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ABSTRACT

Let G be a finite, discrete group. This thesis studies equivariant symmetric monoidal G-

categories and the operads that parametrize them. We devise explicit tools for working with

these objects, and then we use them to tackle two conjectures of Blumberg and Hill and a

presentation problem of Guillou-May-Merling-Osorno, with varying degrees of success.

The first half of this thesis introduces normed symmetric monoidal categories, and devel-

ops their basic theory. These are direct generalizations of the classical structures, and they

are presented by generators and isomorphism relations. We explain how to construct an op-

erad action from these generators via an equivariant version of the Kelly-Mac Lane coherence

theorem, and then we study the resulting operads in their own right. We show that the op-

erads for normed symmetric monoidal categories are precisely the cell complexes in a certain

model structure, and that they are cofibrant replacements for the commutativity operad in

a family of other model structures. Our work resolves a conjecture of Blumberg and Hill on

the classification of N∞ operads in the affirmative. Finally, we prove a number of homotopy

invariance results for the structures under consideration. We show that weak equivalences

between certain categorical N∞ operads induce equivalences on the level of algebras, and

that pseudoalgebras over such operads are strict algebras over larger, equivalent operads.

We deduce that the symmetric monoidal G-categories of Guillou-May-Merling-Osorno are

equivalent to E∞ normed symmetric monoidal categories.

The second half of this thesis studies a number of examples. We explain how to construct

normed symmetric monoidal structures by twisting a given operation over a diagram, and

we examine a shared link between the symmetric monoidal G-categories of Guillou-May-

Merling-Osorno and the G-symmetric monoidal categories of Hill and Hopkins. We give

functorial constructions of N∞ operads, and we examine how the lattice of indexing systems

is reflected on the level of operads. We prove a combinatorial analogue to a conjecture of

Blumberg and Hill on the Boardman-Vogt tensor product of N∞ operads, and while our

work does not solve their original problem, it does imply a space-level interchange result.

vi



CHAPTER 1

INTRODUCTION

Suppose that G is a finite, discrete group and that X is a G-set. For every subgroup H ⊂ G,

we have a subset XH ⊂ X of H-fixed elements, and inclusions of subgroups K ⊂ H induce

reverse inclusions XK ⊃ XH on fixed points. In algebraic situations, further structure

appears in the form of “wrong way” transfer maps. For example, if F/k is a finite Galois

extension and G = Gal(F/k), then there are norm and trace maps F ⇒ k, defined by

multiplying and summing Galois conjugates together.

The transfer also plays an important role in equivariant homotopy theory. Additive

transfers are the basis of a recognition principle for equivariant loop spaces (cf. [12], [18], [33],

and [39]), while multiplicative transfers were instrumental in Hill-Hopkins-Ravenel’s solution

to the Kervaire invariant one problem [24]. An important observation of Hill and Hopkins

[22] is that localization can destroy the multiplicative transfers, or “norms” on commutative

ring G-spectra, and Blumberg and Hill [5] subsequently introduced N∞ operads and algebras

to axiomatize these partial systems of norms. This is the starting point for this thesis.

Our work was motivated by a number of problems, which we briefly explain. One line of

inquiry stems from questions in pure operad theory. In [5], Blumberg and Hill introduce N∞

operads and develop much of the surrounding theory, but some questions were left unan-

swered. In particular, they gave a classification of N∞ operads in terms of an invariant called

an indexing system, but it was only conjectured that every indexing system was realized [5,

p. 4]. While they had precise candidates to do this, later work of Bonventre [7] revealed that

these candidates generally fail. We prove their conjecture by giving an explicit construction

(theorem 3.19), and other, independent solutions have also been found by Bonventre-Pereira

[8] and Gutiérrez-White [21]. Blumberg and Hill also observed that in many cases, N∞ op-

erads interchange with themselves. Accordingly, they conjectured [5, conjecture 6.27] that

under suitable cofibrancy conditions, the tensor product of N∞ operads should again be

N∞, with norms generated by the factors. This should be compared to the additivity of
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En-structures, as studied by Boardman [3], Dunn [14], and Fiedorowicz and Vogt [17].

Another line of inquiry stems from considerations in equivariant category theory and

equivariant homotopical algebra. As indicated above, a key feature of equivariant spectra are

their homotopy-coherent systems of transfer maps. A number of structures have been devised

to formalize this situation. One line of thought leads to the symmetric monoidal G-categories

of Guillou-May-Merling-Osorno [20]. Another leads to the G-commutative monoids of Hill

and Hopkins [23], which themselves reside in G-symmetric monoidal categories. While these

two notions of equivariant symmetric monoidal structure are decidedly different, there are

notable similarities between them. As explained by Hill and Hopkins [23, §3.2], there is

even a general, non-invertible procedure for converting a symmetric monoidal G-category

into a G-symmetric monoidal category. We sought to clarify the relationship between these

objects further, and to find a means of presenting them (cf. [20, problem 1.36]). Indeed, no

description by generators and relations was known for either structure, which was surprising,

given their resemblance to the classical objects.

While N∞ operads and algebras were invented to account for space and spectrum-level

phenomena, they can profitably be studied in other contexts. This thesis examines N∞

structures on the level of categories. This setting is a common focal point for the preceding

questions, and it facilitates an analysis of strict and coherent structure from a 2-categorical

perspective. We recover topological results by taking classifying spaces.

In what follows, we develop the foundations of a theory of N∞ symmetric monoidal

G-categories, which we hope will have applications in equivariant homotopy theory. We

introduce a new kind of N∞-G-category, which we call a normed symmetric monoidal cat-

egory. These are direct generalizations of the classical structures, and they are presented

by generators and isomorphism relations. We prove an equivariant, operadic version of the

Kelly-Mac Lane coherence theorem for them (theorem 2.10), and we prove a number of ho-

motopy invariance results with respect to their parametrizing operads (theorems 4.21 and

4.33). We use our framework to address the problems above, with mixed results. As men-
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tioned earlier, we resolve Blumberg and Hill’s conjecture [5, p. 4] on indexing systems in the

affirmative (theorem 3.19). We also prove a combinatorial analogue to their conjecture [5,

conjecture 6.27] on the tensor product of N∞ operads (theorem 6.27). Our work does not

solve the original problem, but it does imply a space-level interchange result of the desired

sort. Along similar lines, we do not find a presentation for the symmetric monoidal and

permutative G-categories of [20], but our invariance theorems imply that they are equivalent

to E∞ normed symmetric monoidal categories. Thus, the presentation that defines normed

symmetric monoidal structure can also be used to produce the objects of interest in [20]

(theorems 4.27 and 4.34).

In summary, this thesis is organized as follows. Chapters 2 – 4 develop the theory of

normed symmetric monoidal categories and a closely related class of categorical operads,

while chapters 5 – 6 outline how the theory looks in specific examples.

In chapter 2, we introduce normed symmetric monoidal categories and the operads that

parametrize them. Normed symmetric monoidal categories are defined without reference to

operads, and the coherence theorem (theorem 2.10) roughly states that their presenting data

generate actions by categorical N∞ operads. These operads are obtained by freely generating

an operad from a G-fixed constant e, a G-equivariant binary product ⊗, and a setN of norms⊗
T , and then inserting a unique isomorphism between every pair of operations of the same

arity. We denote these operads SMN , and we reiterate that this is the first equivariant

coherence theorem of its sort.

In chapter 3, we study a special class of categorical operads that includes the operads

SMN and the equivariant Barratt-Eccles operad PG of [18]. We call such operads homoge-

neous.1 We prove that the operads SMN realize all indexing systems (theorem 3.19), and

we develop a well-behaved homotopy theory of homogeneous operads that frames our results

(theorems 3.24 and 3.40). In particular, the operads SMN are cell complexes in a certain

model structure, and they are cofibrant replacements of the commutativity operad Com in

1. In [19] and [20], such operads are called chaotic.
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a related family of indexing system model structures.

In chapter 4, we prove a few homotopy invariance results for the algebras and pseudoalge-

bras over homogeneous operads. Our results are in the spirit of Boardman and Vogt’s theory

of homotopy invariant algebraic structures [4]. We show that a weak equivalence between

N∞ homogeneous operads induces a biequivalence between the associated 2-categories of

algebras (theorem 4.21), and that the 2-category of pseudoalgebras over a homogeneous N∞

operad O is isomorphic to the 2-category of strict algebras over a cellular approximation WO

of the operad O (theorem 4.33). The conceptual point is that N∞ homogeneous operads

play the role of Σ-cofibrant operads in Berger and Moerdijk’s homotopy theory of operads

[2]. One upshot is that the symmetric monoidal and permutative G-categories of [18] and

[20] are equivalent to E∞ normed symmetric monoidal categories.

In chapter 5, we give explicit examples of normed symmetric monoidal categories. Our

work focuses on diagram categories, and we explain how to twist a given operation over a

diagram to construct a full normed symmetric monoidal structure. In section 5.3, we follow

Hill and Hopkins’ prescription [23, §3.2] to identify a striking thread between our work,

and the work in [20] and [23]. In short, the canonical example of a symmetric monoidal G-

category in the sense of [20] is an E∞ normed symmetric monoidal category, and its transfers

give rise to the canonical example of G-symmetric monoidal structure defined by monoidal

induction [23]. See theorem 5.12 for a more precise statement.

In chapter 6, we study a handful of homogeneous N∞ operads, and we refine a few

of the results from chapter 3. We give uniform, functorial constructions of N∞ operads

(theorem 6.3 and proposition 6.19), we construct N∞ permutativity operads for all indexing

systems (theorem 6.18), and we analyze the ways that the lattice structure on the poset of

indexing systems is mirrored on the level of homogeneous operads (theorem 6.24). Our work

proves a combinatorial analogue to Blumberg and Hill’s conjecture on the Boardman-Vogt

tensor product of N∞ operads (theorem 6.27), but we do not resolve the original space-level

conjecture.
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One theme that emerges from our work is the canonical nature of the operads SMN , and

by extension, of normed symmetric monoidal categories. We stumbled on these structures

entirely by accident, but our subsequent investigations suggest that they are fundamental to

this area of mathematics. We hope to convince the reader of these facts.
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CHAPTER 2

NORMED SYMMETRIC MONOIDAL CATEGORIES

2.1 Introduction and summary of results

A symmetric monoidal category is a category C , equipped with a bifunctor⊗ : C×2 → C and

a distinguished object e ∈ C , such that the product ⊗ is associative and commutative, and

the object e is a two-sided unit for ⊗, up to isomorphism. The isomorphisms witnessing the

associativity, commutativity, and unitality of these data are regarded as additional structure

on C , and thus we also specify natural isomorphisms α : (C ⊗D)⊗E → C ⊗ (D⊗E), and

λ : e⊗C → C, and ρ : C ⊗ e→ C, and β : C ⊗D → D⊗C, which are required to make an

associativity pentagon, a braid hexagon, and three triangle diagrams commute.

Remarkably, these five commutativity conditions are enough to ensure that all sensible

diagrams built purely from the maps α, λ, ρ, and β will also commute. This is the Kelly-Mac

Lane coherence theorem (cf. [26] and [30]), and it has at least two distinct roles. If we regard

C as an ambient setting for doing mathematics, then the coherence theorem assures us that

the familiar canonical isomorphisms are available. If we regard C as a model for a space,

then the coherence theorem implies that the product ⊗ is an E∞ operation on C .

Fix a finite group G. The most immediate equivariantization of symmetric monoidal

structure arises by placing a G-action on all data in sight. More precisely, we assume that

C is equipped with a G-action through functors, that ⊗ preserves the G-action on objects

and morphisms, that e is G-fixed, and that the isomorphisms α, λ, ρ, and β are preserved

by the G-action, e.g. gαC,D,E = αgC,gD,gE . This generalization is not logically incorrect,

but it leaves much to be desired because it does not equip C with transfers.

Typical examples of equivariant transfer arise by summing or multiplying the translates

of an element over an orbit. For instance, if M is a G-module and K ( H ⊂ G are sub-

groups, then the transfer trHK : MK → MH is given by the formula trHK(x) =
∑
H/K hix,

where the elements hi are chosen H/K coset representatives. This map factors as a com-
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posite of a twisted diagonal map ∆tw(x) = (h1x, . . . , h|H:K|x) and a |H : K|-fold sum,

which we consider in turn. First, note that the twisted diagonal gives an isomorphism

∆tw : MK → (M×H/K)H , where M×H/K is the H-module with action h(x1, . . . , x|H:K|) =

(hxσ−11, . . . , hxσ−1|H:K|), and the permutation σ is determined by the equation hhiK =

hσiK. Next, observe that the |H : K|-fold sum
∑
H/K : M×H/K → M is H-equivariant,

because addition in M is G-equivariant and strictly commutative. Thus,
∑
H/K descends to

H-fixed points, and the transfer is the composite

trHK = ΣH/K ◦∆tw : MK → (M×H/K)H →MH .

While the sum
∑
H/K : M×H/K → M is reducible to binary addition for G-modules

M , the same cannot be said in homotopical situations, because one almost never has a

strictly commutative operation. To get equivariant transfers for a G-category C , we must

specify H-functors
⊗

H/K : C×H/K → C explicitly, in addition to any other product

⊗ : C×2 → C that might be present. We call such H-functors norms, and in this chapter,

we shall study normed symmetric monoidal categories. These are G-categories, equipped

with an ordinary symmetric monoidal structure (C ,⊗, e, α, λ, ρ, β) for which all data is

G-equivariant, and a set of additional norms
⊗

T : C×T → C that are coherently, but

nonequivariantly, isomorphic to ordinary |T |-fold tensor products. The untwisting isomor-

phisms υT :
⊗

T (C1, . . . , C|T |) → (· · · (C1 ⊗ C2) ⊗ · · · ) ⊗ C|T | are regarded as part of the

structure on C , and they must be compatible with the rest of the structure through a

“twisted equivariance” diagram. We index the H-sets T over some specified set N .

In what follows, we give the basic definitions (section 2.2) and prove a coherence theorem

for normed symmetric monoidal categories (sections 2.3 – 2.8). The coherence theorem is

the main result of this chapter, and it boils down to the construction of an operad action

from the generating data in an N -normed symmetric monoidal category. The operad in

question parametrizes all diagrams that commute for formal reasons. It is obtained by freely
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generating an operad out of a G-fixed constant e, a G-equivariant product ⊗, and a norm

map
⊗

T for every T ∈ N , and then inserting a unique isomorphism between every pair

of operations of the same arity (cf. section 2.4). We denote it SMN . In these terms, the

coherence theorem (theorem 2.10) reads as follows.

Theorem. The 2-category of N -normed symmetric monoidal categories, lax (resp. strong,

strict) monoidal functors, and monoidal transformations is isomorphic to the 2-category of

SMN -algebras in G-categories, lax (resp. pseudo, strict) SMN -morphisms, and SMN -

transformations. Moreover, this isomorphism does not affect underlying G-categories, G-

functors, or G-natural transformations.

The coherence theorem may be alternately regarded as a presentation theorem for SMN -

algebras, and this will be a more useful perspective going forward. When combined with the

homotopy invariance theorems in chapter 4, it implies that the presentation defining normed

symmetric monoidal categories can also be used to produce algebras over a reasonably large

class of categorical operads, including the equivariant Barratt-Eccles operad PG of [18].

2.2 Basic definitions

Fix a finite groupG throughout, and letGCat denote the 2-category of all smallG-categories,

G-functors, and G-natural transformations.

Definition 2.1. A symmetric monoidal object in GCat is a tuple (C ,⊗, e, α, λ, ρ, β) such

that C is a small G-category, ⊗ : C×2 → C is a G-bifunctor, e ∈ C is a G-fixed object, and

(C ⊗D)⊗ E α→ C ⊗ (D ⊗ E), e⊗ C λ→ C, C ⊗ e ρ→ C, C ⊗D β→ D ⊗ C

are G-natural isomorphisms that make the usual associativity pentagon, braid hexagon, and

triangle diagrams commute (cf. [27, Ch. 1]). Define the standard n-fold tensor products on

C by
⊗

0() := e,
⊗

1(C) = C, and
⊗

n+1(C1, . . . , Cn+1) =
⊗

n(C1, . . . , Cn)⊗ Cn+1.

8



Definition 2.2. Suppose that H ⊂ G is a subgroup and that T is a finite H-set equipped

with a linear order T ∼= {1, . . . , |T |}. Let σ : H → Σ|T | denote the corresponding permu-

tation representation on {1, . . . , |T |}. For anyG-category C , we define C×T to be the |T |-fold

cartesian power C×|T | equipped with theH-action h(C1, . . . , C|T |) = (hCσ−11, . . . , hCσ−1|T |),

and similarly for morphisms. We define a T -norm on C to be an H-functor C×T → C .

Definition 2.3. Suppose that N = (N (H))H⊂G is a graded set of finite ordered H-sets T .

We call N a set of exponents. A N -normed symmetric monoidal category is a symmetric

monoidal object (C ,⊗, e, α, λ, ρ, β) in GCat, together with

1. a T -norm
⊗

T : C×T → C for every T ∈ N , and

2. (untwistors) a nonequivariant natural isomorphism

υT :
⊗
T (C1, . . . , C|T |)→

⊗
|T |(C1, . . . , C|T |)

for every H-set T ∈ N , such that for every h ∈ H, the “twisted equivariance” diagram

h
⊗
T (C1, . . . , C|T |)

⊗
T (hCσ−11, . . . , hCσ−1|T |)

⊗
|T |(hCσ−11, . . . , hCσ−1|T |)

h
⊗
|T |(C1, . . . , C|T |)

⊗
|T |(hC1, . . . , hC|T |)

id

hυT

υT

σ−1

id

commutes. Here σ−1 denotes the canonical isomorphism for the symmetric monoidal

category C , which permutes the factors of
⊗
|T | by σ−1.

Notation 2.4. We shall write ⊗C , αC , λC , etc. when we wish to emphasize that these

data are associated to a particular normed symmetric monoidal category C .
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Remark 2.5. The coherence theorem for N -normed symmetric monoidal categories roughly

states the following. Consider all composite operations on C generated by e, ⊗, and
⊗

T for

T ∈ N . We say that a natural isomorphism between two such operations is basic if it is the

identity transformation, or if it is obtained by applying a single instance of α±1, λ±1, etc.

to a sub-operation. We say that a natural isomorphism is canonical if it is a componentwise

(vertical) composite of basic natural isomorphisms. Then:

1. there is a unique canonical map between any two composites of the same arity,

2. canonical maps are closed under conjugation by elements of G,

3. canonical maps are closed under permutations of inputs,

4. canonical maps are closed under componentwise (vertical) composition, and

5. canonical maps are closed under operadic (horizontal) composition.

As usual, these statements are not literally correct because generically distinct operations

might accidentally become equal in some particular C , and the resulting diagrams need not

all commute. One must restrict attention to certain formally definable diagrams in order

to get commutativity in general. This statement is made precise using the operad SMN ,

which we construct in section 2.4.

We now generalize the usual notions of (lax, strong, strict) monoidal functors and

monoidal natural transformations to the normed symmetric monoidal setting.

Definition 2.6. Suppose that C and D are N -normed symmetric monoidal categories. A

lax N -normed functor (F, F•) : C → D consists of the following data:

1. a G-functor F : C → D ,

2. a G-fixed morphism Fe : eD → FeC ,

3. a G-natural transformation F⊗ : FC ⊗D FC ′ → F (C ⊗C C ′), and
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4. for every subgroup H ⊂ G and T ∈ N (H), an H-natural transformation1 F⊗
T

:⊗D
T (FC1, . . . , FC|T |)→ F

(⊗C
T (C1, . . . , C|T |)

)
,

such that the usual lax symmetric monoidal diagrams relating α, λ, ρ, and β to the compar-

ison maps Fe and F⊗ commute (cf. [31, Ch. XI.2]), and the square

⊗D
T (FC1, . . . , FC|T |)

⊗D
|T |(FC1, . . . , FC|T |)

F
(⊗C

T (C1, . . . , C|T |)
)

F
(⊗C

|T |(C1, . . . , C|T |)
)

F⊗
T

(
iterated F⊗’s and id’s

)
=: F⊗

|T |

υD
T

FυC
T

commutes for every T ∈ N . More precisely, the right hand map F⊗
|T |

is given by F⊗
0

:= Fe

and F⊗
1

:= idF for n = 0, 1, and F⊗
n+1

:= F⊗ ◦ (F⊗
n
⊗D id) for n > 1. We say that a

lax N -normed morphism is strong (resp. strict) if the natural transformations Fe, F⊗, and

F⊗
T

are all isomorphisms (resp. identities).

Definition 2.7. Suppose that C and D are N -normed symmetric monoidal, and that

(F, F•), (F ′, F ′•) : C ⇒ D is a pair of lax N -normed functors between them. An N -normed

monoidal transformation ω : (F, F•) ⇒ (F ′, F ′•) is a G-natural transformation ω : F ⇒ F ′

such that the usual monoidal transformation squares relating Fe, F
′
e, F⊗, and F ′⊗ to ω

commute (cf. [31, Ch. XI.2]), and the square

⊗D
T (FC1, . . . , FC|T |)

⊗D
T (F ′C1, . . . , F

′C|T |)

F
(⊗C

T (C1, . . . , C|T |)
)

F ′
(⊗C

T (C1, . . . , C|T |)
)F⊗

T
F ′⊗

T

⊗D
T (ω, . . . , ω)

ω

1. We regard both sides as H-functors C×T → D .
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commutes for every T ∈ N .

Notation 2.8. The 2-category structure on GCat lifts to normed symmetric monoidal

categories. The composite of lax maps (G,G•)◦(F, F•) is obtained by composing underlying

functors and comparison data, e.g.

GF⊗ ◦G⊗ : GFC ⊗GFC ′ → G(FC ⊗ FC ′)→ GF (C ⊗ C ′).

Vertical and horizontal composites of transformations are computed in GCat, and identities

are also inherited from GCat. Let NSMLax be the 2-category of all small N -normed

symmetric monoidal categories, lax N -normed monoidal functors, and N -normed monoidal

transformations. There are sub-2-categories NSMSt ⊂ NSMStg ⊂ NSMLax of strong

and strict maps, and there is a forgetful 2-functor NSMLax→ GCat.

Remark 2.9. There are also operadic coherence theorems for normed symmetric monoidal

functors and transformations. All things said and done, there is an isomorphism between

the 2-category NSMLax (or NSMStg or NSMSt) and the corresponding 2-category of

algebras over the operad SMN (cf. theorem 2.10).

2.3 An overview of the coherence theorem

The coherence theorem for normed symmetric monoidal categories is an explicit family of

isomorphisms between the various 2-categories of N -normed symmetric monoidal categories,

and the corresponding 2-categories of algebras over an operad called SMN . There is a

coherence theorem for every set of exponents N and for every flavor of monoidal functor,

but we focus on the situation for lax morphisms. The other cases are similar.
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Theorem 2.10. There is a commutative triangle

SMN -AlgLax NSMLax

GCat

ev

forget forget

of 2-categories and 2-functors, and the evaluation 2-functor ev is an isomorphism. Similarly

in the strong and strict cases.

In the remainder of this chapter, we shall explain what the terms in the triangle above

mean, and then prove the theorem. The most technical details are treated in section 2.8.

We recommend skimming or skipping sections 2.4 – 2.8 on a first reading.

We begin by recalling the notion of an operad. Let (V ,⊗, e) be a closed symmetric

monoidal category. An operad O in V is a sequence of objects O(0), O(1), O(2), . . . of V ,

together with certain additional structure. We think of the object O(n) as a parameter space

for n-ary operations, and thus we require each object O(n) to have a right Σn-action that

corresponds to permutation of inputs. We also require composition operations

γ : O(k)⊗ O(j1)⊗ · · · ⊗ O(jk)→ O(j1 + · · ·+ jk)

that formalize the composition operation g ◦ (f1 ⊗ · · · ⊗ fk), and a distinguished point

id : e → O(1) that plays the role of an identity operation. These data must satisfy natural

associativity, unit, and equivariance axioms, which are most easily discerned by examining

the properties of the endomorphism operad End(X)(n) = hom(X⊗n, X). An O-algebra

structure on an object X ∈ V is simply a map O → End(X) that preserves all structure.

More generally, one can consider O-algebras in any V -enriched category.

Our present work concerns operads and their algebras in G-categories. Note that the

1-category of all small G-categories and G-functors is cartesian closed. The product C ×D
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of two G-categories is given the diagonal action and the terminal G-category ∗ consists of a

single object and its identity morphism. The internal hom CatG(C ,D) is the category of all

nonequivariant functors C → D and natural transformations between them, equipped with

the conjugation G-action. The nth component of the endomorphism operad of a G-category

C is defined by End(C )(n) := CatG(C×n,C ).

It follows that the G-fixed subcategory of CatG(C ,D) consists precisely of the G-functors

C → D and the G-natural transformations between them. In particular, the G-fixed points

of End(C )(0) and End(C )(2) correspond to G-fixed constants in C and G-bifunctors on C ,

respectively. We can understand norms in similar terms. Suppose that T is a finite, ordered

H-set, write σ : H → Σ|T | for the permutation representation of the corresponding action

on {1, . . . , |T |}, and let ΓT ⊂ G× Σ|T | be the subgroup

ΓT := {(h, σ(h)) |h ∈ H}.

Then the ΓT -fixed subcategory of End(C )(|T |) consists of the T -norms C×T → C and the

H-equivariant natural transformations between them.

Consider the structure on a normed symmetric monoidal category once more. The un-

derlying constant e and operations ⊗ and
⊗

T satisfy no strict relations, but all composite

operations of a fixed arity should be coherently isomorphic. Thus, the operad SMN that

parametrizes N -normed symmetric monoidal structures should have the corresponding two

properties:

1. its objects should be free on a G-fixed constant, a G-equivariant binary product, and

a T -norm for every T ∈ N , and

2. there should be a unique isomorphism between every pair of objects of the same arity.

We shall give an explicit description of such an operad in section 2.4, and then prove that its

strict algebras in G-categories are precisely the same thing asN -normed symmetric monoidal

categories (sections 2.6 – 2.8).
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A priori, the operad SMN parametrizes far more structure than is needed to define an

N -normed symmetric monoidal category. Thus, it is fairly straightforward to write down

an evaluation map ev : SMN -AlgLax→ NSMLax that picks out the relevant generating

data. The work is in showing how to construct a full SMN -action from the structure on

a given normed symmetric monoidal category. The issue is that all diagrams in SMN

commute, and thus all diagrams in the image of an operad map |·|C : SMN → End(C )

must also commute. This is the sense in which theorem 2.10 is a coherence theorem.

Remark 2.11. In the language of Hill and Hopkins [23], we are constructing an N∞ operad

action out of the structure on a (pseudo) O-commutative monoid.

There is another perspective on categorical coherence, due to Kelly. It is a standard

observation that the coherence theorem for a (non-symmetric) monoidal category C is tan-

tamount to an equivalence between C and a strictly associative monoid. Kelly’s school of

thought takes this as the starting point for coherence theory in general, but there are diffi-

culties implementing these ideas equivariantly. The basic problem is that it is not possible

to fully strictify a normed symmetric monoidal category, and there is no obvious “maximally

strict” version of N -normed symmetric monoidal structure for general sets of exponents N .

2.4 The operad SMN

The construction of the operad SMN splits into two steps. First, we generate a suitable

free operad in G-sets, and then we formally insert isomorphisms.

2.4.1 The free G-operad on a symmetric sequence

Recall that a symmetric sequence of G-sets is a sequence S = (Sn)n≥0 of left G × Σn-sets,

and that S is Σ-free if each set Sn is Σn-free. We have the following standard lemma.

Lemma 2.12. Suppose that Sn is a G × Σn-set and that the group Σn acts freely on it. If

Λ is any subgroup of G×Σn for which SΛ
n 6= ∅, then there is a unique subgroup H ⊂ G and
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group homomorphism σ : H → Σn such that Λ = {(h, σ(h)) |h ∈ H}.

Proof. The subgroup H is the image of Λ under the projection π : G × Σn → G. The

Σn-freeness of Sn guarantees that for every h ∈ π(Λ), there is exactly one σ(h) ∈ Σn for

which (h, σ(h)) ∈ Λ, and the closure of Λ under multiplication implies that σ : H → Σn is a

group homomorphism.

It follows that if S is a Σ-free symmetric sequence of G-sets, then after choosing an orbit

decomposition, we have

Sn ∼=
∐
T∈In

(G× Σn)/ΓT ,

where In is a set of G-subgroup actions on n letters. We shall write
⊗

T for the coset eΓT ,

because it represents a T -norm on algebras. From here, the free G-operad F(S) on S may

be described as follows.

For all subgroups H ⊂ G, choose a set {e = gH1 , . . . , g
H
|G:H|} of G/H coset representatives

once and for all. Consider the formal symbols below.

xn (n = 1, 2, 3, . . . )

r
⊗
T (T ∈

∐
n≥0

In an H-set, and r a G/H coset representative)

( ) , (punctuation)

By convention, xm = xn if the numbers m and n are equal, and r
⊗
T = r′

⊗
T ′ if r = r′

and T = T ′. The elements of the free operad F(S) will be suitable finite sequences of these

symbols. We start by defining terms :

1. every variable xn is a term, and

2. if t1, . . . , t|T | are terms, then so is r
⊗
T (t1, . . . , t|T |).

The complexity of a term t is the length of the longest chain of nested pairs of left and right

parentheses in t. The arity of a term t is the number of distinct variable symbols xi that
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occur in t. We say that an n-ary term t is operadic if each of the variables x1, . . . , xn occur

in t exactly once. Define F(S)(n) to be the set of all n-ary operadic terms.

We require a result to ensure that we can parse a term into its constituents. The following

lemma follows by induction on complexity.

Lemma 2.13. Suppose that t is a term. Then either

1. t is a variable xn for some n ≥ 1, or

2. t starts with a letter of the form r
⊗

T , has the same number of left and right paren-

theses, and every strict initial segment of t contains fewer right parentheses than left

parentheses.

Proposition 2.14. If r
⊗

T (t1, . . . , t|T |) = r′
⊗

T ′(t
′
1, . . . , t

′
|T ′|), for terms ti and t′i, then

r = r′, T = T ′, and ti = t′i for every i.

Proof. The first letters must be the same. Now compare ti to t′i in succession.

We deduce that every term can be expanded into a syntax tree, and conversely, all

suitable syntax trees can be understood as terms. This provides a useful device for visualizing

the elements of the operad F(S). The reader should consult [8] and [36] for a systematic

discussion of these matters.

We return to the construction of F(S). For any permutation σ of {1, . . . , n} and n-ary

operadic term t, we write tσ for the n-ary operadic term obtained by replacing each variable

xi in t with xσ−1i. This defines a right Σn action on F(S)(n), and a left action is given by

σt := tσ−1. Note that this is a free action.

There is also a left G-action on each of the sets F(S)(n). First, we construct a G-action

on all terms. Fix an element g ∈ G. We define

1. g · xn := xn for all natural numbers n,

2. g · r
⊗

T (t1, . . . , t|T |) := r′
⊗

T (g · tσ(h)−11, . . . , g · tσ(h)−1|T |), where gr = r′h for a

unique G/H coset representative r′ and h ∈ H, and (h, σ(h)) ∈ ΓT .
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It follows inductively that this is a G-action. Note that this action shuffles symbols around,

but since G acts trivially on the xn, it does not ultimately affect which variables appear in

a given term. Therefore this action restricts to a G-action on operadic terms. Moreover,

the Σn and G-actions interchange, because the manner in which multiplication by g ∈ G

permutes the symbols in a term t depends only on the positions of the symbols r
⊗

T and

not on the particular variables.

Given a k-ary operadic term t and ji-ary operadic terms si for i = 1, . . . , k, the operadic

term γ(t; s1, . . . , sk) ∈ F(S)(j1 + · · ·+ jk) is obtained by

1. adding j1 + · · ·+ ji−1 to the subscript of every variable appearing in every si, and then

2. substituting the terms s1, . . . , sk, with indices on variables shifted, in for the variables

x1, . . . , xk in t.

It is straightforward to check that γ is associative and that the variable x1 is the G-fixed

identity element for the operation γ. The G-equivariance of γ follows the recursive definition

of the G-action. Thus F(S) is an operad in G-sets.

The unit map η : S → F(S) sends the coset eΓT ≡
⊗

T to the term
⊗

T (x1, . . . , x|T |),

and the rest is determined by G × Σn-equivariance. If f : S → O is any map of S into a

G-operad O, then the unique extension of f to an operad map f : F(S) → O is defined as

follows. Every term t can be written uniquely as t = tσ, where the variables in t appear in

ascending order as we read from left to right. The term t is an operadic composite of terms

of the form r
⊗

T (x1, . . . , x|T |) = η(r
⊗

T ) alone. For the sake of definiteness, we start with

the leftmost operation, then use partial composition products ◦i to insert the first layer of

operations from left to right, then do the same for the second layer, and so on. We define

f(t) to be the corresponding sequence of partial composites of f(r
⊗

T )’s, followed by (−)σ.

We conclude this section with an alternative description of the free operad F(S). It is

more canonical than the above, and it works for non Σ-free symmetric sequences S, but one

must contend with equivalence classes of terms.
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Construction 2.15. Suppose that S is a symmetric sequence of G-sets. To construct F(S),

consider the symbols

xn n = 1, 2, 3, . . .

a a ∈ S

( ) , (punctuation)

and define terms, operadic terms, and the nonequivariant operad structure just as before.

Define the G-action by g ·xn = xn and g ·a(t1, . . . , tn) = ga(g · t1, . . . , g · tn). We obtain a G-

operad, but it is larger than F(S), and the natural candidate for the unit map η : S → F(S)

is not Σ-equivariant.

Next, write tEt′ if the term t′ can be obtained from t by replacing a subterm of the form

aσ(s1, . . . , sn) with a(sσ−11, . . . , sσ−1n),

and write t ≡ t′ if t′ can be obtained from t through a finite sequence of such transformations.

This relation repsects the G-operad structure, and the resulting quotient is the free operad

on S (cf. section 4.3 for a more detailed discussion of quotient operads). The unit η sends

an n-ary element a to the congruence class [a(x1, . . . , xn)]. The previous description of the

free operad is obtained by restricting the elements a to a set of Σ-orbit representatives. The

key observation is that when S is Σ-free, restricting the symbols a in this manner completely

determines the representing term.

2.4.2 Specialization to SMN

For any set of exponentsN , let SN be the symmetric sequence given by the graded coproduct

SN := (G× Σ0)/G t (G× Σ2)/G t
∐
T∈N

(G× Σ|T |)/ΓT .
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As before, we write e for the coset eG ∈ (G × Σ0)/G, we write ⊗ for the coset eG ∈

(G× Σ2)/G, and we write
⊗

T for the coset eΓT ∈ (G× Σ|T |)/ΓT .

We define the object operad of SMN to be the free operad F(SN ). Its elements are

operadic terms built from the formal symbols

xn (n = 1, 2, . . . )

e

⊗

r
⊗
T (T ∈ N an H-set and r a G/H coset representative)

( ) , (punctuation)

and its G-operad structure is just as before, provided that we understand e and ⊗ to be

nullary and binary G-trivial norms, respectively. Concretely, this means that in the recursive

definition of the G-action, we set

3. g · e() := e(), and

4. g · ⊗(t1, t2) := ⊗(g · t1, g · t2).

Everything else is exactly the same.

From here, we introduce a unique isomorphism between every pair of elements of the

same arity in F(SN ). This is accomplished as follows.

Definition 2.16. For any set X, let X̃ denote the category whose object set is X, and which

has a unique morphism (x, y) : x→ y for every pair of objects x, y ∈ X. We shall sometimes

call X̃ the homogenization of X. In general, we shall say that a category C is homogeneous

if there is a unique morphism ! : x→ y for every pair of objects x, y ∈ C .

The morphisms x → y and y → x are inverse, and therefore all pairs of objects in X̃

are uniquely isomorphic. There is an adjunction Ob : Cat � Set : (̃−), and hence an

20



induced adjunction Ob : GCat� GSet : (̃−) on categories of G-objects. It follows that (̃−)

preserves products, and thus it takes operads in G-sets to operads in G-categories.

Definition 2.17. The operad SMN is defined by SMN (n) := ˜F(SN )(n).

Remark 2.18. Note that in [19, definition 1.4], X̃ is called the chaotic category on X, the

intuition being that every object of X̃ is the same as every other object. We have kept their

notation, but we shall usually avoid that nomenclature because when X is a G-set, different

objects generally have different isotropy groups. While the objects of X̃ are nonequivariantly

isomorphic, we find that the structure on X̃ loosely resembles the tangent bundle of a

homogeneous space, hence our terminology.

2.5 2-categories of algebras over operads

There are 2-categories of SMN -algebras that are precisely analogous to the 2-categories

of N -normed symmetric monoidal categories considered earlier. We review the definitions

here. We find it easier to work in adjoint form to [10] and [20], and there are some minor

differences between our definitions. Hence we shall give complete details.

Notation 2.19. We shall use • to denote vertical composition of natural transformations,

and ◦ to denote horizontal composition of functors and natural transformations.

Definition 2.20. Suppose that O is an operad in GCat. A strict O-algebra in GCat is a

G-category C , equipped with an operad map |·|C : O → End(C ).

We think of the map |·|C as realizing an abstract symbol as an operation on C .

Definition 2.21. Suppose that O is an operad in GCat, and that C and D are strict

O-algebras in GCat. A lax O-algebra morphism (F, ∂•) : C → D consists of:

1. a G-functor F : C → D , and

2. for each n ≥ 0 and x ∈ O(n), a natural transformation (∂n)x : |x|D ◦F×n ⇒ F ◦ |x|C ,
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which are required to satisfy the following conditions.

(i) for each n ≥ 0, the maps (∂n)x vary naturally in x ∈ O(n),

(ii) for each n ≥ 0, x ∈ O(n), and (g, σ) ∈ G×Σn, the equation (g, σ) · (∂n)x = (∂n)(g,σ)·x

holds, i.e. (∂n)x is (G× Σn)-equivariant in x,

(iii) (∂1)id = idF : |id|D ◦ F×1 ⇒ F ◦ |id|C , and

(iv) for any y ∈ O(m) and xi ∈ O(ki), the transformations (∂k1+···+km)γ(y;x1,...,xm) and[
(∂m)y ◦

(
id|x1|C × · · · × id|xm|C

)]
•
[
id|y|D ◦

(
(∂k1)x1 × · · · × (∂km)xm

)]
are equal

natural transformations |γ(y;x•)|D ◦ F×Σk• ⇒ F ◦ |γ(y;x•)|C .

A pseudomorphism (resp. strict morphism) is a lax morphism such that (∂n)x is an isomor-

phism (resp. identity) for every n ≥ 0 and x ∈ O(n).

Remark 2.22. Our pseudomorphisms are closely related, but not identical, to the pseudo-

morphisms considered in [10] and [20]. Conditions (iii) and (iv) correspond to the pasting

diagrams in [10, definition 2.4], but we have enforced additional equivariance in (ii). On the

other hand, [20] only considers pseudomorphims between algebras over a reduced operad,

and they require their morphisms to preserve basepoints strictly.

As we now explain, conditions (ii) – (iv) essentially state that the assignment x 7→ (∂n)x

is an operad map.

Definition 2.23. Suppose that C and D are strict O-algebras and that F : C → D is a

G-functor. We define an operad Lax = Lax(O,C ,D , F ) in GSet as follows.

1. For each integer n ≥ 0, let Lax(n) be the set of pairs (x, ξ), where x ∈ O(n) and

ξ : |x|D ◦F×n ⇒ F ◦|x|C is a nonequivariant natural transformation in CatG(C×n,D).

The G× Σn-action is (g, σ) · (x, ξ) =
(
(g, σ) · x, (g, σ) · ξ

)
.

2. Define the identity for Lax to be the pair (id, idF ).
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3. Define composition maps

γL : Lax(k)× Lax(j1)× · · · × Lax(jk)→ Lax(j1 + · · ·+ jk)

by setting γL((z, ζ); (x1, ξ1), . . . , (xk, ξk)) equal to

(
γO(z;x1, . . . , xk) , [ζ ◦ (id|x1|C × · · · × id|xk|C )] • [id|z|D ◦ (ξ1 × · · · × ξk)]

)
.

The first coordinate projection defines a map π1 : Lax→ Ob(O) of G-operads.

Remark 2.24. There are suboperads ObO ∼= St ⊂ Ps ⊂ Lax obtained by restricting all ξ’s

to be identity transformations and natural isomorphisms, respectively.

The following is a quick check of definitions.

Lemma 2.25. Suppose that C and D are strict O-algebras, that F : C → D is a G-

functor, and that for each n ≥ 0 and x ∈ O(n), we are given a natural transformation

(∂n)x : |x|D ◦ F×n ⇒ F ◦ |x|C . Then conditions (ii) – (iv) of definition 2.21 hold if and

only if the section s : Ob(O)→ Lax of π1 : Lax→ Ob(O) defined by sn(x) := (x, (∂n)x) is

a map of G-operads.

Remark 2.26. If O = SMN , then the object operad Ob(SMN ) = F(SN ) is free, and

conditions (ii) – (iv) are easily satisfied. In this case, the nontrivial coherence condition in

definition 2.21 is the naturality of (∂n)x in all x.

Definition 2.27. Suppose that O is an operad in GCat, that C and D are strict O-

algebras, and that (F, ∂•), (F ′, ∂′•) : C ⇒ D is a pair of lax O-algebra morphisms. An

O-transformation ω : (F, ∂•)⇒ (F ′, ∂′•) is a G-natural transformation ω : F ⇒ F ′ such that

for every n ≥ 0 and x ∈ O(n), the maps (ω ◦ id|x|C ) • (∂n)x and (∂′n)x • (id|x|D ◦ ω
×n) are

equal natural transformations |x|D ◦ F×n ⇒ F ′ ◦ |x|C .

As with normed symmetric monoidal categories, the 2-category structure on GCat lifts

to O-algebras.

23



Notation 2.28. Let O-AlgLax be the 2-category of all strict O-algebras in GCat, lax

O-morphisms, and O-transformations between them. The composite of lax O-morphisms

(G, ∂•) ◦ (F, ε•) is obtained by composing underlying functors and comparison data, e.g.

[idG ◦ (∂n)x] • [(εn)x ◦ idF×n ] : |x| ◦G×n ◦ F×n ⇒ G ◦ |x| ◦ F×n ⇒ G ◦ F ◦ |x|,

and the vertical and horizontal composites of transformations are computed in GCat. Iden-

tities of both sorts are also inherited from GCat. There are sub-2-categories O-AlgSt ⊂

O-AlgPs ⊂ O-AlgLax of pseudo and strict morphisms, and there is a forgetful 2-functor

O-AlgLax→ GCat.

2.6 The evaluation 2-functor

In this section, we define the evaluation 2-functor ev : SMN -AlgLax → NSMLax. This

part is straightforward. The more difficult task is constructing its inverse, and we explain

how to do that in the next section.

ev on categories

Suppose that C is a strict SMN -algebra and let |·| : SMN → End(C ) be the corresponding

structure map. We can extract a N -normed symmetric monoidal structure on C as follows.

First, consider the values of |·| on the generators of SMN . Define

1. ⊗C := |⊗(x1, x2)| : C×2 → C ,

2. eC := |e()| : C×0 → C , and

3.
⊗C
T :=

∣∣∣∣⊗T (x1, . . . , x|T |)

∣∣∣∣ : C×T → C for all T ∈ N .

To get coherence isomorphisms, we evaluate |·| on the relevant morphisms in SMN .

4. αC := |⊗(⊗(x1, x2), x3)→ ⊗(x1,⊗(x2, x3))|,
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5. λC := |⊗(e(), x1)→ x1|,

6. ρC := |⊗(x1, e())→ x1|,

7. βC := |⊗(x1, x2)→ ⊗(x2, x1)|, and

8. υC
T :=

∣∣∣∣⊗T (x1, . . . , x|T |)→ ⊗(⊗(. . .⊗ (⊗(x1, x2), x3) . . . , x|T |−1), x|T |)

∣∣∣∣ for T ∈ N .

We let evC denote the G-category C , together with the functors and natural transformations

specified above. These data satisfy the commutativity conditions for a normed symmetric

monoidal category.

Proof. Every diagram in SMN commutes, and |·| is a map of operads in G-categories. For

example, the pentagon axiom for ⊗ comes from a pentagon in SMN (4) whose vertices

are ⊗(⊗(⊗(x1, x2), x3), x4), ⊗(⊗(x1, x2),⊗(x3, x4)), etc. The other ordinary symmetric

monoidal axioms are visible in SMN (1)− SMN (3).

Twisted equivariance for υT can be deduced from a diagram in SMN (|T |) as follows.

Write
⊗

n(x1, . . . , xn) as shorthand for the n-ary term

⊗(⊗(. . .⊗ (⊗(x1, x2), x3) . . . , xn−1), xn).

Given any H-set T ∈ N and group element h ∈ H, there is a commutative diagram

h ·
⊗

T (x1, . . . , x|T |)
⊗

T (xσ(h)−11, . . . , xσ(h)−1|T |)

⊗
|T |(xσ(h)−11, . . . , xσ(h)−1|T |)

h ·
⊗
|T |(x1, . . . , x|T |)

⊗
|T |(x1, . . . , x|T |)

id

id

in SMN (|T |), where (h, σ(h)) ∈ ΓT . The left vertical arrow maps to h · υC
T , which is the
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untwistor υC
T conjugated by h. The upper right vertical arrow maps to υC

T · σ(h), which

is the untwistor υC
T with its inputs permuted by σ(h). The lower right vertical arrow can

be factored as a sequence of associativity and commutativity arrows in SMN , and thus it

maps to the symmetric monoidal coherence isomorphism for C that permutes the factors of⊗C
|T | by σ(h)−1. Thus, the image of this square under |·| produces the twisted equivariance

diagrams for υC
T , once we evaluate at tuples of the form (hC1, . . . , hC|T |).

ev on functors

Given a lax SMN -morphism (F, ∂•) : (C , |·|C ) → (D , |·|D ) between strict SMN -algebras,

we obtain a lax monoidal functor evF : evC → evD by taking

1. the G-functor F : C → D ,

2. the G-fixed morphism Fe := (∂0)e(),

3. the G-transformation F⊗ := (∂2)⊗(x1,x2), and

4. the transformation F⊗
T

:= (∂|T |)
⊗
T (x1,...,x|T |)

for every H-set T ∈ N .

Note that the natural transformations above have the required equivariance because (∂n)x is

G×Σn-equivariant in x. Naturality of ∂• with respect to the morphisms ⊗(⊗(x1, x2), x3)→

⊗(x1,⊗(x2, x3)), ⊗(e(), x1)→ x1, etc., together with the compatibility of ∂• with composi-

tion imply that these data are a lax monoidal functor (F, F•) : evC → evD .

ev on transformations

Suppose that (C , |·|C ) and (D , |·|D ) are strict SMN -algebras, that (F, ∂•), (F ′, ∂′•) : C ⇒ D

is a pair of lax maps, and that ω : (F, ∂•) ⇒ (F ′, ∂′•) is a SMN -transformation between

them. Then ω is just a G-natural transformation F ⇒ F ′ that is compatible with ∂• and

∂′•. By specializing to (∂0)e(), (∂2)⊗(x1,x2), and (∂|T |)
⊗

T (x1,...,x|T |)
, we deduce that ω also

is a N -normed monoidal transformation ω : evF ⇒ evF ′.
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2.7 The inverse to the evaluation 2-functor

In this section, we describe the inverse to the 2-functor ev : SMN -AlgLax→ NSMLax.

The inverse for categories

Suppose that (
C ,⊗C , eC , (

⊗C
T )T∈N , α

C , λC , ρC , βC , (υC
T )T∈N

)
is aN -normed symmetric monoidal category, and consider the endomorphism operad End(C )

of C . We begin with some formalities. There is a map of symmetric sequences |·| : SN →

Ob(End(C )) that sends the generating cosets of SN to the corresponding operations on C .

By adjunction, we obtain an operad map |·| : F(SN ) → Ob(End(C )) such that |e()| = eC ,

|⊗(x1, x2)| = ⊗C , and
∣∣∣⊗T (x1, . . . , x|T |)

∣∣∣ =
⊗C

T for every T ∈ N . The remainder of the

construction consists of the following two steps:

(i) defining a functorial extension of |·| : F(SN )(n)→ End(C )(n) to the category SMN (n)

for every n ≥ 0, and

(ii) proving that this levelwise functorial extension of |·| to SMN is a map of operads in

G-categories.

We outline both of these steps below, and the details are treated in section 2.8.

For the first task, the idea is to embed F(S)(n) as the vertex set of a directed graph

Bas(n), whose edges represent “basic maps” between the n-ary operations in F(SN )(n).

Roughly speaking, a basic map |t| ⇒
∣∣t′∣∣ is a natural isomorphism that changes a subterm

of t using a single instance of α±1, λ±1, etc. For every n ≥ 0, there is an extension of

|·| : F(S)(n)→ End(C )(n) to a map

|·| : Bas(n)→ End(C )(n)
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of directed graphs, and by adjunction, we obtain a functor

|·| : Fr(Bas(n))→ End(C )(n)

out of the free category on Bas(n). The free category Fr(Bas(n)) is too large, but we can

adapt Mac Lane’s techniques [31, Ch. VII.2] to prove that for any prescribed source and

target vertices t, t′ ∈ Fr(Bas(n)), all paths of basic edges starting at t and ending at t′ have

the same image under |·|. We call this common value a “canonical isomorphism” of C . Thus,

the functor |·| : Fr(Bas(n))→ End(C )(n) descends to the quotient of Fr(Bas(n)) obtained

by identifying all pairs of parallel morphisms, and this quotient is SMN (n). The map

|·| : SMN (n) → End(C )(n) sends the unique morphism t → t′ in SMN to the canonical

isomorphism can : |t| ⇒
∣∣t′∣∣.

For the second task, the essential point is that the canonical isomorphisms of C are

closed under the G-operad structure on End(C ). Closure under the nonequivariant operad

structure follows easily from the definition of a basic map, and closure under the G-action

follows from the G-equivariance and the twisted equivariance of the coherence isomorphisms

for C . From here, one uses the uniqueness of canonical maps in C to deduce that |·| :

SMN → End(C ) preserves the G-operad structure.

The inverse for functors

Suppose that C and D are N -normed symmetric monoidal categories and let |·|C : SMN →

End(C ) and |·|D : SMN → End(D) be the corresponding SMN -algebra structures de-

scribed above. Given any lax monoidal morphism (F, F•) : C → D , we construct a lax

SMN -morphism (F, ∂•) : (C , |·|C )→ (D , |·|D ) as follows.

First, note that the isotropy conditions on the maps Fe, F⊗, and F⊗
T

imply that there

is a G-operad map Φ : F(SN ) → Lax(SMN ,C ,D , F ) such that Φ0(e()) = (e(), Fe),

Φ2(⊗(x1, x2)) = (⊗(x1, x2), F⊗), and Φ|T |(
⊗

T (x1, . . . , x|T |)) = (
⊗

T (x1, . . . , x|T |), F
⊗

T
)
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for every T ∈ N . We define (∂n)x := π2(Φn(x)). Noting that the map π1 ◦ Φ : F(SN ) →

F(SN ) fixes the generators of F(SN ), it follows Φn(x) = (x, (∂n)x) for all x ∈ SMN , and

hence (∂n)x is a map |x|D ◦ F×n ⇒ F ◦ |x|C for all n ≥ 0 and x ∈ SMN (n). Applying

lemma 2.25 shows that (F, ∂•) satisfies (ii) – (iv) of definition 2.21.

It remains to check that (∂n)x is natural in x ∈ SMN (n) for every n ≥ 0. However, it is

enough to check that every (∂n)• is natural with respect to residue classes of basic edges, since

such morphisms generate the components of SMN as G-categories. So, suppose e : x→ x′

is such an edge. We argue inductively on the complexity of the domain. The edge e modifies

a subterm of x, and that subterm either contains the first letter of x, or it does not. In the

latter case, the recursive definition of ∂• allows us to reduce to a subterm, and the conclusion

follows by induction. In the former case, the result follows from the compatibility of Fe, F⊗,

and F⊗
T

with the coherence data for C and D .

The inverse for transformations

Suppose that (F, F•), (F ′, F ′•) : C ⇒ D are a pair of lax N -normed functors, and let

(F, ∂•), (F ′, ∂′•) : (C , |·|C ) ⇒ (D , |·|D ) be the corresponding pair of lax SMN -morphisms

constructed above. If ω : (F, F•)⇒ (F ′, F ′•) is anyN -normed monoidal transformation, then

ω also is a SMN -transformation ω : (F, ∂•) ⇒ (F ′, ∂′•). Indeed, the set of all x ∈ SMN

for which the equation (∂′n)x • (id|x|D ◦ ω
×n) = (ω ◦ id|x|C ) • (∂n)x holds is closed under

the (G × Σ•)-action and the operad structure on SMN . Here n is the arity of x. Thus, if

ω : (F, F•)⇒ (F ′, F ′•) is monoidal, then the preceding equality holds for x = e(), ⊗(x1, x2),

and
⊗

T (x1, . . . , x|T |), and these terms generate the operad Ob(SMN ) = F(SN ).

2.8 Appendix: the construction of SMN -actions

In this section, we explain the formal construction of an operad map |·| : SMN → End(C )

from an N -normed symmetric monoidal structure on C , thus completing the proof of the-
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orem 2.10. We take the operad map |·| : F(SN ) → Ob(End(C ) defined by |e()| = eC ,

|⊗(x1, x2)| = ⊗C , and
∣∣∣⊗T (x1, . . . , x|T |)

∣∣∣ =
⊗C

T as our starting point.

The morphisms in SMN parametrize coherence isomorphisms, which are generated by

the coherence data for C . We say that a coherence isomorphism is a “basic map” if it

modifies an operation using a single instance of (αC )±1, (λC )±1, etc. General coherence

isomorphisms are composites of basic maps. Thus, to define SMN → End(C ), we start by

introducing formal lifts of basic maps to F(SN ).

Definition 2.29. A basic edge is a pair of terms t, t′ ∈ F(SN ) and a chosen subterm s ⊂ t,

such that t′ is obtained from t by modifying s in one of the following ways.

id-basic: s s (no change)

α-basic: s = ⊗(⊗(s1, s2), s3) ⊗(s1,⊗(s2, s3))

λ-basic: s = ⊗(e(), s1) s1

ρ-basic: s = ⊗(s1, e()) s1

β-basic: s = ⊗(s1, s2) ⊗(s2, s1)

υ-basic: s = gHi
⊗
T (s1, . . . , s|T |) ⊗(· · · ⊗ (⊗(s1, s2), s3) · · · s|T |)

where, in the last line, T is an H-set in N and gHi is one of the chosen G/H coset represen-

tatives. One defines α−1, λ−1, ρ−1, and υ−1-basic edges similarly. Note that we regard the

location of s in t, and the type of modification (id, α±1, λ±1, etc.) as part of the data of a

basic edge.

The directed graph Bas(n) consists of the terms in F(SN )(n) and the basic edges between

them. We extend the set map |·| : F(SN )(n)→ Ob(End(C )(n)) to a morphism of directed

graphs using the coherence isomorphisms for C . By adjunction, we obtain a functor |·| :

Fr(Bas(n))→ End(C )(n)) out of the free category.

Notation 2.30. As before, we shall use • to denote vertical composition in End(C )(n), in
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contrast to the horizontal composition ◦ that makes End(C ) into an operad. For consistency,

we shall also use • for composition in Fr(Bas(n)).

We now prove that the functor |·| : Fr(Bas(n)) → End(C )(n) factors through the

quotient category Fr(Bas(n))/〈p ∼ q | p, q parallel〉 ∼= SMN (n), borrowing techniques and

results from Mac Lane. The strategy is to reduce the problem to the nonequivariant case by

separating υ-basic maps out from the rest of a composite of basic edges. We begin with the

following interchange lemma.

Lemma 2.31. Suppose that r
e→ s

u→ t is a composable pair of basic edges in Bas(n), and

(a) the edge e is ε-basic, where ε is one of α±1, λ±1, ρ±1, or β, and

(b) the edge u is υ-basic.

Then there is a composable pair of basic edges r
u′→ s′ e

′
→ t such that

(i) the edge e′ is ε-basic,

(ii) the edge u′ is υ-basic, and

(iii)
∣∣e′∣∣ • ∣∣u′∣∣ = |u| • |e|.

Proof. The edge u′ modifies r according u, and the edge e′ modifies s′ according to e. If e

and u modify disjoint subterms of t, then the equation
∣∣e′∣∣ • ∣∣u′∣∣ = |u| • |e| follows from the

functoriality of the operations ⊗C and
⊗C

T . If the modified subterms are not disjoint, then

the identity
∣∣e′∣∣ • ∣∣u′∣∣ = |u| • |e| follows from the naturality of the isomorphisms (αC )±1,

(λC )±1, etc.

Next, we follow Mac Lane. We show that the intepretations of certain parallel “υ-directed

morphisms” always coincide, and then we prove the general case. Suppose that p is a mor-

phism in Fr(Bas(n)). We say that p is υ-directed if p uniquely decomposes into a (possibly

empty) composite p = bk • · · · • b1 of basic edges, none of which are υ−1-basic. In what

follows, we write
⊗

n(x1, . . . , xn) as shorthand for the term ⊗(· · · ⊗ (⊗(x1, x2), x3) · · · , xn).
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Lemma 2.32. Suppose that t ∈ Fr(Bas(n)), and that p, q : t ⇒
⊗

n(x1, . . . , xn) are υ-

directed. Then the natural transformations |p|, |q| : |t|⇒ |
⊗

n(x1, . . . , xn)| are equal.

Proof. Consider p alone first. We may write p = bk • · · · • b1 for unique basic edges, and

then |p| = |bk| • · · · • |b1|. By applying lemma 2.31 repeatedly, we may move all images of

υ-basic edges to the right in this composite, and thus we obtain morphisms pυ : t → tred

and ps : tred →
⊗

n(x1, . . . , xn) in Fr(Bas(n)) such that

(a) |p| = |ps| • |pυ|,

(b) pυ is a composite of υ-basic edges only, and

(c) ps is a composite of ordinary symmetric monoidal basic edges.

Observe that the term tred is uniquely determined by the above. It is the term obtained

by replacing every subterm s ⊂ t of the form s = gHi
⊗

T (s1, . . . , s|T |) with the term

⊗(· · · ⊗ (⊗(s1, s2), s3) · · · s|T |). Now do the same thing for q. We obtain parallel pairs

of maps pυ, qυ : t ⇒ tred and ps, qs : tred ⇒
⊗

n(x1, . . . , xn) such that |p| = |ps| • |pυ| and

|q| = |qs| • |qυ|.

The ordinary Kelly-Mac Lane coherence theorem implies that |ps| = |qs|, since |ps| and

|qs| come from the underlying symmetric monoidal structure on C . The equality |pυ| = |qυ|

holds by the same argument given in the previous lemma, because the υ-basic factors of

pυ and qυ modify distinct letters in the term t. The naturality of υT implies that we may

perform such changes in any order.

Now for the general case. The following is taken nearly verbatim from [31].

Proposition 2.33. Suppose that t, t′ ∈ Fr(Bas(n)) and that p : t→ t′ is arbitrary. Choose

υ-directed morphisms d : t →
⊗

n(x1, . . . , xn) and d′ : t′ →
⊗

n(x1, . . . , xn). Then |p| =∣∣d′∣∣−1 • |d| : |t| → |
⊗

n(x1, . . . , xn)| →
∣∣t′∣∣.
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Mac Lane’s proof. Consider p = bk • · · · • b1 : t → t′, where the bi are basic edges. By

regrouping the factors, we may write

p =
[
t = t0

s0→ t1
u1→ t2

s1→ t3
u2→ t4 → · · · → t2j−1

uj→ t2j
sj→ t2j+1 = t′

]

where each ui is υ±1-basic, and no instances of υ±1-basic maps occur in the si. Applying |·|

and replacing each υ−1-basic map edge with its reverse, we see

|p| =
[
|t0|
|s0|→ |t1|

|u1|±1→ |t2|
|s1|→ |t3|

|u2|±1→ |t4| → · · · →
∣∣t2j−1

∣∣ |uj|±1→ ∣∣t2j∣∣ |sj|→ ∣∣t2j+1

∣∣]

where each of the ui are now υ-basic edges, possibly pointing backwards. Now, for each ti,

choose a υ-directed morphism di : ti →
⊗

n(x1, . . . , xn), taking d0 = d and d2j+1 = d′ from

the theorem statement. We obtain a diagram

|t0| |t1| |t2| |t3| |t4| · · ·
∣∣t2j−1

∣∣ ∣∣t2j∣∣ ∣∣t2j+1

∣∣

|
⊗

n|

· · ·

|s0| |u1|±1 |s1| |u2|±1
∣∣uj∣∣±1 ∣∣sj∣∣

in End(C )(n), where the diagonal map |ti| → |
⊗

n(x1, . . . , xn)| is |di|. Every triangle

commutes by lemma 2.32, hence |p| =
∣∣d2j+1

∣∣−1 • |d0| =
∣∣d′∣∣−1 • |d|.

Corollary 2.34. The functor |·| : Fr(Bas(n)) → End(C )(n) factors through the quotient

π : Fr(Bas(n)) → Fr(Bas(n))/〈p ∼ q | p, q parallel〉, and this quotient is isomorphic to the

category SMN (n).

Proof. Every term t maps down to
⊗

n(x1, . . . , xn), and vice versa. Thus, for any terms

t and t′, there is a map t →
⊗

n(x1, . . . , xn) → t′, which implies that the quotient has a

unique map between any pair of objects.

We conclude by showing that the functors |·| : SMN (n) → End(C )(n) assemble into

a G-operad map SMN → End(C ). The basic points are that the image of |·| is closed

33



under the G-operad structure on End(C ), and that the canonical coherence maps for C are

unique. Thus, the map |·| : SMN → End(C ) essentially has “no choice” but to preserve

the G-operad structure.

Lemma 2.35. The map |·| : SMN (n) → End(C )(n) preserves operadic composition and

identities.

Proof. The map |·| : F(SN ) → Ob(End(C )) is an operad map, so its extension must also

preserve the identity. Now suppose that p : s→ s′ ∈ SMN (k) and qi : ti → t′i ∈ SMN (ji)

for j = 1, . . . , k. The morphisms p and qi factor as composites of basic edges, and the

natural isomorphisms |p| and |qi| factor as the corresponding composites of basic maps. By

functoriality, the composite γ(|p|; |q1|, . . . , |qk|) also factors as a composite of basic maps,

which we may lift to a chain of basic edges c : γ(s; t1, . . . , tk)→ γ(s′; t′1, . . . , t
′
k). The residue

classes c, γ(p; q1, . . . , qk) : γ(s; t1, . . . , tk) ⇒ γ(s′; t′1, . . . , t
′
k) are parallel, and hence equal.

We conclude that |γ(p; q1, . . . , qk)| = |c| = γ(|p|; |q1|, . . . , |qk|).

Lemma 2.36. The map |·| : SMN (n)→ End(C )(n) preserves the G× Σn action.

Proof. It is enough to check when b : t→ t′ is the residue class of a basic edge b. We begin

with the Σn-action. Consider the natural isomorphism
∣∣b∣∣·σ. It is obtained by permuting the

inputs to
∣∣b∣∣, so it is a basic map of the same sort. Thus, there is a basic edge c : t ·σ → t′ ·σ

that lifts
∣∣b∣∣ ·σ. Since b ·σ and c are parallel, and hence equal, we deduce

∣∣b · σ∣∣ = |c| =
∣∣b∣∣ ·σ.

For the G-action, there are two cases. Either b is basic for one of the ordinary symmetric

monoidal coherence maps, or it is υ-basic. The first case is similar to the above. The

isomorphism g·
∣∣b∣∣ is obtained by conjugating everything by g, and the isomorphisms (αC )±1,

(λC )±1, etc. are all G-equivariant. Therefore g ·
∣∣b∣∣ is a basic map of the same sort as

∣∣b∣∣,
and there is a basic edge c : g · t→ g · t′ that lifts it. We find

∣∣g · b∣∣ = |c| = g ·
∣∣b∣∣.

If b is υ-basic, then g ·
∣∣b∣∣ is not υ-basic. However, twisted equivariance lets us write g ·

∣∣b∣∣
as a composite of an υ-basic map with a chain of ordinary symmetric monoidal basic maps,
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which lifts to a chain of basic edges c : g ·t→ g ·t′. Therefore the equation
∣∣g · b∣∣ = |c| = g ·

∣∣b∣∣
holds here as well.

To summarize, we have constructed an operad map |·| : SMN → End(C ) from any

given normed symmetric monoidal structure (C ,⊗, e, (
⊗

T ), α, λ, ρ, β, (υT )) on C , and di-

rect inspection of the definitions reveals that ev(C , |·|) = C . On the other hand, every

operad map |·| : SMN → End(C ) is determined by its values on the terms e(), ⊗(x1, x2),⊗
T (x1, . . . , x|T |) and the morphisms ⊗(⊗(x1, x2), x3)→ ⊗(x1,⊗(x2, x3)), ⊗(e(), x1)→ x1,

etc. It follows that the construction given in this section is also left inverse to ev.

This completes the proof of theorem 2.10.
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CHAPTER 3

HOMOGENEOUS CATEGORICAL OPERADS

3.1 Introduction and summary of results

As usual, fix a finite group G.

Definition 3.1. An N∞ operad is an operad O in G-spaces such that

1. the operad O is Σ-free, i.e. for every integer n ≥ 0, the space O(n) is Σn-free,

2. for every integer n ≥ 0 and subgroup Γ ⊂ G×Σn, the space O(n)Γ is either empty or

contractible, and

3. the spaces O(0)G and O(2)G are contractible.

An N∞ operad is an E∞ operad if there are fixed points for every subgroup Γ ⊂ G × Σn

such that Γ ∩ Σn = ∗. Let N∞-Op be the category of all N∞ operads in G-spaces.

In [5], Blumberg and Hill introduce N∞ operads to parametrize the multiplicative struc-

ture present on localizations of equivariant commutative ring spectra. From this standpoint,

the Σ-freeness assumption is natural because one almost never has homotopical operations

that satisfy strict commutativity relations. It follows that the only subgroups Γ ⊂ G×Σn for

which O(n)Γ can be nonempty must be of the form Γ = {(h, σ(h)) |h ∈ H}, for some sub-

group H ⊂ G and homomorphism σ : H → Σn (cf. lemma 2.12). The elements c ∈ O(n)Γ

parametrize norms on O-algebras, which give rise to transfers. The second condition above

ensures that we get at most one norm of each type, up to coherent homotopy. These two

observations justify the label “N∞.” The third condition guarantees that every O-algebra

has an underlying nonequivariant E∞ structure. It is motivated by the fact that localiza-

tions of equivariant commutative ring spectra always retain this minimum of structure. The

key point, however, is that equivariant E∞ ring spectra possess all possible norms, but their

localizations need not.
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In this chapter, we study combinatorial precursors to N∞ operads in G-spaces.

Definition 3.2. A categorical N∞ operad is an operad O in G-categories, whose classifying

space BO is an N∞ operad in G-spaces. A homogeneous categorical N∞ operad is an operad

O in G-categories such that

1. the operad O is Σ-free,

2. for every integer n ≥ 0 and subgroup Γ ⊂ G×Σn, the category O(n)Γ is either empty

or (categorically) equivalent to the terminal category, and

3. the categories O(0)G and O(2)G are equivalent to the terminal category.

Let N∞-Opcat be the category of all categorical N∞ operads, and let N∞-Oph be the

category of all homogeneous categorical N∞ operads.

The operad SMN considered in chapter 2 is a typical example of a homogeneous N∞

operad, as is the equivariant Barratt-Eccles operad PG of [18].

Proposition 3.3. Every homogeneous categorical N∞ operad is a categorical N∞ operad.

Proof. The properties that define N∞ operads can be encoded using equalizer diagrams of

the form below.

∅ X X
id

σ
(σ 6= id),

XΓ X
∏
γ∈ΓX

∆

all γ · (−)’s
(Γ ⊂ G× Σn)

Now observe that taking classifying spaces preserves finite limits and initial objects, and

that it takes equivalences of categories to homotopy equivalences of spaces.

One virtue of homogeneous N∞ operads is their simplicity. Indeed, if O is homogeneous,

then O is determined by its object operad alone. Recalling the adjunction Ob : Cat� Set :

(̃−) (cf. definition 2.16), we have that O ∼= Õb(O). This motivates the following definition.
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Definition 3.4. An N operad is an operad O in G-sets such that

1. the operad O is Σ-free, and

2. the sets O(0)G and O(2)G are nonempty.

Let N -Op be the category of all N operads and G-operad maps between them.

Proposition 3.5. If O is a homogeneous categorical N∞ operad, then Ob(O) is an N

operad. If O is an N operad, then Õ is a homogeneous categorical N∞ operad. Thus

Ob : Cat� Set : (̃−) induces an equivalence N -Op ' N∞-Oph.

Proof. The functors Ob and (̃−) preserve (finite) limits and initial objects, and for every set

X, the category X̃ is either empty or equivalent to the terminal category.

The preceding two results allow us to study N∞ operads in terms of operads in G-sets.

We shall use this connection to produce explicit, combinatorial models for N∞ operads.

The remainder of this chapter is organized as follows. We begin with a review of the

classification of N∞ operads (sections 3.2 and 3.3). This is due to Blumberg and Hill [5], and

it is based on the notion of an indexing system (cf. definition 3.15). These are combinatorial

invariants that track the norms parametrized by an N∞ operad, and we say that a finite

G-subgroup action T is an admissible set of an operad O if O parametrizes a T -norm (cf.

definition 3.8). Blumberg and Hill prove that the homotopy category of N∞ operads maps

fully and faithfully into the poset of indexing systems, but the realizability of every indexing

system was left as a conjecture [5, p.4]. Our main contribution to this discussion is a

calculation of the admissible sets of a free homogeneous N∞ operad (theorem 3.19).

Theorem. For any set of exponents N , the class of admissible sets of the operad SMN is

the indexing system generated by N .

This immediately implies that every indexing system can be realized by one of the operads

SMN , which proves Blumberg and Hill’s conjecture. Two independent proofs have also been
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given by Bonventre-Pereira [8] and Gutiérrez-White [21]. In some sense, the computation

of the admissible sets of F(S) in theorem 3.19 was inevitable, because this is the universal

case. That indexing systems appear naturally in free operads is a further indication of their

intrinsic nature.

We continue by developing a homotopy theory of operads that puts our constructions in

perspective (sections 3.4 and 3.5). For technical reasons, it is easier to study homogeneous

operads with a marked constant and binary operation, and we denote the category of such

operads by Oph,m. We equip Oph,m with an elementary, but illuminating model category

structure (theorem 3.40).

Theorem. There is a cofibrantly generated, simplicial model category structure on Oph,m,

whose weak equivalences are the maps f : O1 → O2 that induce equivalences between all

subspaces of norm maps, and for which every object is fibrant. The cell complexes are the

operads SMN , and the cofibrant objects are deformation retracts thereof. Every mapping

space in Oph,m is either empty or contractible.

It follows that Blumberg and Hill’s classification of N∞ operads in G-spaces applies

equally well to Oph,m, and that taking classifying spaces induces an equivalence between

the homotopy category of homogeneous N∞ operads and the homotopy category of N∞

operads in G-spaces (theorem 3.41). Note that there are also more general fixed-point model

category structures, for which the operads SMN become cofibrant replacements of the

commutativity operad Com (cf. corollary 3.25).

3.2 Admissible sets

In this section and the next, we review the classification of N∞ operads. Almost all of the

following was developed by Blumberg and Hill in [5]. Our contribution is theorem 3.19,

which implies that all possible values of their homotopy invariant are taken.

Definition 3.6. A map f : O1 → O2 between N∞ operads in G-spaces is a weak equivalence
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if fn : O1(n)Γ → O2(n)Γ is a weak homotopy equivalence of spaces for every integer n ≥ 0

and subgroup Γ ⊂ G × Σn. A map f between N∞ operads in G-categories is a weak

equivalence if Bf is a weak equivalence. Two N∞ operads O1 and O2 are weakly equivalent

if they are isomorphic after we invert the weak equivalences.

These conditions ensure that weakly equivalent operads O1 and O2 parametrize norms in

an equivalent fashion, and a weak equivalence f : O1 → O2 must witnesses that fact. Note

that a map between homogeneous N∞ operads is a weak equivalence if and only if the maps

on Γ-fixed points are all equivalences of categories.

We have the following standard observation.

Proposition 3.7. A map f : O1 → O2 between N∞ operads in G-spaces is a weak equiv-

alence if and only if for every integer n ≥ 0, subgroup H ⊂ G, and homomorphism

σ : H → Σn, the space O1(n)Γ is contractible whenever the space O2(n)Γ is contractible,

where Γ = {(h, σ(h)) |h ∈ H} ⊂ G× Σn.

Proof. For every integer n ≥ 0 and subgroup Γ, the spaces O1(n)Γ and O2(n)Γ are ei-

ther empty or contractible. By Σ-freeness, it is enough to consider the subgroups Γ =

{(h, σ(h)) |h ∈ H}, and for such Γ, it is enough to exclude the case that O1(n)Γ = ∅ and

O2(n)Γ ' ∗, because we have a map fn : O1(n)Γ → O2(n)Γ.

We can push this a bit further. If O1 and O2 are N∞ operads such that O1(n)Γ ' ∗

precisely when O2(n)Γ ' ∗, then both projections in the diagram O1 ← O1 × O2 → O2

are weak equivalences, even if there is no single operad map between O1 and O2. Thus, the

homotopy type of an N∞ operad is completely determined by which of the spaces O(n)Γ

are contractible, or equivalently, nonempty. Said differently, an N∞ operad is determined

by the norms that it parametrizes.

Thus, it is reasonable to ask which systems of norms could possibly arise from an N∞

operad O. They cannot be arbitrary because O(0)G and O(2)G are nonempty, and the

equivariance of the maps γ : O(k)×O(j1)×· · ·×O(jk)→ O(j1 + · · ·+jk) implies inclusions
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between the various fixed point subspaces of O. In [5], Blumberg and Hill introduce indexing

systems to codify these properties. We give a modified treatment that is better suited for

our combinatorial setting.

The notion of an indexing system is most easily formulated in coordinate-free language.

Instead of considering subgroups Γ ⊂ G× Σn, one considers finite G-subgroup actions. We

make the following definition.

Definition 3.8. Suppose that H ⊂ G is a subgroup, and that T is a finite H-set.

1. Given a symmetric sequence of G-sets S, we say that T is an admissible set for S if

the set S
ΓT
|T | is nonempty.

2. Given an N∞ operad O in G-spaces, we say that T is an admissible set for O if

O(|T |)ΓT is contractible (or equivalently, nonempty). We say that T is an admissible

set for a categorical N∞ operad O if it is admissible for BO.

The case for operads in G-spaces is the notion of admissibility considered in [5]. Thus

T is admissible for a symmetric sequence of G-sets S if S parametrizes a T -norm, and it is

admissible for an N∞ operad O if O parametrizes a homotopically unique norm. Note that

we must choose an order on T to define the subgroup ΓT ⊂ G× Σ|T |, but the definition of

admissibility is independent of this choice because different orders on T give rise to subgroups

that are conjugate to ΓT .

Notation 3.9. We write A(S) for the class of all admissible finite G-subgroup actions for

S. This class is graded over the set of all subgroups H ⊂ G.

There is a noncommutative diagram

N -Op N∞-Opcat N∞-Op
(̃−)

Ob

B

U

41



and we have the following consistency statements.

Proposition 3.10. Admissibility is preserved by the preceding functors, i.e.

1. if O ∈ N -Op, then A(O) = A(Õ),

2. if O ∈ N∞-Opcat, then A(Ob(O)) = A(O) = A(BO), and

3. if O ∈ N∞-Op, then A(UO) = A(O).

Proof. Working levelwise, all of the functors under consideration preserve finite limits, empty

objects, and nonempty objects.

Thus, it is enough to study the admissible sets of N operads in G-sets. We actually go

one level lower.

Definition 3.11. An N symmetric sequence is a symmetric sequence of G-sets S such that

1. the symmetric sequence S is Σ-free, and

2. the sets SG0 and SG2 are nonempty.

Let N -Sym be the category of all N symmetric sequences and all maps of G-symmetric

sequences between them.

Every N symmetric sequence is the generating data for one of the operads Ob(SMN )

(cf. section 2.4). In general, N symmetric sequences give rise to N operads.

Proposition 3.12. The free-forgetful adjunction between symmetric sequences of G-sets and

operads in G-sets restricts to an adjunction F : N -Sym� N -Op : U.

Proof. Suppose that S is an N symmetric sequence. The operad F(S) must be Σ-free by

universality, and the nontriviality condition on fixed points is transferred along the unit map

η : S → F(S). Alternatively, this follows by direct inspection of the construction of F(S)

given in section 2.4.
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Suppose that S is an N symmetric sequence. This already implies certain closure condi-

tions on A(S), which are axiomatized in the next definition.

Definition 3.13. Consider graded classes (C(H))H⊂G such that each C(H) is a proper class

of finite H-sets, and H ranges over all subgroups of G. Let N -Coef be the poset of such

tuples which satisfy the following four closure conditions:

(i) for every subgroup H ⊂ G, the class C(H) contains every trivial H-action with cardi-

nality 0 or 2,

(ii) for every subgroup H ⊂ G and pair of finite H-sets S and T , if S ∈ C(H) and S ∼= T ,

then T ∈ C(H),

(iii) for every pair of subgroups K ⊂ H ⊂ G and finite H-set T , if T ∈ C(H), then

resHKT ∈ C(K), and

(iv) for every subgroup H ⊂ G, finite H-set T , and element a ∈ G, if T ∈ C(H), then

aT ∈ C(aHa−1).

We order N -Coef under levelwise inclusion. Observe that N -Coef has a maximum element

Set, which contains all finiteG-subgroup actions. In the language of [5] and [23], the elements

of N -Coef are the object classes of full, isomorphism-closed subcoefficient systems of Set

that contain all trivial actions on ∅ and on 2-element sets. Thus, we shall abusively refer to

the elements of N -Coef as coefficient systems.

Proposition 3.14. Taking admissible sets defines a functor A : N -Sym→ N -Coef .

Proof. Suppose that S is an N symmetric sequence. Condition (i) on A(S) follows from

the fact that SG0 and SG2 are nonempty. Conditions (ii) – (iv) on A(S) hold because the

set of subgroups Γ ⊂ G × Σn for which a G × Σn-set X has Γ-fixed points is closed under

subconjugacy. Thus A(S) ∈ N -Coef . Morphisms in N -Sym are taken to inclusions because

every map f : S → S′ of N symmetric sequences restricts to a map on ΓT -fixed points.
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3.3 Indexing systems and the classification of N∞ operads

Now we describe what an operad structure buys.

Definition 3.15. A coefficient system F ∈ N -Coef is an indexing system if it satisfies the

following three additional conditions:

(v) for every subgroup H ⊂ G, F(H) is closed under passage to subobjects,

(vi) for every subgroup H ⊂ G, F(H) is closed under finite coproducts, and

(vii) (closure under self-induction) for all subgroups K ⊂ H ⊂ G, if T ∈ F(K) and H/K ∈

F(H), then indHKT = H ×K T ∈ F(H).

It follows that indexing systems are completely determined by the orbits that they contain.

Let Ind be the subposet of N -Coef spanned by the indexing systems.1

Remark 3.16. The definition in [5] is equivalent to this. To start, conditions (i), (ii), (v), and

(vi) imply that every indexing system in our sense contains all trivial G-subgroup actions. We

can also deduce closure under cartesian products from our conditions. Indeed, if S, T ∈ F(H)

and we write S ∼=
∐
iH/Ki and T ∼=

∐
j H/Lj , then S×T ∼=

∐
i,j(H/Ki×H/Lj) and thus

it will be enough to show H/K ×H/L ∈ F(H) for any subgroups K,L ⊂ H ⊂ G and orbits

H/K,H/L ∈ F(H). However, the K-map resHKH/L→ H/K ×H/L sending hL to (K,hL)

induces a surjective, and hence bijective, H-map indHKresHKH/L→ H/K ×H/L.

Crucially, Blumberg and Hill show that the class of admissible sets of any N∞ operad is

an indexing system [5, theorem 4.17]. Their proof work equally well for N operads, because

they only ever use the nonemptiness of fixed point subspaces. We give a slightly modified

argument, just for variety.

Theorem 3.17 (Blumberg and Hill). The admissible sets functor A : N -Sym → N -Coef

restricts to a functor A : N -Op→ Ind.

1. The poset Ind is denoted I in [5].
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Proof. Suppose that O is an N operad. Then A(O) ∈ N -Coef by proposition 3.14. To verify

the remaining conditions, note first that the element (g, σ) ∈ G × Σn stabilizes c ∈ O(n) if

and only if g · c = c · σ. We treat conditions (v) – (vii) in turn.

For (v), suppose that T is an admissible H-set for O and that S ⊂ T is a subobject of T .

Without loss of generality, we may assume that T is ordered so that S occurs as its first |S|

elements. Write ΓT = {(h, α(h)) |h ∈ H}, choose elements c ∈ O(|T |)ΓT and u ∈ O(0)G,

and consider the element

x = γ(c; id, . . . , id, u, . . . , u) ∈ O(|S|). (|S| copies of id)

Then for any h ∈ H, the equivariance of γ and the equation h · c = c ·α(h) imply that h ·x =

x · α(h)|{1,...,|S|}. Since ΓS = {(h, α(h)|{1,...,|S|}) |h ∈ H}, we deduce that x ∈ O(|S|)ΓS ,

and hence S is also an admissible H-set for O.

For (vi), suppose that S and T are admissible H-sets for O and choose c ∈ O(|S|)ΓS and

d ∈ O(|T |)ΓT . Let p ∈ O(2)G. Then the element

x = γ(p; c, d) ∈ O(|S|+ |T |)

is ΓStT -fixed, and hence S t T is admissible for O.

For (vii), suppose that T is an admissible K-set for O and that the orbit H/K is also

admissible. Choose H/K coset representatives e = h1, h2, . . . , h|H:K| and for each h ∈ H,

define the permutation σ(h) ∈ Σ|H:K| by h · hiK = hσ(h)iK. If we order H/K as {K <

h2K < · · · < h|H:K|K}, then ΓH/K = {(h, σ(h)) |h ∈ H}. Now choose c ∈ O(|H : K|)ΓH/K

and d ∈ O(|T |)ΓT , and consider

x = γ(c; d, h2d, . . . , h|H:K|d) ∈ O(|H : K| × |T |).

A quick check shows that for every h ∈ H, there is some ρ(h) ∈ Σ|H:K|×|T | such that
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h · x = x · ρ(h). Let S be the H-set structure on {1, . . . , |H : K| × |T |} corresponding to

the subgroup {(h, ρ(h)) |h ∈ H}. It is admissible for O. Moreover, the first |T | elements

of resHKS are isomorphic to T , and multiplying by the coset representative hi sends these

elements bijectively to the [(i − 1)|T | + 1]-st through i|T |-th elements of S. It follows that

the inclusion T → resHKS induces a surjection indHKT → S, and hence indHKT
∼= S because

both sides have the same finite cardinality.

We now consider how the free-forgetful adjunction F : N -Sym � N -Op : U manifests

on the level of admissible sets.

Proposition 3.18. There is an adjunction I : N -Coef � Ind : ι. For any C ∈ N -Coef ,

the indexing system I(C) is the smallest indexing system that contains C. The functor ι is

the inclusion.

Proof. The intersection of indexing systems is an indexing system, and every coefficient

system is contained in Set, the indexing system that contains all finite G-subgroup actions.

Thus, we can define I(C) to be the intersection of all indexing systems that contain C.

We are led to consider the following two squares.

N -Coef

N -Sym

Ind

N -Op

N -Coef

N -Sym

Ind

N -Op

A A A A

F

I

U

ι

The right hand square commutes by definition. The left hand square also commutes, but

this requires proof.

Theorem 3.19. Suppose that S is a Σ-free symmetric sequence of G-sets. Then A(F(S)) ⊂

I(A(S)). If S is an N symmetric sequence, then A(F(S)) = I(A(S)). In particular, if N
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is a set of exponents, then the class of admissible sets of the operad SMN is the indexing

system generated by N .

A few preliminary remarks are in order. We prove this theorem using the first model

of F(S) described in section 2.4. For any finite K-set U and operadic term t ∈ F(S), we

say that U is t-admissible if t is ΓU -fixed for some choice of order U ∼= {1, . . . , |U |}. Every

admissible set of F(S) arises in this way for some t, and we shall show A(F(S)) ⊂ I(A(S))

by induction on the complexity of t.

The general strategy is to decompose a t-admissible set using the G-action on F(S).

Observe that if the K-set U is t-admissible, then for every (k, σ(k)) ∈ ΓU , we have k · t = t ·

σ(k). The term t·σ(k) is obtained by permuting the variables x1, . . . , x|U | in t isomorphically

to k · (−) : U → U , while the term k · t is obtained by modifying individual letters in t and

shuffling subterms around. That k ·t and t ·σ(k) are equal places strong symmetry conditions

on t, and as we shall see, it also provides a description of U that is parallel to the recursive

definition of the G-action on F(S).

Proof. We begin with the result for general Σ-free symmetric sequences. Suppose that t = x1

or t = e(), and that U is a t-admissible K-set. Then U is a trivial K-action, and it must be

contained in I(A(S)).

Now suppose that t = r
⊗

T (t1, . . . , t|T |) and that U is a t-admissible K-set. Here T is a

finite H-action on {1, . . . , |T |} for some subgroup H ⊂ G and r is a G/H coset representative,

and the set T corresponds to a coset eΓT in an orbit decomposition Sn ∼=
∐

(G × Σn)/ΓT .

Assume inductively that for every operadic term s of lower complexity than t, if V is an

s-admissible set, then V ∈ I(A(S)). We must show that U ∈ I(A(S)), and we do this by

working from the outside of t in.

Suppose that (k, σ(k)) ∈ ΓU . Then k · t = t · σ(k), and thus the first letter of t and

the first letter of k · t must be the same. Therefore kr = rh for a unique h ∈ H, and if

(h, τ(h)) ∈ ΓT , then k · t = r
⊗
T (k · tτ(h)−11, . . . , k · tτ(h)−1|T |). We conclude that the action

of K on the variables of r
⊗

T (x1, . . . , x|T |) is isomorphic to the K-set resrHr
−1

K (rT ), so we
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identify {1, . . . , |T |} ∼= resrHr
−1

K (rT ). Since (G × Σn)/ΓT ⊂ Sn, we have T ∈ A(S), and

hence resrHr
−1

K (rT ) ∈ A(S) as well. Since indexing systems are closed under subobjects, we

conclude that every orbit K/L ⊂ resrHr
−1

K (rT ) is also contained in I(A(S)).

Now write Vi for the set of variables in ti. Then there are set bijections

U ∼=
∐

resrHr
−1

K (rT )

Vi ∼=
∐

orbits K/L of

resrHr−1

K (rT )

∐
K/L

Vi

and the preceding observations imply that k · Vi ⊂ Vk·i. Therefore
∐
K/L Vi is closed under

the K-action. Since indexing systems are closed under coproducts, we have reduced the

problem to showing that
∐
K/L Vi ∈ I(A(S)) for every orbit K/L.

Consider the K-set
∐
K/L Vi and write VL for the summand corresponding to eL ∈ K/L.

The inclusions k · Vi ⊂ Vk·i and k−1 · Vk·i ⊂ Vi imply that all of the sets Vi have the same

cardinality, and therefore |
∐
K/L Vi| = |K : L| · |VL|. Moreover, the K-action on

∐
K/L Vi

restricts to an L-action on VL because l ·VL ⊂ Vl·L = VL. The inclusion VL → resKL
∐
K/L Vi

induces a surjective K-map indKL VL →
∐
K/L Vi, and therefore

∐
K/L Vi

∼= indKL VL, because

both sides have the same finite cardinality. We know that K/L ∈ I(A(S)) from above, and

since indexing systems are closed under self-induction, we have reduced the problem to

showing that VL ∈ I(A(S)).

The L-set VL is isomorphic to the action of L on the variables of one of the terms

ti appearing in t = r
⊗

T (t1, . . . , t|T |). By renumbering the variables of ti, we obtain an

operadic term ti, and VL is also isomorphic the action of L on the new variables. Therefore

VL is ti-admissible, and since ti has lower complexity than t, we conclude inductively that

VL ∈ I(A(S)). This proves that A(F(S)) ⊂ I(A(S)) for all Σ-free symmetric sequences S.

Now suppose that S is an N symmetric sequence. The inclusion A(S) ⊂ A(F(S)) holds

because we have a unit map η : S → F(S). Since F(S) is an N operad, theorem 3.17

guarantees that A(F(S)) is an indexing system. Therefore I(A(S)) ⊂ A(F(S)).
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We obtain the following classification.

Theorem 3.20. Indexing systems are a complete weak homotopy invariant for N∞ operads,

and every indexing system is realized.

Proof. Suppose that O1 and O2 are N∞ operads in G-spaces or G-categories. As explained

earlier, if A(O1) = A(O2), then the product diagram O1 ← O1 × O2 → O2 proves that O1

and O2 are weakly equivalent. For the converse, note that A : N∞-Op → Ind sends weak

equivalences to equalities in Ind, and therefore it induces a functor A : Ho(N∞-Op)→ Ind.

Now suppose that F is an indexing system. If S is any N symmetric sequence such

that the admissible sets of S generate F , then theorem 3.19 implies that A(F(S)) = F . We

deduce that F̃(S) and BF̃(S) are N∞ operads that realize F . To produce such a sequence

S, one can take S =
∐

(G×Σ|T |)/ΓT , where the sets T are representatives for all isoclasses

of finite G-subgroup actions in F , or even just the nontrivial orbits H/K ∈ F for subgroups

K ( H ⊂ G (cf. section 6.2).

This classification can be refined to account for higher data. In [5, proposition 5.5],

Blumberg and Hill prove the following result.

Theorem 3.21 (Blumberg and Hill). The derived mapping space between any two N∞

operads in G-spaces is either empty or contractible, and hence the admissible sets functor

A : Ho(N∞-Op)→ Ind is full and faithful.

Thus, we deduce the following.

Theorem 3.22. Taking the admissible sets of N∞ operads in G-spaces determines an equiv-

alence of categories A : Ho(N∞-Op)→ Ind.

This resolves Blumberg and Hill’s conjecture [5, p. 4] in the affirmative. Again, two

independent solutions have also been given in [8] and [21]. In the next section, we shall

prove the analogous results for homogeneous N∞ operads (cf. theorem 3.41).
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3.4 The homotopy theory of homogeneous categorical operads

In this section, we develop an elementary homotopy theory of operads that gives context for

our results. We allow for non Σ-free operads to ensure the existence of enough colimits.

Definition 3.23. Suppose that O is an operad in G-categories. We say that the operad O is

homogeneous if every G×Σn-category O(n) is either empty or (nonequivariantly) equivalent

to the terminal category, i.e. Õb(O) ∼= O. Write Oph for the category of all homogeneous

categorical operads.

We begin by summarizing the properties of a class of fixed point model structures available

on the category Oph. The reader should compare to the work in [8] and [21].

Theorem 3.24. Fix a subclass T ⊂ Set of finite G-subgroup actions. The category Oph

is locally finitely presentable, and there is a cofibrantly generated, right proper, simplicial

T -model category structure on Oph with the following properties.

(a) The weak equivalences are the maps f : O1 → O2 with the following property: for

every T ∈ T , if O2 has a ΓT -fixed point, then some ΓT -fixed point of O2 lifts up f to a

ΓT -fixed point of O1. Equivalently, f is a weak equivalence if A(O1)∩T = A(O2)∩T .

(b) The fibrations are the maps f : O1 → O2 with the following property: for any T ∈ T ,

if some ΓT -fixed point of O2 lifts up f to a ΓT -fixed point of O1, then every ΓT -fixed

point in O2 lifts up f to a ΓT -fixed point of O1.

(c) The cofibrations are the retracts of the maps i1 : O → O ∗F , where ∗ is the coproduct

in Oph, and F is freely generated by orbits of the form G× Σ|T |/ΓT , with T ∈ T .

(d) The generating cofibrations are the maps {id} → F̃(G× Σ|T |/ΓT ), where T ∈ T , {id}

is the initial operad, and F̃ = (̃−)◦F. The generating acyclic cofibrations are the maps

F̃(G× Σ|T |/ΓT )→ F̃(G× Σ|T |/ΓT ) ∗ F̃(G× Σ|T |/ΓT ), where T ∈ T .

(e) Every object is fibrant.
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(f) The cell complexes are the operads that are free on orbits of the form G × Σ|T |/ΓT ,

with T ∈ T . General cofibrant operads are retracts2 of these free operads.

(g) The hom space between any O1 and O2 is either empty or contractible.

We call this the T -model structure on Oph.

We do not require the class T to satisfy any closure conditions, but one can specialize to

coefficient systems or to indexing systems. The proofs are not simplified in any way, though.

Corollary 3.25. The operad SMN is a cofibrant replacement for Com in the I(N )-model

structure on Oph.

We now construct the advertised T -model structures. They are ultimately based on

T -model structures on the category of symmetric sequences of G-sets, henceforth denoted

Sym. Fix a class T ⊂ Set.

Lemma 3.26. The category Sym is locally finitely presentable.

Proof. The orbits G × Σn/Ξ are finitely presentable because taking fixed points commutes

with directed colimits in G × Σn-sets. As n ≥ 0 ranges over all nonnegative integers and

Ξ ⊂ G × Σn ranges over all subgroups of G × Σn, we obtain a strong generator for Sym.

Now apply [1, theorem 1.11].

We declare a map f : S → S′ in Sym to be a weak equivalence if A(S)∩T = A(S′)∩T ,

where A(S) denotes the class of admissible sets of S. Write W for the class of all weak

equivalences in Sym. We take

I =
{
∅ −→ (G× Σ|T |)/ΓT

∣∣∣T ∈ T }
J =

{
(G× Σ|T |)/ΓT

i1−→ (G× Σ|T |)/ΓT t (G× Σ|T |)/ΓT
∣∣∣T ∈ T }

2. Note that if O1 and O2 are homogeneous, then every parallel pair of operad maps O1 ⇒ O2 are
naturally isomorphic. Therefore retracts are really deformation retracts in Oph.
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to be sets of generating cofibrations and generating acyclic cofibrations, respectively. Note

that the sets I and J are at most countably infinite, even though the index T could range

over a proper class.

Lemma 3.27. Every relative J -cell complex is a split monomorphism.

Proof. Each successor stage of the construction is a pushout square of the form

A

A t A

X

X t A

f

i1 i1

f t id

and the map r = [id, f ] : X tA→ X does the job in this case. Now we proceed inductively

up the cell complex.

Lemma 3.28. Suppose that f : S → S′ is a map of symmetric sequences.

1. The map f is a weak equivalence if and only if for every T ∈ T , if S′ has a ΓT -fixed

point, then some ΓT -fixed point of S′ lifts up the map f to a ΓT -fixed point of S.

2. The map f has the right lifting property against I if and only if for every T ∈ T ,

every ΓT -fixed point of S′ lifts up f to a ΓT -fixed point of S.

3. The map f has the right lifting property against J if and only if for every T ∈ T , if

some ΓT -fixed point of S′ lifts up f to a ΓT -fixed point of S, then every ΓT -fixed point

of S′ lifts up f to a ΓT -fixed point of S.

Proof. The first part is a restatement of the inclusion A(S) ∩ T ⊃ A(S′) ∩ T . The second

and third parts hold because orbits represent fixed points.
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Proposition 3.29. There is a cofibrantly generated T -model category structure on Sym with

weak equivalences W , generating cofibrations I , and generating acyclic cofibrations J . The

acyclic fibrations and fibrations are given by (2) and (3) in lemma 3.28, respectively.

Proof. We use the usual recognition theorem (cf. [34, theorem 15.2.3]). First, observe that

the sets I and J admit the small object argument. There is nothing to prove for the set

I . For J , note that every relative J -cell complex is an ascending union by lemma 3.27,

and that taking ΓT -fixed points commutes with unions.

Next, observe that every relative J -cell complex j : S → S′ is a weak equivalence,

because the splitting S → S′ → S implies A(S) ⊂ A(S′) ⊂ A(S).

The equality I � = J � ∩W follows from lemma 3.28.

The next observation follows easily from lemma 3.28 and a little diagram chase.

Lemma 3.30. The T -model structure on Sym is right proper, and every object of Sym is

fibrant in it.

We construct a T -model structure for operads using Kan transport (cf. [34, theorem

16.2.5]). Write Op for the category of operads in G-sets and write F : Sym � Op : U for

the free-forgetful adjunction.

Lemma 3.31. The adjunction Ob : Cat � Set : (̃−) induces an equivalence of categories

Ob : Oph
'
� Op : (̃−). Therefore

1. there is an adjunction (̃−) ◦ F : Sym� Oph : U ◦Ob, and

2. the category Oph is bicomplete, with limits computed levelwise, and colimits computed

by applying (̃−) to the colimit colimjOb(Oj) in Op.

Proof. We get an equivalence Ob : Oph � Op : (̃−) directly from the definition of Oph.

Therefore (̃−) is left and right adjoint to Ob when we restrict its codomain to Oph, and the

first claim follows by composing adjunctions.
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For the second claim, it is standard that Op is bicomplete (cf. [16]), and both limits and

colimits in Oph can be computed by mapping to Op, taking the limit or colimit there, and

then mapping back to Oph. Since (̃−) is a right adjoint, it commutes with the levelwise

limits in Op, but the same cannot be said for colimits.

We shall usually shorten (̃−) ◦ F to F̃ aand U ◦Ob to Ob.

Lemma 3.32. The category Oph is locally finitely presentable.

Proof. Directed colimits in Op are computed levelwise in Sym, so this follows from lemma

3.26. The operads F̃(G× Σn/Ξ) are finitely presentable strong generators.

Write F̃(I ) and F̃(J ) for the images of the sets I and J in Oph. The following

lemma is proven exactly as before, because F̃ preserves coproducts.

Lemma 3.33. Every relative F̃(J )-cell complex is a split monomorphism.

Proposition 3.34. There is a cofibrantly generated T -model category structure on Oph

with weak equivalences and fibrations created by Ob : Oph → Sym, and with generating

cofibrations and acyclic cofibrations F̃(I ) and F̃(J ), respectively. The adjunction F̃ a Ob

lifts to a Quillen adjunction.

Proof. First of all, the sets F̃(I ) and F̃(J ) admit the small object argument. There is

nothing to prove for F̃(I ), because F̃ preserves initial objects. For F̃(J ), the previous

lemma implies that every relative F̃(J )-cell complex is an ascending union of operads, and

these colimits are created levelwise in Sym. Therefore F̃(J ) inherits smallness from J .

As before, every relative F̃(J )-cell complex O → O ′ is a weak equivalence because it is

a split monomorphism.

Thus, we have the following standard conclusions.

Proposition 3.35. The T -model structure on Oph is right proper, and every object of Oph

is fibrant in it. The F̃(I )-cell complexes are the operads that are freely generated by orbits

54



G × Σ|T |/ΓT , where T ∈ T . The cofibrant operads are the retracts of these cell operads.

Cofibrations are retracts of coproduct structure maps i1 : O → O ∗ F , where F is freely

generated by orbits G× Σ|T |/ΓT with T ∈ T , and ∗ denotes the coproduct in Oph.

Remark 3.36. We make no claims about left properness because we are unable to compute

the admissible sets of the coproduct O ∗F when O is not Σ-free.

We now turn to enrichment. The category Oph is most naturally a 2-category, whose hom

category Op
h
(O1,O2) consists of the operad maps O1 → O2 and the natural transformations

between them. However, if f, g : O1 ⇒ O2 is any pair of operad maps, then there is a unique

natural transformation f ⇒ g because O2 is homogeneous. It follows that Op
h
(O1,O2) ∼=

Õph(O1,O2), which is either empty or contractible.

For model categorical purposes, it is more useful to have a simplicial enrichment. Apply-

ing the nerve functor N : Cat→ sSet, we see that

NÕph(O1,O2)q = Oph(O1,O2)×q+1.

Moreover, there is an adjunction (−)0 : sSet � Set : N ◦ (̃−), and both the left and right

adjoint preserve products. Thus, we can perform the standard change of enrichment and

(co)tensoring [38, theorem 3.7.11].

Lemma 3.37. Suppose that C is a 1-category that is tensored and cotensored over Set.

Then C is also a sSet-enriched category that is tensored and cotensored over sSet, with

hom objects N C̃ (X, Y ), tensors K �X :=
∐
K0

X, and cotensors K t Y :=
∏
K0

Y .

Proposition 3.38. With the enrichment of lemma 3.37, the T -model structure on Oph

upgrades to a simplicial model structure.

Proof. It remains to check axiom SM7. In light of the adjunction (−)0 a N ◦ (̃−) and the

fact that the horn Λnk and n-simplex ∆n have the same 0-simplices for n > 1, it will suffice
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to find a diagonal lift for every square

∗ Oph(B,X )

∗ t ∗ Oph(A ,X ) ×
Oph(A ,Y )

Oph(B,Y )

i∗ × p∗

provided that i : A → B is a cofibration and p : X → Y is a fibration in the T -model

structure on Oph. This will ensure that the map i∗×p∗ on enriched homs is a Kan fibration,

and since the simplicial sets NÕph(O1,O2) are all either empty or contractible, and N ◦ (̃−)

is limit-preserving, the extra condition for acyclics is automatic.

We need to check that if one square in Oph between i and p has a diagonal lift, then

every such square does. This is straightforward to check when i is of the form O → O ∗ F̃(S),

and the general statement follows by passing to retracts.

3.5 The homotopy theory of homogeneous N∞ operads

We would like to understand the homotopy theory of N∞-Oph in terms of a homotopy

theory on Oph. We do this by passing to an undercategory.

Definition 3.39. A marked homogeneous operad is an operad O ∈ Oph, equipped with

chosen points u ∈ O(0)G and p ∈ O(2)G. Let Oph,m be the category of marked homogeneous

operads. Similarly, let N∞-Oph,m denote the category of marked homogeneous N∞ operads.

Write SM = F̃(G × Σ0/G t G × Σ2/G) for the operad that parametrizes symmetric

monoidal objects. Then a marked operad O ∈ Oph is just a map SM→ O, and Oph,m
∼=

SM/Oph. The standard machinery lets us transport model structures on Oph to Oph,m.

Theorem 3.40. The category Oph,m is locally finitely presentable, and there is a cofibrantly

generated, right proper, simplicial Set-model category structure on Oph,m with analogous

properties to the Set-model structure on Oph. In particular,
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(a) A map f : O1 → O2 in Oph,m is a weak equivalence, fibration, or cofibration if it is

one in the Set-model structure on Oph.

(b) The generating cofibrations and acyclic cofibrations of Oph,m are obtained by applying

the functor SM ∗ (−) to the corresponding data in Oph.

(c) Every operad in Oph,m is fibrant.

(d) The cell complexes are the operads SMN , equipped with their distinguished constant

and tensor product. General cofibrant operads are retracts of the SMN ’s.

(e) The hom space between any O1 and O2 is either empty or contractible.

Proof. For local finite presentability, note that directed colimits in Oph,m are also computed

levelwise in Sym. It follows that the operads SM ∗ F̃(G × Σn/Ξ) are finitely presentable

strong generators. All of the model categorical statements except (e) follow from the usual

theory [34, theorem 15.3.6], and the proof of proposition 3.38 also works for Oph,m.

From here, we can easily identify the simplicial localization N∞-Oph.

Theorem 3.41. The functor SM L∗ (−) : N∞-Oph → Oph,m induces a Dwyer-Kan equiv-

alence on simplicial localizations. Therefore

1. the derived mapping space between any pair of homogeneous categorical N∞ operads

O1 and O2 is either empty or contractible,

2. the functor A : Ho(N∞-Oph)→ Ind is an equivalence of categories, and

3. the classifying space functor B : N∞-Oph → N∞-Op induces an equivalence of homo-

topy categories.

Proof. Write Q for cellular cofibrant replacement functors on Oph and Oph,m. In each pair
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of homotopical functors below

N∞-Oph N∞-Opcell N∞-Opcell,m Oph,m

SM ∗ (−)

forget

inc

Q

Q

inc

the maps are inverse up to natural weak equivalence. Therefore they all induce Dwyer-Kan

equivalences on simplicial localizations [15, propositions 3.3 and 3.5]. Since every simpli-

cial hom set in Oph,m is either empty or contractible, the same is true for the simplicial

localization of N∞-Oph.

From here, the proof that A : Ho(N∞-Oph) → Ind is an equivalence of categories

proceeds exactly as in [5]. We deduce that it is faithful from the considerations above, the

product diagrams O1 ← O1 × O2 → O2 prove that it is full, and theorem 3.19 implies

that it is surjective. Since the functor B preserves admissible sets, we deduce that B :

Ho(N∞-Oph)→ Ho(N∞-Op) is also an equivalence of categories.
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CHAPTER 4

THE UNIVERSALITY OF NORMED SYMMETRIC

MONOIDAL STRUCTURE

4.1 Introduction and summary of results

There are many structures that could sensibly be called equivariant symmetric monoidal

categories. The purpose of this chapter is to elucidate the situation. In what follows, we

shall explain why a significant portion of these structures are equivalent to normed symmetric

monoidal categories.

One expects certain features to be present in any definition of equivariant symmetric

monoidal structure. For example, one would like to have a product that is associative,

commutative, and unital up to isomorphism, and one would like to have transfer maps that

interact well with the product. For the sake of applications, one also wants a means of

presenting these structures, but we do not require this in the definition.

Fix a finite group G, and assume for the moment that a G-category C , rather than a

presheaf of categories, should underlie every equivariant symmetric monoidal category. From

this perspective, transfers arise as composites
⊗

H/K ◦∆tw : CK → (C×H/K)H → CH of a

twisted diagonal map with a product over an orbit. As explained in section 5.3, the familiar

example of monoidal induction can be recovered by specializing to the functor category

Fun(TG,C ), where TG is the translation category of G and C is a nonequivariant symmetric

monoidal category. Thus, assuming C to be a G-category is not unreasonable. From here,

one might ask for the following:

1. a G-equivariant bifunctor ⊗ : C×2 → C and a G-fixed unit object e ∈ C , with

G-equivariance ensuring that this structure descends to fixed points,

2. a collection of H-equivariant maps
⊗

H/K : C×H/K → C to construct transfers, and

3. that all composite operations of a given arity are coherently isomorphic.
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The objects that represent this constellation of data are precisely the marked, homogeneous

operads O ∈ Oph,m studied in chapter 3. Thus, we think of Oph,m as a category of

generalized theories of equivariant symmetric monoidal structure.

The homotopy theory of Oph,m is particularly simple. By theorem 3.41, we know that

taking admissible sets determines an equivalence between the homotopy category Ho(Oph,m)

and the poset Ind of indexing systems. Moreover, Oph,m has a cofibrantly generated model

structure, whose cell complexes are precisely the operads SMN that parametrize N -normed

symmetric monoidal categories (cf. section 2.4 and theorem 3.40). We deduce that on

the level of operads, there is nothing but normed symmetric monoidal structure, up to

equivalence. The purpose of this chapter is to explain how the homotopical properties of

Oph,m are reflected on the level of algebras. We prove a number of results in the spirit of

Boardman and Vogt’s theory of homotopy invariant algebraic structures [4].

We start by analyzing the formation of 2-categories of algebras (section 4.2). For any

operad O ∈ Oph,m, let Alg(O) denote the 2-category of O-algebras in G-categories. The

basic observation is that Oph,m is a 2-category, and that by pulling back, the morphisms and

transformations between these operads give rise to 2-functors and 2-natural transformations.

Thus, Alg is a 2-functor (contravariant in morphisms and transformations), and it must send

the internal equivalences in Oph,m to 2-equivalences. This is quite useful, because it implies

the following “change of norm” theorem (theorem 4.2) when combined with theorem 3.19.

Theorem. If M and N are sets of exponents that generate the same indexing system, then

MSMLax and NSMLax are 2-equivalent, and this equivalence does not change underlying

G-categories, G-functors, or G-natural transformations. Similarly in the strong case.

That said, we are ultimately concerned with the weak homotopy type of operads in

Oph,m, because this is where Blumberg and Hill’s classification applies. Unfortunately, the

functor Alg does not preserve all weak equivalences in Oph,m (cf. example 4.4), but it

does in the cases that we care most about. Consider the right derived functor RAlg and

the comparison map Alg(O) → RAlg(O). We prove the following homotopy invariance
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theorem (theorem 4.21).

Theorem. The comparison map Alg(O) → RAlg(O) is a biequivalence of 2-categories if

and only if O is an N∞ operad in Oph,m. Therefore Alg sends weak equivalences between

homogeneous N∞ operads to biequivalences of 2-categories.

It follows that Blumberg and Hill’s classification ofN∞ operads carries over to 2-categories

of algebras over homogeneous operads. Concretely, RAlg(O) is the 2-category of algebras

over an operad SMN with the same admissible sets as O, and the map Alg(O)→ RAlg(O)

regards an O-algebra as an N -normed symmetric monoidal category satisfying extra strict

relations. For this comparison to be a biequivalence, every N -normed symmetric monoidal

category must be equivalent to an O-algebra, which is a matter of categorical strictification.

Accordingly, our central construction is an equivariant generalization of Isbell’s strictification

(construction 4.18).

By combining Isbell’s construction, the change of norm theorem, and the coherence

theorem for normed symmetric monoidal categories (theorem 2.10), we obtain a method

of constructing algebras over any homogeneous N∞ operad (theorem 4.27). For any set

of exponents N , let NSMStg denote the 2-category of N -normed symmetric monoidal

categories and strong monoidal functors, and for any operad O in G-categories, let O-AlgSt

denote the 2-category of strict O-algebra G-categories and strict O-morphisms.

Theorem. Suppose that O ∈ N∞-Oph,m and that N is a set of exponents that generates

the class of admissible sets of O. Then there is a 2-adjunction

L : NSMStg� O-AlgSt : R

whose unit is a levelwise internal equivalence, and whose right adjoint does not affect under-

lying G-categories, G-functors, or G-natural transformations.

If one knows explicit generators and relations for an operad O, then a more precise

identification of O-algebras is possible. In section 4.3, we analyze quotient operads and we
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explain how to present their algebras (cf. theorem 4.14 and example 4.15). The point of

theorem 4.27, however, is that strictification theory can sometimes make this information

unnecessary. For example, by taking O to be the G-Barratt-Eccles operad PG (cf. [18])

and N to be any set of exponents that generates all norms, we can bypass the presentation

problem posed by Guillou-May-Merling-Osorno [20, problem 1.36].

The final portion of this chapter analyzes the relationship between operadic algebras and

pseudoalgebras, with an eye towards comparing the work in this thesis to [20]. We prove

the following analogue to Boardman and Vogt’s classical result [4] on homotopy algebras

(theorem 4.33). Let WO be the free homogeneous operad on the objects of O.

Theorem. Suppose that O ∈ N∞-Oph. Then the 2-category of pseudoalgebras over O is

isomorphic to the 2-category of strict algebras over WO, and this isomorphism does not

affect underling G-categories, G-functors, or G-natural transformations.

It follows that the study of O-pseudoalgebras is subsumed by the study of normed sym-

metric monoidal categories, because WO is isomorphic to SMN (O) for some set of expo-

nents N (O). Note that our notion of pseudoalgebra is slightly more general than the notion

considered in [20]. One recovers their objects by enforcing additional strict normality and

unitality relations, which amounts to working over an E∞ quotient of WO (cf. example

4.38). Therefore theorem 4.27 applies equally well to construct the normal, strictly unital

pseudoalgebras of [20] from E∞ normed symmetric monoidal categories.

Remark. Our results should also be compared to their counterparts in Berger and Moerdijk’s

homotopy theory of operads [2]. Indeed, N∞ operads in Oph,m may be regarded as the Σ-

cofibrant objects in the Set-model structure on Oph,m (cf. section 3.5).

4.2 The algebra 2-functors

We begin by outlining the general situation, before specializing to homogeneous categorical

operads. There is a 2-category Op(GCat) whose objects are operads O in G-categories,
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whose 1-morphisms are operad maps ϕ : N → O, and whose 2-morphisms are transfor-

mations η : ϕ ⇒ ψ : N ⇒ O between operad maps. This means that for every n ≥ 0,

we have a G × Σn-equivariant natural transformation ηn : ϕn ⇒ ψn : N (n) ⇒ O(n), that

(η1)idN
= ididO

, and that (ηj1+···+jk)γ(y;x1,...,xk) = γ((ηk)y; (ηj1)x1 , . . . , (ηjk)xk) for every

y ∈ N (k) and xi ∈ N (ji). All composites and identities are taken levelwise.

For every O ∈ Op(GCat), we have the 2-categories O-AlgSt ⊂ O-AlgPs ⊂ O-AlgLax,

and there is a forgetful 2-functor U : O-AlgLax → GCat. Moreover, operad maps and

transformations induce 2-functors and 2-natural transformations between 2-categories of

algebras, but in the opposite direction. In summary:

Proposition 4.1. Forming the 2-categories O-AlgLax, and pulling back along morphisms

and transformations, determines a 2-functor

Alglax : Op(GCat)coop → 2CAT/GCat

where Op(GCat)coop is obtained by reversing the 1-morphisms and 2-morphisms of Op(GCat),

and 2CAT/GCat is the (improper) 2-category of all large 2-categories over GCat. Simi-

larly, forming the 2-categories O-AlgPs determines a 2-functor

Algps : Op(GCat)
coop
2-iso → 2CAT/GCat

where Op(GCat)
coop
2-iso ⊂ Op(GCat)coop is the sub-2-category that only contains invertible

natural transformations.

Proof. If ϕ : N → O is an operad map, then there is a pullback 2-functor ϕ∗ : O-AlgLax→

N -AlgLax defined by ϕ∗(C , |·|C ) = (C , |·|C ◦ϕ) on algebras, ϕ∗(F, (∂n)) = (F, (∂n ◦ idϕn))

on morphisms, and by ϕ∗ω = ω on transformations. Thus, ϕ∗ restricts to O-AlgPs and

O-AlgSt, and U ◦ ϕ∗ = U .

If η : ϕ ⇒ ψ : N ⇒ O is a transformation, then for each O-algebra C , there is a lax
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N -algebra morphism η∗
(C ,|·|C )

: ψ∗C → ϕ∗C given by the identity functor idC : C → C ,

together with the comparison maps |(ηn)x|C : |x|ϕ∗C ◦ id×nC ⇒ idC ◦ |x|ψ∗C . We obtain a

2-natural transformation η∗ : ψ∗ ⇒ ϕ∗ : O-AlgLax⇒ N -AlgLax, and idU ◦ η∗ = idU . If

η : ϕ ⇒ ψ is a natural isomorphism, then the components of η∗ are N -pseudomorphisms,

and we also obtain a 2-natural isomorphism η∗ : ψ∗ ⇒ ϕ∗ : O-AlgPs⇒ N -AlgPs.

Thus, applying (−)∗ reverses the direction of 1-morphisms and 2-morphisms. One can

check that it also reverses vertical and horizontal composition, and that it preserves vertical

and horizontal identities.

We now specialize to the sub-2-category Oph,m ⊂ Op(GCat) of marked, homogeneous

operads. As observed earlier, if N and O are homogeneous and ϕ, ψ : N ⇒ O is a

parallel pair of operad maps, then there is a unique transformation η : ϕ ⇒ ψ, and it is an

isomorphism. Therefore Alglax and Algps restrict to 2-functors

Alglax : Op
coop
h,m → 2CAT/GCat

Algps : Op
coop
h,m → 2CAT/GCat.

In particular, Alglax and Algps preserve internal equivalences, and these are very easy to

come by in Oph,m. This has the following simple, but useful consequence.

Theorem 4.2. If N ,O ∈ Oph,m and there are maps N � O, then N -AlgLax and

O-AlgLax are 2-equivalent over GCat. In particular, if M and N are sets of exponents

that generate the same indexing system, then MSMLax and NSMLax are 2-equivalent

over GCat. Similarly for 2-categories of pseudomorphisms and strong monoidal functors.

Proof. Any pair of maps N � O in Oph,m are part of an internal equivalence. IfM and N

generate the same indexing system, then the free operads F(SM) and F(SN ) have the same

admissible sets (cf. theorem 3.19), and therefore there are operad maps F(SM) � F(SN ).

Applying the functor (̃−) : GSet → GCat gives maps SMM � SMN . By the coher-
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ence theorem 2.10, we conclude that MSMLax ∼= SMM-AlgLax ' SMN -AlgLax ∼=

NSMLax over GCat, and similarly in the strong monoidal case.

Remark 4.3. We regard the second part of the preceding result as a “change of norm”

theorem. It says that if we are willing to work with strong monoidal functors, then the only

relevant feature of a set of exponents N is the indexing system that it generates.

The internal equivalences in Oph,m are a form of strong homotopy equivalence, and

they are preserved by Alglax and Algps. However, we are primarily interested in the weak

homotopy type of the operads in Oph,m. Every weak equivalence between the cellular

operads SMN is a strong equivalence, but in general, the algebra 2-functors do not preserve

weak equivalences.

Example 4.4. Let G be the trivial group. Then every map in Oph,m is a weak equivalence,

and in particular, we may consider the map P → Com. The P-algebras in Cat are

permutative categories, while the Com-algebras in Cat are strictly commutative monoids.

It is well-known that not every permutative category is equivalent to a stricly commutative

monoid object, i.e. the pullback Alg(Com)→ Alg(P) is not surjective up to equivalence.

We generalize this point in the proof of theorem 4.21.

Thus, we are obliged to take the right derived functors of Alglax and Algps. Given any

operad O ∈ Oph,m, we obtain cellular approximations of O by choosing an operad SMN (O)

with the same admissible sets as O, and a map ϕ : SMN (O) → O. We may arrange for ϕ to

be surjective, and it is often convenient to assume that it is. The difference between RAlg(O)

and Alg(O) is measured by the pullback 2-functors ϕ∗ : O-AlgLax → N (O)SMLax and

ϕ∗ : O-AlgPs→ N (O)SMStg. In what follows, we shall analyze the image of ϕ∗, and we

shall give conditions for when ϕ∗ is a biequivalence.
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4.3 Algebras over quotient operads

We begin this section with some basic points concerning quotients of operads in G-sets, and

then we consider quotients of homogeneous categorical operads.

Definition 4.5. Let O be an operad in G-sets. A congruence relation on O is a graded

relation ∼ = (∼n)n≥0 such that

(i) for each integer n ≥ 0, ∼n is an equivalence relation on O(n),

(ii) for each integer n ≥ 0, pair (g, σ) ∈ G × Σn, and elements x, x′ ∈ O(n), if x ∼n x′,

then (g, σ) · x ∼n (g, σ) · x′,

(iii) for all elements y, y′ ∈ O(k) and xi, x
′
i ∈ O(ji) for i = 1, . . . , k, if y ∼k y′ and xi ∼ji x

′
i

for all i, then γ(y;x1, . . . , xk) ∼Σji γ(y′;x′1, . . . , x
′
k).

Example 4.6. If ϕ : O → O ′ is a map of G-operads, then the relation ∼, defined by

x ∼ x′ ⇐⇒ ϕ(x) = ϕ(x′), is a congruence relation on O. We shall usually refer to this

relation as ker(ϕ).

The definition of a congruence relation is devised to make the following familiar fact true.

Proposition 4.7. If ∼ is a congruence relation on O, then there is a unique G-operad

structure on the levelwise quotient O/∼ that makes the projection π : O → O/∼ into a

G-operad map. This projection takes ∼-equivalent elements of O to equal elements of O/∼,

and any other G-operad map ϕ : O → O ′ with this property factors uniquely through π as a

G-operad map ϕ : O/∼→ O ′.

Proof. The conditions on∼ say that the G×Σn action (g, σ)·[x] := [(g, σ)·x] and composition

operation γ([y]; [x1], . . . , [xk]) := [γ(y;x1, . . . , xk)] are well-defined. The operad axioms for

O/∼ then follow from those for O, and the projection map π : O → O/∼ preserves

structure by design. Finally, if ϕ : O → O ′ sends equivalent elements to equal elements,

then ϕ([x]) := ϕ(x) is well-defined.
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Observe that the intersection of congruence relations is a congruence relation, and that

there is a maximum congruence relation that identifies all elements of any given arity. Thus,

we can make the following definition.

Definition 4.8. If R = (Rn)n≥0 is a graded binary relation on O, we call the intersection

of all congruence relations containing R the congruence relation generated by R. We denote

this congruence relation 〈R〉.

Note the following formal result.

Corollary 4.9. Suppose that O is an operad in G-sets and that R is a graded binary relation

on O. If ϕ : O → O ′ is a map of G-operads that sends R-related elements of O to equal

elements of O ′, then there is a unique map of G-operads ϕ : O/〈R〉 → O ′ such that ϕ =

ϕ ◦ π : O → O/〈R〉 → O ′.

Thus, it is possible to introduce a set of prescribed relations R into an operad. That

said, one usually needs to find an explicit description of the relation 〈R〉 to get a real handle

on the quotient O/〈R〉. This is analogous to a word problem because operadic composition

γ is noncommutative and noninvertible.

If O ∈ Oph,m is a homogeneous operad and ∼ is a congruence relation on ObO, then the

quotient O/∼ ∈ Oph,m is computed by forgetting down to G-sets, taking the quotient of

ObO there, and then applying (̃−) : GSet→ GCat. This makes quotients of homogeneous

operads completely elementary. To start, we have the first isomorphism theorem.

Proposition 4.10. Every operad map ϕ : O1 → O2 in Oph,m induces an isomorphism

ϕ : O1/ker(ϕ)→ im(ϕ), where ker(ϕ) denotes the congruence relation on ObO1 that relates

x and y if and only if ϕ(x) = ϕ(y).

Proof. The induced map on Ob O1/ker(ϕ) → Ob im(ϕ) is an isomorphism of operads in

G-sets, and applying (̃−) preserves it.

Corollary 4.11. Every operad map ϕ : O1 → O2 in Oph,m that is surjective on objects is

a quotient map.
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That said, the work in this chapter concerns algebras over operads, and therefore we

must leave the category Oph,m. The key point is that a quotient O1 � O2 in Oph,m also

has a universal property relative to all operads in G-categories.

Proposition 4.12. Suppose that O is an operad in G-sets, that R is a binary relation on

O, and that ϕ : Õ → C is a map of operads in G-categories. Then the map ϕ factors

through the quotient π : Õ → Õ/〈R〉 if and only if for all n ≥ 0 and x, y ∈ O(n), we have

ϕ(x) = ϕ(y) and ϕ(x → y) = id : ϕ(x) → ϕ(y) whenever xRy. In such a case, the induced

map ϕ : Õ/〈R〉 → C is unique.

Proof. The “only if” direction holds because π identifies R-related elements of O. Now

suppose that ϕ satisfies the hypotheses for the “if” direction. The universal property of

quotient operads in G-sets implies that the map ϕ : O → ObC on objects factors as ϕ ◦ π :

O → O/〈R〉 → ObC . We must extend ϕ to a map ϕ : Õ/〈R〉 = Õ/〈R〉 → C of operads in

G-categories.

Define a congruence relation ≡ on O by x ≡ y if and only if ϕ(x) = ϕ(y) and ϕ(x →

y) = id. Then R ⊂≡, and hence 〈R〉 ⊂≡ as well. Given congruence classes [x], [y] ∈ Õ/〈R〉,

define ϕ([x]→ [y]) := ϕ(x→ y), where x and y are any representatives for [x] and [y]. The

inclusion 〈R〉 ⊂≡ implies that ϕ is well-defined, and ϕ is a map of operads in G-categories

because ϕ is. The factorization ϕ = ϕ ◦ π : Õ → Õ/〈R〉 → C holds by design, and the

equation ϕ = ϕ ◦ π uniquely determines ϕ.

We can use the proposition above to identify the 2-category of algebras over a quotient.

Proposition 4.13. Suppose that O is an operad in Oph,m, that R is a binary relation

on ObO, and let π : O → O/〈R〉 be the quotient map. Then the pullback 2-functor π∗ :

(O/〈R〉)-AlgLax→ O-AlgLax induces an isomorphism between (O/〈R〉)-AlgLax and the

full sub-2-category of O-AlgLax spanned by the O-algebras |·| : O → End(C ) such that for

all n ≥ 0 and x, y ∈ O(n), we have |x| = |y| : C×n → C and |x→ y| = id : |x| ⇒ |y|

whenever xRy. Similarly for the 2-categories of pseudomorphisms and strict morphisms.
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Proof. We construct an inverse 2-functor π∗. If (C , |·|C ) is an O-algebra with the property

above, then its structure map |·|C : O → End(C ) induces a map |·|C : O/〈R〉 → End(C )

by proposition 4.12. We define π∗C := (C , |·|C ).

If (F, ∂•) : C → D is a lax O-morphism between two such O-algebras, then we let

π∗F : π∗C → π∗D be the G-functor F : C → D , together with the transformations

(π∗∂n)[x] = (∂n)x. To see that this is well-defined, introduce the following congruence on O:

declare x ≡ y if and only if |x|C = |y|C , |x|D = |y|D , and (∂n)x = (∂n)y. If xRy, then the

naturality of (∂n)x in x implies that x ≡ y, and therefore 〈R〉 ⊂ ≡.

The 2-functor π∗ does nothing to O-transformations.

We deduce that O-algebras, for any operad O ∈ Oph,m, are just normed symmetric

monoidal categories that satisfy some extra strict relations.

Theorem 4.14. Suppose that O is any operad in Oph,m. Then there is a set of exponents

N and a binary relation R on SMN such that O-AlgLax is isomorphic over GCat to the

full sub-2-category of NSMLax spanned by the objects satisfying the strict relations in R.

Similarly in the strong and strict case.

Proof. Given any O ∈ Oph,m, choose a set of exponents N and a surjective map π :

SMN → O. If R is any binary relation that generates ker(π), then SMN /〈R〉 ∼= O, and

the rest follows from the previous proposition.

If the set of exponents N and relations R are known, then theorem 4.14 gives a means

of presenting O-algebras.

Example 4.15. The N∞ permutativity operad PN (cf. section 6.4) is defined to be the

operad SMN modulo the relations

⊗(⊗(x1, x2), x3) ∼ ⊗(x1,⊗(x2, x3)) ⊗ (e(), x1) ∼ x1 ⊗ (x1, e()) ∼ x1

⊗
T (e(), e(), . . . , e()) ∼ e() (all T ∈ N ).
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Therefore PN -AlgLax is isomorphic to the full sub-2-category of NSMLax spanned by

the C for which all of the isomorphisms

(C1 ⊗ C2)⊗ C3
α−→ C1 ⊗ (C2 ⊗ C3) e⊗ C λ−→ C C ⊗ e ρ−→ C

⊗
T (e, e, . . . , e)

υT−→ e (all T ∈ N )

are identity maps. Similarly in the strong and strict cases.

That said, in the next section we shall explain why the precise set of exponents N and

relations R can sometimes be ignored.

4.4 Isbell’s construction and applications

Suppose that ψ : O → N is a map in Oph,m and consider the pullback 2-functor ψ∗ :

N -AlgLax → O-AlgLax. If there is an operad map ϕ : N → O in the other direction,

then ψ∗ is an equivalence over GCat by theorem 4.2, but this is usually too much to hope

for. In the case of greatest interest, the operad O is free and the map ψ : O → N is a

cellular approximation of N . Thus, we shall study what happens when there is only a map

of symmetric sequences ϕ : N → O in the other direction.

Proposition 4.16. Suppose that N ,O ∈ Oph,m and that ϕ : N → O is a map of sym-

metric sequences. Then there is a pullback 2-functor

ϕ∗N : O-AlgPs→ N -AlgSt

such that for every O-algebra C , there is an equivalence η : C � ϕ∗NC : ε in GCat.

Proof. We give an explicit construction of ϕ∗N below.

Remark 4.17. The conceptual point is that pulling back along ϕ converts strict O-algebras

into N -pseudoalgebras (cf. proposition 4.32), and as discussed in Guillou-May-Merling-
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Osorno [20], these can be strictified using general 2-category theory of Power and Lack (cf.

[28] and [37]).

The following construction is a direct generalization of Isbell’s strictification [25].

Construction 4.18. Let (C , |·|C : O → End(C )) be an O-algebra. We construct an

N -algebra ϕ∗NC from C as follows.

Let the object set of ϕ∗NC be the free ObN -algebra on ObC , i.e.

Obϕ∗NC :=
∐
j≥0

ObN (j)×Σj ObC×j ,

and write [x;C1, . . . , Cj ] or [x;C•] for its generic element. There is an evaluation G-map

ε : Obϕ∗NC → ObC that sends [x;C1, . . . , Ck] to |ϕ(x)|C (C1, . . . , Ck). We use the function

ε to create a G-category structure on ϕ∗NC . Define

ϕ∗NC
(

[x;C•], [y;D•]
)

:= C
(
ε[x;C•], ε[y;D•]

)
,

declare the morphisms idε[x;C•] : [x;C•]→ [x;C•] to be identities, and equip ϕ∗NC with the

composition and G-action on C . This makes ϕ∗NC into a G-category.

We extend ε to a G-functor ε : ϕ∗NC → C by making it the identity map on homs. In

the other direction, we define a G-functor η : C → ϕ∗NC by η(C) = [idN ;C] on objects.

Given a morphism f : C → D in C , we let ηf be the composite

|ϕ(idN )|C (C) C D |ϕ(idN )|C (D),
κC f κ−1

D

where κ is the G-natural isomorphism |ϕ(idN )→ idO |C : |ϕ(idN )|C ⇒ idC . The composite

ε ◦ η is just |ϕ(idN )|C , and therefore κ defines a G-natural isomorphism ε ◦ η ∼= idC . For

the other composite, let λ[x;C•] = κ−1
ε[x;C•]

: [x;C•]→ ηε[x;C•]. Then λ : idϕ∗NC ⇒ η ◦ ε is a

G-natural isomorphism, and C ' ϕ∗NC .
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We now make ϕ∗NC into an N -algebra. Given any k ≥ 0 and p ∈ N (k), define the

functor |p|ϕ∗NC : (ϕ∗NC )×k → ϕ∗NC on objects using the free algebra structure

|p|ϕ∗NC

(
[x1;C1

• ], . . . , [x
k;Ck• ]

)
:= [γN (p;x1, . . . , xk);C1

• , . . . , C
k
• ].

We order the objects C1
• , . . . , C

k
• lexicographically. On morphisms, proceed as follows. For

any [x1;C1
• ], . . . , [x

k, Ck• ] ∈ ϕ∗NC , let can[x1;C1• ],...,[xk;Ck• ] be the O-algebra coherence map

∣∣∣γO(ϕ(p);ϕ(x1), . . . , ϕ(xk))
∣∣∣
C

(C1
• , . . . , C

k
• )→

∣∣∣ϕ(γN (p;x1, . . . , xk))
∣∣∣
C

(C1
• , . . . , C

k
• ).

Then, given f i : [xi;Ci•]→ [yi;Di
•] for i = 1, . . . , k, define |p|ϕ∗NC (f1, . . . , fk) to be

can[y1;D1•],...,[yk;Dk• ]
◦ |ϕ(p)|C (f1, . . . , fk) ◦ can−1

[x1;C1• ],...,[xk;Ck• ]
.

Finally, given the (unique) morphism p→ q in N (k), and any [x1;C1
• ], . . . , [x

k;Ck• ], we let

(|p→ q|ϕ∗NC )[x1;C1• ],...,[xk;Ck• ] be the O-algebra coherence isomorphism

∣∣∣ϕ(γN (p;x1, . . . , xk))
∣∣∣
C

(C1
• , . . . , C

k
• )→

∣∣∣ϕ(γN (q;x1, . . . , xk))
∣∣∣
C

(C1
• , . . . , C

k
• ).

This defines a natural isomorphism |p→ q|ϕ∗NC : |p|ϕ∗NC ⇒ |q|ϕ∗NC , and unwinding the

definitions reveals that |·|ϕ∗NC : N → End(ϕ∗NC ) is a map of G-operads.

Next, we consider 1-morphisms. Given an O-pseudomorphism (F, ∂•) : C → D , we define

a strict N -morphism ϕ∗NF : ϕ∗NC → ϕ∗ND by ϕ∗NF [x;C•] := [x;FC•] on objects. Given

a morphism f : [x;C•] → [y;D•] in ϕ∗NC , we define ϕ∗NFf := ∂−1 ◦ Ff ◦ ∂ : [x;FC•] →

[y;FD•]. The compatibility between ∂• and the coherence data for the O-algebra structures

on C and D ensures that ϕ∗NF : ϕ∗NC → ϕ∗ND preserves N -algebra operations and coherence

data strictly.

Finally, if ω : (F, ∂•)⇒ (F ′, ∂′•) : C ⇒ D is an O-transformation, then we define the N -
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transformation ϕ∗Nω : ϕ∗NF ⇒ ϕ∗NF
′ by the formula (ϕ∗Nω)[x;C1,...,Cj ]

= |ϕ(x)|D (ωC1
, . . . , ωCj ) :

[x;FC•]→ [x;F ′C•].

Lemma 4.19. Suppose that N ,O ∈ Oph,m, that ϕ : N → O is a map of symmetric

sequences, and that ψ : O → N is a map of operads. Then the O-algebras ψ∗ϕ∗NC and C

are equivalent in O-AlgPs for any O-algebra C .

Proof. Fix an O-algebra C . We make η into an O-pseudomorphism η : C → ψ∗ϕ∗NC by

defining the (C1, . . . , Cn)-component of |p|ψ∗ϕ∗NC ◦ η×n ⇒ η ◦ |p|C to be the O-algebra

coherence isomorphism

|ϕ(ψ(p))|C (C1, . . . , Cn)→ |γO(ϕ(idN ); p)|C (C1, . . . , Cn),

considered as a morphism [ψ(p);C•]→ [idN ; |p|C (C•)]. We make ε into an O-pseudomorphism

ε : ψ∗ϕ∗NC → C by defining the ([x1;C1
• ], . . . , [x

n;Cn• ])-component of |p|C ◦ ε×n ⇒ ε ◦

|p|ψ∗ϕ∗NC to be the O-algebra coherence isomorphism

∣∣∣γO(p;ϕ(x1), . . . , ϕ(xn))
∣∣∣
C

(C1
• , . . . , C

n
• )→

∣∣∣ϕ(γN (ψ(p);x1, . . . , xn))
∣∣∣
C

(C1
• , . . . , C

n
• ).

With these additional data, the G-natural isomorphisms κ : ε ◦ η ⇒ idC and λ : idψ∗ϕ∗NC ⇒

η ◦ ε become invertible O-transformations.

Recall that a strict 2-equivalence is a pair of 2-functors F : C � D : G together

with specified 2-natural isomorphisms idC
∼= GF and FG ∼= idD , while a biequivalence

F : C → D is a 2-functor that is surjective on objects up to equivalence, and locally

an equivalence on every hom category. If F is part of a strict 2-equivalence, then it is a

biequivalence, and biequivalences satisfy the 2 out of 3 property.

Proposition 4.20. Suppose that N ,O ∈ N∞-Oph,m and that π : O → N is an op-

erad map that is both a quotient and a weak equivalence. Then the pullback 2-functor
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π∗ : N -AlgLax → O-AlgLax is an embedding and a biequivalence. Similarly for 2-

categories of pseudomorphisms.

Proof. In this case, N and O have the same admissible sets, and since N is Σ-free, we can

construct a map of symmetric sequences ϕ : N → O in the other direction. By proposition

4.13, the pullback π∗ is injective on objects and an isomorphism on hom categories, and the

previous lemma says that π∗ is surjective on objects, up to equivalence.

This proposition has several useful consequences. To start, it helps us resolve the differ-

ence between Alglax and RAlglax.

Theorem 4.21. Consider the category Oph,m.

1. If O ∈ N∞-Oph,m, then the pullback Alglax(O)→ RAlglax(O) is a biequivalence and

an embedding.

2. If ϕ : N → O is a weak equivalence between operads N ,O ∈ N∞-Oph,m, then the

pullback ϕ∗ : Alglax(O)→ Alglax(N ) is a biequivalence.

3. If O ∈ Oph,m is not Σ-free, then the pullback Alglax(O) → RAlglax(O) is not a

biequivalence.

Analogous statements hold for 2-categories of pseudomorphisms.

Proof. Define WO := F̃ObO. If O ∈ N∞-Oph,m, then the counit ε : WO → O is a

cellular approximation of O in Oph,m because O is Σ-free. The map ε is a quotient and

a weak equivalence because the unit η : O → WO splits it, and thus the pullback ε∗ is a

biequivalence and an embedding.
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For the second claim, apply Alglax to the commutative square

N O

WN WO

ϕ

Wϕ

ε ε

and note that Wϕ is an equivalence in Oph,m. Hence (Wϕ)∗ is a strict 2-equivalence, and

ϕ∗ is a biequivalence by the 2 out of 3 property.

For the last claim, suppose that O ∈ Oph,m is not Σ-free, and consider the cellular

approximation

QO := G× Σ0/G t G× Σ2/G t
∐
n ≥ 0

x ∈ O(n)

Γ ⊂ Stab(x)

G× Σn/Γ.

The map q : QO → O sends the first two factors to the marked operations in O, and it

sends the coset eΓ to the point x ∈ O(n). We shall show by example that the pullback

q∗ : Alglax(O)→ Alglax(QO) is not surjective on equivalence classes of objects.

Choose a set of exponents N corresponding to the subgroups Γ, so that QO ∼= SMN ,

and let C be Fun(TG,Set) equipped with the standard N -normed symmetric monoidal

structure obtained from the coproduct on Set (cf. section 5.2 for a thorough discussion

of this category). Suppose for contradiction that C ' q∗D in Alglax(QO) for some O-

algebra D . Then there are pseudomorphisms F : C � D : G and QO-natural isomorphisms

η : idC ⇒ GF and ε : FG ⇒ idD . Choose x ∈ O(n) and a nontrivial permutation

σ ∈ Σn such that xσ = x, and let
⊔
T ∈ SMN lift x. Then |

⊔
T →

⊔
Tσ|q∗D is the identity
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transformation, and the ladder diagram

G ◦ |
⊔
T |q∗D ◦ F×n G ◦ F ◦ |

⊔
T |C |

⊔
T |C |

⊔
n|C

G ◦ |
⊔
Tσ|q∗D ◦ F×n G ◦ F ◦ |

⊔
Tσ|C |

⊔
Tσ|C |

⊔
nσ|C

id σ

GF⊔
T

GF⊔
T
σ

η−1|
⊔
T |C

η−1|
⊔
T |Cσ

υT

υTσ

of natural isomorphisms commutes. Evaluating at the tuple (∗, ∗, . . . , ∗) of n copies of the

terminal object shows that σ : {1, . . . , n} → {1, . . . , n} is the identity permutation, contrary

to our choice.

We also obtain the following familiar result [32, proposition 3.4].

Proposition 4.22. Suppose that O1,O2 ∈ N∞-Oph,m and that the operads O1 and O2 have

the same admissible sets. Then the product diagram O1 ← O1 ×O2 → O2 induces a zig-zag

of biequivalences and embeddings

π∗1 : O1-AlgLax→ (O1 × O2)-AlgLax← O2-AlgLax : π∗2.

Similarly for 2-categories of pseudomorphisms.

Proof. The operads O1, O2, and O1×O2 all have the same admissible sets, and the product

projections are surjective. Now apply proposition 4.20.

Roughly speaking, proposition 4.20 allows us to introduce “sensible” strict relations in

our algebras. We illustrate by way of example.

Example 4.23. Consider the quotient π : SMN →PN . Both of these operads are Σ-free,

and they have the same admissible sets. Therefore proposition 4.20 applies, and we deduce

that π∗ : PN -AlgLax → SMN -AlgLax is a biequivalence. In light of the identification

of PN -AlgLax given in example 4.15, this says that every N -normed symmetric monoidal
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category C is strong monoidally equivalent to some D for which the tensor product ⊗ is

strictly associative and unital, and for which the norms
⊗

T are strictly basepoint-preserving.

Remark 4.24. Suppose that O ∈ N∞-Oph,m and that R is a binary relation on O. We can

always form the quotient π : O → O/〈R〉 in Oph,m, and we always have an embedding π∗ :

(O/〈R〉)-AlgLax→ O-AlgLax. To deduce that π∗ is a biequivalence using proposition 4.20,

we must verify that O/〈R〉 is still Σ-free, and that it does not have any more admissible sets

than O. This means that the identifications inR must not introduce any strict commutativity

relations or create new norms.

We conclude by considering one further specialization of Isbell’s construction.

Theorem 4.25. Supppose that N ,O ∈ Oph,m, that ϕ : N → O is a map of symmetric

sequences, and that ψ : O → N is a map of operads. Suppose further that ψ ◦ ϕ = idN .

Then there is a 2-adjunction

ϕ∗N : O-AlgPs� N -AlgSt : ψ∗,

and the unit ηC : C → ψ∗ϕ∗NC is an internal equivalence for all C .

Proof. If ψ ◦ ϕ = id, then the map ε : ϕ∗Nψ
∗D → D of construction 4.18 is actually a strict

N -algebra morphism for every D ∈ N -AlgSt. The O-pseudomorphisms ηC : C → ψ∗ϕ∗NC

define a 2-natural transformation η : id⇒ ψ∗ϕ∗N, the strict N -morphisms εD : ϕ∗Nψ
∗D → D

define a 2-natural transformation ε : ϕ∗Nψ
∗ ⇒ id, and the triangle identities hold. Thus, we

obtain a 2-adjunction, and lemma 4.19 says that ηC is an internal equivalence.

Example 4.26. Working nonequivariantly, we have maps P → SM→P. In this case, the

constructions specialize to Isbell’s original strictification of symmetric monoidal categories

to permutative ones.

There are analogous equivariant statements. For any set of exponents N , we have the

operads SMN and PN , and there is a quotient map SMN →PN by definition (cf. section
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6.4). However, as indicated in the proof of lemma 6.17 (cf. section 6.6), the operad PN may

also be presented as a quotient and sub-symmetric sequence of O = F̃(Ast
∐
G×Σ|T |/ΓT ),

and thus the quotient O � PN has a section in symmetric sequences. Since this map

factors as a pair of quotients O � SMN � PN , the same is true for SMN � PN , and

thus we obtain a strictification 2-adjunction st : NSMStg � PN -AlgSt : inc, whose unit

maps are internal equivalences.

If O is any operad in Oph,m, then the unit and counit O → F̃(ObO) → O give an

example of an operad map with a section in symmetric sequences. Therefore theorem 4.25

applies quite generally. Combining everything, we obtain the following presentation theorem.

Theorem 4.27. Suppose that O ∈ N∞-Oph,m and that N is a set of exponents that gener-

ates the class of admissible sets of O. Then there is a 2-adjunction

L : NSMStg� O-AlgSt : R

whose unit maps are internal equivalences, and whose right adjoint does not affect underlying

G-categories, G-functors, and G-natural transformations.

Proof. Let WO = F̃(ObO), and consider the following chain.

NSMStg
iso
� SMN -AlgPs

equiv
� WO-AlgPs

adj
� O-AlgSt

The operads O, WO, and SMN all have the same admissible sets. Since WO and SMN

are free, there is an equivalence SMN � WO in Oph,m, which induces a 2-equivalence

SMN -AlgPs ' WO-AlgPs. The isomorphism NSMStg ∼= SMN -AlgPs is theorem

2.10. Finally, the unit η : O → WO is a section of ε : WO → O, and thus theorem 4.25

provides a 2-adjunction η∗O : WO-AlgPs � O-AlgSt : ε∗ whose unit maps are internal

equivalences.
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4.5 Pseudoalgebras and the W -construction

Thus far, we have only considered strict algebras over operads, but Guillou-May-Merling-

Osorno have developed a substantial theory of equivariant symmetric monoidal structure

based on operadic pseudoalgebras. In this section, we explain how the W -construction

WO = F̃(ObO) can be used to rigidify pseudoactions of homogeneous N∞ operads O. This

should be understood as an equivariant categorical analogue to Boardman and Vogt’s original

work [4].

Definition 4.28. Suppose that O is an operad in G-categories. An O-pseudoalgebra in

GCat is a G-category C , equipped with

1. a map of symmetric sequences ‖·‖ : O → End(C ),

2. a natural isomorphism φ : idC ⇒ ‖idO‖, and

3. for every k ≥ 0, y ∈ O(k), and xi ∈ O(ji) for i = 1, . . . , k, a natural isomorphism

φy;x1,...,xk : ‖y‖ ◦ (‖x1‖ × · · · × ‖xk‖)⇒ ‖γO(y;x1, . . . , xk)‖,

which have the following properties.

(i) The isomorphism φ : idC ⇒ ‖idO‖ is G-natural.

(ii) The isomorphism φy;x• is natural in y and x•.

(iii) The isomorphism φy;x• is G-equivariant in y;x•, i.e. φgy;gx• = g ·φy;x• , where g ·φy;x•

denotes conjugation.

(iv) For any y ∈ O(k), xi ∈ O(ji), and τi ∈ Σji for i = 1, . . . , k, the equation φy;x•τ• =

φy;x• · (τ1 ⊕ · · · ⊕ τk) holds.

(v) For any y ∈ O(k), xi ∈ O(ji) for i = 1, . . . , k, and σ ∈ Σk, the equation φyσ;x1,...,xk =

φy;xσ−11,...,xσ−1k
· σ(j1, . . . , jk) holds.
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(vi) For any x ∈ O(j), the composite

idC ◦ ‖x‖ ⇒ ‖idO‖ ◦ ‖x‖ ⇒ ‖γO(idO ;x)‖

is the identity transformation id‖x‖ : ‖x‖ ⇒ ‖x‖.

(vii) For any y ∈ O(k), the composite

‖y‖ ◦ (idC × · · · × idC )⇒ ‖y‖ ◦ (‖idO‖ × · · · × ‖idO‖)⇒ ‖γO(y; idO , . . . , idO)‖

is the identity transformation id‖y‖ : ‖y‖ ⇒ ‖y‖.

(viii) For any z ∈ O(k), ya ∈ O(ja), and xab ∈ O(iab) for a = 1, . . . , k and b = 1, . . . , ja, the

composite transformations below are equal.

γEnd(γEnd(‖z‖; ‖ya‖); ‖xab‖)⇒ γEnd(‖γO(z; ya)‖; ‖xab‖)⇒ ‖γO(γO(z; ya);xab)‖

γEnd(‖z‖; γEnd(‖ya‖; ‖xab‖))⇒ γEnd(‖z‖; ‖γO(ya;xab)‖)⇒ ‖γO(z; γO(ya;xab))‖

Definition 4.29. Suppose that O is an operad in G-categories and that (C , ‖·‖C , φC ) and

(D , ‖·‖D , φD ) are O-pseudoalgebras in GCat. A lax O-pseudoalgebra morphism (F, ∂•) :

C → D consists of

1. a G-functor F : C → D , and

2. for every integer n ≥ 0 and element x ∈ O(n), a natural transformation (∂n)x :

‖x‖D ◦ F×n ⇒ F ◦ ‖x‖C ,

which have the following properties.

(i) For every n ≥ 0, the map (∂n)x is natural in x.

(ii) For every n ≥ 0, the map (∂n)x is G× Σn-equivariant in x.
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(iii) The composite transformations below are equal.

idD ◦ F ⇒ ‖idO‖D ◦ F ⇒ F ◦ ‖id‖C

idD ◦ F = F ◦ idC ⇒ F ◦ ‖idO‖C

(iv) For any k ≥ 0, y ∈ O(k), and xi ∈ O(ji) for i = 1, . . . , k, the composite transformations

below are equal.

‖y‖D ◦ (‖x1‖D × · · · × ‖xk‖D ) ◦ F×Σj• ⇒ ‖y‖D ◦ F
×k ◦ (‖x1‖C × · · · × ‖xk‖C )⇒

F ◦ ‖y‖C ◦ (‖x1‖C × · · · × ‖xk‖C )⇒ F ◦ ‖γO(y;x1, . . . , xk)‖C

‖y‖D ◦ (‖x1‖D × · · · × ‖xk‖D ) ◦ F×Σj• ⇒ ‖γO(y;x1, . . . , xk)‖D ◦ F
×Σj•

⇒ F ◦ ‖γO(y;x1, . . . , xk)‖C

We say that a lax O-morphism is a pseudomorphism or a strict morphism if the maps (∂n)x

are isomorphisms or identity maps, respectively.

Definition 4.30. Suppose that O is an operad in G-categories, that C and D are O-

pseudoalgebras, and that (F, ∂•), (F ′, ∂′•) : C ⇒ D is a pair of lax O-morphisms between

them. An O-transformation ω : (F, ∂•)⇒ (F ′, ∂′•) is a G-natural transformation ω : F ⇒ F ′

such that for every n ≥ 0 and x ∈ O(n), the composites

‖x‖D ◦ F
×n ⇒ F ◦ ‖x‖C ⇒ F ′ ◦ ‖x‖C

‖x‖D ◦ F
×n ⇒ ‖x‖D ◦ (F ′)×n ⇒ F ′ ◦ ‖x‖C

are equal transformations.

As usual, the 2-category structure on GCat lifts to O-pseudoalgebras.
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Notation 4.31. Let Ps-O-AlgLax be the 2-category of all O-pseudoalgebras in GCat, lax

O-morphisms, and O-transformations between them. The composite of lax O-morphisms is

obtained by composing underlying functors and comparison data, and the vertical and hori-

zontal composites of O-transformations are computed in GCat. Identities are also inherited

from GCat. There are sub-2-categories Ps-O-AlgSt ⊂ Ps-O-AlgPs ⊂ Ps-O-AlgLax

of pseudomorphisms and strict morphisms respectively, and there is a forgetful 2-functor

Ps-O-AlgLax→ GCat.

We shall now explain how to identify O-pseudoalgebras with strict WO-algebras, pro-

vided that O is a homogeneous N∞ operad.

Proposition 4.32. Suppose that N ,O ∈ Oph,m and that ψ : N → O is a map of sym-

metric sequences. Then there is a pullback 2-functor

ψ∗ : O-AlgLax→ Ps-N -AlgLax

over GCat, which restricts to sub-2-categories of pseudo and strict morphisms.

Proof. We give formulas for ψ∗. If (C , |·|C : O → End(C )) is a strict O-algebra, then the

pullback ψ∗(C , |·|C ) is the G-category C , together with the map ‖·‖ψ∗C = |·|C ◦ ψ : N →

O → End(C ), and the natural isomorphisms

φ := |idO → ψ(idN )|C

φy;x• := |γO(ψy;ψx•)→ ψγN (y;x•)|C .

If (F, ∂•) : C → D is a lax O-morphism, then ψ∗F = (F, ∂n ◦ idψn) : ψ∗C → ψ∗D . The

2-functor ψ∗ does nothing to transformations.

Theorem 4.33. Suppose that O ∈ N∞-Oph,m. Then pulling back along the unit of the
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adjunction η : O → WO induces an isomorphism

η∗ : WO-AlgLax
∼=−→ Ps-O-AlgLax

of 2-categories over GCat. Similarly for pseudo and strict morphisms.

Sketch of proof. The operad WO is free on the Σ-free symmetric sequence ObO, and since

O is marked, we are given u ∈ O(0)G and p ∈ O(2)G. Therefore WO = SMN (O) for some

set of exponents N (O), to be determined. Define p0 := u, p1 := idO , pn+1 := γO(p; pn, idO),

and extend the set {pn |n ≥ 0} to a set R of G× Σ-orbit representatives for ObO. Then

ObO ∼= G× Σ0/G t G× Σ2/G t
∐
n 6=0,2

G× Σn/G t
∐
r ∈ R

r 6= pn

G× Σnr/Stab(r),

where nr is the arity of r. Choose finite G-subgroup actions Tr such that ΓTr = Stab(r).

Then WO ∼= SMN (O) for N (O) = {ε∗n = (n, triv) |n 6= 0, 2} t {Tr | r ∈ R , r 6= pn}.

As explained in section 4.6, there is an evaluation 2-functor ev : Ps-O-AlgLax →

N (O)SMLax such that ev ◦ η∗ : WO-AlgLax → Ps-O-AlgLax → N (O)SMLax is just

the evaluation ev : SMN (O)-AlgLax → N (O)SMLax. The latter is an isomorphism by

theorem 2.10, and therefore ev : Ps-O-AlgLax → N (O)SMLax has a section. On the

other hand, in section 4.6 we also prove that this 2-functor is injective on categories, func-

tors, and transformations. Therefore the evaluation 2-functor for O-pseudoalgebras is an

isomorphism, and so is the pullback η∗.

We obtain the following presentation theorem for O-pseudoalgebras.

Theorem 4.34. Suppose that O ∈ N∞-Oph,m and that N is any set of exponents that

generates the admissible sets of O. Then NSMLax and Ps-O-AlgLax are 2-equivalent

over GCat. Similarly for strong and strict morphisms.
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Proof. We have the chain

NSMLax
iso
� SMN -AlgLax

equiv
� WO-AlgLax

iso
� Ps-O-AlgLax

of 2-categories and 2-functors over GCat.

Example 4.35. Working nonequivariantly, we can specialize to the case where N = ∅, and

O is the Barratt-Eccles operad P. In this case, we obtain the chain

SMLax ∼= SM-AlgLax ' WP-AlgLax ∼= Ps-P-AlgLax,

which corresponds to an isomorpism between P-pseudoalgebras and unbiased symmetric

monoidal categories, and a further equivalence to symmetric monoidal categories in the

usual sense.

Equivariantly, one can consider the G-Barratt-Eccles operad PG of [18]. This is an E∞

operad, and thus, if N is any set of exponents that generates Set, then one has a similar

chain from NSMLax to Ps-PG-AlgLax.

By combining theorems 4.25 and 4.33, we also obtain the strictification for pseudoalgebras

considered in [20].

Proposition 4.36. Suppose that O ∈ N∞-Oph,m. Then there is a 2-adjunction

st : Ps-O-AlgPs� O-AlgSt : inc

whose unit maps are internal equivalences.

Proof. Consider the chain

Ps-O-AlgPs
iso
� WO-AlgPs

adj
� O-AlgSt

of 2-categories and 2-functors over GCat.
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The isomorphism WO-AlgLax ∼= Ps-O-AlgLax formalizes the intuition that passing to

pseudoalgebras loosens up the relations parametrized by O. We round out this discussion

by explaining how to reintroduce strictness.

Proposition 4.37. Suppose that O ∈ N∞-Oph,m, and that R is a graded binary relation

contained in ker(ε : WO → O). Then WO/〈R〉 is a homogeneous N∞ operad, there are

biequivalences and embeddings

Ps-O-AlgLax← (WO/〈R〉)-AlgLax← O-AlgLax,

and there is a 2-adjunction

st : (WO/〈R〉)-AlgPs� O-AlgSt : inc

whose unit maps are internal equivalences.

Proof. The counit factors as a pair WO → WO/〈R〉 → O of quotient maps. We deduce

that WO/〈R〉 is Σ-free, because it maps into O, and that all three operads have the same

admissible sets. Applying proposition 4.20 shows that both pullbacks are biequivalences

and embeddings. Next, the map WO/〈R〉 → O has a section, obtained by composing

η : O → WO with the quotient map WO → WO/〈R〉. By theorem 4.25, we obtain the

desired strictification 2-adjunction.

Example 4.38. Suppose that O ∈ N∞-Oph,m. An O-pseudoalgebra (C , ‖·‖, φ) is normal

if φ : id ⇒ ‖id‖ is the identity. This transformation is represented by idWO → η(idO) in

WO(1), and ε(idWO → η(idO)) = id : idO → idO . Therefore strict WO/〈idWO ∼ η(idO)〉-

algebras coincide with normal O-pseudoalgebras, and proposition 4.37 applies.

Let PG be the G-Barratt-Eccles operad. In [20], the authors consider normal PG-
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pseudoalgebras ‖·‖ : PG → End(C ), which satisfy the additional strict unitality relations

‖c‖(x1, . . . , ‖0‖, . . . , xn) = ‖c ◦i 0‖(x1, . . . , x̂i, . . . , xn)

for n > 0, c ∈ PG(n), and i = 1, . . . , n. Here 0 is the unique element of PG(0). The

comparison map between the terms above is represented by

γ(η(c); id, . . . , η(0), . . . , id)→ η(γ(c; id, . . . , 0, . . . , id))

in WPG, and ε sends this edge to an identity map in PG. Therefore there is an equiv-

ariant E∞ operad WPG/〈R〉, whose strict algebras are the normal, strictly unital PG-

pseudoalgebras of [20], and proposition 4.37 applies. By choosing G × Σ-orbit representa-

tives for PG, we can write WPG = SMN (PG), and therefore proposition 4.13 implies

that the normal, strictly unital PG-pseudoalgebras of [20] are precisely the same thing as

N (PG)-normed symmetric monoidal categories satisfying the strict relations in R.

That said, if N is any set of exponents that generates Set, then theorem 4.27 supplies

a strictification 2-adjunction NSMStg � (WPG/〈R〉)-AlgSt. Thus, we can rigidify any

E∞ normed symmetric monoidal category to normal, strictly unital PG-pseudoalgebra.

Similarly, there is a strictification 2-adjunction NSMStg � PG-AlgSt. Thus, while we

have not solved the presentation problem [20, problem 1.36], one can construct E∞ normed

symmetric monoidal categories in a biased fashion, and then use our invariance theorems to

get equivalent PG-algebras and pseudoalgebras.

4.6 Appendix: the evaluation 2-functor for pseudoalgebras

Suppose that O ∈ N∞-Oph,m and keep notation as in the proof of theorem 4.33. In this

section, we show that the evaluation 2-functor ev : WO-AlgLax → N (O)SMLax factors

through an analogous 2-functor ev : Ps-O-AlgLax → N (O)SMLax, which is injective on
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categories, functors, and transformations. This will complete the proof of theorem 4.33.

4.6.1 A partial coherence theorem for pseudoalgebras

We begin by sketching a coherence theorem for the maps φ in an O-pseudoalgebra (C , ‖·‖, φ).

This will streamline our subsequent work. Consider the free operad F(ObO t G × Σ1/G).

Its elements can be identified with operadic terms built from the formal symbols

xn n = 1, 2, 3, . . .

a a ∈ ObO

ι (corresponding to the element of G× Σ1/G)

( ) , (punctuation)

modulo the congruence relation generated by cσ(x1, . . . , xn) ≡ c(xσ−11, . . . , xσ−1n) (cf. sec-

tion 2.4 and construction 2.15). There is an operad map ε : F(ObO t G × Σ1/G) → ObO,

given by the identity map on ObO, and which sends the generator ι(x1) to idO . There is

also an operad map ‖·‖ : F(ObO tG×Σ1/G)→ End(C ) given by ‖·‖ on ObO, and which

sends the generator ι(x1) to idC .

For any congruence class [t] ∈ F(ObO t G× Σ1/G), we say that [s] is a contraction of

[t] if, for some representatives s and t, the term s is obtained by modifying a subterm of t

in one of the ways below.

a(t1, . . . , a
′(ti1, . . . , tij), . . . , tk) a ◦i a′(t1, . . . , ti1, . . . , tij , . . . , tk)

ι(a(t1, . . . , tk)) a(t1, . . . , tk)

a(t1, . . . , ι(ti), . . . , tk) a(t1, . . . , ti, . . . , tk)

ι(t1) idO(t1)

Given a congruence class [t], we consider a directed graph Con[t]. Its vertices are [t] and
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all of its contractions. Its edges are pairs ([r], [s]), together with a chosen contraction of [r]

to [s]. There is a map Φ : Con[t] → End(C )(n) of directed graphs, where n is the arity of

[t]. On objects, it is obtained by restricting the map ‖·‖ : F(ObO tG× Σ1/G)→ End(C )

above. It sends edges to whiskerings of the natural transformations

‖a‖ ◦ (id× · · · ×
∥∥a′∥∥× · · · × id)⇒ ‖a‖ ◦ (‖id‖ × · · · ×

∥∥a′∥∥× · · · × ‖id‖)⇒ ∥∥a ◦i a′∥∥
id ◦ ‖a‖ = ‖a‖ (identity transformation)

‖a‖ ◦ (id× · · · × id× · · · × id) = ‖a‖ (identity transformation)

id⇒ ‖id‖,

defined in terms of φ and the necessary identity transformations. By adjunction, we obtain

a functor Φ : Fr(Con[t])→ End(C )(n).

Lemma 4.39. The functor Φ : Fr(Con[t])→ End(C )(n) takes parallel morphisms to equal

natural transformations.

Proof. One argues by induction on the complexity c[t] of [t], where

c[t] = (number of symbols a ∈ ObO in t) + 2(number of ι symbols in t).

First, note that there is a unique [u] ∈ Con[t] of complexity 1, because the image of a term

under ε is invariant under contractions. Then, since all of the maps φ are isomorphisms,

it will be enough to show that all parallel morphisms [r] ⇒ [u] have the same value under

Φ. When [r] = [u], the only possibility is the identity map. Now suppose that two paths

[q]⇒ [u] are given, and that the desired result holds for classes [r] of lower complexity than

[q]. Consider the first edges e : [q] → [r] and e′ : [q] → [r′] in each path. From the axioms

for a pseudoalgebra, we can always find a class [s] and paths p : [r] → [s] and p : [r′] → [s]

of length 0 or 1 such that Φ(p ◦ e) = Φ(p′ ◦ e′), and the result for [q] follows.
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4.6.2 The proof of theorem 4.33

Keep notation as in the proof of theorem 4.33.

Construction 4.40. Given any O-pseudoalgebra (C , ‖·‖, φ), we let evC be the G-category

C , together with the operations

e := ‖p0‖, ⊗ := ‖p2‖,
⊗
ε∗n := ‖pn‖ (if n 6= 0, 2),

⊗
Tr := ‖r‖ (if r 6= pn),

and the natural isomorphisms

α :=
[
⊗ ◦(⊗× id)⇒ ‖γ(p2; p2, p1)‖ ⇒ ‖γ(p2; p1, p2)‖ ⇒ ⊗ ◦ (id×⊗)

]
,

λ :=
[
⊗ ◦(e× id)⇒ ‖γ(p2; p0, p1)‖ ⇒ ‖p1‖ ⇒ id

]
,

ρ :=
[
⊗ ◦(id× e)⇒ ‖γ(p2; p1, p0)‖ ⇒ ‖p1‖ ⇒ id

]
,

β :=
[
⊗ = ‖p2‖ ⇒ ‖p2(12)‖ = ⊗(12)

]
,

υε∗n :=
[⊗

ε∗n = ‖pn‖ ⇒ ⊗ ◦ (‖pn−1‖ × id)⇒ · · · ⇒⊗n

]
(if n 6= 0, 2),

υTr :=
[⊗

Tr = ‖r‖ ⇒
∥∥∥p|Tr|∥∥∥ =

⊗
ε∗|Tr|

υ⇒⊗|Tr|] (if r 6= pn).

Here, all maps are either composites of copies of φ±1, or the image of a morphism in O under

the map ‖·‖ : O → End(C ). To prove that these data form an N (O)-normed symmetric

monoidal category, observe that all diagrams in any component of O commute, and that

applying φ repeatedly lets us reduce to this case. Lemma 4.39 ensures that the particular

sequence of φ’s used does not affect the end result.

If (F, ∂•) : C → D is a lax O-morphism, we let evF : evC → evD be the G-functor

F : C → D , together with the comparison data

Fe := (∂0)p0 , F⊗ := (∂2)p2 , F⊗
ε∗n

:= (∂n)pn (n 6= 0, 2), F⊗
Tr

:= (∂|Tr|)r (r 6= pn).

As before, the main point is that (∂n)x is natural in x, and we can reduce to this case by
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applying φ. Evaluation leaves transformations unchanged. These assignments determine a

2-functor over GCat.

The equation ev ◦ η∗ = ev holds because on both sides, we are evaluating at G×Σ-orbit

representatives for O, and the isomorphisms φ for η∗(C , |·|C ) are defined in terms of the

WO-algebra coherence maps for C .

Now for the injectivity of the evaluation 2-functor.

Lemma 4.41. The 2-functor ev : Ps-O-AlgLax→ N (O)SMLax is injective on categories,

functors, and transformations.

Proof. Injectivity on transformations is immediate. Next, recall that the elements pn and r

generate ObO as a symmetric sequence. Thus, the injectivity of ev on functors (F, ∂•) follows

from the equivariance of (∂n)x in x. We now consider the case for categories (C , ‖·‖, φ). The

value of ‖·‖ on ObO is determined by its values on pn and r by G × Σ-equivariance. The

map
∥∥∥r → p|Tr|

∥∥∥ is the composite υ−1
ε∗|Tr| • υTr , and if n ∈ Σn, then the commutative square

⊗
n

‖pn‖

⊗
n · σ

‖pn · σ‖
‖pn → pn · σ‖

υε∗n υε∗nσ

can

shows that ‖pn → pnσ‖ is also determined by evC . Here can denotes the symmetric monoidal

coherence isomorphism that permutes the factors of
⊗

n by σ. By G × Σ-equivariance, it

follows that for any x ∈ O(n), the value of ‖x→ pn‖ is determined, and thus ‖x→ y‖ =

‖y → pn‖−1 • ‖x→ pn‖ is, too. Thus the map ‖·‖ : O → C is determined by evC .

It remains to consider the maps φ. The map φ : idC → ‖idO‖ is equal to υ−1
ε∗1. Next,

given integers k ≥ 0, and j1, . . . , jk ≥ 0, write γO(pk; pj•) = rσ for some orbit representative
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r. Then the commutative diagram

γEnd(‖pk‖;
∥∥pj•∥∥)

∥∥γO(pk; pj•)
∥∥ ∥∥pΣj• · σ

∥∥
γEnd(

⊗
k;
⊗
j•)

⊗
Σj• · σ

φpk;pj•
∥∥γO(pk; pj•)→ pΣj•σ

∥∥
φ’s

γEnd(υε∗k; υε∗j•)

can

φ’s

υTr · σ

shows that φpk;pj• is determined by evC . From here, we recover the values of all the maps

φy;x• using the naturality of φy;x• in y;x•, and the fact that each component of O is a

connected groupoid.
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CHAPTER 5

EXAMPLES OF NORMED SYMMETRIC MONOIDAL

CATEGORIES

5.1 Introduction and summary of results

The previous three chapters develop the basic theory of normed symmetric monoidal cate-

gories and homogeneous operads. The purpose of this chapter and the next is to give some

indication of how things work in practice. In this chapter, we describe some notable examples

of normed symmetric monoidal categories. We hope that they will provide a useful baseline

for future work. We make no claims of completeness, but we have tried to give some variety.

Fix a finite group G. The normed symmetric monoidal categories we shall consider are

primarily diagram categories. The idea is to make the group G act on the diagram shape,

and possibly on the individual diagram entries, too. We show how to produce new operations

on diagrams by twisting an existing product by the group action. We give a general overview

in section 5.2, and in section 5.3, we focus on diagrams indexed over the translation category

of G. In section 5.4, we describe a construction specific to the case G = C2 and diagrams

over the translation category of C2.

Most of the work in this chapter is specialized. However, there is a general conceptual

point that is clarified by these considerations. The analysis in section 5.3 identifies an

important, shared link between our work, the work of Guillou-May-Merling-Osorno [20], and

the work of Hill and Hopkins [23]. For any finite group G, let TG denote the translation

category of G (cf. definition 5.8), and consider the functor category Fun(TG,C ) for some

nonequivariant symmetric monoidal category C . Up to notation, this is a standard example

of input to the infinite loop space machinery of [20]. However, Fun(TG,C ) is also an E∞

normed symmetric monoidal category, and its transfers are noteworthy (cf. theorem 5.12).

Theorem. For any subgroup H ⊂ G, the H-fixed subcategory Fun(TG,C )H is equivalent to
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the category HC of H-actions in C , and for any subgroups K ( H ⊂ G, the transfer trHK :

Fun(TG,C )K → Fun(TG,C )H is equivalent to the monoidal induction functor KC → HC .

We deduce that Fun(TG,C ) is a precursor to the standard G-symmetric monoidal struc-

ture on the coefficient system of all HC (cf. [23]). That said, normed symmetric monoidal

categories and G-symmetric monoidal categories were invented for very different purposes,

and we do not believe that these two notions of structure are equivalent. Informally, we think

of G-symmetric monoidal categories as large, ambient settings for doing mathematics, and

normed symmetric monoidal categories as small, algebraic objects that model N∞-G-spaces.

These perspectives are not completely disjoint, because we have a recursion. The category

Fun(TG,C ) is simultaneously a structure that encodes the actions of all subgroups of G in

C , and a kind of (pseudo) G-commutative monoid in the G-symmetric monoidal category

determined by Fun(TG,Cat).

5.2 Normed symmetric monoidal structures from configurations

The classical algebraic counterpart to a normed symmetric monoidal category is a G-module,

or more generally, a commutative monoid, equipped with a G-action through monoid auto-

morphisms. We have in mind the underlying additive structure on a linear representation,

or the Galois action on a field extension, considered only as an additive or multiplicative

monoid. Normed symmetric monoidal categories are higher analogues to these structures,

in which the algebraic operation is coherently associative, commutative, and unital, but the

group action is strict.

This particular combination of strict and weak structure presents difficulties. Consider

a finite-dimensional linear G-representation V . In this case, group elements act on V by

matrix multiplication, and the strict associativity and unitality of the G-action ultimately

follows from the strict algebraic relations satisfied by addition and multiplication in the

ground field. If we weaken those conditions on addition and multiplication, we should not
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expect to retain a strict G-action, except under very particular circumstances.

In this section, we shall primarily consider “configurations” of algebraic data, where the

configuration itself is equipped with a group action. In this case, the group G essentially

acts by permuting factors, which avoids the issue above.

For consistency, we begin with a trivial example.

Example 5.1. Suppose that C is a commutative monoid object in GCat. Then C is a

symmetric monoidal object with trivial coherence data, and it can be made into a normed

symmetric monoidal category by taking each T -norm
⊗

T to be the |T |-fold product on C ,

and each T -untwistor υT to be the identity map. Note that if M is a commutative monoid

in GSet, then FM is a commutative monoid in GCat for any product-preserving functor

F : Set → Cat. In particular, this applies to the discrete category Mdisc, obtained by

attaching an identity morphism to each element of M and nothing more. This also applies

to the category M̃ , obtained by inserting a unique isomorphism between each pair of elements

in M (cf. definition 2.16 and [19, definition 1.4]).

The next example is a thickened version of the sign representation of C2 on Z. Note that

a pair (X, Y ) is the same thing as map out of a pair of points.

Example 5.2. Let C be the category whose objects are pairs of finite sets (X, Y ) and which

has the hom sets

C
(

(X, Y ), (X ′, Y ′)
)

=

 ∗ if |X| − |Y | =
∣∣X ′∣∣− ∣∣Y ′∣∣

∅ otherwise
.

Write C2 = {e, g}. We make C into a C2-category via the formula g(X, Y ) = (Y,X).

More conceptually, there is a C2-equivariant evaluation map ε : Ob(C ) → Z defined by

ε(X, Y ) = |X| − |Y |, which creates the C2-category structure on C .
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Define operations t and tC2/e
on C by

(X1, Y1) t (X2, Y2) = (X1 tX2, Y1 t Y2)

(X1, Y1) tC2/e
(X2, Y2) = (X1 tX2, Y2 t Y1)

and consider the object (∅,∅). Then t : C×2 → C is a C2-bifunctor, (∅,∅) is C2-fixed,

and tC2/e
: CC2/e → C is a C2/e-norm. It is easy to check that these data, together with

the only possible isomorphisms, define a {C2/e}-normed symmetric monoidal structure on

C . This normed symmetric monoidal structure is strong monoidally equivalent to the sign

representation of C2 on Zdisc, given by the previous example.

We now turn our attention to categories of diagrams over a fixed G-category J . We

regard the functor category Fun(J,C ) as a higher analogue to the representation k[X] when

X is a finite G-set, or kX in the infinite case.

Example 5.3. Suppose that C is a symmetric monoidal object in GCat (cf. definition 2.1)

and that J is a right G-category, and consider the functor category Fun(J,C ) of J-diagrams

in C . This category inherits a left G-action by composing and precomposing with the actions

on C and J , respectively. It also has a levelwise ordinary symmetric monoidal product that

is equivariant with respect to this action. The monoidal unit of Fun(J,C ) is the constant

functor valued at the unit of C , and the coherence data are all taken levelwise.

The finite G-subgroup actions T for which Fun(J,C ) supports a T -norm depend on

the stabilizers of the objects of J . In general, the above symmetric monoidal structure on

Fun(J,C ) extends to include a T -norm
⊗

T and untwistor υT if and only if

⋃
j∈J

StabH(j) ⊂
⋂
t∈T

StabH(t) =
{
h ∈ H

∣∣∣h · (−) = id : T → T
}
.

In words, this says that every h ∈ H that stabilizes a single object of J must fix all of T .

We shall momentarily construct norms for all such T (construction 5.6), and we shall show
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what goes wrong when T does not have this property (nonexample 5.7).

Remark 5.4. For any right G-category J , the class of all finite H-sets T that satisfy the

condition
⋃
j∈J StabH(j) ⊂

⋂
t∈T StabH(t) forms an indexing system FJ . By theorem 2.10,

one concludes that Fun(J,C ) is generally an N∞-algebra structured over FJ .

Note that the normed symmetric monoidal structure on Fun(J,C ) has an operadic

source, which we examine in section 6.3. In the special case that J = TG is the trans-

lation category of G (cf. definition 5.8), the category Fun(TG,C ) has norms for every finite

G-subgroup action T . We treat this example in detail in section 5.3.

Example 5.5. Suppose that X is a left G-space, and consider the equivariant fundamental

groupoid ΠGX of X (cf. [11] and [13]). Its objects are pairs (G/H, x : G/H → X), where

x : G/H → X denotes the G-map that sends the coset eH to x ∈ XH . A morphism

(x : G/H → X)→ (y : G/K → X) consists of a G-map (−)a : G/H → G/K, together with

a homotopy class of paths ω : x→ ay in XH .

x ay

G/H G/K

X

ω

(−)a

x y

Given g ∈ G, we define g ·(−) : ΠGX → ΠGX by g ·(x : G/H → X) = (gx : G/gHg−1 → X)

on objects. The map g · (−) sends the morphism above to

gx gay

G/gHg−1 G/gKg−1

X

gω

(−)gag−1

gx gy

96



and we obtain a functor g · (−) : ΠGX → ΠGX. These maps make ΠGX into a left G-

category, and we obtain a right G-action by taking (−) ·g := g−1 ·(−). If C is any symmetric

monoidal object in GCat, then Fun(ΠGX,C ) is a normed symmetric monoidal category.

Functors of this sort arise in connection with equivariant bundle theory. We suspect it will

be worthwhile to study the normed symmetric monoidal category Fun(ΠGX,Fun(TG,C ))

for X a G-space and C = R-Vect or Set, but we shall not pursue this line of thought here.

Construction 5.6. Suppose that H ⊂ G is a subgroup, and that T is an ordered, finite

H-set. Let the subgroup

ΓT = {(h, σ(h)) |h ∈ H} ⊂ G× Σ|T |

be the graph of the corresponding permutation representation on {1, . . . , |T |}, so that h · i =

σ(h)(i) for all i ∈ {1, . . . , |T |}, and assume that
⋃
j∈J StabH(j) ⊂ ker(σ). Choose a set of

H-orbit representatives {ja | a ∈ A} for Ob(J).

1. The norm map
⊗

T : Fun(J,C )×T → Fun(J,C ) is defined as follows.

(a) For an object (C1
• , . . . , C

|T |
• ) ∈ Fun(J,C )×T , and j = jah ∈ J ,

[⊗
T (C1, . . . , C |T |)

]
j

:=
⊗
|T |(C

σ(h)−11
j , . . . , C

σ(h)−1|T |
j ).

For f : j → j′, where j = jah and j′ = jbh
′,

[⊗
T (C1, . . . , C |T |)

]
f

:= σ(h′) ◦ σ(h)−1 ◦⊗|T |(Cσ(h)−11
f , . . . , C

σ(h)−1|T |
f ),

where σ(−) is the symmetric monoidal coherence map for C that permutes the

factors of the tensor product by σ(−). Note that the permutation σ(h) is inde-

pendent of the expression j = jah because of our assumption on the stabilizers of

objects in J .
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(b) For a morphism (f1
• , . . . f

|T |
• ) : (C1

• , . . . , C
|T |
• ) → (D1

•, . . . , D
|T |
• ) and an object

j = jah ∈ J ,

[⊗
T (f1, . . . , f |T |)

]
j

:=
⊗
|T |(f

σ(h)−11
j , . . . , f

σ(h)−1|T |
j ).

2. The untwistor υ = υT :
⊗

T ⇒
⊗
|T | has j = jah component

(υC1,...,C |T |)j := σ(h)−1 :
⊗
|T |(C

σ(h)−11
j , . . . , C

σ(h)−1|T |
j )→⊗|T |(C1

j , . . . , C
|T |
j ).

Again, σ(h)−1 denotes the symmetric monoidal coherence map for C that permutes

the factors of
⊗
|T | by σ(h)−1.

One uses the classical coherence theorem for symmetric monoidal categories and natu-

rality to check that
⊗

T (C1, . . . , C |T |) : J → C is a functor, and that the map υT is twisted

H-equivariant.

Nonexample 5.7. Let J be a right G-category, let H ⊂ G be a subgroup of G, and let T

be a finite H-action. Suppose that there is some h0 ∈ H and j0 ∈ J such that j0 · h0 = j0,

but h0 · (−) : T → T is not the identity map. We shall show that the levelwise symmetric

monoidal structure on Fun(J,C ) generally does not extend to include a compatible T -norm

and untwistor.

Let C = (Set,t,∅), and give C a trivial G-action. Suppose for contradiction that we

had a T -norm
⊔
T : Fun(J,Set)×T → Fun(J,Set) and untwistor υ = υT :

⊔
T ⇒

⊔
|T |. We

consider T -fold coproducts of the terminal object ∗ : J → Set. The twisted equivariance
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diagram for h0 is

h0
⊔
T (∗, · · · , ∗)

⊔
T (∗, · · · , ∗)

h0
⊔
|T |(∗, · · · , ∗)

⊔
|T |(∗, · · · , ∗)

⊔
|T |(∗, · · · , ∗)

id

h0υ∗,··· ,∗

υ∗,··· ,∗

σ(h0)−1
∗,··· ,∗

id

and evaluating at j0 yields the equation

(υ∗,··· ,∗)j0 = (υ∗,··· ,∗)j0·h0 = (h0υ∗,··· ,∗)j0 = (σ(h0)−1
∗,··· ,∗)j0 ◦ (υ∗,··· ,∗)j0 .

Since υ is an isomorphism, we must have that (σ(h0)−1
∗,··· ,∗)j0 = id, but this is false because

(σ(h0)−1
∗,··· ,∗)j0 is isomorphic to the permutation h−1

0 · (−) : T → T .

5.3 The category Fun(TG,C )

Let G be a finite group and write TG for the translation category on C (cf. definition

5.8). In this section, we describe some notable features of the category Fun(TG,C ). This

object has been studied by many authors. Thomason [40] considers its G-fixed points in

connection to the homotopy limit problem, Murayama-Shimakawa [35], [39] introduced the

construction Fun(TG,−) for use in equivariant bundle theory, and Guillou-May-Merling-

Osorno [18], [19], [20] take the categories Fun(TG,C ) as prototypical input to their infinite

loop space machinery.

Our goal, however, is to explain the connection between Fun(TG,C ) and theG-symmetric

monoidal structure on the coefficient system of G-subgroup actions in C (cf. [23]). The en-

tire point of equipping G-categories with norms is to get transfer maps, and the transfers of

Fun(TG,C ) are particularly striking. To start, if C is G-trivial, then there is an isomor-
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phism Fun(TG,C )H ∼= Fun(T(G/H),C ), and as observed in [24], the latter is equivalent

to the category HC of H-actions in C . The punchline, however, is that for any subgroups

K ( H ⊂ G, the transfer trHK =
⊗

H/K ◦∆tw : Fun(TG,C )K → Fun(TG,C )H can be iden-

tified with the monoidal pushforward p⊗∗ : Fun(T(G/K),C )→ Fun(T(G/H),C ) of [24]. It

follows that the transfer trHK : Fun(TG,C )K → Fun(TG,C )H is equivalent to the monoidal

induction functor NH
K : KC → HC , which specializes to induction for group actions on sets,

induction for group representations over vector spaces, and the Hill-Hopkins-Ravenel norm

for equivariant spectra. In this section, we explain how all of this this goes.

5.3.1 The transfers of Fun(TG,C )

We begin by describing our conventions for the category Fun(TG,C ) and its G-action.

Definition 5.8. The translation category of a (left)G-setX is the groupoid TX whose object

set is X, and whose hom sets are TX(x, y) = {g ∈ G | gx = y}.1 Composition is by group

multiplication, and the unit e ∈ G gives the identities. There is a functor T : GSet→ Cat

that sends a G-set X to TX, and sends a G-map f : X → Y to the functor Tf : TX → TY

defined by the formula Tf(x) = f(x) on objects and Tf(g : x → y) = g : f(x) → f(y) on

morphisms. We shall sometimes write TG to emphasize that we are taking the translation

category of a G-set.

Example 5.9. The group G acts on itself by left and right multiplication, and these actions

interchange. Thus, we may regard G asymmetrically as a left G-set equipped with a right

G-action. Applying T makes TG into a right G-category.

Since G is a transitive, free left G-set, it follows that for every x, y ∈ TG, there is a

unique morphism ! = yx−1 : x → y, and it is an isomorphism. For any g ∈ G, the functor

(−)g : TG → TG sends the object x ∈ TG to xg and the morphism yx−1 : x → y to

yx−1 : xg → yg.

1. Translation categories are denoted T (G,X) in [19] and BXG in [24].
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Note that the translation category TG is isomorphic to the category G̃ (cf. definition

2.16), but this is just a coincidence. One can make analogous constructions for monoids M ,

and in that case, TM and M̃ are usually different. See [19, §1.4] for a further discussion.

Definition 5.10. Let C be a nonequivariant category. The left G-category Fun(TG,C ) is

the category whose objects are the functors C• : TG → C , and whose morphisms are the

natural transformations f• : C• → D•. Composition is componentwise, i.e. (f ◦g)x = fx◦gx,

and identities are, too: (idC)x = idCx . The right action of G on TG induces a left G-action

on Fun(TG,C ) by precomposition. Explicitly, (gC)• = C•g and (gη)• = η•g.

Remark 5.11. One might also suppose that C has a nontrivial G-action, and that it is a

symmetric monoidal object in GCat (cf. definition 2.1). In this case, the G-action on

the objects of Fun(TG,C ) becomes (g · C)x = g(Cxg), and similarly for morphisms. We

have a normed symmetric monoidal structure exactly as in section 5.2, but the following

identification of the fixed points and transfers breaks down.

Next, we identify the fixed points of Fun(TG,C ). As observed by Thomason [40], if C is

G-trivial, then the G-fixed subcategory of Fun(TG,C ) is isomorphic to the category of G-

actions in C . We generalize this point to arbitrary subgroups H ⊂ G. First, observe that the

projection map π : G → G/H sending x to xH determines a functor Tπ : TG → T(G/H),

and pulling back defines another functor Tπ∗ : Fun(T(G/H),C ) → Fun(TG,C ). Since

π ◦ (−)h = π for every h ∈ H, the functor Tπ∗ lands in Fun(TG,C )H . On the other hand,

if the diagram C• : TG → C is H-fixed, then it factors uniquely through Tπ, and thus we

obtain inverse functors

Tπ∗ : Fun(T(G/H),C )
∼=
� Fun(TG,C )H : q.

Next, we recall an observation of Hill-Hopkins-Ravenel. Let the functor s : TH(H/H) →

TG(G/H) be the inclusion of TH(H/H) as the automorphisms of the coset eH ∈ TG(G/H).

The functor s is an equivalence of categories, and we can construct an explicit deformation
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retraction r : TG(G/H) → TH(H/H) by choosing a set of G/H coset representatives {e =

g1, . . . , g|G:H|}, and then setting r(giH) = H and r(g : giH → gjH) = g−1
j ggi : H → H.

Since g1 = e, it follows that r ◦ s = id. The equivalence TH(H/H) ' TG(G/H) induces an

equivalence

r∗ : Fun(TH(H/H),C )
'
� Fun(TG(G/H),C ) : s∗,

and the functor category Fun(TH(H/H),C ) is isomorphic to the category HC of H-actions

in C . Thus HC ' Fun(TG,C )H . One can lift this to an equivalence between the H-

category CH of all H-objects in C and nonequivariant maps between them, and the full

subcategory of Fun(TG,C ) spanned by the H-fixed diagrams, but we shall not need to.

Finally, we describe the transfers of Fun(TG,C ).

Theorem 5.12. Suppose that G is a finite group, K ( H ⊂ G are subgroups, and that C is

a nonequivariant symmetric monoidal category. Then there is a commutative diagram

KC HC

Fun(T(G/K),C ) Fun(T(G/H),C )

Fun(TG,C )K
(
Fun(TG,C )×H/K

)H
Fun(TG,C )H

NH
K

r∗ s∗
p⊗∗

Tπ∗ q Tπ∗ q

∆tw
⊗

H/K

trHK

where p⊗∗ is the monoidal pushforward for the functor p : T(G/K) → T(G/H) that sends

gK to gH, and NH
K is the norm functor.

The proof is straightforward once the correct definitions have been made, but one must

be a bit careful because some of these functors are constructed using noncanonical choices.
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In general, this diagram only commutes up to natural isomorphism, but we shall explain

how to achieve strict commutativity in the next section.

5.3.2 Monoidal pushforwards and the proof of theorem 5.12

Suppose that C is a nonequivariant symmetric monoidal category. In [6], [24], the authors

explain how to construct a monoidal pushforward p⊗∗ : Fun(I,C ) → Fun(J,C ) associated

to any finite covering category p : I → J . For their purposes, it was not necessary to

track the orderings in tensor products too carefully, and therefore those details were rightly

suppressed. Unfortunately, our present work demands attention to these matters, because

twisted equivariance for υT is entirely about the relationship between a group action and

symmetric monoidal permutation maps. Thus, we review the construction of p⊗∗ , with a

focus on orderings.

Recall the following definition [24, definition A.24].

Definition 5.13. A finite covering category is a functor p : I → J such that

1. For every morphism f : j → j′ in J and object i ∈ p−1(j), there is a unique I-morphism

f̃ such that domf̃ = i and pf̃ = f .

2. For every morphism f : j → j′ in J and object i′ ∈ p−1(j′), there is a unique I-

morphism f̃ such that codf̃ = i′ and pf̃ = f .

3. For every object j ∈ J , the fiber p−1(j) ⊂ Ob(I) is finite.

Convention 5.14. We shall assume that every finite covering category p : I → J comes

equipped with a chosen linear ordering on every fiber p−1(j).

We write f̃i for the unique lift of f starting at i, and we define f · i := codf̃i. For any

f : j → j′ in J , we obtain a set bijection f · (−) : p−1(j)→ p−1(j′), but it will not generally

respect the orderings of p−1(j) and p−1(j′). Suppose that the fibers p−1(j) and p−1(j′) both
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have cardinality n, and write

p−1(j) = {i1 < · · · < in} and p−1(j′) = {i′1 < · · · < i′n}.

We define the permutation σ(f) ∈ Σn by the formula f · ik = i′
σ(f)k

. Equivalently, there is

a lift f̃ik : ik → i′
σ(f)k

of f .

Recall (definition 2.1) that the standard tensor products on C are
⊗

0 := e,
⊗

1 := id,⊗
2 := ⊗, and

⊗
n+1 := ⊗ ◦ (

⊗
n×id) for n ≥ 2.

Definition 5.15. Keep notation as above. For any symmetric monoidal category C and

finite covering category p : I → J , the monoidal pushforward functor p⊗∗ : Fun(I,C ) →

Fun(J,C ) is defined as follows.

(a) Given a functor X : I → C , we define p⊗∗ X : J → C on objects j ∈ J by

(p⊗∗ X)(j) :=
⊗

n

(
X(i1), . . . , X(in)

)
,

where p−1(j) = {i1 < · · · < in} and
⊗

n is the standard n-fold tensor product. Then,

given f : j → j′ in J , we define p⊗∗ (f) : p⊗∗ (j)→ p⊗∗ (j′) to be the composite

⊗
n

(
X(ik)

) ⊗
n

(
X(i′

σ(f)k
)
) ⊗

n

(
X(i′k)

)⊗
n

(
X(f̃ik)

)
σ(f)

where σ(f) is the symmetric monoidal coherence map for C that permutes the factors

of the tensor product by σ(f).

(b) Given a natural transformation η• : X• ⇒ Y•, we define

(p⊗∗ η)j :=
⊗

n

(
ηi1 , . . . , ηin

)
,

where p−1(j) = {i1 < · · · < in}.
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For completeness, we also recall the definition of the norm [24, definition A.52].

Definition 5.16. For subgroups K ⊂ H ⊂ G, the norm functor NH
K : KC → HC is

the composite p⊗∗ ◦ r∗ : KC → Fun(TH(H/K),C ) → HC , where p⊗∗ is the monoidal

pushforward for p : TH(H/K → H/H).

Proof of theorem 5.12. The point is to make compatible choices of coset representatives and

orderings. We describe one possible route.

First, choose sets {e = g1, . . . , g|G:H|} and {e = h1, . . . , h|H:K|} of G/H and H/K coset

representatives, and give the orbits G/H and H/K the corresponding orders. We obtain a

set {gihj | 1 ≤ i ≤ |G : H| , 1 ≤ j ≤ |H : K|} of G/K coset representatives, and we order

G/K lexicographically as follows:

K < h2K < · · · < h|H:K|K < g2K < g2h2K < · · · < g2h|H:K|K < · · · .

From here, we

(a) use the relation h · hiK = hσ(h)iK to define ΓH/K = {(h, σ(h)) |h ∈ H}, and give

Fun(TG,C )×H/K the diagonal H-action twisted by σ,

(b) construct the norm map
⊗

H/K : Fun(TG,C )×H/K → Fun(TG,C ) as in construction

5.6, using the G/H coset representatives gi,

(c) define p⊗∗ : Fun(T(G/K),C ) → Fun(T(G/H),C ) using the order on the fibers of

p : T(G/K)→ T(G/H) induced by the order on G/K,

(d) define r : TG(G/K)→ TK(K/K) using the coset representatives gihj , and

(e) for the norm NH
K : KC → HC , we define r : TH(H/K)→ TK(K/K) using the coset

representatives hj , and use the order on H/K to construct the monoidal pushforward

p⊗∗ : Fun(TH(H/K),C )→ Fun(TH(H/H),C ).
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The remaining verifications are left to the interested reader. For the upper square in theorem

5.12, we find it easiest to compare p⊗∗ to the composite q ◦
⊗

H/K ◦∆tw ◦ Tπ∗.

5.4 Normed symmetric monoidal structures from twisted

products

In this section, suppose that G = C2 and write g ∈ C2 for the generator. The examples

considered in the previous two sections build norms out of operations ⊗ that satisfy the

usual equivariance equation g(C ⊗D) = gC ⊗ gD. The constructions of this section build

untwisted products out an operation � satisfying the equation g(C � D) = gD � gC. As

before, we focus on diagram categories, but despite this formal similarity, the examples in

this section are actually quite different. The operations on Fun(J,C ) considered previously

are defined purely on the level of operads (cf. section 6.3), while the operations in this

section mix in data from the diagrams.

Example 5.17. The relevant operation � will be obtained by passing to a small model of

concatenation on the category of finite, linearly ordered sets. Write X = (x1, . . . , xm). The

group C2 acts by reversing orders, and we write (x1, . . . , xm) = (xm, . . . , x1). Given two or-

dered setsX = (x1, . . . , xm) and Y = (y1, . . . , yn), we defineXtY = (x1, . . . , xm, y1, . . . , yn),

and therefore X t Y ∼= Y tX.

Now consider TC2 diagrams of such objects. These amount to a pair of finite, ordered

sets with a chosen set bijection between them, and the basic idea is to use the formulas

(X ∼= X ′) t (Y ∼= Y ′) := X t Y ′ ∼= Y tX ′

(X ∼= X ′) tC2/e
(Y ∼= Y ′) := X t Y ∼= X ′ t Y ′

to equip this diagram category with a normed symmetric monoidal structure.

Formally, we proceed as follows. Let S be the category whose objects are the natural
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numbers, and whose morphisms m → n are arbitrary partial functions f : {1, . . . ,m} →

{1, . . . , n}. We do not require f to be order-preserving. We obtain a C2-action on S from

the involution (−) : S → S defined by n = n on objects, and for each f : m→ n, we define

the map f : m→ n by

f(x) = n+ 1− f(m+ 1− x).

The operation t is defined by m t n = m + n on objects, and given f1 : m1 → n1 and

f2 : m2 → n2, we define f1 t f2 : m1 +m2 → n1 + n2 by

(f1 t f2)(x) =

 f1(x) if 1 ≤ x ≤ m1

f2(x−m1) + n1 if m1 + 1 ≤ x ≤ m1 +m2

.

Ignoring the C2-action, it is easy to see that we obtain a strictly associative and unital

symmetric monoidal structure on S. The braiding βm,n : m + n → n + m is given by the

block transposition τ(m,n). Remembering the C2-action, we have f1 t f2 = f2t f1, so that

t is a C2-equivariant functor t : S×C2/e → S, and βm,n = βn,m.

Now consider the diagram category Fun(TC2,S) and write C2 = {e, g}. Such diagrams

C• : TC2 → S can be identified with isomorphisms Ce→g : Ce → Cg. We define a C2-

equivariant sum on Fun(TC2,S) using the formula

(C ⊕D)e→g : Ce tDg → Cg tDe → De t Cg.

Here, the first map is the disjoint union of the structural maps for C and D, while the second

map is the braiding. We define a C2/e-norm by

(C �D)e→g : Ce tDe → Cg tDg.

These data, together with the evident coherence isomorphisms, make Fun(TC2,S) into a

{C2/e}-normed symmetric monoidal category.
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Informally, the C2/e norm on S arises because line segments have C2-symmetry, and

gluing two line segments end-to-end yields another line segment. One can generalize the

preceding example by replacing line segments with other similarly behaved shapes, such as

rectangles, prisms, and so on.

We conclude by describing a labeled variant of the preceding example.

Example 5.18. Let C be a fixed symmetric monoidal object in C2Cat. We define the C2-

category C⊗ as follows (compare to [29, construction 2.0.0.1]): an object of C⊗ is a finite

(possibly empty) sequence (C1, . . . , Cm) of objects of C , and a morphism f : (C1, . . . , Cm)→

(D1, . . . , Dn) in C⊗ consists of a partial function f : {1, . . . ,m} → {1, . . . , n}, together with

morphisms

ϕi :
⊗
f(j)=i

Cj → Di

in C for every i = 1, . . . , n. For definiteness, if f−1(i) = {j1 < · · · < jk}, then we understand⊗
f(j)=iCj to be (· · · ((Cj1⊗Cj2)⊗Cj3) · · ·⊗Cjk−1)⊗Cjk . Write C2 = {e, g}. The category

C⊗ gets a C2-action via the involution (−) : C⊗ → C⊗ that sends a tuple (C1, . . . , Cm)

to (gCm, . . . , gC1) and a morphism f : (C1, . . . , Cm) → (D1, . . . , Dn) to the morphism

f : (gCm, . . . , gC1)→ (gDn, . . . , gD1), whose underlying partial function is the mirror image

f : {1, . . . ,m} → {1, . . . , n}, and whose maps ϕn+1−i are given by the composites

(· · · (gCjk ⊗ gCjk−1) · · · )⊗ gCj1 (· · · (gCj1 ⊗ gCj2) · · · )⊗ gCjk gDi.
∼= gϕi

We define a concatenation operation t on the objects of C⊗ by

(C1, . . . , Cm) t (C ′1, . . . , C
′
m′) := (C1, . . . , Cm, C

′
1, . . . , C

′
m′).

To concatenate a pair of morphisms f : (C1, . . . , Cm)→ (D1, . . . , Dn) and f ′ : (C ′1, . . . , C
′
m′)→

(D′1, . . . , D
′
n′), we concatenate the underlying partial functions f t f ′ : m + m′ → n + n′

as before, and we track the maps ϕi and ϕ′i for both f and f ′ simultaneously. Then t is
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a C2-equivariant functor t : (C⊗)×C2/e → C⊗, and ignoring all equivariance, it makes

C⊗ into a strictly associative and unital symmetric monoidal category. The braiding sat-

isfies βC•,D• = βD•,C•
, and the same construction as before makes the diagram category

Fun(TC2,C
⊗) into a {C2/e}-normed symmetric monoidal category.
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CHAPTER 6

EXAMPLES OF HOMOGENEOUS OPERADS

6.1 Introduction and summary of results

In this chapter, we study an eclectic selection of homogeneous operads, and a few con-

structions that can be performed on them. The operadic considerations in chapters 2 – 4

primarily concern the properties of the operads SMN , for general sets of exponents N . In

this chapter, we make more specific choices of N , and we discuss a few other homogeneous

operads, which we hope will be useful in applications. From a more conceptual standpoint,

the work in chapter 3 establishes that every indexing system can be realized by a homo-

geneous operad of the form SMN , and that taking admissible sets defines an equivalence

A : Ho(N∞-Op) → Ind between the homotopy category of N∞ operads and the poset of

indexing systems (theorems 3.19 and 3.22). The examples in this chapter refine those results.

In section 6.2, we describe some choices of N that lead to uniform realizations of every

indexing system, and efficient realizations of the maximum indexing system, Set. In section

6.3, we analyze the natural operads Fun(J,O) that act on the functor categories Fun(J,C )

considered in section 5.2. The remainder of this chapter focuses on quotient operads. In

section 6.4, we construct N∞ permutativity operads for all indexing systems, and in section

6.5, we analyze the coproducts and Boardman-Vogt tensor products of homogeneous operads.

Section 6.6 describes a method for controlling the combinatorics in quotient operads.

Let N∞-Oph denote the category of homogeneous categorical N∞ operads. In a bit more

detail, we prove the following theorem (theorem 6.3 and proposition 6.19).

Theorem. The admissible sets functor A : N∞-Oph → Ind has a strictly functorial section

s : Ind→ N∞-Oph that sends inclusions of indexing systems to inclusions of operads.

The point is that we can choose generating sets of exponents N (F) uniformly in the

indexing system F ∈ Ind, and this results in the desired inclusions between the operads
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SMN (F). A variant of this construction can be obtained by passing to the universal reduced,

strictly associative and unital quotients PN (F) of the operads SMN (F).

Remark. The operad PN is an N∞ permutativity operad in a sense defined in section 6.4.

Other examples are given by the Barratt-Eccles operad P equipped with a trivial G-action,

the G-Barratt-Eccles operad PG = Fun(G̃,P) and its N∞ suboperads, and the operads

Fun(J,P) for general right G-categories J . Bonventre showed that not every indexing

system is realized as a suboperad of PG (cf. [7, appendix B] and example 6.15), and we

give an analogous result for the operads Fun(J,P) (example 6.12).

Our work also investigates the extent to which the lattice structure on the poset of

indexing systems is reflected on the level of operads. It is straightforward to check that the

class of admissible sets of a product of N∞ operads is the intersection of the admissible sets

of the factors [5, proposition 5.1]. We give similar calculations for certain coproducts and

Boardman-Vogt tensor products of homogeneous operads (theorems 6.24 and 6.27).

Theorem. Suppose that O1 and O2 are homogeneous categorical N∞ operads. Then the

class of admissible sets of the coproduct O1 ∗O2 is the join of the admissible sets of O1 and

the admissible sets of O2. If O1 and O2 are retracts of SMN1
and SMN2

respectively, then

the same is true for the class of admissible sets of the tensor product O1 ⊗ O2.

Note that the coproduct O1 ∗O2 and the tensor product O1⊗O2 above are taken in the

category of homogeneous categorical operads, and that the classifying space functor does

not preserve these colimits. The second half of this theorem is the combinatorial analogue

to Blumberg and Hill’s conjecture on the Boardman-Vogt tensor product of N∞ operads [5,

conjecture 6.27]. Our work does not verify their conjecture as originally stated, but we do

conclude that there are N∞ operads in G-spaces that interchange with themselves, for every

indexing system (corollary 6.28).
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6.2 Choosing an operad SMN

Suppose that we are trying realize the indexing system F as an operad SMN . There many

different ways to generate F , and thus we have a considerable amount of freedom. We shall

explain some choices of N that lead to a uniform construction of operads for every indexing

system, and some choices specific to the maximum indexing system Set.

Definition 6.1. Let Ind denote the poset of all indexing systems. We say that a tuple of

sets of exponents (N (F))F∈Ind is convenient if

1. for every indexing system F , the indexing system generated by N (F) is F , and

2. for any indexing systems F ⊂ G, the inclusion N (F) ⊂ N (G) holds.

Example 6.2. Let

O(F) = {H/K ∈ F |K ( H ⊂ G},

and choose an order on each orbit H/K. Then (O(F))F∈Ind is convenient.

For any integer n ≥ 0, subgroup H ⊂ G, and group homomorphism σ : H → Σn, write

(n, σ) for the action on {1, . . . , n} determined by σ. Let

S(F) = {(n, σ) ∈ F |n ≥ 0, H ⊂ G, and σ : H → Σn}.

Then (S(F))F∈Ind is convenient.

Theorem 6.3. If (N (F))F∈Ind is convenient, then there is a functorial section

SMN (−) : Ind→ N∞-Oph

of the admissible sets functor A : N∞-Oph → Ind, which takes inclusions to inclusions.

Proof. The map SMN (−) is right inverse to A on indexing systems by theorem 3.19, so we

just need to consider the inclusions. Direct inspection of the construction of the free operad
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F(S) in section 2.4 reveals that if N1 ⊂ N2, then we can construct SMN1
as a suboperad

of SMN2
by restricting the norm symbols

⊗
T that we use. It follows that if (N (F))F∈Ind

is convenient, then we can construct the operad SMN (Set) first, and then take every other

operad SMN (F) to be the relevant suboperad.

The sets O(F) and S(F) have different virtues. By choosing orders, we see that every

T ∈ F is isomorphic to a set in S(F), and thus the operad SMS(F) parametrizes every

norm in F explicitly. We conclude that S(F) is, in some sense, canonical or maximal. On

the other hand, indexing systems are completely determined by their orbits, so the operad

SMO(F) gives a natural and finite biased presentation of an N∞-structure based on F .

Proposition 6.4. Fix an indexing system F . Every O(F)-normed symmetric monoidal

category C has a finite presentation by generators and isomorphism relations, and the clas-

sifying space of C is an algebra over an N∞ operad in G-spaces structured by F .

Proof. That C has a finite presentation follows from the fact that G, and hence O(F), is

finite. By theorem 2.10, the category C is a SMO(F)-algebra, and the rest follows because

B preserves products and admissible sets.

We conclude with the following observation.

Example 6.5. Each of the sets

• S(Set) = {(n, σ) |n ≥ 0, H ⊂ G, and σ : H → Σn},

• O(Set) = {H/K |K ( H ⊂ G},

• {G/H |H ( G}, and

• {
∐
H(GG/H}

generates the indexing system Set. The top set is countably infinite, the bottom three sets

are finite, and the last set is a singleton. Thus, if N is any one of the sets above, then SMN
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is an equivariant E∞ operad, and N -normed symmetric monoidal categories are equivariant

E∞ algebras. Thus, we only need a G-fixed constant e, a G-equivariant product ⊗, and

a single (
∐
H(GG/H)-norm to generate an entire E∞ structure. In fact, just a G-fixed

constant e and a (G/G tG/G t
∐
H(GG/H)-norm will suffice.

6.3 The operads Fun(J,SM) and Fun(J,P)

As explained in section 5.2, good examples of normed symmetric monoidal categories arise

as Fun(J,C ), where J is a right G-category and C is a nonequivariant symmetric monoidal

or permutative category. Such categories C start life as SM-algebras or P-algebras, where

P is the Barratt-Eccles operad. Since the functor Fun(J,−) : Cat→ GCat preserves prod-

ucts, the natural operads that act on Fun(J,C ) are Fun(J,SM) or Fun(J,P), respectively.

These are both homogeneous N∞ operads, and we shall compute their admissible sets.

Throughout this section, suppose that O is a nonequivariant, homogeneous E∞ operad.

We have SM and P in mind, but the precise operad is not important for this discussion.

Lemma 6.6. The operad Fun(J,O) is homogeneous, and for every integer n ≥ 0, the map

Ob : Fun(J,O(n))→ S̃et(ObJ,ObO(n)) is an isomorphism of G× Σn-categories.

Proof. For every n ≥ 0, the category Fun(J,O(n)) is homogeneous because O(n) is. Con-

sider Cat(J,O(n)) = ObFun(J,O(n)). It is isomorphic to Set(ObJ,ObO(n)) by adjunction,

and therefore Fun(J,O(n)) ∼= S̃et(ObJ,ObO(n)). The G × Σn actions on both sides are

defined by (g, σ) ·F = σ · (−)◦F ◦ (−) · g, and thus the isomorphism respects the action.

Lemma 6.7. If J 6= ∅, then Fun(J,O) is Σ-free.

Proof. If σ · (−) ◦ F = F , then evaluating at some j ∈ J proves that σ = id.

Lemma 6.8. Suppose that X is a right G-set, that Y is a nonempty, free left Σn-set, and

consider the set of functions Set(X, Y ), equipped with the left G×Σn-action [(g, τ) · f ](x) =
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τf(xg). Let H ⊂ G be a subgroup, σ : H → Σn be a group homomorphism, and write

Γ = {(h, σ(h)) |h ∈ H}. Then

Set(X, Y )Γ 6= ∅ if and only if
⋃
x∈X

StabH(x) ⊂ ker(σ).

Proof. Suppose that f ∈ Set(X, Y )Γ. If h ∈ H fixes x, then

f(x) = [(h, σ(h)) · f ](x) = σ(h)f(xh) = σ(h)f(x),

and therefore σ(h) = id by Σ-freeness. Conversely, if
⋃
x∈X StabH(x) ⊂ ker(σ), then we can

define a Γ-fixed function f : X → Y by choosing H-orbit representatives xi for X and a

point y ∈ Y , and then setting f(xih) := σ(h)−1y.

Combining the lemmas above, we obtain the following.

Theorem 6.9. Suppose that O is a nonequivariant homogeneous E∞operad, and let J 6= ∅

be a right G-category. Then Fun(J,O) is a homogeneous N∞ operad, and for any subgroup

H ⊂ G and finite H-set T , the set T is admissible for Fun(J,O) if and only if

⋃
j∈ObJ

StabH(j) ⊂
⋂
t∈T

StabH(t) =
{
h ∈ H

∣∣∣h · (−) = id : T → T
}
,

i.e. every element of H that fixes an element of ObJ acts as the identity on all of T .

Corollary 6.10. If ObJ is a free right G-category, then all finite G-subgroup actions are

admissible for Fun(J,O), i.e. Fun(J,O) is an equivariant E∞ operad.

Remark 6.11. In particular, the preceding corollary applies when J = G̃ and O = P, in

which case Fun(G̃,P) = PG is the equivariant Barratt-Eccles operad.

For any right G-category J , write FJ for the class of admissible sets of Fun(J,O). In

light of theorem 3.17, this class is an indexing system, but one can also check this directly.
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The defining condition of FJ is fairly stringent. We now show by example that not every

G-indexing system arises as FJ for some category J .

Example 6.12. Suppose that G = C4, choose a generator g ∈ C4, and let H = {e, g2}.

Let F be the C4-indexing system that contains all finite H-sets, but only trivial actions

otherwise. If J is a C4-category for which F ⊂ A(Fun(J,O)), then g2 cannot fix any object

j ∈ J , because g2 acts nontrivially on H/e. It follows that C4 acts freely on ObJ , and hence

A(Fun(J,O)) = Set. Thus the admissible sets of Fun(J,O) can never be precisely F .

6.4 Equivariant permutativity operads

For applications in infinite loop space theory, it is often preferable to work with symmetric

monoidal categories that satisfy additional strict relations. Recall that a permutative category

is a symmetric monoidal category C such that the isomorphisms

α : (C ⊗D)⊗ E → C ⊗ (D ⊗ E) , λ : e⊗ C → C , ρ : C ⊗ e→ C

are all identity maps. Permutative categories are the same thing as algebras over the categor-

ical Barratt-Eccles operad P, which is obtained by applying the functor (̃−) : Set → Cat

to the associativity operad. In this section, we consider the N∞ analogues to P. Let ε∗P

denote the Barratt-Eccles operad, equipped with a trivial G-action.

Definition 6.13. An N∞ permutativity operad is a reduced operad O ∈ N∞-Oph, equipped

with a map ε∗P → O. This map is necessarily an embedding, and we require morphisms

of N∞ permutativity operads to respect the maps from ε∗P.

Example 6.14. The G-Barratt-Eccles operad PG = Fun(G̃,P) ∼= S̃et(G,Σ•) is an E∞

operad by theorem 6.9, and ε∗P embeds diagonally as the G-fixed suboperad of PG. In gen-

eral, if J is any right G-category, then the operad PJ = Fun(J,P) is an N∞ permutativity

operad with admissible sets FJ .
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One would like to have N∞ permutativity operads for every indexing system F . As shown

in example 6.12, varying J alone will not suffice, and even though PG is homotopically

terminal, not every indexing system can be realized as one of its suboperads. The following

example is due to Bonventre [7, appendix B].

Example 6.15. Let G = C2 × C2, let H = C2 × {e}, and let F be the indexing system

that contains all finite H-sets, but only trivial actions otherwise. Write Γ ⊂ G× Σ2 for the

subgroup corresponding to H/{(e, e)}. Then
∣∣∣Set(G,Σ2)Γ

∣∣∣ = 4, and the stabilizer of every

Γ-fixed f : C2 × C2 → Σ2 is strictly larger than Γ. Thus, if O ⊂ PG is a suboperad and

H/{(e, e)} is admissible for O, then some 2-element G-set must also be admissible for O.

Therefore A(O) can never be precisely F .

That said, there are universal N∞ permutativity operads for all indexing systems F .

Definition 6.16. Let N be a set of exponents. We define the operad PN to be the quotient

of SMN by the relations below.

⊗ (⊗(x1, x2), x3) ∼ ⊗(x1,⊗(x2, x3))

⊗ (e(), x1) ∼ x1 and ⊗ (x1, e()) ∼ x1⊗
T (e(), e(), . . . , e()) ∼ e()

When T = ∅, the last relation reads
⊗

T () ∼ e().

The following is proven in section 6.6.

Lemma 6.17. The operad Ob PN can be identified with a sub-symmetric sequence of the

operad F(Σ• t
∐
T∈N G× Σ|T |/ΓT ), equipped with a modified composition operation.

We deduce the following result. Recall that A(O) denotes the class of admissible sets of

the operad O, while I(N ) denotes the indexing system generated by the set N . Theorem

3.19 gives the equation A(SMN ) = I(N ).
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Theorem 6.18. The operad PN is an N∞ permutativity operad whose class of admissible

sets is the indexing system generated by N . If O is any other N∞ permutativity operad such

that N ⊂ A(O), then there is a (nonunique) map PN → O of N∞ permutativity operads.

Proof. Write F = F(Σ• t
∐
T∈N G×Σ|T |/ΓT ). The embedding ObPN ⊂ F of symmetric

sequences given by lemma 6.17 implies that PN is Σ-free and that A(PN ) ⊂ A(F ) = I(N ).

The quotient map π : SMN → PN gives I(N ) = A(SMN ) ⊂ A(PN ), and hence PN is

an N∞ operad with admissible sets I(N ). The relation
⊗

T (e(), . . . , e()) ∼ e() inductively

implies that PN is reduced, and the canonical inclusion SM ↪→ SMN induces a canonical

embedding ε∗P ↪→PN on quotients.

If ε∗P → O is an N∞ permutativity operad with N ⊂ A(O), then pulling back along

the quotient π : SM → ε∗P gives a morphism SM → O. We can map the operad

F̃(
∐
T∈N G× Σ|T |/ΓT ) into O freely, and taking coproducts gives a morphism SMN → O

that descends to a map PN → O.

Note that the map PN → O is not unique on the point set level, but it is homotopically

unique. For every set of exponents N , we have the following commutative diagram.

SM ε∗P

SMN PN

PG

π

π

inc inc ∆

Both of the quotient maps labeled π are equivalences, and the dashed map is an equivalence

if I(N ) = Set. If we take N to be large enough, we can also arrange for the map PN →PG

to be a quotient map.

Direct inspection of the construction of PN given in section 6.6 also proves the following.
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Proposition 6.19. If (N (F))F∈Ind is convenient, then there is a functorial section

PN (−) : Ind→ N∞-Oph

of the admissible sets functor that takes inclusions to inclusions.

We conclude with a brief account of the homotopical properties of the operads PN .

Consider the adjunction r : Op � Op0 : i between operads in G-sets and reduced operads

in G-sets. If O ∈ Op, then rO is constructed by forming the coproduct F̃(G× Σ0/G) ∗ O,

and then identifying γ(c; 0, 0, . . . , 0) ∼ 0, where 0 denotes the new G-fixed constant in

F̃(G × Σ0/G) ∗ O, and c ∈ O. There is an induced adjunction r : Oph � Oph,0 : i for

homogeneous categorical operads.

Directed colimits in Oph,0 are computed in Oph. Therefore Oph,0 is locally finitely

presentable, with finitely presented strong generators rF̃(G×Σn/Ξ). Equip Oph with its Set-

model structure (cf. section 3.4). By Kan transport, we obtain a cofibrantly generated model

structure on Oph,0. The functor i : Oph,0 → Oph creates fibrations and weak equivalences,

and the generating (acyclic) cofibrations are obtained by applying r to the corresponding

data for Oph. Local finite presentability ensures that the small object argument applies,

and the acyclicity condition follows because every relative acyclic cell complex is a split

monomorphism. Finally, pass to the slice category ε∗P/Oph,0 of reduced homogeneous

operads under ε∗P.

Proposition 6.20. There is a cofibrantly generated Set-model structure on ε∗P/Oph,0,

whose cell complexes are the operads PN .

Proof. The generating cofibrations are the maps ε∗P → ε∗P ∗r rF̃(G×Σ|T |/ΓT ), where ∗r

is the coproduct in Oph,0, the functor r preserves colimits, and the operad PN is isomorphic

to the operad r(ε∗P ∗ F̃(
∐
T∈N G× Σ|T |/ΓT )).

More generally, if T ⊂ Set is any class of finite G-subgroup actions, then we can also

transport the T -model structure on Oph over to ε∗P/Oph,0.
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Proposition 6.21. The operad PN is a cofibrant replacement for the commutativity operad

Com in the I(N )-model structure on ε∗P/Oph,0.

6.5 Coproducts and interchange

We now study the coproduct and Boardman-Vogt tensor product of homogeneous N∞ op-

erads O. As with all colimits in Oph, the quotient O/∼ is obtained by forgetting down to

G-sets, taking the quotient there, and then applying the functor (̃−).

Example 6.22. Suppose that O1 and O2 are operads in G-sets. The coproduct of O1 and

O2 can be constructed by forming the disjoint union O1 tO2 in symmetric sequences, freely

generating a new operad F(O1 t O2), and then taking the following quotient. For i = 1, 2,

let αi : Oi → O1 t O2 → F(O1 t O2) be the map of symmetric sequences obtained by

composing the inclusion with the unit of the adjunction. Let ∼ be the congruence relation

on F(O1 t O2) generated by the relations

αi(id) ∼ id and γ(αi(y);αi(x1), . . . , αi(xk)) ∼ αi(γ(y;x1, . . . , xk)),

and let βi = π ◦ αi : Oi → F(O1 tO2)→ F(O1 tO2)/∼. Then β1 and β2 are operad maps,

and the diagram β1 : O1 → F(O1 t O2)/∼ ← O2 : β2 is a coproduct of operads in G-sets.

Note the following standard observation. We prove it in section 6.6 to illustrate a more

general method.

Lemma 6.23. If O1 and O2 are operads in G-sets, then the coproduct O1 ∗ O2 can be

identified with a sub-symmetric sequence of F(O1tO2), equipped with a modified composition

operation.

Recall that the poset Ind of all indexing systems is a lattice. Given any indexing systems

F and G, the meet F∧G is the intersection F∩G, and the join F∨G is the smallest indexing

system that contains the union F ∪ G.
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Theorem 6.24. Suppose that O1 and O2 are homogeneous N∞ operads. Then

1. the operads O1 × O2 and O1 ∗ O2 are also homogeneous N∞ operads, and

2. the equations A(O1 × O2) = A(O1) ∧ A(O2) and A(O1 ∗ O2) = A(O1) ∨ A(O2) hold,

i.e. taking admissible sets preserves products and coproducts.

Proof. The statements concerning products are formal, because products are preserved when

we pass to fixed points [5, proposition 5.1].

Now consider the coproduct O1 ∗ O2. The symmetric sequence O1 t O2 is Σ-free, and

therefore the free operad F(O1tO2) also is. By lemma 6.23, we deduce that O1∗O2 is Σ-free.

The operad O1 ∗ O2 is homogeneous by definition, and since we have maps Oi → O1 ∗ O2,

it follows that (O1 ∗ O2)(n)G ' ∗ for all n ≥ 0. Therefore O1 ∗ O2 ∈ N∞-Oph.

To determine A(O1 ∗ O2), note that the maps O1 → O1 ∗ O2 ← O2 imply the inclusion

A(O1) ∨ A(O2) ⊂ A(O1 ∗ O2). On the other hand, the indexing system A(O1 ∗ O2) only

depends on the underlying symmetric sequence of O1 ∗ O2, and we have an embedding

O1 ∗ O2 ↪→ F(O1 t O2) by lemma 6.23. Therefore the inclusion

A(O1 ∗ O2) ⊂ A(F(O1 t O2)) = I(A(O1 t O2)) = I(A(O1) ∪ A(O2)) = A(O1) ∨ A(O2)

holds as well.

Example 6.25. The Boardman-Vogt tensor product O1 ⊗O2 is obtained as follows. First,

form the coproduct ι1 : O1 → O1 ∗O2 ← O2 : ι2, and then introduce relations corresponding

to the horizontal-vertical interchange formula (cf. [17])

g(f(x11, . . . , x1k), f(x21, . . . , x2k), . . . , f(xj1, . . . , xjk)) =

f(g(x11, . . . , xj1), g(x12, . . . , xj2), . . . , g(x1k, . . . , xjk)).
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Formally, given x ∈ O1(j) and y ∈ O2(k), we identify

γ(ι1(x); ι2(y), . . . , ι2(y)) ∼ γ(ι2(y); ι1(x), . . . , ι1(x))σ,

where σ is the permutation that reorders the jk elements

(1, 1) < (1, 2) < · · · < (1, k) < (2, 1) < · · · < (2, k) < · · · < (j, 1) < · · · < (j, k)

in reverse lexicographic order

(1, 1) < (2, 1) < · · · < (j, 1) < (1, 2) < · · · < (j, 2) < · · · < (1, k) < · · · < (j, k).

Note that there are nullary interchange relations. If u ∈ O1(0), then we identify ι1(u) ∼ ι2(v)

for v ∈ O2(0), and we identify ι1(u) ∼ γ(ι2(v); ι1(u), . . . , ι1(u)) for v ∈ O2(j) and j > 0. It

follows that if both O1(0) and O2(0) are nonempty, then O1 ⊗ O2 is reduced.

The following is proven in section 6.6.

Lemma 6.26. If S1 and S2 are Σ-free symmetric sequences of G-sets such that S1(0)G and

S2(0)G are nonempty, then F(S1) ⊗ F(S2) can be identified with a sub-symmetric sequence

of F(S1 t S2), equipped with a modified composition operation.

By theorem 3.40, we know that the cofibrant objects in Oph,m are retracts of the operads

SMN . We have the following result.

Theorem 6.27. Suppose that O1 and O2 are homogeneous categorical N∞ operads. If O1

and O2 are retracts of SMN1
and SMN2

respectively, then O1 ⊗O2 is a homogeneous N∞

operad, and A(O1 ⊗ O2) = A(O1) ∨ A(O2).

Proof. If Oi is equal to SMNi for i = 1 and 2, then this can be proven using the same

argument that established A(O1 ∗O2) = A(O1)∨A(O2) in theorem 6.24. The full statement
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now follows from the functoriality of the Boardman-Vogt tensor product, and the fact that

admissible sets are preserved under retracts of operads.

This establishes a combinatorial analogue to [5, conjecture 6.27]. We deduce the following

interchange results on the level of G-categories and G-spaces.

Corollary 6.28. For any indexing system F , there are N∞ operads O1 and O2 in G-

categories or G-spaces, and a pair of operad maps ϕ1, ϕ2 : O1 ⇒ O2 such that

1. the classes of admissible sets of O1 and O2 are both F , and

2. the operad maps ϕ1 and ϕ2 interchange.

Proof. Let N be any set of exponents that generates the indexing system F . The desired

interchange condition holds for the two natural maps F(SN ) ⇒ F(SN ) ⊗ F(SN ), and it is

encoded by diagrams that only involve operad morphisms, operad structure maps, and the

cartesian monoidal structure on G-sets. The functors (̃−) and B preserve such structure,

and therefore the maps for SMN ⊗ SMN and B(SMN ⊗ SMN ) also interchange.

Using this corollary, we can arrange for N∞ actions to interchange with themselves, which

is a useful technical condition (cf. [5, §7]).

Blumberg and Hill’s conjecture for the space-level tensor product is considerably more

delicate, and we do not know how to prove it as originally stated. Work in progress of

Bonventre and Pereira [9] promises to resolve the space-level problem.

6.6 Appendix: identifying quotients of free operads

We use the same strategy to prove lemmas 6.17, 6.23, and 6.26, so we begin with some

general observations.

Suppose that R is a binary relation on the set X, and let E be the equivalence relation

generated by R. Suppose further that there is a complexity function c : X → N, and that R

is complexity-reducing in the sense that c(x) > c(y) whenever xRy. In this case, we can try
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to identify E as follows. Say that x ∈ X is reduced if there is no y ∈ X such that xRy. Say

that x is a reduced form of x if x is reduced, and there is an integer n ≥ 0 and a sequence

of elements x0, . . . , xn ∈ X such that x = x0Rx1Rx2R . . . Rxn = x.

Lemma 6.29. Retain the setup above. Then:

(1) Every x ∈ X has at least one reduced form.

(2) Suppose that whenever xRy and xRy′, there is some z ∈ X and integers m,n ≥ 0 such

that y = y0Ry1R · · ·Rym = z and y′ = y′0Ry
′
1R · · ·Ry

′
n = z. Then every x ∈ X has a

unique reduced form.

(3) Suppose that every x ∈ X has a unique reduced form x, and write x ∼ y if x = y.

Then ∼ is the equivalence relation generated by R, and the reduced elements in X are

a set of representatives for ∼.

Proof. For the first part, note that complexity is measured by a nonnegative integer. The

second part follows by induction. For the third part, note that if x ∼ y, then there is a zig-

zag of R-related elements connecting x and y, and that the uniqueness assumption ensures

that (−) : X → X is an idempotent function.

Now suppose that we have a G-operad O, a graded complexity-reducing relation R on

O, and that every element of O has a unique reduced form. Then ∼ from (3) above is the

graded equivalence relation generated by R, and if ∼ happens to be a congruence relation,

then it is actually the congruence relation generated by R. We have criteria for this, too.

Lemma 6.30. Assume that O is a G-operad, that R is a graded complexity-reducing relation

on O, and that every element of O has a unique reduced form. Define the relation ∼ as in

(3) above. Then:

(4) Suppose that xRy implies gxσRgyσ. Then x ∼ y implies gxσ ∼ gyσ.

124



(5) Suppose that yRy′ implies γ(y;x1, . . . , xk)Rγ(y′;x1, . . . , xk) and that xiRx
′
i implies

γ(y;x1, . . . , xi, . . . , xk)Rγ(y;x1, . . . , x
′
i, . . . , xk). Then y ∼ y′ and xi ∼ x′i for i =

1, . . . , k implies γ(y;x1, . . . , xk) ∼ γ(y′;x′1, . . . , x
′
k).

If the hypotheses of (4) and (5) both hold, then ∼ is the congruence relation generated by R,

and the inclusion O/∼ ∼= {reduced elements of O} ↪→ O is a map of symmetric sequences.

The identity of O/∼ is the reduced form of id ∈ O, and composites in O/∼ are calculated

by composing in O and then reducing.

Proof. If R respects the G×Σn action, then the action must preserve reduced elements, and

multiplication by (g, σ) must send any chain from x to x to a chain from gxσ to gxσ. It

follows that gxσ = gxσ, and (4) follows.

If R respects composition in each factor, then there is a chain of R-relations from

γ(y;x1, . . . , xk) to γ(y;x1, . . . , xk). It follows that we may reduce γ(y;x1, . . . , xk) by first

reducing componentwise to γ(y;x1, . . . , xk), and then reducing further to γ(y;x1, . . . , xk).

Therefore γ(y;x1, . . . , xk) = γ(y;x1, . . . , xk), and (5) follows.

Suppose that the hypotheses of (4) and (5) hold, and identify the congruence class [x]

with x. Then the G-operad structure on O/∼ is obtained by reducing the structure on O.

Since the G × Σn-action on O preserves reduced elements, it follows that O/∼ ↪→ O is a

map of symmetric sequences.

We return to the problem of identifying a quotient of a free operad. The basic idea is to

define a family of “reduction operations” on the terms in F(S), and then to declare sRt if t

can be obtained from s via a single reduction. If we can verify the hypotheses in parts (2),

(4), and (5), then we can identify the quotient O/〈R〉 with a sub-symmetric sequence of O,

equipped with a modified operad structure. In what follows, we shall work with the model

for the free operad F(S) described in construction 2.15.

Proof of lemma 6.23. Suppose that O1 and O2 are operads, and form F(O1 t O2). Given

an equivalence class [t] ∈ F(O1 t O2), define c([t]) to be the number of operation symbols
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a ∈ O1 t O2 in t. Next, write [s]R[t] if, for some representing terms s and t, the term t is

obtained by modifying a subterm of s in one of the following ways:

id(s1) s1

a(s1, . . . , a
′(si1, . . . , sik), . . . , sj) a ◦i a′(s1, . . . , si1, . . . , sik, . . . , sj)

where id is the identity element for O1 or O2, and the symbols a and a′ must come from

the same operad. Then O1 ∗ O2 is the quotient of F(O1 t O2) by the congruence relation

generated by R. Note that the relation R is complexity-reducing.

Condition (2) follows from the associativity and unitality of composition. For condition

(4), observe that R commutes with the Σ-action, because reduction operations do not affect

variables, and R commutes with the G action because id is G-fixed and ◦i is G-equivariant.

Condition (5) is clear, because the relation R is defined only with reference to subterms.

Proof of lemma 6.17. Suppose that N is a set of exponents. We shall present ObPN as a

quotient of F(Σ•t
∐
T∈N G×Σ|T |/ΓT ), where the symmetric sequence Σ• is equipped with a

trivial G-action. For each integer n ≥ 0, write Πn for the identity permutation in Σn. Then

the generic element of Σn is Πnσ. Extend {Πn |n ≥ 0} to a choice of Σ-orbit representatives

for Σ•t
∐
G×Σ|T |/ΓT , and identify each congruence class [t] with the unique term t written

in terms of those representatives. We declare sRt if the term t is obtained by modifying a

subterm of s in one of the following ways:

Πn(s1, . . . ,Πm(si1, . . . , sim), . . . , sn) Πn+m−1(s1, . . . , si1, . . . , sim, . . . , sn)

Π1(s1) s1

a(Π0(), . . . ,Π0()) Π0()

where a ∈
∐
T∈N G × Σ|T |/ΓT in the last case. When a is a nullary operation, this reads
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a() Π0(). For each t, we define

c(t) = (number of operation symbols in t) + (number of nullary a 6= Π0 in t)

Then ObPN ∼= F(Σ•t
∐
T∈N G×Σ|T |/ΓT )/〈R〉, and the relation R is complexity-reducing.

Conditions (2), (4), and (5) are verified as before.

Proof of lemma 6.26. Suppose that S1 and S2 are Σ-free symmetric sequences such that

S1(0)G, S2(0)G 6= ∅, and choose z ∈ S2(0)G. The coproduct F(S1)∗F(S2) is just F(S1tS2).

Extend {z} to a choice of Σ-orbit representatives for S1 t S2, and identify each congruence

class [t] with the unique term t written in terms of those representatives. For any s, t ∈

F(S1 t S2) we write sRt if the term t is obtained by modifying a subterm of s in one of the

following ways:

a(b(s11, . . . , s1k), . . . , b(sj1, . . . , sjk)) b(a(s11, . . . , sj1), . . . , a(s1k, . . . , sjk))

d(z(), z(), . . . , z()) z()

where a ∈ S1(j) and b ∈ S2(k) for j, k > 0, while d ∈ (S1 t S2)(j) for some j ≥ 0 and

d 6= z. If d is nullary, then the second line is d()  z(). Then the quotient F(S1 t S2)/〈R〉

is isomorphic to F(S1) ⊗ F(S2), because it is enough to make the generators of F(S1) and

F(S2) interchange. The second line implies all nullary interchanges because it reduces the

operad, and the first line handles the rest. Note that F(S1)⊗ F(S2) is reduced.

Let t ∈ F(S1 t S2), and define the height h(a) of an operation symbol a in t to be the

number of nested pairs of left and right parentheses that contain a. Define the complexity

of the term t to be

c(t) =
∑

S2-operation

symbols a in t

h(a) +
∑

nullary S1

symbols d in t

(
h(d) + 1

)
+
( number of nullary S2

symbols d 6= z in t

)

Then R is complexity-reducing, and it satisfies conditions (2), (4), and (5).
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