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Abstract

Despite its generic title, this thesis is about a specific notion of sparsity, the one introduced

by McCullagh and Polson (2018) [51]. In that paper, the intuitive idea that sparsity, in

a statistical framework, refers to those “phenomena that are mostly negligible or seldom

appreciably large”, has, for the first time, been given a mathematical definition. In study-

ing this definition of statistical sparsity as a limiting property of a sequence of probability

distributions, research has proceeded along different lines, which nevertheless intersect at all

times. In all cases, our work has been driven by both theoretical and practical motivations.

The notion of negligibility, for instance, is developed from the necessity of describing the

behavior of a sparse distribution in a region around zero, a necessity which is commonly

encountered in applied work. At the same time, doing this in a mathematical way, allows

us to define very clearly what is the perimeter within which this notion is informative,

and can be used. Another main direction of research we pursue, aims at extending the

definition of sparsity to distributions which are defined on Rd, d > 1. Within this framework,

we consider two scenarios: in the first one, the d-dimensional measure is a product of d

one-dimensional sparse measures; in the second one, instead, the d-dimensional measure is

rotationally invariant with respect to the inner product imposed on Rd, and sparsity is driven

by the radial component. For both cases, we develop some theory as well as present how

this theory can be in fact applied in the context of various statistical problems.
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Introduction

Despite its generic title, this thesis is about a specific notion of sparsity, the one introduced

by McCullagh and Polson (2018) [51]. In that paper, the intuitive idea that sparsity, in

a statistical framework, refers to those “phenomena that are mostly negligible or seldom

appreciably large”, has, for the first time, been given a mathematical definition.

In studying this definition of statistical sparsity as a limiting property of a sequence of

probability distributions, research has proceeded along different lines, which, nevertheless,

intersect at all times. Therefore, only for the sake of organization of exposition, we structure

this thesis in three parts, but these should be considered separately only up to a limited

extent.

The aim of this introduction is three-fold: first, to give the reader some background

on the notion of sparsity introduced by McCullagh and Polson (2018) [51], this being the

starting point of everything thereafter presented; second, to highlight some of the critical

points that this initial definition presents under some circumstances, which in fact act as

motivations for our work; last, to provide the reader with a roadmap, which, in our best

intentions, would serve as a compass in the reading of the thesis, allowing the reader to see

how certain ideas are shared by different parts of the work.

1



McC&P’s definition of sparsity

McCullagh and Polson (2018) [51] (McC&P henceforth) first introduced the definition of

statistical sparsity as a limiting property of a sequence of probability distributions, {Pν}ν ,

defined on the real line, and indexed by ν. This latter is called sparsity parameter since, as

ν → 0, the sequence of measures Pν is assumed to converge weakly to the Dirac delta measure

at zero, δ0. In other words, if X ∼ Pν , then in the limit, X is equal to zero with probability

one. However, sparsity as defined in McC&P, does not concern the limit itself, but rather it

concerns the behavior of the sequence Pν as the limit is approached. Put differently, for a

family of distributions Pν to have a sparse limit according to McC&P, one needs to be able

to describe how Pν approaches δ0 in terms of expectations of certain functions, which will

shortly be defined in a more precise way. For this description to be possible, two objects

need to exist: a rate parameter ρ, which is a function of the sparsity parameter, and an

exceedance measure H. These two objects characterize the behavior of the sequence Pν in

approaching the Dirac delta limit at zero, providing a description of how fast the probability

concentrates around the origin and, at the same time, capturing its behavior in the tails.

So, in a sense, such probabilistic definition of the intuitive idea of sparsity, endows one with

an asymptotic approximation, which is driven by the sparsity parameter going to zero and

does not have any requirement in terms of the sample size on hand. As an approximation

device, sparsity can be used for inferential purposes in a sparse signal-plus-noise setting, to

derive for instance, the sparse approximation to the marginal distribution of the observation

and to the conditional distribution of the signal, given the observation.

All main sparsity models that have been proposed in the statistical literature on sparse-

signal detection are indeed sparse according to the probabilistic limit definition of McC&P.

In fact, for all of the following families of distributions, one can find their characteristic

sparsity pair (ρ,H): the two-component atom-and-slab mixtures, very frequently used in the

literature (see, for example, Jonhstone and Silverman, 2004 [45] and Efron and Tibshirani,

2001 [30]); the spike-and-slab mixtures proposed by George and McCulloch (1993) [40] and
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Ročková and George (2018) [60]; the low-index gamma model by Griffin and Brown (2013)

[14], as well as all scale families with polynomial tails, such as the scaled Cauchy and scaled

horseshoe (Carvalho et al., 2010 [16]).

As a matter of fact, looking at the sparsity pair (ρ,H) for each of these families, one real-

izes that, if for each sparse family Pν , there is only one exceedance measure, the reverse is not

true. In other words, different sparse families can have the same exceedance measure. This

is the case, for instance, of the scaled Cauchy family and scaled horseshoe family; or of the

spike-and-slab and atom-and-slab families, whenever they share the same slab distribution

and the spike distribution converges to the Dirac measure fast enough. Therefore, besides

serving as a classification tool which declares a family of distributions to be either sparse

or not sparse, the sparsity definition also establishes equivalence relations among different

families. This equivalence is to be interpreted in terms of the asymptotic approximations

that one is able to derive exclusively based on the pair (ρ,H).

We now report the formal definitions of exceedance measure, Lévy integrable functions,

and sparse sequence of distributions on the real line, which are given in McC&P, and to

which we will very often refer throughout all work.

Definition 0.0.1. A nonnegative measure H on the real line excluding the origin is termed

an exceedance measure if
∫
R\{0}min(x2, 1)H(dx) < ∞. An exceedance measure is called a

unit exceedance measure if
∫
R\{0}(1− e

−x2/2)H(dx) = 1.

Definition 0.0.2. The space W# of Lévy-integrable functions consists of bounded and

continuous functions w(x) on the real line such that x−2w(x) is also bounded and continuous.

Lévy-integrability implies
∫
R\{0}w(x)H(dx) < ∞ for every w ∈ W# and every exceedance

measure H.

Definition 0.0.3. A sequence of probability distributions {Pν} is said to have a sparse limit
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with rate ρν if there exists a unit exceedance measure H such that

lim
ν→0

ρ−1
ν

∫
R
w(x)Pν,d(dx) =

∫
R\{0}

w(x)H(dx) , (1)

for every w ∈ W#. Otherwise, if the limit is zero for every w, the sequence is said to be

sparse with rate o(ρν).

From Definition 0.0.3, sparsity can be used as a mathematical tool to derive approxima-

tions of certain functionals of Pν , which are expectations of Lévy integrable functions, as the

sparsity parameter goes to zero. Sometimes, we will refer to this as W#-convergence.

Going back to the original intuitive idea of sparsity as a characteristic of phenomena

that are rarely appreciable, one may want to translate this W#-convergence definition into

a threshold-exceedance definition. Given a positive threshold ε > 0, the probability that the

sparse signal, in absolute value, is above the threshold, being an integral of a discontinuous

function, cannot be approximated directly from Definition 0.0.3. Nevertheless, the hard-

threshold function χ(ε,∞)(|x|) can be approximated with arbitrary accuracy by a sequence of

soft-threshold functions, of the kind wε(x) = 1 − e−x2/2ε2 , which indeed belong to the class

W#. Therefore, applying (1) to wε(x), one has that

∫
wε(x)Pν(dx) = ρ

∫
wε(x)H(dx) + o(ρ) ,

which, in terms of the hard-threshold event ε+ = {|X| > ε}, can be written as

Pν(ε
+) = ρH(ε+) + o(ρ) . (2)

This last equation leads to interpreting the product ρH as the rarity of threshold exceedances,

where ρ captures the velocity in approaching the zero limit, while H gauges the tail behavior
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of the sparse measure, i.e., the exceedance probability. If H is atomless, then (1) implies (2),

but (2) can hold even with some measure H, that is not a Lévy measure. An example of this

case is the family Pν(dx) = (1 − ν)δ0(dx) + νN(0, 1/ν), which satisfies (2) with ρ = ν and

H(dx) = δ±∞(dx), even if this latter is not a Lévy measure or a measure on R. Moreover, (2)

can hold with H being a Lévy measure, even if (1) does not hold. For instance, the family

Pν(dx) = (1−ν)e−|x|/
√
ν/2
√
ν dx+ν/π(x2 +1) dx satisfies (2) with ρH(dx) = ν/π(x2 +1) dx,

but, as ν → 0,

∫
(1− e−x2/2)Pν(dx) ∼

∫
(1− e−x2/2)

e−|x|/
√
νdx

2
√
ν

+ ν

∫
(1− e−x2/2)

dx

π(x2 + 1)

∼ ν ·
∫

(1− e−x2/2)

(
1

x2
δ0(dx) +

dx

π(x2 + 1)

)
,

and the measure appearing in the last integral is not an exceedance measure. However, in

most cases (1) and (2) are equivalent, and this is true also for spike-and-slab measures as

long as the variance of the spike distribution, as a function of ν, is of order greater than the

sparsity rate.

Some examples

To give the reader an idea of how one can find the sparsity pair (ρ,H) for a given family Pν ,

we now present a couple of examples, out of the many more that can be found in McC&P.

We start with the scaled Cauchy family, whose density is ν/(π(x2 + ν2)). Computing the

ε-exceedance probability Pν(ε
+), one obtains 2/π(π/2− arctan(ε/ν)), which, for ν going to

zero, behaves like 2/π ·ν/ε. Therefore, if H(dx) = 1/
√

2π |x|−2dx, then H(ε+) =
√

2/π ·1/ε,

so that (2) holds with ρ =
√

2/π ν. Before presenting the next example, we make a couple

of remarks: first, the constant 1/
√

2π is chosen to make H a unitary exceedance measure;

second, one could have guessed the exceedance measure for scaled Cauchy by looking at the

tail behavior of the unscaled Cauchy density 1/(π(x2 + 1)) as x→∞.

This is indeed a property of any sparse family whose sparsity is driven by its scale
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parameter going to zero, so that Pν(dx) = ν−1p(x/ν)dx. In this case, if there is a definite

sparsity rate, i.e., Pν does not have exponential tails, then the exceedance density is an

inverse-power function h(x) ∝ x−α−1 reflecting the tail behavior of p(x) at infinity. For this

reason, for α ∈ (0, 2), the class of unit inverse-power measures

H(dx) =
α2α/2−1

Γ(1− α/2)

dx

|x|α+1
, (3)

is the class of exceedance measures which we will mostly use in applications.

The second example we report is instead the atom-and-slab mixture, such as that pro-

posed by Mitchell and Beauchamp (1988) [52] or that by Johnstone and Silverman (2004)

[45], only to mention a few references. In all of these cases, Pν(dx) = (1−ν)δ0(dx)+νF (dx),

where F is some probability distribution on R, usually symmetric around zero. Once again

from (2), it is easy to see that ρH(dx) = νF (dx), so that, for this family, the exceedance

measure is finite and the sparsity rate is ρ = ν
∫

(1 − e−x2/2)F (dx). Notice that, if we re-

place the Dirac delta measure with a spike distribution having variance of order greater than

ν, such as N(0, ν2) (George and McCulloch, 1993 [40]), or scaled Laplace e−|x|/ν/(2ν) dx

(Ročková and George, 2018 [60]), then we still have the same pair ρH(dx) = νF (dx), so that

all these families are first-order equivalent in the sparse limit.

Atom at zero and negligibility

The tail behavior determines the probability, under the sparse measure Pν , of exceeding a

given positive threshold, but it is not enough to tell us what probability mass, the measure

Pν gives to the atom at zero or how it is distributed near zero. In fact, consider two sparse

families: the scaled Cauchy

P 1
ν (dx) =

ν

π(x2 + ν2)
dx ,
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and the mixture

P 2
ν (dx) = (1−

√
ν)δ0(dx) +

√
ν

√
ν

π(x2 + ν)
dx .

These two sparse measures share the same first-order sparsity pair given by ρ = ν
√

2/π

and H(dx) = 1/
√

2π |x|−2dx. Therefore the sparse approximations to the expectation of any

function w ∈ W# with respect to P 1
ν and P 2

ν , are exactly the same, insofar they are solely

based on the pair (ρ,H). Yet, the two measures give very different probability mass to the

atom at zero, as P 1
ν (X = 0) = 0 while P 2

ν (X = 0) = 1−
√
ν.

This fact, in turn, highlights that Definition 0.0.3 is not enough to directly approximate

the probability of every event in the sigma algebra of X ∼ Pν : for all those events A whose

closure contains the atom at zero, we cannot write limν→0 ρ
−1Pν(A) = H(A). Nevertheless,

in most cases, we can still approximate Pν(A) by some, more or less artificial, modification

of the W#-function approximating χA(x), so to be able to apply the W#-integral definition

0.0.3.

This brings us to talk about one of the critical parts of the sparsity theory developed in

McC&P, the non-identifiability of the atom at zero. In fact, in many statistical applications,

it is often the case that the interest lies in establishing whether a signal is active or not,

so that one can identify the presumably few active, out of a large number of signals. And,

although in the literature, there is not a universal consensus nor a formal mathematical

definition of what constitutes signal activity, fairly often, in both theoretical and applied

work, the dichotomy of signal non-activity/activity refers to the events that the signal be

zero or not zero (see for instance, Donoho et al., 1992 [24] and Efron, 2007 [27]).

Yet, as illustrated above, the pair (ρ,H) is not sufficient to approximate the probability

mass of Pν at zero. Indeed, this zero-non-identifiability issue strictly relates to the perimeter

within which the sparsity definition in (1) applies and can be used: the limit-approaching

behavior of Pν is described by looking at the expectations, with respect to Pν , of bounded

and continuous functions w(x), for which the function x−2w(x) is also bounded and contin-
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uous. Instead, the indicator function χx=0 is a discontinuous function at the limit point and

such discontinuity at the limit opens the door to different answers from the sparse measures,

even when their limiting behavior in approaching the Dirac delta limit is the same.

The way we propose to circumvent the zero-non-identifiability issue is to take a slightly

different perspective in looking at the problem, and adopt a strategy that is similar in spirit

to the “limit-approaching” standpoint, from which the sparsity theory by McC&P has been

formulated in first place. The idea is to look at the atom {0} as the limit point of a sequence

of intervals [−εν , εν ], where εν → 0 as ν → 0, and to describe, as the limit takes place,

the approaching behavior of the moving sequence of measures Pν over the moving region

[−εν , εν ]. So, instead of asking for the probability at the limit point Pν(X = 0), which

requires the expectation of a discontinuous function at zero, we ask for the probability that

the signal is in a region converging to the limit point, Pν(|X| ≤ εν), which by contrast, can

be approximated by the expectation of a bounded and continuous function,

∫
e−x

2/2ε2ν Pν(dx) .

With some conditions on the speed of convergence to zero of the threshold sequence εν , we

can use the sparsity integral definition in (1) to obtain the sparse-negligibility approximation

∫
e−x

2/2ε2ν Pν(dx) ∼ 1− ρ
∫

(1− e−x2/2ε2ν )H(dx) ,

where this approximation holds with an error of order ρ
∫

(1− e−x2/2ε2ν )H(dx).

All this leads us to introduce a mathematical definition of signal negligibility. In what

follows, we use the notation F (wz) =
∫

(1 − e−x
2/2z2

)F (dx), where F is some non-zero

measure.

Definition 0.0.4. Let {Pν}ν be a sparse sequence of symmetric distributions on R, and let
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{εν}ν be a sequence of strictly positive thresholds, εν > 0. We say that εν is a negligibility

sequence for Pν if, as ν → 0,

1. εν → 0,

2. Pν(wεν )→ 0,

3. Pν(wεν ) = ρH(wεν ) + o (ρH(wεν )).

Given X ∼ Pν , we say that X is negligible if |X| ≤ εν .

With this limiting definition of signal negligibility, we can derive another integral approx-

imation for the sparse measure Pν , alternative to (1), which is valid up to an error larger than

the usual o(ρ), but has a Dirac delta measure component in it. This last component makes

in fact negligibility equivalent to being zero in terms of integrals of bounded and continuous

functions.

For the case when H is the inverse-power measure in (3) proportional to |x|−α−1dx, this

integral approximation is

∫
w(x)Pν(dx) = (1− ρε−αν )

∫
w(x) δ0(dx) + ρε−αν

∫
w(x) H̃(dx) + o(ρε−αν ) , (4)

where w is a bounded and continuous function, while H̃ is the weighted exceedance measure

proportional to (1− e−x2/2ε2ν )|x|−α−1dx.

The integral approximation we develop within the negligibility-sparsity theory can be

naturally seen as an alternative to many other Bayesian approaches developed for the so

called two-groups model (Efron, 2007 [27]). Yet, despite the general structure resemblance,

there are two main differences. The first most obvious discrepancy concerns the target event,

which leads to the mixture distribution for the signal. In our framework, this event is the
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signal negligibility as defined in Definition 0.0.4, whereas, in the two-group model, is the

event of the signal being absolutely zero. The second difference follows from the first one to

the extent that we obtain an atomic mixture (i.e., a Dirac delta measure component) for the

signal distribution, only as an asymptotic approximation, driven by the sparsity limit, and

true solely in terms of integrals of bounded and continuous functions.

Signal plus noise

The signal-plus-noise model is perhaps the most basic statistical setting in which sparsity

can be seen arise naturally. The model considered for instance by Johnstone and Silverman

(2004) [45], assumes that the observation Y is the sum of two independent components: a

sparse signal µ and a standard Gaussian noise η,

Y = µ+ η . (5)

In the statistical sparsity framework of McC&P, µ has a sparse distribution Pν , symmetric

around the origin, with sparsity rate ρ and unit exceedance measure H. Then, for each

y ∈ R, the marginal of Y at y, being a functional of the symmetric Pν , can be approximated

in the following way

mν(y) = φ(y)

∫
eyxe−x

2/2 Pν(dx)

= φ(y)

(∫
(cosh(yx)− 1)e−x

2/2 Pν(dx) + 1−
∫

(1− e−x2/2)Pν(dx)

)
= φ(y)

(
ρ

∫
(cosh(yx)− 1)e−x

2/2H(dx) + 1− ρ
∫

(1− e−x2/2)H(dx)

)
+ o(ρ)

= φ(y)

(
ρ

∫
(cosh(yx)− 1)e−x

2/2H(dx) + 1− ρ
)

+ o(ρ) ,

(6)

where the last equality follows from the normalization chosen for the unit exceedance mea-

sure,
∫

(1 − e−x2/2)H(dx) = 1. The integral appearing in last expression is a transform of
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the exceedance measure H and, as a function of y, is called zeta function,

ζ(y) =

∫
(cosh(yx)− 1)e−x

2/2H(dx) . (7)

This function is analytic at the origin, and satisfies ζ(0) = 0. It is also positive and finite,

and this allows its product with the Gaussian density φ(y)ζ(y), to be a probability density

function. This in turn, means that the sparse approximation to the marginal density of Y

can be written as a mixture of two components,

ρφ(y)ζ(y) + (1− ρ)φ(y) + o(ρ) .

The integrand of the zeta function is called zeta measure

ζ(dx; y) = (cosh(yx)− 1)e−x
2/2H(dx) , (8)

and it appears in the sparse approximation to the signal conditional distribution, given the

observation Y = y,

Pν(dx | y) =
eyxe−x

2/2Pν(dx)

P(Y = y)

=
eyx

cosh(yx)

(cosh(yx)− 1)e−x
2/2Pν(dx) + e−x

2/2Pν(dx)

P(Y = y)

=
eyx

cosh(yx)

ρζ(dx; y) + e−x
2/2Pν(dx)

ρζ(y) + 1− ρ
+ o(ρ) .

(9)

This approximation is to be interpreted in terms of W#-integrals. Thus, if one wants to

compute the sparse approximation to Pν(ε
+ | |Y | = y), then, as for the unconditional

probability of signal activity, we compute the expectation of wε(x) = 1− e−x2/2ε2 ,

Pν(ε
+ | |Y | = y) =

ρ
∫
wε(x) ζ(dx; y) + ρ

∫
e−x

2/2H(dx)

ρζ(y) + 1− ρ
+ o(ρ) . (10)
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Now, as ν → 0 and y 6= 0, this approximation just converges to zero. In order not to get

the trivial limit, one needs to let y → ∞ in such a way that ρζ(y) converges to a strictly

positive constant λ > 0. However, for the double limit,

lim
ν→0

lim
y→∞

∫
(cosh(yx)− 1)e−x

2/2 Pν(dx) = lim
ν→0

lim
y→∞

ρζ(y) ,

to be true for any sparse family Pν having (ρ,H) as sparsity pair, H cannot have Gaussian

nor sub-Gaussian tails. We derive this extra requirement in Section 8.5.2 of Chapter 8, and

refer to it as the double limit condition (DLC). If DLC holds, as it does for inverse-power

measures, then, as ρζ(y) → λ, the conditional probability of signal activity in (10) can be

approximated by

ρζ(y)

1 + ρζ(y)
+ o(1) .

Symmetry and vector sparsity

The sparse signal-plus-noise model we presented in the previous section, is derived for a

one-dimensional signal, whose distribution is symmetric around zero. Now suppose that,

instead of one-dimensional, the signal is d-dimensional, with d > 1.

If the d components of the random vector are mutually independent, then we can regard

the random vector as a collection of d independent signals, each of which has a sparse

distribution in the sense of Definition 0.0.3; so in this case, we talk about component-wise

sparsity. For this kind of product of sparse measures, except for some further connection

with Lévy processes, the theory is really the same as for the univariate case, and the notion

of signal negligibility presented above can become particularly useful in some applications,

such as multiple testing, wavelet regression and Gaussian graphical models.

On the other hand, if this independence assumption is not very compelling, but one still

has exchangeability of the d components of the random vector, then the sparse measure Pν,d
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on Rd can be taken to be invariant under rotations. This means that, for all Borel sets A,

Pν,d(A) = Pν,d(σA)

for every transformation σ : Rd → Rd which is orthogonal with respect to the inner product

chosen on Rd, defining the metric d(x, y) = ‖x− y‖ = 〈x−y, x−y〉1/2. In fact, since rotations

are isometries, they preserve the distance between any two points x, y ∈ Rd, d(x, y) =

d(σx, σy). So, if the inner product on Rd is defined by some positive definite matrix A ∈ Rd×d,

〈x, y〉 = x′Ay, then σ must be such that σ′Aσ = A and det(σ) = ±1.

Another way of seeing this is that if all directions are to be equally likely, then it is

possible to factorize the sparse measure Pν,d into two components,

Γ(d x̃)PR
ν (d ‖x‖) ,

a spectral measure Γ for the direction vector x̃ = x/ ‖x‖ on the unit sphere Sd = {z : ‖z‖2 =

1}, and a radial measure PR
ν for the radius of the vector ‖x‖. Rotational invariance requires

Γ to be the uniform measure on Sd; so in order to have Pν,d converging to the delta measure

at the origin, as ν → 0, it is necessary that the radial measure PR
ν converges to the Dirac

delta measure at zero. This can be easily achieved by assuming that PR
ν is two times the

positive part of some sparse measure Pν on R.

Following this approach, the sparsity of the random vector is driven by the sparsity of

its radius, and the scalar notion of symmetry on R is generalized to spherical symmetry

(rotational invariance) on Rd. In this case, we talk about vector sparsity.

The flexibility of choosing the metric that one wants to be preserved under rotations,

allows one to frame the linear regression problem Y = Xβ + η, η ∼ N(0, σ2In), in such a

way that the coefficient β ∈ Rd has a sparse distribution which is rotationally invariant with

respect to the Fisher-information metric, given by ‖β‖2 = β′X ′Xβ. With this assumption,
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the marginal distribution of Y only depends on the covariate matrix X through its projection

matrix PX = X(X ′X)−1X ′, so the choice of basis for X is immaterial. Moreover, the sparse

approximation to the Bayes factor for the exceedance event {‖β‖ > ε} is

ζd(‖PXy‖ /σ) ,

where ζd is the generalization of the zeta function to the d-dimensional case. Then it is

quite natural to start looking at this expression, or its generalization to the case when σ2 is

estimated by the residual mean square, as a sparse counterpart to the ANOVA F -test.

Tour around thesis

As mentioned at the beginning of this introduction, the thesis is structured in three parts.

Here we try to give an insight of how we grouped certain topics together, even though, as

already pointed out, the reader should not think of them as separate.

Part I further investigates the univariate notion of sparsity as a probabilistic limit and

as an approximation device. The intention of this first part is two-fold: on the one hand, we

show the potential use of this theoretical definition in very practical ways. For instance, in

Chapter 2, we use the sparsity rate estimated from the data, as a likelihood-based criterion

to choose the sparsity scale of a large covariance matrix. On the other hand, we explore how

far one can push the limit definition of sparsity in terms of finding higher-order terms, ρkHk,

in the integral expansion of the sparse measure Pν .

Both second and third parts, instead, aim at extending the univariate notion of sparsity

to d-dimensional distributions, for d > 1, and present some examples of how these extensions

can be used in certain statistical problems.
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In Part II, we investigate d-dimensional measures that are the product of d univariate

sparse measures, and refer to this case as component-wise sparsity. We show how this kind

of sparsity assumption, together with the negligibility idea, can be used for different pur-

poses: (i) constructing a multiple testing procedure to declare negligible and non negligible

signals; (ii) obtaining a thresholding estimator such as the conditional median, to smooth

the estimated function in wavelet regression; (iii) obtaining a thresholding estimator based

on the conditional probability of non-negligibility, for the recovery of the graphical structure

in a Gaussian graphical model.

Nevertheless, Part II could very well be considered as a development of the univariate

sparsity theory, insofar the notion of signal negligibility, and its related integral sparse ap-

proximation, really refer to any univariate sparse measure Pν . Thus, one should look at

component-wise sparsity as only one of the possible contexts in which the negligibility no-

tion and its machinery can be used.

In Part III instead, we study those sparse measures which are invariant under rotations

about the origin, and introduce the idea of vector sparsity. This latter refers to random

vectors whose sparsity is induced by the univariate sparsity of their radial part. Within

this context, we introduce the d-dimensional coshd function and extend the signal-plus-noise

theory to the case when the signal is vector sparse. We also apply this notion of vector

sparsity to the linear regression setting, assuming that the coefficient vector β has a vector

sparse distribution which is rotationally invariant with respect to the Fisher-information

metric. This in turn allows us to derive a sparsity analog to the F -ratios, classically employed

in analysis of variance.
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Part I

Univariate sparsity
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Chapter 1

Sparsity for comparing two means

1.1 Introduction

In our intentions, this chapter serves as a bridge between some of the ideas presented in a

somewhat condensed way, in the introduction, and the rest of the thesis, where these ideas

are further explored and developed in different contexts. To this end, we illustrate how one

can use the sparse signal-plus-noise model of Equation (5) to analyze, in probabilistic terms,

the difference between two unknown quantities, which are indeed believed to be very close

to each other.

Motivated by this, we first derive the formulas for the scale-sparse signal-plus-noise model,

in the case when the error variance is unknown, and is estimated using a chi-square statistic,

independent of the signal-noise convolution. This leads us to introduce a zeta function for

t-statistics, the t-zeta function on k degrees of freedom. After studying some asymptotic

properties of this function, we use the sparse approximations to give a sparsity-based anal-

ysis of the ‘Hubble constant dilemma’, which has been at the center of a debate inflaming

the cosmological community for the last decade.
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1.2 Comparing two means

Suppose that we are interested in the difference between two unknown quantities, µ1 and

µ2, which are expected to be very close to each other, and perhaps equal with some positive

probability. Then we can look at the difference between these two unknown quantities, as a

signal having a sparse distribution according to Definition 0.3. More specifically,

µ1 − µ2 ∼ Pν ,

where Pν is a scale sparse distribution, which is symmetric around zero and has sparsity

rate ρ, and inverse-power exceedance measure H. Further, suppose that, for each of the two

unknown quantities, we have some Gaussian observations having mean µi. So, for i = 1, 2,

we observe (Xi,1, . . . , Xi,ni),

Xi,j | µ1, µ2 ∼ N(µi, σ
2) for j = 1, . . . , ni ,

where σ2 is the unknown variance of the noise component. Then the difference between the

two sample means,

X̄1 − X̄2 =
1

n1

∑
j

X1,j −
1

n2

∑
j

X2,j ,

is such that

X̄1 − X̄2 | µ1, µ2 ∼ N
(
µ1 − µ2, σ

2(1/n1 + 1/n2)
)
,

so one can write

X̄1 − X̄2 = (µ1 − µ2) + (η1 − η2) = µ+ η , (1.1)

where µ ∼ Pν is scale sparse with sparsity pair (ρ,H), and is independent of the noise

η ∼ N(0, σ2(1/n1 + 1/n2)).

Now, if σ2 was known, after rescaling, this could be easily framed as the sparse signal-

18



plus-noise problem presented in the introduction, for which the sparse approximations of

all the important functionals have already been developed in McC&P. However, if σ2 is not

known, then one has to estimate it and take the variability of its estimator into account when

deriving the sparse approximations. In the next section, we extend the sparsity analysis of the

classical signal-plus-noise model to the case when the variance of the noise part is unknown.

1.3 Signal-plus-noise estimating the error variance

Consider the signal-plus-noise model

Y = µ+ η ,

where µ ∼ Pν is scale sparse with rate ρ and inverse-power exceedance measure H, while

η ∼ N(0, σ2), and σ2 is unknown. Moreover, assume µ and η to be independent. Then the

scaled variable

Ỹ =
Y

σ
,

is the sum of the two independent components: a scaled sparse signal µ/σ ∼ Pν,σ and a

standard Normal η/σ ∼ N(0, 1). Now, because Pν is assumed to be a sparse distribution

whose sparsity parameter coincides with its scale parameter, then Pν,σ is also scale sparse

with sparsity-scale parameter given by ν̃ = ν/σ. This means that Pν,σ = Pν̃ is sparse with

exceedance measure H and sparsity rate ρ̃ = ν̃ α = ρσ−α. Indeed, H has density function

which is homogeneous of order α− 1, so that

H(d(σx)) = h(σ x)d(σx) = σ−αh(x)dx = σ−αH(dx) .

This leads us to write the sparse approximation to the marginal density of Ỹ at ỹ, as

mν,σ(ỹ) = φ(ỹ) (ρ̃ζ(ỹ) + 1− ρ̃) + o(ρ̃) .
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Now, suppose that s2 is an estimator of σ2 such that ks2/σ2 ∼ χ2
k, for some k ≥ 1. If Y

and s2 are independent, then letting

T =
Y

s
,

the sparse approximation to the marginal density of T at t is

(1− ρ̃)tk(t) + ρ̃ tk(t)ζ
T
k (t) + o(ρ̃) .

Here tk denotes the density function of Student’s t distribution with k degrees of freedom,

while

ζTk (t) =
∞∑
r=1

(
t2

t2 + k

)r
22r

(2r)!

Γ(r + k+1
2

)

Γ(k+1
2

)

αΓ(r − α/2)

2 Γ(1− α/2)
, (1.2)

denotes the zeta function for the t-statistic on k degrees of freedom, associated with the

α-inverse-power measure H. See the appendix for the derivation.

Notice that, because ψ(z) = φ(z)ζ(z) is a probability density function, also the product

ψk(t) = tk(t) ζ
T
k (t) is a probability density function as

∫
tk(t) ζ

T
k (t)dt =

∫ ∫
φ(t
√
u)ζ(t

√
u)χ2

k(ku)k
√
u du dt

=

∫ ∫
φ(z)ζ(z)dz

√
u
−1
χ2
k(ku)k

√
u du =

∫
χ2
k(ku)k du = 1 .

In Figure 1.1, we compare the ψk function, depicted by the light blue solid curve, with

ψ, depicted by the black dashed curve, for different degrees of freedom k. We can see that

both densities are bimodal and symmetric around the origin. Yet, for small values of k,

the ψk density has heavier tails than ψ, while, as k gets larger, the two densities get closer

and closer. Indeed, as k → ∞, the t-zeta function in (1.2) converges to the ordinary zeta

function, which in fact, when the exceedance measure is the α-inverse-power measure, can
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Figure 1.1: Comparison of the product ψk(t) = tk(t) ζ
T
k (t) (solid blue line) versus ψ(t) =

φ(t) ζ(t) (dashed black line), for different values of the degrees of freedom k.
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be written as a convergent power series

ζ(t) =
∞∑
r=1

t2r
2r

(2r)!

αΓ(r − α/2)

2 Γ(1− α/2)
. (1.3)

See the appendix for a proof of this convergence. Therefore, as expected, k → ∞ implies

that the marginal density of T = Y/s,

mT
ν (t) = tk(t)

(
(1− ρ̃) + ρ̃ ζTk (t)

)
+ o(ρ̃) ,

converges to the marginal density of Ỹ = Y/σ,

mν(t) = φ(t) ((1− ρ̃) + ρ̃ ζ(t)) + o(ρ̃) .

This convergence is shown in Figure 1.2. The top panel shows the convergence ζTk (t)→ ζ(t),

plotted on the log scale, while the bottom panel shows tk(t)→ φ(t), again on the log scale.

On the other hand, for fixed k, if we let the argument t→∞, then t2r/(t2 + k)r → 1 so

that the t-zeta function converges to

∞∑
r=1

22r

(2r)!

Γ(r + k+1
2

)

Γ(k+1
2

)

αΓ(r − α/2)

2Γ(1− α/2)
.

This series is divergent so that in fact, ζTk (t)→∞ as t→∞. Nevertheless, using the Laplace

approximation, we can gauge the behavior of ζTk (t) for large t,

(t2 + k)
k+1

2 |t|−α−1

√
π Γ
(
k−α

2

)
Γ
(
k+1

2

)
kk/2−α/2

α

2 Γ(1− α/2)
. (1.4)

See the appendix for all details. This asymptotic approximation is shown in Figure 1.3. The

Laplace approximation in (1.4), the dashed red curve, is quite close to the exact ζTk , the light
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(a) Convergence of the t-zeta function to the ordinary zeta function as the degrees of freedom k →∞. The
blue solid line depicts log(ζTk (t)) while the black dashed line depicts log(ζ(t)).
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(b) Convergence of the t of Student density with k degrees of freedom to the Normal density as k → ∞.
The blue solid line depicts log(tk(t)) while the black dashed line depicts log(φ(t)).

Figure 1.2: Convergence of the marginal density of T to the marginal density of Ỹ .
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Figure 1.3: Asymptotic behavior of log(ζTk (t)) as t → ∞, light blue solid line. The red
dashed line depicts the Laplace approximation in (1.4), also on the log scale.

blue solid curve, even for moderate values of t. Both functions are plotted on the log scale.

1.3.1 Signal conditional distribution with estimated error variance

From univariate sparsity theory, assuming σ = 1, the sparse approximation to the sym-

metrized conditional distribution of the signal, given |Y | = y, is

Pν(dx | |Y |) =
1− ρ

1− ρ+ ρζ(y)

e−x
2/2Pν(dx)

1− ρ
+

ρζ(y)

1− ρ+ ρζ(y)

ζ(dx; y)

ζ(y)
+ o(ρ) .
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Analogously, one can derive the first-order sparse approximation of the symmetrized condi-

tional distribution of the scaled signal µ/σ given |T | = t

Pν,σ(µ/σ ∈ dx | |T |) =
1− ρ̃

1− ρ̃+ ρ̃ζTk (t)

e−x
2/2Pν,σ(dx)

1− ρ̃
+

ρ̃ζTk (t)

1− ρ̃+ ρ̃ζTk (t)

ζTk (dx; t)

ζTk (t)
+ o(ρ̃) ,

where ζTk (du; t) denotes the t-zeta measure defined as

ζTk (du; t) =
∞∑
r=1

(
t2

t2 + k

)r
2r

(2r)!

Γ(r + k+1
2

)

Γ(k+1
2

)
u2re−u

2/2H(du) .

See the appendix for details. Then the conditional probability of the scaled signal activity,

|µ|/σ > ε, for any ε > 0, can be approximated by

Pν(|µ|/σ > ε | |T | = t) ≈
∫

(1− e−x2/2ε2)Pν,σ(dx | |T | = t)

=

∫
(1− e−x2/2ε2)

(
ρ̃e−x

2/2H(dx) + ρ̃ζTk (dx; t)
)

1− ρ̃+ ρ̃ζTk (t)
+ o(ρ̃) .

(1.5)

As ρ̃ → 0 and t 6= 0, this expression converges to zero. In order to get a non trivial limit,

we need to let t → ∞ so that ζTk (t) → ∞ in such a way ρ̃ζTk (t) → λ, for λ > 0. Under

this double limit regime, the dominating term in the numerator of (1.5), is ρ̃ζTk (t) since, as

t→∞, ∫
(1− e−x2/2ε2) ζTk (dx; t) ∼ ζTk (t) ,

when H has inverse-power tails. Therefore, as ρ̃ζTk (t)→ λ,

Pν(|µ|/σ > ε | |T | = t) =
ρ̃ζTk (t)

1 + ρ̃ζTk (t)
+ o(1) .

Since this ratio does not depend on the threshold ε, if we instead consider ε/σ then, under the

double limit regime, the conditional probability of activity for the original unscaled signal is
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still

Pν(|µ| > ε | |T | = t) =
ρ̃ζTk (t)

1 + ρ̃ζTk (t)
+ o(1) . (1.6)

Table 1.1 reports the values of t such that ρ̃ζTk (t) = 1, corresponding to different degrees

of freedom k, for decreasing values of the rate ρ̃. The column with k =∞ corresponds to the

values t such that ρ̃ζ(t) = 1. We can observe that, for small values of the degrees of freedom,

the value of t necessary for ρ̃ζTk (t) = 1 to hold, needs to be larger. In other words, when fewer

degrees of freedom are available to estimate σ2, we need to observe more extreme values of

the statistic |T | for getting 1/2 as the conditional probability that the signal is larger than

ε.

ρ̃ k = 5 k = 8 k = 10 k = 15 k = 20 k =∞

10% 4.31 3.56 3.36 3.12 3.01 2.72
5% 5.62 4.35 4.03 3.66 3.50 3.07
1% 9.35 6.25 5.55 4.80 4.48 3.71

0.5% 11.36 7.12 6.22 5.26 4.87 3.94
0.1% 17.45 9.39 7.86 6.34 5.74 4.40

Table 1.1: Values of t such that ρ̃ζTk (t) = 1, for different values of ρ̃ and k.

It then follows that the Bayes Factor for the event |µ| > ε,

BF (|µ| > ε) =
Odds(|µ| > ε | |T | = t)

Odds(|µ| > ε)
,

under the double limit regime, behaves like

ρ̃ζTk (t) + o(1)

ρH(ε+)/(1− ρH(ε+)) + o(ρ)
=
σ−αζTk (t)

H(ε+)
+ o(1) ,

where H(ε+) = 2
∫∞
ε
H(dx). This last expression does not depend on the sparsity rate ρ and

can be estimated by

s−α ζTk (t)

H(ε+)
+ o(1) .

If we choose ε to be the standard activity threshold for which H(ε+) = 1, then for the
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inverse-power exceedance measure, this threshold is

ε =

(
2α/2

Γ(1− α/2)

)1/α

.

For this choice of threshold activity, under the double limit ρ̃ζTk (t)→ λ, the Bayes factor for

the event that the original sparse signal is above the threshold, |µ| > ε, can be estimated by

s−α ζTk (t) . (1.7)

1.4 Comparing two means estimating the error vari-

ance

We now go back to the original problem of investigating the difference between two means

µ1 and µ2, where, for each mean µi, the observations are independent

Xi,j | µi ∼ N(µi, σ
2) for j = 1, . . . , ni .

Then,

X̄1 − X̄2 = (µ1 − µ2) + (η1 − η2) = µ+ η , (1.8)

where µ ∼ Pν is scale sparse with first-order pair (ρ,H), and is independent of η ∼

N(0, σ2(1/n1 + 1/n2)). To estimate σ2, one can use the pooled estimator

s2
pool =

n1 − 1

n1 + n2 − 2
s2

1 +
n2 − 1

n1 + n2 − 2
s2

2 , (1.9)
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where, for each i = 1, 2, s2
i =

∑
j(Xi,j − X̄i)

2/(ni − 1) is the sample variance, for which

(ni − 1)s2
i /σ

2 ∼ χ2
ni−1 . Then the variance of η can be then estimated by

s2 = s2
pool

(
1

n1

+
1

n2

)
,

which is a linear combination of two independent mean squares, s2
1 and s2

2, on n1 − 1 and

n2 − 1 degrees of freedom, respectively. Therefore we can use the Welch-Satterthwaite

approximation (Satterthwaite, 1946 [64]) to compute the degrees of freedom

k =
(s2)2∑

i=1,2

(
s2
i

ni−1
n1+n2−2

(
1
n1

+ 1
n2

))2
1

ni−1

, (1.10)

for which approximately s2 ∼ χ2
k.

Since, for each of the two samples i = 1, 2, X̄i and s2
i are independent conditionally on

µi, they are also unconditionally independent as

P(X̄i, s
2
i ) =

∫
P(X̄i, s

2
i | µi)P(µi) dµi =

∫
P(X̄i | µi)P(s2

i )P(µi) dµi = P(X̄i)P(s2
i ) .

So it follows that X̄1 − X̄2 and s2 are independent. Thus, letting

T =
X̄1 − X̄2

s
=

X̄1 − X̄2√
s2

pool

(
1
n1

+ 1
n2

) , (1.11)

following the previous section, for any positive threshold ε, given the observed value t, we

can compute the conditional probability that the signal µ = µ1−µ2 is above that threshold.

Moreover, assuming the double limit regime ρ̃ ζk(t)→ λ > 0, the Bayes Factor for the event
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|µ1 − µ2| > ε can be estimated by

(
s2

pool

(
1
n1

+ 1
n2

))−α/2
ζk(t)

H(ε+)
.

1.5 The Hubble constant debate

In this section, we provide an example of how the difference between two means can be

investigated using the theory presented in the previous section. The Hubble constant, the

subject of our example, has been at the center of a heated debate among cosmologists for the

last decade or so. In 1929 Edwin Hubble discovered that the universe is expanding, and, just

as two marked points on an expanding balloon diverge at a rate proportional to their current

separation, so too galaxies move away from Earth at a rate proportional to their distance

from Earth. In formulae, if v is the galaxy recessional velocity and D is its distance to the

Earth, the Hubble constant H0 is the proportionality constant relating speed and distance:

v = H0D .

Therefore, after computing the recessional velocity of a galaxy, the value of H0 can be

inferred by estimating its distance from the Earth. This last task can be carried out using

two different methods. The local universe method, proposed by Hubble himself, is based on

determining the distance D of far-away objects using the so called cosmic distance ladder

(CDL). This method relies upon identifying standard candles, objects that shine with an

intrinsic brightness, and then use parallax to convert this brightness to distance from the

Earth. The idea of CDL is to start by measuring brightness of nearby pulsating stars, for

instance the Cepheids in the Milky Way, and then, using geometry to calibrate the lumi-

nosity, move out in the universe, measuring brightness of exploding stars, like the Type 1A

Supernovae, present in much farther-away galaxies.
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The second method, on the contrary, looks back in time and uses the cosmic microwave

background (CMB), the electromagnetic radiation leftover from the Big Bang, to establish

a unit of distance at the early stage of the cosmos, when the universe was 380,000 years

old. These measurements can then be fast forward and used to predict the Hubble constant

following the ΛCDM model. This latter is the standard cosmology model which aims at

describing all the visible matter and energy, together with dark energy (Λ) and cold dark

matter (CDM), showing how they evolve according to Albert Einstein’s theory of gravity.

The debate about the Hubble constant began a few years ago when, despite the increased

accuracy of the measurements in both methods, the predictions for H0 delivered by the local

universe and the CMB methods, started to get farther and farther apart. When cosmologists

from the Planck group (Aghanim et al., 2020 [2]), among others, used the data from the early

universe to predict the expansion rate, they found it to be 67.4 ± 0.5. Yet, when adopting

the local universe method and using the data from the current stage of the universe, several

different teams of cosmologists found much higher estimates for H0. For instance, the esti-

mate found by Professor Riess’s team was 73.5±1.4, roughly 4.1σ above the other prediction.

Now, if in fact the two predictions were indeed not due to statistical and measurement

errors, then it would mean that something is missing in the ΛCDM cosmology model since

the universe would now be expanding at a faster rate than that predicted for the early-stage

universe. However, among cosmologists, there is not a consensus in regarding this difference

as real or not. Indeed, some of the most recent measurements delivering higher estimates

for H0, such as those of Professor Riess and his team (Riess et al., 2019 [59]), are put into

question by Professor Wendy Freedman, who, despite having pioneered the usage of the

Cepheids as standard candles, now casts doubts on their reliability. Freedman’s team, in

their paper Freedman et al. (2019) [37], report a much lower estimate, 69.8± 1.9, obtained
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using the “tip of the red giant branch” (TRGB) stars. These are stars that, being about

to die, gradually grow brighter until they reach a characteristic peak brightness, which is

always the same. This stability makes them good standard candles, besides the fact that, as

old stars, they can be observed in the clean peripheries of galaxies, and not the dusty and

crowded regions where the Cepheids are usually observed.

The debate is far from being closed and new developments are expected when new data

from the Gaia space telescope will enable much more precise calibrations of the Cepheids

and TRGB stars. For a gentle introduction to this fascinating dilemma, we refer to Verde

et al. (2019) [71] and to two articles published in the Quanta Magazine, Wolchover (2019)

[77] and Wolchover (2020) [78].

1.5.1 Sparsity analysis for the Hubble constant

What we propose in this section is to look at the hypothetical difference between the early

and late Hubble constants, i.e., the difference between the cosmic expansion rate at the early

stage of the universe µ1, and the present rate µ2, as a sparse signal. As such, the difference

µ2−µ1 can be thought of being zero with some positive probability and being different from

zero with a probability distribution having polynomial tails. In formulae,

µ2 − µ1 ∼ Pν ,

where Pν is a scale sparse distribution with rate ρ and H is the inverse-power exceedance

measure. Then, we look at the discrepancies between measurements obtained from different

methods, as corrupted observations of the sparse signal, as in (1.8).

The first comparison is between the CMB - Planck measurement and the CDL - Cepheids

measurement, and the data reported in Riess (2020) [58] are:
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• CMB - Planck: x̄1 = 67.4, SE1 = s1√
n1

= 0.5,

• CDL - Cepheids: x̄2 = 73.5, SE2 = s2√
n2

= 1.4.

For the second comparison instead, the CMB - Planck measurement versus the CDL - tip of

the red giant branch (TRGB) stars measurement, the data reported in Riess (2020) [58] are:

• CMB - Planck: x̄1 = 67.4, SE1 = s1√
n1

= 0.5,

• CDL - TRGB stars: x̄2 = 69.8, SE2 = s2√
n2

= 1.9.

We do not know how the accuracy measures were determined, so we ignore on how many

degrees of freedom these standard errors were obtained. For this reason, we will present our

sparsity study hypothesizing different combinations of values for n1 and n2, so to account

for different scenarios for the precision of the measurements.

Assuming equality of the variances for the Gaussian noises corrupting X̄i, i = 1, 2, we use

the pooled estimator for σ2 in (1.9) and let T as in (1.11). Table 1.2 reports the values for

t = (x̄2−x̄1)/s and s = spool

√
(1/n1 + 1/n2) , shown in brackets, for different combinations of

(n1, n2). As expected, the t-values comparing the Planck estimate to the Cepheids estimate

(Table 1.2a) are much larger than those comparing the Planck estimate to the estimate using

the TRGB stars as standard candles (Table 1.2b). This reflects both the larger difference

of x̄2 from x̄1 for the Cepheids comparison, and the smaller estimated variance s. One side

note is the following. Looking at the first column in Table 1.2a, we can observe that the

relationship between s2 and n1, for fixed n2, is not monotone. In fact,

s2 =

(
n1 − 1

n1 + n2 − 2
n1SE2

1 +
n2 − 1

n1 + n2 − 2
n2SE2

2

)(
1

n1

+
1

n2

)
,

so keeping n2 constant, as n1 grows, the relative weights push spool towards the smaller s2
1

rather than the bigger s2
2. Yet, at the same time s2

1 = n10.52 also increases. On the other

hand, if we fix n1 and let n2 increase, then both effects push in the same direction, leading
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to a bigger estimate of s2.

(a) Planck versus Cepheids

n2 = 4 n2 = 6 n2 = 8 n2 = 10 n2 = 15

n1 = 4 4.10 3.40 2.97 2.67 2.20
(1.49) (1.79) (2.06) (2.29) (2.78)

n1 = 6 4.80 4.10 3.61 3.26 2.69
(1.27) (1.49) (1.69) (1.87) (2.27)

n1 = 8 5.14 4.59 4.10 3.73 3.10
(1.19) (1.33) (1.49) (1.64) (1.97)

n1 = 10 5.27 4.90 4.47 4.10 3.44
(1.16) (1.24) (1.36) (1.49) (1.77)

n1 = 15 5.13 5.22 5.01 4.74 4.10
(1.19) (1.17) (1.22) (1.29) (1.49)

(b) Planck versus TRGB stars

n2 = 4 n2 = 6 n2 = 8 n2 = 10 n2 = 15

n1 = 4 1.22 1.00 0.87 0.78 0.64
(1.96) (2.41) (2.77) (3.09) (3.77)

n1 = 6 1.48 1.22 1.06 0.95 0.78
(1.63) (1.96) (2.26) (2.52) (3.07)

n1 = 8 1.64 1.39 1.22 1.10 0.90
(1.47) (1.72) (1.96) (2.18) (2.65)

n1 = 10 1.73 1.52 1.35 1.22 1.01
(1.39) (1.58 (1.78) (1.96) (2.38)

n1 = 15 1.80 1.71 1.57 1.45 1.22
(1.34) (1.41) (1.52) (1.65) (1.96)

Table 1.2: Values of t and s (in brackets), for different combinations of n1 and n2.

In terms of sparsity, we assume that the sparsity rate for µ2 − µ1 is 0.05 and let the

exceedance measure be the inverse square measure, i.e., α = 1, so that the standard-activity

threshold is ε =
√

2/π = 0.8. For each different estimate of s corresponding to different

combinations of (n1, n2), ρ̃ is computed as s−α · 0.05 = s−1 · 0.05.

In Table 1.3 we report ρ̃ ζk(t)/(1 + ρ̃ ζk(t)), the sparse approximation to the conditional

probability that the difference between the two means is larger some positive threshold ε > 0.
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The values are multiplied by 102, so they can be read in terms of percentages. Here the de-

grees of freedom k are found using the Welch-Satterthwaite approximation in (1.10). Looking

at the posterior probabilities that |µ2 − µ1| > ε, for ε > 0, the two methods give very dif-

ferent answers. Using the TRGB stars (Table 1.3b), the conditional probability ranges from

as low as 0.16% to roughly 4%, whereas, using the Cepheids stars (Table 1.3a), the range

of probabilities goes from 3.2% to as high as nearly 82%. Overall, these figures seem to be

telling two stories hard to reconcile. However, some caution should be used when looking at

the results for the TRGB stars method. In fact, the t-values for this method are very low

and hardly justify the double limit regime under which the expression in (1.6) is derived for

the conditional probability.

(a) Planck versus Cepheids

n2 = 4 n2 = 6 n2 = 8 n2 = 10 n2 = 15

n1 = 4 13.99 10.90 8.07 6.01 3.23
n1 = 6 24.89 20.78 14.33 11.08 5.95
n1 = 8 43.56 33.18 23.97 18.90 9.73
n1 = 10 59.51 45.70 35.61 29.19 15.31
n1 = 15 81.80 76.55 67.99 59.15 36.14

(b) Planck versus TRGB stars

n2 = 4 n2 = 6 n2 = 8 n2 = 10 n2 = 15

n2 = 4 1.46 0.75 0.46 0.32 0.16
n2 = 6 2.28 1.21 0.75 0.52 0.26
n2 = 8 2.97 1.66 1.05 0.73 0.37
n2 = 10 3.45 2.09 1.35 0.95 0.48
n2 = 15 3.94 2.87 2.02 1.48 0.78

Table 1.3: Conditional probabilities for |µ2 − µ1| > ε, for any ε > 0, multiplied by 102.

Table 1.4 shows the sparse approximation to the Bayes factor for the event |µ2−µ1| > ε,

ε = 0.8, estimated by s−1 ζk(t) as in (1.7). Recall that the unconditional probability for

this event is exactly ρ = 0.05, irrespective of any sample size. We also report in brackets,

the value of ζk(t) to give an idea of the effect of n1 and n2 on the t-zeta function. Looking
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at these figures, the divergence between the two measurement approaches appears to be

even more remarkable. In fact, even if we were to assume that all three methods had the

same accuracy, with the Cepheids measurement we can get a Bayes factor over 30, while

the corresponding Bayes factor with the TRGB stars measurement, does not even reach 0.5.

And this divergence is mainly driven by the values of ζk(t). Yet, once more, one should be

cautious in interpreting the Bayes factors in Table 1.4b, as the double limit regime is not

taking place. All the same, we can regard these figures as upper bounds of the exact values,

so the conclusion from TRGB stars is even more on the negligibility side.

After seeing this analysis, the tension arisen among cosmologists, should not come as a

surprise. Depending on which kind of stars are used as standard candles to construct the

cosmic distance ladder, the evidence in favor of a discrepancy between the hypothesized

early and late Hubble constants, varies dramatically. With Freedman team’s choice for the

TRGB stars, it seems there is not much evidence for hypothesizing two different Hubble

constants. On the contrary, following Riess’s approach, one can reach a totally opposite

conclusion. Yet, for this last method, the accuracy of the measurements plays a crucial role

in determining how strong the evidence is in favor of the accelerating expansion hypothesis.

Indeed, if the Planck measurement is much more precise than the Cepheids measurement,

then the posterior probability of a difference in the constants is around 90%; but if the

relative precision is inverted, then the same probability goes down to 5.6%.
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(a) Planck versus Cepheids

n2 = 4 n2 = 6 n2 = 8 n2 = 10 n2 = 15

n1 = 4 4.60 3.79 2.87 2.16 1.18
(6.84) (6.80) (5.90) (4.95) (3.29)

n1 = 6 10.3 9.09 6.20 4.82 2.62
(13.1) (13.5) (10.5) (9.03) (5.94)

n1 = 8 25.2 18.4 12.6 9.83 4.92
(29.9) (24.5) (18.8) (16.1) (9.70)

n1 = 10 49.7 32.6 23.3 18.4 8.86
(57.6) (40.6) (31.8) (27.4) (15.7)

n1 = 15 160 135 97.1 70.9 31.0
(190) (158) (118) (91.4) (46.1)

(b) Planck versus TRGB stars

n2 = 4 n2 = 6 n2 = 8 n2 = 10 n2 = 15

n1 = 4 0.42 0.23 0.15 0.11 0.06
(0.82) (0.56) (0.42) (0.33) (0.22)

n1 = 6 0.72 0.42 0.28 0.20 0.11
(1.18) (0.83) (0.63) (0.51) (0.33)

n1 = 8 1.00 0.63 0.43 0.31 0.17
(1.46) (1.08) (0.84) (0.68) (0.45)

n1 = 10 1.21 0.83 0.58 0.43 0.24
(1.67) (1.30) (1.03) (0.84) (0.56)

n1 = 15 1.46 1.22 0.94 0.73 0.43
(1.95) (1.72) (1.44) (1.21) (0.84)

Table 1.4: Bayes factor for |µ2 − µ1| > 0.8 and ζk(t) shown in brackets.
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1.6 Appendix

1. Here we derive the sparse approximation to the marginal density of T = Y/s. Denote by

Ỹ = Y/σ and W = s2/σ2, then

P(T ∈ dt) =

P

(
Ỹ√
W
∈ dt

)
=∫

P(Ỹ ∈ d(t
√
u),W ∈ d(ku)) du =∫

mν,σ(t
√
u)χ2

k(ku)k
√
u du =∫

φ(t
√
u)(1− ρ̃+ ρ̃ζ(t

√
u) + o(ρ̃))χ2

k(ku)k
√
u du =

(1− ρ̃)tk(t) + ρ̃

∫
φ(t
√
u)ζ(t

√
u))χ2

k(ku)k
√
u du+ o(ρ̃) =

(1− ρ̃)tk(t) + ρ̃

∫
φ(t
√
u)

∫ ∞∑
r=1

t2rurx2r

(2r)!
e−x

2/2H(dx) χ2
k(ku)k

√
u du+ o(ρ̃) =

(1− ρ̃)tk(t) + ρ̃

∫ ∫
φ(t
√
u)

∞∑
r=1

t2rurx2r

(2r)!
χ2
k(ku)k

√
u du e−x

2/2H(dx) + o(ρ̃) =

(1− ρ̃)tk(t) + ρ̃

∫ ∞∑
r=1

t2rx2r

(2r)!

(∫
φ(t
√
u)urχ2

k(ku)k
√
u du

)
e−x

2/2H(dx) + o(ρ̃) =

(1− ρ̃)tk(t) + ρ̃

∫ ∞∑
r=1

t2rx2r

(2r)!

(
tk(t)

Γ(r + k+1
2

)

Γ(k+1
2

)

2r

(t2 + k)r

)
e−x

2/2H(dx) + o(ρ̃) =

(1− ρ̃)tk(t) + ρ̃ tk(t)
∞∑
r=1

t2rx2r

(2r)!

(
Γ(r + k+1

2
)

Γ(k+1
2

)

2r

(t2 + k)r

) ∫
x2re−x

2/2H(dx) + o(ρ̃) =

(1− ρ̃)tk(t) + ρ̃ tk(t)
∞∑
r=1

t2r

(2r)!

Γ(r + k+1
2

)

Γ(k+1
2

)

2r

(t2 + k)r

∫
x2(r−α/2)−1e−x

2/2Kα dx+ o(ρ̃) =

(1− ρ̃)tk(t) + ρ̃ tk(t)
∞∑
r=1

t2r

(2r)!

Γ(r + k+1
2

)

Γ(k+1
2

)

22r

(t2 + k)r
αΓ(r − α/2)

2Γ(1/α/2)
+ o(ρ̃) =

tk(t)
(
(1− ρ̃) + ρ̃ ζTk (t)

)
+ o(ρ̃) .
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2. Here we show that the t-zeta function on k degrees of freedom converges to the ordi-

nary zeta function as k →∞. Indeed, as k →∞, the ratio

Γ(r + k+1
2

)

Γ(k+1
2

)
∼ kr

2r
,

so that (
t2

t2 + k

)r Γ(r + k+1
2

)

Γ(k+1
2

)
∼
(
k

t2

)−r
kr

2r
∼ t2r

2r
.

Now, write the t-zeta function as

ζTk (t) =
∞∑
r=1

(
t2

t2 + k

)r Γ(r + k+1
2

)

Γ(k+1
2

)

22r

(2r)!

αΓ(r − α/2)

2Γ(1− α/2)
=
∞∑
r=1

fk(r) ,

where fk(r) is an decreasing sequence of non-negative functions as, for all k ≥ 1, fk+1(r) ≤

fk(r) for all r ≥ 1. This sequence has a limit function,

lim
k→∞

fk(r) = t2r
2r

(2r)!

αΓ(r − α/2)

2Γ(1− α/2)
= f(r) ,

which is summable since

∞∑
r=1

f(r) =
∞∑
r=1

t2r
2r

(2r)!

αΓ(r − α/2)

2Γ(1− α/2)
= ζ(t) .

Because the convergence is monotone and
∑∞

r=1 f1(r) <∞, we can conclude that

lim
k→∞

ζTk (t) =
∞∑
r=1

lim
k→∞

fk(r) = ζ(t) .

3. The series
∞∑
r=1

2r

(2r)!

Γ(r + k+1
2

)

Γ(k+1
2

)

∫
x2re−x

2/2H(dx) ,
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diverges since its rth term

sr =
2r

(2r)!

Γ(r + k+1
2

)

Γ(k+1
2

)

∫
x2re−x

2/2H(dx)

=
2r

(2r)!

Γ(r + k+1
2

)

Γ(k+1
2

)

Γ(r − α/2)

2−r+α/2
α 2α/2−1

Γ(1− α/2)

=
22r

(2r)!

Γ(r + k+1
2

)

Γ(k+1
2

)

Γ(r − α/2)

Γ(1− α/2)

α

2

= sr−1
22

(2r)(2r − 1)

(
r − 1 +

k + 1

2

)
(r − 1− α/2)

= sr−1 br ,

where br = 22

(2r)(2r−1)

(
r − 1 + k+1

2

)
(r − 1− α/2) = (2r−1+k)(r−1−α/2)

(2r−1)r
→ 1 , as r →∞. There-

fore, we have that sr → sr−1 as r → ∞, so that
∑∞

r=1 sr = ∞. Similarly to above, we can

write the t-zeta function as

ζTk (t) =
∞∑
r=1

(
t2

t2 + k

)r Γ(r + k+1
2

)

Γ(k+1
2

)

22r

(2r)!

αΓ(r − α/2)

2Γ(1− α/2)
=
∞∑
r=1

ft(r)

where the sequence of non-negative functions ft(r) is such that ft(r) ≤ ft+1(r). So by

monotone convergence theorem, we conclude

lim
t→∞

ζTk (t) =
∞∑
r=1

lim
t→∞

ft(r) =∞ .

4. Using the Laplace approximation, we can investigate the behavior of the t-zeta function

as t→∞. In fact,

ζTk (t) =
1

tk(t)

∫
φ(t
√
u)ζ(t

√
u)χ2

k(ku)k
√
u du

=
1

tk(t)

∫ ∫
φ(t
√
u)(cosh(t

√
ux)− 1)e−x

2/2H(dx)χ2
k(ku)k

√
u du

∼ 1

tk(t)

∫ ∫
φ(t
√
u)et

√
uxe−x

2/2H(dx)χ2
k(ku)k

√
u du

∼ Kα

tk(t)

∫ ∫
φ(t
√
u− x)|x|−α−1dxχ2

k(ku)k
√
u du
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Now, the function f(x) = φ(t
√
u− x)|x|−α−1 is maximized at approximately x0 = t

√
u with

second derivative roughly given by 1. So for the inner integral

∫
φ(t
√
u− x)|x|−α−1dx ,

the Laplace approximation gives

1√
2π
|t
√
u|−α−1

√
2π = |t

√
u|−α−1 .

Then, substituting this expression for the inner integral, one has that

ζTk (t) ∼ Kα

tk(t)

∫
|t
√
u|−α−1 χ2

k(ku)k
√
u du

∼ Kα

tk(t)
|t|−α−1

∫
u−

α+1
2 χ2

k(ku)k
√
u du

∼ (t2 + k)
k+1

2

√
kπ Γ

(
k
2

)
k
k+1

2 Γ
(
k+1

2

) |t|−α−1 α 2α/2−1

Γ(1− α/2)

∫
u−

α
2 k

(1/2)k/2

Γ(k/2)
(ku)k/2−1e−ku/2 du

∼ (t2 + k)
k+1

2

√
π Γ
(
k
2

)
k
k
2 Γ
(
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2

) |t|−α−1 α 2α/2−1

Γ(1− α/2)
kk/2

(1/2)k/2

Γ(k/2)

∫
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α
2

+k/2−1e−ku/2 du

∼ (t2 + k)
k+1

2

√
π Γ
(
k
2

)
k
k
2 Γ
(
k+1

2

) |t|−α−1 α 2α/2−1

Γ(1− α/2)
(k/2)k/2

1

Γ(k/2)

Γ(k−α
2

)

(k/2)−
α+k

2

∼ (t2 + k)
k+1
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√
π

k
k
2 Γ
(
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2
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2
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2 Γ
(
k+1

2

) |t|−α−1 α 2α/2−1
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Γ(k−α
2
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2
α
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k+1
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√
π Γ
(
k−α

2

)
Γ
(
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2

)
kk/2−α/2

α

2 Γ(1− α/2)
.

5. Here we derive the sparse approximation to the symmetrized conditional distribution

of µ/σ given T = Y/s. Let Z = η/σ ∼ N(0, 1) and W = ks2/σ2 ∼ χ2
k. The joint distribu-
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tion of (µ/σ, T ) is

P(µ/σ ∈ dx, T ∈ dt) =

P

(
µ/σ ∈ dx, µ/σ + η/σ√

s2/σ2
∈ dt

)
=∫

P(µ/σ ∈ dx, µ/σ + η/σ√
W/k

∈ dt, W ∈ du) du =∫
P(µ/σ ∈ dx, Z ∈

√
u/k dt− x, W ∈ du) du =∫

P(µ/σ ∈ dx)P(Z ∈
√
u/k dt− x)P(W ∈ du) du =∫

Pν,σ(dx)
√
u/kφ(

√
u/k t− x)χ2(u) du =∫

Pν,σ(dx)
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u/kφ(

√
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Γ(k/2)
uk/2−1e−u/2 du =∫
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√
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√
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Γ(k/2)
vk/2−1e−kv/2 dv =

Pν,σ(dx)e−x
2/2 (k/2)k/2√
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∫
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√
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2/2tk(t)

(
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2
)2

k+1
2

(t2 + k)
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2

)−1 ∫
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√
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2/2 dv .

Because we are interested in the symmetrized distribution, we can substitute cosh(
√
v tx) =

e
√
v tx+e

√
v (−tx)

2
to e

√
v tx, so the integral appearing in the last expression is

∫
cosh(

√
v tx)vk/2+1/2−1e−kv/2e−vt

2/2 dv =∫
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√
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∫
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(2r)!
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.
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Plugging this expression back in the former derivation, one obtains

P(µ/σ ∈ dx, |T | ∈ dt) =

Pν,σ(dx)e−x
2/2tk(t)

(
Γ(k+1

2
)2

k+1
2

(t2 + k)
k+1

2

)−1 ∫
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Pν,σ(dx)e−x
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=
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.

This last measure, as ν → 0, in terms of W#-integrals, is equivalent to

tk(t)

(
e−x

2/2Pν,σ(dx) + ρ̃e−x
2/2H(dx)

∞∑
r=1

(tx)2r

(2r)!

Γ(r + k+1
2

)2r

Γ(k+1
2

)(t2 + k)r

)
.

Then to obtain the symmetrized conditional distribution, it suffices to divide by the sparse

approximation to the marginal of |T |:

e−x
2/2Pν,σ(dx) + ρ̃

∑∞
r=1

t2r

(t2+k)r
2r

(2r)!

Γ(r+ k+1
2

)

Γ( k+1
2

)
x2re−x

2/2H(dx)

1− ρ̃+ ρ̃ζTk (t)
,

so that one can write

Pν,σ(µ/σ ∈ dx | |T |) =
1− ρ̃

1− ρ̃+ ρ̃ζTk (t)

e−x
2/2Pν,σ(dx)

1− ρ̃
+

ρ̃ζTk (t)

1− ρ̃+ ρ̃ζTk (t)

ζTk (dx; t)

ζTk (t)
+ o(ρ̃) .
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Chapter 2

Sparsity scales for large covariance

matrices

2.1 Introduction

Given n independent copies of a random p-vector (X1, . . . , Xp), the estimation of the covari-

ance matrix Σ and of its inverse, the precision matrix Ω, is central to multivariate analysis,

being a useful device to summarize the linear relationships between the variables. Estimat-

ing Σ or Ω represents a crucial step in many statistical methods, such as linear discriminant

analysis and principal component analysis, among many others.

However, in high-dimensional settings, the estimation of Σ and Ω becomes very challeng-

ing. Indeed, when the dimension p is larger than the sample size n, the sample covariance

matrix Sn = 1
n
XX ′ is not invertible and, despite being entry-wise consistent, is not consistent

in other metrics, such as the spectral norm, which are more useful in practical work. Many

results in random matrix theory, starting from the classical Marčenko-Pastur law, illustrate

the dramatic change of behaviour of Sn under the ‘large p, large n’ asymptotic assumption.

For a thorough introduction to these ideas, see for instance El Karoui (2008) [32]. In order

to progress with inference and obtain a better estimator for Σ, some sparsity assumptions
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need to be made.

Within the immense literature on estimation of sparse covariance matrices when p is

growing at the same rate or even faster than n, the novelty of Battey (2019) [8] is to not

assume that Σ is necessarily sparse on the original scale or on the inverse scale. What is

assumed is that there exists a transformation of Σ such that the transformed matrix is in

fact sparse. Provided that one can find such transformation, the paper investigates under

what conditions it is possible to exploit the sparsity on the transformed scale to deduce

spectral-norm convergence results on the original scale.

Yet, in that paper, little detail is given on how to identify such ‘sparsity scale’, which is

in fact assumed to have been already determined. This chapter tackles the problem of how

to possibly identify a sparsity-inducing transformation. The idea is to exploit the sparsity

framework described in the introduction to provide a heuristic (data-dependent) guidance

for the choice of the sparsity scale. So differently from Battey (2019) [8], where sparsity

is an assumption made on deterministic matrices, we consider a matrix to be sparse if its

off-diagonal entries can be seen as random sparse signals. The sparsity rate, estimated from

the data under this assumption, is then used as a likelihood-based criterion for comparing

the level of sparsity induced by different matrix transformations.

2.2 Brief review of Battey (2019)

In this section, we briefly review some of the main ideas presented in Battey (2019) [8]

(B. henceforth). For clarity, we adopt the same notation as that paper. Let V+
p be the

space of symmetric positive-definite p× p matrices and Vp a general space of p× p matrices.

The Frobenius, component-wise and spectral norm of a matrix A are defined as ||A||2F =∑
u,v |auv|2, ||A||max = maxu,v |au,v| and ||A||op = |λ1| respectively, where λ1, . . . , λp are the

eigenvalues of A, ordered in absolute magnitude. The covariance matrix of the random

vector (X1, . . . , Xp), having zero mean, is denoted by Σ?, and λ?1, . . . λ
?
p denote its ordered
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eigenvalues. Moreover, the symbol � means equality in order of magnitude, while writing

Z = OPr(tn,p) means that

P(Z ≤ C0tn,p) ≥ 1− εn,p ,

where C0 is some positive constant, and εn,p is a deterministic sequence converging to zero

as n, p→∞ such that tn,p → 0.

The motivation of the paper is to find conditions under which an estimator Σ̃n ∈ Vp is

consistent for Σ? ∈ V+
p in spectral norm, under the double asymptotic regime p, n → ∞,

where p grows at least as fast as n. This means that the p× p covariance matrix Σ? is also

converging to an operator Σ?
∞ : N× N→ R.

We now outline the necessary steps to identify such conditions, exploiting a sparsity-

inducing transformation f to apply to Σ?. Before proceeding though, we would like to

emphasize that in B., the population covariance matrix Σ?, and any transformation of it,

are considered fixed unknown parameters. So when using the term convergence in this

section, we refer to convergence in probability of some sample estimator to some unknown

deterministic matrix. Moreover, a symmetric positive-definite matrix is defined to be sparse

if all of its rows belong to a sufficiently small lq-ball around zero; more formally, if it belongs

to the class of matrices

F(s(p), q) = {A ∈ V+
p : max

u
|Auu| ≤ C , max

u

p∑
v=1

|Auv|q ≤ s(p)} , (2.1)

where s(p)/p→ 0 as p→∞ and q ∈ [0, 1] while C is just some positive constant.

The idea of B. hinges upon the fact that, if the transformed matrix F ? = f(Σ?) ∈ Vp is

sparse in the sense of (2.1), then on this sparsity scale, provided that one can find a pilot
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estimator F̂ P
n ∈ Vp converging to F ? component-wise, then the hard-thresholding estimator

T (F̂ P
n ) = F̂ P

n,uv1(|F̂ P
n,uv| > τ) , (2.2)

converges to F ? in spectral norm. In fact, Bickel and Levina (2008) [12] showed that, for data

(X1, . . . , Xp) drawn from a distribution with Gaussian or sub-Gaussian tails, thresholding

the sample covariance matrix leads to an estimator which is consistent for the covariance

matrix in spectral norm, when both dimensions of the matrices, n and p, go to infinity in

a regime such that log(p)/n → 0. Avella-Medina et al. (2018) [4] generalized this result to

less stringent requirements on the tails of the distribution of the data, by considering some

robust pilot estimators other than the sample covariance matrix.

There are two main steps necessary to convert this spectral norm convergence on the

sparsity scale f(Σ?), to the spectral norm convergence on the original scale Σ?. The first

step concerns under what conditions, when p > n, given a positive-definite estimator Σ̂P
n

converging to Σ? component-wise, the transformed estimator F̂ P
n = f(Σ̂P

n ) also converges to

the transformed matrix F ? = f(Σ?) component-wise. The second step, on the other hand,

has to do with the opposite direction of the transformation and aims at finding conditions

under which the spectral-norm convergence on the transformed scale, ||T (F̂ P
n )−F ?||op → 0,

implies the same kind of convergence on the original scale, ||f−1{T (F̂ P
n )}−f−1(F ?)||op → 0,

as n, p→∞.

The conditions for the first step are given in Theorem 1 of B., which we restate here for

completeness.

Theorem 1: Suppose that as p→∞, the sequence of smallest eigenvalue λ?p of Σ? is bounded

away from zero. Let Σ̂P
n be a symmetric matrix with ordered eigenvalues λ1, . . . , λp, where as
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p→∞, the sequence of smallest eigenvalue λp is bounded away from zero. Let F̂ P
n = f(Σ̂P

n ).

Then, as n, p→∞, F̂ P
n is component-wise consistent for F ?, if Σ̂P

n is component-wise con-

sistent for Σ?, and

Res
{ f(z)

(z − λ̂k)(z − λ?ν)
, λ̂k

}
+ Res

{ f(z)

(z − λ̂k)(z − λ?ν)
, λ?ν

}
, z ∈ C ,

is bounded in absolute value for all 1 ≤ k, ν ≤ p as n, p → ∞, where, for a function g of a

complex variable, Res(g, a) denotes the residue of g at a. If this condition is satisfied, then

||F̂ P
n − F ?||max � ||Σ̂P

n − Σ?||max.

So now, suppose that the pilot estimator Σ̂P
n of Σ? is component-wise consistent, so that

||Σ̂P
n −Σ?||max = OPr(rn,p), where rn,p → 0 as n, p→∞. Usually this latter condition implies

that log(p)/n → 0. Further suppose that a transformation f satisfying the assumptions in

Theorem 1 has been found and is such that the transformed matrix F ? = f(Σ?) belongs to

the class of matrices in (2.1). So we have that the transformed pilot estimator F̂ P
n = f(Σ̂P

n )

is component-wise consistent for the sparse F ?, with ||F̂ P
n − F ?||max = OPr(rn,p). Then,

Corollary 3 in B. states that as n, p → ∞, the thresholded estimator T (F̂ P
n ), is consis-

tent for F ? in spectral norm, ||T (F̂ P
n ) − F ?||op = OPr(s(p)r

1−q
n,p ). Here T (F̂ P

n ) is defined as

in (2.2), with the threshold τ chosen in such a way that τ � rn,p, where rn,p is the rate

characterizing the component-wise convergence of the pilot estimator on the original scale

||Σ̂P
n − Σ?||max = OPr(rn,p) .

At this point, however, it is not an easy task to establish general conditions under which

the spectral-norm convergence on the transformed scale implies the same kind of convergence

on the original scale. In the case where f−1 has a bounded first derivative then, for some
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constant positive c, one has

||f−1(F ?)− f−1{T (F̂ P
n )}||op ≤ c ||(f−1)

′||∞||F ? − T (F̂ P
n )||op ,

where ||g||∞ = supx |g(x)| and g′ denotes the first derivative of g. Yet, in general the inverse

of f does not have a bounded first derivative and ad hoc justifications need to be provided.

For instance, Theorem 2 in B. considers the log transform and it implies that, if the

sequences of maximum and minimum eigenvalues of L? = log Σ? are bounded as p → ∞,

then, letting L̃ = T (log Σ̂P
n ), one has that both Σ̃ = exp(L̃) and Ω̃ = exp(−L̃), converge in

spectral norm to Σ? and (Σ?)−1 respectively, as n, p→∞.

2.3 Estimating the sparsity scale

In the introduction of B. it is suggested that a likelihood-based criterion could be used to

estimate the sparsity scale associated to a given transformation. However this idea is not fur-

ther developed in the paper, and the estimation theory summarized in the previous section is

established under the assumption that a suitable sparsity scale has already been determined.

In this section we propose a heuristic strategy for finding such sparsity-inducing transforma-

tion f . In doing so, we take a completely different approach in which the unknown matrix

F ? has random off-diagonal entries having a sparse distribution Pν . Within this framework,

given a pilot estimator Σ̂P
n of Σ?, we consider some parametric family of scalar-valued trans-

formations, which can be applied to the eigenvalues of Σ̂P
n to obtain a family of transformed

pilot estimators, F̂ P
n = f(Σ̂P

n ). Given this family of transformed matrices, we then construct

a likelihood-based criterion to select one scalar-valued transformation, out of the parametric

family, depending on the estimated level of sparsity characterizing each transformed matrix

F ? = f(Σ?).
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More precisely, first we define a transformation f to be sparsity-inducing if the off-

diagonal entries of the transformed matrix F ? = f(Σ?) can be considered to be independent

random variables with a common sparse distribution Pν . Then the level of sparsity induced

by f is defined to be the sparsity rate ρ characterizing the convergence of Pν to the Dirac

delta measure at zero.

Second, we assume that the transformation of the observed pilot estimator Σ̂P
n , F̂ P

n =

f(Σ̂P
n ), is such that each off-diagonal entry F̂ P

n,uv is the scaled convolution of the corresponding

entry F ?
uv with an independent Gaussian noise ηuv. In formulae,

F̂ P
n,uv = σ(F ?

uv + ηuv) ,

where σ is an unknown scale parameter, which allows us to obtain the same likelihood esti-

mates for the sparsity parameters, under any arbitrary change of scale of the observed entries

of F̂ P
n . We discuss this fact more at the end of this section.

Then, following the signal-plus-noise model presented in the introduction, the sparse

approximation to the marginal density of each off-diagonal entry F̂ P
n,uv at f is

mν(f) = 1
σ
φ(f/σ)(1− ρ+ ρζ(f/σ)) + o(ρ) .

Here we consider the exceedance measure of Pν to be an inverse-power measure indexed by

α ∈ (0, 2). In this case, denoting by {f̂Pn,uv , u < v}, the observed off-diagonal entries of F̂ P
n ,

the sparse log likelihood for the triplet (ρ, σ, α) can be written as

logL(ρ, σ, α; f̂Pn,uv , u < v) =
∑
u<v

log
(

1
σ
φ(f̂Pn,uv/σ)

)
+
∑
u<v

log
(
1− ρ+ ρζα(f̂Pn,uv/σ)

)
, (2.3)

where the subscript in ζα aims at highlighting the dependence of the zeta function on the α
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parameter of the inverse-power exceedance measure. Maximizing (2.3) gives the maximum

likelihood estimate (ρ̂, σ̂, α̂) associated to the transformation f . The estimated level of spar-

sity induced by f is ρ̂ and this can be used to compare and select the scale of ‘maximal

sparsity’, i.e., the transformation f having the smallest estimated sparsity rate.

As in B., we define a transformation acting on a square matrix A by specifying a scalar

transformation to apply to each of its eigenvalues, while holding its eigenvectors fixed. For

example, the log transform would lead to a transformed matrix having the same eigenvectors

of A and the eigenvalues on the log scale. In general, given a one-dimensional transformation

f and the spectral decomposition A = QΛQ′, the corresponding matrix transformation

simply is

f : A 7→ Qf(Λ)Q′ ,

where f(Λ) is the diagonal matrix of the transformed eigenvalues f(λi), i = 1, . . . , p.

As far as the selection of the transformation is concerned, we only consider parametric

families of transformations, such as the family of power transformations

fβ : y 7→ yβ , β ∈ R , (2.4)

and the Box-Cox family

fβ : y 7→ (yβ − 1)/β , β ∈ R , (2.5)

where, in both cases, the limit β → 0 corresponds to the log transform. Both families in

(2.4) and (2.5) are parametrized by β ∈ R. In practice however, we only consider a finite

grid of possible values for β over a prespecified finite range R.

Notice that with both families of transformations, the estimation of the sparsity param-
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eters ρ and α is invariant under scalar multiplication of the observed matrix. In fact, if

A = QΛQ′ is multiplied by r > 0, then Ar = QrΛQ′ and fβ(Ar) = Q
(
rβfβ(Λ) + c

)
Q′ =

rβQfβ(Λ)Q′ + cI, where I is the identity matrix and c = 0 for the power transform while

c = (rβ − 1)/β for the Box-Cox transform. Since in (2.3) we are estimating (ρ, σ, α) only

from the transformed off-diagonal entries, the estimation based on {fβ(rΣ̂P
n )}u>v is equiva-

lent to that based on {rβfβ(Σ̂P
n )}u>v, so the only parameter that gets affected by the scaling

operation is indeed the scale parameter σ. Here {A}u>v denotes the set of the lower-diagonal

entries of A. It is easy to show that the scale parameter estimated from {fβ(rΣ̂P
n )}u>v is rβ

times the scale parameter estimated from {fβ(Σ̂P
n )}u>v.

2.4 Simulation study

To illustrate how the heuristic method described in the previous section works, we mimic the

simulation study presented in Section 4.1 of B., where Σ? ∈ V+
p is constructed to be sparse,

in the sense of (2.1), on the logarithmic scale. More precisely, Σ? = exp(L?) and the matrix

L? is constructed as

L? =

|B|∑
m=1

α?mBm ,

with matrices Bm ∈ B. Here B denotes the natural symmetrized basis for the space of

symmetric matrices which is the union of

B1 = {B : B = eje
′
j, j ∈ [p]} ,

and

B2 = {B : B = eje
′
k + eke

′
j, j, k ∈ [p], j 6= k} ,

where ej denotes the jth vector of the canonical basis of Rp, with p = 200. The coefficient

vector α? has a support of non-zero entries which is randomly sampled from the index set

[p(p+ 1)/2] and has size K = 60. Given the non-zero support, half of these components are
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uniformly drawn from [0.5, 1] and the other half from [−1,−0.5]. The resulting L? belongs

to the class F(s(p), q) with q = 0.

For n = 20, 60, 100, 140, we simulate n independent copies of a p-dimensional random

vector having distribution Np(0,Σ
?), and we construct the pilot estimator Σ̂P

n as

Σ̂P
n = (1− δ)Sn + δD̂n ,

which is a convex combination of the sample covariance matrix Sn = 1
n
XX ′ and D̂n =

diag(Sn). Here δ = ((log p)/n)1/2. This pilot estimator of Σ?, proposed in Proposition 2 of

B., is guaranteed to have its smallest eigenvalue pulled away from zero.

Following Section 2.3, we consider the two families of transformations (2.4) and (2.5)

with values of β ranging from −1 to 1 and, after applying each transformation fβ to Σ̂P
n ,

giving F̂ P
n,β = fβ(Σ̂P

n ), we obtain the maximum likelihood estimate of the triplet (ρ, σ, α),

corresponding to each transformation fβ. The estimation results are reported from Table 2.1

to Table 2.4. The minimum of ρ̂ is not always reached at β = 0 so, if we were to choose

the transformation fβ? based on the estimated sparsity rate, we would not necessarily se-

lect the log transform. In fact, since the sparsity assumptions of Section 2.3 on f(Σ?) are

somewhat more general than the sparsity structure imposed on log Σ? in its construction,

there is no compelling reason why we should expect the log transform to be selected by our

likelihood procedure. Yet, in a similar fashion of how the Box-Cox transformation is chosen

in the linear regression setting, given the results of Theorem 2 in B., one might still prefer

to opt for the log transform, if the difference in the estimated sparsity rates is not dramatic.

Figure 2.1 shows the estimated pair (ρ̂, σ̂) for the two different families, black curves for the

power transform and red curves for the Box-Cox transform. The Box-Cox transformation

appears to correct for the discontinuity at zero, which instead can be easily detected in the
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curves corresponding to the power transform.

Table 2.5 reports the performance of five different estimators of Σ?, averaged over 100

Monte Carlo replications. The performance of each estimator matrix E, is assessed in terms

of relative errors in both spectral and Frobenius norm. The estimators considered are: the

sample covariance matrix Sn, its thresholded version T (Sn), the pilot estimator Σ̂P
n and two

transformed, thresholded and transformed-back versions of Σ̂P
n . Column 4 refers to Σ̂P

log =

exp{T (log(Σ̂P
n ))}, while column 5 reports results for Σ̂P

β? = f−1{T (f(Σ̂P
n ))}, with f = fβ?

corresponding to the Box-Cox transformation with smallest estimated sparsity rate. The

hard-thresholding procedure is carried out following (2.2), and choosing τ = c ((log p)/n)1/2,

with c = 1 on both original (column 2) and transformed scales (column 4 and 5). The

advantage of thresholding the pilot estimator on a transformed scale is evident for all sample

sizes, since the relative errors displayed in column 4 and 5 are always smaller than those of the

other three estimators. Moreover, except for the case n = 60, choosing the transformation

with smallest estimated sparsity rate delivers even better results than the log transform.
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Figure 2.1: Plots of the estimated parameters ρ and σ associated to two different families
of parametric transformations: the power transform λ → λβ (black lines) and the Box-Cox
transform λ→ (λβ − 1)/β (red lines). Here β ranges from −1, corresponding to the inverse
transform, to 1, the identity transform, while β = 0 corresponds to the log transform. The
vertical red line indicates the value of β with the lowest estimated ρ within the Box-Cox
family.

(a) Power transform

β ρ̂ · 102 σ̂ · 102 α̂

-1.00 7.36 3.26 1.58
-0.75 3.17 2.64 1.75
-0.50 0.18 1.92 1.85
-0.25 0.14 1.06 1.56
0.00 0.10 4.87 1.78
0.25 0.16 1.47 1.62
0.50 3.56 3.51 1.76
0.75 4.27 6.78 1.67
1.00 5.50 12.0 1.60

(b) Box-Cox transform

β ρ̂ · 102 σ̂ · 102 α̂

-1.00 7.37 3.26 1.58
-0.75 3.11 3.52 1.78
-0.50 0.11 3.84 1.82
-0.25 0.10 4.23 1.81
0.00 0.10 4.87 1.78
0.25 1.64 5.73 1.73
0.50 3.81 7.00 1.77
0.75 4.28 9.04 1.67
1.00 5.50 12.0 1.60

Table 2.1: Maximum likelihood estimates when n = 20, p = 200, δ = 0.51.
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(a) Power transform

β ρ̂ · 102 σ̂ · 102 α̂

-1.00 6.23 7.77 1.55
-0.75 4.93 5.34 1.61
-0.50 5.48 3.28 1.66
-0.25 3.76 1.60 1.58
0.00 11.84 5.93 1.79
0.25 4.60 1.67 1.62
0.50 7.10 3.57 1.66
0.75 0.33 6.74 0.10
1.00 8.44 9.78 1.50

(b) Box-Cox transform

β ρ̂ · 102 σ̂ · 102 α̂

-1.00 6.23 7.77 1.55
-0.75 4.99 7.12 1.62
-0.50 5.46 6.55 1.65
-0.25 7.61 6.16 1.72
0.00 11.84 5.93 1.79
0.25 11.81 6.21 1.78
0.50 7.27 7.13 1.66
0.75 6.79 8.26 1.56
1.00 8.44 9.78 1.50

Table 2.2: Maximum likelihood estimates when n = 60, p = 200, δ = 0.3.

(a) Power transform

β ρ̂ · 102 σ̂ · 102 α̂

-1.00 7.16 9.80 1.53
-0.75 6.67 6.30 1.57
-0.50 6.39 3.70 1.59
-0.25 6.11 1.69 1.62
0.00 7.14 6.35 1.65
0.25 7.55 1.57 1.53
0.50 7.03 3.32 1.60
0.75 6.57 5.53 1.51
1.00 8.59 8.36 1.48

(b) Box-Cox transform

β ρ̂ · 102 σ̂ · 102 α̂

-1.00 7.18 9.79 1.53
-0.75 6.69 8.40 1.57
-0.50 5.71 6.15 1.55
-0.25 6.42 6.74 1.62
0.00 7.14 6.35 1.65
0.25 5.54 6.43 1.58
0.50 4.84 6.79 1.50
0.75 6.73 7.36 1.52
1.00 8.59 8.36 1.48

Table 2.3: Maximum likelihood estimates when n = 100, p = 200, δ = 0.23.

(a) Power transform

β ρ̂ · 102 σ̂ · 102 α̂

-1.00 7.68 10.41 1.51
-0.75 11.39 6.31 1.78
-0.50 6.91 3.71 1.56
-0.25 6.88 1.65 1.60
0.00 3.35 6.35 1.40
0.25 1.83 1.58 1.17
0.50 2.52 3.23 1.24
0.75 5.71 5.07 1.43
1.00 8.92 7.41 1.43

(b) Box-Cox transform

β ρ̂ · 102 σ̂ · 102 α̂

-1.00 7.69 10.41 1.52
-0.75 7.38 8.64 1.54
-0.50 6.92 7.42 1.56
-0.25 6.07 6.65 1.56
0.00 3.35 6.35 1.40
0.25 2.12 6.29 1.22
0.50 2.66 6.45 1.26
0.75 5.77 6.76 1.43
1.00 8.92 7.41 1.43

Table 2.4: Maximum likelihood estimates when n = 140, p = 200, δ = 0.19.
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n Error Sn T (Sn) Σ̂P
n Σ̂P

log Σ̂P
β?

20 ‖Σ∗ − E‖op / ‖Σ∗‖op 340.36 198.71 160.36 78.52 78.52

(29.42) (32.79) (13.63) (4.14) (4.14)
20 ‖Σ∗ − E‖F / ‖Σ∗‖F 255.04 157.80 129.00 63.55 63.55

(7.82) (10.96) (3.37) (0.64) (0.64)
60 ‖Σ∗ − E‖op / ‖Σ∗‖op 157.14 93.55 106.04 70.34 86.42

(11.12) (11.59) (7.15) (5.24) (1.33)
60 ‖Σ∗ − E‖F / ‖Σ∗‖F 147.49 89.09 105.50 55.51 71.67

(2.56) ((3.53) (1.61) (1.45) (0.55)
100 ‖Σ∗ − E‖op / ‖Σ∗‖op 111.59 67.98 81.94 55.90 42.66

(8.97) (9.17) (6.28) (4.74) (4.97)
100 ‖Σ∗ − E‖F / ‖Σ∗‖F 114.34 68.85 89.22 46.12 32.98

(1.58) (2.34) (1.04) (1.21) (1.36)
140 ‖Σ∗ − E‖op / ‖Σ∗‖op 90.12 55.45 68.98 49.17 42.93

(6.01) (6.45) (4.45) (4.33) (4.50)
140 ‖Σ∗ − E‖F / ‖Σ∗‖F 96.66 58.07 78.79 40.45 34.09

(1.34) (1.97) (0.96) (1.19) (1.11)

Table 2.5: Comparison of estimators for Σ?. Relative error in spectral and Frobenius norm,
averaged over 100 simulations. Standard errors shown in parenthesis.
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Chapter 3

Higher-order sparse integral

expansion

3.1 Introduction

As explained in the introduction, in McC&P, the definition of a sparse sequence of distri-

butions {Pν}ν identifies the pair (ρ,H) to be the rate function ρ = ρν and the exceedance

measure H(dx) such that

lim
ν→0

ρ−1
ν

∫
w(x)Pν(dx) =

∫
w(x)H(dx) ,

for any function w in the class

W# = {w : R→ R s.t. w(x) and x−2w(x) is bounded and continuous} .

Adopting an operator notation, another way of writing this definition of sparsity is

Pν(w) = ρH(w) + o(ρ) ,
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where F :W# → R

F (g) =

∫
g(x)F (dx)

is the operator form of the measure F acting on the function g ∈ W#. With this notation,

it is easy to see how the sparsity definition is constructing the W#-integral asymptotic

expansion of Pν , driven by ν → 0, and the pair (ρ,H) characterizes the first term in this

expansion. From this point of view, a reasonable question to ask is whether it is possible

to find subsequent pairs (ρ2, H2), (ρ3, H3), and so on, for some sequence of decreasing rates

{ρj}j≥2 , such that

Pν(w) = ρH(w) + ρ2H2(w) + ρ3H3(w) + · · ·+ ρkHk(w) + o(ρk) .

In this context, we let Hk, k ≥ 2, be any linear functional defined on the space of functions

W#. For this reason, we will refer to Hk(w) as the kth-order exceedance functional.

A related question arising from this higher-order integral expansion concerns equivalence

relations. Indeed, as highlighted in McC&P, it is possible that two sparse families have

the same first-order pair (ρ,H). For instance, the scaled Cauchy and the scaled horseshoe

families are first-order equivalent in the sparse limit, since they share the inverse-power ex-

ceedance measure, and their sparsity parameters can be adjusted so to match the two rates.

Therefore, it comes natural to ask whether the equivalence carries over to second and higher

orders or whether, and at what point, this equivalence ceases to exist.

In the next sections, we examine different classes of sparse families separately: the mea-

sures having a density function which is analytic in the sparsity parameter; the scale sparse

measures; the mixture measures. For each of these, we illustrate how to identify the terms

beyond the first one, in their sparsity integral expansion. We conclude by giving two ex-

amples, one when the first-order equivalence relation carries over to higher orders, and one
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when it does not.

3.2 Analytic density with Lévy integrable coefficients

When the sparse measure has a density pν(x) which is an analytic function of the sparsity

parameter ν, one can write the density function using its Taylor series at ν = 0,

pν(x) =
∞∑
k=0

∂k

∂νk
pν(x)

∣∣∣
ν=0

νk

k!
.

Given this expansion, it is natural to identify subsequent sparsity rates as the increasing

powers of ν, while the coefficients uk(x) = ∂
∂ν
pν(x)

∣∣∣
ν=0

constitute the measures defining the

corresponding exceedance functionals

Hk(w) =

∫
w(x)uk(x) dx .

A case in point is the double gamma family

Pν(dx) =
|x|ν−1e−|x|

2Γ(ν)
dx .

In fact, the density function can be written as a convergent power series in the sparsity

parameter ν,

Pν(dx) =
∞∑
k=0

uk(x)
νk

k!
, (3.1)

where

uk(x) = |x|−1e−|x|
k−1∑
j=0

k!

(k − j)!
cj(log x)k−j−1 .

The numbers cj arise from the expansion 1
Γ(z+1)

=
∑∞

j=0 cjz
j. The functions uk(x) are all

Lévy integrable, since
∫

(x2 ∧ 1)uk(x)dx < ∞ for all k. Therefore, for this sparse family,

one can find a sequence of measures {Hk}, which are all exceedance measures according to
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Definition 0.1, together with a sequence of rates {ρk}, with ρk ∝ νk, for which

Pν(w) = ρH(w) + ρ2H2(w) + ρ3H3(w) + · · · .

Interestingly, this expansion coincides with the symmetric version of the expansion pro-

posed by Barndorff-Nielsen and Hubalek (2008) [7] for the infinitely divisible distribution

on R+ associated to the gamma process, which has Lévy measure Λ(dx) = e−xx−1dx. The

authors propose this expansion as a point-wise expansion of the density function. They seem

to consider it valid in terms of integrals only against functions vanishing in a neighborhood

of the origin, while we state it for the larger class W#.

3.3 Scale sparse distributions

In this section we illustrate how to derive the sparsity integral expansion for those sparse

measures whose sparsity is driven by their scale parameter going to zero. To give an insight

of how we identify subsequent terms in the sparsity expansion for these families, we start

presenting the derivation for two examples, the scaled Cauchy and scaled horseshoe. Follow-

ing the same logic, we then extend it to the scaled Student’s t with d degrees of freedom,

d ∈ (0, 2).

3.3.1 Scaled Cauchy and scaled horseshoe

Let Cν(dx) = ν
π(x2+ν2)

dx be the scaled Cauchy. As shown in the introduction, its first-order

exceedance measure is H(dx) = dx/(
√

2π|x|2), while its rate function is ρ = ν
√

2/π. We

start by writing Cν(dx)− ρH(dx),

Cν(dx)− ρH(dx) =
ν

π(x2 + ν2)
dx− ν 1

π|x|2
dx =

−ν2

x2

(
1

ν

ν2

π(x2 + ν2)

)
,
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and notice that this can be written as

Cν(dx)− ρH(dx) =
−ν2

x2
P ?
ν (dx) , (3.2)

where P ?
ν = Cν is another scaled Cauchy. This clearly, by definition, is a sparse measure

converging to δ0(dx). Therefore, as ν → 0,

1

−ν2
(Cν(dx)− ρH(dx)) =

1

x2
Cν(dx)→ 1

x2
δ0(dx) .

Now, |x|−2δ0(dx) is not an exceedance measure but

H2(w) =

∫
w(x)|x|−2 δ0(dx) (3.3)

still defines a linear functional on W#, which returns the value of w(x)/x2 at zero. This

value is finite as w(x) = O(x2) at the origin. If w has a second derivative at zero, then

H2(w) = w′′(0)/2. In any case, one can identify ρ2 = −ν2 and H2 as in (3.3) to be the

second-order pair in the integral expansion of Cν ,

Cν(w) = ρH(w) + ρ2H2(w) + o(ρ2) .

At the same time, one can read H2(w) as the ‘zero-term’ in the expansion of the measure

P ?
ν = Cν for the integral of the function s(x) = 1

x2w(x). Indeed, this function s /∈ W#, but,

because P ?
ν is itself sparse with first-order pair (ρ,H), one can still write

P ?
ν (s) = s(0) +

∫
(s(x)− s(0))P ?

ν (dx) = s(0) + ρ

∫
(s(x)− s(0))H(dx) (3.4)

since s(x)− s(0) = O(x2) at the origin so that w̃(x) = s(x)− s(0) belongs to W#.
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Putting (3.4) and (3.2) together,

∫
w(x) (Cν(dx)− ρH(dx)) = −ν2

∫
s(x)P ?

ν (dx) = −ν2

(
s(0) + ρ

∫
(s(x)− s(0))H(dx)

)
,

it comes natural to regard the integral appearing in the RHS of (3.4) as the third-order

exceedance functional for the initial Cν . In other words,

H3(w) =

∫ (
1

x2
w(x)−

∫
1

x2
w(x) δ0(dx)

)
H(dx) =

∫
(s(x)− s(0))H(dx)

is the linear functional on W# which, together with ρ3 = ρ2ρ, constitute the third term in

sparsity integral expansion of Cν ,

Cν(w) = ρH(w) + ρ2H2(w) + ρ3H3(w) + o(ρ3) .

Therefore, if w has a second derivative at zero, with a little sloppy notation, one can write

the third-order sparsity expansion for the scaled Cauchy as

Cν(w(x)) =

√
2

π
νH(w(x))− ν2 w

′′(0)

2
−
√

2

π
ν3H

(
w(x)

x2
− w′′(0)

2

)
+ o(ν3) , (3.5)

from which one finds ρ =
√

2
π
ν, ρ2 = −ν2 and ρ3 = −

√
2
π
ν3.

We now turn to look at the scaled horseshoe, HSν(dx) = 1
2π ν

log
(

1 + ν2

x2

)
dx, whose

first-order sparsity pair is ρ = 1√
2π
ν and H(dx) = dx/(

√
2π|x|2). As for the Cauchy, we

start by writing

HSν(dx)−ρH(dx) =
1

2π ν

(
log
(

1+
ν2

x2

))
dx−ν dx

2πx2
=
−ν2

x2
· 1

2πν

(
1− x

2

ν2
log
(

1+
ν2

x2

))
dx .
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Now, the measure 1
2πν

(
1− x2

ν2 log
(

1 + ν2

x2

))
dx is not another scaled horseshoe. Nevertheless,

it is still a scaled measure indexed by the sparsity parameter ν so, after normalization,

I =
1

2π

∫ (
1− x2 log

(
1 +

1

x2

))
dx =

1

3
,

the probability measure

P ?
ν (dx) = 3

1

2πν

(
1− x2

ν2
log

(
1 +

ν2

x2

))
dx ,

is a sparse measure converging to the Dirac delta measure at zero as ν → 0. It thus follows

that, as ν → 0,

3

−ν2
(HSν(dx)− ρH(dx)) =

1

x2
P ?
ν (dx)→ 1

x2
δ0(dx) ,

so, for the scaled horseshoe family, the second term in the sparsity integral expansion is given

by

ρ2H2(w) = −1

3
ν2

∫
w(x)|x|−2 δ0(dx) .

At this stage, similarly to the Cauchy case, we can obtain the third term in the expansion

of HSν by finding the first term ρ?H?(w) in the expansion of the sparse measure P ?
ν (dx).

The first thing to notice is that P ?
ν is another scale sparse family so, as mentioned in the

introduction, its exceedance measure is an inverse-power measure and it can be determined

by looking at the tail behavior of the unscaled density p?(x) at infinity. Thus, it is sufficient

to find the exponent γ of regular variation for which

lim
x→∞

p?(x)

|x|γ
= L(x) ,

where L(x) is a slowly varying function, i.e., L(tx)/L(x)→ 1 as x→∞ for every t > 0 (see
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Feller, 1966 [35]). Now,

lim
x→∞

3
2π

(
1− x2 log

(
1 + 1

x2

))
|x|−2

=
3

4π
,

so the tails of p?, at infinity, behave like |x|−2, and therefore the exceedance measure H?

is again the inverse-square H(dx) = dx/(
√

2π|x|2), whereas its first-order rate is ρ? =

3
4π

√
2πν = 3

2
√

2π
ν. Thus, as for the Cauchy, writing

∫
w(x) (HSν(dx)− ρH(dx)) =

−ν2

3

∫
s(x)P ?

ν (dx) =
−ν2

3

(
s(0)+ρ?

∫
(s(x)− s(0))H?(dx)

)
,

we arrive at identifying the third-order term in the expansion of HSν to be

ρ2ρ
?

∫
(s(x)− s(0))H?(dx) =

−ν3

2
√

2π

∫ (
1

x2
w(x)−

∫
1

x2
w(x) δ0(dx)

)
H(dx) .

Again, if w has a second derivative at zero, with the same notation of (3.5), we can write

the third-order sparsity integral expansion for the scaled horseshoe as

HSν(w(x)) =
1√
2π

νH(w(x))− 1

3
ν2 w

′′(0)

2
− 1

2
√

2π
ν3H

(
w(x)

x2
− w′′(0)

2

)
+ o(ν3) , (3.6)

from which one finds ρ = 1√
2π
ν, ρ2 = −1

3
ν2 and ρ3 = − 1

2
√

2π
ν3.

3.3.2 Scaled Student’s t

We now derive the sparsity integral expansion for the scaled Student’s t distribution with

α ∈ (0, 2) degrees of freedom,

Pν(dx) = Kα
να

(x2 + αν2)
α+1

2

dx ,

64



where Kα = Γ(α+1
2

)αα/2/(
√
πΓ(α/2)). This sparse family has first-order rate

ρ = Kα
Γ(1− α/2)

α2α/2−1
να

and exceedance measure

H(dx) =
α2α/2−1

Γ(1− α/2)
|x|−α−1dx .

Taking the cue from the Cauchy and horseshoe examples, we start by writing the difference

between Pν(dx) and its first-order term ρH(dx) and try to obtain another sparse probability

measure. So,

Pν(dx)− ρH(dx) = Kα
να

(x2 + αν2)
α+1

2

−Kα
να

(x2)
α+1

2

=
−ν2

x2

Kα

ν

(
x2/ν2

(x2/ν2)
α+1

2

− x2/ν2

(x2/ν2 + α)
α+1

2

)
dx

=
−ν2

x2
Iα ·

1

ν
p?
(x
ν

)
dx ,

where Iα is the normalization constant

Iα =

∫
Kα

(
x2

(x2)
α+1

2

− x2

(x2 + α)
α+1

2

)
dx =

α

2− α
,

and p?(x) is the probability density function

p?(x) =
1

Iα
Kα

(
x2

(x2)
α+1

2

− x2

(x2 + α)
α+1

2

)
.

So, similarly to the Cauchy and horseshoe cases, we have

Pν(dx)− ρH(dx) =
−ν2

x2
Iα · P ?

ν (dx) ,

where P ?
ν is another scale sparse measure: it converges to δ0(dx) as ν → 0 and has a first-

order sparsity pair (ρ?, H?), with H? being an inverse-power measure. Again, to find H?, we
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just need to determine the tail behavior of p?. Since

lim
x→∞

p?(x)

|x|−α−1
=
Kα

Iα

α(α + 1)

2
,

the exceedance measure of P ?
ν is the α-inverse-power measure H(dx) = α2α/2−1

Γ(1−α/2)
|x|−α−1dx,

and the rate is ρ? = 1
Iα

α(α+1)
2

Kα
Γ(1−α/2)

α2α/2−1 ν
α = 1

Iα

α(α+1)
2

ρ. Then

∫
w(x)(Pν(dx)−ρH(dx)) = −ν2Iα

∫
s(x)P ?

ν (dx) = −ν2Iα

(
s(0)+ρ?

∫
(s(x)−s(0))H(dx)

)

leads to the third-order sparsity integral expansion of the scaled tα of Student

Pν(w(x)) = ρH(w(x)) + ρ2
w′′(0)

2
+ ρ3H

(
w(x)

x2
− w′′(0)

2

)
+ o(ν2+α) , (3.7)

where ρ = Kα
Γ(1−α/2)

α2α/2−1 ν
α, ρ2 = − α

2−α ν
2 and ρ3 = −α(α+1)

2
Kα

Γ(1−α/2)

α2α/2−1 ν
2+α.

Comparing (3.7) to (3.5) and (3.6), we can recognize the same pattern in the alternation

of the measures. Indeed, after eliminating the first-order term, one is left with two functionals

which are closely related to another sparse measure, having the same tail behavior as the

starting one. All three cases share the same second-order exceedance functional, while the

third one retains the inverse power characterizing the initial sparse measure. And, as needed,

the expansion for the scaled tα, with α = 1, coincides with the expansion for the scaled

Cauchy.

3.3.3 Normalization

To give an illustration of the sparsity integral expansions derived in the previous sections,

consider the function w(x) = (1 − e−x2/2). By definition, any unitary exceedance measure
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H(dx) is normalized in such a way that

H(w) =

∫
(1− e−x2/2)H(dx) = 1 .

Now, s(x) = w(x)
x2 = (1−e−x2/2)

x2 so that s(0) = w′′(0)
2

= 1
2
. Suppose that H(dx) is the α-inverse-

power measure, then ∫
(s(x)− s(0))|x|−α−1 dx =∫ (

1

x2
(1− e−x2/2)− 1

2

)
|x|−α−1 dx =∫ ( ∞∑

r=2

(−1)rx2r−2

2rr!

)
|x|−α−1 dx =∫ (

e−x
2/2 − 1− x2/2

)
(x2)−1−α+1

2 dx =∫ (
e−z/2 − 1− z/2

)
z−1−α+1

2
− 1

2 dx =

− Γ(1− α/2)

α(α + 2)2α/2−1
.

So

H

(
w(x)

x2
− w′′(0)

2

)
=

∫
(s(x)− s(0))

α2α/2−1

Γ(1− α/2)
|x|−α−1 dx =

−1

α + 2
.

Then, for a scale sparse measure Pν with rates ρ, ρ2, ρ3 and exceedance functionals H,H2, H3

as those in (3.6) and (3.7), the third-order sparsity expansion of
∫

(1− e−x2/2)Pν(dx) gives

ρ+ ρ2
w′′(0)

2
+ ρ3H

(
w(x)

x2
− w′′(0)

2

)
+ o(ρ3) = ρ+

1

2
ρ2 −

1

α + 2
ρ3 + o(ρ3) . (3.8)

In light of (3.8), we could decide to renormalize the second and third-order exceedance

functionals H2 and H3 in such a way that

H2(1− e−x2/2) = 1 and H3(1− e−x2/2) = 1 .
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More generally, any exceedance functional of order k such that

Hk(1− e−x
2/2) = 1

will be called a unitary exceedance functional. So, for the sparse scale family, the unitary

second-order exceedance functional is

H2(w) = 2

∫
w(x)

x2
δ0(dx) ,

while the unitary third-order exceedance functional is

H3(w) = −(α + 2)

∫ (
w(x)

x2
−
∫
w(x)

x2
δ0(dx)

)
H(dx) .

Clearly, this requires adjusting the second and third-order rates to be ρ̃2 = 1
2
ρ2 and ρ̃3 =

− 1
α+2

ρ3. In this way, the sparse approximation of order o(ρ̃3) for
∫

(1− e−x2/2)Pν(dx) is

ρ+ ρ̃2 + ρ̃3 . (3.9)

Suppose that ρ = 0.1, then (3.9) is equal to 0.0927 for the scaled Cauchy with scale-sparsity

parameter ρ
√
π/2 = 0.125, while (3.9) is equal to 0.0906 for the scaled horseshoe with scale-

sparsity parameter ρ
√

2π = 0.251. On the other hand the first-order approximation 0.1 gets

corrected downwards to 0.0649 when the scale sparse measure is Student’s t with α = 1.5

degrees of freedom.

3.3.4 Impact on signal-plus-noise marginal density

We conclude this part on scale sparse distributions investigating the impact of including

higher-order terms in the sparsity expansion of a scale sparse measure on the inference for

the signal-plus-noise model.

68



Let Y = µ+ η, where µ ∼ Pν is a scale sparse signal, independent of η ∼ N(0, 1). Then

the marginal density of Y can be written as

mν(y) = φ(y)

(∫
R
(cosh(yx)− 1)e−x

2/2 Pν(dx) + 1−
∫
R
(1− e−x2/2)Pν(dx)

)
.

Both functions appearing inside the two integrals are in the class W#. Thus, we can apply

the sparsity integral expansions derived in the previous sections to both of these functions,

to obtain the third-order sparse approximation for mν .

For doing so, we suppose that Pν has unitary exceedance functionals given by H(w) =∫
w(x)H(dx), H2(w) = w′′(0) and H3(w) = −(α + 2)

∫
(w(x)/x2 − w′′(0)/2)H(dx) respec-

tively, where H(dx) = α2α/2−1

Γ(1−α/2)
|x|−α−1dx is the inverse power measure with index α. This

is the case when Pν is any scaled tα distribution, α ∈ (0, 2), as well as when Pν is a scaled

horseshoe. Then, given the associated rates ρ, ρ̃2, ρ̃3, we can write

mν(y) = φ(y)
(
ρζ(y) + ρ̃2y

2 + ρ̃3ζ
(3)(y) + 1− ρ− ρ̃2 − ρ̃3

)
+ o(ρ̃3) . (3.10)

Here ζ(y) =
∫
R\{0}(cosh(yx) − 1)e−x

2/2H(dx) is the zeta function introduced by McC&P,

while

ζ(3)(y) = −(α + 2)

∫
R\{0}

(
(cosh(yx)− 1)e−x

2/2

x2
− y2

2

)
H(dx)

is another integral transform of Hd, which can be similarly written as a power series

(α + 2)
y2

2
−
∞∑
r=2

y2r

(2r)!

α (α + 2)Γ(r − 1− α/2)2r−2

Γ(1− α/2)
.

See the appendix for derivation.

Notice that because of the normalization chosen, all three functions appearing in (3.10),
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ζ(y), y2 and ζ(3)(y), when multiplied by the Gaussian density, integrate to one over the real

line. However, while both ψ(y) = φ(y)ζ(y) and ψ2(y) = φ(y)y2 are also always non negative,

which means they are density functions, ψ3(y) = φ(y)ζ(3)(y) is not always non negative. This

is shown in Figure 3.1, where we plot all three psi functions for α = 0.5, 1 and 1.5. Recall

that α = 1 is the index for the scaled Cauchy and scaled horseshoe.

Figure 3.2 shows the impact of the subsequent inclusion of higher-order terms on the

tail-inflation factor in the sparse approximation to mν :

φ(y)
(
ρ ζ(y) + ρ̃2 y

2 + ρ̃3 ζ
(3)(y)

)
.

In this case, we fix ρ = 0.1 and α = 1, and compute ρ̃2 and ρ̃3 for the Cauchy case. The

inclusion of the second-order term has the effect of lowering the first-order function at the

two symmetric peaks around the origin. On the other hand, the impact of including also the

third-order term goes in the opposite direction but it is much less appreciable.

Figure 3.3 instead shows the consequences of subsequently including higher-order com-

ponents in the sparse approximation to the marginal density mν as in (3.10). Again, we

consider the case when the signal distribution is the scaled Cauchy, with first-order rate

ρ = 0.1. We compare the sparse approximations of different orders (colored solid lines)

to the exact convolution density (black dashed line). We can see that the third-order ap-

proximation, depicted by the yellow line, is closer to the exact density than the first-order

approximation, the blue line, both in the central part around the origin, as well as in the

tails.
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Figure 3.1: Psi functions appearing in the sparse approximation of mν(y), for α = 0.5, 1, 1.5.
Blue curves depict ψ(y) = φ(y)ζ(y), brown curves depict ψ2(y) = φ(y)y2, while yellow curves
depict ψ3(y) = φ(y)ζ(3)(y).
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Figure 3.2: Impact on tail inflation factor of the sparse approximation for mν(y). Blue curve
depicts only ρφ(y)ζ(y), brown curve includes second-order term, φ(y)(ρ ζ(y) + ρ̃2 y

2), while
yellow curve includes the third-order term as well, φ(y)(ρ ζ(y) + ρ̃2 y

2 + ρ̃3 ζ
(3)(y)). We fix

ρ = 0.1, α = 1 and compute ρ2 = −0.005 and ρ3 = 0.27 · 10−3 as for the Cauchy case.

3.4 Mixtures

In this section, we examine another class of sparse families, namely those which can be

written as a mixture of two distributions. This kind of mixture measures frequently appear

frequently in the Bayesian literature on the signal-plus-noise model and all of its extensions.

See for instance, Mitchell and Beauchamp (1988) [52], Johnstone and Silverman (2004)

[45], Ročková and George (2018) [60], among many many others. Indeed, the mixture idea

captures the prior information that, with some probability p, the signal might be zero, or

very close to zero, and, with probability 1− p, the signal has a non-trivial distribution over

R. See Efron (2007) [27] and references therein for the two-group model and its use in the

microarray data literature.
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Figure 3.3: Impact of higher-order terms in the sparse approximation to the marginal
density of Y , when it is the convolution of a scaled Cauchy and a standard Gaussian:
φ(y)

(
ρζ(y) + ρ̃2y

2 + ρ̃3ζ
(3)(y) + 1− ρ− ρ̃2 − ρ̃3

)
+ o(ρ̃3), when first-order sparsity rate is

ρ = 0.1. Blue curves include only first-order term, brown curves include up to second-order
term while yellow curves include up to third-order term. The dashed black curves instead
show the exact density for the convolution. Top panel: central part of the density. Bottom
panel: tail of the density.
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3.4.1 Atom-and-slab family

Consider the following atom-and-slab model

Pν(dx) = (1− ν)δ0(dx) + νF (dx) , (3.11)

where F is any symmetric distribution on R. In this case, it is immediate to identify the

first-order sparsity rate to be ρ ∝ ν and finite exceedance measure proportional to F (dx).

Once we eliminate this first-order term νF from Pν , we are left with just the Dirac delta

measure at zero, which, being the limit itself, does not have a non-trivial sparse expansion.

Thus, for this family, one can simply write

Pν(w) = νF (w) + o(ν∞) .

Now instead, consider a slightly different family

Pν(dx) = (1− ν)δ0(dx) + νFν(dx) , (3.12)

where the slab distribution Fν is parametrized by the sparsity parameter. If Fν is sparse with

first-order pair (ρ,H), then the first-order term in the sparsity expansion of Pν is given by

the pair (νρ,H). Similarly, if Fν has a non-trivial second-order term in its sparse expansion,

say ρ2 and H2, then Pν will also have a second-order term. More generally, if Fν has a

kth-order sparse expansion, then one can write

Pν(w) = ν(ρH(w) + ρ2H2(w) + . . . ρkHk(w)) + o(νρk) .

On the other hand, if Fν is not sparse, then it might be the case that, even if Pν

converges to the Dirac delta measure as ν → 0, Pν does not have a first-order spar-

sity term. For instance, if Fν is a Cauchy distribution with scale parameter 1/ν, i.e.,
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Pν(dx) = (1− ν)δ0(dx) + ν ν
π(ν2x2+1)

dx, then

ν−2

∫
w(x)Pν(dx) = ν−2

∫
w(x)

dx

π(ν2x2 + 1)
=

∫
w(x)

dx

π
.

Yet, the functional w →
∫
w(x)dx

π
is finite only if w is integrable with respect to Lebesgue

measure on R, which is not necessarily true for all functions in W#.

In conclusion, for the atom-and-slab family in (3.12), the sparsity integral expansion of

Pν strictly depends on the behavior of the slab distribution Fν , as ν goes to zero.

3.4.2 Spike-and-slab family

The spike-and-slab family is usually referred to as a mixture distribution of the kind

Pν(dx) = (1− ν)Gν(dx) + νF (dx) , (3.13)

where F is any symmetric distribution on R, while Gν is a sparse measure converging to

the Dirac delta at zero as ν → 0. Depending on how fast this convergence occurs, we use

different techniques to derive a sparsity integral expansion for Pν .

Spike distribution with non-exponential tails

When the spike distribution Gν is itself a sparse measure for which a non trivial sparsity

integral expansion can be derived, then, besides the first-order term νF , the expansion of

Pν follows the expansion of Gν . For example, if Gν is the scaled Cauchy Cν2 then, following

(3.5), the first four terms in the expansion of Pν are

Pν(w(x)) = νF (w(x)) +

√
2

π
ν2H(w(x))− ν4 w

(2)(0)

2
−
√

2

π
ν6H

(
w(x)

x2
− w(2)(0)

2

)
+ o(ν6) .
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Clearly, if in the expansion of Gν , there is a number of rates ρk, say from k = 1 to j − 1,

such that ν = o(ρk) and ρj ∝ ν, then the jth term in the expansion of Pν will be

ρjHj(w) + νF (w) .

For example, if Gν is the scaled Cauchy C√ν , then ρ1 =
√

2
π

√
ν and ρ2 = −ν, so

Pν(w(x)) =

√
2ν

π
H(w(x))+ν

(
F (w(x))− w(2)(0)

2!

)
−
√

2ν3

π
H

(
w(x)

x2
− w(2)(0)

2

)
+o(
√
ν3) .

Spike distribution with exponential tails

If Gν has exponential tails, such as N(0, ν2) (George and McCulloch, 1993 [40]), or Laplace

with scale parameter ν2 (George and Ročková, 2018 [60]), then there is no definite rate for

which the sparsity limit integral definition of McC&P holds with a non trivial measure H.

However, since we are now considering a broader class of operators for the higher-order ex-

ceedances, even for this class of measures, we can find a sparsity integral expansion, following

our previous logic.

Because Gν has exponential tails, given X ∼ Gν , X has all finite moments. Thus, for

those symmetrized functions w ∈ W# having a convergent Taylor expansion at zero, with

non-zero coefficients only for even powers, it is possible to write

∫
w(x)Gν(dx) =

∫ ∞∑
k=0

w(2k)(0)

2k!
x2kGν(dx) =

∞∑
k=1

w(2k)(0)

(2k)!
Eν(X2k) ,

where the first term w(0) = 0 because w(x) = O(x2) at the origin. Now, for each k ≥ 1, one

can write

w(2k)(0)

(2k)!
=

∫
wk−1(x) · 1

x2
δ0(dx) ,
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where the functions wk(x) for k ≥ 1, are defined recursively by

wk(x) = wk−1(x) · 1

x2
−
∫
wk−1(x) · 1

x2
δ0(dx) , (3.14)

and w0(x) = w(x). So, one has

w1(x) =
∞∑
k=1

w(2k)(0)

(2k)!
x2k−2 − w(2)(0)

2!
=
∞∑
k=2

w(2k)(0)

(2k)!
x2k−2 ,

w2(x) =
∞∑
k=2

w(2k)(0)

(2k)!
x2k−4 − w(4)(0)

4!
=
∞∑
k=3

w(2k)(0)

(2k)!
x2k−4 ,

et cetera. Therefore, for every k ≥ 1, we can define the functional Hk on W# to be

Hk(w) =

∫
wk−1(x) · 1

x2
δ0(dx) =

w(2k)(0)

(2k)!
.

So the function wk as in (3.14) can now be written as

wk(x) = wk−1(x) · 1

x2
−Hk(w) .

If the even moments of X ∼ Gν are denoted by

ρ1 = Eν(X2) ,

ρ2 = Eν(X4) ,

...

ρk = Eν(X2k) ,

then, provided ρk = o(ν) for all k ≥ 1, we can write the sparsity integral expansion of Pν as

Pν(w) = νF (w) +
∞∑
k=1

w(2k)(0)

(2k)!
Eν(X2k) = νF (w) + ρ1H1(w) + ρ2H2(w) + · · · .
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3.5 Higher-order equivalences

We now turn to investigate the question whether the equivalence relationship established by

the first-order sparsity pair carries over to higher-orders, and in what ways this can happen.

We first recall the concept of sparsity equivalence as defined in McC&P. Given two sparse

families of distributions, they are said to be first-order equivalent in the sparse limit if they

share the same exceedance measure. In fact, this sharing allows one to reparametrize one

of the two families in such a way that the two rates also match. Therefore, the first term

ρH(w) in the sparsity integral expansion is exactly the same for both families. Below, we

give two examples, one for which the relation carries over, and one for which this does not

occur.

Scaled Cauchy versus scaled horseshoe

As highlighted in McC&P, the scaled Cauchy and scaled horseshoe are equivalent in their

sparsity expansion since they both have the square inverse-power exceedance measure. Com-

paring (3.5) and (3.6), we can immediately notice that the two functionals H2 and H3 on

w ∈ W# are the same for both families, so that their first-order equivalence carries over to

higher orders, in terms of exceedance functionals. On the other hand, the higher-order rates

of one family are scalar multiples of those of the other family. In fact, suppose we match the

first-order rates

1√
2π

νHS = ρHS = ρC =

√
2

π
νC ,

by setting the scale-sparsity parameter for the horseshoe family to be two times that of the

Cauchy family: νHS = 2νC . Then the second-order and third-order rates are found to be in

the following relations

ρHS2 =
4

3
ρC2 , ρHS3 = 2ρC3 .
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Atom-and-Slab versus Spike-and-Slab

The atom-and-slab family and the spike-and-slab family as in (3.11) and (3.13), respectively,

sharing the same slab distribution, are first-order equivalent. Yet, they are not second-order

equivalent in their sparse limit. In fact, for the former family, after the first term νF , all

remaining terms are just trivially equal to zero. On the contrary, for the latter family, if

the spike distribution Gν is, for instance, N(0, ν2), then after the first term νF , one can

identify the second-order term in the expansion of Pν to be ν2w(2)(0)/2. This means that

the equivalence relation between the two families holds up to first-order but it breaks down

when we look at the second-order term.

79



3.6 Appendix

1. Here we derive the zeta function associated to the third-order exceedance functional,

H3(w) = −(α + 2)

∫ (
w(x)

x2
−
∫
w(x)

x2
δ0(dx)

)
H(dx) .

Let w(x) = (cosh(xy)− 1)e−x
2/2. Then

s(x) =
w(x)

x2
=

(cosh(xy)− 1)e−x
2/2

x2
,

so that s(0) = w′′(0)
2

= y2

2
. Letting κα = − (α+2)α2α/2−1

Γ(1−α/2)
,

ζ(3)(y) = −(α + 2)

∫ (
(cosh(xy)− 1)e−x

2/2

x2
− y2

2

)
H(dx)

=

∫ ( ∞∑
r=1

x2r−2y2r−2

(2r)!/2

y2

2
e−x

2/2 − y2

2

)
κα
|x|α+1

dx

=
y2

2

∫ ( ∞∑
j=0

x2jy2j

(2r)!/2
e−x

2/2 − (1− e−x2/2 + e−x
2/2)

)
κα
|x|α+1

dx

=
y2

2

∫ ( ∞∑
j=0

x2jy2j

(2r)!/2
− 1

)
e−x

2/2 κα
|x|α+1

dx− y2

2

∫
(1− e−x2/2)

κα
|x|α+1

dx

=
y2

2

∫ ( ∞∑
j=1

x2jy2j

(2r)!/2

)
e−x

2/2 κα
|x|α+1

dx− y2

2
(−α− 2)

=
y2

2

∞∑
j=1

y2j

(2r)!/2

∫
x2j e−x

2/2 κα
|x|α+1

dx+
y2

2
(α + 2)

=
y2

2

∞∑
j=1

y2j

(2r)!/2

Γ(j − α/2)

(1/2)j−α/2
κα +

y2

2
(α + 2)

=
∞∑
j=1

y2j+2

(2r)!

Γ(j − α/2)

(1/2)j−α/2
α2α/2−1(−α− 2)

Γ(1− α/2)
+
y2

2
(α + 2)

=
y2

2
(α + 2)−

∞∑
r=2

y2r

(2r)!

Γ(r − 1− α/2)2r−2 α (α + 2)

Γ(1− α/2)
.
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So the third-order sparsity expansion of
∫

(cosh(xy)− 1)e−x
2/2 Pν(dx) is given by

∫
(cosh(xy)− 1)e−x

2/2 Pν(dx) =

ρ

∫
(cosh(xy)− 1)e−x

2/2H(dx) + ρ2
w′′(0)

2
+ ρ3

∫ (
(cosh(xy)− 1)e−x

2/2

x2
− y2

2

)
H(dx) =

ρζ(y) + ρ̃2 y
2 + ρ̃3 ζ

(3)(y) .
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Part II

Component-wise sparsity
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Chapter 4

Component-wise sparsity and

negligibility

4.1 Introduction

With this chapter, we start our investigation of d-dimensional sparse distributions, which

will be the main theme of the rest of the thesis. Therefore, we begin by giving the definition

of multivariate sparsity, which is the natural extension of the original definition of sparsity

of McC&P, to sequences of probability distributions defined on Rd, d > 1. This definition is

very general and we will refer to it also in Part III. In this part of the thesis, we focus our

attention on those multivariate sparse distributions which are product of univariate sparse

measures. We call this kind of multivariate sparsity, component-wise sparsity. Thus, in a

sense, we keep the scalar notion of symmetry on the real line and regard the multivariate

signal as a collection of d independent scalar signals.

In a context of independence like the present one, fairly often the interest lies in estab-

lishing which signals can be considered as ‘active’ and which can be considered as ‘negligi-

ble’. However, as explained in the introduction, the univariate sparsity theory developed in
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McC&P relies on the sparsity pair (ρ,H), which, by itself, does not allow one to identify

the null atom {X = 0}. For this reason, we frame the question from a slightly different

perspective, introducing a formal notion of negligibility. This idea of signal negligibility is

to be understood as a limit-approaching description of the sparse sequence of measures over

a sequence of positive-length intervals converging to the limit point {0}. Given this limiting

notion of signal negligibility, we derive an alternative integral approximation for the univari-

ate sparse measure Pν . This alternative approximation is valid up to an error larger than

the usual o(ρ), but has a Dirac delta measure component in it, so that, in terms of integrals

of bounded and continuous functions, negligibility is equivalent to being zero.

The integral approximation we develop within the negligibility-sparsity theory can be

naturally seen as an alternative to many other Bayesian approaches developed for the so

called two-groups model (Efron, 2007 [27]). Yet, despite the general structure resemblance,

there are two main differences. The first most obvious discrepancy concerns the target event,

which determines the mixture distribution for the signal. In our framework this event is the

signal negligibility, whereas, in many formulations of the two-groups model, is the event of

the signal being absolutely zero. The second difference follows from the first one to the

extent that we obtain an atomic mixture (i.e., a Dirac delta measure component) for the

signal distribution as an asymptotic approximation, driven by the sparsity limit, and true

solely in terms of integrals of bounded and continuous functions.

This alternative sparse integral approximation turns out to be a useful tool in many

different applied statistical contexts. In the next chapters, we will use it for: (i) constructing

a multiple testing procedure to declare negligible and non negligible signals; (ii) obtaining

a soft-thresholding estimator for the coefficients in wavelet regression; (iii) estimating the

graphical structure in a Gaussian graphical model on the basis of the conditional probability

of edge non-negligibility.
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4.2 Multivariate sparsity

To extend the definition of sparsity of McC&P to sequences of distributions defined on Rd,

d > 1, we first introduce the definition of exceedance measure and Lévy-integrable function

for the d-dimensional case.

Definition 4.2.1. A non-negative measure Hd defined on (Rd \ {0}; ‖·‖) is termed an

exceedance measure if
∫
Rd\{0}(‖x‖

2 ∧ 1)Hd(dx) < ∞. A measure satisfying
∫
Rd\{0}(1 −

e−‖x‖
2/2)Hd(dx) = 1 is called a unit exceedance measure.

Here ‖·‖ is any norm induced by an inner product 〈·, ·〉 defined on Rd. As in the univari-

ate case (see §2.1 in McC&P), there is a one-to-one correspondence between the exceedance

measure Hd and the Lévy measure of an infinitely divisible distribution on (Rd; ‖·‖).

Definition 4.2.2. The space W#
d of Lévy-integrable functions on Rd consists of bounded

and continuous functions w : Rd → R such that ‖x‖−2w(x) is also bounded and continuous.

Lévy-integrability implies
∫
Rd\{0}w(x)Hd(dx) <∞ for every w ∈ W#

d and every exceedance

measure Hd.

We now naturally extend Definition 0.0.3 to a sequence of d-dimensional probability

distributions {Pν,d}ν which, as ν → 0, converges to the Dirac delta measure at the origin

{0}.

Definition 4.2.3. A sequence of probability distributions {Pν,d}ν , defined on (Rd; ‖·‖), is

said to have a sparse limit with rate ρν if there exists a unit exceedance measure Hd such

that

lim
ν→0

ρ−1
ν

∫
Rd
w(x)Pν,d(dx) =

∫
Rd\{0}

w(x)Hd(dx),

for every function w ∈ W#
d .
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This definition of multivariate sparsity is very general and comprises of many different

families of distributions {Pν,d}ν . In this part of the thesis, we mostly study d-dimensional

sparse measures which are product of scalar sparse measures. In Part III instead, we derive

some theory for those d-dimensional sparse measures which are rotationally invariant and

their sparsity is induced by the sparsity of their radial part. Clearly, these are just two

instances of multivariate sparsity, and future research could be directed to study other dif-

ferent kinds of multivariate sparsity.

Before proceeding introducing component-wise sparsity, we define the d-dimensional

analogs to the zeta function and zeta measure, which will appear in both this part of the

thesis and the next.

For any given d-dimensional exceedance measure Hd on (Rd \{0}; ‖·‖), its zeta transform

is

ζd(y) =

∫
Rd\{0}

(cosh(〈y, x〉)− 1)e−‖x‖
2/2Hd(dx) , (4.1)

while the associated zeta measure defined on (Rd \ {0}; ‖·‖), is the integrand

ζd(dx; y) = (cosh(〈y, x〉)− 1)e−‖x‖
2/2Hd(dx) . (4.2)

4.3 Component-wise sparsity

As anticipated in the introduction to this chapter, component-wise sparsity refers to those

d-dimensional measures which are product of scalar sparse measures. Since this means that

the d components of the random vector are independent, it is natural to take the inner

product on Rd to be the standard Euclidean inner product 〈y, x〉 = y′x =
∑d

i=1 yixi. We

now give a more formal definition of component-wise sparsity.

Definition 4.3.1. Let Pν,d be a sequence of distributions defined on (Rd; ‖·‖), where ‖x‖2 =
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∑d
i=1 x

2
i . If it is possible to write

Pν,d(dx) =
d∏
i=1

P i
ν(dxi) ,

where, for each i = 1, . . . , d, the one-dimensional sequence {P i
ν}ν is symmetric around zero

and sparse according to Definition 0.0.3, with rate ρiν = ciρν , ci > 0, and unit exceedance

measure H i, then we say that Pν,d is component-wise sparse.

As a matter of fact, if {Pν,d}ν is component-wise sparse then it is also sparse according

to Definition 4.2.3. Indeed for any function w ∈ W#
d , one has

lim
ν→0

ρ−1
ν

∫
Rd
w(x)

d∏
i=1

P i
ν(dxi) =

∫
Rd\{0}

w(x)Hd(dx),

where the rate ρν = ρν,d is proportional to the sum of the rates of the scalar sparse measures,

ρiν , while the d-dimensional unit exceedance measure defined on Rd \ {0} is

Hd(dx) =
1

d

d∑
i=1

H i(dxi)
∏
j 6=i

δ0(dxj) . (4.3)

This exceedance measure is concentrated along the Cartesian axes, so it is singular with

respect to Lebesgue measure defined on Rj, for any j ≥ 2. Indeed, integrating a function w

defined on Rd against Hd is the same as projecting the function on each Cartesian axis,

wi(xi) = w((0, . . . , 0, xi, 0, . . . , 0)) ,

integrating wi(xi) against H i, and then average the d integrals.

We check that Hd is a d-dimensional Lévy measure by computing the integral

87



∫
Rd\{0}

(‖x‖2 ∧ 1)Hd(dx) =

∫
Rd\{0}

(‖x‖2 ∧ 1)

(
1

d

d∑
i=1

H i(dxi)
∏
j 6=i

δ0(dxj)

)

=
1

d

d∑
i=1

∫
R\{0}

(x2
i ∧ 1)H i(dxi) ,

which is finite as long as, for each i = 1, . . . , d, H i is a Lévy measure.

The characteristic function of Pν,d is, up to first-order sparsity, the same as the charac-

teristic function of the infinitely divisible distribution on Rd, having some scalar multiple of

Hd as its Lévy measure Λ,

∫
eit
′x Pν,d(dx) =

d∏
k=1

∫
eitkxk P k

ν (dxk)

=
d∏

k=1

(
1 + ρck

∫
(cos(tkxk)− 1)Hk(dxk) + o(ρ)

)

=
d∏

k=1

(
eρck

∫
R\{0}(cos(tkxk)−1)Hk(dxk) + o(ρ)

)
= exp

{
ρ

d∑
k=1

ck

∫
R\{0}

(cos(tkxk)− 1)Hk(dxk)
}

+ o(ρ)

= exp
{
ρ

∫
Rd\{0}

(cos(t′x)− 1)
d∑

k=1

ckH
k(dxk)

∏
j 6=k

δ0(dxj)
}

+ o(ρ)

= exp
{
ρ

∫
Rd\{0}

(cos(t′x)− 1) Λ(dx)
}

+ o(ρ) .

An infinitely divisible distribution on Rd has Lévy measure proportional to Hd if and only

if it has independent components (see Sato, 1999 [63], and Samorodnitsky and Taqqu, 1994

[62]). As a matter of fact, Hd can be written as the sum of d measures, each concentrated

along one Cartesian axis,

1

d

d∑
i=1

(
1

2
δsi,+(d x̃) +

1

2
δsi,−(d x̃)

)
HR,i(d ‖x‖) .
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Here x̃ = x/ ‖x‖ is the direction of the vector on the unit sphere Sd = {z : ‖z‖ = 1}, while,

for each i = 1, . . . , d,

si,+ = (0, · · · , 0,+1, 0, · · · , 0) ∈ {0,+1}d

and

si,− = (0, · · · , 0,−1, 0, · · · , 0) ∈ {0,−1}d

denote the two intersections of the unit sphere with the ith Cartesian axis. On the other

hand, HR,i is the radial exceedance measure on (0,∞) corresponding to the scalar sparse

measure P i
ν , for each i = 1, . . . , d. We consider HR,i to be two times the positive part of the

symmetric exceedance measure H i corresponding to P i
ν .

Notice that if the d independent components of x are also identically distributed, then

P i
ν = Pν for all i = 1, . . . , d. This means that we can write Hd(dx) as

1

d

d∑
i=1

(
1

2
δsi,+(d x̃) +

1

2
δsi,−(d x̃)

)
·HR(d ‖x‖) . (4.4)

Thus Hd factorizes into a spectral measure on Sd,

Γ(dx̃) =
1

d

d∑
i=1

(
1

2
δsi,+(d x̃) +

1

2
δsi,−(d x̃)

)
,

which is discrete and concentrated on the intersections of the axes with the unit sphere, and

a radial measure on (0,∞),

HR(d ‖x‖) ,

which is just two times the positive part of the exceedance measure H of the scalar sparse

components. In Part III, we will see that the exceedance measure for vector-sparse distri-

butions, i.e., sparse distributions that are rotationally invariant, can also be factorized in a

spectral measure on Sd and a radial measure on (0,∞).
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From now on, unless differently specified, we will consider the case where P i
ν = Pν for all

components i = 1, . . . , d, so that the rate ρν,d is dρν , and the unit exceedance measure is

Hd(dx) =
1

d

d∑
i=1

H(dxi)
∏
j 6=i

δ0(dxj) .

4.3.1 Component-wise inverse-power exceedance

If the scalar exceedance measure H is the inverse-power measure

H(dx) = Kα|x|−α−1dx ,

with Kα = α 2α/2−1

Γ(1−α/2)
and α ∈ (0, 2), then

Hd(dx) = Kd,α

d∑
i=1

|xi|−α−1
∏
j 6=i

δ0(dxj) (4.5)

is the component-wise inverse power exceedance measure. Here

Kd,α =
Kα

d
=

1

d

α 2α/2−1

Γ(1− α/2)

is the scalar such that Hd is a unit exceedance measure,

∫
(1− e−‖x‖

2/2)Hd(dx) =
1

d

d∑
i=1

∫
(1− e−x2

i /2)Kα|xi|−α−1 = 1 .

The measure in (4.5) is, up to a multiplicative constant, the Lévy measure associated with

the symmetric α-stable (SαS) process having independent components (see Sato, 1999 [63],

and Samorodnitsky and Taqqu, 1994 [62]), whose characteristic function is the exponential
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of

∫
Sd

∫ ∞
0

(eirt
′s − 1)

dr

rα+1
Γ(ds) = −

∫
Sd
|t′s|α

d∑
i=1

(
1

2
δsi,+(ds) +

1

2
δsi,−(ds)

)
= −

d∑
i=1

|ti|α .

In particular, when α = 1, Hd is proportional to the Lévy measure of the product of d

Cauchy distributions

Pd(dx) =
d∏
i=1

dxi
π(1 + x2

i )
.

4.3.2 Component-wise zeta function

Following the definition given in Section 4.2, the zeta transform of a component-wise ex-

ceedance measure is

ζd(y) =

∫
Rd\{0}

(cosh(〈y, x〉)− 1)e−‖x‖
2/2Hd(dx)

=

∫
Rd\{0}

(cosh(y′x)− 1)e−x
′x/2

(
1

d

d∑
i=1

H(dxi)
∏
j 6=i

δ0(dxj)

)

=
1

d

d∑
i=1

∫
R\{0}

(cosh(yixi)− 1)e−x
2
i /2H(dxi)

=
1

d

d∑
i=1

ζ(yi) ,

where ζ(y) is the usual univariate zeta function. Similarly, the corresponding d-dimensional

zeta measure is

ζd(dx; y) =
1

d

d∑
i=1

ζ(dxi; yi)
∏
j 6=i

δ0(dxj) .

Notice that the component-wise zeta measure has the same structure of the component-

wise exceedance measure. So when integrating against it, we project the function onto each

Cartesian axis, integrate the one-dimensional function wi(xi) against ζ(dxi; yi), and then

average the d integrals.
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When the scalar exceedance H is the inverse-power measure, i.e., Hd is as in (4.5), then

one can use the Taylor series for the univariate zeta transform of H, and write the zeta

transform of Hd as

ζd(y) =
α/2

Γ(1− α/2)

1

d

d∑
i=1

(
∞∑
r=1

y2r
i

(2r)!
2r Γ(r − α/2)

)
.

4.4 Component-wise sparse signal plus noise

In this section, we study the signal-plus-noise model in the case when the observations are

independent and identically distributed, and can be written as

Yi = µi + ηi , i = 1, . . . , n .

The signals µi are independent, with common distribution Pν having sparsity pair (ρ,H),

while ηi are independent standard Gaussian random variables. Using vector notation, letting

Y, µ, η ∈ Rn, we can equivalently write

Y = µ+ η ,

where the signal vector µ ∼ Pν,n, is component-wise sparse with scalar rate ρ and scalar

exceedance measure H, and is independent of η ∼ Nn(0, In).
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Then the first-order sparse approximation of the marginal density for Y at y is

mn,ν(y) = φn(y)

∫
ex
′ye−‖x‖

2/2 Pν,n(dx)

= φn(y)

(
nρ

∫
(cosh(x′y)− 1)e−‖x‖

2/2Hn(dx) + 1− nρ
)

+ o(nρ)

= φn(y)
(
nρ ζn(y) + 1− nρ

)
+ o(nρ)

= φn(y)
(
ρ

n∑
i=1

ζ(yi) + 1− nρ
)

+ o(nρ) .

Notice that this expression is equivalent, in first-order sparsity, to the product of the sparse

approximations for the univariate mν(yi),

mν(yi) = φ(yi)(ρζ(yi) + 1− ρ) + o(ρ) .

In fact,

n∏
i=1

mν(yi) =
n∏
i=1

φ(yi)(ρζ(yi) + 1− ρ+ o(ρ)) = φn(y)
n∏
i=1

(ρζ(yi) + 1− ρ+ o(ρ))

= φn(y)
(
ρζ(y1) + 1− ρ

)(
ρζ(y2) + 1− ρ

)
. . .
(
ρζ(yn) + 1− ρ

)
+ o(ρ)

= φn(y)
(
ρ

n∑
i=1

ζ(yi) + 1− nρ
)

+ o(ρ) .

4.4.1 Estimation of sparsity parameters

If one considers Pν to be a scale sparse measure, then its exceedance measure is the inverse-

power measure H(dx) ∝ |x|−α−1 for α ∈ (0, 2). In practice, both ρ and α are unknown

parameters and need to be estimated. In applied work, it is important that the estimates

for ρ and α are not dependent of the scale on which the observations are made, as a change

of scale simply corresponds to a change in the units of measurement.
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Therefore, suppose that the actual observations are

Ỹi = τYi , i = 1, . . . , n ,

where each Yi = µi + ηi is scaled by a factor τ 6= 0, so we can say that the group τ : y 7→ τy

acts on the observation space component-wise. Then each Ỹi has marginal density, in first-

order sparse approximation, given by

1/|τ |φ(ỹ/|τ |)(1− ρ+ ρζ(ỹ/|τ |)) + o(ρ) .

This marginal density is parametrized by the triplet θ = (ρ, α, τ 2) corresponding to the spar-

sity rate, the activity index of the exceedance measure and the scale of the observations. The

sparse approximation to the log-likelihood for θ based on the scaled observations ỹ1, . . . , ỹn

is

l(θ; ỹ1, . . . , ỹn) = −n log(|τ |)− 1

2

∑
i

ỹ2
i /τ

2 +
∑
i

log(1− ρ+ ρζ(ỹi/|τ |)) , (4.6)

so that maximization of (4.6) with respect to θ delivers the maximum likelihood (ML)

estimate. The ML estimator, as a function from the observation space Y to the parameter

space Θ, is equivariant under the group action τ : (ρ, α, σ2) 7→ (ρ, α, τ 2σ2) for τ 6= 0. In fact,

given y ∈ Rn, denoting by

ML(y) = (ρ(y), α(y), σ2(y))

the maximum likelihood estimator for (ρ, σ2, α), it is not hard to show that

ML(τy) = (ρ(τy), α(τy), σ2(τy), ) = (ρ(y), α(y), τ 2σ2(y)) = |τ |ML(y) .

This means that, if we include the scale parameter in our estimation, then the maximum

likelihood estimates for the sparsity parameters, the rate ρ and the inverse-power α, do not

change if the observations are measured in different units. For this reason, in the following
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chapters, we will always estimate the triplet (ρ, α, σ2).

4.4.2 Signal conditional distribution

The first-order sparse approximation to the conditional distribution of the n-dimensional

signal µ, given y, is

Pν,n(dx | y) =
nρζn(dx; y) + e−x

′x/2Pν,n(dx)

nρζn(y) + 1− nρ
+ o(nρ)

=
ρ
∑n

i=1 ζ(dxi; yi)
∏

j 6=i δ0(dxj) +
∏n

i=1 e
−x2

i /2Pν(dxi)

ρ
∑n

i=1 ζ(yi) + 1− nρ
+ o(nρ) .

If we look at the n signals as a vector in Rn, then we can compute the first-order sparse

approximation to the conditional probability that the norm of the signal ‖µ‖ is greater than

some threshold ε. In this case, supposing that the one-dimensional H is atom-free and does

not have Gaussian nor sub-Gaussian tails, then for any positive ε, approximating χ‖x‖>ε with

1− e−‖x‖2/2ε2 ,

Pn,ν(‖µ‖ > ε | y) ≈
∫

(1− e−‖x‖
2/2ε2)Pn,ν(dx | y)

=

∑n
i=1

∫
(1− e−x2

i /2ε
2
)
(
ρζ(dxi; yi) + e−x

2
i /2ρH(dxi)

)
ρ
∑n

i=1 ζ(yi) + 1− n ρ
+ o(ρ) .

The reason why H cannot have Gaussian or sub-Gaussian tails is explained in more detail

in Section 8.5.2 of Chapter 8. In this context, not to get a trivial zero limit as ρ → 0, we

need a double limit regime under which, for all i = 1, . . . , n, ρ → 0 and yi → ∞ in such

a way that ρζ(yi) → λi > 0. In this case, the conditional probability of {‖µ‖ > ε}, for a

component-wise sparse signal, converges to

ρ
∑n

i=1 ζ(yi)

1 + ρ
∑n

i=1 ζ(yi)
.

95



4.5 Negligibility

At the end of the previous section, a sparse double limit is given for the conditional probabil-

ity of the event {‖µ‖ > ε}. However, when the components of the signal are assumed to be

independent, each with a sparse distribution, it is common in many statistical applications

to be interested in establishing the ‘activity/negligiblity’ of each individual signal separately.

In this section, we introduce a formal notion of signal negligibility, which in fact refers to

any unidimensional sparse signal. So for the rest of this chapter, the number of observations

(hence the number of signals) can really be just one, since the signal negligibility, as much

as the sparsity of its distribution, is thought as a limiting notion, driven by the sparsity

parameter rather than by the sample size getting large. To make this section self-contained,

we report here part of the discussion presented in the introduction, when we first talked

about negligibility.

Even if in the literature, there is not a universal consensus nor a formal mathematical

definition of what constitutes signal activity, fairly often, in both theoretical and applied

work, the dichotomy of signal non-activity/activity refers to the events that the signal be

zero or not zero (see for instance, Efron, 2007, Johnstone and Silverman, 2004). However,

in the sparsity theory developed in McC&P, the probability that the random signal with

a sparse distribution, is exactly zero is not identifiable only from the sparsity pair (ρ,H).

Indeed, when implied by the W#-integral definition 0.0.3, the sparse approximation

Pν(ε
+) = ρH(ε+) + o(ρ)

only holds for strictly positive thresholds ε. Here F (z+) is the probability that the random

variable X ∼ F exceeds z, in absolute value. To see this, consider two sparse families such
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as the spike-and-scaled slab

P 1
ν (dx) = (1−

√
ν)
e−|x|/ν

2ν
dx+

√
ν

ν

π(x2 + ν2)
dx ,

and the atom-and-scaled slab

P 2
ν (dx) = (1−

√
ν) δ0(dx) +

√
ν

ν

π(x2 + ν2)
dx .

These two sparse measures share the same first-order sparsity pair given by ρ = ν3/2
√

2/π

and H(dx) = 1/
√

2π |x|−2dx. Therefore the first-order sparse approximations to the expec-

tation of any function w ∈ W# with respect to P 1
ν and P 2

ν , are exactly the same, insofar they

are solely based on the pair (ρ,H). Yet, the two measures do give very different probability

mass to the atom at zero, as P 2
ν (X = 0) = 0 while P 2

ν (X = 0) = 1−
√
ν.

The reason why this happens is that the indicator function χx=0 is a discontinuous func-

tion at the limit point and such discontinuity at the limit opens the door to different answers

from the sparse measures even if their limiting behavior in approaching the Dirac delta limit

is the same.

The way we propose to circumvent this zero-non-identifiability issue is to take a slightly

different perspective in looking at the problem, and adopt a strategy that is similar in spirit

to the “limit-approaching” standpoint, from which the sparsity theory by McC&P has been

formulated in first place. The idea is to look at the atom {0} as the limit point of a sequence

of intervals [−εν , εν ], where εν → 0 as ν → 0, and to describe, as the limit takes place,

the approaching behavior of the moving sequence of measures Pν over the moving region

[−εν , εν ]. So, instead of asking for the probability at the limit point Pν(X = 0),

Pν(X = 0) =

∫
χx=0 Pν(dx) ,
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which requires the expectation of a discontinuous function at zero, we ask for the probability

that the signal is in a region converging to the limit point, which by contrast, can be approx-

imated with arbitrary precision, by the expectation of a bounded and continuous function,

such as ∫
e−x

2/2ε2ν Pν(dx) .

With some conditions on the speed of convergence to zero of the threshold sequence εν , we

can use the sparsity integral definition in (1) to obtain the sparse-negligibility approximation

∫
e−x

2/2ε2ν Pν(dx) = 1− ρ
∫

(1− e−x2/2ε2ν )H(dx) ,

where this approximation holds with an error ρ
∫

(1− e−x2/2ε2ν )H(dx).

All this leads us to introduce a mathematical definition of signal negligibility. In what

follows, we use the notation F (wz) =
∫

(1 − e−x
2/2z2

)F (dx), where F is some non-zero

measure.

Definition 4.5.1. Let {Pν}ν be a sparse sequence of symmetric distributions on R with

sparsity pair (ρ,H), and let {εν}ν be a sequence of strictly positive thresholds, εν > 0. We

say that εν is a negligibility sequence for Pν if, as ν → 0,

1. εν → 0 ,

2. Pν(wεν )→ 0 ,

3. Pν(wεν ) = ρH(wεν ) + o(ρH(wεν )) .

Given X ∼ Pν , we say that X is negligible if |X| ≤ εν .

Such a sequence exists for every sparse family and, because of condition 2 in Defini-

tion 4.5.1, a signal X ∼ Pν is negligible with probability converging to one as ν → 0. The
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reason why we need the third condition is that for some sparse families, Pν(wεν )→ 0 by itself

does not impose any requirement on the negligibility sequence, so that it is not sufficient to

guarantee the sparse-negligibility approximation Pν(wεν ) ∼ ρH(wεν ). An example of when

this occurs is for the sparse family

P 2
ν (dx) = (1−

√
ν) δ0(dx) +

√
ν

ν

π(x2 + ν2)
dx .

In fact,

P 2
ν (wεν ) =

√
ν

∫
(1− e−x2/2ε2ν )

ν

π(x2 + ν2)
dx =

√
ν
(

1− eν2/2ε2ν Erfc(ν/
√

2εν)
)
,

where Erfc(z) = 1 − 2√
π

∫ z
0
e−t

2/2 dt. Now, this expression converges to zero as ν → 0, re-

gardless of the behavior of εν/ν. However, in order to have P 2
ν (wεν ) = ρH(wεν )+o(ρH(wεν )),

given that

ρH(wεν ) = ν3/2
√

2/π ·
∫

(1− e−x2/2ε2ν )
1√

2πx2
dx =

√
2

π
ν3/2ε−1

ν ,

one needs εν/ν →∞, in which case,

√
ν
(

1− eν2/2ε2ν Erfc(ν/
√

2εν)
)

=
√
ν
(√

2/π · ν/εν + o(ν/εν)
)

=

√
2

π
ν3/2ε−1

ν + o(ν3/2/εν) .

Now, the second and third conditions in Definition 4.5.1 require that

ρH(wεν )→ 0 ,

even though εν → 0 might lead to H(wεν )→∞, if H is not finite. For instance, if H is the

inverse-power measure, then H(wεν ) is

∫
(1− e−x2/2ε2ν )Kα |x|−α−1 dx = ε−αν ,
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which indeed goes to infinity as εν → 0, since α ∈ (0, 2). Thus, ρH(wεν )→ 0 if and only if

εαν = g(ρ) ,

where g(ρ) → 0 and ρ/g(ρ) → 0, as ρ → 0. Therefore, if there are no more stringent re-

quirements on εν from the other conditions, then one can choose the sequence εν to behave,

for instance, like log(1/ρ)−η/α, for some positive η. In this way, ρε−αν ∼ ρ log(1/ρ)η, and this

converges to zero as ρ→ 0.

To see the advantage of considering signal negligibility rather than signal nullity, we look

again at the two sparse families presented at the beginning of the section,

P 1
ν (dx) = (1−

√
ν)
e−|x|/ν

2ν
dx+

√
ν

ν

π(x2 + ν2)
dx ,

and

P 2
ν (dx) = (1−

√
ν) δ0(dx) +

√
ν

ν

π(x2 + ν2)
dx .

As already highlighted, despite having the same sparsity rate ρ = ν3/2
√

2/π and same

exceedance measure H(dx) = |x|−2/
√

2πdx, the two families give different mass at the atom

at zero: P 1
ν (X = 0) = 0 while P 2

ν (X = 0) = 1 −
√
ν. Instead, in terms of negligibility, one

has that

P 1
ν (wεν ) = (1−

√
ν)

∫
(1− e−x2/2ε2ν )

e−|x|/ν

2ν
dx+

√
ν

∫
(1− e−x2/2ε2ν )

ν

π(x2 + ν2)
dx

= (1−
√
ν)
(

1− εν
ν

√
π/2 eε

2
ν/2ν

2

Erfc(εν/
√

2ν)
)

+
√
ν
(

1− eν2/2ε2ν Erfc(ν/
√

2εν)
)
,

and this last expression, provided that εν/
√
ν →∞, behaves as

(1−
√
ν)
(
ν2/ε2ν +O(ν4/ε4ν)

)
+
√
ν
(√

2/π ν/εν +O(ν2/ε2ν)
)

=
√

2/π ν3/2 ε−1
ν +O(ν2/ε2ν)
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Now, if we compute the non-negligibility integral for the second family, given that εν/ν →∞,

we have

P 2
ν (wεν ) =

∫
(1− e−x2/2ε2ν )

(
(1−

√
ν) δ0(dx) +

√
ν

ν

π(x2 + ν2)
dx

)
=
√
ν

∫
(1− e−x2/2ε2ν )

ν

π(x2 + ν2)
dx

=
√
ν
(

1− eν2/2ε2ν Erfc(ν/
√

2εν)
)

=
√

2/π ν3/2 ε−1
ν +O(ν5/2/ε2ν)

Indeed,

√
2/π ν3/2 ε−1

ν =
√

2/π ν3/2 ·
∫

(1− e−x2/2ε2ν )
1√

2πx2
dx = ρH(wεν ) ,

so that, provided εν/
√
ν →∞,

P 1
ν (wεν ) = P 2

ν (wεν ) = 1− ρH(wεν ) + o(ρH(wεν )) .

As already observed, in these cases of mixture measures, given εν → 0, one needs to ensure

that both Pν(wεν ) → 0 and Pν(wεν ) ∼ ρH(wεν ), as ν → 0. By contrast, when the sparse

measure is a scale sparse measure, conditions 2. and 3. of the negligibility definition 4.5.1

imply one another, and are met whenever εν/ν → ∞. In fact, let Pν(dx) = 1/νP (dx/ν),

where P is any symmetric distribution on the real line. Then, because in this case the

distinction between hard and soft threshold functions is irrelevant, we can see that

Pν(ε
+
ν ) = 2

∫ ∞
εν

Pν(dx) = 2

∫ ∞
εν/ν

P (dx)→ 0 ,

if and only if εν/ν →∞. Moreover, because Pν is scale sparse, the density of P is regularly

varying at infinity so that its tail behavior is the same as that of the exceedance measure for
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Pν . So, provided εν/ν →∞, the tail integral of P (dx) behaves as

Pν(ε
+
ν ) = 2

∫ ∞
εν/ν

P (dx) = 2(εν/ν)−α + o(να/εαν ) ,

which in fact coincides with

ρHν(ε
+
ν ) = 2να

∫ ∞
εν

|x|−α−1dx = 2ναε−αν .

Therefore, Pν(ε
+
ν ) ∼ ρHν(ε

+
ν ) if and only if Pν(ε

+
ν ) → 0. This in turn means that, for scale

sparse families, it is sufficient to choose the negligibility sequence εν in such a way to guar-

antee ρH(ε+ν )→ 0, i.e., εν/ν →∞.

Building upon this definition of negligibility, in the next section we show how to construct

a new sparse integral approximation for the sparse measure Pν . This alternative integral ap-

proximation will be less accurate than the o(ρ) approximation, but will have a component

given by the Dirac delta measure at zero.

4.5.1 A different integral expansion

Let Pν be a sparse sequence of one-dimensional distributions with first-order sparsity pair

(ρ,H) and let εν be a negligibility sequence for Pν . Because the signal X ∼ Pν is said to be

negligible if |X| ≤ εν , once more, we approximate the hard-threshold function χ|x|≤εν with

the soft-threshold function e−x
2/2ε2ν , and decompose Pν into two parts

Pν(dx) = Pν(dx)e−x
2/2ε2ν + Pν(dx)(1− e−x2/2ε2ν ) . (4.7)
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The first component in the RHS of (4.7) is proportional to

P̃ν(dx) =
e−x

2/2ε2νPν(dx)∫
e−x2/2ε2ν Pν(dx)

.

The measure P̃ν is a sparse probability distribution converging weakly to the Dirac delta

measure at zero exponentially fast. There is no definite sparsity rate for P̃ν satisfying the

integral definition of sparsity with a finite non-zero limit. Thus, for any bounded and con-

tinuous function, as ν → 0

∫
R
w(x) P̃ν(dx) ∼

∫
R
w(x) δ0(dx) .

On the other hand, sparsity of Pν implies

∫
R
w(x)(1− e−x2/2ε2ν )Pν(dx) ∼ ρ

∫
R\{0}

w(x)(1− e−x2/2ε2ν )H(dx) ,

so that the second component in (4.7) is, in the sense of integrals of bounded and continuous

functions, equivalent to

ρ(1− e−x2/2ε2ν )H(dx) .

Thus, we write (4.7) as

(∫
e−x

2/2ε2ν Pν(dx)

)
P̃ν(dx) +

(
1−

∫
e−x

2/2ε2ν Pν(dx)

)
(1− e−x2/2ε2ν )Pν(dx)∫
(1− e−x2/2ε2ν )Pν(dx)

. (4.8)

Assuming Pν to be a scale sparse measure, then H is the inverse-power exceedance measure

so, as long as ρε−αν → 0 as ν → 0, the negligibility integral is

∫
R
e−x

2/2ε2ν Pν(dx) = 1− ρ
∫
R\{0}

(1− e−x2/2ε2ν )H(dx) + o(ρε−αν ) = 1− ρε−αν + o(ρε−αν ) .

(4.9)
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Therefore, taking the sparse approximation of each component appearing in (4.8), the inte-

gral of a bounded and continuous function w against the scale sparse measure Pν is asymp-

totically equivalent to the integral of w against

(1− ρε−αν )δ0(dx) + ρε−αν H̃(dx) , (4.10)

with an error of order ρε−αν . Here

H̃(dx) =
(1− e−x2/2ε2ν )H(dx)∫

R\{0}(1− e−x
2/2ε2ν )H(dx)

is the weighted exceedance measure, defined on R \ {0} and finite for every εν > 0. Notice

that the error in the integral approximation o(ρε−αν ) is larger than the usual approximation

error o(ρ).

Therefore, negligibility is a “limit-approaching” notion, in the sense that:

1. the signal is small, but it is not declared to be necessarily zero;

2. at the same time, whether the signal is negligible or is exactly zero, it does not matter

as long as expectations of bounded and continuous functions are involved.

4.5.2 Signal plus noise revisited

Given the alternative integral approximation to the scale sparse distribution Pν in (4.10),

we can derive the corresponding approximation for the relevant functionals in the one-

dimensional signal-plus-noise model,

Y = µ+ η .

Here µ ∼ Pν is sparse with sparsity pair (ρ,Hα), and is independent of η ∼ N(0, 1). We
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would like to stress that now the error is of order o(ρε−αν ).

The joint probability of the signal µ and the symmetrized observation |Y | can be approx-

imated by

P(µ ∈ dx; |Y | ∈ dy)

φ(y)
= cosh(yx)e−x

2/2Pν(dx)

= ρε−αν cosh(yx)e−x
2/2H̃(dx) + (1− ρε−αν )δ0(dx) + o(ρε−αν ) .

(4.11)

It follows that the sparse approximation to the marginal of Y of order ρε−αν is

P(Y ∈ dy) =

∫
P(µ ∈ dx;Y ∈ dy)

= φ(y)

(
ρε−αν

∫
cosh(yx)e−x

2/2 H̃(dx) + (1− ρε−αν )

)
+ o(ρε−αν ) .

Analogously to the zeta function, we introduce the A function defined as

A(y) =

∫
cosh(yx)e−x

2/2 H̃(dx) ,

which is the normalization constant of the A measure

A(dx; y) = cosh(yx)e−x
2/2H̃(dx) .

Since H is the inverse-power measure, A(y) can be computed as

A(y) = εαν (ζ(y)− ταζ(y/τ)− 1 + τα) ,

where τ 2 = 1 + 1/ε2ν , and ζ(y) is the usual zeta function (see the appendix). With this, we
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can rewrite the above approximation to the marginal of Y as a mixture of two components

(1− ρε−αν )φ(y) + ρε−αν φ(y)A(y) + o(ρε−αν ) . (4.12)

As for ψ(y) = φ(y)ζ(y), also φ(y)A(y) is a probability density function, as it is non negative

for all y and it integrates to one (see the appendix).

Figure 6.5 shows two comparisons: the left panels depict A(y) together with ζ(y), plotted

on the log scale; the right panels instead show the product φ(y)A(y) versus φ(y)ζ(y). We

choose εν to behave like log(1/ρ)−η/α, η = α/2+0.01, so that ρε−αν ∼ ρ log(1/ρ)α/2+0.01. Now

A(y) depends on ρ through εν , so in each panel we fix the value of α and consider the set of

values {0.01, 0.025, 0.05, 0.10, 0.20} for ρ, corresponding to the different colors ranging from

dark blue to light yellow, respectively. One can notice that, even if the two functions, A(y)

and ζ(y), have the same tail behavior, their difference around the origin is clearly reflected

in the difference of shape of φ(y)ζ(y) and φ(y)A(y), where the first one is zero at zero and

bimodal, while the second one is unimodal with its mode at zero.

Notice that, except for the error term, the approximation in (4.12) is equivalent to

(1− ρ)φ(y) + ρφ(y)ζ(y) + o(ρ) ,

as long as the sequence of negligibility thresholds εν converges to zero in such a way that

ε2−αν y2 = o(ρε−αν ). In fact, as εν → 0, τ ∼ ε−1
ν so that y/τ ∼ yεν . Moreover, the zeta function

at the origin behaves like a quadratic and this implies

A(y) = εαν (ζ(y)− ταζ(y/τ)− 1 + τα) ∼ εαν ζ(y)− y2ε2ν − εαν + 1 ,

106



−4 −2 0 2 4

−
10

−
5

0
5

10

α = 0.5

y

lo
g 

A
(y

)

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

α = 0.5

y

φ(
y)

 A
(y

)

−4 −2 0 2 4

−
10

−
5

0
5

10

α = 1

y

lo
g 

A
(y

)

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

α = 1

y

φ(
y)

 A
(y

)

−4 −2 0 2 4

−
10

−
5

0
5

10

α = 1.5

y

lo
g 

A
(y

)

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

α = 1.5

y

φ(
y)

 A
(y

)

Figure 4.1: Left panels: comparison, on the log scale, between ζ(y) (black curve) and A(y)
(colored curves). Right panels: comparison between φ(y)ζ(y) (black curve) and φ(y)A(y)
(colored curves). Different colors for the A(y) and φ(y)A(y) functions correspond to different
values of ρ which imply different values of εν = (log(1/ρ))−η/α, with η = α/2 + 0.01. From
dark blue to light yellow, the ρ parameter is 0.01, 0.025, 0.05, 0.10, 0.20. The dashed black
line depicts the standard Gaussian density.
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so that

ρε−αν A(y) + 1− ρε−αν ∼ ρζ(y)− ρε2−αν y2 − ρ+ ρε−αν + 1− ρε−αν

∼ ρζ(y) + 1− ρ+ o(ρε−αν ) .

4.5.3 Signal conditional distribution revisited

From (4.11), it is easy to see that the sparse approximation to the conditional distribution

of µ given |Y | of order ρε−αν is

P(µ ∈ dx | |Y | ∈ dy) =
ρε−αν cosh(yx)e−x

2/2H̃(dx) + (1− ρε−αν )δ0(dx)

ρε−αν A(y) + 1− ρε−αν
+ o(ρε−αν ) . (4.13)

Clearly, the approximation in (4.13) is meant in terms of integrals of bounded and continuous

functions. It can also be written as a mixture of the Dirac-delta measure at zero and the

normalized A measure, Ā(dx; y) = A(dx; y)/A(y),

w(y)Ā(dx; y) + (1− w(y))δ0(dx) + o(ρε−αν ) ,

where

w(y) =
ρε−αν A(y)

ρε−αν A(y) + 1− ρε−αν
. (4.14)

In Figure 4.2, the weight function w(y) is plotted for different values of α and ρ, which

in turn imply different values for εν = log(1/ρ)−η/α, η = α/2 + 0.01. The three panels are

for α = 0.5, 1 and 1.5, while the different colors ranging from dark blue to light yellow,

correspond to different values of ρ, ranging from 1% to 20%. It can be observed that,

regardless of α, for larger values of ρ, w(y) is consistently higher over the whole range of y.

This is as expected since smaller a priori ρ, and therefore smaller a priori non-negligibility

probability ρε−αν , requires more extreme observations to support the claim of signal non

negligibility. On the other hand, the inverse power α mostly affects the value of the weight

function w(y) for small values of |y|: when α = 1.5, w(y) is larger relative to the cases when

α is smaller.
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Figure 4.2: Plots of the weight function w(y) as in (4.14). Different colors correspond to
different values of ρ which imply different values of εν = (log(1/ρ))−η/α, with η = α/2+0.01.
From dark blue to light yellow, the ρ parameter is 0.01, 0.025, 0.05, 0.10, 0.20. We also report
the values of ρ and ρε−αν = ρ log(1/ρ)α/2+0.01, in percentages.

109



Now, if we want to compute the conditional probability of non-negligibility, this can be

approximated by

Pν(|µ| > εν | |Y | = y) =
ρε−αν

∫
wεν (x)A(dx; y)

ρε−αν A(y) + 1− ρε−αν
+ o(ρε−αν ) , (4.15)

where wεν (x) = 1− e−x2/2ε2ν . For small εν , the integral
∫
wεν (x)A(dx; y) behaves like A(y)−

y2ε2ν (see the appendix), so that the behavior of the numerator in (4.15) is the same as

ρε−αν A(y)− ρy2ε2−αν .

Now, the double limit regime under which ρζ(y) → λ, with λ > 0, requires y2 ∼ log(1/ρ).

So suppose we choose the sequence of thresholds to behave like

εν ∼ log(1/ρ)−η/α ,

then

y2ε2ν ∼ log(1/ρ)1−2η/α .

Choosing η such that 1− 2η/α < 0, i.e., η > α/2, the function log(1/ρ)1−2η/α → 0 as ρ→ 0.

In this case, we have

ρy2 ε2−αν ∼ ρε−αν g(ρ) = o(ρε−αν ) .

It follows that, under the double limit regime for which ρζ(y)→ λ, provided the negligi-

bility sequence converges to zero at an appropriate rate, then the conditional probability of

signal non-negligibility can be approximated by

Pν(|µ| > εν | |Y | = y) =
ρε−αν A(y)

1 + ρε−αν A(y)
+ o(ρε−αν ) . (4.16)
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From this, one can write the approximation for the conditional odds for {|µ| > εν} to be

Pν(|µ| > εν | |Y | = y)

Pν(|µ| ≤ εν | |Y | = y)
= ρε−αν A(y) ,

so that the Bayes Factor reduces to

BFε+(y) =
odds(|µ| > εν | y)

odds(|µ| > εν)
= A(y) , (4.17)

when the initial odds for {|µ| > εν} are ρε−αν to one.
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4.6 Appendix

1. Here we derive the sparse approximation of order ρε−αν to the marginal density of Y ,

∫
cosh(yx)e−x

2/2 Pν(dx) =∫
cosh(yx)e−x

2/2e−x
2/2ε2ν Pν(dx) +

∫
cosh(yx)e−x

2/2(1− e−x2/2ε2ν )Pν(dx) =

(1− ρε−αν )

∫
cosh(yx)e−x

2/2e−x
2/2ε2ν δ0(dx) + ρε−αν

∫
cosh(yx)e−x

2/2 H̃(dx) + o(ρε−αν ) =

(1− ρε−αν ) + ρ

∫
cosh(yx)e−x

2/2(1− e−x2/2ε2ν )H(dx) + o(ρε−αν ) =

(1− ρε−αν ) + ρ

∫ (
(cosh(yx)− 1)e−x

2/2 + e−x
2/2
)
(1− e−x2/2ε2ν )H(dx) + o(ρε−αν ) =

(1− ρε−αν ) + ρ

(∫
(cosh(yx)− 1)e−x

2/2(1− e−x2/2ε2ν )H(dx) +

∫
e−x

2/2(1− e−x2/2ε2ν )H(dx)

)
+ o(ρε−αν ) =

(1− ρε−αν ) + ρ

(
ζ(y)− ταζ(y/τ) +

∫
(e−x

2/2 − e−τ2x2/2)H(dx)

)
+ o(ρε−αν ) =

(1− ρε−αν ) + ρ (ζ(y)− ταζ(y/τ)− 1 + τα) + o(ρε−αν ) .

2. Here we show that
∫
φ(y)A(y)dy = 1,

∫
φ(y)A(y) dy = εαν

(∫
φ(y)ζ(y) dy − τα

∫
φ(y)ζ(y/τ) dy − (1− τα)

∫
φ(y) dy

)
= εαν

(
1− τα

∫
φ(τz)ζ(z)τ dz − 1 + τα

)
= εαν τ

α

(
1− τ

∫
φ(τz)ζ(z) dz

)
.

(4.18)
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Now, the integral appearing in the last expression can be computed as

∫
φ(τy)ζ(y)dy =

∫
φ(τy)

∫
(cosh(yx)− 1)e−x

2/2H(dx) dy

=

∫ ∫
φ(τy)eyxdy e−x

2/2H(dx)−
∫ ∫

φ(τy)dy e−x
2/2H(dx)

=

∫ ∫
1√
2π
e−1/2(τ2y2−yx+x2/τ2)dy e−x

2/2(1−1/τ2) H(dx)−
∫

1

τ
e−x

2/2H(dx)

=

∫
1

τ
e−x

2/2(1−1/τ2) H(dx)−
∫

1

τ
e−x

2/2H(dx)

=
1

τ

∫
(e−x

2/2(1−1/τ2) − 1 + 1− e−x2/2)H(dx)

=
1

τ

(
−(1− 1/τ 2)α/2 + 1

)
=

1

τ

(
1− (τ 2 − 1)α/2

τα

)
.

So, plugging this expression back in (4.18), we obtain

∫
φ(y)A(y) dy = εαν τ

α

(
1− τ

∫
φ(τz)ζ(z) dz

)
= εαν τ

α

(
1−

(
1− (τ 2 − 1)α/2

τα

))
= εαν (τ 2 − 1)α/2 = 1

since τ 2 = 1 + 1/ε2ν so that (τ 2 − 1)α/2 = (1/ε2ν)
α/2 = ε−αν .

3. Here we report the few passages for establishing the behavior of

∫
wεν (x)A(dx; y) =

∫
(1− e−x2/2ε2ν )A(dx; y) ,

appearing in the conditional probability of non-negligibility. So,

∫
(1− e−x2/2ε2ν )A(dx; y) = A(y)− εαν

∫
e−x

2/2ε2ν cosh(yx)e−x
2/2(1− e−x2/2ε2ν )H(dx) ,
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and because εν is small, the integral in the RHS behaves like

∫
|x|≤εν

y2x2

2

x2

2ε2ν
H(dx) ∼ y2

2

1

2ε2ν

∫
|x|≤εν

|x|4−α−1 dx ∼ y2 ε2−αν .

Therefore, putting things together,

∫
(1− e−x2/2ε2ν )A(dx; y) ∼ A(y)− y2 ε2ν .
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Chapter 5

Multiple testing for negligible signals

5.1 Introduction

In the context of many observations generated from a sparse signal plus noise model, iden-

tifying simultaneously which signals are negligible and which, on the contrary, can be con-

sidered as active, is often an object of primary interest. In this section, we make use of

the negligibility notion we introduced in Chapter 4, to outline a multiple testing procedure

to simultaneously test a collection of null hypotheses, where each of these null hypotheses

states the negligibility of a single signal.

We present this testing procedure to show how the negligibility notion can be exploited in

the sparsity theory developed by McC&P, but the procedure is not thought to be innovative

in its formulation. As a matter of fact, it mimics the testing procedure first proposed by

Benjamini & Hochberg (1995) [9] to control the false discovery rate (FDR). The BH proce-

dure, in turn, despite its initial formulation in a frequentist framework, has been shown, by

many authors, to have close connections with empirical Bayes methods, which control the

Bayesian Fdr. See for instance Efron and Tibshirani (2001) [30].

115



The algorithm we develop within the negligibility-sparsity theory might be labelled as

an empirical Bayes procedure. Yet, despite the general structure resemblance, there are

two main differences between our method and other Bayesian approaches proposed for the

two-groups model. The first most obvious discrepancy concerns the null hypothesis being

tested, which, in our framework is on the signal negligibility rather than on the signal be-

ing absolutely zero. The second difference follows from the first one to the extent that the

mixture, with a Dirac delta measure at zero, for the signal distribution, is an asymptotic ap-

proximation, driven by the sparsity limit, and only true in terms of expectations of bounded

and continuous functions.

5.2 Multiple testing procedure

Let the observations be

Yi = µi + ηi i = 1, . . . , n . (5.1)

The signals µi are independent and identically distributed according to Pν , which is a scale

sparse distribution with rate ρ and inverse-power exceedance measure H, with exponent

α. The errors ηi, on the other hand, are independent standard Gaussian, and each µi

is independent of each ηi. Then, using the o(ρε−αν ) integral approximation for the signal

distribution Pν ,

(1− ρε−αν )δ0(dx) + ρε−αν H̃(dx) ,

the sparse approximation of order o(ρε−αν ), to the marginal density of each Yi, can be written

as

mν(y) = (1− ρε−αν )φ(y) + ρε−αν φ(y)A(y) + o(ρε−αν ) ,

where

A(y) =

∫
cosh(yx)e−x

2/2H̃(dx) .
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Let εν be a negligibility sequence for the sparse measure Pν , and consider the collection

of null hypotheses

Hi : |µi| ≤ εν i = 1, . . . , n ,

which we would like to test based on the corresponding observed values y1, . . . , yn. To this

end, we propose the following testing procedure.

1. Choose a desired level q ∈ (0, 1].

2. Denote by y(i) the ith largest observation in absolute value, i.e., y(i) = yσ(i) where

σ ∈ Sn is the permutation σ : [n]→ [n] which ranks the collection |y1|, |y2|, . . . , |yn| in

decreasing order, so that y(1) ≥ y(2) ≥ · · · ≥ y(n) ≥ 0. Denote by µ(i) and H(i) : |µ(i)| ≤

ε, the signal and the null hypothesis corresponding to y(i).

3. For each i = 1, . . . , n, compute

f(i) = (1− ρε−αν )Φ(y(i)+) ,

where Φ(z+) = 2P(Z > z) for Z ∼ N(0, 1). This is the sparse approximation of order

o(ρε−αν ) to the joint probability that the signal is negligible and the corresponding

observation Y is larger than y(i), in absolute value. In fact,

P(|µ| ≤ εν , |Y | ≥ y) = P(|Y | ≥ y | |µ| ≤ εν)P(|µ| ≤ εν)

= 2

∫ ∞
y

P(µ+ η ∈ dz | |µ| ≤ ε) dz · P(|µ| ≤ εν)

= 2

∫ ∞
y

∫
R
P(η ∈ d(z − u))P(µ ∈ du | |µ| ≤ εν) dz · P(|µ| ≤ εν)

= 2

∫ ∞
y

∫
R
φ(z − u)δ0(du) dz · (1− ρε−αν ) + o(ρε−αν )

= Φ(y+)(1− ρε−αν ) + o(ρε−αν ) .
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Observe that, by monotonicity of Φ(z+), the increasing ranking

f(1) ≤ f(2) ≤ · · · ≤ f(n) ,

corresponds to the decreasing ranking of the observed absolute values

y(1) ≥ y(2) ≥ · · · ≥ y(n).

4. Find

yqn = inf{y > 0 :
(1− ρε−αν )Φ(y+)

#{i ∈ [n] : y(i) ≥ y}/n
≤ q}

and the corresponding

f qn = (1− ρε−αν )Φ(yqn+) .

5. Reject all null hypothesis H(i) corresponding to f(i) ≤ f qn.

6. If

{y > 0 :
(1− ρε−αν )Φ(y+)

#{i ∈ [n] : y(i) ≥ y}/n
≤ q} = ∅ ,

then no hypothesis is rejected.

Now, for any testing procedure which identifies a rejection region Γ on some domain, one

can define Rn(Γ) and Vn(Γ) to be the total number of rejections and the number of wrong

rejections, respectively, out of n hypothesis. Then, the false discovery proportion (FDP) is

defined as a function of the rejection region,

FDP(Γ) =
Vn(Γ)

Rn(Γ) ∨ 1
, (5.2)

as the proportion of wrong rejections among all rejections.
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From this point of view, it is easy to see that, analogously to the Benjamini-Hochberg

procedure which is discussed in more detail in the next section, for given values of ρ, εν

and α, the procedure outlined above proceeds in the following way. For each data point yk,

it estimates the false discovery proportion corresponding to the rejection region defined by

that point, by computing

(1− ρε−αν )Φ(yk+)

#{i ∈ [n] : y(i) ≥ yk}/n
;

based on these estimates, it chooses the rejection region Γ = {y : |y| > yqn}, in such a way

that the FDP is controlled at some predetermined level q.

In practice, however, we do not know the sparsity parameters ρ, εν and α, so we estimate

them by maximum likelihood. As a matter of fact, because we need the negligibility sequence

εν to converge to zero at a slower rate than the sparsity rate ρ, we can just set εν to be some

function of ρ and α, such as εν = log(1/ρ)−1/2α, and only estimate ρ and α. Yet, as explained

in Chapter 4 Section 4.4.1, in applied work, it is important that the estimates for the sparsity

parameters are not dependent of the scale on which the observations are made. So we assume

that the independent observations are

σYi = µi + ηi i = 1, . . . , n ,

where µi and ηi are the same as in (5.1), while σ is an unknown scale parameter. From this

formulation, one can write a sparse approximation to the log likelihood function for the triplet

(ρ, α, σ2), and maximize it to obtain the maximum likelihood estimates for these parameters.

In the next section, we investigate the multiple connections of the sparsity-negligibility

procedure outlined above, with only a few of the many existing approaches which have been

developed in this context.
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5.3 Connections with some literature

5.3.1 Benjamini-Hochberg’s FDR and Bayesian Fdr

The concept of false discovery rate (FDR) was introduced by Benjamini and Hochberg’s

seminal paper [9] (B&H from now on) as a new approach to simultaneous testing. The intro-

duction of FDR control was proposed as an extension of the frequentist hypothesis testing

framework to the setting where a large number of independent hypothesis are to be tested

simultaneously.

For a given multiple testing procedure, the false discovery rate (FDR) is defined as the

expected proportion of the wrongly rejections decided by the procedure. In other words, the

FDR is the expected value of the false discovery proportion defined in (5.2),

FDR(Γ) = E
(

Vn(Γ)

Rn(Γ) ∨ 1

)
. (5.3)

In the Benjamini and Hochberg’s frequentist approach, the signals µi are unknown but fixed

parameters, so the only randomness in Yi is given by the noise component ηi. Therefore the

expectation in (5.3) is taken over the noise distribution. Taking the cue from Simes (1986)

[65], to test a collection of sharp null hypotheses Hi : µi = 0, for any given proportion of

true nulls π0, B&H proposed the following algorithm:

1. Choose a desired level q ∈ (0, 1].

2. Compute the p-values p1, . . . , pn and sort them in increasing order

p(1) ≤ · · · ≤ p(n) .
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3. Find

iq = arg max
i=1,...,n

{p(i) ≤
i/n

π0

q} .

4. Reject all null hypotheses H(i) having p(i) ≤ p(iq).

5. If

{i : p(i) ≤
i/n

π0

q} = ∅ ,

then no hypothesis is rejected.

B&H prove that, following this procedure, one is guaranteed to control FDR at any

required level q. In that paper, the proportion of true null hypotheses π0 is fixed to one,

corresponding to the most conservative approach. However, in later works such as Benjamini

and Yekutieli (2001) [10], it is suggested to estimate π0 from the data in order to reduce the

conservative bias.

After B&H, a large number of papers, such as Efron et al. (2001A [30], 2001B [31]), Efron

and Tibshirani (2002) [29], Genovese and Wasserman (2002) [39], Storey (2003) [68], among

many others, showed a close relationship between empirical Bayes methods and FDR theory.

The common starting point is to consider for each hypothesis, some univariate summary

statistic Zi. In empirical Bayes approaches, the assumed model is the so called two-groups

model, for which Z1, . . . , Zn are independent and identically distributed according to the

mixture density f

f(zi) = π0f0(zi) + (1− π0)f1(zi) .

This mixture model can be interpreted in terms of a hierarchical model where, for each

i = 1, . . . , n, the latent variable

ri ∼ Ber(π0)
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determines which class, null or not null, the signal µi belongs to, so that

µi | ri = 0 ∼ δ0 , µi | ri = 1 ∼ G , (5.4)

where G is some non zero distribution. Then Zi = µi + ηi is such that

Zi | ri = 0 ∼ F0 , Zi | ri = 1 ∼ F1 ,

where F0 is the distribution function of the ηi’s while F1 is the convolution of G with F0.

Denoting by F the cumulative distribution function (c.d.f.) of f , Efron and Tibshirani (2002)

[29] (E&T henceforth) defined the Bayesian Fdr to be

Fdr(z) =
π0F0(z)

F (z)
, (5.5)

for rejection regions Γ = {zi : zi ≤ z}. The non-parametric estimate of Fdr(z) is

Fdr(z) =
π0F0(z)

#{zi : zi ≤ z}/n
,

where #{zi : zi ≤ z}/n is the empirical version of F (z). The Equivalence Theorem in E&T

states that, for known π0 and F0, the rule in step 4. of the B&H procedure is equivalent to

rejecting all those hypotheses with zi ≤ zq where

zq = max
z
{Fdr(z) ≤ q} .

In fact, if we sort z(1) ≤ · · · ≤ z(n), then #{zi : zi ≤ z(i)}/n = i/n and F0(z(i)) = p(i). So

rejecting all hypotheses with zi ≤ zq is equivalent to rejecting all hypothesis with

π0 p(i)

i/n
≤ q .
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In the testing procedure described in Section 5.2, the signals are considered to be random

with a sparse distribution Pν . Keeping in mind that the hypotheses being tested there are

on the negligibility of the µi’s rather than on the sharp events {µi = 0}i, mutatis mutandis,

it may come natural to identify (1 − ρε−αν ) with π0 and Φ(y(i)+) with F0(z(i)). However,

besides the shift from testing the hypothesis {µi = 0} to testing {|µi| ≤ εν}, there is another

main conceptual difference, which is that in Section 5.2, we use sparse approximations rather

than exact distributions: (1− ρε−αν ) is the sparse asymptotic approximation to P(|µi| ≤ εν)

and Φ is the sparse approximation to the conditional distribution of Yi | |µi| ≤ εν .

Since we are going to estimate the sparsity parameters (ρ, α) using maximum likelihood,

the procedure in Section 5.2 can be seen as an empirical Bayes approach to multiple test-

ing. Yet, the Equivalence Theorem makes the connection between the Bayesian and the

frequentist approach. So, supposing that the true null proportion is π0 = 1− ρε−αν and the

distribution of Y , under the null hypothesis, is Φ, then, if the rejection region Γ = {y(i) ≥ y}

is chosen as large as possible subject to the constraint that

(1− ρε−αν )Φ(y+)

#{i : y(i) ≤ y}/n
≤ q ,

then the expected proportion of wrong rejections, from a frequentist point of view, is also

less than q.

5.3.2 Connections with Storey’s q-value and Stephens (2017)

Since, when Rn(Γ) = 0, the FDR is also equal to zero, then not rejecting any hypothesis

would always guarantee FDR control at any level. For this reason, Storey (2003) [68] argues
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for controlling another quantity,

pFDR(Γ) = E
(
Vn(Γ)

Rn(Γ)

∣∣Rn(Γ) > 0

)
, (5.6)

which is called positive false discovery rate, since it is conditioning on having a positive

number of rejections. Here Γ is the rejection region on the sample space of the Z statistic.

To further make the frequentist-Bayesian connection clear, Storey (2003) [68] shows that,

under the two-groups model in (5.4) and the Zi’s independence assumption,

pFDR(Γ) = P(µi = 0 | Zi ∈ Γ) .

We report here the short proof. Write pFDR(Γ) as

E
(
Vn(Γ)

Rn(Γ)

∣∣Rn(Γ) > 0

)
=

n∑
k=1

E
(
Vn(Γ)

k

∣∣Rn(Γ) = k

)
P(Rn(Γ) = k | Rn(Γ) > 0) .

Now,

E
(
Vn(Γ)

∣∣Rn(Γ) = k
)

= E

(
n∑
i=1

1z(i)∈Γ,µi=0

∣∣Z(1), . . . , Z(k) ∈ Γ ;Z(k+1), . . . , Z(n) /∈ Γ

)

= E

(
k∑
i=1

1µi=0

∣∣Z(1), . . . , Z(k) ∈ Γ ;Z(k+1), . . . , Z(n) /∈ Γ

)

=
k∑
i=1

E
(
1µi=0

∣∣Z(i) ∈ Γ
)

= k P
(
µi = 0

∣∣Zi ∈ Γ
)
.

So then

pFDR(Γ) =
n∑
k=1

E
(
Vn(Γ)

Rn(Γ)

∣∣Rn(Γ) = k

)
P(Rn(Γ) = k | Rn(Γ) > 0)

=
n∑
k=1

P
(
µi = 0

∣∣Zi ∈ Γ
)
P(Rn(Γ) = k | Rn(Γ) > 0)

= P
(
µi = 0

∣∣Zi ∈ Γ
)
,
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as desired.

Notice that, under (5.4), since P(µi = 0, Zi ∈ Γ) = π0F0(Γ), this proves that the pFDR(Γ)

defined in (5.6), with Γ = {zi : zi ≤ z}, is actually equivalent to the Bayesian FDR defined

in (5.5).

Together with pFDR, Storey (2003) [68] also introduced the q-value, defined as

q-value(z) = inf
{Γλ: z∈Γλ}

pFDR(Γλ) .

Yet, in light of the equivalence proved above, an alternative definition is

q-value(z) = inf
{Γλ: z∈Γλ}

P(µi = 0 | Zi ∈ Γλ) ,

whose empirical counterpart, for rejection regions of the type Γ = {zi : zi ≤ z}, is indeed

the non parametric estimate of the Bayesian Fdr

q̂-value(z) =
π0F0(z)

#{zi : zi ≤ z}/n
= Fdr(z) .

Once again, with the necessary caution highlighted at the end of the last section, if we

want to match this setting with the sparsity-negligibility framework of Section 5.2, then

Zi = |Yi| and

q̂-value(y) =
(1− ρε−αν )Φ(y+)

#{i : y(i) ≤ y}/n
.

It is now evident that the multiple testing procedure of Section 5.2 finds the data-dependent

threshold

yqn = inf{y > 0 : q̂-value(y) ≤ q} ,

and so any rejected null hypothesis {|µi| ≤ εν} has corresponding q̂-value(y(i)) ≤ q. Yet,
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while the theoretical version of the tail conditional probability P(|µi| ≤ εν | |Yi| ≥ y) is nec-

essarily a decreasing function of y, the empirical version may not be so. Thus, it is possible

that some of the not rejected null hypotheses have a corresponding q̂-value(y(i)) which is still

less or equal than the level q.

Still within the empirical Bayes paradigm, but coming from a somewhat different per-

spective, perhaps more focussed on estimation rather than testing, Stephens (2017) [66] puts

forward three main ideas in approaching large-scale studies. The first one is the so called uni-

modal assumption (UA) for the distribution of all the signals. So instead of pre-specifying a

given distribution for the signals, Stephens (2017) [66] only assumes the unimodality of such

unknown distribution g, symmetric around the origin, and estimates it in a non-parametric

fashion. This is done by considering a large fixed grid of scale parameters {σ0, σ1, . . . , σK},

and construct a scale mixture of zero-mean Gaussian distributions, whose variances corre-

spond to the grid points:

g(dx; π) =
K∑
k=0

πkN(dx; 0, σ2
k) ,

where N(dx; 0, σ2
k) denotes the Gaussian distribution with mean zero and variance σ2

k, and

σ0 = 0 allows one to include the Dirac delta measure at zero, δ0(dx). The mixture weights

π0, π1, . . . , πK are estimated by maximum likelihood. Even if the actual implementation for

estimating the signal distribution is far from the sparsity-negligibility framework, both ap-

proaches share the same instance of comprising more than just one specific model, since also

the sparse distribution is only identified through its sparsity pair (ρ,H). However, we have

seen that two different scale Gaussian mixtures can have the same sparsity pair; thus, this

choice of g does not characterize the tail behavior of the signal distribution as it does the

exceedance measure.

The second idea is to retain two statistics, both the signal sizes and their standard errors,
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rather than converting them into z-values or p-values. This approach has the potential of

being more informative, as it allows one to account for differences in measurements precision.

In Stephens (2017) [66], the standard errors are used as empirical Bayes estimates for the

unknown error variances ηi ∼ N(0, τ 2
i ). In the sparsity-negligibility framework presented

here, we assume ηi ∼ N(0, 1) for all i = 1, . . . , n, and estimate by maximum likelihood a

common scale parameter for all observations. Yet, if strong reasons are given to believe in

heteroskedasticity, then one could follow the t-statistic generalization presented in Chapter 1.

Lastly, Stephens (2017) [66] introduces the local false sign rate (lfsr), which is analogous

to Efron’s local FDR we discuss in the next section, but the emphasis is put on the sign of

the signal, rather than on its being non-zero. Even in this change of perspective, we can

trace a resemblance with the negligibility-sparsity approach, whose standpoint is indeed that

of considering the negligibility hypothesis rather than the sharp zero hypothesis.

5.3.3 Efron’s local fdr and empirical null

In Efron et al. (2001A [30], 2001B [31]), the local FDR at point z, is defined as

fdr(z) =
π0f0(z)

f(z)
,

which is the conditional probability of the signal being null given that the observed statistic

is exactly equal to z. More generally, for any subset Z of the sample space of the Z statistic,

one can define

Fdr(Z) =
π0Pf0(Z)

Pf (Z)
.

According to E&T, the advantage of fdr(z) is its ‘specificity’ since it provides a measure of

belief on the ith hypothesis that only depends on the exact value of Zi. However, there is one

difficulty arising from using fdr(z) rather than Fdr(z), which is the estimation of f(z). A

non parametric option implemented in E&T, described in more detail by Efron (2007) [27],
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is to estimate f using a Poisson spline regression. So, after binning the z-values in, say, K

bins, one obtains a maximum likelihood fit to the histogram of these bin counts, by fitting

a J-parameter exponential family,

fβ(z) = exp

{
J∑
j=0

βjz
j

}
.

Quite naturally, one can see that the expression

(1− ρε−αν )φ(y)

mν(y)
=

1− ρε−αν
1− ρε−αν + ρε−αν A(y)

is the sparsity-negligibility analog to the local fdr, being the sparse approximation of order

ρε−αν to P(|µi| ≤ εν)P(y | |µi| ≤ εν)/P(y).

Besides estimating the marginal mixture f , Efron (2004) [26] proposes to also estimate

f0, the density of Z under the null hypothesis Hi : µi = 0. His idea is to fix the kernel

of f0 to be Gaussian, and then, as explained below, use various techniques, such as central

matching, to estimate the mean and variance parameters, (δ0, σ
2
0). In this way, one obtains

what Efron calls the empirical null density. The motivations for doing so are multiple. One

of these is that correlation among the z-values and unobserved covariates arising in obser-

vational studies, might make N(0, 1) a non appropriate choice for describing the empirical

distribution of the observed (z1, . . . , zn), even when marginally Zi ∼ N(0, 1) for all i. See

Efron (2012) [28], p. 105, for a complete and more detailed list of reasons. For a different

treatment of the problem of having correlated z-values due to correlation among the noise

components, see Stephens and Sun (2018) [70].
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5.3.4 Estimation of the null atom

Regarding the proportion of true null hypothesis Hi : µi = 0, Efron et al. (2001A) [30],

and Storey (2002) [67] suggest obtaining an estimate of π0 via the following reasoning. Let

A0 be a region around the origin. The zero assumption states that all the non-null cases

give z-values outside A0; in other words, the distribution of Z under the alternative gives

zero mass to the region A0. Then the expected number of z-values in A0, N0, is n times

π0F0(A0), where F0(A0) is the probability of A0 under the null distribution F0. This suggests

estimating π0 with

π̂0 =
n0

n · F0(A0)
,

where n0 is the actual number of z-values observed in A0.

Efron (2007 [27], 2012 [28]) on the other hand, proposes to estimate π0 together with the

two parameters of the empirical null N(δ0, σ
2
0), either by central matching or by maximum

likelihood. The former method assumes the zero assumption, so that around the origin

log(f(z)) = log(π0f0(z)), and it also assumes that log(f(z)) is quadratic near z = 0. So,

first it estimates the parameters of the parabola

log (f(z)) = β0 + β1z + β2z
2 ,

from the histogram counts of the zi’s around zero. Then it matches β̂0, β̂1, β̂2 with the

corresponding terms in the expression for log (π0f0(z))

log π0 − 1
2

log(2πσ2
0)− 1

2
δ2

0/σ
2
0 + 1

σ2 δ0z − 1
2σ2 z

2 .

to obtain the estimate for (π0, δ0, σ
2
0). The maximum likelihood (ML) estimate method, on

the other hand, also starts with the zero assumption, f1(z) = 0 for z ∈ A0, and estimates
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(π0, δ0, σ
2
0) from the likelihood of the z-values observed in A0

(
n

n0

)
θn0(1− θ)n−n0

∏
zi∈A0

φδ0,σ2
0
(zi)

Φδ0,σ2
0
(A0)

.

In this expression, θ = P(Z ∈ A0) = π0Φδ0,σ2
0
(A0), whereas

φδ0,σ2
0
(zi)/Φδ0,σ2

0
(A0)

is the probability density of Z at zi given that Z ∈ A0, assuming Z ∼ N(δ0, σ
2
0).

Notice that the zero assumption, meaning f1(z) = 0 for z ∈ A0, is not satisfied by the

hierarchical model in (5.4) if F0 is assumed to be a Gaussian distribution. In fact, if F1 is the

convolution of F0 with a non-zero distribution G, then clearly F1(A0) = G ∗ Φδ0,σ2
0
(A0) > 0

and not zero. The violation of the zero assumption in a setting like this, introduces some

bias in both ML and central matching estimates. Still Efron (2012) [28] claims that the bias

in those obtained using central matching is not very large as long as 1− π0 is small.

5.3.5 Comparison for Leukemia data

In this section, we would like to give an idea of how the methods described in previous

sections compare to each other. To this end, we analyze a dataset coming from a leukemia

study (Golub et al., 1999 [41]), freely available on Efron’s website. The Leukemia dataset

is an example of microarrays data, which is one kind of data that first posed the statistical

problem of testing thousands of hypothesis simultaneously (see for instance Efron et al.,

2001B [31], E&T). As described in Efron (2012) [28], for this dataset, high density oligonu-

cleotide microarrays provided expression levels on 7128 genes for 72 patients, 45 with acute

lymphoblastic leukemia (ALL) and 27 with acute myeloid leukemia (AML). The scientific
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interest lies on establishing whether there are some genes which show a different expression

level between the AML and ALL groups of patients. To this end, the raw expression levels

on each microarray, Xij for gene i = 1, . . . , 7128 on patient array j = 1, . . . , 72, were first

transformed to a normal score value xij via an empirical quantile-matching transform. These

kinds of standardization steps are very common in microarrays data for removing response

disparities among the microarrays as well as some wild outlying values. Following this, two-

sample t-statistics ti were computed, gene by gene, for comparing the sample mean from the

AML group with the sample mean from the ALL group,

ti =
x̄ALL
i − x̄AML

i

si
.

Here si is the estimate of the standard error of the numerator of ti and the pooled sample

variance is used to estimate the variance, which is assumed to be the same for both groups.

These t-statistics were then transformed into z-values so that the actual data consists of

zi = Φ−1(Ft70(ti)) i = 1, . . . , 7128 .

Within the sparsity-negligibility setting, we assume that, for each i = 1, . . . , 7128,

Zi = σ(µi + ηi)

where µi
i.i.d.∼ Pν sparse with first-order pair (ρ,Hα) and ηi

i.i.d.∼ N(0, 1), with µi and ηi

independent of each other. The sparse approximation of order o(ρε−αν ) to the marginal of Zi

is

(1− ρε−αν ) 1
σ
φ(z/σ) + ρε−αν

1
σ
ψA(z/σ) , (5.7)

where ψA(z) = φ(z)A(z), while the sparse approximation of order o(ρ) is

(1− ρ) 1
σ
φ(z/σ) + ρ 1

σ
ψ(z/σ) , (5.8)
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where ψ(z) = φ(z)ζ(z).

On the other hand, the empirical Bayes approach assumes that, for each i = 1, . . . , 7128,

the marginal density of Zi is

π0f0 + (1− π0)f1(z) ,

where, following Efron (2004 [26], 2007 [27]), f0 is the density function of the empirical null

distribution N(δ0, σ
2
0), while f1 is assumed to satisfy the zero assumption, i.e., F1(A0) = 0

for some region A0 around the origin.

It is interesting to notice that the tail-inflation component in the o(ρ)-sparse approxima-

tion to the marginal density of Zi in (5.8), does satisfy

ψ(0) = φ(0)ζ(0) = 0 , (5.9)

whereas, as mentioned before, if F1 is the convolution of F0 with some distribution G, then

f1(0) =

∫
f0(−x)G(dx) =

∫
φδ0,σ2

0
(x)G(dx) > 0

whenever G(dx) is not identically zero. From (5.9), one can also see that, if the exceedance

measure H was known, so would be ζ, and one could estimate the sparsity rate ρ exploiting

the fact that 1 − ρ = mν(0)/φ(0). All the same, one should still bear in mind that, even

if the signal distribution was in fact an atom-and-slab mixture with mixing parameter π0,

as in the two-groups model in (5.4), ρ would not be the proportion of non-null hypothesis,

since ρ = π0

∫
(1− e−x2/2)G(dx) < π0.

As a way of comparing the two approaches, we can derive what negligibility threshold is

required in the sparsity-negligibility procedure in order to identify the same rejection region
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as that obtained using Efron’s empirical null estimation. In other words, we derive what

negligibility hypothesis |µ| ≤ εν , the ‘sharp’ null hypothesis µ = 0 corresponds to. So, given

the estimates for the two-groups model (π̂0, δ̂0, σ̂
2
0), we first estimate the sparsity parameters

(ρ, α, σ2), and then find the threshold εν such that

inf
{
z > 0 :

(1− ρ̂ε−α̂ν )Φσ̂(z+)

#{i ∈ [n] : |zi| ≥ z}/n
≤ q
}

= zE ,

where the value

zE = inf
{
y > 0 :

π̂0F̂0(z+)

#{i ∈ [n] : |zi| ≥ z}/n
≤ q

}
is the data dependent threshold for controlling the Bayesian Fdr at level q using the estimated

empirical null F̂0 = N(δ̂0, σ̂
2
0). So, given zE, we solve for εν

(1− ρ̂ε−α̂ν )Φσ̂(zE+)

#{i ∈ [n] : |zi| ≥ zE}/n
= q ,

and obtain the ‘matching’ threshold

εEν =

(
ρ̂−1

(
1− q ·#{i ∈ [n] : |zi| ≥ zE}/n · 1

Φσ̂(zE+)

))−1/α̂

. (5.10)

To estimate the sparsity parameters, we maximize the log likelihood from the whole

sample

l(ρ, α, σ2; z1, · · · , zn) =
7128∑
i=1

log
(

1
σ
φ(zi/σ)(1− ρ+ ρζα(zi/σ)

)
+ o(ρ) .

This is the log likelihood derived using the sparse approximation of order o(ρ) and not order

o(ρε−αν ). In this way, the log likelihood is free of the negligibility threshold εν , and so are

the estimates of (ρ, α, σ2), so that we can then set εν as in (5.10) and match the sparsity-

negligibility rejection region with that found by Efron’s empirical null method.

Yet, because there is an appreciable asymmetry in the Leukemia z-values, we estimate
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the sparsity parameters (ρ, α) separately for the 3719 positive observations, and the 3403

negative ones, holding fixed the common estimate for the scale parameter σ2. From the

estimation on the whole sample, we get σ̂2 about 1.862, and then obtain (ρ̂, α̂) = (0.02, 1.39)

for the positive observations and (ρ̂, α̂) = (0.11, 1.68) for the negative ones.

The sparse marginal densities mν of order o(ρ) corresponding to these estimates are shown

in Figure 5.1, depicted by the light blue curves. We also plot the estimated sparse approxi-

mations of order o(ρε−αν ) (dashed yellow curves). For these last ones, we set the negligibility

thresholds to εEν , using the two triplets (ρ̂, σ̂2, α̂), estimated separately for positive and neg-

ative z-values. The difference between the two sparse approximations is appreciable only for

the negative part. In Figure 5.2 instead, we only plot the mixture component (1− ρ̂) 1
σ̂
φ(z/σ̂)

of the approximation of order o(ρ), once again split for positive and negative z-values (dark

green lines), and compare them with Efron’s estimate π̂0F̂0, which is 0.93 · N(0.09, 1.682)

(red curve).

The data threshold zE to control the estimated Bayesian Fdr

Fdr(z) =
π̂0F̂0(z)

#{zi : zi ≤ z}/n
,

at level q = 10% is found to be around 5.31. In order to match the rejection regions,

using (5.10), the negligibility threshold for the signals generating the positive observa-

tions needs be 0.074, while that for those signals generating the negative z-values needs

be 0.408. The corresponding sparse approximations to the probability of non negligibility

are: P(|µ| > 0.074) = 0.02 · 0.074−1.39 = 0.68 for the signals generating the positive observa-

tions; P(|µ| > 0.408) = 0.11 · 0.408−1.68 = 0.5 for the signals generating the negative ones.

In some sense, this means that testing the sharp null hypothesis µi = 0 after estimating
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Figure 5.1: Estimated densities for Leukemia z-scores. Light blue solid curves correspond
to the sparse approximations of order ρ to the marginal densities for positive and negative
observations, respectively. Yellow dashed curves instead show the sparse approximation of
order ρε−αν to these two marginals.
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Figure 5.2: Estimated null densities for Leukemia z-scores. Dark green curves show the
mixture components (1 − ρ) 1

σ
φ(z/σ) appearing in the order ρ sparse approximations, for

both positive and negative observations. The red curve, on the other hand, depicts the
Efron’s estimate of the empirical (sharp) null distribution, common to positive and negative
values.
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P(µi 6= 0) = 0.07, and after estimating the density of the Zi’s under the sharp null to be

N(0.09, 1.682), is equivalent to test the sparse negligibility hypothesis

• |µi| ≤ 0.074 for positive observations having sparse marginal density of order ρ

1
1.86

φ(z/1.86)
(
1− 0.02 + 0.02 ζ1.39(z/1.86)

)
, z ≥ 0

• |µi| ≤ 0.408 for negative observations having sparse marginal density of order ρ

1
1.86

φ(z/1.86)
(
1− 0.11 + 0.11 ζ1.68(z/1.86)

)
, z < 0 .

In Table 5.1 we report the empirical version of the conditional tail probability of the signal

negligibility, given by

P̂(|µ| ≤ εν | |Z| ≥ |z|) =
(1− ρ̂ε−α̂ν )Φσ̂(|z|+)

#{i ∈ [n] : |zi| ≥ |z|}/n
,

corresponding to the top ten rejected z-values, negative and positive respectively. Notice

that this also coincides with our empirical estimate of Storey’s q-value.

Figure 5.3 shows P̂(|µ| ≤ εν | |Z| ≥ |z|) for the Leukemia z-scores, split according

to their sign. The dashed vertical lines indicate the smallest (in absolute value) z-value

rejected by the sparsity-negligibility procedure, with the negligibility thresholds as specified

in the previous paragraph. As expected, the empirical conditional tail probability of signal

negligibility, which is also the sparse version of Fdr(z), is below the level q = 10% for all

z-values whose signal negligibility hypothesis is rejected.
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Figure 5.3: Estimated conditional tail probability of signal negligibility for the Leukemia
dataset z-scores. The left panel shows P̂(|µ| ≤ 0.408 | |Z| ≥ |z|) as a function of z < 0 while
the rug reports the observed negative z-scores. The right panel shows P̂(|µ| ≤ 0.074 | |Z| ≥
|z|) as a function of z > 0 together with the observed positive z-scores. The dashed vertical
lines indicate the smallest (in absolute value) z-score rejected by the sparsity-negligibility
procedure having as negligibility thresholds those specified above.
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z-score P̂(|µ| ≤ 0.408 | |Z| ≥ |z|)

-7.855 0.042
-7.763 0.026
-7.412 0.039
-7.300 0.037
-7.268 0.032
-7.267 0.027
-7.264 0.023
-7.255 0.021
-7.097 0.026
-7.097 0.023

z-score P̂(|µ| ≤ 0.074 | |Z| ≥ |z|)

7.855 0.029
7.737 0.019
7.531 0.020
7.462 0.018
7.432 0.015
7.019 0.032
6.905 0.035
6.731 0.044
6.690 0.042
6.631 0.043

Table 5.1: Top ten rejected z-values, positive and negative, with the corresponding tail
conditional probability that the underlying signal is negligible.
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Chapter 6

Sparsity for wavelet regression

6.1 Introduction

In the Gaussian non-parametric regression problem, the observations of an unknown function

f , are taken at regularly spaced points, and are subject to noise. In formulae, one can write

Y (ti) = f(ti) + ξ(ti) i = 1, . . . , T , (6.1)

where ξ(ti) are independent random variables with distribution N(0, σ2
ξ ), the variance of the

errors being constant, while f is the unknown mean function, which is the object of interest.

The index i ∈ [T ] is derived from the ordered set {ti} of T regularly spaced points in a

one-dimensional space.

The wavelet approach to the estimation of f entails expressing f ∈ L2(R) in terms of an

orthonormal basis of L2(R), {ψjk}j,k∈Z, called wavelet basis,

f(x) =
∞∑

j=−∞

∞∑
k=−∞

θjkψjk(x) ,
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and estimating the wavelet coefficients

θjk = 〈f, ψjk〉 =

∫
f(x)ψjk(x) dx j, k ∈ Z , (6.2)

to obtain an estimate of f . The underlying rationale for carrying out the estimation in

the wavelet domain rather than in the original domain is that if the unknown function has

some kind of spatial structure, then it is possible to well approximate f by a function whose

wavelet representation is sparse, in the sense that the majority of its wavelet coefficients are

zero or very near zero, and relatively few of them are in fact non-negligible. The second

reason why the estimation in the wavelet domain is convenient, is that, when represented in

wavelet form, a Gaussian function is still a Gaussian function so that, in the wavelet domain,

the observed function can indeed be seen as the superposition of a sparse signal function and

a Gaussian function. This in turn, allows one to carry out signal detection in the wavelet

domain, and be able to reconstruct separately, the two components in the original domain,

f and ξ.

Now, since wavelet regression in some sense reduces to signal processing, in its form

of shrinking or thresholding the observed coefficients to estimate the unknown function

coefficients, it goes without saying that a plethora of methods are available to perform this

task. In this chapter, after giving some background on wavelet regression and a short review

of some Bayesian approaches to this problem, we illustrate how it can be formulated within

the sparsity and negligibility framework. In fact, we take the problem of estimating the

wavelet coefficients θjk as an opportunity to compare the two sparse integral approximations,

which we first discussed in the introduction. The original sparse approximation of order o(ρ)

can in fact be used to obtain a shrinking estimator for θjk, while the negligibility sparse

approximation of order o(ρε−αν ) can be employed to obtain a soft-thresholding estimator for

θjk. To have an external benchmark, we also compare these two sparsity proposals to a
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cornerstone in the literature of wavelet estimation, which is the empirical Bayes approach

proposed by Johnstone and Silverman (2005) [47].

6.2 Wavelet regression

The discrete wavelet basis functions {ψjk}j,k∈Z are generated by dilation and translation of

the mother wavelet ψ as follows

ψj,k(x) = 2j/2ψ(2j(x− k/2j)) j, k ∈ Z .

Here the index j defines the resolution level, in that it determines the width 2−j of the equal-

length intervals in which the domain of the mother wavelet is split up. Higher values of j

correspond to finer resolutions while lower values correspond to coarser ones. The index k

instead determines the location, since for each level of resolution j, it identifies which of the

2j intervals to consider. Because of this construction by dilation and translation, wavelets

are said to be localized in both time and frequency domains. The mother wavelet ψ has two

peculiar properties: it oscillates above and below zero in such a way that has at least the first

moment equal to zero,
∫
ψ(x)dx = 0, and has fast decaying tails, if not compact support.

The first property aims at capturing a variation feature in the function, while the second

property constraints this variation to be local. With this in mind, for any given j, the wavelet

coefficients in (6.2) capture the amount of local variation happening in f at resolution level j.

So now suppose that f is spatially structured, in the sense that f(t) and f(t′) are expected

to be similar if |t−t′| is small and abrupt changes are allowed as quite rare exceptions. Then,

by virtue of the properties of the wavelet basis described above, f in the wavelet domain,

will have coefficients at finer resolutions which will be mostly close to zero, with only few

large exceptions. Intuitively, this is why the wavelet coefficients can be effectively charac-

terized by sparsity patterns when the underlying function exhibits some spatial structure.
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Borrowing from the engineering language the notion of energy of a vector as its L2 norm, by

Parseval’s identity, one can show that the energy of the original signal is conserved in the

wavelet domain but gets compressed into few high-energy coefficients. (∗)

Yet, as mentioned above, the amount of sparsity induced in the wavelet representation of

a function crucially depends on the function itself. For instance, if ξ(t) is a Gaussian process

(GP) with zero mean and covariance function C(t, t′) = δt,t′ , then its wavelet transform is

also a GP with zero mean and same covariance function. Therefore, no sparsity is induced

in a Gaussian random function when passing from the original domain to the wavelet domain.

In the context of data observed at a finite number of points {t1, . . . , tT}, usually T = 2J ,

the discrete wavelet transform (DWT) maps a vector Y of length T to a vector Ỹ of equal

length, containing its wavelet coefficients, all but the first, corresponding to a translation-

dilation of the mother wavelet function ψ:

Ỹjk = 〈Y, ψjk〉 j = 0, . . . , J − 1, k = 0, . . . , 2j − 1 .

Mallat (1989) showed that the DWT can be represented by an orthogonal matrix W which

stores in each row a scaled wavelet vector, i.e., a vector with entries given by the val-

ues of a wavelet function ψjk at the T equally-spaced points ti = i/T . In other words,

identifying each row index l ∈ {1, . . . , T} with a pair (j, k), the W matrix is such that
√
TWl,i =

√
TWjk,i = ψjk(i/T ) = 2j/2ψ(2ji/T − k).

If the observation process Y (t) is the superposition of a signal process f(t) and a white

noise process ξ(t), as in (6.1), then the discrete wavelet transform of the observed vector
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Y = (Y (t1), . . . , Y (tT )),

WY = Wf +Wξ ,

is the sum of a compressed signal θ̃ = W (f(t1), . . . , f(tT )), and an unchanged Gaussian noise

η̃ = W (ξ(t1), . . . , ξ(tT )). Since θ̃ concentrates the energy of f in just few components, while

the energy of ξ remains equally distributed among the components of η̃, the observed sum

in the wavelet domain,

Ỹ = θ̃ + η̃ ,

exhibits an appreciably improved signal-to-noise ratio between the two components. This

in turn means that we can estimate the wavelet coefficients θ̃, by applying some form of

thresholding or shrinkage to Ỹ in order to remove the noisy part and be left with the sparse

wavelet representation of f . After carrying out this denoising procedure on Ỹ , the last step

is to return to the original domain by taking the inverse discrete wavelet transform W−1, so

to obtain an estimate of f .

In practice, it is not necessary to perform matrix multiplications as both the DWT and

its inverse can be computed using the pyramid filtering algorithm proposed by Mallat (1989)

[50]. This allows one to reduce the computational time from O(T 2) to O(T ), beating the

computational time of another very common transform in signal processing, the fast Fourier

transform, which instead takes O(T log T ).

(∗) Note: the reason why the wavelet expansion gives rise to fewer high-energy coefficients

than other orthogonal function basis has to do with the fact the wavelet coefficient sequences

are highly symmetric about the coefficient axis and any rotation applied to these sequences

would result in a loss of such symmetry. For an exhaustive and rigorous discussion of this

fascinating topic, we refer to Donoho (1993) [22].
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6.3 Bayesian approaches to wavelet regression

Within the Bayesian paradigm, the expected sparsity in the representation of the unknown

function in the wavelet domain is naturally accomodated by a precise choice of the prior

distribution for the underlying wavelet coefficients. Since the beginning of its development,

the Bayesian approach has seen many different proposals for this prior distribution. For

example, Clyde, Parmigiani and Vidakovic (1998) [18], and Abramovich, Sapatinas and Sil-

verman (1998) [1], among others, considered an atom-and-slab mixture prior with a Gaussian

distribution as the slab component, while Chipman, Kolaczyk and McCulloch (1997) [17]

proposed a mixture of two Gaussian distributions, one concentrated around zero and the

other dispersed. More recently, Xing, Carbonetto and Stephens (2021) [79] extended the

two-component scale mixture of normals to a K-component scale Gaussian mixture, with

the possibility of including the Dirac delta measure as a degenerate Gaussian distribution.

A cornerstone in the Bayesian wavelet estimation literature is the paper by Johnstone and

Silverman (2005) [47] (J&S henceforth), who proposed a class of prior distributions given by

the mixture

(1− w)δ0(du) + wΓ(du) ,

where the non-zero measure Γ is assumed to have a unimodal symmetric density γ. Clearly,

the normal density is a viable option for γ but, following Wainwright, Simoncelli and Willsky

(2001) [73], J&S emphasize the advantage, in the wavelet context, of choosing γ to have

heavier tails, such as those of the Laplace density. As an another possibility for γ, the authors

proposed a scale mixture of normals, N(0, κ−1 − 1) with a Beta prior on κ ∼ Be(1/2, 1).

The resulting density

γ(u) = (2π)−1/2
(
1− |u|

(
1− Φ(|u|)

)
/φ(u)

)
, (6.3)
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has tails decaying as u−2, for which reason they name it ‘quasi-Cauchy density’. This scale

Gaussian mixture was in fact already considered by Strawderman (1971) [69], as well as

Berger (1980) [11].

For any given choice of the prior for the signal wavelet coefficients θ̃, the correspond-

ing conditional distribution, given the observed coefficients Ỹ , can be utilized to obtain an

estimator for θ̃. The conditional mean, considered by Clyde, Parmigiani and Vidakovic

(1998) [18] and Chipman, Kolaczy and McCulloch (1997) [17] among others, shrinks the ob-

served coefficients towards zero and has been shown to give good results. As an alternative,

Abramovich, Sapatinas and Silverman (1998) [1] proposed to use the conditional median.

The advantage of this last choice is that, if the prior contains an atom at zero, then the

conditional median takes the form of a soft-thresholding operator. In this case, a subset of

observed coefficients is thresholded to zero while the remaining coefficients are shrunk to

zero by an amount depending on their size.

In the next section, we describe how we adapt the approach of J&S to the sparsity-

negligibility framework, taking the wavelet coefficient estimation as a chance to make a com-

parison between two sparse integral approximations: the original sparse o(ρ) approximation,

and the sparse-negligibility o(ρε−αν ) approximation.

6.4 Model assumptions and estimation

6.4.1 Sparsity assumptions

Since wavelet coefficients are naturally grouped by their level of resolution, it is appropriate

to model each level separately, and, in light of the discussion of Section 6.2, we only model

the coefficients of the higher levels of resolution, say from level m to level J . For each of

these higher levels, we assume that the coefficients are independently distributed with a
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level-specific sparse distribution P j
ν . This means that for j = m, . . . , J , the observed j-level

coefficients

Ỹjk = θ̃jk + η̃jk = σj(θjk + ηjk) k = 1, . . . , 2j ,

are the scaled sum of a sparse signal θjk ∼ P j
ν and an independent noise ηjk ∼ N(0, 1).

Here P j
ν is a sparse distribution with first-order sparsity pair (ρj, Hj); Hj is an inverse-power

exceedance measure; σj is the j-level scale parameter. Allowing a different scale parameter

for each level of resolution is appropriate, especially when the noise function exhibits some

form of autocorrelation in the original domain. In fact, Johnstone and Silverman (1997)

[44] explains that, even when there is an appreciable autocorrelation in the Gaussian noise

process ξ(t), its wavelet transform yield coefficients with much less dependence. We refer

the reader to Section 6 of the aforementioned paper for a formal treatment. For simplicity

of exposition, from now on, we suppress the j-level script, and refer to Ỹk, θk and ηk as the

random variables at level j, implicitly meaning that the same estimation procedure can be

carried out for each level of resolution separately.

As mentioned in the introduction to this chapter, depending on what kind of regular-

ization rule we want to adopt, we consider different sparse integral approximations to Pν .

In fact, if the smoothing of the observed function is to achieve by shrinking the observed

wavelet coefficients, then we can use the conditional mean of θk. For this shrinkage to hap-

pen, no atom at zero is needed in the integral sparse approximation to Pν(dx), so that the

approximation of order o(ρ),

ρH(dx) , (6.4)

can be employed. Under this approximation, the marginal density of Ỹk at ỹ is

mν(ỹ) = φσ(ỹ) (1− ρ+ ρζ(ỹ/σ)) + o(ρ) , (6.5)
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where φσ(z) = 1/σ φ(z/σ), and the moment generating function of the conditional distribu-

tion of θk, given Ỹk = ỹ, is

∫
etxPν(dx | ỹ) =

∫
etxexỹ/σ−x

2/2

mν(ỹ)/φσ(ỹ)
Pν(dx) =

ρζ(ỹ/σ + t)

1− ρ+ ρζ(ỹ/σ)
+ o(ρ) .

By Eddington-Dyson’s formula, the conditional mean of θk is

µ(ỹ/σ) =
ρζ ′(ỹ/σ)

1− ρ+ ρζ(ỹ/σ)
,

so the shrinkage estimator of the k-translated coefficient at level j is

σµ(Ỹk/σ) . (6.6)

If instead one wants to denoise the observed function by means of some sort of thresh-

olding in the wavelet domain, then the conditional median of θk can be used as a soft-

thresholding rule, provided that the sparse integral approximation to Pν has an atom at

zero. In this case, we consider the integral approximation of order o(ρε−αν ) introduced in

Chapter 4,

(1− ρε−αν )δ0(du) + ρε−αν H̃(du) . (6.7)

Here εν is a negligibility sequence for Pν according to Definition 4.5.1. Henceforth, we

consider εν to be the function (log(1/ρ))−1/2α, so that the unconditional probability of non-

negligibility ρε−αν = ρ
√

log(1/ρ) → 0 as ν → 0. Under this approximation, the marginal

density of Ỹk at ỹ is

mν(ỹ) = φσ(ỹ)(1− ρε−αν + ρε−αν A(ỹ/σ)) + o(ρε−αν ) , (6.8)
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where we recall that

A(y) =

∫
cosh(yx)e−x

2/2 H̃(dx) = εαν (ζ(y)− ταζ(y/τ)− 1 + τα) ,

for τ 2 = 1 + 1/ε2ν . Then the sparse approximation of order o(ρε−αν ) to the conditional

distribution of θk, given |Ỹk| = ỹ, is

(1− w(ỹ/σ))δ0(dx) + w(ỹ/σ)Ā(dx; ỹ/σ) , (6.9)

which is a mixture of a Dirac delta measure at zero, and the non-zero measure

Ā(dx; y) =
cosh(yx)e−x

2/2H̃(dx)∫
cosh(yx)e−x2/2 H̃(dx)

,

with relative weight

w(y) =
ρε−αν A(y)

ρε−αν A(y) + 1− ρε−αν
.

Denote by q0.5(ỹ/σ) the conditional median of θk given Ỹk = ỹ, i.e., q0.5(ỹ/σ) is the value q

for which ∫ q

−∞
Pν(dx | ỹ) = 0.5 .

Strictly speaking, the indicator function χ(−∞,q](x) is not a continuous function; nevertheless

it can be approximated to any level of precision by some bounded and continuous function.

So, because the conditional distribution is

Pν(dx | Ỹ ) =
exỹ/σ

cosh(xỹ/σ)
Pν(dx | |Ỹ |) ,

applying the integral approximation (6.9) to Pν(dx | |Ỹ |), we obtain the sparse approximation

∫ q

−∞
Pν(dx | ỹ) = (1− w(ỹ/σ))

∫ q

−∞
δ0(dx) + w(ỹ/σ)

∫ q

−∞

exỹ/σ

cosh(xỹ/σ)
Ā(dx; ỹ/σ) + o(ρε−αν )
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So, letting a(µ; y) =
∫ µ
−∞

exy

cosh(xy)
Ā(du; y), consider ỹ > 0. The conditional median q0.5(ỹ) is

zero if

1− w(ỹ/σ) + w(ỹ/σ) a(0; ỹ/σ) ≥ 0.5 ;

otherwise q0.5(ỹ) is equal to the value q? for which

1− w(ỹ/σ) + w(ỹ/σ) a(q?; ỹ/σ) = 0.5 .

Putting these last two observations together, we have that the conditional median, given

ỹ > 0, can be written as

q0.5(ỹ/σ) =


0 if 1− w(ỹ/σ) + w(ỹ/σ) a(0; ỹ/σ) ≥ 0.5 ,

q? else.

By antisymmetry of the conditional median, for ỹ < 0, q0.5(ỹ/σ) = −q0.5(−ỹ/σ). So, the

conditional median naturally gives rise to the soft-thresholding estimator for the k-translated

coefficient at level j,

σq0.5(Ỹk/σ) . (6.10)

In Figure 6.1, we plot the conditional mean in (6.6), and conditional median in (6.10),

as functions of the observed ỹ, for values of ρ = 0.05, 0.1, 0.2 and α = 0.5, 1, 1.5, while σ is

fixed to one. We can see how the conditional mean (red curve) shrinks all values but does

not threshold any of them to zero; by contrast, the conditional median (light blue curve)

defines a symmetric region around the origin,

{ỹ : w(|ỹ|) (1− a(0; |ỹ|)) ≤ 0.5} , (6.11)

which gets thresholded to zero. The curve w(|ỹ|) (1− a(0; |ỹ|)) is plotted for positive ỹ in

Figure 6.2.
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Figure 6.1: Conditional median q0.5(ỹ) (blue curve) and conditional mean µ(ỹ) (red curve)
for different values of the sparsity parameters ρ and α. The top three plots have α = 0.5,
the middle ones have α = 1 while the bottom ones correspond to α = 1.5. In each plot, the
threshold refers to the ỹ-value that determines the region in (6.11) which is thresholded to
zero by the conditional median.
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Figure 6.2: Plot of the curve w(ỹ) (1 − a(0; ỹ)). The black vertical line depicts the ỹ-
threshold that defines the region of ỹ-values for which the corresponding signal estimate gets
thresholded to zero, bu the conditional median. The parameters are set to ρ = 0.1, α = 1,
and σ = 1.

6.4.2 Translation-invariant wavelet

Despite their well developed theory, which includes results of near optimality in comparison

to other methods, wavelet de-noising methods were criticized for producing some kind of

artifacts in proximity of the discontinuities in the underlying function. As explained in

Coifman and Donoho (1995) [19], wavelet reconstructions can excessively oscillate up and

down, whenever a discontinuity in the signal function occurs not exactly at one point of

the dyadic segmentation of the domain. In other words, the alignment of the wavelet basis

elements with the discontinuities of the signal function is crucial for the success of the signal

reconstruction. From this perspective, it comes natural to consider shifting the signal in such

a way to produce a better alignment and eliminate the unwanted artifacts. This means that

one can apply a circulant shift operator on the signal, denoise the shifted version and then

shift this back. However, when the function exhibits multiple discontinuities, it is not obvious
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which shift would be best to apply, as a shift aligning one discontinuity, could be detrimental

for moving another one. For this reason, Coifman and Donoho (1995) [19] proposed to apply

a range of possible shifts and then average over the results obtained from each of these

shifts. When the average is taken over all T possible circulant shifts, this procedure, called

‘cycle-spinning’, is translation invariant, and produces a T -long vector of coefficients for

each level of resolution, since at level j, the number of coefficients 2j gets multiplied by

the number of possible shifts 2J−j. This translation invariant wavelet transform (TIDWT)

can be computed rapidly with only O(TJ) = O(T log2 T ) computations. For a different

exposition of the TIDWT, see Section 2.7.2 of Nason (2008) [55] and references therein.

6.4.3 Parameter estimation

As in J&S and many others after them taking an empirical Bayes approach, for each level

of resolution, we estimate the sparsity parameters by maximum likelihood. However in our

setting, as explained in Section 6.4.1, depending on the regularization rule we want to use to

smooth the observed function, we consider two different integral approximations to Pν , which

in turn imply two different approximations to the marginal density of Ỹk. With the former

approximation in (6.5), given the observed coefficients {ỹk}k from the standard DWT, the

log likelihood for the j-level sparsity parameters is

logL(ρ, α, σ2; ỹ0, . . . , ỹ2j−1) =
2j−1∑
k=0

log{φσ(ỹk) (1− ρ+ ρζ(ỹk/σ))} . (6.12)

Instead, if we use the approximation in (6.8), the log likelihood is

logL(ρ, α, σ2; ỹ0, . . . , ỹ2j−1) =
2j−1∑
k=0

log{φσ(ỹk)
(
1− ρε−αν + ρε−αν A(ỹk/σ)

)
} . (6.13)

Yet, if we work with the TIDWT, then the T coefficients obtained for each level j are

not independent, and in principle one should consider separately the different packets corre-
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sponding to the different choices of the origin. However, the tendency in the literature has

been instead to treat the entries of the whole T -long coefficient vector as independent and

maximize a log likelihood averaged over the choice of origin. So letting {ỹp,0, . . . , ỹp,2j−1}

denote the observed coefficients in the p packet of level j, for each j, we maximize

l̄(ρ, α, σ2) =
1

2J−j

2J−j∑
p=1

logL(ρ, α, σ2; ỹp,0, . . . , ỹp,2j−1) (6.14)

in such a way to borrow strength in the estimation of (ρ, α, σ) between the different locations

of the origin. For a more detailed discussion about this ‘as-if-independence’ strategy, we

refer the reader to J&S. The estimated parameters can then be used to perform one of the

shrinkage or thresholding procedures discussed above, on the observed coefficients of the

TIDWT. After this, the smoothed coefficients are transformed back on the original scale

using an average basis approach, as mentioned at the end of the previous section.

6.5 Simulation study

In this section, we simulate some data to illustrate the functioning of the sparsity-negligibility

methods described in the previous section. For the underlying signal function, we use the

four test functions, Doppler, Bumps, Blocks and Heavisine, first considered by Donoho and

Johnstone (1994) [23].

We set T = 512 and generate the signal vector µ over the interval [0, 1] so that the

points t1, . . . , tT are equally spaced by 1/29. Then we simulate Y by adding to µ the vector

η whose entries are independent and identically distributed as N(0, σ2
η), where σ2

η is set so

that the signal-to-noise ratio is one. We transform the noisy signals using the Daubechies

least-asymmetric wavelet basis with ten vanishing moments, which is the default option im-

plemented by the wd command of the wavethresh R package (Nason, 2016 [56]). These
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wavelets belong to a larger family of wavelets introduced by Daubechies (1988) [20], con-

structed with the aim of having compactly supported functions which were smoother than

the original Haar wavelets.

Since J = log2 T = 9, after applying the translation invariant wavelet transform to Y ,

we estimate the sparsity parameters following Section 6.4.3, for the resolution levels ranging

from four to eight. In Figure 6.3, we compare the estimates for (ρ, α, σ) obtained by max-

imizing l̄(ρ, α, σ2) using the two options for the log likelihood as in (6.12) and (6.13). As

expected, the estimate for the sparsity rate ρ is decreasing as the resolution level increases,

with the only exception of the case when a very large scale parameter is estimated for the

coarsest level four. If we were to fix the scale parameter across levels, for instance estimating

it by the mean absolute deviation (MAD) of the finest level coefficients, an option considered

by J&S, the decreasing pattern of the sparsity rate would be much more pronounced.

Regarding the differences between using (6.12) versus (6.13) as log likelihood, one can

observe that there are no major differences for the estimates of the α parameter and almost

identical estimates for the scale σ. On the contrary, the second log likelihood, derived from

using the atomic mixture integral approximation (6.7), leads to an estimated weight ρε−αν

for the component A(y) in

mν(ỹ) = φσ(ỹ)(1− ρε−αν + ρε−αν A(ỹ/σ)) + o(ρε−αν ) ,

which is systematically higher than the estimated weight ρ for the component ζ(y) in

mν(ỹ) = φσ(ỹ) (1− ρ+ ρζ(ỹ/σ)) + o(ρ) .

This is more clearly shown in Figure 6.4 where we plot these two estimated weights, or rates.

To get a sense of why the weight in the first mixture is estimated to be higher than the
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weight in the second one, it is helpful to look at the product A(y)φ(y) versus the product

ζ(y)φ(y), which are plotted in Figure 6.5, for different values of α and ρ. Indeed, even if the

two functions have the same tail behavior, around the origin the behavior is very different,

the former being unimodal while the latter is bimodal.

In order to give an overall idea of what the two estimation strategies, shrinkage and

soft-thresholding, produce in terms of signal reconstruction, in Figure 6.6, over the original

signal vector µ, we plot the estimated vector µ̂. This latter is obtained by averaging the

transformed-back cycle-spinning coefficients, after de-noising. The dark blue line depicts the

signal reconstructed using the conditional median of the TIDWT coefficients, while the light

blue line shows the denoised signal obtained using the conditional mean. We also report

two measures of error, the mean absolute error (MAE) and the mean square error (MSE).

In general, the shrinkage method leads to lower errors, but this is at the cost of a loss in

smoothness of the curve, as in fact, no coefficient gets shrunk to exactly zero when using the

conditional mean.
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Figure 6.3: Plots of the estimates (averages with standard error bars) of the level-specific
sparsity parameters obtained from maximizing l̄(ρ, α, σ2). The blue points and segments
refer to the estimation using the log likelihood in (6.12) and will be used for shrinking; while
the red figures refer to the estimation using the log likelihood in (6.13) and will be used for
soft-thresholding.
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Figure 6.4: Plots of the estimates (averages with standard error bars) of the level-specific
marginal mixture weights. The blue points and segments refer to the estimation of ρ in
(6.12); the red figures refer to the estimation of ρε−αν obtained from the estimates of ρ and
α in (6.13).
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ferent values of εν = (log(1/ρ))−1/2α. From dark blue to light yellow, the ρ parameter is
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Figure 6.6: Plots of the estimated signal for the four functions: Doppler, Bumps, Heavisine
and Blocks. The dark blue lines refer to the estimation using the conditional median for
soft-thresholding the TIDWT coefficients while the light blue lines refer to the shrinkage
estimation, using the conditional mean.

6.5.1 Sparsity and EbayesThresh

We now present a comparison between the two sparsity-based approaches described in Sec-

tion 6.4.1, with the soft-thresholding and shrinkage methods described in J&S, derived from

adopting either the ‘quasi-Cauchy’ or the Laplace density as the prior for the TIDWT coeffi-

cients. These last estimations are easily implemented in R using the EbayesThresh package

(Johnstone and Silverman, 2005B [46]).
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To see how the methods compare, Figure 6.7 shows the denoised TIDWT coefficients

obtained for the Doppler function, using six different strategies. We consider the conditional

median and the conditional mean obtained using: the sparse integral approximations (la-

belled as sparsity); the ‘quasi-Cauchy’ density (labelled as Cauchy); and the Laplace density

(labelled as Laplace). In all cases, we only denoise the coefficients from level 4 to level 8, leav-

ing those at coarser levels unchanged. No major differences are observed across the different

distributions of the signal coefficients; while the impact of choosing to use the conditional

mean or the conditional median is again observed in the number of coefficients that are esti-

mated to be zero. In fact, when using the conditional median, no matter what distribution

is chosen, the coefficients for the levels 6, 7 and 8 are thresholded to zero, so that those

resolution levels do not contribute to the reconstruction of the signal vector. Accordingly,

it is not surprising that the sparsity-based approaches overall perform quite similarly to the

J&S’s methods, both in terms of MAE and MSE. We summarize their performance for the

reconstruction of the four signal functions in Figure 6.8.
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Figure 6.7: Plots of the TI wavelet coefficients for the Doppler function. These are estimated
by either the conditional median or the conditional mean, under different formulations of the
unconditional distribution for the signal wavelet coefficients: the sparsity models described
in Section 6.4.1 (top), the ‘quasi-Cauchy’ prior as in (6.3) (middle), and the Laplace prior
(bottom).
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Figure 6.8: Mean square error (MSE) and mean absolute error (MAE) of different methods
for reconstructing the signal of the four test functions. The height of the bars are the averages
over 100 simulations, while the whiskers depict the standard errors. The scale parameter is
let vary across levels. The signal to noise ratio is equal to one for all simulated functions.

6.5.2 Image smoothing

As a last example for comparison, we replicate the image smoothing exercise presented in

Johnstone and Silverman (2005B) [46] (J&SB henceforth). The image is a black-and-white
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photograph of Ingrid Daubechies, after whom the Daubechies wavelets are named. This

image is contained in the waveslim package and is stored as a 256× 256 matrix. After cor-

rupting the image by adding to each entry of the matrix, a Gaussian noise having standard

deviation of ten, we obtain the two-dimensional wavelet transform of the noisy image using

the command dwt.2d. If interested in reproducing the code, the reader is referred to J&SB.

We apply the sparsity soft-thresholding method to the coefficients contained in the first nine

of the 13 matrices produced by dwt.2d. We group the nine matrices in sets of three since

in a two-dimensional wavelet transform, there are three filters interacting with the original

matrix for each resolution level: one for the vertical direction, one for the horizontal direction

and one for the diagonal. For each of these three sets, we estimate the sparsity parameters

by maximizing (6.14), with (6.13) as the approximated log likelihood. Once estimated the

level-specific sparsity parameters, we estimate the coefficients of the nine matrices using the

conditional median and then transform everything back to the original domain to obtain the

denoised image.

As in J&SB, together with the original, noisy and sparse denoised image, in Figure 6.9,

we also plot the image denoised using a kernel smoothing method. One can notice that the

sparsity-based smoothed image has less background noise than the kernel smoothed image,

whereas this latter, on the other hand, preserves some contrasts more faithfully.
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Figure 6.9: Comparison of images of Ingrid Daubechies: original (top left), noisy (top right),
denoised using sparsity methods (bottom left) and denoised using kernel methods (bottom
right).
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Chapter 7

Sparsity for Gaussian graphical

models

7.1 Introduction

Understanding the relationship between variables can sometimes be the main question of

interest, especially in those settings where the number of recorded variables p is large. Indeed,

data of this kind arise in many applications, such as gene array expression levels, climate

data and spectroscopy, among many others.

Unfortunately, when the dimension p is large, inference on the covariance matrix Σ and

on its inverse, the precision matrix Ω, becomes very problematic, if not unfeasible, and

additional assumptions need to be made in order to handle the high dimensionality of the

matrices. An assumption which has been very commonly considered in the recent literature

on high-dimensional inference, is in fact sparsity.

Tapering, banding and thresholding (see for instance Bickel and Levina 2008A[12], 2008B

[13], and the references given in the introduction of Banerjee and Ghosal, 2015 [5]) are all

methods aimed at inducing a degree of sparsity in either Σ or Ω, and can be successfully

applied in situations where there is some natural ordering in the underlying variables, for
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instance in time series data or spatial data. When such natural ordering among the variables

is not present, then it is necessary to have an estimation method that is invariant under

variable permutations. In these cases, it is particularly useful to pose the problem in terms

of inferring the underlying undirected graph structure. Indeed, when the data are assumed to

be Gaussian, the precision matrix can be read in terms of its corresponding graphical model,

where the vertices represent the variables and the presence or absence of an undirected edge

between two vertices corresponds to the presence or absence of a dependence between the

two variables, conditionally on all the others.

Gaussian graphical models have been extensively studied, from different perspectives.

Penalized likelihood methods have been developed together with their corresponding opti-

mization algorithms. Graphical lasso sets the regularization term to be an L1-penalty on

the entries of Ω, and the coordinate-descent approach of Friedman et al. (2008) [38] is one

of the many algorithms proposed in the literature to solve the maximization problem. See

the introduction of Bickel and Levina (2008B) [13] for a more comprehensive discussion.

Bayesian methods have also been developed, with different choices for the prior distribu-

tion to induce sparsity in the precision matrix Ω. Wang (2012) [74] proposed the Bayesian

version of the graphical lasso by considering the Laplace prior for the off-diagonal entries

and the exponential prior for the diagonal entries. This prior leads to a posterior mode

of Ω coinciding with the graphical lasso estimate. However, this prior for the off-diagonal

entries does not induce any sparsity in the posterior graphical structure, for which reason,

Banerjee and Ghosal (2015) [5] modified it by inserting an atomic component at zero. This

choice, though, leads to greater difficulties in terms of computations, which are overcome by

employing the Laplace approximation.

As an alternative to these entry-wise priors, one can consider priors on the entire matrix

space. After Dawid and Lauritzen (1993) [21] introduced the hyper inverse Wishart prior

for Σ, Roverato (2002) [61] generalized it and defined the conjugate family of priors, named

G-Wishart prior, for precision matrices Ω having G as underlying graphical structure. Since
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then, the use of the G-Wishart prior has become common in this kind of settings and a lot of

different techniques, such as Monte Carlo integration (Atay-Kayis and Massam, 2005 [3]) and

block Gibbs sampler (Lenkoski and Dobra, 2011 [48]) among others, have been considered to

simplify computations and sample from this distribution. See Wang and Li (2012) [75] for a

more comprehensive review of the methods. Recently Liu and Martin (2019) [49] proposed

an empirical G-Wishart prior, where the prior center hyper-parameter is estimated from the

data. This in turn, allows them to make an effective use of the Laplace approximation to

compute the normalization constant of the G-Wishart distribution so that computations are

much faster.

Our approach is developed within the sparsity framework described earlier and the es-

timation of the graphical structure relies on the negligibility theory presented in Chapter

4. To go around the computational difficulty similar to that encountered by other methods

mentioned in the previous paragraph, we use the Laplace approximation to approximate the

joint probability of the data and the graph structure. To check the reliability of this ap-

proximation, we compare it with a Monte Carlo estimate, which we obtain following a very

similar strategy of Atay-Kayis and Massam (2005) [3]. We then design a simple Metropolis-

Hastings algorithm to sample from the conditional distribution of the graph given the data

and estimate the median probability model, i.e., the graphical model comprising of those

edges having a conditional probability of being non-negligible, larger than one half. We also

discuss how the estimation of sparsity parameters can be carried out in this special context.

We conclude by presenting some results which illustrate how our method works on both

simulated and real data.
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7.2 Model assumptions

Let X = [x1, . . . , xn] be a collection of n independent vectors, identically distributed as the

random vector x = [X1, . . . , Xp]
′ having distribution Np(0, σ

2Ω−1). Here σ is an arbitrary

scale parameter multiplying the random vectors x̃i ∼ Np(0,Ω
−1). Both the dimension p and

the sample size n can be large, but we still assume p ≤ n. The log likelihood for the precision

matrix Ω is

−np
2

log 2π + n
2

(
log det Ω− p log σ2

)
− n

2σ2 tr(SΩ)

where S = 1
n
XX ′ is the sample covariance matrix.

To induce sparsity, we suppose that the off-diagonal elements of Ω, {ωij : i < j, i, j ∈ [p]}

are independent and identically distributed with distribution Pν , a univariate scale sparse

measure with first order pair (ρ,H), where H is the α inverse-power exceedance measure.

For the diagonal elements {ωjj : j ∈ [p]}, we suppose that they are independent and identi-

cally distributed with continuous distribution P (dx) = p(x)dx, and they are independent of

the off-diagonals.

As mentioned in the previous section, we are interested in understanding the relation-

ships among the p variables X1, . . . , Xp. This can be achieved by assuming an underlying

graph structure and estimating the non-negligible conditional dependencies. So consider

an undirected graph G = (V,E), where V = {1, . . . , p} = [p] is the set of vertices and

E ⊂ {(i, j) ∈ [p] × [p] : i < j} is the set of undirected edges, and let εν be a negligibility

sequence for Pν according to Definition 4.5.1, defining the negligibility of the partial corre-

lations {ωij}i<j. For each subset Γ ⊂ {(i, j) ∈ [p] × [p] : i ≤ j}, we want to compute the

probability of the event

AΓ,εν = {|ωij| > εν for (i, j) ∈ Γ, |ωij| ≤ εν for (i, j) /∈ Γ}
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given the observed value of X. Note that, besides the non-negligible off-diagonal indices

(i, j), i < j with |ωij| > εν , Γ will always include the diagonal indices (i, j), i = j. So the

number of elements of Γ can be written as p+ s, where s ∈ [p(p− 1)/2] denotes the number

of edges corresponding to non-negligible partial correlations.

For a fixed set Γ, the conditional probability of AΓ,εν given X is proportional to

P(X,AΓ,εν ) = P(X | AΓ,εν ) · P(AΓ,εν )

=

∫
P(X,Ω | AΓ,εν )dΩ · P(AΓ,εν )

=

∫
PΓ,εν

(2π)−
np
2 (det(Ω/σ2))

n
2 e−

n
2

tr(SΩ/σ2) P(dΩ | AΓ,εν ) · P(AΓ,εν ) ,

(7.1)

where PΓ,εν is the set of symmetric positive definite p× p matrices having |wij| > εν for all

i < j, (i, j) ∈ Γ and |wij| ≤ εν for all i < j, (i, j) /∈ Γ.

Following the negligibility theory developed for univariate sparse measures, for bounded

and continuous functions of (ωij)i,j, integrating against

P(dΩ | AΓ,εν ) =
∏

(i,j)∈Γ
i<j

Pν(dωij | |ωij| > εν)
∏

(i,j)/∈Γ
i<j

Pν(dωij | |ωij| ≤ εν)
∏

(i,j)∈Γ
i=j

P (dωij)

is, up to an error of order ρε−αν , asymptotically equivalent to integrating against

F (dΩ) =
∏

(i,j)∈Γ
i<j

H̃(dωij)
∏

(i,j)/∈Γ
i<j

δ0(dωij)
∏

(i,j)∈Γ
i=j

P (dωij) ,

where H̃(dx) = h̃(x)dx is the normalized exponentially-tilted exceedance measure. Notice

that, now that we are integrating against F , the domain of integration can be set to be PΓ,

the cone of symmetric positive definite p × p matrices having wij = 0 for all (i, j) /∈ Γ and

wij 6= 0 for all (i, j) ∈ Γ. A matrix in PΓ is guaranteed to have exactly p + 2s non-zero
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entries. Thus, the sparse approximation to the integral appearing in (7.1) is

(2π)−
np
2

∫
PΓ,εν

(det(Ω/σ2))
n
2 e−

n
2

tr(SΩ/σ2) F (dΩ) =

(2π)−
np
2

∫
PΓ

(det(Ω/σ2))
n
2 e−

n
2

tr(SΩ/σ2)
∏

(i,j)∈Γ
i<j

H̃(dωij)
∏

(i,j)∈Γ
i=j

P (dωij) =

(2π)−
np
2

∫
PΓ

e
n
2

log det(Ω/σ2)− n
2

tr(SΩ/σ2)+
∑

(i,j)∈Γ log h̃(ωij)+
∑
i log p(ωii)

∏
(i,j)∈Γ

dωij
∏
i

dωii ,

where the notation (i, j) ∈ Γ is the short version of (i, j) ∈ Γ, i < j, since the other case

(i, j) ∈ Γ, i = j can simply be denoted by i.

On the other hand, under the independence and sparsity assumptions,

P(AΓ,εν ) = (1− ρε−αν )p(p−1)/2−s(ρε−αν )s + o(ρε−αν ) .

Hence, the sparse approximation to the conditional probability of AΓ,εν given X is propor-

tional to

(1− ρε−αν )p(p−1)/2−s(ρε−αν )s(2π)−
np
2

∫
PΓ

e
n
2
ψ(Ω) dΩ , (7.2)

where

ψ(Ω) = log det(Ω/σ2)− 1
σ2 tr(SΩ/σ2) + 2

n

∑
(i,j)∈Γ

log h̃(ωij) + 2
n

∑
i

log p(ωii) .

To compute the integral appearing in (7.2), we will use the Laplace approximation. The

following section is devoted to describe this integral approximation and compare it with

a Monte Carlo integration method to verify its validity numerically. In the appendix we

also provide some guarantee on the size of the error of the Laplace approximation when the

sample size grows large.
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7.3 Laplace Approximation

In this section we treat the sparsity parameters ρ, α, σ as known quantities. Moreover, to

slightly simplify the notation, from now on, instead of referring to the event AΓ,εν , we will

just denote by Γ the set of non-negligible edges. The integral that we want to compute using

the Laplace approximation is ∫
PΓ

e
n
2
ψ(Ω) dΩ .

To this end, it is helpful to write it as

I =

∫
PΓ

elogL(Ω/σ2)+logF (Ω) dΩ = σ2p

∫
PΓ

elogL(Ω)+logF (σ2Ω) dΩ , (7.3)

where

logL(Ω) = n
2

log det Ω− n
2
tr(SΩ)

is the log likelihood function while

logF (Ω) =
∑

(i,j)∈Γ ,i<j

log h̃(ωij) +
∑

(i,j)∈Γ ,i=j

log p(ωij)

is the log prior density of the entries of Ω given Γ. Here p(ω) = e−ω1ω>0, while H(dω) =

h(ω)dω is the inverse-power exceedance measure with exponent α, defined on R \ {0}. So,

log h̃(ω) = log
(1− e−ω2/2ε2ν )h(ω)∫

(1− e−ω2/2ε2ν )h(ω) dω

= log(kα(1− e−ω2/2ε2ν )|ω|−α−1)

= log(kα) + log(1− e−ω2/2ε2ν )− (α + 1) log |ω| ,

where 1/kα =
∫

(1− e−ω2/2ε2ν )|ω|−α−1 dω. In Figure 7.1, we plot the functions h̃(x), log h̃(x)

and its first derivative (log h̃(x))′, for α = 0.5, 1, 1.5.
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Figure 7.1: Plots of the functions h̃(x), log h̃(x) and (log h̃(x))′ for different values of α,
α = 0.5, 1, 1.5, while εν = 0.3. The limit of h̃(x) as x → 0 is zero for α < 1, finite and
different from zero for α = 1, and is infinite for α > 1. However, h̃(x) is defined on R \ {0}
so that there is no trouble in taking the logarithm. The first derivative of log h̃(x) is finite
for any |x| > t, for t > 0.

Let

Ω̂ = arg max
Ω∈ΘΓ

logL(Ω) (7.4)

denote the maximum likelihood estimator of Ω over the set

ΘΓ = {Ω ∈ PΓ : ξ−1
n ≤ λmin(Ω) ≤ λmax(Ω) ≤ ξn} ,
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where ξn is a deterministic sequence converging to infinity as n→∞.

Then the Laplace approximation for (7.3) can be written as

σ2pelogL(Ω̂)+logF (σ2Ω̂)

(
(4π)p+s

det(H(Ω̂))

)1/2

, (7.5)

where H(Ω) = n (Ω−1 ⊗Ω−1) is two times the negative Hessian of the function logL(Ω). In

the appendix, we show that, under some mild assumptions, as n → ∞, the relative error

between the exact integral and the Laplace approximation goes to zero.

For finite n, we can assess the accuracy of the Laplace approximation by comparing it to

the result obtained using a Monte Carlo integration technique. To obtain such an alterna-

tive for computing (7.3), we follow the procedure which Atay-Kayis and Massam (2005) [3]

proposed to compute the G-Wishart normalizing constant. In the appendix, we report the

main passages presented in that paper, with the necessary adjustments to our setting. For

simplicity, we make this comparison fixing the scale parameter σ to be one.

The Monte Carlo method aims at expressing the integral as an expected value of a certain

function g of some random variables which are relatively easy to simulate. In this context,

the random variables are U2
ii ∼ χ2

n+1+νi
, where νi = #{j > i : (i, j) ∈ Γ} for all i = 1, . . . , p

and Zij ∼ N(0, 1) for all i 6= j : (i, j) ∈ Γ, all independent of each other. Then the integral

in (7.3) can be written as

I = CT,δ,Γ E(g(Uii, Zij)) ,

where g(u, z) is as defined in (7.26) and CT,δ,Γ is a constant dependent of the sample size

n = δ − 1, the set Γ and the Cholesky decomposition (X ′X)−1 = T ′T . The Monte Carlo

technique estimates the expected value E(g(Uii, Zij)) by first generating the collection of

random variables {U t
ii, Z

t
ij} for t = 1, . . . , Nsim simulations, and then computing the average
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of g(Uii, Zij) over the simulations

Ê(g(Uii, Zij)) = 1
Nsim

Nsim∑
t=1

g(U t
ii, Z

t
ij) .

Now, following the Laplace approximation method, we approximate log I with

log IL = logL(Ω̂) + logF (Ω̂) + p+s
2

log(2π)− 1
2

log det(H(Ω̂)) ,

while the Monte Carlo simulation method gives

log IMC = logCT,δ,Γ + log Ê(g(Uii, Zij)) .

Figure 7.2 shows the relative error between the two methods, as a function of the sample size

n, where each panel corresponds to one of the five scenarios considered for the true precision

matrix Ω, described in detail in Section 7.6. We can see that the relative error is quite small

even for n = 100, meaning that the Laplace approximation is reliable for relatively moderate

values of n. Moreover, the error decreases as n increases in all scenarios. This should be

confirming what we show in the appendix regarding the relative error between the Laplace

approximation and the exact value of I.

7.4 Metropolis-Hastings algorithm

We now describe how we design a Metropolis-Hastings algorithm in order to estimate the

conditional distribution of the non-negligible set Γ given the observed matrix X. Again, we

treat the sparsity parameters as known. Recall that the conditional probability that the set

of non-negligible edges is Γ, is

P(Γ | X) = c · P(X | Γ)P(Γ)
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Figure 7.2: Relative error between the Laplace approximation and the Monte Carlo method
for computing log I, as a function of the sample size n. For each sample size, we repeat
the comparison 100 times and plot the average relative error ± one standard error. Each
panel corresponds to a different model for generating Ω, as described in Section 7.6, with
p = 30. The Monte Carlo computations are based on Nsim = 1000 simulations. The sparsity
parameters are set to be ρ = 0.07, α = 1, σ = 1.

where the normalizing constant c is just the reciprocal of

P(X) =
∑

P(X | Γ)P(Γ) .

Here the sum is taken over all possible graphs corresponding to precision matrices with the

set of non-negligible partial correlations given by Γ, comprising of the p diagonal elements

and s ∈ [p(p− 1)/2] off-diagonal entries. Since all graphs include the diagonal entries, what

changes from graph to graph is the set of non-negligible undirected edges. Thus, the sum

ranges over the power set 2[p(p−1)/2]. Clearly, this computation is prohibitive even for very

small values of p. To overcome this computational infeasibility, we design a Metropolis-

Hastings (M-H) algorithm to construct a Markov chain having P(Γ | X) as stationary dis-

tribution.
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Given the estimated conditional distribution for the non-negligible Γ set, we can also esti-

mate for each edge its marginal inclusion probability, i.e., the conditional probability of that

edge belonging to the set of non-negligible edges, given the data. Then, following a common

practice in the literature (see for example, Liu and Martin, 2019 and Banerjee and Ghosal,

2015), we can select the median probability model ΓM , by classifying as non-negligible those

edges whose marginal inclusion probability is greater than 0.5, and as negligible otherwise.

Following is a schematic description of our M-H algorithm.

1. Generate an initial subset S0 from the power set 2[p(p−1)/2] by setting the size k0 to

be the rounded integer of 0.05 · p(p − 1)/2 and then drawing at random, without

replacement, k0 elements from {(i, j)}i<j. Set Γ0 = {(i, j)}i=j ∪ S0.

2. Let θ = (1− k0/(p(p− 1)/2))1k0>1 . Generate ξ ∼ Ber(θ).

If ξ = 1, add a new element x uniformly drawn from {(i, j)}i<j\S0: set S1 = S0∪{x}

and Γ1 = {(i, j)}i=j ∪ S1.

If ξ = 0, remove a current element x uniformly drawn from S0: set S1 = S0 \ {x}

and Γ1 = {(i, j)}i=j ∪ S1.

3. Accept Γ1 as the new Γ0 with probability

A = min

{
1,
p1 · q10

p0 · q01

}

where pi = P(Γi | X), for i = 0, 1, is the conditional probability that Γi is the set of

non-negligible edges while qij is the probability of proposing set Sj given we have set

Si, for i, j = 0, 1.

Otherwise, keep the current Γ0 as the new Γ0.

4. Repeat steps 2-3 until the target probabilities converge.
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With this proposal mechanism, we add or remove a new index from the current set with

probability depending on its size: the bigger the set already is, i.e., k0/(p(p− 1)/2) is large,

the less likely is to add a new element and the more likely is to remove one. On the other

hand, given the uniform distribution for the selection of the index to add or remove, the

transition probability from Si to Sj is

qij =


P(add)P(X = x | add) = (1− ki/(p(p− 1)/2))1ki>1 1

p(p−1)/2−ki if kj = ki + 1

P(remove)P(X = x | remove) = (ki/(p(p− 1)/2))1ki>1 1
ki

if kj = ki − 1

where kl = #Sl is the size of Sl. Therefore, the ratio p1·q10

p0·q01
determining the acceptance

probability A, is indeed proportional to the ratio of the two conditional probabilities p1/p0.

The advantage is that this ratio can be approximated by combining (7.2) and (7.5), and be

computed as

(ρε−αν )k1−k0(1− ρε−αν )k0−k1(4π)(k1−k0)/2 e
logL(Ω̂Γ1

)+logF (σ2Ω̂Γ1
) det(H(Ω̂Γ1))−1/2

elogL(Ω̂Γ0
)+logF (σ2Ω̂Γ0

) det(H(Ω̂Γ0))−1/2
.

In the simulation study presented in Section 7.6, we use this Metropolis-Hastings Markov

chain (MHMC) to estimate the median probability model for different underlying graphical

structures.

7.5 Sparsity parameter estimation

In this section, we discuss how we can estimate the sparsity parameters in this context,

which is made particularly challenging by the latent graphical structure. To overcome some
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of the difficulties, we make use of the Expectation-Maximization (E-M) algorithm as well as

the Self-Normalizing Importance Sampling (SNIS) integration technique.

7.5.1 E-M algorithm and SNIS integration

If the graphical structure of Ω, summarized by the non-negligible Γ set, was observable, then

we could write the log likelihood for the sparsity parameters based on both X and Γ

l(ρ, α, σ;X,Γ) = logP(X,Γ; ρ, α, σ) .

However, Γ is not observed so l(ρ, α, σ;X,Γ) is not computable. One possibility to overcome

this latency is to take expectation over 2[p(p−1)/2] with respect to some measure q,

Eq(l(ρ, α, σ;X,Γ)) =
∑

Γ∈2[p(p−1)/2]

logP(X,Γ; ρ, α, σ) · q(Γ) , (7.6)

and then maximize (7.6) to obtain an estimate for ρ, σ and α, which will clearly depend on

the measure q. The E-M algorithm chooses q to be the conditional distribution of Γ given

X, which in turn depends on the parameters ρ, α and σ. So the E-M algorithm proceeds as

follows:

1. set θ0 = (ρ0, α0, σ0) to be the parameter in q(Γ) = P(Γ | X; ρ0, α0, σ0) and compute

Eq(l(ρ, α, σ;X,Γ)) as a function of θ = (ρ, σ, α);

2. maximize Eq(l(ρ, α, σ;X,Γ)) over θ = (ρ, σ, α) and update θ0 to be the solution θ̂;

3. repeat steps 1-2 until the two parameters θ0, θ̂ are close enough.

Now, from a practical point of view, choosing the measure q to be the conditional distri-
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bution of Γ given X,

q(Γ) = P(Γ | X; ρ0, α0, σ0) =
P(X,Γ; ρ0, α0, σ0)

P(X; ρ0, α0, σ0)
= c0q

U(Γ) ,

is problematic insofar, as discussed earlier, computing c−1
0 = P(X; ρ0, α0, σ0) is prohibitive.

Thus, once more, we need to find a way to avoid computing the normalizing constants. In this

framework, we take advantage of the so called self-normalizing importance sampling (SNIS)

integration technique. The idea behind this method is to sample from another probability

measure q̃, which can itself be known up to some normalizing constant c̃, and then, get rid of

all unknown constants by taking ratios. More precisely, letting q̃ be this second probability

measure on 2[p(p−1)/2], rewrite (7.6) as

Eq(logP(X,Γ; ρ, α, σ)) = Eq̃
(

logP(X,Γ; ρ, α, σ) · q(Γ)

q̃(Γ)

)
,

where the subscript in Eg indicates the measure g, with respect to which the expectation is

taken. Now imagine drawing N times from q̃ to obtain {Γi ∼ q̃}Ni=1. By strong law of large

numbers, as N →∞, almost surely,

1

N

∑
Γi∼q̃

logP(X,Γi; ρ, α, σ)
c0q

U(Γi)

c̃ q̃U(Γi)
→ Eq̃

(
logP(X,Γ; ρ, α, σ) · q(Γ)

q̃(Γ)

)
,

where q̃(Γ) = c̃ q̃U(Γ). Similarly, almost surely,

1

N

∑
Γi∼q̃

c0q
U(Γi)

c̃ q̃U(Γi)
→ Eq̃

(
c0q

U(Γ)

c̃ q̃U(Γ)

)
=
∑

Γ

q(Γ)

q̃(Γ)
q̃(Γ) = 1 ,

so that, taking the ratio of the two expressions, the two normalizing constants c0 and c̃ cancel

out and, as N →∞,

1
N

∑
Γi∼q̃ logP(X,Γi; ρ, α, σ) · q

U (Γi)
q̃(Γi)

1
N

∑
Γi∼q̃

qU (Γi)
q̃(Γi)

→ Eq(logP(X,Γ; ρ, α, σ)) , (7.7)
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with probability one. In this way, knowing the two measures q and q̃ up to a constant is

sufficient to estimate the expected value required in the E-M algorithm.

7.5.2 Computational aspects and choice of q̃

Before going further in the discussion of how we implement the SNIS integration within the

E-M algorithm, we first review the quantities appearing in (7.7). First of all, recall that we

can compute logP(X,Γ; ρ, α, σ) as

logP(X | Γ; ρ, α, σ) + logP(Γ; ρ, α) .

Since X | Ω ∼ N(0, σ2Ω−1), we have

P(X | Γ; ρ, α, σ) = σ2p

∫
PΓ

elogL(Ω)+logFα,ρ(σ2Ω) dΩ , (7.8)

where

logL(Ω) = −np
2

log(2π) + n
2

log det(Ω)− n
2
tr( 1

n
XX ′Ω) ,

and

logFα,ρ(σ
2Ω) =

∑
(i,j)∈Γ ,i<j

log h̃(σ2ωij;α, ρ) +
∑

(i,j)∈Γ ,i=j

log p(σ2ωij) .

On the other hand,

P(Γ; ρ, α) = (ρε−αν )s(1− ρε−αν )p(p−1)/2−s .

Now, we approximate the integral in (7.8) using the Laplace approximation

σ2pL(Ω̂)Fα,ρ(σ
2Ω̂)(4π)

p+s
2 det(H(Ω̂))−

1
2 ,

where

Ω̂ = arg max
Ω∈ΘΓ

logL(Ω) = arg max
Ω∈ΘΓ

n
2

log det(Ω)− n
2
tr(SΩ) .
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Therefore, denoting by Jointθ(Γ) = P(X,Γ; θ), for each set Γ, we can write

log Jointθ(Γ) ≈ log f(Ω̂) + log Priorsθ(Γ) ,

where

f(Ω̂) = L(Ω̂)(4π)
p+s

2 det(H(Ω̂))−
1
2 ,

while

Priorsθ(Γ) = σ2pFα,ρ(σ
2Ω̂) (ρε−αν )s(1− ρε−αν )p(p−1)/2−s .

Going back to the E-M algorithm, since qU(Γ) = P(X,Γ; θ0), we can rewrite the two

steps of the E-M algorithm as follows

1. compute the expected value Eq(logP(X,Γ; θ)) as

∑
Γi∼q̃

log Jointθ(Γi) ·Rθ0(Γi) ,

where

Rθ0(Γi) =
Jointθ0(Γi)/q̃

U(Γi)∑
Γi∼q̃ Jointθ0(Γi)/q̃U(Γi)

;

2. solve the maximization problem

max
θ

∑
Γi∼q̃

log Jointθ(Γi) ·Rθ0(Γi) .

Here we make two observations.

The first observation is that f(Ω̂) does not depend on any sparsity parameters. Therefore,
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the solution to

max
θ

Eq(logP(X,Γ; θ)) ≈ max
θ

∑
Γi∼q̃

log Jointθ(Γi) ·Rθ0(Γi)

is the same as the solution to

max
θ

∑
Γi∼q̃

log Priorsθ(Γi) ·Rθ0(Γi) .

The second observation concerns the choice of q̃. Indeed, we decided to draw from this

distribution to overcome the difficulty of drawing from q(Γ) = P(Γ | X; θ0). In principle,

we could draw directly from q after estimating it using the MHMC as described in Section

7.4. However, this estimation would need to be repeated at every iteration of the E-M

algorithm corresponding to a different value of θ0, and this would result in a very cumbersome

procedure. Alternatively, we could choose q̃ to be a distribution from which sampling is

very simple. For example, one could first draw the size of the set Γi from a binomial

Bin(p(p − 1)/2, r), for some r ∈ (0, 1), and then, given the size, draw that number of

elements uniformly at random from [p(p− 1)/2], without replacement. Nevertheless, despite

this being a viable option for sampling the sets Γi, it is not a good choice because the resulting

measure on 2[p(p−1)/2] is very different from the q measure we are trying to substitute. In fact,

if for all the sets {Γi ∼ q̃}i, sampled from q̃, Jointθ0(Γi) is on a different scale of magnitude

compared to q̃U(Γi), then

log Jointθ0(Γi)− log q̃U(Γi)

can be huge, in absolute value. This means that

exp{log Jointθ0(Γi)− log q̃U(Γi)}

are almost all numerically zero. The all-zeroes case can be avoided by subtracting M =
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maxi=1,...,N log(Jointθ0(Γi))− log(q̃U(Γi)). Yet, even doing so, the expression

exp{log Jointθ0(Γi)− log q̃U(Γi)−M}

is extremely polarized, giving roughly mass equal to one to the Γ set corresponding to M

and zero mass to all the other sets sampled from q̃. This in turn implies that the expected

value in the E-M algorithm gets estimated by the average of just a single value.

This extreme example highlights the necessity of choosing q̃ in a non automatic manner.

Indeed, taking the cue from this extreme case, in order to have qU and q̃U on the same

magnitude order, suppose we choose q̃ to be the conditional distribution P(Γ | X; θ̃), for

some fixed parameter θ̃, so that

log Jointθ0(Γi)− log q̃U(Γi) = log Jointθ0(Γi)− log Jointθ̃(Γi) . (7.9)

Now the advantage of this choice is that, since log Jointθ(Γi) is approximated by

log f(Ω̂) + log Priorsθ(Γi) ,

it is immediate to see that (7.9) can be reduced to

log Priorsθ0(Γi)− log Priorsθ̃(Γi) ,

where we recall that, for any θ = (ρ, α, σ),

log Priorsθ(Γ) = p log σ2 + logFα,ρ(σ
2Ω̂) + s log(ρε−αν ) + (p(p− 1)/2− s) log(1− ρε−αν ) .

Thus, besides simplifying the computations as we no longer have to compute log f(Ω̂), this

choice leads to quantities in (7.9) which are now on comparable magnitude scales. The ratio
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measure with q̃ = P(Γ | X; θ̃) can then be computed as

Rθ0(Γi) =
exp{log Priorsθ0(Γi)− log Priorsθ̃(Γi)−M}∑N
i=1 exp{log Priorsθ0(Γi)− log Priorsθ̃(Γi)−M}

, (7.10)

where now M = maxi=1,...,N log Priorsθ0(Γi)− log Priorsθ̃(Γi). This measure is not degenerate

at just one Γ set, rather is diffuse on the whole range of sets sampled from q̃. Clearly this

choice for q̃ requires running a MHMC to estimate P(Γ | X; θ̃), prior to the actual estimation

of the sparsity parameters, but this needs to be done just one time.

In Figure 7.3, we compare the ratio measure, denoted by R.binom, obtained using the

binomial-uniform sampling scheme described above as q̃ (left panels) with the ratio measure,

denoted by R.tilde, obtained using the conditional P(Γ | X; θ̃) as q̃ (right panels). In both

scenarios, the red triangles depict the values of q̃ for the N = 1000 sampled sets Γi ∼ q̃,

while the black circles depict the corresponding ratio measures for those same sampled sets.

The two plots in the bottom row are the zoomed-in versions of the plots in the top row.

From these, we can better appreciate the difference between the two choices for q̃: with the

binomial-uniform sampling, the ratio measure is zero everywhere but at one single set; with

the conditional P(Γ | X; θ̃) estimated from an MHMC, the ratio measure gives non-zero mass

to all sets which were sampled from q̃.
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Figure 7.3: Comparison of two choices for q̃. Left panels depict the values of the q̃ measure
(red triangles) and the corresponding ratio measure (black circles), when q̃ is the binomial-
uniform sampling scheme on 2[p(p−1]/2. Right panels depict the values of the q̃ measure
(red triangles) and the ratio measure (black circles), when q̃ is the conditional distribution
P(Γ | X; θ̃), with θ̃ = (0.07, 1, 1). P(Γ | X; θ̃) is estimated from an M-H Markov Chain with
30,000 total iterations, of which 5,000 are burn-in period.

7.5.3 Algorithm for estimating the sparsity parameters

To summarize, our final algorithm for estimating θ = (ρ, α, σ) goes as follows:

1. fix θ̃ = (ρ̃, α̃, σ̃) and run a MHMC to obtain q̃(Γ) = P(Γ | X; θ̃);

2. draw N samples Γ1, . . . ,ΓN from q̃(Γ) (which in fact means drawing from the M-H
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Markov Chain relative frequencies);

3. fix θ0 = (ρ0, α0, σ0), for all i = 1, . . . , N , compute Rθ0(Γi) as in (7.10) and write

η(θ, θ0) =
N∑
i=1

log Priorsθ(Γi) ·Rθ0(Γi)

as a function of θ = (ρ, α, σ);

4. solve the maximization problem

max
θ
η(θ, θ0) ;

5. update θ0 to be the solution θ̂ and repeat steps 2 to 4, until θ0 and θ̂ stabilize.

7.6 Simulation study

To illustrate how the sparse approximation described in previous paragraphs works, we

perform a simulation study, with different true graph structures for Ω. To have a direct

comparison with other methods previously proposed in the literature, we generate the data

as in Banerjee and Ghosal (2015) [5] and Martin and Liu (2019) [49], considering five different

models specified in terms of the entries of Σ or Ω as follows:

1. Model 1: AR(1) model where the entries of Σ are given by σij = 0.7|i−j|.

2. Model 2: AR(2) model where the entries of Ω are set to zero except ωii = 1, ωi−1,i =

ωi,i−1 = 0.5 and ωi−2,i = ωi,i−2 = 0.25, for all i ∈ [p].

3. Model 3: Star model where the entries of Ω are set to zero except ωii = 1, ω1,i = ωi,1 =

0.1, for all i ∈ [p].

4. Model 4: Circle model where the entries of Ω are set to zero except ωii = 2, ωi−1,i =

ωi,i−1 = 1, for all i ∈ [p] and ω1,p = ωp,1 = 0.9.
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5. Model 5: Sparse model with no special structure where Ω = 1
2
(B +B′) + τI, where B

is a p× p matrix, in which all diagonals are set to zero while each off-diagonal entry is

independently distributed like

ωij ∼


0.5 with probability 0.05

1 with probability 0.95

.

The parameter τ is chosen in such a way that the condition number of Ω is equal to p,

and then Ω is standardized to have unit diagonals.

For each of these models, we generate n = 100 independent and identically distributed

samples from Np(0,Ω
−1) with dimension p = 30 or p = 50. Then, we set θ̃ = (0.07, 1, 1)

when p = 30 and θ̃ = (0.01, 1, 1) when p = 50, and follow the steps described in Section

7.5.3 to obtain some estimate of the sparsity parameters. To simplify the computations a

little, we fix the α parameter to be one, and only estimate the sparsity rate ρ and the scale

parameter σ. The results are reported in Table 7.1 for p = 30, and Table 7.2 for p = 50.

ρ̂× 102 σ̂

AR(1) 2.49 0.786
AR(2) 6.35 0.846
Star 2.10 1.001

Circle 2.43 0.864
No structure 5.11 0.882

Table 7.1: Estimated values for ρ and σ when α = 1 and p = 30.

Given the values θ̂ = (ρ̂, α̂, σ̂) for the sparsity parameters, we then run the MHMC in

order to estimate the conditional distribution P(Γ | X; θ̂). We set the total number of simula-

tions to 24,000, with a burnin period of 4,000 iterations. At the end of the Markov chain, we

select the median probability model ΓM , by classifying as non-negligible those edges whose

marginal inclusion probability is greater than 0.5. Here by marginal inclusion we mean the
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ρ̂× 102 σ̂

AR(1) 1.43 0.746
AR(2) 3.75 0.859
Star 1.05 0.846

Circle 1.45 0.870
No structure 3.75 0.941

Table 7.2: Estimated values for ρ and σ when α = 1 and p = 50.

event that the edge appears in the Γ set of non-negligible edges. Then, given the selected

set of edges ΓM , using the glasso function of the homonymous R package, we obtain the

maximum likelihood estimate Ω̂ constrained to have ΓM as graphical structure, and use this

estimate of Ω to assess the performance of our method.

Following the literature, we compute three measures: specificity (SP), sensitivity (SE)

and the Matthews Correlation Coefficient (MCC), named after the biochemist Brian W.

Matthews, who introduced it in 1975. In formulae,

SP =
TN

TN + FP
,

SE =
TP

TP + FN
,

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

where TP, TN, FP, and FN denote, respectively, the number of true positives, true nega-

tives, false positives and false negatives in the model considered.

We compare the performance of our sparsity method with the G-Wishart prior approach

proposed by Liu and Martin (2019) [49] (L&M henceforth), which also makes use of a MHMC

algorithm to estimate the conditional distribution of the graphical structure. For each model,

we run the two different Metropolis-Hastings Markov chains 100 times and, in Table 7.4, we
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display averages and standard errors of the three measures, SE, SP and MCC, the standard

errors being multiplied by 103. Overall the two methods perform quite similarly in terms of

MCC. Yet, the method based on the G-Wishart prior seems to always favor a very high level

of sensitivity, whereas the sparsity approach is generally superior in terms of specificity.

Sparsity G-Wishart

p = 30 SE SP MCC SE SP MCC

AR(1) 0.997 1.000 0.985 0.998 1.000 0.989
(0.262) (0.000) (1.267) (0.247) (0.000) (1.208)

AR(2) 0.988 0.875 0.885 0.990 0.848 0.873
(0.605) (3.738) (3.259) (0.527) (4.385) (3.452)

Star 0.994 0.369 0.542 0.999 0.345 0.564
(0.401) (2.489) (3.279) (0.131) (0.930) (1.282)

Circle 1.000 1.000 0.998 0.999 1.000 0.996
(0.111) (0.000) (0.543) (0.177) (0.000) (0.853)

No structure 0.987 0.862 0.872 0.992 0.826 0.865
(0.636) (4.498) (3.954) (0.512) (4.286) (3.363)

Table 7.3: Averages and standard errors in parenthesis multiplied by 103, over 100 simula-
tions.

Sparsity G-Wishart

p = 50 SE SP MCC SE SP MCC

AR(1) 0.998 1.000 0.984 0.999 1.000 0.991
(0.145) (0.000) (1.151) (0.097) (0.000) (0.791)

AR(2) 0.990 0.850 0.863 0.994 0.771 0.837
(0.292) (3.362) (2.645) (0.242) (4.739) (3.424)

Star 0.992 0.381 0.512 0.999 0.342 0.571
(0.277) (2.555) (3.128) (0.027) (0.970) (0.970)

Circle 0.999 1.000 0.996 0.999 1.000 0.995
(0.068) (0.000) (0.558) (0.0801) (0.000) (0.649)

No structure 0.984 0.615 0.690 0.991 0.551 0.674
(0.342) (3.412) (3.146) (0.292) (4.059) (3.368)

Table 7.4: Averages and standard errors in parenthesis multiplied by 103, over 100 simula-
tions.
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7.7 Gene regulatory network

In this section we apply our sparsity framework to a real data example which concerns gene

regulatory network rewiring in patients having a specific type of breast cancer. This example

was also analyzed by L&M, so we have a benchmark for comparison. The data was origi-

nally collected by the National Cancer Institute within The Cancer Genome Atlas (TCGA)

Program, and is freely accessible through their website. However, the version of the data we

use, the Agilent G450 microarray dataset, can be easily downloaded from the DiffGraph R

package developed by Zhang et al. (2017) [80], who also provide a detailed description of the

data set. As in L&M, we only consider luminal A subtype breast cancer, so the total number

of patients is n = 207. For each patient, the p-long observed vector consists of standardized

mRNA expression levels exhibited by 139 genes.

In this context, given the standardization of the mRNA expression levels, we set α = 1

and σ = 1. And, because with real data is a little arbitrary to declare some connection

to be totally absent, we take advantage of our sparsity-negligibility framework, which, per

se, just makes statements on the negligibility of the connections. So we decide to choose

different values for the parameter ρ, depending on the negligibility statements we would

like to make about the correlations among the genes. In fact, the sequence of thresholds

εν defining the negligibility of a sparse random signal can be written as a function of the

sparsity rate ρ, provided that ρH(ε+ν ) = ρε−αν → 0 as ν → 0. So given εν = (log(1/ρν))
−1/2α,

we can choose the desired negligibility threshold to be εν = 0.33 and set the sparsity rate to

be ρ = exp{−ε−2α
ν } which is roughly 1.2 · 10−4, so ρνε

−α
ν = 3.6 · 10−4.

With this choice of the negligibility threshold and the corresponding ρ, we run the M-H

Markov chain to obtain samples from the conditional distribution of the gene regulatory

network given the observed levels of expression. As before, we select the median probability

model ΓM by including an edge (i, j) between two genes if its marginal probability of being
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non-negligible, i.e., of corresponding to |ωij| > 0.33, given the data, is higher than 0.5. In

Figure 7.4, we show the weighted graph corresponding to ΓM , where the color intensity of

each edge is proportional to its marginal probability of inclusion (which, by definition, is

larger than one half). Besides the one-to-one relations, another important feature in gene

network analysis is the number of connections that a gene has to other genes, which is called

gene degree. In Figure 7.5, we show the unweighted graph where the different sizes and

colors for the nodes reflect the different gene degrees: genes with degree greater or equal

than ten are depicted in blue, those with degree between five and ten in yellow, while those

with less than five connections are depicted in red. Those few genes that have largest degrees

are also known as gene hubs, insofar they are important poles in the network wiring and,

for this reason, are of great interest to clinicians. With our model, the top six genes with

largest degree are the following: RPS6KB2 (S6K2), E2F1, AKT3, KIT, IGF1, and NCOA3.

In Figure 7.6, we also plot the conditional distribution of the degree for these six genes, as

derived from the estimated conditional distribution of the gene network.

All six hub genes identified by our model have strong association with breast cancer risk.

Indeed, RPS6KB2 (S6K2) overexpression have proved to have prognostic and treatment pre-

dictive significance in breast cancer (Pèrez-Tenorio et al., 2011 [57]). Similarly, the E2F1

gene has been recently found by Hollern et. al (2019) [43] to be a master regulator of genes

that coordinate tumor cell metastasis, while it is well known that high levels of expression of

the IGF1 gene are positively associated with breast cancer (see for instance, Farabaugh et al.,

2015 [34], and Monson et. al 2020 [53]). Likewise, proto-oncogene KIT (c-KIT) is frequently

amplified in basal-like cancers (Nalwoga et al., 2008 [54]). As for the AKT isoforms, namely

AKT1, AKT2, AKT3, these genes are known to regulate all stages of breast cancer, from

initiation, prognosis, and metastasis to resistance to chemotherapy and improved hormonal

therapy. We refer to Hinz and Jücker (2019) [42] for a comprehensive review on the AKT

isoforms role in breast cancer.
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Figure 7.4: Gene regulatory network identified by the median probability model. The inten-
sity of the color of the edges is proportional to its marginal probability of inclusion.

This selection overlaps with the top four hub genes found by L&M, where, instead of

the KIT gene, they identified the EFGR gene. It is interesting to notice that both EGFR,

Epidermal Growth Factor Receptor, and KIT, the gene encoding the receptor tyrosine kinase

protein, are tyrosine kinase growth factor receptors (Nalwoga et al., 2008 [54]). Tyrosine

kinase inhibition has become a common strategy in treatment of breast cancer, since cancer

research assessed the relevance of the role that many protein kinases play during human

tumorigenesis and cancer progression. L&M also identified NCOA3, whose degree is ranked

sixth in the sparsity median model. Burwinkel et al. (2005) [15] found that a high percent-

age of primary human breast tumors shows elevated levels of expression for this gene, and

overexpression of NCOA3 is correlated with worse survival rate.
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Figure 7.5: Gene regulatory network identified by the median probability model. Different
sizes and colors for the nodes reflect the different gene degrees.
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Figure 7.6: Gene degree conditional distribution for the top six hub genes: RPS6KB, E2F1,
KIT, AKT3, IGF1 and NCOA3. These distributions are estimated from the M-H Markov
chain used to sample from the conditional distribution of the gene network.
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7.8 Appendix: Laplace approximation

7.8.1 Preliminaries

Recall that for any subset Γ ⊂ {(i, j) ∈ [p]× [p] : i ≤ j}, PΓ denotes the cone of symmetric

positive definite p × p matrices having ωij = 0 for all (i, j) /∈ Γ and ωij 6= 0 for (i, j) ∈ Γ.

We want to compute

I =

∫
PΓ

elogL(Ω)+logF (Ω) dΩ , (7.11)

where

logL(Ω) = n
2

log det Ω− n
2
tr(SΩ)

is the log likelihood function while

logF (Ω) =
∑

(i,j)∈Γ ,i<j

log h̃(ωij) +
∑

(i,j)∈Γ ,i=j

log p(ωij)

is the log prior density of the entries of Ω given Γ. Here p(ω) = e−ω1ω>0, while H(dω) =

h(ω)dω is the inverse-power exceedance measure with exponent α, defined on R \ {0}. So,

log h̃(ω) = log
(1− e−ω2/2ε2ν )h(ω)∫

(1− e−ω2/2ε2ν )h(ω) dω

= log(kα(1− e−ω2/2ε2ν )|ω|−α−1)

= log(kα) + log(1− e−ω2/2ε2ν )− (α + 1) log |ω| ,

where 1/kα =
∫

(1− e−ω2/2ε2ν )|ω|−α−1 dω. In Figure 7.7, we plot the functions h̃(x), log h̃(x)

and its first derivative (log h̃(x))′, for α = 0.5, 1, 1.5.

We make the following two observations.
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Figure 7.7: Plots of the functions h̃(x), log h̃(x) and (log h̃(x))′ for different values of α,
α = 0.5, 1, 1.5, while εν = 0.3. The limit of h̃(x) as x → 0 is zero for α < 1, finite and
different from zero for α = 1, and is infinite for α > 1. However, h̃(x) is defined on R \ {0}
so that there is no trouble in taking the logarithm. The first derivative of log h̃(x) is finite
for any |x| > t, for t > 0.
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O1. The function log h̃(ω) has derivative given by

g(ω) =
∂

∂ω
log h̃(ω) =

ωe−ω
2/2ε2ν

ε2ν(1− e−ω
2/2ε2ν )

− α + 1

ω
.

Now, the absolute value of g can be bounded by

|g(ω)| =

∣∣∣∣∣ 2ω
(

ω2e−ω
2/2ε2ν

2ε2ν(1− e−ω
2/2ε2ν )

− α + 1

2

)∣∣∣∣∣
≤

∣∣∣∣∣ 2ω
∣∣∣∣∣ ·
(

ω2e−ω
2/2ε2ν

2ε2ν(1− e−ω
2/2ε2ν )

+
α + 1

2

)
= b(ω) .

Both |g(ω)| and the majorating function b(ω) are symmetric around zero, so we can just

look at the positive axis. On (0,∞), b(ω) is monotone decreasing, being the product of two

non-negative functions that are decreasing. Therefore, given t > 0, b(t) ≥ b(ω) for every

ω ≥ t, so that, thanks to symmetry,

|g(ω)| ≤ b(t) ,

for every ω such that |ω| ≥ t. This means that, for any t > 0, letting B̄t(0) = {ω ∈ R : |ω| >

t}, one has that

| log h̃(ω)− log h̃(ω′)| ≤ b(t)|ω − ω′| ;

for all ω, ω′ ∈ B̄t(0).

Now, since we consider p(ω) = e−ω, then we can bound the absolute value of the first

derivative of log p(ω) by one. So, for any given t > 0, let

F1(t) = b(t) ∨ 1 .
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Then,

∣∣ logF (Ω)− logF (Ω′)
∣∣ ≤ ∑

(i,j)∈Γ ,i<j

∣∣ log h̃(ωij)− log h̃(ω′ij)
∣∣+

∑
(i,j)∈Γ ,i=j

∣∣ log p(ωij)− log p(ω′ij)
∣∣

≤
∑

(i,j)∈Γ ,i<j

b(t)|ωij − ω′ij|+
∑

(i,j)∈Γ ,i<=j

|ωij − ω′ij|

≤ F1(t)
∑

(i,j)∈Γ

|ωij − ω′ij| ,

provided ωij, ω
′
ij ∈ B̄t(0) for all (i, j) ∈ Γ.

O2. Given t > 0, for every ω in B̄t(0) = {ω ∈ R : |ω| > t}, clearly

sup
|ω|>t

log h̃(ω)− log h̃(1) ≥ log h̃(ω)− log h̃(1) ,

and similarly

sup
|ω|>t

log p(ω)− log p(1) ≥ log p(ω)− log p(1) .

So, let

F2(t) =

(
sup
|ω|>t

log h̃(ω)− log h̃(1)

)
∨

(
sup
|ω|>t

log p(ω)− log p(1)

)
,

and denote by 1Mat the matrix that has (i, j)-entry equal to one if (i, j) ∈ Γ and zero

otherwise. Then

logF (Ω)− logF (1Mat) =
∑

(i,j)∈Γ ,i<j

(
log h̃(ωij)− log h̃(1)

)
+

∑
(i,j)∈Γ ,i=j

(log p(ωij)− log p(1))

≤
∑

(i,j)∈Γ ,i<j

F2(t) +
∑

(i,j)∈Γ ,i=j

F2(t)

≤ F2(t)(p+ 2s) ,

provided ωij ∈ B̄t(0) for all (i, j) ∈ Γ.
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Moreover, recall that

Ω̂ = arg max
Ω∈ΘΓ

logL(Ω) (7.12)

is the maximum likelihood estimator of Ω over the set

ΘΓ = {Ω ∈ PΓ : ξ−1
n ≤ λmin(Ω) ≤ λmax(Ω) ≤ ξn} ,

where ξn is a deterministic sequence converging to infinity as n→∞.

Also, in what follows, t̂ > 0 is the scalar for which |ω̂ij| > t̂ for all (i, j) ∈ Γ.

7.8.2 Assumptions

As n→∞, we assume

A1. p ∼ nc for some c ∈ (0, 1/3).

A2. ξn ∼ pm where m > 0 such that

ξ8
n((p+ s) log n)3/2 = o(

√
n) .

For instance, if s ∼ p, then 0 < m < (1− 3c)/(16c) would suffice in order to have

ξ8
n

√
(p+ s)3 log3 n

n
→ 0 .

Moreover, since m needs be positive, then c < 1/3, so that p ∼ nc = o(n1/3). This matches

with Shun and McCullagh (1995), where it is suggested that the Laplace approximation for
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high-dimensional integrals is reliable with no correction term, provided that the dimension

of the integral is o(n1/3).

A3. Ω̂ solution to

max
Ω∈ΘΓ

logL(Ω)

satisfies ∑
ij

|1− ω̂ij| ≤ k̂n ,

where k̂n such that, for any positive constant F1,

eF1k̂n

n(p+s)/2+1
= o

(
ξ8
nζ

3
n√
n

)
.

For instance, if k̂n = β(p+ s) log n then eF1k̂n = nβF1(p+s) so that the requirement

eF1k̂n

n(p+s)/2+1
=

(
nβF1

n1/2

)(p+s)
1

n
= o

(
ξ8
nζ

3
n√
n

)

would be easily verified with β ≤ 1
2F1

.

7.8.3 Laplace approximation error

We want to show that, under assumptions A1. - A2. - A3., for n large enough, the integral

in (7.11) can be sufficiently well approximated by the Laplace approximation

elogL(Ω̂)+logF (Ω̂)

(
(4π)p+s

det(H(Ω̂))

)1/2

, (7.13)

where H(Ω) = n (Ω−1 ⊗ Ω−1) is two times the negative Hessian of logL(Ω).

To this end, we follow the same strategy presented in Barber et al. (2016) [6], also used
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by L&M. We split the integration domain PΓ into two regions: a neighborhood of Ω̂

N = {Ω ∈ PΓ : ||H(Ω̂)1/2vec(Ω− Ω̂)||2 ≤ ζn}

and its complement

N c = {Ω ∈ PΓ : ||H(Ω̂)1/2vec(Ω− Ω̂)||2 > ζn} .

Here vec(A) stands for the vectorization of the matrix A, so if A ∈ Rp×p then vec(A) ∈ Rp2
.

We can then write (7.11) as the sum of the following two integrals

I1 =

∫
N
elogL(Ω)+logF (Ω) dΩ ,

I2 =

∫
N c
elogL(Ω)+logF (Ω) dΩ .

(i) We start by approximating I1. Since this integral is computed over a neighborhood

of Ω̂, we can approximate the log likelihood function with its Taylor expansion centered at

Ω̂ and write

logL(Ω) = logL(Ω̂)− 1
4
∆TH(Ω̂)∆ +RL

n(∆) ,

where ∆ = vec(Ω − Ω̂) ∈ Rp2
. Yet ∆ has only p + 2s non-zero entries since both Ω and Ω̂

are supposed to be in PΓ and only p+ s free entries since both Ω and Ω̂ are symmetric.

By Lemma 3 in L&M, since Ω̂ defined in (7.12) is such that

ξ−1
n ≤ λmin(Ω̂) ≤ λmax(Ω̂) ≤ ξn ,
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the approximation error in the Taylor series expansion of the log likelihood function can be

bounded by

|RL
n(∆)| ≤ n

2
(c1ξ

5
n ‖∆‖

3
2 + c2ξ

4
n ‖∆‖

4
2) , (7.14)

where c1 and c2 are positive constants.

Let us now look at logF . Consider t ∈ (0, t̂ ] arbitrarily small. Then, by O1.,

∣∣ logF (Ω)− logF (Ω̂)
∣∣ ≤ F1(t)

∑
(i,j)∈Γ

|ωij − ω̂ij| ,

provided that |ωij| > t for all (i, j) ∈ Γ. So using the vectorized notation, we have

∣∣ logF (Ω)− logF (Ω̂)
∣∣ ≤ F1(t) ‖∆‖1 ≤ F1(t)

√
p+ 2s ‖∆‖2 , (7.15)

where the last inequality follows from the known norm inequality ‖a‖1 ≤
√
n ‖a‖2 for any

vector a ∈ Rn.

Putting (7.14) and (7.15) together, we get that, for Ω ∈ N and any arbitrary t ∈ (0, t̂ ],

logL(Ω) + logF (Ω) can be lower and upper bounded by

logL(Ω̂) + logF (Ω̂)− 1
4
∆TH(Ω̂)∆± n

2
(c1ξ

5
n ‖∆‖

3
2 + c2ξ

4
n ‖∆‖

4
2)± F1(t)

√
p+ 2s ‖∆‖2 .

Now, on N we have ||H(Ω̂)1/2∆||2 ≤ ζn so that

‖∆‖2 ≤ ||H(Ω̂)−1/2||2 ||H(Ω̂)1/2∆||2

≤ n−1/2||Ω̂−1 ⊗ Ω̂−1||−1/2
2 ζn

≤ n−1/2||Ω̂||2 ζn

≤ ξnζn√
n
,
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where the last inequality follows from the fact that λmax(Ω̂) ≤ ξn. Therefore, denoting by

θn = ξnζn/
√
n,

n
2
(c1ξ

5
n ‖∆‖

3
2 + c2ξ

4
n ‖∆‖

4
2) + F1(t)

√
p+ 2s ‖∆‖2 ≤

n
2
(c1ξ

5
nθ

3
n + c2ξ

4
nθ

4
n) + F1(t)

√
p+ 2s θn

and so

I1 = elogL(Ω̂)+logF (Ω̂)

∫
N
e−

1
4

∆TH(Ω̂)∆ d∆ · e±(n2 (c1ξ5
nθ

3
n+c2ξ4

nθ
4
n)+F1(t)

√
p+2s θn) ,

where a = b · e±c denotes a ∈ [b · e−c, b · ec]. By making the change of variable η = H(Ω̂)1/2∆,

we have that the integral in the above expression is

∫
‖η‖≤ζn

e−
1
4
‖η‖22 dη · det(H(Ω̂))−1/2 ≤ (4π)

p+s
2 det(H(Ω̂))−1/2 · Pr(χ2

p+s ≤ ζ2
n) .

By Lemma A.1 in Barber et al. (2016), if ζn =
√

5(p+ s) log n, then Pr(χ2
p+s ≤ ζ2

n) can be

bounded by e±1/
√
n so that

I1 = elogL(Ω̂)+logF (Ω̂)

(
(4π)p+s

det(H(Ω̂))

)1/2

· e±(n2 (c1ξ5
nθ

3
n+c2ξ4

nθ
4
n)+F1(t)

√
p+2s θn+1/

√
n) .

Let us examine the term in the exponential appearing in the RHS. Recalling that θn =

ξnζn/
√
n, we can rewrite it as

1

2

(
c1ξ

8
n

ζ3
n√
n

+ c2ξ
8
n

ζ4
n

n

)
+ F1(t)

√
p+ 2s

ξnζn√
n

+
1√
n
.

So choosing ζn =
√

5(p+ s) log n, with the appropriate assumptions A1. and A2. on the

growth of p and ξn, we have that

ξ8
n

√
125(p+ s)3 log3 n

n
→ 0
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as n → ∞. Thus, for n large enough and t arbitrarily small, denoting by F1 = F1(t), the

term in the exponential is smaller than one. So we can use the fact that e−x ≥ 1 − 2x and

ex ≤ 1 + 2x for all 0 ≤ x ≤ 1, to find

I1 =elogL(Ω̂)+logF (Ω̂)

(
(4π)p+s

det(H(Ω̂))

)1/2

·

·

1± ξ8
n

√
125(p+ s)3 log3 n

n

(
c1 + c2

√
5(p+ s) log n

n
+ 2F1 + 2

) .

(7.16)

(ii) We now pass to approximate I2. As before we start analyzing logL(Ω). As the inte-

gration region is now further away from Ω̂, the quadratic approximation of the log likelihood

might not be accurate anymore. However, we can exploit the concavity of logL to bound

the difference logL(Ω)− logL(Ω̂). To this end, given Ω ∈ N c and ∆ = vec(Ω− Ω̂), define

Ω′ = Ω̂ +
ζn

||H(Ω̂)1/2∆||2
(Ω− Ω̂) .

It is easy to see that Ω′ is on the boundary of N as ∆′ = vec(Ω′ − Ω̂) is such that

||H(Ω̂)1/2∆′||2 = ζn. Then by the concavity of logL, we find that

logL(Ω′) ≥ λ logL(Ω) + (1− λ) logL(Ω̂) ,

where λ = ζn/||H(Ω̂)1/2∆||2, so that

logL(Ω)− logL(Ω̂) ≤ 1

λ
(logL(Ω′)− logL(Ω̂)) .

Using the bound on the Taylor expansion for logL(Ω′) derived in the previous part and the
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fact that ‖∆′‖2 ≤ θn = ξnζn/
√
n, we get

logL(Ω)− logL(Ω̂) ≤ 1

λ
(−1

4
∆′TH(Ω̂)∆′ + n

2
(c1ξ

5
n ‖∆′‖

3
2 + c2ξ

4
n ‖∆′‖

4
2))

≤ ||H(Ω̂)1/2∆||2
ζn

(−1
4
ζ2
n + n

2
(c1ξ

5
nθ

3
n + c2ξ

4
nθ

4
n))

≤ ||H(Ω̂)1/2∆||2
(
−1

4
ζn + 1

2
ξ8
n

(
c1
ζ2
n√
n

+ c2
ζ3
n

n

))
.

(7.17)

Let us now look at logF . Since logF (Ω) is not concave, we cannot utilize the same

expedient. Yet, to find a bound on logF (Ω), we first use O2. and consider the same

t ∈ (0, t̂ ] as in the previous part. Then F2(t) > 0 is such that

logF (Ω)− logF (1Mat) ≤ F2(t)(p+ 2s) . (7.18)

Moreover, given t ∈ (0, t̂ ], since ω̂ij ∈ B̄t(0) for all (i, j) ∈ Γ, using O1. we also have that

∣∣∣ logF (Ω̂)− logF (1Mat)
∣∣∣ ≤ F1(t)

∑
(i,j)∈Γ

|1− ω̂ij| . (7.19)

Putting (7.18) and (7.19) together,

logF (Ω)− logF (Ω̂) = logF (Ω)− logF (1Mat) + logF (1Mat)− logF (Ω̂)

≤ F2(t)(p+ 2s) +
∣∣∣ logF (1Mat)− logF (Ω̂)

∣∣∣
≤ F2(t)(p+ 2s) + F1(t)

∑
(i,j)∈Γ

|1− ω̂ij| .

Now, since by A3., we are furthermore assuming that
∑

i≤j |1− ω̂ij| ≤ k̂n, then we have

logF (Ω) ≤ logF (Ω̂) + F2(t)(p+ 2s) + F1(t)k̂n , (7.20)

provided that |ωij| > t for all (i, j) ∈ Γ.
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Combining (7.17) and (7.20),

logL(Ω) + logF (Ω) ≤ logL(Ω̂) + ||H(Ω̂)1/2∆||2
(
−1

4
ζn + 1

2
ξ8
n

(
c1
ζ2
n√
n

+ c2
ζ3
n

n

))
+ logF (Ω̂) + F1(t)k̂n + F2(t)(p+ 2s) .

So we find that the integral I2 can be bounded as

I2 ≤ elogL(Ω̂)+logF (Ω̂)eF1(t)k̂n+F2(t)(p+2s)

∫
N c
e
||H(Ω̂)1/2∆||2

(
−1

4
ζn(1−wn)

)
d∆ , (7.21)

where

wn = 2 ξ8
n

(
c1
ζn√
n

+ c2
ζ2
n

n

)
.

The integral in the inequality above can be further bounded by changing variable to η =

H(Ω̂)1/2∆ and applying Lemma A.2 in Barber et al. (2016)

∫
N c
e‖H(Ω̂)1/2∆‖

2

(
−1

4
ζn(1−wn)

)
d∆

≤ det(H(Ω̂))−1/2

∫
‖η‖2>ζn

e
‖η‖2

(
−1

4
ζn(1−wn)

)
dη

≤

(
(2π)p+s

det(H(Ω̂))

)1/2
2−(p+s)/2ζp+s−1

n

Γ
(
p+s

2

)
ζn(1− wn)/4

e−
1
4
ζ2
n(1−wn) ,

where n is large enough so that 1− wn > 0. Indeed, recalling that ζn =
√

5(p+ s) log n, we

have that

wn = 2 ξ8
n

(
c1

√
(p+ s) log n

n
+ c2

(p+ s) log n

n

)
converges to zero as n→∞. Therefore choosing n large enough, say to guarantee 1−wn ∈

(4/5, 1), with some further algebraic passages we can get that the last expression can be
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bounded by

(
(2π)p+s

det(H(Ω̂))

)1
2 2−

p+s
2

+1(5(p+ s) log n)
p+s

2
−1

Γ
(
p+s

2

)
(1− wn)/4

e−
5
4

(p+s) logn·(1−wn)

≤

(
(2π)p+s

det(H(Ω̂))

)1/2
(p+s

2
)
p+s

2
−1

Γ
(
p+s

2

) · (5 log n)
p+s

2
−1

(1− wn)/4
· n−

5(p+s)
4
·(1−wn)

≤

(
(2π)p+s

det(H(Ω̂))

)1/2
(p+s

2
)
p+s

2
−1

Γ
(
p+s

2

) · (5 log n)
p+s

2
−1

4
5
· 1

4

· n−
5(p+s)

4
·4
5

≤

(
(2π)p+s

det(H(Ω̂))

)1/2
e
p+s

2√
π(p+ s)

· (5 log n)
p+s

2
−1

1
5

· n−(p+s) ,

where the last inequality follows from Stirling’s lower bound on the Gamma function. Going

back to (7.21), incorporating these last passages, we find that

I2 ≤ elogL(Ω̂)+logF (Ω̂)eF1(t)k̂n+F2(t)(p+2s)

(
(2π)p+s

det(H(Ω̂))

)1/2
e
p+s

2√
π(p+ s)

(5 log n)
p+s

2
−1 · n−(p+s)

≤ elogL(Ω̂)+logF (Ω̂)

(
(2π)p+s

det(H(Ω̂))

)1/2
e(4F2(t)+1) p+s

2√
π(p+ s)

(
5 log n

n

) p+s
2
−1

eF1(t)k̂n · n−
(p+s)

2
−1

≤ elogL(Ω̂)+logF (Ω̂)

(
(2π)p+s

det(H(Ω̂))

)1/2
e4F2(t)+1√
π(p+ s)

(
5e2F2(t)+1 log n

n

) p+s
2
−1

eF1(t)k̂n

n(p+s)/2+1
.

If we assume that k̂n = β(p+ s) log n with β ≤ 1/(2F1(t)) as specified in A3., then

eF1(t)k̂n

n(p+s)/2+1
= nF1(t)β(p+s)−(p+s)/2−1 = o

(
ξ8
nζ

3
n√
n

)
.

So, for sufficiently large n and arbitrarily small t, denoting by F2 = F2(t), I2 can be very

loosely bounded by

I2 ≤ elogL(Ω̂)+logF (Ω̂)

(
(4π)p+s

det(H(Ω̂))

)1/2
e4F2+1

√
π

ξ8
nζ

3
n√
n
. (7.22)
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Combining the two bounds for I1 and I2 in (7.16) and (7.22), we can finally derive

I =elogL(Ω̂)+logF (Ω̂)

(
(4π)p+s

det(H(Ω̂))

)1/2

·

1± ξ8
n

√
125(p+ s)3 log3 n

n

(
c1 + c2

√
5(p+ s) log n

n
+ 2F1 + 2 +

e4F2+1

√
π

) .

Since under our assumptions A1. and A2., as n→∞,

ξ8
n

√
125(p+ s)3 log3 n

n
→ 0 ,

we have that, as n gets large, the relative error between I and the Laplace approximation

to I,

IL = elogL(Ω̂)+logF (Ω̂)

(
(4π)p+s

det(H(Ω̂))

)1/2

,

becomes negligible.

7.8.4 Monte Carlo computation

In order to assess the accuracy of the Laplace approximation to

I =

∫
PΓ

elogL(Ω)+logF (σ2Ω) dΩ ,

we compute this integral using a Monte Carlo integration technique. To this end, we follow

the procedure proposed by Atay-Kayis and Massam (2005) [3] (A-K&M from now on) for

computing the G-Wishart normalizing constant, making some small adjustments to our case.

We report here the main passages appearing in that paper with the necessary modifications

to our setting. For simplify the exposition, we fix the scale parameter σ to be one.
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The integrand can be written as

elogL(Ω)+logF (Ω) = det(Ω)
n
2 e−

1
2

tr(X′XΩ)+logF (Ω) .

So letting δ = n+ 1 and D = X ′X, the integral in (7.11) can be rewritten as

∫
PΓ

det(Ω)
δ−1

2 e−
1
2

tr(DΩ)+logF (Ω) dΩ .

Now let D−1 = T ′T be the Choleski decomposition of D−1 = (X ′X)−1 and let Ω = φ′φ be

the Choleski decomposition of Ω. If Ω ∈ PΓ then the entries of φ are such that, for (i, j) ∈ Γ

φij =
ωij −

∑i−1
k=1 φkiφkj
φii

,

while for (i, j) /∈ Γ,

φ1k = 0 for k = 2, . . . , p ,

φij = −
∑i−1

k=1 φkiφkj
φii

for 1 < i ≤ j ≤ p .

These expressions show that the entries φij, (i, j) /∈ Γ, are functions of φij, (i, j) ∈ Γ. So let

φΓ be the projection of φ on to PTΓ , the set of Γ-incomplete upper-triangular matrices with

positive diagonal elements and completion φ. That is, φΓ has specified entries for (i, j) ∈ Γ

such that φΓ,ij = φij and has empty entries for (i, j) /∈ Γ. Thus we can make the change

of variable Ω ∈ PΓ → φΓ ∈ PTΓ . The determinant of this transformation, given in Roverato

(2000), is

J1 = 2p
∏
i

(φ2
ii)
νi+1
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where, for each i = 1, . . . , p, νi = #{j > i : (i, j) ∈ Γ}. So we have

I =

∫
PΓ

det(Ω)
δ−1

2 e−
1
2

tr(DΩ)+logF (Ω) dΩ

=

∫
PTΓ

2p
∏
i

(φ2
ii)

δ−1+νi
2 e−

1
2

tr((T ′T )−1φ′φ)+logFφ(φ) dφΓ

=

∫
(R+)p×Rs

2p
∏
i

(φ2
ii)

δ−1+νi
2 e−

1
2

tr((T ′T )−1φ′φ)+logFφ(φ)
∏
i

dφii
∏

i 6=j:(i,j)∈Γ

dφij .

(7.23)

Here the function Fφ is such that

logFφ(φ) = logF (Ω) =
∑
i,j

fΓ(ωij) =
∑

(i,j)∈Γ

fΓ(ωij)

and it can be found by expressing {ωij}(i,j)∈Γ as a function of {φij}. In fact, for all (i, j) ∈ Γ

ωij =
∑i

k=1 φkiφkj , so that

logFφ(φ) =
∑

(i,j)∈Γ

fΓ

(
i∑

k=1

φkiφkj

)
.

Now the strategy is to make a second change of variable φΓ ∈ PTΓ → ψΓ ∈ PTΓ , where the

completion of ψΓ is ψ = φT−1. Then,

ψrs =
1

tss

(
φrs −

s−1∑
l=r

ψrltls

)
,

and the Jacobian of this second transformation, given in Lemma 3 of A-K&M, is

J2 =
∏
i

tki+1
ii ,

where, for each i = 1, . . . , p, ki = #{j < i : (i, j) ∈ Γ}. The integral in (7.23) can be
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rewritten as

I =

∫
(R+)p×Rs

2p
∏
i

(φ2
ii)

δ−1+νi
2 e−

1
2

tr((T ′T )−1φ′φ)+logFφ(φ)
∏
i

dφii
∏

i 6=j:(i,j)∈Γ

dφij

=
∏
i

tki+1
ii

∫
(R+)p×Rs

2p
∏
i

(t2iiψ
2
ii)

δ−1+νi
2 e−

1
2

tr(ψ′ψ)+logFψ(ψ)
∏
i

dψii
∏

i 6=j:(i,j)∈Γ

dψij .

(7.24)

Similarly to before, the function Fψ is such that

logFψ(ψ) = logFφ(φ)

and it can be found by expressing {φij} as a function of {ψij}. In fact, as φrs =
∑s

l=r ψrltls ,

logFψ(ψ) =
∑

(i,j)∈Γ

fΓ

(
i∑

k=1

(
i∑
l=k

ψrltls

j∑
l=k

ψrltls

))
.

Lemma 2 in A-K&M shows that it is possible to express ψij, with i 6= j : (i, j) /∈ Γ as

a function of {ψij}(i,j)∈Γ, so again, one can rewrite the integrand as a function of only

{ψij}(i,j)∈Γ. To keep the notation lighter, from now on, when writing {ψij}i 6=j:(i,j)/∈Γ, we will

implicitly refer to the expressions (31) and (32) appearing in A-K&M.

Since

−1
2
tr(ψ′ψ) = −1

2

∑
i

ψ2
ii +

∑
i 6=j:(i,j)∈Γ

ψ2
ij +

∑
i 6=j:(i,j)/∈Γ

ψ2
ij

 ,

it is easy to express the integral in (7.24) as a constant times the expected value of a function

of independent standard Normal and Chi-squared random variables. In fact,

∏
i

(ψ2
ii)

δ−1+νi
2 e−

1
2

tr(ψ′ψ)+logFψ(ψ) =

∏
i

(ψ2
ii)

δ−1+νi
2 exp{−1

2

∑
i

ψ2
ii − 1

2

∑
i 6=j:(i,j)∈Γ

ψ2
ij} exp{−1

2

∑
i 6=j:(i,j)/∈Γ

ψ2
ij + logFψ(ψ)} .
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So the integrand in (7.24) can be written as

g(ψii, ψij)
∏
i

(ψ2
ii)

δ−1+νi
2 e−

1
2
ψ2
ii

∏
i 6=j:(i,j)∈Γ

e−
1
2
ψ2
ij

(7.25)

where

g(ψii, ψij) = exp{−1
2

∑
i 6=j:(i,j)/∈Γ

ψ2
ij + logFψ(ψ)} . (7.26)

Here we use (ψii, ψij) as a short notation for indicating (ψii, ψi 6=j:(i,j)∈Γ).

From the expression in (7.25), one can see that the integral can be computed as the ex-

pected value of the function g of the random variables ψ2
ii ∼ χ2

δ+νi
and ψij ∼ N(0, 1), all

independent of each other. That is,

I = CT,δ,Γ E(g(Uii, Zij)) ,

where

CT,δ,Γ =
∏
i

tδ+νi+kiii (2π)νi/2Γ
(
δ+νi

2

)
2(δ+νi)/2

while U2
ii ∼ χ2

δ+νi
for all i = 1, . . . , p and Zij ∼ N(0, 1) for all i 6= j : (i, j) ∈ Γ, all indepen-

dent of each other.
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Part III

Vector sparsity
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Chapter 8

Vector sparsity

8.1 Introduction

At the beginning of Chapter 4, we proposed an extension of the mathematical definition of

sparsity to sequences of distributions defined on Rd, d > 1. Given this general definition, in

part II, we focused our attention on d-dimensional sparse measures which are product of d

scalar sparse measures. Assuming this kind of multivariate sparsity, and combining it with

the negligibility theory developed for univariate sparse measures, we looked at how some

statistical problems can be formulated within the sparsity-negligibility framework.

In this part of the thesis instead, we study another kind of multivariate sparsity. We

consider those d-dimensional measures which are rotationally invariant with respect to the

inner product defining the metric on Rd, and the sparsity of the vector is induced by the

sparsity of its radius. We call such measures vector-sparse measures. In this context of rota-

tional invariance, we introduce the d-dimensional coshd function, and study some asymptotic

properties of the corresponding ζd function.

In this chapter, we derive the sparse approximations to some relevant functionals arising
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in the signal-plus-noise model, assuming that the signal has a vector-sparse distribution. In

particular, we derive the conditional distribution, given the observed vector, for both the

signal direction and the signal magnitude. In the next chapter on the other hand, we study

the Gaussian linear regression problem, and in that framework, the random vector assumed

to have a vector-sparse distribution will be the coefficient vector.

8.2 Vector sparsity

We start by recalling the definition of multivariate sparsity given in Chapter 4.

Definition 8.2.1. A sequence of probability distributions {Pν,d}ν , defined on (Rd; ‖·‖), is

said to have a sparse limit with rate ρν if there exists a unit exceedance measure Hd such

that

lim
ν→0

ρ−1
ν

∫
Rd
w(x)Pν,d(dx) =

∫
Rd\{0}

w(x)Hd(dx),

for every function w ∈ W#
d .

Component-wise sparsity assumes that the d components of the vector X ∼ Pν,d , are

independent, and usually identically distributed. If instead of the i.i.d. assumption, which

requires the exchangeability of the components, but it is made with respect to a specific

coordinate system given by the Cartesian axes, one is willing to treat any linear combination

of the d components on equal footing, then one can assume the sparse measure Pν,d on Rd

to be invariant under the group of rotations and reflections. This means that, for all Borel

sets B,

Pν,d(B) = Pν,d(OB)

for every transformation O : Rd → Rd which is orthogonal with respect to the inner product

〈·, ·〉 chosen on Rd, inducing the metric d(x, y) = ‖x− y‖ = 〈x − y, x − y〉1/2. Since or-

thogonal transformations are isometries, they preserve the distance between any two points:
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d(x, y) = d(Ox,Oy), for every x, y ∈ Rd. Therefore, given a Euclidean inner product defined

by some positive definite matrix A ∈ Rd×d, 〈x, y〉 = x′AA′y, then O must be such that

O′AA′O = AA′ and det(O) = ±1.

The probability of the set B, Pν,d(B), does not change after rotating and/or reflecting B,

for any arbitrary rotation and/or reflection, i.e., the probability measure Pν,d on (Rd, 〈·, ·〉)

is invariant under the orthogonal group O(d), if and only if it is possible to factorize Pν,d

into two components:

Γ(d x̃)PR
ν (d ‖x‖) , (8.1)

the uniform measure Γ for the direction vector x̃ = x/ ‖x‖ on the unit sphere Sd = {z :

‖z‖2 = 1}, and a radial measure PR
ν for the radius of the vector ‖x‖. See Theorem 2.5 in

Fang, Kotz and Ng (1990) [33]. Therefore, in order to have Pν,d converging to the Dirac

delta measure at the origin, as ν → 0, it is necessary that the radial measure PR
ν on [0,∞)

converges to the Dirac delta measure at zero. This can be easily achieved by assuming that

PR
ν is two times the positive part of some sparse measure Pν on R.

With this geometric intuition in mind, we now give a more formal definition of a vector-

sparse probability distribution.

Definition 8.2.2. Given an inner product 〈·, ·〉 on Rd, defining the norm ‖u‖ =
√
〈u, u〉

and the corresponding unit sphere Sd = {z : ‖z‖ = 1}, let O : Rd → Rd be an orthogonal

operator such that 〈Ou,Ov〉 = 〈u, v〉, for all u, v ∈ Rd. If Pν,d is a sequence of probability

distributions defined on (Rd; ‖·‖), which is a sparse according to Definition 8.2.1, and is such

that, for any Borel set B,

Pν,d(B) = Pν,d(OB) ,

where OB = {z ∈ Rd : O−1z ∈ B}, then we say that Pν,d is vector sparse.
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Notice that if Pν,d is vector sparse, i.e., it can be written as in (8.1), then also its ex-

ceedance measure Hd has the same structure, and can be factorized as

Γ(d x̃)HR(d ‖x‖) , (8.2)

where Γ is the uniform measure on Sd, while HR is the one dimensional exceedance measure

on R+ \ {0} corresponding to the radial sparse measure PR
ν . If this latter is two times the

positive part of any symmetric distribution Pν , analogously HR is two times the positive

part of the symmetric exceedance measure H corresponding to Pν . Any such exceedance

measure Hd is absolutely continuous with respect to Lebesgue measure on Rd, so it gives

zero mass to any proper subspace of Rd.

We can easily check that Hd is a Lévy measure on Rd \ {0} by computing the integral

∫
Rd\{0}

(‖x‖2 ∧ 1)Hd(dx) =

∫
Sd

Γ(dx̃)

∫
(0,∞)

(R2 ∧ 1)HR(dR)

=
1

2

∫
R\{0}

(R2 ∧ 1)H(dR) ,

which is finite as long as H is a Lévy measure on R \ {0}.

Before proceeding, we would like to conclude this section by highlighting that spherical

symmetry, which we also call rotational invariance, is a statement on the probability measure

as a function defined on the Euclidean vector space (Rd, 〈·, ·〉), seen as an inner product space.

The orthogonal groupO(d) is the set of d×d orthogonal matrices, with group operation being

the usual matrix multiplication AB =
∑

i

∑
j AijBij, where A,B ∈ Rd×d. When the group

O(d) acts on Rd, the function f : Rd → [0,∞) defined by f(x) = ‖x‖, is maximal invariant,

since f(x) = f(Ox) for all O ∈ O(d), and f(x1) = f(x2) implies that there is some group

element O such that x1 = Ox2. The first requirement follows immediately. For the second
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one instead, suppose that ‖x1‖ = ‖x2‖. For any x, we can find O such that Ox = ‖x‖ e1,

where e′1 = (1, 0, . . . , 0). So let O1, O2 be such that O1x1 = ‖x1‖ e1 = ‖x2‖ e1 = O2x2.

Then x1 = O−1
1 O2x2. The maximal invariance of f(x) = ‖x‖ can be used to prove that a

probability distribution is spherically symmetric if and only if its characteristic function, ψ(t),

can in fact be written as a function of only the norm of its argument. Indeed, ψ(O′t) = ψ(t)

for all O ∈ O(d) means that ψ(t) is an invariant function with respect to the group O(d),

which in turn means that ψ(t) needs to be a function of the maximal invariant ‖t‖. For an

introduction to the incredibly fascinating subject of group invariance and its applications in

Statistics, we refer to the series of lectures given by Morris Eaton in 1987 at the University

of Michigan, and gathered in Eaton (1989) [25].

8.2.1 Rotationally invariant inverse-power exceedance

If the inner product imposed on Rd is the standard Euclidean inner product 〈u, v〉2 = u′v =∑d
i=1 uivi, then the orthogonal operator on Rd is such that O′O = Id, where Id is the identity

matrix, while the unit sphere is Sd = {z : z′z = 1}. Suppose that the radial exceedance

measure HR is the inverse-power measure

HR(dx) = Kα x
−α−1dx ,

where Kα = α2α/2

Γ(1−α/2)
, and α ∈ (0, 2). Then

Hd(dx) = Kd,α ‖x‖−α−d2 dx , (8.3)

is the rotationally invariant inverse-power exceedance measure, where

Kd,α = Kα/Area(Sd) =
α2α/2

Γ(1− α/2)

Γ(d/2)

2πd/2
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is the scalar such that Hd is a unit exceedance measure.

The measure in (8.3) is, up to a multiplicative constant, the Lévy measure µ associ-

ated with the rotationally invariant, symmetric α-stable (SαS) process, whose characteristic

function is the exponential of

∫
Sd

∫ ∞
0

(eirθ
′s − 1)

dr

rα+1

ds

Area(Sd)
= −

∫
Sd
|θ′s|α ds

Area(Sd)
= −c ‖θ‖α ,

for some c > 0 (Samorodnitsky and Taqqu, 1994 [62]). In particular, when α = 1, Hd is

proportional to the Lévy measure of the multivariate Cauchy distribution

Pd(dx) =
Γ(d+1

2
)

√
π πd/2

dx

(‖x‖2
2 + 1)

d+1
2

.

In the one-dimensional case, the sparsity rate for the scaled Cauchy defining the rarity of

threshold exceedance, Pν(|X| > ε) = ρH(|X| > ε), is given by ρ =
√

2/π ν. When passing

to the d-dimensional analog, the sparsity rate for the scaled version of Pd describes the rarity

of norm threshold exceedance

Pν,d(‖X‖ > ε) = ρdHd(‖X‖ > ε) .

So ρd = ν
√

2 Γ(d/2+1/2)
Γ(d/2)

can be found from

Pν,d(‖X‖ > ε) = ν
Γ(d+1

2
)

√
π Γ(d/2)

∫ ∞
ε

1

‖x‖2
2

d ‖x‖+ o(ν) = ρdHd(‖X‖ > ε) + o(ρ).

Therefore, the one-dimensional rate gets scaled by a factor of
√
πΓ(d/2+1/2)

Γ(d/2)
, shown in Fig-

ure 8.1. As the dimension d becomes large, the scaling factor behaves like
√
π(d/2)1/2.
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Figure 8.1: Dimension scaling effect on the one-dimensional sparsity rate. The dashed green

line depicts the limiting behavior
√
πΓ(d/2+1/2)

Γ(d/2)
∼
√
π(d/2)1/2 as d→∞.

8.2.2 More general rotationally-invariant exceedance

If instead of the standard Euclidean inner product, given any positive definite matrix A ∈

Rd×d, we consider its induced inner product 〈u, v〉A = u′AA′v. Then the orthogonal operator

O determining the rotational invariance is such that u′O′AA′Ov = u′AA′v, for all u, v ∈ Rd,

while the unit sphere is SdA = {z : ‖z‖2
A = z′AA′z = 1}.

Generalizing (8.3), we can define the A-rotationally invariant inverse-power exceedance

measure on Rd \ {0} to be

Hd,A(dx) = Kd,α ‖x‖−α−dA det(A)dx . (8.4)

Clearly, (8.4) coincides with (8.3) when A is the identity matrix. Otherwise, having the mea-

sure in (8.4) on x is equivalent to having the measure in (8.3) on the linearly transformed

vector ξ = A′x.

Indeed, more generally, whenever Pν,d is vector sparse on (Rd, ‖·‖A), i.e., Pν,d is rotation-
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ally invariant with respect to 〈·, ·〉A, then its exceedance measure is

Hd,A(dx) = Hd(d(A′x)) ,

where Hd is rotationally invariant with respect to 〈·, ·〉2.

8.3 Activity thresholds

From the normalization chosen in Definition 4.2.1, for defining a unitary exceedance measure,∫
(1− e−‖x‖2/2)Hd(dx) = 1 , we can interpret the sparsity rate ρ as the unitary soft-threshold

exceedance rate under Pν,d,

∫
(1− e−‖x‖

2/2)Pν,d(dx) = ρ+ o(ρ) .

Alternatively, for any givenHd, one can find the threshold ε1 > 0 for which the hard-threshold

exceedance probability is one,

Hd(ε
+
1 ) =

∫
Rd
χε+1 (x)Hd(dx) = 1 ,

where for any positive threshold ε > 0, we denote ε+ = {‖x‖ > ε}. Then, calling such ε1 the

standard activity threshold, the sparsity rate ρ can be seen as the standard hard-threshold

exceedance rate under Pν,d,

Pν,d(ε
+
1 ) = ρ+ o(ρ) .

For vector-sparse measures,

Hd(ε
+
1 ) =

∫ ∞
0

∫
Sd
χε+1 (x)

d x̃

Area(Sd)
HR(d ‖x‖) =

∫ ∞
ε1

HR(d ‖x‖) .
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Thus, for instance, when HR is the inverse-power measure,

ε1 =

√
2

Γ(1− α/2)1/α
,

so the standard threshold is 0.94 for α = 0.5, 0.8 for α = 1, and 0.60 for α = 1.5. Notice

that these thresholds are independent of d, and this is because the exceedance event is in

terms of the norm of the signal. If one prefers the standard activity thresholds to scale with

the dimension, then one can express the exceedance event in terms of the root mean square

(RMS) of the signal: ε̃+ = {‖x‖ /
√
d > ε̃}. Then clearly, ε̃1 such that Hd(ε̃

+
1 ) = 1, is just

given by ε̃1 = ε1/
√
d. Thus, the RMS-standard threshold scales the standard threshold by a

factor of 1/
√
d.

8.4 ζd and coshd functions

We now investigate the zeta function and zeta measure associated to rotationally invariant

exceedance measures. In this setting, we introduce a d-dimensional analog of the ordinary

cosh function, which appears inside the integral of the zeta function. This coshd function

is defined to be the same exponential function as in the unidimensional case, but now it

is uniformly averaged over the d-dimensional unit sphere. The derivation of some of the

formulas and facts presented in this section, can be found in the appendix.

Recall that for any exceedance measure Hd defined on (Rd \ {0}, ‖·‖), its zeta transform

is

ζd(y) =

∫
Rd\{0}

(cosh(〈y, x〉)− 1)e−‖x‖
2/2Hd(dx),

and its corresponding d-dimensional zeta measure is the integrand

ζd(du; y) = (cosh(〈y, x〉)− 1)e−‖x‖
2/2Hd(dx) .

222



For vector-sparse measures, the factorization of Hd into the uniform spectral measure on

the unit sphere Sd = {z : ‖z‖ = 1}, and the sparse radial measure on (0,∞), leads to

ζd(y) =

∫ ∞
0

∫
Sd

(cosh(‖x‖ 〈y, x̃〉)− 1)e−‖x‖
2/2 d x̃

Area(Sd)
HR(d ‖x‖) .

This suggests defining the function coshd on (Rd, ‖·‖),

coshd(y) =

∫
Sd
e〈y,x̃〉

dx̃

Area(Sd)
. (8.5)

When 〈y, x〉 = y′x and d = 1, coshd(y) coincides with the usual cosh(y) = ey+e−y

2
. The coshd

function is the exponential function g(x̃) = e〈y,x̃〉, uniformly averaged over the unit sphere.

It is analytic with Taylor expansion

coshd(y) =
∞∑
r=0

‖y‖2r

(d/2)↑r22rr!
, (8.6)

where α↑r denotes the ascending factorial function α↑r = Γ(α + r)/Γ(α). For d ≥ 2, the

integrand in (8.5) is the kernel of the von Mises-Fisher density over the unit sphere with

polar direction y/ ‖y‖ and concentration parameter ‖y‖. So one can also write coshd as

coshd(y) =
(2π)d/2Id/2−1(‖y‖)

‖y‖d/2−1
· 1

Area(Sd)
,

where Iν denotes the modified Bessel function of the first kind of order ν.

Exploiting the symmetry of coshd, the zeta transform of any rotationally invariant ex-

ceedance measure can be written as

ζd(y) =

∫ ∞
0

(coshd(‖x‖ y)− 1) e−‖x‖
2/2HR(d ‖x‖) . (8.7)
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In particular, if HR is the inverse-power measure, then ζd(y) has Taylor expansion given by

ζd(y) =
∞∑
r=1

‖y‖2r

(d/2)↑r2rr!

αΓ(r − α/2)

2Γ(1− α/2)
. (8.8)

Notice that, thanks to rotational invariance of Hd, not just coshd(y), but also ζd(y) only

depends on the norm of the argument y ∈ Rd. So from now on, we will either use the vector

argument or the norm argument depending on the convenience of the context.

8.4.1 Limiting behavior of ζd and coshd for d large

In this section, we investigate the behavior of the functions coshd and ζd when the dimension

d gets large. We restrict our analysis to the zeta function of the inverse-power radial measure.

We consider vectors y ∈ Rd having unit root mean square, RMS = ‖y‖ /
√
d = 1 and compare

the d-dimensional coshd and ζd to the one-dimensional versions, cosh and ζ respectively. In

Figure 8.2, we show the scaling factor by which the one-dimensional functions are multiplied,

when the dimension increases. We can see that for the zeta function, the impact of the

dimension is larger when the inverse power α is smaller.

In Figure 8.3 we show the limiting behavior of coshd(
√
d) and ζd(

√
d) as the dimension

goes to infinity. From the left panel, it appears quite clearly that, as d → ∞, coshd(
√
d)

approaches
√
e, indicated by the dashed line, while looking at the right panel, we can see

that, even if slowly, ζd(
√
d)→ 1 as d→∞.

Indeed, exploiting the Taylor series in (8.6), one can write

coshd(
√
d) =

∞∑
r=0

(d/2)r

(d/2)↑r2rr!
=
∞∑
r=0

fd(r) ,

where fd(r) = (d/2)r

(d/2)↑r2rr!
is a sequence, indexed by d, of non-negative functions such that, for

224



2 4 6 8 10

1.
00

1.
02

1.
04

coshd function

d

co
sh

d(
d

)
co

sh
(1

)

2 4 6 8 10

1.
00

1.
10

1.
20

1.
30

ζd function

d

ζ d
(

d
)

ζ(
1)

α = 0.5

α = 1

α = 1.5

Figure 8.2: Left panel: dimension scaling effect on the one-dimensional cosh function:
coshd(

√
d)/ cosh(1). Right panel: dimension scaling effect on the one-dimensional ζ function:

ζd(
√
d)/ζ(1), for α = 0.5, 1, 1.5.

all d ≥ 1, fd(r) ≤ fd+1(r) for all r ≥ 0, as

fd(r)

fd+1(r)
=

dr

(d+ 1)r
(d/2 + 1/2)↑r

(d/2)↑r
≤ 1 .

Since the sequence fd(r), as d→∞, has a limit

lim
d→∞

fd(r) = lim
d→∞

(d/2)r

(d/2)↑r2rr!
=

1

2rr!
= f(r) ,

which is summable,
∑∞

r=0 f(r) =
∑∞

r=0
(1/2)r

r!
=
√
e, then by monotone convergence theorem,

lim
d→∞

∞∑
r=0

fd(r) =
∞∑
r=0

lim
d→∞

fd(r) .

So limd→∞ coshd(
√
d) =

√
e.

With a similar argument, one can show that

lim
d→∞

ζd(
√
d) = 1 .
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d) as d → ∞. Right panel: limiting

behavior of ζd(
√
d) as d→∞, for α = 0.5, 1, 1.5.

More generally, if we consider ζd(
√
d x), then we have

lim
d→∞

ζd

(√
d x
)

=


1− (1− x2)α/2 for |x| < 1

1 for |x| = 1

∞ for |x| > 1 .

See the appendix for all derivations. In Figure 8.4, we show ζd(
√
d x) slowly approaching the

limit function 1− (1− x2)
α
2 as d gets large, for α equal 0.5, 1, and 1.5.

8.4.2 Limiting behavior of ζd for ‖y‖ large

It is also interesting to investigate the limiting behavior of ζd(‖y‖), with fixed dimension d,

while ‖y‖ → ∞. Once again, we study the case when Hd is as in (8.3). For simplicity of

exposition, here we consider the standard Euclidean inner product, but the same holds for

any Euclidean inner product. Now,

ζd(y) =

∫
Rd\{0}

(cosh(y′x)− 1)e−‖x‖
2/2 Kd,α

‖x‖α+d
dx

=

∫
Rd\{0}

(ey
′x − 1)e−‖x‖

2/2 Kd,α

‖x‖α+d
dx .
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Figure 8.4: Limiting behavior of ζd(
√
d x), as a function of x, when d → ∞. The black

curves depict the limit function 1 − (1 − x2)
α
2 . Left panels: colored curves depict ζd(

√
d x)

on |x| ≤ 1 for d = 1, 10, 20, 50. Right panels: behaviour of log(ζd(
√
d x)) around one, with d

ranging from 1 to 250.
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When ‖y‖ is large, (ey
′x − 1) ≈ ey

′x, so that in this scenario, we can approximate ζd(y) with

∫
Rd\{0}

e−φ(x)f(x) dx ,

where φ(x) = −y′x + ‖x‖2 /2 and f(x) = Kd,α/ ‖x‖α+d. Since f is such that f(x)−1 =

o(e‖x‖
2/2), the function −y′x+‖x‖2 /2− log f(x) is dominated by −y′x+‖x‖2 /2. Therefore,

expanding φ around its point of maximum x̂ = y, the Laplace approximation gives

∫
Rd\{0}

e−φ(x)f(x) dx ≈
∫
Rd\{0}

e−φ(x̂)− 1
2

(x−x̂)′φ′′(x̂)(x−x̂)f(x̂) dx

=

∫
Rd\{0}

e
y′y
2
− 1

2
(x−y)′(x−y)f(y) dx

= e
y′y
2 f(y)(2π)d/2 .

Therefore, for ‖y‖ large, the zeta function of the rotationally invariant inverse-power measure

can be approximated by

e
‖y‖2

2

‖y‖α+d
· αΓ(d/2) 2

α+d
2

2 Γ(1− α/2)
. (8.9)

In Figure 8.5, we compare, on the log scale, the exact ζd function with the Laplace

approximation in (8.9) for d = 2 and d = 6, while α = 1. We can see that the approximation

works quite well in both cases.

8.5 Vector-sparse signal plus noise

In this section, we study the signal-plus-noise model where the observation vector Y ∈ Rd is

a sum of two independent unobserved random vectors

Y = µ+ η .

228



0 2 4 6 8 10

−
10

0
10

20
30

40

|y|

lo
g 

ζ d
(|y

|)

Exact, d = 2 
Laplace, d = 2
Exact, d = 6 
Laplace, d = 6

Figure 8.5: Limiting behavior of the d-dimensional zeta function as ‖y‖ → ∞. The α
parameter is fixed to 1, whereas d = 2 for the orange curves, and d = 6 for the blue curves.
The solid darker lines show the exact zeta functions, while the dashed lighter lines depict
the corresponding Laplace approximations, both are plotted on the log scale.

Here we assume that the signal and the noise distributions are rotationally invariant with

respect to the standard Euclidean inner product. So µ ∼ Pν,d, vector sparse with unit ex-

ceedance measure Hd and rate ρ, and it is independent of the Gaussian noise η ∼ Nd(0, Id).

However, the derivations presented below do not rely on this specific choice of inner product.

If for instance η ∼ Nd(0,Σ), where Σ is a known positive definite matrix, then one can

consider rotational invariance with respect to 〈u, v〉Σ−1/2 = u′Σ−1v, as long as the geome-

try on signal vector space is believed to be the same as the geometry on the error vector space.

The first-order sparse approximation to the marginal distribution for Y at y is

mν(y) =

∫
Rd
φd(y − x)Pν,d(dx)

= φd(y)
(
ρ

∫
Rd\{0}

(cosh(〈y, x〉)− 1)e−‖x‖
2/2Hd(dx)+

+ 1− ρ
∫
Rd

(1− e−‖x‖
2/2)Hd(dx)

)
+ o(ρ)

= φd(y) (ρζd(y) + 1− ρ) + o(ρ) .

Since both φd and ζd are spherically symmetric with respect to 〈·, ·〉, so is the sparse approx-
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imation to mν . Similarly to the univariate sparsity setting, this latter is a two-component

mixture

mν(y) = ρψd(y) + (1− ρ)φd(y) + o(ρ) ,

where the function

ψd(y) = φd(y)ζd(y)

is the multivariate analog of the ψ function introduced in McC&P. Indeed, thanks to the

normalization of the unitary Hd, ψd(y) is a probability density function on Rd, and its

characteristic function is given by

∫
ei〈z,y〉ψd(y) dy = e−‖z‖

2/2

(
1−

∫
Rd\{0}

(
1− cos(〈z, u〉)

)
Hd(dx)

)
. (8.10)

See the appendix for derivation. When the radial measure is the inverse power, the charac-

teristic function of ψd is

e−‖z‖
2/2

(
1− ‖z‖

α

2α/2
·

Γ(d
2
)

Γ(α+d
2

)

)
.

Indeed, for d = 1, we obtain e−z
2/2
(

1− |z|α ·
√
π

2α/2Γ(α+1
2

)

)
, which agrees with the characteris-

tic function of the univariate ψ function derived in McC&P.

8.5.1 Signal conditional distribution

The parallelism with the univariate case carries on to the conditional distribution of the signal

µ given the observed vector y. This distribution is proportional to the joint distribution of
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(Y, µ)

P(µ ∈ dx, Y ∈ dy) = φd(y)e〈y,x〉e−‖x‖
2/2Pν,d(dx)

= φd(y)
(

(cosh(〈y, x〉)− 1)e−‖x‖
2/2Pν,d(dx) + e−‖x‖

2/2Pν,d(dx)
)

= φd(y)
(
ρζd(dx; y) + e−‖x‖

2/2Pν,d(dx)
)

+ o(ρ) ,

where the last equality holds in the sense of integrals of functions in W#
d . Once normalized

by mν(y), the first-order sparse approximation to the conditional distribution of the signal

can be written as

Pν,d(dx | y) =
ρζd(dx; y) + e−‖x‖

2/2Pν,d(dx)

ρζd(y) + 1− ρ
+ o(ρ) .

This expression is just a generalization of Equation (12) of McC&P. However, because we

assume Pν,d factorizes into a spectral and a radial measure, it is interesting to derive the

conditional distributions for the two separate components of the signal, i.e., its direction

µ̃ = µ/ ‖µ‖ and its magnitude ‖µ‖.

Signal direction conditional distribution

We start by expressing the joint distribution of (µ, Y ) in spherical polar coordinates,

P(µ̃ ∈ dx̃, ‖µ‖ ∈ d ‖x‖ , Y ) =
e−‖y‖

2/2

(2π)d/2
e‖x‖·〈y,x̃〉e−‖x‖

2/2 Γ(dx̃)PR
ν (d ‖x‖) . (8.11)

Integrating (8.11) over Sd, one obtains

1

(2π)d/2
e−‖y‖

2/2 coshd(‖y‖ ‖x‖) e−‖x‖
2/2 PR

ν (d ‖x‖) ,
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so that, conditionally on the magnitude ‖µ‖ and on y, the signal direction has distribution

e‖y‖‖x‖·〈ỹ,x̃〉Γ(dx̃)

coshd(‖y‖ ‖x‖)
.

This is the von Mises-Fisher distribution on Sd with polar direction ỹ = y/ ‖y‖ and con-

centration parameter ‖y‖ ‖x‖. On the other hand, the distribution of the signal direction

conditional only on y is found after integrating out the radial component

∫ ∞
0

P(µ̃ ∈ dx̃, ‖µ‖ ∈ d ‖x‖ , Y ∈ dy) .

So, after a few passages (see the appendix), we find

P(µ̃ ∈ dx̃ | Y ∈ dy) = Γ(dx̃)
ρζ1(‖y‖ 〈ỹ, x̃〉) + 1− ρ
ρζd(‖y‖) + 1− ρ

.

This density can be written as a mixture of two components: the uniform measure with

relative weight 1 − ρ, and a zeta-tilted uniform measure ζ1(‖y‖ 〈ỹ, x̃〉)Γ(dx̃)/ζd(‖y‖) with

relative weight ρζd(‖y‖),

ρζd(‖y‖)
ρζd(‖y‖) + 1− ρ

ζ1(‖y‖ 〈ỹ, x̃〉)Γ(dx̃)

ζd(‖y‖)
+

1− ρ
ρζd(‖y‖) + 1− ρ

Γ(dx̃) . (8.12)

Signal magnitude conditional distribution

We now derive the conditional distribution of the signal magnitude. Integrating (8.11) over

(0,∞), one obtains

Γ(dx̃) (ρζ1(〈y, x̃〉) + 1− ρ) ,

so that, conditionally on the direction µ̃ and on y, the signal magnitude has distribution

ρζ1(d ‖x‖ ; 〈y, x̃〉) + e−‖x‖
2/2PR

ν (d ‖x‖)
ρζ1(〈y, x̃〉) + 1− ρ

.
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Unconditionally of µ̃, instead, the distribution of ‖µ‖ given Y = y is

ρ(coshd(‖y‖ ‖x‖)− 1)e−‖x‖
2/2HR(d ‖x‖) + e−‖x‖

2/2PR
ν (d ‖x‖)

ρζd(‖y‖) + 1− ρ
.

This also can be written as a mixture of two measures with same weights as for (8.12): the

central spike density

P(‖µ‖ ∈ d ‖x‖ | Y = 0) = e−‖x‖
2/2PR

ν (d ‖x‖)/(1− ρ) ,

with weight proportional to 1− ρ, and the non-central component given by the normalized

zeta measure

(coshd(‖y‖ ‖x‖)− 1)e−‖x‖
2/2HR(d ‖x‖)/ζd(‖y‖) ,

with weight proportional to ρζd(‖y‖).

Signal conditional moments

Given the sparse approximation for the signal conditional distribution, we can derive its

moment generating function,

∫
Rd
e〈t,x〉 Pν,d(dx | y) =

φd(y)

mν(y)

∫
Rd
e〈t+y,x〉e−‖x‖

2/2 Pν,d(d ‖x‖)

=
ρζd(t+ y) + 1− ρ
ρζd(y) + 1− ρ

.

Then the conditional expected value of µ given y is simply

E(µ | y) = ∇t
ρζd(t+ y) + 1− ρ
ρζd(y) + 1− ρ

∣∣∣∣∣
t=0

=
ρ

ρζd(y) + 1− ρ

 ∂

∂x
ζd(x)

∣∣∣∣∣
x=‖y‖

∇t ‖t+ y‖
∣∣∣
t=0


=

ρζ ′d(‖y‖)
ρζd(‖y‖) + 1− ρ

y

‖y‖
,
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where ζ ′d denotes the scalar derivative of the ζd function as a function on (0,∞). Similarly,

the conditional moment generating function of the signal magnitude given y is

∫ ∞
0

et‖x‖ Pν(d ‖x‖ | y) =
φd(y)

mν(y)

∫ ∞
0

coshd((t+ ‖y‖) ‖x‖)e−‖x‖
2/2 PR

ν (d ‖x‖)

=
ρζd(t+ ‖y‖) + 1− ρ
ρζd(‖y‖) + 1− ρ

,

so that

E(‖µ‖ | y) =
∂

∂t

ρζd(t+ ‖y‖) + 1− ρ
ρζd(‖y‖) + 1− ρ

∣∣∣∣∣
t=0

=
ρζ ′d(‖y‖)

ρζd(‖y‖) + 1− ρ
.

Thus,

E(µ | y) = E(‖µ‖ | y)
y

‖y‖
.

In a similar fashion, one can compute the rth conditional moment for both µ and ‖µ‖.

8.5.2 Double limit condition (DLC)

Consider the rotationally invariant event ε+ = {‖µ‖ > ε}, and the corresponding conditional

activity probability Pν,d(ε
+|y), given the observation y. As in the univariate setting, instead

of computing the integral for the hard-threshold function χε+(dx), we consider the soft-

threshold function wε(x) = 1− e−‖x‖2/2ε2 in W#
d . Then

Pν,d(‖µ‖ > ε | y) =
ρ
∫
wε(x) ζd(dx; y) +

∫
wε(x)e−‖x‖

2/2 Pν,d(dx)

ρζd(y) + 1− ρ
+ o(ρ) .

For any fixed y 6= 0, this expression tends to zero as ρ → 0. Indeed, the signal conditional

distribution itself converges to the Dirac delta measure at zero as ρ → 0, regardless of the

observed vector y.

So, as already done in multiple occasions, in order to get a nontrivial sparse limit for the
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conditional probability of the signal activity, we need to let ‖y‖ → ∞ in such a way that

lim
ν→0

lim
‖y‖→∞

ρζd(y)→ λ , (8.13)

for some λ > 0.

Before deriving the sparse approximation for Pν,d(ε
+|y) under this double limit regime,

in this section, we investigate what extra conditions are necessary for this regime to be, in

some sense, consistent over all sparse measures having sparsity pair (ρ,Hd). In what fol-

lows, we consider d-dimensional sparse measures which are rotationally invariant. However,

as we briefly mentioned in the introduction, the same exact reasoning holds for univariate

sparse measures as well, with the appropriate change of dimension. So whenever in the

thesis, the double limit regime is invoked, one should have in mind the following discussion.

This latter, in fact, leads us to identify an extra condition on the exceedance measure, which

we call double limit condition (DLC), that needs to be verified, under the double limit regime.

Given a pair (ρ,Hd) for which (8.13) holds, we want to establish whether there exists

some sparse family P ′ν,d having exceedance measure Hd and rate ρ, for which the equality

lim
ν→0

lim
‖y‖→∞

∫
Rd

(cosh(y′u)− 1)e−‖u‖
2/2 P ′ν,d(du) = lim

ν→0
lim
‖y‖→∞

ρζd(y) (8.14)

does not hold.

To this end, consider the ε-perturbed family

P ε
ν,d(du) = (1− ρ1+ε)Pν,d(du) + ρ1+εP̃d(du),

where Pν,d is sparse with (ρ,Hd) as rate and exceedance measure, while P̃d is an arbitrary
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measure. Then P ε
ν,d has same exceedance measure Hd and rate ρ as Pν,d, at least in first

order sparsity, as long as ε > 0. Since we assume ρζd(y)→ λ, then as ν → 0 and ‖y‖ → ∞

∫
Rd

(cosh(y′u)− 1)e−‖u‖
2/2 P ε

ν,d(du)

∼ (1− ρ1+ε)ρζd(y) + ρ1+ε

∫
Rd

(cosh(y′u)− 1)e−‖u‖
2/2 P̃d(du) + o(ρ)

∼ λ− ρ1+ελ+ ρ1+ε

∫
Rd

(cosh(y′u)− 1)e−‖u‖
2/2 P̃d(du) + o(ρ) .

Since limν→0 ρ
1+ελ = 0, then for (8.14) not to hold, we need the arbitrary measure P̃d(du)

to be such that

lim
ν→0

lim
‖y‖→∞

ρ1+ε

∫
Rd

(cosh(y′u)− 1)e−‖u‖
2/2 P̃d(du) = c , (8.15)

for some non zero constant c.

To balance ρ1+ε, we need to choose the arbitrary measure P̃d(du) in such a way that

the integral appearing in (8.15) grows at least as fast as ρ−1−ε, as ‖y‖ → ∞. Now, this

can happen when P̃d(du) puts all of its mass at the maximum of the integrand; in other

words, when the arbitrary measure P̃d(du) is chosen to be the Dirac delta measure at

arg maxu(cosh(y′u) − 1)e−‖u‖
2/2. Now, as already observed in the derivation of the Laplace

approximation in Section 8.4.2, when ‖y‖ is large, (ey
′u − 1) ≈ ey

′u, so that in this scenario,

arg maxu(cosh(y′u)− 1)e−‖u‖
2/2 ≈ arg maxu e

y′ue−‖u‖
2/2. Thus, for ‖y‖ large,

max
P̃d

∫
Rd

(cosh(y′u)− 1)e−‖u‖
2/2 P̃d(du) ≈ max

u
ey
′ue−‖u‖

2/2 = e‖y‖
2/2 .

In this way, choosing P̃d(du) = δy(du), the limit in the LHS of (8.15) becomes

lim
ν→0

lim
‖y‖→∞

ρ1+εe‖y‖
2/2 ,
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so that, for P ε
ν,d(du) = (1− ρ1+ε)Pν,d(du) + ρ1+εδy(du),

∫
Rd

(cosh(y′u)− 1)e−‖u‖
2/2P ε

ν,d(du) ∼ λ+ ρ1+εe‖y‖
2/2 + o(ρ) .

Going back to our original question, we have that, under the double limit regime (8.13),

for the ε-perturbed family P ε
ν,d, (8.14) holds if and only if the additional condition

lim
ν→0

lim
y→∞

ρ1+εe‖y‖
2/2 = 0 , (8.16)

also holds for all ε > 0. Therefore, the question becomes for which exceedance measures the

two conditions (8.13) and (8.16) cannot hold together. We start by looking at a couple of

explicative examples.

1. Let Hd be the rotationally invariant inverse-power measure. Then, as ‖y‖ → ∞,

ζd(y) ∼ e‖y‖
2/2 ‖y‖−α−d so the requirement ρζd(y) → λ implies ρ ∼ e−‖y‖

2/2 ‖y‖α+d.

Therefore,

ρ1+εe‖y‖
2/2 ∼

(
e−‖y‖

2/2 ‖y‖α+d
)1+ε

e‖y‖
2/2 ∼ e−ε‖y‖

2/2 ,

which means that, under double limit regime, ρ1+εe‖y‖
2/2 → 0.

2. Let Hd be rotationally invariant with a radial measure having bounded support [0,M ].

Then ζd(y) ≤ eM‖y‖ so the requirement ρζd(y) → λ at most implies ρ ∼ e−M‖y‖.

Therefore,

ρ1+εe‖y‖
2/2 ∼

(
e−M‖y‖

)1+ε
e‖y‖

2/2 ∼ e‖y‖
2/2−(1+ε)M‖y‖ ,

which means that, in this case, under double limit regime, ρ1+εe‖y‖
2/2 →∞.

These two examples suggest that some kind of conditions on the tail of the density of HR

is needed. Indeed, since for vector-sparse measures, Hd is rotationally invariant, then its
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density hd can be written as

hd(du) ∝ ‖u‖−(d−1) hR(‖u‖)du ,

where hR is the exceedance radial density. So if hR(‖u‖) = o(e−‖u‖
2/2) as ‖u‖ → ∞, then,

using the Laplace approximation as in Section 8.4.2, one obtains

∫
Rd\{0}

ey
′u−‖u‖2/2−(d−1) log‖u‖+log hR(‖u‖) du ∼ e‖y‖

2/2 hd(y)(2π)d/2 .

Since ρζd(y)→ λ requires ρ ∼ 1
ζd(y)
∼ e−‖y‖

2/2

hd(y)
, then

ρ1+εe‖y‖
2/2 ∼

(
e−‖y‖

2/2

hd(y)

)1+ε

e‖y‖
2/2 ∼ e−ε‖y‖

2/2 hR(‖y‖)−1−ε . (8.17)

Thus, if indeed hR(‖y‖) = o(e−‖y‖
2/2) as ‖y‖ → ∞ then e−ε‖y‖

2/2 hR(‖y‖)−1−ε → 0, so that

(8.13) and (8.16) do hold together. On the contrary, if hR(‖y‖) = O(e−‖y‖
2/2), then

ζd(y) ∼ e
‖y‖2/2 1

1+K

for some positive K. Then, there exists some ε > 0 such that 1+ε
1+K
− 1 < 0, and this implies

for such ε,

ρ1+εe‖y‖
2/2 ∼ e−‖y‖

2/2( 1+ε
1+K

−1)

diverges to infinity.

In conclusion, given a pair (ρ,Hd), Hd rotationally invariant, in order to have

lim
ν→0

lim
‖y‖→∞

∫
Rd

(cosh(y′u)− 1)e−‖u‖
2/2 P ′ν,d(du) = lim

ν→0
lim
‖y‖→∞

ρζd(y) = λ ,
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for any P ′ν,d having (ρ,Hd) as sparsity pair, the tail of the radial exceedance density cannot

be Gaussian nor sub Gaussian. We refer to this requirement on HR as double limit condition

(DLC).

8.5.3 Bayes exceedance factor

Having investigated the conditions for which we can consider the double limit regime, we now

return to its initial motivation. Suppose that DLC holds. Then, the conditional probability

of signal activity,

Pν,d(‖µ‖ > ε | y) =
ρ
∫
wε(x) ζd(dx; y) +

∫
wε(x)e−‖x‖

2/2 Pν,d(dx)

ρζd(y) + 1− ρ
+ o(ρ) ,

under the double limit regime (8.13), up to an error o(1), behaves like

ρζd(y)

ρζd(y) + 1
.

This means that, in the double limit, the conditional odds ratio for the exceedance event

ε+ = {‖µ‖ > ε}, reduces to ρζd(y). From Section 8.3, we know that the unconditional

probability of ε+ is ρHd(ε
+), so the Bayes factor for signal activity is

BFε+(y) =
odds(‖µ‖ > ε | Y )

odds(‖µ‖ > ε)
=

ρζd(y)

ρHd(ε+)
=

ζd(y)

Hd(ε+)
.

Therefore, if we consider the standard activity threshold ε such that Hd(ε
+) = 1, then the

Bayes factor for this event reduces to ζd(y). For instance, if Hd is the rotationally invariant

inverse-power measure with α = 1, the standard threshold is roughly 0.8; so the observation

vector for which the conditional odds for the event ‖µ‖ > 0.8 equal the marginal odds, has

magnitude ‖y‖ = 1.778 when y ∈ R2 (RMS(y) = 1.25), and magnitude ‖y‖ = 3.618 when

y ∈ R10 (RMS(y) = 1.14).
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In Table 8.1 and Table 8.2, we report the values for the norm and the root mean square

(RMS) of the observation vector y ∈ Rd, which lead to a Bayes exceedance factor of 1, 10,

and 100, for the signal activity event ‖µ‖ > 0.8. The values in the second and third rows,

being such that ζd(y) = 10 and ζd(y) = 100, respectively, are also the values that give a

conditional odds ratio of one, when the sparsity rate is ρ = 10% and ρ = 1% respectively.

d = 1 d = 2 d = 3 d = 5 d = 10

BFε+(y) = 1 1.31 1.78 2.12 2.66 3.62
BFε+(y) = 10 2.72 3.28 3.66 4.23 5.23
BFε+(y) = 100 3.71 4.18 4.52 5.04 5.98

Table 8.1: Values of ‖y‖ required for having a given BFε+(y) for the event ‖µ‖ > 0.8, α = 1.

d = 1 d = 2 d = 3 d = 5 d = 10

BFε+(y) = 1 1.307 1.257 1.226 1.189 1.144
BFε+(y) = 10 2.721 2.318 2.114 1.893 1.655
BFε+(y) = 100 3.713 2.956 2.609 2.254 1.891

Table 8.2: RMS(y) required for having a given BFε+(y) for the event ‖µ‖ > 0.8, α = 1.

Now suppose we let the dimension d→∞. Then, for the standard activity threshold for

which BFε+(y) = ζd(y), the Bayes exceedance factor in the limit is

BF∞ε+(y) = lim
d→∞

ζd(‖y‖) = lim
d→∞

ζd

(√
d RMS(y)

)
.

At the end of Section 8.4.1, we derived that

lim
d→∞

ζd

(√
d x
)

=


1− (1− x2)α/2 for |x| < 1

1 for |x| = 1

∞ for |x| > 1 .

Thus, the Bayes factor for the signal standard activity event {‖µ‖ > ε}, as the dimension

of the signal goes to infinity, has a different limiting behavior depending on the root mean
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square of the observed vector y: it converges to a number in [0, 1) if RMS(y) < 1; it is equal

to one if RMS(y) = 1; while it diverges to infinity if RMS(y) > 1.
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8.6 Appendix

1. Taylor series for coshd(y), Eq. (8.6). We start by considering 〈y, x〉 = y′x. Let θ1 be the

angle such that ỹ′x̃ = cos(θ1). Then, expressing x̃ in spherical coordinates,

coshd(y) =

∫
Sd
ey
′x̃ dx̃

Area(Sd)

=

∫ ∞
0

∫ 2π

0

∫ π

0

· · ·
∫ π

0

∫ π

0

e‖y‖R cos θ1
Rd−1 sind−2 θ1 sind−3 θ2 · · · sin θd−2

Area(Sd)
·

· dθ1 dθ2 · · · dθd−1δ1(dR) .

Now, since

∫ π

0

e−‖y‖2 cos θ1 sind−2 θ1dθ1 =

∫ π

0

e‖y‖2 cos(π−θ1) sind−2(π − θ1)dθ1 =

∫ π

0

e‖y‖2 cos ξ1 sind−2 ξ1 dξ1 ,

we can write

∫ π

0

e‖y‖2 cos θ1 sind−2 θ1dθ1 =

∫ π

0

e‖y‖2 cos θ1 + e−‖y‖2 cos θ1

2
sind−2 θ1 dθ1 ,

so that

coshd(y) =

∫ π

0

cosh(‖y‖2 cos θ1) sind−2 θ1 dθ1 ·
2π

d−1
2

Γ(d−1
2

)

Γ(d
2
)

2π
d
2

=

∫ 1

0

cosh(‖y‖
√
t)(1− t)

d−2
2
− 1

2
dt√
t
·

Γ(d
2
)

√
πΓ(d−1

2
)

=
∞∑
r=0

‖y‖2r
2

Γ(d
2
)

Γ(r + d
2
)
·

Γ(r + 1
2
)

√
π(2r)!

=
∞∑
r=0

‖y‖2r
2

(d/2)↑r22rr!
.

Any other inner product inducing a norm on Rd, is of the kind 〈y, x〉A = y′AA′x for some

positive definite matrix A. In this more general case,

coshd,A(y) =

∫
SdA
e〈y,x̃〉A

dx̃

Area(SdA)
,
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is the same exponential function averaged over the unit ellipsoid defined by A. However,

there is an obvious relation between coshd,A(y) and coshd(y), which makes the definition

coshd the only necessary. In fact,

coshd,A(y) =

∫
SdA
ey
′AA′x/‖x‖A

d(x/ ‖x‖A) det(A)

Area(Sd)

=

∫
Sd
ey
′AA′x/||A′x||2 d(A′x/||A′x||2)

Area(Sd)

= coshd(A
′y) .

Now, because coshd(y) is indeed only a function of the norm of its argument, coshd(‖y‖2),

coshd,A(y) = coshd(A
′y) = coshd(‖A′y‖2) = coshd(‖y‖A) .

So we can simply define

coshd(y) =

∫
Sd
e〈y,x̃〉

dx̃

Area(Sd)
=
∞∑
r=0

‖y‖2r

(d/2)↑r22rr!
,

for any inner product 〈·, ·〉 on Rd and its corresponding unit sphere Sd = {z : 〈z, z〉 = 1}.

2. Expressing ζd(y) with coshd(y), Eq. (8.7).

ζd(y) =

∫
Rd\{0}

(cosh (〈y, x〉)− 1) e−‖x‖
2/2Hd(dx)

=

∫ ∞
0

∫
Sd

(cosh (〈‖x‖ y, x̃〉)− 1)
dx̃

Area(Sd)
e−‖x‖

2/2HR(d ‖x‖)

=

∫ ∞
0

(∫
Sd

e〈‖x‖y,x̃〉 + e−〈‖x‖y,x̃〉

2

dx̃

Area(Sd)
−
∫
Sd

dx̃

Area(Sd)

)
e−‖x‖

2/2HR(d ‖x‖)

=

∫ ∞
0

(
coshd(‖x‖ y) + coshd(−‖x‖ y)

2
− 1

)
e−‖x‖

2/2HR(d ‖x‖)

=

∫ ∞
0

(coshd(‖x‖ y)− 1) e−‖x‖
2/2HR(d ‖x‖) .
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3. Taylor series for ζd(y) when HR is the inverse-power measure, Eq. (8.8):

ζd(y) =

∫ ∞
0

(coshd(‖u‖ y)− 1)e−‖u‖
2/2Kα ‖u‖−α−1 d ‖u‖

= Kα

∞∑
r=1

‖y‖2r

(d/2)↑r22rr!

∫ ∞
0

‖u‖2r−α−1 e−‖u‖
2/2 d ‖u‖

=
α2α/2

Γ(1− α/2)

∞∑
r=1

‖y‖2r

(d/2)↑r22rr!

Γ(r − α/2)(
1
2

)r−α/2−1

=
∞∑
r=1

‖y‖2r

(d/2)↑r2rr!

αΓ(r − α/2)

2Γ(1− α/2)
.

4. We here prove that for all d ≥ 1,

fd(r)

fd+1(r)
=

dr

(d+ 1)r
(d/2 + 1/2)↑r

(d/2)↑r
≤ 1 for all r ≥ 0 . (8.18)

First we recall that Γ(n/2) = (n − 2)!!
√
π/2

n−1
2 , where n!! denotes the double factorial as

defined in Arfken (1985), p. 547. So,

(d/2 + 1/2)↑r

(d/2)↑r
=

(d+ 2r − 1)!!/2
d+2r

2

(d− 1)!!/2
d
2

(d− 2)!!/2
d−1

2

(d+ 2r − 2)!!/2
d+2r−1

2

=
(d+ 2r − 1)!!

(d− 1)!!

(d− 2)!!

(d+ 2r − 2)!!
.

Now, for any fixed d ≥ 1,

• (8.18) holds for r = 0 since fd(0)
fd+1(0)

= 1;
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• if (8.18) holds r = K, then (8.18) holds for r = K + 1 since

fd(K + 1)

fd+1(K + 1)
=

dK+1

(d+ 1)K+1

(d+ 2(K + 1)− 1)!!

(d− 1)!!

(d− 2)!!

(d+ 2(K + 1)− 2)!!
=

dK+1

(d+ 1)K+1

(d+ 2K + 2− 1)(d+ 2K − 1)!!

(d− 1)!!

(d− 2)!!

(d+ 2K + 2− 2)(d+ 2K − 2)!!
=

d

(d+ 1)

(d+ 2K + 1)

(d+ 2K)

fd(K)

fd+1(K)
≤ 1 ,

where the last inequality holds because:

1. by the inductive step, fd(K)
fd+1(K)

≤ 1;

2. if d ≥ 1, then d
(d+1)

(d+2K+1)
(d+2K)

≤ 1 for any K ≥ 0 since

d

(d+ 1)
≤ (d+ 2K)

(d+ 2K + 1)
⇐⇒ d(d+ 2K + 1)− (d+ 2K)(d+ 1) ≤ 0

⇐⇒ d2 + 2Kd+ d− d2 − 2Kd− d− 2K ≤ 0

⇐⇒ −2K ≤ 0 .

Then, by induction, for any fixed d ≥ 1, (8.18) holds for all r ≥ 0.

5. Here we show that limd→∞ ζd(
√
d) = 1. In fact, write

ζd(
√
d) =

∞∑
r=1

(d/2)r

(d/2)↑rr!

α
2
Γ(r − α

2
)

Γ(1− α/2)
=
∞∑
r=1

fd(r) ,

where the sequence of functions fd(r) = (d/2)r

(d/2)↑rr!

α
2

Γ(r−α
2

)

Γ(1−α/2)
, for r ≥ 1, is again an increasing

sequence of non-negative functions, as for all d ≥ 1, for all r ≥ 1

fd(r)

fd+1(r)
=

dr

(d+ 1)r
(d/2 + 1/2)↑r

(d/2)↑r
≤ 1 .
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Now,

lim
d→∞

fd(r) = lim
d→∞

(d/2)r

(d/2)↑rr!

α
2
Γ(r − α

2
)

Γ(1− α/2)
=

1

r!

α
2
Γ(r − α

2
)

Γ(1− α/2)
= f(r) ,

and

∞∑
r=1

f(r) = 1−
∞∑
r=0

Γ(r − α/2)

Γ(−α/2)r!
= 1−

∞∑
r=0

(α/2)↑r(−1)r

r!
= 1− (1− 1)α/2 = 1 ,

because α/2 > 0 so the binomial series converges absolutely on [−1, 1]. Then, once more, by

monotone convergence theorem,

lim
d→∞

ζd(
√
d) = 1 .

6. Limit for ζd(
√
dx) as d→∞.

∞∑
r=1

f(r) =
∞∑
r=1

x2r

r!

α
2
Γ(r − α

2
)

Γ(1− α/2)

=
∞∑
r=0

x2r

r!

α
2
Γ(r − α

2
)

Γ(1− α/2)
−

α
2
Γ(−α

2
)

Γ(1− α/2)

= 1 +
∞∑
r=0

α
2

(
r − α

2
− 1
) (
r − α

2
− 2
)
. . .
(
r − α

2
− r + 1

)
Γ
(
1− α

2

)
Γ
(
1− α

2

) x2r

r!

= 1 +
∞∑
r=0

α
2
(−1)

(
α
2
− r + 1

)
(−1)

(
α
2
− r + 2

)
. . . (−1)

(
α
2
− 1
)

r!
x2r

= 1 +
∞∑
r=0

(−1)r−1 α
2

(
α
2
− 1
)
. . .
(
α
2
− r + 2

) (
α
2
− r + 1

)
r!

x2r

= 1−
∞∑
r=0

(
α
2

r

)
(−1)rx2r

= 1− (1− x2)
α
2 .

where the last equality is true if and only if |x| ≤ 1.

7. Characteristic function for ψd(y) = φd(y)ζd(y), Eq. (8.10).
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∫
eiz
′yψd(y)dy =

∫
Rd
eiz
′y

∫
Rd\{0}

(cosh(y′u)− 1)e−‖u‖
2/2Hd(du)φd(y) dy

=

∫
Rd\{0}

∫
Rd
eiz
′y

(
ey
′u + e−y

′u

2
− 1

)
φd(y) dy e−‖u‖

2/2Hd(du)

=

∫
Rd\{0}

∫
Rd

(
e(iz+u)′y + e(iz−u)′y

2
− 1

)
e−‖y‖

2/2

(2π)d/2
dy e−‖u‖

2/2Hd(du)

=

∫
Rd\{0}

(
e‖iz+u‖

2/2 + e‖iz−u‖
2/2

2
− e−‖z‖

2/2

)
e−‖u‖

2/2Hd(du)

=

∫
Rd\{0}

e−‖z‖
2/2

(
e‖u‖

2/2+iz′u + e‖u‖
2/2−iz′u

2
− 1

)
e−‖u‖

2/2Hd(du)

= e−‖z‖
2/2

∫
Rd\{0}

(
eiz
′u + e−iz

′u

2
− e−‖u‖

2/2

)
Hd(du)

= e−‖z‖
2/2

∫
Rd\{0}

(cos(z′u)− e−‖u‖
2/2)Hd(du) .

So that, using the normalization of Hd, one can write

∫
eiz
′yψd(y)dy = e−‖z‖

2/2

(∫
Rd\{0}

(cos(z′u)− 1)Hd(du) +

∫
Rd\{0}

(1− e−‖u‖
2/2)Hd(du)

)
= e−‖z‖

2/2

(
1−

∫
Rd\{0}

(1− cos(z′u))Hd(du)

)
.

8. Passages for the conditional distribution of µ̃ given y, Eq. (8.12).

∫ ∞
0

P(µ̃ ∈ dx̃, ‖µ‖ ∈ d ‖x‖ , Ỹ ∈ dỹ, ‖Y ‖ ∈ d ‖y‖) ∝∫ ∞
0

e‖y‖‖x‖·〈ỹ,x̃〉e−‖x‖
2/2Γ(dx̃)PR

ν (d ‖x‖) =

Γ(dx̃)

∫ ∞
−∞

cosh(z · ‖y‖ 〈ỹ, x̃〉)e−z2/2 Pν(dz) =

Γ(dx̃)

(
ρ

∫ ∞
−∞

(cosh(z · ‖y‖ 〈ỹ, x̃〉)− 1)e−z
2/2H(dz) + 1− ρ

∫
(1− e−z2/2)H(dz)

)
=

Γ(dx̃) (ρζ1(‖y‖ 〈ỹ, x̃〉) + 1− ρ) .
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Chapter 9

Vector-sparse ANOVA

9.1 Introduction

Analysis of variance is a cornerstone of statistical practice, and its relevance in the analysis

of factorial experiments can hardly be exaggerated. Given the observation space (Rn, 〈·, ·〉),

and a nested sequence of subspaces A0 ⊂ A1 ⊂ . . . ⊂ Ak ⊂ Rn, to each pair of these

subspaces, A ⊂ B, it corresponds the subspace A⊥ ∩ B. ANOVA specifies a sequence of

subspace pairs so to identify a set of mutually orthogonal subspaces, for which mean squares

are calculated. For any such subspace, under the ANOVA null hypothesis, the mean square

for that subspace has the same expected value as the mean square for the residual subspace.

In this chapter, we propose a vector-sparse approach to the linear regression problem,

exploiting the assumption that the distribution of the coefficient vector β ∈ Rd, comprising

the effects associated with the subspace, is vector sparse. The rotational invariance on the

parameter space is defined with respect to the Fisher-information metric, so that a matrix

O ∈ Rd×d defining the symmetry is such that OX ′XO′ = X ′X. Given this choice of met-

ric, we derive the sparse approximation to the marginal density of the response mν(y), as

a mixture of the n-dimensional Gaussian density and its product with the d-dimensional
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zeta function defined in Chapter 4. Interestingly, it turns out that mν(y) depends on the

covariate matrix X only through its orthogonal projection matrix PX = X(X ′X)−1X ′, so

that the choice of basis in which the matrix X is expressed, is not relevant.

Given the sparse approximations to the marginal distribution of the response and to the

conditional distribution for the coefficient vector magnitude, we derive a sparse approxi-

mation to the Bayes factor for the exceedance event ‖β‖A > ε. This Bayes factor can be

compared, to some extent, with the standard ANOVA F -test. In this attempt, we look at

how the tail probability, under the ANOVA F -test, matches up with the sparse exceedance

Bayes factor, and how this varies for different dimensions of the vector β.

The ANOVA null hypothesis is β = 0, while the vector-sparse analysis presented in this

chapter considers the event ‖β‖A ≤ ε, for some ε > 0. Having said that, with the negligibility

theory developed in Chapter 4, it would be easy to extend our vector-sparse analysis to give

an approximation the uncertainty of the event ‖β‖A ≤ εν , where εν is a negligibility sequence

for radial sparse measure PR
ν .

9.2 Vector-sparse linear regression

Consider the linear regression model on the Euclidean space (Rn, ‖·‖2)

Y = µ0 +Xβ + ε .

Here ε ∼ Nn(0, σ2In) while the vector µ0 contains the additive effects on the response, of

some matrix X0 ∈ Rn×d0 , which are not expected to be negligible. By contrast, the matrix

X = (x1, . . . , xd) ∈ Rn×d is the covariate matrix whose effects on the response are expected

to be sparse. For this reason, the coefficient vector β ∈ Rd is assumed to be random with a
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vector-sparse distribution. Then, conditionally on β ∼ Pν,d,

Y − µ0 ∼ N(Xβ, σ2In) .

We assume that X has full column rank and spans X ⊂ X⊥0 , where X0 = span(X0).

As highlighted in the previous chapter, a vector-sparse measure is a measure whose

sparsity is driven by its radial component. Clearly, the inner product chosen on Rd determines

the radius as well as the rotational invariance which we assume for Pν,d. In this linear

regression context, we choose the inner product on the parameter space to be dictated by

the matrix A ∈ Rp×p in such a way that, given u, v ∈ Rd,

〈u, v〉A = u′AA′v = u′X ′Xv/σ2 .

This choice has multiple advantages for it makes the linear map X/σ : Rd → Rn an isometric

embedding: in mapping a vector β in the parameter space (Rd, 〈·, ·〉A), to the vector Xβ/σ

in the observation space (Rn, 〈·, ·〉2), the norm is preserved

‖β‖2
A = ‖Xβ‖2

2 /σ
2 .

Let ρ and HR be the sparsity pair characterizing the sparse measure for the radial part

of β, ‖β‖A. For simplifying the notation, for the moment let µ0 = 0. Then, denoting by

φn,σ(y) = σ−nφn(y/σ), the marginal density of the response vector at y is

mν(y) = φn,σ(y)

∫
Rd
ey
′Xβ/σ2

e−‖Xβ‖
2
2/2σ

2

Pν,d(dβ) .
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Now, thanks to the vector sparsity assumption, Pν,d(dβ) can be written as

dβ̃

Area(SdA)
PR
ν (d ‖β‖A) ,

where β̃ = β/ ‖β‖A is the direction on the unit sphere SdA = {z : ‖z‖2
A = z′X ′Xz/σ2 = 1}.

Following the theory developed for the rotationally invariant measures in Chapter 8, we write

the exponent in ey
′Xβ/σ2

as an inner product on the parameter space

y′Xβ/σ2 = y′X(AA′)−1AA′β/σ2 = 〈(X ′X)−1X ′y, β〉A = 〈η, β〉A ,

where η = (X ′X)−1X ′y ∈ Rd. Then, using the coshd function, we can write

mν(y) = φn,σ(y)

∫ ∞
0

∫
SdA
ey
′Xβ/σ2

e−‖Xβ‖
2/2σ2 dβ̃

Area(SdA)
PR
ν (d ‖β‖A)

= φn,σ(y)

∫ ∞
0

∫
SdA
e‖β‖A〈η,β̃〉Ae−‖β‖

2
A/2

dβ̃

Area(SdA)
PR
ν (d ‖β‖A)

= φn,σ(y)

∫ ∞
0

coshd(‖β‖A η)e−‖β‖
2
A/2 PR

ν (d ‖β‖A) .

So the first-order sparse approximation to the marginal density of Y at y is

mν(y) = φn,σ(y) (ρζd(η) + (1− ρ)) ,

so that, also in the case of linear regression, the marginal density of Y is approximated by

a mixture of two components: the Gaussian density φn,σ(y) and its product with the d-

dimensional zeta function ζd(η) = ζd((X
′X)−1X ′y). Now, recall that ζd is indeed a function

only of the norm of its argument, so

ζd(η) = ζd(‖η‖A) ,
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and because of our choice of norm,

‖η‖2
A = y′X(X ′X)−1X ′y/σ2 = ‖PXy‖2

2 /σ
2 ,

where PX = X(X ′X)−1X ′ is the orthogonal projection matrix onto X = span(x1, . . . , xd).

So we can interchangeably write ζd(η), ζd(‖η‖A), and ζd(‖PXy‖ /σ), where, for simplicity of

notation, henceforth we will write ‖y‖ = ‖y‖2.

Now, if the mean vector µ0 ∈ X0 is non zero, then

mν(y) = (1− ρ)φn,σ(y − µ0) + ρφn,σ(y − µ0)ζd(‖PXy‖ /σ) + o(ρ) , (9.1)

since X ⊂ X⊥0 implies PX (µ0) = 0. It is interesting to notice that the marginal density of

the response depends on X only through the orthogonal projection matrix PX . Thus, the

choice of the basis vectors for X is irrelevant insofar the image space X is what matters.

9.2.1 Coefficient conditional distribution

The conditional distribution of the coefficient vector β given the observed response y is

proportional to the joint distribution of (Y, β). So, letting η = (X ′X)−1X ′y,

P(β ∈ dβ, Y ∈ dy) = φn,σ(y) ey
′Xβ/σ2

e−‖Xβ‖
2/2σ2

Pν,d(dβ)

= φn,σ(y)
((

cosh(〈η, β〉A)− 1
)
e−‖β‖

2
A/2 Pν,d(dβ) + e−‖β‖

2
A/2 Pν,d(dβ)

)
= φn,σ(y)

(
ρζd(dβ; η) + e−‖β‖

2
A/2 Pν,d(dβ)

)
+ o(ρ) ,

where the last equality holds in the sense of integrals of functions in W#
d . Once normalized

by mν(y), the first-order sparse approximation to the conditional distribution of the signal
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can be written as

Pν,d(dβ | y) =
ρζd(dβ; η) + e−‖β‖

2
A/2 Pν,d(dβ)

ρζd(η) + 1− ρ
+ o(ρ) .

Similarly to the signal plus noise model, we can derive the conditional distribution for the

direction and magnitude of the coefficient vector.

Coefficient direction conditional distribution

Conditionally on the magnitude ‖β‖A and on y, letting η̃ = η/ ‖η‖A, the coefficient direction

β̃ has distribution

e‖η‖A‖β‖A·〈η̃,β̃〉Γ(dβ̃)

coshd(‖η‖A ‖β‖A)
,

where Γ(dβ̃) = dβ̃/Area(SdA) is the uniform measure on the unit sphere SdA. This is the

von Mises-Fisher distribution on SdA with polar direction η̃ = (X ′X)−1X ′y/ ‖PXy/σ‖ and

concentration parameter ‖η‖A ‖β‖A = ‖PXy‖ ‖β‖A. On the other hand, the distribution of

β̃ conditional only on y is

P(β̃ ∈ dβ̃ | Y ∈ dy) = Γ(dβ̃)
ρζ1(〈(X ′X)−1X ′y, β̃〉A) + 1− ρ

ρζd(‖PXy/σ‖) + 1− ρ
.

This density can be written as a mixture of two components: the uniform measure with

relative weight 1− ρ, and a zeta-tilted uniform measure with relative weight ρζd(‖PXy/σ‖),

ρζd(‖PXy/σ‖)
ρζd(‖PXy/σ‖) + 1− ρ

ζ1

(
〈(X ′X)−1X ′y, β̃〉A

)
Γ(dβ̃)

ζd(‖PXy/σ‖)
+

1− ρ
ρζd(‖PXy/σ‖) + 1− ρ

Γ(dβ̃) .

(9.2)
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Coefficient magnitude conditional distribution

We now derive the conditional distribution of the coefficient magnitude. Conditionally on

the direction β̃ and on y, the coefficient magnitude has distribution

ρζ1(dr; 〈η, β̃〉A) + e−r
2/2PR

ν (dr)

ρζ1(〈η, β̃〉A) + 1− ρ
.

Unconditionally of β̃, instead, the distribution of ‖β‖A given Y = y is

ρ(coshd(‖PXy/σ‖ r)− 1)e−r
2/2HR(dr) + e−r

2/2PR
ν (dr)

ρζd(‖PXy/σ‖) + 1− ρ
. (9.3)

This also can be written as a mixture of two measures with same weights appearing in (9.2):

the central spike density

P(‖β‖A ∈ dr | Y = 0) = e−r
2/2PR

ν (dr)/(1− ρ) ,

with weight proportional to 1− ρ, and the non-central component given by the normalized

zeta measure

(coshd(‖PXy/σ‖ r)− 1)e−r
2/2HR(dr)/ζd(‖PXy/σ‖) ,

with weight proportional to ρζd(‖PXy/σ‖).

9.2.2 Bayes exceedance factor

Given the sparse approximation for the conditional distribution of ‖β‖A in (9.3), we can ask

for the probability of the exceedance event {‖β‖A ≥ ε}, where ε > 0, given the data, and

look at how it compares to the initial exceedance probability PR
ν (ε+). As done many times

already, we approximate the hard-threshold exceedance probability with the soft-threshold

exceedance probability by computing the expectation of the function of wε(x) = 1− e−x2/2ε2 ,
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so

PR
ν (‖β‖A > ε | y) =

∫
wε(r)

(
ρ
(

coshd(‖η‖A r)− 1
)
e−r

2/2HR(dr) + e−r
2/2 PR

ν (dr)
)

ρζd(‖η‖A) + 1− ρ
+ o(ρ) .

Suppose that HR does not have Gaussian nor sub Gaussian tail, i.e., it satisfies DLC of

Section 8.5.2. Then assuming ρ→ 0 and ‖PXy/σ‖ → ∞ in such a way that

ρζd(‖PXy/σ‖)→ λ ,

for some λ > 0, the conditional probability that the coefficient magnitude is above ε > 0,

{‖β‖A ≥ ε} = {‖Xβ‖ /σ ≥ ε}, behaves like

ρζd(‖PXy/σ‖)
ρζd(‖PXy/σ‖) + 1

+ o(1) . (9.4)

In this case, the posterior odds ratio for {‖β‖A ≥ ε} does not depend on the threshold ε and

can be approximated by ρζd(‖PXy‖ /σ).

Therefore, if we consider the activity threshold ε for which the unconditional exceedance

probability is

PR
ν (ε+) =

ρ

1 + ρ
+ o(ρ) ,

then the prior odds ratio for {‖β‖A ≥ ε} is simply ρ. So the Bayes factor for this exceedance

event is

BFε+(y) =
odds(‖β‖A ≥ ε | y)

odds(‖β‖A ≥ ε)
= ζd(‖PXy‖ /σ) . (9.5)

We can regard (9.5) as the factor by which the evidence, provided by the data, multiplies

the initial odds ratio ρ/(1 + ρ).

Notice that, if the residual variance σ2 is estimated by the residual mean square on
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k = n− d− d0 degrees of freedom, then

fy = (‖PXy‖2 /d)/(‖QX∪X0y‖
2 /k)

is the observed value of the standard F -ratio statistic. In this case, the argument of the zeta

function in (9.4) and (9.5), reduces to be
√
d · fy , so, if k is very large, then the Bayes factor

can be computed as

BFε+(y) = ζd(
√
d · fy ) . (9.6)

9.3 Sparse Bayes factors and F -ratios

At the end of Chapter 8, we studied the asymptotic behavior of the ζd function as d → ∞

and found that, for f ≥ 0,

lim
d→∞

ζd

(√
d f
)

=


1− (1− f)α/2 for f < 1

1 for f = 1

∞ for f > 1 ,

(9.7)

where α is the inverse power of the exceedance measure. For a fixed value of the F -ratio,

f , if this is less or equal than one, as the dimension of β gets larger and larger, the Bayes

factor converges to a number in [0, 1]. On the other hand, if f is larger than one, then, as

d→∞, the Bayes factor diverges, even if slowly. So, when the observed value of the F -ratio

is resulting from the response being projected onto a large dimensional subspace, then the

evidence-multiplicative factor (9.15) grows large if f > 1, but if f ≤ 1, it does not collapse

to zero, unless f = 0.

We now try to compare, to some extent, the sparse Bayes factor in (9.15) for the ex-

ceedance event ‖β‖A > ε, to the standard ANOVA test, which employs the F -ratio fy to
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test the null hypothesis β = 0. To this end, we start by fixing the degrees of freedom for the

residual sum of squared to be k = 100, and consider a set of tail probabilities, or p-values,

as if they were obtained from observed values of

FY = (‖PXY ‖2 /d)/(‖QX∪X0Y ‖
2 /k) , (9.8)

which, under the null H0 : β = 0, has Fisher’s F -distribution Fd,k. So, for varying dimension

d, we compute the Fd,k quantiles which give rise, under the ANOVA null hypothesis, to each

p-value: fd,k = F−1
d,k (p-value). Then for each of these fd,k values, we compute the conditional

probability of ‖β‖A ≥ ε,

ρζd

(√
F−1
d,k (p-value)

)
1 + ρζd

(√
F−1
d,k (p-value)

) . (9.9)

In Figure 9.2, we show this conditional probability, when α = 1, for a range of p-values

from 0.5% to 10%. Since the conditional probability depends on the sparsity rate of the

radial sparse measure PR
ν , we consider two options for this rate: in the left panel we fix

ρ = 0.1 regardless of the dimension d of the vector; in the right panel, instead, we let ρ = 0.1

be the rate for when d = 1, and for d > 1, we let the rate for PR
ν scale with the dimension,

so that ρd = 0.1 ·
√
πΓ(d/2+1/2)

Γ(d/2)
. The scaling factor, already mentioned in Chapter 8, is shown

in Figure 9.1.

Looking at Figure 9.2, as expected, the conditional probability for the signal magnitude

to be active gets larger as the associated level of significance, i.e. tail probability, gets smaller.

This happens irrespective of both the dimension d, and the rate chosen. If instead we look

at the behavior of (9.9) as a function of d, then we observe different behaviors depending on

the choice for the rate. For fixed ρ, as d grows, the conditional probability of ‖β‖A ≥ ε first

decreases and then increases, the curvature being more prominent for very small p-values.

Instead, when also the rate gets scaled by the dimension, for any given p-value, the corre-

sponding conditional probability increases monotonically as the dimension increases.
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Figure 9.1: Dimension scaling effect on the one-dimensional sparsity rate. The dashed green

line depicts the limiting behavior
√
πΓ(d/2+1/2)

Γ(d/2)
∼
√
π(d/2)1/2 as d→∞.

In Table 9.1, we report the Bayes factor

ζd

(√
d · F−1

d,k (p-value)

)
, (9.10)

for different p-values and dimension d ranging from 1 to 10, while k = 100. Roughly speaking,

moving from a p-value of 1% to 0.5% corresponds to multiplying the Bayes factor by 1.5,

while when passing from 5% to 1%, the Bayes factor gets multiplied by approximately 2.6.

To look into the reasons for the curvature observed in the left panel of Figure 9.2, in

Figure 9.3, we plot the Bayes factor in (9.10) as a function of log(d), under two scenarios:

one with k = 100 (left panel), one with k =∞ (right panel). This last scenario, corresponds

to the hypothetical case when σ2 is known, so the F -ratio in (9.8) reduces to a scaled

quadratic form, distributed as a scaled chi-square random variable on d degrees of freedom.

We can see that, for fixed k = 100, across all significance levels, the behavior of the Bayes

factor as a function of log(d), is not monotone. By contrast, when k =∞, as d gets larger,

the Bayes factor decreases and, as d → ∞, it seems to converge to one, for any level of
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Figure 9.2: Conditional probability of the exceedance event {‖β‖A > ε} as a function of the
dimension d. In each plot, the different curves correspond to different p-values, ranging from
0.5% to 10%. These in turn determine the fd,k values used to compute (9.9), where k is

fixed to 100. Left panel: ρ = ρ = 0.1 for all dimensions d. Right panel: ρ =
√
πΓ(d/2+1/2)

Γ(d/2)
ρ =

0.1
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Γ(d/2)

.

significance.

The reason why this happens is that , when k = ∞, the Fd,k quantiles are indeed χ2
d

quantiles divided by d; so asymptotically as d → ∞, F−1
d,∞(p-value) � 1, irrespective of the

significance level. This can be easily shown by using the asymptotic approximations for the

χ2
d quantiles, proposed either by Fisher (1928) [36] or by Wilson and Hilferty (1931) [76]. So

from (9.7), as d→∞,

ζd

(√
d · F−1

d,∞(p-value)

)
→ 1 .

Whereas, when k <∞, as d→∞, F−1
d,k (p-value)→ fk(p-value), and for this range of p-values

from 0.5% to 10%, fk(p-value) > 1. This in turn leads to divergence,

ζd

(√
d · F−1

d,k (p-value)

)
→∞ ,

since ζd(
√
df) converges to the finite function 1−

√
1− f only if 0 ≤ f ≤ 1.

So in a sense, the curvature in the Bayes factor for large d is due to the fact that if

the residual degrees of freedom are kept constant, as d grows larger, the Fd,k quantiles get
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p-value×102 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9 d = 10

0.5 13.25 11.41 10.66 10.28 10.08 9.98 9.95 9.97 10.02 10.11
1.0 8.44 7.23 6.71 6.43 6.25 6.15 6.08 6.05 6.03 6.04
1.5 6.52 5.61 5.20 4.97 4.83 4.74 4.67 4.63 4.61 4.59
2.0 5.43 4.70 4.37 4.18 4.05 3.97 3.91 3.87 3.85 3.83
2.5 4.72 4.10 3.82 3.66 3.55 3.48 3.43 3.39 3.37 3.35
5.0 2.99 2.69 2.55 2.46 2.40 2.35 2.32 2.30 2.28 2.27
7.5 2.25 2.09 2.01 1.95 1.91 1.89 1.87 1.85 1.84 1.83
10.0 1.81 1.73 1.68 1.65 1.63 1.61 1.60 1.59 1.58 1.58

Table 9.1: ζd

(√
dF−1

d,k (p-value)
)

for different dimensions d and different p-values, with fixed

k = 100.

smaller, so the relative weight of the residual mean square in the F -ratio becomes larger.

Indeed, if k is relatively small, one should consider d · Fβ = ‖Xβ‖2 /(‖QX∪X0y‖
2 /k), rather

than ‖β‖2
A = ‖Xβ‖2 /σ2, and derive the distributions of Fβ and Fy taking into account the

variability of the estimator for σ2. We extend our theory to this case in Section 9.5.

9.4 Illustrative example 1

To illustrate the vector-sparse approach to the analysis of variance, we now present a real-

data example, coming from a randomized experiment, described and analyzed by Villa et al.

(2019) [72]. The aim of the study was concerned with reproductive isolation, and consequent

ecological speciation, occurring in response to body-size evolution in isolated lineages of

pigeon lice. The experiment started by founding 32 lice lineages from a total of 800 lice,

on 32 host lice-free pigeons, and comprised observing the evolution of each lineage over 60

generations. To induce differentiability in the body-size of the evolving lice lineages, half of

these were randomly assigned to be placed on normal-sized captive feral pigeons, while the

other half were placed on giant runts. The body size of a giant runt pigeon is roughly three

times that of a captive feral pigeon. This was done with the expectation that the host size was

to cause a different evolution of the louse size. The two groups of pigeons were then further

randomly assigned to four aviaries each, maintaining the two groups separate, in order to
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Figure 9.3: Bayes factor for the exceedance event {‖β‖A > ε} as a function of the dimension
d, on the logarithmic scale. In each plot, the different curves correspond to different p-values,
ranging from 0.5% to 10%, which in turn determine fd,k = F−1

d,k (p-value) used to compute
(9.10). Left panel: k = 100. Right panel: k =∞.

MS dof

Host type 12 1
Aviary 290 6
Lineage 83 24
Residual 111 ∞

Table 9.2: Mean squares times 105 of the log body length in µm, with corresponding degrees
of freedom, for the three factors and residual, as measured at baseline.

avoid interference. The experiment was designed in such a way that every six months, a

random sample of lice was taken from each pigeon, photographed and then returned to the

bird. On each occasion, the sex and three body-size measurements were recorded for each

louse.

If the randomization procedure was successful, at baseline, the expected value of the

mean squares (MSs) of any of the responses, associated with the treatment factor, Host, and

the two block factors, Lineage and Aviary, must be the same as the expected value of the

residual mean square. However, if we look at Table 9.2, which reports the mean squares of

the log body length immediately after randomization, two figures call for attention. On the
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one hand, the Host MS appear to be significantly smaller than the residual MS; on the other

hand, the MS for Aviary seems to be significantly bigger than the residual MS. Yet, if the

former of these anomalies could be explained by an effort, in the randomization procedure,

directed to minimize the baseline variability due to the treatment, the latter anomaly is

a little more suspicious. The F -ratio for the Aviary factor is 290/111 = 2.61 on d = 6

and k = ∞ degrees of freedom, which corresponds to a tail probability of roughly 1.6%.

This small value could be interpreted as an indication that something went wrong in the

randomization procedure. Now, if we adopt the vector-sparse approach, calling βAv ∈ R6

the coefficients associated with the subspace Aviary ∩ Host⊥ ∩ 1⊥, the Bayes factor for

‖βAv‖A = ‖XAvβAv‖ /σ > ε in (9.15), is ζ6(
√

6 · 2.61) = 3.8. Here we are considering the

threshold ε for which the prior odds ratio is equal to ρ. So, for α = 1, this threshold is

roughly given by 0.8 · (1 + ρ). Clearly, for small ρ, ε can be simply taken to be the standard

threshold 0.8 for which HR(ε+) = 1. So, say that the starting odds are of 1 to 10 in favor

of ‖βAv‖A > 0.88, reflecting the belief about the possibility that something, in the random

assignment of the lice to the pigeons, and/or of the pigeons to the aviaries, goes wrong. Then

the odds become 1 to 38 after seeing the outcome of the randomization.

9.5 Unknown variance

So far, we have treated the error variance σ2 as known, even when we estimated it with the

residual mean square. In this section, we generalize the theory we derived for σ2 known,

taking into account the variability of ‖QX∪X0Y ‖
2 /k. In other words, we derive the analog

of Fisher’s F distribution when the coefficient vector β is random with a vector-sparse dis-

tribution. For notational convenience, we let µ0 = 0, so that the residual mean square can

be written as ‖QXy‖2 /k, where k = n− d. Also, for the sake of space, here we present only

the main facts, and we refer to the appendix for the full derivation of each formula.
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In order to obtain a conditional distribution for the coefficient vector not dependent of σ,

instead of ‖β‖A = ‖Xβ‖ /σ, we derive the conditional distribution of the parameter F -ratio

Fβ =
‖β‖2

A /d

‖QXY/σ‖2 /k
=
‖Xβ‖2 /d

‖QXY ‖2 /k
,

given the observation F -ratio

FY =
‖PXY ‖2 /d

‖QXY ‖2 /k
.

In fact, when two random variables are both scaled by the same scalar, considering events

for their ratio, is the same as restricting the sigma algebra of each of the two random vari-

ables, to those events which are scale invariant, i.e., to those events A ∈ FX such that

PX(λA) = PX(A), for every λ 6= 0. For this reason, in the derivations that follow, without

loss of generality, we can fix σ2 to be one.

We start by writing the observation F -ratio as P/Q, where the sum of squares in the

numerator d · P = ‖PXY ‖2 has density function at p2

χ2
d(p

2)
(

1− ρ+ ρζd
(√

p2
))

, (9.11)

whereas the sum of squares in the denominator k · Q = ‖QXY ‖2 ∼ χ2
k. Moreover P and Q

are independent so one can derive the density of FY at fy to be

md,k(fy) = Fd,k(fy)
(
1− ρ+ ρ ζFd,k(fy)

)
+ o(ρ) , (9.12)

where Fd,k denotes Fisher’s F density with d and k degrees of freedom, while

ζFd,k(fy) =
∞∑
r=1

(dfy)
r

(dfy + k)r
(d

2
+ k

2
)↑r

(d/2)↑rr!

αΓ(r − α/2)

2Γ(1− α/2)
(9.13)

is the zeta function for F -ratios on d and k degrees of freedom.
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functions for t-statistics ζTk (
√
fy) (red dashed lines). The residual degrees of freedom k

range from 1 to 100.

When d = 1, the zeta function for the F -ratio on 1, k degrees, coincides with the zeta

function for the t-statistic ζTk , we introduced in Chapter 1,

ζF1,k(fy) = ζTk (
√
fy ) .

This is shown in Figure 9.4, for different values of k ranging from 1 to 100: the black solid

curves depict ζF1,k(fy) while the red dashed curves depict ζTk (
√
fy ).

On the other hand, as the residual degrees of freedom k go to infinity, ζFd,k(fy) converges

to the d-dimensional zeta function ζd
(√

dfy
)
. We show this convergence on the log scale, in

Figure 9.5. For d = 3 (left panel) and d = 10 (right panel), the black lines show ζFd,k(fy) for

k ranging from 1 to 500 and 5000, respectively, while the dashed red curve depicts ζd(
√
dfy).

This fact in turn, implies that, as k →∞, (9.12) converges to

χ2
d(dfy)

(
1− ρ+ ρ ζd

(√
dfy
))

+ o(ρ) ,
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which is the same expression we would get for the sparse approximation to the density of

‖PXY ‖2/d
σ2 , if σ2 was known. (See appendix).

The marginal density written in (9.12) is, once more, a mixture of two components:

Fisher’s F density and its product with the zeta function for F -ratios. It can be shown that

this latter component ψd,k(fy) = Fd,k(fy)ζFd,k(fy) is itself a probability density function. (See

appendix). In Figure 9.6, we plot both the tail inflating component ψd,k(fy) (left panels)

and the sparse approximation to the marginal density of FY , md,k(fy) (right panels), for

different combinations of d and k. In each panel, as a term of comparison, we also plot the

corresponding non-sparse Fisher’s F density function, Fd,k(fy).

In a similar fashion, with some more algebra, one can derive the joint probability of

(Fβ, FY ) at (fβ, fy). This can be found in the appendix. Here we directly write the condi-

tional density for the scaled parameter F -ratio, d · Fβ, given the observation F -ratio fy. To

avoid notational confusion, instead of dx, we write ∂x to denote the differential form of x.

So,

P(dFβ ∈ ∂x | FY = fy) =
PR2

ν (∂x)wd,k(fy, x) + ρζFd,k(∂x; fy)

1− ρ+ ρ ζFd,k(fy)
+ o(ρ) , (9.14)

where

wd,k(fy, x) =

(
dfy + k

dfy + k + x

) d
2

+ k
2 (d

2
+ k

2
)↑−

α
2 2−

α
2

(dfy + k + x)−
α
2

,

while

ζFd,k(∂x; fy) = HR2

(∂x)

(
dfy + k

dfy + k + x

) d
2

+ k
2
∞∑
r=1

(dfy)
r(x)r

(d/2)↑rr!

Γ(d
2

+ k
2

+ 2r − α
2
)2−

α
2

Γ(d
2

+ k
2
) (dfy + k + x)2r−α

2

is the zeta measure for F -ratios on d and k degrees of freedom. One can indeed check that

∫
ζFd,k(∂x; fy)∂x = ζFd,k(fy) .
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267



(See appendix). It is also possible to show that, as k →∞, (9.14) converges to

e−dfβPR2

ν (∂x) + ρ ζd
(
∂
√
x;
√
dfy
)

1− ρ+ ρ ζd(
√
dfy )

+ o(ρ) ,

and this is the sparse approximation to the conditional distribution

P
(
‖β‖2

A ∈ ∂x | FY = fy
)
,

when σ2 is known. (See appendix).

9.6 Sparse Bayes factor and F -ratios revisited

In Section 9.2.2, assuming σ2 was known, we approximated the conditional probability of

‖β‖A ≥ ε with

ρζd(‖PXy/σ‖)
1 + ρζd(‖PXy/σ‖)

.

Now that we are estimating σ2 with the residual mean square s2, instead of {‖β‖A ≥ ε} =

{‖Xβ‖ /σ ≥ ε}, we can consider {‖Xβ‖ /s ≥ ε} = {‖Xβ‖2 /s2 ≥ ε2} = {dFβ ≥ ε2}, and

approximate the conditional probability of this event with

ρζFd,k(fy)

1 + ρ ζFd,k(fy)
.

So when the unconditional odds for {dFβ ≥ ε2} are ρ : 1, then the Bayes factor for this event

reduces to

BFε+(y) =
odds(‖Xβ‖ /s ≥ ε | fy)

odds(‖Xβ‖ /s ≥ ε)
= ζFd,k(fy) . (9.15)

In Figure 9.7, we show this Bayes factor for d = 3, 5, 10, 15 and k = 3, 5, 10, 15, 30. For

all values of d, there is a transition observed approximately around fy = 1.2, even though,

in no case, the curves do all intersect at the same point (the appearance from the plots is

misleading). For values of fy smaller than roughly 1.2, larger k leads to smaller BFε+(fy),
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whereas for values of fy greater than 1.2, larger k leads to larger BFε+(fy). So larger values

of k act as a deflating / inflating factor for BFε+(fy), depending on the size of the observed

F -ratio. On the other hand, larger degrees of freedom for ‖PXy‖2 has the effect of exagger-

ating this phenomenon, leading to larger Bayes factors when either both k and fy are large,

or both k and fy are small. For all d, the value of fy giving a Bayes factor of one, needs to

be larger as k decreases.

In Figure 9.8, instead, we compare ζFd,k(fd,k) with ζd(
√
dfd,k ), where we plot these two

Bayes factors as functions of the dimension d, for different F -quantiles,

fd,k = F−1
d,k (p-value) ,

corresponding to p-values ranging from 0.5% to 10%. In Section 9.3, we investigated the

sparse Bayes factor for the norm exceedance event {‖β‖A > ε}

ζd (‖PXy‖ /σ ) ,

and estimated it with

ζd (‖PXy‖ /s ) = ζd

(√
dfy

)
,

treating s2 as if it was σ2, i.e., as if s2 was estimated on k = ∞ degrees of freedom. Yet,

when k is in fact finite, treating σ2 as known leads to some kind of divergence when d→∞.

This divergence of the Bayes factor, ζd
(√

dfd,k
)
, is shown in the top left panel of Figure 9.8,

where k = 25 and d is growing large. By contrast, from the top right panel, we can see that,

when we estimate the Bayes factor for the F -ratio with ζFd,k(fd,k), as d→∞, it converges to

one, even if k = 25. On the other hand, if we assume k =∞, and consider

fd,∞ = χ2
d
−1(p-value)/d ,
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then the two Bayes factors, ζd
(√

dfd,∞
)

and ζFd,5000(fd,∞), practically coincide and slowly

converge to one. This is because ζFd,k(fy)→ ζd
(√

dfy
)

when k →∞.

0 1 2 3 4

0
1

2
3

4

d = 3

fy

ζ 3 
k

F
 (f

y)

k = 3

k = 5

k = 10

k = 15

k = 30

0 1 2 3 4

0
1

2
3

4

d = 5

fy

ζ 5 
k

F
 (f

y)

k = 3

k = 5

k = 10

k = 15

k = 30

0 1 2 3 4

0
1

2
3

4

d = 10

fy

ζ 10
 k

F
 (f

y)

k = 3

k = 5

k = 10

k = 15

k = 30

0 1 2 3 4

0
1

2
3

4

d = 15

fy

ζ 15
 k

F
 (f

y)

k = 3

k = 5

k = 10

k = 15

k = 30

Figure 9.7: ζFd,k(fy) for d = 3, 5, 10, 15, and k = 3, 5, 10, 15, 30.

For a last comparison, we look at the asymptotic behavior of the zeta function for F -

ratios for fixed values of the argument f . In Figure 9.9, we fix k to be small and plot ζFd,k(f)

as a function of log(d), for values of f ranging from 1 to 10. We can see that in the limit, even

for large f , as d→∞, ζFd,k(f)→ 1. In Figure 9.10, instead, we let k = d, and look at ζFd,d(f)

when d gets large. Under this scenario, the limiting behavior depends on the argument: if

f ≤ 1, then ζFd,d(f)→ 1− ((1− f)/(1 + f))α/2, whereas if f > 1, ζFd,d(f) diverges to infinity

as d→∞.
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√
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argument values f , ranging from 1 to 10.
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Figure 9.10: Behavior of the Bayes factor ζFd,k(f) as a function of f , when d = k are growing

large. Left panel: when f ≤ 1, ζFd,d(f) converges to 1 − ((1− f)/(1 + f))α/2 (red dashed
curve) as d→∞. Right panel: when f > 1, ζFd,d(f) diverges as d→∞.

9.7 Illustrative example 2

To illustrate how it works in practice, we apply our extended version of the vector-sparse

theory for linear regression to a genetic dataset. This dataset came from the department

of Neurobiology of the University of Chicago, to the Statistics department, through the
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consulting program. It contains the genetic expression level corresponding to 770 genes,

recorded during a laboratory experiment on 21 five-week-old male transgenic mice. Each

mouse belonged to one of three possible genotype groups, named huPS1WT, huPS1∆E9

and huPS1M146L. The experiment was designed in such a way that, within each genotype

group, approximately half of the mice were randomly assigned to a treatment, while the

other half was not to receive the treatment and served as a control group. The treated mice

were housed for one month in a so called ‘enriched environment’, consisting of large cages

containing running wheels, tunnels, toys, and chewable materials. Control groups of animals

were instead maintained in standard laboratory housing conditions.

Given the structure of the data, we model the expression level for each gene separately

and consider the genotype as a covariate whose impact on the genes expression level is not

necessarily expected to be negligible. By contrast, we look at the treatment effect and its

interaction with the genotype as potentially not relevant.

Thus, for g = 1, . . . , 770, we assume

Yg = µ0,g +Xβg + ηg .

Here Yg ∈ R21 is the vector of the expression levels of gene g as recorded on the 21 mice;

µ0,g = X0β0,g is the additive effect of the matrix X0 = [1 G1 G2] ∈ R21×3 spanning X0, the

space of the genotype classification factor; X1 = [T G1 ∗ T G2 ∗ T ] ∈ R21×3 is the matrix

containing the treatment factor and its interactions with the genotype factor. Yet, instead

of X1, we consider X = LX1 which is the matrix X1 after being projected onto the kernel

of X0. Really, L ∈ R21×3 is any full column rank matrix whose column span is a subspace

of Ker(X0) = X⊥0 . This implies that X has a column span X ⊂ X⊥0 , so that the effects

of X refers solely to the treatment and interaction factors, as these are depurated of their
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covariation with the genotype factor.

Concerning distributional assumptions, the errors ηg,i, i = 1, . . . , 21, are independent

Gaussian with unknown gene-specific variance σ2
g ,

ηg ∼ N(0, σ2
gI21) .

On the other hand, to reflect the expectation that the treatment and its interaction with

genotype, might not have a relevant effect on the gene expression level, we assume that

βg ∼ Pν,3 ,

where Pν,3 is a three-dimensional vector-sparse distribution, rotationally invariant with re-

spect to the inner product 〈u, v〉A = u′X ′Xv/σ2
g . Letting ρ be the sparsity rate, we further

assume that the radial exceedance measure for ‖βg‖A is the inverse-square measure, so that

the three-dimensional exceedance measure for Pν,3 can be written as

H3,A(dx) =
1

Area(S3
A)

√
2√
π
‖x‖−1−3

A dx ,

where S3
A = {z ∈ R3 : ‖z‖2

A = z′X ′Xz/σ2
g = 1} is the unit sphere with respect to 〈·, ·〉A.

Notice that

H3,A(dx) =
1

Area(S3)

√
2√
π
‖A′x‖−1−3

det(A)dx = H3(d(A′x))

where H3 is the inverse-square measure which is rotationally invariant with respect to 〈·, ·〉2.

For this choice of radial measure, H3 is proportional to the Lévy measure of the symmetric α-

stable (SαS) process generated by the three-dimensional Cauchy distribution. Therefore, we
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can consider the scaled version of this distribution as a possibility for the sparse distribution

Pν,3,

Cauchyν,3(dx) =
Γ(3+1

2
)

√
π π

3
2

ν dx

(‖x‖2
A + ν2)

3+1
2

=
dx̃

Area(S3
A)

2Γ(3+1
2

)
√
π Γ(3

2
)

ν ‖x‖d−1
A

(‖x‖2
A + ν2)

3+1
2

d ‖x‖A ,
(9.16)

where the last expression shows how the density factorizes into the spectral and radial

components. For the three-dimensional scaled Cauchy, the sparsity rate is

ρ =

√
2√
π
ν ·
√
πΓ(3/2 + 1/2)

Γ(3/2)
,

so that the one-dimensional rate
√

2√
π
ν gets scaled by

√
πΓ(3/2+1/2)

Γ(3/2)
= 2.

The aim of the analysis is to obtain, for each gene g, a sparse approximation to the

exceedance conditional probability of the parameter F -ratio Fβg , given the observed value

of the observation F -ratio FYg

P(Fβg > ε | FYg = fyg) .

To this end, we start by estimating, for each gene, the noise variance σ2
g with the residual

sum of squares

s2
g =
‖QX∪X0Yg‖

2

k
,

where k = 21−6 = 15. Then we estimate by maximum likelihood, the sparsity rate ρ, which

is assumed to be common to all genes. This is done by considering the sparse approximation

to the marginal density of each F -ratio FYg ,

m3,21(fy) = F3,21(fy)
(

1− ρ+ ρ ζ3,21

(√
3fy
))

+ o(ρ) ,
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and maximizing the log likelihood

max
ρ

∑
g

log
(

1− ρ+ ρ ζ3,21

(√
3fyg

))
.

The result of this maximization gives the estimate ρ̂ = 0.348, which corresponds to ν̂ = 0.218,

and a one-dimensional rate of approximately 0.17.

We check this estimation by assuming that the sparse distribution for βg is (9.16), and

compute (numerically) the exact distribution for FYg . The estimated ν, found by maximu-

mum likelihood, is ν̂ = 0.218, which leads to ρ̂ = 0.347. These estimates are very close to

those obtained using the sparse approximation.

Because the estimated sparsity rate is not that small, instead of invoking the double limit

regime, we numerically integrate (9.14), to compute the sparse approximation to

P(Fβg > ε | FYg = fy) .

We choose ε = 0.945 so that the unconditional probability is equal to the estimated sparsity

rate

P(Fβg > ε) = ρ̂ .

Figure 9.11 shows P(Fβg > 0.945 | FYg = fy) for both the sparse approximated model

(black curve) and the exact scale Cauchy model (green curve). Even though the first one

is only based on the exceedance measure and the estimated sparsity rate, while the second

one is derived from a fully specified model, the two conditional probabilities are quite close

to each other. Interpreting the sparsity rate ρ̂ = 0.347, shown by the dashed horizontal line,

as the probability of the event Fβg > 0.945 before seeing the data, then this unconditional

probability is overcome by the corresponding conditional probability when the observed value

of FYg is greater than four.
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Figure 9.11: Conditional probability of Fβg > 0.945 as a function of the observed value of
FYg . The green curves correspond to the exceedance probability obtained when Pν is the
scaled three-dimensional Cauchy. The black curves, instead, correspond to to the exceedance
probability obtained under the sparse approximation. The dashed line shows ρ̂ which is set
to match the unconditional probability that Fβg > 0.945.
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9.8 Appendix

1. We here show that ψd,X(y) = φn,σ(y)ζd((X
′X)−1X ′y) is a probability density. Indeed, it

is non negative for any y and it integrates to one. Indeed,

∫
Rd
φn,σ(y)ζd((X

′X)−1X ′y)dy =∫
Rd
φn,σ(y)

∫ ∞
0

(coshd(r(X
′X)−1X ′y)− 1)e−r

2/2 HR(dr)dy =∫ ∞
0

∫
Rd
φn,σ(y)

∫
SdA

(er〈(X
′X)−1X′y,β̃〉A − 1)

dβ̃

Area(SdA)
dy e−r

2/2 HR(dr) =∫ ∞
0

∫
SdA

∫
Rd

(φn,σ(y)ery
′X(X′X)−1AA′β̃ − φn,σ(y)) dy

dβ̃

Area(SdA)
e−r

2/2 HR(dr) =∫ ∞
0

∫
SdA

∫
Rd

(φn,σ(y)ery
′Xβ̃/σ2 − φn,σ(y)) dy

dβ̃

Area(SdA)
e−r

2/2 HR(dr) =∫ ∞
0

∫
SdA

(er
2β̃′X′Xβ̃/2σ2 − 1)

dβ̃

Area(SdA)
e−r

2/2 HR(dr) =∫ ∞
0

∫
SdA

(er
2〈β̃,β̃〉A/2 − 1)

dβ̃

Area(SdA)
e−r

2/2 HR(dr) =∫ ∞
0

(∫
SdA
er

2/2 dβ̃

Area(SdA)
− 1

)
e−r

2/2 HR(dr) =∫ ∞
0

(
er

2/2 − 1
)
e−r

2/2 HR(dr) =∫ ∞
0

(1− e−r2/2)HR(dr) = 1

2. Here we derive the sparse approximation to the density function of ‖PXY ‖2, Eq. (9.11).

Since σ2 = 1, we can write the sparse approximation to the density of Y as

φn (y) (1− ρ+ ρζd(‖PXy‖)) + o(ρ) .

On the other hand, given β

Y | β ∼ N(Xβ, In) ,
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so one has that

P (Y ∈ dy | ‖β‖A ∈ dr) =∫
Sd

P
(
Y ∈ dy, β̃ ∈ dβ̃ | ‖β‖A ∈ dr

)
=∫

Sd
P
(
Y ∈ dy | β ∈ d(rβ̃)

)
P
(
β̃ ∈ dβ̃ | ‖β‖A ∈ dr

)
=∫

Sd
φn(y −Xrβ̃/σ)

dβ̃

Area(Sd)
=∫

Sd

1√
2π

n e
−‖y‖2/2ey

′Xrβ̃e−r
2‖Xβ̃‖2

/2 dβ̃

Area(Sd)
=

1√
2π

n e
−‖y‖2/2

∫
Sd
ey
′Xrβ̃e−r

2‖β̃‖2

A
/2 dβ̃

Area(Sd)
=

1√
2π

n e
−‖y‖2/2e−r

2/2

∫
Sd
ey
′Xrβ̃ dβ̃

Area(Sd)
=

1√
2π

n e
−‖y‖2/2e−r

2/2 coshd(r ‖X ′y‖A) =

1√
2π

n e
−‖y‖2/2e−r

2/2 coshd(r ‖PXy‖) =

1
√

2π
d
e−‖PX y‖

2/2e−r
2/2 coshd(r ‖PXy‖)

1
√

2π
n−d e

−‖QX y‖2/2 =

P (PXY ∈ dPXy | ‖β‖A ∈ dr) · P (QXY ∈ dQXy) .

From this last expression, we can integrate over the d − 1 spherical coordinates of PXY ,

φ1, . . . , φd−1, to obtain that the density of ‖PXY ‖2 at p2, given ‖β‖A, is

P
(
‖PXY ‖2 ∈ dp2 | ‖β‖A ∈ dr

)
=∫

Sd
P
(
‖PXY ‖2 ∈ dp2, φ1 ∈ dφ1, · · · , φd−1 ∈ dφd−1 | ‖β‖A ∈ dr

)
=

1
√

2π
d
e−(p2+r2)/2 coshd (rp) pd−1

∫
Sd

sind−2 φ1 . . . sinφd−2 dφ1 . . . dφd−1 =

1
√

2π
d
e−(p2+r2)/2 coshd (rp) (p2)

d
2
−1 Area(Sd)

2
=

χ2
d(p

2) coshd (rp) e−r
2/2.
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So now to get the unconditional density, it suffices to integrate over the sparse radial measure,

P
(
‖PXY ‖2 ∈ dp2

)
=

∫
P
(
‖PXY ‖2 ∈ dp2 | ‖β‖A ∈ dr

)
P (‖β‖A ∈ dr)

=

∫
χ2
d(p

2) coshd (rp) e−r
2/2 PR

ν (dr)

= χ2
d(p

2)

(∫
(coshd (rp)− 1) e−r

2/2 PR
ν (dr) + 1−

∫
(1− e−r2/2)PR

ν (dr)

)
= χ2

d(p
2)

(
ρ

∫
(coshd (rp)− 1) e−r

2/2HR(dr) + 1− ρ
)

= χ2
d(p

2) (ρζd (p) + 1− ρ) .

This last expression is the sparse approximation of order ρ to the density of ‖PXY ‖2 as

shown in (9.11).

3. Here we derive the sparse approximation to the density function of FY , Eq. (9.12).

Let P = ‖PXY ‖2 /d and Q = ‖QXY ‖2 /k, where dP has distribution given in (9.11) and is

independent of

kQ ∼ χ2
k .

Then the marginal distribution of FY = P/Q can be found by

P(P/Q ∈ ∂fy) =

∫
P (P/(kQ) ∈ ∂(fy/k), kQ ∈ ∂w) 1/k ∂w

=

∫
P ((dP )/(kQ) ∈ ∂(d fy/k), kQ ∈ ∂w) d/k ∂w

=

∫
P ((dP ) ∈ ∂(fy w d/k), )P (kQ ∈ ∂w)w d/k ∂w

=

∫
P ((dP ) ∈ ∂(fy u), )P (kQ ∈ ∂(u k/d))u k/d ∂u

=

∫
χ2
d(ufy)(1− ρ+ ρζd(

√
ufy))χ

2
k

(
k

d
u

)
k

d
u ∂u ,

where we used the notation ∂x instead of dx to denote the differential form, to avoid nota-

tional confusion with the d indicating the dimension of the vector.
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Substituting the analytic form for the chi-square density function and the Taylor series

for the coshd function, the last integral can be developed as follows

(1/2)
d
2

+ k
2

Γ(d
2
)Γ(k

2
)
(fy)

d
2
−1

(
k

d

) k
2
−1

·

·
∫
u
d
2
−1+ k

2
−1e−u

dfy+k

2d

(
1− ρ+ ρ

∞∑
r=1

(ufy)
r

(d/2)↑r2rr!

αΓ(r − α/2)

2Γ(1− α/2)

)
k

d
u ∂u =

(1/2)
d
2

+ k
2

Γ(d
2
)Γ(k

2
)
(fy)

d
2
−1

(
k

d

) k
2

·

·
∫
u
d
2

+ k
2
−1e−u

dfy+k

2d

(
1− ρ+ ρ

∞∑
r=1

(ufy)
r

(d/2)↑r2rr!

αΓ(r − α/2)

2Γ(1− α/2)

)
∂u =

(1/2)
d
2

+ k
2

Γ(d
2
)Γ(k

2
)
(fy)

d
2
−1

(
k

d

) k
2 Γ(d

2
+ k

2
)(2d)

d
2

+ k
2

(dfy + k)
d
2

+ k
2

·

·

(
1− ρ+ ρ

∞∑
r=1

(dfy)
r

(d/2)↑r2rr!

αΓ(r − α/2)

2Γ(1− α/2)

Γ(d
2

+ k
2

+ r)2r

Γ(d
2

+ k
2
)(dfy + k)r

)
=

1

Be(d
2
, k

2
)

(fy)
d
2
−1d

d
2k

k
2

(dfy + k)
d
2

+ k
2

·

(
1− ρ+ ρ

∞∑
r=1

(dfy)
r

(dfy + k)rr!

αΓ(r − α/2)

2Γ(1− α/2)

Γ(d
2

+ k
2

+ r)

Γ(d
2

+ k
2
)(d/2)↑r

)
=

Fd,k(fy)

(
1− ρ+ ρ

∞∑
r=1

(dfy)
r

(dfy + k)r
(d

2
+ k

2
)↑r

(d/2)↑rr!

αΓ(r − α/2)

2Γ(1− α/2)

)
=

Fd,k(fy)
(
1− ρ+ ρ ζFd,k(fy)

)
.

This last expression is the sparse approximation of order ρ to the density of FY as shown in

(9.12).
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4. Here we show that as k →∞, (9.12) converges to

χ2
d(dfy) (1− ρ+ ρ ζd(fy))

Now, as k →∞, Fisher’s Fd,k density converges to a scaled chi-square χ2
d,

Fd,k(fy)→ χ2
d(dfy) ,

so we really just need to show that

ζFd,k(fy)→ ζd
(√

dfy
)
.

To see this, notice that, for each r,

(d
2

+ k
2
)↑r

(dfy + k)r
=

Γ(d
2

+ k
2

+ r)2−r

Γ(d
2

+ k
2
)
(
dfy+k

2

)r → 2−r

so then we have that, for each r,

(dfy)
r

(dfy + k)r
(d

2
+ k

2
)↑r

(d/2)↑rr!

αΓ(r − α/2)

2Γ(1− α/2)
→ (dfy)

r

(d/2)↑r2rr!

αΓ(r − α/2)

2Γ(1− α/2)

Now because the convergence is monotone, we can pass the limit inside the infinite sum, and

conclude that

lim
k→∞

ζFd,k(fy) = ζd
(√

dfy
)
.
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5. Here we derive the sparse approximation to the joint density function of (Fβ, FY ).

Again, let P = ‖PXY ‖2 /d and Q = ‖QXY ‖2 /k, and let b = ‖β‖2
A /d. Also, denote by

pR
2

ν and hR
2
, the sparse density and corresponding exceedance density for the squared norm

‖β‖2
A. Then

P (FY ∈ ∂fy, Fβ ∈ ∂fβ, ) =

∫
P
(
P

Q
∈ ∂fy,

b

Q
∈ ∂fβ, Q ∈ ∂u

)
∂u =

∫
P (P ∈ ∂(ufy), | b ∈ ∂(ufβ)) P(Q ∈ ∂u)P(b ∈ ∂(ufβ)) u2∂u =

∫
χ2
d(ufy) coshd

(√
ufy
√
ufβ

)
e−ufβ χ2

k

(
k

d
u

)
k

d
u2 pR

2

ν (u fβ) ∂u =

ρ

∫
χ2
d(ufy) coshd

(√
ufy
√
ufβ

)
e−ufβ χ2

k

(
k

d
u

)
k

d
u2 hR

2

(u fβ) ∂u =

ρ

∫
χ2
d(ufy) coshd

(√
ufy
√
ufβ

)
e−ufβ χ2

k

(
k

d
u

)
k

d
u2 ∂u

(ufβ)α/2+1
Kα =

ρ

∫
χ2
d(ufy) coshd

(√
ufy
√
ufβ

)
e−ufβ χ2

k

(
k

d
u

)
k

d
u2−α/2−1∂u · hR2

(fβ) .

Again, by substituting the analytic form for the chi-square density function and the Taylor
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series for the coshd function, the last integral can be developed as follows

ρhR
2

(fβ)
(1/2)

d
2

+ k
2

Γ(d
2
)Γ(k

2
)

f
d
2
−1

y k
k
2
−1

d
k
2
−1

∫
u
d
2
−1+ k

2
−1+2−α

2
−1e−u(fy+fβ+ k

d
)/2

∞∑
r=0

(ufy)
r(ufβ)r

(d/2)↑r22rr!

k

d
∂u =

ρhR
2

(fβ)
(1/2)

d
2

+ k
2

Γ(d
2
)Γ(k

2
)

f
d
2
−1

y k
k
2
−1

d
k
2
−1

∫
u
d
2

+ k
2
−α

2
−1e−u

dfy+dfβ+k

2d

∞∑
r=0

(ufy)
r(ufβ)r

(d/2)↑r22rr!
∂u =

ρhR
2

(fβ)
(1/2)

d
2

+ k
2

Γ(d
2
)Γ(k

2
)
f
d
2
−1

y

(
k

d

) k
2
∞∑
r=0

f ryf
r
β

(d/2)↑r22rr!

∫
u2r+ d

2
+ k

2
−α

2
−1e−u

dfy+dfβ+k

2d ∂u =

ρhR
2

(fβ)
(1/2)

d
2

+ k
2

Γ(d
2
)Γ(k

2
)

f
d
2
−1

y k
k
2
−1

d
k
2
−1

∞∑
r=0

f ryf
r
β

(d/2)↑r22rr!

Γ(2r + d
2

+ k
2
− α

2
)(2d)2r+ d

2
+ k

2
−α

2

(dfy + dfβ + k)2r+ d
2

+ k
2
−α

2

=

ρhR
2

(fβ)
Γ(d

2
+ k

2
)

Γ(d
2
)Γ(k

2
)

f
d
2
−1

y k
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2
−1d

d
2
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(dfy + dfβ + k)
d
2

+ k
2

∞∑
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f ryf
r
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(d/2)↑r22rr!
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2

+ k
2

+ 2r − α
2
)(2d)2r−α

2

Γ(d
2

+ k
2
) (dfy + dfβ + k)2r−α

2

=

ρhR
2

(fβ)
1
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2
)

f
d
2
−1

y d
d
2k

k
2

(dfy + dfβ + k)
d
2

+ k
2
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α
2

∞∑
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(dfy)
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2
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2
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ρHR2

(∂(dfβ))Fd,k(fy)
(

dfy + k

dfy + k + dfβ

) d
2

+ k
2
∞∑
r=0

(dfy)
r(dfβ)r

(d/2)↑rr!

Γ(d
2

+ k
2

+ 2r − α
2
)2−

α
2

Γ(d
2

+ k
2
) (dfy + dfβ + k)2r−α

2

.

Recalling that PR2

ν (∂u) = ρHR2
(∂u) + o(ρ), in the sense of integrals against functions in

W#, we can split the summation in two addends:

Fd,k(fy)PR2

ν (∂(dfβ))

(
dfy + k

dfy + k + dfβ

) d
2

+ k
2 (d

2
+ k

2
)↑−

α
2 2−

α
2

(dfy + dfβ + k)−
α
2

,
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and

Fd,k(fy)ρHR2

(∂(dfβ))

(
dfy + k

dfy + k + dfβ

) d
2

+ k
2
∞∑
r=1

(dfy)
r(dfβ)r

(d/2)↑rr!

Γ(d
2

+ k
2

+ 2r − α
2
)2−

α
2

Γ(d
2

+ k
2
) (dfy + dfβ + k)2r−α

2

.

The sum of these two last expressions is the sparse approximation of order ρ to the joint

density of (Fβ, FY ).

We can also write it in a more compact form,

Fd,k(fy)
(
PR2

ν (∂(dfβ))wd,k(fy, fβ) + ρζFd,k(∂(dfβ); dfy)
)

(9.17)

where

wd,k(fy, fβ) =

(
dfy + k

dfy + k + dfβ

) d
2

+ k
2 (d

2
+ k

2
)↑−

α
2 2−

α
2

(dfy + dfβ + k)−
α
2

while

ζFd,k(∂(dfβ); dfy) =HR2

(∂(dfβ))

(
dfy + k

dfy + k + dfβ

) d
2

+ k
2

·

·
∞∑
r=1

(dfy)
r(dfβ)r

(d/2)↑rr!

Γ(d
2

+ k
2

+ 2r − α
2
)2−

α
2

Γ(d
2

+ k
2
) (dfy + dfβ + k)2r−α

2

is the zeta measure for F -ratios on d and k degrees of freedom.

6. Here we check that

∫
ζFd,k(∂(dfβ); dfy)∂(dfβ) = ζFd,k(fy) .
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In fact, the RHS can be computed as

∫
HR2

(∂(dfβ))

(
dfy + k

dfy + k + dfβ

) d
2

+ k
2
∞∑
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2
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d
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We write the integral as

∫
zr−

α
2
−1

(v + z)
d
2
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2
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2

∂z =

∫ (
z

v + z
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Now make the change of variable t = z/(v + z),

∫
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α
2
−1

(
1− t
v

) d
2

+ k
2

+r+1
v

(1− t)2
∂t =

v−
d
2
− k

2
−r
∫

tr−
α
2
−1 (1− t)

d
2

+ k
2

+r−1 ∂t =

v−
d
2
− k

2
−rΓ(r − α

2
)Γ(d

2
+ k

2
+ r)

Γ(d
2

+ k
2

+ 2r − α
2
)

.

So plugging this back, we obtain,

∞∑
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,

which indeed is the same expression we have for ζFd,k(fy).
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7. Here we show the convergence of (9.17), as k →∞. Start by noticing that, as k →∞,

Fisher’s Fd,k density converges to a scaled chi-square χ2
d,

Fd,k(fy)→ χ2
d(dfy) ,

while (
dfy + k

dfy + k + dfβ

) d
2

+ k
2

→ e−dfβ/2 .

On the other hand, as k →∞, both

Γ(d
2

+ k
2
− α

2
) 2−

α
2

Γ(d
2

+ k
2
)(d(fy + fβ) + k)−

α
2

→ 1 ,

and

Γ(d
2

+ k
2

+ 2r − α
2
) 22r−α

2

Γ(d
2

+ k
2
)(d(fy + fβ) + k)2r−α

2

→ 1 .

So as k →∞,

wd,k(fy, fβ)→ e−dfβ/2

while

ζFd,k(∂(dfβ); dfy)→ HR2

(∂(dfβ)) e−dfβ/2
∞∑
r=1

(dfy)
r(dfβ)r

(d/2)↑r22rr!
.

Thus, the sparse approximation of the joint density of (Fβ, Fy) converges to

χ2
d(dfy)e

−dfβ/2

(
PR2

ν (∂(dfβ)) + ρHR2

(∂(dfβ))
∞∑
r=1

(dfy dfβ)r

(d/2)↑r22rr!

)
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χ2
d(dfy)
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e−dfβ/2PR2
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dfy
√
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)

=

χ2
d(dfy)

(
e−dfβ/2PR2

ν (∂(dfβ)) + ρζd(∂(dfβ); dfy)
)
.

From this convergence and the one proved for the marginal density of FY , one can easily

deduce the analog for the conditional density of Fβ given FY .
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