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1/2; the right panels,

to the test maxk |θ̃k|/v̂k > ĉW,1−α/n
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ABSTRACT

This work collects three projects. The broad theme common to all three projects is quantifying

uncertainty, preferably under a weak set of assumptions. This theme is explored through

mainly two types of problems of statistical inference that exemplify aspects of modern statistics.

The first type pertains to the problems of learning about the difference between two graphical

models given two sets of independent and identically distributed (IID) observations when the

number of variables far exceeds either sample size. In particular, we develop methods for

characterizing the differential structure with theoretical guarantees. The second has to do with

the problems of predictive inference in an assumption-lean setting. That is to say, we assume

that the data are IID and the learning algorithms being used are permutation-symmetric, but

we refrain from making additional assumptions. The particular problem we focus on is that

of constructing a predictive set for an ensemble prediction with a coverage guarantee that

holds non-asymptotically for any data distribution and any choice of the ensemble model.

We propose a method that is competitive both in terms of computational cost and statistical

efficiency.
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CHAPTER 1

INTRODUCTION

This work collects three projects. The broad theme common to all three projects is quantifying

uncertainty, preferably under a weak set of assumptions. This theme is explored through

mainly two types of problems of statistical inference that exemplify aspects of modern

statistics; this work is divided into two parts accordingly.

In Part 1, we look at the problem of comparing high-dimensional graphical models. A

graphical model is a collection of multivariate distributions that have the same conditional

independence relationships among the components. It is frequently used in scientific fields —

e.g., genetics or neuroscience — to model interactions among a large number of variables.

In such applications, it is not unusual to have more variables than there are independent

observations, i.e., the models are high-dimensional. Furthermore, many scientific studies take

measurements in groups — e.g., the control and the treated — and often, there is a greater

interest in understanding how the groups differ rather than how each group behaves. The

methods we develop in Part 1 are useful for analyzing such data. We also show that they

lead to valid inference, both through theoretical analyses and numerical experiments.

In Part 2, we shift our focus to the problem of predictive inference. In particular, we

are interested in constructing a predictive set around a prediction produced by an ensemble

model, e.g., a random forest, assuming that this model has already been chosen beforehand.

Although one solution is offered by näıvely combining an ensemble learning algorithm and

any of the existing distribution-free predictive methods, such methods are either impractical

due to huge computational costs or inefficient because they do not make full use of the

available training data. The method we propose overcomes both shortcomings by integrating

a jackknife+-like construction with the given ensemble learning algorithm. On the theory

side, we show that the resulting predictive sets satisfy a non-asymptotic distribution-free

coverage guarantee.
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Part I

Parametric inference for

high-dimensional differential networks
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CHAPTER 2

BACKGROUND

Undirected graphical models are widely used to study interactions among the measured

components of a complex system. For example, they are used to model gene expression data

[Hartemink et al., Dobra et al., 2004] or brain fMRI scans [Supekar et al., 2008]. They have

also been used to analyze social scientific or financial data [Banerjee et al., 2008, Barber and

Kolar, 2018].

When such data exhibit natural grouping, it is often the case that the goal of data analysis

is to understand how the groups differ rather than to characterize any one particular group.

Consider the example of gene expression analysis of a complex human disease. Identifying

differences in average gene expression patterns between healthy subjects and patients with

the disease is helpful for diagnosis and treatment. More recently, it has been recognized

that a more comprehensive understanding of disease genetics requires analyses of differential

gene-gene interactions [de la Fuente, 2010].

For many applications of graphical models, it is typical to have data sets with more

variables than observations. The high-dimensionality causes the classical formulation of many

estimation problems to become ill-posed, and further assumptions are necessary to determine

the estimate most consistent with the data. In particular, it is now well-understood that

many types of high-dimensional graphical models can be recovered consistently via convex

optimization if they are sparse, i.e., have few edges [Friedman et al., 2007, Yuan and Lin,

2007, Yuan, 2010, Cai et al., 2011, Ravikumar et al., 2011]. This has also been found to be the

case for high-dimensional differential networks [Zhao et al., 2014, Xu and Gu, 2016, Liu et al.,

2017, Fazayeli and Banerjee, 2016]. However, most of these works have focused on accurate

point estimation, leaving the question of statistical inference largely untouched. This is a

significant gap; our scientific understanding cannot be complete without an understanding of

the statistical variability of the estimates we are using to reach our conclusions.

The works presented here address this issue. Our methods offer tools for carrying
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out hypothesis tests and constructing confidence intervals about the parameters of high-

dimensional differential networks. In Chapter 3, we propose methods for analyzing differential

networks arising from pairs of distributions from a general parametric class of graphical models.

In Chapter 4, we shift our focus to Gaussian differential networks. In contrast to previous

works on differential network estimation, the estimators we construct are approximately

Gaussian, making them more suitable for inference procedures. The multiple comparisons

problem is handled via a resampling approach.

2.1 Differential networks

2.1.1 Undirected graphical models

An undirected graphical model — also known as a Markov random field or a Markov network

— captures conditional independence relationships among a collection of random variables

[Lauritzen, 1996, MacKay, 2002, Koller and Friedman, 2009, Drton and Maathuis, 2017].

More precisely, an undirected graphical model associated with a graph G is a collection of

multivariate distributions such that the conditional independence relationships among the

components follow the pattern given by the edges of G.

We give a formal definition of an undirected graphical model. First, recall that a graph G

is a pair G = (V,E), where V is a set whose elements are called nodes and E is a subset of

V × V whose elements are called edges. We say that G is undirected if (u, v) ∈ E whenever

(v, u) ∈ E. From now on, all graphs are undirected, unless otherwise noted.

Let X = (Xv)
p
v=1 be a random vector with support Xp ⊆ Rp. Let G = (V,E) be a graph

with V = {1, . . . , p}. We say that X satisfies the pairwise Markov property with respect to

G if

Xu ⊥⊥Xv | (Xw)w 6=u,v whenever {u, v} /∈ E.

In a famous theorem, Hammersley and Clifford completely characterized the form of the

density for any such X. Let C(G) denote the set of all cliques of G, i.e., subsets of V for
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which every pair of nodes is connected. Their theorem says that X satisfies the pairwise

Markov property with respect to G if and only if the distribution of X has a density of the

form

f(x) =
∏

C∈C(G)

φC(xC),

for some positive functions φC defined on R|C|, where xC is the subvector (xv)v∈C ∈ R|C|.

Thus, it is possible to define a parametric class of graphical models by fixing φC for all

C ∈ C(G).

In this work, we focus on classes of pairwise graphical models [Wainwright and Jordan,

2008, Yang et al., 2015]. These are graphical models containing multivariate distributions

having densities of the form

f(x; γ) =
1

Z(γ)
exp


p∑
v=1

γvψv(xv) +

p∑
u=1

p∑
v=u+1

γuvψuv(xu, xv)

 , x ∈ Xp, (2.1)

for some fixed functions ψv : R→ R, ψuv : R2 → R, unknown parameters γv, γuv ∈ R, and

the normalizing constant

Z(γ) =

∫
Xp

exp


p∑
v=1

γvψv(xv) +

p∑
u=1

p∑
v=u+1

γuvψuv(xu, xv)

 dx.

For a distribution in this class, it can be checked that for any u 6= v,

Xu ⊥⊥Xv | (Xw)w 6=u,v if and only if γuv = 0.

Thus, in a pairwise graphical model, the edge set E is the support of the pairwise parameters

(γuv)1≤u<v≤p.

This work is mainly concerned with the following two examples of pairwise classes.

Example 2.1 (Ising model). An Ising model is a discrete distribution on the vertices of the
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p-dimensional hypercube Xp = {±1}p characterized by the probability mass function of

the form given in (2.1) with ψv(xv) = xv, ψuv(xu, xv) = xuxv, and γv, γuv ∈ R. Thus,

each Ising model may be associated with a graph G = (V,E) such that V = {1, . . . , p} and

E = {{u, v} : γuv 6= 0}.

For convenience, we only consider Ising models with zero node potential, i.e., γv = 0 for

all v.

Example 2.2 (Multivariate Gaussian). A multivariate Gaussian distribution is also an example

of a pairwise graphical model. Suppose X ∼ Normal(µ,Σ) for some µ ∈ Rp and Σ ∈ Sp+,

where Sp+ is the set of p-by-p symmetric positive definite matrices. Then, X has the probability

density of the form given in (2.1) with ψv(xv) = xv, ψuv(xu, xv) = xuxv, γv = (Σ−1µ)v,

and γuv = −(Σ−1)uv if u < v and γuv = −(Σ−1)uv/2 if u = v. Thus, each multivariate

Gaussian distribution may be associated with a graph G = (V,E) such that V = {1, . . . , p}

and E = {{u, v} : (Σ−1)uv 6= 0}.

For convenience, we only consider multivariate Gaussian distributions with zero mean,

i.e., µ = 0.

2.1.2 Differential network of pairwise graphical models

Suppose X ∼ fX = f(·; γX) and Y ∼ fY = f(·; γY ) are two distributions from the same

pairwise class of graphical models, i.e., fX and fY follow the form given in (2.1) for the same

known ψ = (ψv)
p
v=1 ∪ (ψuv)1≤u<v≤p and some unknown γX = (γX,v)

p
v=1 ∪ (γX,uv)1≤u<v≤p

and γY = (γY,v)
p
v=1 ∪ (γY,uv)1≤u<v≤p.

We define the differential network of the ordered pair (X, Y ) as the difference

θ∗ = γX − γY .

Note that if either Xu⊥⊥Xv | (Xw)w 6=u,v but Yu⊥6⊥ Yv | (Yw)w 6=u,v or Xu⊥6⊥Xv | (Xw)w 6=u,v

but Yu ⊥⊥ Yv | (Yw)w 6=u,v, then θ∗uv 6= 0. More generally, the nonzero entries of the pairwise
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parameters of θ∗ convey the information about the change in conditional independence

relationships among the components of X and Y . We associate each pair (X, Y ) with a

graph Gθ∗ = (V,Eθ∗) such that V = {1, . . . , p} and Eθ∗ = {{u, v} : θ∗uv 6= 0}. By an abuse

of terminology, the term differential network shall also refer to this graph Gθ∗ .

This chapter and Chapters 3 and 4 are about the following problem. Suppose we are

given a pair of sets of independent and identically distributed (IID) observations from fX

and fY , i.e.,

Xi ∼ fX , i = 1, . . . , nX , Yj ∼ fY , j = 1, . . . , nY , nX , nY � p.

Let I denote the set of indices for the parameters of inferential inferential interest. Note

that nX , nY � p. In this regime, can we still carry out valid inference for θ∗k, k ∈ I?

More concretely, let α ∈ (0, 1). How can we construct a subset Ĉ1−α ⊆ R|I| such that

P{θ∗I ∈ Ĉ1−α} ≥ 1− α using the available data? Alternatively, what is the test Tα for which

we can guarantee P{Tα = 1} ≤ α under the null hypothesis H0 : θ∗I = θ0
I?

2.2 Direct difference estimation procedures

Inference about a parameter is often accomplished by constructing an estimator of the

parameter and characterizing its sampling distribution. The methods we propose in Chapters 3

and 4 are based on direct difference estimation procedures in which the differential network

θ∗ is estimated directly. This stands in contrast to the separate estimation approach in

which the individual graphical parameters γX and γY are first estimated based on separate

sets of observations, one from fX and another from fY , after which an estimator of θ∗ is

formed by taking the difference of the resulting estimates. A related approach is that of joint

estimation, which is used in settings where the individual graphical parameters are believed to

be structurally similar. The joint estimation differs from the separate estimation in that the

resulting estimates are computed using all available data and not just one set of observations.
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However, because the final outputs are still the estimates of individual graphical parameters,

they do not yield direct estimates of θ∗.

Direct difference estimation procedures have two advantages over separate or joint estima-

tion procedures. First, the dimension of the parameter space is halved for direct difference

estimation from 2 dim(γ) to dim(γ). Second, in high-dimensional settings, for a separate or

joint estimation procedure, both γX and γY would have to satisfy some structural assumptions

if the final estimate of θ∗ is to be accurate. By contrast, in a direct difference estimation

procedure, such requirements are placed on θ∗. This makes direct difference estimation

procedures more flexible, allowing them to be deployed in situations where γX and γY are

not necessarily sparse, but θ∗ is.

Here, we introduce two direct difference estimation procedures. The first procedure, called

the Kullback-Leiblier importance estimation procedure (KLIEP), is a general procedure that

can be used with any parametric class of graphical models. The second procedure actually

estimates the difference of two precision matrices. Because of the special correspondence

between the edge set and the support of the precision matrix for multivariate Gaussian

distributions described in Example 2.2, the procedure can be used to estimate the differential

network in the case of Gaussian graphical models.

2.2.1 Kullback-Leibler importance estimation procedure

The Kullback-Leibler importance estimation procedure (KLIEP) refers to a family of proce-

dures for estimating the density ratio of a pair of distributions [Sugiyama et al., 2012, Liu

et al., 2014, 2017]. When the distributions belong to the same parametric class within the

exponential family — which is the case for the pair (X, Y ) from Section 2.1.2 — their density

ratio also has the exponential form and depends on the underlying parameters only through

their difference. In this case, the procedure reduces to minimizing a loss that depends on the

data only through the sample averages.

Consider the pair (X, Y ) from Section 2.1.2. We claim that their density ratio fX/fY

8



depends on γX and γY only through the differential network θ∗. Indeed,

fX(x)

fY (x)
=
Z(γY ) exp

(
γTXψ(x)

)
Z(γX) exp

(
γTY ψ(x)

) =
exp

(
θ∗Tψ(x)

)
ZY (θ∗)

,

where ZY (θ∗) = E{exp(θ∗Tψ(Y ))}, because

ZY (θ∗) =
Z(γX)

Z(γY )
=

∫
exp

(
γTXψ(x)

)
dx

Z(γY )

=

∫
exp

(
θ∗Tψ(x)

) exp
(
γTXψ(x)

)
Z(γY )

dx = E
{

exp
(
θ∗Tψ(Y )

)}
.

Thus, we write rθ∗ = fX/fY , where rθ is the following function parametrized by θ:

rθ(x) =
exp

(
θTψ(x)

)
ZY (θ)

.

Let DKL(f‖g) be the Kullback-Leibler (KL) divergence from f to g, where f and g are

probability densities. Recall that DKL(f‖g) ≥ 0 with equality if and only if f = g almost

everywhere. Since fX = rθ∗fY , θ∗ = arg minθDKL(fX‖rθfY ). Moreover,

θ∗ = arg min
θ
DKL(fX‖fY rθ)

= arg min
θ

{ ∫
log

(
fX(x)

rθ(x)fY (x)

)
fX(x) dx

}
= arg min

θ

{
−
∫

log (rθ(x)) fX(x) dx

}
= arg min

θ

{
−
∫
θTψ(x) fX(x) dx+ logZY (θ)

}
= arg min

θ

[
−E

{
θTψ(X)

}
+ logE

{
exp

(
θTψ(Y )

)}]
.
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Thus, the differential network θ∗ may be estimated by minimizing the following loss function:

`KLIEP(θ) = `KLIEP

(
θ; {Xi}

nX
i=1, {Yj}

nY
j=1

)
= − 1

nX

nX∑
i=1

θTψ(Xi) + log

 1

nY

nY∑
j=1

exp
(
θTψ(Yj)

) .
(2.2)

We call `KLIEP the KLIEP loss. The KLIEP loss is convex in θ, and the (unregularized)

KLIEP estimator θ̂KLIEP is known to be consistent for θ∗ [Sugiyama et al., 2012, Chapter

13] in classical settings. For high-dimensional data sets, regularized variants of KLIEP have

been shown to be consistent under additional assumptions on θ∗ [Liu et al., 2017, Fazayeli

and Banerjee, 2016].

2.2.2 D-trace loss

Suppose the pair (X, Y ) from Section 2.1.2 is actually made up of a pair of multivariate

Gaussian distributions, i.e., X ∼ Normal(0,ΣX) and Y ∼ Normal(0,ΣY ) for some ΣX ,

ΣY ∈ Sp+, where Sp+ is the set of p-by-p symmetric positive definite matrices. Denote the

difference of precision matrices by ∆∗, i.e.,

∆∗ = Σ−1
X − Σ−1

Y .

By the special correspondence between the edge set and the support of the precision matrix

for multivariate Gaussian distributions described in Example 2.2,

θ∗uv =


−∆∗uv if u < v,

−∆∗uv/2 if u = v.

Thus, in the case of Gaussian graphical models, any problem about the differential network

θ∗ can equivalently be expressed in terms of the difference of the precision matrices ∆∗. This
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alternative characterization is useful, because ∆∗ satisfies the following pair of identities:

ΣX∆∗ΣY ≡ ΣY − ΣX , ΣY ∆∗ΣX = ΣY − ΣX .

In fact, when ΣX and ΣY are both invertible, ∆∗ is the only matrix satisfying each identity.

Thus, a reasonable estimator of ∆∗ is the solution to the equation

1

2

(
Σ̂X∆Σ̂Y + Σ̂Y ∆Σ̂X

)
= Σ̂Y − Σ̂X , (2.3)

where Σ̂X and Σ̂Y are the usual sample covariance estimates, i.e.,

Σ̂X =
1

nX

nX∑
i=1

XiX
T
i , Σ̂Y =

1

nY

nY∑
j=1

YjY
T
j .

To solve (2.3) for ∆ is equivalent to minimizing the following loss function:

`D(∆) = `D

(
∆; {Xi}

nX
i=1, {Yj}

nY
j=1

)
=

1

4
tr
{

∆Σ̂X∆Σ̂Y + ∆Σ̂Y ∆Σ̂X

}
− tr

{
∆
(

Σ̂Y − Σ̂X

)}
=

1

2
vec (∆)TH vec (∆)− vec (∆)T vec

(
Σ̂Y − Σ̂X

)
,

where

H =
1

2

(
Σ̂X ⊗ Σ̂Y + Σ̂Y ⊗ Σ̂X

)
.

We call `D the D-trace loss. The D-trace loss has been used in Zhao et al. [2014], Yuan et al.

[2017].

2.3 De-biasing

The KLIEP loss `KLIEP and the D-trace loss `D both have the property that the minimizer

in the population limit is equal to the true difference and that the gradient at the true
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difference can be expressed, up to a negligible error term, as a linear combination of two

sample averages with zero means. The two properties are the key to why when the number

of variables p is fixed and the sample sizes nX , nY tend to infinity, the sampling distribution

of the unregularized estimator tends to a Gaussian distribution.

However, for many data sets that arise in practical applications, the number of variables

exceeds the size of either sample, i.e., p� nX , nY . In such high-dimensional settings, the

loss functions are no longer uniquely minimized, and regularization is introduced to ensure

consistency of the resulting estimates. For example, in the KLIEP framework, Liu et al.

[2017] proposed the sparse KLIEP :

θ̂λ = arg min
θ
`KLIEP

(
θ; {Xi}

nX
i=1, {Yj}

nY
j=1

)
+ λ |θ|1 , (2.4)

where λ > 0 is a user-specified parameter for controlling the sparsity of the resulting estimate

θ̂λ. For the problem of high-dimensional Gaussian differential network estimation, Yuan et al.

[2017] proposed the following procedure:

∆̂λ = arg min
∆

`D

(
∆; {Xi}

nX
i=1, {Yj}

nY
j=1

)
+ λ |∆|1 , (2.5)

where λ > 0 is again a user-specified parameter for controlling sparsity. Both (2.4) and (2.5)

have been shown to lead to consistent estimation of sparse differences, but these results

require additional conditions on the minimal signal strength and irrepresentability. More

importantly, it has not been the focus of these works to characterize the distributional

properties of the `1-regularized estimators they propose. Indeed, such estimators are not

well-suited for statistical inference, as they have non-negligible biases and their sampling

distributions are extremely complicated [see Ning and Liu, 2017, and references therein].

For convenience, reindex θ∗ = (θ∗v)
p
v=1 ∪ (θ∗uv)1≤u<v≤p as θ∗ = (θ∗k)mk=1, where m is the

total number of parameters, e.g., m = p(p− 1)/2 in the case of Ising models (Example 2.1)

and m = p(p+1)/2 in the case of multivariate Gaussian distributions (Example 2.2). Suppose
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we are interested in θ∗k ∈ R for some k ∈ {1, . . . ,m}. Let θ∗kc ∈ Rm−1 be the vector

of remaining (m − 1) parameters. Abusing the notation somewhat, denote the induced

partition by θ = (θk, θkc). Let ` be a loss function, e.g., ` = `KLIEP or `D, such that

θ∗ = arg minθ E{`(θ)} and that ∇`(θ∗) is a linear combination of two sample averages with

E{∇`(θ∗)} = 0, at least approximately. Then,

∇k`(θk, θkc) = ∇k`(θ∗) +∇2
kk`(θ

∗)(θk − θ∗k) +∇2
kkc`(θ

∗)(θkc − θ∗kc) + REM. (2.6)

Note that if θ∗kc were known, then (2.6) implies that the equation ∇k`(θk; θ∗kc) = 0 defines

an estimator of θ∗k that is unbiased and approximately Gaussian. Thus, a näıve approach

replaces the unknown θ∗kc with an estimate θ̂kc , resulting in a different estimator θ̃n
k :

∇k`(θ̃n
k ; θ̂kc) = 0. (2.7)

Plugging in θ̂kc in (2.6) and rearranging,

∇2
kk`(θ

∗)(θ̃n
k − θ

∗
k) = −∇k`(θ∗)−∇2

kkc`(θ
∗)(θ̂kc − θ∗kc) + REM. (2.8)

Usually, ∇2`(θ∗) ≈ E{∇2`(θ∗)} by the Law of Large Numbers. In particular, ∇2
kk`(θ)

converges to a positive number and ∇2
kkc`(θ

∗), to a fixed vector that is in general nonzero.

Thus, when θ̂kc converges quickly, i.e., |θ̂kc − θ∗kc| = oP(n−1/2), where n = nX + nY , then

the distribution of n1/2θ̃n
k is approximately Gaussian.

However, regularized estimators typically have errors of larger order, and hence, the

contribution of the term ∇2
kkc`(θ

∗)(θ̂kc − θ∗kc) cannot be ignored in the distribution of n1/2θ̃n
k .

Unfortunately, the sampling distribution of θ̂kc can be extremely complicated, and the

Gaussian approximation can be wildly inaccurate for the distribution of n1/2θ̃n
k .

By contrast, the methods we propose in Chapters 3 and 4 estimate θ∗ based on a different,

modified version of the estimating equation. Unlike the näıve version (2.7), which led to θ̃n
k , we
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shall see that the modified version leads to estimators for which the Gaussian approximation

is appropriate.

Consider a family of estimators θ̃k defined by estimating equations of the form:

ωT∇`(θ̃k; θ̂kc) = 0, (2.9)

where ω ∈ Rm. Note that the näıve estimator θ̃n
k is just a special case with ω = ek, where ek

is the k-th standard basis vector. Similarly to (2.6),

ωT∇`(θk; θ̂kc) = ωT∇`(θ∗) + ωT∇2`(θ)

 θk − θ∗k
θ̂kc − θ∗kc

+ REM. (2.10)

Now, suppose instead of ω = ek, we choose ω = Ω̂·k, where ∇2`(θ)Ω̂·k ≈ ek. We can think

of Ω̂·k as estimating Ω∗·k = [E{∇2`(θ∗)}]−1ek. As with the estimation of θ∗, it is possible

to consistently estimate the rows of the inverse of [E{∇2`(θ∗)}] even with high-dimensional

data if the rows satisfy some structural assumptions. With this choice of ω, (2.10) can be

rewritten as

Ω̂T
·k∇`(θk; θ̂kc) = Ω̂T

·k∇`(θ
∗) + (θk − θ∗k) +

(
∇2`(θ∗)Ω̂·k − ek

)T  θk − θ∗k
θ̂kc − θ∗kc

 + REM.

(2.11)

Plugging in (2.9) and rearranging,

θ̃k − θ∗k = −Ω̂T
·k∇`(θ

∗)−
(
∇2`(θ∗)Ω̂·k − ek

)T  θk − θ∗k
θ̂kc − θ∗kc

+ REM. (2.12)

In contrast to (2.8), the error θ̂kc − θ∗kc is dot-producted with ∇2
kc·`(θ

∗)Ω̂·k, which is also

expected to be small. Therefore, the Gaussian approximation can be appropriate for the
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distribution of n1/2θ̃k even when it is not for the distribution of n1/2θ̃n
k .

How do we solve the projected estimating equation (2.9) in practice? The methods we

propose in Chapters 3 and 4 offer two options.

The first option is to solve for θ̃k numerically via the Newton’s method. If the Newton’s

method is initiated at θ̂k, where θ̂ = (θ̂k, θ̂kc) with θ̂ given by either the sparse KLIEP

estimate (2.4) or the sparse D-trace estimate (2.5) depending on the context, then because θ̂

ought to be already close to the solution, a single Newton iteration suffices to yield a good

approximation. Thus,

θ̃1+
k = θ̂k − Ω̂T

·k∇`(θ̂). (2.13)

This is an example of a one-step estimator [van der Vaart, 1998, van de Geer et al., 2014,

Zhang and Zhang, 2014]. In the case of θ̃1+
k , it is possible to derive an expansion directly

from (2.11) by plugging in θ̂k for θk and rearranging:

θ̃1+
k − θ

∗
k =

{(
θ̂k − Ω̂T

·k∇`(θ̂)
)
− θ∗k

}
= −Ω̂T

·k∇`(θ
∗)−

(
∇2`(θ∗)Ω̂·k − ek

)T (
θ̂ − θ∗

)
+ REM.

(2.14)

In Chapters 3 and 4, we prove that estimators of this type are approximately Gaussian and

unbiased for θ∗k.

The second option utilizes the so-called double-selection [Chernozhukov et al., 2015b].

This option makes use of the estimated supports from θ̂ and Ω̂·k. First, a new estimate qθ is

obtained by minimizing ` but restricting the support to {k} and the combined supports of θ̂

and Ω̂·k, i.e.,

qθ = arg min
θ
`(θ) subject to supp(θ) ⊆ {k} ∪ supp(θ̂) ∪ supp(Ω̂·k). (2.15)

Then, the double-selection estimator θ̃2+
k is defined as the k-th component of qθ. While we do

not pursue a formal analysis of double-selection estimators further in this work, the proof

of approximate Gaussianity and unbiasedness follows along similar lines as in the case of
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one-step estimators starting from the expansion in (2.12).

Whether one-step or double-selection is used, only consistency of θ̂ or qθ and Ω̂·k is required

for validity of Gaussian approximation for the final estimator θ̃1+
k or θ̃2+

k . Indeed, they can

be shown to be equivalent up to first-order asymptotically [Chernozhukov et al., 2015b].

However, in the case of double-selection, unless the constraint set {k}∪ supp(θ̂)∪ supp(Ω̂·k) is

sufficiently small, the re-fitted estimator qθ will not be consistent in high-dimensional settings.

Thus, double-selection is only viable when sparse estimators for θ∗ and Ω∗·k are consistent.

By contrast, one-step can also be used with non-sparse estimators as initial estimates.

2.4 Bootstrapping

In many practical applications of differential network modeling, it is often the case that

the scientific question under investigation is also high-dimensional, in the sense that it

encompasses multiple possible edges. For example, it may be of interest to investigate

whether some large pre-specified collection of brain regions display different connectivity

patterns when performing different tasks, or whether a certain gene of biological importance

changes in how it interacts with all the other genes in different environments. While the

techniques of Section 2.3 extend in an obvious way to situations when the target of inference

includes more than one edge — iterate either (2.13) or (2.15) over each k in the target set —

this merely yields estimators of the edges in the target collection that are each approximately

Gaussian and unbiased, and the issue of multiple comparison remains.

Here, we discuss two bootstrap-based approaches for controlling the family-wise error rate

(FWER). Let I be the collection of indices of inferential interest. For confidence regions, this

means finding a subset Ĉ(1− α) ⊆ R|I| for a pre-specified confidence level 1− α such that

P{θ∗I ∈ Ĉ(1−α)} ≥ 1−α, where θ∗I = (θ∗k)k∈I . For testing a null hypothesis H0 : θ∗k = θ0
k for

all k ∈ I, this means finding a test such that it rejects H0 with probability at most α under

H0. Although it is possible to control the FWER by applying the Bonferroni correction, this

could lead to a loss of power when the estimators θ̃k, k ∈ I, are correlated.
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Consider the following statistic

TI = TI,nX ,nY = max
k∈I

n1/2
∣∣∣θ̃k − θ∗k∣∣∣ , (2.16)

where n = nX + nY . Let cT,I,q be the q-th quantile of TI . Then, θ̃k ± n−1/2cT,I,1−α, k ∈ I,

is an 100 × (1 − α)% confidence region for θ̃k, k ∈ I. Similarly, the test that rejects if

maxk∈I n
1/2|θ̃k| > cT,I,1−α controls the FWER at level α for the null hypothesis H0 : θ∗k = 0

for all k ∈ I. This approach has the advantage of adapting to the correlations among θ̃k,

k ∈ I. Thus, given cT,I,q — or an accurate estimator thereof — we can learn the differential

network structure while controlling the type I error rate.

The methods we propose in Chapters 3 and 4 use one of two types of bootstrap to estimate

cT,I,q.

In the first approach, motivated by the fact that each n1/2θ̃k is approximately Gaussian,

we estimate cT,I,q with maxk∈I |Z∗k |, (Z∗k)k∈I ∼ Normal(0, V̂II), where V̂II is an estimate of

the covariance of θ̃I = (θ̃k)k∈I computed from the data. This is Algorithm 1.

Algorithm 1 Gaussian bootstrap

Input: Data {Xi}
nX
i=1 and {Yj}

nY
j=1; a consistent estimate V̂II of the covariance of θ̃I

Output: A Gaussian bootstrap estimate ĉT,I,q of cT,I,q
for b = 1, . . . , nb do

Sample Z∗I,b ∼ Normal(0, V̂II).

Compute T ∗I,b = maxk∈I |Z∗I,b,k|.
end for
return ĉT,I,q, the q-th sample quantile of {T ∗I,b}

nb
b=1.

In Algorithm 4 in Chapter 3 and Algorithm 8 in Chapter 4, the Gaussian multiplier

bootstrap is used to generate the Gaussian random vector Z∗I,b, b = 1, . . . , nb.

In practice, the Gaussian bootstrap may be less accurate than desired due to high-

dimensionality. When |I| → ∞, the convergence of TI → maxk∈I |Zk| may be happening

too slowly for sufficient accuracy of the quantile estimates ĉT,I,q [see Chernozhukov et al.,

2013, 2017, and references therein]. This motivates us to consider a second approach based
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on the empirical bootstrap, which can converge at a significantly faster rate, including in

high-dimensional settings [Deng and Zhang, 2020]. However, care must be taken, as the

empirical bootstrap principle may not lead to consistent estimation of the distributions when

it is applied to sparsity-inducing estimation procedures, such as (2.4) or (2.5).

Algorithm 2 Empirical bootstrap for the de-biased estimator θ̃

Input: Data {Xi}
nX
i=1 and {Yj}

nY
j=1; initial estimates θ̂ and Ω̂·k, k ∈ I, used to compute the

de-biased estimate θ̃I
Output: An empirical bootstrap estimate ĉT,I,q of cT,I,q

for b = 1, . . . , nb do
Resample {X∗b,i}

nX
i=1 from {Xi}

nX
i=1 and {Y ∗b,j}

nY
j=1 from {Yj}

nY
j=1 uniformly at random

with replacement.
for k ∈ I do

If replicating θ̃k = θ̃1+
k , then do

θ̃1+∗
b,k = θ̂k − Ω̂T

·k∇`
(
θ̂; {X∗b,i}

nX
i=1, {Y

∗
b,j}

nY
j=1

)
.

If replicating θ̃k = θ̃2+
k , then do

qθ = arg min
θ
`
(
θ; {X∗b,i}

nX
i=1, {Y

∗
b,j}

nY
j=1

)
subject to supp(θ) ⊆ {k} ∪ supp(θ̂) ∪ supp(Ω̂·k),

and let θ̃2+∗
b,k be the k-th component of qθ.

end for
Compute T ∗I,b = maxk∈I n

1/2|θ̃∗b,k − θ̃k|.
end for
return ĉT,I,q, the q-th sample quantile of {T ∗I,b}

nb
b=1.

Note that Algorithm 2 only repeats the de-biasing step — (2.13) or (2.15) — albeit using

the resampled data in place of the original data. The initial estimates θ̂ and Ω̂·k, k ∈ I, are

the same as the ones used to obtain the de-biased estimate.

We give a heuristic argument in support of Algorithm 2, and leave a formal proof to future

work. For the sake of argument, consider the infeasible estimators obtained by replacing θ̂
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and Ω̂·k with θ∗ and Ω∗·k in (2.13) and (2.15), i.e.,

θ̃1∗
k = θ∗k − Ω∗T·k ∇`

(
θ∗; {Xi}

nX
i=1, {Yj}

nY
j=1

)

and θ̃2∗
k is the k-th component of qθ∗, where

qθ∗ = arg min
θ
`(θ; {Xi}

nX
i=1, {Yj}

nY
j=1) subject to supp(θ) ⊆ {k} ∪ supp(θ∗) ∪ supp(Ω∗·k).

In this case, the distribution of either θ̃1∗
k or θ̃2∗

k can be consistently estimated by an also

infeasible version of Algorithm 2 that replaces θ̂ and Ω̂·k with θ∗ and Ω∗·k

Now, if θ̂ and Ω̂·k are stable in the sense that they are guaranteed to fall inside some fixed

neighborhood of θ∗ and Ω∗·k with high probability, using θ̂ and Ω̂·k as originally proposed

induces errors that can be safely ignored, as the final estimator is robust to the errors in

either estimate by design. This is implied by consistency of both θ̂ and Ω̂·k. Later, we verify

this intuition in simulations.

2.5 Related works

Probabilistic graphical models, which include undirected graphical models, have been studied

for a long time [Lauritzen, 1996, MacKay, 2002, Koller and Friedman, 2009]. For a survey of

recent results, see Drton and Maathuis [2017]. Some of these are specifically about differential

networks. For a thorough review, see Shojaie [2021] and references therein.

Numerous works have looked at problems of estimating high-dimensional graphical models

under various assumptions; they may be viewed as a part of the wave of high-dimensional

estimation methods that swept through the statistics community. Notable examples include

Friedman et al. [2007], Yuan and Lin [2007], Yuan [2010], Cai et al. [2011], Ravikumar

et al. [2011]. Many researchers have considered multi-sample problems for graphical models.

Chiquet et al. [2011], Guo et al. [2011], Danaher et al. [2014], Mohan et al. [2014], Ma and
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Michailidis [2016], Majumdar and Michailidis [2018] are methods that can estimate multiple

networks with similar structures at the same time. Although their setup resembles ours, the

motivation is quite different, as the primary goal of such methods is to improve the quality of

the estimates of individual graphs. A line of research most closely aligned with our problem

is that of direct differential network estimation, which includes works such as Zhao et al.

[2014], Xu and Gu [2016], Liu et al. [2017], Fazayeli and Banerjee [2016], Yuan et al. [2017].

The outpouring of high-dimensional statistical estimation methods has naturally led

many researchers to ponder valid inferential procedures. In particular, Belloni et al. [2013],

Javanmard and Montanari [2014], van de Geer et al. [2014], Zhang and Zhang [2014],

Meinshausen [2015], Belloni et al. [2016] studied hypothesis testing and confidence interval

construction for high-dimensional M-estimators. In the context of graphical models, related

ideas were developed for the case of Gaussian graphical models [Janková and van de Geer,

2015, Ren et al., 2015, Janková and van de Geer, 2017], elliptical copula models [Barber

and Kolar, 2018, Lu et al., 2018], and Markov networks [Wang and Kolar, 2016, Yu et al.,

2016]. There have also been works on inferential procedures for high-dimensional differential

networks [Xia et al., 2015, Belilovsky et al., 2016, Liu, 2017, Xia et al., 2018]. However, these

rely on separate estimates of the individual graphs.

Our inferential procedures for high-dimensional graphs use bootstrap. The consistency

of the Gaussian bootstrap for the maxima of high-dimensional means was established in

the seminal works of Chernozhukov et al. [2013, 2015a, 2017]. The rates were subsequently

improved for the empirical bootstrap by Deng and Zhang [2020].
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CHAPTER 3

GENERAL MARKOV RANDOM FIELDS

3.1 Methods

We propose a procedure for constructing an approximately normal and unbiased estimator of

the differential network (Section 3.1.1). We then give two bootstrap sketching procedures for

estimating the quantiles of a max-type statistic based on the estimator from Section 3.1.1,

and show how they can be used for simultaneous inference (Section 3.1.2).

3.1.1 Sparse Kullback-Leibler importance estimation with de-biasing

We present Algorithm 3, which is a general recipe for de-biasing regularized KLIEP estimates

for each θ∗k in k ∈ I, where I is the collection of indices for the parameters of inferential

interest. The procedure uses a general norm penalty | · | for regularization.

A general Gaussian approximation bound for Algorithm 3 will be given below in Theo-

rem 3.1 in Section 3.2.2. The result is valid as long as the initial estimators from (3.1) and

(3.2) are sufficiently accurate. For example, this is the case for sparse or approximately sparse

θ∗ and Ω∗·k when the `1-penalty is used (Lemmas A.1 and A.2 in Appendix A.3.3). We call

this procedure Sparse Kullback-Leibler Importance Estimation with de-biasing (SparKLIE+),

with SparKLIE+1 referring to SparKLIE+ that uses one-step (2.13) for de-biasing and

SparKLIE+2 referring to the double selection (2.15) option.

Remark 3.1 (Alternative procedures for initial estimation). It is possible to use other proce-

dures for either of the initial estimation steps as long as the errors satisfy |θ̂−θ∗| · |Ω̂·k−Ω∗·k| =

oP(n−1/2). We give examples in the case of the `1-penalty. In Appendix A.7.1, we give Algo-

rithms 13 and 14 which may be performed in Steps 1 or 2, respectively. The main advantage of

The work presented in this chapter is adapted from “Two-sample inference for high-dimensional Markov
networks” by Byol Kim, Song Liu, and Mladen Kolar to appear in the Journal of the Royal Statistical Society:
Series B. A preprint is available from https://arxiv.org/abs/1905.00466.
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Algorithm 3 Kullback-Leibler importance estimation with de-biasing (KLIE+)

Input: Data {Xi}
nX
i=1 and {Yj}

nY
j=1; positive regularization parameters λθ, λk, k ∈ I

Output: De-biased estimates θ̃k, k ∈ I
Step 1. Solve

θ̂ = arg min
θ
`KLIEP

(
θ; {Xi}

nX
i=1, {Yj}

nY
j=1

)
+ λθ |θ| . (3.1)

for k ∈ I do
Step 2. Solve

Ω̂·k = arg min
ω

1

2
ωT∇2`KLIEP(θ̂)ω − ωTek + λk |ω| . (3.2)

Step 3. De-bias, either by (2.13)

θ̃1+
k = θ̂k − Ω̂T

·k∇`KLIEP

(
θ̂; {Xi}

nX
i=1, {Yj}

nY
j=1

)
or by (2.15), i.e., θ̃2+

k is the k-th component of qθ, where

qθ = arg min
θ
`KLIEP(θ) subject to supp(θ) ⊆ {k} ∪ supp(θ̂) ∪ supp(Ω̂·k).

end for
return θ̃k, k ∈ I

these procedures is that the user only has to specify a universal penalty level which can be done

in a data-independent manner. For example, in Algorithm 13, λθ0 = 1.01Φ−1(1− 0.05/m)

following Belloni et al. [2014], and in Algorithm 14, λ0 = (2 logm/nY )1/2 following Sun

and Zhang [2013]. We may also re-fit the model on the estimated support [Belloni and

Chernozhukov, 2013]. Finally, it is also possible to use a constrained procedure, similar to

the method of Ning and Liu [2017], where instead of (3.2), one solves

min |ω|1 subject to
∣∣∣∇2`KLIEP(θ̂)ω − ek

∣∣∣
∞
≤ λk.

Remark 3.2 (Choosing regularization parameters). Algorithm 3 assumes that the user has

already picked out the regularization parameters λθ, λk, k ∈ I. However, the optimal choice,

as dictated by Lemmas A.7 and A.8 in Appendix A.5.1, depends on constants related to

the regularity of the density ratio, which are typically unknown. In Appendix A.9.3, we

empirically study the sensitivity of Algorithm 3 to the choice of regularization parameters and
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find that the performance is robust across a wide range of regularization levels. Furthermore,

as stated above in Remark 3.1, we provide alternative initial estimation procedures in A.7.1

that do not require regularization parameter tuning. This is the version of Algorithm 3 we

use in Sections 3.3 and 3.4.

Estimating the variance of the SparKLIE+ estimator

For statistical inference, we also need a consistent estimator of the variance of n1/2θ̃k,

n = nX + nY . Define the empirical density ratio estimate

r̂θ(Y ) =
exp

(
θ>ψ(Y )

)
ẐY (θ)

, ẐY (θ) =
1

nY

nY∑
j=1

exp
(
θ>ψ(Yj)

)
. (3.3)

Let Σ̂ψ and Σ̂ψr̂(θ̂) be the sample covariance matrices of {ψ(Xi)}
nX
i=1 and {ψ(Yj)r̂θ̂(Yj)}

nY
j=1,

i.e.,

Σ̂ψ =
1

nX

nX∑
i=1

ψ(Xi)ψ(Xi)
T − ψ̄ψ̄T,

Σ̂ψr̂(θ) =
1

nY

nY∑
j=1

r̂2
θ(Yj)ψ(Yj)ψ(Yj)

T − µ̂ψ(θ)µ̂ψ(θ)T,

where

ψ̄ =
1

nX

nX∑
i=1

ψ(Xi), µ̂ψ(θ) =
1

nY

nY∑
j=1

r̂θ(Yj)ψ(Yj). (3.4)

Let Σ̂pooled(θ̂) be the pooled covariance

Σ̂pooled(θ̂) =
n

nX
Σ̂ψ +

n

nX
Σ̂ψr̂(θ̂). (3.5)

Finally, a consistent estimator of the variance of n1/2θ̃k is

v̂2
k = Ω̂T

·kΣ̂pooled(θ̂)Ω̂·k. (3.6)
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This estimates the variance of n1/2Ω∗T·k ∇`KLIEP(θ∗), which we show is asymptotically equiv-

alent to n1/2(θ̃k − θ∗k) in the proof of Theorem 3.1 in Appendix A.2.1. By Lemma A.18 in

Appendix A.6.2, v̂2
k is consistent if both θ̂ and Ω̂·k are.

Theorem 3.2 in Section 3.2.2 implies that if zq = Φ−1(q) is the q-quantile of a standard

Gaussian, then P{n1/2(θ̃k − θ∗k)/v̂k ≤ zq} ≈ Φ−1(zq) = q. Thus, θ̃k ± z1−α/2× v̂k/n1/2 is an

asymptotically valid 100× (1− α)% confidence interval (CI) for θ∗k. Similarly, the test that

rejects for n1/2|θ̃k − θ0
k|/v̂k > z1−α/2 is asymptotically level-α for the one-dimensional null

hypothesis H0k : θ∗k = θ0
k. In Section 3.3, we verify with simulations that the approximations

are fairly accurate and robust even at small sample sizes.

3.1.2 Bootstrapping SparKLIE+

In Section 3.1.1, we proposed SparKLIE+, a procedure for obtaining an asymptotically

unbiased estimator of a component of the differential network. Iterating Step 3 of SparKLIE+

over all edges yields an unbiased estimator θ̃ of the differential network θ∗. To make inferences

about the structure of θ∗ using θ̃, one may construct a simultaneous confidence region or

conduct a simultaneous hypothesis test. This raises issues of multiple comparisons.

We deal with this problem by a bootstrap approximation of the quantiles of the following

statistic

T = TnX ,nY = max
k=1,...,m

n1/2
∣∣∣θ̃k − θ∗k∣∣∣ , n = nX + nY . (3.7)

Let cT,q be the q-th quantile of T . Then, it is easy to verify that θ̃ ± cT,1−α/n
1/2 is a

100 × (1 − α)% confidence region for θ∗. Similarly, the test that rejects if maxk |θ̃k| >

cT,1−α/n
1/2 controls the family-wise error rate at level α for the null hypothesis H0 : θ∗k = 0

for all k = 1, . . . ,m. This approach has the advantage of adapting to the correlations among

θ̃ = (θ̃k)mk=1. Thus, given cT,q — or an accurate estimator thereof — we can learn the

differential network structure while controlling the type I error rate.

However, in high-dimensions, it is itself a highly nontrivial problem to estimate cT,q with
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sufficient accuracy [see Chernozhukov et al., 2013, 2017, Deng and Zhang, 2020, and references

therein]. In this section, we present two bootstrap-based methods for estimating cT,q.

Our first proposal employs the Gaussian multiplier bootstrap. Recall the definitions of r̂θ

from (3.3), and of ψ̄ and µ̂ψ(θ) from (3.4).

Algorithm 4 Estimating the quantiles of T with the Gaussian multiplier bootstrap

Input: Data {Xi}
nX
i=1 and {Yj}

nY
j=1; the outputs θ̂ and Ω̂·k, k ∈ I, of (3.1) and (3.2) from

Algorithm 3
Output: A Gaussian bootstrap estimate ĉT,I,q of cT,I,q

for b = 1, . . . , nb do

Draw n = nX + nY Gaussian weights ξ1, . . . , ξn
IID∼ Normal(0, 1).

Compute

T ∗I,b = max
k∈I

n1/2

∣∣∣∣∣Ω̂T
·k

{
1

nX

nX∑
i=1

(
ψ(Xi)− ψ̄

)
ξi

− 1

nY

nY∑
j=1

(
ψ(Yj)r̂θ̂(Yj)− µ̂ψ(θ̂)

)
ξnX+j

}∣∣∣∣∣. (3.8)

end for
return ĉT,I,q, the q-th sample quantile of {T ∗I,b}

nb
b=1.

Algorithm 4 may be procedure for estimating the (1− α)-th quantile of the maximum of

|Normal(0, V̂II)|, where V̂II = Ω̂T
·I Σ̂pooled(θ̂)Ω̂·I , Ω̂·I = [Ω̂·k]k∈I , and Σ̂pooled(θ̂) is defined

in (3.6). Since we can show that n1/2(θ̃I − θ∗I ) ≈ Normal(0, VII) for some fixed VII and,

moreover, V̂II ≈ VII , we claim that ĉT,q is a good estimate of the q-th quantile of T . This

intuition is formally stated in Theorem 3.3 in Section 3.2.3.

Although Algorithm 4 is accurate for sufficiently large sample sizes, at smaller values of

nX and nY , empirical bootstrap tends to yield more robust estimates of the quantiles. The

procedure below, based on the empirical bootstrap, is what we recommend in practice.
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Algorithm 5 Empirical bootstrap for estimating the quantiles of T

Input: Data {Xi}
nX
i=1 and {Yj}

nY
j=1; the outputs θ̂ and Ω̂·k, k ∈ I, of (3.1) and (3.2) from

Algorithm 3
Output: An empirical bootstrap estimate ĉT,q of cT,q

for b = 1, . . . , nb do
Re-sample {X∗b,i}

nX
i=1 from {Xi}

nX
i=1 and {Y ∗b,j}

nY
j=1 from {Yj}

nY
j=1 uniformly at random

with replacement.
for k ∈ I do

If replicating θ̃1+
k , then do

θ̃∗b,k = θ̂k − Ω̂T
·k∇`KLIEP

(
θ̂; {X∗b,i}

nX
i=1, {Y

∗
b,j}

nY
j=1

)
If replicating θ̃2+

k , then do

qθ = arg min
θ
`KLIEP

(
θ; {X∗b,i}

nX
i=1, {Y

∗
b,j}

nY
j=1

)
subject to supp(θ) ⊆ {k} ∪ supp(θ̂) ∪ supp(Ω̂·k),

and let T ∗b,k be the k-th component of qθ.

end for
Compute

T ∗I,b = max
k∈I

n1/2|θ̃∗b,k − θ̃k|. (3.9)

end for
return ĉT,I,q, the q-th sample quantile of {T ∗I,b}

nb
b=1.
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3.2 Theory

In Section 3.2.1, we specify the model conditions under which we guarantee the validity of

the procedures proposed in Sections 3.1.2 and 3.1.2. Section 3.2.2 deals with Algorithm 3.

Section 3.2.3 deals with Algorithm 4.

3.2.1 Conditions

We specify two sufficient conditions for the validity of the proposed procedures. The first is

about the regularity of the density ratio rθ(Y ).

Condition 3.1 (Bounded density ratio). There exists % > 0 such that

M−1
r ≤ rθ(Y ) ≤Mr almost surely for all θ with |θ − θ∗| ≤ %

for some Mr = Mr(%) ≥ 1 and for some norm | · |.

For convenience, we fix % = |θ∗|.

Proposition 3.1 says that Condition 3.1 is equivalent to a boundedness condition on the

sufficient statistics, a claim that was stated without proof for the `2-norm in Liu et al. [2017].

We generalize the claim to arbitrary norms, and prove it in Appendix A.4.1.

Proposition 3.1 (Bounded sufficient statistics). Condition 3.1 is satisfied if and only if

|ψ(X)|∗ ≤ Mψ almost surely for some Mψ < ∞, where | · |∗ is the dual norm of | · |, i.e.,

|v|∗ = supu6=0 u
Tv/|u|.

More generally, regularity conditions on the density ratio tend to induce even stronger reg-

ularity conditions on the sufficient statistics. The identity ẐY (θ)/ZY (θ) ≡ n−1
Y

∑nY
j=1 rθ(Yj)

implies ẐY (θ)/ZY (θ) ∈ [M−1
r ,Mr]. Moreover, r̂θ(Y ) ≡ (ẐY (θ)/ZY (θ))rθ(Y ), so that

M−2
r ≤M−1

r (1− oP(1)) ≤ r̂θ(Y ) ≤Mr (1 + oP(1)) ≤M2
r .
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The outer bounds are obvious. The inner bounds require a concentration result (Lemma A.5

in Appendix A.4.1).

When Algorithm 3 is implemented with the `1-penalty, it is natural to impose Condition 3.1

with the `1-norm, which by Proposition 3.1 is equivalent to imposing an `∞-bound on the

sufficient statistics. Thus, this choice of penalty works nicely with models that take values on

a bounded domain, such as Ising models or Potts models. Indeed, for the Ising model defined

in Example 2.1, |ψ(X)|∞ = 1 but |ψ(X)|22 = m.

The second are regularity conditions on the population covariances of ψ(X) under fX

and fY , as well as that of (ψ(Y ) − µψ)rθ∗(Y ) under fY . Recall Σψ = Cov[ψ(X)], and let

Σψr = Cov[(ψ(Y )− µψ)rθ∗(Y )], where µψ = E[ψ(X)] = E[ψ(Y )rθ∗(Y )].

Condition 3.2 (Bounded population eigenvalues). There exist 0 < κ ≤ κ̄ <∞ such that

κ ≤ min
|v|=1, v 6=0

vTΣψv ≤ max
|v|=1, v 6=0

vTΣψv ≤ κ̄,

κ ≤ min
|v|=1, v 6=0

vTΣψrv ≤ max
|v|=1, v 6=0

vTΣψrv ≤ κ̄.

Condition 3.2 ensures that the problem is well-behaved [Liu et al., 2017]. The lower

bounds ensure that the model is non-degenerate. The upper bounds ensure that `KLIEP (2.2)

is smooth; this is analogous to the assumption on the log-normalizing function in Yang et al.

[2015]. These bounds appear naturally in bounding the convergence of ∇2`KLIEP(θ∗) to Σψ

and the variance of θ̃k.

Conditions imposed here are weaker than those in Liu et al. [2017], as we do not hope to

correctly identify the support of θ∗. In particular, we do not need to assume the incoherence

condition, nor do we need to require that the nonzero components of θ∗ be large enough.

Recall Ω∗·k = Σ−1
ψ ek, where Σψ = Cov[ψ(X)]. To facilitate the discussion of rates in

the next two sections, we introduce additional notations. Let n = nX + nY . We view nX ,

nY , m, sθ = sθ,qθ = |θ∗|qθ , sk = sk,qk = |Ω∗·k|qk as sequences indexed by n and possibly

diverging to ∞. nX and nY are characterized by sequences ηX,n and ηY,n in (0, 1) such that
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ηX,n + ηY,n ≡ 1, nX = nX,n = ηX,nn and nY = nY,n = ηY,nn. In particular, this implies

that n � nX � nY .

The bounds we give below are finite-sample in the sense that they are given as functions

of n, m, sθ, sk. They can be used to study the asymptotic behavior as n→∞ by considering

a sequence of models (θ∗,Σψ) = (θ∗n,Σψ,n) such that the induced sequence of m, sθ, sk,

etc. satisfy the side conditions of each theorem.

3.2.2 Approximate normality of SparKLIE+1

Theorem 3.1 bounds the Gaussian approximation error for n1/2(θ̃k − θ∗k), where θ̃k is the

one-step estimator from Algorithm 3.

Let k ∈ {1, . . . ,m}. Let θ̂ and Ω̂·k denote the outputs of Steps 1 and 2 of Algorithm 3.

For λθ, λk, δθ, δk, δΣ ∈ [0, 1), define an event

Eone = Eone(λθ, λk, δθ, δk, δΣ) =

(G.1) 2 |∇`KLIEP(θ∗)|∗ ≤ λθ,

(G.2) 2
∣∣∇2`KLIEP(θ∗)Ω∗·k − ek

∣∣
∗ ≤ λk,

(E.1)
∣∣∣θ̂ − θ∗∣∣∣ ≤ δθ,

(E.2)
∣∣∣Ω̂·k − Ω∗·k

∣∣∣ ≤ δk,

(B.1)

∣∣∣∣1− ẐY (θ∗)
ZY (θ∗)

∣∣∣∣ . λθ,

(B.2)
∣∣∣ 1
nY

∑nY
j=1 Ω∗T·k

(
µψ − ψ(Yj)

)
rθ∗(Yj)

∣∣∣ . λk,

(V.1) 4
∣∣∣Σ̂ψ − Σψ

∣∣∣
∗
≤ δΣ,

(V.2) 4
∣∣∣Σ̂ψr̂(θ∗)− Σψr

∣∣∣
∗
≤ δΣ



.

Theorem 3.1. Assume Conditions 3.1 and 3.2. Let θ̃k be the one-step estimator from

Algorithm 3, i.e.,

θ̃k = θ̂k − Ω̂T
·k∇`KLIEP(θ̂).
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Suppose P(Eone) ≥ 1− εone,n for some λθ, λk, δθ, δk, δΣ ∈ [0, 1). Then,

sup
t∈R

∣∣∣P{n1/2
(
θ̃1+
k − θ

∗
k

)/
v̂k ≤ t

}
− Φ(t)

∣∣∣ ≤ ∆1 + ∆2 + ∆3 + εone,n, (3.10)

where

∆1 =

(
κ̄2/κ

ηX,nηY,n

)1/2 ∣∣Ω∗·k∣∣
n1/2

,

∆2 =

(
ηX,nηY,n

κ/κ̄2

)1/2 {
(δθ + λθ) (δk + λk) +

∣∣Ω∗·k∣∣ δ2
θ

}
n1/2,

∆3 =
(
κ̄2/κ

) ∣∣Ω∗·k∣∣2 (δΣ + δθ) + δ2
k.

The proof is in Appendix A.2.1. We highlight some of the technical difficulties. To prove

Theorem 3.1, we need to find a linear approximation of n1/2(θ̃k − θ∗k) that is easy to analyze.

This is not so obvious due to the nonlinearity of `KLIEP. Our results require a delicate control

of the bias that arises from using the empirical density ratio estimates, as we need to make

sure that the error terms are vanishing even after n1/2 scaling. This is in contrast to Liu

et al. [2017] or Fazayeli and Banerjee [2016].

We apply Theorem 3.1 to the special case of SparKLIE+1 to obtain Theorem 3.2 below.

Theorem 3.2. Assume Condition 3.1 with `1-norm and Condition 3.2. Let θ̃k be the

SparKLIE+1 estimator obtained with regularization parameters satisfying

λθ �
(

logm

n

)1/2

, λk � s
1/(2−qk)
k,qk

(
logm

n

)1/2

. (3.11)

Suppose

sθ,0
sk,qk

(
n

logm

)qk
4
. 1,

1

sk,qk

(
logm

n

)qk
4

2−qk
1−qk

. 1, (3.12)

nY ≥ C ′
(
barκ/κ2

)
M2
ψM

2
r s log2(s) log (m ∨ nY ) log(nY )/ε2

RSC,n,
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where C ′ > 0 is a known, numerical constant from Lemma A.14, s ≥ sθ,0 ∨ sk,qkλ
−qk
k , and

εRSC,n is a sequence in (0, 1) decreasing to 0. Then,

sup
t∈R

∣∣∣P{n1/2(θ̃k − θ∗k)/v̂k ≤ t
}
− Φ(t)

∣∣∣
≤ O

(
sθ,0s

2+
1−2qk
2−qk

k,qk

(
logm

n

)1−qk
n1/2

)
+ εRSC,n + c exp

(
−c′ logm

)
,

where c, c′ > 0 are constants that do not depend on n, m, sθ,0 or sk,qk .

The proof in Appendix A.3.1 relies on numerous technical lemmas to derive the rates

of θ̂ and Ω̂·k. In particular, we prove a restricted strong convexity (RSC) of the Hessian

starting from a population-level assumption (Condition 3.2). The proof is quite involved as

the Hessian is a weighted sample covariance with the weights given by the empirical density

ratio estimates. This makes an easy application of existing results impossible. The details

are in Appendix A.5.

Remark 3.3. Theorem 3.2 gives a nontrivial bound only for sufficiently (weakly) sparse θ∗ and

Ω∗·k. The additional condition on nY is a consequence of proving RSC from the population-

level assumptions. In particular, it is linked to the probability that the Hessian fails to satisfy

RSC. Analogous results for other sparsity regimes can be obtained from Theorem 3.1 as well

(see an earlier arXiv preprint at https://arxiv.org/abs/1905.00466v1). Due to space

limitations, we have singled out this regime as being arguably the most interesting.

Remark 3.4. We note that the inverse of the Hessian Σψ−1 is determined by γX , since

Σψ = Cov[ψ(X)], and, therefore, the sparsity of Σ−1
ψ is related to that of γX . In the case of

Gaussian graphical models, we can explicitly characterize Σ−1
ψ and we observe that the rows

of the inverse of the Hessian are sparse if the maximum degree of the underlying graph is

small. The proof strategy critically relies on the properties of a Gaussian distribution and its

log-partition function, however, and is intractable for general Markov random fields. Thus,

we instead provide numerical evidence on the relationship between the support of Σ−1
ψ and
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that of γX for Ising models. For our method to perform well, it suffices that the `q-“norm”

is controlled for a small q ∈ [0, 1), which we numerically verify. See Appendix A.4.3. Finally,

we note that in some cases the rows of Σ−1
ψ are neither sparse nor approximately sparse, but

have bounded `1 norm. In this case, a possible direction for developing a valid inference

procedure would be to modify the three step procedure in Ma et al. [2017] or Yu et al. [2020].

Remark 3.5. There is an inherent asymmetry in KLIEP, and Theorem 3.2 is one place where

this can be observed. Specifically, the quality of Gaussian approximation depends on which

set of observations is used as {Xi}
nX
i=1 and which as {Yj}

nY
j=1. First, rθ may be more regular

than 1/rθ as measured by the bounds. This affects the magnitude of λθ or λk. Second, the

larger sample will satisfy the sample complexity condition with a smaller εRSC,n, which is

the probability that the Hessian fails to satisfy RSC. For the bounded sufficient statistics

model we consider, we have found the latter to have a larger impact on the results. Therefore,

we recommend choosing fX and fY so that nX ≤ nY .

Remark 3.6. It is natural to ask whether it is possible to use other divergences to derive

similar procedures. For closely-related varieties, such as the reverse and the symmetric

KL, the answer is clearly yes. For arbitrary divergences, however, exact analogues may not

exist. The derivation of KLIEP uses more than just the properties of a divergence. Indeed,

the logarithm in KL plays an essential role in linearizing the ratio fX/(rθfY ), yielding a

population-level loss that involves expectations of only known functions of θ. In addition, the

loss is convex in θ, leading to a computationally attractive procedure. Using other divergences

to measure discrepancy between fX and rθfY would, to the best of our knowledge, lead to

an estimator that is not convex in θ. Establishing statistical properties of such an estimator

is beyond the scope of this work.

It can be checked that the special case of the reverse KL reduces to KLIEP with the role

of fX and fY swapped; this was discussed in Remark 3.5. The symmetric KL leads to a

procedure that minimizes the sum of the KLIEP and the reversed KLIEP loss functions. The

theory developed here extends in an obvious way to the symmetrized procedure. This means

32



that the conditions that were previously imposed on only one of fX and fY now need to hold

for both, reducing the applicability of our methods. Moreover, although the change is not

expected to alter the order of error bounds, the constants are expected to be larger, and this

is likely to result in a more brittle approximation at the same sample sizes, as corroborated

by empirical evidence (Appendix A.9.3).

Alternative density ratio approximation approaches have been considered in the literature.

For example, Nguyen et al. [2010] estimated the density ratio by maximizing a lower bound

on an f -divergence, and Kanamori et al. [2009] estimated a density ratio by minimizing a

squared loss between the true density ratio and the model of a density ratio. Developing

inferential results for such alternative approaches is an interesting topic for future research.

3.2.3 Consistency of Gaussian bootstrap

Theorem 3.3 is a finite-sample consistency result for the Gaussian multiplier bootstrap. Recall

T = maxk=1,...,m n1/2|θ̃k − θ∗k|, and let ĉT,q denote the estimator of q-th quantile of T from

Algorithm 4.

Define Σpooled analogously to Σ̂pooled in (3.5). Let Ω∗ = [Ω∗·k]mk=1 = Σ−1
ψ . For λθ,

(λk)mk=1, δθ, (δk)mk=1 ∈ [0, 1), define an event

Eall = Eall(λθ, (λk)mk=1, δθ, (δk)mk=1) =

(G.1) 2 |∇`KLIEP(θ∗)|∗ ≤ λθ,

(G.2) 2
∣∣∇2`KLIEP(θ∗)Ω∗·k − ek

∣∣
∗ ≤ λk ∀ k,

(E.1)
∣∣∣θ̂ − θ∗∣∣∣ ≤ δθ,

(E.2)
∣∣∣Ω̂·k − Ω∗·k

∣∣∣ ≤ δk ∀ k,

(B.1)

∣∣∣∣1− ẐY (θ∗)
ZY (θ∗)

∣∣∣∣ . λθ,

(B.2)
∣∣∣ 1
nY

∑nY
j=1 Ω∗T·k

{
µψ − ψ(Yj)

}
rθ∗(Yj)

∣∣∣ . λk ∀ k



.
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Let νn = 1 ∨max{
∣∣Ω∗·k∣∣}mk=1,

Bn =
(1 ∨ κ̄)3 (1 ∨Mψ

)3
M3
r ν

21/2
n(

κ3ηX,nηY,n
)1/2 , δn =

{
B2
n log7(mn)

n

}1/6

.

Theorem 3.3. Assume Conditions 3.1 and 3.2. Let θ̃ be the one-step estimator from

Algorithm 3, i.e.,

θ̃ = θ̂ − Ω̂T∇`KLIEP(θ̂),

where Ω̂ = [Ω̂·k]mk=1 ∈ Rm×m. Suppose

D1 = max
k=1,...,m

(
ηX,nηY,n

κ/κ̄2

)1/2 {
(δθ + λθ) (δk + λk) +

∣∣Ω∗·k∣∣ δ2
θ

}
n1/2 .

{
B2
n log4(mn)

n

}1/6

,

D2 = max
k=1,...,m

κ/κ̄2

η2
X,nη

2
Y,n

{
δ2
k + ηX,n

∣∣Ω∗·k∣∣2 (δθ + λθ)
2
}
.

{
B2
n log(mn)

n

}1/3

.

If P(Eall) ≥ 1− εall,n, then

sup
q∈(0,1)

∣∣P{TnX ,nY ≤ ĉT,q
}
− q
∣∣ = O(δn + εall,n) (3.13)

with probability at least 1− εall,n − n−1.

The proof is in Appendix A.2.2. The bulk of hard work was done in establishing a linear

approximation to n1/2(θ̃k − θ∗k) in the proof of Theorem 3.1. Theorem 3.3 follows by showing

that the error in the linear approximation can be controlled, allowing for application of results

in Belloni et al. [2018]. Due to the nonlinearity of `KLIEP (2.2) and the fact that we are

using a two sample estimator, the detailed calculations are rather complicated.

As an application of Theorem 3.3, we evaluate the bound in (3.13) in the case of SparK-

LIE+1 with sθ = sθ,0 = |θ∗|0 and sk = sk,0 = |Ω∗·k|0.

Theorem 3.4. Assume Condition 3.1 with `1-norm and Condition 3.2. Suppose T =

maxk=1,...,m n1/2|θ̃k − θ∗k|, where (θ̃k)mk=1 is the SparKLIE+1 estimator obtained with regu-
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larization parameters satisfying

λθ �
(

logm

n

)1/2

, λk �
(
sk,0 logm

n

)1/2

, k = 1, . . . ,m.

Suppose

nY ≥ C ′
(
κ̄/κ2

)
M2
ψM

2
r s log2(s) log (m ∨ nY ) log(nY )/ε2

RSC,n,

where C ′ > 0 is a known, numerical constant from Lemma A.14, s ≥ sθ,0, sk,0, and εRSC,n

is a sequence in (0, 1) decreasing to 0. Then,

sup
q∈(0,1)

∣∣P{T ≤ ĉT,q
}
− q
∣∣ = O(δn + εRSC,n + c exp

(
−c′ logm

)
)

with probability at least 1− εRSC,n − c exp
(
−c′ logm

)
− n−1, where c, c′ > 0 are constants

that do not depend on n, m, sθ,0 or sk,0.

3.3 Simulation studies

Through extensive simulations, we illustrate the finite-sample performance of our methods:

SparKLIE+ (Section 3.3.1) and empirical bootstrap sketching (Section 3.3.2).

3.3.1 Inference for a single edge via Gaussian approximation

In Experiments 1 and 2, we look at the performance of statistical inference procedures based

on Gaussian approximation when an edge has been fixed as a target of inferential interest.

Experiment 1. We check the coverage of the 95% CI θ̃k ± z0.975v̂k/n
1/2, where k is a fixed

edge of interest and z0.975 is the 0.975-quantile of Normal(0, 1). Here, SparKLIE+1 and +2

are compared with two other procedures: an oracle procedure with the knowledge of supp(θ∗)

and a näıve re-estimation procedure that re-fits the model based on the estimated support
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Table 3.1: Comparison of the empirical coverage (%) of the 95% CI θ̃k ± Φ−1(0.975)v̂k/n
1/2.

Here, k is a pre-specified edge of interest: k = (5, 6) for Chain 1 or 2, k = (1, 3) for Tree 1 or
2. The numbers displayed below are estimates based on 1000 independent replications.

γX γY p nX nY Oracle Näıve SparKLIE+1 SparKLIE+2

Chain 1 25 150 300 96.0 85.0 93.4 94.5
50 300 600 94.6 82.2 94.3 94.8

2 25 150 300 96.2 90.7 94.8 94.8
50 300 600 96.2 83.9 95.3 95.5

Tree 1 25 150 300 97.2 92.5 93.2 95.8
50 300 600 97.6 87.4 97.3 97.9

2 25 150 300 97.2 94.6 95.7 97.7
50 300 600 96.8 91.3 95.2 97.7

supp(θ̂), where θ̂ is a sparse KLIEP estimate. See Appendix A.8.1 for precise definitions.

The results were obtained using Algorithm 3 with Algorithms 13 and 14 in Appendix A.7.1

for Steps 1 and 2, respectively, and with the universal penalty levels, as explained in Remark 3.2

in Section 3.1.1. However, we remark that even with the vanilla sparse KLIEP procedure

(2.4) in Step 1, we have found the performance of Algorithm 3 to be robust to the choice of

λθ. See Remarks 3.1 and 3.2, as well as Appendix A.9.3.

The data are pairs of samples of IID observations from a pair of Ising models γX and γY .

Eight pairs of γX and γY are compared, arising from all possible combinations of the number

of nodes (p = 25 or 50), the topology of γX (a chain or a ternary tree), and two choices of θ∗

from which γY = γX − θ∗ is obtained. Each differential network has five nonzero edges, one

of which has been fixed as the target of inference. For illustration, see Figures A.3–A.6 in

Appendix A.8.2.

Table 3.1 gives the proportions of successful coverage out of 1000 independent replications

at the nominal confidence level of 95%. In spite of the small sample sizes, the coverage of

95% CIs based on either of the two SparKLIE+ estimators are close to the nominal level, and

on par with the performance of the oracle procedure across all the data generating processes

considered. By contrast, we see that the näıve re-fitted estimator can undercover by as much

as ≈ 13%.
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In Appendix A.8.4, we further provide normal Q-Q plots (Figures A.7–A.10) and empirical

estimates of the biases (Table A.1) for the four estimators. These reveal that the inferior

performance of the näıve re-fitted estimator can be attributed to the larger bias.

In Experiment 2 in Appendix A.9.1, we study the power of SparKLIE+1 and +2 for

testing the null hypothesis H0 : θ∗k = 0, where k is a fixed edge of interest.

3.3.2 Global inference with empirical bootstrap quantile estimates

In Experiments 3 and 4, we look at the performance of Algorithm 5 for making inferences

about the entire differential network θ∗.

Experiment 3. We check that Algorithm 5 produces consistent estimates of the quantiles

cT,1−α of T = maxk=1,...,m n1/2|θ̃k − θ∗k|. Here, we focus on the setting γ = γX = γY , i.e.,

θ∗ = 0. We generate a pair of samples of the same size nX = nY = 500 from the same Ising

model with the parameter γ. The parameter γ was generated as a disjoint union of p/5

chains of length 5 for p ∈ {25, 50, 100}. The nonzero edge weights were drawn IID from one

of the three distributions: sign = 1, Uniform(0.2, 0.4); sign = −1, Uniform(−0.4,−0.2); or

sign = 0, Uniform(−0.4,−0.2) ∪ (0.2, 0.4).

For each draw of samples from γX and γY , we use Algorithm 5 with nb = 1000 bootstrap

replicates to estimate ĉT,1−α, and record 1I{T ≤ ĉT,1−α} for each 1 − α = 0.05, . . . , 0.95.

Then, the results are averaged across 1000 independent draws of the pair of samples. If

Algorithm 5 is consistent, 1I{T ≤ ĉT,1−α} ≈ 1I
{
T ≤ cT,1−α

}
, and hence the average over

independent replicates would be close to 1− α. This is indeed what we see in Figure 3.1.

In Experiment 4 in Appendix A.9.2, we study the power of the level-α test obtained by

inverting the simultaneous confidence region θ̃k ± ĉT,1−α/n1/2 for testing the null hypothesis

H0 : θ∗k = 0 for all k.
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Figure 3.1: Consistency of the quantile estimates ĉT,1−α from Algorithm 5 in nine different
settings, corresponding to all possible combinations of the number of nodes p = 25, 50, or
100 and the distribution of edge parameters sign = −1, 0, or 1, where sign = 1 indicates

that the nonzero edge parameters were sampled
IID∼ Uniform(0.2, 0.4); sign = −1,

IID∼
Uniform(−0.4,−0.2); or sign = 0,

IID∼ Uniform{(−0.4,−0.2) ∪ (0.2, 0.4)}. The blue line with
• indicates SparKLIE+1. The orange line with H indicates SparKLIE+2. The 45◦ line marks
perfect calibration.
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Table 3.2: Sample sizes by group

T1 T2 T3

HC 342 300 306
MS 342 300 311

3.4 Real data example: Alertness and motor control, an fMRI

study

We apply Algorithm 3 and Algorithm 5 to analyze a new fMRI data set, made available

courtesy of Dr. Jade Thai and Dr. Christelle Langley at the University of Bristol. The data

set comes from a pilot study involving a multiple sclerosis subject (MS) and a healthy control

(HC) with the purpose of exploring the relationship between alertness and motor control. It

consists of two time series, one for each participant of the study, of fMRI measurements at

0.906 second intervals from 116 regions of interest (ROI) in the brain. We further restrict

to p = 25 ROIs pre-specified by the neuroscientists. The measurements were taken while

the participants were performing one of three types of tasks: a sensorimotor task (T1), an

intrinsic alertness task (T2), and an extrinsic alertness task (T3). For details concerning the

study design and data post-processing, see Appendix A.10.

We model the fMRI measurements as independent observations from six Gaussian graphical

models, where the groups are given by the disease status and the task type. For example,

the measurements collected while the HC subject performed T1 are modeled as

fHC, T1(x) = det
{
GHC, T1/(2π)

}1/2
exp

{
−1

2

(
x− µHC, T1

)T
GHC, T1

(
x− µHC,T1

)}
.

Since we are interested in the difference in the graph structure, we work with the data after

centering by the group means. The sample sizes are given in Table 3.2.

For either the HC or the MS subject, we study the pairwise differences for the tasks.

Specifically, while simultaneously controlling the type I error rate at α = 0.05, we would like
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to learn the structure of six differential networks:

∆∗1 = GHC, T1 −GHC, T2, ∆∗2 = GHC, T1 −GHC, T3, ∆∗3 = GHC, T2 −GHC, T3,

∆∗4 = GMS, T1 −GMS, T2, ∆∗5 = GMS, T1 −GMS, T3, ∆∗6 = GMS, T2 −GMS, T3.

This is naturally a multiple comparisons problem well-suited to Algorithm 5. The six

differential networks ∆∗g, g = 1, . . . , 6, were estimated using Algorithm 3 with Algorithms 13

and 14 in Appendix A.7.1 for Steps 1 and 2, respectively, and with the universal penalty

levels, as explained in Remark 3.2 in Section 3.1.1. The test statistic

T = max
g=1,...,6

max
1≤a≤b≤25

∣∣∣∆̃g,ab

∣∣∣
was used to test the null hypothesis H0 : ∆∗g = 0 for all g = 1, . . . , 6 at level 0.05 based

on the rejection threshold ĉT,0.95 obtained from Algorithm 5. The test found no edges to

be statistically significant. However, the conclusion is based on a pilot study from two

individuals, and more data are needed.
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CHAPTER 4

GAUSSIAN GRAPHICAL MODELS

Suppose

Xi ∼ Normal(0,ΣX), i = 1, . . . , nX , Yj ∼ Normal(0,ΣY ), j = 1, . . . , nY ,

where ΣX , ΣY ∈ Sp+, Sp+ is the set of p-by-p symmetric positive definite matrices. In

Chapter 2, we saw that in this case, any problem about the differential network θ∗ can

equivalently be formulated in terms of the difference ∆∗ = Σ−1
X − Σ−1

Y . Furthermore, a

loss function `D, called the D-trace loss, was introduced for estimating ∆∗ directly without

estimating either Σ−1
X or Σ−1

Y .

In this chapter, we consider the problem of valid statistical inference on the entries of

∆∗ when the number of variables p exceeds the size of either sample. In Section 4.1, we

first introduce SparDE+, which constructs estimators ∆̃ab of the entries of ∆∗ that are

approximately Gaussian, and then discuss ways of accurately estimating the quantiles of

max(a,b)∈I n
1/2|∆̃ab − ∆∗ab|, where I is the set of edge indices of inferential interest, for

simultaneous inference with the FWER control. In Section 4.2, we prove a theorem that says

the estimators ∆̃k produced by SparDE+ are indeed asymptotically Gaussian. In Section 4.3,

we give results of simulations. Finally, we use our method to analyze a colorectal cancer data

set in Section 4.4.

4.1 Methods

4.1.1 Sparse D-trace estimation with de-biasing

Let I ⊆ {(a, b) : 1 ≤ a ≤ b ≤ p} be the set of edge indices of inferential interest. SparDE+

(Algorithm 6) below constructs estimators ∆̃ab, (a, b) ∈ I, that are approximately Gaussian

and unbiased for ∆∗ab.
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Before we give the method, for each (a, b) ∈ I, let

`M,ab(M) = `M,ab

(
M ; {Xi}

nX
i=1, {Yj}

nY
j=1

)
=

1

4
tr
{
MΣ̂XMΣ̂Y +MΣ̂YMΣ̂X

}
− tr (MEab)

=
1

2
vec (M)TH vec (M)− vec (M)T vec (Eab) ,

where

Eab =
1

2

(
eae

T
b + ebe

T
a

)
.

Here, ea and eb refer to the a-th and the b-th canonical basis vectors in Rp.

Algorithm 6 SparDE+

Input: Data {Xi}
nX
i=1, {Yj}

nY
j=1; positive regularization parameters λ, ΓD,kl, 1 ≤ k ≤ l ≤ p,

and ΓM,ab,kl, (a, b) ∈ I, 1 ≤ k ≤ l ≤ p

Output: Approximately Gaussian and unbiased estimates ∆̃ab, (a, b) ∈ I
Step 1. Solve

∆̂ = arg min
∆∈Sp

`D

(
∆; {Xi}

nX
i=1, {Yj}

nY
j=1

)
+ λ

p∑
k=1

p∑
l=k

ΓD,kl |∆kl| . (4.1)

for each (a, b) ∈ I do
Step 2. Solve

M̂ab = arg min
M∈Sp

`M,ab(M) + λ

p∑
k=1

p∑
l=k

ΓM,ab,kl |Mkl| . (4.2)

Step 3. De-bias, either by (2.13)

∆̃1+
ab = ∆̂ab − vec

(
M̂ab

)T
∇`D

(
∆̂
)

or by (2.15), i.e., ∆̃2+
ab is the (a, b)-th component of q∆, where

q∆ = arg min
∆∈Sp

`D (∆) subject to supp(∆) ⊆ {(a, b), (b, a)} ∪ supp(∆̂) ∪ supp(M̂ab).

end for
return ∆̃ab, (a, b) ∈ I

Remark 4.1 (Choosing regularization parameters). In our experiments, we used a variant of
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SparDE+ that after setting the universal penalty λ = 2.02Φ̄−1[0.05/{p(p+1)}], automatically

computes all the penalty loadings ΓD,kl, 1 ≤ k ≤ l ≤ p, ΓM,ab,kl, (a, b) ∈ I, 1 ≤ k ≤ l ≤ p.

Here, we describe the procedure for Step 1 only; the procedure for Step 2 is quite similar.

The proof of consistency of ∆̂ crucially relies on controlling the probability

P
{

max
1≤k≤l≤p

|∇kl`D(∆∗)/ΓD,kl| >
λ

2

}
.

Suppose it is possible to show

P
{
∇`D(∆∗)/ΓD,kl > z

}
= {1 +O(1)} Φ̄(z) (4.3)

for all 1 ≤ k ≤ l ≤ p. Then,

P
{

max
1≤k≤l≤p

|∇kl`D(∆∗)/ΓD,kl| >
λ

2

}
≤ p (p+ 1)

2
max

1≤k≤l≤p
P
{
|∇kl`D(∆∗)/ΓD,kl| >

λ

2

}
≤ p (p+ 1) (1 +O(1)) Φ̄(λ/2).

When λ = 2Φ̄−1[0.05/{p(p+ 1)}], the upper bound in the last line is {1 +O(1)}0.05.

For which ΓD,kl can one expect (4.3)? The key idea behind our approach is to set ΓD,kl as

a sample estimate of the standard deviation of ∇kl`D(∆∗) so that each ∇kl`D(∆∗)/ΓD,kl is

a self-normalized two-sample U-statistics. Indeed, note that each ∇kl`D(∆∗) is a two-sample

U-statistics, i.e.,

∇kl`D(∆∗) =
1

nX

1

nY

nX∑
i=1

nY∑
j=1

h(Xi, Yj ; ∆∗),

where

h(x, y; ∆) =
1

2

(
xkx

T∆yyl + yky
T∆xxl

)
− ykyl + xkxl.

An estimator of the variance of ∇kl`D(∆) is the jackknife estimator

Γ̂2
kl(∆) = n−1

X Γ̂2
kl,1(∆) + n−1

Y Γ̂2
kl,2(∆), (4.4)
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where

Γ̂2
kl,1(∆) =

1

nX − 1

nX∑
i=1

{
ĥ1i(∆)−∇kl`D(∆)

}2
,

Γ̂2
kl,2(∆) =

1

nY − 1

nY∑
j=1

{
ĥ2j(∆)−∇kl`D(∆)

}2
,

and

ĥ1i(∆) = ĥ1(Xi; ∆), ĥ1(x; ∆) =
1

nY

nY∑
j=1

h(x, Yj ; ∆),

ĥ2j(∆) = ĥ2(Yj ; ∆), ĥ2(y; ∆) =
1

nX

nX∑
i=1

h(Xi, y; ∆).

Since ∆∗ is the very quantity we are trying to estimate, we cannot just plug in ∆∗ and

use ΓD,kl = Γ̂kl(∆
∗) in Step 1. Thus, we advocate the following two-step procedure:

Algorithm 7 Running (4.1) in Algorithm 6 in practice

Carry out (4.1) with ΓD,kl = Γ̂kl(0). Denote the resulting estimate of ∆∗ by ∆̂0.

Repeat (4.2) with ΓD,kl = Γ̂kl(∆̂
0). Designate the resulting estimate of ∆∗ as ∆̂.

Estimation of M̂ab is carried out in a similar manner except that we initialize ΓM,ab,kl =

Γ̂kl(Eab).

In Section 4.2, we shall show that under a mild set of conditions,

v̄−1
ab

(
∆̃ab −∆∗ab

)
≈ Normal(0, 1)

for some parameter v̄2
ab > 0 to be specified. This validates the use of Gaussian distribution as

the reference distribution for ∆̃ab in carrying out inference about ∆∗ab. Let α ∈ (0, 1) be the

target type-I error level. Let z1−α/2 = Φ−1(1− α/2). Let v̂2
ab be a consistent estimator of

v̄2
ab, such as the jackknife estimator of (4.4). Then, an asymptotic 100× (1− α)% confidence
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interval for ∆∗ab is given by

∆̃ab ± z1−α/2v̂ab. (4.5)

Similarly, an asymptotic size-α test of the null hypothesis Hab : ∆∗ab = 0 is the test that

rejects for

|∆̃ab| > z1−α/2v̂ab (4.6)

4.1.2 Estimating the variance of ∆̃ab

By (2.12), Var(∆̃ab) ≈ Var{vec(M∗ab)
T∇`D(∆∗)}. Furthermore, vec(M∗ab)

T∇`D(∆∗) is a

two-sample U-statistics, i.e.,

vec(M∗ab)
T∇`D(∆∗) =

1

nX

1

nY

nX∑
i=1

nY∑
j=1

g∗ab(Xi, Yj),

where

g∗ab(x, y) = gab(x, y; ∆∗,M∗ab)

and

gab(x, y; ∆,Mab) =
1

2
tr
{
Mabxx

T∆yyT +Mabyy
T∆xxT

}
− tr

{
Mab

(
yyT − xxT

)}
.

Thus, we use a jackknife variance estimator of the variance of vec(M∗ab)
T∇`D(∆∗) to estimate

the variance of ∆̃ab. Define

v̂2
ab(∆,Mab) = n−1

X v̂2
ab,1(∆,Mab) + n−1

Y v̂2
ab,2(∆,Mab),
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where

v̂2
ab,1(∆,Mab) =

1

nX − 1

nX∑
i=1

{
ĝab,1i(∆,Mab)− vec(Mab)

T∇`D(∆)
}2
,

v̂2
ab,2(∆,Mab) =

1

nY − 1

nY∑
j=1

{
ĝab,2j(∆,Mab)− vec(Mab)

T∇`D(∆)
}2
,

and

ĝab,1i(∆,Mab) = ĝab,1(Xi; ∆,Mab), ĝab,1(x; ∆,Mab) =
1

nY

nY∑
j=1

gab(x, Yj ; ∆,Mab), (4.7)

ĝab,2j(∆,Mab) = ĝab,2(Yj ; ∆,Mab), ĝab,2(y; ∆,Mab) =
1

nX

nX∑
i=1

gab(Xi, y; ∆,Mab). (4.8)

A jackknife variance estimator of the variance of vec(M∗ab)
T∇`D(∆∗) is v̂∗2ab = v̂2

ab(∆
∗,M∗ab).

Since ∆∗ and M∗ab are unknown parameters, they are replaced with consistent estimates, e.g.,

∆̂ from ∆̂ from (4.1) or M̂ab from (4.2), resulting in the sample estimate

Var(∆̃ab) ≈ v̂2
ab(∆̂, M̂ab). (4.9)

4.1.3 Bootstrapping SparDE+

In this section, we present two bootstrap methods for estimating the quantiles of

TI = TI,nX ,nY = max
(a,b)∈I

n1/2|∆̃ab −∆∗ab|,

where n = nX +nY . We have see in Chapter 2 that this can be used in simultaneous inference

problems involving many indices of interest for controlling the FWER.

Let ∆̃I = (∆̃ab)(a,b)∈I . By (2.12),

∆̃I = ∆∗I − UI −BI ,
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where UI = M∗T·,I `D(∆∗), M∗·,I is the matrix obtained by stacking vec(M∗ab) together, and

BI = (Bab)(a,b)∈I . Since each component of UI is approximately Gaussian, it makes sense

to approximate the quantiles of TI with the quantiles of max(a,b)∈I |Za,b|, where ZI = (Zab)

is a Gaussian random vector with a matching covariance. Since the covariance of UI is not

known, this is estimated from the data. In the Gaussian multiplier bootstrap (Algorithm 8)

given below, the covariance is estimated implicitly via applying Gaussian weights.

Algorithm 8 Estimating the quantiles of T with the Gaussian multiplier bootstrap

Input: Data {Xi}
nX
i=1 and {Yj}

nY
j=1; the outputs ∆̂ and M̂ab, (a, b) ∈ I, of (4.1) and (4.2)

from Algorithm 6
Output: A Gaussian bootstrap estimate ĉT,I,q of cT,I,q

for b = 1, . . . , nb do

Draw n = nX + nY Gaussian weights ξ1, . . . , ξn
IID∼ Normal(0, 1).

Compute

T ∗I,b = max
(a,b)∈I

n1/2
∣∣∣n−1
X S∗ab,1 + n−1

Y S∗ab,2

∣∣∣
where

S∗ab,1 =

nX∑
i=1

{
ĝab,1i(∆̂, M̂ab)− vec(M̂ab)

T∇`D(∆̂)
}
ξi

S∗ab,2 =

nY∑
j=1

{
ĝab,2j(∆̂, M̂ab)− vec(M̂ab)

T∇`D(∆̂)
}
ξj+nX ,

and ĝab,1i and ĝab,2j are as defined in (4.7) and (4.8).
end for
return ĉT,I,q, the q-th sample quantile of {T ∗I,b}

nb
b=1.

Observe that conditional on the data, n−1
X S∗ab,1 + n−1

Y S∗ab,2 ∼ Normal(0, ṽ2
ab(∆̂, M̂ab)),

where

ṽ2
ab(∆̂, M̂ab) =

nX − 1

n2
X

v̂2
ab,1(∆̂, M̂ab) +

nY − 1

n2
Y

v̂2
ab,2(∆̂, M̂ab) ≈ v̂2

ab(∆̂, M̂ab).

Thus, Algorithm 8 uses the multivariate Gaussian distribution with the covariance matched

to the jackknife covariance estimate to approximate the distribution of TI .

In practice, estimates based on empirical bootstrap tend to be more robust, especially at
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smaller sample sizes. This is Algorithm 9.

Algorithm 9 Empirical bootstrap for ∆̃

Input: Data {Xi}
nX
i=1, {Yj}

nY
j=1; the outputs ∆̂ and M̂ab, (a, b) ∈ I, of (4.1) and (4.2) from

Algorithm 6
Output: Empirical bootstrap estimate ĉT,I,q of cT,I,q

for b = 1, . . . , nb do
Re-sample {X∗b,i}

nX
i=1 from {Xi}

nX
i=1 and {Y ∗b,j}

nY
j=1 from {Yj}

nY
j=1 uniformly at random

with replacement.
for (a, b) ∈ I do

If replicating ∆̃1+
ab , then do

∆̃∗b,ab = ∆̂ab − vec
(
M̂ab

)T
∇`D

(
∆̂; {X∗b,i}

nX
i=1, {Y

∗
b,j}

nY
j=1

)
.

If replicating ∆̃2+
ab , then do

q∆ = arg min
∆

`D

(
∆; {X∗b,i}

nX
i=1, {Y

∗
b,j}

nY
j=1

)
subject to supp(∆) ⊆ {(a, b), (b, a)} ∪ supp(∆̂) ∪ supp(M̂ab),

and let ∆̃∗b,ab be the (a, b)-th component of q∆.

end for
Compute

T ∗I,b = max
(a,b)∈I

n1/2|∆̃∗b,ab − ∆̃ab|.

end for
return ĉT,I,q, the q-th sample quantile of {T ∗I,b}

nb
b=1.

We verify that Algorithm 9 produces consistent estimates of cT,I,q in simulations.

4.2 Theory

In this section, we give a theoretical justification for using the Gaussian distribution as

the reference distribution for the output of SparDE+ (Algorithm 6). Our proof relies on

many aspects of the U-statistics theory. Here, we focus on the case of one-step estimator

∆̃1+
ab . The validity in the case of double-selection estimator ∆̃2+

ab can be established for the

double-selection estimator ∆̃2+
ab also, once consistency is verified for the re-fitted estimate
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q∆. This requires extending the arguments of Belloni and Chernozhukov [2013], which we

postpone to future work.

Fix (a, b) ∈ I, where I is the set of indices of inferential interest. By (2.14) in Section 2.3,

we saw that ∆̃ab = ∆̂ab − M̂T
ab∇`D(∆̂) decomposes as

∆̃ab = ∆∗ab − Uab −Bab,

where

Uab = vec(M∗ab)
T∇`D(∆∗) (4.10)

is the leading term and

Bab =
(
M̂ab −M∗ab

)T
∇`D(∆∗) +∇`M,ab(M

∗
ab)

T vec
(

∆̂−∆∗
)

+ vec
(
M̂ab −M∗ab

)T
H vec

(
∆̂−∆∗

)
(4.11)

is the bias term. Furthermore, we saw that Uab is a two-sample U-statistics, i.e.,

Uab =
1

nX

1

nY

nX∑
i=1

nY∑
j=1

g∗ab(Xi, Yj)

where

g∗ab(x, y) = gab(x, y; ∆∗,M∗ab)

and

gab(x, y; ∆,Mab) =
1

2
tr
{
Mabxx

T∆yyT +Mabyy
T∆xxT

}
− tr

{
Mab

(
yyT − xxT

)}
.

We shall apply a Berry-Esseen result [Chen and Shao, 2007, Theorem 3.2] to the two-

sample U-statistics Uab (Lemma B.1), while showing that under a mild set of conditions,

Bab is o(n−1/2) with high probability (Lemma B.2). The two results combine to imply a
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Berry-Esseen bound for our estimator ∆̃ab. Finally, the consistency of the jackknife variance

estimator (4.9), in conjunction with the consistency of the estimates ∆̂ and M̂ab, imply a

Berry-Essen bound for the self-normalized statistics v̂−1
ab ∆̃ab.

We now specify a set of conditions that is sufficient to guarantee the validity of Gaussian

approximation for the distribution of ∆̃ab. Denote the support of ∆∗ by SD and the support

of M∗ab by SM,ab, and let sD = |SD| and sM,ab = |SM,ab|.

Let

v2
ab = Var

{
g∗ab(X, Y )

}
, (4.12)

g∗ab,1(x) = E
{
g∗ab(x, Y )

}
, v2

ab,1 = E
{
g∗2ab,1(X)

}
, w3

ab,1 = E
{∣∣∣g∗ab,1(X)

∣∣∣3} , (4.13)

g∗ab,2(y) = E
{
g∗ab(X, y)

}
, v2

ab,2 = E
{
g∗2ab,2(Y )

}
, w3

ab,2 = E
{∣∣∣g∗ab,2(Y )3

∣∣∣} , (4.14)

v̄2
ab = n−1

X v2
ab,1 + n−1

Y v2
ab,2. (4.15)

Condition 4.1. We have v2
ab <∞ and max(v2

ab,1, v
2
ab,2) > 0.

Condition 4.2.

• |ΣX |∞, |ΣY |∞, |∆∗|1, |M∗ab|1 are all bounded from above by a constant.

• Let κX be the smallest eigenvalue of ΣX and κY be the smallest eigenvalue of ΣY .

Then, κX , κY are both bounded away from 0 by a constant.

• The sample sizes nX and nY , the number of nodes p, and the sparsity levels sD and

sM,ab diverge to infinity in such a way that

sDsM,ab log p

min (nX , nY )1/2
= o(1).
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Theorem 4.1. Suppose Algorithm 6 is run with

λD = 2 max (2, |∆∗|1) (1 + |ΣX |∞ + |ΣY |∞ + t) t, (4.16)

λM,ab = 2|M∗ab|1 (|ΣX |∞ + |ΣY |∞ + t) t, (4.17)

and

ΓD,kl = ΓM,ab,kl = 1 ∀ 1 ≤ k ≤ l ≤ p

for

t =

{
16 log p

min (nX/τX , nY /τY )

}1/2

,

where

τX = max
1≤k≤l≤p

max

(σX,kkσX,ll)1/2
{

1− ρ2
X,kl

1−
(
ρX,kl + εX,kl

)2
}2 {

1 +
(
ρX,kl + εX,kl

)2}
,

(
σX,kkσX,ll

)1/2{ 1− ρ2
X,kl

1−
(
ρX,kl − εX,kl

)2
}2 {

1 +
(
ρX,kl − εX,kl

)2} ,
τY = max

1≤k≤l≤p
max

(σY,kkσY,ll)1/2
{

1− ρ2
Y,kl

1−
(
ρY,kl + εY,kl

)2
}2 {

1 +
(
ρY,kl + εY,kl

)2}
,

(
σY,kkσY,ll

)1/2{ 1− ρ2
Y,kl

1−
(
ρY,kl − εY,kl

)2
}2 {

1 +
(
ρY,kl − εY,kl

)2} ,
Here, εX,kl ∈ (0, 1) is a constant satisfying |ρX,kl| < 1 − εX,kl; εY,kl is defined similarly.

Suppose

t ≤ 2 min (τX t̄X , τY t̄Y ) ,
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where

t̄X = min
1≤k≤l≤p

εX,kl(
σX,kkσX,ll

)1/2 (
1− ρ2

X,kl

) ,
t̄Y = min

1≤k≤l≤p

εY,kl(
σY,kkσY,ll

)1/2 (
1− ρ2

Y,kl

) .
Under Conditions 4.1 and 4.2, the final estimator ∆̃ab satisfies

sup
z∈R

∣∣∣P(v̄−1
ab

(
∆̃ab −∆∗ab

)
≤ z
)
− Φ(z)

∣∣∣ = o(1).

For the proof, see Appendix B.1.

4.3 Simulation studies

4.3.1 Inference for a single edge via Gaussian approximation

We illustrate finite sample properties of the confidence intervals (4.5) on simulated data. We

compare the performance with the procedure that obtains the confidence interval based on

separately estimating the two precision matrices [Xia et al., 2015]. Our code is available at

https://github.com/mlakolar/DiffPrecTest.jl.

We first introduce the matrix models used in the simulations. We generate data from

the following five models. Let D = [Dkl] be a diagonal matrix with Dkk ∼ Uniform(0.5, 2.5),

k = 1, . . . , p.

Model 1. ∆∗1 = 0 with Σ−1
1,X = Σ−1

1,Y = D1/2Ω1D
1/2, where Ω1 = [Ω1,kl] is a symmetric
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heptadiagonal matrix with entries

Ω1,kl =



1 if |k − l| = 0,

0.6 if |k − l| = 1,

0.3 if |k − l| = 2,

0.1 if |k − l| = 3,

0 otherwise.

Model 2. ∆∗2 = 0 with Σ−1
2,X = Σ−1

2,Y = D1/2Ω2D
1/2, where Ω2 = [Ω2,kl] is a symmetric

matrix with entries Ω2,kl = 0.9|k−l|.

Model 3. ∆∗3 = D1/2∆3D
1/2 with Σ−1

3,X = D1/2Ω3D
1/2, where Ω3 is the same as in Model 1,

and Σ−1
3,Y = D1/2(Ω3 + ∆3)D1/2, where ∆3 = [∆3,kl] is a symmetric matrix with

entries

∆3,kl ∼


Uniform(0.1, 0.2) if |k − l| = 0,

Uniform(0.2, 0.5) if |k − l| = 1,

0 otherwise.

Model 4. ∆∗4 = D1/2∆4D
1/2 with Σ−1

4,X = D1/2Ω4D
1/2, where Ω4 = [Ω4,kl] is a symmetric

matrix with entries Ω4,kl = 0.6|k−l|, and Σ−1
4,Y = D1/2(Ω4 + ∆4)D1/2, where ∆4 =

[∆4,kl] is a tridiagonal matrix with entries

∆4,kl ∼


Uniform(0.1, 0.2) if |k − l| = 0,

Uniform(0.2, 0.5) if |k − l| = 1,

0 otherwise.

Model 5. ∆∗5 = Σ−1
5,X −Σ−1

5,Y with Σ−1
5,X = D1/2Ω5,XD

1/2 and Σ−1
5,Y = D1/2Ω5,YD

1/2, where

Ω5,X = [Ω5,X,kl] and Ω5,Y = [Ω5,Y,kl] are symmetric pentadiagonal matrices with
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entries

Ω5,X,kl =



1 if |k − l| = 0,

0.3 if |k − l| = 1,

0.2 if |k − l| = 2,

0 otherwise,

and

Ω5,Y,kl =



1 if |k − l| = 0,

0.3 if |k − l| = 1,

−0.1 if |k − l| = 2,

0 otherwise.

In Models 1, 3, and 5, the sparsity level of the differential network ∆∗ is similar to those

of the underlying graphs Σ−1
X and Σ−1

Y . By contrast, Models 2 and 4 have sparse differential

networks ∆∗ defined on dense underlying graphs Σ−1
X and Σ−1

Y .

For each model, we generate nX = nY = 300 observations each from Normal(0,ΣX) and

Normal(0,ΣY ). We report the empirical coverage, bias, and average width of 95% CIs for

∆∗ab for each edge (a, b) in a pre-specified set using both methods under consideration based

on 1000 independent replications.

Our findings are summarized in Figure 4.1. With the exception of the p = 200 case

for Model 2, we observe that the actual coverage is closer to the target level for the CIs

constructed using our method.

For a complete summary of all the results, see Figures B.1–B.10 and Tables B.1–B.5 in

Appendix B.5.

4.3.2 Global inference with empirical bootstrap quantile estimates

We use the following models to investigate the numerical performance of our global test. We

compare against the global test developed in Xia et al. [2015].

We first introduce the matrix models used in the simulations. Let D = [Dkl] be a

54



Figure 4.1: Comparison of the empirical coverage of 95% CIs using SparDE+ and the method
of Xia et al. [2015]. With the exception of the p = 200 case for Model 2, the actual coverage
is closer to the target level for the CIs constructed using our method.
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diagonal matrix with Dkk ∼ Uniform(0.5, 2.5), k = 1, . . . , p. We generate data from the

following four models under the null hypothesis of ∆∗ = 0, i.e., Σ−1
X = Σ−1

Y = D1/2ΩmD
1/2,

m ∈ {1, . . . , 4}.

Model 1. Σ−1
1,X = Σ−1

1,Y = D1/2Ω1D
1/2, where Ω1 = [Ω1,kl] is a symmetric heptadiagonal

matrix with entries

Ω1,kl =



1 if |k − l| = 0,

0.6 if |k − l| = 1,

0.3 if |k − l| = 2,

0.1 if |k − l| = 3,

0 otherwise.

Model 2. Σ−1
2,X = Σ−1

2,Y = (1 + δ)−1D1/2(Ω2 + δI)D1/2, where Ω2 = [Ω2,kl] is a symmetric

matrix with entries

Ω2,kl =


0.5 if k = 10(d− 1) + 1, l − k = 1, . . . , 9, d = 1, . . . , p/10,

0.5 if l = 10(d− 1) + 1, k − l = 1, . . . , 9, d = 1, . . . , p/10,

0 otherwise,

and δ = |λmin(Ω2)|+ 0.05.

Model 3. Σ−1
3,X = Σ−1

3,Y = (1 + δ)−1D1/2(Ω3 + δI)D1/2, where Ω3 = [Ω3,kl] is a symmetric

matrix with entries

Ω3,kl ∼


1 if k = l,

0.8 Bernoulli(0.05) if k < l,

Ω3,lk if k > l,

and δ = |λmin(Ω3)|+ 0.05.

Model 4. Σ−1
4,X = Σ−1

4,Y = D1/2{(1+δ)−1(Σ4+δI)}−1D1/2, where Σ4 = [Σ4,kl] is a symmetric
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Table 4.1: Percentage of erroneous rejections of the global null hypothesis H0 : ∆∗ = 0 at
α = 0, first using SparDE+ and then using the method of Xia et al. [2015]. The numbers
displayed below are estimates based on 1000 independent replications.

p Method Model 1 Model 2 Model 3 Model 4

50 SparDE+ 5.4 3.3 3.6 4.2
Xia et al. [2015] 4.6 3.3 3.8 8.3

100 SparDE+ 4.0 4.5 3.2 3.9
Xia et al. [2015] 4.0 3.3 2.2 9.6

150 SparDE+ 3.4 3.9 3.7 5.0
Xia et al. [2015] 2.9 2.5 2.5 8.7

matrix with entries

Σ4,kl =


1 if k = l,

0.5 if 2(d− 1) + 1 ≤ a 6= b ≤ 2d, d = 1, . . . , p/2,

0 otherwise,

and δ = |λmin(Σ4)|+ 0.05.

Models 2, 3, and 4 have been taken from Xia et al. [2015]. For each model, we generate two

sets of nX = nY = 300 observations from Normal(0,ΣX) = Normal(0,ΣY ). The dimension

p varies over the values 50, 100, and 150. For global testing of H0 : ∆∗ = 0, we set the

nominal significance level for all the tests at α = 0.05 and use B = 300 bootstrap replicates

to estimate the quantiles of the test statistic.

Table 4.1 shows empirical sizes of the global test in percentages, estimated from 1000

replications. We observe that our proposed procedure has the empirical size close to the

nominal level in all cases. The global test of Xia et al. [2015] has the empirical size close

to the nominal level for Model 1, 2, and 3. However, the size is larger than the nominal

level under Model 4. We also note that the empirical bootstrap provides a better estimate of

the quantiles of the test statistic, compared to the approximation based on the asymptotic

distribution.

We also evaluate the power of the proposed test. Let U = [Ukl] be a matrix with eight
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random nonzero entries. The locations of four nonzero entries are selected randomly from the

upper triangle of U , each with a value generated randomly as sω, where s is ±1 with equal

probability and ω = (2 log p/n)1/2 maxk=1,...,p[Σ
−1
m,X ]kk. The other four nonzero entries in

the lower triangle are determined by symmetry. We use the following four pairs of precision

matrices (Ωm,X ,Ωm,Y ), m ∈ {1, . . . , 4}, where Ωm,X = (1 + δ)−1(Σ−1
m,X + δI) and Ωm,Y =

(1 + δ)−1(Σ−1
m,X + U + δI) with δ = |min{λmin(Σ−1

m,X), λmin(Σ−1
m,X + U)}|+ 0.05. For each

model, we generate nX = nY = 300 observations from Normal(0,ΣX) and Normal(0,ΣY ),

where ΣX = Ω−1
m,X and ΣY = {(1− γ)Ωm,X + γΩm,Y }−1 for γ ∈ [0, 1].

Figure 4.2 plots the power as a function of γ. We observe that our procedure has higher

power compared to that of Xia et al. [2015].

4.4 Real data example: Molecular subtypes of colorectal cancer

Molecular subtyping of cancer tumors aims to group tumors according to their gene expression

patterns. For some cancers, certain tumor types have been linked to a well-prescribed set of

clinical behavior, leading to a more accurate and reliable diagnosis and targeted treatment.

Recently, Colorectal Cancer Consortium announced four consensus molecular subtypes

(CMS) of colorectal cancer based on a network-based Markov clustering analysis using data

aggregated over 18 different sources [Guinney et al., 2015]. The data are publicly available

from the Synapse platform (Synapse ID syn2623706). The four subtypes were found to

exhibit different biological characteristics. Clinical and prognostic associations also differed.

Colorectal cancer is the third most common type of cancer, affecting about 4.4% of men and

about 4.1% of women in the United States in lifetime [Division of Cancer Prevention and

Control, 2021]. Therefore, it is important to gain a deeper understanding of the biology of

the different subtypes.

Among the four subtypes established by the Consortium, the top most prevalent subtypes,

CMS2 and CMS4 (37% and 23%, respectively, of the aggregated samples), were found to be

associated with very different prognoses. CMS2 had the best overall survival rate, and in
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Figure 4.2: Power of the empirical bootstrap test for the global null hypothesis H0 : ∆∗ = 0
at α = 0.05. The left panels correspond to the empirical bootstrap test using the test statistic
max1≤a<b≤p |∆̃ab|/v̂ab > ĉ0.95; the right panels, to the test proposed in Xia et al. [2015].
Each row corresponds to one of the four models as described on p. 58. The horizontal axis is
γ, which controls the magnitude of the changes. We looked at p = 50, 100, 150: in each panel,
the red • indicates p = 50; the blue H, p = 100; and the green �, p = 150.
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particular, the best survival after relapse. By contrast, CMS4 had the poorest overall survival

rate, as well as the worst relapse-free survival. The tumor subtypes were associated with

different biology, with meaningful differences in gene expression levels. Gene set enrichment

analysis [Subramanian et al., 2005] revealed over-enrichment of the SRC pathway in CMS2

tumors and under-enrichment in CMS4. The enrichment patterns were reversed for the

VEGF pathway.

We focus on identifying meaningful differences in gene-gene interaction levels in the SRC

pathway (p = 11 genes) and in the VEGF pathway (p = 75 genes) between CMS2 and CMS4

groups (nCMS2 = 208 and nCMS4 = 119). SRC has been singled out as playing an important

role in the progress of colorectal cancer [Chen et al., 2014, Yeatman, 2004]. For computational

reasons, we restrict to the local network of the PLA2G2C gene in the case of the VEGF

pathway. Previous studies have found the expression levels of cPLA2 in human colorectal

tumors to be highly variable, singling it out as a potential diagnostic marker [Nakanishi and

Rosenberg, 2006].

The Synapse gene expression data are not Gaussian. Therefore, we preprocess the data via

quantile transform on the Winsorized values. Using the method of Section 4.1, we estimate

the differential networks of genes in the SRC pathway ∆∗SRC and in the VEGF pathway

∆∗VEGF controlling the false discovery rate at level α = 0.05. The method of Xia et al. [2015]

is used for comparison; the false discovery rate is controlled in the same manner.

In the case of SRC pathway, our methods detected statistically significant differences

in edges (GRB2, GRB2 ) and (GRB2, CSK ). The method of Xia et al. [2015] additionally

selected (CDC25C, CCNB1 ). In the case of the PLA2G2C gene with other genes in the VEGF

pathway, our method discovered meaningful differences in interactions with PLA2G1B and

PLA2G2C. Xia et al. [2015] additionally selects interactions with PLA2G2E and PPP3CB.

More interactions are flagged using Xia et al. [2015] due to larger estimates of difference and

smaller estimates of standard error. The gene-gene interactions singled out by both methods

are potentially interesting given the current research on the roles in cell motility and cancer
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Figure 4.3: The SRC differential network
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[Giubellino et al., 2008]; they offer promising targets for further research.
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Part II

Distribution-free inference for

ensemble predictions
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CHAPTER 5

JACKKNIFE+-AFTER-BOOTSTRAP

Ensemble learning is a popular technique for enhancing the performance of machine learning

algorithms. It is used to capture a complex model space with simple hypotheses which

are often significantly easier to learn, or to increase the accuracy of an otherwise unstable

procedure [see Hastie et al., 2009, Polikar, 2006, Rokach, 2010, and references therein].

While ensembling can provide substantially more stable and accurate estimates, relatively

little is known about how to perform provably valid inference on the resulting output.

Particular challenges arise when the data distribution is unknown, or when the base learner is

difficult to analyze. To consider a motivating example, suppose that each observation consists

of a vector of features X ∈ Rp and a real-valued response Y ∈ R. Even in an idealized

scenario where we might be certain that the data follow a linear model, it is still not clear

how we might perform inference on a bagged prediction obtained by, say, averaging the Lasso

predictions on multiple bootstrapped samples of the data.

To address the problem of valid statistical inference for ensemble predictions, we propose

a method for constructing a predictive confidence interval for a new observation that can

be wrapped around existing ensemble prediction methods. Our method integrates ensemble

learning with the recently proposed jackknife+ [Barber et al., 2021]. It is implemented by

tweaking how the ensemble aggregates the learned predictions. This makes the resulting

integrated algorithm to output an interval-valued prediction that, when run at a target

predictive coverage level of 1 − α, provably covers the new response value at least 1 − 2α

proportion of the time in the worst case, with no assumptions on the data beyond independent

and identically distributed samples.

The work presented in this chapter has appeared in “Predictive inference is free with the Jackknife+-
after-bootstrap” by Byol Kim, Chen Xu, and Rina Foygel Barber in Advances in Neural Information Processing
Systems 33, pages 4138–4149.
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5.1 Background

Suppose we are given n IID observations

(X1, Y1), . . . , (Xn, Yn)
IID∼ P

from some probability distribution P on Rp×R. Given the available training data, we would

like to predict the value of the response Yn+1 for a new data point with features Xn+1, where

we assume that (Xn+1, Yn+1) is drawn from the same probability distribution P . A common

framework is to fit a regression model µ̂ : Rp → R by applying some regression algorithm

to the training data {(Xi, Yi)}ni=1, and then predicting µ̂(Xn+1) as our best estimate of the

unseen test response Yn+1.

However, the question arises: How can we quantify the likely accuracy or error level of

these predictions? For example, can we use the available information to build an interval

around our estimate µ̂(Xn+1)± (some margin of error) that we believe is likely to contain

Yn+1? More generally, we want to build a predictive interval Ĉ(Xn+1) ⊆ R that maps the

test features Xn+1 to an interval (or more generally, a set) believed to contain Yn+1. Thus,

instead of µ̂ : Rp → R, we would like our method to output Ĉ : Rp → R2 with the property

P
[
Yn+1 ∈ Ĉ(Xn+1)

]
≥ 1− α, (5.1)

where the probability is with respect to the distribution of the n+ 1 training and test data

points (as well as any additional source of randomness used in obtaining Ĉ). Ideally, we

want Ĉ to satisfy (5.1) for any data distribution P . Such Ĉ is said to satisfy distribution-free

predictive coverage at level 1− α.
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5.1.1 Jackknife and jackknife+

One of the methods that can output Ĉ with distribution-free predictive coverage is the recent

jackknife+ of Barber et al. [2021] which inspired our work. As suggested by the name, the

jackknife+ is a simple modification of the jackknife approach to constructing predictive

confidence intervals.

To define the jackknife and the jackknife+, we begin by introducing some notation. Let

R denote any regression algorithm; R takes in a training data set, and outputs a model

µ̂ : Rp → R, which can then be used to map a new X to a predicted Y . We will write

µ̂ = R({(Xi, Yi)}ni=1) for the model fitted on the full training data, and will also write

µ̂\i = R({(Xj , Yj)}nj=1,j 6=i) for the model fitted on the training data without the point i.

Let q+
α,n{vi} and q−α,n{vi} denote the upper and the lower α-quantiles of a list of n values

indexed by i, that is to say, q+
α,n{vi} = the d(1− α)(n+ 1)e-th smallest value of v1, . . . , vn,

and q−α,n{vi} = −q+
α,n{−vi}.

The jackknife prediction interval is given by

ĈJ
α,n(x) = µ̂(x)± q+

α,n{Ri} =
[
q−α,n{µ̂(x)−Ri}, q+

α,n{µ̂(x) +Ri}
]
, (5.2)

where Ri = |Yi− µ̂\i(Xi)| is the i-th leave-one-out residual. This is based on the idea that the

Ri’s are good estimates of the test residual |Yn+1− µ̂\i(Xn+1)|, because the data used to train

µ̂\i is independent of (Xi, Yi). Perhaps surprisingly, it turns out that fully assumption-free

theory is impossible for (5.2) [see Barber et al., 2021, Theorem 2]. By contrast, it is achieved

by the jackknife+, which modifies (5.2) by replacing µ̂ with µ̂\i’s:

ĈJ+
α,n(x) =

[
q−α,n{µ̂\i(x)−Ri}, q+

α,n{µ̂\i(x) +Ri}
]
. (5.3)

Barber et al. [2021] showed that (5.3) satisfies distribution-free predictive coverage at level

1 − 2α. Intuitively, the reason that such a guarantee is impossible for (5.2) is that the
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test residual |Yn+1 − µ̂(Xn+1)| is not quite comparable with the leave-one-out residuals

|Yi − µ̂\i(Xi)|, because µ̂ always sees one more observation in training than µ̂\i sees. The

jackknife+ correction restores the symmetry, making assumption-free theory possible.

5.1.2 Ensemble methods

Here, we are concerned with ensemble predictions that apply a base regression method R,

such as linear regression or the Lasso, to different training sets generated from the training

data by a resampling procedure.

Specifically, the ensemble method starts by creating multiple training data sets (or

multisets) of size m from the available training data points {1, . . . , n}. We may choose

the sets by bootstrapping (sampling m indices uniformly at random with replacement—a

typical choice is m = n), or by subsampling (sampling without replacement, for instance with

m = n/2).

For each b, the algorithm calls on R to fit the model µ̂b using the training set Sb, and

then aggregates the B predictions µ̂1(x), . . . , µ̂B(x) into a single final prediction µ̂ϕ(x) via

an aggregation function ϕ,1 typically chosen to be a simple function such as the median,

mean, or trimmed mean. When ϕ is the mean, the ensemble method run with bootstrapped

Sb’s is referred to as bagging [Breiman, 1996], while if we instead use subsampled Sb’s, then

this ensembling procedure is referred to as subagging [Bühlmann and Yu, 2002].

The procedure is formalized in Algorithm 10.

Can we apply the jackknife+ to an ensemble method? While ensembling is generally

understood to provide a more robust and stable prediction as compared to the underlying base

algorithm, there are substantial difficulties in developing inference procedures for ensemble

methods with theoretical guarantees. For one thing, ensemble methods are frequently

1 Formally, we define ϕ as a map from
⋃

k≥0 Rk → R, mapping any collection of predictions in R to a
single aggregated prediction. (If the collection is empty, we would simply output zero or some other default
choice). ϕ lifts naturally to a map on vectors of functions, by writing µ̂ϕ = ϕ(µ̂1, . . . , µ̂B), where µ̂ϕ(x) is
defined for each x ∈ R by applying ϕ to the collection (µ̂1(x), . . . , µ̂B(x)).
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Algorithm 10 Ensemble learning

Input: Data {(Xi, Yi)}ni=1
Output: Ensembled regression function µ̂ϕ

for b = 1, . . . , B do
Draw Sb = (ib,1, . . . , ib,m) by sampling with or without replacement from {1, . . . , n}.
Compute µ̂b = R((Xib,1 , Yib,1), . . . , (Xib,m , Yib,m)).

end for
Define µ̂ϕ = ϕ(µ̂1, . . . , µ̂B).

used with highly discontinuous and nonlinear base learners, and aggregating many of them

leads to models that defy an easy analysis. The problem is compounded by the fact that

ensemble methods are typically employed in settings where good generative models of the

data distribution are either unavailable or difficult to obtain. This makes distribution-free

methods that can wrap around arbitrary machine learning algorithms, such as the conformal

prediction [Vovk et al., 2005, Lei et al., 2018], the split conformal [Papadopoulos, 2008, Vovk,

2013, Lei et al., 2018], or cross-validation or jackknife type methods [Barber et al., 2021]

attractive, as they retain validity over any data distribution. However, when deployed with

ensemble prediction methods which often require a significant overhead from the extra cost

of model fitting, the resulting combined procedures tend to be extremely computationally

intensive, making them impractical in most settings. In the case of the jackknife+, if each

ensembled model makes B many calls to the base regression method R, the jackknife+ would

require a total of Bn calls to R. By contrast, our method will require only O(B) many

calls to R, making the computational burden comparable to obtaining a single ensemble

prediction.

5.1.3 Related works

Our work contributes to the fast-expanding literature on distribution-free predictive inference,

which has garnered attention in recent years for providing valid inferential tools that can work

with complex machine learning algorithms such as neural networks. This is because many of

the methods proposed are “wrapper” algorithms that can be used in conjunction with an
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arbitrary learning procedures. This list includes the conformal prediction methodology of Vovk

et al. [2005], Lei et al. [2018], the split conformal methods explored in Papadopoulos [2008],

Vovk [2013], Lei et al. [2018], and the jackknife+ of Barber et al. [2021]. Meanwhile, methods

such as cross-validation or leave-one-out cross-validation (also called the “jackknife”) stabilize

the results in practice but require some assumptions to analyze theoretically [Steinberger

and Leeb, 2016, 2018, Barber et al., 2021].

The method we propose can also be viewed as a wrapper designed specifically for use

with ensemble learners. As mentioned in Section 5.1.2, applying a distribution-free wrapper

around an ensemble prediction method typically results in a combined procedure that is

computationally burdensome. This has motivated many authors to come up with cost efficient

wrappers for use in the ensemble prediction setting. For example, Papadopoulos et al. [2002],

Papadopoulos and Haralambous [2011] use a holdout set to assess the predictive accuracy

of an ensembled model. However, when the sample size n is limited, one may achieve more

accurate predictions with a cross-validation or jackknife type method, as such a method avoids

reducing the sample size in order to obtain a holdout set. Moreover, by using “out-of-bag”

estimates [Breiman, 1997], it is often possible to reduce the overall cost to the extent that it

is on par with obtaining a single ensemble prediction. This is explored in Johansson et al.

[2014], where they propose a prediction interval of the form µ̂ϕ(Xn+1) ± q+
α,n(Ri), where

µ̂ϕ\i = ϕ({µ̂b : b = 1, . . . , B, Sb 63 i}) and Ri = |Yi− µ̂ϕ\i(Xi)|. Zhang et al. [2019] provide a

theoretical analysis of this type of prediction interval, ensuring that predictive coverage holds

asymptotically under additional assumptions. Devetyarov and Nouretdinov [2010], Löfström

et al. [2013], Boström et al. [2017b,a], Linusson et al. [2019] study variants of this type of

method, but fully distribution-free coverage cannot be guaranteed for these methods. By

contrast, our method preserves exchangeability, and hence is able to maintain assumption-free

and finite-sample validity.

More recently, Kuchibhotla and Ramdas [2019] looked at aggregating conformal inference

after subsampling or bootstrapping. Their work proposes ensembling multiple runs of an

68



Table 5.1: Comparison of the computational costs of obtaining ntest predictions

#calls to R #evaluations #calls to ϕ

Ensemble B Bntest ntest
J+ with Ensemble Bn Bn(1 + ntest) n(1 + ntest)

J+aB B B(n+ ntest) n(1 + ntest)

inference procedure, while in contrast our present work seeks to provide inference for ensembled

methods.

Stepping away from distribution-free methods, for the popular random forests [Ho, 1995,

Breiman, 2001], Meinshausen [2006], Athey et al. [2019], Lu and Hardin [2021] proposed

methods for estimating conditional quantiles, which can be used to construct prediction

intervals. The guarantees they provide are necessarily approximate or asymptotic, and rely on

additional conditions. Tangentially related are the methods for estimating the variance of the

random forest estimator of the conditional mean, e.g., Sexton and Laake [2009], Wager et al.

[2014], Mentch and Hooker [2016], which apply, in order, the jackknife-after-bootstrap (not

jackknife+) [Efron, 1992] or the infinitesimal jackknife [Efron, 2014] or U-statistics theory.

Roy and Larocque [2019] propose a heuristic for constructing prediction intervals using such

variance estimates. For a comprehensive survey of statistical work related to random forests,

we refer the reader to the literature review by Athey et al. [2019].

5.2 Jackknife+-after-bootstrap

We present our method, the jackknife+-after-bootstrap (J+aB). To design a cost efficient

wrapper method suited to the ensemble prediction setting, we borrow an old insight from

Breiman [1997] and make use of the “out-of-bag” estimates. Specifically, it is possible to

obtain the i-th leave-one-out model µ̂ϕ\i without additional calls to the base regression

method by reusing the already computed µ̂1, . . . , µ̂B by aggregating only those µ̂b’s whose

underlying training data set Sb did not include the i-th data point. This is formalized in

Algorithm 11.
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Algorithm 11 Jackknife+-after-bootstrap (J+aB)

Input: Data {(Xi, Yi)}ni=1

Output: Predictive interval ĈJ+aB
α,n,B

for b = 1, . . . , B do
Draw Sb = (ib,1, . . . , ib,m) by sampling with or without replacement from {1, . . . , n}.
Compute µ̂b = R((Xib,1 , Yib,1), . . . , (Xib,m , Yib,m)).

end for
for i = 1, . . . , n do

Aggregate µ̂ϕ\i = ϕ({µ̂b : b = 1, . . . , B, Sb 63 i}).
Compute the residual, Ri = |Yi − µ̂ϕ\i(Xi)|.

end for
Compute the J+aB prediction interval: at each x ∈ R,

ĈJ+aB
α,n,B(x) =

[
q−α,n{µ̂ϕ\i(x)−Ri}, q+

α,n{µ̂ϕ\i(x) +Ri}
]
.

Because the J+aB algorithm recycles the same B models µ̂1, . . . , µ̂B to compute all n

leave-one-out models µ̂ϕ\i, the cost of model fitting is identical for the J+aB algorithm

and the ensemble learning. Table 5.1 compares the computational costs of an ensemble

method, the jackknife+ wrapped around an ensemble, and the J+aB when the goal is to

make ntest predictions. In settings where both model evaluations and aggregations remain

relatively cheap, our J+aB algorithm is able to output a more informative confidence interval

at virtually no extra cost beyond what is already necessary to produce a single ensemble point

prediction. Thus, one can view the J+aB as offering predictive inference “free of charge.”

5.3 Distribution-free theory

In this section, we prove that the coverage of a J+aB interval satisfies a distribution-free

lower-bound of 1 − 2α in the worst-case. We make two assumptions, one on the data

distribution and the other on the ensemble algorithm.

Condition 5.1. (X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1)
IID∼ P , where P is any distribution on

Rp × R.

Condition 5.2. For k ≥ 1, any fixed k-tuple ((x1, y1), . . . , (xk, yk)) ∈ Rp × R, and any
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permutation σ on {1, . . . , k}, it holds that

R
{

(x1, y1), . . . , (xk, yk)
}

= R
{

(xσ(1), yσ(1)), . . . , (xσ(k), yσ(k))
}
,

ϕ
(
y1, . . . , yk

)
= ϕ

(
yσ(1), . . . , yσ(k)

)
.

In other words, the base regression algorithm R and the aggregation ϕ are both invariant to

the ordering of the input arguments.2

Condition 5.1 is fairly standard in the distribution-free prediction literature [Vovk et al.,

2005, Lei et al., 2018, Barber et al., 2021]. In fact, our results only require exchangeability

of the n+ 1 data points, as is typical in distribution-free inference—the IID assumption is

a familiar special case. Condition 5.2 is a natural condition in the setting where the data

points are IID, and therefore should logically be treated symmetrically.

Theorem 5.1 gives the distribution-free coverage guarantee for the J+aB prediction interval

with one intriguing twist: the total number of base models, B, must be drawn at random

rather than chosen in advance. This is because Algorithm 11 as given subtly violates symmetry

even when R and ϕ are themselves symmetric. However, we shall see that requiring B to be

Binomial is enough to restore symmetry, after which assumption-free theory is possible.

Theorem 5.1. Fix any integers B̃ ≥ 1 and m ≥ 1, any base algorithm R, and any

aggregation function ϕ. Suppose the jackknife+-after-bootstrap method (Algorithm 11) is

run with (i) B ∼ Binomial(B̃, (1 − 1
n+1)m) in the case of sampling with replacement or

(ii) B ∼ Binomial(B̃, 1− m
n+1) in the case of sampling without replacement. Then, under

Conditions 5.1 and 5.2, the jackknife+-after-bootstrap prediction interval satisfies

P
[
Yn+1 ∈ ĈJ+aB

α,n,B(Xn+1)
]
≥ 1− 2α,

2 If R and/or ϕ involve any randomization—for example if ϕ operates by sampling from the collection of
predictions—then we can require that the outputs are equal in distribution under any permutation of the input
arguments, rather than requiring that equality holds deterministically. In this case, the coverage guarantees
in our theorems hold on average over the randomization in R and/or ϕ, in addition to the distribution of the
data.
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where the probability holds with respect to the random draw of the training data {(Xi, Yi)}ni=1,

the test data point (Xn+1, Yn+1), and the Binomial B.

Proof sketch. Our proof follows the main ideas of the jackknife+ guarantee [Barber et al.,

2021, Theorem 1]. It is a consequence of the jackknife+ construction that the guarantee can

be obtained by a simultaneous comparison of all n pairs of leave-one-out(-of-n) residuals,

|Yn+1 − µ̂\i(Xn+1)| vs |Yi − µ̂\i(Xi)| for i = 1, . . . , n. The key insight provided by Barber

et al. [2021] is that this is easily done by regarding the residuals as leave-two-out(-of-

(n + 1)) residuals |Yi − µ̃\i,j(Xi)| with {i, j} 3 (n + 1), where µ̃\i,j is a model trained

on the augmented data combining both training and test points and then screening out

the i-th and the j-th points, one of which is the test point. These leave-two-out residuals

are naturally embedded in an (n + 1) × (n + 1) array of all the leave-two-out residuals,

R = [Rij = |Yi − µ̃\i,j(Xi)| : i 6= j ∈ {1, . . . , n, n + 1}]. Since the n + 1 data points in

the augmented data are IID, they are exchangeable, and hence so is the array R, i.e., the

distribution of R is invariant to relabeling of the indices. A simple counting argument then

ensures that the jackknife+ interval fails to cover with probability at most 2α. This is the

essence of the jackknife+ proof.

Turning to our J+aB, it may be tempting to define µ̃ϕ\i,j = ϕ({µ̂b : Sb 63 i, j}), the

aggregation of all µ̂b’s whose underlying data set Sb excludes i and j, and go through with

the jackknife+ proof. However, this construction is no longer useful; the corresponding R in

this case is no longer exchangeable. This is most easily seen by noting that there are always

exactly B many Sb’s that do not include the test observation n+ 1, whereas the number of

Sb’s that do not contain a particular training observation i ∈ {1, . . . , n} is a random number

usually smaller than B. The issue here is that the J+aB algorithm as given fails to be

symmetric for all n+ 1 data points.

However, just as the jackknife+ symmetrized the jackknife by replacing µ̂ with µ̂\i’s, the

J+aB can also be symmetrized by merely requiring it to run with a Binomial B. To see why,

consider the “lifted” Algorithm 12.
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Algorithm 12 Lifted J+aB residuals

Input: Data {(Xi, Yi)}n+1
i=1

Output: Residuals (Rij : i 6= j ∈ {1, . . . , n+ 1})
for b = 1, . . . , B̃ do

Draw S̃b = (ib,1, . . . , ib,m) by sampling with or without replacement from {1, . . . , n+ 1}.
Compute µ̃b = R((Xib,1 , Yib,1), . . . , (Xib,m , Yib,m)).

end for
for pairs i 6= j ∈ {1, . . . , n+ 1} do

Aggregate µ̃ϕ\i,j = ϕ({µ̃b : S̃b 63 i, j}).
Compute the residual, Rij = |Yi − µ̃ϕ\i,j(Xi)|.

end for

Because all n + 1 data points are treated equally by Algorithm 12, the resulting array

of residuals R = [Rij : i 6= j ∈ {1, . . . , n + 1}] is again exchangeable. Now, for each

i = 1, . . . , n+ 1, define Ẽi as the event that
∑
j∈{1,...,n+1}\{i} 1I

[
Rij > Rji

]
≥ (1−α)(n+ 1).

Because of the exchangeability of the array, the same counting argument mentioned above

ensures P[Ẽn+1] ≤ 2α.

To relate the event Ẽn+1 to the actual J+aB interval ĈJ+aB
α,n,B(Xn+1) being constructed,

we need to couple Algorithms 11 and 12. Let B =
∑B̃
b=1 1I[S̃b 63 n+ 1], the number of S̃b’s

containing only the training data in the lifted construction, and let 1 ≤ b1 < · · · < bB ≤ B̃

be the indices of such S̃b’s. Note that B is Binomially distributed, as required by the

theorem. For each k = 1, . . . , B, define Sk = S̃bk . Then, each Sk is an independent uniform

draw from {1, . . . , n}, with or without replacement. Therefore, we can equivalently consider

running Algorithm 11 with these particular S1, . . . , SB . Furthermore, this ensures that

µ̃ϕ\n+1,i = µ̂ϕ\i for each i, that is, the leave-one-out models in Algorithm 11 coincide with

the leave-two-out models in Algorithm 12. Thus, we have constructed a coupling of the J+aB

with its lifted version.

Finally, define En+1 as the event that
∑n
i=1 1I[|Yn+1− µ̂ϕ\i(Xn+1)| > Ri] ≥ (1−α)(n+1),

where Ri = |Yi−µ̂ϕ\i(Xi)| as before. By the coupling we have constructed, we can see that the

event En+1 is equivalent to the lifted event Ẽn+1, and thus, P[En+1] = P[Ẽn+1] ≤ 2α. It can

be verified that in the event that the J+aB interval fails to cover, i.e., if Yn+1 /∈ ĈJ+aB
α,n,B(Xn+1),
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the event En+1 must occur, which concludes the proof. The full version of this proof is given

in Appendix C.1.

In most settings where a large number of models are being aggregated, we would not

expect the distinction of random vs fixed B to make a meaningful difference to the final

output. In Appendix C.2, we formalize this intuition and give a stability condition on the

aggregating map ϕ under which the J+aB has valid coverage for any choice of B.

Finally, we remark that although we have exclusively used the regression residuals

|Yi−µ̂\i(Xi)| in our exposition for concreteness, our method can also accommodate alternative

measures of conformity, e.g., using quantile regression as in Romano et al. [2019] or weighted

residuals as in Lei et al. [2018] which can better handle heteroscedasticity. More generally, if

ĉϕ\i is the trained conformity measure aggregated from the Sb’s that did not use the i-th

point, then the corresponding J+aB set is given by

Ĉc-J+aB
α,n,B (x) =

{
y :

n∑
i=1

1I
[
ĉϕ\i(x, y) > ĉϕ\i(Xi, Yi)

]
< (1− α)(n+ 1)

}
.

5.4 Experiments

In this section, we demonstrate that the J+aB intervals enjoy coverage near the nominal

level of 1 − α numerically, using three real data sets and different ensemble prediction

methods. In addition, we also look at the results for the jackknife+, combined either with the

same ensemble method (J+ensemble) or with the non-ensembled base method (J+non-

ensemble); the precise definitions are given in Appendix C.4.1. The code is available

online.3

We used three real data sets, which were also used in Barber et al. [2021], following the same

data preprocessing steps as described therein. The Communities and Crime (Communities)

data set [Redmond and Baveja, 2002] contains information on 1994 communities with p = 99

3 https://www.stat.uchicago.edu/~rina/jackknife+-after-bootstrap_realdata.html
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Figure 5.1: Distributions of coverage (averaged over each test data) in 10 independent splits
for ϕ = Mean. The black line indicates the target coverage of 1− α.
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covariates. The response Y is the per capita violent crime rate. The BlogFeedback (Blog)

data set [Buza, 2014] contains information on 52397 blog posts with p = 280 covariates. The

response is the number of comments left on the blog post in the following 24 hours, which we

transformed as Y = log(1 + #comments). The Medical Expenditure Panel Survey (MEPS)

2016 data set from the Agency for Healthcare Research and Quality, with details for older

versions in Ezzati-Rice et al. [2008], contains information on 33005 individuals with p = 107

covariates. The response is a score measuring each individual’s utilization level of medical

services. We transformed this as Y = log(1 + utilization score).

For the base regression methodR, we used either the ridge regression (Ridge), the random

forest (RF), or a neural network (NN). For Ridge, we set the penalty at λ = 0.001‖X‖2,

where ‖X‖ is the spectral norm of the training data matrix. RF was implemented using the

RandomForestRegressor method from scikit-learn with 20 trees grown for each random

forest using the mean absolute error criterion and the bootstrap option turned off, with

default settings otherwise. For NN, we used the MLPRegressor method from scikit-learn

with the L-BFGS solver and the logistic activation function, with default settings otherwise.

For the aggregation ϕ, we used averaging (Mean). Results obtained with other aggregation

methods are discussed in Appendix C.4.2.

We fixed α = 0.1 for the target coverage of 90%. We used n = 40 observations for training,

sampling uniformly without replacement to create a training-test split for each trial. The

results presented here are from 10 independent training-test splits of each data set. The

ensemble wrappers J+aB and J+ensemble used sampling with replacement. We varied

the size m of each bootstrap replicate as m/n = 0.2, 0.4, . . . , 1.0. For J+ensemble, we

used B = 20. For the J+aB, we drew B ∼ Binomial(B̃, (1 − 1
n+1)m) with B̃ = [20/{(1 −

1
n+1)m(1 − 1

n)m}], where [·] refers to the integer part of the argument. This ensures that

the number of models being aggregated for each leave-one-out model is matched on average

to the number in J+ensemble. We remark that the scale of our experiments, as reflected

in the number of different training-test splits or the size of n or B, has been limited by the
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computationally inefficient J+ensemble.

We emphasize that we made no attempt to optimize any of our models. This is because

our goal here is to illustrate certain properties of our method that hold universally for any

data distribution and any ensemble method, and not just in cases when the method happens

to be the “right” one for the data. All other things being equal, the statistical efficiency of

the intervals our method constructs would be most impacted by how accurately the model is

able to capture the data. However, because the method we propose leaves this choice up to

the users, performance comparisons along the axis of different ensemble methods are arguably

not very meaningful.

We are rather more interested in comparisons of the J+aB and J+ensemble, and of

the J+aB (or J+ensemble) and J+non-ensemble. For the J+aB vs J+ensemble

comparison, we are on the lookout for potential systematic tradeoffs between computational

and statistical efficiency. For each i, conditional on the event that the same number of models

were aggregated for the i-th leave-one-out models µ̂ϕ\i in the J+aB and J+ensemble, the

two µ̂ϕ\i’s have the same marginal distribution. However, this is not the case for the joint

distribution of all n leave-one-out models {µ̂ϕ\i}ni=1; with respect to the resampling measure,

the collection is highly correlated in the case of the J+aB, and independent in the case of

J+ensemble. Thus, in principle, the statistical properties of ĈJ+aB
α,n,B and ĈJ+ensemble

α,n,B′ could

differ, although it would be a surprise if it were to turn out that one method always performed

better than the other. In comparing the J+aB (or J+ensemble) and J+non-ensemble, we

seek to reaffirm some known results in bagging. It is well-known that bagging improves the

accuracy of unstable predictors, but has little effect on stable ones [Breiman, 1996, Bühlmann

and Yu, 2002]. It is reasonable to expect that this property will manifest in some way when

the width of ĈJ+aB
α,n,B (or ĈJ+ensemble

α,n,B′ ) is compared to that of ĈJ+non-ensemble
α,n . We expect

the former to be narrower than the latter when the base regression method is unstable (e.g.,

RF), but not so when it is already stable (e.g., Ridge).

Figures 5.1 and 5.2 summarize the results of our experiments. First, from Figure 5.1, it
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is clear that the coverage of the J+aB is near the nominal level. This is also the case for

J+ensemble or J+non-ensemble. Second, in Figure 5.2, we observe no evidence of a

consistent trend of one method always outperforming the other in terms of the precision of the

intervals, although we do see some slight variations across different data sets and regression

algorithms. Thus, we prefer the computationally efficient J+aB to the costly J+ensemble.

Finally, comparing the J+aB (or J+ensemble) and J+non-ensemble, we find the effect

of bagging reflected in the interval widths, and we see improved precision in the case of RF,

and for some data sets and at some values of m, in the case of NN. Thus, in settings where

the base learner is expected to benefit from ensembling, the J+aB is a practical method for

obtaining informative prediction intervals that requires a level of computational resources on

par with the ensemble algorithm itself.
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Figure 5.2: Distributions of interval width (averaged over each test data) in 10 independent
splits for ϕ = Mean.
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APPENDIX A

SUPPLEMENT TO CHAPTER 3

A.1 The KLIEP loss `KLIEP

Recall

ẐY (θ) =
1

nY

nY∑
j=1

exp
(
θTψ(Yj)

)
, r̂θ(y) =

exp
(
θTψ(y)

)
ẐY (θ)

, µ̂ψ(θ) =
1

nY

nY∑
j=1

ψ(Yj)r̂θ(Yj).

The following identities hold:

∂ log ẐY (θ)

∂θk
= µ̂ψ,k(θ),

∂r̂θ(y)

∂θk
=
(
ψk(y)− µ̂ψ,k(θ)

)
r̂θ(y),

∇k`KLIEP(θ) = − 1

nX

nX∑
i=1

ψk(Xi) + µ̂ψ,k(θ),

∇2
k2k1

`KLIEP(θ)

=
1

nY

nY∑
j=1

ψk2(Yj)ψk1(Yj)r̂θ(Yj)− µ̂ψ,k2(θ)µ̂ψ,k1(θ)

=
1

n2
Y

∑
1≤j1<j2≤nY

(
ψk2(Yj1)− ψk2(Yj2)

) (
ψk1(Yj1)− ψk1(Yj2)

)
r̂θ(Yj1)r̂θ(Yj2),

(A.1)

∇3
k3k2k1

`KLIEP(θ) =
1

nY

nY∑
j=1

ψk1(Yj)ψk2(Yj)ψk3(Yj)r̂θ(Yj)

− µ̂ψ,k3(θ)

 1

nY

nY∑
j=1

ψk1(Yj)ψk2(Yj)r̂θ(Yj)


− µ̂ψ,k2(θ)∇2

k3k1
`KLIEP(θ)− µ̂ψ,k1(θ)∇2

k3k2
`KLIEP(θ). (A.2)
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Clearly, ẐY (θ) ≈ ZY (θ) and r̂θ(y) ≈ rθ(y). Moreover,

µ̂ψ(θ) ≈ Eθ+γY [ψ(X)] , ∇2`KLIEP(θ) ≈ Covθ+γY [ψ(X)]

by Proposition A.1 below.

Proposition A.1. For any θ, let X ∼ fθ+γY . Then,

EγY

[
ẐY (θ)

ZY (θ)
µ̂ψ(θ)

]
= Eθ+γY [ψ(X)] ,

EγY

[
ẐY (θ)2

ZY (θ)2
∇2`KLIEP(θ)

]
=

(
1− 1

nY

)
Covθ+γY [ψ(X)] . (A.3)

Proof. To prove the first identity,

EγY [ψk(Y )rθ(Y )] =

∫
ψk(y)rθ(y)fY (y) dy =

∫
ψk(y)fθ+γY (y) dy = Eθ+γY [ψk(X)] ,

and therefore,

EγY

[
ẐY (θ)

ZY (θ)
µ̂ψ(θ)

]
= EγY

 1

nY

nY∑
j=1

ψ(Yj)rθ(Yj)

 = Eθ+γY [ψ(X)] .

To prove the second identity, let Y1, Y2
IID∼ fY be independent, so that

EγY
[(
ψk2(Y1)− ψk2(Y2)

) (
ψk1(Y1)− ψk1(Y2)

)
rθ(Y1)rθ(Y2)

]
=

∫∫ (
ψk2(y1)− ψk2(y2)

) (
ψk1(y1)− ψk1(y2)

)
rθ(y1)rθ(y2)fY (y1)fY (y2) dy1 dy2

= 2

∫∫
ψk2(y1)ψk1(y1)rθ(y1)rθ(y2)fY (y1)fY (y2) dy1 dy2

− 2

∫∫
ψk2(y1)ψk1(y2)rθ(y1)rθ(y2)fY (y1)fY (y2) dy1 dy2.
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The first integral is

∫∫
ψk2(y1)ψk1(y1)rθ(y1)rθ(y2)fY (y1)fY (y2) dy1 dy2

=

∫
ψk2(y1)ψk1(y1)rθ(y1)fY (y1) dy1

∫
rθ(y2)fY (y2) dy2

=

∫
ψk2(y1)ψk1(y1)fθ+γY (y1) dy1

∫
fθ+γY (y2) dy2

= Eθ+γY
[
ψk2(X)ψk1(X)

]
.

As for the second integral,

∫∫
ψk2(y1)ψk1(y2)rθ(y1)rθ(y2)fY (y1)fY (y2) dy1 dy2

=

∫
ψk2(y1)rθ(y1)fY (y1) dy1

∫
ψk1(y2)rθ(y2)fY (y2) dy2

=

∫
ψk2(y1)fθ+γY (y1) dy1

∫
ψk1(y2)fθ+γY (y2) dy2

= Eθ+γY
[
ψk2(X)

]
Eθ+γY

[
ψk1(X)

]
.

Thus,

EγY
[(
ψk2(Y1)− ψk2(Y2)

) (
ψk1(Y1)− ψk1(Y2)

)
rθ(Y1)rθ(y2)

]
= 2Eθ+γY

[
ψk2(X)ψk1(X)

]
− 2Eθ+γY

[
ψk2(X)

]
Eθ+γY

[
ψk1(X)

]
= 2 Covθ+γY

[
ψk2(X), ψk1(X)

]
,

and therefore,

EγY

[
Ẑ2
Y (θ)

Z2
Y (θ)

∇2`KLIEP(θ)

]

= EγY

 1

n2
Y

∑
1≤j1<j2≤nY

(
ψ(Yj1)− ψ(Yj2)

) (
ψ(Yj1)− ψ(Yj2)

)T
rθ(Yj1)rθ(Yj2)


=

(
1− 1

nY

)
Covθ+γY [ψ(X)] .
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A.2 Proofs of the general results

In what follows, positive constants that depend only on the fixed problem parameters are

denoted as c0, c1, . . . , c
′
0, c
′
1, . . . , K0, K1, . . . , and their precise definitions may change from

line to line. They are never allowed to depend on the sample sizes nX , nY , the number

of nodes p, the number of parameters m (usually m = p(p − 1)/2), or the sparsity level

of the true parameters sθ = sθ,qθ = |θ∗|qθ or sk = sk,qk = |Ω∗·k|qk , k ∈ {1, . . . ,m} and qθ,

qk ∈ [0, 1).

A.2.1 Proof of Theorem 3.1

Recall µψ = E[ψ(X)] = E[ψ(Y )rθ∗(Y )]. In the below, we shall write n1/2(θ̃k − θ∗k)/v̂k as

n1/2
(
θ̃k − θ∗k

)/
v̂k = n1/2 {(A+B)/vk} /(1 + C),

where

A =
1

nX

nX∑
i=1

Ω∗T·k
(
ψ(Xi)− µψ

)
+

1

nY

nY∑
j=1

Ω∗T·k
(
µψ − ψ(Yj)

)
rθ∗(Yj),

B =
(
θ̃k − θ∗k

)
− A, C =

v̂k
vk
− 1, v2

k = Var
(
n1/2A

)
.

Since A is a linear combination of two IID sums, n1/2A/vk is approximately Gaussian:

sup
t∈R

∣∣∣P{n1/2A/vk ≤ t
}
− Φ(t)

∣∣∣ . ∆1, ∆1 =

(
κ̄2/κ

ηX,nηY,n

)1/2 ∣∣Ω∗·k∣∣
n1/2

by Lemma A.16. Thus, in light of Lemma A.17, it suffices to bound B and C on Eone..
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First, we find a decomposition for B. By (2.14) in Section 2.3,

θ̃k − θ∗k = −Ω̂T
·k∇`KLIEP(θ∗)−

(
∇2`KLIEP(θ∗)Ω̂·k − ek

)T (
θ̂ − θ∗

)
− Ω̂T

·kr, (A.4)

where by Taylor’s theorem, r = (rk)mk=1 with

rk

=
1

2

m∑
k2=1

m∑
k1=1

[∫ 1

0
(1− t)∇3

k2k1k
`KLIEP

{
θ∗ + t

(
θ̂ − θ∗

)}
dt

](
θ̂k2 − θ

∗
k2

)(
θ̂k1 − θ

∗
k1

)
.

In light of Ω̂·k ≈ Ω∗·k, we rewrite (A.4) as

θ̃k − θ∗k = −Ω∗T·k ∇`KLIEP(θ∗)

−
(

Ω̂·k − Ω∗·k

)T
∇`KLIEP(θ̂)−

(
∇2`KLIEP(θ∗)Ω∗·k − ek

)T (
θ̂ − θ∗

)
− Ω∗T·k r. (A.5)

The leading term is

Ω∗T·k ∇`KLIEP(θ∗)

= Ω∗T·k

 1

nX

nX∑
i=1

ψ(Xi)−
1

nY

nY∑
j=1

ψ(Yj)r̂θ∗(Yj)


= Ω∗T·k

 1

nX

nX∑
i=1

(
ψ(Xi)− µψ

)
+

1

nY

nY∑
j=1

(
µψ − ψ(Yj)

)
r̂θ∗(Yj)


= Ω∗T·k

 1

nX

nX∑
i=1

(
ψ(Xi)− µψ

)
+

{
ZY (θ∗)

ẐY (θ∗)

} 1

nY

nY∑
j=1

(
µψ − ψ(Yj)

)
rθ∗(Yj)


 ,
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where the second equality used n−1
Y

∑nY
j=1 r̂θ(Yj) = 1. Thus,

Ω∗T·k ∇`KLIEP(θ∗) = Ω∗T·k

 1

nX

nX∑
i=1

(
ψ(Xi)− µψ

)
+

1

nY

nY∑
j=1

(
µψ − ψ(Yj)

)
rθ∗(Yj)


+

{
ZY (θ∗)

ẐY (θ∗)
− 1

} 1

nY

nY∑
j=1

Ω∗T·k
(
µψ − ψ(Yj)

)
rθ∗(Yj)

 . (A.6)

The first term on the right-hand side of (A.6) is A. Thus, comparing (A.5) and (A.6), B is

equal to

B =

{
ZY (θ∗)

ẐY (θ∗)
− 1

} 1

nY

nY∑
j=1

Ω∗T·k
(
µψ − ψ(Yj)

)
rθ∗(Yj)

︸ ︷︷ ︸
B0

−
(

Ω̂·k − Ω∗·k

)T
∇`KLIEP(θ̂)︸ ︷︷ ︸

B1

−
(
∇2`KLIEP(θ∗)Ω∗·k − ek

)T (
θ̂ − θ∗

)
︸ ︷︷ ︸

B2

−Ω∗T·k r︸ ︷︷ ︸
B3

.

We bound each term of the decomposition on Eone using the defining conditions of the

event. First, (B.1) and (B.2) imply

|B0| =

∣∣∣∣∣∣
{
ZY (θ∗)

ẐY (θ∗)
− 1

} 1

nY

nY∑
j=1

Ω∗T·k
(
µψ − ψ(Yj)

)
rθ∗(Yj)


∣∣∣∣∣∣

=

∣∣∣∣∣ZY (θ∗)

ẐY (θ∗)

∣∣∣∣∣
∣∣∣∣∣1− ẐY (θ∗)

ZY (θ∗)

∣∣∣∣∣
∣∣∣∣∣∣ 1

nY

nY∑
j=1

Ω∗T·k
(
µψ − ψ(Yj)

)
rθ∗(Yj)

∣∣∣∣∣∣
≤ K1λθλk,

(A.7)

because ZY (θ∗)/ẐY (θ∗) ∈ [M−1
r ,Mr] under Condition 3.1. We decompose B1 further as

B1 =
(

Ω̂·k − Ω∗·k

)T
∇`KLIEP(θ∗)︸ ︷︷ ︸

B11

+
(

Ω̂·k − Ω∗·k

)T (
∇`KLIEP(θ̂)−∇`KLIEP(θ∗)

)
︸ ︷︷ ︸

B12

.
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By (G.1) and (E.2) in the first line and by (G.2) and (E.1) in the second line,

|B11| ≤
∣∣∣Ω̂·k − Ω∗·k

∣∣∣ |∇`KLIEP(θ∗)|∗ ≤ λθδk, (A.8)

|B2| ≤
∣∣∣∇2`KLIEP(θ∗)Ω∗·k − ek

∣∣∣
∗

∣∣∣θ̂ − θ∗∣∣∣ ≤ λkδθ. (A.9)

In the case of B12, by the mean value theorem

∇k`KLIEP(θ̂)−∇k`KLIEP(θ∗) =
m∑
l=1

∇2
kl`KLIEP(θ̄k)

(
θ̂l − θ∗l

)

for some θ̄k on the line segment between θ̂ and θ∗. By (A.1), this is equal to

∇k`KLIEP(θ̂)−∇k`KLIEP(θ∗)

=
m∑
l=1

 1

nY

nY∑
j=1

r̂θ̄k
(Yj)ψk(Yj)ψl(Yj)− µ̂ψ,k(θ̄k)µ̂ψ,l(θ̄k)

(θ̂l − θ∗l )

=
1

nY

nY∑
j=1

r̂θ̄k
(Yj)ψk(Yj)

{
m∑
l=1

ψl(Yj)
(
θ̂l − θ∗l

)}
− µ̂ψ,k(θ̄k)

{
m∑
l=1

µ̂ψ,l(θ̄k)
(
θ̂l − θ∗l

)}
.

Now,

m∑
l=1

ψl(Yj)
(
θ̂l − θ∗l

)
≤Mψ

∣∣∣θ̂ − θ∗∣∣∣ , m∑
l=1

µ̂ψ,l(θ̄k)
(
θ̂l − θ∗l

)
≤MψM

2
r

∣∣∣θ̂ − θ∗∣∣∣ ,
under Condition 3.1, so that

∣∣∣∇`KLIEP(θ̂)−∇`KLIEP(θ∗)
∣∣∣
∗
≤ K2

∣∣∣θ̂ − θ∗∣∣∣ .
Thus, by (E.1) and (E.2),

|B12| ≤
∣∣∣Ω̂·k − Ω∗·k

∣∣∣ ∣∣∣∇`KLIEP(θ̂)−∇`KLIEP(θ∗)
∣∣∣
∗
≤ K2δθδk. (A.10)
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We turn to B3. Under Condition 3.1, (A.2) implies a uniform bound on the third-order tensor.

Thus,

|B3| ≤
∣∣Ω∗·k∣∣ |r|∗ ≤ K3

∣∣Ω∗·k∣∣ δ2
θ . (A.11)

Combining (A.7)–(A.11),

n1/2|B|/vk . ∆2, ∆2 = n1/2
(
ηX,nηY,n

κ/κ̄2

)1/2 {
(δθ + λθ) (δk + λk) +

∣∣Ω∗·k∣∣ δ2
θ

}
.

We bound C on Eone in a similar manner. By Lemma A.18, (E.1), (E.2), (V.1), and (V.2)

imply ∣∣∣∣ v̂kvk − 1

∣∣∣∣ ≤
∣∣∣∣∣ v̂2
k − v

2
k

v2
k

∣∣∣∣∣ . ∆3, ∆3 =
(
κ̄2/κ

) ∣∣Ω∗·k∣∣2 (δΣ + δθ) + δ2
k

Applying Lemma A.17 yields the conclusion.

A.2.2 Proof of Theorem 3.3

Assume µψ = E[ψ(X)] = E[ψ(Y )rθ∗(Y )] = 0. The general result follows by consistency of

empirical averages.

Recall

Tn = max
k=1,...,m

n1/2
∣∣∣θ̃k − θ∗k∣∣∣ , T ∗n = max

k=1,...,m

∣∣∣L̂∗n,k∣∣∣ ,
where

L̂∗k,nX ,nY

= − 1

n1/2
Ω̂T
·k

 1

ηX,n

nX∑
i=1

(
ψ(Xi)− ψ̄

)
ξi −

1

ηY,n

nY∑
j=1

(
ψ(Yj)r̂θ̂(Yj)− µ̂ψ(θ̂)

)
ξnX+j

 .

(A.12)

To prove the result, we shall apply Theorems 2.1 and 2.2 in Belloni et al. [2018], which are

Gaussian approximation results for approximate means over the class A of hyper-rectangles
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in Rm, i.e., A is a collection of sets of the form

A = {v ∈ Rm : lk ≤ vk ≤ uk for all k = 1, . . . ,m} ,

for some l, u ∈ Rm with −∞ ≤ lk ≤ uk ≤ +∞.

First, we show that n1/2(θ̃ − θ∗) is an approximate mean, i.e., it can be written as

n1/2
(
θ̃ − θ∗

)
= Ln +Rn,

where Ln, the leading term, is an independent sum and Rn is a small remainder. Indeed, we

have seen in the proof of Theorem 3.1 that this is satisfied with

Ln = − 1

n1/2
Ω∗T

 1

ηX,n

nX∑
i=1

ψ(Xi)−
1

ηY,n

nY∑
j=1

ψ(Yj)rθ∗(Yj)


Rn = n1/2

[
Ω∗T

{
ZY (θ∗)

ẐY (θ∗)
− 1

} 1

nY

nY∑
j=1

ψ(Yj)rθ∗(Yj)


−
(

Ω̂− Ω∗
)T
∇`KLIEP(θ̂)−

(
∇2`KLIEP(θ∗)Ω∗ − I

)T (
θ̂ − θ∗

)
+ Ω∗Tr

]
.

Let Z ∼ Normal(0,Ω∗TΣpooledΩ∗). Let P = P[· | {Xi}
nX
i=1, {Yj}

nY
j=1] be the conditional

probability measure given the data {Xi}
nX
i=1, {Yj}

nY
j=1. If applicable, their Theorem 2.1 would

imply

sup
A∈A

∣∣∣P{n1/2
(
θ̃ − θ∗

)
∈ A

}
− P {Z ∈ A}

∣∣∣ = O
(
δn + εall,n

)
,

while their Theorem 2.2 would imply

sup
A∈A

∣∣∣P{L̂∗n ∈ A}− P {Z ∈ A}
∣∣∣ = O (δn)

88



with probability at least 1− εall,n − n−1, so that combining,

sup
A∈A

∣∣∣P{n1/2
(
θ̃ − θ∗

)
∈ A

}
−P

{
L̂∗n ∈ A

}∣∣∣ = O
(
δn + εall,n

)
with probability at least 1− εall,n − n−1. Restricting to the sub-class Amax of max-hyper-

rectangles, which are sets of the form

A =

{
v ∈ Rm : max

k
|vk| ≤ t for all k = 1, . . . ,m

}
,

we obtain

sup
q∈(0,1)

∣∣P{Tn ≤ ĉT,q
}
− q
∣∣ = O

(
δn + εall,n

)
,

which is the desired conclusion.

Therefore, it suffices to verify the conditions of Theorems 2.1 and 2.2 in Belloni et al.

[2018], which we restate below in the context of our problem.

Condition M In the context of our problem, this is

Var
(
Ln,k

)
= Ω∗T·k

(
η−1
X,nΣψ + η−1

Y,nΣψr

)
Ω∗·k ≥ c for some c > 0, (A.13)

η−2
X,nE

[∣∣Ω∗T·k ψ(X)
∣∣3]+ η−2

Y,nE
[∣∣Ω∗T·k ψ(Y )rθ∗(Y )

∣∣3] ≤ c3/2Bn, (A.14)

η−3
X,nE

[∣∣Ω∗T·k ψ(X)
∣∣4]+ η−3

Y,nE
[∣∣Ω∗T·k ψ(Y )rθ∗(Y )

∣∣4] ≤ c2B2
n (A.15)

for each k ∈ {1, . . . ,m}.

Under Condition 3.2, (A.44) gives

Var
(
Ln,k

)
= Ω∗T·k

(
η−1
X,nΣψ + η−1

Y,nΣψr

)
Ω∗·k ≥ κ/

(
κ̄2ηX,nηY,n

)
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for each k. Thus, (A.13) is satisfied with c = κ/(κ̄2ηX,nηY,n). On the other hand, by (A.43),

∣∣Ω∗T·k ψ(X)
∣∣ ≤Mψ

∣∣Ω∗·k∣∣ , ∣∣Ω∗T·k ψ(Y )rθ∗(Y )
∣∣ ≤MrMψ

∣∣Ω∗·k∣∣ (A.16)

for each k. Thus,

c−3/2
{
η−2
X,nE

(∣∣Ω∗T·k ψ(X)
∣∣3)+ η−2

Y,nE
(∣∣Ω∗T·k ψ(Y )rθ∗(Y )

∣∣3)} ≤ κ̄3M3
rM

3
ψν

3
n(

κ3ηX,nηY,n
)1/2 ≤ Bn,

c−2
{
η−3
X,nE

(∣∣Ω∗T·k ψ(X)
∣∣4)+ η−3

Y,nE
(∣∣Ω∗T·k ψ(Y )rθ∗(Y )

∣∣4)} ≤ κ̄4M4
rM

4
ψν

4
n

κ2ηX,nηY,n
≤ B2

n,

by the definition of Bn in Section 3.2.3. This shows that (A.14) and (A.15) are also satisfied.

Condition E In the context of our problem, this is

E
[
exp

{∣∣Ω∗T·k ψ(X)
∣∣/(ηX,nc1/2Bn)}] ≤ 2,

E
[
exp

{∣∣Ω∗T·k ψ(Y )rθ∗(Y )
∣∣/(ηY,nc1/2Bn)}] ≤ 2,{

B2
n log7(mn)

n

}1/6

≤ δn.

These are all immediate by (A.16) and the definitions of Bn and δn in Section 3.2.3.

Condition A In the context of our problem, this is

P
{

max
k=1,...,m

|Rn,k| > c1/2δn

/
log1/2(mn)

}
≤ εall,n,

P
{

max
k=1,...,m

v2
k > cδ2

n/ log2(mn)

}
≤ εall,n,
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where

v2
k = v2

X,k + v2
Y,k,

v2
X,k =

η−1
X,n

nX

nX∑
i=1

{(
Ω̂·k − Ω∗·k

)T
ψ(Xi)

}2

,

v2
Y,k =

η−1
Y,n

nY

nY∑
j=1

(
Ω̂T
·kψ(Yj)r̂θ̂(Yj)− Ω∗T·k ψ(Yj)rθ∗(Yj)

)2
.

We have seen in the proof of Theorem 3.1 that on Eall,

c−1/2
∣∣Rn,k∣∣ . (ηX,nηY,nκ/κ̄2

)1/2 {
(δθ + λθ) (δk + λk) +

∣∣Ω∗·k∣∣ δ2
θ

}
n1/2

for each k. Under the conditions of this theorem,

c−1/2
∣∣Rn,k∣∣ .

(
B2
n log4(mn)

n

)1/6

=

(
B2
n log7(mn)

n

)1/6/
log1/2(mn) . δn/ log1/2(mn)

for each k. Meanwhile,

v2
X,k =

η−1
X,n

nX

nX∑
i=1

{(
Ω̂·k − Ω∗·k

)T
ψ(Xi)

}2

≤ η−1
X,nM

2
ψ

∣∣∣Ω̂·k − Ω∗·k

∣∣∣2 . η−1
X,nδ

2
k.

To bound v2
Y,k, first observe that

Ω̂T
·kψ(Yj)r̂θ̂(Yj)− Ω∗T·k ψ(Yj)rθ∗(Yj)

=
(

Ω̂·k − Ω∗·k

)T
ψ(Yj)r̂θ̂(Yj) +

(
Ω∗T·k ψ(Yj)

) (
r̂
θ̂
(Yj)− rθ∗(Yj)

)
.

Now, ∣∣∣∣(Ω̂·k − Ω∗·k

)T
ψ(Yj)r̂θ̂(Yj)

∣∣∣∣ ≤MψM
2
r

∣∣∣Ω̂·k − Ω∗·k

∣∣∣ ,
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and

∣∣∣(Ω∗T·k ψ(Yj)
) (
r̂
θ̂
(Yj)− rθ∗(Yj)

)∣∣∣
=
∣∣∣(Ω∗T·k ψ(Yj)

){(
r̂
θ̂
(Yj)− r̂θ∗(Yj)

)
+
(
r̂θ∗(Yj)− rθ∗(Yj)

)}∣∣∣
≤Mψ

∣∣Ω∗·k∣∣
(
L1

∣∣∣θ̂ − θ∗∣∣∣+M2
r

∣∣∣∣∣1− ẐY (θ∗)
ZY (θ∗)

∣∣∣∣∣
)
,

where we have used Lemma A.4 and (A.35), (A.43), so that

v2
Y,k =

n

n2
Y

nY∑
j=1

(
Ω̂T
·kψ(Yj)r̂θ̂(Yj)− Ω∗T·k ψ(Yj)rθ∗(Yj)

)2

≤ η−1
Y,n

{
MψM

2
r

∣∣∣Ω̂·k − Ω∗·k

∣∣∣+Mψ

∣∣Ω∗·k∣∣
(
L1

∣∣∣θ̂ − θ∗∣∣∣+M2
r

∣∣∣∣∣1− ẐY (θ∗)
ZY (θ∗)

∣∣∣∣∣
)}2

. η−1
Y,n

{
δk +

∣∣Ω∗·k∣∣ (δθ + λθ)
}2
.

Thus,

v2
k .

(
ηX,nηY,n

)−1
δ2
k + η−1

Y,n

∣∣Ω∗·k∣∣2 (δθ + λθ)
2 .

Under the conditions of this theorem,

cv2
k .

(
B2
n log(mn)

n

)1/3

=

(
B2
n log7(mn)

n

)1/3/
log2(mn) . δ2

n/ log(mn)

for each k. Clearly,

P
{

max
k=1,...,m

∣∣Rn,k∣∣ > c1/2δn/ log1/2(mn)

}
≤ P(Ec) ≤ εall,n,

P
{

max
k=1,...,m

v2
k > cδ2

n/ log2(mn)

}
≤ P(Ec) ≤ εall,n.

Conclusion Under the conditions of this theorem, Conditions M, E, and A are all satisfied

by θ̃. Therefore, Belloni et al. [2018, Theorems 2.1 and 2.2] applies, and the desired conclusion
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follows by the discussion at the beginning of this proof.

A.3 Proofs for the `1-penalty case

A.3.1 Proof of Theorem 3.2

To simplify the presentation, we ignore κ̄, κ, ηX,n, and ηY,n treating them as constants in

the following calculations.

By Theorem 3.1, it suffices to find an event E ⊆ Eone such that P(Ec)↘ 0. Let

H(θ) =
Ẑ2
Y (θ)

Z2
Y (θ)

∇2`KLIEP(θ)

=
1

n2
Y

∑
1≤j1<j2≤nY

(
ψ(Yj1)− ψ(Yj2)

) (
ψ(Yj1)− ψ(Yj1)

)T
rθ(Yj)rθ(Yj′).

Consider the event

E`1one =

(G.1) 2 |∇`KLIEP(θ∗)|∞ ≤ λθ, (G.2) 2
∣∣∇2`KLIEP(θ∗)Ω∗·k − ek

∣∣
∞ ≤ λk,

(B.1)

∣∣∣∣1− ẐY (θ∗)
ZY (θ∗)

∣∣∣∣ . λθ,

(B.2)
∣∣∣ 1
nY

∑nY
j=1 Ω∗T·k

(
µψ − ψ(Yj)

)
rθ∗(Yj)

∣∣∣ . λk,

(V.1)
∣∣∣Σ̂ψ − Σψ

∣∣∣
∞
. sθ,0λθ (V.2)

∣∣∣Σ̂ψr̂(θ∗)− Σψr

∣∣∣
∞
. sθ,0λθ,

(SE) |||H(θ∗)− E [H(θ∗)]|||s ≤ κ/128


.

Note that compared to the definition of Eone, we no longer have (E.1) or (E.2) and we newly

have (SE). In the below, we show

• (G.1) and (SE) imply (E.1), and

• (G.2) and (SE) in conjunction with (E.1) imply (E.2).

Thus, E`1one ⊆ Eone.
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Define

K(S, β, ρ) = {v ∈ Rm : |vSc|1 ≤ β |vS |1 + (1 + β)ρ, |v| ≤ 1}

for any S ⊆ [p], S 6= ∅, β ≥ 0, ρ ≥ 0. We shall use this with

Sθ =
{
k′ : |θ∗k′| > λθ

}
, sθ = |Sθ|, ρθ =

∣∣∣θ∗Scθ ∣∣∣1 ,
Sk =

{
k′ : |Ω∗·kk′| > λk

}
, sk = |Sk|, ρk =

∣∣∣Ω∗·k,Sck ∣∣∣1 .
By the first part of Lemma A.13, (B.1) and (SE) imply

vT∇2`KLIEP(θ∗)v ≥ c1κ |v|2 − c2ρ2
θ/sθ for all v ∈ K(Sθ, 3, ρθ).

Combining this with (G.1), Lemma A.1 gives us

∣∣∣θ̂ − θ∗∣∣∣
1
. sθ,0λθ � sθ,0

(
logm

n

)1/2

, (A.17)

where we have used the condition on λθ in (3.12). Under the conditions of this theorem, the

second part of Lemma A.13 implies

vT∇2`KLIEP(θ∗)v ≥ c3κ |v|2 for allv ∈ K(Sk, 6, 0).
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Combining this with (G.2), Lemma A.2 gives us

∣∣∣Ω̂·k − Ω∗·k

∣∣∣
1
.
∣∣∣θ̂ − θ∗∣∣∣2

1
sk,qkλ

−1−qk
k + s2

k,qk
λ

1−2qk
k + sk,qkλ

1−qk
k

. s2
θ,0λ

2
θsk,qkλ

−1−qk
k + s2

k,qk
λ

1−2qk
k + sk,qkλ

1−qk
k

. s2
θ,0s

1−1+qk
2−qk

k,qk

(
logm

n

)(1−qk)/2

+ s
2+

1−2qk
2−qk

k,qk

(
logm

n

)(1−2qk)/2

+ s
1+

1−qk
2−qk

k,qk

(
logm

n

)(1−qk)/2

. s
2+

1−2qk
2−qk

k,qk

(
logm

n

)(1−2qk)/2

.

where we have used (3.11) and (3.12) with (A.17). Thus,

∆2 . sθ,0s
2+

1−2qk
2−qk

k,qk

(
logm

n

)1−qk
n1/2. (A.18)

The terms corresponding to ∆1 and ∆3 are of smaller order, so we ignore them.

Next, we bound P(E`1cone). Let

E1 = {2 |∇`KLIEP(θ∗)|∞ ≤ λθ} ,

E2 =
{

2
∣∣∣∇2`KLIEP(θ∗)Ω∗·k − ek

∣∣∣
∞
≤ λk

}
,

E3 =

{∣∣∣∣∣1− ẐY (θ∗)
ZY (θ∗)

∣∣∣∣∣ . λθ

}
,

E4 =


∣∣∣∣∣∣ 1

nY

nY∑
j=1

Ω∗T·k
(
µψ − ψ(Yj)

)
rθ∗(Yj)

∣∣∣∣∣∣ . λk

 ,

E5 =
{∣∣∣Σ̂ψ − Σψ

∣∣∣
∞
. sθ,0λθ

}
,

E6 =
{∣∣∣Σ̂ψr̂(θ∗)− Σψr

∣∣∣
∞
. sθ,0λθ

}
,

E7 = {|||H(θ∗)− EH(θ∗)|||2 ≤ κ/128} .
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Clearly,

P
(
E`1cone

)
≤

7∑
l=1

P
(
Ecl
)
.

Under the conditions of this theorem, Lemmas A.7 and A.8 imply

P (Ec1) = P {2 |∇`KLIEP(θ∗)|∞ > λθ} ≤ c4 exp
(
−c′4 logm

)
,

P (Ec2) = P
{

2
∣∣∣Ĥ(θ∗)Ω∗·k − ek

∣∣∣
∞
> λk

}
≤ c5 exp

(
−c′5 logm

)
.

Lemma A.5 says

P (Ec3) = P

{∣∣∣∣∣ẐY (θ∗)
ZY (θ∗)

− 1

∣∣∣∣∣ & λθ

}
≤ c6 exp

(
−c′6 logm

)
.

Because {Ω∗T·k (µψ − ψ(Yj))rθ∗(Yj)}
nY
j=1 are bounded mean-zero IID random variables, we

have the Hoeffding bound

P (Ec4) = P


∣∣∣∣∣∣ 1

nY

nY∑
j=1

Ω∗T·k
(
µψ − ψ(Yj)

)
rθ∗(Yj)

∣∣∣∣∣∣ & λk

 ≤ c7 exp
(
−c′7 logm

)
.

Lemmas A.20 and A.21 imply

P (Ec5) = P
{∣∣∣Σ̂ψ − Σψ

∣∣∣
∞
& sθ,0λθ

}
≤ c8 exp

(
−c′8 logm

)
,

P (Ec6) = P
{∣∣∣Σ̂ψr̂(θ∗)− Σψr

∣∣∣
∞
& sθ,0λθ

}
≤ c9 exp

(
−c′9 logm

)
.

Furthermore, Lemma A.14 gives

P (Ec7) ≤ εRSC,n.

Therefore,

P
(
E`1cone

)
≤ εRSC,n + c exp

(
−c′ logm

)
(A.19)

for some constants c, c′ > 0.
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We complete the proof by combining (3.10), (A.18), and (A.19):

sup
t∈R

∣∣∣P{n1/2
(
θ̃k − θ∗k

)/
v̂k ≤ t

}
− Φ(t)

∣∣∣
≤ O

(
sθ,0s

2+
1−2qk
2−qk

k,qk

(
logm

n

)1−qk
n1/2

)
+ εRSC,n + c exp

(
−c′ logm

)
.

A.3.2 Proof of Theorem 3.4

To simplify the presentation, we ignore κ̄, κ, ηX,n, and ηY,n treating them as constants in

the following calculations.

As in the proof of Theorem 3.2, we seek an event E ⊆ Eall such that P(Ec)↘ 0. Consider

the event

E`1all =

(G.1) 2 |∇`KLIEP(θ∗)|∞ ≤ λθ, (G.2) 2
∣∣∇2`KLIEP(θ∗)Ω∗·k − ek

∣∣
∞ ≤ λk ∀ k,

(B.1)

∣∣∣∣1− ẐY (θ∗)
ZY (θ∗)

∣∣∣∣ . λθ,

(B.2)
∣∣∣ 1
nY

∑nY
j=1 Ω∗T·k

(
µψ − ψ(Yj)

)
rθ∗(Yj)

∣∣∣ . λk ∀ k,

(SE) |||H(θ∗)− E [H(θ∗)]|||s ≤ κ/128


.

Following the argument of the proof of Theorem 3.2, on E`1all,

δθ .

(
s2 logm

n

)1/2

, δk .

(
s5 logm

n

)1/2

∀ k,

and hence,

D1 .
s7/2 logm

n1/2
.

(
B2
n log4(mn)

n

)1/6

, D2 .
s5 logm

n
.

(
B2
n log(mn)

n

)1/3

.
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We finish the proof by finding a bound for εall,n. Let

E1 = {2 |∇`KLIEP(θ∗)|∞ ≤ λθ} ,

E2k =
{

2
∣∣∣∇2`KLIEP(θ∗)Ω∗·k − ek

∣∣∣
∞
≤ λk

}
,

E3 =

{∣∣∣∣∣1− ẐY (θ∗)
ZY (θ∗)

∣∣∣∣∣ . λθ

}
,

E4k =


∣∣∣∣∣∣ 1

nY

nY∑
j=1

Ω∗T·k
(
µψ − ψ(Yj)

)
rθ∗(Yj)

∣∣∣∣∣∣ . λk

 ,

E5 = {|||H(θ∗)− E [H(θ∗)]|||s ≤ κ/128} ,

so that

εall,n ≤ P(E`1all

c
) ≤ P(Ec1) +

m∑
k=1

P(Ec2k) + P(Ec3) +
m∑
k=1

P(Ec4k) + P(Ec5).

By a sequence of arguments similar to that in the proof of Theorem 3.2,

εall,n ≤ εRSC,n + c exp
(
−c′ logm

)
.

A.3.3 Consistency of `1-penalized estimators

In the following,

K(S, β, ρ) = {v ∈ Rm : |vSc|1 ≤ β |vS |1 + (1 + β)ρ, |v| ≤} ,

where S ⊆ {1, . . . ,m} is nonempty, β ≥ 0, and ρ ≥ 0.

Lemma A.1. Consider the optimization problem (3.1) using `1-penalty and a regularization

parameter λθ satisfying

λθ ≥ 2 |∇`KLIEP(θ∗)|∞ .
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Suppose, in addition, it holds that

vT∇2`KLIEP(θ∗)v ≥ cκ |v|22 − c
′ ρ

2
θ

sθ,0
for v ∈ K(Sθ, 3, ρθ),

for some c, c′ > 0, where

Sθ =
{
k′ : |θ∗k′| > λθ

}
, sθ = |Sθ|, ρθ =

∣∣∣θ∗Scθ ∣∣∣1 .
Then any solution θ̂ satisfies

∣∣∣θ̂ − θ∗∣∣∣
1
. (1 + κ−1) |θ∗|qθ λ

1−qθ
θ .

Proof. By a direct application of Negahban et al. [2012, Theorem 1],

∣∣∣θ̂ − θ∗∣∣∣2
2
≤

9sθλ
2
θ

c2κ2
+

4λθρθ
cκ

+
2c′λθρ

2
θ

cκsθ
. (A.20)

By (A.39) and (A.40),

sθ ≤ |θ∗|qθ λ
−qθ
θ and ρθ ≤ |θ∗|qθ λ

1−qθ
θ ,

so that

∣∣∣θ̂ − θ∗∣∣∣2
2
≤

9 |θ∗|qθ λ
2−qθ
θ

c2κ2
+

4 |θ∗|qθ λ
2−qθ
θ

cκ
+

2c′ |θ∗|2qθ λ
3−2qθ
θ

cκsθ

= κ−2 |θ∗|qθ λ
2−qθ
θ

(
9

c2
+

4

c
κ+

2c′

c
κ |θ∗|qθ λ

1−qθ
)
≤ K1κ

−2 |θ∗|qθ λ
2−qθ
θ
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for an appropriate choice of K1 > 0. Therefore,

∣∣∣θ̂ − θ∗∣∣∣
1
≤ 4s

1/2
θ

∣∣∣θ̂ − θ∗∣∣∣
2

+ 4ρθ

≤ K2κ
−1 |θ∗|qθ λ

1−qθ
θ + 4 |θ∗|qθ λ

1−qθ
θ

≤ K3

(
1 + κ−1

)
|θ∗|qθ λ

1−qθ
θ .

(A.21)

Lemma A.2. Assume Condition 3.1. Consider the optimization problem (3.2) using `1-

penalty and a regularization parameter λk satisfying

λk ≥ 2
∣∣∣∇2`KLIEP(θ∗)Ω∗·k − ek

∣∣∣
∞
.

Suppose, in addition, it holds that

vT∇2`KLIEP(θ̂)v ≥ cκ |v|22 for v ∈ K(Sk, 6, 0),

for some c > 0, where Sk =
{
k′ : |Ω∗·kk′| > λk

}
. Then any solution Ω̂·k satisfies

∣∣∣Ω̂·k − Ω∗·k

∣∣∣
1
. κ−2

∣∣∣θ̂ − θ∗∣∣∣2
1
sk,qkλ

−1−qk
k + s2

k,qk
λ

1−2qk
k + κ−1sk,qkλ

1−qk
k .

Proof. Put Ĥ(θ) = ∇2`KLIEP(θ). The objective function is

1

2
ωTĤ(θ̂)ω − ωTek + λk |ω|1 .

For Sk in the statement of the theorem, set

sk = |Sk| and ρk =
∣∣∣Ω∗·k,Sck ∣∣∣1 .
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Since Ω̂·k is the solution to (3.2) using `1-penalty,

1

2
Ω̂T
·kĤ(θ̂)Ω̂·k − Ω̂T

·kek + λk

∣∣∣Ω̂·k∣∣∣
1
≤ 1

2
Ω∗T·k,SkĤ(θ̂)Ω∗·k,Sk − Ω∗T·k,Skek + λk

∣∣∣Ω∗·k,Sk ∣∣∣1 .
Setting d = Ω̂·k − Ω∗·k,Sk , the above can be rearranged as

1

2
dTĤ(θ̂)d ≤ λk

(∣∣∣Ω∗·k,Sk ∣∣∣1 − ∣∣∣Ω̂·k∣∣∣1)− dT{Ĥ(θ∗)Ω∗·k − ek}

− dT{Ĥ(θ̂)− Ĥ(θ∗)}Ω∗·k,Sk + dTĤ(θ∗)Ω∗·k,Sck
. (A.22)

By Cauchy-Schwarz, the condition of the lemma implies

|dT{Ĥ(θ∗)Ω∗·k − ek}| ≤ |d|1
∣∣∣Ĥ(θ∗)Ω∗·k − ek

∣∣∣
∞
≤ λk

2
|d|1 . (A.23)

(A.31) of Lemma A.3 yields

|dT{Ĥ(θ̂)− Ĥ(θ∗)}Ω∗·k,Sk | ≤
1

8
dTĤ(θ̂)d+K1

∣∣∣θ̂ − θ∗∣∣∣2
1

∣∣∣Ω∗·k,Sk ∣∣∣21 . (A.24)

(A.30) of Lemma A.3 yields

|dTĤ(θ∗)Ω∗·k,Sck
| ≤ 1

8
dTĤ(θ̂)d+K2ρ

2
k. (A.25)

Combining (A.23) to (A.25) with (A.22), and noting
∣∣∣Ω∗·k,Sk ∣∣∣1 − ∣∣∣Ω̂·k∣∣∣1 ≤ ∣∣dSk ∣∣1 − ∣∣∣dSck ∣∣∣1,

1

4
dTĤ(θ∗)d+

λk
2

∣∣∣dSck ∣∣∣1 ≤ 3λk
2

∣∣dSk ∣∣1 +K1

∣∣∣θ̂ − θ∗∣∣∣2
1

∣∣∣Ω∗·k,Sk ∣∣∣21 +K2ρ
2
k. (A.26)

We consider two cases. First, suppose that

3λk
2

∣∣dSk ∣∣1 ≤ K1

∣∣∣θ̂ − θ∗∣∣∣2
1

∣∣∣Ω∗·k,Sk ∣∣∣21 +K2ρ
2
k.

101



Then,

λk
2

∣∣∣dSck ∣∣∣1 ≤ 2

(
K1

∣∣∣θ̂ − θ∗∣∣∣2
1

∣∣∣Ω∗·k,Sk ∣∣∣21 +K2ρ
2
k

)
.

easily, and hence

|d|1 ≤ K3

∣∣∣θ̂ − θ∗∣∣∣2
1

∣∣∣Ω∗·k,Sk ∣∣∣21 λ−1
k +K4ρ

2
kλ
−1
k . (A.27)

in the this case.

Next, suppose that

3λk
2

∣∣dSk ∣∣1 ≥ K1

∣∣∣θ̂ − θ∗∣∣∣2
1

∣∣∣Ω∗·k,Sk ∣∣∣21 +K2ρ
2
k.

Then, (A.26) yields d ∈ K(Sk, 6, 0), and hence

|d|1 ≤ 7
∣∣dSk ∣∣1 ≤ 7s

1/2
k |d| .

We are able to apply the restricted strong convexity assumption to (A.26), which yields

|d|1 ≤ K5κ
−1skλk. (A.28)

Finally, combining the two error bounds (A.28) and (A.27),

∣∣∣Ω̂·k − Ω∗·k

∣∣∣
1
≤ |d|1 + ρk

≤ K3

∣∣∣θ̂ − θ∗∣∣∣2
1

∣∣∣Ω∗·k,Sk ∣∣∣21 λ−1
k +K4ρ

2
kλ
−1
k +K5κ

−1skλk + ρk.

By (A.39) and (A.40),

sk ≤ sk,qkλ
−qk
k and ρk ≤ sk,qkλ

1−qk
k . (A.29)
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Thus,

∣∣∣Ω̂·k − Ω∗·k

∣∣∣
1
≤ K6κ

−2
∣∣∣θ̂ − θ∗∣∣∣2

1
sk,qkλ

−1−qk
k +K7s

2
k,qk

λ
1−2qk
k +K8κ

−1sk,qkλ
1−qk
k .

Lemma A.3. Let θ ∈ B̄%(θ∗), c > 0. Under Condition 3.1,

|dTĤ(θ∗)v| ≤ 1

2c
dTĤ(θ)d+ cM2

ψM
16
r |v|21 (A.30)

and

|dT{Ĥ(θ̂)− Ĥ(θ∗)}v| ≤ 1

2c
dTĤ(θ)d+ 4cL1

2M2
ψM

12
r

∣∣∣θ̂ − θ∣∣∣2
1
|v|21 . (A.31)

Proof. Because the geometric mean of nonnegative numbers is dominated by the arithmetic

mean,

|dTĤ(θ∗)v| ≤
(

dTĤ(θ)d
)1/2

 max
j,j′

(
r̂θ∗(Yj)r̂θ∗(Yj′)

r̂θ(Yj)r̂θ(Yj′)

)2

vTĤ(θ)v

1/2

=
(
c−2dTĤ(θ)d

)1/2

c2 max
j,j′

(
r̂θ∗(Yj)r̂θ∗(Yj′)

r̂θ(Yj)r̂θ(Yj′)

)2
Z2
Y (θ)

Ẑ2
Y (θ)

vTH(θ)v

1/2

≤ 1

2c
dTĤ(θ)d+

c

2
max
j,j′

(
r̂θ∗(Yj)r̂θ∗(Yj′)

rθ(Yj)rθ(Yj′)

)2
Ẑ2
Y (θ)

Z2
Y (θ)

|H(θ)|∞ |v|
2
1

and

|dT{Ĥ(θ̂)− Ĥ(θ∗)}v|

≤
(
dTĤ(θ)d

)1/2

max
j,j′

(
r̂
θ̂
(Yj)r̂θ̂(Yj′)− r̂θ∗(Yj)r̂θ∗(Yj′)

r̂θ(Yj)r̂θ(Yj′)

)2
Z2
Y (θ)

Ẑ2
Y (θ)

vTH(θ)v

1/2

≤ 1

2c
dTĤ(θ̂)d+

c

2
max
j,j′

(
r̂
θ̂
(Yj)r̂θ̂(Yj′)− r̂θ∗(Yj)r̂θ∗(Yj′)

rθ(Yj)rθ(Yj′)

)2
Ẑ2
Y (θ)

Z2
Y (θ)

|H(θ)|∞ |v|
2
1 .
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Under Condition 3.1, |H(θ)|∞ ≤ 2M2
ψM

2
r for all θ ∈ B̄%(θ∗). Furthermore,

M−6
r ≤

r̂θ∗(Yj)r̂θ∗(Yj′)

rθ(Yj)rθ(Yj′)
≤M6

r ,

and

∣∣∣∣∣ r̂θ̂(Yj)r̂θ̂(Yj′)− r̂θ∗(Yj)r̂θ∗(Yj′)rθ(Yj)rθ(Yj′)

∣∣∣∣∣
=
r̂
θ̂
(Yj)

∣∣∣r̂
θ̂
(Yj′)− r̂θ∗(Yj′)

∣∣∣+
∣∣∣r̂
θ̂
(Yj)− r̂θ∗(Yj)

∣∣∣r̂θ∗(Yj′)
rθ(Yj)rθ(Yj′)

≤ 2L1M
4
r

∣∣∣θ̂ − θ∣∣∣
1
.

The inequalities follow.

A.4 Model assumptions

In this section, we go over some of the implications of the assumptions in Section 3.2.1.

Appendix A.4.1 discusses the properties of the bounded density ratio model of Condition 3.1.

In Appendix A.4.2, we derive bounds on the `2- and `1-norms of Ω∗·k = Σ−1
ψ ek, as well as

lower- and upper-bounds on the variance of the linearization v2
n,k, as direct consequences of

Condition 3.2. In Appendix A.4.3 we characterize the sparsity of the rows of Σ−1
ψ .

A.4.1 Properties of the bounded density ratio model

Proof of Proposition 3.1. We shall first treat the case θ∗ = 0, and then show how the general

case follows from the special one. Assume |ψ(X)|∗ ≤Mψ for some Mψ <∞. For each x, by

the definition of the dual norm,

|〈ψ(x), θ〉| = |〈ψ(x), θ/ |θ|〉| |θ| ≤ |ψ(x)|∗ |θ| ≤ %Mψ.
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It is easy to see that for each θ ∈ B̄%(θ∗),

e−%Mψ ≤ e〈ψ(X),θ〉 ≤ e%Mψ and e−%Mψ ≤ ZY (θ) ≤ e%Mψ ,

and hence,

e−2%Mψ ≤ rθ(X) ≤ e2%Mψ .

In particular, one may choose Mr = Mr(%) = e2%Mψ .

This proves one direction of the claim. For the other direction, first note that Condition 3.1

implies

〈ψ(x), θ〉 ≤ logMr(%) + logZY (θ) for all θ ∈ B̄%(θ∗).

For each x, %|ψ(x)|∗ = 〈ψ(x), θx〉 for some θx ∈ B̄%(θ∗) by compactness, so

|ψ(X)|∗ ≤ %−1( logMr(%) + logZY (θx)
)
.

Using compactness again,

|ψ(X)|∗ ≤ %−1

(
logMr(%) + max

|θ|≤%
logZY (θ)

)
,

and the bound is finite by assumption. Now, the right-hand side is a function of % only,

whereas the left-hand side is independent of %. Thus,

|ψ(X)|∗ ≤ inf
%>0

%−1

(
logMr(%) + max

|θ|≤%
logZY (θ)

)
.

This completes the proof for the case θ∗ = 0. For general θ∗,

|〈ψ(x), θ〉| ≤ |〈ψ(x), θ − θ∗〉|+ |〈ψ(x), θ∗〉| ≤ |ψ|∗ (%+ |θ∗|),
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and

〈ψ(x), θ − θ∗〉 ≤ log
(
M2
rZY (θ)/ZY (θ∗)

)
,

and the proof goes through as before.

Under the bounded density ratio model, ẐY (θ), r̂θ(y), and µψ(θ) are all locally Lipschitz

continuous in θ.

Lemma A.4. There exist L0, L1, L2 > 0 such that for all θ ∈ B̄%(θ∗),

|ẐY (θ)− ẐY (θ∗)| ≤ L0 |θ − θ∗| , (A.32)

|r̂θ(y)− r̂θ∗(y)| ≤ L1 |θ − θ∗| , (A.33)

|µ̂(θ)− µ̂(θ∗)|∗ ≤ L2 |θ − θ∗| . (A.34)

Proof. ẐY (θ), r̂θ(y), and µ̂(θ) are all differentiable functions of θ, and hence the mean value

theorem and the boundedness assumption can be used to derive the required bounds.

It is not difficult to imagine that under the bounded density ratio model, all the relevant

sample quantities concentrate sufficiently fast. The following lemma proves this intuition. It

is always true that for any θ,

rθ(Y )

r̂θ(Y )
=
ẐY (θ)

ZY (θ)
=

1

nY

nY∑
j=1

exp
(
θTψ(Yj)

)
ZY (θ)

=
1

nY

nY∑
j=1

rθ(Yj), (A.35)

and

E {rθ(Y )} =

∫
rθ(y)fX(y) dy =

∫
f(y; θ + γY ) dy = 1. (A.36)

If, in addition, rθ(Y ) is bounded, then (A.35) and (A.36) can be used to derive the following

results.
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Lemma A.5. Suppose θ ∈ B̄%(θ∗). For any t > 0,

P

{
ẐY (θ)

ZY (θ)
− 1 > t

}
≤ exp

(
− 2t2nY

(Mr −M−1
r )2

)

and

P

{
ẐY (θ)

ZY (θ)
− 1 < −t

}
≤ exp

(
− 2t2nY

(Mr −M−1
r )2

)
.

Proof. Apply Hoeffding’s inequality to the random variable rθ(Y ) ∈ [M−1
r ,Mr], E{rθ(Y )} =

1.

Having highlighted a few of the features of the bounded density ratio model, we proceed

to explain why (3.1) or (3.2) are expected to yield consistent estimators of θ∗ or Ω∗·k under

Condition 3.1.

The optimization problem described by (3.1) or (3.2) has a convex objective with `1-

penalty. It is well-understood that given a regularization level λ > 0, a minimizer of the

corresponding regularized objective is consistent for the population optimum, provided that

the gradient at the population optimum is bounded by λ/2 in `∞-norm (the dual norm of

the `1-norm), and the Hessian behaves like a positive definite matrix when restricted to the

right set. The boundedness of the density ratio and sufficient statistics help guarantee both.

The gradient of `KLIEP at θ∗ is

∇`KLIEP(θ∗) = − 1

nX

nX∑
i=1

ψ(Xi) +
1

nY

nY∑
j=1

ψ(Yj)r̂θ∗(Yj). (A.37)

Recall µψ = E{ψ(X)} = E{ψ(Y )rθ∗(Y )}. Moreover, r̂θ∗(Y ) = {ZY (θ∗)/ẐY (θ∗)}rθ∗(Y ) and

ẐY (θ∗)/ZY (θ∗) converges to 1. Thus, each average in the gradient is a consistent estimator

of µψ, so that the gradient as a whole is converging to a zero vector. Because both ψ(Xi)s

and ψ(Yj)r̂θ∗(Yj)s are bounded, a Hoeffding-type bound can be used to control the gradient.
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The gradient of the quadratic part of (3.2), as well as the curvature of both (3.1) and

(3.2), involves the Hessian of `KLIEP:

∇2`KLIEP(θ) =
1

n2
Y

∑
1≤j<j′≤nY

(
ψ(Yj)− ψ(Yj′)

)(
ψ(Yj)− ψ(Yj′)

)T
r̂θ(Yj)r̂θ(Yj′).

Note that the above only uses the samples from fY . The form of the Hessian makes it

clear that if too many of r̂θ(Yj)’s are small, this results in a loss of curvature. Moreover,

when many r̂θ(Yj)’s are small, the identity n−1
Y

∑nY
j=1 r̂θ(Yj) ≡ 1 makes it likely that many

r̂θ(Yj)’s are also large to balance the sum. This is likely to lead to the Hessian becoming

ill-conditioned. As before, the boundedness of the density ratio provides a protection against

this kind of degeneracy.

A.4.2 Consequences of the bounds on the population eigenvalues

Bounds on Ω∗·k

It is an easy consequence of the definitions of Ω∗·k, κ, and κ̄ that

κ̄−1 ≤
∣∣Ω∗·k∣∣2 ≤ κ−1 for all k = 1, . . . , p. (A.38)

Before we turn to bounding the `1-norm of Ω∗·k in terms of its `qk -“norm”, we look at

some useful inequalities related to `q-“norms”. Fix λ > 0, and let Sλ = {k : |vk| > λ} and

sλ = |Sλ|. Then,

|v|q ≥
∑
k∈Sλ

|vk|q ≥ sλλ
q,

so that

sλ ≤ λ−q |v|q . (A.39)
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Moreover, ∣∣∣vScλ∣∣∣1 =
∑
k/∈Sλ

|vk| =
∑
k/∈Sλ

|vk|1−q|vk|q ≤ λ1−q |v|q . (A.40)

Thus,

|v|1 =
∣∣vSλ∣∣1 +

∣∣∣vScλ∣∣∣1 ≤ s
1/2
λ |v|2 +

∣∣∣vScλ∣∣∣1 ≤ λ−q/2 |v|1/2q |v|2 + λ1−q |v|q . (A.41)

To simplify the form of the upper bound, we balance the two terms by seeking r ∈ R such

that

λ � |v|rq and λ−q/2 |v|1/2q � λ1−q |v|q .

This is solved by r = −1/(2− q). Substituting this into (A.41),

|v|1 ≤ (1 + |v|2) |v|1/(2−q)q . (A.42)

Applying (A.42) to Ω∗·k,

∣∣Ω∗·k∣∣1 ≤ (1 +
∣∣Ω∗·k∣∣2)s

1/(2−qk)
k,qk

≤ (1 + κ−1)s
1/(2−qk)
k,qk

for k = 1, . . . , p. (A.43)

Bounds on v2
k

Define

v2
n,k = Var

n1/2

〈
Ω∗·k,

1

nX

nX∑
i=1

ψ(Xi)−
1

nY

nY∑
j=1

ψ(Yj)rθ∗(Yj)

〉
= Ω∗T·k

{
η−1
X,nΣψ + η−1

Y,nΣψr

}
Ω∗·k,
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where Σψ = Cov{ψ(X)} and Σψr = Cov[{ψ(Y ) − µψ}rθ∗(Y )]. Since Σψ and Σψr are

symmetric and positive definite by Condition 3.2, we have

λmax

(
η−1
X,nΣψ + η−1

Y,nΣψr

)
≤ η−1

X,nλmax(Σψ) + η−1
Y,nλmax(Σψr) ≤ κ̄/(ηX,nηY,n),

and, similarly,

λmin

(
η−1
X,nΣψ + η−1

Y,nΣψr

)
≥ κ/(ηX,nηY,n).

Thus,

κ

κ̄2ηX,nηY,n
≤

κ
∣∣Ω∗·k∣∣22

ηX,nηY,n
≤ v2

k ≤
κ̄
∣∣Ω∗·k∣∣22

ηX,nηY,n
≤ κ̄

κ2ηX,nηY,n
, (A.44)

where the outer-most pair of inequalities use (A.38).

A.4.3 When is the inverse of the Hessian row-sparse?

For our method, one sufficient condition for theoretical validity is consistent estimation of

both θ∗ and Σ−1
ψ . It is well-understood that when parameters satisfy structural assumptions,

they can be estimated consistently even in high-dimensional settings; this is what motivated

us to use `1-regularized procedures for sparse or approximately sparse θ∗ and Σ−1
ψ . However,

we have Σ−1
ψ = Covx[ψ(X)]−1, and hence Σ−1

ψ is determined by γX . Therefore, to see

whether it is plausible to assume Σ−1
ψ is a row-sparse matrix, it is helpful to understand how

Σ−1
ψ is related to γX .

Recall that fX is an exponential family. Lemma A.6 gives the map γX 7→ Σ−1
ψ (γX) under

the condition of regularity and minimality.

Lemma A.6 (Essentially Lemma 1 in Loh and Wainwright [2013]). Consider a regular,

minimal exponential family

fX(x) = exp (〈γX , ψ(x)〉 − A(γX)) , A(γX) = log

(∫
exp (〈γX , ψ(x)〉) dx

)
.
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Figure A.1: The sparsity patterns of Σ−1
ψ for Ising models with varying graph structures.

In each subfigure, the first row shows the underlying graph for the Ising model; the second
row, the sparsity pattern of Σ−1

ψ ; and the last row, the symmetric difference of the supports

of Σ−1
ψ and Σ−1

ψ,Gaussian for the edge-edge interaction block. The columns correspond to

p = 5, 6, . . . , 12. The figures suggest that the rows of Σ−1
ψ may be sparse — at least,

approximately, even for Ising models.

(a) chains

(b) cycles

(c) stars
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Then,

(Covx[ψ(X)])−1 = ∇2A∗ ◦ ∇A(γX),

where A∗ is the convex dual function to A

A∗(µ) = sup
γ∈Ω
{〈µ, γ〉 − A(γ)} .

Proof. The proof in Loh and Wainwright [2013] is a direct consequence of combining Proposi-

tion B.2 and Theorem 3.4 in Wainwright and Jordan [2008]; the former holds for any regular,

minimal exponential family, and the latter, more generally.

Lemma A.6 can be used to show that in the case of Gaussian graphical models, Σ−1
ψ has

sparse rows when the maximum degree of the underlying graph is small.

Example A.1 (Gaussian graphical models). Suppose X ∼ Normal(0,Σ) for some covari-

ance matrix Σ ∈ Rm×m. Then, the probability density function is given by fX(x) =

exp(tr[ΓXψ(x)]− A(ΓX)), where ΓX = 2−1Σ−1, ψ(x) = xxT, and

A(ΓX) = logZ(ΓX) =
m

2
log(2π)− 1

2
log det(−2ΓX).

By direct computation,

∇A(ΓX) =
1

2
Γ−1
X = Σ,

and

A∗(M) = −m
2

log(2πe)− 1

2
log det(M),

∇2A∗(M) =
1

2
DT
m

(
M−1 ⊗M−1

)
Dm.

where Dm : R(m+1
2 ) → Rm2

is the duplication matrix, which is defined by the property

Dm vech(M) = vec(M).
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(Here, vech : Sm → R(m+1
2 ) is the half-vectorization map that vectorizes only the lower-

triangular part of a matrix.) Thus,

Σ−1
ψ = Σ−1

ψ (Γ) = 2DT
m (Γ⊗ Γ)Dm,

so that Σ−1
ψ is row sparse if Σ−1 is row sparse. In particular, the (ab, cd)-th component of

Σ−1
ψ is nonzero if and only if both γx,ab and γx,cd are nonzero.

For general Markov random fields, the usefulness of Lemma A.6 is limited due to in-

tractability of A. For the case of discrete Markov random fields, Loh and Wainwright [2013]

study sufficient conditions under which the inverse of a submatrix of Σψ reflects the structure

of the underlying graph, but their proof techniques do not apply to the inverse of the full

matrix.

Thus, we turn to numerical tools for verifying the plausibility of the row-sparsity assump-

tion in the case of Ising models. For small values of the number of nodes m = 5, 6, . . . , 12, we

first generate a graph by fixing a topology and drawing weights
IID∼ Uniform([−0.5,−0.2] ∪

[0.2, 0.5]). We then explicitly evaluate the population Σ−1
ψ under an Ising model. We looked

at three different topologies: a chain, a cycle, or a star.

The graph structures are displayed in the first rows of Figure A.1. The sparsity patterns

of Σ−1
ψ ’s are in the second rows. Note that here, the sufficient statistics include the node

potentials; the edge interaction parameters are associated with the last
(m

2

)
rows of Σ−1

ψ . For

ease of comparison, in the third rows, we also plot the symmetric differences of the support

of Σ−1
ψ,Gaussian, which is computed assuming a Gaussian model, and the support of the lower

diagonal block of Σ−1
ψ . (We ignored entries with magnitudes < 10−10.) It is clear from the

plots in the last rows that the edge interaction diagonal block of Σ−1
ψ has a structure similar

to that of Σ−1
ψ,Gaussian. Σ−1

ψ is typically denser compared to Σ−1
ψ,Gaussian, but some form of

row sparsity assumption still appears to be quite reasonable, at least for the examples we

have considered.
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Figure A.2: The value of maxk
∣∣Ω∗·k∣∣q as a function of p = 5, 6, . . . , 12 for q = 1, 0.5, 0.25,

0.125, 0 under Ising models with varying graph structures. Except for q = 0, the sparse
“norms” grow slowly with p. The figures suggest that the rows of Σ−1

ψ can be weakly sparse

for many Ising models.

(a) chains (b) cycles (c) stars

As a further check, we tracked the evolution of maxk
∣∣Ω∗·k∣∣qk over the edge interaction

rows of Σ−1
ψ as m was increased. (No thresholding was applied.) This resulted in Figure A.2.

We observe that although Σ−1
ψ may violate exact sparsity — as evidenced by the curve

corresponding to q = 0 — many sparse “norms” remain well-controlled even as m is increased.

In fact, for chains and cycles, the plots are flat for q = 0.5, 0.25, 0.125.

Finally, following the ideas in Ma et al. [2017] and Yu et al. [2020], we remark that a

modified procedure that uses sample splitting can be used to construct provably de-biased

and asymptotically Gaussian estimators of the difference in situations when the rows of Σ−1
ψ

are only bounded in `1-norm (without being sparse or approximately sparse). The modified

procedure first splits the fY -sample into two, and then uses only one part to obtain θ̂, and

the other part to obtain Ω̂.

A.5 Auxiliary results for the `1-penalty case

A.5.1 Bounds on the gradients

The two lemmas in this section bound the gradients of the loss functions in (3.1) and (3.2).
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Lemma A.7. Under Condition 3.1 with `1-norm,

P {|∇`KLIEP(θ∗)|∞ > t} ≤ 4p exp(−ct2n)

for some c > 0 depending on Mr,Mψ only. In particular, if

λθ ≥ K

(
logm

n

)1/2

,

for some K ≥ (2/c)1/2, then

P {2 |∇`KLIEP(θ∗)|∞ > λθ} ≤ 4 exp(−c′λ2
θn),

for some c′ > 0.

Proof. Let µψ = E[ψ(X)] = E[ψ(Y )rθ∗(Y )]. Using n−1
Y

∑nY
j=1 r̂θ(Yj) = 1,

∇`KLIEP(θ∗) = − 1

nX

nX∑
i=1

ψ(Xi) +
1

nY

nY∑
j=1

ψ(Yj)r̂θ∗(Yj)

= − 1

nX

nX∑
i=1

ψ(Xi) + µψ +
1

nY

nY∑
j=1

{ψ(Yj)− µψ} r̂θ∗(Yj)

= − 1

nX

nX∑
i=1

ψ(Xi) + µψ +
ZY (θ∗)

ẐY (θ∗)

1

nY

nY∑
j=1

{ψ(Yj)− µψ} rθ∗(Yj).
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Condition 3.1 implies that ZY (θ∗)/ẐY (θ∗) ∈ [M−1
r ,Mr]. For any t > 0,

P {|∇`KLIEP(θ∗)|∞ > t}

≤ P

{∣∣∣∣∣ 1

nX

nX∑
i=1

ψ(Xi)− µψ

∣∣∣∣∣
∞
>
t

2

}
+ P

Mr

∣∣∣∣∣∣ 1

nY

nY∑
j=1

{ψ(Yj)− µψ} rθ∗(Yj)

∣∣∣∣∣∣
∞

>
t

2


≤

m∑
k=1

P

{∣∣∣∣∣ 1

nX

nX∑
i=1

ψk(xi,k)− µψk

∣∣∣∣∣ > t

2

}

+
m∑
k=1

P

Mr

∣∣∣∣∣∣ 1

nY

nY∑
j=1

{ψk(Yj,k)− µψk} rθ∗(Yj)

∣∣∣∣∣∣ > t

2

 .

Since {(ψk(xi,k)− µψk)}nXi=1 and {(ψk(Yj,k)− µψk) rθ∗(Yj)}
nY
j=1 are each IID bounded and

mean zero random variables,

P

{∣∣∣∣∣ 1

nX

nX∑
i=1

ψk(xi,k)− µ∗k

∣∣∣∣∣ > t

2

}
≤ 2 exp(−c1t2nX)

and

P

Mr

∣∣∣∣∣∣ 1

nY

nY∑
j=1

{ψk(Yj,k)− µψk} rθ∗(Yj)

∣∣∣∣∣∣ > t

2

 ≤ 2 exp(−c2t2nY )

by Hoeffding’s inequality, where c1, c2 > 0 are constants depending on Mr,Mψ only. Thus,

P {|∇`KLIEP(θ∗)|∞ > t} ≤ 2p exp(−c1t2nX) + 2p exp(−c2t2nY ) ≤ 4p exp(−ct2n)

for some c > 0.

Lemma A.8. For t ≥ 2/nY ,

P
{∣∣∣Ĥ(θ∗)Ω∗·k − ek

∣∣∣
∞
> t
}

≤ 2 exp

− ct2nY

(1 + κ−1)2s
2/(2−qk)
k,qk

+ 2p exp

− c′t2nY

(1 + κ−1)2s
2/(2−qk)
k,qk


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for some c, c′ > 0 depending on Mr,Mψ only. In particular, if

λk ≥ K(1 + κ−1)s
1/(2−qk)
k,qk

(
logm

nY

)1/2

,

for some K ≥
{

2/(c ∧ c′)
}1/2

, then

P
{

2
∣∣∣Ĥ(θ∗)Ω∗·k − ek

∣∣∣
∞
> λk

}
≤ 4 exp

− c′′λ∗2k nY

(1 + κ−1)2s
2/(2−qk)
k,qk

 .

for some c′′ > 0.

Proof. Let Ĥ(θ) = ∇2`KLIEP(θ), and H(θ) = (Ẑ2
Y (θ)/Z2

Y (θ))Ĥ(θ). We have ΣψΩ∗·k = ek by

definition, and E[H(θ∗)] = (1− n−1
Y )Σψ by (A.3). Therefore,

Ĥ(θ∗)Ω∗·k − ek =
{
Ĥ(θ∗)−H(θ∗)

}
Ω∗·k + {H(θ∗)− E [H(θ∗)]}Ω∗·k − n

−1
Y ek.

For t ≥ 2/nY ,

P
{∣∣∣Ĥ(θ∗)Ω∗·k − ek

∣∣∣
∞
> t
}
≤ P

{∣∣∣Ĥ(θ∗)Ω∗·k − (1− n−1
Y )ek

∣∣∣
∞
>
t

2

}
≤ P

{∣∣∣{Ĥ(θ∗)−H(θ∗)}Ω∗·k
∣∣∣
∞
>
t

4

}
+ P

{∣∣{H(θ∗)− E[H(θ∗)]}Ω∗·k
∣∣
∞ >

t

4

}
.

By Lemma A.9,

P
{∣∣∣{Ĥ(θ∗)−H(θ∗)}Ω∗·k

∣∣∣
∞
>
t

4

}
≤ 2 exp

− ct2nY

(1 + κ−1)2s
2/(2−qk)
k,qk

 ,

where c > 0 is a constant depending only on Mr,Mψ. By Lemma A.10,

P
{∣∣{H(θ∗)− E[H(θ∗)]}Ω∗·k

∣∣
∞ >

t

4

}
≤ 2p exp

− c′t2nY

(1 + κ−1)2s
2/(2−qk)
k,qk

 ,
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where c′ > 0 is a constant depending only on Mr,Mψ. Thus,

P
{∣∣∣Ĥ(θ∗)Ω∗·k − ek

∣∣∣
∞
> t
}

≤ 2 exp

− ct2nY

(1 + κ−1)2s
2/(2−qk)
k,qk

+ 2p exp

− c′t2nY

(1 + κ−1)2s
2/(2−qk)
k,qk

 .

A.5.2 Bounds on the Hessian

This section contains the technical lemmas that go into bounding the `1 → `∞ operator

norm — a.k.a. the maximum magnitude component — of the Hessian. The ultimate goal is

to control the `∞-norm of the matrix-vector product ∇2`KLIEP(θ∗) Ω∗·k. Since a bound on

the `1-norm of Ω∗·k is easily implied by our structural assumptions on Ω∗·k, it is natural to

consider the `1 → `∞ operator norm of the Hessian in bounding the matrix-vector product.

To compute the bound, we first observe that ∇2`KLIEP(θ∗) ≈ Σψ, and decompose the

Hessian into a sum of three terms:

Ĥ(θ∗) = {Ĥ(θ∗)−H(θ∗)}︸ ︷︷ ︸
Lemma A.9

+ {H(θ∗)− E[H(θ∗)]}︸ ︷︷ ︸
Lemma A.10

+(1− n−1
Y )Σψ,

where Ĥ(θ) = ∇2`KLIEP(θ), and H(θ) = (Ẑ2
Y (θ)/Z2

Y (θ))Ĥ(θ).

Lemma A.9 reduces the difference Ĥ(θ∗)−H(θ∗) to the deviation of the sample average

of the ratios from their expectation. Lemma A.10 is the usual concentration bound for

U-statistics applied to our problem.

Lemma A.9. Suppose Condition 3.1 holds, and let θ ∈ B̄%(θ∗). For any v ∈ Rp,

P{
∣∣∣{Ĥ(θ)−H(θ)}v

∣∣∣
∞
> t} ≤ 2 exp

(
− t2nY

2M4
ψM

8
r (Mr + 1)2(Mr −M−1

r )2 |v|21

)
.
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In particular,

P{
∣∣∣Ĥ(θ)−H(θ)

∣∣∣
∞
> t} ≤ 2 exp

(
− t2nY

2M4
ψM

8
r (Mr + 1)2(Mr −M−1

r )2

)
.

Proof. Condition 3.1 implies that ẐY (θ)/ZY (θ) ∈ [M−1
r ,Mr], and that Ĥ(θ) has uniformly

bounded components. In particular, on B̄%(θ∗), for any k, ` ∈ {1, . . . ,m},

∣∣∣Ĥkl(θ)∣∣∣ =

∣∣∣∣∣∣ 1

n2
Y

∑
1≤j1<j2≤nY

{
ψk(Yj1)− ψk(Yj2)

}{
ψl(Yj1)− ψl(Yj2)

}
r̂θ(Yj1)r̂θ(Yj2)

∣∣∣∣∣∣
≤ 1

n2
Y

∑
1≤j1<j2≤nY

∣∣ψk(Yj1)− ψk(Yj2)
∣∣ ∣∣ψl(Yj1)− ψl(Yj2)

∣∣ r̂θ(Yj)r̂θ(Yj′)
≤ 2M2

ψM
4
r .

Now,

Ĥ(θ)−H(θ) =

(
1−

Ẑ2
Y (θ)

Z2
Y (θ)

)
Ĥ(θ) =

(
1− ẐY (θ)

ZY (θ)

)(
1 +

ẐY (θ)

ZY (θ)

)
Ĥ(θ),

so that

P{
∣∣∣{Ĥ(θ)−H(θ)}v

∣∣∣
∞
> t} ≤ P

{∣∣∣Ĥ(θ)
∣∣∣
∞
|v|1

∣∣∣∣∣ẐY (θ)

ZY (θ)
+ 1

∣∣∣∣∣
∣∣∣∣∣ẐY (θ)

ZY (θ)
− 1

∣∣∣∣∣ > t

}

≤ P

{
2M2

ψM
4
r (Mr + 1) |v|1

∣∣∣∣∣ẐY (θ)

ZY (θ)
− 1

∣∣∣∣∣ > t

}
.

It then follows by Lemma A.5 that

P{
∣∣∣{Ĥ(θ)−H(θ)}v

∣∣∣
∞
> t} ≤ 2 exp

(
− t2nY

2M4
ψM

8
r (Mr + 1)2(Mr −M−1

r )2 |v|21

)
.

Lemma A.10. Suppose Condition 3.1 holds, and let θ ∈ B̄%(θ∗). For any v ∈ Rp and any
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k ∈ {1, . . . ,m},

P
{∣∣eTk{H(θ)− E[H(θ)]}v

∣∣ > t
}
≤ 2 exp

(
− t2nY

16M4
ψM

4
r |v|21

)
.

In particular,

P {|{H(θ)− E[H(θ)]}v|∞ > t} ≤ 2 exp

(
− t2nY

16M4
ψM

4
r |v|21

+ logm

)
.

and

P {|{H(θ)− E[H(θ)]}|∞ > t} ≤ 2 exp

(
− t2nY

16M4
ψM

4
r

+ logm

)
.

Proof. For any k ∈ {1, . . . ,m} and for any a > 0,

P
{
eTk{H(θ)− E[H(θ)]}v > t

}
= P

{
|v|1 a · e

T
k{H(θ)− E[H(θ)]}(v/ |v|1) > at

}
≤ P

{
exp

(
|v|1 a · e

T
k{H(θ)− E[H(θ)]}(v/ |v|1)

)
> exp(at)

}
≤ exp(−at)E

[
exp

(
|v|1 a · e

T
k{H(θ)− E[H(θ)]}(v/ |v|1)

)]
≤ exp

(
−at+ 4M4

ψM
4
r |v|21 a

2/nY

)
,

where in the last line, we have used Lemma A.11. Optimizing the bound, we get

P
{
eTk{H(θ)− E[H(θ)]}v > t

}
≤ exp

(
− t2nY

16M4
ψM

4
r |v|21

)
.

A similar argument applied to the other side gives us

P
{∣∣eTk{H(θ)− E[H(θ)]}v

∣∣ > t
}
≤ 2 exp

(
− t2nY

16M4
ψM

4
r |v|21

)
.

120



Taking the union bound over all k ∈ {1, . . . ,m},

P {|{H(θ)− E[H(θ)]}v|∞ > t} ≤ 2 exp

(
− t2nY

16M4
ψM

4
r |v|21

+ logm

)
.

Lemma A.11. Suppose Condition 3.1 holds, and let θ ∈ B̄%(θ∗). For any u, v ∈ Rp with

|u|1 = |v|1 = 1 and any t ∈ R,

E
[
exp

(
t · uT{H(θ)− E[H(θ)]}v

)]
≤ exp(4M4

ψM
4
r t

2/nY ).

Proof. Define

U :=
2

1− 1/nY
uTH(θ)v =

2

nY (nY − 1)

∑
1≤j<j′≤nY

g(Yj , Yj′),

where

g(y1, y2) = 〈ψ(y1)− ψ(y2), u〉 〈ψ(y1)− ψ(y2), v〉 rθ(y1) rθ(y2).

Let

V (y1, . . . , ynY ) =
1

bnY /2c

{
g(y1, y2) + g(y3, y4) + · · ·+ g(y(2bnY /2c−1), y(2bnY /2c))

}

and write

U =
1

nY !

∑
σ∈SnY

V (yσ(1), . . . , yσ(nY )),
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where SnY is the group of permutations on {1, . . . , nY }. For any t ∈ R,

E
[
exp

(
t · uT{H(θ)− E[H(θ)]}v

)]
= E

[
exp

(
1− 1/nY

2
t · (U − EU)

)]
= E

[
exp

(
1− 1/nY

2
t

× 1

nY !

 ∑
σ∈SnY

(
V (Yσ(1), . . . , Yσ(nY ))− E

[
V (Yσ(1), . . . , Yσ(nY ))

])

≤

1

nY !

∑
σ∈SnY

E
[
exp

(
1− 1/nY

2
t

×
(
V (Yσ(1), . . . , Yσ(nY ))− E

[
V (Yσ(1), . . . , Yσ(nY ))

]))]
≤ exp(4M4

ψM
4
r t

2/nY ),

where the second-to-last inequality follows from the Jensen’s inequality and the last inequality

follows from Lemma A.12.

Lemma A.12. Let V (Y1, . . . , YnY ) be as in the proof of Lemma A.11. For any t ∈ R,

E
[
exp

(
t ·
(
V (Y1, . . . , YnY )− E

[
V (Y1, . . . , YnY

]))]
≤ exp(16M4

ψM
4
r t

2/nY ).

Proof. Consider a random variable G with |G| ≤ D and EG = g. Using the convexity of the

exponential function,

etG ≤ D −G
2D

e−Dt +
G+D

2D
eDt,

so that

E[et(G−g)] ≤ e−tg
(D − g)e−Dt + (D + g)eDt

2D

= e−tg
e−Dt(D − g + (D + g)e2Dt)

2D

= exp

(
−(D + g)t+ log

(
1− D + g

2D
+
D + g

2D
e2Dt

))
.
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Put t̃ = 2Dt and p = (D + g)/2D, and write

h(t̃) = −pt̃+ log(1− p+ pet̃).

Then,

h′(t̃) = −p+
pet̃

1− p+ pet̃

and

h′′(t̃) =
(1− p)pet̃

(1− p+ pet̃)2
=

(
pet̃

1− p+ pet̃

)(
1− pet̃

1− p+ pet̃

)
≤ 1

4
,

since p exp(t̃)/(1− p+ p exp(t̃)) ∈ (0, 1). By Taylor’s theorem,

h(t̃) ≤ h(0) + h′(0)t̃+
1

8
t̃2 =

1

8
t̃2,

so that

E[et(G−g)] ≤ eD
2t2/2. (A.45)

Now, g(Yj , Yj′)’s occurring in V (Y1, . . . , YnY ) are IID with

|g(Yj , Yj′)| =
∣∣∣〈ψ(Yj)− ψ(Yj′), u

〉〈
ψ(Yj)− ψ(Yj′), v

〉
rθ(Yj)rθ(Yj′)

∣∣∣
≤
∣∣∣ψ(Yj)− ψ(Yj′)

∣∣∣2
∞
rθ(Yj)rθ(Yj′) ≤ 4M2

ψM
2
r , (A.46)

since |u|1 = |v|1 = 1. Applying (A.45) to the random variable g(Y1, Y2),

E
[
exp

(
t

bnY /2c
· (g(Y1, Y2)− E [g(Y1, Y2)])

)]
≤ exp(32M4

ψM
4
r t

2/n2
Y ).
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By independence,

E
[
exp

(
t ·
(
V (Y1, . . . , YnY )− E

[
V (Y1, . . . , YnY )

]))]
= E

[
exp

(
t

bnY /2c
· (g(Y1, Y2)− E [g(Y1, Y2)])

)]bnY /2c
≤ exp(16M4

ψM
4
r t

2/nY ).

A.5.3 Restricted strong convexity

In the following,

K(S, β, ρ) = {v ∈ Rp : |vSc|1 ≤ β |vS |1 + (1 + β)ρ, |v| ≤ 1},

where S ⊆ [p] is nonempty, β ≥ 0, and ρ ≥ 0.

Lemma A.13. Suppose Z2
Y (θ∗)/Ẑ2

Y (θ∗) ≥ c for some c > 0, and

|||H(θ∗)− EH(θ∗)|||s ≤ κ/(2(2 + β)2)

for some s ∈ {1, . . . ,m} and β ≥ 0. Then for all nonempty S ⊆ [p] with |S| ≤ s and for all

ρ ≥ 0,

vTĤ(θ∗)v ≥ cκ

2

(
|v|2 − ρ2

s

)
for all v ∈ K(S, β, ρ),

as well as

vTĤ(θ)v ≥ exp
(
−2Mψ(M2

r + 1) |θ − θ∗|1
)
· cκ

2

(
|v|2 − ρ2

s

)
for all v ∈ K(S, β, ρ).

Proof. We have

vTĤ(θ∗)v =
Z2
Y (θ∗)

Ẑ2
Y (θ∗)

vTH(θ∗)v =

[(
1− 1

nY

)
vTΣψv + vT{H(θ∗)− EH(θ∗)}v

]
.
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For nY large enough, under the conditions of the lemma and applying Lemma A.15,

vTĤ(θ∗)v ≥ c

(
κ |v|2 − κ

2(2 + β)2

(
|v|2 +

|v|1
s1/2

)2
)

≥ c

(
κ |v|2 − κ

2

(
|v|+ ρ

s1/2

)2
)

≥ cκ

2

(
|v|2 − ρ2

s

)
. (A.47)

For the second part of the statement, first note

vTĤ(θ)v ≥ min
j,j′

r̂θ(Yj)r̂θ(Yj′)

r̂θ∗(Yj)r̂θ∗(Yj′)
vTĤ(θ∗)v

= min
j,j′

exp

{(
ψ(Yj) + ψ(Yj′)

)T
(θ − θ∗)− 2 log

ẐY (θ )

ẐY (θ∗)

}
vTĤ(θ∗)v.

By convexity of LogSumExp,

− log ẐY (θ) + log ẐY (θ∗) ≥ −∇[log ẐY (θ)]T (θ − θ∗)

= − 1

nY

nY∑
j=1

r̂θ(Yj)ψ(Yj)
T (θ − θ∗) ≥ −MψM

2
r |θ − θ∗|1 ,

so that

exp

{
(θ − θ∗)T

(
ψ(Yj) + ψ(Yj′)

)
− 2 log

ẐY (θ )

ẐY (θ∗)

}
≥ −2Mψ(M2

r + 1) |θ − θ∗|1 ,

and hence,

vTĤ(θ)v ≥ exp
(
−2Mψ(M2

r + 1) |θ − θ∗|1
)
vTĤ(θ∗)v.

Combining with (A.47) from the first part finishes the proof.

Lemma A.14. For c > 0, β ≥ 0, ε ∈ (0, 1), whenever

nY ≥ C(κ̄/κ2)M2
ψM

2
r s log2(s) log(m ∨ nY ) log(nY )c2(2 + β)4/ε2,
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where C > 0 denotes a known, absolute constant, we have

|||H(θ∗)− EH(θ∗)|||s = sup
|v|0≤s,|v|2=1

|vT{H(θ∗)− EH(θ∗)}v| ≤ κ/(c(2 + β)2)

with probability 1− ε.

Proof. Similar to the proof of Lemma A.11, let

Uv :=
2

1− 1/nY
vTH(θ∗)v =

2

nY (nY − 1)

∑
1≤j<j′≤nY

gv(Yj , Yj′),

where

gv(y1, y2) = 〈ψ(y1)− ψ(y2), v〉 〈ψ(y1)− ψ(y2), v〉 rθ(y1) rθ(y2).

Let

Vv(y1, . . . , ynY )

:=
1

bnY /2c

(
gv(y1, y2) + gv(y3, y4) + · · ·+ gv(y2bnY /2c−1, y2bnY /2c)

)
,

and write

Uv =
1

nY !

∑
σ∈SnY

Vv(Yσ(1), . . . , Yσ(nY )),
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where SnY is the group of permutations on [nY ]. Then

E

 sup
|v|0≤s
|v|2=1

|Uv − EUv|



= E

 sup
|v|0≤s
|v|2=1

∣∣∣∣∣∣ 1

nY !

∑
σ∈SnY

Vv(Yσ(1), . . . , Yσ(nY ))− EVv(Yσ(1), . . . Yσ(nY ))

∣∣∣∣∣∣


≤ E

 sup
|v|0≤s
|v|2=1

∣∣Vv(Y1, . . . , YnY )− EVv(Y1, . . . , YnY )
∣∣
 .

Denoting Zj =
{
ψ(Y2j−1)− ψ(Y2j)

}{
rθ(Y2j−1)rθ(Y2j)

}1/2
, we have

E

 sup
|v|0≤s
|v|2=1

∣∣vT{H(θ∗)− EH(θ∗)}v
∣∣


≤ 1− 1/nY
2

E

 sup
|v|0≤s
|v|2=1

∣∣∣∣∣∣vT
[bnY /2c]∑

j=1

ZjZ
T
j − E

[
ZjZ

T
j

] v

∣∣∣∣∣∣
 .

Note that |Zj |∞ ≤ 2MψMr. Then an application of Lemma 11 of Belloni and Chernozhukov

[2013] gives us

E

 sup
|v|0≤s
|v|2=1

∣∣vT{H(θ∗)− EH(θ∗)}v
∣∣
 ≤ a2

n + anκ̄
1/2,

where a2
n = CM2

ψM
2
r s log2(s) log(m ∨ nY ) log(nY )/nY , C > 0 is a known, absolute constant

inherited from the lemma. Using Markov’s inequality, we get that

sup
|v|0≤s
|v|2=1

∣∣vT{H(θ∗)− EH(θ∗)}v
∣∣ ≤ κ/(c(2 + β)2)
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with probability 1− ε.

Lemma A.15 (Lemma 4.9 of Barber and Kolar [2018]). For any M ∈ Rp×p and s ≥ 1,

vTMv ≤ |||M |||s
(
|v|2 +

|v|1
s1/2

)2

for all v ∈ RP .

A.6 Auxiliary results

A.6.1 Gaussian approximation lemmas

Lemma A.16. For ω ∈ Rp, let

An = An(ω) =

〈
ω,

1

nX

nX∑
i=1

(
ψ(Xi)− µψ

)
+

1

nY

nY∑
j=1

(
µψ − ψ(Yj)

)
rθ∗(Yj)

〉
,

and

v2
n = v2

n(ω) = Var
[
n1/2An(ω)

]
.

Then,

sup
t∈R

∣∣∣P{n1/2An/vn ≤ t
}
− Φ(t)

∣∣∣ ≤ 2CMrMψ |ω|
ηX,nηY,nvnn

1/2
,

where C > 0 denotes a known, absolute constant.

Proof. Write

n1/2An/vn =
1

n1/2


nX∑
i=1

〈ω, ψ(Xi)− µψ〉
ηX,nvn

+

nY∑
j=1

〈ω, µψ − ψ(Yj)〉 rθ∗(Yj)
ηY,nvn

 .

Now,

∣∣〈ω, ψ(X)− µψ〉
∣∣

ηX,nvn
≤

2Mψ |ω|
ηX,nvn

and

∣∣〈ω, µψ − ψ(Y )〉 rθ∗(Y )
∣∣

ηY,nvn
≤

2MrMψ |ω|
ηY,nvn

.
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Noting that Mr ≥ 1, the Berry-Esseen inequality (Theorem 3.4 of Chen et al. [2011]) yields

sup
t∈R

∣∣∣P{n1/2An/vn ≤ t
}
− Φ(t)

∣∣∣ ≤ 2CMrMψ |ω|
ηX,nηY,nvnn

1/2
,

where C > 0 is a known, absolute constant from the theorem.

Lemma A.17 (Lemma D.3 of Barber and Kolar [2018]). If

sup
z∈R
|P{A ≤ z} − Φ(z)| ≤ εA and P{|B| ≤ δB , |C| ≤ δC} ≥ 1− εBC

for some δB , δC , εA, εBC ∈ [0, 1), then

sup
z∈R
|P{(A+B)/(1 + C) ≤ z} − Φ(z)| ≤ δB +

δC
1− δC

+ εA + εBC .

A.6.2 Consistency of the variance estimator

Lemma A.18. On the event that

|θ − θ∗| ≤ δθ,
∣∣∣Ω̂·k − Ω∗·k

∣∣∣ ≤ δk, and |||Σ̂ψ − Σψ|||∗, |||Σ̂ψr̂(θ
∗)− Σψr|||∗ ≤ δΣ/4,

the variance estimate (3.6) satisfies

|v̂2
k − v

2
k| ≤

(
ηX,nηY,n

)−1
{∣∣Ω∗·k∣∣2 (δΣ + 2L3 δθ) +

(
δΣ + 2L3 δθ + |||Σψ|||∗ + |||Σψr|||∗

)
δ2
k

}
.

Proof. Let

Σpooled = η−1
X,nΣψ + η−1

Y,nΣψr.
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We have

v̂2
k − v

2
k = Ω̂T

·kΣ̂pooledΩ̂·k − Ω∗T·k ΣpooledΩ∗·k

= Ω̂T
·k

{
η−1
X,nΣ̂ψ + η−1

Y,nΣ̂ψr̂(θ)
}

Ω̂·k − Ω∗T·k

{
η−1
X,nΣψ + η−1

Y,nΣψr

}
Ω∗·k

= η−1
X,n

(
Ω̂T
·kΣ̂ψΩ̂·k − Ω∗T·k ΣψΩ∗·k

)
+ η−1

Y,n

(
Ω̂T
·kΣ̂ψr̂(θ)Ω̂·k − Ω∗T·k ΣψrΩ

∗
·k

)
.

The first term is bounded as

∣∣∣Ω̂T
·kΣ̂ψΩ̂·k − Ω∗T·k ΣψΩ∗·k

∣∣∣ ≤ ∣∣∣Ω̂T
·k{Σ̂ψ − Σψ}Ω̂·k

∣∣∣+
∣∣∣(Ω̂·k − Ω∗·k)TΣψ(Ω̂·k − Ω∗·k)

∣∣∣
≤ |||Σ̂ψ − Σψ|||∗

∣∣∣Ω̂·k∣∣∣2 + |||Σψ|||∗
∣∣∣Ω̂·k − Ω∗·k

∣∣∣2
≤ 1

2δΣ

(∣∣Ω∗·k∣∣2 + δ2
k

)
+ |||Σψ|||∗δ

2
k.

Similarly,

∣∣∣Ω̂T
·kΣ̂ψr̂(θ)Ω̂·k − Ω∗T·k ΣψrΩ

∗
·k

∣∣∣
≤
∣∣∣Ω̂T
·k{Σ̂ψr̂(θ)− Σψr}Ω̂·k

∣∣∣+
∣∣∣(Ω̂·k − Ω∗·k)TΣψr(Ω̂·k − Ω∗·k)

∣∣∣
≤ |||Σ̂ψr̂(θ)− Σψr|||∗

∣∣∣Ω̂·k∣∣∣2 + |||Σψr|||∗
∣∣∣Ω̂·k − Ω∗·k

∣∣∣2
≤
(
|||Σ̂ψr̂(θ)− Σ̂ψr̂(θ

∗)|||∗ + |||Σ̂ψr̂(θ∗)− Σψr|||∗
) ∣∣∣Ω̂·k∣∣∣2 + |||Σψr|||∗

∣∣∣Ω̂·k − Ω∗·k

∣∣∣2
≤
(
L3 |θ − θ∗|+ |||Σ̂ψr̂(θ∗)− Σψr|||∗

) ∣∣∣Ω̂·k∣∣∣2 + |||Σψr|||∗
∣∣∣Ω̂·k − Ω∗·k

∣∣∣2
≤
(

2L3 δθ + 1
2δΣ

)(∣∣Ω∗·k∣∣2 + δ2
k

)
+ |||Σψr|||∗δ

2
k,

where the penultimate line is by Lemma A.19. Thus,

|v̂2
k − v

2
k| ≤

(
ηX,nηY,n

)−1
{∣∣Ω∗·k∣∣2 (δΣ + 2L3 δθ) +

(
δΣ + 2L3 δθ + |||Σψ|||∗ + |||Σψr|||∗

)
δ2
k

}
.
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Lemma A.19. There exists L3 > 0 depending on Mr,Mψ only such that

|||Σ̂ψr̂(θ)− Σ̂ψr̂(θ
∗)|||∗ ≤ L3 |θ − θ∗| for all θ ∈ B̄%(θ∗).

Proof. By applying Lemma A.4 after computing the form of each Ŝψr̂k′k
(θ)− Ŝψr̂k′k(θ∗).

Lemma A.20. Under Condition 3.1 with `1-norm, there exist constants K, c, c′ > 0 depending

on Mψ only such that for any t ∈ [K (logm/nX)1/2 , 1],

P
{∣∣∣Σ̂ψ − Σψ

∣∣∣
∞
> t
}
≤ c exp(−c′t2nX).

Proof. Let k, k′ ∈ {1, . . . ,m}.

Ŝψk′k
− Σψk′k

=
1

nX

nX∑
i=1

(
ψk′(Xi,k′)− µψk′

) (
ψk(xi,k)− µψk

)
− Σψk′k

−

{
1

nX

nX∑
i=1

ψk′(Xi,k′)− µψk′

}{
1

nX

nX∑
i=1

ψk(xi,k)− µψk

}
.

Suppose t satisfies the conditions of the lemma, and suppose

∣∣∣∣∣ 1

nX

nX∑
i=1

ψk(xi,k)− µψk

∣∣∣∣∣ ≤ t ∀ k,∣∣∣∣∣ 1

nX

nX∑
i=1

(
ψk′(Xi,k′)− µψk′

) (
ψk(xi,k)− µψk

)
− Σψk′k

∣∣∣∣∣ ≤ t ∀ k, k′.
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On this event,

∣∣∣Σ̂ψ − Σψ

∣∣∣
∞

= max
1≤k1,k2≤m

∣∣∣Σ̂ψ,k2k1 − Σψ,k2k1

∣∣∣
≤ max

1≤k1,k2≤m

∣∣∣∣∣ 1

nX

nX∑
i=1

{
ψk2(Xi)− µψ,k2

}{
ψk1(Xi)− µψ,k1

}
− Σψ,k2k1

∣∣∣∣∣
+ max

1≤k1≤m

∣∣∣∣∣ 1

nX

nX∑
i=1

ψk1(Xi)− µψ,k1

∣∣∣∣∣
2

≤ t+ t2

≤ 2t,

using the upper bound on t.

Now, the boundedness of ψ(X) implies

P

{∣∣∣∣∣ 1

nX

nX∑
i=1

ψk(xi,k)− µψk

∣∣∣∣∣ > t

}
≤ 2 exp(−c1t2nX),

P

{∣∣∣∣∣ 1

nX

nX∑
i=1

(
ψk′(Xi,k′)− µψk′

) (
ψk(xi,k)− µψk

)
− Σψk′k

∣∣∣∣∣ > t

}
≤ 2 exp(−c2t2nX),

where c1, c2 > 0 are constants depending on Mψ only.

Thus,

P
{∣∣∣Σ̂ψ − Σψ

∣∣∣
∞
> t
}
≤ 2p exp(−c1t2nX) + 2p2 exp(−c2t2nX) ≤ 4p2 exp(−c3t2nX),

(A.48)

where c3 > 0 is another constant depending on Mψ only. (A.48) can be simplified by using

the lower bound on t:

P
{∣∣∣Σ̂ψ − Σψ

∣∣∣
∞
> t
}
≤ c exp(−c′t2nX),

where c, c′ > 0 are constants depending on Mψ only.
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Lemma A.21. Under the bounded density ratio model (Condition 3.1), there exist constants

K, c, c′ > 0 depending on Mr,Mψ only such that for any t ∈ [K(logm/nY )1/2, 1],

P
{∣∣∣Σ̂ψr̂(θ∗)− Σψr

∣∣∣
∞
> t
}
≤ c exp(−c′t2nY ).

Proof. Let k, k′ ∈ {1, . . . ,m}. We have

Ŝψr̂k′k
(θ∗)− Σψrk′k

=

{
Ŝψr̂k′k

(θ∗)−
Z2
Y (θ∗)

Ẑ2
Y (θ∗)

Σψrk′k

}
+

(
Z2
Y (θ∗)

Ẑ2
Y (θ∗)

− 1

)
Σψrk′k

with

Ŝψr̂k′k
(θ∗)−

Z2
Y (θ∗)

Ẑ2
Y (θ∗)

Σψrk′k

=
Z2
Y (θ∗)

Ẑ2
Y (θ∗)

[
1

nY

nY∑
j=1

(
ψk′(Yj,k′)rθ∗(Yj)− µψk′

) (
ψk(Yj,k)rθ∗(Yj)− µψk

)
− Σψrk′k

−

{
1

nY

nY∑
j=1

ψk′(Yj,k′)rθ(Yj)− µψk′

}{
1

nY

nY∑
j=1

ψk(Yj,k)rθ(Yj)− µψk

}]

and
Z2
Y (θ∗)

Ẑ2
Y (θ∗)

− 1 =
Z2
Y (θ∗)

Ẑ2
Y (θ∗)

(
1 +

ẐY (θ∗)
ZY (θ∗)

)(
1− ẐY (θ∗)

ZY (θ∗)

)
.

Condition 3.1 implies that ZY (θ∗)/ẐY (θ∗) ∈ [M−1
r ,Mr], as well as that |Σψr|∞ is bounded

by some constant. So,

∣∣∣∣∣Ŝψr̂k′k(θ∗)−
Z2
Y (θ∗)

Ẑ2
Y (θ∗)

Σψrk′k

∣∣∣∣∣
≤M2

r

[∣∣∣∣∣ 1

nY

nY∑
j=1

(
ψk′(Yj,k′)rθ∗(Yj)− µψk′

) (
ψk(Yj,k)rθ∗(Yj)− µψk

)
− Σψrk′k

∣∣∣∣∣
+

∣∣∣∣∣ 1

nY

nY∑
j=1

ψk′(Yj,k′)rθ(Yj)− µψk′

∣∣∣∣∣
∣∣∣∣∣ 1

nY

nY∑
j=1

ψk(Yj,k)rθ(Yj)− µψk

∣∣∣∣∣
]
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and ∣∣∣∣∣
(
Z2
Y (θ∗)

Ẑ2
Y (θ∗)

− 1

)
Σψrk′k

∣∣∣∣∣ ≤M2
r (1 +Mr)

∣∣Σψr∣∣∞
∣∣∣∣∣1− ẐY (θ∗)

ZY (θ∗)

∣∣∣∣∣ .
Suppose t satisfies the conditions of the lemma, and suppose

∣∣∣∣∣ẐY (θ)

ZY (θ)
− 1

∣∣∣∣∣ ≤ t,∣∣∣∣∣∣ 1

nY

nY∑
j=1

ψk(Yj,k)rθ(Yj)− µψk

∣∣∣∣∣∣ ≤ t ∀ k,

∣∣∣∣∣∣ 1

nY

nY∑
j=1

(
ψk′(Yj,k′)rθ∗(Yj)− µψk′

) (
ψk(Yj,k)rθ∗(Yj)− µψk

)
− Σψrk′k

∣∣∣∣∣∣ ≤ t ∀ k, k′.

On this event, ∣∣∣∣∣Ŝψr̂k′k(θ∗)−
Z2
Y (θ∗)

Ẑ2
Y (θ∗)

Σψrk′k

∣∣∣∣∣ ≤M2
r (t+ t2) ≤ 2M2

r t

and ∣∣∣∣∣
(
Z2
Y (θ∗)

Ẑ2
Y (θ∗)

− 1

)
Σψrk′k

∣∣∣∣∣ ≤M2
r (1 +Mr)

∣∣Σψr∣∣∞ t,

and hence, ∣∣∣Σ̂ψr̂(θ∗)− Σψr

∣∣∣
∞
≤ Kt

for some constant K > 0.

We finish the proof by bounding the probability of the complementary event. By

Lemma A.5,

P

{∣∣∣∣∣ẐY (θ)

ZY (θ)
− 1

∣∣∣∣∣ > t

}
≤ 2 exp(−c1t2nY ),

for some constant c1 > 0 depending on Mr only. On the other hand, the boundedness of

ψ(Y )rθ∗(Y ) implies

P


∣∣∣∣∣∣ 1

nY

nY∑
j=1

ψk(Yj)rθ∗(Yj)− µψ,k

∣∣∣∣∣∣ > t

 ≤ 2 exp
(
−c2t2nY

)
,
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P


∣∣∣∣∣∣ 1

nY

nY∑
j=1

{
ψk2(Yj)rθ∗(Yj)− µψ,k2

}{
ψk1(Yj)rθ∗(Yj)− µψ,k1

}
− Σψr,k2k1

∣∣∣∣∣∣ > t


≤ 2 exp

(
−c3t2nY

)
,

where c2, c3 > 0 are constants depending on Mr, Mψ only.

Thus,

P
{∣∣∣Σ̂ψr̂(θ∗)− Σψr

∣∣∣
∞
> t
}

≤ 2 exp(−c1t2nY ) + 2p exp(−c2t2nY ) + 2p2 exp(−c3t2nY ) ≤ 6p2 exp(−c4t2nY ), (A.49)

where c4 > 0 is another constant depending on Mr,Mψ only. (A.49) can be simplified by

using the lower bound on t:

P
{∣∣∣Σ̂ψr̂(θ∗)− Σψr

∣∣∣
∞
> t
}
≤ c exp(−c′t2nY ),

where c, c′ > 0 are constants depending on Mr,Mψ only.

A.7 Implementation details

A.7.1 Pivotal estimation procedures

Pivotal sparse KLIEP

The default option in KLIEPInference.jl (https://github.com/mlakolar/KLIEPInference.

jl) replaces (3.1) in the initial KLIEP estimation step with the following modified version

θ̂ = arg min
θ
`KLIEP(θ; {Xi}

nX
i=1, {Yj}

nY
j=1) + λθ0

m∑
k=1

τk|θk|, (A.50)
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where λθ0 = (1 + a)Φ−1(1− b/p) for some small a, b > 0 is the universal penalty and τk > 0

is the kth penalty loading. Following Belloni et al. [2014], we used a = 0.01 and b = 0.05

for λθ0 The kth penalty loading τk is chosen to match the sample standard deviation of

∇k`KLIEP(θ∗); this has the effect of penalizing components with larger variance more.

As θ∗ is unavailable to us, we take the following two-step approach:

Algorithm 13 Two-step procedure for minimizing (A.50)

Initialize θ̂ = 0.
Compute the initial penalty loadings: for k = 1, . . . , p,

τk = Σ̂pooledkk(θ̂).

Compute θ̂:

θ̂ = arg min
θ
`KLIEP(θ; {Xi}

nX
i=1, {Yj}

nY
j=1) + λθ0

m∑
k=1

τk|θk|.

Update the penalty loadings: for k = 1, . . . , p,

τk = Σ̂pooledkk(θ̂).

Estimate θ̂ with the updated penalty loadings.

The intuition behind λθ0 = (1 + a)Φ−1(1− b/p) and τk ≈ (V̂ar[∇k`KLIEP(θ∗)])1/2 is as

follows. Estimation using (A.50) is consistent provided that

P
{

max
k
|∇k`KLIEP(θ∗)/τk| > λθ0

}
is small. (A.51)

For sufficiently large sample sizes, we would have ∇k`KLIEP(θ∗)/(V̂ar[∇k`KLIEP(θ∗)])1/2 ≈

Normal(0, 1), and hence for λθ0 = (1 + a)Φ−1(1− b/p), an upper bound for the probability in

(A.51) is about b > 0. Thus, b can be interpreted as a tolerance parameter that controls the

probability of the undesirable event. Similar approach was taken in Belloni et al. [2011, 2014,

2019] in the context of linear regression, nonparametric regression, and error-in-variables

regression problems. For detailed discussions of the motivation and the relationship to the

moderate deviations theory, we refer the reader to these works and the references therein.
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In particular, a rigorous proof in the context of our problem would involve establishing a

moderate deviation bound [Jing et al., 2003, de la Peña et al., 2009] for the self-normalized

gradient [∇k`KLIEP(θ∗)/(V̂ar[∇k`KLIEP(θ∗)])1/2]mk=1, which we leave up to future work.

Sparse Hessian inversion via the scaled lasso

The default option in KLIEPInference.jl (https://github.com/mlakolar/KLIEPInference.

jl) replaces (3.2) in the Hessian inversion step with a scaled lasso formulation [Sun and

Zhang, 2012]. In particular, we use the approach described in Sun and Zhang [2013] that

allows us to estimate a sparse inverse of the Hessian without hyperparameter tuning. This

implementation is used for all of our experiments.

In the below, we describe the procedure in more detail. The equation (3.2) is modified so

that Ω̂·k = −τ̂kd̂k, where

d̂k, τ̂k = arg min
d,τ :dk=−1

dT∇2`KLIEP(θ̂)d

2τ
+
τ

2
+ λ0

p∑
k′=1

∇2
k′k′`KLIEP(θ̂)|dk′| (A.52)

and the universal penalty level λ0 = (2 logm/nY )1/2 does not depend on the unknown

problem specific parameters. Following Sun and Zhang [2013], the solution (d̂k, τ̂k) is

obtained from the following iterative procedure: For a detailed discussion of the procedure

Algorithm 14 Iterative procedure for solving (A.52)

Initialize d̂k = ek.
repeat

τ̂k = d̂Tk∇
2`KLIEP(θ̂)d̂k,

λ = λ0τ̂k,

d̂k = arg min
d

1

2
dT∇2`KLIEP(θ̂)d− dTek + λ |d|1 .

until converged

and its theoretical properties, the reader is referred to Sun and Zhang [2013].
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A.7.2 Regularization parameter tuning

In all our experiments, including the experiments published only in this supplement, we

used Algorithm 14 for Step 2 with the universal penalty level λ0 = (2 logm/nY )1/2. For

Experiments 1 – 3, we use Algorithm 13 for Step 1 with the universal penalty level λθ0 =

1.01Φ−1(1 − 0.05/p). Experiments 4 – 5 use the original sparse KLIEP formulation [Liu

et al., 2017] which does not set the regularization parameters in a data-adaptive way. For

Experiment 4, we used λθ = (4 logm/nX)1/2, because for Ising models, the components of

the gradient ∇`KLIEP(θ∗) are bounded by 2 when θ∗ ≈ 0.

Parameter tuning is an issue for most, if not all, high-dimensional estimation procedures,

and ours is no exception. As noted by one reviewer, it is at least unclear how the regularization

parameter pair can be chosen to achieve the best performance. In the case of the bounded

model, it is possible to make an educated guess for the first-stage regularization parameter

λθ (Lemma A.7), and this is what we do in our experiments. Choosing the second-stage

regularization parameters λk is a more delicate matter.

One heuristic is to cross-validate the three-stage procedure in its entirety over a 2D grid

of (λθ, λk) pairs using the empirical KLIEP loss. A clear drawback of this strategy is that it

is computationally intensive. It also has very little theory.

A good alternative is to use pivotal estimation procedures for the initial estimation steps.

In our simulations, the combination of Algorithm 13 and Algorithm 14 has been seen to yield

excellent performance while removing the need for hyperparameter tuning. For theory, we

need the initial estimates obtained using Algorithm 13 and Algorithm 14 to be consistent.

While we leave this up for future work, theoretical results for similar problems (e.g., Belloni

et al. [2011] in the case of Step 1 and Sun and Zhang [2013] in the case of Step 2) lend

support to our claim.

Additionally, to study the sensitivity of the overall procedure to the choice of the regu-

larization parameter when the original sparse KLIEP formulation [Liu et al., 2017] is used,

we ran additional experiments where we varied λθ on a grid of five values under the same
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set-up as that of Experiment 1. For Step 2, we still use Algorithm 14 with the universal

penalty level λ0 = (2 logm/nY )1/2. We record the coverage and the median width of the

95% confidence intervals as well as the bias of the final estimate over 1000 independent

replications. The regularization parameter settings are detailed in Table A.2. The results are

shown in Tables A.3–A.8. The coverage, the median width, and the bias are all stable for

both SparKLIE+ procedures. The reversed and the symmetrized procedures do show some

instability, but it is likely that this has more to do with the fact that both procedures have a

larger sample complexity relative to KLIEP. See Remark 3.5 in Section 3.2.2.

A.7.3 Studentized bootstrap

Consider the Studentized analogue of the statistic in (3.7)

W = WnX ,nY = max
k=1,...,m

n1/2|θ̃k − θ∗k|/v̂k, (A.53)

where θ̃k is either SparKLIE+1 or SparKLIE+2 estimator and v̂k is the estimator of the

standard error from (3.6). W can replace T as the reference distribution in carrying out

statistical inference. Letting cW,q be the q-th quantile of T , θ̃ ± (cW,1−α/n
1/2)v̂, where

v̂ = (v̂k)
p
k=1, is a 100 × (1 − α)% confidence region for θ∗. Similarly, the test that rejects

if maxk |θ̃k|/v̂k > cW,1−α/n
1/2 controls the family-wise error rate at level α for the null

hypothesis H0 : θ∗k = 0 for all k ∈ {1, . . . ,m}. This approach has the advantage of being

adaptive to the heterogeneity in variance across multiple components.

The bootstrap procedures of Section 3.1.2 can be easily modified to yield estimates of the

quantiles of W . In Algorithm 4, this is accomplished by replacing (3.8) with

Ŵ (b) = max
k

1

v̂kn
1/2

∣∣∣∣∣
〈

Ω̂·k,
n

nX

nX∑
i=1

(
ψ(Xi)− ψ

)
ξ

(b,i)
x

− n

nY

nY∑
j=1

(
ψ(Yj)r̂θ̂(Yj)− µ̂(θ̂)

)
ξ

(b,j)
y

〉∣∣∣∣∣. (A.54)
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In the case of Algorithm 5, one replaces (3.9) with

Ŵ (b) = max
k

n1/2|θ̃(b)
k − θ̃k|/v̂k. (A.55)

A.8 Supplement to Section 3.3

A.8.1 Competing procedures

The oracle estimate θ̃oracle
k is the k-th component of the solution to the following problem:

arg min
θ
`KLIEP

(
θ; {Xi}

nX
i=1, {Yj}

nY
j=1

)
subject to supp(θ) ⊆ {k} ∪ supp(θ∗). (A.56)

This is clearly infeasible due to the occurrence of θ∗ in the constraint. It is meant to be a

performance benchmark rather than an actual alternative.

The näıve re-fitted estimate θ̃n
k is the k-th component of the solution to the following

problem:

arg min
θ
`KLIEP

(
θ; {Xi}

nX
i=1, {Yj}

nY
j=1

)
subject to supp(θ) ⊆ {k} ∪ supp(θ̂). (A.57)

This replaces the unknown θ∗ in (A.56) with an estimated value θ̂. This can have a near oracle

behavior if θ̂ recovers the true support with high probability. Unfortunately, the sufficient

conditions are often not met for many interesting applications; they are also notoriously

difficult to check from the data [Liu et al., 2017]. As such, the procedure is expected to be

brittle to errors in model selection.

Finally, SparKLIE+2 is the procedure obtained by choosing double-selection rather than

one-step estimation in Step 3 of SparKLIE+1 (Algorithm 3), i.e.,
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Step 3. θ̃2+
k is the k-th component of the solution to the following problem:

arg min
θ
`KLIEP

(
θ; {Xi}

nX
i=1, {Yj}

nY
j=1

)
subject to supp(θ) ⊆ {k} ∪ supp(θ̂) ∪ supp(Ω̂·k).

This looks deceptively like (A.57), but the inclusion of the coordinates with large correlations

with k makes the procedure robust to model selection mistakes. SparKLIE+2 is first-order

equivalent to SparKLIE+1 [Chernozhukov et al., 2015b].

A.8.2 Parameter generation for Experiment 1
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Figure A.3: The realized edge weights for the Chain 1 pair. The edge weights in the
differential network were fixed beforehand. The remaining “free” weights were generated
IID∼ Uniform(−1, 1) once as displayed below, and then fixed. The edge corresponding to the
target of inference is marked in red.
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Figure A.4: The realized edge weights for the Chain 2 pair. The edge weights in the
differential network were fixed beforehand. The remaining “free” weights were generated
IID∼ Uniform(−1, 1) once as displayed below, and then fixed. The edge corresponding to the
target of inference is marked in red.
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Figure A.5: The realized edge weights for the Tree 1 pair. The edge weights in the dif-
ferential network were fixed beforehand. The remaining “free” weights were generated
IID∼ Uniform(−1, 1) once as displayed below, and then fixed. The edge corresponding to the
target of inference is marked in red.
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Figure A.6: The realized edge weights for the Tree 2 pair. The edge weights in the dif-
ferential network were fixed beforehand. The remaining “free” weights were generated
IID∼ Uniform(−1, 1) once as displayed below, and then fixed. The edge corresponding to the
target of inference is marked in red.

(a) γX
1

2

5

−
0.
21

−
0
.1
3

−
0.30

0.
56

6

0.
95

−
0
.5
9

−
0.51

−
0
.0
6

7

−
0.
81

−
0
.7
5

0.70

−
0.10

−0.5
4

3

8

23

−
0.
82

0
.4
7

−
0.99

0.
11

9
0.
94

−
0
.7
9

−
0.41

0
.3
5

10

0.
21

0
.7
9

0.18

0.09

−
0
.8
5

4

11

0.
70

0
.8
6

0.70

0.
20

12

0.
99

−
0
.3
8

0.35
−
0
.3
2

13

0.
96

−
0
.1
3

−
0.52

−
0.27

0.74

(b) γY
1

2

5

−
0.
21

−
0
.1
3

−
0.30

0.
16

6

0.
95

−
0
.5
9

−
0.51

−
0
.0
6

7

−
0.
81

−
0
.7
5

0.70

−
0.10

−0.5
4

3

8

23

−
0.
42

0
.4
7

−
0.99

0.
11

9

0.
94

−
0
.7
9

−
0.41

0
.3
5

10

0.
21

0
.7
9

0.18

0.09

−
0
.6
5

4

11

0.
70

0
.8
6

0.70

0.
20

12

0.
99

−
0
.3
8

0.35
−
0
.3
2

13

0.
96

−
0
.1
3

−
0.52

−
0.27

0.74

−0.20 −0.20

(c) difference

1

2

5

0.
4

6 7

3

8

23

−
0.
4

9 10

−
0
.2

4

11 12 13

0.2 0.2

145



The advantage of our method is most clearly illustrated in settings in which initial sparse

estimates are likely to miss parts of the support that are nonetheless important for inference.

That is to say, both SparKLIE+ and the näıve procedure described in Appendix A.8.1 are

expected to do well when the support is recovered with high probability. However, when this

is no longer true, only SparKLIE+ will perform well.

We constructed eight graph pairs to highlight this difference. See Figures A.3–A.6. We

have four designs, and each design has a 25-node version and a 50-node version. The designs

are labeled as Chain 1, Chain 2, Tree 1, and Tree 2, where the first part refers to the structure

of γX and the second, the type of modification used to obtain γY from γX .

The edge weights were picked in the following manner. First, the weights for γX were

generated IID Uniform(−1, 1). Next, γY was obtained from γX by modifying five edges.

Thus, the difference graph always contained five nonzero edges.

Each design has a fixed inference target, a.k.a. the edge of interest. For Chain 1and Chain

2, this was always the edge (5, 6). For Tree 1 and Tree 2, this was always the edge (1, 3). The

magnitude was always fixed at 0.2. By contrast, two of the nuisance edges had magnitude

0.4, while the two others had magnitude 0.2. The signs were chosen so that the none of the

edge weights had magnitudes exceeding 1.

For each design, we first generated a 25-node version, and then embedded the 25-node

version into a 50-node one.

A.8.3 Data generation

In Experiments 1 – 5, the data were generated as IID draws from an Ising model with zero

node potentials. A Gibbs sampler [Geman and Geman, 1984] was used. For Experiments 1,

2, and 5 burn-in was 3000 and thinning was 1000. For Experiments 3 and 4, burn-in was

3000 and thinning was 2000.

A.8.4 Additional figures and tables for Experiment 1
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Figure A.7: The distribution of n1/2(θ̃(5,6) − θ∗(5,6)
)/v̂(5,6) under Chain 1, where θ̃(5,6) is the

Näıve re-fitted estimator (left), the SparKLIE+1 estimator (middle), and the SparKLIE+2
estimator (right), first as a Normal Q-Q plot (top) and then as a histogram (bottom). The
gray dots in the Q-Q plot is the Oracle case. The orange curve in the histogram is the density
of Normal(0, 1).
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Figure A.8: The distribution of n1/2(θ̃(5,6) − θ∗(5,6)
)/v̂(5,6) under Chain 2, where θ̃(5,6) is the

Näıve re-fitted estimator (left), the SparKLIE+1 estimator (middle), and the SparKLIE+2
estimator (right), first as a Normal Q-Q plot (top) and then as a histogram (bottom). The
gray dots in the Q-Q plot is the Oracle case. The orange curve in the histogram is the density
of Normal(0, 1).
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Figure A.9: The distribution of n1/2(θ̃(1,3) − θ∗(1,3)
)/v̂(1,3) under Tree 1, where θ̃(1,3) is the

Näıve re-fitted estimator (left), the SparKLIE+1 estimator (middle), and the SparKLIE+2
estimator (right), first as a Normal Q-Q plot (top) and then as a histogram (bottom). The
gray dots in the Q-Q plot is the Oracle case. The orange curve in the histogram is the density
of Normal(0, 1).
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Figure A.10: The distribution of n1/2(θ̃(1,3) − θ∗(1,3)
)/v̂(1,3) under Tree 2, where θ̃(1,3) is the

Näıve re-fitted estimator (left), the SparKLIE+1 estimator (middle), and the SparKLIE+2
estimator (right), first as a Normal Q-Q plot (top) and then as a histogram (bottom). The
gray dots in the Q-Q plot is the Oracle case. The orange curve in the histogram is the density
of Normal(0, 1).
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Table A.1: Comparison of the empirical bias of different estimators. For each estimator θ̃k,

the empirical bias is measured as the average of θ̃k − θ∗k over 1000 independent replications.
The values displayed below have been multiplied by 100.

γX γY p nX nY Oracle Näıve SparKLIE+1 SparKLIE+2

Chain 1 25 150 300 −0.505 8.033 −1.894 −0.621
50 300 600 −0.360 7.692 −2.301 −1.673

2 25 150 300 −0.819 6.920 0.526 −1.013
50 300 600 −0.039 7.636 1.516 −0.369

Tree 1 25 150 300 −1.763 6.698 −2.323 −4.143
50 300 600 0.256 8.975 0.875 −0.539

2 25 150 300 −0.770 3.803 1.168 −0.587
50 300 600 −0.611 5.306 −0.248 −0.826

A.9 Additional experiments

A.9.1 Experiment 2: Power of the normal-theory based test

We study the power of the normal-theory based test with SparKLIE+1 and +2 estimators.

The parameters for this experiment were generated by first fixing γY at the γY of the 25-node

Chain 1 pair from Experiment 1, and then obtaining 124 distinct graphs for γX by varying

the value of the change of interest over a grid δ = −0.75,−0.60, . . . , 0.75 in one of the four

settings described below:

Setting 1. (None) the edge of interest is the only edge that changes from γY to γX ,

Setting 2. (Strong) there are two additional strong changes of magnitude 0.4,

Setting 3. (Weak) there are two additional weak changes of magnitude 0.2, or

Setting 4. (Mixed) there are both weak and strong changes.

See Figures A.11–A.14 for illustration.
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Figure A.11: The realized edge weights for None. The γY here is identical to the γY of
Chain 1. γX is then obtained from γY by modifying the target edge (marked in red) by δ.
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Figure A.12: The realized edge weights for Strong. The γY here is identical to the γY of
Chain 1. γX is then obtained from γY by modifying the target edge (marked in red) by δ. In
contrast to None, two neighboring edges are also changed by magnitude 0.4.
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Figure A.13: The realized edge weights for Weak. The γY here is identical to the γY of
Chain 1. γX is then obtained from γY by modifying the target edge (marked in red) by δ. In
contrast to None, two neighboring edges are also changed by magnitude 0.2.
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Figure A.14: The realized edge weights for Mixed. The γY here is identical to the γY of
Chain 1. γX is then obtained from γY by modifying the target edge (marked in red) by δ. In
contrast to None, four neighboring edges are also changed by magnitude 0.4 or 0.2.
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We expect None and Strong to be easy in the sense that all four estimators are projected

to perform equally well. By contrast, Weak and Mixed represent hard problems for the

näıve re-estimation procedure.

Figure A.15 gives a summary of the results. The power is estimated as the proportion

of rejections out of 1000 independent replications at level 0.05. As in Experiment 1, both

SparKLIE+ estimators behave similarly.
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Figure A.15: Power of the test n1/2|θ̃k|/v̂k > Φ−1(0.975) for the null hypothesis H0 : θ∗k = 0.

Here, θ̃k is either the SparKLIE+1 or the SparKLIE+2 estimate and v̂k is the standard
deviation estimate defined in (3.6). The blue line with • indicates SparKLIE+1; the orange
line with H, SparKLIE+2.
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A.9.2 Experiment 4: Power of the empirical bootstrap test

We look at the power of the empirical bootstrap test as a function of the number of the changes

and their magnitudes. For each m ∈ {25, 500, 100}, we fix γX at the γX from Experiment 3,

and then modify γX to obtain γY . This was done by first picking sθ ∈ {1, 3, 5} edges

uniformly at random from the set of all possible edges, next drawing δ ∼ Uniform(l, l + 0.1)

for l ∈ {0, .05, .10, . . . , .50} for each edge in the difference graph independently of everything

else, and finally subtracting the chosen δ’s from γX .

Here, we focused on bootstrapping SparKLIE+2 only. Also, we considered the Studentized

version W = maxk n
1/2|θ̃k − θ∗k|/v̂k, where v̂k is the estimate of the standard error (3.6).

ĉW,α refers to the estimated (1− α)-quantile of W (see Appendix A.7.3).

The results are summarized in Figure A.16 at level 0.05. In the plots, the label “unnor-

malized” refers to the testing procedure using the unnormalized statistics T , and the label

“normalized”, to the Studentized version W . There is a moderate gain in power when the

latter is used.

A.9.3 Experiment 5: Reversed and symmetrized procedures and sensitivity

to λθ

We study the performance of the reversed and the symmetrized procedures using the same

synthetic data as in Experiment 1 for easier comparison with SparKLIE+. The reversed

procedure is obtained by replacing `KLIEP with the reversed loss

`RevKLIEP(θ; {Xi}
nX
i=1, {Yj}

nY
j=1) =

1

nY

nY∑
j=1

θTψ(Yj) + log

{
1

nX

nX∑
i=1

exp
(
−θTψ(Xi)

)}
.

It is easy to see that this is just `KLIEP with the roles of {Xi}
nX
i=1 and {Yj}

nY
j=1 switched.

`RevKLIEP also occurs as a result of minimizing the reverse KL divergence from fX/rθ to fY .
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Figure A.16: Power of the empirical bootstrap test for the global null hypothesis H0 : θ∗ = 0.
The left panels correspond to the test maxk |θ̃k| > ĉT,1−α/n

1/2; the right panels, to the

test maxk |θ̃k|/v̂k > ĉW,1−α/n
1/2 based on the Studentized version of the test statistics (see

Appendix A.7.3 for details). We looked at p = 25, 50, 100 and 1, 3, or 5 changes. The blue •
correspond to the case of the difference graph with 1 change; the orange H, to 3 changes; the
green �, to 5 changes.
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Table A.2: Regularization parameter settings for Experiment 5

Divergence Parameter Values

KL λθ {C logm/min(nX , nY )}1/2, C = 4, 3.5, . . . , 2

λk (2 logm/nY )1/2

Reverse λθ {C logm/min(nX , nY )}1/2, C = 16, 12.5, . . . , 2

λk (2 logm/nX)1/2

Symmetric λθ {C logm/min(nX , nY )}1/2, C = 16, 12.5, . . . , 2

λk {(2 logm/nX)1/2 + (2 logm/nY )1/2}/2

The symmetrized procedure minimizes the sum of `KLIEP and `RevKLIEP

`SymKLIEP(θ; {Xi}
nX
i=1, {Yj}

nY
j=1)

= `KLIEP(θ; {Xi}
nX
i=1, {Yj}

nY
j=1) + `RevKLIEP(θ; {Xi}

nX
i=1, {Yj}

nY
j=1)

= − 1

nX

nX∑
i=1

θTψ(Xi) +
1

nY

nY∑
j=1

θTψ(Yj)

+ log

{
1

nX

nX∑
i=1

exp
(
−θTψ(Xi)

)}
+ log

 1

nY

nY∑
j=1

exp
(
θTψ(Yj)

) .

To measure performance, we looked at the coverage and the median width of 95% confidence

intervals, as well as the bias of the estimator over the same 1000 replications as in Experiment 1.

The results are in Tables A.3–A.8. The reversed and the symmetrized procedures are expected

to have worse sample complexity compared to SparKLIE+. This is indeed what we observe.

Also, to study the sensitivity to the regularization parameter choice, we tried five difference

values of λθ as detailed in Table A.2. The results in Tables A.3–A.8 tell us that all performance

measures are quite stable for both SparKLIE+ procedures. The reversed and the symmetrized

procedures do show some instability, but it is likely that this has more to do with the fact

that both procedures have larger sample complexity relative to KLIEP. See Remark 3.5 in

Section 3.2.2.
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Table A.3: Empirical coverage (%) of the 95% CI θ̃k ± Φ−1(0.975)v̂k/n
1/2 under Chain 1

and Chain 2 pairs

γY p Divergence De-biasing Coverage for λθ = λθ(C))

1 25 KL +1 93.4 94.1 94.2 94.3 95.3
Reverse 92.0 91.9 92.1 91.7 90.2

Symmetric 91.1 89.5 89.3 87.6 87.5

KL +2 96.3 96.5 96.4 96.5 96.4
Reverse 96.7 96.5 95.6 93.6 91.5

Symmetric 94.0 93.0 89.7 78.1 56.7

50 KL +1 95.1 95.5 95.3 95.5 95.7
Reverse 88.8 87.6 85.9 91.9 89.1

Symmetric 90.9 91.4 88.7 86.8 70.8

KL +2 97.0 97.2 97.4 97.0 96.4
Reverse 94.7 93.0 88.9 93.0 89.5

Symmetric 94.0 93.3 87.1 52.5 97.8

2 25 KL +1 95.6 95.1 94.7 94.8 95.7
Reverse 90.0 90.0 89.1 89.8 87.7

Symmetric 93.8 92.9 91.7 89.5 88.9

KL +2 95.9 95.5 95.6 95.5 96.1
Reverse 95.3 95.3 95.1 94.8 91.0

Symmetric 94.9 94.8 90.3 78.3 56.8

50 KL +1 92.4 93.0 93.8 94.3 92.8
Reverse 87.7 87.7 87.3 87.8 85.7

Symmetric 92.7 92.6 88.7 83.6 71.8

KL +2 93.7 94.2 94.3 95.2 94.5
Reverse 92.6 92.5 92.7 92.0 88.3

Symmetric 93.6 93.5 85.9 48.7 98.7
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Table A.4: Empirical coverage (%) of the 95% CI θ̃k ± Φ−1(0.975)v̂k/n
1/2 under Tree 1 and

Tree 2 pairs

γY p Divergence De-biasing Coverage for λθ = λθ(C))

1 25 KL +1 94.0 94.5 94.7 95.5 95.2
Reverse 79.8 80.1 83.1 86.2 89.3

Symmetric 88.0 89.2 92.5 94.6 89.5

KL +2 97.7 97.6 97.4 97.2 97.7
Reverse 93.9 93.9 93.9 94.0 93.4

Symmetric 90.9 90.3 90.5 86.5 72.8

50 KL +1 95.4 95.7 96.1 96.1 95.9
Reverse 74.3 75.5 82.0 84.3 86.0

Symmetric 87.1 88.3 90.3 96.4 43.5

KL +2 98.5 98.5 98.5 98.1 98.2
Reverse 90.6 91.4 94.0 94.2 93.4

Symmetric 90.5 90.8 87.8 73.4 98.7

2 25 KL +1 95.5 96.1 95.9 95.9 95.8
Reverse 86.0 86.1 85.6 86.2 88.9

Symmetric 88.7 90.5 93.7 97.0 90.6

KL +2 98.2 98.7 98.8 98.5 98.5
Reverse 94.1 94.1 93.9 92.7 92.9

Symmetric 92.5 91.8 91.7 89.6 73.1

50 KL +1 95.4 95.6 95.0 95.4 95.5
Reverse 85.9 85.9 85.5 86.0 87.3

Symmetric 90.3 91.0 93.2 97.2 43.5

KL +2 99.0 98.8 98.2 98.0 98.0
Reverse 95.4 95.1 93.9 93.6 93.2

Symmetric 93.5 92.1 91.4 78.4 99.0
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Table A.5: Median width of the 95% CI θ̃k ± Φ−1(0.975)v̂k/n
1/2 under Chain 1 and Chan 2

pairs

γY p Divergence De-biasing Median width for λθ = λθ(C))

1 25 KL 1 0.479 0.481 0.485 0.490 0.497
Reverse 0.500 0.500 0.494 0.478 0.503

Symmetric 0.420 0.438 0.503 0.701 1.467

KL 2 0.511 0.517 0.519 0.523 0.532
Reverse 0.540 0.540 0.531 0.502 0.528

Symmetric 0.454 0.483 0.531 0.669 1.605

50 KL 1 0.347 0.347 0.346 0.347 0.351
Reverse 0.353 0.351 0.331 0.316 0.344

Symmetric 0.300 0.310 0.384 0.776 766.6

KL 2 0.366 0.364 0.364 0.365 0.369
Reverse 0.382 0.381 0.346 0.324 0.359

Symmetric 0.333 0.340 0.385 0.649 936.7

2 25 KL 1 0.436 0.446 0.454 0.466 0.483
Reverse 0.483 0.483 0.494 0.524 0.573

Symmetric 0.443 0.463 0.528 0.727 1.503

KL 2 0.444 0.454 0.465 0.481 0.504
Reverse 0.521 0.522 0.537 0.568 0.630

Symmetric 0.458 0.480 0.535 0.680 1.569

50 KL 1 0.318 0.323 0.329 0.336 0.349
Reverse 0.341 0.344 0.362 0.380 0.410

Symmetric 0.319 0.328 0.390 0.787 756.2

KL 2 0.322 0.327 0.336 0.348 0.363
Reverse 0.368 0.372 0.395 0.413 0.445

Symmetric 0.331 0.342 0.388 0.654 953.3
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Table A.6: Median width of the 95% CI θ̃k ± Φ−1(0.975)v̂k/n
1/2 under Tree 1 and Tree 2

pairs

γY p Divergence De-biasing Median width for λθ = λθ(C))

1 25 KL 1 0.754 0.765 0.776 0.792 0.815
Reverse 0.711 0.712 0.740 0.781 0.865

Symmetric 0.707 0.772 0.969 1.467 2.925

KL 2 0.845 0.865 0.881 0.903 0.940
Reverse 0.786 0.788 0.804 0.831 0.925

Symmetric 0.783 0.853 1.014 1.508 4.574

50 KL 1 0.581 0.578 0.575 0.575 0.584
Reverse 0.508 0.516 0.559 0.580 0.676

Symmetric 0.527 0.558 0.717 1.709 2.008

KL 2 0.659 0.654 0.651 0.652 0.669
Reverse 0.577 0.583 0.607 0.614 0.746

Symmetric 0.592 0.619 0.758 1.733 411.9

2 25 KL 1 0.815 0.826 0.835 0.842 0.867
Reverse 0.686 0.686 0.696 0.770 0.889

Symmetric 0.740 0.802 0.990 1.533 3.451

KL 2 0.893 0.906 0.928 0.933 0.973
Reverse 0.726 0.726 0.738 0.814 0.948

Symmetric 0.783 0.852 1.014 1.514 4.893

50 KL 1 0.620 0.621 0.620 0.617 0.632
Reverse 0.485 0.486 0.524 0.599 0.735

Symmetric 0.539 0.579 0.755 1.848 1.954

KL 2 0.687 0.684 0.679 0.679 0.693
Reverse 0.515 0.517 0.558 0.629 0.797

Symmetric 0.574 0.611 0.752 1.754 416.6
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Table A.7: Empirical bias of θ̃k under Chain 1 and Chain 2 pairs

γY p Divergence De-biasing Bias for λθ = λθ(C))

1 25 KL 1 -0.009 -0.014 -0.019 -0.021 -0.023
Reverse -0.061 -0.062 -0.046 -0.002 0.003

Symmetric 0.006 -0.006 -0.033 -1.591 -1.9× 1015

KL 2 0.009 -0.001 -0.012 -0.017 -0.021
Reverse -0.058 -0.059 -0.045 -0.005 -0.038

Symmetric 0.005 -0.009 -0.041 -0.541 -12.007

50 KL 1 -0.018 -0.017 -0.017 -0.017 -0.017
Reverse -0.058 -0.054 -0.005 0.023 0.005

Symmetric 0.008 -0.002 -0.043 -0.775 -96.784

KL 2 -0.011 -0.013 -0.012 -0.012 -0.014
Reverse -0.054 -0.052 -0.007 0.019 -0.002

Symmetric 0.006 -0.004 -0.050 -2.337 -22.035

2 25 KL 1 0.012 0.007 0.004 -0.000 -0.004
Reverse -0.070 -0.070 -0.076 -0.073 -0.078

Symmetric -0.023 -0.029 -0.047 -0.118 -10.152

KL 2 -0.004 -0.006 -0.008 -0.012 -0.014
Reverse -0.067 -0.067 -0.073 -0.140 -0.237

Symmetric -0.023 -0.031 -0.054 -0.282 -9.502

50 KL 1 0.022 0.018 0.013 0.005 -0.003
Reverse -0.066 -0.067 -0.073 -0.069 -0.074

Symmetric -0.019 -0.022 -0.054 -0.696 -83.982

KL 2 -0.006 -0.007 -0.008 -0.010 -0.014
Reverse -0.063 -0.064 -0.070 -0.070 -0.083

Symmetric -0.020 -0.023 -0.061 -2.634 -18.973
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Table A.8: Empirical bias of θ̃k under Tree 1 and Tree 2 pairs

γY p Divergence De-biasing Bias for λθ = λθ(C))

1 25 KL 1 -0.021 -0.017 -0.014 -0.012 -0.012
Reverse -22.828 -21.619 -21.573 -21.307 -20.354

Symmetric -0.042 -0.085 -0.129 -0.300 -11.936

KL 2 -0.030 -0.031 -0.031 -0.034 -0.039
Reverse -4.351 -3.258 -4.820 -4.550 -3.982

Symmetric -3.215 -3.624 -3.284 -3.849 -11.791

50 KL 1 0.001 -0.000 -0.003 -0.007 -0.011
Reverse -0.381 0.008 -2.644 -1.543 -2.899

Symmetric -0.046 -0.063 -0.105 -0.341 -56.174

KL 2 -0.012 -0.012 -0.014 -0.017 -0.021
Reverse -0.331 0.038 -0.226 -0.343 -0.684

Symmetric -0.056 -0.080 -0.140 -2.748 -14.916

2 25 KL 1 0.020 0.021 0.017 0.016 0.012
Reverse -20.257 -19.118 -19.523 -20.280 -19.418

Symmetric -0.062 -0.074 -0.106 -0.251 -9.982

KL 2 0.005 0.005 0.005 0.005 -0.001
Reverse -3.518 -3.371 -3.643 -3.835 -4.016

Symmetric -3.006 -3.024 -2.678 -3.294 -10.106

50 KL 1 0.001 -0.001 -0.003 -0.004 -0.005
Reverse -1.360 -0.999 -0.880 -2.011 -2.479

Symmetric -0.046 -0.052 -0.084 -0.756 -60.579

KL 2 -0.007 -0.008 -0.007 -0.007 -0.008
Reverse -0.200 -0.104 -0.284 -0.121 -0.918

Symmetric -0.048 -0.057 -0.101 -2.445 -13.089
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A.10 Supplement to Section 3.4

A.10.1 Preprocessing

The data were preprocessed in SPM12 (Wellcome Trust Centre for Neuroimaging, http://

www.fil.ion.ucl.ac.uk/spm). The default SPM12 steps were used, except in normalization,

the voxel size was set to 2×2×2 and the bounding box was changed to match the automated

anatomical labelling atlas [Tzourio-Mazoyer et al., 2002].

A.10.2 Experiment

The fMRI measurements were made while the participants were asked to go through four

blocks of task sequences, each made up of three types of tasks arranged in some order.

During the experiment, the participants were asked to look at a screen, through which they

received instructions about the tasks. All three tasks involved squeezing and releasing a hand

dynamometer while looking at the screen. For the sensorimotor task (T1), the participants

were asked to squeeze and release the hand dynamometer freely at their own pace while

paying heed to the images on the screen. By contrast, in the intrinsic alertness task (T2)

or the extrinsic alertness task (T3), the participants were supposed to squeeze the hand

dynamometer only after seeing a white square. In the case of T3, a black screen always

preceded each occurrence of the white square. For T2, there was no forewarning.

Figure A.17 gives the task sequence used in the pilot study.

Figure A.17: Task sequence. The blue blocks indicate Task 1 (T1); the green, Task 2 (T2);
and the red, Task 3 (T3).
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A.11 Additional real data example: Voting records of the 109th

United States Senate

We apply Section 3.1.1 and Algorithm 5 to compare the voting records in the 109th US Senate

between the first half (January 3, 2005 – January 16, 2006) and the second half (January 16,

2006 – January 3, 2007). The data were taken from a larger data set covering a longer period

(1979 – 2012) originally extracted from the website www.voteview.com and then processed

by the authors of Roy et al. [2017]. We are grateful to the authors of Roy et al. [2017] for

sharing their data with us.

We focus on the two halves of the 109th Senate. This is to ensure a sparse network

difference as well as homogeneity of the data. Only one seat changed hands between the

two periods from one Democrat to another. On January 16, 2006, Democrat Jon Corzine

resigned in order to assume his new position as Governor of New Jersey, naming Democrat

Bob Menendez to succeed. In spite of the change in membership, one would not expect there

to be significant changes in the overall voting pattern, as the votes tend to split along the

party lines, and nothing in our research suggests that the two Democrats were exceptional in

this respect. This leads to the hypothesis

H0 : γ1,Corzine / Menendez,v = γ2,Corzine / Menendez,v ∀ v 6= Corzine / Menendez.

There were 251 votes in the first half, and 177 votes in the second. Following Roy

et al. [2017], we code “Yea” as +1 and “Nay” as −1, and model the votes as independent

observations from one of two Ising models with zero node potentials, one for each period.

Admittedly, our model is far too simple to capture all the nuances of the complex political

process. What we are hoping to observe with this toy example is whether the pattern

recovered by SparKLIE+ aligns well with our knowledge of past political events, which in this

case corresponds to an empty graph for the neighborhood of the New Jersey seat of interest.

We test HNJ at level 0.05. We use Algorithm 3 to estimate the differential network in the
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neighborhood of the New Jersey seat. We use the version of Algorithm 3 employing pivotal

formulations for Steps 1 and 2 with the universal penalty levels, as explained in Remark 3.2

in Section 3.1.1. The rejection threshold for the test statistic

T0 = max
v 6=Corzine / Menendez

|θ̃Corzine / Menendez,v|

was estimated using Algorithm 5. Comparing T0 with the estimated rejection threshold

yielded no statistically significant edges in this neighborhood differential network. We conclude

that Senator Menendez’s records did not differ significantly from those of his predecessor, as

expected.
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APPENDIX B

SUPPLEMENT TO CHAPTER 4

B.1 Proof of Theorem 4.1

Recall

∆̃ab −∆∗ab = −Uab −Bab,

where Uab and Bab were defined in (4.10) and (4.11).

Lemma B.1 says that Uab is approximately Gaussian.

Lemma B.1. Recall the definitions of Uab (4.10), vab (4.12), wab,1 (4.13), wab,2 (4.14), and

v̄ab (4.15). Under Condition 4.1,

sup
z∈R

∣∣∣P(v̄−1
ab Uab ≤ z

)
− Φ(z)

∣∣∣ ≤ c1vab
v̄ab

(
1

nX
+

1

nY

)
+

c2

v̄3
ab

(
w3

1,ab

n2
X

+
w3
ab,2

n2
Y

)
, (B.1)

where c1 and c2 > 0 are absolute constants.

Proof. Since v2
ab < ∞ and max(v2

ab,1, v
2
ab,2) > 0 by Condition 4.1, (B.1) holds as a special

case of the Berry-Esseen bound for multisample U-statistics [Chen and Shao, 2007, Theorem

3.2].

Next, we bound the bias Bab. Let ◦ denote the element-wise multiplication and /, the

element-wise division. Let ΓD be the symmetric matrix such that the (k, l)-th component is

given by ΓD,kl if k ≤ l, and ΓD,lk else. Define ΓM,ab similarly. For λD, λM,ab, rD, rM,ab,

C1, C2, C3 > 0 and c ≥ 1, let E be the event

E =
5⋂

k=1

Ek, (B.2)
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where

E1 =
{∣∣∣ΓD ◦ (∆̂−∆∗

)∣∣∣
1
≤ rD

}
, E2 =

{∣∣∣ΓM,ab ◦
(
M̂ab −M∗ab

)∣∣∣
1
≤ rM,ab

}
,

E3 = {2c |∇`D(∆∗)/ΓD|∞ ≤ λD} , E4 =
{

2c
∣∣∇`M,ab(M

∗
ab)/ΓM,ab

∣∣
∞ ≤ λM,ab

}
,

E5 =
{∣∣ΓD/ΓM,ab

∣∣
∞ ≤ C1,

∣∣ΓM,ab/ΓD
∣∣
∞ ≤ C2,

∣∣H/ (ΓD ⊗ ΓM,ab

)∣∣
∞ ≤ C3

}
.

Lemma B.2. The event E defined in (B.2) implies the event

{
|Bab| ≤ (2c)−1C1λDrM,ab + (2c)−1C2λM,abrD + C3rDrM,ab

}
. (B.3)

Proof. According to the definition of Bab (4.11),

Bab = B1 +B2 +B3,

where

B1 = vec
(
M̂ab −M∗ab

)T
∇`D(∆∗), B2 = ∇`M,ab(M

∗
ab)

T vec
(

∆̂−∆∗
)
,

B3 = vec
(
M̂ab −M∗ab

)T
H vec

(
∆̂−∆∗

)
, H =

1

2

(
Σ̂X ⊗ Σ̂Y + Σ̂Y ⊗ Σ̂X

)
.

We have

|B1| ≤
∣∣∣∇`D(∆∗)/ΓD

∣∣∣
∞

∣∣∣ΓM,ab ◦
(
M̂ab −M∗ab

) ∣∣∣
1

∣∣ΓD/ΓM,ab

∣∣
∞ , (B.4)

|B2| ≤
∣∣∣∇`M,ab(M

∗
ab)/ΓM,ab

∣∣∣
∞

∣∣∣ΓD ◦ (∆̂−∆∗
) ∣∣∣

1

∣∣ΓM,ab/ΓD
∣∣
∞ , (B.5)

|B3| ≤
∣∣∣ΓM,ab ◦

(
M̂ab −M∗ab

)∣∣∣
1

∣∣∣ΓD ◦ (∆̂−∆∗
)∣∣∣

1

∣∣H/ (ΓD ⊗ ΓM,ab

)∣∣
∞ . (B.6)

Combine (B.4)–(B.6) and apply the definition of the event E to conclude.
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Proof of Theorem 4.1. By Lemma B.1, the leading term Uab is approximately Gaussian:

sup
z∈R

∣∣∣P(v̄−1
ab Uab ≤ z

)
− Φ(z)

∣∣∣ ≤ η1,ab, (B.7)

η1,ab =
c1vab
v̄ab

(
1

nX
+

1

nY

)
+

c2

v̄3
ab

(
w3
ab,1

n2
X

+
w3
ab,2

n2
Y

)
= O

(
n1/2

)
, (B.8)

where vab, wab,1, wab,2, and v̄ab were defined in (4.12), (4.13), (4.14), and (4.15).

Next, we show that the bias term Bab is bounded on the event

F(t) =
{
|Σ̂X − ΣX |∞ ≤ t

}
∩
{
|Σ̂Y − ΣY |∞ ≤ t

}
. (B.9)

By Lemma B.4, E3 ⊇ F(t) and E4 ⊇ F(t) with c = 1 for λD in (4.16) and λM,ab in (4.17).

By Lemmas B.3 and B.6, E1 ⊇ E3 and E2 ⊇ E4 for

rD =
48sDλD

κXκY − 25 (|ΣX |∞ + |ΣY |∞ + t) tsD
,

rM,ab =
48sM,abλM,ab

κXκY − 25 (|ΣX |∞ + |ΣY |∞ + t) tsM,ab
.

Finally, by Lemma B.5, E5 ⊇ F(t) with C1 = C2 = 1 for

C3 = (|ΣX |∞ + t) (|ΣY |∞ + t) .

Thus, by Lemmas B.2 and B.8,

P
(
v̄−1
ab |Bab| > η2,ab(t)

)
≤ P (F(t)c)

≤ P
(
|Σ̂X − ΣX |∞ > t

)
+ P

(
|Σ̂Y − ΣY |∞ > t

)
≤ η3(t),

(B.10)
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where

η2,ab(t)

≤
96 max(2, |∆∗|1)|M∗ab|1 (1 + |ΣX |∞ + |ΣY |∞ + t) (|ΣX |∞ + |ΣY |∞ + t) t2sDsM,ab

v̄ab

×

[
1{

κXκY − 25 (|ΣX |∞ + |ΣY |∞ + t) tsM,ab

}
sD

+
1

{κXκY − 25 (|ΣX |∞ + |ΣY |∞ + t) tsD} sM,ab

+
96 (|ΣX |∞ + t) (|ΣY |∞ + t){

κXκY − 25 (|ΣX |∞ + |ΣY |∞ + t) tsM,ab

}
{κXκY − 25 (|ΣX |∞ + |ΣY |∞ + t) tsD}

]

= O

(
sDsM,ab log p

n1/2

)

and

η3(t) = p(p+ 1)

{
exp

(
−nX t

2

4τX

)
+ exp

(
−nY t

2

4τY

)}
≤ 4 exp

{
−min

(
nX
τX

,
nY
τY

)
t2

8

}
.

Applying Barber and Kolar [2018, Lemma D.3] to (B.7) and (B.10), we have

sup
z∈R

∣∣∣P(v̄−1
ab

(
∆̃ab −∆∗ab

)
≤ z
)
− Φ(z)

∣∣∣ ≤ η1,ab + η2,ab(t) + η3(t).

This is o(1) under Condition 4.2.

B.2 Consistency of the vanilla LASSO

For s > 0, let κ(s) be the value

κ(s) = min

{
s vec(M)TH vec(M)

|M |21
: M ∈ K(s)

}
, (B.11)
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where K(s) is the subset of Sp, the set of p-by-p symmetric matrices, defined as

K(s) =
{
M ∈ Sp : ∃ S ⊆ S̄, |S| ≤ s, |MSc|1 ≤ 3|MS |1

}
, (B.12)

where S̄ = {(k, l) : 1 ≤ k ≤ l ≤ p}.

Lemma B.3. Let ∆̂ be the output of (4.1) run with some λD > 0 and ΓD,kl = 1 for all

1 ≤ k ≤ l ≤ p. If

2 |∇`D(∆∗)|∞ ≤ λD,

then ∣∣∣∆̂−∆∗
∣∣∣
1
≤ 3sDλD

κ(sD)
,

where sD = |∆∗|0.

Similarly, for each (a, b) ∈ I, let M̂ab be the output of (4.2) run with some λM,ab > 0

and ΓM,ab,kl = 1 for all 1 ≤ k ≤ l ≤ p. If

2
∣∣∇`M,ab(M

∗
ab)
∣∣
∞ ≤ λM,ab,

then ∣∣∣M̂ab −M∗ab
∣∣∣
1
≤

3sM,abλM,ab

κ(sM,ab)
,

where sM,ab = |M∗ab|0.

Proof. Here, we only prove the first statement; the second statement is proved in the same

manner.

Let d∆ = ∆̂−∆∗. Since `D is quadratic in ∆,

`D(∆̂)− `D(∆∗) = ∇`D(∆∗)T vec (d∆) +
1

2
vec (d∆)TH vec (d∆) ,
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so that
1

2
vec (d∆)TH vec (d∆) = `D(∆̂)− `D(∆∗)−∇`D(∆∗)T vec (d∆)

≤ `D(∆̂)− `D(∆∗) + |∇`D(∆∗)|∞ |d∆|1 ,
(B.13)

where the inequality in the last line is due to the Cauchy-Schwartz inequality. Because ∆̂

minimizes `D(∆) + λD|∆|1,

`D(∆̂)− `D(∆∗) ≤ λD

(
|∆∗|1 − |∆̂|1

)
≤ λD

(
|d∆SD |1 − |d∆ScD |1

)
, (B.14)

where SD is the support of ∆∗. By hypothesis,

2 |∇`D(∆∗)|∞ ≤ λD. (B.15)

Thus, combining (B.13) with (B.14) and (B.15),

vec(d∆)TH vec(d∆) ≤ λD

{
3|d∆SD |1 − |d∆ScD |1

}
. (B.16)

Since the left-hand side of (B.16) is nonnegative, d∆ belongs to K(sD) in (B.12). Therefore,

vec(d∆)TH vec(d∆) ≥
κ(sD)|d∆|21

sD
. (B.17)

(B.16) and (B.17) together yield

|d∆|1 ≤
3sDλD
κ(sD)

.
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B.3 Auxiliary results for the vanilla LASSO

B.3.1 Bounds on the gradients

Lemma B.4. The event F(t) in (B.9) implies the event

 |∇`D(∆∗)|∞ ≤ (|∆∗|1|ΣX |∞ + |∆∗|1|ΣY |∞ + 2) t+ |∆∗|1t2,

|∇`M,ab(M
∗
ab)|∞ ≤ |M

∗
ab|1 (|ΣX |∞ + |ΣY |∞) t+ |M∗ab|1t

2 ∀ 1 ≤ a ≤ b ≤ p

 .

Proof. Recall

∇`D(∆∗) =
1

2

(
Σ̂X∆∗Σ̂Y + Σ̂Y ∆∗Σ̂X

)
− Σ̂Y + Σ̂X = S1 + S2 +D,

where

S1 =
1

2

{(
Σ̂X − ΣX

)
∆∗ΣY + ΣY ∆∗

(
Σ̂X − ΣX

)}
+
(

Σ̂X − ΣX

)
,

S2 =
1

2

{
ΣX∆∗

(
Σ̂Y − ΣY

)
+
(

Σ̂Y − ΣY

)
∆∗ΣX

}
−
(

Σ̂Y − ΣY

)
,

D =
1

2

{(
Σ̂X − ΣX

)
∆∗
(

Σ̂Y − ΣY

)
+
(

Σ̂Y − ΣY

)
∆∗
(

Σ̂X − ΣX

)}
.

We have

|S1|∞ ≤ (|∆∗|1|ΣY |∞ + 1) |Σ̂X − ΣX |∞, |S2|∞ ≤ (|∆∗|1|ΣX |∞ + 1) |Σ̂Y − ΣY |∞,

|D|∞ ≤ |∆
∗|1|Σ̂X − ΣX |∞|Σ̂Y − ΣY |∞,

and hence,

|∇`D(∆∗)|∞ ≤ (|∆∗|1|ΣY |∞ + 1) |Σ̂X − ΣX |∞

+ (|∆∗|1|ΣX |∞ + 1) |Σ̂Y − ΣY |∞ + |∆∗|1|Σ̂X − ΣX |∞|Σ̂Y − ΣY |∞.
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Similarly,

|∇`M,ab(M
∗
ab)|∞ ≤ |M

∗
ab|1|ΣY |∞|Σ̂X − ΣX |∞

+ |M∗ab|1|ΣX |∞|Σ̂Y − ΣY |∞ + |M∗ab|1|Σ̂X − ΣX |∞|Σ̂Y − ΣY |∞.

The conclusion follows by the definition of F(t).

B.3.2 Bounds on the Hessian

Lemma B.5. The event F(t) in (B.9) implies the event

|H|∞ ≤ (|ΣX |∞ + t) (|ΣY |∞ + t) .

Proof. Write

|H|∞ ≤
∣∣∣∣12 (ΣX ⊗ ΣY + ΣY ⊗ ΣX)

∣∣∣∣
∞

+ |D|∞.

where

D =
1

2

(
Σ̂X ⊗ Σ̂Y + Σ̂Y ⊗ Σ̂X

)
− 1

2

(
ΣX ⊗ ΣY + ΣY ⊗ ΣX

)
.

Clearly, ∣∣∣∣12 (ΣX ⊗ ΣY + ΣY ⊗ ΣX)

∣∣∣∣
∞
≤ |ΣX |∞|ΣY |∞. (B.18)

Since

D =
1

2

{(
Σ̂X − ΣX

)
⊗ ΣY + ΣY ⊗

(
Σ̂X − ΣX

)}
+

1

2

{
ΣX ⊗

(
Σ̂Y − ΣY

)
+
(

Σ̂Y − ΣY

)
⊗ ΣX

}
+

1

2

{(
Σ̂X − ΣX

)
⊗
(

Σ̂Y − ΣY

)
+
(

Σ̂Y − ΣY

)
⊗
(

Σ̂X − ΣX

)}
,

on the event F(t),

|D|∞ ≤ |ΣX |∞t+ |ΣY |∞t+ t2, (B.19)
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Combining (B.18) and (B.19) yields the conclusion.

B.3.3 Restricted strong convexity

The result of this section is about the restricted strong convexity constant κ(s) defined in

(B.11).

Lemma B.6. The event F(t) in (B.9) implies the event

κ(s) ≥ κXκY − 25 (|ΣX |∞ + |ΣY |∞ + t) ts

16
,

where κX and κY are the smallest eigenvalues of ΣX and ΣY .

Proof. For any matrix M ,

vec(M)TH vec(M) = vec(M)TE(H) vec(M) + vec(M)TD vec(M),

E(H) =
1

2
(ΣX ⊗ ΣY + ΣY ⊗ ΣX) , D = H − E(H).

By Barber and Kolar [2018, Lemma 4.9],

vec(M)TH vec(M) ≥ vec(M)TE(H) vec(M)− |D|F,s
(
|M |F +

|M |1√
s

)2

, (B.20)

|D|F,s = sup
|M |F≤1
|M |0≤s

∣∣vec(M)TD vec(M)
∣∣ .

On the one hand, we have

vec(M)TE(H) vec(M) ≥ κXκY |M |2F . (B.21)
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On the other hand,

D =
1

2

{(
Σ̂X − ΣX

)
⊗ ΣY + ΣY ⊗

(
Σ̂X − ΣX

)}
+

1

2

{
ΣX ⊗

(
Σ̂Y − ΣY

)
+
(

Σ̂Y − ΣY

)
⊗ ΣX

}
+

1

2

{(
Σ̂X − ΣX

)
⊗
(

Σ̂Y − ΣY

)
+
(

Σ̂Y − ΣY

)
⊗
(

Σ̂X − ΣX

)}
,

and hence, on the event F(t),

|D|F,s ≤ (|ΣX |∞ + |ΣY |∞ + t) ts. (B.22)

Combining (B.21) and (B.22) with (B.20),

vec(M)TH vec(M) ≥ κXκY |M |2F − st (|ΣX |∞ + |ΣY |∞ + t)

(
|M |F +

|M |1√
s

)2

. (B.23)

Now, suppose M ∈ K(s). Then, |M |1 ≤ 4s1/2|M |F , and hence, (B.23) implies

vec(M)TH vec(M) ≥ {κXκY − 25st (|ΣX |∞ + |ΣY |∞ + t)} |M |2F

≥ κXκY − 25st (|ΣX |∞ + |ΣY |∞ + t)

16

|M |21
s

.

(B.24)

Rearranging (B.24) yields the desired statement.

B.4 Auxiliary results

Proposition B.1. [Craig, 1936, Eq. (10)] Let Z1 and Z2 be a pair of standard normal

random variables with correlation ρ. The moment generating function of their product Z1Z2

is

MZ1Z2
(t) = [{1− (1 + ρ) t} {1 + (1− ρ) t}]−1/2

for t ∈ (−1/(1− ρ), 1/(1 + ρ)). Note that ρ = 1 recovers the moment generating function of

χ2
1.
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Lemma B.7. Let ε ∈ (0, 1) be a constant satisfying |ρ| < 1− ε, e.g., ε = (1− |ρ|)/2, and let

τ(ρ, ε)

= max

{ 1− ρ2

1− (ρ+ ε)2

}2 {
1 + (ρ+ ε)2

}
,

{
1− ρ2

1− (ρ− ε)2

}2 {
1 + (ρ− ε)2

} . (B.25)

Then, the moment generating function of the centered random variable Z1Z2 − ρ satisfies

MZ1Z2−ρ(t) ≤ exp
{
τ(ρ, ε) t2

}
, |t| ≤ ε/(1− ρ2). (B.26)

Proof. By Proposition B.1,

ψ(t) = logMZ1Z2−ρ(t) = −ρt− 1

2
[log {1− (1 + ρ) t}+ log {1 + (1− ρ) t}]

for t ∈ (−1/(1− ρ), 1/(1 + ρ)). Now,

ψ′(t) = −ρ+
1

2

{
1 + ρ

1− (1 + ρ) t
− 1− ρ

1 + (1− ρ) t

}
,

ψ′′(t) =
1

2

[{
1 + ρ

1− (1 + ρ) t

}2

+

{
1− ρ

1 + (1− ρ) t

}2
]
,

ψ′′′(t) =

{
1 + ρ

1− (1 + ρ) t

}3

−
{

1− ρ
1 + (1− ρ) t

}3

.

Note that ψ′′(t) is decreasing on (−1/(1 − ρ),−ρ/(1 − ρ2)) and increasing on (−ρ/(1 −

ρ2), 1/(1 + ρ)). By the calculations above and Taylor’s theorem, for any t̄ > 0 satisfying

[−t̄, t̄] ⊆ (−1/(1− ρ), 1/(1 + ρ))

|ψ(t)| ≤ max
{
ψ′′ (−t̄) , ψ′′ (t̄)

}
t2, |t| ≤ t̄.
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Taking t̄ = ε/(1− ρ2),

ψ′′ (−t̄) =
1

2

{(
1− ρ2

1− ρ+ ε

)2

+

(
1− ρ2

1 + ρ− ε

)2
}

=

{
1− ρ2

1− (ρ− ε)2

}2 {
1 + (ρ− ε)2

}
,

ψ′′ ( t̄) =
1

2

{(
1− ρ2

1− ρ− ε

)2

+

(
1− ρ2

1 + ρ+ ε

)2
}

=

{
1− ρ2

1− (ρ+ ε)2

}2 {
1 + (ρ+ ε)2

}
.

Remark B.1. In general, if

X1

X2

 ∼ Normal

0,

σ11 σ12

σ12 σ22


 , ρ12 =

σ12

(σ11σ22)1/2
,

then the moment generating function of the centered product X1X2 − σ12 satisfies

MX1X2−σ12(t) ≤ exp
{
σ11σ22 τ (ρ12, ε12) t2

}
, |t| ≤ ε12

(σ11σ22)1/2 (1− ρ2
12

) .
This is because

MX1X2−σ12(t) = E [exp {t (X1X2 − σ12)}]

= E

[
exp

{
(σ11σ22)1/2 t

(
X1X2

(σ11σ22)1/2
− ρ12

)}]
,

and X1/σ
1/2
11 and X2/σ

1/2
22 are standard normal with correlation ρ12.

Lemma B.8. Let S be a set of edges, i.e., S ⊆ S̄, where S̄ = {(k, l) : 1 ≤ k ≤ l ≤ p}.

P

(
max

(k,l)∈S

∣∣σ̂X,kl − σX,kl∣∣ > t

)

≤

 2|S| exp
(
− nX t

2

4τX,S

)
if 0 < t ≤ 2τX,S t̄X,S ,

2|S| exp
(
−nX t̄X,S t2

)
if t ≥ 2τX,S t̄X,S ,

(B.27)
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with

τX,S = max
(k,l)∈S

max

(σX,kkσX,ll)1/2
{

1− ρ2
X,kl

1−
(
ρX,kl + εX,kl

)2
}2 {

1 +
(
ρX,kl + εX,kl

)2}
,

(
σX,kkσX,ll

)1/2{ 1− ρ2
X,kl

1−
(
ρX,kl − εX,kl

)2
}2 {

1 +
(
ρX,kl − εX,kl

)2}
and

t̄X,S = min
(k,l)∈S

εX,kl(
σX,kkσX,ll

)1/2 (
1− ρ2

X,kl

) ,
where εX,kl ∈ (0, 1) is a constant satisfying |ρX,kl| < 1− εX,kl. Similarly,

P

(
max

(k,l)∈S

∣∣σ̂Y,kl − σY,kl∣∣ > t

)

≤

 2|S| exp
(
− nY t

2

4τY,S

)
if 0 < t ≤ 2τY,S t̄Y,S ,

2|S| exp
(
−nY t̄Y,S t2

)
if t ≥ 2τY,S t̄Y,S ,

(B.28)

with

τY,S = max
(k,l)∈S

max

(σY,kkσY,ll)1/2
{

1− ρ2
Y,kl

1−
(
ρY,kl + εY,kl

)2
}2 {

1 +
(
ρY,kl + εY,kl

)2}
,

(
σY,kkσY,ll

)1/2{ 1− ρ2
Y,kl

1−
(
ρY,kl − εY,kl

)2
}2 {

1 +
(
ρY,kl − εY,kl

)2}
and

t̄Y,S = min
(k,l)∈S

εY,kl(
σY,kkσY,ll

)1/2 (
1− ρ2

Y,kl

) ,
where εY,kl ∈ (0, 1) is a constant satisfying |ρY,kl| < 1− εY,kl.
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Proof. Here, we prove (B.27) only; the proof for (B.28) is identical. By Lemma B.7,

max
(k,l)∈S

max
(
E
[
exp

{
t
(
σ̂X,kl − σX,kl

)}]
,E
[
exp

{
−t
(
σ̂X,kl − σX,kl

)}])
≤ exp

(
τX,St

2/nX

)
, |t| ≤ t̄X,S .

(B.27) follows by the usual Chernoff bounding technique.

B.5 Additional figures and tables for Section 4.3.1
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Figure B.1: Normal Q-Q plot of n1/2(∆̃ab −∆∗ab)/v̂ab under Model 1. p = 100 in the top
row and p = 200 in the bottom row. The distribution of the oracle estimator is provided for
easy comparison in gray.
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Figure B.2: Histogram of n1/2(∆̃ab −∆∗ab)/v̂ab under Model 1. p = 100 in the top row and
p = 200 in the bottom row. The orange curve is the density of Normal(0, 1).
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Figure B.3: Normal Q-Q plot of n1/2(∆̃ab −∆∗ab)/v̂ab under Model 2. p = 100 in the top
row and p = 200 in the bottom row. The distribution of the oracle estimator is provided for
easy comparison in gray.
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Figure B.4: Histogram of n1/2(∆̃ab −∆∗ab)/v̂ab under Model 2. p = 100 in the top row and
p = 200 in the bottom row. The orange curve is the density of Normal(0, 1).
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Figure B.5: Normal Q-Q plot of n1/2(∆̃ab −∆∗ab)/v̂ab under Model 3. p = 100 in the top
row and p = 200 in the bottom row. The distribution of the oracle estimator is provided for
easy comparison in gray.
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Figure B.6: Histogram of n1/2(∆̃ab −∆∗ab)/v̂ab under Model 3. p = 100 in the top row and
p = 200 in the bottom row. The orange curve is the density of Normal(0, 1).
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Figure B.7: Normal Q-Q plot of n1/2(∆̃ab −∆∗ab)/v̂ab under Model 4. p = 100 in the top
row and p = 200 in the bottom row. The distribution of the oracle estimator is provided for
easy comparison in gray.
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Figure B.8: Histogram of n1/2(∆̃ab −∆∗ab)/v̂ab under Model 4. p = 100 in the top row and
p = 200 in the bottom row. The orange curve is the density of Normal(0, 1).
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Figure B.9: Normal Q-Q plot of n1/2(∆̃ab −∆∗ab)/v̂ab under Model 5. p = 100 in the top
row and p = 200 in the bottom row. The distribution of the oracle estimator is provided for
easy comparison in gray.
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Figure B.10: Histogram of n1/2(∆̃ab −∆∗ab)/v̂ab under Model 5. p = 100 in the top row and
p = 200 in the bottom row. The orange curve is the density of Normal(0, 1).
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Table B.1: Empirical coverage (%) and length of 95% CIs and the bias of estimators under
Model 1 with nX = nY = 300. The numbers displayed below are estimates based on 1000
independent replications.

p Edge Method Coverage Length Bias ×103

100 ∆∗5,5 = 0 SparDE+ 94.6 0.302 3.8

Xia et al. [2015] 95.8 0.507 5.0
∆∗8,7 = 0 SparDE+ 93.9 0.321 1.9

Xia et al. [2015] 91.3 0.554 3.1
∆∗50,25 = 0 SparDE+ 95.0 0.307 −1.5

Xia et al. [2015] 94.3 0.488 −1.0
200 ∆∗5,5 = 0 SparDE+ 95.1 0.308 1.1

Xia et al. [2015] 95.6 0.501 −2.8
∆∗8,7 = 0 SparDE+ 95.1 0.327 −0.0

Xia et al. [2015] 90.9 0.539 4.6
∆∗50,25 = 0 SparDE+ 95.6 0.313 1.8

Xia et al. [2015] 95.9 0.480 2.8

Table B.2: Empirical coverage (%) and length of 95% CIs and the bias of estimators under
Model 2 with nX = nY = 300. The numbers displayed below are estimates based on 1000
independent replications.

p Edge Method Coverage Length Bias ×103

100 ∆∗5,5 = 0 SparDE+ 95.5 0.074 0.6

Xia et al. [2015] 97.7 0.175 −0.7
∆∗8,7 = 0 SparDE+ 95.4 0.045 −0.2

Xia et al. [2015] 95.9 0.129 1.0
∆∗50,25 = 0 SparDE+ 95.3 0.038 −0.1

Xia et al. [2015] 95.5 0.092 0.1
200 ∆∗5,5 = 0 SparDE+ 95.2 0.075 0.5

Xia et al. [2015] 98.5 0.170 −0.4
∆∗8,7 = 0 SparDE+ 92.2 0.045 0.2

Xia et al. [2015] 93.6 0.125 −1.2
∆∗50,25 = 0 SparDE+ 95.4 0.039 −0.6

Xia et al. [2015] 95.0 0.089 −1.1
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Table B.3: Empirical coverage (%) and length of 95% CIs and the bias of estimators under
Model 3 with nX = nY = 300. The numbers displayed below are estimates based on 1000
independent replications.

p Edge Method Coverage Length Bias ×103

100 ∆∗5,5 = 0.18 SparDE+ 96.6 0.561 −4.1

Xia et al. [2015] 86.6 0.521 −119.0
∆∗8,7 = 0.43 SparDE+ 96.1 0.325 11.1

Xia et al. [2015] 71.6 0.298 −103.3
∆∗50,25 = 0.0 SparDE+ 95.1 0.250 −1.7

Xia et al. [2015] 94.9 0.267 −2.1
∆∗21,20 = 0.28 SparDE+ 95.0 0.231 7.7

Xia et al. [2015] 91.1 0.210 −31.5
∆∗30,30 = 0.38 SparDE+ 96.3 0.849 18.9

Xia et al. [2015] 21.7 0.815 −556.0
200 ∆∗5,5 = 0.08 SparDE+ 95.5 0.262 5.1

Xia et al. [2015] 81.9 0.213 −58.6
∆∗8,7 = 0.46 SparDE+ 94.7 0.353 12.9

Xia et al. [2015] 94.2 0.301 −33.0
∆∗50,25 = 0.0 SparDE+ 95.3 0.464 −6.0

Xia et al. [2015] 94.7 0.477 −5.3
∆∗21,20 = 0.58 SparDE+ 96.2 0.477 24.4

Xia et al. [2015] 81.1 0.396 −97.8
∆∗30,30 = 0.12 SparDE+ 95.2 0.294 7.2

Xia et al. [2015] 8.7 0.259 −212.8
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Table B.4: Empirical coverage (%) and length of 95% CIs and the bias of estimators under
Model 4 with nX = nY = 300. The numbers displayed below are estimates based on 1000
independent replications.

p Edge Method Coverage Length Bias ×103

100 ∆∗5,5 = 0.09 SparDE+ 93.8 0.188 0.1

Xia et al. [2015] 93.6 0.171 −10.7
∆∗8,7 = 0.56 SparDE+ 94.5 0.383 15.4

Xia et al. [2015] 79.2 0.339 −92.0
∆∗50,25 = 0.0 SparDE+ 94.4 0.448 −7.6

Xia et al. [2015] 94.7 0.485 −7.5
∆∗21,20 = 0.45 SparDE+ 95.3 0.232 9.9

Xia et al. [2015] 77.2 0.207 −63.4
∆∗30,30 = 0.29 SparDE+ 95.3 0.560 2.3

Xia et al. [2015] 60.4 0.509 −217.9
200 ∆∗5,5 = 0.16 SparDE+ 96.6 0.331 7.0

Xia et al. [2015] 88.2 0.272 −56.5
∆∗8,7 = 0.18 SparDE+ 94.8 0.165 9.1

Xia et al. [2015] 27.4 0.136 −87.4
∆∗50,25 = 0.0 SparDE+ 94.7 0.239 2.1

Xia et al. [2015] 94.8 0.234 3.0
∆∗21,20 = 0.78 SparDE+ 95.0 0.516 29.2

Xia et al. [2015] 91.7 0.427 −45.9
∆∗30,30 = 0.33 SparDE+ 95.8 0.670 5.2

Xia et al. [2015] 60.0 0.580 −257.9

193



Table B.5: Empirical coverage (%) and length of 95% CIs and the bias of estimators under
Model 5 with nX = nY = 300. The numbers displayed below are estimates based on 1000
independent replications.

p Edge Method Coverage Length Bias ×103

100 ∆∗5,5 = 0.0 SparDE+ 95.7 0.867 0.7

Xia et al. [2015] 93.7 0.817 −75.1
∆∗8,7 = 0.0 SparDE+ 95.8 0.573 −7.1

Xia et al. [2015] 49.7 0.537 −270.4
∆∗22,20 = 0.37 SparDE+ 95.6 0.371 3.2

Xia et al. [2015] 95.3 0.336 4.0
200 ∆∗5,5 = 0.0 SparDE+ 96.8 0.901 7.5

Xia et al. [2015] 95.9 0.806 −43.1
∆∗8,7 = 0.0 SparDE+ 95.7 0.594 −2.6

Xia et al. [2015] 50.7 0.530 −268.9
∆∗22,20 = 0.37 SparDE+ 95.1 0.386 16.0

Xia et al. [2015] 96.3 0.332 16.6
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APPENDIX C

SUPPLEMENT TO CHAPTER 5

C.1 Proof of Theorem 5.1

For completeness, we give the full details of the proof of Theorem 5.1; a sketch of the proof is

presented in Section 5.3.

Denote Algorithm 12 by Ã. We view Ã as mapping a given input {(Xi, Yi)}n+1
i=1 and

a collection of subsamples or bootstrapped samples S̃1, . . . , S̃B to a matrix of residuals

R ∈ R(n+1)×(n+1), where

Rij =


∣∣∣Yi − µ̃ϕ\i,j(Xi)∣∣∣ if i 6= j,

0 if i = j.

For any permutation σ on {1, . . . , n + 1}, let Πσ stand for its matrix representation—

that is, Πσ ∈ {0, 1}(n+1)×(n+1) has entries (Πσ)σ(i),i = 1 for each i, and zeros else-

where. Furthermore, for each subsample or bootstrapped sample S̃b = {ib,1, . . . , ib,m},

write σ(S̃b) = {σ(ib,1), . . . , σ(ib,m)}.

We now claim that

R
d
= ΠσRΠ>σ , (C.1)

for any fixed permutation σ on {1, . . . , n+ 1}. Here R is the residual matrix obtained by a

run of Algorithm 12, namely,

R = Ã
(

(X1, Y1), . . . , (Xn+1, Yn+1); S̃1, . . . , S̃B

)
.

To see why (C.1) holds, observe that deterministically, we have

ΠσRΠ>σ = Ã
(

(Xσ(1), Yσ(1)), . . . , (Xσ(n+1), Yσ(n+1));σ(S̃1), . . . , σ(S̃B)
)
.
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Furthermore, we have

(
(X1, Y1), . . . , (Xn+1, Yn+1)

)
d
=
(

(Xσ(1), Yσ(1)), . . . , (Xσ(n+1), Yσ(n+1))
)

by Condition 5.1, and (
S̃1, . . . , S̃B

)
d
=
(
σ(S̃1), . . . , σ(S̃B)

)
since subsampling or resampling treats all the indices the same. Finally, the subsamples or

bootstrapped samples (i.e., the S̃b’s) are drawn independently of the data points (i.e., the

(Xi, Yi)’s). Combining these calculations yields (C.1).

Next, given R, define a “tournament matrix” A = A(R) as

Aij =

 1I
[
Rij > Rji

]
if i 6= j,

0 if i = j.

It is easily checked that A(ΠσRΠ>σ ) = ΠσA(R)Π>σ , and hence (C.1) implies that

A
d
= ΠσAΠ>σ . (C.2)

Let Sα(A) be the set of row indices with row sums greater than or equal to (1− α)(n+ 1),

i.e.,

Sα(A) =

i = 1, . . . , n+ 1 :
n+1∑
j=1

Aij ≥ (1− α)(n+ 1)

 .

The argument of Step 3 in the proof of Barber et al. [2021, Theorem 1] applies to the lifted

J+aB “tournament matrix” A, and it holds deterministically that

|Sα(A)| ≤ 2α(n+ 1). (C.3)

On the other hand, if j is any index, and σ is any permutation that swaps indices n+ 1 and
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j, then

P
[
n+ 1 ∈ Sα(A)

]
= P

[
j ∈ Sα(ΠσAΠ>σ )

]
= P

[
j ∈ Sα(A)

]
.

The first two events are the same, and the second equality uses (C.2). Thus,

P
[
n+ 1 ∈ Sα(A)

]
=

1

n+ 1

n+1∑
j=1

P
[
j ∈ Sα(A)

]

=
1

n+ 1
E

n+1∑
j=1

1I
[
j ∈ Sα(A)

] =
E|Sα(A)|
n+ 1

≤ 2α. (C.4)

Note that the event
[
n+ 1 ∈ Sα(A)

]
is exactly the event Ẽn+1, defined in Section 5.3. As

described in the proof sketch in Section 5.3, we can couple this lifted event to the event En+1,

also defined in Section 5.3 in terms of the actual J+aB, as follows. Let B =
∑B̃
b=1 1I

[
S̃b 63

n+1
]
, the number of S̃b’s containing only training data, and let 1 ≤ b1 < · · · < bB ≤ B̃ be the

corresponding indices. Note that the distribution of B is Binomial, as specified in the theorem.

Now, for each k = 1, . . . , B, define Sk = S̃bk . We can observe that each Sk is an independent

uniform draw from {1, . . . , n} (with or without replacement). Therefore, we can equivalently

consider running the J+aB (Algorithm 11) with these particular subsamples or bootstrapped

samples S1, . . . , SB , in which case it holds deterministically that µ̃ϕ\n+1,i = µ̂ϕ\i for each

i = 1, . . . , n. This ensures that |Yn+1 − µ̃ϕ\n+1,i(Xn+1)| = |Yn+1 − µ̂ϕ\i(Xn+1)| and

|Yi − µ̃ϕ\i,n+1(Xi)| = |Yi − µ̂ϕ\i(Xi)|, and thus,

P[En+1] = P[Ẽn+1] ≤ 2α.

Finally, as in Step 1 in the proof of Barber et al. [2021, Theorem 1], it easily follows from the

definition of ĈJ+aB
α,n,B that if Yn+1 /∈ ĈJ+aB

α,n,B(Xn+1) then the event En+1 must occur. Indeed,

if Yn+1 /∈ ĈJ+aB
α,n,B(Xn+1), then either Yn+1 falls below the lower bound, i.e.,

n∑
i=1

1I
[
Yn+1 − µ̂ϕ\i(Xn+1) <

∣∣∣Yi − µ̂ϕ\i(Xi)∣∣∣ ] ≥ (1− α)(n+ 1),
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or Yn+1 exceeds the upper bound, i.e.,

n∑
i=1

1I
[
Yn+1 − µ̂ϕ\i(Xn+1) >

∣∣∣Yi − µ̂ϕ\i(Xi)∣∣∣ ] ≥ (1− α)(n+ 1),

and the above two expressions imply

n∑
i=1

1I
[ ∣∣∣Yn+1 − µ̂ϕ\i(Xn+1)

∣∣∣ > ∣∣∣Yi − µ̂ϕ\i(Xi)∣∣∣ ] ≥ (1− α)(n+ 1).

Therefore, we conclude that

P
[
Yn+1 /∈ ĈJ+aB

α,n,B(Xn+1)
]
≤ 2α,

thus proving the theorem.

C.2 Guarantees with stability

Many ensembles that are used in practice are variants of bagging, where multiple independent

copies of the given training data set are generated through a resampling mechanism, after

which estimates from different data sets are pooled together via an averaging procedure of

some kind. Bagging can be understood as a smoothing operation that when applied on a

discontinuous base learner, often greatly improve its accuracy [Bühlmann and Yu, 2002, Buja

and Stuetzle, 2006, Friedman and Hall, 2007].

For ensembles of this type, the aggregated predictions they produce frequently exhibit

a concentrating behavior as B → ∞, making the corresponding J+aB interval much like

a jackknife+ interval. In such cases, it is reasonable to expect a J+aB interval to remain

valid regardless of the choice of B, e.g., random with a Binomial distribution or fixed, by

its proximity to a jackknife+ interval. Intuitively, this happens when the aggregation is

insensitive to any one prediction participating in the ensemble.

To formalize, let E∗ denote the expectation with respect to the resampling measure —
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that is, we take the expectation with respect to the random collection of subsamples or

bootstrapped samples S1, . . . , SB conditional on all the observed data {(Xi, Yi)}ni=1 and

Xn+1. For example, when ϕ(·) = Mean(·) is the mean aggregation,

E∗ [µ̂Mean(Xn+1)] = E
[
µ̂1(Xn+1)

∣∣(X1, Y1), . . . , (Xn, Yn), Xn+1
]
,

the expected prediction from the model µ̂1 fitted on training sample S1, where the expectation

is taken with respect to the draw of S1.

Condition C.1 (Ensemble stability). For ε ≥ 0 and δ ∈ (0, 1), it holds for each i = 1, . . . , n

that

P
[∣∣∣µ̂ϕ\i(Xi)− E∗

[
µ̂ϕ\i(Xi)

]∣∣∣ > ε
]
≤ δ.

Here µ̂ϕ\i is the ensembled leave-one-out model defined in Algorithm 11. To gain intuition

for this assumption, we consider the mean aggregation as a canonical example, and verify

that it satisfies Condition C.1 for any bounded base regression method.

Proposition C.1. Suppose that ϕ(·) = Mean(·) is the mean aggregation, and suppose the

base regression method R always outputs a bounded regression function, i.e., R maps any

training data set to a function µ̂ taking values in a bounded range [`, u], for fixed constants

` < u. Then, for any ε > 0, Condition C.1 is satisfied with

δ = 2 exp

(
−2
√
Bθε2

(u− `)2

)
+ exp

(
−
(√

B − 1
)2
θ2

2

)
,

where θ = (1 − 1
n)m in the case of bagging (i.e., the Sb’s are bootstrapped samples, drawn

with replacement), or θ = 1− m
n in the case of subagging (i.e., the Sb’s are subsamples drawn

without replacement).

Proof. By exchangeability, it suffices to prove the statement for a single i ∈ {1, . . . , n}. Fix i,

and let Bi denote the number of Sb’s not containing the index i, i.e., Bi =
∑B
b=1 1I

[
Sb 63 i

]
.
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For any fixed γ ∈ (0, 1),

P∗
[ ∣∣∣µ̂Mean\i(Xi)− E∗[µ̂Mean\i(Xi)]

∣∣∣ > ε
]

≤ P∗
[ ∣∣∣µ̂Mean\i(Xi)− E∗[µ̂Mean\i(Xi)]

∣∣∣ > ε and Bi ≥ γθB
]

+ P∗
[
Bi < γθB

]
.

As for our earlier notation E∗, here P∗ denotes the probability with respect to the ran-

dom collection of subsamples or bootstrapped samples S1, . . . , SB conditional on the data

(X1, Y1), . . . , (Xn, Yn).

The arithmetic mean aggregation function, ϕMean, satisfies

sup
y1,...,yBi ,

y′b∈[`,u]

∣∣ϕMean(y1, . . . , yb−1, yb, yb+1, . . . yBi)− ϕMean(y1, . . . , yb−1, y
′
b, yb+1, . . . , yBi)

∣∣
≤ u− `

Bi

for b = 1, . . . , Bi. Thus, by McDiarmid’s inequality [Boucheron et al., 2013, Theorem 6.2],

P∗
[ ∣∣∣µ̂Mean\i(Xi)− E∗[µ̂Mean\i(Xi)]

∣∣∣ > ε
∣∣∣Bi ≥ γθB

]
≤ 2 exp

(
− 2Bγθε2

(u− `)2

)
. (C.5)

On the other hand, Bi ∼ Binomial(B, θ), where θ =
(

1− 1
n

)m
for sampling with replacement,

or θ = 1− m
n for sampling without replacement. The Chernoff inequality for the binomial

[Boucheron et al., 2013, Chapter 2] implies

P [Bi < γθB] ≤ exp

(
−B (1− γ)2 θ2

2

)
. (C.6)

Combining (C.5) and (C.6),

P∗
[∣∣∣µ̂Mean\i(Xi)− E∗[µ̂Mean\i(Xi)]

∣∣∣ > ε
]
≤ 2 exp

(
− 2Bγθε2

(u− `)2

)
+exp

(
−B (1− γ)2 θ2

2

)
.
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Taking γ = 1/
√
B yields

P∗
[∣∣∣µ̂Mean\i(Xi)− E∗[µ̂Mean\i(Xi)]

∣∣∣ > ε
]

≤ 2 exp

(
−2
√
Bθε2

(u− `)2

)
+ exp

(
−
(√

B − 1
)2
θ2

2

)
.

To study coverage properties under this notion of stability, we first define the ε-inflated

J+aB prediction interval as

Ĉε-J+aB
α,n,B (x) =

[
q−α,n{µ̂ϕ\i(x)−Ri} − ε, q+

α,n{µ̂ϕ\i(x) +Ri}+ ε
]

for any ε ≥ 0. We then have the following guarantee:

Theorem C.1. Under (ε, δ)-ensemble stability (Condition C.1), the 2ε-inflated jackknife+-

after-bootstrap prediction interval satisfies

P
[
Yn+1 ∈ Ĉ2ε-J+aB

α,n,B (Xn+1)
]
≥ 1− 2α− 4

√
δ.

Delaying the proof to the end of this section, we discuss the difference between Theorem C.1

and Theorem 5.1. Theorem 5.1 gives an assumption-free lower-bound of 1−2α on the coverage,

but the probability is over all randomness, including that of the Binomial draw. By contrast,

the ≈ 1 − 2α coverage guarantee of Theorem C.1 holds for a fixed value of B used to run

Algorithm 11, but at the cost of requiring the ensemble algorithm Rϕ,B to satisfy ensemble

stability.

In contrast to the above notion of ensemble stability, Steinberger and Leeb [2018] and

Barber et al. [2021] study coverage of jackknife and jackknife+ under algorithmic stability of
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(non-ensembled) regression method R. This requires R to satisfy

P
[∣∣∣µ̂\i(Xn+1)− µ̂(Xn+1)

∣∣∣ > ε∗
]
≤ δ∗. (C.7)

This can be interpreted as saying that a prediction µ̂(Xn+1) is only slightly perturbed if a

single point is removed from the training. In this setting, jackknife and jackknife+ are each

shown to guarantee ≈ 1− α coverage.

We can take a lifted version of this assumption, requiring that (C.7) holds on the ensembled

models on average over the resampling process:

P
[∣∣∣E∗ [µ̂ϕ\i(Xn+1)− E∗

[
µ̂ϕ(Xn+1)

]]∣∣∣ > ε∗
]
≤ δ∗. (C.8)

Note that one can have ensemble stability without algorithmic stability. For example, a

bounded regression method may still be highly unstable relative to adding/removing a single

data point (thus violating algorithmic stability), while Proposition C.1 ensures that ensemble

stability will hold under mean aggregation.

When an ensemble method satisfies both Condition C.1 and the lifted version of algorithmic

stability (C.8), then the following result yields a coverage bound that is ≈ 1− α, rather than

≈ 1− 2α as in Theorem C.1:

Theorem C.2. Assume that (ε, δ)-ensemble stability (Condition C.1) holds, and in addition,

the ensembled model satisfies algorithmic stability on average over the resampling process,

i.e., (C.8). Then the 2ε+ 2ε∗-inflated J+aB prediction interval satisfies

P
[
Yn+1 ∈ Ĉ

(2ε+2ε∗)-J+aB
α,n,B (Xn+1)

]
≥ 1− α− 3

√
δ − 4

√
δ∗.

Proof of Theorems C.1 and C.2. Put µ̂∗
ϕ\i = E∗[µ̂ϕ\i], where we recall that E∗ is the expec-

tation conditional on the data. Let R∗ϕ denote the regression algorithm mapping data to µ̂∗ϕ,
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i.e.,

R∗ϕ : {(Xi, Yi)}ni=1

7→ E∗
[
ϕ
({
R
(
{(Xib,` , Yib,`)}

m
`=1

)
: b = 1, . . . , B′, B′ ∼ Binomial(B, θ)

})]
,

where θ = θ(n) = (1− 1
n+1)m (in the case of sampling with replacement) or θ = θ(n) = 1− m

n+1

(in the case of sampling without replacement). We emphasize that n here refers to the size of

the sample being fed through R∗ϕ (e.g., each leave-one-out regressor µ̂∗
ϕ\i is trained on n− 1

data points, so in this case, θ = θ(n− 1)). R∗ϕ is a deterministic function of the data, since it

averages over the random draw of the subsamples or bootstrapped samples. Furthermore, it

is a symmetric regression algorithm (i.e., satisfies Condition 5.2).

Fix some α′ ∈ (0, 1) to be determined later, and construct the jackknife+ interval

Ĉ∗J+
α′,n(x) =

[
q−
α′,n{µ̂

∗
ϕ\i(x)−R∗i }, q

+
α′,n{µ̂

∗
ϕ\i(x) +R∗i }

]
,

where R∗i = |Yi − µ̂∗ϕ\i(Xi)| is the leave-one-out residual for this new regression algorithm.

By Barber et al. [2021, Theorem 1], Ĉ∗J+
α′,n satisfies

P
[
Yn+1 ∈ Ĉ∗J+

α′,n(Xn+1)
]
≥ 1− 2α′.

If, additionally, R∗ϕ satisfies the algorithmic stability condition (C.7) given in Appendix C.2,

then by Barber et al. [2021, Theorem 5], the 2ε∗-inflated jackknife+ interval

Ĉ∗2ε
∗-J+

α′,n (x) =
[
q−
α′,n{µ̂

∗
ϕ\i(x)−R∗i } − 2ε∗, q+

α′,n{µ̂
∗
ϕ\i(x) +R∗i }+ 2ε∗

]

satisfies

P
[
Yn+1 ∈ Ĉ∗2ε

∗-J+
α′,n (Xn+1)

]
≥ 1− α′ − 4

√
δ∗.
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Next, by Condition C.1, for each i = 1, . . . , n,

P
[∣∣∣µ̂ϕ\i(Xi)− µ̂∗ϕ\i(Xi)∣∣∣ > ε

]
≤ δ. (C.9)

Let α′ = α−
√
δ. By the above argument, to prove the theorems, it suffices to show

Ĉ2ε-J+aB
α,n,B (Xn+1) ⊇ Ĉ∗-J+

α′,n (Xn+1) with probability at least 1− 2
√
δ

in order to complete the proof of Theorem C.1, or

Ĉ
(2ε+2ε∗)-J+aB
α,n,B (Xn+1) ⊇ Ĉ∗2ε

∗-J+
α′,n (Xn+1) with probability at least 1− 2

√
δ

in order to complete the proof of Theorem C.2. In fact, these two claims are proved

identically—we simply need to show that

Ĉ
(2ε+2ε′)-J+aB
α,n,B (Xn+1) ⊇ Ĉ∗2ε

′-J+
α′,n (Xn+1) with probability at least 1− 2

√
δ (C.10)

with the choice ε′ = 0 for Theorem C.1, or ε′ = ε∗ for Theorem C.2.

To complete the proof, then, we establish the bound (C.10). Suppose

Ĉ
(2ε+2ε′)-J+aB
α,n,B (Xn+1) 6⊇ Ĉ∗2ε

′-J+
α′,n (Xn+1).

We have that either

q+
α,n

{
µ̂ϕ\i(Xn+1) +Ri

}
+ 2ε < q+

α′,n

{
µ̂∗ϕ\i(Xn+1) +R∗i

}

or

q−α,n
{
µ̂ϕ\i(Xn+1)−Ri

}
− 2ε > q−

α′,n

{
µ̂∗ϕ\i(Xn+1)−R∗i

}
,
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where Ri = |Yi − µ̂ϕ\i(Xi)|. As in the proof of Barber et al. [2021, Theorem 5], this implies

that ∣∣∣µ̂ϕ\i(Xn+1)− µ̂∗ϕ\i(Xn+1)
∣∣∣+
∣∣∣µ̂ϕ\i(Xi)− µ̂∗ϕ\i(Xi)∣∣∣ > 2ε

for at least d(1−α)(n+ 1)e−
(
d(1− α′)(n+ 1)e − 1

)
≥
√
δ(n+ 1) many indices i = 1, . . . , n.

Thus,

P
[
Ĉ

(2ε+2ε′)-J+aB
α,n,B (Xn+1) 6⊇ Ĉ∗2ε

′-J+
α′,n (Xn+1)

]
≤ P

[
n∑
i=1

1I
[∣∣∣µ̂ϕ\i(Xn+1)− µ̂∗ϕ\i(Xn+1)

∣∣∣+
∣∣∣µ̂ϕ\i(Xi)− µ̂∗ϕ\i(Xi)∣∣∣ > 2ε

]
≥
√
δ(n+ 1)

]

≤ 1√
δ(n+ 1)

n∑
i=1

P
[∣∣∣µ̂ϕ\i(Xn+1)− µ̂∗ϕ\i(Xn+1)

∣∣∣+
∣∣∣µ̂ϕ\i(Xi)− µ̂∗ϕ\i(Xi)∣∣∣ > 2ε

]
≤ 2n√

δ(n+ 1)
P
[∣∣∣µ̂ϕ\n(Xn+1)− µ̂∗ϕ\n(Xn+1)

∣∣∣ > ε
]
.

The second inequality is the Markov’s inequality, and the last step uses the exchangeability

of the data points. Plugging in (C.9),

P
[
Ĉ

(2ε+2ε′)-J+aB
α,n,B (Xn+1) 6⊇ Ĉ∗2ε

′-J+
α′,n (Xn+1)

]
≤ 2
√
δ,

implying (C.10). This completes the proofs for Theorems C.1 and C.2.

C.3 Jackknife-minmax-after-bootstrap

As in Barber et al. [2021], we may also consider the jackknife-minmax-after-bootstrap, which

constructs the interval

ĈJ-mm-aB
α,n,B (x) =

[
min
i
µ̂ϕ\i(x)− q−α,n {Ri} , max

i
µ̂ϕ\i(x) + q+

α,n {Ri}
]
.

The original jackknife-minmax satisfies 1 − α lower bound on the coverage, and the same

modification of the jackknife+ proof is applicable here, ensuring a 1 − α lower bound on
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the coverage of the jackknife-minmax-after-bootstrap with the same caveat of a random

B. However, as for the non-ensembled version, the method is too conservative, and is not

recommended for practice.

C.4 Additional experiments

C.4.1 Additional details about the experimental setup

We give precise definitions of the ensembles and the jackknife-type constructions considered.

Let Rϕ,B denote an ensemble regression method (Algorithm 10) that first generates B

bootstrap replicates of a given training data set, calls on a base regression method R to fit a

model to each generated data set, after which the results are aggregated through ϕ.

For R, we use one of Ridge, RF, or NN:

• For Ridge, we set the penalty at λ = 0.001‖X‖2, where ‖X‖ is the spectral norm of

the training data matrix.

• For RF, we used the RandomForestRegressor method from scikit-learn with 20

trees grown for each random forest using the mean absolute error criterion and the

bootstrap option turned off, with default settings otherwise.

• For NN, we used the MLPRegressor method from scikit-learn with the L-BFGS

solver and the logistic activation function, with default settings otherwise.

For ϕ, we use one of Mean, Median, or Trimmed mean:

• Mean is the arithmetic mean, i.e., ϕ(y1, . . . , yk) = k−1∑k
i=1 yk.

• Median is the middle value of a list, i.e., for odd k, ϕ(y1, . . . , yk) is the (k + 1)/2-th

smallest number of the list {y1, . . . , yk}, for even k, the average of the k/2-th and the

(k + 2)/2-th smallest.

• Trimmed mean is the arithmetic mean of the middle 50% of a list, i.e., ϕ(y1, . . . , yk) =

(d0.75ke − b0.25kc)−1∑d0.75ke
i=b0.25kc+1

y(i), where y(1) ≤ · · · ≤ y(k) is the sorted list. We

used scipy.stats.trim_mean with proportioncut=0.25.
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The J+aB was defined in Algorithm 11. J+ensemble refers to the following application

of the jackknife+ [Barber et al., 2021] with the ensemble learner Rϕ,B :

Algorithm 15 J+ensemble

for i = 1, . . . , n do

Compute µ̂J+ensemble
\i = Rϕ,B({(Xj , Yj)}nj=1,j 6=i)

Compute the residual, RJ+ensemble
i = |Yi − µ̂J+ensemble

\i (Xi)|.

end for

Compute the ensembled prediction interval: at each x ∈ R,

ĈJ+ensemble
α,n,B (x)

=
[
q−α,n{µ̂J+ensemble

\i (x)−RJ+ensemble
i }, q+

α,n{µ̂J+ensemble
\i (x) +RJ+ensemble

i }
]
.

J+non-ensemble applies the jackknife+ to the base learning algorithm R without

ensembling:

Algorithm 16 J+non-ensemble

for i = 1, . . . , n do

Compute µ̂J+non-ensemble
\i = R({(Xj , Yj)}nj=1,j 6=i)

Compute the residual, RJ+non-ensemble
i = |Yi − µ̂J+non-ensemble

\i (Xi)|.

end for

Compute the non-ensembled prediction interval: at each x ∈ R,

ĈJ+non-ensemble
α,n (x)

=
[
q−α,n{µ̂J+non-ensemble

\i (x)−RJ+non-ensemble
i },

q+
α,n{µ̂J+non-ensemble

\i (x) +RJ+non-ensemble
i }

]
.
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C.4.2 Other aggregation methods

In Section 5.4, we reported the results for ϕ = Mean. Here, we report the results for ϕ =

Median or Trimmed mean. For the data sets and the base regression methods we looked

at, Median or Trimmed mean did not behave much differently from Mean. Thus, we

continue to see similar patterns: Figures C.1 and C.3 look very much like Figure 5.1, and

Figures C.2 and C.4, like Figure 5.2.

C.4.3 Effect of fixing B for stable ensembles

In Appendix C.2, we saw that for stable ensembles, concentration with respect to the

resampling measure implies that the J+aB using a fixed value of B will retain some coverage

guarantee as long as enough models are being aggregated. As an example of stable ensembles,

we gave bagging.

Here, we provide numerical support for the conclusion by running the J+aB, either with

B fixed at a value (J+aB fixed) or with B drawn at random (J+aB random).

• For J+aB fixed, we used B = 50.

• For J+aB random, we drew B ∼ Binomial(B̃, (1− 1
n+1)m) with B̃ = [50/(1− 1

n+1)m],

where [·] refers to the integer part of the argument. This ensures that the total number

of models being fitted in J+aB random is matched on average to the total in J+aB

fixed.

We fixed α = 0.1 for the target coverage of 90%. We used n = 200 observations for training,

sampling uniformly without replacement to create a training-test split for each trial. The

results presented here are from 10 independent training-test splits of each data set. We

otherwise repeat the setup of Section 5.4, which includes the three data sets, the three

choices for the base regression method, or the three choices of aggregation. The results are

summarized in Figures C.5–C.10. They show that for the data sets and the ensemble methods

considered, J+aB fixed and J+aB random behave essentially the same. Although we

only prove ensemble stability for ϕ = Mean, because both Median and Trimmed mean
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act like Mean, at least for the data sets and the base regression methods we have looked at,

the same patterns are replicated for the two alternative aggregation methods.

C.4.4 Wall clock time comparisons

In Tables C.1–C.3, we report the average wall-clock times for all data set, base regression

method, and aggregation method combinations for m = 0.6n. As these measurements are

expected to vary depending on the hardware and implementation details, it is the relative

magnitudes that are of interest. Our experiments were run on a standard MacBook Air 2018

laptop.

The results lend extra support to the conclusion that the J+aB is a computationally

efficient alternative to J+ensemble, which yields more precise confidence intervals than

J+non-ensemble when ensembling improves the precision of the base regression method.

Table C.1: Average wall-clock times in seconds over 10 independent splits of MEPS (m = 0.6n
and sampling with replacement).

R ϕ J+aB J+ensemble J+non-ensemble

Ridge Mean 0.2 2.1 0.4
Median 0.5 2.8

Trimmed mean 0.5 2.7

RF Mean 3.0 61.6 4.9
Median 3.9 63.1

Trimmed mean 3.9 56.4

NN Mean 8.8 257.7 14.4
Median 10.2 213.8

Trimmed mean 10.0 206.9
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Figure C.1: Distributions of coverage (averaged over each test data) in 10 independent splits
using ϕ = Median. The black line indicates the target coverage of 1− α.
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Figure C.2: Distributions of interval width (averaged over each test data) in 10 independent
splits using ϕ = Median.
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Figure C.3: Distributions of coverage (averaged over each test data) in 10 independent splits
using ϕ = Trimmed mean. The black line indicates the target coverage of 1− α.
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Figure C.4: Distributions of interval width (averaged over each test data) in 10 independent
splits using ϕ = Trimmed mean.
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Figure C.5: Distributions of coverage of J+aB random and J+aB fixed (averaged over
each test data) in 10 independent splits using ϕ = Mean. The black line indicates the target
coverage of 1− α.
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Figure C.6: Distributions of interval width of J+aB random and J+aB fixed (averaged
over each test data) in 10 independent splits using ϕ = Mean.
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Figure C.7: Distributions of coverage of J+aB random and J+aB fixed (averaged over
each test data) in 10 independent splits using ϕ = Median. The black line indicates the
target coverage of 1− α.
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Figure C.8: Distributions of interval width of J+aB random and J+aB fixed (averaged
over each test data) in 10 independent splits using ϕ = Median.
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Figure C.9: Distributions of coverage of J+aB random and J+aB fixed (averaged over
each test data) in 10 independent splits using ϕ = Trimmed mean. The black line indicates
the target coverage of 1− α.
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Figure C.10: Distributions of interval width of J+aB random and J+aB fixed (averaged
over the test data) in 10 independent splits using ϕ = Trimmed mean.
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Table C.2: Average wall-clock times in seconds over 10 independent splits of Blog (m = 0.6n
and sampling with replacement).

R ϕ J+aB J+ensemble J+non-ensemble

Ridge Mean 0.5 6.7 1.5
Median 1.1 9.1

Trimmed mean 1.2 9.0

RF Mean 8.7 191.3 11.1
Median 9.6 197.3

Trimmed mean 9.7 197.1

NN Mean 36.8 835.8 46.4
Median 39.4 891.3

Trimmed mean 37.7 843.7

Table C.3: Average wall-clock times in seconds over 10 independent splits of Communities
(m = 0.6n and sampling with replacement).

R ϕ J+aB J+ensemble J+non-ensemble

Ridge Mean 0.1 0.8 0.1
Median 0.1 0.9

Trimmed mean 0.1 0.9

RF Mean 7.8 169.8 8.7
Median 7.8 169.9

Trimmed mean 7.8 169.9

NN Mean 4.7 105.4 10.0
Median 4.7 106.0

Trimmed mean 4.7 105.9
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Tuve Löfström, Ulf Johansson, and Henrik Boström. Effective utilization of data in inductive
conformal prediction using ensembles of neural networks. In The 2013 International Joint
Conference on Neural Networks (IJCNN), pages 1–8, 2013. doi: 10.1109/IJCNN.2013.
6706817.

Po-Ling Loh and Martin J. Wainwright. Structure estimation for discrete graphical models:
Generalized covariance matrices and their inverses. The Annals of Statistics, 41(6):3022–
3049, 2013. doi: 10.1214/13-AOS1162. URL https://doi.org/10.1214/13-AOS1162.

Benjamin Lu and Johanna Hardin. A unified framework for random forest prediction
error estimation. Journal of Machine Learning Research, 22(8):1–41, 2021. URL http:

//jmlr.org/papers/v22/18-558.html.

Junwei Lu, Mladen Kolar, and Han Liu. Post-regularization inference for time-varying
nonparanormal graphical models. Journal of Machine Learning Research, 18(203):1–78,
2018. URL http://jmlr.org/papers/v18/17-145.html.

Cong Ma, Junwei Lu, and Han Liu. Inter-subject analysis: Inferring sparse interactions with
dense intra-graphs, 2017. arXiv preprint.

Jing Ma and George Michailidis. Joint structural estimation of multiple graphical models.
Journal of Machine Learning Research, 17(166):1–48, 2016. URL http://jmlr.org/

papers/v17/15-656.html.

David J. C. MacKay. Information Theory, Inference and Learning Algorithms. Cambridge
University Press, 2002.

Subhabrata Majumdar and George Michailidis. Joint estimation and inference for data
integration problems based on multiple multi-layered Gaussian graphical models, 2018.
arXiv preprint.

Nicolai Meinshausen. Quantile regression forests. Journal of Machine Learning Research, 7
(35):983–999, 2006. URL http://jmlr.org/papers/v7/meinshausen06a.html.

Nicolai Meinshausen. Group bound: Confidence intervals for groups of variables in sparse high
dimensional regression without assumptions on the design. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 77(5):923–945, 2015. doi: 10.1111/rssb.12094.
URL https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12094.

Lucas Mentch and Giles Hooker. Quantifying uncertainty in random forests via confidence
intervals and hypothesis tests. Journal of Machine Learning Research, 17(26):1–41, 2016.
URL http://jmlr.org/papers/v17/14-168.html.

Karthik Mohan, Palma London, Maryam Fazel, Daniela Witten, and Su-In Lee. Node-based
learning of multiple Gaussian graphical models. Journal of Machine Learning Research, 15
(13):445–488, 2014. URL http://jmlr.org/papers/v15/mohan14a.html.

227



Masako Nakanishi and Daniel W. Rosenberg. Roles of cPLA2α and arachidonic acid in cancer.
Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1761(11):
1335–1343, 2006. doi: 10.1016/j.bbalip.2006.09.005. URL https://www.sciencedirect.

com/science/article/pii/S1388198106002769.

Sahand N. Negahban, Pradeep Ravikumar, Martin J. Wainwright, and Bin Yu. A unified
framework for high-dimensional analysis of M -estimators with decomposable regularizers.
Statistical Science, 27(4):538–557, 2012. doi: 10.1214/12-STS400. URL https://doi.org/

10.1214/12-STS400.

XuanLong Nguyen, Martin J. Wainwright, and Michael I. Jordan. Estimating divergence
functionals and the likelihood ratio by convex risk minimization. IEEE Transactions on
Information Theory, 56(11):5847–5861, 2010. doi: 10.1109/TIT.2010.2068870.

Yang Ning and Han Liu. A general theory of hypothesis tests and confidence regions for
sparse high dimensional models. The Annals of Statistics, 45(1):158–195, 2017. doi:
10.1214/16-AOS1448. URL https://doi.org/10.1214/16-AOS1448.

Harris Papadopoulos. Inductive conformal prediction: Theory and application to neural
networks. In Paula Fritzsche, editor, Tools in Artificial Intelligence, pages 325–330. InTech,
2008. URL http://www.intechopen.com/books/tools_in_artificial_intelligence/

inductive_conformal_prediction__theory_and_application_to_neural_networks.

Harris Papadopoulos and Haris Haralambous. Reliable prediction intervals with regression
neural networks. Neural Networks, 24(8):842–851, 2011. doi: 10.1016/j.neunet.2011.05.008.
URL http://www.sciencedirect.com/science/article/pii/S089360801100150X. Ar-
tificial Neural Networks: Selected Papers from ICANN 2010.

Harris Papadopoulos, Kostas Proedrou, Volodya Vovk, and Alex Gammerman. Inductive
confidence machines for regression. In Tapio Elomaa, Heikki Mannila, and Hannu Toivonen,
editors, Machine Learning: ECML 2002, pages 345–356, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg.

Robi Polikar. Ensemble based systems in decision making. IEEE Circuits and Systems
Magazine, 6(3):21–45, Mar 2006. doi: 10.1109/MCAS.2006.1688199.

Pradeep Ravikumar, Martin J. Wainwright, Garvesh Raskutti, and Bin Yu. High-dimensional
covariance estimation by minimizing `1-penalized log-determinant divergence. Electronic
Journal of Statistics, 5:935–980, 2011. doi: 10.1214/11-EJS631. URL https://doi.org/

10.1214/11-EJS631.

Michael Redmond and Alok Baveja. A data-driven software tool for enabling coop-
erative information sharing among police departments. European Journal of Opera-
tional Research, 141:660–678, Mar 2002. doi: 10.1016/S0377-2217(01)00264-8. URL
http://www.sciencedirect.com/science/article/pii/S0377221701002648.

Zhao Ren, Tingni Sun, Cun-Hui Zhang, and Harrison H. Zhou. Asymptotic normality and
optimalities in estimation of large Gaussian graphical models. The Annals of Statistics, 43(3):
991–1026, 2015. doi: 10.1214/14-AOS1286. URL https://doi.org/10.1214/14-AOS1286.

228



Lior Rokach. Ensemble-based classifiers. Artificial Intelligence Review, 33(1):1–39, Feb 2010.
doi: 10.1007/s10462-009-9124-7. URL https://doi.org/10.1007/s10462-009-9124-7.

Yaniv Romano, Evan Patterson, and Emmanuel Candès. Conformalized quantile re-
gression. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
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Sandipan Roy, Yves Atchadé, and George Michailidis. Change point estimation in high
dimensional Markov random-field models. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 79(4):1187–1206, 2017. doi: 10.1111/rssb.12205. URL https:

//rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12205.

Joseph Sexton and Petter Laake. Standard errors for bagged and random forest esti-
mators. Computational Statistics & Data Analysis, 53(3):801–811, 2009. doi: 10.
1016/j.csda.2008.08.007. URL http://www.sciencedirect.com/science/article/pii/

S0167947308003988.

Ali Shojaie. Differential network analysis: A statistical perspective. WIREs Computational
Statistics, 13(2):e1508, 2021. doi: 10.1002/wics.1508. URL https://onlinelibrary.

wiley.com/doi/abs/10.1002/wics.1508.

Lukas Steinberger and Hannes Leeb. Leave-one-out prediction intervals in linear regression
models with many variables, 2016. arXiv preprint.

Lukas Steinberger and Hannes Leeb. Conditional predictive inference for high-dimensional
stable algorithms, 2018. arXiv preprint.

Aravind Subramanian, Pablo Tamayo, Vamsi K. Mootha, Sayan Mukherjee, Benjamin L.
Ebert, Michael A. Gillette, Amanda Paulovich, Scott L. Pomeroy, Todd R. Golub, Eric S.
Lander, and Jill P. Mesirov. Gene set enrichment analysis: A knowledge-based approach
for interpreting genome-wide expression profiles. Proceedings of the National Academy
of Sciences, 102(43):15545–15550, 2005. doi: 10.1073/pnas.0506580102. URL https:

//www.pnas.org/content/102/43/15545.

Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density Ratio Estimation in
Machine Learning. Cambridge University Press, 2012. doi: 10.1017/CBO9781139035613.

Tingni Sun and Cun-Hui Zhang. Scaled sparse linear regression. Biometrika, 99(4):879–898,
Sep 2012. doi: 10.1093/biomet/ass043. URL https://doi.org/10.1093/biomet/ass043.

Tingni Sun and Cun-Hui Zhang. Sparse matrix inversion with scaled Lasso. Journal of
Machine Learning Research, 14(70):3385–3418, 2013. URL http://jmlr.org/papers/

v14/sun13a.html.

229



Kaustubh Supekar, Vinod Menon, Daniel Rubin, Mark Musen, and Michael D. Greicius.
Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLOS
Computational Biology, 4(6):1–11, Jun 2008. doi: 10.1371/journal.pcbi.1000100. URL
https://doi.org/10.1371/journal.pcbi.1000100.

N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard, N. Delcroix,
B. Mazoyer, and M. Joliot. Automated anatomical labeling of activations in SPM using a
macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage,
15(1):273–289, 2002. doi: 10.1006/nimg.2001.0978. URL https://www.sciencedirect.

com/science/article/pii/S1053811901909784.
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