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ABSTRACT 

 In this thesis, various approaches from the literature employing carbon–hydrogen bond 

activation for the synthesis of indoles and their close derivatives, indolines and carbazoles, have 

been discussed. Palladium/norbornene cooperative catalysis, in particular, presents an attractive 

platform for the preparation of indoles via the regioselective difunctionalization of an aryl halide 

and its unactivated ortho-carbon–hydrogen bond. The detailed development of a synthetic strategy 

for the preparation of indoles using this catalytic duo via an ortho-amination, ipso-Heck 

cyclization cascade is presented. Moreover, a synthesis of indolines via a modification of this 

strategy employing a reductive Heck cyclization is also presented, in addition to preliminary 

results for the enantioselective version of this transformation. Finally, an unexpected ortho-Heck 

reaction of aryl iodides is presented, whereupon an alkene was found to couple at the arene ortho-

position, instead of the typical ipso position. An isotope labeling study was conducted, finding that 

the transformation was likely proceeding through an uncommon reaction pathway for palladium. 

The knowledge gained in these combined works is expected to help guide the development of new 

transformations employing palladium/norbornene cooperative catalysis. 
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CHAPTER 1 

 

 

Synthesis of Indoles, Indolines, and Carbazoles via Palladium-Catalyzed C–H Bond 

Activation 

 

 

 

1.1. Introduction 

   The construction of indole, indoline, and carbazole heterocycles has been of significant interest 

in the synthetic community over the last century due to their prevalence in natural products and 

other biologically active compounds. In particular for indoles, many conventional methods 

developed to date require highly pre-functionalized arene precursors, diminishing their 

attractiveness as “green” syntheses. Carbon–hydrogen bond activation, on the other hand, presents 

an elegant solution to this problem and can achieve the construction of indoles and their derivatives 

from comparatively simpler arene precursors. In this short review, we discuss various approaches 

for preparing indoles, indolines, and carbazoles via palladium-catalyzed C–H bond activation, 

highlighting their reaction mechanisms and synthetic applications (Figure 1.1). 
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Figure 1.1. C–H Bond Activation for the Synthesis of Indoles and their Close Derivatives  

 

   Indoles and their derivatives are among the most common heterocycles found in nature. As a 

result, a wide variety of compounds, including amino acids, natural products, and approved 

pharmaceutical drugs, contain such a structural motif (Figure 1.2), many of which exhibit rich 

biological activity.1  As a consequence, significant efforts have been made to prepare substituted 

indoles2-4 and their close derivatives, indolines5 and carbazoles.6 Traditional approaches often 

involve harsh reaction conditions, complex substrates, or potentially toxic byproducts, diminishing 

their attractiveness as “green” syntheses. An emerging tool to mitigate these concerns is carbon–

hydrogen (C–H) bond activation, whereupon an inert C–H bond is directly transformed into the 

desired carbon–carbon (C–C) or carbon–heteroatom (C–X) bond by a transition metal catalyst.7, 8 

In this regard, substrate complexity can be decreased, as pre-functionalization would be 

unnecessary, allowing for the use of more readily available precursors for heterocycle syntheses. 

In addition, harsh conditions or toxic byproducts can often be avoided.  
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Figure 1.2. Natural Products and FDA-Approved Drug Molecules bearing Indoles and Carbazoles 
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development, mechanistic details and synthetic applications of the transformations are also 

discussed.  

1.2. Synthesis of Indoles and their Derivatives via Palladium-Catalyzed C–H Bond Activation 

   To date, many methods have been developed for indole synthesis, in addition to indole 

functionalization.12, 13 Among these synthetic approaches, the oldest and most well-known indole-

forming reaction is likely the Fischer indole synthesis. Discovered in 1883, this transformation 

uses an aryl hydrazone, formed by condensation of an aryl hydrazine with a carbonyl, which is 

treated with acid at elevated temperatures in order to promote a [3,3]-sigmatropic rearrangement, 

eventually resulting in the formation of the indole ring with expulsion of gaseous ammonia 

(Scheme 1.1a).14 In a related work reported over a century later in 1998, Buchwald and co-workers 

showed that the aryl C–N bond can be forged via a palladium-catalyzed coupling reaction between 

an aryl bromide and a hydrazone, which can then be treated under standard Fischer conditions to 

form the indole ring (Scheme 1.1b).15 This advance allowed for a new disconnection to be made 

when considering how to prepare aryl hydrazones. 
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Scheme 1.1. Fischer Indole Synthesis and Buchwald’s Modification 

 

In these examples, however, relatively harsh acidic conditions are required in order to furnish the 

final products. Other strategies have since been developed, such as the Mori-Ban (Scheme 1.2a)16 

and Larock (Scheme 1.2b)17 indole syntheses, which employ milder palladium-catalyzed 

conditions to construct the heterocycles; however, these examples suffer from the necessity of 

more complex pre-functionalized arene starting materials. More recently, Jørgensen and 

coworkers have found 1,2-dihaloarenes to be effective substrates for Pd-catalyzed indole synthesis 

via an amination/cyclization cascade with allyl amines, although this work exhibits the same 

drawback, resulting in a somewhat limited aryl substrate selection (Scheme 1.2c).18 Additionally, 

this method was recently extended to nickel catalysis by Tian, allowing for the reaction to proceed 

from aryl dichloride starting materials.19 Although all of these reactions efficiently deliver indole 

products, methods that can avoid using doubly functionalized arene precursors would further 
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Scheme 1.2. Pd-catalyzed Synthesis of Indoles from Pre-Functionalized Arenes 
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Scheme 1.3. Traditional Cross-Coupling vs C–H Bond Activation Strategies 

 

Palladium catalysis, in particular, offers a wide variety of scaffolds and approaches for the 

synthesis of indoles and their close derivatives via both traditional cross-coupling and C–H bond 
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here. While many of these transformations can be carried out under mild conditions with relatively 

benign oxidants, some transformations required the addition of stronger oxidants to promote the 

formation of Pd(IV) intermediates, which could more readily undergo C–N bond reductive 

elimination to form the desired products than their Pd(II) counterparts. 

Scheme 1.4. Strategies for the Intramolecular Construction of Indoles, Indolines, and Carbazoles 

 

1.2.1.1. Synthesis of Indoles, Carbazoles, and Indolines via Intramolecular C–H Bond 

Amination 

   Carbazoles and indolines were the first indole derivatives synthesized via C–H bond amination. 

In 2005, Buchwald and co-workers first developed a palladium-catalyzed protocol for the 
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Scheme 1.5. Intramolecular Synthesis of Carbazoles via C–H Amination 
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should be noted that a mechanism involving a concerted metalation-deprotonation (CMD) 

pathway with the acetate ligand cannot be excluded (Scheme 1.5b). 

Scheme 1.6. Substituent Effects and Revised Mechanisms 
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range of oxidants was surveyed, finding an F+ reagent to be the best oxidant for the reaction, 

which could smoothly deliver the corresponding indoline products. This oxidant, in particular, 

minimized non-productive reductive elimination pathways (e.g. halogenation or acetoxylation 

side-products). The synthetic utility of the method was highlighted with a concise synthesis of 4-

bromoindole, an important precursor in the synthesis of ergot alkaloids,24 which was more 

efficient than previously developed routes (Scheme 1.7c). The same group later improved upon 

this transformation with the more readily removable –SO2(2-py) protecting group, using 

PhI(OAc)2 as the oxidant.25 
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Scheme 1.7. Synthesis of Indolines via C(sp2)–H Amination 
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commercially available oxidant, AgOAc (Scheme 1.8a). In this transformation, an acetamide unit 

acts as an anionic directing group towards the palladium catalyst, facilitating the C(sp3)–H bond 

activation. After ruling out a potential acetoxylation/nucleophilic substitution pathway, it was 

proposed that the Pd(II) intermediate could either undergo reductive amination to furnish the 

indoline product with a Pd(0) species, or be oxidized to a Pd(IV) intermediate, which could readily 

undergo C–N bond formation to regenerate the active Pd(II) catalyst (Scheme 1.8b). 

Scheme 1.8. Synthesis of Indolines via C(sp3)–H Amidation 
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an external oxidant (Scheme 1.9b). At the time of publication, Pd(0) was merely proposed to 

undergo oxidative addition into the N–O bond of the oxime; this proposed intermediate was 

isolated and its structure was unambiguously elucidated via X-ray crystallography in this work, 

confirming the proposed mechanism (Scheme 1.9c). This transformation exemplifies a “green” 

synthesis, as the oxime starting materials can readily be prepared from ketones, and the reaction 

itself generates a benign acetate by-product, without the need for any potentially toxic or harmful 

oxidants. 
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Scheme 1.9. Redox-Neutral Intramolecular Synthesis of Indoles from Oxime Esters 
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   The analogous oxidative indole synthesis from amine substrates was later developed by Youn in 

2014, using oxone as the terminal oxidant to prepare N-Ts indoles (Scheme 1.10a).28 In a closely-

related synthesis of carbazoles29 from the same group, it was proposed that the strong oxidant 

could generate a high-valent Pd(IV) intermediate, which could readily undergo reductive 

elimination to forge the C–N bond. In this regard, the oxidant fulfills a similar role as the oxidant 

in Yu’s indoline synthesis (Scheme 1.7).23 This template was further expanded by Stahl and co-

workers in 2016, using molecular oxygen as the terminal oxidant, for the preparation of N-acetyl 

indoles (Scheme 1.10b).30 Mechanistically, this transformation was proposed to operate similarly 

to the intramolecular carbazole synthesis developed by Buchwald,21 which was proposed to 

proceed through a Pd(II)/Pd(0) catalytic cycle (Scheme 1.5b). 

Scheme 1.10. Intramolecular Synthesis of Indoles via Oxidative C–H Bond Amination 
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Other Pd-catalyzed C–H bond animation transformations have been developed for the synthesis 

of indoles from 2-nitrostyrene or β-nitrostyrene compounds.31-33 However, the mechanisms of 

these transformations are not entirely understood, and likely do not involve a C–H activation step 

with the formation of a C–Pd bond; for example, a nitrene insertion pathway was initially proposed 

to be involved the C–N bond forming step.31 As such, transformations of this type are not 

discussed. 

1.2.1.2. Synthesis of Indoles via Intramolecular C–H Bond Carbonation 

   As reported by Mori and Ban,16 a typical Heck cyclization strategy for indole synthesis begins 

with the formation of an arylpalladium(II) species from an aryl halide (Scheme 1.2a). Larock and 

co-workers hypothesized that this arylpalladium(II) species could instead be formed via a 1,4-

palladium migration with an unactivated arene C–H bond, which could then undergo Heck 

cyclization with an allylic amine to afford indole products (Scheme 1.11a).34, 35 In this regard, 

multi-substituted indoles can be prepared in a single step from simple 3-iodoaniline precursors. 

Alternatively, subsequent C–H bond activation on a nearby phenyl ring can deliver multi-

substituted carbazole products (Scheme 1.11b). 
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Scheme 1.11. Synthesis of Indoles and Carbazoles via 1,4-Palladium Migration 
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on to cyclize with a proximal olefin to form indole products or undergo another C–H activation to 

prepare carbazoles or dibenzofurans (Scheme 1.12b). Since the deuterium incorporation was not 

100%, H/D exchange was proposed to occur with this Pd(IV)-hydride intermediate by way of 

reductive elimination of an equivalent of acid, which is evident from the increase in deuterium 

incorporation with an excess of a deuteric additive. Although, a mechanism involving concerted 

sigma bond metathesis, with reversible C–H activation slightly eroding the deuterium 

incorporation at the ortho position prior to the metathesis, cannot be excluded. This work 

highlights the utility of metal migrations to prepare intermediates in typical aryl halide-initiated 

cross-coupling reactions, allowing for a rapid increase in molecular complexity from simple 

substrates. 

Scheme 1.12. Probing the Mechanism of the 1,4-Palladium Migration 
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   Glorius and co-workers later developed an intramolecular synthesis of indoles via construction 

of the C–C bond. Aryl enamine precursors were employed in a cross-dehydrogenative coupling 

(CDC), whereupon an annulation was achieved by the extrusion of two hydrogen atoms from the 

starting material (Scheme 1.13a).36 Moreover, the substrates could be easily prepared from 

commercially available anilines. Mechanistically, after electrophilic palladation of the enamine 

moiety, an electrophilic palladation pathway was initially proposed for the subsequent aryl C–H 

bond activation. However, electron-donating substituents para to the amine resulted in a slower 

reaction rate, suggesting against this proposed electrophilic palladation pathway (Scheme 1.13b). 

Additionally, a large primary kinetic isotope effect (KIE) of 4.6 suggested some other mechanism 

was operating (Scheme 1.13c). With these results in hand, the mechanism was revised to involve 

one of two potential pathways: σ-bond metathesis or base-assisted deprotonation of the arene C–

H bond (Scheme 1.13d). 
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Scheme 1.13. Cross-Dehydrogenative Coupling for the Synthesis of Indoles 
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1.2.2. Multi-Component Synthesis of Indoles 

   Multi-component construction of the pyrrole nucleus of indoles, along with their close 

derivatives, through C−H bond activation would simultaneously form two or three bonds; 

therefore, simpler building blocks have been employed as substrates. This section primarily 

focuses on various synthetic strategies that assemble the 5-membered nitrogen heterocycle through 

different bond disconnections (Scheme 1.14). 

Scheme 1.14. Strategies for the Multi-Component Construction of Indoles, Indolines, and 

Carbazoles 
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directly transformed to indoles (Scheme 1.15a). Moreover, molecular oxygen is used as the sole 

oxidant in the reaction, avoiding the use of potentially toxic reagents in the reaction. While the 

authors proposed a tandem Michael addition/electrophilic palladation/CDC pathway, they could 

not rule out an initial aminopaladation of the alkyne to directly form the alkenylpalladium(II) 

species (Scheme 1.15b). Beyond this first C–N bond formation, the transformation also differs 

mechanistically from Glorius’ report (Scheme 1.13a);36 an electrophilic palladation pathway was 

proposed for the second C–H activation because of an observed intramolecular competition KIE 

of 1.2 (Scheme 1.15c). Finally, the synthetic utility of the transformation was highlighted by 

conducting a formal synthesis of a high-affinity 5-HT3 receptor antagonist (Scheme 1.15d).38 
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Scheme 1.15. Synthesis of Indoles from Anilines and Alkynes 
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demonstrated that alkynes could be replaced with ketones for the one-pot synthesis of indoles from 

anilines. 

 

1.2.2.2. Bi- and Tri-molecular Synthesis of Indoles, Indolines, and Carbazoles via 

Construction of Both C–N Bonds 

   A diaziridinone reagent, di-tert-butyldiaziridinone, has been employed extensively in the multi-

component synthesis of N-tBu indoles, although this reagent was first used in the synthesis of 

indolines. This reagent is also proposed to serve a dual role as an oxidant towards key 

pallada(II)cycle intermediates, promoting the formation of high-valent Pd(IV) intermediates, 

which can readily form the desired C–N bonds (vide infra). The resulting N-tBu-protected products 

can be readily deprotected by treatment with strong acid, making them attractive substrates for 

nitrogen heterocycle synthesis (Scheme 1.16). 

Scheme 1.16. Synthesis of Indoles and Indolines with a Diaziridinone Reagent 
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involve two catalytic processes – the formation of an allylic urea intermediate and subsequent 

transformation of this intermediate into the spirocyclic indoline product. 

Scheme 1.17. Synthesis of Spirocyclic Indolines via Arene C–H Bond Activation 
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which could furnish the indoline product via a sequence involving nitrene insertion and C–N 

reductive elimination (Scheme 1.18b).  

Scheme 1.18. Proposed Mechanisms for the Pd-Catalyzed Spirocyclic Indoline Synthesis 
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  In an effort to confirm their proposed reaction mechanism, the intermediacy of the proposed 

allylic urea intermediate was probed by subjecting it to the standard reaction conditions, obtaining 

the corresponding indoline product in 35% yield (Scheme 1.19a), and an aryl pallada(II)cycle was 

found to be a competent catalyst for the transformation, even producing its corresponding indoline 

product when used in stoichiometric quantities (Scheme 1.19b). Together, these results support the 

proposed reaction mechanism. 

Scheme 1.19. Mechanistic Probes for the Spirocyclic Indoline Formation 
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Scheme 1.20. Synthesis of Indolines via a Three-Component Coupling 
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oxidative addition pathway to furnish a Pd(IV) intermediate, eventually resulting in the formation 

of the desired indoline products through the previously proposed pathways (Scheme 1.21a). 

Gratifyingly, the potential side-reaction of the diaziridinone with Pd(0) was avoided, likely due to 

the high reactivity of aryl iodides towards Pd(0). Alternative reactivity was also observed when 

using a phenyl-substituted alkene. This led to C–H activation taking place on this phenyl 

substituent, instead of the starting aromatic ring, presumably to minimize the overall strain of the 

pallada(II)cycle intermediate. Consequentially, this less strained palladacycle furnishes a 

spirocyclic indoline product (Scheme 1.21b), the structure of which was unambiguously confirmed 

by X-ray crystallography of a related derivative. 
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Scheme 1.21. Proposed Mechanism for the Synthesis of Indolines from Aryl Iodides, Norbornene, 

and Di-tert-butyldiaziridinone and Spirocyclic Indoline Formation 
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as in the previous examples (Scheme 1.22b). The intermediacy of this proposed palladacycle was 

proved in a stoichiometric study, albeit in a reduced yield, presumably because of the bipyridine 

ligand being a less efficient ligand than triphenylphosphine for the amination process (Scheme 

1.22c). In particular, this transformation highlights the potential of the diaziridinone reagent to 

react with many pallada(II)cycles bearing two carbon ligands, regardless of the hybridization of 

those carbon ligands (e.g. aryl, alkyl, alkenyl). 
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Scheme 1.22. Palladium-Catalyzed Synthesis of Carbazoles or Indoles from 2-Iodobiphenyls or 

2-Iodostyrenes and Di-tert-butyldiaziridinone 
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  The same group later showed that the diaziridinone reagent can react with pallada(II)cycles 

generated from C(sp3)–H activation with a proximal alkyl group (Scheme 1.23a).46 Notably, 3,3-

dimethylindoline structures are attractive scaffolds in the drug discovery process47 and can easily 

be accessed by using this method. A study of the stoichiometric palladacycle showed that the 

phosphine ligand was necessary to promote the amination process, as the desired indoline product 

could not be obtained when 1,5-cyclooctadiene (COD) was used as the sole ligand (Scheme 1.23b). 

Additionally, a kinetic isotope effect of 7 was found in an intramolecular competition experiment 

(Scheme 1.23c) and a KIE of 2.1 was found in a parallel study, indicating that the C–H activation 

was likely involved in the rate-determining step of the transformation.  

Scheme 1.23. Synthesis of Indolines via C(sp3)–H Bond Activation 
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  The same group also directly prepared indoles via a three-component reaction among aryl 

iodides, alkynes, and the diaziridinone (Scheme 1.24a).48 This transformation was proposed to be 

mechanistically similar to Shi’s prior work (Scheme 1.20),44  with the alkyne fulfilling the role of 

the alkene. The versatility of this transformation was highlighted in the substrate scope study – a 

wide variety of electron-rich and -poor functional groups can be tolerated, along with several 

internal alkynes. Zhang later expanded this method to include tethered alkynes for the preparation 

of 3,4-fused tricyclic indoles (Scheme 1.24b),49 which was also reported by Jiang, Yu, and co-

workers shortly after.50 Zhang further illustrated the utility of their intramolecular cyclization 

strategy by developing a short synthesis of the FDA-approved cancer drug, Rucaparib (Scheme 

1.24c). 

  



 

 36 

Scheme 1.24. Three-Component Synthesis of Indoles from Aryl Iodides 
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infra),52 hydroxylamines were chosen as the coupling partner due to their ease of preparation, 

derivatization, and precedence in ortho-amination reactions. By carefully tuning the electronics of 

the benzoyloxy leaving group, the desired 3,4-fused tricyclic indoles could be obtained in yields 

as high as 97% (Scheme 1.25b). In general, more electron-deficient leaving groups performed 

better under the reaction conditions, which indicates that better leaving group ability may be a key 

component in this reaction. Notably, various ring sizes and positions can be tolerated in this 

transformation, albeit typically resulting in lower overall yields for larger fused rings. 

Scheme 1.25. Synthesis of Fused Tricyclic Indoles using Hydroxylamine Electrophiles 

 

An oxidative addition pathway involving the hydroxylamine reagent was ruled out, since the more 

acidic N–H bond would likely be deprotonated under the reaction’s basic conditions. Instead, two 

R
I +

Pd(PPh3)2Cl2
DPPBz

Cs2CO3
PivOH

toluene, 100 °C

R
N
Ts

(a) Synthesis of 3,4-fused tricyclic indoles with a hydroxylamine electrophile

(b) Tuning the electronic properties of the leaving group
97% 73% 92% 42%

H

R

N
Ts

Ph

R

O
H
N

O

MeO2C

Ts

N
Ts

Ph

N

N
Ts

Ph

N
BocTs

N
Ts

Ph

O

I

H

Ph

+ O
H
N

O

R

Ts

Pd(PPh3)2Cl2
DPPBz

Cs2CO3
PivOH

toluene, 100 °C
N
Ts

Ph

R = OMe F CN CF3 NO2 CO2Me
37% 55% 57% 84% 82% 97%



 

 38 

pathways involving a concerted 1,2-migration or formation of a Pd(IV) nitrene species were 

proposed for the formation of the aryl C–N bond (Scheme 1.26).  

Scheme 1.26. Proposed Mechanisms for C–N Bond Formation 
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regenerate the norbornene co-catalyst; finally, the resulting arylpalladium species can participate 

in a typical cross-coupling reaction to close the catalytic cycle (Scheme 1.27). 

Scheme 1.27. Mechanism of a Typical Pd/NBE-Catalyzed Aryl Iodide Difunctionalization 
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carbonation. Mechanistically, this reaction was proposed to occur by oxidative addition of the 

ANP intermediate into the azirine C–N single bond, followed by C–C reductive elimination at the 

arene ortho position. After norbornene extrusion, the ipso position was aminated via C–N reductive 

elimination to first form a 3H-indole, which isomerized to the aromatic 1H-indole (Scheme 1.28b). 

Notably, this method can produce unprotected indoles in a single step from aryl iodides.  
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Scheme 1.28. Synthesis of Indoles from Aryl Iodides and 2H-Azirines 
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[3+2] cycloaddition of the 3H-indole with another 2H-azirine, supporting the importance of diluted 

conditions to favor the aromatization (Scheme 1.29). 

Scheme 1.29. Conversion of the Indole Products into Dihydroimidazoles 

 

  Liang and co-workers later showed that the saturated derivatives of 2H-azirines, aziridines, could 
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Scheme 1.30. Synthesis of Indolines from Aryl Iodides and Aziridines 
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demethylation of a quaternary indolium species after the cyclization was found to have a much 

lower activation barrier of 27.9 kcal/mol (Scheme 1.31b-c). While this method is effective for the 

preparation of linear N-alkyl indoles, namely N-methyl, ethyl, or propyl indoles, N-benzyl or -aryl 

indoles were found to be challenging products to access using this transformation. 

Scheme 1.31. Three-Component Synthesis of Indoles via the Pd/NBE Cooperative Catalysis 
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1.3. Conclusions and Outlook 

   In summary, recent strategies of constructing indoles and their close derivatives via Pd-catalyzed 

C–H bond activation are discussed in this short review article. Compared to conventional 

approaches, these palladium-catalyzed methods represent “greener” choices, as highly 

functionalized products could be accessed from simpler precursors under milder conditions. It is 

particularly attractive to directly use aryl halides or anilines as substrates, which greatly 

streamlined the synthesis of these heterocycles. Among the reported examples, the directed 

orthopalladation has been a powerful strategy for preparing indoles either intramolecularly or 

through multi-component couplings. In addition, the 1,4-palladium migration provides unique 

opportunities to transfer a reactive site to its adjacent position. Moreover, the 

palladium/norbornene cooperative catalysis offers a versatile platform to construct not only indoles 

and indolines, but also other heterocycles, due to the wide-range of ipso-terminating reagents and 

ortho-coupling partners that have been developed to date.52   

   As an outlook, the future development of indole, indoline, and carbazole syntheses would benefit 

from the use of more readily available reagents, lower catalyst loading, broader substrate scope, 

and milder reaction conditions. We anticipate that new C–H bond activation strategies will 

continue being developed for preparing indoles and other biologically important heterocycles, and 

eventually find their utilities in preparing pharmaceuticals. It is our hope that direct and 

regioselective double/vicinal C–H bond functionalization on the arene could be realized one day 

for multi-component indole synthesis, which would further reduce the complexity of the precursor 

molecules. 
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CHAPTER 2 

 

 

Synthesis of C3,C4-Disubstituted Indoles via the Palladium/Norbornene-Catalyzed Ortho-

Amination/Ipso-Heck Cyclization 

 

 

 

2.1. Introduction 

   Indoles and their derivatives represent some of the most abundant heterocycles in nature and 

pharmaceutical drugs. Consequentially, their synthesis and functionalization have been of the 

utmost importance to synthetic organic chemists over the past century. Herein, we report the 

synthesis of C3,C4-disubstituted indoles via the palladium/norbornene cooperative catalysis. 

Utilizing N-benzoyloxy allylamines as the coupling partner, a cascade process involving ortho-

amination and ipso-Heck cyclization takes place with ortho-substituted aryl iodides to afford 

diverse indole products. The reaction exhibits good functional group tolerance, in addition to 

tolerating a removable protecting group on the indole nitrogen. Divergent reactivity has been 

observed using the allylamine coupling partner containing more substituted olefins. Construction 

of the core framework of mitomycin has also been attempted with this strategy.  
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Figure 2.1. Synthesis of Indoles via Pd/NBE Cooperative Catalysis 

 

Indole and its closely related heterocycles are highly prevalent in natural products and drug 

molecules (Fig. 1).1 Consequently, they have been attractive scaffolds for preparation and 

derivation.2-7  

Figure 2.2. Indoles and their derivatives in Natural Products and Pharmaceuticals 
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useful tool for modular synthesis of polysubstituted arenes.14-19 In this transformation, an 
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(Scheme 1a). Seminal work by Lautens in 2010 described a novel preparation of C2,C7-

disubstituted indoles through an ortho-carbonation/ipso-amination through coupling with highly 

strained 2H-azirines (Scheme 1b).20 In 2018, the Liang group devised an elegant approach to 

synthesize indolines using widely available aziridines as the reagent.21 The development of 

coupling with N-benzoyloxy amines as electrophiles in 2013 allows convenient installation of 

various amine moieties at the arene ortho position via the Pd/NBE catalysis.22-34 Recently, the 

Liang group disclosed an ortho-amination of 2-iodoanilines followed by ipso-cyclization with 

norbornadiene and then a retro-Diels−Alder reaction to access 4-aminoindoles.35 More recently, 

an ortho-amination followed by demethylative annulation with internal alkynes was reported for 

indole synthesis with moderate efficiency (Scheme 1c).36  

Scheme 2.1. Indole Synthesis via the Pd/NBE Catalysis 
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In this chapter, we describe a convenient method for preparing C3,C4-disubstituted indoles via an 

ortho-amination/Heck cyclization cascade37 between common 2-substittuted aryl iodides and 

readily prepared N-benzoyloxy allylamines (Scheme 1d). It can be envisioned that, upon forming 

the key aryl-norbornyl-palladacycle (ANP), the reaction with the electrophile should install an 

allylamine moiety at the ortho position of the arene. Upon NBE extrusion, an ipso Heck is expected 

to take place; the resulting exocyclic alkene then isomerizes to the more stable internal position to 

deliver the indole product.38  

Scheme 2.2. This work – Indole Synthesis via Ortho-Amination/Intramolecular Heck Cascade 
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Scheme 2.1. Initial Reaction Discoverya 

 
aUnless otherwise noted, all reactions were carried out with 1a (0.1 mmol) and 2a (0.2 mmol), in 

1.0 mL of toluene for 18 h. NMR yields determined using 1,1,2,2-tetrachloroethane as the internal 

standard. 
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and acetate salts exhibited little to no reactivity whatsoever. This is likely a consequence of using 

the highly nonpolar toluene as the solvent, as Cs2CO3 could be exhibiting better solubility at the 

elevated reaction temperature, along with increased basicity relative to K2CO3. 

Table 2.1. Probing the base and Ligand:Metal Ratioa 

 

Base % 1 remaining % yield 3 
Cs2CO3 Not observed 41% 
CsOAc Not observed 1% 
K2CO3 28% 11% 
KOAc Not observed Not observed 

Cs2CO3/CsOAc (1:1) 13% 33% 
Phosphine loading % 1 remaining % yield 3 

10 mol% Not observed 23% 
20 mol% Not observed 35% 
30 mol% Not observed 65% 
40 mol% Not observed 67% 

aUnless otherwise noted, all reactions were carried out with 1a (0.1 mmol) and 2a (0.2 mmol), in 

1.0 mL of toluene for 18 h. NMR yields determined using 1,1,2,2-tetrachloroethane as the internal 

standard. 

After careful evaluation of various reaction parameters, the desired indole product (3aa) 

was ultimately formed in 71% yield using Pd(OAc)2 and tris(4-methoxyphenyl)phosphine as the 

optimal metal/ligand combination with Cs2CO3 as the base (Table 2.2, entry 1). The 1:4 ratio 

between Pd and the phosphine was still found to be necessary to promote higher yields and 

reproducibility of the reaction (Table 2.2, entries 2 and 3), though the exact reason is unclear. 

Other monodentate phosphine ligands that are less electron-rich than tris(4-

OMe
I +

BzO
N

Pd(OAc)2 (10 mol%)
P(p-OMe-Ph)3 (20 mol%)

NBE (100 mol%)

base (2.5 equiv.)
toluene or dioxane (0.1 M)

90 °C1
1.0 equiv.

2
2.0 equiv.

OMe

N
3
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methoxyphenyl)phosphine or bidentate phosphine ligands proved to less efficient and, in some 

instances, generated more four-membered side-product 4a (Table 2.2, entries 4-6; vide infra).  

Table 2.2. Selected Optimization of the Reaction Conditionsa 

 

I

BzO
N

Me

Pd(OAc)2 (10 mol%)
P(p-OMe-Ph)3 (40 mol%)

NBE (75 mol%)

Cs2CO3 (2.5 equiv.)
toluene (0.1 M)

100 °C, 18 h
‘standard’ conditions

1a
1.0 equiv.

2a
2.0 equiv.

N
Me

Me

3aa

OMe OMe

+

4a

OMe

H

H

Entry Change from the 
‘standard’ condition Yield of 3aa (%)b Yield of 4a (%)b

1

2

3

4

5

6

7

8

9

10

11

none

1:1 1,4-dioxane/toluene
as solvent

1,4-dioxane as solvent

N2 instead of NBE

N3 instead of NBE

N4 instead of NBE

25 mol% ligand

30 mol% ligand

PPh3 as the ligandd

P(p-CF3-Ph)3 as the ligandd

12

P(2-furyl)3 as the ligandd

71% (67%c)

62%

52%

17%

n.d.

67%

51%

65%

64%

56%

38%

7%

15%

19%

—

—

—

14%

12%

15%

13%

22%

MeO2C MeHNOC

CO2Me

CO2Me

N2 N3 N4

50 mol% NBE 69% 9%

5 µL water added 
(0.5% v/v solvent)

13 27% 45%
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aUnless otherwise noted, all reactions were carried out with 1a (0.1 mmol) and 2a (0.2 mmol), in 

1.0 mL of toluene for 18 h. bNMR yields determined using 1,1,2,2-tetrachloroethane as the internal 

standard; n.d. = not detected; – = not determined. cIsolated yield from 1a (0.2 mmol) and 2a (0.4 

mmol) in 2.0 mL of toluene for 18 h. dNBE (100 mol%) was used. 

It is likely that tri(4-methoxyphenyl)phosphine can suppress undesired off-cycle reactivity that 

cannot be traced when other ligands are used. Use of a 5,6-disubstituted norbornene (N4) was 

found to deliver similar results as simple NBE (Table 2.2, entry 9).39 Other structurally modified 

NBEs,40 such as C2-ester-41 and amide-substituted42 NBEs, exhibited much lower reactivity, likely 

due to their steric hindrance when reacting with the relatively bulky amine electrophile 2a (Table 

2.2, entries 7 and 8). Moreover, reducing the NBE loading to 50 mol% could result in similar yield 

and selectivity for the indole product, highlighting that it is indeed acting catalytically (Table 2.2, 

entry 10). Toluene was found to be the best solvent, which is also consistent with our prior studies 

of the ortho-amination transformation.22, 33 Increasing the polarity of the solvent by using a mixture 

of dioxane and toluene or 1,4-dioxane alone resulted in reduced yield and more side-product 

formation (Table 2.2, entries 11 and 12). Notably, the reaction is very sensitive to the presence of 

water, with a sharp reversal in the selectivity between 3aa and 4a when just 5 μL is added to the 

reaction (Table 2.2, entry 13). 

 Beyond these selected optimization examples, a wide-range of mono- and bidentate 

phosphine ligands were surveyed in this transformation (Scheme 2.3). In general, aryl groups 

bound to the phosphorus atom were found to be necessary, with the only exception being the 

electron-rich bidentate ligand dCypb. Substitution of one phenyl group of PPh3 with a methyl 

group, for example, resulted in a drastic reduction in the amount of the indole product. Moreover, 

P(n-Bu)3 failed to deliver any of the indole product, while tricyclopentylphosphine exhibited 
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drastically reduced efficiency compared to the triarylphosphines. Moreover, bidentate ligands 

generally performed with similar efficiency, although none exhibited reactivity comparable to that 

of tris(4-methoxyphenyl)phosphine. Additionally, increasing the loading of bidentate ligands was 

found to have little to no impact on the yield of the indole product. This could indicate that some 

ligand dissociation that is detrimental to the reaction is occurring, with a higher loading of the 

monodentate ligands helping to prevent this from occurring. 

Scheme 2.3. Full phosphine ligand screena 
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aUnless otherwise noted, all reactions were carried out with 1a (0.1 mmol) and 2a (0.2 mmol), in 

1.0 mL of toluene for 18 h. NMR yields determined using 1,1,2,2-tetrachloroethane as the internal 

standard. 

A comprehensive survey of palladium pre-catalysts identified several catalysts that could 

perform similar to Pd(OAc)2 in this reaction (Scheme 2.4). Of the carboxylate Pd salts, the more 

hindered Pd(OPiv)2 afforded a reduced yield. This is likely due to the added bulk of the t-Bu group 

preventing approach of the electrophile to the ANP intermediate, as evidenced with the shift in 

selectivity towards 4a. The activated Pd(II) complexes, the Pd G3 dimer and PPh3 Pd G3 (with 

added PPh3 instead of the standard ligand), could also perform with similar efficiency. Finally, the 

Pd(0) dimer, Pd2dba3, could also perform well in the reaction. Interestingly, the heterogenous Pd/C 

could furnish 11% yield of the desired indole product. Somewhat counterintuitively, though, 

Pd(PPh3)4 could give significantly worse selectivity than using 40 mol% of PPh3 with Pd(OAc)2 – 

the exact reason for this difference is not so clear. 
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Scheme 2.4. Investigation of the Palladium Pre-Catalysta 

 

aUnless otherwise noted, all reactions were carried out with 1a (0.1 mmol) and 2a (0.2 mmol), in 

1.0 mL of toluene for 18 h. NMR yields determined using 1,1,2,2-tetrachloroethane as the internal 

standard. 

Moreover, the catalyst loading could be decreased to 7.5 mol% without significantly 

impacting the yield of the transformation (Table 2.3). This holds true for both the standard 

concentration of 0.1 M, in addition to slightly increasing the concentration to 0.13 M to keep the 

concentration of the palladium catalyst constant with the standard condition. 

  

Pd(OAc)2 Pd(OPiv)2 Pd(TFA)2 Pd(Cl2) Pd(MeCN)2Cl2 PdI2

Pd
NH2

OMs
PPh3 Pd

NH2

OMs
P(p-OMe-Ph)3

Pd

H2
N

OMs

2

Pd(dba)2 Pd2(dba)3 Pd(PPh3)4 Pd/C

67%
11% 4a

50%
34% 4a

70%
7% 4a

49%
37% 4a

51%
35% 4a

49%
35% 4a

PPh3 Pd G3 (w/ 30% PPh3) P(p-OMe-Ph)3 Pd G3 Pd G3 dimer
66%

11% 4a
63%

7% 4a
68%

8% 4a

55%
21% 4a

67%
15% 4a

48%
46% 4a

11%
33% 4a

31% 1a recovered

OMe
I +

BzO
N

[Pd] (10 mol%)
P(p-OMe-Ph)3 (40 mol% P)

NBE (100 mol%)

Cs2CO3, toluene, 100 °C

1a
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OMe

N
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OMe

4a

H

H
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Table 2.3. Palladium Catalyst Loading – Constant Solvent Volume vs Constant [Pd]a 

 

Pd(OAc)2 loading % 1a remaining % yield 3aa % yield 4a 
2.5 mol% Not observed 39% 7% 
5.0 mol% Not observed 50% 21% 
7.5 mol% Not observed 70% 10% 
10.0 mol% Not observed 72% 11% 
  [Pd] = 10 mM 
2.5 mol% Not observed 28% 9% 
5.0 mol% Not observed 54% 12% 
7.5 mol% Not observed 67% 8% 
10.0 mol% Not observed 70% 14% 

aUnless otherwise noted, all reactions were carried out with 1a (0.1 mmol) and 2a (0.2 mmol), in 

1.0 mL of toluene for 18 h. NMR yields determined using 1,1,2,2-tetrachloroethane as the internal 

standard. 

To gain more insight on the reaction, the kinetic profile was measured (Figure 2.3).  First, 

the reaction did not show an induction period, which is likely due in part from the excess phosphine 

ligand enabling rapid reduction of Pd(II) to Pd(0). The side-product 4a was formed from the 

beginning of the reaction, alongside the desired product 3aa, which suggests competing pathways 

with the ANP intermediate: oxidative addition with N-benzoyloxy amine 2a versus direct reductive 

elimination to give 4a. The reaction was nearly completed within one hour, indicating a rapid 

reaction rate. Afterwards, the coupling partner 2a slowly decomposed, likely due to the basic 

reaction conditions and elevated reaction temperature. 
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P(p-OMe-Ph)3 (4X mol%)

NBE (75 mol%)

Cs2CO3 (2.5 equiv.)
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100 °C1a
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OMe

4a

H

H
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Figure 2.3. Kinetic profile of the reaction; NBE (100 mol%) was used 

 

With these results in hand, we sought to explore the scope of the indole-forming reaction (Scheme 

2.5). First, the isolated yield of the model product 3aa can reach 72% on 1.0 mmol scale.43 In 

addition, a diverse range of functional groups, such as methyl (3ba) and benzyl ethers (3ia), an 

unprotected tertiary alcohol (3ca), ester (3ea), bromide (3da), chloride (3ma), nitro (3fa and 3oa), 

acetal (3ha) and tertiary amine (3la), were tolerated under the reaction conditions, affording 

various C3,C4-disubstituted indoles. 
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Scheme 2.5. Substrate Scope of the Ortho-Amination/Heck Cyclization Cascadea 
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aUnless otherwise noted, all reactions were carried out with 1 (0.2 mmol) and 2 (0.4 mmol) in 2.0 

mL of toluene for 18 h; all yields are isolated yields. bCarried out with Pd(TFA)2 instead of 

Pd(OAc)2, 1a (1.0 mmol), and 2a (2.0 mmol) in toluene (10.0 mL). cCarried out with 40 mol% of 

tris(4-trifluoromethylphenyl)phosphine as the ligand. dCarried out with 2a-2 (see the supporting 

information) instead of 2a and with PPh3 as the ligand at 120 °C. eCarried out at 80 °C.  

Both electron-rich and -deficient substituents on the aromatic ring are compatible for this 

transformation. Notably, the yields for the highly electron-poor nitro-substituted aryl iodides (3fa 

and 3oa) can be increased by changing the phosphine ligand to the electron-deficient tris-(4-

trifluoromethylphenyl)phosphine (Scheme 2.6). 

Scheme 2.6. Ligand Optimization of 2-Nitroiodobenzenea 

 

aUnless otherwise noted, all reactions were carried out with 1a (0.1 mmol) and 2a (0.2 mmol), in 

1.0 mL of toluene for 18 h. NMR yields determined using 1,1,2,2-tetrachloroethane as the internal 

standard. 

Interestingly, up to 83% yield can be obtained for the 4-chloroindole product (3ma). A clear trend 

can be observed: the yield of the indole product typically decreases if the ortho-substituent is larger 
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in size, indicating that the reaction is sensitive to the steric environment of the Heck cyclization 

and subsequent aromatization. Moreover, a number of heteroarene-derived iodides were 

competent substrates, including pyridines (3ja-c), quinoline (3qa) and dibenzofuran (3ra). In 

addition to accessing N-methyl indoles, by decreasing the reaction temperature to 80 °C, C3,C4-

disubstituted indoles with removable protecting groups on the nitrogen, i.e. –Bn44 (3jb) and –

PMB45, 46 (3jc), can be constructed with this method. At higher temperatures, worse selectivity for 

the indole product was observed. Of the other challenging substrates in this transformation, only 

3fa could benefit from the use of the electron-deficient ligand. Other functional groups at the ortho 

position, including –CN and –CF3, proved to be ineffective in this reaction no matter the ligand 

chosen (Scheme 2.7). Additionally, –OCF3 and a chloropyridine also resulted in somewhat low 

yields. In the case of the latter, coordination of Pd to the pyridine nitrogen (due to less steric 

repulson of the –Cl relative to the –OMe in 1j) could possibly be the reason for the poor reactivity 

exhibited by the substrate. 

Scheme 2.7. Investigating the Electron-Deficient Ligand with other Challenging Substratesa 
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aUnless otherwise noted, all reactions were carried out with 1a (0.1 mmol) and 2a (0.2 mmol), in 

1.0 mL of toluene for 18 h. NMR yields determined using 1,1,2,2-tetrachloroethane as the internal 

standard. 

Apart from simple allylamine electrophiles, we questioned whether N-benzoyloxy amines 

with a more substituted internal olefin would react in the same manner. Consequently, the coupling 

reagents containing a 1,2-disubstituted alkene (2d) and a trisubstituted alkene (2e) were prepared. 

Interestingly, 2d provided a separable mixture of the desired indole product (3ad) and an indoline 

isomer (3ad’), resulting in a combined yield of 65% (Scheme 2.8). In contrast, a sole indoline 

product (3ae’) was isolated in good yield when using the amine coupling partner with a 

trisubstituted olefin (2e).  

Scheme 2.8. Aminating Reagents with Internal Olefins – Indole vs Indoline Competitiona 

 

aAll reactions were carried out with 1a (0.2 mmol) and 2 (0.4 mmol) in 2.0 mL of toluene for 18 

h; all yields are isolated yields. 
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The divergent reactivity observed with substituted allylamines provides useful insights into the 

reaction mechanism and selectivity, particularly regarding the ipso-Heck cyclization (Scheme 

2.9). During the Heck coupling, the terminal mono-substituted alkene moiety undergoes 

kinetically favorable 5-exo-trig cyclization, followed by β-hydride elimination, to give an 

exocyclic alkene intermediate, which leads to the desired indole products. When a 1,2-disubstiuted 

alkene is used, the moderate steric hindrance allows the β-hydride elimination to occur at either 

position (inward and outward), resulting in a mixture of indole and indoline products. In contrast, 

in the case of the trisubstituted alkene, the inward elimination would be largely inhibited due to 

the strong steric repulsion between the ortho-substituent (i.e. −OMe) and the nearly coplanar 

alkene substituent (i.e. −Me). Therefore, high selectivity towards the indoline formation through a 

less bulky outward β-hydride elimination is observed with the trisubstituted alkene. 
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Scheme 2.9. Divergent Reaction Pathways for Substituted Alkene Coupling Partners 

 

Finally, to explore the potential synthetic application of this method, construction of the 

core carbon skeleton of the mitomycin family of natural products has been demonstrated (Scheme 

2.10).47, 48 Utilizing a more complex 2-vinylpyrrolidine-derived coupling partner (2f), the desired 

ortho-amination/ipso-Heck cyclization can indeed take place under the standard conditions. Based 

on the analysis of the reaction’s crude NMR, the non-aromatic indoline product with an exocyclic 

olefin was formed in 31% yield, with little to none of the indole isomer. Unsurprisingly, during 

the chromatography purification on silica gel, the exocyclic alkene was fully isomerized to deliver 

the more stable tricyclic indole isomer (3af). Efforts on systematically optimizing this 

transformation, trapping the indoline intermediate, and ultimately applying this method to 

mitomycin synthesis are ongoing in our laboratory.  
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Scheme 2.10. Attempt to Access the Carbon Skeleton of Mitomycina 

 

aConducted with 1a (0.1 mmol) and 2f (0.15 mmol) in 1.0 mL of toluene. 

We also attempted to demonstrate the versatility of this method to deliver unprotected 

indoles by subjecting the –PMB-protected product 3jc to the debenzylation conditions developed 

by Davis and co-workers (Scheme 2.11).46 Unsurprisingly, the highly acidic conditions only 

resulted in formation of the HTFA salt of 3jc due to protonation of the basic pyridyl moiety. 

Analog 3ac, however, could avoid this issue due to the absence of the pyridine ring. While no 

reaction was observed upon subjecting 3ac to anisole/TFA at 0 °C, full conversion of the starting 

material was found at room temperature within 15 minutes. Unfortunately, though, while the N–

PMB bond was cleaved, the indole C2 captured the benzylic cation to form 3ac-3 as the sole 

product of the reaction. This isn’t necessarily a surprising result, as Miki observed this sort of –

PMB group migration when attempting to remove the protecting group under acidic conditions.45 

Perhaps the DDQ conditions highlighted in their report could facilitate this deprotection, although 
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Scheme 2.11. Attempted Indole N–PMB Deprotection 

 

2.3. Conclusion  

In summary, an ortho-amination, ipso-Heck cyclization cascade of aryl iodides for the 

synthesis of C3,C4-disubstituted indoles has been developed. The reaction appears to be general 

for a diverse range of aryl iodides, typically with smaller ortho substituents delivering the desired 

indole products in greater yields than larger substituents. A broad range of functional groups and 

heterocycles can be tolerated. Additionally, a steric effect has been found to be responsible for the 

divergent reactivity with more substituted alkene-derived coupling partners. Currently, expansion 

of this platform towards synthesis of other pharmaceutically relevant heterocycles, including 

indolines, is underway. 
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Sigma-Aldrich and used without further modification. Toluene used in the key reactions was 

distilled over Na/benzophenone, then degassed via feeze-pump-thaw. It was important that cesium 

carbonate was purchased from Strem, as other manufacturers’ Cs2CO3 did not perform as well in 

the reaction. All commercially available substrates were used without further purification; 

however, if a liquid aryl iodide was used, it was first filtered through an alumina plug. All reactions 

were carried out in vials (test-scale reactions, 4 mL vials; isolation-scale reactions, 8 mL vials; 1.0 

mmol-scale reaction, 40 mL vial) Thin layer chromatography (TLC) analysis was conducted on 

silica gel plates purchased from EMD Chemical (silica gel 60, F254). Infrared spectra were 

recorded on a Nicolet iS5 FT-IR Spectrometer using neat thin film technique. High-resolution 

mass spectra (HRMS) were obtained on an Agilent 6224 Tof-MS spectrometer and are reported as 

calculated/observed m/z. Nuclear magnetic resonance spectra (1H NMR and 13C NMR) were 

obtained using a Bruker Model DMX 400 (400 MHz, 1H at 400 MHz, 13C at 101 MHz); some 

NMR spectra (1H, 13C) were obtained using a Bruker Model DMX 500 (500 MHz, 1H at 500 MHz, 

13C at 125 MHz). For CDCl3 solutions, the chemical shifts were reported as parts per million (ppm) 

referenced to residual proton or carbon of the solvents: CHCl3 δ H (7.26 ppm) and CDCl3 δ C 

(77.16 ppm). Coupling constants were reported in Hertz (Hz). Data for 1H NMR spectra were 

reported as following: chemical shift (δ, ppm), multiplicity (br = broad, s = singlet, d = doublet, t 

= triplet, q = quartet, dd = doublet of doublets, td = triplet of doublets, ddd = doublet of doublet of 

doublets, m = multiplet), coupling constant (Hz), and integration. 

Compounds 1a, 1b, 1f, 1j, 1k, and 1m-1p are commercially available. Compounds 1d,49 1e,50 and 

1q51 have been previously reported and were prepared via a diazotization procedure51 from the 

corresponding anilines. Compounds 1g,52 1h,53 1i,54 1l,39 1r,55 2a,56 2b57, 4a,58 N2,59 N3,42 and 

N460 have all been previously reported in the literature. 
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Figure 2.4. Commercially Available, Known, and New Compounds 
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2-(4-iodo-3-methoxyphenyl)propan-2-ol (1c): Tetrahydrofuran (13.7 mL, 0.25 M) and methyl 

4-iodo-3-methoxybenzoate (1e; 1.0 g, 3.42 mmol, 1.0 equiv.) were placed in a flame-dried Schlenk 

flask equipped with a stir bar under an N2 atmosphere, then cooled to 0 °C. Methylmagnesium 

bromide solution (2.28 mL, 6.84 mmol, 2.0 equiv.) was added dropwise and the reaction was 

allowed to stir at room temperature overnight, after which the reaction was quenched with sat. 

NH4Cl solution. The aqueous layer was extracted with EtOAc; the combined organics were 

washed with brine, dried over MgSO4, and filtered. The solution was concentrated, and the crude 

oil was purified via silica gel chromatography (EtOAc/hexanes) to produce a viscous pale-yellow 

oil in 68% yield (637.6 mg). Rf = 0.34 (7:3 hexanes/EtOAc). 1H NMR (500 MHz, CDCl3) δ 7.70 

(d, J = 8.1 Hz, 1H), 7.05 (d, J = 2.0 Hz, 1H), 6.78 (dd, J = 8.1, 2.0 Hz, 1H), 3.90 (s, 3H), 1.72 (s, 

1H), 1.57 (s, 6H). 13C NMR (126 MHz, CDCl3) δ 158.1, 151.6, 139.1, 118.9, 107.7, 83.7, 72.6, 

56.4, 31.9. IR (KBr, cm-1) 3043, 2973, 2935, 2855, 1568, 1478, 1462, 1395, 1277, 1225, 1176, 

1040, 1015, 961, 824, 693. HRMS (ESI) Calcd for C10H13IO2 [M+H-H2O]+: 274.9933; Found: 

274.9931. 

 

 N-allyl-O-(4-methoxybenzoyl)-N-methylhydroxylamine (2a-2): N-allyl-N-

methylhydroxylamine was prepared according to a known procedure.61 CH2Cl2 (46 mL, 0.25 M), 

N-allyl-N-methylhydroxylamine (1.0 g, 11.49 mmol, 1.0 equiv.), DMAP (13.4 mg, 0.11 mmol, 1.0 

mol%), and triethylamine (2.4 mL, 17.23 mmol, 1.5 equiv.) were placed in a flame-dried Schlenk 

flask under an N2 atmosphere, which was then cooled to 0 °C. 4-methoxybenzoyl chloride (1.87 

mL, 13.78 mmol, 1.2 equiv.) was added dropwise and the reaction was allowed to stir at 0 °C for 

N
OH

+ Cl

O

OMe

DMAP
Et3N

CH2Cl2
0 °C

O
N

O

MeO
2a-2
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1 hour, after which the reaction was quenched with sat. NH4Cl solution. The aqueous layer was 

extracted with EtOAc; the combined organics were washed with brine, dried over MgSO4, and 

filtered. The solution was concentrated, and the crude oil was purified via silica gel 

chromatography (EtOAc/hexanes) to obtain a yellow liquid in 76% yield (1.93 g) with 10% of p-

methoxybenzoic acid. 1H NMR (500 MHz, CDCl3) δ 7.99 – 7.91 (m, 2H), 6.95 – 6.89 (m, 2H), 

6.01 (ddt, J = 16.9, 10.3, 6.6 Hz, 1H), 5.29 (dq, J = 17.1, 1.5 Hz, 1H), 5.21 (dq, J = 10.2, 1.3 Hz, 

1H), 3.87 (s, 3H), 3.64 (dt, J = 6.6, 1.3 Hz, 2H), 2.90 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 

165.0, 163.5, 132.8, 131.6, 121.7, 119.4, 113.7, 64.0, 55.5, 46.3. IR (KBr, cm-1) 3080, 2964, 2841, 

1735, 1606, 1511, 1462, 1316, 1255, 1169, 1062, 1028, 847, 765, 695, 608. HRMS (ESI) Calcd 

for C12H15NO3 [M+H]+: 222.1130; Found: 222.1133. 

 

N-allyl-O-benzoyl-N-(4-methoxybenzyl)hydroxylamine (2c): (1) Allylamine (1.28 mL, 17.1 

mmol, 1.0 equiv.) was added to a methanolic solution of p-anisaldehyde (2.29 mL, 18.8 mmol, 1.1 

equiv.) in a round-bottom flask with a small amount of Na2SO4 and stirred at room temperature 

until full formation of the imine was observed by TLC (about 1 hour). The flask was cooled to 0 

°C, then NaBH4 (775.5 mg, 20.5 mmol, 1.2 equiv.) was added slowly at 0 °C and the reaction was 

allowed to stir for one hour at room temperature. Once the starting material had been fully 

consumed (monitored by TLC), the reaction was quenched with sat. NH4Cl solution. The aqueous 

layer was extracted with EtOAc; the combined organics were washed with brine, dried over 

MgSO4, and filtered. The solution was concentrated, and the crude residue (3.04 g, quantitative) 

was directly used in the next step with no further purification.  

H2N+
MeO

CHO

NaBH4

Na2SO4
MeOH

MeO
H
N

BPO
K2HPO4

DMF
0 °C – r.t.

PMB N
OBz
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(2) N-allyl-N-4-methoxybenzylamine (1.1 g, 6.2 mmol, 1.5 equiv.) was added dropwise to a 

solution of 75 wt% benzoyl peroxide (1.33 g, 4.1 mmol, 1.0 equiv.) and K2HPO4 (1.45 g, 8.3 

mmol, 2.0 equiv.) in DMF (10.25 mL, 0.4 M) inside of a round-bottom flask at 0 °C. The reaction 

was allowed to stir overnight at room temperature, at which point it was diluted with water. The 

aqueous layer was extracted with EtOAc; the combined organics were washed with water and 

brine, dried over MgSO4, and filtered. The solution was concentrated, and the crude oil was 

purified via silica gel chromatography (EtOAc/hexanes) to afford the title compound in 76% yield 

(925 mg). White solid with MP = 57 – 59 °C. Rf = 0.32 (4:1 hexanes:EtOAc). 1H NMR (500 MHz, 

CDCl3) δ 7.93 – 7.89 (m, 2H), 7.55 – 7.50 (m, 1H), 7.40 (dd, J = 8.5, 7.1 Hz, 2H), 7.35 – 7.30 (m, 

2H), 6.86 – 6.79 (m, 2H), 6.04 (ddt, J = 16.9, 10.2, 6.6 Hz, 1H), 5.25 (dq, J = 17.2, 1.5 Hz, 1H), 

5.18 (dq, J = 10.3, 1.2 Hz, 1H), 4.13 (s, 2H), 3.77 (s, 3H), 3.68 – 3.63 (m, 2H). 13C NMR (126 

MHz, CDCl3) δ 165.2, 159.3, 133.0, 133.0, 131.0, 129.5, 128.5, 127.7, 119.5, 113.8, 62.1, 61.2, 

55.3. IR (KBr, cm-1) 3072, 2934, 2836, 1743, 1612, 1513, 1451, 1248, 1176, 1084, 1064, 1026, 

812, 709. HRMS (ESI) Calcd for C18H19NO3 [M+H]+: 298.1443; Found: 298.1449. 

 

General Procedure for synthesis of allylamine electrophiles with an internal olefin: N-

methylhydroxylamine hydrochloride (1.0 equiv.)  and potassium carbonate (3.0 equiv.) were 

placed in a flame-dried vial, followed by tetrahydrofuran (1.0 M). The substituted allyl chloride 

(1.0 equiv.) was then added and allowed to stir at 75 °C overnight. The reaction was filtered to 

remove the solids and the filtrate was washed 3x with 10% HCl. The combined aqueous phases 

were then neutralized with solid KOH, and extracted 3x with Et2O. The combined organics were 

N
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BzCl
DMAP
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CH2Cl2
0 °C
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NR

R

R

R

MeNHOH•HCl
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washed with brine, dried over MgSO4, filtered, and concentrated to afford the crude, impure N-

allyl-N-methylhydroxylamine derivative, which was directly used in the next step without further 

purification (caution: products are volatile). The impure hydroxylamine was placed in a flame-

dried Schlenk flask under a N2 atmosphere and cooled to 0 °C, at which point CH2Cl2 (0.25 M), 

Et3N (1.5 equiv.), and DMAP (1.0 mol%) dissolved in minimal CH2Cl2. Benzoyl chloride (1.2 

equiv.) was added dropwise, and the reaction was allowed to stir for 1 hour at 0 °C, during which 

it became cloudy in composition. The reaction was then quenched with sat. NH4Cl solution and 

extracted with EtOAc. The combined organics were washed with brine, dried over MgSO4, 

filtered, and concentrated to afford a crude residue, which was purified via silica gel 

chromatography to obtain the desired O-benzoylhydroxylamine. 

 (E)-O-benzoyl-N-(but-2-en-1-yl)-N-methylhydroxylamine (2d): Synthesized 

from crotyl chloride according to the general procedure, obtaining the N-methyl-N-

allylhydroxylamine derivative as a pale yellow oil (10 mmol scale; 513.0 mg, 51% crude yield), 

which was used in the next step without further purification. The crude hydroxylamine was further 

benzoylated to produce the title compound as a colorless oil in 78% yield (4.9 mmol scale; 785.2 

mg) after purification via silica gel chromatography. Rf = 0.15 (hexane/EtOAc = 9:1). 1H NMR 

(400 MHz, CDCl3) 13C NMR (101 MHz, CDCl3) δ 165.3, 133.1, 131.1, 129.6, 129.6, 128.5, 125.3, 

63.3, 46.1, 18.0. IR (KBr, cm-1) 3063, 3006, 2966, 2918, 2856, 1742, 1601, 1451, 1262, 1059, 

968, 709.  HRMS (ESI) Calcd for C12H15NO2 [M+H]+: 206.1181; Found: 206.1173. 

N
OBz

2d
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O-benzoyl-N-methyl-N-(3-methylbut-2-en-1-yl)hydroxylamine (2e): 

Synthesized from 1-chloro-3-methylbut-2-ene according to the general procedure, obtaining the 

N-methyl-N-allylhydroxylamine derivative as a yellow oil (5.75 mmol scale; 372.6 mg, 56% crude 

yield), which was used in the next step without further purification. The crude hydroxylamine was 

further benzoylated to produce the title compound as a colorless oil in 52% yield (4.9 mmol scale; 

554.7 mg) after purification via silica gel chromatography. Note: this compound darkens in color 

over a few days’ time with a polar decomposition product appearing on the TLC. Rf = 0.15 

(hexane/EtOAc = 9:1). 1H NMR (400 MHz, CDCl3) δ 8.03 – 7.96 (m, 2H), 7.55 (ddt, J = 8.1, 6.9, 

1.4 Hz, 1H), 7.48 – 7.39 (m, 2H), 5.36 (tt, J = 7.1, 1.5 Hz, 1H), 3.61 (s, 2H), 2.87 (s, 3H), 1.72 (s, 

3H), 1.70 (s, 3H). 13C NMR (101 MHz, CDCl3) 13C NMR (101 MHz, CDCl3) δ 165.3, 137.5, 

133.1, 129.7, 129.6, 128.5, 118.5, 58.7, 46.0, 26.0, 18.3. IR (KBr, cm-1) 3063, 2969, 2915, 2857, 

1742, 1451, 1249, 1059, 709. HRMS (ESI) Calcd for C13H17NO2 [M+H]+: 220.1338; Found: 

220.1344. 

 

2-vinylpyrrolidin-1-yl benzoate (2f): Tert-butyl 2-vinylpyrrolidine-1-carboxylate was prepared 

according to a known procedure.62 The Boc-protected amine (360.6 mg, 1.8 mmol, 1.0 equiv.)  

was placed in a 40 mL vial, followed by a 1:4 mixture of trifluoroacetic acid/CH2Cl2 (3.6 mL, 0.5 

M) and stirred for 2 hours, with occasionally opening the vial to relieve pressure from CO2 

formation. The solvent was then removed and the crude amine•HTFA salt was directly used in the 

next step. The amine salt (1.8 mmol, 1.5 equiv.) was diluted with DMF (3.0 mL, 0.4 M) and cooled 

N
OBz

2e

N
BzO

N
Boc 1. TFA/CH2Cl2, r.t.

2. BPO, K2HPO4
    DMF, 0 °C – r.t.
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to 0 °C, at which point K2HPO4 (627.0 mg, 3.6 mmol. 3.0 equiv.) and 75 wt% benzoyl peroxide 

(387.6 mg, 1.2 mmol, 1.0 equiv.) were added. The reaction was allowed to stir overnight at room 

temperature, at which point it was diluted with water and extracted with EtOAc. The combined 

organics were washed with brine, dried over MgSO4, filtered, and concentrated to afford a brown 

crude residue, which was purified via silica gel chromatography to deliver a yellow oil (104.2 mg, 

40% over 2 steps). Rf = 0.18 (hexane/EtOAc = 17:3). 1H NMR (500 MHz, CDCl3) δ 8.01 – 7.95 

(m, 2H), 7.58 – 7.52 (m, 1H), 7.42 (ddt, J = 7.9, 6.7, 1.1 Hz, 2H), 5.97 (ddd, J = 17.4, 10.3, 7.3 

Hz, 1H), 5.25 (ddd, J = 17.2, 1.6, 1.1 Hz, 1H), 5.13 (ddd, J = 10.3, 1.6, 1.0 Hz, 1H), 3.75 – 3.59 

(m, 2H), 3.04 (d, J = 9.7 Hz, 1H), 2.16 – 2.03 (m, 1H), 2.03 – 1.90 (m, 2H), 1.81 (q, J = 9.9 Hz, 

1H). 13C NMR (126 MHz, CDCl3) δ 165.6, 137.5, 133.1, 129.6, 128.5, 117.7, 70.7, 56.1, 27.1, 

20.4. IR (KBr, cm-1) 3073, 2979, 2857, 1740, 1451, 1261, 1085, 1065, 1026, 923, 709. HRMS 

(ESI) Calcd for C13H15NO2 [M+H]+: 218.1181; Found: 218.1177. 

General Procedure for Pd/NBE reactions: Pd(OAc)2 and P(p-OMe-Ph)3 were placed into a flame-

dried vial with a stir bar. Solid aryl iodide (1; 0.1 mmol) was also added at this stage. The vial was 

sealed and brought into a nitrogen-filled glovebox, and NBE, Cs2CO3, toluene, aryl halide (1; if 

liquid), and hydroxylamine electrophile (2) were added successively. The reaction vial was sealed, 

removed from the glove box, and heated at 100 °C for 18 h (note: the temperature was monitored 

via an alcohol thermometer submerged in a vial filled with silicone oil, not the hot plate’s internal 

thermometer). 

For test-scale reactions (0.1 mmol): Upon completion, the reactions were allowed to cool to room 

temperature, were filtered through a silica plug, concentrated, and placed under vacuum on a 

Schlenk line to remove residual solvent. The internal standard, 1,1,2,2-tetrachloroethane (16.8 mg, 

0.1 mmol), was added to the crude residue, which was then diluted with CDCl3 and analyzed via 
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1H NMR analysis to determine yield and composition. If multiple reactions were conducted at a 

single time, a stock solution of palladium, ligand, and NBE in toluene was prepared. 

For isolation-scale reactions (0.2 mmol): Upon completion, the reactions were allowed to cool 

to room temperature, were filtered through a silica plug, concentrated, and purified via silica gel 

chromatography (EtOAc/hexanes). Some compounds were further purified via preparatory TLC, 

and any impurities found have already been accounted for in the isolated yields. If multiple 

reactions were conducted at a single time, a stock solution of palladium, ligand, and NBE in 

toluene was prepared. 

 

Procedure for 1.0 mmol-scale reaction: Pd(TFA)2 (33.2 mg, 10 mol%) and tris(4-

methoxyphenyl)phosphine (140.9 mg, 40 mol%) were placed in a flame-dried 40 mL vial, which 

was sealed and brought into a nitrogen-filled glove box. Norbornene (70.6 mg, 75 mol%) and 

Cs2CO3 (814.6 mg, 2.5 equiv.) were placed in the vial, followed by toluene (10.0 mL, 0.1 M), 2-

iodoanisole (1a, 234.0 mg, 1.0 equiv.), and amine 2a (382.5 mg, 2.0 equiv.). The vial was sealed, 

removed from the glove box, and heated at 100 °C (monitored by a thermometer submerged in 

silicone oil) for 18 hours. The reaction was then allowed to cool to room temperature, was filtered 

through a silica plug and eluted with Et2O, and concentrated. The resulting crude solid was purified 

via silica gel chromatography (1-2% EtOAc/hexanes) to deliver the desired indole product as a 

white solid in 72% yield (126.5 mg). 

OMe
I + N

OBz
OMe

N

Pd(TFA)2 (10 mol%)
P(p-OMe-Ph)3 (40 mol%)

NBE (75 mol%)

Cs2CO3 (2.5 equiv.)
toluene, 100 °C, 18h1a 2a 3aa
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4-methoxy-1,3-dimethyl-1H-indole (3aa): Synthesized from 1a and 2a according 

to the general procedure. 0.2 mmol scale: 68% yield (26.2 mg); 1.0 mmol scale: 72% yield (126.5 

mg). White solid with MP = 73-75 °C. Rf = 0.52 (hexane/EtOAc = 9:1). 1H NMR (400 MHz, 

CDCl3) δ 7.09 (t, J = 8.0 Hz, 1H), 6.87 (d, J = 8.2 Hz, 1H), 6.66 (d, J = 1.2 Hz, 1H), 6.46 (d, J = 

7.8 Hz, 1H), 3.91 (s, 3H), 3.68 (s, 3H), 2.46 (t, J = 0.9 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 

155.4, 138.9, 125.4, 122.4, 118.4, 110.8, 102.6, 99.0, 55.4, 32.8, 12.1. IR (KBr, cm-1) 3112, 3077, 

2944, 1611, 1501, 1419, 1261, 1095, 773, 730. HRMS (ESI) Calcd for C11H13NO [M+H]+: 

176.1075; Found: 176.1075. 

4,6-dimethoxy-1,3-dimethyl-1H-indole (3ba): Synthesized from 1b and 2a 

according to the general procedure. 0.2 mmol scale: 64% yield (26.4 mg). White solid with MP = 

103 – 105 °C. Rf = 0.27 (hexane/EtOAc = 9:1). 1H NMR (400 MHz, CDCl3) δ 6.55 (d, J = 1.3 Hz, 

1H), 6.31 (d, J = 1.9 Hz, 1H), 6.16 (d, J = 1.9 Hz, 1H), 3.87 (s, 3H), 3.86 (s, 3H), 3.62 (s, 3H), 

2.41 (d, J = 1.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) 13C NMR (101 MHz, CDCl3) δ 157.4, 

155.7, 138.8, 124.0, 113.0, 110.8, 90.9, 85.1, 55.8, 55.3, 32.8, 12.0. IR (KBr, cm-1) 2996, 2963, 

2937, 1619, 1588, 1458, 1315, 1264, 1214, 1146, 1105, 795. HRMS (ESI) Calcd for C12H15NO2 

[M+H]+: 206.1181; Found: 206.1183. 

OMe

N

OMe

NMeO
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2-(4-methoxy-1,3-dimethyl-1H-indol-6-yl)propan-2-ol (3ca): Synthesized 

from 1X and 2a according to the general procedure. 0.2 mmol scale: 51% yield (23.8 mg). White 

solid with MP = 79 - 81 °C. Rf = 0.11 (hexane/EtOAc = 7:3). 1H NMR (400 MHz, CDCl3) δ 6.99 

(d, J = 1.3 Hz, 1H), 6.65 (q, J = 1.1 Hz, 1H), 6.60 (d, J = 1.3 Hz, 1H), 3.93 (s, 3H), 3.68 (s, 3H), 

2.43 (d, J = 1.1 Hz, 3H), 1.80 (s, 1H), 1.66 (s, 6H). 13C NMR (101 MHz, CDCl3) 13C NMR (101 

MHz, CDCl3) δ 155.1, 144.4, 138.6, 125.7, 117.2, 110.6, 98.2, 96.6, 73.3, 55.4, 32.8, 32.2, 12.0. 

IR (KBr, cm-1) 3405, 2971, 2933, 1618, 1577, 1553, 1467, 1416, 1321, 1262, 1179, 1093, 814, 

665, 585. HRMS (ESI) Calcd for C14H19NO2 [M-H2O+H]+: 216.1388; Found: 216.1386. 

6-bromo-4-methoxy-1,3-dimethyl-1H-indole (3da): Synthesized from 1d and 

2a according to the general procedure. 0.2 mmol scale: 61% yield (31.1 mg). White solid with MP 

= 81-82 °C. Rf = 0.45 (hexane/EtOAc = 9:1). 1H NMR (400 MHz, CDCl3) δ 7.03 (d, J = 1.4 Hz, 

1H), 6.62 (t, J = 1.1 Hz, 1H), 6.55 (d, J = 1.4 Hz, 1H), 3.88 (s, 3H), 3.63 (s, 3H), 2.41 (t, J = 0.9 

Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 155.5, 139.1, 125.7, 117.3, 115.4, 111.2, 105.9, 103.1, 

55.6, 32.9, 11.9. IR (KBr, cm-1) 2933, 1603, 1545, 1483, 1467, 1416, 1318, 1247, 1202, 1104, 

1022, 815. HRMS (ESI) Calcd for C11H12BrNO [M+H]+: 254.0181; Found: 254.0182. 

OMe

N
HO

OMe

NBr
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methyl 4-methoxy-1,3-dimethyl-1H-indole-6-carboxylate (3ea): 

Synthesized from 1e and 2a according to the general procedure. 0.2 mmol scale: 58% yield (27.0 

mg). White solid with MP = 99-101 °C. Rf = 0.18 (hexane/EtOAc = 9:1). 1H NMR (400 MHz, 

CDCl3) δ 7.69 (d, J = 1.2 Hz, 1H), 7.12 (d, J = 1.2 Hz, 1H), 6.82 (d, J = 1.1 Hz, 1H), 3.95 (s, 3H), 

3.94 (s, 3H), 3.74 (s, 3H), 2.45 (d, J = 1.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 168.4, 154.8, 

137.9, 128.7, 124.0, 122.0, 111.4, 105.9, 99.4, 55.5, 52.1, 33.0, 11.9. IR (KBr, cm-1) 2948, 1709, 

1576, 1468, 1320, 1265, 1231, 1098, 767. HRMS (ESI) Calcd for C13H15NO3 [M+H]+: 234.1130; 

Found: 234.1140. 

4-methoxy-1,3-dimethyl-6-nitro-1H-indole (3fa): Synthesized from 1f and 

2a according to the general procedure, except using 40 mol% of tris(4-trifluoromethylphenyl) 

phosphine as the ligand. 0.2 mmol scale: 51% yield (22.5 mg). Orange solid with MP = 131 - 133 

°C. Rf = 0.26 (hexane/EtOAc = 9:1). 1H NMR (400 MHz, CDCl3) δ 7.92 (d, J = 1.8 Hz, 1H), 7.32 

(d, J = 1.8 Hz, 1H), 6.94 (t, J = 1.1 Hz, 1H), 3.98 (s, 3H), 3.78 (d, J = 1.1 Hz, 3H), 2.44 (d, J = 1.0 

Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 154.7, 143.7, 136.5, 131.1, 123.0, 112.3, 100.8, 94.4, 

55.8, 33.2, 11.7. IR (KBr, cm-1) 3103, 2924, 1512, 1468, 1320, 1246, 1202, 1103, 1063, 847, 737, 

681. HRMS (ESI) Calcd for C11H12N2O3 [M+H]+: 221.0926; Found: 221.0921. 

OMe

NMeO2C

OMe

NO2N
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4,5-dimethoxy-1,3-dimethyl-1H-indole (3ga): Synthesized from 1g and 2a 

according to the general procedure. 0.2 mmol scale: 47% yield (19.4 mg). Colorless oil. Isolated 

with 20% of side product 4g (accounted for in isolated yield). Rf = 0.29 (hexane/EtOAc = 9:1). 1H 

NMR (400 MHz, CDCl3) δ 6.93 (d, J = 2.0 Hz, 2H), 6.71 (q, J = 1.1 Hz, 1H), 3.95 (s, 3H), 3.91 

(s, 3H), 3.66 (s, 3H), 2.45 (d, J = 1.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 145.1, 143.5, 134.9, 

127.4, 122.6, 114.3, 111.9, 111.7, 109.4, 104.4, 61.6, 58.5, 32.7, 11.3. IR (KBr, cm-1) 2942, 2830, 

1497, 1419, 1299, 1257, 1119, 1063, 1019, 776. HRMS (ESI) Calcd for C12H15NO2 [M+Na]+: 

228.1000; Found: 228.0995. 

4-(methoxymethoxy)-1,3-dimethyl-1H-indole (3ha): Synthesized from 1h and 2a 

according to the general procedure. 0.2 mmol scale: 50% yield (20.4 mg). Colorless oil. Rf = 0.38 

(hexane/EtOAc = 9:1). 1H NMR (500 MHz, CDCl3) δ 7.08 (t, J = 8.0 Hz, 1H), 6.92 (dd, J = 8.2, 

0.7 Hz, 1H), 6.69 (d, J = 1.2 Hz, 1H), 6.66 (dd, J = 7.7, 0.6 Hz, 1H), 5.31 (s, 2H), 3.69 (s, 3H), 

3.54 (s, 3H), 2.49 (d, J = 1.2 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 152.4, 139.2, 125.8, 122.3, 

118.9, 110.5, 103.5, 102.4, 94.5,  56.2, 32.8, 12.1. IR (KBr, cm-1) 3074, 2942, 2824, 1614, 1580, 

1500, 1457, 1421, 1318, 1248, 1152, 1100, 1076, 1011, 923, 774, 730. HRMS (ESI) Calcd for 

C12H15NO2 [M+H]+: 206.1181; Found: 206.1183. 
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4-(benzyloxy)-1,3-dimethyl-1H-indole (3ia): Synthesized from 1i and 2a 

according to the general procedure. 0.2 mmol scale: 46% yield (23.2 mg). White solid with MP = 

53-55 °C. Rf = 0.45 (hexane/EtOAc = 9:1). 1H NMR (400 MHz, CDCl3) δ 7.52 (ddt, J = 7.5, 1.4, 

0.7 Hz, 2H), 7.44 – 7.36 (m, 2H), 7.36 – 7.28 (m, 1H), 7.09 (t, J = 8.0 Hz, 1H), 6.89 (dd, J = 8.2, 

0.7 Hz, 1H), 6.69 (d, J = 1.2 Hz, 1H), 6.53 (d, J = 7.7 Hz, 1H), 5.19 (s, 2H), 3.69 (s, 3H), 2.50 (d, 

J = 1.2 Hz, 3H). δ 13C NMR (101 MHz, CDCl3) 13C NMR (101 MHz, CDCl3) δ 154.3, 139.1, 

137.9, 128.6, 127.7, 127.2, 125.5, 122.4, 118.6, 110.8, 102.9, 100.2, 69.9, 32.8, 12.4. IR (KBr, 

cm-1) 3063, 3032, 2924, 2867, 1614, 1581, 1551, 1500, 1453, 1319, 1259, 1180, 1096, 1024, 771, 

727. HRMS (ESI) Calcd for C10H10ClN [M+H]+: 252.1388; Found: 252.1388. 

4-methoxy-1,3-dimethyl-1H-pyrrolo[3,2-c]pyridine (3ja): Synthesized from 1j 

and 2a according to the general procedure. 0.2 mmol scale: 66% yield (23.1 mg). Tan solid with 

MP = 80-81 °C. Rf = 0.26 (hexane/EtOAc = 4:1). 1H NMR (400 MHz, CDCl3) δ 7.80 (d, J = 6.0 

Hz, 1H), 6.81 (d, J = 5.9 Hz, 1H), 6.69 – 6.64 (m, 1H), 4.05 (s, 3H), 3.68 (s, 3H), 2.42 (d, J = 1.1 

Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 159.6, 142.5, 137.8, 125.3, 112.4, 112.0, 100.5, 53.0, 

32.8, 11.6. IR (KBr, cm-1) 3007, 2950, 2927, 1605, 1573, 1482, 1468, 1307, 1186, 1103, 789, 638. 

HRMS (ESI) Calcd for C10H12N2O [M+H]+: 177.1028; Found: 177.1028. 
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1,3,4-trimethyl-1H-indole (3ka): Synthesized from 1k and 2a according to the 

general procedure. 0.2 mmol scale: 43% yield (13.8 mg). Rf = 0.52 (hexane/EtOAc = 9:1). 1H 

NMR (400 MHz, CDCl3) δ 7.13 – 7.03 (m, 2H), 6.80 (ddt, J = 6.4, 1.7, 0.9 Hz, 1H), 6.76 (q, J = 

1.1 Hz, 1H), 3.69 (s, 3H), 2.72 (d, J = 0.9 Hz, 3H), 2.50 (d, J = 1.1 Hz, 3H). 13C NMR (101 MHz, 

CDCl3) δ 137.6, 131.6, 127.1, 126.9, 121.7, 120.1, 111.1, 107.1, 77.5, 77.2, 76.8, 32.6, 20.1, 13.0. 

The NMR data are in agreement with previously reported spectra.63 

4-(1,3,4-trimethyl-1H-indol-6-yl)morpholine (3la): Synthesized from 1l 

and 2a according to the general procedure. 0.2 mmol scale: 46% yield (22.6 mg). White solid with 

MP = 135 - 137 °C. Rf = 0.15 (hexane/EtOAc = 4:1). 1H NMR (400 MHz, CDCl3) δ 6.65 (d, J = 

1.2 Hz, 1H), 6.56 (dd, J = 2.1, 1.0 Hz, 1H), 6.54 (d, J = 2.1 Hz, 1H), 3.93 – 3.87 (m, 4H), 3.63 (s, 

3H), 3.20 – 3.13 (m, 4H), 2.66 (s, 3H), 2.44 (d, J = 1.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 

147.9, 138.4, 132.1, 125.9, 122.0, 112.8, 111.0, 94.2, 51.6, 32.6, 20.3, 12.9. IR (KBr, cm-1) 2960, 

2908, 2848, 2808, 1618, 1450, 1395, 1312, 1223, 1119, 1012, 875, 807, 775. HRMS (ESI) Calcd 

for C15H20N2O [M+H]+: 245.1654; Found: 245.1648. 

4-chloro-1,3-dimethyl-1H-indole (3ma): Synthesized from 1m and 2a according 

to the general procedure. 0.2 mmol scale: 83% yield (29.9 mg). Yellow oily solid. Rf = 0.43 
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(hexane/EtOAc = 9:1). 1H NMR (500 MHz, CDCl3) δ 7.15 (dd, J = 8.0, 1.1 Hz, 1H), 7.07 (t, J = 

7.8 Hz, 1H), 7.02 (dd, J = 7.5, 1.1 Hz, 1H), 6.81 (q, J = 1.2 Hz, 1H), 3.70 (s, 3H), 2.54 (d, J = 1.1 

Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 138.6, 128.1, 127.1, 125.3, 122.0, 119.6, 111.0, 108.0, 

32.9, 12.2. IR (KBr, cm-1) 3059, 2923, 1612, 1456, 1307, 1206, 1070, 864, 769, 733. HRMS (ESI) 

Calcd for C10H10ClN [M+H]+: 180.0580; Found: 180.0584. 

methyl 1,3-dimethyl-1H-indole-4-carboxylate (3na): Synthesized from 1n and 

2a according to the general procedure. 0.2 mmol scale: 51% yield (20.8 mg). Yellow solid with 

MP = 80-82 °C. Rf = 0.30 (hexane/EtOAc = 9:1). 1H NMR (400 MHz, CDCl3) δ 7.62 (dd, J = 7.4, 

1.0 Hz, 1H), 7.44 (dt, J = 8.2, 0.9 Hz, 1H), 7.21 (t, J = 7.8 Hz, 1H), 6.94 (t, J = 1.0 Hz, 1H), 3.96 

(d, J = 0.7 Hz, 3H), 3.75 (d, J = 0.9 Hz, 3H), 2.39 (d, J = 1.0 Hz, 3H). 13C NMR (101 MHz, CDCl3) 

δ 169.1, 138.5, 130.1, 125.7, 124.2, 122.0, 120.5, 113.2, 110.9, 32.8, 13.2. IR (KBr, cm-1) 3108, 

3067, 2953, 2923, 1717, 1452, 1368, 1265, 1203, 1139, 1089, 1057, 743. HRMS (ESI) Calcd for 

C12H13NO2 [M+H]+: 204.1025; Found: 204.1026. 

1,3-dimethyl-4-nitro-1H-indole (3oa): Synthesized from 1o and 2a according to the 

general procedure, except using 40 mol% of tris(4-trifluoromethylphenyl)phosphine as the ligand. 

0.2 mmol scale: 55% yield (21.0 mg). Yellow/orange solid with MP = 101 - 103 °C. Rf = 0.39 

(hexane/EtOAc = 7:3). 1H NMR (400 MHz, CDCl3) δ 7.81 (dd, J = 7.9, 0.9 Hz, 1H), 7.53 (dd, J 

= 8.2, 0.9 Hz, 1H), 7.22 (t, J = 8.0 Hz, 1H), 7.04 (d, J = 1.1 Hz, 1H), 3.80 (s, 3H), 2.39 (d, J = 1.0 
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Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 143.2, 139.8, 132.0, 120.3, 120.1, 116.8, 115.0, 110.1, 

33.1, 13.0. IR (KBr, cm-1) 3116, 2963, 2922, 1542, 1517, 1351, 1329, 1304, 1061, 793, 725, 598. 

HRMS (ESI) Calcd for C10H10N2O2 [M+H]+: 191.0821; Found: 191.0825. 

1,3-dimethyl-3H-benzo[e]indole (3pa): Synthesized from 1p and 2a-2 according 

to the general procedure, except with with 2a-2, triphenylphosphine as the ligand, and heating at 

120 °C. 0.2 mmol scale: 54% yield (21.0 mg). Colorless oil that changed to a brown oil under 

vacuum. Rf = 0.38 (hexane/EtOAc = 9:1). 1H NMR (400 MHz, CDCl3) δ 8.49 (dd, J = 8.3, 1.2 

Hz, 1H), 7.93 (dd, J = 8.2, 1.4 Hz, 1H), 7.61 (d, J = 8.9 Hz, 1H), 7.56 (ddd, J = 8.4, 6.9, 1.4 Hz, 

1H), 7.48 (d, J = 8.8 Hz, 1H), 7.41 (ddd, J = 8.1, 6.9, 1.3 Hz, 1H), 6.91 (d, J = 1.1 Hz, 1H), 3.85 

(s, 3H), 2.72 (d, J = 1.0 Hz, 3H). 13C NMR (101 MHz, CDCl3) 13C NMR (101 MHz, CDCl3) δ 

134.0, 129.9, 129.4, 128.8, 125.7, 125.7, 123.3, 122.8, 122.7, 121.3, 112.9, 111.2, 32.9, 13.9. IR 

(KBr, cm-1) 3044, 2933, 2860, 1597, 1402, 1292, 1124, 799, 743, 688. HRMS (ESI) Calcd for 

C14H13N [M+H]+: 196.1126; Found: 196.1128. 

1,3-dimethyl-3H-pyrrolo[3,2-f]quinoline (3qa): Synthesized from 1q and 2a-2 

according to the general procedure, except with 2a-2, triphenylphosphine as the ligand, and at 120 

°C. 0.2 mmol scale: 32% yield (12.5 mg). Light yellow solid with MP = 104 - 107 °C. Rf = 0.12 

(hexane/EtOAc = 7:3). 1H NMR (400 MHz, CDCl3) δ 8.82 (dd, J = 4.3, 1.7 Hz, 1H), 8.77 – 8.71 

(m, 1H), 7.87 (d, J = 9.1 Hz, 1H), 7.70 (d, J = 9.1 Hz, 1H), 7.44 (dd, J = 8.4, 4.3 Hz, 1H), 6.97 (d, 
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J = 1.1 Hz, 1H), 3.88 (s, 3H), 2.67 (d, J = 1.0 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 146.5, 

145.6, 133.5, 131.3, 126.7, 124.8, 123.7, 120.6, 120.4, 114.6, 113.4, 33.1, 13.6. IR (KBr, cm-1) 

3052, 2926, 2859, 1590, 1535, 1523, 1462, 1388, 1368, 1292, 1120, 990, 807, 622, 605. HRMS 

(ESI) Calcd for C13H12N2 [M+H]+: 197.1079; Found: 197.1081. 

1,3-dimethyl-3H-benzofuro[2,3-e]indole (3ra): Synthesized from 1r and 

2a-2 according to the general procedure, except with with 2a-2, triphenylphosphine as the ligand, 

and heating at 120 °C. 0.2 mmol scale: 42% yield (19.6 mg). Colorless oil. Rf = 0.42 

(hexane/EtOAc = 9:1). 1H NMR (500 MHz, CDCl3) δ 7.95 – 7.91 (m, 1H), 7.73 (d, J = 8.5 Hz, 

1H), 7.64 (dt, J = 8.1, 0.8 Hz, 1H), 7.39 – 7.31 (m, 2H), 7.25 (d, J = 8.5 Hz, 1H), 6.87 (d, J = 1.2 

Hz, 1H), 3.82 (s, 3H), 2.68 (d, J = 1.1 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 155.9, 151.0, 137.9, 

126.5, 125.7, 124.6, 122.5, 119.5, 114.8, 114.8, 113.8, 111.6, 109.4, 105.3,  33.3, 11.5. IR (KBr, 

cm-1) 3053, 2291, 1642, 1482, 1464, 1420, 1323, 1291, 1195, 1170, 1118, 1054, 950, 770, 785, 

736. HRMS (ESI) Calcd for C16H13NO [M+H]+: 236.1075; Found: 236.1073. 

1-benzyl-4-methoxy-3-methyl-1H-pyrrolo[3,2-c]pyridine (3jb): 

Synthesized from 1c and 2b according to the general procedure, except with heating at 80 °C. 0.2 

mmol scale: 43% yield (21.4 mg). Pale yellow oil. Rf = 0.31 (hexane/EtOAc = 4:1). 1H NMR (400 

MHz, CDCl3) δ 7.77 (d, J = 6.0 Hz, 1H), 7.34 – 7.23 (m, 3H), 7.12 – 7.05 (m, 2H), 6.79 (d, J = 6.0 
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Hz, 1H), 6.73 (d, J = 1.3 Hz, 1H), 5.19 (s, 2H), 4.07 (s, 3H), 2.44 (d, J = 1.1 Hz, 3H). 13C NMR 

(126 MHz, CDCl3) δ 159.7, 142.3, 138.1, 137.3, 128.9, 127.9, 126.9, 124.6, 112.7, 112.7, 100.8, 

53.1, 50.1, 11.7. IR (KBr, cm-1) 3063, 3030, 2948, 2863, 1604, 1574, 1476, 1309, 1185, 1103, 

1029, 784, 699. HRMS (ESI) Calcd for C16H16N2O [M+H]+: 253.1341; Found: 253.1346. 

4-methoxy-1-(4-methoxybenzyl)-3-methyl-1H-pyrrolo[3,2-

c]pyridine (3jc): Synthesized from 1c and 2c according to the general procedure, except with 

heating at 80 °C. 0.2 mmol scale: 57% yield (32.2 mg). Tan solid with MP = 74 - 76 °C. Rf = 0.19 

(hexane/EtOAc = 4:1). 1H NMR (400 MHz, CDCl3) δ 7.76 (d, J = 6.0 Hz, 1H), 7.07 – 7.01 (m, 

2H), 6.86 – 6.81 (m, 2H), 6.80 (d, J = 6.0 Hz, 1H), 6.70 (q, J = 1.1 Hz, 1H), 5.12 (s, 2H), 4.05 (s, 

3H), 3.77 (s, 3H), 2.42 (d, J = 1.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 159.6, 159.3, 142.2, 

138.0, 129.3, 128.4, 124.5, 114.3, 112.7, 112.6, 100.9, 55.4, 53.1, 49.6, 11.8. IR (KBr, cm-1) 2950, 

2835, 1604, 1573, 1546, 1514, 1476, 1305, 1250, 1177, 1102, 1075, 1034, 785, 614. HRMS (ESI) 

Calcd for C17H18N2O2 [M+H]+: 283.1447; Found: 283.1445. 

3-ethyl-4-methoxy-1-methyl-1H-indole (3ad): Synthesized from 1a and 2d 

according to the general procedure. 0.2 mmol scale: 27% yield (10.4 mg); isolated with 38% yield 

(14.5 mg) of 3ad’ for a total of 65% yield. Colorless oil. Rf = 0.56 (hexane/Et2O = 9:1). 1H NMR 

(400 MHz, CDCl3) δ 7.11 (t, J = 8.0 Hz, 1H), 6.88 (dd, J = 8.2, 0.7 Hz, 1H), 6.69 (d, J = 1.1 Hz, 
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1H), 6.47 (dd, J = 7.8, 0.7 Hz, 1H), 3.92 (s, 3H), 3.70 (s, 3H), 2.91 (qd, J = 7.4, 1.0 Hz, 2H), 1.28 

(t, J = 7.4 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 155.2, 139.0, 124.2, 122.3, 118.2, 117.7, 102.6, 

99.0, 55.3, 32.9, 20.3, 15.9. IR (KBr, cm-1) 3071, 2958, 1870, 2836, 1611, 1500, 1467, 1336, 1257, 

1178, 1104, 1029, 779, 727. HRMS (ESI) Calcd for C12H15NO [M+H]+: 190.1232; Found: 

190.1229. 

4-methoxy-1-methyl-3-vinylindoline (3ad’): Synthesized from 1a and 2d 

according to the general procedure. 0.2 mmol scale: 38% yield (14.5 mg); isolated with 27% yield 

(10.4 mg) of 3ad for a total of 65% yield. Colorless oil. Rf = 0.39 (hexane/Et2O = 9:1). 1H NMR 

(400 MHz, CDCl3) δ 7.10 (t, J = 8.0 Hz, 1H), 6.31 (d, J = 8.2 Hz, 1H), 6.21 (d, J = 7.8 Hz, 1H), 

6.02 (ddd, J = 17.1, 10.1, 7.0 Hz, 1H), 5.08 (dt, J = 17.2, 1.6 Hz, 1H), 5.03 (dt, J = 10.1, 1.4 Hz, 

1H), 3.91 (ddd, J = 11.7, 7.0, 3.4 Hz, 1H), 3.80 (s, 3H), 3.36 (t, J = 8.8 Hz, 1H), 3.25 (dd, J = 8.9, 

4.3 Hz, 1H), 2.74 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 156.8, 154.8, 138.8, 129.5, 117.9, 114.0, 

101.9, 101.6, 62.2, 55.5, 42.6, 36.5. IR (KBr, cm-1) 3077, 2999, 2949, 2835, 2806, 1612, 1484, 

1334, 1262, 1228, 1065, 912, 767, 726. HRMS (ESI) Calcd for C12H15NO [M+H]+: 190.1232; 

Found: 190.1239. 

4-methoxy-1-methyl-3-(prop-1-en-2-yl)indoline (3ae): Synthesized from 1a 

and 2e according to the general procedure. 0.2 mmol scale: 61% yield (24.6 mg). Pale yellow oil. 

Rf = 0.39 (hexane/Et2O = 9:1). 1H NMR (400 MHz, CDCl3) δ 7.10 (t, J = 8.0 Hz, 1H), 6.30 (d, J 
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= 8.2 Hz, 1H), 6.20 (d, J = 7.8 Hz, 1H), 4.77 (p, J = 1.6 Hz, 1H), 4.70 (dd, J = 2.1, 1.0 Hz, 1H), 

3.92 (dd, J = 9.3, 4.3 Hz, 1H), 3.78 (s, 3H), 3.36 (t, J = 9.2 Hz, 1H), 3.27 (dd, J = 9.0, 4.3 Hz, 1H), 

2.73 (s, 3H), 1.75 (dd, J = 1.5, 0.8 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 156.8, 155.3, 146.0, 

129.5, 117.8, 110.7, 101.7, 101.5, 61.9, 55.5, 46.3, 36.4, 20.3. IR (KBr, cm-1) 3072, 2965, 2835, 

2807, 1646, 1610, 1484, 1373, 1334, 1262, 1224, 1066, 889, 786, 756, 721. HRMS (ESI) Calcd 

for C13H17NO [M+H]+: 204.1388; Found: 204.1387. 

8-methoxy-9-methylene-2,3,9,9a-tetrahydro-1H-pyrrolo[1,2-a]indole 

(3af’): Synthesized from 1a and 2f according to the general procedure, except with 1.5 equiv. of 

2f. 3af’ was observed by crude NMR analysis, but isomerized to 3af upon purification. 31 μmol 

scale: NMR yield = 31%. 1H NMR (500 MHz, CDCl3) δ 7.11 (t, J = 8.1 Hz, 1H), 6.34 (dd, J = 

8.3, 0.7 Hz, 1H), 6.31 (dd, J = 7.9, 0.7 Hz, 1H), 5.74 (dd, J = 2.6, 1.2 Hz, 1H), 5.06 (dd, J = 2.2, 

1.2 Hz, 1H), 4.42 (ddt, J = 9.2, 7.0, 2.4 Hz, 1H), 3.87 (s, 3H), 3.43 (ddd, J = 10.2, 6.3, 5.5 Hz, 1H), 

2.14 – 2.07 (m, 1H), 1.94 – 1.85 (m, 2H), 1.63 – 1.58 (m, 1H), 1.54 – 1.48 (m, 1H) (note: peaks 

are estimated to the best of our ability based on the crude NMR spectrum). HRMS (ESI) Calcd 

for C13H15NO [M+H]+: 202.1232; Found: 202.1237. 

8-methoxy-9-methyl-2,3-dihydro-1H-pyrrolo[1,2-a]indole (3af): 

Synthesized from 1a and 2f according to the general procedure, except with 1.5 equiv. of 2f. 

Obtained upon subjecting 3af’, the product observed via crude NMR analysis, to purification via 
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silica gel chromatography; the indoline isomerized to the aromatic indole. 0.1 mmol scale: 33% 

yield (6.7 mg). Tan solid with MP = 109 – 111 °C. Rf = 0.25 (hexane/Et2O = 9:1). 1H NMR (500 

MHz, CDCl3) δ 6.98 (t, J = 7.9 Hz, 1H), 6.81 (d, J = 8.0 Hz, 1H), 6.44 (d, J = 7.8 Hz, 1H), 3.99 (t, 

J = 7.0 Hz, 2H), 3.90 (s, 3H), 2.89 (t, J = 7.4 Hz, 2H), 2.56 (p, J = 7.2 Hz, 2H), 2.40 (s, 3H). 13C 

NMR (126 MHz, CDCl3) δ 154.9, 139.8, 134.2, 122.4, 120.8, 103.0, 101.2, 99.2, 55.4, 43.9, 27.9, 

22.9, 11.5. IR (KBr, cm-1) 3083, 2925, 2854, 1615, 1566, 1498, 1447, 1254, 1127, 1034, 770, 725. 

HRMS (ESI) Calcd for C13H15NO [M+H]+: 202.1232; Found: 202.1227. 
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2.5. 1H-NMR and 13C-NMR Spectra 

Figure 2.5. 1H NMR Spectrum of 1c 

 

Figure 2.6. 13C NMR Spectrum of 1c 
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Figure 2.7. 1H NMR Spectrum of 2a-2 

 

Figure 2.8. 13C NMR Spectrum of 2a-2 
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Figure 2.9. 1H NMR Spectrum of 2c 

 

Figure 2.10. 13C NMR Spectrum of 2c 
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Figure 2.11. 1H NMR Spectrum of 2d 

 

Figure 2.12. 13C NMR Spectrum of 2d 
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Figure 2.13. 1H NMR Spectrum of 2e 

 

Figure 2.14. 13C NMR Spectrum of 2e 
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Figure 2.15. 1H NMR Spectrum of 2f 

 

Figure 2.16. 13C NMR Spectrum of 2f 
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Figure 2.17. 1H NMR Spectrum of 3aa 

 

Figure 2.18. 13C NMR Spectrum of 3aa 
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Figure 2.19. 1H NMR Spectrum of 3ba 

 

Figure 2.20. 13C NMR Spectrum of 3ba 
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Figure 2.21. 1H NMR Spectrum of 3ca  

 

Figure 2.22. 13C NMR Spectrum of 3ca 
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Figure 2.23. 1H NMR Spectrum of 3da 

 

Figure 2.24. 13C NMR Spectrum of 3da 
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Figure 2.25. 1H NMR Spectrum of 3ea 

 

Figure 2.26. 13C NMR Spectrum of 3ea 
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Figure 2.27. 1H NMR Spectrum of 3fa 

 

Figure 2.28. 13C NMR Spectrum of 3fa 
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Figure 2.29. 1H NMR Spectrum of 3ga 

 

Figure 2.30. 13C NMR Spectrum of 3ga 
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Figure 2.31. 1H NMR Spectrum of 3ha  

 

Figure 2.32. 13C NMR Spectrum of 3ha 
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Figure 2.33. 1H NMR Spectrum of 3ia 

 

Figure 2.34. 13C NMR Spectrum of 3ia 
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Figure 2.35. 1H NMR Spectrum of 3ja 

 

Figure 2.36. 13C NMR Spectrum of 3ja 
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Figure 2.37. 1H NMR Spectrum of 3ka 

 

Figure 2.38. 13C NMR Spectrum of 3ka 
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Figure 2.39. 1H NMR Spectrum of 3la 

 

Figure 2.40. 13C NMR Spectrum of 3la 
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Figure 2.41. 1H NMR Spectrum of 3ma 

 

Figure 2.42. 13C NMR Spectrum of 3ma 
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Figure 2.43. 1H NMR Spectrum of 3na 

 

Figure 2.44. 13C NMR Spectrum of 3na 
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Figure 2.45. 1H NMR Spectrum of 3oa 

 

Figure 2.46. 13C NMR Spectrum of 3oa 
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Figure 2.47. 1H NMR Spectrum of 3pa 

 

Figure 2.48. 13C NMR Spectrum of 3pa 
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Figure 2.49. 1H NMR Spectrum of 3qa 

 

Figure 2.50. 13C NMR Spectrum of 3qa 
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Figure 2.51. 1H NMR Spectrum of 3ra 

 

Figure 2.52. 13C NMR Spectrum of 3ra 
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Figure 2.53. 1H NMR Spectrum of 3jb 

 

Figure 2.54. 13C NMR Spectrum of 3jb 
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Figure 2.55. 1H NMR Spectrum of 3jc 

 

Figure 2.56. 13C NMR Spectrum of 3jc 
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Figure 2.57. 1H NMR Spectrum of 3ad 

 

Figure 2.58. 13C NMR Spectrum of 3ad 
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Figure 2.59. 1H NMR Spectrum of 3ad’ 

 

Figure 2.60. 13C NMR Spectrum of 3ad’ 
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Figure 2.61. 1H NMR Spectrum of 3ae’ 

 

Figure 2.62. 13C NMR Spectrum of 3ae’ 
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Figure 2.63. Crude 1H NMR Spectrum of 3af’ 

 

Figure 2.64. 1H NMR Spectrum of 3af’ (best approximations) 
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Figure 2.65. 1H NMR Spectrum of 3af 

 

Figure 2.66. 13C NMR Spectrum of 3af 
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CHAPTER 3 

 

 

Studies Toward the Synthesis of C3,C3,C4-Trisubstituted Indolines via the 

Palladium/Norbornene-Catalyzed Ortho-Amination/Ipso-Reductive Heck Cyclization 

 

 

 

3.1. Introduction 

As an extension of our previously developed indole synthesis, we report the synthesis of 

C3,C3,C4-trisubstituted indolines via the palladium/norbornene cooperative catalysis. The 

transformation is realized by utilizing N-benzoyloxy allylamines to regioselectively aminate at the 

arene ortho-position, which is followed by a reductive Heck cyclization to afford the desired 

indoline products. A wide variety of functional groups have been demonstrated in this reaction, 

and the size of the ortho-substituent seems to have a significantly reduced impact reaction yield 

compared to our previously reported indole synthesis. Moreover, chiral all-carbon quaternary 

centers have been accessed using this method and a preliminary result of 46% ee has been obtained. 
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Figure 3.1. Synthesis of Indolines via Pd/NBE Cooperative Catalysis 

 

The synthesis of indole heterocycles has been of great interest to synthetic chemists due to 

their prevalence in natural products and bioactive molecules.1-6 Indolines, their saturated 

derivative, have also received such interest,7, 8 in part due to their prevalence in naturally occurring 

alkaloids.9 While indole synthesis has been thoroughly explored in the literature, the synthesis of 

multi-substituted indolines in a modular manner still remains to be challenging. Many methods 

have been developed to date that can directly convert an indole into a multi-functionalized 

indoline;7 however, direct assembly of the heterocyclic ring is less common. Carbon–hydrogen 

(C–H) bond activation has been used to achieve this, with examples from the literature including 

intramolecular C–H bond amination (Scheme 3.1a)10, 11 and multi-component coupling with a 

diaziridinone reagent (Scheme 3.1b).12-14 
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Palladium/norbornene (Pd/NBE) cooperative catalysis, on the other hand, presents a 

unique opportunity for the construction of these heterocycles through the regioselective 

difunctionalization of an aryl halide and its unactivated ortho-C–H bond.15-20 First reported by 

Catellani in 1997 with the ortho-alkylation of aryl halides with alkyl halides,21 this catalytic duo 

allows for the regioselective installation of an electrophile at the arene ortho position and a 

nucleophile at the arene ipso position. Naturally, the nucleophile and electrophile can be tethered 

in one molecule, allowing for annulative transformations to take place.22 In particular for indole 

derivatives, in a seminal work, Lautens showed that strained 2H-azirines could deliver indole 

products through an ortho-alkylation, ipso amination cascade.23 Later, Liang reported the first use 

of Pd/NBE cooperative catalysis to prepare indolines by using aziridines for the ortho-alkylation, 

ipso-amination cascade (Scheme 3.2b).24 While both of these transformations are elegant 

examples of the heterocycle synthesis, an annulation reaction that could employ an ortho-

amination to “switch” the regioselectivity of these transformations would be conceptually novel 

and could provide access to different substitution patterns on the heterocycles. In 2013, the first 

ortho-amination transformation was reported by our group, which allowed for a wide variety of 

tertiary amines to be prepared using Pd/NBE cooperative catalysis (Scheme 3.2a).25 Recently, our 

group expanded upon this chemistry, with a two-component synthesis of indoles using bifunctional 

N-benzoyloxy allylamine reagents to regioselectively construct the heterocycles through an ortho-

amination, ipso-Heck cyclization cascade (Scheme 3.2c).26 
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Scheme 3.2. Synthesis of Indoles and Indoles via Pd/NBE Cooperative Catalysis 

 

In this work, we report an evolution of this indole synthesis, whereupon a reductive Heck 

cyclization takes place instead of a typical Heck cyclization to deliver indoline products bearing 

an all-carbon quaternary center. Moreover, this transformation has the potential to prepare both 

achiral and chiral quaternary centers, depending on the substituent bound to the olefin in the amine 

electrophile (Scheme 3.3). 
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Scheme 3.3. This work – Indoline Synthesis via an Otho-Amination/Reductive Heck Cyclization 

Cascade 

 

3.2. Results & Discussion 
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Pd(0) precatalysts performing less efficiently in the reaction (entries 5-7). Similar to our indole-

forming reaction, increasing the polarity of the solvent by using a 1:1 mixture of toluene and 

dioxane resulted in a reduced yield, with dioxane alone further reducing the yield (entries 8 and 

9). 

Table 3.1. Selected Reaction Optimizationa,b 
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Cs2CO3 (2.5 equiv.)
iPrOH (1.2 equiv.)

toluene (0.1 M)
100 °C, 18 h

‘standard’ conditions

1a
1.0 equiv.

2a
2.0 equiv.

N
Me

3aa

OMe
MeO

+

4a

OMe

H

H

Entry Change from the 
‘standard’ condition Yield of 3aa (%)b Yield of 4a (%)b

1

2

3

4

5

6

7

8

9

none

Pd2dba3 as the pre-catalyst

1:1 1,4-dioxane/toluene
as solvent

1,4-dioxane as solvent

P(p-OMe-Ph)3 as the ligand

P(p-CF3-Ph)3 as the ligand

P(2-furyl)3 as the ligand

Pd(OAc)2 as the pre-catalyst

Pd G3 dimer as the pre-catalyst

83% (73%c)

71%

58%

39%

73%

65%

64%

71%

61%

10%

n.d.

8%

18%

7%

12%

15%

10%

n.d.

Me

Me Me

Pd

H2
N

OMs

2
Pd G3 dimer



 
 

 
 

134 

aUnless otherwise noted, all reactions were carried out with 1a (0.1 mmol) and 2a (0.2 mmol), in 

1.0 mL of toluene for 18 h. bNMR yields determined using 1,1,2,2-tetrachloroethane as the internal 

standard. cIsolated yield from 1a (0.2 mmol) and 2a (0.4 mmol) in 2.0 mL of toluene for 18 h. 

 With the optimal conditions in hand, we set forth to explore the functional group tolerance 

of the indoline-forming reaction (Scheme 3.4). Gratifyingly, we found that model compound 3aa 

could be isolated in 73% yield. Moreover, electron-rich (3ba, 3ca) and -deficient (3da) 

substituents can be well-tolerated on the aromatic ring with very little perturbation of the indoline 

yield. Moreover, the electron-deficient phosphine ligand, tris(4-trifluoromethylphenyl) phosphine 

can allow for the severely electron-deficient nitro substituents to perform well in this reaction (3ea, 

3oa). Labile functional groups, such as acetals (3ga) and the removable benzyl-protected alcohol 

(3ha) can also perform well in the reaction. Several functional groups that can serve as a handle 

can also be tolerated at the ortho position, including –Cl (3ma), –CO2Me (3na), and –NO2 (3oa). 

Gratifyingly, indolines with fluorinated groups at the ortho position, such as –CF3 (3pa) and –F 

(3qa), can also be prepared in moderate yields. A naphthyl-derived indoline (3ta) can be prepared 

in moderate yield, although this compound appears to be silica unstable since the crude NMR yield 

was nearly 20% higher. Heterocyclic rings were also investigated in this transformation, obtaining 

indolines with pyridine (3ia), quinoline (3ua), and dibenzofuran (3va) rings. 
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Scheme 3.4. Aryl Halide Scope of the Ortho-Amination/Reductive Heck Cyclization Cascadea 

 

aUnless otherwise noted, all reactions were carried out with 1 (0.2 mmol) and 2 (0.4 mmol) in 2.0 
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Alkyl groups, such as –Me (3ja), –Et (3ra), and –iPr (3sa) can also deliver their 

corresponding indoline products in moderate to good yields. These substrates represent a large 

departure from the limitations of our prior indole synthesis, as the –Et- and –iPr-substituted aryl 

iodides did not perform well in that reaction. This is likely due to the absence of a near co-planaer 

intermediate in the reductive cyclization, allowing for more sterically bulky substituents to be 

tolerated at the ortho position in this work (Scheme 3.5). 

Scheme 3.5. Possible Explanation for Difference in Bulky Substituent Tolerability 

 

The scope of the amine coupling partner was also investigated. By changing the R group 

bound to the alkene moiety, indolines bearing all-carbon chiral quaternary centers can be obtained. 

In this regard, we can efficiently access quaternary centers with –Ph (3ab), –nBu (3ac), and –tBu 

(3ad) substituents (Scheme 3.6). Moreover, the drastic increase in steric bulk of the tBu group 

does not drastically reduce the yield of the indoline product. Finally, the removable protecting 

groups –Bn (3ae) and –PMB (3af) were investigated, although these indolines could only prepared 
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in relatively low amounts. Efforts towards improving the efficiency of these bulkier amine 

electrophiles are ongoing. 

Scheme 3.6. Amine Scope of the Ortho-Amination/Reductive Heck Cyclization Cascadea 

 

aUnless otherwise noted, all reactions were carried out with 1 (0.2 mmol) and 2 (0.4 mmol) in 2.0 

mL of toluene for 18 h; all yields are isolated yields. bCarried out with 1 (0.1 mmol) and 2 (0.2 

mmol) in 1.0 mL of toluene for 18 h; NMR yields determined using 1,1,2,2-tetrachloroethane as 

the internal standard. 

 With having investigated the formation of chiral quaternary centers, we wondered whether 

or not this transformation could be achieved enantioselectively. Taking inspiration from previously 

reported enantioselective Heck cyclization transformations27 and enantioselective ipso-Heck 

cyclization reports in Pd/NBE catalysis,28, 29 a handful of chiral monodentate ligands and (S)-

BINAP were surveyed (Scheme 3.7).  
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Scheme 3.7. Preliminary Studies towards the Enantioselective Indoline Synthesisa 

 

aUnless otherwise noted, all reactions were carried out with 1a (0.1 mmol) and 2b (0.2 mmol), in 

1.0 mL of toluene for 18 h; NMR yields determined using 1,1,2,2-tetrachloroethane as the internal 

standard. Enantiomeric excess was determined by using chiral-phase HPLC analysis. 

Unfortunately, phosphite ligands were found to be very inefficient for this transformation. 

Moreover, the reaction is evidently very sensitive to the steric bulk of the ligand, with two bulky 

phosphite ligands returning more than 50% unreacted 1a. While many of the phosphoramidite 

ligands that were surveyed failed to afford the desired product in amounts higher than 15% yield, 

a morpholine-substituted ligand was found to deliver the indoline product in 19% yield. We were 

pleased to find an enantiomeric excess of 46% when using this ligand, which marks a promising 

I

BzO
N

Me

Pd(OAc)2 (10 mol%)
ligand (20 mol%)
NBE (75 mol%)

1a 2b

N
Me3ab

OMe
MeO

+ Ph

Me Ph

Cs2CO3 (2.5 equiv.)
iPrOH (1.2 equiv.)

toluene (0.1 M)
100 °C, 18 h

O
P

O
Ph Ph

Ph Ph

O

O
NR2

NEt2 NBn2

N N

N(Me)Bn

O

5%
53% 4a

5%
33% 4a

8%
55% 4a

19%
46% ee
78% 4a

12%
45% 4a

O
P

O
O

CF3

Ph

Ph

O
P

O
OPh

iPr iPr

iPr

iPr

iPr

iPr

(S)-BINAP

O
P

O
O

51% 1 recovered

70% 1 recovered

4%
34% 4a

2%

4a

MeO
H

H



 
 

 
 

139 

preliminary result. Efforts towards improving the ee of this transformation are ongoing. One 

possible avenue of investigation lies with the norbornene mediator – prior work in an asymmetric 

Pd/NBE Heck cyclization found that changing the substituents bound to the 5- and 6-positions of 

the norbornene mediator can help to further improve the ee of the transformation.29 

3.3. Conclusion  

 In summary, an ortho-amination, ipso-reductive Heck cyclization cascade of aryl iodides 

has been explored. Results show a significantly better reaction scope and functional group 

tolerance than our previous work on the synthesis of indoles using this ortho-amination, ipso-

cyclization strategy, suggesting that the reductive cyclization can occur more smoothly than the 

simple Heck cyclization. This may be attributed to the absence of a near coplanar intermediate, 

which likely limits the steric bulk of the ortho-substituent to a large degree in the former work. 

Moreover, chiral all-carbon quaternary centers have been prepared with this transformation, with 

a preliminary result of 46% ee for the asymmetric transformation being achieved. Currently, 

further exploration of the asymmetric version of this reaction is underway, along with optimizing 

the reaction to better accommodate the removable –Bn and –PMB protecting groups. Another 

direction we are pursuing involves trapping the neopentyl palladium species with a different 

coupling partner aside from hydride for an even larger increase in molecular complexity of the 

indoline products. 

3.4. Experimental 

General Considerations for key reactions: All reaction vials were flame-dried and allowed to cool 

to room temperature while capped in order to remove as much moisture as possible from the glass 

surface. Pd(OAc)2, Pd(TFA)2, and tris(p-methoxyphenyl)phosphine were purchased from Sigma-
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Aldrich and used without further modification. Toluene used in the key reactions was distilled over 

Na/benzophenone, then degassed via feeze-pump-thaw. It was important that cesium carbonate 

was purchased from Strem, as other manufacturers’ Cs2CO3 did not perform as well in the reaction. 

All commercially available substrates were used without further purification; however, if a liquid 

aryl iodide was used, it was first filtered through an alumina plug. All reactions were carried out 

in vials (test-scale reactions, 4 mL vials; isolation-scale reactions, 8 mL vials; 1.0 mmol-scale 

reaction, 40 mL vial) Thin layer chromatography (TLC) analysis was conducted on silica gel plates 

purchased from EMD Chemical (silica gel 60, F254). Infrared spectra were recorded on a Nicolet 

iS5 FT-IR Spectrometer using neat thin film technique. High-resolution mass spectra (HRMS) 

were obtained on an Agilent 6224 Tof-MS spectrometer and are reported as calculated/observed 

m/z. Nuclear magnetic resonance spectra (1H NMR, 13C NMR and 19F NMR) were obtained using 

a Bruker Model DMX 400 (400 MHz, 1H at 400 MHz, 13C at 101 MHz, 19F at 376 MHz); some 

NMR spectra (1H, 13C) were obtained using a Bruker Model DMX 500 (500 MHz, 1H at 500 MHz, 

13C at 125 MHz). For CDCl3 solutions, the chemical shifts were reported as parts per million (ppm) 

referenced to residual proton or carbon of the solvents: CHCl3 δ H (7.26 ppm) and CDCl3 δ C 

(77.16 ppm). Coupling constants were reported in Hertz (Hz). Data for 1H NMR spectra were 

reported as following: chemical shift (δ, ppm), multiplicity (br = broad, s = singlet, d = doublet, t 

= triplet, q = quartet, dd = doublet of doublets, td = triplet of doublets, ddd = doublet of doublet of 

doublets, m = multiplet), coupling constant (Hz), and integration. 

Compounds 1a, 1b, 1e, 1i, 1j, 1l, and 1m-1t are commercially available. Compounds 1c,26 1d,30 

and 1u31 have been previously reported and were prepared via a diazotization procedure31 from 

the corresponding anilines. Compounds 1f,32 1g,33 1h,34 1k,35 1v,36 and 4a,37 have all been 

previously reported in the literature. 
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Figure 3.2. Commercially Available, Known, and New Compounds 
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a flame-dried Schlenk flask under an N2 atmosphere, which was then cooled to 0 °C. Benzoyl 

chloride (3.55 mL, 30.6 mmol, 1.2 equiv.) was added dropwise and the reaction was allowed to 

stir at 0 °C for 1 hour, after which the reaction was quenched with sat. NH4Cl solution. The aqueous 

layer was extracted with EtOAc; the combined organics were washed with brine, dried over 

MgSO4, and filtered. The solution was concentrated, and the crude oil was purified via silica gel 

chromatography (EtOAc/hexanes) to obtain a pale-yellow liquid in 87% yield (4.55 g). 1H NMR 

(400 MHz, CDCl3) δ 8.00 – 7.95 (m, 2H), 7.58 – 7.52 (m, 1H), 7.46 – 7.39 (m, 2H), 4.96 (dq, J = 

2.1, 1.1 Hz, 1H), 4.89 (p, J = 1.6 Hz, 1H), 3.53 (s, 2H), 2.90 (s, 3H), 1.86 (t, J = 1.2 Hz, 3H). 13C 

NMR (126 MHz, CDCl3) δ 165.2, 141.1, 133.1, 129.6, 128.5, 114.9, 67.9, 46.8, 21.1. HRMS 

(ESI) Calcd for C12H15NO2 [M+H]+: 206.1181; Found: 206.1189.	

O-benzoyl-N-methyl-N-(2-phenylallyl)hydroxylamine (2b): (3-bromoprop-1-en-

2-yl)benzene was prepared according to a known procedure.39 N-methylhydroxylamine 

hydrochloride (2.79 g, 33.39 mmol, 1.0 equiv.), K2CO3 (13.8 g, 100.17 mmol, 3.0 eqiuv.), Et2O 

(33.4 mL, 1.0 M), and (3-bromoprop-1-en-2-yl)benzene (6.58 g, 33.39 mmol, 1.0 equiv.) were 

placed in a flame-dried vial and stirred overnight at room temperature. The solids were then 

removed by filtration and the organic solution was washed 3x with 10% HCl. The combined 

aqueous washes were neutralized with solid KOH, then extracted 3x with diethyl ether. The 

combined organics were washed with brine, dried over MgSO4, filtered, and concentrated to afford 

crude N-methyl-N-(2-phenylallyl)hydroxylamine as a solid in 69% yield (3.78 g), which was used 

directly with no further purification. CH2Cl2 (46 mL, 0.25 M), N-methyl-N-(2-

phenylallyl)hydroxylamine (2.0 g, 12.26 mmol, 1.0 equiv.), DMAP (14.7 mg, 0.12 mmol, 0.01 

equiv.), and triethylamine (2.6 mL, 18.39 mmol, 1.5 equiv.) were placed in a flame-dried Schlenk 
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flask under an N2 atmosphere, which was then cooled to 0 °C. Benzoyl chloride (1.71 mL, 14.71 

mmol, 1.2 equiv.) was added dropwise and the reaction was allowed to stir at 0 °C for 1 hour, after 

which the reaction was quenched with sat. NH4Cl solution. The aqueous layer was extracted with 

EtOAc; the combined organics were washed with brine, dried over MgSO4, and filtered. The 

solution was concentrated, and the crude oil was purified via silica gel chromatography 

(EtOAc/hexanes) to obtain a pale-yellow liquid in 98% yield (3.22 g). 1H NMR (500 MHz, CDCl3) 

δ 7.93 – 7.87 (m, 2H), 7.61 – 7.56 (m, 2H), 7.56 – 7.51 (m, 1H), 7.40 (t, J = 7.8 Hz, 2H), 7.34 (td, 

J = 6.9, 1.5 Hz, 2H), 7.28 (dt, J = 8.3, 1.6 Hz, 1H), 5.53 (d, J = 1.1 Hz, 1H), 5.41 – 5.36 (m, 1H), 

4.04 (s, 2H), 2.93 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 165.0, 142.9, 139.8, 133.0, 129.5, 129.4, 

128.5, 128.4, 127.9, 126.5, 117.3, 65.1, 46.2. HRMS (ESI) Calcd for C17H17NO2 [M+H]+: 

268.1338; Found: 268.1348.	

O-benzoyl-N-methyl-N-(2-methylenehexyl)hydroxylamine (2c): 2-

(bromomethyl)hex-1-ene was prepared according to a known procedure,39 and was used without 

prior purification. N-methylhydroxylamine hydrochloride (459 mg, 5.5 mmol, 1.0 equiv.), K2CO3 

(2.28 g, 16.5 mmol, 3.0 eqiuv.), Et2O (7.6 mL, 0.72 M), and crude 2-(bromomethyl)hex-1-ene 

(459 mg, 5.5 mmol, 1.0 equiv.) were placed in a flame-dried vial and stirred overnight at room 

temperature. The solids were then removed by filtration and the organic solution was washed 3x 

with 10% HCl. The combined aqueous washes were neutralized with solid KOH, then extracted 

3x with diethyl ether. The combined organics were washed with brine, dried over MgSO4, filtered, 

and concentrated to afford crude N-methyl-N-(2-methylenehexyl)hydroxylamine as a yellow oil 

in 45% yield (356.7 mg), which was used directly with no further purification. CH2Cl2 (10.0 mL, 

0.25 M), N-methyl-N-(2-methylenehexyl)hydroxylamine (356.7 mg, 2.50 mmol, 1.0 equiv.), 
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DMAP (2.4 mg, 0.02 mmol, 0.01 equiv.), and triethylamine (0.52 mL, 3.74 mmol, 1.5 equiv.) were 

placed in a flame-dried Schlenk flask under an N2 atmosphere, which was then cooled to 0 °C. 

Benzoyl chloride (0.35 mL, 2.99 mmol, 1.2 equiv.) was added dropwise and the reaction was 

allowed to stir at 0 °C for 1 hour, after which the reaction was quenched with sat. NH4Cl solution. 

The aqueous layer was extracted with EtOAc; the combined organics were washed with brine, 

dried over MgSO4, and filtered. The solution was concentrated, and the crude oil was purified via 

silica gel chromatography (EtOAc/hexanes) to obtain a pale-yellow liquid in 57% yield (352.6 

mg). 1H NMR (500 MHz, CDCl3) δ 8.00 – 7.95 (m, 2H), 7.57 – 7.51 (m, 1H), 7.42 (t, J = 7.7 Hz, 

2H), 5.01 (s, 1H), 4.90 – 4.87 (m, 1H), 3.54 (s, 2H), 2.89 (s, 3H), 2.22 – 2.15 (m, 2H), 1.44 (p, J 

= 7.8, 7.3 Hz, 2H), 1.32 (dq, J = 14.4, 7.3 Hz, 2H), 0.89 (t, J = 7.3 Hz, 3H). 13C NMR (126 MHz, 

CDCl3) δ 165.2, 145.1, 133.0, 129.6, 129.6, 128.5, 113.8, 66.6, 46.8, 34.0, 29.9, 22.5, 14.1. IR 

(KBr, cm-1) HRMS (ESI) Calcd for C15H21NO2 [M+H]+: 248.1651; Found: 248.1660.	

O-benzoyl-N-methyl-N-(2-methylenehexyl)hydroxylamine (2d): 2-

(bromomethyl)-3,3-dimethylbut-1-ene was prepared according to a known procedure.40 N-

methylhydroxylamine hydrochloride (835.2 g, 10.0 mmol, 1.0 equiv.), K2CO3 (4.15 g, 30.0 mmol, 

3.0 eqiuv.), Et2O (10.0 mL, 1.0 M), and crude 2-(bromomethyl)-3,3-dimethylbut-1-ene (~10.0 

mmol, 1.0 equiv.) were placed in a flame-dried vial and stirred overnight at room temperature. The 

solids were then removed by filtration and the organic solution was washed 3x with 10% HCl. The 

combined aqueous washes were neutralized with solid KOH, then extracted 3x with diethyl ether. 

The combined organics were washed with brine, dried over MgSO4, filtered, and concentrated to 

afford crude N-(3,3-dimethyl-2-methylenebutyl)-N-methylhydroxylamine as a yellow liquid in 

15% yield (212.4 mg), which was used directly with no further purification. CH2Cl2 (5.9 mL, 0.25 
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M), N-(3,3-dimethyl-2-methylenebutyl)-N-methylhydroxylamine (212.4 mg, 1.48 mmol, 1.0 

equiv.), DMAP (1.8 mg, 0.015 mmol, 0.01 equiv.), and triethylamine (0.31 mL, 2.22 mmol, 1.5 

equiv.) were placed in a flame-dried Schlenk flask under an N2 atmosphere, which was then cooled 

to 0 °C. Benzoyl chloride (0.21 mL, 1.78 mmol, 1.2 equiv.) was added dropwise and the reaction 

was allowed to stir at 0 °C for 1 hour, after which the reaction was quenched with sat. NH4Cl 

solution. The aqueous layer was extracted with EtOAc; the combined organics were washed with 

brine, dried over MgSO4, and filtered. The solution was concentrated, and the crude oil was 

purified via silica gel chromatography (EtOAc/hexanes) to obtain a pale-yellow liquid in 85% 

yield (312.9 mg).1H NMR (400 MHz, CDCl3) 1H NMR (500 MHz, CDCl3) δ 8.01 – 7.94 (m, 2H), 

7.55 (tt, J = 7.0, 1.3 Hz, 1H), 7.46 – 7.41 (m, 2H), 5.19 (d, J = 1.3 Hz, 1H), 5.05 – 4.99 (m, 1H), 

3.62 (s, 2H), 2.93 (s, 3H), 1.13 (s, 9H). 13C NMR (126 MHz, CDCl3) δ 165.2, 151.8, 133.0, 129.7, 

129.5, 128.5, 110.9, 62.8, 46.8, 35.5, 29.4. IR (KBr, cm-1) HRMS (ESI) Calcd for C15H21NO2 

[M+H]+: 248.1651; Found: 248.1658. 

	

 

General procedure for N-benzyl benzoyloxy allylamine synthesis: (1) 3-methylallylamine (1.0 

equiv.) was added to a methanolic solution (0.85 M) of benzaldehyde (1.0 equiv.) with a spatula 

scoop’s worth of Na2SO4 and stirred at room temperature until full formation of the imine was 

observed by TLC (typically 1 hour). NaBH4 (1.2 equiv.) was added slowly at 0 °C and the reaction 

was allowed to stir for an hour at room temperature, at which point it was quenched with sat. 

NH4Cl solution. The aqueous layer was extracted with EtOAc; the combined organics were 

washed with brine, dried over MgSO4, and filtered. The solution was concentrated, and the crude 
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residue was directly used in the next step with no further purification. (2) The N-benzyl-N-

allylamine (1.5 equiv.) was added dropwise to a solution of wet benzoyl peroxide (1.0 equiv.) and 

K2HPO4 (2.0 equiv.) in DMF (0.4 M) at 0 °C. The reaction was then allowed to stir overnight at 

room temperature, at which point it was diluted with water. The aqueous layer was extracted with 

EtOAc; the combined organics were washed with water and brine, dried over MgSO4, and filtered. 

The solution was concentrated, and the crude oil was purified via silica gel chromatography 

(EtOAc/hexanes) to afford the desired product. 

O-benzoyl-N-benzyl-N-(2-methylallyl)hydroxylamine (2e): Synthesized from 

benzaldehyde according to the general procedure, obtaining N-benzyl-2-methylprop-2-en-1-amine 

as a yellow oil (10.0 mmol scale: 1.42 g, 88% crude yield), which was used in the next step without 

further purification. The crude amine was further oxidized to produce the title compound as a 

paleyellow solid in 77% yield (5.37 mmol scale: 1.17 g) after purification via silica gel 

chromatography (EtOAc/hexanes). 1H NMR (400 MHz, CDCl3) δ 7.89 (d, J = 7.2 Hz, 2H), 7.51 

(t, J = 7.4 Hz, 1H), 7.44 (d, J = 7.1 Hz, 2H), 7.38 (t, J = 7.7 Hz, 2H), 7.30 (t, J = 7.2 Hz, 2H), 7.25 

(d, J = 7.0 Hz, 1H), 4.95 (s, 1H), 4.87 (s, 1H), 4.18 (s, 2H), 3.54 (s, 2H), 1.88 (s, 3H). 13C NMR 

(101 MHz, CDCl3) δ 165.1, 141.5, 136.2, 132.9, 129.6, 129.5, 129.5, 128.4, 127.7, 114.8, 64.9, 

62.8, 21.1. IR (KBr, cm-1) HRMS (ESI) Calcd for C18H19NO2 [M+H]+: 282.1494; 

Found:282.1503.	

O-benzoyl-N-(4-methoxybenzyl)-N-(2-methylallyl)hydroxylamine (2f): 

Synthesized from p-methoxybenzaldehyde according to the general procedure, obtaining N-(4-

methoxybenzyl)-2-methylprop-2-en-1-amine as a yellow oil (20 mmol scale: 3.77 g, 99% crude 
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yield), which was used in the next step without further purification. The crude amine was further 

oxidized to produce the title compound as a white solid in 81% yield (10.0 mmol scale; 2.51 g) 

after purification via silica gel chromatography (EtOAc/hexanes). 1H NMR (400 MHz, CDCl3) δ 

7.96 – 7.86 (m, 2H), 7.55 – 7.48 (m, 1H), 7.40 (t, J = 7.7 Hz, 2H), 7.35 (d, J = 8.7 Hz, 2H), 6.89 – 

6.80 (m, 2H), 4.98 – 4.91 (m, 1H), 4.86 (s, 1H), 4.13 (s, 2H), 3.78 (s, 3H), 3.51 (s, 2H). 13C NMR 

(101 MHz, CDCl3) δ 165.1, 159.2, 141.5, 132.9, 130.8, 129.7, 129.5, 128.5, 128.2, 114.7, 113.8, 

64.6, 62.3, 55.3, 21.1. IR (KBr, cm-1) HRMS (ESI) Calcd for C19H21NO3 [M+H]+: 312.1600; 

Found: 312.1600.	

General Procedure for Pd/NBE reactions: Pd(TFA)2 and PPh3 were placed into a flame-dried vial 

with a stir bar. Solid aryl iodides (1; 0.1 mmol) were also added at this stage. The vial was sealed 

and brought into a nitrogen-filled glovebox, where NBE, Cs2CO3, toluene, aryl halide (1; if liquid), 

hydroxylamine electrophile (2), and iPrOH were added successively. The reaction vial was sealed, 

removed from the glove box, and heated at 100 °C for 18 h (note: the temperature was monitored 

via an alcohol thermometer submerged in a vial filled with silicone oil, not the hot plate’s internal 

thermometer). 

For test-scale reactions (0.1 mmol): Upon completion, the reactions were allowed to cool to room 

temperature, were filtered through a silica plug with Et2O, concentrated, and placed under vacuum 

on a Schlenk line to remove residual solvent. The internal standard, 1,1,2,2-tetrachloroethane (16.8 

mg, 0.1 mmol), was added to the crude residue, which was then diluted with CDCl3 and analyzed 

via 1H NMR analysis to determine yield and composition. If multiple reactions were conducted at 

a single time, a stock solution of palladium, ligand, and NBE in toluene was prepared. 

For isolation-scale reactions (0.2 mmol): Upon completion, the reactions were allowed to cool 

to room temperature, were filtered through a silica plug with Et2O, concentrated, and purified via 
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silica gel chromatography (EtOAc or Et2O/hexanes). Some compounds were further purified via 

preparatory TLC, and any impurities found have been accounted for in the isolated yields. If 

multiple reactions were conducted at a single time, a stock solution of palladium, ligand, and NBE 

in toluene was prepared. 

4-methoxy-1,3,3-trimethylindoline (3aa): Synthesized from 1a and 2a according 

to the general procedure. 0.2 mmol scale: 73% yield (28.0 mg). Pale yellow oil. Rf = 0.46 

(hexane/Et2O = 9:1). 1H NMR (400 MHz, CDCl3) δ 7.06 (t, J = 8.0 Hz, 1H), 6.29 (dd, J = 8.2, 0.7 

Hz, 1H), 6.17 (dd, J = 7.8, 0.7 Hz, 1H), 3.79 (s, 3H), 3.04 (s, 2H), 2.73 (s, 3H), 1.38 (s, 6H). 13C 

NMR (101 MHz, CDCl3) δ 156.9, 154.0, 128.9, 123.8, 101.9, 101.4, 70.9, 55.3, 40.9, 36.2, 26.3. 

IR (KBr, cm-1) 3067, 2952, 2864, 2835, 2805, 1603, 1484, 1465, 1422, 1333, 1231, 1199, 1778, 

1102, 1068, 1001, 890, 777, 723. HRMS (ESI) Calcd for C12H17NO [M+H]+: 192.1388; Found: 

192.1389. 

4,6-dimethoxy-1,3,3-trimethylindoline (3ba): Synthesized from 1b and 2a 

according to the general procedure. 0.2 mmol scale: 74% yield (32.8 mg). Colorless oil. Rf = 0.24 

(hexane/Et2O = 9:1). 1H NMR (400 MHz, CDCl3) δ 5.87 (d, J = 2.0 Hz, 1H), 5.76 (d, J = 2.0 Hz, 

1H), 3.78 (s, 3H), 3.77 (s, 3H), 3.04 (s, 2H), 2.72 (s, 3H), 1.34 (s, 6H). 13C NMR (101 MHz, 

CDCl3) δ 161.6, 157.1, 154.4, 116.4, 88.9, 87.4, 71.2, 55.5, 55.3, 40.4, 36.0, 26.5. IR (KBr, cm-1) 
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2953, 2863, 2838, 2805, 1607, 1460, 1247, 1218, 1202, 1149, 1068, 800. HRMS (ESI) Calcd for 

C13H19NO2 [M+H]+: 222.1494; Found: 222.1500. 

2-(4-methoxy-1,3,3-trimethylindolin-6-yl)propan-2-ol (3ca): Synthesized 

from 1c and 2a according to the general procedure. 0.2 mmol scale: 76% yield (37.7 mg). Thick 

brown oil, which later turned to a tan/brown solid. Rf = 0.20 (hexane/EtOAc = 7:3). 1H NMR (400 

MHz, CDCl3) δ 6.44 (d, J = 1.4 Hz, 1H), 6.27 (d, J = 1.4 Hz, 1H), 3.81 (s, 3H), 3.05 (s, 2H), 2.74 

(s, 3H), 1.72 (br s, 1H), 1.58 (s, 6H), 1.36 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 156.5, 153.8, 

150.9, 122.4, 98.6, 97.8, 73.1, 71.1, 55.3, 40.7, 36.2, 31.9, 26.3. IR (KBr, cm-1) 3405, 2956, 2863, 

2804, 1610, 1593, 1461, 1412, 1362, 1306, 1247, 1221, 1171, 1116, 1082, 829, 806, 669. HRMS 

(ESI) Calcd for C15H23NO2 [M+H]+: 250.1807; Found: 250.1805. 

methyl 4-methoxy-1,3,3-trimethylindoline-6-carboxylate (3da): 

Synthesized from 1d and 2a according to the general procedure. 0.2 mmol scale: 74% yield (36.7 

mg). Colorless oil. Rf = 0.14 (hexane/Et2O = 9:1). 1H NMR (400 MHz, CDCl3) 1H NMR (400 

MHz, CDCl3) δ 6.99 (d, J = 1.3 Hz, 1H), 6.81 (d, J = 1.2 Hz, 1H), 3.88 (s, 3H), 3.84 (s, 3H), 3.08 

(s, 2H), 2.76 (s, 3H), 1.37 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 167.7, 156.3, 153.8, 131.0, 

129.0, 103.7, 102.3, 70.7, 55.5, 52.1, 41.1, 35.9, 26.0. IR (KBr, cm-1) 2953, 2866, 2808, 1720, 

1592, 1437, 1414, 1372, 1315, 1227, 1113, 1086, 1012, 854, 769. HRMS (ESI) Calcd for 

C14H19NO3 [M+H]+: 250.1443; Found: 250.1442. 
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4-methoxy-1,3,3-trimethyl-6-nitroindoline (3ea): Synthesized from 1e and 

2a according to the general procedure. 0.2 mmol scale: 58% yield (27.3 mg). Orange solid. Rf = 

0.44 (hexane/Et2O = 9:1). 1H NMR (400 MHz, CDCl3) δ 7.16 (d, J = 1.9 Hz, 1H), 6.93 (d, J = 1.9 

Hz, 1H), 3.86 (s, 3H), 3.16 (s, 2H), 2.79 (s, 3H), 1.37 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 

156.0, 153.8, 149.7, 130.5, 97.9, 96.0, 70.5, 55.7, 41.2, 35.3, 25.9. IR (KBr, cm-1) 3127, 2959, 

2868, 1617, 1523, 1412, 1356, 1332, 1238, 1082, 830, 775, 728. HRMS (ESI) Calcd for 

C12H16N2O3 [M+H]+: 237.1239; Found: 237.1238. 

4,5-dimethoxy-1,3,3-trimethylindoline (3fa) Synthesized from 1f and 2a 

according to the general procedure. 0.2 mmol scale: 53% yield (23.6 mg); isolated with 11% ANP 

reductive elimination side-pdt (yield adjusted accordingly). Yellow oil. Rf = 0.14 (hexane/Et2O = 

9:1). 1H NMR (400 MHz, CDCl3) δ 6.68 (d, J = 8.3 Hz, 1H), 6.15 (d, J = 8.3 Hz, 1H), 3.87 (s, 

3H), 3.79 (s, 3H), 2.99 (s, 2H), 2.68 (s, 3H), 1.40 (s, 6H). 13C NMR (101 MHz, CDCl3) 13C NMR 

(101 MHz, CDCl3) δ 148.0, 146.8, 146.2, 131.0, 112.7, 102.3, 71.4, 60.8, 56.9, 41.2, 36.9, 26.7. 

IR (KBr, cm-1) 2953, 2863, 2829, 2797, 1615, 1486, 1464, 1258, 1063, 1045, 788, 681. HRMS 

(ESI) Calcd for C13H19NO2 [M+H]+: 222.1494; Found: 222.1495. 
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4-(methoxymethoxy)-1,3,3-trimethylindoline (3ga): Synthesized from 1g and 2a 

according to the general procedure. 0.2 mmol scale: 66% yield (29.3 mg). Pale yellow oil. Rf = 

0.25 (hexane/Et2O = 9:1). 1H NMR (400 MHz, CDCl3) δ 7.02 (t, J = 8.0 Hz, 1H), 6.43 (dd, J = 

8.3, 0.8 Hz, 1H), 6.19 (dd, J = 7.8, 0.8 Hz, 1H), 5.18 (s, 2H), 3.48 (s, 3H), 3.05 (s, 2H), 2.73 (s, 

3H), 1.40 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 154.1, 128.9, 124.5, 104.2, 102.0, 93.8, 70.8, 

56.2, 41.0, 36.1, 26.3. IR (KBr, cm-1) 3066, 2954, 2861, 2803, 1607, 1482, 1451, 1404, 1331, 

1296, 1227, 1192, 1154, 1083, 1036, 924, 778, 727, 631. HRMS (ESI) Calcd for C13H19NO2 

[M+H]+: 222.1494; Found: 222.1492. 

4-(benzyloxy)-1,3,3-trimethylindoline (3ha): Synthesized from 1h and 2a 

according to the general procedure. 0.2 mmol scale: 75% yield (40.2 mg). Colorless oil. Rf = 0.43 

(hexane/Et2O = 9:1). 1H NMR (400 MHz, CDCl3) δ 7.44 (d, J = 7.3 Hz, 2H), 7.42 – 7.35 (m, 2H), 

7.32 (td, J = 7.2, 6.0, 3.1 Hz, 1H), 7.05 (t, J = 8.0 Hz, 1H), 6.35 (d, J = 8.2 Hz, 1H), 6.19 (d, J = 

7.7 Hz, 1H), 5.08 (s, 2H), 3.07 (s, 2H), 2.75 (s, 3H), 1.42 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 

155.9, 154.1, 137.9, 128.9, 128.6, 127.7, 127.3, 124.0, 102.7, 101.6, 70.9, 69.7, 41.0, 36.2, 26.4 

IR (KBr, cm-1) 3065, 3031, 2953, 2860, 2803, 1609, 1483, 1451, 1298, 1266, 1227, 1195, 1101, 

1057, 775, 723, 701. HRMS (ESI) Calcd for C18H21NO [M+H]+: 268.1701; Found: 268.1702. 
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4-methoxy-1,3,3-trimethyl-2,3-dihydro-1H-pyrrolo[3,2-c]pyridine (3ia): 

Synthesized from 1i and 2a according to the general procedure. 0.2 mmol scale: 76% yield (29.1 

mg). Yellow oil. Rf = 0.35 (hexane/EtOAc = 4:1). 1H NMR (400 MHz, CDCl3) δ 7.81 (d, J = 5.6 

Hz, 1H), 6.10 (d, J = 5.6 Hz, 1H), 3.91 (s, 3H), 3.15 (s, 2H), 2.78 (s, 3H), 1.34 (s, 6H). 13C NMR 

(101 MHz, CDCl3) δ 160.8, 159.8, 146.8, 115.2, 98.9, 69.8, 52.9, 40.1, 34.3, 26.3. IR (KBr, cm-1) 

2950, 2865, 2821, 1605, 1503, 1453, 1412, 1312, 1236, 1110, 1073, 1053, 999, 797, 687, 614. 

HRMS (ESI) Calcd for C11H16N2O [M+H]+: 193.1341; Found: 193.1349. 

1,3,3,4-tetramethylindoline (3ja): Synthesized from 1j and 2a according to the 

general procedure. 0.2 mmol scale: 72% yield (25.1 mg). Colorless oil. Rf = 0.52 (hexane/Et2O = 

9:1). 1H NMR (400 MHz, CDCl3) δ 7.00 (t, J = 7.7 Hz, 1H), 6.47 (d, J = 7.6 Hz, 1H), 6.36 (d, J = 

7.8 Hz, 1H), 3.02 (s, 2H), 2.73 (s, 3H), 2.32 (s, 3H), 1.37 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 

152.7, 135.4, 133.7, 127.7, 121.1, 105.6, 71.1, 41.3, 36.2, 26.2, 18.7. IR (KBr, cm-1) 3045, 2954, 

2862, 2800, 1597, 1482, 1463, 1290, 1215, 1160, 1067, 773, 739. HRMS (ESI) Calcd for C12H17N 

[M+H]+: 176.1439; Found: 176.1439. 
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4-(1,3,3,4-tetramethylindolin-6-yl)morpholine (3ka): Synthesized from 

1k and 2a according to the general procedure. 0.2 mmol scale: 51% yield (26.4 mg). Pale yellow 

oil. Rf = 0.11 (hexane/EtOAc = 4:1). 1H NMR (400 MHz, CDCl3) δ 6.05 – 5.98 (m, 1H), 5.95 (d, 

J = 2.1 Hz, 1H), 3.83 (dd, J = 5.8, 3.8 Hz, 4H), 3.13 (dd, J = 5.7, 3.8 Hz, 4H), 3.02 (s, 2H), 2.72 

(s, 3H), 2.28 (s, 3H), 1.34 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 153.7, 151.9, 134.0, 128.0, 

108.2, 94.4, 71.4, 67.3, 50.1, 40.6, 36.1, 26.4, 19.0. IR (KBr, cm-1) 2954, 2855, 2811, 1608, 1450, 

1263, 1235, 1186, 1122, 1030, 986, 911, 815. HRMS (ESI) Calcd for C16H24N2O [M+H]+: 

261.1967; Found: 261.1972. 

methyl 1,3,3,4-tetramethylindoline-6-carboxylate (3la): Synthesized 

from 1l and 2a according to the general procedure. 0.2 mmol scale: 68% yield (31.7 mg). Pale 

yellow oil. Rf = 0.36 (hexane/EtOAc = 9:1). 1H NMR (400 MHz, CDCl3) δ 7.19 (dd, J = 1.5, 0.8 

Hz, 1H), 6.95 (d, J = 1.5 Hz, 1H), 3.87 (s, 3H), 3.06 (s, 2H), 2.76 (s, 3H), 2.34 (s, 3H), 1.37 (s, 

6H). 13C NMR (101 MHz, CDCl3) δ 167.9, 152.8, 140.7, 133.5, 129.7, 123.1, 105.9, 70.9, 52.0, 

41.4, 35.9, 25.9, 18.6. IR (KBr, cm-1) 2954, 2866, 2805, 1717, 1589, 1484 1435, 1412, 1299, 1244, 

1210, 1170, 1114, 1035, 995, 875, 769. HRMS (ESI) Calcd for C14H19NO2 [M+H]+: 234.1494; 

Found: 234.1501. 
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4-chloro-1,3,3-trimethylindoline (3ma): Synthesized from 1m and 2a according 

to the general procedure. 0.2 mmol scale: 74% yield (29.0 mg). Pale yellow oil. Rf = 0.53 

(hexane/Et2O = 9:1). 1H NMR (400 MHz, CDCl3) δ 6.99 (t, J = 7.9 Hz, 1H), 6.59 (d, J = 8.0 Hz, 

1H), 6.33 (d, J = 7.8 Hz, 1H), 3.10 (s, 2H), 2.74 (s, 3H), 1.44 (s, 6H). 13C NMR (101 MHz, CDCl3δ 

154.0, 133.9, 130.4, 129.0, 119.1, 105.6, 70.5, 42.1, 35.6, 25.8. IR (KBr, cm-1) 3061, 2957, 2865, 

2811, 1599, 1485, 1448, 1421, 1291, 1202, 1131, 1087, 1002, 961, 840, 771, 731. HRMS (ESI) 

Calcd for C11H14ClN [M+H]+: 196.0893; Found: 196.0891. 

methyl 1,3,3-trimethylindoline-4-carboxylate (3na): Synthesized from 1n and 2a 

according to the general procedure, except with using tris(4-trifluoromethylphenyl)phosphine as 

the ligand. 0.2 mmol scale: 46% yield (20.2 mg). Tan solid. Rf = 0.28 (hexane/Et2O = 9:1). 1H 

NMR (400 MHz, CDCl3) δ 7.16 – 7.06 (m, 2H), 6.59 (dd, J = 7.6, 1.4 Hz, 1H), 3.88 (s, 3H), 3.06 

(s, 2H), 2.75 (s, 3H), 1.42 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 168.6, 153.6, 138.4, 127.7, 

127.7, 119.4, 110.7, 71.7, 51.9, 41.8, 36.1, 25.6. IR (KBr, cm-1) 2952, 2865, 2804, 1724, 1595, 

1446, 1328, 1267, 1127, 1099, 1058, 868, 777, 754. HRMS (ESI) Calcd for C13H17NO2 [M+H]+: 

220.1338; Found: 220.1341. 
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1,3,3-trimethyl-4-nitroindoline (3oa): Synthesized from 1o and 2a according to 

the general procedure. 0.2 mmol scale: 74% yield (30.9 mg). Reddish-orange oil. Rf = 0.39 

(hexane/EtOAc = 9:1). 1H NMR (400 MHz, CDCl3) δ 7.21 – 7.11 (m, 2H), 6.62 (dd, J = 7.4, 1.4 

Hz, 1H), 3.13 (s, 2H), 2.78 (s, 3H), 1.43 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 154.8, 147.2, 

131.4, 128.8, 113.2, 111.4, 85.4, 71.5, 42.2, 35.7, 24.9. IR (KBr, cm-1) 3068, 2958, 2870, 2814, 

1612, 1526, 1457, 1356, 1297, 1132, 1059, 1008, 902, 801, 787, 730. HRMS (ESI) Calcd for 

C11H14N2O2 [M+H]+: 207.1134; Found: 207.1133. 

1,3,3-trimethyl-4-(trifluoromethyl)indoline (3pa): Synthesized from 1p and 2a 

according to the general procedure, except with using tris(4-trifluoromethylphenyl)phosphine as 

the ligand. 0.2 mmol scale: 59% yield (27.2 mg). Pale yellow oil. Product was found to be 

somewhat volatile, so clean spectra could not be obtained. Rf = 0.50 (hexane/Et2O = 9:1). 1H NMR 

(400 MHz, CDCl3) δ 7.20 – 7.14 (m, 1H), 6.95 (dd, J = 7.9, 1.0 Hz, 1H), 6.63 (d, J = 7.9 Hz, 1H), 

3.07 (s, 2H), 2.77 (s, 3H), 1.38 (q, J = 1.1 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 154.2, 135.6, 

135.5, 128.0, 126.3, 126.1, 126.0, 123.4, 119.0, 115.5, 115.4, 115.3, 115.3, 111.0, 71.5, 42.0, 35.9, 

26.1, 26.1, 26.0, 26.0. IR (KBr, cm-1) 3073, 2960, 2871, 2809, 1602, 1482, 1451, 1328, 1309, 

1161, 1122, 1082, 1058, 861, 795, 740, 714. HRMS (ESI) Calcd for C12H14F3N [M+H]+: 

230.1157; Found: 230.1154. 
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4-fluoro-1,3,3-trimethylindoline (3qa): Synthesized from 1q and 2a according to 

the general procedure. 0.2 mmol scale: 55% yield (19.8 mg). Pale yellow oil. Rf = 0.54 

(hexane/Et2O = 9:1). 1H NMR (400 MHz, CDCl3) δ 7.02 (td, J = 8.0, 5.6 Hz, 1H), 6.34 (ddd, J = 

9.3, 8.3, 0.8 Hz, 1H), 6.23 (d, J = 7.8 Hz, 1H), 3.10 (s, 2H), 2.75 (s, 3H), 1.41 (s, 6H). 13C NMR 

(101 MHz, CDCl3) δ 161.2, 158.7, 154.8, 154.7, 129.4, 129.3, 123.3, 123.1, 105.6, 105.4, 103.2, 

103.2, 70.5, 40.7, 40.7, 35.8, 26.7, 26.7. IR (KBr, cm-1) 3067, 2953, 2869, 2809, 1625, 1592, 1489, 

1453, 1220, 1008, 775, 726. HRMS (ESI) Calcd for C11H14FN [M+H]+: 180.1189; Found: 

180.1184. 

4-ethyl-1,3,3-trimethylindoline (3ra): Synthesized from 1r and 2a according to 

the general procedure. 0.2 mmol scale: 59% yield (22.3 mg). Pale yellow oil. Rf = 0.45 

(hexane/Et2O = 9:1). 1H NMR (400 MHz, CDCl3) δ 7.06 (t, J = 7.7 Hz, 1H), 6.55 (dd, J = 7.7, 0.9 

Hz, 1H), 6.35 (dd, J = 7.8, 1.0 Hz, 1H), 3.01 (s, 2H), 2.73 (s, 3H), 2.68 (q, J = 7.5 Hz, 2H), 1.39 

(s, 6H), 1.26 (t, J = 7.6 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 152.7, 140.3, 134.8, 127.9, 119.0, 

105.3, 71.1, 41.4, 36.2, 27.1, 24.6, 15.9. IR (KBr, cm-1) 3044, 2959, 2870, 2799, 1590, 1480, 1448, 

1290, 1007, 789, 740. HRMS (ESI) Calcd for C13H19N [M+H]+: 190.1596; Found: 190.1594. 
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4-isopropyl-1,3,3-trimethylindoline (3sa): Synthesized from 1s and 2a according 

to the general procedure. 0.2 mmol scale: 64% yield (26.2 mg). Pale yellow oil. Rf = 0.45 

(hexane/Et2O = 9:1). 1H NMR (400 MHz, CDCl3) δ 7.09 (t, J = 7.8 Hz, 1H), 6.65 (d, J = 7.8 Hz, 

1H), 6.32 (d, J = 7.7 Hz, 1H), 3.23 (p, J = 6.8 Hz, 1H), 3.03 (s, 2H), 2.73 (s, 3H), 1.41 (s, 6H), 

1.25 (d, J = 6.9 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 152.50, 145.59, 134.04, 128.04, 115.83, 

104.96, 71.14, 41.24, 36.08, 28.57, 27.55, 24.37. IR (KBr, cm-1) 3051, 2959, 2867, 2800, 1593, 

1482, 1446, 1420, 1363, 1287, 1263, 1164, 1131, 1072, 1030, 1007, 791, 740, 633. HRMS (ESI) 

Calcd for C14H21N [M+H]+: 204.1752; Found: 204.1752. 

1,1,3-trimethyl-2,3-dihydro-1H-benzo[e]indole (3ta): Synthesized from 1t and 

2a according to the general procedure. 0.2 mmol scale: 69% yield (29.1 mg). Yellow oil. Rf = 0.39 

(hexane/Et2O = 9:1). 1H NMR (400 MHz, CDCl3) δ 7.91 (d, J = 8.6 Hz, 1H), 7.74 (d, J = 8.2 Hz, 

1H), 7.65 (d, J = 8.6 Hz, 1H), 7.37 (ddd, J = 8.4, 6.8, 1.3 Hz, 1H), 7.18 (ddd, J = 8.0, 6.8, 1.0 Hz, 

1H), 6.94 (d, J = 8.6 Hz, 1H), 3.18 (s, 2H), 2.85 (s, 3H), 1.58 (s, 6H). 13C NMR (101 MHz, CDCl3) 

δ 150.1, 130.6, 129.5, 129.1, 128.9, 128.2, 126.2, 121.7, 121.4, 111.3, 42.0, 36.8, 27.3. IR (KBr, 

cm-1) 3057, 2953, 2860, 2802, 1621, 1592, 1520, 1459, 1367, 1300, 1214, 1143, 1001, 806, 743, 

665. HRMS (ESI) Calcd for C15H17N [M+H]+: 212.1439; Found: 212.1438. 
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1,1,3-trimethyl-2,3-dihydro-1H-pyrrolo[3,2-f]quinoline (3ua): Synthesized 

from 1u and 2a according to the general procedure. 0.2 mmol scale: 78% yield (33.0 mg). 

Yellow/orange oil. Rf = 0.14 (hexane/EtOAc = 7:3). 1H NMR (400 MHz, CDCl3) δ 8.61 (dd, J = 

4.2, 1.7 Hz, 1H), 8.21 (ddd, J = 8.6, 1.7, 0.9 Hz, 1H), 7.90 (dd, J = 8.9, 0.9 Hz, 1H), 7.24 (dd, J = 

8.6, 4.1 Hz, 1H), 7.11 (d, J = 8.9 Hz, 1H), 3.22 (s, 2H), 2.86 (s, 3H), 1.55 (s, 6H). 13C NMR (101 

MHz, CDCl3) δ 150.2, 145.8, 144.1, 130.3, 129.6, 127.6, 125.8, 120.9, 114.2, 71.7, 41.8, 36.3, 

27.5. IR (KBr, cm-1) 2955, 2865, 2807, 1610, 1513, 1463, 1410, 1361, 1319, 1294, 1211, 1180, 

1125, 998, 825, 807, 667. HRMS (ESI) Calcd for C14H16N2 [M+H]+: 213.1392; Found: 213.1392. 

1,1,3-trimethyl-2,3-dihydro-1H-benzofuro[2,3-e]indole (3va): 

Synthesized from 1v and 2a according to the general procedure. 0.2 mmol scale: 51% yield (25.7 

mg). Colorless oil. Rf = 0.46 (hexane/EtOAc = 9:1). 1H NMR (400 MHz, CDCl3) δ 7.81 – 7.77 

(m, 1H), 7.66 (d, J = 8.1 Hz, 1H), 7.51 – 7.47 (m, 1H), 7.31 (td, J = 7.7, 1.5 Hz, 1H), 7.26 (td, J = 

7.6, 1.2 Hz, 1H), 6.54 (d, J = 8.1 Hz, 1H), 3.22 (s, 2H), 2.86 (s, 3H), 1.58 (s, 6H). 13C NMR (101 

MHz, CDCl3) δ 156.3, 153.1, 153.1, 125.3, 125.0, 122.5, 119.9, 119.8, 119.2, 116.7, 111.3, 103.8, 

71.0, 40.6, 36.4, 26.7. IR (KBr, cm-1) 3057, 2957, 2864, 2813, 1645, 1611, 1497, 1454, 1378, 

1328, 1297, 1255, 1172, 1142, 1117, 1011, 921, 799, 775, 747, 736, 559. HRMS (ESI) Calcd for 

C17H17NO [M+H]+: 252.1388; Found: 252.1388. 
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4-methoxy-1,3-dimethyl-3-phenylindoline (3ab): Synthesized from 1a and 2b 

according to the general procedure. 0.2 mmol scale: 56% yield (28.4 mg). Colorless oil. Rf = 0.34 

(hexane/Et2O = 9:1). 1H NMR (400 MHz, CDCl3) 1H NMR (400 MHz, CDCl3) δ 7.31 – 7.23 (m, 

4H), 7.19 – 7.12 (m, 2H), 6.34 (dd, J = 8.3, 0.8 Hz, 1H), 6.25 (dd, J = 7.9, 0.7 Hz, 1H), 3.66 (s, 

3H), 3.50 (d, J = 8.8 Hz, 1H), 3.26 (d, J = 8.7 Hz, 1H), 2.74 (s, 3H), 1.81 (s, 3H). 13C NMR (101 

MHz, CDCl3) δ 157.1, 154.6, 147.7, 129.6, 128.1, 126.3, 126.0, 122.5, 102.2, 101.7, 72.8, 55.3, 

48.5, 36.2, 25.3. IR (KBr, cm-1) 3059, 3022, 2954, 2835, 2806, 1602, 1483, 1462, 1331, 1292, 

1263, 1224, 1160, 1065, 778, 763, 699. HRMS (ESI) Calcd for C17H19NO [M+H]+: 254.1545; 

Found: 254.1550. 

3-n-butyl-4-methoxy-1,3-dimethylindoline (3ac): Synthesized from 1a and 2c 

according to the general procedure. 0.2 mmol scale: 85% yield (39.8 mg). Pale yellow oil. Rf = 

0.47 (hexane/Et2O = 9:1). 1H NMR (400 MHz, CDCl3) δ 7.05 (t, J = 8.0 Hz, 1H), 6.27 (dd, J = 

8.3, 0.7 Hz, 1H), 6.15 (dd, J = 7.8, 0.7 Hz, 1H), 3.78 (s, 3H), 3.18 (d, J = 8.7 Hz, 1H), 2.94 (d, J = 

8.7 Hz, 1H), 2.72 (s, 3H), 1.81 – 1.63 (m, 2H), 1.34 (s, 3H), 1.29 (qd, J = 7.2, 4.0 Hz, 3H), 1.17 – 

1.06 (m, 1H), 0.87 (t, J = 7.2 Hz, 3H). 13C NMR (101 MHz, CDCl3) 13C NMR (101 MHz, CDCl3) 

δ 156.9, 154.2, 128.8, 123.1, 101.7, 101.3, 67.9, 55.2, 44.6, 38.6, 36.2, 27.5, 24.9, 23.5, 14.3. IR 

(KBr, cm-1) 3067, 2954, 2858, 2806, 1602, 1484, 1465, 1261, 1231, 1068, 776, 723. HRMS (ESI) 

Calcd for C15H23NO [M+H]+: 234.1858; Found: 234.1852.	
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3-tert-butyl-4-methoxy-1,3-dimethylindoline (3ad): Synthesized from 1a and 

2d according to the general procedure. 0.2 mmol scale: 57% yield (26.6 mg). Isolated with 9% of 

4a, which could not be separated by preparative TLC (yield has been adjusted). Pale yellow oil. Rf 

= 0.59 (hexane/Et2O = 9:1). 1H NMR (400 MHz, CDCl3) 1H NMR (400 MHz, CDCl3) δ 7.06 (t, 

J = 8.0 Hz, 1H), 6.27 (d, J = 8.2 Hz, 1H), 6.11 (d, J = 7.8 Hz, 1H), 3.75 (s, 3H), 3.49 (d, J = 9.2 

Hz, 1H), 2.75 (d, J = 9.2 Hz, 1H), 2.67 (s, 3H), 1.38 (s, 3H), 0.95 (s, 9H). 13C NMR (101 MHz, 

CDCl3) 13C NMR (101 MHz, CDCl3) δ 157.5, 155.8, 129.0, 121.6, 101.7, 100.8, 66.9, 54.9, 51.0, 

37.9, 36.1, 26.7, 21.8. IR (KBr, cm-1) 3067, 2954, 2869, 2805, 1598, 1484, 1364, 1295, 1263, 

1221, 1068, 775, 728. HRMS (ESI) Calcd for C15H23NO [M+H]+: 234.1858; Found: 234.1856.	

1-benzyl-4-methoxy-3,3-dimethylindoline (3ae): Synthesized from 1a and 2e 

according to the general procedure. 0.1 mmol scale: 30% yield (NMR yield).  

4-methoxy-1-(4-methoxybenzyl)-3,3-dimethylindoline (3af): Synthesized 

from 1a and 2f according to the general procedure. 0.1 mmol scale: 34% yield (NMR yield).  
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3.5. 1H-NMR, 13C-NMR, and 19F-NMR Spectra 

Figure 3.3. 1H NMR Spectrum of 2a 

 

Figure 3.4. 13C NMR Spectrum of 2a  
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Figure 3.5. 1H NMR Spectrum of 2b 

 

Figure 3.6. 13C NMR Spectrum of 2b 
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Figure 3.7. 1H NMR Spectrum of 2c 

 

Figure 3.8. 13C NMR Spectrum of 2c 
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Figure 3.9. 1H NMR Spectrum of 2d 

 

Figure 3.10. 13C NMR Spectrum of 2d
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Figure 3.11. 1H NMR Spectrum of 2e 

 

Figure 3.12. 13C NMR Spectrum of 2e 
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Figure 3.13. 1H NMR Spectrum of 2f 

 

Figure 3.14. 13C NMR Spectrum of 2f 
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Figure 3.15. 1H NMR Spectrum of 3aa 

 

Figure 3.16. 13C NMR Spectrum of 3aa 
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Figure 3.17. 1H NMR Spectrum of 3ba 

 

Figure 3.18. 13C NMR Spectrum of 3ba 
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Figure 3.19. 1H NMR Spectrum of 3ca 

 

Figure 3.20. 13C NMR Spectrum of 3ca 
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Figure 3.21. 1H NMR Spectrum of 3da 

 

Figure 3.22. 13C NMR Spectrum of 3da 
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Figure 3.23. 1H NMR Spectrum of 3ea 

 

Figure 3.24. 13C NMR Spectrum of 3ea 
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Figure 3.25. 1H NMR Spectrum of 3fa 

 

Figure 3.26. 13C NMR Spectrum of 3fa 
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Figure 3.27. 1H NMR Spectrum of 3ga 

 

Figure 3.28. 13C NMR Spectrum of 3ga 
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Figure 3.29. 1H NMR Spectrum of 3ha 

 

Figure 3.30. 13C NMR Spectrum of 3ha 
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Figure 3.31. 1H NMR Spectrum of 3ia 

 

Figure 3.32. 13C NMR Spectrum of 3ia 
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Figure 3.33. 1H NMR Spectrum of 3ja 

 

Figure 3.34. 13C NMR Spectrum of 3ja 
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Figure 3.35. 1H NMR Spectrum of 3ka 

 

Figure 3.36. 13C NMR Spectrum of 3ka 
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Figure 3.37. 1H NMR Spectrum of 3la 

 

Figure 3.38. 13C NMR Spectrum of 3la 
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Figure 3.39. 1H NMR Spectrum of 3ma 

 

Figure 3.40. 13C NMR Spectrum of 3ma 
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Figure 3.41. 1H NMR Spectrum of 3na 

 

Figure 3.42. 13C NMR Spectrum of 3na 
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Figure 3.43. 1H NMR Spectrum of 3oa 

 

Figure 3.44. 13C NMR Spectrum of 3oa 
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Figure 3.45. 1H NMR Spectrum of 3pa 

 

Figure 3.46. 13C NMR Spectrum of 3pa 
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Figure 3.47. 19F NMR Spectrum of 3pa 

 

Figure 3.48. 1H NMR Spectrum of 3qa 
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Figure 3.49. 13C NMR Spectrum of 3qa 

 

Figure 3.50. 19F NMR Spectrum of 3qa 
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Figure 3.51. 1H NMR Spectrum of 3ra 

 

Figure 3.52. 13C NMR Spectrum of 3ra 
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Figure 3.53. 1H NMR Spectrum of 3sa 

 

Figure 3.54. 13C NMR Spectrum of 3sa 
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Figure 3.55. 1H NMR Spectrum of 3ta 

 

Figure 3.56. 13C NMR Spectrum of 3ta 
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Figure 3.57. 1H NMR Spectrum of 3ua 

  

Figure 3.58. 13C NMR Spectrum of 3ua 
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Figure 3.59. 1H NMR Spectrum of 3va 

 

Figure 3.60. 13C NMR Spectrum of 3va 
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Figure 3.61. 1H NMR Spectrum of 3ab 

 

Figure 3.62. 13C NMR Spectrum of 3ab 
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Figure 3.63. 1H NMR Spectrum of 3ac 

 

Figure 3.64. 13C NMR Spectrum of 3ac 
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Figure 3.65. 1H NMR Spectrum of 3ad 

 

Figure 3.66. 13C NMR Spectrum of 3ad 
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3.6. Chiral-Phase HPLC Traces 

Figure 3.67. HPLC trace of racemic 3ab 

 

 

Conditions: CHIRALPAK IB; 3% iPrOH/hexanes; 1.0 mL/min; 4 μL injection volume 

Figure 3.68. HPLC trace of enantioenriched 3ab (46% ee) 

 

 

Conditions: CHIRALPAK IB; 3% iPrOH/hexanes; 1.0 mL/min; 4 μL injection volume 
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CHAPTER 4 

 

 

Unexpected Ortho-Heck Reaction of Aryl Iodides under the Catellani Conditions 

 

 

 

 

4.1. Introduction 

An unexpected ortho-Heck reaction has been discovered during the study of the 

palladium/norbornene (Pd/NBE) catalysis. Under the Catellani reaction conditions in the presence 

of lithium salts and olefins, the Heck coupling takes place at the ortho position instead of the 

commonly observed ipso position; meanwhile, a norbornyl group is introduced at the arene ipso 

position. Systematic deuterium labelling and crossover experiments suggest an unusual 1,4-

palladium migration/intramolecular hydrogen transfer pathway. The knowledge gained in this 

study could provide insights for future development of the Pd/NBE catalysis. 
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Figure 4.1. Ortho-Heck Reaction of Aryl Iodides 

 

Palladium/norbornene (Pd/NBE) cooperative catalysis,1-6 originally discovered by Catellani,7 has 

emerged as a versatile and useful means to achieve vicinal difunctionalization of arenes over the 

past two decades. In a typical Catellani reaction, through forming an aryl-norbornyl-palladacycle 

(ANP) intermediate, an electrophile is coupled at the arene ortho position and a nucleophile or an 

olefin reacts at the ipso position.8-26 In particular, the use of a Heck reaction, the coupling with an 

olefin, for ipso functionalization is among one of the most extensively studied reaction modes in 

the Pd/NBE catalysis (Scheme 4.2a). However, during our recent exploration of a potential ortho 

borylation reaction, an unexpected ortho (instead of ipso) Heck product was observed as the major 

product under typical Catellani conditions, except using catecholboryl chloride as the electrophile 

and cesium acetate as the base (Scheme 4.1). 
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Scheme 4.1. Initial Reaction Design and Unexpected Product 

 

This result is unusual because olefins, such as acrylates, have not been known as electrophiles in 

the Pd/NBE catalysis.1-6 In addition, careful analysis of other Catellani-type reactions also revealed 

formation of similar side-products, though in small quantities (vide infra, Scheme 4.8b).27 The 

intriguing reactivity and site-selectivity “switch” motivated us to better understand this unusual 

reaction, which is anticipated to benefit future development of the Pd/NBE catalysis. Herein, we 

describe the discovery, mechanistic study, and reaction scope of the Pd-catalyzed, NBE-mediated, 

ortho-Heck reaction (Scheme 4.2b). 

Scheme 4.2. Ortho-Heck vs a Typical Catellani Reaction 
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4.2. Results & Discussion 

Our study began with optimizing the reaction conditions using aryl iodide 1a as a model 

substrate (Table 4.1). A high yield of the ortho-Heck product (4a) was obtained using Pd(dba)2 

and trifurylphosphine as the metal/ligand combination (entry 1) and Li2CO3 as the base. The use 

of Bu2BOTf and LiBr as additives significantly increased the yield of the reaction, though their 

roles are not essential for product formation (entries 1-4). LiBr as the sole additive (entry 2) was 

found to substantially increase the yield of the reaction relative to no additives (entry 4). This could 

be due to the bromide anions acting as ligands towards palladium, preventing the carbonate anions, 

which can facilitate formation of the ANP intermediate,1 from coordinating to palladium. As 

expected, in the absence of the Pd catalyst, no ortho-Heck product was observed (entry 5). Using 

Pd(OAc)2 instead of Pd(dba)2 decreased the yield (entry 6). Li2CO3 was found to be essential for 

this transformation, since using K2CO3 or Cs2CO3 instead resulted in significantly diminished 

yields under the current conditions (entries 7-9). The potassium and sodium bases were, however, 

found to perform somewhat better without Bu2BOTf present in the reaction (vide infra). DMF 

proved to be a better solvent, whereas using other solvents, such as the less polar 1,4-dioxane or 

toluene, gave poor results (entries 10 and 11). Finally, addition of nBuI as an electrophile could 

still afford 42% of the ortho-Heck product without furnishing the regular Catellani product (entry 

12). 
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Table 4.1. Selected Optimization of the Reaction Conditionsa (change to chemdraw???) 

 

entry changes from the ‘standard’ conditions yield of 4a (%)b yield of  4aa (%)b 

1 None 80 (69)c 10 

2 Without Bu2BOTf 70 10 

3 Without LiBr 57 21 

4 Without Bu2BOTf or LiBr 28 21 

5 Without catalyst n.d. n.d. 

6 Pd(OAc)2 instead of Pd(dba)2 55 11 

7 Without Li2CO3 n.d. n.d. 

8 K2CO3 instead of Li2CO3 3 1 

9 Cs2CO3 instead of Li2CO3 16 5 

10 1,4-dioxane instead of DMF 4 n.d. 

11 Toluene instead of DMF n.d. n.d. 

12 With 1.0 equiv. nBuId 42 4 

 

aUnless otherwise noted, all reactions were carried out with 1a (0.1 mmol), 2a (0.12 mmol), and 

3a (0.1 mmol) in 1.0 mL of DMF for 18 h. bNMR yields determined using 1,1,2,2-

tetrachloroethane as the internal standard. cConducted with 1a (0.2 mmol), 2a (0.24 mmol), and 
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3a (0.1 mmol) in 2.0 mL of DMF for 18h; isolated yield is reported. dCatellani product 4ab was 

not observed and 25% 1a was recovered. n.d.= not detected. 

 The reaction without the boron additive was also investigated (Table 4.2). In this regard, 

we now observe that other carbonate salts can deliver larger quantities of the desired product 4a. 

It is possible that some interaction between the cations and boron, perhaps formation of a boronate 

complex, caused the reaction to significantly lose efficiency in the presence of the additive. Based 

on these results, LiBr is clearly a critical additive for improving the efficiency of the reaction. For 

example, Cs2CO3 alone essentially did not produce the desired ortho-Heck product. However, the 

addition of LiBr allowed for the reaction to reach a modest 44% yield.  

Table 4.2. Investigating the Base without the Boron Additivea 

 

aAll reactions were carried out with 1a (0.1 mmol), 2a (0.12 mmol), and 3a (0.1 mmol) in 1.0 mL 

of DMF for 18 h. NMR yields determined using 1,1,2,2-tetrachloroethane as the internal standard. 

Regarding the reaction mechanism, two pathways could be proposed for the formation of 

the ortho-Heck product (Scheme 4.3). Path (a) involves first forming the ANP intermediate via 

Not observed 15% 10%

K2CO3

Cs2CO3 Not observed 1% 2%

Not observed 23% 16%

Na2CO3

Not observed 49% 13%Na2CO3

Me
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ortho C−H palladation,28, 29 followed by migratory insertion (or conjugate addition) of the aryl 

group to the olefin. The following β-hydride elimination and C−H reductive elimination steps 

could give the ortho-Heck product. Alternatively, in path (b), a 1,4-palladiuim shift30, 31 could take 

place instead of forming the ANP intermediate, and the resulting aryl-palladium species could then 

undergo a typical Heck reaction pathway to afford the product. 

Scheme 4.3. Possible Reaction Pathways 

 

To differentiate the two mechanisms, a systematic deuterium labeling study was carried out 

(Scheme 4.4). First, we employed a method recently developed by Ackermann and Bechtoldt to 

transform 2a into deuterium labeled 2a-d3.32 When this labeled acrylate was used in place of 2a, 

no deuterium incorporation was observed at the C3 position of the norbornyl group (Scheme 4.4a). 

This result strongly disfavors path (a), in which a hydride would be anticipated to transfer from 

the acrylate beta-position to the norbornyl C3 position. In addition, the C3 hydrogen was found to 

be not originating from a proton source, as the addition of deuterated methanol or acetic acid led 
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to no observable deuteration on the norbornyl moiety (Scheme 4.4b). This result alone excludes a 

pathway involving ANP formation, followed by protonation of the norbornyl group. On the other 

hand, using fully deuterated 1-iodonaphthalene (1i-d7) resulted in complete deuteration at the C3 

position, even in the presence of various proton sources (Scheme 4.4c). Additionally, both the 

deuterium and the aryl group were found to be located at the norbornyl exo positions, as 

characterized by various 2D-NMR experiments. These results indicate that the C3 hydrogen 

originally comes from the arene substrate and could migrate through a 1,4-metal shift.33-35  
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Scheme 4.4. Deuterium Labeling Studiesa,b 

 

aUnless otherwise noted, all reactions were carried out with 1i or 1i-d7 (0.1 mmol), 2a (0.12 mmol), 

and 3a (0.1 mmol) in 1.0 mL of DMF for 18 h. NMR yields determined using 1,1,2,2-
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tetrachloroethane as the internal standard. bNMR (1H or 2H) analysis was used to determine 

deuterium incorporation on the norbornyl ring. 

Moreover, an isotope crossover experiment was conducted with a 1:1 ratio of deuterated 1i-d7 and 

non-deuterated substrate 1a (Scheme 4.5). The absence of deuterium crossover supports an 

intramolecular hydrogen transfer from the aryl ortho position to the norbornyl C3 position. Taken 

together, all of the mechanistic data obtained are consistent with the 1,4-palladium shift pathway 

(b).36, 37 The readily available 1i-d7 also prompted us to investigate whether or not a strong KIE 

could be observed between 1i and 1i-d7. Within 15 minutes of beginning the reaction, 19% yield 

of the product could be obtained with 40% of the deuterated product, suggesting that a KIE of ~1.5 

was being observed. While more data between t = 0 and t = 15 minutes was not obtained, it is 

likely that the ortho-C–H bond is not involved in the rate-determining step of this transformation. 

Scheme 4.5. Isotope Crossover Experiment and Preliminary KIE Resulta,b 

 

  

aUnless otherwise noted, all reactions were carried out with 1i or 1i-d7 (0.1 mmol), 2a (0.12 mmol), 
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tetrachloroethane as the internal standard. bNMR (1H or 2H) analysis was used to determine 

deuterium incorporation on the norbornyl ring. 

Next, the scope and functional group tolerance of the transformation were investigated next 

(Scheme 4.6). First, olefins with a strongly electron-withdrawing group, such as an ester, amide, 

ketone, nitrile, or sulfone, can all be coupled in good yields (4a-4g).38 The reaction is also scalable; 

on a 1 mmol scale, product 4a was isolated in 75% yield. Interestingly, less electron-deficient 

styrene also provided the desired product (4h), albeit in 20% yield. Additionally, the structure of 

product 4d was unambiguously elucidated by X-ray crystallography. Both naphthalene- (4i) and 

quinoline-based (4j) substrates delivered the desired product smoothly. In general, electron-

donating substituents para to the iodide (4a, 4k, 4l) gave higher yields, though electron-neutral 

(4m, 4n) and -poor (4o, 4p) arenes also delivered their corresponding ortho-Heck products. Small 

ortho substituents, such as –OMe (4q) and –F (4r), can also be tolerated. Interestingly, having 

fluoride as the ortho-substituent (4r) resulted in a sequential double 1,4-migration side-product 

(4ra), in which two NBE insertions took place before the reaction with acrylate. Note that a similar 

multiple sequential NBE insertion has been previously observed in a Rh-catalyzed system.39 In the 

absence of an ortho substituent, the ortho-Heck product (4s) can still form. Additionally, an 

alkenyl iodide (4t) was shown to be a competent substrate, producing a satisfying 59% yield of 

the desired product. Moreover, NBEs with substitutions at the 5- and 6-positions are suitable 

coupling partners (4u-4v). Unsurprisingly, unsymmetrical dicyclopentadiene (4u) gave an 

inseparable mixture of alkene regio-isomers. Under the current reaction conditions, 2,5-

norbornadiene was unable to deliver the corresponding product, only producing the ipso-Heck side 

product for some unknown reason (4w). 
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Scheme 4.6. Substrate Scope of the Transformationa 

 

aUnless otherwise noted, all reactions were carried out with 1 (0.2 mmol), 2 (0.24 mmol), and 3 

(0.2 mmol) in 2.0 mL of DMF for 18 h; all yields are isolated yields. bCarried out with 1a (1.0 
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mmol), 2a (1.2 mmol), and 3a (1.0 mmol) in 10.0 mL of DMF for 18 h. cCarried out with 1a (0.1 

mmol), 2h (0.12 mmol), and 3a (0.1 mmol) in 1.0 mL of DMF for 18 h; NMR yield is reported.  

dSolid state structure of 4d with thermal ellipsoids drawn at 50% probability. For clarity, the 

norbornyl enantiomer and hydrogen atoms have been removed. 

Other unsuccessful substrates include iodobenzene, 2-bromoiodobenzene, the ortho-ester 

substituted aryl halide, and vinyl acetate (Scheme 4.7). In the case of iodobenzene, a complex 

reaction mixture was obtained. It is likely that multiple NBE insertion/1,4-migrations occurred to 

generate this complex mixture. 

Scheme 4.7. Unsuccessful Substrates 

 

Finally, the competition between the ortho-Heck and a typical Catellani ortho-alkylation 

reaction was studied (Scheme 4.8). In the absence of LiBr and Bu2BOTf, but with the addition of 
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(Scheme 4.8a). While similar yields of the ortho-Heck product were obtained in all cases, the use 
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cesium salt.1 On the other hand, running the reaction with substrate 1a under similar conditions 

reported by Catellani and Cugini,8 the ortho-Heck product (4a) was still observed and, particularly, 

formed in a higher yield at a higher reaction temperature (Scheme 4.8b). 

Scheme 4.8. Investigating Competition between Ortho-Heck and a Catellani Reactiona 

 

aAll reactions were carried out with 1a (0.1 mmol), 2a (0.12 mmol), and 3a (0.1 mmol) in 1.0 mL 

of DMF for 18 h. NMR yields determined using 1,1,2,2-tetrachloroethane as the internal standard. 

4.3. Conclusion  

In summary, a non-canonical Pd-catalyzed, NBE-mediated, ortho-Heck reaction has been 

identified and explored during a study of the Catellani reaction. Deuterium labeling studies suggest 

a 1,4-Pd migration reaction pathway, leading to olefin coupling at the arene ortho position instead 

of the commonly observed ipso position. Such a reaction mode appears to be quite general for 
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developing more efficient Pd/NBE catalytic systems or new remote C−H functionalization 

methods40, 41 by minimizing or promoting such a 1,4-metal migration process. 

4.4. Experimental 

All reaction vials were flame-dried and allowed to cool to room temperature while capped in order 

to remove as much moisture as possible from the glass surface. Pd(dba)2 was purchased from 

Chem Impex Intl. Inc. and Sigma-Aldrich. Extra-dry dimethylformamide (DMF) used in the key 

reactions was purchased from Acros Organics. All commercially available substrates were used 

without further purification. All reactions were carried out in vials (test-scale reactions, 4 mL vials; 

isolation-scale reactions, 8 mL vials; 1.0 mmol-scale reaction, 20 mL vial) unless otherwise noted. 

All reactions that required heating were conducted on hot plates using appropriately sized heating 

blocks for vials and the temperature was monitored via a thermometer submerged in a vial filled 

with silicone oil (instead of the hot plate’s temperature probe reading). Thin layer chromatography 

(TLC) analysis was run on silica gel plates purchased from EMD Chemical (silica gel 60, F254). 

Infrared spectra were recorded on a Nicolet iS5 FT-IR Spectrometer using neat thin film technique. 

High-resolution mass spectra (HRMS) were obtained using an Agilent 6224 Tof-MS spectrometer 

(ESI) and an Agilent 7200B QTof GC-MS spectrometer (EI) and are reported as 

calculated/observed m/z for [M]+, [M+H]+, or [M+Na]+ ions. Nuclear magnetic resonance spectra 

(1H NMR, 13C NMR and 19F NMR) were obtained using a Bruker Model DMX 400 (400 MHz: 

1H at 400 MHz, 13C at 101 MHz, 19F at 376 MHz); some NMR spectra (1H, 2H, 13C) were obtained 

using a Bruker Model DMX 500 (500 MHz: 1H at 500 MHz, 2H at 77 MHz, 13C at 126 MHz). For 

CDCl3 solutions, the chemical shifts were reported as parts per million (ppm) referenced to residual 

protium or carbon of the solvents: CDCl3 δ H (7.26 ppm) and CDCl3 δ C (77.16 ppm). Coupling 

constants were reported in Hertz (Hz). Data for 1H NMR spectra were reported as following: 
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chemical shift (δ, ppm), multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, 

dd = doublet of doublets, td = triplet of doublets, ddd = doublet of doublet of doublets, m = 

multiplet), coupling constant (Hz), and integration. Deuterium incorporation was assigned by 1H 

or 2H NMR analysis of the reaction products. The X-ray structure of 4d was obtained using a 

Bruker D8 VENTURE Single Crystal Dual-Source Diffractometer. All ortho-Heck products 

obtained were racemic; stereochemistry was shown to highlight that the products were single 

diastereomers. 

Compounds 1a,42 1k,43 1s,42,44 1t,45 2e,46 and 3v47 were prepared according to literature procedures. 

A diazotization procedure7 was used to prepare compounds 1j,48 1l,49 and 1o,50 which all matched 

previously reported spectra. Isotopically labeled compound 1i-d7 is new and was prepared via a 

bromination51 procedure, and then converted to the aryl iodide via lithium-halogen exchange; 

labeled acrylate 2a-d332 is known. Compounds 1i, 1m, 1n, 1p, 1q, 1r, 2a, 2b, 2c, 2d, 2f, 2g, 2h, 

and 3u are all commercially available. 
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Figure 4.2. Known, Commercially Available, and New Compounds 
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Methyl acrylate-76%d3 (2a-d3): Prepared from 2a via a known procedure in a Schlenk flask 

sealed with a rubber septum.52 After distillation, the labeled acrylate was found to contain 76% 

deuterium at all three acrylic positions. 1H NMR (500 MHz, Chloroform-d) δ 6.44 – 6.35 (m, 

0.24H), 6.16 – 6.08 (m, 0.23H), 5.85 – 5.78 (m, 0.25H), 3.76 (s, 3H). 2H NMR (77 MHz, CDCl3) 

δ 6.42 (s, 1H), 6.15 (s, 1H), 5.85 (s, 1H). Note: on smaller scale, the high D-incorporations reported 

by Ackermann and co-workers52 could be reproduced. On the larger scale used for material 

isolation, however, we obtained a partially deuterated acrylate. This is most likely due to 

unfamiliarity with the reaction setup and may have been mitigated by changing the reaction vessel 

to a sealed reaction tube or using a glass stopper. For our purposes, though, 76% deuteration of the 

acrylic protons was sufficient enough to rule out one of the proposed reaction pathways, thus we 

did not attempt the reaction again. 

 

1-iodonaphthalene-d7 (1i-d7): Naphthalene-d8 (1.0 equiv., 5.0 mmol, 681.1 mg), AuCl3 (0.01 

equiv., 0.05 mmol, 15.2 mg), 1,2-dichloroethane (0.5 M, 10.0 mL), and N-bromosuccinimide (1.0 

equiv., 5.0 mmol, 889.9 mg) were added successively to a flame-dried 40 mL vial inside a 

nitrogen-filled glove box. The vial was sealed, brought outside the glove box, and heated at 80 °C 
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overnight. The reaction was allowed to cool, was concentrated, and purified via silica gel 

chromatography to obtain 848.7 mg (79%) as a yellow oil, which matched the previously reported 

spectra.52 The aryl bromide (1.0 equiv., 3.74 mmol, 800 mg) was then dissolved in dry THF (0.1 

M, 37.4 mL) inside a nitrogen-filled Schlenk flask and then cooled to -78 °C. nBuLi (1.1 equiv., 

4.11 mmol, 1.64 mL; 2.5 M in hexanes) was added dropwise and allowed to stir at -78 °C for 30 

min. Iodine (1.2 equiv., 4.48 mmol, 1.14 g) was then dissolved in minimal THF and added 

dropwise to the solution. The reaction was allowed to stir at room temperature for 6 hours, then 

quenched with sat. NH4Cl, extracted with diethyl ether, washed with 10% Na2S2O3, dried over 

MgSO4, filtered, and concentrated. Pale yellow oil. 89% yield (869 mg). Rf = 0.7 (hexanes). 2H 

NMR (77 MHz, CDCl3) δ 8.15, 7.91, 7.84, 7.64, 7.58, 7.54. 13C NMR (101 MHz, CDCl3) δ 137.3, 

137.1, 136.8, 134.4, 134.1, 133.4, 132.0, 131.7, 131.5, 128.9, 128.6, 128.4, 128.2, 127.9, 127.7, 

127.5, 127.3, 127.1, 126.7, 126.5, 126.4, 126.3, 126.2, 126.1, 125.6, 125.4, 125.2, 99.4. IR (KBr, 

cm-1) 2289, 2270, 1536, 1437, 1250, 902, 624. HRMS (EI) m/z: [M]+ Calcd for C10D7I: 261.0032; 

Found: 261.0033. 

General Procedure for Pd/NBE reactions: Pd(dba)2, P(fur)3, and base (if not moisture sensitive) 

were placed into a flame-dried vial with a stir bar. Solid aryl iodide (0.1 mmol) was also added at 

this stage. The vial was sealed and brought into a nitrogen-filled glovebox, and NBE, LiBr, DMF, 

acrylate, and Bu2BOTf (1.0 M in CH2Cl2) were added successively. If Cs2CO3 or a liquid aryl 

halide was used, it was added inside the glove box prior to the addition of DMF. The reaction vial 

was sealed, removed from the glove box, and heated at 100 °C for 18 h (note: the temperature was 

monitored via an alcohol thermometer submerged in a vial filled with silicone oil, not the hot 

plate’s temperature probe).  
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For test-scale reactions (0.1 mmol): Upon completion, the reactions were allowed to cool to room 

temperature, were quenched by pouring onto water in a 13x100mm test tube, and extracted 4x with 

diethyl ether. The organic fractions were dried by filtering through an MgSO4 plug, concentrated, 

and placed under vacuum on a Schlenk line to remove residual solvent. The internal standard, 

1,1,2,2-tetrachloroethane (16.8 mg, 0.1 mmol), was added to the crude residue, which was then 

diluted with CDCl3 and analyzed via crude 1H NMR analysis to determine yield and composition. 

For isolation-scale reactions (0.2 mmol): Upon completion, the reactions were allowed to cool 

to room temperature, and diluted with ethyl acetate. The reactions were quenched by pouring onto 

water, then extracted with diethyl ether. The organic fractions were dried by filtering through an 

MgSO4 plug, concentrated, and purified via silica gel chromatography (EtOAc/hexanes). Some 

compounds were further purified via preparatory TLC, and any impurities found have been 

accounted for in the isolated yields. 

For the large-scale reaction (1.0 mmol): Upon completion, the reaction was allowed to cool to 

room temperature, diluted with ethyl acetate, quenched by pouring onto water in a separatory 

funnel, and extracted with diethyl ether. The organics were dried over MgSO4, filtered, 

concentrated, and purified via silica gel chromatography (EtOAc/hexanes). 

methyl (E)-3-(2-(bicyclo[2.2.1]heptan-2-yl)-3-methyl-5-

morpholinophenyl)acrylate  (4a): Synthesized from 1a, 2a, and 3a according to the general 

procedure. 0.2 mmol scale: 69% yield (48.8 mg); 1.0 mmol scale: 75% yield (266.1 mg). Yellow 

CO2MeN
O
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oil. Rf = 0.36 (hexane/EtOAc = 4:1). 1H NMR (400 MHz, Chloroform-d) δ 8.42 (d, J = 15.5 Hz, 

1H), 6.77 (d, J = 2.8 Hz, 1H), 6.71 (d, J = 2.8 Hz, 1H), 6.09 (d, J = 15.5 Hz, 1H), 3.88 – 3.82 (m, 

4H), 3.81 (s, 3H), 3.16 – 3.09 (m, 4H), 2.96 (t, J = 8.3 Hz, 1H), 2.57 – 2.53 (m, 1H), 2.38 (s, 3H), 

2.36 (s, 1H), 1.83 (m, 2H), 1.66 – 1.58 (m, 2H), 1.54 (dddd, J = 11.9, 7.5, 3.7, 2.2 Hz, 1H), 1.45 – 

1.35 (m, 1H), 1.35 – 1.17 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 167.6, 148.8, 148.6, 138.4, 

135.8, 135.0, 120.4, 119.5, 114.1, 67.0, 51.8, 49.4, 45.4, 41.8, 40.88, 38.7, 36.7, 32.8, 28.6, 22.7. 

IR (KBr, cm-1) 2952, 2868, 1718, 1598, 1251, 1169, 1123, 992. HRMS (ESI) m/z: [M+Na]+ Calcd 

for C22H29NO3Na: 378.2045; Found: 378.2047. 

methyl (E)-3-(2-methyl-4-morpholinophenyl)acrylate (4aa): 

Palladium(II) acetate (0.05 equiv., 0.05 mmol, 11.2 mg), triphenylphosphine (0.1 equiv., 0.1 

mmol, 26.2 mg), and aryl iodide 1a (1.0 equiv., 1.0 mmol, 303 mg) were placed in a flame-dried 

20 mL vial and transferred into a nitrogen-filled glovebox. Triethylamine (0.2 M, 5.0 mL) and 

acrylate 2a (1.3 equiv., 1.3 mmol, 120 μL) were added successively, then the vial was sealed and 

heated at 90 °C overnight. The reaction was then allowed to cool to room temperature, 

concentrated, and purified via silica gel chromatography. 88% (229.8 mg). Tan solid. Melting 

point: 103 – 105 °C. Rf = 0.29 (hexane/EtOAc = 4:1). 1H NMR (400 MHz, Chloroform-d) δ 7.91 

(d, J = 15.8 Hz, 1H), 7.52 (d, J = 8.7 Hz, 1H), 6.74 (dd, J = 8.7, 2.7 Hz, 1H), 6.69 (d, J = 2.7 Hz, 

1H), 6.25 (d, J = 15.8 Hz, 1H), 3.88 – 3.83 (m, 4H), 3.79 (s, 3H), 3.26 – 3.18 (m, 4H). 13C NMR 

(101 MHz, CDCl3) δ 167.7, 148.3, 143.9, 137.4, 134.3, 132.7, 127.4, 125.8, 119.6, 51.8, 46.3, 

41.7, 40.7, 38.9, 36.7, 32.9, 28.7, 22.3. IR (KBr, cm-1) 2952, 2851, 1709, 1598, 1240, 1165. 

CO2Me

N
O
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HRMS (ESI) m/z: [M+Na]+ Calcd for C15H19NO3Na: 284.1263; Found: 284.1265. The 1H NMR 

spectrum matches the spectrum obtained from the proposed ipso-Heck side product isolated from 

the reaction mixtures in Table 1.  

methyl (E)-3-(2-butyl-6-methyl-4-morpholinophenyl)acrylate 

(4ab): Synthesized according to similar conditions reported by Catellani & co-workers.53 

Pd(OAc)2 (20 mol%, 4.5 mg), K2CO3 (5.3 equiv., 73.3 mg), KOAc (5.3 equiv., 52.0 mg), and aryl 

iodide 1a (1.0 equiv., 30.3 mg) were placed in a flame-dried vial equipped with a magnetic stir-

bar, which was then loosely capped and transferred to a nitrogen-filled glove box. Norbornene (2.0 

equiv., 18.8 mg) and DMF (0.075 M, 1.33 mL), followed by methyl acrylate (1.0 equiv., 8.6 mg), 

and nBuI (6.67 equiv., 122.7 mg) in that order. The vial was sealed and heated at 55 °C or 100 °C 

for 18 h. The general procedure for test-scale reactions was then followed. 31% yield (55 °C) and 

41% yield (100 °C). Note: NMR yields were obtained because while 4ab is unreported, it is not 

the focus of this manuscript. Rf = 0.38 (hexane/EtOAc = 17:3). 1H NMR (400 MHz, Chloroform-

d) δ 7.88 (d, J = 16.3 Hz, 1H), 6.60 (s, 2H), 6.02 (d, J = 16.3 Hz, 1H), 3.89 – 3.82 (m, 4H), 3.80 

(s, 3H), 3.26 – 3.12 (m, 4H), 2.71 – 2.60 (m, 2H), 2.36 (s, 3H), 1.56 – 1.49 (m, 2H), 1.37 (q, J = 

7.4 Hz, 2H), 0.92 (t, J = 7.3 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 167.7, 148.3, 143.9, 137.4, 

134.3, 132.7, 127.4, 125.8, 119.6, 51.8, 46.3, 41.7, 40.7, 38.9, 36.7, 32.9, 28.7, 22.3. IR (KBr, cm-

1) 2955, 2926, 2856, 1716, 1598, 1310, 1259, 1161, 1123, 989, 881. HRMS (ESI) m/z: [M+Na]+ 

Calcd for C19H27NO3Na: 340.1889; Found: 340.1882. This product was not observed in entry 12 

of Table 1.  
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methyl (E)-3-(1-(bicyclo[2.2.1]heptan-2-yl)naphthalen-2-

yl)acrylate (4i): Synthesized from 1i, 2a, and 3a according to the general procedure. 0.2 mmol 

scale: 55% yield (42.7 mg). Colorless oil. Rf = 0.25 (hexane/EtOAc = 19:1). 1H NMR (400 

MHz, Chloroform-d) δ 8.73 (d, J = 15.7 Hz, 1H), 8.34 – 8.28 (m, 1H), 7.80 (dd, J = 7.9, 1.7 Hz, 

1H), 7.66 (d, J = 8.5 Hz, 1H), 7.56 – 7.45 (m, 2H), 7.43 (d, J = 8.6 Hz, 1H), 6.24 (d, J = 15.7 Hz, 

1H), 3.84 (s, 3H), 3.67 (t, J = 8.5 Hz, 1H), 2.90 – 2.85 (m, 1H), 2.44 (s, 1H), 2.19 – 2.10 (m, 

1H), 1.95 (dp, J = 10.0, 2.0 Hz, 1H), 1.74 (dtt, J = 9.1, 3.9, 2.4 Hz, 2H), 1.71 – 1.65 (m, 1H), 

1.56 (ddq, J = 10.0, 3.0, 1.5 Hz, 1H), 1.51 – 1.44 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 167.7, 

147.9, 142.1, 134.6, 132.8, 129.8, 128.9, 127.0, 126.6, 126.4, 126.2, 125.9, 120.1, 51.8, 46.0, 

42.8, 42.1, 39.2, 36.9, 32.8, 29.0. IR (KBr, cm-1) 3055, 2950, 2869, 1718, 1627, 1192, 1173, 

814. HRMS (ESI) m/z: [M+H]+ Calcd for C21H22O2H: 307.1698; Found: 307.1693. 

methyl (E)-3-(1-((1S,2S,4R)-bicyclo[2.2.1]heptan-2-yl)naphthalen-2-

yl)acrylate-d2 (4i-d2): Synthesized from 1i, 2a-d3, and 3a according to the general procedure. 

0.1 mmol scale: 47% yield (NMR). Colorless oil. Rf = 0.25 (hexane/EtOAc = 19:1).1H NMR 

(400 MHz, Chloroform-d) δ 8.76 – 8.69 (m, 0.27H), 8.30 (d, J = 8.4 Hz, 1H), 7.80 (dd, J = 7.8, 

1.8 Hz, 1H), 7.66 (d, J = 8.6 Hz, 1H), 7.56 – 7.41 (m, 4H), 6.28 – 6.18 (m, 0.27H), 3.84 (s, 3H), 

3.66 (t, J = 8.4 Hz, 1H), 2.87 (d, J = 2.4 Hz, 1H), 2.44 (s, 1H), 2.14 (ddd, J = 12.0, 9.3, 2.3 Hz, 

CO2Me
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1H), 1.95 (dp, J = 10.1, 2.0 Hz, 1H), 1.80 – 1.71 (m, 2H), 1.71 – 1.64 (m, 1H), 1.55 (dt, J = 2.9, 

1.3 Hz, 1H), 1.51 – 1.45 (m, 2H). 2H NMR (77 MHz, Chloroform-d) δ 8.77 (s, 1H), 6.27 (s, 1H). 

methyl (E)-3-(1-((1S,2S,3S,4R)-bicyclo[2.2.1]heptan-2-yl-3-

d)naphthalen-2-yl-3,4,5,6,7,8-d6)acrylate (4i-d7): Synthesized from 1i-d7, 2a, and 3a according 

to the general procedure. 0.1 mmol scale: See Scheme 3 for yields (NMR). Colorless oil. Rf = 

0.25 (hexane/EtOAc = 19:1). 1H NMR (400 MHz, Chloroform-d) δ 8.72 (d, J = 15.6 Hz, 1H), 

6.23 (d, J = 15.7 Hz, 1H), 3.84 (s, 4H), 3.65 (d, J = 9.3 Hz, 1H), 2.87 (d, J = 3.5 Hz, 1H), 2.43 (s, 

1H), 2.15 – 2.07 (m, 1H), 1.94 (dt, J = 10.0, 2.1 Hz, 1H), 1.77 – 1.70 (m, 2H), 1.59 – 1.53 (m, 

1H), 1.47 (dq, J = 9.3, 2.5 Hz, 2H). 2H NMR (77 MHz, Chloroform-d) δ 8.36 (s, 1H), 7.97 – 

7.42 (m, 5H), 1.70 (s, 1H). HRMS (ESI) m/z: [M+Na]+ Calcd for C21H15D7O2Na: 336.1957; 

Found: 336.1955. 

(E)-3-(2- benzyl (E)- 3-(2-(bicyclo[2.2.1]heptan-2-yl)-3-

methyl-5-morpholinophenyl)acrylate (4b): Synthesized from 1a, 2b, and 3a according to the 

general procedure. 0.2 mmol scale: 73% yield (62.9 mg). Yellow oil. Rf = 0.38 (hexane/EtOAc = 

4:1). 1H NMR (400 MHz, Chloroform-d) δ 8.48 (d, J = 15.5 Hz, 1H), 7.46 – 7.32 (m, 5H), 6.77 

(d, J = 2.8 Hz, 1H), 6.72 (d, J = 2.7 Hz, 1H), 6.15 (d, J = 15.5 Hz, 1H), 5.26 (s, 2H), 3.90 – 3.83 

(m, 4H), 3.17 – 3.09 (m, 3H), 2.96 (t, J = 8.3 Hz, 1H), 2.55 (s, 1H), 2.38 (s, 3H), 2.34 (s, 1H), 

CO2Me

≥95%D
>95%
d6

CO2BnN
O



 

 220 

1.90 – 1.73 (m, 2H), 1.71 – 1.50 (m, 2H), 1.40 – 1.26 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 

166.9, 149.1, 148.6, 138.5, 136.3, 135.9, 134.8, 128.7, 128.4, 128.4, 120.4, 119.5, 114.0, 67.0, 

66.4, 49.4, 45.5, 41.8, 40.9, 38.8, 36.7, 32.9, 28.7, 22.8. IR (KBr, cm-1) 3032, 2954, 2867, 1713, 

1598, 1160. HRMS (ESI) m/z: [M+H]+ Calcd for C28H33NO3H; 432.2539. Found: 432.2542.  

(E)-O-(3-(2-(bicyclo[2.2.1]heptan-2-yl)-3-methyl-5-

morpholinophenyl)acryloyl)-N,N-dimethylhydroxylamine (4c): Synthesized from 1a, 2c, and 

3a according to the general procedure. 0.2 mmol scale: 59% yield (43.4 mg). Viscous dark red 

oil. Rf = 0.22 (hexane/EtOAc = 2:3). 1H NMR (400 MHz, Chloroform-d) δ 8.32 (dd, J = 15.1, 

1.8 Hz, 1H), 6.73 (d, J = 2.9 Hz, 1H), 6.67 (d, J = 2.7 Hz, 1H), 6.47 (dd, J = 15.1, 1.4 Hz, 1H), 

3.84 (dq, J = 5.1, 2.2 Hz, 4H), 3.18 – 3.09 (m, 7H), 3.07 (s, 3H), 2.95 (m, 1H), 2.55 (s, 1H), 2.38 

(d, J = 1.8 Hz, 3H), 2.33 (s, 1H), 1.82 (ddd, J = 12.0, 9.6, 2.4 Hz, 2H), 1.63 – 1.53 (m, 3H), 1.45 

– 1.23 (m, 5H). 13C NMR (101 MHz, CDCl3) δ 166.8, 148.5, 146.6, 138.2, 136.4, 135.7, 119.8, 

119.5, 114.6, 67.0, 49.6, 45.5, 41.8, 40.7, 38.7, 37.5, 36.6, 36.0, 32.7, 28.7, 22.8. IR (KBr, cm-1) 

3380, 2953, 2868, 2241, 1647, 1600, 1394, 1122, 731. HRMS (ESI) m/z: [M+Na]+ Calcd for 

C23H32N2O2Na: 391.2361; Found: 391.2356. 
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(bicyclo[2.2.1]heptan-2-yl)-3-methyl-5-

morpholinophenyl)-N-(tert-butyl)acryl-amide (4d): Synthesized from 1a, 2d, and 3a 

according to the general procedure. 0.2 mmol scale: 88% yield (69.5 mg). Pale-yellow solid. 

Decomposition point: 183 – 188 °C. Rf = 0.28 (hexane/EtOAc = 4:1). A single crystal was 

obtained by vapor diffusion of pentane into a solution of 4d dissolved in ethyl acetate, which was 

analyzed via X-ray crystallography. 1H NMR (400 MHz, Chloroform-d) δ 8.20 (d, J = 15.0 Hz, 

1H), 6.72 (d, J = 2.8 Hz, 1H), 6.66 (d, J = 2.8 Hz, 1H), 5.92 (d, J = 15.1 Hz, 1H), 5.36 (s, 1H), 

3.88 – 3.79 (m, 4H), 3.16 – 3.08 (m, 4H), 2.95 (t, J = 8.3 Hz, 1H), 2.58 – 2.54 (m, 1H), 2.38 (s, 

3H), 2.34 (s, 1H), 1.83 (tdt, J = 7.2, 5.4, 2.3 Hz, 2H), 1.63 – 1.50 (m, 4H), 1.43 (s, 9H), 1.33 – 

1.25 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 165.3, 148.5, 143.9, 138.1, 135.9, 135.7, 124.1, 

119.8, 114.4, 67.1, 51.5, 49.5, 45.5, 41.7, 40.8, 38.8, 36.7, 32.8, 29.1, 28.7, 22.8. HRMS (ESI) 

m/z: [M+H]+ Calcd for C25H36N2O2H: 397.2855; Found: 397.2857. 

(E)-3-(2-(bicyclo[2.2.1]heptan-2-yl)-3-methyl-5-

morpholinophenyl)-1-phenylprop-2-en-1-one (4e): Synthesized from 1a, 2e, and 3a according 

to the general procedure. 0.2 mmol scale: 57% yield (46.1 mg). Yellow oil. Rf = 0.32 

(hexane/EtOAc = 4:1). 1H NMR (400 MHz, Chloroform-d) δ 8.52 (d, J = 15.2 Hz, 1H), 8.04 – 

7.98 (m, 2H), 7.61 – 7.55 (m, 1H), 7.53 – 7.48 (m, 2H), 7.16 (d, J = 15.2 Hz, 1H), 6.82 (d, J = 

X-ray structure
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2.8 Hz, 1H), 6.80 (d, J = 2.8 Hz, 1H), 3.90 – 3.82 (m, 4H), 3.18 – 3.13 (m, 4H), 2.99 (t, J = 8.4 

Hz, 1H), 2.56 (s, 1H), 2.40 (s, 3H), 2.33 (s, 2H), 1.88 – 1.81 (m, 1H), 1.78 (d, J = 10.5 Hz, 1H), 

1.64 – 1.57 (m, 3H), 1.38 – 1.28 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 190.8, 149.1, 148.7, 

138.5, 138.3, 136.5, 135.7, 132.8, 128.8, 128.6, 128.4, 124.2, 120.6, 114.2, 67.1, 49.5, 45.6, 41.9, 

40.9, 38.7, 36.7, 32.8, 28.7, 22.8. IR (KBr, cm-1) 2953, 2866, 1662, 1600, 1448, 1253, 1122, 

1016, 694.  HRMS (ESI) m/z: [M+Na]+ Calcd for C27H31NO2Na: 424.2252; Found: 424.2253. 

(E)-3-(2-(bicyclo[2.2.1]heptan-2-yl)-3-methyl-5-

morpholinophenyl)acrylonitrile (4f): Synthesized from 1a, 2f, and 3a according to the general 

procedure. 0.2 mmol scale: 88% yield (56.5 mg; E:Z = 1.35:1). Yellow oil. Rf = 0.4 (hexane/EtOAc 

= 4:1). 1H NMR (500 MHz, Chloroform-d) δ 8.15 (d, J = 16.2 Hz, 0.56H), 7.85 (d, J = 11.6 Hz, 

0.43H), 6.86 (d, J = 2.8 Hz, 0.48H), 6.78 (dd, J = 6.0, 2.8 Hz, 1H), 6.57 (d, J = 2.8 Hz, 0.56H), 

5.55 (d, J = 16.2 Hz, 0.52H), 5.47 (d, J = 11.5 Hz, 0.39H), 3.85 (t, J = 5.1 Hz, 4H), 3.14 (m, 4H), 

2.91 (m, 1H), 2.55 – 2.49 (m, 1H), 2.37 (s, 3H), 2.33 (s, 0.69H), 1.86 (dtd, J = 11.3, 8.9, 2.3 Hz, 

1H), 1.72 – 1.57 (m, 3H), 1.50 – 1.39 (m, 1H), 1.37 – 1.23 (m, 3H). 13C NMR (101 MHz, CDCl3) 

δ 154.7, 154.0, 148.7, 138.7, 138.5, 135.4, 134.1, 133.3, 121.1, 120.8, 118.4, 117.3, 115.7, 113.6, 

98.1, 97.6, 67.0, 66.9, 49.5, 49.3, 45.5, 41.6, 41.5, 41.0, 40.7, 38.8, 36.6, 36.5, 32.7, 32.6, 28.5, 

22.8, 22.7. IR (KBr, cm-1) 2955, 2868, 2216, 1597, 1450, 1258, 1122. HRMS (ESI) m/z: [M+Na]+ 

Calcd for C21H26N2ONa: 345.1943: Found: 345.1944. 
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(E)-4-(4-(bicyclo[2.2.1]heptan-2-yl)-3-methyl-5-(2-

(methylsulfonyl)vinyl)phenyl)morpholine (4g): Synthesized from 1a, 2g, and 3a according to 

the general procedure. 0.2 mmol scale: 83% yield (62.0 mg). Dark yellow solid. Decomposition 

point: 179 – 183 °C. Rf = 0.12 (hexane/EtOAc = 1:1). 1H NMR (400 MHz, Chloroform-d) δ 8.40 

(d, J = 15.1 Hz, 1H), 6.80 (d, J = 2.8 Hz, 1H), 6.63 (d, J = 2.8 Hz, 1H), 6.58 (d, J = 15.0 Hz, 1H), 

3.87 – 3.82 (m, 4H), 3.15 – 3.10 (m, 4H), 3.02 (s, 3H), 2.99 – 2.91 (m, 1H), 2.54 (s, 1H), 2.38 (s, 

3H), 2.37 (s, 1H), 2.17 (s, 3H), 1.88 (td, J = 10.3, 9.1, 2.2 Hz, 1H), 1.73 (d, J = 10.1 Hz, 1H), 1.63 

(d, J = 9.4 Hz, 2H), 1.35 – 1.27 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 148.8, 148.1, 138.9, 

136.2, 132.3, 127.5, 121.1, 114.0, 67.0, 49.4, 45.6, 43.2, 41.7, 41.0, 38.8, 36.7, 32.7, 28.7, 22.7. 

IR (KBr, cm-1) 2955, 2867, 1596, 1451, 1305, 1131, 964, 834, 506. HRMS (ESI) m/z: [M+H]+ 

Calcd for C21H29NO3SH: 376.1946; Found: 376.1942. 

(E)-4-(4-(bicyclo[2.2.1]heptan-2-yl)-3-methyl-5-

styrylphenyl)morpholine (4h): Synthesized from 1a, 2h, and 3a according to the general 

procedure. 0.1 mmol scale: 20% yield (NMR). An NMR yield was obtained for 4h because 

separation from unreacted 1a via silica gel chromatography proved to be quite challenging. 

Colorless oil. Rf = 0.25 (hexane/EtOAc = 9:1). 1H NMR (400 MHz, Chloroform-d) δ 7.72 (d, J = 

15.9 Hz, 1H), 7.51 – 7.44 (m, 2H), 7.36 (dd, J = 8.4, 6.7 Hz, 2H), 6.80 (d, J = 2.8 Hz, 1H), 6.71 
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(d, J = 2.8 Hz, 1H), 6.65 (d, J = 15.9 Hz, 1H), 3.92 – 3.70 (m, 4H), 3.27 – 3.01 (m, 4H), 3.00 (t, J 

= 8.3 Hz, 1H), 2.63 (s, 1H), 2.39 (s, 3H), 2.33 (s, 1H), 1.91 – 1.79 (m, 2H), 1.71 – 1.59 (m, 4H), 

1.37 – 1.27 (m, 3H). 13C NMR (126 MHz, CDCl3) δ 148.7, 138.1, 138.0, 138.0, 134.8, 132.1, 

130.2, 128.9, 127.5, 126.5, 118.7, 114.6, 67.2, 49.7, 45.6, 41.8, 40.5, 38.8, 36.7, 32.8, 28.8, 22.9. 

IR (KBr, cm-1) 3023, 2953, 2853, 1597, 1449, 1261, 1123, 692. HRMS (ESI) m/z: [M+H]+ Calcd 

for C26H31NOH: 374.2484; Found: 374.2481. 

methyl (E)-3-(5-(bicyclo[2.2.1]heptan-2-yl)quinolin-6-yl)acrylate  

(4j): Synthesized from 1j, 2a, and 3a according to the general procedure. 0.2 mmol scale: 49% 

yield (29.8 mg). Viscous yellow oil. Rf = 0.15 (hexane/EtOAc = 4:1). 1H NMR (400 MHz, 

Chloroform-d) δ 8.88 (dt, J = 3.9, 1.9 Hz, 1H), 8.69 – 8.65 (m, 1H), 8.64 (s, 1H), 7.92 (dd, J = 

8.9, 2.3 Hz, 1H), 7.65 (dd, J = 8.8, 2.0 Hz, 1H), 7.43 (ddd, J = 9.1, 4.1, 1.9 Hz, 1H), 6.25 (dd, J = 

15.7, 2.1 Hz, 1H), 3.84 (s, 3H), 3.58 (t, J = 8.4 Hz, 1H), 2.87 (d, J = 3.0 Hz, 1H), 2.44 (s, 1H), 

2.08 (ddd, J = 12.0, 9.3, 2.3 Hz, 1H), 1.90 (dp, J = 10.0, 2.0 Hz, 1H), 1.75 – 1.71 (m, 2H), 1.71 – 

1.61 (m, 1H), 1.56 (dq, J = 10.1, 1.7 Hz, 1H), 1.48 – 1.24 (m, 2H). 13C NMR (101 MHz, CDCl3) 

δ 167.5, 150.2, 149.4, 146.8, 142.3, 134.2, 130.5, 130.4, 128.3, 127.9, 121.1, 121.1, 51.9, 45.8, 

42.9, 41.9, 39.1, 36.9, 32.6, 28.9. HRMS (ESI) m/z: [M+Na]+ Calcd for C20H21NO2Na: 

330.1470; Found: 330.1469. 
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methyl (E)-3-(2-(bicyclo[2.2.1]heptan-2-yl)-5-

(dimethylamino)-3-methylphenyl)acrylate (4k): Synthesized from 1k, 2a, and 3a according to 

the general procedure. 0.2 mmol scale: 70% yield (44.1 mg). Yellow oil. Rf = 0.47 (hexane/EtOAc 

= 9:1). 1H NMR (400 MHz, Chloroform-d) δ 8.43 (d, J = 15.5 Hz, 1H), 6.62 (d, J = 2.9 Hz, 1H), 

6.54 (d, J = 2.9 Hz, 1H), 6.12 (d, J = 15.5 Hz, 1H), 3.81 (s, 3H), 2.95 (t, J = 8.3 Hz, 1H), 2.91 (s, 

6H), 2.56 – 2.51 (m, 1H), 2.38 (s, 3H), 2.35 (q, J = 3.1, 2.2 Hz, 1H), 1.83 (tdd, J = 9.0, 5.7, 2.3 

Hz, 2H), 1.65 – 1.58 (m, 3H), 1.37 – 1.28 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 167.8, 149.4, 

148.2, 138.2, 134.9, 132.5, 119.2, 117.6, 111.2, 51.7, 45.2, 41.9, 41.0, 40.8, 38.7, 36.8, 32.9, 28.7, 

22.8. IR (KBr, cm-1) 2949, 2868, 1716, 1601, 1304, 1168, 837. HRMS (ESI) m/z: [M+Na]+ Calcd 

for C20H27NO2Na: 336.1939; Found: 336.1935. 

methyl (E)-3-(2-(bicyclo[2.2.1]heptan-2-yl)-5-methoxy-3-

methylphenyl)acrylate (4l): Synthesized from 1l, 2a, and 3a according to the general procedure. 

0.2 mmol scale: 62% yield (38.9 mg). Yellow oil. Rf = 0.65 (hexane/EtOAc = 9:1).  1H NMR (400 

MHz, Chloroform-d) δ 8.42 (d, J = 15.5 Hz, 1H), 6.75 (d, J = 2.9 Hz, 1H), 6.72 (d, J = 2.9 Hz, 

1H), 6.11 (d, J = 15.6 Hz, 1H), 3.81 (s, 3H), 3.78 (s, 3H), 2.97 (t, J = 8.4 Hz, 1H), 2.58 – 2.53 (m, 

1H), 2.38 (s, 3H), 2.36 (d, J = 5.4 Hz, 1H), 1.90 – 1.79 (m, 2H), 1.61 (dq, J = 5.9, 3.4 Hz, 2H), 

1.54 (dddd, J = 11.8, 7.6, 3.8, 2.3 Hz, 1H), 1.40 (ddq, J = 10.0, 2.9, 1.5 Hz, 1H), 1.32 (dq, J = 9.2, 

2.1 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 167.6, 156.8, 148.2, 139.0, 136.5, 135.2, 119.7, 118.8, 

CO2MeMe2N
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111.5, 55.3, 51.8, 45.5, 41.8, 40.9, 38.8, 36.7, 32.9, 28.6, 22.6. IR (KBr, cm-1) 2951, 2869, 2091, 

1716, 1630, 1600, 1471, 1435, 1169, 1069, 859. HRMS (ESI) m/z: [M+H]+ Calcd for C19H24O3H: 

301.1804; Found: 301.1803. 

methyl (E)-3-(2-(bicyclo[2.2.1]heptan-2-yl)-3-methylphenyl)acrylate 

(4m): Synthesized from 1m, 2a, and 3a according to the general procedure. 0.2 mmol scale: 43% 

yield (23.3 mg). Colorless oil. Rf = 0.31 (hexane/EtOAc = 19:1). 1H NMR (400 MHz, Chloroform-

d) δ 8.44 (d, J = 15.6 Hz, 1H), 7.18 (ddd, J = 11.6, 7.8, 4.1 Hz, 2H), 7.06 (t, J = 7.5 Hz, 1H), 6.10 

(d, J = 15.5 Hz, 1H), 3.81 (s, 3H), 3.04 (t, J = 8.4 Hz, 1H), 2.61 (d, J = 2.7 Hz, 1H), 2.41 (s, 3H), 

2.37 (s, 1H), 1.93 – 1.81 (m, 3H), 1.69 – 1.58 (m, 3H), 1.37 – 1.29 (m, 3H). 13C NMR (101 MHz, 

CDCl3) δ 167.7, 148.3, 143.9, 137.4, 134.3, 132.7, 127.4, 125.8, 119.6, 51.8, 46.3, 41.7, 40.7, 38.9, 

36.7, 32.9, 28.7, 22.3. IR (KBr, cm-1) 2950, 2869, 1719, 1629, 1163, 792. HRMS (ESI) m/z: 

[M+H]+ Calcd for C18H22O2H: 271.1698; Found: 271.1693. 

methyl (E)-3-(2-(bicyclo[2.2.1]heptan-2-yl)-5-bromo-3-

methylphenyl)acrylate  (4n): Synthesized from 1n, 2a, and 3a according to the general 

procedure. 0.2 mmol scale: 61% yield (42.6 mg). Pale-yellow oil. Rf = 0.63 (hexane/EtOAc = 

19:1). 1H NMR (400 MHz, Chloroform-d) δ 8.33 (d, J = 15.5 Hz, 1H), 7.30 (d, J = 2.3 Hz, 1H), 

7.28 (d, J = 2.4 Hz, 1H), 6.09 (d, J = 15.5 Hz, 1H), 3.81 (s, 3H), 2.95 (t, J = 8.4 Hz, 1H), 2.60 – 

CO2Me

CO2MeBr
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2.55 (m, 1H), 2.37 (s, 3H), 2.36 (d, J = 3.0 Hz, 1H), 1.92 – 1.82 (m, 1H), 1.78 (dp, J = 10.0, 1.9 

Hz, 1H), 1.68 – 1.59 (m, 2H), 1.50 (dddd, J = 11.7, 7.5, 3.8, 2.3 Hz, 1H), 1.41 (ddt, J = 10.0, 4.0, 

1.5 Hz, 1H), 1.31 (dt, J = 8.8, 2.6 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 167.7, 148.3, 143.9, 

137.4, 134.3, 132.7, 127.4, 125.8, 119.6, 51.8, 46.3, 41.7, 40.7, 38.9, 36.7, 32.9, 28.7, 22.3. IR 

(KBr, cm-1) 2951, 2870, 1721, 1632, 1309, 1170. HRMS (ESI) m/z: [M+H]+ Calcd for 

C18H21BrO2H: 349.0803; Found: 349.0797. 

methyl (E)-3-(2-(bicyclo[2.2.1]heptan-2-yl)-5-cyano-3-

methylphenyl)acrylate (4o): Synthesized from 1o, 2a, and 3a according to the general procedure. 

0.2 mmol scale: 45% yield (26.6 mg). Yellow oil. Rf = 0.46 (hexane/EtOAc = 10:1). 1H NMR (400 

MHz, Chloroform-d) δ 8.33 (d, J = 15.6 Hz, 1H), 7.43 (d, J = 2.0 Hz, 1H), 7.41 (d, J = 2.0 Hz, 

1H), 6.10 (d, J = 15.6 Hz, 1H), 3.82 (s, 3H), 3.03 (t, J = 8.4 Hz, 1H), 2.43 (s, 3H), 2.39 (d, J = 4.2 

Hz, 1H), 1.92 (ddd, J = 11.9, 9.1, 2.3 Hz, 1H), 1.76 (dp, J = 10.3, 2.0 Hz, 1H), 1.70 – 1.61 (m, 

2H), 1.54 – 1.48 (m, 1H), 1.47 – 1.42 (m, 2H), 1.36 – 1.29 (m, 2H). 13C NMR (101 MHz, CDCl3) 

δ 167.7, 148.3, 143.9, 137.4, 134.3, 132.7, 127.4, 125.8, 119.6, 51.8, 46.3, 41.7, 40.7, 38.9, 36.7, 

32.9, 28.7, 22.3. IR (KBr, cm-1) 2959, 2870, 2228, 1719, 1636, 1320, 1261, 1031, 800. HRMS 

(ESI) m/z: [M+H]+ Calcd for C19H21NO2H: 296.1651; Found: 296.1649. 

methyl (E)-4-(bicyclo[2.2.1]heptan-2-yl)-3-(3-methoxy-3-

oxoprop-1-en-1-yl)-5-methylbenzo-ate (4p): Synthesized from 1p, 2a, and 3a according to the 

CO2MeNC

CO2MeMeO2C
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general procedure. 0.2 mmol scale: 28% yield (18.5 mg). Yellow oil. Rf = 0.46 (hexane/EtOAc = 

10:1). 1H NMR (400 MHz, Chloroform-d) δ 8.40 (d, J = 15.6 Hz, 1H), 7.84 (d, J = 2.0 Hz, 1H), 

7.80 (d, J = 2.0 Hz, 1H), 6.18 (d, J = 15.6 Hz, 1H), 3.90 (s, 3H), 3.82 (s, 3H), 3.06 (t, J = 8.4 Hz, 

1H), 2.64 (s, 1H), 2.45 (s, 3H), 2.38 (s, 1H), 1.92 (ddd, J = 11.8, 8.8, 2.1 Hz, 1H), 1.81 (dt, J = 

10.1, 2.0 Hz, 1H), 1.64 (dq, J = 8.5, 3.4 Hz, 2H), 1.55 – 1.49 (m, 1H), 1.48 – 1.41 (m, 1H), 1.34 

(dt, J = 8.6, 2.5 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 167.7, 148.3, 143.9, 137.4, 134.3, 132.7, 

127.4, 125.8, 119.6, 51.8, 46.3, 41.7, 40.7, 38.9, 36.7, 32.9, 28.7, 22.3. IR (KBr, cm-1) 2954, 2360, 

2342, 1720, 1261, 1034. HRMS (ESI) m/z: [M+H]+ Calcd for C20H24O4H: 329.1753; Found: 

329.1750. 

methyl (E)-3-(2-(bicyclo[2.2.1]heptan-2-yl)-3-

methoxyphenyl)acrylate (4q): Synthesized from 1q, 2a, and 3a according to the general 

procedure. 0.2 mmol scale: 37% yield (21.4 mg). Yellow oil. Rf = 0.35 (hexane/EtOAc = 10:1). 

1H NMR (400 MHz, Chloroform-d) δ 8.17 (d, J = 15.7 Hz, 1H), 7.14 (t, J = 7.9 Hz, 1H), 7.02 (dd, 

J = 7.8, 1.3 Hz, 1H), 6.89 (dd, J = 8.2, 1.3 Hz, 1H), 6.20 (d, J = 15.7 Hz, 1H), 3.81 (s, 3H), 3.78 

(s, 3H), 2.95 (t, J = 8.2 Hz, 1H), 2.49 (dt, J = 3.4, 1.6 Hz, 1H), 2.31 (d, J = 4.2 Hz, 1H), 1.99 (dt, 

J = 9.4, 2.0 Hz, 1H), 1.85 – 1.77 (m, 1H), 1.71 (ddd, J = 13.3, 8.8, 2.2 Hz, 1H), 1.62 – 1.59 (m, 

1H), 1.57 – 1.52 (m, 1H), 1.31 (dddd, J = 13.0, 8.7, 5.0, 2.0 Hz, 2H), 1.24 (dt, J = 8.9, 1.7 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 167.7, 148.3, 143.9, 137.4, 134.3, 132.7, 127.4, 125.8, 119.6, 51.8, 

46.3, 41.7, 40.7, 38.9, 36.7, 32.9, 28.7, 22.3. IR (KBr, cm-1) 2949, 2869, 1719, 1469, 1256, 1166, 

794. HRMS (ESI) m/z: [M+H]+ Calcd for C18H22O3H: 287.1647; Found: 287.1645. 

OMe

CO2Me
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methyl (E)-3-(2-(bicyclo[2.2.1]heptan-2-yl)-3-fluorophenyl)acrylate  

(4r): Synthesized from 1r, 2a, and 3a according to the general procedure. 0.2 mmol scale: 30% 

yield (1:1.3 4r:4ra; 19.4 mg total). Yellow oil. Rf = 0.62 (hexane/EtOAc = 10:1). Note: Products 

4r and 4ra could not be separated by silica gel chromatography and were found to be unstable 

under preparatory TLC conditions. Therefore, the purity is limited and 13C NMR spectra could not 

be obtained. 1H NMR (400 MHz, Chloroform-d) δ 8.06 (d, J = 15.7 Hz, 1H), 7.23 (s, 1H), 7.12 

(tt, J = 8.2, 4.0 Hz, 1H), 7.00 (dd, J = 12.5, 7.9 Hz, 1H), 6.26 (d, J = 15.7 Hz, 1H), 3.82 (s, 3H), 

2.97 – 2.90 (m, 1H), 2.61 (s, 1H), 2.34 (s, 2H), 1.80 (q, J = 14.1, 13.4 Hz, 3H), 1.73 – 1.58 (m, 

8H), 1.35 – 1.29 (m, 6H). 19F NMR (376 MHz, Chloroform-d) δ -111.54 (d, J = 12.5 Hz). IR 

(KBr, cm-1) 2951, 2870, 1722, 1636, 1464, 1314, 1231 1172, 982, 796. HRMS (ESI) m/z: [M+H]+ 

Calcd for C17H19FO2H: 275.1447; Found: 275.1445. 

methyl (E)-3-(2,3-di(bicyclo[2.2.1]heptan-2-yl)-4-fluorophenyl)acrylate 

(4ra): Synthesized from 1r, 2a, and 3a according to the general procedure. 0.2 mmol scale: 30% 

yield (1:1.3 4r:4ra; 19.4 mg total). Yellow oil. Rf = 0.62 (hexane/EtOAc = 10:1). Note: Products 

4r and 4ra could not be separated by silica gel chromatography and were found to be unstable 

under preparatory TLC conditions. Therefore, the purity is limited and 13C NMR spectra could not 

F

CO2Me

F

CO2Me
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be obtained. 1H NMR (400 MHz, Chloroform-d) δ 8.46 – 8.30 (m, 1H), 7.17 – 7.05 (m, 1H), 6.83 

(td, J = 10.6, 9.6, 5.2 Hz, 1H), 6.02 (dd, J = 15.9, 2.9 Hz, 1H), 3.80 (d, J = 3.2 Hz, 3H), 3.16 (s, 

1H), 3.05 (s, 2H), 2.40 (t, J = 23.9 Hz, 6H), 2.06 – 1.86 (m, 3H), 1.78 (s, 2H), 1.73 – 1.59 (m, 2H), 

1.47 – 1.29 (m, 4H). 19F NMR (376 MHz, Chloroform-d) δ -105.84. IR (KBr, cm-1) 2950, 2869, 

1721, 1631, 1257, 1164, 1071, 814. HRMS (ESI) m/z: [M+H]+ Calcd for C24H29FO2H: 369.2230; 

Found: 369.2228.  

methyl (E)-3-(2-(bicyclo[2.2.1]heptan-2-yl)-5-

morpholinophenyl)acrylate (4s): Synthesized from 1s, 2a, and 3a according to the general 

procedure. 0.2 mmol scale: 32% yield (22.1 mg, 9:1 E:Z). Yellow oil. Rf = 0.36 (hexane/EtOAc = 

4:1). Note: data shown for Z isomer. 1H NMR (400 MHz, Chloroform-d) δ 7.23 – 7.15 (m, 2H), 

6.90 (d, J = 2.7 Hz, 1H), 6.83 (dd, J = 8.6, 2.8 Hz, 1H), 6.00 (d, J = 12.2 Hz, 1H), 3.88 – 3.81 (m, 

4H), 3.62 (s, 3H), 3.16 – 3.12 (m, 1H), 3.15 – 3.07 (m, 4H), 2.69 (dd, J = 9.1, 5.5 Hz, 1H), 2.37 – 

2.29 (m, 2H), 1.69 (ddd, J = 11.6, 8.9, 2.3 Hz, 1H), 1.61 – 1.56 (m, 2H), 1.54 – 1.49 (m, 2H), 1.35 

– 1.26 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 167.7, 148.3, 143.9, 137.4, 134.3, 132.7, 127.4, 

125.8, 119.6, 51.8, 46.3, 41.7, 40.7, 38.9, 36.7, 32.9, 28.7, 22.3. Mixture: IR (KBr, cm-1) 2952, 

2868, 1729, 1606, 1450, 1236, 1122, 818. HRMS (ESI) m/z: [M+Na]+ Calcd for C21H27NO3Na: 

364.1889; Found: 364.1884. 

CO2MeN
O
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methyl (E)-3-(1-benzyl-4-(bicyclo[2.2.1]heptan-2-yl)-6-methyl-2-

oxo-1,2-dihydroquinolin-3-yl)acrylate (4t): Synthesized from 1t, 2a, and 3a according to the 

general procedure. 0.2 mmol scale: 59% yield (50.0 mg). Yellow solid. Melting point: 74 – 77 °C. 

Rf = 0.2 (hexane/EtOAc = 4:1). 1H NMR (400 MHz, Chloroform-d) δ 8.16 (d, J = 16.0 Hz, 1H), 

7.79 (s, 1H), 7.32 – 7.27 (m, 1H), 7.25 – 7.12 (m, 6H), 6.81 (d, J = 15.9 Hz, 1H), 5.54 (br s, 2H), 

3.80 (s, 3H), 3.35 (dd, J = 9.5, 7.6 Hz, 1H), 2.87 (s, 1H), 2.42 (s, 1H), 2.40 (s, 3H), 2.04 (t, J = 

10.8 Hz, 1H), 1.88 (d, J = 9.9 Hz, 1H), 1.72 (d, J = 9.5 Hz, 3H), 1.52 (d, J = 10.6 Hz, 1H), 1.44 

(d, J = 2.4 Hz, 1H), 1.42 (s, 1H). 13C NMR (101 MHz, CDCl3) δ 167.7, 148.3, 143.9, 137.4, 134.3, 

132.7, 127.4, 125.8, 119.6, 51.8, 46.3, 41.7, 40.7, 38.9, 36.7, 32.9, 28.7, 22.3. IR (KBr, cm-1) 2951, 

2870, 1719, 1647, 1497, 1437, 1299, 1271, 1169, 807, 728.  HRMS (ESI) m/z: [M+Na]+ Calcd 

for C28H29NO3Na: 450.2045; Found: 450.2043. 

Methyl (E)-3-(2-(3a,4,5,6,7,7a-hexahydro-1H-4,7-

methanoinden-5/6-yl)-3-methyl-5-morph-olinophenyl)acryl-ate (4u): Synthesized from 1a, 

2a, and 3u according to the general procedure. 0.2 mmol scale: 77% yield (60.3 mg, r.r. = 1:1). 

Yellow oil. Rf = 0.37 (hexane/EtOAc = 4:1). 1H NMR (400 MHz, Chloroform-d) δ 8.40 (m, 1H), 

6.75 (m, 1H), 6.69 (m, 1H), 6.08 (m, 1H), 5.85 – 5.74 (m, 1H), 5.74 – 5.62 (m, 1H), 3.87 – 3.82 

BnN
CO2Me

O

CO2MeN
O

H

H
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(m, 4H), 3.81 (s, 3H), 3.25 – 3.17 (m, 2H), 3.14 – 3.07 (m, 4H), 3.09 – 3.04 (m, 1H), 2.99 (t, J = 

8.6 Hz, 0.5H), 2.63 (m, 1H), 2.53 (m, 1H), 2.44 – 2.35 (m, 1H), 2.33 (m, 3H), 2.30 – 2.22 (m, 2H), 

2.00 (m, 1H), 1.93 – 1.83 (m, 1H), 1.64 (s, 0.5H), 1.61 (s, 0.5H), 1.56 (q, J = 3.0, 2.3 Hz, 0.5H). 

13C NMR (101 MHz, CDCl3) δ 167.7, 148.3, 143.9, 137.4, 134.3, 132.7, 127.4, 125.8, 119.6, 51.8, 

46.3, 41.7, 40.7, 38.9, 36.7, 32.9, 28.7, 22.3. IR (KBr, cm-1) 2949, 2851, 1718, 1597, 1168, 1122. 

HRMS (ESI) m/z: [M+Na]+ Calcd for C25H31NO3Na: 416.2202; Found: 416.2201. 

methyl (E)-3-(2-endo-(1,3-dioxo-2-phenyloctahydro-1H-4,7-

methanoisoindol-5-yl)-3-methyl-5-morpholinophenyl)acrylate (4v): Synthesized from 1t, 2a, 

and 3a according to the general procedure. 0.2 mmol scale: 68% yield (67.8 mg). Orange solid. 

Melting point: 112 – 115 °C. Rf = 0.11 (hexane/EtOAc = 4:1). 1H NMR (400 MHz, Chloroform-

d) δ 8.30 (d, J = 15.4 Hz, 1H), 7.53 – 7.46 (m, 2H), 7.45 – 7.38 (m, 1H), 7.34 – 7.29 (m, 2H), 

6.75 (d, J = 2.8 Hz, 1H), 6.63 (d, J = 2.8 Hz, 1H), 6.08 (d, J = 15.5 Hz, 1H), 3.88 – 3.81 (m, 4H), 

3.79 (s, 3H), 3.43 – 3.30 (m, 2H), 3.23 (dd, J = 16.3, 6.5 Hz, 2H), 3.15 – 3.09 (m, 4H), 2.99 (s, 

1H), 2.31 (s, 3H), 2.22 – 2.09 (m, 2H), 1.94 – 1.80 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 

177.2, 177.1, 167.2, 149.1, 148.5, 138.7, 134.9, 132.8, 132.0, 129.4, 128.9, 126.7, 120.9, 120.2, 

114.8, 51.9, 49.8, 49.1, 48.8, 45.1, 42.2, 41.1, 39.7, 35.4, 22.9. IR (KBr, cm-1) 2957, 2852, 1711, 

1628, 1598, 1251, 1160, 1122. HRMS (ESI) m/z: [M+H]+ Calcd for C30H32N2O5H: 501.2389; 

Found: 501.2388. 
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The enantiomer on the norbornyl ring and hydrogen atoms were omitted for clarity; thermal 

ellipsoids drawn at 50% probability.  

Identification	code	 4d	(CCDC#	1990447)	

Empirical	formula	 C25H36N2O2	

Formula	weight	 396.56	

Temperature/K	 100(2)	

Crystal	system	 hexagonal	

Space	group	 P65	

a/Å	 13.2389(8)	

b/Å	 13.2389(8)	

c/Å	 22.8347(14)	

α/°	 90	

β/°	 90	

γ/°	 120	

Volume/Å3	 3466.0(5)	

Z	 6	

ρcalcg/cm3	 1.140	

CONHtBuN
O
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μ/mm-1	 0.072	

F(000)	 1296.0	

Crystal	size/mm3	 0.317	×	0.192	×	0.126	

Radiation	 MoKα	(λ	=	0.71073)	

2Θ	range	for	data	collection/°	5.036	to	50.786	

Index	ranges	 -15	≤	h	≤	15,	-15	≤	k	≤	15,	-27	≤	l	≤	27	

Reflections	collected	 79372	

Independent	reflections	 4236	[Rint	=	0.1095,	Rsigma	=	0.0492]	

Data/restraints/parameters	 4236/267/312	

Goodness-of-fit	on	F2	 1.034	

Final	R	indexes	[I>=2σ	(I)]	 R1	=	0.0510,	wR2	=	0.1027	

Final	R	indexes	[all	data]	 R1	=	0.0872,	wR2	=	0.1169	

Largest	diff.	peak/hole	/	e	Å-3	0.23/-0.19	

Flack	parameter	 -0.8(6)	
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4.5. 1H-NMR, 2H-NMR, 13C-NMR, and 19F-NMR Spectra 

Figure 4.3. 1H NMR Spectrum of 2a-d3 

 

Figure 4.4. 2H NMR Spectrum of 2a-d3 
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Figure 4.5. 2H NMR Spectrum of 1i-d7 

 

Figure 4.6. 13C NMR Spectrum of 1i-d7 

 

 

���������������	�
�
	�������
�
�
�����

��

�

�


�


�

	�

	�

��

��
�
�

	�
�
�

��
	�
��
��
��
��
��
�
�

��
�
�

��
�



��

�

�������������	
������

����������������	�
�������������������������	��
�������������������
�������

���

�

��

��

��

��

��

��

	�


�

��

���

���

���

���

���

���

���

�	�

�
�	�
�


		
��
		
��

�
��
�

��
��
�

��
��
�

��
��
�

��
�
��

��
�
��

��
�
��

��
�
��

��
�
��

��
�
�	

��
	�
�

��
	�
�

��
	�
�

��
	�
	

��
	�
�

��

�
�

��

�
�

��

�
�

��

�



��
��
�

��
��
	

��
��
�

��
��
�

��
�
��

��
�
��

��
�
�


��
	�
�

��
	�
�

����������	���
��������

I

1i-d7

D
D

D

D

D
D

D

I

1i-d7

D
D

D

D

D
D

D



 

 237 

Figure 4.7. 1H NMR Spectrum of 4a 

 

Figure 4.8. 13C NMR Spectrum of 4a 
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Figure 4.9. 1H NMR Spectrum of 4aa 

 

Figure 4.10. 13C NMR Spectrum of 4aa 
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Figure 4.11. 1H NMR Spectrum of 4ab 

 

Figure 4.12. 13C NMR Spectrum of 4ab 
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Figure 4.13. 1H NMR Spectrum of 4i 

 

Figure 4.14. 13C NMR Spectrum of 4i 
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Figure 4.15. HSQC 2D NMR Spectrum of 4i 

 

Figure 4.16. COSY 2D NMR Spectrum of 4i 
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Figure 4.17. NOESY 2D NMR Spectrum of 4i (alkyl region) 

 

 

Figure 4.18. Assigned 1H NMR signals (increasing as signal is more downfield) 
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Figure 4.19. 1H NMR Spectrum of 4i-d2 

 

Figure 4.20. 2H NMR Spectrum of 4i-d2 
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Figure 4.21. 1H NMR Spectrum of 4i-d7 

 

Figure 4.22. 2H NMR Spectrum of 4i-d7 
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Figure 4.23. 1H NMR Spectrum of 4b 

 

Figure 4.24. 13C NMR Spectrum of 4b 
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Figure 4.25. 1H NMR Spectrum of 4c 

 

Figure 4.26. 13C NMR Spectrum of 4c 
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Figure 4.27. 1H NMR Spectrum of 4d 

 

Figure 4.28. 13C NMR Spectrum of 4d 
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Figure 4.29. 1H NMR Spectrum of 4e 

 

Figure 4.30. 13C NMR Spectrum of 4e 
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Figure 4.31. 1H NMR Spectrum of 4f 

 

Figure 4.32. 13C NMR Spectrum of 4f 
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Figure 4.33. 1H NMR Spectrum of 4g 

 

Figure 4.34. 13C NMR Spectrum of 4g 
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Figure 4.35. 1H NMR Spectrum of 4h 

 

Figure 4.36. 13C NMR Spectrum of 4h 
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Figure 4.37 1H NMR Spectrum of 4j 

 

Figure 4.38. 13C NMR Spectrum of 4j 
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Figure 4.39. 1H NMR Spectrum of 4k 

 

Figure 4.40. 13C NMR Spectrum of 4k 
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Figure 4.41. 1H NMR Spectrum of 4l 

 

Figure 4.42. 13C NMR Spectrum of 4l 
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Figure 4.43. 1H NMR Spectrum of 4m 

 

Figure 4.44. 13C NMR Spectrum of 4m 
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Figure 4.45. 1H NMR Spectrum of 4n 

 

Figure 4.46. 13C NMR Spectrum of 4n 
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Figure 4.47. 1H NMR Spectrum of 4o 

 

Figure 4.48. 13C NMR Spectrum of 4o 
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Figure 4.49. 1H NMR Spectrum of 4p 

 

Figure 4.50. 13C NMR Spectrum of 4p 
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Figure 4.51. 1H NMR Spectrum of 4q 

 

Figure 4.52. 13C NMR Spectrum of 4q 
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Figure 4.53. 1H NMR Spectrum of 4r 

 

Figure 4.54. 19F NMR Spectrum of 4r 

 

  

����������������������������������������	��	��
��
��������
�������

���

�

��

���

���

���

���

���

���

���

���

���

���

	��

	��


��


��

���

���

�
��



	
��
�

��
��

��
��

��
�
�

��
�
�

��
�
�

��
�
�

��
�
�

��
�



��
��
�

��
��
�

��
�
�

��
�

��
�
	

��
�
�

��
��
��
��
��
��
��
��
��
�
�

��
�
�

��
�
�

��
�
	

��
�
�

��
��
��
��
��
	
�

��
	
	

��
	
�

��
	
�

��

�
��

�
��

�
��
�
�

��
�
�

��
�
�

��
�
�

��
�
�

��
�
	

��
��
��
	
�

��
�
�

��
�
�

��
�
�

��
�
�

��
��
��
��
��
�

��
�
�

��
�
�

��
�



��
�
�

��
��
��
	
�

��
�
�

��
�
�

	
��
�

	
��
�

	
��
�

	
��
�

	
��
�

	
��
�

	
��
�

	
��
�


�
�
�


�
�
�


�
�
�


�
�
�


�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
�	
��
�
�

��
�
�

��
�
�

��
�



��
�
�

���������		���
��������

�����������������������	���
�����������������������������������	���
������������������������������	��
���������
�������

�
�

���

�

��


�

��

��

���

���

�
�

���

���

���

���

�
�

���

���

�����
��
�	
�

��
��
�	
�

��
�
	�
�
	

��
�
	�
	�

���������	
����������	��

F

CO2Me

4r
with 27% 4ra

F

CO2Me

4r
with 27% 4ra

H grease

H grease



 

 261 

 

Figure 4.55 1H NMR Spectrum of 4ra 

 

Figure 4.56. 19F NMR Spectrum of 4ra 
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Figure 4.57. 1H NMR Spectrum of 4s 

 

Figure 4.58 1H NMR Spectrum of 4s (Z) 
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Figure 4.59. 13C NMR Spectrum of 4s (Z) 

 

Figure 4.60. 1H NMR Spectrum of 4t 
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Figure 4.61. 13C NMR Spectrum of 4t 

 

Figure 4.62. 1H NMR Spectrum of 4u 
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Figure 4.63. 13C NMR Spectrum of 4u 

 

Figure 4.64. 1H NMR Spectrum of 4v 
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Figure 4.65. 13C NMR Spectrum of 4v 
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