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Abstract

This dissertation consists of three pieces of work. The first work aims to set up the con-

nection between tropical geometry and feedforward neural networks. We discovered that,

mathematically, a feedforward neural network equipped with rectified linear units (ReLU)

is a tropical rational function. This connection provides a new approach to understand and

analyze deep neural networks. Among other things, we show that the decision boundary

derived from an ReLU neural network is contained by a tropical hypersurface of a tropical

polynomial in companion with the network. Moreover, we associate functions represented

by feedforward neural networks with polytopes and show that a two layer network can be

fully characterized by zonotopes which also serve as the building blocks for deeper networks.

Also, the number of vertices on the polytopes provides an upper bound on the number of

linear regions of the function expressed by the network. We show that this upper bound

grows exponentially with the number of layers but only polynomially with respect to number

of hidden nodes in each layer.

In the second work, we propose an attention model in continuous vector space for

content-based neural memory access. Our model represents knowledge graph entities as

low-dimensional vectors while expressing context-dependent attention as a Gaussian scoring

function over the vector space. We apply such a model to perform tasks such as knowledge

graph completion and complex question answering. The proposed attention model can han-

dle both the propagation of the uncertainty when following a series of relations and also the

conjunction of conditions in a natural way. On a dataset of soccer players who participated

x



in the FIFA World Cup 2014, we demonstrate that our model can handle both path queries

and conjunctive queries well.

The third work focus on building finite complex frames generated by cyclic vectors under

the action of non-commutative groups. We inspect group frames in the space of operators

associated with the group’s von Neumann algebra. The searching for a proper cyclic vector

is then transformed to finding the intersection of a convex set that prescribes the coherence

constraints and a subset of Hermitian rank-one operators. An alternating projection algo-

rithm is employed to search for their intersection and an heuristic extrapolation technique

is adapted to accelerate the computation. In the experiments, we applied our model to

Heisenberg groups and finite affine groups. In the case of Heisenberg group, our method is

able to find cyclic vectors that generate equiangular tight frames up to numerical precision.
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Chapter 1

Overview

The resurrection of deep neural network has lead to innovation and state of arts in various

tasks. At the same time, it has inspired lots of new research directions in both application

and theory. Active investigations have been made to understand the remarkable performance

of neural networks. But it still remains a big challenge to fully understand the mechanism of

a deep neural network. In the first work presented in this dissertation, we establish, for the

first time, connection between feedforward neural networks and tropical geometry. Tropical

geometry is a relatively new and fast-growing field of algebraic geometry but has few inter-

section with artificial intelligence so far. By bridging tropical geometry with neural networks,

we open the opportunity for researchers to empoloy tools from the former to tackle problems

in the latter. As the very first step, we establish this tropical perspective of neural networks

in Chapter 2. Under mild assumptions, we show that the family of feedforward neural net-

works with ReLU activation is equivalent to the semi-field of tropical rational functions. In

the meantime, we put together some basic observations and theory which follow immediately

from this connection. Among other things, we found that a neural network with one hidden

layer can be characterized by zonotopes which serve as building blocks for deeper networks.

Besides, decision boundary derived from neural networks can be related to tropical hyper-

surface which is a major subject of interest in tropical geometry. We also discovered that

linear regions of a neural network corresponds to vertices of polytopes associated with trop-

1



ical rational functions. We also recapitulate the exponential expressivenss of deep networks

by using tools from tropical geometry and show that a deeper network is capable of dividing

the domain into exponentially more linear regions than a shallow network.

As for applications, neural networks have been empowering us to perform more and more

sophisticated tasks. Recently, neural word embedding has achieved extraordinary success

in the area of natural language processing. By representing words in continuous vector

space and training the embedding with skip-gram and negative-sampling, (Mikolov et al.,

2013a,b) showed that low-dimensional embedding is an efficient way to encode semantic

relations among words by achieving state-of-the-art results on various linguistic tasks. Em-

bedding has been widely employed for knowledge representation in many other tasks as well.

Multi-relational knowledge graphs’ embedding is one of them. In Chapter 3, we propose a

new embedding model, TransGaussian, for knowledge graph representation. TransGaussian

model represents knowledge graph entities as vectors while expressing context-dependent at-

tention as a Gaussian scoring function over the vector space. To perform question answering

on knowledge graph, we train a recurrent neural network so that it maps a question posed

in natural language to a Gaussian function under which the answer of the question receives

a high score. Meanwhile, the proposed attention model can handle both the propagation of

the uncertainty when following a series of relations and also the conjunction of conditions

in a natural way. On a dataset of soccer players who participated in the FIFA World Cup

2014, we demonstrate that our model can handle both path queries and conjunctive queries

well.

In Chapter 4, we study frames that are generated by cyclic vectors under the action

of non-commutative groups. Non-commutative groups are behind the construction of many

well-known frames and orthonormal systems. For example, a Gabor frame
{
e2πiβltg(t−αk) :

k, l ∈ Z
}
⊂ L2(R) is constructed by translations and modulations of the atomic function

g; A wavelet basis
{
Dm
A Tvψ : m ∈ Z, v ∈ Zn

}
⊂ L

(
Rn
)

is closely related with the group

2



generated by the dilation operator DA and the translation operator Tv; The standard basis

of Rn can be considered as the orbit of e1 := [1, 0, . . . , 0]> under the symmetric group Sn. In

this work, we investigate the problem of building low-coherence finite complex frames and

propose a general framework for finding a cyclic vector that generates a group frame with

coherence constraint. We first map group frames to the space of operators associated with the

group’s von Neumann algebra. Thus, the searching for a proper cyclic vector is transformed

to finding the intersection of a convex set that prescribes the coherence constraints and a

subset of Hermitian rank-one operators. An alternating projection algorithm is employed

to search for their intersection. And this algorithm is proved to have local convergence

rate. We also derive an equivalent formula for carrying out the algorithm in the space of

group representation. However, viewing the algorithm as algernating projection allows us

to adapt an heuristic extrapolation technique which leads to much faster convergence in

our experiments. We tried out our method on Heisenberg groups and finite affine groups

of different dimensions. In the case of Heisenberg group, our method is able to find cyclic

vectors that generate equiangular tight frames up to numerical precisions.

3



Chapter 2

A Tropical Geometrical View of Deep Neural Networks

2.1 Introduction

Deep neural networks have recently received much limelight for their enormous success in

a variety of applications across many different areas of artificial intelligence, computer vi-

sion, speech recognition, and natural language processing LeCun et al. (2015); Hinton et al.

(2012); Krizhevsky et al. (2012); Bahdanau et al. (2014); Kalchbrenner and Blunsom (2013).

However, it is also well-known that the theoretical and mathematical understanding of their

workings remains incomplete.

There have been several attempts to analyze deep neural networks from different per-

spectives to shed light on their theoretical properties and explain their efficacy. Notably,

earlier studies have suggested that a deep architecture could be efficiently used to express a

complicated family of functions while still maintaining a relatively simple structure. A deep

neural network uses its parameters more efficiently and hence requires exponentially less

parameters to express certain families of functions Delalleau and Bengio (2011); Bengio and

Delalleau (2011); Montufar et al. (2014); Eldan and Shamir (2016). Recent work in Zhang

et al. (2016) showed empirically that several successful neural networks can shatter the train-

ing set when sizes of the networks are large enough. In addition, the authors pointed out

that these models, while possessing a high representation power, are also regularized and

4



“simple” at the same time, in the sense that they generalize to data not seen during the

training stage. It remains a challenge to explain these properties of neural networks and to

find the right formal measure of complexity that captures their generalization capabilities.

In this work, we focus on feedforward neural networks with rectified linear units, arguably

the most fundamental and rudimentary neural network, and also one of the most widely used

(possibly in conjunction with recurrent or convolutional neural networks) type of neural

networks in deep learning. We show that such a neural network is the analogue of a rational

function, i.e., a ratio of two multivariate polynomials f, g in variables x1, . . . , xd,

f(x1, . . . , xd)

g(x1, . . . , xd)
,

in tropical algebra or tropical algebraic geometry. This is a new area in algebraic geometry

that has seen an explosive growth in the recent decade but remains relatively obscure outside

pure mathematics. In fact, it is a surprise to us that the two subjects — deep learning and

tropical algebraic geometry — are even related.

We have been vague about the word “polynomials” in the previous paragraph. We do

not mean usual polynomials on the real line R (e.g., in Taylor approximation), or trigono-

metric polynomials on the circle S1 (e.g., in Fourier approximation), or multivariate ver-

sions of these, but tropical polynomials that we will define in Section 2.2. For usual and

trigonometric polynomials, it is known that doing rational approximation — approximating

a target function by a ratio of two polynomials instead of a single polynomial — vastly

improves the quality of approximation without increasing the degree. This gives our ana-

logue: A neural network1 is the tropical ratio of two tropical polynomials, i.e., a tropical

rational function. More precisely, if we view a neural network as a function ν : Rd → Rp,

x = (x1, . . . , xd) 7→ (ν1(x), . . . , νp(x)), then each νi is a tropical rational function. Hence-

1. In this work, unless specified otherwise, a neural network will always mean a feedforward neural network
with rectified linear units.

5



forth, statements of the form “a neural network is (some type of real-valued function)” are

to be interpreted in the coordinatewise sense — every output node of the neural network is

such a function of the input nodes.

In fact, for the special case p = 1, which arises in neural networks for classification

problems, we show that:

the family of functions represented by feedforward neural networks with rectified

linear units is identical to the family of tropical rational functions.

Our main goal is to demonstrate how the new theory can be used to analyze neural

networks. Among other things this allows us to capture the complexity of the function

represented by a neural network and the complexity of the decision boundary derived from it

in classification problems, or more importantly, how such complexity changes as the number

of layers increase. The complexity of the function represented by a neural network can be

captured by the number of linear regions the neural network has which can be investigated by

counting the number of vertices on the polytopes constructed from the tropical polynomials

associated with the neural network. In classification problems, the decision boundary derived

from a neural network partitions the input space into regions and it is a subset of tropical

hypersurface — a piecewise linear polyhedral surface.

Tropical geometry allows us to derive an upper bound on these numbers and thereby

measure the complexity of its geometry. When the depth and input dimension of our neural

network is fixed, we find that this upper bound is polynomial in the number of nodes on

each layer but otherwise it is exponential. Intuitively, a complex classification problem —

one that has many “exceptions to the rules” — requires a complex decision boundary to

separate.

6



2.2 Tropical algebra

We give a brief review of tropical algebra and introduce some notations from tropical geom-

etry to be used in the rest of the chapter. Tropical algebraic geometry is an active new area

in mathematics. Roughly speaking it is an analogue of classical algebraic geometry over C,

the field of complex numbers, but where one replaces C by a semiring called the tropical

ring, to be defined below. In addition to providing many analogues of well-known results

in classical algebraic geometry, it also serves as a powerful tool for establishing results in

algebraic geometry that are much more difficult to obtain using more standard techniques.

See Itenberg et al. (2009); Maclagan and Sturmfels (2015) for a comprehensive overview of

the subject.

As our main goal is to describe neural networks in the language of tropical algebra and

to make use of a number of well established results in tropical algebraic geometry to gain

further understanding of operations in neural networks, we just need to know some very basic

objects. The most basic and fundamental of which is the tropical semiring
(
R∪{−∞},⊕,�

)
,

often also denoted by T.

Let N = {n ∈ Z : n ≥ 0}. The two operations ⊕ and �, called tropical addition and

tropical multiplication respectively, are defined as follows.

Definition 2.2.1 (Tropical sum, product, and quotient). For x, y ∈ R, their tropical sum is

x⊕ y := max{x, y};

their tropical product is

x� y := x+ y,

7



and the tropical quotient of x over y is

x� y := x− y.

For any x ∈ R, we have

−∞⊕ x = x, −∞� x = −∞, 0� x = x.

Thus −∞ is the tropical additive identity and 0 is the tropical multiplicative identity. Fur-

thermore, these operations satisfy the usual laws of arithmetic:

• Associativity: For any x, y, z ∈ R,

x⊕ (y ⊕ z) = (x⊕ y)⊕ z,

x� (y � z) = (x� y)� z.

• Commutativity: For any x, y ∈ R,

x⊕ y = y ⊕ x,

x� y = y � x.

• Distributivity: For any x, y, z ∈ R,

x� (y ⊕ z) = (x� y)⊕ (x� z).

R∪{−∞} is therefore a semiring under the operations ⊕ and �. While it is not a ring (lacks

additive inverse), one may nonetheless generalize many algebraic objects (e.g., matrices,

polynomials, tensors, etc) and notions (e.g., rank, determinant, degree, etc) over the tropical

8



semiring — the study of these, in a nutshell, constitutes the subject of tropical algebra.

For an integer a ∈ N, raising x ∈ R to the ath power is of course the same as multiplying

x to itself a times. When usual multiplication is replaced by tropical multiplication, we

obtain the operation of taking tropical power :

x�a := x� · · · � x︸ ︷︷ ︸
a times

= a · x, (2.1)

where the last · denotes usual product of real numbers. We extend tropical power to R ∪

{−∞} by defining, for any a ∈ N,

−∞�a :=


−∞ if a > 0,

0 if a = 0.

Observe that a tropical semiring, while not a field, possesses one quality of a field, namely,

every x ∈ R has a tropical multiplicative inverse, which is of course just the usual additive

inverse of x,

x�(−1) := −x.

One may therefore also raise x ∈ R to a negative power a ∈ Z by raising its tropical

multiplicative inverse −x to the positive power −a,

x�a = (−x)�(−a). (2.2)

As is the case in usual real arithmetic, the tropical additive inverse −∞ does not have a

tropical multiplicative inverse and −∞�a is undefined for a < 0.

For notational simplicity, we will henceforth write xa instead of x�a for tropical power

(we will not have the occasion to use usual powers of real numbers in the remainder of this

chapter). Evidently, tropical powers satisfy the following:
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• For any x, y ∈ R and a ∈ N,

(x⊕ y)a = xa ⊕ ya.

• For any x, y ∈ R and a ∈ N,

(x� y)a = xa � ya.

• For any x ∈ R,

x0 = 0.

• For any x ∈ R and a, a′ ∈ N,

(xa)a
′

= xa·a
′
.

• For any x ∈ R and a, a′ ∈ Z,

xa � xa
′

= xa+a′ .

• For any x ∈ R and a, a′ ∈ Z,

xa ⊕ xa
′

= xa � (xa−a
′
⊕ 0) = xa � (0⊕ xa−a

′
).

We are now in a position to define tropical polynomials and tropical rational functions.

In the following, x and xi will denote variables (i.e., indeterminates).

Definition 2.2.2 (Tropical monomial). A tropical monomial of d variables x1, . . . , xd is an
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expression of the form

c� xa1
1 � x

a2
2 � · · · � x

ad
d

where c ∈ R ∪ {−∞} and a1, . . . , ad ∈ N. As a convenient shorthand, we will also write

a tropical monomial in multiindex notation as cxα where α = (a1, . . . , ad) ∈ Nd and x =

(x1, . . . , xd). It is also natural to write

xα = 0� xα

since 0 is the tropical multiplicative identity.

Definition 2.2.3 (Tropical polynomial). Following notations above, a tropical polynomial

f(x) = f(x1, . . . , xd) is a finite tropical sum of tropical monomials

f(x) = c1x
α1 ⊕ · · · ⊕ crxαr ,

where αi = (ai1, . . . , aid) ∈ Nd and ci ∈ R ∪ {−∞}, i = 1, . . . , r. We always assume that

a monomial with a given multiindex appears at most once in the sum, i.e., αi 6= αj for any

i 6= j.

Definition 2.2.4 (Tropical rational function). Following notations above, a tropical rational

function is a (usual) difference of two tropical polynomials f(x) and g(x). This is the natural

tropical analogue of a rational function since

f(x)− g(x) = f(x)� g(x).

Henceforth we will denote a tropical rational function by f�g, where f and g are understood

to mean tropical polynomial functions.
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It is routine to verify that the set of tropical polynomials T[x1, . . . , xd] forms a semiring

under the standard extension of ⊕ and � to tropical polynomials, and likewise the set of

tropical rational functions T(x1, . . . , xd) forms a semifield. We regard a tropical polyno-

mial f = f � 0 as a special case2 of a tropical rational function and thus T[x1, . . . , xd] ⊆

T(x1, . . . , xd). Henceforth any result stated for a tropical rational function would implicitly

also apply to a tropical polynomial.

A d-variate tropical polynomial f(x) defines a function f : Rd → R that is a convex

function in the usual sense as taking max and sum of convex functions preserve convexity

Boyd and Vandenberghe (1993). As such, a tropical rational function f � g : Rd → R is a

DC function or difference-convex function Hartman et al. (1959); An and Tao (2005).

We will also have the occasion to use vector-valued tropical polynomials and tropical

rational functions, defined formally below.

Definition 2.2.5 (Tropical polynomial map and tropical rational map). A function F :

Rd → Rp, x = (x1, . . . , xd) 7→ (f1(x), . . . , fp(x)), is called a tropical polynomial map if each

fi : Rd → R is a tropical polynomial, i = 1, . . . , p, and a tropical rational map if f1, . . . , fp

are tropical rational functions. We denote the set of tropical polynomial maps by H(d, n) and

the set of tropical rational maps by R(d, n).

One may also view tropical polynomial maps as tropical polynomial vector fields and

tropical rational maps as tropical rational function vector fields .

2.3 Tropical hypersurfaces

There are tropical analogues of many notions in classical algebraic geometry Itenberg et al.

(2009); Maclagan and Sturmfels (2015). But for our goals in this work, it suffices to limit

2. This is not “division by zero” since the “tropical zero,” i.e., the additive identity in T, is not 0 but
−∞.
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our discussions to tropical hypersurfaces, the tropical analogue of algebraic curves in classical

algebraic geometry. In the following, we will briefly introduce tropical hypersurfaces and

describe a few properties relevant to our subsequent discussions on deep neural networks.

Intuitively, the tropical hypersurface of a tropical polynomial f is the set of points x

where f is not linear at x.

Definition 2.3.1 (Tropical hypersurface). Given a tropical polynomial

f(x) = c1x
α1 ⊕ · · · ⊕ crxαr ,

the tropical hypersurface of f is the set

T (f) :=
{
x ∈ Rd : cix

αi = cjx
αj = f(x) for some αi 6= αj

}
.

In other words, a tropical hypersurface comprises points x at which the value of f at

x is attained by two or more monomials in f . It is often also characterized as the “corner

locus” of the function f . A tropical hypersurface divides the domain of f into convex cells

on each of which f is linear. These cells are convex polyhedrons, i.e., defined by a set of

linear inequalities with integer coefficients: {x ∈ Rd : Ax ≤ b} for A ∈ Zm×d and b ∈ Rm.

For example, the cell where a tropical monomial cjx
αj attains the maximum is given by

{x ∈ Rd : cj + α>j x ≥ ci + α>i x for all i 6= j}. Tropical hypersurfaces of polynomials in two

variables (i.e., in R2) are called tropical curves.

Just like ordinary multivariate polynomials, every tropical polynomial comes with an

associated Newton polygon.

Definition 2.3.2 (Newton polygon). The Newton polygon of a tropical polynomial f(x) =

c1x
α1 ⊕ · · · ⊕ crxαr is the convex hull of α1, . . . , αr ∈ Nd ⊆ Rd, regarded as points in Rd,

∆(f) := Conv
{
αi ∈ Rd : ci 6= −∞, i = 1, . . . , r

}
.
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Figure 2.1: x ⊕ y ⊕ 0. Left: Tropical curve. Right: (Dual subdivision of) Newton polygon
and tropical curve.

Figure 2.2: 1� x2
1 ⊕ 1� x2

2 ⊕ 2� x1x2 ⊕ 2� x1 ⊕ 2� x2 ⊕ 2. Left: Tropical curve. Right:
Dual subdivision of Newton polygon and tropical curve.

A tropical polynomial f determines a subdivision of ∆(f), constructed as follows. First,

lift each αi from Rd into Rd+1 by appending ci as the additional coordinate. Denote the

convex hull of the lifted α1, . . . , αr as

P(f) := Conv{(αi, ci) ∈ Rd × R : i = 1, . . . , r}. (2.3)

Next, let UF
(
P(f)

)
denote the collection of upper faces in P(f). Let π : Rd × R → Rd be

the projection that drops the last component of a point. The subdivision determined by f

is then

δ(f) :=
{
π(p) ∈ Rd : p ∈ UF

(
P(f)

)}
.

δ(f) forms a polyhedral complex with support ∆(f). By (Maclagan and Sturmfels, 2015,
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Proposition 3.1.6), the tropical hypersurface T (f) is the (d − 1)-skeleton of the polyhedral

complex dual to δ(f). This means that each vertex in δ(f) corresponds to one “cell” in Rd

where the function f is linear. As a consequence, the number of vertices in P(f) provides

an upper bound on the number of linear regions of f .

For the case d = 2, the discussions above imply that T (f) is a planar graph dual to δ(f)

in the following sense:

(i) each 2-dimensional face in δ(f) corresponds to a vertex in T (f);

(ii) each edge of a face in δ(f) corresponds to an edge in T (f). In particular, an edge

from ∆(f) corresponds to an unbounded edge in T (f) while other edges correspond to

bounded edges.

Figures 2.1 and 2.2 show examples of tropical curves and dual subdivisions of their Newton

polygon for two tropical polynomials in two variables. We plot δ(f) and T (f) in the same

figures to show their duality.

Figure 2.3 illustrates how we may find the dual subdivision for the tropical polynomial

f(x1, x2) = 1� x2
1 ⊕ 1� x2

2 ⊕ 2� x1x2 ⊕ 2� x1 ⊕ 2� x2 ⊕ 2. First, we find the convex hull

P(f) = Conv{(2, 0, 1), (0, 2, 1), (1, 1, 2), (1, 0, 2), (0, 1, 2), (0, 0, 2)}.

Then, by projecting its upper envelope to R2, we obtain δ(f), the dual subdivision of Newton

polygon.

2.3.1 Transformations of tropical polynomials

We will describe how P(f) transforms under taking tropical power, tropical sum, and tropical

product. These results will be used in our analysis of neural networks.

The effect of taking tropical powers is straightforward.

15



c

a1 a2

22� x1

2� x2
1

2� x2

1� x2
2

Subdivision of Newton polygon

Upper envelope of polytope

(0, 0)(1, 0)

(2, 0)
(1, 1)

(0, 1)

(0, 2)

2� x1x2

Figure 2.3: 1� x2
1 ⊕ 1� x2

2 ⊕ 2� x1x2 ⊕ 2� x1 ⊕ 2� x2 ⊕ 2. The dual subdivision can be
obtained by projecting the edges on the upper faces of the polytope.

Proposition 2.3.1. Let f be a tropical polynomial and a nonnegative integer a ∈ N, we

have

P(fa) = aP(f).

The polytope aP(f) = {ax : x ∈ P(f)} ⊆ Rd+1 is a scaled version of P(f) having the

same shape but different volume.

In order to describe the effect of tropical sum and product, we recall a few notions from

convex geometry. The Minkowski sum P1 + P2 of two sets P1 and P2 in Rd is the set

P1 + P2 :=
{
x1 + x2 ∈ Rd : x1 ∈ P1, x2 ∈ P2

}
.

Given λ1, λ2 ≥ 0, the weighted Minkowski sum is

λ1P1 + λ2P2 :=
{
λ1x1 + λ2x2 ∈ Rd : x1 ∈ P1, x2 ∈ P2

}
.

Minkowski sum is clearly commutative and associative and generalizes to sum of more than

two objects. In particular, the Minkowski sum of line segments is called a zonotope.

Let V(P ) denote the vertex set, i.e., the set of vertices, of any polytope P . It is easy to
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see that the Minkowski sum of two polytopes is equal to the convex hull of the Minkowski

sum of their vertex sets. i.e.,

P1 + P2 = Conv
(
V(P1) + V(P2)

)
.

With this observation, the following is immediate.

Proposition 2.3.2. Let f, g ∈ H(d, 1). Then

P(f � g) = P(f) + P(g),

P(f ⊕ g) = Conv
(
V(P(f)) ∪ V(P(g))

)
.

We reproduce below part of (Gritzmann and Sturmfels, 1993, Theorem 2.1.10), which we

will later use for counting vertices in various polytopes.

Theorem 2.3.3 (Gritzmann–Sturmfels). Let P1, . . . , Pk be polytopes in Rd and let m denote

the total number of nonparallel edges of P1, . . . , Pk. Then the number of vertices of P1 +

· · ·+ Pk is bounded by

2
d−1∑
j=0

(
m− 1

j

)
.

The upper bound is obtained if all Pi’s are zonotopes and all their generating edges are in

general position.

Corollary 2.3.4. Let P ⊂ Rd+1 be a zonotope generated by m line segments P1, . . . , Pm. Let

π : Rd × R→ Rd be the projection operator defined previously that drop the last component

of a point. Suppose P satisfies the conditions (A) the generating line segments are in general

position; (B) the set of projected vertices {π(v) : v ∈ V(P )} ⊂ Rd are in general position.
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Then P has
d∑
j=0

(
m

j

)

vertices on its upper faces. If either of condition (A) or (B) is violated, then this becomes

an upper bound.

Proof. Let V1 be the set of vertices on the upper envelope of P and V2 be the set of vertices

on the lower envelope. By Theorem 2.3.3, P has 2
∑d
j=0

(m−1
j

)
vertices in total. Denote

this number as n1. We have |V1 ∪ V2| = n1. Meanwhile, it is well-known that zonotopes are

centrally symmetric. Therefore, there are equal number of vertices on upper envelope and

lower envelope, i.e., |V1| = |V2|. On the other hand, since the projected vertices are assumed

to be in general position, P ′ is a d-dimensional zonotope generated by m non-parallel line

segments. Hence, by Theorem 2.3.3 again P ′ has 2
∑d−1
j=0

(m−1
j

)
vertices. Denote this number

by n2. For any vertex v ∈ P , π(v) is a vertex of P ′ if and only if v belong to both upper

envelope and lower envelope, i.e., v ∈ V1 ∩ V2. Therefore, the number of vertices on P ′ is

equal to |V1 ∩ V2|. Further we have |V1 ∩ V2| = n2. Consequently, by straight combinatorial

argument, we know the number of vertices on the upper envelope is

|V1| =
1

2
(|V1 ∪ V2| − |V1 ∩ V 2|) + |V1 ∩ V 2|

=
1

2
(n1 − n2) + n2

=
d∑
j=0

(
m

j

)
.

2.3.2 Partition of Rd by tropical rational maps

By construction, a tropical polynomial is a continuous piecewise linear function and therefore

the notion of linear region applies. In fact it applies more generally to tropical ration
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function and tropical rational maps. In the present section we will define and develop

tropical characterization of the linear regions of F ∈ R(d, n).

Linear regions of the rational tropical map is an important notion. In Section 2.6.3,

we will rely on the number of linear regions to measure how complex the geometry of the

decision boundary of a neural network is.

Within the tropical formalism we will call the number of linear regions of F ∈ R(d, n)

a linear degree of F , but to save up on the space we will call it degree. One should not

confuse our definition with any other use of the term degree within tropical geometry. Why

we choose this terminology should become clear by the end of this section when we look at

the degree of composition of tropical rational maps, where linear degree behaves similar to

that of a polynomials.

Definition 2.3.3 (Degree, linear regions). A linear region of F ∈ R(d,m) is a maximal

connected subset of the domain on which F is linear. Each such region is a polyhedron in

Rd. In addition,

• The number of linear regions of F is called the (linear) degree of F and is denoted by

deg(F );

• The set of all linear regions is denoted by D(F ) := {D1, . . . ,Ddeg(F )};

• The boundaries between adjacent linear regions is denoted by T (F ). When F ∈ H(d,m)

this set is exactly the union of tropical hyper-surfaces T (Fi), i = 1, . . . ,m. Therefore

present definition of T (F ) is an extension of the Definition 2.3.1.

Composition of tropical rational maps plays a crucial role in neural network. In the rest

of this section, we set up a bound on the degree of composition of two tropical rational maps

in terms of the degrees of the individual components. To make our discussion solid, we resort

to the notion of general exponent and convex degree which will be defined momentarily. First,
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consider the family of tropical rational functions

Fα := α>F =
n⊙
j=1

F
aj
j ∈ R(d, 1),

where F ∈ R(d, n) is a tropical rational map and α = (a1, · · · , an) ∈ Zn. While for some

specific choice of α, Fα may have fewer linear regions than F , e.g, α = (0, . . . , 0), we will

see that, for general choice of α, Fα divides Rd into the same set of linear regions as F . To

state this rigorously, we define general exponent as the following.

Definition 2.3.4 (General exponent). For any F ∈ R(d, n), a vector α = (a1, · · · , an) ∈ Zn

is said to be a general exponent of F if the set of linear regions in Fα and F are identical.

The following lemma shows the existence of general exponent. Meanwhile, it shows that

there always exists a non-negative general exponent for any F ∈ R(d, n).

Lemma 2.3.5 (Existence of general exponent). Let F ∈ R(d, n), then

(i) deg(Fα) = deg(F ) if and only if α is a general exponent;

(ii) Moreover, we can always find a general exponent α ∈ Nn.

Proof. Boundaries T (Fα) and T (F ) are formed by x ∈ Rd where Fα and F are non-

differentiable. It follows that T (Fα) ⊆ T (F ) which implies deg(Fα) < deg(F ), unless

T (Fα) = T (F ). This completes the proof of (i). To show (ii), we demonstrate that we can

find α ∈ Nn such that for all A|B adjacent polyhedra in D(F ), the d−1 face separating those

polyhedra in T (F ) is present in T (Fα) and so T (Fα) ⊇ T (F ). Let the differentials of F on

A and B be D[F ]|A, D[F ]|B ∈ Zn×d. We must have D[F ]|A 6= D[F ]|B (otherwise, A and B

can be merged into a single polyhedron), so there are at least two columns wA, wB ∈ Zn,

in D[F ]|A and D[F ]|B, such that v = wA − wB 6= 0. Let IF be the set of all such columns

from all neighboring polyhedra in D[F ]. For any α satisfying α>v 6= 0 we must have

D[Fα]|A 6= D[Fα]|B. Therefore, it suffices to show that we can find α ∈ Nn such that
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α>v 6= 0 for all v ∈ IF . For a given v ∈ IF , the set of vector α satisfying α>v = 0 forms

a co-dimension one hyperplane Pv = {ω ∈ Rn : ω>v = 0}. To complete the proof choose

α ∈
(
Nn ∩

(
Rn \ (∪v∈IFPv)

))
.

Lemma 2.3.5 allows us to translate the study of linear regions of tropical rational maps

into real-valued tropical rational functions without losing any information about the degree

of the maps which further allows us to apply tools developed in Section 2.3.1 to vector-

valued tropical rational maps. In our next step we develop characterization of linear regions

of tropical maps. While for F ∈ H(d,m) the polyhedra forming D(F ) are all convex, this

is not necessarily the case for a general F ∈ R(d, n). So geometric arguments that are easy

to apply in convex setting are no loner valid. What saves the day is that there is a way

to subdivide each of the non-convex linear regions into convex ones and get back into the

convex settings. More specifically, we resolve this by defining convex degree as the following.

Definition 2.3.5 (Convex degree). Given V ∈ R(d, n), we define, deg(V ), a convex degree

of V , to be

deg(V ) := min
{

deg(P ) : T (V ) ⊆T (P );P ∈ H(d, r), r ∈ N
}
.

That is, convex degree is the minimum number of convex linear regions among all tropical

polynomial that subdivide linear regions of V .

For any V ∈ R(d, n) there exists at least one tropical polynomial maps that subdivides

T (V ), therefore convex degree is well defined (e.g. a map P ∈ H(d, 2n) constructed by

concatenation P = {p1, q1, . . . , pn, qn}, where Vi = pi � qi.)

Since the linear regions of a tropical polynomial map are always convex, we have deg(P ) =

deg(P ) for all tropical polynomial map P . Before we proceeding further we introduce one

more notation:
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Definition 2.3.6 (Restriction of tropical map to affine subspace). Let F ∈ R(d, n), and

let m ≤ d. For any Ω ⊂ Rd, we will write F |Ω to denote the restriction of map F to

Ω. We will write deg(F |Am) to denote the maximum convex degree obtained by restrict-

ing F to an m-dimensional affine space in Rd. i.e., deg(F |Am) := max{deg(F |Ω) : Ω ⊂

Rd is an m dimensional affine space}.

Provided with the definitions above, we are ready to show the main observation on the

composition of tropical rational maps.

Theorem 2.3.6 (Degree of composition of rational maps). Given V ∈ R(n,m) and W ∈

R(d, n), Define Z ∈ R(d,m)

Zi(x) := Vi ◦W, i = 1, . . . ,m

then

deg(Z) ≤ deg(Z) ≤ deg(V |Ad) · deg(W )

Proof. To prove the upper bound. We construct polynomials, P (x) ∈ H(d, n) and Q(y) ∈

H(n, 1) that admit T (V ◦W ) ⊆ T (Q ◦ P ) and for which

deg(Q ◦ P ) ≤ deg(V |Ad) · deg(W ).

We start with two tropical polynomials whose existence is insured by the definition of convex

degree, i.e:

P ′(x) : Rd → R, Q′(y) : Rn → R,

such that deg(P ′) = deg(W ), deg(Q′) = deg(V ), and which admit T (V ) ⊆ T (P ′), T (W ) ⊆

T (Q′).

First, construct P as Pi(x) := P ′(x) � xαi , i = 1, . . . , n, where the linear terms xαi are

chosen so that non of the differentials in all combinations of adjacent linear regions of Pi are
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identical. Second, construct Q(y) = Q′(y)�yβ , so that non of the gradients in linear regions

of Q are zero and such that deg(V |Ad) = deg(Q|Ad). This selection of Q and P insures that

in the composition Q◦P the convex linear regions of P can only be subdivided by Q and no

two adjacent linear regions are merged and therefor T (V ◦W ) ⊂ T (Q◦P ). Observe, that P

breaks Rd into up to deg(W ) convex polyhedra Di, i = 1, . . . , deg(W ). Then on each of those

polyhedra x ∈ Dj (P (x))i, i = 1, . . . , n are linear and P (Dj) = {P (x)1, . . . , P (x)n : x ∈ Di}

is a convex subset on a d dimensional affine space in Rn. The tropical rational map Q divides

P (Di) into at most deg(V |Ad) linear regions. It follows that when confined to Dj the tropical

rational map Q◦P can generate at most deg(V |Ad) ·deg(W ) linear regions, which completes

the proof.

We complete this section with a proposition that will be important to our study of

decision boundaries produced by neural networks. In this proposition we look at a partition

of the input space that arises when we compare a tropical rational function with a constant

function.

Proposition 2.3.7 (Level sets). Let f � g ∈ R(d, 1) Then

(i) given a constant c > 0, the level set

B := {x ∈ Rd : f(x)� g(x) = c}

partitions Rd into at most deg(f) connected polyhedral regions above c, and at most

deg(g) such regions below c.

(ii) Suppose c ∈ R is such that there is no tropical monomial in f(x) that differs from any

tropical monomial in g(x) by c, the level set B is contained in tropical hypersurface,

B ⊆ T (max{f(x), g(x) + c}) = T (c� g ⊕ f).

23



Proof. We show that the bounds on the numbers of connected positive (i.e., above c) and

negative (i.e., below c) regions are as claimed in (i).

The tropical hypersurface of f divide the space Rd into deg(f) convex regions D(f) =

{D1,D2, . . . ,Ddeg(f)}. On each Di, f is linear. Meanwhile, g is piecewise linear and convex

over Rd. Therefore, f � g = f − g is piecewise linear and concave on each of Ri. Since the

level set {x : f(x)− g(x) = c} and the superlevel set {x : f(x)− g(x) ≥ c} must be convex

by the concavity of f − g, there is at most one positive region in each Di. Therefore, the

total number of connected positive regions cannot exceed deg(f).

Similarly, the tropical curve of g partitions Rd into deg(g) convex regions on each of

which f � g is convex. The same argument shows that the number of connected negative

regions does not exceed deg(g).

For (ii) By rearranging terms, the level set becomes

B =
{
x ∈ Rd : f(x) = g(x) + c

}
.

Since f(x) and g(x) + c are both tropical polynomial, we have

f(x) = b1x
α1 ⊕ · · · ⊕ brxαr ,

g(x) + c = c1x
β1 ⊕ · · · ⊕ csxβs ,

with the appropriate multiindices {αi}ri=1, {βi}si=1, and real coefficients {bi}ri=1, {ci}si=1. By

the assumption on the monomials, we have that x0 ∈ B only if there exist i, j so that αi 6= βj

and bix
αi
0 = cjx

βj
0 . This completes the proof since if we combine the monomials of f(x) and

g(x) + c by (tropical) summing them into a single tropical polynomial, max{f(x), g(x) + c},

the above implies that on the level set, the value of the combined tropical polynomial is

attained by at least two monomials and therefore x0 ∈ T (max{f(x), g(x) + c}).
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2.4 Neural networks

In this section, we discuss neural networks that are slightly more general than ReLU-activated

ones. However, we will restrict our attention to feedforward neural networks. We will use this

short section to define different components in a neural network, primarily for the purpose

of fixing notations and specifying the assumptions that we retain throughout this work.

2.4.1 Neural networks on DAGs

Viewed abstractly, a feedforward neural network is a vector-valued map

ν : Rd → Rp, x =


x1

...

xd

 7→

ν1(x1, . . . , xd)

...

νp(x1, . . . , xd)

 = z.

The architecture of the network is defined by a directed acyclic graph (DAG) G = (V,E)

where E is the set of directed edges and V is the set of nodes (or neurons) including d input

nodes and p output nodes. For a node v ∈ V , we will use Nin(v) := {u ∈ V : (u→ v) ∈ E}

to denote the set of immediate predecessors and use Nout(v) := {u ∈ V : (v → u) ∈ E} to

denote the set of immediate successors. Such a feedforward neural network is parameterized

by weights assigned to edges W = {we : e ∈ E} and bias associated with nodes B = {bv :

v ∈ V }. Given an input x ∈ Rd, every node in a network takes input from its immediate

predecessors, computes its output according a formula which will be introduced shortly and

sends it to all its immediate successors. Let νv(x) be the output from node v. For any node

v which is not an input node, the output of v is defined by

νv(x) := σv

( ∑
u∈Nin(v)

wu→vνu(x) + bv

)
,
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where σv(·) is an activation function which is pre-defined for every node. The input nodes

simply output the values they receive. We denote the length of the longest directed path in

the network, or depth, by L.

Some popular choices of nonlinear activations σv in modern applications include:

• rectified linear unit (ReLU),

σ(x) = max{x, 0};

• sigmoid function,

σ(x) =
1

1 + e−x
;

• hyperbolic tangent function,

σ(x) =
ex − e−x

ex + e−x
.

The final output of a neural network ν(x) is usually fed into a score function s : Rp → Rm

that is application specific. When used as an m-category classifier, s may be chosen, for

example, to be a soft-max or sigmoidal function with

sj(y) =
eyj∑p
k=1 e

yk
, j = 1, . . . ,m.

sj(ν(x)) is interpreted as the probability for the input x to belong to category j. For a two-

category classification problem, m may be taken to be 1 (instead of 2) and so s : Rp → R

is a scalar-valued function. The score, s(ν(x)) is then interpreted as the probability for the

input x to belong to one class and 1− s(ν(x)) as that of belonging to the other class.

The score function is quite often regarded as the last layer of a neural network but this

is purely a matter of convenience and we will not make this assumption. In fact, when a

neural network is used for regression, there is no score function, or, equivalently, the score

function is set to be the identity map, so that the range of the output has infinite support.
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We will make the following mild assumptions on the architecture of our feedforward

neural networks in this work, and will explain next why they are indeed mild.

(A) the weights we, e ∈ E are integer-valued;

(B) the bias bv, v ∈ V are real-valued;

(C) the activation functions σv, v ∈ V take the form

σv(x) := max{x, tv},

where tv ∈ R ∪ {−∞} is called a threshold.

Henceforth all neural networks in our subsequent discussions will be assumed to satisfy (A)–

(C). Note that the activation function in (C) includes the ReLU as a special case but allows

us to treat both ReLU and identity map on an equal footing: setting tv = 0 gives the usual

ReLU whereas setting tv = −∞, i.e., the tropical zero vector, gives the identity map.

While there is no loss of generality in (B), there is also little loss of generality in (A), i.e.,

in restricting the weights we from real numbers to integers, as:

(i) real weights can be approximated arbitrarily closely by rational weights;

(ii) one may then ‘clear denominators’ in these rational weights by multiplying them by

the least common multiple of their denominators to obtain integer weights;

(iii) keeping in mind that scaling all weights and biases by the same positive constant has

no bearing on the workings of a neural network.

2.4.2 Multilayer feedforward neural networks

One common architecture of feedforward neural networks is the multilayer feedforward neural

network in which all nodes are arranged into multiple layers and edges exist only between
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nodes on consecutive layers. In a multilayer feedforward network, the input nodes form the

first layer while output nodes form the last layer. Edges are always directed to nodes closer

to the output. If each node is connected to every node in the subsequent layer, the network

is called fully connected. All multilayer feedforward neural networks that we will discuss

later are all fully connected as a multilayer network with a missing edge can be treated as a

fully connected network with zero weight on the corresponding edge.

Multilayer feedforward neural networks are arguably one of the simplest types of neural

network but they capture many important properties of deep neural networks and also serve

as crucial building blocks in numerous applications. The function represented by a multilayer

network is given by a composition of functions

ν = σ(L) ◦ ρ(L) ◦ σ(L−1) ◦ ρ(L−1) · · · ◦ σ(1) ◦ ρ(1).

The preactivation functions ρ(1), . . . , ρ(L) are affine transformations to be determined by

training on given data. The activation functions σ(1), . . . , σ(L) are chosen and fixed in

advanced. The output of the of lth layer will be denoted

ν(l) := σ(l) ◦ ρ(l) ◦ σ(l−1) ◦ ρ(l−1) · · · ◦ σ(1) ◦ ρ(1).

This is a vector-valued map ν(l) : Rd → Rnl where nl is the dimension (number of nodes) of

the lth layer. Let n0 = d and ν(0)(x) := x. Also, let nL = p. Then

ν(l) = σ(l) ◦ ρ(l) ◦ ν(l−1), l = 1, . . . , L.

Similar to the general DAG networks, the length of the longest path, which is equal to

number of layers L, is the depth of the neural network.

The affine function ρ(l) : Rnl−1 → Rnl is parameterized by a weight matrix A(l) ∈
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Figure 2.4: A general form of a multilayer feedforward neural network ν : Rd → Rp with L
layers.

Znl×nl−1 and a bias vector b(l) ∈ Rnl :

ρ(l)(ν(l−1)) := A(l)ν(l−1) + b(l).

The (i, j)th entry of the matrix A(l) will be denoted by a
(l)
ij , i = 1, . . . , nl, j = 1, . . . , nl−1;

the ith entry of b(l) will be denoted by b
(l)
i , i = 1, . . . , nl. These are collectively called the

parameters of the lth layer.

One may choose any activation function employed by a DAG network for a multilayer

network as well, except that, for a vector input x ∈ Rd, σ(x) is understood to be in coordi-

natewise sense; so σ : Rd → Rd. In practice, the activation functions are chosen to be of the

same type in all layers, e.g., σ(l) : Rnl → Rnl are all ReLU’s.
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2.5 Tropical algebra of neural networks

We now describe our tropical formulation of a feedforward neural network satisfying (A)–(C).

We will show that every such feedforward neural network is a tropical rational map.

2.5.1 Tropical characterization of feedforward neural networks de-

fined on DAGs

We start by showing a tropical characterization for feedforward neural network defined on

general DAGs. Formulation for multilayer feedforward neural network will follow naturally.

In general, a neural network function is nonconvex while tropical polynomials are always

convex piece-wise linear functions. Since most nonconvex functions are a difference of two

convex functions Hartman et al. (1959), a reasonable guess is that a feedforward neural

network is the difference of two tropical polynomials, i.e., a tropical rational function. This

is indeed the case, as we will see from the following.

Lemma 2.5.1. Suppose v is a non-input node in a feedforward neural network under as-

sumptions (A)–(C). Assume the outputs from all of v’s immediate predecessors are tropical

rational functions. i.e., for any u ∈ Nin(v), νu(x) can be written as fu(x)− gu(x) where fu

and gu are tropical polynomials. Meanwhile, let

w+
u→v := max{wu→v, 0}, w−u→v := max{−wu→v, 0}.
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Then the output from v is a tropical rational function νv(x) = fv(x)− gv(x) where

fv(x) = max{hv(x), gv(x) + tv},

gv(x) =
∑

u∈Nin(v)

(
w−u→vfu(x) + w+

u→vgu(x)
)
,

hv(x) =
∑

u∈Nin(v)

(
w+
u→vfu(x) + w−u→vgu(x)

)
+ bv.

In tropical arithmetic, these are

fv(x) = hv(x)⊕ gv(x)� tv,

gv(x) =
⊙

u∈Nin(v)

[
fu(x)w

−
u→v
]
�

⊙
u∈Nin(v)

[
gu(x)w

+
u→v
]
,

hv(x) =
⊙

u∈Nin(v)

[
fu(x)w

+
u→v
]
�

⊙
u∈Nin(v)

[
gu(x)w

−
u→v
]
� bv.

Proof. The output of v can be expressed as

νv(x) = σv

( ∑
u∈Nin(v)

wu→vνu(x) + bv

)
= max

{ ∑
u∈Nin(v)

(
w+
u→v − w−u→v

)
(fu(x)− gu(x)) + bv, tv

}
= max

{ ∑
u∈Nin(v)

(
w+
u→vfu(x) + w−u→vgu(x)

)
+ bv,

∑
u∈Nin(v)

(
w−u→vfu(x) + w+

u→vgu(x)
)

+ tv

}
−

∑
u∈Nin(v)

(
w−u→vfu(x) + w+

u→vgu(x)
)

Note that the integer weights wu→v have gone into the powers of tropical monomials
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in g and h, which is why we require our weights to be integer-valued, although as we have

explained at the end of Section 2.4, this requirement imposes little loss of generality. Provided

with this lemma and the fact that outputs from input nodes are clearly tropical polynomials,

we obtain the following theorem by induction.

Theorem 2.5.2 (Tropical characterization of neural networks defined on DAGs). A family

of feedforward neural network under assumptions (A)–(C) is a function ν : Rd → Rp whose

coordinates are tropical rational functions of the input, i.e.,

ν(x) = F (x)�G(x) = F (x)−G(x)

where F and G are tropical polynomial maps. Thus ν is a tropical rational map.

2.5.2 Tropical characterization of multilayer feedforward neural

networks

Multilayer feedforward network is a special case of feedforward networks defined on DAGs.

Therefore Lemma 2.5.1 and Theorem 2.5.2 apply. We show the tropical characterization of

multilayer feedforward neural network in Proposition 2.5.3 and Corollary 2.5.4.

Proposition 2.5.3. Let A ∈ Zm×n, b ∈ Rm be the parameters of the (l+ 1)th layer, and let

t ∈ (R ∪ {−∞})m be the threshold vector in the (l + 1)th layer. If the nodes of the lth layer

are given by tropical rational functions,

ν(l)(x) = F (l)(x)�G(l)(x) = F (l)(x)−G(l)(x),

i.e., each coordinate of F (l) and G(l) is a tropical polynomial in x, then the nodes of the

preactivation and the output of the (l + 1)th layer are given respectively by tropical rational
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functions

ρ(l+1)(x) ◦ ν(l)(x) = H(l+1)(x)−G(l+1)(x),

ν(l+1)(x) = σ ◦ ρ(l+1) ◦ ν(l)(x) = F (l+1)(x)−G(l+1)(x),

where

F (l+1)(x) = max
{
H(l+1)(x), G(l+1)(x) + t

}
,

G(l+1)(x) = A+G
(l)(x) + A−F (l)(x),

H(l+1)(x) = A+F
(l)(x) + A−G(l)(x) + b.

In tropical arithmetic, the recurrence above takes the form

F
(l+1)
i = H

(l+1)
i ⊕ (G

(l+1)
i � ti),

G
(l+1)
i =

[ n⊙
j=1

(F
(l)
j )

a−ij

]
�
[ n⊙
j=1

(G
(l)
j )

a+
ij

]
,

H
(l+1)
i =

[ n⊙
j=1

(F
(l)
j )

a+
ij

]
�
[ n⊙
j=1

(G
(l)
j )

a−ij

]
� bi.

(2.4)

Here the subscript i indicates the ith coordinate.

Corollary 2.5.4 (Tropical characterization of multilayer neural networks). A family of mul-

tilayer feedforward neural network under assumptions (A)–(C) is a function ν : Rd → Rp

whose coordinates are tropical rational functions of the input, i.e.,

ν(x) = F (x)�G(x) = F (x)−G(x)

where F and G are tropical polynomial maps. Thus ν is a tropical rational map.

The case p = 1 is particularly important for classification problems and we will next
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discuss this special case. By setting t(0) = · · · = t(L−1) = 0 and t(L) = −∞, we obtain the

following corollary.

Corollary 2.5.5. Let ν : Rd → R be an ReLU activated feedforward neural network with

integer weights and linear output. Then ν is a tropical rational function.

A more remarkable fact is that the converse of Corollary 2.5.5 also holds.

Theorem 2.5.6 (Equivalence of neural networks and tropical rational functions).

(i) Let ν : Rd → R. Then ν is a tropical rational function if and only if ν is a feedforward

neural network with integer weights and ReLU activation.

(ii) A tropical rational function f � g, as an L-layer neural network, has

L ≤ max{dlog2 rfe, dlog2 rge}+ 2,

where rf and rg are the number of monomials in the tropical polynomials f and g

respectively.

Proof. It remains to establish the “only if” part. We will write σt(x) := max{x, t}. Any

tropical monomial bix
αi is clearly such a neural network as

bix
αi = (σ−∞ ◦ ρi)(x) = max{α>i x+ bi,−∞}.

If two tropical polynomials p and q are represented as neural networks with lp and lq layers

respectively,

p(x) =
(
σ−∞ ◦ ρ

(lp)
p ◦ σ0 ◦ . . . σ0 ◦ ρ

(1)
p
)
(x),

q(x) =
(
σ−∞ ◦ ρ

(lq)
q ◦ σ0 ◦ . . . σ0 ◦ ρ

(1)
q
)
(x),
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then (p⊕q)(x) = max{p(x), q(x)} can also be written as a neural network with max{lp, lq}+1

layers:

(p⊕ q)(x) = σ−∞
(
[σ0 ◦ ρ1](y(x)) + [σ0 ◦ ρ2](y(x))− [σ0 ◦ ρ3](y(x))

)
,

where y : Rd → R2 is given by y(x) = (p(x), q(x)) and ρi : R2 → R, i = 1, 2, 3, are linear

functions defined by

ρ1(y) = y1 − y2, ρ2(y) = y2, ρ3(y) = −y2.

Thus, by induction, any tropical polynomial can be written as a neural network with ReLU

activation. Observe also that if a tropical polynomial is the tropical sum of r monomials,

then it can be written a neural network with no more than dlog2 re+ 1 layers.

Next we consider a tropical rational function (p� q)(x) = p(x)− q(x) where p and q are

tropical polynomials. Under the same assumptions, we can represent p� q as

(p� q)(x) = σ−∞
(
[σ0 ◦ ρ4](y(x))− [σ0 ◦ ρ5](y(x)) + [σ0 ◦ ρ6](y(x))− [σ0 ◦ ρ7](y(x))

)
where ρi : R2 → R2, i = 4, 5, 6, 7, are linear functions defined by

ρ4(y) = y1, ρ5(y) = −y1, ρ6(y) = −y2, ρ7(y) = y2.

Therefore p� q is also a neural network with at most max{lp, lq}+ 1 layers.

Finally, if f and g are tropical polynomials that are respectively tropical sums of rf and

rg monomials, then the discussions above show that (f � g)(x) = f(x) − g(x) is an ReLU

neural network with at most max{dlog2 rfe, dlog2 rge}+ 2 layers.

By construction, a tropical rational function is a continuous piecewise linear function.
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The continuity of a piecewise linear function automatically implies that each of the pieces

on which it is linear is a polyhedral region. As we saw in Section 2.3, a tropical polynomial

f : Rd → R gives a tropical hypersurface that divides Rd into convex polyhedral regions

defined by linear inequalities with integer coefficients: {x ∈ Rd : Ax ≤ b} with A ∈ Zm×d

and b ∈ Rm. A tropical rational function f�g : Rd → R must also divide Rd into polyhedral

regions on each of which f � g is linear, although these regions are nonconvex in general.

We will show that the converse also holds — any continuous piecewise linear function with

integer coefficients is a tropical rational function.

Proposition 2.5.7. Let ν : Rd → R. Then ν is a continuous piecewise linear function with

integer coefficients if and only if ν is a tropical rational function.

Proof. It remains to establish the “if” part. Let Rd be partitioned into N polyhedral region

on each of which ν restricts to a linear function

`i(x) = a>i x+ bi, ai ∈ Zd, bi ∈ R, i = 1, . . . , L,

i.e., for any x ∈ Rd, ν(x) = `i(x) for some i ∈ {1, . . . , L}. It follows from Tarela and

Martinez (1999) that we can find N subsets of {1, . . . , L}, denoted by Sj , j = 1, . . . , N , so

that ν has a representation

ν(x) = max
j=1,...,N

min
i∈Sj

`i.

It is clear that each `i is a tropical rational function. Now for any tropical rational functions
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p and q,

min{p, q} = −max{−p,−q}

= 0� [(0� p)⊕ (0� q)]

= [p� q]� [p⊕ q].

Since p � q and p ⊕ q are both tropical rational functions, so is their tropical quotient. By

induction, mini∈Sj `i is a tropical rational function for any j = 1, . . . , N , and therefore so is

their tropical sum ν.

Corollary 2.5.5, Theorem 2.5.6, and Proposition 2.5.7 collectively imply the equivalence

of

(i) tropical rational functions with real coefficients,

(ii) continuous piecewise linear functions with integer coefficients,

(iii) neural networks satisfying assumptions (A)–(C).

An immediate advantage of the first characterization is that the set of tropical rational

functions T(x1, . . . , xd) has a semifield structure as we had pointed out in Section 2.2, a fact

that we have implicitly used in the proof of Proposition 2.5.7. But more importantly, it is

not the algebra but the algebraic geometry that this perspective brings — some rudimentary

aspects of which we will see in the next four sections.

We would like to point out that an equivalence between ReLU-activated L-layer neural

networks with real weights and d-variate continuous piecewise functions with real coefficients,

and where L ≤ dlog2(d + 1)e+ 1, may be found in (Arora et al., 2018, Theorem 2.1). Note

that our bound for L in Theorem 2.5.6(ii), which is in term of the number of monomials, is

qualitatively different from this bound.
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2.6 Tropical geometry of neural networks

Section 2.5 defines neural networks as objects in tropical algebra, a perspective that permits

us to now study them via tropical algebraic geometry. Our tropical characterization in

Section 2.5 applies to general feedforward networks defined on DAGs. In this section, we

will focus on the analysis of multilayer feedforward neural network. As mentioned earlier,

multilayer feedforward neural network captures many important properties of deep neural

networks. Among other things, we will see that, in an appropriate sense, zonotopes form the

geometric building blocks for neural networks (Section 2.6.2) and that the geometry of the

decision boundary (Section 2.6.1) grows vastly more complex as the number of layers of the

neural network increases, explaining why “deeper is better” (Section 2.6.3).

2.6.1 Decision boundaries of a neural network

We will focus on the case of two-category classification (also known as binary classification)

for clarity. Suppose we would like to distinguish between images of, say, cats and dogs.

As explained in Section 2.4, a neural network ν : Rd → Rp together with a choice of score

function s : Rp → R give us a classifier that takes an image encoded as x ∈ Rd and gives a

score s(ν(x)) ∈ R that represents the likelihood of x belonging to one class, say, cat. If this

value exceeds some decision threshold c, then x is a cat image, and otherwise it is a dog

image. The space of all images is thereby partitioned into two disjoint subsets according to

the outcome of such a prediction rule. The boundary in Rd between the two subsets is called

the decision boundary. Connected regions that produce value above threshold and connected

regions with the value below threshold will be called the positive regions and negative regions

respectively.

Finding a mathematical characterization of decision boundaries is an important topic in

neural networks and other areas of artificial intelligence. In the following, we use tropical

geometry and insights from Section 2.5.2 to present a novel characterization of decision
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boundaries for our family of neural networks.

By Theorem 2.5.6, a neural network ν : Rd → R that satisfies assumptions (A)–(C)

is a tropical rational function f � g. Its decision boundary is a level set as defined in

Proposition 2.3.7, which also gives us the following. By Theorem 2.5.6, a neural network

ν : Rd → R that satisfies assumptions (A)–(C) is a tropical rational function f � g. Its

decision boundary is a level set as defined in Proposition 2.3.7, which also gives us the

following.

Corollary 2.6.1 (Tropical characterization of decision boundary). Let ν : Rd → R be an

L-layered neural network satisfying assumptions (A)–(C) and with t(L) = −∞. And let

B = {x ∈ Rd : ν(x) = s−1(c)} the decision boundary of ν with injective score function

s : R → R and a decision threshold c in its range. If ν = f � g where f and g are tropical

polynomials, then

(i) the decision boundary B divides Rd into at most deg(f) connected positive regions and

at most deg(g) connected negative regions;

(ii) and it satisfies

B ⊆ T (s−1(c)� g ⊕ f) = T (max{f(x), g(x) + s−1(c)}).

We would like to ultimately bound the number of positive, negative, and linear regions

of a neural network ν. This requires us to examine the tropical geometry of ν more carefully

in Section 2.6.2 before we derive these bounds in Section 2.6.3

2.6.2 Zonotopes as geometric building blocks of neural networks

From Section 2.3, we know that the number of regions that a tropical hypersurface T (f)

divides the space into equals the number of vertices in the dual subdivision of the Newton
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polygon associated with the tropical polynomial f . This allows us to bound the number

of connected positive or negative regions of a neural network by bounding the number of

vertices in the dual subdivision of the Newton polygon.

We will follow the notations in Proposition 2.5.3. The recurrent relation (2.4) describes

how the tropical polynomials occurring in the (l+1)th layer depend on those in the lth layer.

We may use this to answer the following:

Question. How are the tropical hypersurfaces of the polynomials in the (l+1)th layer related

to those in the lth layer?

We observe that the polynomials in the (l+ 1)th layer are constructed from those on the

lth layer via three operations: tropical sum, tropical product, and tropical exponentiation.

Hence the question boils down to how these three operations transform the tropical hyper-

surfaces, which we have studied in Propositions 2.3.2 and 2.3.1. Thus we may deduce the

next result.

Lemma 2.6.2. Let F
(l)
i , G

(l)
i , H

(l)
i be the tropical polynomials produced by the ith node in

the lth layer of a neural network, i.e., they are defined by (2.4). Then P
(
F

(l)
i

)
, P
(
G

(l)
i

)
,

P
(
H

(l)
i

)
are subsets of Rd+1 given as follows:

(i) P
(
G

(1)
i

)
and P

(
H

(1)
i

)
are points.

(ii) P
(
F

(1)
i

)
is a line segment.

(iii) P
(
G

(2)
i

)
and P

(
H

(2)
i

)
are zonotopes.

(iv) For l ≥ 1,

P
(
F

(l)
i

)
= Conv

[
P
(
G

(l)
i � t

(l)
i

)
∪ P

(
H

(l)
i

)]
if t

(l)
i ∈ R, and P

(
F

(l)
i

)
= P

(
H

(l)
i

)
if t

(l)
i = −∞.
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(v) For l ≥ 1, P
(
G

(l+1)
i

)
and P

(
H

(l+1)
i

)
are weighted Minkowski sums of

P
(
F

(l)
1

)
, . . . ,P

(
F

(l)
nl

)
,P
(
G

(l)
1

)
, . . . ,

(
G

(l)
nl

)
,

given by

P
(
G

(l+1)
i

)
=

nl∑
j=1

a−ijP
(
F

(l)
j

)
+

nl∑
j=1

a+
ijP
(
G

(l)
j

)
,

P
(
H

(l+1)
i

)
=

nl∑
j=1

a+
ijP
(
F

(l)
j

)
+

nl∑
j=1

a−ijP
(
G

(l)
j

)
+
{
bie
}
,

where aij is the (i, j)th entry of the weight matrix A(l+1) ∈ Znl+1×nl , bi is the ith

coordinate of the bias vector b(l+1) ∈ Rnl+1, and e = (0, . . . , 0, 1) ∈ Rd+1.

An insight that we may deduce from Lemma 2.6.2 is that zonotopes play the role of

building blocks in the tropical geometry of neural networks — P
(
F

(l)
i

)
and P

(
G

(l)
i

)
are

all Minkowski sums of zonotopes. The study of zonotopes forms a rich subject in convex

geometry and, in particular, are intimately related to hyperplane arrangements Greene and

Zaslavsky (1983); Guibas et al. (2003); McMullen (1971); Holtz and Ron (2011). While the

discussion here connects neural networks to this extensive body of work, its full implication

remains to be explored.

2.6.3 Deeper is better: complexity of decision boundary

As we discussed in Section 2.1, we would like to track how the complexity of the function

represented by a neural network changes through the layers and thereby understand the role

of the number of layers — why a deeper neural network is better than a shallow one. We may

rely on a few related quantities to quantify the “complexity” of the function: (a) number of

linear regions, (b) number of positive regions and (c) number of negative regions. Here (b)
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and (c) are specific to the scenario of binary classification. While all three quantities capture

some aspects of how complex the function is, (a) has been adopted as the primary measure

in studies of deep neural networks Montufar et al. (2014). The tropical geometric framework

developed earlier allows us to study these three quantities by investigate the number of

vertices on the polytopes associated the neural network, and further determine recursive

relations for upper bounds on these quantities thereby obtain their orders of magnitudes.

Lemma 2.6.3. Let σ(l), ρ(l) be the affine transformation and the activation of the lth layer

of neural network.

Set V = σ(l) ◦ ρ(l) : Rnl−1 → Rnl . Assume d ≤ nl, then

deg(V |Ad) ≤
d∑
i=0

(
nl
i

)

where deg(V |Ad) is as in Definition 2.3.6.

Proof. By definition, the convex degree of V |Ad is defined as the maximum convex degree of

tropical rational map U : Rd → Rnl of the form

Uj(x) := σ
(l)
j ◦ ρ

(l) ◦ (b1 � xα1 , . . . , bnl−1 � x
αnl−1 ), j = 1, . . . , nl.

For a general affine transformation ρ(l), ρ(l)(b1� xα1 , . . . , bnl−1 � x
αnl−1 ) evaluates to (b′1�

xα
′
1 , . . . , b′nl�x

α′nl ) for some {α′i, b
′
i}. This yields Uj(x) = σ

(l)
j (b′1�x

α′1 , . . . , b′nl�x
α′nl ). De-

fine W : Rd → Rnl by W (x) = (b′1 � x
α′1 , . . . , b′nl � x

α′nl ). Then we can write Uj(x) as Uj =

σ
(l)
j ◦W . This places us in the setting of Theorem 2.3.6. So we have deg(V |Ad) = deg(σ(l)|Ad)·

deg(W ). Due to the linearity of W , we have deg(W ) = 1 and further deg(V |Ad) =

deg(σ(l)|Ad). Now, the above is equivalent to the convex degree of a single layered neu-

ral network with nl neurons. We calculate this convex degree next. Let ν(x) : Rd → Rnl

be a single layered neural network with nl neurons. Let γ = (c1, . . . , cnl) be a non-negative
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general exponent for ν(x). We have

nl⊙
j=1

ν
cj
j =

nl⊙
j=1

[( d⊙
i=1

bi � x
a+
ji

)
⊕
( d⊙
i=1

x
a−ji

)
� tj

]cj
−

nl⊙
j=1

[ d⊙
i=1

(
x
a−ji
)]cj

(2.5)

The last term is linear in x and we can drop it without affecting the calculation of convex

degree. What remains is to bound the number of linear regions in the tropical polynomial

h =

nl⊙
j=1

[( d⊙
i=1

bi � x
a+
ji

)
⊕
( d⊙
i=1

x
a−ji

)
� tj

]cj
.

We will find the bound by counting vertices in the polytope P(h). By Propositions 2.3.2

and 2.3.1 the polytope P(h) is given by the Minkowski sum

nl∑
j=1

cjP
(( d⊙

i=1

bi � x
a+
ji

)
⊕
( d⊙
i=1

x
a−ji

)
� tj

)
.

So we investigate

P
(( d⊙

i=1

bi � x
a+
ji

)
⊕
( d⊙
i=1

x
a−ji

)
� tj

)
which, by Proposition 2.3.2 again, is given by Conv(V(P(p(x))) ∪ V(P(q(x)))) with

p(x) =

( d⊙
i=1

bi � x
a+
ji

)
and q(x) =

( d⊙
i=1

x
a−ji

)
� tj .

p(x) and q(x) are tropical monomials of x. Therefore P(p) and P(q) are points in Rd+1.

Further, Conv(V(P(p)) ∪ V(P(q))) is a line in Rd+1. Hence P(h) is a zonotope constructed

by Minkowski some of nl line segments in Rd+1. Finally, the proof is completed by using

Corollary 2.3.4.

Theorem 2.6.4. Let ν : Rd → RnL be L layered neural network satisfying assumptions (A)–

(C). And let G(l), F (l), H(l) and ν(l) be defined as in Proposition 2.5.3. Assume nl ≥ d,
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l = 1, 2, . . . , L. Then

(i) deg(G(1)) = deg(H(1)) = deg(ν(0)) = 1;

(ii) deg(ν(l+1)) ≤ deg(ν(l)) ·
∑d
i=0

(nl+1
i

)
;

(iii) Write W (l) =
[
H(l);G(l)

]
∈ H(d, 2nl) for the concatenation of G(l) and H(l), then

deg(W (1)) = 1 and

deg(W (l+1)) ≤ deg(W (l)) ·
d∑
i=0

(
nl
i

)
.

Proof. For (i) we have G(1) = A
(1)
− x and H(1) = A

(1)
+ x+ b(1) both are linear in x, therefore

deg(G(1)) = deg(H(1)) = 1. The bound on deg(ν(1)) follows from the proof of Lemma 2.6.3.

To show (ii), recall that ν(l) = (σ(l) ◦ ρ(l)) ◦ ν(l−1). And this inequality can be obtained by

Theorem 2.3.6 and Lemma 2.6.3.

The base case in (iii) is immediately since H(1), G(1) are linear. For the induction step,

substitute G(l), H(l) for F (l) in the recurrence (2.4), to obtain

G
(l+1)
j =

[ nl⊙
i=1

(
H

(l)
i ⊕ (G

(l)
i � ti)

)a−ji]� [ nl⊙
i=1

(G(l))
a+
ji

]
,

H
(l+1)
j =

[ nl⊙
i=1

(
H

(l)
i ⊕ (G

(l)
i � ti)

)a+
ji

]
�
[ nl⊙
i=1

(G(l))
a−ji

]
� bj ,

where a+
ij , a

−
ij , bj are parameters of l + 1th layer and ti is threshold of lth layer, i = 1, . . . nl

and j = 1, . . . , nl+1. To find the convex rank of W (l+1) we look at (W (l+1))α for a general

exponent α. After some basic algebra, we can bound deg(W (l+1))α by the convex rank of

the composition (V ◦W (l))(x) ∈ R(d, 1) where V ∈ H(2nl, 1) is given by

V (y) :=

( nl⊙
i=1

(yi ⊕ yi+nl � ti)
rji

)
�
( nl⊙
i=1

(yi+nl)
sji

)
, for y ∈ R2nl ,

for arbitrary exponents rij , sij ∈ Z, i = 1, . . . , nl, j = 1, . . . , nl+1. Similarly to the the proof
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in Lemma 2.6.3, the convex degree of V restricted to d dimensional affine space is

deg(V |Ad) ≤
d∑
i=0

(
nl
i

)

And so by Theorem 2.3.6

deg((V ◦W (l))(x)) ≤
d∑
i=0

(
nl
i

)
deg(W (l)).

the proof is complete since

deg(W (l+1)) ≤ deg((V ◦W (l))(x)).

Observe that deg
(
H(l)

)
≤ deg

([
H(l);G(l)

])
and similarly for G(l), we are now at the

position where Theorem 2.6.4 and Corollary 2.6.1 yield

Corollary 2.6.5. Let ν : Rd → R be L-layered real valued feedforward neural network as in

(A)–(C). Set t(L) = −∞ and nl ≥ d, l = 1, 2, . . . , L− 1. Then

1. ν(x) has at most
L−1∏
l=1

d∑
i=0

(
nl
i

)
linear regions. In particular, when nl = n for l = 1, . . . , L − 1, the number of linear

regions of ν(L)(x) cannot exceed O
(
nd(L−1)

)
.

2. For any constant c ∈ R, the decision boundary {x ∈ Rd : ν(x) = c} divides the space

Rd into at most
L−1∏
l=1

d∑
i=0

(
nl
i

)
connected positive (negative) regions.
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Proof. (1) follows from Theorem 2.6.4 (ii) immediately. For (2), since W (l) is the concatena-

tion of H(l) and G(l), the number of linear regions in W (l) is an upper bound on the number

of linear regions in H(l) and G(l). Meanwhile, by construction, we have ν(x) = f(x)− g(x)

with f(x) = H(L) and g(x) = G(L). Together with Corollary 2.6.1 (i), we reach the bound

on the number of connected positive (negative) regions.

The analysis in this section implies that a deeper network is able to create tropical poly-

nomials with more linear regions and decision boundaries with more complicated geometry.

In particular, we conjecture that the number of layers for a feedforward network plays a

similar role as the degree of regular polynomials: polynomials with a higher degree leads to

algebraic curves with more complicated geometry while tropical polynomials computed by a

deeper network produces tropical curves that divide the space into more linear regions.

2.6.4 Example

For concreteness, we illustrate our preceding discussions in Section 2.5 with a two-layer

example. Let ν : R2 → R be with n0 = 2 input nodes, n1 = 5 nodes in the first layer, and

n2 = 1 nodes in the output:

y = ν(1)(x) = max





−1 1

1 −3

1 2

−4 1

3 2



x1

x2

+



1

−1

2

0

−2


, 0


,

ν(2)(y) = max{y1 + 2y2 + y3 − y4 − 3y5, 0}.
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We first express ν(1) and ν(2) as tropical rational maps,

ν(1) = F (1) �G(1), ν(2) = f (2) � g(2),

where

y := F (1)(x) = H(1)(x)⊕G(1)(x),

z := G(1)(x) =



x1

x3
2

0

x4
1

0


, H(1)(x) =



1� x2

(−1)� x1

2� x1x
2
2

x2

(−2)� x3
1x

2
2


,

and

f (2)(x) = g(2)(x)⊕ h(2)(x),

g(2)(x) = y4 � y3
5 � z1 � z2

2 � z3

= (x2 ⊕ x4
1)� ((−2)� x3

1x
2
2 ⊕ 0)3 � x1 � (x3

2)2,

h(2)(x) = y1 � y2
2 � y3 � z4 � z3

5

= (1� x2 ⊕ x1)� ((−1)� x1 ⊕ x3
2)2 � (2� x1x

2
2 ⊕ 0)� x4

1.

The monomials occurring in Gj
(1) and Hj

(1) have the form cxa1
1 xa2

2 . Therefore P
(
G

(1)
j

)
and

P
(
H

(1)
j

)
, j = 1, . . . , 5, are points in R3.

Since F (1) = G(1)⊕H(1), P(F
(1)
j ) is the convex hull of two points, hence a line segment

in R3. The Newton polygons (which is equal to their subdivisions in this case) associated

with F
(1)
j are obtained by projecting these line segments back to the plane of (a1, a2). See

the figure on the left of Fig 2.5.
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Figure 2.5: Illustration of polytopes and dual subdivisions associated with neural network
functions. Left: P(F (1)) and dual subdivision of F (1). Right: P(g(2)) and dual subdivision of

g(2). In both figures, dual subdivisions have been translated along −c direction (downwards)
and separated from the polytopes for illustrative purposes.

These line segments in P(F
(1)
j )’s and vertices in P(G

(1)
j )’s serve as the building blocks of

P(h(2)) and P(g(2)). P(h(2)) and P(g(2)) are constructed by taking the weighted Minkowski

sum of polytopes from
{
P(F

(1)
j ) : j = 1, · · · , 5

}
∪
{
P(G

(1)
j ) : j = 1, · · · , 5

}
,

P(h(2)) = P(F
(1)
4 ) + 3P(F

(1)
5 ) + P(G

(1)
1 ) + 2P(G

(1)
2 ) + P(G

(1)
3 ),

P(g(2)) = P(F
(1)
1 ) + 2P(F

(1)
2 ) + P(F

(1)
3 ) + P(G

(1)
4 ) + 3P(G

(1)
5 ).

See the right panel in Fig 2.5 for the illustration of P(g(2)) and the subdivision of Newton

polygon associated with g(2). P(h(2)) is shown in Fig 2.6.

Lastly, P(f (2)) is constructed by taking the convex hull of the union of P(g(2)) and

P(h(2)). See the right panel in Fig 2.6. The dual subdivision of Newton polygon associated

with P(f (2)) is obtained by projecting the upper faces of P(f (2)) to the plane of (a1, a2).

2.7 Conclusion

We formulated feedforward neural networks with rectified linear units as tropical rational

functions. This formulation establishes the connection between tropical geometry and neural
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Figure 2.6: Illustration of polytopes and dual subdivisions associated with tropical poly-
nomials of the second layer. Left: The polytope associated with h(2) and its subdivision.
Right: P(f (2)) and dual subdivision of f (2). In both figures, dual subdivisions have been
translated along −c direction (downwards) and separated from the polytopes for illustrative
purposes.

network. A direct implication is that a neural network with one hidden layer has deep

connections to zonotopes which serve as building blocks for a deeper network. Further, such

a relation is helpful to understand the family of functions representable by a deep neural

network and provides a new view on the complexity and structure of neural networks. We

showed that the study on decision boundaries and number of linear regions of a neural

network can be transferred to the study on tropical hypersurfaces, subdivision of Newton

polygon and the family of polytopes constructed from zonotopes. As an application, we

showed that the number of linear regions and number of connected positive (negative) regions

in classification problems are all at most polynomial in number of nodes on each layer of the

network. Although our analysis is rather basic, we hope it will inspire and foster research

for understanding neural networks from this new perspective.
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Chapter 3

Knowledge Graph Embedding and Question Answering

3.1 Introduction

There is a growing interest in incorporating external memory into neural networks. For

example, memory networks (Weston et al., 2014; Sukhbaatar et al., 2015) are equipped

with static memory slots that are content or location addressable. Neural Turing machines

(Graves et al., 2014) implement memory slots that can be read and written as in Turing

machines (Turing, 1938) but through differentiable attention mechanism.

Each memory slot in these models stores a vector corresponding to a continuous repre-

sentation of the memory content. In order to recall a piece of information stored in memory,

attention is typically employed. Attention mechanism introduced by Bahdanau et al. (2014)

uses a network that outputs a discrete probability mass over memory items. A memory read

can be implemented as a weighted sum of the memory vectors in which the weights are given

by the attention network. Reading out a single item can be realized as a special case in which

the output of the attention network is peaked at the desired item. The attention network

may depend on the current context as well as the memory item itself. The attention model

is called location-based and content-based, if it depends on the location in the memory and

the stored memory vector, respectively.

Knowledge bases, such as WordNet and Freebase, can also be stored in memory either
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through an explicit knowledge base embedding (Bordes et al., 2011; Nickel et al., 2011; Socher

et al., 2013) or through a feedforward network (Bordes et al., 2015).

When we embed entities from a knowledge base in a continuous vector space, if the

capacity of the embedding model is appropriately controlled, we expect semantically similar

entities to be close to each other, which will allow the model to generalize to unseen facts.

However the notion of proximity may strongly depend on the type of a relation. For example,

Benjamin Franklin was an engineer but also a politician. We would need different metrics

to capture his proximity to other engineers and politicians of his time.

In this work, we propose a new attention model for content-based addressing. Our model

scores each item vitem in the memory by the (logarithm of) multivariate Gaussian likelihood

as follows:

score(vitem) = log φ(vitem|µcontext,Σcontext)

= −1

2
(vitem − µcontext)Σ−1

context(vitem − µcontext) + const. (3.1)

where context denotes all the variables that the attention depends on. For example, “Amer-

ican engineers in the 18th century” or “American politicians in the 18th century” would be

two contexts that include Benjamin Franklin but the two attentions would have very different

shapes.

Compared to the (normalized) inner product used in previous work (Sukhbaatar et al.,

2015; Graves et al., 2014) for content-based addressing, the Gaussian model has the addi-

tional control of the spread of the attention over items in the memory. As we show in Figure

3.1, we can view the conventional inner-product-based attention and the proposed Gaus-

sian attention as addressing by an affine energy function and a quadratic energy function,

respectively. By making the addressing mechanism more complex, we may represent many

entities in a relatively low dimensional embedding space. Since knowledge bases are typically

extremely sparse, it is more likely that we can afford to have a more complex attention model
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Inner-product Gaussian Gaussian

Figure 3.1: Comparison of the conventional content-based attention model using inner prod-
uct and the proposed Gaussian attention model with the same mean but two different co-
variances.

than a large embedding dimension.

We apply the proposed Gaussian attention model to question answering based on knowl-

edge bases. At the high-level, the goal of the task is to learn the mapping from a question

about objects in the knowledge base in natural language to a probability distribution over

the entities. We use the scoring function (3.1) for both embedding the entities as vectors,

and extracting the conditions mentioned in the question and taking a conjunction of them

to score each candidate answer to the question.

The ability to compactly represent a set of objects makes the Gaussian attention model

well suited for representing the uncertainty in a multiple-answer question (e.g., “who are the

children of Abraham Lincoln?”). Moreover, traversal over the knowledge graph (see Guu

et al., 2015) can be naturally handled by a series of Gaussian convolutions, which generalizes

the addition of vectors. In fact, we model each relation as a Gaussian with mean and variance

parameters. Thus a traversal on a relation corresponds to a translation in the mean and

addition of the variances.

The proposed question answering model is able to handle not only the case where the

answer to a question is associated with an atomic fact, which is called simple Q&A (Bordes

et al., 2015), but also questions that require composition of relations (path queries in Guu

et al. (2015)) and conjunction of queries. An example flow of how our model deals with a

question “Who plays forward for Borussia Dortmund?” is shown in Figure 3.2 in Section

3.4.
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This chapter is structured as follows. In Section 3.3, we describe how the Gaussian

scoring function (3.1) can be used to embed the entities in a knowledge base into a continuous

vector space. We call our model TransGaussian because of its similarity to the TransE model

proposed by Bordes et al. (2013). Then in Section 3.4, we describe our question answering

model. In Section 3.6, we carry out experiments on WorldCup2014 dataset we collected.

The dataset is relatively small but it allows us to evaluate not only simple questions but

also path queries and conjunction of queries. The proposed TransGaussian embedding with

the question answering model achieves significantly higher accuracy than the vanilla TransE

embedding or TransE trained with compositional relations Guu et al. (2015) combined with

the same question answering model.

3.2 Background and related work

3.2.1 Distributed Representation of Words

Distributed representations or low-dimensional vector embeddings of words (e.g. Mikolov

et al. (2013b); Pennington et al. (2014)) have been widely used in the area of natural language

processing. Different from treating every word in the vocabulary as a unique unit, embedding

words in low-dimensional is capable of modelling similarity and relationships between words.

The work by Mikolov et al. (2013c) showed that word embeddings can capture meaningful

syntactic and semantic relationships between words. For example, the difference between the

learned word vectors “king - man” is very close to “queen - woman” while “apple - apples”

produces a vector near “car - cars”. Low-dimensional embeddings have been adapted in

various applications in natural language processing and lead to outstanding performance.

It is also commonly used together with neural network to address more sophisticated tasks

such as sentiment analysis and machine translation.

As an alternative to point vector representations, Vilnis and McCallum (2014) advocates
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for density-based distributed embeddings of words and represents a word as a Gaussian dis-

tribution. They discuss many advantages of the Gaussian embedding; for example, it is

arguably a better way of handling asymmetric relations and entailment. Their work is simi-

lar to our Gaussian attention model. However their density-based embedding was presented

in the word2vec(Mikolov et al., 2013a)-style word embedding setting and the Gaussian em-

bedding was used to capture the diversity in the meaning of a word. Our Gaussian attention

model extends their work to a more general setting in which any memory item can be ad-

dressed through a concept represented as a Gaussian distribution over the memory items.

Under the same spirit as word embedding, vector representations are also widely used to rep-

resent other types of objects such as sentences, paragraphs and documents (Le and Mikolov,

2014).

3.2.2 Knowledge graph and embeddings

Large scale knowledge graphs (or knowledge bases) such as Freebase (Bollacker et al., 2008),

WikiData (Vrandečić and Krötzsch, 2014) and WordNet (Miller, 1995) provide enormous

structured information in the world and are extremely useful to tasks such as automated

question answering, information retrievel, document understanding, etc. Yet, it is well-

known that large scale knowledge bases are highly incomplete. By using the same idea as

word embedding, finding low-dimensional representation for entities and relations serves as

an efficient way to extract the patterns and discover unseen facts in the knowledge graphs.

In this work, we work with knowledge graphs stored in the form of directed multi-graphs.

Every vertex in the graph represents an entity e.g. “the United States”, “New York City”,

“Chicago Bulls”. Every directed edge in the graph is assigned a label which indicates the

relation between the entities it connects e.g. an edge goes from “New York City” to “the

United States” can be labeld “a city of”, “Chicago Bulls” is a “basketball team based in”

“the United State”.
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As one of the pioneering work of knowledge graph embedding, Bordes et al. (2013) pro-

posed to use low-dimensional vectors to represent entities and relations in a knowledge graph.

Given a set of entities E and a set of relations R, their algorithm learns d-dimensional vectors

{ve : e ∈ E} ⊂ Rd and {δr : r ∈ R} ⊂ Rd such that ‖vh + δr − vt‖ (with either 1-norm

or Euclidean norm) is small if and only if there is an directed edge of relation r goes from

entity h to entity t. Intuitively, walking along an edge in the knowledge graph is modelled

as a translation along a vector in the embedding space. Hence their model is named TransE.

There have been several variations of embedding models for knowledge graph (Nickel

et al., 2011; Wang et al., 2014; Nickel et al., 2015; Socher et al., 2013; Trouillon et al., 2016;

Joulin et al., 2017). In RESCAL (Nickel et al., 2011), a relation is modelled by a matrix

transformation hence walking along an edge becomes transforming an entity vector by the

corresponding relation matrix. To improve the modelling of some relation properties such

as reflexivity, one-to-many, many-to-one and many-to-many, the TransH embedding Wang

et al. (2014) models each relation as a translation on a hyperplane. HolE (Nickel et al., 2015)

and ComplEx (Trouillon et al., 2016) 1 model entities and relations as vectors in complex

vector space Cd and achieved the state-of-the-art performance in predicting unseen facts on

knowledge graph (also known as link-prediction). The neural tensor model (NTN) by Socher

et al. (2013) scores the likelihood of a fact “e1 and e2 has relation r” being true by using

an expressive bilinear tensor model. More recently, Joulin et al. (2017) build up a much

lighter weighted model aiming at only capturing the co-occurences of entities and relations

in the knowledge graph. Their model is very similar to TransE but with different scoring

function and loss function. Surprisingly, their model obtained performance competitive to

state-of-the-art while it took drastically less time to train. Abstractly, these models all share

the same form: entities in the knowledge graph are presented as vectors (either in Rd or in

Cd) while a score function score(s, r, o) is employed to indicate how much the fact “s and o

1. HolE and ComplEx are proved to be mathematically equivalent by Hayashi and Shimbo (2017). Trouil-
lon and Nickel (2017) conducted a detailed comparison of these two models and their performance in practice.
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Table 3.1: Lists of models for knowledge graph embedding. In this table, tanh(x) = (ex −
e−x)/(ex + e−x) is the hyperbolic tangent function; logist(x) = ex/(1 + ex) is the logistic

function; (x?y)k =
∑d−1
i=0 xiy(k+i) mod d is the circular correlation; and 〈a, b, c〉 =

∑
k akbkck

is the multilinear product.

Model Entity Relation score(s, r, o)

RESCAL (Nickel et al., 2011) ve ∈ Rd Mr ∈ Rd×d v>o Mrvs
TransE (Bordes et al., 2013) ve ∈ Rd δr ∈ Rd - ‖vs + δr − vo‖

NTN (Socher et al., 2013) ve ∈ Rd ur ∈ Rk, Wr ∈ Rd×d×k,
Mr,1,Mr,2 ∈ Rk×d, br ∈ Rk u>r tanh

(
v>s Wrvo +Mr,1vs +Mr,2vo + br

)
TransH (Wang et al., 2014) ve ∈ Rd wr, δr ∈ Rd −‖(I − wrw>r )vs + δr − (I − wrw>r )vo‖22
HolE (Nickel et al., 2015) ve ∈ Rd ur ∈ Rd logist(u>r (vs ? vo))

ComplEx (Trouillon et al., 2016) ve ∈ Cd wr ∈ Cd Re
(
〈wr, vs, vo〉

)
fastText (Joulin et al., 2017) ve ∈ Rd vr ∈ Rd 1

2
〈vs + vr, vo〉

have relation r” is likely to be true. As a summary, Table 3.1 illustrates the parameterization

and the score functions of the embedding models under this general form.

3.2.3 Compositionality of knowledge graph embeddings

A compositional relation is a relation that is composed as a series of relations in R, for

example, grand father of can be composed as first applying the parent of relation and

then the father of relation, which can be seen as a traversal over a path on the knowledge

graph. We will write the series of k relations on a path as r1/r2/ · · · /rk. Guu et al.

(2015) raised the concept of composable embedding model: an embedding model is called

composable if its scoring function score(s, r, o) can be expressed in the form:

score(s, r, o) = M(Tr(vs), vo)

for some membership operator M : Rd × Rd 7→ R and traversal operator T : Rd 7→ Rd. For

example, TransE model has M(u, v) = ‖u− v‖, Tr(v) = v + δr where δr ∈ Rd is the vector

parameterizing the relation r. For RESCAL, the membership function is M(u, v) = v>u and

the traversal operator is Tr(v) = Mrv. Thus, the traversal operator for a composed relation
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r1/r2/ · · · /rk becomes

Tr1/r2/···/rk := Trk ◦ · · · ◦ Tr2 ◦ Tr1

and the score about a fact involving a composed relation “s is related to o through the

composed relation r1/r2/ · · · /rk” can be computed by

score(s, r1/r2/ · · · /rk, o) = M(Tr1/r2/···/rk(vs), vo).

Guu et al. (2015) has shown that training TransE with compositional relations by sam-

pling paths from the knowledge graph can make it competitive to more complex models,

although TransE is much simpler compared to, for example, neural tensor networks (NTN,

Socher et al. (2013)) and TransH Wang et al. (2014). The authors also pointed out that

some embedding models such as NTN Socher et al. (2013) are not naturally composable.

We will should that our proposed model is composable and hence can be used for answering

questions which require walking down a path in the knowledge graph.

3.2.4 Question answering on knowledge graph

Large scale knowledge graph provides highly structured source of knowledge and can be

very useful for open-domain question answering. However, finding the appropriate way to

incorporate such knowledge into question answering system remains a challenging problem.

Bordes et al. (2014, 2015) proposed a question-answering model that embeds both questions

and their answers to a common continuous vector space. Their method in Bordes et al. (2015)

can combine multiple knowledge bases and even generalize to a knowledge base that was not

used during training. However their method is limited to the simple question answering

setting in which the answer of each question associated with a triplet in the knowledge

base. In contrast, our method can handle both composition of relations and conjunction of

conditions, which are both naturally enabled by the proposed Gaussian attention model.
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Neelakantan et al. (2015a) proposed a method that combines relations to deal with com-

positional relations for knowledge base completion. Their key technical contribution is to

use recurrent neural networks (RNNs) to encode a chain of relations. When we restrict

ourselves to path queries, question answering can be seen as a sequence transduction task

(Graves, 2012; Sutskever et al., 2014) in which the input is text and the output is a series

of relations. Another interesting connection to our work is that they take the maximum

of the inner-product scores (see also Weston et al., 2013; Neelakantan et al., 2015b), which

are computed along multiple paths connecting a pair of entities. Representing a set as a

collection of vectors and taking the maximum over the inner-product scores is a natural way

to represent a set of memory items. The Gaussian attention model we propose in this work,

however, has the advantage of differentiability and composability.

3.3 The TransGaussian model

In this section, we describe the proposed TransGaussian model based on the Gaussian at-

tention model (3.1). While it is possible to train a network that computes the embedding in

a single pass (Bordes et al., 2015) or over multiple passes (Li et al., 2015), it is more efficient

to offload the embedding as a separate step for question answering based on a large static

knowledge base.

Let E be the set of entities and R be the set of relations. A knowledge base is a col-

lection of triplets (s, r, o), where we call s ∈ E , r ∈ R, and o ∈ E , the subject, the rela-

tion, and the object of the triplet, respectively. Each triplet encodes a fact. For example,

(Albert Einstein, has profession, theoretical physicist). All the triplets given in a

knowledge base are assumed to be true. However generally speaking a triplet may be true

or false. Thus knowledge base embedding aims at training a model that predict if a triplet

is true or not given some parameterization of the entities and relations (Bordes et al., 2011,

2013; Nickel et al., 2011; Socher et al., 2013; Wang et al., 2014).
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In this work, we associate a vector vs ∈ Rd with each entity s ∈ E , and we associate

each relation r ∈ R with two parameters, δr ∈ Rd and a positive definite symmetric matrix

Σr ∈ Rd×d++ .

Given subject s and relation r, we can compute the score of an object o to be in triplet

(s, r, o) using the Gaussian attention model as (3.1) with

score(s, r, o) = log φ(vo|µcontext,Σcontext), (3.2)

where µcontext = vs+δr, Σcontext = Σr. Note that if Σr is fixed to the identity matrix, we

are modeling the relation of subject vs and object vo as a translation δr, which is equivalent

to the TransE model (Bordes et al., 2013). We allow the covariance Σr to depend on the

relation to handle one-to-many relations (e.g., profession has person relation) and capture

the shape of the distribution of the set of objects that can be in the triplet. We call our

model TransGaussian because of its similarity to TransE (Bordes et al., 2013).

Parameterization For computational efficiency, we will restrict the covariance matrix Σr

to be diagonal in this work. Furthermore, in order to ensure that Σr is strictly positive

definite, we employ the exponential linear unit (ELU, Clevert et al., 2015) and parameterize

Σr as follows:

Σr =

ELU(mr,1)+1+ε

. . .
ELU(mr,d)+1+ε


where mr,j (j = 1, . . . , d) are the unconstrained parameters that are optimized during train-

ing and ε is a small positive value that ensure the positivity of the variance during numerical
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computation. The ELU is defined as

ELU(x) =


x, x ≥ 0,

exp (x)− 1, x < 0.

Loss function Suppose we have a set of triplets T = {(si, ri, oi)}Ni=1 from the knowledge

base. Let N (s, r, o) denote the set of incorrect triplets by replacing either the subject or

the object in the triplet (s, r, o) with every entity that leads to a false triplet. Our objective

function utilizes a loss function to measure the difference between the scores of true triplets

and those of false triplets. We will experiment with the following two loss functions:

1. Margin loss:

`(s, s′) := max{µ− s+ s′, 0}

where µ is the margin parameter.

2. Ratio loss:

`(s, s′) := − log
es

es + es
′

The objective function can be written as follows:

min
{ve:e∈E},

{δr,Mr,:r∈R̄}

1

N

∑
(s,r,o)∈T

E(s′,r,o′)∼N (s,r,o)`(score(s, r, o), score(s′, r, t′)) (3.3)

+ λ
[∑
e∈E
‖ve‖22 +

∑
r∈R̄

(
‖δr‖22 + ‖M r‖2F

)]
, (3.4)

where, N = |T |, M r denotes the diagonal matrix with mr,j , j = 1, . . . , d on the diagonal.

Here, we treat an inverse relation as a separate relation and denote by R̄ = R ∪ R−1 the

set of all the relations including both relations in R and their inverse relations; a relation r̃

is the inverse relation of r if (s, r̃, o) implies (o, r, s) and vice versa. Moreover, Et′∼N (s,r,o)
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denotes the expectation with respect to the uniform distribution over the set of incorrect

triplets, which we approximate with 10 random samples in the experiments. Finally, the last

terms are `2 regularization terms for the embedding parameters.

3.3.1 Compositional relations

TransGaussian model can naturally handle and propagate the uncertainty over such a chain

of relations by convolving the Gaussian distributions along the path. That is, the score of

an entity o to be in the τ -step relation r1/r2/ · · · /rτ with subject s, which we denote by the

triplet (s, r1/r2/ · · · /rτ , o), is given as

score(s, r1/r2/ · · · /rτ , o) = log φ(vo|µcontext,Σcontext), (3.5)

with µcontext = vs +
∑τ
t=1 δrt , Σcontext =

∑τ
t=1 Σrt , where the covariance associated

with each relation is parameterized in the same way as in the previous subsection.

Training with compositional relations Let P =
{

(si, ri1/ri2/ · · · /rili , oi)
}N ′
i=1 be a set

of randomly sampled paths from the knowledge graph. Here relation rik in a path can be a

relation in R or an inverse relation in R−1. With the scoring function (3.5), the generalized

training objective for compositional relations can be written identically to (3.3) except for

replacing T with T ∪ P and replacing N with N ′ = |T ∪ P|.

3.4 Question answering on embedded knowledge graph

by using recurrent neural network

Given a set of question-answer pairs, in which the question is phrased in natural language

and the answer is an entity in the knowledge base, our goal is to train a model that learns

the mapping from the question to the correct entity. Our question answering model consists
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of three steps, entity recognition, relation composition, and conjunction. We first identify a

list of entities mentioned in the question (which is assumed to be provided by an oracle in

this work). If the question is “Who plays Forward for Borussia Dortmund?” then the list

would be [Forward, Borussia Dortmund]. The next step is to predict the path of relations

on the knowledge graph starting from each entity in the list extracted in the first step. In

the above example, this will be (smooth versions of) /Forward/position played by/ and

/Borussia Dortmund/has player/ predicted as series of Gaussian convolutions. In general,

we can have multiple relations appearing in each path. Finally, we take a product of all the

Gaussian attentions and renormalize it, which is equivalent to Bayes’ rule with independent

observations (paths) and a noninformative prior.

3.4.1 Entity recognition

We assume that there is an oracle that provides a list containing all the entities mentioned

in the question, because (1) a domain specific entity recognizer can be developed efficiently

(Williams et al., 2015) and (2) generally entity recognition is a challenging task and it is

beyond the scope of this work to show whether there is any benefit in training our question

answering model jointly with a entity recognizer. We assume that the number of extracted

entities can be different for each question.

3.4.2 Relation composition

We train a long short-term memory (LSTM, Hochreiter and Schmidhuber, 1997) network

that emits an output ht for each token in the input sequence. Then we compute the attention

over the hidden states for each recognized entity e as

pt,e = softmax (f(ve,ht)) (t = 1, . . . , T ),
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Q: Who plays forward for Borussia Dortmund?

Who plays forward for Borussia Dortmund ?

multiply & normalize

weighted sum

weighted convolution

weights
𝛼𝑟,Forward

weights
𝑝𝑡,Forward

𝒉1 𝒉2 𝒉𝑇

𝒐Forward

𝒗Forward 𝒗Borussia_Dortmund

A: Marco Reus

𝒗Marco_Reus

score using Eq. (7)

Figure 3.2: A schematic illustration of question answering with Gaussian attention. The
input to the system is a question in natural language. Two entities Forward and
Borussia Dortmund are identified in the question and associated with point mass distri-
butions centered at the corresponding entity vectors. An LSTM encodes the input into a
sequence of output vectors of the same length. Then we take average of the output vectors
weighted by attention pt,e for each recognized entity e to predict the weight αr,e for relation
r associated with entity e. We form a Gaussian attention over the entities for each entity
e by convolving the corresponding point mass with the (pre-trained) Gaussian embeddings
of the relations weighted by αr,e according to Eq. (3.7). The final prediction is produced by
taking the product and normalizing the Gaussian attentions.

where ve is the vector associated with the entity e. We use a two-layer perceptron for f in

our experiments, which can be written as follows:

f(ve,ht) = u>f ReLU
(
W f,vve +W f,hht + b1

)
+ b2,

where W f,v ∈ RL×d, W f,h ∈ RL×H , b1 ∈ RL, uf ∈ RL, b2 ∈ R are parameters. Here

ReLU(x) = max(0, x) is the rectified linear unit. Finally, softmax denotes softmax over the

T tokens.
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Next, we use the weights pt,e to compute the weighted sum over the hidden states ht as

oe =
∑T

t=1
pt,eht. (3.6)

Then we compute the weights αr,e over all the relations as αr,e = ReLU
(
w>r oe

)
(∀r ∈

R∪R−1). Here the rectified linear unit is used to ensure the positivity of the weights. Note

however that the weights should not be normalized, because we may want to use the same

relation more than once in the same path. Making the weights positive also has the effect

of making the attention sparse and interpretable because there is no cancellation.

For each extracted entity e, we view the extracted entity and the answer of the question

to be the subject and the object in some triplet (e, p, o), respectively, where the path p is

inferred from the question as the weights αr,e as we described above. Accordingly, the score

for each candidate answer o can be expressed using (3.1) as:

scoree(vo) = log φ(vo|µe,α,KB,Σe,α,KB) (3.7)

with µe,α,KB = ve +
∑
r∈R̄ αr,eδr, Σe,α,KB =

∑
r∈R̄ α

2
r,eΣr, where ve is the vector asso-

ciated with entity e and R̄ = R ∪ R−1 denotes the set of relations including the inverse

relations.

3.4.3 Conjunction

Let E(q) be the set of entities recognized in the question q. The final step of our model is

to take the conjunction of the Gaussian attentions derived in the previous step. This step is
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simply carried out by multiplying the Gaussian attentions as follows:

score(vo|E(q),Θ) = log
∏

e∈E(q)

φ(vo|µe,α,KB,Σe,α,KB)

= −1

2

∑
e∈E(q)

(
vo − µe,α,KB

)>
Σ−1
e,α,KB(vo − µe,α,KB) + const., (3.8)

which is again a (logarithm of) Gaussian scoring function, where µe,α,KB and Σe,α,KB are

the mean and the covariance of the Gaussian attention given in (3.7). Here Θ denotes all

the parameters of the question-answering model.

3.4.4 Training the question answering model

Suppose we have a knowledge base (E ,R, T ) and a trained TransGaussian representation({
ve
}
e∈E ,

{
(δr,Σr)

}
r∈R̄

)
, where R̄ is the set of all relations including the inverse rela-

tions. During training time, we assume the training set is a supervised question-answer

pairs {(qi, E(qi), ai) : i = 1, 2, . . . ,m}. Here, qi is a question formulated in natural language,

E(qi) ⊂ E is a set of knowledge base entities that appears in the question, and ai ∈ E is the

answer to the question. For example, on a knowledge base of soccer players, a valid training

sample could be

{ q: “Who plays forward for Borussia Dortmund?”,

E(q): [Forward, Borussia Dortmund],

a: [Marco Reus]}.

Note that the answer to a question is not necessarily unique and we allow ai to be any

of the true answers in the knowledge base. During test time, our model is shown (qi, E(qi))

and the task is to find ai. We denote the set of answers to qi by A(qi).
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To train our question-answering model, we minimize the objective function

1

m

m∑
i=1

(
E

t′∼N (qi)

[
[µ− score(vai |E(qi),Θ) + score(vt′|E(qi),Θ)]+

]
+ ν

∑
e∈E(qi)

∑
r∈R̄

∣∣αr,e∣∣)
+ λ‖Θ‖22

where Et′∼N (qi)
is expectation with respect to a uniform distribution over of all incorrect

answers to qi, which we approximate with 10 random samples. We assume that the number

of relations implied in a question is small compared to the total number of relations in the

knowledge base. Hence the coefficients αr,e computed for each question qi are regularized

by their `1 norms.

3.5 Experiments: knowledge graph completion

The task of knowledge graph completion tests knowledge graph models on their ability

of generalizing to unseen facts. Here, we apply our TransGaussian model to knowledge

completion tasks and show that it has competitive performance. We first introduce the

experimental setup. Evaluation of TransGaussian model follows.

3.5.1 Experimental setup

Tasks The most common tasks of knowledge graph completion include two kinds: triplet

classification and link prediction. In both tasks, the training algorithm takes a set of training

triplets T = {(s, r, o) : s, o ∈ E , r ∈ R} and learn the representation of entities and relations.

All triplets in the training set are considered true facts (or positive examples). The two tasks

differ in their test phase:

• In triplet classification, the model needs to predict if an unseen triplet is true or false

during test time;
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• In link prediction, the model needs to predict the objects for a pair of subject and

relation (s, r). Such a prediction can be considered as a ranking problem: the model

usually ranks all entities e ∈ E based on the score of triplets (s, r, e). Likewise, the

model may be asked to predict the subject for a pair of object and relation during test

time.

Evaluation metrics In the case of triplet classification, the test set contains both true

triplets and false triplets. A model is evaluated by its classification accuracy on the test set.

For link prediction, the test set consists of only true triplets. And the model predicts the

subject (or object) of every triplet by only looking at its object (or subject) and relation.

Notice that a pair of subject and relation may have more than one valid object in the

knowledge graph. For example, a soccer team has multiple players and a singer may have

released multiple albumns. Hence, when the model is making a prediction for the object of

a triplet (s, r, o) in the test set, we evaluate the quality of the ranking after removing all

other entities that can serve as the object. Likewise, we do the same for subject prediction.

A rank after other positive entities are removed is sometimes called a filtered rank in the

literature. Two measures are applied to this filtered rank:

• Mean rank, the average rank of the target entity across all test triplets;

• Mean reciprocal rank (MRR), the average of the reciprocal of the ranks;

• Hits@10, the percentage of time when the target entity appears among the top 10 in

the rank.

Datasets For triplet classification, we use the datasets WN11 and FB13 from Socher et al.

(2013). WN11 is a subset of WordNet. There are 11 different relations and 38,696 unique

entities each of which is a synset of words from WordNet. FB13 is a subset of triplets from

FreeBase under the People domain and includes 13 relations and 75,043 entities. In the test
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Table 3.2: Statistics of datasets for knowledge graph completion.

Task Dataset # entities # relations
Number of triplets

(Train / Val / Test)

Triplet classification
WN11 38,696 11 112,581 / 2,609 / 10,544
FB13 75,043 13 316,232 / 5,908 / 23,733

Link prediction
WN18 40,943 18 141,442 / 5,000 / 5,000
FB15K 14,951 1,345 483,142 / 50,000 / 59,071

sets of WN11 and FB13, there are euqal number of positive and negative examples. For link

prediction, we conduct experiments on WN18, a subset of WordNet with 18 relations and

40,943 entities, and FB15k a subset FreeBase with 1,345 relations and 14,951 entities. Both

datasets are taken from Bordes et al. (2013). Table 3.2 gives the statistics of these datasets.

Training configurations During every iteration, we replace the object of every positive

triplet with 10 entities randomly selected from the knowledge graph to generate 10 negative

examples. We generate another 10 negative examples by corrupting the subject for each

triplet as well. Adam (Kingma and Ba, 2014) was employed as the optimizer for training the

TransGaussian model. All hyperparameters were tuned on the validation set. For the task

of triplet classification, we also experimented with using word embedding as done by Socher

et al. (2013). The name of an entity in a knowledge graph may contain one or more words.

Socher et al. (2013) proposed to represent the entity vector by averaging its word vectors. For

example, vunited states = 0.5(vunited+vstates). Under this setting, the training algorithm

aims to learn the word vectors while the representation of the relations remains the same.

3.5.2 Experimental results

We report our experimental results on triplet classification of a 100 dimensional TransGaus-

sian embedding trained with the margin loss in Table 3.3. Columns labeled with “EV” and

“WV” show results from using entity vectors and word vectors for entity representation re-
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Table 3.3: Triplet classification: accuracies (%).

Model WN11 FB13
EV WV EV WV

NTN (Socher et al., 2013) 70.4 86.2 87.2 90.0
TransE (unif.) (Wang et al., 2014) 75.85 - 70.9 -
TransE (bern.) (Wang et al., 2014) 75.87 - 81.5 -
TransH (unif.) (Wang et al., 2014) 77.68 - 76.5 -
TransH (bern.) (Wang et al., 2014) 78.80 - 83.3 -

TransGaussian 75.40 76.60 86.95 89.20

spectively. TransGaussian was able to achieve results comparable to the baseline models.

We see that using word vector representation improves the classification accuracy by roughly

1% to 2%.

Results on link prediction task are presented in Table 3.4. We experimented with both

margin loss and ratio loss for this task. The results show that TransGaussian performs

better than TransE and TransH in terms of Hits@10. However, TransGaussian has a larger

mean rank. Comparing results for two losses functions, we found that ratio loss performs

better than margin loss overall. The benefit of using ratio loss is more significant in mean

reciprocal rank on WN18. Both ComplEx and HolE achieve the best mean reciprocal rank

among all models and stay the state of art on these two benchmarks. TransGaussian is

able to achieve comparable performance in Hits@10 but is outperformed by ComplEx by

a large margin. This implies that ComplEx produces a better ranking for the top entities

than TransGaussian. We show the experimental results on question answering in the next

section.
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Table 3.4: Link prediction on knowledge base. For TransGaussian, two loss functions margin
loss (margin) and ratio loss (ratio) were used.

WN18 FB15k

Model
Mean
Rank MRR

Hits@10
(%)

Mean
rank MRR

Hits@10
(%)

TransE (Bordes et al., 2013) 251 - 89.2 125 - 47.1
TransH (unif.) (Wang et al., 2014) 303 - 86.7 84 - 58.5
TransH (bern.) (Wang et al., 2014) 388 - 82.3 87 - 64.4
HolE (Nickel et al., 2015) - 0.938 94.9 - 0.524 73.9
ComplEx (Trouillon and Nickel, 2017) - 0.941 94.7 - 0.692 84.0

TransGaussian (margin, 50 dim) 484 0.537 88.6 79 0.425 66.9
TransGaussian (margin, 100 dim) 577 0.537 89.6 88 0.495 74.7
TransGaussian (margin, 150 dim) 567 0.550 90.1 115 0.548 79.3

TransGaussian (ratio, 50 dim) 565 0.663 94.0 77 0.437 69.9
TransGaussian (ratio, 100 dim) 646 0.668 92.8 70 0.534 78.3
TransGaussian (ratio, 150 dim) 642 0.654 93.1 68 0.551 79.5

3.6 Experiments: question answering with TransGaus-

sian

As a demonstration of the proposed framework of question answering on knowledge graph,

we perform question and answering on a dataset of soccer players. In this work, we consider

two types of questions. A path query is a question that contains only one named entity from

the knowledge base and its answer can be found from the knowledge graph by walking down

a path consisting of a few relations. A conjunctive query is a question that contains more

than one entities and the answer is given as the conjunction of all path queries starting from

each entity.

3.6.1 WorldCup2014 dataset

We build a knowledge base of football players that participated in FIFA World Cup 2014

2. The original dataset consists of players’ information such as nationality, positions on the

2. The original dataset can be found at https://datahub.io/dataset/fifa-world-cup-2014-all-players.
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Table 3.5: Atomic relations in WorldCup2014 dataset. Here, wears number indicates players’
jersey numbers in the national teams. PLAYER, CLUB, NUMBER, etc, denote the type of
entities that can appear as the left or right argument for each relation. Some relations share
the same type as the right argument, e.g., plays for country and is in country.

Relation Types of subjects and objects

plays in club PLAYER → CLUB
plays position PLAYER → POSITION
is aged PLAYER → NUMBER
wears number PLAYER → NUMBER
plays for country PLAYER → COUNTRY
is in country CLUB → COUNTRY

field and ages etc. We picked a few attributes and constructed 1127 entities and 6 atomic

relations. The entities include 736 players, 297 professional soccer clubs, 51 countries, 39

numbers and 4 positions. And the six atomic relations are listed in Table 3.5.

Given the entities and relations, we transformed the dataset into a set of 3977 triplets.

A list of sample triplets can be found in Table 3.6. Based on these triplets, we created two

sets of question answering tasks which we call path query and conjunctive query respectively.

The answer of every question is always an entity in the knowledge base and a question can

involve one or two triplets. The questions are generated as follows.

Path queries. Among the paths on the knowledge graph, there are some natural compo-

sition of relations, e.g., plays in country (PLAYER → COUNTRY) can be decomposed

as the composition of plays in club (PLAYER→ CLUB) and is in country (CLUB →

COUNTRY). In addition to the atomic relations, we manually picked a few meaningful com-

positions of relations and formed query templates, which takes the form “find e ∈ E , such

that (s, p, e) is true”, where s is the subject and p can be an atomic relation or a path of

relations. To formulate a set of path-based question-answer pairs, we manually created one

or more question templates for every query template (see Table 3.8) Then, for a particular

instantiation of a query template with subject and object entities, we randomly select a
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question template to generate a question given the subject; the object entity becomes the

answer of the question. See Table 3.9 for the list of composed relations, sample questions,

and answers. Note that all atomic relations in this dataset are many-to-one while these

composed relations can be one-to-many or many-to-many as well.

Conjunctive queries. To generate question-and-answer pairs of conjunctive queries, we

first picked three pairs of relations and used them to create query templates of the form

“Find e ∈ E , such that both (s1, r1, e) and (s2, r2, e) are true.” (see Table 3.8). For a pair

of relations r1 and r2, we enumerated all pairs of entities s1, s2 that can be their subjects

and formulated the corresponding query in natural language using question templates as in

the same way as path queries. See Table 3.10 for a list of sample questions and answers.

As a result, we created 8003 question-and-answer pairs of path queries and 2208 pairs of

conjunctive queries which are partitioned into train / validation / test subsets. We refer to

Table 3.7 for more statistics about the dataset. Templates for generating the questions are

list in Table 3.8.

Table 3.6: Sample atomic triplets.

Subject Relation Object
david villa plays for country spain
lionel messi plays in club fc barcelona

antoine griezmann plays position forward
cristiano ronaldo wears number 7

fulham fc is in country england
lukas podolski is aged 29

3.6.2 Experimental setup

To perform question and answering under our proposed framework, we first train the Trans-

Gaussian model on WorldCup2014 dataset. In addition to the atomic triplets, we randomly
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Table 3.7: Statistics of the WorldCup2014 dataset.

Item Count

Entities 1127
Atomic relations 6
Atomic triplets 3977
Relations (atomic and compositional) in path queries 12
Question and answer pairs in path queries
( train / validation / test )

5313 / 760 / 1686

Types of questions in conjunctive queries 3
Question and answer pairs in conjunctive queries
( train / validation / test )

1564 / 224 / 420

Unique words 1800
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Figure 3.3: Variance of each trained relation. Each row shows the diagonal values in the vari-
ance matrix associated with a relation. Columns are permuted to reveal the block structure.

sampled 50000 paths with length 1 or 2 from the knowledge graph and trained a Trans-

Gaussian model compositionally as described in Set 3.3.1. An inverse relation is treated as

a separate relation. Following the naming convention from Guu et al. (2015), we denote

this trained embedding by TransGaussian (COMP). We found that the learned embedding

possess some interesting properties. Some dimensions of the embedding space dedicate to

represent a particular relation. Players are clustered by their attributes when entities’ em-

beddings are projected to the corresponding lower dimensional subspaces. We elaborate and

illustrate such properties in Figure 3.3 and 3.4.
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Table 3.8: Templates of questions. In the table, (player), (club), (position) are placeholders
of named entities with associated type. (country 1) is a placeholder for a country name while
(country 2) is a placeholder for the adjectival form of a country.

# Query template Question template

1 Find e ∈ E: ( (player), plays in club,e) is true
which club does (player) play for ?

which professional football team does (player) play for ?

which football club does (player) play for ?

2 Find e ∈ E: ((player), plays position, e) is true
what position does (player) play ?

what position does (player) play on the field?

what is the position of (player) ?

3 Find e ∈ E: ((player), is aged, e) is true how old is (player) ?

what is the age of (player) ?

4 Find e ∈ E: ((player), wears number, e) is true what is the jersey number of (player) ?

what number does (player) wear ?

5 Find e ∈ E: ((player), plays for country, e) is true

what is the nationality of (player) ?

which national football team does (player) play for ?

which national soccer team does (player) play for ?

where is (player) from ?

which country is (player) from ?

6 Find e ∈ E: ((club), is in country, e) is true

which country is the football team (club) based in ?

where is the football team (club) located ?

which country is (club) located in ?

which country is the football team (club) located in ?

which country is the professional football team (club) located in ?

which country is (club) based in ?

7 Find e ∈ E: ((club), plays in club−1, e) is true

name a player from (club) ?

who plays for (club) ?

who plays at the soccer club (club) ?

who is from the professional football team (club) ?

who plays professionally at (club) ?

8 Find e ∈ E: ((country 1), plays for country−1, e) is true

which player is from (country 1) ?

name a player from (country 1) ?

who is from (country 1) ?

who plays for the (country 1) national football team ?

9 Find e ∈ E: ((position), plays position−1, e) is true

name a player who plays (position) ?

who plays (position) ?

name a football player who plays (position) ?

which football player plays (position) ?

10 Find e ∈ E: ((country 1), is in country−1, e) is true

which soccer club is based in (country 1) ?

which football club is based in (country 1) ?

which football club is located in (country 1) ?

which professional football team is located in (country 1) ?

name a soccer club in (country 1) ?

name a football club in (country 1) ?

11 Find e ∈ E: ((player), plays in club / is in country, e) is true which country does (player) play professionally in ?

where is the football club that (player) plays for ?

12
Find e ∈ E:

((country 1), plays for country−1 / plays in club, e) is true

which professional football team do players from (country 1) play for ?

name a soccer club that has a player from (country 1) ?

name a professional football team that has a player from (country 1) ?

name a soccer club that has a (country 2) player ?

name a professional football team that has a (country 2) player ?

which professional team has a (country 2) player ?

which professional soccer team has a (country 2) player ?

which professional football team has a player from (country 1) ?

13
Find e ∈ E: ((position), plays position−1, e) is true

and ((club), plays in club−1, e) is true

who plays (position) for (club)?

who are the (position) at (club) ?

name a (position) that plays for (club) ?

14
Find e ∈ E: ((position), plays position−1, e) is true

and ((country 1), plays for country−1, e) is true

who plays (position) for (country 1) ?

who are the (position) on (country 1) national team ?

name a (position) from (country 1) ?

which (country 2) footballer plays (position) ?

who is a (country 2) (position) ?

name a (country 2) (position) ?

15
Find e ∈ E: ((club), plays in club−1, e) is true and

((country 1), plays for country−1, e) is true

who are the (country 2) players at (club) ?

which (country 2) footballer plays for (club) ?

name a (country 2) player at (club) ?

which player in (club) is from (country 1) ?

Baseline methods We also trained a TransGaussian model only on the atomic triplets

and denote such a model by TransGaussian (SINGLE). Since no inverse relation was involved
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Table 3.9: (Composed) relations and sample questions in path queries.

# Relation Type Sample question Sample answer

1 plays in club many-to-one
which club does alan pulido play for ? tigres uanl
which professional football team does klaas jan huntelaar

play for ?
fc schalke 04

2 plays position many-to-one what position does gonzalo higuain play ? forward

3 is aged many-to-one
how old is samuel etoo ? 33
what is the age of luis suarez ? 27

4 wears number many-to-one
what is the jersey number of mario balotelli ? 9
what number does shinji okazaki wear ? 9

5 plays for country many-to-one
which country is thomas mueller from ? germany
what is the nationality of helder postiga ? portugal

6 is in country many-to-one which country is the soccer team fc porto based in ? portugal

7 plays in club−1 one-to-many
who plays professionally at liverpool fc ? steven gerrard
name a player from as roma ? miralem pjanic

8 plays for country−1 one-to-many
which player is from iran ? masoud shojaei
name a player from italy ? daniele de rossi

9 plays position−1 one-to-many
name a player who plays goalkeeper ? gianluiqi buffon
who plays forward ? raul jimenez

10 is in country−1 one-to-many
which soccer club is based in mexico ? cruz azul fc
name a soccer club in australia ? melbourne victory fc

11 plays in club / is in country many-to-one
where is the club that edin dzeko plays for ? england
which country does sime vrsaljko play professionally in ? italy

12 plays for country−1 / plays in club many-to-many
name a soccer club that has a player from australia ? crystal palace fc
name a soccer club that has a player from spain ? fc barcelona

Table 3.10: Conjunctive queries and sample questions.

# Relations Sample questions Entities in questions Sample answer

13
plays position−1

and
plays in club−1

who plays forward for fc barcelona ?
who are the midfielders at fc bayern muenchen ?

forward , fc barcelona
midfielder, fc bayern muenchen

lionel messi
toni kroos

14
plays position−1

and
plays for country−1

who are the defenders on german national team ?
which mexican footballer plays forward ?

defender , germany
defender , mexico

per mertesacker
raul jimenez

15
plays in club−1

and
plays for country−1

which player in paris saint-germain fc is from argentina ?
who are the korean players at beijing guoan ?

paris saint-germain fc , argentina
beijing guoan , korea

ezequiel lavezzi
ha daesung

when TransGaussian (SINGLE) was trained, to use this embedding in question answering

tasks, we represent the inverse relations as follows: for each relation r with mean δr and

variance Σr, we model its inverse r−1 as a Gaussian attention with mean −δr and variance

equal to Σr.

We also trained TransE models on WorldCup2014 dataset by using the code released by

the authors of Guu et al. (2015). Likewise, we use TransE (SINGLE) to denote the model

trained with atomic triplets only and use TransE (COMP) to denote the model trained

with the union of triplets and paths. Note that TransE can be considered as a special case

of TransGaussian where the variance matrix is the identity and hence, the scoring formula

Eq. (3.8) is applicable to TransE as well.

Training configurations For all models, dimension of entity embeddings was set to 30.

The hidden size of LSTM was set to 80. Word embeddings were trained jointly with the
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Figure 3.4: Visualization of TransGaussian entity embeddings. Crosses are the subjects and
circles are the objects of a relation. Specifically, crosses are players in (a)-(e) and professional
football clubs in (f).

question answering model and dimension of word embedding was set to 40. We employed

Adam (Kingma and Ba, 2014) as the optimizer. All parameters were tuned on the validation

set. Under the same setting, we experimented with two cases: first, we trained models for

path queries and conjunctive queries separately; Furthermore, we trained a single model that
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addresses both types queries. We present the results of the latter case in the next subsection

while the results of the former are included in the Appendix.

Evaluation metrics During test time, our model receives a question in natural language

and a list of knowledge base entities contained in the question. Then it predicts the mean

and variance of a Gaussian attention formulated in Eq. (3.8) which is expected to capture the

distribution of all positive answers. We rank all entities in the knowledge base by their scores

under this Gaussian attention. Next, for each entity which is a correct answer, we check its

rank relative to all incorrect answers and call this rank the filtered rank. For example, if a

correct entity is ranked above all negative answers except for one, it has filtered rank two.

We compute this rank for all true answers and report mean filtered rank and H@1 which is

the percentage of true answers that have filtered rank 1.

3.6.3 Experimental results

We present the results of joint learning in Table 3.11. These results show that TransGaussian

works better than TransE in general. In fact, TransGaussian (COMP) achieved the best

performance in almost all aspects. Most notably, it achieved the highest H@1 rates on chal-

lenging questions such as “where is the club that edin dzeko plays for?” (#11, composition

of two relations) and “who are the defenders on german national team?” (#14, conjunction

of two queries).

The same table shows that TransGaussian benefits remarkably from compositional train-

ing. For example, compositional training improved TransGaussian’s H@1 rate by near 60%

in queries on players from a given countries (#8) and queries on players who play a partic-

ular position (#9). It also boosted TransGaussian’s performance on all conjunctive quries

(#13–#15) significantly.

To understand TransGaussian (COMP)’s weak performance on answering queries on the
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Table 3.11: Results of joint learning with path queries and conjunction queries on World-
Cup2014.

TransE
(SINGLE)

TransE
(COMP)

TransGaussian
(SINGLE)

TransGaussian
(COMP)

# Sample question
H@1
(%)

Mean
Filtered
Rank

H@1
(%)

Mean
Filtered
Rank

H@1
(%)

Mean
Filtered
Rank

H@1
(%)

Mean
Filtered
Rank

1 which club does alan pulido play
for?

96.40 1.04 97.84 1.02 94.96 1.06 99.28 1.01

2
what position does gonzalo higuain
play?

97.99 1.02 99.33 1.01 100.00 1.00 100.00 1.00

3 how old is samuel etoo? 98.71 1.01 97.42 1.03 100.00 1.00 100.00 1.00

4 what is the jersey number of mario
balotelli?

98.68 1.01 98.03 1.03 100.00 1.00 100.00 1.00

5 which country is thomas mueller
from ?

96.43 1.05 95.71 1.06 99.29 1.01 100.00 1.00

6
which country is the soccer team fc
porto based in ?

96.92 1.05 98.46 1.02 76.92 1.69 100.00 1.00

7 who plays professionally at liverpool fc? 97.95 1.03 82.19 1.61 90.41 1.14 97.95 1.02
8 which player is from iran? 93.28 1.34 60.08 3.32 100.00 1.00 100.00 1.00
9 name a player who plays goalkeeper? 98.76 1.01 100.00 1.00 50.31 1.50 100.00 1.00
10 which soccer club is based in mexico? 88.71 1.39 100.00 1.00 90.32 1.35 98.39 1.02

11 where is the club that edin dzeko plays
for ?

35.37 5.00 55.78 2.69 25.17 69.30 91.84 1.36

12 name a soccer club that has a player
from australia ?

17.09 30.23 29.91 10.88 6.84 49.96 60.68 18.32

Overall (Path Query) 85.77 3.46 82.68 2.25 79.72 10.46 96.26 2.24

13 who plays forward for fc barcelona? 90.80 1.23 61.35 2.97 98.16 1.02 99.39 1.01

14 who are the defenders on german na-
tional team?

67.48 1.78 39.02 7.47 95.93 1.04 100.00 1.00

15
which player in ssc napoli is from ar-
gentina?

97.01 1.04 65.67 1.85 96.27 1.07 100.00 1.00

Overall (Conj. Query) 85.95 1.33 56.19 3.93 96.90 1.04 99.76 1.00

professional football club located in a given country (#10) and queries on professional football

club that has players from a particular country (#12), we tested its capability of modeling the

composed relation by feeding the correct relations and subjects during test time. It turns out

that these two relations were not modeled well by TransGaussian (COMP) embedding, which

limits its performance in question answering. (See Table 3.12 for quantitative evaluations.)

The same limit was found in the other three embeddings as well.

Note that all the models compared in Table 3.11 uses the proposed Gaussian attention

model because TransE is the special case of TransGaussian where the variance is fixed to one.

Thus the main differences are whether the variance is learned and whether the embedding

was trained compositionally.

3.7 Conclusion

In this chapter, we have proposed the Gaussian attention model which can be used in a

variety of contexts where we can assume that the distance between the memory items in the

latent space is compatible with some notion of semantics. We have shown that the proposed
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Table 3.12: Evaluation of embedding of WorldCup2014. We evaluate the embeddings by
feeding the correct entities and relations from a path or conjunctive query to an embedding
model and using its scoring function to retrieve the answers from the embedded knowledge
base.

TransE
(SINGLE)

TransE
(COMP)

TransGaussian
(SINGLE)

TransGaussian
(COMP)

# Relation
H@1
(%)

Mean
Filtered
Rank

H@1
(%)

Mean
Filtered
Rank

H@1
(%)

Mean
Filtered
Rank

H@1
(%)

Mean
Filtered
Rank

1 plays in club 99.86 1.00 98.37 1.02 95.65 1.05 100.00 1.00
2 plays position 100.00 1.00 99.32 1.01 100.00 1.00 100.00 1.00
3 is aged 98.78 1.01 97.69 1.02 100.00 1.00 99.86 1.00
4 wears number 98.64 1.01 97.42 1.05 100.00 1.00 100.00 1.00
5 plays for country 100.00 1.00 98.10 1.04 100.00 1.00 100.00 1.00
6 is in country 100.00 1.00 100.00 1.00 97.31 1.04 100.00 1.00
7 plays in club−1 100.00 1.00 95.52 1.07 92.80 1.09 99.32 1.01
8 plays for country−1 100.00 1.00 87.50 1.41 100.00 1.00 99.86 1.00
9 plays position−1 100.00 1.00 100.00 1.00 100.00 1.00 99.86 1.00
10 is in country−1 100.00 1.00 100.00 1.00 95.62 1.11 100.00 1.00
11 plays in club / is in country 36.01 4.84 56.66 2.89 11.14 153.27 93.61 1.71
12 plays for country−1 / plays in club 16.45 39.28 45.47 12.40 11.83 94.19 76.34 24.87

Overall (Path relations) 87.85 4.04 89.61 2.03 84.06 21.96 97.64 2.73

13
plays position−1

and

plays in club−1
83.56 1.35 55.30 2.36 97.15 1.03 98.10 1.02

14
plays position−1

and

plays for country−1
69.02 2.00 44.16 4.37 100.00 1.00 99.59 1.01

15
plays in club−1

and

plays for country−1
97.01 1.04 64.54 1.61 97.01 1.04 97.42 1.03

Overall (Conj. relations) 83.20 1.46 54.66 2.78 98.05 1.02 98.37 1.02
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Gaussian scoring function can be used for knowledge base embedding achieving compet-

itive accuracy. We have also shown that our embedding model can naturally propagate

uncertainty when we compose relations together. Our embedding model also benefits from

compositional training proposed by Guu et al. (2015). Furthermore, we have demonstrated

the power of the Gaussian attention model in a challenging question answering problem

which involves both composition of relations and conjunction of queries. Future work in-

cludes experiments on natural question answering datasets and end-to-end training including

the entity extractor. If we use RNNs as a decoder, our model would be able to handle non-

commutative composition of relations, which the current weighted convolution cannot handle

well.
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Chapter 4

Low Coherence Frames via Alternating Projections

and von Neumann Algebras

4.1 Introduction

Frames are generalization of orthonormal systems and have various application in areas

such as signal and image processing, data compression and coding theory. In the literature,

people have been interested in frames with low coherence (Strohmer and Heath, 2003; Candès

et al., 2009; Donoho et al., 2006; Mixon et al., 2011). In this work, we consider the problem

of constructing group frames, frames that are generated by a cyclic vector and a group

representation. In particular, we are interested in using non-commutative groups. Inspired

by Barbieri et al. (2014) who inspect the relation between frame bound and generating vector

in the space of von Neumann space, we inspect the worse-case coherence of a cyclic vector

in the space of operators. The problem of existence of group frame with a certain coherence

is then transformed to the existence problem of intersection between a convex set and a

special subset of rank-one operators in the space of matrices (operators). Before introducing

our framework for constructing group frames, we first give a brief review of the necessary

background.
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4.1.1 Some background of tight frames and lower bound on co-

herence

We consider construction of frame in d dimensional complex vector space Cd. Throughout

this chapter, we use the definition of inner product that is linear in the first argument and

conjugate linear in the second, i.e. for two vectors u, v ∈ Cd, 〈u, v〉Cd := v∗u ; for two

matrices X, Y ∈ Cd×d, 〈X, Y 〉Cd×d := trace (Y ∗X). The subscript of the angled brackets

indicates the space where the inner product is taken. This subscript is omitted wherever it

is clear from the context.

Recall that a set of m vectors Φ = {u1, u2, . . . , um} ⊂ Cd form a frame if and only there

there exist constants A,B > 0 such that, for any x ∈ Cd, we have

A‖x‖22 ≤
m∑
i=1

|〈x, ui〉|2 ≤ B‖x‖22.

A and B are called frame bounds. When A = B, Φ is called a tight frame and if all ui’s

have unit norm, it is called a unit norm tight frame.

The (worst-case) coherence of a frame is defined by

µ (Φ) := max
u,v∈Φ
u6=v

|〈u, v〉|
‖u‖2 · ‖v‖2

.

When the dimension d and number of vectors m are fixed, a frame that minimizes the worst-

case coherence is called grassmannian frames (Strohmer and Heath, 2003). For a given pair

of d and m, a well-known lower bound for the optimal coherence that a frame with m vectors

in a d dimensional complex vector space is µm,d :=
√

m−d
d(m−1)

. This bound is called the Welch

bound. It worth noticing that when m > d2, Welch bound is known to be not sharp. For
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example, Zorlein and Bossert (2015) (and the reference within) shows a better lower bound

µ(Φ) ≥



√
m−d
d(m−1)

(Welch bound), for m ≤ d2,

max

{√
1
n ,
√

2m−d2−d
(d+1)(m−d)

, 1− 2m−
1
d−1

}
, for d2 < m ≤ 2(d2 − 1),

max
{√

2m−d2−d
(d+1)(m−d)

, 1− 2m−
1
d−1

}
, for m > 2(d2 − 1).

(4.1)

When m ≤ d2, complex frames that reach Welch bound are still only known for a few cases. If

vectors in a unit norm tight frame satisfy the condition that absolute values of inner products

between any two pairs vectors in the frame are the same, i.e., ∀i 6= j,
∣∣〈ui, uj〉∣∣ = C for a

constant C, then we call it an equiangular unit norm tight frame. Equiangular frames do

not exist for every pair of d and m. The work by Sustik et al. (2007); Waldron (2009);

Fickus et al. (2012); Renes et al. (2003) has drawn some conditions on the existence of

equiangular frames and developed methods for constructing such frames. For example, it is

known that equiangular frame can only exists if m ≤ d(d+1)
2 for a real frame and m ≤ d2

for a complex frame. Sustik et al. (2007) provides more detailed conditions on both real

and complex equiangular tight frames. On the other hand, Zauner’s conjecture, which was

origionally posed in Zauner’s dissertation, says that the condition for complex equiangular

frame is sharp:

Zauner’s conjecture (Zauner (1999)) For every d ≥ 2, there exist equiangular unit

norm complex tight frame with d2 vectors.

Zauner’s conjecture has been proved only for a few dimensions. For a good survey and

up-to-dated results on equiangular tight frames, we would refer to Fickus and Mixon (2015).
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4.1.2 Group frame

We consider frame generated under the action of group representations. In another word,

we are interested in frames of the form {π(g)ψ : g ∈ G}, where G is a finite group, π is a d

dimensional representation of G and ψ is a d dimensional complex vector. Frames generated

under group actions are called group frames. We denote such a frame by Fπ(ψ). To make

Fπ(ψ) a frame, it is necessary to pick ψ such that Fπ(ψ) span the entire space Cd. Thus ψ is

necessarily a cyclic vector. Casazza and Kutyniok (2013) and Vale and Waldron (2004) have

some characteristics on the tightness of group frames. It is worth to mention the following

theorem.

Theorem 4.1.1. (Casazza and Kutyniok (2013), Theorem 5.4) Let G be a finite group which

acts on H as unitary transformations, and let

H = V1 ⊕ V2 ⊕ · · · ⊕ VM

be an orthonormal direct sum of irreducible FG-modules for which repeated summands are

absolutely irreducible. Then Φ = {ρ(g)v : g ∈ G}, v = v1 + v2 + · · ·+ vM , vj ∈ Vj is a tight

G-frame if and only if

‖vj‖2

‖vk‖2
=

dimVj
dimVk

, ∀j, k,

and
〈
σvj , vk

〉
= 0 when Vj is FG-isomorphic to Vk via σ : Vj → Vk. By Schur’s lemma

there is at most one σ to check.

It is known that, for a given pair of d and m, there is a finite number of tight frames

of m vectors for Cd (up to unitary equivalence) which are given by the orbit of an abelian

group of d× d matrices (Casazza and Kutyniok (2013)). See Vale and Waldron (2004); Han

and Larson (2000); Thill (2016) for introductions and reviews on group frames. Xia et al.
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(2005) discovered the connection between complex equiangular tight frames and difference

sets of Abelian groups. More specifically, they use difference sets for choosing rows of the

Fourier matrix associated with an Abelian group and proved that the rows form a frame with

low coherence. Thill et al. (2014) dealt with non-Abelian group and constructed frames by

choosing subsets of rows in generalized Fourier matrices. Meanwhile, Thill and Hassibi (2015)

proposed a framework for constructing frame with low coherence by controlling number of

distinct inner products between frame vectors.

4.1.3 Numerical methods

Analytic constructions of frames that reach the optimal lower bound are only known for

very a few cases. People have been resort to numerical methods for searching frames with

low coherence. The work of Scott and Grassl (2010) produced frames with d2 vectors in

d dimensional complex vector space that satisfy conditions for equiangular tight frames

within machine precision up to d = 67. They worked with group frames generated from

the Heisenberg group and their numerical method searches for a cyclic vector by directly

minimizing the sum of absolute values of inner products raised to the fourth power

min
ψ∈Cd,‖ψ‖2=1

1

d

∑
p∈Zd×Zd

∣∣ψ∗Dpψ∣∣4 =
∑

j,k∈Zd

∣∣∣∣∑
l∈Zd

ψ(j + l)ψ(l)ψ(k + l)ψ(j + k + l)

∣∣∣∣2

where
{
Dp : p ∈ Zd × Zd

}
is a set of unitary matrices from the representation of Heisenberg

group. See Scott and Grassl (2010) for details of the definitions.

Zorlein and Bossert (2015) designed an algorithm for searching optimal complex spherical

code which equivalently searches for frames with low coherence. Their search is based on
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minimizing a generalized potential function

min
ψj∈Cd,‖ψj‖2=1

j=1,...,m

m∑
l=1

∑
k<l

‖ψl − ψk‖
−(ν−2)
2

where ν > 2 is an integer that is large enough.

Tropp et al. (2005) work with the Gram matrix Φ∗Φ. They use an alternating projection

method to search for a low-rank Gram matrix with bounded off-diagonal entries. Tsili-

gianni et al. (2014) proposed alternating projection methods under a similar idea, but their

algorithms involve projection onto more than two sets.

Our work aims to design finite dimensional complex group frames by searching for a cyclic

vector that leads to low coherence. It is motivated by the idea of transforming the inner

products between vectors to inner products between operators under the spirit of Barbieri

et al. (2014). We will first formulate the structure of group frames in von Neumann algebra

associated with the generating group and formulate the coherence in terms of intersection

between two sets of operators. Then, we propose an alternating projection method to search

for such an intersection.

4.2 Formulation and algorithms

In the work by Barbieri et al. (2014), the authors characterize frames generated from the

action of a countable discrete group G on a single element ψ on a Hilbert space H. Suppose

T is a unitary representation of G defined on H and let L1 (N(G)) be the L1-space associated

to the group von Neumann algebra. The core of their characterization is a bracket map

[·, ·] : H×H → L1 (N(G))
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which satisfies

〈ϕ, T (γ)ψ〉H = τ ([ϕ, ψ]λ(γ)∗)

for every ϕ, ψ ∈ H and γ ∈ G. Here, λ(·) is the regular representation on the group algebra

and τ(·) is a trace defined on N(G).

We apply the same idea to unitary representations of finite groups and characterize the

worst-case coherence of a finite group frame in terms of von Neumann algebra associated

with the group. Note that when it comes to finite groups, group algebra can be expressed in

terms of finite vector space and operators over the group algebra can be expressed as square

matrices.

Besides, when the group has a non-trivial center and the representation of g ∈ Z(G)

is a scalar multiply the identity matrix, |〈ψ, π(g)ψ〉| = 1 for any unit norm vector ψ. In

such a case, it makes sense to only the quotient group G/Z(G) in constructing the frame,

avoiding including two vectors that only differ by a phase. For example, when {π(g) : g ∈

Z(G)} ⊂ {c · I : c ∈ C, |c| = 1}, one may pick a set of representatives from the set of co-

sets {gZ(G) : g ∈ G} and only use these operators to construct a frame. Unitary operators

associated with such a subset is called a group-like unitary system by Gabardo et al. (2003).

The discussion in the rest of this section assumes that the group has a trivial center and

every group element is used in the construction of the frame. Yet, as one can see through

the discussion, it is not be difficult to generalize our framework to groups with non-trivial

center as well.

4.2.1 von Neumann algebra and decomposition of operators

Let G be a finite group of order n. Let C(G) be the space of functions over G which is

isomorphic to the n dimensional vector space Cn. We index each dimension of Cn with a
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unique group element and use
{
δg : g ∈ G

}
to denote its natural basis. Let L be the left

regular representation of G defined by

L : G→ U (C(G)) ∼= U (Cn)

γ 7→
(
δg 7→ δγg

)
.

Thus, each operator L(g) can be considered as an n-by-n permutation matrix. We index rows

and columns of n-by-n matrices by group elements as well. Denote the group von Neumann

algebra for G by N(G) which is the closure of linear span of operators {L(g) : g ∈ G} in

Cn×n. i.e.

N(G) := span ({L(g) : g ∈ G}) =

∑
g∈G

cgL(g) : cg ∈ C

 ⊂ Cn×n.

Let N(G)⊥ be its orthogonal complement in Cn×n.

Since 〈L(γ), L(g)〉Cn×n = 0 whenever γ 6= g,
{

1√
n
L(g) : g ∈ G

}
is an orthonormal basis

of N(G). Therefore, any A ∈ Cn×n can be decomposed as

A =
∑
g∈G

〈
A,

1√
n
L(g)

〉
Cn×n

1√
n
L(g) + ProjN(G)⊥ (A)

=
1

n

(
trace(A) +

∑
g∈G\{e}

〈A, L(g)〉Cn×n L(g)
)

+ ProjN(G)⊥ (A) (4.2)

where ProjN(G)⊥ is the projection to N(G)⊥.

Suppose π is a subrepresentation of L in the space Cd. It is well-known that the left

regular representation of a finite group is equivalent to the direct sum of all irreducible

representations of G with certain multiplicity. This means there exists an unitary matrix Pπ

that simultaneously transforms L(g) into a block diagonal matrix with π(g) on its top left
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block for all g ∈ G. i.e., PπL(g)P ∗π takes the form

PπL(g)P ∗π =

π(g)

ρ(g)

 , for any g ∈ G. (4.3)

4.2.2 Coherence of group frames

As stated in (4.3), we can decompose the representation of an regular representation into the

direct sum of stable subspaces associated with the irreducibles. Likewise, we can regard the

representation space of an irreducible π as a stable subspace of CN which is the representation

space of the regular representation.

Proposition 4.2.1. For any g ∈ G and φ, ψ ∈ Cd,

〈φ, π(g)ψ〉Cd =

〈
P ∗π

φψ∗ 0

0 0

Pπ, L(g)

〉
Cn×n

.

Proof.

〈φ, π(g)ψ〉Cd =

〈φ
0

 ,
π(g)

ρ(g)


ψ

0

〉
Cn

=

〈
P ∗π

φ
0

 , L(g)P ∗π

ψ
0

〉
Cn

= trace

P ∗π
φ

0

[ψ∗ 0

]
PπL(g)∗


=

〈
P ∗π

φψ∗ 0

0 0

Pπ, L(g)

〉
Cn×n

.
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By this proposition, we can express the inner product of any two vector in the group

frame as an inner product between two matrices,

〈ψ, π(g)ψ〉Cd =

〈
P ∗π

ψψ∗ 0

0 0

Pπ, L(g)

〉
Cn×n

. (4.4)

Now, consider Φπ as a mapping from Cd to Cn×n

Φπ : Cd → Cn×n

ψ 7→ P ∗π

ψψ∗ 0

0 0

Pπ.
This mapping plays a similar role as the bracket mapping [·, ·] defined in Barbieri et al.

(2014). For any cyclic vector ψ, let

cg(ψ) := 〈ψ, π(g)ψ〉 =

〈
P ∗π

ψψ∗ 0

0 0

Pπ, L(g)

〉
= 〈Φπ(ψ), L(g)〉. (4.5)

By using (4.2), we can uniquely expand Φπ(ψ) as

Φπ(ψ) =
1

n

∑
g∈G

cg(ψ)L(g) + ProjN(G)⊥ (Φπ(ψ)) . (4.6)

Based on the definition of cg(ψ), we have the following proposition.

Proposition 4.2.2. Given a unit norm cyclic vector ψ ∈ Cd, the worst-case coherence of

the dictionary {π(g)ψ : g ∈ G} is equal to maxg∈G\{e}
∣∣cg(ψ)

∣∣.
Denote the range of Φπ by R (Φπ). R (Φπ) is a subset of rank-one positive semi-definite

Hermitian matrices in Cn×n. Meanwhile, let Sd be the unit sphere in Cd and R (Φπ,Sd)

be the range of Φπ applied to all unit-norm vectors, then R (Φπ,Sd) := {Φπ(ψ) : ‖ψ‖2 = 1}
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which is a bounded subset of R (Φπ). Since we are looking for a unit norm cyclic vector that

generates a dictionary with bounded coherence, it is useful to define the following convex

subset Γc ⊂ Cn×n.

Definition 4.2.1. Given C > 0,

• define the set Vc ⊂ N(G) as

Vc :=

{
1

n

(
I +

∑
g∈G\{e}

cgL(g)

)
:
∣∣cg∣∣ ≤ C, ∀g ∈ G\{e}

}
;

• define the set Γc ⊂ Cn×n as

Γc :=
{
X + Y : X ∈ Vc, Y ∈ N(G)⊥

}
.

Notice that any matrix in Γc has trace equal to one and therefore R (Φπ) ∩ Γc =

R (Φπ,Sd) ∩ Γc. Immediately we have:

Proposition 4.2.3. Based on the definitions above, we have the following facts:

• Given C > 0, if R (Φπ) ∩ ΓC 6= ∅, then there exists a unit-norm cyclic vector which,

under the action of π, generates a dictionary with coherence smaller than or equal to

C.

• The worst-case coherence is the minimum C such that R (Φπ) ∩ ΓC 6= ∅.

4.2.3 Alternating projection

The previous subsection states that finding a cyclic vector that generates a frame with worst-

case coherence no larger than C is equivalent to finding the intersection between R(Φπ) (or

R(Φπ,Sd)) and ΓC . It is natural to consider the alternating projection method for finding

such an intersection. The algorithm boils down to solving the following problems,
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• Problem 1 Given an X ∈ R (Φπ), solve arg minA∈ΓC ‖A−X‖F ;

• Problem 2 Given an A ∈ ΓC , solve arg minψ∈Cd ‖A− Φπ(ψ)‖F .

Propositions below give the solutions to the problems.

Proposition 4.2.4. Given C > 0 and ψ ∈ Cd, let cg(ψ) = 〈ψ, π(g)ψ〉 be the same as

defined by (4.5). For each g ∈ G\{e}, let

c̃g(ψ) =


C · cg(ψ)

|cg(ψ)| , if
∣∣cg(ψ)

∣∣ > C,

cg(ψ), otherwise.

Define the projection from R (Φ) to ΓC by

ProjΓC
(
Φ(ψ)

)
:=

1

n

(
I +

∑
g∈G\{e}

c̃g(ψ)L(g)
)

+ ProjN(G)⊥
(
Φπ(ψ)

)
. (4.7)

Then ProjΓC (Φ(ψ)) gives the unique solution to arg minA∈ΓC ‖A− Φπ(ψ)‖F . Meanwhile,

min
A∈ΓC

‖A− Φπ(ψ)‖2F =
1

n

(
(‖ψ‖22 − 1)2 +

∑
g∈G\{e}

(
c̃g(ψ)− cg(ψ)

)2)
. (4.8)

Proof. Given ψ, by 4.6, Φπ(ψ) can be decomposed as

Φπ(ψ) =
1

n

∑
g∈G

cg(ψ)L(g) + ProjN(G)⊥ (Φπ(ψ))

=
1

n

(
‖ψ‖22I +

∑
g∈G\{e}

cg(ψ)L(g)
)

+ ProjN(G)⊥ (Φπ(ψ)) .

Suppose A ∈ ΓC and it has the decomposition

A =
1

n

(
I +

∑
g∈G\{e}

agL(g)
)

+ A⊥
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and we need to find ag and A⊥ ∈ N(G)⊥ such that ‖A− Φπ(ψ)‖F is minimized under the

constraints that
∣∣ag∣∣ < C, for any g ∈ G\{e}. Due to the fact that {L(g)} is an orthogonal

basis of N(G), we have

‖A− Φπ(ψ)‖2F =
1

n

(∥∥(1− trace Φπ(ψ))I
∥∥2
F +

∑
g∈G\{e}

∥∥(ag − cg(ψ))L(g)
∥∥2
F

)
+
∥∥A⊥ −ProjN(G)⊥ (Φπ(ψ))

∥∥2
F

=
1

n

((
1− ‖ψ‖22

)2
+

∑
g∈G\{e}

∣∣ag − cg(ψ)
∣∣2)

+
∥∥A⊥ −ProjN(G)⊥ (Φπ(ψ))

∥∥2
F .

The second equality used the fact that trace(Φ(ψ))/
√
n = ‖ψ‖22/

√
n. The minimum of the

last expression can be reached by setting A⊥ to ProjN(G)⊥ (Φπ(ψ)) and setting ag to c̃g(ψ).

i.e., the minimum is reached when A is equal to ProjΓC (ψ) defined by (4.7).

Formula (4.8) follows from the fact that {L(g)/
√
n : g ∈ G} is orthonormal.

Proposition 4.2.5. Given an A ∈ ΓC , suppose H is the top-left d-by-d block of the matrix

PπAP
∗
π . Suppose v is the leading singular vector of 1

2 (H +H∗) and σ1 is the largest singular

value. Define

ProjR(Φπ)(A) := P ∗π

σ1vv
∗ 0

0 0

Pπ. (4.9)

Then ProjR(Φπ)(A) gives a solution to arg minX∈R(Φπ) ‖A − X‖F . When σ1 is strictly

larger than the next singular value, the solution is unique.

Proof. Since Frobenius norm is unitarily invariant, for any X = P ∗π

σψψ∗ 0

0 0

Pπ ∈ R (Φπ),
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we have ∥∥∥∥∥∥∥A− P ∗π
σψψ∗ 0

0 0

Pπ
∥∥∥∥∥∥∥
F

=

∥∥∥∥∥∥∥PπAP ∗π −
σψψ∗ 0

0 0


∥∥∥∥∥∥∥
F

= ‖H − σψψ∗‖F

=

∥∥∥∥1

2
(H +H∗)− σψψ∗

∥∥∥∥
F

and its minimum can be reached by setting ψ and σ to the leading singular vector and

singular value of 1
2 (H +H∗).

Input: Group G, d dimensional representation π, upper bound of worst-case coherence C;
Output: Cyclic vector ψ ∈ Cd
Initialize the unit-norm vector ψ randomly; Set X ← Φπ(ψ).
while not converged do

1. Update A← ProjΓC (X) according to (4.7);

2. Update X ← ProjR(Φπ ,Sd)(A) according to (4.9).

end

X ∈ R (Φπ) can be decomposed as X = P ∗π

[
vv∗ 0
0 0

]
Pπ.

When converged, ‖v‖2 = 1. Set ψ = v and return ψ.
Algorithm 1: Alternating projection

Next, we show that the alternating projection method in Cn×n is actually equivalent to

running iteration in Cd in the following way.

Proposition 4.2.6. Given C > 0 and a cyclic vector ψ ∈ Cd, for each g ∈ G\{e}, let cg(ψ)

be the same as (4.5). Set ∆cg(ψ) to

∆cg(ψ) =


cg(ψ)

(
C
|cg(ψ)| − 1

)
, if

∣∣cg(ψ)
∣∣ > C,

0, otherwise.

(4.10)

The following iterations lead to the same solution as the alternating projection method.

94



Input: Group G, d dimensional representation π, upper bound of worst-case coherence C;
Output: Cyclic vector ψ ∈ Cd.
Initialize the unit-norm vector ψ(0) randomly;
Set H(0) = ψ(0)ψ(0)∗;
Initialize t = 0.
while not converged do

1. Update H:
Compute ∆cg(ψ

(t)) according to (4.10);
Set H(t+1) ← ψ(t)ψ(t)∗ + 1

n

∑
g∈G\{e}∆cg(ψ

(t))π(g);

2. Update ψ:
Set ψ(t+1) to the leading singular vector of 1

2

(
H(t+1) +H(t+1)∗).

3. Update t← t+ 1.

end

Return ψ(t).

Algorithm 2: Counterpart of the alternating projection in Cd.

1. H ← ψψ∗ + 1
n

(
1− ‖ψψ∗‖22

)
I + 1

n

∑
g∈G\{e}∆cg(ψ)π(g);

2. Set v and σ to the leading singular vector and singular value of 1
2 (H +H∗).

3. Set ψ to
√
σv.

Proof. By re-writting (4.7), we find the equivalent form of the projection,

ProjΓC (Φ(ψ)) =
1

n

(
I +

∑
g∈G\{e}

cg(ψ)L(g)

)
+ ProjN(G)⊥ (Φπ(ψ))

+
1

n

∑
g∈G\{e}

∆cg(π)L(g)

= Φ(ψ) +
1

n

(
1− ‖ψψ∗‖22

)
I +

1

n

∑
g∈G\{e}

∆cg(π)L(g)

= P ∗


ψψ∗ 0

0 0

+
1

n

(
1− ‖ψψ∗‖22

)
I +

1

n

∑
g∈G\{e}

∆cg(π)

π(g)

ρ(g)


P

Thus, the top-left block of the term in the parenthesis would be equal to ψψ∗+ 1
n

(
1− ‖ψψ∗‖22

)
I+

1
n

∑
g∈G\{e}∆cg(ψ)π(g) which we denote as H here. And step 2 and 3 is equivalent the up-
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date in (4.9) which takes the leading singular vector and singular value of 1
2 (H +H∗).

The two-steps updates in Proposition (4.2.6) can be written in a tighter form. Let

Ω ⊂ Cd×d be the set of all rank-one Hermitian matrices. Define ProjΩ to be the operator

that projects a matrices to Ω. Then for a matrix H ∈ Cd×d, ProjΩ(H) can be computed

efficiently by taking the leading singular vector v and singular value σ of 1
2(H + H∗) and

computing σvv∗ which corresponds to the step (2) and (3) in Proposition (4.2.6). By this

definition, the updates in Proposition (4.2.6) can be written as updating a rank-one matrix

H in a tighter form:

H ← ProjΩ

(
H + (1− trace(H))I +

1

n

∑
g∈G\{e}

∆cg(H)π(g)

)
. (4.11)

where ∆cg(H), the analogy of cg(ψ), is defined by

∆cg(H) =


〈H, π(g)〉

(
C

|〈H,π(g)〉| − 1
)
, if |〈H, π(g)〉| > C,

0, otherwise.

This update can be regarded as using projected gradient1 method with a fixed step-size in

solving the following optimization problem.

min
H∈Cd×d

1

2
(1− trace(H))2 +

∑
g∈G\{e}

`C(H, π(g))

s.t. H ∈ Ω.

1. The objective is a real-valued function of complex variables and it is not holomorphic. Hence, its
complex derivative does not exist. The gradient here is computed by treating Cd×d as Rd×d × Rd×d.
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where `C(H, π(g)) is defined by

`C(H, π(g)) =


1
2 (|〈H, π(g)〉| − C)2 , if |〈H, π(g)〉| > C,

0, otherwise

(4.12)

Note that this objective function of the miminization problem only differs from minA∈ΓC ‖A−

H‖2F defined in (4.8) by a constant multiplier. Therefore this objective indicates the distance

between the consecutive points generated during the iterations of alternating projection. The

objective reaches zero if and only if the intersection between the two sets is found.

4.2.4 Convergence of the algorithm

While the alternating projection between two compact convex sets always locates points of

minimum distance, it is not necessary the case when one of them is not convex. In our

problem, Algorithm (1) projects to ΓC and R (Φπ) alternately. From the construction of

the sets, ΓC is convex. But R (Φπ) is a set of rank-one matrices of a particular form and

it is non-convex due to the rank constraint. Therefore, even if the two sets intersect, the

algorithm is not guaranteed to find a point in the intersection.

However, alternating projection never increases the distance between successive iterates.

Suppose Algorithm (1) produces sequences
{
Xj
}
⊂ R

(
Φπ
)

and
{
Aj
}
⊂ ΓC . We may expect

the sequence ‖Xj −Aj‖F to converge. If the algorithm is initialized at a point that is close

to the intersection, we show that the sequence converges to zero at a linear rate.

Theorem 4.2.7. Assume the intersection of ΓC and R (Φπ) exists. Let Algorithm 1 start

from a point that is close enough to the intersection. Then the algorithm will converge to a

point in ΓC ∩R (Φπ) at a linear rate.

Proof. See Section 4.5.

97



4.2.5 Variations of the algorithm

In this section, we raise a variation of the algorithm so that it also applies to generation

of tight frames from reducible representation. Meanwhile, an acceleration method is also

proposed to aquire faster convergence in practice.

Generate tight frame from reducible representations

In this subsection, we extend the algorithm to generating tight frames from reducible group

representations that are direct sum of a few inequivalent irreducibles. As stated in Theo-

rem 4.1.1, when the representation π is irreducible, any cyclic vector ψ generates a tight

frame. However, when π is not irreducible, ψ needs to satisfy some extra conditions. There-

fore, we need to modify our algorithm a bit to produce a tight frame from a reducible

representation. Suppose π ∼= ρ1 ⊕ ρ2 ⊕ · · · ⊕ ρk and ρi’s are inequivalent irreducible unitary

representations with dimensions d1, . . . , dk and
∑
j dj = d. Without loss of generality, we

may assume that the matrix representations of π(g) is block diagonal,

π(g) =


ρ1(g)

. . .

ρk(g)


where ρj(g) ∈ Cdj×dj . Let ψ =

[
ψ>1 . . . ψ>k

]> ∈ Cd be a unit normed vector and ψj ∈ Cdj

be the component corresponding to ρj . Then, the necessary and sufficient condition for ψ

to generate a tight frame would be

‖ψj‖22
‖ψl‖22

=
dj
dl
.
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Since
∑k
j=1 ‖ψj‖22 = 1, this is equivalent to

‖ψj‖22 =
dj
d
, for all j = 1, 2, . . . , k.

Denote the set of vectors that satisfy this condition by

S̃d :=

ψ =


ψ1

...

ψk

 : ψj ∈ Cdj , ‖ψj‖22 =
dj
d


which is a subset of Sd = {ψ : ‖ψ‖2 = 1}. Now, the goal becomes searching for the in-

tersection between R
(
Φπ, S̃d

)
and ΓC . Instead of alternately projecting between ΓC and

R
(
Φπ, S̃d

)
, we can iteratively projecting onto three sets ΓC , R

(
Φπ,Sd

)
and R

(
Φπ, S̃d

)
. The

projection fromm ΓC on R (Φπ,Sd) can be computed in a similar way as (4.9).

Proposition 4.2.8. Given an A ∈ ΓC , suppose H is the top-left d-by-d block of the matrix

PπAP
∗
π . Suppose v is the leading singular vector of 1

2 (H +H∗). Define

ProjR(Φπ,Sd)(A) := P ∗π

vv∗ 0

0 0

Pπ. (4.13)

Then ProjR(Φπ,Sd)(A) gives a solution to arg minX∈R(Φπ,Sd) ‖A−X‖F .

And the projection from R (Φπ,Sd) to R
(
Φπ, S̃d

)
can be computed as the following.

Suppose v =
[
v>1 . . . v>k

]> ∈ Sd. We need to find ψ =
[
ψ>1 . . . ψ>k

]> ∈ S̃d such that

‖Φπ (v)− Φπ (ψ)‖2F is minimized. By definition of Φπ, this is equivalent to minimizing
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‖vv∗ − ψψ∗‖2F which can be simplified as

‖vv∗ − ψψ∗‖2F = 〈vv∗ − ψψ∗, vv∗ − ψψ∗〉

= 〈vv∗, vv∗〉+ 〈ψψ∗, ψψ∗〉 − 2 〈vv∗, ψψ∗〉

(due to ‖v‖2 = ‖ψ‖2 = 1) = 2− 2 〈vv∗, ψψ∗〉

= 2− 2 |v∗ψ|2

= 2− 2
∑
j

∣∣∣v∗jψj∣∣∣2 .
Taking into account the constraints ‖ψj‖22 = dj/d, we can obtain the minimum by setting

ψj =

√
dj
d

vj

‖vj‖22
. (4.14)

Incorporate this projection in the framework of Algorithm 2, and we get the algorithm

for constructing tight frames from reducible representations. Summary of this algorithm,

together with the acceleration scheme discussed below, will be illustrated in Algorithm 3.

An accelerated alternating projection method

Alternating projection often suffers slow convergence. But, due to its wide application,

many acceleration schemes have been proposed in the literature, for example Cegielski and

Suchocka (2008); Gearhart and Koshy (1989). To find an x in the intersection of two sets A

and B by using alternating projection, a general acceleration scheme is

x(t+1) = PA
(
x(k) + λ(k)σ(k)(PAPBx

(k) − x(k))
)
,

where λ(k) ∈ [0, 2] is the relaxation parameter and σ(k) ≥ 0 is the step size. We employ an

extrapolation method which is a special case of this scheme. When the alternating projection

is between convex sets, the acceleration methods have certain convergence and acceleration
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guarantees. However, in our case, the subset of rank-one matrices is not convex. Therefore

the theory of accelerated alternating projections does not apply. But, empirically, we observe

that the convergence is accelerated significantly.

Suppose
(
H(t), ψ(t)

)
comes from the t-th iteration of Algorithm 2. Let β ≥ 1 be the

parameter of extrapolation. We design the extrapolation step as follows:

• Set H̃ ← βψ(t+1)ψ(t+1)∗ + (1− β)ψ(t)ψ(t)∗;

• Set ψ̃ to the leading singular vector of 1
2

(
H̃ + H̃∗

)
.

• Normalize ψ̃ for each irreducibles by using (4.14).

If the rank-one Hermitian matrix ψ̃ψ̃∗ lead to a lower value in the loss function (4.12),

we accept this extrapolation and set
(
H(t), ψ(t)

)
=
(
H̃, ψ̃

)
. Otherwise, the extrapolation

is discarded for this iteration and we take a smaller extrapolation parameter for future

iterations. See Algorithm 3 for a summary of the extrapolated algorithm.

4.3 Experiments

4.3.1 Heisenberg group

We first apply our method to Heisenberg group. Let Zd be the group of integers modulo d.

The Heisenberg group over Zd can be written as a group of upper triangular matrices




1 m l

1 n

1

 : m,n, l ∈ Zd


under the operation of matrix multiplication.
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Input: Group G, d dimensional representation π that is a direct sum of irreducibles ρj ,
each of which has dimension dj , j = 1, 2, . . . , k. upper bound of worst-case
coherence C; extrapolation parameter β.

Output: Cyclic vector ψ ∈ Cd.
Initialize the unit-norm vector ψ(0) randomly;
Set H(0) = ψ(0)ψ(0)∗;
Initialize t = 0;
while not converged do

1. Update H:

• Compute ∆cg(ψ) according to (4.10);

• Set H(t+1) ← ψ(t)ψ(t)∗ + 1
n

∑
g∈G\{e}∆cg(ψ

(t))π(g);

2. Update ψ:

• Set ψ(t+1) to the leading singular vector of 1
2

(
H(t+1) +H(t+1)∗).

• Normalize ψ(t+1) for every irreducible by using (4.14).

3. If t > 0, extrapolate:

• Set H̃ ← βψ(t+1)ψ(t+1)∗ + (1− β)ψ(t)ψ(t)∗;

• Set ψ̃ to the leading singular vector of 1
2

(
H̃ + H̃∗

)
.

• Normalize ψ̃ for every irreducible by using (4.14).

• If ψ̃ψ̃∗ has a lower loss, i.e. `C(ψ̃ψ̃∗, π(g)) < `C(ψ(t+1)ψ(t+1)∗, π(g)),

set
(
H(t+1), ψ(t+1)

)
=
(
H̃, ψ̃

)
.

Otherwise, decrease extrapolation parameter, set β ← 1
2β + 1

2 .

4. Update t← t+ 1.

end

Return ψ(t+1).
Algorithm 3: Search for a cyclic vector for a reducible representation.
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Let wd := e2πi/d be the d-th primitive root of unit and M , T be the modulation and and

translation operators defined on C(Zd):

For all f ∈ C(Zd), [Mf ] (t) := wtdf(t),

[Tf ] (t) := f(t− 1).

H(Zd) has an irreducible d-dimensional unitary representation πH(Zd) defined by

πH(Zd) : H(Zd)→ U (C(Zd))
1 m l

1 n

1

 7→ wldM
nT−m

Or, equivalently

πH(Zd)




1 m l

1 n

1


 f

 (t) = wl+ntd f(t+m).

Since C(Zd) ∼= Cd, the operators M and T can be written as matrices from Cd×d:

M =



1

w

. . .

wd−1


, T =

 1

I(d−1)×(d−1)

 .
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H(Zd) has a non-trivial center




1 0 l

1 0

1

 : l ∈ Zd

 which we denote as Z (H(Zd)). We

would like to find a cyclic vector ψ ∈ Cd such that the frame {MnTmψ : m,n ∈ Zd} has

a low coherence. This unitary operator system {MnTm : m,n ∈ Zd} can be considered as

projective action of Heisenberg group. This frame in Cd has d2 vectors. Vectors in this

frame can be considered as time-frequency shifts of a generating vector. Hence, this frame

is also called a Gabor frame (Gröchenig, 2013).

It is worth mentioning that for some prime d ≥ 5, Alltop (1980) has constructed a cyclic

vector f ∈ Cd, f(n) = e2πin3/d/
√
d, n = 0, 1, . . . , d− 1, which generates a frame with worst-

case coherence 1/
√
d. In addition, if we add the natural basis to this frame to get a set of

d(d+ 1) vectors, these vectors can be organized into d+ 1 mutually unbiased bases of Cd. It

is called mutually unbiased because any two vectors from different basis have inner product

with norm equal to 1/
√
d while two distinct vectors from the same basis has inner product

equal to 0 (since they are orthogonal). Meanwhile, the worst-case coherence of this set of

d(d+ 1) vectors reaches the lower bound (4.1).

Here, we attempt to construct a frame with d2 vectors. Due to Welch bound, the optimal

coherence we expect is 1/
√

(1 + d). If we can find a frame reaches this lower bound, it is

necessarily an equiangular tight frame. Zauner’s conjecture claims that for every d ≥ 2,

there exists a vector ψ ∈ Cd such that {MnTmψ : m,n ∈ Zd} is an equiangular tight frame,

i.e., the lower bound is achievable.

Assume ψ is a cyclic vector that leads to the lower bound, then we should expect that

∣∣∣〈ψ, πH(Zd)ψ
〉∣∣∣ = 1, for every g ∈ Z (H(Zd)) ,∣∣∣〈ψ, πH(Zd)ψ

〉∣∣∣ =

√
1

1 + d
, for every g /∈ Z (H(Zd)) .
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By altering the definition of ΓC a bit, let

Γ̂C :=

 1

n

I +
∑

g∈Z(H(Zd))\{e}
θgL(g) +

∑
g∈G\Z(H(Zd))

cgL(g)

+ Y

:
∣∣θg∣∣ = 1,∀g ∈ Z (H(Zd)) \{e},

∣∣cg∣∣ ≤√ 1

d+ 1
, ∀g ∈ G\Z (H(Zd)) ,

Y ∈ N(H(Zd))⊥
}
.

And Algorithm (3) is adapted to find the intersection between Γ̂c and R
(

ΦπH(Zd)
,Sd
)

. We

initialize our algorithm with a random vector drew from a multivariate Gaussian distribution.

To find the global optimum, the algorithm was restarted for many time. We illustrated the

experimental results in Figure 4.1. The figure shows that when the dimension is smaller

than 20, we have found cyclic vectors that lead to equiangular tight frames up to small

numerical errors. However, when the dimension increases, the chance to find such vectors

is reduced. Scott and Grassl (2010) has shown in numerical experiments that, at least for

every dimension smaller than 51, there exists a fiducial vector giving equiangular tight frame

in some eigenspace of a particular operator from the Clifford group (see Scott and Grassl

(2010) for details). We found that, if our algorithm is initialized with a vector randomly

selected in that eigenspace (which we refer as Zauner’s subspace)g, the chance of finding

ETFs becomes higher. See Figure 4.2 for the rate of success estimated from 50 restarts.

Figure 4.3 shows the convergence of our algorithm with and without extrapolation. It is

demonstrative that the extrapolation heuristic work quite well in practice.

It worths noticing that the set of operators {MnTm : m,n ∈ Zd} are mutually orthog-

onal. This can be verified by computing their pair-wise inner products directly. Thus

{MnTm : m,n ∈ Zd} in fact is an orthogonal basis of Cd×d. Then the problem of searching

for an unit-norm cyclic vector becomes equivalent to searching for a rank-one Hermitian ma-

trix H ∈ Cd×d such that |〈H,MnTm〉| = (d + 1)−1/2. Under this observation, let’s denote
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Figure 4.1: Worst-case coherence of frames generated by Heisenberg group. Blue circles:
Worse-case coherence of frames generated from alternating projection algorithm. Red dash
line: the Welch bound
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Figure 4.2: Success rate under different initializations. Blue circles: real and imaginary part
of the initial vector are drawn from a Gaussian distribution over the full vector space. Red
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Figure 4.3: Convergence of the proposed algorithm in the case of d = 17. Left column:
without acceleration. Right column: accelerated with the extrapolation scheme. Upper row:
a global minimum is found. Lower row: converge towards a local minimum.
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the set (Zd × Zd) \{(0, 0)} as A. Consider the two sets

• R̃ :=
{
H ∈ Cd×d : trace(H) = 1, rank(H) = 1, H = H∗

}
.

• Γ̃ :=
{

1
d

(
I +

∑
(m,n)∈A c(m,n)M

nTm
)

:
∣∣∣c(m,n)

∣∣∣ ≤√ 1
d+1 , for any (m,n) ∈ A

}
.

As an alternative to our general algorithm, one can set up a specific alternating projection

method to find the intersection between R̃ and Γ̃. As usual, projection onto R̃ can be

computed by using SVD. Projection onto Γ̃ can also be easily computed by shrinking the

modulus of the coefficients c(m,n), due to the orthogonality of MnTm’s.

4.3.2 Finite affine group

Let p > 2 be a prime number and Fp be the finite field of order p. Let Aff
(
Fp
)

denote the

finite affine group Fp o F×p , where F×p is a multiplicative group consisting of all non-zero

elements from Fp. The set underlying Aff
(
Fp
)

is
{

(b, a) : b ∈ Fp, a ∈ F×p
}

and the group

operation is defined by

(b1, a1) · (b2, a2) = (a1b2 + b1, a1a2) , for all b1, b2 ∈ Fp, a1, a2 ∈ F×p .

Given b ∈ Fp and a ∈ F×p , let Tb and Da be the “translation” and “dilation” operators on

C
(
Fq
)

defined by,

(Tbf) (t) = f(t− b),

(Daf) (t) = f(a−1t).

Let πAff(Fp) be a representation of Aff
(
Fp
)

on the space C
(
Fp
)

defined by,

πAff(Fp) : Aff
(
Fp
)
→ Aut

(
C
(
Fq
))
, (4.15)

(b, a) 7→ TbDa.
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Or, equivalently,

[
πAff(Fp)(b, a)f

]
(t) = f

(
a−1(t− b)

)
.

Note that the space of constant functions is invariant under π. πAff(Fp) is a direct sum

of two irreducible representations with dimension 1 (the trivial representation) and p − 1

respectively. Similarly, due to C(Aff
(
Fp
)
) ∼= Cp, we can write the operators Tb and Da as

matrices. Specifically, for every b ∈ Fp and a ∈ F×p , Tb, Da ∈ Cp×p. We index the rows and

columns with field elements and the (m,n)-th entry of the matrices are

(Tb)m,n = δm=n+b,

(Da)m,n = δm=an.

Given this representation, we would like to search for a unit norm cyclic vector ψ ∈ Cp such

that the group frame
{
TbDaψ : b ∈ Fp, a ∈ F×p

}
is a tight frame with a low coherence.

The same as the case for Heisenberg group, the algorithm converges to some local mini-

mum every time and we restarted the algorithm for several times. The results are shown in

Figure 4.4. Empirically, frames generated from finite affine groups have worst-case coherence

bounded a distance away from the Welch bound.

4.4 Discussion

We inspected the coherence of group frames in the space of operators associated with the

group von Neumann algebra and constructed an alternating projection method to find a

cyclic vector that leads to a frame with low coherence. The alternating projection can be

carried out in d dimensional space and resembles a projected gradient descent method. As

opposed to gradient descent optimization methods, our algorithm does not require a learning
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rate. The algorithm has a linear convergence rate locally. The extrapolation heuristic signif-

icantly accelerated the convergence of the algorithm in practice. But its theoretic analysis

still need to be carried out.

The non-convexity of our formulation makes the algorithm trapped in local optimum

quite often in high dimensions. To find an equiangular tight frame from Heisenberg group,

the algorithm needs to be restarted for many times. Thus, it is critical that the algorithm

is started near the global optimum. We tried starting our algorithm at the cyclic vector of

Alltop sequence, since it generates a frame with coherence that is very close to Welch bound.

However, it turns out to be a local optimum and the algorithm is not able to proceed further

from there.

Compared with the alternating projection algorithm proposed by Tropp et al. (2005), our

framework work with matrices of size Cd×d instead of a spectral matrices of size Cn×n. But

this comes with the constraint that the frame is imposed with a group structure which may

prevent the frame to achieve the optimal coherence. From experiments, we can see that the

choice of group sets affects the optimal coherence a group frame can achieve. The relation

between the group structure and its influence on the coherence of group frames could be a

meaningful future work.

4.5 Proof of local convergence of algorithm 1

To prove the local convergence of Algorithm 1, we resort to the work by Noll and Rondepierre

(2015) and the idea from Luke (2013). The techniques in Noll and Rondepierre (2015) apply

to real Euclidean spaces. Since we work in the complex vector spaces, we will use the

isometry between Cd×d and R2d2
to adapt the tools from Noll and Rondepierre (2015).

More specifically, let Cd×d and R2d2
be equipped with the standard inner product. Let

H = A + Bi ∈ Cd×d where A,B ∈ Rd×d are its real and imaginary part. Then, H is

equalized with α(H) :=
[
vec(A)> vec(B)>

]>
∈ R2d2

. Let E ⊂ Cd×d be the set of all d-by-d
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Hermitian matrices, i.e., E =
{
A+Bi : A = A> ∈ Rd×d, B = −B> ∈ Rd×d

}
. Then, we

can check that for any H1, H2 ∈ E , 〈H1, H2〉Cd×d = 〈α(H1), α(H2)〉R2d2 ∈ R. Note that the

outcome of inner product between two matrices from E is always a real number. In the rest

of this section, we will drop the subscript of such inner products. The following definitions

are necessary to our proof.

Definition 4.5.1. Let X be an Euclidean space. Given a non-empty closed subset A of X,

the projection onto A is the set-valued mapping PA associating with x ∈ X the non-empty

set

PA(x) = {a ∈ A : ‖x− a‖ = dA(x)} ,

where ‖·‖ is the Euclidean norm, induced by the scalar product 〈·, ·〉 and dA(x) is the distance

from x to A,

dA(x) = min {‖x− a‖ : a ∈ A} .

Meanwhile, for an a ∈ A, define P−1
A (a) := {x ∈ X : PA(x) = a}.

We will denote the sequence of alternating projections between non-empty closed sets

A and B by this standard notation: . . . , a, b, a+, b+, a++, b++, . . . with b ∈ PB(a), a+ ∈

PA(b), b+ ∈ PB(a+) and so on. And a → b → a+, respectively, b → a+ → b+ are referred

as building blocks of the sequence. The analysis on alternating projection between ΓC and

R (Φπ) is based on such sequences. And, it is valid to assume that every member from

these sequences are from PΓC (R (Φπ)) and PR (Φπ). Each of such member is from E . As we

argued previously, inner products between two members from E is a real value. This allows

us to adapt the following definition in Noll and Rondepierre (2015) which was originally

proposed for real Euclidean spaces.

Definition 4.5.2. (Separable intersection, Noll and Rondepierre (2015) Definition 1) Let A

and B be two closed subsets of Rn. We say that B intersects A separably at x ∈ A∩B with
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exponent ω ∈ [0, 2) and constant γ > 0 if there exists a neighborhood U of x such that for

every building block b→ a+ → b+ in U , the condition

〈
b− a+, b+ − a+〉 ≤ (1− γ‖b+ − a+‖ω

)
‖b− a+‖‖b+ − a+‖ (4.16)

is satisfied. We say that B intersects A separably at x if (4.16) holds for some ω ∈ [0, 2),

γ > 0. If it is also true that A intersects B separably, that is, if the analogue of (4.16) holds

for building blocks a→ b→ a+, then we obtain a symmetric condition, and in that case, we

say that A, B intersect separably at x.

Definition 4.5.3. (Normal cones Bauschke et al. (2013) definition 2.1) Let X be an Eu-

clidean space and A,B nonempty subsets of X. Let a ∈ A and u ∈ X.

• The B-restricted proximal normal cone of A at a is

N̂B
A (a) := cone

(
(B ∩ P−1

A a)− a
)

= cone
(

(B − a) ∩ (P−1
A a− a)

)
.

• The B-restricted normal cone NB
A (a) is implicitly defined by u ∈ NB

A (a) if and only

if there exist sequences (an)n∈N in A and (un)n∈N in N̂B
A (an) such that an → a and

un → u.

Lemma 4.5.1. (Restricted normal cone of ΓC). Suppose X ∈ ΓC takes the form

X =
1

n

I +
∑

g∈G\{e}
cgL(g)

+M,

for some cg ∈ C with
∣∣cg∣∣ ≤ C and M ∈ N(H(Zd))⊥. Let ∆ :=

{
g ∈ G\{e} :

∣∣cg∣∣ = C
}

be

the set of indices of cg that has modulus strictly equal to C. And let ∆c = G\ {{e} ∪∆}.
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The R (Φπ)-restricted normal cone of ΓC is

N
R(Φπ)
ΓC

(X) =

 s

n

(t− 1)I +
∑
g∈∆

cg∣∣cg∣∣(rg − C)L(g)

 : s ≥ 0, rg ∈ R, rg ≥ C, ∀g ∈ ∆, t ∈ C

 .

Proof. It is clear that for any X ∈ ΓC ,

P−1
ΓC

(X) =

 1

n

tI +
∑
g∈∆c

cgL(g) +
∑
g∈∆

cg∣∣cg∣∣rgL(g)

+M : rg ∈ R, rg ≥ C, ∀g ∈ ∆, t ∈ C

 .

Lemma 4.5.2. (Restricted normal cone of R (Φπ)). Suppose Y ∈ R (Φπ) takes the form

Y = P ∗π

σY ψψ∗ 0

0 0

Pπ,

for some ‖ψ‖2 = 1 and σY > 0. Any X ∈ NΓC
R(Φπ)

(Y ) can be written as

X = sP ∗π

∑d
j=2 σjuju

∗
j Z

Z∗ D

Pπ
where s ≥ 0, D ∈ C(n−d)×(n−d), Z ∈ Cd×(n−d), σj’s and uj’s are variables satisfying the

following condition,

1. σY ≥ σ2 ≥ · · · ≥ σd ≥ 0, j = 1, 2, . . . , d;

2. uj ∈ Cd, uj⊥ψ, j = 1, 2, . . . , d;

3. D = D∗;

4. trace(D) +
∑d
j=2 σj = 1− σY .
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Proof. It is clear that P−1
R(Φπ)

(Y ) is

P−1
R(Φπ)

(Y ) =

P ∗π
σY ψψ∗ +

∑d
j=2 σjuju

∗
j Z

Z∗ D

Pπ :
D=D∗∈C(n−1)×(n−d),Z∈Cd×(n−d),
σY ≥···≥σd≥0,uj∈Cd, uj⊥ψ,j=1,2,...,d


and therefore

P−1
R(Φπ)

(Y )− Y =

P ∗π
∑d

j=2 σjuju
∗
j Z

Z∗ D

Pπ :
D=D∗∈C(n−1)×(n−d),Z∈Cd×(n−d),
σY ≥···≥σd≥0,uj∈Cd, uj⊥ψ,j=1,2,...,d

 .

Note that every member in this set has trace equal to trace(D) +
∑d
j=2 σj . On the other

hand, every member in ΓC has trace equal to one. If X ∈ ΓC − Y , then trace(X) = 1− σY .

By definition, N̂
ΓC
R(Φπ)

(Y ) = cone
(

(ΓC − Y ) ∩ (P−1
R(Φπ)

(Y )− Y )
)

. If X ∈ N̂
ΓC
R(Φπ)

(Y ), it

must be true that trace(D) +
∑d
j=2 σj = 1− σY , which is condition (5).

Definition 4.5.4. (CQ-condition Bauschke et al. (2013) definition 6.6) Let c ∈ X. Let

A, Ã, B and B̃ be nonempty subsets of X. Then the (A, Ã, B, B̃)-CQ condition holds at c if

N B̃
A (c) ∩

(
−N Ã

B (c)
)
⊆ {0}.

Proposition 4.5.3. (CQ implies 0-separability, Noll and Rondepierre (2015) proposition 1).

Let PA(∂B\A) ⊂ Ã, PB(∂A\B) ⊂ B̃ , and suppose (A, Ã, B, B̃) satisfies the CQ-condition

at x ∈ A ∩B. Then A, B intersect 0-separably at x.

Now we are ready to proceed in our proof. First, we show that ΓC and the relaxed set

R (Φπ) intersect separably, if the intersection exists.

Lemma 4.5.4. Suppose that ΓC andR (Φπ) intersect at X ∈ Cd×d. (ΓC ,R (Φπ) ,R (Φπ) ,ΓC)

satisfies the CQ-condition at X. Further, ΓC and R (Φπ) intersect 0-separably at X.
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Proof. Suppose X ∈ ΓC ∩R (Φπ) takes the form

X =
1

n

(
I +

∑
g∈G\{e}

cgL(g)

)
+M = P ∗π

ψ ψ∗ 0

0 0

Pπ.
for some ψ ∈ Cd with ‖ψ‖2 = 1, cg ∈ C with

∣∣cg∣∣ ≤ C, M ∈ N(H(Zd))⊥. Let ∆ and ∆
c

be defined in the same way as previous. Suppose b ∈ NΓC
R(Φπ)

. By Lemma 4.5.2, it takes the

form

b = s1P
∗
π

∑d
j=2 σjuju

∗
j Z

Z∗ D

Pπ
with uj⊥ψ and trace(b) = trace(D) +

∑d
j=2 σj = 0. Then, it is easy to see that

〈
b, P ∗π

ψψ∗ 0

0 0

Pπ〉 = 0.

On the other hand, suppose a ∈ NR(Φπ)
ΓC

takes the form

a =
s2

n

(
(t− 1)I +

∑
g∈∆

cg∣∣cg∣∣(rg − C)L(g)

)

for some rg ≥ C. Now, assume a = −b. It is thus necessary to have

1. trace(a) = trace(−b) = 0.

2.

〈
a, P ∗π

ψψ∗ 0

0 0

Pπ〉 = −

〈
b, P ∗π

ψψ∗ 0

0 0

Pπ〉 = 0.
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The condition (1) implies t = 1. To check condition (2), we observe that

〈
a, P ∗π

ψψ∗ 0

0 0

Pπ〉 =

〈
a,

1

n

(
I +

∑
g∈G\{e}

cgL(g)

)
+M

〉

=
1

n

∑
g∈∆

∣∣cg∣∣ (rg − C)
≥ 0.

Equality holds if and only if rg = C for every g ∈ ∆ which is the case for a = 0. Therefore,

a = −b if and only if a = b = 0. This shows that N
ΓC
R(Φπ)

(X) ∩
(
−NR(Φπ)

ΓC
(X)

)
⊆ {0}.

Hence, the CQ-condition holds.

Further, given the CQ-condition and the fact that PΓC (R (Φπ)) ⊂ ΓC and PR(Φπ)(ΓC) ⊂

R (Φπ), we conclude that ΓC and R (Φπ) intersect 0-separably from Proposition 4.5.3.

Finally, Theorem 2 from Noll and Rondepierre (2015) shows the local linear convergence.

Theorem 4.5.5. (Noll and Rondepierre (2015), Theorem 2). Let A, B intersect 0-separably

at x∗ with constant γ ∈ (0, 2). Suppose B is 0-Hölder regular at x∗ with respect to A with

constant c < γ/2. Then there exists a neighborhood V of x∗ such that every sequence of

alternating projections that enters V converges R-linearly to a point b∗ ∈ A ∩B.

We refer to Noll and Rondepierre (2015) for details on Hölder regularity and its properties

(especially, Definition 2 and Corollary 3). In our case, we have shown the 0-seperability of

ΓC and R (Φπ). Meanwhile, since the set ΓC is convex, it is prox-regular and is σ−Hölder

regular with respect to R (Φπ) for every σ ∈ [0, 1) with a constant c > 0 that may be chosen

arbitrarily small. Thus, this theorem applies and concludes our proof on Theorem 4.2.7 in

the main text.
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dings for simple link prediction. In International Conference on Machine Learning, pages
2071–2080.

Tsiligianni, E. V., Kondi, L. P., and Katsaggelos, A. K. (2014). Construction of incoherent
unit norm tight frames with application to compressed sensing. Information Theory, IEEE
Transactions on, 60(4):2319–2330.

Turing, A. M. (1938). On computable numbers, with an application to the entschei-
dungsproblem: A correction. Proceedings of the London Mathematical Society, 2(1):544.

Vale, R. and Waldron, S. (2004). Tight frames and their symmetries. Constructive approxi-
mation, 21(1):83–112.

Vilnis, L. and McCallum, A. (2014). Word representations via gaussian embedding. arXiv
preprint arXiv:1412.6623.
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