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ABSTRACT

The theory of limits of dense combinatorial objects studies the asymptotic behavior of densities
of small templates in an increasing sequence of combinatorial objects. The inaugural limit
theory of graphons captures limits of dense graph sequences in a semantic/geometric limit
object that can be thought of as a measurable fractional version of an adjacency matrix over
[0, 1]. Since the theory of graphons is specifically tailored to graphs, to study limits of other
combinatorial objects, limit theories have been developed in a case-by-case basis. On the
other hand, the theory of flag algebras explored a syntactic/algebraic approach to the subject,
producing limit objects for general combinatorial objects (more specifically, for models of any
universal first-order theory on a finite relational language). While the minimalist nature of
the syntactic approach generates an elegant and clean theory, it has the drawback of losing
the geometric intuition of the underlying objects. To address this issue, in a joint work with
A. Razborov, we have developed the theory of theons, a semantic/geometric limit that works
in the same general setting of universal theories. In this dissertation we review the theory of
theons and apply these tools of limit theory to two different settings.

Our first application of limit theory, which uses both flag algebras and theons, is to quasir-
andomness. The existing theory of quasirandomness provides a plethora of quasirandomness
properties with their rich implications and separations for several different combinatorial
objects such as graphs, hypergraphs, permutations, tournaments, etc. However, such study
of quasirandomness in the literature, much like in the early limit theory, has been made
in case-by-case fashion for each type of combinatorial object. We develop a more general
and systematic study of quasirandomness in the same setting of universal theories. Our
main motivation is to study “natural” quasirandomness properties in the sense that they are
preserved under local combinatorial constructions, which are captured by open interpretations.
Our properties mainly revolve around the notion of couplings of limit objects, which are align-
ments of limit objects in the combined theory, and uniquely coupleable limit objects, which

are limit objects such that every coupling is equivalent to the random coupling. We prove
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several implications, separations and characterizations of our quasirandomness properties
and we show the best possible separation between our properties and the quasirandomness
properties of the literature.

Our second application of limit theory is a generalization of the celebrated Erdds—Stone-
Simonovits Theorem and its generalization by Alon—Shikhelman that characterize the asymp-
totic behavior of the maximum density 7r§_- of the t-clique K in a graph without non-induced
copies of graphs in a family F in terms of the chromatic numbers of the graphs in F. We show
that these theorems extend to the general setting of any local combinatorial construction
encoded by an open interpretation I: Tgrapn ~» 1" in the sense that we can characterize
the maximum density W} of a t-clique Ky obtained from a limit graph interpreted from a
limit object of 7" in terms of an abstract chromatic number x(7). This in particular covers
the case where the copies of graphs in F are instead assumed to be induced, and the case
where we have graphs with extra structure (e.g., a linear order, a cyclic order, a coloring)
and we want to maximize the density of t-cliques (with any structure) while forbidding some
induced or non-induced family F of graphs with structure. We also show that if 7" is finitely
axiomatizable (for the example of graphs with extra structure, this includes the case when
the family F is finite), then x(I) (and hence also %) is computable from the list of axioms

of T" and a description of I.

Part of this dissertation is based on a joint work with Alexander A. Razborov.
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CHAPTER 1
INTRODUCTION

The theory of limits of discrete combinatorial objects has been thriving over the last couple
of decades. The main thrust of the theory is that some properties of extremely large
combinatorial objects can be encoded in a continuous limit that is susceptible to analytical
and continuous tools. For this reason limit theory is also sometimes associated with the
name continuous combinatorics. One of the first limit theories was that of graphons [54]
(see also [53]), which encoded all properties captured by graph homomorphism densities by
graphons, i.e., symmetric measurable functions W: [0,1]> — [0, 1]. The field was drastically
expanded with the theory of flag algebras [59], where not only was it shown that by considering
induced subgraph densities one greatly reduces the redundancy of the description allowing
more concrete results to be proven, but also the theory was extended to capture “general”
combinatorial objects (more specifically, for models of any universal first-order theory on
a finite relational language). This uniform treatment of combinatorial objects of different
nature also provided operators in the limit world corresponding to usual local combinatorial
constructions such as graph of inversions of a permutation, 3-hypergraph of triangles of
a graph, graph induced by the common neighborhood of two vertices (these are formally
captured by open interpretations between different universal theories).

Other than the different levels of generality, the theories of graphons and flag algebras differ
in a more fundamental level: the former is a geometric/semantic limit as a graphon can be
thought of as a fractional graph over [0, 1] and the latter is an algebraic/syntactic limit as the
flag algebra homomorphisms that encode limits are essentially just lists of sampling densities
satisfying some polynomial relations. This means that proofs in the former theory often
have a geometric intuition while proofs in the latter theory are often comprised of algebraic
manipulations with almost no intuition at all. To address this issue, in a joint work with
A. Razborov, we developed the theory of theons [24], a geometric/semantic limit theory in the

same general setting of universal theories used by flag algebras. Other geometric/semantic
1



limit theories had also been developed in an ad hoc manner for several particular objects such
as digraphs [31], hypergraphs [34], permutations [44], interval graphs [30], etc. and for general
universal theories in [4, 5]. However, the theory of theons also provides geometric/semantic
limit world operators that capture local combinatorial constructions between different universal
theories. In this dissertation, we use tools of continuous combinatorics to study two different

applications: natural quasirandomness properties and the abstract chromatic number.

One of the main motivations of the theory of graphons [54] was the theory of graph
quasirandomness introduced by Thomason [65] and Chung-Graham-Wilson [17]. The main
discovery of the latter theory is that several properties that hold asymptotically almost surely
for the sequence of Erdés-Rényi random graphs (Gn,p)nen can be re-phrased as properties
of a deterministic graph sequence (Gp)pen. Since then, the theory of quasirandomness
has expanded not only within graph theory [16, 61, 62, 60, 71, 45, 20] but also towards
studying quasirandomness for other combinatorial objects such as tournaments [15, 46, 25],
permutations [22, 23, 49, 10] and hypergraphs [14, 18, 48, 47, 28, 51, 52, 66, 1], etc.

Just as in the case of early limit theory, the theory of quasirandomness has been studied
so far in a case-by-case manner, with very few attempts at an intrinsic definition of quasiran-
domness. As the first application of continuous combinatorics in this dissertation, we initiate
a more systematic study of quasirandom properties that can be reasonably identified as
“intrinsic” in the sense that they can be formulated for arbitrary models of a universal theory
(continuing the theme of generality of the theories of flag algebras [59] and theons [24]) and
“natural” in the sense that they are preserved by local combinatorial constructions.

The main motivation behind this natural quasirandomness theory is that several of
the quasirandomness properties of the literature can be stated in terms of properties of
couplings between two limit objects (i.e., a limit object in the combined theory that “projects”
to the previous two objects under the appropriate structure-erasing “projection”). As an
example, the equivalence between properties P; and Py of [17] can be stated in graphon

language as: (P)) a graphon W is p-quasirandom (i.e., the non-induced labeled density
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t(G,W) def

f[O,l]V [Tijer W(zi, zj) dx of any subgraph G = (V. E) with m edges is p™) if
and only if (P4) in any red/blue coloring of its vertices, red edges have density ¢®p, where ¢
is the density of red vertices and p is the edge density of W. Thus, graphon quasirandomness
is also equivalent to having all labeled densities of red/blue colored graphs G in any red/blue
coloring of W being ¢" (1 — c)bq, where r and b are the number of red and blue vertices of G,
respectively and ¢ is the labeled density of the underlying graph of G in W. This example is
paradigmatic of the notion of unique coupleability: it says that a graphon is quasirandom if
and only if there is only one “coupling” of it with any given red/blue coloring, namely, any
coupling has the same sampling densities as the random coupling. In this format, this unique
coupleability property is perfectly generalizable to arbitrary theories and using the theory
of theons we can show surprising theorems such as: if a limit object is uniquely coupleable

with any red/blue coloring, then it is also uniquely coupleable with any linear order, with

any permutation, and in fact with any rank 1 limit object.

Two of the most famous theorems in extremal graph theory are Turdn’s Theorem [67]
characterizing the maximum number of edges in a graph without /-cliques K, and Ram-
sey’s Theorem [58] that says that for every £, a large enough k-uniform hypergraph must
either contain an /-clique K ék) or an /-independent set Fék). The celebrated Erdos—Stone—
Simonovits Theorem [38, 37| generalizes Turan’s Theorem by characterizing the maximum
asymptotic edge density when we instead forbid a family F of non-induced subgraphs in terms
of the smallest chromatic number y(F) of a graph in F. In another direction, Erdés [35]
generalized Turan’s Theorem by characterizing the maximum number of ¢-cliques K; in a
graph without f-cliques Ky (¢ < ¢) and Alon—Shikhelman [2] provided an analogue of the
Erdés—Stone—Simonovits Theorem that characterizes the maximum asymptotic density of
K} in a graph without any non-induced copies of graphs in a family F also in terms of x(F)
(Theorem 5.0.1).

A relatively new type of generalization of the Turdn and Erdos—Stone-Simonovits theorems

is to study maximization of the asymptotic edge density in graphs with extra structure while
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forbidding non-induced copies of some family F. This has been done for ordered graphs [57],
cyclically ordered graphs [9] and edge-ordered graphs [41] and in all these cases a theorem
similar to the Erdés—Stone—Simonovits Theorem is proved in terms of a suitable generalization
of the chromatic number (see also [64] for a survey). However, all these cases were done in
an ad hoc fashion.

A uniform and general treatment of this problem was first done in [24, Examples 25 and 31]:
in the general case, we want to maximize asymptotic edge density in a hereditary family of
graphs with some extra structure. Note that even when restricted to the usual case of graphs
without extra structure, this is already a generalization of the Erd6s—Stone-Simonovits as
the forbidden subgraphs are induced. This general setting is formally captured by using open
interpretations I: Tgpapn ~» 1" that provides a combinatorial construction that produces a
graph I(M) from a model of a universal theory T'; the problem then consists of maximizing
the asymptotic edge density of (M) over all possible choices of M as the size of M goes to
infinity for a given fixed /. For example, the aforementioned setting of (cyclically) ordered
graphs are captured using the construction I that simply “forgets” the (cyclic) order.

In [24, Example 31], it was shown that in this general setting a result analogous to the
Erdés—Stone—Simonovits Theorem still holds for an appropriately defined abstract chromatic
number x(I). However, the formula for x(I) presented in [24, Equation (16)] is considerably
abstract and it was left open if x(/) was (algorithmically) computable even when T is assumed
to be finitely axiomatizable. As our second application of continuous combinatorics, we
further extend this result giving an analogue of the Alon—-Shikhelman Theorem in the general
setting of an open interpretation I: Tgrapn ~» T by characterizing the maximum asymptotic
density of Ky in terms of the abstract chromatic number x(I) and we provide an alternative,
more concrete formula for the abstract chromatic number x (7). Such formula allows us to
deduce that when T is finitely axiomatizable, then x(I) is (algorithmically) computable from
a list of the axioms of T" and a description of I. Our alternative formula is based on a partite

version of Ramsey’s Theorem for universal theories that informally says that given ¢, m € N,



there exists n € N such that for every model M and every partition of M into ¢ parts all of
size at least n must have a “uniform” submodel on the same partition with all parts of size
m (this version of Ramsey’s Theorem for disjoint unions of theories of hypergraphs follows
from [42, Section 5] and the non-partite version, when ¢ = 1, for general theories follows from
the general Ramsey theory for systems of [55]). By using these different formulas for x(7),
we can retrieve the results of [57, 9, 41] on ordered graphs, cyclically ordered graphs and

edge-ordered graphs, respectively from the general theory.

The dissertation is organized as follows. In Chapter 2, we review the concepts and results
of continuous combinatorics that are used on our diverse applications. In Chapter 3, we
present new results of continuous combinatorics that were developed while studying natural
quasirandomness properties and that are crucial to some of its proofs. Chapter 4 contains
the application of continuous combinatorics to natural quasirandomness. In Chapter 5, we
present the results related to the abstract chromatic number. Except for Chapter 2, the last
section of each chapter contains some concluding remarks and open problems related to the

chapter’s topics.



CHAPTER 2
A REVIEW OF CONTINUOUS COMBINATORICS

Throughout this dissertation, we let N def {0,1,2,...} denote the set of non-negative integers

and let N4 d:efN\{O} For n,?¢ € N, we let [n ]d—ef{l .,n}and (n)y (Lfn(n 1) (n—0+1)

d—ef{AC

and for a set V', we let oV def {A C V'} be the collection of all its subsets, we let ( g)
V' | |[A| = ¢} be the set of all subsets of V' of size ¢ and we let (Z) def {ACV |]A] > (]
For V.CNand ACV,let tgy: [|A]] — V be the injection that enumerates A in increasing
order; we will abuse notation and omit V' from the notation (as t4) when it is clear from
context. We further let r(V) = def Uren,, ( 5) be the set of all finite non-empty subsets of

V and we let r(V, () = dof

Ute (‘t/) The usage of the arrow — for a function will always
presume that the function is injective. We further let (V'), be the set of all injective functions
of the form a: [¢] — V and we let Sy be the group of all bijections a: V — V. We will
frequently abuse notation by identifying [n] with n in notation similar to the above, e.g.,
we will use r(n, /) as a shorthand for r([n],f). Random variables will always be typed in

math bold face. For two random variables with values in the same o-algebra, X ~Y

will mean that X and Y are equidistributed.

2.1 Model theory

As we noted in the introduction, our preferred way of seeing a “general” combinatorial object
is based on notions of first-order logic and model theory. In this section, we review some of
the concepts of these theories needed for our application (we refer the reader to [11, 7] for a
more comprehensive introduction to the topic).

A (first-order) relational language® is a set £ of predicate symbols. Each predicate symbol

P € L comes along with a positive integer k(P) € N4 called its arity and designates the

1. Languages are sometimes also called signatures or vocabularies, and in general (when non-relational)
may contain also constant and/or function symbols.



number of variables that P depends on. All of our languages will be assumed to finite
first-order relational languages. Given our restrictions on the language £ (no constant or
function symbols), atomic formulas may only have the form P(z;,, .. or Ty =;

'7xik(p)) 2

(we do allow equality), and open formulas® are made from atomic formulas using standard
logical connectives =, V, A, —, >, etc., but not quantifiers. A universal formula is a formula
of the form Vzq - Vo, F(x1,...,x,), where F' is an open formula.

A wuniversal (first-order) theory T in a relational language L is a set of universal formulas
called axioms; universal quantifiers in front of the axioms are usually omitted. A structure K
in a relational language £ consists of a vertez set> V(K) and a mapping that assigns to every

v k).

P € L a k(P)-ary relation Rp(K) C V(K)¥(P): the size of K is denoted by | K]
A structure K is a model of a theory T' in the language £, denoted by K E T, if all axioms of
T are universally true on M (see any textbook in mathematical logic for a formal definition).

As usual, an embedding of a structure Kj in £ in a structure K9 in £ is an injective

function f: V(K1) — V(K3) that respects the relations of £, that is, we have
OBS Rp(Kl) < foac€ RP(KQ)

for every P € L and every a € V(Kl)k(P). A positive embedding of K1 in Ko is an injective
function f: V(K7) — V(K3) that is only required to preserve relations but not non-relations,

that is, we have
o€ RP(Kl) — foa€ RP(KQ).

An isomorphism between Kq and Ks is a bijective embedding of K1 in K9 and when one
such isomorphism exists, we say Ki and Ky are isomorphic (denoted K = K»). For a set

V', we let Ky [T] be the set of all models K of T" with V(K) = V and for n € N, we let

2. Sometimes also called quantifier-free formulas.

3. Sometimes also called universe or domain of discourse.
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M [T] def Kn[T]/ = be the set of all models of T of size n up to isomorphism (we will typically

think of elements of M,,[T] as models that are representatives of their isomorphism classes).
We also let M|T] def Unen Mn[T] be the set of all finite models of 7" up to isomorphism.
We can think of ICy/[T'] as models of T" labeled by V. For n = |V| and K € Ky/[T], we denote
by [K] € My[T] the isomorphism type of K.

Given n € N and a model K € K,[T], the open diagram of K is the open formula

Dopen(K)(x1, ..., 2n) given by

AN wi#z | Al N Plan....zap)

1<i<j<n Pel
aERP(K)
A /\ ﬁP(xal,...,l'an)
PeLl
o€V (KMPN\ Rp(K)

Under this definition, it follows that a: V(K) — V(K’) is an embedding of K in K’ if and
only if K" E Dopen(K)(a1, ..., an), that is, if and only if (o, ..., ay) satisfies Dopen(K) in
K’

Given a structure K in £ and a set V' C V(K), the substructure of K induced by V,

def Rp(K) N VEP) for every P € L.

denoted K|y, is defined by V(K |y) v and Rp(K]y)
A property that characterizes universal theories is that they are precisely the first-order
theories whose class of models is closed under taking induced substructures (and thus we use
the name (induced) submodel); this property is key for the sampling definition of densities of
continuous combinatorics. We say that T' proves or entails a formula F', denoted by T+ F,
if it does so in first-order logic. Using the completeness theorem [11, Theorem 1.3.21] and
induced submodel property above, it follows that if 7" is a universal theory and F' is an open

formula, then 7'+ VZ, F(Z) is true if and only if the formula VZ, F/(Z) is true in every finite

model of T'. A universal theory T is called degenerate if M [T] = @ for some n € N; by the



submodel property above, this is equivalent to requiring that 7" does not have infinite model.

Given two relational languages £1 and L9, a translation from £ to L9 is a map [ that
maps each P € £ to an open formula I(P) in L£o. The map I is extended to open formulas by
declaring that it commutes with logical connectives. An open interpretation from a universal
theory T7 in £1 to a universal theory T5 in L9 is a translation from £ to L9 such that for
each axiom VZ, F'(Z) of T7, we have Ty = VZ, I (F')(Z); we denote such open interpretations as
I:Ty ~ Ty. Translations I from £ to L9 give a natural way of constructing a structure

def

I(K) in L1 from a structure K in L9 by letting V(I(K)) = V(K) and for every P € Ly,

letting

Rp(I(K)) € {(v1,...,v¢p)) € VIEEP) | K B I(P)(u1,...,op)))
be the set of all tuples (vy,...,vg(p)) of vertices of K" that satisfy I(P)(v1,...,v(p)) in K.
Using the completeness theorem [11, Theorem 1.3.21] of first-order logic, it follows that for
universal theories 17,75 in L1, L9, respectively and a translation I from £q to L9, I is an
open interpretation from T to T5 if and only if for every finite model K of Ty, I(K) is a
model of T (i.e., [(M[T3]) C I(M][T}])). We denote the identity interpretation of a theory
T byidp: T~ T.

Given two universal theories T7,T» in relational languages L1, Lo, respectively, their
disjoint union is the theory T7 U Ty on the disjoint union £ U L9 of the languages whose
axioms are those of T (about symbols in £1) and of T5 (about symbols of in £5). The
two most important types of open interpretations are the structure-erasing interpretations,
which are open interpretations of the form I: T} ~» T7 U Ty that act identically on the
language of T7 and axiom-adding interpretations, which are open interpretations of the form
I:Ty ~ Ty when T5 is obtained from 77 by adding axioms and [ acts identically on the
language of T7. Given two open interpretations I: 17 ~» T3 and J: Ty ~» Ty, we denote by

TUJ: Ty UTy ~» Ty U Ty the amalgamation interpretation that acts as I on 77 and acts as



J on Th.

Two open interpretations I,.J: T ~» Ty are equivalent if for every P € L1, we have
Ty V2, (I(P)(Z) < J(P)(Z)) (or, equivalently, if they define the same maps Ky [1p] —
KCy/[T1] for each finite set V). The category whose objects are universal theories on finite
relational languages and whose morphisms are open interpretations up to equivalence is
denoted INT. Under this definition, every open interpretation I: 77 ~» T5 can be decomposed
as [ = JoAoS, where S: T} ~ T UT5 is structure-erasing, A: T1 UTH ~~ T' is axiom-adding

for the theory T' obtained from 77 U T by adding the axioms
VI, (P(Z) ¢ I[(P)(7))

for every P in the language of 77 and J: T ~» T is the isomorphism of INT that acts
identically in the language of T and acts as I in the language of T} (the inverse of J acts
identically on the predicate symbols of T5, see [24, Remark 2]).

A universal theory T' in a relational language L is canonical if for every P € L, the theory

T entails

\/ T = Tj %ﬁP(xl,...,:ck(P)). (2.1)
1<i<j<k(P)
Since every universal theory is isomorphic in INT to a canonical theory (see [24, Theorem 2.3)),
we will assume that all of our theories are canonical.

The pure canonical theory in L, denoted T is the theory whose axioms are precisely (2.1)
for each P € L. A structure in £ is canonical if it satisfies (2.1) for every P € L (equivalently,
if it is a model of T). Since we will only be working with canonical theories, all of our
structures will also be assumed to be canonical.

Other important examples of canonical theories include the theory of k-hypergraphs

T}, -Hypergraph, Whose language contains a single predicate symbol E of arity k(E) def ) and

10



whose axioms are (2.1) for P = E and

Vf, (E(ZL‘l,...,ZL‘k) _)E(xa(l)a"'7$0(k))) (U € Sk)a (22)

the theory of (simple) graphs Traph def 9_Hypergraph; the theory of (strict) linear orders

T1inOrders Whose language contains a single binary predicate symbol < and whose axioms are

Vo, =(x < z);
VE, (21 # 9 — (21 < 22 V 29 < 27));

VZ, (z1 < 29 Ao < T3 — 1 < T3);

and the theory of c-colorings Ti._oloring, Whose language contains ¢ unary predicate symbols

X1, - - -, Xe and whose axioms are

Vm,ﬁxi(:c) V _'Xj(x) (1 <i<j< C);

vz, \/ Xi(x).

i€l

Note that T5_coloring and 71 -Hypergraph are isomorphic in INT.

2.2 Densities and convergence

In this section, we justify the name “limit theory” by defining the notion of convergence
studied by it. This notion of convergence is based on sampling densities of submodels of a
large model.

Given models M and N of the same canonical theory T" with |M| < |N|, the (unlabeled

11



induced) density of M in N is

1V e Chi) | My =}

(far)

p(M,N) =

Y

that is, it is the normalized number of submodels of N that are isomorphic to M. The labeled

(induced) density of M in N is

def [{a: V(M) — V(N) | @ embedding of M in N}|

that is, it is the normalized number of embeddings of M in N. The labeled non-induced

density of M in N is

def |{a: V(M) — V(N) | a positive embedding of M in N
(01, ) e VD = V) | i i

that is, it is the normalized number of positive embeddings of M in N.

It is easy to see that these quantities are related via the formulas

Aut(M
tlnd(MvN): %p(M7N)7 (23)
tinj (Mv N) = Z tind(K7 N)7 (24)
KE’CV(M)[T]

VPEL,Rp(M)CRp(K)

where Aut(M) denotes the automorphism group of M (i.e., the set of all isomorphisms
between M and itself).

A sequence (Np)pen of models of a canonical theory T is convergent if |[Np| < [Np41]
for every n € N and for every finite model M of T, the sequence of densities (p(M, Np))neN
is convergent (this is equivalent to requiring that (tj,q(M, Np))pen is convergent for every
M € MI[T] and also equivalent to requiring that (tin;(M, Np))pen is convergent for every

M € M[T], see [24, Proposition 2.5]). Since M[T7] is countable, this notion of convergence is
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(pre-)compact: if (Np),en is a sequence of models of T with |Ny,| < |Ny41| for every n € N,
then a simple diagonalization argument shows that (Ny,),cn has a convergent subsequence.

As we mentioned in the introduction, we will use the theories of flag algebras [59] and
theons [24] that provide limit objects to these convergent sequences from which the limit
densities limy,—o0 p(M, Ny,) can be extracted. The goal of the next two sections is to provide
the definitions necessary for the following theorem on the equivalence of these different

encodings of convergent sequences.

Theorem 2.2.1 ([54, 59|, [24, Theorem 6.3], see also [24, Sct. 7]). Let Q be an atomless

standard probability space and consider the following objects for a canonical theory T'.
i. A convergent sequence (Ny),en of models of T
ii. A positive homomorphism ¢ € Hom™ (A[T],R) from the flag algebra A[T).
iii. A (weak or strong) T-on N over .
iv. A local exchangeable array K supported on models of T.

The objects above are cryptomorphic in the sense that given an instance of one of them,
one can “explicitly” construct instances of the others that satisfy the following for every

m € N and every K € ICp,[T):

dim p(K, Np) = ¢(K) = op(K) = PIK|),) = KJ;

T ting (5, Nn) = 0((K)) = ting (K. N) = PIK |, = K],

Theorems as the above are known in limit theory as two-sided? existence theorems.

4. One-sided would be if only constructions in one of the directions were provided.
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2.3 Flag algebra: the syntax

In one sentence, the theory of flag algebras can be summarized as the study of relations
that the coordinates of ¢ € [0, 1]MIT] must satisfy if ¢(M) def limy,—y00 p(M, Ny,) for some
convergent sequence (N )pen for its own sake, without any explicit references to the actual

limit object. In this section we present the fraction of the theory of flag algebras used in our

)

applications?; we refer the interested reader to [59] for a more thorough treatment.

Given models My, My, N of T with |My| + |Ms| < |N|, the joint density of M7 and Mo
in N is defined as

(M, My: N) ! {(V17V2> € (“/]\(jf'))x(“/ﬂ(j;)) ‘ ViNVa =@ ANy, = My ANy, & MQH
p 1, 412, - (|N|)<|N|—‘M1|) ,
| M| | My

that is, it is the probability that picking disjoint subsets V| and V5 of V(N) of sizes | M|
and |Ms|, respectively, yields submodels of N isomorphic to M7 and My, respectively.
Let A[T] be the quotient of the space RM(T] of all formal R-linear combinations of finite

models of T" by the linear subspace generated by elements of the form

M- Y p(M MM
M'eM,[T]

for M € M[T| and ¢ > |M].

Lemma 2.3.1 ([59, Lemma 2.4]). The bilinear mapping A[T] x A[T] — A[T]| defined by

def
My-My S Y p(My, My; N)N,

NEM[T]

for My, My € M[T] and n > |M1| + |Ma| is well-defined and turns A[T] into an R-algebra

5. The main omissions are the fact that we work only with the 0 type of flag algebras (i.e., there is
no partial labeling of models), we skip all material related to homomorphism extensions (this essentially
corresponds to random partial labelings) and differential methods.
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whose multiplicative identity is (the equivalence class of) 1 def ZMeMn[T] M for any n € N.
Furthermore, the theory T is non-degenerate if and only if the algebra A[T] is not the

zero algebral.

The algebra obtained from the lemma above is called the flag algebra of the theory T

Recall that Hom(A[T],R) denotes the set of all R-algebra homomorphisms from A[T]
to R (i.e., maps that preserve the operations and the multiplicative identity). A positive
homomorphism is a homomorphism ¢ € Hom(A[T],R) such that ¢(M) > 0 for every
M € M[T] (since 1 =} prepm, () M, this in particular implies ¢(M) € [0,1]); we denote
the set of positive homomorphisms by Hom™ (A[T],R). The intuition behind the definition
of positive homomorphisms is that the value ¢(M) is the limiting value limy, o0 p(M, Ny,) of
the density M in some convergent sequence (Np,),cn. We typically think of Hom™ (A[T], R)
as a subset of [0, 1]M[T]; this allows us to equip Hom™ (A[T], R) with the density topology,
which is the topology induced from the product topology of [0, 1]MT]. With this and (2.3)
in mind, for M € M[T], we let

def |Aut(M)|

W= M

denote the element of A[T] that encodes the labeled (induced) density of M.
The main theorem of flag algebras is the cryptomorphism between items (i) and (ii) of
Theorem 2.2.1, that says that Hom™* (A[T], R) precisely captures the set of limits of convergent

sequences7 .

6. In [59, Lemma 2.4], it is shown only that if 7" is non-degenerate, then A[T] is not the zero algebra, but
the converse is obvious as if M,,[T1] is empty, then 1 =37 ¢ 1y M = 0.

7. Again, in [59, Theorem 3.3], only the non-degenerate case is considered, but the degenerate case
holds trivially since then there are no convergent sequences and the algebra A[T] is the zero algebra thus
Hom™ (A[T], R) is empty.
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2.4 Theons: the semantics

In this section, we present the geometric/semantic limit theory of theons. In the same way
that the definition of model of a theory progresses through associating relations to predicate
symbols to form structures then requiring the structure to satisfy axioms, the definition of
theons can be seen as associating peons to predicate symbols to form Euclidean structures
then requiring Euclidean structures to satisfy axioms.

Given an atomless standard probability space 2 = (X, A, 1), a set V and ¢ € N, let
Ev () &t x7(V) and Eve(2) def X"V we equip these sets with the completion® of the
product measure of |r(V)| and |r(V,{)| copies of the measure p, respectively. By abuse
of notation, we will also denote this completion measure by p. We will further abuse the
notation and denote simply by [0, 1]* the space ([0, 1], B, A), where By is the Borel o-algebra
and A is the (¢-dimensional) Lebesgue measure. When (2 is the space [0, 1], we will omit it
from the notation. Furthermore, for atomless standard probability spaces € and €', we let
Q x Q' be their product and we will abuse notation by identifying the spaces /(9 x Q') and
Ev(Q) x E () via the correspondence £y (Q x Q) 3 2« (y, 2) € Ey(Q) x Ey () given by
ya T (@a) and 24 (@g)2 (Aer(V)).

The diagonal sets are defined as Dy (1) dof {freéy(@) | FvweV (vFwAzyy =
i)} and Dy () def {z € Eyp() | Fvw € Vi(v # wAagy = zgy)} e, they
are the sets of points that have some repetition in coordinates indexed by singletons. An
injective function a: [k] — V defines natural projections X (%) —- X (Uz]) given by the formula
a*(z)y def Ta(a) (A€ (UZ])) By abuse, we also use the same notation o™ for the projections
Ev(Q) — &,(Q) and Eyy(Q) — &, ¢(2) defined by the same formula (but with A ranging
either in r(k) or r(k,()).

8. In [24, Sct. 7] we carefully considered the difference between equipping these sets with the product
o-algebra or with its completion, cf. the discussion in [53, page 218]. It was needed to differentiate between
weak theons (satisfying the axioms a.e.) and strong ones (satisfying them everywhere off-diagonal) and how
constructively can one go from the former type to the latter via removal lemmas. As we prefer to avoid
dwelling into these issues here, we make the simplifying assumption of completeness once and for all.
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Fix an atomless standard probability space 2 = (X, A, 1) and a finite relational language
L. For a predicate symbol P € L, a P-on over §) is a measurable subset of 5k(P)(Q)- An
Euclidean structure in £ over € is a function N that maps each predicate symbol P € £
to a P-on Np over €. Given an Euclidean structure over €, a finite set V and a structure

K € Ky[I], define the following measurable subsets of &y (f(£2):

(&AM N N @) W)

PeL acRp(K)
Tina (K, N) © Tig(K.N) 0 ) N @) Ep) \Ne).
PeL ae(V(K))yp)\Rp(K)
If we interpret elements of £;,(§2) as “limit k-tuples”, then Tiy; (K, N) is the set of all “limit
|V|-tuples” that are positive embeddings of K in A and the set T,q(K,N) is the set of all
“limit |V|-tuples” that are embeddings of K in N. This and (2.3) motivate the following

density definitions:

tin (V) 0 (T (K, N
tind (K, V) % (T (K, N);

oK) (K.,

For a canonical theory T'in £, a (weak) T-on over §2 is an Euclidean structure N in £ over Q
such that for every M € M[T;]\ M[T], we have ¢pr(M) = 0 (equivalently, t;,q(M,N) = 0),
that is, every structure that is not a model of T has zero density in N'. A strong T-on over
Q is an Euclidean structure A/ in £ over §2 such that for every M € M[Tz] \ M|[T], we have
Tipa(M,N) C DV(M)(Q), that is, N does not have any copy of non-models of T', except in
the diagonal. We use the names peons and theons for P-ons and T-ons when referring to
these objects for generic P or T.

In this language, a k-hypergraphon of [34] is simply a strong T} _fypergraph-on and there
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is a (not one-to-one) correspondence between graphons W of [54] and Tgapn-ons N that

preserves densities given by

Wiz e&|rg g <Wrpy, 2}

Wy N,

where

Wi (21}, 2(2)) o M{z19y | (@) 2p) 41,2y) END). (2.5)

Note that the definition of theons, weak or strong, are ensuring that Euclidean structures
satisfy the axioms of the theory in an indirect way, by requiring that its “submodels” are all
models of the theory. To state the equivalent formulation as Euclidean structures that satisfy
the axioms of the theory we need a couple more definitions.

For an open formula F'(x1, ..., x,) and an equivalence relation ~ on [n] with m equivalence
classes, we let Fx(y1,.--.,Ym) def 7 (Yuys- -+ Yuy, ), Where v; is the equivalence class of i € [n].
A canonical theory T is called substitutionally closed if for every axiom Vo F(x1,...,xy) and
every equivalence relation ~ on [n], T" proves Vy, Fx(y) using only propositional rules and
possibly renaming variables in its axioms (but substitutions of the same variable for two
different variables are disallowed). It is important to note that this is a technical property
of the axiomatization of T" that can easily be obtained by adding all theorems of T to its
axioms (and this preserves the class of models of T).

For an Euclidean structure A in £ over Q and an open formula F(x1,...,xy), the truth

set of F'in N is the set T(F,N) C &,(Q) defined inductively as follows.

i. If F'is P(xjy,..., ;) and i1,...,4 are not pairwise distinct, or F' is x; = x; with
i # j, then T(F,N) def o

i Tz = 25, N) € g, ().

18



iii. If Fis P(x;,,...,2;,) and iq, ..., i} are pairwise distinct, then T'(F, \) dof (*) Y Np),

where 7 is viewed as a function i: [k] — [n].

iv. T(—, N) commutes with logical connectives (e.g., we have T'(FV Fa, N) def T(F,N)U
T(Fy, N)).

Theorem 2.4.1 ([24, Theorem 3.7], see also [24, Sct. 7]). Let Q = (X, A, 1) be an atomless
standard probability space, let T' be a substitutionally closed canonical theory in a language £
and let N' be an Euclidean structure in L over Q). Then N is a weak [strong] T-on if and only
if for every axiom VZ, F(x1,...,xy) of T, we have u(T(F,N)) = 1 [T(F,N') 2 £,(2)\ Dy (Q),
respectively].

Naturally, the main theorem of the theory of theons is the addition of weak and strong
theons to the list of objects of Theorem 2.2.1 that are cryptomorphic to convergent sequences.
The particular cryptomorphism between strong and weak theons is given by the Induced
Euclidean Removal Lemma [24, Theorem 3.3] that says that any weak theon can be turned
into a strong theon by changing only a zero measure set of its peons. In Chapter 3, we will
prove a stronger version of this theorem, the Euclidean Robustness Lemma, Theorem 3.6.6
(see also Lemma 3.6.5).

The other cryptomorphism is actually proved by adding another intermediate object to
the list of cryptomorphisms: local exchangeable arrays. This connection was first explored
for the case of (di)graphs in [31].

Note first that there is a natural (left) action of Sy, on Ky [Tz] given by Rp(o - K) def
{ooa | a€ Rp(K)} for every o € Sy, , every K € Ky, [T] and every P € L. An
exchangeable array in L is a random variable K with values in K, [T] whose distribution is
invariant under the action of Sy, . The exchangeable array K is called local if the marginals
K|y and K|y are independent whenever U,V C N4 are disjoint.

One of the (easy) directions of the cryptomorphism of Theorem 2.2.1 will be of particular

importance to us, namely, how to construct a local exchangeable array K from a given T-on
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N over Q = (X, A, p). Intuitively, the only thing we have to do is to independently sample
countably many points from our theon. Formally, let 8 = (0 4) Aer(N,) be picked in &y ()

according to u. The exchangeable array K corresponding to N* with respect to 0 is defined by

V(K) €Ny, Rp(K) % {a € (Ny)yp) | a*(6) € Np}. (2.6)

and we have ¢xr(M) = P[K| 5, = M] for every M € M[T].

2.5 Limit object operators for open interpretations

As we have seen in Section 2.1, open interpretations between canonical theories I: T ~~» Th
give rise to maps Ky [Ta] — Ky [T1] that correspond to local combinatorial constructions.
It is easy to see that the notion of convergence of Section 2.2 is preserved under these
constructions, namely, if (Ny,),en is a convergent sequence of models of T, then (1(Np,))pen
is a convergent sequence of models of 7. The goal of this section is to provide the definitions
of the corresponding operators for flag algebra homomorphisms, theons and exchangeable
arrays.

For exchangeable arrays, the answer is trivial: if K corresponds to (Np),en under
Theorem 2.2.1, then I(K) corresponds to (I(Np)),en under the same theorem. For theons,
the corresponding operator is obtained via truth sets: for a Th-on A corresponding to
(Nn)nen, it is straightforward to check that the T7-on I(N') defined by I(N)p dof T(I(P),N)
corresponds to (I(Np))peN-

For the case of flag algebra homomorphisms, we will recall a more general version that will
also be needed for different purposes. Given canonical theories 17,75 in L1, Lo, respectively,
a conditional open interpretation from Ty to Ts is a pair (U, I) (denoted (U, I): T} ~ T5),
where [ is a translation from £ to L9 and U is an open formula in £ with one free variable
such that for each axiom Vzq - - - Vay, F(z1,...,zy,) of T1, we have To Va1 - - - Vg, (U(z1) A

- ANU(xp) = I(F)(x1,...,24)). Clearly, a conditional open interpretation when U(z) is a
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tautology, say © = z, is simply an open interpretation?. A U-model of T is a model M that
satisfies Yz, U(x) and we let MU[Ty] C My, [T3] be the set of all U-models of Ty of size n up

to isomorphism.

Theorem 2.5.1 ([59, Theorem 2.6|). Let (U, I): T1 ~~ T» be a conditional open interpretation,

let

ud:ef Z M

MeMY[1y]

and let Ay[Ts] be the localization of the algebra A[T5] with respect to the multiplicative
system {u" | n € N}. Then the map 7\U-1): A[Ty] — A,[Ty] defined by

dof 2AM' € Mﬁﬂ[Tﬂ | I(M') = M}

ulM|

D ()

is well-defined and is an algebra homomorphism!Y.

As a corollary of this theorem, note that if ¢ € Hom™ (A[Ts], R) is such that ¢(u) > 0
(which in particular implies u is not nilpotent, thus A, [T5] is not the zero algebra), then it
naturally extends to a homomorphism from Ay [T] to R as ¢(f/u) def o(f)/o(u)", thus
¢ o (1) € Hom™ (A[T}],R) (the non-negativity of (¢ o #(U-D)(M) for M € M[Ty] is
obvious).

When U is a tautology (i.e., when I: T} ~» T3 is an open interpretation), then u = 1 so
Ay[T>] = A[T3]. In this case, we denote x(U.1) simply by 7! and we abbreviate ¢! def porl.
This is precisely the flag-algebraic operator that respects Theorem 2.2.1: if ¢ corresponds to

(Np)pen under this theorem, then ¢! corresponds to (I(Ny))pen under the same theorem.

9. In [59], conditional open interpretations are simply called open interpretations and U is instantiated to
a tautology when the non-conditional version is used, but since we rarely use this more general form, we
elected add the adjective “conditional” to this more general version.

10. In [59, Theorem 2.6], there is the extra hypothesis that u is not a zero divisor, but this hypothesis is
only used to ensure that A,[7T5] is not the zero algebra, which although not necessary for this theorem, is
necessary for most of its applications.
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U.1) informally

In the case of conditional open interpretations, the mapping ¢ — ¢ o
corresponds to applying the local combinatorial construction only to the “submodel” of ¢
induced by “vertices” that satisfy U and renormalizing the densities (this is precisely the role

of the localization).

2.6 Uniqueness

After existence theorems, the other type of theorem that is of utmost importance in limit theory
are uniqueness theorems. More specifically, these describe necessary and sufficient conditions
for two limit objects to represent the same limit. In the case of flag algebra homomorphisms,
the answer is trivial: if ¢1, ¢o € Hom™ (A[T], R) satisfy limy, 00 p(M, Ny) = ¢;(M) (M €
MIT], i € [2]), then clearly ¢1 = ¢9. For local exchangeable arrays, the answer is also easy:
if K1, Ky satisfy P[K;][,,,) = M] = limp—00 p(M, Ny) (m € N, M € My [T], i € [2]), then
clearly K7 and Ko have the same distribution (K7 ~ Ka).

For theons, however, the uniqueness theorem is much more complicated and technical
as it needs to handle examples such as the fact that for p € [0, 1], the T3 _Hypergraph-ons NP

and HP defined by

NE Y e e &5 oy < p),

H%d:ef x € &3 Z x4 | mod1l<p

Aer(3)
represent the same limit, namely, the quasirandom 3-hypergraphon of density p.
To formally state the theon uniqueness theorem, we will first need some more definitions.
For an atomless standard probability space 2 = (X, A, 1) and a set V', there is a natural
(right) action of Sy on & () given by (x-0)y def To(a) (T € Ev (), 0 € Sy, Aer(V)).
If we are further given another atomless standard probability space ' = (X', A’ i’) and

a function f: £,(Q) — Q' (k € N), we say that f is symmetric if f is Sj-invariant and we
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say that f is measure-preserving on highest order argument (h.o.a.) if f is measurable and
for every z € & ;_1(Q), the restriction f(z,—): Q — Q' (where we identify X(Ulz]) with
X)) is measure-preserving. Given a family f = (fi,..., f) of symmetric functions with
fa: €4(Q) = €, we define a family of functions f = (fi,..., fr) with fy: £4(Q) — E4(V)

given by

def

fa@)a = fa @)

recall that ¢ 4: [|A|l — [d] enumerates A in increasing order). Note that f; is S.-equivariant.
( A g 4 18 Sg-eq

Theorem 2.6.1 ([24, Theorems 3.9 and 3.11, Proposition 7.7]). Let Q and €’ be atomless
standard probability spaces, let k € Ny, let T' be a canonical theory in a language £ with
k(P) < k for every P € L and let N and N be T-ons over Q and €, respectively. The

following are equivalent.

i. We have ¢gpnr = ¢prr.

ii. There exist families f = (f1,...,fr) and g = (g1,...,g;) of symmetric functions

measure-preserving on h.o.a. (f;: € — Q and g;: 5 — Q) such that

(@) € Np = Gip)(z) € Np

for every P € L and a.e. v € E(py.

iii. There exists a family h = (hq, ..., h;) of symmetric functions measure-preserving on

h.o.a. (hg: E4(Q x Q') — Q) such that

/fzk(P)(Ly) ENp < z€Np

for every P € L and a.e. (z,y) € Epp) () x Eppy(Q).
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Note that in item (iii) we are using the aforementioned identification between & p) (' xQ)

and gk(P) (Q/) X Sk:(P)(Q/)
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CHAPTER 3
ADVANCES IN CONTINUOUS COMBINATORICS

In this chapter, we present some continuous combinatorics results that were obtained while
studying natural quasirandomness. The results of Sections 3.1, 3.2 and 3.3 will be sufficient
for all of our needs in Chapter 4 regarding natural quasirandomness. Sections 3.4, 3.5, 3.6
and 3.7 are devoted to a further exploration of the notions and results of the previous sections;
these can be safely skipped if the reader is only interested in the applications of Chapters 4
and 5.

3.1 Rank and independence

We start by introducing the notion of rank of a limit object, which can be seen as a notion of
complexity of it, and the dual notion of independence. These notions will play a key role in

Chapter 4.

Definition 3.1.1 (rank and independence). The rank of a peon N C &.(Q) over Q) =
(X, A, 1), denoted rk(N), is the minimum » € N such that A/ can be written as N' = H xX(@)
for some H C &, (2). The rank of an Euclidean structure A is the maximum rank rk(N)
of its peons.

Dually, for £ € N, a peon N' C &.(Q) is called ¢-independent if it can be written as
N = &, 0(Q) x H for some H C X([fb and an Euclidean structure is called ¢-independent if
all of its peons are (-independent.

Given ¢ € Hom™ (A[T],R), the rank of ¢, denoted rk(¢), is the minimum rank of a T-on
N such that ¢ = ¢. Dually, we say ¢ € Hom™ (A[T],R) is (-independent if there exists an

(-independent T-on N such that ¢pr = ¢. We will refer to this property as Independencel[/].

It is important to note that these definitions require only the existence of some geometric
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realization of the limit object with the required properties. As an example, the TG ,pp-0ns

g def { (${1},fv{2}793{1,2}) ‘ T11,2} < P} ) (3.1)

g = {(x{l}a L1} ${1,2}) ’ (ZE{I} + T} + x{Lz}) mod 1 < p} ;

both represent the quasirandom limit of graphs of density p, but the second one is far from
being 1-independent. The next proposition says that for rank, the situation is precisely the
opposite: any representation of a low rank limit object must be of low rank except for a

zZero-measure change.

Proposition 3.1.2. For every peon N C &.(Q) there exists another peon H C &.(S2) such
that rk(H) = rk(¢pr) and H = N a.e. Moreover, if N is (-independent for some ¢ < k, then

‘H can be taken to also be (-independent.

Proof. Let p be the measure of €2 and X be its underlying space, let r def rk(¢ps) and define
the function W: &, ,.(Q2) — [0,1] by

W) % u{y e XED | (2.9) e M), (3.2)

defining it arbitrarily when this set is not measurable. Fubini’s Theorem ensures that this

function is measurable so we define

Clearly rk(#) < r. Hence, to prove that H = N a.e., it is sufficient to show that W is
0-1 valued a.e.

Since k(¢ ) = 7, we know that there exists a peon G over some space Q' = (X', A’ 1//)
such that ¢g = ¢ and 1k(G) = r. By theon uniqueness, Theorem 2.6.1, there exist sequences

f= <fd)§:17 g= (gd)g:1 of symmetric measure preserving on h.o.a. functions (fy: £5 —
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and gg: €5 — ') such that
() EN <= Gi(2) €G (3.3)

for almost every z € .. From the structure of the function ﬁ, we can decompose it as

-~

fr(@,y) = (Fi(z), Fy(2,y)),

(k] (k]
for every (z,y) € &, x [0, 1](>r>, where Fy: &, — & () and Fy: &, — XG7) are given

by

Fi(e)a € fig (), Fy(e,y)a © f(i e, ):

We perform a similar decomposition of gy, in terms of functions G1: &, — & ,(?') and
n ()
Ggigk—>(X) >r/,
Since the functions f; are measure preserving on h.o.a., it follows that F7 is measure
. o (] A
preserving and for every x € & . the restriction Fy(z, —): [0, 1](>7’> — X% is measure

preserving. Hence Fubini’s Theorem applied to (3.3) implies

W(F(2)) = A({ € 0,117 | (G1(2), Galz,9)) € G})

for almost every x € &, .. But since rk(G) = r, the measure above can only be 0 or 1 (as
Go(z,y) contains only coordinates with |A| > r). Since F] is measure preserving, this implies
that W(z) € {0,1} for almost every z € &, (Q2) and thus H = N a.e.

We have already shown that rk(H) < r and since H = N a.e. implies ¢y = dpr, the
other inequality must also hold.

The last statement is obvious from the construction. [
Remark 1. Note that the proof of Proposition 3.1.2 above in particular implies that a theon
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N over Q = (X, A, u) satisfies tk(édpr) < k if and only if for each peon Np, the function
def (%]
Wele) = ufy € XC) | (2,9) € Np}) (3.4)

(defined arbitrarily when the set is not measurable) is 0-1 valued a.e.

3.2 Theon lifting, couplings and amalgamations

We now proceed to an application of theon uniqueness, Theorem 2.6.1, that allows us to lift
theons through interpretations. As we have seen in Section 2.5, given an open interpretation
I: Ty ~ Ty and a Ty-on H, the Ty-on I(H) represents the limit object constructed from ¢gy
via I, i.e., we have ¢ I(H) = gb%[. However, the next example adapted from [24, Example 45]
shows that given a T1-on A and ¢ € Hom™ (A[Ty], R) such that ol = oA, 1t is not true that
there exists a Th-on H such that both I(H) = N a.e. and ¢gy = ¢.

Example 1. Consider the (T5_coloring U TLinOrder)-0n G over [0, 1]2 given by

G- Y {(r.y) e&ax & r(1y < 2oy}

G, W {(2,y) € &1 % &1 | g1y < 1/2);

Gro E {(zy) €1 x &1 | yy = 1/2)

and let I: T1i0rder ~ 12-Coloring Y TLinOrder be the structure-erasing interpretation. It is
clear that gb{_[ is the unique element of Hom™ (A[T}i,0rder], R), Which is also represented by

the T1in0rder-on N over [0, 1] given by

N< d:ef {l’ € & | l‘{l} < CL’{Q}}

However, there does not exist a (T5_coloring Y TLinOrder)-0n H such that both ¢3; = ¢g

and I(H)< = N< a.e. Indeed, if such H existed then 7,, would have to be a measurable
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subset of [0, 1] with Lebesgue density 1/2 in every interval, contradicting the Lebesgue Density
Theorem (see [8, 1-5.6(ii)] and [56, Theorem 3.21]).

The next proposition says in essence that Example 1 is the worst that can happen: at the

cost of adding an extra dummy variable, we can find an H such that I(H)p = Np X 5k( P)
a.e. and ¢y = ¢.

Proposition 3.2.1. Let I: T} ~ Ty, let ¢ € Hom™" (A[T5],R), and let N be a Tj-on over
() such that qu = ¢n. Then there exists a Th-on H over €2 x ) such that ¢3y = ¢ and
I(H)p = Np x &, (p)(Q) a.e., for every predicate symbol P in the language of .
Furthermore, if Ty = Ty UT’ for some T" and I is the structure-erasing interpretation, then
‘H can be taken to satisty 1(H)p el 9y p=Np X E(p)(Q) everywhere for every predicate

symbol P in the language of T7.

Proof. For i € [2], let L; be the language of T; and let k; def maxpep, k(P). Let G be a
T-on over €) such that ¢g = ¢. Since QSI(Q) = QSI = ¢, by theon uniqueness, Theorem 2.6.1,

there exists a sequence h = (hd)];l:1 of symmetric measure preserving on h.o.a. functions

(hg: E4(Q2) x E4(2) — Q) such that

-~

hipy(z,2) € I(G)p <= x € Np, (3.5)

for every P € £ and almost every (z,7) € &,(p)(Q2) x &p)(€). Extend the family h by

defining hg: E4(Q) x E4(Q) — Q for ky < d < max{ky, ko} as hy(x, ) d:efx[d], and note that

hg is symmetric and measure preserving on h.o.a.

Define then the Th-on H over 2 x €2 by

Ho = ﬁ;(lQ)(gQ) (3.6)

for every @ € L. By (the easy direction of) theon uniqueness, Theorem 2.6.1, it follows that
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¢34 = ¢g = ¢. On the other hand, the definition of H ensures that
(2,7) € I(H)p <= hyp)(x.7) € I(G)p

for every P € £ and every (z,7) € E;(p)(2) X &,(p)(€2), which together with (3.5) implies
I(H)P = NP X gk(P)<Q) a.e.

For the case when Ty = T7 U T for some T' and I is the structure-erasing interpretation,
we define #H instead by using (3.6) only for @ € L9\ £1 and use Hp def Np x E(p) () for
every P € L (as required). By (3.5) this is only a zero-measure change from the previous

definition so we still have ¢3; = ¢. [

This proposition is fundamental to prove an amalgamation property of limits. Recall
from [24, Sct. 2.2] that the category INT has pushouts (otherwise known as amalgamated
sums, fibred coproducts, etc.). More concretely, for open interpretations I7: T' ~» T} and
Iy: T ~ Ty, a pushout of (I, Iy) is given by the theory T” obtained from Ty U T5 by adding

the axioms
VI, (1I1(P)(Z) < 12(P)(2)) (3.7)

for every P in the language of T" and the open interpretations J;: T; ~ T” (i € [2]) that act

identically on the language of T; so that

T, 7

le | (3.8)

TQ — T
Jo

is commutative and has the standard universality property (see Proposition 3.7.1 for the
more general case of finite colimits).

One case of the pushout above that will be of particular importance in Chapter 4 is when
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the theory T is trivial, in which case 7" = Ty UTy and J; and Jy are structure-erasing.

We are now interested in amalgamating limit objects along (3.8), that is, given ¢ €
Hom™ (A[T1],R) and ¢9 € Hom™ (A[Ty],R) such that gb‘rl = gb , can we construct £ €
Hom™*(A[T”],R) such that €1 = ¢ and €72 = ¢9? In the case when T is trivial, this

question reduces to the question of whether there exists a coupling of ¢1, ¢o defined below.

Definition 3.2.2 (couplings). Given canonical theories Ty, ..., T and ¢; € Hom™ (A[T}], R)
(i € [t]), a coupling of ¢1, ..., ¢ is a positive homomorphism ¢ € Hom™ (A [Uze T;], R) such
that £fi = ¢; for every i € [t], where I;: Tj ~ |J e Tj is the structure-erasing interpretation.

It is easy to construct a coupling of ¢1, ..., ¢; by simply aligning any geometric represen-
tations of them. Namely, if N (i € [t]) is a Tj-on such that ¢; = ¢psis then the (Uie[t] T;)-on
‘H defined by letting H p def ]ZD whenever P is in the language of T} gives a coupling & def %y,
of ¢1,...,¢t. However, note that in this construction, & might depend on the particular
choice of N1, ..., A" (this potential dependence will be further explored in Chapter 4). The
more natural notion of an independent coupling defined below is given functorially, that is, it

depends only on ¢1, ..., ¢t

Definition 3.2.3 (independent coupling, syntactic version). For every ¢ € [t], let ¢; €
Hom™ (A[T;], R). The independent coupling ¢1®- - Q¢ € H0m+(A[Uie[t] T;],R) of ¢1, ..., 0t
is defined by

($1® - @gp)((M)) H ({1 (3.9)

for every M € M[Uze T;], where I;: T; ~ UJ e Tj is the structure-erasing interpretation.

One can check by calculations that (3.9) indeed satisfies all flag-algebraic constraints, but

it is much simpler to give a theon representation of the independent coupling.

Definition 3.2.4 (independent coupling, semantic version). For i € [t], let N be a Tj-on
over ;. The independent coupling of N1, ... N is the (Uiepy Ti)-on N® . @ N over
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Hz’e[t] Q; defined by
(Nl ®“'®Nt)p d:ef T e H 5k(P)<QJ) Wl(l’) EN]ZJ ,

whenever P is in the language of T; and where 7; denotes the natural projection on the i-th

coordinate.

It is easy to see that if N is a Tj-on over €; such that Gpri = & (i € [t]), then (1@ ®
Pt) = PArig...gnrt- In particular, this implies that ¢1 ® -+ ® ¢y € Hom™ (A[Uz'e[t] T;],R).

The following theorem says that we can also amalgamate limit objects along general
pushouts. Let us warn that unless the theory 7' is trivial (in which case a “canonical”
amalgamation is provided by the independent coupling), we are not aware of any natural,

functorial construction here.

Theorem 3.2.5. Let

be a pushout of INT and let ¢1 € Hom™ (A[T}],R) and ¢o € Hom™ (A[Ty],R) be such that
gb{l = gbéQ Then there exists 1 € Hom™ (A[T'], R) such that v/t = ¢1 and 72 = 9.

Proof. First we claim that it is enough to show the case when T” is obtained from 77 U T by
adding the axioms (3.7). Indeed, if v is constructed for such particular case, then we can
get our desired element of Hom™ (A[T"],R) for a general pushout 77 as 1 for the universal
isomorphism I between the pushout theories.

Let us prove then the particular case. Let £, £1 and L9 be the languages of T, T7 and
Ty, respectively. For i € [2], let N7 be a Tj-on (over [0,1]) such that ¢; = Gpri- Since
O = (b{l = ¢£2 = ¢1,(\2), by Proposition 3.2.1, there exists a T-on H over [0,1]?
such that I1(H!)p = I(N?)p x E(p) A-a.e. for every P € L.
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Define then the Euclidean structure H on £ U Lo over [0, 1]2 by

def H}p, if Pe Lq;

NIQD X gk(P)’ it P e Ls.

Let us show that H is a (weak) T"-on. To show this, by Theorem 2.4.1 (by reaxiomatizing
T, Ty, Ty to be substitutionally closed, T' also becomes substitutionally closed) it is enough

to show that T'(I1(P),H) = T(I2(P),H) M-a.e. for every P € L. But this follows from

T(I1(P),H) = T(I)(P), H') = [L(H") p;

T(Iy(P),H) = T(Iy(P), N?) x Eyp) = I2(N?) x Epy.

Finally, since we trivially have J; (%) = H! and Jo(H)p = /\/’]23 x Eppy for every P € Lo, it

follows that o % ¢, satisfies v/t = ¢; and ¥2 = ¢s. m
The amalgamation property of Theorem 3.2.5 above in particular implies that couplings
can be “lifted” through interpretations.

Proposition 3.2.6 (Coupling lifting). Let I: T} ~» Ty be an open interpretation, let T be a
canonical theory and let ¢ € Hom™ (A[T],R) and ¢o € Hom™ (A[T5],R). If ¢ is a coupling of

gbg and ¢, then there exists a coupling gof ¢9 and ¢ such that & = gIUidT.

Proof. This follows from Theorem 3.2.5 and the fact that

T1 —I>TQ

J |

is a pushout in INT, where the vertical arrows are the structure-erasing interpretations. W

Definition 3.2.7 (unique coupleability). We say that ¢1, ..., ¢ are uniquely coupleable if

the independent coupling is their only coupling.
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We will see in Chapter 4 that the easiest case of unique coupleability is between ¢ €
Independence[l] and ¢9 with rk(¢o) < ¢ (see Definition 3.1.1). The notion of unique
coupleability is fundamental to Chapter 4, but in this chapter we will concentrate on a more
abstract study of this property (the reader might want to skip momentarily to the beginning
of Chapter 4 for some intuition and motivating examples).

The next lemma says that unique coupleability satisfies a “chain rule” analogous to the

chain rule for mutual independence of random variables.

Lemma 3.2.8. Let ¢; € Hom™ (A[T;],R) for i € [t] and suppose that for every i € [t — 1],

®i+1 Is uniquely coupleable with ¢1 ® --- ® ¢;. Then ¢1, ..., ¢; are uniquely coupleable.

Proof. The proof is by induction in ¢. The result for ¢ = 1 is trivial. For t > 2, let
¢ € Hom™ (A 7;:1 T;],R) be a coupling of ¢1,...,¢¢ and let I: Uf;%TZ ~ U§:1Ti be
the structure-erasing interpretation. Since & is a coupling of ¢1,...,d;_1, by inductive
hypothesis we must have fI =91 ® - ®Pp_1 s0 & is also a coupling of p1 ® --- ® ¢4_1 and

¢¢, hence we must have £ = 91 @ - -+ ® ¢y. u

Proposition 3.2.6 and Lemma 3.2.8 allow us to show that unique coupleability is preserved

under open interpretations.

Proposition 3.2.9. For i € [n], let ¢; € Hom™ (A[T;],R) and I;: T] ~ T; be an open inter-

pretation. If ¢1,...,¢n are uniquely coupleable, then qﬁ{l, cee ¢;T{L are uniquely coupleable.

Proof. The proof is by induction in n. The case n =1 is trivial.

Consider now the case when n =2, T = T{ and Iy = idp,. In this case, for a coupling §
of ¢1 € Hom™ (A[T],R) and gb? € Hom™ (A[T3],R), Proposition 3.2.6 gives us a coupling
E of ¢1 with ¢o such that £ = ? 7y VT Gince @1, ¢2 are uniquely coupleable, we must have
5 = 1 ® ¢9, from which we get & = gidTl ur _ 01 ® gbg, hence ¢1, gbéQ are uniquely coupleable.

For the case n = 2 but ] arbitrary, note that unique coupleability of ¢1, ¢ implies that
o1, gng are uniquely coupleable by the case above, which in turn implies that qﬁ{l, qﬁ? are

uniquely coupleable by the symmetric of the case above.
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Finally, for the general case n > 3 by Lemma 3.2.8, it is enough to show that for every
te€n—1], qﬁ{ff is uniquely coupleable with gb{l R ® (btlt.

First, we claim that ¢1,...,¢s11 are uniquely coupleable. Indeed, any coupling & of
®1, ..., P41 can be lifted to a coupling gof @1, .., ¢n using Proposition 3.2.6 and since 8
must be ¢1 ®- - @ ¢y, it follows that £ = ¢ ®--- @ ¢r41. Note that this in particular implies
that ¢¢41 is uniquely coupleable with ¢1 ® --- ® ¢ (as any coupling of these must also be a
coupling of ¢, ..., dr11).

Now let I: Uie[t} Ti/ ~ Uz’e[t] T; act as I; in T}, then since ¢;41 is uniquely coupleable with
01 ® -+ R ¢¢, the case n = 2 implies that qbtlfll is uniquely coupleable with (¢; ® -+ ® gbt)‘r =
sh e @k n

3.3 L;-topology

Recall that the set of limit objects Hom™ (A[T],R) comes equipped with the density topology,
that is, the topology induced from the inclusion Hom™ (A[T],R) C [0, 1]MZ]. Let us now
introduce the Li-topology that is a direct analogue of the Li-topology on graphons [53,
Sct. 8.2.5 and Sct. 8.3].

Definition 3.3.1. If T is a theory in a language £ and ¢1, ¢2 € Hom™ (A[T],R), then the

L1-distance between ¢1 and ¢9 is defined as

01(1,62) < N@%PZEMNMNJ%), (3.10)
’ S

where the minimum is taken over T-ons N'* and N2 over the same space such that ¢ = ¢ AL
and ¢ = ¢ pr2.

It is not immediately clear from this definition that the minimum in (3.10) is actually
attained, nor is it clear why 47 is a metric.

The first issue is easy to address by giving an alternative purely algebraic definition.
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Namely, for any P € L, introduce the element dp € A[T UT] as

dp < > (K),

KG]Ck(P) [TUT}
idg(pyERP, (K)ARp,(K)

where P; and Py are the two copies of P in £ U L, and let

dr Y dp. (3.11)
Pel

This element measures the distance in a coupling of ¢, ¢9 so we have

01(¢1, P2) = Hglfé(dT)a (3.12)

where ¢ runs over all couplings of ¢1 and ¢9. Their set is determined in Hom™ (A[T U T], R)
by countably many linear equations and hence is compact in the density topology. Therefore
the minimum in (3.12) and (3.10) is actually achieved (as £ +— &(dp) is continuous in the
density topology).

The second issue is trickier, and the proof is similar to the analogous proof that d; is
a metric in the case of graphons. Fortunately, we already did most of the necessary (and

notationally heavy) work in the proof of Proposition 3.2.1.

Lemma 3.3.2. The Li-distance &1 is a metric on Hom™ (A[T],R) and generates a finer

topology than the density topology.

Proof. Let us first check the triangle inequality. Let & be a coupling of ¢; and ¢9 and ( be a
coupling of ¢9 and ¢3 attaining the Lq-distances in (3.12). Let also J;: T~ T'UT be the
structure-erasing interpretation corresponding to coordinate i and [;;: TUT ~»TUTUT
be the structure-erasing interpretation corresponding to coordinates ¢« and j. Since £ is a

coupling of ¢ and ¢y = (71, Proposition 3.2.6 gives us a coupling E of ¢1 and (¢ such that
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EldT U — ¢. Since idpUJy = I19, we get that gis a coupling of ¢1, ¢9 and ¢35 such that

3112 = ¢ and 5123 = (. But 5113 is a coupling of ¢ and ¢3 and for each P € L we have
§hs(dp) < £M2(dp) + £3(dp),

hence by (3.12) we get 01(¢1, #3) < 1(d1, ¢2) + 01(¢2, B3).

Finally, note that by (3.10) we have

[f1((M)) — ¢2((M))| < 61(d1, 62) > (IM ]y

pPel

for every M € MIT]. This implies both d1(¢1,¢9) = 0 = @1 = ¢9 and that the

Lq-topology is finer than the density topology. |

Since the density topology is Hausdorff (as it is metrizable), compact and coarser than
the Li-topology, it follows that the Li-topology is compact if and only if it is equal to the
density topology!. Such equality of topologies typically does not happen as we will see in

Section 3.4.

Remark 2. Given a T-on N over some space Q = (X, A, 1) and some 1) € Hom™ (A[T], R),
the L1-distance between ¢ and 1 can be alternatively computed only optimizing over T-ons

corresponding to ¢ by the following formula

G1(on¥) = min > (N x Ex(p) () & Hp),
pPel

where the minimum is taken over all T-ons H over 2 x {2 such that ¢3; = ). To see this, we
form a coupling £ of ¢ and 1 attaining the minimum in (3.12) and use Proposition 3.2.1 to

produce a (T'UT)-on G over  x Q such that ¢g = ¢ and Gp, = Np x Ep(p) for every P € L,

1. The non-trivial direction follows by noting that the identity map with Li-topology in the domain and
density topology in the codomain is continuous, so if the L;-topology is compact, the same map must also be
closed (as the density topology is Hausdorff), thus a homeomorphism.
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def

where P is the first copy of P in £ UL tHET (G) for the structure-erasing interpretation

I1:T ~TUT that keeps the second copy, then

> (Np x Egpy() AHp), =D &(dp) = &(dp) = 01(dr, ).
pPel P

3.4 Rank function in density topology and in L;-topology

As we have seen in Lemma 3.3.2, the L{-topology is finer than the density topology. In this
section, we illustrate some of the differences between these topologies with respect to the rank
function: while the sets {¢ € Hom™ (A[T],R) | rk(¢) < r} are closed in the Li-topology (i.e.,
the rank function is lower semi-continuous in the Li-topology), in pure canonical theories

T = Ty, these sets are dense in Hom™ (A[T,], R) in the density topology as long as r > 1.

Proposition 3.4.1. The rank function in Hom™ (A[T],R) is lower semi-continuous in the

L1-topology.

Proof. Let L be the language of T, let (¢n),en be a sequence in Hom™ (A[T], R) converging
to ¢ € Hom™ (A[T],R) in Li-topology. To show lower semi-continuity of the rank function,
we need to show that if rk(¢y,) < r for every n € N, then rk(¢) < r.

For each n € N, let &, be a coupling of ¢, and ¢ such that §1 (¢, ¢) = &u(dp) (see (3.11)).
Let also I;: T'~» T'UT be the structure-erasing interpretation that keeps the i-th copy so
that 5;’;1 = ¢y, and f{f = ¢.

For a fixed T-on N (over [0, 1]) such that ¢pr = ¢, by Proposition 3.2.1, for each n € N,
there exists a (T'UT)-on H" over [0, 1] such that ¢n = &, and Io(H™)p = Np x E(p) for
every predicate symbol P € L. By Proposition 3.1.2, we may change the peons of H" in a
zero-measure set so that rk(I1(H")) = rk(én) < r.

For each P € £ and n € N, let Wp,Up: E;py ([0, 1]2) — [0,1] be the functions defined
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W) ©a({y € (0,1)CD | (2,) € LHY P} (3.13)

def

Up(@) Ay € (10,123 | (2,y) € Np x &y s (3.14)

and defined arbitrarily when the respective sets are not measurable. Since rk(I1(H")) <,
we know that W3 is 0-1 valued for every P € £. To show that rk(¢) < r, we need to show
that Up is 0-1 valued a.e. for every P € L (see Remark 1).

But note that if dy is the usual Lqi-distance of functions, then we have

> di(Wp,Up) < Y AIL(H") p & Io(H") p) = nldr) = 61(¢n, 9),
Per Per

so Wp converges to Up in the usual Lyi-distance of functions and thus Up must be 0-1 valued

a.e., so rk(¢) < r. |

The next proposition implies that for a pure canonical theory 7z, the rank function is
not lower semi-continuous in Hom™ (A[T,], R) in the density topology as long as its image
has values greater than 1 (otherwise, the rank function is lower semi-continuous for trivial

reasons: {¢ € Hom™ (A[T,],R) | tk(¢) = 0} is closed).

Proposition 3.4.2. For a pure canonical theory Ty and r > 1, the set {¢p € Hom™ (A[T],R) |

rk(¢) < r} is dense in Hom™ (A[T],R) in the density topology.

Proof. 1t is enough to show the case r = 1. Let ¢ € Hom™ (A[T,],R) and let (Ny),en be a
convergent sequence of models of T converging to ¢. Without loss of generality, suppose

V(Np) = [my] for some m,, € N and define the Tz-ons N by

NBE (€ &gy | (Tmn-zy].. o T gy ]) € Rp(Na)}

and let ¢ & ¢pm. Clearly rtk(en) < k(™) < 1.
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Note that for every M € M(T], we have

tind(M,A™) — tiaa (M, Np)| < O (i) |

mn

where the hidden constant depends on M. Thus, since (N ),en converges to ¢, it follows

that ¢, converges to ¢ in the density topology. [

The remainder of this section is devoted to the following generalization of Proposition 3.4.2,

which can be seen as a version relative to Independence[(].

Proposition 3.4.3. For a pure canonical theory Ty and {,r € N such that { < r, the set
{¢ € Hom™ (A[T;],R) | rk(¢) < r A ¢ € Independence[(]} is dense in Hom™ (A[T,],R) N

Independencell] in the density topology.

Note that the condition ¢ < r is required as if ¢ satisfies Independence[(] for some
¢ > rk(¢), then ¢ must be a trivial limit (i.e., rk(¢) = 0, or equivalently, all its peons have
measure either 0 or 1).

If we take a step back on the proof of Proposition 3.4.2 and recall that one way of producing
a convergent sequence (Np),en converging to ¢ is to consider a theon N representing ¢
and sampling points from it, i.e., producing the exchangeable array K corresponding to
N, we see can see the theons N as “rank 1 blow-ups” of the marginal K |[n]. The next
definition generalizes this concept to higher ranks: the idea is to preserve all rank less than
k information and randomize the information of rank at least k by an approximation that
takes place at rank exactly k. In particular, the rank 1 approximation corresponds precisely

to the “rank 1 blow-ups” of the marginal K |[n] described above.

Definition 3.4.4 (Rank k approximation). Let A/ be an Euclidean structure in a language
L (over [0,1]) and let k,n € Ny. The rank k approzimation of N at step n is the random
the Buclidean structure A% defined as follows.

For ¢ € N4, let F: ]f be the set of all functions «: ([i]) — N4 and consider the natural

(right) action of Sy on F]f given by a - o © oo (a € Fl,0€8y). Fora e F]f, let & denote
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the orbit of o under the action of Sy. Let also ﬁ]f def {a]ae F]f} be the set of all orbits of

14 7 def ol
Fk’ and let Fk = UéGNJ,_ Fk‘

4
Given z € [0, 1](k), let a}: ([g) — N4 be defined by

a™(A) ¥ max{n - 24],1} (A e C?))

Recall that for A € r(¢), we denote by ¢4 : [|A]] = [¢] the function that enumerates A in

(4 [1A]]
increasing order and that it induces the natural projection % ,: [0, 1]<k> — [0, 1]( k) given

def A
= Ty 4(B) (B € (Hﬁ ”)>'
For every a@ € F &, Pick y5 independently and at random according to A (so vy is distributed

& 4
according to the product measure Afk) and for every (z,2’) € Erp—1 x [0, 1]<k), define the

by Lz,g(x)B

random point w?’n((:c, 2'),y) of & by

B et | F4 if |A] < k;
(S
(wy " ((z,2"), )4 = ' (A er0).
le,f(x/)
Finally, we let
k,n def [k(P)] [k(P)] k
NE™E {2, 2") € Epy 1 X [0, 11757 x (0,15 |wk’(7}a)((967$/)7y) € Np}

(3.15)

for every P € L.

Remark 3. Since the formula in (3.15) does not depend on z”, which accounts for all
coordinates indexed by sets of size larger than k, it follows that rk(N k’n) < k. Furthermore,
since the formula (3.15) depends on z only via N, it follows that if A is ¢-independent for

some £ € N, then so is N*7.

We will show that ¢ Akon converges to ¢ with probability 1, which together with

Remark 3 will give Proposition 3.4.3. Let us first recall a basic fact of probability theory.
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Lemma 3.4.5. If A and B are events in a probability space and P[B] > 0, then |P[A | B] —
P[A]| <1 —P[B].

Proof. If P[B] = 1, the result is trivial, otherwise, we have
PlA] —P[A| B] = (P[A | B] - P[A | B])(1 - P[B]),
where B¢ is the complement of B. Taking absolute values and noting that |[P[A | B€] —

P[A | B]| <1 yields the result. |

As a first step, the next lemma says that ¢ \fkm converges to o) at least in expected

value (in the density topology).

Lemma 3.4.6. Let N be an Euclidean structure in a language £ and let k € Ny. Then

lim E[¢ prien(M)] = opr(M)

n—oo

for every M € M[T].

Proof. 1t is enough to show that for every m € N and every K € K, [T], we have

Tim Eftina (K, N™)] = iy (K, N),

[m]
For every n € N, let us define the set Gy, of “good” points of [0, 1]( k) at stage n as the
[m]
k

set of points z € [0, 1]( ) such that o is injective, that is, let

def

Gn € {az e 0,1 ‘ VA, B € (“Z]) J(A# B — a(A) # ag(B))} .

We define the labeled density of K in N ks relative to “good” points as

dot AT (K, M%) 1 (€1 % G x [0,1150)))
- A(C) '

tind (K’ Nk?,”l>
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Note that Lemma 3.4.5 implies

(n)m 1
fina (KN — (A0 < 120G = 1= — K <0 (1),
thus, by defining ¢ (K, N') analogously, it is sufficient to show that E[t!_, (K, NEmy) =
tl 4K, N) for every n € N.

Let us then partition Gy, as follows: for every «: ([7;:]) — Ny (e, a € FJ"), we let

ng:ef{:veGn\aZ:a}

(in particular, X! # @ if and only if « is injective).

Note that for A € r(¢) and B € (H}jl]), we have a(14 ¢(B)) = o} (B). This implies

L27Z(I)
that if o € F" is injective, then for every x € X[j and every A € r(m), the function o ()
Am
is also injective and we further have
_ ~N . =n

[m] [m]
Pick «, «’ and =’ independently uniformly at random in &, ,_1, [0, 1]< +) and [0, 1](>k),

respectively, and independently from y of the definition of AN*™ and note that

IE’.’J[t{Ild(I(7 Nk,n)]

=Ey | Py o’ 27 /\ /\ (B (x, 2", 2" € N’;,’n < BE€Rp(K)) |z Gy
PeL pe(Im])i(p)

= IP):(:,sc’,y /\ /\ (wZ’(T]LD)(,@*(:E,m/),y) € Np <> B € Rp(K)) x’ € Gy
PeL pe([m])ip)

Let us now analyze the restriction of the event above to the event &’ € X for some injective

a € F". Note that (3.16) implies that the coordinate of y indexed by azl*

(8 (@) el

43



k.n

for a particular coordinate wk( P [k(P)]

)(6*(w,a:’),y)A for some A € (>I<:—1)’ some 3 € ([m])k(P)
and some P € L depends only on $(A) C [m] and is distinct from other coordinates with a
different value of B(A). Since the coordinates of y are i.i.d. uniform in [0, 1] and independent
of (z, ), it follows that if 2z is picked uniformly in [0, 1](@), then

k.n

(wf (8" (@,2"), y) | P € £,5 € ([m])yp)

has the same conditional distribution as (8*(x,z’,2) | P € L, € (Im])x(p)) when given x’

and the event x’ € X. Thus, by conditioning, we get

Ey[tq (K, N®™)]
1
— NG Z Pm/[a:’ e X ‘P:c,ac’,z[(mam,yz) € Tiyq (K, N) | 2 e X7
ozEF]z”

A(X7)>0

:tgndu("/v)’

as desired. ]

We will now use Azuma’s Inequality (see e.g. [3, Theorem 7.2.1]) for martingale concen-

tration to show that ¢ Ak asymptotically concentrates on its expected value.

Lemma 3.4.7. Let N be an Euclidean structure in a language £ and let k € N4. Then

10} Afkom converges to o, in density topology with probability 1.

Proof. By the union bound, it is enough to show that for every m € N and every K € K, [T],

we have
P [ lim (K, N™) = (K A)] =1 (3.17)

For every t € {0,...,n}, let B; be the o-algebra generated by (yz; | @ € F\k Aim(«) C [t])
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(note that By is the trivial o-algebra and N%™ is Bj,-measurable). For every t € [n], let also
def ;o ([m]) ([m]) ,
Cy = (wi » L ) S 5m,k—1 X [07 1] kX [07 1] SRAS 1m(ax’)
and note that
AMC 1 1 AR <0 !
For every t € {0,...,n}, define the random variable
def k.n
Xt = Eftpg (K, N™™) | By]

so that (X¢)j_ forms a (Doob) martingale such that

Xy, = ting (K, NF™); X0 = Eltinq (K, N*™)). (3.18)

Note also that for every t € [n], we have |X; — Xy_1] < AMC) < Om7k(n_1), so by

Azuma’s Inequality (see e.g. [3, Theorem 7.2.1]) and (3.18), we get

2
PHtind(Ka Nk’n) - E[tind(Kka’n)H > 5] < 2exp <_ - 1)2)

n- Om’k(n_

= 2exp(—£® - Q1 (n))

)

for every € > 0. Thus (3.17) follows Lemma 3.4.6 and a standard Borel-Cantelli argument. W
We can finally derive Proposition 3.4.3.

Proof of Proposition 3.4.3. Follows immediately from Remark 3 and Lemma 3.4.7. |

45



3.5 Low rank theories

In this section we explore how the axioms of a theory 71" can force all of its limit objects to

have low rank; this is captured by the following definition.

Definition 3.5.1. For a theory T, the rank of T the maximum rank rk(¢) of some ¢ €
Hom™ (A[T],R) (if T is degenerate, we declare rk(T) = —o0).

The classic example is that of T7;,0rders Whose axioms force its unique limit object,
represented by the T i,0rder-ont N def {z € & | xy) <91}, to have rank 1 (even though
the arity is 2), so rk(T1;p0rder) = 1. The objective of this section is to study examples of
theories T" obtained from T}, _pypergraph Py adding axioms that reduce rk(T") to some fixed
r < k. We start with a some examples of low rank theories obtained by using the notion of

interpreted theories defined below.

Definition 3.5.2. Let [: T ~» T be an open interpretation and let Té be a universal theory
obtained from T5 by adding axioms. The interpreted theory I (Té) is the universal theory of
all models M of T such that there exists some model N of T3 with M = I(N). Formally,

we let I(T4) be the theory whose axioms are

Vay--- Vo, /\ z; #IE]' — \/ Dopen(](K))(xla“'axf) )
1<i<j<t Kek,[T)]

for every ¢ € N4.

Remark 4. Note that every ¢ € Hom™ (A[I(T})],R) is of the form ¢ = YT for some
¢ € Hom™ (A[T3], R) € Hom™ (A[T3],R). This follows since if a sequence (Ny),en of models
of T converges to ¢, then there must exist models ]/\\fn of Té such that I (Nn) = Np, then any
convergent subsequence of (]\Afn)neN converges to a ¢ € Hom™ (A[T3], R) € Hom™ (A[T%],R)
with ¢ = 1.

Proposition 3.5.3. Let k € Ny and let r € {—00,0,1,...,k}. Then there exists a theory

T obtained from T}, _Hypergraph by adding axioms such that rk(T) = r.
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Proof. If r = —o0, form a degenerate T by adding a contradiction, say, Va,x # z. If r =0,
add the axiom VZ, ~FE(Z) so that T consists of the theory of empty graphs, which clearly has
rank 0.

Suppose then that r € [k] and consider the open interpretation I: T} _Hypergraph ~

T _Hypergraph that declares k-edges to be k-cliques, that is, it is given by

def
1B n o) A Bl
1<iy < <ip<k
Let 4,1/ € Hom™ (A[T} _Hypergraph), R) be the quasirandom r-hypergraphon of density 1/2,
that is, it is represented by

Nd:ef{fo:r|l’[r]<%}.

def . .
Let also® T = I(T, Hypergraph)- Since wf’l /o 15 represented by

I(N) d:ef{xeé’k ‘ VA e ([]:]),xA < %},

it follows that rk(7") > rk(w{,1/2> = r by Remark 1.

On the other hand, since any ¢ € Hom™ (A[T],R) must be of the form ¢ = ! for
some ¢ € Hom™ (A[T;, _Hypergraph): R) (see Remark 4), we get rk(¢) < 1k(¢)) < r. Therefore
tk(T) =r. |

Recall that a point z € £,(]0,1]%) is called a Lebesgue density point of a measurable set
A C £,(]0,1]%) (relative to £,(]0,1]%)) if
A B(z,e) N A)

lim =1,

e=0 M(B(z,¢) N &,(]0,1]9))

2. Even though the case r = k is trivial, this construction still works as then I = idr, . prpn and
T= Tk -Hypergraph-
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where B(z,¢) denotes the foo-ball® of radius € around z. We denote the set of Lebesgue
density points of A by D(A). It is easy to see that D(D(A)) = D(A) and the Lebesgue
Density Theorem (see [8, I-5.6(ii)] and [56, Theorem 3.21]) implies that for every measurable
set A we have A\(D(A) A A) = 0.

The next proposition gives a sufficient condition for a theory obtained from T} _gypergraph

to have low rank.

Proposition 3.5.4. Let r, k € N with r < k, let V1, ..., V). be pairwise disjoint finite non-
empty sets and let F,F C Hz’e[k] V; be disjoint sets satisfying the following consistency
condition: if a1,a9 € F U F have strictly more than r coordinates in common, then
a1 €F < ag e F.

Let T' be a theory obtained from T, fHypergraph by adding axioms and suppose that T

entails

Vi, - /\513275.%]/\ /\ E(:Eil,...,.iljik)/\ /\ —\E(:Eil,...,.iljik) . (3.19)

1#£] (i1,ryi )EF (11,eeryig ) EF
where the variables are indexed by ;e Vi- Then rk(T) < r.

Proof. Suppose toward a contradiction that there exists ¢ € Hom™ (A[T], R) with rk(¢) >

r+ 1, let N be a T-on such that ¢ = ¢ and let G(zq,...,zy) be the open formula

/\$Z7é$jA /\ E($i1v"'7xik)/\ /\ _‘E(xip~-7$ik)

1#£] (il,...,ik)GF (il,...,ik)EF

Our objective is to show that A\(T'(G,N)) > 0.
k
By Remark 1, the function W (x) def A{y €0, 1]([>1}") | (z,y) € N'}) is not 0-1 valued a.e.

This means that there exists § > 0 such that the set W~1((5,1 — §)) has positive Lebesgue

3. In fact, one can use other norms to define Lebesgue density points and get an a.e. equivalent definition,
but for us it will be slightly more convenient to use the ¢,-norm.
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measure, which implies that the set

G {(,y,2) € &y x [0, x 0,10 | (r,9) €N A (,2) € 6\ A

has measure at least
AW L((8,1 = 6)))62 > 0.

Let (z*,y*, 2*) € D(G) be a Lebesgue density point of G and let € > 0 be small enough

k
so that B((x*,y*,2%),e) C Ekr X [0, 1]([>}) x [0, 1]([ i) and

AB((z*,y*,2%),e) N G) !
MB((x*, y*, 2%),€) IFUF|

(3.20)

Let 1V 3¢ Uiejr) Vi» let x: V' — [k] be the unique function such that v € V, (,y for every

v e V. Let us call a set A € r(V) x-transversal if x| 4 is injective and let T C (V') be the

set of all y-transversal sets. Consider the set

UL o€y, |VAEr(V)NT o € (g — 2,05 4 + )}

Let us now define a function g: ( ) N'T — {F,F,*} by letting g(A) be equal to
i. F, if there exists a € F such that A C im(«).

ii. F,if there exists a € F such that A C im(a).

iii. * if for every @ € F U F, we have A Z im(a).

Note now that our consistency condition implies that for each A € ( ) N T, exactly one of
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the above holds, so g is well-defined. We now let

Rd:ef{ye 0,1) ‘VAE (V

- T) NT,(g(A) =F = ys € (Yy(a) = & Yya) T )

A(g(A)=F —yy € (Z;(A) —5,2;(/1) —{—5))}.

Finally, we will show that A\(T'(G,N)) > 0 by showing that a point (z,y) picked uniformly
at random in U X R has positive probability of belonging to T(G,N).

Note first that the union bound gives

P[(x,y) € T(G,N)] = P[(Va € F,a*(x,y) € N)A (Va € F,a"(z,y) ¢ N

=1-3 (1-Pl*(@,y) e N)) ~ ) (1-Pla’(z,y) ¢ N,
acF a€F
where we interpret « in the above as an element of (V).
Now, for a € F, note that o*(x,y) has uniform distribution in B((z*,y*),¢), so

from (3.20), we get

(B((z*,y",2"),e)NG) _ | 1

* A -
Pla™(z,y) € N > ANB((z*, y*, 2%),¢)) ’FUF|

On the other hand, for a € F, a*(x,y) has uniform distribution in B((z*,2%),¢), so

from (3.20), we get

(B((z*,y*,2%),e)nG) . 1
AB((z*, y*, 2%),2)) FUF|

Plo*(z,y) € N] > 2

Putting these together, we get P[(x,y) € T(G,N)] > 0 as desired. |

Remark 5. Of course, an easy way to ensure that the consistency condition of Proposi-
tion 3.5.4 holds is to require the stronger condition that any distinct aq,ay € F U F have at

most r coordinates in common. However, there are very natural low rank theories that are
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not captured by the analogue of Proposition 3.5.4 with this stronger condition for r < k — 2.

An example for r < k — 2 is the theory T of (-linear k-hypergraphs, that is, k-hypergraphs
in which any two distinct hyperedges intersect in at most ¢ points. If ¢/ < k — 2, all such
hypergraphs are sparse, so the only ¢ € Hom™ (A[T], R) is the empty k-hypergraphon, which
has rank 0, hence k(T) = 0. However, if V4,...,V}, F, F satisfy the stronger condition for

some r < £, then the k-hypergraph H defined by

viH) = | vi
i€k]
Rp(H) “ {a € (V(H)), | 38 € F.im(a) = im(8)}
is (-linear and violates (3.19), so rk(7") = 0 is not captured by a version of Proposition 3.5.4
with the stronger condition.

However, rk(7T") = 0 is captured by the normal version of Proposition 3.5.4 by taking V;
with a single element for ¢ < ¢ + 1, taking V; with two elements for ¢ > ¢ 4 1, letting F' have
exactly two k-tuples with exactly the first £ + 1 coordinates in common and letting F be
empty. It is clear that 7" entails (3.19) for this choice of (V4,...,V}, F, F) and since F = &,
the consistency condition is satisfied trivially for any » € N, so Proposition 3.5.4 is able to

conclude that rk(7") = 0.

We finish this section by showing a converse to Proposition 3.5.4 when r = k — 1 (note

that the consistency condition is omitted because it is trivially satisfied when r = k — 1).

Theorem 3.5.5. For pairwise disjoint finite non-empty sets Vp,...,V;. and disjoint sets

F FC Hz‘e[k;] Vi, let GV1,...,V,€,F,F(5) be the formula

/\l’i#l’j/\ /\ E(xil""’xik)/\ /\ ﬁE(IEZ‘I,...,ZBZ‘k)

%] (il,...,ik)EF (il,...,ik)EF

The following are equivalent for a theory T" obtained from T} _Hypergraph by adding axioms.
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i k(T) <k-—1.

ii. There exist pairwise disjoint finite non-empty sets V1, ...,V and disjoint sets F, F C

Hz’e[k] V; such that T entails V¥, _'le,...,Vk,F,F(f)'

iii. There exists d € Ny such that T' entails VZ, =G\, v, p(T) for
Vi€l x (i} e k- 1)
Vk d:efQHie[k—l] Vi;
FEL (o1, 01, 4) € [TVi| (v vpn) €Ay (3.21)

1€[k]

FE( T wvi |\~
i€[k]

Proof. Implication (iii) = (i) follows from Proposition 3.5.4.

For implication (ii) == (iii), by considering the contra-positive, note that if there exists

a model M of T in which GVl,...7Vk,F,F(6) holds for some choice of @ and (Vi,...,V}, F, F)

as in (3.21) for some d € Ny then for any choice of (V{,...,V/, F’,F/) as in item (ii) with

max{|V/| | i € [k]} < d/2, we can find a solution b of Gy o g In M using the tuple d.
1V ko 9

Namely, for each v € V/ and i € [k — 1], we assign to by a distinct aq, with wy, € V; (this

is possible as d > |V/|). Then we assign to each b, with v € V}, a distinct a4, with A, € Vj

such that

V(vi,...,0_1) € H Vi (1, 0p1,0) € F = (wyy, ..., wy,_,) € Ay)
ielk—1]

A ((vl,...,vk_l,v) €l = (Wyy,...,wy,_,) & Av).

The choice of the A, can be made distinct since d — |V/| > d/2 > |V/] for every i € [k —1].
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Finally, let us show implication (i) = (ii).

Suppose not, that is, suppose that for each choice of C = (n,Vq,..., Vi, F, F) as in
item (ii), there exists a model Ko € Kyp[T] such that FF C Rg(Kg) and F N Rp(Ko) =

We can rephrase the property above as follows. Let 7’ be the theory obtained from

T -Hypergraph Y Tk -Coloring by forbidding any non-rainbow edges, that is, we add the axiom

Vay Vo, E(xy, ... x5) — /\ /\ =(xe () A xe(x)).
1<i<j<ktelk]|
Consider the interpretation I: T/ ~» T U T, k-Coloring that acts identically on the coloring and

removes non-rainbow edges, that is, it is given by

def

I(x;)(x) = xi(x) (i €[k]);
def

I(E)(z1,...,2) = E(z1,...,75) A /\ /\ ~(xe (i) A xe(z5))-
1<i<j<ktelk
Then the property above can be restated as follows: for every M € M|[T'], there exists
N € MI[T U T},_Coloring] such that I(N) = M, that is, we have I(T U T._coloring) = T
(see Definition 3.5.2). Indeed, assuming without loss of generality that V(M) = [n] and
that each R,,;(M) is non-empty (otherwise, we can use a larger model M’ with R, (M’)

non-empty and with M as an induced submodel), one such N is obtained as K for the

choice C' = (n, Ry, (M),..., Ry, (M), F,F), where

FY Ry n [] Ry (M
1€[k]

FY T Ru(M) |\ Re(M).
€lk]
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Now consider the T’-on A given by

i;13x<%} (i € [k]);

)

NEd:ef{l‘ng

1

and let ¢ = ¢nr € Hom™* (A[T"], R). Our property implies that there exists ¢ € Hom™ (A[T'U
T} -Coloring), R) such that ¢ = ¢! (cf. Remark 4) and by Proposition 3.2.1, there exists a
(TUT}; _Coloring)-on H over [0, 1)2 such that ¢gy = 1, I(H)p = Npx&;, a.e. and Hy, = Ny, xE
a.e. for every i € [k].

Note now that for a.e. (z,y) € & g1 X E k1, if (25}, y(5y) € Hy, for every i € [t], then
PN PN 5 B 1
A{(@.9) € [0, 1] | (2, 7,,7) € Hp}) = M{Z € [0.1] | (2,7) € Nig}) = 5

Since for the structure-erasing interpretation J: T~ T'U T, _Coloring, the homomorphism
¢’ € Hom™ (A[T],R) is represented by J(H) and since (z,y) € J(H) <= (z,y) € HE
whenever (2,1, Y1) € Hy, for every i € [t], by Remark 1, we have rk(y”7) > k so rk(T) >
k. |

Remark 6. Note that in the case k = 2, item (iii) with parameter d is equivalent to saying
that the Vapnik—Chervonenkis dimension (VC dimension, see [69, 70, 68]) of neighborhoods

of vertices in models of T" is at most d — 1, that is, if M is a model of T" and

FL Ny () [0 e V(D))

Nar(v) & {w e V(M) | (v,w) € Rp(M)};

then for every V € (V(é\J))’ we have

{VNF|FeF}<2%
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i.e., F does not shatter V.

In turn, this property in model theory is known as saying that the formula E(x,y) satisfies
d-NIP in T, which stands for “not d-independence property”, but it is not directly related to
our Independence property of Definition 3.1.1.

When k£ > 2, item (iii) is equivalent to the VC dimension of neighborhoods of vertices
being bounded by some d’ € N (there is a loss in the parameter), that is, there exists d’ € N

such that if M is a model of T and

FLUNy @) [ve V)

Mmm@%@hmwkﬁe($¥b @mh“mkgeRﬂMﬁ;

then for every V C (‘?{(i\/l[)) with |V| = d’, we have

{VAN|NeF} <22,

i.e., F does not shatter V. This is equivalent to saying that E(z,#) satisfies d’-NIP in T

3.6 Strengthening theon lifting

Recall that Proposition 3.2.1 said that if A is a Tj-on and ¢ = ¢! for some I: T} ~ Ty,
then we can find a Th-on H such that I[(H)p = Np x E(p) a-e. and ¢y = ¢. It is natural
to ask if we can strengthen this proposition to require that I(H)p = Np X El(p) everywhere
(except for the diagonal) even when [ is not necessarily a structure-erasing interpretation.

The example below illustrates the main obstacle to such a generalization.

Example 2. Consider the interpretation I': T3 _gypergraph ~> TGraph Of triangles of a graph
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given by

I(E)(z1,29,23) = N (El(xj ;) V E(zj,7;)).
1<i<j<3
(We write it in a slightly different way so that one cannot violate the symmetry axiom of
TGraph to avoid the problem illustrated here.)

Let ¢ € Hom+(A[TGraph], R) and take any T3_Hypergraph-on N with ¢! = ppr but such
that Ti,q (K, ,N) & Dy, where K 4 1s the 3-hypergraph with 4 vertices and 3 edges; this
can be done by adding a zero-measure amount of off-diagonal copies of K to I(N' ") for
a TGraph-on N’ representing ¢. Then no TGraph-on M satisfies an off-diagonal everywhere
version of Proposition 3.2.1 simply because I(H) can never contain any off-diagonal copies of

K, . This remains the case even if we assume N to be a strong T3 _Hypergraph=on.

The obstacle illustrated by Example 2 is that there is a “hidden axiom” coming from the
fact that no 3-hypergraph obtained as I(() for some graph G can have a copy of K . To

present to natural hypotheses that could be added we need one more definition.

Definition 3.6.1. For ¢ € Hom™ (A[T],R), let Th(¢) be the theory obtained from T by
adding the axiom VZ, 7 Dopen(M)(Z) for every M € MIT] such that ¢(M) =0, i.e., it is the
theory whose models are precisely the ones that have positive density in ¢.

To surpass the “hidden axiom” obstacle, a natural extra hypothesis would be to require N/
to be a strong I(T5)-on. Alternatively, a more intrinsic condition on N would be to require
it to be as strong as it can be without reference to I, that is, we could require it to be a
strong Th(¢r)-on. The next lemma says that this intrinsic hypothesis implies the natural

hypothesis.

Lemma 3.6.2. Let I: Ty ~ Ty be an open interpretation, let ¢ € Hom™ (A[T3],R) and let
H be a strong Th(¢!)-on over Q. Then H is a strong I(Th(¢))-on.

Proof. We have to show that for every canonical structure M in the language of 77 that
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is not a model of I(Th(¢)), we have Tjpg(M,H) € Dy(37)(€2). We will show this by the
contrapositive.

Let M be a canonical structure in the language of T such that Tinq(M, H) € Dy(37)().
Since H is a strong Th(¢!)-on, we must have ¢! (M) > 0. But this in particular implies that
there exists N' € My () [T2] such that I(N) = M and ¢(N) > 0, which in turn implies that
N € M[Th(¢)], so M € M[I(Th(¢))]. |

Unfortunately, to actually show a generalization of Proposition 3.2.1, we will need the

much stronger and less natural conditions on our theons that we define below.

Definition 3.6.3. Fix d € Ny. A theon N over [0,1]% is called sound if for every open
formula F(z1,...,x,) the set T(F,N') contains all of its off-diagonal Lebesgue density points
(relative to &), that is, we have D(T(F,N))\ Dp([0,1]4) C T(F,N).

Let ¢ > 0 and let Z = (21,..., 2!) be a finite sequence of points with 2 € &y, ([0, 1]%) \
Dy, (10,1]%) for each i € [t]. We define the random e-perturbation Z€ = (2%, ... 25€) of Z

as follows. We let C'; C [0, l]d be the set of all coordinates of the points in Z, that is, we let
Cz={y|ielt],Acr(ng)}

and for x € Cz and X C Uy, we introduce independent random variables £%(z, X) that
are uniformly distributed (according to A%) in B(x,e) N [0,1]¢ (where B(z,¢) C R is the

¢>-ball of radius ¢ centered at ). We then define the random variable 2%€ in &,,([0, 1]7) by
Z3° = €5 (=, 1 € A)).

A theon A over [0,1]¢ is called robust if for every finite sequence ((Fj, zi))’%:l where

Fy(x1,...,op,) is an open formula with n; variables and 2* € &,,([0, 1)) \ Dy, ([0, 1]%) (for
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the same n; € N1 ), we have

limsup PVi € [t], 29¢ € T(F;,N) < 2¢ € T(F;, N)] > 0.
e—0

The intuition of theon soundness is that for each open formula F(x1,...,zy), if “almost
all” small perturbations of a point z € &, satisfy F', then z is required to satisfy I’ as well.
Robustness takes this one step further by saying that small consistent perturbations of several
points z!, ..., 2" should match the behavior of the points 2!, ..., 2" with probability not
going to 0.

Before proving properties on theon soundness and robustness, we need some basic proper-

ties of random e-perturbations.

Lemma 3.6.4. The following properties hold for random e-perturbations of a sequence

i If o (2Y) = B*(29) for some a: [k] — [n;] and some §: [k] — [n;], then o (2h€) =
ﬁ* (Zi,s>_
ii. Fori € [t] and a: [k] — [n;], the point o* (2%€) is uniformly distributed in B(a*(2%), )N

€x((0,1]).

ii. IfY = (y1,...,y") is such that yJ = 2% for every j € [(], then Y has the same

distribution as (2'1:€,. .. z":F).
Proof. For item (i), note that for A € r(k), we have

2,€

O4>{<(Z?:’E)A = *a(4) = 562(23(A)a {Zij} [t e a(A)}) = 562(23(/1)’ {Zia(t)} |t € A})

_ e (. J _ LI g 0hE
_£Z<ZB(A)’{Z{6(t)} |t e A}) = %3(4) = B7(27%) 4,
where the fourth equality follows since zfy(B) = Z%(B) for every B € r(k) as a*(2") = ().
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For item (ii), note that if A € r(k), then o*(2%€) 4 = €€Z(Z£(A)’ {Z«?a(t)} | t € A}), which
is picked uniformly at random in B (’ny( Ay )N [0,1]%, thus it is sufficient to show that the
coordinates of a*(zi’e) are mutually independent. But indeed, each coordinate of a*(zi”‘:)
uses a different £, random variable as the second parameter is always different: if A, B € r(k)
are distinct, then {Zé(t) |t e A} # {z%(t) |t € B} as 2! ¢ Dy, (]0,1]%).

The last item (iii) follows easily from construction. |

The next lemma shows that theon robustness is stronger than theon soundness, which in

turn is stronger than (the maximum possible) theon strength.
Lemma 3.6.5. The following hold for a theon N over [0, 1]%.

i. If N is robust, then N is sound.

ii. If N is sound, then N is a strong Th(¢s)-on.

Proof. Suppose N is robust, let F(z1,...,zy) be an open formula and let z € D(T(F,N)) \

D, ([0,1]%). Since N is robust, for the sequence Z = (1) with 2! = 2, we have

limsupP[zV € T(F,N) <+ z € T(F,N)] > 0,
e—0

but z € D(T(F,N)) implies lim._,oP[z1+¢ € T(F,N')] = 1, so we must have z € T(F,N).

Suppose now that A is sound and let M be a canonical structure on [n] such that
énr(M) = 0. Then AT (= Dopen(M),N)) = 1, s0 D(T(=Dopen(M), N')) = Ex((0, 1]%), which
by soundness of A" implies T(=Dopen(M), N') 2 En([0, 11\ Dy ([0, 1]9), hence Ting(M,N) C
Dn([0,1]%). u

Before we proceed to the generalization of Proposition 3.2.1, let us show that theons can
be made robust by changing only a zero-measure set. The proof is based on the Induced
Euclidean Removal Lemma [24, Theorem 3.3]. In fact, it is worth noting that the Induced
Euclidean Removal Lemma actually produced theons that satisfied the soundness condition

at least when F' is a literal.
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Theorem 3.6.6 (Euclidean Robustness Lemma). Let T' be a canonical theory over a language

L. If N is a weak T-on over [0,1]%, then there exists a robust T-on N over [0,1]% such that
ANp AND) =0

for every predicate symbol P € L.

Proof. We prove the case d = 1, the general case d € N is completely analogous. For P € L,
let us call a point y € E;(p) \ Dy(p) bad for P if y ¢ D(Np) U D(Ep) \ Np) (ie., if y is
neither a density point of N'p nor of its complement) and let Bp C 5k:( P) \Dk( P) be the set
of all points that are bad for P.

We introduce an uncountable set of propositional variables v = (vp, | P € L,y € Bp)

and define the Euclidean structure NV by
N Y DWp ULy e Bp |vpy =1} (PeL)

It is clear that for any assignment u of the variables v, we have A(Np A Np) = 0, which
in particular implies that A% is a T-on. This property also extends: for an open formula
F(x1,...,2n), we have N(T(F,N) AT(F,N")) = 0.

Our objective is to find an assignment u of the variables v so that N'% is robust. For
this, we introduce uncountably many constraints on these variables. For each finite sequence
F = (F;, zi)le, where Fj(z1,...,2n;) is an open formula with n; variables and e En; \ D,

we introduce a constraint R(F) on the variables vp, encoding

limsup PVi € [t], 2¢ € T(F;, N) < ' € T(F;, NV)] > 0. (3.22)

e—0

Note that we replaced NV with A in the first term since P[z%€ € T(F;,N) « z4€ ¢
T(F;, N)] =1 as M(T(F;, N) AT(F;, N*)) = 0 for any assignment u of the variables v.
By the compactness theorem for propositional logic [11, Corollary 1.2.12], to show that
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this system is satisfiable, it is enough to show that any finite subsystem {R(F1), ..., R(Fy)}
is satisfiable. On the other hand, by Lemma 3.6.4(iii), by taking the concatenation F of the
sequences Fi, ..., Fy, the constraint R(F) implies all constraints R(F7), ..., R(Fy), so it is
enough to show that R(F) is satisfiable for any single finite sequence F = (Fj, zi)gzl.

For P € L, let Yp be the set of all y € Ek( P) such that the variable vp, appears in
the constraint R(F). This means that there exists i € [t] and «: [k(P)] — [n;] such that
y = a*(2") (in particular, we have Yp N Dypy = ). For P € L and y € Yp, from the
random e-perturbation Z€ = (1€, ... 2b€) of Z = (zl, ..., 2%), define the random variable
Y€ = o*(25°), where 2’ and a: [k(P)] — [n;] are such that y = o (z?). From Lemma 3.6.4(i),
this definition does not depend on the choice of a and z°.

We define a random partial assignment u® of the variables v that assigns values only to
the finitely many propositional variables v’ def (vpy | P € L,y € Yp) by letting u%, y =1 if
and only if y¢ € Np. As there are only finitely many partial assignments assigning values

only to v/, there exists a partial assignment v’ of v assigning only values to v’ such that

lim sup P[u® = u'] > 0. (3.23)
e—0

From definition, the partial assignment «’ determines all points of NV that appear in the
constraint R(F). Our objective is to show that any complete assignment u that extends v/
satisfies R(F).

Fori € [t], P € £ and a: [k(P)] — [n;], let E%(i, P,a) be the event a*(2€) € Np

o (2t) e Np. By our definition of €, the conjunction

N{ES(i,P.a) |i € [t], P € L,a: [k(P)] — [n],0*(z") € Bp}
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is implied by the event u® = v in (3.23). Thus

lim sup P [/\{Es(i,P, a)|ielt],PeL, a:k(P)]— [n],a*(z") e Bp}| >0. (3.24)

e—0

On the other hand, if o*(2%) ¢ Bp, then lim._,qP[E°(i, P,a)] = 1 by the definition of

Lebesgue density point and Lemma 3.6.4(ii). Putting this together with (3.24) gives

lim sup P [/\{Ee(i, Pa)|iclt,Pe L, a: [k(P) — [ni]}] > 0. (3.25)

e—0

Finally, since the event Vi € [t], 25¢ € T(F;,N) < 2* € T(F;, N'*) from (3.22) is implied
by the conjunction in (3.25), we get that any complete assignment u extending v satisfies

the constraint R(F). [

We can finally prove a generalization of Proposition 3.2.1 that works everywhere except
for a weak version of the diagonal. We note that the idea and structure of the proof is quite

similar to that of Theorem 3.6.6.

Theorem 3.6.7. Let I: T} ~ Ty be an open interpretation, let ¢ € Hom™ (A[Ty], R) and let
N be a robust Tj-on over [0, 1]d such that ¢ = qﬁI. Then there exists a robust Ty-on H

over [0,1]2? such that ¢ = ¢3; and
I(H)p & (Np % Egpy([0,1]%) € Dypy ([0, 11%) x Egpy ([0, 1]%) (3.26)

for every P in the language of T7.

Proof. We prove the case d = 1, the general case d € N is completely analogous. Let £; be
the language of T;.

By Proposition 3.2.1, there exists a (weak) Th-on H over [0,1]? such that ¢ = ¢; and
I(H)p = Np x E(p) ae. for every P € L;.

For Q € Ly, let us call a point y € & )([0, 11%) \ Dk(@([o,l]Q) bad for Q if y ¢

62



D(Hg) U D(Erq) ([0, 12)\ Hg) and let By C &) ([0, 1)?) \ D ([0, 1]%) be the set of all
points that are bad for Q).
Again, we introduce an uncountable set of propositional variables v = (UQ7y | Q € Lo,y €

Bg) and define the Euclidean structure H" in Ly over |0, 1]% by

H) Y DM Uy e By lvgy =1} (Q€ L), (3.27)

and for any assignment wu of the variables v and for an open formula F(x1,...,zy), we have
MT(F,HY) AT(F,H)) =0, so H" is a Th-on with ¢yu = gy = ¢.

Our objective is to find an assignment u of the variables v so that H" is both robust and
satisfies (3.26). For this, we introduce the following (uncountably many) constraints on these

variables.

i. For each finite sequence F = (Fj, Zi)gzl, where Fj(z1,...,2p,;) is an open formula on
Lo with n; variables and 2 € &y, ([0, 1]%) \ Dy, (0, 1]?), we introduce a constraint R (F)

on the variables vg , encoding

limsup P[Vi € [t], 2€ € T(F;, H) < ' € T(F;, H")] > 0. (3.28)
e—0
ii. For each P € £y and each w € (Ey(py \ Dy(p)) X E(p), we introduce a constraint

Z(P,w) on the variables vg ,, encoding

’LUG[(HU)P — ’LUG./\/Png,(P).

Again, we replaced HV with H in the first term of (3.28) since P[z%€ € T(Fj, M) +» z4€ €
T(F;, H")] =1 as N(T(F;, H) AT(F;, H")) = 0 for any assignment u of the variables v.
By the compactness theorem for propositional logic [11, Corollary 1.2.12], to show that

this system of restrictions is satisfiable, it is enough to show that any finite subsystem

{R(F1),....,R(Fp),Z(P,wh), ..., Z(Pny,w™)} is satisfiable. Again, by Lemma 3.6.4(iii),
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for the concatenation F of the sequences Fi, ..., Fy, the constraint R(F) implies all con-
straints R(F1), ..., R(Fy), so it is enough to show that any finite subsystem of the form
{R(F),Z(P,w'),...,T(Pm,w™)} is satisfiable, where F = (F}, zi)f-:l. In fact, we can aug-

ment the sequence F so that for every j € [m] there exists i; € [¢] such that £} (z1, ..., 2y P, )
is [(Pj)(acl, ce ’xk:(Pj)) and 2% = w/.
Consider the random e-perturbation Z€ = (z1:¢ ... 25€) of Z = (2!,...,2") and for

convenience, let us denote w¥*€ = 2%°¢ for j € [m].

For Q € L9, let Yg be the set of all y € 5/<;(Q)([0> 1]2) such that the variable vg) ,, appears
either in the constraint R(F) or in some constraint Z(P;, wl). This means that there exists
i € [t] and a: [k(Q)] — [ni] such that y = a*(z), so we can define y = o*(2%€) and
Lemma 3.6.4(i) implies that this does not depend on the choice of & and 2.

We now define a random partial assignment u of the variables v assigning values only to
the finitely many variables v’ def (vQy | Q € Lo,y € Yg) by letting uay = 1 if and only if
y© € Hg. Let U be the set of partial assignments u’ of the variables v assigning values only

to (vgy | Q € L2,y € Yp) and such that

lim sup P[u® = u'] > 0. (3.29)
r—0

As there are only finitely many partial assignments assigning values only to v/, we know that
U is non-empty. Again, our definition ensures that the partial assighments v’ € I determine
all points of AV that appear in the constraints R(F),I(Pl,wl), oo s Z(Pp,w™) and our
objective is to show that there exists u/ € U such that any complete assignment u extending
u/ satisfies these constraints.

Fix a partial assignment u’ € . For i € [t], Q € L3 and a: [K(Q)] — [n;], let EE, (i, Q, )

be the event o*(z%€) € Hg < o (2) € H¢)- By an argument analogous to that of
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Theorem 3.6.6, we have

lim sup P [/\{EZ/(Z',Q,Q) lie[t],Q € Lo, a: [k(P)] — [nl]}] > 0. (3.30)

e—0

Since the event Vi € [t], 25 € T(Fj, 1) < 2 € T(F;, H") from (3.28) is implied by the
conjunction in (3.30), it follows that for every u/ € U, every complete assignment u extending
u' satisfies the constraint R(F).

To satisfy the constraints Z (P, wl), oo, I( Py, w™), we will have to choose u’ € U more

_ . i .
carefully. For j € [m], let S5 be the event w’€ € Np, x Ep(py) & W € Np, x Ex(py)-

Recalling that w/ € (5k(Pj) \Dk(Pj)) X Sk(pj), note that robustness of N implies that

limsup P /\ S; > 0.

e—0 e[m]

Using again the fact that there are only finitely many assignments, it follows that there exists

u' € U such that

: e __ 1/ €
limsupP [u® =u" A /\ SJ- > 0.

—0 .
c JE€[m]

But note that within the event in the above, we can deduce the following chain of a.e.

equivalences

wj ENPj X gk(Pj) <~ ,wj,s Eij X Ek:(Pj) <~ ’wj’€ S I(H)pj

— wl® c T(I(Pj),H) < 2%° ¢ T(F;;, M)

where the second equivalence holds a.e. within the event since N, P; X iy p) =1 (H)p, ae.

65



On the other hand, we also have

2 e T(F, H") <= v € TI(P),H") <= w’ € I[(H")p,,

so the fact that any complete assignment u extending u’ satisfies R(F) implies
wj S ij X gk(Pj) <~ wj € ](Hu)pj,
that is, u also satisfies Z(P;, wl). [

3.7 Amalgamations over more general diagrams

In this section we study a generalization of Theorem 3.2.5 and Proposition 3.2.9 to diagrams
with more complicated shapes. Our first order of business is to show that INT is closed under

finite colimits.

Proposition 3.7.1. Let D: S — INT be a finite diagram and let T be the theory obtained

from UAeObj(J) D(A) by adding the axioms

P(l’l, R ,xk,(P)) e D(f)(P)(l’l, R ,xk(P)) (331)

for every S-morphism f: Ay — Ag and every predicate symbol P in the language of D(Ay).
For each A € Obj(S), let also I 4: D(A) ~» T be the interpretation that acts identically on
the language of D(A).

Then (T, (14) aconj(s)) is a colimit of D.

Proof. The fact that (T, (I4) aconj(s)) is a cone from D follows directly from the ax-
ioms (3.31).
For every A € Obj(S), let Ty def D(A) and let L4 be the language of T4 so that the

language of T is L def UAeObj(S) L. To show universality, for a cone (U, (J4) acobj(s))
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from D, define a translation I from the language of T" to the language of U by

for every A € Obj(S) and every P € L 4. From this definition, it is trivial that for every
A € Obj(S) we have I o [4 = Jy.

It remains to show that I: T ~» U is the unique element of Homyyg(7,U) with this
property. Suppose I': T ~ U also satisfies I’ o I4 = Jy4 for every A € Obj(S) and let us
show that I = I’ in INT (recall that in this category we factor by interpretation equivalence).

We need to show that for every P € L, we have
U FVZ, (I(P)(Z) < I'(P)()). (3.32)

But indeed, if P € L 4 for some A € Obj(S), then the above follows since Ioly = J4 = I'ol4

in INT and 74 acts identically on P. |

Just as couplings, amalgamations over pushouts and unique coupleability, we can define

the analogous notions over a general finite diagram.

Definition 3.7.2. Let (T, (14) gocobj(s)) be a colimit of a finite diagram D: S — INT and
for each A € Obj(S) let ¢4 € Hom™ (A[D(A)],R).

We say that (¢A)AeObj(S) respects D if for every S-morphism f: A} — Ag, we have
oD =64,

An amalgamation of (¢4) aconjs) over D (with respect to (T, (14) 4eonj(s))) is an
element ¢ € Hom™ (A[T],R) such that £f4 = ¢ 4 for every A € Obj(S).

We say that the family (#4) 4cob; () 1 uniquely amalgamatable over D if for each colimit
(T, UA)AeObj(S)) of D, there exists a unique amalgamation of (¢A)A60bj(S) over D with
respect to (7', (14) aconj(s))-

Remark 7. Note that the universal isomorphisms allows us to translate between amal-

67



gamations over D with respect to different colimits, thus existence (resp., uniqueness) of
amalgamations over some colimit is equivalent to existence (resp., uniqueness) of amalgama-
tions over every fixed colimit. Thus, we will typically omit the colimit when we talk about

existence /uniqueness of amalgamations.

It is obvious that for an amalgamation of (¢.4) 4eonj(s) over D to exist, (#4) aconj(s)

must respect D, but the following examples show that this condition is not sufficient.

Example 3. Consider the finite shape S def 0 = 1 consisting of two parallel arrows f,g: 0 — 1
(plus identity morphisms idg,id;) and consider the diagram D: S — INT given by letting

def def def

D(0) D(1) = T5_Coloring, letting D(f) = 17y o1orng a0 letting D(g) be the open

interpretation that swaps the colors, that is, it is given by

D(g)(xi) (@) xs_ilx) (i €[2). (3.33)

Consider the limit ¢ 9 1 /9 € Hom™ (A[T5_Coloring): R) that assigns density 1/2 to each

color, that is, it is represented by the T5_¢oloring-on

1
Ty = 5} . (3.34)

1 def
Te1y < 5}, NX2 = {xet?l

def ¢1/2,1/2? it follows that (¢, ¢1) respects D.

Then letting do = ¢;
However, letting (T, I, I1) be as in Proposition 3.7.1 and denoting by x1, x2 the predicate
symbols of T' corresponding to D(0) and denoting by x}, x4 the ones corresponding to D(1),

note that (3.31) applied to f and g respectively imply

Xi(r) = xj(z) (i€ [2]);

Xi(r) = x3_i(x) (i€ [2]);

which contradicts the axioms of 7" inherited from T5_¢oloring U 72 -Coloring, S0 1" is degenerate

and thus no amalgamation & of (¢g, ¢1) exists.
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To avoid the problem illustrated by the example above, one could ask for the diagram to
be commutative, that is, ask for S to be a finite poset category (i.e., a category S in which
for all Ay, Ao € Obj(S), there is at most one S-morphism of the form A; — As and whose
isomorphisms are all identities), but the example below shows that this extra hypothesis is

still not sufficient to ensure existence of an amalgamation.

Example 4. Consider the poset category S with shape

and let D: S — INT be the diagram given by letting D(A;) def D(B;) def T3 Coloring (i € [2]),

def def

letting ag def ap = by = and letting b; be the open interpretation that swaps

147, otoring
that colors (see (3.33)).

Again, for the coloring v¥y/91/9 € H0m+(A[T2—Coloring]:R) that assigns density 1/2
to each color (see (3.34)), (¥1/2.1/2:¥1/2,1/2,¥1/2,1/2: ¥1/2,1/2) Tespects D but it has no
amalgamation over D since, just as in Example 3, the colimit of D is a degenerate theory.

Let us note that the fact that the colimit theory is degenerate is only for proof convenience:
one can take any of Examples 3 and 4 and form a diagram D’ by replacing T ~Coloring With
the pure canonical theory T{X e} and the colimit 7" of D’ will have several unary predicate
symbols that must always agree, hence T" is isomorphic to 15 _Coloring, Which is not degenerate.
However, the families of limits still cannot be amalgamated over D’ as any such amalgamation
will necessarily also be an amalgamation over D. We will return to this in Section 3.8.

It is natural to ask then what shapes S of the diagram D ensure that any family of limits

respecting D can be amalgamated.

Definition 3.7.3. Let S be a finite category. We say that S amalgamates theons if for every

diagram D: S — INT and every (¢ 4) A€O0Dj(S) that respects D, there exists an amalgamation

of (¢4) aconj(s) over D.
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The next theorem says that finite forest-like categories (defined below) amalgamate theons.

Definition 3.7.4. Let F' be a forest (i.e., an acyclic graph) and let F be an orientation of
the edges of F'. The category C’(ﬁ) is the small poset category whose objects are V(ﬁ),
whose morphisms are directed paths of F with identity morphisms given by length 0 paths
and with composition given by path concatenation.

A category is forest-like if it is of the form C' (ﬁ ) for some orientation F of some forest F.
Equivalently, a small category is forest-like if it is a poset category such that the corresponding

Hasse diagram does not have any (undirected) cycles.

Theorem 3.7.5. If S is a finite forest-like category, then S amalgamates theons.

Proof. Let (T, (14) seobj(s)) be a colimit of a finite diagram D: S — INT, let (¢4) 4c0nj(s)
respect D and let us show that there exists an amalgamation of (¢4) A€O0bj(S) over D with
respect to (7T, (14) 4e0nj(s))-

By Remark 7, it is enough to show the case when (T, (14) sconj(s)) s as in Proposi-
tion 3.7.1.

Let F be an orientation of a forest F' such that S = C(F) and let us show the result by
induction in |V(F)|. If V(F) = @, then T is the trivial theory and its unique limit is an
amalgamation of the empty family over D, so suppose V(F') is non-empty.

Since F' is a forest, there exists a vertex Ay of degree at most 1. Let F' def F— Ap and
let D': 8" — INT be the restriction of D to 8" % C(F"). Let also (1", <I:4)AeObj(S’)) be the
colimit of D" given by Proposition 3.7.1 and let I: T" ~~ T be the universal INT-morphism
from T” (it acts identically on the language of T") so that I4 = o[ 1’4 By inductive hypothesis,
let ¢ be an amalgamation of (¢A)A60bj(s’) over D’ with respect to (17, (IA)AEObj(S/))'

Suppose first that Ag is an isolated vertex of F'. Since the only S-morphism that is not a
S’-morphism is id 4, it follows that 7' = T" U T,. This means that if £ is a coupling of ¢ 4,

and 1, then £ is an amalgamation of wA)AeObj(S’) over D with respect to (7 (IA)AeObj(S))-
Consider now the case when there is an oriented edge f in F from Ag to some A1 € Obj(S/).
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In this case, since all paths from Ag to some vertex of F’ must go through f, it follows that

T is the theory obtained from 7" U Ty, by adding the axioms

P(z1,....zppy) < D(f)(P) (21, .., 21p))

for every P in the language of D(Ag) (the axioms corresponding to longer paths can all be
entailed from these and the axioms of 7”). This implies that I is an isomorphism (I 1 acts
identically on the language of 7”7 and acts as D(f) on the language of T' Ay)- We claim that
3 def wl_l is an amalgamation of (¢4) seonj(s) over D with respect to (7', (14) 4e0nj(s))-
Note that for every A € Obj(S’), we have £/4 = ¢ 4, since [4 = I o I'y. On the other hand,

we also have fIAO = §IA10D(f) = ¢il(f) = ¢A0-

Finally, for the case when there is an oriented edge f in F from some A; € Obj(S’) to

Ap, note that the diagram
D(f)
D(A1) —— D(Ay)

Ifqll lIAO
y N
is a pushout in INT, so by Theorem 3.2.5 there exists ¢ € Hom™ (A[T7], R) such that §IA0 =04,
and &/ = 4. Since the latter implies £/4 = wlxlél = ¢4 for every A € Obj(S'), it follows that &

is an amalgamation of (¢A)AeObj(S) over D with respect to (7, (IA)AeObj(S))' [

The remainder of this section is devoted to showing the following generalization of Propo-
sition 3.2.9 that says that unique amalgamation is preserved under natural transformations

as long as the shape is forest-like.

Theorem 3.7.6. Let 7: D — D9 be a natural transformation between finite diagrams
D1,D9: S — INT such that S is forest-like and let (¢A)AeObj(S) be uniquely amalgamatable
over Do. Then (¢T4A)A60bj(5) is uniquely amalgamatable over D1.

Just as in Proposition 3.2.9: the theorem above will follow from the fact that amal-

gamations lift through natural transformations. This involves considering amalgamations
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over a diagram that encodes both diagrams Dy, D9, the colimit of D and the natural

transformation 7: D{ — D».

Definition 3.7.7. Let S be a poset category and let <g be the underlying partial order on
Obj(S) given by

A1 =g Ay <= Homg(Ay, 41) # .

~

The category S (see Figures 3.1a and 3.2) is the poset category obtained from S by

forming the product poset with ([2], <) and adding an element * that is greater than every

element in the first copy of S; more formally, we let Obj(S) def (Obj(S) x [2]) U {*} and let

the underlying partial order be given by

(A1,i1) Zg (Ag,iz) <= A; < Ag Aip <ip  (Ay, Ay € Obj(8S), 1,42 € [2]);
(A1) <5+ (A €O0bi(s));

* <G *.

S
The §—morphisms can be subclassified according to their relation to * into the following

three types.

i. Each S-morphism f: A; — Ag gives rise to three §—m0rphisms fi: (A1, 1) — (Ao, 1),
fo: (A1,2) = (A2,2) and fi: (A1, 1) — (A2,2) (note that id 4 ;) = (id);).

ii. For each A € Obj(S), we have the S-morphisms ga: (A1) — =
iii. The final g—morphism is the identity id.

Given a natural transformation 7: D; — Dy between finite diagrams D1, Dy: S — INT
and a colimit C' = (T, (14) ge0nj(s)) of D1, we let D7 ¢ S — INT (see Figure 3.13.1b) be the

natural commutative diagram that contains all morphisms in D1, Dy and C'; more formally,
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it is given by

def

Dro((A) ¥ Di4) (A eobis),ie2);
D, o(x) €T,
Dre(f) € Di(f)  (f € Hom(S),i € [2]);

Dy c(fia) 74,0 Di(f)  (f € Homg(Ay, Ag), Ay, Ay € Obj(S)):
Drclgn) €1y (AcObj(s));

D, ¢ (id.) idy .
‘>= ‘>= C
f12

a) Shape S. b) Image of diagram D, .

Figure 3.1: Pictorial view of constructions of Definition 3.7.7.

Note that if S has at least one non-identity morphism, then S is not forest-like (even if
S is forest-like), so we cannot use Theorem 3.7.5 to ensure that S amalgamates theons and

must instead prove this ad hoc.

Theorem 3.7.8. If S is a finite forest-like category, then S amalgamates theons.

Proof. Throughout this proof, let us assume that all colimits are as in Proposition 3.7.1 (see
Remark 7), we will also use the notation of Definition 3.7.7 for the objects and morphisms of
S.
Let F be an orientation of a forest £ such that § = C(F ) and let us show the result by
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Figure 3.2: Example of construction of shape S from S, identity morphisms are omitted.

induction in |V (F)|. If V(F) = @, then S has a single object, namely *, thus it amalgamates
theons (e.g., by Theorem 3.7.5), so suppose V(F) is non-empty.

Let (T, (14) scobj(s)) be the colimit of some diagram D: S — INT of shape S, let
(94) 4e Obi(8) respect D and let us show that there exists an amalgamation of (¢4) , Obi(8)
over D.

First, we claim that it is enough to show the case when (D(x), (D(g94)) 4cobj(s)) is the
colimit of the restriction Dy def Dlopj(s)x {1} of D to the first copy Obj(S) x {1} of S in S.

To show the claim, we will construct several INT-morphisms and amalgamations (which
are pictorially represented in Figure 3.3) by diagram chasing using Theorem 3.2.5.

Let I: € — D(x) be the universal INT-morphism from the colimit (C, (J4) 4cobj(s)x{1})
of Dy such that D(g4) = I o J4 for every A € Obj(S) x {1}, and let D’: S — INT coincide
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P(a,1)

3 3 I 0s

| 1 » D(x)

1 I8
i Y Y Y //

| \4
Dlovs)x{2y | .~ —— ———= T ; - T

| - ~

1 - g ¢ 3

Figure 3.3: Commutative diagram of morphisms and amalgamations constructed in reduction
to the case when (D(x), (D(94)) aconj(s)) is the colimit of Dy; some compositions are omitted.

C'is the colimit of Dy, 7" is the colimit of D’ and T is the colimit of D. The square on the
right is a pushout.

with D in S — % and

D'ga) s (AcObi(s));

D'(idy) ¥ id .

Let now def ¢! € Hom™* (A[C],R) and note that ¢ is an amalgamation of the family

wA)AeObj(S)x{l} over Di. This in particular implies that <(¢A)A€Obj(§)\{*}’w> respects

D', so our hypothesis gives an amalgamation ¢ € Hom™ (A[T'], R) of this family over D’ with
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respect to its colimit (77, (I'y) . Note now that the diagram

AeObj(§))

¢ —L D(x)
L’kl I
T/

— T

is commutative, where J is the universal INT-morphism from the colimit 7”.
Since ¢L = ¢ = 5’[;, Theorem 3.2.5 gives us & € Hom™ (A[T],R) such that ¢/ = ¢ and
¢l = ¢,. Note that for A € Obj(S), we have

glan = ghoDlaa) = gDlaa) _ D(A,1);

~ AJOI/ I/
§An =742 = (4D = ¢y 9.

Thus ¢ is an amalgamation of (d4) over D and the claim is proved.

AcObj(8S)

Let us now show the case when (D(x), (D(g94)) 4c0nj(s)) is the colimit of Dj. Again, this
is shown by diagram chasing (see Figures 3.4 and 3.5).

Since F'is a forest, there exists a vertex Ay of degree at most 1. Let Jad def F— *, let S’ def
C(F') and let D' S’ — INT be the diagram that coincides with D in Obj(S’) x [2] and maps

. .. def
(*, (94) Aconj(s)) to the colimit (C, (JA)AeObj(S/)) of the restriction of D] = D|Obj(s/)><{1}
of D to Obj(S") x {1}. Let also J: C' ~ D(x) be the universal INT-morphism from C' so
that D(g4) = J o J4 for every A € Obj(S’).

Let further (77, U;l)AeObj(S’)) be the colimit of D’ and let I: T’ ~ T be the universal
INT-morphism from 77 so that Iy = I o Iy. Let ¢ def ¢ € Hom™(A[C],R) and note
that ¢ is an amalgamation of wA)AeObj(S)x{l} over D/17 which in particular implies that

/ . . . . .
((p4) ACOb;(E)\ (+) ) respects D', so by inductive hypothesis, there exists an amalgamation
¢ € Hom™* (A[T"],R) of this family over D',
Consider the case when Ag is an isolated vertex of F' (see Figure 3.4). We claim that

in this case T is isomorphic to 77 U D((Ag,2)). Indeed, the theory T is obtained from
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T'U D((Ap, 1)) U D((Ap,2)) by adding the axioms

P(z1,...,z5p)) < D((idg)12)(P)(z1, ..., 2 p))

for every P in the language of D((Ag,1)). This means that the open interpretation I’: T" U
D((Ap,2)) ~ T that acts identically is an isomorphism (its inverse (I’)~! acts identically on
the language of 7" U D((Ap, 2)) and acts as D((id4,)12) on the language of D((Ag,1))).

Let then & € Hom™ (A[T' U D((4p,2))],R) be any coupling of ¢ and $(4y,2) @nd note

—~ Nn—1
that £ dof 55[) € Hom™ (A[T],R) is an amalgamation of ((bA)AeObj(g) over D.

P(4p,2)

Figure 3.4: Commutative diagram of morphisms and amalgamations constructed in the case
when A is an isolated vertex of F'; some compositions are omitted. C' is the colimit of D/,
T' is the colimit of D' and T is the colimit of D.

Consider now the case when there is an oriented edge f in F from Ag to some A1 € Obj(S').
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In this case, since all paths from Ag to some vertex of F’ must go through f, it follows that

T is the theory obtained from T U D((Ag, 1)) U D((Ap,2)) by adding the axioms

P(zq,... ,xk(P)) < D(f2)(P)(z1, ... ,xk(P));

Q@1,. .., 2pq)) < D((idggh12)(@) (21, - -, 2())

for every P in the language of D((Ap,2)) and every @ in the language of D((Ag,1)) (the
axioms corresponding to other paths are entailed from these and the axioms of T"). This
implies that [ is an isomorphism ([ —1 acts identically on the language of T”, acts as D(fs)
on the language of D((Ag,2)) and acts as D(fz o (id4,)12) on the language of D((Ap,1))).

Then E def ¢l s clearly an amalgamation of (¢ 4) over D.

AcODj(S)
Finally, for the case when there is an oriented edge f in F from some Ay € Obj(S') to

Ay (see Figure 3.5), we form the pushout

I/
D((Ay,2)) 22 17

D) | (3.35)
D((A40,2)) —— Tz

Since ngZf({% =0(4,2) = §I€A172), by Theorem 3.2.5, there exists & € Hom™ (A[Ty], R) such
that 552 = P(4,,2) and féé =¢.

We claim that T5 is isomorphic to 7. Indeed, the open interpretation Jo: Ty ~~ T that
acts identically has as inverse the interpretation Jy Lor s T that acts identically on the
language of T U D((Ap,2)) and acts as D((id4,)12) on the language of D((Ap,1)). Thus

R 1
&= 55]2 is an amalgamation of (¢ 4) over D.

AeObj(S)
|

We can now show that amalgamations over forest-like diagrams lift through natural

transformations.
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D((idA0)12)

Dlov(s')x {2}
D((A1,2))

D((Ap,2))
P(40,2)

Figure 3.5: Commutative diagram of morphisms and amalgamations constructed in the case
when there is an oriented edge f in F from some Aq to Ag; some compositions are omitted.
C is the colimit of D’l, T" is the colimit of D', T is the colimit of D and T is the pushout of
1 / and D(fg)

(A1,2)
Proposition 3.7.9. Let 7: D; — D9y be a natural transformation between finite diagrams
Dqi,D9: S — INT such that S is forest-like and let (¢A)AeObj(S) respect Do. Let also & be
an amalgamation of <¢,T4A)A60bj(5) over Dy with respect to a colimit (C1, (I}4)AeObj(S)>a let
(Co, ([i)AeObj(Sﬂ be a colimit of Dy and let I: C; — C9 be the universal INT-morphism
such that ]El oty=1o0 ]}1 for every A € Obj(8S).

Then there exists an amalgamation E of (p4) AeObj(s) over Do with respect to the colimit

(Ca, ([i)AeObj(S)) such that & = ¢.

Proof. Note that the colimit Co of Do is isomorphic to the colimit of D, ¢, and that

the family of limit objects ((¢,T4A)A60bj(5)a (©4) Acobj(s): &) (indexed in order by Obj(8) x
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{1}, 0Obj(8) x {2}, {*}) respects D, ¢, so by Theorem 3.7.8, there exists an amalgamation

E € Hom™ (A[Cs], R) of this family over D ¢, and such E satisfies the required properties. W

Just as Proposition 3.2.6 is used to show Proposition 3.2.9, we can use Proposition 3.7.9

to show Theorem 3.7.6.

Proof of Theorem 3.7.6. 1t is clear that (QSZA)AeObj(S) respects Dy, so by Theorem 3.7.5,
there exists at least one amalgamation of this family over D;.

On the other hand, if £ is one such amalgamation, Proposition 3.7.9 gives us an amalga-
mation E of (¢4) AeObj(s) over D9 such that Ef = £ for the universal INT-morphism I from
the colimit of Dy to the colimit of Dy that factors through 7. Since this latter family is
uniquely amalgamatable over Do, it follows that every amalgamation £ of the former family

over Dy is of the form & = EI. [

3.8 Concluding remarks and open problems

In this section we have introduced the basic concepts of continuous combinatorics of rank,
independence, couplings, amalgamations and the Li-topology. We have seen that rank
behaves very differently in the Li-topology and in the density topology and we have seen that
the axioms of a theory can force it to have rank much lower than its arity. Finally, we have seen
that theons, couplings and amalgamations can be lifted through open interpretations, which

is a fundamental property to the study of unique coupleability and unique amalgamatability.

Section 3.4 was completely devoted to the study of semi-continuity of rank with respect to
the Li-topology and the failure of its continuity in the density topology, in other words, the
property rk(—) < £ is closed in Li-topology but not necessarily closed in density topology.
However, we do not know if the dual set of Independence|/] is closed in either topology. We

will return to this question and its importance in Section 4.9.

In Proposition 3.5.4, we provided a sufficient condition for a theory 7' obtained from

T}, _Hypergraph to satisfy rk(T) < r for any fixed r < k. In the particular case of r = k — 1, we
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showed in Theorem 3.5.5 that this condition is also necessary, and is equivalent to requiring
that the VC dimension of neighborhoods of vertices are bounded by some constant d = d(7T')
(see Remark 6). In a recent work, Chernikov and Towsner [13] completely characterized
theories of k-hypergraphs of rank at most r as the theories that have finite VC;, dimension
(see the aforementioned paper for the definition) in the language of regularity lemmas and

graded probability spaces.

In Section 3.6, we have seen how to strengthen Proposition 3.2.1 on lifting theons through
open interpretations to a version that holds everywhere except for a version of the diagonal
(Theorem 3.6.7). For such lifting to be possible, we required the theon to be robust. Even
though Theorem 3.6.6 says that we can get theon robustness by changing only a zero-measure
set, the concept of theon robustness (or even the weaker notion of theon soundness) is
not very “natural” as it only makes sense for theons over [0, 1]d and it is not preserved
under measure-automorphisms of |0, 1]d. Of course, one could simply close this property
under measure-isomorphisms between any two spaces, but that would make the definition of
robustness even more technical and arguably less “natural”.

On the other hand, the discussion in the beginning of Section 3.6 suggests that the main
obstacle of “hidden axioms” to Theorem 3.6.7 is already surpassed with the weaker condition
of Th(¢ar)-strength (or the even weaker condition of I(Th(¢))-strength), which brings us to
the question of whether it is possible to replace the robustness condition by any of these two
conditions (of course, one should also drop the robustness result of the constructed Th-on H
as well). Even replacing the robustness condition by the much simpler notion of soundness in

Theorem 3.6.7 would already be interesting.

In Section 3.7, we have seen a generalization of the notions of couplings and amalgamations
to general diagrams in the category INT. We have seen that not every diagram shape
amalgamates theons, but at least finite forest-like shapes have this property. However, it
is easy to see that there are many shapes that amalgamate theons that are not forest-like.

For example, any shape S containing a terminal object A; trivially amalgamates theons as
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for every diagram D: S — INT, D(A;) is a colimit of D, thus if (¢A)A60bj(S) respects D,
then ¢4, is an amalgamation of this family. An interesting problem would be characterizing
exactly which shapes amalgamate theons.

We have also seen in Theorem 3.7.6 that for a finite forest-like shape S, the fact that
S amalgamates theons implies that unique amalgamatability of a diagram of shape S is
preserved under natural transformations. Unfortunately, the ad hoc proof in Theorem 3.7.8
that S amalgamates theons heavily used the fact that S is forest-like, so we would like to ask
if S amalgamates theons whenever S amalgamates theons. This would immediately imply a

generalization of Theorem 3.7.6 to every S that amalgamates theons.

Finally, let us point out that several of the results of Section 3.7 can be proven in the
more general setting of category theory. More specifically, suppose we are given a category X
and a (covariant) functor F': X — SET to the category SET of sets. Then we can say that
for a diagram D: 8 — X, a limit? (L, (f4) aconj(s)) of D and a family (z4) g4copj(s) with
x4 € F(D(A)) for every A € Obj(8), an amalgamation of (x 4) g4copj(s) over D with respect
to (L, (fa) aconjs)) is ay € F(D(L)) such that F(D(f4))(y) = x4 for every A € Obj(S)
and the other notions are defined analogously. We can also say that a shape S amalgamates
objects of F' when every family that respects a diagram D: S — X has an amalgamation over
it.

Under these definitions, it is easy to see that if X contains pullbacks and a terminal object
(in particular, it contains limits of all finite forest-like shapes) and the shape of pullbacks
amalgamates objects of F' (in particular, finite discrete shapes amalgamate objects of F'),
then Theorems 3.7.5, 3.7.6 and 3.7.8 and Proposition 3.7.9 hold for F': X — SET after
appropriate dualization: forest-like is a self-dual notion, S is replaced by §Op, amalgamations
of (F(74)(z4)) acobj(s) over Da: S — X can be lifted to amalgamations of (z4) 4con(s)

over D1: S — X whenever 7: D — D9 is a natural transformation and S is finite forest-like,

4. Tt is more natural to state the dual version of what we used for INT since the functor 7' +— Hom™ (A[T],R)
and I — —! is contravariant; alternatively, it can be viewed as a covariant functor F': INT°® — SET from the
dual category INT°P to SET.
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and in the same setup unique amalgamatability of the latter family over Dy implies unique
amalgamatability of the former family over Ds. This means that all questions about unique
amalgamatability and related concepts can also be studied in the more general setting of

category theory.
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CHAPTER 4
NATURAL QUASIRANDOMNESS

In this chapter, we present an attempt at a more systematic study of quasirandom properties
that can be reasonably identified as “intrinsic” (for reasons that will become clear very
shortly, we will also use in this context the word “natural”). As we mentioned in Chapter 1,
so far the theory of quasirandomness has mostly been studied in a case-by-case manner,
with very few attempts at an intrinsic definition of quasirandomness. One of the equivalent
properties in the seminal paper [17] (P3) was of spectral nature, namely it requested the
second largest eigenvalue of Gy, to be o(|Gy|). This spectral theme was further continued for
(linear) quasirandom hypergraphs in [50, 52].

Even though most other quasirandomness properties in the literature are stated in terms
of counting, it is still possible to extract from them something intrinsic. For example, the
property Py in [17] (see also [61, Theorem 2.4]) implies that quasirandom limits W are
the only graphons with the following unique inducibility property: if (Gy)pen converges
to W then the sequence of induced graphs (Gn|y, )nen also converges to W as long as
|Un| > Q(|Gpl|). As another example, using graphon language [54], we can extract a trivial
intrinsic characterization of quasirandom limits in terms of an independence property: a
graphon W: [0,1]2 — [0,1] is quasirandom if and only if W a.e. does not depend on its
variables, that is, it is a.e. constant.

Let us now explain what we mean by “intrinsic” or “natural” quasirandomness. Our
explanation will be deliberately informal and open-ended; instead of trying to give a rigorous
definition, we present a set of tests that in our view have to be passed and then describe
some concrete properties we will be studying in this chapter that pass these tests.

First and foremost, in line with the generality of the theories of flag algebras [59] and
theons [24] in continuous combinatorics, we require qualifying properties to be formulated in
a uniform way for arbitrary universal theories in a finite relational language.

The next two requirements are somewhat derivative of the first.
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We require that the property should not refer to densities of concrete models and their
explicit values (thus, this is more about the formulation of the property than the class of
objects defined by it.) The reason is that any such definition is necessarily somewhat arbitrary.
For example, there is no such thing as “edge densities” in the theories of tournaments and
permutations so their ad hoc analogues had to be found when defining quasirandom objects
in those contexts. Of the quasirandom graph properties mentioned above, the description as
a constant graphon definitely satisfies this criterion, and so does the inducibility property
(the tweak of Py in [17]). Spectral properties also pass the test but unfortunately they fail
(given our current state of knowledge) the previous universality test.

The next requirement is that we want the property to be preserved under open inter-
pretations, and this is where the word “natural” (like in “natural transformations”; recall
that open interpretations form a category INT) comes in. In plain words, everything that
can be syntactically defined in a quasirandom object must display proportionally strong
quasirandom properties. Again, in an implicit form this requirement was exploited in the
previous literature both in positive and negative manner. For example, the proofs of the
implications Pjg = P11 = P (s) in the seminal paper on quasirandom tournaments [15]
can be viewed as divided into two parts. First one proves that the quasirandom graph is
uniquely coupleable (see Definition 3.2.7) with the linear order, then the tournament obtained
from the resulting quasirandom ordered graph via the “arc-orientation” interpretation must
be quasirandom. As for “negative” use, let us note that most separations in the hierarchy
of quasirandom hypergraphs [1, 51, 66] can be viewed as coming from the fact that these
properties are not preserved under open interpretations between the theories of hypergraphs
of possibly different arity. We will elaborate on this in Section 4.6 (see Theorem 4.2.16).

Our final requirement is more “traditional”, and it is well-rooted in the previous literature.
Namely, we require that the property should be satisfied asymptotically almost surely for
some “natural” random model of some “natural” theory 7. Examples of “natural” random

models include, of course, the Erdés-Rényi model and its generalization to hypergraphs, the
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random tournament, the random permutation, etc.

This list of requirements may appear to be rather restrictive, so let us describe quasirandom
properties we are studying; they are essentially far-reaching generalizations of what we already

discussed above. Several more remarks are in place before we begin.

1. We have deliberately decided against attempting to state our properties in the language
of finite combinatorial objects and their asymptotic behavior — it is probably possible
but the result might be rather ugly and disappointing. Instead, we use the language of
graphons [54], hypergraphons [34] and theons [24] for the geometric view of our objects
and that of flag algebras [59] for a concise algebraic description. The advantages of
using the continuous setting are illustrated by the fact that such proofs are often more
elegant and less technical than their finite world counterparts [45, 49, 66]. This view
is more instructive, too: for example, by looking back through the lenses of graphons,
we can extract an elegant graphon proof of quasirandomness of property P»(4) of [17]

based on the Lebesgue Density Theorem from a paper as early as [33, Theorem 3.10].

However, for the benefit of more combinatorially-oriented reader we try to inject as

much of “finite intuition” as possible in appropriate places.

2. Our properties are not equivalent with those previously studied in the literature even
for hypergraphs (see Figure 4.2). Hence the reader interested only in this case can
safely assume that our base theory is T Hypergraph for some &k > 3, and the objects are
just hypergraphons. But let us mention that more complicated objects like colorings,

orderings, couplings, etc. will pop up in the statements and the proofs anyway.

3. Finally, the description below is loose and sweeps under the rug some important

technicalities. Proper definitions are deferred to Section 4.1.1.

Independence|/]. As we have seen in (3.1), the quasirandom graphon of density p can be

represented by a 1-independent 7T 4pp-on (see Definition 3.1.1). More generally, the
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quasirandom k-hypergraphon of density p can be represented by the (k — 1)-independent

Ty -Hypergraph=On

def
G = {mEc‘:k‘x[k]<p}.
This is the strongest in the hierarchy of our quasirandomness properties, and it relatively

easily implies all the others, with the same value of the parameter /.

UCouple[/] (Unique /-coupleability). Our next property is based on the notion of unique
coupleability of Definition 3.2.7 and the notion of rank of Definition 3.1.1. We say
that ¢ is uniquely £-coupleable if it is uniquely coupleable with all objects 1) such that
rk(e)) < ¢. Intuitively, this means that ¢ “looks random” from the perspective of any

low rank limit objects ¢, as they cannot detect any pattern in ¢ via couplings.

UInduce[/] (Unique /-inducibility). One equivalent way to view the induced subgraph
G|y is this: we first color the vertices into two colors, say, green (corresponding to
V) and red. Then instead of removing red vertices, we remove all edges adjacent
to at least one red vertex. In this form, it has a perfect generalization in higher
dimensions. Namely, we consider couplings ¢ of a limit object ¢ € Hom™ (A[T],R)
with an (-hypergraph limit ¢ € H0m+(-’4[T£—Hypergraph]a R) (note that rk(y)) < ¢). The
unique coupleability requires that {(M) = (¢®@)(M) for any model M of the combined
theory T'U Ty _Hypergraph, Where ¢ ® ¢ is the independent coupling of ¢ and (see
Definitions 3.2.3 and 3.2.4). Unique inducibility by 1 relaxes this property by requiring
that (M) = (¢ ® ¢)(M) holds only for those M that are based on a clique in the
hypergraph theory. The limit object ¢ € Hom™ (A[T],R) is uniquely £-inducible if it is

uniquely inducible by any (-hypergraph limit ¢ € Hom™ (A[Ty_piypergraph]: R)-

From the loose formulation of the properties above, one can already see that the first

two “naturality” requirements are satisfied: the formulations are made for arbitrary theories
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and do not refer to densities of concrete models and their explicit values. As for the third
“naturality” requirement (Theorem 4.2.3), we will see that for Independencel[/] it trivially
follows from the general theory, for UCouple[l] it trivially follows from Proposition 3.2.9 and
for UInducel[/] it will follow from coupling lifting (Proposition 3.2.6).

As we mentioned before, the quasirandom k-hypergraph satisfies Independencel[k — 1].
The situation for asymmetric combinatorial objects is more diverse. For example, the
quasirandom tournament satisfies UCouple[l] but not Independence[l] and this example can
be generalized to higher values of £. One interesting example for unique inducibility is the

linear order as it satisfies UInduce[(] for every ¢ without being a trivial object.

All our properties are anti-monotone in ¢ in the sense that for any of the above, we
have the implications P[¢] = P[¢ — 1] (see Theorem 4.2.1) and as for relations between
the properties (Theorem 4.2.2), we show that Independence[(] implies UCouple[¢] and that
UCouple[f] implies! UInduce[(] (see Figure 4.1).

In terms of separations, we show that no upward implication holds, that is, none of the
studied quasirandomness properties with parameter ¢ can imply the same, or for that matter
any other, property with parameter ¢ + 1 (Theorem 4.2.5). As for separations between
different families of properties, we show that UCouple[l] does not imply Independence[/]
(Theorem 4.2.6) and UInduce[l] does not imply even UCouple[l] (Theorem 4.2.7). At an
initial stage, we left open the relation between UCouple[¢] and Independence[l — 1], but after
personal communication with Henry Towsner, we obtained an argument for UCouple[(] —>
Independence[l — 1|, which will appear in a future joint work. All these separations are
relatively easy when we are working with arbitrary theories, but we show that they still hold
even if we restrict ourselves to the theory of k-hypergraphs, for & > ¢ + 2 (Theorems 4.2.8
and 4.2.9).

Next, we provide the following alternate characterizations (summarized in Theorems 4.2.10

and 4.2.11) of these classes.

1. This implication is obvious from the definition.
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Independence[4] ﬂ :
ﬂ = UCouplel4] ﬂ
Independence[3] ﬂ UInducel4]

ﬂ I UCouplel3] ﬂ

\

Independence[2] ﬂ UInducel3]
ﬂ UCouple|2] ﬂ
Independence|[l] ﬂ UInduce|2]
UCouple|l] ﬂ
T UInducell]
Figure 4.1: Implications between quasirandomness properties. = The implications

UCouple[!] = Independence[l — 1] will appear in a future work.
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Weak (-independence. Recall that every limit object ¢ € Hom™ (A[T],R) can be alter-
natively represented by a local exchangeable array K defined from a collection of
independent random variables (6 4) 4 indexed by finite non-empty subsets of N4 (see
Theorem 2.2.1 and the end of Section 2.4). We say that ¢ is weakly (-independent if
K is independent from (04 | |A| < ¢) as a random variable (full Independence[/]
requires this to happen “pointwise”). This weak version of independence turns out to

be equivalent to UCouple[l] (Theorem 4.2.10(iv)).

(-Locality. Recall that the locality property of the exchangeable array K required the
marginals (K|y; | ¢ € I) to be mutually independent whenever the collection of finite
sets (V;);er is pairwise disjoint. The notion of ¢-locality strengthens this property to
require mutual independence of (Kly; | i € I) whenever the collection of finite sets
(V;)ier have pairwise intersections of size at most £. It is clear that weak ¢-independence
implies (-locality, but we prove that the converse also holds, hence (-locality is also

equivalent to UCouple[(] (Theorem 4.2.10(vi)).

Symmetric /-locality. The notion of symmetric £-locality relaxes the notion of (-locality
by requiring only mutual independence of the events (K|y; = M; | € I) for all choices
of (V;);er with pairwise intersections of size at most ¢ and all choices of models M, i.e.,
we only care about the submodels K hfz up to isomorphism. We show that symmetric

(-locality is equivalent to UInduce[l] (Theorem 4.2.11(iii)).

The right way to view the definitions of unique coupleability and unique inducibility is
that each v of rank < ¢ generates a test for the respective property that ¢ has to pass. It
is natural to ask for a smaller and more explicit set of universal tests that guarantees each
property. We show (Theorem 4.2.10(ii)) that ¢ € UCouple[(] is equivalent to ¢ being uniquely
coupleable with a non-degenerate quasirandom ¢'-hypergraphon Yy in every dimension
¢! < ¢. We further prove (Theorem 4.2.10(iii)) that it is also equivalent to ¢ being uniquely
coupleable with their independent coupling ¥y p, ® ... &y ,; for the reasons explained right

90



after the statement of the theorem, it does not immediately follow from the previous item (ii).
In the particular case ¢ = 1, this means that the fact that ¢ is uniquely coupleable with a
single non-trivial vertex-coloring implies it must also be uniquely coupleable with any rank 1
limit object, such as linear orders, permutations, etc.

Our findings for unique inducibility are by far less conclusive but at least we can show
that it is sufficient to consider only hypergraphons v with any fixed non-trivial edge density
p € (0,1) (Theorem 4.2.11(ii)).

Of all choices of parameters, arguably the most interesting one is when ¢ is exactly one less
than the maximum arity k of a predicate of the language. In the theory of k-hypergraphs the
three classes with £ = k — 1 become the same and are satisfied only by the full quasirandom
hypergraph, that is, the almost sure limit of the generalization of the Erdés-Rényi model. If
we consider general theories of arity at most k, it is not hard to see (Theorem 4.2.12) that
(k—1)-independent objects are (essentially) quasirandom colored k-hypergraphs. The property
UCouple[k — 1] in arity at most k corresponds to independent couplings of quasirandom
colored k-hypergraphs with generalizations of quasirandom tournaments (Theorem 4.2.13).
The case of unique inducibility is (again) considerably more complicated: we only deal with
arity at most 2, in which case UInduce[l] corresponds to (essentially) independent couplings
of quasirandom colored graphs with a linear order (Theorem 4.2.14).

Finally, let us compare our properties to the known hypergraph quasirandomness properties
(Figure 4.2). In [66], Towsner defined k-hypergraph quasirandomness properties Disc[A] for
every antichain A of non-empty subsets of [k] def {1,...,k} and showed that Disc[([lz])] and
Disc[Ay] are equivalent to CliqueDisc[¢] and Dev|[/] of [51], respectively, where Ay def {A e
(k:[ﬁ]l) | [k — (] C A}. It is immediate from definitions that UInduce[l| implies CliqueDiscl[/]
(Theorem 4.2.15). In terms of separations between our properties and the ones from the
literature, we show the strongest separation possible. The strongest Disc[A] property that is

not equivalent to full quasirandomness is Dev[k — 1] and this does not imply even UInduce[l]

(Theorem 4.2.16). In the other direction, the weakest Disc|[.A] property that is not implied by
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CliqueDisc[/] is Disc[{[¢+ 1]}] and this is not implied by Independence|[/] (Theorem 4.2.17).

Independencelk — 1] <> UInduce[k — 1] <= CliqueDisc[k — 1] <——= Dev][k]

Dev[k — 1]
Independencelk — 2] Disc[{[k — 1]}]
UInducelk — 2]
CliqueDisclk — 2]
Independencelk — 3] o Disc[{[k — 2]}]
o UInducelk — 3]
CliqueDisclk — 3]
—
Disc[{[k — 3|}]
\
\
\
Independence|2]
UInduce[2]
\
CliqueDisc|2]
\ .
Independencell] Disc[{[2]}]
UInducel[l]
\
CliqueDisc[l]
\
Disc[{[1]}]

Figure 4.2: Hasse diagram of quasirandomness hypergraph properties in arity k. The top
four equivalent properties represent full quasirandomness.

This chapter is organized as follows. In Section 4.1 we formally define our quasirandomness
properties and some limit objects needed to state our main theorems. In Section 4.2 we
formally state our main results on quasirandomness. In Section 4.3, we prove some basic facts
that will be used throughout the chapter. In Section 4.4 we prove the alternative formulations
of UInduce, and in Section 4.5 we prove the alternative formulations of UCouple. The proofs

are done in this slightly reversed order because they are simpler for the unique inducibility;
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besides, some auxiliary statements we need for that part are later re-used for the unique
coupleability. In Section 4.6, we show separations between different classes of properties. In
Section 4.7, we completely classify the properties Independence[k — 1] and UCouple[k — 1]
when all arities are at most k and classify UInduce[l] when all arities are at most 2. In
Section 4.8 we discuss a generalization of the notions of rank and Independence and which
results can easily be transferred. The chapter is concluded with a few remarks and open

problems in Section 4.9.

4.1 Preliminaries

4.1.1 Quasirandomness properties

In this subsection we formalize all notions of quasirandomness presented in the beginning of

the chapter.

Definition 4.1.1 (weak independence). For ¢ € N, an Euclidean structure A on £ over
is weakly (-independent if the exchangeable array K corresponding to A with respect to
picked in &, (€2) according to p (see (2.6)) is independent from (64 | A € (N4, ()) as a
random variable.

We say ¢ € Hom™ (A[T],R) is weakly (-independent if there exists a weakly (-independent
T-on N such that ¢ = ¢.

Definition 4.1.2 (unique coupleability and inducibility). Recall from Definition 3.2.7 that
@1, ¢2 are uniquely coupleable if the independent coupling ¢ ® v is their only coupling. For
¢ € N, we say that ¢ € Hom™ (A[T],R) is uniquely {-coupleable if for every theory T” and
every 1) € Hom™ (A[T'],R) with rk(¢)) < ¢, ¢ and ¢ are uniquely coupleable. We will be
using the abbreviation UCouple[/] for this property.

Given £ € Ny, ¢ € Hom™ (A[T],R) and ¢» € Hom™ (A[T) frypergraph), R), we say that
¢ is uniquely inducible by v if for any coupling & of ¢ and ¢ and for every M € M[T U

Ty Hypergraph] such that (M) is a complete {-hypergraph, we have {(M) = (¢®1)(M ), where
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I Ty Hypergraph ~> T U Ty _Hypergraph 18 the structure-erasing interpretation. We say that ¢
is uniquely (-inducible if it is uniquely inducible by every ¢ € Hom™ (A[Ty 1ypergrapnl, R),
and we will be using the abbreviation UInduce[¢]. For completeness, we declare every ¢ to

satisfy UInduce|0].

Remark 8. Since T _gypergraph = 12-Coloring: for £ = 1 we prefer to work with the following
equivalent formulation of UInduce[l] that can be deduced from this isomorphism. ¢ €
Hom™ (A[T],R) is uniquely inducible by ¢ € Hom™ (A[T5_coloring; R) if for any coupling
¢ of ¢ and ¢ and for every M € M[T U Ty_goloring] Such that Ry, (M) = V(M), we have
E(M) = (¢ @ )(M). Then ¢ is uniquely 1-inducible if it is uniquely inducible by every
€ Hom™ (A[Ty_Coloring]: R)-

Also, as we will see below (Theorem 4.2.1), UInduce[(] implies UInduce[¢'] for any ¢ < /.
Hence, we could have equivalently required in this definition unique inducibility by every
¢ € Hom™ (A[Ty _pypergraph), R) with ¢/ < 0.

These properties are central to our study of quasirandomness. If P is any of them, we

will say interchangeably that ¢ satisfies P[¢] or that ¢ € P[(].

Definition 4.1.3 (locality). Let N be a T-on over Q = (X, A, u) and let K be the ex-
changeable array corresponding to N with respect to @ picked in Ey +(Q) according to
(see (2.6)).

We say that N is ¢-local if for every collection (V;);c of finite subsets of Ny with pairwise
intersections of size at most ¢, the marginals (K|y; | i € I) are mutually independent.

We say that N is symmetrically (-local if for every collection (V;);cr of finite subsets of
Ny with pairwise intersections of size at most ¢, the random variables ([K|y;] | i € I) (recall
that [K] is the isomorphism type of K) are mutually independent.

We say that ¢ € Hom™ (A[T], R) is ¢-local (resp., symmetrically {-local) if there exists an

(-local (resp., symmetrically ¢-local) T-on N such that ¢ = ¢,

Note that both the notions of 0-locality and symmetric O-locality coincide with the notion

of locality for K (see Section 2.4). Besides, it is very easy to give an explicit purely syntactic
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description of both locality and symmetric locality in the style of Definition 3.2.3; this in
particular implies that for an f-local (resp., symmetrically ¢-local) ¢ € Hom™ (A[T],R), every
T-on N with ¢ = ¢pr must necessarily be ¢-local (resp., symmetrically ¢-local).

Finally, let us state the properties CliqueDisc[f] and Disc[A] in the limit language.

Definition 4.1.4. Let Kr(f) € Mu[T} _Hypergraph) be the complete t-uniform hypergraph on
n vertices and let p¢ def Kt(t). Let ¢ € Hom™ (A[T}, _prypergraph); R) and £ € [k].
We say that ¢ satisfies CliqueDisc[/] ([51]) if for every 1) € Hom™ (A[Ty_Hypergraph]: R)

and every coupling & of ¢ and 1, we have

k.l l
() = dlpp)u (i),
where K ](Ck,ﬁ) € My[T}, Hypergraph Y T¢-Hypergraph] 15 the model obtained by aligning pj;, and
l.e., the model of size k that 1s a complete hypergraph in both theories).

K" (i.c., the model of size k that i lete h h in both theori

Given an antichain A C r(k), let £ 4 be the language containing one predicate symbol Py
of arity k(P4) def |A| for every A € A. We say that ¢ satisfies Disc[A] ([66, 1]) if for every
Y € Hom™ (A[T ) R) and every coupling § of ¢ and ¢, if K is the exchangeable array in

KN, [Tk -Hypergraph U 7 4] associated with &, then we have

P[(1,...,k) € Rp(K) AVA € A1z € Rp, (K)]

= ¢(pk‘> ’ P[VA €A, LA € RPA<K>]7

that is, the events (1,2,...,k) € Rp(K) and VA € A,14 € Rp,(K) are independent.

In [66], the definition of Disc[A] further requires symmetry of the predicate symbols Py,

but it was shown in [1] that this condition can be dropped.
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4.1.2  Useful theories and objects

In this subsection, we define some theories and limit objects that are necessary to for-
mally state some of our main results. We will denote by y;, the (unique) element of
Hom ™ (A[TLin0Order)s R). As for the rest, we start with a very general definition (that nonethe-
less will be used in full generality in Theorem 4.2.13) and then derive all others as special
cases.

For ¢ > 2, let Tl def {p=(i)§_; €(0,1)¢| 325_; pi = 1} be the interior of the standard
(¢ — 1)-dimensional simplex. Also, given x € &, let 0, € S), be the unique permutation such
that x ol < S Tl when the coordinates (z;, | i € [n]) are distinct, and define

it arbitrarily otherwise.

Definition 4.1.5 (Sj-action theories). Let £ € N, let £ be a language containing only
predicate symbols of arity exactly k, let ©: S, x L — L be a (left) action of Sj. on £ and

write o - P 3 ©(o, P). The canonical theory Tg is defined as the theory over £ with axioms

/\ v £ xj| \/P(:cl,...,:ck) : (4.1)

1<i<i<k PeLl
P(xg(1),- - To)) > (0- P)(@1, ..., ) (PeL,oeS); (4.2)
=P(x1,...,x3) V=P (21,..., 1) (PP ecL,P#P). (4.3)

Given a p = (pp) per € [0,1]F with > perpp = 1, the (©,p)-quasirandom homomor-
phism is the homomorphism ¥g ;, = ¢z € Hom™ (A[Tg],R), where N'Z is the Tg-on given

by?2
Ng d:ef {l’ € 5k ’ x[k] S ng.p} (P € E), (4.4)

where Z = (Zp) per is a measurable partition of [0, 1] with A(Zp) = pp (P € £). When p is

2. We will check that all axioms of T are satisfied and provide an alternate syntactic description as part
of Proposition 4.7.1.
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O-invariant, we say that g j is unbiased, and in this case g , corresponds to picking at
random for each k-set A, independently of other k-sets, an orbit O C L of the action © with
probability Y pcopp then uniformly at random choosing an Si-equivariant assignment of

the k-tuples with image A to the elements of O.

Let us now note a few special cases that will play an active role in our study of quasiran-

domness.

Definition 4.1.6 (c-colored k-hypergraphs). Let £ = {Eq,..., E.} and assume that the
action © is trivial. In that case we will denote the theory Tg by T, 5, and call it the theory of
c-colored k-hypergraphs. The (unbiased) (©, p)-quasirandom homomorphism will be called

quasirandom c-colored k-hypergraphon with densities p and denoted by 9y, .

Definition 4.1.7 (quasirandom k-hypergraphons). Let us further specify ¢ = 2 in the previous
definition. Since E» is the negation of £ and hence can be safely removed, the theory T
is isomorphic to Ty Hypergraph- For p € (0,1), the (unbiased) (O, (p,1 — p))-quasirandom
homomorphism is called the quasirandom k-hypergraphon of density p; it will also be denoted

by ¢k,p‘

Definition 4.1.8 (Colorings). Letting instead & = 1 in Definition 4.1.5, and keeping the
action © trivial, we see that Ty is naturally isomorphic to the theory Ti._coloring: The
(unbiased) quasirandom object will be called c-coloring with densities p, p € 11, and denoted

by ¥y € Hom+(A[TC_Colormg], R). For c =2and p € (0,1), ¥ y will be often abbreviated

p,1-p
to ¢p (which, in view of Remark 8, is also the same as 41 , € Hom™ (A[T} _rypergraphl: R))-
Definition 4.1.9 (k-tournaments). Let now £ = {E7, Fo} and k > 2, but this time the
action O is not trivial but instead given by the sign homomorphism sgn: S;. — So. Then the
only ©-invariant p is p; = ps = 1/2 and, as in the case of hypergraphons, we can exclude
E5 from the theory. We call it the theory of k-tournaments and denote by T} _Tournament;
intuitively, this theory corresponds to choosing one of the two possible orientations for every

k-set. The (unbiased) quasirandom object Vo,(1/2,1/2) Will then be called the quasirandom
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k-tournamon and denoted by 1y; thus, ¢, € Hom™ (AT}, _Tournament), R), and vy is the

ordinary quasirandom tournamon.

4.2 Main results on natural quasirandomness

In this section we present the main results on quasirandomness. We remark that some of

these results follow trivially from definitions and we will point these out as we go along.
Theorem 4.2.1. The properties Independence, UCouple and UInduce are anti-monotone
in the sense that P[{| — P[{ —1].

For Independence and UCouple, this theorem trivially follows from definitions. Even
though it is possible to give an ad hoc proof that UInduce is also anti-monotone, this follows
trivially from its equivalence with symmetric locality (Theorem 4.2.11 below) and the fact
that symmetric locality is trivially anti-monotone.

Theorem 4.2.2. For any { € N, Independence[l] = UCouple[l|] = UInduce[/(.

The second implication follows trivially from the definitions.
The next theorem concerns preservation of properties under open interpretations.

Theorem 4.2.3 (Naturality). Let I: T} ~» T» be an open interpretation and let ¢ € N. The
following hold for any ¢ € Hom™ (A[Ty], R).
i. If ¢ € Independencell], then ¢! € Independencell).
ii. If ¢ € UCouplell], then ¢! € UCouplell].
iii. If ¢ € UInducell], then ¢! € UInducell].

Item (i) follows trivially from the definition of I(N') applied to an ¢-independent Th-on
N such that ¢ = ¢pr and item (ii) follows trivially from Proposition 3.2.9. Furthermore,
applying this theorem to the axiom-adding interpretation I: T ~» T', where L is the language

of T, we see that all our main notions do not depend on non-logical axioms. Nonetheless,
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using theories and theons (as opposed to arbitrary FEuclidean structures) helps to better
orient ourselves and put many of the results in the “right” focus.
The next theorem says that both Independence and UCouple are preserved under inde-

pendent couplings.

Theorem 4.2.4. Let ¢1 € Hom™ (A[T1],R) and ¢ € Hom™ (A[T3],R). The following hold
for ¢ € N.

i. If 1, ¢9 € Independencell], then ¢1 ® ¢ € Independencell].
ii. If ¢1, 9 € UCouplell], then ¢1 ® ¢o € UCouple[l).

Remarkably, this is not true for UInduce, and a good example is provided by the quasir-
andom permuton (see the end of this section).
The next five theorems concern separations between properties, either allowing general

theories or restricted to the theory of hypergraphs.
Theorem 4.2.5. Independence|l| does not imply UInduce|l + 1], not even when restricted
to the theory of k-hypergraphs as long as k > /.

In fact, this theorem is a consequence of Theorems 4.2.15 and 4.2.17 below.

The following two theorems are included since the separating objects are quite natural and

explicit and the proofs are simpler. But in a sense they will be superseded by Theorems 4.2.8

and 4.2.9.

Theorem 4.2.6. For every { € Ny, the quasirandom (¢ + 1)-tournamon vy satisfies

UCouple[l| but does not satisfy Independencell].

Theorem 4.2.7. The linear order 1y, € Hom™ (A[TLin0Order) R) satisfies UInduce[l] for

every { € N but does not satisfy UCouplel[l].

Theorem 4.2.8. For ¢ > 1, there exists ¢ € Hom+(A[T(€+2) |, R) satisfying

-Hypergraph

UCouple[l| but not satisfying Independencell].
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Theorem 4.2.9. For ¢ > 1 odd, there exists ¢ € Hom+(A[T(€+2) _Hypergraph)» R) satisfying

UInduce(l| but not satisfying UCouplell].
The next theorem lists several properties that are equivalent to UCouple[l]. These include

both alternative formulations and complete sets of tests for unique coupleability.

Theorem 4.2.10 (Characterization of UCouple). Let £ € Ny. The following are equivalent
for ¢ € Hom™ (A[T],R).

i. ¢ € UCouple[(].

ii. For every (' € [{], there exists p € (0,1) such that ¢ is uniquely coupleable with the

quasirandom {¢'-hypergraphon Yyt -

iii. There exist py,...,py € (0,1) such that ¢ is uniquely coupleable with the independent

coupling ¢y 5, ® -+ ® Yy, of the quasirandom ¢'-hypergraphons wﬁ’,py for 0! € [{].
iv. ¢ is weakly (-independent.
v. Every T-on N with ¢pr = ¢ is weakly (-independent.
vi. ¢ is {-local.
vii. ¢ ® vy, satisfies UInducel[(].

Note that since #/-hypergraphons have rank at most ¢/, a posteriori, we can also strengthen
items (ii) and (iii) by replacing existential quantifiers on p,p1,...,p, with universal ones.
Also, since the linear order has rank 1, a posteriori, we can strengthen item (vii) to say
that every coupling of ¢ with the linear order satisfies UInduce[¢]. In the actual proof of
the implication (ii) == (i) (that, arguably, is our technically most difficult result), we go
in the opposite direction and painstakingly “bootstrap” the premise in (ii) to the unique
coupleability with increasingly larger families of objects.

Let us also point out that, given Theorem 4.2.4(ii), one might expect that, in general,

if each one of v, ..., is uniquely coupleable with a given ¢, then the same should hold
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for their independent coupling ¥ ® - -+ ® 1y; this would immediately give (ii) = (iii) in
Theorem 4.2.10. However, this question has turned out surprisingly difficult in full generality
(see Section 4.9 for a discussion).

The next, more modest, theorem provides properties equivalent to UInduce[(].

Theorem 4.2.11 (Characterization of UInduce). The following are equivalent for ¢ € Ny

and ¢ € Hom™ (A[T], R).
i. ¢ € UInduce[/).

ii. There exists p € (0,1) such that ¢ is uniquely inducible by every hypergraphon

Y e Hom+(A[T€—Hypergraph]a R) with 1 (pg) = p.
iii. ¢ is symmetrically {-local.

The next two theorems completely classify Independence[k — 1] and UCouple|k — 1] when
all arities are at most k. These can be thought of as analogues of full quasirandomness for

these families of properties.

Theorem 4.2.12. Let k € N4 and suppose that k(P) < k for all P € L. Let T be a theory
over £ and ¢ € Hom™ (A[T],R). Then ¢ € Independencelk — 1] if and only if there exist

c € Ny, p € Il¢ and an open interpretation I: T' ~ T, j. such that ¢ = ;/)ép.

Theorem 4.2.13. Let k € Ny and suppose that k(P) < k for all P € L. Let T be a theory
over £ and ¢ € Hom™ (A[T],R). Then ¢ € UCouple[k— 1] if and only if there exist a language
L' whose predicate symbols have arity exactly k, an action ©: S}, x L — L', a ©-invariant
p = (pp)per € 10, l]ﬁl with Y pcprpp = 1 and an open interpretation I: T ~~ Tg such
Y |
that ¢ = gb@’p.
The next, more modest, theorem classifies UInduce[l] when all arities are at most 2.

Theorem 4.2.14. Let L be a language such that k(P) < 2 for every P € L and let T be a

theory over L. The following are equivalent for ¢ € Hom™ (A[T],R).

i. ¢ € UInducel[l].
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ii. There exist a language L' whose predicate symbols have arity exactly 2, an action
©:Sox L — L' ap= (pp)per € [0, 1]£, with Y pecprpp = 1 and a translation
I: Ty~ Tpr from L to L' such that ¢ = @/JSZZI, where A': Tpr ~ Tg and A: Tp ~ T

are the axiom-adding interpretations.

iii. There exist ¢ € Ny, p € Il and an open interpretation I: T ~ T 9 U T ;0rder Such

that ¢ = (Vg @ Yin) .

4.2.1 Comparison to ad hoc quasirandomness theories

Hypergraphs. The theory of hypergraphons has been most inspirational to our work as it
also pertains to quasirandomness of “different strength”, arranged in hierarchies like ours.
In fact, the last three theorems compare our notions with the hierarchies based on various
discrepancy properties from the literature.

As we remarked in the beginning of the chapter, the results of [66] imply that Dev[k —
1] = Disc[Aj_q] is the strongest discrepancy property below full quasirandomness and
Disc[{[¢ + 1]}] is the weakest discrepancy property above CliqueDisc[/]. This together with
Theorems 4.2.1, 4.2.2 and 4.2.9 and the three theorems below justify the Hasse diagram of
Figure 4.2 between the families Independence and UInduce and the discrepancy properties
in the literature.

The following theorem trivially follows from definitions.

Theorem 4.2.15. For every k > ¢ > 1 and every ¢ € H0m+(A[Tk—Hypergraph]aR); if

¢ € UInducell], then ¢ € CliqueDisc[/|.

Theorem 4.2.16. For every k € N, there exists ¢ € Hom™ (A[T}, _Hypergraph); R) satistying

Dev[k — 1] but not satisfying UInduce[l].

Theorem 4.2.17. For every k > { > 1, there exists ¢ € Hom™ (A[T}, _frypergraphl: R) satisfy-

ing Independencell| but not satisfying Disc[{[¢ + 1]}].

102



Theorem Proof location
421 Section 4.4
4.2.2 Section 4.3
4.2.3 Section 4.3
424 Section 4.3
4.2.5 Section 4.6
4.2.6 Section 4.6
4.2.7 Section 4.6
4.2.8 Section 4.6
4.2.9 Section 4.6
4210 ()< (i)<(iii) Lemma 4.5.7
(i)e(iv)<(v) Lemma 4.3.2
(iv) = (vi)  Lemma 4.34
(vi) = (vii) Lemma 4.5.8
(vil) = (ii)  Lemma 4.5.9
4211 (i) (i) Lemma 4.4.1
(i) = (i) Lemma 4.4.3
(i) = (iii) Lemma 4.4.13
4.2.12 Section 4.7
4.2.13 Section 4.7
4.2.14 Section 4.7
4.2.15 Trivial (see Definitions 4.1.2 and 4.1.4)
4.2.16 Section 4.6
4.2.17 Section 4.6

Table 4.1: Proof locations for theorems of Section 4.2.
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Table 4.1 contains pointers to where each of the theorems (or their parts) are proved.

Permutations. In our language, the quasirandom permuton [22, 49] is simply ¥, ® ¥y,
(see [24, Example 6]). It does not satisfy even the weakest of our properties UInduce[l]. This
can be easily verified by a direct computation, but a more instructive way would be to apply
Theorem 4.2.7 and Theorem 4.2.10(i)=(vii). Since, on the other hand, #y;, € UInduce|[l], we
see that the analogue of Theorem 4.2.4 is not true for unique inducibility.

These observations suggest an interesting research direction; we will return to it in

Section 4.9.

Words. In our language, quasirandom words defined in [43] are simply /13, @y, (p € (0, 1),
Yp € Hom™ (A[T>_Coloring]; R)). This is clearly generalizable to more colors by considering
¥p € Hom™ (A[T%_Coloring): R) (p € Il¢), corresponding to quasirandom word sequences over
the alphabet [c] with given letter frequencies (p1,...,p¢). In this way, one can immediately
recover existence and uniqueness of the limits of arbitrary (not necessarily quasirandom)
convergent sequences from the general theory in [24].

In terms of comparisons, since v, ¢ UInduce[l], the same is true for the quasirandom

“wordeons” Yy, ® Vp.

Latin squares. This is a very interesting example since it is the first time we have
encountered an ad hoc theory of limit objects that is provably different from what might be
extracted from our framework.

Recall (see e.g. [29]) that there are two major forms of representing a Latin square: as a
multiplication table of a quasigroup and as an orthogonal array. As it turns out, they lead to
different theories.

The limit theory of Latin squares based on the tabular representation was developed
in [40], and the corresponding theory of quasirandomness was continued in [21]. In the
language of theons, this theory can be handled only after a fashion, in the same vein as
limits of functions on finite vector spaces [24, Sct. 7.5], that is by introducing countably many

auxiliary predicate symbols. In this way one immediately gets existence and uniqueness, but
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other than that the result will be somewhat ugly and not particularly instructive.

The orthogonal array representation opens up another possibility. Recall that in this
representation a Latin square is simply an n?-subset of [n] % [n] x [n] such that its projection
onto every two coordinates is bijective. Uniformly sampling from this set, we will get a model
of TLinOrder Y TLinOrder Y TLinOrder- Hence a “Borromean” (as in “Borromean rings”) view
of limits of Latin squares would be simply an element of Hom™ (A[TLin0Order Y TLinOrder U
T1,inOrder), R) such that all three permutons obtained from it by erasing one of the orders are
quasirandom.

One obvious example is the quasirandom limit of Latin squares ¥y, ® 13, ® ¥);,- But
there are others. Indeed, in complete analogy with permutons, limits of Latin squares (in our
sense) can be uniquely identified with probability distributions on [0, 1]3 such that all three
2-dimensional marginals are uniform. Under this identification, ¥;;, ® ¥y;, ® ¥y, corresponds
to the uniform probability measure on [0, 1]3 and a non-quasirandom example is provided,
say, by the uniform probability measure supported on the skewed quasi-random graphon G’
of (3.1) with p = 1/2.

Finally, since the quasirandom permuton does not satisfy UInduce[l], it follows that no

limit of Latin squares satisfies UInduce|[1] as well.

4.3 Basic properties and the first equivalence

In this section we present some initial properties about the notions we have defined, we
prove the easiest equivalence in Theorem 4.2.10 between items (i), (iv) and (v) and we prove
Theorem 4.2.3 on the naturality of our properties. The first proposition says that only trivial
objects can have unique coupleability parameter greater or equal to its rank; this stems from
the fact that non-trivial objects are not uniquely coupleable with themselves.

Proposition 4.3.1. Let ¢ € Hom™ (A[T],R) and r d:efrk(cﬁ).

i. 7 =0 if and only if ¢ € (yey UCouple[/].
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ii. If r > 0 then ¢ ¢ UCouple|r].

Proof. Note that r = 0 if and only if all peons N'p are trivial (that is, Np = @ or Np = gk(P)
a.e.), which in turn is equivalent to having ¢((K)) € {0,1} for every finite set V' and every
K € Ky[T]. This implies that there is a unique K € Ky/[T] with ¢((K)) = 1 and this K
must further have full automorphism group Aut(K) = Sy .

Let now 1 € Hom™ (A[T'],R) for some theory 7”, and assume that ¢ is a coupling of ¢
and ¢. Fix a (T'UT")-on N such that £ = ¢pr. Then for every K € Ky [T UT'] with V
finite we have Ti,q(K,N) = Tipng(I(K), I(N)) N Ting(I'(K), I'(N)), where [: T ~ T UT’
and I’: T ~ T'UT’ are the structure-erasing interpretations.

If r =0, we get E((K)) = ¢((I(K)))w((I'(K))) (since ¢ is 0-1 valued) so the forward
direction of item (i) follows.

The backward direction of item (i) clearly follows from item (ii), so let us prove the latter
by contradiction. Suppose that ¢ € UCouple[r] and fix a T-on N such that ¢ = ¢ and

rk(NV) = r. Consider the (T UT)-on H &t

N UN in which both copies of each predicate
symbol P get mapped to Np, i.e., H is the coupling of N/ with itself. Since rk(H) = rk(N) =r

and ¢ € UCouple[r]|, we must have ¢y = ¢ ® ¢.

Fix a finite set V and K € Ky/[T] and let Ko € Ky [T'UT] be given by setting Rp(K2) def
Rp(K) for both copies of each predicate symbol P. Then we have
S((K)) = tina (K, N) = ting (K2, 1) = (¢ @ ¢)((K2)) = ¢((K))?,
so we must have ¢((K)) € {0,1}. Hence r = 0, and item (ii) follows. |

We will now use Propositions 3.1.2 and 3.2.1 to show the equivalence in Theorem 4.2.10
between items (i), (iv) and (v).
Lemma 4.3.2 (Theorem 4.2.10(i)<(iv)<(v)). The following are equivalent for £ € N and
¢ € Hom™ (A[T],R).

i. ¢ € UCouple[/].
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ii. ¢ is weakly (-independent.

iii. Every T-on N with ¢ = ¢ s is weakly (-independent.
Proof. (iii) = (ii) is trivial.

(i) = (i).

Let A be a T-on over some space 2 = (X, A, u) such that the exchangeable array K
corresponding to A with respect to € picked in Ey n (Q) according to p is independent from
(04| A€r(Ng, 0)). Let v € Hom™ (A[T'],R) for some theory T” be such that rk(y) < ¢ and
let £ € Hom™ (A[T UT'],R) be any coupling of ¢ and ). We have to prove that £ = ¢ ® 1.

Let also I: T~ T UT' and I': T ~ T U T’ be the structure-erasing interpretations. By

Proposition 3.2.1, there exists a (T'UT")-on H over Q x Q such that £ = ¢ and
Hp =Np x Ep)(Q) (4.5)

for every P in the language of T. By possibly changing zero-measure sets of the peons
corresponding to T” using Proposition 3.1.2, we may also assume rk(I'(H)) = rk(y) < .

Let us pick n in &y, (©2) according to p and independently from 6; we view (6,7m)
as a &y, (2 x Q)-valued random variable distributed according to u @ p. Let L be the
exchangeable array corresponding to H with respect to (6,n). Note that (4.5) implies that
I(L) = K, which in turn implies that I(L) is independent from ((64 | A € r(N4,¢)),n).
On the other hand, since rk(I’(H)) < ¢, it follows that I'(L) is completely determined by
((04,m4) | A €r(Ny,)), so I(L) is independent from I’(L). This means that for m € N4
and K € K, [T UT'], we have

§((K)) = P[L,) = K] = PI(L)|y

= PII(L)|,

m

so & = ¢ ® 1, hence item (i) follows.
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Let us prove (i) = (iii). Let Q@ = (X, A, u) be an atomless complete probability space
and N be a T-on over 2 with ¢ = ¢pr. We have to prove that the exchangeable array K
corresponding to A with respect to € picked in Ey . (©2) according to y is independent from
(04 | A€ r(Ng,l)). For that, it is sufficient to show that for any m € N, any K € K, [T]
and any measurable set B C &, ¢(€2), the events K|, = K and (64 | A € r(m,()) € B are
independent.

Let @ be a new m-ary predicate symbol and consider the (T'U T{Q})—on H over () given by
Hp dof Np for every P in the language of T' and He def B x X([glf]). Let also I: T~ TUT{Q}
and I': T Qv ™ TU T{Q} be the structure-erasing interpretations so that ¢4, is a coupling of
¢ and qﬁ{_;. Since rk(cb%) <r1k(Hg) < £ and ¢ € UCouple[/], we have pyy = ¢ ® gb%. Finally,
let S be the set of all L € Kin[T U Tyq] such that I(L) = K and (1,2,...,m) € Rg(L).

Then we have

PIK|) = KA (84 Aer(m, () e Bl = Lz;gcbﬂ(@))
S

= 6((K)) > b ((I'(L))) = P[K](,) = K] P[(04 | A€ r(m.0)) € B],
LeS

which completes the proof. [ |

The alternative characterization of UCouple via weak independence gives easy proofs of

Theorems 4.2.2 and 4.2.4.

Proof of Theorem 4.2.2. Independence[(] = UCouplel/].

Let NV be an f-independent T-on, and let K be the exchangeable array corresponding
to N. Then each Rp(K) depends only on the coordinates 8 4 with |A| > ¢ (see (2.6)) and
hence is independent from (04 | A € r(A,¢)). Therefore, N is weakly ¢-independent and
Independence[(] = UCouple[/] follows from Lemma 4.3.2.

The implication UCouple[¢(] = UInduce[(] follows trivially from the definitions. |

Proof of Theorem 4.2.4. For item (i), if N1 and A2 are (-independent theons then N1 @ N2
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is also f-independent, from which the statement follows.

For item (ii), pick arbitrarily theons Nt and N? such that ¢; = ¢ pri- Let (61,62) be
uniformly distributed in &y, X &y, , and let K be the exchangeable array corresponding
to N1 ® N2 with respect to (01,6%). Note that for i € [2] and for the structure-erasing
interpretation I;: T; ~» T} U Th, the exchangeable array corresponding to A with respect 0°
is [;( K).

By Lemma 4.3.2, it is sufficient to show that if I;(K) is independent from ( 34 | A€
(N4, 0)) for i € [2], then K is independent from ((0}1, Oi) | A € r(N4, ). This immediately

follows from the following easily verifiable general fact:

Claim 4.3.3. Let X4, X2,Y7,Y2 be mutually independent random variables, and let
f1(X1,Y71), fa(Xa,Ys) be functions such that f;(X;,Y;) is independent from X; (i =1,2).
Then (f1(X1,Y1), fo(Xa2,Y3)) is independent from (X1, Xa).

In our context, we set X; = (034 | |A] < 0),Y; = (02 | |A] > ¢) and let f; compute
the array I;(K) from (X;,Y;) (thus (f1(X1,Y1), fo(Xo,Y3)) computes the array K from
(X1, X2, Y1, Y2)). |

Let us now show (almost trivial) implication (iv) == (vi) of Theorem 4.2.10.

Lemma 4.3.4 (Theorem 4.2.10(iv) = (vi)). Let ¢ € N. If ¢ is weakly (-independent, then
¢ is (-local.

Proof. Let K be the exchangeable array corresponding to some theon N with respect to
0 picked in &y, (Q) according to p such that ¢ = ¢ and suppose K is independent from
(04| Aer(Ng £)). Since for V € r(N4) the marginal K|y dependsonly on (84 | A € r(V)),
the marginals (K|y; | i € I) are mutually independent as long as the sets V; have pairwise

intersections of size at most ¢. This follows from the following general observation.

Claim 4.3.5. Let X Y7, ..., Yy be mutually independent random variables and f;(X,Y;)
be functions such that (f1(X,Y1),..., fn(X,Yn)) is independent of X. Then the random

variables f1(X,Y1),..., fn(X,Yy) are mutually independent.
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In our situation, X = (04 | A € r(N4,0)), Y; = (04| A € r(V;) \ r(NL,¢)) and f;
computes the marginal K|y, from (64 [ A € 7(V)).

This completes the proof that ¢ is ¢-local. [ |

Finally, from Propositions 3.2.6 and 3.2.9, we can prove Theorem 4.2.3 about naturality

of our properties.

Proof of Theorem 4.2.3. Ttem (i) follows trivially from the fact that if A/ is an ¢-independent
Ty-on with ¢ = ¢, then I(N) is an f-independent Ty-on with ¢y () = o

Item (ii) follows trivially from Proposition 3.2.9.

For item (iii), we let 1) € H0m+(A[T€—Hypergraph]aR) and ¢ be a coupling of ¢! with ).
Then by Proposition 3.2.6 there exists a coupling E of ¢ and 9 such that ¢ = é{ Vidz, -Hypergraph
For i € [2], let I;: T; ~ T; U Ty _fgypergraph and Ji: Ty Hypergraph ~ Ti U Ty Hypergraph Pe

the structure-erasing interpretation and note that if M € M[T1 U T)_Hypergraph] is such that

R (M) = kY

M’ then we have

g(M) = gIUide—Hypergraph (M)
- E(Z {M/ € M [T2 YU Ty -typergraphl ‘ I(Ip(M")) = i (M) A Joy(M') = Kﬁ}‘})
= ¢(K|(]€/‘)[|) ¢ (Z {M’ € M|M‘[T2] ‘ I(M/) ~ ]1(M)}>
= w(K3y) - ¢! (0 (D)
= (o' @ v)(M),

where the third equality follows from the fact that ¢ € UInduce[¢]. Hence ¢! € UInduce[/).

4.4 Unique inducibility

In this section we prove Theorem 4.2.11. We start by showing the equivalence between

items (i) and (ii). Curiously, the case ¢ = 1 is the hardest one to prove.
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Lemma 4.4.1 (Theorem 4.2.11(i)«(ii)). Let ¢ € N4 and ¢ € Hom™ (A[T],R). Then

¢ € UInducell| if and only if there exists p € (0,1) such that ¢ is uniquely inducible by every

¢ < HOHIJF(A[Tg_Hypergraph]vR) Wlth ¢(P€) =D

Proof. The forward implication is obvious.

For p € (0, 1), let us say that ¢ is uniquely p-inducible if it is uniquely inducible by every
Y € Hom™ (A[T, ?-Hypergraph), R) With ¢(pg) = p. Then the backward implication amounts to
showing that unique p-inducibility implies unique g-inducibility for every p,q € (0,1) (the
cases q € {0, 1} are trivial).

Let I: T~ T'UTy_Hypergraph and J: Ty _Hypergraph ~> T'UTy_Hypergraph e the structure-
erasing interpretations. Let us assume that ¢ is uniquely p-inducible and let us show that
¢ is uniquely inducible by any 1 € Hom™ (A[T}_piypergraph], R) with ¢(pg) = ¢. Let £ be a
coupling of ¢ and 1.

Our objective is to prove that for every m € N and every M € Mp[T'U T _fypergraph]

with J(M) = K we have
(M) = (I(M))p(ES). (4.6)

For m < ¢ this is trivial (as w(K%)) = 1), so suppose m > (.

Let I': Ty Hypergraph ~ T7-Hypergraph U T2 _Coloring be an open interpretation (to be
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specified later); note that the diagram

oy -Hypergraph T 1 -Hypergraph
TUTy -Hypergraph TUTy -Hypergraph

idTm /

TUTy -Hypergraph U T2—Coloring

I

1y -Hypergraph UTs -Coloring

(4.7)
is commutative, where the unlabeled arrows are structure-erasing interpretations. For ¢ € [0, 1]

let ft d—ef§ ® ¢ be the independent coupling of ¢ and the 2-coloring ¢ of densities (¢,1 — )

(see Definition 4.1.8); note that the fact that (4.7) is commutative implies that fth U s a
coupling of ¢ and (¢ ® wt)ll.

We start by showing (4.6) in the case p < ¢. In this case, we take

def
'(E)(x1,...,x0) = B(zy,...,0 /\ x1 (),
€l

that is, I’ keeps edges that are monochromatic in color 1. Let ¢ = def (p/ q)l/ ¢ and note that for

n > { we have

, n/l
W e ) (KV) = () = prd) (1—?) ,

which in particular implies that (¢ ® ¢t)1/(P€) = p. On the other hand, we also have

§th ur' (M) = &(M)t™, so unique p-inducibility of ¢ gives

l

g™ = £ (ary = o(1(M)) (W @ )T (KE)) = (1)) (K yem,

from which (4.6) follows.
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We now show (4.6) in the case £ > 2 and ¢ < p. In this case, we let

I/(E)(l’l,...,l‘g) = E($1,...,$g)/\ /\ Xl(zl) \ /\ XQ(CB’L)
€[l 1€[l]

]
that is, I’ declares edges to be either old edges that are monochromatic in color 1 or any
(-set that is monochromatic in color 2. Let f(z) def 2fq+ (1 — )¢ and note that f(0) =1

and f(1) = g, so there exists ¢t € (0,1) such that f(¢) = p. Since £ > 2, for n > ¢, we have

(@) (K = p(iyen + (1 -0y,
which in particular implies that (¥ ® )t / (p¢) = f(t) = p. On the other hand, we also have
a;dT UI/(M) =E(M)t"™ + ¢(I(M))(1 —t)™, so unique p-inducibility of ¢ gives
EDE™ + p(I(M))(1 = &)™ = G (1) = o1 (M) (¥ 2 v) (K1)

= GI(M))(W(KS)m + (1 — )™,

from which (4.6) follows.

The case ¢ < p and ¢ = 1 is more complicated as the construction analogous to the above
does not work: cliques in arity 1 need not be monochromatic.

Let us prove first the sub-case ¢ = p2. The idea, roughly speaking, is that when ¢ = 1,
unique p-inducibility says that any “subset of vertices” of relative size p in ¢ induces ¢ and
since a “subset of vertices” of relative size p? can be seen as having relative size p in some
“subset of vertices” that itself has relative size p in the whole space, it must also induce ¢.

It is worth noting that this idea can be implemented almost literally in the geometric
language. But that would require working with theons that have different ground sets in
different coordinates so we prefer to present a syntactic argument instead, similar to the one

above.
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We work with the theory T5_coloring instead of T1 _Hypergraph (see Remark 8). Let £ be

a coupling of ¢ and v def Y o € Hom™ (A[T,_ 1e), R); we want to show that for every
g p 2-Coloring

M € M[T UT5_coloring] With Ry, (M) =V (M), we have

where m % M| and I: T ~~» T UTy_coloring 18 the structure-erasing interpretation.

Let I1, I2: T5_oloring ~ T3-Coloring Pe the interpretations given by

00a) @) € xi@) v xe(); L(x)(z) € ¥ (a);

I (x2) () & x3(2); L(x2)(@) & xa(x) v x3(z).

-~ def ~T. .
Let i) = V(p2 p—p2,1-p) € Hom ™ (A[T5_coloring); R) and note that Pl = Wy for i € [2].
Let J: Ty -Coloring ™~ TUT2—Coloring and J: T3—C010ring ~ TUT3—Coloring be the structure-

erasing interpretations. Our definitions ensure that the following diagram is commutative.

b -Coloring

b -Coloring T

Ty TQ—Coloring Ty T2—Coloring

idTm A Ul

Ty T3—Coloring
7l

13 -Coloring

For every n € N, let Cy, € Mp[T5_goloring] Pe the unique model with all vertices satisfying
X1-

Since 1212 = 1, by Proposition 3.2.6, there exists a coupling E of ¢ and YZ such that
gdrUl2 — £ We now make use of the operator 7("X3:147U2) . AT UT, _Coloring] = Au[T"U

-~

T3 _Coloring] [59; Definition 4], where u = > {N € M1[T'U T3 _coloring] | 11(J(N)) = C1}
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and Ay [T'U T3 _coloring] 18 the localization by the multiplicative system {, w?, o)
Intuitively, it corresponds to applying the interpretation idy Ulo, followed by throwing away
vertices of color 3. (All densities have to be re-normalized by a power of u, this is why we

need to localize.) Since
Eu) =€7h(Cy) =N (C1) =p >0, (4.9)

we can apply [59, Theorem 2.6] and form the element def go (oxs,idp Ul) Hom™ (A[T U
T2 -COIOI‘ing]7 R) We claim that CI = (b

To see this, note that for N € M[T], we have

Iy 2 €V)

Y

where the sum is over all N’ € M n|[T U T3 coloring] such that I((idp Ul)(N')) = N and
J((idp UL)(N")) = C|n|- But since (4.8) is commutative, the condition I((idp UI)(N")) =
N is equivalent to I((idp UI1)(N')) & N, which together with (4.9) gives

1 = ETA)
¢(N) = L

where N € M N |[TUT _coloring] is the unique model such that I(N) = N and J(N) = CiN|-
Since g(idT UIl)OJ(Cl) = 1211(01) p and g(ldT U)ol = ¢! = ¢, unique p-inducibility of

¢ implies that fldT Uh( ) = p|N|¢>( N) and thus =9

Now we claim that ¢ J = p. Indeed, note that

SEN) | N € My[T UT3_Coloring) A J((idg UL)(N)) 22 J((idg UL )(N)) = C1 }
£(u)

¢/ ()=

¢(C) _d(C) 0
p 7

where 61 € M1 [T3_Coloring is the model whose unique vertex satisfies x1, hence ¢ J = ("
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This means that ¢ is a coupling of ¢ and v, so for our fixed M € My [T U T5_coloring]

with Ry, (M) = V(M), unique p-inducibility of ¢ gives

~ ~

§(M) = g9V (1p) = g(n(XMTUR) (01)) - g ()™

= (M) -p™ = ¢(I(M)) - p*™,

as desired.

From the case ¢ = 1 and ¢ = p% < p, with a simple induction, we can derive the case

when ¢ =1 aundq:p21C < p for some k € N.

Finally, for the case ¢ = 1 and arbitrary ¢ < p, we let k£ € Ny be large enough so that
k
p2 < ¢ and putting together the previous cases gives that unique p-inducibility implies

k
unique p? -inducibility, which in turn implies unique ¢-inducibility. [ |

The rest of this section is devoted to various relations between the unique inducibility
and the clique discrepancy for hypergraphons; we will also use our findings to prove the last
remaining equivalence (i)<>(iii) in Theorem 4.2.11.

It was proved in [66, 1] that for ¢ < k, CliqueDisc[/] is equivalent to the non-induced
labeled density of every (-linear hypergraph H (i.e., hypergraphs whose edges have pairwise
intersections of size at most ¢) being pe(H ). We restate below this result in the language of

exchangeable arrays.

Theorem 4.4.2 (66, 1]). Let £ € [k — 1], let ¢ € Hom+(A[Tk_Hypergraph],R) and let K be
the corresponding exchangeable array. Then ¢ € CliqueDiscl/] if and only if for every finite
collection (V;);cr of finite subsets of Ny of size k each and with pairwise intersections of size

at most ¢ we have
Pvi € I, K|y, = pi] = [ [ PIK v, = pi).
el

Even though this theorem only makes sense in the theory of hypergraphs, we can derive
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the implication (iii) = (i) of Theorem 4.2.11 for general theories from it.

Lemma 4.4.3 (Theorem 4.2.11(iii) = (i)). If ¢ € Hom™ (A[T],R) is symmetrically {-local,

then ¢ € UInducel[(].

Proof. Let I: T ~ T UTy gypergraph and J: Ty Hypergraph ~> 1" U Ty_Hypergraph be the
structure-erasing interpretations.
Our objective is to show that for every ¢ € Hom™ (A[T, ?-Hypergraph, R), every coupling §

of ¢ and ¥, every m € N and every M € M [T UT) fypergraph] with J(M) = K%), we have

(M) = (I(M))p(EL). (4.10)

Let us first consider the case m < /. In this case, note that for the exchangeable array K

corresponding to ¢, by letting V| = Vo = [m], symmetric ¢-locality of ¢ gives
S(I(M)) = PIK |, = I(M)] = P[K|},,; = I(M)]* = ¢(I(M))?,

so ¢(I(M)) € {0,1}, hence (4.10) follows.
Suppose now that m > ¢ and let I": T, m-Hypergraph ~> 1" be the open interpretation that

declares m-edges to be isomorphic copies of I(M), that is, it is given by

T(E) (... om) & \é Dopen(I(M))(Z(1)s - - » T (m))-
oASTor"

Let us show that ¢! € Hom™ (A[T, -Hypergraphl, R) satisfies CliqueDisc[/]. Let K be the
exchangeable array corresponding to ¢ so that I’(K) is the exchangeable array corresponding

to ¢! . Then if (Vi)ie[y is a finite collection of finite subsets of N of size m each and with
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pairwise intersections of size at most ¢, then

P[Vi € [t],I'(K)|y;, = pm] = PVi € [t], K|y, = M]

= [ PIKly, = M] = ][] PU'(K)ly; = pml,
i€(t] 1€[t]

where the second equality follows from the fact that ¢ is symmetrically ¢-local. By Theo-
rem 4.4.2; it follows that gbI/ satisfies CliqueDisc[(].

Note now that the diagram

T, -Hypergraph > Iy, -Hypergraph UTy -Hypergraph ¢ 1y -Hypergraph

/ .
Ill I UldTﬁ—Hypergraphl /
T

Ji > T'UTy -Hypergraph

is commutative, where the unlabeled arrows are structure-erasing interpretations. This

-
implies that fl 9T, typergraph is a coupling of ¢! " and ), so we get
I'uid ¥ / 1
e(M) = ¢ Mesvvergrann (15 = 6T (o) (K)) = ST 0 (K,

where the second equality follows from ¢’ "€ CliqueDisc[/]. n

Let us now prove an important fact about CliqueDisc[{] and ¢-flattenings defined below.
Definition 4.4.4. For a peon N over Q = (X, A, u) and ¢ € N, the (-flattening of N is the

function Wf(/: & ¢(€2) — [0, 1] defined by

W)y € xC | (@) € A,

and defined arbitrarily when the set above is not measurable.

Note that the constructions in (3.2) and (3.13) are precisely r-flattenings, and so is the

construction of a graphon in the ordinary sense from Tgpapn-on (cf. (2.5) and (3.1)).
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Lemma 4.4.5. Let N be a T},_fypergraph-on over Q = (X, A, u) such that ¢,r satisfies
CliqueDiscl|l]. Then Wﬁ/ = on(pg) ae

Proof. 1t is sufficient to prove that the two measures on X r(k,¢) given by Y — fy Wf(/ dp
and v(Y) def o (pr)p(Y) coincide, and for that we only have to consider the basis of our

o-algebra, i.e., sets of the form

vy= ][ va

Aer(k,0)

In other words, for every collection V4 C X (A € r(k,()) of measurable sets we have to prove

that

[ Whe du=oxton) - ). (4.11)

Recall from [66, 1] that CliqueDisc[/] is equivalent to Disc[([lz])] (see Definition 4.1.4)
and for the language £ ([k]) containing one predicate symbol Py of arity ¢ for each A € ([lz]),
¢

define the T w, Y T _Hypergraph-on H over € by
(¢)

def def 4
HE =< NE; HPA = LA(Y) = {x € gg(Q) ’ VA/ S T(A),l‘bzl(A/) S VA’}-

Let then K be the exchangeable array corresponding to H. Since ¢ zs satisfies CliqueDisc[/] =

Disc[([lz])], we get

/wav dp =P [(1,...,1@ € Rp(K)AVA € ([§]>,LA € RPA(K)]

—oxton) B v (1))ua € ey (0

= on(pr) - 1Y),

as desired. ]
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To prove the final implication (i) == (iii) in Theorem 4.2.11, we will need a small
generalization of the easier direction of Theorem 4.4.2 for disjoint unions of theories of
hypergraphs.

o = . = def
Definition 4.4.6 (k-hypergraphs). Given k = (ky,..., k) € Nt we let TE-Hypergraph =

Uz‘e[t] T}, -Hypergraph and in this theory, we denote the predicate symbol corresponding to

the i-th hypergraph by E;. Models of TE-Hypergraph will be called E-hypergmphs and for one

such model M, we let E;(M) dof {im(a) [ @ € Rg, (M)} be its i-th edge set. We also denote

by I;: Tk, Hypergraph ~> TE-Hypergraph the structure-erasing interpretation corresponding to

the i-th edge set.
Proposition 4.4.7. Let k = (k1,..., k), let £ < min;c ) ki, let i1,...,is € [t] and let
<Vj)§:1 be such that V; € (Ej) and |V; N Vy| < {, whenever j # g

J

Let ¢ € Hom™ (‘A[TE-Hypergraph]’R) be such that all ¢'i (i € [t]) satisfy CliqueDisc[/]

and let K be the corresponding exchangeable array. Then

P\vj € [s],V; € By, (K)] = [] PIV; € Bi,(K)).
JE[s]

Proof. Let N be a T}, “Hypergraph-on such that ¢ = ¢ and note that

P[vj € [s],Vj € Ey;(K)] =X | ) (a§)_1<NEij)
JE(s]

= \{z € &n, | V) € [5],0j(z) € Np, }),

where a; € (N4) ki, is such that im(a;) = V;. Since the sets V; have pairwise intersections
of size at most ¢, in the set above, the coordinates x 4 with |A| > ¢ are only constrained by
at most one of the o, so Fubini’s Theorem gives

j?

PIY) € [3.V) € (K0 = [ T Wy, (@(e) ada).
V7£j€[8} J
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def
where V' = Uje[s] Vi
Since each ¢’i satisfies CliqueDisc[(], by Lemma 4.4.5, it follows that W/{[E = pli (Pk;)

a.e., so we get
PIYj € [s),V; € By (K)) = T] 6"(on, ) = T] BIV; € Ei; (5,

as desired. ]

Proposition 4.4.7 (and Theorem 4.2.15) will be sufficient to handle the case in the definition
of symmetric f-locality when all sets have size at least . For smaller sets, we need the notion

of categoricity of elements of Hom™ (A[T],R) defined below.

Definition 4.4.8. Recall from Definition 3.6.1 that for ¢ € Hom™ (A[T],R), Th(¢) is the
theory of all models that have positive density in ¢. Recall also that in model theory a theory

T is called ¢-categorical if it has exactly one model of size ¢ up to isomorphism. We say that
¢ € Hom™ (A[T],R) is ¢-categorical if Th(¢) is f-categorical.

Remark 9. Since ) /e pg J[T] o(M) = 1, it follows that ¢ is (-categorical if and only if
o(M) € {0,1} for every M € M,[T].

Lemma 4.4.9. Let I: Ty ~ Ty be an open interpretation and let ¢ € Hom™ (A[Ty],R) be

(-categorical. Then ¢ is (-categorical.

Proof. Since for M € My[T1], we have ¢! (M) = S{d(N) | N € My[To] AI(N) =2 M}, it
follows that ¢ (M) > 0 if and only if M = I(Np) for the unique model Ny € M[Th(¢)]. W

Lemma 4.4.10. If ¢ € Hom™ (A[T}; ‘Hypergraph), R) is (-categorical for { > k then ¢(py) €

{0,1}, that is, the hypergraphon ¢ is either empty or complete.

Proof. Let M be the unique k-hypergraph on ¢ vertices such that ¢(M) = 1. Then M €
{K ék),Fék)} as o(K ék)) = gb(fék)) = 0 would have contradicted Ramsey’s Theorem. The

lemma follows. [ |
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Lemma 4.4.11. If ¢ € Hom™ (A[T],R) is f-categorical and 0 < ¢ < ¢, then ¢ is (-

categorical.

Proof. Let M € My[T] and consider the open interpretation I: Ty _fypergraph ~> 1' that
declares m-edges to be isomorphic copies of M. By Lemma 4.4.9, it follows that ¢! is
(-categorical, and it follows from Lemma 4.4.10 that qu is either the empty or the complete

hypergraphon. Now, ¢ is ¢'-categorical by Remark 9. [ |

Lemma 4.4.12. If ¢ € Hom™ (A[T], R) satisfies UInducell], then ¢ is ¢'-categorical for every

0< /<.

Proof. By Lemma 4.4.11, it is enough to show the case ¢/ = (. Let [: T ~ T U Ty Hypergraph
and J: Ty _Hypergraph ~* 'Y Ty _Hypergraph be the structure-erasing interpretations. Let N

be a T-on such that ¢pr = ¢ and for M € M[T], let H be the T'U T} _pypergraph-on given by

def def
Hp = Np; He S | TwaEN)

Keky[T)
K=M

for every predicate symbol P in the language of T'.
Let M € My[T U Ty Hypergraph] be such that I(M) = M and J(M) = py. Then

G(M) = dp (M) = ¢(M) ¢, (pg) = ¢(M)?,

where the second equality follows since ¢ € UInduce[¢]. Hence ¢(M) € {0,1} for every
M € My[T], so ¢ is l-categorical by Remark 9. [ |

Remark 10. The converse to Lemma 4.4.12 is very far from being true. For example, every
graphon is 1-categorical, and, slightly less trivially, every tournamon is 2-categorical. They

are seldom uniquely 1-inducible (see Theorem 4.2.14).

We can finally prove the last implication of Theorem 4.2.11.
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Lemma 4.4.13 (Theorem 4.2.11(i) = (iii)). If ¢ € Hom™ (A[T], R) satisfies UInducel(],

then ¢ is symmetrically (-local.

Proof. Let K be the exchangeable array corresponding to ¢. We need to show that for every
finite collection (Vi)ie[t] of finite subsets of N1 with pairwise intersections of size at most ¢

and every collection (Mi>ie[t] of models of T', we have

PIvi € [t K1y, = M) = [] PIK Iy, = M)
i€t]
By Lemma 4.4.12, we know that ¢ is #/-categorical for every 0 < ¢/ < ¢, which implies
that if |V| < ¢, then P[K |y, = M| = ¢(M) € {0, 1}, i.e., the event K|, = M is trivial. So
we may assume that |V;| > ¢ for every i € [t].

def

Let k = (k1,...,kt) be given by k; = |Vi| (i € [t]) and consider the interpretation

1T

T3 yypergraph ™ T that declares E;-edges to be isomorphic copies of M;. In other words,

I is given by

I(EZ)(:ELquZ) d:ef \/ Dopen(Mi)(xg(l)a--wxg(ki))-
CTGS]%.

By Theorem 4.2.3, we know that for every i € [t] we have ¢!°/i € UInduce[] and by

Theorem 4.2.15, it follows that ¢/°/i € CliqueDisc[¢]. Then we have

Pvi € [t], K|y, = M;] = PVi € [t],V; € E;(1(K))]

= [[ Vi € Ei(1(K))) = [] Py, = Mj),
ic[t] i€lt]

where the second equality follows from Proposition 4.4.7. [ |
We finish this section with the (now trivial) proof of Theorem 4.2.1.

Proof of Theorem 4.2.1. The implications Independence[¢(|] = Independence[l — 1] and
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UCouple[¢{] = UCouple[l — 1] follow easily from definitions. The fact that UInduce[(] —
UInduce[l — 1] follows since symmetric ¢-locality trivially implies symmetric (¢ — 1)-locality

and from Lemmas 4.4.3 and 4.4.13. [ |

4.5 Unique coupleability

In this section we prove Theorem 4.2.10. We start with the equivalence (i)« (ii)<(iii).
While implications (i) = (iii) and (iii) = (ii) are fairly straightforward, the proof of the
implication (ii) = (i) is more involved and naturally splits into five rather independent

parts:

1. Show that unique coupleability of ¢ with the quasirandom ¢'-hypergraphon Vo for

some p € (0,1) implies the same statement for every p € (0,1).

2. Show that unique coupleability of ¢ with the quasirandom ¢-hypergraphon Yp p for
all p € (0,1) implies that ¢ is unique coupleable with the quasirandom c-colored

¢'-hypergraphon Vpr 4 for every ¢ > 2 and every q € Il,.

3. Show that unique coupleability of ¢ with all quasirandom colored ¢/-hypergraphons
for ¢/ € [¢] implies that ¢ is uniquely coupleable with all independent couplings

VY1p @ ® Yy, of quasirandom colored ¢'-hypergraphons for ¢/ € [{].

4. Show that in an arbitrary theory T”, the set of elements that are uniquely coupleable

with ¢ € Hom™ (A[T], R) is closed in Hom™ (A[T'],R) in the L1-topology.

5. Show that for any pure canonical theory T, the set of all elements of the form
(V1p®--® 1/)&]0)], where I: Ty ~~ Ui;:l T, } is an open interpretation, is dense in
the set of ¢» € Hom™ (A[T,], R) of rank at most ¢ (again in the Li-topology) and apply
Theorem 4.2.3.

Let us point out that items 1, 2 and 3 combined show a strengthened version of implica-

tion (ii) = (iii) that allows for multiple colors and arbitrary densities. Furthermore, most
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likely items 4 and 5 in this program can be replaced with an ad hoc argument but we prefer

this more structured approach.

We start with item 1.

Lemma 4.5.1. Let { € N4 and ¢ € Hom™ (A[T],R). If there exists p € (0,1) such that ¢ is
uniquely coupleable with the quasirandom (-hypergraphon vy ,,, then ¢ is uniquely coupleable

with 1y , for every q € (0, 1).

Proof. Let Cy be the set of all couplings of ¢ with ¢y ,. Our objective is to show that
|Cq| = 1. Without loss of generality, let us suppose that p < ¢ (otherwise, we can use the
complementation automorphism C': Ty _fypergraph ~ T¢-Hypergraph given by C(E)(T) fef
Ni<icj<¢®i # 2§ A ~E(Z) and Theorem 4.2.3). Intuitively, we are going to “dilute” ¢y,
by a factor t = p/q so that it will turn into Yy p- The simplest way to make this intuition
precise is by introducing yet another quasirandom hypergraphon ¢y ; on the same ground set
and then taking its intersection with ¢y ..

Formally, we consider the commutative diagram

1 -Hypergraph T 1 -Hypergraph

TUTy -Hypergraph TuTy -Hypergraph

TuTy -Hypergraph UTy -Hypergraph
7l

1 -Hypergraph UTy -Hypergraph

(4.12)
where I, J, J and the unlabeled arrows are the structure-erasing interpretations, with the

unlabeled arrows keeping the second copy of Ty_Hypergraph: and 1 "'is given by

I/(E)(xl, .. ,:Eg) = E([El, ce. ,$£) A El(Il, cee ,xg).

125



Here E corresponds to the first copy of Ty_gypergraph and E’ corresponds to the second one.

We now define the dilution map F': C; — Cp by

F(&) % (e @ gy )idr T

where ¢ & p/q € (0,1). The fact that F(§) is indeed an element of C,, follows from

(6 @) 9TV = (p @ gy )] = &

(€ @) 9TV) = (g @ )T =ty

or € an - , let e the model o Udy. obtalne
For M € M[T] and U C (V3 1et My be the model of T U Ty_pypergraph obtained

from M by declaring the ¢-hypergraph edge set to be U, that is, we have (M) = M and
E(J(Mpr)) = U. Then we have

FE) (M) =tV 3™ (1= t)"\le((ary)).

we (')
Ucw

By Mgbius inversion, it follows that F is injective?, hence |Cq| < |Cp| = 1 as claimed. |

We now proceed to item 2 of our program.

Lemma 4.5.2. Let ¢ € Hom™ (A[T],R) and ¢ € N and suppose that for every p € (0,1), ¢
is uniquely coupleable with the quasirandom (-hypergraphon 1y ,,. Then for every ¢ > 2 and

every q € Il¢, ¢ is uniquely coupleable with the quasirandom c-colored (-hypergraphon vy ;.

3. The left-inverse is given by

LAY
FUOWMy) =+ 3 (1—) (M),

t
we (')
UCW
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Proof. For i € [c], consider the following commutative diagram

J 1
1y -Hypergraph — 7 TUTy -Hypergraph < — T

ng idp U I;l /

chg > T'U Tc,f

Je

where I, I., J and J. are structure-erasing and [ Z’ is given by

L(E)(x1,...,30) = Ej(z1,...,3p).

The set k[T ¢] of labeled models of size m can be naturally identified with functions

f: (VZ]) — [c]: given m € N and f: (VZ]) — [c], Cf € [T, 4] is given by

def def . . .
Vep il Re(C) Y fa e (me | Fimle) =} (€ L)
Let 7 % 01, Given further K ¢ Km|T] and f: ([TZ]) — [c], let Ky be the alignment of
K and CYy, that is, Ky is the unique model in KCpy[T'U T, 4] such that I.(Ky) = K and
Je(Ky) = Cy. Similarly, given U C ([?]), let Ky € Km[T U Ty _Hypergraph] be the unique
model such that I(Kp7) = K and Rg(Kp) = {a € (Im])y | im(a) € U}.

def

Let ¢ = 1y, € Hom™ (A[T, ¢], R) and let £ be a coupling of ¢ and ¢. Our goal is to

show that

E((Kf)) = ({Cp))o((K)) (4.13)

for every m € N, every K € K, [T] and every f: ([Tg]) — [c]. Note that to improve readability,
here and in the forthcoming calculations, K and K are identified with their isomorphism
classes [K], [Kf] in M.

If m < ¢, then (4.13) holds trivially and if ¢((K)) = 0, then both sides of (4.13)

are 0, so suppose m > (¢ and ¢((K)) > 0. Note that §(idTUIZ{)°J = ¢I£ = Ypq €
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Hom+(A[Tg_Hypergraph],R), hence 47 Ulj is a coupling of ¢ and ¥y .., so we must have

gidr uli = ¢ ® 1y 4;- Note also that for m € N, K € K [T] and U C ([WZ]), we have

Pk = Y (K. (4.14)

Pick now f: ([TZ]) — [c] at random according to the distribution

def E((K))

= my

m)

The identity (4.14) allows us to compute, for A € ([ ¢ ) and i € [c], that

idp UI!
Py —i= 3 SWEA 5 &7 (K

(K o((K
f:([n;])_')[c] ((K)) e ((K))
F(A)=i AcU
= > a1 = (D10 = g,
ve ()
AcU

where the the second equality follows from (4.14) and the third equality follows since

gidr ur _ ¢ ® Yy q- Since Y((Cy)) = HAe([m]) df(4), to complete the proof of (4.13), it
¢

remains to show that the values (f(A) | A € ([TZ])) of f are mutually independent.

For that purpose, it is in turn sufficient to prove that for every fixed Ag € ( VZ]) and every

fixed ig € [c], the event f(Ag) = ig is independent from fly, where W def ([WZ}) \ {Ap}.

To do so, we will generate the distribution of f in a very specific way. Let A be a
T-on such that ¢ = ¢ and note that ?/Jg,qio = o\ € Hoer(A[Tg_Hypergmph],]R) for the
(¢ — 1)-independent, Ty_piypergraph-on N’ given by

./\/'é» def {re&| Ty < Qio}‘ (4.15)
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s !
Since fldT Ul _ O w&% = ¢naN’, by Proposition 3.2.1 applied to the interpretation

idp U]Z(O, there exists a (T"U T, g)-on H over [0, 14 such that ¢g; = € and

Hp =Np x & p ([0, 1) ae  (Pel)
(4.16)

HEiO =&y X N/E x &p(]0, 1]2) a.e.,

where £ is the language of T'.
Let now (81,62, 63,64) be picked at random in En, ([0, 1]4) according to A and let K

be the exchangeable array corresponding to H with respect to (91, 02,03, 04). Denote also

F F(Jc(KHm])); F = (F(Ay), Flyy), and let E be the event IC(K][m]) = K. Then the

function f is equidistributed with the function F' conditioned by the event E. It remains to
note that by (4.16), the event F'(Ag) = ig depends only on the coordinate 0310 (warning: we
do not claim that the whole random variable F'(Ag) depends only on 01240)' On the other
hand, both E and F'|y do not depend on it; more precisely, £ depends only on 01 and F|yw
depends on those 079 with j € [4], |B| < ¢ and B # Ay. |

We now address item 3 of our program (cf. the second remark made after the statement

of Theorem 4.2.10).

Lemma 4.5.3. Let ¢ € Hom™ (A[T],R) and v¢; € Hom™" (A[T;],R) for i € [t]. Let also

(1 < --- </l and suppose that the following hold.
i. For every i € {1,...,t — 1}, we have rk(¢;) < ;.
ii. For every i € {2,...,t}, we have ¢); € Independencell; 1].
iii. For everyi € {1,...,t}, ¢ and 1; are uniquely coupleable.
Then ¢,1, ..., are uniquely coupleable.

Proof. The proof is by induction on t. For t = 1, the result is trivial. For ¢t = 2, let
L;: TUT; ~ TUTUTy, J;: T; ~ TUT UTy and J: T ~ T'UTUT5 be the structure-erasing
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interpretations. Let £, £1 and L9 be the languages of T', T} and T%, respectively. Let also A/
be a T-on with ¢\ = ¢ and H2 be an ¢;-independent Th-on with ¢42 = 2. Fix a coupling
€ of ¢, 11,19 Since ¢ and 19 are uniquely coupleable, we know that €12 = ¢ @ 9 = ¢ A H2-

By Proposition 3.2.1, there exists a (T'UT; U Ts)-on G over |0, 1]4 such that ¢g = ¢ and

Np x Eypy([0,1°), if PeL;
Gp =
gk(P) X 7‘[%; X Sk(P)([O, 1]2), if P e Ls.

On the other hand, for the predicate symbols P in L1, by possibly changing zero-measure sets
of the corresponding P-ons Gp using Proposition 3.1.2, we may suppose that rk(J1(G)) <
rk(iy) < 4.

Let us pick 0 def (61,62, 63, 04) at random in &y ([0, 1]4) according to A and let K be the
exchangeable array corresponding to G with respect to 8. Then we know that J(K) depends
only on 8%, J;(K) depends only on ((0}4, 0124, 63, 0?;1) | |A| < ¢1) and Jo(K) depends only
on (02A | |A] > ¢1) (as H? is f1-independent), so Jo(K) is independent from (J(K), J; (K)).

This means that for every m € N and every K € K, [T U T1 U Ts], we have

§(K)) =PIK]|, = K]

= PlJ(K)|j) = J(K) A J1(EK)| () = J1(K) A J2(K) |}y = J2(K)]

m]

= PLI(K) ) = JK) A 1K)y = T2 (5)] - B (K ) = o ()

mj
= Pl (K[, = Li(K)] - Pl (K|
= (K)o ((T2(K)))

= o((J(K))) - ¥1({(J1(K))) - Y2 ((J2(K))),

= Jo(K)]

)

where the last equality follows since ¢ is uniquely coupleable with 1 and 51 1 is a coupling of

¢ and 1. Therefore £ = ¢ ® ] ® V9.

For the caset > 3, let I: TUU?ZQ T; ~~ TUU§:1 T; be the structure-erasing interpretation
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and note that for a coupling & of ¢, 11, ..., 1y, it follows that §I is a coupling of ¢, 19, ..., .
By inductive hypothesis, we must have £I = ® QZ, where zZ def ®§:2 ;. In fact, since
¢, 9, ..., are uniquely coupleable, it also follows that ¢ is uniquely coupleable with zZ (as
any coupling of ¢ with 1Z can be seen as a coupling of ¢, 9, ..., 1). But by Theorem 4.2.4,
we know that QZ € Independence[({] and since £ can also be seen as a coupling of ¢, 11, 1}\,

we get £ = o ® ®§:1 v; from the previous case. [ |

Lemma 4.5.4. Let ¢ > 2, p € Il and k € Ny. Then the quasirandom c-colored k-

hypergraphon vy, ,, satisfies Independence[k — 1] and rk(¢y, ,,) = k.

Proof. Note that vy, can be represented by the T, ;-on NEp given by

i—1 ?
k,p def .
NEip =z e E D < Tk < E Dy (Z € [C])7
j=1 j=1

hence 11, , € Independencelk — 1] and rk(¢;, ,,) < k. Since ¢ > 2, it follows that rk(vy, ,) > 0,

so by Theorem 4.2.2 and Proposition 4.3.1, we must have rk(¢y, ,,) = k. [ |

Before proceeding to item 4 in the program, let us remark why need the Li-topology for it
instead of the standard and much nicer density topology (i.e., the one induced by the inclusion
Hom™ (A[T],R) C [0, 1]MZ] from the product topology). One simple explanation is that the
set of all 9 € Hom™ (A[T'], R) that are uniquely coupleable with some ¢ € Hom™ (A[T], R)

is not closed in the latter.

Example 5. Let ¢, € Hom™ (A[TGrapnl, R) be the quasirandom graphon of density p € (0, 1).
If (Gn)pen (Gn € Mn[TGraph)) is a sequence of graphs converging to ¢, then the associated
step functions vy, converge to ¢, in the density topology. Since rk(v,) = 1 and ¢, €
Independencel[l], it follows that ¢}, and v, are uniquely coupleable, but ¢, = limy, o0 ¢y is

obviously not uniquely coupleable with itself.

Lemma 4.5.5. Let ¢ € Hom™ (A[T],R) and T’ be an arbitrary theory. Then the set of

1) € Hom™ (A[T"], R) that are uniquely coupleable with ¢ is closed in the Ly-topology.
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Proof. Let (¥n)pen be a sequence in Hom™ (A[T'], R) converging to 1 in the Li-topology
and suppose every 1, is uniquely coupleable with ¢. It is clear from the definition that
(6 @Yy, dR1Y) =61 (Yn ® 1Y), 50 ¢ ® 1y, also converges to ¢ ® ¢ in the Li-topology. For
each n € N, let ¢, be a coupling of ¥ and v, attaining the Li-distance in (3.12).

Let £ be a coupling of ¢ and 1); we have to show that & = ¢®41p. Let I: T'UT" ~» TUT'UT’
and J;: T' ~ T" U T’ be the structure-erasing interpretations, where .J; keeps the i-th copy
of T”. Since ¢ is a coupling of ¢ and 1) = C;{l, by Proposition 3.2.6, there exists a coupling {;?n
of ¢ and (,, such that A;LdT VI _ &. Note that En can also be seen as a coupling of ¢, 1 and
Yn as &L = (.

Let now N be a (T UT’ UT')-on such that &, = ¢pm. By considering the (T U T”)-ons
(idp UJ)(N™) and (idp UJo)(N™), since vy, is uniquely coupleable with ¢, we conclude

from (3.10) that

0160 @ ¥n) < Y MIUTN™)p A Jo(IN™) p) = Culdyr) = 61(th, ),
pel!
where £’ is the language of T”. Since v, — 9 and ¢ ® 1, — ¢ ® ¢ in the Li-topology, it
follows that & = ¢ ® 1. [ |

We proceed to the last item 5 in our program, which is to provide a way of approximating
Euclidean structures with interpretations of independent couplings 1, ® -+ ® by, of

quasirandom colored hypergraphons in the Li-topology.

Lemma 4.5.6. Let £ be a language, ¢ € Hom™ (A[T],R), r def rk(¢) and € > 0. Then

there exist ¢ > 2, p € Il. and an open interpretation I: Ty ~» Jp_; T, ) such that
51(6, (®hm1 Yip)') < 5.

Proof. Let N be a Tg-on such that ¢pr = ¢ and rk(N) = r, that is, for each P € L,
[k(P)]

there exists Hp C &(p),, such that Np =Hp x |0, 1]( ). By standard measure theory
arguments, for each P € L, there exists a finite family of pairwise disjoint closed cubes
. def .
(CJP)T:Pl (C]P C 5k(P)7r> such that setting ’ij = UT:Pl C]P gives \(Hp A ’ij) <e/|L].
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Let X be the set of all coordinates of vertices of all cubes CJP for all P € L. The set X
induces a partition of [0, 1] into intervals Ji, ..., J. of positive length (we can ensure ¢ > 2

by including an extra point if necessary). Define then p € Il by letting p; def A(J;) > 0 and
define the (p—; T, x)-on G by

def .
Gk = {o € & | ap € Ji} (i € [d, k € [r]),
where for each k € [r], the symbols EF, .. Ek correspond to T 1.
Let 2/1 gbg and note that ¢ is a coupling of 1 p,...,9rp, so we must have ¢ =
&Q}—1 Ukp by Lemmas 4.5.3 and 4.5.4.

» can be written as a
b

Note now that from the definition of X, each cube C]P C Sk( P)

finite union of the form UU€UPj [acr(p)r) Ji

ipu- We then define I: Ty ~ Uk=1Tcx by

I(P)(x1, ... ) & \/ \ A EfR%A(%Au),---,%A(\AD) (P € L).
J=1ueUp; Aer(k(P),r)

Our definition ensures that

9p= Tﬁj U H JiP,u,A [0, 1]([k( )

j=1ueUp; \Aer(k(P).r)

o k(P k(P
=Jw@s <, 1y Z 3¢, o, (",
j=1

This implies that

$) < 3 AWp & (Hp < 0,15 = S AHp AHp) <

Pel Pel

as desired. [ |

We now have all the ingredients to show the equivalence (i)« (ii)<>(iii) of Theorem 4.2.10.
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Lemma 4.5.7 (Theorem 4.2.10(i)< (i)« (iii)). Let ¢ € Hom™ (A[T],R) and ¢ € Ny. Then

the following are equivalent.
i. ¢ € UCouple[(].

ii. For every (' € [{], there exists p € (0,1) such that ¢ is uniquely coupleable with the

quasirandom {'-hypergraphon ¢y ,,.

iii. There exist p1,...,py € (0,1) such that ¢ is uniquely coupleable with the independent

coupling Y1 p, ® - -+ @ ¥y, of quasirandom ¢'-hypergraphons W’,pe/ for (' € [{].

Proof. Since ¢'-hypergraphons have rank at most ¢, by Proposition 3.1.2, we have k(1 p, ®
- @1y p,) <L, so the implication (i) == (iii) follows.

Implication (iii) == (ii) follows from Theorem 4.2.3 by considering the structure-erasing
interpretations Iy, : Ty _Hypergraph ~ Uﬁle Ty _Hypergraph-

For the non-trivial implication (ii) = (i), we want to show that ¢ is uniquely coupleable

with any ¢ € Hom™ (A[T'], R) of rank at most ¢. We can assume w.l.o.g. that 7" = T} for

some language £. Using Lemma 4.5.6, for each n € N, we can find ¢, > 2, p, € Il, and

In: Tp ~ Up—1 Te, 1 such that 61(¢, (Qf_1 ¥xp,) ™) < 1/n.
By Lemmas 4.5.1, 4.5.2, 4.5.3 and 4.5.4, we know that ¢ is uniquely coupleable with

k1 VYk.p, and by Theorem 4.2.3, it follows that ¢ is also uniquely coupleable with

(it Vb p,) ™
Finally, since ((Q}_; ¢k,pn)1")neN converges to ¢ in the Li-topology, by Lemma 4.5.5,

it follows that ¢ is uniquely coupleable with ). [ |

We now proceed to add items (vi) and (vii) to the list of equivalent properties of

Theorem 4.2.10 (recall that (i)<(iv)<(v) and (iv) = (vi) were proved in Section 4.3).

Lemma 4.5.8 (Theorem 4.2.10(vi) = (vii)). If ¢ € Hom™ (A[T],R) is ¢-local, then ¢ ® 3,

satisfies UInducel[(].
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Proof. By Lemma 4.4.3, it is enough to show that ¢ ® 1)};, is symmetrically ¢-local. Let
K be the exchangeable array corresponding to ¢ ® 1));,, and fix a finite family of finite
sets (Vi)ie[ (Vi € Ny) with pairwise intersections of size at most £. We let K def ¢ lv, €
Ky, [T U T1in0rder]) and let M; def [K;] € My;[T U TLinOrder] be the isomorphism type of
K;. We have to prove that M7y, ..., My are mutually independent, and for that purpose we
are going to apply Claim 4.3.5 again.

More specifically, let I: T ~» T'U T;n0rder P€ the structure-erasing interpretation and
L; = I(K;) € Ky [T] be the results of erasing linear order. Likewise, let J: T{in0rder ~
T U T1inOrders and let <; = J(K;) be the corresponding (random) linear order on Vj
so that K; = (L;,<;). In Claim 4.3.5, we set X = (<q1,...,<n), Y; = L;, and let
fi(<1,...,<pn, L;) be the function first computing K; from L; and <; and then taking its
isomorphism type M; = [K;].

We know that the tuple (Lq,..., L) is independent from X = (<q,...,<¢) (as the
coupling of ¢ and y;,, is independent) and that Ly, ..., Ly are mutually independent (as ¢
is (-local). This gives us the first assumption in Claim 4.3.5: X,Y7,..., Yy are mutually
independent (note that we do not claim that <y, ..., <4 are mutually independent, this is in
general not true). It remains to show that (M7, ..., My) is independent from (<q,..., <p),
and it essentially follows from the observation that the function f;(X,Y;) becomes invertible
after fixing its first argument.

More specifically, we compute L; = ¢;(<;, M;), where g;(<;, M;) is obtained by first
aligning the internal order of V(M) with the order <; on V;, and then discarding it. The
crucial property is that L; = ¢;(<;, M;) if and only if M; = f;((<1,...,<n),L;). Using
this, fixing arbitrary models M; € M|Vi\[T U TLinOrder] and a particular tuple of values

(<1,...,<¢), we have the calculation
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P[vi e [t], M; = M; | Vi € [t], <; = <]
=PWi e [t], L; = g;(<;, M;) | Vi € [t], <; = <
= P[Vi € [t], L; = g;(<;, M;)]

— P[Vi € [t], M; = Mj).

This shows that (M7q, ..., M) is indeed independent from (<y,...,<¢). We are now in

position to apply Claim 4.3.5 which completes the proof. [ |

Lemma 4.5.9 (Theorem 4.2.10(vii) = (ii)). If the independent coupling ¢ ® 1) of ¢ €
Hom™ (A[T],R) with vy, satisfies UInduce[f], then for every ' € [{], ¢ is uniquely coupleable

with the quasirandom ¢'-hypergraphon Yy )2 € Hom™ (A[T -Hypergraph]v R).

Proof. Let £ be the language of T and note that since UInduce[l] implies UInduce[l’]
(Theorem 4.2.1), it is sufficient to consider the case £/ = ¢. Let us first assume ¢ > 2.

Note that 9};, can be represented by the T{;,0rder-on N given by
< def
N = {$€82|${1}<${2}},
and that 1y ; )9 can be represented as
def
Ng = {re&| 2 <1/2}.

Let £ be a coupling of ¢ and W,l/Q and let N be a (T'U Ty Hypergraph)-on such that

on = & As in the proof of Lemma 4.5.2, for every m € N and every U C ([WZ]), let

Hy e ’Cm[Té-Hypergraph] be the hypergraph given by V(Hy) def [m] and Rp(Hy) def

{a € ([m])y | im(a) € U}. If we are further given K € KCpy[T], then we let Ky € K [T U

Ty Hypergraph) be the alignment of K and Hyy, that is, we have Rp(Kyy) dof Rp(K) (P e L)
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and RE(KU) d:ef RE<HU) Finally, we let K; € ICm [T U Té—Hypergraph U TLinOrder] be the

model obtained from K7 by equipping it with the natural order of [m]. Note that while we
do need labels in K to properly define the models Ky and K5, in the computations below
they are treated as unlabeled models [Kys], [K[5], i.e., labels are discarded.

To show that £ is the independent coupling of ¢ and wﬁ,l /2, We need to show that for

[m]

every m € N, every K € K,[T] and every U C ( ’ ), we have

¢((K))
o(7)

E(Ky)) = o((K)) - ¢ 12((Hy)) = (4.17)

[m]

The assertion is trivial if m < ¢, so suppose m > £. Fix U C ( ) and for every v € [m],

~

define

[v—l U) ,
,— |, ifv<m;
m

{—,1}, if v =m.

For n € Nand y € &, let ay: [n] — [m] be the unique function such that y¢; € Vay () for

every j € [n]. Finally, define the set

Wy d:ef{<x,y) e& x& |1m(ay)| =/(A (:E[g] < % > im(ay) S U)};

clearly, Wy is Sy-invariant. This means that we can define the (T'UT}_pypergraph YT LinOrder)-

on HY over [0,1]? by

def def

'Hg = Np X gk(P) (P S E), 'HZ dzefgg XN<, 'H% = Wy

Obviously, if (z,y) € Tind(KT(rf), W), then each y ;1 must belong to a different V;,. Indeed,
if there exist ji,jo € [m| with Y Yia) € Vi but ji; # jo, since m > £ > 2, there exists

B € ([m]); with ji,j2 € im(B) and thus (z,y) ¢ (8*)1 (W), a contradiction.
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Our claim and the definition of Wy then imply

Tind(Ky(vf), W)

=S (2,9) € Em x En | [im(ay)| =m A J\  (B*(z) € Np & im(ags,) € U)
Be([m])e

Thus, denoting by Jy: Ty _gypergraph ~ T'U Ty Hypergraph Y TLinOrder the structure-erasing

interpretation, we get

(0) m!

|
& 0y (K ) = 10 (Hy) = (4.18)

Let now J: T" ~» T'UTy_Hypergraph Y T LinOrder b€ another structure-erasing interpretation;
we have

Tind(K<

("
0

= Tia (K, J(HY)) 0 Tia(K) . o (HY) 0 {(2,9) € Em % Em Lypny < < 4y}

HY)

={(z,y) € Em x Em | v € Ting(Ky , N) AVv € [m],ypy € Vot

Since g = &, we get

by S g (') o)
B m! ()

E(Ky)) =m™ - dqu (K,
)
where the second equality follows since ¢, € Hom™ (A[T)_piypergraph? Y TLinOrder]; R) is
a coupling of ¢ vy € Hom™ (A[T} _tiypergraph), R) and ¢ ® ¢y, (and the latter satisfies

UInduce|/]), and the third equality follows from (4.18). Hence (4.17) holds.

Let us now show the case £ = 1. In this case, since T _gypergraph = 12-Coloring, We will
work with the latter theory. Let § be a coupling of ¢ and 1y /5 € Hom™ (A[T2_coloring)s R)
and let N be a (T'U Ty_coloring)-on such that ¢r = &.
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For every m € N, every K € Ky [T] and every j € {0,...,m}, let K; € Kin[TUT5_coloring]
be the model obtained from K by coloring the first j vertices with color 1 and all others
with color 2, that is, we have Rp(K;) ' Rp(K) (P € £), Ry, (K;) € [j] and Ry, (K;) %'
{7+1,...,m}. Again, we let Kj< € Kn[T U Ts_Coloring Y TLinOrder] be the model obtained
from K; by equipping it with the natural order of [m], and, again, in the computations below
we view K, K}, Kj< as unlabeled models.

Due to exchangeability, in order to show that £ is the independent coupling of ¢ and v, /25

it is sufficient to show that for every m € N, every K € K,[T] and every j € {0,...,m}, we

have

ety = 24, (4.19)
For every t € (0,1), let
Utd:ef{(x,y) c&1x&|zeNy <y<t}

(x1 corresponds to the first color) and note that A(Uy) = 1/2. Define the (T'U T1;n0rder Y

T -Coloring)‘on H' over [0, 1]2 by

Ho Y Np xEpy  (PEL), 1, e, N,
def def
e, = U, He, = (& x &)\ Uy

Since ¢4t is a coupling of 1, /2 and ¢ ® vy;, and the latter satisfies UInducel[l], we get

Syt ((K) = —— (4.20)

139



On the other hand, from the definition of H!, we have

o
tJ(l—th

<

Ppt (K Z J(m

7=0

-3 Z—j)(j'j ) ey |

§((K5))

Since this identity is true for any ¢, putting it together with (4.20) and comparing coefficients

of the polynomials in ¢, we conclude that

1 m—1 — Lom: WHR=Y
Yo, DK = g (4.21)
i=0 Mm_z)!(k_l) 0, if k € [m).

We can finally prove (4.19) by induction in j € {0,...,m}. For j = 0, the assertion
follows from (4.21) for k = 0. Suppose then that j > 1 and by using the inductive hypothesis,

note that (4.21) for k = j gives

Thus (4.19) holds. |

4.6 Separations

In this section we prove all separation theorems.
Recall from Section 4.1.2 that for x € &, 0, € Sy, denotes the unique permutation such

that = < Tl when the coordinates (z(;y | @ € [n]) are distinct, and is

oty <

defined arbitrarily otherwise.
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Proof of Theorem 4.2.6. First note that the quasirandom (¢ + 1)-tournamon 1y, 1 can be

represented by the T(g +1)

~Tournament~°1

1
1) < 5 € sgn(og) = 1} . (4.22)

Let K be the exchangeable array corresponding to A with respect to 8 picked in Ey L By
Theorem 4.2.10, to show that 1y, € UCouple[/] it is sufficient to prove that vy, is weakly
(-independent, that is for every m € N, the random variable K |[m] is independent from (6 4 |
A € r(m,0)). Indeed, K|, is completely determined by o (0) and (04 | A € (é:'ﬂl)), and
any changes in the values of the signs Sgn(O‘Lz(g)) can be offset by flipping the corresponding

variables 64 (cf. (4.22)) so that the distribution of K}, does not change from fixing Tur 1 (6)

Suppose now toward a contradiction that 1y, ; € Independence[/], that is ¢y, = ¢y for
some T4 1) Tournament=0n 7 of the form H =&, ¢ x G for some G C [0,1]. Note that for
any o € Sy;1, we have H -0 = H. But this is a contradiction as the axioms of Tk _Tournament

imply that A((H - o) N H) = 0 whenever sgn(o) = —1. |

Proof of Theorem 4.2.7. Since 1y, is represented by the T i, 0rder-on N def {ze&|ay <
x{z}}, we know rk(ty;,) = 1, thus by Proposition 4.3.1, we have ;, ¢ UCouple[l].

Since )y, is n-categorical for every n € N, it is symmetrically ¢-local for trivial reasons
(namely, all events K|y, = M; have probability 1), for any integer ¢. Hence 1/y;, € UInducel/]

by Theorem 4.2.11. [ ]

To prove Theorems 4.2.8 and 4.2.9, the alternating tournament defined below will play a

key role.

Definition 4.6.1. Let k£ > 1. For a: [k] — [k + 1], denote by o, the unique extension of «
to an element of Sy, 1, and let sgn(«) dof sgn(oq). This definition behaves well with respect
to the actions of Sy and Sy 1: for every n € Si we have sgn(a o) = sgn(«) sgn(n), and for

every o € Si1 we have sgn(o o a) = sgn(o) sgn(a).
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The alternating k-tournament is the model Agj}l € K17k -Tournament) of Tk -Tournament

of size k + 1 given by

VAR < T+ 1 Rp(AY]

def
k+1 k+1)

= {ae(k+ 1) [ sgn(e) = 1}.

For example, Agf) is the oriented cycle 53.

Proof of Theorem 4.2.8. For this proof, let us denote the predicate symbols of the the-
ories T(p19) Hypergraph 04 T(r41) Tournament PY £ and P, respectively. Let also def

Yoy1 € Hom+(A[T(g +1)-Tournament): R) be the quasirandom (¢ + 1)-tournamon and let
I: T(E—l—Z) -Hypergraph ™~ T(E—i—l)—Tournament be given by

def
](E)(xl,...,l‘g+2) = \/ (P(xil,...,$i€,$jl)Hp(xil,.--,l'ié,l’jz)),
1<iy < <ip<tl+2

where j1,jo € [( + 2] are such that {iq,...,4,Jj1,72} = [{ + 2]. By Theorems 4.2.3 and 4.2.6,
we know that ¢ def ¢! € Hom™ (A[T(142)-Hypergraph]: R) satisfies UCouple[(].

To show that ¢ ¢ Independence[l], we will make use of the theory T (isomorphic to

T(g +1)_T0umament) that is obtained from T(g +2)-Hypergraph Y T(g +1)-Tournament by adding

the axiom
VEE (1. .. 30p) & (E)a1,... w10) (4.23)

and the commutative diagram

T(€+2) -Hypergraph ’ T((—f—l) -Tournament
s| |7

T(€—|—2) -Hypergraph U T(K—l—l) -Tournament A T

where S is the structure-erasing interpretation, A is the axiom-adding interpretation and J is
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the isomorphism mentioned above that acts identically on P (the inverse J ~1 acts identically
on P and acts as [ on F). Let £ = 2/1‘]_1 so that ¢ = ¢/ and ¢ = 5’405.

Suppose toward a contradiction that ¢ € Independence[l] and let N be an ¢-independent
T(£+2)-Hypergraph‘0n over () such that ¢pnr = ¢ = 1/}1. By Proposition 3.2.1, there exists a
T-on N7 over Q x Q such that ¢pr = & and S(AN")) g = N, = Ng X €49 a.e. Note that
rk(¢) < rk(¢) < £+ 1, so by possibly changing zero-measure sets using Proposition 3.1.2,
we may also suppose that tk(N’) < ¢+ 1. By applying a measure-isomorphism between
Q x  and [0,1], we conclude that there exists a T-on H (over [0, 1]) such that ¢y = &,
rk(H) < £+ 1 and the peon Hf is (-independent.

Since Hg has rank at most ¢ + 1 and is f-independent, we can write it as Hp =
Erpa0 %G %[0, 11162} for some measurable G C [0, 1]([§ﬁ]) Using the symmetry axiom (2.2)
of T(g +2)-Hypergraph and making a zero-measure change in G, we may assume that it is
Sy o-invariant.

For every ¢ € [¢ + 2], define the sets

{42
%£+1d:ef{A€ ([ j ]) £+16AM+2¢A};
{42
‘/;E—’—Qd:ef{Ae([_; ]) g+1¢A/\£+2€A};
0+ 2
Define also the sets
. i 041,042
Wit Vi 2 A VgL el e
N ' o ; q f€+2
4 de HWtE_H; yit2 de HWtﬁ—&-Q; 7 € Hth-i-l,ﬁ—i-?.
t=1 t=1 =
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Note that

{+1 0+1.
Erpr = E x Y xwih

Epro=E x Y Wil x v 2wl x 2
Let ¢: [()U{€+ 2} — [¢ + 1] be the function that maps ¢+ 2 to ¢ + 1 and fixes all other

points and note that ¢ induces maps *: Y1 — y2 and YIRE Wfi’ll — W;jﬁ? (given by
def

Fly)a Yu(ay and i (W)a = wy(4)):

For every x € £y and every w € Wfill, define the sections

1z, w) © {y e Y | (2,9, w) € Hp);

def

H?D(x,w) = {y S Y£+1 | (I7y7w) ¢ HP};

and for every x € &/, define

Hp(x) © {w € WL | AHB (2, w)) > 0);

def

Hip() = {w e WEL | AHp(x,0)) > 0.

It is clear that

HE (@) UHp(a) = W] (4.24)

for every x € &.
Note that the axiom (4.23) of 7" and an application of Fubini’s Theorem imply that for

a.e. x € &, a.e. w,W € Wfill, a.e. y € Hp(z,w), a.e. y € Hp(w, w) and a.e. z € Z, we have

(@, y,w, . (¥), 741 (D), 2) € Hp. (4.25)
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Since the definition of I(P) is invariant under negating P, the same assertion also holds with
[ in place of a.
Recalling that Hp = €49y x G x [0, 1]{£+2}, (4.25) implies that for a.e. x € &, a.e. w,w €

HE(r) and a.e. z € Wfill,HQ’ we have

(w,1p,1(W),2) €G. (4.26)

Again, the analogous statement with £ in place of « also holds.
From (4.24) and (4.26), it follows that there exists zg € & such that the following hold

for o 4 HP(7p) and B et ”Hé,(:vo)

i. We have W& UW? =W/

) _ 041,042 .
ii. Fora.e. w,w € W and a.e. z € W, |77, we have (w, 7, (®), 2) €G.

o~ {41,042 o~
iii. For a.e. w,w € W5 and a.e. z € ng—l’ *2 we have (w, Ly (W), 2) €G.

ijﬁ = 1, let us for simplicity identify W;ill with [0,1] and let h def Lyya be
2]

e+
the indicator function of W C [0, 1]. For every A € ([gjﬁ}), let m4: [0, 1](€+1) — [0,1] be

Since |

the projection on the A-th coordinate and note that the properties above imply that for
[+2]
a.e. u € |0, 1]<f+1 ), if h(7(py1)(u)) = h(Tquges2)), then u € G. Since G is Spyo-invariant,
[¢+2]
this in turn implies that for a.e. u € [0, 1](4+1 ), if there exist ji,jo € [¢ + 2] distinct such

that A(mpyop (1 (W) = h(Tppo) (j,}): then u € G. But since at least two of the values
h( ey (W), BT ppop fo41) (W) and A7y op 1oy (w)) must be equal, it follows that A(G) = 1.

So we must have

d(pr42) = AHE) = AG) =1,

which implies qb(fg:r;)) = 0.

(4+1)

119+ we have I(A(M—l)) ~

However, note that for the alternating (¢ + 1)-tournament A 042
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FZ;LQQ) , hence

—(0+2) (0+1) (¢ +2)! 1
(K ypy ) 2 0(Apy ) 22 Au( AT, SYASE

a contradiction. [ |

The following is needed for the proof of Theorem 4.2.9.

Lemma 4.6.2. If M € M. 9[T} Tournament) iS @ k-tournament on k + 2 vertices, then M

has at most two (unlabeled) copies of the alternating k-tournament Al(c]?l'

Proof. Suppose toward a contradiction that M € M1 9Tk Tournament] contains three copies

of A](szl and without loss of generality, let us suppose that these three copies are induced by
V1 ¥ k1), v © Utk a2y and V3 €k 1]UTk+1, k+2). Let 19, a1z, asg € (k+2)

be given by

gof | v if v <k; def | s if v <k;
) = ags(v) =
k+1 ifv=k; kE+2 ifv=Fk;

def
a1a(v) = v; a13(v

and note that im(a;;) = V; NV,

But then M|y, = A](!?l, Mly, = Al(c]:zl and M|y, = Al(clﬁl imply respectively that

a12 € Rp(M) <= a1z & Rp(M),
alp € Rp(M) <= a3 & Rp(M),

13 € Rp(M) <= a3 ¢ Rp(M).

This is a contradiction as all three equivalences above cannot be true at the same time. W

Proof of Theorem 4.2.9. For this proof, let us again denote the predicate symbols of the

theories T{y 49y _typergraph 814 T{¢41)-Tournament by £ and P, respectively. For p € 0, 1], let
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NP be the T{441) -Towrnament=on given by

def
NEZ {x €& ‘ Lo <P < sgn(oy) = 1}

(note that for p = 1/2 this is precisely the theon (4.22) representing the quasirandom

(¢ + 1)-tournamon).

Let I+ T(y19) -Hypergraph ~* T{¢+1)-Tournament P€ the interpretation that declares (¢ + 2)-

(f+1) def
2

edges to be isomorphic copies of AE 4o s and let ¢ =

jp € Hom™ (AT 119 _Hypergraphl: R)-
We will show that ¢, satisfies UInduce[(] for every p € [0, 1], but does not satisfy UCouple[l]
unless p € {0,1/2,1}.

To show the first property, recall that the quasirandom (¢ + 1)-hypergraphon ¢, , €
Hom™ (A[T(¢41)-Hypergraph], R) satisfies Independence[(] (cf. Lemma 4.5.4) and hence also

satisfies UCouple[(] (by Theorem 4.2.2). Note also that ¢np = (Ypy1, ® @Z)lin)Il and

/. . . 4
I T((—f—l)—Tournament ~ T(E—l—l)—Hypergraph UTLinOrder is given by

def
I'(P)(x1,... w041) = N oz

1<i<j<i+1
A E(xl,...,x“_l) > \/ /\ 0] < Tg(4)
0€Spy1 1<i<j<l+1
sgn(o)=1

By Theorem 4.2.10(i) == (vii), we know that ¢4 1 ,®y;, € UInduce[(] and by Theorem 4.2.3,

we get that ¢p = (Yp41, ® whn)I/OI satisfies UInduce[(].

Let us now show that for every p € (0,1) \ {1/2}, ¢}, does not satisfy UCouple[l]. Since

iy has rank 1, it is enough to show that ¢, is not uniquely coupleable with 1/};,. Consider

4. This is a generalization of the “arc-orientation” interpretation used implicitly in the implications
Py= P = Pl(S) of [15}
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the (T(€+1) “Tournament Y TLinOrder)-on N'P'< given by

A< NS o € &y | apyy < pzy)

. . def IUidTLinOrder . .
and note that ¢arp,< is a coupling of ¢ap and ¢y, hence { = \Pr< is a coupling

of ¢p and vy, We will show that & # ¢ ® 1y, by a direct computation exhibiting an
(¢ + 2)-hypergraph H and two different orders on it such that (Hy) # &(Hs) for the
corresponding models of the theory T(¢+2)-Hypergraph Y TLinOrder- That will suffice since,
clearly, (¢p ® i) (H1) = (¢p ® tyin) (Ha).

Let H € Kpy3[T(142)-Hypergraph] be given by

V(H) € [0+ 3); E(H) € {Jk+1], [} U {k + 2}
and let Hy, Hy € Ky +3[T(€ +2) -Hypergraph Y T1,inOrder) be obtained from H by equipping it
with the orders < and <9, respectively, where <7 is the natural order of [¢ + 3] and <9 is

obtained from <71 by swapping the order position of ¢/ + 1 and ¢ + 3, that is, we have
1<92<9:-- <9l <9l +3<9l+2=<90+1.

Let @ be picked at random in &y, according to A and let K be the exchangeable
array corresponding to NP> with respect to 6 (so that (I U 175 oo ) (FC) corresponds to
def

<] U idTLinOrder>('/\/'p’<))' Let o :e Oy

2 3](9). Then we have
+

§((H1)) = PU(J(K|jpy3))) = H Ao =idgyg);

§((Hz)) = PU(J(K|jpy3)) = HNo =T7];

where J: T (£+1)-Tournament ™ T (¢+1)-Tournament Y T1inOrder 1s the structure-erasing inter-

pretation and 7 is the transposition that swaps ¢ 4+ 1 and ¢ + 3. Then by Lemma 4.6.2,
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I(J(K|j13)) = H is equivalent to

J(Kljp19) = J(Klpi1uier3y) = A%:_gl)- (4.27)

Since Aut(A%_—;l)) is the alternating group on [¢ + 2|, on any fixed set of ¢ + 2 vertices,

there are exactly two models M; and My that are isomorphic to Agﬁ;) and they satisfy
Rp(M1) N Rp(Ms) = @. This means that on the event (4.27), out of the a priori four

(4+1)

presentations of A)\, " induced on [¢(+2] and [( + 1] U {¢+ 3}, only two are actually possible.

Since £ is odd, a straightforward calculation gives

f(<H1>) _ p(€+2)(1 . p>€+1 +p€+1(1 . p)£+2 _ p€+1(1 - p)€+1;

E((Hs)) = p' (1 — )3+ 31 = p)’ = p (1 - p) (3% — 3p + 1).

Thus we get
E((Ha)) — §((H1)) = p' (1 = p)'(4p” — 4p+ 1)
=p'(1-p)' (20— 1)%,
which is non-zero as long as p € (0,1) \ {1/2}. |

Proof of Theorem 4.2.16. For p € (0,1), let N be the T}, _Hypergraph-on given by

N {x € &/ (min{egy, v e (K} < 1/2 A2y <p)

V (min{x{v} | v E [k’]} > 1/2/\ Z T[]\ {v} mod 1 < p) }
ve[k]

Let us show that ¢ def ¢ satisfies Dev[k — 1]; recall that Dev[k — 1] = Disc[Aj_1], where
A €ga e (M) 1y < Ay = () \ {[M\ {13} (see Definition 4.1.4) and for

(NS Hom+(.A[T£Ak 1], R), let £ be a coupling of ¢ and . By Proposition 3.2.1, there exists
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a(T'U TﬁAk_l)—on H over [0,1]? such that ¢y = € and Hp = N x &

Let (81,62%) be picked in &, ([0, 1]?) according to A and let K be the exchangeable
array corresponding to H with respect to (81,82). Our objective is to show that the events
(1,2,...,k) € Rp(K) and VA € A,_1,14 € Rp,(K) are independent.

Since the event 14 € Rp,(K) is completely determined by ((9}3,0]23) | B C A), it
is sufficient to show that the event (1,...,k) € Rg(K) is independent from ((0}[3,0%) |
B € r(k,k — 1) AN B # [k] \ {1}). But the event (1,...,k) € Rp(K) is equivalent to
(0}3)39(@ € N, and it is easy to see that the conditional probability of (1,...,k) € Rp(K)
given ((0113, 9%) | Ber(k,k—1)AB#[k]\{1}) is p a.e. Hence ¢ satisfies Dev[k — 1].

Let us now show that ¢ does not satisfy UInduce[l]. To do so, for each i € [2], we consider

the (T}, _Hypergraph Y T2-Coloring )-on H' (see Remark 8) given by

HE :N;
Hy, ={z €& oy <1/2}

%X?)—z‘ = {ZB €& | Ty > 1/2}.

Then by a straightforward calculation, for every H € M([T}, _frypergraph Y 12 -Coloring) With
Ry,(H) = V(H), we have

Vi pU H (I(H
11 = " o) =

where I: Ty Hypergraph ~ Tk -Hypergraph Y 12 -Coloring 1S the structure-erasing interpretation,
Yy, p is the quasirandom k-hypergraphon (see Definition 4.1.7) and N "is the T Hypergraph=On

given by
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Since ¢prr # Yy, p (since tk(¢y, ) =k >k —1 > 1k(1pp)), it follows that ¢g1(H) # ¢gy2(H)
for some H € M}, _Hypergraph U 12-Coloring] With Ry, (H) = V(H), hence ¢ does not satisfy

UInducel[l]. |

Proof of Theorem 4.2.17. For p € (0,1), let N be the T}, “Hypergraph=Ol given by

A€ (f[jﬂ-]l)}q}'

It is clear that ¢ def ¢ satisfies Independence[(]. Consider now the TE{[£+1

Nd:ef{QZE(fk

max{xA

jon ‘H given by

def def
Hp S N; Hpyy = 12 € € 2] > p)

and note that if K is the exchangeable array corresponding to H, then

P[(l,...,k‘)ERE(K)/\(L...,K-FI)GRP[ K) =0

e

# 9 (1 p) = o) - B(L....L+ 1) € Rpy,,, (K]

so ¢ does not satisfy Disc[{[¢ + 1]}]. |

Proof of Theorem 4.2.5. Follows from Theorems 4.2.15 (UInduce[¢ + 1] = CliqueDisc[(+
1]) and 4.2.17 (Independence|(] # Disc[{[¢/+1]}]), and the fact that CliqueDisc[{+ 1] —>

Disc[{[¢ + 1]}] (see [66, 1]). |

4.7 Top level quasirandomness

In this section we prove Theorems 4.2.12 and 4.2.13, which completely characterize the
properties Independence[k — 1] and UCouplelk — 1], respectively when all arities are at most
k. These can be seen as analogues of full quasirandomness for arbitrary universal theories (just

as Dev[k] = CliqueDisclk — 1] = Disc[(k[ﬁ]l)] gives full quasirandomness in T}, _fypergraph)-

151



We also show the weaker Theorem 4.2.14, which is an analogue of the above for UInduce

when k£ = 2.

Proof of Theorem 4.2.12. By Lemma 4.5.4, we know that v, ,, € Hom+(A[TC,k], R) satisfies
Independence[k — 1], so the backward direction follows from Theorem 4.2.3.

For the forward direction, first we claim that it is enough to show the case when 1" = T.
(This is not completely immediate as I: T' ~ T, . is required to satisfy T j, - VZ, [(F)(Z)
for every axiom VZ, F(Z) of T.) Let A: Ty ~» T be the axiom-adding interpretation and
suppose ¢4 (which satisfies UCouple[k — 1] by Theorem 4.2.3) can be written as ¢4 = wk]’p
for some ¢ > 2, some p € Il and some J: Typ ~> T, i, then we define [: T ~~ T, . to act as J
and we have to show that it is indeed an interpretation, i.e., that ;. j, = V&, I(F)(7) for every
axiom V¥, F(Z) of T wé,p = ¢ will then follow trivially). Equivalently, we have to show that
it M € M[T, ], then J(M) € M[T]. But since all p; are positive, we have vy ,(M) > 0, so
¢A(J(M)) > 0, hence trivially J(M) € M[T].

Let us now prove the case T = T,. Let N be a (k — 1)-independent Tr-on such that
dn = ¢. Note that if P € £ is such that k(P) < k — 1, then Np must be either & or Er(p)»

so we can write £ = £' U Ly U Ly, where

£ epe | kP = k)
Lo tPer | k(P)<k—1ANp =)

L1 Y P eL|KP)<k—1ANp=Ep).

Recall from Definition 4.4.8 that K [Th(¢)] = {K € Ki[Tr] | #(K) > 0} and enumerate
its elements as K1, ..., K.. Note that since N is (k — 1)-independent, it follows that every
peon Np with P € £ is Sj-invariant, hence we must have Aut(K;) = S}. for every i € [c].

Suppose first that ¢ > 2 and define p € Il. by p; = ¢(K;) > 0 and let I: T ~ T;, . be given
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def

I(P)(x1,. .., wg(p)) = 21 7# 11 (P € Lo);
I(P)(Il,'.w%(P))d:ef N @i (P € Ly);
1<i<j<k(P)
IP)aroap) N\ Eien,....ap). (Pe ). (4.28)
idkéfe%gf](ffi)

Since N is (k — 1)-independent, it follows that each T3, q(K;, N) is (k — 1)-independent and
has measure p;, which implies that the 7. ;-on H defined by Hp, def Tina(Ki, N) (i € [d])
satisfies ¢9; = 1y, , and since clearly I(H) = N, it follows that wk b= 0.

If ¢ =1, then we can define I by replacing (4.28) with

I(P)(x1,. . ap) N zi#a (P € L',id € Rp(KY));
1<i<j<k(P)
I(P)(z1,. .. 7p) &2y £ (P e Lidy ¢ Rp(K1))

/ > 2 as we must have

Tina(K1, V) = & ace. u

instead and we trivially get ¢ = 1/J]£p for any p € Il with ¢

Before we show Theorem 4.2.13, let us first see that the (O, p)-quasirandom homomor-
phisms g , € Hom™ (A[Tg],R) from Definition 4.1.5 are well-defined (i.e., their definition
as g def ¢z is independent of the choice of Z) and satisfy UCouple[k — 1] when p is

O-invariant.

Proposition 4.7.1. With the notation and conditions of Definition 4.1.5, N is a To-on.

Furthermore, if p is ©-invariant, then

onz((n) = T pprMIH (4.29)
PeL
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for every M € M[Tg| and g def ¢z satisfies UCouple[k — 1].

Proof. First, let us show that A% is indeed a Tg-on.

Note first that Tg trivially proves that
-P(z,y,...,t) (P € L,the tuple (z,y,...,t) contains repeated variables) (4.30)

and if we add (4.30) to the axioms of T, then it becomes substitutionally closed, then by
Theorem 2.4.1, to show that N'Z is a Tg-on, it is enough to show that A% satisfies the
axioms of Tg and (4.30) a.e. It is trivial that N2 satisfies (4.30) a.e.

Note that the fact that Z is a partition implies that there exists a unique P, € £ such
that Tig] € Zp,, thus there exists a unique )z € £ such that z € /\/’Zgﬁ, namely Q) = 0;1 <Py
(where o is as in Definition 4.1.5). This implies that A'Z satisfies axioms (4.1) and (4.3) a.e.

Note now that if 7 € S;., then we have o,.; = 0, o 7, hence

.1'-7'6./\/’5 e [B[k}EZ

Og-r°

Z
p << Tk S Zagg-(T-P) <~ :L‘ENT,P,

so N'Z also satisfies axiom (4.2) a.e., hence N'Z is a Tg-on.

Suppose now that p is ©-invariant and let us prove (4.29). Let K be the exchangeable
array corresponding to N4 with respect to 6 picked in &, according to A. Since for m € N
and K € Kn[Tg], we have ¢z ((K)) = P[K]},,,) = K], if we show that for every measurable
U C &, k1 with A(U) > 0, we have

PIK | = K | B = T """, (4:31)
pPel

where F is the event (6 | B € r(m,k—1)) € U, then both (4.29) and g ;, € UCouple[k — 1]
will follow (the former follows by taking U = &, .1 and the latter implies weak (k — 1)-

independence of N2, which is equivalent to ¢ w2 € UCouple[k — 1] by Theorem 4.2.10).
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If m < k, (4.31) trivially holds, so suppose m > k and note that the axioms of Tig imply
that for each a: [k] »— [m], there exists a unique P, € £ such that a € Rp_ (K) and we must

further have Py, = 7 - Pyor for every 7 € S;.. Note that for any choice of (a4) with

Ae(")
ay: [k] — [m] and im(a4) = A, we have
PIK|;, = K | E] =P [Va € ([m]);, @ € Rp,(K) | E]

—P {\m € C’Z]),aA € Rp, (K) ’ E] .

Now, the event ay € RpaA (K) depends only on the relative order of (6;, | i € A) and on
the variable 8 4 and, since p is ©-invariant, we have A\(Z,.p,) = pp, for every o € S, and
every a: [k] = [m]. This means that if < is an ordering of A and E< is the event that says

that the relative order of (6, | i € A) is <, then Pla € Rp, (K) | EA E<] = pp, and thus
P = K| E= [ »n,
Ae(h

Since this holds for any choice of (a4) Ae(lm with im(ayg) = A, by considering all possible
k

k(%) such choices we get

PIK = K | B = T i e

P
PeLl
from which (4.31) follows. |

Definition 4.7.2. Given a T-on N over Q = (X, A, u) and K € Ky[T], we define the
function WA[/g: Ey|v-1(82) — [0,1] by

def

Wit (@) = u{y € X | (2,y) € T (K, N)}).

Note that WJ\If is essentially a (|V| — 1)-flattening of the peon T q(K,N) C Ey(Q) (see
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Definition 4.4.4).

The next two simple lemmas are fundamental in the proof of Theorem 4.2.13.

Lemma 4.7.3. Let k € N4 and suppose that k(P) < k for all P € L. Let T be a theory
over L and N be a T-on over Q = (X, A, ). Then for every m € N and every K € Ky,[T],

we have

ot = [ TL W ea) duto)
- ae)

where g1 &y, 1,—1(Q2) = €4 ,-1(82) is the projection on the coordinates indexed by r(A, k—1).

Proof. Follows by considering the exchangeable array corresponding to N with respect

to @ picked in &y, (2) according to p, noting that K \[m] = K is equivalent to VA €

([7;}), K| = K| 4 (since k(P) < k for every P € L) and integrating out the top variables
m

(0414 € (). .

Lemma 4.7.4. If a T-on N over ) is such that ¢, satisfies UCouple[l] and K € Ky [T]

with |V| < ¢+ 1, then ij is a.e. constant.

Proof. Without loss of generality, we may suppose that V' = [m]. Write Q = (X, A, u).
Then it is sufficient to show that for every measurable U € &, ¢(€2), we have I W/\If dp =
w(U)opar((K)). But for the exchangeable array K corresponding to A with respect to 6

picked in &y, (2) according to p, it follows that

/WJ\I/(— dp =P[K|p,) = KA (04| Acr(imk—1))eU]
U

= PK|j) = K] -P[(04 | A €r(mk—1)) € Ul = u(U)en((K)),

where the second equality follows since N is weakly /-independent by Theorem 4.2.10. W

Proof of Theorem 4.2.13. The backward direction follows from Proposition 4.7.1 and Theo-

rem 4.2.3.
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For the forward direction, we will show that in fact we can take p = (pp) pe satisfying
pp > 0 for every P € L. Note that when pp > 0 for every P € L, we have g ,(M) > 0 for
every M € M([Tg], so by an argument analogous to that of the proof of Theorem 4.2.12 it is

enough to consider the case when T'=T.

Suppose then that T'= T, and let A be a T-on such that ¢ = ¢. Note that if P € L is
such that k(P) < k — 1, then rk(Np) < k — 1, so by Theorem 4.2.3 and Proposition 4.3.1,
it follows that rk(Np) = 0, that is, A(Np) € {0,1}. This means that we can write
L =LULyULy, where

LY per| kP =k}

LY PerL|k(P)<k—1ANND) =i}  (i€{0,1}).
Consider the (left) action of Sj. on K [Th(¢)] given by letting o - K € Kp[Th(¢)] (o € Sy,

K € Ki[Th(¢)]) be the model obtained from K by permuting its vertices by o, that is, we

have

Rp(o-K) ¥ {soa|ae Rp(K)} (P e L)
Rp(o-K) ' o (P € Lo);
Rp(o - K) © () (PeLy).

Note that this definition ensures that for a.e. x € &, and every o € Si, we have
r-0€Th(K,N) < z € Tipqlo- K,N). (4.32)

It is also clear that for a.e. z € &, there exists exactly one K € Kp[Th(¢)] such that
x € Ting(K, N ).
Let then £’ be a language containing one predicate symbol Py of arity k for each

K € Kp[Th(¢)] and let ©: Sj, x £ — £’ be the induced action o - P < P (o € 8.,
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K € Ki[Th(¢)]). Define then H by

def
Hp, = Tina(K,N)

and note that (4.32) and the remark below it ensure that #H is a Tg-on.

Define [: T ~» T by

V'  Px(an..ayp), if PeL;
KeKy[Th(e)]
dof idyeRp(K)
€
I(P)(z1,. .. zp(p)) = —— if P € Ly
| 1<i<j<k(P)

and note that we trivially have I(H)p = Np a.e. for every P € L, hence ¢§{ = ¢.

For every K € Kp[Th(¢)], let pp,. def AMHp,) = ¢((K)) > 0 and note that the definition
of © implies that p is O-invariant and ) - Ki[Th(¢)] PP = 1. To conclude the proof, we will
show that ¢ = 1bg p. To do so, for every K € Kp[Th(¢)], let Kg € Kj[Tg] be the unique
model such that id, € Rp, (Kf) and note that the axioms of Tg imply that Wi{K is a.e.
equal to the (k — 1)-flattening W}k[;}l( of the peon Hp, , which in turn is a.e. equal to WJ\[?
But then from Lemma 4.7.4, it follows that WfffK = ¢((K)) = pp, a.e. Since the Tg-on
NZ of Definition 4.1.5 and Proposition 4.7.1 also clearly satisfies WA[;K = WJI\C/’;%I = Dppy ae.,
from Lemma 4.7.3, it follows that ¢y = ¢z = g - * [

The rest of this section is devoted to showing that a limit object satisfying UInduce[l] on
a language in which all predicates have arity at most 2 must essentially be a (not necessarily
unbiased) (O, p)-quasirandom homomorphism of Definition 4.1.5. We start with the following

simple proposition that says that (possibly biased) (O, p)-quasirandom homomorphisms are

essentially independent couplings of a quasirandom colored hypergraphon with a linear order.

Proposition 4.7.5. Let L be a language containing only predicate symbols of arity exactly
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keNy, let ©: S, x L — L be a (left) action of Sj, on £ and let p = (pp) per € [0,1]5 with
Y.pecpbp =1

Then there exists ¢ € Ny, q € Il and an open interpretation I: Tg ~ T¢. ;. U Tin0rder
such that g, = (V14 @ 1/11111)[, for the quasirandom c-colored k-hypergraphon iy, , €
Hom™ (A[T, 1], R).

In particular, Vg ,, satisfies UInduce[k — 1].

Proof. The case k =1 is trivial as Tg = T|£|-Coloring = T|£|’1, so suppose k > 2.

Let £/ 4 {PeL|pp>0} If |£'| =1, then rk(1pg ) = 0 and the desired I: Tg ~»
Tk U TLinOrder is defined trivially, by declaring the unique P € L' to be true everywhere
and all other P € £\ £ to be false everywhere (and any ¢ € Ny and ¢ € I, works).

Suppose then that ¢ def L' > 2. Let Py, ..., P be a transversal of the orbits of © and

for each i € [t], let G; dof (Sk) p, be the stabilizer of P;. Let also

UL (P0G i elt],o € Sy}

be the set of pairs (P;, C), where i € [t] and C is a (left) coset of G;. Given P € L', we let P
be the unique P; that is in the same orbit of P and let Gp dof (Sk)p be the stabilizer of P
(so G; = Gp).

Then there is a natural bijection f: U — L given by
[(P;0Gy) o P,

By using this bijection along with an enumeration of £’, we can index more conveniently the
coordinates of ¢ and the predicates E; of T, ; by U instead of [¢] = [|£|]. Define then ¢ € II,

by

def .
UPoGy) = Po-p, (1€t 0 € 5)
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and define the translation / from the language of Tg to the language of T ;. U T1iy0rder bY

[0 Pt 2) © N\ (Fr(@r..,2p) NE(progap (@1, ap)) (i€ [t),0 € Sp);
TESE

1Py, a) o te  (Per\ L),

Fr(zy,...,zp) def /\ Tr-1(j) = Tr-1(j)-
1<i<j<k

Let us show that I is an open interpretation from T to T, . U T1,iy0rder- The fact that I
satisfies the axioms (4.1) and (4.3) follows trivially from the axioms of T, ;. U T1,in0rder and
our representation in terms of the transversal of the orbits and cosets of stabilizers.

For the axiom (4.2), first note that for x1, ...,z distinct, the axioms of T1;,0rder IMPLy
that there is a unique 7, € S such that Fr (x1,...,2;) and it further satisfies 7.0 = 7 0 0,
where z - 0 & (:pg(l), . ,xa(k)) for o € 5. Thus, the theory T . U T1,inOrder can prove the

following chain of equivalences

](PZ-)(xa(l), ce ,xg(k)) — E(Pz‘ﬁx-an‘)(xU(l)’ . ,xo(k))
— E(Pi,TacOJGi)(xl’ ce ,:)Zk)

<~ I(o-P)(x1,...,xp)

for every i € [t], from which (4.2) follows for every P € L. For P € L\ £, the axiom (4.2)
follows trivially.
Finally, let us show that (¢, , ® Yiin)! = Ve p-

Let Z = (Z(p, 0G;))(P;,0G;)cU Pe @ measurable partition of [0, 1] such that A(Z(p, 5,)) =
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4(p;,0c;) and define the Tt ;U Tiporder-on H by

def
HEp, o6 ={ee& oy € Zpocy)  ((PhoGi) € U);

H< d:ef {JJ € & | l’{l} < JJ{Q}}

Then it is straightforward to check that I(H) = NZ for NZ as in (4.4). It remains
to note that ¢, is a coupling of vy, , and ¥y, and since v}, , € Independence[k — 1]
and k —1 > 1 = 1k(¢y,), by Theorem 4.2.2, we have ¢y = oy o ® . Therefore
Yo = (Vkqe® Vi)’

Finally, since ¢y, , € Hom™ (A[T, 1], R) satisfies Independence[k—1] (see Lemma 4.5.4), by

Theorems 4.2.2, 4.2.3 and 4.2.10(i) == (vii), it follows that vg ,, satisfies UInduce[k —1]. W

Our next objective is to show that in Tg on arity k& = 2, the (©,p)-quasirandom
homomorphisms are the only elements of Hom™ (A[Tg],R) that satisfy UInduce[1]. To do so,
we will use the following bound for Li-distance of Tig-ons in terms of the usual Li-distance

of the functions Wf\/(r of Definition 4.7.2 (which we can still prove in general arities).

Lemma 4.7.6. Let L be a language containing only predicate symbols of arity exactly k € N
and let ©: Sy, x L — L be a (left) action of S}, on L. For each P € L, let Kp € Ki[Tg] be
the unique model of T such that id;, € Rp(Kp).

Suppose N and H are Tg-ons on the same space Q) = (X, A, u). Then

51(6nr b30) < §j&/ P(x) — WEP ()] dpu(x).

PEL k’k ].

Proof. First, we claim that it is enough to show the case when Q = [0,1]. Indeed, if

F:]0,1] — Q is a measure-isomorphism and we let

NpCr € & | (Fea) acr) ENPY (P € L);

{r & [ (Fra))aery € Hpy (P EL);
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then ¢\r = ¢nr and ¢qy = @9y, so if the result holds when Q2 = [0, 1], we get

NP EDS / WEP (@) - WEP (2)]dA ()

per” Ek k-1

-y /5 - 1(Q)|W/5P<m> ~ WEP @)ldu(z).
Pel K=

Let us prove the case 2 = [0, 1]. Let us construct for each x € & 1 two measurable
partitions ZN* = (Zéf’x)])ec and ZM* = (Z;fl’x)peﬁ of [0, 1] such that

i. )\(Zg’x) = W/\I;P(x) and )\(Zg’x) = Wfp(x) for a.e. x € & ;1 and every P € L.

ii. )\(Zg’x N Z?’x) = min{WﬁP(az‘), Wfffp(:c)} for a.e. x € &, ;1 and every P € L.

iii. For each P € L, the functions fp,gp: & — {0,1} given by

def
foe,y) S 1lye 2V (v € &p1,y €10,1));

def
gple,y) = 1y € 27 (x € &1,y €[0,1))

are measurable.

To do this, enumerate the predicate symbols of £ as Py, ..., P+ and for each x € 6']{;’/{_1,

let

u(x) def Z min{WﬁP(:ﬁ), ng(x)}
pPel

Define also the points ag(z) < ay(z) < -+ < ag(x), b{)\/(aj) < b'f/(x) < < b{\/(x) and
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def P Kp,
ai41(2) L ay(@) + min{ Wy, (), W, ()}
ol (o)
def P, Kp,
W @) BN eIy () — W, T (1), 0):

def P; Kp,

P () N a0 () = W (0), 0.

Note that this definition ensures that as(z) = u(x) and b{t\/(x) = b/l(x) = 1. Furthermore,
the functions functions u, a;, biv , bZ-H are measurable.
We then define the partitions ZN& and ZH by

Nz def .
25" L a1 (@), ai@) U (2), 0 () Geft—1));
Nz def
Zp " L a1 (2), ar(@) U o (), 0 (@)

20" € g1 (2), a3(2) U (), 00 () (i € [t —1);

7

.z def
Zp" E ag-1(x), ar(x)) U b (2), b} (2)).
Now we define the Euclidean structures AN’ and H’ on £ by

Nldef{$€5k|1‘ /\/’xax}

/ def

A HSUUI 1.

{z €& |z

Note that by Proposition 4.7.1, both N/ and H' are Tg-ons.

Finally, it is easy to see from construction that wher - W/\[;P a.e. and Wf,P =Wy,
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a.e., so by Lemma 4.7.3, we have ¢\ = ¢ and ¢y = @9y, thus

01(dnrdu) < > AMNp AHp)
Pel

—Z/gkk 1 — oV () + 0T () — 0T | (2))dA ()

_ Z/g W Fi () — Wiy T () dA (),

Peﬁ k,k—1

as desired. ]

Recall that a Lebesgue point of a function f: RF 5 Risa point z € R* such that

| 1 -
lim S /B IRGCRVCIREE)

where B(z,¢) denotes the £oo-ball® of radius e around z. The Lebesgue Differentiation
Theorem [39, Theorem 2.9.7] says that if f is integrable, then almost every point z € RF is a

Lebesgue point of f.

Proposition 4.7.7. Let L be a language containing only predicate symbols of arity exactly
2, let ©: Sy x L — L be a (left) action of Sy on L and let ¢ € Hom™' (A[Tg],R). Then

¢ € UlInduce[l] if and only if there exists p = (pp)per With ) pcppp = 1 such that
¢ = wG),p-

Proof. The backward direction follows from Proposition 4.7.5.

For the forward direction, let N be a Tg-on such that ¢pr = ¢ and for each K € Ko[Tg],
let P € L be the unique predicate symbol such that (1,2) € Rp(K).

By the Lebesgue Differentiation Theorem, there exists z € £ that is a Lebesgue point
of all functions WJ\I;P : & — [0,1] for P € £. Without loss of generality, we assume that

K2,1).

0 < 21y < z{2y <1 and that Wﬁp(z{z},z{l}) =Wy, >DF () for every P € L.

5. Again, one can use other norms to define Lebesgue points and get an a.e. equivalent definition, but for
us it will be slightly more convenient to use the {,.-norm.

164



Define then p = (pp) per by pp def WﬁP(z). We claim that ) pc,pp = 1. Indeed, the

axioms of T ensure that for € > 0 we have

1
1= 3 pe| |3 3ty o, A - WA

Pel Pel

so letting ¢ — 0 gives Y pcpopp = 1.
We will show that ¢ = g j, by showing that their L;-distance is 0 with aid of Lemma 4.7.6.

To this purpose, fix € > 0 and let ¢’ > 0 be small enough so that

m /B (275/)|W/{/(P(x) ~WEP )| dr < % (4.33)
for all P € L. Without loss of generality, we also assume that B(z,&') C & and that
zy e <z — €

Given an open set U C [0, 1], let us consider the space 7 obtained by equipping U with
the measure g def A/AU) and let FU: Qp — [0,1] be a measure-isomorphism. Define also
the Tg-on NV over Q7 by

NU def

b E{r e &) | (xpy vy, FY(xp0) €NpY  (PEL).

Intuitively, N v corresponds to the restriction of A to the vertices in U.

Note that if A’V is the (T UTy_Coloring)-on obtained from A by declaring /\A/;gl ©F 1 and
./\7)[(]2 def [0, 1]\U, then v = ¢ 7/ o X147 Since ¢ € UInducell], for every M € M[Tg]
we have

—~

¢ v (M)
< = o),

O (M) = (@ 0 w4 (01) = T

where M € M[Tg U Ty coloring] is obtained from M by coloring all of its vertices with color
L. Thus ¢pv = ¢.
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For i € [2], let U; def (zg3y — 6/,z{i} +¢’) and note that Uy x Uy = B(z,€'). Also, by

Remark 2, there exists a Tg-on H¢ over Q7. x Q7. such that ¢, = and
@ Uz U’L H @7p

01(¢, e p) = > nu,l Z x E(Qr)) A HY). (4.34)
PeLl

Let now Uy def Uy U Uz and define the Tg-on H over (g7, X Oy, by

Hp Y (2,9) € &(,) x ExOy) |
(rgy € U1 Aapgy € Uh
Ay ey, GO g2, GV yy), GV (wgay), GV (yr 0y)) € HY)
V(zgy € Uz Aaggy € Us
Ay gy G2 (g 2y), G2 (y1y), G2 (ygay), GV (ypr 21)) € HY)
V (zgy € UL Aaggy € Uy AP (2 9y) € Zp)

\Y (x{l} el NTroy € Us A FUO(m{LZ}) € Z(2,1)~P)}>

where GUi ¢ (FU)=1 o FU0 and Z = (Zp)per is a measurable partition of [0,1] with

A(Zp) = pp. The intuition is that # mimics H’ in U; x U; and mimics a version over [0, 1]2

of the standard Tg-on NZ representing Ye,p in (Up x Uz) U (U x Uy) given by (4.4).
Consider now the Tg-on N over Qrr, x Q, obtained from N U0 by adding a dummy

variable (N, def Ngo x E9(Qy,)) and note that Lemma 4.7.6 gives

K K
Sioon) <Y [ WP (@) = WP, © ) (o)
per /€24l QUOXQUO

We will bound the integral above by splitting its domain into four parts:

€2,.1(Qu, x Qu,) = (U x Up) U (Ug x Us) U (Uy x Uz) U (Ug x Uy)
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We can deal with the first two parts at the same time. Note that

P%jﬁ/Uwa Kb ()] d(ug, ® poy) (@)
< Z Sy (NPT % &) AHY)
Peﬁ

1
- 151 <¢7 w@,p)v

where the last equality follows from (4.34).

For the third part, note that

Kpoy ke, .
3 A )= W @0 i, ) )
1 Kp
T e TR ) 001 A
<:,
!

where the last inequality follows from (4.33).
Finally, for the fourth part, by using the axiom (4.2) of Tg and the fact that P@e1)-P =
K@1)-p K

WN( ) (2) = WNP(Z{2}, Z{l})? note that

K
> )= W (@) gy © 0y 2)
H 0 0
PeL UQXUl
K .
N Z/U U W (@ 2 1y) = piaay.pl dlue, © poy) (@)
PeL”Y2xU1
K K €
= 5 A 0 = V@ i 0)e) < 5

where the last inequality follows from the bound for the third part.
Putting these together, we conclude that

€
+ —

01(6. v0,p)
516, 630) < 0L 2
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This means that if we show that ¢3; = g ,, then by letting e — 0 in the above, we conclude

that d1(¢,ve,p) = 0, 50 ¢ =Yg, as desired.
Let us then show that ¢3; = g . For this, since ¢p;i = gy, by theon uniqueness,
Theorem 2.6.1, there exists a family h’ = (h%,h}) of functions (h& Ea(Qu,) x E4(Qp;) X

Ea(Qu,) x E4(Qp,) — [0,1]) symmetric and measure preserving on h.o.a. such that
(z,y) € Hﬁp = ﬁ%(m,y,u,v) E/\/}g

for every P € L and a.e. (z,y,u,v) € E(Qp;) X E2(Qy;) x E2(Qy;) x E2(Qy;), where NZ s
the standard Tg-on representing g, given by (4.4).
Then consider the family h = (hy, ho) (hy: gd(QUo) X gd(QUO) X gd(QUO) X Ed(QUo) —

[0, 1]) defined by
)

hi(e, GV (y), G (), G (v)), it € Uy;
hl (x7 y7 u’ U) =
| 1E (@, GP2(y), G%2 (w), G2 (v)), it @ € U;
)

h%(m,HUl(y),HUl(u),HUl(U)), if w1y, w9y € Un;

ha(w,y,u,v) = 4 b3 (x, HP2(y), HY2(u), H2(v)), if 2y, 209y € Us;

Uo f e
\F (T1,21), otherwise;

where HUi(w(yy, wpa,wi 29) < GV (), Gi(wgy), GVilwg 9))) (recall that GV &

(FUi)_1 o FUO). Then it is straightforward to check that h; and hg are symmetric and

measure-preserving on h.o.a. and we have
(r.9) € Hp = halr,y,u.0) € NF

for every P € L and a.e. (z,y,u,v) € E(Qp,) x E2(Qy,) X E2(Qy,) x E2(2y,) such that

21y € U; and 29y € Us_; for some i € [2].
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This implies that

Wi (g vy (gay vay)) = Wz (e vy gy vpg) by vy ugay vgay)

for a.e. (z,y,u,v) € £2.1(Q,). Therefore, since ﬁl is measure-preserving, by Lemma 4.7.3,

we have ¢y = ¢z = g - [

Before proving Theorem 4.2.14, by comparing it to Theorem 4.2.13, note that in item (ii)
we can only produce a translation rather than an open interpretation from 7" to Tg; only
in item (iii), we can actually produce an open interpretation from 7' to T¢. 2. The following

simple example shows why we cannot get an open interpretation in the former item.

Example 6. Consider the case T' = T71i,0rder- By Theorem 4.2.7, the linear order ¢ €
Hom™ (A[T}inOrder)s R) satisfies UInduce[1]. On the other hand, we claim that there is no
open interpretation /: T7;,0rder ~ T for any action ©: Sp x L — L over some language £
with predicate symbols of arity 2.

Suppose for a contradiction that one such I exists. Let Py € L. If Py is a fixed point
of the action ©, then for the K € Ky[Tg] given by Rp, (K) dof ([2]))2 (and Rp(K) def 5
for P # Py), I(K) violates anti-symmetry axiom of T7;,0rder- 1f Pp is not a fixed point

of the action ©, then for the K € K3[Tg] given by Rp (K) def {(1,2),(2,3),(3,1)} (and

Rp(K) ©f o for P # Py), I(K) violates the transitivity axiom of T7;,0rder-

Proof of Theorem 4.2.14. We start with the implication (ii) = (iii).

By Proposition 4.7.5, there exist ¢ € Ny, ¢ € II. and an open interpretation J: Tg ~~
T2 U T inOrder Such that vg ,, = (¥, 4 ® Y1in)?. Then for the translation J o I from £ to
the language of T o, we have oA = (Vg ® Yiin )70

Since A: Ty ~» T is the axiom-adding interpretation, the result will follow if we show
that J o I is an open interpretation from 7" to T} o U T1,i;,0rder (€ven though I might not be

an open interpretation from 7" to Tg). But indeed, since Th(vy, , ® ¥1in) = Te.2 U T1inOrders
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it follows that for every M € M([T.2 U Tiin0rder]); We have (¥ o @ ¥y,)(M) > 0, so

(Vg ® Uiin) T ((J o I)(M)) > 0, hence (J o I)(M) € MIT] as it has positive density in ¢.

Implication (iii) = (i) follows from Theorems 4.2.2, 4.2.3 and 4.2.10(i) = (vii) and the

fact that vy, ,, € Independence[k — 1] (see Lemma 4.5.4).

Finally, let us show (i) = (ii). Without loss of generality, we may suppose that
T = Th(¢). Let N be a T-on such that ¢ = ¢. We claim that if P € £ has k(P) = 1, then
rk(Np) = 0. Indeed, this follows since ¢ is 1-categorical by Lemma 4.4.12. This means that

we can write £ = £ U Lo U Ly, where

LY per|kp) =2

L, Per|k(P)=1ANNp) =i} (i€ {0,1}).
Let £' have one predicate symbol Pk of arity 2 for each K € Ko[T] and let us define
the action ©: Sy x L' — £’ based on the natural action of Sy on Ko[T], that is, we let

o- Py def P, i (0 € S9, K € K9[T]), where 0 - K € K3[T] is given by

Rp(o-K) ¥ {soa|ae Rp(K)} (P e L);
Rp(o-K) ¥ o (P e Lo);
Rp(o- K) & {(1)} (P eLy).

Then we have the natural translation I: T ~ Ty from £ to £’ given by

I(P)(x1,09) & \/  Pglai,z) (P € L);
KG/CQ[T]
(12)€Rp(K)
I(P)(x) € o # (P € Lo);
1(P)(2) & s =2 (P € Ly).
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Note that I has a left-inverse, namely, the translation J: Ty ~ Ty from £’ to £ given by
def
J(Pg)(21,72) = Dopen(K)(21, 72).

Note now that our definition of © ensures that J is an open interpretation from T to 7.
More formally, we have an open interpretation J: To ~ T that acts as J on L. Since J is a
left-inverse of I, it follows that J o A’ o I = A, where A’: Ty ~» Tg and A: T ~ T are the
axiom-adding interpretations. But by Theorem 4.2.3, we know that gbj € Hom™ (A[Tg],R)
satisfies UInduce[l], so by Proposition 4.7.7, we have ¢j = g p for some p = (pQ)Qeﬁl with

o )
ZQEE’ pPQ = 1 and thus gbA = ¢JoA ol _ wé;]- .

4.8 Compatibility

In this section, we explore the following generalizations of the notions rank, Independence,

weak independence and UCouple.

Definition 4.8.1. For B C N4, we say that a peon N over Q = (X, A, ) is B-compatible
if it only depends on coordinates that are indexed by sets A with |A| € B, that is, it can
be written as N = G x XUbE[k(P)]\B ([k(lfj)]) for some G C XUsen ([k(f”). We say that an
Euclidean structure is B-compatible if all its peons are so and we say that ¢ € Hom™ (A[T], R)
is B-compatible if there exists a B-compatible T-on N with ¢ = ¢

We say that an Euclidean structure N over Q is weakly B-independent if the exchangeable
array K corresponding to N with respect to 6 picked in Ey N (2) according to p is independent
from (04 | A € (le),b € B) as a random variable. We say that ¢ € Hom™ (A[T],R) is
weakly B-independent if there exists a weakly B-independent T-on N such that ¢ = ¢
and we say that ¢ is completely weakly B-independent if every T-on N such that ¢ = ¢ is
weakly B-independent.

Finally, let say that ¢ is uniquely B-coupleable if it is uniquely coupleable with any
B-compatible ¢ € Hom™ (A[T"],R) (for any T"). We will use the abbreviation UCouple[B]
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for this property.

Note that rk(¢) < ¢ is the same as [(]-compatibility, Independence[/] is the same as
(N4 \ [£])-compatibility and UCouple[/] is the same as UCouple[[/]]. Furthermore, note that
weak (-independence is the same as weak [¢]-independence and by Theorem 4.2.10(iv)<(v) is
the same as complete weak [¢]-independence.

In this section, we sketch how the results of this chapter can be used to prove the following
modest generalizations of Theorems 4.2.2, 4.2.3, 4.2.10, and 4.2.6. Except for Theorem 4.8.2,
all others have proofs that are either trivial (at this point) or are obtained from their analogues
mutatis mutandi.

Theorem 4.8.2. For B C N, B-compatibility implies UCouple[N \ BJ.
Let us also note that for B’ C B C N, it is obvious that B’-compatibility implies

B-compatibility and that UCouple[B] implies UCouple[B’].

Theorem 4.8.3. Let I: T7 ~» T be an open interpretation and let B C Ny. The following
hold for any ¢ € Hom™ (A[Ty], R).

i. If ¢ is B-compatible, then ngI is B-compatible.
ii. If ¢ € UCouple[B)], then ¢! € UCouple[B].

Theorem 4.8.4. Let B C Ny. The following are equivalent for ¢ € Hom™ (A[T], R).
i. ¢ € UCouple[B].

ii. For every { € B, there exists p € (0,1) such that ¢ is uniquely coupleable with the

quasirandom (-hypergraphon vy ,,.

iii. There exist (py)pep € (0, l)B such that ¢ is uniquely coupleable with the independent

coupling Qe Yy p, of the quasirandom (-hypergraphons vy, for { € B.

iv. ¢ is completely weakly B-independent.
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Note that the theorem above does not have analogues of Theorem 4.2.10 concerning
(plain) weak independence, locality or unique inducibility of the independent coupling with

the linear order.

Theorem 4.8.5. Let B C N4 be non-empty and let ¢ = minB. If { > 2, then the

quasirandom (-tournamon 1), satisfies UCouple|N4 \ {{}] but is not (B \ {{})-compatible.

We start with Theorem 4.8.3, whose proof is trivial at this point.

Proof of Theorem 4.8.3. Ttem (i) follows trivially since I preserves B-compatibility of Eu-

clidean structures and item (ii) follows trivially from Proposition 3.2.9. |

Before we proceed, note that the proof of Lemma 4.5.6 can be used to show the following

lemma mutatis mutandis.

Lemma 4.8.6. Let L be a language, ¢ € Hom™* (A[T,],R) be B-compatible and ¢ > 0.

Then there exist ¢ > 2, p € Il and an open interpretation I: Tp ~ |Jyep ¢ ¢ such that
1
01(0, (QrepVep)') <e.

Proof of Theorem 4.8.4 (sketch). The proof of equivalence between (i), (iii) and (ii) is analo-
gous to that of Lemma 4.5.7 for Theorem 4.2.10 but replacing Theorem 4.2.3 and Lemma 4.5.6
with Theorem 4.8.3 and Lemma 4.8.6, respectively (and noting that &Q)sep ¥y p, is trivially

B-compatible).

The proof of equivalence between (i) and (iv) is analogous to that of Lemma 4.3.2 for
Theorem 4.2.10, except that instead of using Proposition 3.1.2 to argue that any representation
of a theon NV can be changed in a zero-measure set to have the correct rank, we use complete

weak B-independence (as opposed to plain weak B-independence). [

Proof of Theorem 4.8.2. By Theorem 4.8.4, it is sufficient to prove that for a theory 7" on a
language £ and for a B-compatible ¢ € Hom™ (A[T], R), we must have that ¢ is completely

weakly (N \ B)-independent. To this purpose, let A/ be a T-on over some space 2 = (X, A, 1)
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such that ¢ = ¢r. Since ¢ is B-compatible, there exists a B-compatible T-on N/ over some
space ' = (X', A',1//) such that ¢ = ¢
By theon uniqueness, Theorem 2.6.1, there exists a family h = (hq, ..., h;) of symmetric

functions measure-preserving on h.o.a. (hg: E4(Q x Q) — Q') such that
hypy(x,y) € Np <= z € Np (4.35)

for every P € L and a.e. (z,y) € & (p)(Q) X E(p)(2).

Pick (8,7n) in &y, (2) x &y, (©2) according to pu @ p, let K be the exchangeable array
corresponding to N with respect to 6 and let us show that K is independent from (64 |
A e (Nb+),b € B). It is sufficient to show that for every m € N every K € K;,[T] and

[m]
every measurable set U C XUtz (%) wign pu(U) > 0, the events Ey dof [K|[;,) = K] and

Es def (0] A€ ([ZL]), b € [m]\ B) € U] are independent. But note that (4.35) implies that

FE is a.e. equivalent to

-~

VP € LYo € ([m))py, @ € Rp(K) < hypy(a*(8),a*(n)) € Np.

Since N ]/3 is B-compatible, the property above does not depend on the coordinates of
ﬁk(P)(a*(B), a*(n)) indexed by sets A with |A| ¢ B. Even though the property above may
depend on (04 | |A| ¢ B), since the h; are measure preserving on h.o.a., it follows that the
conditional distribution given Ej of (hyp)(a(6),a"(n))a | A € ([TZ]), b € B)is y’ and thus

by letting 8’ be picked in Ey +(Q’) according to 4/, we have

P[E; | Ey] = P[VP € L,Va € ([m])p), o € Rp(K) < o*(6) € Np]
= onr((K)) = on((K)) = PEy],
as desired. ]

Proof of Theorem 4.8.5. By Theorem 4.2.6, we know that 1), satisfies UCouple[¢ — 1] but does
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not satisfy Independence[l — 1]. Since rk(¢y) < ¢ = min B, it follows that 1y is not (B\ {{})-
compatible. By Theorem 4.8.4, we know that 1y is completely weakly [¢ — 1]-independent
and since rk(tp) < ¢, it follows that ¢y is completely weakly (N4 \ {¢})-independent, which

gives 1)y € UCouple[Ny \ {/}] again by Theorem 4.8.4. |

4.9 Concluding remarks and open problems

In this chapter we have attempted to build a general theory of quasirandomness that is
uniformly applicable to arbitrary combinatorial structures and is invariant under their
“natural transformations”. While our basic definitions deliberately avoided mentioning specific
densities, it turned out, in the vein of the previous research in the area, that our quasirandom
properties can be characterized in several equivalent ways, including such densities. We
have shown how to arrange these properties into a hierarchy and, with one or two notable
exceptions, have been able to prove that this hierarchy is proper. Finally, we have compared
our quasirandom properties to what has been studied before for hypergraphs (with the focus

on specific densities) and have found that these two frameworks are essentially incomparable.

One topic that we touched tangentially in the proof of Theorem 4.2.10, more specifically
with Example 5 and Lemma 4.5.5, is the closedness of our properties with respect to both
the density topology and Li-topology (Definition 3.3.1). The aforementioned example and
lemma show that in general unique coupleability with a particular collection of limit objects
is closed in Li-topology but not necessarily closed in the density topology. On the other hand,
alternative syntactic descriptions of UCouple[l] and UInduce[l] (as (-locality and symmetric
(-locality, respectively) imply that these classes are closed even in the density topology. So in
a sense we have a satisfactory overall picture for the classes based on the “extrinsic” notion
of coupleability.

As we briefly mentioned in Section 3.8, we do not know how the class Independence|/]

interacts with the different topologies, or even if it has a very clean and natural “intrinsic”
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definition. We reiterate the question of that section here: is Independence[l] closed in the
density, or at least Li-topology? One sensible approach to this question might consist in
developing an alternative, and perhaps more concrete, characterization of this class that

might be interesting in its own right.

If 1 and ¢9 are uniquely coupleable with all theons of rank < ¢, then the same is true for
1 ® ¢ (Theorem 4.2.4 (ii)). We do not know if the same remains true after replacing this
class of tests with individual tests, and when we needed this in one of our proofs, we had to
take a considerable detour (see item 3 in our program at the beginning of Section 4.5). Thus
comes our second open question: assume that ¢; and v, as well as ¢9 and 1 are uniquely
coupleable. Does it imply that ¢1 ® ¢9 is also uniquely coupleable with 7

Under the additional assumption that ¢1, 99 are themselves uniquely coupleable, the
question takes a particularly nice and symmetric form: assume that ¢1, ¢ and ¢3(= )
are pairwise uniquely coupleable. Does it imply that ¢1, ¢9,¢3 are (mutually) uniquely
coupleable? While the analogy with independence for random variables is now visible, it is

not immediately clear how useful it might turn out here.

Another interesting question is whether unique coupleability establishes a Galois corre-
spondence between UCouple[l| and limit objects of rank at most £. In other words, is it true

that if ¢ is uniquely coupleable with every 1) € UCouple[(], then rk(¢) < £7

As we mentioned before, the results of Theorems 4.2.1, 4.2.2, 4.2.5, 4.2.6 and 4.2.7 almost
complete the Hasse diagram of implications between the families Independence, UCouple and
UInduce. After personal communication with Henry Towsner, we obtained an argument for
UCouple[f] —> Independence[l — 1|, which will appear in a future joint work. Along with
the aforementioned theorems, this completes the Hasse diagram of implications between the
hierarchies of properties Independence, UCouple and UInduce, with the first two hierarchies

with the first two intercalated.

Recall that Theorem 4.2.10(i)<(vii) says that ¢ € UCouple[/] is equivalent to ¢ ® vy;, €
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UInduce[(]. Let us now draw attention to three interesting open problems that can be
extracted from this equivalence.

The first is whether a “converse” of this is true in the spirit of Theorems 4.2.12 and 4.2.13:
can every ¢ € UInduce[(] be written as ¢ = (¢ ® 1y;,)! for some ¢ € UCouplell] and some
open interpretation I: T ~ T" U T}inOrder”

The second problem is an analogue of Theorems 4.2.12 and 4.2.13 themselves in the
context of unique inducibility. We conjecture that Theorem 4.2.14 can be generalized to
characterize UInduce[k — 1] when all arities are at most k (of course, this would follow from

a positive answer to the previous problem).

The third question is more open-ended. In the three scenarios discussed in Section 4.2.1
(permutations, words and Latin squares), the quasirandom object is “straightforward” but
does not satisfy even the weakest of our properties UInduce[l]. Hence we might reasonably
ask if the theory of “natural” (understood as in the introduction) quasirandomness properties
can be extended beyond UInduce[l]. One possibility would be to consider the closure of
UInduce[(] under independent couplings and open interpretations. Both the quasirandom
permuton ¢}, ® ¥y, and the quasirandom Latin square )5, ® ¥, ® )3, belong to this
class (for every ¢). This definition, however, is of the same distinctly ad hoc nature we have
been trying to avoid in this paper. Are there any “reasonable” descriptions of this class, be
them extrinsic or intrinsic? The only thing we can prove (and even that is non-trivial) is
that this class is proper, i.e., there are theons that do not belong to it, for an arbitrary ¢.
If the conjectures from the previous two paragraphs are true, this would also form another
interesting hierarchy: starting from UCouple|[(], we can get progressively weaker families of
natural quasirandomness properties by taking independent coupling with the linear order
Vlin-

Another possible approach would be to start with quasirandom permutations that is by
far the most widely studied class, and from their known properties [22, 23, 49, 10]. However,

in comparison to their (hyper)graph and tournament counterparts, the theory of permutation

177



quasirandomness provides a much smaller variety of quasirandomness formulations as candi-
dates for natural generalizations, essentially boiling down to only three types: explicit density
notions, discrepancy notions based on intervals and spectral notions. Let us also note that
there is still a whole host of properties [32, 12] that random permutations satisfy and that
have not yet been fully explored in the quasirandom setting. In fact, some of these properties

are so fine-grained that it is not even clear if they can be encoded by subpermutation densities.

In Section 4.8, we saw that the notions of rank and Independence are naturally generalized
by the notion of compatibility and several of the results of Section 4.2 carry over. The main
difference is how only some of the items of Theorem 4.2.10 are generalized to Theorem 4.8.4.
Namely, in Theorem 4.8.4, we only have an analogue (item (iv)) of complete weak independence
(item (v) of Theorem 4.2.10) but not weak independence (item (iv)). We also do not have
any analogue of locality (item (vi)), which in particular would give a syntactic description
of Independence(/] (i.e., Ny \ [{]-compatibility). Finally, an analogue of item (vii) would
require also providing an analogue of UInduce in the setting of compatibility. Filling any of
these omissions (or showing that the analogous items are not equivalent to UCouple[B]) in

Theorem 4.8.4 is an interesting problem.
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CHAPTER 5
ABSTRACT CHROMATIC NUMBER

As we mentioned in Chapter 1, the celebrated Erdés—Stone—Simonovits Theorem and its
later generalization by Alon—Shikhelman stated below characterize the maximum asymptotic
density of t-cliques K; in graphs without non-induced copies of graphs in a family F in terms

of the chromatic number y(F).

Theorem 5.0.1 (Erdds—Stone-Simonovits [38, 37|, Alon-Shikhelman [2]). Let t € N and let
F be a non-empty family of finite non-empty graphs. The maximum number of copies of

t-cliques K in a graph G with n vertices and without any non-induced copies of elements of

F is

where x (F) def min{x(F) | F € F} is the minimum chromatic number of a graph in F.

In this chapter we provide a generalization that answers the following question: given an
open interpretation I': Trapp ~ 7', what is the maximum asymptotic density of t-cliques K¢
in graphs of the form I(M) for M € M[T]? We will see that an analogue of Theorem 5.0.1
above holds by replacing x(F) with an abstract chromatic number x(I) and Theorem 5.0.1
can then be retrieved by simply letting 7" be the theory of graphs without non-induced copies
of graphs in F and [ be the axiom-adding interpretation. We will also show how to retrieve
analogues of Theorem 5.0.1 from the literature of ordered graphs [57], cyclically ordered
graphs [9] and edge-ordered graphs [41].

The case t = 2 of such generalization was first shown in [24, Examples 25 and 31].
However, the formula for x(I) presented in [24, Equation (16)] (see (5.2) in Section 5.1 below)
is considerably abstract and it was left open if x(7) is (algorithmically) computable even when

T is assumed to be finitely axiomatizable. In this chapter, we will also prove an alternative,
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more concrete formula for x(7) (Theorem 5.2.2). Such formula allows us to deduce that
when T is finitely axiomatizable, then x(I) is (algorithmically) computable from a list of the
axioms of 7" and a description of I (Theorem 5.2.3). Our alternative formula is based on a
partite version of Ramsey’s Theorem (Theorem 5.1.8) for universal theories that informally
says that given £, m € N, there exists n € N such that for every model M and every partition
of M into ¢ parts all of size at least n must have a “uniform” submodel on the same partition
with all parts of size m (this version of Ramsey’s Theorem for disjoint unions of theories of
hypergraphs follows from [42, Section 5] and the non-partite version, when ¢ = 1, for general
theories follows from the general Ramsey theory for systems of [55]; see Section 5.1.2 for more
details). By using these different formulas for x(I), we can retrieve the results of [57, 9, 41]
on ordered graphs, cyclically ordered graphs and edge-ordered graphs, respectively from the

general theory (see Section 5.7).

5.1 Preliminaries

5.1.1 The general Turan density and the abstract chromatic number

In the theory of graphs Trapn, we denote the complete graph on n vertices by Ky €

Mu[TGrapn], that is, we have Rp(Kp) def (V(Kp))2; we denote the empty graph on n vertices

def &; and we denote the (-partite Turdn graph of size n by

by Kp, that is, we have Rp(Kp)
Ty € Mn[TGrapnl, that is, T;, ¢ is the complete (-partite graph with parts of sizes either
[n/¢] or [n/f], or in a formula, we have Rp(T), ) def {a € ([n])2 | @1 # a2 (mod ¢)}. For
graphs G and H, we write G C H if H has a non-induced copy of G, that is, if there is a
positive embedding of G in H (i.e., if there exists f: V(G) — V(H) that maps edges of G to
edges of H, or in formulas, for every o € Rp(G), we have foa € Rp(H)). Recall that a proper
coloring of a graph G is a function f: V(G) — [{] such that Vo € Rg(G), f(a1) # f(ag) and

the chromatic number of G is the minimum ¢ € N such that there exists a proper coloring of

G of the form f: V(G) — [{].
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Definition 5.1.1 (Abstract Turdn density). For an open interpretation I: Tgrapn ~ 1 and

t € N, the t-Turdn density of I is defined as

oL

¥ Yim o sup (R, I(N). (5.1)

=% Ne M, [T]

The existence of the limit in (5.1) follows from the fact that the sequence is non-increasing
(for n > t). This can be proved by the standard averaging argument of extremal combinatorics:
if T is degenerate, then the sequence is eventually constant equal to —oo; otherwise, if
Ny € My+1[T] (n > t) maximizes p(K¢, [(Ng)), then picking uniformly at random a subset

U of V(Np) of size n, we conclude that

sup  p(Ky, I(N)) = E[p(K¢, I(Nolu))] = p(Kt, I(No)) = sup  p(Ky, I(N)).
NeM,[T] NeMy1[T]
Note also that since Wf- is stated in terms of densities, when we count copies of K3 instead,

we incur an o(n!) error.

Definition 5.1.2 (Abstract chromatic number [24, Equation (16)]). For an open interpreta-

tion I': Trapn ~ T, the abstract chromatic number of I is defined as!
() & sup{t € Ny | Vn € N, 3N € M, [T], T, € I(N)} U {0} + 1. (5.2)

Note that x(I) € N4 U {oo} because the set in (5.2) always contains 0. Furthermore,

note that if 7' is degenerate, then x(I) = 1 as the set in (5.2) is {0}.

t

Ir for the axiom-adding interpreta-

The usual Turdn density studied in Theorem 5.0.1 is 7

tion Iz Tqraph ~ Forb}, (F), where FoerTr

Teraph Grop (F) is the theory obtained from Tpaph

1. The formula in (5.2) is actually a slight modification of [24, Equation (16)], forcing 0 to belong to the
set. This is done so that we can also cover degenerate theories T
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by adding for each F' € F the axiom

V:L'1V$m,_' /\ x; ;él'j/\ /\ E(xal,xag) )
1<i<j<m a€ERE(F)

where we rename the vertices of F' so that V' (F') = [m]. We will see in Proposition 5.7.1 that in
this case x (/) is equal to the usual chromatic number x(F) dof inf{x(F) | F € F} except for

when F is empty or contains an empty graph; more precisely, we have x(/r) = max{x(F), 1}.

5.1.2 Partite Ramsey numbers

As we mentioned in the beginning of the chapter, our alternative formula for the abstract
chromatic number is based on a partite version of Ramsey’s Theorem for universal theories.
The first step to this version is identifying what are the “uniform” structures that are
unavoidable in a large structure. Let us start with the easier case in which all predicate
symbols are symmetric: this is captured by the theories of Ig—hypergraphs of Definition 4.4.6.

Any ordered partition (V1,...,Vp) of aset V can be described alternatively by the function
f:V — [{] such that v € Vi(v) for every v € V. We can then classify the subsets e €V
according to how many points e contains in each of the parts V;. The notions of Ramsey

patterns and uniform E—hypergraphs defined below explore this classification .

Definition 5.1.3 (E—hypergraph Ramsey patterns and uniform E—hypergraphs). Recall that
for £,k € N4, a weak composition of k of length ¢ is an /-tuple ¢ = (qj)§:1 € N such that
25:1 q; = k. We denote the set of weak compositions of k of length ¢ by Cy .

For k = (ki,..., k) € NZL and ¢ € Ny, a E-hypergmph (-Ramsey pattern is a t-tuple
Q = (Qi)ie[y) such that Q; € Cyy, for every i € [t]. We let P, = be the set of all k-hypergraph
(-Ramsey patterns.

Given a l;-hypergraph (-Ramsey pattern @ € PK a E—hypergraph H and a function

5
f: V(H) — [{], we say that H is Q-uniform with respect to f if for every i € [t], the F;-edges

of H are precisely those e such that there exists some g € (); such that e contains exactly ¢;
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points in f~1(5), or in formulas we have
V(H) 1,
ittty = {ee (V1) |den s ey < @i}
1
which is in turn equivalent to

Ry, (H) = {a € (V(H)g, | (|(f o) () jepy € Qi}-

The partite version of Ramsey’s Theorem for E—hypergraphs (Theorem 5.1.5 below) says
that uniform lg—hypergraphs cannot all be avoided as long as the parts of the partition are

sufficiently large.

Definition 5.1.4 (Thickness and lg—hypergraph Ramsey numbers). The thickness of a function
oV = [0 is th(f) Emin{|f710)] i € [},

Given ¢ € Ny and m € N, the (£, k, m)-Ramsey number sz(m) is defined as the least
n € N such that for every k-hypergraph H and every f: V(H) — [f] with th(f) > n, there
exists @) € Pé,E and a set W C V(H) such that th(f|y) > m and H|yy is Q-uniform with

respect to flyy.

Theorem 5.1.5. For every { € N, every m € N and every k € N, | the (¢, k, m)-Ramsey
number R&E(m) is finite.

Theorem 5.1.5 above can be obtained e.g. by repeatedly applying [42, Theorem 5 of
Section 5], but we provide a proof via a reduction to Ramsey’s original theorem for hypergraphs
in Section 5.4.

For the case of general universal theories, we have an extra technicality: predicate symbols
are not necessarily symmetric. The correct way of addressing this issue is illustrated by the
case of the theory of tournaments T, yrmament- Lhe unavoidable “uniform” models here are
the transitive tournaments Try, (with Rg(Try,) def {a € ([n])2 | a1 < ag}): for every k € N,

every sufficiently large tournament M must contain a transitive tournament of size k as a
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subtournament [63, 36]. Another way of seeing a transitive tournament is that there is an
underlying order < of its vertices such that we can decide whether a € ([n])2 is in Rg(Try,)
based only on the relative order of oy and ag with respect to <. In the (-partite case, the
role of the order < is played by the ¢-split orders defined below, which are tuples (f, <) such

that f: V — [{] encodes an ¢-partition and =< orders each of the parts of this partition.

Definition 5.1.6 (Split orders). For ¢ € N4 and a set V', an (-split order over V' is a pair

(f,=), where f: V — [{] and < is a partial order on V' such that
Vo,we V,(f(v) = f(w) v =wVwv),

that is, two elements of V' are comparable under < if and only if they have the same image
under f. We let Spy be the set of all {-split orders over V' and for £ € N, we use the
shorthand &y def AR

When ¢ = 1, we will typically omit f from the notation as it must be the constant function;
with this abuse, we will think of &; y/ as the set of all total orders on V.

For a partial order < on a set V' and an injective function g: W — V', we let <4 be the

partial order on W defined by

w1 2g wy = g(wy) = g(wa).

If W CV, then we let <y def =uw» Where vy 0 W — V' is the canonical injection, that is,

=y is just the restriction <N (W x W) of < to W.

Note that for g: W — V and h: U — W and for a partial order < on V, we have
(Zg)h = Zgon- Furthermore, if (f, %) € Spy, then (f o g,=2y) € Sy . Finally, note that
there are finitely many ¢-split orders over [£].

Given an £-split order (f, <) € Sy over V, we can classify the tuples a € (V)}, according
to (f o a, =), that is, f o a captures the values of f on the image of a and <, captures

the partial order induced by = on the image of a. Just as in the case of E—hypergraphs, the
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notions of Ramsey patterns, uniform structures and Ramsey numbers defined below explore

this classification.

Definition 5.1.7 (Ramsey patterns, uniform structures and Ramsey number). Fix ¢ € N4
and a language £. An (-Ramsey pattern on L is a function ) that maps each predicate
symbol P € £ to a collection Qp € Sy ,(py of £-split orders on [k(P)]. We let Py ¢ be the
set of all /-Ramsey patterns on L.

Given an ¢-Ramsey pattern ) € Py, on L, a canonical structure M on £ and an (-split
order (f, =) € Syy(pr) on V(M), we say that M is Q-uniform with respect to (f, =) if for

every P € L, we have

Rp(M) ={a € (V(M))yp | (foa,=a) € Qp}.

For a canonical structure M on L, the ¢-Ramsey uniformity set of M is the set Uy (M) of all
(-Ramsey patterns Q € Py o such that M is Q-uniform with respect to some (f, ) € SE,V( M)-
We extend this definition to a family F of canonical structures as Uy(F) def UnrerUe(M).

Given a canonical theory T over £ and m € N, the (¢,T,m)-Ramsey number Ryr(m)
is defined as the least n € N such that for every model M of T and every /¢-split order
(f, =) € Spy () on V(M) with th(f) > n, there exists an {-Ramsey pattern @ € Py o over

L and a set W C V(M) such that th(f|y) > m and M|y is Q-uniform with respect to

Note that since L is finite, there are only finitely many /-Ramsey patterns on £. Note
also that the definition of Ry 7(m) is strong in the sense that every (-split order of V(M) is
required to yield a uniform submodel. This is slightly stronger than our motivating example
of tournaments: our definition for Ty rnament With ¢ = 1 requires that every ordering < of
the vertices of M yields a tournament of size m whose edges either all match the order < or

all disagree with <.

Example 7. In the language £ containing a single predicate symbol E of arity k(E) = 2, for
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every n > 2, there are exactly three (up to isomorphism) canonical structures M of size n that
are QQ-uniform for some 1-Ramsey pattern @ € P; » with respect to some (f, <) € Sl,V( M)
the complete graph K, the empty graph K, and the transitive tournament Tr;,,. Note also
that for n > 2, both Uy (K,,) and Uy (K 5,) have a single element but 27 (Try,) has two elements.

In the same language, canonical structures M that are Q-uniform for some ¢-Ramsey
pattern @ with respect to some (f, <) are precisely those in which each level set f~1(3)
of f induces either a complete graph K|f’1(i)\’ an empty graph F\ffl(i)l or a transitive
tournament, Tr| £7100) and (directed) edges between v, w € V(M) in different level sets of f

are completely determined by f(v) and f(w). See Figure 5.1.

Figure 5.1: Pictorial view of a @-uniform model for the Ramsey pattern ) € 794’ (B}
(k(E) = 2) given by

where < is the usual order on [2], > is its reverse and < is the trivial partial order on [2],
and the functions f: [2] — [4] are represented as (f(1), f(2)). An arrow from a part A to a
part B in the figure means that (a,b) € Rp(M) for every a € A and every b € B.

Theorem 5.1.8. For every ¢ € Ny, every m € N and every canonical theory T, the (¢,T, m)-

Ramsey number Ry (m) is finite.

186



We provide a proof of Theorem 5.1.8 via a reduction to Theorem 5.1.5 in Section 5.4.
Let us also note that the case £ = 1 of Theorem 5.1.8 follows from the very general Ramsey
Theory for systems of [55].

We will typically be working in theories of the form T(apn U T and two types of Ramsey
patterns will play an important role in the alternative formula for the abstract chromatic

number.

Definition 5.1.9 (Complete patterns and Turdn patterns). Fix £ € N4 and a language £
and let £ € L be a binary predicate symbol.

A 1-Ramsey pattern ) € Py 2 on L is called E-complete if Qp = S1,2. We let CE be the
set of all F-complete 1-Ramsey patterns on L.

An (-Ramsey pattern Q) € Py o on L is called E-Turdn if

Qr=1{(9,%) € ngg | g is injective}.

We let 7—£E£ be the set of all £-Turdn ¢-Ramsey patterns on L.

Note that if I: T{ E} ™ T is the structure-erasing interpretation, then M is Q-uniform
with respect to some (f, %) € Sy y7(p) for some E-complete @ € CE if and only if I(M) =
K M| Analogously, M is Q-uniform with respect to some (f, <) € SE,V( M) for some E-Turdn
Qe 72% if and only if I(M) is a complete ¢-partite graph with respect to the partition given

by the level sets of f.

5.1.8 Non-induced setting

As we mentioned before, the abstract chromatic number works in the general setting of
induced submodels. For the non-induced setting, we will be able to provide a slightly simpler

formula for the abstract chromatic number in terms of proper split orderings defined below.

Definition 5.1.10 (E-upward closures and proper split orderings). Let £ be a language

and let £ be the predicate symbol corresponding to T(grapn in the language £ U {E} of
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TGraph UTpr.
Given a family F of models of Tpapn UT,, the E-upward closure of F is the family F T
of all F’ that can be obtained from some F' € F by possibly adding edges, that is, all models

F' of TGraph U Tz such that there exists F' € F with
V(F) =V(F); Rp(F') 2 Rp(F); Rp(F') = Rp(F) (P€L).

Let I: TGraph ~» Tqraph U Iz and J: Ty ~ Tgrapn U Tz be the structure-erasing
interpretations. Given ¢ € N4, an (-Ramsey pattern @ € Py, on £ and a model M of
TGraph U Ty, an E-proper ()-split ordering of M is a split order (f,X) € SE,V(M) such that
J(M) is Q-uniform with respect to (f, <) and f is a proper coloring of the graph I(M).
The E-proper (-split ordering set of M is the set Xf(M) of all /-Ramsey patterns Q € Py o
such that M has an E-proper ()-split ordering. We extend this definition to a family F of

canonical structures as Xf(}") dof Unrer Xf(M)

Note that in the definition of E-proper -split orderings, the predicate symbol E is
excluded from the uniformity condition. Note also that if the language £ is empty, then Py o
has a unique element () and an E-proper ()-split ordering of M consists of any /-split order

(f, =) in which f is a proper coloring of the graph I(M).

5.2 Main results on abstract chromatic number

In this section we formalize the main results. We start with the generalization of Theorem 5.0.1
to the setting of open interpretations. The case when ¢ = 2 and T is non-degenerate was

done in [24, Example 31].
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Theorem 5.2.1. Let ¢t € Ny and let I: Tgyapy ~» T be an open interpretation. Then

t—1 ;
= g (1 X)) - 1) XD 22 (5.3)
—00, if x(I) < 1.

The next theorem gives an alternative formula for the abstract chromatic number based

on the Ramsey uniformity sets of the forbidden models.

Theorem 5.2.2. Let I: Tqpapn ~» T be an open interpretation and let T’ be the theory

obtained from T apn UT by adding the axiom
Vavy, E(z,y) < I(E)(z,y).
Let L be the language of T" and let F be such that T' = Forby,.(F). Then

0, if CF & Uy (F);
x(I) = (5.4)
min{/ € Ny | 72% CUy(F)}, otherwise.

Furthermore, if T' is itself obtained from Tgyapn U T" by adding axioms and I acts

identically on E, then the same result holds by taking T' = T instead.

Remark 11. In fact, we show that the set in (5.4) is either empty or an infinite interval of

N4 (with the empty case only happening when x (/) = c0), and thus we also have

00, it CF & Uy (F);
V(1) = (5.5)
max{¢ € Ny | T/, Z Uy(F)} U{0} +1, otherwise.
The alternative formula provided by the theorem above can be used to algorithmically

compute x(I) when T is finitely axiomatizable.

Theorem 5.2.3. There exists an algorithm that computes (x(I), ﬂ}) for I': Tgrapn ~ T for

189



a finitely axiomatizable T from a list of the axioms of T', a description of I and t € N.

For the case when the theory is the theory of graphs with extra structure with some
forbidden submodels that are non-induced in the graph part, we can provide slightly simpler
formulas for x (7). The first theorem provides a formula based on the usual chromatic number,

but as abstract as (5.2) and the second provides formulas in terms of proper split orderings.

Theorem 5.2.4. Let £ be a language, let E' be the predicate symbol corresponding to Traph
in the language LU {E} of Tgrapn UT. Let F be a family of models of Tgyapn U Ty and let
I': Tayaph ~» Forbrg o ur, (F1E) act identically on E.

Then we have
x(I) = inf{x(G) | G € M[TGrapn] NVM € M[ForbTGmphUTﬂ(fTE)L I(M)# G} (5.6)

Theorem 5.2.5. Let £ be a language, let E' be the predicate symbol corresponding to Traph
in the language LU {E} of Tgpapn U T and let J

interpretTyTarapn U Ty be the structure-erasing interpretation. Let F be a family of models
of TGraph U T and let It Tpaph ~ Forbr, U, (F1E) act identically on E.

Then we have

X(I) = inf{¢ € Ny | Ppp € xF(F)). (5.7)

Furthermore, we have x(I) < oo if and only if Py o C Uy (J(F)), where J(F) dZEf{J(F) |
F e F}.

Remark 12. Just as in the case of Theorem 5.2.2, the set in (5.7) is either empty or an

infinite interval of Ny, and thus we also have

X(I) =sup{l € Ny | Pyp & xf (F)}U{0} +1. (5.8)
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5.3 Abstract Turan densities from abstract chromatic number

The objective of this section is to prove Theorem 5.2.1. Before we do so, we show that the

set in the definition of x(/) in (5.2) is a non-empty initial interval of N.

Lemma 5.3.1. Given an open interpretation I': Tgrapn ~ T', the set
{6 e Ny [Vne N, AN € My[T],I(N) 2T, }U{0} (5.9)

is a non-empty initial interval of N.

In particular, we have
x(I) =inf{¢ e Ny | In e N,YN € M,[T]|,I(N) 2 Tn,g}. (5.10)

Proof. Let X be the set in (5.9). It is clear that 0 € X. On the other hand, if £ € X NN,
then for every n € N, there exists N € My,[T] such that I(N) 2 T,, o. Soif ' € [(] and n € N,
then since T, y» C Ty.1, /411 ¢, it follows that there exists N'" € My[T] such that I(N') 2T, p,
hence ¢ € X.

Since x(I) = sup X + 1 by (5.2) and X is a non-empty initial interval of N, we get
x(I) =inf N\ X, so (5.10) follows. |

Proof of Theorem 5.2.1. 1If x(I) = oo, then for every n € N, there exists N, € My [T] such
that I(Np) 2 T = Kp, so 7r3 =1, hence (5.3) holds.

On the other hand, if x(/) = 1, then by Lemma 5.3.1, there exists n € N such that for
every N € My[T], we have I(N) 2 T,, 1 = K. But since every graph on n vertices contains
a non-induced copy of K, we must have My, [T] = @. This means that T is degenerate,
hence 7T§ = —00, s0 (5.3) holds.

Suppose then that 2 < x(/) < co. For every n € N, let N, € My[T] be such that
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I(Nn) 2 T, y(1)~1- Then we get

t—1 .
t .. .. . _ ]
T > l}g}lgéfp(Kt,I(Nn)) > lgr_l)lo%fp(Kth,x(I)—l) = H (1 =1 ) :

Suppose now toward a contradiction that (Np,),en is a sequence of models of 7' with

|Nm| < |Npa1| such that limy,—eo p(Kt, I(Npy)) > ;;%)(1 —j/(x(I) = 1)). Fix n € N and

note that Theorem 5.0.1 for F = def {T,,

(1)} implies that there exists m, € N such that
I(Nm,) 2 Ty, (1)~ By restricting Ni,, to a set V' of size n such that I(Nm,)lv 2 T (1)
we conclude that there exists N}, € Mp[T] such that I(N},) 2 TorysoxI) 2 x(I) +1, a

contradiction (as x(I) < 00). [

5.4 Partite Ramsey numbers

The objective of this section is to prove Theorems 5.1.5 and 5.1.8.

Proof of Theorem 5.1.5. The proof is by induction in the length ¢ of the tuple k= (k1 ..., k).
For the case t = 1, let us denote kq simply by k& and let us identify P& i with 266k, Let
c d—ef |P k:| < oo and let n & R(k,c,fm) < oo be the usual Ramsey number corresponding
to finding monochromatic cliques of size fm in colorings of k-uniform complete hypergraphs
with ¢ colors. We will show that R&E(m) <n.
Suppose H is a k-hypergraph and f: V(H) — [(] has th(f) > n. For every j € [{], let
v(1,7),...,v(n,j) be distinct vertices in f~1(j) and let yd {v(z J)lien]Ajell}.
Recall that for a set A € ([ ]) t4: [k] — [n] denotes the injective function that enumerates

A in increasing order and if we are further given a weak composition ¢ = (qj>§:1 € Cr, let

Aq €V be defined by
Ay = L v(eg(@),g) i€ KNG €] /\qu <i< qu . (5.11)
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Note that [A4| = k and |f~1(j) N Ay = qj for every j € [¢]. Furthermore, if ¢ # ¢, then
Ag# Ay,

Define the coloring ¢: ([ ]) — 73 by letting

9 Y g ey | Ay € E(H)},

where F(H) is the edge set of H. By the definition of n = R(k, ¢, ¢m), there exists U C [n]
of size |U| = ¢m such that g| ) is monochromatic, say, of color @ € P
k

Let us enumerate the elements of U in increasing order uy < --- < uy,, and let

def
_e {v( (j— 1m+ra]) ’] € H/\?‘E [m]}
Clearly, for every j € [¢], we have W N f~1(j) = {v(uj_1)mqr-J) [ 7 € [m]}, which has size

m, so th(flyw) =

We claim that Hly is @-uniform with respect to f|y. To show this, we need to show

that for every B € (v,i/), we have
Be EH) < ¢®€q, (5.12)

where ¢ € Cy, is given by qB ef\f (7)) N B.
Note that the definition of W implies that there exists an increasing function ng: [k] — [n]

with im(np) C U such that
B = q v(nB(i),)) KJAjell /\qu <Z<qu

Since ¢; =np, from (5.11) we get im(nB)qB = B and for every q € Cy . \ {¢P}, we have

m(np)
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im(np)q # B. Since g|((1{) is monochromatic of color (), we have

Q = g(im(ng)) = {g € Cp; | im(np)q € E(H)},

so (5.12) follows, concluding the proof of case t = 1.

Suppose now that ¢t > 2 and, by inductive hypothesis, suppose m’ def Rf,(k1,.-.,kt_1)(m) is
finite. Let also n & RK’(kt)(m’), which by the case above is also finite. We will show that

R, =(m) < n.

0.k

Suppose H is a k-hypergraph and f: V(H) — [f] has th(f) > n. By the definition
of n = Rg’(kt)(m’), there exists Q' € Py (k,) and W’ C V(H) such that th(fly) > m/
and the ks-hypergraph part of H|yy is Q'-uniform with respect to fly7. In turn, by the
definition of m' = Ry (ky,... k) (M), there exists Q" e P (ky oo shyq) a0d W C W’ such that
th(f|lw) > m and the (kq, ..., k;_1)-hypergraph part of H|y is Q”-uniform with respect to

flw- By letting @ € P,  be given by

def Q./jlv if j €t —1];

Q. ifj=t
it follows that H|yy is Q-uniform with respect to f|yy . [

Before we can finally prove Theorem 5.1.8, we need one more definition.

Definition 5.4.1. If < is a total order on a set V and f: V — [{], we let <] def <N

Uz’e[é] i) x f71(4) be the restriction of < to the level sets of f, that is, it is the unique

partial order such that (f,<|r) is an ¢-split order and < is an extension of it.

Proof of Theorem 5.1.8. Consider the set

K ¥ {(P,<)| P e£n<isa total order on [k(P)]},
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enumerate the elements of K as (P, §1), ..., (P, <! and define k= (k1,...,kt) by letting

ki k(P

Let n 9 R, z(m), which is finite by Theorem 5.1.5. We claim that Ry (m) < n. Suppose
M is a model of T and (f, 2) € Sy y(ay) is an L-split order on V(M) with th(f) = n. Define

the relation < on V(M) by
v<w <= f(v) < f(w) Vo< w.

Since (f, <) is a split order, it follows that < is a total order extending <. Note that f
becomes non-decreasing with respect to < on V(M) and the usual order on [¢], that is, we

have
v<w— f(v) < f(w) (5.13)

for every v, w € V(M).

def

Define now the k-hypergraph H with vertex set V(H) = V(M) by letting the i-th edge

set be

s {ue (1)

where Lf4: [k(P;)] — V(M) is the unique function with im(Lil) = A that is increasing with

LQERPZ-(M)},

respect to the order <¢ on [k(P;)] and the order < on V(M) (the latter condition is equivalent
to SLZ-A = <. For every P € L, let Ip def {i € [t] | P, = P} and note that

RP(M) = {O./ S (V<M))k(P) | 1€ lp /\im(oz) € EZ(H) N<q = Sl} (514)

By the definition of n = R, »(m), there exists Q' € P,z and a set W C V(H) such that

0k
th(f|lw) > m and H|yy is Q'-uniform with respect to f|y. Define then the -Ramsey pattern
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QGP&E on L by

Qp E {(9,<1,) | g: K(P)] = [N g% € Q) ni € TS}, (5.15)

where ¢9 € CE,k:(P) is the weak composition given by qjg- def l971(5)| and

1, € i € Ip | Vi1, g € WP, Gt < o = (i) < 9(2))}-

We claim that M|y is @Q-uniform with respect to (f|y, <y). To show this, we have to

show that

Rp(Mly) = o€ (W)(p) | (f 00, %a) € Qp}.

Let « € Rp(M|y) and let us show that (f o a, <¢) € @p. By (5.14), there exists i € Ip
such that im(a) € E;(H) and <, = <’. Note that if j1, jo € [k(P)] are such that j; <’ jo,
then we must have a(j1) < a(j2), hence (5.13) implies f(a(j1)) < f(a(j2)), so i € ]]];OO‘. On
the other hand, since < extends < and (f, <) is a split order, it follows that <, = Si\l/foa‘
Note also that since H |y is Q'-uniform with respect to f|y and im(a) € E;(H), we must
have qfoo‘ € Q; Putting everything together, we have that there exists ¢ € ]};Oa such that
glov € Qg and <, = §i¢foa, so (5.15) gives (f o, =) € Qp.

Suppose now that a € (W)k(P> is such that (f o a, <4) € @p and let us show that
a € Rp(M|y ). From (5.15), we know that there exists i € I{)OO‘ such that ¢/°® e @’} and
<0 = <" foa- The fact that Hly is @Q'-uniform with respect to f|y then implies that
im(a) € F;(H) and the fact that i € I]J;Oa along with (5.13) implies <, = <’. Putting
everything together, since [ ]Jioa C Ip, we have that there exists i € Ip such that im(«) €
E;j(H) and <, = <%, so by (5.14), we get a € Rp(M|yy).

Therefore M|y is Q-uniform with respect to (f|w, <w)- |
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5.5 Ramsey-based formula for the abstract chromatic number

In this section we prove Theorems 5.2.2 and 5.2.3.

Proof of Theorem 5.2.2. Recall from [24, Remark 2] that we can write I = J o Ao S, where
S Taraph ~ TGraph U T' is the structure-erasing interpretation, A: Tgrapp UT ~ T’ is the
axiom-adding interpretation and J: 77 ~» T is the isomorphism that acts identically on
predicate symbols of T" and acts as I on E (the inverse J 1. T« T acts identically on the
predicate symbols of T').

We start by characterizing when x (/) is finite. Suppose first that CE Z U1 (F) and let
us show that y(I) = oo. Let Q € Cg \ U1 (F) and for every n € N, let Ny, be the unique
structure on £ with vertex set [n] that is Q-uniform with respect to the usual order < on [n],

that is, we have

def
Rp(Nn) = {a € (n])y(p) | <a € Qp}.
Our choice of @ ensures that N, is a model of T = Forbp, (F). Since @ € CE , it follows that
S(A(Ny)) is the complete graph K, so I(J~1(N,)) D Ty, ¢ for every £ € Ny, so x(I) = o0
by (5.2).

Suppose now that C’g C U1(F) and let us show that x(I) < co and that the minimum
in (5.4) is attained (i.e., that the set in (5.4) is non-empty). For every @ € CE, let
Fg € F and <Qe Sl,V(FQ) be such that Fp is (-uniform with respect to <@ Let
m max{|Fp| | Q € CE} U {2} and let n def Ry 1,(m) (which is finite by Theorem 5.1.8).

We will show that x(I) < n. By (5.10) of Lemma 5.3.1, it is enough to show that every
N € My[T] satisfies I(N) 2 Tpn. Suppose not and for a violating N let M = J(NN) be the
associated model of 7. The definition of n = Ry 7, (m) implies that there exists W C V(M)

such that |W| > m and M|y is Q-uniform with respect to <y where < is the usual order

over [n]. Since I(N) 2 Tnpn = Kj and m > 2, it follows that @ € Cg. But this is a
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contradiction as M|y must then contain an induced copy of Fg € F (as [W| > m > |Fg]),
hence x(I) < oc.

To show that the minimum in (5.4) is attained, it is enough to show that for ¢ > n, we
have 7??/: C Uy(F) (as this implies that the set in (5.4) is non-empty). Fix Q € 7?’% and let
Ng be the unique structure on £ with vertex set [(] that is Q-uniform with respect to the
unique element of Sy 4 of the form (idy, =¢), where id,(i) et for every i € [¢] and =< is the

trivial partial order, that is, we have

Rp(Ng) “ {a € (fp) | (0. %0) € Qp).
Since £ > n = Ry 1,(m), we know that there exists W C [{] with [W| = m and some
Q € P1 ¢ such that NQ\W is '-uniform with respect to <yj-, where < is the usual order on
[¢]. Since Ng is Q-uniform with respect to (idy, <o), @ is an E-Turan pattern and m > 2, it
follows that Q" must be E-complete. But then since |[Figr| <m = [W], there exists U C W
such that Ngly = Fyr. As Fgy is an induced submodel of N and @ € Uy(Ng), we get

Q € Uy(Fy), hence 72E£ C Uy(F), so the minimum in (5.4) is attained.

To finish the proof of (5.4), it remains to show that if x(/) < oo and {5 < oo is the
minimum in (5.4), then x(I) = ¢g. We start by showing x(I) < ¢p.

Since CE is finite and Cg C U1 (F), we know there exists a finite 7/ C F such that
C]g C Uy (F'). Since £y < oo, we have %ﬁﬁ C Uy, (F), that is, for every Q € 72?,0 there
exists Fy € F and (fq, <@) e Sfo,V(FQ) such that Fy is Q-uniform with respect to (fqg, <),

Let

def
m < max{|Fg| | Q € TLYU{|F|| F e F'yu {2}
and let n & o - Ry, 1, (m) (which is finite by Theorem 5.1.8). By (5.10) of Lemma 5.3.1, to
show x (1) < {y, it is enough to show that every N € My[T] satisfies I(N) 2 T,, 4,- Suppose

not and for a violating N € My, [T, let fn: V(N) — [€g] be a function whose level sets are
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the parts of the natural partition of 7}, 7 so that th(fy) =n/ly = Rfo,Tz:(m)'

Let M def J(N) be the associated model of T and let <N be any partial order such that
(fn, =V) is an €y-split order. Since th(fy) = Ry, 1, (m), there exists an {p-Ramsey pattern
Q € Py, and some W C [n] such that th(fy|w) > m and M|y is Q-uniform with respect
to (fnlw. =)

We claim that ) is an F-Turdn pattern. Suppose not. Since the definition of fj ensures
that Qp contains all (g, X) € Sy with g injective, for @ to not be an E-Turdn pattern
there must exist i € [{] such that @ contains at least one of (g;, <), (g;,>) € Sy, where
gi(1) = ¢;(2) =i and < is the usual order on [2] and > is its reverse. From the symmetry of
E and the fact that th(fy|y) > m > 2, it follows that @ must in fact contain both (g;, <)
and (g;,>). Let Q' € Cf be given by

Qs Qp A= (£,=) € Qp Aim(f) = {i}}:

for every P € L\ {E}. Let U dof

f&l(i) N W and note that M|y is Q"-uniform with respect
to j%}f. Since |U| > th(fyx|w) > m > max{|F| | F € F'} and since Q" € Cg, there exists
F € F' such that M|y contains a copy of F, so M is not a model of 77 = Forby,.(F), a
contradiction. Thus ) must be an E-Turan pattern.

Since @) € 72%, it follows that M|y, must contain an induced copy of Fpy € F, namely,
such copy can be produced by taking exactly | fé 1(2)\ vertices in f&l(z’) NW for each i € [{y]
(this is possible since |fé1(z)| < |Fgl <m <th(fnlw)). This contradicts the fact that M is

a model of T" = Forby, (F), hence x(I) < fp.

Let us now show that x () > £g. If {5 = 1, then the inequality trivially holds, so suppose
lp > 2. From the definition of ¢, there exists @ € 720E_1 r \Up—1(F). For every n € N,
let fr: [n] = [l — 1] be any function with th(f,) = [n/({g — 1) and let Ny, be the unique

structure on £ with vertex set [n]| that is @Q-uniform with respect to (fn, <| fn), where < is
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the usual order on [n], that is, we have

RBp(Na) < {a € () | (fn 0@ (<ly,)a) € Qp).
Our choice of @ ensures that Ny, is a model of 7" = Forbp, (F).

Since th(fy) = [n/({y —1)] and Q € 72{)3_17/:, it follows that S(A(Ny)) is isomorphic to
the Turdn graph T;, .1, which implies that I(J7Y(Ny)) = T 09—1, 80 by (5.2), we have
x(I) > to.

This concludes the proof of (5.4).

Finally, let us consider the case when T is itself obtained from Tpn U T" by adding
axioms and I acts identically on the predicate symbol E of Tapn. To apply the previous
case of the theorem, note that to form Tgpapn U T, we add a new predicate symbol E'
corresponding to the new copy of T(;apn and the theory T’ is defined from TGraph UT by

adding the axiom
VaVy, E'(x,y) < E(z,y).
But then the isomorphism J: T’ ~» T simply copies E to E’, which means that we can

replace T" with T and use E from T in place of the newly added E’ from 7”. |

Remark 13. One of the consequences of Theorem 5.2.2 is that to compute x (), models
F € F such that the graph part I(J~!(F)) contains an induced copy of P3 (the graph on 3
vertices with exactly 1 edge) are completely irrelevant as such models are never uniform for

complete patterns nor for Turan patterns.

Proof of Remark 11. We want to show that the set

X e Ny | T cu(F))
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in (5.4) is either empty or an infinite interval of N. To show this, it is enough to show that
if € NL\ X and ¢/ € [(], then ¢/ ¢ X. But if £ € Ny \ X then there exists Q € 72% \Up(F).

Let then Q' € T  be given by

Qp (£, %) € Qp | im(f) C ]} (PeL)

where we reinterpret functions f: [k(P)] — [{] with im(f) C [¢'] as f: [k(P)] — [¢']. We claim
that Q' ¢ Uy (F). Indeed, if F € F was Q'-uniform with respect to some (f, <) € S v (F)s
then it would also be Q-uniform with respect to (]/”\, =), where ]/t\iS obtained from f by simply
extending the codomain to [¢]. Hence ¢/ ¢ X.

Since X is either empty or an infinite interval of N, it follows that inf X = sup N\ X + 1.
If we further assume that x(I) < oo, then X is non-empty so min X = maxN\ X + 1,
hence (5.4) and (5.5) are equal. [

Before showing Theorem 5.2.3, let us first address a small technicality on axiomatization

of universal theories.

Lemma 5.5.1. If T' be a universal theory that is finitely axiomatizable, then it has a finite
axiomatization in which all of its axioms are universal. Furthermore, such finite axiomatization

with universal axioms can be algorithmically computed from any finite axiomatization of T

Proof. Let A be a finite list of axioms of T'. Since T is universal, the set S of all universal
formulas that are theorems of 7" is an axiomatization of 7', hence S /\¢e A ¢, which implies
that there must exist a finite set S’ C S such that S" = A beA ¢, so S’ is a finite axiomatization
of T' by universal formulas.

To algorithmically compute S’ as above, we can enumerate all universal formulas ¢ that
are theorems of 7" in parallel (by also enumerating possible proofs of ¢ from A in parallel) and
also check in parallel whether finite subsets S’ of the S enumerated so far satisfy S’ = A beA 0]
(by also enumerating possible proofs in parallel). The reasoning above shows that such

algorithm must eventually find a satisfying S’. |
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Proof of Theorem 5.2.3. Using the notation of Theorem 5.2.2, note that the fact that 7' is
finitely axiomatizable implies that 7" is also finitely axiomatizable and the list of axioms
of T can trivially be computed from the list of axioms of 7" and a description of I. By
Lemma 5.5.1, we may compute an axiomatization A of 7" in which every axiom is a universal
formula.

Let k be the maximum number of variables appearing in an axiom in A and let F be the
(finite) set of all canonical structures M on £ with vertex set [¢] for some ¢ < k that are not
models of 7”. Our choice of k ensures that 7" = Forby, (F). We then check if Cg C U (F).
If this is false, then Theorem 5.2.2 guarantees that x(I) = co. Otherwise, we know that
X(I) < oo and is given by (5.4), which means that we can compute it by finding the smallest
¢ € N such that 72% C Up(F); Theorem 5.2.2 ensures that such ¢ exists and is precisely
X (1)

Finally, we can compute 7T§ from x(I) and ¢ using formula (5.3) in Theorem 5.2.1. Note

that this is a valid algorithm as all sets and searches above are finite. [ |

5.6 The non-induced case

In this section, we prove Theorems 5.2.4 and 5.2.5, which provide simpler formulas for the
abstract chromatic number in the setting of graphs with extra structure with some forbidden
submodels that are non-induced in the graph part.

For this section, let us fix a language L, let £ be the predicate symbol of Tgrapn in
the language £ U {E} of Traph U Ty, let J: Tp ~» Tarapn U Ty be the structure-erasing

interpretation and let F be a family of models of T papn U T,

Proof of Theorem 5.2.4. Let £y be the right-hand side of (5.6).
Suppose G € M[Tpaph] is such that for every M € M[ForbTGraphUTE (F1E)], we have
I(M) 2 G. Since for n def |GIx(G), we have T), \ () 2 G, from the definition of FrE it

follows that for every M € M[ForbTGraphUTz;]’ we have I(M) 2 T, \(q), so by (5.10) of
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Lemma 5.3.1, we have x(I) < {p.

On the other hand, if / € N4 is such that there exists n € N4 such that for all N €
Mn[FOTbTGraphuTﬁ (F1E)], we have T € I(N), then we must also have that I(N) 2 T, ¢
for every N € M[ForbTGraphUT[, (F1E)], hence from (5.10) of Lemma 5.3.1 we also get

f() SX([). [ ]

To prove Theorem 5.2.5, we first need to relate uniformity of over LU{E} with uniformity

and E-proper split orders over L.

Claim 5.6.1. For ) € C?U{E}’ we have Q € Uy (F1F) if and only if Q|p € Uy (J(F)), where
def

Q| € Py ¢ is the restriction of @ to L and J(F) = {J(F)| F € F}.

Proof. Suppose Q € U (}"TE), that is, there exists some F € F1¥ and some < € SI,V(F)
such that F is Q-uniform with respect to <. From the definition of F1£, there exists F/ € F
such that V(F') = V(F), Rg(F') C Rg(F) and Rp(F') = Rp(F) for every P € L. Since F
is Q-uniform with respect to =<, it follows that J(F) = J(F”) is Q|g-uniform with respect to
=, 50 Qg € th (J(F)).

Suppose now that Q|2 € Uy (J(F)), that is, there exists some F' € F and some = € Sy y(p)

def

such that J(F) is Q|g-uniform with respect to <. Let F’ be defined by V(F') = V(F),

def def

Rp(F") E Rp(F) for every P € £ and Rp(F') < (V(F'))s. Note that F' € FF and F' is

Q-uniform with respect to <, so @ € U (F). [ |

Claim 5.6.2. For ) € U{EEU{E}’ we have Q € Uy(F1E) if and only if Q| € XgE(}_): where

Qlz € Py is the restriction of Q to L.

Proof. Let I': Tgraph ~ TGraph U T be the structure-erasing interpretation.

Suppose Q) € Z/Ig(}"TE), that is, there exists some F € F1¥ and some (f,X) € SE,V(F)
such that F' is Q-uniform with respect to (f, <). From the definition of F1E | there exists
F' € F such that V(F') = V(F), Rg(F') C Rg(F) and Rp(F') = Rp(F) for every P € L.

Since F is Q-uniform with respect to (f, <), it follows that J(F) = J(F') is Q|g-uniform
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with respect to (f, X). Since @ is an E-Turdn pattern, we also get that f is a proper coloring

of I(F), hence also of I(F'), so Q| € Xf(F’).

Suppose now that Q| € Xf(]‘-), that is, there exists some F' € F and some E-proper Q|-

def /> def

split ordering (f, =) € Sy y(p) of F. Define F' by letting V(F') = V(F), Rp(F') = Rp(F)

for every P € L and

def

Rp(F) = {ae (V(F):2 | fla(1)) # f(a(2))}.

Note that since f is a proper coloring of I(F), it follows that Rg(F') 2 Rg(F), so F' € F1F.
Note also that F” is Q-uniform with respect to (f, <) as J(F) is Q|g-uniform with respect to

(f,=), 80 Q € Uy(F). u

Proof of Theorem 5.2.5. Note that first that the restriction function Cgu (B~ P1,c given
by @ — Q|, is bijective, so Claim 5.6.1 implies that CEU{E} C Uy (F) is equivalent to
P1c € UL(J(F)), so the characterization of x(I) < oo of Theorem 5.2.5 follows from the
characterization of x(I) < oo of Theorem 5.2.2.

On the other hand, the restriction function U,EEU{E} — Py ¢ given by Q — Q| is also
a bijection. This along with Claim 5.6.2 implies that D{ELU (B} Z Uy(F1E) is equivalent to
Pgﬁ Z Xf(}"), so from (5.4) of Theorem 5.2.2, we get that if x(/) < oo, then (5.7) holds.

It remains to prove that (5.7) also holds when x (/) = oo, that is, we need to show that if
Prc L U(J(F)), then Py & xF(F) for every € € Ny

Let Q € Py o \Ui(J(F)) and fix £ € Ny. Given (f, =) € Sy, let <fe S1,v be the total

order on V' given by
v=fw = f) < flw) Vv =w.

Clearly jfif ==
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Let Q" € Py, be given by

Qp (9, %) € Spp | =7 € Qp).

We claim that Q' ¢ XgE(]'—)- Suppose not, that is, suppose there exists F' € F and an

E-proper Q'-split ordering (f, <) € S&V(F) of F'. Note that for every P € L, we have

Rp(F) ={a € (V(F)yp) | (f o, Za) € Qp}
= {a € (V(F)yp) | (2a)/°* € Qp}

= {a € (V(F)kpy | (=27)a € Qp},

hence J(F) is Q-uniform with respect to </, contradicting the fact that Q & Uy (J(F)).
Hence Q' ¢ XE (F) as desired. |

Proof of Remark 12. In the proof above, we determined that DEEU (B} z Z/{g(}"TE ) is equiva-
lent to Pfﬁ Z Xf (F), so from Remark 11 it follows that the set X in (5.7) is either empty

or an infinite interval of N4 and thus inf X = sup Ny \ X + 1. |

5.7 Applications to concrete theories

In this section we illustrate how to use the general theory to obtain easier formulas for
the abstract chromatic number for some specific theories. We start with the easy example
of recovering the original setting of Theorem 5.0.1: graphs with forbidden non-induced

subgraphs.

Proposition 5.7.1. Let F be a family of graphs and Forb}' (F) be the theory of all

Graph

graphs that do not have any non-induced copy of graphs in F. Then for the axiom-adding
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interpretation ]3_-": TGraph ~ Forb}'Graph (F), we have

X(13) = max{x(F), 1},

where x(F) def inf{x(F') | F € F} is the infimum of the chromatic numbers of elements of F.

Proof. Let L def & be the empty language and note that in the notation of Theorem 5.2.5 we

+
have Fi orbT

Graph

(F) = Forbr, nUT, (F1F), so we get

X(IF) = sup{t € Ny | Pyp & X[ (F)}U{0} + 1.

But since £ is empty, each Py, has a unique element (namely, the empty pattern) and this
unique element is in XgE (F) if and only if there exists a proper coloring of F' with ¢ colors,

hence
X([}) =sup{{ e N} |VF € F,{ < x(F)}U{0} +1 =max{x(F), 1},

as desired. ]

We now show how the picture changes when the forbidden subgraphs are induced instead

of non-induced.

Proposition 5.7.2. Let F be a family of graphs and let Ir: Tgyapp ~» Forbr, (F) be

the axiom-adding interpretation. If F contains a complete graph, then

X({x) = max{¢ € N1 | F does not contain a complete {-partite graph} U {0} + 1

= min{¢ € N1 | F contains a complete (-partite graph};

otherwise, we have x(Ir) = oco.

Proof. In the notation of Theorem 5.2.2, we can view ForbTGraph (F) as obtained from the
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theory TGrapn U Tp by adding axioms, where Tj is the trivial theory over the empty language.
Then taking 77 =T (so £ = {E}), note that Cg contains a single element @)y and we have
Qo € U1 (F) if and only if F' is complete, so Theorem 5.2.2 gives x(Ir) < oo if and only if F
has a complete graph.

Suppose then that F contains a complete graph (so x(I/r) < 0o) and note that for every
e Ny, ’72% also contains a single element )y and we have @y € Up(F) if and only if F is a

complete (-partite graph, hence from (5.5) and (5.4), we get

X(Ir) = max{l € Ny | F does not contain a complete ¢-partite graph} U {0} + 1

= min{/ € N | F contains a complete ¢-partite graph},

as desired. [ |

For our next example, we will recover the interval chromatic number used for ordered

graphs in [57] from our result.

Definition 5.7.3 (Interval chromatic number [57]). An ordered graph is a model of the theory
TGraph YU TLinOrder- A proper interval coloring of an ordered graph G is a proper coloring of
the graph part of GG such that each color class is an interval of the order part of G. Formally,

a proper interval coloring of G is a function f: V(G) — [¢] such that

Vo, w e V(G), (v,w) € Rp(G) = f(v) # f(w);

Vu,v,w € V(G), (u,v) € Re(G) A (v,w) € Re(G) A f(u) = f(w) = f(u) = f(v).

The interval chromatic number x<(G) of an ordered graph G is the minimum ¢ such that

there exists a proper interval coloring of G of the form f: V(G) — [/].

Proposition 5.7.4. Let F be a family of ordered graphs and Forb;G W UTLin0nd (F) be the
rap moraer

theory of all ordered graphs that do not have any non-induced copy of ordered graphs in F.

Then for the interpretation Iz : Tgrapn ~ ForbTGraphUTLinOrder (F) that acts identically on
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E, we have

X(Iz) = max{x<(F), 1},

where X< (F) def inf{x<(F) | F € F} is the infimum of the interval chromatic numbers of

elements of F.

Proof. Let L def {<} with k(<) ef 9 and let further Fy, Fy, F5 be the structures on {E} U L

defined by
v(F) € 2 V(Fy) ' [2; V(F3) € [3;
Rp(F) ¥ o; Rp(F) ¥ o Rp(Fy) ¥ o;
Ro(F) ¥ o Re(Fy) ©(2);  Re(r) 9 {(1,2),(2,3), 3, )};

Define also F d:ef]-" U {F1, F5, F3} and note that in the notation of Theorem 5.2.5, we have
Forb;GraphUTLinOrder (F) = Forbr, nUT, (F1E), so we get

X(IF) =sup{l € Ny | Py p & x¢ (F)}U{0}+ 1.

For i, j € [{], let Sy ; ; C{(f,2) € 8o | im(f) = {i,5}}. Note that Sy = Su,ji and,

regardless of whether i # j, we have |Sy; ;[ = 2.

Fix an (-Ramsey pattern @ € Py on L. Let us call a pair (4,7) € [6]2 empty in Q if
Syij NQ< =@ and let us call (4, 7) full in Q if Sp; ; C Q<.

Note that if (i,7) is empty in @ € Py z, then any (f, <) € Spo with im(f) = {4,} is
an F-proper )-split ordering of F. Conversely, note that if (f, <) is an E-proper @Q-split
ordering of F then (f(1), f(2)) is empty in Q. Hence Q € Py 2 has an empty pair if and
only if Q) € Xf (F7). With an analogous argument, we can show that @) € Py £ has a full pair
if and only if Q) € XKE(F2>.

Let then 772 r be the set of all /-Ramsey patterns that do not have any empty pairs nor
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def
= [

any full pairs. To each @ € 7327 £ let us associate a tournament T given by V(7)) /]

and

E(Tg) © {(v,w) € 17 | v #w A 3(f, %) € Qc, F(1) = v A £(2) = w}.

Note that the fact that ) does not have any empty or full pairs ensures that T is indeed a
tournament.
We claim that for Q) € Py 2, the tournament T¢) has a cycle if and only if () € XgE (F3).
For the forward direction, since Tqy has a cycle, it must have a 3-cycle, say (u,v,w) € 13
with (u,v), (v, w), (w,u) € E(Tg). Then any (f, X) € Sy3 with f(1) = u, f(2) = v and
f(3) = w is an E-proper Q-split ordering of F3. For the backward direction, if (f, <) € Sy 3
is an E-proper Q-split ordering of F3, then (f(1), f(2), f(3)) is a 3-cycle in Tg).

Let then 732/ r def {Q € 772 ¢ | T is transitive} and note that our claims above show that

X(IF) = sup{t € Ny | P} - Z xf (F)}U{0} +1.

We now claim that for Q) € PZL: and F' € F, we have Q) € X?(F) if and only if £ > y<(F).

For the forward direction, we claim that if (f, <) € SE,V( F) is an F-proper QQ-split ordering
of F, then f: V(F) — [{] is a proper interval coloring of F. Since f is a proper coloring of
the graph part of F', we need to show that its color classes are intervals of the order part of
F'. Suppose not, that is, suppose there exist u, v, w € V(F') such that (u,v), (v,w) € R<(F)
and f(u) = f(w) # f(v). But then (u,v) € R<(F) implies (f(u), f(v)) € E(1) and
(v,w) € R<(F) implies (f(v), f(w)) € E(Ty), contradicting the fact that Ty does not have
anti-parallel edges.

For the backward direction, suppose f: V(F) — [f] is a proper interval coloring of F.

Since Tg) is transitive, by possibly permuting the colors of f, we may suppose that the color
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classes of f are in the same order in F' as the colors are in T, that is, we may suppose that

Vo, w € V(F), (f(v) £ f(w) = (v,w) € Re(F) & (f(v), f(w)) € E(Tg))).  (5.16)

For i € [(], let (g;, <) € Sy 2 be the (-split order over [2] given by g;(1) = ¢;(2) =4 and 1 < 2.

Define the partial order < over V(F') as

vXw = f(0) = f() A (0,0) € R(F) & (g7, S) € Q<)

It is clear that (f, =) is an ¢-split order over V(F).

We claim that (f, <) is an E-proper @-split order of F'. We know that f is a proper
coloring of the graph part of F', so we need to show that the order part of I’ is Q)-uniform
with respect to (f, <). But this follows from the definition of < and (5.16); this concludes
the proof of our claim.

From our claim, it follows that

X(Iz) =sup{l e Ny |VF € F.{ < x<(F)}U{0} +1

= max{x<(F), 1},

as desired. [ |

Let us note that the result of [9] that proves an analogue of Theorem 5.0.1 in terms
of the cyclic interval chromatic number (which has the same definition as the interval
chromatic number, but intervals are considered in the cyclic order) can also be retrieved from
Theorem 5.2.5 with a similar proof to that of Proposition 5.7.4.

Finally, the result of [41] that proves an analogue of Theorem 5.0.1 in terms of the

edge-order chromatic number follows trivially from Theorem 5.2.4.
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5.8 Concluding remarks and open problems

In this chapter, we have shown how the Erdés—Stone—Simonovits and Alon—Shikhelman
Theorems (Theorem 5.0.1) generalize to the setting of open interpretations I: Tgapn ~ T
via the abstract chromatic number (/) and we have shown how an alternative formula
for x(I) based on Ramsey Theory can be used to algorithmically compute x(/) when T is
finitely axiomatizable. We have also shown how to retrieve the particular chromatic numbers

of [9, 57, 41] from the abstract chromatic number.

One property that the usual chromatic number satisfies is principality: in the setting
of Proposition 5.7.1 (i.e., the setting of the original Theorem 5.0.1), we have X(IJJ_C) =
max{y(F),1} = min{x([?F}) | F e F}U{1}, that is, the chromatic number corresponding to
a non-empty family of graphs is simply the minimum of the chromatic numbers corresponding
to its elements.

In the more general setting of Theorem 5.2.5, let £ be a language and let F( be a family of
structures on £ U {E}. For another family JF of structures on LU {E}, we let Ir: Tarapn ~
FOTbTGraphUTE((JTO U F)1E) act identically on E. We say that T def Forbry, .onUT, (FotE)

satisfies the principality property if

X(Ir) = min{x(I;py) | F' € F}

for every non-empty F.

The setting of Proposition 5.7.1 shows that T,pp satisfies the principality property.
Proposition 5.7.4 shows that Tqraph U T1,in0Order satisfies the principality property as well.
Since an analogous result to Proposition 5.7.4 holds for cyclically ordered graphs (see [9]) in
terms of the cyclic interval chromatic number, it follows that the theory of cyclically ordered
graphs TGraph U ToycOrder also satisfies the principality property. However, it was observed
in [41] that the theory of edge-ordered graphs does not satisfy the principality property. A

natural question then is what theories satisfy the principality property?
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Let us also note that just as Theorem 5.0.1, Theorem 5.2.1 also fails to completely
characterize the asymptotic behavior of the maximum number of copies of Ky in I(M) for
M e M[T] when x(I) < t. Even for the case t = 2, the study of this problem when
X(I) < 2 has been done in a case by case manner and we refer the interested reader again
to [57, 9, 41, 64] for some of these results for graphs with extra structure.

In Section 5.4 we proved the finiteness of the partite Ramsey numbers, but we made no
attempt at optimizing the upper bounds that can be derived from its proof. Just as with
the classical Ramsey numbers, providing good upper bounds is a very interesting problem
in its own right and some work has been done in the non-partite case for some specific
theories [55, 26, 19, 27, 6].

Let us also point out that the partite Ramsey numbers that we studied can be viewed
as the diagonal case. The non-diagonal case can be defined as follows: given a function
h: Py p — N’ and 7 def (n1,...,nyp) € Ne, we write 1 —T—> h if for every model M of T and
every (-split order (f, =) € Sy y(pr) on V(M) with |f~1(4)| > n; for all i € [¢], there exists
an (-Ramsey pattern QQ € Py ¢ over £ and a set W C V(M) such that L@ N W] > h(Q);
for all i € [¢] and M|y is Q-uniform with respect to (f|y, 2w ). It follows that for
m max{h(Q); | @ € Py e Ai € [{]}, if min{n; [ i € [(]} > Ryp(m), then 1 Ly b Just as
in the classical Ramsey theory, studying the off-diagonal case is an interesting problem as

well.
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