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ABSTRACT

This work collects three projects. The broad theme common to all three projects is quantifying
uncertainty, preferably under a weak set of assumptions. This theme is explored through
mainly two types of problems of statistical inference that exemplify aspects of modern statistics.
The first type pertains to the problems of learning about the difference between two graphical
models given two sets of independent and identically distributed (IID) observations when the
number of variables far exceeds either sample size. In particular, we develop methods for
characterizing the differential structure with theoretical guarantees. The second has to do with
the problems of predictive inference in an assumption-lean setting. That is to say, we assume
that the data are IID and the learning algorithms being used are permutation-symmetric, but
we refrain from making additional assumptions. The particular problem we focus on is that
of constructing a predictive set for an ensemble prediction with a coverage guarantee that
holds non-asymptotically for any data distribution and any choice of the ensemble model.
We propose a method that is competitive both in terms of computational cost and statistical

efficiency.
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CHAPTER 1
INTRODUCTION

This work collects three projects. The broad theme common to all three projects is quantifying
uncertainty, preferably under a weak set of assumptions. This theme is explored through
mainly two types of problems of statistical inference that exemplify aspects of modern
statistics; this work is divided into two parts accordingly.

In Part 1, we look at the problem of comparing high-dimensional graphical models. A
graphical model is a collection of multivariate distributions that have the same conditional
independence relationships among the components. It is frequently used in scientific fields —
e.g., genetics or neuroscience — to model interactions among a large number of variables.
In such applications, it is not unusual to have more variables than there are independent
observations, i.e., the models are high-dimensional. Furthermore, many scientific studies take
measurements in groups — e.g., the control and the treated — and often, there is a greater
interest in understanding how the groups differ rather than how each group behaves. The
methods we develop in Part 1 are useful for analyzing such data. We also show that they
lead to valid inference, both through theoretical analyses and numerical experiments.

In Part 2, we shift our focus to the problem of predictive inference. In particular, we
are interested in constructing a predictive set around a prediction produced by an ensemble
model, e.g., a random forest, assuming that this model has already been chosen beforehand.
Although one solution is offered by naively combining an ensemble learning algorithm and
any of the existing distribution-free predictive methods, such methods are either impractical
due to huge computational costs or inefficient because they do not make full use of the
available training data. The method we propose overcomes both shortcomings by integrating
a jackknife+-like construction with the given ensemble learning algorithm. On the theory
side, we show that the resulting predictive sets satisfy a non-asymptotic distribution-free

coverage guarantee.



Part 1

Parametric inference for

high-dimensional differential networks



CHAPTER 2
BACKGROUND

Undirected graphical models are widely used to study interactions among the measured
components of a complex system. For example, they are used to model gene expression data
[Hartemink et al., Dobra et al., 2004] or brain fMRI scans [Supekar et al., 2008]. They have
also been used to analyze social scientific or financial data [Banerjee et al., 2008, Barber and
Kolar, 2018].

When such data exhibit natural grouping, it is often the case that the goal of data analysis
is to understand how the groups differ rather than to characterize any one particular group.
Consider the example of gene expression analysis of a complex human disease. Identifying
differences in average gene expression patterns between healthy subjects and patients with
the disease is helpful for diagnosis and treatment. More recently, it has been recognized
that a more comprehensive understanding of disease genetics requires analyses of differential
gene-gene interactions [de la Fuente, 2010].

For many applications of graphical models, it is typical to have data sets with more
variables than observations. The high-dimensionality causes the classical formulation of many
estimation problems to become ill-posed, and further assumptions are necessary to determine
the estimate most consistent with the data. In particular, it is now well-understood that
many types of high-dimensional graphical models can be recovered consistently via convex
optimization if they are sparse, i.e., have few edges [Friedman et al., 2007, Yuan and Lin,
2007, Yuan, 2010, Cai et al., 2011, Ravikumar et al., 2011]. This has also been found to be the
case for high-dimensional differential networks [Zhao et al., 2014, Xu and Gu, 2016, Liu et al.,
2017, Fazayeli and Banerjee, 2016]. However, most of these works have focused on accurate
point estimation, leaving the question of statistical inference largely untouched. This is a
significant gap; our scientific understanding cannot be complete without an understanding of
the statistical variability of the estimates we are using to reach our conclusions.

The works presented here address this issue. Our methods offer tools for carrying
3



out hypothesis tests and constructing confidence intervals about the parameters of high-
dimensional differential networks. In Chapter 3, we propose methods for analyzing differential
networks arising from pairs of distributions from a general parametric class of graphical models.
In Chapter 4, we shift our focus to Gaussian differential networks. In contrast to previous
works on differential network estimation, the estimators we construct are approximately
Gaussian, making them more suitable for inference procedures. The multiple comparisons

problem is handled via a resampling approach.

2.1 Differential networks

2.1.1 Undirected graphical models

An undirected graphical model — also known as a Markov random field or a Markov network

— captures conditional independence relationships among a collection of random variables
[Lauritzen, 1996, MacKay, 2002, Koller and Friedman, 2009, Drton and Maathuis, 2017].
More precisely, an undirected graphical model associated with a graph G is a collection of
multivariate distributions such that the conditional independence relationships among the
components follow the pattern given by the edges of G.

We give a formal definition of an undirected graphical model. First, recall that a graph G
is a pair G = (V, E), where V is a set whose elements are called nodes and E is a subset of
V x V whose elements are called edges. We say that G is undirected if (u,v) € E whenever
(v,u) € E. From now on, all graphs are undirected, unless otherwise noted.

Let X = (Xv)5:1 be a random vector with support XP C RP. Let G = (V, E) be a graph
with V' ={1,...,p}. We say that X satisfies the pairwise Markov property with respect to
G if

Xy L Xy | (Xw)wtu, Wwhenever {u,v} ¢ E.

In a famous theorem, Hammersley and Clifford completely characterized the form of the

density for any such X. Let C(G) denote the set of all cliques of G, i.e., subsets of V for
4



which every pair of nodes is connected. Their theorem says that X satisfies the pairwise
Markov property with respect to G if and only if the distribution of X has a density of the

form

= [ ¢c(ze).

CeC(G)

for some positive functions ¢ defined on RICl, where x o is the subvector (x4),e0 € RICI,
Thus, it is possible to define a parametric class of graphical models by fixing ¢ for all
C e C(@Q).

In this work, we focus on classes of pairwise graphical models [Wainwright and Jordan,
2008, Yang et al., 2015]. These are graphical models containing multivariate distributions

having densities of the form

exp Z%}wv Ty +Z Z YuvPuw 37%%) ) xEXp, (2-1)

u=1v=u+1

fxsy) =

for some fixed functions ¥, : R — R, 9y - R? — R, unknown parameters vy, Yuv € R, and

the normalizing constant

Z(V):/X exp Z’Y?ﬂ/’@ Ty —I-Z Z YuvVuv (Tu, Ty) p dz.

u=1v=u+1

For a distribution in this class, it can be checked that for any u # v,

Thus, in a pairwise graphical model, the edge set E is the support of the pairwise parameters

(’Yuv) 1<u<v<p:

This work is mainly concerned with the following two examples of pairwise classes.

Ezample 2.1 (Ising model). An Ising model is a discrete distribution on the vertices of the



p-dimensional hypercube XP = {£1}? characterized by the probability mass function of
the form given in (2.1) with ¥y (zy) = zy, Yuv(Ty, Ty) = Tyzy, and v, Yue € R. Thus,
each Ising model may be associated with a graph G = (V, F) such that V' = {1,...,p} and
E = {{u,v} : yun # 0}.

For convenience, we only consider Ising models with zero node potential, i.e., v, = 0 for

all v.

Ezample 2.2 (Multivariate Gaussian). A multivariate Gaussian distribution is also an example
of a pairwise graphical model. Suppose X ~ Normal(u, ) for some pu € RP and ¥ € SE
where Sﬁ is the set of p-by-p symmetric positive definite matrices. Then, X has the probability
density of the form given in (2.1) with ¥y (xy) = Ty, Yy (Tu, Tv) = TuZy, Yo = (E_lu)v,
and Yy = —(Z_l)uv if u <wvand vy = —(Z_l)uv/2 if w = v. Thus, each multivariate
Gaussian distribution may be associated with a graph G = (V| E') such that V' = {1,...,p}
and F = {{u,v} : (X7 D)y # 0}.

For convenience, we only consider multivariate Gaussian distributions with zero mean,

le, p=0.

2.1.2  Differential network of pairuise graphical models

Suppose X ~ fx = f(-;vx) and Y ~ fy = f(:;7y) are two distributions from the same
pairwise class of graphical models, i.e., fx and fy follow the form given in (2.1) for the same
known v = (1/111)2:1 U (¢uv)1§u<v§p and some unknown vy = (VX,v)gzl U (7X,uv)1§u<v§p

and vy = (71’,71)5:1 U (7Y,uv)1§u<v§p-

We define the differential network of the ordered pair (X,Y’) as the difference

0" =vx — 1y

but Yy, 1LYy [ (Yw)wtu,w, then 6, # 0. More generally, the nonzero entries of the pairwise
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parameters of 6* convey the information about the change in conditional independence
relationships among the components of X and Y. We associate each pair (X,Y") with a
graph Gy« = (V, Eg«) such that V = {1,...,p} and Eyp« = {{u,v} : 6}, # 0}. By an abuse
of terminology, the term differential network shall also refer to this graph Gygs.

This chapter and Chapters 3 and 4 are about the following problem. Suppose we are
given a pair of sets of independent and identically distributed (IID) observations from fx

and fy, i.e.,

Xi~fx, i=1...,nx, Y;~fy, j=1...,ny, nx,ny <p.

Let I denote the set of indices for the parameters of inferential inferential interest. Note
that nx,ny < p. In this regime, can we still carry out valid inference for 07, k € I?
More concretely, let a € (0,1). How can we construct a subset él_a - R such that
P{07 € 61_0} > 1 — « using the available data? Alternatively, what is the test T, for which

we can guarantee P{Ty, = 1} < o under the null hypothesis H : 07 = 9??

2.2 Direct difference estimation procedures

Inference about a parameter is often accomplished by constructing an estimator of the
parameter and characterizing its sampling distribution. The methods we propose in Chapters 3
and 4 are based on direct difference estimation procedures in which the differential network
0* is estimated directly. This stands in contrast to the separate estimation approach in
which the individual graphical parameters vx and 7y are first estimated based on separate
sets of observations, one from fy and another from fy, after which an estimator of 6* is
formed by taking the difference of the resulting estimates. A related approach is that of joint
estimation, which is used in settings where the individual graphical parameters are believed to
be structurally similar. The joint estimation differs from the separate estimation in that the

resulting estimates are computed using all available data and not just one set of observations.
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However, because the final outputs are still the estimates of individual graphical parameters,
they do not yield direct estimates of 6*.

Direct difference estimation procedures have two advantages over separate or joint estima-
tion procedures. First, the dimension of the parameter space is halved for direct difference
estimation from 2 dim(y) to dim(v). Second, in high-dimensional settings, for a separate or
joint estimation procedure, both vx and vy would have to satisfy some structural assumptions
if the final estimate of 6* is to be accurate. By contrast, in a direct difference estimation
procedure, such requirements are placed on #*. This makes direct difference estimation
procedures more flexible, allowing them to be deployed in situations where vx and 7y are
not necessarily sparse, but 6* is.

Here, we introduce two direct difference estimation procedures. The first procedure, called
the Kullback-Leiblier importance estimation procedure (KLIEP), is a general procedure that
can be used with any parametric class of graphical models. The second procedure actually
estimates the difference of two precision matrices. Because of the special correspondence
between the edge set and the support of the precision matrix for multivariate Gaussian
distributions described in Example 2.2, the procedure can be used to estimate the differential

network in the case of Gaussian graphical models.

2.2.1 Kullback-Leibler itmportance estimation procedure

The Kullback-Leibler importance estimation procedure (KLIEP) refers to a family of proce-
dures for estimating the density ratio of a pair of distributions [Sugiyama et al., 2012, Liu
et al., 2014, 2017]. When the distributions belong to the same parametric class within the
exponential family — which is the case for the pair (X,Y) from Section 2.1.2 — their density
ratio also has the exponential form and depends on the underlying parameters only through
their difference. In this case, the procedure reduces to minimizing a loss that depends on the
data only through the sample averages.

Consider the pair (X,Y’) from Section 2.1.2. We claim that their density ratio fx/fy

8



depends on vy and 7y only through the differential network #*. Indeed,

~—

fx(x)  Z(ywy

_ exp (vx¥(r)) _ exp (0""(z))
fr(x)  Z(yx)exp (v () Zy(0%)

where Zy (6*) = E{exp(6*T¢(Y))}, because

Z(yx) _ Jexp (x¥le)) do

Z(vy) Z(vy)
_ *T exXp (7§(¢(x)) = ox *T
- / exp (0°"0()) TLZEEED o = B {esp (07 0())}

Zy (0%) =

Thus, we write rg« = fx/fy, where ry is the following function parametrized by 6:

exp (0T (z)) .

ro(x) = 7y ()

Let Dk, (fllg) be the Kullback-Leibler (KL) divergence from f to g, where f and g are
probability densities. Recall that Dkp,(f||g) > 0 with equality if and only if f = g almost

everywhere. Since fy = rg«fy, 0% = argming Dk, (fx||79fy ). Moreover,

0* = arg mein Dxr,(fxl fyre)

el Pl

= arg mln{ log (rg(z)) fx () da:}
= arg mln { fx(z) dx + log Zy(@)}
= arg mln [—E{60"¢(X)} + logE {exp (0" ¢(Y)) }] .



Thus, the differential network 6* may be estimated by minimizing the following loss function:

(xriep(0) = (kLIEP (9; {Xih2 {Yj}?iJ

1 nx 1 ny (22)
- T . _ T ]
o N g L3 0700

We call ¢grigp the KLIEP loss. The KLIEP loss is convex in 6, and the (unregularized)
KLIEP estimator 8k gp is known to be consistent for §* [Sugiyama et al., 2012, Chapter
13] in classical settings. For high-dimensional data sets, regularized variants of KLIEP have

been shown to be consistent under additional assumptions on * [Liu et al., 2017, Fazayeli

and Banerjee, 2016].

2.2.2 D-trace loss

Suppose the pair (X,Y") from Section 2.1.2 is actually made up of a pair of multivariate
Gaussian distributions, i.e., X ~ Normal(0,Xx) and Y ~ Normal(0, Xy ) for some Xy,
Yy € St where Sﬁ is the set of p-by-p symmetric positive definite matrices. Denote the

difference of precision matrices by A* i.e.,
* _ y—1  y—1

By the special correspondence between the edge set and the support of the precision matrix

for multivariate Gaussian distributions described in Example 2.2,

—A¥ if u <w,
0, =
uv

=AY /2 ifu=w.

Thus, in the case of Gaussian graphical models, any problem about the differential network

0* can equivalently be expressed in terms of the difference of the precision matrices A*. This
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alternative characterization is useful, because A* satisfies the following pair of identities:
ExA*ZyExy—Ex, EyA*EXzzy—EX.

In fact, when Xy and ¥y are both invertible, A* is the only matrix satisfying each identity.

Thus, a reasonable estimator of A* is the solution to the equation

1/~ o~ . . .

- (EXAZY + ZyAZX> — Sy — Sy, (2.3)
where 5 x and iy are the usual sample covariance estimates, i.e.,

1 & 1 &
Sy =— X, XISy =—Y vyl
X nx ; 1<% Y ny Zl J7)

To solve (2.3) for A is equivalent to minimizing the following loss function:

(p(A) = tp (A; {Xi}X, {Yj}?L)
— itr {Af)XAiy + AiyAEX} —tr {A (iy - iX) }

= %VGC (A)T H vec (A) — vec (A)T vec (Zy - EX> :

where

1 /~ N . .
HZE (2)(@2)/"}‘2)/@2)().
We call ¢y the D-trace loss. The D-trace loss has been used in Zhao et al. [2014], Yuan et al.
2017].
2.3 De-biasing

The KLIEP loss (i1 1ep and the D-trace loss {1y both have the property that the minimizer

in the population limit is equal to the true difference and that the gradient at the true
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difference can be expressed, up to a negligible error term, as a linear combination of two
sample averages with zero means. The two properties are the key to why when the number
of variables p is fixed and the sample sizes nx, ny tend to infinity, the sampling distribution
of the unregularized estimator tends to a Gaussian distribution.

However, for many data sets that arise in practical applications, the number of variables
exceeds the size of either sample, i.e., p > nx,ny. In such high-dimensional settings, the
loss functions are no longer uniquely minimized, and regularization is introduced to ensure
consistency of the resulting estimates. For example, in the KLIEP framework, Liu et al.

[2017] proposed the sparse KLIEP:

O = argmin (g1 EP (9; {Xi}2, {Yj}?il> + A6l (2.4)

where A > 0 is a user-specified parameter for controlling the sparsity of the resulting estimate
é\/\. For the problem of high-dimensional Gaussian differential network estimation, Yuan et al.

[2017] proposed the following procedure:
Ry = argmin b (A5 LGH2, {517,) + AA]L (2.5)

where A > 0 is again a user-specified parameter for controlling sparsity. Both (2.4) and (2.5)
have been shown to lead to consistent estimation of sparse differences, but these results
require additional conditions on the minimal signal strength and irrepresentability. More
importantly, it has not been the focus of these works to characterize the distributional
properties of the ¢1-regularized estimators they propose. Indeed, such estimators are not
well-suited for statistical inference, as they have non-negligible biases and their sampling
distributions are extremely complicated [see Ning and Liu, 2017, and references therein].
For convenience, reindex 6* = (63)0_, U (65,)1<u<yp<p as 0% = (0;)7, where m is the
total number of parameters, e.g., m = p(p — 1)/2 in the case of Ising models (Example 2.1)
and m = p(p+1)/2 in the case of multivariate Gaussian distributions (Example 2.2). Suppose

12



we are interested in 07 € R for some k € {1,...,m}. Let 0}, € R™~! be the vector
of remaining (m — 1) parameters. Abusing the notation somewhat, denote the induced
partition by 6 = (6;.,0.c). Let ¢ be a loss function, e.g., ¢ = {grgp or ¢p, such that
0* = arg ming E{¢(0)} and that V{(0*) is a linear combination of two sample averages with

E{V{(6*)} = 0, at least approximately. Then,
Vil (01, 01c) = V.0(6%) + Vzkﬁ(e*)(ek —0;) + V%kcﬁ(O*)(ch — 05c) + REM. (2.6)

Note that if 07, were known, then (2.6) implies that the equation V.£(6};07.) = 0 defines
an estimator of 7 that is unbiased and approximately Gaussian. Thus, a naive approach

replaces the unknown 0;‘;0 with an estimate é\k.c, resulting in a different estimator 5}2
V(0% Oe) = 0. (2.7)
Plugging in ékc in (2.6) and rearranging,
V2 00F) (08 — 0F) = —VL(0%) — V2,.0(6%) (O — 0%c) + REM. (2.8)

Usually, V20(0*) ~ E{V20(6*)} by the Law of Large Numbers. In particular, V%kE(H)
converges to a positive number and V% wcl(07), to a fixed vector that is in general nonzero.
Thus, when é\kc converges quickly, i.e., ‘é\kc — 07| = op(n~1/2), where n = nyx + ny, then
the distribution of nl/ 252 is approximately Gaussian.

However, regularized estimators typically have errors of larger order, and hence, the
contribution of the term V% kcé(@*)(é\kc — 07,) cannot be ignored in the distribution of nt/ 252
Unfortunately, the sampling distribution of é\kc can be extremely complicated, and the
Gaussian approximation can be wildly inaccurate for the distribution of nt/ 252

By contrast, the methods we propose in Chapters 3 and 4 estimate #* based on a different,

modified version of the estimating equation. Unlike the naive version (2.7), which led to 52, we

13



shall see that the modified version leads to estimators for which the Gaussian approximation
is appropriate.

Consider a family of estimators gk defined by estimating equations of the form:
wTVE(gk; é\kc) = 0, (2.9)

where w € R". Note that the naive estimator 52 is just a special case with w = ey, where e;.

is the k-th standard basis vector. Similarly to (2.6),

*

WIVL(Oy; Oc) = WTVL(OF) + TVE(O) |
Ope — 07

+ REM. (2.10)

Now, suppose instead of w = ej., we choose w = Q.k, where VZK(G)Q.;C ~ ej.. We can think
of 1), as estimating O = [E{V20(6*)}] es. As with the estimation of 8*, it is possible
to consistently estimate the rows of the inverse of [E{V?£(6*)}] even with high-dimensional
data if the rows satisfy some structural assumptions. With this choice of w, (2.10) can be

rewritten as

A ~ - ~ T | 0 — 07
OF V(O 0pc) = QLVOO%) + (0), — 07) + <V2€(0*)Q.k —ek> TR 4 REM.
Ope — Orc
(2.11)
Plugging in (2.9) and rearranging,
- - ~ T | 6. — 07
O — 0 = —05L0(0%) — (V2000 — e gk 9’: LREM.  (2.12)
k¢ — Ve

In contrast to (2.8), the error Gjc — 0. is dot-producted with V2, 0(8%)Q., which is also

expected to be small. Therefore, the Gaussian approximation can be appropriate for the
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distribution of n!/ 25]@ even when it is not for the distribution of n!/ 252

How do we solve the projected estimating equation (2.9) in practice? The methods we
propose in Chapters 3 and 4 offer two options.

The first option is to solve for ék numerically via the Newton’s method. If the Newton’s
method is initiated at gk» where § = (é\k,gkc) with @ given by either the sparse KLIEP
estimate (2.4) or the sparse D-trace estimate (2.5) depending on the context, then because 0
ought to be already close to the solution, a single Newton iteration suffices to yield a good
approximation. Thus,

0, =0, — QL VD). (2.13)

This is an example of a one-step estimator [van der Vaart, 1998, van de Geer et al., 2014,
Zhang and Zhang, 2014]. In the case of 5,164', it is possible to derive an expansion directly

from (2.11) by plugging in é\k for 0. and rearranging:

ot —op = { (6 - QLved) - 07}

\ : o (2.14)
= —Q3ve0") - (V20 )0 — ) (9-67) + REM.

In Chapters 3 and 4, we prove that estimators of this type are approximately Gaussian and
unbiased for ;..

The second option utilizes the so-called double-selection [Chernozhukov et al., 2015b].
This option makes use of the estimated supports from 9 and Q. - First, a new estimate 0 is
obtained by minimizing ¢ but restricting the support to {k} and the combined supports of )

and ﬁ,k., ie.,

0 = arg meiné(e) subject to  supp(f) C {k} U supp(g) U supp(Q.p). (2.15)

Then, the double-selection estimator g?j is defined as the k-th component of d. While we do

not pursue a formal analysis of double-selection estimators further in this work, the proof

of approximate Gaussianity and unbiasedness follows along similar lines as in the case of
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one-step estimators starting from the expansion in (2.12).

Whether one-step or double-selection is used, only consistency of 0 or 0 and €. % 1s required
for validity of Gaussian approximation for the final estimator §}§+ or §]2€+. Indeed, they can
be shown to be equivalent up to first-order asymptotically [Chernozhukov et al., 2015b].
However, in the case of double-selection, unless the constraint set {k}U supp(g) Usupp(Q.p) is
sufficiently small, the re-fitted estimator f will not be consistent in high-dimensional settings.
Thus, double-selection is only viable when sparse estimators for 6% and Q. are consistent.

By contrast, one-step can also be used with non-sparse estimators as initial estimates.

2.4 Bootstrapping

In many practical applications of differential network modeling, it is often the case that
the scientific question under investigation is also high-dimensional, in the sense that it
encompasses multiple possible edges. For example, it may be of interest to investigate
whether some large pre-specified collection of brain regions display different connectivity
patterns when performing different tasks, or whether a certain gene of biological importance
changes in how it interacts with all the other genes in different environments. While the
techniques of Section 2.3 extend in an obvious way to situations when the target of inference
includes more than one edge — iterate either (2.13) or (2.15) over each k in the target set —
this merely yields estimators of the edges in the target collection that are each approximately
Gaussian and unbiased, and the issue of multiple comparison remains.

Here, we discuss two bootstrap-based approaches for controlling the family-wise error rate
(FWER). Let I be the collection of indices of inferential interest. For confidence regions, this
means finding a subset C (1—-a)C RH| for a pre-specified confidence level 1 — « such that
P{07 € C(1—a)} > 1—a, where 6% = (07)ker- For testing a null hypothesis H : 0. = 92 for
all k£ € I, this means finding a test such that it rejects Hy with probability at most o under
Hp. Although it is possible to control the FWER by applying the Bonferroni correction, this

could lead to a loss of power when the estimators 51«7 k € I, are correlated.
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Consider the following statistic

T =T1 iy ,ny = Max nl/? )gk — 05!, (2.16)

kel

where n =nx +ny. Let ey 1, be the ¢-th quantile of T7. Then, 5k + nil/QcT)I,l_a, kel,
is an 100 x (1 — @)% confidence region for 8, k € I. Similarly, the test that rejects if
Maxyey nl/ngk\ > cr,1,1—q controls the FWER at level « for the null hypothesis Hy : 0} =
for all £ € I. This approach has the advantage of adapting to the correlations among gk,
k € I. Thus, given ¢ 1, — or an accurate estimator thereof — we can learn the differential
network structure while controlling the type I error rate.

The methods we propose in Chapters 3 and 4 use one of two types of bootstrap to estimate
T I q-

In the first approach, motivated by the fact that each nt/ 25/{ is approximately Gaussian,
we estimate cp 7 , with maxcr|Z7], (Z])rer ~ Normal(0, V1), where Vj; is an estimate of

the covariance of 67 = (6y,) req computed from the data. This is Algorithm 1.

Algorithm 1 Gaussian bootstrap

Input: Data {X;}!% and {Y]};Zl, a consistent estimate V; of the covariance of 6}
Output: A Gaussian bootstrap estimate cr 1 , of cr 1 4
forb=1,...,n, do
Sample Z7 , ~ Normal(0, V).
Compute TI*,b = maxXpcy |Z}<,b,k|'
end for
return 7 ., the g-th sample quantile of {T}‘b}gil.

In Algorithm 4 in Chapter 3 and Algorithm 8 in Chapter 4, the Gaussian multiplier
bootstrap is used to generate the Gaussian random vector Z}k,b, b=1,...,n.

In practice, the Gaussian bootstrap may be less accurate than desired due to high-
dimensionality. When |I| — oo, the convergence of T — maxycy |Z;| may be happening
too slowly for sufficient accuracy of the quantile estimates ¢y 1 , [see Chernozhukov et al.,

2013, 2017, and references therein]. This motivates us to consider a second approach based
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on the empirical bootstrap, which can converge at a significantly faster rate, including in
high-dimensional settings [Deng and Zhang, 2020]. However, care must be taken, as the
empirical bootstrap principle may not lead to consistent estimation of the distributions when

it is applied to sparsity-inducing estimation procedures, such as (2.4) or (2.5).

Algorithm 2 Empirical bootstrap for the de-biased estimator ]
Input: Data {X;} % and {Y;}7¥

de-biased estimate 6 Ji
Output: An empirical bootstrap estimate ¢, of e,
forb=1,...,n; do
Resample {X;,i};gl from {XZ}ZZ(I and {Yl::]}?zfl from {YJ}?L uniformly at random
with replacement.
for k € I do
If replicating Hk = 9 1+ , then do

=1 initial estimates 8 and () .y k € I, used to compute the

Oy = O, — UV (8 0G5 A )

If replicating 5k = é%ﬁ then do

= avgmin € (6: {X}, 1% (Y5371

subject to supp() C {k} U supp(8) U supp(Q.5),

and let @Q+* be the k-th component of .
end for
Compute T b = MaXpe] n1/2]§§7k — 6.
end for
return ¢y g ., the ¢-th sample quantile of {T}k,b}Zil

Note that Algorithm 2 only repeats the de-biasing step — (2.13) or (2.15) — albeit using
the resampled data in place of the original data. The initial estimates 0 and Q. L k€1, are
the same as the ones used to obtain the de-biased estimate.

We give a heuristic argument in support of Algorithm 2, and leave a formal proof to future

work. For the sake of argument, consider the infeasible estimators obtained by replacing )
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and © , with 0* and Q% in (2.13) and (2.15), i..,
O = 05 — Ve (0% (GH O )
and 5]3* is the k-th component of 5*, where
0 = arg min (65 {X;};2), {Y;}5Z))  subject to supp(6) € {k} U supp(67) Usupp(Q27).

In this case, the distribution of either 5,16* or 5,%* can be consistently estimated by an also
infeasible version of Algorithm 2 that replaces 6 and Q. ) with 0% and Q7

Now, if 0 and Q. i are stable in the sense that they are guaranteed to fall inside some fixed
neighborhood of 6* and QY with high probability, using 0 and Q. . as originally proposed
induces errors that can be safely ignored, as the final estimator is robust to the errors in
either estimate by design. This is implied by consistency of both 9 and Q. - Later, we verify

this intuition in simulations.

2.5 Related works

Probabilistic graphical models, which include undirected graphical models, have been studied
for a long time [Lauritzen, 1996, MacKay, 2002, Koller and Friedman, 2009]. For a survey of
recent results, see Drton and Maathuis [2017]. Some of these are specifically about differential
networks. For a thorough review, see Shojaie [2021] and references therein.

Numerous works have looked at problems of estimating high-dimensional graphical models
under various assumptions; they may be viewed as a part of the wave of high-dimensional
estimation methods that swept through the statistics community. Notable examples include
Friedman et al. [2007], Yuan and Lin [2007], Yuan [2010], Cai et al. [2011], Ravikumar
et al. [2011]. Many researchers have considered multi-sample problems for graphical models.

Chiquet et al. [2011], Guo et al. [2011], Danaher et al. [2014], Mohan et al. [2014], Ma and
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Michailidis [2016], Majumdar and Michailidis [2018] are methods that can estimate multiple
networks with similar structures at the same time. Although their setup resembles ours, the
motivation is quite different, as the primary goal of such methods is to improve the quality of
the estimates of individual graphs. A line of research most closely aligned with our problem
is that of direct differential network estimation, which includes works such as Zhao et al.
[2014], Xu and Gu [2016], Liu et al. [2017], Fazayeli and Banerjee [2016], Yuan et al. [2017].

The outpouring of high-dimensional statistical estimation methods has naturally led
many researchers to ponder valid inferential procedures. In particular, Belloni et al. [2013],
Javanmard and Montanari [2014], van de Geer et al. [2014], Zhang and Zhang [2014],
Meinshausen [2015], Belloni et al. [2016] studied hypothesis testing and confidence interval
construction for high-dimensional M-estimators. In the context of graphical models, related
ideas were developed for the case of Gaussian graphical models [Jankova and van de Geer,
2015, Ren et al., 2015, Jankova and van de Geer, 2017], elliptical copula models [Barber
and Kolar, 2018, Lu et al., 2018], and Markov networks [Wang and Kolar, 2016, Yu et al.,
2016]. There have also been works on inferential procedures for high-dimensional differential
networks [Xia et al., 2015, Belilovsky et al., 2016, Liu, 2017, Xia et al., 2018]. However, these
rely on separate estimates of the individual graphs.

Our inferential procedures for high-dimensional graphs use bootstrap. The consistency
of the Gaussian bootstrap for the maxima of high-dimensional means was established in
the seminal works of Chernozhukov et al. [2013, 2015a, 2017]. The rates were subsequently

improved for the empirical bootstrap by Deng and Zhang [2020].
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CHAPTER 3
GENERAL MARKOV RANDOM FIELDS

3.1 Methods

We propose a procedure for constructing an approximately normal and unbiased estimator of
the differential network (Section 3.1.1). We then give two bootstrap sketching procedures for
estimating the quantiles of a max-type statistic based on the estimator from Section 3.1.1,

and show how they can be used for simultaneous inference (Section 3.1.2).

3.1.1 Sparse Kullback-Leibler importance estimation with de-biasing

We present Algorithm 3, which is a general recipe for de-biasing regularized KLIEP estimates
for each 9;’; in k € I, where I is the collection of indices for the parameters of inferential
interest. The procedure uses a general norm penalty | - | for regularization.

A general Gaussian approximation bound for Algorithm 3 will be given below in Theo-
rem 3.1 in Section 3.2.2. The result is valid as long as the initial estimators from (3.1) and
(3.2) are sufficiently accurate. For example, this is the case for sparse or approximately sparse
0* and 7, when the (1-penalty is used (Lemmas A.1 and A.2 in Appendix A.3.3). We call
this procedure Sparse Kullback-Leibler Importance Estimation with de-biasing (SparKLIE+),
with SparKLIE+1 referring to SparKLIE+ that uses one-step (2.13) for de-biasing and

SparKLIE+2 referring to the double selection (2.15) option.

Remark 3.1 (Alternative procedures for initial estimation). It is possible to use other proce-
dures for either of the initial estimation steps as long as the errors satisfy |§ — 6% |- |QL., — Q| =
OP(n_l/ 2). We give examples in the case of the ¢i-penalty. In Appendix A.7.1, we give Algo-

rithms 13 and 14 which may be performed in Steps 1 or 2, respectively. The main advantage of

The work presented in this chapter is adapted from “Two-sample inference for high-dimensional Markov
networks” by Byol Kim, Song Liu, and Mladen Kolar to appear in the Journal of the Royal Statistical Society:
Series B. A preprint is available from https://arxiv.org/abs/1905.00466.
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Algorithm 3 Kullback-Leibler importance estimation with de-biasing (KLIE+)

Input: Data {X;}% and {Y]}?il, positive regularization parameters \g, A, k € I

Output: De-biased estimates 5k:7 kel
Step 1. Solve

9 = argmin rcriep (0 (X7 (V51720 ) + A 10 (3.1)

for k€ I do
Step 2. Solve

~ 1 ~
0 = arg mwin éwTVQKKLIEP(Q)w —wlep + A |w| . (3.2)
Step 3. De-bias, either by (2.13)
O = 0 — 5 Ve (6 (G (1)
or by (2.15), i.e., @?j is the k-th component of 5, where

0 = arg rrbin (xLiEp(0) subject to supp(#) C {k} U supp() U supp(Q.x).

end for _
return 0, kel

these procedures is that the user only has to specify a universal penalty level which can be done
in a data-independent manner. For example, in Algorithm 13, Agg = 1.01&~1(1 — 0.05/m)
following Belloni et al. [2014], and in Algorithm 14, A\g = (2log m/ny)1/2 following Sun
and Zhang [2013]. We may also re-fit the model on the estimated support [Belloni and
Chernozhukov, 2013]. Finally, it is also possible to use a constrained procedure, similar to

the method of Ning and Liu [2017], where instead of (3.2), one solves

min |w|; subject to V2€KLIEP(§)W —ep| <A
o

Remark 3.2 (Choosing regularization parameters). Algorithm 3 assumes that the user has
already picked out the regularization parameters \g, A\r, & € I. However, the optimal choice,
as dictated by Lemmas A.7 and A.8 in Appendix A.5.1, depends on constants related to
the regularity of the density ratio, which are typically unknown. In Appendix A.9.3, we

empirically study the sensitivity of Algorithm 3 to the choice of regularization parameters and
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find that the performance is robust across a wide range of regularization levels. Furthermore,
as stated above in Remark 3.1, we provide alternative initial estimation procedures in A.7.1
that do not require regularization parameter tuning. This is the version of Algorithm 3 we

use in Sections 3.3 and 3.4.

Estimating the variance of the SparKLIE+ estimator

For statistical inference, we also need a consistent estimator of the variance of nl/ 25/{7

n =mnyx + ny. Define the empirical density ratio estimate

) exp (0T0(Y))
WD)

Iy = S e (07007). (33)
Y i3

Let i/} and f]w:(g) be the sample covariance matrices of {w(XZ)}?jl and {w(lfj)?a(}g)}?zl,

ie.,

where

ro(Y;)u(Y5). (3.4)

Let ipooled(é\) be the pooled covariance

~ ~

n = n o~
Epooled(tg) = E Zw + E Zw?(‘g)' (3~5)

Finally, a consistent estimator of the variance of nl/ 2«% is

o~

92 ATS ~
Uk = Q-Tkzpooled( )2 - (3.6)
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This estimates the variance of n!/ QQ*kT Vikriep (6%), which we show is asymptotically equiv-
alent to n/2(6, — 0.) in the proof of Theorem 3.1 in Appendix A.2.1. By Lemma A.18 in
Appendix A.6.2, i;\]% is consistent if both 8 and €. L are.

Theorem 3.2 in Section 3.2.2 implies that if zg = CI>_1(q) is the g-quantile of a standard
Gaussian, then P{n'/2(6;, — 07) /0 < zq} = d~1(2,) = ¢. Thus, 0, + Fl—a/2 X O /nl/? is an
asymptotically valid 100 x (1 — «)% confidence interval (CI) for ;. Similarly, the test that
rejects for n'/2|6), — (92| [V > Z1_q /2 1s asymptotically level-a for the one-dimensional null
hypothesis Hoy, : 05 = 92. In Section 3.3, we verify with simulations that the approximations

are fairly accurate and robust even at small sample sizes.

3.1.2 Bootstrapping SparKLIE+

In Section 3.1.1, we proposed SparKLIE-+, a procedure for obtaining an asymptotically
unbiased estimator of a component of the differential network. Iterating Step 3 of SparKLIE+
over all edges yields an unbiased estimator 0 of the differential network 0*. To make inferences
about the structure of #* using 5, one may construct a simultaneous confidence region or
conduct a simultaneous hypothesis test. This raises issues of multiple comparisons.

We deal with this problem by a bootstrap approximation of the quantiles of the following

statistic

T =Thyny = max n1/2‘5k—97;, n=nyx +ny. (3.7)

k=1,...m
Let ¢y, be the ¢-th quantile of 7. Then, it is easy to verify that 0 + cT71_a/n1/2 is a

100 x (1 — @)% confidence region for §*. Similarly, the test that rejects if maxy, [6;| >

cri-af n!/2 controls the family-wise error rate at level « for the null hypothesis H : 0 =
for all kK =1,...,m. This approach has the advantage of adapting to the correlations among
0 = (5;9)21:1 Thus, given ey, — or an accurate estimator thereof — we can learn the

differential network structure while controlling the type I error rate.

However, in high-dimensions, it is itself a highly nontrivial problem to estimate cp , with
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sufficient accuracy [see Chernozhukov et al., 2013, 2017, Deng and Zhang, 2020, and references
therein]. In this section, we present two bootstrap-based methods for estimating crg-
Our first proposal employs the Gaussian multiplier bootstrap. Recall the definitions of 7y

from (3.3), and of v and Jiy,(6) from (3.4).

Algorithm 4 Estimating the quantiles of T" with the Gaussian multiplier bootstrap
Input: Data {X;};% and {Y]}?il, the outputs 8 and Q. k € I, of (3.1) and (3.2) from
Algorithm 3

Output: A Gaussian bootstrap estimate ¢y r , of ¢y 1 4
forb=1,...,n; do

Draw n = nx + ny Gaussian weights £1,...,&, 1D Normal(0, 1).
Compute

TF, = max n1/2
b kel

ﬁTk{% > (W(X) —4) &

1=1
- % > (v0)i50) - (@) fnm}' (3.8)
j=1

end for
return ¢y ., the g-th sample quantile of {Tl*b}gil.

Algorithm 4 may be procedure for estimating the (1 — «)-th quantile of the maximum of

~ ~

| Normal(0, V)|, where Vjj = Q.Tjipooled( 0.7, Q.5 = [Qilpes, and ipooled(é\> is defined
in (3.6). Since we can show that n!/2(6; — 07) ~ Normal(0, Vyy) for some fixed Vj and,
moreover, 1711 ~ Vi1, we claim that ¢7 , is a good estimate of the ¢-th quantile of T'. This
intuition is formally stated in Theorem 3.3 in Section 3.2.3.

Although Algorithm 4 is accurate for sufficiently large sample sizes, at smaller values of

nyx and ny, empirical bootstrap tends to yield more robust estimates of the quantiles. The

procedure below, based on the empirical bootstrap, is what we recommend in practice.
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Algorithm 5 Empirical bootstrap for estimating the quantiles of T’

Input: Data {XZ-}?: and {Y} the outputs 6 and Q., k € I, of (3.1) and (3.2) from
Algorithm 3
Output: An empirical bootstrap estimate cr , of cp
forb=1,...,n; do
Re- Sample {sz} 2X from {X;}% and {Y,; };Zl from {Y]};Zl uniformly at random
with replacement
for k € I do
If replicating 91+ then do

Jij=1

9;):]4; =0 — QTSCVKKLIEP (9; {X;)k,z}z b {ij} )
If replicating 524' then do

~

0 = arg min (xppp (9; {52 Y >

subject to supp(6) C {k} U supp(8) U supp(Q.5),

and let T, be the k-th component of 0.

end for
Compute
T*, = maxnt/216%, — 6, |. 3.9
1y = maxn 7|0y ) — Oy (3.9)
end for

return cr ., the ¢g-th sample quantile of {T}kb}Zi1
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3.2 Theory

In Section 3.2.1, we specify the model conditions under which we guarantee the validity of
the procedures proposed in Sections 3.1.2 and 3.1.2. Section 3.2.2 deals with Algorithm 3.

Section 3.2.3 deals with Algorithm 4.

3.2.1 Conditions

We specify two sufficient conditions for the validity of the proposed procedures. The first is

about the regularity of the density ratio ry(Y).

Condition 3.1 (Bounded density ratio). There exists ¢ > 0 such that
M1 < rp(Y) < M, almost surely for all 6 with |0 — 6*| < o

for some M, = M;(p) > 1 and for some norm | - |.

For convenience, we fix o = |6%|.
Proposition 3.1 says that Condition 3.1 is equivalent to a boundedness condition on the
sufficient statistics, a claim that was stated without proof for the ¢o-norm in Liu et al. [2017].

We generalize the claim to arbitrary norms, and prove it in Appendix A.4.1.

Proposition 3.1 (Bounded sufficient statistics). Condition 3.1 is satisfied if and only if

V(X)) |« < My, almost surely for some My, < oo, where | - |« is the dual norm of | - |, i.e.,

0] = supy20 u'v/|ul.

More generally, regularity conditions on the density ratio tend to induce even stronger reg-
ularity conditions on the sufficient statistics. The identity Zy (8)/Zy (6) = ny Ly iz ro(Y;)
implies Zy (0)/Zy (8) € [M;"t, M. Moreover, 75(Y) = (Zy (8)/Zy (8))rg(Y), so that

My % < M (1= 0p(1)) < F(Y) < My (14 0p(1)) < My
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The outer bounds are obvious. The inner bounds require a concentration result (Lemma A.5
in Appendix A.4.1).

When Algorithm 3 is implemented with the ¢1-penalty, it is natural to impose Condition 3.1
with the ¢;-norm, which by Proposition 3.1 is equivalent to imposing an {~,-bound on the
sufficient statistics. Thus, this choice of penalty works nicely with models that take values on

a bounded domain, such as Ising models or Potts models. Indeed, for the Ising model defined

in Example 2.1, [¢)(X)|so = 1 but [¢(X)[3 = m.
The second are regularity conditions on the population covariances of ¥(X) under fx

and fy, as well as that of (¥(Y) — py)rg«(Y) under fy. Recall X, = Cov[t)(X)], and let
Ve = Cov[(P(Y) = puy)rg=(Y)], where iy = E[¢(X)] = E[(Y )rg=(Y)].

Condition 3.2 (Bounded population eigenvalues). There exist 0 < k£ < k < oo such that

k< min UTZwU < max UTZwU <K,
[v|=1, v#£0 [v|=1, v#£0

k< min vTZd}rv < max UTZwrv < R.
[v|=1, v#£0 |v|=1, v#£0

Condition 3.2 ensures that the problem is well-behaved [Liu et al., 2017]. The lower
bounds ensure that the model is non-degenerate. The upper bounds ensure that g1 Ep (2.2)
is smooth; this is analogous to the assumption on the log-normalizing function in Yang et al.
[2015]. These bounds appear naturally in bounding the convergence of V2¢xrEp(6*) to Xy
and the variance of 5]@

Conditions imposed here are weaker than those in Liu et al. [2017], as we do not hope to
correctly identify the support of 6*. In particular, we do not need to assume the incoherence
condition, nor do we need to require that the nonzero components of 6* be large enough.

Recall QF = Zq;lek, where ¥, = Cov[)(X)]. To facilitate the discussion of rates in
the next two sections, we introduce additional notations. Let n = nxy + ny. We view ny,
ny, m, sg = 89.q5 = 10%g9, Sk = Sk,q, = [§27]q, as sequences indexed by n and possibly
diverging to co. ny and ny are characterized by sequences nx ,, and 7y, in (0,1) such that
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Nxn +nyn =1, nx =nx, =nxyn and ny = ny, = ny,n. In particular, this implies
that n <ny <X ny.

The bounds we give below are finite-sample in the sense that they are given as functions
of n, m, sy, s.. They can be used to study the asymptotic behavior as n — oo by considering
a sequence of models (0*,%,) = (6,2 ,) such that the induced sequence of m, sg, s,

etc. satisfy the side conditions of each theorem.

3.2.2  Approximate normality of SparKLIE+1

Theorem 3.1 bounds the Gaussian approximation error for nt/ 2(§k — 07), where gk is the
one-step estimator from Algorithm 3.
Let k € {1,...,m}. Let 9 and Qk denote the outputs of Steps 1 and 2 of Algorithm 3.

For A\g, Ak, 0g, 0k, 0x; € [0,1), define an event

Eone = gone()\oa )\k75075k>52> =

( )

(G.1) 2|VIkLIEP(07) [ < Ay,
(G.2) 2 |V2kpiep (0%)2%, — ex], < Ak,
(E.1) )5— 6*| < 6,
(E.2) ‘ﬁk; - Qf"k’ < 0,
(B.1) 1- 2483 <,
(B:2) |7& S, 0 (1 = (¥)) o (V)] S M
(V.1) 4‘%—% <oy,
| (v2) 1|2yn(07) — S| <0 |

Theorem 3.1. Assume Conditions 3.1 and 3.2. Let 514: be the one-step estimator from
Algorithm 8, i.e.,

0 = 0, — QL Vigpiep(0).
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Suppose P(Eone) > 1 — one,n for some Ng, A, 0g, 0k, 6y, € [0,1). Then,

sup [P {nl/z <§}f+ — 97;)/@,C < t} - Cb(t)‘ < Ap+ Ao+ Ag + conem,

where

A= Gl )1/2 25

)
NX.nMY.n nl/2

1/2
A IX Y ;n x| g2, 1/2
Ay = (—E/HQ ) {(59-1-)\9) (5k+)‘k)+‘9.k‘59}n ,

Az = (g-?/@) 1%, |? (65, + 65) + o7.

(3.10)

The proof is in Appendix A.2.1. We highlight some of the technical difficulties. To prove

Theorem 3.1, we need to find a linear approximation of n/2(6, — 0.) that is easy to analyze.

This is not so obvious due to the nonlinearity of {1 pp. Our results require a delicate control

of the bias that arises from using the empirical density ratio estimates, as we need to make

sure that the error terms are vanishing even after nl/2 scaling. This is in contrast to Liu

et al. [2017] or Fazayeli and Banerjee [2016].

We apply Theorem 3.1 to the special case of SparKLIE+1 to obtain Theorem 3.2 below.

Theorem 3.2. Assume Condition 3.1 with {1-norm and Condition 5.2. Letl gk be the

SparKLIE+1 estimator obtained with reqularization parameters satisfying

A =< (IOgm>1/2, A X 51/ (2= ) (—IOgm)l/Q.

n kak n

Suppose
e Qe 2—qx
6.0 ( n )—4_<1 1 (logm)TTQk<1
Skg, \logm T Sk n o

ny > C' (barﬁ/EQ) MngslogQ(s) log (m V ny) log(ny)/a-:%{SC’n,
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where C" > 0 is a known, numerical constant from Lemma A.14, s > 50,0 V Sk,qu % and

ERSC,n 15 a sequence in (0,1) decreasing to 0. Then,

sup |P {nl/Q(ék —01) /0 < t} - @(t)‘

teR
—2q, 1-
245= logm\ "~
<O (Sﬁ,osk,q,f Uk (g_) n1/2> +ersem + cexp (—c'logm)

where ¢, ¢ > 0 are constants that do not depend on n, m, 59,0 OT Sk.q.-

The proof in Appendix A.3.1 relies on numerous technical lemmas to derive the rates
of 6 and Qk In particular, we prove a restricted strong convexity (RSC) of the Hessian
starting from a population-level assumption (Condition 3.2). The proof is quite involved as
the Hessian is a weighted sample covariance with the weights given by the empirical density
ratio estimates. This makes an easy application of existing results impossible. The details

are in Appendix A.5.

Remark 3.3. Theorem 3.2 gives a nontrivial bound only for sufficiently (weakly) sparse 8* and
Q*k The additional condition on ny is a consequence of proving RSC from the population-
level assumptions. In particular, it is linked to the probability that the Hessian fails to satisfy
RSC. Analogous results for other sparsity regimes can be obtained from Theorem 3.1 as well
(see an earlier arXiv preprint at https://arxiv.org/abs/1905.00466v1). Due to space

limitations, we have singled out this regime as being arguably the most interesting.

Remark 3.4. We note that the inverse of the Hessian X;,—1 is determined by vy, since
¥y = Cov[y)(X)], and, therefore, the sparsity of Ezzl is related to that of yx. In the case of
Gaussian graphical models, we can explicitly characterize 21;1 and we observe that the rows
of the inverse of the Hessian are sparse if the maximum degree of the underlying graph is
small. The proof strategy critically relies on the properties of a Gaussian distribution and its
log-partition function, however, and is intractable for general Markov random fields. Thus,

we instead provide numerical evidence on the relationship between the support of 21;1 and
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that of vx for Ising models. For our method to perform well, it suffices that the {4-“norm”

is controlled for a small g € [0, 1), which we numerically verify. See Appendix A.4.3. Finally,
we note that in some cases the rows of 21;1 are neither sparse nor approximately sparse, but
have bounded ¢; norm. In this case, a possible direction for developing a valid inference

procedure would be to modify the three step procedure in Ma et al. [2017] or Yu et al. [2020].

Remark 3.5. There is an inherent asymmetry in KLIEP, and Theorem 3.2 is one place where
this can be observed. Specifically, the quality of Gaussian approximation depends on which
set of observations is used as {XZ}Zgl and which as {YJ}EZI First, ry may be more regular
than 1/ry as measured by the bounds. This affects the magnitude of Ay or Aj. Second, the
larger sample will satisfy the sample complexity condition with a smaller eggc j,, which is
the probability that the Hessian fails to satisfy RSC. For the bounded sufficient statistics
model we consider, we have found the latter to have a larger impact on the results. Therefore,

we recommend choosing fx and fy so that nxy < ny.

Remark 3.6. It is natural to ask whether it is possible to use other divergences to derive
similar procedures. For closely-related varieties, such as the reverse and the symmetric
KL, the answer is clearly yes. For arbitrary divergences, however, exact analogues may not
exist. The derivation of KLIEP uses more than just the properties of a divergence. Indeed,
the logarithm in KL plays an essential role in linearizing the ratio fx/(rgfy), yielding a
population-level loss that involves expectations of only known functions of 6. In addition, the
loss is convex in 6, leading to a computationally attractive procedure. Using other divergences
to measure discrepancy between fx and ryfy would, to the best of our knowledge, lead to
an estimator that is not convex in . Establishing statistical properties of such an estimator
is beyond the scope of this work.

It can be checked that the special case of the reverse KL reduces to KLIEP with the role
of fx and fy swapped; this was discussed in Remark 3.5. The symmetric KL leads to a
procedure that minimizes the sum of the KLIEP and the reversed KLIEP loss functions. The

theory developed here extends in an obvious way to the symmetrized procedure. This means
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that the conditions that were previously imposed on only one of fx and fy now need to hold
for both, reducing the applicability of our methods. Moreover, although the change is not
expected to alter the order of error bounds, the constants are expected to be larger, and this
is likely to result in a more brittle approximation at the same sample sizes, as corroborated
by empirical evidence (Appendix A.9.3).

Alternative density ratio approximation approaches have been considered in the literature.
For example, Nguyen et al. [2010] estimated the density ratio by maximizing a lower bound
on an f-divergence, and Kanamori et al. [2009] estimated a density ratio by minimizing a
squared loss between the true density ratio and the model of a density ratio. Developing

inferential results for such alternative approaches is an interesting topic for future research.

3.2.3  Consistency of Gaussian bootstrap

Theorem 3.3 is a finite-sample consistency result for the Gaussian multiplier bootstrap. Recall
T =maxp_1,__n n1/2|§k — 07|, and let e , denote the estimator of ¢-th quantile of T from
Algorithm 4.

Define ¥,,01cq analogously to ipoolcd in (3.5). Let Q* = [Q5]1", = 21;1. For A,
(Ak)ilys 69, (0p)FL; €[0,1), define an event

Eall = Eal(Ngs (Mk)pey, 0p, (Ok)jey) =
4 AN

1 2|VIkLiEp(0%)], < Mo,
2| V2lkpimp (0F), — ex|, < Ap YV E,

)
2)
) 00"
)
)

—_

< dg,

\]

’Q.k . ka( <.V k,
’1_ Zy(0%)

(
(
(
(
(

T = o= Q O

! 7| S 20

(B:2) |2k S @ g = 0(¥))} rg- ()| S M VI |
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Let v, =1V maX{’Qm}ZL:lv

Y

1/6
(1v &) (1v ]\/[1/,)3 Mﬁl/%lﬂ B2 log” (mn) /
Bn - 5” == - .
n

(ESWX,nnY,n) 12

Theorem 3.3. Assume Conditions 5.1 and 5.2. Let 0 be the one-step estimator from
Algorithm 3, i.e.,

~ o~

0 =0—Q"Vikrep (),

where Q) = [ﬁk]?zl € R™>M - Suppose

Xy \ 2 B2 log?(mn) 16
Dy = max (#> {(59 +Xg) (0 + M) + || 53}711/2 S {”—} :

k=1,....m E/R2 n
9 9 1/3
Bz 1
Dy = max zﬁ/—ﬁz {5% X0 %] (5 +>\9)2} S {M} :
k=1,....m nanYm n
[fP(gaH) >1- Call,ns then
sup |P{ Ty ny < ergt — q| = O(6n + Eall,n) (3.13)

q€(0,1)

with probability at least 1 — e,y — nL

The proof is in Appendix A.2.2. The bulk of hard work was done in establishing a linear
approximation to n/2(6, — 0.) in the proof of Theorem 3.1. Theorem 3.3 follows by showing
that the error in the linear approximation can be controlled, allowing for application of results
in Belloni et al. [2018]. Due to the nonlinearity of {kygp (2.2) and the fact that we are
using a two sample estimator, the detailed calculations are rather complicated.

As an application of Theorem 3.3, we evaluate the bound in (3.13) in the case of SparK-

LIE+1 with sy = s o = 0%]p and s, = Sk,0 = |Q*k|0

Theorem 3.4. Assume Condition 3.1 with {1-norm and Condition 3.2. Suppose T =

maxp—1 m nl/2|g; — 0r|, where (gk)g‘zl is the SparKLIE+1 estimator obtained with regu-
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larization parameters satisfying

1 1/2 s alogm 1/2
AgX(Ogm) , )\kX(M) , kzl,...,m.

n n

Suppose

ny > C’ </%/@2> MiMfslogQ(s) log (m V ny) log(ny)/e%{sc,n,

where C' > 0 is a known, numerical constant from Lemma A.14, s > 6,05 Sk,0, and ERSC,n

is a sequence in (0,1) decreasing to 0. Then,

sup ‘IP’ {T < ’c\T’q} — q‘ = O(0n + eRsC,n + cexp (—c'logm))
q<(0,1)

1

with probability at least 1 — eggc p — cexp (—c/ log m) —n~ ', where ¢, ¢ > 0 are constants

that do not depend on n, m, sg o or sj .

3.3 Simulation studies

Through extensive simulations, we illustrate the finite-sample performance of our methods:

SparKLIE+ (Section 3.3.1) and empirical bootstrap sketching (Section 3.3.2).

3.3.1 Inference for a single edge via Gaussian approrimation

In Experiments 1 and 2, we look at the performance of statistical inference procedures based
on Gaussian approximation when an edge has been fixed as a target of inferential interest.

Experiment 1. We check the coverage of the 95% CI gk + z0_975@k/n1/2, where k is a fixed
edge of interest and z( 975 is the 0.975-quantile of Normal(0, 1). Here, SparKLIE+1 and +2
are compared with two other procedures: an oracle procedure with the knowledge of supp(6*)

and a nailve re-estimation procedure that re-fits the model based on the estimated support
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Table 3.1: Comparison of the empirical coverage (%) of the 95% CI 6, + ®~1(0.975)7;, /n'/2.
Here, k is a pre-specified edge of interest: k = (5,6) for Chain 1 or 2, k = (1, 3) for Tree 1 or
2. The numbers displayed below are estimates based on 1000 independent replications.

vx 7w P nx ny Oracle Naive SparKLIE+1 SparKLIE+2

Chain 1 25 150 300 96.0 85.0 93.4 94.5
50 300 600 94.6 82.2 94.3 94.8

2 25 150 300 96.2 90.7 94.8 94.8

50 300 600  96.2 83.9 95.3 95.5

Tree 1 25 150 300 97.2 92.5 93.2 95.8
50 300 600 97.6 87.4 97.3 97.9

2 25 150 300 97.2 94.6 95.7 97.7

50 300 600 96.8 91.3 95.2 97.7

supp((/?\), where  is a sparse KLIEP estimate. See Appendix A.8.1 for precise definitions.

The results were obtained using Algorithm 3 with Algorithms 13 and 14 in Appendix A.7.1
for Steps 1 and 2, respectively, and with the universal penalty levels, as explained in Remark 3.2
in Section 3.1.1. However, we remark that even with the vanilla sparse KLIEP procedure
(2.4) in Step 1, we have found the performance of Algorithm 3 to be robust to the choice of
Ag- See Remarks 3.1 and 3.2, as well as Appendix A.9.3.

The data are pairs of samples of IID observations from a pair of Ising models vx and vy .
Eight pairs of vx and 7y are compared, arising from all possible combinations of the number
of nodes (p = 25 or 50), the topology of vx (a chain or a ternary tree), and two choices of 6*
from which vy = vx — 0* is obtained. Each differential network has five nonzero edges, one
of which has been fixed as the target of inference. For illustration, see Figures A.3-A.6 in
Appendix A.8.2.

Table 3.1 gives the proportions of successful coverage out of 1000 independent replications
at the nominal confidence level of 95%. In spite of the small sample sizes, the coverage of
95% ClIs based on either of the two SparKLIE+ estimators are close to the nominal level, and
on par with the performance of the oracle procedure across all the data generating processes
considered. By contrast, we see that the naive re-fitted estimator can undercover by as much

as ~ 13%.
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In Appendix A.8.4, we further provide normal Q-Q plots (Figures A.7-A.10) and empirical
estimates of the biases (Table A.1) for the four estimators. These reveal that the inferior
performance of the naive re-fitted estimator can be attributed to the larger bias.

In Experiment 2 in Appendix A.9.1, we study the power of SparKLIE+1 and +2 for

testing the null hypothesis H : 0 = 0, where £ is a fixed edge of interest.

3.3.2  Global inference with empirical bootstrap quantile estimates

In Experiments 3 and 4, we look at the performance of Algorithm 5 for making inferences
about the entire differential network 6*.

Ezxperiment 3. We check that Algorithm 5 produces consistent estimates of the quantiles
cr1—q of T'=max;_1 nl/Q\gk — 07| Here, we focus on the setting v = vx = 7y, i.e.,
0* = 0. We generate a pair of samples of the same size ny = ny = 500 from the same Ising
model with the parameter 7. The parameter v was generated as a disjoint union of p/5
chains of length 5 for p € {25,50,100}. The nonzero edge weights were drawn IID from one
of the three distributions: sign = 1, Uniform(0.2,0.4); sign = —1, Uniform(—0.4, —0.2); or
sign = 0, Uniform(—0.4, —0.2) U (0.2,0.4).

For each draw of samples from vx and vy, we use Algorithm 5 with ny = 1000 bootstrap
replicates to estimate ¢71_, and record I{T" < ¢y 1_,} for each 1 —a = 0.05,...,0.95.
Then, the results are averaged across 1000 independent draws of the pair of samples. If
Algorithm 5 is consistent, I{T" < ¢ 1_o} = 1 {T < CT,l—a}» and hence the average over
independent replicates would be close to 1 — . This is indeed what we see in Figure 3.1.

In Ezperiment j/ in Appendix A.9.2, we study the power of the level-a test obtained by
inverting the simultaneous confidence region gk *ori_a / n1/2 for testing the null hypothesis

Ho : 07 =0 for all k.
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Figure 3.1: Consistency of the quantile estimates ¢y 1_,, from Algorithm 5 in nine different
settings, corresponding to all possible combinations of the number of nodes p = 25, 50, or

100 and the distribution of edge parameters sign = —1, 0, or 1, where sign = 1 indicates
that the nonzero edge parameters were sampled 11D Uniform(0.2,0.4); sign = —1, 1o

Uniform(—0.4, —0.2); or sign = 0, '~ Uniform{(—0.4, —0.2) U (0.2,0.4)}. The blue line with
e indicates SparKLIE+1. The orange line with ¥ indicates SparKLIE+42. The 45° line marks
perfect calibration.
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Table 3.2: Sample sizes by group
T1T T2 T3

HC 342 300 306
MS 342 300 311

3.4 Real data example: Alertness and motor control, an fMRI

study

We apply Algorithm 3 and Algorithm 5 to analyze a new fMRI data set, made available
courtesy of Dr. Jade Thai and Dr. Christelle Langley at the University of Bristol. The data
set comes from a pilot study involving a multiple sclerosis subject (MS) and a healthy control
(HC) with the purpose of exploring the relationship between alertness and motor control. It
consists of two time series, one for each participant of the study, of fMRI measurements at
0.906 second intervals from 116 regions of interest (ROI) in the brain. We further restrict
to p = 25 ROIs pre-specified by the neuroscientists. The measurements were taken while
the participants were performing one of three types of tasks: a sensorimotor task (T1), an
intrinsic alertness task (T2), and an extrinsic alertness task (T3). For details concerning the
study design and data post-processing, see Appendix A.10.

We model the fMRI measurements as independent observations from six Gaussian graphical
models, where the groups are given by the disease status and the task type. For example,

the measurements collected while the HC subject performed T1 are modeled as

1
fruc, T1(z) = det {Gpc, T1/(27T)}1/2 exp {—5 (z — s, 1) Gue, 11 (- MHC,Tl)} :

Since we are interested in the difference in the graph structure, we work with the data after
centering by the group means. The sample sizes are given in Table 3.2.
For either the HC or the MS subject, we study the pairwise differences for the tasks.

Specifically, while simultaneously controlling the type I error rate at o = 0.05, we would like
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to learn the structure of six differential networks:

Al =Guc, 11 — Gue, T2, A5 =Gae, 11 — GHe, 13, A3 = Gue, T2 — GHC, T35

Ay =Gus, 11— Gus, T2, A5 =Gums, 11 — Gus, 13, A6 = Guis, T2 — Guis, T3-

This is naturally a multiple comparisons problem well-suited to Algorithm 5. The six
differential networks A;, g=1,...,6, were estimated using Algorithm 3 with Algorithms 13
and 14 in Appendix A.7.1 for Steps 1 and 2, respectively, and with the universal penalty

levels, as explained in Remark 3.2 in Section 3.1.1. The test statistic

T = max max ‘Zgab
g=1,....6 1<a<b<25| ¥

was used to test the null hypothesis Hy : A; =0forall g=1,...,6 at level 0.05 based
on the rejection threshold cr (g5 obtained from Algorithm 5. The test found no edges to
be statistically significant. However, the conclusion is based on a pilot study from two

individuals, and more data are needed.
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CHAPTER 4
GAUSSIAN GRAPHICAL MODELS

Suppose
Xj~Normal(0,Xx), i=1,...,nx, Yj~Normal(0,3y), j=1,...,ny,

where Yy, Yy € Sﬁ, SZ_)F is the set of p-by-p symmetric positive definite matrices. In
Chapter 2, we saw that in this case, any problem about the differential network #* can
equivalently be formulated in terms of the difference A* = Z)}l — 2;,1. Furthermore, a
loss function £p, called the D-trace loss, was introduced for estimating A* directly without
estimating either Z)_(l or 2}71.

In this chapter, we consider the problem of valid statistical inference on the entries of
A* when the number of variables p exceeds the size of either sample. In Section 4.1, we
first introduce SparDE+, which constructs estimators ﬁab of the entries of A* that are
approximately Gaussian, and then discuss ways of accurately estimating the quantiles of
Max(q p)e] n/2|A, — A% ], where I is the set of edge indices of inferential interest, for
simultaneous inference with the FWER control. In Section 4.2, we prove a theorem that says
the estimators A i produced by SparDE+ are indeed asymptotically Gaussian. In Section 4.3,
we give results of simulations. Finally, we use our method to analyze a colorectal cancer data

set in Section 4.4.

4.1 Methods

4.1.1 Sparse D-trace estimation with de-biasing

Let I C{(a,b): 1 <a<b<p} be the set of edge indices of inferential interest. SparDE+
(Algorithm 6) below constructs estimators Kab, (a,b) € I, that are approximately Gaussian

and unbiased for Azb.
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Before we give the method, for each (a,b) € I, let

Car.ap(M) = Laf ap <M {Xi}2 1>{Yj}?§1>
1 . . PN
— Lt {MZJXMEY + MEyMEX} —tr (ME,y)

1
= vec (M)T Hvec (M) — vec (M) vec (Egp),

where

E. = (eaeg + ebeaT) .

N | —

Here, e, and e, refer to the a-th and the b-th canonical basis vectors in RP.

Algorithm 6 SparDE+
Input: Data {X; }Z 1 1Y }‘7 1; positive regularization parameters A, I'p 17, 1 <k <1 <p,
and U'pyap iy (a,0) €, 1<k<I<p

Output: Approximately Gaussian and unbiased estimates &ab, (a,b) € I
Step 1. Solve

b P
A —arg min 6 <A (XX {Yj}’gl) A S T A (4.1)
k=11=k

for each (a,b) € I do
Step 2. Solve

Mqp = arg min Oorab(M) + 2D > " Tagap ot | M- (4.2)
e k=1 1=k

Step 3. De-bias, either by (2.13)
Al _ ) A
AF — Ry = vec <Mab> Vi (A)
or by (2.15), i.e., KZBL is the (a, b)-th component of A, where
A = arg inlélp p (A) subject to supp(A) C {(a,b), (b,a)} Usupp(A) U supp(]\/fab).
€

end for _
return A, (a,b) € I

Remark 4.1 (Choosing regularization parameters). In our experiments, we used a variant of
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SparDE+ that after setting the universal penalty A = 2.020~10.05/{p(p+1)}], automatically
computes all the penalty loadings I'p ;, 1 <k <1 <p, Ty qp s, (a,0) €1, 1 <k <1< p.
Here, we describe the procedure for Step 1 only; the procedure for Step 2 is quite similar.

The proof of consistency of A crucially relies on controlling the probability

A
P H(A®)/T — >
{lgfgg%kaz D(AY)/T'p il > 2}

Suppose it is possible to show

P{VIp(A")/Tpp >z} ={1+0(1)} (2) (4.3)

forall 1 <k <[ <p. Then,
A _prp+1) A
P n(A*)/T — s <7 P In(A*)/T —
{IS%Q?SPWM p(A")/Tp il > 2} ST A Viilp(A™)/Tp gl > 5

<p(p+1)(1+0(1) 2(A/2).

When A = 2010.05/{p(p + 1)}, the upper bound in the last line is {1 + O(1)}0.05.

For which I'p 3; can one expect (4.3)7 The key idea behind our approach is to set I'py 3 as
a sample estimate of the standard deviation of Vj;/p(A*) so that each Vi lp(A*)/T'p py is
a self-normalized two-sample U-statistics. Indeed, note that each V. ¢p(A*) is a two-sample
U-statistics, i.e.,

nx ny

Vilp(A* :——ZZhX Y A%),

n
X YZ 1j5=1
where

1
h(z,y; A) = 3 (zpx" Ayy; + ypy  Azzy) — yry; + 2y

An estimator of the variance of Vjfp(A) is the jackknife estimator

TH(A) = ' T 1 (A) + ny ' TR 5(A), (4.4)
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where

T31(8) = nXl_ n :LXX; {ﬁlz(ﬁ) szfD(A)}2 ,
Th9(A) = nyl_ : g {/ﬁQJ(A) szﬁD(A)}2 7
and
h1i(A) = hy(X;; A), i (z Zh 2, Yj; A),
Foj (&) = ha(Y}: A), Fa(y: &) = izhm,y;A

Since A* is the very quantity we are trying to estimate, we cannot just plug in A* and

use ['p ) = fkl(A*) in Step 1. Thus, we advocate the following two-step procedure:

Algorithm 7 Running (4.1) in Algorithm 6 in practice

Carry out (4.1) with I'p 3, = fkl(O). Denote the resulting estimate of A* by AL,
Repeat (4.2) with I'p 3, = fkl(ﬁo) Designate the resulting estimate of A* as A.

Estimation of ]/\Zab is carried out in a similar manner except that we initialize I'ps op 11 =
sz(Eab)'

In Section 4.2, we shall show that under a mild set of conditions,
@;bl <Eab - AZb) ~ Normal(0, 1)

for some parameter @gb > 0 to be specified. This validates the use of Gaussian distribution as
the reference distribution for A, in carrying out inference about A% Let a € (0,1) be the
target type-I error level. Let z1_, /9 = &~ 1(1—a/2). Let i)\gb be a consistent estimator of

ﬂgb, such as the jackknife estimator of (4.4). Then, an asymptotic 100 x (1 — )% confidence
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interval for A%, is given by

Agy £ Zl—a/Q/ﬁab-
Similarly, an asymptotic size-a test of the null hypothesis H,y, : A
rejects for

|Aab| > Zlfoz/Q@ab

4.1.2  FEstimating the variance of ﬁab

By (2.12), Var(A,) ~ Var{vec(M},)"V{p(A*)}. Furthermore, vec(

two-sample U-statistics, i.e.,

nx ny
vee( M) VIp(A*) = — — g :
]
where
Iap(@:y) = gap(, y; A, M)
and

(4.5)

= 0 is the test that

(4.6)

M) VIR (AY) is a

1
9ab (%, Y3 A, Map) = 5 tr {Mypra™Ayy" + Mypyy Az} — tr { My, (yy" —22™)}.

Thus, we use a jackknife variance estimator of the variance of vec(M?,)TV/Ip(A*) to estimate

the variance of Aab- Define

~2 1.2 —1-2
Uab(Au Mab) = nX Uab71(A7 Mab) + nY Uab,Q(A7 Mab)7
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where

nx
- 1 2
Dad (B Map) = 3 > (G 14(D, Map) = vee(Myp) 'V en ()}
=1
1 X 5
(A, Myy) = po— > {Gap2j (A, Myy) — vec(My,)"Vin(A)}
=1
and
Gab1i (A Myp) = Gup 1(Xis A, Myp), Gap1 (754, Myy) = Zgab 2, Y A, Myy),  (4.7)
1 ”X
Gab,2 (A Myp) = Gap2(Yj5 A, Map),  Gap2(y; A, Mgy) = Zgab Xisys A, Mgy). (4.8)
=1

A jackknife variance estimator of the variance of vec(M5)"V/Ip(A*) is U] g 2b(A*, M3,).
Since A* and M, are unknown parameters, they are replaced with consistent estimates, e.g.,

A from A from (4.1) or ]/\Zab from (4.2), resulting in the sample estimate

~

Var(Agp) ~ 05 (A, Myy,). (4.9)

4.1.8 Bootstrapping SparDE+

In this section, we present two bootstrap methods for estimating the quantiles of

1/2 A*
TI TI nx,ny (H%f)i}éln / |Aab - ab’?

where n = ny +ny. We have see in Chapter 2 that this can be used in simultaneous inference
problems involving many indices of interest for controlling the FWER.
Let A = (Agp) (o p)er- By (2.12),
Ap=A;-Ur— By,
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where Uy = M.”:?ED(A*), M-ﬂ:I is the matrix obtained by stacking vec(M_;) together, and
By = (Bab)(a,b)e 7- Since each component of U7 is approximately Gaussian, it makes sense
to approximate the quantiles of Ty with the quantiles of max(g pyc; | Zapl, where Z1 = (Zp)
is a Gaussian random vector with a matching covariance. Since the covariance of Uy is not
known, this is estimated from the data. In the Gaussian multiplier bootstrap (Algorithm 8)

given below, the covariance is estimated implicitly via applying Gaussian weights.

Algorithm 8 Estimating the quantiles of 7" with the Gaussian multiplier bootstrap

Input: Data {X;};% and {Y;}/Y; the outputs A and My, (a,b) € I, of (4.1) and (4.2)
from Algorithm 6

Output: A Gaussian bootstrap estimate cr 1, of ¢ 1 4
forb=1,...,n, do

Draw n = ny + ny Gaussian weights &1,...,&, 11D Normal(0, 1).

Jrj=1

Compute
12| —1 1
T7y = (ax P2 In Siyq +ny Sab2‘
where
nx
=D {%b,u(A, Meyy) — VeC(Mab)TWD(A)} &
=1
ny
2= O T (B, Map) = vee(Mp) "V (B) } 4
=

and g,y 1; and gab,Zj are as defined in (4.7) and (4.8).
end for
return /C\TJ’q, the ¢g-th sample quantile of {be}ZL

Observe that conditional on the data, ”)_(152b,1 + n}_/lS;b,Q ~ Normal(O,@gb(ﬁ, ]\//Tab)),

where

~ NS ’I’LX—lAQ ~ ’ny—l/\2 ~ 2 N T
v b(AaMab) = Yab, 1(A Mab) + n— ab, Q(A Mab) ~U b(AaMab)'

a
X Y

Thus, Algorithm 8 uses the multivariate Gaussian distribution with the covariance matched
to the jackknife covariance estimate to approximate the distribution of 77.

In practice, estimates based on empirical bootstrap tend to be more robust, especially at
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smaller sample sizes. This is Algorithm 9.

Algorithm 9 Empirical bootstrap for A

Input: Data {X;}%, {Y;}/Y,; the outputs A and Mab, (a,b) € I, of (4.1) and (4.2) from
Algorithm 6
Output: Empirical bootstrap estimate ey, of er 4
forb=1,...,n; do
Re- Sample {X; } | from {X; } | and {Yb”:j };Zl from {YJ};Z1 uniformly at random
with replacement.
for (a,b) € I do
If replicating A1+ then do

Jij=1

~ - ~ \T ~
By = Bap = vee (M) ep (B G, 15, (V5510 )
If replicating ﬁig’, then do

R = argmin p (A (X712, V12 )

subject to supp(A) € {(a,b), (b,a)} U supp(A) U supp(M),

and let A;ab be the (a,b)-th component of A.

end for
Compute
TF, = max n/ A¥ )
Ip = max, A% — Al
end for

return 7 ., the g-th sample quantile of {Tj*b}gil

We verify that Algorithm 9 produces consistent estimates of cp 1 , in simulations.

4.2 Theory

In this section, we give a theoretical justification for using the Gaussian distribution as
the reference distribution for the output of SparDE+ (Algorithm 6). Our proof relies on
many aspects of the U-statistics theory. Here, we focus on the case of one-step estimator
AH' The validity in the case of double-selection estimator A2+ can be established for the

double-selection estimator AZ; also, once consistency is verified for the re-fitted estimate
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A. This requires extending the arguments of Belloni and Chernozhukov [2013], which we
postpone to future work.
Fix (a,b) € I, where I is the set of indices of inferential interest. By (2.14) in Section 2.3,

we saw that Ay = Ay — M\gbVED(ﬁ) decomposes as

Aab - AZb - Uab - Baba

where

Uyp = vec(M5) " VIp(A¥) (4.10)

is the leading term and

Buy = (M — M3,) " Vin(A%) + Veag (M) vee (B — A”)

—~

+ vec (Mab — M;b>T H vec <ﬁ — A*> (4.11)

is the bias term. Furthermore, we saw that U, is a two-sample U-statistics, i.e.,

nx ny
= E@ 121]21 9ap(Xi: )
where
Gap(T:Y) = Gap(w,y; A, M)
and

1
Gab (43 A, Mgp) = 5 tr { Mapra™ Ayy™ + Mapyy" Aza™} — tr {Mp (yy" — 227) } .

We shall apply a Berry-Esseen result [Chen and Shao, 2007, Theorem 3.2] to the two-
sample U-statistics Uy, (Lemma B.1), while showing that under a mild set of conditions,

By is o(n~1/2) with high probability (Lemma B.2). The two results combine to imply a
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Berry-Esseen bound for our estimator Aab- Finally, the consistency of the jackknife variance
estimator (4.9), in conjunction with the consistency of the estimates A and ]\//Tab, imply a
Berry-Essen bound for the self-normalized statistics ﬁ;bl Zab-

We now specify a set of conditions that is sufficient to guarantee the validity of Gaussian
approximation for the distribution of Aab- Denote the support of A* by Sp and the support
of M7, by Syrap, and let sp = [Sp| and sps = [Sarapl-

Let

vz, = Var {g3,(X,Y)}, (4.12)

3
2 2
da@ =E{ape )y iy =E{ad 0}, vl ={|iao] b @)

GapoW) =E{ghy(X, 1)}, vy =FE {925,2(3/)} Wiy = E{ gzb,Q(Y)g‘} ;o (4.14)

-2 _ -1 2 —1.2
Uab = nX Uab,l + TLY Uab,?' (4.].5)

i 2 2 2
Condition 4.1. We have v%; < oo and max(vab71, Uab’Q) > 0.

Condition 4.2.
* [Xx|oos [Xyloos [A%[1, [My|1 are all bounded from above by a constant.

e Let Ky be the smallest eigenvalue of ¥ x and ky be the smallest eigenvalue of ¥y

Then, kx, Ky are both bounded away from 0 by a constant.

e The sample sizes nx and ny, the number of nodes p, and the sparsity levels sp and

$M,qb diverge to infinity in such a way that

SDSM,ablogp
75 = o(1).
min (nx, ny )"/
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Theorem 4.1. Suppose Algorithm 6 is run with

Ap = 2max (2, [A%1) (1 + [Ex|eo + [Zyleo + 1) ¢, (4.16)
AMrab = 2IMyl1 ([Zx oo + [Byloo +1) 1, (4.17)
and
'pri=Tymar=1 VI<E<I<p
for
L { 16log p }1/2
min (nx /Tx,ny /Ty) ’
where
1/2 L= P m ’ 2
Tx = max max | (ox prox,) ’ 5 {1 + (px .kt + €x 1) } :
Lsksi<p 1= (px.h +€x,k1)
) 2
1/2 L= pX i 2
(ox kkox11) 5 {1 + (px.kt — €x 1) } :
1— (px k1 — €x.ki)
P
1-— p2
1/2 Ykl 2
Ty = max max (UY,kkUY,ll) / 5 {1 + (PY,kl + 6Y,k:l) } ;
1sksi<p 1= (pyp + €evip)
2
11— p2
1/2 Ykl 2
(oykrovin) / { 2} {1 + (pysi — €viii) } ;
1— (pygr — evik)

Here, ex 11 € (0,1) is a constant satisfying |px pi| < 1 — ex j1; €y 1 s defined similarly.
Suppose

t < 2min (7xtyx, yty),
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where

tx = min e ’
1<k<i<p (aX,kkUX,ll)1/2 (1 - p%(,kl>

ty = min o .
1<k<I<p (gyykkO'Y’ll)l/z <1 - p%/,k‘l)

Under Conditions 4.1 and 4.2, the final estimator ﬁab satisfies

igﬁ P (@a_bl <Eab — Zb) < z) — (ID(z)‘ =o(1).

For the proof, see Appendix B.1.

4.3 Simulation studies

4.3.1 Inference for a single edge via Gaussian approximation

We illustrate finite sample properties of the confidence intervals (4.5) on simulated data. We
compare the performance with the procedure that obtains the confidence interval based on
separately estimating the two precision matrices [Xia et al., 2015]. Our code is available at
https://github.com/mlakolar/DiffPrecTest. jl.

We first introduce the matrix models used in the simulations. We generate data from

the following five models. Let D = [Dy;] be a diagonal matrix with Dy ~ Uniform(0.5,2.5),
k=1,...,p.

Model 1. AT = 0 with El_}( = Zl_%, = DY20, DY2 where Oy = [ 1] is a symmetric
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heptadiagonal matrix with entries

1 if|lk—1=0,
0.6 if [k—1]=1,
Q=19 03 if k-1 =2
0.1 if [k—1] =3,

0 otherwise.

Model 2. A5 = 0 with Z;k = 22_%, = DY20yDY/2 where Qg = [ 11 is a symmetric

matrix with entries 29 ) = 0.9/k=1l,

Model 3. A3 = D1/2A3D1/2 with 23:%( = Dl/QQng/z, where ()3 is the same as in Model 1,
and Zg%, — DY2(Q3 + A3)DY/2, where Az = [As3 k] is a symmetric matrix with

entries

Uniform(0.1,0.2) if |k — 1| =0,
Az ki~ Uniform(0.2,0.5) if [k -1 =1,

0 otherwise.

Model 4. A} = DY2A,DY? with E;% = DY20,DY/2 | where Qy = (€4 1] is a symmetric
matrix with entries €24 ; = 0.6/*=!l and EZ%, = DY2(Qy + Ay)DY/2, where Ay =

[Ay 1] is a tridiagonal matrix with entries

Uniform(0.1,0.2) if [k —1] =0,
Ag g~ Uniform(0.2,0.5) if [k —1| =1,

0 otherwise.

Model 5. Af = 5% — %1 with 5 % = D205 v DV/2 and ;1 = DV/2Q5 y DV/2, where

Q5 x = [Q5 x p1) and Q5 y = [Q5y ] are symmetric pentadiagonal matrices with
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entries

1 if [k—1| =0,
0.3 if |k —1 =1,

Q5 x k1 =
02 if|k—1] =2,
\ 0  otherwise,
and )
1 if|k—1=0,
03 if k-1 =1,
Q5 vk =

—0.1 if|k—1] =2,

0 otherwise.

In Models 1, 3, and 5, the sparsity level of the differential network A* is similar to those
of the underlying graphs E)_(l and Z{,l. By contrast, Models 2 and 4 have sparse differential
networks A* defined on dense underlying graphs 25(1 and E}_,l.

For each model, we generate nx = ny = 300 observations each from Normal(0, ¥ x) and
Normal(0, Xy ). We report the empirical coverage, bias, and average width of 95% CIs for
AZb for each edge (a,b) in a pre-specified set using both methods under consideration based
on 1000 independent replications.

Our findings are summarized in Figure 4.1. With the exception of the p = 200 case
for Model 2, we observe that the actual coverage is closer to the target level for the Cls
constructed using our method.

For a complete summary of all the results, see Figures B.1-B.10 and Tables B.1-B.5 in
Appendix B.5.

4.3.2  Global inference with empirical bootstrap quantile estimates

We use the following models to investigate the numerical performance of our global test. We
compare against the global test developed in Xia et al. [2015].

We first introduce the matrix models used in the simulations. Let D = [Dy] be a
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Figure 4.1: Comparison of the empirical coverage of 95% Cls using SparDE+ and the method
of Xia et al. [2015]. With the exception of the p = 200 case for Model 2, the actual coverage
is closer to the target level for the Cls constructed using our method.
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diagonal matrix with Dy ~ Uniform(0.5,2.5), k = 1,...,p. We generate data from the
following four models under the null hypothesis of A* =0, i.e., 2}1 = 2{/1 = Dl/QQle/Q,

me{l,...,4}.

Model 1. 21_&’ = El_%, — D120 D'/2, where O = (€ 11 is a symmetric heptadiagonal

matrix with entries
.

1 if[k—1] =0,
0.6 if |k—1]=1,
Q=19 03 if k-1 =2
0.1 if [k —1] =3,

0 otherwise.

\

Model 2. Z;ﬁ( = 22_%, — (14 0)"DY2(Qy 4 61)DY2, where Qg = [Q9 1] is a symmetric

matrix with entries

05 ifk=10d—1)+1,1—k=1,...,9, d=1,...,p/10,
Qopr=4 05 ifl=10d—-1)+1, k—1=1,...,9, d=1,...,p/10,

0  otherwise,

and 0 = [Apin(Q2)] + 0.05.

Model 3. Zg%( = Eg%, = (14 0)"1DY2(Q3 4 61)DY2, where Q3 = [Q3 1] is a symmetric

matrix with entries

1 if k=1,
Q311 ~ {4 0.8 Bernoulli(0.05) if k < I,
QS,lk‘ itk >1,

and 6 = |Apin(Q23)| + 0.05.
Model 4. £, % =21 = DV2{(146) "1 (24 +61)} ' DV/2, where £ = [£ ;] is a symmetric
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Table 4.1: Percentage of erroneous rejections of the global null hypothesis Hg : A* = 0 at
a = 0, first using SparDE+ and then using the method of Xia et al. [2015]. The numbers
displayed below are estimates based on 1000 independent replications.

P Method Model 1 Model 2 Model 3 Model 4
50 SparDE+ 5.4 3.3 3.6 4.2
Xia et al. [2015] 4.6 3.3 3.8 8.3
100 SparDE+ 4.0 4.5 3.2 3.9
Xia et al. [2015] 4.0 3.3 2.2 9.6
150 SparDE+ 3.4 3.9 3.7 5.0
Xia et al. [2015] 2.9 2.5 2.5 8.7

matrix with entries

1 ifk=1,
Yap =4 05 if2(d—1)+1<a#b<2d, d=1,...,p/2,

0  otherwise,
and § = [Apin(24)] + 0.05.

Models 2, 3, and 4 have been taken from Xia et al. [2015]. For each model, we generate two
sets of nx = ny = 300 observations from Normal(0, ¥ x) = Normal(0, Xy ). The dimension
p varies over the values 50, 100, and 150. For global testing of Hgy : A* = 0, we set the
nominal significance level for all the tests at o = 0.05 and use B = 300 bootstrap replicates
to estimate the quantiles of the test statistic.

Table 4.1 shows empirical sizes of the global test in percentages, estimated from 1000
replications. We observe that our proposed procedure has the empirical size close to the
nominal level in all cases. The global test of Xia et al. [2015] has the empirical size close
to the nominal level for Model 1, 2, and 3. However, the size is larger than the nominal
level under Model 4. We also note that the empirical bootstrap provides a better estimate of
the quantiles of the test statistic, compared to the approximation based on the asymptotic
distribution.

We also evaluate the power of the proposed test. Let U = [Uy;| be a matrix with eight
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random nonzero entries. The locations of four nonzero entries are selected randomly from the
upper triangle of U, each with a value generated randomly as sw, where s is +1 with equal
probability and w = (2log p/n)/? maxkzlw.’p[zgﬁX]kk. The other four nonzero entries in
the lower triangle are determined by symmetry. We use the following four pairs of precision
matrices (€2, x, Q. y), m € {1,...,4}, where Qp, x = (1 + 5)_1(2];1})( +01) and Q, y =
(1+6) 7 Ex + U +61) with § = | min{Ain (2, ), Amin(S;, ' + U)} + 0.05. For each
model, we generate ny = ny = 300 observations from Normal(0,¥ x) and Normal(0, Xy ),
where Xy = Q;;X and Xy = {(1 —7)Qp x + ’mey}_l for v € [0, 1].

Figure 4.2 plots the power as a function of 7. We observe that our procedure has higher

power compared to that of Xia et al. [2015].

4.4 Real data example: Molecular subtypes of colorectal cancer

Molecular subtyping of cancer tumors aims to group tumors according to their gene expression
patterns. For some cancers, certain tumor types have been linked to a well-prescribed set of
clinical behavior, leading to a more accurate and reliable diagnosis and targeted treatment.

Recently, Colorectal Cancer Consortium announced four consensus molecular subtypes
(CMS) of colorectal cancer based on a network-based Markov clustering analysis using data
aggregated over 18 different sources [Guinney et al., 2015]. The data are publicly available
from the Synapse platform (Synapse ID syn2623706). The four subtypes were found to
exhibit different biological characteristics. Clinical and prognostic associations also differed.
Colorectal cancer is the third most common type of cancer, affecting about 4.4% of men and
about 4.1% of women in the United States in lifetime [Division of Cancer Prevention and
Control, 2021]. Therefore, it is important to gain a deeper understanding of the biology of
the different subtypes.

Among the four subtypes established by the Consortium, the top most prevalent subtypes,
CMS2 and CMS4 (37% and 23%, respectively, of the aggregated samples), were found to be

associated with very different prognoses. CMS2 had the best overall survival rate, and in
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Figure 4.2: Power of the empirical bootstrap test for the global null hypothesis Hg : A* =0
at a = 0.05. The left panels correspond to the empirical bootstrap test using the test statistic
max| <q<p<p [Dapl/Vap > Co.95; the right panels, to the test proposed in Xia et al. [2015].
Each row corresponds to one of the four models as described on p. 58. The horizontal axis is
v, which controls the magnitude of the changes. We looked at p = 50, 100, 150: in each panel,
the red e indicates p = 50; the blue ¥, p = 100; and the green ¢, p = 150.
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particular, the best survival after relapse. By contrast, CMS4 had the poorest overall survival
rate, as well as the worst relapse-free survival. The tumor subtypes were associated with
different biology, with meaningful differences in gene expression levels. Gene set enrichment
analysis [Subramanian et al., 2005] revealed over-enrichment of the SRC pathway in CMS2
tumors and under-enrichment in CMS4. The enrichment patterns were reversed for the
VEGF pathway.

We focus on identifying meaningful differences in gene-gene interaction levels in the SRC
pathway (p = 11 genes) and in the VEGF pathway (p = 75 genes) between CMS2 and CMS4
groups (noms2 = 208 and noysg = 119). SRC has been singled out as playing an important
role in the progress of colorectal cancer [Chen et al., 2014, Yeatman, 2004]. For computational
reasons, we restrict to the local network of the PLA2G2C gene in the case of the VEGF
pathway. Previous studies have found the expression levels of cPLA2 in human colorectal
tumors to be highly variable, singling it out as a potential diagnostic marker [Nakanishi and
Rosenberg, 2006].

The Synapse gene expression data are not Gaussian. Therefore, we preprocess the data via
quantile transform on the Winsorized values. Using the method of Section 4.1, we estimate
the differential networks of genes in the SRC pathway AgRC and in the VEGF pathway
Ay pap controlling the false discovery rate at level a = 0.05. The method of Xia et al. [2015]
is used for comparison; the false discovery rate is controlled in the same manner.

In the case of SRC pathway, our methods detected statistically significant differences
in edges (GRB2, GRB2) and (GRB2, CSK). The method of Xia et al. [2015] additionally
selected (CDC25C, CCNB1). In the case of the PLA2G2C' gene with other genes in the VEGF
pathway, our method discovered meaningful differences in interactions with PLA2G1B and
PLA2G2C. Xia et al. [2015] additionally selects interactions with PLA2G2E and PPP3CB.
More interactions are flagged using Xia et al. [2015] due to larger estimates of difference and
smaller estimates of standard error. The gene-gene interactions singled out by both methods

are potentially interesting given the current research on the roles in cell motility and cancer
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Figure 4.4: The PLA2G2C local differen-
Figure 4.3: The SRC differential network tial network

PRKCB

©

D

[Giubellino et al., 2008]; they offer promising targets for further research.
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Part 11

Distribution-free inference for

ensemble predictions
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CHAPTER 5
JACKKNIFE4-AFTER-BOOTSTRAP

Ensemble learning is a popular technique for enhancing the performance of machine learning
algorithms. It is used to capture a complex model space with simple hypotheses which
are often significantly easier to learn, or to increase the accuracy of an otherwise unstable
procedure [see Hastie et al., 2009, Polikar, 2006, Rokach, 2010, and references therein].

While ensembling can provide substantially more stable and accurate estimates, relatively
little is known about how to perform provably valid inference on the resulting output.
Particular challenges arise when the data distribution is unknown, or when the base learner is
difficult to analyze. To consider a motivating example, suppose that each observation consists
of a vector of features X € RP and a real-valued response Y € R. Even in an idealized
scenario where we might be certain that the data follow a linear model, it is still not clear
how we might perform inference on a bagged prediction obtained by, say, averaging the Lasso
predictions on multiple bootstrapped samples of the data.

To address the problem of valid statistical inference for ensemble predictions, we propose
a method for constructing a predictive confidence interval for a new observation that can
be wrapped around existing ensemble prediction methods. Our method integrates ensemble
learning with the recently proposed jackknife+ [Barber et al., 2021]. It is implemented by
tweaking how the ensemble aggregates the learned predictions. This makes the resulting
integrated algorithm to output an interval-valued prediction that, when run at a target
predictive coverage level of 1 — «, provably covers the new response value at least 1 — 2«
proportion of the time in the worst case, with no assumptions on the data beyond independent

and identically distributed samples.

The work presented in this chapter has appeared in “Predictive inference is free with the Jackknife+-
after-bootstrap” by Byol Kim, Chen Xu, and Rina Foygel Barber in Advances in Neural Information Processing
Systems 33, pages 4138-4149.
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5.1 Background

Suppose we are given n IID observations

(X1, Y1), -+, (X, Vi) 20 P
from some probability distribution P on RP x R. Given the available training data, we would
like to predict the value of the response Y}, 41 for a new data point with features X, 41, where
we assume that (X, 41, Y,+1) is drawn from the same probability distribution P. A common
framework is to fit a regression model 1 : RP — R by applying some regression algorithm
to the training data {(X;,Y;)}"_;, and then predicting 7i(X,,41) as our best estimate of the
unseen test response Yj, 1.

However, the question arises: How can we quantify the likely accuracy or error level of
these predictions? For example, can we use the available information to build an interval
around our estimate 7i(X;,+1) £ (some margin of error) that we believe is likely to contain
Y, +17 More generally, we want to build a predictive interval C (X;+1) € R that maps the
test features X, 1 to an interval (or more generally, a set) believed to contain Y}, 1. Thus,

instead of i : RP — R, we would like our method to output C : RP — R? with the property
P Y1 € C(Xpi1)| =>1—a, (5.1)

where the probability is with respect to the distribution of the n + 1 training and test data
points (as well as any additional source of randomness used in obtaining 6) Ideally, we
want C to satisfy (5.1) for any data distribution P. Such C is said to satisfy distribution-free

predictive coverage at level 1 — a.
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5.1.1 Jackknife and jackknife+

One of the methods that can output C with distribution-free predictive coverage is the recent
jackknife+ of Barber et al. [2021] which inspired our work. As suggested by the name, the
jackknife+ is a simple modification of the jackknife approach to constructing predictive
confidence intervals.

To define the jackknife and the jackknife4, we begin by introducing some notation. Let
R denote any regression algorithm; R takes in a training data set, and outputs a model
it : RP — R, which can then be used to map a new X to a predicted Y. We will write
= R{(X;,Y;)}i,) for the model fitted on the full training data, and will also write
iy = RE{(X;,Y)) 7]7‘:1’].#) for the model fitted on the training data without the point 7.
Let g4 ,{v;} and ¢, ,{v;} denote the upper and the lower a-quantiles of a list of n values
indexed by i, that is to say, ¢4 ,{v;} = the [(1 —a)(n + 1)]-th smallest value of v1,..., vy,
and gy {vi} = =g {—vi}-

The jackknife prediction interval is given by

Covn(@) = i(x) + af n{ Ri} = [gan{fi(z) = Ri},agn{fi(z) + Ri}] (5.2)

where R; = |Y; — ZZ\Z(XZ)| is the i-th leave-one-out residual. This is based on the idea that the
R;’s are good estimates of the test residual |Y;,41 — ﬁ\i(Xn+1)|, because the data used to train
,E\Z- is independent of (X;,Y;). Perhaps surprisingly, it turns out that fully assumption-free
theory is impossible for (5.2) [see Barber et al., 2021, Theorem 2]. By contrast, it is achieved

by the jackknife4, which modifies (5.2) by replacing i with ﬁ\i’s:

Cort@) = |aandBii(@) = Ribad i (o) + Ri} | (5.3)

Barber et al. [2021] showed that (5.3) satisfies distribution-free predictive coverage at level

1 — 2. Intuitively, the reason that such a guarantee is impossible for (5.2) is that the
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test residual |Y;,11 — 1(Xp41)| is not quite comparable with the leave-one-out residuals
Y; — ﬁ\i (X;)|, because 1 always sees one more observation in training than ﬁ\i sees. The

jackknife+ correction restores the symmetry, making assumption-free theory possible.

5.1.2 Ensemble methods

Here, we are concerned with ensemble predictions that apply a base regression method R,
such as linear regression or the Lasso, to different training sets generated from the training
data by a resampling procedure.

Specifically, the ensemble method starts by creating multiple training data sets (or
multisets) of size m from the available training data points {1,...,n}. We may choose
the sets by bootstrapping (sampling m indices uniformly at random with replacement—a
typical choice is m = n), or by subsampling (sampling without replacement, for instance with
m=mn/2).

For each b, the algorithm calls on R to fit the model 7ij, using the training set S, and
then aggregates the B predictions fi1(x), ..., () into a single final prediction ji,(z) via
an aggregation function 90,1 typically chosen to be a simple function such as the median,
mean, or trimmed mean. When ¢ is the mean, the ensemble method run with bootstrapped
Sp’s is referred to as bagging [Breiman, 1996], while if we instead use subsampled Sp’s, then
this ensembling procedure is referred to as subagging [Bithlmann and Yu, 2002].

The procedure is formalized in Algorithm 10.

Can we apply the jackknife+ to an ensemble method? While ensembling is generally
understood to provide a more robust and stable prediction as compared to the underlying base
algorithm, there are substantial difficulties in developing inference procedures for ensemble

methods with theoretical guarantees. For one thing, ensemble methods are frequently

1 Formally, we define ¢ as a map from J, RF — R, mapping any collection of predictions in R to a
single aggregated prediction. (If the collection is empty, we would simply output zero or some other default
choice). ¢ lifts naturally to a map on vectors of functions, by writing /i, = ¢(fi1,...,ip), where [i () is
defined for each x € R by applying ¢ to the collection (ji1(z), ..., ip(x)).
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Algorithm 10 Ensemble learning

Input: Data {(X;, Y;)}"

Output: Ensembled regression function fiy
forb=1,....B do

Draw Sy, = (ip 1, - - -, 4p,m) by sampling with or without replacement from {1,...,n}.
Compute //Ib = R((Xibvpyvib’l)a S (Xib7m7 Y;b,m))'
end for

Define iy = o(it, - . . ip).

used with highly discontinuous and nonlinear base learners, and aggregating many of them
leads to models that defy an easy analysis. The problem is compounded by the fact that
ensemble methods are typically employed in settings where good generative models of the
data distribution are either unavailable or difficult to obtain. This makes distribution-free
methods that can wrap around arbitrary machine learning algorithms, such as the conformal
prediction [Vovk et al., 2005, Lei et al., 2018], the split conformal [Papadopoulos, 2008, Vovk,
2013, Lei et al., 2018], or cross-validation or jackknife type methods [Barber et al., 2021]
attractive, as they retain validity over any data distribution. However, when deployed with
ensemble prediction methods which often require a significant overhead from the extra cost
of model fitting, the resulting combined procedures tend to be extremely computationally
intensive, making them impractical in most settings. In the case of the jackknife+, if each
ensembled model makes B many calls to the base regression method R, the jackknife+ would
require a total of Bn calls to R. By contrast, our method will require only O(B) many
calls to R, making the computational burden comparable to obtaining a single ensemble

prediction.

5.1.3 Related works

Our work contributes to the fast-expanding literature on distribution-free predictive inference,
which has garnered attention in recent years for providing valid inferential tools that can work
with complex machine learning algorithms such as neural networks. This is because many of

the methods proposed are “wrapper” algorithms that can be used in conjunction with an
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arbitrary learning procedures. This list includes the conformal prediction methodology of Vovk
et al. [2005], Lei et al. [2018], the split conformal methods explored in Papadopoulos [2008],
Vovk [2013], Lei et al. [2018], and the jackknife4 of Barber et al. [2021]. Meanwhile, methods
such as cross-validation or leave-one-out cross-validation (also called the “jackknife”) stabilize
the results in practice but require some assumptions to analyze theoretically [Steinberger
and Leeb, 2016, 2018, Barber et al., 2021].

The method we propose can also be viewed as a wrapper designed specifically for use
with ensemble learners. As mentioned in Section 5.1.2, applying a distribution-free wrapper
around an ensemble prediction method typically results in a combined procedure that is
computationally burdensome. This has motivated many authors to come up with cost efficient
wrappers for use in the ensemble prediction setting. For example, Papadopoulos et al. [2002],
Papadopoulos and Haralambous [2011] use a holdout set to assess the predictive accuracy
of an ensembled model. However, when the sample size n is limited, one may achieve more
accurate predictions with a cross-validation or jackknife type method, as such a method avoids
reducing the sample size in order to obtain a holdout set. Moreover, by using “out-of-bag”
estimates [Breiman, 1997], it is often possible to reduce the overall cost to the extent that it
is on par with obtaining a single ensemble prediction. This is explored in Johansson et al.
[2014], where they propose a prediction interval of the form 7i,(X,41) £ qu n(R;), where
gy = e({tp : 0=1,...,B, S, Z i}) and R; = |Yj — [i5\;(X;)|. Zhang et al. [2019] provide a
theoretical analysis of this type of prediction interval, ensuring that predictive coverage holds
asymptotically under additional assumptions. Devetyarov and Nouretdinov [2010], Lofstrom
et al. [2013], Bostrom et al. [2017b,al, Linusson et al. [2019] study variants of this type of
method, but fully distribution-free coverage cannot be guaranteed for these methods. By
contrast, our method preserves exchangeability, and hence is able to maintain assumption-free
and finite-sample validity.

More recently, Kuchibhotla and Ramdas [2019] looked at aggregating conformal inference

after subsampling or bootstrapping. Their work proposes ensembling multiple runs of an
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Table 5.1: Comparison of the computational costs of obtaining ntest predictions
#calls to R #evaluations  #calls to ¢

Ensemble B Bnygest Ntest
J+ with Ensemble Bn Bn(1 4 ngest) n(1 + ngest)
J+aB B B(n +ngest) 11+ ngest)

inference procedure, while in contrast our present work seeks to provide inference for ensembled
methods.

Stepping away from distribution-free methods, for the popular random forests [Ho, 1995,
Breiman, 2001], Meinshausen [2006], Athey et al. [2019], Lu and Hardin [2021] proposed
methods for estimating conditional quantiles, which can be used to construct prediction
intervals. The guarantees they provide are necessarily approximate or asymptotic, and rely on
additional conditions. Tangentially related are the methods for estimating the variance of the
random forest estimator of the conditional mean, e.g., Sexton and Laake [2009], Wager et al.
[2014], Mentch and Hooker [2016], which apply, in order, the jackknife-after-bootstrap (not
jackknife+) [Efron, 1992] or the infinitesimal jackknife [Efron, 2014] or U-statistics theory.
Roy and Larocque [2019] propose a heuristic for constructing prediction intervals using such
variance estimates. For a comprehensive survey of statistical work related to random forests,

we refer the reader to the literature review by Athey et al. [2019].

5.2 Jackknife+4-after-bootstrap

We present our method, the jackknife+-after-bootstrap (J+aB). To design a cost efficient
wrapper method suited to the ensemble prediction setting, we borrow an old insight from
Breiman [1997] and make use of the “out-of-bag” estimates. Specifically, it is possible to
obtain the i-th leave-one-out model ﬁ¢\i without additional calls to the base regression
method by reusing the already computed i1, ..., ig by aggregating only those fi;’s whose
underlying training data set Sy did not include the i-th data point. This is formalized in

Algorithm 11.
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Algorithm 11 Jackknife-+-after-bootstrap (J+aB)
Input: Data {(X;, Y;)}i
Output: Predictive interval aij;fg
forb=1,...,B do
Draw Sy = (ip 1, 9p ;) by sampling with or without replacement from {1,...,n}.

Compute j1p, = R((Xibylayim)a R (Xib,m’ Y;bm))
end for
fori=1,...,ndo

Aggregate iy = ¢, b= 1,.... B, 5, 3 1})
Compute the residual, R; = [Y; — i\ ;(X;)].

end for

Compute the J+aB prediction interval: at each z € R,

CIHB (1) = (g o(0) = Ri} 6 adipyi(@) + Ri}] .

Because the J+aB algorithm recycles the same B models ji1, ..., to compute all n
leave-one-out models ﬁ<p\z-, the cost of model fitting is identical for the J+aB algorithm
and the ensemble learning. Table 5.1 compares the computational costs of an ensemble
method, the jackknife+ wrapped around an ensemble, and the J+aB when the goal is to
make niegt predictions. In settings where both model evaluations and aggregations remain
relatively cheap, our J4+-aB algorithm is able to output a more informative confidence interval
at virtually no extra cost beyond what is already necessary to produce a single ensemble point

prediction. Thus, one can view the J4-aB as offering predictive inference “free of charge.”

5.3 Distribution-free theory

In this section, we prove that the coverage of a J4-aB interval satisfies a distribution-free
lower-bound of 1 — 2« in the worst-case. We make two assumptions, one on the data

distribution and the other on the ensemble algorithm.

Condition 5.1. (X1,Y1),...,(Xn, Yn), (Xpn+1, Ynt1) 1D P, where P is any distribution on

RP x R.

Condition 5.2. For k > 1, any fixed k-tuple ((z1,y1),..., (zr,yz)) € RP x R, and any
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permutation o on {1,...,k}, it holds that

R{(iﬁ,’yl), . (xkayk)} = R (@o(1):Yo(1)s -+ (%(k)»ya(k))} :
Yy

ol
N———"

=@ <ya(1)7 e 7ya(k)> :

In other words, the base regression algorithm R and the aggregation ¢ are both invariant to

the ordering of the input arguments.2

Condition 5.1 is fairly standard in the distribution-free prediction literature [Vovk et al.,
2005, Lei et al., 2018, Barber et al., 2021]. In fact, our results only require exchangeability
of the n + 1 data points, as is typical in distribution-free inference—the IID assumption is
a familiar special case. Condition 5.2 is a natural condition in the setting where the data
points are IID, and therefore should logically be treated symmetrically.

Theorem 5.1 gives the distribution-free coverage guarantee for the J+aB prediction interval
with one intriguing twist: the total number of base models, B, must be drawn at random
rather than chosen in advance. This is because Algorithm 11 as given subtly violates symmetry
even when R and ¢ are themselves symmetric. However, we shall see that requiring B to be

Binomial is enough to restore symmetry, after which assumption-free theory is possible.

Theorem 5.1. Fix any integers B > 1 and m > 1, any base algorithm R, and any
aggregation function @. Suppose the jackknife+-after-bootstrap method (Algorithm 11) is
run with (i) B ~ Binomial(B, (1 — %H)m) in the case of sampling with replacement or
(ii) B ~ Binomial(é, 1-— nﬂ—l—l) in the case of sampling without replacement. Then, under
Conditions 5.1 and 5.2, the jackknife+-after-bootstrap prediction interval satisfies

P [Yup1 € COHB(Xnp)| 21— 20,

2 If R and/or ¢ involve any randomization—for example if ¢ operates by sampling from the collection of
predictions—then we can require that the outputs are equal in distribution under any permutation of the input
arguments, rather than requiring that equality holds deterministically. In this case, the coverage guarantees
in our theorems hold on average over the randomization in R and/or ¢, in addition to the distribution of the
data.
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where the probability holds with respect to the random draw of the training data {(X;, Y;)}" 4,

the test data point (X411, Ype1), and the Binomial B.

Proof sketch. Our proof follows the main ideas of the jackknife+ guarantee [Barber et al.,
2021, Theorem 1]. It is a consequence of the jackknife+ construction that the guarantee can
be obtained by a simultaneous comparison of all n pairs of leave-one-out(-of-n) residuals,
|Yin+1 — ﬁ\i(Xn+1)| vs |Y; — ﬁ\Z(XZ)] fori =1,...,n. The key insight provided by Barber
et al. [2021] is that this is easily done by regarding the residuals as leave-two-out(-of-
(n + 1)) residuals [Y; — 1, ;(X;)| with {7,j} > (n + 1), where /i, ; is a model trained
on the augmented data combining both training and test points and then screening out
the i-th and the j-th points, one of which is the test point. These leave-two-out residuals
are naturally embedded in an (n + 1) x (n + 1) array of all the leave-two-out residuals,
R=[Rjj =[Y; =, j(Xi)| :i#j€{l,...,n,n+1}]. Since the n + 1 data points in
the augmented data are IID, they are exchangeable, and hence so is the array R, i.e., the
distribution of R is invariant to relabeling of the indices. A simple counting argument then
ensures that the jackknife+ interval fails to cover with probability at most 2«.. This is the
essence of the jackknife+ proof.

Turning to our J+aB, it may be tempting to define ﬁw\’t}j = o({uy : Sy Z4,5}), the
aggregation of all fi;’s whose underlying data set S}, excludes ¢ and j, and go through with
the jackknife+ proof. However, this construction is no longer useful; the corresponding R in
this case is no longer exchangeable. This is most easily seen by noting that there are always
exactly B many Sj’s that do not include the test observation n 4 1, whereas the number of
Sp’s that do not contain a particular training observation ¢ € {1,...,n} is a random number
usually smaller than B. The issue here is that the J+aB algorithm as given fails to be
symmetric for all n + 1 data points.

However, just as the jackknife4 symmetrized the jackknife by replacing i with ZZ\Z-’S, the
J+aB can also be symmetrized by merely requiring it to run with a Binomial B. To see why,

consider the “lifted” Algorithm 12.
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Algorithm 12 Lifted J+aB residuals
Input: Data {(X;, Yz)}?ill
Output: Residuals (R;;:i#j € {l,...,n+1})
forbzlfl...,g do
Draw Sy, = (i1, - -, %p,m) by sampling with or without replacement from {1,...,n +1}.

Compute ﬁb = R((Xib7lvyjib71)a R (Xib,ma Yvib’m))'
end for

for pairs i # j € {1,...,n+ 1} do
Aggregate fi\; ; = ©({Hp : Sp Z 4, 7}).
Compute the residual, R;j = [Y; — [i,,\; ;(X;)].
end for

Because all n 4+ 1 data points are treated equally by Algorithm 12, the resulting array

of residuals R = [R;; : i # j € {1,...,n + 1}] is again exchangeable. Now, for each

ij
i=1,...,n+1, define & as the event that > je{l, i iy I [Rij > Rji] > (1—a)(n+1).
Because of the exchangeability of the array, the same counting argument mentioned above
ensures P[€,41] < 2a.

To relate the event gn+1 to the actual J+aB interval a(‘)]::}g (Xy41) being constructed,
we need to couple Algorithms 11 and 12. Let B = le?zl 1[Sy # n + 1], the number of Sy’s
containing only the training data in the lifted construction, and let 1 < b; < --- <bp < B
be the indices of such gb’s. Note that B is Binomially distributed, as required by the
theorem. For each k= 1,..., B, define S, = §bk' Then, each S} is an independent uniform
draw from {1,...,n}, with or without replacement. Therefore, we can equivalently consider
running Algorithm 11 with these particular St,...,Sp. Furthermore, this ensures that
,Eso\n 410 = ﬁw\i for each i, that is, the leave-one-out models in Algorithm 11 coincide with
the leave-two-out models in Algorithm 12. Thus, we have constructed a coupling of the J+aB
with its lifted version.

Finally, define £, 11 as the event that i ; T[|Y), 41 — i\ i (Xpt1)| > Ri] > (1—a)(n+1),
where R; = |Y; —ﬁw\i(Xi)] as before. By the coupling we have constructed, we can see that the

event £,41 is equivalent to the lifted event éN’nJrl, and thus, P[&,, 1] = P[g’nJrl] < 2a. It can

be verified that in the event that the J+aB interval fails to cover, i.e., if Y, 11 ¢ ¢ +aB (Xpa1),

a,n,B
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the event &, 41 must occur, which concludes the proof. The full version of this proof is given

in Appendix C.1. O]

In most settings where a large number of models are being aggregated, we would not
expect the distinction of random vs fixed B to make a meaningful difference to the final
output. In Appendix C.2, we formalize this intuition and give a stability condition on the
aggregating map ¢ under which the J4-aB has valid coverage for any choice of B.

Finally, we remark that although we have exclusively used the regression residuals
|Yi —10\;(X;)| in our exposition for concreteness, our method can also accommodate alternative
measures of conformity, e.g., using quantile regression as in Romano et al. [2019] or weighted
residuals as in Lei et al. [2018] which can better handle heteroscedasticity. More generally, if

c,

o\i is the trained conformity measure aggregated from the Sp’s that did not use the i-th

point, then the corresponding J+4aB set is given by

@g-’g;rBaB(:v) = {y : Z I [ap\i(x,y) > Cp\i (X3, )| < (1—a)(n+ 1)} .
i=1

5.4 Experiments

In this section, we demonstrate that the J+aB intervals enjoy coverage near the nominal
level of 1 — a numerically, using three real data sets and different ensemble prediction
methods. In addition, we also look at the results for the jackknife+, combined either with the
same ensemble method (J4+ENSEMBLE) or with the non-ensembled base method (J+NON-
ENSEMBLE); the precise definitions are given in Appendix C.4.1. The code is available
online.?

We used three real data sets, which were also used in Barber et al. [2021], following the same

data preprocessing steps as described therein. The Communities and Crime (COMMUNITIES)

data set [Redmond and Baveja, 2002] contains information on 1994 communities with p = 99

3 https://www.stat.uchicago.edu/~rina/jackknife+-after-bootstrap_realdata.html
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Figure 5.1: Distributions of coverage (averaged over each test data) in 10 independent splits
for ¢ = MEAN. The black line indicates the target coverage of 1 — a.
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covariates. The response Y is the per capita violent crime rate. The BlogFeedback (BLOG)
data set [Buza, 2014] contains information on 52397 blog posts with p = 280 covariates. The
response is the number of comments left on the blog post in the following 24 hours, which we
transformed as Y = log(1 + #comments). The Medical Expenditure Panel Survey (MEPS)
2016 data set from the Agency for Healthcare Research and Quality, with details for older
versions in Ezzati-Rice et al. [2008], contains information on 33005 individuals with p = 107
covariates. The response is a score measuring each individual’s utilization level of medical
services. We transformed this as Y = log(1 + utilization score).

For the base regression method R, we used either the ridge regression (RIDGE), the random
forest (RF), or a neural network (NN). For RIDGE, we set the penalty at A = 0.001]|X|?,
where || X || is the spectral norm of the training data matrix. RF was implemented using the
RandomForestRegressor method from scikit-learn with 20 trees grown for each random
forest using the mean absolute error criterion and the bootstrap option turned off, with
default settings otherwise. For NN, we used the MLPRegressor method from scikit-learn
with the L-BFGS solver and the logistic activation function, with default settings otherwise.
For the aggregation ¢, we used averaging (MEAN). Results obtained with other aggregation
methods are discussed in Appendix C.4.2.

We fixed a = 0.1 for the target coverage of 90%. We used n = 40 observations for training,
sampling uniformly without replacement to create a training-test split for each trial. The
results presented here are from 10 independent training-test splits of each data set. The
ensemble wrappers J+aB and J4+ENSEMBLE used sampling with replacement. We varied
the size m of each bootstrap replicate as m/n = 0.2,0.4,...,1.0. For J+ENSEMBLE, we
used B = 20. For the J+aB, we drew B ~ Binomial(B, (1 — ~11)™) with B = [20/{(1 —
n+-1)m(1 — %)m}], where [-] refers to the integer part of the argument. This ensures that
the number of models being aggregated for each leave-one-out model is matched on average
to the number in J+ENSEMBLE. We remark that the scale of our experiments, as reflected

in the number of different training-test splits or the size of n or B, has been limited by the
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computationally inefficient J4+ENSEMBLE.

We emphasize that we made no attempt to optimize any of our models. This is because
our goal here is to illustrate certain properties of our method that hold universally for any
data distribution and any ensemble method, and not just in cases when the method happens
to be the “right” one for the data. All other things being equal, the statistical efficiency of
the intervals our method constructs would be most impacted by how accurately the model is
able to capture the data. However, because the method we propose leaves this choice up to
the users, performance comparisons along the axis of different ensemble methods are arguably
not very meaningful.

We are rather more interested in comparisons of the J+aB and J+ENSEMBLE, and of
the J4+aB (or J+ENSEMBLE) and J4NON-ENSEMBLE. For the J4+aB vs J+ENSEMBLE
comparison, we are on the lookout for potential systematic tradeoffs between computational
and statistical efficiency. For each i, conditional on the event that the same number of models
were aggregated for the ¢-th leave-one-out models ZZMi in the J4+-aB and J+ENSEMBLE, the
two ﬁw\i’s have the same marginal distribution. However, this is not the case for the joint
distribution of all n leave-one-out models {ﬁcp\i}?zl; with respect to the resampling measure,

the collection is highly correlated in the case of the J+aB, and independent in the case of

aJ—kaB and 6J+ENSEMBLE

a,n,B a,n,B’ could

J4+ENSEMBLE. Thus, in principle, the statistical properties of
differ, although it would be a surprise if it were to turn out that one method always performed
better than the other. In comparing the J+aB (or J+ENSEMBLE) and J+NON-ENSEMBLE, we
seek to reaffirm some known results in bagging. It is well-known that bagging improves the
accuracy of unstable predictors, but has little effect on stable ones [Breiman, 1996, Bithlmann
and Yu, 2002]. It is reasonable to expect that this property will manifest in some way when
the width of ag:;fg (or é\i;?g,SEMBLE ) is compared to that of angNON'ENSEMBLE. We expect
the former to be narrower than the latter when the base regression method is unstable (e.g.,

RF), but not so when it is already stable (e.g., RIDGE).

Figures 5.1 and 5.2 summarize the results of our experiments. First, from Figure 5.1, it

7



is clear that the coverage of the J4-aB is near the nominal level. This is also the case for
J+ENSEMBLE or J4+NON-ENSEMBLE. Second, in Figure 5.2, we observe no evidence of a
consistent trend of one method always outperforming the other in terms of the precision of the
intervals, although we do see some slight variations across different data sets and regression
algorithms. Thus, we prefer the computationally efficient J+aB to the costly J+ENSEMBLE.
Finally, comparing the J+aB (or J+ENSEMBLE) and J4+NON-ENSEMBLE, we find the effect
of bagging reflected in the interval widths, and we see improved precision in the case of RF,
and for some data sets and at some values of m, in the case of NN. Thus, in settings where
the base learner is expected to benefit from ensembling, the J+aB is a practical method for
obtaining informative prediction intervals that requires a level of computational resources on

par with the ensemble algorithm itself.
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Figure 5.2: Distributions of interval width (averaged over each test data) in 10 independent
splits for ¢ = MEAN.
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APPENDIX A
SUPPLEMENT TO CHAPTER 3

A.l The KLIEP loss gKLIEP

Recall
==Y e (V). Al) = SO G = LS wom)
j=1

The following identities hold:

dlog Zy (0)

00, Ty 1 (0),
ory ~ ~
g@i” = (Ua(0) — P 0)) T (v),
Vilkrgp(9) = —— Z U (X5) + 1y 1 (0),
ViZklfKLIEP(Q)
= — Z Uiy (Y3) k) (Yi)T(Y5) = Fip oy (O) Figp 1oy (6) (A1)

= nig Yo WV = Ui (Vi) (ry (Vi) — iy (Vi) To (Vi P (V).
Y

1<j1<ge<ny

vkgkgkngLIEP Z@% )Wk, (V)1 (YV5)7(Y5)

= Flap Jeg (0 ( Z Drey (V) py (Y <Y>)

- ﬁ¢,k2(9)vk3klfKLIEP(9) - ﬁw,kl(e)vigkngLIEP(e)' (A.2)
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Clearly, Ey(é’) ~ Zy(0) and 7y(y) = ry(y). Moreover,

() ~ Egpo [0(X)],  V2kpmp(8) ~ Covgp, [W(X))]

by Proposition A.1 below.

Proposition A.1. For any 0, let X ~ fg ., . Then,

Y %ﬁw 0)| = E@-i—’Yy [W(X)],
()2
By g}};Ee;QV%KLIEP(Q)I = <1 — %) Covgiy [W(X)]. (A.3)

Proof. To prove the first identity,

By [ (Y)re(Y)] = / Ve(W)ro(y)fy (y) dy = / Vi) oy (¥) dy = Egpqy [0 (X)),

and therefore,

Bry | g 7(0)] = Exy {%;mmw = Bty W)

To prove the second identity, let Y7, Ys 11D fy be independent, so that

Ery [(Vk, (Y1) = ¥1y (Y2)) (¥, (Y1) — ¥p, (Y2)) 79 (Y1)re(Y2)]

= // (Vhy (1) = Viy (12)) (1, (1) — i, (2)) To(y1)r9(y2) fy (1) fy (y2) dy1 dyo
= 2// Uiy (Y1) 01, ()9 (W10 (y2) fy (1) fy (y2) dyr dyo

- 2/ Vi (Y1) V1, (Y2)79 (1) (y2) fy (v1) fy (y2) dy1 dya.
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The first integral is

/ By ()00, (1) (1) () fy (1) Fy () iyt d
- / g (0, (5170 (1) ) / roly) fy (42) i
= / Vi (Y1) Uk, (Y1) fo1ry (Y1) din / foy (y2) dy2

= Epiny [Vhy (X)0p, (X))

As for the second integral,

// Uiy (Y1) V1, (W2)r0 (W1)7re(y2) fy (v1) fy (y2) dy1 dyz
= /%Ukz(yl)re(yl)fy(yl) dyl/@bkl(w)?“e(yz)fy(yz) dyo
= / ko (Y1) fo14y (1) dint / Vky (Y2) fo14y (y2) dy2

= ]E9+’Yy [¢k2 (X)} E9+’}/y [wkl (X)} :

Thus,

Evy [(V1y (Y1) = Y1y (Y2)) (1, (V1) — gy (Y2)) 76(Y1)r9(y2)]
= 2By [V, (X)), (X)] = 2Bgsny [V, (X)] Bgpny [0, (X)]

= 2CoVg iy [Vhy (X)), 5, (X)]

and therefore,

@V%{LIEP (9)]

7Y Z}Z/(Q)

=By [nig > ()~ 00) (#0G) ~ 6()) TV r(Y,)
Y

1<j1<ga<ny

- <1 - %) Covg iy (X))
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A.2 Proofs of the general results

In what follows, positive constants that depend only on the fixed problem parameters are
denoted as cq,cy, ..., 06, c’l, ..., Ko, Kq, ..., and their precise definitions may change from
line to line. They are never allowed to depend on the sample sizes nx, ny, the number
of nodes p, the number of parameters m (usually m = p(p — 1)/2), or the sparsity level
of the true parameters sy = sq 4, = [0%[q, or s = sp 4, = [QV1gp & € {1,...,m} and gy,

q; €10,1).

A.2.1 Proof of Theorem 3.1

Recall py, = E[¢)(X)] = E[t)(Y)rg«(Y)]. In the below, we shall write nl/2(6; — 05)/ vy as

nl/2 (G = 07) [ B = n2{(A+ B) fug} /(1 + C),

where

1 . 1 v .
A= g 2 O (00 — ) 4 10 32O g = 005) o3

Bz(%—@}i)—A, C:Z—Z—l, v,%:Var(nl/QA).

Since A is a linear combination of two IID sums, nl/2A /vy, is approximately Gaussian:

p{al2apu <ib o] s A A ( 7/n )1/2 2%
sup n UV S - ‘ ~ 21, 1=
teR g NX.nMYn nl/2

by Lemma A.16. Thus, in light of Lemma A.17, it suffices to bound B and C on &gpe..
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First, we find a decomposition for B. By (2.14) in Section 2.3,
~ Y Y T /~ Y
O — 0, = Q3 VigLmp(07) — <v2€KLIEP(9*)Q-k - 6;:) (9 - 9*> —Qyr, (A4

where by Taylor’s theorem, r = ()" with

Tk

! i i { [ =09 {1 (- 07)} ) (3~ 01,) (3, —01,).
In light of ﬁk ~ Q7 , we rewrite (A.4) as

O — 0F = — Q"I g Ep(67)

~ (% - %) Veump® — (Vw075 o) (-07) — . (A5)

The leading term is

Q5 Vikrrp (09)
+T [ 1 1 X .
=7 @ 2 (Xi) — Ejzzll/}(yj)rg*(}/j)
[ 1 X 1 ny
= O |3 (90X = ) + 2 D (s = V) Fr (1))
X =t =
- 1 nx 7 (0*) 1 ny
T | N — Ay_ 1 B . oy
k| ny v ((X3) — py) + {Zy(e*)} {nY ; (g — 0(Y})) 7o (YJ)} 7
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where the second equality used n{,l ?’:/1 79(Yj) = 1. Thus,

O Vikrmp(07) = Q5 {L > (W(X5) = py) + % > (= v(Y))) 7“9*(59')}

n
X =1 =1

ZY(G*) — i Qe *T . ) ) rox .
" {EY(H*) 1} {”Y;Qk (s = 0 (¥5)) o <YJ)}- (A-6)

The first term on the right-hand side of (A.6) is A. Thus, comparing (A.5) and (A.6), B is

equal to

Zy (6% 1 X et
B = {%—1} {EZQ/{ (qu_ﬂ)(yﬂ) 7"9*(1/])}

=1
By
—(ﬁ —aon) we 0) — (v 090" — e ) (6—0%) — T
k= 2 KLIEP (0) KLIEP(07)X), — eg Vg
R g - ——
B By By

We bound each term of the decomposition on Eype using the defining conditions of the

event. First, (B.1) and (B.2) imply

Ty (0F 1 &

j=1
I G | U L I PR (A7)
| Zy (0% |1 Zy (6%) nygl % (g =0 (Y5)) rg-(Y)
< K1 g,

because Zy (0%)/Zy (8%) € [M;~*, M) under Condition 3.1. We decompose B; further as

By = (Qk - %)T Vigpep(0*) + (Qk - kak;)T (VKKLIEP@ - VfKLIEPW)) :

N J/ J/

NV TV
B11 B2
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By (G.1) and (E.2) in the first line and by (G.2) and (E.1) in the second line,

Bul < [Q4 — Q%] [Vexme (091, < Ao, (A8)
| Ba| < ‘szKLIEPw*)QZ —eg ‘5— 9*‘ < Ak (A.9)
*
In the case of Byg, by the mean value theorem
VilkLiep () — Vilkrep (0 kaszLIEP(Qk) (91 91)

=1

for some 6, on the line segment between § and 6*. By (A.1), this is equal to

Vielkriep () — VilkLep (%)

Z{ Z% Y (Y;) — ﬁw,k(ek)ﬁw,z(%)}(@l 91)
S {Zm )}~ (S0 ()

=1

Now,

3wy (- 07) <
=1

m

> Ty (6r) (91 - 9?) < MyM; |6 -
=1

under Condition 3.1, so that

‘VEKLIEP@\) - VﬁKLIEP(Q*)L < Ko ‘5— 0% .

Thus, by (E.1) and (E.2),

|Bia] < ‘Qk — kak’ ‘WKLIEP@ - WKLIEP(H*)L < K90g0y,. (A.10)
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We turn to Bs. Under Condition 3.1, (A.2) implies a uniform bound on the third-order tensor.
Thus,

|Bs| <[5 Ir], < K3 || 6. (A.11)
Combining (A.7)-(A.11),

1/2
L G- R (UR IS WERUAE )
E/K

We bound C' on Eype in a similar manner. By Lemma A.18, (E.1), (E.2), (V.1), and (V.2)

imply
~2 2

2
bkl S Ay Az = (#/k) Q4] (0n + dp) + o7

%
Y _q| <
5

Uk
Applying Lemma A.17 yields the conclusion.

A.2.2  Proof of Theorem 3.3

Assume p,, = E[t)(X)] = E[t)(Y)rg«(Y)] = 0. The general result follows by consistency of

empirical averages.

Recall
T, = max nl/2 ’(% —97; , Ty = max ’Z* k"
k=1,...m k=1,....m ™
where
LzanXanY
1 1 &

=~ ) = B) & = —— > (V))F0) = () uyey
nl/2" "k NX.n ; (v e Z v X

(A.12)

To prove the result, we shall apply Theorems 2.1 and 2.2 in Belloni et al. [2018], which are

Gaussian approximation results for approximate means over the class A of hyper-rectangles
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in R™, i.e., A is a collection of sets of the form
A={veR": |}, <wv, <wforallk=1,...,m},

for some [, u € R™ with —oco <[, <y < 400.

First, we show that n1/2(5— 0*) is an approximate mean, i.e., it can be written as

where Ly, the leading term, is an independent sum and R, is a small remainder. Indeed, we

have seen in the proof of Theorem 3.1 that this is satisfied with

1 1 X
Lp=———Q*T R Yrgs
" n1/2 NXn ; 77Yn Zd} 9
Zy (07)
Rn 1/2 Q*T { } ¢ 7"9*
Zy (6%) Z

N (ﬁ - Q*>T vEKLIEP@\) - <V2£KLIEP(9*)Q* — ])T (;9\_ t9*> 1T,

Let Z ~ Normal(0, 2*"%,001eq?"). Let P =P[- | {X; }Z b {Yj};”:/ﬂ be the conditional
probability measure given the data {X;}!%, {YJ};”:/1 If applicable, their Theorem 2.1 would
imply

th P{n1/2 <§— 9*> € A} —-P{Z € A}’ =0 (571 +5all,n) ;

while their Theorem 2.2 would imply

sup P{E;; € A} —-P{Z ¢ A}‘ =0 (6p)
AcA
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with probability at least 1 — ey, — n~!, so that combining,

P (2 0-0) <4} - (T | -0 to s

with probability at least 1 — e,y , — n~1. Restricting to the sub-class Amax of max-hyper-

rectangles, which are sets of the form
A= {UERm:m]?X|Uk;| <t for allkzl,...,m},

we obtain

sup !]P’ {T, < ET@} — q’ =0 (6y + Eall,n) ,
q€(0,1)

which is the desired conclusion.
Therefore, it suffices to verify the conditions of Theorems 2.1 and 2.2 in Belloni et al.

[2018], which we restate below in the context of our problem.

Condition M In the context of our problem, this is

Var (Ly, ) = Q5 (77)_(’1”21/; + ni}le) QY. > ¢ for some ¢ > 0, (A.13)
g E [\Q X)ﬂ + 1y 2E [\Q )re*(Y)\?’] < 32B,, (A.14)
B[ X[ + B | [ () (V)] < 283 (A1)

for each k € {1,...,m}.
Under Condition 3.2, (A.44) gives

Var (Ln,k) = Q*kT <77)_(,1n21/’ + 7]}_/’}121;,71) Q*k > K/ <"_‘1277X,n77Y,n)
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for each k. Thus, (A.13) is satisfied with ¢ = ﬁ/(RQUanKn). On the other hand, by (A.43),

V()] < My [, QR )rg- (V)] < My My [ | (A.16)
for each k. Thus,
RIM3M3L3
3/ {77)_(,2n]E QWM(MP) + 1y 2R (]Qik,;fw(y)rg*(Y)P)} <— r My 7;/2 <3,

(ﬁ 77X,n77Y,n)
74M4M4V4

9 —31[3 QT ( —3IE: QT L[4 <M—M<B2,

2 (B (J000]") + 3B (|0 e (]} < T = < 3

by the definition of By, in Section 3.2.3. This shows that (A.14) and (A.15) are also satisfied.

Condition E In the context of our problem, this is

E [exp { |25F ()] / (mxnc?Ba ) }] <2

E |exp { |70V )rge (V)] / (mync?Ba ) }| <2
{B%log (mn)}l/G <5

- <
These are all immediate by (A.16) and the definitions of B, and §,, in Section 3.2.3.

Condition A In the context of our problem, this is

P{k Toax Ry i > /2 /logl/2(mn)} < Ealln

AR

P {k_max v,% > 0(5%/ log2(mn)} < Eall,ns

=1l,...
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where

2 2 2
U = Ux kT Vs

-1 nx
g g = "X”Z{(Qk—ﬂ*) w<XZ>}2,
-1 ny
= S (A005)75007) — (1))
Y i3

We have seen in the proof of Theorem 3.1 that on &,

1/2
_ NXxX,n" <
V2 Ry S (—)275“) {(G + N) (G + Ag) + |27 | 03 } 2

for each k. Under the conditions of this theorem,

21..4 1/6 201 7 1/6
C_1/2 ‘Rn,]{; 5 (B'n, IOg (mn)> _ (Bn log (mTL)) /10g1/2(mn) 5 5n/ 10g1/2(mn)

n n

for each k. Meanwhile,

1 nx

Vg = UXXHZ{@k—Q*) ¢(Xi)}2<ﬁx Mq/)‘Qk—Q*

S My O
To bound 1132, ;. first observe that

DL (¥))FH(Y) — T U (V)= (1))

_ (Qk - ka>T V(Y)F5(Y)) + (Te(Y)) (?g(yj) _ W(yﬂ) ‘

Now,

< MyM?|Q

(8- 23) " w7y i,
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and

(@) (7559) = ro-(4))|
= |@Fo) { (7079 = 70+ (V) + (o (V) = re (Vi) }

Zy (0%) )

2
M e

1—

< My |0 <L1 ‘5— 0

where we have used Lemma A.4 and (A.35), (A.43), so that

ny
n ~ . « 2
b= o 2 (A0 )7305) ~ U1
]:
o~ 2
_ ~ ~ Zy (0*
< 77}/7% {MwME Qp— Q*k’ + My, |Q*]€} (Ll ‘9 — 0% + Mg 1— Z;E@*; ) }

Sy h {0 + [0 (G + 29) 1.
Thus,
i < (ﬁX,rmY,n)_1 02 + 77;7% \%!2 (69 + Ng)?.

Under the conditions of this theorem,

2 1/3 217 1/3
f 5 (PeEm) (—B”bg “””)) / log? (mn) £ 92 og(mn)

n n

for each k. Clearly,

P {k max | Ry | > cl/Qén/logl/Q(mn)} < P(E) < callm,
=1,...m

P {k max v,% > cé%/logQ(mn)} <P(E°) < call -
=1,...m

Conclusion Under the conditions of this theorem, Conditions M, E, and A are all satisfied

by 0. Therefore, Belloni et al. [2018, Theorems 2.1 and 2.2] applies, and the desired conclusion
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follows by the discussion at the beginning of this proof.

A.3 Proofs for the /1-penalty case

A.3.1 Proof of Theorem 3.2

To simplify the presentation, we ignore &, k, nx 5, and 1y, treating them as constants in

the following calculations.

By Theorem 3.1, it suffices to find an event £ C Eype such that P(E€) N\, 0. Let

72
H(9) = ?EZ;

5 V2lxr1ep(0)
v

— Y () - 0 (8Y) — 6(5) YY),
v

n =
1<j1<ja<ny

Consider the event

y4
go%le =

;

(G1) 2|VekLiEp(#*)lo < Mg (G2) 2| VAlkripp(0%)Q, — el < M
Zy (6*
y (6%) < )\97

1- 2983| 5

Zy (0%)
(B:2) | S5, 0 (g = (¥)) o (V)] S M
Syr(0%) = Syr

(B.1)

(V1) [Sy - Ty|  Sspode (V-2) S 50,0
o0 o0

(SE) I1H(0") = E[H(O)]ls < £/128 )

Note that compared to the definition of Eone, we no longer have (E.1) or (E.2) and we newly

have (SE). In the below, we show
e (G.1) and (SE) imply (E.1), and
e (G.2) and (SE) in conjunction with (E.1) imply (E.2).

Thus, ggrlle C Eone-
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Define

K(S.8,p) = {v €R™ : |uscly < Blugly + (1 + B, Jo] < 1}

for any S C [p], S # @, 8 >0, p > 0. We shall use this with

Sp={K 10> N}, sg=15l, pp= ‘935

17
Se={F 1! >N}, st =I5 o= ‘ka,s,g

.
By the first part of Lemma A.13, (B.1) and (SE) imply

VIV lkiep (0F)v > e1i [uf* — capf/sg for all v € K(Sy, 3, pp).

Combining this with (G.1), Lemma A.1 gives us

1/2
bgm) , (A.17)

‘9 - 9*‘1 S 89,0)\9 = 50,0 (

where we have used the condition on Ag in (3.12). Under the conditions of this theorem, the

second part of Lemma A.13 implies

VIVl Ep (0 )v > c3k |v|? for allv € K(Sg, 6,0).
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Combining this with (G.2), Lemma A.2 gives us

~ ~ 2
_QOF _ p* —l=q , 2 \1-2q L—q
‘Q,k Q"f)1 S ‘9 0 ‘1 Skqu N + g M + Skaqu N

2 12 —1—q 2 1-2q; 1—q
S Se,oAaSkz,qu + Sk,qk/\k: + Sk,qk)‘k

L+qp, 1—qp)/2
o =94 (logm (1=ax)/
< 8508 Pl —
~ 070 kan‘ n

1—2qk

1-2q 1-2q..)/2 1—qy 1—q)/2
+32+ ot (logm (1-2q1)/ +81+2_qk log m (1—qx)/
1-2 _

o 2_qqkk log m\ 1720k)/2
NSkan n ’

where we have used (3.11) and (3.12) with (A.17). Thus,

1-2¢qy 1—
245k G
Ag < 59,08, o U (M> nl/2, (A.18)
) 3 n

The terms corresponding to A; and Ag are of smaller order, so we ignore them.

Next, we bound P( £}1§) Let

&1 = {2|VlkLiEp(07)] o < Mo},

& = {2 ‘V%KLIEP(W)QT’}C —ep| < Ak}>
Zy (6%)

€= 11— <,

’ {‘ Zy (0)] =7
ny
1

&4 = E ZQ*kT (Mw - ¢(Yj)) ro+(Yj)| S Ak ¢

=1

& = {‘id) - E;ﬁ’oo S 59,0/\9} :
& = {)iw(@*) S| S 89,())\9} :

&r ={I1HE%) —EH(07)lll < x/128}.
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Clearly,
7
P (5&1@) <Y P(&).
=1

Under the conditions of this theorem, Lemmas A.7 and A.8 imply

P (&) =P{2|VIkLmp(0%)|o > Ao} < caexp (—cjlogm),

P(£S) = P {2 ’ﬁ(e*)mk _ep

> )\k} < c5exp (—0'5 log m) .
(0.9]

Lemma A.5 says

Zy (67)

Zy(6n)

P(5§>:P{

e /\9} < cgexp (—0/6 log m) .

Because {Q%] (1, — Q/J(Yy))T@*(YJ)};Z1 are bounded mean-zero IID random variables, we

have the Hoeffding bound
1
P& =P E ZQ*k:T (“d) — w(Y])) 7“9*(Yj) Z A\ p < crexp (—0'7 logm) )
j=1
Lemmas A.20 and A.21 imply

P (&) = P{‘iw — Zw‘oo 2z 59,0)\9} < cgexp (—cglogm) ,

P(£§) = P{|Zye(6") - Ty

2 Sp 0)\,9} < cgexp (—cglogm) .
00 )
Furthermore, Lemma A.14 gives
P (&7) < erscon-

Therefore,

P (55%@) < €Rsc,n + cexp (—cl logm) (A.19)
for some constants c, d > 0.
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We complete the proof by combining (3.10), (A.18), and (A.19):

{n1/2 <§k - e,j)/ﬁk < t} - d)(t)‘

1—
1 dk
( ogm) n1/2> + ERSC,n T CexXp (—c/ log m) .

sup (P
teR

dk
2+2 m

<0 (se 05k g1 -

A.3.2  Proof of Theorem 3.4

To simplify the presentation, we ignore &, k, nx 5, and 71y, treating them as constants in
the following calculations.

As in the proof of Theorem 3.2, we seek an event £ C &, such that P(E€) N\ 0. Consider

the event
55111 -
( (G.1) 2|VikLiEp(0%)lo < gy (G2) 2|VElkpigp(09)Q, —ex| < AV E, \
(B.) 1= 2553 <
(B2) |7 X O (= w(¥)) 7= (V)] S M VY
\ (SE) I1H(6%) — E[H(0)]]ls < /128

Following the argument of the proof of Theorem 3.2, on Sau,

2 1/2
1
s (T L as (

and hence,

s7/2 logm
nl/2

1

< B2 log?
~ n

1/6
(m”>> : Dy <

97

51 1/2
s ogm) v k.
n

sPlogm

B2 log(mn)) 1/3

<
~ n

n



We finish the proof by finding a bound for e,y ,,. Let

&1 = {2|VlkLEp(07)] 5 < Mo},

Eop, = {2 ’V2«€I<L11313(9*)Qf§C — ek‘oo < Ak} :
4 *
532{ 1 Zy (") S/\a},

- Zy(6%)
1 X
Ef = EZQT",S (g — 0(Y))) o= (Yj)| S A g
j=1

& ={I1H(©0%) —E[HE)]l; < £/128},

so that
g c m m
caln SPEL ) SPED) + D P(E5) + P(E5) + ) P(EG,) + P(ES).
k=1 k=1

By a sequence of arguments similar to that in the proof of Theorem 3.2,
Ealln < ERSCp + cexp (—c'logm) .

A.3.3 Consistency of {1-penalized estimators

In the following,
K(S,8,p) ={v €R™ : Juge|; < Blugly + (14 B)p, |v] <},

where S C {1,...,m} is nonempty, 3 > 0, and p > 0.

Lemma A.1. Consider the optimization problem (3.1) using {1-penalty and a regularization

parameter Ny satisfying

Ao > 2|VIkrep (0F)| s -
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Suppose, in addition, it holds that
2

VIV lkEp (0%)0 > o [v]3 — C/S/;_e for v e K(Sp,3,py),

)

for some c,c’ > 0, where

So = (k' + 1031 > N}, s5=ISal, pp = |0

.
Then any solution ) satisfies

60— 0"

‘ ~

-1 1-
5(1+ﬁ >|9*’qg)‘9 C]e'

1

Proof. By a direct application of Negahban et al. [2012, Theorem 1],

2 2
’(/9\_ o+ 2 < 989)\9 n ANgpo n 26’)\9p9'

27 (2K2 CK CESg

(A.20)
By (A.39) and (A.40),

_ 1—
sg <107, Ay ¥ and Py < 10714, Mg .

g
so that

* 2—qp * 2—qp /o2 \3— 249
z<9ye oo o +4\9 o o +20 16%12, Ay
2 02@2 CK CKSp

o /
_ =2 % 2-q9 (9 4 2c * 1—q —2 | p% 2—qy
=K 1074, Ay (C—2+Eﬁ+ B0y AT ) < K07, A

0*

‘ -~
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for an appropriate choice of K1 > 0. Therefore,

4
2+ Po

07| <570

< Kok H[0%, Ay %+ 4107, 0y (A.21)
< K3 (1 + ﬁ_1> 10714, )\é—qe.
0

Lemma A.2. Assume Condition 3.1. Consider the optimization problem (3.2) using (1 -

penalty and a reqularization parameter \;. satisfying
N > 2|V gpmp (0°)5, — e, .
Suppose, in addition, it holds that
UTVQZKLIEP@)U > c&|v|g for v e K(S6,0),
for some ¢ > 0, where Sy, = {k': Q%] > Ak }. Then any solution Q). satisfies

—qk 2 1-2qy -1 1—gg
+ Skatﬂc)\k + fat 8k7qkA]€ '

Proof. Put ﬁ(@) = V20irep(0). The objective function is

~

W H(0)w — wTep + Ag |wly -

N | —

For S in the statement of the theorem, set

sp = |Sk| and pp = ’ka’sz .
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Since Qk is the solution to (3.2) using ¢1-penalty,

Setting d = ﬁk - S the above can be rearranged as

%dTﬁ@d <\ <‘kaa5k‘1 _ ‘ka TG, — o)

L

— d"{H(0) — H(0")}5 5, +d"H(O"), go- (A22)

By Cauchy-Schwarz, the condition of the lemma implies

N ~ A
A" {H(07)2, — x| < ldly |[HE) — e < 5 ldl;

’ o

(A.31) of Lemma A.3 yields
Ty 17(D 7T n* * L r505 A |2 | 2
A - AN s, < gd"HOA+ K1 |0 - 07 |2, | -

(A.30) of Lemma A.3 yields

~ 1 o~ o~
A" H(0")2 se| < ngH(G)dJr Kop3.

Combining (A.23) to (A.25) with (A.22), and noting ‘Qikkvsk‘l - ’Qk‘l < |ds, |, - ‘dgg

3 S 2,
< 2 |dg, |, + K1 |0 - 0] |5, |+ Kae.

1 A
SdTH (0% —k‘dc
4 ( )+2 Skl_

We consider two cases. First, suppose that

3\ ~ 2 2
" las, |y < K f -7 | s,

) —i—KQ,Oz.
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Then,
Ak
5 Jas;

~ 2 2
2

easily, and hence

~ 2 2
], < K ‘e - 6*‘1 )Q,*mk ’1 AL KypEa L (A.27)

in the this case.

Next, suppose that

3/\/<; ~ 2 2 9
2 ds, ], > K1 ‘6 a 6*‘1 ’m’f75k)1 K20

Then, (A.26) yields d € K(S}, 6,0), and hence

1/2

|dly < 7|dg,|, <75,/ |d].

i
We are able to apply the restricted strong convexity assumption to (A.26), which yields
]y < Ksi sy (A.28)

Finally, combining the two error bounds (A.28) and (A.27),

‘ﬁk—QE

. <|dly + pg

~ 2 2
< Ky ‘9 _ e*(l ’Q%&Sk ‘1 N Kypp N+ K lsphy + o
By (A.39) and (A.40),

—qk

sk < Skg N ¢ and pp < sk,,qk)\]lf_qk. (A.29)
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Thus,

Q-] < Keu 2|0 — 0" isk,qkAquk + K75t g N Kgs g g 0™
O
Lemma A.3. Let 0 € By(6*), ¢ > 0. Under Condition 3.1,
dCH(0% )] < zic THO)d + MM o]} (A.30)
and
Id"{H(0) — H(6")}v| < % d"H(0)d + 4cL > M} M} ‘5— eﬁ v]3 . (A.31)

Proof. Because the geometric mean of nonnegative numbers is dominated by the arithmetic

mean,

R R 9 1/2
TS T 1/2 T@*(Y}')T@*(Y}/) TS
dTH(6%)0] < ( d H(e)d) IR?IX< A o0
R R 9 1/2
(2 rH 1/2 9 T’Q*(Y}')’r’g*( ]/> Z%—(H) T
= (c d H(G)d) c IEI;/X( AT ,\)2/(9) v H(O)v
- . 2 -
e ()R )\ 220) :
< 5.4 H(0)d + 21??;<< ey ) Z2(9) [H(0)] oo [v]T

and

|dT{H (0) — H(6")}o]

N N N N 9 1/2
<dTPA[(9)d> 12 (max (Tg(yj) ‘79/‘7') _ v (Yj)rg*(Y]/)) Z%(Q) UTH<9)U)

IN

5.5 ro(Y;)rg(Yy) Z2.(9)
—~ ~ ~ ~ 2 =
P (Y5 )ra(Yr) — g« (Y )rpx (Y 2 (0
< L H@B)d+ & max oY)75(Yy) ~ 7o () () 52”( )\ @) o2
2¢ 2 g ro(Y)rg(Yyr) Zy(0)
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Under Condition 3.1, |H(6)|x < ZMng for all 6 € B,(0*). Furthermore,

M6 < o< (Y)rg«(Yyr)
r(Y)re(Yyr)

< MY,

and

(Vi) (Yyr) = T (Y3)7g= (Yyr)
ro(Yj)rg(Yy)

P (V) = e (V)| + [7(15) = e (V) [P (Y1)
ro(Yj)re(Yy)

<201 M}

5—9‘ .
1

The inequalities follow. O

A.4 Model assumptions

In this section, we go over some of the implications of the assumptions in Section 3.2.1.
Appendix A.4.1 discusses the properties of the bounded density ratio model of Condition 3.1.
In Appendix A.4.2, we derive bounds on the f5- and {1-norms of % = Eq;lek, as well as

lower- and upper-bounds on the variance of the linearization UTQL ;. as direct consequences of
)

Condition 3.2. In Appendix A.4.3 we characterize the sparsity of the rows of 21;1.

A.4.1 Properties of the bounded density ratio model

Proof of Proposition 3.1. We shall first treat the case #* = 0, and then show how the general
case follows from the special one. Assume [¢)(X)[, < My, for some M, < co. For each x, by

the definition of the dual norm,

(¢ (2), 0)] = [{(2), 0/ 16D)]10] < ()] 0] < oMy
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It is easy to see that for each 6 € B,y (6*),
e~ My < (WX < oMy g em0My < Zy (0) < e@My

and hence,

e20My < (X)) < 20My

In particular, one may choose M, = M, (o) = 2™

This proves one direction of the claim. For the other direction, first note that Condition 3.1
implies

(Y(x),0) <log My(0) +log Zy (#) for all 6 € By(6*).

For each x, o|¢)(z)|« = (¢(x),0) for some 0, € B,y(6*) by compactness, so

(X)), < ot (log My (o) +log Zy (62)).

Using compactness again,

[W(X)], <ot <log M;(0) + max log Zy(9)> ,
10]<o

and the bound is finite by assumption. Now, the right-hand side is a function of g only,

whereas the left-hand side is independent of p. Thus,

[W(X)], < inf 07! <1og M;(¢) + max log Zy(9)> :
0>0 10]<e

This completes the proof for the case #* = 0. For general 6*,

(@), )] < [{(x), 0 — )] + [((x), 07)] <[], (0 + 167]),
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and

((x),0 — %) < log (M} Zy(8)/Zy (67)),
and the proof goes through as before. O]

Under the bounded density ratio model, Zy (6), 7y(y), and f1y,(0) are all locally Lipschitz

continuous in 9.

Lemma A.4. There exist Lo, L1, Lo > 0 such that for all § € By(6*),

| Zy (0) — Zy (6%)| < Lo |0 — 0%, (A.32)
7o(y) — Fpe(y)| < L1 10 — 671, (A.33)
7(6) — (6%, < Lo |0 — 0% (A.34)

Proof. Zy(0), Ty(y), and 7i(f) are all differentiable functions of 6, and hence the mean value

theorem and the boundedness assumption can be used to derive the required bounds. O

It is not difficult to imagine that under the bounded density ratio model, all the relevant
sample quantities concentrate sufficiently fast. The following lemma proves this intuition. It

is always true that for any 6,

W) Zy(0) 1 e (0Te() 1K
W) " Zy®) v 2 2y @)y 2009 (459
and
E {rg(Y)} = / ro(y) fx () dy = / 0+ 7y) dy =1, (A.36)

If, in addition, 7¢(Y") is bounded, then (A.35) and (A.36) can be used to derive the following

results.
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Lemma A.5. Suppose 0 € B,(6*). For any t > 0,

Z\Y(Q) 2t2ny
P{Zy(Q) —1> t} < exp (—m>

and

7 2
P Zy () —1<—tpy <exp _22§—ny_1 .
7y (0) (M — M1
Proof. Apply Hoeffding’s inequality to the random variable rg(Y) € [M 1, M,], E{rp(Y)} =
1. [l

Having highlighted a few of the features of the bounded density ratio model, we proceed
to explain why (3.1) or (3.2) are expected to yield consistent estimators of 6* or 2%, under
Condition 3.1.

The optimization problem described by (3.1) or (3.2) has a convex objective with ¢;-
penalty. It is well-understood that given a regularization level A > 0, a minimizer of the
corresponding regularized objective is consistent for the population optimum, provided that
the gradient at the population optimum is bounded by A\/2 in {s-norm (the dual norm of
the /1-norm), and the Hessian behaves like a positive definite matrix when restricted to the
right set. The boundedness of the density ratio and sufficient statistics help guarantee both.

The gradient of (i pp at 0 is

1 nyx 1 ny R
Vikpigp(0¥) = a. > e(X;) - D ()7 (7). (A.37)
i=1 j=1

Recall 1, = E{y)(X)} = E{¢)(Y)rg«(Y)}. Moreover, 7y+(Y) = {Zy (6%)) Zy (6%)}rg+(Y) and
2}/(9*) /Zy (0*) converges to 1. Thus, each average in the gradient is a consistent estimator
of 1y, so that the gradient as a whole is converging to a zero vector. Because both »(X;)s

and 1(Y)7g«(Y;)s are bounded, a Hoeffding-type bound can be used to control the gradient.
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The gradient of the quadratic part of (3.2), as well as the curvature of both (3.1) and

(3.2), involves the Hessian of (i1 gp:

1 T
2 ~ ~
Vguep®) = = > (v05) =) (005 = () TR,
n
Y i<j<j'<ny
Note that the above only uses the samples from fy. The form of the Hessian makes it
clear that if too many of 7(Y})’s are small, this results in a loss of curvature. Moreover,
when many 74(Y})’s are small, the identity n{,l Z;Zl 79(Y;) = 1 makes it likely that many
T9(Y})’s are also large to balance the sum. This is likely to lead to the Hessian becoming
ill-conditioned. As before, the boundedness of the density ratio provides a protection against

this kind of degeneracy.

A.4.2 Consequences of the bounds on the population eigenvalues

Bounds on Q7

It is an easy consequence of the definitions of Q% , k, and K that
Rl < ’Q*k|2 <kl forall k=1,...,p. (A.38)

Before we turn to bounding the ¢{-norm of Qf"k, in terms of its £y, -“norm”, we look at
some useful inequalities related to /4-“norms”. Fix A > 0, and let S\ = {k : |vx| > A} and
S\ = |S/\| Then,

[olg = Y Jopl? > s)A9,
keS)

so that

sy <A v, (A.39)
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Moreover,

L= D lokl =D lol Yol < Aol (A.40)

kS kS

s
Thus,

< A2 y|L/2

17
lv]; = ‘vg)\|1+‘v5c <s>\ |02+‘U5c [v]g + A q|v|q. (A.41)

To simplify the form of the upper bound, we balance the two terms by seeking r € R such
that

1/2

Ao and AU ul/S < A4l

This is solved by r = —1/(2 — ¢). Substituting this into (A.41),

oly < (1+ foly) ol 77 (A42)
Applying (A.42) to Q7
1/(2— — 1/(2—
2% ‘1 (1+ Q% ‘ k/q(k ) <(1+k 1)8k,/q(k W for k= L,...,p. (A.43)

Bounds on v}

Define
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where %, = Cov{¢)(X)} and X, = Cov[{t)(Y) — py}re«(Y)]. Since %y and %, are

symmetric and positive definite by Condition 3.2, we have

Amax (W}}ngw + 77{/}?@7«) < U;(,ln)\maX(Ew) + W}Z}l)\maX(Ewr) < R/(UX,nUY,n);

and, similarly,

Amin (n}}n% + 7757;121/)74) > &/(NXnMyn)-

Thus,

2 _ 2
K |QF R Q" K
K NX nMYn nxnNyn nxXnlym  ENXnNYn

where the outer-most pair of inequalities use (A.38).

A.4.8 When is the inverse of the Hessian row-sparse?

For our method, one sufficient condition for theoretical validity is consistent estimation of
both 6* and 21;1‘ It is well-understood that when parameters satisfy structural assumptions,
they can be estimated consistently even in high-dimensional settings; this is what motivated
us to use ¢1-regularized procedures for sparse or approximately sparse #* and 21;1. However,
we have EJI = Covg[¢)(X)]7!, and hence Zzzl is determined by «yx. Therefore, to see
whether it is plausible to assume 21;1 is a row-sparse matrix, it is helpful to understand how
E;l is related to vx.

Recall that fx is an exponential family. Lemma A.6 gives the map vx 21;1(7)() under

the condition of regularity and minimality.

Lemma A.6 (Essentially Lemma 1 in Loh and Wainwright [2013]). Consider a regular,

manimal exponential family

[x(z) =exp ((vx,¥(z)) — Alvx)), A(vx) = log (/ exp ((yx,¥(x))) dfﬂ) :
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Figure A.1: The sparsity patterns of qul for Ising models with varying graph structures.
In each subfigure, the first row shows the underlying graph for the Ising model; the second
row, the sparsity pattern of qul; and the last row, the symmetric difference of the supports

of 21;1 and Ei}Gaussian for the edge-edge interaction block. The columns correspond to

p = 5,6,...,12. The figures suggest that the rows of EQZI may be sparse — at least,

approximately, even for Ising models.

(a) chains

N T e T Ty e Ty
R R RN INININ

(c) stars

Frrrrrrr
NN NN NN
B U
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Then,
(Cova[(X)]) ! = VZA* 0 VA(7y),

where A* is the convex dual function to A

A* () = sup {(p, ) — A(7)}-
~e)

Proof. The proof in Loh and Wainwright [2013] is a direct consequence of combining Proposi-
tion B.2 and Theorem 3.4 in Wainwright and Jordan [2008]; the former holds for any regular,

minimal exponential family, and the latter, more generally. ]

Lemma A.6 can be used to show that in the case of Gaussian graphical models, 21;1 has

sparse rows when the maximum degree of the underlying graph is small.

Ezample A.1 (Gaussian graphical models). Suppose X ~ Normal(0,X) for some covari-
ance matrix X € R"™*™_ Then, the probability density function is given by fx(z) =
exp(tr[l x ¥ (x)] — A(T'x)), where T'y = 271271 () = 22, and

1
AT x)=logZ(I'x) = %log(%r) - §log det(—2x ).

By direct computation,

and

1
A* (M) = —% log(2me) — 3 log det(M),

1
V2A*(M) = 5D}, <M‘1 ® M—1> Dn.
where Dy, : R(m+1) s R™ is the duplication matriz, which is defined by the property
2

Dy, vech(M) = vec(M).
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m+1
(Here, vech : S™ — R("27) is the half-vectorization map that vectorizes only the lower-
triangular part of a matrix.) Thus,
£t =2, 0) =2D), T ©T) Dy,

so that 2121 is row sparse if © 71 is row sparse. In particular, the (ab, cd)-th component of

21;1 is nonzero if and only if both 7, 4 and 7, .q are nonzero.

For general Markov random fields, the usefulness of Lemma A.6 is limited due to in-
tractability of A. For the case of discrete Markov random fields, Loh and Wainwright [2013]
study sufficient conditions under which the inverse of a submatriz of ¥, reflects the structure
of the underlying graph, but their proof techniques do not apply to the inverse of the full
matrix.

Thus, we turn to numerical tools for verifying the plausibility of the row-sparsity assump-
tion in the case of Ising models. For small values of the number of nodes m = 5,6,...,12, we
first generate a graph by fixing a topology and drawing weights 11D Uniform([—0.5, —0.2] U
[0.2,0.5]). We then explicitly evaluate the population 27;1 under an Ising model. We looked
at three different topologies: a chain, a cycle, or a star.

The graph structures are displayed in the first rows of Figure A.1. The sparsity patterns
of Zzzl’s are in the second rows. Note that here, the sufficient statistics include the node
potentials; the edge interaction parameters are associated with the last (73) rows of 21;1. For
ease of comparison, in the third rows, we also plot the symmetric differences of the support
of E{Z}Gaussian, which is computed assuming a Gaussian model, and the support of the lower

diagonal block of Ezzl. (We ignored entries with magnitudes < 10_10.) It is clear from the

plots in the last rows that the edge interaction diagonal block of E;l has a structure similar

1

Gaussians Pub some form of
)

to that of X1

1,Gaussian”

21;1 is typically denser compared to >,
row sparsity assumption still appears to be quite reasonable, at least for the examples we

have considered.
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Figure A.2: The value of maxy ‘Q*k‘q as a function of p = 5,6,...,12 for ¢ = 1, 0.5, 0.25,

0.125, 0 under Ising models with varying graph structures. Except for ¢ = 0, the sparse
“norms” grow slowly with p. The figures suggest that the rows of 21;1 can be weakly sparse

for many Ising models.

(a) chains (b) cycles (c) stars

As a further check, we tracked the evolution of maxy, ’Qf“k|qk over the edge interaction
rows of E,;l as m was increased. (No thresholding was applied.) This resulted in Figure A.2.
We observe that although 2121 may violate exact sparsity — as evidenced by the curve
corresponding to ¢ = 0 — many sparse “norms” remain well-controlled even as m is increased.
In fact, for chains and cycles, the plots are flat for ¢ = 0.5,0.25,0.125.

Finally, following the ideas in Ma et al. [2017] and Yu et al. [2020], we remark that a
modified procedure that uses sample splitting can be used to construct provably de-biased
and asymptotically Gaussian estimators of the difference in situations when the rows of Ezzl
are only bounded in ¢;-norm (without being sparse or approximately sparse). The modified

procedure first splits the fy-sample into two, and then uses only one part to obtain 5, and

the other part to obtain Q.

A.5 Auxiliary results for the /;-penalty case

A.5.1 Bounds on the gradients

The two lemmas in this section bound the gradients of the loss functions in (3.1) and (3.2).
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Lemma A.7. Under Condition 3.1 with {1-norm,
P{|VIkLIEP (07)|o > t} < dpexp(—ct®n)

for some ¢ > 0 depending on My, My, only. In particular, if

logm)l/2

n

N > K <
for some K > (2/0)1/2, then
P {2|VlkLiEp(0)|o > Ao} < dexp(—c'Ajn),

for some ¢’ > 0.

Proof. Let juy = E[(X)] = E[0(Y)rgs (V)]. Using ny S0 7(Y)) = 1,

nx 1 ny
Vixriep(07) = —% D KD + o DU (1)
i=1 j=1
1 X 1 X ~

= T D U(X5) + py + p— D {w(Y)) =y} o= (Y))

i=1 j=1
S S R IRaCHIES S R Pt
= M Ty = HpToeits)-
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Condition 3.1 implies that Zy (6%)/Zy (6%) € [M,;~1, M,]. For any t > 0,

P{|VlkLiEp(07)]s > t}

<rf

1 nx " 1 ny y
E;wxz-)—% > ¢ HPY My E;w%)—uw}m*%) >

o0 00

S ) | >
ny — k ’LJC M¢k 2

m 1 ny
+ Y PS M, - > AUk(Yjk) = i o= (Y5)| >
k=1 j=1

DO |+

Since {(Vg (1) — piy) i and {(Ug(Yj ) — py,) 7o+ (Y])}?il are each IID bounded and

mean zero random variables,

1 &
P{ EZW(%’J@) — puy,

=1

t
> 5} < 2exp(—c1t?ny)

and

< 2exp(—cat’ny)

N | o+

1 X
P< M, Ez{wk(yj,k)—uwk}m*%) >
1

by Hoeffding’s inequality, where c1, co > 0 are constants depending on M, M, only. Thus,
P {|VlkLimp(0%)|s > t} < 2pexp(—cit®ny) + 2pexp(—cat®ny) < dpexp(—ct?n)

for some ¢ > 0. N

Lemma A.8. Fort > 2/ny,

P{‘ﬁ(@*)mk - ek‘oo > t}

cthy c’thy
S 2exp | - —1)2.2/(2—qk) +2pexp —1)2.2/(2—qk)
(457 k. (I+57) k.



for some ¢, > 0 depending on M, My, only. In particular, if

1/2
A > K(1+ £k Ds i/qf %) <—k;gym) :

for some K > {2/(0/\0’)}1/2, then

o C//)\anY
P2 HO ) —ep| >Ny <dexp | - 12.2/C—a) |
o0 o B
(1 +E ) Skan
for some " > 0.

Proof. Let H(#) = VZkygp(8), and H() = (2}2,(9)/Z}2,(9))ﬁ[(6) We have ¥,Q% = e, by
definition, and E[H (6*)] = (1 — n}_,l)&p by (A.3). Therefore,

H(0")QF, —e), = {ﬁw*) — H(9*)} o {HO%) — E[H(0%)]}QF, — nyley.
For t > 2/ny,

P{’f](@*)Q _ep

>t}<]P’{‘H0*Q (1—nY Jeg

>g}
£}+P{|{H(€*) H(09)]}2%| }

< P{‘{ﬁ(@*) — HEY| >

By Lemma A.9,

B{ |t - e,

t } ct’ny
> — 5> < 2exp | — )
o 4 ( (1 +/j1>25i/q(§%))

)

where ¢ > 0 is a constant depending only on M;, My,. By Lemma A.10,

P{\{H(e*) H(0M)]}9% | } <9 dt*ny
P exp (1 +ﬁ—1)282/(2_qk) )

k,qi
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where ¢/ > 0 is a constant depending only on M, M. Thus,

P{’ﬁ[(e*)gfk - ek‘ >t}

o
t2 /t2
< 2exp _C1 Z};/(Q—Qk) +2pexp f1 ;32’/(2_%)
(1+57) g 1+ X

A.5.2 Bounds on the Hessian

This section contains the technical lemmas that go into bounding the ¢ — f~o operator
norm — a.k.a. the maximum magnitude component — of the Hessian. The ultimate goal is
to control the foo-norm of the matrix-vector product V20xrmp(6") Q.. Since a bound on
the /1-norm of Q% is easily implied by our structural assumptions on %, it is natural to
consider the ¢1 — f~, operator norm of the Hessian in bounding the matrix-vector product.

To compute the bound, we first observe that V2(xpmp(0*) ~ ¥y, and decompose the

Hessian into a sum of three terms:

H(0") = {H(0") — H(0")} + {H(0") — E[H(6")]} +(1 — ny,") 5y,

Lemr;lra A9 Lemm; A.10

where H(0) = V2lxr1pp(0), and H(0) = (Z3(0)/23 () H(6).
Lemma A.9 reduces the difference H(6*) — H(6*) to the deviation of the sample average
of the ratios from their expectation. Lemma A.10 is the usual concentration bound for

U-statistics applied to our problem.

Lemma A.9. Suppose Condition 3.1 holds, and let 0 € By(6*). For any v € RP,

~ t2n
PURHEO) - HO) o] >t} < 2exp <_2M;}}M§(Mr n 1)2(1;4,, ) m%) |
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In particular,

~ t2ny
P{H(O) — H(O >t <2 — .
(O = 1O > 1 = exp( 2M¢M§<Mr+1>2<MT—M;1>2)

Proof. Condition 3.1 implies that Zy (6)/Zy (0) € [M; "}, My], and that H(6) has uniformly

bounded components. In particular, on 39(8*), for any k, 0 € {1,...,m},

TaO)|= |5 X {00 — o)} {Y) — a(Y3) (Y3 )T (Y,)
Y

1<j1<ge<ny

1 ~ ~
<= > k(Y = e (Vi) [ei(Yg,) — i (Yg,) | Fa(Y))Pe(Yy0)
Y 1<ji<jo<ny

< 2M; M.
Now,
. A0 () Zy(9)\ 5
H(9) — H(O) = (1 Z%(9)> H(9) = (1 Zy(9)> <1+ Zy(e)) (),
so that
P{|{H(6) _H(9>}vjoo > 1) gp{‘ﬁ(e)‘wm Zﬁgi +1 Z%; 1 >t}

Zy ()
< 204 (M, + 1 Y oo g .
_]P){2qu T( rt )|U|l Zy((g) >t}
It then follows by Lemma A.5 that
P{|{H(0) — HO)}v| >t} <2 ny
— v $2:¢ — .
so =T oM ME (M, + 120y — M2 o]

[]

Lemma A.10. Suppose Condition 3.1 holds, and let 6 € B,(0*). For any v € RP and any
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In particular,

2n
P{|{H(0) — E[H(0)]}v|,, >t} < 2exp (—MJLT’;HQ + logm) .
P vl

and

27’L
P{|{H(0) — E[H(6)]}| 5 >t} < 2exp (—163\4—4‘344 +1ogm> :
w r

Proof. For any k € {1,...,m} and for any a > 0,

B {e} {H(6) ~ E[HO)]}v > t}
=P {lolya- ef {H(®) ~E[H @)}/ loly) > at}
<P {exp (ol a- ¢} {H(6) ~ EHO)]}(v/ [v],)) > exp(at)}
< exp(~at) E [exp (|oly a - ¢ {H(0) ~ E[H(O)]}(o/ [v],))]

< exp (—at + 4M$Mf} |v|% a2/ny> :

where in the last line, we have used Lemma A.11. Optimizing the bound, we get

+2

P{ef{H(0) —E[H(0)]}v > t} < exp <_m> .
P vl

A similar argument applied to the other side gives us

2n
P {|ex {H(0) — E[H(0)]}v| >t} < 2exp <_16Mt4TY4]|2> :
P vl

120



Taking the union bound over all k € {1,...,m},

271
P{|{H(0) — E[H(0)]}v|,, >t} < 2exp (—liTZ"Q + logm) .
P vl1

O

Lemma A.11. Suppose Condition 5.1 holds, and let 0 € By(6*). For any u,v € RP with

luly = |v]y =1 and any t € R,
E [exp (t - u" {H(0) — B[H(60)]}v)] < exp(dMy Mt /ny).

Proof. Define

> . 2 .
U= T=1/ny " H(0)v = ny(ny —1) 1§j<zj;§ny 9, Yy),
where
9(y1,y2) = (W(y1) — ¥(y2),u) ((y1) — ¥ (y2),v) re(y1) ro(y2).
Let

1
VY, Yny) = oy /2] {9(3/1#2) +9(y3,y4) + - +9(Z/(2Lny/2j—1)ay(any/2j))}
and write

1
U=— 2, V) Yony))
Y.
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where &y, is the group of permutations on {1,...,ny}. For any t € R,

E [exp (¢ - u"{H(0) — E[H(0)]}v)]

_E [exp (#t-(U—EU))]

1—-1
:E{exp (%t

Xi Z (V(Ya(l)’ . ’YO'(TLY)) - K [V(Yg(l)’ e 7Y0(ny)>}>

ny!

1 1—1/ny
i 2 Bl (g
< aEGnY

x (V(Ya(l)’ o Yo(uy) —E [”Ya(ﬂ’ . ’Ya(ny))m]

< exp (MM ).

where the second-to-last inequality follows from the Jensen’s inequality and the last inequality

follows from Lemma A.12. O

Lemma A.12. Let V(Y1,...,Yy, ) be as in the proof of Lemma A.11. For anyt € R,
E [exp (t- (V(Y1,...,Yny) —E[V(Y1,..., Yoy ]))] < exp(l6M$M7flt2/ny).

Proof. Consider a random variable G with |G| < D and EG = g. Using the convexity of the

exponential function,

oG < D_Ge—Dt+G+D6Dt

- 2D 2D ’
so that Yy Di
E[et(Gfg)] < ety (D —g)e + (D + g)e
2D
_ oty DD =g+ (D +g)eP)
2D

D + D +
= exp (—(D+g)t—|—log (1 - 2Dg + 2D962Dt>) .
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Put t = 2Dt and p = (D + ¢)/2D, and write

h(t) = —pt +log(1 — p + pel).

Then, N
i
~ e
W) = —p+ ———
1 —p+ pet

B t t t
h"(?) _ (1 p)p6~ _ pe _ 1 pe ) < 1’
(I1—p+pe)2  \1-—p+ pet l—ptpet) 4

since pexp(t)/(1 —p + pexp(t)) € (0,1). By Taylor’s theorem,

and

~ ~ 1 1
h(t) < h(0) + ' (0)t + gfﬂ = 5%2,

so that
E[e(G-9)] < D*/2, (A.45)

Now, g(Y7, Yj/)’s occurring in V(Y1,..., Yy, ) are IID with

19073, Y30l = [ (0(7) = 0V, 1) (6(¥5) = (¥, 0) rg(¥y)rp (V)
< |00 — w0

e.¢]

ro(¥j)rg(Yy) < 4M2M2, (A.46)

since |u|; = |v]; = 1. Applying (A.45) to the random variable g(Y7,Ys),

B oxp (g (001.99) - Bl 1)) )| < explaafasted o).
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By independence,

E [exp (t- (V(Yl, o Yny) —E [V(Yb e vYny)D)]

Lny /2]
=E [eXp (Ln;/QJ (g(V1,Y2) —E [9(Y1,Y2)D)] < exp(16My Mt /my).

]

A.5.83 Restricted strong convezity

In the following,

K(S,8,p) ={v e RV : Juge|; < Blvgly + (1 + B)p, |v] <1},

where S C [p] is nonempty, § > 0, and p > 0.

Lemma A.13. Suppose Z)Q,(H*)/Z\%,(H*) > ¢ for some ¢ > 0, and
I1H () = EH(6%)|l; < 5/(2(2 + B)°)

for some s € {1,...,m} and > 0. Then for all nonempty S C [p| with |S| < s and for all
p =0,
N 2
v H(0%)v > % <\v|2 - %) for all veK(S,B,p),
as well as

R 2
vIH(O)v > exp (—2M¢(MT2 +1)]0 — 9*|1) : % (]U|2 — p_) for all v e K(S,B,p).
s

Proof. We have

T 17 *U_Z}Q/(e*)UT \y — _L UT v UT * )y
JUH(6") - Z0 H(6") _{(1 ny) v + v {H(0%) — EH(0%)}v] .
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For ny large enough, under the conditions of the lemma and applying Lemma A.15,

e 5 K |v]
v H (0 )UZC<E|U| _WQ vly + 1/12)>

> % (W - p—2) . (A.47)

For the second part of the statement, first note

N To(Yj)ro(Yyr)
VTHE 2 min 2 e

= min exp { (1/)(3/]) + ¢(ij)>T (6 —6%) —2log {Y(Q ) } vTﬁ(Q*)v.

37

TH(6*)v

By convexity of LogSumFExp,

—log Zy (0) + log Zy (6%) > —V[log Zy (6)]" (6 — 6*)

:——Z'r’g T(O - 0%) = —MyMZ |0 — 0|,
so that
Zy (0
exp {(9 0T (0()) + 0(v;)) - 210g 2 >} > oMy (M2 +1)]6 - 67,
Zy (6%)
and hence,
VEH ) > exp <—2Mw(M7? T 1)) e*|1) JTH (0.
Combining with (A.47) from the first part finishes the proof. ]

Lemma A.14. Forc¢ >0, >0, ¢ € (0,1), whenever

ny > O(r/2) M2M2slog?(s) log(m V ny) log(ny)2(2 + B) /<2
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where C' > 0 denotes a known, absolute constant, we have

14 (67) — EH (67|, = o [0 {H(6") —EH(6%)}v| < /(2 + B)°)

with probability 1 — €.

Proof. Similar to the proof of Lemma A.11, let

2 2
Uy = UTH(0*>U = Z 9o (Y5, V),
L m by =1 G, T
where
go(y1,92) = (W(y1) — ¥(y2),v) (P(y1) = ¥(y2), v) re(y1) To(v2)-
Let
V'U(yla s ayny)
) 1
T (gv(y1,y2) + gv(Y3,y4) + -+ —|—gv(yZLny/Qj—lvaLny/ZJ)) ,
and write
1
e n_y!(,ge: Voo Yotuy))
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where &y, is the group of permutations on [ny]. Then

E | sup |Uy — EUy|
[v]p<s
v]p=1

1
=E| sup |— Z VU(Y0(1)7 ... 7Ya(ny)) — EVU(Yg(l), .. 'Ya(ny))

<E | sup |[Vo(Y1,...,Yny) —EVy(Y,..., Vay)|
[v[p<s
|”|2 1

Denoting Z; = {1)(Yaj_1) — (Yaj) } {rg(Yaj—1)re(Ya;)}/*, we have

E | sup [v"{H(6*) —EH(6%)}v|

[v]g<s
|U|2:1
- 1/n [lny /2]
S—YIE sup ot Z ZZT [ZjZJ-T} v
2 [v]g<s
[v]y=1

Note that |Z;|oc < 2M,,M;. Then an application of Lemma 11 of Belloni and Chernozhukov
[2013] gives us
E | sup [v"{H(0*)—EH(0*)}v|| < a2 + ani'/?,
v]p<s
vl=1
where a2 = CMiMzslog (s)log(m V ny)log(ny)/ny, C > 0 is a known, absolute constant

inherited from the lemma. Using Markov’s inequality, we get that

sup [T {H(6*) — EH(6%)}o| < 5/(c(2+ B)?)
olp=1
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with probability 1 — ¢.

Lemma A.15 (Lemma 4.9 of Barber and Kolar [2018]). For any M € RP*P and s > 1,

2
v Muv < ||M]|| (|U|2 + %) for all veRF.

A.6 Auxiliary results

A.6.1 Gaussian approrimation lemmas

Lemma A.16. Forw € RP, let

and
v2 = v2(w) = Var [nl/QAn( )} .
Then,
2C MM,
sup P{nl/QAn/vn < t} - @(t)‘ < Ty ‘L;‘Q,
teR X iy, nvnn/

where C' > 0 denotes a known, absolute constant.

Proof. Write

nx ny
1 w, h(X;) — w, fgy — W(Y:)) e (Y
A = L o 065) —ty) S5 oy = 05 )
P NX,nVn o My,nVn

Now,

[0 0(X) = )| _ Myl [y = () e (V)] 20 My [
NX.nVn ~ NX,ntn HEXD ~ Ny;aUn
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Noting that M, > 1, the Berry-Esseen inequality (Theorem 3.4 of Chen et al. [2011]) yields

2C M, My, |w
sup P{n1/2An/vn < t} —@(t)\ < : “1'2,
teR NX My nvnn /
where C' > 0 is a known, absolute constant from the theorem. O

Lemma A.17 (Lemma D.3 of Barber and Kolar [2018]). If

sup [P{A <z} — ®(2)| <eyq and P{[B| <dp,|C| <dc} =21-epc
z€R

for some 6g,dc,ep, e € [0,1), then

5
sup [P{(A+ B)/(1+C) < 2} — B(2)| < 65+ —C— + 4 +cpe.
z€R 1—-d¢

A.6.2 Consistency of the variance estimator

Lemma A.18. On the event that

0—0 <dg |4 -9 <0 and ISy =Syl IS 07) — Zyll, < b5 /4,
the variance estimate (3.6) satisfies
0 — o}l < (nxnvn) {19517 O + 205 09) + (3n + 2L3 b + ISy, + 1Sl ) 67 }

Proof. Let

-1 —1
2pooled = nX’nZz/J + ny’nzz/zr-
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We have

@\]% — U]%, = Qazpooledﬁ.k - Q.*]3Epooleinkk
= O (B, S 0) Ot = O L B S}

= nX,n (QT]‘{Eka - Q*];;rxwﬁ*k> + nY,n <QTkzw;:((9)Qk - Q*];I‘qurﬂ*k> .
The first term is bounded as

QL Y0 — Q8,00

<[5+ [0, )|

2

~ ~ |2 ~
< 1%y = 2yl Qk‘ +IZpll, (25 — 2

< 30w (1957 + 67) + I, 57

Similarly,

QLS (O, — UTT

< [ORLZyr(0) = Dy Q| + |@ = 2T Qe — 23]

~ ~ 2

< Zyr(0) — gl Qp — QY
~ ~ ~ ~ |2

< (I47(0) = Sya@)I, + Iye 0" = Syl ) ||+ Tyl

~ ~ |2
< (B8 10 = 01+ 1Sy50%) = Syell,) [k + NZ gl

~ |2
Q| + Il

~ 2
Qp — Q%

2

Q. — Q*k

< (22309 + 30 (|905]° +02) + =y, 0%

where the penultimate line is by Lemma A.19. Thus,

57 = oFl < (nxanyn) " {19517 O + 2L3 8) + (85 + 2L5 09 + ISyl + 1Syl ) 07 }
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Lemma A.19. There exists Ly > 0 depending on My, My, only such that
I1S47(0) = Sy (09I, < L3|0 — 0%|  for all 0 € By(6%).

Proof. By applying Lemma A.4 after computing the form of each §¢;k/k(9) — §¢¢ka 0*). O

Lemma A.20. Under Condition 3.1 with £1-norm, there exist constants K, c,c > 0 depending

on My, only such that for any t € [K (log m/nX)1/2 1],
P{’ﬁw - E¢’oo > t} < cexp(—dt*ny).

Proof. Let k. k' € {1,...,m}.

1 &

Sﬂ%% N Zwk/k B @ Zl (wk’(Xi,k’) - /Wlkl) (wk<x17k) - 'ud’k) N E¢k’k
Z:
1 & e
— & — ¢ (X, 1) — , - @D ) - :

Suppose t satisfies the conditions of the lemma, and suppose

1 &
— > p(@ig) =ty | <t VK,
o~ ; k(T k) — gy,
1 & /
E lzzl <wk/(X7j7]€/) - szk,) (@bk(l’z,k) - ,uql,k) - Ez/,k,k <t VEkK.
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On this event,

‘Ew - Zw‘oo = Dax ‘Zw,kzkl - Ew,km‘

1<k ka<m
= 1<1§1%§<m nx 4 Z {Vhy (X3) = 1 gy } {00y (X3) = tp ey } = Bp oy
2
+ Jnax | ny - Z Uiy (Xi) — by ey
<t 42
<9,

using the upper bound on t.

Now, the boundedness of ¥(X) implies

1
P{_
n

nx
V(i k) — 1
X; k(i k) — o,

> t} < 2exp(—clt2nx),

1
_X Z <wk/(Xi,k/) — Hq/)k,) (W:(%,k) - 'ul[}k) o Zwk/k

1=1

nx
]ID{
n

> t} < 2exp(—02t2nX),

where c1,cg > 0 are constants depending on M, only.

Thus,

]P’{‘f]w — Edj} > t} <2p exp(—cthnX) + 2p? exp(—02t2nX) < 4p? exp(—03t2nX),
o0
(A.48)
where cg > 0 is another constant depending on M,, only. (A.48) can be simplified by using

the lower bound on ¢:

P{)iw - Zwl > t} < cexp(—ct*ny),
oo
where ¢, ¢ > 0 are constants depending on My, only. O]
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Lemma A.21. Under the bounded density ratio model (Condition 3.1), there exist constants

K,c,cd >0 depending on M, My, only such that for any t € [K (log m/ny)l/Q, 1],

{‘EW ZW > t} < cexp(—dt*ny).

Proof. Let k, k' € {1,...,m}. We have

. . Z2(60%) Z2(6%)
* _ N * 7Y Y .
Slﬁk;'k(e ) — Xy, = {Swrk’k(e ) 72 (9*)21/”"1@%} T (2 (6%) L) Xy,

2
Y Y
with
q * 73 (9*)
w?k/k( )_Z\%Y/(Q*)Zzprk/k
ZZ (9*) 1 ny
2}2{(9*) [nY ]z: <¢k/( 7, k/)Tg* (Y) u¢k,> (¢k< )Tg* (Y) “1/%) — Zwrk’k
1 1
_ n— Z ¢k/(yj7k/)7’9(yj) - ka, n_ Z Iﬁ]{;(Y]J{;)Tg(Y]) — [y,
Y =1 y o
and

07 ) (| o)) (| Zy(e)
Z2(6*) Z2(6*) Zy (0%) Zy(0%) ]

Condition 3.1 implies that Zy (6*)/Zy (8*) € [M;~1, M,], as well as that Xy loo is bounded

by some constant. So,

5 (9 )5
Sw?k/k (6*) 9 1/)rk/k

<M2 [ wk’ 7, k’)rﬁ* (Y) ud%/) (wk( )7“9* (Y) 'udjk) o Ei/””k’k

Z V(Y — [y,

+ |— @D/Y'/T — Uy,
ny; k(Y )ro(Y5) — iy,

|
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and
Zy (0%)
Zy (0%)]

< MPL+ M) Sy | |1

Z2(6%)
‘ (’\}2/ ) 1) Ewrk’k
Z5(0%)

Suppose t satisfies the conditions of the lemma, and suppose

E (Y — | <t Yk,
_1 /
nYZ(%'(Yj,k’)Te*(Yj)—uwk,) (kY p)res (V) = pp,) = S | ST VK.
-

On this event,

Syr, (07 Z%(e*)z < M2(t+ %) < 2M2t
w?k/k( >_ 2\2 (0*) Y| = 7‘( + )— T
Y
and
Z2 (0%)
Y 2

(G2 1) s < 320 20,

and hence,
Syr(0") — Typ| < K

for some constant K > 0.

We finish the proof by bounding the probability of the complementary event. By
Lemma A.5,
Zy (0)

P{ Zy (0)

for some constant ¢; > 0 depending on M, only. On the other hand, the boundedness of

-1

> t} < 2€Xp(—61t2ny),

(Y )rp«(Y) implies

P Zwk e+ (Y)) = pp o) >t p < 2exp (—62t2ny> ,
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ny

1
P nyz{@% 7o (Y5) = bp iy } {0y (V)70 (Y5) = tiap ey } — Spr ooy | > £
7=1

< 2exp (—03t2ny> ,

where ¢, c3 > 0 are constants depending on M;, My, only.

Thus,

P{|Su(0") =Sy | >t}

< 2€Xp(—clt ny)+ 2p eXp(-CQtQTLY) + 2p? exp(—03t2ny) < 6p? exp(—04t2ny), (A.49)

where ¢4 > 0 is another constant depending on My, My, only. (A.49) can be simplified by

using the lower bound on ¢:

{‘EW 21/17" > t} < cexp(—ct?ny),

where ¢, > 0 are constants depending on M, My, only. O

A.7 Implementation details

A.7.1 Pivotal estimation procedures

Pivotal sparse KLIEP

The default option in KLIEPInference.jl (https://github.com/mlakolar/KLIEPInference.

j1) replaces (3.1) in the initial KLIEP estimation step with the following modified version

m
6 = arg min bk rep(%; (X2 A2 + Ao D rlOk, (A.50)
=1
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where \gg = (1 + a)® (1 — b/p) for some small a,b > 0 is the universal penalty and 75, > 0
is the kth penalty loading. Following Belloni et al. [2014], we used a = 0.01 and b = 0.05
for A\gp The kth penalty loading 7 is chosen to match the sample standard deviation of
Vilkriep (0%); this has the effect of penalizing components with larger variance more.

As 6* is unavailable to us, we take the following two-step approach:

Algorithm 13 Two-step procedure for minimizing (A.50)

Initialize 6 = 0.
Compute the initial penalty loadings: for k =1,... p,

~

T = Epooledkkj(e)-
Compute 0:
. m
6 = argmin fpmp (0 {Xi 12 {Y51550) + Ao > kIO
k=1

Update the penalty loadings: for k =1,...,p,

~ ~

Tk = Epooledkkw)’

Estimate @ with the updated penalty loadings.

The intuition behind Agg = (1 + a)® (1 — b/p) and 74 ~ (Var[VLxrmp (67)])1/? is as

follows. Estimation using (A.50) is consistent provided that

P {m]?X ykaKLIEp(e*)/Tk’ > )\90} is small. (A.51)

For sufficiently large sample sizes, we would have V.l mp(0%)/ (@[VMKLIEP(Q*)])U 2 x
Normal(0, 1), and hence for Agg = (1+a)®~1(1 —b/p), an upper bound for the probability in
(A.51) is about b > 0. Thus, b can be interpreted as a tolerance parameter that controls the
probability of the undesirable event. Similar approach was taken in Belloni et al. [2011, 2014,
2019] in the context of linear regression, nonparametric regression, and error-in-variables
regression problems. For detailed discussions of the motivation and the relationship to the

moderate deviations theory, we refer the reader to these works and the references therein.
136



In particular, a rigorous proof in the context of our problem would involve establishing a
moderate deviation bound [Jing et al., 2003, de la Pena et al., 2009] for the self-normalized

gradient [VkEKLIEP(9*)/(\75"[VMKLIEP(9*)])1/2]7/?:17 which we leave up to future work.

Sparse Hessian inversion via the scaled lasso

The default option in KLIEPInference.jl (https://github.com/mlakolar/KLIEPInference.
j1) replaces (3.2) in the Hessian inversion step with a scaled lasso formulation [Sun and
Zhang, 2012]. In particular, we use the approach described in Sun and Zhang [2013] that
allows us to estimate a sparse inverse of the Hessian without hyperparameter tuning. This
implementation is used for all of our experiments.

In the below, we describe the procedure in more detail. The equation (3.2) is modified so

that Q. = —73.dj;, where

T

N Tv72 )
dj.,Tj, = arg  min "V txuiep (0)d +

p
drd=—1 or 5 T Ao Z Vi/kléKLIEP(QNdkA (A.52)

k'=1
and the universal penalty level A\g = (2log m/ny)l/ 2 does not depend on the unknown
problem specific parameters. Following Sun and Zhang [2013], the solution (c/l\k,?k) is

obtained from the following iterative procedure: For a detailed discussion of the procedure

Algorithm 14 Iterative procedure for solving (A.52)

Initialize c?k = ey.
repeat

7 = df V2 ep (0)dy,,
A= )‘0?/{:’

- 1 -
dj, = arg mc%n §dTV2€KLIEp(9)d — dTek + A ‘d‘l .

until converged

and its theoretical properties, the reader is referred to Sun and Zhang [2013].
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A.7.2  Regularization parameter tuning

In all our experiments, including the experiments published only in this supplement, we
used Algorithm 14 for Step 2 with the universal penalty level Ay = (2logm/ ny)l/ 2 For
Experiments 1 — 3, we use Algorithm 13 for Step 1 with the universal penalty level gy =
1.01&71(1 — 0.05/p). Experiments 4 — 5 use the original sparse KLIEP formulation [Liu
et al., 2017] which does not set the regularization parameters in a data-adaptive way. For
Experiment 4, we used \g = (4logm/n X)l/ 2 because for Ising models, the components of
the gradient V/lkyrp(6*) are bounded by 2 when 6* =~ 0.

Parameter tuning is an issue for most, if not all, high-dimensional estimation procedures,
and ours is no exception. As noted by one reviewer, it is at least unclear how the regularization
parameter pair can be chosen to achieve the best performance. In the case of the bounded
model, it is possible to make an educated guess for the first-stage regularization parameter
Ap (Lemma A.7), and this is what we do in our experiments. Choosing the second-stage
regularization parameters )\; is a more delicate matter.

One heuristic is to cross-validate the three-stage procedure in its entirety over a 2D grid
of (Ag, \i.) pairs using the empirical KLIEP loss. A clear drawback of this strategy is that it
is computationally intensive. It also has very little theory.

A good alternative is to use pivotal estimation procedures for the initial estimation steps.
In our simulations, the combination of Algorithm 13 and Algorithm 14 has been seen to yield
excellent performance while removing the need for hyperparameter tuning. For theory, we
need the initial estimates obtained using Algorithm 13 and Algorithm 14 to be consistent.
While we leave this up for future work, theoretical results for similar problems (e.g., Belloni
et al. [2011] in the case of Step 1 and Sun and Zhang [2013] in the case of Step 2) lend
support to our claim.

Additionally, to study the sensitivity of the overall procedure to the choice of the regu-
larization parameter when the original sparse KLIEP formulation [Liu et al., 2017] is used,
we ran additional experiments where we varied Ay on a grid of five values under the same
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set-up as that of Experiment 1. For Step 2, we still use Algorithm 14 with the universal
penalty level Ay = (2logm/ ny)l/ 2. We record the coverage and the median width of the
95% confidence intervals as well as the bias of the final estimate over 1000 independent
replications. The regularization parameter settings are detailed in Table A.2. The results are
shown in Tables A.3—A.8. The coverage, the median width, and the bias are all stable for
both SparKLIE+ procedures. The reversed and the symmetrized procedures do show some
instability, but it is likely that this has more to do with the fact that both procedures have a

larger sample complexity relative to KLIEP. See Remark 3.5 in Section 3.2.2.

A.7.8 Studentized bootstrap

Consider the Studentized analogue of the statistic in (3.7)

W =Wy ny = max n/2\0,, — 07|/, (A.53)

=1l,..

where @vk is either SparKLIE+1 or SparKLIE+2 estimator and v}, is the estimator of the
standard error from (3.6). W can replace T as the reference distribution in carrying out
statistical inference. Letting cy, be the g-th quantile of T, 0 + (CW’l,a/nlﬂ)ﬁ, where
v = (@k)izl, is a 100 x (1 — @)% confidence region for #*. Similarly, the test that rejects

if maxy, |05/ > cw—a/nl/?

controls the family-wise error rate at level a for the null
hypothesis Hy : 0}2 =0 for all k € {1,...,m}. This approach has the advantage of being
adaptive to the heterogeneity in variance across multiple components.

The bootstrap procedures of Section 3.1.2 can be easily modified to yield estimates of the

quantiles of W. In Algorithm 4, this is accomplished by replacing (3.8) with

nx
wh) oL g N (b




In the case of Algorithm 5, one replaces (3.9) with

—

W) = max 1215 — G, /5. (A.55)

A.8 Supplement to Section 3.3

A.8.1 Competing procedures

noracle
Qk

The oracle estimate is the k-th component of the solution to the following problem:

arg min (K Ep (9; (X2 {Yj}?il) subject to supp(¢) C {k} Usupp(6).  (A.56)

This is clearly infeasible due to the occurrence of #* in the constraint. It is meant to be a
performance benchmark rather than an actual alternative.
The naive re-fitted estimate 5}; is the k-th component of the solution to the following

problem:

arg min (K pp (9; {Xi2 {Yg}?il) subject to supp(f) € {k} Usupp(d). ~ (A.57)

This replaces the unknown 6* in (A.56) with an estimated value f. This can have a near oracle
behavior if § recovers the true support with high probability. Unfortunately, the sufficient
conditions are often not met for many interesting applications; they are also notoriously
difficult to check from the data [Liu et al., 2017]. As such, the procedure is expected to be
brittle to errors in model selection.

Finally, SparKLIE+2 is the procedure obtained by choosing double-selection rather than

one-step estimation in Step 3 of SparKLIE+1 (Algorithm 3), i.e.,
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Step 3. 5,2€+ is the k-th component of the solution to the following problem:

arg mein (K1LIEP (9; {Xi}:gp {}9}?):/1)

subject to supp(f) C {k} Usupp(f) Usupp(£2.;).

This looks deceptively like (A.57), but the inclusion of the coordinates with large correlations
with £ makes the procedure robust to model selection mistakes. SparKLIE+2 is first-order

equivalent to SparKLIE+1 [Chernozhukov et al., 2015b].

A.8.2 Parameter generation for Fxperiment 1
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Figure A.3: The realized edge weights for the Chain 1 pair. The edge weights in the

differential network were fixed beforehand. The remaining “free” weights were generated

1D Uniform(—1, 1) once as displayed below, and then fixed. The edge corresponding to the

target of inference is marked in red.
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Figure A.4: The realized edge weights for the Chain 2 pair. The edge weights in the

differential network were fixed beforehand. The remaining “free” weights were generated

11D Uniform(—1, 1) once as displayed below, and then fixed. The edge corresponding to the

target of inference is marked in red.
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Figure A.5: The realized edge weights for the Tree 1 pair. The edge weights in the dif-
ferential network were fixed beforehand. The remaining “free” weights were generated

11D Uniform(—1, 1) once as displayed below, and then fixed. The edge corresponding to the
target of inference is marked in red.
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Figure A.6: The realized edge weights for the Tree 2 pair. The edge weights in the dif-

ferential network were fixed beforehand. The remaining “free” weights were generated

1D Uniform(—1, 1) once as displayed below, and then fixed. The edge corresponding to the

target of inference is marked in red.

(a) x
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(c) difference
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The advantage of our method is most clearly illustrated in settings in which initial sparse
estimates are likely to miss parts of the support that are nonetheless important for inference.
That is to say, both SparKLIE+ and the naive procedure described in Appendix A.8.1 are
expected to do well when the support is recovered with high probability. However, when this
is no longer true, only SparKLIE+ will perform well.

We constructed eight graph pairs to highlight this difference. See Figures A.3—A.6. We
have four designs, and each design has a 25-node version and a 50-node version. The designs
are labeled as Chain 1, Chain 2, Tree 1, and Tree 2, where the first part refers to the structure
of vx and the second, the type of modification used to obtain vy from vx.

The edge weights were picked in the following manner. First, the weights for vy were
generated IID Uniform(—1,1). Next, 7y was obtained from yx by modifying five edges.
Thus, the difference graph always contained five nonzero edges.

Each design has a fixed inference target, a.k.a. the edge of interest. For Chain land Chain
2, this was always the edge (5,6). For Tree 1 and Tree 2, this was always the edge (1,3). The
magnitude was always fixed at 0.2. By contrast, two of the nuisance edges had magnitude
0.4, while the two others had magnitude 0.2. The signs were chosen so that the none of the
edge weights had magnitudes exceeding 1.

For each design, we first generated a 25-node version, and then embedded the 25-node

version into a 50-node one.

A.8.8 Data generation

In Experiments 1 — 5, the data were generated as IID draws from an Ising model with zero
node potentials. A Gibbs sampler [Geman and Geman, 1984] was used. For Experiments 1,
2, and 5 burn-in was 3000 and thinning was 1000. For Experiments 3 and 4, burn-in was

3000 and thinning was 2000.

A.8.4 Additional figures and tables for Fxperiment 1
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Figure A.7: The distribution of nl/2(5(5’6) — 92‘5 6))/6(5,6) under Chain 1, where 5(5,6) is the

Naive re-fitted estimator (left), the SparKLIE+1 estimator (middle), and the SparKLIE+2
estimator (right), first as a Normal Q-Q plot (top) and then as a histogram (bottom). The

gray dots in the Q-Q plot is the Oracle case. The orange curve in the histogram is the density
of Normal(0, 1).
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Figure A.8: The distribution of nl/2(5(5’6) — 92‘5 6))/6(5,6) under Chain 2, where 5(5,6) is the

Naive re-fitted estimator (left), the SparKLIE+1 estimator (middle), and the SparKLIE+2
estimator (right), first as a Normal Q-Q plot (top) and then as a histogram (bottom). The
gray dots in the Q-Q plot is the Oracle case. The orange curve in the histogram is the density
of Normal(0, 1).
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Figure A.9: The distribution of n!/2 (5(173> — 92"1 3>)/@(1’3) under Tree 1, where 5(1,3) is the

Naive re-fitted estimator (left), the SparKLIE+1 estimator (middle), and the SparKLIE+2
estimator (right), first as a Normal Q-Q plot (top) and then as a histogram (bottom). The
gray dots in the Q-Q plot is the Oracle case. The orange curve in the histogram is the density
of Normal(0, 1).
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Figure A.10: The distribution of nl/2(5(1’3> — 92‘1 3))/’17(173> under Tree 2, where 5(173) is the

Naive re-fitted estimator (left), the SparKLIE+1 estimator (middle), and the SparKLIE+2
estimator (right), first as a Normal Q-Q plot (top) and then as a histogram (bottom). The
gray dots in the Q-Q plot is the Oracle case. The orange curve in the histogram is the density
of Normal(0, 1).
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Table A.1: Comparison of the empirical bias of different estimators. For each estimator 51@7
the empirical bias is measured as the average of 6, — 9;‘; over 1000 independent replications.
The values displayed below have been multiplied by 100.

vx vy P nx ny Oracle Naive SparKLIE+1 SparKLIE+2

Chain 1 25 150 300 —0.505 8.033 —1.894 —0.621
50 300 600 —0.360 7.692 —2.301 —1.673

2 25 150 300 —0.819 6.920 0.526 —1.013

20 300 600 —0.039 7.636 1.516 —0.369

Tree 1 25 150 300 —1.763 6.698 —2.323 —4.143
20 300 600 0.256  8.975 0.875 —0.539

2 25 150 300 —0.770 3.803 1.168 —0.587

50 300 600 —0.611 5.306 —0.248 —0.826

A.9 Additional experiments

A.9.1 FExperiment 2: Power of the normal-theory based test

We study the power of the normal-theory based test with SparKLIE+1 and +2 estimators.
The parameters for this experiment were generated by first fixing vy at the vy of the 25-node
Chain 1 pair from Experiment 1, and then obtaining 124 distinct graphs for vx by varying
the value of the change of interest over a grid 6 = —0.75, —0.60,...,0.75 in one of the four
settings described below:

Setting 1. (NONE) the edge of interest is the only edge that changes from vy to vy,
Setting 2. (STRONG) there are two additional strong changes of magnitude 0.4,
Setting 3. (WEAK) there are two additional weak changes of magnitude 0.2, or
(

Setting 4. (MIXED) there are both weak and strong changes.

See Figures A.11-A.14 for illustration.
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Figure A.11: The realized edge weights for NONE. The ~y here is identical to the vy of
Chain 1. yx is then obtained from 7y by modifying the target edge (marked in red) by 4.
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Figure A.12: The realized edge weights for STRONG. The vy here is identical to the vy of
Chain 1. yx is then obtained from ~y by modifying the target edge (marked in red) by 4. In
contrast to NONE, two neighboring edges are also changed by magnitude 0.4.
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Figure A.13: The realized edge weights for WEAK. The vy here is identical to the vy of
Chain 1. yx is then obtained from vy by modifying the target edge (marked in red) by d. In
contrast to NONE, two neighboring edges are also changed by magnitude 0.2.
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Figure A.14: The realized edge weights for MIXED. The ~y here is identical to the vy of
Chain 1. yx is then obtained from vy by modifying the target edge (marked in red) by d. In
contrast to NONE, four neighboring edges are also changed by magnitude 0.4 or 0.2.
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We expect NONE and STRONG to be easy in the sense that all four estimators are projected
to perform equally well. By contrast, WEAK and MIXED represent hard problems for the
naive re-estimation procedure.

Figure A.15 gives a summary of the results. The power is estimated as the proportion
of rejections out of 1000 independent replications at level 0.05. As in Experiment 1, both

SparKLIE+ estimators behave similarly.
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Figure A.15: Power of the test n'/2|6)| /T, > ®1(0.975) for the null hypothesis Hg : 8% = 0.

Here, gk is either the SparKLIE+1 or the SparKLIE+2 estimate and vy, is the standard
deviation estimate defined in (3.6). The blue line with e indicates SparKLIE+1; the orange
line with ¥, SparKLIE+2.
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A.9.2 Experiment 4: Power of the empirical bootstrap test

We look at the power of the empirical bootstrap test as a function of the number of the changes
and their magnitudes. For each m € {25,500, 100}, we fix vx at the vx from Experiment 3,
and then modify vy to obtain 7y. This was done by first picking sy € {1,3,5} edges
uniformly at random from the set of all possible edges, next drawing ¢ ~ Uniform(l, [+ 0.1)
for [ € {0,.05,.10,...,.50} for each edge in the difference graph independently of everything
else, and finally subtracting the chosen §’s from x.

Here, we focused on bootstrapping SparKLIE+-2 only. Also, we considered the Studentized
version W = maxy, nl/2|6), — 07|/vk, where v}, is the estimate of the standard error (3.6).
Cly,o refers to the estimated (1 — a)-quantile of W (see Appendix A.7.3).

The results are summarized in Figure A.16 at level 0.05. In the plots, the label “unnor-
malized” refers to the testing procedure using the unnormalized statistics T', and the label
“normalized”, to the Studentized version W. There is a moderate gain in power when the

latter is used.

A.9.3 Ezxperiment 5: Reversed and symmetrized procedures and sensitivity

to )\9

We study the performance of the reversed and the symmetrized procedures using the same
synthetic data as in Experiment 1 for easier comparison with SparKLIE+. The reversed

procedure is obtained by replacing (i1 pp with the reversed loss

; ; L4 | X
(revirLiep (05 { X}, 5 {Y 1)) = oy 32_31 0T p(Y;) + log {E ; exp (—0"¥(X;)) } :

It is easy to see that this is just (xprp with the roles of {X;}X and {Yj};ﬁ:/1 switched.

(RevKLIEP also occurs as a result of minimizing the reverse KL divergence from fx /rg to fy.

157



Figure A.16: Power of the empirical bootstrap test for the global null hypothesis Hg : 6* = 0.
The left panels correspond to the test maxy, |6 > ET’l_a/nl/z; the right panels, to the
test maxy, |0)| /0y, > Wi-a/ n'/2 based on the Studentized version of the test statistics (see
Appendix A.7.3 for details). We looked at p = 25,50, 100 and 1, 3, or 5 changes. The blue o
correspond to the case of the difference graph with 1 change; the orange ¥, to 3 changes; the
green W to 5 changes.
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Table A.2: Regularization parameter settings for Experiment 5

Divergence Parameter Values
KL Ao {Clogm/min(nX,ny)}l/z, C=4,35,...,2
A (2logm/ny)1/2
Reverse Y {Clogm/min(nyx,ny)}/2, C =16,125,...,2
AL (210gm/nX)1/2
Symmetric Y {C'logm/min(nx, ny)}l/Q, C =16,12.5,...,2
Ak {(2logm/nx)'/? + (2logm/ny)/?} /2

The symmetrized procedure minimizes the sum of {1 Ep and (RevKLIEP

CsymKLIEP (05 {12 {51 2))

= (xriep (05 (X125 YY) + Revirep (05 {X 12 {Y51Y))

LS+ L Sy
S vy j=1 !

nx ny
+ log {i Z exp (—QT@Z)(XZ-)) } + log % Z exp (HT@/J(Y]))
i=1 j=1
To measure performance, we looked at the coverage and the median width of 95% confidence
intervals, as well as the bias of the estimator over the same 1000 replications as in Experiment 1.
The results are in Tables A.3—A.8. The reversed and the symmetrized procedures are expected
to have worse sample complexity compared to SparKLIE4-. This is indeed what we observe.

Also, to study the sensitivity to the regularization parameter choice, we tried five difference
values of \y as detailed in Table A.2. The results in Tables A.3-A.8 tell us that all performance
measures are quite stable for both SparKLIE+ procedures. The reversed and the symmetrized
procedures do show some instability, but it is likely that this has more to do with the fact
that both procedures have larger sample complexity relative to KLIEP. See Remark 3.5 in
Section 3.2.2.
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Table A.3: Empirical coverage (%) of the 95% CI 6, + ®~1(0.975)0),/nt/2 under Chain 1
and Chain 2 pairs

v p Divergence De-biasing  Coverage for A\g = A\g(C))

1 25 KL +1 93.4 94.1 942 94.3 95.3
Reverse 92.0 919 92.1 91.7 90.2
Symmetric 91.1 89.5 89.3 87.6 87.5

KL +2 96.3 96.5 96.4 96.5 96.4
Reverse 96.7 96.5 95.6 93.6 91.5
Symmetric 94.0 93.0 89.7 781 56.7

50 KL +1 95.1 955 953 955 95.7
Reverse 88.8 87.6 859 91.9 89.1
Symmetric 909 914 887 86.8 70.8

KL +2 97.0 972 974 97.0 964
Reverse 94.7 93.0 88.9 93.0 89.5
Symmetric 94.0 93.3 87.1 525 97.8

2 25 KL +1 95.6 95.1 94.7 94.8 95.7
Reverse 90.0 90.0 89.1 89.8 87.7
Symmetric 93.8 929 91.7 89.5 88.9

KL +2 95.9 955 95.6 95.5 96.1

Reverse 95.3 953 95.1 948 91.0
Symmetric 949 94.8 90.3 783 56.8

50 KL +1 924 93.0 93.8 94.3 928
Reverse 87.7 87.7 87.3 87.8 857
Symmetric 92.7 926 88.7 83.6 T1.8

KL +2 93.7 942 94.3 95.2 945
Reverse 92.6 925 92.7 92.0 88.3
Symmetric 93.6 93.5 85.9 48.7 98.7

160



Table A.4: Empirical coverage (%) of the 95% CI ), = ®1(0.975)0),/n1/2 under Tree 1 and
Tree 2 pairs

v p Divergence De-biasing  Coverage for A\g = A\g(C))

1 25 KL +1 94.0 94.5 94.7 955 952
Reverse 79.8 80.1 &83.1 86.2 89.3
Symmetric 8.0 R89.2 925 94.6 89.5

KL +2 977 976 974 972 977

Reverse 93.9 939 939 94.0 934
Symmetric 90.9 90.3 90.5 86.5 728

50 KL +1 954 95.7 96.1 96.1 95.9
Reverse 74.3 755 82.0 84.3 86.0
Symmetric 87.1 88.3 90.3 96.4 43.5

KL +2 98.5 98.5 98.5 98.1 982

Reverse 90.6 914 940 94.2 934
Symmetric 90.5 90.8 87.8 734 98.7

2 25 KL +1 955 96.1 959 959 958
Reverse 86.0 &86.1 &5.6 86.2 88.9
Symmetric 8.7 90.5 93.7 97.0 90.6

KL +2 98.2 98.7 98.8 985 985
Reverse 94.1 94.1 93.9 92.7 929
Symmetric 925 91.8 91.7 89.6 73.1

50 KL +1 954 956 95.0 954 955
Reverse 85.9 859 &5.5 86.0 87.3
Symmetric 90.3 91.0 93.2 97.2 43.5

KL +2 99.0 98.8 98.2 98.0 98.0
Reverse 954 95.1 939 93.6 93.2
Symmetric 93.5 92.1 914 784 99.0
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Table A.5: Median width of the 95% CI 6, + ®1(0.975)%),/n!/2 under Chain 1 and Chan 2

pairs

vy p Divergence De-biasing Median width for Ay = A\g(C))
1 25 KL 1 0.479 0481 0485 0.490 0.497
Reverse 0.500 0.500 0.494 0.478 0.503
Symmetric 0.420 0.438 0.503 0.701 1.467
KL 2 0.511 0.517 0.519 0.523 0.532
Reverse 0.540 0.540 0.531 0.502 0.528
Symmetric 0.454 0.483 0.531 0.669 1.605
20 KL 1 0.347 0.347 0.346 0.347 0.351
Reverse 0.353 0.351 0.331 0.316 0.344
Symmetric 0.300 0.310 0.384 0.776 766.6
KL 2 0.366 0.364 0.364 0.365 0.369
Reverse 0.382 0.381 0.346 0.324 0.359
Symmetric 0.333 0.340 0.385 0.649 936.7
2 25 KL 1 0.436 0.446 0.454 0.466 0.483
Reverse 0.483 0.483 0.494 0.524 0.573
Symmetric 0.443 0.463 0.528 0.727 1.503
KL 2 0.444 0.454 0465 0.481 0.504
Reverse 0.521 0.522 0.537 0.568 0.630
Symmetric 0.458 0.480 0.535 0.680 1.569
50 KL 1 0.318 0.323 0.329 0.336 0.349
Reverse 0.341 0.344 0.362 0.380 0.410
Symmetric 0.319 0.328 0.390 0.787 756.2
KL 2 0.322 0.327 0.336 0.348 0.363
Reverse 0.368 0.372 0.395 0.413 0.445
Symmetric 0.331 0.342 0.388 0.654 953.3
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Table A.6: Median width of the 95% CI 6, + ®~1(0.975)0),/n/2 under Tree 1 and Tree 2

pairs

vy p Divergence De-biasing Median width for Ay = A\g(C))

1 25 KL 1 0.754 0.765 0.776 0.792 0.815
Reverse 0.711 0.712 0.740 0.781 0.865
Symmetric 0.707 0.772 0.969 1.467 2.925

KL 2 0.845 0.865 0.881 0.903 0.940
Reverse 0.786 0.788 0.804 0.831 0.925
Symmetric 0.783 0.853 1.014 1.508 4.574

50 KL 1 0.581 0.578 0.575 0.575 0.584
Reverse 0.508 0.516 0.559 0.580 0.676
Symmetric 0.527 0.558 0.717 1.709 2.008

KL 2 0.659 0.654 0.651 0.652 0.669
Reverse 0.577 0.583 0.607 0.614 0.746
Symmetric 0.592 0.619 0.758 1.733 411.9

2 25 KL 1 0.815 0.826 0.835 0.842 0.867
Reverse 0.686 0.686 0.696 0.770 0.889
Symmetric 0.740 0.802 0.990 1.533 3.451

KL 2 0.893 0.906 0.928 0.933 0.973
Reverse 0.726 0.726 0.738 0.814 0.948
Symmetric 0.783 0.852 1.014 1.514 4.893

50 KL 1 0.620 0.621 0.620 0.617 0.632
Reverse 0.485 0.486 0.524 0.599 0.735
Symmetric 0.539 0.579 0.755 1.848 1.954

KL 2 0.687 0.684 0.679 0.679 0.693
Reverse 0.515 0.517 0.558 0.629 0.797
Symmetric 0.574 0.611 0.752 1.754 416.6
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Table A.7: Empirical bias of 51@ under Chain 1 and Chain 2 pairs

vy p Divergence

De-biasing

Bias for )\9 = )\Q(C))

1

25

50

25

50

KL
Reverse
Symmetric

KL
Reverse
Symmetric

KL
Reverse
Symmetric

KL
Reverse
Symmetric

KL
Reverse
Symmetric

KL
Reverse
Symmetric

KL
Reverse
Symmetric

KL
Reverse
Symmetric

-0.009
-0.061
0.006

0.009
-0.058
0.005

-0.018
-0.058
0.008

-0.011
-0.054
0.006

0.012
-0.070
-0.023

-0.004
-0.067
-0.023

0.022
-0.066
-0.019

-0.006
-0.063
-0.020

-0.014
-0.062
-0.006

-0.001
-0.059
-0.009

-0.017
-0.054
-0.002

-0.013
-0.052
-0.004

0.007
-0.070
-0.029

-0.006
-0.067
-0.031

0.018
-0.067
-0.022

-0.007
-0.064
-0.023

-0.019
-0.046
-0.033

-0.012
-0.045
-0.041

-0.017
-0.005
-0.043

-0.012
-0.007
-0.050

0.004
-0.076
-0.047

-0.008
-0.073
-0.054

0.013
-0.073
-0.054

-0.008
-0.070
-0.061

-0.021
-0.002
-1.591

-0.017
-0.005
-0.541

-0.017
0.023
-0.775

-0.012
0.019
-2.337

-0.000
-0.073
-0.118

-0.012
-0.140
-0.282

0.005
-0.069
-0.696

-0.010
-0.070
-2.634

-0.023
0.003
-1.9 x 101?

-0.021
-0.038
-12.007

-0.017
0.005
-96.784

-0.014
-0.002
-22.035

-0.004
-0.078
-10.152

-0.014
-0.237
-9.502

-0.003
-0.074
-83.982

-0.014
-0.083
-18.973
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Table A.8: Empirical bias of ék under Tree 1 and Tree 2 pairs

vy p Divergence De-biasing Bias for Ay = A\y(C))

1 25 KL -0.021  -0.017 -0.014 -0.012 -0.012
Reverse -22.828 -21.619 -21.573 -21.307 -20.354
Symmetric -0.042 -0.085 -0.129 -0.300 -11.936

KL -0.030 -0.031  -0.031 -0.034 -0.039
Reverse -4.351  -3.258  -4.820 -4.550 -3.982
Symmetric -3.215  -3.624 -3.284 -3.849 -11.791

50 KL 0.001  -0.000 -0.003 -0.007 -0.011
Reverse -0.381  0.008  -2.644 -1.543 -2.899
Symmetric -0.046  -0.063 -0.105 -0.341 -56.174

KL -0.012 -0.012 -0.014 -0.017 -0.021
Reverse -0.331  0.038  -0.226 -0.343 -0.684
Symmetric -0.056  -0.080 -0.140 -2.748 -14.916

2 25 KL 0.020 0.021 0.017  0.016 0.012
Reverse -20.257 -19.118 -19.523 -20.280 -19.418
Symmetric -0.062  -0.074 -0.106 -0.251 -9.982

KL 0.005 0.005 0.005 0.006  -0.001
Reverse -3.518  -3.371  -3.643 -3.835 -4.016
Symmetric -3.006 -3.024 -2.678 -3.294 -10.106

50 KL 0.001  -0.001 -0.003 -0.004 -0.005
Reverse -1.360  -0.999 -0.880 -2.011 -2.479
Symmetric -0.046  -0.052 -0.084 -0.756 -60.579

KL -0.007  -0.008 -0.007  -0.007  -0.008
Reverse -0.200  -0.104 -0.284 -0.121  -0.918
Symmetric -0.048  -0.057 -0.101 -2.445 -13.089
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A.10 Supplement to Section 3.4

A.10.1 Preprocessing

The data were preprocessed in SPM12 (Wellcome Trust Centre for Neuroimaging, http://
www.fil.ion.ucl.ac.uk/spm). The default SPM12 steps were used, except in normalization,
the voxel size was set to 2 X 2 x 2 and the bounding box was changed to match the automated

anatomical labelling atlas [Tzourio-Mazoyer et al., 2002].

A.10.2 FExperiment

The fMRI measurements were made while the participants were asked to go through four
blocks of task sequences, each made up of three types of tasks arranged in some order.
During the experiment, the participants were asked to look at a screen, through which they
received instructions about the tasks. All three tasks involved squeezing and releasing a hand
dynamometer while looking at the screen. For the sensorimotor task (T1), the participants
were asked to squeeze and release the hand dynamometer freely at their own pace while
paying heed to the images on the screen. By contrast, in the intrinsic alertness task (T2)
or the extrinsic alertness task (T3), the participants were supposed to squeeze the hand
dynamometer only after seeing a white square. In the case of T3, a black screen always
preceded each occurrence of the white square. For T2, there was no forewarning.

Figure A.17 gives the task sequence used in the pilot study.

Figure A.17: Task sequence. The blue blocks indicate Task 1 (T1); the green, Task 2 (T2);
and the red, Task 3 (T3).

sample size (HC) 79 87 75 | 73 85 74 | 78 85 75 | 77 85 75

50 100 150 200 IZSO 300 350 400 450| 500 550 600 650 710 750 800 850 900 time
sample size (MS) 79 87 75 73 85 74 78 85 75 77 85 80

166



A.11 Additional real data example: Voting records of the 109th

United States Senate

We apply Section 3.1.1 and Algorithm 5 to compare the voting records in the 109th US Senate
between the first half (January 3, 2005 — January 16, 2006) and the second half (January 16,
2006 — January 3, 2007). The data were taken from a larger data set covering a longer period
(1979 - 2012) originally extracted from the website www.voteview.com and then processed
by the authors of Roy et al. [2017]. We are grateful to the authors of Roy et al. [2017] for
sharing their data with us.

We focus on the two halves of the 109th Senate. This is to ensure a sparse network
difference as well as homogeneity of the data. Only one seat changed hands between the
two periods from one Democrat to another. On January 16, 2006, Democrat Jon Corzine
resigned in order to assume his new position as Governor of New Jersey, naming Democrat
Bob Menendez to succeed. In spite of the change in membership, one would not expect there
to be significant changes in the overall voting pattern, as the votes tend to split along the
party lines, and nothing in our research suggests that the two Democrats were exceptional in

this respect. This leads to the hypothesis

Ho 71,Corzine / Menendez,v — 72,Corzine / Menendez,v V v # Corzine / Menendez.

There were 251 votes in the first half, and 177 votes in the second. Following Roy
et al. [2017], we code “Yea” as +1 and “Nay” as —1, and model the votes as independent
observations from one of two Ising models with zero node potentials, one for each period.
Admittedly, our model is far too simple to capture all the nuances of the complex political
process. What we are hoping to observe with this toy example is whether the pattern
recovered by SparKLIE+ aligns well with our knowledge of past political events, which in this
case corresponds to an empty graph for the neighborhood of the New Jersey seat of interest.

We test Hyy at level 0.05. We use Algorithm 3 to estimate the differential network in the
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neighborhood of the New Jersey seat. We use the version of Algorithm 3 employing pivotal
formulations for Steps 1 and 2 with the universal penalty levels, as explained in Remark 3.2

in Section 3.1.1. The rejection threshold for the test statistic

Tp = max |0Corzine / Menendez,vl

v#Corzine / Menendez

was estimated using Algorithm 5. Comparing T with the estimated rejection threshold
yielded no statistically significant edges in this neighborhood differential network. We conclude
that Senator Menendez’s records did not differ significantly from those of his predecessor, as

expected.
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APPENDIX B
SUPPLEMENT TO CHAPTER 4

B.1 Proof of Theorem 4.1

Recall

Aab - AZb - _Uab - Baba

where Uy, and B, were defined in (4.10) and (4.11).

Lemma B.1 says that Uy, is approximately Gaussian.

Lemma B.1. Recall the definitions of Uy, (4.10), vgy, (4.12), wgp 1 (4.13), wep o (4.14), and
Ugp (4.15). Under Condition 4.1,

v 1 1 c wi)) b w3b2
sup P(@;banbgz> —(I)(Z)‘ < Lab (——l——) —l—% —2’a+% , (B.1)
zeR Vab ny ny U(Lb nX ny

where ¢1 and cg > 0 are absolute constants.

Proof. Since Ugb < o0 and max(vgb T vgb 5) > 0 by Condition 4.1, (B.1) holds as a special
case of the Berry-Esseen bound for multisample U-statistics [Chen and Shao, 2007, Theorem
3.2). O

Next, we bound the bias B,,. Let o denote the element-wise multiplication and /, the
element-wise division. Let I'p be the symmetric matrix such that the (k,{)-th component is
given by I'p gy if & <[, and T'p . else. Define I'ys 4y similarly. For Ap, Aysaps "Dy 70 abs

C1, Cy, C3 >0 and ¢ > 1, let £ be the event

5
€= ()& (B.2)
k=1
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where

—

= {lroe (55 <o} &= {[Faare (- 303, <)
& = {2¢[VIn(A")/Tplos S Ap}, €1 = {26V as(M3)/Tarabl o < Arab )

& = {\FD/FM,ab\OO <C1, Taab/Tp| < Co, |H/ (Tp @ Tarap)|, < 03}-

Lemma B.2. The event £ defined in (B.2) implies the event
{1Basl < 20) 7 CoAprasan + (20 Coharanrp + Carpraran - (B.3)
Proof. According to the definition of B, (4.11),

B,, = By + By + B3,

where
—~ T ~
By = vec (Mab - M;{b> VIn(A*), By = Vi ap(M5)" vee (A - A*) ,
_ T . 1/~ . N
B3 = vec (Ma,, - Mj;b) H vec (A - A*) L H=3 <2X @Sy + Sy ®2X> .
We have
B < |Vin@)/Tp| [Parare (M= Mgy) | [Po/Taralss (B4
|Bs| < }VKM,ab(M;b)/FM,ab OO‘FD o <A - A*) ‘1 Tar,ab/Tpo| - (B.5)
B3| < Carape (Map—23)| [Too (B=a%)| |H/ (Tp@Taw)|, - (BO)
Combine (B.4)—(B.6) and apply the definition of the event £ to conclude. H
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Proof of Theorem 4.1. By Lemma B.1, the leading term U, is approximately Gaussian:

sup [P (1! Uy < =) = ©(2)| < my.a, (B.7)
zeR
c1v 1 1 c wgb 1 wgb 2
M.ab = 17 ab (_ + _) 4 % a2, + CL2, -0 <n1/2> : (B.8)
Yab \NX MY/ Uy \ Mx Ny

where vgp, Wap 1, Wep,2, and Uy, were defined in (4.12), (4.13), (4.14), and (4.15).

Next, we show that the bias term B, is bounded on the event

f(t):{|§X—2X|Oogt}m{|iy—zy|oogt}. (B.9)

By Lemma B.4, &3 2 F(t) and &4 2 F(t) with ¢ = 1 for Ap in (4.16) and Apf 4 in (4.17).
By Lemmas B.3 and B.6, £ D &3 and & O &4 for

48spAp
rp = )
P kixry — 25 (ISxloo + [Syloo + 1) tsp
48 M abA M, ab
TM,ab =

kxky — 25 (18 x |00 + [Byloo +1) tsprap

Finally, by Lemma B.5, &5 O F(t) with C; = Cy =1 for
C3 = (IExloo +1) (IEy oo +1).-
Thus, by Lemmas B.2 and B.8,

P (t 1 Basl > maap(t)) <

<

(F()) (B.10)

(|§X —Yx|oo > t) +P (Iiy — Yy oo > t) < n3(t),
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where

12,ab(t)
o 96max(2, |A™1)[ Mgl (14 [Exoo + [y oo +1) ([Exfoo + [y oo +1) t25 D50 ab
Vab
y 1
{rxry —25(1Zx oo + Xy loo + 1) tsarap } 5D
1
" {rxry — 25 (Sxloe + [Byloe + 065D} sarap
. 9 (|Z.x]0 + 1) ([Byloo +1) ]
{rxry =25 (IZx |00 + [Zyloc + ) tsarap } {kx Ky — 25 (D xloo + By loo + 1) tsp}

SPS lo
:O< D Mla/bZ gp)
n

and

t2 2 2
n3(t) =p(p+1) {eXp <—nL) + exp <—nY ) } < 4exp {—min (n—X, n—Y> —} )
Aty Aty T v /) 8

Applying Barber and Kolar [2018, Lemma D.3] to (B.7) and (B.10), we have

sup [P (7 (B = 80) < 2) 2

< M1,ab + N2,ab(t) + n3(1)-

This is o(1) under Condition 4.2. O

B.2 Consistency of the vanilla LASSO

For s > 0, let k(s) be the value

K(s) = min { SVQC(MR]\ZIEVGC(M) M e ’C(S)} ; (B.11)
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where KC(s) is the subset of SP, the set of p-by-p symmetric matrices, defined as
/C(S):{MGSPZHSQS, S| < s, |M5c|1§3|M5|1}, (B.12)

where S = {(k,1) : 1 <k <1< p}.

Lemma B.3. Let A be the output of (4.1) run with some A\p > 0 and Lp =1 for all
1<k<Ii<p. If

2|Vin(AY)] < Ap,

then

where sp = |A¥|g.
Similarly, for each (a,b) € Z, let ]/W\Gb be the output of (4.2) run with some Ay qpp > 0

and Uppap g =1 for all1 <k <1 <p. If

2|Viara(Mip)| o < Aaabs

then
38 M,abA M, ab

]/\/7 . *
‘“b ab k(S 0.ab)

where syrap = My lo-

Proof. Here, we only prove the first statement; the second statement is proved in the same
manner.

Let dA = A — A*. Since (p is quadratic in A,

Ip(A) — tp(A*) = Vip (AT vec (dA) + %vec (dA)" H vec (dA),
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so that

% vee (dA)T H vee (dA) = £p(A) — (p(A%) — Vip(A*)T vee (dA)
(B.13)

o~

< Ip(A) = Ip(A7) + [VIp (A7) [dA]y

where the inequality in the last line is due to the Cauchy-Schwartz inequality. Because A

minimizes ¢p(A) + Ap|A|q,
tp(B) = tp(a%) < ap (1A% = [B11) < Ap (|dAs, |1 — dAsy 1) (B.14)
where Sp is the support of A*. By hypothesis,
2|VIp(AY)| < Ap- (B.15)
Thus, combining (B.13) with (B.14) and (B.15),

vee(dA) T H vec(dA) < Ap {3|dASD\1 - ]dASBh} . (B.16)

Since the left-hand side of (B.16) is nonnegative, dA belongs to K(sp) in (B.12). Therefore,

dA|?
vee(dA)T H vee(da) > FEDIAALL (B.17)
5D
(B.16) and (B.17) together yield
A
[dAf; < 35DAD.

K(sp

O
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B.3 Auxiliary results for the vanilla LASSO

B.3.1 Bounds on the gradients

Lemma B.4. The event F(t) in (B.9) implies the event

VD (A")]oo < (A 1[Ex |00 + [A 1|y [o0 +2) T + A1,

IVeLab(M) oo < M1 (1Ex 00 + [Sy o) t+ [MB 112 V1I<a<b<p

Proof. Recall

Vin(A) = (SxASy + Sy AEy) - Sy + 5y = 51+ 5+ D,
where
S = %{(EX _ 2X> A*Sy + Dy A* (iX _ 2X>} v <2X _ ZX) ,
Sy = % {ZXA* (iy . zy) + (iy — zy> A*EX} - <2Y _ zy> ,
D:%{(ix —ZX> A* (iy—2y> + (iy—zy) A* <2X —2X>}
We have

1S1]00 < (IA* 112y |oo + 1) [Ex — Exloos  [S2loo < (1A% 1S x]00 + 1) Sy — Ty o,

1Dl < AT 1Ex — Ex|o[Zy — Ey oo,
and hence,

VD (A%)|oo < (A 1]y oo + 1) |Ex — Sxloo

+ (IA"1[Ex]o0 + 1) [y — Sy loo + 1A*11Ex — xloolEy — Sy|oo
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Similarly,

(V1 ab(Myp)loo < IMyp112y |olXx — Exloo

+ [ Mgpl11Ex oo Ey = By loo + [Mgp[112x = Xx|oo|Zy = By [eo-
The conclusion follows by the definition of F(t). O

B.3.2 Bounds on the Hessian

Lemma B.5. The event F(t) in (B.9) implies the event
[Hloo < (|Exloo +1) (IXyloo +1)-

Proof. Write

1
‘H|w§'§(zX®Zy+Ey®ZX)’ +’D|oo

o0
where
/e o o o« 1
D:§<2X®Zy+2y®EX)—§<2X®Ey+2y®Zx>.
Clearly,
1
‘E(EX(X’EY‘FEY@EX)‘ < X x o0 Xy | oo- (B.18)
(0. ¢]
Since
1 ~ ~
D:§{<Ex—zx>®Ey+zy®<2X—Zx>}
1 - ~
+§{2X®(Ey—Zy)—i—(Ey—Ey)@ZX}
1 ¢/~ N . .
+§{<Zx—zx>®<Ey—2y>+<Ey—2y>®<2x—2x>},
on the event F(t),
1D]oo < |Ex]oot + [y oot + 12, (B.19)
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Combining (B.18) and (B.19) yields the conclusion. O

B.53.3 Restricted strong convezity

The result of this section is about the restricted strong convexity constant x(s) defined in

(B.11).

Lemma B.6. The event F(t) in (B.9) implies the event

w(s) > kxky — 25 (|2X|log + Xy |oo + 1) ts,

where kx and Ky are the smallest eigenvalues of ¥ x and Xy .

Proof. For any matrix M,

vec(M)"H vec(M) = vec(M)"E(H) vec(M) + vec(M)T D vec(M),

1
E(H)25(2X®Ey+ZY®EX), D:H—E(H).

By Barber and Kolar [2018, Lemma 4.9],

M 2
vec(M)" H vec(M) > vec(M)TE(H) vec(M) — |D|p. <\M|F = %) : (B.20)
’ S
|D|ps = sup |vec(M)"D VeC(M)| :
|M|p<1
[Mlo<s
On the one hand, we have
vec( M) E(H) vec(M) > kxry|M|%. (B.21)
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On the other hand,

D= {(iX—EX>®Ey+Ey®<§X—Ex>}

1 _ ~
+§{2X® (Ey—zy) + (zy—zy) ®2X}

+5{Ex-2x) e By -2y )+ By —5v) ® (Sx - 5x) )

DN —

and hence, on the event F(t),
IDlps < (1Zxloo + [y oo + ) ts. (B.22)

Combining (B.21) and (B.22) with (B.20),

M 2
vec(M)"H vec(M) > HXKYlM@:‘ — st (|Zx]oo + |2y oo + 1) (|M|F + ‘TLI) . (B.23)

Now, suppose M € K(s). Then, |[M|; < 431/2|M|F, and hence, (B.23) implies

vec(M) H vec(M) > {kxry — 255t (|Zx|oo + |Zy oo + 1)} |M|%

B.24
ok =2t (Exlo  Eylo+o B

- 16 S

Rearranging (B.24) yields the desired statement. O

B.4 Auxiliary results

Proposition B.1. [Craig, 1956, Eq. (10)] Let Z1 and Zo be a pair of standard normal

random variables with correlation p. The moment generating function of their product Z1Z9
18

Mg, 7,(t) = [{1 = (1 4+ p)t} {1+ (1 — p)t}]~1/?

forte (=1/(1—p),1/(1+ p)). Note that p =1 recovers the moment generating function of
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Lemma B.7. Let € € (0,1) be a constant satisfying |p| <1 —¢, e.g., e = (1 —|p|)/2, and let

7(p,€)

- {i}z{u( + )2} {i}Q{H( - )2} (B.25)
= max 1—(p—|—6)2 p+e N7 )2 p—€ . .

—(p—ce
Then, the moment generating function of the centered random variable Z1Z9 — p satisfies
Mz, z,-p(t) Sexp{7(p, ) 2}, |t <e/(1=pP). (B.26)

Proof. By Proposition B.1,

0(t) = log Mz, 7, (1) = —pt — 5 llog {1 — (1 + p) 1} + log {1 + (1~ ) )]

for t € (—1/(1 —p),1/(1 4 p)). Now,

P | L+p  1-p
viE) = er2{1—(1+p)t 1+(1—p)t}’

-4t i) )
I

Note that 9" (t) is decreasing on (—1/(1 — p),—p/(1 — p?)) and increasing on (—p/(1 —

p2), 1/(1 + p)). By the calculations above and Taylor’s theorem, for any ¢ > 0 satisfying

[—t,8] € (=1/(1 = p), 1/ (1 + p))

()] < max {¢" (=1), " (D} £, || <.
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Taking T = €/(1 — p?),

1—p? : 2
{m} {1+(P—€) }7

1—p? : 2
{m} {1+(p+e) }

= =
) |
N | — N —
—
7~ N 7/ N
— —
I [~
| <!
=R+
(@) (@)
~
) b
+ +
e N
— —_
_i_H +)—‘
| =
+1Re 1R
@) (@)
~
[\} [\]
— Y—
I Il

Remark B.1. In general, if

X o1l 012 o
~ Normal | 0, . P12 = 12

1/2°
X9 012 092 (011022)/

then the moment generating function of the centered product X X9 — 019 satisfies

€12
(011092)"? (1 —p2,)

Mx | Xy—g15(t) < exp {011022T(p12,612)t2}, It <

This is because

My, xy—g,,(t) = Efexp {t (X1 X2 — 012)}]

X1 Xy
exp { (o11092) /% 1 <— - P12> }] ,
{ (011092)"/?

and X7/ ai{ 2 and X/ 0%42 are standard normal with correlation pqs.

=K

Lemma B.8. Let S be a set of edges, i.e., S CS, where S = {(k,1): 1 <k <1< p}.
P max |o —0 >t
(s s -l =)

2 _
2|S| exp (—4’%) if 0<t<2rxstxs,

< s) (B.27)
2|8 exp (-%) if t>27x stx.s,
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with

2

1-— p2

1/2 Xkl 2

Tx,s = max max |(ox pkox 1) / 5 {1+ (px k1 + €x k1) }
(k)eS 1- (PX,k;l + GX,kl)

2

1-— p2

(ch,kkUXJl)l/2 { XM 2} {1 + (px Jl — EX,kl)2}
1— (px ki — €x ki)

and

t min XK
X8 = T ,
’ 2
(KDES (ox prox.in) / (1 _'OX,kl>

where ex 1 € (0,1) is a constant satisfying |px 1| <1 — ex . Similarly,

P max |o —0 >t
((k,l)€$| Ykl Y’k” )

2 _
2|S| exp (—{%) if 0<t<2rystygs,

< b s (B.28)
2|S| exp (—Lp) if t > 21y sty.s,
with
2
1-— p2
1/2 Y.kl 2
Ty,§ = max max (UY,kkUKll) / 5 {1 + (pde + EY,k:l) } ,
(k,1)esS 1— (pysi + eviir)

9
L=py 1

2
(axkkamz)m { )2 } {1 + (PY,kl - €y7kl)2}

1— (pyri — €viki

and

t min Y ki
Y.s = 1/2 ’
(kj,l)GS (O-Y,kko—Y,ll) / (1 - p%,kl)

where ey € (0,1) is a constant satisfying |py | <1 — €y -
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Proof. Here, we prove (B.27) only; the proof for (B.28) is identical. By Lemma B.7,

(Igr})aécs max (E [exp {t (ax’kl — UX7/€Z) H JE [eXp {—t (3X,kl — UXJCZ) H)

< exp <TX,st2/nx> ;< tx s

(B.27) follows by the usual Chernoff bounding technique.

B.5 Additional figures and tables for Section 4.3.1
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Figure B.1: Normal Q-Q plot of nl/z(ﬁab — A%})/Uqp under Model 1. p = 100 in the top

row and p = 200 in the bottom row. The distribution of the oracle estimator is provided for

easy comparison in gray.
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Figure B.2: Histogram of n'/2(A,, — A*,)/Vgp under Model 1. p = 100 in the top row and
p = 200 in the bottom row. The orange curve is the density of Normal(0, 1).
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Figure B.3: Normal Q-Q plot of nl/z(ﬁab — A%})/Ugp under Model 2. p = 100 in the top

row and p = 200 in the bottom row. The distribution of the oracle estimator is provided for

easy comparison in gray.
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Figure B.4: Histogram of n'/2(A,, — A*,)/Vgp under Model 2. p = 100 in the top row and
p = 200 in the bottom row. The orange curve is the density of Normal(0, 1).
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Figure B.5: Normal Q-Q plot of n1/2(A,, — A%})/Vgp under Model 3. p = 100 in the top
row and p = 200 in the bottom row. The distribution of the oracle estimator is provided for
easy comparison in gray.

p=100,455=0.18

p =100, 4,7 =0.43

p =100, Asg, 55 =0.0

p=100, A5, 50 =028

p =100, Az, 30 =0.38

p=200,455=0.08

p=200,4,7=0.46

p=200,01,0=0.58

p =200, Az0,30=0.12

Figure B.6: Histogram of n!/2(A,, — A*,)/Vgp under Model 3. p = 100 in the top row and
p = 200 in the bottom row. The orange curve is the density of Normal(0, 1).
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Figure B.7: Normal Q-Q plot of nl/2(A,, — A%})/Vgp under Model 4. p = 100 in the top
row and p = 200 in the bottom row. The distribution of the oracle estimator is provided for
easy comparison in gray.
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Figure B.8: Histogram of n!/2(A,, — A*,)/Vgp under Model 4. p = 100 in the top row and
p = 200 in the bottom row. The orange curve is the density of Normal(0, 1).
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Figure B.9: Normal Q-Q plot of nl/z(ﬁab — A%})/Ugp under Model 5. p = 100 in the top
row and p = 200 in the bottom row. The distribution of the oracle estimator is provided for

easy comparison in gray.
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Figure B.10: Histogram of nl/2(A,, — A1) /Vgp under Model 5. p = 100 in the top row and
p = 200 in the bottom row. The orange curve is the density of Normal(0, 1).
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Table B.1: Empirical coverage (%) and length of 95% CIs and the bias of estimators under
Model 1 with nx = ny = 300. The numbers displayed below are estimates based on 1000
independent replications.

D Edge Method Coverage Length Bias x10°
100 Af. =0 SparDE+ 04.6  0.302 3.8
’ Xia et al. [2015] 958  0.507 5.0

s = SparDE+ 939  0.321 1.9

’ Xia et al. [2015]  91.3  0.554 3.1

AZy 95 =0 SparDE+ 95.0 0.307 —1.5

’ Xia et al. [2015]  94.3  0.488 ~1.0

200 Ag75 =0 SparDE+ 95.1 0.308 1.1
Xia et al. [2015]  95.6  0.501 —2.8

A, =0 SparDE+ 051  0.327 —0.0

Xia et al. [2015]  90.9  0.539 46

Afyps =0  SparDE+ 956  0.313 1.8

Xia et al. [2015] 959  0.480 2.8

Table B.2: Empirical coverage (%) and length of 95% Cls and the bias of estimators under
Model 2 with nx = ny = 300. The numbers displayed below are estimates based on 1000
independent replications.

P Edge Method Coverage Length Bias x103

100 Af5=0 SparDE+ 955  0.074 0.6
Xiaet al. [2015] 977  0.175 —0.7

ro = SparDE+ 954  0.045 —0.2

’ Xia et al. [2015] 959  0.129 1.0

Afyos =0  SparDE+ 953  0.038 —0.1

’ Xia et al. [2015] 955  0.092 0.1

200 Af.=0 SparDE+ 952  0.075 0.5
’ Xia et al. [2015] 985  0.170 —0.4

AL, =0 SparDE+ 92.2  0.045 0.2

’ Xia et al. [2015]  93.6  0.125 ~1.2

Afyos =0  SparDE+ 954 0.039 —0.6

’ Xia et al. [2015] 950  0.089 ~1.1
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Table B.3: Empirical coverage (%) and length of 95% Cls and the bias of estimators under
Model 3 with nx = ny = 300. The numbers displayed below are estimates based on 1000
independent replications.

D Edge Method Coverage Length Bias x10°
100 35 =0.18 SparDE+ 96.6 0.561 —4.1
Xia et al. [2015] 86.6 0.521 —119.0

A§,7 =0.43 SparDE+ 96.1 0.325 11.1

Xia et al. [2015] 71.6 0.298 —103.3

A?)O,% =0.0 SparDE+ 95.1 0.250 —-1.7

Xia et al. [2015] 94.9 0.267 —-2.1

AEl,?O =0.28 SparDE+ 95.0 0.231 7.7

Xia et al. [2015] 91.1 0.210 —31.5

A§0730 =0.38 SparDE+ 96.3 0.849 18.9

Xia et al. [2015] 21.7 0.815 —556.0

200 A§75 =0.08 SparDE+ 95.5 0.262 5.1
Xia et al. [2015] 81.9 0.213 —58.6

A§77 = 0.46 SparDE+ 94.7 0.353 12.9

Xia et al. [2015] 94.2 0.301 —33.0

A§0725 =0.0 SparDE+ 95.3 0.464 —6.0

Xia et al. [2015] 94.7 0.477 -5.3

A§1,20 =0.58 SparDE+ 96.2 0.477 24.4

Xia et al. [2015] 81.1 0.396 —97.8

A§O,3O =0.12 SparDE+ 95.2 0.294 7.2

Xia et al. [2015] 8.7 0.259 —212.8

192



Table B.4: Empirical coverage (%) and length of 95% Cls and the bias of estimators under
Model 4 with nx = ny = 300. The numbers displayed below are estimates based on 1000
independent replications.

D Edge Method Coverage Length Bias x10°
100 35 =0.09 SparDE+ 93.8 0.188 0.1
Xia et al. [2015] 93.6 0.171 —10.7

A§,7 = 0.56 SparDE+ 94.5 0.383 15.4

Xia et al. [2015] 79.2 0.339 -92.0

A?)O,% =0.0 SparDE+ 94.4 0.448 —7.6

Xia et al. [2015] 94.7 0.485 —7.5

AEl,?O =0.45 SparDE+ 95.3 0.232 9.9

Xia et al. [2015] 7.2 0.207 —63.4

A§0730 =0.29 SparDE+ 95.3 0.560 2.3

Xia et al. [2015] 60.4 0.509 —217.9

200 A§75 =0.16 SparDE+ 96.6 0.331 7.0
Xia et al. [2015] 88.2 0.272 —56.5

A§77 =0.18 SparDE+ 94.8 0.165 9.1

Xia et al. [2015] 27.4 0.136 —87.4

A§0725 =0.0 SparDE+ 94.7 0.239 2.1

Xia et al. [2015] 94.8 0.234 3.0

A§1,20 =0.78 SparDE+ 95.0 0.516 29.2

Xia et al. [2015] 91.7 0.427 —45.9

A§O,3O =0.33 SparDE+ 95.8 0.670 5.2

Xia et al. [2015] 60.0 0.580 —257.9
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Table B.5: Empirical coverage (%) and length of 95% Cls and the bias of estimators under
Model 5 with nx = ny = 300. The numbers displayed below are estimates based on 1000
independent replications.

P Edge Method Coverage Length Bias x10°

100 35 =0.0 SparDE+ 95.7 0.867 0.7
Xia et al. [2015] 93.7 0.817 —75.1

A§’7 =0.0 SparDE+ 95.8 0.573 —7.1

Xia et al. [2015] 49.7 0.537 —270.4

AEQ,?O =0.37 SparDE+ 95.6 0.371 3.2

Xia et al. [2015] 95.3 0.336 4.0

200 Agf) =0.0 SparDE+ 96.8 0.901 7.5
Xia et al. [2015] 95.9 0.806 —43.1

Agj =0.0 SparDE+ 95.7 0.594 —2.6

Xia et al. [2015] 50.7 0.530 —268.9

A§2720 =0.37 SparDE+ 95.1 0.386 16.0

Xia et al. [2015] 96.3 0.332 16.6
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APPENDIX C
SUPPLEMENT TO CHAPTER 5

C.1 Proof of Theorem 5.1

For completeness, we give the full details of the proof of Theorem 5.1; a sketch of the proof is
presented in Section 5.3.

Denote Algorithm 12 by A. We view A as mapping a given input {(X;, YZ)}?:Jrll and
a collection of subsamples or bootstrapped samples §1, e ,§ B to a matrix of residuals

R e RHLx(n+1) where

0 if i = j.

Rij =

For any permutation o on {1,...,n + 1}, let II, stand for its matrix representation—
that is, II, € {0,1}+tD)x(+1) hag entries (o) g(s),; = 1 for each i, and zeros else-

where. Furthermore, for each subsample or bootstrapped sample gb = {ib,la e ,ib,m},

write o(Sp) = {0 (ip,1)s - - 0(ipm)}-
We now claim that

RL1,RI, (C.1)

for any fixed permutation o on {1,...,n + 1}. Here R is the residual matrix obtained by a

run of Algorithm 12, namely,

R = Z((Xl,yl), e (X1, Yo 1): S, ,53) .

To see why (C.1) holds, observe that deterministically, we have

HURH;— =A <(Xa(1)’ Ya(l))> R <XO'(TL—|-1)’ Yo(n+1)); 0(§1)> oo 70(§3)> .



Furthermore, we have

((XL Y1),y (Xp1, Yn+1)> 4 <(XJ(1)7 Yoy (Xo(n1)s Yg(n+1))>

by Condition 5.1, and
(§1,...,§B) 4 (a(§1),...,a<§3))

since subsampling or resampling treats all the indices the same. Finally, the subsamples or
bootstrapped samples (i.e., the gb’s) are drawn independently of the data points (i.e., the
(X;,Y;)’s). Combining these calculations yields (C.1).

Next, given R, define a “tournament matrix” A = A(R) as

- I [Rz'j > le’} if 1 # 4,
ij =
0 if1=j.

It is easily checked that A(IIyRII)) = Iy A(R)II), and hence (C.1) implies that
AL, Al (C.2)

Let So(A) be the set of row indices with row sums greater than or equal to (1 — a)(n + 1),

ie.,
n+1
Sa(A)=Qi=1,....n+1:> Aj>(1-a)n+1)
j=1

The argument of Step 3 in the proof of Barber et al. [2021, Theorem 1] applies to the lifted

J+aB “tournament matrix” A, and it holds deterministically that
|Sa(A)] < 2a(n +1). (C.3)
On the other hand, if j is any index, and ¢ is any permutation that swaps indices n + 1 and
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7, then
Pln+1¢€ So(A)] = P[j € Sa(Il, AT, )] = P[j € Sa(A)].

The first two events are the same, and the second equality uses (C.2). Thus,

n+1
P[n+1€ Su(A)] = nil > P[j € Sa(4)]
j=1
_ 1 gfﬂyGS(Aﬂ _ Sl (C.4)
== 2 j o = xS Q. .

Note that the event [n+ 1 € Su(A)] is exactly the event En+1, defined in Section 5.3. As
described in the proof sketch in Section 5.3, we can couple this lifted event to the event &, 1,
also defined in Section 5.3 in terms of the actual J+aB, as follows. Let B = Zbézl | [gb 2
n+ 1} , the number of gb’s containing only training data, and let 1 < by < --- <bp < B be the
corresponding indices. Note that the distribution of B is Binomial, as specified in the theorem.
Now, for each k =1,..., B, define S}, = gbk:' We can observe that each S}, is an independent
uniform draw from {1,...,n} (with or without replacement). Therefore, we can equivalently
consider running the J+aB (Algorithm 11) with these particular subsamples or bootstrapped
samples S1,...,Sp, in which case it holds deterministically that ;7<p\n 1= ﬁgo\i for each
i = 1,...,n. This ensures that [Yy11 — fip\q1,i(Xnt1)| = Y1 — L\ (Xn41)| and

Yi = Bip\i g1 (Xi)| = [Yi — Hyy i (X5)], and thus,

Finally, as in Step 1 in the proof of Barber et al. [2021, Theorem 1], it easily follows from the
definition of C*gj;f}g that if Y, 11 ¢ égjjg(xnﬂ) then the event &,,1 must occur. Indeed,

if 11 ¢ égyffg(xnﬂ), then either Y, 11 falls below the lower bound, i.e.,

I [YTH—I = I\ i (Xng1) < Y5 = Hip\ i (Xi)
i=1

] > (1—a)(n+1),
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or Y,, 41 exceeds the upper bound, i.e.,

n
Mo [Yn—i-l — Lip\i(Xn41) > Y5 — T (X5)
i=1

|2 a-a)m+).

and the above two expressions imply

>ou

1=1

V1 = g (Xnt)| > [Yi = Tipi(X0)| | 2 (1 = a)(n +1).

Therefore, we conclude that

P|Yoi1 ¢ COB(Xng) | < 20,

a,n,B

thus proving the theorem.

C.2 GGuarantees with stability

Many ensembles that are used in practice are variants of bagging, where multiple independent
copies of the given training data set are generated through a resampling mechanism, after
which estimates from different data sets are pooled together via an averaging procedure of
some kind. Bagging can be understood as a smoothing operation that when applied on a
discontinuous base learner, often greatly improve its accuracy [Biihlmann and Yu, 2002, Buja
and Stuetzle, 2006, Friedman and Hall, 2007].

For ensembles of this type, the aggregated predictions they produce frequently exhibit
a concentrating behavior as B — oo, making the corresponding J+aB interval much like
a jackknife+ interval. In such cases, it is reasonable to expect a J+aB interval to remain
valid regardless of the choice of B, e.g., random with a Binomial distribution or fixed, by
its proximity to a jackknife4 interval. Intuitively, this happens when the aggregation is
insensitive to any one prediction participating in the ensemble.

To formalize, let E* denote the expectation with respect to the resampling measure —
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that is, we take the expectation with respect to the random collection of subsamples or
bootstrapped samples S1,...,Sp conditional on all the observed data {(X;,Y;)} ; and

Xp41. For example, when ¢(-) = MEAN(-) is the mean aggregation,

E* [ZZMEAN(XTH—l)] =E [//Il(XTH—l)‘(Xla Yl)a SRR (Xn, Yn)7 Xn—i—l] )

the expected prediction from the model ji; fitted on training sample S, where the expectation

is taken with respect to the draw of Sj.

Condition C.1 (Ensemble stability). For ¢ > 0 and 6 € (0,1), it holds for each i = 1,...,n

that

P [|fipi(X0) — B [pi(X0)]| > ] <.

Here ﬁw\i is the ensembled leave-one-out model defined in Algorithm 11. To gain intuition
for this assumption, we consider the mean aggregation as a canonical example, and verify

that it satisfies Condition C.1 for any bounded base regression method.

Proposition C.1. Suppose that ¢(-) = MEAN(-) is the mean aggregation, and suppose the
base regression method R always outputs a bounded regression function, i.e., R maps any
training data set to a function [ taking values in a bounded range [¢,u], for fized constants
¢ < u. Then, for any € > 0, Condition C.1 is satisfied with

2 _1)2p2
0 = 2exp (—%) + exp (—NE%)H) ,

where § = (1 — %)m in the case of bagging (i.e., the Sy’s are bootstrapped samples, drawn
with replacement), or 0 = 1 — % in the case of subagging (i.e., the Sy’s are subsamples drawn

without replacement).

Proof. By exchangeability, it suffices to prove the statement for a single i € {1,...,n}. Fix i,

and let B; denote the number of Sp’s not containing the index i, i.e., B; = Zszl il [Sb ] z}
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For any fixed v € (0, 1),

P* [ [Aintwans (X0) — E*insani(X0)]| > €]

< P* [ [Finteam(X3) = B iyt i(X0))| > 2 and B; > 10B| +P* B < 108].

As for our earlier notation E*, here P* denotes the probability with respect to the ran-
dom collection of subsamples or bootstrapped samples S1, ..., Sp conditional on the data
(Xl, Yl), ey (Xn’ Yn)

The arithmetic mean aggregation function, ey, satisfies

S | oMBAN (Y15 - -+ Yo 1s Ubs Yot 15 - - - UB,) — OMEANYLs -+ 5 Ub—1Yp Yb+1: - - > UB;)|

y,€lul
u—4F
B;

<
for b=1,..., B;. Thus, by McDiarmid’s inequality [Boucheron et al., 2013, Theorem 6.2],

#[ |~ ki 2B~0s*
P HMMEAN\@‘(XZ'> —E [MMEAN\i(Xi)]‘ > € ‘ B; > 793} < 2exp <—ﬁ> : (C.5)

m
On the other hand, B; ~ Binomial(B, @), where § = (1 — %) for sampling with replacement,
orf=1- % for sampling without replacement. The Chernoff inequality for the binomial

[Boucheron et al., 2013, Chapter 2] implies

P[B; < 40B] < exp (-M) . (C.6)

Combining (C.5) and (C.6),

i *1 2Bfe? B(1—~)2p2
F [’MMEAN\i(Xi) -k [MMEAN\i<Xi)]‘ > 5] < 2exp (_(uj€§2)+eXp (—%) .
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Taking v = 1/v/B yields

P* [|Aintmani (X0) — E*insani(X0)]| > €]

2 —1)2p2
< 2exp (—%) + exp (—@) .

]

To study coverage properties under this notion of stability, we first define the e-inflated

J+aB prediction interval as

C B (@) = |qanllip(0) = Ri} = &, qin{fipi(@) + Ri} + |

for any € > 0. We then have the following guarantee:
Theorem C.1. Under (g,0)-ensemble stability (Condition C.1), the 2e-inflated jackknife+-
after-bootstrap prediction interval satisfies

i [Ynﬂ e 02 IraBx )| >1— 20 — 4V6.

a,n,B

Delaying the proof to the end of this section, we discuss the difference between Theorem C.1
and Theorem 5.1. Theorem 5.1 gives an assumption-free lower-bound of 1— 2« on the coverage,
but the probability is over all randomness, including that of the Binomial draw. By contrast,
the =~ 1 — 2a coverage guarantee of Theorem C.1 holds for a fized value of B used to run
Algorithm 11, but at the cost of requiring the ensemble algorithm R, g to satisfy ensemble
stability.

In contrast to the above notion of ensemble stability, Steinberger and Leeb [2018] and

Barber et al. [2021] study coverage of jackknife and jackknife+ under algorithmic stability of
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(non-ensembled) regression method R. This requires R to satisfy

P[0 i(Xn41) = i(Xps1)| > 7] <%, (C.7)

This can be interpreted as saying that a prediction (X, 1) is only slightly perturbed if a
single point is removed from the training. In this setting, jackknife and jackknife+ are each
shown to guarantee ~ 1 — a coverage.

We can take a lifted version of this assumption, requiring that (C.7) holds on the ensembled

models on average over the resampling process:

P[[E [ (Xo41) = B [p(Xpi0)]] | > 7] < 0% (C3)

Note that one can have ensemble stability without algorithmic stability. For example, a
bounded regression method may still be highly unstable relative to adding/removing a single
data point (thus violating algorithmic stability), while Proposition C.1 ensures that ensemble
stability will hold under mean aggregation.

When an ensemble method satisfies both Condition C.1 and the lifted version of algorithmic
stability (C.8), then the following result yields a coverage bound that is &~ 1 — «, rather than

~ 1 — 2« as in Theorem C.1:

Theorem C.2. Assume that (e, d)-ensemble stability (Condition C.1) holds, and in addition,
the ensembled model satisfies algorithmic stability on average over the resampling process,

i.e., (C.8). Then the 2e + 2c*-inflated J+aB prediction interval satisfies

P, e 6(2”25*)‘”&3()(”“)] >1—a—3V0— 46",

a,n,B

Proof of Theorems C.1 and C.2. Put ZZZ;\Z =E* ['a@\i]? where we recall that E* is the expec-

tation conditional on the data. Let RS*D denote the regression algorithm mapping data to ﬁj’;,

202



ie.,

Ry (X Vo) iy

— E* [<p ({R ({(Xib,e, 1@-”)};’;1) b=1,...,B, B ~ Binomial(B, 9)})} ,
where § = 0(n) = (1— n+r1>m (in the case of sampling with replacement) or 6 = 0(n) = 1— 2
(in the case of sampling without replacement). We emphasize that n here refers to the size of
the sample being fed through R, (e.g., each leave-one-out regressor ﬁ;\l is trained on n — 1
data points, so in this case, 0 = 6(n —1)). R7, is a deterministic function of the data, since it
averages over the random draw of the subsamples or bootstrapped samples. Furthermore, it
is a symmetric regression algorithm (i.e., satisfies Condition 5.2).

Fix some o/ € (0,1) to be determined later, and construct the jackknife+ interval
el N N
Crl(@) = gy i (0) = BiYoah (i (o) + BT}

where R = |Y; — ﬁ:’;\i(Xi)] is the leave-one-out residual for this new regression algorithm.

By Barber et al. [2021, Theorem 1], 6;‘,1"7; satisfies
P Y. € 6;{;;()(%1)] >1-24.

If, additionally, R7, satisfies the algorithmic stability condition (C.7) given in Appendix C.2,

then by Barber et al. [2021, Theorem 5], the 2¢*-inflated jackknife+ interval
A~ 2 *_ _ ~ ~
C’;,; J+(m) = [qa,,n{uz\i(x) — R} — 2%, q:é,m{,u;\i (z) + R} } + 2¢™

satisfies

P [Ynﬂ e CEIN(Xy)| 2 1-o -4V
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Next, by Condition C.1, for each t =1,...,n,

P {[ipi(X0) — Bi5,(X0)| > ] <. (C.9)

Let o/ = o — V8. By the above argument, to prove the theorems, it suffices to show

525'J+aB(Xn+1) D 6;}‘]; (Xp41) with probability at least 1 —2v/0

a,n,B
in order to complete the proof of Theorem C.1, or

a(25+2£*)—J+aB

a,n,B

(Xpt1) 2 6;,22*'J+(Xn+1) with probability at least 1 — 2v/§

in order to complete the proof of Theorem C.2. In fact, these two claims are proved

identically—we simply need to show that

6(25+25’)-J+aB
a,n,B

(Xp41) 2 62,22,"” (Xp41) with probability at least 1 — 26 (C.10)

with the choice ¢/ = 0 for Theorem C.1, or ¢’ = ¢* for Theorem C.2.

To complete the proof, then, we establish the bound (C.10). Suppose

~(2e+2¢")-J+aB

A~ /
Com (Xp+1) 2 7 (X).

We have that either
qu—,n {ﬁ(p\i(XTH—l) T Ri} +2 < qj)_/,n {ﬁZ\Z(Xn—I—l) + R;k}

or

G { B\ (Xn1) = Bi} = 2¢ > g, {78 (K1) - BT}
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where R; = |Yj — Ji,)\;(X;)|. As in the proof of Barber et al. [2021, Theorem 5], this implies

that
o\t (Xn1) = i (X 1)| + [l a(X) = T, (X0)| > 22

for at least [(1—a)(n+1)]— ([(1 — &) (n+1)] — 1) > Vd(n + 1) many indices i = 1,...,n

Thus,

(2e+2¢')-J+aB N 2e! -
P[P (40 2 (X))
<

> 28} > Vo(n+1)

P [Z H'u@\l Xnt1) = 'u<p\z< n+l1 ’ + ‘ﬁ<p\z(Xz) - ﬁ:;\z(Xz)

i=1

Zn: H:u%@\z Xnpt1) — Z\Z(Xn+1)‘ + )ﬁgo\z<Xl) — ﬁ:;\z(Xl) > 25}

Von+1) H Xn+1) ﬁZ\n(XnH)’ > e} :

The second inequality is the Markov’s inequality, and the last step uses the exchangeability

of the data points. Plugging in (C.9),

. [5(25 +22/)- 1B X,41) 2 OEH(x, )] < 2V,

a,n,B

implying (C.10). This completes the proofs for Theorems C.1 and C.2. ]

C.3 Jackknife-minmax-after-bootstrap

As in Barber et al. [2021], we may also consider the jackknife-minmax-after-bootstrap, which

constructs the interval

Comg P (@) = minfip\;(2) — dan {Ri}, maxiip(z)+ Gan {Ri}| -

The original jackknife-minmax satisfies 1 — o lower bound on the coverage, and the same

modification of the jackknife+ proof is applicable here, ensuring a 1 — o lower bound on
205



the coverage of the jackknife-minmax-after-bootstrap with the same caveat of a random
B. However, as for the non-ensembled version, the method is too conservative, and is not

recommended for practice.

C.4 Additional experiments

C.4.1 Additional details about the experimental setup

We give precise definitions of the ensembles and the jackknife-type constructions considered.

Let R, p denote an ensemble regression method (Algorithm 10) that first generates B
bootstrap replicates of a given training data set, calls on a base regression method R to fit a
model to each generated data set, after which the results are aggregated through ¢.

For R, we use one of RIDGE, RF, or NN:

e For RIDGE, we set the penalty at A = 0.001|| X ||, where || X is the spectral norm of
the training data matrix.

e For RF, we used the RandomForestRegressor method from scikit-learn with 20
trees grown for each random forest using the mean absolute error criterion and the
bootstrap option turned off, with default settings otherwise.

e For NN, we used the MLPRegressor method from scikit-learn with the L-BFGS
solver and the logistic activation function, with default settings otherwise.

For ¢, we use one of MEAN, MEDIAN, or TRIMMED MEAN:

e MEAN is the arithmetic mean, i.e., p(y1,...,y;) = k1 Zf:l Y-

e MEDIAN is the middle value of a list, i.e., for odd k, ¢(y1,...,y;) is the (k + 1)/2-th
smallest number of the list {yq,...,y.}, for even k, the average of the k/2-th and the
(k + 2)/2-th smallest.

e TRIMMED MEAN is the arithmetic mean of the middle 50% of a list, i.e., ¢(y1,...,yp) =
([0.75Kk] — |0.25k]) 1 2[0-7%1 141 Y6): where yq) < -+ <y, Is the sorted list. We

i=[0.25k

used scipy.stats.trim_mean with proportioncut=0.25.
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The J+aB was defined in Algorithm 11. J+ENSEMBLE refers to the following application

of the jackknife+ [Barber et al., 2021] with the ensemble learner R, p:

Algorithm 15 J4+ENSEMBLE

fori=1,....,ndo

Compute M{—FENSEMBLE _ R ({(XJ,YJ) n 1]#)

Compute the residual, R;-H—ENSEMBLE =\Y; - AngNSEMBLE(XZ)L
end for

Compute the ensembled prediction interval: at each z € R,

ai;:EESEMBLE(x)
{AJ—l—ENSEMBLE( ) RJ—l—ENSEMBLE} {AJ—i-ENSEMBLE( )+R,Z_]+ENSEMBLE} ‘

QQn ’ an

J+NON-ENSEMBLE applies the jackknife+ to the base learning algorithm R without

ensembling:

Algorithm 16 J+NON-ENSEMBLE
fori=1,....,ndo

COmpute M{+NON ENSEMBLE R({(Xj7§/3)}j ljyéz)
Compute the residual, R;]—f—NON—ENSEMBLE |Y Agl—l—NON ENSEMBLE(XZ”‘

end for

Compute the non-ensembled prediction interval: at each x € R,

C\J—;NON—ENSEMBLE (l,)

_ [qgn{ﬁij—NON ENSEMBLE( ) _ R%]—I—NON—ENSEMBLE}

qan{AJ—l-NON ENSEMBLE( )+R;]+NON—ENSEMBLE} .
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C.4.2 Other aggregation methods

In Section 5.4, we reported the results for ¢ = MEAN. Here, we report the results for ¢ =
MEDIAN or TRIMMED MEAN. For the data sets and the base regression methods we looked
at, MEDIAN or TRIMMED MEAN did not behave much differently from MEAN. Thus, we
continue to see similar patterns: Figures C.1 and C.3 look very much like Figure 5.1, and

Figures C.2 and C.4, like Figure 5.2.

C.4.3 Elffect of fiting B for stable ensembles

In Appendix C.2, we saw that for stable ensembles, concentration with respect to the
resampling measure implies that the J4+-aB using a fixed value of B will retain some coverage
guarantee as long as enough models are being aggregated. As an example of stable ensembles,
we gave bagging.

Here, we provide numerical support for the conclusion by running the J4-aB, either with

B fixed at a value (J4+AB FIXED) or with B drawn at random (J+AB RANDOM).

e For J+AB FIXED, we used B = 50.

o For J+AB RANDOM, we drew B ~ Binomial(B, (1—;17)™) with B = [50/(1— 731)™],
where [-] refers to the integer part of the argument. This ensures that the total number
of models being fitted in J+-AB RANDOM is matched on average to the total in J+AB
FIXED.

We fixed o = 0.1 for the target coverage of 90%. We used n = 200 observations for training,
sampling uniformly without replacement to create a training-test split for each trial. The
results presented here are from 10 independent training-test splits of each data set. We
otherwise repeat the setup of Section 5.4, which includes the three data sets, the three
choices for the base regression method, or the three choices of aggregation. The results are
summarized in Figures C.5-C.10. They show that for the data sets and the ensemble methods
considered, J4+AB FIXED and J4+AB RANDOM behave essentially the same. Although we

only prove ensemble stability for ¢ = MEAN, because both MEDIAN and TRIMMED MEAN
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act like MEAN, at least for the data sets and the base regression methods we have looked at,

the same patterns are replicated for the two alternative aggregation methods.

C.4.4 Wall clock time comparisons

In Tables C.1-C.3, we report the average wall-clock times for all data set, base regression
method, and aggregation method combinations for m = 0.6n. As these measurements are
expected to vary depending on the hardware and implementation details, it is the relative
magnitudes that are of interest. Our experiments were run on a standard MacBook Air 2018
laptop.

The results lend extra support to the conclusion that the J+aB is a computationally
efficient alternative to J+ENSEMBLE, which yields more precise confidence intervals than

J+NON-ENSEMBLE when ensembling improves the precision of the base regression method.

Table C.1: Average wall-clock times in seconds over 10 independent splits of MEPS (m = 0.6n
and sampling with replacement).

R © J+aB J+ENSEMBLE J-+NON-ENSEMBLE
RIDGE MEAN 0.2 2.1 0.4
MEDIAN 0.5 2.8
TRIMMED MEAN 0.5 2.7
RF MEAN 3.0 61.6 4.9
MEDIAN 3.9 63.1
TRIMMED MEAN 3.9 56.4
NN MEAN 8.8 257.7 14.4
MEDIAN 10.2 213.8
TRIMMED MEAN 10.0 206.9
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Figure C.1: Distributions of coverage (averaged over each test data) in 10 independent splits

using ¢ = MEDIAN. The black line indicates the target coverage of 1 — a.
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Figure C.2: Distributions of interval width (averaged over each test data) in 10 independent
splits using ¢ = MEDIAN.
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Figure C.3: Distributions of coverage (averaged over each test data) in 10 independent splits
using ¢ = TRIMMED MEAN. The black line indicates the target coverage of 1 — a.
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Figure C.4: Distributions of interval width (averaged over each test data) in 10 independent
splits using ¢ = TRIMMED MEAN.
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Figure C.5: Distributions of coverage of J+-AB RANDOM and J+AB FIXED (averaged over
each test data) in 10 independent splits using ¢ = MEAN. The black line indicates the target
coverage of 1 — a.
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Figure C.6: Distributions of interval width of J+-AB RANDOM and J+AB FIXED (averaged
over each test data) in 10 independent splits using ¢ = MEAN.
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Figure C.7: Distributions of coverage of J+-AB RANDOM and J+AB FIXED (averaged over
each test data) in 10 independent splits using ¢ = MEDIAN. The black line indicates the
target coverage of 1 — a.
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Figure C.8: Distributions of interval width of J4++AB RANDOM and J+AB FIXED (averaged
over each test data) in 10 independent splits using ¢ = MEDIAN.
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Figure C.9: Distributions of coverage of J+-AB RANDOM and J+AB FIXED (averaged over
each test data) in 10 independent splits using ¢ = TRIMMED MEAN. The black line indicates
the target coverage of 1 — a.
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Figure C.10: Distributions of interval width of J+AB RANDOM and J+AB FIXED (averaged
over the test data) in 10 independent splits using ¢ = TRIMMED MEAN.
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Table C.2: Average wall-clock times in seconds over 10 independent splits of BLOG (m = 0.6n
and sampling with replacement).

R © J+aB J+ENSEMBLE J-+NON-ENSEMBLE
RIDGE MEAN 0.5 6.7 1.5
MEDIAN 1.1 9.1
TRIMMED MEAN 1.2 9.0
RF MEAN 8.7 191.3 11.1
MEDIAN 9.6 197.3
TRIMMED MEAN 9.7 197.1
NN MEAN 36.8 835.8 46.4
MEDIAN 394 891.3
TRIMMED MEAN 37.7 843.7

Table C.3: Average wall-clock times in seconds over 10 independent splits of COMMUNITIES
(m = 0.6n and sampling with replacement).

R %) J+aB J+ENSEMBLE J+NON-ENSEMBLE
RIDGE MEAN 0.1 0.8 0.1
MEDIAN 0.1 0.9
TRIMMED MEAN 0.1 0.9
RF MEAN 7.8 169.8 8.7
MEDIAN 7.8 169.9
TRIMMED MEAN 7.8 169.9
NN MEAN 4.7 105.4 10.0
MEDIAN 4.7 106.0
TRIMMED MEAN 4.7 105.9
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