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ABSTRACT

This thesis explores the theoretical foundations of distributed machine learning with practical

considerations. Distributed learning systems are able to handle data sets that cannot be

processed on a single machine, and utilize parallel computing resources to speed up the

learning process. However, it also brings unique challenges due to the characteristics of

modern data sets and distributed computing infrastructure: on one hand, machines are

required to being able to extract meaningful parsimonious structures from the large-scale,

high-dimensional data; on the other hand, the heterogeneity in distributed data sets enforce

us to consider flexible models that are adaptive to each local machine; last but not least,

the overall effectiveness in distributed learning systems depends on the efficiency of learning

algorithms on multiple resources: computing, communication, sample and memory, and we

need to design algorithms that balance multiple efficiency constraints.

In this thesis, we considered distributed machine learning under both homogeneous and

coupled setting. In the homogeneous setting, each machine has access to an independent

local data set drawn from the same source distribution, while in the coupled scenario, the

local data sets might drawn from different distributions and the goal is to extract the common

structure through distributed learning. In this thesis, we study the trade-offs between sample

complexity, computational cost, communication and memory efficiency in both settings; we

propose novel methods that effectively leverage the similarity/relatedness structure between

machines for several distributed learning problems, with improved theoretical guarantees. We

also examine the practical performance of the proposed approaches with existing methods

via numerical experiments.
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CHAPTER 1

THESIS OVERVIEW

The advent of big data enables machine learns to perform complex tasks such as visual under-

standing and machine translation, extract knowledge from scientific and social-economical

domains. Such a key empirical success can be attributed to several key factors: the mod-

ern data acquisition technologies helped scientists and engineers collected large-scale high

quality data sets; the development of learning algorithms that enables machines to recognize

hidden patterns from noisy observations; the rapid growth of computing power allows us to

perform large-scale training of complex models. For example, multiple computing machines

have been employed to train high-dimensional sparse linear models for click-through rate

prediction problems in advertisement display [McMahan et al., 2013, Li et al., 2014], GPU

clusters are used to train structured neural networks with huge number of parameters in

computer vision and natural language processing [Krizhevsky et al., 2012, Sutskever et al.,

2014]. Therefore, distributed machine learning have been an emerging technology for many

applications with large-scale data sets.

Distributed learning can leverage distributed computing resources, handling data sets

that cannot be processed on a single machine, thus speed up the learning process. Moreover,

when data are naturally collected from decentralized resources such as mobile phones and

sensor networks, distributed learning enables us to construct predictive models without com-

municating the local data thus ensuring better privacy. For example, federated learning have

been deployed for modeling users’ querying behavior, thus create better search experience

on the mobile phones [Konečnỳ et al., 2016, McMahan et al., 2017].
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1.1 Challenges of distributed machine learning

Although distributed machine learning have been widely applied in industry, it also brings

unique challenges in developing distributed learning algorithms. In the following, we sum-

marize the following critical challenges which we will address in this thesis.

1.1.1 Large-scale, high-dimensional, heterogeneous data

Nowadays, we often encountered datasets that have contains a lot of instances. For exam-

ple, industry level computational ads displaying models are trained on billions of examples

[McMahan et al., 2013]; intelligent recommendation systems are built upon multiple millions

of users and millions of items [Davidson et al., 2010, Smith and Linden, 2017]; state-of-the-art

image classification models are learned using millions of images [Russakovsky et al., 2015].

To train a prediction model from such a huge database, traditional optimization approaches

such as gradient descent are often infeasible since calculating the full gradient require making

a pass over the whole data which is very expensive. Thus the optimization methods of choice

for large-scale machine learning problems are often some randomized optimization methods

such as stochastic gradient descent and its variants. Stochastic optimization methods pro-

cess a small fraction of the datasets at every iteration, and thus have much cheaper cost per

iteration. Unfortunately, stochastic gradient descent is sequential in nature, thus it is im-

portant to design new optimization methods that can be implemented in parallel computing

platforms. Moreover, when we focus on empirical risk minimization of finite-sum objectives,

stochastic optimization with variance reduction techniques [Johnson and Zhang, 2013] have

been recently proposed as the state-of-the-art solvers. Designing efficient distributed opti-

mization algorithms for solving empirical risk minimization problems has also becomes an

important research problem.

Besides the large sample size challenge (the “big n problem”), another distinguishing

feature of modern datasets is its high-dimensionality (the “big p problem”). For many com-
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plex modeling problems, the number of features of variables used in the prediction problem

is large, often of the similar order or even larger than the sample size. For example, for

click-through rate prediction problem, a lot of descriptive features have been collected, in-

cluding bag-of-words features, making the problem dimension to be also at billions scale [Li

et al., 2014]. It is well known that in high-dimensions, the rate of convergence in statis-

tical estimation is very slow (both in parametric and non-parametric models), and such a

difficulty in performing data analysis in high-dimensions is often referred to the “curse of

dimensionality” phenomena. To tackle this challenge, a key technique proposed is to extract

low-dimensional structures from high-dimensional data [Bühlmann and Van De Geer, 2011,

Hastie et al., 2015], and it has been a major research theme in statistics, machine learning

and signal processing. Thus it is natural to ask how to perform high-dimensional statistical

learning tasks in a distributed environment.

Another key property of the distributed data is the potential heterogeneity. The success

of standard supervised machine learning paradigm relies heavily on the i.i.d. assumption on

the training data as well as the future testing data. However, when the data are collected in a

distributed fashion, it is sometimes no longer reasonable to assume the data from difference

machines came from the same distribution. Taking the on-device intelligence problem as

an example, user data collected from different mobile phones are unlikely to have the same

distribution. Rather, it is more reasonable to argue each user holds a separate distribution,

according to which the user behavior data are generated. But still, different users might

share some common characteristics in the data generating process, and it is important to

take advantages over the shared structure in the learning process. Thus, the heterogeneity in

distributed data brings interesting research question in designing coupled distributed learning

algorithms.
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1.1.2 Multiple recourse constraints

Typically, a learning algorithm is evaluated based on its statistical accuracy and compu-

tational efficiency. The statistical accuracy measures the how good prediction the model

make on future unseen data, or how close is the estimated model to the ground truth. The

computational efficiency was traditionally measured by the wall clock time run on a single

processor. In the distributed computing scenario, there is another dimension called commu-

nication efficiency also affect significantly on the total wall clock time. The communication

cost measures the overhead of exchanging information across machines. In a variety of

distributed systems, the communication cost of exchanging a single message is much more

expensive than the floating point operations [Martin et al., 1997]. As a consequence, the

communication efficiency has been a major bottleneck for many distributed learning systems.

To sum up, we face multiple recourse constraints when developing distributed learning algo-

rithms, and these efficiency requirements are often conflict with each other and there might

be some inherent trade-off between them:

• Sample efficiency We would like the distributed algorithms to utilize the available

data efficiently, and the goal is be as statistically accurate as the centralized solution,

which put all data together and solve the problem on a single machine.

• Computation efficiency We would like to use multiple available machines to share

the computation workload in the training process. Ideally we would like to have a

linear reduction in computation compared with best possible single machine solutions.

• Communication efficiency Communication cost consists of latency cost and band-

width cost, we could want to keep the total communication cost of the distributed

learning algorithm as low as possible.

• Memory efficiency and other constraints We might have some constraints in some

situations. For example, like stochastic gradient descent on single machine, we would
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like to load the data only once to keep memory efficiency; sometimes the machines

would like not to disclosing too much information about their local data, which is

often formulated as guarantees on differential privacy.

With such recourse constraints on multiple dimensions, it becomes challenging in devel-

oping distributed learning algorithms that are good at above all aspects, sometimes natural

trade-offs exists between one kind of recourse (e.g. communication) to another (computa-

tion).

1.2 Traditional approaches

A common approach to distributed learning is to minimize the empirical risk of data dis-

tributed across machines, by viewing the total empirical risk as an average of local per-

machine empirical risks:

fi(w) :=
1

n

n∑
j

`(w, zij),

where j is the index of individual data instance zij , n is the sample size on i-th machine and

`(·, ·) is the loss function. Empirical risk minimization (ERM) then reduces to the distributed

optimization problem

min
w

f(w) :=
1

m

m∑
i=1

fi(w) (1.1)

where each machine holds the local objective fi(·). There is indeed much work on dis-

tributed consensus problems of the form (1.1) [Tsitsiklis et al., 1986, Bertsekas and Tsit-

siklis, 1997, Xiao et al., 2007, Nedic et al., 2010, Shi et al., 2014]. The main difficulty of

consensus problems is that in general, the local objectives might be arbitrarily different, and

as a result, one can obtain strong lower bounds on the amount of communication that must be

exchanged in order to reach a joint optimum [Olshevsky and Tsitsiklis, 2011]. In particular,

the problem becomes harder as more machines are involved, requiring more communication

and more computation.
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But as we argue here, simply reducing distributed learning to such a deterministic con-

sensus problem overlooks the stochastic nature of the learning problem. As discussed above,

guarantees for deterministic consensus necessarily becomes worse as more machine are avail-

able. But a goal of distributed learning is to reduce the cost of learning by having more

machines available. Any approach based on generic deterministic consensus analysis is thus

futile in harnessing the benefit of distributed learning.

There are actually two issues that are ignored here: first, that our true objective isn’t

just getting small empirical error, but rather using samples to minimize our true objective

which is the expected risk (e.g. generalization error, error on future examples). As we

now understand in the serial setting, keeping this true objective in mind changes both our

analysis and our choice of methods [Bousquet and Bottou, 2008, Shalev-Shwartz et al.,

2011b]. Focusing on the true objective also allows us to understand how, at least in the

serial setting, having more data available does not mean runtime must increase (as it would

if we focused only on the empirical objective), but actually makes the problem easier and even

allows decreasing runtime [Shalev-Shwartz and Srebro, 2008]. Second, the local objectives

fi(w) are not arbitrarily different, as in the deterministic consensus setting, as they often

reflect data drawn from the same or similar source distributions. Taking both issues into

account will allow us to develop and study methods that leverage additional machines in

order to make the problem easier, not harder. In this thesis, we ask and pursuit answer for

the following key question in distributed learning:

How to leverage the similarity/relatedness structures between machines

when designing distributed machine learning algorithms ?

1.3 Overview and organization of main results

In this thesis, we make the following contributions to the field of distributed machine learning:
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• Efficient distributed learning with sparsity. We propose a novel, efficient ap-

proach for distributed sparse learning with observations randomly partitioned across

machines. In each round of the proposed method, worker machines compute the gra-

dient of the loss on local data and the master machine solves a shifted `1 regularized

loss minimization problem. After a number of communication rounds that scales only

logarithmically with the number of machines, and independent of other parameters of

the problem, the proposed approach provably matches the estimation error bound of

centralized methods. We present and analyze an approach for distributed stochastic

optimization which is statistically optimal and achieves near-linear speedups (up to log-

arithmic factors). Our approach allows a communication-memory tradeoff, with either

logarithmic communication but linear memory, or polynomial communication and a

corresponding polynomial reduction in required memory. This communication-memory

tradeoff is achieved through minibatch-prox iterations (minibatch passive-aggressive

updates), where a subproblem on a minibatch is solved at each iteration. We provide

a novel analysis for such a minibatch-prox procedure which achieves the statistical

optimal rate regardless of minibatch size and smoothness, thus significantly improving

on prior work. This work appeared in [Wang et al., 2017a], and is presented in detail

in Chapter 2.

• Memory and communication efficient distributed stochastic optimization

with minibatch-prox. We present and analyze an approach for distributed stochastic

optimization which is statistically optimal and achieves near-linear speedups (up to

logarithmic factors). Our approach allows a communication-memory tradeoff, with

either logarithmic communication but linear memory, or polynomial communication

and a corresponding polynomial reduction in required memory. This communication-

memory tradeoff is achieved through minibatch-prox iterations (minibatch passive-

aggressive updates), where a subproblem on a minibatch is solved at each iteration.
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We provide a novel analysis for such a minibatch-prox procedure which achieves the

statistical optimal rate regardless of minibatch size and smoothness, thus significantly

improving on prior work. This work appeared in [Wang et al., 2017d], and is presented

in detail in Chapter 3.

• Distributed optimization with sketching. We study sketching from an optimiza-

tion point of view. We first show that the iterative Hessian sketch is an optimization

process with preconditioning and develop an accelerated version using this insight to-

gether with conjugate gradient descent. Next, we establish a primal-dual connection

between the Hessian sketch and dual random projection, which allows us to develop an

accelerated iterative dual random projection method by applying the preconditioned

conjugate gradient descent on the dual problem. Finally, we tackle the problems of large

sample size and high-dimensionality in massive data sets by developing the primal-dual

sketch. The primal-dual sketch iteratively sketches the primal and dual formulations

and requires only a logarithmic number of calls to solvers of small sub-problems to

recover the optimum of the original problem up to arbitrary precision. Our iterative

sketching techniques can also be applied for solving distributed optimization problems

where data are partitioned by samples or features. This work appeared in [Wang et al.,

2017b,c], and is presented in detail in Chapter 4.

• Communication-computation balanced optimization. We present novel dis-

tributed optimization algorithms to solve empirical risk minimization problems, the

methods always achieve near-linear computation speedup even for objectives with large

condition number. Empirical results are provided to demonstrate the proposed ap-

proach achieves a good balance between communication and computation. This work

appeared in [Wang et al., 2018], and is presented in detail in Chapter 5.

• Distributed multi-task learning with shared sparsity. We consider the problem
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of distributed multitask learning, where each machine learns a separate, but related,

task. Specifically, each machine learns a linear predictor in high-dimensional space,

where all tasks share the same small support. We present a communication-efficient

estimator based on the debiased lasso and show that it is comparable with the optimal

centralized method. This work appeared in [Wang et al., 2016b], and is presented in

detail in Chapter 6.

• Distributed multi-task learning with shared subspace. We study the problem

of distributed multi-task learning with shared representation, where each machine aims

to learn a separate, but related, task in an unknown shared low-dimensional subspaces,

i.e. when the predictor matrix has low rank. We consider a setting where each task is

handled by a different machine, with samples for the task available locally on the ma-

chine, and study communication-efficient methods for exploiting the shared structure.

This work appeared in [Wang et al., 2016a], and is presented in detail in Chapter 7.

Some concluding remarks and future directions are presented in Chapter 8.

Empirical vs population objectives Distributed learning algorithms typically construct

the model through minimizing certain forms of optimization objectives. One form of objec-

tives is the population objectives, which take expectation over individual loss functions in-

duced by each data instance, the population objective is directly connected to generalization

[Bousquet and Bottou, 2008], i.e. the ability to predicting the future. Another form of ob-

jective is the empirical objective, which takes empirical average of the loss functions induced

by observed data. With proper forms of regularization, minimizing empirical objective can

also lead to generalization [Vapnik, 1995]. Thus distributed learning algorithms can either

work on empirical objectives or directly work on population objectives. The main results of

Chapter 2, 3, 6 and 7 focus on the population objectives, while the main results of Chapter

4 and 5 focus on empirical objectives.
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CHAPTER 2

EFCIENT DISTRIBUTED LEARNING WITH SPARSITY

2.1 Motivation and problem set-up

We consider learning a sparse linear regressor w minimizing the population objective:

w∗ = arg min
w

EX,Y∼D [`(Y, 〈X,w〉)] , (2.1)

where (X, Y ) ∈ X × Y ⊆ Rp × Y are drawn from an unknown distribution D and `(·, ·) is

a convex loss function, based on N i.i.d. samples {xi, yi}Ni=1 drawn from D, and when the

support S := support(w∗) = {j ∈ [p] | w∗j 6= 0} of w∗ is small, |S| ≤ s. In a standard single-

machine setting, a common empirical approach is to minimize the `1 regularized empirical

loss (see, e.g., (2.2) below). Here we consider a setting where data are distributed across

m machines, and, for simplicity, assume1 that N = nm, so that each machine j has access

to n i.i.d. observations (from the same source D) {xji, yji}ni=1 (equivalently, that N = nm

samples are randomly partitioned across machines).

The main contribution of the chapter is a novel algorithm for estimating w∗ in a dis-

tributed setting. Our estimator is able to achieve the performance of a centralized procedure

that has access to all data, while keeping computation and communication costs low. Com-

pared to the existing one-shot estimation approach [Lee et al., 2017b], our method can

achieve the same statistical performance without performing the expensive debiasing step.

As the number of communication rounds increases, the estimation accuracy improves until

matching the performance of a centralized procedure, which happens after the logarithm of

the total number of machines rounds. Furthermore, our results can be achieved under weak

assumptions on the data generating procedure.

1. Results in this chapter easily generalize to a setting where each machine has a different number of
observations.
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Approach
n & ms2 log p ms2 log p & n & s2 log p

Communication Computation Communication Computation

Centralize n · p Tlasso(mn, p) n · p Tlasso(mn, p)
Avg-Debias p p · Tlasso(n, p) × ×

Ours (EDSL) p 2 · Tlasso(n, p) logm · p logm · Tlasso(n, p)

Table 2.1: Comparison of resources required for matching the centralized error bound of
various approaches for high-dimensional distributed sparse linear regression problems, where
Tlasso(n, p) is the runtime for solving a generalized lasso problem of size n× p.

We assume that the communication occurs in rounds. In each round, machines exchange

messages with the master machine. Between two rounds, each machine only computes based

on its local information, which includes local data and previous messages [Zhang et al.,

2013g, Shamir and Srebro, 2014, Arjevani and Shamir, 2015]. In a non-distributed setting,

efficient estimation procedures need to balance statistical efficiency with computation effi-

ciency (runtime). In a distributed setting, the situation is more complicated and we need

to balance two resources, local runtime and number of rounds of communication, with the

statistical error. The local runtime refers to the amount of work each machine needs to

do. The number of rounds of communication refers to how often do local machines need to

exchange messages with the master machine. We compare our procedure to other algorithm

using the aforementioned metrics.

We consider the following two baseline estimators of w∗: the local estimator uses data

available only on the master (first) machine and ignores data available on other machines.

In particular, it computes

ŵlocal = arg min
w

1

n

n∑
i=1

`(y1i, 〈x1i,w〉) + λ||w||1 (2.2)

using locally available data. The local procedure is efficient in both communication and

computation, however, the resulting estimation error is large compared to an estimator that
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uses all of the available data. The other idealized baseline is the centralized estimator

ŵcentralize = arg min
w

1

mn

m∑
j=1

n∑
i=1

`(yji, 〈xji,w〉) + λ||w||1.

Unfortunately, due to data being huge and communication expensive, we cannot compute

the centralized estimator, even though it achieves the optimal statistical error.

In a related setting, Lee et al. [2017b] studied a one-shot approach to learning w∗, called

Avg-Debias, that is based on averaging the debiased lasso estimators [Zhang and Zhang,

2013]. Under strong assumptions on the data generating procedure, their approach matches

the centralized error bound after one round of communication. While an encouraging result,

there are limitations to this approach, that we list below.

• The debiasing step in Avg-Debias is computationally heavy as it requires each local

machine to estimate a p × p matrix. For example, Javanmard [2014] (section 5.1)

transforms the problem of estimating the debiasing matrix Θ into p generalized lasso

problems. This is computationally prohibitive for high-dimensional problems [Zhang

and Zhang, 2013, Javanmard and Montanari, 2014]. In comparison, our procedure

requires only solving one `1 penalized objective in each iteration, which has the same

time complexity as computing β̂local in (2.2). See Section 2.2 for details.

• Avg-Debias procedure only matches the statistical error rate of the centralized proce-

dure when the sample size per machine satisfies n & ms2 log p. Our approach improves

this sample complexity to n & s2 log p.

• Avg-Debias procedure requires strong conditions on the data generating process. For

example, the data matrix is required to satisfy the generalized coherence condition for

debiasing to work2. As we show here, such a condition is not needed for consistent

2. The generalized coherence states that there exists a matrix Θ, such that ||Σ̂Θ− Ip||∞ .
√

log p
n , where

Σ̂ is the empirical covariance matrix.
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high-dimensional estimation in a distributed setting. Instead, we only require standard

restricted eigenvalue condition that are commonly assumed in the high-dimensional

estimation literature.

Our method (EDSL) addresses the aforementioned issues of Avg-Debias. Table 2.1 sum-

marizes the resources required for the approaches discussed above to solve the distributed

sparse linear regression problems.

Parallel Work In parallel work (publicly announced on arXiv simultaneously with the

results in this contribution), Jordan et al. [2018] present a method which is equivalent to

the first iteration of our method, and thus achieves the same computational advantage over

Avg-Debias as depicted in the left column of Table 2.1 and discussed in the first and third

bullet points above. Jordan et al. extend the idea in ways different and orthogonal to this

submission, by considering also low-dimensional and Bayesian inference problems. Still, for

high-dimensional problems, they only consider a one-shot procedure, and so do not achieve

statistical optimality in the way our method does, and do not allow using n . ms2 log p

samples per machine (see right half of Table 2.1). The improved one-shot approach is thus

a parallel contribution, made concurrently by Jordan et al. and by us, while the multi-step

approach and accompanied reduction in required number of samples (discusse in the second

bullet point above) and improvement in statistical accuracy is a distinct contribution of this

this submission.

Other Related Work A large body of literature exists on distributed optimization for

modern massive data sets [Dekel et al., 2012, Duchi et al., 2012, 2014, Zhang et al., 2013g,

Zinkevich et al., 2010, Boyd et al., 2011, Balcan et al., 2012, Yang, 2013, Jaggi et al., 2014,

Ma et al., 2015, Shamir and Srebro, 2014, Zhang and Xiao, 2015, Lee et al., 2017a, Arjevani

and Shamir, 2015]. A popular approach to distributed estimation is averaging estimators

formed locally by different machines [Mcdonald et al., 2009, Zinkevich et al., 2010, Zhang
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et al., 2012, Huang and Huo, 2015]. Divide-and-conquer procedures also found applications

in statistical inference [Zhao et al., 2014a, Shang and Cheng, 2017, Lu et al., 2016]. Shamir

and Srebro [2014] and Rosenblatt and Nadler [2016] showed that averaging local estimators

at the end will have bad dependence on either condition number or dimension of the problem.

Yang [2013], Jaggi et al. [2014] and Smith et al. [2016] studied distributed optimization using

stochastic (dual) coordinate descent, these approaches try to find a good balance between

computation and communication, however, their communication complexity depends badly

on the condition number. As a result, they are not better than first-order approaches, such as

(proximal) accelerated gradient descent [Nesterov, 1983], in terms of communication. Shamir

et al. [2014] and Zhang and Xiao [2015] proposed truly communication-efficient distributed

optimization algorithms. They leveraged the local second-order information and, as a result,

obtained milder dependence on the condition number compared to the first-order approaches

[Boyd et al., 2011, Shamir and Srebro, 2014, Ma et al., 2015]. Lower bounds were studied in

Zhang et al. [2013c], Braverman et al. [2016], and Arjevani and Shamir [2015]. However, it is

not clear how to extend these existing approaches to problems with non-smooth objectives,

including the `1 regularized problems.

Most of the above mentioned work is focused on estimators that are (asymptotically)

linear. Averaging at the end reduces the variance of the these linear estimators, resulting

in an estimator that matches the performance of a centralized procedure. Zhang et al.

[2013d] studied averaging local estimators obtained by the penalized kernel ridge regression,

with the `2 penalty was chosen smaller than usual to avoid the large bias problem. The

situation in a high-dimensional setting is not so straightforward, since the sparsity inducing

penalty introduces the bias in a non-linear way. Zhao et al. [2014b] illustrated how averaging

debiased composite quantile regression estimators can be used for efficient inference in a high-

dimensional setting. Averaging debiased high-dimensional estimators was subsequently used

in Lee et al. [2017b] for distributed estimation, multi-task learning [Wang et al., 2016b], and
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statistical inference [Battey et al., 2015].

Chapter Organization. We describe our method in Section 2.2, and present the main

results in the context of sparse linear regression in Section 2.3, and provide a generalized

theory in Section 2.4. We demonstrate the effectiveness of the proposal via experiments in

Section 7.5, and Section 2.6 contains detail proof of the technical results.

Notation. We use [n] to denote the set {1, . . . , n}. For a vector a ∈ Rn, we let support(a) =

{j : aj 6= 0} be the support set, ||a||q, q ∈ [1,∞), the `q-norm defined as ||a||q =

(
∑
i∈[n] |ai|q)1/q, and ||a||∞ = maxi∈[n] |ai|. For a matrix A ∈ Rn1×n2 , we use the following

element-wise `∞ matrix norms ||A||∞ = maxi∈[n1],j∈[n2] |aij |. Denote In as n × n identity

matrix. For two sequences of numbers {an}∞n=1 and {bn}∞n=1, we use an = O(bn) to denote

that an ≤ Cbn for some finite positive constant C, and for all n large enough. If an = O(bn)

and bn = O(an), we use the notation an � bn. We also use an . bn for an = O(bn) and

an & bn for bn = O(an).

2.2 Methodology

In this section, we detail our procedure for estimating w∗ in a distributed setting. Algorithm

1 provides an outline of the steps executed by the master and worker nodes. Let

Lj(w) =
1

n

n∑
i=1

`(yji, 〈xji,w〉), j ∈ [m],

be the empirical loss at each machine. Our method starts by solving a local `1 regularized

M -estimation program. At iteration t = 0, the master (first) machine obtains ŵ0 as a

minimizer of the following program

minL1(w) + λ0||w||1. (2.3)
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Algorithm 1 Efficient Distributed Sparse Learning (EDSL).

Input: Data {xji, yji}j∈[m],i∈[n], loss function `(·, ·).
Initialization: The master obtains ŵ0 by minimizing (6.2), and broadcast ŵ0 to every
worker.
for t = 0, 1, . . . do

Workers:
for j = 2, 3, . . . ,m do

if Receive ŵt from the master then
Calculate gradient ∇Lj(ŵt) and send it to the master.

end

end
Master:
if Receive {∇Lj(ŵt)}mj=2 from all workers then

Obtain ŵt+1 by solving the shifted `1 regularized problem in (2.4).
Broadcast ŵt+1 to every worker.

end

end

The vector ŵ0 is broadcasted to all other machines, which use it to compute a gradient of

the local loss at ŵ0. In particular, each worker computes ∇Lj(ŵ0) and communicates it

back to the master. This constitutes one round of communication. At the iteration t + 1,

the master solves the shifted `1 regularized problem

ŵt+1 = arg min
w
L1(w) +

〈
1

m

m∑
j=1

∇Lj(ŵt)−∇L1(ŵt),w

〉
+ λt+1||w||1. (2.4)

A minimizer ŵt+1 is communicated to other machines, which use it to compute the local

gradient ∇Lj(ŵt+1) as before.

Formulation (2.4) is inspired by the proposal in Shamir et al. [2014], where the authors

studied distributed optimization for smooth and strongly convex empirical objectives. Com-

pared to Shamir et al. [2014], we do not use any averaging scheme, which would require

additional rounds of communication and, moreover, we add an `1 regularization term to

ensure consistent estimation in high-dimensions. Different from the distributed first-order

optimization approaches, the refined objective (2.4) leverages both global first-order infor-
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mation and local higher-order information. To see this, suppose we set λt+1 = 0 and that

Lj(w) is a quadratic objective with invertible Hessian. Then we have the following closed

form solution for (2.4),

ŵt+1 = ŵt −
(
∇2L1(ŵt)

)−1

m−1
∑
j∈[m]

∇Lj(ŵt)

 ,

which is exactly a sub-sampled Newton updating rule. Unfortunately for high-dimensional

problems, the Hessian is no longer invertible, and a `1 regularization is added to make the

solution well behaved. The regularization parameter λt will be chosen in a way, so that it

decreases with the iteration number t. As a result we will be able to show that the final

estimator performs as well at the centralized solution. We discuss in details how to choose

λt in the following section.

2.3 Main theoretical result

We illustrate our main theoretical results in the context of sparse linear regression model

yji = 〈xji,w∗〉+ εji, i ∈ [n], j ∈ [m], (2.5)

where xji is a subgaussian p-dimensional vector of input variables and εji is i.i.d. mean zero

subgaussian noise. The loss function considered is the usual the squared loss `(y, ŷ) = 1
2(y−

ŷ)2. With this notation, the centralized approach leads to the lasso estimator [Tibshirani,

1996]

ŵcentralize = arg min
w

1

m

m∑
j=1

Lj(w) + λ||w||1,
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where the loss at worker j is

Lj(w) =
1

2n

∑
i∈[n]

(yji − 〈w,xji〉)2.

Before stating the main result, we provide the definition of the subgaussian norm [Ver-

shynin, 2010].

Definition 1 (Subgaussian norm). The subgaussian norm ||X||ψ2 of a subgaussian p-dimensional

random vector X, is defined as

||X||ψ2 = sup
x∈Sp−1

sup
q>1

q−1/2(E|〈X, x〉|q)1/q,

where Sp−1 is the p-dimensional unit sphere.

We also need an assumption on the restricted strong convexity constant [Negahban et al.,

2012].

Assumption 2. We assume that there exists a κ > 0, such that for any ∆ ∈ C(S, 3),

1

2n
||X1∆||22 ≥ κ||∆||22,

where

C(S, 3) = {∆ ∈ Rp | ||∆Sc||1 ≤ 3||∆S ||1}

is a restricted cone in Rp, and

X1 = [xT11; xT12; . . . ; xT1n] ∈ Rn×p

is the data matrix on the master machine.

When xji are randomly drawn from a subgaussian distribution, Assumption (2) is satis-
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fied with high probability as long as n & s log p [Rudelson and Zhou, 2013].

We are now ready to state the estimation error bound for ŵt+1 obtained using Algo-

rithm 1.

Theorem 3. Assume that data are generated from a sparse linear regression model in (2.5)

with ||xji||ψ2 ≤ σX and ||εji||ψ2 ≤ σ. Let

λt+1 =
2

mn

∣∣∣∣∣∣∣∣ ∑
j∈[m]

∑
i∈[n]

xjiεji

∣∣∣∣∣∣∣∣
∞

+ 2L

(
max
j,i
||xji||2∞

)
· ||ŵt −w∗||1 ·

√
log(2p/δ)

n (2.6)

Then for t ≥ 0 we have, with probability at least 1− 2δ,

||ŵt+1 −w∗||1 ≤
1− at+1

n

1− an
48sσσX

κ

√
log(p/δ)

mn
+ at+1

n
sσσX
κ

√
log(np/δ)

n
, (2.7)

||ŵt+1 −w∗||2 ≤
1− at+1

n

1− an
12
√
sσσX
κ

√
log(p/δ)

mn
+ atnbn

sσσX
κ

√
log(np/δ)

n
, (2.8)

where

an =
96sσσX

κ

√
log(2p/δ)

n

and

bn =
24
√
sσσX
κ

√
log(np/δ)

n
.

We can simplify the bound obtained in Theorem 3 by looking at the scaling with respect

to n,m, s, and p, by treating κ, σ and σX as constants. Suppose n & s2 log p and set

λt �
√

log p

mn
+

√
log p

n

(
s

√
log p

n

)t
.
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The following error bounds hold for Algorithm 1:

||ŵt −w∗||1 .P s

√
log p

mn
+

(
s

√
log p

n

)t+1

,

||ŵt −w∗||2 .P

√
s log p

mn
+

(√
s log p

n

)(
s

√
log p

n

)t
.

We can compare the above bounds to the performance of the local and centralized lasso

[Wainwright, 2009, Meinshausen and Yu, 2009, Bickel et al., 2009]. For ŵlocal, we have

||ŵlocal −w∗||1 .P s

√
log p

n

and

||ŵlocal −w∗||2 .P

√
s log p

n
.

For ŵcentralize, we have

||ŵcentralize −w∗||1 .P s

√
log p

mn

and

||ŵcentralize −w∗||2 .P

√
s log p

mn
.

We see that after one round of communication, we have

||ŵ1 −w∗||1 .P s

√
log p

mn
+
s2 log p

n

and

||ŵ1 −w∗||2 .P

√
s log p

mn
+
s3/2 log p

n
.

These bounds match the results in Lee et al. [2017b] without expensive debiasing step.

Furthermore, whenm . n
s2 log p

, they match the performance of the centralized lasso. Finally,

20



as long as t & logm and n & s2 log p, it is easy to check that

(
s

√
log p
n

)t+1

. s

√
log p
mn .

Therefore,

||ŵt+1 −w∗||1 .P s

√
log p

mn

and

||ŵt+1 −w∗||2 .P

√
s log p

mn
,

which matches the centralized lasso performance without additional error terms. That is,

as long as n & s2 log p, the rounds of communication to matches centralized procedure only

increase logarithmically with the number of machines and independent of other parameters.

Differently, for distributed learning methods studied in the literature for minimizing smooth

objectives, the rounds of communication to match centralized procedure increase polynomi-

ally with m (see table 1 in Zhang and Xiao [2015]). This is because here we exploit the

underlying restricted strong convexity from empirical loss functions, while prior work on

distributed minimization of smooth objectives Shamir et al. [2014], Zhang and Xiao [2015]

only consider strong convexity explicitly from regularization.

2.4 Generalized theory and proof sketch

In order to establish Theorem 3, we prove an error bound on ŵ−w∗ for a general loss `(·, ·)

and ŵ obtained using Algorithm 1. To simplify the presentation, we assume that the domain

X is bounded and that the loss function `(·, ·) is smooth.

Assumption 4. The loss `(·, ·) is L-smooth with respect to the second argument:

`′(a, b)− `′(a, c) ≤ L|b− c|, ∀a, b, c ∈ R

Furthermore, |`′′′(a, b)| ≤M for all a, b ∈ R.

Commonly used loss functions in statistical learning, including the squared loss for re-
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gression and logistic loss for classification, satisfy this assumption [Zhang et al., 2013g].

Next, we state the restricted strong convexity condition for a general loss function [Ne-

gahban et al., 2012].

Assumption 5. There exists κ > 0 such that for any ∆ ∈ C(S, 3)

L1(w∗ + ∆)− L1(w∗)− 〈∇L1(w∗),∆〉 ≥ κ||∆||22,

with C(S, 3) = {∆ ∈ Rp|||∆Sc||1 ≤ 3||∆S ||1}.

The restricted strong convexity holds with high probability for a wide range of models and

designs and it is commonly assumed for showing consistent estimation in high-dimensions

[see, for example, Van De Geer et al., 2009, Negahban et al., 2012, Raskutti et al., 2010,

Rudelson and Zhou, 2013, for details].

Our main theoretical result establishes a recursive estimation error bound, which relates

the estimation error ||ŵt+1 −w∗|| to that of the previous iteration ||ŵt −w∗||1.

Theorem 6. Suppose Assumption 4 and 5 holds. Let

λt+1 =2

∣∣∣∣∣∣∣∣ 1

m

∑
j∈[m]

∇Lj(w∗)
∣∣∣∣∣∣∣∣
∞

+ 2L

(
max
j,i
||xji||2∞

)
||w∗ − ŵt||1

√
log(2p/δ)

n

+ 2M

(
max
j,i
||xji||3∞

)(
||ŵt −w∗||21

)
.

(2.9)

Then with probability at least 1− δ, we have

||ŵt+1 −w∗||1 ≤
48s

κ

∣∣∣∣∣∣∣∣ 1

m

∑
j∈[m]

∇Lj(w∗)
∣∣∣∣∣∣∣∣
∞

+
48sL

κ

(
max
j,i
||xji||2∞

)
||w∗ − ŵt||1

√
log(2p/δ)

n

+
48sM

κ

(
max
j,i
||xji||3∞

)(
||ŵt −w∗||21

)
,
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and

||ŵt+1 −w∗||2 ≤
12
√
s

κ

∣∣∣∣∣∣∣∣ 1

m

∑
j∈[m]

∇Lj(w∗)
∣∣∣∣∣∣∣∣
∞

+
12
√
sL

κ

(
max
j,i
||xji||2∞

)
||w∗ − ŵt||1

√
log(2p/δ)

n

+
4
√
sM

κ

(
max
j,i
||xji||3∞

)(
||ŵt −w∗||21

)
.

Theorem 6 upper bounds the estimation error ||ŵt+1−w∗||1 as a function of ||ŵt−w∗||1.

Applying Theorem 6 iteratively, we immediately obtain the following estimation error bound

which depends on the quality of local `1 regularized estimation ||ŵ0 −w∗||1.

Corollary 7. Suppose the conditions of Theorem 6 are satisfied. Furthermore, suppose that

for all t, we have

M

(
max
j,i
||xji||∞

)
||ŵt −w∗||1 ≤ L

√
log(2p/δ)

n
. (2.10)

Then with probability at least 1− δ, we have

||ŵt+1 −w∗||1 ≤ at+1
n ||ŵ0 −w∗||1 + (1− an)−1(1− at+1

n ) · 48s

κ
·
∣∣∣∣∣∣∣∣ 1

m

∑
j∈[m]

∇Lj(w∗)
∣∣∣∣∣∣∣∣
∞

and

||ŵt+1 −w∗||2 ≤ atnbn · ||ŵ0 −w∗||1 + (1− an)−1(1− at+1
n ) · 12

√
s

κ
·
∣∣∣∣∣∣∣∣ 1

m

∑
j∈[m]

∇Lj(w∗)
∣∣∣∣∣∣∣∣
∞
,

where

an =
96sL

κ

(
max
j,i
||xji||2∞

)√
log(2p/δ)

n

and

bn =
24
√
sL

κ

(
max
j,i
||xji||2∞

)√
log(2p/δ)

n
.
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For the quadratic loss we have that M = 0 and the condition in (2.10) holds. For other

types of losses, condition in (2.10) will be true for t large enough when m & s2, leading to

local exponential rate of convergence until reaching statistical optimal region.

2.4.1 Proof sketch of Theorem 6

We first analyze how the estimation error bound decreases after one round of communication.

In particular, we bound ||ŵt+1 −w∗|| with ||ŵt −w∗||. Define

L̃1(w, ŵt) = L1(w) +

〈
1

m

∑
j∈[m]

∇Lj(ŵt)−∇L1(ŵt),w

〉
. (2.11)

Then

∇L̃1(w, ŵt) = ∇L1(w) +
1

m

∑
j∈[m]

∇Lj(ŵt)−∇L1(ŵt).

The following lemma bounds the `∞ norm of ∇L̃1(w, ŵt).

Lemma 8. With probability at least 1− δ, we have

∣∣∣∣∣∣∣∣∇L̃1(w∗, ŵt)

∣∣∣∣∣∣∣∣
∞
≤
∣∣∣∣∣∣∣∣ 1

m

∑
j∈[m]

∇Lj(w∗)
∣∣∣∣∣∣∣∣
∞

+ 2L

(
max
j,i
||xji||2∞

)
||w∗ − ŵt||1

√
log(2p/δ)

n

+M

(
max
j,i
||xji||3∞

)(
||ŵt −w∗||21

)
.

The lemma bounds the magnitude of the gradient of the loss at optimum point w∗.

This will be used to guide our choice of the `1 regularization parameter λt+1 in (2.4). The

following lemma shows that as long as λt+1 is large enough, it is guaranteed that ŵt+1−w∗

is in a restricted cone.

24



Lemma 9. Suppose

λt+1/2 ≥
∣∣∣∣∣∣∣∣∇L̃1(w∗, ŵt)

∣∣∣∣∣∣∣∣
∞
.

Then with probability at least 1− δ, we have ŵt+1 −w∗ ∈ C(S, 3).

Based on the conic condition and restricted strong convexity condition, we can obtain

the recursive error bound stated in Theorem 6 following the proof strategy as in Negahban

et al. [2012].

2.4.2 Application example: sparse logistic regression

For logistic model, performing maximum likelihood estimation (MLE) on the following lo-

gistic model:

P(yji = ±1|xji) =
exp(yji〈xji,w∗〉)

exp(yji〈xji,w∗〉) + 1
, (2.12)

which leads to the logistic loss function `(yji, 〈w,xji〉) = log(1 + exp(−yji〈w,xji〉)). For

high-dimensional problems, when we add a `1 regularization, we obtain the `1 regularized

logistic regression model [Zhu and Hastie, 2004, Wu et al., 2009]:

ŵcentralize = arg min
w

1

mn

∑
j∈[m]

∑
i∈[n]

log(1 + exp(−yji〈w,xji〉)) + λ||w||1.

The logistic loss is 1
4 -smooth, and we also know M = 1

4 because of self-concordance [Zhang

and Xiao, 2015]. Let Lj(w) = 1
n

∑
i∈[n] log(1 + exp(−yji〈w,xji〉)), [Negahban et al., 2012]

showed that if xji are drawn from mean zero distribution with sub-Gaussian tails, then

L1(w) satisfies the restricted strong condition (5). Moreover, we have the following control

on the quantity

∣∣∣∣∣∣∣∣ 1
m

∑
j∈[m]∇Lj(w∗)

∣∣∣∣∣∣∣∣
∞

.
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Lemma 10. Then we have the following upper bound holds in probability at least 1− δ:

∣∣∣∣∣∣∣∣ 1

m

∑
j∈[m]

∇Lj(w∗)
∣∣∣∣∣∣∣∣
∞

. ||xji||∞

√
2 log(p/δ)

mn
.

The following `1 error bound states the estimation error for logistic regression with `1

regularization, which was established, for example, in [Van de Geer et al., 2008, Negahban

et al., 2012].

Lemma 11. Under the model (2.12), when n ≥ (64/κ)s log p, we have the following estima-

tion error bound for ŵ0 holds with probability at least 1− δ:

||ŵ0 −w∗||1 .
sσX
κ

√
2 log(np/δ)

n
.

With above analysis for sparse logistic regression model with random design, we are ready

to present the results for the estimation error bound which established local exponential

convergence.

Corollary 12. Under sparse logistic regression model with random design, and set λt+1 as

(2.9). If the following condition holds for some T ≥ 0:

||ŵT −w∗||1 ≤ 4

√
log(2p/δ)

n
. (2.13)

Then with probability at least 1 − 2δ, we have the following estimation error bound for all

t ≥ T :

||ŵt+1 −w∗||1 ≤
1− at−T+1

n

1− an
96sσσX

κ

√
log(p/δ)

mn
+ 4at−T+1

n

√
log(2p/δ)

n
, (2.14)

||ŵt+1 −w∗||2 ≤
1− at−T+1

n

1− an
4
√
sσσX
κ

√
log(p/δ)

mn
+ 4at−Tn bn

√
log(2p/δ)

n
, (2.15)

26



where

an =
24sσσX

κ

√
log(2p/δ)

n
and bn =

√
sσσX
κ

√
log(np/δ)

n
.

2.4.3 Application example: high-dimensional generalized linear models

The results are readily extendable to other high-dimensional generalized linear models [Mc-

Cullagh and Nelder, 1989, Van de Geer et al., 2008], where the response variable yji ∈ Y is

drawn from the distribution

P(yji|xji) ∝ exp

(
yji〈xji,w∗〉 − Φ(〈xji,w∗〉)

A(σ)

)
,

where Φ(·) is a link function and A(σ) is a scale parameter. Under the random subgaus-

sian design, as long as the loss function has Lipschitz gradient, then the algorithm and

corresponding estimation error bound and be applied.

2.4.4 Application example: high-dimensional graphical models

The results can also be used for the distributed unsupervised learning setting where the task

is to learn a sparse graphical structure that represents the conditional independence between

variables. Widely studied graphical models are Gaussian graphical models [Meinshausen

and Bühlmann, 2006, Yuan and Lin, 2007] for continuous data and Ising graphical models

[Ravikumar et al., 2010] for binary observations. As shown in [Meinshausen and Bühlmann,

2006, Ravikumar et al., 2010], these model selection problems can be reduced to solving

parallel `1 regularized linear regression and logistic regression problems, respectively. Thus

the approach presented in this chapter can be readily applicable for these tasks.
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2.5 Experiments

In this section we present empirical comparisons between various approaches on both sim-

ulated and real world datasets. We run the algorithms for both distributed regression and

classification problems, and compare with the following algorithms: i) Local; ii) Centralize;

iii) Distributed proximal gradient descent (Prox GD); iv) Avg-Debias [Lee et al., 2017b] with

hard thresholding, and v) the proposed EDSL approach.

2.5.1 Simulations

We first examine the algorithms on simulated data. We generate {xji}j∈[m],i∈[n] from a

multivariate normal distribution with mean zero and covariance matrix Σ. The covariance

Σ controls the condition number of the problem and we will varying it to see how the

performance changes. We set Σij = 0.5|i−j| for the well-conditioned setting and Σij =

0.5|i−j|/5 for the ill-conditioned setting. The response variable {yji}j∈[m],i∈[n] are drawn

from (2.5) and (2.12) for regression and classification problems, respectively. For regression,

the noise εji is sampled from a standard normal distribution. The true model w∗ is set to

be s-sparse, where the first s-entries are sampled i.i.d. from a uniform distribution in [0, 1],

and the other entries are set to zero.

We run experiments with various (n, p,m, s) settings3. The estimation error ||ŵt−w∗||2

is shown versus rounds of communications for for Prox GD and the proposed EDSL algo-

rithm. We also plot the estimation error of Local, Avg-Debias, and Centralize as horizontal

lines, since the communication cost is fixed for for these algorithms45. Figure 2.1 and 2.2

summarize the results, averaged across 10 independent trials. We have the following obser-

vations:

3. n: sample size per machine, p: problem dimension, m: number of machines, s: true support size.

4. these algorithms have zero, one-shot and full communications, respectively.

5. To give some senses about computational cost, for a problem with n = 200, p = 1000, at each round
EDSL takes about 0.048s, while Avg-Debias takes about 40.334s.
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Figure 2.1: Comparison of various algorithms for distributed sparse regression, 1st and 3rd
row: well-conditioned cases, 2nd and 4th row: ill-conditioned cases.
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Figure 2.2: Comparison of various algorithms for distributed sparse classification (logistic
regression), 1st and 3rd row: well-conditioned cases, 2nd and 4th row: ill-conditioned cases.
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Figure 2.3: Comparison of various approaches for distributed sparse regression and classi-
fication on real world datasets. (Avg-Debias is omitted when it is significantly worse than
others.)
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• The Avg-Debias approach obtained much better estimation error compared to Local

after one round of communication and sometimes performed quite close to Centralize.

However, in most cases, there is still a gap compared with Centralize, especially when

the problem is not well-conditioned or m is large.

• ProxGD converges very slow when the condition number becomes bad (Σij = 0.5|i−j|/5

case).

• As theory suggests, EDSL obtained a solution that is competitive with Avg-Debias after

one round of communication. The estimation error decreases to match performance

of Centralize within few rounds of communications; typically less than 5, even though

the theory suggests EDSL will match the performance of centralize within O(logm)

rounds of communication.

Above experiments illustrate our theoretical results in finite samples. As suggested by

theory, when sample size per machine n is relatively small, one round of communication is not

sufficient to make Avg-Debias matches the performance of centralized procedure. However,

EDSL could match the performance of Avg-Debias with one round of communication and

further improve the estimation quality by exponentially reducing the gap between centralized

procedure with Avg-Debias, until matching the centralized performance. Thus, the proposed

EDSL improves the Avg-Debias approach both computationally and statistically.

2.5.2 Real-world data evaluation

In this section, we compare the distributed sparse learning algorithms on several real world

datasets. The datasets are publicly available from the LIBSVM website6 and UCI Machine

Learning Repository7. The statistics of these datasets are summarized in Table 5.2, where

6. https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

7. http://archive.ics.uci.edu/ml/
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Table 2.2: List of real-world datasets used in the experiments.
Name #Instances #Features Task

a9a 48,842 123 Classification
connect-4 67,557 127 Regression

dna 2,000 181 Regression
mitface 6,977 362 Classification

mnist 1 vs 2 14,867 785 Classification
mnist 60,000 785 Regression

mushrooms 8,124 113 Classification
protein 17,766 358 Regression

spambase 4,601 57 Classification
usps 7,291 257 Regression
w8a 64,700 301 Classification
year 51,630 91 Regression

some of the multi-class classification datasets are adopted under the regression setting with

squared losses. For all data sets, we use 60% of data for training, 20% as held-out validation

set for tuning the parameters, and the remaining 20% for testing. We randomly partition

data 10 times and report the average performance on the test set. For regression tasks,

the evaluation metric is the normalized Mean Squared Error (normalized MSE), while for

classification tasks we report the miss-classification error. We randomly partition the data

on m = 10 machines. The results are plotted in Figure 7.2 where for some datasets the

performance of Avg-Debias is significantly worse than others (mostly because the debiasing

step fails), thus we omit these plots. The plots are shown in Figure 7.2 We have the following

observations:

• Since there is no well-specified model on these datasets, the curves behave quite dif-

ferently on different data sets. However, a large gap between the local and centralized

procedure is consistent as the later uses 10 times more data.

• Avg-Debias often fails on these real datasets and performs much worse than in simu-

lations. The main reason might be that the assumptions, such as well-specified model
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or generalized coherence condition, fail, then Avg-Debias can totally fail and produce

solution even much worse than the local.

• Prox GD approach still converges slowly in most of the cases.

• The proposed EDSL is quite robust on real world data sets, and can output a solu-

tion which is highly competitive with the centralized model within a few rounds of

communications.

• There exits a slight “zig-zag” behavior for EDSL approach on some data sets. For

example, on the mushrooms data set, the predictive performance of EDSL is not stable.

In sum, the experimental results on real world data sets verified that the proposed EDSL

method is effective for distributed sparse learning problems.

2.6 Proofs of technical results

The section contains proofs of some theorems and lemmas stated in this chapter.

2.6.1 Proof of Lemma 8

Proof. Recall the definition of L̃1 from (2.11). We have

∇L̃1(w∗, ŵt) =∇L1(w∗) +
1

m

∑
j∈[m]

∇Lj(ŵt)−∇L1(ŵt)

=
1

m

∑
j∈[m]

∇Lj(w∗) +∇L1(w∗)−∇L1(ŵt)

−

 1

m

∑
j∈[m]

∇Lj(w∗)−
1

m

∑
j∈[m]

∇Lj(ŵt)

 .
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Using the triangle inequality

∣∣∣∣∣∣∣∣∇L̃1(w∗, ŵt)

∣∣∣∣∣∣∣∣
∞
≤
∣∣∣∣∣∣∣∣ 1

m

∑
j∈[m]

∇Lj(w∗)
∣∣∣∣∣∣∣∣
∞

+

∣∣∣∣∣∣∣∣∇L1(w∗)−∇L1(ŵt)−

 1

m

∑
j∈[m]

∇Lj(w∗)−
1

m

∑
j∈[m]

∇Lj(ŵt)

∣∣∣∣∣∣∣∣
∞
.

We focus on bounding the second term in the right-hand-side inequality above. Let τji =

`′(yji, 〈w∗,xji〉) and define vji(ŵt) ∈ Rp:

vji(ŵt) = xji(`
′(yji, 〈w∗,xji〉)− `′(yji, 〈ŵt,xji〉))

= τjixjix
T
ji (ŵt −w∗) + xji

`′′′(yji,uji)

2
(〈ŵt −w∗,xji〉)2

where uji is a number between 〈ŵt,xji〉 and 〈w∗,xji〉. With this notation

∣∣∣∣∣∣∣∣∇L1(w∗)−∇L1(ŵt)−

 1

m

∑
j∈[m]

∇Lj(w∗)−
1

m

∑
j∈[m]

∇Lj(ŵt)

∣∣∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣∣∣ 1n ∑

i∈[n]

v1i(ŵt)−
1

mn

∑
j

∑
i

vji(ŵt)

∣∣∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣∣∣ 1n∑

i

τ1ix1ix
T
1i(ŵt −w∗)− 1

mn

∑
j

∑
i

τjixjix
T
ji(ŵt −w∗)

∣∣∣∣∣∣∣∣
∞

+M ·
(

max
j,i
||xji||3∞

)
· ||ŵt −w∗||21 .
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The first term above can be further upper bounded by

∣∣∣∣∣∣∣∣ 1n∑
j

τ1ix1ix
T
1i(ŵt −w∗)− 1

mn

∑
j

∑
i

τjixjix
T
ji(ŵt −w∗)

∣∣∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣∣∣ 1n∑

j

τ1ix1ix
T
1i −

1

mn

∑
j

∑
i

τjixjix
T
ji

∣∣∣∣∣∣∣∣
∞
· ||ŵt −w∗||1 .

≤

∣∣∣∣∣∣∣∣ 1n ∑
i∈[n]

τ1ix1ix
T
1i − E

[
τjixjix

T
ji

] ∣∣∣∣∣∣∣∣
∞

+

∣∣∣∣∣∣∣∣ 1

mn

∑
j

∑
i

τjixjix
T
ji − E

[
τjixjix

T
ji

] ∣∣∣∣∣∣∣∣
∞


· ||ŵt −w∗||1 .

Using Hoeffding’s inequality together with a union bound, we have with probability at least

1− δ,

∣∣∣∣∣∣∣∣ 1n ∑
i∈[n]

τ1ix1ix
T
1i − E

[
τjixjix

T
ji

] ∣∣∣∣∣∣∣∣
∞
≤ L

(
max
j,i
||xji||2∞

)√
2 log(2p/δ)

n
,

and

∣∣∣∣∣∣∣∣ 1

mn

∑
j

∑
i

τjixjix
T
ji − E

[
τjixjix

T
ji

] ∣∣∣∣∣∣∣∣
∞
≤ L

(
max
j,i
||xji||2∞

)√
2 log(2p/δ)

mn
.

Combining the bounds, the proof of the lemma is complete.

36



2.6.2 Proof of Lemma 9

Proof. The proof uses ideas presented in [Negahban et al., 2012]. By triangle inequality we

have

||ŵt+1||1 − ||w∗||1 =||w∗ + (ŵt+1 −w∗)Sc + (ŵt+1 −w∗)S ||1 − ||w∗||1

≥||w∗ + (ŵt+1 −w∗)Sc ||1 − ||(ŵt+1 −w∗)S ||1 − ||w∗||1

=||(ŵt+1 −w∗)Sc||1 − ||(ŵt+1 −w∗)S ||1.

By the optimality of ŵt+1 for (2.4), we have

L̃1(ŵt+1, ŵt) + λt+1||ŵt+1||1 − L̃1(w∗, ŵt)− λt+1||w∗||1 ≤ 0.

Thus

L̃1(ŵt+1, ŵt)− L̃1(w∗, ŵt) + λt+1(||(ŵt+1 −w∗)Sc||1 − ||(ŵt+1 −w∗)S ||1) ≤ 0.

By the convexity of L̃1(·, ŵt), we further have

L̃1(ŵt+1, ŵt)− L̃1(w∗, ŵt) ≥ 〈∇L̃1(w∗, ŵt), ŵt+1 −w∗〉.

Thus by Hölder’s inequality

0 ≥〈∇L̃1(w∗, ŵt), ŵt+1 −w∗〉+ λt+1(||(ŵt+1 −w∗)Sc||1 − ||(ŵt+1 −w∗)S ||1)

≥− ||∇L̃1(w∗, ŵt)||∞||ŵt+1 −w∗||1 + λt+1(||(ŵt+1 −w∗)Sc||1 − ||(ŵt+1 −w∗)S ||1).
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Under the assumption on λt+1 we further have

0 ≥ −λt+1

2
||ŵt+1 −w∗||1 + λt+1(||(ŵt+1 −w∗)Sc||1 − ||(ŵt+1 −w∗)S ||1)

=
λt+1

2
||(ŵt+1 −w∗)Sc||1 −

3λt+1

2
||(ŵt+1 −w∗)S ||1,

which completes the proof.

2.6.3 Proof of Theorem 6

Proof. For the term L̃1(ŵt+1, ŵt)− L̃1(w∗, ŵt) we have

L̃1(ŵt+1, ŵt)− L̃1(w∗, ŵt) =L1(ŵt+1) +

〈
1

m

∑
j∈[m]

∇Lj(ŵt)−∇L1(ŵt), ŵt+1

〉

− L1(w∗)−

〈
1

m

∑
j∈[m]

∇Lj(ŵt)−∇L1(ŵt),w
∗
〉

≥〈∇L1(w∗), ŵt+1 −w∗〉+ κ||ŵt+1 −w∗||22

+

〈
1

m

∑
j∈[m]

∇Lj(ŵt)−∇L1(ŵt), ŵt+1

〉

−

〈
1

m

∑
j∈[m]

∇Lj(ŵt)−∇L1(ŵt),w
∗
〉

=

〈
∇L1(w∗) +

1

m

∑
j∈[m]

∇Lj(ŵt)−∇L1(ŵt), ŵt+1 −w∗
〉

+ κ||ŵt+1 −w∗||22

=〈∇L̃1(w∗, ŵt), ŵt+1 −w∗〉+ κ||ŵt+1 −w∗||22,
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where the first inequality we use the restricted strong convexity condition (5). Also by the

optimality of ŵt+1 for (2.4), we have

L̃1(ŵt+1, ŵt)− L̃1(w∗, ŵt) + λt+1||ŵt+1||1 − λt+1||w∗||1 ≤ 0.

Combining above two inequalities we obtain with probability at least 1− δ:

λt+1||w∗||1 − λt+1||ŵt+1||1 ≥〈∇L̃1(w∗, ŵt), ŵt+1 −w∗〉+ κ||ŵt+1 −w∗||22

≥− ||∇L̃1(w∗, ŵt)||∞||ŵt+1 −w∗||1 + κ||ŵt+1 −w∗||22

≥− λt+1

2
||ŵt+1 −w∗||1 + κ||ŵt+1 −w∗||22.

By triangle inequality that λt+1||ŵt+1 −w∗||1 ≥ λt+1||w∗||1 − λt+1||ŵt+1||1, we have

κ||ŵt+1 −w∗||22 ≤
3λt+1

2
||ŵt+1 −w∗||1

=
3λt+1

2
(||(ŵt+1 −w∗)S ||1 + ||(ŵt+1 −w∗)Sc||1)

≤3λt+1

2
(||(ŵt+1 −w∗)S ||1 + 3||(ŵt+1 −w∗)S ||1)

=6λt+1||(ŵt+1 −w∗)S ||1

≤6
√
sλt+1||(ŵt+1 −w∗)S ||2

≤6
√
sλt+1||ŵt+1 −w∗||2.

We get

||ŵt+1 −w∗||2 ≤
6
√
sλt+1

κ
.
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Substitute λt+1 in (2.9) concludes the proof for `2 estimation error bound. For ||ŵt+1−w∗||1,

we know

||ŵt+1 −w∗||1 ≤||(ŵt+1 −w∗)S ||1 + ||(ŵt+1 −w∗)Sc||1

≤4||(ŵt+1 −w∗)S ||1 ≤ 4
√
s||(ŵt+1 −w∗)S ||2

≤4
√
s||ŵt+1 −w∗||2 ≤

24sλt+1

κ
,

which obtains the desired bound.

2.6.4 Proof of Theorem 3

Proof. Theorem 3 follows from Theorem 6 after we verify some conditions. First, it is easy

to see that the quadratic loss L = 1,M = 0. Under conditions of Theorem, with probability

1− δ, ∣∣∣∣∣∣∣∣ 1

m

∑
j∈[m]

∇Lj(w∗)
∣∣∣∣∣∣∣∣
∞

. σσX

√
log(p/δ)

mn
.

This follows from Corollary 5.17 of Vershynin [2010]. Furthermore, with probability at least

1− δ, we have

max
j∈[m],i∈[n]

||xji||∞ . σX
√

log(mnp/δ).

Finally,

||ŵ0 −w∗||1 .
sσσX
κ

√
log(np/δ)

n
,

with probability at least 1− δ [Wainwright, 2009, Meinshausen and Yu, 2009, Bickel et al.,

2009]. Plugging these bounds into Theorem 6 completes the proof.
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2.6.5 Proof of Corollary 7

Proof. The proof proceeds by recursively applying Theorem 6 and sum a geometric sequence.

For notation simplicity let

a =
48s

κ

∣∣∣∣∣∣∣∣ 1

m

∑
j∈[m]

∇Lj(w∗)
∣∣∣∣∣∣∣∣
∞
,

b =

(
48sL

κ

(
max
j,i
||xji||2∞

)√
4 log(2p/δ)

n

)
,

c =
48sM

κ

(
max
j,i
||xji||3∞

)
.

By Theorem 6 we have

||ŵt+1 −w∗||1 ≤a+ b||ŵt −w∗||1 + c||ŵt −w∗||21

≤a+ 2b||ŵt −w∗||1

≤a+ 2b(a+ 2b||ŵt−1 −w∗||1) ≤ . . .

≤a
t∑

k=0

(2b)k + (2b)t+1||ŵ0 −w∗||1.

=
a(1− (2b)t+1)

1− 2b
+ (2b)t+1||ŵ0 −w∗||1, (2.16)

which completes the `1 estimation error bound. For ||ŵt+1 − w∗||2, we first use (2.16) to

obtain

||ŵt −w∗||1 ≤
a(1− (2b)t)

1− (2b)
+ (2b)t||ŵ0 −w∗||1.
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Then apply Theorem 6 to obtain that

||ŵt+1 −w∗||2 ≤
a

4
√
s

+
(2b)

4
√
s
||ŵt −w∗||1 ≤

a

4
√
s

+
b

4
√
s

(
a(1− (2b)t)

1− (2b)
+ (2b)t||ŵ0 −w∗||1

)
=

1

4
√
s

(
a+

a((2b)− (2b)t+1)

1− (2b)

)
+

(2b)t+1||ŵ0 −w∗||1
4
√
s

=
a(1− (2b)t+1)

4
√
s(1− (2b))

+
(2b)t+1||ŵ0 −w∗||1

4
√
s

,

which concludes the proof.

2.6.6 Proof of Lemma 10

Proof. By the definition of Lj(w), we have

1

m

∑
j∈[m]

∇Lj(w∗) =
1

mn

∑
j∈[m]

∑
i∈[n]

xji

(
yji −

yji
1 + exp(−yji〈w,xji〉)

)
.

It is easy to check that

E
[
yji −

yji
1 + exp(−yji〈w,xji〉)

]
= 0, and

∣∣∣∣yji − yji
1 + exp(−− yji〈w,xji〉)

∣∣∣∣ ≤ 1

and thus

E
[
xji

(
yji −

yji
1 + exp(−yji〈w,xji〉)

)]
= 0,∣∣∣∣∣∣∣∣xji(yji − yji

1 + exp(−− yji〈w,xji〉)

) ∣∣∣∣∣∣∣∣
∞
≤ max

ji

(
||xji||∞

)
.

Appling Azuma-Hoeffding inequality [Hoeffding, 1963] and the union bound over [p] leads

to the desired bound.
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CHAPTER 3

MEMORY AND COMMUNICATION EFCIENT

DISTRIBUTED STOCHASTIC OPTIMIZATION WITH

MINIBATCH-PROX

3.1 Motivation and problem set-up

Consider the stochastic convex optimization (generalized learning) problem [Nemirovskii

et al., 1983, Vapnik, 1995, Shalev-Shwartz et al., 2009]:

min
w∈Ω

φ(w) := Eξ∼D [`(w, ξ)] (3.1)

where our goal is to learn a predictor w from the convex domain Ω given the convex in-

stantaneous (loss) function `(w, ξ) and i.i.d. samples ξ1, ξ2, . . . from some unknown data

distribution D. When optimizing on a single machine, stochastic approximation methods

such as stochastic gradient descent (SGD) or more generally stochastic mirror descent, are

ideally suited for the problem as they typically have optimal sample complexity require-

ments, and run in linear time in the number of samples, and thus also have optimal runtime.

Focusing on an `2 bounded domain with B = supw∈Ω ||w|| and L-Lipschitz loss, the min-

max optimal sample complexity is n(ε) = O(L2B2/ε2), and this is achieved by SGD using

O(n(ε)) vector operations. Furthermore, if examples are obtained one at a time (in a stream-

ing setting or through access to a “button” generating examples), we only need to store O(1)

vectors in memory.

The situation is more complex in the distributed setting where no single method is known

that is optimal with respect to sample complexity, runtime, memory and communication.

Specifically, consider m machines where each machine i = 1, ...,m receives samples ξi1, ξi2, ...

drawn from the same distribution D. This can equivalently be thought of as randomly
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distributing samples across m servers. We also assume the objective is β-smooth, taking

L, β = O(1) in our presentation of results. The goal is to find a predictor ŵ ∈ Ω satisfying

E [φ(ŵ)−minw∈Ω φ(w)] ≤ ε using the smallest possible number of samples per machine,

the minimal elapsed runtime, and the smallest amount of communication, and also minimal

memory on each machine (again, when examples are received or generated one at a time).

Ideally, we could hope for a method with linear speedup, i.e. O(n(ε)/m) runtime, using the

statistically optimal number of samples O(n(ε)) and constant or near-constant communica-

tion and memory. Throughout we measure runtime in terms of vector operations, memory

in terms of number of vectors that need to be stored on each machine and communication in

terms of number of vectors sent per machine1. These resource requirements are summarized

in Table 7.1.

One simple approach for distributed stochastic optimization is minibatch SGD [Cotter

et al., 2011, Dekel et al., 2012], where in each update we use a gradient estimate based

on mb examples: b examples from each of the m machines. Distributed minibatch SGD

attains optimal statistical performance with O (n(ε)/m) runtime, as long as the minibatch

size is not too large: Dekel et al. [2012] showed that the minibatch size can be as large as

bm = O(
√
n(ε)), and Cotter et al. [2011] showed that with acceleration this can be increased

to bm = O(n(ε)3/4). Using this maximal minibatch size for accelerated minibatch SGD thus

yields a statistically optimal method with linear speedup in runtime, O(1) memory usage,

and O(n(ε)1/4) rounds of communication–see Table 7.1. This is the most communication-

efficient method with true linear speedup we are aware of.

An alternative approach is to use distributed optimization to optimize the regularized

empirical objective:

min
w

φS(w) +
ν

2
||w||2, (3.2)

1. In all methods involved, communication is used to average vectors across machines and make the result
known to one or all machines. We are actually counting the number of such operations.
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where φS is the empirical objective on n(ε) i.i.d. samples, distributed across the machines and

ν = O(L/(B
√
n(ε))). A naive approach here is to use accelerate gradient descent, distribut-

ing the gradient computations, but this, as well as approaches based on ADMM [Boyd et al.,

2011], are dominated by minibatch SGD (Shamir and Srebro 2014 and see also Table 7.1).

Better alternatives take advantage of the stochastic nature of the problem: DANE [Shamir

et al., 2014] requires only O(B2m) rounds of communication for squared loss problems,

while DiSCO [Zhang and Xiao, 2015] and AIDE [Reddi et al., 2016]) reduce this further

to O(B1/2m1/4) rounds of communication. However, these communication-efficient meth-

ods usually require expensive computation on each local machine, solving an optimization

problem on all local data at each iteration. Even if this can be done in near-linear time,

it is still difficult to obtain computational speedup compared with single machine solution,

and certainly not linear speedups—see Table 7.1. Furthermore, since each round of these

methods involves optimization over a fixed training set, this training set must be stored thus

requiring n(ε)/m memory per machine.

Designing stochastic distributed optimization problems with linear, or near-linear, speedups,

and low communication and memory requirements is thus still an open problem. We make

progress in this chapter analyzing and presenting methods with near-linear speedups and

better communication and memory requirements. As with the analysis of DANE, DiSCO

and AIDE, our analysis is rigorous only for least squared problems, and so all results should

be taken in that context (the methods themselves are applicable to any distributed stochastic

convex optimization problem).

Our contributions

• We first apply the recently proposed distributed SVRG (DSVRG) algorithm for reg-

ularized loss minimization to the distributed stochastic convex optimization problem,

and show that on least square problems it can achieve near-linear speedup with very
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Figure 3.1: Trade-offs between memory and communication for the proposed MP-DSVRG
approach.

low communication, but with high memory cost—see DSVRG in Table 7.1.

• We propose a novel algorithm that improves the memory cost, which we call minibatch-

prox with DSVRG (MP-DSVRG). For least square problems it achieves near-linear

speedup with communication cost that is higher than DSVRG but increases only loga-

rithmically with n(ε), but with much lower memory requirements. Moreover, our algo-

rithm is flexible, allowing to trade off between communication and memory (depicted

in Figure 3.1), without affecting the computational efficiency. Our method is based on

careful combinations of inexact minibatch proximal update, communication-efficient

optimization and linearly convergent stochastic gradient algorithms for finite-sums.

• As indicated above, our method is based on minibatch proximal update. That is, a

minibatch approach where in each iteration a non-linearized problem is solved on a

stochastic minibatch. This can be viewed as a minibatch generalization to the passive-

aggressive algorithm [Crammer et al., 2006] and has been considered in various con-

texts [Kulis and Bartlett, 2010, Toulis and Airoldi, 2014]. We show that such an

approach achieves the optimal statistical rate in terms of the number of samples used
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Samples Communication Computation Memory

Ideal Solution n(ε) O(1) n(ε)/m O(1)

Accelerated GD n(ε) B1/2n(ε)1/4 B1/2n(ε)5/4/m n(ε)/m

Acc. Minibatch SGD n(ε) B1/2n(ε)1/4 n(ε)/m O(1)

DANE n(ε) B2m B2n(ε) n(ε)/m

DiSCO n(ε) B1/2m1/4 B1/2n(ε)/m3/4 n(ε)/m

AIDE n(ε) B1/2m1/4 B1/2n(ε)/m3/4 n(ε)/m
DSVRG n(ε) O(1) n(ε)/m n(ε)/m

MP-DSVRG (b ≤ bmax) n(ε) n(ε)/(mb) n(ε)/m b
MP-DSVRG (b = bmax) n(ε) O(1) n(ε)/m n(ε)/m

Table 3.1: Summary of resources required by different approaches to distributed stochastic
least squares problems, in units of vector operations/communications/memory per machine,
ignoring constants and log-factors, here bmax = n(ε)/m.

independent of the number of iterations, i.e. with any minibatch size. This signifi-

cantly improves over the previous analysis of Li et al., as the guarantee is better, it

entirely avoid the dependence on the minibatch size and does not rely on additional

assumptions as in Li et al.. The guarantee holds for any Lipschitz (even non-smooth)

objective. Furthermore, to make the minibatch proximal iterate more practical and

useful in distributed setting, we also extend the analysis to algorithms which solve

each minibatch subproblem inexactly. Our analysis of exact and inexact minibatch

proximal updates may be of independent interest and useful in other contexts and as

a basis for other methods.

Notations We denote by w∗ = argminw∈Ω φ(w) the optimal solution to (3.1). Through-

out the chapter, we assume the instantaneous function `(w, ξ) is L-Lipschitz and λ-strongly

convex in w for some λ ≥ 0 on the domain Ω:

∣∣`(w, ξ)− `(w′, ξ)∣∣ ≤ L||w −w′||,

`(w, ξ)− `(w′, ξ) ≥
〈
∇`(w′, ξ), w −w′

〉
+
λ

2
||w −w′||2, ∀w,w′ ∈ Ω.
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Sometimes we also assume `(w, ξ) is β-smooth in w:

`(w, ξ)− `(w′, ξ) ≤
〈
∇`(w′, ξ), w −w′

〉
+
β

2
||w −w′||2, ∀w,w′ ∈ Ω.

For distributed stochastic optimization, our analysis focuses on the least squares loss `(w, ξ) =

1
2(w>x− y)2 where ξ = (x, y).

3.2 Distributed SVRG for stochastic convex optimization

Recently, Lee et al. [2017a] suggested using fast randomized optimization algorithms for

finite-sums, and in particular the SVRG algorithm, as a distributed optimization approach

for (3.2). The authors noted that, for SVRG, when the the sample size n(ε) dominates

the problem’s condition number β/ν where β is the smoothness parameter of `(w, ξ), the

time complexity is dominated by computing the batch gradients. This operation can be

trivially parallelized. The stochastic updates, on the other hand, can be implemented on a

single machine while the other machines wait, with the only caveat being that only sampling-

without-replacement can be implemented this way. The use of without-replacement sampling

was theoretically justified in a recent analysis by Shamir [2016].

In the distributed stochastic convex optimization setting considered here, DSVRG in

fact achieves linear speedup in certain regime as follows. In each iteration of the algorithm,

each machine first computes its local gradient and average them with one communication

round to obtain the global batch gradient, and then a single machine performs the SVRG

stochastic updates by processing its local data once (sampling the n(ε)/m examples without

replacement). By the linear convergence of SVRG, as long as the number of stochastic

updates n(ε)/m is larger than β/ν = O(βB
√
n(ε)/L), the algorithm converges to O(ε)-

suboptimality (in both the empirical and stochastic objective) in O(log 1/ε) = O (log n(ε))
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iterations; and this condition is satisfied2 for n(ε) & m2.

Clearly, in the above regime, each iteration of DSVRG uses two rounds of communications

and the total communication complexity is O (n(ε)). On the other hand, the computation for

each machine is compute the local gradient (in timeO(n(ε)/m)) in each iteration, resulting in

a total time complexity of O(n(ε) log n(ε)/m). This explains the DSVRG entry in Table 7.1.

Being communication- and computation-efficient, DSVRG requires each machine to store

a portion of the sample set for ERM to make multiple passes over them, and is therefore not

memory-efficient. In fact, this disadvantage is shared by previously known communication-

efficient distributed optimization algorithms, including DANE, DiSCO, and AIDE. In order

to develop a memory- and communication-efficient algorithm for distributed stochastic opti-

mization, we need to bypass the ERM setting and this is enabled by the following minibatch-

prox algorithm.

3.3 The minibatch-prox algorithm for stochastic optimization

In this section, we describe and analyze the minibatch-prox algorithm for stochastic opti-

mization, which allows us to use arbitrarily large minibatch size without slowing down the

convergence rate. We first present the basic version where each proximal objective is solved

exactly for each minibatch, which achieves the optimal convergence rate. Then, we show

that if each minibatch objective is solved accurately enough, the algorithm still converges at

the optimal rate, opening the opportunity for efficient implementations.

2. If n(ε) & m2 does not hold, we can use a “hot-potato” style algorithm where we process all data once
on machine i and pass the predictor to machine i + 1 until we obtain sufficiently many stochastic updates.
But then the computation efficiency deteriorates and we no longer have linear speedup in runtime.
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3.3.1 Exact minibatch-prox

The “exact” minibatch-prox is defined by the following iterates: for t = 1, . . . ,

wt = argmin
w∈Ω

ft(w),

where ft(w) := φIt(w) +
γt
2
||w −wt−1||2 =

1

b

∑
ξ∈It

`(w, ξ) +
γt
2
||w −wt−1||2, (3.3)

γt > 0 is the (inverse) stepsize parameter at time t, and It is a set of b samples from the

unknown distribution D. To understand the updates in (3.3), we first observe by the first

order optimality condition for ft(w) that

∇φIt(wt) + γt(wt −wt−1) ∈ −NΩ(wt), (3.4)

where∇φIt(wt) is some subgradient of φIt(w) at wt, andNΩ(wt) = {y| 〈w −wt, y〉 ≤ 0, ∀w ∈ Ω}

is the normal cone of Ω at wt. Equivalently, the above condition implies

wt = PΩ

(
wt−1 −

1

γt
∇φIt(wt)

)
, (3.5)

where PΩ(w) denotes the projection of w onto Ω. The update rule (3.5) resembles that of

the standard minibatch gradient descent, except the gradient is evaluated at the “future”

iterate.

Proximal steps, of the form (3.3) or equivalently (3.5), are trickier to implement compared

to (stochastic) gradient steps, as they involve optimization of a subproblem, instead of merely

computing and adding gradients. Nevertheless, they have been suggested, used and studied

in several contexts. Crammer et al. [2006] proposed the “passive aggressive” update rule,

where a margin-based loss from a single example with a quadratic penalty is minimized—this

corresponds to (3.3) with a “batch size” of one. More general loss functions, still for “batch
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sizes” of one, were also analyzed in the online learning setting [Cheng et al., 2007, Kulis and

Bartlett, 2010]. For finite-sum objectives, methods based on incremental/stochastic proximal

updates were studied by Bertsekas [2011, 2015], Defazio [2016]. Needell and Tropp [2014]

analyzed a randomized block Kaczmarz method in the context of solving linear systems,

which also minimizes the empirical loss on a randomly sampled minibatch. To the best of

our knowledge, no prior work has analyzed the general minibatch variant of proximal updates

for stochastic optimization except Li et al.. However, the analysis of Li et al. assumes a

stringent condition which is hard to verify (and is often violated) in practice, which we will

discuss in detail in this section.

The following lemma provides the basic property of the update at each iteration.

Lemma 13. For any w ∈ Ω, we have

λ+ γt
γt
||wt −w||2 ≤ ||wt−1 −w||2 − ||wt−1 −wt||2 −

2

γt

(
φIt(wt)− φIt(w)

)
. (3.6)

To derive the convergence guarantee, we need to relate φIt(wt) to φ(w). The analysis

of Li et al. for minibatch-prox made the assumption that for all t ≥ 1:

EIt
[
Dφ(wt; wt−1)

]
≤ EIt

[
DφIt

(wt; wt−1)
]

+
γt
2
||wt −wt−1||2, (3.7)

where Df (w,w′) = f(w) − f(w′) −
〈
∇f(w′), w −w′

〉
denotes the Bregman divergence

defined by the potential function f . This condition is hard to verify, and may constrain the

stepsize to be very small. For example, as the authors argued, if `(w, ξ) is β-smooth with

respect to w, we have

Dφ(wt; wt−1) ≤ β

2
||wt −wt−1||2,

and combined with the fact that DφIt
(wt; wt−1) ≥ 0, one can guarantee (3.7) by setting
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γt ≥ β. However, to obtain the optimal convergence rate, Li et al. needed to set γt =

O(
√
T/b) which would imply b = O(T ) in order to have γt ≥ β. In view of this implicit

constraint that the minibatch size b can not be too large, the analysis of Li et al. does not

really show advantage of minibatch-prox over minibatch SGD, whose optimal minibatch size

is precisely b = O(T ).

Our analysis is free of any additional assumptions. The key observation is that, when b

is large, we expect φIt(w) to be close to φ(w). Define the stochastic objective

Ft(w) := EIt [ft(w)] = φ(w) +
γt
2
||w −wt−1||2. (3.8)

Then wt is the “empirical risk minimizer” of Ft(w) as it solves the empirical version ft(w)

with b samples. Using a stability argument [Shalev-Shwartz et al., 2009], we can establish

the “generalization” performance for the (inexact) minimizer of the minibatch objective.

Lemma 14. For the minibatch-prox algorithm,we have

∣∣EIt [φ(wt)− φIt(wt)
]∣∣ ≤ 4L2

(λ+ γt)b
.

Moreover, if a possibly randomized algorithm A minimizes ft(w) up to an error of ηt, i.e.,

A returns an approximate solution w̃t such that EA [ft(w̃t)− ft(wt)] ≤ ηt, we have

∣∣EIt,A [φ(w̃t)− φIt(wt)
]∣∣ ≤ 4L2

(λ+ γt)b
+

√
2L2ηt
λ+ γt

.

Combining Lemma 13 and Lemma 14, we obtain the following key lemma regarding the

progress on the stochastic objective at each iteration of minibatch-prox.

Lemma 15. For iteration t of exact minibatch-prox, we have for any w ∈ Ω that

λ+ γt
γt

EIt||wt −w||2 ≤ ||wt−1 −w||2 − 2

γt
EIt [φ(wt)− φ(w)] +

8L2

γt(λ+ γt)b
. (3.9)
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We are now ready to bound the overall convergence rates of minibatch-prox.

Theorem 16 (Convergence of exact minibatch-prox — weakly convex `(w, ξ)). For L-

Lipschitz instantaneous function `(w, ξ), set γ =
√

8T
b ·

L
||w0−w∗|| for t = 1, . . . , T in

minibatch-prox. Then for ŵT = 1
T

∑T
t=1 wt, we have

E [φ(ŵT )− φ(w∗)] ≤
√

8L√
bT
||w0 −w∗||.

Theorem 17 (Convergence of exact minibatch-prox — strongly convex `(w, ξ)). For L-

Lipschitz and λ-strongly convex instantaneous function `(w, ξ), set γt =
λ(t−1)

2 for t =

1, . . . , T in minibatch-prox. Then for ŵT = 2
T (T+1)

∑T
t=1 twt, we have

E [φ(ŵT )− φ(w∗)] ≤
16L2

λb(T + 1)
.

3.3.2 Inexact minibatch-prox

We now study the case where instead of solving the subproblems ft(w) exactly, we only

solve it approximately to sufficient accuracy. The “inexact” minibatch-prox uses a possibly

randomized algorithm A for approximately solving one subproblem on a minibatch in each

iteration, and generates the following iterates: for t = 1, . . . ,

w̃t ≈ w̄t := argmin
w∈Ω

f̃t(w) where f̃t(w) := φIt(w) +
γt
2
||w − w̃t−1||2, (3.10)

and EA
[
f̃t(w̃t)− f̃t(w̄t)

]
≤ ηt.

Analogous to Lemma 15, we can derive the following lemma using stability of inexact mini-

mizers.
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Lemma 18. Fix any w ∈ Ω. For iteration t of inexact minibatch-prox, we have

EIt,A [φ(w̃t)− φ(w)] ≤ γt
2
EIt,A||w̃t−1 −w||2 − λ+ γt

2
EIt,A||w̃t −w||2 +

4L2

(λ+ γt)b

+

√
2L2ηt
λ+ γt

+
√

2(λ+ γt)ηt ·
√
EIt,A||w̃t −w||2. (3.11)

Note that when ηt = 0, the above guarantee reduces to that of exact minibatch-prox.

We now show that when the minibatch subproblems are solved sufficiently accurately,

we still obtain the O(1/
√
bT ) rate for weakly-convex loss and O(1/(λbT )) rate for strongly-

convex loss.

Theorem 19 (Convergence of inexact minibatch-prox — weakly convex `(w, ξ)). For L-

Lipschitz instantaneous function `(w, ξ), set γt = γ =
√

8T
b ·

L
||w0−w∗|| for all t ≥ 1 in

inexact minibatch-prox. Assume that for all t ≥ 1, the error in minimizing f̃t(w) satisfies

for some δ > 0 that

EA
[
f̃t(w̃t)−min

w
f̃t(w)

]
≤ min

(
c1

(
T

b

)1
2

, c2

(
T

b

)3
2

)
· L||w̃0 −w∗||

t2+2δ
.

Then for ŵT = 1
T

∑T
t=1 w̃t, we have E [φ(ŵT )− φ(w∗)] ≤ c3L||w0−w∗||√

bT
, where c3 only

depends on c1, c2 and δ. For example, by setting c1 = 10−4, c2 = 10−4, δ = 1/2, we have

E [φ(ŵT )− φ(w∗)] ≤
√

10L||w0 −w∗||√
bT

.

Theorem 20 (Convergence of inexact minibatch-prox — strongly convex `(w, ξ)). For L-

Lipschitz and λ-strongly convex instantaneous function `(w, ξ), set γt =
λ(t−1)

2 for t = 1, . . .

in inexact minibatch-prox. Assume that for all t ≥ 1, the error in minimizing f̃t(w) satisfies
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for some δ > 0 that

EA
[
f̃t(w̃t)−min

w
f̃t(w)

]
≤ min

(
c1

(
T

b

)
, c2

(
T

b

)2
)
· L2

t3+2δλ
.

Then for ŵT = 2
T (T+1)

∑T
t=1 tw̃t, we have E [φ(ŵT )− φ(w∗)] ≤ c3L

2

λbT , where c3 only depends

on c1, c2 and δ.

Remark 1. The final inequalities in Theorem 16 and 19 actually apply more generally to

all predictors in the domain. That is, our proofs still hold with w∗ replaced by any w ∈ Ω:

E [φ(ŵT )− φ(w)] ≤ O
(
L||w0 −w||√

bT

)
, w ∈ Ω.

This allows us to compete with any predictor in the domain (other than the minimizer).

For example, in order to compete on φ(w) with the set of predictors with small norm

{w : ||w|| ≤ B}, we can set the domain Ω = Rd and initialize with w0 = 0. In view of

the above inequality, we still obtain the optimal rate O
(
LB√
bT

)
from minibatch-prox by solv-

ing simpler, unconstrained subproblems (though we might have ||ŵT || > B).

3.4 Communication-efficient distributed minibatch-prox with

DANE

As discussed in Section 3.5, it is also possible to use other efficient distributed optimiza-

tion solver for minibatch-prox. Here we present a novel method that use the distributed

optimization algorithm DANE [Shamir et al., 2014] and its accelerated variant AIDE [Reddi

et al., 2016] for solving (3.16), which define better local objectives than EMSO and take into

consideration the similarity between local objectives.

We detail our algorithm, named MP-DANE, in Algorithm 2. The algorithm consists of

three nested loops, where t, r and k are iteration counters for minibatch-prox (the outer
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Algorithm 2 MP-DANE for distributed stochastic convex optimization.

Initialize w0.
for t = 1, 2, . . . , T do

Each machine i draws a minibatch I
(i)
t of b samples from the underlying data distribu-

tion.
Initialize y0 ← wt−1, x0 ← wt−1.
for r = 1, 2, . . . , R do

Initialize z0 ← yr−1, α0 =
√
γ/(γ + κ).

for k = 1, 2, . . . , K do
1. All machines perform one round of communication to compute the average
gradient

∇φIt(zk−1)← 1

m

m∑
i=1

∇φ
I
(i)
t

(zk−1).

2. Each machine i approximately solves the local objective to θ-accuracy:

apply prox-SVRG to find z
(i)
k s.t. ||z(i)

k − z
(i)∗
k || ≤ θ||zk−1 − z

(i)∗
k ||

where z
(i)∗

k = argmin
z∈Ω

φ
I
(i)
t

(z) +

〈
∇φIt(zk−1)−∇φ

I
(i)
t

(zk−1), z

〉
+
γ

2
||z−wt−1||2

+
κ

2
||z− yr−1||2. (3.12)

3. All machines reach consensus by averaging local updates through another round
of communication:

zk ←
1

m

m∑
i=1

z
(i)
k . (3.13)

end for
Update xr ← zK .
Compute αr ∈ (0, 1) such that α2

r = (1− αr)α2
r−1 + γαk/(γ + κ), and compute

yr = xr +

(
αr−1(1− αr−1)

αr + α2
r−1

)
(xr − xr−1). (3.14)

end for
Update wt ← xr.

end for
Output: wT is the approximate solution.
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for-loop), AIDE (the intermediate for-loop) and DANE (the inner for-loop) respectively.

Compared to EMSO, DANE adds a gradient correction term to (3.17) which can be compute

efficiently with one round of communication. On top of that, AIDE uses the idea of universal

catalyst [Lin et al., 2015] and adds an extra quadratic term to improve the strong-convexity

of the objective for faster convergence, i.e., in order to solve (3.16), AIDE solves multiple

instances of the “augmented large minibatch” problems of the form

min
w∈Ω

f̄t,r(w) := φIt(w) +
γ

2
||w −wt−1||2 +

κ

2
||w − yr−1||2 (3.15)

with carefully chosen extrapolation points yr−1. At each DANE iteration, we perform two

rounds of communication, one for averaging the local gradients, and one for averaging the

local updates, and the amount of data we communicate per round has the same size of the

predictor.

To sum up, in Algorithm 2, we have introduced two levels of inexactness. First, we only

approximately solve the “large minibatch” subproblem (3.16) in each outer loop; results

from the previous section guarantee the convergence of this approach. Second, we only

approximately solve the local subproblems (3.12) to sufficient accuracy in each inner loop;

the analysis of “inexact DANE” (for the non-stochastic setting) provides guarantee for this

approach [Reddi et al., 2016], and enables us to use state-of-the-art SGD methods (e.g.,

SVRG Johnson and Zhang, 2013, Xiao and Zhang, 2014) for solving local subproblems.

Overall, we obtain a convergent algorithm for distributed stochastic convex optimization.

We now present detailed analysis for the computation/communication complexity of Al-

gorithm 2 for stochastic quadratic problems, and compare it with related methods in the

literature.
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3.4.1 Efficiency of MP-DANE

We present the main results of this section (full analysis is deferred to Appendix 3.7.10),

which show that with careful choices of the minibatch size and the desired accuracy in each

level of approximate solution, MP-DANE achieves both communication and computation

efficiency with the optimal sample complexity. Interestingly, the choices of parameters differ

in two regimes which are separated by an “optimal” minibatch size (also denoted as bmp-dane

in the main text)

b∗ =
n(ε)L2

32m2β2B2 log(md)
.

Theorem 21 (Efficiency of MP-DANE for b ≤ b∗). Set the parameters in Algorithm 2 as

follows:

(outer loop) b ≤ b∗ =
n(ε)L2

32m2β2B2 log(md)
, T =

n(ε)

bm
, γ =

√
8n(ε)L

bmB
,

(intermediate loop) κ = 0, R = 1,

(inner loop) θ =
1

6
, K = O (log n(ε)) .

Then we have E
[
φ
(

1
T

∑T
t=1 wt

)
− φ(w∗)

]
≤
√

40BL√
n(ε)

= O (ε) .

Moreover, Algorithm 2 can be implemented with Õ
(
n(ε)
bm

)
rounds of communication, and

each machine performs Õ
(
n(ε)
m

)
vector operations in total, where the notation Õ(·) hides

poly-logarithmic dependences on n(ε).

When we choose b = b∗, Algorithm 1 can be implemented with Õ
(
mβ2B2

L2

)
rounds of

communication, Õ
(
n(ε)
bm

)
vector operations, and O

(
n(ε)L2

m2β2B2

)
memory for each machine.

We comment on the choice of parameters. For sample efficiency, we fix the sample size

n(ε) and number of machines m, and so we can tradeoff the local minibatch size b and the

total number of outer iterations T , maintaining bT =
n(ε)
m . For any b, the regularization
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parameters in the “large minibatch” problem is set to γ =
√

8T
bm ·

L
B =

√
8n(ε)L
bmB according to

Theorem 19. When b ≤ b∗, we note that (3.35) can be satisfied with κ = 0 and there is no

need for acceleration by AIDE (R = 1). Then the values of θ and K follow from Lemma 8.

Remark 2. The above theorem suggests that in the regime of b ≤ b∗, we only need to have

logarithmic number of DANE iterations for solving each “large minibatch” problem, and

logarithmic number of passes over the local data during each DANE iteration. We present

experimental results validating our theory in Appendix 3.6.

The next theorem shows that when we use a large minibatch size b in Algorithm 2, we

can still satisfy the condition (3.35) by adding extra regularization (κ > 0), and then apply

accelerated DANE.

Theorem 3 (Efficiency of MP-DANE for b ≥ b∗). Set the parameters in Algorithm 2 as

follows:

(outer loop) b ≥ b∗ =
n(ε)L2

32m2β2B2 log(md)
, T =

n(ε)

bm
, γ =

√
8n(ε)L

bmB
,

(intermediate loop) κ = 16β

√
log(dm)

b
− γ, R = O

(
b1/4m1/2 · β1/2B1/2

n(ε)1/4 · L1/2
log n(ε)

)
,

(inner loop) θ =
1

6
, K = O (log n(ε)) .

Then we have E
[
φ
(

1
T

∑T
t=1 wt

)
− φ(w∗)

]
≤
√

40BL√
n(ε)

= O (ε) .

Moreover, Algorithm 2 can be implemented with Õ
(
n(ε)3/4·β1/2B1/2

b3/4m1/2·L1/2

)
rounds of com-

munication, and each machine performs Õ
(
b1/4n(ε)3/4·β1/2B1/2

m1/2·L1/2

)
vector operations in total,

where the notation Õ(·) hides poly-logarithmic dependences on n(ε).
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Samples Communication Computation Memory

1 ≤ b ≤ b∗ n(ε) n(ε)/mb n(ε)/m b

b = b∗ n(ε) B2m n(ε)/m n(ε)/(m2B2)

b∗ < b ≤ bmax n(ε) B1/2n(ε)3/4/(m1/2b3/4) B1/2n(ε)3/4b1/4/m1/2 b

Table 3.2: Summary of resources required by MP-DANE for distributed stochastic convex
optimization, in units of vector operations/communications/memory per machine, ignoring
constants and log-factors. Here b∗ � n(ε)/(m2B2), and bmax = n(ε)/m.

3.4.2 Two regimes of multiple resource tradeoffs

From the above analysis, we summarized in Table 3.2 the resources required by MP-DANE.

We observe two interesting regimes, separated by the minibatch size b∗ � n(ε)/(m2B2), that

present different tradeoffs between communication, computation and memory.

• When 1 ≤ b ≤ b∗, the computation complexity remains Õ (n(ε)/m) which is indepen-

dent of b. This means we always achieve near-linear speedup in this regime. Moreover,

there is a tradeoff between communication and memory: the communication complex-

ity decreases, while the memory cost increases as the minibatch size b increases, both at

the linear rate. Thus in this regime, we can trade communication for memory without

affecting computation.

• When b∗ < b ≤ bmax, the computation starts to increase with b at the rate b1/4 which

is slower than linear, while the communication cost continues to decrease at the rate

b3/4 which is also slower than linear. Thus in this regime, we can trade communication

for computation and memory.

3.5 Communication-efficient distributed minibatch-prox with

SVRG

We now apply the theoretical results of minibatch-prox to the distributed stochastic

learning setting, and propose a novel algorithm that is both communication and computation
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Algorithm 3 Minibatch-prox with DSVRG for distributed stochastic convex optimization.

Initialize w0 = 0.
for t = 1, 2, . . . , T do

% Outer loop performs minibatch-prox.

Each machine i draws a minibatch I
(i)
t of b samples from the underlying data distribu-

tion, and split I
(i)
t to pi batches of size b/pi: B

(i)
1 , B

(i)
2 , ..., B

(i)
pi

Initialize z0 ← wt−1, x0 ← wt−1, j ← 1, s← 1
for k = 1, 2, . . . , K do

1. All machines perform one round of communication to compute the average gradient:

∇φIt(zk−1)← 1

m

m∑
i=1

∇φ
I
(i)
t

(zk−1)

2. Machine j performs stochastic updates by going through B
(j)
s once without re-

placement:

xr ← xr−1 − η
(
∇`(xr−1, ξl)−∇`(zk−1, ξl) +∇φIt(zk−1) + γ(xr−1 −wt−1)

)
for ξl ∈ B

(j)
s .

3. Machine j update zk:

zk ←
1

|B(j)
s |

|B(j)
s |∑

r=0

xr,

and broadcast zk to other machines.
4. Update indices: s← s+ 1,
if s > pj then
s← 1, j ← j + 1.

end if
end for
Update wt ← zK .

end for
Output: wT is the approximate solution.

efficient, and being able to explore trade-offs between memory and communication efficiency.

Suppose we have m machines in a distributed environment. For each outer loop of our

algorithm, each machine i draws a minibatch I
(i)
t of b samples independently from other

machines, and denote It = ∪mi=1I
(i)
t which contains bm samples. To apply the minibatch-

prox algorithm from the previous section, we need to find an approximate solution to the
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following problem:

min
w

f̃t(w) := φIt(w) +
γ

2
||w −wt−1||2. (3.16)

Since the objective (3.16) involves functions from different machines, we use distributed

optimization algorithms for solving it. In Li et al., the authors proposed a simple algorithm

EMSO to approximately solve (3.16), where each machine first solve its own local objective,

i.e.,

w
(i)
t = argmin

w
φ
I
(i)
t

+
γ

2
||w −wt−1||2, (3.17)

and then all machines average their local solutions via one round of communication: wt =

1
m

∑m
i=1 w

(i)
t .

We note that this can be considered as the “one-shot-averaging” approach [Zhang et al.,

2012] for solving (3.16). Although this approach was shown to work well empirically, no con-

vergence guarantee for the original stochastic objective (3.1) was provided by Li et al.. Here

we instead use the distributed SVRG (DSVRG) algorithm [Lee et al., 2017a, Shamir, 2016]

to approximately solve (3.16), as DSVRG enjoys excellent communication and computation

cost when the problem is well conditioned (cf. Table 7.1).3

We detail our algorithm, named MP-DSVRG (minibatch-prox with DSVRG), in Algo-

rithm 3. The algorithm consists of two nested loops, where t, k are iteration counters for

minibatch-prox (the outer for-loop), and DSVRG (the inner for-loop) respectively. In each

outer loop, each machine draws a minibatch I
(i)
t to form the objective (3.16), which will be

solved approximately by the inner loops. Moreover, each machine splits its local dataset into

pi batches: I(i) = ∪pij=1B
(i)
j . In each inner loop, all machines communicate to calculate the

3. It is also possible to equip minibatch-prox with other communication-efficient distributed optimization
algorithms, for example in Appendix 3.4, we present a minibatch-prox DANE (MP-DANE) algorithm which
uses the accelerated DANE method for solving (3.16).
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global gradient (averaged local gradients) of (3.16), and then one of the machines j picks a

local batch B
(j)
s to perform the stochastic updates, where the local batch contains enough

samples such that one pass of stochastic updates on B
(j)
s decrease the objective quickly.

We perform two rounds of communication in each inner loop, one for computing the global

gradient, and one for broadcasting the new predictor obtained by a machine j. As we will

show in the next section, by carefully choosing the parameters, we will obtain a convergent

algorithm for distributed stochastic convex optimization with better efficiency guarantees

than previous methods.

We now present detailed analysis for the computation/communication complexity of Al-

gorithm 3 for stochastic quadratic problems, and compare it with related methods in the

literature. Throughout this section, we have `(w, ξ) = 1
2(w>x − y)2 where ξ = (x, y). We

assume that `(w, ξ) is β-smooth and L-Lipschitz in w,4 and we would like to learn a pre-

dictor that is competitive to all predictors with norm at most B. Note that each `(w, ξ) is

only weakly convex.

3.5.1 Efficiency of MP-DSVRG

For the distributed stochastic convex optimization problems, we are concerned with effi-

ciency in terms of sample, communication, computation and memory. Recall that for convex

L-Lipshitz, B-bounded problems, to learn a predictor ŵ with ε-generalization error, i.e.,

E [φ(ŵ)− φ(w∗)] ≤ ε, we require the sample size to be at least n(ε) = O(L2B2/ε2). This

sample complexity matches the worst case lower bound, and can be achieved by vanilla SGD.

The theorem below shows that with careful choices of parameters in the outer and in-

ner loops, MP-DSVRG achieves both communication and computation efficiency with the

optimal sample complexity.

4. We can equivalently assume ||x||2 ≤ β and y is bounded.
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Theorem 22 (Efficiency of MP-DSVRG). Set the parameters in Algorithm 3 as follows:

(outer loop) T =
n(ε)

bm
, γ =

√
8n(ε)L

bmB
, pi = O

(√
n(ε)L

βmB

)

(inner loop) K = O (log n(ε)) .

Then we have E
[
φ
(

1
T

∑T
t=1 wt

)
− φ(w∗)

]
≤
√

40BL√
n(ε)

= O (ε) .

Moreover, Algorithm 3 can be implemented with O
(
n(ε)
bm log n(ε)

)
rounds of communica-

tion, and each machine performs O
(
n(ε)
m log n(ε)

)
vector operations in total.

We comment on the choice of parameters. For sample efficiency, we fix the sample size

n(ε) and number of machines m, and so we can tradeoff the local minibatch size b and the

total number of outer iterations T , maintaining bT =
n(ε)
m . For any b, the regularization

parameters in the “large minibatch” problem is set to γ =
√

8T
bm ·

L
B =

√
8n(ε)L
bmB according to

Theorem 19. Moreover, we choose the number of batches pi in each local machine in a way

that performing one pass of stochastic updates over a single batch by without-replacement

sampling is sufficient to reduce the objective by a constant factor.

3.6 Experiments

Table 3.3: List of datasets used in the experiments.

Name #Samples #Features loss

codrna 271,617 8 logistic
covtype 581,012 54 logistic

kddcup99 1,131,571 127 logistic
year 463,715 90 squared

In this section we present empirical results to support our theoretical analysis of MP-

DANE. We perform least squares regression and classification on several publicly available
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Figure 3.2: Illustration of the convergence properties of MP-DANE, for different minibatch
size b, number of machines m, and number of DANE iterations K.
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datasets5; the statistics of these datasets and the corresponding losses are summarized in

Table 5.2. For each dataset, we randomly select half of the samples for training, and the

remaining samples are used for estimating the stochastic objective.

For MP-DANE, we use SAGA [Defazio et al., 2014] to solve each local DANE subprob-

lem (3.12) and fix the number of SAGA steps to b (i.e., we just make one pass over the local

data), while varying the number of DANE rounds K over {1, 2, 4, 8, 16}. For simplicity, we

do not use catalyst acceleration and set R = 1 and κ = 0 in all experiments. Our experi-

ments simulate a distributed environment with m machines, for m = 4, 8, 16. We conduct

a simple comparison with minibatch SGD. Stepsizes for SAGA and minibatch SGD are set

based on the smoothness parameter of the loss.

We plot in Figure 3.2 the estimated population objective vs. minibatch size b for different

parameters. We make the following observations.

• For minibatch SGD, as b increases, the objective often increases quickly, this is because

minibatch SGD can not uses large minibatch sizes while preserving sample efficiency.

• For MP-DANE, the objective increases much more slowly as b increases. This demon-

strates the effectiveness of minibatch-prox for using large minibatch sizes.

• Running more iterations of DANE often helps, but with diminishing returns. This

validates our theory that only a near-constant number of DANE iterations is needed

for solving the large minibatch objective, without affecting the sample efficiency.

5. https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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3.7 Proofs of technical results

3.7.1 Proof of Lemma 13

Proof. Observe that (3.4) implies γt(wt−1−wt) is a subgradient at wt of the sum of φIt(w)

and the indicator function of Ω (which has value 0 in Ω and∞ otherwise), and thus we have

for any w ∈ Ω that

φIt(w)− φIt(wt) ≥ γt 〈wt−1 −wt, w −wt〉+
λ

2
||w −wt||2. (3.18)

For any w ∈ Ω, we can bound its distance to wt−1 as

||wt−1 −w||2 = ||wt−1 −wt + wt −w||2

= ||wt−1 −wt||2 + 2 〈wt−1 −wt, wt −w〉+ ||wt −w||2

≥ ||wt−1 −wt||2 +
2

γt

(
φIt(wt)− φIt(w)

)
+
λ

γt
||w −wt||2 + ||wt −w||2

=
λ+ γt
γt
||wt −w||2 +

2

γt

(
φIt(wt)− φIt(w)

)
+ ||wt−1 −wt||2

where we have used (3.18) in the first inequality. Rearranging the terms yields the desired

result.

3.7.2 Proof of Lemma 14

The following lemma, which is essentially shown by Shalev-Shwartz et al. [2009, Theorem 6],

characterizes the convergence of the empirical loss to the population counterpart for the

(approximate) regularized empirical risk minimizer.

Lemma 4. Let the instantaneous function `(w, ξ) be L-Lipschitz and λ-strongly convex in
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w. Consider the following regularized ERM problem with sample set Z = {ξ1, . . . , ξn}:

ŵ = argmin
w∈Ω

F̂ (w) where F̂ (w) :=
1

n

n∑
i=1

`(w, ξi) + r(w),

and the regularizer r(w) is γ-strongly convex. Denote by G(w) = Eξ [`(w, ξ)] and Ĝ(w) =

1
n

∑n
i=1 `(w, ξi) the expected and the empirical losses respectively.

1. For the regularized empirical risk minimizer ŵ, we have

∣∣∣EZ [G(ŵ)− Ĝ(ŵ)
]∣∣∣ ≤ 4L2

(λ+ γ)n
.

2. If for any given dataset Z, a possibly randomized algorithm A minimizes F̂ (w) up to an

error of η, i.e., A returns an approximate solution w̃ such that EA
[
F̂ (w̃)− F̂ (ŵ)

]
≤

η, we have

∣∣∣EZ,A [G(w̃)− Ĝ(ŵ)
]∣∣∣ ≤ 4L2

(λ+ γ)n
+

√
2L2η

λ+ γ
.

Proof. We prove the lemma by a stability argument.

Exact ERM Denote by Z(i) the sample set that is identical to Z except that the i-th

sample ξi is replaced by another random sample ξ′i, by F̂ (i)(w) the empirical objective

defined using Z(i), i.e.,

F̂ (i)(w) :=
1

n

∑
j 6=i

`(w, ξi) + `(w, ξ′i)

+ r(w),

and by ŵ(i) = argminw∈Ω F̂ (i)(w) the empirical risk minimizer of F̂ (i)(w).
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By the definition of the empirical objectives, we have

F̂ (ŵ(i))− F̂ (ŵ) =
`(ŵ(i), ξi)− `(ŵ, ξi)

n
+

∑
j 6=i `(ŵ

(i), ξi)− `(ŵ, ξi)
n

+ r(ŵ(i))− r(ŵ)

=
`(ŵ(i), ξi)− `(ŵ, ξi)

n
+
`(ŵ, ξ′i)− `(ŵ

(i), ξ′i)
n

+
(
F̂ (i)(ŵ(i))− F̂ (i)(ŵ)

)
≤

∣∣∣`(ŵ(i), ξi)− `(ŵ, ξi)
∣∣∣

n
+

∣∣∣`(ŵ, ξ′i)− `(ŵ(i), ξ′i)
∣∣∣

n

≤ 2L

n
||ŵ(i) − ŵ|| (3.19)

where we have used the fact that ŵ(i) is the minimizer of F̂ (i)(w) in the first inequality, and

the L-Lipschitz continuity of `(w, ξ) in the second inequality.

On the other hand, it follows from the (λ+ γ)-strong convexity of F̂ (w) that

F̂ (ŵ(i))− F̂ (ŵ) ≥ (λ+ γ)

2
||ŵ(i) − ŵ||2. (3.20)

Combining (3.19) and (3.20) yields ||ŵ(i) − ŵ|| ≤ 4L
(λ+γ)n

.

Again, by the L-Lipschitz continuity of `(w, ξ), we have that for any sample ξ that

∣∣∣`(ŵ, ξ)− `(ŵ(i), ξ)
∣∣∣ ≤ L||ŵ(i) − ŵ|| ≤ 4L2

(λ+ γ)n
. (3.21)

Since Z and Z(i) are both i.i.d. sample sets, we have

EZ [G(ŵ)] = EZ(i)

[
G(ŵ(i))

]
= EZ(i)∪{ξi}

[
`(ŵ(i), ξi)

]
.

As this holds for all i = 1, . . . , n, we can also write

EZ [G(ŵ)] =
1

n

n∑
i=1

EZ(i)∪{ξi}

[
`(ŵ(i), ξi)

]
. (3.22)
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On the other hand, we have

EZ
[
Ĝ(ŵ)

]
= EZ

[
1

n

n∑
i=1

`(ŵ, ξi)

]
=

1

n

n∑
i=1

EZ [`(ŵ, ξi)] . (3.23)

Combining (3.22) and (3.23) and using the stability (3.21), we obtain

EZ
[
G(ŵ)− Ĝ(ŵ)

]
=

1

n

n∑
i=1

EZ∪{ξ′i}
[
`(ŵ(i), ξi)− `(ŵ, ξi)

]
∈
[
− 4L2

(λ+ γ)n
,

4L2

(λ+ γ)n

]
.

Inexact ERM For the approximate solution w̃, due to the (λ + γ)-strong convexity of

F̂ (w), we have

EA||w̃ − ŵ||2 ≤ 2

λ+ γ
EA
[
F̂ (w̃)− F̂ (ŵ)

]
≤ 2η

λ+ γ
,

and thus EA||w̃ − ŵ|| ≤
√

2η
λ+γ by the fact that Ex2 ≥ (Ex)2 for any random variable x.

It then follows from the Lipschitz continuity of G(w) that

EA |G(w̃)−G(ŵ)| ≤ L · EA||w̃ − ŵ|| ≤

√
2L2η

λ+ γ
.

Finally, we have by the triangle inequality and the stability of exact ERM that

∣∣∣EZ,A [G(w̃)− Ĝ(ŵ)
]∣∣∣ ≤ EZ [EA |G(w̃)−G(ŵ)|] +

∣∣∣EZ [G(ŵ)− Ĝ(ŵ)
]∣∣∣

≤

√
2L2η

λ+ γ
+

4L2

(λ+ γ)n
.

Then Lemma 14 follows from the fact that that our stochastic objective (3.8) is equipped

with L-Lipschitz, λ-strongly convex loss φ(w) and γt-strongly convex regularizer γt
2 ||w −

wt−1||2.
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3.7.3 Proof of Lemma 15

Proof. We have by Lemma 14 that

∣∣EIt [φIt(wt)− φ(wt)
]∣∣ ≤ 4L2

(λ+ γt)b
.

Take expectation of (3.6) over the random sampling of It and we obtain

λ+ γt
γt

EIt||wt −w||2 ≤ ||wt−1 −w||2 − 2

γt

(
EIt
[
φIt(wt)

]
− φ(w)

)
= ||wt−1 −w||2 − 2

γt

(
EIt
[
φIt(wt)− φ(wt)

]
+ EIt [φ(wt)− φ(w)]

)
≤ ||wt−1 −w||2 − 2

γt
EIt [φ(wt)− φ(w)] +

2

γt

∣∣EIt [φIt(wt)− φ(wt)
]∣∣

≤ ||wt−1 −w||2 − 2

γt
EIt [φ(wt)− φ(w)] +

8L2

γt(λ+ γt)b
.

3.7.4 Proof of Theorem 16

Proof. When `(w, ξ) is weakly convex (i.e., λ = 0), we further set γt = γ for all t ≥ 1.

Applying Lemma 15 with w = w∗ yields

EIt [φ(wt)− φ(w∗)] ≤
γ

2

(
||wt−1 −w∗||2 − EIt||wt −w∗||2

)
+

4L2

γb
. (3.24)

Summing (3.24) for t = 1, . . . , T yields

T∑
t=1

E [φ(wt)− φ(w∗)] ≤
γ

2
||w0 −w∗||2 +

4L2T

γb
.
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Minimizing the RHS over γ gives the optimal choice

γ =

√
8T

b
· L

||w0 −w∗||
,

with a corresponding regret

1

T

T∑
t=1

E [φ(wt)− φ(w∗)] ≤
√

8L√
bT
||w0 −w∗||.

As a result, by returning the uniform average ŵT = 1
T

∑T
t=1 wt, we have due to the convexity

of φ(w) that

E [φ(ŵT )− φ(w∗)] ≤
√

8L√
bT
||w0 −w∗||.

3.7.5 Proof of Theorem 17

Proof. Let `(w, ξ) be λ-strongly convex for some λ > 0. Applying Lemma 15 with w = w∗

yields

EIt [φ(wt)− φ(w∗)] ≤
(
γt
2
||wt−1 −w∗||2 −

λ+ γt
2

EIt ||wt −w∗||2
)

+
4L2

(λ+ γt)b
. (3.25)

Setting γt =
λ(t−1)

2 for t = 1, . . . ,6, the above inequality becomes

EIt [φ(wt)− φ(w∗)] ≤
(
λ(t− 1)

4
||wt−1 −w∗||2 −

λ(t+ 1)

4
EIt||wt −w∗||2

)
+

8L2

λb(t+ 1)

≤
(
λ(t− 1)

4
||wt−1 −w∗||2 −

λ(t+ 1)

4
EIt||wt −w∗||2

)
+

8L2

λbt
,

6. This choice is inspired by the stepsize rule of Lacoste-Julien et al. [2012] for stochastic gradient descent.

72



and therefore

t · EIt [φ(wt)− φ(w∗)] ≤
λ

4

(
(t− 1)t||wt−1 −w∗||2 − t(t+ 1)EIt||wt −w∗||2

)
+

8L2

λb
.

Summing this inequality for t = 1, . . . , T yields

T∑
t=1

t · E [φ(wt)− φ(w∗)] ≤
8L2T

λb
.

As a result, by returning the weighted average ŵT = 2
T (T+1)

∑T
t=1 twt, we have due to the

convexity of φ(w) that φ(ŵT ) ≤ 2
T (T+1)

∑T
t=1 t · φ(wt) and

E [φ(ŵT )− φ(w∗)] ≤
2

T (T + 1)

T∑
t=1

t · E [φ(wt)− φ(w∗)] ≤
16L2

λb(T + 1)
.

3.7.6 Proof of Lemma 18

Proof. Due to the (λ+ γt)-strong convexity of f̃t(w), we have

EA||w̃t − w̄t||2 ≤
2

λ+ γt
EA
[
f̃t(w̃t)− f̃t(w̄t)

]
≤ 2ηt
λ+ γt

.

Applying Lemma 13 to the exact minimizer w̄t yields

φIt(w̄t)− φIt(w) ≤ γt
2
||w̃t−1 −w||2 − λ+ γt

2
||w̄t −w||2.
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Therefore, for the t-th iteration, we have

EIt,A [φ(w̃t)− φ(w)]

= EIt,A
[
φ(w̃t)− φIt(w̄t)

]
+ EIt

[
φIt(w̄t)− φIt(w)

]
≤ 4L2

(λ+ γt)b
+

√
2L2ηt
λ+ γt

+
γt
2
||w̃t−1 −w||2 − λ+ γt

2
EIt||w̄t −w||2

≤ 4L2

(λ+ γt)b
+

√
2L2ηt
λ+ γt

+
γt
2
||w̃t−1 −w||2 − λ+ γt

2
EIt,A (||w̃t −w|| − ||w̃t − w̄t||)2

≤ 4L2

(λ+ γt)b
+

√
2L2ηt
λ+ γt

+
γt
2
||w̃t−1 −w||2 − λ+ γt

2
EIt,A||w̃t −w||2

+ (λ+ γt) · EIt,A [||w̃t − w̄t|| · ||w̃t −w||]

≤ 4L2

(λ+ γt)b
+

√
2L2ηt
λ+ γt

+
γt
2
||w̃t−1 −w||2 − λ+ γt

2
EIt,A||w̃t −w||2

+ (λ+ γt)
√

EIt,A||w̃t − w̄t||2 ·
√
EIt,A||w̃t −w||2

≤ 4L2

(λ+ γt)b
+

√
2L2ηt
λ+ γt

+
γt
2
||w̃t−1 −w||2 − λ+ γt

2
EIt,A||w̃t −w||2

+
√

2(λ+ γt)ηt ·
√

EIt,A||w̃t −w||2

where we have applied Lemma 4 to the approximate minimizer w̃t in the first inequality,

used the triangle inequality ||w̄t −w|| ≥ |||w̃t −w|| − ||w̃t − w̄t||| in the second inequality,

dropped a negative term in the third inequality, and used the Cauchy-Schwarz inequality for

random variables in the fourth inequality.
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3.7.7 Proof of Theorem 19

When `(w, ξ) is weakly convex (i.e., λ = 0), set γt = γ for all t ≥ 1 as in exact minibatch-

prox. Then summing (3.11) for t = 1, . . . , T yields

T∑
t=1

E [φ(w̃t)− φ(w∗)] +
γ

2
E||w̃T −w∗||2 ≤

γ

2
||w̃0 −w∗||2 +

4L2T

γb
+

T∑
t=1

√
2L2ηt
γ

+
T∑
t=1

√
2γηt ·

√
E||w̃t −w∗||2 (3.26)

where the expectation is taken over random sampling and the randomness of A in the first

T iterations. To resolve the recursion, we need the following lemma by Schmidt et al. [2011].

Lemma 5. Assume that the non-negative sequence {uT } satisfies the following recursion for

all T ≥ 1:

u2
T ≤ ST +

T∑
t=1

λtut,

with ST an increasing sequence, S0 ≥ u2
0 and λt ≥ 0 for all t. Then, for all T ≥ 1, we have

uT ≤
1

2

T∑
t=1

λt +

ST +

1

2

T∑
t=1

λt

2


1
2

≤
√
ST +

T∑
t=1

λt.

We are now ready to prove Theorem 19.

Proof. Bounding
√

E||w̃t −w∗||2. Dropping the
∑T
t=1 E [φ(w̃t)− φ(w∗)] term from (3.26)

which is non-negative due to the optimality of w∗, we obtain

E||w̃T −w∗||2 ≤ ||w̃0 −w∗||2 +
8L2T

γ2b
+

T∑
t=1

√
8L2ηt
γ3

+
T∑
t=1

√
8ηt
γ
·
√

E||w̃t −w∗||2.
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Now apply Lemma 5 (using uT =
√

E||w̃T −w∗||2, ST = ||w̃0−w∗||2+8L2T
γ2b

+
∑T
t=1

√
8L2ηt
γ3

,

and λt =
√

8ηt
γ ) and the fact that

√
x+ y ≤

√
x+
√
y for x, y ≥ 0, we have

√
E||w̃T −w∗||2 ≤ ||w̃0 −w∗||+

√
8L2T

γ2b
+

T∑
t=1

√
8ηt
γ

+

√√√√ T∑
t=1

√
8L2ηt
γ3

We have thus bounded the sequence of
√

E||w̃T −w∗||2 by a non-negative increasing se-

quence.

Bounding function values. Dropping the E||w̃T − w∗||2 term from (3.26) which is

non-negative, we obtain

T∑
t=1

E [φ(w̃t)− φ(w∗)]

≤ γ

2
||w̃0 −w∗||2 +

4L2T

γb
+

T∑
t=1

√
2L2ηt
γ

+
T∑
t=1

√
2ηtγ ·

√
E||w̃t −w∗||2

≤ γ

2
||w̃0 −w∗||2 +

4L2T

γb
+

T∑
t=1

√
2L2ηt
γ

+

 T∑
t=1

√
2ηtγ

 · max
1≤t≤T

√
E||w̃t −w∗||2

≤ γ

2
||w̃0 −w∗||2 +

4L2T

γb
+

T∑
t=1

√
2L2ηt
γ

+

 T∑
t=1

√
2ηtγ

 ·
||w̃0 −w∗||+

√
8L2T

γ2b
+

T∑
t=1

√
8ηt
γ

+

√√√√ T∑
t=1

√
8L2ηt
γ3

 . (3.27)

To achieve the same order of regret as in exact minibatch-prox, we require that ηt decays

with t, and in particular

ηt ≤ min

(
c1

(
T

b

)1
2

, c2

(
T

b

)3
2

)
· L||w̃0 −w∗||

t2+2δ
(3.28)

for some δ > 0. Note that ηt has the unit of function value. Let c :=
∑∞
i=1

1
i1+δ

≤ 1+δ
δ
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which only depends on δ (as a concrete example, we have c = π2

6 when δ = 2).

Using the choice of γ =
√

8T
b ·

L
||w0−w∗|| , we obtain from (3.28) that

T∑
t=1

√
8ηt
γ

=
T∑
t=1

√√
8b

T
· ||w0 −w∗||

L
· ηt ≤ 8

1
4 c

1
2
1 ||w̃0 −w∗||

T∑
t=1

1

t1+δ

≤ 8
1
4 c

1
2
1 c||w̃0 −w∗||,

T∑
t=1

√
8L2ηt
γ3

=
T∑
t=1

√√√√√ b3

8T 3
· ||w0 −w∗||3

L
· ηt ≤ 8−

1
4 c

1
2
2 ||w̃0 −w∗||2

T∑
t=1

1

t1+δ

≤ 8−
1
4 c

1
2
2 c||w̃0 −w∗||2.

Continuing from (3.27) and substituting in the value of γ, we have

T∑
t=1

E [φ(w̃t)− φ(w∗)] ≤
√

8T

b
· L||w̃0 −w∗||+

γ

2

T∑
t=1

√
8L2ηt
γ3

+
γ

2

 T∑
t=1

√
8ηt
γ

 ·
2||w̃0 −w∗||+

T∑
t=1

√
8ηt
γ

+

√√√√ T∑
t=1

√
8L2ηt
γ3


=

√
8T

b
· L||w̃0 −w∗||+

√
2T

b
· L

||w0 −w∗||
· 8−

1
4 c

1
2
2 c||w̃0 −w∗||2

+

√
2T

b
· L

||w0 −w∗||
· 8

1
4 c

1
2
1 c||w̃0 −w∗||×(

2||w̃0 −w∗||+ 8
1
4 c

1
2
1 c||w̃0 −w∗||+

√
8−

1
4 c

1
2
2 c||w̃0 −w∗||2

)

= c3

√
T

b
· L||w̃0 −w∗||.

The suboptimality of ŵT is then due to the convexity of φ(w):

E [φ(ŵT )− φ(w∗)] ≤
1

T

T∑
t=1

E [φ(w̃t)− φ(w∗)] =
c3L||w̃0 −w∗||√

bT
.
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3.7.8 Proof of Theorem 20

Proof. We have by Lemma 18 that

EIt,A [φ(w̃t)− φ(w∗)] ≤
λ(t− 1)

4
||w̃t−1 −w∗||2 −

λ(t+ 1)

4
EIt,A||w̃t −w∗||2

+
8L2

λb(t+ 1)
+

√
4L2ηt
λ(t+ 1)

+
√
λ(t+ 1)ηt ·

√
EIt,A||w̃t −w∗||2.

Relaxing the 1
t+1 to 1

t on the RHS, and multiplying both sides by t, we further obtain

t · EIt,A [φ(w̃t)− φ(w∗)] ≤
λ(t− 1)t

4
||w̃t−1 −w∗||2 −

λt(t+ 1)

4
EIt,A||w̃t −w∗||2

+
8L2

λb
+

√
4L2tηt
λ

+
√
λtηt ·

√
EIt,A

[
t(t+ 1)||w̃t −w∗||2

]
.

Summing this inequality for t = 1, . . . , T yields

T∑
t=1

t · E [φ(w̃t)− φ(w∗)] +
λT (T + 1)

4
E||w̃T −w∗||2

≤ 8L2T

λb
+

T∑
t=1

√
4L2tηt
λ

+
T∑
t=1

√
λtηt ·

√
E
[
t(t+ 1)||w̃t −w∗||2

]
. (3.29)

Bounding
√

E||w̃t −w∗||2. Dropping the
∑T
t=1 t · E [φ(w̃t)− φ(w∗)] term from (3.29)

which is non-negative due to the optimality of w∗, we obtain

E
[
T (T + 1)||w̃T −w∗||2

]
≤32L2T

λ2b
+

T∑
t=1

√
64L2tηt
λ3

+
T∑
t=1

√
16tηt
λ
·
√

E
[
t(t+ 1)||w̃t −w∗||2

]
.

Applying Lemma 5 (using uT =
√
E
[
T (T + 1)||w̃T −w∗||2

]
, ST = 32L2T

λ2b
+
∑T
t=1

√
64L2tηt
λ3

,
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and λt =
√

16tηt
λ ), we have

√
E
[
T (T + 1)||w̃T −w∗||2

]
≤

√
32L2T

λ2b
+

T∑
t=1

√
16tηt
λ

+

√√√√ T∑
t=1

√
64L2tηt
λ3

.

Bounding function values. Dropping the E||w̃T − w∗||2 term from (3.29) which is

non-negative, we obtain

T∑
t=1

t · E [φ(w̃t)− φ(w∗)] ≤
8L2T

λb
+

T∑
t=1

√
4L2tηt
λ

+

 T∑
t=1

√
λtηt

 ·

√

32L2T

λ2b
+

T∑
t=1

√
16tηt
λ

+

√√√√ T∑
t=1

√
64L2tηt
λ3

 . (3.30)

To achieve the same order of regret as in exact minibatch-prox, we require that ηt decays

with t, and in particular

ηt ≤ min

(
c1

(
T

b

)
, c2

(
T

b

)2
)
· L2

t3+2δλ
(3.31)

for some δ > 0. Note that ηt has the unit of function value. Let c :=
∑∞
i=1

1
i1+δ

≤ 1+δ
δ .

Then (3.31) ensures that

T∑
t=1

√
tηt
λ
≤ c
√
c1

√
L2T

λ2b
, and

T∑
t=1

√
L2tηt
λ3

≤ c
√
c2 ·

L2T

λ2b
.
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Continuing from (3.30), we have

T∑
t=1

t · E [φ(w̃t)− φ(w∗)] ≤
8L2T

λb
+ 2c
√
c2 ·

L2T

λb

+ c
√
c1

√
L2T

b

√32L2T

λ2b
+ 4c
√
c1

√
L2T

λ2b
+

4
√

64c2c2

√
L2T

λ2b


=
c3
2
· L

2T

λb
.

In view of the convexity of φ(w), by returning the weighted average ŵT = 2
T (T+1)

∑T
t=1 tw̃t,

we have

E [φ(ŵT )− φ(w∗)] ≤
2

T (T + 1)

T∑
t=1

t · E [φ(w̃t)− φ(w∗)] ≤
c3L

2

λb(T + 1)
.

3.7.9 Connection to minibatch stochastic gradient descent

To see the connection between minibatch-prox and minibatch SGD, note that if we solve the

linearized minibatch problem exactly, we obtain the minibatch stochastic gradient descent

algorithm:

w̃t = argmin
w∈Ω

φIt(w̃t−1) +∇
〈
φIt(w̃t−1), w − w̃t−1

〉
+
γt
2
||w − w̃t−1||2.

Following Cotter et al. [2011], we assume that `(w, ξ) is β-smooth:

||∇`(w, ξ)−∇`(w′, ξ)|| ≤ β||w −w′||, ∀w,w′ ∈ Ω.

We then have the following guarantee for each iterate of minbatch SGD.
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Proposition 6. For iteration t of minibatch SGD, we have

EIt [φ(w̃t)− φ(w∗)] ≤
2L2

(γt − β)b
+
γt − λ

2
||w∗ − w̃t−1||2 −

γt
2
EIt ||w∗ − w̃t||2. (3.32)

Proof. Our proof closely follows that of Cotter et al. [2011].

Due to the smoothness of φ, we have that

φ(w̃t) ≤ φ(w̃t−1) + 〈∇φ(w̃t−1), w̃t − w̃t−1〉+
β

2
||w̃t − w̃t−1||2

≤ φ(w̃t−1) +
〈
∇φ(w̃t−1)−∇φIt(w̃t−1), w̃t − w̃t−1

〉
+
β

2
||w̃t − w̃t−1||2

+
〈
∇φIt(w̃t−1), w̃t − w̃t−1

〉
= φ(w̃t−1) + ||∇φ(w̃t−1)−∇φIt(w̃t−1)|| · ||w̃t − w̃t−1||+

β

2
||w̃t − w̃t−1||2

+
〈
∇φIt(w̃t−1), w̃t − w̃t−1

〉
≤ φ(w̃t−1) +

1

2(γt − β)
||∇φ(w̃t−1)−∇φIt(w̃t−1)||2 +

γt − β
2
||w̃t − w̃t−1||2

+
β

2
||w̃t − w̃t−1||2 +

〈
∇φIt(w̃t−1), w̃t − w̃t−1

〉
= φ(w̃t−1) +

1

2(γt − β)
||∇φ(w̃t−1)−∇φIt(w̃t−1)||2 +

γt
2
||w̃t − w̃t−1||2

+
〈
∇φIt(w̃t−1), w̃t − w̃t−1

〉
(3.33)

where we have used the Cauchy-Schwarz inequality in the second inequality, and the inequal-

ity xy ≤ x2

2α + αy2

2 in the third inequality.

Now, since w̃t is the minimizer of the γt-strongly convex function

γt
2
||w − w̃t−1||2 +

〈
∇φIt(w̃t−1), w − w̃t−1

〉
in Ω, we have according to Lemma 13 (replacing the local objective with its linear approxi-
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mation) that

γt
2
||w∗ − w̃t−1||2 +

〈
∇φIt(w̃t−1), w∗ − w̃t−1

〉
≥ γt

2
||w̃t − w̃t−1||2 +

〈
∇φIt(w̃t−1), w̃t − w̃t−1

〉
+
γt
2
||w∗ − w̃t||2.

Substituting this into (3.33) gives

φ(w̃t) ≤ φ(w̃t−1) +
1

2(γt − β)
||∇φ(w̃t−1)−∇φIt(w̃t−1)||2 +

γt
2
||w∗ − w̃t−1||2

+
〈
∇φIt(w̃t−1), w∗ − w̃t−1

〉
− γt

2
||w∗ − w̃t||2.

Taking expectation of this inequality over the random sampling of It further leads to

EIt [φ(w̃t)] ≤ φ(w̃t−1) +
1

2(γt − β)
EIt||∇φ(w̃t−1)−∇φIt(w̃t−1)||2 +

γt
2
||w∗ − w̃t−1||2

+ 〈∇φ(w̃t−1), w∗ − w̃t−1〉 −
γt
2
EIt ||w∗ − w̃t||2

≤ φ(w∗) +
1

2(γt − β)
EIt ||∇φ(w̃t−1)−∇φIt(w̃t−1)||2

+
γt − λ

2
||w∗ − w̃t−1||2 −

γt
2
EIt ||w∗ − w̃t||2 (3.34)

where in the second inequality we have used the fact that

φ(w∗) ≥ φ(w̃t−1) + 〈∇φ(w̃t−1), w∗ − w̃t−1〉+
λ

2
||w∗ − w̃t−1||2

due to the convexity of φ(w).
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On the other hand, let It = {ξ1, . . . , ξb}, we have

EIt||∇φ(w)−∇φIt(w)||2

= EIt||∇φ(w)− 1

b

b∑
i=1

∇`(w, ξi)||2

= EIt||
1

b

b∑
i=1

(∇φ(w)−∇`(w, ξi)) ||2

=
1

b2

b∑
i=1

Eξi||∇φ(w)−∇`(w, ξi)||2 +
1

b2

∑
i6=j

EIt
〈
∇φ(w)−∇`(w, ξi), ∇φ(w)−∇`(w, ξj)

〉
=

1

b
· Eξ||∇φ(w)−∇`(w, ξ)||2

≤ 4L2

b

where we used the fact that the samples are i.i.d. in the fourth equality, and the fact that

||∇φ(w)||, ||∇`(w, ξ)|| ≤ L in the last inequality. Continuing from (3.34) yields the desired

result.

Comparing this result to (3.24) and (3.25), we observe that minibatch SGD has a similar

recursion to that exact minibatch-prox, except the appearance of β in the denominator of

the “stability” term. We now show that this difference leads to significant difference in

convergence rate.

Let `(w, ξ) be weakly convex (λ = 0), and γt = γ for all t ≥ 1. Summing (3.32) over

t = 1, . . . , T gives

T∑
t=1

E [φ(w̃t)− φ(w∗)] ≤
2L2T

(γ − β)b
+
γ

2
||w∗ − w̃0||2.
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Minimizing the RHS over γ gives

γ = β +

√
4T

b
· L

||w∗ − w̃0||
,

which leads to

1

T

T∑
t=1

E [φ(w̃t)− φ(w∗)] ≤
2L||w∗ − w̃0||√

bT
+
β||w∗ − w̃0||2

2T
.

So we obtain the familiar O
(

1√
bT

+ 1
T

)
rate for minibatch SGD.

3.7.10 Theoretical analysis of MP-DANE

In order to fully analyze Algorithm 2, we need several auxiliary lemmas that characterize

the iteration complexity of solving the local problem (3.12) by prox-SVRG [Xiao and Zhang,

2014], the large minibatch problem (3.16) by DANE [Shamir et al., 2014] and AIDE [Reddi

et al., 2016].

Some auxiliary lemmas

First, we apply prox-SVRG to the local problem (3.12), pushing all terms but φ
I
(i)
t

(z) in to

the proximal operator. The benefit of this approach (as opposed to using plain SVRG John-

son and Zhang, 2013) is that the smoothness parameter that determines the iteration com-

plexity is simply β, same results hold when applying prox-SAGA [Defazio et al., 2014] as

well. For sampling without replacement SVRG, the current analysis works only for plain

SVRG, so we quote the results from [Shamir, 2016].

Lemma 7 (Iteration complexity of SVRG for (3.12)). For any target accuracy θ > 0, with
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initialization zk−1, prox-SVRG outputs z
(i)
k such that ||z(i)

k − z
(i)∗
k || ≤ θ||zk−1 − z

(i)∗
k || after

O
((

b+
β

γ + κ

)
· log

(β + γ + κ)

(γ + κ)θ2

)

vector operations, and sampling without replacement SVRG outputs z
(i)
k such that ||z(i)

k −

z
(i)∗
k || ≤ θ||zk−1 − z

(i)∗
k || after

O
((

b+
β + κ

γ + κ

)
· log

(β + γ + κ)

(γ + κ)θ2

)

vector operations.

Proof. Observe that the objective (3.12) by f
(i)
k (z), which is an quadratic function of z with

the Hessian matrix Hi = ∇2φ
I
(i)
t

(z) + (γ + κ)I � (γ + κ)I. As a result, the suboptimality of

z
(i)
k is

εfinal = f
(i)
k (z

(i)
k )− f (i)

k (z
(i)∗
k ) =

1

2

(
z

(i)
k − z

(i)∗
k

)>
Hi

(
z

(i)
k − z

(i)∗
k

)
≥ γ + κ

2
||z(i)
k − z

(i)∗
k ||2.

To satisfy the requirement of ||z(i)
k − z

(i)∗
k || ≤ θ||zk−1 − z

(i)∗
k ||, we require

εfinal ≤
(γ + κ)θ2

2
||zk−1 − z

(i)∗
k ||2.

On the other hand, when initializing from zk−1, the initial suboptimality is

εinit = f
(i)
k (zk−1)− f (i)

k (z
(i)∗
k ) ≤ σmax(Hi)

2
||zk−1 − z

(i)∗
k ||2 ≤ β + γ + κ

2
||zk−1 − z

(i)∗
k ||2.

Therefore, it suffices to have

εinit

εfinal
=

(β + γ + κ)

(γ + κ)θ2
.
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Noting that φ
I
(i)
t

(z) is the sum of b components, and each component is β-smooth while

the overall function f
(i)
k is (γ + κ)-strongly convex, the lemma follows directly from the

convergence guarantee of prox-SVRG [Xiao and Zhang, 2014, Corollary 1], and sampling

without replacement SVRG [Shamir, 2016, Theorem 4].

Next, we state the convergence rates of “inexact DANE” and AIDE, which can be easily

derived from Reddi et al. [2016]. At the outer loop t and intermediate loop r, let x∗r =

argminw f̄t,r(w) be the exact minimizer of the “augmented large minibatch” problem (3.15),

which is approximately solved by the inner DANE iterations.

Lemma 8 (Iteration Complexity of inexact DANE). Let θ = 1
6 , and assume that

b(γ + κ)2 ≥ 256β2 log(dm/δ). (3.35)

By initializing from yr−1, and setting the number of inner iterations in Algorithm 2 to be

K = d1
2

log4/3
(β + γ + κ)

(γ + κ)η
e,

we have with probability 1− δ over the sample set It that

f̄t,r(xr)− f̄t,r(x∗r) ≤ η
(
f̄t,r(yr−1)− f̄t,r(x∗r)

)
.

Proof. Denote by Hi = ∇2φ
I
(i)
t

(z)+(γ+κ)I the Hessian matrix of the local objective (3.12)

for machine i. Let H = 1
m

∑m
i=1Hi be the Hessian matrix of the global objective (3.15), and

H̃−1 = 1
m

∑m
i=1H

−1
i . As our objective is quadratic, Hi, H, H̃

−1 remain unchanged during

the inner iterations. By Reddi et al. [2016, Theorem 1], we have

||zk − x∗r|| ≤

(
||H̃−1H − I||+ θ

m

m∑
i=1

||H−1
i H||

)
||zk−1 − x∗r||. (3.36)
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Since ∇2`(w, ξ) ≤ β, by Shamir et al. [2014, Lemma 2], we have with probability at least

1− δ over the sample set It that

||Hi −H|| ≤
√

32β2 log(dm/δ)

b
=: ρ, i = 1, . . . ,m.

On the other hand, we have Hi � (γ + κ)I and

4ρ2

(γ + κ)2
=

128β2 log(dm/δ)

b(γ + κ)2
≤ 1

2

by our assumption (3.35). By Shamir et al. [2014, Lemma 1], we have

||H̃−1H − I|| ≤ 1

2
. (3.37)

Moreover, we have

θ

m

m∑
i=1

||H−1
i H|| ≤ θ

m

m∑
i=1

(1 + ||H−1
i H − I||)

≤ θ

m

m∑
i=1

(1 + ||H−1
i ||||H −H

−1
i ||)

≤ θ

m

m∑
i=1

(
1 +

ρ

γ + κ

)

≤ θ

m

m∑
i=1

(
1 +

1

2
√

2

)
≤ 3θ

2
≤ 1

4
. (3.38)

Plugging (3.37) and (3.38) into (3.36) yields

||zk − x∗r|| ≤
3

4
||zk−1 − x∗r||,
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and thus ||zK −x∗r|| ≤ (3/4)K ||yr−1−x∗r||. To guarantee the suboptimality in the objective

f̄t,r(w), we note that

f̄t,r(zK)− f̄t,r(x∗r) =
1

2
(zK − x∗r)

>H(zK − x∗r) ≤
β + γ + κ

2
||zK − x∗r||2

≤
(

3

4

)2K β + γ + κ

2
||yr−1 − x∗r||2

≤
(

3

4

)2K β + γ + κ

γ + κ

(
f̄t,r(yr−1)− f̄t,r(x∗r)

)
where we have used the fact that ft,r(w) is (γ + κ)-strongly convex in the last inequality.

Setting
(

3
4

)2K β+γ+κ
γ+κ = η, and noting xr = zK , we obtain the desired iteration complexity.

At the outer iteration t of Algorithm 2, we are trying to approximately minimize the

objective (3.16) by iteratively (approximately) solving R instances of the “augmented” prob-

lem (3.15). Let w∗t be the exact minimizer of the “large minibatch” subproblem (3.16):

w∗t = argmin
w

f̃t(w).

The following lemma characterizes the accelerated convergence rate.

Lemma 9 (Acceleration by universal catalyst, Theorem 3.1 of Lin et al. [2015]). Assume

that for all r ≥ 1, we have

f̄t,r(xr)− f̄t,r(x∗r) ≤
2

9

(
1− 9

10

√
γ

γ + κ

)R
·
(
f̃t(x0)− f̃t(w∗t )

)
,

then

f̃t(xR)− f̃t(w∗t ) ≤
800(γ + κ)

γ

(
1− 9

10

√
γ

γ + κ

)R+1 (
f̃t(x0)− f̃t(w∗t )

)
.
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Proof of Theorem 21

Proof. First of all, because R = 1, our algorithm collapses into two nested loops.

On the one hand, as we choose γ as Theorem 19 suggested, we just need to verify the

inexactness conditions in Theorem 19 is satisfied, i.e., for t = 1, . . . , T , we require (recall

that w∗t = argminw f̃t(w))

f̃t(wt)− f̃t(w∗t ) ≤
1

104
·min

((
T

bm

)1/2

,

(
T

bm

)3/2
)
· 2LB

t3
.

On the other hand, we can bound the initial suboptimality f̃t(w) (cf. derivation for (3.40)):

f̃t(w̃t−1)− f̃t(w∗t ) ≤ L2/γ.

Using Lemma 8, we know as long as the inequality (3.35) is satisfied, we have the desired

suboptimality in f̃t(w) using (cf. the derivation for (3.41))

K = O (log n(ε))

rounds of communication, where we have plugged in the value of γ in the second step.

It remains to verify the condition (3.35), by our choice of γ and b, we have

bγ2 =
8n(ε)L2

bm2B2
≥ 8n(ε)L2

b∗m2B2
= 256β2 log(md), (3.39)

as desired.

Next we summarize the communication, computation, and memory efficiency.

Communication: the total rounds of communication required by Algorithm 2 is

KRT = O
(
n(ε)

mb
log n(ε)

)
.
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Computation: For each communication round, we need to solve the local problem (3.12)

using prox-SVRG. Now, in view of (3.39), we have β = O(
√
bγ). This implies that β

γ =

O(
√
b) and thus by Lemma 7, the dominant term of the iteration complexity of prox-SVRG

is

O
(
b log

β + γ

γ

)
= O (b log n(ε)) .

Multiplying this with the number of communication rounds yields the desired computation

complexity.

Memory: It is straightforward to see each machine only need to maintain b samples.

Proof of Theorem 3

Proof. First, it is straightforward to verify the condition (3.35):

b(γ + κ)2 = 256β2 log(dm).

Similarly to Theorem 21, we need the ratio between final versus initial error for the R

AIDE iterations to be

ratio = O(n(ε)).

Equating this ratio to be
800(γ+κ)

γ

(
1− 9

10

√
γ

γ+κ

)R+1
, we have

R =
10

9

√
γ + κ

γ
log

(
800(γ + κ)

γ
· 1

ratio

)
= O

(
b1/4m1/2 · β1/2B1/2

n(ε)1/4 · L1/2
log n(ε)

)
.
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Now according to Lemma 9, the final suboptimality for f̄t,r(w) need to be

εfinal =
2

9

(
1− 9

10

√
γ

γ + κ

)R
·
(
f̃t(x0)− f̃t(w∗t )

)
.

Let us initialize minw f̄t,r(w) by x0. By definition, we have f̄t,r(w) ≥ f̃t(w) and thus

εinit = f̄t,r(x0)− f̄t,r(x∗r)

≤ f̃t(x0)− f̃t(xr∗)

≤ f̃t(x0)− f̃t(w∗t )

where we have used the fact that w∗t is the minimizer of f̃t(w) in the second inequality.

This means we only need the initial versus final suboptimality of solving f̄t,r(w) to be

1

η
=

εinit

εfinal
=

9

2

(
1− 9

10

√
γ

γ + κ

)−R
,

which, according to Lemma 8, is achieved by inexact DANE with

K = O
(

log
1

η
+ log

β + γ + κ

γ + κ

)
= O

(
R

√
γ

γ + κ

)
= O (log n(ε)) .

iterations.

Next we analyze the communication and computation efficiency of our algorithm.
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Communication: The total rounds of communication is

KRT = O

(
log n(ε) · b

1/4m1/2 · β1/2B1/2

n(ε)1/4 · L1/2
log n(ε) · n(ε)

bm

)

= O

(
n(ε)3/4 · β1/2B1/2

b3/4m1/2 · L1/2
log2 n(ε)

)
.

Computation: Similar to the case of b ≤ b∗, for each DANE local subproblem (3.12),

the sample size b is larger than its condition number. Therefore, the total computational

cost is

O(bKRT ) = O

(
b1/4n(ε)3/4 · β1/2B1/2

m1/2 · L1/2
log2 n(ε)

)
.

3.7.11 Proof of Theorem 22

Proof. On the one hand, as we choose γ as Theorem 19 suggested, we just need to verify

that the inexactness conditions in Theorem 19 is satisfied, i.e., for t = 1, . . . , T , we require

(recall that w∗t = argminw f̃t(w))

f̃t(wt)− f̃t(w∗t ) ≤
1

104
·min

((
T

bm

)1/2

,

(
T

bm

)3/2
)
· LB
t3
.

On the other hand, we can bound the initial suboptimality of f̃t(w) when initializing from

wt−1. This is because, by the optimality of w∗t , we have ||w∗t −wt−1|| = || 1γ∇φIt(w
∗
t )|| ≤

L/γ, and

f̃t(wt−1)− f̃t(w∗t ) = 0 + φIt(wt−1)− γ

2
||w∗t −wt−1||2 − φIt(w

∗
t )

≤ φIt(wt−1)− φIt(w
∗
t ) ≤ L||w∗t −wt−1|| ≤ L2/γ. (3.40)

92



Combining the above two inequalities, the initial versus final error for the K DSVRG itera-

tions is bounded by

104 ·max

((
bm

T

)1/2

,

(
bm

T

)3/2
)
· t3 · L

Bγ

= 104 ·max

((
bm

T

)1/2

,

(
bm

T

)3/2
)
· T 3 · L

B
· bmB√

8n(ε)L

= O
(

max

(
n(ε)2

bm
, bm · n(ε)

))
= O

(
n2(ε)

)

where we have used the definition of γ and T =
n(ε)
bm in the first and second step respectively.

By the iteration complexity results for sampling without-replacement DSVRG [Shamir,

2016, Theorem 4], we have the desired suboptimality in f̃t(w) using

K = O (log n(ε)) (3.41)

iterations, as long as the batch size b/pi is larger than the problem condition number.

Now, the condition number of f̃(w) is

β + γ

γ
= O

(
βbmB√
n(ε)L

)
.

Equating this to the batch size b/pi yields the pi specified in the theorem. It is also easy

to check that K
γ = O(bm), i.e., the total number of stochastic updates is less than the total

number of samples, as required by Shamir [2016, Theorem 4].

Communication: the total rounds of communication required by Algorithm 3 is

KT = O
(
n(ε)

mb
log n(ε)

)
.
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Computation: For each communication round, each machine need to compute the local

full gradient, which can be done in parallel, and then one of the machines perform b/pi steps

of stochastic update. So the computation cost is

KT

(
b+

b

pi

)
= O

(
n(ε)

m
log n(ε)

)
.

Memory: It is straightforward to see each machine only need to maintain b samples.

94



CHAPTER 4

MORE EFCIENT DISTRIBUTED LEARNING VIA

SKETCHING

4.1 Motivation and problem set-up

Machine learning is nowadays successfully applied to massive data sets collected from various

domains. One of the major challenges in applying machine learning methods to massive data

sets is how to effectively utilize available computational resources when building predictive

and inferential models, while utilizing data in a statistically optimal way. One approach

to tackling massive data sets is via building distributed computer systems and developing

distributed learning algorithms. However, distributed systems may not always be available.

Furthermore, the cost of running a distributed system can be much higher than one can

afford, making distributed learning unsuitable for all scenarios. An alternative approach

is to use the state-of-the-art randomized optimization algorithms to accelerate the training

process. For example, many optimization algorithms are available for solving regularized

empirical risk minimization problems, with provably fast convergence and low computational

cost per iteration (see [Johnson and Zhang, 2013, Zhang et al., 2013a, Defazio et al., 2014]

for examples). It is worth pointing out at this point that the speed of these optimization

methods still heavily depends on the condition number of the problem at hand, which is

undesirable for many real world problems.

Sketching has emerged as a technique for big data analytics [Woodruff et al., 2014]. The

idea behind sketching is to approximate the solution of the original problem by solving a

sketched, smaller scale problem. For example, sketching has been used to approximately solve

various large-scale problems, ranging from least square regression and robust regression to

low-rank approximation and singular value decomposition (see [Halko et al., 2011, Mahoney

et al., 2011, Lu et al., 2013, Alaoui and Mahoney, 2015, Woodruff et al., 2014, Raskutti and
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Mahoney, 2015, Yang et al., 2015, Oymak et al., 2015, Oymak and Tropp, 2015, Drineas and

Mahoney, 2016] and references therein), and has been implemented in high-quality software

packages of least-square packages [Avron et al., 2010, Meng et al., 2014]. However, one major

drawback of sketching is that it is typically not suitable in scenarios where a highly accurate

solution is needed. To obtain a solution with exponentially smaller approximation error, we

often also need to increase the sketching dimension exponentially as well.

Recent work on “iterative sketch”, iterative Hessian sketch (IHS) [Pilanci and Wain-

wright, 2016] and iterative dual random projection (IDRP) [Zhang et al., 2014], has im-

proved the situation. These methods are able to refine the accuracy of their solution by

iteratively solving small scale sketched problem. Hessian sketch [Pilanci and Wainwright,

2016] is designed to reduce the sample size of the original problem, while dual random projec-

tion [Zhang et al., 2014] is proposed to reduce the dimensionality of data. As a consequence,

when the sample size and feature dimension are both large, IHS and IDRP still need to solve

relatively large-scale subproblems as they can only sketch the problem from one perspective.

In this chapter, we address the problem of the recovery of optimal solution for big and

high-dimensional data by solving small sketched problems of original problem. We make

the following contributions. First, we propose an accelerated version of IHS that is com-

putationally as effective as IHS at each iteration, but requires provably fewer number of

sketching iterations to reach a certain accuracy. Next, we reveal a primal-dual connection

between IHS [Pilanci and Wainwright, 2016] and IDRP [Zhang et al., 2014], that were inde-

pendently proposed by two different groups of researchers. We show that these two methods

are equivalent in the sense that the dual random projection is essentially performing the

Hessian sketch in the dual space. This connection allows us to provide a unified analysis of

IHS and IDRP, and also develop an accelerated sketching schema. Finally, we alleviate the

computational issues raised by big and high-dimensional learning problems. We propose a

primal-dual sketching method that can simultaneously reduce the sample size and dimension
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of the problem, and recover the optimal solution to the original large-scale high-dimensional

problem with provable convergence guarantees. We also demonstrate applicability of the

iterative sketching techniques for the distributed optimization problems where the data are

partitioned across machines, either by samples or features.

Chapter Organization. The rest of this chapter is organized as follows: in Section 4.2.1

we review the iterative Hessian sketch as an optimization process and propose a new algo-

rithm with faster convergence rate. In Section 4.2.3 we show that the dual random projection

is equivalent to the Hessian sketch. This equivalence allows us to propose the corresponding

accelerated dual random projection. In Section 4.2.6 we combine the sketching from both

primal and dual perspectives, and propose an iterative algorithm that reduces both sample

size and problem dimension. Theoretical properties of are investigated in Section 4.3, while

technical details are deferred to Appendix. In Section 4.4 we discuss an application of the

iterative sketching for distributed optimization. We present experiments in Section 7.5 to

support our theoretical results.

Notation. We use bold-faced letters, such as w, to denote vectors, and bold-faced capital

letters, such as X, to denote matrices. The set of real numbers is denoted by R. Given a

matrix X ∈ Rn×p, we define the following matrix induced norm for any vector w ∈ Rp,

||w||X =

√
w>X>Xw

n
.

We use N (µ,Σ) to denote the multivariate normal distribution with mean µ and covariance

Σ. We use In to denote the identity matrix of size n × n. The maximum and minimum

eigenvalues of H are λmax(H) and λmin(H), respectively. The condition number of a matrix

H is denoted by κ(H), which is the ratio of the largest to smallest singular value in the

singular value decomposition of H. For two sequences {an}∞n=1 and {an}∞n=1, we denote
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an . bn if an ≤ Cbn always holds for n large enough with some constant C, and denote

an & bn if bn . an. We also use the notation an = O(bn) if an . bn, and use Õ(·) for O(·)

to hide logarithmic factors.

4.2 Insights on iterative sketching algorithms on single machines

In this section, we describe our new insights on single machine iterative sketching algorithms

from an optimization view.

4.2.1 Iterative Hessian sketch as optimization with preconditioning

We first review the iterative Hessian sketch proposed in [Pilanci and Wainwright, 2016]. We

present the iterative Hessian sketch as an iterative preconditioned optimization process. This

allows us to propose a faster iterative algorithm by solving a different sketched problem.

Consider the following `2 regularized least-squares problem, also known as the ridge

regression:

min
w∈Rp

P (X,y; w) = min
w∈Rp

1

2n
||y −Xw||22 +

λ

2
||w||22. (4.1)

where X ∈ Rn×p is the data matrix, y ∈ Rn is the response vector, and λ is the tuning

parameter. Let w∗ denote the optimum of problem (4.1) which can be computed in a closed

form as

w∗ =

(
λIp +

X>X

n

)−1
X>y

n
,

however, to compute the closed-form solution requires one to construct and invert the co-

variance matrix, which can take O(np2 + p3) time to finish.

Sketching has become a widely used technique for efficiently finding an approximate

solution to (4.1) when both n and p are large [Drineas et al., 2011, Mahoney et al., 2011,

Woodruff et al., 2014]. To avoid solving a problem of huge sample size, the traditional
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sketching techniques (for example, [Sarlos, 2006, Pilanci and Wainwright, 2015]) reduce the

sample size from n to m, with m � n, and solve the following sketched `2 regularized

least-squares problem:

min
w∈Rp

P (Π>X,Π>y; w) = min
w∈Rp

1

2n
||Π>y −Π>Xw||22 +

λ

2
||w||22, (4.2)

where Π ∈ Rn×m is a sketching matrix. The problem (4.2) can be solved faster and with less

storage as long as we can choose m� n. Typical choice of Π includes a random matrix with

Gaussian or Rademacher entries, sub-sampled randomized Hadamard transform [Boutsidis

and Gittens, 2013], and sub-sampled Randomized Fourier Transform [Rokhlin and Tygert,

2008]. See discussions in Section 2.1 of [Pilanci and Wainwright, 2016] for more details.

Though the classical sketching has been successful in various problems and has provable

guarantees, as shown in [Pilanci and Wainwright, 2016], there is an approximation precision

limit for classical sketching methods could achieve, given a fixed sketching dimension. To

obtain an approximate solution with high precision, the sketching dimension m often needs

to be of the same order as n. This is impractical as the goal of sketching is to speed up the

algorithms via reducing the sample size.

The main idea behind the Hessian sketch [Pilanci and Wainwright, 2016] is based on the

following equivalent formulation of (4.1):

min
w∈Rp

P (X,y; w) = min
w∈Rp

1

2n
||y||22 +

1

2n
||Xw||22 −

1

n
〈y,Xw〉+

λ

2
||w||22. (4.3)

In the Hessian sketch one only sketches the quadratic part ||Xw||22 with respect to X, but

not the linear part 〈y,Xw〉, leading to the following problem:

min
w∈Rp

PHS(X,y; Π,w) = min
w∈Rp

1

2n
||y||22 +

1

2n
||Π>Xw||22 −

1

n
〈y,Xw〉+

λ

2
||w||22. (4.4)
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The solution to the problem (4.4) has the following closed form solution:

ŵHS =

(
λIp +

X>ΠΠ>X

n

)−1
X>y

n
. (4.5)

Compared to the classical sketch where both the data matrix X and the response vector

y are sketched, in the Hessian sketch one only sketches the Hessian matrix, through the

following transform:

X>X→ X>ΠΠ>X.

The Hessian sketch suffers from the same approximation limit as the classical sketch.

However, one notable feature of the Hessian sketch is that one can implement an iterative

extension to refine the accuracy of the approximation. Define the initial Hessian sketch

approximation as ŵ
(1)
HS:

ŵ
(1)
HS = arg min

w
w>

(
X>ΠΠ>X

2n
+
λ

2
Ip

)
w − 1

n
〈y,Xw〉.

A refinement of ŵ
(1)
HS can be obtained by considering the following optimization problem

arg min
u

1

2n
||y −X(u + ŵ

(1)
HS)||22 +

λ

2
||(u + ŵ

(1)
HS)||22

= arg min
u

u>
(

X>X

2n
+
λ

2
Ip

)
u−

〈
X>(y −Xŵ

(t)
HS)

n
− λŵ

(t)
HS,u

〉
,

whose optimum is w∗ − ŵ
(1)
HS. The main idea of the iterative Hessian sketch is to approx-

imate the residual solution w∗ − ŵ
(1)
HS by the Hessian sketch. At iteration t, w∗ − ŵ

(t)
HS is

approximated by û(t) that minimizes the following problem

û(t) = arg min
u

u>
(

X>ΠΠ>X

2n
+
λ

2
Ip

)
u−

〈
X>(y −Xŵ

(t)
HS)

n
− λŵ

(t)
HS,u

〉
, (4.6)
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Algorithm 4 Iterative Hessian Sketch (IHS).

Input: Data X,y, sketching matrix Π.

Initialization: ŵ
(0)
HS = 0.

for t = 0, 1, 2, . . . do

Update the approximation by ŵ
(t+1)
HS = ŵ

(t)
HS + û(t), where û(t) is obtained by solving

the sketched problem (4.6).
end

and the new approximation ŵ
(t+1)
HS is updated as

ŵ
(t+1)
HS = ŵ

(t)
HS + û(t).

The algorithm for IHS is shown in Algorithm 4. Since (4.6) is a sketched problem with

sample size m, it can be solved more efficiently than the original problem (4.1). Notice

that we can reuse the previously sketched data matrix Π>X without constructing any new

random sketching matrices. [Pilanci and Wainwright, 2016] showed that the approximation

error of IHS is exponentially decreasing with the number of sketching iterations. Thus IHS

can find an approximate solution with an ε-approximation error within O(log(1/ε)) itera-

tions, as long as the sketching dimension m is large enough. IHS was originally developed for

the least-squares problem in (4.1), the idea can be extended to solve more general problems,

such as constrained least-squares [Pilanci and Wainwright, 2016], optimization with self-

concordant loss [Pilanci and Wainwright, 2017], as well as non-parametric methods [Yang

et al., 2017].

Though IHS improved the classical sketching by enabling us to find a high quality ap-

proximation more efficiently, it is imperfect due to the following two reasons. First, the guar-

antee that the approximation error decreases exponentially for IHS relies on the sketching

dimension being large enough. The necessary sketching dimension depends on the intrinsic

complexity of the problem, and, if the sketching dimension is too small, IHS can diverge, ob-

taining arbitrary worse approximation. Second, even when the sketching dimension is large
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enough, the speed at which the approximation error decreases in IHS can be significantly

improved.

Now, we show that the iterative Hessian sketch is in fact an optimization process with

preconditioning. This view allows us to develop better iterative algorithms by searching the

conjugate directions. For notation simplicity, let

H =
X>X

n
+ λIp and H̃ =

X>ΠΠ>X

n
+ λIp.

Let

∇P (w) = −X>(y −Xw)

n
+ λw

denote the gradient of P (X,y; w) with respect to w. Then the IHS algorithm can be seen

as performing the following iterative update

ŵ
(t+1)
HS = ŵ

(t)
HS − H̃−1∇P (ŵ

(t)
HS),

which is like a Newton update where we replace the true Hessian H with the sketched Hessian

H̃. Another way to think about this update is via the change of variable z = H̃1/2w and

then applying the gradient descent in the z space

ẑ(t+1) = ẑ(t) −∇zP (H̃−1/2ẑ(t)) = ẑ(t) − H̃−1/2∇xP (H̃−1/2ẑ(t)).

Multiplying by H̃−1/2, changes the update back to the original space, leading back to the

IHS update

ŵ
(t+1)
HS = ŵ

(t)
HS − H̃−1∇P (ŵ

(t)
HS).

With above discussion, we see that the iterative Hessian sketch is in fact an optimization
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process with the sketched Hessian as preconditioning.

4.2.2 Accelerated IHS via preconditioned conjugate gradient

In this section, we present the accelerated iterative Hessian sketch (Acc-IHS) algorithm by

utilizing the idea of preconditioned conjugate gradient. Conjugate gradient is known to have

better convergence properties than gradient descent in solving linear systems [Hestenes and

Stiefel, 1952, Nocedal and Wright, 2006]. Since the iterative Hessian sketch is performing

the gradient descent (with stepsize 1) in the transformed space z = H̃1/2w, it can be

accelerated by performing the conjugate gradient descent instead. Equivalently, we can

implicitly transform the space by defining inner product as 〈x,y〉 = x>H̃y.

This leads to the algorithm Acc-IHS as detailed in Algorithm 5. At each iteration, the

solver is called for the following sketched linear system:

û(t) = arg min
u

u>
(

X>ΠΠ>X

2n
+
λ

2
Ip

)
u−

〈
r(t),u

〉
. (4.7)

Unlike IHS, which uses H̃−1∇P (ŵ
(t)
HS) as the update direction at iteration t, Acc-IHS uses

p(t) as the update direction where p(t) is chosen to satisfy the conjugate condition: ∀t1, t2 ≥

0, t1 6= t2 (
p(t1)

)>
H̃−1/2HH̃−1/2p(t2) = 0.

Since the updating direction is conjugate to the previous directions, it is guaranteed that

after p iterations we reach the exact minimizer, that is,

ŵ
(t)
HS = w∗, ∀t ≥ p.

Moreover, Acc-IHS has the same computational cost as the standard IHS in solving each

sketched sub-problem. However, the convergence rate of Algorithm 5 is much faster than
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Algorithm 5 Accelerated Iterative Hessian Sketch (Acc-IHS).

Input: Data X,y, sketching matrix Π.

Initialization: ŵ
(0)
HS = 0, r(0) = −X>y

n .

Compute û(0) by solving (4.7), and update p(0) = −û(0), calculate v(0) =(
X>X
n + λIp

)
p(0).

for t = 0, 1, 2, . . . do

Calculate α(t) =
〈r(t),u(t)〉
〈p(t),v(t)〉

Update the approximation by ŵ
(t+1)
HS = ŵ

(t)
HS + α(t)p(t).

Update r(t+1) = r(t) + α(t)v(t).
Update u(t+1) by solving (4.7).

Update β(t+1) =
〈r(t+1),u(t)〉
〈r(t),r(t)〉 .

Update p(t+1) = −u(t+1) + β(t+1)p(t).

Update v(t+1) =
(

X>X
n + λIp

)
p(t+1).

end

IHS, that is, it requires solving much smaller number of sketched sub-problems compared to

IHS to reach the same approximation accuracy.

4.2.3 Equivalence between dual random projection and Hessian sketch

While Hessian sketch [Pilanci and Wainwright, 2016] tries to resolve the issue of huge sample

size, Dual Random Projection [Zhang et al., 2013b, 2014] is aimed at resolving the issue of

high-dimensionality by using random projections as a tool for reducing the dimension of data.

Again, we consider the standard ridge regression problem in (4.1). A random projection is

now used to transform the original problem (4.1) to a low-dimensional problem:

min
z∈Rp

PRP(XR,y; z) = min
z∈Rd

1

2n
||y −XRz||22 +

λ

2
||z||22, (4.8)

where R ∈ Rp×d is a random projection matrix, and d� p.

Let ẑ = arg minz PRP(XR,y; z). If we want to recover the original high-dimensional

solution, [Zhang et al., 2014] observed that the naive solution ŵRP = Rẑ results in a bad
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approximation. Instead, the optimal solution of the original problem, w∗, is recovered from

the dual solution, leading to the dual random projection (DRP) approach that we explain

below. The dual problem of the optimization problem in (4.1) is

max
α∈Rn

D(X,y;α) = max
α∈Rn

− 1

2n
α>α +

y>α
n
− 1

2λn2
α>XX>α. (4.9)

Let α∗ = arg maxα∈Rn D(X,y;α) be the dual optimal solution. By the standard primal-

dual theory [Boyd and Vandenberghe, 2004], we have the following connection between the

optimal primal and dual solutions:

α∗ = y −Xw∗ and w∗ =
1

λn
X>α∗. (4.10)

The dual random projection procedure works as follows. First, we construct and solve the

low-dimensional, randomly projected problem (4.8) and obtain the solution ẑ. Next, we

calculate the approximated dual variables by

α̂DRP = y −XRẑ, (4.11)

based on the approximated dual solution α̂DRP. Finally, we recover the primal solution as:

ŵDRP =
1

λn
X>α̂DRP. (4.12)

Combining the steps above, it is easy to see that the dual random projection for ridge

regression has the following closed form solution:

ŵDRP =
X>

n

(
λIn +

XRR>X>

n

)−1

y. (4.13)

The recovered solution from the dual, ŵDRP, has much better approximation compared to
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the solution recovered directly from primal problem ŵRP. Specifically, ŵRP is always a

poor approximation of w∗, because ŵRP lives in a random subspace spanned by the random

projection matrix R, while ŵDRP can be a good approximation of w∗ as long as the projected

dimension d is large enough [Zhang et al., 2014]. Finally, an iterative extension of DRP can

exponentially reduce the approximation error [Zhang et al., 2014], that we explain next.

Suppose at iteration t we have the approximate solution ŵ
(t)
DRP. Consider the following

optimization problem:

min
u∈Rp

1

2n
||y −X(u + ŵ

(t)
DRP)||2 +

λ

2
||u + ŵ

(t)
DRP||

2
2, (4.14)

with optimum at w∗ − ŵ
(t)
DRP. Similar to the iterative Hessian sketch, the idea behind the

iterative dual random projection (IDRP) is to approximate the residual w∗ − ŵ
(t)
DRP by

applying dual random projection again. Given ŵ
(t)
DRP we construct the following randomly

projected problem:

min
z∈Rd

1

2n
||y −Xw

(t)
DRP −XRz||22 +

λ

2
||z + R>w

(t)
DRP||

2
2. (4.15)

Let ẑ(t) to be the solution of (4.15), which is used to refine the dual and primal variables as:

α̂
(t+1)
DRP = y −Xw

(t)
DRP −XRẑ,

and

ŵ
(t+1)
DRP =

1

λn
X>α̂(t+1)

DRP .

The iterative dual random projection (IDRP) algorithm is shown in Algorithm 6. Here

we presented the idea in the context of `2 regularized least-squares. However, the iterative

dual random projection can be used to solve any `2 regularized empirical loss minimization

problem, as long as the loss function is smooth [Zhang et al., 2014], such as, logistic regression
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Algorithm 6 Iterative Dual Random Projection (IDRP).

Input: Data X,y, projection matrix R.

Initialization: ŵ
(0)
DRP = 0.

for t = 0, 1, 2, . . . do

Solve the projected problem in (4.15) and obtain solution ẑ(t).

Update dual approximation: α̂
(t+1)
DRP = y −Xw

(t)
DRP −XRẑ(t).

Update primal approximation: ŵ
(t+1)
DRP = 1

λnX>α̂(t+1)
DRP .

end

or support vector machines with smoothed hinge loss.

The iterative dual random projection algorithm is a powerful algorithm for dealing with

high-dimensional problems, but it suffers from the same limitations as the iterative Hessian

sketch. First, the projection dimension needs to be large enough to guarantee that the

approximation error decreases exponentially. Second, the convergence speed is not optimal.

We address both of these issues next. We will show that the dual random projection is

equivalent to an application of the Hessian sketch procedure on the dual problem. This

connection will allow us to develop an accelerated iterative dual random projection akin to

accelerated the iterative Hessian sketch algorithm presented earlier.

4.2.4 Dual random projection is Hessian sketch in dual space

We present the equivalence connection between Hessian sketch and dual random projection.

Note that the Hessian sketch is used for sample reduction, while the dual random projection

is utilized for dimension reduction. Recall that the dual maximization objective (4.9) is

quadratic with respect to α. We can write it in the equivalent form as:

min
α∈Rn

α>
(

XX>

2λn
+

1

2
In

)
α− 〈y,α〉. (4.16)
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By applying the Hessian sketch with sketching matrix R ∈ Rp×d, we find an approximate

solution for α∗ as:

α̂HS = arg min
α∈Rn

α>
(

XRR>X>

2λn
+

1

2
In

)
α− 〈y,α〉, (4.17)

which has the closed form solution as

α̂HS = λ

(
λIn +

XRR>X>

n

)−1

y.

Substituting α̂HS in the primal-dual connection (4.10), gives us the following approximation

to the original problem

ŵ =
X>

n

(
λIn +

XRR>X>

n

)−1

y,

which is the same as the DRP approximation in (4.13). From this discussion, we see that the

Dual Random Projection is the Hessian sketch applied in the dual space. To summarize, for

ridge regression problem (4.1) one has closed form solutions for various sketching techniques
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as:

Original : w∗ =

(
λIp +

X>X

n

)−1
X>y

n

=
X>

n

(
λIn +

XX>

n

)−1

y;

Classical Sketch : ŵCS =

(
λIp +

X>ΠΠ>X

n

)−1
X>ΠΠ>y

n
;

Random Projection : ŵRP = R

(
λId +

R>X>XR

n

)−1

R>
X>y

n
;

Hessian Sketch : ŵHS =

(
λIp +

X>ΠΠ>X

n

)−1
X>y

n
;

Dual Random Projection : ŵDRP =
X>

n

(
λIn +

XRR>X>

n

)−1

y.

As we can see above, the Hessian sketch is sketching the covariance matrix :

X>X→ X>ΠΠ>X,

while DRP is sketching the Gram matrix :

XX> → XRR>X>.

4.2.5 Accelerated iterative dual random projection

Based on the equivalence between dual random projection and Hessian sketch established in

Section 4.2.4, we propose an accelerated iterative dual random projection algorithm, which

improves the convergence speed of standard iterative DRP procedure [Zhang et al., 2014].

The algorithm is shown in Algorithm 7. Notice that in each iteration t, we call the solver
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Algorithm 7 Accelerated Iterative Dual Random Projection (Acc-IDRP)—Primal Version.

Input: Data X,y, projection matrix R.

Initialization: ŵ
(0)
DRP = 0, α̂

(0)
DRP = 0, r(0) = −y.

Compute z(0) by solving (4.18), and update u(0) = r(0) − XRz(0), p(0) = −u(0), v(0) =(
XX>
n + λIn

)
p(0).

for t = 0, 1, 2, . . . do

Calculate a(t) =
〈r(t),u(t)〉
〈p(t),v(t)〉

Update the dual approximation by α̂
(t+1)
DRP = α̂

(t)
DRP + a(t)p(t).

Update primal approximation: ŵ
(t+1)
DRP = 1

λnX>α̂(t+1)
DRP .

Update r(t+1) = r(t) + a(t)v(t).
Solve the projected problem in (4.18) and obtain solution ẑ(t+1).

Update u(t+1) = r(t+1) −XRẑ(t+1).

Update β(t+1) =
〈r(t+1),u(t)〉
〈r(t),r(t)〉 .

Update p(t+1) = −u(t+1) + β(t+1)p(t).

Update v(t+1) =
(

XX>
n + λIn

)
p(t+1).

end

for the following randomly projected problem based on the residual r(t):

ẑ(t) = arg min
z∈Rd

z>
(

R>X>XR

2n
+
λ

2
Id

)
z− 〈R>X>r(t), z〉. (4.18)

The accelerated IDRP algorithm runs the Acc-IHS Algorithm 5 in the dual space. However,

Acc-IDRP is still a primal algorithm, since it updates the corresponding dual variables

after solving the randomly projected primal problem (4.18). The dual version of Acc-IDRP

algorithm would at each iteration solve the following dual optimization problem

min
u∈Rn

u>
(

XRR>X>

2n
+
λ

2
In

)
u− 〈r(t),u〉, (4.19)

where r(t) is the dual residual. This, however, is not a practical algorithm as it requires

solving relatively more expensive dual problem. We present it in Algorithm 8 as it is easier

to understand since it directly borrows the ideas of Acc-IHS described in Section 4.2.2.
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Algorithm 8 Accelerated Iterative Dual Random Projection (Acc-IDRP)—Dual Version.

Input: Data X,y, projection matrix R.

Initialization: ŵ
(0)
DRP = 0, α̂

(0)
DRP = 0, r(0) = −y.

Compute u(0) by solving (4.19), and update p(0) = −u(0), v(0) =
(

XX>
n + λIn

)
p(0).

for t = 0, 1, 2, . . . do

Calculate a(t) =
〈r(t),u(t)〉
〈p(t),v(t)〉

Update the dual approximation by α̂
(t+1)
DRP = α̂

(t)
DRP + a(t)p(t).

Update primal approximation: ŵ
(t+1)
DRP = 1

λnX>α̂(t+1)
DRP .

Update r(t+1) = r(t) + a(t)v(t).
Update u(t+1) by solving (4.19).

Update β(t+1) =
〈r(t+1),u(t)〉
〈r(t),r(t)〉 .

Update p(t+1) = −u(t+1) + β(t+1)p(t).

Update v(t+1) =
(

XX>
n + λIn

)
p(t+1).

end

Though the computational cost per iteration of Acc-IDRP and standard IDRP are the

same, Acc-IDRP has two main advantages over IDRP. First, as a preconditioned conjugate

gradient procedure, Acc-IDRP is guaranteed to converge, and reach the optimum w∗ within

n iterations, even when the projection dimension d is very small. Second, even when the pro-

jection dimension d is large enough for the standard IDRP converge quickly to the optimum,

Acc-IDRP converges even faster.

4.2.6 Primal-Dual sketch for big and high-dimensional problems

Approach Suitable Situation Reduced Dimension Recovery Iterative

Classical Sketch large n, small p sample reduction × ×
Random Projection small n, large p dimension reduction × ×
Hessian Sketch large n, small p sample reduction X X

DRP small n, large p dimension reduction X X

Table 4.1: Comparison of various algorithms for data sketching in solving large-scale prob-
lems.

In this section, we combine the idea of the iterative Hessian sketch and iterative dual
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random projection from the primal-dual point of view. We propose a more efficient sketching

technique named Iterative Primal-Dual Sketch (IPDS), which simultaneously reduces the

sample size and dimensionality of the problem, while recovering the original solution to a

high precision.

The Hessian sketch is particularly suitable for the case where the sample size is much

larger than the problem dimension and the computational bottleneck is “big n”. Here the

Hessian sketch reduces the sample size significantly, and as a consequence, speeds up the

computation. By utilizing the iterative extension approximation error can be further reduced

to recover the original solution to a high precision. In contrast, the dual random projection

is aimed at dimensionality reduction and is suitable for the case of high-dimensional data,

with relatively small sample size. Here the computational bottleneck is “large p” and the

random projection is used to reduce dimensionality and speedup computations.

Hessian sketch is particularly suitable for the case where sample size is much larger than

problem dimension, where the computational bottleneck is ”big n”. Therefore, it is possible

to use Hessian sketch to reduce the sample size significantly and consequently speed up the

computation. It also possible to utilize the iterative extension to reduce the approximation

error further to recover the original solution to a high precision. In contrast, dual random

projection is aimed at dimension reduction and is mostly suitable for the case of high-

dimensional data but relatively small sample size, where the computational bottleneck is

“large p”, and we would like to use random projection to perform dimension reduction and

gain speedup. Table 7.1 summarizes these characteristics.

As shown in Table 7.1, the Hessian sketch and dual random projection are suitable

for problems where the number of observations n and the number of variables p are not

balanced, that is, when one is much larger than the other. Modern massive data-sets have a

characteristic that both n and p are very large, for example, the click-through rate (CTR)
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Algorithm 9 Iterative Primal-Dual Sketch (IPDS).

Input: Data X ∈ Rn×p,y ∈ Rn, sketching matrix R ∈ Rp×d,Π ∈ Rn×m.

Initialization: ŵ
(0)
DS = 0.

for t = 0, 1, 2, . . . do

Initialization: z̃(0) = 0, k = 0
if not converged then

Solve the sketched problem in (4.21) and obtain solution ∆z(k).

Update z̃(k+1) = z̃(k) + ∆z(k).
Update k = k + 1.

end

Update dual approximation: α̂
(t+1)
DS = y −Xŵ

(t)
DS −XRz̃(k+1).

Update primal approximation: ŵ
(t+1)
DS = 1

λnX>α̂(t+1)
DS .

end

prediction data sets provided by Criteo1 has n ≥ 4×109 and p ≥ 8×108. To tackle problems

of this size, it is desirable to have a sketching method capable of simultaneously reducing

the sample size and dimensionality.

Inspired by the primal-dual view described in Section 4.2.4, we propose the iterative

Primal-Dual Sketch. The iterative Primal-Dual Sketch only involves solving small scale

problems where the sample size and dimension are both small. For the original problem (4.1)

with data {X,y}, we first construct the randomly projected data, as well as the doubly

sketched data, as follows:

X→ XR, XR→ Π>XR,

where XR is the randomly projected data, and Π>XR is doubly sketched data. Let ŵ
(0)
DS =

0. At every iteration of IPDS, we first apply random projection on the primal problem

(which is equivalent to the Hessian sketch on the dual problem), and obtain the following

1. available at http://labs.criteo.com/downloads/download-terabyte-click-logs/
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problem:

min
z∈Rd

1

2n
||y −Xŵ

(t)
DS −XRz||22 +

λ

2
||z + R>ŵ

(t)
DS||

2
2, (4.20)

which is the same as the iterative dual random projection subproblem (4.15). However,

different from IDRP, we do not directly solve (4.20). Instead, we apply the iterative Hessian

sketch to find an approximate solution to

min
z∈Rd

z>
(

R>X>XR

2n
+
λ

2
Id

)
z−

〈
(y −Xŵ

(t)
DS)>XR

n
− λR>ŵ

(t)
DS, z

〉
.

Let z̃(0) = 0. At iteration k in the inner loop, we solve the following sketched problem:

∆z(k) = arg min
∆z

∆z>
(

R>X>ΠΠ>XR

2n
+
λ

2
Id

)
z

−

〈
R>X>(y −Xŵ

(t)
DS −XRz̃(k))

n
− λR>ŵ

(t)
DS − λz̃(k),∆z

〉
(4.21)

and update z̃(k+1) as

z̃(k+1) = z̃(k) + ∆z(k).

The key point is that for the subproblem (4.21), the sketched data matrix is only of size

m× d, compared to the original problem size n× p, where n � m, p � d. In contrast, the

IHS still needs to solve sub-problems of size m× p, while IDRP needs to solve sub-problems

of size n × d. We only need to call solvers of m × d problem (4.21) logarithmic times to

obtain a solution of high approximation quality.

The pseudo code of Iterative Primal-Dual Sketch (IPDS) is summarized in Algorithm 9.

It is also possible to perform iterative Primal-Dual Sketch via another direction, that is, first

perform primal Hessian sketch, and then apply dual Hessian sketch to solve the sketched
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primal problem:

X→ Π>X, Π>X→ Π>XR.

The idea presented in Section 4.2.2 can also be adopted to further reduce the number of

calls to m×d scale sub-problems, which leads to the accelerated iterative primal-dual sketch

(Acc-IPDS) algorithm, of which the pseudo code is summarized in Algorithm 10. In Acc-

IPDS, we maintain both the vectors in the primal space uP,vP, rP and the vectors in the

dual space uD,vD, rD, to make sure that the updating directions for both primal variables

and dual variables are conjugate with previous updating directions. Moreover, based on the

residual vector rP, Acc-IPDS iteratively calls the solver to find a solution of the following

sketched linear system of scale m× d:

û
(k)
P = arg min

u
u>
(

R>X>ΠΠ>XR

2n
+
λ

2
Id

)
u−

〈
r
(k)
P ,u

〉
. (4.22)

As we will show in the subsequent section, the number of calls for solving problem (4.22)

only grows logarithmically with the inverse of approximation error.

4.3 Main theoretical results

We present theoretical properties of various iterative sketching procedures, while the proofs

are deferred to Section 5.5. First, we provide a unified analysis of the Hessian sketch and

dual random projection. The unified analysis basically follows the analysis of [Zhang et al.,

2014] and [Pilanci and Wainwright, 2016], but provides recovery guarantees for both the

primal and dual variables of interest, simultaneously. Next, we present convergence analysis

for the proposed accelerated IHS and IDRP algorithms. We show improved convergence

speed compared to the standard IHS and IDRP algorithms. Finally, we prove that the

iterative primal-dual sketch converges to the optimum with the number of iterations growing

only logarithmically with the target approximation accuracy. This makes the proposed

115



Algorithm 10 Accelerated Iterative Primal-Dual Sketch (Acc-IPDS).

Input: Data X ∈ Rn×p,y ∈ Rn, sketching matrix R ∈ Rp×d,Π ∈ Rn×m.

Initialization: ŵ
(0)
DS = 0, α̂

(0)
DS = 0, r

(0)
Dual = −y.

Initialization: k = 0, z̃(k) = 0, r
(0)
P = R>X>r

(0)
D .

Compute û
(0)
P by solving (4.22), and update p

(0)
P = −u

(0)
P , calculate v

(0)
P =

(
R>XXR

n + λId

)
p
(0)
P .

if not converged then

Calculate a
(k)
P =

〈r(k)P ,u
(k)
P 〉

〈p(k)
P ,v

(k)
P 〉

, and update the approximation by z̃(k+1) = z̃(k) + a
(k)
P p

(k)
P .

Update r
(k+1)
P = r

(k)
P + a

(k)
P v(k), and update u

(k+1)
P by solving (4.22).

Update β
(k+1)
P =

〈r(k+1)
P ,u

(k)
P 〉

〈r(k)P ,r
(k)
P 〉

, and update p
(k+1)
P = −u

(k+1)
P + β

(k+1)
P p

(k)
P .

Update v
(k+1)
P =

(
R>X>XR

n + λIp

)
p
(t+1)
P , and update k = k + 1.

end

Compute u
(0)
D = r

(0)
D −XRz̃(k+1), p

(0)
D = −u

(0)
D , v

(0)
D =

(
XX>

n + λIn

)
p
(0)
D .

for t = 0, 1, 2, . . . do

Calculate a
(t)
D =

〈r(t)D ,u
(t)
D 〉

〈p(t)
D ,v

(t)
D 〉

, and update the dual approximation by α̂
(t+1)
DS = α̂

(t)
DS + a

(t)
D p

(t)
D .

Update primal approximation: ŵ
(t+1)
DS = 1

λnX>α̂
(t+1)
DS , and update r

(t+1)
D = r

(t)
D + a

(t)
D v

(t)
D .

Initialization: k = 0, z̃(k) = 0, r
(0)
P = R>X>r

(t+1)
D .

Compute û
(0)
P by solving (4.22), and update p

(0)
P = −u

(0)
P , calculate v

(0)
P =(

R>XXR
n + λId

)
p
(0)
P .

if not converged then

Calculate a
(k)
P =

〈r(k)P ,u
(k)
P 〉

〈p(k)
P ,v

(k)
P 〉

, and update the approximation by z̃(k+1) = z̃(k) + a
(k)
P p

(k)
P .

Update r
(k+1)
P = r

(k)
P + a

(k)
P v(k), and update u

(k+1)
P by solving (4.22).

Update β
(k+1)
P =

〈r(k+1)
P ,u

(k)
P 〉

〈r(k)P ,r
(k)
P 〉

, and update p
(k+1)
P = −u

(k+1)
P + β

(k+1)
P p

(k)
P .

Update v
(k+1)
P =

(
R>X>XR

n + λIp

)
p
(t+1)
P , and update k = k + 1.

end

Update u
(t+1)
D = r

(t+1)
D −XRz̃

(k+1)
D , and update β

(t+1)
D =

〈r(t+1)
D ,u

(t)
D 〉

〈r(t)D ,r
(t)
D 〉

.

Update p
(t+1)
D = −u

(t+1)
D + β

(t+1)
D p

(t)
D , and update v

(t+1)
D =

(
XX>

n + λIn

)
p
(t+1)
D .

end
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primal-dual sketching schema suitable for large-scale learning problems with huge number

of features.

4.3.1 A unified analysis of Hessian sketch and dual random projection

In this section we provide a simple and unified analysis for the recovery performance of the

Hessian sketch and dual random projection. First, we define the following notion of the

Gaussian width, which will be useful in the statement of our results. For any set K ⊆ Rp,

the Gaussian width is defined as:

W(K) = E
[

sup
w∈K
〈w,g〉

]
, (4.23)

where g is a random vector drawn from a Normal distribution N (0, Ip). Intuitively, if the

set K is restricted to certain directions and magnitude, then W(K) will be small [Vershynin,

2015]. Given a set K and a random matrix R ∈ Rp×d, and a unit-length vector v ∈ Rp, the

following quantities will be important:

ρ1(K,R) = inf
u∈K∩Sp−1

u>RR>u

ρ2(K,R,v) = sup
u∈K∩Sp−1

∣∣∣u> (RR> − Ip

)
v
∣∣∣ ,

where Sp−1 = {x ∈ Rp | ‖x‖ = 1} is the p-dimensional Euclidean unit-sphere. The sketching

matrix R will be constructed to satisfy

E
[
RR>

]
= Ip,

and, as the sketching dimension d increases, the matrix RR> will get closer to Ip. Thus,

we would like to have ρ1(K,R) be close to 1, and ρ2(K,R,v) be close to 0. To simplify

presentation, assume that the entries of a random matrix R are sampled i.i.d. from a
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sub-Gaussian distribution and E
[
RR>

]
= Ip. The following lemma states how large the

sketching dimension d should be in order to control ρ1(K,R) and ρ2(K,R,v).

Lemma 23 ([Pilanci and Wainwright, 2015]). When R is sampled i.i.d. from a sub-Gaussian

distribution and E
[
RR>

]
= Ip, then there exists universal constants C0 such that

ρ1(K,R) ≥ 1− C0

√
W2(K ∩ Sp−1)

d
log

(
1

δ

)
(4.24)

and

ρ2(K,R,v) ≤ C0

√
W2(K ∩ Sp−1)

d
log

(
1

δ

)
, (4.25)

with probability at least 1− δ.

For a set K ⊆ Rp, define the transformed set XK with X ∈ Rn×p as

XK = {u = Xv ∈ Rn | v ∈ K}.

Before presenting the main unifying result, let us recall the reductions in the Hessian sketch

and dual random projection. For the Hessian sketch, we perform sample reduction with the

transformation X → Π>X, while for the dual random projection, we perform dimension

reduction with the transformation X→ XR, where Π ∈ Rn×m and R ∈ Rp×d. Let ŵHS be

an approximate solution obtained via the Hessian sketch by solving (4.4). The corresponding

dual variables are obtained using the following transformation

α̂HS = y −XŵHS.

Likewise, let α̂DRP and ŵDRP be the approximate dual and primal variables obtained by

the dual random projection. The following theorem established the recovery bound for
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α̂HS, α̂DRP and ŵHS, ŵDRP simultaneously.

Theorem 24. Suppose we perform the Hessian sketch or the dual random projection for the

problem (4.1) with a sub-Gaussian sketching matrix Π ∈ Rn×m (for HS) or R ∈ Rp×d (for

DRP), satisfying E
[
RR>

]
= Ip and E

[
ΠΠ>

]
= In. Then there exists a universal constant

C0 such that with probability at least 1 − δ, the following approximation error bounds hold

for HS or DRP: For Hessian sketch:

||ŵHS −w∗||X ≤
C0

√
W2(XRp∩Sn−1)

m log
(

1
δ

)
1− C0

√
W2(XRp∩Sn−1)

m log
(

1
δ

) ||w∗||X, and (4.26)

||α̂HS −α∗||2 ≤

√
nC0

√
W2(XRp∩Sn−1)

m log
(

1
δ

)
1− C0

√
W2(XRp∩Sn−1)

m log
(

1
δ

) ||w∗||X. (4.27)

For dual random projection:

||ŵDRP −w∗||2 ≤
C0

√
W2(X>Rn∩Sp−1)

d log
(

1
δ

)
1− C0

√
W2(X>Rn∩Sp−1)

d log
(

1
δ

) ||w∗||2, and (4.28)

||α̂DRP −α∗||X> ≤
C0

√
W2(X>Rn∩Sp−1)

d log
(

1
δ

)
1− C0

√
W2(X>Rn∩Sp−1)

d log
(

1
δ

) ||α∗||X> . (4.29)

Theorem 24 is proven in Appendix 4.6.1. We have the following remarks on Theorem 24.

Remark 1. For a general low-dimensional problem where n � p, W2(XRp ∩ Sn−1) = p.

Thus we have ||ŵHS −w∗||X .
√

p
m log

(
1
δ

)
||w∗||X. This is the recovery bound proved in

[Proposition 1, Pilanci and Wainwright, 2016].

Remark 2. For high-dimensional problems when p is large, W2(X>Rn ∩ Sp−1) = n. Thus

we have ||ŵDRP − w∗||2 .
√

n
d log

(
1
δ

)
||w∗||2. Moreover, when X is low-rank, that is
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rank(X) = r and r � min(n, p), we have W2(X>Rn ∩ Sp−1) = r, leading to ||ŵDRP −

w∗||2 .
√

r
d log

(
1
δ

)
||w∗||2. This recovery bound removes a

√
log r factor from a bound

obtained in Theorem 1 of [Zhang et al., 2014].

Analysis of IHS and DRP when X is approximately low-rank

In this section we provide recovery guarantees for the case when the data matrix X is

approximately low rank. To make X be well approximated by a rank r matrix where r �

min(n, p), we assume σr+1, the r + 1-th singular value of X, is small enough. Let us

decompose X into two parts as

X = UΣV> = UrΣrV
>
r + Ur̄Σr̄V

>
r̄ = Xr + Xr̄,

where Xr corresponds to the largest r singular values and Xr̄ corresponds to the remaining

singular values with r̄ = {r + 1, ...,max(n, p)}. Furthermore, suppose that the solution to

(4.1), w∗, is well approximated by the a linear combination of the top r left singular vectors

of X and that the remaining singular vectors are almost orthogonal to w∗. We can represent

this notion more formally depending on the particular method. For the Hessian sketch we

assume that for some ρ we have

||Xr̄w
∗||2 ≤ ρ||Xw∗||2,

while for the dual random projection we assume that

||V>r̄ w∗||2 ≤ %||w∗||2,

for some %. For simplicity, assume that the entries of the sketching matrix Π ∈ Rm×n and

R ∈ Rp×d are sampled i.i.d. from a zero-mean sub-Gaussian distributions, and satisfying
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E
[
RR>

]
= Ip and E

[
ΠΠ>

]
= In respectively. We have the following recovery bounds for

the Hessian sketch and the dual random projection.

Theorem 25. With probability at least 1− δ, we have:

For the Hessian sketch:

m ≥ max

(
32(r + 1), 4 log

(
2m

δ

)
,
784σ2

r+1

9λ

)
log
(n
δ

)

then

||ŵHS −w∗||X ≤4

√
1

1− ε1
+
σ2
r+1

λn
·

√
ε21 + τ2

1 ρ
2

1− ε1
+
τ2
1σ

2
r+1 + ρ2υ2

1σ
2
r+1

λn
||w∗||X;

For the dual random projection: if

d ≥ max

(
32(r + 1), 4 log

(
2d

δ

)
,
784pσ2

r+1

9λn

)
log
(p
δ

)

then

||ŵDRP −w∗||2 ≤4

√
1

1− ε2
+
σ2
r+1

λn
·

√
ε22 + τ2

2 %
2

1− ε2
+
τ2
2σ

2
r+1 + %2υ2

2σ
2
r+1

λn
||w∗||2, (4.30)

where ε1, ε2, τ1, τ2, υ1, υ2 are defined as

ε1 =2

√
2(r + 1)

m
log

2r

δ
, ε2 = 2

√
2(r + 1)

d
log

2r

δ
,

τ1 =
7

3

√
2(n− r)

m
log

n

δ
, τ2 =

7

3

√
2(p− r)

d
log

p

δ
,

υ1 =2

√
2(n− r + 1)

m
log

2(n− r)
δ

, υ2 = 2

√
2(p− r + 1)

d
log

2(p− r)
δ

.

The proof is provided in Appendix 4.6.2. We make the following comments on Theorem
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25.

Remark 3. When σr+1 = 0 and X is of exact rank r, the above result simplifies to

||ŵHS −w∗||X .

√
r

m
||w∗||X, ||ŵDRP −w∗||2 .

√
r

d
||w∗||2 (4.31)

These are the results of Theorem 24.

Remark 4. We see that if we have σr+1, ρ, and % sufficiently small, then the guarantees

(4.31) still hold. In particular, for the Hessian sketch we need that

σr+1 .
√
λ, ρ .

√
r

n
,

while for the dual random projection we need

σr+1 .

√
λn

p
, % .

√
r

p
.

4.3.2 Analysis of the accelerated IHS and IDRP methods

In this section we provide convergence analysis for the Acc-IHS and Acc-IDRP algorithms.

Recall that Acc-IHS and Acc-IDRP algorithms are preconditioned conjugate gradient meth-

ods on primal and dual problems, with a sketched Hessian as a pre-conditioner. Therefore,

we will use a classical analysis of preconditioned conjugate gradient [Luenberger, 1973] to

obtain the following convergence guarantees.

Proposition 26. Iterates obtain by Acc-IHS satisfy

||ŵ(t)
HS −w∗||X ≤ 2

(√
κHS(X,Π, λ)− 1√
κHS(X,Π, λ) + 1

)t
||w∗||X, (4.32)
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where

κHS(X,Π, λ) =κ

(X>ΠΠ>X

n
+ λIp

)−1(
X>X

n
+ λIp

) .

Iterates obtain by Acc-IDRP satisfy

||α̂(t)
DRP −α∗||X> ≤ 2

(√
κDRP(X,R, λ)− 1√
κDRP(X,R, λ) + 1

)t
||α∗||X> , (4.33)

where

κDRP(X,R, λ) =κ

(XRR>X>

n
+ λIn

)−1(
XX>

n
+ λIn

) .

From Proposition 26, we see that the convergence of Acc-IHS and Acc-IDRP heavily

depend on the respective condition number, κHS(X,Π, λ) or κDRP(X,R, λ). Therefore, it

is crucial to obtain a refined upper bound on these condition numbers. We make use of the

following result in [Mendelson et al., 2007].

Lemma 27. Suppose the elements of Π ∈ Rn×m are sampled i.i.d. from a zero-mean sub-

Gaussian distribution satisfying E
[
ΠΠ>

]
= In, then there exists a universal constant C0

such that, for any subset K ⊆ Rn, we have

sup
u∈K∩Sn−1

∣∣∣u> (ΠΠ> − In)
)

u
∣∣∣ ≤ C0

√
W2(K)

m
log

(
1

δ

)

with probability at least 1− δ.

An application of this lemma gives us the following bounds on the condition numbers

κHS(X,Π, λ) and κDRP(X,R, λ).
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Theorem 28. If the sketching matrices Π ∈ Rn×m and R ∈ Rp×d are sampled from sub-

Gaussian distributions, and satisfying E
[
RR>

]
= Ip and E

[
ΠΠ>

]
= In respectively, then

κHS(X,Π, λ) ≤

(
1− 2C0

√
W2(XRp ∩ Sn−1)

m
log

(
1

δ

))−1

and

κDRP(X,R, λ) ≤

1− 2C0

√
W2(X>Rn ∩ Sp−1)

d
log

(
1

δ

)−1

with probability at least 1− δ.

Proof is provided in Appendix 4.6.3. With Theorem 28, we immediately obtain the

following corollary, which states the overall convergence of Acc-IHS and Acc-IDRP.

Corollary 29. Suppose conditions of Theorem 28 hold. If the number of iterations of Acc-

IHS satisfy

t ≥


(

1− 2C0

√
W2(XRp ∩ Sn−1)

m
log

(
1

δ

))−1/2

log

(
2||w∗||X

ε

) ,
then with probability at least 1− δ, we have

||ŵ(t)
HS −w∗||X ≤ ε.

If the number of iterations of Acc-IDRP satisfies

t ≥


1− 2C0

√
W2(X>Rn ∩ Sp−1)

d
log

(
1

δ

)−1/2

log

(
2||w∗||2

ε

)
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then with probability at least 1− δ, we have

||ŵ(t)
DRP −w∗||2 ≤ ε.

We can compare the convergence rate of Acc-IHS and Acc-IDRP with that of the standard

IHS [Pilanci and Wainwright, 2016] and the IDRP [Zhang et al., 2014].

Remark 5. The number of iterations to reach ε-accuracy for IHS is

O
((

1+ρ
1−ρ

)
log
(

2||w∗||X
ε

))
, where ρ = C0

√
W2(XRp∩Sn−1)

m log
(

1
δ

)
[Corollary 1 Pilanci and

Wainwright, 2016]. Acc-IHS reduces the number of iterations to O
((√

1
1−2ρ

)
log
(

2||w∗||X
ε

))
,

which is significantly smaller when ρ is relatively large. Furthermore, IHS requires m &

W2(XRp ∩ Sn−1) for the convergence to happen, while Acc-IHS is always guaranteed to

converge. This will be illustrated in simulations.

Remark 6. In a setting with low-rank data, [Theorem 7 Zhang et al., 2014] showed that

IDRP requires O
(

1+ρ
1−ρ

)
log
(

2||w∗||2
ε

)
to ε-accuracy where ρ = C0

√
r
d log

(r
δ

)
. Acc-IDRP

reduces the number of iterations to O
(√

1
1−2ρ

)
log
(

2||w∗||2
ε

)
and, furthermore, relaxes the

stringent condition d & r log r needed for IDRP to converge, since Acc-IDRP always con-

verges.

4.3.3 Analysis of the primal-dual sketch method

In this section, we provide analysis for the primal-dual sketch method. Recall that here the

sketched dual problem is not solved exactly, but is approximately solved by sketching the

primal problem again.

Consider an outer loop iteration t. The analysis of the iterative Hessian sketch gives us

the following lemma on the decrease of the error.
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Lemma 30. Let ŵ
(t+1)
HS be the iterate defined in Algorithm 4. Then we have

||ŵ(t+1)
HS −w∗||X ≤

C0

√
W2(XRp∩Sn−1)

m log
(

1
δ

)
1− C0

√
W2(XRp∩Sn−1)

m log
(

1
δ

) ||ŵ(t)
HS −w∗||X.

Note, however, that in the iterative primal-dual sketch, we do not have access to the

exact minimizer ŵ
(t+1)
HS . Instead, we have an approximate minimizer w̃

(t+1)
HS , which is close

to ŵ
(t+1)
HS . So it remains to analyze the iteration complexity of the inner loop and see how

close the approximate minimizer w̃
(t+1)
HS is to the optimal solution w∗. We have the following

theorem.

Theorem 31. With probability at least 1 − δ, we have the following approximation error

bound for w̃
(t+1)
HS in the iterative primal-dual sketch:

||w̃(t+1)
HS −w∗||X ≤

 C0

√
W2(XRp∩Sn−1)

m log
(

1
δ

)
1− C0

√
W2(XRp∩Sn−1)

m log
(

1
δ

)

t

||w∗||X

+
10λ2

max

(
X>X
n

)
λ2

 C0

√
W2(X>Rn∩Sp−1)

d log
(

1
δ

)
1− C0

√
W2(X>Rn∩Sp−1)

d log
(

1
δ

)

k

||w∗||2.

The proof is given in Appendix 4.6.5.

With Theorem 31, we have the following iterative complexity for the proposed IPDS

approach.

Corollary 32. If the number of outer iterations t and number of inner iterations k in the
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IPDS satisfy

t ≥


1 + C0

√
W2(XRp∩Sn−1)

m log
(

1
δ

)
1− C0

√
W2(XRp∩Sn−1)

m log
(

1
δ

)
 log

(
4||w∗||X

ε

)
,

k ≥


1 + C0

√
W2(X>Rn∩Sp−1)

d log
(

1
δ

)
1− C0

√
W2(X>Rn∩Sp−1)

d log
(

1
δ

)
 log

40λ2
max

(
X>X
n

)
||w∗||2

λε

 ,

then with probability at least 1− δ:

||w̃(t+1)
IPDS −w∗||X ≤ ε.

Proof. The result directly follows by an application of Theorem 31.

Remark 7. The total number of sketched subproblem to solve in iterative primal-dual sketch

is t · k. To obtain ε approximation error, the total number of subproblems is

tk .

1 +

√
W2(XRp∩Sn−1)

m

1−
√

W2(XRp∩Sn−1)
m

·
1 +

√
W2(X>Rn∩Sp−1)

d

1−
√

W2(X>Rn∩Sp−1)
d

 log2
(

1

ε

)
.

Thus the iterative primal-dual sketch will be efficient when the Gaussian width of set XRp

and X>Rn is relatively small. For example, when rank(X) = r � min(n, p), we can choose

the sketching dimension in IPDS to be m, d & r. In this case the IPDS can return a solution

with ε-approximation error by solving log2 (1/ε) small scale subproblems of scale r × r.

We next provide iteration complexity for the proposed Acc-IPDS algorithms in Algo-

rithm 10.
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Corollary 33. If the number of outer loops t and number of inner loops k in IPDS satisfy

t ≥


(

1− 2C0

√
W2(XRp ∩ Sn−1)

m
log

(
1

δ

))−1/2
 log

(
4||w∗||X

ε

)
,

k ≥


1− 2C0

√
W2(X>Rn ∩ Sp−1)

d
log

(
1

δ

)−1/2
 log

40λ2
max

(
X>X
n

)
||w∗||2

λε

 ,

then with probability at least 1− δ:

||w̃(t+1)
IPDS −w∗||X ≤ ε.

Proof. The proof is similar to the proof of Theorem 31. We simply need to substitute the

lower bounds for t and k to obtain the desired result.

4.3.4 Runtime comparison for large n, large p, and low-rank data

To solve problem (4.1), the runtime usually depends on several quantities including the

sample size n, the dimension p, as well as the condition number. To make the comparison

between different algorithms, we simply assume X is of rank r, noting that r might be much

smaller than n and p. In (4.1), the regularization parameter λ is generally chosen at the order

of O(1/
√
n) to O(1/n) [Sridharan et al., 2009, Dhillon et al., 2013]. Here, we simply consider

the large value for λ, that is, of order O(1/
√
n), which gives a better condition number for the

problem. For iterative optimization algorithms, the convergence depends on the smoothness

parameter of the problem. In (4.1), the smoothness parameter is λmax

(
X>X
n + λIp

)
, which

is often of the order O(p), for example, under a random sub-Gaussian design. To attain the

runtime of solving (4.1) in different scenarios, we consider the following methods which are

summarized in Table 4.2 with their time complexities in terms of stated parameters:

Solving Linear System: which solves the problem exactly using matrix inversion, and
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Approach / Runtime O(·) Comment

Linear System np2 + p3

LS with Low-rank SVD npr + r3

Gradient Descent
(
n1.5p2

)
log
(
1
ε

)
Acc.Gradient Descent

(
n1.25p1.5

)
log
(
1
ε

)
Coordinate Descent

(
n1.5p

)
log
(
1
ε

)
SVRG,SDCA,SAG

(
np+ n0.5p2

)
log
(
1
ε

)
Catalyst,APPA

(
np+ n0.75p1.5

)
log
(
1
ε

)
DSPDC npr +

(
nr + n0.75p1.5r

)
log
(
1
ε

)
IHS + Catalyst np log p+ n0.25p1.5r log2

(
1
ε

)
Fast when p� n

DRP + Exact np log n+ (nr2 + r3) log
(
1
ε

)
Fast when n� p

Iter.primal-dual sketch np log p+ (n+ r3) log2
(
1
ε

)
Fast when r � max(p, n)

Table 4.2: Comparison of runtime of different approaches for solving the large scale opti-
mization problem in (4.1) stated in terms of number of samples n, the dimensionality of data
points p, the rank of data matrix r, and the target accuracy of recovered solution ε.

requires O(np2 + p3).

Linear System with Low-rank SVD: if we have the factorization X = UV> avail-

able, where U ∈ Rn×r, V ∈ Rp×r, then we can solve the matrix inversion efficiently us-

ing the Sherman-Morrison-Woodbury formula:
(
λIp + X>X

n

)−1
= 1

λIp − 1
λ2

VU>U(Ir +

V>VU>U)−1V>. This can be done in O(npr + r3) in total.

Gradient Descent: standard analysis [Nesterov, 2013] shows that the gradient descent

requires O
((

L
λ

)
log
(

1
ε

))
iterations, with each iteration has a time complexity of O(np)

to compute the full gradient for all training samples. Since L = O(p), λ = O (1/
√
n), the

overall runtime becomes O
((
n1.5p2

)
log
(

1
ε

))
.

Accelerated Gradient Descent [Nesterov, 2013]: which requires O
(√(

L
λ

)
log
(

1
ε

))
iterations, where the cost of each iteration is O(np). For the stated values of parameters

L = O(p) and λ = O (1/
√
n), the overall runtime would be O

((
n1.25p1.5

)
log
(

1
ε

))
.

Randomized Coordinate Descent [Nesterov, 2012]: which requiresO
(
p
(

1
λ

)
log
(

1
ε

))
iterations, with each iteration O(n), since λ = O (1/

√
n). We have the overall runtime is

O
((
n1.5p

)
log
(

1
ε

))
.

SVRG, SDCA, SAG [Johnson and Zhang, 2013, Zhang et al., 2013a, Shalev-Shwartz
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and Zhang, 2013, Roux et al., 2012]: which requires O
((
n+ L

λ

)
log
(

1
ε

))
iterations, with

the time complexity of O(p) for each iteration to computed the gradient of simple sample.

Since L = O(p), λ = O (1/
√
n), the overall runtime for this family of algorithms would be

O
((
np+ n0.5p2

)
log
(

1
ε

))
.

Accelerated SVRG: Catalyst, APPA, SPDC, RPDG [Lin et al., 2015, Frostig

et al., 2015, Zhang and Xiao, 2017, Lan and Zhou, 2017]: thanks to acceleration, this al-

gorithm requires O
((

n+
√
nLλ

)
log
(

1
ε

))
iterations, with each iteration shares the same

O(p) complexity per iteration as SVRG. Since L = O(p), λ = O (1/
√
n), the overall runtime

becomes

O
((
np+ n0.75p1.5

)
log
(

1
ε

))
.

DSPDC [Yu et al., 2015]: requires O
((

n+
√
nLλp

)
log
(

1
ε

))
iterations, and each

iteration is in order of O(r). Here L = O(p), λ = O (1/
√
n). Also, to apply DSPDC, one

should compute the low-rank factorization as a preprocessing step which takes O(npr). Thus

we have the overall runtime for this algorithm as O
(
npr +

(
nr + n0.75p0.5r

)
log
(

1
ε

))
.

Iterative Hessian Sketch + Accelerated SVRG [Pilanci and Wainwright, 2016]:

computing the sketched problem takes O(np log p) (e.g., via fast Johnson-Lindenstrauss

transforms [Ailon and Chazelle, 2009]). The algorithms solves O
(

log
(

1
ε

))
sketched prob-

lems using accelerated SVRG type algorithm that takes O
(
n0.25p1.5r log

(
1
ε

))
. This leads

to the overall runtime of O
(
np log p+ n0.25p1.5r log2

(
1
ε

))
.

DRP + Matrix inversion [Zhang et al., 2014]: computing the sketched problem takes

O(np log n). The algorithms needs to solve O
(

log
(

1
ε

))
reduced problems where each of

them requires a matrix inversion with time complexity of O
(
nr2 + r3

)
. This leads to the

overall runtime of O
(
np log n+ (nr2 + r3) log

(
1
ε

))
for this algorithm.

Iterative Primal-Dual Sketch: computing the sketched problem takes O(np log p).

The algorithms iterates for O
(

log2
(

1
ε

))
rounds, and at each iteration it needs to solve a

reduced problem that exactly takes O
(
n+ r3

)
. As a result the overall runtime becomes as
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O
(
np log p+ (n+ r3) log2

(
1
ε

))
.

4.4 Communication-efficient distributed optimization via

sketching

In this section we apply the improved iterative sketching in the distributed optimization

problems. Typically, distributed optimization approaches can be divided into two cate-

gories, depending how the data set is partitioned across different machines: data could be

partitioned across features [Heinze et al., 2014, 2015, Wang et al., 2016c, Yang et al., 2016]

or it could be partitioned by samples [Shamir et al., 2014, Zhang and Xiao, 2015, Lee et al.,

2017b, Wang et al., 2017a, Jordan et al., 2018, Smith et al., 2016]. For the setting where

features are partitioned across machines, we propose the (accelerated) iterative distributed

dual random projection (DIDRP). In the setting where samples are partitioned across ma-

chines, we propose the (accelerated) iterative distributed Hessian sketch (DIHS). We discuss

in detail how these proposals compare to and improve over existing work.

4.4.1 Distributed iterative dual random projection

We first consider a setting where features are distributed across different machines. In this

setting, LOCO [Heinze et al., 2014] and Dual-LOCO [Heinze et al., 2015] considered sketch-

ing based approaches, where randomly projected data are transmitted across machines to

approximate the original data. However, as predicted by theory, these one-shot approaches

require communicating a very large number of vectors in order to obtain a high accuracy

solution for the original optimization problem. On the other hand, iterative sketching meth-

ods are very powerful in reducing the approximation error by solving a different problem

using the same sketched data. At the same time, once we have transmitted the sketched

data matrix, at every iterative sketching round each machine only needs to communicate
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two vectors in Rn to solve the next sketched problem.

Suppose X ∈ Rn×d is partitioned across features overmmachines, X = [X[1],X[2], . . . ,X[m]],

such that machine k holds X[k] consisting of p/m features (for simplicity we assume that

m divides p). Without loss of generality, assume the first machine serves as the master

machine, and it contains the local data X[1], as well as the transmitted, randomly projected

data [X[2]R[2],X[3]R[3], . . . ,X[m]R[m]]. Let X̃ = [X[1],X[2]R[2],X[3]R[3], . . . ,X[m]R[m]] be

the concatenated data matrix which contains full local data and the sketched global data.

Here each random matrix R[k], k = 2, . . . ,m is of dimension (p/m)×(d/(m−1)), so that the

dimension of X̃ is n× (p/m) + d. At each iteration, the master machine solves the following

problem:

min
z

1

2n
||y −Xŵ(t) − X̃z||22 +

λ

2
||z + ŵ(t)||22, (4.34)

where ŵ(t) = [w
(t)
[1]

; R>
[2]

w
(t)
[2]

; . . . ; R>
[m]

w
(t)
[m]

]. In order to do so, each machine communicates

X[k]ŵ
(t)
[k]

, and the master machine aggregates and computes Xŵ(t) =
∑m
k=1 X[k]ŵ

(t)
[k]

. With

ẑ obtained by solving (4.34), the master machine can update the dual solution α̂(t+1) and

communicate it back to each machine. Each machine, in turn, uses the obtained α̂(t+1) to

updated their local primal solution as ŵ
(t+1)
[k]

= 1
λnX

>
[k]
α̂(t+1). The details of the algorithm

are presented in Algorithm 11. It is noteworthy to point out that after the initial transmission

stage, in each iteration, each worker only communicates two vectors in Rn to the master

machine.

The following corollary states the communication complexity of Algorithm 11 which is a

direct consequence of Theorem 24.

Corollary 34. Suppose that sub-Gaussian sketching matrices were used in Algorithm 11.

For Algorithm 11 to reach ε accuracy, ||ŵ(t)−w∗||2 ≤ ε, the total number of vectors (in Rn)
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Algorithm 11 Distributed Iterative Dual Random Projection (DIDRP).

Input: Data X,y.
Initialization: ŵ(0) = 0.
for Each worker k = 2, ...,m do

Compute and communicate randomly projected data X[k]R[k].

end
for t = 0, 1, 2, . . . do

The master machine solves the projected problem in (4.34), and obtains ẑ(t).

The master machine computes and communicates the dual approximation: α̂(t+1) =
y −Xŵ(t) − X̃ẑ(t).
for Each worker k = 2, ...,m do

Update local primal approximation: ŵ
(t+1)
[k]

= 1
λnX>

[k]
α̂(t+1).

Compute and communicate X[k]ŵ
(t+1)
[k]

.

end

end

each machine needs to communicate is upper bounded by

O
(
W2(XRp)
m− 1

+ log

(
||w∗||2
ε

))
.

Remark 8. We can compare our result with that established for Dual-LOCO [Heinze et al.,

2015]. Dual-LOCO requires the number of communication rounds to linearly with 1/ε2. On

the other hand, the number of communication rounds of DIDRP only grow logarithmically

with 1/ε. Therefore, DIDRP presents a significant improvement over Dual-LOCO. This is

also verified by the empirical results.

4.4.2 Distributed iterative Hessian sketch

Next, we consider a setting where the data are partitioned by samples. The data matrix X is

partitioned as X = [X(1); X(2); . . . ; X(m)] where each machine k holds the local data X(k) ∈

Rn/m×p, which contains n/m samples. In this setting, our main idea is to approximate

the Hessian matrix with a mix of local data and sketched global data. Again, assume the
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first machine serves as the master. At the beginning of the algorithm, workers compute

and communicate their sketched local data Π>
(k)

X(k). The master constructs the sketched

data matrix as X̃ = [X(1); Π
>
(2)

X(2); . . . ; Π
>
(m)

X(m)], which will be used for constructing an

approximation to the Hessian matrix as H̃ = X̃>X̃
n/m+d

. At each iteration of the algorithm,

the master solves a sub-problem of form

û(t) = arg min
u

u>
(

H̃ +
λ

2
Ip

)
u−

〈
X>(y −Xŵ(t))

n
− λŵ(t),u

〉
, (4.35)

which is inspired by the iterative Hessian sketch. The quantity X>Xŵ(t) is computed by

communicating and aggregating the local information X>Xŵ(t) =
∑m
k=1 X>

(k)
X(k)ŵ

(t).

The details of the algorithm DIHS are presented in Algorithm 12. The following corollary

on its communication efficiency is a direct consequence of Theorem 24.

Corollary 35. Suppose we use sub-Gaussian sketching in Algorithm 11 and for Algorithm

12 to reach ε approximation: ||ŵ(t) − w∗||X ≤ ε, the total number of vectors (in Rp) each

machine need to communicate is upper bounded by

O
(
W2(XRp)
m− 1

+ log

(
||w∗||X

ε

))
.

Acceleration The acceleration techniques presented in Section 4.2.1 and 4.2.3 can also

be applied in the distributed optimization setting to further improve the communication

efficiency of DIDRP and DIHS. In the experiments, we found that the accelerated algorithms

can often help in saving communication because of their faster convergence.

4.5 Experiments

In this section we present extensive comparisons for the proposed iterative sketching ap-

proaches on both simulated and real world data sets. We first demonstrate the improved
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Algorithm 12 Distributed Iterative Hessian Sketch (DIHS).

Input: Data X,y.
Initialization: ŵ(0) = 0.
for Each work k = 2, ...,m do

Compute and communicate randomly projected data Π>
(k)

X(k).

end
for t = 0, 1, 2, . . . do

for Each worker k = 2, ...,m do

Compute and communicate X>
(k)

X(k)ŵ
(t).

end

The master machine computes ŵ(t+1) = ŵ(t) + û(t), where û(t) is obtained by solving
the sketched problem (4.35), and communicates ŵ(t+1).

end

convergence of the proposed Acc-IHS and Acc-IDRP algorithms on simulated data sets.

Then we show that the proposed iterative primal-dual sketch procedure and its accelerated

version could simultaneously reduce the sample size and dimension of the problem, while still

maintaining high approximation precision. Finally, we evaluate these algorithms on some

real world data sets.

4.5.1 Simulations for Acc-IHS and Acc-IDRP

We first examine the effectiveness of the proposed Acc-IHS and Acc-DRP algorithms on

simulated data. We generate the response {yi}i∈[n] from the following linear model

yi = 〈xi,w∗〉+ εi,

where the noise εi is sampled from a standard Normal distribution. The true model w∗ is

a p-dimensional vector where the entries are sampled i.i.d. from a uniform distribution in

[0, 1].

We first compare the proposed Acc-IHS with the standard IHS on some “big n”, but

relatively low-dimensional problems. We generate {xi}i∈[n] from a multivariate Normal
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Figure 4.1: Comparison of IHS and Acc-IHS on various simulated datasets. The sketching
dimension for each algorithm is shown inside parentheses.
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Figure 4.2: Comparison of IDRP and Acc-IDRP on various simulated datasets.
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Table 4.3: List of real-world data sets used in the experiments.
Name #Instances #Features

connect4 67,557 126
slice 53,500 385
year 51,630 90

colon-cancer 62 2,000
duke breast-cancer 44 7,129

leukemia 72 7,129
cifar 4,047 3,072

gisette 6,000 5,000
sector 6,412 15,000
mnist 60,000 780
tomes 28,179 96
twitter 582,350 77

distribution with mean zero vector, and covariance matrix Σ, which controls the condition

number of the problem. We will varying Σ to see how it affects the performance of various

methods. We set Σij = 0.5|i−j| for the well-conditioned setting, and Σij = 0.5|i−j|/10

for the ill-conditioned setting. We fix the sample size n = 105 and vary the dimension

p ∈ {50, 100, 300}. The results are shown in Figure 4.1. For each problem setting, we test 3

different sketching dimensions (number inside parentheses in legend). We have the following

observations:

• For both IHS and Acc-IHS, the larger the sketching dimension m, the faster the iter-

ative algorithms converges to the optimum, which is consistent with the theory that

characterize the benefit of using larger sketching dimension. And this has also been

observed in [Pilanci and Wainwright, 2016] and [Zhang et al., 2014] for IHS and IDRP

algorithms.

• When compared with IHS, we observe that Acc-IHS converges significantly faster.

Moreover, when the sketching dimension is small, IHS can diverge and go far away

from the optimum, while Acc-IHS still converges.
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• For all the simulation setting we tried, Acc-IHS converges faster than IHS, even when

its sketching dimension is only 1/3 of the sketching dimension of IHS.

Next, we compare the proposed Acc-IDRP with the standard IDRP on high-dimensional,

but relatively low-rank data. We generate {xi}i∈[n] from a low-rank factorization X = UV>,

where the entries in U ∈ Rn×r and V ∈ Rp×r are sampled i.i.d. from a standard Normal dis-

tribution. We fix the sample size n = 104 and vary the dimensions p ∈ {2000, 5000, 20000}.

We also vary the rank r ∈ {20, 50}. The results are shown in Figure 4.2. For each prob-

lem setting, we test 3 different sketching dimensions (number inside parentheses in legend).

We have similar observations as in the IHS case. Acc-IDRP always converges significantly

faster than IDRP. When the low sketching dimension causes IDRP to diverge, Acc-IDRP

still converges to the optimum.

Above simulations validate the theoretical analysis, which showed that the accelerated

procedures for IHS and IDRP could significantly boost the convergence speed of their stan-

dard counterparts. Since the computational cost per iteration of the standard iterative

sketching techniques and their accelerated versions is almost the same, Acc-IHS and Acc-

IDRP will be useful practical techniques.

4.5.2 Simulations for IPDS and Acc-IPDS

In this section we demonstrate how iterative primal-dual sketch and its accelerated version

work on simulated data. We generated the data using the same procedure described in the

previous section for Acc-DRP. We generate the low-rank data matrix X with rank 10 and

vary the sample size n and dimension p. For primal-dual sketching, we reduce the sample

size to m and the dimension to d, with m � n, d � p. We compare with the standard

IHS and IDRP. For IHS, we perform the sample reduction from n to m, while for IDRP we

perform data dimension reduction from p to d. Thus the sizes of the sub-problems for IPDS

(and Acc-IPDS), IHS, and IDRP are m× d, m× p, and n× d, respectively. For IPDS and
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Acc-IPDS, we terminate the inner loop when the `∞ distance between two inner iterations

is less than 10−10. The results are shown in Figure 4.3, where the sketched dimension (m, d)

is shown in legend.

We have the following observations:

• IPDS and Acc-IPDS are able to recover the optimum to a very high precision, even

though they simultaneously reduce the sample size and data dimension. However,

they generally require more iterations to reach certain approximation level compared

with IHS and IDRP, which, on the other hand, need to solve a substantially larger

subproblem at each iteration. Therefore, primal-dual sketching approach still enjoys

computational advantages. For example, on a problem of size (n, p) = (10000, 20000),

IHS and IDRP need to solve 5 sub-problems of scale (m, p) = (500, 20000) and (n, d) =

(10000, 500), respectively, while Acc-IPDS is only required to solve 35 sub-problems of

scale (m, d) = (500, 500) to obtain the same approximation accuracy.

• Acc-IPDS converges significantly faster than IPDS, which again verifies the effective-

ness of the proposed acceleration procedure for the sketching techniques.

4.5.3 Experiments on real data sets

In this section, we present experiments conducted on real-world data sets. Table 5.2 sum-

marizes their statistics. Among these data sets, the first 3 are cases where sample size is

significantly larger than the data dimension. We use them to compare the IHS and Acc-IHS

algorithms. The middle 3 data sets are high-dimensional data sets with small sample sizes.

We use them to compare the DRP and Acc-DRP algorithms. Finally, the last 3 data sets are

cases where the sample size and data dimensions are both relatively large, which is suitable

for iterative primal-dual sketching methods. For the last 3 data sets, we found that standard

IHS and DRP often fail, unless a very large sketching dimension is used. As a result, we
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compared with Acc-IHS and Acc-DRP algorithms. We follow the same experimental setup

used in the simulation study. The convergence plots are summarized in Figure 4.4.

We have the following observations:

• Acc-IHS and Acc-DRP converge significantly faster than IHS and DRP, respectively.

This is consistent with the observation drawn from simulation studies.

• For the last 3 data sets, where n and p are both large, and the data are not exactly

low-rank, IHS, DRP, and IPDS often diverge. This is because the requirement on

the sketching dimension to ensure convergence is high. The accelerated versions still

converge to the optimum. It is notable that the Acc-IPDS only requires solving several

least squares problems with both sample size and dimension being relatively small.

4.5.4 Experiments for distributed optimization

We consider distributed optimization in both partition by features and partition by samples

settings. We follow the data generating process as in the simulation study for Acc-DRP,

where we fix a low-rank data matrix X with rank 10, and vary the sample size n and

dimension p, as well as number of machines m. For partition by features scenario, we compare

with LOCO and Dual-LOCO [Heinze et al., 2014, 2015]. We plot the relative approximation

error versus the number of vectors (in Rn) communicated. The results are shown in Figure

4.5. We LOCO and Dual-LOCO fail to quickly decrease the approximation error even with

relatively large communication, this is consistent with theory that characterize the limit

of one-shot sketching methods. The proposed DIDRP algorithm clearly outperforms LOCO

methods as the number of communicated vectors grows. We further observe that Acc-DIDRP

is more efficient than DIDRP, which again illustrates that the acceleration techniques can

be helpful in further reducing the communication.

For the partition by sample scenario, we compare with several state-of-the-art algorithms

including accelerated gradient descent (AccGD) [Nesterov, 2013], ADMM [Boyd et al., 2011],
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DANE [Shamir et al., 2014] and DiSCO [Zhang and Xiao, 2015]. The results are sum-

marized in Figure 4.6. We observe that the methods leveraging higher-order information

(DANE,DiSCO,DIHS,Acc-DIHS) are significantly more communication-efficient compared

to AccGD and ADMM. Generally speaking Acc-DIHS has a slight advantage over existing

approaches. We also tested on several real world data sets and the results are shown in

Figure 4.7, where we observed a similar behavior.

4.6 Proofs of technical results

The appendix contains proofs of theorems stated in this chapter.

4.6.1 Proof of Theorem 24

Proof. Based on the optimality condition for w∗ and ŵHS, we have

(
X>X

n
+ λIp

)
w∗ =

X>y

n
and

(
X>ΠΠ>X

n
+ λIp

)
ŵHS =

X>y

n
.

Therefore

(
X>X

n
+ λIp

)
w∗ −

(
X>ΠΠ>X

n
+ λIp

)
ŵHS = 0,

and 〈(
X>X

n
+ λIp

)
w∗ −

(
X>ΠΠ>X

n
+ λIp

)
ŵHS,w

∗ − ŵHS

〉
= 0.
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By adding and subtracting
〈
w∗ − ŵHS,

(
X>ΠΠ>X

n + λIp

)
w∗
〉

, we have

〈(
X>ΠΠ>X

n
− X>X

n

)
w∗, ŵHS −w∗

〉

= (w∗ − ŵHS)>
(

X>ΠΠ>X

n
+ λIp

)
(w∗ − ŵHS)

The term on right hand side is lower bounded as

(w∗ − ŵHS)>
(

X>ΠΠ>X

n

)
(w∗−ŵHS) + λ||w∗ − ŵHS||22

≥ ρ1(XRp,Π)||w∗ − ŵHS||2X.

(4.36)

For the left hand side, we have the following upper bound

〈(
ΠΠ> − In

) Xw∗√
n
,

X√
n

(ŵHS −w∗)
〉
≤ ρ2(XRp,Π,w∗)||w∗||X||ŵHS −w∗||X. (4.37)

Combining (4.36) and (4.37) we have

||ŵHS −w∗||X ≤
ρ2(XRp,Π,w∗)
ρ1(XRp,Π)

||w∗||X.

For the recovery of dual variables, we have

||α̂HS −α∗||2 =||y −XŵHS − (y −Xw∗)||2

=
√
n||ŵHS −w∗||X

≤
√
n
ρ2(XRp,Π,w∗)
ρ1(XRp,Π)

||w∗||X.

This completes the proof for the Hessian sketch.

For the dual random projection, the proof is mostly analogous. Based on the optimality
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condition for α∗ and α̂DRP, we have

(
XX>

n
+ λIn

)
α∗ = λy and

(
XRR>X>

n
+ λIn

)
α̂DRP = λy.

Therefore (
XX>

n
+ λIn

)
α∗ −

(
XRR>X>

n
+ λIn

)
α̂DRP = 0,

and 〈(
XX>

n
+ λIn

)
α∗ −

(
XRR>X>

n
+ λIn

)
α̂DRP,α

∗ − α̂DRP

〉
= 0.

Simple algebra gives us

〈(
XRR>X>

n
− XX>

n

)
α∗, α̂DRP −α∗

〉

= (α∗ − α̂DRP)>
(

XRR>X>

n
+ λIn

)
(α∗ − α̂DRP).

The term on right hand side is lower bounded as

(α∗ − α̂DRP)>
(

XRR>X>

n

)
(α∗ − α̂DRP) + λ||α∗ − α̂DRP||22

≥ ρ1(X>Rn,R)||α∗ − α̂DRP||2X> .

(4.38)

The term on the left hand side is upper bounded as

〈(
RR> − Ip

) X>α∗√
n

,
X>√
n

(α̂DRP −α∗)

〉
≤ ρ2(X>Rn,R,α∗)||α∗||X> ||α̂DRP −α∗||X> .

(4.39)

Combining (4.38) and (4.39) we have

||α̂DRP −α∗||X> ≤
ρ2(X>Rn,R,α∗)
ρ1(X>Rn,R)

||α∗||X> .
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For the recovery of primal variables, we have

||ŵDRP −w∗||2 =
1

λ
√
n
||α̂DRP −α∗||X> ≤

1

λ
√
n

ρ2(X>Rn,R,α∗)
ρ1(X>Rn,R)

||α∗||X>

=
ρ2(X>Rn,R,α∗)
ρ1(X>Rn,R)

||w∗||2.

An application of Lemma 23 concludes the proof.

4.6.2 Proof of Theorem 25

We only prove the result for the Hessian sketch here as the proof for the dual random

projection is analogous. We will make usage of the following concentration result for sub-

Gaussian random matrices.

Lemma 36 (Lemma 3 in [Zhang et al., 2014]). Let B ∈ Rr×m be a random matrix with

entries sampled i.i.d. from zero-mean sub-Gaussian distribution with variance 1/m, then

||BB> − Ir||2 ≤ 2

√
2(r + 1)

m
log

2r

δ
:= ε1

with probability at least 1− δ.

Lemma 37 (Theorem 3.2 in [Recht, 2011]). Let B ∈ Rr×m, A ∈ R(n−r)×m be two random

matrices with entries sampled i.i.d. from a zero-mean sub-Gaussian distribution with variance

1/m, then

||AB>||2 ≤
7

3

√
2(n− r)

m
log

n

δ
:= τ1

with probability at least 1− δ.
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Let ∆w = w∗ − ŵHS. Then

||∆w||2X =

∣∣∣∣∣∣∣∣X∆w√
n

∣∣∣∣∣∣∣∣2
2

=

∣∣∣∣∣∣∣∣(UΣrV
> + UΣr̄V

>)∆w√
n

∣∣∣∣∣∣∣∣2
2

=

∣∣∣∣∣∣∣∣ΣrV
>∆w√
n

∣∣∣∣∣∣∣∣2
2

+

∣∣∣∣∣∣∣∣Σr̄V
>∆w√
n

∣∣∣∣∣∣∣∣2
2

Consider the term ∆w>
(

X>ΠΠ>X
n + λIp

)
∆w. We have

∆w>
(

X>ΠΠ>X

n
+ λIp

)
∆w

≥ ∆w>
(

V>ΣrU
>ΠΠ>UΣrV

>

n

)
∆w + λ||∆w||22

+ 2∆w>
(

V>Σr̄U
>ΠΠ>UΣrV

>

n

)
∆w.

Since

∆w>
(

V>ΣrU
>ΠΠ>UΣrV

>

n

)
∆w ≥ (1− ε1)

∣∣∣∣∣∣∣∣ΣrV
>∆w√
n

∣∣∣∣∣∣∣∣2
2
,

and

λ||∆w||22 ≥
λ

σ2
r+1

||Σr̄V
>∆w||22 =

λn

σ2
r+1

∣∣∣∣∣∣∣∣Σr̄V
>∆w√
n

∣∣∣∣∣∣∣∣2
2
,

where

2∆w>
(

V>Σr̄U
>ΠΠ>UΣrV

>

n

)
∆w =2∆w>

(
V>Σr̄U

>
r̄ ΠΠ>UrΣrV

>

n

)
∆w

≥− τ1
∣∣∣∣∣∣∣∣ΣrV

>∆w√
n

∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣Σr̄V
>∆w√
n

∣∣∣∣∣∣∣∣
2
,
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we have

∆w>
(

X>ΠΠ>X

n
+ λIp

)
∆w ≥ (1− ε1)

∣∣∣∣∣∣∣∣ΣrV
>∆w√
n

∣∣∣∣∣∣∣∣2
2

+
λn

σ2
r+1

∣∣∣∣∣∣∣∣Σr̄V
>∆w√
n

∣∣∣∣∣∣∣∣2
2

− 2τ1

∣∣∣∣∣∣∣∣ΣrV
>∆w√
n

∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣Σr̄V
>∆w√
n

∣∣∣∣∣∣∣∣
2

≥
(

1

2
− ε1

2

) ∣∣∣∣∣∣∣∣ΣrV
>∆w√
n

∣∣∣∣∣∣∣∣2
2

+
λn

2σ2
r+1

∣∣∣∣∣∣∣∣Σr̄V
>∆w√
n

∣∣∣∣∣∣∣∣2
2
.

Consider the term
〈(

ΠΠ> − In

)
Xw∗√
n
,−X∆w√

n

〉
, we have

〈(
ΠΠ> − In

) Xw∗√
n
,

X√
n

(ŵHS −w∗)
〉

=

〈(
ΠΠ> − In

) Xrw
∗

√
n
,−Xr∆w√

n

〉
+

〈(
ΠΠ> − In

) Xr̄w
∗

√
n
,−Xr∆w√

n

〉
+

〈(
ΠΠ> − In

) Xrw
∗

√
n
,−Xr̄∆w√

n

〉
+

〈(
ΠΠ> − In

) Xr̄w
∗

√
n
,−Xr̄∆w√

n

〉
.

Notice that the random matrix Π>Ur and Π>Ur can be treated as two Gaussian random

matrices with entries sampled i.i.d from N (0, 1/m). Applying Lemma 36 and Lemma 37,

we can bound above terms separately:

〈(
ΠΠ> − In

) Xrw
∗

√
n
,−Xr∆w√

n

〉
≤ ε1

∣∣∣∣∣∣∣∣ΣrV
>w∗√
n

∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣ΣrV
>∆w√
n

∣∣∣∣∣∣∣∣
2
,

〈(
ΠΠ> − In

) Xr̄w
∗

√
n
,−Xr∆w√

n

〉
≤ τ1

∣∣∣∣∣∣∣∣Σr̄V
>w∗√
n

∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣ΣrV
>∆w√
n

∣∣∣∣∣∣∣∣
2
,

〈(
ΠΠ> − In

) Xrw
∗

√
n
,−Xr̄∆w√

n

〉
≤ τ1

∣∣∣∣∣∣∣∣ΣrV
>w∗√
n

∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣Σr̄V
>∆w√
n

∣∣∣∣∣∣∣∣
2
,

〈(
ΠΠ> − In

) Xr̄w
∗

√
n
,−Xr̄∆w√

n

〉
≤ υ1

∣∣∣∣∣∣∣∣Σr̄V
>w∗√
n

∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣Σr̄V
>∆w√
n

∣∣∣∣∣∣∣∣
2
.
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By Cauchy-Schwarz inequality, we have

〈(
ΠΠ> − In

) Xw∗√
n
,

X√
n

(ŵHS −w∗)
〉

≤ ε1

∣∣∣∣∣∣∣∣ΣrV
>w∗√
n

∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣ΣrV
>∆w√
n

∣∣∣∣∣∣∣∣
2

+ τ1

∣∣∣∣∣∣∣∣Σr̄V
>w∗√
n

∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣ΣrV
>∆w√
n

∣∣∣∣∣∣∣∣
2

+τ1

∣∣∣∣∣∣∣∣ΣrV
>w∗√
n

∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣Σr̄V
>∆w√
n

∣∣∣∣∣∣∣∣
2

+ υ1

∣∣∣∣∣∣∣∣Σr̄V
>w∗√
n

∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣Σr̄V
>∆w√
n

∣∣∣∣∣∣∣∣
2

≤
4ε21

1− ε1

∣∣∣∣∣∣∣∣ΣrV
>w∗√
n

∣∣∣∣∣∣∣∣2
2

+
1− ε1

8

∣∣∣∣∣∣∣∣ΣrV
>∆w√
n

∣∣∣∣∣∣∣∣2
2

+
4τ2

1

1− ε1

∣∣∣∣∣∣∣∣Σr̄V
>w∗√
n

∣∣∣∣∣∣∣∣2
2

+
1− ε1

8

∣∣∣∣∣∣∣∣ΣrV
>∆w√
n

∣∣∣∣∣∣∣∣2
2

+
4τ2

1σ
2
r+1

λn

∣∣∣∣∣∣∣∣ΣrV
>w∗√
n

∣∣∣∣∣∣∣∣2
2

+
λn

8σ2
r+1

∣∣∣∣∣∣∣∣Σr̄V
>∆w√
n

∣∣∣∣∣∣∣∣2
2

+
4υ2

1σ
2
r+1

λn

∣∣∣∣∣∣∣∣Σr̄V
>w∗√
n

∣∣∣∣∣∣∣∣2
2

+
λn

8σ2
r+1

∣∣∣∣∣∣∣∣Σr̄V
>∆w√
n

∣∣∣∣∣∣∣∣2
2
.

From the proof of Theorem 24, we know

1− ε1
2

∣∣∣∣∣∣∣∣ΣrV
>∆w√
n

∣∣∣∣∣∣∣∣2
2

+
λn

2σ2
r+1

∣∣∣∣∣∣∣∣Σr̄V
>∆w√
n

∣∣∣∣∣∣∣∣2
2

≤ ∆w>
(

X>ΠΠ>X

n
+ λIp

)
∆w

=

〈(
ΠΠ> − In

) Xw∗√
n
,

X√
n

(ŵHS −w∗)
〉
.
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Combining the above, we have

1− ε1
4

∣∣∣∣∣∣∣∣ΣrV
>∆w√
n

∣∣∣∣∣∣∣∣2
2

+
λn

4σ2
r+1

∣∣∣∣∣∣∣∣Σr̄V
>∆w√
n

∣∣∣∣∣∣∣∣2
2
≤(

4ε21
1− ε1

+
4τ2

1σ
2
r+1

λn

)∣∣∣∣∣∣∣∣ΣrV
>w∗√
n

∣∣∣∣∣∣∣∣2
2

+

(
4τ2

1

1− ε1
+

4υ2
1σ

2
r+1

λn

)∣∣∣∣∣∣∣∣Σr̄V
>w∗√
n

∣∣∣∣∣∣∣∣2
2

≤

(
4ε21

1− ε1
+

4τ2
1σ

2
r+1

λn
+

4τ2
1 ρ

2

1− ε
+

4ρ2υ2
1σ

2
r+1

λn

)
||w∗||2X.

Thus

||∆w||2X =

∣∣∣∣∣∣∣∣ΣrV
>∆w√
n

∣∣∣∣∣∣∣∣2
2

+

∣∣∣∣∣∣∣∣Σr̄V
>∆w√
n

∣∣∣∣∣∣∣∣2
2

≤

(
4

1− ε1
+

4σ2
r+1

λn

)(
1− ε1

4

∣∣∣∣∣∣∣∣ΣrV
>∆w√
n

∣∣∣∣∣∣∣∣2
2

+
λn

4σ2
r+1

∣∣∣∣∣∣∣∣Σr̄V
>∆w√
n

∣∣∣∣∣∣∣∣2
2

)

≤

(
4

1− ε1
+

4σ2
r+1

λn

)(
4ε21

1− ε1
+

4τ2
1σ

2
r+1

λn
+

4τ2
1 ρ

2

1− ε1
+

4ρ2υ2
1σ

2
r+1

λn

)
||w∗||2X,

which concludes the proof.

4.6.3 Proof of Theorem 28

For notation simplicity, let

H̃ =
X>ΠΠ>X

n
+ λIp and H =

X>X

n
+ λIp.

Based on the property of similarity matrices, we have

κ(H̃−1H) = κ(H̃−1/2HH̃−1/2) =
maxw w>H̃−1/2HH̃−1/2w

minw w>H̃−1/2HH̃−1/2w
.
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Consider the quantity |w>H̃−1/2(H− H̃)H̃−1/2w|. We have

|w>H̃−1/2(H− H̃)H̃−1/2w| =
〈(

H− H̃
)

H̃−1/2w, H̃−1/2w
〉

=

〈(
ΠΠ> − In

) X√
n

H̃−1/2w,
X√
n

H̃−1/2w

〉
≤ρ2

(
XRp,Π,

X√
n

H̃−1/2w

)
||H̃−1/2w||2X

≤C0

√
W2(XRp ∩ Sn−1)

m
log

(
1

δ

)
||H̃−1/2w||2X.

For any vector u ∈ Rp, we have

||H̃1/2u||22 =u>
(

X>ΠΠ>X

n
+ λIp

)
u

=u>
(

X>ΠΠ>X

n

)
u + λ||u||22

≥ρ1(XRp,Π)||u||2X

≥

(
1− C0

√
W2(XRp ∩ Sn−1)

m
log

(
1

δ

))
||u||2X.

Let u = H̃−1/2w, we have

||H̃−1/2w||2X ≤
1

1− C0

√
W2(XRp∩Sn−1)

m log
(

1
δ

) ||w||22.

Combining, we get

|w>H̃−1/2(H− H̃)H̃−1/2w| ≤
C0

√
W2(XRp∩Sn−1)

m log
(

1
δ

)
1− C0

√
W2(XRp∩Sn−1)

m log
(

1
δ

) ||w||22,

149



which implies

max
w

w>H̃−1/2HH̃−1/2w ≤||w||22 +

C0

√
W2(XRp∩Sn−1)

m log
(

1
δ

)
1− C0

√
W2(XRp∩Sn−1)

m log
(

1
δ

) ||w||22
=

1

1− C0

√
W2(XRp∩Sn−1)

m log
(

1
δ

) ||w||22,

and

min
w

w>H̃−1/2HH̃−1/2w ≥||w||22 −
C0

√
W2(XRp∩Sn−1)

m log
(

1
δ

)
1− C0

√
W2(XRp∩Sn−1)

m log
(

1
δ

) ||w||22

=

1− 2C0

√
W2(XRp∩Sn−1)

m log
(

1
δ

)
1− C0

√
W2(XRp∩Sn−1)

m log
(

1
δ

) ||w||22.

Thus we know

κ(H̃−1H) ≤ 1

1− 2C0

√
W2(XRp∩Sn−1)

m log
(

1
δ

) .

The proof for κDRP(X,R, λ) is analogous.

4.6.4 Proof of Lemma 30

Note that (4.6) is sketching the following problem

arg min
u

u>
(

X>X

2n
+
λ

2
Ip

)
u−

〈
X>(y −Xŵ

(t)
HS)

n
− λŵ

(t)
HS,u

〉
,
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where w∗ − ŵ
(t)
HS is the optimal solution. Thus applying Theorem 24, We have

||û(t) − (w∗ − ŵ
(t)
HS)||X ≤

C0

√
W2(XRp∩Sn−1)

m log
(

1
δ

)
1− C0

√
W2(XRp∩Sn−1)

m log
(

1
δ

) ||ŵ(t)
HS −w∗||X.

Using the definition that ŵ
(t+1)
HS = ŵ

(t)
HS + û(t), we obtain the desired result.

4.6.5 Proof of Theorem 31

By triangle inequality we have the following decomposition:

||w̃(t+1)
HS −w∗||X ≤ ||ŵ

(t+1)
HS −w∗||X + ||w̃(t+1)

HS − ŵ
(t+1)
HS ||X

≤
C0

√
W2(XRp∩Sn−1)

m log
(

1
δ

)
1− C0

√
W2(XRp∩Sn−1)

m log
(

1
δ

) ||ŵ(t)
HS −w∗||X + ||w̃(t+1)

HS − ŵ
(t+1)
HS ||X

≤

 C0

√
W2(XRp∩Sn−1)

m log
(

1
δ

)
1− C0

√
W2(XRp∩Sn−1)

m log
(

1
δ

)

t

||w∗||X + ||w̃(t+1)
HS − ŵ

(t+1)
HS ||X.

For the term ||w̃(t+1)
HS − ŵ

(t+1)
HS ||X, we can further bridge w̃

(t+1)
HS and ŵ

(t+1)
HS by w̄

(t+1)
HS ,

which is the result of one exact step of IHS initialized at w̃
(t)
HS. Thus we have the following

decomposition

||w̃(t+1)
HS − ŵ

(t+1)
HS ||X ≤ ||w̃

(t+1)
HS − w̄

(t+1)
HS ||X + ||w̄(t+1)

HS − ŵ
(t+1)
HS ||X.
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Applying the Theorem 24 for DRP we have the following bound for ||w̃(t+1)
HS − w̄

(t+1)
HS ||X:

||w̃(t+1)
HS − w̄

(t+1)
HS ||X ≤ λmax

(
X>X

n

)
||w̃(t+1)

HS − w̄
(t+1)
HS ||2

≤ λmax

(
X>X

n

) C0

√
W2(X>Rn∩Sp−1)

d log
(

1
δ

)
1− C0

√
W2(X>Rn∩Sp−1)

d log
(

1
δ

)

k

||w̄(t+1)
HS ||2

≤ λmax

(
X>X

n

) C0

√
W2(X>Rn∩Sp−1)

d log
(

1
δ

)
1− C0

√
W2(X>Rn∩Sp−1)

d log
(

1
δ

)

k (
||w̄(t+1)

HS −w∗||2 + ||w∗||2
)

≤ 2λmax

(
X>X

n

) C0

√
W2(X>Rn∩Sp−1)

d log
(

1
δ

)
1− C0

√
W2(X>Rn∩Sp−1)

d log
(

1
δ

)

k

||w∗||2.

We can relate the error ||w̄(t+1)
HS −ŵ

(t+1)
HS ||X to the error term at t-th outer loop iteration:

||w̃(t)
HS − ŵ

(t)
HS||X:

||w̄(t+1)
HS − ŵ

(t+1)
HS ||X =||w̃(t)

HS − H̃−1∇P (w̃
(t)
HS)− ŵ

(t)
HS − H̃−1∇P (ŵ

(t)
HS)||X

=||H̃−1(H̃−H)(w̃
(t)
HS − ŵ

(t)
HS)||X

≤||H̃−1||2||H̃−H||2||w̃
(t)
HS − ŵ

(t)
HS||X

≤
4λmax

(
X>X
n

)
λ

||w̃(t)
HS − ŵ

(t)
HS||X

≤
8λ2

max

(
X>X
n

)
λ

 C0

√
W2(X>Rn∩Sp−1)

d log
(

1
δ

)
1− C0

√
W2(X>Rn∩Sp−1)

d log
(

1
δ

)

k

||w∗||2.
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Combining above inequalities we obtained the following iterative error bound for w̃
(t+1)
HS :

||w̃(t+1)
HS −w∗||X ≤

 C0

√
W2(XRp∩Sn−1)

m log
(

1
δ

)
1− C0

√
W2(XRp∩Sn−1)

m log
(

1
δ

)

t

||w∗||X

+
10λ2

max

(
X>X
n

)
λ

 C0

√
W2(X>Rn∩Sp−1)

d log
(

1
δ

)
1− C0

√
W2(X>Rn∩Sp−1)

d log
(

1
δ

)

k

||w∗||2.
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Figure 4.3: Comparion of IPDS and Acc-IPDS versus with IHS and DRP various simulated
datasets.
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Figure 4.4: Comparion of various iterative sketching approaches on real-world data sets. Top
row: Acc-IHS versus IHS, middle row: Acc-DRP versus DRP, bottom row: Acc-IPDS versus
Acc-IHS and Acc-DRP.
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Figure 4.5: Comparion of various approaches for distributed optimization under the partition
by feature scenario, with different settings of (n, p,m).
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Figure 4.6: Comparion of various approaches for distributed optimization under the partition
by sample scenario, with different settings of (n, p,m) (cont.).
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Figure 4.7: Comparion of various approaches for distributed optimization on several real
world data sets under the partition by sample setting.
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CHAPTER 5

COMMUNICATION-COMPUTATION BALANCED

OPTIMIZATION

5.1 Motivation

Distributed computing systems are widely used to train machine learning models due to large

data sets collected across sciences. When a data set cannot fit into the memory of a single

machine or the learning process is too time consuming, the data set is distributed across

multiple computation nodes and a distributed optimization algorithm is used to speedup

the training process. When developing a distributed optimization algorithm, in order to

keep the runtime low, one needs to consider two important factors: the communication and

computation costs. The communication cost arises from multiple machines exchanging their

local information to reach a global consensus, while the computation cost accounts for each

machine processing the local data. A typical optimization algorithm consists of a number of

iterative steps that might require multiple rounds of communication and within each round of

communication a number of local computations are performed. When designing an efficient

distributed optimization method there is a fundamental challenge in balancing efficiency in

communication and computation, as they often conflict with each other.

In this chapter, we consider the problem of distributed optimization of finite-sums, which

appears ubiquitously in machine learning [Bottou et al., 2016]. To the best of our knowledge,

even if one just considers the computational costs, while ignoring communication, no existing

distributed optimization algorithm can obtain linear speedup in computation compared to

any single machine algorithm when the condition number is large. Concretely, we consider

a setting with m-machines, each holding n individual functions, and the goal is to minimize
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the following global average:

min
w∈Rd

f(w) :=
1

mn

m∑
j=1

n∑
i=1

fij(w) =
1

mn

m∑
j=1

n∑
i=1

`(w>aij , bij) + g(w), (5.1)

where fij(w) is the i-th individual function on j-th machine. This problem arises in, for

example, regularized empirical risk minimization. Let {aij , bij}i∈[n],j∈[m] be i.i.d. samples

from an unknown distribution D, where aij represents observed feature vectors and bij

represents responses of interest. By setting fij(w) = `(w>aij , bij) + λg(w), where `(w>a, b)

is a loss function and g(w) is a regularization term, the optimization problem (5.1) can be

used for fitting generalized linear models used in classification and regression. For example,

when `(w>a, b) = log(1 + exp(−(w>a)b)) and g(w) = (1/2)||w||2, one gets `2 regularized

logistic regression, while when `(w>a, b) = (1/2)(w>a − b)2, and g(w) = (1/2)||w||1 one

obtains the lasso objective.

Our contributions. We propose novel distributed optimization algorithms to minimize

the convex finite-sum objective in (5.1). The approach provably achieves near-linear speedup

in computation, even when the condition number is large. Compared with previous attempts,

our proposed approaches obtain a communication-computation balance that is beneficial for

improving the overall runtime efficiency.

Notation. For a vector w ∈ Rd, we use ||w|| to denote its `2 norm and ||w||1 to denote

its `1 norm. For a matrix A, we use trace(A) to denote the trace of A. For two sequences

of numbers {an} and {bn}, we say an = O(bn) if an ≤ Cbn for n large enough, with some

positive constant C, and use the notation Õ(·) to hide polylogarithmic factors. We say

an = Ω(bn) if bn = O(an). We denote an � bn if an = O(bn) and bn = O(an). Finally, we

use I to denote an identity matrix, and use [n] to denote the set {1, ..., n}.
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5.2 Problem Set-up and related work

Throughout this chapter, we focus on objectives f(w) that satisfy the following smoothness

and strong convexity conditions.

Assumption 38. The function f(w) admits the finite-sum structure

f(w) = (1/mn)
∑m
j=1

∑n
i=1 `(w

>aij , bij)+g(w), where the loss function `(w>a, b) is convex

and L-smooth, the regularization function g(w) is convex, and the overall objective f(w) is

λ-strongly convex.

• Every loss function `(w>aij , bij) is differentiable and its gradient is L-Lipschitz con-

tinuous with respect to w: ∀i ∈ [n], j ∈ [m], w1, w2 ∈ Rd, we have

|∇`(w>1 aij , bij)−∇`(w
>
2 aij , bij)| ≤ L||w1 − w2||.

• The overall objective f(w) is λ-strongly convex with respect to w: ∀w1, w2 ∈ Rd, we

have

f(w1) ≥ f(w2) + 〈∇f(w2), w2 − w1〉+
λ

2
||w1 − w2||22.

Note that for non-strongly convex or non-smooth objectives, we can add a small qua-

dratic term and approximate the original problem via a strongly convex objective, or we

can transform the non-smooth loss function to a smooth one using the smoothing technique

of Allen-Zhu and Hazan [2016]. The corresponding guarantees can be established as below

then.

Recall that there are m machines and the j-th machine has access to {fij(w)}ni=1. We

consider the synchronous message passing model for distributed computing [Gropp et al.,

1996, Dean and Ghemawat, 2008]. In this model, in every round of communication each

machine can broadcast (send to all others) information linear in the problem’s dimension d.

An example of such communication would be the case where each machine communicates
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its local solution or a gradient vector. Between two communication rounds, each machine

performs computations based only on their local information and previously received mes-

sages. To quantify the overall runtime of a distributed optimization algorithm, we use the

following quantity:

Time = Communication rounds× (#Communication + #Computation),

where #Communication and #Computation represents per round time for communication

and time for local computation, respectively. In particular, we can measure #Communication

by the number of vectors in Rd transmitted in one communication round, and measure

#Computation by the number of parallel gradient calculations performed between two

rounds, since gradient calculations are the main computational part in any first-order opti-

mization algorithms.

A number of approaches have been proposed recently to solve (5.1) in a distributed setting

under Assumption 38. Ma et al. [2015], Smith et al. [2016], and Zheng et al. [2017] considered

the dual formulation of (5.1) and proposed randomized distributed dual coordinate methods

(for example, CoCoA, CoCoA+, DADM). Alternating direction method of multipliers (ADMM)

[Boyd et al., 2011] can be used to naturally formulate the distributed optimization problem

in an augmented Lagrangian form, but the best known efficiency guarantees do not improve

over accelerated gradient methods [Deng and Yin, 2016, Makhdoumi and Ozdaglar, 2017].

Shamir et al. [2014], Zhang and Xiao [2015], Reddi et al. [2016], and Wang et al. [2017e]

focused on provable communication efficient approaches that explored similarity between

local objectives and the fact that all the data are i.i.d. from an unknown, fixed distribution

(for example, DANE, DiSCO, AIDE, GIANT). These methods provably improve communication

efficiency over accelerated gradient methods [Nesterov, 1983], but are computationally not

as efficient as stochastic optimization methods as they require each machine to process

the whole local data between two communication rounds. To achieve both communication
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and computation efficiency, Lee et al. [2017a] proposed the distributed stochastic variance

reduced gradient method (DSVRG), which extends the SVRG method [Johnson and Zhang,

2013] in a distributed fashion. DSVRG uses all machines to compute in parallel the “reference

full gradient”, while one machine performs stochastic gradient updates, using the “reference

full gradient” to reduce the variance of updates. However, this method is not practical as

it requires extra data to be stored on each machine in order to simulate uniform sampling

with replacement in SVRG. Shamir [2016] fixed this issue by proving that sampling without

replacement can be used in SVRG to achieve the same rate of convergence. Unfortunately, the

convergence result only holds for quadratic objectives. In summary, existing DSVRG methods

have the following communication and computation efficiency guarantees to solve (5.1).

Theorem 39 (Lee et al. 2017a, Shamir 2016). Suppose the objective in (5.1) is quadratic

and satisfies Assumption 38. DSVRG outputs a solution ŵ satisfying f(ŵ) − f(w∗) ≤ ε in

O ((1 + L/(λn)) log(1/ε)) rounds of communication, with each machine performing

O ((n+ L/λ) log(1/ε)) parallel operations.

When the condition number is small, L/λ ≤ n, Theorem 39 states that DSVRG only re-

quires Õ(1) rounds of communication and Õ(n) parallel computations. Ignoring log-terms,

this rate is optimal in terms of both communication and computation, since simply mak-

ing one pass over the whole data sets would require O(n) parallel computations. However,

when the condition number is large, the above rate can be bad in terms of both communi-

cation and computation. Lee et al. [2017a] proposed to fix this issue using an accelerated

approach, called DASVRG, which combines the DSVRG algorithm with an accelerated proxi-

mal point technique [Shalev-Shwartz and Zhang, 2016, Lin et al., 2015, Frostig et al., 2015].

When the condition number is big, L/λ ≥ n, DASVRG improves over DSVRG as it needs

O((1+
√
L/(λn)) log2(1/ε)) rounds of communication and O((n+

√
(nL)/λ) log2(1/ε)) par-

allel computations. Lee et al. [2017a] showed that Ω(
√
L/(λn)) rounds of communication

are necessary for a wide range of first-order algorithms, even when local second-order in-
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formation is used for preconditioning. Therefore, DASVRG is optimal in terms of rounds of

communication in the “large condition number” regime, but it does not obtain linear speed-

up in computation as we discuss next. First, for single machine optimization problems both

upper bound and lower bound are well understood, the cost of solving (5.1) on a single

machine using accelerated SVRG is O((mn +
√

(mnL)/λ) log2(1/ε)) [Lin et al., 2015]. This

computational complexity is almost tight for any randomized optimization method that uses

gradient and proximal oracles, as a lower bound is Ω(mn+
√

(mnL)/λ log(1/ε)) [Woodworth

and Srebro, 2016]. For multiple machines setting, we have the following corollary stating a

lower bound on the computational cost for distributed optimization of finite-sums, which is

a consequence of the single machine computational lower bound.

Corollary 40. (Computational lower bound for distributed optimization of fi-

nite sums) Suppose the objective to minimize is in form (5.1) and there are m machines,

each machine holding n unique functions. Then for any algorithm with only access to first

order oracle of fij, it must make at least Ω(n+
√

(nL)/(mλ) log(1/ε)) parallel gradient com-

putations in order to achieve ε objective suboptimality for any objective (5.1) that satisfies

Assumption 38.

By comparing the computation cost of running accelerated SVRG on a single machine

with that of running DASVRG on m parallel machines, we observe that the computation cost is

only reduced by a
√
m factor — from Õ(

√
(mnL)/λ) to Õ(

√
(nL)/λ), thus the computation

efficiency of DASVRG does not match the lower bound. Moreover, between two communication

rounds DSVRG/DASVRG only use one machine to perform stochastic gradient update on its

local data, while other machines just wait and do not perform any computation, leading to

a waste of computing resources. Another issue with DSVRG/DASVRG is imbalance between

communication and computation cost. Though communicating a vector is much more costly

than vector floating-point operations, the number of vector floating-point operations is a

larger by a factor of n compared to the number of vector communications in DSVRG/DASVRG
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algorithms. In other words, DSVRG/DASVRG uses machine to make one pass computation

on whole local data between two communication rounds1. Thus the overall computation is

still the main bottleneck in the overall efficiency in a typical distributed system. Our work

obtains a better communication-computation balance in a distributed system. Recent work

of Tsianos et al. [2012] and Berahas et al. [2017] also consider achieving communication-

computation balance in a distributed optimization without exploiting the special finite-sum

structure that arises in machine learning problems. By exploiting this structure, our proposed

algorithms and corresponding guarantees are substantially different.

5.3 Proposed algorithms

Our first approach to achieve better computation efficiency is through minibatching. The

algorithm is similar to the DSVRG method, which uses parallel computing to calculate the

“reference full gradient”, but differs from DSVRG in how the stochastic variance-reduced up-

dates are performed. Instead of using one machine to perform sequential stochastic gradient

update, while other machines wait, we use all machines to calculate the variance-reduced

stochastic gradient in parallel, and communicate local averages of the gradient vectors to

the master machine. Through this averaging scheme, the variance is further reduced, thus

it further improves the convergence over serial SVRG.

Details of the algorithm, named AMD-SVRG, are given in Algorithm 13. The algorithm is

divided into R stages and in each stage we approximately solve a proximal point problem:

min
w

f(w) +
α

2
||w − yr−1||2. (5.2)

Here yr−1 is a vector that linearly depends on previous iterates and α is a tuning parameter.

The proximal point problem (5.2) is easier to solve for larger α values as the quadratic penalty

1. It is also the case for other communication efficient approaches, such as DANE, DiSCO, AIDE.
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Algorithm 13 AMD-SVRG method.

Initialize w0, y0, ν0 =
√
λ/(λ+ α).

for r = 1, 2, . . . , R do
x̃0 ← yr−1.
for k = 1, 2, . . . , K do

All machines perform one round of communication to compute the average gradient
ṽ ← (1/mn)

∑m
j=1

∑n
i=1∇`ij(x̃k−1).

Initialize x0, z0 ← x̃k−1, βt = (1−
√

(λ+ α)η)/(1 +
√

(λ+ α)η).
for t = 1, 2, . . . , T do

1. Each machine j draws a minibatch I
(j)
t of b samples from the local data set,

compute and communicate 1
b

∑
i∈I(j)t

∇`ij(zt−1).

2. Master compute
vt−1 ← 1

mb

∑m
j=1

∑
i∈I(j)t

∇`ij(zt−1) + ṽ − 1
mb

∑m
j=1

∑
i∈I(j)t

∇`ij(x̃k−1).

3. Master compute
xt ← argminx〈vt−1, x〉+ 1

2η ||x− zt−1||2 + α
2 ||x− yr−1||2 + g(x).

4. Master update zt = xt + βt(xt − xt−1), and broadcast zt.
end for
Update x̃k ← xT .

end for
Update wr ← x̃K .
Compute νr ∈ (0, 1) such that ν2

r = (1 − νr)ν
2
r−1 + λνk/(λ + α), and compute yr =

wr +

(
νr−1(1−νr−1)

νr+ν2r−1

)
(wr − wr−1).

end for
Output: wR.

makes the strong convexity parameter larger. However, by setting a smaller α value, one

needs fewer proximal point steps to approximate the minimizer of f(w). To efficiently find an

approximate minimizer of (5.2), we use parallel computing to calculate a minibatch gradient

direction and, to save on communication cost, an acceleration scheme accompanied with a

large minibatch size. The acceleration technique was used proposed in single machine setting

[Nitanda, 2014]. We have the following communication and computation cost guarantees for

our double acceleration technique in Algorithm 13.

Theorem 41. Suppose the objective in (5.1) is quadratic and satisfies Assumption 38. The

AMD-SVRG method (Algorithm 13) with parameters α and b, the stepsize η �
{

1/L, (b2(λ+ α))/L2
}
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with

Õ

(√
λ+ α

λ
·

(
1 + max

{
L

(λ+ α)mb
,

√
L

λ+ α

}))
rounds of communication, and

Õ

(√
λ+ α

λ
·

(
n+ max

{
L

(λ+ α)m
, b

√
L

λ+ α

}))

parallel computation will find a solution ŵ such that f(ŵ)− f(w∗) ≤ ε.

An immediate corollary of Theorem 41 is that the AMD-SVRG method always obtains near

linear speedup in computation compared with the single machine solution, irrespective of

how large the condition number is, when α and b are chosen appropriately.

Corollary 42. Suppose the condition of Theorem 41 are satisfied. In addition, suppose that

α � L
mn and b �

√ n
m . Then the AMD-SVRG method with

Õ

((
√
mn+

√
L

λ

))

rounds of communication, and

Õ

((
n+

√
Ln

λm

))

parallel computation will find a solution ŵ such that f(ŵ)− f(w∗) ≤ ε.

Corollary 42 establishes that the parallel computational cost for Algorithm 13 is reduced

by a factor of m (ignoring the log factors) compared with the best single machine algorithm

(accelerated SVRG), which is O((mn +
√

(mnL)/L) log(1/ε)), it matches the computational

lower bound of Corollary 40 thus is optimal up to logarithmic factors. Moreover, the ratio

between computation/communication operations in AMD-SVRG is O(
√
n/m), which is more

balanced compared with DSVRG/DASVRG.
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Extensions to non-strongly convex or non-smooth objectives. Our results can be

readily extended to objectives that are non-strongly convex. The main technique to handle

this is setting is by adding a small strongly-convex regularization, such as the squared `2

norm. For distributed finite-sum problems, we can also the AdaptReg technique [Allen-

Zhu and Hazan, 2016] to obtain the following guarantees, which is also optimal in terms of

computation.

Corollary 43. Suppose the AMD-SVRG methods is used together with AdaptReg technique on

a distributed finite-sum optimization problem (5.1) with a quadratic objectives. If `(w>a, b) is

L-smooth and ||w0−w∗|| ≤ B, where w0 is the initialization point, then Õ(
√
mn+

√
L/εB)

rounds of communication and Õ(n+
√
nL/(mε)B) parallel computation is sufficient to obtain

ε-objective suboptimality.

Connection to a practical version of DSVRG. Konečnỳ et al. [2016] proposed a practical

version of DSVRG (Federated SVRG or FSVRG) to stop wasting computation resources during

the stochastic update stage in DSVRG method. FSVRG uses all machines to run stochastic

variance reduced gradient updates and then averages the iterates from all machines to obtain

the iterate for the next stage. Konečnỳ et al. [2016] showed that FSVRG worked well in

practice, but did not analyzed its theoretical convergence. AMD-SVRG is similar to FSVRG

in that both use all machines to perform the stochastic updates, but FSVRG sequentially

updates the iterate, while AMD-SVRG computes the minibatch gradient to obtain one-step

update. Furthermore, AMD-SVRG uses the momentum techniques to obtain faster convergence.

Combining the idea behind FSVRG with AMD-SVRG, we can obtain a more practical version

of AMD-SVRG (we name it AMD-SVRG-P, see Appendix). The main idea is to run sequential

stochastic updates on a local machine instead of taking one step minibatch average gradient.

By using the fresher gradient information, we are able to empirically demonstrate improved

efficiency in communication. See Section 7.5 for details.

From Corollary 42 we know that Algorithm 13 always achieves near linear computational
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Table 5.1: Comparison of communication and computation cost of various distributed opti-
mization approaches for solving finite-sum optimization problem (5.1) with quadratic objec-
tives. It is assumed that L/λ� mn, n > m, and the comparison ignores log factors.

Algorithm Communication Computation

Ideal (lower bound)
√
L/(nλ)

√
(nL)/(mλ)

CoCoA+ [Ma et al., 2015, Smith et al., 2016] L/λ L/λ
DANE [Shamir et al., 2014] L2/(λ2n) L2/λ2

AccGD [Nesterov, 1983]/ADMM [Boyd et al., 2011]
√
L/λ n

√
L/λ

DiSCO [Zhang and Xiao, 2015]/AIDE [Reddi et al., 2016]
√
L/(
√
nλ) n3/4

√
L/λ

DSVRG [Lee et al., 2017a] L/(nλ) L/λ

DASVRG [Lee et al., 2017a]
√
L/(nλ)

√
(nL)/λ

AMD-SVRG
√
L/λ

√
(nL)/(mλ)

AMD-SVRP

√
min

{
1,
√

(ρ2
λ̃
dλ̃m)/n

}
(L/λ)

√
(nL)/(mλ)

speedup, regardless of how large the condition number is. However, the communication cost

is considerably higher than that of DASVRG (by a factor of
√
n). In the next section, we

explore better approaches to further reduce the communication cost, while maintaining near

linear speedup in terms of computation.

5.3.1 The accelerated minibatch distributed proximal method

In this section, we propose to use proximal methods as a precondition step to improve

the communication efficiency of AMD-SVRG method. Recall that AMD-SVRG method uses mini-

batching technique to achieves optimal computational efficiency, while we can further reduce

the required communication rounds by incorporating the second-order information in the

minibatch. Details of the algorithm AMD-SVRP are given in Algorithm 15 in Appendix. The

main idea is motivated by Wang and Zhang [2017], who incorporate subsampled second-order

and variance-reduced first order information through a minibatch proximal step. At every

iteration, instead of just performing a minibatch variance-reduced gradient step, we solve

a proximal problem that incorporates second-order information. With this preconditioning
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Algorithm 14 AMD-SVRG-P: A practical variant of Accelerated Minibatch Distributed SVRG

method.

Initialize w0, y0, ν0 =
√
λ/(λ+ α).

for r = 1, 2, . . . , R do
x̃0 ← yr−1.
for k = 1, 2, . . . , K do

All machines perform one round of communication to compute the average gradient

ṽ ← 1

mn

m∑
j=1

n∑
i=1

∇`ij(x̃k−1).

x0, z0 ← x̃k−1, βt =
1−
√

(λ+α)η

1+
√

(λ+α)η
.

for t = 1, 2, . . . , T do

1. Each machine j draws a minibatch I
(j)
t of b samples from the local data set.

2. Each machine initialize x
(j)
t ← zt−1, and perform the following sequential update

in parallel: for i ∈ I(j)
t do

x
(j)
t ← argmin

x
〈∇`ij(x

(j)
t ) + ṽ −∇`ij(x̃k−1), x〉+ 1

2η
||x−x(j)

t ||
2+

α

2
||x−yr−1||2+g(x).

3. Each machine send x
(j)
t to master.

4. Master compute

xt ←
1

m

m∑
j=1

x
(j)
t .

5. Master update
zt = xt + βt(xt − xt−1),

and broadcast zt.
end for
Update x̃k ← xT .

end for
Update wr ← x̃K .
Compute νr ∈ (0, 1) such that ν2

r = (1− νr)ν2
r−1 + λνk/(λ+ α), and compute

yr = wr +

(
νr−1(1− νr−1)

νr + ν2
r−1

)
(wr − wr−1). (5.3)

end for
Output: wR.
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Algorithm 15 AMD-SVRP: Accelerated Minibatch Distributed SVR Proximal Iterations.

Initialize w0, y0, ν0 =
√
λ/(λ+ α).

Sampling For each machine, sampling b items from [n], they jointly form form a minibatch B̄ of size mb.
for r = 1, 2, . . . , R do
x̃0 ← yr−1.
for k = 1, 2, . . . ,K do

All machines perform one round of communication to compute the average gradient

ṽ ← 1

mn

m∑
j=1

n∑
i=1

∇`ij(x̃k−1).

x0, z0 ← x̃k−1.
for t = 1, 2, . . . , T do

1. Each machine j draws a minibatch I
(j)
t of b samples from the local data set, compute and

communicate 1
b

∑
i∈I(j)t

∇`ij(zt−1).

2. Find xt that approximately solve (5.4) (Option-I) or (5.5) (Option-II) such that

f̃t(wt)−minw f̃t(w) ≤ ε (Using DSVRG).

Option-I : f̃t(w) :=
1

mb

∑
i∈B̄

`i(w)−

〈
1

mb

m∑
j=1

∑
i∈I(j)t

∇`ij(zt−1), w

〉
+
α

2
||w − yr−1||2

+

〈
η

mb

m∑
j=1

∑
i∈I(j)t

∇`ij(zt−1) + ηṽ − η

mb

m∑
j=1

∑
i∈I(j)t

∇`ij(x̃r−1), w

〉
+
λ̃

2
||w − zt−1||2,

(5.4)

Option-II : f̃t(w) :=
1

2
(w − zt−1)

>

 1

mb

∑
i∈B̄
∇2`i(zt−1)

 (w − zt−1) +
α

2
||w − yt−1||2

+

〈
η

mb

m∑
j=1

∑
i∈I(j)t

∇`ij(zt−1) + ηṽ − η

mb

m∑
j=1

∑
i∈I(j)t

∇`ij(x̃r−1), w

〉
+
λ̃

2
||w − zt−1||2.

(5.5)

3. Master update
zt = xt + βt(xt − xt−1),

and broadcast zt.
end for
Update x̃k ← xT .

end for
Update wr ← x̃K .
Compute νr ∈ (0, 1) such that ν2

r = (1− νr)ν2
r−1 + λνk/(λ+ α), and compute

yr = wr +

(
νr−1(1− νr−1)

νr + ν2
r−1

)
(wr − wr−1). (5.6)

end for

Ensure: wR.
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step, we are in fact running a minibatch SVRG algorithm in a preconditioned space:

f(H̃
−1/2

λ̃
w) =

1

mn

m∑
j=1

n∑
i=1

fij(H̃
−1/2

λ̃
w), (5.7)

where H̃
λ̃

= 1
mb

∑
i∈B̄ ∇

2`i(w
∗) + λ̃I is a sub-sampled Hessian matrix using mb samples.

This preconditioning transformation improves the condition number. In order to provide

rigorous analysis, we need the following notion of effective dimension and statistical leverage

[Zhang, 2005, Hsu et al., 2014, Wang and Zhang, 2017].

Definition 44. (Effective dimension at λ̃) Let the λ1, ..., λd be the top-d eigenvalues of

H0 = (1/mn)
∑m
j=1

∑n
i=1∇2fij(w

∗). The effective dimension d
λ̃

(for some λ̃ ≥ 0) of H0 is

defined as d
λ̃

=
∑d
j=1

λj

λj+λ̃
.

The effective dimension d
λ̃

is a monotonically decreasing function with respect to λ̃.

Thus we always have d
λ̃
≤ d. Moreover, when λ̃ is not too small and H0 has a fast decaying

spectrum, the effective dimension d
λ̃

can be much smaller than d, as demonstrated in the

following proposition.

Proposition 45. We have the following upper bound for d
λ̃

:

d
λ̃
≤ min

k

{
k +

∑
j>k λj

λ̃

}
.

As an example of a data with fast decaying spectrum, consider generalized linear pre-

dictors in a Hilbert space induced by a Gaussian kernel K(a, a′) = exp(−c||a− a′||2) where

c is a bandwidth parameter. The covariance matrix has exponentially decaying eigenvalues

with λj ≤ c1 exp(−c2j2), where c1 and c2 are constants [Zhang et al., 2015]. Using the

above proposition, we have that d
λ̃
≤ O(

√
log(1/λ̃)) even though Gaussian kernel maps the

original data to an infinite dimensional space.
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The following notion of statistical leverage measures the ratio between the maximum

norm and average norm of the whitened data set.

Definition 46. (Statistical leverage at λ̃) Let H
λ̃
(w∗) = (1/mn)

∑m
j=1

∑n
i=1∇2`ij(w

∗)+

λ̃I. The statistical leverage of a data matrix X is bounded by ρ
λ̃

at λ̃ if ∀i ∈ [n], j ∈ [m], we

have:

||H
λ̃
−1/2`

′′
ij(w

∗)
1/2

aij ||√
(1/mn)

∑m
j=1

∑n
i=1 ||Hλ̃

−1/2`
′′
ij(w

∗)
1/2

aij ||2
≤ ρ

λ̃
.

In the definition of statistical leverage, the numerator is the maximum norm of the

λ̃-whitened data set, while the denominator is its average norm. When rows of a data

matrix X are drawn from a sub-Gaussian distributions, the statistical leverage only grows

logarithmically with the dimension. We will use the above two quantities to establish the

efficiency guarantees for the proposed AMD-SVRP algorithm. The following proposition upper

bounds the quantity ρ2
λ̃
d
λ̃
, which is used extensively in the analysis afterwards.

Proposition 47. Let L be the smoothness parameter for each loss function `. Then ρ2
λ̃
d
λ̃
≤

L
λ̃
.

The following proposition, adopted from Lemma 8 and Lemma 9 of Wang and Zhang

[2017], states how the condition number improves by using a preconditioning matrix.

Proposition 48. (Improved condition number after preconditioning) If we choose

λ̃ = max{λ, L/b̄} where b̄ ≤ mb, then the condition number of (5.7) can be upper bounded

by

max

{
4ρ2
λ̃
d
λ̃
,
4Lρ2

λ̃
d
λ̃

λb̄

}

with with probability at least 1− δ if mb = Ω(ρ2
λ̃
d
λ̃

log2(d/δ)).
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In Algorithm 15, each step involves solving a subproblem (equations (5.4) or (5.5)),

which incorporates higher-order information from mb instances (each machine contributes b

samples). We can use a distributed optimization algorithm to solve these subproblems to

high accuracy. To that end, we set λ̃ to be large enough so that (5.4) or (5.5) can be solved

efficiently. In particular, we use the DSVRG algorithm with λ̃ = L/b, which allows us to solve

(5.4) or (5.5) to ε sub-optimality using O(b log(1/ε)) parallel computations and O(log(1/ε))

communication rounds.

Based on the above discussion, we have the following communication and computation

efficiency guarantees for the AMD-SVRP method (Algorithm 15).

Theorem 49. Suppose the objective in (5.1) is quadratic and satisfies Assumption 38. The

AMD-SVRP method (Algorithm 15), with parameters α, b, and λ̃ = L/b, finds a solution ŵ

using

Õ

√λ+ α

λ
·

1 + max


ρ2
λ̃
d
λ̃
L

(λ+ α)mb2
,

√√√√ ρ2
λ̃
d
λ̃
L

(λ+ α)b





rounds of communication and

Õ

√λ+ α

λ
·

n+ max

 ρ2
λ̃
d
λ̃
L

(λ+ α)mb
,

√
ρ2
λ̃
d
λ̃
bL

λ+ α




parallel computations which satisfies f(ŵ)− f(w∗) ≤ ε.

Based on Theorem 15, we have the following corollary which states the efficient guarantees

by choosing α and b appropriately.

Corollary 50. Suppose the conditions of Theorem 49 are satisfied, and the parameters in

AMD-SVRP method (Algorithm 15) are set as α � L
mn , b �

√ n
m and λ̃ = L

b , then it finds a
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solution ŵ using

Õ


√mn+

√√√√√min

1,

√
ρ2
λ̃
d
λ̃
m

n

 L

λ




rounds of communication and

Õ

((
n+

√
nL

mλ

))

parallel computations which satisfies f(ŵ)− f(w∗) ≤ ε.

Corollary 50 tells us that Algorithm 15 always obtains near-linear speed up in computa-

tion compared to a single machine, but with potential of using fewer communication rounds

than Algorithm 13, if ρ2
λ̃
d
λ̃

is small.

Table 5.1 summarizes the theoretical communication and computation efficiency guar-

antees for various distributed optimization algorithms in solving finite-sum problems.2. We

highlight the following conclusions from the comparisons:

i) In terms of both communication and computation, accelerated methods are preferred

over non-accelerated methods (CoCoA+ and DANE) as they only have square root dependency

on the condition number L/λ. Among the accelerated methods, we can conclude that DASVRG

improves over DiSCO/AIDE (by a factor of n1/4), and DiSCO/AIDE improves over AccGD and

ADMM (also by a factor of n1/4).

ii) AMD-SVRG/AMD-SVRP algorithms are the only ones that achieve near-linear speed up

in computation, thus matching the computational lower bound in distributed finite-sums

optimization.

iii) In terms of communication, AMD-SVRP improves over AMD-SVRG when the effective

dimension and statistical leverage is small. However, it is still worse than DASVRG, which

matches the communication lower bound.

2. In the communication lower bound we implicitly assume L/λ <= n3, otherwise each machine can just
send their whole local data and the lower bound becomes invalid.
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Table 5.2: List of data sets used in the experiments.
Name #Instances #Features Task

aloi 108,000 128 Regression
cadata 20,640 8 Regression
codrna 59,535 8 Classification
covtype 581,012 54 Classification

synthetic-c 500,000 500 Classification
magic04 19,020 10 Classification

synthetic-r 500,000 500 Regression
spambase 4,601 56 Classification
svmguide1 7,089 4 Classification

tomshardware 28,179 96 Regression
twitter 58,3250 77 Regression

year 463,715 90 Regression

5.4 Experiments

We compare the proposed AMD-SVRG/AMD-SVRG-P and AMD-SVRP algorithms to existing dis-

tributed SVRG approaches for minimizing (5.1). We tested these algorithms on 6 classification

and 6 regression data sets, which were summarized in Table 5.2. Most of the data sets in-

volve real-world classification or regression tasks, with the source available from the LibSVM

website3. Besides real world data, we also consider a synthetic data set for each task, where

each data point {ai, bi}ni=1 is drawn i.i.d. from the following model:

Regression : bi = w̄>ai + εi, ai ∼ N (0,Σ), εi ∼ N (0, 1), ∀i ∈ [n],

Classification : P (bi = ±1) =
exp(biw̄

>ai)

1 + exp(biw̄>ai)
, xi ∼ N (0,Σ), ∀i ∈ [n],

and each entry of w̄ is drawn i.i.d. from N (0, 1). We set Σij = 2−|j−k|/500,∀j, k ∈ [n] to

make the problem ill-conditioned with fast decaying spectrum.

We consider ridge regression, for which `(w>a, b) = (1/2)(`(w>a−b)2, and `2 regularized

logistic regression, for which `(w>a, b) = log(1 + exp(−b(w>a))), objectives for regression

3. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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and classification problems, respectively. We normalize the data set by ai ← ai/(maxi ||ai||2)

to ensure that the maximum norm of a data point is 1, and set the regularization parameter

λ to be 10−2/N where N is the total number of data instances. With these parameters, the

condition number L/λ is much larger than the total sample size, which represents the typical

situation of “large condition number” regime where existing DSVRG/DASVRG algorithms are

not computationally optimal. We vary the number of machines m = 16 and m = 64 and

partition data uniformly across the machines, so that each machine gets access to n = N/m

instances.

We compare the proposed AMD-SVRG/AMD-SVRG-P and AMD-SVRP methd with DSVRG ap-

proach and its accelerated version DASVRG [Lee et al., 2017a], as these algorithms dominate

other previously proposed methods in both communication and computation efficiency. See

Table 5.1 and also Lee et al. [2017a]. For all algorithms, we compare both the communica-

tion and (parallel) computation cost. In particular, we use the number of (parallel) gradient

evaluations each machine performed to evaluate the computation cost, since gradient com-

putations are the main computational part in these algorithms. Moreover, we use the rounds

of communication to measure the communication cost, where at each round each machine

is allowed to broadcast and receive one vector of the dimension as a data point xij . For

the proposed AMD-SVRP method, at every iteration we simply run one pass of DSVRG method

initialized with yt−1, to approximately solve (5.4). For AMD-SVRG and AMD-SVRP methods,

following the theoretical analysis, we set the minibatch size each machine process to be

b
√
n/mc and run T = b

√
L/(λb)c iterations. For DSVRG and DASVRG methods, at each stage

we first compute the full gradient in parallel, then randomly pick one machine, and perform

stochastic variance reduced gradient update on that machine’s whole local data set. For all

accelerated methods (all compared approaches except DSVRG), we set the number of refer-

ence full gradient computations within each acceleration stage to be K = 2. For AMD-SVRG-P

method, we set b = b
√
n/mc and run T = bn/bc iterations, which we found to achieve a
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good balance between communication and computation. Section 5.4.1 explore the trade-offs

between communication and computation in AMD-SVRG-P.

The results are shown in Figure 5.1 to Figure 5.4. We plot the communication and

computation cost for each algorithm to find a solution that achieves 1×10−6 primal objective

suboptimality. We have the following observations:

• In terms of parallel computation cost, we observe that the proposed AMD-SVRG and

AMD-SVRP methods significantly improve over the DSVRG and DASVRG methods. In many

cases, the computational speedup over DSVRG/DASVRG is often at the scale of 10× to

100×. Furthermore, we observe significant computational advantages for the proposed

methods when we have more machines (compare the right column with the left). This

is consistent with the theoretical analysis (Table 5.1).

• In terms of the communication cost, AMD-SVRG and AMD-SVRP methods are obviously

worse than DSVRG/DASVRG. But for all methods, the number of bits each machine com-

municated is still of a much smaller order compared with the number of floating point

operations. Thus for many modern distributed computing platforms, the communica-

tion cost of these algorithms might still play a relatively minor role in affecting the

overall runtime.

• When we compared AMD-SVRG and AMD-SVRP, we observed that AMD-SVRP method of-

ten uses less communication, but with comparable or fewer computation resources.

This demonstrates the effectiveness of proximal iterations to incorporate higher-order

information in a minibatch. The practical variant AMD-SVRG-P seems to have signif-

icantly less communication cost, but comparable computation with AMD-SVRG, which

demonstrate that the “sequential then average” strategy works better than the stan-

dard minibatch approach. This is consistent with previous empirical studies [Konečnỳ

et al., 2016].
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5.4.1 Communication-computation trade-offs in AMD-SVRG-P

In the AMD-SVRG-P algorithm, the minibatch size per machine b can be interpreted as a

parameter to trade-off between communication and computation. When b is relatively small,

then the effect of local sequential updates is small and the method is closely connected to

AMD-SVRG (when b = 1, then it is exactly AMD-SVRG, but with a suboptimal minibatch size),

which is computationally optimal, but with a potentially heavy communication. When b

is large, then the method is similar to DASVRG, which is communication optimal, but with

a potentially heavy computation. The difference here is that AMD-SVRG-P runs multiple

stochastic sequential updates then takes average and also uses a momentum scheme. In

this section, we explore these trade-offs via experimental studies. In particular we vary the

parameter b in {dn/2ie} where i ∈ {0, 2, 4, 6, 8, 10} and set T = bn/bc.

The results are plotted in Figure 5.5. We observe that as b decreases, the communication

cost increases significantly. At the same time, the computation cost first decreases and then

does not change too much since it already achieves near-linear computation speedup. From

the plots we observe that by choosing b = dn/4e or dn/16e the algorithms obtains a good

balance between computation and communication.

5.5 Proofs of technical results

5.5.1 Proof of Corollary 40

Proof. Let Gj to be the total number of individual function gradient calls that machine j

during the the optimization process to achieve ε-objective suboptimality. By the oracle com-

plexity of first-order optimization methods (Theorem 8 of [Woodworth and Srebro, 2016]),

the total number or gradient oracle calls for all machines to make must obey the following

inequality:
m∑
j=1

Gj ≥ Ω

(
mn+

√
mnL

λ
log

(
1

ε

))
,
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Figure 5.1: Comparison of communication and computation cost of various algorithms for
distributed optimization.
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Figure 5.2: Comparison of communication and computation cost of various algorithms for
distributed optimization (cont.).
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Figure 5.3: Comparison of communication and computation cost of various algorithms for
distributed optimization (cont.).
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Figure 5.4: Comparison of communication and computation cost of various algorithms for
distributed optimization (cont.).
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Figure 5.5: Experiments on the communication-computation trade-offs in AMD-SVRG-P Al-
gorithm, the x-axis represents different configurations of b.
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which implies maxj∈[m]Gj ≥ Ω
(
n+

√
nL/(mλ) log(1/ε)

)
. While in parallel implementa-

tion, the paralleled number of gradient oracle calls must be at least maxj∈[m]Gj , which

concludes the proof.

5.5.2 Proof of Theorem 41

Proof. Fist using the theory of accelerated proximal point algorithm (Lemma 51), we know

the number of outer rounds (indexed by r) in Algorithm 13 are upper bounded by

R ≤ O

(√
λ+ α

λ
log

(
1

ε

))
.

Further more, each proximal point problem (5.2) is now L-smooth and (λ + α)-strongly

convex, by the iteration complexity of accelerated minibatch SVRG (Lemma 52), since the

effective minibatch size in Algorithm 13 is mb, the number of stochastic iterations at each

stage (indexed by t) are bounded by

T ≤ O

(
1 + max

{
L

(λ+ α)mb
,

√
L

(λ+ α)

})
.

By choosing T as above, the number of middle loops (indexed by k) is upper bounded by

K ≤ O (log(1/ε)). Combining above we know the total rounds of communication can be

bounded by

R ·K · T ≤ O

(√
λ+ α

λ
·

(
1 + max

{
L

(λ+ α)mb
,

√
L

λ+ α

})
· log2

(
1

ε

))
.

And the total paralleled computation can be upper bounded by

R ·K · n+R ·K · T · b ≤ O

(√
λ+ α

λ
·

(
n+ max

{
L

(λ+ α)m
, b

√
L

λ+ α

})
· log2

(
1

ε

))

184



5.5.3 Proof of Corollary 42

Proof. Simply substitute the order of b and α stated in Corollary 42 to Theorem 41, we

obtain the stated result.

5.5.4 Proof of Corollary 43

Proof. We follow the AdaptReg strategy in [Allen-Zhu and Hazan, 2016] by adding a σt
2 ||x−

xt|| regularization at each stage, where σs = (f(x0) − f(x∗))/(||x0 − x∗||22s). At each

stage s, we are required to reduce the primal objective suboptimality be a factor of 4. Let

S = log(f(x0)− f(x∗)/ε), by Theorem 3.1 of [Allen-Zhu and Hazan, 2016], and combine the

results with Corollary 42. We know the total number of communication rounds for AMD-SVRG

is

Õ

 S∑
s=1

(
√
mn+

√
L

σs

) = Õ

(
√
mn+B

√
L

ε

)
,

and its paralleled computation cost is upper bounded by

Õ

 S∑
s=1

(
n+

√
nL

mσs

) = Õ

(
√
mn+B

√
nL

mε

)
.

5.5.5 Proof of Proposition 45

Proof. We first decompose the terms
λj

λj+λ̃
into two parts, the first one contains indexes

smaller or equal than k and the second part contains indexes larger than k, then we upper
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bound these two parts get obtain the stated results.

d
λ̃

=
∑
j

λj

λj + λ̃
= min

k

∑
j≤k

λj

λj + λ̃
+
∑
j>k

λj

λj + λ̃


≤min

k

∑
j≤k

λj + λ̃

λj + λ̃
+
∑
j>k

λj

λ̃

 = min
k

{
k +

∑
j>k λj

λ̃

}

5.5.6 Proof of Proposition 47

Proof. First noted that

d
λ̃

=
d∑
j=1

λj

λj + λ̃
= trace

(
H
λ̃
(w∗)−1H0

)

= trace

 1

mn

m∑
j=1

n∑
i=1

`
′′
ij(w

∗)aija
>
ij

H
λ̃
(w∗)−1


= trace

 1

mn

m∑
j=1

n∑
i=1

`
′′
ij(w

∗)a>ijHλ̃(w∗)−1aij


=

1

mn

m∑
j=1

n∑
i=1

`
′′
ij(w

∗)a>ijHλ̃(w∗)−1aij =
1

mn

m∑
j=1

n∑
i=1

||H
λ̃
(w∗)−1/2`

′′
ij(w

∗)aij ||2

Thus we have

ρ2
λ̃
d
λ̃

= max
i∈[n]mj∈[m]

||H
λ̃
(w∗)−1/2`

′′
ij(w

∗)aij ||2 ≤
||`′′ij(w

∗)aij ||

λ̃
≤ L

λ̃
.
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5.5.7 Proof of Theorem 49

Proof. By Proposition 48, the condition number of f(H̃
λ̃
w) for randomized optimization al-

gorithm have been improved to O((Lρ2
λ̃
d
λ̃
)/(λb)) after preconditioning using mb samples as

Algorithm 15 did. Moreover, since we choose λ̃ � L/b, the subproblem 5.4 is which involves

mb samples has condition number O(b), thus can be solved to ε-accuracy within O(log(1/ε))

rounds of communication, and O(b) paralleled computation. Then by the iteration complex-

ity of accelerated minibatch SVRG, we know the number of stochastic iterations needed at

each stage can be upper bounded by

T ≤ O

1 + max


ρ2
λ̃
d
λ̃
L

(λ+ α)mb2
,

√√√√ ρ2
λ̃
d
λ̃
L

(λ+ α)b


 ,

to ensure K ≤ O(log(1/epsilon)). Combining with the accelerated proximal point iteration

complexity R ≤ O
(√

(λ+ α)/λ log(1/ε)
)

, we know the communication rounds can be upper

bounded by

R ·K · T ≤ Õ

√λ+ α

λ
·

1 + max


ρ2
λ̃
d
λ̃
L

(λ+ α)mb2
,

√√√√ ρ2
λ̃
d
λ̃
L

(λ+ α)b



 ,

and the paralleled computation cost can ube upper bounded by

R·K·n·log(1/ε)+R·K·T ·b·log(1/ε) ≤ Õ

√λ+ α

λ
·

n+ max

 ρ2
λ̃
d
λ̃
L

(λ+ α)mb
,

√
ρ2
λ̃
d
λ̃
bL

λ+ α


 .
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5.5.8 Proof of Corollary 50

Proof. Substitute the order of b, α and λ̃ stated in Corollary 50 to Theorem 49, and combine

with Proposition 47 we obtain the stated result.

5.5.9 Collections of tools in the analysis

Lemma 51. (Iteration complexity of catalyst acceleration, Theorem 3.1 of [Lin et al.,

2015] rephrased) For any λ-strongly convex function f(w), If the minimization step of (5.2)

satisfies ∀r

f(wr)−
α

2
||wr−yr−1||−min

w

(
f(w) +

α

2
||w − yr−1||

)
≤ 2

9
(f(w0)−f(w∗))

(
1− 9

10

√
λ

λ+ α

)r
,

then if we initialize ν0 =
√

λ
λ+α and set νr such that ν2

r = (1 − νr)ν2
r−1 + (λνr)/(λ + α),

then the sequences {wr} in Algorithm 13 satisfies

f(wr)− f(w∗) ≤ 800(λ+ α)

λ

(
1− 9

10

√
λ

λ+ α

)r+1

(f(w0)− f(w∗)).

Thus after

R ≤ O

(√
λ+ α

λ
log

(
1

ε

))

stages, we have f(wR)− f(w∗) ≤ ε.

Lemma 52. (Iteration complexity of accelerated minibatch SVRG, Theorem 1 and

Corollary 1 of [Nitanda, 2014] rephrased) For any λ-strongly convex and L-smooth function

f(w) in form (5.1), If we use accelerated minibatch SVRG it with minibatch size b, then it we

set the stepsize as

η � min

{
bλ2

L
,

1

L

}
,

then to obtain a solution with ε primal objective suboptimality, the following amount of total
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gradient calculations are sufficient:

O

((
mn+ max

{
L

λ
, b

√
L

λ

})
log

(
1

ε

))
.
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CHAPTER 6

DISTRIBUTED MULTI-TASK LEARNING WITH SHARED

SPARSITY

6.1 Motivation

Learning multiple tasks simultaneously allows transferring information between related tasks

and for improved performance compared to learning each tasks separately Caruana [1997].

It has been successfully exploited in, for example, spam filtering Weinberger et al. [2009],

web search Chapelle et al. [2010], disease prediction Zhou et al. [2013] and eQTL mapping

Kim and Xing [2010].

Tasks could be related to each other in a number of ways. In this chapter, we focus on the

high-dimensional multi-task setting with joint support where a few variables are related to

all tasks, while others are not predictive Turlach et al. [2005], Obozinski et al. [2011], Lounici

et al. [2011]. The standard approach is to use the mixed `1/`2 or `1/`∞ penalty, as such

penalties encourage selection of variables that affect all tasks. Using a mixed norm penalty

leads to better performance in terms of prediction, estimation and model selection compared

to using the `1 norm penalty, which is equivalent to considering each task separately.

Shared support multi-task learning is generally considered in a centralized setting where

Approach Communication `1/`2 estimation error Prediction error

Local lasso 0

√
|S|2 log p

n
|S| log p

n

Group lasso O(np)
|S|√
n

√
1 + log p

m
|S|
n

(
1 + log p

m

)
DSML O(p)

|S|√
n

√
1 + log p

m +
|S|2 log p

n
|S|
n

(
1 + log p

m

)
+
|S|3(log p)2

n2

Table 6.1: Comparison of scaling of parameter estimation errors and prediction errors, for well-
conditioned subgaussian feature vectors, with m tasks, n samples per task, p features of which |S|
are relevant—see Section 6.4 for dependence on other parameters. DSML improves over Lasso
and has the same leading term as the Group lasso as long as m . n/(|S|2 log p).
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data from all tasks are available on a single machine, and the estimator is computed using

a standard single-thread algorithm. With the growth of modern massive data sets, there

is a need to revisit multi-task learning in a distributed setting, where tasks and data are

distributed across machines and communication is expensive. In particular, we consider a

setting where each machine holds one “task” and its related data.

We develop an efficient distributed algorithm for multi-task learning that exploits shared

sparsity between tasks. Our algorithm (DSML) requires only one round of communication

between the workers and the central node, involving each machine sending a vector to the

central node and receiving back a support set. Despite the limited communication, our

algorithm enjoys the same theoretical guarantees as the centralized approach under mild

conditions. This is summarized in Table 6.1, which compares the prediction and parameter

error guarantees of the Lasso run locally on each machine, the communication-intensive

group Lasso procedure, and our communication-efficient DSML.

6.1.1 Related work on distributed learning and optimization

With the increase in the volume of data used for machine learning, and the availability of

distributed computing resources, distributed learning and the use of distributed optimization

for machine learning has received much attention.

Most of work on distributed optimization focuses on “consensus problems”, where each

machine holds a different objective fi(w) and the goal is to communicate between the ma-

chines to jointly optimize the average objective 1/m
∑
i fi(w), that is, to find a single vector

w that is good for all local objectives Boyd et al. [2011]. The difficulty of consensus problems

is that the local objectives might be rather different, and, as a result, one can obtain lower

bounds on the amount of communication that must be exchanged in order to reach a joint

optimum. In particular, the problem becomes harder as more machines are involved.

The consensus problem has also been studied in the stochastic setting Ram et al. [2010],
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in which each machine receives stochastic estimates of its local objective. Thinking of each

local objective as a generalization error w.r.t. a local distribution, we obtain the following

distributed learning formulation Balcan et al. [2012]: each machine holds a different source

distribution Di from which it can sample, and this distribution corresponds to a different

local generalization error fi = E(X,y)∼Di [loss(w, X, y)]. The goal is to find a single predictor

w that minimizes the average generalization error, based on samples sampled at the local

nodes. Again, the problem becomes harder when more machines are involved and one can

obtain lower bounds on the amount of communication required—Balcan et al. [2012] carry

out such an analysis for several hypothesis classes.

A more typical situation in machine learning is one in which there is only a single source

distribution D, and data from this single source is distributed randomly across the machines

(or equivalently, each machine has access to the same source distribution Di = D). Such a

problem can be reduced to a consensus problem by performing consensus optimization of the

empirical errors at each machine. However, such an approach ignores several issues: first,

the local empirical objectives are not arbitrarily different, but rather quite similar, which can

and should be taken advantage of in optimization Shamir et al. [2014]. Second, since each

machine has access to the source distribution, there is no lower bound on communication—an

entirely “local” approach is possible, were each machine completely ignores other machines

and just uses its own data. In fact, increasing the number of machines only makes the prob-

lem easier (in that it can reduce the runtime or number of samples per machine required

to achieve target performance), as additional machines can always be ignored. In such a

setting, the other relevant baseline is the “centralized” approach, where all data is commu-

nicated to a central machine which computes a predictor centrally. The goal here is then to

obtain performance close to that of the “centralized” approach (and much better than the

“local” approach), using roughly the same number of samples, but with low communication

and computation costs. Such single-source distributed problems have been studied both in
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terms of predictive performance Shamir and Srebro [2014], Jaggi et al. [2014] and parameter

estimation Zhang et al. [2013f,e], Lee et al. [2017b].

In this chapter we suggest a novel setting that combines aspects of the above two settings.

On one hand, we assume that each machine has a different source distributions Di(X, y),

corresponding to a different task, as in consensus problems and in Balcan et al. [2012]. For

example, each machine serves a different geographical location, or each is at a different

hospital or school with different characteristics. But if indeed there are differences between

the source distributions, it is natural to learn different predictors wi for each machine, so

that wi is good for the distribution typical to that machine. In this regard, our distributed

multi-task learning problem is more similar to single-source problems, in that machines

could potentially learn on their own given enough samples and enough time. Furthermore,

availability of other machines just makes the problem easier by allowing transfer between the

machine, thus reducing the sample complexity and runtime. The goal, then, is to leverage as

much transfer as possible, while limiting communication and runtime. As with single-source

problems, we compare our method to the two baselines, where we would like to be much

better than the “local” approach, achieving performance nearly as good as the “centralized”

approach, but with minimal communication and efficient runtime.

Related Work To the best of our knowledge, the only previous discussion of distributed

multi-task learning is Dinuzzo et al. [2011], which considered a different setting with an

almost orthogonal goal: a client-server architecture, where the server collects data from dif-

ferent clients, and sends sufficient information that might be helpful for each client to solve its

own task. Their emphasis is on preserving privacy, but their architecture is communication-

heavy as the entire data set is communicated to the central server, as in the “centralized”

base line. On the other hand, we are mostly concerned with communication costs, but, for

the time being, do not address privacy concerns.

In terms of distributed methods for uncovering shared sparsity, Baron et al. [2009] propose
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a “group orthogonal matching pursuit”-type algorithm. Their algorithm (DCS-SOMP) can

be naturally implemented in a distributed way. However, (i) they consider only a noiseless

setting, whereas we allow for noise; (ii) they do not establish any guarantees for DCS-SOMP,

presenting only empirical results; and (iii) they requireO(|S|) rounds of communication, with

overall communication O(|S|p) per machine, whereas our DSML procedure requires only a

single round and O(p) communication.

6.2 Problem set-up

We consider the following multi-task linear regression model with m tasks:

yt = Xtw
∗
t + εt, t = 1, . . . ,m, (6.1)

where Xt ∈ Rnt×p, yt ∈ Rnt , and εt ∼ N(0, σ2
t I) ∈ Rnt is a noise vector, and w∗t is the

unknown vector of coefficients for the task t. For notation simplicity we assume each task

has equal sample size and the same noise level, that is, we assume, n1 = n2 = . . . = n and

σ1 = σ2 = . . . = σ. We will be working in a high-dimensional regime with p possibly larger

than n, however, we will assume that each w∗t is sparse, that is, few components of w∗t are

different from zero. Furthermore, we assume that the support between the tasks is shared.

In particular, that support(w∗t ) = {j ∈ [p] : wtj 6= 0} ⊂ S, with s = |S| � n. Suppose

the data sets (X1, y1), . . . , (Xm, ym) are distributed across machines, our goal is to estimate

{w∗t }mt=1 as accurately as possible, while maintaining low communication cost.

The lasso estimate for each task t is given by:

ŵt = arg min
wt

1

n
||yt −Xtwt||22 + λt||wt||1. (6.2)
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The multi-task estimates are given by the joint optimization:

{ŵt}mt=1 = arg min
{wt}mt=1

1

mn

∑
t=1

||yt −Xtwt||22 + λpen({wt}mt=1), (6.3)

where pen({wt}mt=1) is the regularizaton that promote group sparse solutions. For example,

the group lasso penalty uses pen({wt}mt=1) =
∑
j∈[p]

√∑
t∈mw2

tj Yuan and Lin [2006], while

the iCAP uses pen({wt}mt=1) =
∑
j∈[p] maxt=1,...,m |wtj | Zhao et al. [2009], Liu et al. [2009].

In a distributed setting, one could potentially minimize (6.3) using a distributed consensus

procedure (see Section 6.1.1), but such an approach would generally require multiple rounds

of communication. Our procedure, described in the next section, lies in between the local

lasso (6.2) and centralized estimate (6.3), requiring only one round of communication to

compute, while still ensuring much of the statistical benefits of using group regularization.

6.3 Methodology

In this section, we detail our procedure for performing estimation under model in (6.1).

Algorithm 16 provides an outline of the steps executed by the worker nodes and the master

node, which are explained in details below.

Algorithm 16 DSML:Distributed debiased Sparse Multi-task Lasso.

Workers:
for t = 1, 2, . . . ,m do

Each worker obtains ŵt as a solution to a local lasso in (6.2) Each worker obtains ŵu
t

the debiased lasso estimate in (6.4) and sends it to the master if Receive Ŝ(Λ) from the
master then

Calculate final estimate w̃t in (6.6).
end

end
Master:
if Receive {ŵu

t }mt=1 from all workers then

Compute Ŝ(Λ) by group hard thresholding in(6.5) and send the result back to every
worker.

end
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Recall that each worker node contains data for one task. That is, a node t contains data

(Xt, yt). In the first step, each worker node solves a lasso problem locally, that is, a node t

minimizes the program in (6.2) and obtains ŵt. Next, a worker node constructs a debiased

lasso estimator ŵu
t by performing one Newton step update on the loss function, starting at

the estimated value ŵt:

ŵu
t = ŵt + n−1MtX

T
t (yt −Xtŵt), (6.4)

where n−1XT
t (yt−Xtŵt) is a subgradient of the loss and the matrix Mt ∈ Rp×p serves as an

approximate inverse of the Hessian. The idea of debiasing the lasso estimator was introduced

in the recent literature on statistical inference in high-dimensions Zhang and Zhang [2013],

Van de Geer et al. [2014], Javanmard and Montanari [2014]. By removing the bias introduced

through the `1 penalty, one can estimate the sampling distribution of a component of ŵu
t

and make inference about the unknown parameter of interest. In this chapter, we will also

utilize the sampling distribution of the debiased estimator, however, with a different goal in

mind. The above mentioned papers proposed different techniques to construct the matrix

M . Here, we adopt the approach proposed in Javanmard and Montanari [2014], as it leads to

the weakest assumption on the model in (6.1): each machine uses a matrix Mt = (m̂tj)
p
j=1

with rows:

m̂tj = arg min
mj∈Rp

mT
j Σ̂tmj

s.t. ||Σ̂tmj − ej ||∞ ≤ µ.

where ej is the vector with j-th component equal to 1 and 0 otherwise and Σ̂t = n−1XT
t Xt.

After each worker obtains the debiased estimator ŵu
t , it sends it to the central machine.

After debiasing, the estimator is no longer sparse and as a result each worker communicates

p numbers to the master node. It is at the master where shared sparsity between the task
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coefficients gets utilized. The master node concatenates the received estimators into a matrix

B̂ = (ŵu
1 , ŵ

u
2 , ..., ŵ

u
m). Let B̂j be the j-th row of B̂. The master performs the hard group

thresholding to obtain an estimate of S as

Ŝ(Λ) = {j | ||B̂j ||2 > Λ}. (6.5)

The estimated support Ŝ(Λ) is communicated back to each worker, which then use the

estimate of the support to filter their local estimate. In particular, each worker produces the

final estimate:

w̃tj =

 ŵu
tj if j ∈ Ŝ(Λ)

0 otherwise.
(6.6)

Extension to multitask classification. DSML can be generalized to estimate multi-task

generalized linear models. We be briefly outline how to extend DSML to a multi-task logistic

regression model, where ytk ∈ {−1, 1} and ∀k = 1, . . . , n, t = 1, . . . ,m:

P (ytk|Xtk) =
exp

(
1
2ytkXtkw

∗
t

)
exp

(
−1

2ytkXtkw
∗
t

)
+ exp

(
1
2ytkXtkw

∗
t

) . (6.7)

First, each worker solves the `1-regularized logistic regression problem

ŵt = arg min
wt

1

n

∑
k∈[n]

log(1 + exp(−ytkXtkwt)) + λt||wt||1.

Let Wt ∈ Rn×n be a diagonal weighting matrix, with a k-th diagonal element

Wt(kk) =
1

1 + exp(−Xtkŵt)
· exp(−Xtkŵt)

1 + exp(−Xtkŵt)
,
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which will be used to approximately invert the Hessian matrix of the logistic loss. The

matrix Mt = (m̂tj)
p
j=1, which serves as an approximate inverse of the Hessian, in the case

of logistic regression can be obtained as a solution to the following optimization problem:

m̂tj = arg min
mtj∈Rp

mT
tjXt

TWtXtmtj

s.t. ||n−1XT
t WtXtmtj − ej ||∞ ≤ µ.

Finally, the debiased estimator is obtained as

ŵu
t = ŵt +

1

n
MtXt

T
(

1

2
(yt + 1)− (1 + exp(−Xtŵt))

−1
)
,

and then communicated to the master node. The rest of procedure is as described before.

6.4 Theoretical Analysis

In this section, we present our main theoretical results for the DSML procedure described

in the previous section. We start by describing assumptions that we make on the model in

(6.1). We analyze here the well-specified random model, i.e. when samples are generated

by the model (6.1), with rows of Xt drawn from some sub-Gaussian distribution (possibly

a different distribution for each task). In the Appendix we also analyze the “fixed-design”

setting, i.e. in terms of properties of the sample matrices Xt.

We assume rows of Xt are drawn from a subgaussian distribution with covariance matrix

E[n−1XT
t Xt] = Σt.

We assume the distribution of rows of Xt for each task have bounded subgaussian norm

maxt maxk ||Xtk||ψ2 ≤ σX Vershynin [2010]. Let Σt be the covariance for task t. We rely

on upper and lower bounds on the eigenvalues of the covariances Σt of the data for each

task t: ∀tλminI � Σt � λmaxI. Our analysis is based on assuming λmin > 0. We also rely
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on a bound on the elements of precision matrices, ∀t
∣∣∣Σ−1
t

∣∣∣
∞
≤ K. We can always take

K = 1/λmin, but we often have a much tighter bound.

The following theorem is our main result, which is proved in appendix.

Theorem 53. With the assumptions and notation above, if λ in (6.2) is chosen as λt =

4σ

√
log p
n , and the coefficients in (6.1) satisfy

min
j∈S

√∑
t∈[m]

(β∗tj)
2 ≥ 6Kσ

√
m+ log p

n
+
Cσ4

Xλ
1/2
maxσ|S|

√
m log p

λ
3/2
minn

:= 2Λ∗, (6.8)

where C < 5000 is some numeric constant, then the support estimated by the master node

satisfies Ŝ(Λ∗) = S with probability at least 1−mp−1.

Based on Theorem 53, we have the following corollary that characterizes the parameter

and prediction errors of DSML, with the proof given in the appendix:

Corollary 54. With the same choice of λt, with probability at least 1−mp−1, we have

p∑
j=1

||B̃j −Bj ||2 ≤ 6K|S|σ
√
m+ log p

n
+
Cσ4

Xλ
1/2
maxσ|S|2

√
m log p

λ
3/2
minn

,

∑m
t=1(EXt(Xtβ̃t −Xtβ

∗
t ))2

nm
≤ 36K2|S|σ2

n

(
1 +

log p

m

)
+
C2σ8

Xλmaxσ
2|S|3(log p)2

λ3
minn

2
.

Let us compare these guarantees to the group lasso. For DSML Corollary 2 yields:

1√
m

p∑
j=1

||B̃j −Bj ||2 .
|S|√
n

√
1 +

log p

m
+
|S|2 log p

n
, (6.9)

where a(n) & b(n) means that for some c,N , a(n) > c · b(n),∀n > N . When using the

group lasso, the restricted eigenvalue condition is sufficient for obtaining error bounds and
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Approach Min signal strength Strength type

Lasso

√
log p
n Element-wise

Group lasso

√
1
n

(
1 + log p

m

)
Row-wise

DSML

√
1
n

(
1 + log p

m

)
+ |S| log p

n Row-wise

Table 6.2: Lower bound on coefficients required to ensure support recovery with p variables, m
tasks, n samples per task and a true support of size |S|.

following holds for the group lasso [Corollary 4.1 of Lounici et al., 2011]:

1√
m

p∑
j=1

||B̃j −Bj ||2 ≤
32
√

2σ|S|
κ
√
n

√(
1 +

2.5 log p

m

)
.
|S|√
n

√
1 +

log p

m
, (6.10)

which is min-max optimal (up to a logarithmic factor). DSML matches this bound when

n & m|S|2(log p)2

(m+log p)
. Similarly for prediction DSML attains:

1

nm

m∑
t=1

(EXt(Xtβ̃t −Xtβ
∗
t ))2 .

|S|σ2

n

(
1 +

log p

m

)
+
σ2|S|3(log p)2

n2
, (6.11)

which in the same regime matches the group lasso minimax optimal rate:

1

nm

m∑
t=1

(EXt(Xtβ̃t −Xtβ
∗
t ))2 ≤ 128|S|σ2

κn

(
1 +

2.5 log p

m

)
.
|S|σ2

n

(
1 +

log p

m

)
. (6.12)

In both cases, as long as m is not too large, we have a linear improvement over Lasso, which

corresponds to (6.10) and (6.12) with m = 1.

The discussion of support recovery is more complex as typically more stringent conditions

(for example, mutual incoherence or irrepresentable condition) are imposed on Xt for lasso

and group lasso to achieve sparsistency. See Van De Geer et al. [2009] for an extensive

discussion of different conditions used in the literature. In any case, we can also compare

the minimal signal strength required for DSML to that required by lasso and group lasso.
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Let B = [β1, β2, . . . , βm] ∈ Rp×m be the matrix of true coefficients. Simplifying (6.8), we

have that our procedure requires the minimum signal strength to satisfy

min
j∈S

1√
m
||Bj ||2 &

√
1

n

(
1 +

log p

m

)
+
|S| log p

n
. (6.13)

For the centralized group lasso, the standard analysis assumes a stronger condition on the

data, namely that Xt satisfies mutual incoherence with parameter α and sparse eigenvalue

condition [Lounici et al., 2011] (see Van De Geer et al. [2009] for an extensive discussion

of different conditions used in the literature to guarantee support recovery). Under this

condition, group lasso recovers the support if [Corollary 5.2 of Lounici et al., 2011]:

min
j∈S

1√
m
||Bj ||2 ≥

4
√

2Cα,κσ√
n

√
1 +

2.5 log p

m
&

√
1

n

(
1 +

log p

m

)
. (6.14)

where Cα,κ depends only on the mutual incoherence and sparse eigenvalue of Xt. Under the

irrepresentable condition on Xt, which is weaker than the mutual incoherence [Van De Geer

et al., 2009], the lasso requires the signal to satisfy [Bunea et al., 2008, Wainwright, 2009]:

min
t∈[m]

min
j∈S
|β∗tj | ≥ Cγ,κσ

√
log p

n
&

√
log p

n
(6.15)

for some Cγ,κ, which depends only on the irrepresentable condition and the sparse eigenvalue.

Ignoring for the moment the differences in the conditions on the design matrix, there are

two advantages of the multitask group lasso over the local lasso: (1) relaxing the signal

strength requirement to a requirement on the average strength across tasks (i.e. any single

coefficient can be arbitrarily small, even zero); and (2) a reduction by a factor of m on

the log p term. Similarly to the group lasso, DSML requires a lower bound only on the

average signal strength, not on any individual coefficient. And as long as m � n, or more

precisely n & m|S|2(log p)2

κ2(m+log p)
, DSML enjoys the same linear reduction in the dominant term of
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Figure 6.1: Hamming distance, estimation error, and prediction error for multi-task regres-
sion with p = 200. Top row: the number of tasks m = 10. Sample size per tasks is varied.
Bottom row: Sample size n = 50. Number of tasks m varied.

the required signal strength, matching the leading term of the group lasso bound. This is

summarized in Table 6.2.

To better elucidate the differences in conditions, in the Appendix, we carry out an analysis

of DSML in a “fixed design” setting. We show that Theorem 53 and Corollary 54 for fixed Xt,

as long two conditions hold: generalized coherence (a weakening of the mutual incoherence

condition) and restricted eigenvalue. These conditions are stronger than what is required

for only small parameter and prediction error using the Lasso and Group Lasso (restricted

eigenvalue on its own is sufficient, not need for generalized coherence), but similar and in

a sense weaker than what is required for support recovery. See the Appendix for precise

definitions and statements of the results.

It might be interesting to ask why debiasing is needed, and simple “local lasso” plus

“group thresholding” will not work. To see this, let us consider a simple case of “weak

signals group”: suppose there is a coordinate in the support S where signals for all models
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are weak, on the order of O
(√

1
n

(
1 + log p

m

)
+
|S| log p

n

)
. The local lasso cannot distinguish

this weak signal from zeros, making it always remove the coordinate from the support, if

the estimator wants to ensure removing all zero coordinates from the estimated support.

In contrast, DSML will save this weak signal, making the estimated support consistent. A

concrete example illustrating the situation will be presented in the experiments section.

6.4.1 Fixed design analysis

In this section, we present our theoretical results for the DSML procedure for fixed design,

we will state the results without proof since the process is essentially the same as the case for

random design. The results and comparisons are summarized in Table 6.3 and 6.4. We start

by describing assumptions that we make on the model in (6.1). We assume the following

condition on the design matrices {Xt}mt=1.

Approach Communication Assumptions Min signal strength Strength type

Lasso 0
Mutual Incoherence
Sparse Eigenvalue

√
log p
n Element-wise

Group lasso O(np)
Mutual Incoherence
Sparse Eigenvalue

√
1
n

(
1 + log p

m

)
Row-wise

DSML O(p)
Generalized Coherence
Restricted Eigenvalue

√
1
n

(
1 + log p

m

)
+ |S| log p

n Row-wise

Table 6.3: Conditions on the design matrix, and corresponding lower bound on coefficients required
to ensure support recovery with p variables, m tasks, n samples per task and a true support of size
|S|.

A1 (Restricted Eigenvalues): Let C(s, L) = {∆ ∈ Rp | ||∆Uc||1 ≤ L||∆U ||1, U ⊆

[p], |U | ≤ s}. There exists a constant κ > 0 such that

min
∆∈C(|S|,L)

∆T Σ̂t∆ ≥ κ||∆U ||22, t = 1, . . . ,m.
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Approach Assumptions `1/`2 estimation error Prediction error

Lasso Restricted Eigenvalue

√
|S|2 log p

n
|S| log p

n

Group lasso Restricted Eigenvalue |S|√
n

√
1 + log p

m
|S|
n

(
1 + log p

m

)
DSML

Generalized Coherence
Restricted Eigenvalue

|S|√
n

√
1 + log p

m + |S|2 log p
n

|S|
n

(
1 + log p

m

)
+ |S|3(log p)2

n2

Table 6.4: Conditions on the design matrix, and comparison of parameter estimation errors and
prediction errors. The DSML guarantees improve over Lasso and have the same leading term as
the Group lasso as long as m < n/(|S|2 log p).

There exists a constant φmax <∞ such that

max
∆∈Rp

∆T
S Σ̂t∆S < φmax||∆S ||22.

The above assumption is commonly assumed in the literature in order to establish con-

sistent estimation in high-dimensions Bickel et al. [2009]. A1 imposes restrictions directly

on the sample covariances Σ̂t, however, it is well known that the assumption will hold with

high-probability when rows of Xt are i.i.d. sub-gaussian or sub-exponential random vectors

with population covariance satisfying A1 Raskutti et al. [2010], Rudelson and Zhou [2013].

We will also need the following notion of coherence of the design matrices.

Definition 55 (Generalized Coherence). For matrices X ∈ Rn×p and M = (m1, . . . ,mp) ∈

Rp×p, let

µ(X,M) = max
j∈[p]
||Σmj − ej ||∞

be the generalized coherence parameter between X and M , where Σ = n−1XTX. Further-

more, let µ∗ = mint∈[m] minM∈Rp×p µ(Xt,M) be the minimum generalized coherence.

This assumption is more relaxed than the mutual coherence parameter Donoho and

Huo [2001]. As shown in Theorem 2.4 of Javanmard and Montanari [2014], µ(Xt,Σ
−1) ≤

2
√

log(p)/n with high-probability when the rows of Xt are i.i.d. sub-gaussian vectors with

covariance matrix Σ.

204



The following theorem is our main result, which is proved in appendix.

Theorem 56. Assume that A1 holds and that the generalized coherence condition satisfies

µ∗ ≤ Cµ

√
log p
n for some constant Cµ. Suppose λ in (6.2) was chosen as λt = Aσ

√
log p
n

with constant A >
√

2. Furthermore, suppose that the multi-task coefficients in (6.1) satisfy

the following bound on the signal strength

min
j∈S

√∑
t∈[m]

(w∗tj)
2 ≥ 2σ√

n

√
512A2C2

µm|S|2(log p)2

κ2n
+ 6C2

Mm+ 2
√

2C2
M log p := 2Λ∗,

(6.16)

where CM is a constant that only depends on {Mt}mt=1. Then the support estimated by the

master node satisfies Ŝ(Λ∗) = S with probability at least 1−mp1−A2/2 − p−1.

Based on Theorem 53, we have the following corollary that characterizes estimation error

and prediction risk of DSML, with the proof given in the appendix.

Corollary 57. Suppose the conditions of Theorem 56 hold. With probability at least 1 −

mp1−A2/2 − p−1, we have

p∑
j=1

||B̃j −Bj ||2 ≤
|S|σ√
n

√
512A2C2

µ|S|2(log p)2

κ2n
+ 6C2

Mm+ 2
√

2C2
M log p

and

1

nm

m∑
t=1

||Xt(w̃t −w∗t )||22 ≤
φmax|S|σ2

n

(
512A2C2

µm|S|2(log p)2

κ2n
+ 6C2

M +
2
√

2C2
M log p

m

)
.

6.5 Experiments

Our first set of experiments is on simulated data. We generated synthetic data according

to the model in (6.1) and in (6.7). Rows of Xt are sampled from a mean zero multivariate
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Figure 6.2: Hamming distance, estimation error, and prediction error for multi-task classifi-
cation with p = 200. Top row: the number of tasks m = 10. Sample size per tasks is varied.
Bottom row: Sample size n = 150. Number of tasks m varied.

normal with the covariance matrix Σ = (Σab)a,b∈[p], Σab = 2−|a−b|. The data dimension p

is set to 200, while the number of true relevant variables s is set to 10. Non-zero coefficients

of β are generated uniformly from [0, 1]. Variance σ2 is set to 1. Our simulation results are

averaged over 200 independent runs.

We investigate how performance of various procedures changes as a function of problem

parameters (n, p,m, s). We compare the following procedures: i) local lasso, ii) group lasso,

iii) refitted group lasso, where a worker node performs ordinary least squares on the selected

support, iv) iCAP, and v) DSML. The parameters for local lasso, group lasso and iCAP were

tuned to achieve the minimal Hamming error in variable selection. For DSML, to debias

the output of local lasso estimator, we use µ =
√

log p/n. The thresholding parameter Λ is

also optimized to achive the best variable selection performance. The simulation results for

regression are shown in Figure 7.3. In terms of support recovery (measured by Hamming

distance), Group lasso, iCAP, and DSML all perform similarly and significantly better than
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the local lasso. In terms of estimation error, lasso perform the worst, while DSML and

refitted group lasso perform the best. This might be a result of bias removal introduced by

regularization. Since the group lasso recovers the true support in most cases, refitting on it

yields the maximum likelihood estimator on the true support. It is remarkable that DSML

performs almost as well as this oracle estimator.
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Figure 6.3: Comparison of DSML with “Local lasso + thresholding” on a synthetic example.

Figure 7.4 shows the simulation results for classification. Similar with the regression

case, we make the following observations: i) The group sparsity based approaches, includ-

ing DSML, significantly outperform the individual lasso; ii) In terms of Hamming variable

selection error, DSML performs slightly worse than group lasso and iCAP. While in terms

of estimation error and prediction error, DSML performs much better than group lasso and

icap. Given the fact that group lasso recovers the true support in most cases, refitted group

lasso is equivalent to oracle maximum likelihood estimator. It is remarkable that DSML

only performs slightly worse than refitted group lasso; iii) The advantage of DSML, as well

as group lasso over individual lasso, becomes more and more significant with the increase in

number of tasks.

To illustrate why debasing is necessary, and a naive “local lasso + centralized thresh-

olding” approach will not work, we also performed a simple simulation with the following

setup: we divide support set S into a strong signal group Ss ⊂ S and a weak signal group

Sw ⊂ S, with the coefficients of β in Ss generated uniformly from [0, 1], while the ones in Sw
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Figure 6.4: Comparison on real world datasets.

generated uniformly from [0, 0.4]. We test this setting on a multi-task regression problem

with p = 100, the hamming selection error was shown in Figure 6.3, selecting the best reg-

ularization and thresholding parameter. We can see that the “Local lasso + thresholding”

approach only works slightly better than lasso, while DSML improved significantly on both.

We have also evaluated DSML on the following real world data sets:

School. This is a widely used dataset for multi-task learning [Argyriou et al., 2008]. The

goal is to predict the students’ performance at London’s secondary schools. There are 27

attributes for each student. The tasks are naturally divided according to different schools.

We only considered schools with at least 200 students, which results in 11 tasks.

Protein. The task is to predict the protein secondary structure [Sander and Schneider,

1991]. We considered three binary classification tasks here: coil vs helix, helix vs strand,

strand vs coil. The dataset consists of 24,387 instances in total, each with 357 features.

OCR. We consider the optical character recognition problem. Data were gathered by
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Rob Kassel at the MIT Spoken Language Systems Group 1. Following [Obozinski et al.,

2010], we consider the following 9 binary classification task: c vs e, g vs y, g vs s, m vs n, a

vs g, i vs j, a vs o, f vs t, h vs n. Each image is represented by 8× 16 binary pixels.

MNIST. This is a handwritten digit recognition dataset 2. Each image is represented

by 784 pixels. We considered the following 5 binary classification task: 2 vs 4, 0 vs 9, 3 vs

5, 1 vs 7, 6 vs 8.

USPS. This dataset consists handwritten images from envelopes by the U.S. Postal

Service. We considere the following 5 binary classification task: 2 vs 4, 0 vs 9, 3 vs 5, 1 vs

7, 6 vs 8. Each image is represented by 256 pixels.

Vehicle. We considered the vehicle classification problem in distributed sensor networks

[Duarte and Hu, 2004] with 3 binary classification task: AAV vs DW, AAV vs noise, DW vs

noise. There are 98,528 instances in total, each instances is described by 50 acoustic features

and 50 seismic features.

In addition to the procedures used in the previous section, we also compare against the

dirty model Jalali et al. [2010], as well as the centralized approach that first debias the

group lasso, then perform group hard thresholding. Tuning parameters for these procedures

were chosen based on performance on held-out data set. All regularization or thresholding

parameters were tuned to be optimal using a 20% held-out validation dataset. We vary the

training sample size as 10%, 30% and, 50% of the total data set size and report the perfor-

mance on the test set (normalized Mean Squared Error for regression and classification error

for classification). Figure 7.2 shows the results. We have the following general observations.

Local lasso performs the worst, which demonstrates that utilizing group sparsity helps to

improve the prediction performance. Our DSML methods performs comparably with to the

state-of-the-art centralized approaches. Debiasing group lasso followed by hard thresholding

1. http://www.seas.upenn.edu/~taskar/ocr/

2. http://yann.lecun.com/exdb/mnist/
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compares favorably to group lasso and has similar performance to dirty model.

6.6 Proofs of technical results

6.6.1 Proof of Theorem 53

We first introduce the following lemma.

Lemma 58. When the rows of X1, . . . , Xt are independent subgaussian random vectors, with

mean zero, covariance Σ1, ...,Σt, respectively. Let

CM = max
t∈[m]

max
j∈[p]

(
MT
t

(
XT
t Xt
n

)
Mt

)
jj

.

Then with probability at least 1− 2mp exp (−cn)− 2mp−2 for some constant c, we have

CM ≤ 2 max
t∈[m]

max
j∈[p]

(Σ−1
t )jj .

Proof. As shown in Theorem 2.4 of Javanmard and Montanari [2014], Σ−1
t will be a feasible

solution for the problem of estimating Mt. Since we’re minimizing (MT
t Σ̂tMt)jj , we must

have

max
j∈[p]

(MT
t Σ̂tMt)jj ≤ max

j∈[p]
(Σ−1

t Σ̂tΣ
−1
t )jj .

Based on the concentration results of sub-exponential random variable Vershynin [2010], also

Lemma 3.3 of Lee et al. [2017b], we know with probability at least 1−2p exp (−cn) for some

constant c, we have

max
j∈[p]

(Σ−1
t Σ̂tΣ

−1
t )jj ≤ 2 max

j∈[p]
(Σ−1

t )jj .

Take an union bound over t ∈ [m], we obtain with probability at least 1− 2mp exp (−cn),

CM ≤ max
t∈[m]

max
j∈[p]

(MT
t Σ̂tMt)jj ≤ max

t∈[m]
max
j∈[p]

(Σ−1
t Σ̂tΣ

−1
t )jj ≤ 2 max

t∈[m]
max
j∈[p]

(Σ−1
t )jj .
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Now we are ready to prove Theorem 1, recall the model assumption

yt = Xtβ
∗
t + εt, t = 1, . . . ,m, (6.17)

and the debiased estimation

β̂ut = β̂t + n−1MtX
T
t (yt −Xtβ̂t), (6.18)

we have

β̂ut =β̂t +
1

n
MtX

T
t (Xtβ

∗
t −Xtβ̂t) +

1

n
MtX

T
t εt

=β∗t + (MtΣ̂t − I)(β∗t − β̂t) +
1

n
MtX

T
t εt.

For the term (MtΣ̂t − I)(β∗t − β̂t), define

Cµ = 10eσ4
X

√
λmax

λmin
,

we have the following bound

||(MtΣ̂t − I)(β∗t − β̂t)||∞ ≤max
j
||Σ̂tmtj − ej ||∞||β∗t − β̂t||1

≤PCµ

√
log p

n
· 16A

κ
σ|S|

√
log p

n

=
16ACµσ|S| log p

κn
.

(6.19)

Noticed that

n−1MtX
T
t εt ∼ N

(
0,
σ2MtΣ̂tMt

T

n

)
.

Our next step uses a result on the concentration of χ2 random variables. For any coordinate
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j, we have
m∑
i=1

(
n−1eTj MtX

T εt

)2
≤
C2
Mσ2

n

m∑
i=1

ξ2
i ,

where (ξi)i∈[m] are standard normal random variables. Using Lemma 61 with a weight vector

v =

(
C2
Mσ2

n
,
C2
Mσ2

n
, . . . ,

C2
Mσ2

n

)

and choosing t =
√
m+ log p√

m
, we have

P


(
C2
Mσ

2

n

)∑m
i=1 ξ

2
i

√
2m

(
C2
Mσ

2

n

) −
√
m

2
>
√
m+

log p√
m

 ≤ 2 exp

−
(√

m+ log p√
m

)2

2 + 2
√

2(1 + log p
m )

 .

A union bound over all j ∈ [p] gives us that with probability at least 1− p−1

∑
i∈[m]

(
n−1eTj MtX

T εt

)2
≤ 3m

(
C2
Mσ2

n

)
+
√

2 log p

(
C2
Mσ2

n

)
, ∀j ∈ [p]. (6.20)

Combining (6.19) and (6.20), we get the following estimation error bound:

||B̂j −Bj ||2 =

√√√√∑
i∈[m]

(
[MtΣ̂t − I)(β∗t − β̂t)]j +

[
n−1MtX

T
t εt
]
j

)2

≤
√∑
i∈[m]

2
(

[MtΣ̂t − I)(β∗t − β̂t)]2j +
[
n−1MtX

T
t εt
]2
j

)

≤

√√√√∑
i∈[m]

(
512A2C2

µσ
2|S|2(log p)2

κ2n2

)
+ 6m

(
C2
Mσ2

n

)
+ 2
√

2 log p

(
C2
Mσ2

n

)

=
σ√
n

√
512A2C2

µm|S|2(log p)2

κ2n
+ 6C2

Mm+ 2
√

2C2
M log p

≤
91Cµσ|S|

√
m log p

κn
+ 3CMσ

√
m+ log p

n
,

(6.21)
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where the first inequality uses the fact (a+ b)2 ≤ 2a2 + 2b2, and the second inequality uses

(6.19) and (6.20)), the last inequality uses the fact that
√
a+ b ≤

√
a +
√
b. For every

variable j 6∈ S, we have

||B̂j ||2 ≤
91Cµσ|S|

√
m log p

κn
+ 3CMσ

√
m+ log p

n
.

plug in κ ≥ 1
2λmin, Cµ = 10eσ4

X

√
λmax
λmin

, CM ≤ 2K, we obtain

||B̂j ||2 ≤
1820eσ4

Xλ
1/2
maxσ|S|

√
m log p

λ
3/2
minn

+ 6Kσ

√
m+ log p

n
.

From (6.21) and the choice of Λ∗, we see that all variables not in S will be excluded from Ŝ

as well. For every variable j ∈ S, we have

||B̂j ||2 ≥ ||Bj ||2 − ||B̃j −Bj ||2 ≥ 2Λ∗ − Λ∗ = Λ∗.

Therefore, all variables in S will correctly stay in Ŝ after the group hard thresholding.

6.6.2 Proof of Corollary 54

From Theorem 2 we have that Ŝ(Λ∗) ⊆ S and

||B̃j −Bj ||2 ≤
1820eσ4

Xλ
1/2
maxσ|S|

√
m log p

λ
3/2
minn

+ 6Kσ

√
m+ log p

n
, (6.22)
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with high probability. Summing over j ∈ S, we obtain the `1/`2 estimation error bound.

For the prediction risk bound, we have

1

nm

m∑
t=1

||Xt(β̃t − β∗t )||22 ≤
λmax

m

m∑
i=1

||β̃t − β∗t ||22

=
λmax

m

p∑
j=1

||B̃j −Bj ||22.

Using (6.22) and the fact that B̃ − B is row-wise |S|-sparse, we obtain the prediction risk

bound.

6.6.3 Collection of known results

For completeness, we first give the definition of subgaussian norm, details could be found at

Vershynin [2010].

Definition 59 (Subgaussian norm). The subgaussian norm ||X||ψ2 of a subgaussian p-

dimensional random vector X, is defined as

||X||ψ2 = sup
x∈Sp−1

sup
q>1

q−1/2(E|〈X, x〉|q)1/q,

where Sp−1 is the p-dimensional unit sphere.

We then define the restricted set C(|S|, 3) as

C(|S|, 3) = {∆ ∈ Rp|||∆Uc||1 ≤ 3||∆U ||1, U ⊂ [p], |U | ≤ |S|}.

The following proposition is a simple extension of Theorem 6.2 in Bickel et al. [2009].

Proposition 60. Let

λt = Aσ

√
log p

n
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with some constant A > 2
√

2 be the regularization parameter in lasso. With probability at

least 1−mp1−A2/8,

||β̂t − β∗t ||1 ≤
16A

κ′
σ|S|

√
log p

n
,

where κ is the minimum restricted eigenvalue of design matrix X1, . . . , Xm:

κ = min
t∈[m]

min
∆∈C(|S|,3)

∆T

(
XT
t Xt
n

)
∆

||∆S ||22
.

Proof. Using Theorem 6.2 in Bickel et al. [2009] and take an union bound over 1, . . . ,m we

obtain the result.

Lemma 61 (Equation (27) in Cavalier et al. [2002]; Lemma B.1 in Lounici et al. [2011]).

Let ξ1, ξ2, ...ξm be i.i.d. standard normal random variables, let v = (v1, ..., vm) 6= 0, ηv =

1√
2||v||2

∑m
i=1(ξ2

i − 1)vi and m(v) =
||v||∞
||v||2

. We have, for all t > 0, that

P (|ηv| > t) ≤ 2 exp

(
− t2

2 + 2
√

2tm(v)

)
.

The next lemma relies on the generalized coherence parameter:

Definition 62 (Generalized Coherence). For matrices X ∈ Rn×p and M = (m1, . . . ,mp) ∈

Rp×p, let

µ(X,M) = max
j∈[p]
||Σmj − ej ||∞

be the generalized coherence parameter between X and M , where Σ = n−1XTX. Further-

more, let µ∗ = mint∈[m] minM∈Rp×p µ(Xt,M) be the minimum generalized coherence.

Lemma 63 (Theorem 2.4 in Javanmard and Montanari [2014]). When Xt are drawn from

subgaussian random vectors with covariance matrix Σt, and XtΣ
−1/2
t has bounded subgaus-

sian norm ||XtΣ
−1/2
t ||ψ2 ≤ σX . When n ≥ 24 log p, then with probability at least 1− 2p−2,
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we have

µ(Xt,Σ
−1
t ) < 10eσ4

X

√
λmax

λmin

√
log p

n
.

For subgaussian design, we also have the following restricted eigenvalue condition Rudel-

son and Zhou [2013], Lee et al. [2017b].

Lemma 64. When Xt are drawn from subguassian random vectors with covariance matrix

Σt, and bounded subgaussian norm σX . When n ≥ 4000s′σX log
(

60
√

2ep
s′

)
where s′ =(

1 + 30000λmax
λmin

)
|S|, and p > s′, then with probability at least 1− 2 exp(−n/4000C4

κ), for any

vector ∆ ∈ C(|S|, 3) where we have

∆T

(
XT
t Xt
n

)
∆ ≥ 1

2
λmin||∆S ||22.
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CHAPTER 7

DISTRIBUTED MULTI-TASK LEARNING WITH SHARED

SUBSPACE

7.1 Motivation

Multi-task learning is widely used learning framework in which similar tasks are considered

jointly for the purpose of improving performance compared to learning the tasks separately

[Caruana, 1997]. By transferring information between related tasks it is hoped that samples

will be better utilized, leading to improved generalization performance. Multi-task learning

has been successfully applied, for example, in natural language understanding [Collobert

et al., 2011], speech recognition [Seltzer and Droppo, 2013], remote sensing [Xue et al.,

2007], image classification [Lapin et al., 2014], spam filtering [Weinberger et al., 2009], web

search [Chapelle et al., 2010], disease prediction [Zhou et al., 2013], and eQTL mapping [Kim

and Xing, 2010] among other applications.

Here, we study multi-task learning in a distributed setting, where each task is handled

by a different machine and communication between machines is expensive. That is, each

machine has access to data for a different task and needs to learn a predictor for that task,

where machines communicate with each other in order to leverage the relationship between

the tasks. This situation lies between a homogeneous distributed learning setting Shamir

and Srebro [2014], where all machines have data from the same source distribution, and

inhomogeneous consensus problems Ram et al. [2010], Boyd et al. [2011], Balcan et al. [2012]

where the goal is to reach a single consensus predictor or iterate which is the same on all

machines. The main argument for this setting is that if each machine indeed has access to

different data (e.g. from a different geographical region or different types of users), as in the

consensus problems studied by Balcan et al. [2012], then we should allow a different predictor

for each distribution, instead of insisting on a single consensus predictor, while still trying
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to leverage the relationship and similarity between data distributions, as in classical multi-

task learning. Heterogeneous distribution across machines is a nature phenomenon in some

practical distributed learning problems. For example, the recent proposed federated learning

[McMahan et al., 2017] framework tries to learn from decentralized data generated in user’s

model devices, where one of the main challenges is how to tackle the non i.i.d. distributions

for different users. As was recently pointed out by Wang et al. [2016b], allowing separate

predictors for each task instead of insisting on a consensus predictor changes the fundamental

nature of the distributed learning problem, allows for different optimization methods, and

necessitates a different analysis approach, more similar to homogeneous distributed learning

as studied by Shamir and Srebro [2014].

The success of multi-task learning relies on the relatedness between tasks. While Wang

et al. [2016b] studied tasks related through shared sparsity, here we turn to a more general,

powerful and empirically more successful model of relatedness, where the predictors for

different tasks lie in some (a-priori unknown) shared low-dimensional subspace and so the

matrix of predictors is of low rank [Ando and Zhang, 2005, Amit et al., 2007, Yuan et al.,

2007, Argyriou et al., 2008]. In a shared sparsity model, information from all tasks is used

to learn a subset of the input features which are then used by all tasks. In contrast, in a

shared subspace model, novel features, which are linear functions of the input features, are

learned. The model can thus be viewed as a two-layer neural network, with the bottom

layer learned jointly across tasks and the top layer task-specific. Being arguably the most

complex multi-layer network that we can fully analyze, studying such models can also serve

as a gateway to using deeper networks for learning shared representations.

Multi-task learning with a shared subspace is well-studied in a centralized setting, where

data for all tasks are on the same machine, and some global centralized procedure is used

to find a good predictor for each task. In such a situation, nuclear norm regularization is

often used to leverage the low rank structure [e.g. Argyriou et al., 2008, Amit et al., 2007]
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Approach Rounds Communication Worker Comp. Master Comp.

Local 1 0 ERM 0

Centralize 1 A2

ε2stat

(
r
m + r

p̃

)
0 Nuclear Norm Minimization

SVD Truncation 1 2 · p ERM SV Shrinkage

ProxGD mHA2

ε 2 · p Gradient Comp. SV Shrinkage

AccProxGD

√
mHA2

ε 2 · p Gradient Comp. SV Shrinkage

ADMM mA2

ε 3 · p ERM SV Shrinkage

DFW mHA2

ε 2 · p Gradient Comp. Leading SV Comp.

DGSP mHA2

ε 2 · p ERM Leading SV Comp.

DNSP − 2 · p ERM Leading SV Comp.

Table 7.1: Summary of resources required by different approaches to distributed multi-task learning
with shared representations, in units of vector operations/communications, ignoring log-factors.

and learning guarantees are known ([Pontil and Maurer, 2013] and see also Section 7.2).

With the growth of modern massive data sets, where tasks and data often too big to handle

on a single machine, it is important to develop methods also for the distributed setting,

and distribute learning of multiple related tasks have been an emerging technique studied

recently [Vanhaesebrouck et al., 2016, Liu et al., 2017, Smith et al., 2017] . Unfortunately,

we are not aware of any prior work on distributed multi-task learning with shared subspaces.

In this chapter we focus on methods with efficient communication complexity (i.e. with

as small as possible communication between machines), that can still leverage most of the

statistical benefit of shared-subspace multi-task learning. Although all our methods are

also computationally tractable and can be implemented efficiently, we are less concerned

here with minimizing the runtime on each machine separately, considering communication,

instead, as the main bottleneck and the main resource to be minimized [Bekkerman et al.,

2011]. This is similar to the focus in distributed optimization approaches such as ADMM

[Boyd et al., 2011] and DANE [Shamir et al., 2014] where optimization within each machine

is taken as an atomic step.

Contribution The main contributions of this chapter are:
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i) We present and formalize the shared-subspace multi-task learning [Argyriou et al.,

2008] in the novel distributed multitask setting, identifying the relevant problems and pos-

sible approaches. We analyze two baselines, several representative first-order distributed

optimization methods, with careful sample and communication complexity analysis.

ii) We proposed and analyzed two subspace pursuit approaches which learn the shared

representation in a greedy fashion, and leverage the low-dimensional predictive structure in

a communication efficient way.

iii) We conducted comprehensive experimental comparisons of the discussed approaches

on both simulated and real datasets, where we demonstrated that the proposed approaches

are more communication efficient than first-order convex optimization methods.

Table 7.1 summarized the approaches studied in this chapter, which will be discussed in

detail in the following sections.

7.2 Problem set-up and baselines

We consider a setting with m tasks, each characterized by a source distribution Dj(X, Y )

over feature vectors X ∈ Rp and associated labels Y , and our goal is to find linear predictors

w1, . . . ,wm ∈ Rp minimizing the overall expected loss (risk) across tasks:

L(W ) =
1

m

m∑
j=1

E(Xj ,Yj)∼Dj

[
`(wT

j Xj , Yj)
]
, (7.1)

where for convenience we denote W ∈ Rp×m for the matrix with columns wi, and `(·, ·) is

some specified instantaneous loss function.

In the learning setting, we cannot observe L(W ) directly and only have access to i.i.d. sam-

ple {xji, yji}
nj
i=1 from each distribution Dj , j = 1, . . . ,m. For simplicity of presentation, we

will assume that nj = n, j = 1, . . . ,m, throughout the chapter. We will denote the empirical

220



loss Ln(W ) = 1
m

∑m
j=1 Lnj(wj) where

Lnj(wj) =
1

n

n∑
i=1

`(wT
j xji, yji)

is the local (per-task) empirical loss.

We consider a distributed setting, where each task is handled on one of m separate

machines, and each machine j has access only to the samples drawn fromDj . Communication

between the machines is by sending real-valued vectors. Our methods work either in a

broadcast communication setting, where at each iteration each machine sends a vector which

is received by all other machines, or in a master-at-the-center topology where each machine

sends a vector to the master node, whom in turn performs some computation and broadcasts

some other vectors to all machines. Either way, we count the total number of vectors

communicated.

7.2.1 Review of homogeneous, inhomogeneous and multi-task distributed

learning.

We briefly review the relationship between homogeneous, inhomogeneous and multi-task

learning, as recently presented by Wang et al. [2016b].

A typical situation considered in the literature is one in which data on different machines

are all drawn i.i.d from the same source distribution. In this setting, tasks on different ma-

chines are all the same, which should be taken advantage of in optimization Shamir et al.

[2014]. Furthermore, as each machine has access to samples from the source distribution it

can perform computations locally, without ever communicating with other machines. While

having zero communication cost, this approach does not compare favorably with the central-

ized approach, in which all data are communicated to the central machine and used to obtain

one predictor, when measured in terms of statistical efficiency. The goal in this setting is to
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obtain performance close to that of the centralized approach, using the same number of sam-

ples, but with low communication and computation costs Shamir and Srebro [2014], Jaggi

et al. [2014], Zhang et al. [2013c, 2012], Lee et al. [2017b]. Another setting considered in

the distributed optimization literature is that of consensus optimization. Here each machine

has data from a different distribution and the goal is to find one vector of coefficients that

is good for all the separate learning or optimization problems Boyd et al. [2011], Ram et al.

[2010], Balcan et al. [2012]. The difficulty of consensus problems is that the local objectives

might be rather different, and, as a result, one can obtain lower bounds on the amount of

communication that must be exchanged in order to reach a joint optimum.

In this chapter we suggest a novel setting that combines aspects of the above two settings.

On one hand, we assume that each machine has a different source distributions Dj , corre-

sponding to a different task, as in consensus problems. For example, each machine serves

a different geographical location, or each is at a different hospital or school with different

characteristics. But if indeed there are differences between the source distributions, it is

natural to learn different predictors wj for each machine, so that wj is good for the distri-

bution typical to that machine. In this regard, our distributed multi-task learning problem

is more similar to single-source problems, in that machines could potentially learn on their

own given enough samples and enough time. Furthermore, availability of other machines

just makes the problem easier by allowing transfer between the machine, thus reducing the

sample complexity and potentially runtime. The goal, then, is to leverage as much transfer

as possible, while limiting communication and runtime. As with single-source problems, we

compare our method to the two baselines, where we would like to be much better than the

local approach, achieving performance nearly as good as the centralized approach, but with

minimal communication and efficient runtime.

As in standard agnostic-PAC type analysis, our goal will be to obtain expected loss L(W )
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which is not much larger than the expected loss of some (unknown) reference predictor1 W ∗,

and we will measure the excess error over this goal. To allow obtaining such guarantees we

will assume:

Assumption 65. The loss function `(·, ·) is 1-Lipschitz and bounded2 by 1, be twice differ-

entiable and H-smooth, that is

|`′(a, c)− `′(b, c)| ≤ H|a− b|, ∀a, b, c ∈ R.

All the data points are bounded by unit length, i.e. ||xji||2 ≤ 1,∀i, j, and the reference

predictors have bounded norm: maxj∈[m] ||w∗j ||
2
2 ≤ A2.

7.2.2 Baseline approaches

The simplest approach, which we refer to as Local, is to learn a linear predictor on each

machine independently of other machines. This single task learning approach ignores the

fact that the tasks are related and that sharing information between them could improve

statistical performance. However, the communication cost for this procedure is zero, and with

enough samples it can still drive the excess error to zero. However, compared to procedures

discussed later, sample complexity (number of samples n required to achieve small excess

error) is larger. A standard Rademacher complexity argument [Bartlett and Mendelson,

2002] gives the following generalization guarantee, which is an extension of Theorem 26.12

in Shalev-Shwartz and Ben-David [2014].

1. Despite the notation, W ∗ need not be the minimizer of the expected loss. We can think of it as the
minimizer inside some restricted hypothesis class, though all analysis and statements hold for any chosen
reference predictor W ∗.

2. This is only required for the high probability bounds.
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Proposition 66. Suppose Assumption 65 holds. Then with probability at least 1− δ,

L(Ŵlocal)− L(W ∗) ≤ 2A√
n

+

√
2 ln(2m/δ)

n
,

where Ŵlocal = [ŵ1, . . . , ŵm] with ŵj = arg min||w||≤A Lnj(w).

That is, in order to ensure εstat excess error, we need n = O
(

A2

ε2stat

)
samples from each

task.

At the other extreme, if we ignore all communication costs, and, e.g. communicate all

data to a single machine, we can significantly leverage the shared subspace. To understand

this, we will first need to introduce two assumptions: one about the existence of a shared

subspace (i.e. that the reference predictor is indeed low-rank), and the other about the spread

of the data:

Assumption 67. rank(W ∗) ≤ r

Assumption 68. There is a constant p̃, such that

∣∣∣∣∣∣∣∣ 1

m

m∑
j=1

E(Xj ,Yj)∼Dj

[
XjX

T
j

] ∣∣∣∣∣∣∣∣
2
≤ 1

p̃
.

Since the data is bounded, we always have 1 ≤ p̃ ≤ p, with p̃ being a measure of how

spread out the data is in different direction. A value of 1 = p̃ indicates the data is entirely

contained in a one-dimensional line. In this case, the predictor matrix will also always be

rank-one, imposing a low-rank structure is meaningless and we can’t expect to gain from it.

However, when p̃ is close to p, or at least high, the data is spread in many directions and

the low-rank assumption is meaningful. We can think of p̃ as the “effective dimensionality”

of the data, and hope to gain when r � p̃.

With these two assumptions in hand, we can think of minimizing the empirical error

subject to a rank constraint on W . This is a hard and non-convex optimization task, but
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we can instead use the nuclear norm (aka trace-norm) ||W ||∗ as a convex surrogate for the

rank. This is because if Assumptions 65 and 67 hold, then we also have ||W ∗||∗ ≤
√
rmA.

With this in mind, we can define the following centralized predictor:

Ŵcentralize = arg min
||W ||∗≤

√
rmA
Ln(W ) (7.2)

which achieves the improved excess error guarantee:

Proposition 69. (Theorem 1 in Pontil and Maurer [2013]) Suppose Assumptions 65, 67

and 68 hold. Then with probability at least 1− δ,

L(Ŵcentralize) ≤ L(W ∗) +

√
2 ln(2/δ)

nm
+ 2
√
rA

(√
1

p̃n
+ 5

√
ln(mn) + 1

mn

)

The sample complexity per task, up to logarithmic factors, is thus only n = Õ
(

A2

ε2stat

(
r
m + r

p̃

))
.

When p̃ � m, this is a reduction by a factor of r/m. That is, it is as if we needed to only

learn r linear predictors instead of m.

The problem is that a naive computation of Ŵcentralize requires collecting all data on

a single machine, i.e. communicating O(n) = Õ
(

A2

ε2stat

(
r
m + r

p̃

))
samples per machine.

In the next Sections, we aim at developing methods of approximating Ŵcentralized using

communication efficient methods, or computing an alternate predictor with similar statistical

properties but using much less communication.

One-shot SVD Truncation A natural question to ask is whether there exists a one-shot

communication method for the shared representation problem considered here, that still

matches the performance of centralized methods. One reasonable solution is to consider

the SVD truncation approach, which is based on the following derivation: consider the well
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specified linear regression model:

yji = 〈xji,w∗j 〉+ εji,

where εji is drawn from mean-zero Gaussian noise. It is easy to verify the following equation

for OLS estimation:

ŵlocal(j) = w∗j +

(∑
i

xjix
T
ji

)−1(∑
i

εjixji

)
.

Since Ŵlocal is just W ∗ plus some mean-zero Gaussian noise, it is natural to consider the

following low-rank matrix denoising estimator:

min
W
||Ŵlocal −W ||2F s.t. rank(W ) = r.

where the solution is a simple SVD truncation, and can be implemented in a one-shot way:

each worker send its Local solution to the master, which then performs an SVD truncation

step to maintain the top-r components

Ŵsvd = UrSrV
T
r , where USV T = SVD(Ŵlocal),

and send the resulting estimation back to each worker, where Ur, Sr, Vr are top-r compo-

nents of U, S, V . Though this approach might work well for some simple scenarios, but will

generally fail when the features are highly correlated: although the Local solution Ŵlocal

can output normal estimation of W ∗, the estimation noise
(∑

i xjix
T
ji

)−1 (∑
i εjixji

)
might

be highly correlated (depend on the correlation between features), which makes the SVD

truncation estimation not reliable.
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7.3 Distributed convex optimization approaches

In this section, we study how to obtain the sharing benefit of the centralized approach using

distributed convex optimization techniques, while keeping the communication requirements

low.

To enjoy the benefit of nuclear-norm regularization while avoiding the high communi-

cation cost of Centralize, a flexible strategy is to solve the convex objective (7.2) via

distributed optimization techniques. Let W (t) be the solution at t-iteration for some iter-

ative distributed algorithms for (7.2), by the generalization error decomposition [Bousquet

and Bottou, 2008],

L(W (t))− L(W ∗) ≤2εstat + εopt,

Suppose W (t) satisfying Ln(W (t)) ≤ Ln(Ŵ ) +O(εopt) with εopt = O(εstat). Then W (t)

will have the generalization error of order O(εstat). Therefore in order to study the general-

ization performance, we will study how the optimization error decreases as the function of

the number of iterations t.

Distributed Proximal Gradient Maybe the simplest distributed optimization algorithm

for (7.2) is the proximal gradient descent. It is not hard to see that computation of the

gradient ∇Ln(W ) can be easily done in a distributed way as the losses are decomposable

across machines:

∇Ln(W ) =

[
∇Ln1(w1), . . . ,∇Lnm(wm)

]
where ∇Lnj(wj) =

1

nm

n∑
i=1

`′(〈wj ,xji〉, yji)xji.
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Algorithm 17 ProxGD: Distributed Proximal Gradient.

for t = 1, 2, . . . do
Workers:
for j = 1, 2, . . . ,m do

Each worker compute the its gradient direction ∇Lnj(w
(t)
j ) =

1
mn

∑n
i=1 `

′(〈w(t)
j ,xji〉, yji)xji, and send it to the master;

Wait;

Receive w
(t+1)
j from master.

end
Master:

if Receive ∇Lnj(w
(t)
j ) from all workers then

Concatenate the gradient vectors, and update W (t+1) as (7.3);

Send w
(t+1)
j to all workers.

end

end

Thus each machine j needs to compute the gradient ∇Lnj(wj) on the local dataset and send

it to the master. The master concatenates the gradient vectors to form the gradient matrix

∇Ln(W ). Finally, the master computes the proximal step

W (t+1) = arg min
W
||W − (W (t) − η∇Ln(W (t)))||2F

+ λ||W ||∗, (7.3)

which has the following closed form solution [Cai et al., 2010]: let W (t) − η∇Ln(W (t)) =

UΣV T be the SVD of W (t)− η∇Ln(W (t)), then W (t+1) = U (Σ− 0.5λI)+ V T with (x)+ =

max{0, x} applied element-wise.

The algorithm is summarized in Algorithm 17 (in Appendix), which has well established

convergence rates [Bach et al., 2012]:

Ln(W (t))− Ln(Ŵ ) ≤ mHA2

2t
.
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Algorithm 18 AccProxGD: Accelerated Distributed Proximal Gradient for Multi-Task
Learning.

for t = 1, 2, . . . do
Workers:
for j = 1, 2, . . . ,m do

Each worker compute the its gradient direction ∇Ln(z
(t)
j ) =

1
mn

∑n
i=1 `

′(〈z(t)
j ,xji〉, yji)xji, and send it to the master;

Wait;

Receive z
(t+1)
j from master.

end
Master:

if Receive ∇Ln(z
(t)
j ) from all workers then

Concatenate the gradient vectors, and update W (t+1) as (7.4);

Update Z(t+1) as (7.5);

Send z
(t+1)
j to all workers.

end

end

To obtain ε-generalization error, the distributed proximal gradient descent requiresO
(
mHA2

ε

)
rounds of communication, with a total O

(
mHA2p

ε

)
bits communications per machine.

Distributed Accelerated Gradient It is also possible to use Nesterov’s acceleration idea

[Nesterov, 1983] to improve the convergence of the proximal gradient algorithm from O
(

1
t

)
to O

(
1
t2

)
[Ji and Ye, 2009]. Using the distributed accelerated proximal gradient descent,

one needs O
(√

mHA2

ε

)
rounds of communication with a total O

(√
mHA2

ε · p
)

bits com-

municated per machine to achieve ε-generalization error. The algorithm is summarized in

Algorithm 18 (in Appendix), where the master maintains two sequences: W and Z. First, a

proximal gradient update of W is done based on Z

W (t+1) = arg min
Z
||Z − (Z(t) − η∇Ln(Z(t)))||2F

+ λ||Z||∗ (7.4)
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and then Z is updated based on a combination of the current W and the difference with

previous W

Z(t+1) = W (t+1) + γt(W
(t+1) −W (t)). (7.5)

7.3.1 Distributed alternating direction methods of multipliers

Algorithm 19 ADMM: Distributed ADMM for Multi-Task Learning.

for t = 1, 2, . . . do
Workers:
for j = 1, 2, . . . ,m do

Each worker solves the regularized ERM problem as (7.6) to get w
(t+1)
j , and send it

to the master;
Wait;

Receive z
(t+1)
j ,q

(t+1)
j from master.

end
Master:

if Receive w
(t+1)
j from all workers then

Concatenate the current solutions w
(t+1)
j , and update Z(t+1) as (7.7);

Update Q(t+1) as (7.8);

Send z
(t+1)
j ,q

(t+1)
j to the corresponding worker.

end

end

The Alternating Direction Methods of Multipliers (ADMM) is also a popular method for

distributed optimization [Boyd et al., 2011] and can be used to solve the distributed low-rank

multi-task learning problem. We first write the objective (7.2) as

arg min
W,Z

Ln(W ) + λ||Z||∗, subject to W = Z.

By introducing the Lagrangian and augmented terms, we get the following unconstrained
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problem:

L̃(W,Z,Q) =Ln(W ) + λ||Z||∗ + 〈W − Z,Q〉

+
ρ

2
||W − Z||2F ,

where ρ is a parameter controlling the augmentation level. Note that except for Z, the aug-

mented Lagrangian objective are decomposable across tasks. To implement the distributed

ADMM algorithm, we let the workers maintain the data and W , while the master maintains

Z and Q. At round t, each machine separately solves

w
(t+1)
j = arg min

w
Lnj(wj) + 〈w(t+1)

j − z
(t)
j ,q

(t)
j 〉

+
ρ

2
||w(t+1)

j − z
(t)
j ||2, (7.6)

which is minimizing the local loss plus a regularization term. Next, each worker sends their

solution to the master, which performs the following updates for Z and Q

Z(t+1) = arg min
Z
〈W (t+1) − Z,Qt〉+ λ||Z||∗

+
ρ

2
||W (t+1) − Z||2F , (7.7)

Q(t+1) =Q(t) + ρ(W (t+1) − Z(t+1)), (7.8)

which have closed-form solutions.

The algorithm ADMM is summarized in Algorithm 19. Note that compared to methods dis-

cussed before, ADMM needs to communicate three p-dimensional vectors between each worker

and the master at each round, while the proximal gradient approaches only communicate

two p-dimensional vectors per round. Based on convergence results of ADMM [He and Yuan,

2012], O
(
mA2

ε

)
rounds of communication are needed to obtain ε-generalization error.
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Algorithm 20 DFW: Distributed Frank-Wolfe for Multi-Task Learning.

for t = 0, 2, . . . do
Workers:
for j = 1, 2, . . . ,m do

Each worker compute the its gradient direction∇Lnj(w
(t)
j ), and send it to the master;

end
if Receive vju from the master then

Set γ = 2
t+2 ;

Update w
(t+1)
j as (7.9).

end
Master:

if Receive ∇Lnj(w
(t)
j ) from all workers then

Concatenate the gradient vectors, and compute the largest singular vectors: (u,v) =

SV(∇Ln(W (t)));
Send vju to j-th worker.

end

end

7.3.2 Distributed Frank-Wolfe method

Another approach we consider is the distributed Frank-Wolfe method [Frank and Wolfe,

1956, Jaggi, 2013, Bellet et al., 2015]. This methods does not require performing SVD,

which might bring additional computational advantages. Instead of directly minimizing

the nuclear norm regularized objective, the Frank-Wolfe algorithm considers the equivalent

constrained minimization problem

min
W
Ln(W ) subject to ||W ||∗ ≤ R.

At each step, Frank-Wolfe algorithm considers the following direction to update

Z(t) = arg min
||Z||∗≤R

〈∇Ln(W (t)), Z〉 = −R · uvT ,
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where (u,v) = SV(∇Ln(W (t))) is the leading singular vectors of ∇Ln(W (t)). The next

iterate is obtained as

W (t+1) = (1− γ)W (t) + γZ(t),

where γ is a step size parameter. To implement this algorithm in a distributed way, the

master first collects the gradient matrix ∇Ln(W (t)) and computes u and v. The vector vju

is sent to j-th machine, which performs the following update:

w
(t+1)
j = (1− γ)w

(t)
j − γRvju. (7.9)

The algorithm is summarized in Algorithm 20. Similar to the distributed (accelerated)

proximal gradient descent, the distributed Frank-Wolfe only requires communication of two

p-dimensional vectors per round. Though computationally cheaper compared to other meth-

ods considered in this section, the distributed Frank-Wolfe algorithm enjoys similar conver-

gence guarantees to the distributed proximal gradient descent [Jaggi, 2013], that is, after

O
(
mHA2

ε

)
iterations, the solution will be ε suboptimal.

7.4 Distributed greedy representation learning approaches

In this section we propose two distributed algorithms which select the subspaces in a greedy

fashion, instead of solving the nuclear norm regularized convex program.

7.4.1 Distributed gradient subspace pursuit

Our greedy approach is inspired by the methods used for sparse signal reconstruction [Tropp,

2004, Shalev-Shwartz et al., 2010]. Under the assumption that the optimal model W ∗ is low-
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Algorithm 21 DGSP: Distributed Gradient Subspace Pursuit.

for t = 1, 2, . . . do
Workers:
for j = 1, 2, . . . ,m do

Each worker compute the its gradient direction∇Lnj(w
(t)
j ), and send it to the master.

end
if Receive u from the master then

Update the projection matrix U = [U u];
Solve the projected ERM problem: vj = arg minvj Lnj(Uvj);

Update w
(t+1)
j = Uvj .

end
Master:

if Receive ∇Lnj(w
(t)
j ) from all workers then

Concatenate the gradient vectors, and compute the largest singular vectors: (u,v) =

SV(∇Ln(W (t)));
Send u to all workers.

end

end

rank, say rank r, we can write W ∗ as a sum of r rank-1 matrices:

W ∗ =
r∑
i=1

aiuiv
T
i = UV T ,

where ai ∈ R,ui ∈ Rp,vi ∈ Rm, and ||ui||2 = ||vi||2 = 1. In the proposed approach, the

projection matrix U is learned in a greedy fashion. At every iteration, a new one-dimensional

subspace is identified that leads to an improvement in the objective. This subspace is then

included into the existing projection matrix. Using the new expanded projection matrix

as the current feature representation, we refit the model to obtain the coefficient vectors

V . In the distributed setting, there is a master that gathers local gradient information

from each task. Based on this information, it then computes the subspace to be added

to the projection matrix and sends it to each machine. The key step in the distributed

greedy subspace pursuit algorithm is the addition of the subspace. One possible choice is

the principle component of the gradient direction; after the master collected the gradient
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matrix ∇Ln(W (t)), it computes the top left and right singular vectors of ∇Ln(W (t)). Let

(u,v) = SV(∇Ln(W (t))) be the largest singular vectors of ∇Ln(W (t)). The left singular

vector u is used as a new subspace to be added to the projection matrix U . This vector is

sent to each machine, which then concatenate it to the projection matrix and refit the model

with the new representation. Algorithm 21 details the steps.

Distributed gradient subspace pursuit (DGSP), detailed in Algorithm 21, creates subspaces

that are orthogonal to each other, as shown in the following proposition which is proved in

Appendix 7.6.1:

Proposition 70. At every iteration of Algorithm 21, the columns of U are orthonormal.

Both the distributed gradient subspace pursuit and the distributed Frank-Wolfe use the

leading singular vector of the gradient matrix iteratively. Moreover, leading singular vectors

of the gradient matrix have been used in greedy selection procedures for solving low-rank

matrix learning problems [Shalev-Shwartz et al., 2011a, Wang et al., 2015]. However, DGSP

utilize the learned subspace in a very different way: GECO [Shalev-Shwartz et al., 2011a] re-fit

the low-rank matrix under a larger subspace which is spanned by all left and right singular

vectors; while OR1MP [Wang et al., 2015] only adjust the linear combination parameters

{ai}ri=1 of the rank-1 matrices. The DGSP algorithm do not restrict on the joint subspaces

{uivTi }, but focused on the low-dimensional subspace induced the projection matrix U , and

estimate the task specific predictors V based on the learned representation.

Next, we present convergence guarantees for the distributed gradient subspace pursuit.

First, note that the smoothness of `(·, ·) implies the smoothness property for any rank-1

update.

Proposition 71. Suppose Assumption 65 holds. Then for any W and unit length vectors

u ∈ Rp and v ∈ Rm, we have Ln(W + ηuvT ) ≤ Ln(W ) + uT∇Ln(W )v + Hη2

2 .

We defer the proof in Appendix 7.6.2. The following theorem states the number of itera-

tions needed for the distributed gradient subspace pursuit to find an ε-suboptimal solution.
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Figure 7.1: Excess prediction error for multi-task regression, with highly correlated features.

Theorem 72. Suppose Assumption 65 holds. Then the distributed gradient subspace pursuit

finds W (t) such that Ln(W (t)) ≤ Ln(Ŵ ) + ε when t ≥
⌈

4HmA2

ε

⌉
.

We defer the proof in Appendix 7.6.3. Theorem 72 tells us that for the distributed gradi-

ent subspace pursuit requires O
(
mHA2

ε

)
iterations to reach ε accuracy. Since each iteration

requires communicating p number, the communication cost per machine is O
(
mHA2

ε · p
)

.

Improved convergence under restricted strong convexity The rates established in

Theorem 72 can be further improved to have linear convergence is the restrict strong con-

vexity holds, as recently showed in [Khanna et al., 2017]. Under such a stronger condition

the distributed proximal gradient type methods will also enjoy linear convergence [Agarwal

et al., 2012].

7.4.2 Distributed Newton subspace pursuit

In some applications the communication cost of DNSP might be still too high and in order to

improve it we will try to reduce the number of rounds of communication. To that end, we

develop a procedure that utilizes the second-order information to improve the convergence.

Algorithm 22 describes the Distributed Newton Subspace Pursuit algorithm (DNSP). Note

that distributed optimization with second-order information have been studied recently to

achieve communication efficiency [Shamir et al., 2014, Zhang and Xiao, 2015].
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Algorithm 22 DNSP: Distributed Newton Subspace Pursuit.

for t = 1, 2, . . . do
Workers:
for j = 1, 2, . . . ,m do

Each worker computes the Newton direction ∆Lnj(w
(t)
t ) =(

∇2Lnj(w
(t)
t )
)−1
∇Lnj(w

(t)
t ) and sends it to the master.

end
if Receive u from the master then

Perform Gram-Schmidt orthogonalization:
u← u−

∑t−1
k=1〈Uk,u〉;

Normalize u = u/||u||2;
Update the projection matrix U = [U u];
Solve the projected ERM problem:
vj = arg minvj

1
n

∑n
i=1 `(〈vj , UTXji〉, yji);

Update w
(t+1)
j = Uvj .

end
Master:

if Receive ∆Lnj(w
(t)
t ) from all workers then

Concatenate the Newton vectors, and compute the largest singular vectors: (u,v) =

SV(∆Ln(W (t)));
Send u to all workers.

end

end

Compared to the gradient based methods, the DNSP algorithm uses second-order informa-

tion to find subspaces to work with. At each iteration, each machine computes the Newton

direction

∆Lnj(wj) =[∇2Lnj(wj)]
−1∇Lnj(wj)

=

[
1

mn

n∑
i=1

`′′(wT
j xji, yji)xjix

T
ji

]−1
∇Lnj(wj),

based on the current solution and sends it to the master. The master computes the overall

Newton direction by concatenating the Newton direction for each task

∆Ln(W ) = [∆Ln1(w1),∆Ln2(w2), . . . ,∆Lnm(wm)]
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and computes the top singular vectors of ∆Ln(W ). The top left singular vector u is then sent

back to every machine, which is then concatenated to the current projection matrix. Each

machine re-fits the predictors using the new representation. Note that at every iteration a

Gram-Schmidt step is performed to ensure that the learned basis are orthonormal.

DNSP is a Newton-like method which uses second-order information, thus its generic

analysis is not immediately apparent. However empirical results in the next section illustrate

good performance of the proposed DNSP.

7.5 Experiments

We first illustrate performance of different procedures on simulated data. We generate data

according to

yji | xji ∼ N (wT
j xji, 1), and

yji | xji ∼ Bernoulli

((
1 + exp(−wT

j xji)
)−1

)

for regression problems and for classification problems, respectively. We generate the low-

rank W ∗ as follows. We first generate two matrices A ∈ Rp×r, B ∈ Rm×r with entries sam-

pled independently from a standard normal distribution. Then we extract the left and right

singular vectors of ABT , denoted as U, V . Finally, we set W ∗ = USV T , where S is a diagonal

matrix with exponentially decaying entries: diag(S) = [1, 1/1.5, 1/(1.5)2, . . . , 1/(1.5)r]. The

feature vectors xji are sampled from a mean zero multivariate normal with the covariance

matrix Σ = (Σab)a,b∈[p], Σab = 2−0.1|a−b|. The regularization parameters for all approaches

were optimized to give the best prediction performance over a held-out validation dataset.

For ProxGD and AccProxGD, we initialized the solution from Local. Our simulation results

are averaged over 10 independent runs.

We investigate how the performance of various procedures changes as a function of prob-
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lem parameters (n, p,m, r). We compare the approaches listed in Table 7.1. The results

are shown in Figure 7.1 3, respectively. We plot how the excess prediction error decreases

as the number of rounds of communications increases (Local, Centralize and BestRep are

one shot approaches thus the lines are horizontal). From the plots, we have the following

observations:

i) One-shot SVD truncation approach does not significantly outperforms Local, some-

times even slightly worse.

ii) Nuclear norm regularization boosts the prediction performance over plain single task

learning significantly, which shows clear advantage of leveraging the shared representation

in multi-task learning.

iii) ADMM and AccProxGD perform reasonably well, especially ADMM. One reason for the

effectiveness of ADMM is that for the problem of nuclear norm regularized multi-task learning

considered here, the ADMM update solves regularized ERM problems at every iteration. ADMM

and AccProxGD clearly outperform ProxGD.

iv) ProxGD and DGSP perform similarly. DGSP usually becomes worse as the iterations

increases, while ProxGD converges to a global optimum of the nuclear norm regularized

objective.

v) DNSP is the most communication-efficient method, and usually converges to a solution

that is slightly better compared to the optimum of the nuclear regularization. This shows

that second-order information helps a lot in reducing the communication cost.

vi) The DFW performs the worst in most cases, even though DFW shares some similarity

with DGSP in learning the subspace. The empirical results suggest the re-fitting step in DGSP

is very important.

3. For better visualization, here we omit the plot for DFW as its performance is significantly worse than
others.
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Figure 7.2: Prediction Error on real data.

7.5.1 Evaluation on real world datasets

We also evaluate discussed algorithms on several real world data sets, with 20% of the whole

dataset as training set, 20% as held-out validation, then report the testing performance on

the remaining 60%. For the real data, we have observed that adding `2 regularization usually

helps improving the generalization performance. For the Local procedure we added an `2

regularization term (leads to ridge regression or `2 regularized logistic regression). For DGSP

and DNSP, we also add an `2 regularization in finding the subspaces and refitting. We have

worked on the following multi-task learning datasets:

School.4 The dataset consists of examination scores of students from London’s secondary

schools during the years 1985, 1986, 1987. There are 27 school-specific and student-specific

features to describe each student. The instances are divided by different schools, and the task

is to predict the students’ performance. We only considered schools with at least 100 records,

4. http://cvn.ecp.fr/personnel/andreas/code/mtl/index.html
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Figure 7.3: Excess prediction error for multi-task regression.

which results in 72 tasks in total. The maximum number of records for each individual school

is 260.

Computer Survey. The data is taken from a conjoint analysis experiment [Lenk et al.,

1996] which surveyed 180 persons about the probability of purchasing 20 kinds of personal

computers. There are 14 variables for each computer, the response is an integer rating with

scale 0− 10.

ATP.5 The task here is to predict the airline ticket price [Spyromitros-Xioufis et al.,

2016]. We are interested in the minimum prices next day for some specific observation date

and departure date pairs. Each case is described by 411 features, and there are 6 target

minimum prices for different airlines to predict. The sample size is 337.

Protein. Given the amino acid sequence, we are interested predicting the protein sec-

ondary structure [Sander and Schneider, 1991]. We tackle the problem by considering the

5. http://mulan.sourceforge.net/datasets.html
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Figure 7.4: Excess prediction error for multi-task classification.

following three binary classification tasks: coil vs helix, helix vs strand, strand vs coil. Each

sequence is described by 357 features. There are 24,387 instances in total.

Landmine. The data is collected from 19 landmine detection tasks [Xue et al., 2007].

Each landmine field is represented by a 9-dimensional vector extracted from radar images,

containing moment-based, correlation-based, energy ratio, and spatial variance features. The

sample size for each task varies from 445 to 690.

Cal500.6 This music dataset [Turnbull et al., 2008] consists of 502 songs, where for

each song 68 features are extracted. Each task is to predict whether a particular musically

relevant semantic keyword should be an annotation for the song. We only consider tags with

at least 50 times apperance, which results in 78 prediction tasks.

We compared various approaches as in the simulation study, except the BestRep as the

best low-dimensional representation is unknown. We also compared with AltMin, which

learns low-rank prediction matrix using the alternating minimization [Jain et al., 2013]. The

6. http://eceweb.ucsd.edu/~gert/calab/
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results are shown in Figure 7.2. Since the labels for the real world classification datasets are

often unbalanced, we report averaged area under the curve (AUC) instead of classification

accuracy. We have the following observations:

• The distributed first-order approaches converge much slower than in simulations, es-

pecially on ATP and Cal500. We suspect this is because in the simulation study, the

generated data are usually well conditioned, which makes faster convergence possi-

ble for such methods [Agarwal et al., 2012, Hong and Luo, 2017]. On real data, the

condition number can be much worse.

• In most case, DNSP is the best in terms of communication-efficiency. DGSP also has

reasonable performance with fewer round of communications compared to distributed

first-order approaches.

• Among the first-order distributed convex optimization methods, AccProxGD is overall

the most communication-efficient, while DFW is the worst, though it might have some

advantages in terms of computation. Also, we observed significant zig-zag behavior of

the DFW algorithm, as discussed in [Lacoste-Julien and Jaggi, 2015].

7.6 Proofs of technical results

7.6.1 Proof of Proposition 70

Proof. It is sufficient to prove that at every iteration, the current projection matrix U and

the subspace to be added u are orthogonal to each other. Note that by the optimality

condition:

∇V
(
Ln(UV T )

)
= UT∇Ln(W (t)) = 0.

243



Since u is the leading left singular vector of ∇Ln(W (t)), we have UTu = 0. Each column of

U has unit length, since it is a left singular vector of some matrix.

7.6.2 Proof of Proposition 71

Proof. It is sufficient to prove that the largest eigenvalue of ∇2Ln(W ) does not exceed H.

Since ∇2Ln(W ) is a block diagonal matrix, it is sufficient to show that for every block

j ∈ [m], the largest eigenvalue of the block ∇2Lnj(wj) is not larger than H.

This is true by the H-smoothness of `(·) and the fact that the data points have bounded

length:

||∇2Lnj(wj)||2 ≤ H ·max
i,j
||xji||2 ≤ H.

7.6.3 Proof of Theorem 72

Proof. Let (u,v) = SV(∇Ln(W (t))), without loss of generality we can assume u>∇Ln(W (t))v <

0 (otherwise let u = −u), by the smoothness of Ln, we know

Ln(W (t+1)) ≤min
b
Ln(W (t) + buvT )

≤Ln(W (t)) + b〈uvT ,∇Ln(W (t))〉+
Hb2

2

≤Ln(W (t)) +
b〈Ŵ ,∇Ln(W (t))〉

||Ŵ ||F
+
Hb2

2
.

Let W (t) = UV T . Since V is a minimizer of Ln(UV T ) with respect to V , we have

UT∇Ln(W (t)) = 0 and therefore 〈W (t),∇Ln(W (t))〉 = trace(V UT∇Ln(W (t))) = 0. From
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convexity of Ln(·), we have

〈Ŵ ,∇Ln(W (t))〉 =〈Ŵ −W (t),∇Ln(W (t))〉

≤Ln(Ŵ )− Ln(W (t)).

Combining with the display above

Ln(W (t))− Ln(W (t+1)) ≥ b(Ln(W (t))− Ln(Ŵ ))

||Ŵ ||F
− Hb2

2
.

By choosing

b =
Ln(W (t))− Ln(Ŵ )

H||Ŵ ||F

we have

Ln(W (t))− Ln(W (t+1)) ≥

(
Ln(W (t))− Ln(Ŵ )

)2

2H||Ŵ ||2F

≥

(
Ln(W (t))− Ln(Ŵ )

)2

2mHA2
.

Using Lemma 73 in Appendix, and let εt = Ln(W (t))− Ln(Ŵ ), we know that after

t ≥
⌈

2mHA2

ε

⌉
iterations, we have Ln(W (t)) ≤ Ln(Ŵ ) + ε.

7.6.4 An auxiliary lemma

Lemma 73. (Lemma B.2 of Shalev-Shwartz et al. [2010]) Let x > 0 and let ε0, ε1, ... be a

sequence such that εt+1 ≤ εt − cε2
t for all t. Let ε be a positive scalar and t be a positive

integer such that t ≥ d 1
cεe. Then εt ≤ ε.
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CHAPTER 8

CONCLUSION AND FUTURE DIRECTIONS

In this chapter, we summarize the key contributions made in this thesis to the field of

distributed machine learning, and then discuss several open questions for each work. Finally,

we outline several interesting research directions.

In Chapter 2, we proposed a novel approach for distributed learning with sparsity, which

is efficient in both computation and communication. Our theoretical analysis showed that the

proposed method works under weaker conditions than AvgDebias estimator while matches

its error bound with one round communication. Furthermore, the estimation error can be

improved with a logarithmic more rounds of communication until matching the centralized

procedure. As we see in real data experiments, the proposed approach can still perform

slightly worse than the centralized approach on certain datasets.

In Chapter 3, we made progress toward linear speedup, communication and memory

efficient methods for distributed stochastic optimization, although we still do not have an

algorithm that obtains the “ideal” distributed stochastic optimization performance of linear

speedup with constant or near constant communication and memory. There is also no single

known algorithm that dominates all others, with different methods being preferable in terms

of different resources.

In Chapter 4, we focused on sketching techniques for solving large-scale `2 regularized

least square problems. We established the equivalence between two recently proposed tech-

niques, Hessian sketch and dual random projection, from a primal-dual point of view. We

proposed accelerated methods for IHS and IDRP, from the preconditioned optimization

perspective. By combining the primal and dual sketching techniques, we proposed a novel

iterative primal-dual sketching approach, which substantially reduces the computational cost

when solving sketched subproblems. We demonstrated applications of the iterative sketching

techniques for distributed optimization when the data is partitioned by features or by sam-
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ples. The proposed approach can be extended to solve more general problems. For example,

by sketching the Newton step in a second-order optimization method, as done in [Pilanci

and Wainwright, 2017], we will be able to solve regularized risk minimization problems with

self-concordant losses.

In Chapter 5, we have developed several algorithms to achieve communication-computation

balance in distributed optimization for empirical risk minimization. In particular, we present

the first computational near-linear speed up in distributed optimization algorithms, even with

large condition numbers.

In Chapter 6, we introduced and studied a shared-sparsity distributed multi-task learning

problem. We presented a novel communication-efficient approach that required only one

round of communication and achieves provable guarantees that compete with the centralized

approach to leading order up to a generous bound on the number of machines. DSML can be

easily extended to other types of structured sparsity, including sparse group lasso [Friedman

et al., 2010], tree-guided group lasso [Kim and Xing, 2010] and the dirty model [Jalali et al.,

2010].

In Chapter 7, we studied the problem of distributed representation learning for multi-

ple tasks, discussed the implementation and guarantees for distributed convex optimization

methods, and presented two novel algorithms to learn low-dimensional projection in a greedy

way, which can be communication more efficient than distributed convex optimization ap-

proaches.

8.1 Future directions

In this section, we summarize several open questions related to the research in this thesis,

and discuss future research directions.

For the sparse learning under homogeneous distributed setting, it is interesting to explore

how to make EDSL provably work under even weaker assumptions. For example, EDSL
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requiresO(s2 log p) samples per machine to match the centralized method inO(logm) rounds

of communications, however, it is not clear whether the sample size requirement can be

improved, while still maintaining low-communication cost. Moreover, it is interesting to

explore similar ideas to improve the computational cost of coupled distributed learning with

shared sparsity [Wang et al., 2016b].

To understand the communication-computation trade-offs in distributed optimization

better, there are several interesting questions to investigate in the future. First, are there

algorithms that can match both the communication and computation lower bound in dis-

tributed optimization, or there is an inherent trade-off between communication and com-

putation? Empirically, the AMD-SVRG-P algorithm appears to have optimal computational

efficiency, with significantly improved communication efficiency over AMD-SVRG. It will be

very interesting to establish theoretical guarantees for it. Second, if the inherent trade-offs

exist, are there approaches that allow us to perform smooth transition between communica-

tion optimal algorithms and computational optimal algorithms?

When studying the distributed multi-task learning with shared sparsity, our main theo-

retical results were presented under the random sub-Gaussian design, however, the proofs are

based on fixed design assumptions, namely Restricted Eigenvalue and Generalized Coher-

ence conditions are imposed. These conditions are satisfied with high-probability under the

random design. Furthermore, such conditions, or other similar conditions, are required for

support recovery, but much weaker conditions are sufficient for obtaining low prediction error

with the lasso or group lasso. An interesting open question is whether there exists a commu-

nication efficient method for distributed multi-task learning that requires sample complexity

n = O(s + (log p)/m), like the group lasso, even without Restricted Eigenvalue and Gener-

alized Coherence conditions, or whether beating the n = O(s + log p) sample complexity of

the lasso in a more general setting inherently requires large amounts of communication.

As a long term research direction, it is interesting and important to obtain better theo-
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retical understanding on algorithms that are often used in practice. For example, iteratively

run several steps of stochastic gradient descent in parallel and average the iterates from

multiple machines, have been widely used in practice (e.g. the federated learning system

[McMahan et al., 2017]) as an important alternative of minibatch SGD, it would be interest-

ing to theoretically prove its convergence, and understand when it outperforms minibatch

SGD.
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