., “Different Inhibitory Interneuron Cell Classes Make Distinct Contributions to Visual Contrast 
Perception.” 
59 Adesnik et al., “A Neural Circuit for Spatial Summation in Visual Cortex.” 
60 Agnes, Luppi, and Vogels, “Complementary Inhibitory Weight Profiles Emerge from Plasticity and Allow 
Flexible Switching of Receptive Fields.” 
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was recently shown that inhibitory neurons form rich-clubs in functional networks in mouse 

orbitofrontal cortex61. Inhibitory neurons are hard to ignore nowadays and an account of how 

anatomical connectivity is related of functional connectivity is incomplete without addressing 

inhibition. 

Incorporating inhibitory interactions in a functional network is thus a natural extension of 

this work, yet poses several challenges: experimentally, simultaneous labelling and 2-photon 

calcium imaging of excitatory and inhibitory neurons is possible either with a fully (triple) 

transgenic or a combined transgenic and viral approaches62. However, generating FNs from a 

mixed population is not straightforward. Mutual information is positive by definition, but as done 

in chapters I and III can be multiplied by the sign of the Pearson correlation between the pair.  

This was the technique used in preliminary work by the author, with network of adaptive 

exponential integrate-and-fire (AdeX) neurons that show low-rate irregular activity. After signing 

lagged mutual information values, Dale’s low was enforced: excitatory / inhibitory neurons were 

only allowed to have outgoing positive / negative functional edges, respectively. Firing rate was 

not correlated with degree in excitatory neurons, which is the number of edges a neuron has. This 

is in agreement with FNs from real dynamics in mouse V1. Conversely, in degree (incoming edges) 

was correlated with firing rate in inhibitory neurons, whereas their out degree (outgoing edges) 

was inversely correlated with firing rate. Furthermore, when considering only excitatory / 

inhibitory sub-networks, in a similar vein to chapter II, excitatory, but not inhibitory, neurons are 

more clustered amongst themselves, indicating more coordinated spiking in the excitatory pool. 

 
61 Hafizi et al., “Inhibition-Dominated Rich-Club Shapes Dynamics in Cortical Microcircuits in Awake Behaving 
Mice.” 
62 Najafi et al., “Excitatory and Inhibitory Subnetworks Are Equally Selective during Decision-Making and Emerge 
Simultaneously during Learning.” 
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This preliminary finding is incongruent with Hafizi et al 63, and might be due to the edges omitted 

to observe Dale’s law in this work but not theirs.  

Another challenge is that many complex networks do not include negative links, with the 

exception of predator-pray and gene-regulation networks. Consequently, many analytic tools like 

graph alignment and Page rank are not designed for negative edges. Exploring FNs with both 

excitatory and inhibitory neurons hence calls for conceptual as well as technical innovation. 

  

 
63 Hafizi et al., “Inhibition-Dominated Rich-Club Shapes Dynamics in Cortical Microcircuits in Awake Behaving 
Mice.” 
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